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Preface

This volume contains the papers presented at the 25th International Conference on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX 2021) and the 26th
International Conference on Randomization and Computation (RANDOM 2021), which due
to COVID-19 were organized as parallel virtual conferences from September 19–21, 2022.
APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally-difficult problems, and the 2022 edition
was the 25th in the series. RANDOM is concerned with applications of randomness to compu-
tational and combinatorial problems, and the 2022 edition was the 26th in the series. Prior to
2003, APPROX took place in Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley
(2001), and Rome (2002), while RANDOM took place in Bologna (1997), Barcelona (1998),
Berkeley (1999), Geneva (2000), Berkeley (2001), and Harvard (2002). Since 2003, APPROX
and RANDOM have been co-located, taking place in Princeton (2003), Cambridge (2004),
Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009), Bar-
celona (2010), Princeton (2011), Boston (2012), Berkeley (2013), Barcelona (2014), Princeton
(2015), Paris (2016), Berkeley (2017), Princeton (2018), Boston (2019), and online (2020,
2021).

Topics of interest for APPROX and RANDOM are: approximation algorithms, hardness
of approximation, small space, sub-linear time and streaming algorithms, online algorithms,
approaches that go beyond worst case analysis, distributed and parallel approximation, em-
beddings and metric-space methods, mathematical-programming methods, spectral methods,
combinatorial optimization, algorithmic game theory, mechanism design and economics,
computational-geometry problems, approximate learning, design and analysis of randomized
algorithms, randomized complexity theory, pseudorandomness and derandomization, random
combinatorial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings, error-correcting
codes, average-case analysis, smoothed analysis, property testing, and computational learning
theory.

The volume contains 24 contributed papers, selected by the APPROX Program Committee
out of 46 submissions, and 31 contributed papers, selected by the RANDOM Program
Committee out of 60 submissions. We would like to thank all the authors who submitted
papers, the members of the program committees, and the external reviewers. We are grateful
for the guidance of the steering committees: Jarosław Byrka, Samir Khuller, Monaldo
Mastrolili, Laura Sanità, László Végh, Virginia Vassilevska Williams, and David P. Williamson
for APPROX, and Oded Goldreich, Raghu Meka, Cris Moore, Anup Rao, Omer Reingold,
Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel, Alistair Sinclair, and Paul Spirakis
for RANDOM.
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Abstract
We study a unified approach and algorithm for constructive discrepancy minimization based on a
stochastic process. By varying the parameters of the process, one can recover various state-of-the-art
results. We demonstrate the flexibility of the method by deriving a discrepancy bound for smoothed
instances, which interpolates between known bounds for worst-case and random instances.
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1 Introduction

Given a universe of elements U = {1, . . . , n} and a collection S = {S1, . . . , Sm} of subsets
Si ⊆ U , the discrepancy of the set system S is defined as

disc(S) = min
x:U→{−1,1}

max
i∈[m]

∣∣∣ ∑
j∈Si

x(j)
∣∣∣ .

That is, the discrepancy is the minimum imbalance that must occur in at least one of the
sets in S over all bipartitions of U . More generally for an m × n matrix A, the discrepancy
of A is defined as disc(A) = minx∈{−1,1}n ∥Ax∥∞. Note that the definition for set systems
corresponds to choosing A as the incidence matrix of S, i.e., Aij = 1 if j ∈ Si and 0
otherwise. Discrepancy is a well-studied area with several applications in both mathematics
and theoretical computer science (see [14, 17, 28]).

Spencer’s problem. In a celebrated result, Spencer [34] showed that the discrepancy of
any set system with m = n sets is O(

√
n), and more generally O(

√
n log(2m/n)) for m ≥ n.

To show this, he developed a general partial-coloring method (a.k.a. the entropy method),
building on a counting argument of Beck [13], that has since been used widely for various
other problems. A similar approach was developed independently by Gluskin [20]. Roughly,
here the elements are colored in O(log n) phases. In each phase, an Ω(1) fraction of the
elements get colored while incurring a small discrepancy for each row.
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1:2 A Unified Approach to Discrepancy Minimization

Beck-Fiala and Komlós problems. Another central question is the Beck-Fiala problem
where each element appears in at most k sets in S. Equivalently, every column of the incidence
matrix is k-sparse. The long-standing Beck-Fiala conjecture [15] states that disc(S) = O(

√
k).

A further generalization is the Komlós problem, also called the vector balancing problem,
about the discrepancy of matrices A with column ℓ2-norms at most 1. Komlós conjectured
that disc(A) = O(1) for any such matrix. Note that the Komlós conjecture implies the
Beck-Fiala conjecture.

Banaszczyk showed an O(
√

log n) bound for the Komlós problem based on a deep
geometric result [3]. Here, the full coloring is constructed directly (in a single phase), and
this result has also found several applications. The resulting O(

√
k log n) bound for the

Beck-Fiala problem is also the best known bound for general k.1
In contrast, the partial coloring method only gives weaker bounds of O(log n) and

O(k1/2 log n) for these problems – the O(log n) loss is incurred due to the O(log n) phases of
partial coloring.

Limitations of Banaszczyk’s result. Even though Banaszczyk’s method gives better bounds
for the Komlós problem, it is not necessarily stronger, and is incomparable to the partial
coloring method. E.g., it is not known how to obtain Spencer’s O(

√
n) result (or anything

better than the trivial O(
√

n log n) random-coloring bound) using Banaszczyk’s result. A
very interesting question is whether there is a common generalization that unifies both these
results and techniques.

Algorithmic approaches. Both the partial coloring method and Banaszczyk’s result were
originally non-algorithmic, and a lot of recent progress has resulted in their algorithmic
versions. Starting with the work of [4], several different algorithmic approaches are now
known for the partial coloring method [27, 33, 21, 18], based on various elegant ideas from
linear algebra, random walks, optimization and convex geometry.

In further progress, an algorithmic version of the O(
√

log n) bound for the Komlós
problem was obtained by [5], see also [7], and [6] for the more general algorithmic version of
Banaszczyk’s result. In related work, Levy et al. [26] gave deterministic polynomial time
constructive algorithms for the Spencer and Komlós settings matching O(

√
n log(2m/n))

and O(
√

log n) respectively.
A key underlying idea behind many of these results is to perform a discrete Brownian

motion (random walk with small steps) in the {−1, 1}n cube, where the update steps are
correlated and chosen to lie in some suitable subspace. However, the way in which these
subspaces are chosen for the partial coloring method and the Komlós problem are quite
different. We give a high level description of these approaches as this will be crucial later on.

In the partial coloring approach, the walk is performed in a subspace orthogonal to the
tight discrepancy constraints. If the discrepancy for some row Ai reaches its target discrepancy
bound, the update ∆x to the coloring satisfies Ai · ∆x = 0. As the walk continues over time,
the subspace dimension gets smaller and smaller until the walk is stuck. At this point, the
subspace is reset and the next phase resumes.

On the other hand, the algorithm for the Komlós problem does not consider the discrepancy
constraints at all, and chooses a different subspace with a certain sub-isotropic property
which ensures the discrepancy incurred for a row is roughly proportional to its ℓ2 norm,

1 For k = o(log n) an improved bound follows from the 2k − 1 bound by [15].
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while ensuring that the rows with large ℓ2-norm incur zero-discrepancy. In particular, in
contrast to the partial coloring method, all the elements are colored in a single phase, and
the discrepancy constraints are ignored.

The need for a combined approach. Even though the O(
√

k log n) bound for the general
Beck-Fiala problem is based on Banaszczyk’s method, all the important special cases where
the conjectured O(

√
k) bound holds are based on the partial coloring method. For example,

Spencer’s problem with m = O(n) sets corresponds to special case of the Beck-Fiala problem
with k = O(n). So Spencer’s six-deviations result resolves the Beck-Fiala conjecture for this
case, which we do not know how to obtain from Banaszczyk’s result.

The Beck-Fiala conjecture also holds for the case of random set systems with m ≥ n.
In particular, Potukuchi [32] considers the model where each column has 1’s in k randomly
chosen rows and shows that the discrepancy is O(

√
k) with high probability. See also

[19, 9, 22, 1] for related results. Potukuchi’s result crucially relies on the partial coloring
approach, and it is not clear at all how to exploit the properties of random instances in
Banaszcyck’s approach.

Thus a natural question and a first step towards resolving the Beck-Fiala and Komlós
conjecture, and making progress on other discrepancy problems, is whether there exist more
general techniques to obtain both Spencer’s and Potukuchi’s result and the O(

√
k log n)

bound for the Beck-Fiala problem in a unified way.

1.1 Our results
We present a new unified framework that recovers all the results mentioned above, and various
other state-of-the-art results as special cases. Our algorithm is based on a derandomization
of a stochastic process that is guided by a barrier-based potential function. We were inspired
by an elegant idea of Lee and Singh [23] who showed how the barrier function approach can
be used to give a proof of Spencer’s result without any partial coloring phases. A related idea
was also explored in [21]. The barrier function approach itself has been used extensively in
various settings such as graph and matrix sparsification [12, 24], covariance estimation [35],
isoperimetric inequalities [25], bandit algorithms [2] and also in the context of discrepancy
minimization [10, 21, 11].

Given a matrix A, the algorithm starts with the all-zero coloring x0. Let xt ∈ [−1, 1]n be
the coloring at time. The algorithm maintains a barrier bt > 0 over time and defines the
slack of row i at time t as

si(t) = bt −
n∑

j=1
ai(j)xt(j)︸ ︷︷ ︸

current discrepancy

−λ
n∑

j=1
ai(j)2(1 − xt(j)2)︸ ︷︷ ︸

remaining variance

. (1)

Notice that when all xt(j) eventually reach ±1, the remaining variance term is zero and the
slack measures the gap between the discrepancy and the barrier.

We define the potential

Φ(t) =
∑

i

si(t)−p (2)

for some fixed p > 1, that penalizes the rows with small slacks and blows up to infinity if
some slack approaches zero. If we can ensure that the slacks are always positive and the
potential is bounded, then the discrepancy is upper bounded by value of the barrier when
the algorithm terminates.

APPROX/RANDOM 2022



1:4 A Unified Approach to Discrepancy Minimization

At each time step, the algorithm picks a random direction vt that is orthogonal to some
of the rows with the least slack, and satisfies some additional properties, and updates the
coloring by a small amount in the direction vt. The barrier bt is also updated. These updates
are chosen to ensure that the potential does not increase in expectation, and hence all the
slacks stay bounded away from 0. We give a more detailed overview in Section 2.

By changing the parameters p, λ depending on the problem at hand, we obtain several
results using a unified approach.
1. Set coloring [34]. For any set system on n elements and m ≥ n sets, disc(S) =

O(
√

n log(2m/n)).
2. Komlós problem [7]. For any A ∈ Rm×n with columns norms

∥∥Aj
∥∥

2 ≤ 1, disc(A) =
O(

√
log n).

3. Random/Spectral Hypergraphs [32]. Let A ∈ {0, 1}m×n be the incidence matrix of a
set system with n elements and m sets, where element lies in at most k sets and let
γ = maxv⊥1,∥v∥=1 ∥Av∥. Then for m ≥ n, disc(S) = O(

√
k + γ).

4. Gaussian Matrix [16]. For a random matrix A ∈ Rm×n with each entry
Aij ∼ N (0, σ2) independently, with probability at least 1 − (1/m3), disc(A) =
O
(

σ
(√

n +
√

log m
)

·
√

log 2m
n

)
.

More generally, given a matrix A, we state the following result based on optimizing the
various parameters of the algorithm, depending on the properties of A. This allows our
framework to be applied in a black-box manner to a given problem at hand.

▶ Theorem 1. For a A ∈ Rm×n with
∥∥Aj

∥∥
2 ≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n], let

h : R+ → R+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],∑
j∈S

ai(j)2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ∥Ax∥∞ ≤ 5b0 + 2M , where

b0 = min
(√

8(p + 1)(48m)1/p · β, 250L
√

log (2m)
)

. (4)

where β =
∫ n−2

t=0 h(n − t)(n − t)−1/pdt.

Let us see how Theorem 1 directly leads to the results stated above.

Set coloring. As ∥Aj∥2 ≤
√

m, we have L =
√

m, and as
∑

j∈S ai(j)2 ≤ |S|, we can set
h(t) = 1 for all t ∈ [n]. Consider (4) and suppose p ≥ 1.1 so that p/(p − 1) = O(1). Then

β =
∫ n−2

t=0
h(n − t) · (n − t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives
Spencer’s O(

√
n log(2m/n)) bound.

Interestingly, the above result gives a new proof of Spencer’s six-deviations result based
on a direct single-phase coloring. In contrast, all the previously known proofs of this result
[4, 27, 33, 18] required multiple partial coloring phases.
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Komlós problem. Here L = 1 and the second term in (4) directly gives a O(
√

log m) bound2.
This also implies an O(

√
log n) bound as at most n2 rows can have ℓ1-norm more than 1,

and we can assume that m ≤ n2.
Similarly, bounding h(t) using standard concentration bounds, directly gives the following

results for various models of random matrices.

▶ Theorem 2 (Sub-Gaussian Matrix). Let A ∈ Rm×n with each column drawn independently
from a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0
and variance σ2. Then, for n ≤ m ≤ 2O(

√
n), disc(A) = O(σ

√
n log(2m/n)), with probability

at least 1 − (1/m2).

▶ Theorem 3 (Random Matrix). Let A ∈ Rm×n, m ≥ n such that every column of A is drawn
independently from the uniform distribution on {x ∈ Rm : ∥x∥2 ≤ 1}. Then disc(A) = O(1)
with probability at least 1 − (1/m2).

1.1.1 Flexibility of the method
An important advantage of the method is it flexibility, which can be used to obtain several
additional results.

Subadditivity. Given A, B ∈ Rm×n, can we bound disc(A + B) given bounds on disc(A)
and disc(B)? Such questions can be directly handled by this framework by considering a
weighted combination of two different potential functions – one for A and another for B.

More precisely, let us define sdisc(A), the Stochastic Discrepancy of a matrix A, to be
the upper bound on discrepancy obtained by the Potential Walk described in Algorithm 1.
For this notion, we have the following approximate subadditivity for arbitrary matrices.

▶ Theorem 4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices
A, B ∈ Rm×n, there exists x ∈ {−1, 1}n such that

|⟨ai, x⟩| ≲ sdisc(A) for every row ai of A, and
|⟨bi, x⟩| ≲ sdisc(B) for every row bi of B.

In particular, this implies that sdisc(A + B) ≲ sdisc(A) + sdisc(B).

Here a ≲ b means that a = O(1)b. The theorem is algorithmic if A, B are given. It also
implies that for any matrix A, we have sdisc(A) ≲ minB(sdisc(B) + sdisc(A − B)).

Similar questions have been studied previously in the context of understanding the
discrepancy of unions of systems [30, 31]. For example, other related quantities such as the
γ2-norm and the determinant lower bound are also subadditive [30, 31], We remark that the
additive bound cannot hold for the (actual) discrepancy or even hereditary discrepancy3,
and a logarithmic loss is necessary. For this reason, the previous additive bounds based on
γ2-norm and the determinant lower bound lose extra polylogarithmic factors when translated
to discrepancy.

A direct application of Theorem 4 is the following.

2 It would be interesting to construct an explicit family of examples where the discrepancy obtained by
our approach is Ω(

√
log n).

3 A classical example due to Hoffman gives two set systems A and B, each with hereditary discrepancy 1,
but their union has discrepancy Ω(log n/ log log n) [29].

APPROX/RANDOM 2022



1:6 A Unified Approach to Discrepancy Minimization

▶ Theorem 5 (Semi-Random Komlós). Let C ∈ Rm×n be an arbitrary matrix with columns
satisfying

∥∥Cj
∥∥

2 ≤ 1 for all j ∈ [n], and R ∈ Rm×n be a matrix with entries drawn i.i.d.
from N (0, σ2). Then, for n ≤ m ≤ 2O(

√
n), with probability at least 1 − (1/m2),

disc(C + R) = O
(√

log n + σ
√

n log(2m/n)
)

.

For m = O(n), the bound above is O(
√

log n + σ
√

n), which is better than the bound of
O(

√
log n(1 + σ

√
n)) obtained by directly applying the best-known bound for the Komlós

problem to C + R.
As another application, consider a matrix C with n columns and two sets of rows, A and

B, where each row in A has entries in {0, 1}, and the column norm of every column restricted
to rows in B is at most 1. Suppose that A has O(n) rows. Applying the framework gives a
coloring with O(

√
n) discrepancy for rows in A and O(

√
log n) for rows in B.4 Notice that

using previous techniques, if we apply the partial coloring method to get O(
√

n) discrepancy
for A, this would give O(log n) for rows of B. On the other hand, if we apply try to obtain
O(

√
log n) discrepancy for B, all the known methods would incur O(

√
n log n) discrepancy

for A.

Relaxing the function h(·). Recall that the function h in Theorem 1, that controls how the
ℓ2 norms of rows decrease when restricted to subsets S of columns, and plays an important
role in the bounds. In many random or pseudo-random instances however, a worst case
bound on h can be quite pessimistic. For example, here even though most rows decrease
significantly when restricted to S, h can remain relatively high due to a few outlier rows. The
following result gives improved bound for such settings where for any subset S of columns,
most row sizes restricted to S do not deviate much from their expectation if S is chosen at
random.

▶ Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A ∈ {0, 1}m×n such that∥∥Aj
∥∥

1 ≤ k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of
rows of A with∣∣∣∑

j∈S

ai(j) − ∥ai∥1 · (|S|/n)
∣∣∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√

k + β).

As discussed in [32], one can set β ≤ maxv⊥1,∥v∥=1 ∥Av∥ in (5), which in particular gives
Potukuchi’s result [32] for random k-regular hypergraphs as β = O(k1/2) in this case.

Combining with Theorem 4, this extends to the following semi-random setting. Consider
a random k-regular hypergraph A with n vertices and n edges. Suppose an adversary can
arbitrarily modify A by adding or deleting vertices from edges such that degree of any vertex
changes by at most t. How much can this affect the discrepancy of the hypergraph?

▶ Theorem 7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with
incidence matrix A ∈ Rm×n with m ≥ n, and let C ∈ {−1, 0, 1}m×n be an arbitrary matrix
with at most t non-zero entries per column. Then disc(A + C) = O

(√
k +

√
t log n

)
with

probability 1 − n−Ω(1).

4 This answers a question of Haotian Jiang.
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2 The Framework

Given a matrix A ∈ Rm×n, we start at some x0 and our goal is to reach an xT in {−1, 1}n

with small discrepancy. The basic idea will be to apply a small random update (of size δ)
to xt at step t for T steps, where the update will be chosen with care. We use the slack
function and the potential function defined in (1) and (2) to implement this approach. The
figure below gives a high level description of the algorithm.

Algorithm 1 PotentialWalk.

1 Input: A matrix A ∈ Rm×n, a potential function Φ : R × Rn → R+.
2 Let x0 = 0, t = 0. Let T = (n − 2)/δ2.
3 for t ∈ [T ] do
4 Select vt such that: (i) Eε[Φ(t + 1, xt + εδvt)] ≤ Φ(t, xt), (ii) xt ± δvt ∈ [−1, 1]n,

and (iii) ⟨xt, vt⟩ = 0, where ε is a Rademacher random variable (±1 with
probability 1/2).

5 Let xt+1 = xt + εδvt.
6 Output: xT

2.1 Example: Komlós setting
We first give an overview of the ideas by describing how the framework above works for the
Komlós setting. Recall that here A ∈ Rm×n has columns satisfying

∥∥Aj
∥∥

2 ≤ 1. To minimize
notation, let us assume here that m = n (this is also the hardest case for the problem).

At time t, let Vt = {j ∈ [n] : |xt(j)| < 1− 1/2n} and let nt = |Vt|. These are the variables
that are “alive”, and not yet “frozen”. To ensure that xt ∈ [−1, 1]n, the update vt will only
change the variables in Vt. We also set ⟨vt, xt⟩ = 0, which ensures that ∥xt∥2 = δ2t for any
t ∈ [0, T ]. So vt satisfies

vt(j) = 0 for all j ̸∈ Vt and ⟨vt, xt⟩ = 0. (6)

As |xt(j)| ≥ (1 − 1/2n) for all j /∈ Vt, we have (n − nt)(1 − 1/2n)2 ≤
∑

j /∈Vt
xt(j)2 ≤∑

j∈[n] xt(j)2 = δ2t. So the number of alive variables at time t satisfies nt ≥ n − (δ2t)/(1 −
(1/(2n)))2 > n − δ2t − 1.

Blocking large rows. To ensure the two-sided bound |
∑

j ai(j)x(j)| < b0, we create a new
row −ai for each row ai at the beginning. Now, as the squared 2-norm of every column
of A is at most 2, at any time t, the number of rows with

∑
j∈Vt

ai(j)2 > 12 is at most
|Vt|/6 = nt/6. Let us call such rows large (at time t). Otherwise, the row is small. We
additionally constrain vt so that

⟨ai, vt⟩ = 0 for all rows {i :
∑
j∈Vt

ai(j)2 > 12}. (7)

This ensures that a row only starts to incur any discrepancy once it becomes small. So at
step t, we will define the slacks only for small rows and only such rows will contribute to
the potential Φ(t). Let It denote the set of small rows at time t. In the slack function (1),
we will set bt = b0 for all t and λ = 2−5b0. So, at the beginning of the algorithm, when
x0(j) = 0 for all j, we have Φ(0) =

∑
i∈I0

(b0 − λ ·
∑

j∈[n] ai(j)2)−p ≤ |I0|
(b0−12λ)p ≤ n

(
2
b0

)p

.
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1:8 A Unified Approach to Discrepancy Minimization

At any time t, the change in potential Φ(t+1)−Φ(t) is due to (i) new rows becoming small
and entering It+1 and (ii) and the change slack of rows in It. As each row has discrepancy 0
until it becomes small, the total contribution of step (i) over the entire algorithm is at most
n(2/b0)p. So the main goal will be to show that Φ does not rise due to step (ii). This will
ensure that the potential throughout the algorithm is at most 2n(2/b0)p, which gives the∑

j ai(j)x(j) < b0 for all i.

Bounding the increase in Φ. We now describe the main ideas of the algorithm and
computations for the change in Φ in step (ii). The desired O(

√
log n) will then follow directly

by optimizing the parameters b0 and p in (1).
Let et,i denote a vector in Rn with j-th entry ai(j)2xt(j). At step t, xt changes as

xt+1 − xt = εδ · vt and, by a simple calculation, the approximate change in si(t) is:

si(t + 1) − si(t) ≃ (2λ⟨et,i, vt⟩ − ⟨ai, vt⟩) εδ + λ⟨a(2)
i , v

(2)
t ⟩δ2 ,

where ε is a Rademacher random variable and a(2) denotes the vector with j-th entry a(j)2.
The error terms not included above are all higher powers of δ, and can be ignored for small
enough δ as long as all coefficients are bounded. We formalize this in Section 2.2.

Then, up to second order terms in δ, Φ(t + 1) − Φ(t) ≃ f(t)δ2 + g(t)εδ where,

f(t) = −pλ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)
2

∑
i∈I

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+2 ,

g(t) = p
∑
i∈I

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)
si(t)p+1 .

Note that the expectation of the second term g(t)εδ is zero. So it suffices to prove that
there is a choice of vt such that f(t) ≤ 0. This will ensure the expected change of Φ is at
most zero, and there will be a choice of ϵ that ensures Φ is non-increasing. The difficulty in
making f(t) at most zero is that the positive part (the second term of f(t)) has an extra
factor of si(t) in the denominator. So if some si(t) becomes very small, the positive term
could dominate. To ensure this doesn’t happen, we choose vt to be in a subspace that makes
this positive term zero for the smallest slack indices.

Blocking small slacks. Let Jt be the subset of I corresponding to all but the ⌊nt/12⌋
smallest values of si(t) at time t. Select vt such that

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩) = 0 for all i ∈ I\Jt, (8)

Then as
∑

i si(t)−p) ≤ Φ(t), and the smallest nt/12 slacks are “blocked”, we have

max
j∈Jt

1
sj(t) ≤

(
Φ(t)

nt/12

)1/p

,

and so,

f(t) ≤ p

(
p + 1

2
∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 max
j∈Jt

sj(t)−1 − λ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

)

≤ p

(
p + 1

2
∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1

(
12Φ(t)

nt

)1/p

− λ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

)
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In addition to (6) and (8), suppose vt also satisfies

∑
i∈Jt

⟨2λet,i − ai, vt⟩2

si(t)p+1 ≤ 12 ·
∑
i∈Jt

⟨a(2)
i , vt

(2)⟩
si(t)p+1 . (9)

Choosing the update vt. Later in Section 2.2, we will see how to find a vector vt satisfying
(6), (8), (7), and (9). Then,

f(t) ≤ p
∑
i∈Jt

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

(
6(p + 1)

(
12Φ(t)

nt

)1/p

− λ

)
.

To show that f(t) ≤ 0, it thus suffices to have 6(p + 1) (12Φ(t)/nt)1/p − λ ≤ 0.
As Φ(t)

1
p ≤ 2(2n)1/p/b0 by the inductive hypothesis, and nt ≥ 1, it suffices to have

12(p + 1) (24n)1/p − λ · b0 ≤ 0. Choosing p = log n so that n1/p = O(1), and as λ = 2−5b0,
we can pick b0 = O(

√
log n) to satisfy the above. This gives the desired discrepancy bound.

2.2 The General Framework
We now describe the algorithm more formally. Given a matrix A ∈ Rm×n with

∥∥Aj
∥∥

2 ≤ 1
for all j ∈ [n], extend A such that for each original row ai of A, there are two rows ai and
−ai in A. Additionally, partition every row ai into 2 rows, aS

i and aL
i , with small and large

entries, as follows:

aS
i (j) =

{
0 if |ai(j)| > 1/2λ

ai(j) otherwise
, aL

i (j) =
{

ai(j) if |ai(j)| > 1/2λ

0 otherwise,

where λ is a parameter to be determined later. After this transformation, for any x ∈ Rn,
∥Ax∥∞ = maxi⟨aS

i + aL
i , x⟩, and the squared 2-norm of any column of A is at most 2.

Let I denote the index set of all rows of A, and IS denote the index set of rows of the
first type above.

The step-size of the algorithm is δ and the algorithm will run for T = n−2
δ2 steps. Starting

with x0 = 0, let vt ∈ Rn with ⟨xt, vt⟩ = 0. For t ∈ [T ],

xt =
{

xt−1 + δvt−1 w.p. 1/2,

xt−1 − δvt−1 w.p. 1/2.

As t increases, some variables will start approaching 1 in magnitude. To ensure that
xt ∈ [−1, 1]n, we restrict vt to be in the space of alive variables, defined as Vt = {i ∈ [n] :
|xt(i)| < 1 − 1/(2n).

For any t ∈ [T ], ∥xt∥2 = δ2t as

∥xt∥2 = ∥xt−1 + δvt∥2 = ∥xt−1∥2 + δ2 ∥vt∥2 = δ2(t − 1) + δ2 = δ2t. (10)

Let nt = |Vt| denote the number of alive variables at t. By (10), (n − nt)(1 − ϵ)2 ≤ δ2t, which
gives nt ≥ n − δ2t

(1−1/(2n))2 > n − δ2t − 1.
To select a vt such that for all t ∈ [T ], xt ∈ [−1, 1]n and ⟨ai, xt⟩ is bounded for all rows,

we classify the rows according to how many variables are still “uncolored” in a row.
Let the set of s-Alive rows at time t be defined as It = {i ∈ IS :

∑
j∈Vt

ai(j)2 ≤ 20}.
The choice of 20 here is arbitrary, and large enough constant works.

We can now define the slack and the potential function.
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1:10 A Unified Approach to Discrepancy Minimization

Slack. For any i ∈ I, the slack function is defined as

si(t) = bt − ⟨ai, xt⟩ − λ ·
n∑

j=1
ai(j)2(1 − xt(j)2).

We call bt the barrier, and for t ∈ [T ], we also move it as bt = bt−1 +δ2dt−1, for some function
dt. We set λ = cb0 where c = 1/42 and b0 is the initial barrier.

Potential function. The potential function has a parameter p > 1 and is defined as

Φ(t) =
∑
i∈It

si(t)−p.

We will only consider slacks for alive rows and ensure that they are always positive.
Moreover, we will consider only the small s-Alive rows as the rows in IL will be easily
handled. To ensure that si(t) does not become too “small” for any s-Alive row, the choice of
vt should not decrease the smallest slacks. This motivates the following definitions.

Blocked rows: Let Ct be the subset of It corresponding to the ⌊nt/12⌋ smallest values of
si(t).
Let Jt = It\Ct. These are the “large slack” rows.

To prove that all the slacks are positive, we will upper bound the potential throughout
by bounding the change in Φ(t) at each step. Note that Φ(t) will experience jumps whenever
a new index gets added to It, however the total contribution of jumps is easily shown to be
bounded (see Lemma 19) and can essentially be ignored. To bound the one-step change in Φ,
we use the second order Taylor expansion of Φ(t + 1) centered at Φ(t). Details of this can be
found in the arXiv version of this paper [8].

2.3 Algorithm and Analysis
Recall that et,i denotes the vector in Rn with j-th entry ai(j)2xt(j). We can now state the
algorithm for selecting vt.

Algorithm 2 Algorithm for Selecting vt.

1 Initialize x0 ← 0
2 for t = 1, . . . , T = n−2

δ2 do
3 Let Wt = {w ∈ Rn : w(i) = 0, ∀i /∈ Vt} // restrict to alive variables
4 Let Ut = {w ∈ Wt : ⟨w, 2λet,i − ai⟩ = 0, ∀i ∈ Ct and ⟨w, xt⟩ = 0}

// restrict to large slack rows
5 Let Yt = {w ∈ Wt : ⟨w, ai⟩ = 0, ∀i ∈ I\It} // restricted to s-Alive rows
6 Let Gt denote the subspace

Gt =

{
w ∈ Wt :

∑
i∈Jt

⟨(2λet,i − ai), w⟩2

si(t)p+1 ≤ 40
∑
i∈Jt

⟨a(2)
i , w(2)⟩

si(t)p+1

}
(11)

7 Consider the subspace Zt = Ut ∩ Yt ∩ Gt and let W = {w1, w2, . . . , wk} be an
orthonormal basis for Zt. Choose

vt = arg min
w∈W

∑
i∈Jt

⟨2λet,i − ai, w⟩2si(t)−(p+1). (12)
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We now re-state our main theorem. In words, the assumption of the theorem is that there
is a non-decreasing function h(.) such that for any row, the squared norm in any subset of
coordinates S is proportional to h(|S|) times the size of the subset S. Under this condition,
we can bound the discrepancy as a function of h.

▶ Theorem 1. For a A ∈ Rm×n with
∥∥Aj

∥∥
2 ≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n], let

h : R+ → R+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],∑
j∈S

ai(j)2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ∥Ax∥∞ ≤ 5b0 + 2M , where

b0 = min
(√

8(p + 1)(48m)1/p · β, 250L
√

log (2m)
)

. (4)

where β =
∫ n−2

t=0 h(n − t)(n − t)−1/pdt.

The case when h(t) = h is often useful, for which case we have following corollary.

▶ Corollary 8. For a matrix A ∈ Rm×n with ∥Aj∥ ≤ L and |ai(j)| ≤ M for all i ∈ [n], j ∈ [m],
let h be such that for every subset S ⊆ [n] and every i ∈ [m],

∑
j∈S ai(j)2 ≤ |S| · h. Then,

disc(A) ≤ 5b0 + 2M , where b0 = min(26
√

hn log(2m/n), 250L
√

log (2m)).

Roadmap of the proof. The first main lemma below (Lemma 10) establishes that there
is a large feasible subspace from which vt as defined above can be chosen. Using this we
prove Lemma 11, which bounds the change in potential. This will allow us to bound the
discrepancy of each row and hence prove Theorem 1.

A key fact used for proving Lemma 10 is the following lemma in [7].

▶ Lemma 9 ([7]). Let G, H ∈ Rm×n be matrices such that |Gij | ≤ α|Hij | for all i ∈ [m] and
j ∈ [n]. Let K = diag(H⊤H). Then for any β ∈ (0, 1], there exists a subspace W ⊆ Rn such
that dim(W ) ≥ (1 − β)n, and ∀w ∈ W, w⊤G⊤Gw ≤ α2

β · w⊤Kw.

We now arrive at the main Lemma.

▶ Lemma 10 (Subspace Dimension). For all t ∈ T , dim(Zt) ≥ ⌈2nt/3⌉.

Setting the parameters. To show the two bounds in (4), we will set the parameters bt, dt

(the change in bt) and p in two ways:

Case 1: dt = 4(p + 1) · h(nt) · max
i∈Jt

si(t)−1 for all t ∈ [T ], and p, b0 arbitrary (13)

Case 2: p = 2 log(2m), b0 = 840(p + 1) · max
j∈Jt

sj(t)−1 and dt = 0 for all t ∈ [T ]. (14)

Bounding the potential. The next lemma shows that in both these cases, the potential
function remains bounded.

▶ Lemma 11 (Bounded Potential). In either of the cases given by (13) and(14), we have
that Φ(t) ≤ 4m(2/b0)p, for all t = 0, . . . , T .

The next lemma gives a bound on the minimum value of slack for any active row, given
the bound on potential function.
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1:12 A Unified Approach to Discrepancy Minimization

▶ Lemma 12. For any t ∈ {0, . . . , T }, if Φ(t) ≤ 4m(2/b0)p, then maxi∈Jt si(t)−1 ≤
2
b0

(
48m
nt

) 1
p .

▶ Lemma 13. For any t ∈ [T ], the choice of vt satisfies

∑
i∈Jt

⟨2λet,i − ai, vt⟩2

si(t)p+1 ≤
∑
i∈Jt

8h(nt)
si(t)p+1 . (15)

These lemmas will allow us to prove the main theorem (see Appendix).

3 Applications

3.1 Set Coloring

We bound the discrepancy of a set system (U, S) with |U | = n, |S| = m, and m ≥ n. As
∥Aj∥2 ≤

√
m, we have L =

√
m, and as

∑
j∈S ai(j)2 ≤ |S|, we can set h(t) = 1 for all t ∈ [n].

Consider (4) and suppose p ≥ 1.1 so that p/(p − 1) = O(1). Then

β =
∫ n−2

t=0
h(n − t) · (n − t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives
Spencer’s O(

√
n log(2m/n)) bound.

3.2 Vector Balancing

We now consider the discrepancy a matrix A ∈ Rm×n with column ℓ2-norms at most 1.
Here L = 1 and the second term in (4) directly gives a O(

√
log m) bound. This also

implies an O(
√

log n) bound as at most n2 rows can have ℓ1-norm more than 1, and we
can assume that m ≤ n2. In particular, for a row ai with ∥ai∥2 < 1/n1/2, we have
|⟨ai, x⟩| ≤ ∥ai∥1 ≤

√
n ∥ai∥2 < 1 and it can be ignored. The sum of squares of elements in

A is at most n the number of rows with ∥ai∥2 > 1/n1/2 is at most n2.

3.3 Sub-Gaussian Matrices and Random Matrices

We give the proofs for these application in the appendix.

4 Flexibility of the Method

An advantage of the potential function approach is its flexibility. We describe two illustrative
applications. In Section A.2 we show how the bounds for matrices A and B obtained using
the framework can be used to directly give bounds for C = A+B by combining the potentials
for A and B in a natural way.

In Section 4.1 we consider how the requirement on the function h(·) in Theorem 1 can be
relaxed, and use it to bound the discrepancy of sparse hypergraphs (the Beck-Fiala setting)
satisfying a certain pseudo-randomness condition.
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4.1 Discrepancy of Sparse Pseudo-random Hypergraphs

In this section, we consider 0/1 matrices that satisfy a certain regularity property, namely,
for most rows, the sum of their entries in any subset of columns is close to the sum of the
full row scaled by the fraction of columns in the subset. This property is satisfied, e.g., by
the matrices that correspond to sparse random hypergraphs. In particular, we show the
following.

▶ Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A ∈ {0, 1}m×n such that∥∥Aj
∥∥

1 ≤ k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of
rows of A with∣∣∣∑

j∈S

ai(j) − ∥ai∥1 · (|S|/n)
∣∣∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√

k + β).

Proof outline. At a high level the proof is similar to that of Theorem 4, using a weighted
potential function. However, rather than just two potentials, we will have to consider a
combination of O(log n) potentials, and it will take some care to make sure this doesn’t create
an overhead in the discrepancy. We note that the main algorithm remains: at each step
choose a vector in a subspace defined by a set of constraints based on the current vector xt.

We next discuss the details of the algorithm and the proof of Theorem 6. The full proof
can be found in the arXiv version of this paper [8].

Partitioning rows according to ℓ1-norm. First, extend A such that for each original row
ai, there are two rows ai and −ai in A. Since our goal is to prove discrepancy O(

√
k),

we can ignore all rows will ℓ1-norm less than
√

k. Then m ≤ n
√

k because the number of
rows with ℓ1-norm greater than

√
k is at most 2nk/

√
k = 2n

√
k. Let N = ⌈log2 n/k⌉ and

Q = {0} ∪ [N ]. Partition the rows of A into based on their initial ℓ1-norm into |Q| = N + 1
classes:

A0 = {i ∈ I :
√

k ≤ ∥ai∥1 < 2k}.
For each i ∈ [N ], let Ai = {i ∈ I : 2ik ≤ ∥ai∥1 < 2i+1k}.

The sum of ℓ1-norms of rows in A is at most 2nk, therefore for any i, 2ik|Ai| ≤ 2nk and
|Ai| ≤ 21−in.

We create N + 1 potential functions {Φi(t)}N
i=0, one associated with each row partition.

The potential functions use the same p, b0 parameters, and λ = cb0 with c = 1/42, but have
different rate of change of barrier functions dq(·), based on q. We will run Algorithm 2 on
each partition separately but use the same xt and vt at each step. In this case, we can select
parameters to ensure that each potential function is decreasing in expectation (see Lemma
18). However, there might not exist a vector vt that ensure that moving in vt direction
decreases all the potential functions simultaneously. To deal with this, we use a weighted
combination of Φq as the potential function:

Φ(t) = 1
k

· Φ0(t) +
∑
q≥1

22q · Φq(t). (16)
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4.1.1 A suitable subspace

To identify the constrained subspace for the PotentialWalk (Algorithm 6), we use the following
definitions. The set of Active rows is defined as It = {i ∈ I :

∑
j∈Vt

|ai(j)| ≤ 12k}. For each
class q, let hq : R+ → R be a non-increasing function such that for every subset S ⊆ n, at
most nt/16 rows i from class Aq violate the condition∑

j∈S

|ai(j)| ≤ |S| · hq(|S|). (17)

While following the general framework from Section 2.2, we make three crucial changes:
Move orthogonal to rows with large deviation. At step t, the ℓ1 norm of row ai will
be close to (nt/n) · ∥ai∥1 for most rows. Let ai,t denote a vector in Rn with j-th entry
1j∈Vt

ai(j), i.e., ai,t is row ai restricted to the alive coordinates at time t. Then the set of
large deviation rows consists of rows that deviate significantly from this expected value

Bt = {i ∈ I : | ∥ai,t∥1 − ∥ai∥1 · (nt/n)| ≥ 4β}. (18)

For any t ∈ [T ], (5) implies that dim(Bt) ≤ ⌊nt/16⌋.
Ignore Dead rows. As soon as the ℓ1-norm of some row becomes less than 8β, we drop it
from the potential function. The set of dead rows at step t is defined as

Dt = {i ∈ I : ∥ai,t∥1 ≤ 8β}. (19)

For a dead row, rather than keeping track of its discrepancy using a slack function, we
uniformly bound the the additional discrepancy gained by a row after it becomes dead.
Block rows based on their initial size. For q ∈ Q, let Cq

t be the subset of Aq ∩ It

corresponding to the ⌊2i−8n2
t /n⌋ smallest values of {si(t) : i ∈ Aq ∩ It}, and let J q

t =
Ai\{Cq

t ∪ Dt}.
We are ready to state the algorithm for selecting vt.

Algorithm 3 Algorithm for Selecting vt.

1 Let hq(nt) = 2q+2/n and wq(t) = 25− q
4

(
n
nt

)1/4

2 for t = 1, . . . , T do
3 Let Wt = {w ∈ Rn : w(i) = 0, ∀i ∈ Vt} // restrict to alive variables
4 Let Ut = {w ∈ Wt : ⟨w, 2cb0et,i − ai⟩ = 0, ∀i ∈ Ct and ⟨w, xt⟩ = 0}

// restrict to large slack rows
5 Let Yt = {w ∈ Wt : ⟨w, ai⟩ = 0, ∀i ∈ I\It} // move orthogonal to large norm

rows
6 Let Gt = {w ∈ Wt : ⟨ai, w⟩ = 0, ∀i ∈ Bt}

// move orthogonal to large deviation rows
7 Let Zt = Ut ∩ Yt ∩ Gt and let W = {w1, . . . , wk} be an orthonormal basis for Zt

8 Let vt ∈ W such that for all q ∈ Q,∑
i∈J q

t

⟨2cb0et,i − ai, vt⟩2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)−p−1. (20)
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4.2 Proof Outline
The following lemma bounds the number of active classes at step t.

▶ Lemma 14. At step t, the following two conditions hold: (i) The number of classes q for
which Aq ∩ {It\{Bt ∪ Dt}} ≠ ∅ is at most log(16n/nt) and (ii) hq(t) = 2q+2k/n satisfies (17)
for all q ∈ Q.

So at any step t, the set of active rows is from the first log2(16n/nt) classes of rows.
It also helps us define two important parameters associated with a row class q. At step t,
consider a q ∈ Q with Aq ∩ {It\{Bt ∪ Dt}} ̸= ∅.

Since n−δ2t−1 < nt ≤ 16 ·2−qn, for q ≥ 1, let tq := max
{

0, nδ−2 (1 − 16 · 2−q − 1/n)
}

.
Similarly, let t0 := nδ−2 (1 − 16k−1/2 − 1/n

)
.

On the other hand, q must satisfy 2q ≤ 16n
nt

. Let qt := arg maxi≥0
{

2i ≤ 16 · (n/nt)
}

.

The next two lemmas are analogous to Lemma 10 and Lemma 13, respectively.

▶ Lemma 15. For any t ∈ [T ], it holds that dim(Zt) ≥ ⌈nt/2⌉.

▶ Lemma 16. For all t ∈ [T ], there exists vt ∈ Zt such that ∀q ∈ Q,∑
i∈J q

t

⟨2cb0et,i − ai, vt⟩2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)−p−1 . (21)

Note that for any row i ∈ Aq, at t ≤ tq, ⟨2cb0ei,t − ai, vt⟩ = 0. So, we can set dq
t = 0 for

rows in class q. Lemma 11 and Lemma 16 imply that for all the potential functions to be
decreasing, it suffices to have

dq(t) =
{

0 if t ≤ tq

4(p + 1) · wq(t) · hq(nt) · maxi∈J q
t

si(t)−1 otherwise.
(22)

The next lemma helps us bound the rate of change of bq(t), which eventually gives a
bound on bq(T ) in Theorem 6.

▶ Lemma 17. For any t ∈ {0, . . . , T }, if Φ(t) ≤ 8n
(

2
b0

)p

( 16n
nt

), then

max
j∈J q

t

sj(t)−1 ≤

k1/p · 21+15/p

b0

(
n
nt

)3/p

if q = 0
21+(15−3q)/p

b0

(
n
nt

)3/p

if q ≥ 1.
(23)

▶ Lemma 18. For p = 8 and dq given by (22), for all t ∈ [T ], we have Φ(t) ≤ 27n2

nt
·
(

2
b0

)p

.

Proof of Theorem 6. If row i ∈ Aq becomes dead after step t − 1, then

|⟨ai, xT ⟩| ≤ |⟨ai, xt⟩| + |⟨aS
i , xT − xt⟩| ≤ bt(q) + 2

∑
j∈Vt

|ai(j)| ≤ bT (q) + 16β.

Substituting the bound on maxi∈J t
q

si(t)−1 from (23), and using wq(t) = 25−q/4 · (n/nt)1/4

and hq(t) = 2q+2/n, equation (22) gives dq(t) = 0 for t < tq, and

dq(t) =

9k · 23q/8+14

nb0

(
n

n−δ2t−1

)5/8
if q ≥ 1 and t ≥ tq

9k
9
8 · 214

nb0

(
n

n−δ2t−1

)5/8
if q = 0 and t ≥ t0.
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For any q ≥ 1, summing up dq(·),

bq(T ) = b0 + δ2
T −1∑
t=tq

dq(0) ≤ δ2
∫ T

t=tq

9k · 23q/4+12+(15−3q)/8

nb0

(
n

n − δ2t − 1

)5/8
dt

≤ b0 +
∫ n−2

t=δ2tq

9k · 23q/8+14

nb0

(
n

n − t − 1

)5/8
dt = b0 + 220k

b0
.

For b0 = 210
√

k, bq(T ) ≤ 211
√

k for all q ≥ 1. Similar calculation for q = 0 show that
b0 = 210

√
k and bT (0) = 211

√
k suffice.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). Since T =
(n − 2)/δ2, ∥xT ∥2 = n − 2 with |xT (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, ∥x∥2 = n

and |⟨ai, x⟩| ≤ |⟨ai, xT ⟩| + |⟨ai, x − xT ⟩| ≤ 2bT + 16β +
∑

j |x(j) − xT (j)| ≤ bT + 16β + 2. ◀

Random and Semi-random Sparse Hypergraphs. This gives an alternate proof of the
result [32] of Potukuchi that disc(H) = O(

√
k) for regular random k-regular hypergraph H,

on n vertices and m edges with m ≥ n and k = o(m1/2). In particular, Potukuchi showed
that such hypergraphs satisfy condition (5) with high probability.

Proof of Theorem 7. By the subadditive property of stochastic discrepancy, disc(A + C) ≤
O(

√
k) + O(

√
t log n). However, this bound is not algorithmic because it requires running

the algorithm separately on A and Ac − A. ◀
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1:18 A Unified Approach to Discrepancy Minimization

A Appendix: Proof of main theorem

Proof of Lemma 11. We will prove this by induction. Clearly, this holds at t = 0 as
Φ(0) ≤ 2m(2/b0)p. For the inductive step, we will show that for any j = 0, . . . , T − 1, if
Φ(j) ≤ 4m(2/b0)p then

Φ(j + 1) ≤ Φ(j) + 1
Tbp

0
+ |Ij+1\Ij | ·

(
2
b0

)p

. (24)

Note that |Ij+1\Ij | is the number of additional rows in IS that may become alive at step j.
This gives the result by induction as summing (24) over j = 0, . . . , T − 1 will give

Φ(t + 1) ≤ Φ(0) +
T −1∑
j=0

1
Tbp

0
+
(

2
b0

)p T −1∑
j=0

|Ij+1\Ij | ≤ 2m ·
(

2
b0

)p

+ 1
bp

0
≤ 4m ·

(
2
b0

)p

. (25)

We now focus on proving (24) for j = t.
By the induction hypothesis, Φ(t) ≤ 4m (2/b0)p. By Lemma 19, one of the signs for xt+1

gives E(Φ(t + 1)) − Φ(t) ≤ f(t) + 1
T nbp

0
+ |It+1\It| ·

(
2
b0

)p

, where

f(t) = −pδ2
∑
i∈It

dt + λ⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2
∑
i∈It

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+2 .

So to prove (24), it suffices to show that f(t) ≤ 0. We first consider the case when bt, dt and
p are given by (13). As 2λ⟨et,i, vt⟩ − ⟨ai, vt⟩ = 0 for all i /∈ Jt, f(t) satisfies

f(t) ≤ −pδ2
∑
i∈Jt

dt + λ⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2 max
j∈Jt

sj(t)−1 ·
∑
i∈Jt

(⟨2λet,i − ai, vt⟩)2

si(t)p+1 .

(26)

By a simple averaging argument described in Lemma 13, we also have that

∑
i∈It

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 ≤
∑
i∈It

8h(nt)
si(t)p+1 . (27)

Plugging (27) in (26) gives

f(t) ≤ −pδ2
∑
i∈Jt

dt

si(t)p+1 + p(p + 1)δ2

2 max
j∈Jt

sj(t)−1 ·
∑
i∈Jt

8h(nt)
si(t)p+1 . (28)

Therefore, if dt satisfies equation (13), then f(t) ≤ 0.
We now consider the case in (14). As vt ∈ Gt, we have

∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 ≤ 40 ·
∑
i∈Jt

⟨a(2)
i , vt

(2)⟩
si(t)p+1 . (29)

Next, as dt = 0 and λ = b0/42, (26) and (29) give

f(t) ≤
∑
i∈Jt

pδ2⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 ·
(

− b0

42 + 20(p + 1) · max
j∈Jt

sj(t)−1
)

.

So if b0 satisfies equation (14), then f(t) ≤ 0. ◀
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Proof of Lemma 12. By the definition of Jt, for any i ∈ Jt, there are at least ⌊nt/12⌋ + 1
indices j in It such that sj(t) ≤ si(t). Therefore,

max
i∈Jt

1
si(t)

≤
(

12Φ(t)
nt

) 1
p

≤ 2
b0

(
48m

nt

) 1
p

, (30)

where the last inequality follows by the assumption, Φ(t) ≤ 4m(2/b0)p. ◀

Proof of Lemma 13. Using (a+b)2 ≤ 2(a2+b2), and as |2λet,i(j)| = |2λai(j)2xt(j)| ≤ |ai(j)|
as |ai(j)| ≤ 1/2λ for any j and i ∈ IS , we have that for any w,

∑
i∈Jt

⟨2λet,i − ai, w⟩2

si(t)p+1 ≤
∑
i∈Jt

2⟨ai, w⟩2 + 2⟨2λet,i, w⟩2

si(t)p+1 ≤ 4
∑
i∈Jt

⟨ai, w⟩2

si(t)p+1 .

Let Wt = {w1, . . . , wk} be an orthonormal basis for Zt and k = dim(Zt). As Zt ⊆ Vt,

∑
i∈Jt

∑k
j=1⟨ai, wj⟩2

si(t)p+1 ≤
∑
i∈Jt

∑
j∈Vt

ai(j)2

si(t)p+1 ≤ nt

∑
i∈Jt

h(nt)
si(t)p+1 .

where the second inequality uses that
∑

j∈Vt
ai(j)2 ≤ nt · h(nt) by the definition of h.

As k ≥ ⌈nt/2⌉, this gives

1
k

k∑
j=1

∑
i∈Jt

⟨2λet,i − ai, wj⟩2

si(t)p+1 ≤ nt

k

∑
i∈Jt

4h(nt)
si(t)p+1 ≤

∑
i∈Jt

8h(nt)
si(t)p+1 .

The result now follows as vt in (12) minimizes
∑

i∈Jt
⟨2λet,i − ai, wj⟩2si(t)−p−1 over all

wj ∈ Wt. ◀

Proof of Lemma 10. To lower bound the dimension of Zt we lower bound the dimensions
of Ut, Yt and Gt.

First, we have dim(Ut) ≥ nt−dim(Ct)−1 ≥ ⌈11nt/12⌉−1. Second, at time t, as the sum of
ℓ2-norm square of all columns is at most 2nt, we have that

∑
i∈I
∑

j∈Vt
ai(j)2 ≤ 2nt. So the

number of rows ai with
∑

j∈Vt
ai(j)2 ≥ 20 is at most ⌊nt/10⌋ and dim(Yt) ≥ nt − ⌊nt/10⌋ =

⌈9nt/10⌉.
We now bound dim(Gt) by applying Lemma 9. Let G denote the matrix with columns j

corresponding to variables in Vt and rows i restricted to i ∈ Jt with (i, j) entry (2λet,i(j) −
ai(j))si(t)−(p+1)/2.

Let H be the matrix with entries ai(j) · si(t)−(p+1)/2 for i ∈ Jt} and j ∈ Vt. As
|aij | ≤ 1/(2λ) for i ∈ It, we have

|Gij | = |2λai(j)2xt(j) − aj(i)| ≤ |2λai(j)2xt(j)| + |aj(i)| ≤ 2|aj(i)| = 2|Hij |.

Let K = diag(H⊤H). Then, using Lemma 9 with α = 2 and β = 1/10, we get that there
is a subspace Gt with dim(Gt) ≥ ⌈9nt/10⌉ such that Gt = {w ∈ Wt : w⊤G⊤Gw ≤ 40·w⊤Kw},
which by the definition of G and H is equivalent to that given by (11).

Putting together the bounds on the dimensions of these subspaces gives,

dim(Zt) ≥ dim(Ut ∩ Yt ∩ Gt) ≥ ⌈11nt/12⌉ − 1 + ⌈9nt/10⌉ + ⌈9nt/10⌉ − 2nt ≥ ⌈2nt/3⌉.◀

Proof of Theorem 1. Recall that we divide each row a of A as a = aS + aL. We will bound
⟨aL, xT ⟩ and ⟨aS , xT ⟩ separately.
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1:20 A Unified Approach to Discrepancy Minimization

Let t1 denote the earliest when the squared norm of aL (restricted to the alive variables)
is at most 20, and let n1 be number of non-zeros in aL restricted to the set Vt1 . As
|aL(j)| ≥ 1/(2λ) for each j, the number of non-zero variables n1 in aL at time t1 is at most
80λ2, as n1/(4λ2) ≤

∑
j∈Vt1

aL(j)2 ≤ 20. Moreover, as aL incurs zero discrepancy until t1,
the overall discrepancy satisfies

|⟨aL, xT ⟩| = |⟨aL, xt1⟩| + |⟨aL, xT − xt1⟩| ≤
√

n1 · (
∑

j∈Vt1

aL(j)2)1/2 ≤ 80λ ≤ 3b0. (31)

Henceforth, we focus on the rows aS . We first show that the slacks are always positive.
Let γ = b0/4(4m)

1
p . By Lemma 11, for all t ∈ [T ], Φ(t) ≤ 4m(2/b0)p < γ−p. This implies

that |si(t)| ≥ γ for all i ∈ IS
t and t ∈ [T ]. In one step of the algorithm,

|si(t) − si(t − 1)| ≤ δ2dt−1 + |⟨ai, xt⟩ − ⟨ai, xt−1⟩|
≤ δ2dt−1 + |δ⟨ai, vt−1⟩| ≤ 20nδ ≤ 2γ.

So, if si(t − 1) ≥ γ and Φ(t) < γ−p, then si(t) ≥ 0, i.e., the slack si(t) cannot go from being
greater than γ to less than −γ in a single step. So, for every i ∈ IS and t ∈ [T ], si(t) ≥ γ and
⟨ai, xT ⟩ ≤ bT . Together with (31) this gives, |⟨a, xT ⟩| ≤ |⟨aS , xT ⟩| + |⟨aL, xT ⟩| ≤ bT + 3b0.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). As T =
(n − 2)/δ2, ∥xT ∥2 = n − 2 with |xτ (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, we have
∥x∥2 = n. For any row a of A, the discrepancy is bounded by

|⟨a, x⟩| = |⟨a, xT ⟩| + |⟨a, x − xT ⟩| ≤ |⟨a, xT ⟩| + M
n∑

j=1
|x(j) − xT (j)| ≤ bT + 3b0 + 2M.

We now consider the two cases for b0, dt, p. If the second case given by (14), then by (30),
b0 ≤ 1680(p + 1) · (48m/nt)1/p/b0. As nt ≥ 1 for all t ∈ [T ] and p = log(2m), we have
(48m/nt)1/p ≤ 10e, and setting b0 = 250

√
log(2m) suffices. Since dt = 0, bT = b0 and

∥Ax∥∞ ≤ 4b0 + 2M .
In the first case given by (13), then by (30), we have dt = 8(p + 1)(48m)

1
p · h(nt)

b0n
1/p
t

for all
t ∈ [T ]. Summing dt over t gives

bT − b0 = δ2
T −1∑
t=0

dt = 8(p + 1)(48m)
1
p δ2 ·

T −1∑
t=0

h(nt)/(b0n
1/p
t ).

As nt > n − δ2t − 1 ≥ and h is non-increasing, δ2 ·
∑T −1

t=0 h(nt)n−1/p
t ≤ β, so that bT ≤

b0 + 8(p + 1)(48m)1/pβ/b0. Optimizing b0 = (8(p + 1)(48m)1/pβ)1/2 gives that bT = 2b0 and
thus ∥Ax∥∞ ≤ bT + 3b0 + 2M ≤ 5b0 + 2M , giving the desired result.

◀

Proof of Corollary 8. For a constant h, we have β =
∫ n−2

0 (n−t)−1/phdt ≤ n1−1/ph/(1−1/p).
Choosing p = log(2m/n) to optimize the first term in (4) gives the result. ◀

A.1 Sub-Gaussian Matrices and Random Matrices
Let X be a random variable with E(X) = 0. X is called Sub-Gaussian with variance σ2 if
its moment generating function satisfies E(esX) ≤ eσ2s2/2 for all s ∈ R. For a Sub-Gaussian
random variable, E(X2) ≤ 4σ2.
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Proof of Theorem 2. As ai(j) is a Sub-Gaussian with variance σ2, ai(j)2 − E(ai(j)2) is a
mean zero and sub-exponential random variable with parameter 16σ2 [36].

For any S ⊆ [n] with |S| = s, Bernstein’s inequality for sub-exponential random vari-
ables [36] (Theorem 2.8.1) gives that,

Pr(
∑
j∈S

ai(j)2 − E(ai(j)2) ≥ st) ≤ exp(− min(s2t2/16σ4, st/16σ2)). (32)

Setting t = 96σ2 (log(ne/s) + (log m)/s) and as E(ai(j)2) ≤ 4σ2, and taking a union bound
over all the rows and all possible subsets of s columns, we get that,∑

j∈S

a2
i (j) ≤ 100σ2|S| (log(ne/|S|) + log m)/|S|)) . (33)

for every S ⊆ [n], i ∈ [m], with probability at least 1 − 1/2m2.
Similarly, as ai(j) is sub-Gaussian with mean 0 and variance σ2, with probability at least

1 − 1/2m2, we have |ai(j)| ≤ 3σ
√

log(mn) for all i ∈ [m], j ∈ [n], and thus the ℓ2-norm of a
column is at most L = 3

√
mσ
√

log(mn) and M = 3σ
√

log mn. By (33), we can set

h(t) = 100σ2
(

log
(ne

t

)
+ log m

t

)
.

A direct computation gives β =
∫ n−2

0 h(n − t)(n − t)−1/pdt = O(σ2(n1−1/p + p log m)).
Using Theorem 1 with p = 2⌈log(2m/n)⌉, gives b0 = O(σ(p(m/n)1/p(n + n1/pp log m))1/2) =
O(σn1/2 log(2m/n)).

Thus, with high probability ∥Ax∥∞ ≤ (5b0 + 2M) = O(σ
√

n log(2m/n)). ◀

Proof of Theorem 3. Consider a random vector X chosen uniformly at random from the
unit ball, {x ∈ Rm : ∥x∥2 ≤ 1}. Then every coordinate of X is sub-Gaussian with variance
σ2 = C/

√
m, where C is a constant [36] (Theorem 3.4.6, Ex 3.4.7). The result now follows

from Theorem 5. ◀

A.2 Subadditive Stochastic Discrepancy
Proof of Theorem 4. Let Φ1(t), Φ2(t) be the potential functions corresponding to A and
B, respectively. Let the parameters for Algorithm 2 on A be b1

0, p1, d1
t , h1(·) and for B be

b2
0, p2, d2

t , h2(·).
Note that it might not be possible to select an update vt at time t, that ensures that

both Φ1(t + 1) ≤ Φ1(t) and Φ2(t + 1) ≤ Φ2(t) hold, but we can find a vt for which a weighted
sum of Φ1(t) and Φ2(t) decreases at every step.

Consider the potential function Φ(t) =
(
b1

0/2
)p1 Φ1(t) + (b2

0/2)p2Φ2(t). We apply the
same algorithmic framework. For t = 1, . . . , T , select vt such that E(Φ(t + 1)) ≤ Φ(t), and
select the sign of ε for which Φ(t + 1) ≤ Φ(t), and set xt+1 = xt + ϵδvt. To this end, it suffices
to find a vt such that E(Φ1(t + 1)) ≤ Φ1(t) and E(Φ2(t + 1)) ≤ Φ2(t).

Let Z1
t and Z2

t be the feasible subspaces at step t for A and B respectively from Algorithm
2. We will search for vt in Zt = Z1

t ∩ Z2
t . By Lemma 10, dim(Z1

t ), dim(Z2
t ) ≥ ⌈2nt/3⌉.

Therefore, dim(Zt) = dim(Z1
t ∩ Z2

t ) ≥ ⌈2nt/3⌉ + ⌈2nt/3⌉ − nt ≥ nt/3.
Using Lemma 13 on A and B, along with Markov’s inequality implies that there exists a

vector w ∈ Zt such that

∑
i∈I1

t

⟨2cb1
0et,i − ai, w⟩2

si(t)p1+1 ≤
∑
i∈I1

t

25h1(nt)
si(t)p1+1 and

∑
i∈I2

t

⟨2cb2
0et,i − ai, w⟩2

si(t)p2+1 ≤
∑
i∈I2

t

25h2(nt)
si(t)p2+1 .
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(34)

Comparing (34) with (15), the functions h1(·) and h2(·) only increase by a constant factor
when compared to running Algorithm 2 on A and B independently. So it suffices to multiply
d1

t and d2
t by 4 to ensure that by Lemma 11,

E[Φ1(t)] − Φ1(t − 1) ≤ 1
Tn(b1

0)p1
and E[Φ2(t)] − Φ2(t − 1) ≤ 1

Tn(b2
0)p2

. (35)

Plugging (35) in the definition of Φ(t), we get E[Φ(t)] − Φ(t − 1) ≤ 2/(Tn). So one of the
two choices of xt gives Φ(t) − Φ(t − 1) ≤ 2/(Tn). Summing over t,

Φ(t) ≤ Φ(0) + 2
n

≤
(

b1
0
2

)p1

Φ1(0) +
(

b2
0
2

)p2

Φ2(0) + 2
n

.

By Lemma 19, Φ1(0) ≤ 2m ·(2/b1
0)p1 and Φ2(0) ≤ 2m ·(2/b2

0)p2 , thus Φ(t) ≤ Φ(0)+2/n ≤ 5m.
For a row i ∈ J ℓ

t for ℓ ∈ {1, 2}, we have (⌊nt/12⌋ + 1) · (bℓ
0/2)pℓ · si(t)−pℓ ≤ Φ(t) ≤ 5m, which

implies that for any t, and ℓ ∈ {1, 2},

max
i∈J ℓ

t

si(t)−1 ≤ 2
bℓ

0

(
60m

nt

) 1
pℓ

. (36)

Upon comparing (36) with (30), notice that maxk∈J 1
t

sk(t)−1 and maxk∈J 2
t

sk(t)−1 are
only a constant factor larger when compared to running Algorithm 2 on A and B separately,
and hence the discrepancies for both A and B are only a constant factor larger. ◀

B Appendix: Bounding the step size

▶ Lemma 19. For A ∈ Rm×n,
Φ(0) +

∑
t |It+1\It| ·

(
2
b0

)p

≤ 2m ·
(

2
b0

)p

.

For all t ∈ {0, 1, . . . , T − 1}, if Φ(t) ≤ 27m2
(

2
b0

)p

and dt = O(pn · maxi∈Jt
si(t)−1), then

for step size δ2 ≤ (Cn2m6p4)−1,

E(Φ(t + 1)) − Φ(t) ≤ f(t) + 1
Tnbp

0
+ |It+1\It| ·

(
2
b0

)p

, where

f(t) = −pδ2
∑
i∈It

dt + cb0⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2
∑
i∈It

⟨2cb0et,i − ai, vt⟩2

si(t)p+2 .
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Abstract
We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted L1,k), of read-once
regular branching programs. We prove that every read-once regular branching program B of width
w ∈ [1, ∞] with s accepting states on n-bit inputs must have its L1,k bounded by

min
{

Pr[B(Un) = 1](w − 1)k, s · O
(
(n log n)/k

) k−1
2
}

.

For any constant k, our result is tight up to constant factors for the AND function on w − 1 bits,
and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1
we have L1,1(B) ≤ s, with no dependence on the width w of the program.

Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs).
Furthermore, we obtain an explicit generator for unordered permutation branching programs of
unbounded width with a constant factor stretch, where no PRG was previously known.

Applying a composition theorem of Błasiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM
2021), we extend our results to “generalized group products,” a generalization of modular sums and
product tests.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases pseudorandomness, fourier analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.2

Category RANDOM

Related Version Preprint: https://eccc.weizmann.ac.il/report/2022/034/

Funding Chin Ho Lee: Supported by NSF grant CCF-1763299 and a Simons Investigator grant to S.
Vadhan.
Salil Vadhan: Supported by NSF grant CCF-1763299 and a Simons Investigator grant.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction
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f(x) :=
∑

S⊆[n]

f̂(S)
∏
i∈S

xi,

where the coefficients

f̂(S) := E
x∼{−1,1}n

[
f(x)

∏
i∈S

xi
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are called the Fourier coefficients of f . Over the past few decades, the analysis of these
coefficients of Boolean functions has become an indispensable tool in theoretical computer
science and mathematics. We refer the readers to the excellent textbook by O’Donnell [46]
for a broad introduction.

Given the wide applicability of this tool, researchers have proposed and analyzed different
quantitative measures of Fourier coefficients of Boolean functions. In this work we focus on
the L1 Fourier norm at level k:

▶ Definition 1 (L1 Fourier norm at level k). The L1 Fourier norm of a function {−1, 1}n →
{0, 1} at level k is

L1,k(f) :=
∑

S⊆[n]:|S|=k

|f̂(S)|.

For a function class F , we use L1,k(F) to denote maxf∈F L1,k(f).

The notion of Fourier growth is a convenient way of capturing the growth of L1,k with
respect to levels k.

▶ Definition 2 (Fourier growth). A function class F ⊆ {f : {−1, 1}n → {0, 1}} has Fourier
growth L1(a, b) if L1,k(F) ≤ a · bk for every k.

By the Cauchy–Schwarz inequality, every Boolean function has its L1,k bounded by
(

n
k

)1/2,
and thus has Fourier growth L1(1,

√
n).

Fourier growth was first studied by Mansour to obtain sample-efficient algorithms for
learning DNFs [42]. It was later formally introduced by Reingold, Steinke and Vadhan in [51],
where they constructed explicit unconditional pseudorandom generators for permutation
branching programs. Subsequently, this notion has led to many exciting developments in
learning theory [36, 25] and pseudorandomness [19, 16, 26, 18, 15]. In recent years researchers
have also discovered new applications to other areas such as separating quantum and classical
computation [50, 59, 5, 54, 27], and proving correlation bounds with the Majority function
(and its variants) [17, 15, 61].

Thus given a function class, it has now become a natural question to analyze its Fourier
growth. Indeed, in the past decade it has been shown that several well-studied classes of
functions exhibit bounded Fourier growth. These include (parity) decision trees [47, 7, 59, 54,
28], constant-depth circuits [42, 58], subclasses of low-degree F2-polynomials [16, 28, 15], low-
degree real polynomials [36, 25], functions with bounded sensitivity [32], product tests [37],
and read-once branching programs [51, 57, 19].

Motivated by derandomization of space-bounded algorithms, in this work we continue
the line of research on the Fourier growth of read-once branching programs.

▶ Definition 3 (Read-once branching programs). An (unordered) read-once branching program
B of length n and width w computes a function B : {−1, 1}n → {0, 1}. On input x ∈ {−1, 1}n,
the program B fixes a permutation π : [n] → [n] and computes as follows. It starts at a fixed
start state v1 ∈ [w]. Then for t = 1, . . . , n, it reads the next input bit xπ(t) and updates its
state according to a transition function Bt : [w]×{−1, 1} → [w] by taking vt+1 := Bt(vt, xπ(t)).
Note that the transition function Bt can differ at each time step. The program has a fixed
set of accept states Vacc ⊆ [w], and B(x) = 1(vn+1 ∈ Vacc).

For a branching program B of length n and width w, we will view it as a directed layered
graph with n + 1 layers of vertices denoted by V1, . . . , Vn+1, each consists of w vertices. For
every two consecutive layers Vt and Vt+1, every vertex u ∈ Vt has two outgoing edges labeled
by b ∈ {−1, 1}, where the b-edge goes to the vertex Bt(u, b) in Vt+1.
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As we will not consider non-read-once branching programs in this work, henceforth we
will often omit the word “read-once” and use “branching programs” to refer to read-once
branching programs for simplicity. Furthermore, as the Fourier growth of a function is
unaffected by reordering the input bits, for the purpose of establishing L1,k bounds we can
restrict our attention to the case where π is the identity permutation.

A well-studied subclass of branching programs is the class of regular branching programs.
This model has received a lot of attention in the literature [52, 21, 56, 13, 51, 9], in part due
to the fact that pseudorandomness against this restricted subclass sometimes suffices for
pseudorandomness against general branching programs, and hence the derandomization of
space-bounded computation [52, 9].

▶ Definition 4 (Read-once regular branching programs). A read-once regular branching
program is a read-once branching program where for every time step t and state v ∈ [w],
there are exactly 2 pairs (u, b) ∈ [w] × {−1, 1} such that Bt(u, b) = v.

Note that the underlying graph of a regular branching program forms a regular directed
layered graph. A more restricted class that has also been well-studied is the class of
permutation branching programs, where in addition to being a regular graph, the (−1)-edges
and 1-edges between every two adjacent layers in the graph give rise to two permutations
on [w].

▶ Definition 5 (Read-once permutation branching programs). A read-once permutation
branching program is a read-once regular branching program where for every time step t and
pair of states (u, u′), if Bt(u, b) = Bt(u′, b′) then either u = u′ or b ̸= b′.

A recent line of works constructed explicit pseudorandom objects for regular and per-
mutation branching programs of unbounded width with a bounded number of accept
states1 [34, 48, 49, 9], a model for which prior to these works even non-explicit constructions
were not known to exist. Motivated by these results, we investigate the Fourier growth of
these same models.

1.1 Our results
We obtain near-optimal L1,k bounds for regular branching programs of any width, improving
the bounds in [51] and obtaining the first non-trivial bounds for unbounded width programs.

▶ Theorem 6. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w ∈ [1, ∞]
with s accept states in its final layer. Then

L1,k(B) ≤ min
{

Pr[B(Un) = 1] · (w − 1)k︸ ︷︷ ︸
1

, s · O ((n log n)/k)
k−1

2︸ ︷︷ ︸
2

}
.

Note that the two bounds are incomparable: the first bound is independent of the input
length n, and the second bound is independent of the width w. The first bound is tight
for the ANDw−1 function on w − 1 bits, which can be computed by a width-w permutation
branching program, since

L1,k(ANDw−1) = 2−(w−1) ·
(

w − 1
k

)
= Pr[ANDw−1(Uw−1) = 1] ·

(
w − 1

k

)
.

1 Note that unbounded width permutation programs with an unbounded number of accept states can
compute arbitrary Boolean functions.

APPROX/RANDOM 2022
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For k = 1, our second bound can be sharpened to s · Pr[B(Un) = 0] (see Theorem 21).
We complement Theorem 6 by a lower bound showing that our second upper bound is in
fact tight up to a factor of Θk(1) · (log n) k−1

2 for k ≥ 2, even for the restricted subclass of
permutation branching programs.

▶ Proposition 7. For all positive integers k, n, and s where s ≤
√

kn, there exists a
permutation branching program B : {−1, 1}n → {0, 1} of width Θ(

√
kn) with s accept states

such that L1,k(B) ≥ s√
kn

· Ω(n/k)k/2 = Ωk(1) · s · n
k−1

2 .

We now make some remarks on Theorem 6. Previously, Reingold, Steinke and Vadhan
proved an upper bound of (2w2)k [51]. Hence, our first upper bound improves their bound
on two fronts. Our first improvement is a quadratic sharpening on the dependence on
the width w. Our second improvement is the additional acceptance probability factor in
our bounds, which, as we will discuss in the next section, has further implications. L1,k

bounds with a dependence on the acceptance probability have proved to be useful, both
in extending the bounds to higher levels k′ > k [19] and extending the bounds to other
classes of tests [37, 8]. Indeed, we obtain both our L1,k bounds for k > 1 by applying the
reduction in [19] to bounds at a lower level, and this reduction requires obtaining an L1,k

bound that scales linearly with respect to the acceptance probability of the function. We note
that functions admitting L1,k bounds that scale linearly with acceptance probability include
arbitrary Boolean functions [46, 37], constant-width read-once branching programs [19],
F2-polynomials [28, 8], and product tests with outputs {−1, 1} [37, 8]. Therefore, Theorem 6
adds the class of regular branching programs to this list.

Our second upper bound gives the first non-trivial L1,k bounds for regular branching
programs of unbounded width. Recall that every bounded function has its L1,k bounded by√(

n
k

)
; so this upper bound is interesting only when s = o(

√
n/(k(log n)k−1)).

Proposition 7 follows from the observation that symmetric F2-polynomials of degree w

can be computed by a permutation branching program of width at most 2w [6], where L1,k

lower bounds on the former class were recently established in [8]. For the same reason,
Theorem 6 recovers the L1,k bounds for symmetric F2-polynomials in [8, Theorem 8] with a
different proof.

1.2 Applications
We describe several consequences of Theorem 6.

1.2.1 Coin problem
Let Xδ = (X1, . . . , Xn) be the distribution over {−1, 1}n, where the Xi’s are independent and
each Xi has expectation δ. The δ-coin problem studies the maximum advantage for a function
class F to distinguish between the distributions Xδ and X0 = Un. This basic problem has
been studied extensively for various restricted classes of tests, and has a wide range of
applications in computational complexity, including circuit complexity [4, 60, 53, 40, 29],
pseudorandom generators [14], quantum computing [1, 2], streaming algorithms [11], and
multiparty computation [20]. In particular, there has been a rich line of work on the coin
problems for branching programs [14, 55, 38, 11, 12].

It is known that bounds on the Fourier growth of F imply bounds on the distinguishing
advantage for the coin problem of functions in F (see [37, Fact 9]). Thus we obtain the
following corollary of Theorem 6.
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▶ Corollary 8. There exists a constant α > 0 such that the following holds. Let B : {−1, 1} →
{0, 1} be a regular branching program of width w ∈ [1, ∞] with s accept states. For every
δ ≤ α max{1/w, 1/

√
n log n}, we have∣∣E[B(Xδ)] − E[B(X0)]

∣∣ ≤ δs + δ2 · O
(

min
{

w2, s
√

n log n
})

.

Moreover, Avishay Tal showed (see [3, Lemma 9]) that if a class F is closed under
restrictions, then L1,1 bounds on F already implies bounds on the coin problem for F . Since
the class of permutation branching programs is closed under restrictions, we obtain the
following stronger coin problem bounds for that class:

▶ Corollary 9. Let B : {−1, 1} → {0, 1} be a permutation branching program with s accept
states. Then |E[B(Xδ)] − E[B(X0)]| ≤ δ

1−δ · s .

▷ Claim 10. For every δ > 0 and positive integer s ≤ 32/δ, there exists a permutation
branching program B of length 32/δ2 and width 128/δ with s accept states such that
E[B(Xδ)] − E[B(X0)] ≥ sδ

1000 .

Corollaries 8 and 9 can be interpreted as follows. Regular (and permutation) programs
with a single accept state cannot distinguish (sufficiently small) biased coins from uniform
much better than simply outputting their first input bit.

Previously Braverman, Rao, Raz, and Yehudayoff [13] obtained a coin problem bound
of δ · s · (w − 1) for width-w regular branching programs with s accept states. Corollaries 8
and 9 improve this to roughly δ · s when δ is very small (Corollary 8) or when we restrict to
permutation branching programs (Corollary 9). Claim 10 shows that the upper bound in
Corollary 9 is tight up to constant factors.

1.2.2 Pseudorandom generators
Theorem 6 also implies new pseudorandom generators for permutation branching programs.

▶ Definition 11 (Pseudorandom generators). A function G : {0, 1}s → {−1, 1}n is a pseudo-
random generator (PRG) for a function class F with seed length s and error ϵ, if for every
f ∈ F ,∣∣E[f(Un)] − E[f(G(Us))]

∣∣ ≤ ϵ.

G is explicit if it can be computed in polynomial time.

Recall that we consider unordered branching programs, where a program can read its
inputs in arbitrary order before its execution. Starting from the work of Bogdanov, Papakon-
stantinou, and Wan [10], there has been extensive research on constructing pseudorandom
generators for unordered branching programs [10, 35, 51, 57, 33, 39, 19, 43, 26, 22, 37, 23, 24],
in search for new ideas for improving Nisan’s PRG for ordered branching programs [45],
which remains the best PRG for derandomizing space-bounded computation to date. This
line of research recently led to the first improvement over Nisan’s PRG for the special case
of width-3 (ordered) branching programs [43].

Applying our L1,k bounds to the “polarizing random walk” framework of [16, 18, 15], we
obtain the following pseudorandom generator.

▶ Corollary 12. There is an explicit pseudorandom generator for width-w permutation
branching programs with seed length w2 · O(log(n/ϵ))(log(1/ϵ) + log log n) and error ϵ.

APPROX/RANDOM 2022
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Corollary 12 gives a slight improvement on the PRG given by [16], reducing the dependence
on width from w4 to w2, stemming directly from the L1,k(B) ≤ (w −1)k bound in Theorem 6,
which improves the L1,k(B) ≤ (2w2)k bound of [51]. (Corollary 12 is for permutation
branching programs rather than regular branching programs, because the polarizing random
walk framework requires that the class is closed under restriction). By the reduction of [9], this
also implies a hitting set generator (HSG) for permutation branching programs of unbounded
width with seed length O(1/ϵ2) · log(n/ϵ)(log(1/ϵ) + log log n), quadratically improving the
dependence on ϵ. (An ϵ-HSG for a class F is a function G : {0, 1}s → {−1, 1}n where for all
f ∈ F with Pr[f(Un) = 1] > ϵ there is an x ∈ {0, 1}s such that f(G(x)) = 1.)

From Corollary 9, we also obtain the first nontrivial pseudorandom generator that fools
unordered permutation branching programs of unbounded width with constant factor stretch
and constant error.2 For simplicity we state our result for constant error, and do not optimize
constants.

Let H(x) := x log( 1
x ) + (1 − x) log( 1

1−x ) denote the binary entropy function.

▶ Theorem 13. Given any constant δ ∈ (0, 1/2) independent of n, there is an explicit PRG
for unordered permutation branching programs with a single accept state with seed length
H(1/2 + 0.499δ) · n + o(n) and error δ

1−δ + δ
100 .

This is proven by noting that with the specified seed length, we can approximately sample n

independent δ-biased coins, which are pseudorandom by Corollary 9. We are not aware of
any PRGs prior to our result.

As mentioned above, there exist explicit hitting-set generators (HSGs) with better seed
length for this class [9]. For the easier case of ordered permutation programs, Hoza, Pyne,
and Vadhan [34] constructed an explicit PRG with significantly better seed length, namely
Õ(log n · log(1/ϵ)).

We note that our results do not give any PRGs for regular programs, because all of the
methods for obtaining PRGs from Fourier growth bounds require the class to be closed
under restrictions. In particular, even in the ordered setting, it remains unknown whether a
nontrivial PRG for unbounded width regular programs exists.

1.2.3 Generalized group products
As mentioned in the previous section, L1,k bounds with the acceptance probability factor (as
in Theorem 6) are useful for obtaining L1,k bounds for wider function classes. To make this
precise, we recall the definition of disjoint composition of two function classes.

▶ Definition 14 (Disjoint composition). Let F be a class of functions from {−1, 1}m to
{−1, 1} and let G be a class of functions from {−1, 1}ℓ to {−1, 1}. Define the class F ◦ G of
disjoint composition of F and G to be the class of all functions from {−1, 1}mℓ to {−1, 1} of
the form

h(x1, . . . , xm) = f(g1(x1), . . . , gm(xm)),

where g1, . . . , gm ∈ G are defined on m disjoint sets of variables and f ∈ F .

Błasiok, Ivanov, Jin, Lee, Servedio and Viola [8] proved a composition theorem showing
that if both F and G are closed under negation of their outputs, and F is closed under
restrictions, then L1,k bounds with the acceptance probability factor for F and G imply L1,k

2 The co-HSG of [9] can be interpreted as an explicit PRG for permutation programs with error 1−1/(n+1).
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bounds on the disjoint composition of F and G. Specifically, if for every 1 ≤ k ≤ K, we have
L1,k(f) ≤ Pr[f(Um) = 1] · bk

outer for every f ∈ F and L1,k(g) ≤ Pr[g(Uℓ) = 1] · bk
inner for every

g ∈ G, then for every function h ∈ F ◦ G, we have that

L1,K(h) ≤ Pr[h(Umℓ) = 1] · (binnerbouter)K .

Therefore, we also obtain new L1,k bounds for the disjoint composition of permutation
branching programs and other classes of functions that admit the acceptance probability factor
in their L1,k bounds (see Section 1 for a list). As a concrete example of such composition,
we introduce the class of generalized group products.

▶ Definition 15 (Generalized group products). A function f : {−1, 1}n → {0, 1} is a (m, ℓ, G)-
group product if there exist m disjoint subsets I1, . . . , Im ⊆ [n] of size at most ℓ such
that

f(x) = 1

(
m∏

i=1
g

fi(xIi
)

i ⊆ S

)
,

for some subset S ⊆ G, group elements gi ∈ G, and functions fi : {−1, 1}Ii → {0, 1}. Here
xIi

are the |Ii| bits of x indexed by Ii.

Note that generalized group products are unordered by definition. They are a generalization
of several function classes that have received some attention in the past, including modular
sums [41, 44, 30] (when G is the cyclic group and ℓ = 1), product tests with outputs {-
1,1} [33, 38, 39, 37] (when G = {−1, 1}), and unordered combinatorial shapes [31, 30] (when
G = Zm+1).

An (m, ℓ, G)-group product can be written as the disjoint composition of a width-|G|
permutation branching program and arbitrary Boolean functions on ℓ bits. Since both of
these classes admit L1,k bounds with the acceptance probability factor, using the composition
theorem of [8] we obtain Fourier growth bounds for generalized group products.

▶ Corollary 16. Let f : {−1, 1}n → {0, 1} be an (m, ℓ, G)-group product. Then L1,k(f) ≤
Pr[f(Un) = 1] · O(ℓ · |G|)k.

Corollary 16 extends the Fourier growth bounds for product tests studied in [37] (where
G = {−1, 1}). Plugging our bounds into the polarizing random walk framework, we also
obtain new pseudorandom generators for generalized group products.

▶ Corollary 17. There is an explicit pseudorandom generator for (m, ℓ, G)-group products
with seed length O(ℓ · |G|)2 · log(n/ϵ) · (log(1/ϵ) + log log n) and error ϵ.

Note that an (m, 1, G)-group product can be computed by a permutation branching
program of width |G|, and a (m, ℓ, G)-group product can be computed by a general branching
program of width w = 2ℓ · |G|. When ℓ ≥ 2, we are not aware of any PRG that fools
(m, ℓ, G)-group products better than unordered general branching programs. For the latter
class, the current best PRGs are given by Forbes and Kelley [26] which, with the above choice
of w, have seed lengths O(ℓ + log(|G|) + log(n/ϵ)) log2 n and Õ(2ℓ + |G|) log(n/ϵ) log n. For
comparison, for any error ϵ = O(1), our PRG for generalized group products has seed length
(ℓ · |G|)2 · Õ(log n), which is nearly optimal when ℓ · |G| = O(1), whereas the Forbes–Kelley
PRGs have seed lengths Ω(log2 n).

Finally, we note that when G = {−1, 1}, there exists a PRG [37, 23] with seed length
Õ(ℓ + log(m/ϵ)) + poly(log log(n/ϵ)), which is nearly optimal.
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2:8 Fourier Growth of Regular Branching Programs

1.3 Techniques

Our main contribution is a simple inductive proof for bounding the first level L1,1 of a regular
branching program in terms of the number of its accept states and rejection probability.
Specifically, for a regular branching program B of s accept states, we prove that

L1,1(B) ≤ s · Pr[B(Un) = 0]. (1)

We prove Equation (1) by induction on n, the length of the program. We give some intuition
for where Equation (1) came from. Let S be the set of accept states in the final layer. By
regularity, the set of states T in the previous layer that lead to S must be at least the size of S.
If they have the same size then the current layer is redundant. So we must have a nonempty
set T1 of vertices that have only one outgoing edge leading to S. Since these vertices also
have one edge leading to the complement of S, they all contribute to the probability that the
program rejects. This suggests bounding L1,1 in terms of |S| and the rejection probability.
In the proof we use regularity of the program to relate |S| to |T | and |T1|.

Our first L1,k bound L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k then follows from the same
inductive argument in [19], where the authors proved L1,k bounds for general constant-
width branching programs. We note that this inductive argument relies on bounding the
L1,1 of the local monotonization of a branching program [14], which does not preserve the
permutation property. Therefore, even for proving Fourier growth bounds of permutation
programs, to apply this argument it is crucial to establish Equation (1) for the wider class
of regular programs. Proving our second bound L1,k(B) ≤ s · O ((n log n)/k)

k−1
2 is slightly

more involved. Our proof combines the inductive idea in [19] with the “level-k inequalities”
of Lee [37] (Lemma 22), which give L1,k bounds for an arbitrary Boolean function in terms
of its acceptance probability, and the approximator from Bogdanov, Hoza, Prakriya, and
Pyne [9] (Lemma 23).

Given a regular branching program B of unbounded width, as in [9] we first construct a
regular program B′ that approximates B by rejecting all the states in B that can be reached
with probability at most q := Õ(1/

√
n). In [9], they observed that the probability that

the program B accepts via any of these “sudden reject” states is at most q. So the error
function B − B′ has small acceptance probability, and by the level-k inequalities it has small
L1,k. So it suffices to bound the L1,k of the approximator B′. We use the fact that B′ has
at most 1/q non-sudden-reject states in each layer, and so the total number of non-reject
states in B′ is bounded by n/q = poly(n). This allows us to apply an inductive argument
to reduce bounding L1,k(B′) to bounding (roughly) the product of L1,k−1(B′) and L1,1(B′).
For L1,k−1(B′) we again use the level-k inequalities, and for L1,1(B) we use the bound in
Equation (1). Note that while the states in B′ all have reaching probability at least q in the
original program B, some of them may have reaching probability much smaller than q in the
approximator B′. To deal with this, we take a similar approach in [19] to handle states with
small reaching probabilities separately.

Organization

We begin by introducing some notation in the next paragraph. In Section 2, we prove our
L1,k bounds of regular branching programs (Theorem 6 and Proposition 7) and generalized
group products (Corollary 16). In Section 3, we prove our coin problem bounds (Corollaries 8
and 9 and Claim 10), and construct our pseudorandom generators for permutation programs
(Corollary 12 and Theorem 13) and generalized group products (Corollary 17).
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Notation

When we view a branching program as a graph, we will overload notation and consider the
transition function as a map Bt : Vt × {−1, 1} → Vt+1 in addition to thinking of it as a map
Bt : [w] × {−1, 1} → [w]. Similarly, we will often think of the start state v1 as being an
element of V1 instead of an element of [w], and Vacc ⊆ Vn+1 instead of Vacc ⊆ [w], etc.

For a vertex v in some layer Vt, we use B→v to denote the sub-branching program of length
t − 1 but with v being the only accept vertex. We also use Bv→ to denote the sub-branching
program of length n + 1 − t that starts at v and ends in Vn with accept vertices Vacc.

For ease of notation we use µ(f) to denote the expectation of f under uniform inputs.

2 L1,k bounds of regular branching programs

In this section we prove our L1,k bounds for regular branching programs (Theorem 6) and
generalized group products (Corollary 16). We start with bounding the first level L1,1 of
regular branching programs.

▶ Lemma 18. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w ∈ [1, ∞]
with s accept states. Then

L1,1(B) ≤ min{s · Pr[B(Un) = 0], Pr[B(Un) = 1] · (w − 1)}.

Proof. We prove the first bound by induction on n. For n = 0 the bound is vacuous. Now
assume it holds for n − 1 and consider a regular program B(x1, . . . , xn) with a set S of s

accept states. Define the following 3 subsets T , T+ and T− of states in layer n − 1, where
T is the set of states with both of its edges leading to S, T+ is the set of states with only
1-edges leading to S, and likewise for T− and (−1)-edges. Observe that we can write B as

B(x1, . . . , xn) = g(x1, . . . , xn−1) + 1 + xn

2 g+(x1, . . . , xn−1) + 1 − xn

2 g−(x1, . . . , xn−1),

where g, g+, g− are functions computable by regular branching programs of length n − 1
with T , T+ and T− as the sets of accept vertices, respectively. Note that s = |T | + |T−|+|T+|

2 .
Define g1 := g− + g+ and T1 := T+ ∪ T−. Now observe that for i ∈ [n − 1]

∣∣B̂({i})
∣∣ =

∣∣∣ĝ({i}) + 1
2

(
ĝ+({i}) + ĝ−({i})

)∣∣∣ ≤ 1
2
∣∣ĝ({i})

∣∣+ 1
2
∣∣ĝ({i}) + ĝ1({i})

∣∣
and∣∣B̂({n})

∣∣ = 1
2
∣∣µ(g+) − µ(g−)

∣∣ ≤ 1
2
(
µ(g+) + µ(g−)

)
= 1

2µ(g1)

µ(B) = µ(g) + µ(g1)
2 .

Finally, as T and T1 are disjoint, the function g + g1 is Boolean and is computable by a
regular program of length n − 1 with |T | + |T1| accept states, and µ(g + g1) = µ(g) + µ(g1).
So applying our induction assumption on g and g + g1, we have
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2:10 Fourier Growth of Regular Branching Programs

2L1,1(B) = 2
n∑

i=1

∣∣B̂({i})
∣∣

≤
n−1∑
i=1

∣∣ĝ({i})
∣∣+

n−1∑
i=1

∣∣ ̂(g + g1)({i})
∣∣+ µ(g1)

= L1,1(g) + L1,1(g + g1) + µ(g1)
≤ |T | ·

(
1 − µ(g)

)
+ (|T | + |T1|) ·

(
1 − µ(g + g1)

)
+ µ(g1)

=
(
2|T | + |T1|

)
−
(

|T | · µ(g) +
(
|T | + |T1|

)
· µ(g + g1) − µ(g1)

)
= 2s −

((
2|T | + |T1|

)
· µ(g) +

(
|T | + |T1| − 1

)
· µ(g1)

)
≤ 2s −

((
2|T | + |T1|

)
· µ(g) +

(
|T | + |T1|

2

)
· µ(g1)

)
= 2s − 2s

(
µ(g) + µ(g1)

2

)
= 2s ·

(
1 − µ(B)

)
,

where the last inequality uses that |T1|
2 · µ(g1) ≥ µ(g1), since T1 is either empty or has size at

least 2.

To prove the second bound, suppose B is a regular program of width w < ∞ with a set
S of accept states. For every state v ∈ S, the function 1 − B→v is computable by a regular
branching program with w − 1 accept states. Since L1,1(B→v) = L1,1(1 − B→v), it follows
from the first bound we just proved that L1,1(B→v) ≤ Pr[B→v(Un) = 1] · (w − 1). Summing
over all the accept states v ∈ S gives the second bound. ◀

To obtain L1,k bounds at higher levels, we will apply the inductive argument in [51, 19].
We first recall the local monotonization of a branching program introduced in [14, 19]. For a
branching program B, we define the local monotonization B′ of B by the following process.
For every layer t, state u ∈ Vt, and input b ∈ {−1, 1}, let vb := Bt(u, b) and define

B′
t(u, b) =

{
Bt(u, −b) if µ(Bv1→) < µ(Bv−1→)
Bt(u, b) otherwise.

In words, we swap the two outgoing edge-labels of u whenever µ(Bv1→) < µ(Bv−1→). As the
underlying graph of B′ remains the same as B, if B is regular then B′ is also regular (with
the same set of accept states). Also µ(Bv→) = µ(B′

v→) for every state v. By construction
we have |B̂({i})| = B̂′({i}) for every i ∈ [n].

The following claim reduces bounding L1,k of a branching program to bounding its L1,k−1.

▷ Claim 19 ([19]). Let B : {−1, 1}n → {0, 1} be a branching program, and B′ be its local
monotonization. Then L1,k+1(B) ≤

∑n
i=1
∑

v∈Vi

(
L1,k(B→v) · B̂′

v→({i})
)
.



C. H. Lee, E. Pyne, and S. Vadhan 2:11

Proof. We have

L1,k+1(B) =
n∑

i=1

∑
S⊆{1,...,i−1}:

|S|=k

∣∣∣B̂(S ∪ {i})
∣∣∣

=
n∑

i=1

∑
S⊆{1,...,i−1}:

|S|=k

∣∣∣∣∑
v∈Vi

B̂→v(S)B̂v→({i})
∣∣∣∣

≤
n∑

i=1

∑
S⊆{1,...,i−1}:

|S|=k

∑
v∈Vi

(∣∣∣B̂→v(S)
∣∣∣ ·
∣∣∣B̂v→({i})

∣∣∣)

=
n∑

i=1

∑
v∈Vi

( ∑
S⊆{1,...,i−1}:

|S|=k

∣∣∣B̂→v(S)
∣∣∣)∣∣∣B̂v→({i})

∣∣∣
=

n∑
i=1

∑
v∈Vi

(
L1,k(B→v) · B̂′

v→({i})
)

. ◁

▶ Theorem 20. Let B : {−1, 1}n → {0, 1} be a regular branching program of width w. Then

L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k.

Proof. Let B′ be the local monotonization of B. By Claim 19,

L1,k+1(B) ≤
n∑

i=1

∑
v∈Vi

(
L1,k(B→v) · B̂′

v→({i})
)

≤ (w − 1)k
n∑

i=1

∑
v∈Vi

Pr[B→v(Ui) = 1] · B̂′
v→({i})

= (w − 1)k
n∑

i=1

∑
v∈Vi

Pr[B′
→v(Ui) = 1] · B̂′

v→({i})

= (w − 1)k
n∑

i=1
B̂′({i})

≤ Pr[B(Un) = 1] · (w − 1)k+1. ◀

▶ Theorem 21. Let B : {−1, 1}n → {0, 1} be any regular branching program with s accepting
states. Then

L1,k(B) ≤ s Pr[B(Un) = 0] · O

(
n

k

(
1 + 1

k
log
( n

Pr[B(Un) = 0]

))) k−1
2

.

We will use the following “L1 level-k inequalities,” which follows from applying Cauchy–
Schwarz to Lemma 10 in [37], and the observation that every non-constant Boolean function
f has µ(f) ≥ 2−n.

▶ Lemma 22. For every Boolean function f : {0, 1}n → {0, 1}, we have

L1,k(f) ≤

√(
n

k

)
· µ(f) · O

(
log
(

2
µ(f)1/k

))k/2
≤ Pr[f(Un) = 1] · O(n)k.

We also need the following lemma in [9], which follows from applying a union bound over all
the s accept vertices to Claim 3.1 in [9].
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2:12 Fourier Growth of Regular Branching Programs

▶ Lemma 23 (Claim 3.1 in [9]). Let B : {−1, 1}n → {0, 1} be a regular branching program
with s accept vertices. Let V ϵ := {v : µ(B→v) ≤ ϵ} be the set of states in B that have at
most ϵ probability of being reached over uniform inputs. Then for every state v,

Pr
x∼Un

[
B→v(x) = 1 ∧ B→u(x1, . . . , xt) = 1 for some t ∈ [n] and u ∈ V ϵ

]
≤ s · ϵ.

Proof of Theorem 21. Let µ̄ := 1 − µ(B), and define

q := µ̄

s

(
k

n log(ns/µ̄)

)1/2
.

Let V q be the set of states v in B with µ(B→v) ≤ q. As in [9], we construct another regular
program B′ that approximates B as follows. For each state u ∈ V q, we “sudden reject” u by
rewiring its outgoing edges to an “unused” state. Specifically, we construct B′ by modifying
B as follows. We iterate each u ∈ V q and do the following: Suppose u ∈ Vt ∩ V q for some
layer t. Let u′ ∈ Vt be a new dummy state that is initially always wired to itself in other
layers and such has µ(B→u′) = µ(Bu′→) = 0. We swap the outgoing b-edges of u and u′

for both b ∈ {−1, 1}. Observe that for every state u in B′ that is reached with positive
probability we have µ(B→u) ≥ q and so in each layer of B′ there are at most 1/q many
non-sudden-reject states with µ(B′

→u) > 0.
We now bound above L1,k+1(B) by L1,k+1(B − B′) + L1,k+1(B′). By Lemma 23,

Pr
[
(B − B′)(Un) = 1

]
= Pr

x∼Un

[
B(x) = 1 ∧ B→u(x1, . . . , xt) = 1 for some t and u ∈ V q

]
≤ s · q.

As B − B′ has small acceptance probability, it follows from Lemma 22 that

L1,k+1(B − B′)

≤ O(1)k

√(
n

k + 1

)
· s · q ·

(
log 2

q1/(k+1)

) k+1
2

≤ O(1)k ·
(n

k

) k+1
2 · µ̄ ·

(
k

n log(ns/µ̄)

)1/2(
1 + log(ns/µ̄)

k

) k+1
2

≤ O(1)k · µ̄ ·
(

n

k

(
1 + log(ns/µ̄)

k

))k/2(
n

k
· k

n log(ns/µ̄) ·
(

1 + log(ns/µ̄)
k

))1/2

≤ O(1)k · µ̄ ·
(

n

k

(
1 + log(ns/µ̄)

k

))k/2
,

It remains to bound L1,k+1(B′). Let B′′ be the local monotonization of B′. By Claim 19
and Lemma 22,

L1,k+1(B′) ≤
n∑

i=1

∑
v∈V ′

i

(
L1,k(B′

→v) · B̂′′
v→({i})

)

≤ O(1)k ·
(n

k

)k/2
·

n∑
i=1

∑
v∈V ′

i

(
µ(B′

→v) · log
(

2
µ(B′

→v)1/k

)k/2
· B̂′′

v→({i})
)

.

We separate the double sum above into two parts, depending on whether the states v can be
reached with probability at least qµ̄/n.
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We first consider those with reaching probability less than qµ̄/n, As the function x 7→
x log(2/x1/k)k/2 is increasing for x ∈ [0, 1], we have

n∑
i=1

∑
v∈V ′

i :
µ(B→v)< qµ̄

n

(
µ(B→v) · log

(
2

µ(B→v)1/k

)k/2
· B̂′′

v→({i})
)

≤ O(1)k ·
(

1 + log(ns/µ̄)
k

)k/2
· qµ̄

n
·

n∑
i=1

∑
v∈V ′

i

0<µ(B′
→v)< qµ̄

n

B̂′′
v→({i})

≤ O(1)k ·
(

1 + log(ns/µ̄)
k

)k/2
µ̄,

where the last inequality is because |B̂′′
v→({i})| ≤ 1 and we are summing over at most n ·1/q

many vertices.
For those states that are reached with probability at least qµ̄/n, we apply Lemma 22 and

our L1,1 bound in Lemma 18. We have

n∑
i=1

∑
v∈V ′

i :
µ(B′

→v)≥ qµ̄
n

(
µ(B′

→v) · log
(

2
µ(B′

→v)1/k

)k/2
· B̂′′

v→({i})
)

≤ O

(
1 + log(n/µ̄)

k

)k/2 n∑
i=1

∑
v∈V ′

i :
µ(B′

→v)≥ qµ̄
n

(
µ(B′

→v) · B̂′′
v→({i})

)
,

where by Lemma 18 we get

n∑
i=1

∑
v∈V ′

i :
µ(B′

→v)≥ qµ̄
n

(
µ(B′

→v) · B̂′′
v→({i})

)

=
n∑

i=1

∑
v∈V ′

i :
µ(B′′

→v)≥ qµ̄
n

(
µ(B′′

→v) · B̂′′
v→({i})

)
(µ(B′′

→v) = µ(B′
→v))

≤
n∑

i=1

∑
v∈V ′

i

(
µ(B′′

→v) · B̂′′
v→({i})

)
(B̂′′

v→({i}) ≥ 0)

≤
n∑

i=1
B̂′′({i}) ≤ s · Pr[B′′(Un) = 0] ≤ 2sµ̄,

where we use Pr[B′′(Un) = 0] = Pr[B′(Un) = 0] ≤ Pr[B(Un) = 0] + sq ≤ 2µ̄ in the last
inequality. Hence,

L1,k+1(B′) ≤ O(1)k ·
(n

k

)k/2
·

n∑
i=1

∑
v∈V ′

i

(
µ(B′

→v) · log
(

2
µ(B′

→v)1/k

)k/2
· B̂′′

v→({i})
)

≤ O

(
n

k

(
1 + log(ns/µ̄)

k

))k/2
sµ̄.

APPROX/RANDOM 2022



2:14 Fourier Growth of Regular Branching Programs

Therefore, we have

L1,k+1(B) ≤ L1,k+1(B − B′) + L1,k+1(B′)

≤ O(1)k · sµ̄ ·
(

n

k

(
1 + log(ns/µ̄)

k

))k/2

≤ O(1)k · sµ̄ ·
(

n

k

(
1 + log(n/µ̄)

k

))k/2
,

where the last inequality is because if s ≥
√

n, then the conclusion directly follows from
Lemma 22; so we can assume s ≤

√
n. ◀

Theorem 6 now follows from Theorems 20 and 21.

Proof of Theorem 6. The first bound L1,k(B) ≤ Pr[B(Un) = 1] · (w − 1)k directly follows
from Theorem 20. We now show that Theorem 21 implies the second bound L1,k(B) ≤
s · O((n log n)/k) k−1

2 . Let µ̄ := Pr[B(Un) = 0]. As the function x 7→ x log(2/x1/k) k−1
2 is

increasing for x ∈ [0, 1], we have

µ̄

(
1 + log(n/µ̄)

k

) k−1
2

= µ̄

(
log n

k
+ log

(
2

µ̄1/k

)) k−1
2

≤ 2 max
{

µ̄

(
log n

k

) k−1
2

, µ̄ log
(

2
µ̄1/k

) k−1
2
}

≤ 2(log n)
k−1

2 .

Hence, by Theorem 20,

L1,k(B) ≤ s · µ̄ · O

(
n

k

(
1 + log(n/µ̄)

k

)) k−1
2

≤ s · O

(
n log n

k

) k−1
2

. ◀

We now prove Proposition 7. This is a direct consequence of a result of Błasiok, Ivanov,
Jin, Lee, Servedio and Viola:

▶ Theorem 24 (Theorem 24 of [8]). For all positive integers n and k where k ≤ n, there is a
symmetric F2-polynomial p(x1, . . . , xn) of degree a power of two in [

√
kn, 8

√
kn] such that

Mk(p) :=

∣∣∣∣∣ ∑
|S|=k

p̂(S)

∣∣∣∣∣ ≥ (e−k/2)
(

n

k

)1/2
.

Their result is stated for L1,k(p), but the proof holds without modification for Mk(p).

Proof of Proposition 7. Given n and k, let p(x1, . . . , xn) be the F2-symmetric polynomial
in Theorem 24. As observed in [8], as a consequence of a result of Bhatnagar, Gopalan,
and Lipton [6], p can be computed by a permutation branching program B of width
16

√
kn. As

∑
|S|=k B̂(S) =

∑
v∈Vacc

∑
|S|=k B̂→v(S), the conclusion follows by an averaging

argument. ◀

We end this section by proving the L1,k bounds for generalized group products. To do so,
we recall the formal statement of the composition theorem of [8].

▶ Theorem 25 (Theorem 31 in [8]). Suppose F and G are closed under negation of their
outputs. Let g1, . . . , gm ∈ G and let f ∈ F , where F is closed under restrictions. Suppose
that for every 1 ≤ k ≤ K, we have
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1. L1,k(f) ≤ Pr[f(Um) = 1] · aouter · bk
outer for every f ∈ F , and

2. L1,k(g) ≤ Pr[g(Uℓ) = 1] · ainner · bk
inner for every g ∈ G.

Then for every function h ∈ F ◦ G, we have that

L1,K(h) ≤ Pr[h(Umℓ) = 1] · aouter · (ainnerbinnerbouter)K .

Proof of Corollary 16. An (m, ℓ, G)-product can be computed by the disjoint composition
of a width-|G| permutation branching program and arbitrary Boolean functions on ℓ bits,
where both classes are closed under negation of their outputs and restrictions. Note that
applying the map f 7→ 2f − 1 to a {0, 1}-valued function f only affects its L1,k by at most a
factor of 2. So we can apply Theorem 25 to Theorem 6 and Lemma 22. ◀

3 Coin theorems and pseudorandom generators

In this section, we prove our coin problem bounds for regular and permutation branching
programs (Corollaries 8 and 9 and Claim 10), and construct PRGs for permutation branching
programs (Corollary 9 and Theorem 13) and generalized group products (Corollary 17).

We start with Corollary 8.

Proof of Corollary 8. Let B be a regular branching program. We identify B with its
multilinear extension. By linearity of expectation and Theorem 6, we have∣∣E[B(Xδ)] − E[B(X0)]

∣∣ =
∣∣B(δ⃗) − B(⃗0)

∣∣
≤

n∑
k=1

δk
∑

|S|=k

∣∣B̂(S)
∣∣

≤ δL1,1(B) +
n∑

k=2
δkL1,k(B)

≤ δs +
n∑

k=2
δk min{wk, s · O(

√
n log n))k−1}

≤ δs + δ2 · O
(

min
{

w2, s
√

n log n
})

,

where the last inequality is because when δ ≤ α max{1/w, 1/
√

n log n}, then at least one of
the summations

∑
k(δw)k and

∑
k O(δ

√
n log n)k is a geometric sum with ratio at most 1/2,

and thus is bounded by twice of its first term. ◀

Corollary 9 follows from applying a result of Avishay Tal establishing that L1,1 bounds
imply coin problem bounds for classes that are closed under restrictions to Theorem 6.

▶ Lemma 26 (Lemma 3.2 in [3]). Let F be a function class that is closed under restrictions.
Then for every f ∈ F ,∣∣E[f(Xδ)] − E[f(X0)]

∣∣ ≤ ln
( 1

1 − δ

)
L1,1(F) ≤ δ

1 − δ
L1,1(F).

We now prove Claim 10. The idea is similar to proof idea behind Proposition 7. Here we
give a self-contained argument. We approximate the Majority function on some n = Θ(1/δ2)
bits by computing it correctly on inputs of Hamming weights between n/2 + Θ(

√
n) and

n/2 − Θ(
√

n). This can be implemented by counting their Hamming weights modulo Θ(
√

n)
and hence can be done using a permutation program of width Θ(

√
n).
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Proof of Claim 10. Let n := 32/δ2 and m := 64/δ. Consider the function f : {−(m −
1), . . . , m} → {0, 1} defined by f(ℓ) := 1 if and only if ℓ ≥ m/4. We first construct
the permutation program B, which on inputs x where

∑
i xi ∈ ℓ + 2mZ for some ℓ ∈

{−(m − 1), . . . , m}, outputs B(x) := f(ℓ). By counting modulo 2m, this can be computed
with width 2m and at least m/2 accept states. By the Chernoff bound,

Pr[B(Xδ) = 0] ≤ Pr
[∣∣∣ n∑

i=1
(Xδ)i

∣∣∣ ≥ m

]
+ Pr

[ n∑
i=1

(Xδ)i < m/4
]

≤ 1/20.

Similarly, Pr[B(X0) = 1] ≤ 1/20. Therefore, E[B(Xδ)] − E[B(X0)] ≥ 9/10.
We now modify B by choosing s of its at most m many accept states uniformly at random,

then letting B accept only at these s states and reject the rest of them. It follows by an
averaging argument that there exists a choice of s accepting states such that the modified
program B′ satisfies

E[B′(Xδ)] − E[B′(X0)] ≥ (s/m) · (9/10) ≥ sδ/1000. ◀

We now construct PRGs for bounded width permutation branching programs and gener-
alized group products. We will use the following result that constructs PRGs from Fourier
growth bounds using the “polarizing random walk framework.”

▶ Theorem 27 (Theorem 1.3 in [16]). Let F be a function class on n bits that is closed
under restrictions. Suppose L1,k(F) ≤ bk for some b ≥ 1. Then there exists an explicit
pseudorandom generator for F with seed length b2 · O(log(n/ϵ))(log(1/ϵ) + log log n) and
error ϵ.

Corollaries 12 and 17 then follow from applying Theorem 27 to Theorem 6 and Corollary 16,
respectively.

We prove Theorem 13 by approximately sampling δ-biased coins. To do this efficiently,
we follow the approach in [33], and defer the proof to Appendix A.
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A Proof of Theorem 13

Recall that H(x) = x log( 1
x ) + (1 − x) log( 1

1−x ) denotes the binary entropy function. For two
distributions X and Y , we use ∥X − Y ∥1 to denote their total variation distance.

▶ Lemma 28. Given δ > 0, there is some s = H(1/2+0.499δ)n+o(n) and a polynomial-time
computable function f : {0, 1}s → {−1, 1}n such that ∥Xδ − f(Us)∥1 ≤ δ/100.

As its proof is a only a slight modification of the one in [33], we defer it to the end of
this section. To construct our PRG, it suffices to sample a distribution close to Xδ using
Lemma 28.

Proof of Theorem 13. Let f : {0, 1}s → {−1, 1}n be the function obtained from Lemma 28
with the given δ, where

s ≤ H(1/2 + 0.499δ)n + o(n) + O(log(1/δ)) =
(
H(1/2 + 0.499δ) + o(1)

)
n.

Let B : {−1, 1}n → {0, 1} be a permutation branching program with a single accept state.
Then
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∣∣E[B(Un)] − E[B(f(Us))]
∣∣

≤
∣∣E[B(Un)] − E[B(Xδ)]

∣∣+
∣∣E[B(Xδ)] − E[B(f(Us))]

∣∣
≤
∣∣E[B(Un)] − E[B(Xδ)]

∣∣+ δ/100 (Lemma 28)

≤ δ

1 − δ
+ δ

100 (Corollary 9),

proving the theorem. ◀

It remains to prove Lemma 28. We will use a lemma in [33] enabling us to approximately
sample distributions.

▶ Lemma 29 (Lemma 36 in [33]). Let D be a distribution on [m]. Suppose that given i ∈ [m]
we can compute in time polynomial in O(log m) the cumulative distribution Pr[D ≤ i].
Then there is a polylog(mt)-time computable function f such that given any t ≥ 1, f uses
s = ⌈log(mt)⌉ bits to sample an element from the support of D such that ∥f(Us)−D∥1 ≤ 1/t.

We will also bound above the binomial coefficients in terms of the entropy function.
▶ Remark 30. For every ρ > 0 we have

log
(

n

⌈n(1/2 + ρ)⌉

)
≤ (1 + o(1))n · H(1/2 + ρ).

We now prove the lemma, by giving an appropriate sampling procedure:

Proof of Lemma 28. Let X ′
δ as the distribution over {0, 1}n, where the coordinates are

independent and each coordinate is 1 with probability 1/2 + δ/2 and 0 otherwise. Our
sampling procedure below will sample a distribution D over {0, 1}n that is close to X ′

δ (over
{0, 1}n), then apply xi 7→ 2xi −1 to each coordinate xi of D to sample the target distribution
over {−1, 1}n.

Consider the following procedure for sampling a string x from X ′
δ. First sample the

Hamming weight i of x according to Binomial(n, 1/2+ δ/2), where each weight i ∈ {0, . . . , n}
is chosen with probability

(
n
i

)
(1/2 + δ/2)i(1/2 − δ)n−i. Then given i ∈ {0, . . . , n}, sample

x uniformly from the set of strings with weight exactly i. By performing both steps in an
approximate manner, we obtain f .

To do this, we apply Lemma 29 to sample the weight i from a distribution D (over
{0, . . . , n}) that is within δ/300 in total variation distance to Binomial(n, 1/2 + δ/2), which
costs O(log n + log(1/δ)) bits. Given i ∼ D, if i < ⌈n(1/2 + 0.499δ)⌉ then we return the
all 0s string; otherwise, we apply Lemma 29 to sample from the set of strings of Hamming
weight i ≥ ⌈n(1/2 + 0.499δ)⌉.

As D is (δ/300)-close to |X ′
δ|, for every sufficiently large n, we have

Pr
[
D < ⌈n(1/2 + 0.499δ)⌉

]
≤ Pr

[
|X ′

δ| < ⌈n(1/2 + 0.499δ)⌉
]

+ δ/300 < δ/150.

Here, we use Remark 30 to bound the log of the description size of the universe, i.e. the
number of strings of some Hamming weight i ≥ ⌈n(1/2 + 0.499δ)⌉, by

log
(

n

⌈n(1/2 + 0.499δ)⌉

)
≤ (1 + o(1))H(1/2 + 0.499δ)n = H(1/2 + 0.499δ)n + o(n).

Furthermore, Haramaty, Lee, and Viola show (in the proof of [33, Lemma 35]) that we can
sample from the distribution of strings of length n with Hamming weight i in time poly(n).
Thus, the total number of random bits required to sample a distribution within δ/100 in
total variation distance to Xδ is at most s = H(1/2 + 0.499δ) · n + o(n) + o(n) + O(log(1/δ)),
and f can be computed in polynomial time as desired. ◀
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Abstract
Recent works have shown that expansion of pseudorandom sets is of great importance. However, all
current works on pseudorandom sets are limited only to product (or approximate product) spaces,
where Fourier Analysis methods could be applied. In this work we ask the natural question whether
pseudorandom sets are relevant in domains where Fourier Analysis methods cannot be applied, e.g.,
one-sided local spectral expanders.

We take the first step in the path of answering this question. We put forward a new definition
for pseudorandom sets, which we call “double balanced sets”. We demonstrate the strength of our
new definition by showing that small double balanced sets in one-sided local spectral expanders
have very strong expansion properties, such as unique-neighbor-like expansion. We further show
that cohomologies in cosystolic expanders are double balanced, and use the newly derived strong
expansion properties of double balanced sets in order to obtain an exponential improvement over
the current state of the art lower bound on their minimal distance.
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1 Introduction

The study of pseudorandom (or “global”) functions has led to many recent advancements. It
has been shown that they possess an effective hypercontractive inequality in many domains
such as the p-biased cube [15], the slice [16], the Grassmann graph [17] and two-sided
local spectral expanders [6]. The common observation in all of these works is that while
hypercontractivity does not hold for any general function, it holds for a certain subclass of
pseudorandom functions. This phenomenon has been the key to many breakthroughs, most
famously the resolution of Khot’s 2-to-2 Games Conjecture [17].

While this study of pseudorandom functions has been very fruitful in many domains,
currently it is still limited only to domains where Fourier Analysis methods could be applied.
These domains are product (or approximate product) spaces, so each function has an
orthogonal (or an approximate orthogonal) decomposition. While these domains are enough
for a lot of applications, there are many applications that require other domains. Some
examples are the recent works on efficient sampling algorithms (e.g., [5, 4, 2, 3] and more).
The domains in these works are one-sided local spectral expanders, which inherently do not
possess an orthogonal decomposition.
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3:2 Double Balanced Sets in High Dimensional Expanders

In this work we make the first step in the study of pseudorandom functions in other
domains where Fourier Analysis methods cannot be applied. We put forward an alternative
definition for pseudorandom functions, which we call “double balanced sets”. We demonstrate
the strength of our new definition by showing that small double balanced sets in one-sided
local spectral expanders have very strong expansion properties. We further show that
cohomologies in cosystolic expanders are double balanced, and then by the strong expansion
properties of double balanced sets, we achieve an exponential improvement over the state of
the art lower bound on their minimal distance.

1.1 Double balanced sets
In order to present our definition of double balanced sets, we need to set some notations
first. A d-dimensional simplicial complex X is a (d + 1)-hypergraph which is closed under
inclusions, i.e., if σ ∈ X then every τ ⊆ σ is also in X. A k-face is a hyperedge of size k + 1
and the set of k-faces in the complex is denoted by X(k). For any face σ ∈ X, the link of σ,
denoted by Xσ, is the subcomplex that is obtained by all the faces that contain σ and then
removing σ from all of them.

Let f ⊆ X(k) be a subset of k-faces in X. For any face σ ∈ X(ℓ), ℓ < k, we denote by
fσ ⊆ Xσ(k − ℓ − 1) the localization of f to the link of σ, where a face τ ∈ Xσ(k − ℓ − 1) is
in fσ if and only if τ ∪ σ ∈ f . We also denote by fσ the restriction of f to the link of σ,
where fσ = f ∩ Xσ(k). Note that both fσ and fσ “live” in the link of σ, but fσ is a subset
of (k − ℓ − 1)-faces whereas fσ is a subset of k-faces.

For simplicity, we assume in the introduction that the complex has a uniform probability
distribution in every dimension. In the body of the paper we will take into account general
probability distributions.

▶ Definition 1 (Double balanced sets). We say that f ⊆ X(k) is α-double balanced in
dimension ℓ, ℓ < k, if for every ℓ-face σ ∈ X(ℓ) it holds that

|fσ|
|Xσ(k − ℓ − 1)| ≤ α E

v∈σ

[ ∣∣(fσ\v)v
∣∣

|Xσ(k − ℓ)|

]
. (1)

We say that f is α-double balanced if it is α-double balanced in dimension ℓ for every ℓ < k.

In order to get some intuition, let us focus on low dimensions first. Let X be a 3-
dimensional complex and f ⊆ X(2) (i.e., a set of triangles in a complex with pyramids).

For every vertex v ∈ X(0), the left-hand side of (1) translates to the fraction of triangles
in f that contain v out of all the triangles that contain v, and the right-hand side of (1)
translates to α times the fraction of triangles in f that together with v form a pyramid
out of all the pyramids that contain v.
For every edge {u, v} ∈ X(1), the left-hand side of (1) translates to the fraction of
triangles in f that contain {u, v} out of all the triangles that contain {u, v}, and the
right-hand side of (1) translates to α times the average fraction of triangles in f that
contain u or v and together with v or u, respectively, form a pyramid out of all the
pyramids that contain {u, v}.

In general, the left-hand side of (1) translates to the fraction of k-faces in f that contain
σ, and the right-hand side translates to the average fraction of k-faces in f that contain
|σ| − 1 vertices from σ and together with σ forms a (k + 1)-face.

Let us explain briefly the motivation behind this definition. From a spectral point of
view, it is known that high dimensional random walks with intersections do not mix rapidly,
whereas random walks without intersections (also known as swap walks [1] or complement
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walks [7]) have an optimal mixing rate1. Previous works on pseudorandom sets (e.g., [6])
benefit from the optimal mixing rate of non-intersecting random walks, but for that the
complex has to be of a very high dimension, i.e., in order to gain anything on a pseudorandom
set of dimension k, the complex has to be of dimension at least 2k (so we can move between
k-faces without intersections). Our definition of double balanced sets benefits from the
optimal mixing rate of non-intersecting random walks even when d = k + 1. The reason is
that the right-hand side of (1), when viewed in the link of σ \ v for some vertex v ∈ σ, is
concerned with faces that do not contain v, i.e., it is related to a non-intersecting random
walk inside the link of σ \ v.

From a topological point of view, our definition of double balanced sets relates faces of two
consecutive dimensions (i.e., (k−ℓ−1)-faces in the left-hand side of (1) and (k−ℓ)-faces in the
right-hand side), similar to usual topological operators (e.g., the boundary and coboundary
operators). In this sense, our definition has the potential to benefit also from the topological
properties of the complex. Indeed, we show that cohomologies in high dimensional expanders
are double balanced by utilizing the topological expansion of the complex.

To summarize the above discussion, our definition of double balanced sets has the potential
to imitate a situation where the complex has many dimensions above (like in previous works)
while having only one dimension above. It benefits both from spectral and topological
properties of the complex, whereas previous works could only use spectral properties. We
believe that utilizing the topological properties of the complex, as well as spectral properties,
would lead to many breakthroughs in the future.

1.2 Relation to the common definition
We would like to formalize the intuitive similarity of our new definition (of double balanced
sets) to the common definition (of pseudorandom sets).

The common definition of pseudorandom sets, as given in [6]2, says that a set of k-faces
f is ε-pseudorandom in dimension ℓ, ℓ < k, if for every ℓ-face σ ∈ X(ℓ) it holds that

|fσ|
|Xσ(k − ℓ − 1)| ≤ ε. (2)

As demonstrated in the following lemma, our definition of double balanced sets implies
almost pseudorandomness.

▶ Lemma 2. Let X be a good enough one-sided local spectral expander3. For any α-double
balanced set of k-faces f ∈ X(k) and any dimension ℓ < k, if

|f |
|X(k)| ≤ ε

(ℓ + 1)αℓ

then

Pr
σ∈X(ℓ)

[
|fσ|

|Xσ(k − ℓ − 1)| ≤ ε

]
≥ 1 − ε

|f |
|X(k)| .

1 By random walks with intersections we mean that we move from an i-face σ to a j-face τ through a
k-face that contain both σ and τ , where the intersection σ ∩ τ may be non-empty, whereas random
walks without intersections require that σ ∩ τ would be empty.

2 The actual definition is considered with general functions from X(k) to R. For simplicity we consider
only functions from X(k) to {0, 1}, i.e., functions that correspond to subsets of k-faces.

3 The definition of one-sided local spectral expansion will be introduced later in the paper.
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3:4 Double Balanced Sets in High Dimensional Expanders

In words, for a sufficiently small set, if the set is α-double balanced then it is also
almost pseudorandom, i.e., all ℓ-faces besides of a negligible fraction of them satisfy the
pseudorandomness property.

1.3 Inheritance property
An interesting property that applies to double balanced sets is that it is inherited by lower
dimensions. We show that a set of k-faces which is double balanced in dimension ℓ is also
double balanced in all dimensions below ℓ. This result is obtained by applying the following
lemma step by step.

▶ Lemma 3 (Double balance inheritance). If f ⊆ X(k) is α-double balanced in dimension ℓ,
then f is α′-double balanced in dimension ℓ − 1, where

α′ = αℓ

ℓ + 1 − α
.

It is worth to note that when f is perfectly double balanced, i.e., when α = 1, then
lemma 3 implies that f is also perfectly double balanced in all dimensions below ℓ. In other
words, perfect double balance is inherited by lower dimensions without any loss.

1.4 δ1-expansion of small double balanced sets
In recent years, a few different notions of high dimensional expansion have been studied.
One such notion is δ1-expansion, which can be viewed as a generalization of unique-neighbor
expansion in graphs. It is a strong expansion notion that is usually very hard to get. For a
set of k-faces f ⊆ X(k), δ1(f) is defined as the set of (k + 1)-faces that contain exactly one
k-face from f . We say that f is δ1-expanding if

|δ1(f)|
|X(k + 1)| ≥ ε

|f |
|X(k)| . (3)

In [14] it has been shown that δ1-expansion for small sets implies group-independent cosystolic
expansion, i.e., cosystolic expansion over any group.

In order to demonstrate the strength of our definition of double balanced sets, we show
that small double balanced sets are δ1-expanding. On one hand, we show that when a double
balanced set f is sufficiently small, it has a nearly perfect δ1-expansion, i.e., ε in equation (3)
is very close to k +2. On the other hand, for larger double balanced sets (which are still small,
but not that small), we show that they have some δ1-expansion, i.e., ε > 0 in equation (3).
We prove the following two theorems.

▶ Theorem 4 (Nearly optimal δ1-expansion for sufficiently small double balanced sets). Let X

be a good enough one-sided local spectral expander. For any α-double balanced set of k-faces
f ⊆ X(k) and ε > 0, if

|f |
|X(k)| ≤ ε

(k + 1)2αk

then

|δ1(f)|
|X(k + 1)| ≥ (1 − 3ε)(k + 2) |f |

|X(k)| .
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▶ Theorem 5 (Some δ1-expansion for small double balanced sets). Let X be a good enough
one-sided local spectral expander. For any α-double balanced set of k-faces f ⊆ X(k) and
ε > 0, if

|f |
|X(k)| ≤ 1 − ε

(k + 1)αk

then
|δ1(f)|

|X(k + 1)| > 0.

Both of theorems 4 and 5 demonstrate the strength of our definition of double balanced
sets. The key idea that since f is a small set, its double balance property implies that it
has to be small in every link as well, which in turn implies δ1-expansion. The novelty over
previous works (e.g., [13, 9, 14]) is to benefit from the optimal mixing rate of non-intersecting
random walks. As explained in section 1.1, our definition of double balanced sets is related
in a sense to non-intersecting random walks and hence benefits from an optimal mixing rate.
This is in contrast to previous works, which essentially used only intersecting random walks,
and hence could obtain worse bounds and only for much smaller sets.

1.5 Application to minimal distance of cohomologies
Cohomologies stand in the center of recent studies in Mathematics, and they have already
found some applications in Theoretical Computer Science as well. Complexes with large
cohomologies have played a key role in the construction of efficiently decodable quantum
LDPC codes with a large distance [10]. It is known by now to construct quantum LDPC
codes with a larger distance [20, 18], however these are not known to be efficiently decodable.
Complexes with large cohomologies were also the main block in the first construction of explicit
3XOR instances that are hard for the Sum-of-Squares Hierarchy [8]. Other constructions
which are hard for more levels of the the Sum-of-Squares Hierarchy [12] are known by now.
Nonetheless, the construction of [8] is still the best known construction from simplicial
complexes and it has been the first step in this line of works.

In order to define cohomologies, let us identify a set of k-faces in X with an F2-valued
function f : X(k) → F2 and denote by Ck(X) the space of all F2-valued functions on X(k).
The coboundary operator δk : Ck(X) → Ck+1(X) is defined by

δkf(σ) =
∑
u∈σ

f(σ \ {u}) mod 2.

The image of δk−1 is called the k-coboundaries and is denoted by

Bk(X) = {δk−1f | f ∈ Ck−1(X)}.

The kernel of δk is called the k-cocycles and is denoted by

Zk(X) = {f ∈ Ck(X) | δkf = 0}.

It is not hard to check that Bk(X) ⊆ Zk(X) ⊆ Ck(X). The k-cohomology of X is the
quotient space Hk(X) = Zk(X)/Bk(X).

Previous works could only obtain complexes with some constant lower bound on the
size of their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a
topological sense), all of their cohomology elements are double balanced. We then utilize the
δ1-expansion of double balanced sets in order to obtain a lower bound on their size, achieving
an exponential improvement upon the current state of the art.
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3:6 Double Balanced Sets in High Dimensional Expanders

▶ Theorem 6 (Cohomologies are double balanced). For a complex whose links are topological
expanders, every k-cohomology element is ((k+1)/β)-double balanced, where β is the expansion
constant in the links of the complex.

▶ Theorem 7 (Lower bound on cohomology elements). For a good enough one-sided local
spectral expander whose links are topological expanders, every k-cohomology element must be
of density at least βk/(k + 1)!, where β is the expansion constant in the links of the complex.

▶ Remark. The current state of the art lower bound on the size of cohomologies prior to this
work is ≈ (βk/k!)2k [14, Lemma 3.10].

1.6 Organization
In section 2 we provide the required preliminaries. In section 3 we introduce the formal
definition of double balanced sets and prove its inheritance property. In section 4 we show that
small double balanced sets in one-sided local spectral expanders have the strong δ1-expansion
property, and also explain how to prove lemma 2. In section 5 we show that cohomologies in
a complex with topological expanding links are double balanced, obtaining an exponential
improvement upon the current state of the art lower bound on their minimal distance.

2 Preliminaries

2.1 Simplicial complexes
Recall that a d-dimensional simplicial complex X is a downwards closed (d + 1)-hypergraph.
A k-face of X is a hyperedge of size k + 1, and the set of k-faces of X is denoted by X(k).
An assignment of values from F2 to the k-faces, k ≤ d, is called a k-cochain, and the space
of all k-cochains over F2 is denoted by Ck(X).

Any assignment to the k-faces f ∈ Ck(X) induces an assignment to the (k + 1)-faces by
the coboundary operator δ. For any (k + 1)-face σ = {v0, . . . , vk+1}, δ(f)(σ) is defined by

δ(f)(σ) =
k+1∑
i=0

f(σ \ {vi}) (mod 2).

The kernel of the coboundary operator is called the k-cocycles and denoted by

Zk(X) = {f ∈ Ck(X) | δ(f) = 0}.

The image of δ is called the k-coboundaries and denote by

Bk(X) = {δ(f) | f ∈ Ck−1(X)}.

One can check that δ(δ(f)) = 0 always holds, hence Bk(X) ⊆ Zk(X) ⊆ Ck(X). The quotient
space Zk(X)/Bk(X) is called the k-cohomologies and denoted by Hk(X).

For a d-dimensional simplicial complex X, let Pd : X(d) → R≥0 be a probability
distribution over the d-faces of the complex. For simplicity, we will assume in this work
that Pd is the uniform distribution. This probability distribution over the d-faces induces a
probability distribution Pk for every dimension k < d by selecting a d-face σd according to
Pd and then selecting a k-face σk ⊂ σd uniformly at random.

The weight of any k-cochain f ∈ Ck(X) is defined by

∥f∥ = Pr
σk∼Pk

[f(σk) ̸= 0],

i.e., the (weighted) fraction of non-zero elements in f . The distance between two k-cochains
f, g ∈ Ck(X) is defined as dist(f, g) = ∥f − g∥.
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We also add a useful definition of a mutual weight of two cochains. For ℓ < k and two
cochains f ∈ Ck(X), g ∈ Cℓ(X) we define their mutual weight by

∥(f, g)∥ = Pr
σk∼Pk,σℓ⊂σk

[f(σk) ̸= 0 ∧ g(σℓ) ̸= 0],

where σk is chosen according to the distribution Pk and σℓ is an ℓ-face chosen uniformly
from σk (i.e., σℓ is chosen according to Pℓ conditioned on σk being chosen).

2.2 Cosystolic and coboundary expansion
Coboundary expansion has been introduced by Linial and Meshulam [19] and independently
by Gromov [11]. It is a generalization of edge expansion of graphs to higher dimensions.

▶ Definition 8 (Coboundary expansion). A d-dimensional simplicial complex X is said to be
an ε-coboundary expander if for every k < d and f ∈ Ck(X) \ Bk(X) it holds that

∥δ(f)∥
dist(f, Bk(X)) ≥ ε,

where dist(f, Bk(X)) = min{dist(f, g) | g ∈ Bk(X)}.

Cosystolic expansion is similar to coboundary expansion, with the main difference that it
can have non-trivial cohomologies as long as they are large.

▶ Definition 9 (Cosystolic expansion). A d-dimensional simplicial complex X is said to be
an (ε, µ)-cosystolic expander if for every k < d:
1. For any f ∈ Ck(X) \ Zk(X) it holds that

∥δ(f)∥
dist(f, Zk(X)) ≥ ε,

where dist(f, Zk(X)) = min{dist(f, g) | g ∈ Zk(X)}.
2. For any f ∈ Zk(X) \ Bk(X) it holds that ∥f∥ ≥ µ.

2.3 Links, localization and restriction
For every face σ ∈ X, its local view, also called its link, is a (d − |σ| − 1)-dimensional
simplicial complex defined by Xσ = {τ \ σ | σ ⊆ τ ∈ X}. The probability distribution over
the top faces of Xσ is induced from the probability distribution of X, where for any top face
τ ∈ Xσ(d − |σ| − 1), its probability is the probability to choose σ ∪ τ in X conditioned on
choosing σ. Since we assume in this work that the probability distribution over the top faces
of X is the uniform distribution, it follows that the probability distribution over the top
faces of Xσ is the uniform distribution.

For any k-cochain f ∈ Ck(X) and an ℓ-face σ ∈ X(ℓ), the localization of f to the link of
σ is a (k − ℓ − 1)-cochain in the link of σ, fσ ∈ Ck−ℓ−1(Xσ) defined by

fσ(τ) = f(σ ∪ τ).

The restriction of f to the link of σ is a k-cochain in the link of σ, fσ ∈ Ck(Xσ) defined by

fσ(τ) = f(τ).
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3:8 Double Balanced Sets in High Dimensional Expanders

2.4 Local spectral expansion
Another notion of high dimensional expansion, called local spectral expansion is concerned
with the spectral properties of the links of the complex.

▶ Definition 10 (Two-sided local spectral expansion). A d-dimensional simplicial complex X

is called a λ-two-sided local spectral expander, λ > 0, if for every k ≤ d − 2 and σ ∈ X(k),
the underlying graph4 of Xσ is a λ-two-sided spectral expander, i.e., its spectrum is bounded
from above by λ and from below by −λ.

▶ Definition 11 (One-sided local spectral expansion). A d-dimensional simplicial complex X

is called a λ-one-sided local spectral expander, λ > 0, if for every k ≤ d − 2 and σ ∈ X(k),
the underlying graph4 of Xσ is a λ-one-sided spectral expander, i.e., its spectrum is bounded
from above by λ.

2.5 Minimal and locally minimal cochains
One of the technical notions we use in this work is the notion of a minimal cochain. We say that
a k-cochain f ∈ Ck(X) is minimal if its weight cannot be reduced by adding a coboundary
to it, i.e., for every g ∈ Bk(X) it holds that ∥f∥ ≤ ∥f − g∥. Recall that the distance of f

from the coboundaries is defined by dist(f, Bk(X)) = min{∥f − g∥ | g ∈ Bk(X)}. Since
0 ∈ Bk(X), it follows that for every f ∈ Ck(X), ∥f∥ ≥ dist(f, Bk(X)). Thus, f is said to
be minimal if and only if ∥f∥ = dist(f, Bk(X)).

We also define the notion of a locally minimal cochain, where we say that f ∈ Ck(X) is
locally minimal if for every vertex v, the localization of f to the link of v is minimal in the
link, i.e., fv is minimal in Xv for every v ∈ X(0). It is not hard to check that any minimal
cochain is also locally minimal.

3 Double balanced sets

We start by providing the formal definition of a double balanced cochain. Recall that for any
k-cochain f ∈ Ck(X) and a vertex u ∈ X(0), we denote by fu the restriction of f to the
k-faces in the link of u, i.e., fu ∈ Ck(Xu).

▶ Definition 12 (Double balanced cochains). Let X be a d-dimensional simplicial complex.
A k-cochain f ∈ Ck(X) is said to be α-double balanced in dimension ℓ, where α ≥ 1 and
0 ≤ ℓ ≤ k − 1, if for every ℓ-face σ ∈ X(ℓ) it holds that

∥fσ∥ ≤ α E
u∈σ

∥∥(fσ\u)u
∥∥ .

f is said to be α-double balanced if f is α-double balanced in dimension ℓ for every ℓ < k.

3.1 Balance inheritance
An interesting property that applies to double balanced cochains is that it is inherited by
lower dimensions. We show that a cochain of k-faces which is double balanced in dimension
ℓ is also double balanced in all dimensions below ℓ. We prove lemma 3 from the introduction,
which we restate here for convenience.

4 The graph whose vertices are Xσ(0) and its edges are Xσ(1).
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▶ Lemma 13 (Double balance inheritance). Let f ∈ Ck(X) be an α-double balanced cochain
in dimension ℓ. Then f is α′-double balanced in dimension ℓ − 1, where

α′ = αℓ

ℓ + 1 − α
.

Proof. Let τ ∈ X(ℓ − 1).

∥fτ ∥ = E
u∈Xτ (0)

[∥fτu∥]

≤ E
u∈Xτ (0)

[
α E

v∈τu

[ ∥∥(fτu\v)v
∥∥ ]]

= E
u∈Xτ (0)

[
α

ℓ + 1 ∥(fτ )u∥ + αℓ

ℓ + 1 E
v∈τ

[ ∥∥(fτu\v)v
∥∥ ]]

= α

ℓ + 1 E
u∈Xτ (0)

[∥(fτ )u∥] + αℓ

ℓ + 1 E
v∈τ

[
E

u∈Xτ (0)

[ ∥∥(fτu\v)v
∥∥ ]]

= α

ℓ + 1 ∥fτ ∥ + αℓ

ℓ + 1 E
v∈τ

∥∥(fτ\v)v
∥∥ ,

where the inequality follows since f is α-double balanced in dimension ℓ and all the other
steps follow from laws of probability. This implies that

∥fτ ∥ ≤ αℓ

ℓ + 1 − α
E

v∈τ

∥∥(fτ\v)v
∥∥ . ◀

It is worth to note that when f is perfectly double balanced, i.e., when α = 1, then
lemma 13 implies that f is also perfectly double balanced in all dimensions below ℓ. In other
words, perfect double balance is inherited by lower dimensions without any loss.

▶ Corollary 14. Let f ∈ Ck(X) be a 1-double balanced cochain in dimension ℓ. Then f is
also 1-double balanced in all dimensions below ℓ.

4 δ1-expansion for small double balanced sets

In this section we show that small double balanced sets are δ1-expanding. On one hand,
we show that when a double balanced set f is sufficiently small, it has a nearly optimal
δ1-expansion. On the other hand, for larger double balanced sets (which are still small, but
not that small), we show that they have some δ1-expansion, i.e., ∥δ1(f)∥ > 0. We prove
theorems 4 and 5 from the introduction, which we restate here in a formal way.

▶ Theorem 15 (Nearly optimal δ1-expansion for sufficiently small double balanced sets). For
every d ≥ 2, α ≥ 1 and 0 < ε < 1 there exists λ = λ(d, α, ε) such that the following holds:
Let X be a d-dimensional λ-one-sided local spectral expander. For any k-cochain f ∈ Ck(X),
1 ≤ k < d, such that f is α-double balanced and ∥f∥ ≤ ε

(k + 1)2αk
it holds that

∥δ1(f)∥ ≥ (k + 2)(1 − 3ε) ∥f∥ .

▶ Theorem 16 (Some δ1-expansion for small double balanced sets). For every d ≥ 2, α ≥ 1 and
0 < ε < 1 there exists λ = λ(d, α, ε) such that the following holds: Let X be a d-dimensional
λ-one-sided local spectral expander. For any k-cochain f ∈ Ck(X), 1 ≤ k < d, such that f is
α-double balanced and ∥f∥ ≤ 1 − ε

(k + 1)αk
it holds that

∥δ1(f)∥ > 0.

APPROX/RANDOM 2022



3:10 Double Balanced Sets in High Dimensional Expanders

We split the proof of these theorems to two parts. In the first part we show that if almost
all of the (k − 1)-faces of a cochain are not dense then its δ1 is optimal. In the second part,
we show that for sufficiently small double balanced cochains, almost all of their (k − 1)-faces
are indeed not dense.

4.1 Part I – Bound δ1(f) by the dense (k − 1)-faces
Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1 a density
constant.

For any k-cochain f ∈ Ck(X) we define the set of dense (k − 1)-faces by

DENSEk−1 = {σ ∈ X(k − 1) | ∥fσ∥ > η}.

We show in this section that ∥δ1(f)∥ can be bounded by the fraction of dense (k −1)-faces.

▶ Proposition 17. Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1
a density constant. For any k-cochain f ∈ Ck(X), 1 ≤ k < d,

∥δ1(f)∥ ≥ (k + 2) ∥f∥
(

1 − (k + 1)
(

λ + η + ∥DENSEk−1∥
∥f∥

))
.

The proof of this proposition will follow from the following two lemmas. The first lemma
holds for any simplicial complex.

▶ Lemma 18. Let X be a d-dimensional simplicial complex. For any k-cochain f ∈ Ck(X),
1 ≤ k < d,

∥δ1(f)∥ ≥ (k + 2)
(

1
2

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ − k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥
)

Proof. Denote by δi(f) the set of (k+1)-faces that contain exactly i k-faces from f . Summing
δ1(fσ) in the links of all σ ∈ X(k − 1) equals

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ =
k+1∑
i=1

i(k + 2 − i)(
k+2

2
) ∥δi(f)∥ . (4)

Summing δ2(fσ) in the links of all σ ∈ X(k − 1) equals

∑
σ∈X(k−1)

∥(δ2(fσ), σ)∥ =
k+2∑
i=2

(
i
2
)(

k+2
2
) ∥δi(f)∥ . (5)

Multiplying (5) by 2k yields

2k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ =
k+2∑
i=2

i(i − 1)k(
k+2

2
) ∥δi(f)∥ ≥

k+2∑
i=2

i(k + 2 − i)(
k+2

2
) ∥δi(f)∥ . (6)

Subtracting (6) from (4) yields∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ − 2k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ 2
k + 2 ∥δ1(f)∥ .

Multiplying both sides by (k + 2)/2 finishes the proof. ◀
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The following lemma holds for any λ-one-sided local spectral expander.

▶ Lemma 19. Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1 a
density constant. For any k-cochain f ∈ Ck(X), 1 ≤ k < d,
1.

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ ≥ 2(1 − λ − η) ∥(f, SPARSEk−1)∥ ,

2.
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ ∥(f, DENSEk−1)∥ + (λ + η) ∥(f, SPARSEk−1)∥ ,

where SPARSEk−1 = X(k − 1) \ DENSEk−1.

Proof. Since X is a one-sided local spectral expander, fσ is a subset of vertices in Xσ so
both inequalities follow immediately form the well known Cheeger inequality. ◀

We can now prove Proposition 17.

Proof of Proposition 17. Since

∥f∥ = ∥(f, DENSEk−1)∥ + ∥(f, SPARSEk−1)∥ ,

lemma 19(1) yields∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ ≥ 2(1 − λ − η) ∥f∥ − 2 ∥(f, DENSEk−1)∥ , (7)

and lemma 19(2) yields∑
σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ (λ + η) ∥f∥ + ∥(f, DENSEk−1)∥ . (8)

Substituting (7) and (8) in lemma 18 finishes the proof. ◀

4.2 Part II – Bound the fraction of dense (k − 1)-faces
We show in this section that for every double balanced and small cochain in a good enough
one-sided local spectral expander, the fraction of dense (k − 1)-faces is very small.

We first extend the definition of dense faces to every dimension −1 ≤ i ≤ k − 1. Given a
density constant 0 < η < 1 and ε > 0, we set ηk−1 = η and for every 0 ≤ i ≤ k − 1 we define

ηi−1 = ηi

α
− ε

(k + 1)2αk−i
.

We then define the dense faces in dimension i to be

DENSEi = {σ ∈ X(i) | ∥fσ∥ > ηi}.

Our goal in this subsection is to prove the following proposition.

▶ Proposition 20. Let X be a d-dimensional λ-one-sided local spectral expander, 1 ≤ k < d

any dimension, α ≥ 1 a balance constant, 0 < η < 1 a density constant and ε > 0. For any
k-cochain f ∈ Ck(X) such that f is α-double balanced and ∥f∥ ≤ η−1 it holds that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2
∥f∥

We start by showing that in a λ-one-sided local spectral expander, the restriction of a
cochain to almost every vertex is seen with the right proportion.
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3:12 Double Balanced Sets in High Dimensional Expanders

▶ Lemma 21. Let X be a d-dimensional λ-one-sided local spectral expander. For any
k-cochain f ∈ Ck(X), 0 ≤ k < d, and ε > 0 it holds that

Pr
u∈X(0)

[∥fu∥ > ∥f∥ + ε] ≤
(

(k + 1)λ
ε

)2
∥f∥ .

Proof. Define the following graph G = (V, E), where V = X(k), i.e., all k-faces of X, and
E =

{
{σ1, σ2} | ∃u ∈ X(0) s.t. σ1 ·∪ u, σ2 ·∪ u ∈ X(k + 1)

}
, i.e., there is an edge between

σ1 and σ2 if and only if there exists some vertex in X that completes both σ1 and σ2 to a
(k + 1)-face.

We define a probability distribution on G that corresponds to the probability distribution
of X as follows:

The probability of a vertex σ ∈ V equals to the probability of the corresponding k-face
σ ∈ X(k).
The probability of an edge {σ1, σ2} ∈ E equals Eu∈X(0) Pr[σ1 ·∪ u | u] · Pr[σ2 ·∪ u | u],
where all the probabilities are taken according to the complex X.

Since X is a λ-one-sided local spectral expander, by [7, Claim 4.9] G is a ((k + 1)λ)2-
spectral expander, because its adjacency operator is a two steps walk of the 0, 2-complement
walk of [7].

Now, define µ : X(0) → R by µ(u) = ∥fu∥ = Pr[σ ∈ f | σ ·∪ u ∈ X(k + 1)]. The following
holds by laws of probability:

E
u∈X(0)

[µ(u)] = E
u∈X(0)

Pr[σ ∈ f | σ ·∪ u ∈ X(k + 1)] = Pr[σ ∈ f ] = ∥f∥ . (9)

E
u∈X(0)

[µ(u)2] = E
u∈X(0)

Pr[σ1 ∈ f | σ1 ·∪ u ∈ X(k + 1)] · Pr[σ2 ∈ f | σ2 ·∪ u ∈ X(k + 1)]

= Pr
{σ1,σ2}∈E

[σ1 ∈ f ∧ σ2 ∈ f ] = ∥E(f)∥ ,
(10)

where E(f) is the set of edges {σ1, σ2} in G such that both σ1 and σ2 are in f . Since G is a
((k + 1)λ)2-spectral expander, it follows that ∥E(A)∥ ≤ ∥f∥2 + ((k + 1)λ)2 ∥A∥. Substituting
in (10) and combining (9) yields

Var
u∈X(0)

[µ(u)] = E
u∈X(0)

[µ(u)2] − E
u∈X(0)

[µ(u)]2 ≤ ((k + 1)λ)2 ∥f∥ .

Now, by Chebyshev’s inequality

Pr
[

∥fu∥ > ∥f∥ + ε
]

= Pr
[
µ(u) > E[µ] + ε

]
≤ Var[µ]

ε2 ≤
(

(k + 1)λ
ε

)2
∥f∥ .

This completes the proof. ◀

In the next lemma we show that for every dimension i, if f is double balanced in dimension
i then the fraction of dense i-faces is not much more than the fraction of dense (i − 1)-faces.

▶ Lemma 22. Let X be a d-dimensional λ-one-sided local spectral expander and f ∈ Ck(X),
0 ≤ k < d. For every 0 ≤ i < k, if f is α-double balanced in dimension i then

∥DENSEi∥ ≤ (i + 1) ∥DENSEi−1∥ + (i + 1)
(

(k + 1 − i)(k + 1)2αk−iλ

ε

)2

∥f∥ .
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Proof. Note that for every σ ∈ DENSEi there must exist a vertex u ∈ σ such that∥∥(fσ\u)u
∥∥ >

ηi

α
, (11)

since otherwise

∥fσ∥ ≤ α

i + 1
∑
u∈σ

∥∥(fσ\u)u
∥∥ ≤ ηi

and σ /∈ DENSEi.
For every σ ∈ DENSEi, fix one (i − 1)-face τ(σ) = σ \ u that satisfies (11). By laws of

probability

∥DENSEi∥ = Pr[σi ∈ DENSEi] = (i + 1) Pr[σi ∈ DENSEi ∧ σi−1 = τ(σi)] ≤

(i + 1) ∥DENSEi−1∥ + (i + 1) Pr[σi ∈ DENSEi ∧ σi−1 = τ(σi) | τ(σi) /∈ DENSEi−1],
(12)

where the inequality holds by splitting to the two cases whether τ(σi) ∈ DENSEi−1.
We focus now on the right summand of (12) which is the case where τ(σi) /∈ DENSEi−1.

Recall that τ(σi) satisfies (11). Thus, we can bound the probability of this event by the
probability to choose a sparse (i − 1)-face and then a vertex such that (11) holds, i.e.,

Pr[σi ∈ DENSEi∧σi−1 = τ(σi) | τ(σi) /∈ DENSEi−1] ≤ E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ >

ηi

α

]
.

(13)

Since τ ∈ SPARSEi−1, it holds that ∥fτ ∥ ≤ ηi−1. Thus,

E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ >

ηi

α

]
≤

E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ > ∥fτ ∥ + ε

(k + 1)2αk−i

]
,

(14)

where the inequality holds since

∥fτ ∥ + ε

(k + 1)2αk−i
≤ ηi−1 + ε

(k + 1)2αk−i
= ηi

α
.

Combining (12), (13) and (14) yields

∥DENSEi∥ ≤

(i + 1) ∥DENSEi−1∥ + (i + 1) E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ > ∥fτ ∥ + ε

(k + 1)2αk−i

]
≤

(i + 1) ∥DENSEi−1∥ + (i + 1) E
τ∈SPARSEi−1

[(
(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥fτ ∥

]
≤

(i + 1) ∥DENSEi−1∥ + (i + 1)
(

(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥f∥ ,

where the second inequality follows by lemma 21. This completes the proof. ◀

We can now prove Proposition 20.
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3:14 Double Balanced Sets in High Dimensional Expanders

Proof of Proposition 20. We apply lemma 22 for i = k − 1, k − 2, . . . , 0 step by step.

∥DENSEk−1∥ ≤ k ∥DENSEk−2∥ + k

(
2(k + 1)2αλ

ε

)2
∥f∥ ≤

k(k − 1) ∥DENSEk−3∥ +
(

k(k − 1)
(

3(k + 1)2α2λ

ε

)2
+ k

(
2(k + 1)2αλ

ε

)2
)

∥f∥

≤ · · · ≤ k! ∥DENSE−1∥ +
(

k!
(

(k + 1)3αkλ

ε

)2
+ · · · + k

(
2(k + 1)2αλ

ε

)2
)

∥f∥

=
k−1∑
i=0

k!
i!

(
(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥f∥

≤ k!
(

(k + 1)2αkλ

ε

)2 k−1∑
i=0

(k + 1 − i)2

i! ∥f∥

≤ 3k!
(

(k + 1)3αkλ

ε

)2
∥f∥

where the equality holds since ∥f∅∥ = ∥f∥ ≤ η−1, i.e., the empty set is not dense, and hence
∥DENSE−1∥ = 0. The rest of the inequalities are just calculations. This completes the
proof. ◀

4.3 Proof of Theorems 15 and 16

Proof of Theorem 15. Let λ ≤ ε

d3αd−1

√
ε

3d! and η = ε

(k + 1) . By simple calculation

η−1 = ε

(k + 1)2αk
.

Thus, since ∥f∥ ≤ η−1, Proposition 20 implies that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2

≤ ε

k + 1 ∥f∥ . (15)

Substituting (15) in Proposition 17 finishes the proof. ◀

Proof of Theorem 16. Let λ ≤ ε

d3αd−1

√
ε

(d + 1)! and η = 1 − ε/(k + 1)
(k + 1) . By simple calcu-

lation

η−1 = 1 − ε

(k + 1)αk
.

Thus, since ∥f∥ ≤ η−1, Proposition 20 implies that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2

≤ ε

(k + 2)(k + 1) ∥f∥ . (16)

Substituting (16) in Proposition 17 finishes the proof. ◀

We conclude this section by noting that the proof of lemma 2 from the introduction is
exactly the same as the proof of Proposition 20, with the only difference that we start by
setting ηℓ = ε and bound the fraction of dense ℓ-faces instead of the dense (k − 1)-faces.
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5 Cohomologies are double balanced

Previous works could only obtain complexes with some constant lower bound on the size of
their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a topological
sense), all of their cohomology elements are double balanced. We then utilize the δ1-expansion
of double balanced sets in order to obtain a lower bound on their size, achieving an exponential
improvement upon the current state of the art.

We start by proving Theorem 6 from the introduction, which we restate here in a formal
way.

▶ Theorem 23 (Cohomologies are double balanced). Let X be a d-dimensional complex such
that every non-trivial link in X is a β-coboundary expander. For every ℓ < k < d, any
k-cohomology element is ℓ + 1

β
-double balanced in dimension ℓ.

Proof. Let f ∈ Hk(X) be a k-cohomology and σ ∈ X(ℓ) be an ℓ-face. Consider a (k −ℓ)-face
τ ∈ δ(fσ). Let us denote σ = {v0, v1, . . . , vℓ} and τ = {vℓ+1, vℓ+2, . . . , vk+1}. By definition

k+1∑
i=ℓ+1

f(σ ∪ τ \ vi) =
k+1∑

i=ℓ+1
fσ(τ \ vi) ̸= 0,

where the inequality holds since τ ∈ δ(fσ). Since f is a k-cohomology, it holds that

k+1∑
i=0

f(σ ∪ τ \ vi) = 0.

Therefore, there must exist 0 ≤ j ≤ ℓ such that f(σ ∪ τ \ vj) ̸= 0. By definition of restriction
and localization, it means that

(fσ\vj
)vj (τ) = (fσ\vj

)(τ) ̸= 0.

In other words, for every τ ∈ δ(fσ), there exists a vertex v ∈ σ such that τ ∈ (fσ\v)v. It
follows that

∥δ(fσ)∥ ≤
∑
v∈σ

∥∥(fσ\v)v
∥∥ . (17)

Now, since f is a k-cohomology, f is minimal and hence also locally minimal. The β-
coboundary expansion of the links implies that

∥δ(fσ)∥ ≥ β ∥fσ∥ . (18)

Combining (17) and (18) implies that

∥fσ∥ ≤ 1
β

∑
v∈σ

∥∥(fσ\v)v
∥∥ = ℓ + 1

β
E

v∈σ

∥∥(fσ\v)v
∥∥ .

This complete the proof. ◀

We conclude by proving Theorem 7 from the introduction, which we restate here in a
formal way.
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▶ Theorem 24 (Lower bound on cohomology elements). For every d ≥ 2, β > 0 and ε > 0
there exists λ = λ(d, β, ε) such that the following holds. Let X be a d-dimensional λ-one-sided
local spectral expander such that every non-trivial link in X is a β-coboundary expander. For
every k < d, any k-cohomology element f ∈ Hk(X) satisfies

∥f∥ ≥ (1 − ε)βk

(k + 1)! .

Proof. Assume towards contradiction that there exists f ∈ Hk(X) with ∥f∥ <
(1 − ε)βk

(k + 1)! .

By Theorem 23, f is
(
(ℓ + 1)/β

)
-double balanced in dimension ℓ for every ℓ < k. Then

Theorem 16 implies5 that ∥δ1(f)∥ > 0 in contradiction to f being a cohomology elements
(i.e., δ(f) = 0). ◀
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We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or
graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with
a carefully chosen rejection filter and works under a percolation subcriticality condition. We show
that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted
graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite
graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give
near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets
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1 Introduction

Sampling is a fundamental computational task: given a specification of a probability distri-
bution on a (large) set of combinatorial objects, output a random object with the specified
distribution or with a distribution close to the specified distribution. This task becomes
challenging when the specification of the distribution is much more succinct than the set of
objects, and one wants to sample using time and space commensurate with the specification.
Fundamental examples include sampling from Markov random fields and probabilistic graph-
ical models and sampling substructures of graphs. We will address both of these examples
here and connect them in a new way.
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4:2 Fast and Perfect Sampling of Subgraphs and Polymer Systems

We consider a natural sampling problem: given a bounded-degree graph G, sample
a graphlet (a connected, vertex-induced subgraph) of G containing a fixed vertex r with
probability proportional to an exponential in the size of the subgraph. That is, sample
a graphlet S containing vertex r with probability proportional to λ|S|, where λ > 0 is a
distribution parameter and |S| denotes the number of vertices in S. In this paper we are
concerned with small values of λ, where the expected size of a sampled graphlet is much
smaller than the size of the graph.

Sampling graphlets is an important task in data science, network analysis, bioinformatics,
and sociology, as it allows us to gain information about massive graphs from small sections
of it; see, e.g., [38, 28, 41, 4]. A number of variants of the problem have consequently
been studied, including sampling graphlets of a given size uniformly at random or sampling
weighted graphlets of all sizes [46, 5, 37, 15, 10, 11, 43, 1, 42, 45, 12, 9]. The variant we
consider here, i.e., sample a graphlet S with probability proportional to λ|S|, arises as a key
subroutine in recent sampling algorithms for spin systems (hard-core model, Ising model,
Potts model, etc.) in the regime of strong interactions via polymer models described below in
Section 1.2; see [32, 13, 40, 25, 7, 36, 35, 14, 17].

One major limitation of previous sampling algorithms for graphlets and polymer models
(those in, e.g., [32, 40, 45, 16, 24], among others) is the use of exhaustive enumeration of
graphlets of a given size; this requires restrictive parameter regimes or large polynomial
running times, with the maximum degree ∆ of the graph appearing in the exponent of the
polynomial. Here we design a fast perfect sampling algorithm for weighted graphlets based
on a vertex percolation process combined with a rejection filter. This method bypasses the
enumeration barrier and allows us to design perfect sampling algorithms for a number of ap-
plications, substantially improving upon existing algorithms in three ways: 1) our algorithms
have considerably faster running times, with no dependence on ∆ in the exponent; 2) our
algorithms return perfect, rather than approximate, samples from the desired distributions;
and 3) our algorithms are conceptually simple and practical to implement.

Our algorithm proceeds as follows. First, run a vertex percolation process on the graph
G beginning at vertex r in a breadth-first search manner, repeatedly adding each adjacent
vertex to the graphlet with a carefully-chosen probability p. Once the percolation process
terminates, the graphlet is accepted as the random sample with a certain probability that
depends on the graphlet and rejected otherwise; if the graphlet is rejected, the algorithm
restarts another percolation process from r. Because of the careful way we choose the
percolation and rejection probabilities, we can prove the final accepted sample is drawn
exactly from the desired distribution and the expected running time is bounded by a constant
that depends only on λ and the maximum degree ∆.

1.1 Sampling rooted graphlets

Our key contribution is a new algorithm for perfectly sampling weighted graphlets containing
a given vertex r. Formally, let G = (V, E) be a finite or infinite graph of maximum degree ∆.
For r ∈ V , let S(G, r) be the set of all connected, vertex-induced subgraphs of G containing
r. (The subgraph induced by U ⊆ V has vertex set U and includes all the edges of G with
both endpoints in U .) We call r the root of G and the elements of S(G, r) graphlets rooted
at r. For λ > 0 define the probability distribution νG,r,λ on S(G, r) by

νG,r,λ(S) = λ|S|

ZG,r,λ
, where ZG,r,λ =

∑
Ŝ∈S(G,r)

λ|Ŝ| . (1)
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The distribution is well defined when the normalizing constant ZG,r,λ, known as the partition
function, is finite. This is the case for every graph of maximum degree ∆ and every r when
λ is below the critical threshold:

λ∗(∆) = (∆ − 2)∆−2

(∆ − 1)∆−1 ; (2)

(see Lemma 3 below). We give an efficient perfect sampling algorithm for νG,r,λ for λ < λ∗(∆).

▶ Theorem 1. Fix ∆ ≥ 3 and let λ < λ∗(∆). There is a randomized algorithm that for
any graph G = (V, E) of maximum degree ∆ and any r ∈ V outputs a graphlet distributed
according to νG,r,λ with expected running time bounded by a constant that depends only on ∆
and λ.

We assume a model of computation that allows for querying the adjacency list of a given
vertex in a bounded degree graph in constant time, the standard model used in the study
of sublinear algorithms [27]. We also assume access to a stream of perfectly random real
numbers in [0, 1]. The model of computation is chosen for consistency; in particular, our
methods extend to other models, only requiring to adjust the running time to account for
any additional computational overhead.

Previous algorithms to generate ε-approximate samples from νG,r,λ (e.g., those in [32, 45,
16, 24]) exhaustively enumerate all graphlets of size ≤ k, for some k that depends on the
error parameter ε that describes how accurate the sample must be. This results in algorithms
with (1/ε)O(log ∆) running times. Applications such as sampling from polymer models require
multiple samples from νG,r,λ and, consequently, have small error tolerance per sample; in
particular, they require ε ≪ 1/n, which results in inefficient algorithms with overall running
time nO(log ∆). The algorithm in Theorem 1, on the other hand, is an exact sampler whose
expected running time depends only on ∆ and λ and thus provides a significant advantage
in applications as we detail below.

We also show that Theorem 1 is sharp in two ways. First, we establish that there is no
polynomial-time approximate sampling algorithm for νG,r,λ when λ > λ∗(∆) for the class of
graphs of maximum degree at most ∆ unless RP=NP. Second, in the infinite setting, the
normalizing constant ZG,r,λ may diverge (and consequently the distribution νG,r,λ is not
well-defined) when λ > λ∗(∆); conversely, we prove that ZG,r,λ is finite on every graph of
maximum degree ∆ when λ ≤ λ∗(∆).

▶ Lemma 2. If for every finite graph G = (V, E) of maximum degree ∆ ≥ 3 and every r ∈ V ,
there is a polynomial-time approximate sampler for νG,r,λ when λ > λ∗(∆), then RP=NP.

▶ Lemma 3. The partition function ZG,r,λ is finite for every (possibly infinite) graph
G = (V, E) of maximum degree ∆ and every r ∈ V if and only if λ ≤ λ∗(∆).

The proofs of these lemmas are omitted, but can be found in the full version of this paper [6].
Finally, we mention that the algorithmic result in Theorem 1 cannot be extended even

to the case λ = λ∗(∆): for the infinite ∆-regular tree, we can show that the expected size
of a graphlet sampled from νG,r,λ is infinite when λ = λ∗(∆), and so it is impossible to
have sampling algorithms with finite expected running time. In summary, the algorithm in
Theorem 1 for λ < λ∗(∆), combined with the hardness/impossibility results in Lemmas 2
and 3 for λ > λ∗(∆), provide a resolution to the computational problem of sampling
from νG,r,λ on graphs of maximum degree at most ∆.

APPROX/RANDOM 2022



4:4 Fast and Perfect Sampling of Subgraphs and Polymer Systems

As mentioned, our sampling algorithm is based on exploring the connected component
of r in a vertex-percolation process. We carefully choose a specific percolation parameter
p ∈ (0, 1) as a function of λ and ∆ (see Lemma 9). We then perform breadth-first search
(BFS) from r, labeling each new vertex encountered “active” with probability p and “inactive”
with probability 1 − p independently over all vertices; we continue the BFS exploring only
unexplored neighbors of active vertices. In this way we uncover the “active” component of r,
call it γ. We then accept γ with a given probability depending on λ, ∆, |γ| and |∂γ|, where
∂γ denotes the set of vertices outside of γ that are adjacent to γ. If we reject γ, we begin
again with a new percolation process. We note that only when λ < λ∗(∆) does there exist a
suitable percolation probability p that results in a subcritical percolation process, so that
the size of the active component has finite expectation and exponential tails. Sampling a
graphlet by exploring a random component and performing a rejection step has been used
in the past (most notably in the recent work of Bressan [9] to sample uniformly random
graphlets of size k; see also [2]). The weighted model we sample from is particularly well
suited to this type of exploration algorithm because of the direct connection to a subcritical
percolation process.

We prove a more general version of Theorem 1 in Section 2, allowing for vertex-labeled
graphlets and modifications of the weights by multiplication by a non-negative function
bounded by 1. These generalizations are needed for the application to polymer models in
Section 1.2.

1.2 Sampling from polymer models
We use our algorithm for sampling weighted rooted graphlets to design fast and perfect
samplers for polymer models. Polymer models are systems of interacting geometric objects
representing defects from pure ground states (i.e., most likely configurations) in spin systems
on graphs in classical statistical physics [29, 39, 22]. These geometric objects are most often
represented by vertex-labeled graphlets from a given host graph. Recently, polymer models
have found application as an algorithmic tool to sample from spin systems on various classes of
graphs in strong interaction regimes; see, e.g., [32, 13, 40, 16, 31, 24, 25, 7, 36, 35, 14, 20, 17].
In these applications, the problem of sampling weighted vertex-labeled rooted graphlets
emerged as a significant computational barrier.

We will work with subset polymer models in which all polymers are vertex-labeled graphlets
from a host graph G = (V, E). These models were defined in [29] and generalized in [39].
Such a polymer model consists of:

A set C = C(G) of polymers, each of which is a graphlet in G with the vertices of the
graphlet labeled with colors from a set Σ of size q.
Weights wγ ≥ 0 for each γ ∈ C.
An incompatibility relation ≁ defined by connectivity. We say two polymers γ, γ′ ∈ C
are incompatible and write γ ≁ γ′ if the union of their corresponding vertices induces a
connected subgraph in G. Otherwise they are compatible and we write γ ∼ γ′.

Let Ω(C) denote the set of all sets of pairwise compatible polymers from C. The polymer
model is the Gibbs distribution µ on Ω(C) defined by

µ(X) =
∏

γ∈X wγ

Z(C) , where Z(C) =
∑

X∈Ω(C)

∏
γ∈X

wγ

is the polymer model partition function. We say the weights of a polymer model are
computationally feasible if wγ can be computed in time polynomial in |γ|. The size |γ| of a
polymer γ is the number of vertices in the corresponding graphlet.
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Table 1 Comparison of conditions and running times of known polymer sampling algorithms.

Condition Bound on exponential Running Time Type of Sampler
decay of weights

Koteckỳ–Preiss [32, 35, 13] wγ ≤ (e2q∆)−|γ| nO(log ∆) approximate

Polymer Sampling [16, 24] wγ ≤ (e5q3∆3)−|γ| O(n log n) approximate

Clique dynamics [23] wγ ≤ (eq∆)−|γ| nO(log ∆) approximate

This work (Theorem 4) wγ ≤ (eq∆)−|γ| O(n log n) perfect

We will assume without loss of generality that all vertex-labeled graphlets of G, including
each individual vertex v ∈ V , are elements of C, by setting wγ = 0 when necessary. We let
Cv be all polymers containing vertex v.

Algorithms for sampling polymer models fall into two classes: those based on truncating
the so-called cluster expansion of a polymer model to approximate a partition function and
using self-reducibility to sample, and those based on Markov chains on the set of collections
of compatible polymers. The cluster expansion approach, while giving polynomial-time
algorithms, generally is relatively inefficient, with the degree of the polynomial bound on the
running time growing with the degree of the underlying graph; e.g., running time nO(log ∆) in
n-vertex graph of maximum degree ∆. The Markov chain approach in principle can be much
faster (near linear time in the size of the graph) but runs into one hitch: a stricter condition
on the parameters of the model is needed to perform one update step of the Markov chain
(the “polymer sampling condition” in [16, 24]). We solve this problem by adapting our rooted
graphlet sampler to sample polymers models, leading to a near linear-time perfect sampling
algorithm for polymer models under the least restrictive conditions known (see Table 1).

▶ Theorem 4. Consider a subset polymer model on a family of n-vertex graphs of maximum
degree ∆ with computationally feasible weights satisfying:

wγ ≤ λ|γ| for all γ ∈ C where λ < λ∗(∆, q) := (∆ − 2)∆−2

q(∆ − 1)∆−1 . (3)

Suppose further that for all vertex v,∑
γ ̸∼v

|γ|wγ < 1 +
∑

γ∈Cv

wγ . (4)

Then, there is a perfect sampling algorithm for µ with expected running time O(n log n).

The threshold defined in (3) is the generalization of the critical threshold for rooted graphlet
sampling to the labeled case (taking q = 1 recovers the definition in (2)). Theorem 4
improves upon the known results for sampling from polymer models in two ways. For a very
general class of polymer models, our algorithm simultaneously provides perfect sampling with
near-linear running time under weak conditions on the polymer weights. We now review
previous works to illustrate these improvements; see the accompanying Table 1.

A number of conditions on polymer weights have been used to provide efficient sampling
algorithms. The first papers in this direction (including [32, 35, 13]) used the Koteckỳ–Preiss
condition for convergence of the cluster expansion of the polymer model partition function [39]:∑

γ′≁γ wγ′e|γ′| ≤ |γ| ∀γ ∈ C. This condition is typically verified by ensuring that:∑
γ≁v

wγe|γ| ≤ 1 ∀v ∈ V . (5)

APPROX/RANDOM 2022
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Since the number of vertex-labeled rooted graphlets of size k in a maximum degree ∆ graph
grows roughly like (eq∆)k−1 (see [8]), weights of polymers of size k must decay roughly like
(e2q∆)−k for the polymer model to satisfy (5), with the extra factor of e coming from the
exponential in the left hand side of the condition (5).

The major downside to the algorithms based on the cluster expansion, i.e., those using (5)
or the Koteckỳ–Preiss condition, is that the running times obtained are of the form nO(log ∆).
Subsequent works, namely [16, 24], addressed this downside but at the cost of a significantly
stricter condition on the polymer weights.

In [16], the authors devised a new Markov chain algorithm for sampling from polymer
models. The condition on the polymer weights for rapid mixing of this chain is somewhat
less restrictive than the Koteckỳ–Preiss condition; it is the Polymer Mixing condition:∑

γ′≁γ
|γ′|wγ′ ≤ θ|γ| ∀γ ∈ C for some θ ∈ (0, 1) . (6)

This requires weights of polymers of size k to decay like (eq∆)−k, a savings of a factor e

in the base of the exponent over (5). However, to implement a single step of this Markov
chain in constant expected time, a stronger condition (the Polymer Sampling condition) was
required:

wγ ≤
(
e5∆3q3)−|γ|

. (7)

This is a significant loss of a factor e3∆2q2 in the base of the exponent compared to (5), but
the resulting sampling algorithm does run in near linear time.

In [23], the authors use a different Markov chain condition, the Clique Dynamics condition,
similar to (6), which requires weights of polymers of size k to decay like (eq∆)−k, saving the
same factor e over (5). Their running times, though, are again of the form nO(log ∆) since
implementing one step of their Markov chain involves enumerating rooted polymers of size
O(log n).

Our results are a “best-of-both-worlds” for polymer sampling: under the conditions (3)
and (4) that both require polymer weights to decay like (eq∆)−k – the precise conditions are
similar to but slightly less restrictive than the polymer mixing condition (6) – we obtain a
near linear time algorithm. Moreover, unlike any of the previous results, our algorithm is a
perfect sampler.

To conclude this section, we comment briefly on the algorithm we design to sample from µ.
Our starting point is the polymer dynamics Markov chain from [16]. We use it to implement
a Coupling from the Past (CFTP) algorithm (see [44]). To do so efficiently (in terms of the
number of steps of the Markov chain), we design a new “bounding Markov chain” for the
polymer dynamics, a method pioneered in [33, 30], and to implement each step of the Markov
chain efficiently, we turn to our sampler for weighted rooted graphlets from Theorem 1.

1.3 Applications to spin systems

Our new algorithm for sampling subset polymer models can be used as a subroutine in
essentially all previous applications of polymer models for spin system sampling at low
temperatures, including those in [35, 13, 40, 16, 31, 24, 25, 14, 20, 17]. This results in
faster sampling algorithms under less restrictive conditions on model parameters in all those
settings. As examples, we fleshed out here the details in two of these applications; more
details are provided in the full version of this paper [6].
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Hard-core model on bipartite graphs. The hard-core model on a graph G is the probability
distribution µhc

G on I(G), the set of all independent sets of G, with

µhc
G (I) = λ|I|

Zhc
G (λ)

, where Zhc
G (λ) =

∑
I∈I(G)

λ|I| . (8)

The complexity of approximate counting and sampling from µhc
G on bounded-degree graphs is

well understood: there is a computational threshold at some λc(∆), with efficient algorithms
for λ < λc(∆) [49, 3, 18, 19] and hardness above the threshold (no polynomial-time algorithms
unless NP=RP) [47, 26, 48]. However, on bipartite graphs, the complexity of these problems
is unresolved and is captured by the class #BIS (approximately counting independent sets
in bipartite graphs) defined by Dyer, Goldberg, Greenhill, and Jerrum [21].

Theorem 4 implies the existence of a fast perfect sampling algorithm for the hard-core
model in a certain class of bipartite graphs called unbalanced bipartite graphs, considered
in [13, 23].

▶ Corollary 5. There is a perfect sampling algorithm for µhc
G running in expected time

O(n log n) for n-vertex bipartite graphs G with bipartition (L, R), with maximum degree ∆L

in L, maximum degree ∆R in R, and minimum degree δR in R if

λ(1 + (1 + e)(∆L − 1)∆R) < (1 + λ)δR/∆L . (9)

Approximate sampling algorithms with large polynomial run times were pre-
viously given for this problem when 6λ∆L∆R < (1 + λ)δR/∆L in [13] and when
3.3353λ∆L∆R < (1 + λ)δR/∆L in [23]. Our result applies to a comparable parameter
range: inequality (9) holds, for instance, when (1 + e)λ∆L∆R < (1 + λ)δR/∆L , or when
3λ∆L∆R < (1+λ)δR/∆L and ∆L < 6. More importantly, our algorithm is the first to achieve
perfect sampling and near-linear running time.

Potts model on expander graphs. The Q-color ferromagnetic Potts model on a graph
G = (V, E) is the probability distribution µpotts

G on the set of Q-colorings of the vertices of
G; i.e., {1, . . . , Q}V . Each Q-coloring σ is assigned probability µpotts

G (σ) ∝ eβm(G,σ), where
m(G, σ) is the number of monochromatic edges of G under the coloring σ and β > 0 is a
model parameter. When the parameter β is large, and G has some structure (e.g., G is an
expander graph), typical configurations drawn from µpotts

G are dominated by one of the Q

colors; that is, there is phase coexistence in the model. This enables sampling using subset
polymer models.

Recall that an n-vertex graph G = (V, E) is an α-expander if for all subsets S ⊆ V with
|S| ≤ n/2, the number of edges in E with exactly one endpoint in S is at least α|S|.

▶ Corollary 6. Consider the Q-color ferromagnetic Potts model on an α-expander n-vertex
graph of maximum degree ∆. Suppose

β ≥
1 + log

( ∆+1
e∆ + 1

)
+ log((Q − 1)∆)

α
. (10)

Then there is a sampling algorithm with expected running time O(n log n) that outputs a
sample σ with distribution µ̂ so that ∥µ̂ − µpotts

G ∥tv ≤ e−Ω(n).

Previously, [16] provided a ε-approximate sample for µP otts
G in time O(n log(n/ε) log(1/ε))

whenever β ≥ 5+3 log((Q−1)∆)
α . Condition (10) holds when β ≥ 1.2+log((Q−1)∆)

α , so our
algorithm applies to a larger range of parameters and removes the dependence on ε from the
running time. We do not achieve perfect sampling in this application only because the subset
polymer models used give approximations of µpotts

G rather than describing µpotts
G exactly.
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4:8 Fast and Perfect Sampling of Subgraphs and Polymer Systems

1.4 Sampling unrooted graphlets in finite graphs
As another application of our algorithm for sampling weighted rooted graphlets, we consider
next the problem of sampling weighted unrooted graphlets in a finite graph. Given a finite
graph G, let S(G) be the set of all graphlets of G. Define the distribution νG,λ on S(G) by

νG,λ(γ) = λ|γ|

ZG,λ
, where ZG,λ =

∑
γ∈S(G)

λ|γ| .

Read-McFarland and Štefankovič [45] gave a polynomial-time approximate sampling algorithm
for νG,λ for the class of maximum-degree ∆ graphs when λ < λ∗(∆) and prove that there
is no such algorithm for λ ∈ (λ∗(∆), 1) unless NP=RP1. We give a new algorithm for this
problem, covering the entire λ < λ∗(∆) regime, and improving on the result of [45] in two
ways: (i) our running time is constant in expectation (with no dependence on n), while the
running time of the ε-approximate sampler in [45] is n · (1/ε)O(log ∆); and (ii) our algorithm
outputs a perfect sample instead of an approximate one (and thus the running time has no
dependence on any approximation parameter).

▶ Theorem 7. Fix ∆ ≥ 3 and let λ < λ∗(∆). Then for the class of finite graphs of maximum
degree ∆ there is a randomized algorithm running in constant expected time that outputs a
perfect sample from νG,λ. The expected running time is bounded as a function of ∆ and λ.

The algorithm we use for this theorem is a modification of the one for sampling rooted
graphlets. We pick a uniformly random v ∈ V , run the same BFS percolation exploration, and
accept the connected component of v with an adjusted probability (to account for the fact that
a graphlet can be generated from any of its vertices). The acceptance probability is bounded
away from 0 and so the algorithm runs in constant expected time. As mentioned earlier, the
ε-approximate sampling algorithm from [45] is based on the exhaustive enumeration of all
subgraphs of size ≤ k, for some k that depends on ε. Our new algorithm entirely bypasses
this enumeration barrier.

2 Graphlet sampling: algorithms

In this section we present our efficient perfect sampling algorithm for weighted, vertex-labeled
graphlets containing a fixed vertex r from a maximum degree ∆ graph; in particular, in
Section 2.1, we prove a generalized version of Theorem 1 from the introduction. We also
provide in Section 2.2 our algorithm for sampling weighted graphlets (i.e., the unrooted,
unlabeled case) and establish Theorem 7.

2.1 Sampling rooted vertex-labeled graphlets
Let G = (V, E) be a (possibly infinite) graph of maximum degree ∆. For U ⊆ V , let G[U ]
denote the corresponding vertex-induced subgraph of G; specifically, G[U ] = (U, E(U)),
where E(U) ⊆ E is the set of edges of G with both endpoints in U . A vertex-induced
subgraph is a graphlet if it is connected. For r ∈ V , let S(G, r) be the set of all graphlets of
G that contain vertex r. We call the graphlets in S(G, r) the graphlets rooted at r.

1 In [45], the threshold is incorrectly stated as λ < λ∗(∆ + 1); this is due to a minor error interchanging
the infinite ∆-regular tree with the infinite ∆-ary tree; with this small correction their analysis goes
through with the bound on λ as stated here.



A. Blanca, S. Cannon, and W. Perkins 4:9

Let Σ = {1, . . . , q} be a set of vertex labels or colors, and let S(G, r, q) =
⋃

S∈S(G,r) ΣS

be the set of all vertex-labeled graphlets rooted at r. Given a real parameter λ > 0, we
assign to each rooted vertex-labeled graphlet γ ∈ S(G, r, q) ∪ {∅} with |γ| vertices the weight
wγ = λ|γ|f(γ), where f : S(G, r, q) ∪ {∅} → [0, 1]. Note that 0 ≤ wγ ≤ λ|γ|, which will be
important for later analysis.

Define the probability distribution νG,r,λ on S(G, r, q) ∪ {∅} by setting

νG,r,λ(γ) = wγ

Z(G, r, λ) , (11)

where Z(G, r, λ) =
∑

γ′∈S(G,r,q)∪{∅} wγ′ . We assume that G, f , q and λ are such that
Z(G, r, λ) is finite, so that this distribution is well defined. When q = 1 and f(γ) = 1(γ ̸= ∅),
νG,r,λ corresponds exactly to the distribution defined in (1) over the unlabeled graphlets of
G rooted at r.

We consider the problem of sampling from νG,r,λ; this more general version of the sampling
problem is later used as a subroutine for sampling polymer systems in Section 3. Let

λ∗(∆, q) := (∆ − 2)∆−2

q(∆ − 1)∆−1 ;

cf., (2). Our main algorithmic result for sampling colored rooted graphlets is the following.

▶ Theorem 8. Suppose ∆ ≥ 3, λ > 0, and q ≥ 1 are such that λ < λ∗(∆, q) and let a > 0 be
a fixed constant. There is a randomized algorithm to exactly sample from νG,r,λ for graphs G

of maximum degree ∆ and functions f : S(G, r, q) ∪ {∅} → [0, 1] where f(γ) is computable
in time O(|γ|a); this randomized algorithm has expected running time bounded by C · Z−1

G,r,λ,
where C > 0 is a constant that depends only on q, λ, ∆ and a.

Theorem 1 from the introduction corresponds to the special case when q = 1 and
f(γ) = 1(γ ̸= ∅) (in this case ZG,r,λ ≥ λ). Other mild assumptions on the function f , e.g.,
f(∅) = 1 or f(r) = 1, ensure that ZG,r,λ is bounded away from 0 and, consequently, that the
sampling algorithm in the theorem has constant expected running time.

As a warm-up, let us consider first our algorithm for sampling labeled rooted graphlets on a
finite graph G = (V, E) with f = 1, and purposely omit certain non-essential implementation
details for clarity. First, we find p ∈ (0, 1) such that p

q (1 − p)∆−2 = λ; this choice of p

will be justified in what follows. The algorithm then repeats the following process until a
vertex-labeled graphlet is accepted:
1. Each vertex of the graph is independently assigned with probability p a uniform random

color from {1, . . . , q}, or it is marked as “not colored” with the probability 1 − p.
2. Let γ be the vertex-labeled graphlet from S(G, r, q) ∪ {∅} corresponding the colored

connected component of r; i.e., the set of vertices connected to r by at least one path of
colored vertices.

3. Observe that the probability of obtaining γ is (p/q)|γ|(1 − p)|∂γ|, where ∂γ denotes to
set of vertices in G that are not in γ but are adjacent to a vertex in γ (with a slight
abuse of notation, we let |∂∅| = 1). Our aim is to output γ with probability ∝ λ|γ| which
has no dependence on ∂γ. Therefore, we use a “rejection filter” and only accept γ with
probability (1 − p)(∆−2)|γ|+2−|∂γ|, so that the probability that γ is the output becomes:(p

q

)|γ|
(1 − p)|∂γ|(1 − p)(∆−2)|γ|+2−|∂γ| = (1 − p)2

(p

q
(1 − p)∆−2

)|γ|
= (1 − p)2λ|γ|. (12)

From (12), the choice of p such that p
q (1 − p)∆−2 = λ is apparent. We will prove that

only when λ < λ∗(∆, q) there exists p ∈ (0, 1) such that p
q (1 − p)∆−2 = λ. In the actual

implementation of the algorithm, it will in fact suffice to find an approximation for p.

APPROX/RANDOM 2022



4:10 Fast and Perfect Sampling of Subgraphs and Polymer Systems

We comment briefly on the intuition for the rejection filter. The acceptance probability
must include a factor of (1 − p)−|∂γ|, so that the final acceptance probability depends on
|γ| but not on |∂γ|. However, (1 − p)−|∂γ| > 1 is not a valid probability, so we use instead
(1 − p)(∆−2)|γ|+2−|∂γ|, which is at most 1 since (∆ − 2)|γ| + 2 ≥ |∂γ|. This bound on |∂γ| is
best possible since it is tight for the ∆-regular tree. We note that using looser bounds for |∂γ|
affects the range of the parameter λ for which we can find p ∈ (0, 1) so that p

q (1 − p)∆−2 = λ.
Finally, we mention that the algorithm as described requires Ω(|V |) time per iteration

and cannot be extended to infinite graphs. This is easily corrected by assigning colors
starting from r and revealing only the colored component of r in a breadth-first fashion.
The threshold λ∗(∆, q) is sharp in the sense that only when λ < λ∗(∆, q) is the value of p

such that the revealing process is a sub-critical process that creates a small component with
high probability. This ensures the algorithm can be implemented efficiently. In particular,
we stress that our algorithm avoids exhaustively enumerating labeled graphlets, as done in
previous methods [16].

Before giving the implementation details of our algorithm and proving Theorem 8, we
consider the problem of finding p ∈ (0, 1) such that p

q (1 − p)∆−2 = λ. For ∆ ≥ 3 and
q ≥ 1, consider the real function g(x) = x

q (1 − x)∆−2. It can be readily checked that the
function g is continuous and differentiable in [0, 1], has a unique maximum at x = 1

∆−1 with
g( 1

∆−1 ) = λ∗(∆, q), is increasing in [0, 1
∆−1 ], and decreasing in [ 1

∆−1 , 1]. This implies that
only when λ < λ∗(∆, q), there exists a value of p ∈ [0, 1

∆−1 ) such that g(p) = λ. In particular,
when λ > λ∗(∆, q), there is no value of p for which g(p) = λ and when λ = λ∗(∆, q), the
only possible value is p = 1

∆−1 . The latter case would result in a critical percolation process,
corresponding to the fact that the expected size of a graphlet from νG,r,λ has no uniform
upper bound in the class of graphs of maximum degree ∆; in fact, it is infinite on the
∆-regular tree. We can find a suitable approximation for p when λ < λ∗(∆, q) via a simple
(binary search) procedure.

▶ Lemma 9. For any λ ∈ [0, λ∗(∆, q)) we can find rational numbers p̂ ∈ [0, 1
∆−1 ) and

λ̂ ∈ [λ, λ∗(∆, q)] such that g(p̂) = λ̂ in O(| log 1
∆q(λ∗−λ) |) time.

The proof of this lemma appears after the proof of Theorem 8. We now prove Theorem 8,
including giving a more detailed version of the algorithm outlined above that includes the
previously omitted implementation details and allows for general functions f : S(G, r, q) ∪
{∅} → [0, 1].

Proof of Theorem 8. For ease of notation, let λ∗ = λ∗(∆, q). Our algorithm to sample from
νG,r,λ when λ < λ∗ explores from r in a breadth-first manner and stops once it has revealed
the colored connected component of r. It proceeds as follows:

1. Find p̂ ∈ [0, 1
∆−1 ) and λ̂ ∈ [λ, λ∗) such that g(p̂) = λ̂. This can be done in time

O(| log 1
∆q(λ∗−λ) |) per Lemma 9.

2. Let Q be a queue. With probability 1 − p̂ do not add r to Q; otherwise, assign r a color
uniformly at random from {1, . . . , q} and add r to Q. Mark r as explored.

3. While Q ̸= ∅, repeat the following:
(3.1) Pop a vertex v from Q.
(3.2) For each unexplored neighbor w of v, with probability 1 − p̂ do not add w to Q;

otherwise, assign w a color uniformly at random from {1, . . . , q} and add w to Q.
Mark w as explored (regardless of whether it was added to Q or not).
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4. Let γ be the vertex-labeled graphlet from S(G, r, q) ∪ {∅} corresponding the colored
connected component of r. Accept γ with probability:

f(γ) · (1 − p̂)(∆−2)|γ|+2−|∂γ|
(λ

λ̂

)|γ|
.

5. If γ is rejected, go to Step 2 and repeat.
The probability of obtaining γ ∈ S(G, r, q) ∪ {∅} in an iteration of the algorithm is:( p̂

q

)|γ|
(1 − p̂)|∂γ| · f(γ)(1 − p̂)(∆−2)|γ|+2−|∂γ|

(λ

λ̂

)|γ|
= (1 − p̂)2f(γ) λ|γ| = (1 − p̂)2wγ ,

and thus the overall acceptance probability in an iteration is:

ρ := (1 − p̂)2
∑

γ∈S(G,r,q)∪{∅}

wγ = (1 − p̂)2ZG,r,λ.

Then,

Pr[γ ∈ S(G, r, q)∪{∅} is the output] =
∑

t≥1
(1−p̂)2wγ(1−ρ)t−1 = (1 − p̂)2wγ

ρ
= νG,r,λ(γ).

We next bound the expected running time of the algorithm. We claim first that expected
running per iteration is at most a constant that depends only on a, ∆ and q. If γ is the
configuration generated in an iteration, it is discovered in O(|γ| + |∂γ|) = O(|γ|) time and,
by assumption, f(γ) can be computed in at most O(|γ|a) time, for suitable a constant a > 0.
Let µ̂ the output distribution of Step 3 of the algorithm. Then, there exists a constant
C = C(q, ∆) > 0 such that the expected running time of each iteration is at most:

C
∑

γ∈S(G,r,q)∪∅

|γ|max{a,1} Prµ̂[γ] = C · Eµ̂[|γ|max{1,a}]. (13)

We show next that |γ| (under µ̂) is stochastically dominated by a random variable
W = X + Y (i.e., |γ| ≺ W ), where X and Y are i.i.d. random variables corresponding to the
cluster size of a homogeneous Galton-Watson tree with offspring distribution Bin(∆ − 1, p̂).
To see this, first note that |γ| ≺ L, where L is the cluster size of a heterogeneous Galton-
Watson tree, in which the root vertex has offspring distribution Bin(∆, p̂) and every other
vertex has offspring distribution Bin(∆ − 1, p̂). This is because the branching process
generating γ includes the root only with probability p̂ (the root is always present in the
Galton-Watson tree), and, in addition, it considers at most ∆ (from the root) or ∆ − 1 (from
any other vertex) potential branches. In turn, we have that L ≺ X + Y , since we can couple
the first ∆ − 1 branches of the root with X (starting at the root) and the remaining branch
with Y (starting at the child of the root not coupled with X).

It is well-known that X and Y have finite moments when (∆ − 1)p̂ < 1 (see, e.g., [34]).
In particular, there exists a constant A = A(a, ∆, p̂) > 0 such that

Eµ̂[|γ|a] ≤ E[La] ≤ E[(X + Y )a] ≤ 2a(E[Xa] + E[Y a]) ≤ A. (14)

This together with (13) shows that the expected running time in each iteration of the
algorithm is bounded by C · A.

Now, let R be the number of times Steps 2–5 are repeated, let T be the overall the
running time of the algorithm. Then:

E[T ] =
∑
t≥1

E[T | R = t] Pr[R = t] ≤ C · A ·
∑
t≥1

t(1 − ρ)t−1ρ ≤ CA

ρ
, (15)

and the result follows. ◀
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We conclude this section with the proof of Lemma 9.

Proof of Lemma 9. It suffices to find p̂ ∈ [p, 1
∆−1 ]. This can be done via binary search in t

steps, provided t ≥ 0 is such that 1
∆−1 · 1

2t ≤ 1
∆−1 − p. Since g′ ≤ 1

q , it follows from the mean
value theorem that q(λ∗ − λ) ≤ 1

∆−1 − p. Thus for the binary search to require at most t

steps it is sufficient to pick t so that 1
∆−1 · 1

2t ≤ q(λ∗ − λ), and the result follows. ◀

2.2 Sampling unrooted graphlets
We consider next the problem of sampling weighted graphlets from a finite graph G = (V, E)
of maximum degree ∆; specifically, in this variant of the sampling problem we consider
unrooted, unlabeled, weighted graphlets of G. Let S(G) be the set of all graphlets of G. We
define the probability distribution νG,λ on S(G) by setting

νG,λ(S) = λ|S|

ZG,λ
,

where ZG,λ =
∑

S′∈S(G) λ|S′|. The problem of (approximately) sampling from νG,λ is
quite natural. In [45], it was established that this problem is computationally hard when
λ > λ∗(∆) = (∆−2)∆−2

(∆−1)∆−1 ; an ε-approximate sampling algorithm was also given in [45] for
the case when λ < λ∗(∆) with running time n · (1/ε)O(log ∆). We now provide the proof of
Theorem 7, which says we can perfectly sample from νG,λ in constant expected time when
λ < λ∗(∆).

Proof of Theorem 7. For ease of notation, we set λ∗ = λ∗(∆) throughout this proof. Our
algorithm to sample from νG,λ is based on the algorithm to sample from νG,r,λ (the rooted,
vertex-labeled, weighted case). The idea is to pick a root uniformly at random and run the
algorithm for the rooted case from this random vertex with the rejection filter adjusted to
account for the fact that a graphlet can be generated from any of its vertices. It proceeds as
follows:
1. Find p̂ ∈ [0, 1

∆−1 ) and λ̂ ∈ [λ, λ∗) such that g(p̂) = λ̂ using the method from Lemma 9.
2. Pick a vertex r ∈ V uniformly at random.
3. Let Q be a queue. With probability p̂ add r to Q and mark it as colored. Mark r as

explored.
4. While Q ̸= ∅, repeat the following:

(4.1) Pop a vertex v from Q.
(4.2) For each unexplored neighbor w of v, with probability p̂ add w to Q and mark w

as colored. Mark w as explored.
5. Let S ∈ S(G) be the graphlet corresponding to the colored connected component of v.

Accept S with probability:

1
|S|

· (1 − p̂)(∆−2)|S|+2−|∂S|
(λ

λ̂

)|S|
.

6. If S is rejected, go back to Step 2 and repeat.

The analysis of this algorithm is similar to that in the proof of Theorem 8. Let n = |V |.
The probability that the algorithm outputs S in an iteration is:∑

v∈S

1
n

· p̂|S|(1 − p̂)|∂S| · 1
|S|

· (1 − p̂)(∆−2)|S|+2−|∂S|
(λ

λ̂

)|S|
= (1 − p̂)2λ|S|

n
. (16)

Hence, conditioned on acceptance, the probability of obtaining S ∈ S(G) is thus νG,λ(S),
and so the output distribution of the algorithm is νG,λ.
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For the running time of the algorithm, we note that Step 4 of the algorithm is analogous
to Step 3 of the algorithm in the proof of Theorem 8, and so the expected running time
of each round is also bounded by a constant C = C(∆, p̂) > 0. Let T be the overall the
running time of the algorithm. From (16), we have that the overall acceptance probability in
a round is ρ = (1−p̂)2Z(G,λ)

n . Then, as in (15), we deduce that E[T ] = O(nZ(G, λ)−1). Since
Z(G, λ) ≥ nλ, we have E[T ] = O(1). ◀

3 Applications to Polymer Models

In this section, we show how to use our algorithm for sampling rooted vertex-labeled graphlets
from Section 2 to sample from subset polymer models and prove Theorem 4.

Consider a subset polymer model on an n-vertex graph G = (V, E); see Section 1.2 for
the definition. Recall that we use Cv for the set of all polymers containing vertex v ∈ V , and
let γ∅ denote the empty polymer. Define the distribution νv on Cv ∪ {γ∅} by

νv(γ) = wγ∑
γ̂∈Cv∪{γ∅} wγ̂

,

where we assign wγ∅ = 1. The following Markov chain on Ω(C), introduced in [16], has
stationary distribution µ and mixes rapidly in O(n log n) steps under the polymer mixing
condition (6).

Polymer dynamics. Given a configuration Xt ∈ Ω(C), form Xt+1 as follows:
1. Pick v ∈ V uniformly at random and let Sv = {γ ∈ Xt : v ∈ γ} (note that Sv is either

empty or contains 1 polymer).
2. With probability 1/2, let Xt+1 = Xt \ Sv.
3. With probability 1/2 (exclusively of step 2), sample γ from νv. Let Xt+1 = Xt ∪ {γ} if

Xt ∪ {γ} ∈ Ω(C) and let Xt+1 = Xt otherwise.

To implement a single update step, one must sample from νv in Step 3. To do so efficiently,
in [16] the much stricter polymer sampling condition (7) was required. Here we give a fast
perfect sampler for νv under a much weaker condition.

▶ Theorem 10. Consider a subset polymer model on a family of n-vertex graphs of maximum
degree ∆ ≥ 3 with computationally feasible weights that satisfy wγ ≤ λ|γ| for some λ <

λ∗(∆, q). There is a randomized algorithm to sample perfectly from νv for any v ∈ V with
expected running time bounded by a function of λ, ∆, and q.

Proof. This follows from Theorem 8. ◀

Using this theorem and the fast mixing result for the polymer dynamics of [16], one
can approximately sample from µ whenever both the polymer mixing condition (6) and the
assumptions of Theorem 10 hold. We further improve this by giving a perfect sampling
algorithm that works whenever a new condition (4) is satisfied (our algorithm also requires
the assumptions in Theorem 10). In all known examples, condition (4) is more permissive
than the polymer mixing condition (6) from [16].

3.1 Perfect Sampling for polymer systems: Proof of Theorem 4
As mentioned, the polymer dynamics from [16] is not a perfect sampler. We propose here
a different algorithm to output a perfect sample from µ. Our algorithm uses the coupling
from the past method [44] and the notion of bounding Markov chains [33, 30] to efficiently
implement it.
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We proceed with the proof of Theorem 4. We start with the description of a grand
coupling for the polymer dynamics, which is then used to implement a coupling from the past
algorithm. For an n-vertex graph G = (V, E), let {XΓ

t } denote an instance of the polymer
dynamics started from the polymer configuration Γ ∈ Ω(C). For all Γ ∈ Ω(C), the chains
{XΓ

t } are coupled by choosing the same uniform random random vertex v ∈ V , the same
polymer γ sampled from νv, and the same uniform random number in [0, 1] to decide whether
to remove Sv (Step 2) or to add γ (Step 3). A coupling from the past algorithm will find
a time −T such the grand coupling started from all possible states at time −T coalesces
to a single state by time 0. This guarantees that the output of the algorithm, that is the
state at time 0, has distribution µ (see Theorem 1 from [44]). Such a T can be found with a
binary search procedure. Unfortunately, implementing the coupling from the past algorithm
in this manner for the polymer dynamics Markov chain is infeasible in our setting, since it
requires simulating an exponential number of copies of the polymer dynamics, one from each
Γ ∈ Ω(C).

To work around this, we consider a bounding Markov chain for the polymer dynamics
rather than the polymer dynamics chain itself. Bounding Markov chains were pioneered
in [33, 30] as a method for efficiently implementing coupling from the past. The bounding
chain for the polymer dynamics has state space Ω(C) × 2C and will be denoted by {Bt, Dt},
where Bt ∈ Ω(C) and Dt ⊆ C are sets of polymers. The chain will maintain throughout that
all polymers in Bt are compatible and that every polymer in Bt is compatible with every
polymer in Dt. The polymers in Dt do not need to be compatible with each other. A step of
the bounding Markov chain is defined next.

Polymer Dynamics Bounding Chain. Given {Bt, Dt}, the chain generates {Bt+1, Dt+1}
by:
1. Uniformly at random, select v ∈ V .
2. With probability 1/2, remove all polymers containing v by setting Bt+1 = Bt \ Cv and

Dt+1 = Dt \ Cv.
3. With the remaining probability 1/2, draw a sample γ according to νv and:

a. If γ is compatible with Bt and γ is compatible with Dt \ {γ}, let Bt+1 = Bt ∪ {γ} and
let Dt+1 = Dt \ {γ}.

b. Else if γ is compatible with Bt but γ is not compatible with Dt, let Bt+1 = Bt and let
Dt+1 = Dt ∪ {γ}.

c. If γ is incompatible with Bt, do nothing: Bt+1 = Bt and Dt+1 = Dt.
Observe that polymers are only added to Bt if they are compatible with all other polymers
in Bt; hence, if B0 is a valid polymer configuration, so is Bt for all t ≥ 0.

To implement a step of the polymer dynamics bounding chain it suffices to pick a vertex
v ∈ V uniformly at random, a uniform random number in [0, 1], and a polymer γ from νv,
just like for the polymer dynamics. Hence, we can couple the evolution of {Bt, Dt} with the
grand coupling of the polymer dynamics described earlier. If we set B0 = ∅ and D0 = C, it
can be checked that for all Γ ∈ Ω(C) and all t ≥ 0 :

Bt ⊆ XΓ
t ⊆ Bt ∪ Dt.

Indeed, this holds initially for t = 0, and the grand coupling ensures that whenever a polymer
is removed from XΓ

t it is also removed from Bt, and whenever a polymer is added to XΓ
t

it is also added to Bt or Dt. Consequently, {Bt, Dt} is a bounding chain for the polymer
dynamics. In particular, the first time Bt = Bt ∪ Dt, all instances XΓ

t have necessarily
coalesced to the same configuration. This bounding chain allows us to implement the coupling
from the past algorithm efficiently, as follows.
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Coupling from the Past. Set k = 1.
(A) For t = −2k, −2k + 1, . . . , −2k−1 generate ρt = (vt, γt, rt) by choosing vt ∈ V uniformly

at random, rt ∈ [0, 1] uniformly at random, and by sampling γt ∈ Cvt
from νvt

.
(B) Set B−2k = ∅ and D−2k = C.
(C) Simulate the polymer dynamics bounding chain from time −2k to time 0 using

ρ−2k , . . . , ρ−1.
(D) If B0 = B0 ∪ D0, then output B0; otherwise set k → k + 1 and repeat the process from

Step (A).

This implementation of the coupling from the past algorithm provides a perfect sample
from µ; see [44]. It remains for us to show that it can be efficiently implemented. For this,
we show first that the expected number of steps of the polymer dynamics bounding chain
throughout the execution of the algorithm is O(n log n). Afterwards, we will show how to
implement steps so that they can be executed in amortized constant expected time.

▶ Lemma 11. Suppose the subset polymer model satisfies condition (4). Then, the expected
number of steps of the polymer dynamics bounding chain in the coupling from past algorithm
is O(n log n).

Proof. See the full version [6], where a potential ϕt describing the size of Dt is introduced
and shown to decrease quickly. ◀

It remains to consider how to efficiently implement the steps of the polymer dynamics
bounding chain. This is subtle because Dt may initially contain an exponentially large
number of polymers, and care is thus needed in how Dt is represented and stored. The
following lemma says we can represent and update Bt and Dt efficiently.

▶ Lemma 12. There exists a compact representation of Bt and Dt that uses O(n + t) space
in expectation. Using this representation, each iteration of the Polymer Dynamics Bounding
Chain can be executed in amortized constant expected time.

Proof. See the full version [6]. ◀
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1 Introduction

High dimensional expansion implies amplified local testability

The aim of this work is to show that codes arising from high dimensional expanding set
systems have a strong notion of local testability, which we call amplified locally testability
(see exact definition below). Specifically, we define the notion of High Dimensional Expanding
System (HDE-System) that is a two layer expanding set system that generalizes two layer
set systems arising from high dimensional expanders. Using this new concept, we show that
codes whose constraints form an HDE-System are amplified locally testable.

Testability of well studied codes via high dimensional expansion

We further show that most well studied locally testable codes such as Reed-Muller codes and
more generally affine-invariant codes are, in fact, HDE-System codes. Hence, their (amplified)
local testability could be re-inferred using our current work; and could be attributed to the
high dimensional expansion phenomenon. Specifically, we give a high dimension expansion
based proof to the amplified local testability of single orbit affine invariant codes, that
strengthen the well known result of Kaufman and Sudan [10].
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Amplified local testability

In our work, we study a strong notion of local testability for a family of locally testable codes
and show that this strong testing property is holds for HDE-System codes.

In order to better explain the notion of amplified local testability, we recall the following
formulation of locally testable codes:

▶ Definition 1 (Locally testable code). Given a linear code C ⊆ FV
p defined by a set EC of

k-query tests (i.e., tests that query k-bits of the codeword), define rej : FV
p → [0, 1] where

rej(c) is the fraction of k-query tests that c fails (by definition, c ∈ C if and only if rej(c) = 0).
We refer to querying an equation in EC as the basic test of the code.

Let C be a sequence of codes such that there is k = k(C) such that every C ∈ C is defined
by a set EC of k-query tests. We say that a family of linear codes C is locally testable if
there is a constant rC > 0 such that for every C ∈ C the following robustness property holds:
For every c ∈ FV

p ,

rej(c) ≥ rC min
c′∈C

∥c − c′∥,

where ∥c − c′∥ is the fraction of the bits in which c and c′ differ.

Note that in the above definition the number of bits queried in the basic test for a code
C ∈ C is constant (independent of C) and thus one does not care if rC depends on k. For
instance in the recent celebrated work of Dinur at el. [4], the basic test queries k bits, and
rC is of the order of 1√

k
(see [4, Theorem 4.5]).

However, a sequence of locally testable codes is usually a part of a larger family of codes
where k does vary. The motivating example is (binary) Reed-Muller codes RM(d, n), where
d is the degree of the polynomial and n is the number of variables. When fixing d and
considering the sequence of codes where n tends to infinity, it is a classical result that this
sequence is a locally testable code with the number of bits queried in the basic test is k = 2d

(see [1]). If we consider the family of codes RM(d, n) where d also varies (and n is large
enough with respect to d), we get a larger family of codes in which k(C) is no longer constant.
For this example of binary Reed-Muller codes, Bhattacharyya at el. [2] proved a striking
result of optimal testing for binary Reed-Muller codes:

▶ Theorem 2 ([2, Theorem 1]). Let

C = {RM(d, n) : d ∈ N, d ≥ 2, n ∈ N sufficiently large with respect to d}

be the family of all binary Reed-Muller codes. There is a constant rRM > 0 such that for
every C = RM(d, n) ∈ C with k(C) = 2d, it holds for every c ∈ FFn

2
2 , that

rej(c) ≥ k(C)rRM min{min
c′∈C

∥c − c′∥,
1

k(C)}.

In other words, [2] show that the family of all binary Reed-Muller codes is locally testable
even when changing the degree! This Theorem can be interpreted as follows: As noted above,
for every RM(d, n) ∈ C, k(RM(d, n)) = 2d. Thus the above theorem states that for every
c ∈ FFn

2
2 , if minc′∈C∥c − c′∥≤ 1

2d , then

rej(c) ≥ 2drRM min
c′∈C

∥c − c′∥

and if minc′∈C∥c − c′∥≥ 1
2d , then

rej(c) ≥ rRM ≥ rRM min
c′∈C

∥c − c′∥.
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Motivated by the above result, we define amplified local testability as a relaxation of
optimal testability:

▶ Definition 3 (Amplified locally testable codes). Let C be a family of codes such that every
C ∈ C is defined by a set EC of k(C)-query (basic) tests. We say that a family of linear codes
C is amplified locally testable if there are constants tC ≥ 1 and rC > 0 such that for every
C ∈ C the following robustness property holds: For every c ∈ FV

p ,

rej(c) ≥ k(C)rC min
{

min
c′∈C

∥c − c′∥,
1

(k(C))tC

}
.

▶ Remark 4 (Role of tC). The best we can hope for amplified local testing is tC = 1. If this
happens, then the family has optimal local testability as in the result of [2]. Our methods
below do not give optimal local testability, but only amplified local testability with tC = 3.

▶ Remark 5. A similar relaxation of optimal testability was studied for lifted codes by
Haramaty, Ron-Zewi and Sudan in [6].

In this work we show that a code which can be described via HDE-System, not only we
can infer local testability for it, but rather we can infer amplified local testability for it. As
already noted above, this is not the case of the the analysis of the family of codes of [4]: In
[4] the basic test samples k-bits and rC (in the notation of Definition 1 above) behaves like

1√
k

and thus decreases as k increases.
By applying our machinery to single orbit affine invariant codes, we get that these codes

are amplified locally testable, which is the strongest notion of testability known for these
codes, strengthening the well known work of Kaufman and Sudan [10].

Local testability of single orbit affine invariant codes via HDE-System

In the following we refer to single orbit affine invariant codes which were shown to be locally
testable by the Kaufman-Sudan work [10]. These codes contain the well known Reed-Muller
codes. We show that they are HDE-System codes, so their local testability is implied by
our current work. Kaufman and Sudan have shown that single orbit affine invariant codes
which are characterized by k-weight constraints that form a single orbit are locally testable.
We will show that the Kaufman-Sudan requirement allows to show that single orbit affine
invariant codes are modelled over HDE-System and thus are amplified locally testable.

▶ Theorem 6 (Testability of single orbit affine invariant codes – informal, for formal, see
the related full version of this paper). Let Caffine-inv,p be the family of all single orbit affine
invariant codes C ⊆ FK(C)n(C)

p with

|K(C)|n(C)≥ 211p2(k(C))4,

where k(C) is the size of the support of the constraint defining C. Then the family of all
these codes is amplified locally testable. Explicitly, for every C ∈ Caffine-inv,p and every
c ∈ FK(C)n(C)

p it holds that

rej(c) ≥ k(C) 1
215p4 min

{
min
c′∈C

∥c − c′∥,
1

k(C)3

}
.

We compare this result to the (non-amplified) local testing for affine invariant codes of
Kaufman and Sudan [10, Theorem 2.9] who showed the following:

APPROX/RANDOM 2022
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▶ Theorem 7 ([10, Theorem 2.9]). For every C ∈ Caffine-inv,p it holds that

rej(c) ≥ 1
2 min

{
min
c′∈C

∥c − c′∥,
1

k(C)2

}
.

Our Theorem and [10, Theorem 2.9] both give a rejection of Ω( 1
k(C)2 ) when minc′∈C∥c−c′∥

is large. However, when minc′∈C∥c − c′∥<< 1
k(C)3 , and k(C) is large, our result gives a much

better rejection rate.

Local testability via unique neighbor expansion

We show that λ-expanding HDE-System has some form of unique neighbor expansion property
associated with it. We also show that if the HDE-system has a strong enough unique neighbor
expansion property, then a linear code defined based on this system is amplified locally
testable. We prove that this is the case for affine-invariant codes with the single orbit property.
Thus, HDE-system provides a mechanism to get amplified local testability of codes.

2 Comparison to prior works

We already mentioned the celebrated work of Dinur at el. [4] that uses ideas from high
dimensional expansion to construct locally testable codes with constant rate, distance and
locality. As noted above, our work is in a different direction and achieves different goals (we
do not achieve the result of [4], but do achieve amplified local testability).

Another work that seems superficially close to the methods of this paper is the recent
work of Dikstein at el. [3] that also relies on ideas from high dimensional expansion to deduce
local testability. The reader should note that there are major difference between the works:

Our work has the benefit of deducing not only local testability, but rather amplified local
testability which was not achieved in [3].
As far as we know, the work of [3] does not apply to the family of affine invariant codes,
but only to a sub-family of lifted codes. Thus, in terms of generality, our work seems to
apply in a more general setting.
The work of Dikstein at el. [3] relies on the idea that “global” local testability can be
inferred from “local” local testability. I.e., in [3], the assumption is that the code contains
many small (i.e., “local”) locally testable codes and by expansion considerations, it follows
that the global code is locally testable. This is also the point of view of [7, 5, 8] that
considered what can be thought of as “co-cycle codes” and the global testability was
derived assuming they are composed of small local codes that are locally testable (aka
“the links” code). In contrast to [3] (and to [7, 5, 8]), the focus of this current work is
to get local testability of codes directly from high dimensional expansion phenomenon.
Deducing local testability of codes directly from high dimensional expansion (without
relying on any local code that is locally testable) is new and is achieved here for the first
time.

It is also beneficial to compare the results of this paper to previous results regarding
single orbit affine invariant codes. In [10, Theorem 2.9], it was shown that single orbit affine
invariant codes are locally testable. Using our new machinery, we improve on this result,
showing the the family of all single orbit affine invariant codes has amplified local testability.
As noted above, a stronger result was known for Reed-Muller codes (which is a sub-family
of the family of affine invariant codes), but, prior to our work, no general treatment was
available to the entire family of single orbit affine invariant codes.
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3 High Dimensional Expanding System (HDE-System)

Our main definition towards defining high dimensional expander codes is called High-
Dimensional-Expanding-System or HDE-System for short.

We start by defining a (s, k, K)-Two layer system:

▶ Definition 8 ((s, k, K)-Two layer system). A two layer system X is a system X = (V, E, T )
of three sets:
1. A finite set V whose elements are called vertices.
2. A set E ⊆ 2V such that |τ |= k for every τ ∈ E and

⋃
τ∈E τ = V .

3. A set T ⊆ 2E such that |σ|= K for every σ ∈ T and
⋃

σ∈T σ = E.
4. By abuse of notation, we will denote v ∈ σ for v ∈ V, σ ∈ T if there is τ ∈ σ such that

v ∈ τ . Using this notation, for every σ ∈ T and every v ∈ σ,

2 ≤ |{τ ∈ σ : v ∈ τ}|≤ s.

Roughly speaking, HDE-System is a two layer system with good expansion properties.
In order to give the definition, we need to define several graphs associated with a two layer
system. We note that all the graphs defined below will be actually considered as weighted
graphs with a weight function induced by weights on T , but in the introduction we suppress
this fact in order to keep things simple.

▶ Definition 9 (The ground graph). For a two layer system X = (V, E, T ), the ground graph
of X is the graph whose vertices are V and edges are {{v, u} : ∃τ ∈ E, u, v ∈ τ}.

▶ Definition 10 (Link of a vertex). For a two layer system X = (V, E, T ) and v ∈ V , the
link of v is the graph whose vertex set is Ev = {τ ∈ E : v ∈ τ} and whose edge set is

Tv = {{τ, τ ′} : τ ̸= τ ′ and ∃σ ∈ T such that τ, τ ′ ∈ σ}.

▶ Definition 11 (The non-intersecting graph). For a two layer system X = (V, E, T ), the
non-intersecting graph of X is a graph whose vertex set is E and edge set is

{{τ, τ ′} : τ ∩ τ ′ = ∅ and ∃σ ∈ T, such that τ, τ ′ ∈ σ}.

This graph corresponds to the Non-Intersecting Walk, i.e., to the walk from a between elements
of E that do NOT intersect (as subsets of V ) via a T element that contains both of them.

An HDE-System is a two layer system X in which all these graphs are expanding. More
precisely, for 0 ≤ λ < 1, we call a (weighted) graph G a λ-expander if it is connected and
either the second largest eigenvalue of the is ≤ λ or (which is less restrictive) its (generalized)
Cheeger constant is ≥ 1 − λ (see related full version of this paper for exact definition).

▶ Definition 12 (High Dimensional Expanding System (HDE-System) – informal, for formal
see the related full version of this paper). For 0 ≤ λ < 1, a (weighted) two layer system
X = (V, E, T ) is called λ-expanding-HDE-System if the ground graph and the links of all the
vertices are λ-expanders and the non-intersecting graph is either totally disconnected (i.e., it
has no edges) or a λ-expander.

APPROX/RANDOM 2022
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High Dimensional expanders imply HDE-System

Part of our motivation for the Definition of HDE-systems is to mimic the definition of high
dimensional expanders based on simplicial complexes (called λ-local spectral expander – see
[9, Definitions 2,3]). The simplest example is when Y is a 2-dimensional simplicial complex.
In this case, we define a two layer system X = (V, E, T ) as follows: V is the vertex set of Y ,
E is the edge set of Y and T is the sets of triples of edges that form a triangle in Y . We note
that in this case the parameters of X are s = 2, k = 2, K = 3. Note that the ground graph is
the 1-skeleton of Y , the link of each vertex in X is the link in the simplicial complex and the
non-intersecting graph is totally disconnected (since every two edges that are in the same
triangle share a vertex). Thus, by definition if Y is a λ-local spectral expander, then the
1-skeleton of Y and all the links of Y are λ-expanders and it follows that X is λ-expanding.

Expanding HDE’s have unique neighbor expansion for small sets that are also locally
small

Our main motivation for the definition of HDE-System is the ability to deduce unique
neighbor expansion theorem from them, for “small” sets that are also “locally small”. This
unique neighbor expansion theorem that we state below will play a major role in proving
local testability based on HDE-System.

In order to state this Theorem, we will need the following definition:

▶ Definition 13 (δ-Locally-small set – informal, for formal see the related full version of this
paper). Let X = (V, E, T ) be a two layer system and let A ⊆ E be a non-empty set. For a
vertex v ∈ V , define Av = {τ ∈ A : v ∈ τ}. For a constant 0 ≤ δ < 1, a vertex v is called
δ-small if the size of Av in the link of v (when accounting for the weight function on the
link) is smaller than δ fraction of the size of Ev. Vertices that are not δ-small are called
δ-large. A set A ⊆ E is called δ-locally small, if the fraction of its mass that is distributed
on vertices that are δ-large is negligible with respect to the total mass of A.

Following we define a notion of unique neighbor expansion that applies for small sets that
are also δ-locally small.

▶ Definition 14 (Unique neighbor expansion property – informal, for formal see the related
full version of this paper). We say that A ⊂ E has a unique neighbor expansion into T if
there exists σ ∈ T that contains exactly one k-set from A. Let X = (V, E, T ) be a two layer
system and let A ⊆ E be a non-empty set. For constants ε0 > 0 , δ > 0, we say that X

has (δ, ε0)-unique neighbor expansion property if for every non-empty set A ⊆ E and every
ε < ε0 if A ε-small (i.e., its mass is at most a ε-fraction of the total mass of E) and δ-locally
small, then A has unique neighbor expansion into T .

▶ Theorem 15 (Main Theorem 1: Unique neighbor expansion property for HDE-System –
informal, for formal see the related full version of this paper). Given a λ-expanding HDE-System
X, with λ sufficiently small, there are δ > 0 and ε0 > 0 such that X has the (δ, ε0)-unique
neighbor expansion property. Moreover, if s = 2, then δ → 1 as λ → 0.

On the ability to get unique neighbor expansion from HDE-systems

The idea behind the proof of Main Theorem 1 is to use the expansion of the links in order to
derive unique neighbor expansion. The links are very good expanders so a set that is locally
small has the property that its local views in the links expand a lot. Each link induces by
its local view many “potential unique neighbors”. However, it could be that the local views
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of the links will interfere and the “potential unique neighbors” by the “links opinion” will
turn out to be non unique neighbors. Since the system is expanding the total interference
between links is small and thus the overall unique neighbor property is implied.

4 HDE-System Codes

Given a two layer system X = (V, E, T ) as above, we want to use it as a “foundation” and
for constructing a code. Such a construction is not unique and cannot be done for every X.
However, for a code that “could be constructed via X”, its testability could be inferred from
the expansion properties of X.

Before describing this construction, we need to establish some terminology and notation:
Let C ⊆ FV

p be a linear code (where V is a finite set) with a check matrix H.
We denote by E = E(H) the rows H and we refer to E as the constraints of the code (or
k-constraints if they all have a support of size k – see below). Thus, E are 1 × n vectors
and for c ∈ FV

p , c ∈ C if and only if for every e ∈ E , e · c = 0 (recall that e, c are indexed
by the elements in V , thus e · c =

∑
v e(v)c(v)).

For e ∈ E , we define the support of e as

supp(e) = {v ∈ V : e(v) ̸= 0}.

A linear dependency of E is a function ld : E → Fp such that for every c ∈ FV
p ,∑

e∈E ld(e)(e · c) = 0. In other words, if we think of the row vector ld = (ld(e))e∈E , then
ldH = 0. As above, the support of ld is the set

supp(ld) = {e ∈ E : ld(e) ̸= 0}.

▶ Example 16. Consider C ⊆ FV
2 , V = {v1, v2} given by the parity check matrix

H =

1 0
0 1
1 1

 .

If ei denotes the i-th row of H, then ld : {e1, e2, e3} → F2 defined by

ld(ei) = 1, ∀i = 1, 2, 3,

is a linear dependency. Indeed,

ld =
(
1 1 1

)
,

and one can verify that ldH = 0.

▶ Definition 17 (Code modelled over a two layer system). Let X = (V, E, T ) be a two layer
system. A code C is said to be modelled over X if the following holds:

There is a prime power p such that C ⊆ FV
p .

There is a check matrix H and E = E(H) such that

E = {supp(e) : e ∈ E},

and such that for every e1, e2 ∈ E, if e1 ̸= e2, then supp(e1) ̸= supp(e2). In other words,
there is a bijection Φ : E → E given by Φ(e) = supp(e). Note that under this assumption,
the size of the support of all the constraints is k (the constant of the system X) and we
refer to the elements of E as the k-constraints of the code, when there is no chance for
ambiguity.
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There is a set T of linear dependencies such that

T = {{supp(e) : e ∈ supp(ld)} : ld ∈ T }.

▶ Example 18. Let X = (V, E, T ) the following two layer system: V = {v1, v2, v3}, E =
{τi,j = {vi, vj} : 1 ≤ i < j ≤ 3} and T = {σ = {τi,j : 1 ≤ i < j ≤ 3}}. Then for every prime
power p, we can define a code C ⊆ FV

p modelled over X as follows: define the check matrix
of the code to be

H =

 1 p − 1 0
0 1 p − 1

p − 1 0 1

 .

One can see that for this matrix the support of the i-the row is {vi, vi+1 mod 3} ∈ E and
that no two rows have the same support. Further define a linear dependency ld : E → Fp to
be the constant function 1, thus one can verify that the support of ld is σ ∈ T and that this
is indeed a linear dependency.

Our motivation for considering codes modelled over two layer system is the following

▶ Theorem 19 (Main Theorem 2: Codes modelled over two layer systems with unique neighbor
property are amplified locally testable – informal, for formal see the related full version of this
paper). For every p prime, t′ ∈ N, t′ > 0, µ > 0 and δ > p−1

p , let C(δ, p, t′, µ) be the family
of p-ary codes (i.e., codes of the form C ⊆ FV (C)

p ) modelled over two layer systems such that

C(δ, p, t′, µ)

=
{

C : ∃ε0(C) > 0 such that C has the (δ, ε0(C))-unique neighbor property and ε0 ≥ µ

k(C)t′

}
.

Then the family C(δ, p, t′, µ) is amplified locally testable with tC = t′ + 1.

On the ability to get amplified local testability from unique neighbor expansion

We will explain how to get amplified local testability from unique neighbor expansion for
p = 2 (this is to avoid carrying p as a constant) and δ = 3

4 .
We assume we are in a situation that we have a code that is modelled over an HDE-system.

Thus, we know that each k-constraint of the code is participating in a linear dependency.
This means that on every dependency, if there is one violated constraint that touches it,
there must be another one that touches it.

We are given a vector c that falsifies |A| constraints from the code and we want to show
that such a vector is close to the code. We can try to correct it by flipping variables such
that this flipping reduces the number of violated constraints by a fixed proportion: Assume
that each bit is a member of N equations and we change the value of the bit if the number
of falsified equations containing it is more than 3

4 N . In this case, flipping the bit corrects
many equations (since all the equations that were false are now true and vice-versa): i.e.,
flipping the bit corrects at least 1

2 N equations. Let us compute what is the maximal number
of steps for such a correcting procedure to stop: we assumed that there were the corrupted
code word had |A| falsified equations, i.e., rej(c) = |A|

|E| . Thus, the number of bits flipping in
the correction procedure is at most |A|

1
2 N

= 2|A|
N . and in the end of this procedure, each vertex

is 3
4 -locally small.
Assume the HDE-System on which the code is modelled has (δ, ε0)-unique neighbor

expansion and that |A|
|E| < ε0. The unique neighbor expansion implies that there are linear
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dependencies that “sees” only one violating constraint. However, as we said, this is not
possible. So when we arrived at a situation where no more flipping is possible, we, in fact,
arrived at a codeword that is close to our initial vector. Explicitly, the fraction of flipped
bits is less or equal to

2|A|
N

|V | .
Note that if |V | denotes the number of bits, then the number of equations is |E|= |V |N

k

(each equation contains k-bits and each bit is a member of N equations). It follows that the
number of flipped bits is less or equal to

2|A|
N

|V |
=

2|A|
N

|E|
|E|
|V |

= 2|E|
N |V |

|A|
|E|

= 2
k

rej(c)

and thus

rej(c) ≥ k
1
2 min

c′∈C
∥c − c′∥

as needed.

▶ Definition 20 (HDE-System Code). We call a code C as above a HDE-System-code if it
is modelled over a λ-expanding HDE-System.

Codes that give rise to HDE-System with s = 2 are amplified locally testable

By Main Theorem 2, the family Cδ,p of codes C ⊆ FV
p modelled a two layer systems with

a (δ, ε0(C))-unique neighbor property are locally testable given that δ > p−1
p . We have

furthered showed (see Main Theorem 1 above) that given any δ < 1, there is λ sufficiently
small such that every λ-expanding HDE-System with s = 2 has the (δ, ε0)-unique neighbor
property (where ε0 depends on the parameters of the HDE-System). Thus, overall we get
that the family of all codes C ⊆ FV

p modelled over λ-expanding HDE-System with s = 2
(and λ sufficiently small) is amplified locally testable.

▶ Corollary 21 (Codes modelled over expanding-HDE-System with s = 2 are amplified locally
testable – informal, for formal see the related full version of this paper). The family of all codes
C ⊆ FV

p of k(C)-constraints modelled over expanding HDE systems with s = 2 is amplified
locally testable. Moreover, under some mild assumptions (passing to a large sub-family)
tC = 3 where tC is as in Definition 3.

Above, we stated Theorem 6 regarding amplified local testability of single orbit affine
invariant codes. This Theorem is deduced from the above Corollary, because we show that
single orbit affine invariant codes are modelled over expanding HDE systems with s = 2.

Local testability when s > 2

The main focus of this work is proving amplified local testability for codes modelled over
HDE-systems with s = 2 as all our examples satisfy the s = 2 assumption (Reed-Muller codes
and single orbit affine invariant codes satisfy s = 2). We further have a more general treatment
for codes modelled over HDE-system with general s ≥ 3 under some extra-assumptions
(although we currently do not have examples for such codes). Roughly speaking, for the
case of s ≥ 3 we need the extra assumption that the code is composed of local small codes
that are locally testable. The difficulty in the case where s ≥ 3 is that the bit flipping
argument we described above can only correct the code to be p−1

p -locally small, while “The
unique neighbor Theorem” says that we can deduce the (δ, ε0)-unique neighbor property from
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expansion given that δ < 1
s−1 . Thus, in the case where s ≥ 3, we may not be able correct a

corrupted codeword by bit flipping to a setting in which we can apply our unique neighbor
argument. This difficulty is dealt by adding the assumption of “local” local testability that
grantees that correcting by bit flipping converges to a word that is δ-locally small (and thus
we can use our previous machinery). This new method requires some additional definitions
and we refer the reader to the related full version of this paper for further details.

Distance of HDE codes

An additional result is that for codes modelled over HDE-systems, the distance of the code
can be bounded in terms of the expansion of the HDE system.
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We prove that for every 3-player (3-prover) game G with value less than one, whose query distribution
has the support S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of Hamming weight one vectors, the value of the n-
fold parallel repetition G⊗n decays polynomially fast to zero; that is, there is a constant c = c(G) > 0
such that the value of the game G⊗n is at most n−c.
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is the missing piece that implies a similar bound for a much more general class of multiplayer games:
For every 3-player game G over binary questions and arbitrary answer lengths, with value less than
1, there is a constant c = c(G) > 0 such that the value of the game G⊗n is at most n−c.

Our proof technique is new and requires many new ideas. For example, we make use of the
Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not
been explored in this context prior to our work.
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6:2 Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

1 Introduction

Our main object of study is multiplayer (multiprover) games. A k-player game G consists of k

players who are playing against a referee. The game begins by the referee sampling a k-tuple
of questions (x1, . . . , xk) from some global distribution Q. The referee then gives the question
xj to the jth player, for each j ∈ [k], based on which they give back an answer aj . Finally,
the referee evaluates a predicate V ((x1, . . . , xk), (a1, . . . , ak)) and says that the players win
if and only if the predicate evaluates to true. The value val(G) of the game is defined to be
the maximum winning probability for the players. Note that the probability here is over the
randomness used by the referee to sample (x1, . . . , xk) ∼ Q, and the maximum is over the
strategies used by the players.

Given a game G with value val(G) < 1, it is natural to consider the parallel repetition
of the game G, defined as follows: In the n-fold repetition G⊗n of the game G, the referee
independently samples questions for n copies of the game G; that is, the referee samples
(x1

i , . . . , xk
i ) ∼ Q independently for i ∈ [n]. Then, the referee simultaneously gives questions

xj
1, . . . , xj

n to the jth player, for each j ∈ [k], who then gives back answers aj
1, . . . , aj

n. The
players are said to win the game if for each i ∈ [n], the predicate V ((x1

i , . . . , xk
i ), (a1

i , . . . , ak
i ))

evaluates to true.
With the above definition of the n-fold repeated game G⊗n, it is interesting to study

the behavior of val(G⊗n) with respect to n, and the initial parameters of the game G [14].
Observe that val(G⊗n) ≥ val(G)n, since any strategy that achieves value val(G) in the game
G, when repeated independently for all copies i ∈ [n], achieves the value val(G)n in the game
G⊗n. While one would expect such an inequality to be tight, this is far from true; there are
games such that val(G⊗n) is exponentially larger (with respect to n) compared to val(G)n.
The crucial reason why this can happen is that in the game G⊗n the players are allowed to
correlate their answers among different copies i ∈ [n] of the game. That is, it is not necessary
(and not optimal) for every player’s answer for the ith copy of the game to depend only on
the ith question they receive.

Nevertheless, Raz [30] proved that for any 2-player game G with val(G) < 1, it holds that
val(G⊗n) = 2−Ω(n). This, and related techniques and results, turned out to be sufficient for
a large number of applications: in the theory of interactive proofs [5], PCPs and hardness
of approximation [4, 11, 18], geometry of foams [12, 23, 1], quantum information [8], and
communication complexity [27, 2, 7]. The reader is referred to this survey [31] for more details.
There have been many subsequent improvements that improve the constants in the bounds,
and even get better bounds based on the value val(G) of the initial game [20, 29, 3, 32, 10, 6].

The case of 2-player games, hence, is fairly well-understood with regards to the operation
of parallel repetition. On the other hand, despite much effort, the general question of parallel
repetition for multiplayer games remains wide open. The only general bound, by [33], that
applies to all k-player games, says that if val(G) < 1, then val(G⊗n) ≤ 1

α(n) , where α(n) is a
function which grows like the (extremely slowly growing) inverse Ackermann function. The
weak bounds here result from a black-box use of the Density Hales-Jewett Theorem [15, 28]
from extremal combinatorics.

While there are some known potential applications of bounds on parallel repetition of
multiplayer games, for example, [24] show a connection between parallel repetition and
super-linear lower bounds for non-uniform Turing machines, we believe that the notion of
parallel repetition is so basic that it deserves attention in its own right. As mentioned by [9],
there are many problems in complexity theory that are inherently high dimensional, and
which share this sudden difficulty of being tractable beyond dimension two. For example,
whereas direct sum and direct product theorems are known for two-party communication
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complexity, no such results are known for multiparty communication complexity in the
number-on-forehead model (which is deeply related to proving new lower bounds in circuit
complexity), for seemingly similar reasons to why there has not been much progress on
multiplayer parallel repetition.

Recent work, however, has made some progress on proving parallel repetition bounds for
some special classes of multiplayer games:
1. Connected Games: Dinur, Harsha, Venkat and Yuen [9] consider games which satisfy

a certain connectedness property and show that the value of any such game satisfies an
exponential decay bound under parallel repetition: if val(G) < 1 then val(G⊗n) = 2−Ω(n).
A k-player game G is said to have this connectedness property if the graph HG defined as
follows is connected: The vertices of the graph are all the possible k-tuples of questions
to the players (which are asked with non-zero probability), and there is an edge between
two such k-tuples if they differ in the question to exactly one of the k players.
The proof for these games uses information theoretic techniques, and builds on the works
on 2-player games by [30, 20].

2. The GHZ Games: [21, 16] show that any game G over the set of questions{
(x, y, z) ∈ {0, 1}3 : x + y + z = 0 (mod 2)

}
satisfies a polynomial bound on the value of parallel repetition: if val(G) < 1 then
val(G⊗n) = n−Ω(1). For such games, all vertices in the graph HG (as defined above in
point 1) are isolated, and the techniques of [9] fail to be applicable.
The known proofs for this case use Fourier analytic techniques that crucially rely on the
fact that the inputs to the players define a linear subspace of F3

2.
3. A recent work [17] considers the problem of parallel repetition for 3-player games in which

each player is asked a binary question. They do a case analysis of all such games and
divide the general problem into the following cases:
a. Connected games or games that are essentially 2-player games: An exponential decay

bound is known [30, 9].
b. Games over the question set of the GHZ game (see point 2): A polynomial decay

bound is known.
c. Games over the question set

{
(x, y, z) ∈ {0, 1}3 : x + y + z ̸= 2

}
: They show that such

games fall into a class of games which they call playerwise connected games, a
generalization of the class of connected games. Informally, a game G is said to be
playerwise connected if the projection of the graph HG onto each of the k-players is
connected. They show that any playerwise connected game satisfies a polynomial
decay bound in the value of parallel repetition: if val(G) < 1 then val(G⊗n) = n−Ω(1).

d. Games over the question set
{

(x, y, z) ∈ {0, 1}3 : z = xy
}

: They call this the four-point
AND distribution, and show that any such game satisfies a polynomial bound in the
value of parallel repetition.

e. Games over the set of questions S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of Hamming weight
one: They do not prove a general bound for games in this class, but rather only for
games where the answers given by each of the three players is also binary. Under this
extra assumption, they are in fact able to prove an exponential decay bound under
parallel repetition.
A very interesting game which they consider is the anti-correlation game defined as
follows: The referee samples the questions (x1, x2, x3) ∈ S uniformly at random, and
the two players who receive the input 0 must produce different outputs in {0, 1}. This
game has the special property that while its non-signalling value is less than 1, the
non-signalling value does not decrease at all under parallel repetition [22].
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The main topic of interest of the current paper are games described above in point 3e,
that is, all games over the question set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The work [17] shows
that any bounds for a special subclass of such games qualitatively translate to the same
bounds for all games in this class. In particular, polynomial decay bounds for the value of
parallel repetition for the following subclass of games implies polynomial decay bounds for
all games over the question set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}:

▶ Definition 1. Let k ∈ N, and let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We define a 3-player
game Gk on 3 players Alice, Bob and Charlie as follows:
1. The referee samples (x, y, z) ∈ S uniformly at random, and gives x, y, z to the three players

respectively.
2. The players answer a ∈ {0, 1}k

, b ∈ {0, 1}k
, c ∈ [k] respectively.

3. The winning predicate is defined as:

Vk((x, y, z), (a, b, c)) =


bc = 0, if (x, y, z) = (1, 0, 0)
ac = 0, if (x, y, z) = (0, 1, 0)
∀i ∈ [k], ai + bi ≥ 1, if (x, y, z) = (0, 0, 1)

.

In other words, two randomly chosen players receive 0 as input and the third player gets a 1
as input. The predicate only depends on the two players who get 0 as input, and only those
two players play the game. If Charlie and Alice (or Bob) are playing, Charlie must point to
an index where Alice (or Bob) outputs 0. On the other hand, if Alice and Bob are playing,
they must each output k-bit strings such that the bit-wise-OR of the two strings is the all 1s
string.

Our main result is a polynomial decay bound on the parallel repetition for all games in
the above subclass:

▶ Theorem 2. There exists an absolute constant c > 0 such that the following holds: For
every k ∈ N, and for every sufficiently large n ∈ N, it holds that val(G⊗n

k ) ≤ n−c, where the
game Gk is as defined in Definition 1.

Based on the previous discussion, combined with the works [30, 9, 21, 16, 17], our theorem
implies the following:

▶ Theorem 3. Let G be any 3-player game over binary questions, and arbitrary finite length
answers, such that val(G) < 1. Then, there exists a constant c = c(G) > 0, such that for
every n ∈ N, it holds that val(G⊗n

k ) ≤ n−c.

We remark that Hazla, Holenstein and Rao [19] consider games over the same question
set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and show barriers for proving parallel repetition bounds
for such games using the forbidden subgraph method [13]. Our result builds new techniques
that do not fit into the above framework, and are able to bypass these barriers.

Next, in Section 1.1, we give an overview of the proof of Theorem 2. We note that our
proof introduces several new ideas, which we believe are very general and can possibly extend
to much larger classes of games. For example, in one of the steps, we use Fourier Analysis
over the boolean hypercube, and in particular the Level-k inequalities; to the best of our
knowledge, such use in the context of parallel repetition is new.
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1.1 Proof Overview
Fix some k ∈ N and consider the n-fold repeated game G⊗n

k (see Definition 1). We’ll use the
term coordinate to mean a tuple (i, j) with i ∈ [n] and j ∈ [k], that indexes an answer for
Alice or Bob. Recall that in each copy of the game Gk, only the two players who receive
input 0 affect the winning predicate, and we say that they are the ones who play.

The high-level intuition is as follows: In order to win, Alice and Bob cannot both answer
0 at the same coordinate. On the other hand, suppose that they indeed only answer 0 in two
fixed disjoint subsets of coordinates each of their own, then Charlie’s answer in each copy of
the game Gk actually reveals which player he is playing with, which is too much information
for Charlie to have.

We note, however, that this intuition is too simplistic and the actual proof is much more
complicated, because in each coordinate only two out of the 3 players play. Nevertheless,
our proof can be viewed as a rigorous execution of the intuition, by finding a large enough
product event E1 × E2 on Alice’s and Bob’s inputs in which the above presumption holds
true. More specifically, to prove by contradiction we assume that the winning probability is
at least n−c (where c > 0 is a small constant), and the proof is carried out in three steps:

Remove coordinates that Alice and Bob lose (Section 4)

We remove the coordinates where Alice and Bob both play and simultaneously output 0
with non-negligible (at least n−O(c)) probability, by fixing their inputs and outputs in these
coordinates. The fixing of outputs gives rise to the product event E1 × E2 on the remaining
coordinates. We need to ensure that the probability of both E2 and the winning event W

remain n−O(c), while the rounds of removal are few so that E1 is also not extremely small.
This is done by a potential function argument that tracks both P (E2|E1) and P (W |E1, E2),
while the latter has higher weight than the former in the potential function. The potential
function is non-decreasing, and increases by a non-negligible amount every time we exclude the
losing part by fixing, thus guaranteeing the above-mentioned requirements as the probabilities
cannot exceed 1.

We remark that proving a similar bound with only P (W |E1, E2) being n−O(c), and
P (E1, E2) being 2−nO(c) is not too hard. However for the latter part of our proof, we need
that P (E2|E1) is also at least n−O(c). Hence, when removing coordinates, we fix the inputs
and outputs in a very delicate manner, and analyze the evolution of potential function
accordingly.

Establish independence of Alice’s and Bob’s answers (Section 5)

Now that in each coordinate, Alice and Bob rarely both simultaneously output 0, we would
like to strengthen the claim so that in each coordinate either Alice or Bob answers 0 with
negligible probability. In other words, in each coordinate their answers are close to being
independent. For a fixed coordinate, we consider Alice’s output as a boolean function of
her input, and the average of her output given Bob’s input is exactly the sum of Fourier
coefficients in the subcube where Bob receives 1. If we take average over any large event
for Bob, then every Fourier coefficient, except the first one, will contribute negligibly to the
result, meaning Bob answering 0 is close to being independent of Alice’s answer.

This is not true, of course, unless Bob receives 1 with small enough probability. Fortunately
the first step does not depend on the query distribution, and therefore we can change the query
distribution at the very beginning, from uniform to the one where (0, 1, 0) has probability
close to (but still polynomially larger than) 1/n. It turns out that the change of distribution
does not affect the parallel repetition property. With the right distribution, we bound the
contributions of the Fourier coefficients as claimed above using Level-k inequalities.
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6:6 Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

Bound winning probability for Charlie (Section 6)

The previous steps indicate that Alice and Bob each owns a fixed set of coordinates where
they output 0 with non-negligible probabilities, and the two sets are disjoint. Now consider
an input (x, y, z). Among the copies of games where Charlie needs to answer (Charlie receives
0), let G1 (and G2) be the copies where Charlie’s answer points at a coordinate that Alice
(and Bob) owns. On the other hand, in each coordinate they do not own, Alice and Bob
output 0 with only negligible probability, so let B1 (and B2) be the copies where Alice’s (and
Bob’s) answer string contains 0 outside the coordinates they own. Note that B1 depends
only on x, B2 depends only on y, while G1 and G2 depend only on z.

In order to win, G1 ∪ B1 have to cover all the copies that Alice plays with Charlie, which
is the 1’s in y, and G2 ∪ B2 have to cover all the copies that Bob plays with Charlie, which
is the 1’s in x. But for a typical input (x, y, z), where both |x| and |z| are close to n/2, G1
and B1 intersect with the 1’s in y in proportion to their sizes. That means G1 has to cover
almost all the copies that Charlie plays, and thus G2 ∪ B2 is not large enough to cover the
1’s in x, as G1 and G2 are disjoint while B1 and B2 are negligibly small. This contradicts
the fact that the winning probability is high, even conditioned on E1 × E2.

2 Preliminaries

We use log to denote the logarithm under base 2, with the convention that log 0 = −∞. Let
N = {1, 2, . . .} be the set of natural numbers. For every n ∈ N, let [n] be the set {1, 2, . . . , n}.

For every x ∈ {0, 1}n, i ∈ [n] and S ⊆ [n], we use xi ∈ {0, 1} to denote the bit on index i,
and xS ∈ {0, 1}|S| to denote the substring of x on S. Let 1(x) ⊆ [n] be the set of indices
i where xi = 1, and let |x| = |1(x)| be the Hamming weight of x. We also define a partial
order on {0, 1}n such that x ≥ y if and only if xi = 1 whenever yi = 1.

For a random variable X, we use supp(X) to denote its support. We define a fixing of
the random variable X to be an event that assigns X to be some fixed value in supp(X). We
equate every subset E ⊆ supp(X) to an event on X. We use P (E) to denote the probability
of an event E under the distribution P .

▶ Lemma 4 (Chernoff Bounds, see [25]). Let X1, . . . , Xn ∈ {0, 1} be independent random
variables each with mean µ, and let X =

∑n
i=1 Xi. Then, for all δ ∈ (0, 1), it holds that

Pr[X ≤ (1 − δ)µn] ≤ e− δ2µn
2 , Pr[X ≥ (1 + δ)µn] ≤ e− δ2µn

3 .

▶ Lemma 5. Let P be a distribution and A, B be two events such that P (A ∧ B) > 0. Let X

be a random variable with finite support, and let X = {x : P (X = x|B) > 0}, and let x0 ∈ X
be a fixed element such that P (X = x0) ≥ δ.

For each x ∈ X , we define Φ(x) = log P (A|B, X = x) + 1
2 log P (B|X = x), and let Φ =

log P (A|B) + 1
2 log P (B) < 0. Then, for every 0 < ε < 1, it holds that either Φ(x0) ≥ Φ − ε,

or P
(
X ∈ X ∧ Φ(X) ≥ Φ + 1

8 δε
)

≥ 22Φ · 1
4 δ2ε.

Proof. The proof is deferred to the appendix. ◀

2.1 Fourier Analysis
For every x, y ∈ {0, 1}n, let x ·y be their inner product in Z. Given a function f : {0, 1}n → R,
let f̂ : {0, 1}n → R be its Fourier coefficients, defined as

f̂(u) = 1
2n

∑
x∈{0,1}n

(−1)x·uf(x).
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We will use the following equation on the sum of the Fourier coefficients in a subcube, which
follows from Plancherel’s theorem: For every y ∈ {0, 1}n, we have∑

u≤y

f̂(u) = 1
2n−|y|

∑
x·y=0

f(x).

We will also use the following version of the Level-k inequality, proved in the appendix:

▶ Lemma 6. Let f : {0, 1}n → {−1, 0, 1} be a function with 1
2n

∑
x |f(x)| = α. Then for

every k ∈ N,∑
|u|=k

|f̂(u)| ≤ (2en · max{1, ln(1/α)})k/2 · α.

2.2 Multi-player Games
The notations we use here follows mostly from [17].

▶ Definition 7 (Multiplayer Game). A k-player game G is a tuple G = (X , A, Q, V ), where
the question set X = X 1 × · · · × X k, and the answer set A = A1 × · · · × Ak are finite sets, Q

is a probability distribution over X , and V : X × A → {0, 1} is a predicate.

▶ Definition 8 (Game Value). Let G = (X , A, Q, V ) be a k-player game. The value val(G) of
the game G is defined as

val(G) = max
f1,...,fk

Pr
X∼Q

(
V (X, (f1(X1), . . . , fk(Xk))) = 1

)
,

where the maximum is over all sequence of functions
(
f j : X j → Aj

)
j∈[k], which we call

player strategies.

We note that the value of the game is unchanged even if we allow the player strategies to
be randomized, that is, we allow the strategies to depend on some additional shared and
private randomness.

▶ Definition 9 (Parallel Repetition of a game). Let G = (X , A, Q, V ) be a k-player game. We
define its n-fold repetition as G⊗n = (X ⊗n, A⊗n, P, V ⊗n). The sets X ⊗n and A⊗n are defined
to be the n-fold product of the sets X and A with themselves respectively. The distribution P

is the n-fold product of the distribution Q with itself, that is, P (X = x) =
∏n

i=1 Q(Xi = xi).
The predicate V ⊗n is defined as V ⊗n(x, a) =

∧n
i=1 V (xi, ai).

In this paper we mostly deal with 3-player games, and we use the notation G = (X ×
Y × Z, A × B × C, Q, V ). That is, we use X , Y, Z in places of X 1, X 2, X 3 and use A, B, C in
places of A1, A2, A3. We also refer to the three players as Alice, Bob and Charlie.

The proof of the following useful lemma is essentially the same as Lemma 3.14 in [17],
and is deferred to the appendix.

▶ Lemma 10. Let G1 = (X , A, Q1, V ) and G2 = (X , A, Q2, V ) be two multi-player games
where only the distributions are different. Let λ ∈ [0, 1] be such that for every x ∈ X ,
Q1(X = x) ≥ λQ2(X = x). Then for every n ∈ N, it holds that

val(G⊗n
1 ) ≤ e−λn/8 + val(G⊗⌊λn/2⌋

2 ).
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6:8 Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

3 Main Results

▶ Definition 11. Let U be the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
For every k ∈ N and every distribution Q over S, we define a 3-player game Gk(Q) =
(X × Y × Z, Ak × Bk × Ck, Q, Vk) with X = Y = Z = {0, 1} as follows:
(a) Ak = Bk = {0, 1}k and Ck = [k].
(b) For all (x, y, z) ∈ S and (a, b, c) ∈ Ak × Bk × Ck,

Vk((x, y, z), (a, b, c)) =


bc = 0, if (x, y, z) = (1, 0, 0)
ac = 0, if (x, y, z) = (0, 1, 0)
∀i ∈ [k], ai + bi ≥ 1, if (x, y, z) = (0, 0, 1)

▶ Theorem 12. For every k ∈ N, there exists Nk ∈ N such that for every n ∈ N, n ≥ Nk, it
holds that val(Gk(U)⊗n) ≤ n−1/2000.

Based on the results in [17, Section 8.2] and our discussions in the introduction, Theorem 12
implies the following bound on the parallel repetitions of 3-player games with binary inputs:

▶ Theorem 13. Let G = (X × Y × Z, A × B × C, Q, V ) be any 3-player game with X = Y =
Z = {0, 1}, and such that val(G) < 1. Then there exists a constant c = c(G) > 0 such that
for every n ∈ N, it holds that val(G⊗n) ≤ n−c.

The rest of our paper is devoted to proving Theorem 12.

3.1 Change the distribution

In order to prove Theorem 12, from now on we assume val(Gk(U)⊗n1) ≥ n
−1/2000
1 for some

large enough n1 ∈ N, and eventually derive a contradiction. The first thing to do is changing
the distribution so that Bob gets input 1 with small probability.

▶ Definition 14. Let n = ⌊n1/3⌋ and c = 1/1000. Let Q be the distribution over S such that
(0, 1, 0) has probability n−1+100c, while (1, 0, 0) and (0, 0, 1) both have probability 1

2 − 1
2 n−1+100c

each.

▷ Claim 15. val(Gk(Q)⊗n) ≥ n−c.

Proof. Let λ = 2/3, and thus we have 1/3 ≥ λQ((X, Y, Z) = (x, y, z)) for all (x, y, z) ∈ S.
Applying Lemma 10 on Gk(U) and Gk(Q) gives

val(Gk(Q)⊗⌊n1/3⌋) ≥ val(Gk(U)⊗n1) − e−λn1/8

≥ n
−c/2
1 − e−n/4 ≥ n−c. ◁

Let P be the distribution Q⊗n, and let (X, Y, Z) ∈ Sn be the random variables that
represent the inputs to the three players under distribution P . Let f, g : {0, 1}n → {0, 1}n×k

and h : {0, 1}n → [k]n be strategies that achieve the value val(Gk(Q)⊗n), and let W be the
event that (f, g, h) wins on the inputs (X, Y, Z), so that we have P (W ) ≥ n−c.
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4 Remove Coordinates with (0, 0) Answers

▶ Lemma 16. There exist S ⊆ [n], a fixing F of (XS , YS , ZS), and two events E1 ⊆
X ⊗n, E2 ⊆ Y⊗n for Alice and Bob respectively, such that the following holds:
(a) |S| ≤ n28c and P (E1|F ) ≥ e−n30c .
(b) P (E2|E1, F ) ≥ n−2c and P (W |E1, E2, F ) ≥ n−c.
(c) For every i /∈ S and j ∈ [k], it holds that

P ((Xi, Yi, Zi) = (0, 0, 1) ∧ fi,j(X) = 0 ∧ gi,j(Y ) = 0|E1, E2, F ) ≤ n−7c.

Proof. Initially let S = ∅ and E1 = X ⊗n, E2 = Y⊗n. We iterate the process described below
to update S, F, E1 and E2 until requirement (c) is met. During the process, we examine the
potential function

Φ(E1, E2, F ) = log P (W |E1, E2, F ) + 1
2 log P (E2|E1, F )

= log P (W, E2|E1, F ) − 1
2 log P (E2|E1, F ),

and ensure that the potential function Φ(E1, E2, F ) strictly increases for each iteration.
Notice that initially we have

Φ(E1, E2, F ) = log P (W ) ≥ −c log n.

And as long as Φ(E1, E2, F ) ≥ −c log n, requirement (b) is always satisfied.
1. Let i /∈ S, j ∈ [k] be a coordinate such that requirement (c) is violated, that is

P ((Xi, Yi, Zi) = (0, 0, 1) ∧ fi,j(X) = 0 ∧ gi,j(Y ) = 0|E1, E2, F ) > n−7c,

which, with the help of requirement (b), implies that

P ((Xi, Yi, Zi) = (0, 0, 1)|E1, F ) > n−9c, (1)

P (fi,j(X) = 0|E1, F, (Xi, Yi, Zi) = (0, 0, 1)) > n−9c, (2)

P (gi,j(Y ) = 0|E1, E2, F, (Xi, Yi, Zi) = (0, 0, 1), fi,j(X) = 0) > n−7c. (3)

Add i to the set S. The process stops if no such coordinate (i, j) exists.
2. Apply Lemma 5 on (Xi, Yi, Zi) over the distribution P conditioned on E1 ∧ F , with

ε = n−18c and δ = n−9c. Since P ((Xi, Yi, Zi) = (0, 0, 1)|E1, E2, F ) > 0, by (1) we have
either

Φ(E1, E2, F ∧ (Xi, Yi, Zi) = (0, 0, 1)) ≥ Φ(E1, E2, F ) − n−18c,

in which case we update F to F ∧ (Xi, Yi, Zi) = (0, 0, 1) and proceed to step 3; Or there
exists (x, y, z) ∈ {(1, 0, 0), (0, 1, 0)} such that P ((Xi, Yi, Zi) = (x, y, z)|E1, E2, F ) > 0,
and

Φ(E1, E2, F ∧ (Xi, Yi, Zi) = (x, y, z)) ≥ Φ(E1, E2, F ) + 1
8n−27c,

P ((Xi, Yi, Zi) = (x, y, z)|E1, F ) ≥ 22Φ(E1,E2,F ) · 1
8n−36c,

in which case we update F to F ∧ (Xi, Yi, Zi) = (x, y, z) and iterate back from step 1.
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3. Apply Lemma 5 on fi,j(X) over the distribution P conditioned on E1 ∧ F , with ε = n−8c

and δ = n−9c. Since P (fi,j(X) = 0|E1, E2, F ) > 0, by (2) we have either

Φ(E1 ∧ fi,j(X) = 0, E2, F ) ≥ Φ(E1, E2, F ) − n−8c,

in which case we update E1 to E1 ∧ fi,j(X) = 0 and proceed to step 4; Or we have
P (fi,j(X) = 1|E1, E2, F ) > 0, and

Φ(E1 ∧ fi,j(X) = 1, E2, F ) ≥ Φ(E1, E2, F ) + 1
8n−17c,

P (fi,j(X) = 1|E1, F ) ≥ 22Φ(E1,E2,F ) · 1
4n−26c,

in which case we update E1 to E1 ∧ fi,j(X) = 1 and iterate back from step 1.
4. Update E2 to E2 ∧ gi,j(Y ) = 1 and iterate back from step 1. Now that F implies

(Xi, Yi, Zi) = (0, 0, 1) and E1 implies fi,j(X) = 0, by the definition of the game (Defin-
ition 11) we know that W implies gi,j(Y ) = 1. Therefore, by (3), the increment of
potential function in this step is

Φ(E1, E2 ∧ gi,j(Y ) = 1, F ) − Φ(E1, E2, F )

= 1
2 log P (E2|E1, F ) − 1

2 log P (E2 ∧ gi,j(Y ) = 1|E1, F )

= − 1
2 log P (gi,j(Y ) = 1|E1, E2, F )

≥ 1
2P (gi,j(Y ) = 0|E1, E2, F )

≥ 1
2n−7c.

Depending on the choices, in each iteration the potential function increases by at least
either 1

8 n−27c, or 1
8 n−17c − n−18c, or 1

2 n−7c − n−8c − n−18c, which are all lower bounded by
1
8 n−27c. This means that the potential function is indeed strictly increasing in each iteration,
and thus requirement (b) is met. Since it always holds Φ(E1, E2, F ) ≤ 0, this also means that
the process will eventually stop, and the total number of iterations is at most 8n27c · c log n.
In other words, |S| ≤ 8n27c · c log n ≤ n28c.

Finally, in order to bound P (E1|F ), we prove in below that P (E1|F ) gets multiplied by
at least a factor of n−70c in each iteration. Since initially P (E1|F ) = 1, this implies that
eventually after at most n28c iterations, we have P (E1|F ) ≥ (n−70c)n28c ≥ e−n30c . In each
iteration, when F gets updated to F ∧ (Xi, Yi, Zi) = (x, y, z) for some (x, y, z) ∈ S, P (E1|F )
changes by a factor of

P (E1|F, (Xi, Yi, Zi) = (x, y, z))
P (E1|F ) ≥ P ((Xi, Yi, Zi) = (x, y, z)|E1, F )

≥ min
{

n−9c, 22Φ(E1,E2,F ) · 1
8n−36c

}
≥ 1

8n−38c.

The last line is because Φ(E1, E2, F ) ≥ −c log n. Furthermore, if step 3 is executed and E1
gets updated to E1 ∧ fi,j(X) = b for some b ∈ {0, 1}, P (E1|F ) further changes by a factor of

P (E1 ∧ fi,j(X) = b|F )
P (E1|F ) = P (fi,j(X) = b|E1, F )

≥ min
{

n−9c, 22Φ(E1,E2,F ) · 1
4n−26c

}
≥ 1

8n−30c.
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The last line is because at step 3, Φ(E1, E2, F ) ≥ −c log n − n−18c ≥ −2c log n. Note that
in step 4 only E2 changes and P (E1|F ) does not change. So overall, P (E1|F ) changes by a
factor of at least 1

8 n−38c · 1
8 n−30c ≥ n−70c. ◀

Notice that the fixing F is independent of the remaining inputs in [n] \ S. For the rest of
the paper, we change W to the event that (f, g, h) wins the copies of Gk(Q) in [n] \ S, and
change E1, E2, f, g, h to their relevant restrictions to the copies in [n] \ S, under the fixing F .
Since |S| ≤ n28c = o(n), by also changing c from 1

1000 to 1
1000 · log n

log(n−|S|) < 1
999 , we can safely

assume that S = ∅ and remove F from the probability conditions, while the distribution
Q remains the same and Lemma 16 still holds. This significantly simplifies the discussions
later on.

5 Almost Independence of Answers in each Coordinate

Let E1, E2 be specified as in the previous section. In this section, we prove the following
lemma:

▶ Lemma 17. For every i ∈ [n] and j ∈ [k], at least one of the following holds:

P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) ≤ n−3c, or P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) ≤ n−3c.

We prove the above lemma using Fourier analysis. Fix some i ∈ [n] and j ∈ [k]. Define
a : {0, 1}n → {−1, 0, 1} over the inputs of Alice as follows: For every x ∈ {0, 1}n,

a(x) =


0 if x /∈ E1,

−1 if x ∈ E1 and xi = 0 and fi,j(x) = 0,

1 otherwise,

and let b(x) = |a(x)|. Let α = 1
2n

∑
x b(x) = b̂(0n). In the appendix we show the following

lower bound on α, due to the specific distribution Q in Definition 14:

▶ Proposition 18. α ≥ e−n130c .

▶ Lemma 19. For every event E ⊆ Y⊗n on Y with P (E) > 0, we have

|E[a(X)|E] − â(0n)| ≤ 1
P (E) · n−1/3α.

Proof. Since P (Xi = 1|Yi = 0) = 1/2, we have

E[a(X)|E] =
∑
y∈E

E[a(X)|Y = y] · P (Y = y|E) =
∑
y∈E

1
2n−|y|

∑
x·y=0

a(x) · P (Y = y|E)

=
∑
y∈E

∑
u≤y

â(u) · P (Y = y|E) =
∑

u∈{0,1}n

â(u) · P (Y ≥ u|E).

Using Lemma 6 on a, with the fact that ln(1/α) ≤ n130c, we get

|E[a(X)|E] − â(0n)| ≤
∑

u ̸=0n

|â(u)| · P (Y ≥ u|E)

≤ 1
P (E)

∑
u̸=0n

|â(u)| · P (Y ≥ u)

≤ 1
P (E)

n∑
ℓ=1

(2en · max{1, ln(1/α)})ℓ/2 · α · (n−1+100c)ℓ

≤ 1
P (E) · n−1/3α. ◀
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With the exact same proof on b, we can also get

▶ Lemma 20. For every event E ⊆ Y⊗n on Y with P (E) > 0, we have

|P (E1|E) − α| =
∣∣∣E[b(X)|E] − b̂(0n)

∣∣∣ ≤ 1
P (E) · n−1/3α.

In particular, when E = Y⊗n we get P (E1) ≥ (1 − n−1/3)α.

▶ Corollary 21. For every event E ⊆ Y⊗n on Y with P (E|E1) > 0, we have∣∣∣∣E[a(X)|E1, E] − â(0n)
α

∣∣∣∣ ≤ 1
P (E|E1) · n−1/4.

Proof. Since a(x) ̸= 0 only when x ∈ E1, we have∣∣∣∣E[a(X)|E1, E] − â(0n)
α

∣∣∣∣ =
∣∣∣∣E[a(X)|E]

P (E1|E) − â(0n)
α

∣∣∣∣
≤
∣∣∣∣E[a(X)|E]

P (E1|E) − â(0n)
P (E1|E)

∣∣∣∣+
∣∣∣∣ â(0n)
P (E1|E) − â(0n)

α

∣∣∣∣
≤
∣∣∣∣E[a(X)|E]

P (E1|E) − â(0n)
P (E1|E)

∣∣∣∣+
∣∣∣∣ α

P (E1|E) − 1
∣∣∣∣ (|â(0n)| ≤ α)

≤ 2
P (E1 ∧ E) · n−1/3α (Lemmas 19 and 20)

= 1
P (E|E1) · n−1/3 · 2α

P (E1)

≤ 1
P (E|E1) · n−1/4. (Lemma 20) ◀

Proof for Lemma 17. Suppose that

P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) > n−3c.

Let E be the event E2 ∧ Yi = 0 ∧ gi,j(Y ) = 0. By argument (c) in Lemma 16, we have

P (Xi = 0 ∧ fi,j(X) = 0|E1, E) ≤ n−4c.

Therefore E[a(X)|E1, E] ≥ 1−2n−4c. Since P (E2|E1) ≥ n−2c and P (E|E1) = P (E|E1, E2) ·
P (E2|E1) ≥ n−5c, by two applications of Corollary 21 (one on the event E and one on the
event E2) we have

E[a(X)|E1, E2] ≥ E[a(X)|E1, E] − 1
P (E2|E1) · n−1/4 − 1

P (E|E1) · n−1/4

≥ 1 − 2n−4c − (n2c + n5c) · n−1/4

≥ 1 − 2n−3c.

This implies that P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) ≤ n−3c. ◀

6 Independence Implies Low Winning Probability

For every i ∈ [n], let

G1,i =
{

j ∈ [k]
∣∣∣ P (Xi = 0 ∧ fi,j(X) = 0|E1, E2) > n−3c

}
,

G2,i =
{

j ∈ [k]
∣∣∣ P (Yi = 0 ∧ gi,j(Y ) = 0|E1, E2) > n−3c

}
.
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Then Lemma 17 implies that G1,i ∩ G2,i = ∅. For each x, y ∈ {0, 1}n, let

B1(x) =
{

i ∈ [n] | xi = 0 ∧ ∃j /∈ G1,i, fi,j(x) = 0
}

,

B2(y) =
{

i ∈ [n] | yi = 0 ∧ ∃j /∈ G2,i, gi,j(y) = 0
}

.

And for each z ∈ {0, 1}n, let

G1(z) = {i ∈ [n]
∣∣∣ zi = 0 ∧ hi(z) ∈ G1,i},

G2(z) = {i ∈ [n]
∣∣∣ zi = 0 ∧ hi(z) ∈ G2,i}.

▶ Lemma 22. Suppose (f, g, h) wins on the inputs (x, y, z). Then at least one of the following
holds:
(a) |x| ≤ 2

5 n or |z| ≤ 2
5 n,

(b) |B1(x)| ≥ n1−c or |B2(y)| ≥ n1−c,
(c) |B1(x)| < n1−c and |B1(x) ∩ 1(y)| ≥ 4n−c · |y|,
(d) |G1(z)| < 1

4 n − n1−c and |G1(z) ∩ 1(y)| ≥ (1 − 4n−c) · |y|.

Proof. Since G1,i ∩ G2,i = ∅ for every i, we know that G1(z) ∩ G2(z) = ∅ for every z. On
the other hand, by the definition of the game (Definition 11), in order to win it must hold

1(y) ⊆ G1(z) ∪ B1(x) (since xi,hi(z) = 0 when xi = zi = 0)
1(x) ⊆ G2(z) ∪ B2(y) (since yi,hi(z) = 0 when yi = zi = 0)

Now suppose none of the items (a) to (d) holds. Since

|y| ≤ |G1(z) ∩ 1(y)| + |B1(x) ∩ 1(y)|,

it implies that |G1(z)| ≥ 1
4 n − n1−c. Therefore we have

|x| ≤ |G2(z)| + |B2(y)| ≤ n − |z| − |G1(z)| + |B2(y)| ≤ 7
20n + 2n1−c,

which contradicts the fact that |x| ≥ 2
5 n. ◀

▶ Proposition 23. P
(∣∣|X| − n/2

∣∣ ≥ n/10
)

≤ e−n/200. The same holds when replacing X

with Z.

Proof. This is a direct application of the Chernoff Bound (Lemma 4). ◀

Another careful application of the Chernoff Bound shows the following, and we defer the
proof to the appendix:

▶ Lemma 24. Let m ≥ n1−c, and M : {0, 1}n → 2[n] satisfies M(x) ∩ 1(x) = ∅ for all
x ∈ {0, 1}n. Then we have

P

(
|M(X)| < m ∧ |M(X) ∩ 1(Y )| ≥ 4m

n
· |Y |

)
≤ e−n90c

.

And the same holds when replacing X with Z.

Now we can bound the probability for each item in Lemma 22, conditioned on E1 ∧ E2.
Recall that P (E1 ∧ E2) ≥ e−n30c

n−2c by Lemma 16.
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(a) By Proposition 23 we have

P
(
|X| ≤ 2n/5|E1, E2

)
≤ 1

P (E1 ∧ E2) · e−n/200 ≤ e−n/300.

Similarly we have P
(
|Z| ≤ 2n/5|E1, E2

)
≤ e−n/300.

(b) For each i ∈ [n], by the definitions of G1,i, G2,i and B1(x), B2(x), using the union bound
over j ∈ [k] we get

P (i ∈ B1(X)|E1, E2) ≤ kn−3c, P (i ∈ B2(Y )|E1, E2) ≤ kn−3c.

Therefore we can bound the expectations of |B1(X)| and |B2(Y )|:

E
[
|B1(X)|

∣∣E1, E2
]

≤ kn1−3c, E
[
|B2(Y )|

∣∣E1, E2
]

≤ kn1−3c.

Thus by Markov’s inequality we have

P
(
|B1(X)| ≥ n1−c

∣∣E1, E2
)

≤ kn−2c, P
(
|B2(Y )| ≥ n1−c

∣∣E1, E2
)

≤ kn−2c.

(c) Applying Lemma 24 on B1(X) with m = n1−c, we have

P
(

|B1(X)| < n1−c ∧ |B1(X) ∩ 1(Y )| ≥ 4n−c · |Y |
∣∣∣ E1, E2

)
≤ 1

P (E1 ∧ E2) · e−n90c

≤ e−n80c

.

(d) Same as (c), but applying Lemma 24 on G1(Z) with m = 1
4 n − n1−c ≥ n1−c, we get

P
(

|G1(Z)| <
1
4n − n1−c ∧ |G1(Z) ∩ 1(Y )| ≥ (1 − 4n−c) · |Y |

∣∣∣ E1, E2

)
≤ e−n80c

.

Putting everything together by a union bound, we get

P (W |E1, E2) ≤ 2e−n/300 + 2kn−2c + 2e−n80c

< n−c,

as k is a constant and n is sufficiently large. This leads to a contradiction to the result (b)
in Lemma 16, which refutes the assumption in Claim 15, and thus proves Theorem 12.
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A Deferred Proofs

Proof for Lemma 5
Proof. By Jensen’s inequality, we have

P (A|B)2 · P (B) =
(∑

x∈X
P (X = x|B) · P (A|B, X = x)

)2

· P (B)

≤
∑
x∈X

P (X = x|B) · P (A|B, X = x)2 · P (B)

=
∑
x∈X

P (X = x) · P (A|B, X = x)2 · P (B|X = x).

Suppose that Φ(x0) < Φ − ε, which implies that

P (A|B, X = x0)2 · P (B|X = x0) < P (A|B)2 · P (B) · 2−2ε

≤ P (A|B)2 · P (B) · (1 − ε/4).

On the other hand, since δ, ε ≤ 1 we have log(1 + δε/4) ≥ δε/4, and thus in order to satisfy
Φ(x) ≥ Φ + 1

8 δε it suffices to have

P (A|B, X = x)2 · P (B|X = x) ≥ P (A|B)2 · P (B) · (1 + δε/4). (4)

Let X1 ⊂ X be the set of x ∈ X , x ̸= x0 that satisfies (4). Since P (A|B, X = x)2 · P (B|X =
x) ≤ 1, we have

P

(
X ∈ X ∧ Φ(X) ≥ Φ + 1

8δε

)
≥
∑

x∈X1

P (X = x) · P (A|B, X = x)2 · P (B|X = x)

=
∑
x∈X

P (X = x) · P (A|B, X = x)2 · P (B|X = x)

− P (X = x0) · P (A|B, X = x0)2 · P (B|X = x0)

−
∑

x/∈X1,x ̸=x0

P (X = x) · P (A|B, X = x)2 · P (B|X = x)

≥ P (A|B)2 · P (B)
[
1 − P (X = x0) · (1 − ε/4) − P (X ̸= x0) · (1 + δε/4)

]
≥ P (A|B)2 · P (B) · 1

4δ2ε. ◀

Proof for Lemma 6
Proof. Since there are at most nk many u with |u| = k, we have∑

|u|=k

|f̂(u)| ≤ nk/2
√∑

|u|=k

f̂(u)2.

Therefore it suffices to prove that∑
|u|=k

f̂(u)2 ≤ (2e · max{1, ln(1/α)})k · α2.
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When k ≤ 2 ln(1/α), it follows from the original Level-k inequality (see [26, Section 9.5]).
When k > 2 ln(1/α), we also have∑

u∈{0,1}n

f̂(u)2 = 1
2n

∑
x∈{0,1}n

f(x)2 = α ≤ ekα2 ≤ (2e · max{1, ln(1/α)})k · α2. ◀

Proof for Lemma 10
Proof. Notice that we can write Q1 = λQ2 + (1 − λ)Q′ for some distribution Q′ over X . Let
Z = (Z1, . . . , Zn) ∈ {0, 1}n be i.i.d. Bernoulli random variables such that for each i ∈ [n],
independently, Zi is 1 with probability λ and 0 with probability 1 − λ. For each i ∈ [n],
we think of the i-th copy of Q1 as depending on Zi: if Zi = 1 then Q1 is drawn from Q2,
otherwise Q1 is drawn from Q′.

In order to bound the value of the game G⊗n
1 , we can assume that each of the players is

also given Z as input, since this can only increase the game’s value. Observe that conditioned
on the event Z = z for any fixed value z ∈ {0, 1}n, the value of the game is at most the value
of G⊗|z|

2 . Thus we have

val(G⊗n) ≤
n∑

m=0
Pr[|Z| = m] · val(G⊗m

2 )

≤ Pr
[
|Z| ≤ λn

2

]
· 1 + 1 · val(G⊗⌊λn/2⌋

2 )

≤ e−λn/8 + val(G⊗⌊λn/2⌋
2 ). ◀

Proof for Proposition 18
Proof. Recalling the distribution Q in Definition 14, we have

P (E1) =
∑

x∈{0,1}n

(
1
2 − 1

2n−1+100c

)|x|(1
2 + 1

2n−1+100c

)n−|x|

b(x)

≤ (1 + n−1+100c)n · 1
2n

∑
x∈{0,1}n

b(x)

≤ en100c

α.

Since P (E1) ≥ e−n30c , we get α ≥ e−n130c . ◀

Proof for Lemma 24
Proof. Fix an x ∈ {0, 1}n with |x| ≤ 3

5 n and |M(x)| < m. By Proposition 23, this makes
for a probability of P

(
|X| > 3

5 n
)

≤ e−n/200.
Since p = P (Yi = 1|Xi = 0) > n−1+100c, by applying Chernoff Bound on the sets [n]\1(x)

and M(x) respectively, we have

P
(

|Y | ≤ np

3

∣∣∣ X = x
)

≤ e−np/180 < e−n100c/180,

P

(
|M(x) ∩ 1(Y )| ≥ 4mp

3

∣∣∣ X = x

)
≤ e−mp/27 < e−n99c/27.

Therefore by union bound,

P

(
|M(X)| < m ∧ |M(X) ∩ 1(Y )| ≥ 4m

n
· |Y |

)
≤ e−n/200 + e−n100c/180 + e−n99c/27

≤ e−n90c

. ◀
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We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all
k-vertex subgraphs of an n-vertex graph. When k is not too large, we give nearly tight bounds
for this local treewidth parameter; we also derive nearly tight bounds for the local treewidth of
noisy trees, trees where every non-edge is added independently with small probability. We apply our
upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random
graphs and noisy trees) for edge-removal problems centered around containing a contagious process
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1 Introduction

Treewidth is a graph-theoretic parameter that measures the resemblance of a graph to a tree.
We begin by recalling the definition of treewidth.

▶ Definition 1 (Tree Decomposition). A tree decomposition of a graph G = (V, E) is a pair
(T, X), where X is a collection of subsets of V , called bags, and T a tree on vertices X

satisfying the properties below:
1. The union of all sets Xi ∈ X is V .
2. For all edges (u, v) ∈ E, there exists some bag Xi which contains both u and v.
3. If both Xi and Xj contain some vertex u ∈ V , then all bags Xk on the unique path between

Xi and Xj in T also contain u.
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▶ Definition 2 (Treewidth). The width of a tree decomposition (T, X) is one less than
cardinality of the largest bag. More formally, we can express this as

max
i

|Xi| − 1.

The treewidth of a graph G = (V, E) is the minimum width among all tree decompositions
of G.

Many graph-theoretic problems that are NP-hard admit polynomial-time algorithms on
graph families whose treewidth is sufficiently slowly growing as a function of the number of
vertices [32]. There is vast literature concerned with finding methods to relate the treewidth
of graphs to other well-studied combinatorial parameters and leveraging this to devise efficient
algorithms for algorithmic problems in graphs with constant or logarithmic treewidth. An
excellent introduction to the concept of treewidth as well as brief survey of the work of
Robertson and Seymour in establishing this concept can be found in Chapter 12 of [16].

These treewidth-based algorithmic methods, however, have historically found limited
applicability in random graphs. Sparse random graphs G(n, d/n) where every edge occurs
independently with probability d/n, for some d > 1, exhibit striking contrast between their
local and global properties – and this contrast is apparent when looking at treewidth. Locally,
these graphs appear tree-like with high probability1 (w.h.p.): the ball of radius O(logd n)
around every vertex looks like a tree plus a constant number of additional edges. Globally,
however, these graphs have w.h.p. treewidth Ω(n). For example, the super-critical random
graph G(n, 1+δ

n ) has w.h.p. treewidth Ω(n) [17, 46, 38]. As a result of this global property,
conventional techniques used to exploit low treewidth to derive efficient algorithms do not
apply directly for random graphs.

In this paper, we take advantage of the local tree-like structure of random graphs by
analyzing the local behavior of treewidth in random graphs. Central to our approach is the
following definition.

▶ Definition 3 (Local Treewidth). Let G be an undirected n-vertex graph. Given k ≤ n we
denote by tk(G) the largest treewidth of a subgraph of cardinality k of G.

In words, the local treewidth of an n-vertex graph, with locality parameter k, is the
maximum possible treewidth across all subgraphs of size k. We study two models of random
graphs, starting with the familiar binomial random graph G(n, p). While the binomial
random graph G(n, p) lacks many of the characteristics of empirically observed networks
such as skewed degree distributions, studying algorithmic problems on random graphs can
nevertheless lead to interesting algorithms.

▶ Definition 4 (Noisy Trees). Let T be an n vertex tree. The noisy tree T ′ obtained from
T is a random graph model where every non edge of T is added to T independently, with
probability 1/n.

Here we assume p = 1/n for convenience; all our results regarding noisy trees also hold
when the perturbation probability p satisfies p = ϵ/n for ϵ < 1. Noisy trees are related to
small world models of random networks [45, 44], where adding a few random edges to a graph
of high diameter such as a path results with a graph of logarithmic diameter w.h.p. [36].

1 Given a random graph model, we say an event happens with high probability if it occurs with probability
tending to 1 as n tends to infinity.
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Below, we give an informal description of the concepts we study and sketch our main
results; we defer discussion of formal results until Section 2 and later in the paper. Our
main result is a nearly tight bound holding w.h.p. for the maximum treewidth of a k-
vertex subgraph of G(n, p) assuming k ≤ n1−ϵ for ϵ ∈ (0, 1) and p = d/n where d > 1. In
the notation introduced earlier, this provides a bound for tk(G). Assuming k ≤ nϵ for a
sufficiently small ϵ we obtain nearly tight bounds for the local treewidth of noisy trees as
well.

Our upper bounds on the local treewidth are motivated by algorithmic problems related
to containing the spread of a contagious process over undirected graphs by deleting edges.
We focus on the bootstrap percolation contagious process (Definition 8) where there is a set
of initially infected vertices and noninfected vertices are infected if they have at least r ≥ 2
neighbors and consider two edge-removal problems: Stopping Contagion and Minimizing
Contagion. Informally, in stopping contagion we are given a subset of infected nodes A and
seek to remove a minimal number of edges to ensure a “protected” subset of vertices B

(disjoint from A) are not infected from A. In minimizing contagion we wish to ensure at
most m additional vertices are infected from A for a target value m by deleting a minimal
number of edges. Such edge removal problems might arise, among other applications [20, 21],
in railways and air routes, where the goal might be to prevent spread while also minimizing
interference to transportation. In this context, edge deletion may correspond to removing a
transportation link altogether or introducing special requirements (such as costly checks) to
people between the the endpoints. Edge removal can be also viewed as a social distancing
measure to control an epidemic outbreak [5]. One can also study the problem of removing
vertices to control the spread of an epidemic which is related to vaccinations: making nodes
immune to infection and removing them from the network [49].

We design algorithms for stopping and minimizing contagion for random graphs and
noisy trees. Note that our algorithms do not achieve polynomial time, even for k that is poly-
logarithmic in n; whether there exists a polynomial time algorithm for minimizing contagion
and stopping contagion in G(n, p) for every value of k is an open question. Nonetheless, the
dependency of our algorithm on k is better (assuming k ≤ nϵ for an appropriate constant
ϵ > 0) than the dependency of k in the running time of the best known algorithms for
minimizing contagion2 in the worst case [14]. Please see Subsection 2.3 for details.

Our algorithms are based on the following three observations:
1. The local treewidth of binomial random graphs and noisy trees is sublinear in k.
2. There exist fast algorithms for minimizing and stopping contagion in graphs of bounded

treewidth.
3. The set of seeds A has what we call the bounded spread property: w.h.p. at most c|A|

additional vertices are infected from A for some constant3 c. Bounded spread allows
us to solve minimizing contagion and stopping contagion on subgraphs that have small
(sublinear in k) treewidth.

For the sake of brevity and readability we focus on edge deletion problems. We note that
our algorithms can be easily adapted for the analogous problems of minimizing and stopping
contagion by deleting vertices rather than edges. The reason is that our algorithms for
minimizing/stopping contagion on bounded treewidth graphs work (with the same asymptotic
running time guarantees) for vertex deletion problems. Combining algorithms for bounded
treewidth with the bounded spread property as well the upper bound on the local treewidth
yields algorithms for the vertex deletion versions of minimizing and stopping contagion.

2 We are not aware of previous algorithms for the stopping contagion problem.
3 For G(n, d/n), our constant c := c(d) is a function of d. When d is a constant independent of n so is c.
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Our main contribution is studying the concept of local treewdith for random graphs
and connecting it to algorithmic problems involving stopping contagion in networks. Our
calculations are standard and the contribution is conceptual rather than introducing a new
technique.

2 Our results

2.1 Local Treewidth Bounds
Recall we define the local treewidth of a graph G, denoted tk(G), to be the greatest treewidth
among along subgraphs of size k. Trivially, for any graph with at least one edge and k ≤ n,
1 ≤ tk(G) ≤ k.

Consider as an illustrative example the random graph G = G(n, 1/2): with high proba-
bility, tk(G) = Ω(k) for all values of k. For k ≤ 1.9 log n this follows as there is a clique of
size k in G w.h.p. For k > 1.9 log n this follows as a randomly chosen subset of size k has,
with high probability, minimum degree Ω(k), and a graph with treewidth r has a vertex of
degree at most r.

We can now state our bounds for tk in the random graph models we consider. From here
onward, ϵ > 0 is taken to be a positive constant in (0, 1). We give somewhat compressed
statements; reference to the full Theorems are provided throughout this section.

▶ Theorem 5. Let G = G(n, p) with p = d/n and k ≤ n1−ϵ. Then, with high probability:

tk(G) ≤ 3 + O

(
k log d

log n

)
.

Since we always know tk(G) ≤ k, the upper bound in the Theorem above becomes trivial
if d ≥ nΩ(1). Also observe that the Theorem does not hold for arbitrary k ≤ n, as for
k = n, tk(G) = Ω(n) w.h.p. In terms of lower bounds, we have the following:

▶ Theorem 6. Suppose p = d/n and d > 1 + δ where δ > 0 is a constant (not depending on
n). Suppose k ≤ O(n/ log n); then, w.h.p.

tk(G) ≥ Ω
(

k

log n

)
.

More details can be found in Section 3. Our upper and lower bounds for the local
treewidth of G(n, d/n) also extend to the random d-regular graph G(n, d)–details can be
found in Subsection 3.3.

For noisy trees, we have the following results.

▶ Theorem 7. Let T be an n-vertex tree with maximum degree ∆. Let T ′ be a noisy tree
obtained from T . Then w.h.p.

tk(T ′) ≤ 3 + O

(
k(log k + log ∆)

log n

)
.

Observe that the upper bound in the Theorem is trivial if k, ∆ are nΩ(1). As a result, in
our proofs we will assume k, ∆ ≤ nϵ, for sufficiently small ϵ > 0. Our results can be extended
to the case where each non-edge is added with probability c/n for c > 1. Similar ideas (which
are omitted) yield the upper bound:

tk(T ′) ≤ 3 + O

(
k(log k + log ∆ + log c)

log n

)
.
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We also provide a lower bound, showing that up to the log k, log ∆ terms, the upper
bound above is tight. Namely, the noisy path has w.h.p. local treewidth of order Ω(k/ log n).
For more details on the lower and upper bounds please see Section 4.

2.2 Contagious Process and Edge Deletion problems
The local treewidth results outlined above prove useful in the context of two edge deletion
problems we study. These problems arise when considering the evolution of a contagious
processes over an undirected graph.

We focus on the r-neighbor bootstrap percolation model [11].

▶ Definition 8. In r-neighbor bootstrap percolation we are given an undirected graph G =
(V, E) and an integer threshold r ≥ 1. Every vertex is either active (we also use the term
infected) or inactive; a set of vertices composed entirely of active vertices is called active.
Initially, a set of vertices called seeds, A0, is activated. A contagious process evolves in
discrete steps, where for integral i > 0,

Ai = Ai−1 ∪ {v ∈ V : |N(v) ∩ Ai−1| ≥ r}.

Here, N(v) is the set of neighbors of v. In words, a vertex becomes active in a given step
if it has at least r active neighbors. An active vertex remains active throughout the process
and cannot become inactive. Set

⟨A0⟩ =
⋃

i

Ai.

The set ⟨A0⟩ is the set of nodes that eventually get infected from A0 in G. Clearly, ⟨A0⟩
depends on the graph G, so we sometimes write ⟨A0⟩G to call attention to the underlying
graph. We say a vertex v ∈ V gets activated or infected from a set of seeds A0 if v ∈ ⟨A0⟩.

It is straightforward to extend this definition to the case where every vertex v has its
own threshold t(v) and a vertex is infected only if it has at least t(v) active neighbors at
some point. As is customary in bootstrap percolation models, we usually assume that all
thresholds are larger than 1. Now, given a network with an evolving contagious process, we
introduce the stopping contagion problem:

▶ Definition 9 (Stopping Contagion). In the stopping contagion problem, we are given as input
a graph G = (V, E) along with two disjoints sets of vertices, A, B ⊆ V . Given that the seed set
is A, the goal is to compute the minimum number of edge deletions necessary to ensure that
no vertices from B are infected. In other words, we want to make sure ⟨A⟩G′ ∩ B = ϕ, where
G′ is the graph obtained from G after edge deletions. Given an additional target parameter,
ℓ, the corresponding decision problem asks whether it is possible to ensure no vertices from B

are infected by deleting at most ℓ edges.

Next we consider the setting where given a set of infected nodes we want to remove the
minimal number of edges to ensure no more than k additional vertices are infected.

▶ Definition 10. In the minimizing contagion problem, we are given a graph G = (V, E),
a subset of vertices A ⊆ V and a parameter s. Given that the seed set is A, we want to
compute the minimum number of edge deletions required to ensure at most s vertices in V \ A

are infected. If G′ is the graph obtained from G by edge deletions, then this condition is
equivalent to requiring |⟨A⟩G′ | ≤ |A| + s. In the decision problem, we want to decide if it is
possible to ensure |⟨A⟩G′ | ≤ |A| + s with at most ℓ edge deletions.
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7:6 Local Treewidth & Stopping Contagion in Networks

Both stopping contagion and minimizing contagion are NP-complete, and stopping
contagion remains NP-hard even if |A| = 2 and |B| = 1. For complete proofs, please refer to
the Full version of this paper [39].

2.3 Algorithmic Results
For minimizing contagion, current algorithmic ideas [14] can be used to prove that if |A|
and the optimal solution are of size O(k) the problem can be solved in time 2O(k) poly(n)
on n-vertex graphs. No such algorithm, parameterized by |A| and the size of the optimal
solution, is known for stopping contagion. Using our upper bounds for local treewidth,
however, we can prove:

▶ Theorem 11. Let ϵ be a constant in (0, 1). Suppose that k ≤ n1−ϵ and that every vertex
has threshold greater than 1. Let G := G(n, p) where p = d/n. Assuming d is a constant, we
have that w.h.p. both minimizing contagion and stopping contagion can be solved in G in
time 2o(k) poly(n).

▶ Theorem 12. Suppose that k ≤ nϵ for sufficiently small ϵ ∈ (0, 1) and that every vertex
has a threshold greater than 1. Let T ′ be a noisy tree where the base tree T has maximum
degree ∆ = O(1). Then w.h.p. both minimizing contagion and stopping contagion can be
solved in T ′ in time 2o(k) poly(n).

We stress that set A of seeds can be chosen in arbitrary way. In particular, an adversary
can pick A after the random edges in our graph models have been chosen.

The dependence of the running time on n, k, d and ∆ can be made explicit: for precise
statements, please see Section 6. Algorithms for grids and planar graphs are presented in
Section 6 as well.

For our purpose, to translate local treewidth bounds to algorithmic results, we need
an algorithm for solving stopping contagion and minimizing contagion on graphs of low
treewidth. We provide such an algorithm that runs in exponential time in the treewidth,
assuming the maximum degree is constant, using ideas from [14]. More details can be found
in Section 5.

2.4 Our Techniques
Our upper bounds for the local treewidth build on a simple “edge excess principle”: A
k-vertex connected graph with k + r edges has treewidth at most r + 1. As the treewidth
of a set of connected components is the maximum treewidth of a component, it suffices to
analyze the number of edges in connected subgraphs of the random graphs we study. For
G(n, p) this is straightforward, but for noisy trees it is somewhat more involved. We find it
easier to first analyze the edge excess of connected subgraphs, before considering connecting
edges that allow us bound the excess of arbitrary subgraphs.

A key component in our lower bound is the simple fact that if H is a minor of G then
tw(G) ≥ tw(H). Therefore it suffices to prove the existence of large treewidth subgraphs that
are minors w.h.p. of random graphs and noisy trees. Recall that an n-vertex graph is called
an α-expander if there exists α ∈ (0, 1) such that every subset S of vertices with at most n/2
vertices has at least α|S| neighbors not in S. We use the fact [35] that for any graph H with
k vertices and edges, assuming k = O(n/ log n) an n-vertex expander has an embedding4 of

4 See Subsection 2.7 for further details on minor-theoretic concepts we use.
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H as a minor in G. Furthermore, every connected subgraph of G corresponding to a vertex
in H is of size O(log n). The lower bound then follows as it is known [34, 35] that G(n, 1+δ

n )
contains with high probability a subgraph with Ω(n) vertices that is an α-expander for an
appropriate choice α. Similar ideas are used to prove the existence of large minors with
linear treewidth in the noisy trees (e.g., the noisy path).

Our algorithms for minimizing contagion and stopping contagion in graphs of bounded
treewidth build on techniques designed to exploit the tree-like nature of low treewidth
graphs, sharing similarities to algorithms for target set selection in [8], where target set
selection is the problem of finding a minimal set that infects an entire graph under the
bootstrap percolation model. More directly, our problem resembles the Influence Diffusion
Minimization (IDM) studied in [14], where the goal is to minimize the spread of the r-neighbor
bootstrap percolation process by preventing spread through vertices. After subdividing edges,
minimizing contagion essentially reduces to IDM, albeit with additional restrictions on the
vertices we can immunize (only vertices that belong to the “middle” of a subdivided edge can
be deleted); we therefore solve a generalization of the IDM problem and use this to provide
efficient algorithms for the minimizing and stopping contagion.

At a high-level, our algorithm works by solving the stopping contagion recursively on
subgraphs and then combining these solutions via dynamic-programming until we have
a solution for the whole graph. To combine subproblems successfully, at each step we
explicitly compute solutions for all possible states of vertices in a bag. While this could take
exponential time in general, this approach provides an efficient algorithm in graphs with
bounded treewidth.

Our proof of bounded spread in noisy trees builds works by proving that small subsets of
such trees contain few edges [13, 25]. Since every non seed vertex needs at least two vertices
to get infected, small contagious sets require small subsets that contain too many edges.
Therefore, one can prove that small sets of seeds cannot infect too many vertices; the proof
of small trees’ local sparsity is similar to the proof that w.h.p. such noisy trees have small
local treewidth.

2.5 Related Work
While the idea to remove edges or vertices to contain an epidemic has been studied before [47,
10, 3], most of these works focus using edge or vertex deletions that break the graph to
connected components of sublinear (or even constant) size [20, 47, 10]. Recently approximation
algorithms for edge deletion problems that arise in controlling epidemics has been studied
in [5] for the SIR epidemic model. In particular, [5] studies the problem of deleting a set of
edges of weight at most B that minimizes the set of infected nodes after edges deletions. All
these works consider a different contagion model from the r ≥ 2 bootstrap percolation model
studied here.

Bootstrap percolation was first introduced by statistical physicists [11] and has been
studied on a variety of graphs [6, 41, 25, 2, 50, 19, 48].

The fixed parameter tractability of minimizing contagion with respect to vertex deletions,
as opposed to edge deletions, has been thoroughly investigated with respect to various
parameters such as the maximum degree, treewidth, and the size of the seed set k in [14].
The authors of [14] present efficient algorithms for minimizing contagion for graphs of bounded
maximum degree and treewidth. With respect to k, using ideas from FPT algorithms for cut
problems [26], they give a 2k+ℓ poly(n) algorithm for the case where the set of seeds is of
size k and there is a solution of size ℓ to the problem. Their algorithm can be easily adapted
to the case of edge deletions: see Theorem 24. We are not aware of the stopping contagion
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7:8 Local Treewidth & Stopping Contagion in Networks

problem studied before, nor are we aware of previous studies of the minimizing contagion
problem in random graphs. In order to deal with both stopping contagion and minimizing
contagion for graphs of bounded treewidth, we build on algorithmic ideas from [8]. The
NP-hardness of minimizing contagion with respect to vertex deletion is proved in [14] – our
proof for the NP-hardness of the edge deletion version of minimizing contagion was found
concurrently and independently; the proof is different from the proof appearing in [14].

There are two regimes of interest for the study of treewidth in sparse random graphs.
For the subcritical regime p ≤ d/n with d < 1, G(n, p) has w.h.p. unicyclic connected
components of size O(log n) [23] and hence has treewidth at most 2. For the supercritical
regime with p ≥ d/n and d > 1, G(n, p) has w.h.p. a giant component of size Ω(n) [23]
and determining the treewidth is more complicated. Kloks [32] proved that the treewidth
of G(n, d/n) is Ω(n) w.h.p. for d ≥ 2.36. His result was improved by Gao [28] who showed
that for d ≥ 2.16, the treewidth of G(n, d/n) is Ω(n) with high probability. Gao asked if his
result can be strengthened to prove that G(n, d/n) has treewidth linear in n w.h.p. for any
d > 1; this was later shown in in [38]. A different and somewhat simplified proof establishing
that the treewidth of G(n, d/n) is Ω(n) w.h.p. was given in [46]. Finally, the fine-grained
behavior of treewidth of G(n, (1 + ϵ)/n) was studied in [17] where it was shown that for
sufficiently small ϵ, the treewidth of G(n, (1 + ϵ)/n) is w.h.p.

Ω
(

ϵ3

log 1/ϵ

)
n.

The first lower bound for the treewidth of random regular graphs appears to be from [46]:
the authors prove that for every constant d > d0 where d0 is a sufficiently large constant,
the treewidth of the random regular graph G(n, d) is Ω(n) w.h.p. In [24] it was also shown
that random graphs with a given degree sequence (with bounded maximum degree) that
ensure the existence of a giant component w.h.p. (namely a degree sequence satisfying the
Molloy-Reed criterion [40]) have linear treewidth as well, which implies, using a different
argument than in [46], that G(n, d) for d > 2 has linear treewidth w.h.p. A different proof
for the linear lower bound of the treewidth of G(n, d) for d > 2 is given in [17].

Several papers have examined notions of local treewidth in devising algorithms for
algorithmic problems such as subgraph isomorphism [22, 30, 29, 27]. For example, Grohe [29]
defines a graph family C of having bounded local treewidth if there exists a function f : N → N
such that for every graph G = (V, E) in C and every integer r, for every vertex v ∈ V the
treewidth of the subgraph of G induced on all vertices of distance at most r from v is at
most f(r). These works primarily focus on planar graphs and graphs avoiding a fixed minor.
The only work we are aware of that has examined the local treewidth of random graphs is
that of [18]. Their main goal is to demonstrate that the treewidth of balls of radius r around
a given vertex depends only on r, as opposed to analyzing the local treewidth as function
of n, d and k as we do here. We employ a similar edge excess argument to the one in [18]
although there are some differences in the analysis and the results: please see Section 3
for more details. We are not aware of previous work lower bounding the local treewidth of
random graphs.

Embedding minors in expanders has received attention in combinatorics [37] and the-
oretical computer science, finding applications in proof complexity [4]. Kleinberg and
Rubinfeld [31] proved that if G = (V, E) is a α-vertex expander with maximum degree ∆,
then every graph with n/ logκ n vertices and edges is a minor of G for a constant κ > 1
depending on ∆ and α. Later it was stated [12] that κ(∆, α) = Ω(log2(d)/ log2(1/α)).
Krivelevich [35] together with Nandov proved that if G is an α-vertex expander then it
contains every graph with cn/ log n edges and vertices for some universal constant c > 0.
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The sparsity of random graphs as well as randomly perturbed trees was used in showing
that these families have w.h.p. bounded expansion5 [43, 15]. These results are incomparable
with our treewidth results: it is known that graphs with bounded maximum degree have
bounded expansion and that G(n, d/n) has bounded expansion w.h.p. [43, 42] In contrast,
there exist 3-regular graphs with linear treewidth and as previously mentioned the treewidth
of G(n, d/n) is Ω(n).

2.6 Future Directions
Our work raises several questions. We consider undirected unweighted graphs. However
directed edges can be more accurate in modeling epidemic spread [1] and some edges might
be more costly to move than others. Extending our algorithms to directed weighted graphs
is an interesting direction for future research.

Our upper and lower bounds for the local treewidth of G(n, p) (with p = d/n) currently
differ by a multiplicative factor of order log d. We believe that for k ≤ n1−ϵ the local
treewdith of G(n, p) is w.h.p. Ω(k log d/ log n). Whether this is indeed the case remains for
future work. Our upper bounds on the local treewidth of noisy trees can be made independent
of the maximum degree of the tree; namely, for arbitrary trees, the local treewidth should be
upper bounded w.h.p. by O(k/ log n) assuming k is not too large. Proving or disproving this
however remains open. Understanding how well one can approximate minimizing contagion
and stopping contagion in general graphs, as well as graphs with certain structural properties
(e.g. planar graphs) is a potential direction for future research as well. Finally, it could be of
interest to study if our bounds for local treewidth coupled with sophisticated algorithms for
graphs with bounded local treewidth [27, 29, 22] could lead to improved running time for
additional algorithmic problems in random graphs.

2.7 Preliminaries
Throughout the paper log denotes the logarithm function with base 2; we omit floor and

ceiling signs to improve readability. All graphs considered are undirected and have no parallel
edges. Given a graph G = (V, E) and two disjoint sets of vertices A, B we denote by E(A, B)
the set of edges connecting a vertex in A to a vertex in B. For A, B as above we denote by
NG(A, B) the set of vertices in B with a neighbor in A. For a subset of vertices A ⊆ V and
an edge e we say that A touches e if at least one of the endpoints of e belongs to A. If both
endpoints of e belong to A then we say that A spans e.

A graph H is a minor of G if H can be obtained from G by repeatedly doing one of
three operations: deleting an edge, contracting an edge or deleting a vertex. We keep our
graphs simple and remove any parallel edges that may form during contractions. It can be
verified [42] that a graph H with k vertices is a minor of G if and only if there are k vertex
disjoint connected subgraphs of G, C1 . . . Ck such that for every edge (vi, vj) of H , there is an
edge connecting a vertex in Ci to a vertex of Cj . We refer to the map mapping every vertex
of H, vj to Cj as an embedding of H in G; the maximum vertex cardinality of Ci, 1 ≤ i ≤ k

is called the width of the embedding. We shall be relying on the well-known fact [42, 16]
that if H is a minor of G than the treewidth of G is lower bounded by the treewidth of H.

We will also need the following definition of an edge expander:

5 Bounded expansion should not be confused with the edge expansion of a graph. For a precise definition
please see [43, 42].
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▶ Definition 13. Let α ∈ (0, 1). A graph G is an α-expander if every subset of vertices S

with |S| ≤ n/2 satisfies

|NG(S, V \ S)| ≥ α|S|.

3 Local Treewidth of Random Graphs

In this section we prove both an upper and lower bound for tk(G(n, p)) that with high
probability. We assume k ≤ n1−ϵ for a constant ϵ > 0.

3.1 Upper Bound
Our main idea in upper bounding tk(G) is to leverage the fact that G(n, p) is locally sparse
and that if a few edges are added on top of a tree, the treewidth of the resulting graph
cannot grow too much.

▶ Lemma 14. Let G be a connected graph with n vertices and n − 2 + ℓ edges. Then
tw(G) ≤ ℓ.

Proof. Since G is connected, it must have a spanning tree T with n vertices and n − 1 edges.
The graph G has exactly ℓ − 1 additional edges; since adding an edge can increase a graph’s
treewidth by at most 1, we immediately get the desired bound.

tw(G) ≤ tw(T ) + ℓ − 1 = ℓ ◀

We can now prove:

▶ Theorem 15. Suppose that k ≤ n1−ϵ. Then for G = G(n, p) we have that w.h.p. for every
m ≤ k:

tm(G) ≤ 3 + O

(
m log d

log n

)
.

Proof. Since the Theorem is obvious for d = nΩ(1) we assume that d ≤ nϵ/2. We first prove
the statement for m = k. Given a graph G with treewidth t, it is always possible to find a
connected subgraph of G with identical treewidth to G. In that spirit, rather than bounding
the probability there exists some k-vertex subgraph of G with treewidth exceeding some r,
we bound the probability some subgraph on s ≤ k vertices is connected and has treewidth
greater than r in G.

Fix some S ⊆ V with exactly s vertices. Note there are ss−2 possible spanning trees which
could connect the vertices in S, each requiring s − 1 edges. While the resulting subgraph
would be connected, its treewidth is only 1. Therefore, r additional edges would also be
required to produce a subgraph with treewidth at least r + 1. Accounting for the ways to
choose these edges, the probability the subgraph induced on S is connected and has treewidth
greater than r is at most

ss−2
((

s
2
)

r

) (
d

n

)r+s−1
.

This follows since each edge occurs independently with probability p = d/n. Now, we
bound the probability that any such subset S with at most k vertices exists. To that end,
we take a union bound over all

(
n
s

)
possible subsets of s vertices, letting s range from 1 to k.

Putting this together and using the inequality
(

a
b

)
≤ (ea/b)b yields
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k∑
s=1

(
n

s

)
× ss−2

((
s
2
)

r

) (
d

n

)r+s−1
≤ dr

nr−1

k∑
s=1

es

(
es2

2r

)r

ds

≤ dr

nr−1 kek

(
ek2

r

)r

dk

To complete the proof, notice this probability can be made to be at most n−1 (using
k ≤ n1−ϵ and d ≤ nϵ/2) when r is taken to be

2 + O

(
k log d

log n

)
.

The Theorem now follows for m = k from Lemma 14. Using the above proof along with a
simple union bound over all m ≤ k ≤ n1−ϵ implies the statement for all m ≤ k. ◀

Notice the approach above yields a sharper bound than if we solely attempted to bound
the treewidth by counting the number of excess edges above k − 1. To explain, notice a
k-vertex subgraph can have treewidth r only if it has at least r + k − 1 edges. A simple union
bound over all possible subsets of k vertices, upper bounds the probability we are interested
in. (

n

k

)( (
k
2
)

r + k − 1

) (
d

n

)r+k−1
≤ k2kk2rdkdr

nr−1

This is implicitly used in [18] to bound the treewidth of balls of radius r in G(n, p); as
mentioned above, our method improves on this result. More concretely, since the upper
bound now has a additional kk factor in the numerator, using this in our application would
yield the weaker upper bound

tk(G) = 3 + O

(
k(log k + log d)

log n

)
.

3.2 Lower Bound
Throughout this section we assume that d > 1 + δ where δ > 0.

First we need the following result from [35]:

▶ Proposition 16. Consider the random graph G := G(n, 1+δ
n ). Then there is a constant

c > 0 depending on δ such that for every graph H with at most k vertices and edges, G

contains an embedding H ′ of H. Furthermore the width of the embedding is O(log n).

▶ Proposition 17. There exist graphs with m vertices and m edges of treewidth Ω(m).

Proof. As random 3-regular graphs have with high probability linear treewidth [17, 24] there
are m-vertex graphs with m vertices and 3m/2 edges and treewidth Ω(m). Adding to such a
graph m/2 isolated vertices results with a graph with the desired property. ◀

Using our results we can lower bound the local treewidth of a random graph:

▶ Theorem 18. Let G := G(n, d/n) be a random graph with d > 1 + δ. Assume k ≤
O(n/ log n). Then w.h.p. G contains a subgraph with O(k) vertices whose treewidth is
Ω( k

log n ).
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Proof. We may assume that k = Ω(log n), otherwise the lower bound in the Theorem is
immediate. Let H be a graph with s vertices and edges of treewidth Ω(s). Let s ≤

(
n

log n

)
.

By Proposition 16 G contains an embedding of H, H ′ of width O(log n). It follows that H ′

has at most O(s log n) vertices and treewidth at least Ω(s) (as H is a minor of H ′) which is
what we wanted to prove. ◀

3.3 Local Treewidth of Random Regular Graphs

Similar bounds on the local treewidth of random regular graphs G(n, d) can be established
via similar arguments to those used for G(n, d/n). For the upper bound, one can use the
fact [13] that for every k < nd/4 distinct unordered pairs of vertices, the probability they all
occur simultaneously in G(n, d) is at most (2d/n)k and then nearly identical arguments to
those in Theorem 15. The lower bound follows easily from embedding results for expanders:

▶ Theorem 19. Let d > 2 be a constant. Then with high probability a random d-regular
graph G is minor universal: any graph H with at most O(n/ log n) vertices and edges can
embedded into G. Furthermore, the width of the embedding is O(log n).

Proof. By a result of [35] if G is an α-expander with α > 0 bounded away from zero then
the claim in the Proposition hold. The result now follows as it is well known [9, 33] that
with high probability the random d-regular graph is an α-expander for α > 0. ◀

We summarize this with the following Theorem:

▶ Theorem 20. Suppose that 2 < d is a constant and k ≤ n1−ϵ for some constant ϵ ∈ (0, 1).
Then for G = G(n, d) we have that w.h.p.:

Ω
(

k

log n

)
≤ tk(G) ≤ 3 + O

(
k log d

log n

)
.

4 Local treewidth of Noisy Graphs

We study the local treewidth of noisy graphs: Recall that in this model there is a base
n-vertex graph G with maximum degree ∆. On top of this base graph every non edge of G

is added independently with probability 1/n. All proofs missing from this section can be
found in [39]. Our main result is:

▶ Theorem 21. Let G be an n-vertex connected graph of maximum degree ∆. Suppose that
we add every non-edge of G to G with probability 1/n independently of all other random
edges. Call the resulting graph G′. With high probability, then, tk(G′) ≤ O(tk(G) + r), where

r = 3 + O

(
k(log k + log ∆)

log n

)
.

For a proof please see the full version [39].
The upper bound in Theorem 21 is nearly tight for certain noisy trees.

▶ Theorem 22. Consider the n vertex path, Pn. Suppose we add every nonedge to Pn with
probability ϵ/n where ϵ > 0 is an arbitrary constant. Call the perturbed graph P ′. Then with
high probability for any Ω(log n) ≤ k ≤ O(n/ log n), there exists a subgraph of P ′ with O(k)
vertices with treewidth Ω(k/ log n).
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Proof. Fix B to be a large enough constant. Chop Pn to n/B disjoint paths6 A1 . . . An/b

each of length B. Consider now the graph G whose vertex set is A1 . . . An/B and two vertices
Ai and Aj are connected if there is an edge (in P ′) connecting Ai to Aj . The probability
two vertices in G are connected is at least

1 − (1 − ϵ/n)B2
≥ ϵB2/2n.

For a fixed graph H with s vertices and edges, it is known [35] that the supercritical
random graph G(m, 1+ϵ

m ) contains an embedding of H into G as long as s = O(m/ log m).
Furthermore the width of the embedding is O(log m). The probability that two vertices in G

are connected is larger than 1+ϵ
n/B . Therefore we can embed H into a subgraph H ′ of G whose

size is at most s log n such that H is a minor of H ′. Furthermore as the vertices of G are
paths of length B (in Pn), the embedding of H into G directly translates to an embedding
of H into P ′ whose width is O(B log n) = O(log n). Choosing H with s vertices and edges
and treewidth Ω(s) concludes the proof. ◀

5 Algorithms for Graphs of Bounded Treewidth

In this section, we build on the results of [14] to provide polynomial time algorithms for
bounded treewidth instances of minimizing contagion and stopping contagion. As we sketched
in our introduction, we generalize the influence diffusion minimization problem introduced
by the authors and use a similar dynamic-programming algorithm. Our main result is the
following algorithm for graphs of bounded treewidth τ :

▶ Theorem 23. Let G be an n vertex graph with maximum degree ∆, maximum threshold
r and treewidth τ . Then both minimizing and stopping contagion can be solved in time
O

(
τ1296τ min{r, max{∆, 2}}4τ poly(n)

)
.

For a proof, including a description of our algorithm and runtime analysis, please see
the full version [39]. Note that to combine subproblems, we must effectively account for the
effect of infected vertices elsewhere on each subgraph we consider. We therefore essentially
solve minimizing contagion and stopping contagion in a more flexible infection model, where
thresholds are allowed to differ between vertices but remain at most r; as a result, our
theorem cleanly translates to this setting as well.

6 Algorithms for Minimizing and Stopping Contagion in Grids,
Random Graphs and Noisy Trees

In this section we study how to solve minimizing contagion and stopping contagion when the
set of seeds A is not too large and does not spread by too much. We use this along with
local treewidth upper bounds to devise algorithms for minimizing and stopping contagion
in random graphs. We also consider algorithms for grids and planar graphs. As usual all
missing proofs appear in [39]..

Using similar ideas to [14] (who consider vertex deletions problems) we have the following
result for the minimizing contagion problem whose proof can be found in [39].

▶ Theorem 24. Let G = (V, E) be an n-vertex graph. Suppose there are t edges whose
removal ensures no more than r vertices are infected in G from the seed set A ⊆ V . Then
minimizing contagion can be solved optimally in (randomized) 2r+t poly(n) time where n is
the number of vertices.

6 To simplify the presentation we assume B divides n. Similar ideas work otherwise.
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The algorithm above can become slow if r or t are very large. Additionally, we do not
know how to get similar results (e.g., algorithms of running time 2|A| poly(n)) for stopping
contagion. Below we show that we can improve upon this algorithm for graphs that have
some local sparsity conditions. A key property we use is that for both minimizing contagion
and stopping contagion with a seed set A, we restrict our attention to the subgraph of G

induced on ⟨A⟩.

6.1 Grids and Planar Graphs
Consider the n × n grid where all vertices have threshold at least 2 we have the following
“bounded spread” result:

▶ Lemma 25. In the n × n grid every set of size k infects no more than O(k2) vertices.

Proof. Embed the n×n grid G = {1, . . . , n}×{1, . . . , n} in H = {0, . . . , n+1}×{0, . . . , n+1}
in the natural way. Given a subset A of G, the perimeter of A is the set of all vertices
not belonging to A having a neighbor in A. The crucial observation is that if A is a set of
infected seeds, the perimeter of A can never increase during the contagion process [7]. As the
perimeter of A is at most 4k the infected set has perimeter at most 4k as well. The result
follows as every set A ⊆ {1, . . . , n} × {1, . . . , n} of size m has perimeter Ω(

√
m). ◀

Using Theorem 24 we have that minimizing contagion on the n by n grid with k = |A|
can be solved in time 2O(k2) poly(n). We simply apply the algorithm in Theorem 24 to ⟨A⟩.
Alternatively we can use exhaustive search over all subsets of edges in the graph induced on
⟨A⟩ to solve7 both minimizing or stopping contagion. We can do better using the following
fact:

▶ Lemma 26. Let G be a subgraph of an n by n grid with r vertices. Then G has treewidth
O(

√
r).

Proof. Every m-vertex planar graph has treewidth O(
√

m). ◀

▶ Corollary 27. Let G = (V, E) be the n by n grid. Suppose H = (V, E′) where E′ ⊆ E and
every vertex has a threshold of at least 2. Let A be the seed set with k = |A|. Then stopping
contagion and minimizing contagion can be solved in time 2O(k) poly(n).

Proof. For solving either problems we only need to consider the subgraph of G, ⟨A⟩. The
result now follows from Theorem 23. ◀

Similarly, for a planar graph where every vertex has threshold at least 2 and at most b

and every subset A of size k infects at most f(k) vertices, stopping contagion can be solved
in time bO(

√
f(k)) poly(n).

6.2 Sparse Random Graphs
Consider the random graph G(n, d/n) assuming all vertices have threshold larger than 1.
Assuming d ≤ n1/2−δ for δ ∈ (0, 1/2), it is known [25] that with high probability every
set of size O( n

d2 log d ) does not infect more than O(|A| log d) vertices. Furthermore, it is
known [25] that any set of size O(n/d2) has with high probability constant average degree. It
follows that assuming |A| = O( n

d2 log d ) the optimal solution to minimizing contagion is of size

7 For minimizing contagion using the FPT algorithm may be preferable as it may run significantly faster
if the optimal solution has cardinality o(k2).
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O(|A| log d). Therefore in random graphs with |A| ≤ O( n
d2 log d ), minimizing contagion can

be solved using Theorem 24 in time O(2|A| log d poly(n)). As before, exhaustive search over
all edges on the graph induced on ⟨A⟩ can solve both minimizing and stopping contagion in
time O(2|A| log d poly(n)) as well.

Using our local treewidth estimates, Theorem 23, the bounded spread property and
the fact that w.h.p the maximum degree of G is O(log n/ log log n) we have the following
improvement for the running time:

▶ Theorem 28. Let G := G(n, d/n), ϵ ∈ (0, 1) and δ ∈ (0, 1/2). Denote by k to be the size of
the seed set A. Suppose that k ≤ O(min(n1−ϵ, n

d2 log d )) and d ≤ n1/2−δ, and that every vertex
has threshold larger than 1. Then w.h.p both minimizing contagion and stopping contagion
can be solved in time

exp
(

O

(
k log2 d log log n

log n

))
poly(n).

Proof. As before we can solve either problem on ⟨A⟩ using the upper bound on the treewidth
from Theorem 15, the fact that with high probability |⟨A⟩| ≤ O(log d|A|) and the algorithm
for graphs of bounded treewidth for stopping or minimizing contagion. ◀

6.3 Noisy trees
We now devise an algorithm for stopping contagion and minimizing contagion for noisy trees.
To achieve this we first prove that for forests every sets of seeds does not spread by much
and furthermore this property is maintained after adding a “small” number of edges on top
of the edges belonging to the forest. Then we use similar ideas to Theorem 21 and prove
that noisy trees are locally sparse in the sense that every subsets of vertices of cardinality k

spans w.h.p k + o(k) edges assuming k is not too large. We use this property to prove that
any subset A of k seeds infects w.h.p O(k) vertices. Thereafter we can use the algorithms
for bounded treewidth to solve either minimizing contagion or stopping contagion on ⟨A⟩.
We assume throughout this section that ϵ ∈ (0, 1) is a sufficiently small constant (ϵ < 1/100
would suffice for our proofs to go through). Using these ideas we can prove the following
Theorem whose complete proof can be found in [39].

▶ Theorem 29. Let T be a tree and let T ′ be the noisy tree obtained from T . Assume |A| =
k, ∆ ≤ nϵ and that every vertex has threshold larger than 1. Let m := max(log log n, log ∆).
Then both minimizing contagion and stopping contagion can be solved in T ′ in time

exp
(

O

(
k(log k + log ∆)m

log n

))
poly(n).
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8:2 Beyond Single-Deletion Correcting Codes

1 Introduction

Deletions, substitutions, and transpositions are some of the most common types of errors
jointly affecting information encoded in DNA-based data storage systems [27, 14]. Therefore,
it is natural to consider models capturing the interplay between these types of errors, along
with the best possible codes for these settings. More concretely, one usually seeks to pin down
the optimal redundancy required to correct such errors, and also to design fast encoding
and decoding procedures for low-redundancy codes. It is well-known that deletions are
challenging to handle even in isolation, since they cause a loss of synchronization between
sender and receiver. The situation where one aims to correct deletions in conjunction with
other reasonable types of errors is even more difficult. Our understanding of this interplay
remains scarce even in basic settings where only one or two such worst-case errors may occur.

One of the most fundamental settings where deletions interact with the other types of
errors mentioned above is that of correcting a single edit error (i.e., a deletion, insertion,
or substitution) over a binary alphabet. In this case, linear-time encodable and decodable
binary codes correcting a single edit error with nearly optimal redundancy have been known
for more than 50 years. Levenshtein [13] showed that the binary Varshamov-Tenengolts (VT)
code [24] defined as

C =
{

x ∈ {0, 1}n :
n∑

i=1
i · xi = a mod (2n + 1)

}
(1)

corrects one arbitrary edit error. For an appropriate choice of a, this code has redundancy
at most log n + 2, and it is not hard to see that at least log n bits of redundancy are required
to correct one edit error. Remarkably, a greedy Gilbert-Varshamov-type argument only
guarantees the existence of single-edit correcting codes with redundancy 2 log n – much higher
than what can be achieved with the VT code. We recommend Sloane’s excellent survey [18]
for a more in-depth overview of binary VT codes and their connections to combinatorics.

Although the questions of determining the optimal redundancy and giving nearly-optimal
explicit constructions of codes in the binary single-edit setting have been settled long ago,
the underlying approach fails to extend to many simple, natural variations of this setting
combining deletions with substitutions and transpositions. In this work, we make progress
on these questions in three such fundamental variations, which we proceed to describe next.

1.1 Non-binary single-edit correcting codes
We begin by considering the problem of correcting a single arbitrary edit error over a non-
binary alphabet. This setting is especially relevant due to its connection to DNA-based data
storage, which requires coding over a 4-ary alphabet. In this case, the standard VT sketch

f(x) =
n∑

i=1
i · xi mod N, (2)

which allows us to correct one binary edit error in (1) with an appropriate choice of N , is no
longer enough. Instead, we present a natural extension of the binary VT code to a non-binary
alphabet via a new notion of weighted VT sketches, which yields an order-optimal result.

▶ Theorem 1. There exists a 4-ary1 single-edit correcting code C ⊆ {0, 1, 2, 3}n with log n +
log log n + 7 + o(1) bits of redundancy, where o(1) → 0 when n → ∞. Moreover, there exists
a single edit-correcting code C ⊆ {0, 1, 2, 3}n with log n + O(log log n) redundant bits that
supports linear-time encoding and decoding.

1 A 4-ary alphabet is relevant for DNA-based data storage.
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This problem was previously considered by Cai, Chee, Gabrys, Kiah, and Nguyen [2], who
proved an analogous result. Our existential result requires 6 fewer bits of redundancy than
the corresponding result from [2], and our explicit code supports linear time encoding and
decoding procedures, while the explicit code from [2] requires Θ(n log n) time encoding [22].
However, we believe that our more significant contribution in this setting is the simpler
approach we employ to prove Theorem 1 via weighted VT sketches. The technique of weighted
VT sketches seems quite natural and powerful and may be of independent interest.

We note that the existential result in Theorem 1 extends to arbitrary alphabet size q with
log n + Oq(log log n) redundant bits, but we focus on q = 4 since it is the most interesting
setting and provides the clearest exposition of our techniques. More details can be found
in Section 3, where we also present a more in-depth discussion on why the standard VT
sketch (2) does not suffice in the non-binary case.

1.2 Binary codes correcting one deletion or one adjacent transposition

As our second contribution, we consider the interplay between deletions and adjacent
transpositions, which map 01 to 10 and vice-versa. An adjacent transposition may be
seen as a special case of a burst of two substitutions. Besides its relevance to DNA-based
storage, the interplay between deletions and transpositions is an interesting follow-up to
the single-edit setting discussed above because the VT sketch is highly ineffective when
dealing with transpositions, while it is the staple technique for correcting deletions and
substitutions. The issue is that, if y, y′ ∈ {0, 1}n are obtained from x ∈ {0, 1}n via any two
adjacent transpositions of the form 01 7→ 10, then f(y) = f(y′) = f(x) − 1, where we recall
f(z) =

∑n
i=1 i · zi mod N is the VT sketch. This implies that knowing the VT sketch f(x)

reveals almost no information about the adjacent transposition, since correcting an adjacent
transposition is equivalent to finding its location.

In this setting, the best known redundancy lower bound is log n (the same as for single-
deletion correcting codes), while the best known existential upper bound is 2 log n, obtained
by naively intersecting a single-deletion correcting code and a single-transposition correcting
code. A code with redundancy log n + O(1) was claimed in [7, Section III], but the argument
there is flawed. In this work, we determine the optimal redundancy of codes in this setting
up to an O(log log n) additive term via a novel marker-based approach. More precisely, we
prove the following result, more details of which can be found in Section 4.

▶ Theorem 2. There exists a binary code C ⊆ {0, 1}n correcting one deletion or one
transposition with redundancy log n + O(log log n).

Since we know that every code that corrects one deletion also corrects one insertion [13],
we also conclude from Theorem 2 that there exists a binary code correcting one deletion, one
insertion, or one transposition with nearly optimal redundancy log n + O(log log n).

1.3 Binary codes for one deletion and one substitution

To conclude, we make progress on the study of single-deletion single-substitution correcting
codes. Recent work by Smagloy, Welter, Wachter-Zeh, and Yaakobi [19] constructed efficiently
encodable and decodable binary single-deletion single-substitution correcting codes with
redundancy close to 6 log n. On the other hand, it is known that 2 log n redundant bits are
required, and a greedy approach shows the existence of a single-deletion single-substitution
correcting code with redundancy 4 log n + O(1).

APPROX/RANDOM 2022
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In this setting, we ask what improvements are possible if we relax the unique decoding
requirement slightly and instead require that the code be list-decodable with list-size 2. There,
our goal is to design a low-redundancy code C ⊆ {0, 1}n such that for any corrupted string
y ∈ {0, 1}n−1 ∪ {0, 1}n there are at most two codewords x, x′ ∈ C that can be transformed
into y via some combination of at most one deletion and one substitution. This is the
strongest possible requirement after unique decoding, which corresponds to lists of size 1.

The best known existential upper bound on the optimal redundancy in the list-decoding
setting is still 4 log n + O(1) via the Gilbert-Varshamov-type greedy algorithm. We give
an explicit list-decodable code with list-size 2 correcting one deletion and one substitution
with redundancy matching the existential bound up to an O(log log n) additive term. At a
high level, this code is obtained by combining the standard VT sketch (2) with run-based
sketches, which have been recently used in the design of two-deletion correcting codes [9].
More precisely, we have the following result, details of which can be found in Section 5.

▶ Theorem 3. There exists a linear-time encodable and decodable binary list-size 2 single-
deletion single-substitution correcting code C ⊆ {0, 1}n with 4 log n + O(log log n) bits of
redundancy.

Subsequently to the appearance of our work online, Song, Cai, and Nguyen [20] constructed
a list-decodable code with list-size 2 for one deletion and one substitution with redundancy
3 log n + O(log log n).

1.4 Related work
Recently, there has been a flurry of works making progress in coding-theoretic questions
analogous to the ones we consider here in other extensions of the binary single-edit error
setting. A line of work culminating in [1, 9, 17] has succeeded in constructing explicit
low-redundancy codes correcting a constant number of worst-case deletions. Constructions
focused on the two-deletion case have also been given, e.g., in [17, 6, 9]. Explicit binary codes
correcting a sublinear number of edit errors with redundancy optimal up to a constant factor
have also been constructed recently [3, 10]. Other works have considered the related setting
where one wishes to correct a burst of deletions or insertions [15, 12, 26], or a combination of
duplications and edit errors [23]. Following up on [19], codes correcting a combination of more
than one deletion and one substitution were given in [21] with sub-optimal redundancy. List-
decodable codes in settings with indel errors have also been considered before. For example,
Wachter-Zeh [25] and Guruswami, Haeupler, and Shahrasbi [8] study list-decodability from a
linear fraction of deletions and insertions.

Most relevant to our result in Section 1.3, Guruswami and Håstad [9] constructed an
explicit list-size two code correcting two deletions with redundancy 3 log n + O(log log n),
thus beating the greedy existential bound in this setting.

With respect to the interplay between deletions and transpositions, Gabrys, Yaakobi, and
Milenkovic [7] constructed codes correcting a single deletion and many adjacent transpositions.
In an incomparable regime, Schulman and Zuckerman [16], Cheng, Jin, Li, and Wu [4], and
Haeupler and Shahrasbi [11] constructed explicit codes with good redundancy correcting a
linear fraction of deletions and insertions and a nearly-linear fraction of transpositions.

2 Preliminaries

2.1 Notation and conventions
We denote sets by uppercase letters such as S and T or uppercase calligraphic letters such as
C, and define [n] = {0, 1, . . . , n − 1}, S≤k =

⋃k
i=0 Si, and S∗ =

⋃∞
i=0 Si for any set S. The

symmetric difference between two sets S and T is denoted by S△T . We use the notation
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{{a, a, b}} for multisets, which may contain several copies of each element. Given two
strings x and y over a common alphabet Σ, we denote their concatenation by x∥y and write
x[i : j] = (xi, xi+1, . . . , xj). We say y ∈ Σk is a k-subsequence of x ∈ Σn if there are k indices
1 ≤ i1 < i2 < · · · < ik ≤ n such that xij = yj for j = 1, . . . , k, in which case we also call x

an n-supersequence of y. Moreover, we say x[i : j] is an a-run of x if x[i : j] = aj−i+1 for a
symbol a ∈ Σ. We denote the base-2 logarithm by log. A length-n code C is a subset of Σn

for some alphabet Σ which will be clear from context. In this work, we are interested in the
redundancy of certain codes (measured in bits), which we define as n log |Σ| − log |C|.

2.2 Error models and codes
Since we will be dealing with three distinct but related models of worst-case errors, we begin
by defining the relevant standard concepts in a more general way. We may define a worst-case
error model over some alphabet Σ by specifying a family of error balls B = {B(y) ⊆ Σ∗ :
y ∈ Σ∗}, where the B(y) can be arbitrary sets. Usually, B(y) contains all strings that can
be corrupted into y by applying an allowed error pattern. We proceed to define unique
decodability of a code C ⊆ Σn with respect to an error model.

▶ Definition 4 (Uniquely decodable code). We say a code C ⊆ Σn is uniquely decodable
(with respect to B) if |B(y) ∩ C| ≤ 1 for all y ∈ Σ∗.

Throughout this work the underlying error model will always be clear from context, so we
do not mention it explicitly. We will also consider list-decodable codes with small list size in
Section 5, and so we require the following more general definition.

▶ Definition 5 (List-size t decodable code). We say a code C ⊆ Σn is list-size t decodable
(with respect to B) if |B(y) ∩ C| ≤ t for all y ∈ Σ∗.

Note that uniquely decodable codes correspond exactly to list-size 1 codes. Moreover, we
remark that for the error models considered in this work and constant t, the best existential
bound for list-size t codes coincides with the best existential bound for uniquely decodable
codes up to a constant additive term.

We proceed to describe the type of errors we consider. A deletion transforms a string
x ∈ Σn into one of its (n − 1)-subsequences. An insertion transforms a string x ∈ Σn into
one of its (n + 1)-supersequences. A substitution transforms x ∈ Σn into a string x′ ∈ Σn

that differs from x in exactly one coordinate. An adjacent transposition transforms strings
of the form ab into ba. More formally, a string x ∈ Σn is tranformed into a string x′ ∈ Σn

with the property that x′
k = xk+1 and x′

k+1 = xk for some k, and x′
i = xi for i ̸= k, k + 1.

We can now instantiate the above general definitions under the specific error models
considered in this paper. In the case of a single edit, B(y) contains all strings which can
be transformed into y via at most one deletion, one insertion, or one substitution. In the
case of one deletion and one substitution, B(y) contains all strings that can be transformed
into y by applying at most one deletion and at most one substitution. Finally, in the case of
one deletion or one adjacent transposition, B(y) contains all strings that can be transformed
into y by applying either at most one deletion or at most one transposition.

3 Non-binary single-edit correcting codes

In this section, we describe and analyze the code construction used to prove Theorem 1.
Before we do so, we provide some intuition behind our approach.
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3.1 The binary alphabet case as a motivating example
It is instructive to start off with the binary alphabet case and the VT code described in (1),
which motivates our approach for non-binary alphabets. More concretely, we may wonder
whether a direct generalization of C to larger alphabets also corrects a single edit error, say

C′ =
{

x ∈ [q]n
∣∣∣∣ n∑

i=1
ixi = s mod (1 + 2qn), ∀c ∈ [q] : |{i : xi = c}| = sc mod 2

}
,

where [q] = {0, 1, . . . , q − 1} and s, s0, . . . , sq−1 are appropriately chosen integers. However,
this approach fails already over a ternary alphabet {0, 1, 2}. In fact, C′ cannot correct
worst-case deletions of 1’s because it does not allow us to distinguish between . . . 102 . . .

and . . . 021 . . . , which can be obtained one from the other by deleting and inserting a 1
in the underlined positions. More generally, there exist codewords x ∈ C′ with substrings
(xj = 1, xj+1, . . . , xk) not consisting solely of 1’s satisfying

k∑
i=j+1

(xi − 1) = 0. (3)

This is problematic since the string x′ obtained by deleting xj = 1 from x and inserting a
1 between xk and xk+1 is also in C′. In order to avoid the problem encountered by C′, we
instead consider a weighted VT sketch of the form

fw(x) =
n∑

i=1
i · w(xi) mod N (4)

for some weight function w : [q] → Z and an appropriate modulus N . Using fw instead of the
standard VT sketch f(x) =

∑n
i=1 ixi mod N in the argument above causes the condition (3)

for an uncorrectable 1-deletion to be replaced by
∑k

i=j+1(w(xi) − w(1)) = 0. Then, choosing
0 ≤ w(0) < w(1) < w(2) < · · · < w(q − 1) appropriately allows us to correct the deletion of
a 1 in x given knowledge of fw(x) provided that x satisfies a simple runlength constraint.
In turn, encoding an arbitrary message z into a string x satisfying this constraint can be
done very efficiently via a direct application of the simple runlength replacement technique
from [15] using few redundant bits. Theorem 1 is then obtained by instantiating the weighted
VT sketch (4) with an appropriate weight function and modulus.

3.2 Code construction
In this section, we present our construction of a 4-ary single-edit correcting code which leads
to Theorem 1. As discussed in Section 3.1, given an arbitrary string x ∈ {0, 1, 2, 3}n we
consider a weighted VT sketch

f(x) =
n∑

i=1
i · w(xi) mod [1 + 2n · (2 log n + 12)],

where w(0) = 0, w(1) = 1, w(2) = 2 log n + 11, and w(3) = 2 log n + 12, along with the count
sketches hc(x) = |{i : xi = c}| mod 2 for c ∈ {0, 1, 2}. Intuitively, the count sketches allow
us to cheaply narrow down exactly what type of deletion or substitution occurred (but not
its position). As we shall prove later on, successfully correcting the deletion of an a boils
down to ensuring that

k∑
i=j

(w(xi) − w(a)) ̸= 0 (5)
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for all 1 ≤ j ≤ k ≤ n such that there is i ∈ [j, k] with xi ̸= a. We call strings x that satisfy
this property for every a regular, and proceed to show that enforcing a simple runlength
constraint on x is sufficient to guarantee that it is regular.

▶ Lemma 6. Suppose x ∈ {0, 1, 2, 3}n satisfies the following property: If x′ denotes the
subsequence of x obtained by deleting all 1’s and 3’s and x′′ denotes the subsequence obtained
by deleting all 0’s and 2’s, it holds that all 0-runs of x′ and all 3-runs of x′′ have length at
most log n + 3. Then, x is regular.

Proof. See the full version [5]. ◀

Let G ⊆ {0, 1, 2, 3}n denote the set of regular strings. Given the above definitions, we set
our code to be

C = G ∩ {x ∈ {0, 1, 2, 3}n : f(x) = s, hc(x) = sc, c ∈ {0, 1, 2}} (6)

for appropriate choices of s ∈ {0, . . . , 1 + 2n · (2 log n + 12)} and sc ∈ {0, 1} for c = 0, 1, 2. A
straightforward application of the probabilistic method shows that most strings are regular.

▶ Lemma 7. Let X be sampled uniformly at random from {0, 1, 2, 3}n. Then, we have
Pr[X is regular] ≥ 7/8.

As a result, by the pigeonhole principle there exist choices of s, s0, s1, s2 such that

|C| ≥ 7 · 4n

8 · 23 · (1 + 2n · (2 log n + 12)) .

This implies that we can make it so that C has log n + log log n + 6 + o(1) bits of redundancy,
where o(1) → 0 when n → ∞, as desired. If n is not a power of two, then taking ceilings
yields at most one extra bit of redundancy for a total of log n + log log n + 7 + o(1) bits, as
claimed.

It remains to show that C corrects a single edit in linear time and that a standard
modification of C admits a linear time encoder. Observe that if a codeword x ∈ C is corrupted
into a string y by a single edit error, we can tell whether it was a deletion, insertion, or
substitution by computing |y|. Therefore, we treat each such case separately. Since correcting
one substitution in our code is analogous to correcting one substitution in the original binary
VT code, and since correcting one insertion is similar to correcting one deletion, we consider
only the case of one deletion here and leave the remaining cases to the full version [5].

3.3 Correcting one deletion
Suppose that y is obtained from x ∈ C by deleting an a at position i. First, note that we can
find a by computing hc(y) − hc(x) for c = 0, 1, 2. Now, let y(j) denote the string obtained by
inserting an a to the left of yj (when j = n this means we insert an a at the end of y). We
have x = y(i) and our goal is to find i. Consider n ≥ j ≥ i and observe that

f(x) − f(y(j)) = f(y(i)) − f(y(j)) =
j∑

ℓ=i+1
(w(xℓ) − w(a)),

because yℓ−1 = xℓ for ℓ > i. Since x is regular, it follows that
∑j

ℓ=i+1(w(xℓ) − w(a)) ̸= 0
unless xi+1 = · · · = xj = a. This suggests the following decoding algorithm: Successively
compute f(x) − f(y(j)) for j = n, n − 1, . . . , 1 until f(x) − f(y(j)) = 0, in which case the
above argument ensures that y(j) = x since we must be inserting a into the same a-run of
x from which an a was deleted. This procedure runs in overall time O(n), since we can
compute f(x) − f(y(j−1)) given f(x) − f(y(j)) with O(1) operations.
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3.4 A linear-time encoder
We have described a linear-time decoder that corrects a single edit error in regular strings x

assuming knowledge of the weighted VT sketch f(x) and the count sketches hc(x) for c = 0, 1, 2.
It remains to describe a low-redundancy linear-time encoding procedure for a slightly modified
version of our code C defined in (6). Fix an arbitrary message z ∈ {0, 1, 2, 3}m. We proceed
in two steps:
1. We encode z into a regular string x ∈ {0, 1, 2, 3}m+4 in linear time by exploiting the

runlength replacement technique from [15];
2. We append an appropriate encoding of the sketches (which we now see as binary strings)

to x that can be recovered even if the final string is corrupted by an edit error. This adds
only O(log log n) bits of redundancy, and allows x (and thus z) to be recovered in linear
time.

The complete analysis can be found in the full version [5].

4 Binary codes correcting one deletion or one transposition

In this section, we describe and analyze the code construction used to prove Theorem 2. As
discussed in Section 1.2, the adjacent transposition precludes the use of the standard VT
sketch. Therefore, we undertake a radically different approach.

4.1 Code construction and high-level overview of our approach
Our starting point is a marker-based segmentation approach considered by Lenz and Poly-
anskii [12] to correct bursts of deletions. We then introduce several new ideas. Roughly
speaking, our idea is to partition a string x ∈ {0, 1}n into consecutive short substrings
zx

1 , . . . , zx
ℓ for some ℓ according to the occurrences of a special marker string in x. Then, by

carefully embedding hashes of each segment zx
i into a VT-type sketch, adding information

about the multiset of hashes, and exploiting specific structural properties of deletions and
adjacent transpositions, we are able to determine a short interval containing the position
where the error occurred. Once this is done, a standard technique allows us to recover the
true position of the error by slightly increasing the redundancy.

We now describe the code construction in detail. For a given integer n > 0, let ∆ =
50 + 1000 log n and m = 1000∆2 = O(log2 n). For the sake of readability, we have made no
efforts to optimize constants, and assume n is a power of two to avoid using ceilings and
floors. Given a string x ∈ {0, 1}n, we divide it into substrings split according to occurrences
of the marker 0011. To avoid edge cases, assume that x ends in 0011 – this will only add
4 bits to the overall redundancy. Then, this marker-based segmentation induces a vector
zx = (zx

1 , . . . , zx
ℓx

), where 1 ≤ ℓx ≤ n, and each string zx
i has length at least 4, ends with

0011, and 0011 only occurs once in each such string. We may assume that |zx
i | ≤ ∆ for all

i. This will only add 1 bit to the overall redundancy, as captured in the following simple
lemma.

▶ Lemma 8. Suppose X is uniformly random over {0, 1}n. Then, Pr[|zX
i | ≤ ∆, i =

1, . . . , ℓX ] ≥ 1
2 .

Our goal now will be to impose constraints on zx so that (i) We only introduce log n +
O(log log n) bits of redundancy, and (ii) If x is corrupted by a deletion or transposition in
zx

i , we can then locate a window W ⊆ [n] of size |W | = O(log4 n) such that zx
i ⊆ W . This

will then allow us to correct the error later on by adding O(log log n) bits of redundancy.
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Since each zx
i has length at most ∆ = O(log n), we will exploit the fact that there exists

a hash function h with short output that allows us to correct a deletion, substitution, or
transposition in all strings of length at most 3∆. This is guaranteed by the following lemma.

▶ Lemma 9. There exists a hash function h : {0, 1}≤3∆ → [m] with the following property: If
z′ is obtained from z by at most two transpositions, two substitutions, or at most a deletion
and an insertion, then h(z) ̸= h(z′).

Proof. We can construct such a hash function h greedily. Let A(z) denote the set of such
strings obtained from z ∈ {0, 1}≤3∆. Since |A(z)| < m, we can set h(z) so that h(z) ̸= h(z′)
for all z′ ∈ A(z) \ {z}. ◀

With the intuition above and the hash function h guaranteed by Lemma 9 in mind, we
consider the VT-type sketch

f(x) =
ℓx∑

j=1
j(|zx

j | · m + h(zx
j )) mod (L = 10n · ∆ · m + 1)

along with the count sketches g1(x) = ℓx mod 5 and g2(x) =
∑n

i=1 xi mod 3, where xi =∑i
j=1 xj mod 2. At a high level, the sketch f(x) is the main tool we use to approximately

locate the error in x. The count sketches g1(x) and g2(x) are added to allow us to detect
how many markers are created or destroyed by the error, and to distinguish between the
cases where there is no error or a transposition occurs. Thus, we define the preliminary code

C′ =
{

x ∈ {0, 1}n

∣∣∣∣ x[n − 3, n] = (0, 0, 1, 1), f(x) = s0, g1(x) = s1, g2(x) = s2,

∀i ∈ [ℓx] : |zx
i | ≤ ∆

}
for appropriate choices of s0, s1, s2. Taking into account all constraints, the choice of ∆
and m, and Lemma 8, the pigeonhole principle implies that we can choose s0, s1, s2 so that
this code has at most 4 + log(10n · ∆ · m + 1) + 1 + 2 + 2 + 1 = log n + O(log log n) bits of
redundancy.

However, it turns out that the constraints imposed in C′ are not enough to handle a
deletion or a transposition. Intuitively, the reason for this is that, in order to make use of
the sketch f(x) when decoding, we will need additional information both about the hashes
of the segments of x that were affected by the error and the hashes of the corresponding
corrupted segments in the corrupted string y. Therefore, given a vector zx and the hash
function h guaranteed by Lemma 9, we will be interested in the associated hash multiset
Hx = {{h(zx

1 ), . . . , h(zx
ℓx

)}} over [m]. As we shall see, a deletion or transposition will change
this multiset by at most 4 elements. Therefore, we will expurgate C′ so that any pair of
remaining codewords x and x′ satisfy either Hx = Hx′ or |Hx△Hx′ | ≥ 10. This will allow us
to recover the true hash multiset of x from the hash multiset of the corrupted string. The
following lemma shows that this expurgation adds only an extra O(log m) = O(log log n) bits
of redundancy.

▶ Lemma 10. There exists a code C ⊆ C′ of size |C| ≥ |C′|
m10 such that for any x, x′ ∈ C we

either have Hx = Hx′ or |Hx△Hx′ | ≥ 10.

We will take our error-locating code to be the expurgated code C guaranteed by Lemma 10.
By the redundancy of C′ above and the choice of m, it follows that there exists a choice of
s0 and s1 such that C has log n + O(log log n) bits of redundancy. We prove the following
result, which states that, given a corrupted version of x ∈ C, we can identify a small interval
containing the position where the error occurred.
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▶ Theorem 11. If x ∈ C is corrupted into y via one deletion or transposition, we can recover
from y a window W ⊆ [n] of size |W | ≤ 1010 log4 n that contains the position where the error
occurred (in the case of a transposition, we take the error location to be the smallest of the
two affected indices).

We can use Theorem 11 to prove our main Theorem 2 via standard methods (see the full
version [5]).

Fix x ∈ C and suppose y is obtained from x via one deletion or one transposition. To
prove Theorem 11, we consider several independent cases based on the fact that a marker
cannot overlap with itself, that we can identify whether a deletion occurred by computing
|y|, and that we can identify whether a transposition occurred by comparing g2(x) and g2(y).
Since the arguments are similar, we show how to locate one deletion and leave the case of
one adjacent transposition to the full version [5].

4.2 Locating one deletion

In this section, we show how we can locate one deletion appropriately. Fix x ∈ C and suppose
that a deletion is applied to zx

i . The following lemma holds due to the marker structure.

▶ Lemma 12. A deletion either (i) Creates a new marker and does not delete any existing
markers, in which case ℓy = ℓx + 1, (ii) Deletes an existing marker and does not create any
new markers, in which case ℓy = ℓx − 1, or (iii) Neither deletes existing markers nor creates
new markers, in which case ℓy = ℓx.

Note that we can distinguish between the cases detailed in Lemma 12 by comparing g1(x)
and g1(y). Thus, we analyze each case separately:
1. ℓy = ℓx: In this case, we have zy = (zx

1 , . . . , zx
i−1, z′

i, zx
i+1, . . . , zx

ℓx
), where z′

i is obtained
from zx

i by a deletion (in particular, |z′
i| = |zx

i | − 1). Therefore, it holds that

f(x) − f(y) =
ℓx∑

j=1
j(|zx

j | · m + h(zx
j )) −

ℓy∑
j=1

j(|zy
j | · m + h(zy

j )) mod L

= i(|zx
i | · m + h(zx

i ) − |z′
i| · m − h(z′

i))
= i(m + h(zx

i ) − h(z′
i)),

where the second equality uses ℓy = ℓx. Let Hy denote the hash multiset of y. Then,
we know that |Hx△Hy| ≤ 2. Therefore, we can recover Hx from Hy, which means that
we can recover h(zx

i ) − h(z′
i). Indeed, if h(zx

i ) − h(z′
i) = 0 then Hx = Hy. On the

other hand, if h(zx
i ) − h(z′

i) ̸= 0 then |Hx△Hy| = 2 and we recover both h(zx
i ) (the

element in Hx but not in Hy) and h(z′
i) (the element in Hy but not in Hx). As a result,

we know m + h(zx
i ) − h(z′

i). Since it also holds that m + h(zx
i ) − h(z′

i) ̸= 0 (because
|h(zx

i ) − h(z′
i)| < m), we can recover i from f(x) − f(y). This gives a window W of length

at most ∆ = O(log n).
2. ℓy = ℓx − 1: In this case, the marker at the end of zx

i is destroyed, merging zx
i

and zx
i+1. Observe that if i = ℓx then we can simply detect that the last marker

in x was destroyed. Therefore, we assume that i < ℓx, in which case we have zy =
(zx

1 , . . . , zx
i−1, z′

i, zx
i+2, . . . , zx

ℓx
), where |z′

i| = |zx
i | + |zx

i+1| − 1. Consequently, it holds that
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f(x) − f(y) =
ℓx∑

j=1
j(|zx

j | · m + h(zx
j )) −

ℓy∑
j=1

j(|zy
j | · m + h(zy

j )) mod L

= i(|zx
i | · m + h(zx

i )) + (i + 1)(|zx
i+1| · m + h(zx

i+1)) − i(|z′
i| · m + h(z′

i))

+
ℓx∑

j=i+2
(|zx

j | · m + h(zx
j ))

=
ℓx∑

j=i+2
(|zx

j | · m + h(zx
j )) + i(m + h(zx

i ) + h(zx
i+1) − h(z′

i))

+ (|zx
i+1| · m + h(zx

i+1)).

Note that, since |Hx△H(y)| ≤ 3, we can recover Hx from Hy. In particular, this means
that we know h(zx

i ) + h(zx
i+1) − h(z′

i). Therefore, for i′ = ℓy − 1, ℓy − 2, . . . , i we can
compute the potential function

Φ(i′) =
ℓy∑

j=i′+1
(|zy

j | · m + h(zy
j )) + i′(m + h(zx

i ) + h(zx
i+1) − h(z′

i))

=
ℓx∑

j=i′+2
(|zx

j | · m + h(zx
j )) + i′(m + h(zx

i ) + h(zx
i+1) − h(z′

i)).

Note that

|Φ(i) − (f(x) − f(y))| = ||zx
i+1| · m + h(zx

i+1)| ≤ ∆ · m + m ≤ 107 log2 n. (7)

Moreover, we also have

Φ(i′ − 1) − Φ(i′) = |zx
i′+1| · m + h(zx

i′+1) − (m + h(zx
i ) + h(zx

i+1) − h(z′
i))

≥ 4m − 3m = m. (8)

This suggests the following procedure for recovering the window W . Sequentially compute
Φ(i′) for i′ starting at ℓy−1 until we find i⋆ ≥ i such that |Φ(i′)−(f(x)−f(y))| ≤ 106 log2 n.
This is guaranteed to exist since i′ = i satisfies this property. We claim that i⋆ − i ≤
107 log n. In fact, if this is not the case then the monotonicity property in (8) implies that
|Φ(i) − (f(x) − f(y))| > m · 107 log n > 107 log2 n, contradicting (7). Since |zx

j | ≤ ∆ for
every j, recovering i⋆ also yields a window W ⊆ [n] of size |W | = 106 log n ·∆ = 109 log2 n

containing the error position, as desired.
3. ℓy = ℓx + 1: This case is very similar to the previous one (see the full version [5]).

5 Binary list-size two code for one deletion and one substitution

In this section, we describe and analyze a binary list-size two decodable code for one deletion
and one substitution, which yields Theorem 3. Departing from the approach of [19], our
construction makes use of run-based sketches combined with the standard VT sketch. Run-
based sketches have thus far been exploited in the construction of multiple-deletion correcting
codes, including list-decodable codes with small list size [9].
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8:12 Beyond Single-Deletion Correcting Codes

5.1 Code construction
We begin by describing some required concepts: Given a string x = (x1, . . . , xn) ∈ {0, 1}n,
we define its run string rx by first setting rx

0 = 0 along with x0 = 0 and xn+1 = 1, and then
iteratively computing rx

i = rx
i−1 if xi = xi−1 and rx

i = rx
i−1 +1 otherwise for i = 1, . . . , n, n+1.

Note that every string x is uniquely determined by its run string rx and vice-versa. Moreover,
it holds that rx defines a non-decreasing sequence and 0 ≤ rx

i ≤ i for every i = 1, . . . , n, n + 1.
As an example, the run string corresponding to x = 011101000 is rx = 0111234445. We call
rx

i the rank of index i in x. We will denote the total number of runs in x by r(x).
The main component of our code is a combination of the standard VT sketch

f(x) =
n∑

i=1
ixi mod (3n + 1) (9)

with the run-based sketches

fr
1 (x) =

n∑
i=1

rx
i mod (12n + 1), (10)

fr
2 (x) =

n∑
i=1

rx
i (rx

i − 1) mod (16n2 + 1) (11)

originally considered in [9]. Additionally, we also consider the count sketches

h(x) =
n∑

i=1
xi mod 5 and hr(x) = r(x) mod 13. (12)

Intuitively, the count sketches are used to distinguish different error patterns. The sketch
h(x) is used to determine the value of the bit deleted and the value of the bit flipped, while
hr(x) is used to identify how the number of runs was affected by the errors. For each possible
error pattern, we use the standard VT-sketch and the run-based sketches to decode. Given
the above, our code is defined to be

C = {x ∈ {0, 1}n : f(x) = s, fr
1 (x) = sr

1, fr
2 (x) = sr

2, h(x) = u, hr(x) = ur}, (13)

for an appropriate choice of s ∈ [3n + 1], sr
1 ∈ [12n + 1], sr

2 ∈ [16n2 + 1], u ∈ [5], and
ur ∈ [13]. By the pigeonhole principle, there is such a choice which ensures C has redundancy
4 log n + O(1).

In the remainder of this section, we first provide a high-level overview of our approach
towards showing that C admits linear-time list-decoding from one deletion and one substitution
with list-size 2. Then, we analyze a special case which exemplifies our more general approach.
The remainder of our argument appears in the full version [5]. We remark that linear-
time decoding and encoding of a slightly modified version of C (which has redundancy
4 log n+O(log log n) instead) follow without difficulty from this analysis via standard methods.
These algorithms are presented and analyzed in the full version [5].

5.2 High-level overview of our approach
Fix x ∈ C, and let y be the string obtained from x after one deletion at index d and one
substitution at index e. We use xe to denote the bit flipped, and xd to denote the bit deleted
in x. When d = e, we have one deletion and no substitution. Our goal is to recover x from y.
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We begin with some simple but useful remarks. First, we observe that one deletion and
no substitution can be equivalently transformed to one deletion and one substitution. Thus,
we will only consider the case in which we have one deletion and one substitution, i.e., d ̸= e.
We present a proof of this fact in the full version [5]. Second, the following structural lemma
about the number of runs in a corrupted string will prove useful in our case analysis.

▶ Lemma 13. If x′ is obtained from x via one deletion, then either r(x′) = r(x) or
r(x′) = r(x) − 2. On the other hand, if x′ is obtained from x via one substitution, then either
r(x′) = r(x), r(x′) = r(x) − 2, or r(x′) = r(x) + 2.

Combining Lemma 13 with the count sketches h(x) and hr(x) and knowledge of y ensures
that we can identify not only the values of xd and xe, but also r(x). As a result, this allows
us to split our analysis into several independent cases.

The process of decoding can be thought of as inserting a bit xd before the d-th bit in
y and flipping the (e − δ)-th bit in y, where δ ∈ {0, 1} is the indicator variable of whether
e > d. Our goal is to find d and e. We will begin with a candidate position pair (d̃, ẽ) with
d̃ is as small as possible with the property that, if x̃ denotes the string obtained from y

by inserting xd before the d-th bit in y and flipping the bit at position ẽ − δ̃ in y, where δ̃

indicates whether d̃ < ẽ, then f(x̃) = f(x), hr(x̃) = hr(x), and hr(x′) = hr(x̃′), where x′

(resp. x̃′) denotes the string obtained from x (resp. x̃) by deleting xd (resp. x̃
d̃
). We call such

pairs valid. Intuitively, valid pairs are indistinguishable from the true error pattern (d, e)
from the perspective of the VT sketch and the count sketches, and there may be several of
them. However, crucially, many are ruled out via the run-based sketches. Note that the true
error pattern (d, e) is a valid pair, so such pairs always exist.

Roughly speaking, our strategy is to start with some valid pair (d̃, ẽ) and sequentially
move to the next valid pair. This is done by moving d̃ one index to the right and checking
whether the unique index ẽ that ensures f(x̃) = f(x) forms a valid pair (d̃, ẽ). If this does
not hold, then we move d̃ one more index to the right, and repeat the process. We call this
an elementary move. Note that since inserting a bit b into a b-run at any position gives
the same output, we may always move d̃ to the end of the next xd-run in y (which may be
empty). Figure 1 shows an example of an elementary move.

d̃ ẽ

x̃

y y

d̃ ẽ

x̃

Figure 1 Example of an elementary move. Suppose that the error pattern indicates that xd = 1,
xe = 1, and the deletion does not reduce the number of runs while the substitution increases the
number of runs by two. The process starts with the left figure in which a bit 1 is inserted at position
d̃, the end of a 1-run and the bit 1 at position ẽ − 1 is flipped. After an elementary move, d̃ moves
to the end of the next 1-run, and e moves to the next position that matches the error pattern
yẽ−δ̃+1 = yẽ−δ̃−1 = 0.

Considering this step-by-step process with elementary moves proves useful because it
turns out to be feasible to track how the different sketches change in each such move. In
particular, the following equations will be useful to determine how d̃ and ẽ change in each
elementary move. Recall that we regard y as a string obtained via one substitution at index
e − δ from x′ ∈ {0, 1}n−1, where x′ is obtained via one deletion from x at index d. Note that
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8:14 Beyond Single-Deletion Correcting Codes

f(x) − f(x′) = dxd +
n−1∑

d

x′
i and f(x′) − f(y) = (e − δ)[xe − (1 − xe)].

Moreover, we have
∑n−1

d x′
i =

∑n−1
d yi + δ(2xe − 1). Combining these three observations

yields

f(x) − f(y) = dxd +
n−1∑
i=d

yi + e(2xe − 1). (14)

We prove that, during this sequential process, either fr
1 is monotonic and hence rules out all

but one valid pair (d̃, ẽ), or a convexity-type property of fr
2 , which implies that it takes on

each value at most twice, rules out all but at most two valid pairs. The convexity of fr
2 (x) is

a consequence of the following lemma.

▶ Lemma 14 ([9, Lemma 4.1]). Let ai and a′
i be two sequences of non-negative integers such

that
∑n

i=1 ai =
∑n

i=1 a′
i and there is a value t such that for all i satisfying ai < a′

i it holds
that a′

i ≤ t, and for all i satisfying ai > a′
i it holds that a′

i ≥ t. Then, either ai = a′
i for all i,

or
∑n

i=1 ai(ai − 1) >
∑n

i=1 a′
i(a′

i − 1).

Finally, we note that, in the high level overview above, we ignored the fact that we do
not have access to the intermediate string x′, but we need to know hr(x′). For example, if
r(y) = r(x), then there is uncertainty about hr(x′). In fact, it could be that both errors do
not change the number of runs, or that both errors do change the number of runs but these
cancel each other out. Since we are aiming for list-size 2 decoding, this is not problematic,
and we handle it in the final decoding procedure.

Below, we consider one special case which exemplifies how our high level approach above
can be realized. The remaining cases are analyzed in the full version [5].

5.3 Special case – Unique decoding when the number of runs increases
by two

If r(y) = r(x) + 2, then it must be that r(x) = r(x′) and r(y) = r(x′) + 2. This means that
the deletion does not change the number of runs (and thus occurred in a run of length at
least 2 in x), while the substitution affects a bit in the middle of a run of length at least 3.
In particular, we have ye−δ−1 = ye−δ+1 = 1 − ye−δ. In this case, it follows that

fr
1 (x) − fr

1 (x′) = rx
d , fr

1 (x′) − fr
1 (y) = −(1 + 2(n − e + δ)).

Therefore, for the run-based sketch fr
1 (x) it holds that

fr
1 (x) − fr

1 (y) = rx
d − (1 + 2(n − e + δ)). (15)

We now proceed by case analysis on the value of xd and xe.

5.3.1 If xe = xd = b

In this case, when d̃ makes an elementary move to the right, it must pass across a (1 − b)-run
of some length ℓ ≥ 1. According to (14), position ẽ has to move to the left by ℓ so that
f(x̃) = f(x). If we have d̃ < ẽ before one elementary move but d̃ > ẽ after that move, we
call it a take over step. For each elementary move:
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If the move is not a take over step: Then, rx̃

d̃
increases by 2 while 2(n− d̃+ δ̃)+1 increases

by 2ℓ. Therefore, (15) implies that fr
1 (x̃) strictly decreases after such a move whenever

ℓ > 1. If ℓ = 1, then ẽ moves by 1 to the left and fr
1 (x̃) remains unchanged. However,

since we need 1 − b = y
ẽ−δ̃

= 1 − y
ẽ−δ̃

it follows that ẽ cannot move only 1 position to
the left, and so ℓ > 1 necessarily.
If the move is a take over step: Before the move, d̃ is on the left of a (1 − b)-run of length
ℓ ≥ 1 while ẽ > d̃ satisfies y

ẽ−1 = 1 − b and y
ẽ−2 = y

ẽ
= b. After the move, d̃ moves to

the right of the (1 − b)-run of length ℓ, while ẽ is to the left of d̃. Moreover, it must be
that y

ẽ
= 1 − b and y

ẽ−1 = y
ẽ+1 = b. To match the error pattern, the only possible case is

that ℓ = 1. To see why this is the case, note that when ℓ ≥ 2 the index ẽ has to move to
the left by at least ℓ+2 to match the error pattern y

ẽ−δ̃−1 = y
ẽ−δ̃+1 = 1−y

ẽ−δ̃
. However,

this move leads to f(x̃) ̸= f(x), and thus does not yield a valid pair (d̃, ẽ). When ℓ = 1,
let (d̃1, ẽ1) and (d̃2, ẽ2) denote the position pair before and after the move, respectively.
Then, these two pairs yield the same candidate solution x̃1 = x̃2. See Figure 2 for an
example.

d̃1 ẽ1

x̃1

y y

d̃2ẽ2

x̃2

Figure 2 An example of a take over step. If the take over happens, it must be that ℓ = 1. The
resulting x̃1 and x̃2 are the same.

Taking into account both cases above, we see that fr
1 (x̃) decreases during each elementary

move, and decreases by at most 2n during the whole process. Since the value of fr
1 (x) is

taken modulo 12n + 1, there is only a unique pair (d̃, ẽ) that yields a solution such that
fr

1 (x̃) = fr
1 (x). Hence, f(x) and fr

1 (x) together with y uniquely determine one valid pair
(d̃, ẽ), which in turn yields a unique candidate solution x̃ = x.

5.3.2 If xd = 1 − xe = b

In this case, when d̃ makes an elementary move to the right, it must pass across a (1 − b)-run
of some length ℓ ≥ 1. Then, ẽ has to move to the right by ℓ so that f(x̃) = f(x). During
each such move fr

1 (x̃) strictly increases. For the whole process, fr
1 (x̃) increases by at most

2n. By a similar argument as above, we have that f(x) and fr
1 (x) together with y uniquely

determine one valid pair (d̃, ẽ) which yields the correct solution x̃ = x.

6 Open problems

Our work leaves open several natural avenues for future research. We highlight a few of them
here:

Given the effectiveness of weighted VT sketches in the construction of nearly optimal
non-binary single-edit correcting codes in Section 3 with fast encoding and decoding, it
would be interesting to find further applications of this notion.
We believe that the code we introduce and analyze in Section 5 is actually uniquely decod-
able under one deletion and one substitution. Proving this would be quite interesting, since
then we would also have explicit uniquely decodable single-deletion single-substitution
correcting codes with redundancy matching the existential bound, analogous to what is
known for two-deletion correcting codes [9].
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8:16 Beyond Single-Deletion Correcting Codes

The code we designed in Section 4 fails to correct an arbitrary substitution. Roughly
speaking, the reason behind this is that one substitution may simultaneously destroy
and create a marker with a different starting point. As the clear next step, it would
be interesting to show the existence of a binary code correcting one edit error or one
transposition with redundancy log n + O(log log n).
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Abstract
We study a simple and general template for constructing affine extractors by composing a linear
transformation with resilient functions. Using this we show that good affine extractors can be
computed by non-explicit circuits of various types, including AC0-Xor circuits: AC0 circuits with
a layer of parity gates at the input. We also show that one-sided extractors can be computed by
small DNF-Xor circuits, and separate these circuits from other well-studied classes. As a further
motivation for studying DNF-Xor circuits we show that if they can approximate inner product then
small AC0-Xor circuits can compute it exactly – a long-standing open problem.
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AC0 with parity gates is a frontier class in circuit complexity, essentially the strongest
class for which we can prove strong lower bounds for explicit functions. These lower bounds
however have been stuck since the classic results from the 80’s [32, 36]. In particular, unlike
the case of AC0, we do not have (1) strong average-case lower bounds, (2) pseudorandom
generators, or (3) hierarchy results for this class.

Remarkably, (1), (2), and (3) are not known even for the subclass AC0-Xor of AC0
circuits with a layer of parity gates (or their negations) next to the input level. (On the other
hand, (1) and (2) are known for Xor-AC0 [39].) In fact, (1) and (2) are not known even for
Or-And-Xor circuits, a.k.a. DNF-Xor circuits. Hence these classes (AC0-Xor and DNF-Xor)
have gained importance as prominent special cases of AC0 with parity gates which require
new proof techniques.

A natural candidate for providing (1) is the inner product function, and the following
question has been highlighted and studied in several works, including [35, 14, 5, 13, 18].

▶ Problem 1. Is the Inner Product function IP(x, y) :=
∑

i xiyi mod 2 computable by
polynomial-size AC0-Xor circuits?

A number of works have solved special cases of the problem, proving lower bounds for
computing IP when the circuit class is further restricted: [27, 14] proved exponential lower
bounds for Or-And-Xor. [5] proved a lower bound for small AC0-Xor circuits when the parity
layer is “typical.” [13] (cf. [28]) proved an n2−o(1) lower bound for And-Or-And-Xor circuits.
For depth-d AC0-Xor circuits they proved an n1+Ω(1/4d) lower bound. The latter result was
improved on in [10] which obtained an Ω(n1+1/2d) lower bound that holds even if the circuit
computes IP on a 1/2 + n− log n fraction of inputs.
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To summarize, to compute IP there are quadratic lower bounds for And-Or-And-Xor.
These lower bounds hold in the worst case while average-case lower bounds are not known.
Average-case lower bounds are not even known for polynomial-size DNF-Xor. For higher
depth we have lower bounds for size which approaches linear exponentially fast with the
depth, and these lower bounds hold even in the average case.

Extractors. An extractor for a class of distributions (a.k.a. source) is a function that is
nearly unbiased when the input is chosen according to any distribution in the class. For
various classes of distributions, extractors have been studied with remarkable intensity in
the theoretical computer science literature for decades. A class of distributions which is
important in many works including the present one is that of distributions which are uniform
over linear or affine vector subspaces of {0, 1}n, which we simply call affine.

▶ Definition 2 (Affine extractors). A function f : {0, 1}n → {0, 1} is an affine extractor for
dimension (a.k.a. entropy) k with error (a.k.a. bias) ϵ if for every k-dimensional affine space
A ⊆ {0, 1}n and for UA the uniform distribution over A we have |P[f(UA) = 1] − P[f(UA) =
0]| ≤ ϵ.

We say that the extractor is one-sided if the conclusion is relaxed to P[f(UA) = 1] ≥ 1/2−ϵ,
and f is nearly balanced: |P[f(U) = 1] − 1/2| ≤ ϵ, where U := U{0,1}n .

Many papers have been devoted to constructing affine extractors. The latest [11] works
for nearly logarithmic dimension.

One motivation for studying affine extractors is that they arise naturally in the study of
circuit lower bounds. For example, the method of restrictions partitions the input in affine
spaces, and so any function that becomes constant via a suitable restriction cannot be a good
affine extractor. In particular, switching lemmas [20, 1, 23, 26, 24, 25] imply that small AC0
circuits cannot compute affine extractors. The same holds for models which shrink under
restrictions, such as De Morgan formulas, see [37] for the latest shrinkage bound and history.
And the first numerical progress in more than 30 years on lower bounds for general circuits
– [19] – holds for computing affine extractors. Finally, affine extractors also give sampling
lower bounds [41, 42, 44].

This also means that showing that a circuit class can compute good affine extractors
indicates some of the difficulties that may arise when trying to prove lower bounds against
that class. This direction has been pursued in a number of works, in fact going back to [31]
(cf. [34]). More recently, the paper [15] (Theorem A.6) shows that affine extractors for
dimension k = O(log n) can be computed by
1. polynomials mod 2 of degree O(log n),
2. Xor-And-Xor circuits of size n2+o(1),
3. De Morgan’s formulas of size n5+o(1).

Their results also give good dependence on ϵ, which we omit for simplicity.

It is a folklore result that IP is an affine extractor for dimension larger than n/2 (a proof
can be found in [42]). Moreover, some of the previous lower bounds hold for computing affine
extractors. The worst-case n1+c−d lower bound for depth d in [5] holds for computing affine
extractors, even with very weak parameters. The quadratic lower bound for And-Or-And-
Xor [13] and the average-case lower bound for depth d [10] hold for computing extractors
if the error is exponentially small. We do not know if they can be generalized to affine
extractors with constant error, but jumping ahead we give a simple proof of an n1.5−o(1) lower
bound for computing constant-error extractors by And-Or-And-Xor circuits (Section 4).
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Our first main result is that small (non-explicit) AC0-Xor circuits can compute very good
affine extractors. In fact, And-Or-And-Xor circuits of size n2 logO(1) n suffice, matching the
depth and – up to logarithmic factors – the size lower bounds in [13].

▶ Theorem 3. There exists an And-Or-And-Xor circuit C of size n2 logO(1) n that computes
an affine extractor for dimension k ≥ logc n with error 1/Ω(log n), were c > 0 is an absolute
constant.

The proof is in Section 1. We actually give a general template for constructing affine
extractors, and obtain constructions in other models as well. In particular, we show that De
Morgan formulas of size n4+o(1) can compute affine extractors (see Theorem 15), improving
the n5+o(1) bound from [15] (Item 3 above).

It is natural to ask if the depth of the circuit in Theorem 3 is tight, that is if Or-And-Xor
(a.k.a. DNF-Xor) circuits can compute good affine extractors. We note that an And-Xor
circuit computes (the characteristic function of) an affine space, and so a DNF-Xor circuit
of size s computes an union of s affine spaces. Understanding the power of unions of affine
spaces seems interesting from a mathematical perspective as well, and it is a natural next
step towards more general models after affine spaces.

It is easy to show that DNF-Xor circuits require exponential size to compute good affine
extractors, and a proof can be found in [14]. However, we show next that they can compute
one-sided extractors. (Note that the DNF-Xor sub-circuits in the construction in Theorem 3
are not balanced and so do not compute one-sided affine extractors.)

▶ Theorem 4. There exists an O(n log2 n) size DNF-Xor circuit that computes a one-sided
affine extractor for dimension k ≥ c log3 n with error 1/ log1.9 n, were c > 0 is an absolute
constant.

We apply this theorem to separate DNF-Xor circuits from other classes such as parity
decision trees (PDTs) and AC0-Xor circuits with n parity gates. The separation from PDTs
is obtained by showing the more general separation from disjoint unions of affine subspaces.
These separations hold in the average case too, and we show tightness with respect to several
parameters. These results point to the strength of the model and to the techniques we can
(not) use for lower bounds.

Let us elaborate on the separation from PDTs. For comparison, recall that any polynomial-
size DNF on n bits can be approximated by a decision tree (DT) of depth n − Ω(n/ log n).
(Proof sketch: We can ignore terms of size ω(log n). Then a switching lemma shows that
we can fix all but Ω(n/ log n) variables and the DNF collapses to a decision tree of depth
O(log n).) It is natural to ask if a corresponding switching lemma or simulation exists for
DNF-Xor in terms of PDT. We show that the answer is negative:

▶ Corollary 5. There exists a DNF-Xor circuit f : {0, 1}n → {0, 1} of size n · poly log n

such that for any depth n − log2+o(1) n PDT T : {0, 1}n → {0, 1} we have P[f(U) = T (U)] ≤
1/2 + 1/Ω(log n).

Note that the “depth deficiency” (i.e., n minus the depth of the tree) decreases exponen-
tially from the Ω(n/ log n) in the simulation of DNFs by DTs to log2+o(1) n in the simulation
of DNF-Xors by PDTs. We summarize this finding informally as follows:

– PDTs are not to DNF-Xor what DTs are to DNFs –

This finding stands in contrast with our extensions of other simulations of AC0 circuits
by DTs to the setting of AC0-Xor circuits and PDTs. This includes simulations given by the
switching lemma, and simulations that exploit various restrictions on fan-in, see Section 2.

APPROX/RANDOM 2022
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The study of DNF-Xor circuits is also motivated by our next result, which shows that if
IP can be approximated by small such circuits, then in fact IP can be computed (exactly) by
small AC0-Xor circuits.

▶ Theorem 6. Suppose there is c > 0 and an AC0-Xor circuit of size nc that computes
IP correctly on a 1/2 + 1/ logc n fraction of the inputs. Then there are polynomial-size,
constant-depth AC0-Xor circuits that compute IP.

The proof is in Section 3.
A concurrent work [18] shows that if small DNF-Xor circuits compute IP on a 5/6 + ϵ

fraction of the inputs, then there are efficient data-streaming and communication protocols
for low-degree polynomials. The conclusions in [18] and the present work thus concern
different models. The hypotheses are also different. Whereas [18] requires a DNF-Xor circuit
to compute IP on a 5/6 + ϵ fraction of the inputs, in our application an AC0-Xor circuit
computing it on a 1/2 + 1/poly log fraction suffices. Also, a partial converse to Theorem 6 is
given by the so-called discriminator lemma [22]: if a size-s And-Or-And-Xor circuit computes
IP, then a size-s DNF-Xor circuit computes IP on 1/2 + 1/s fraction of the inputs.

We note that the hypothesis in Theorem 6 is related to extractors. Indeed, let C be a
DNF-Xor circuit of size s. Let S := {x : C(x) = 1} and let |S|/2n =: p. Suppose that IP is
biased on S, that is |P[IP (US) = 1] − P[IP (US) = 0]| ≥ ϵ. Then either C or the negation of
C computes IP correctly on a 1/2 + pϵ fraction of inputs. In other words, if IP is not an
extractor for US , then we can approximate IP, and by Theorem 6 we can compute it with
small AC0-Xor circuits. To avoid the latter, IP should have bias ≤ 1/ logc n on any set S as
above of size ≥ 1/ logcn, for any c.

▶ Problem 7. Does IP extract randomness from unions of polynomially many affine spaces?

This work raises several other questions. Besides the question of explicitness, an obvious
question is matching lower bounds and affine-extractor constructions. In particular, it would
be interesting to know if one can compute affine extractors by depth-d AC0-Xor circuits
of size n1+c−d . This would follow if one can show a size-depth tradeoff for r-wise resilient
functions (defined later), which we also raise as a question. In general, we raise the question
of understanding the complexity of computing r-wise resilient functions in various models of
computation. For example, can they be computed by linear-size circuits? From the side of
lower bounds, it would be interesting to strengthen our n1.5−o(1) lower bound for computing
affine extractors (in Section 4) to quadratic.

1 Constructing affine extractors

The proof of Theorem 3 builds on ideas developed in the literature on extractors. At the high
level, we use an approach from [21], Section 5.3, of combining a suitable linear transformation
with a resilient function (defined below). [21] aims to construct extractors for bit-fixing
sources (a special case of affine sources) of large entropy (n/poly log) and computable in AC0.
They pick a sparse linear transformation, which guarantees that the extractor is computable
in AC0, and which is sufficient because the entropy is close to n. By contrast, we aim to
extract from the more general affine sources, and even with polylogarithmic entropy. On
the other hand, we can pick a non-sparse linear transformation thanks to the layer of parity
gates. [21] shows that the output of the linear transformation is uniform except for few bits;
instead we can only guarantee that it is r-wise independent except for few bits.



X. Huang, P. Ivanov, and E. Viola 9:5

▶ Definition 8 ([41]). A distribution D over {0, 1}m is r-wise uniform but for b bits if there
is a set S ⊆ [m] of size m − b such that for any r elements in S the projection of D onto the
corresponding bits is uniform over {0, 1}r. If b = 0 we simply say r-wise uniform.

A main and simple result in this paper is that applying a suitable linear transformation
one can turn an affine source into a distribution of the type above. The corresponding linear
transformations seem interesting to study, so we give a definition.

▶ Definition 9. An m × n matrix T is k-affine to r-wise uniform but for b-bits if for any
distribution UA uniform over an affine space A ⊆ {0, 1}n of dimension ≥ k the distribution
TUA is r-wise uniform but for b bits.

We raise the question of understanding the complexity of computing such matrices
efficiently. For example, in particular we ask if these transformations (with good parameters
as below) can be computed by linear-size circuits, local maps, etc. For starters, we prove
that such matrices exist via the probabilistic method.

▶ Lemma 10. A matrix T as in Definition 9 exists for any b > 3n and k ≥ 2r log m.

Proof. It suffices to prove the lemma for any linear space (rather than affine). To verify
this, write the uniform distribution over an affine space A as SX + s where S is a full-
rank n × k matrix, X ∈ {0, 1}k is uniform, and s ∈ {0, 1}n is a fixed shift. Consider
T (SX + s) = TSX + Ts. Since SX is a linear space, TSX is r-wise uniform but for b bits.
This property is unaffected by adding the fixed shift Ts.

Let U be uniform over {0, 1}k. Recall that for an r × k matrix M the distribution MU is
uniform if and only if the rows of M are linearly independent. Hence, for our goal it suffices
to construct matrices such that if we exclude b rows, any r of the remaining rows are linearly
independent. Pick T uniformly at random. Fix a full-rank n × k matrix S and note that TS

is a uniform m × k matrix M . We say a set B ⊆ [m] of size b is bad if each row (with index)
in B is a linear combination of ≤ r rows not in B. If such bad sets of size b do not exist then
the proof is completed as follows. Greedily pick rows of TS that are not linear combinations
of ≤ r rows already picked. One can pick ≥ m − b rows, otherwise a bad set of size b exists.

Now we want to bound the probability that there exists a bad set B of size b. Fix B,
and fix arbitrarily the rows of M not in B. Let H be the set of vectors that can be obtained
as a linear combination of ≤ r rows not in B. We have

|H| ≤
(

m

0

)
+

(
m

1

)
+ · · · +

(
m

r

)
≤ 2r log m.

The probability that each row in B falls in H is then(
|H|
2k

)b

= 2b(r log m−k).

When k ≥ 2r log m this probability is

≤ 2−kb/2.

Hence the probability that there exists a bad set of size b is

≤
(

m

b

)
2−kb/2 ≤ 2b(log m−k/2) ≤ 2−bk/3.

Finally, there are at most 2kn linear spaces of dimension k. Therefore the probability
that there exists such a space with a bad set as above is ≤ 2k(n−b/3). Setting b > 3n this
probability is less than one and the desired matrix T exists. ◀
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Given this lemma, it remains to extract from distributions over {0, 1}m which are r-wise
uniform but for b bits.

▶ Definition 11. A function f : {0, 1}m → {0, 1} is r-wise (b, ϵ)-resilient if for any r-wise
uniform distribution X we have |P[f(X) = 1] − 1/2| ≤ ϵ, and for any set B of size ≤ b the
probability over X that changing the bits in B changes the value of f is ≤ ϵ (and in particular
the bias that one can obtain changing those bits is ≤ 1/2 + 2ϵ). Note that this is equivalent
to saying that f is an extractor with error 2ϵ for distributions which are r-wise uniform but
for b bits.

The paper [41] showed that the majority function is resilient over r-wise uniform distri-
butions, relying on the Central Limit Theorem for r-wise uniform distributions from [16].

▶ Lemma 12 ([41]). The Majority function is r-wise (m0.499, 1/100)-resilient for all suffi-
ciently large r.

Using this, we can show that Maj-Xor circuits can compute affine extractors with optimal
dependence on dimension, up to constant factors.

▶ Theorem 13. There is a non-explicit Maj-Xor circuit of polynomial size that computes an
affine extractor for dimension O(log n) with error 1/100.

Proof. Apply Lemma 10 with m = n2.1 and b = 4n. Let V be an affine space of dimension
k ≥ 2r log m = O(log n). Let UV be the uniform distribution over V . By Lemma 10, TUV is
r-wise independent except for b bits. We conclude by Lemma 12. ◀

For Theorem 3 we need extractors computable in AC0 however. The seminal work [3] (cf. [46]
for a streamlined exposition of a slightly weaker result) showed through the probabilistic
method the existence of functions on m bits that are m-wise (Ω(αm/ log2 m), O(α))-resilient
for any α. Moreover, their functions are computable by polynomial-size AC0 circuits. We
observe that their construction is also resilient over poly log m-wise distributions. This can
be shown using the fact that polylog-wise uniformity fools AC0 circuits [6, 33, 9], and for
completeness we include a proof in Section A.

▶ Lemma 14. There exist c > 0 and a function f : {0, 1}m → {0, 1} that is logc m-wise
(Ω(αm/ log2 m), O(α))-resilient, for any α ≥ 1/m. Moreover, f is computable by depth-3
circuits of size O(m2/ log m).

We note that explicit constructions of poly log-wise resilient functions appear in [12]
and [29]. One can use either [12] or [29] to obtain affine extractors with our approach.
However, some of the parameters would be a little worse than what we claimed. For
example, the circuit size would be nc for c > 2. Using these constructions we see that the
only bottleneck to an explicit construction is the layer of parity gates. Should an explicit
construction for that be found, the affine extractor would be simpler than previous explicit
constructions for comparable entropy (see [11] and references therein).

Proof of Theorem 3. The parity gates compute the linear transformation T in Lemma 10
with the parameters m = O(n log3 n) and b = m/ log3 m > 3n. By the assumption on k we
have r = logc′

m for a constant c′ as large as desired. The distribution TU is r-wise uniform
but for b bits. We feed its output to the function f in Lemma 14 for α = Θ(1/ log m). Then
f is (m/ log3 m, O(1/ log m))-resilient, and the result follows. ◀
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Finally, we obtain a construction for De Morgan formulas.

▶ Theorem 15. The affine extractor in Theorem 3 can be computed by De Morgan formulas
of size n4 logO(1) n, or by formulas over the full binary base B2 of size n3 logO(1) n.

Proof. From the proof of Theorem 3 we know that the fan-ins of the And-Or-And-Xor
circuit, starting from the output And, are n logO(1) n, n logO(1) n, logO(1) n, n. Note that an
And or Or on t bits can be computed by De Morgan formulas of size O(t), while Parity on
t bits can be computed by such formulas of size O(t2) and B2 formulas of size O(t). The
result follows. ◀

2 DNF-Xor

Our construction proving Theorem 4 is similar to our affine-extractor construction. We show
that the so-called Tribes function is “one-sided resilient,” so composing it with the layer of
Xor gates from Lemma 10 yields a one-sided extractor.

▶ Definition 16 ([7]; cf. [30], Proposition 4.12). Tribesw : {0, 1}m → {0, 1} is the read-once
DNF where every term has size w and |P[Tribes(U) = 1] − 1/2| = O(log m)/m. This makes
w = log m − log log m + O(1).

We need the following lemma.

▶ Lemma 17. Let D be a w log(1/ϵ)-wise uniform distribution on n bits. Let f : {0, 1}n →
{0, 1} be a read-once DNF with terms of size ≤ w. Let U be the uniform distribution over
{0, 1}n. Then |P[f(D) = 1] − P[f(U) = 1]| ≤ ϵ.

This claim follows by noting that the input distribution to the Or in the DNF is log(1/ϵ)-
wise independent (and not necessarily uniform). We can then apply the corresponding
fundamental result in pseudorandomness [17]; see [43], Lecture 1, for an exposition. The
latter result states that the Or of log(1/ϵ)-wise independent random variables has the same
probability of being one as the Or of independent random variables with the same marginals.

Proof of Theorem 4. We need a slight extension of Lemma 10. We claim that the matrix T

constructed there has the additional property (⋆) that any linear combination of ≤ r rows of
T is nonzero. This can be established with essentially the same proof, because the probability
that a uniform m × k matrix does not satisfy this is ≤ 2O(r log m)−k which is less than 1/2
by our choice of parameter (and the proof of the lemma shows that a uniformly selected T

satisfies the lemma with probability > 1/2).
Hence, consider the matrix T from Lemma 10 with m = O(n log2 n) and b = 4n, and

further take it to satisfy (⋆). Feed this distribution into the Tribes function on m bits.
First, note that by (⋆) we have that TU is r-wise uniform where r = k/2 log m. Hence, the
output distribution of the And gates is r/ log m-wise independent. By our assumption that
k ≥ c log3 n, it will be c log m-wise independent for a c large enough so that by Lemma 17
the probability that Tribes outputs 1 on TU is within 1/m of the probability it outputs 1
over the uniform distribution, and so still within O(log m)/m of 1/2.

This proves that our function is indeed nearly balanced. There remains to prove that it
is 1 with high probability over any large affine space S. We have that TSU is k/4 log m-wise
uniform but for b = 4n bits. Now we basically show that the good bits suffice to make the
function 1 with probability about 1/2. The bad bits touch ≤ b terms. Hence there are
m/w − b good terms, defined as those terms that do not take any bad bit as input. By
Lemma 17 as above, the probability that the Or of the good terms is 0 over TSU is within
1/m of the probability that it is 0 over U . The latter probability is

APPROX/RANDOM 2022
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(1 − 2−w)m/w−b ≤ (1/2 + O(log m)/m)(1 − 2−w)−b,

where the first factor in the right-hand side is from the definition of Tribes. For the second
term note that

(1 − 2−w)−b ≤ eb/2w

.

We have 2w = Θ(m/ log m) = Θ(n log2 n/ log log n) and so b/2w ≤ 1/ log 1.9n and
eb/2w ≤ 1 + O(1)/ log1.9 n, and the result follows. ◀

We now use the above result to give separations.

▶ Definition 18. We say g : {0, 1}n → {0, 1} is a k-affine-partition if g can be expressed as
g(x) =

∑t
i=1 αi1Vi

where V1, V2, . . . , Vt are disjoint affine subspaces of dimension ≥ k that
form a partition of Fn

2 and for each i, αi ∈ {0, 1}.

We next show one-sided extractors for dimension k cannot even be approximated by
k-affine partitions.

▷ Claim 19. Let f : {0, 1}n → {0, 1} be a one-sided extractor for dimension k with error ϵ,
and let g : {0, 1}n → {0, 1} be a k-affine partition. Then

P[f(U) = g(U)] ≤ 1
2 + 3ϵ.

Proof. Let G0 := {x : g(x) = 0}, p := |G0|/2n and G1 := {x : g(x) = 1}. Let α :=
Px∈G0 [f(x) = 0] and β := Px∈G1 [f(x) = 0]. We have

P[f(U) ̸= g(U)] = p(1 − α) + (1 − p)β.

Because f is nearly balanced, we have pα+(1−p)β ≥ 1/2−ϵ, and so (1−p)β ≥ 1/2−ϵ−pα.
Plugging this above we get

P[f(U) ̸= g(U)] ≥ 1/2 − ϵ − pα + p(1 − α) = 1/2 − ϵ + p(1 − 2α).

Also by the extractor property we have α ≤ 1/2 + ϵ. (Since G0 is the disjoint union
of spaces on which f outputs 0 on at most a 1/2 + ϵ fraction of the elements.) Hence
1 − 2α ≥ −2ϵ. Combining with above yields

P[f(U) ̸= g(U)] ≥ 1/2 − ϵ − 2pϵ ≥ 1/2 − 3ϵ. ◁

We showed in Theorem 4 that small DNF-Xor circuits can compute such extractors. In fact,
the circuits are of the type Orn logO(1) n-AndO(log n)-Xor; subscripts indicate fan-ins. Again,
this is equivalent to a nearly-linear collection of spaces of very large dimension (n − O(log n))
that cannot be approximated by disjoint spaces, even if the dimensions of the latter spaces
are as small as polylogarithmic. Note that a parity decision tree (PDT) on n bits with depth
n − k gives a k-affine partition, and this proves Corollary 5.

It is natural to ask if this separation (between DNF-Xor and PDT) is tight. We show
that indeed it is, in three different settings.
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2.1 Setting 1: The number of parity gates
We consider AC0-Xor circuits where the Xor gates correspond to a basis.

▶ Definition 20. AC0-Xor-B circuits on n bits are AC0-Xor circuits where the number of
Xor gates is n and the corresponding vectors form a basis.

We show that small AC0-Xor-B circuits can be approximated by moderate-depth PDTs,
showing that in Corollary 5 it is essential that the number of Xor gates is larger than n, even
if we allow general AC0 post-process (instead of DNF).

The proof amounts to observing that switching lemmas for AC0 apply as stated to AC0-
Xor-B, except that they yield PDTs rather than DTs. Specifically, it follows for example from
the switching lemma in [24] (see Corollary 11 in [45] for an explicit statement about AC0)
that for h := 2o(n/2d logd−1 n) an AC0 circuit of size ≤ h and depth d can be approximated
by a DT of depth n − Ω(n/ logd−1 n) except with error 1/h. The corresponding statement
applies to AC0-Xor-B.

▷ Claim 21. For h := 2o(n/2d logd−1 n), an AC0-Xor-B circuit of size ≤ h and depth d can be
approximated by a PDT of depth n − Ω(n/ logd−1 n) except with error 1/h.

To prove this, apply the result for AC0 mentioned above to the AC0 part of the circuit.
Querying one input bit to the AC0 part can be simulated by querying a parity of the input
bits to the AC0-Xor-B circuit, resulting into a PDT. A straightforward combination of the
above results also yields a separation between small DNF-Xor and AC0-Xor-B circuits.

2.2 Setting 2: The fan-in of the And gates
Next we show that the fan-in of the And gates in the separation (between DNF-Xor and
PDT) is tight up to an O(log log n) factor: We show that any Or-And-Xor circuit where the
And fan-in is at most log n − 2 log log n can be approximated by a depth O(n/ log n) PDT
with at most constant error. This follows from the following lemma, which is a “PDT version”
of the corresponding result for DNF and DT, see [4, 38]. We follow the exposition in [45].

▶ Lemma 22. For every Or-Andw-Xor circuit C : {0, 1}n → {0, 1}, there exists a PDT T

of depth ≤ 2w2w log(1/ϵ) with range {0, 1, ?} such that:
1. Prx∈{0,1}n [T (x) =?] ≤ ϵ.
2. For all x ∈ {0, 1}n, T (x) ̸=? ⇒ T (x) = C(x).

Proof. We are going to define T : {0, 1}n → {0, 1, ?} recursively. If C is a constant then T is
a constant. Otherwise, let C = ∨m

i=1Ci where each subcircuit Ci is an And of a set of at most
w parities, denoted by Pi. We can assume w.l.o.g. that for each i, Pi is linearly independent.
We greedily construct an index set I ⊆ [m] as follows: we look at each Pi one-by-one, and
add i into I if Pi ∪

⋃
j∈I Pj is linearly independent. There are two cases:

1. If |I| ≥ 2w log(1/ϵ), we let T query all the parities in Pi for the first 2w log(1/ϵ) indices in
I, which decide the values for the corresponding subcircuits Ci. If any of the subcircuits
is True, then T outputs 1, otherwise it outputs ?.

2. Otherwise |I| < 2w log(1/ϵ), then the size of
⋃

i∈I Pi is at most w2w log(1/ϵ). Moreover,
for any Pj with j ̸∈ I, there must exists a parity pj ∈ Pj such that pj ∈ span(

⋃
i∈I Pi ∪

(Pj \ {pj})). The tree T first queries every parity in
⋃

i∈I Pi. After that, we know that
for eachj ̸∈ I, pj ∈ span(Pj \ {pj}). As the subcircuit Cj is an And of the parities in
Pj , if setting all the parities in Pj \ {pj} to be 1 forces pj to be 0, we can just ignore
this subcircuit. If it forces pj to be 1, we can safely remove pj to get an And of ≤ w − 1

APPROX/RANDOM 2022
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parities. Therefore what we get is an Or-And-Xor circuit C ′ where the fan-in of each
And is ≤ w − 1 (which might depend on the results of the queries), and we recurse on C ′

to get a parity decision tree T ′.
The depth of tC is ≤ w2w log(1/ϵ) + (w − 1)2w−1 log(1/ϵ) + · · · ≤ 2w2w log(1/ϵ). Item
2 is evident by definition. For Item 1, note that T outputs ? only if none of the first
2w log(1/ϵ) subcircuits in I is True. Each Pi is linearly independent, and by construction of
I the outputs of these subcircuits are independent, so the probability can be bounded by
(1 − 2−w)2w log(1/ϵ) ≤ ϵ. ◀

2.3 Setting 3: The fan-in of the Or gate
We show that Oro(n/ log n)-And-Xor circuits can be approximated by moderate-depth PDTs.

▷ Claim 23. Let C : {0, 1}n → {0, 1} be an Oro(n/ log n)-And-Xor circuit. There exists a
PDT T of depth (1 − Ω(1))n such that P[C(U) = T (U)] ≥ 1/2 + Ω(1) .

Proof. Let C ′ denote the circuit obtained from C by deleting all the And gates with fan-in
greater than log n − log log n − O(1). By Lemma 22 a PDT with depth (1 − Ω(1))n can
approximate C ′ with constant error. Now we argue that the removal of And gates does not
introduce too much error. Any removed And gate evaluates to True under uniform inputs
with probability ≤ 2−(log n−log log n−O(1)) = O(log n/n). Since the number of removed And
gates is o(n/ log n), by a union bound the total error introduced by the removal is o(1). ◁

3 Proof of Theorem 6

We begin by observing that IP can be “randomly self-reduced” very efficiently: the overhead
is just computing a parity. More formally:

IP (x + a) = IP (x) + La(x)

for any x, a ∈ {0, 1}n, and where La : {0, 1}n → {0, 1} is an affine transformation that
depends on a only. To verify this just consider a monomial and note that (x1 +a1)(x2 +a2) =
x1x2+a1x2+a2x1+a1a2 = x1x2+La(x). The same fact is used for example in pseudorandom
generators for low-degree polynomials [8], and in [18]. In general the proof is also similar to
the simplified average-case lower bounds for parity [40].

Let C : {0, 1}n → {0, 1} be a circuit that computes IP on 1/2 + ϵ fraction of the inputs.
Consider the random circuit CA for uniform A which on input x outputs

CA(x) := C(x + A) + LA(x).

Note that for every x, PA[CA(x) = IP (x)] ≥ PA[C(x + A) = IP (x + A)] ≥ 1/2 + ϵ.
Moreover, for any fixed A the circuit CA is an AC0-Xor circuit of polynomial size. To verify
this, note that we can compute LA(x) using parities at the input level, and the output Xor is
on two bits and can be computed in AC0. Also, adding the “shift” A to x can be absorbed
in the parity gates at the input level.

There remains to boost the probability. Consider the random circuit D which computes
t = O(n/ϵ2) copies of CA with independent A, and then computes approximate majority.
Specifically, it outputs 1 if at least (1/2 + ϵ/2)t copies output 1, and it outputs 0 if at least
(1/2 + ϵ/2)t copies output 0. By a Chernoff bound, on any input this circuit has error
probability < 2−n. Hence we can fix the randomness so that it computes correctly every
input. Moreover, the approximate majority computation can be done by polynomial-size
AC0 circuits for ϵ = 1/ logO(1) n [1, 2].
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4 A lower bound for computing affine extractors

In this section we prove the following almost n1.5 lower bound for computing affine extractors,
even if the error is constant (when the error is exponentially small, a quadratic lower bound
can be inferred from the techniques in [13]). While the bound is weaker, the proof appears
more elementary than the one in [13].

▶ Theorem 24. Let C : {0, 1}n → {0, 1} be an And-Or-And-Xor circuit that computes an
affine extractor for dimension n/2 with error 1/4. Then C has size Ω

(
n1.5/ log n

)
.

▶ Lemma 25. Let t ≤ n and C be as in Theorem 24 but with the additional restriction that
the fan-in of the middle And gates is t. Then C has size Ω

(
n2/(t log n)

)
.

Proof of Lemma 25. We assume that a circuit of size o(n2/t log n) exists, and reach a
contradiction. Let R denote the set of Or gates in C, and let A denote the set of And gates
in C, excluding the output And gate. Draw a bipartite graph G = (R ∪ A, E) between R

and A. Each Or gate must have at least n/16 edges, otherwise we can set C to 0 using n/16
linear restrictions (corresponding to a vector space of dimension n − n/16).

Hence there exists some And gate that is connected to at least a n
16|A| fraction of Or

gates in R. We set it to 1 using at most t restrictions, eliminate the adjacent Or gates, and
consider G on the resulting affine subspace. We repeat this process k times for k = n/16t.
Note that we can always find an Or gate with fan-in ≥ n/16, for else we can set the circuit
to 0 by setting kt + n/16 ≤ n/8 parities.

At the end of the process, the number of Or gates is

|R|
(

1 − n

16|A|

)k

≤ |R|
(

1 − 100t log n

n

)n/16t

≤ n2/n3 < 1.

This means that the circuit is fixed, which is a contradiction. ◀

▶ Lemma 26. Let t ≤ n and C : {0, 1}n → {0, 1} be an And-Or-And-Xor circuit that
computes an affine-extractor for dimension n/2 with error 1/4. Either the size of C is
Ω (nt/ log n) or there exists an affine subspace H of dimension ≥ 7n/8 such that C|H is an
And-Or-Andt-Xor circuit.

Proof of Lemma 26. Let At denote the set of And gates of fan-in greater than t, excluding
the output, and let Xt denote the set of Xor gates connected toAt. Draw the bipartite graph
G = (At ∪ Xt, E) connecting At, Xt. There is some gate x ∈ Xt connected to at least a t

|Xt|
fraction of nodes in At as long as |At| ≥ 1. After k = n/16 iterations of setting the XOR
gate with the highest degree in G to 0, if |At| ≥ 1 we have at most

|At|
(

1 − t

|Xt|

)k

≤ |At|e− nt
16|Xt|

And gates left in G. If |Xt| ≥ nt/16 log n we are done, since obviously C has size ≥ |Xt|.
Similarly, if |At| ≥ n2/16 we are also done. Otherwise,

|At|e− nt
16|Xt| ≤ |At|

1
n

≤ n

16 .

So after making n/16 restrictions, we are left with at most n/16 And gates in At. We can
make at most n/16 additional restrictions setting them to 0, so that there are no more And
gates in At (we might set some to 1 during this process, but that only helps us). We have
made at most n/16 + n/16 = n/8 restrictions to reach a subspace H where C|H has no And
gates of fan-in ≥ t. ◀
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Proof of Theorem 24. We combine Lemmas 25 and 26 with the threshold t =
√

n. By
Lemma 26, either C = Ω

(
n3/2/ log n

)
or there is some affine subspace H of dimension 7n/8

on which C|H has middle And gates of fan-in ≤
√

n. In the first case we are done. In the
second case, let n′ = 7n/8. Then we can think of C|H as a (4n′/7, 1/4) affine extractor on
n′ variables and apply Lemma 25. ◀
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A Proof of Lemma 14

Let f : {0, 1}m → {0, 1} be the function in [3, Theorem 5.1] which is m-wise
(Ω(αm/ log2 m), O(α))-resilient. f is the And of m read-once DNFs, so it is a depth-3 circuit
of size O(m2/ log m). We need to show that over any r-wise distribution D:
1. The bias of f is ≤ O(α).
2. The probability of changing the value of f by changing at most αm/ log2 m bits of D is

O(α).

[3, Theorem 5.1] proves 1. and 2. for r = m. The fact that 1. holds for r = poly log m

then follows by [9], using that α ≥ 1/m. For the second point we reason as follows. Fix some
set Q of αm/ log2 m bad bits. Let e(y) : {0, 1}|Q| → {0, 1} denote the indicator function of
f not being fixed after assigning y to the good bits Q. Now we show that e(y) is computable
by an AC0 circuit so we can again apply [9] and reduce to the known resilience under the
uniform distribution from [3, Theorem 5.1]. For some partial assignment y to Q,f is not
fixed if and only if at least one DNF function is not fixed, and no DNF outputs 0. What
remains to show is that for each DNF function, the corresponding indicator e′(y) can be
expressed as an AC0 function. To verify this, note that the DNF is not fixed by y if every
And term that does not intersect with Q has a bit set to 0, and there is at least one And
term intersecting with Q such that all possible bits set by y are 1. This computation can be
written as a polynomial-size AC0 circuit.

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/


Hyperbolic Concentration, Anti-Concentration, and
Discrepancy
Zhao Song #

Adobe Research, Seattle, WA, USA

Ruizhe Zhang #

The University of Texas at Austin, TX, USA

Abstract
Chernoff bound is a fundamental tool in theoretical computer science. It has been extensively used
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finding a bi-coloring of a set system such that the coloring of each set is balanced, has a huge
number of applications in approximation algorithms design. Chernoff bound [Che52] implies that a
random bi-coloring of any set system with n sets and n elements will have discrepancy O(

√
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with high probability, while the famous result by Spencer [Spe85] shows that there exists an O(
√
n)

discrepancy solution.
The study of hyperbolic polynomials dates back to the early 20th century when used to solve PDEs
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Srivastava [MSS15] uses the theory of hyperbolic polynomials to prove the Kadison-Singer conjecture
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We show a hyperbolic anti-concentration bound.
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and prove a hyperbolic Spencer theorem for any constant hyperbolic rank vectors.
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1 Introduction

The study of concentration of sums of independent random variables dates back to Central
Limit Theorems, and hence to de Moivre and Laplace, while modern concentration bounds
for sums of random variables were probably first established by Bernstein [15] in 1924. An
extremely popular variant now known as Chernoff bounds was introduced by Rubin and
published by Chernoff [20] in 1952.

Hyperbolic polynomials are real, multivariate homogeneous polynomials p(x) ∈
R[x1, . . . , xn], and we say that p(x) is hyperbolic in direction e ∈ Rn if the univariate
polynomial p(te − x) = 0 for any x has only real roots as a function of t (counting multipli-
cities). The study of hyperbolic polynomials was first proposed by Gårding in [27] and has
been extensively studied in the mathematics community [28, 32, 14, 71]. Some examples of
hyperbolic polynomials are as follows:

Let h(x) = x1x2 · · · xn. It is easy to see that h(x) is hyperbolic with respect to any vector
e ∈ Rn

+.
Let X = (xi,j)n

i,j=1 be a symmetric matrix where xi,j = xj,i for all 1 ≤ i, j ≤ n. The
determinant polynomial h(x) = det(X) is hyperbolic with respect to Ĩ, the identity matrix
I packed into a vector. Indeed, h(tĨ − x) = det(tI − X), the characteristic polynomial of
the symmetric matrix X, has only real roots by the spectral theorem.
Let h(x) = x2

1 − x2
2 − · · · − x2

n. Then, h(x) is hyperbolic with respect to e =[
1 0 · · · 0

]⊤.

x

y

z

x

y

z

Figure 1 The function on the left is h(x, y, z) = z2 − x2 − y2, which is hyperbolic with respect to
e =

[
0 0 1

]⊤, since any line in this direction always has two intersections, corresponding to the
two real roots of h(−x,−y, t− z) = 0. The function on the right is g(x, y, z) = z4 − x4 − y4, which
is not hyperbolic with respect to e, since it only has 2 intersections but the degree is 4.

Inspired by the eigenvalues of matrix, we can define the hyperbolic eigenvalues of a vector x

as the real roots of t 7→ h(te − x), that is, λh,e(x) = (λ1(x), . . . , λd(x)) such that h(te − x) =
h(e)

∏d
i=1(t − λi(x)) (see Fact 12). In other words, the hyperbolic eigenvalues of x are the

zero points of the hyperbolic polynomial restricted to a real line through x. In this paper, we
assume that h and e are fixed and we just write λ(x) omitting the subscript. Furthermore,
similar to the spectral norm of matrix, the hyperbolic spectral norm of a vector x can be
defined as

∥x∥h = max
i∈[d]

|λi(x)|. (1)

In this work, we study the concentration phenomenon of the roots of hyperbolic polyno-
mials. More specifically, we consider the hyperbolic spectral norm of the sum of randomly
signed vectors, i.e., ∥

∑n
i=1 rixi∥h, where r ∈ {−1, 1}n are uniformly random signs and

{x1, x2, · · · , xn} are any fixed vectors in Rm. This kind of summation has been studied in
the following cases:
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1. Scalar case: xi ∈ {−1, 1} and the norm is just the absolute value, i.e., |
∑n

i=1 rixi|, the
scalar version Chernoff bound [20] shows that

Pr
r∼{−1,1}n

[∣∣∣∣∣
n∑

i=1
rixi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−t2/(2n)

)
,

corresponding to the case when h(x) = x for x ∈ R and the hyperbolic direction e = 1.
2. Matrix case: xi are d-by-d symmetric matrices and the norm is the spectral norm, i.e.,

∥
∑n

i=1 rixi∥, the matrix Chernoff bound [86] shows that

Pr
r∼{−1,1}n

[∥∥∥∥∥
n∑

i=1
rixi

∥∥∥∥∥ > t

]
≤ 2d · exp

(
− t2

2 ∥
∑n

i=1 x2
i ∥

)
,

corresponding to h(x) = det(X) and e = I.

We try to generalize these results to the hyperbolic spectral norm for any hyperbolic
polynomial h, which is recognized as an interesting problem in this field by James Renegar [74].

1.1 Our results
In this paper, we can prove the following “Chernoff-type” concentration for hyperbolic spectral
norm. We show that, when adding uniformly random signs to n vectors, the hyperbolic
spectral norm of their summation will concentrate with an exponential tail.

▶ Theorem 1 (Nearly optimal hyperbolic Chernoff bound for Rademacher sum). Let h be an
m-variate, degree-d hyperbolic polynomial with respect to a direction e ∈ Rm. Let 1 ≤ s ≤ d,
σ > 0. Given x1, x2, · · · , xn ∈ Rm such that rank(xi) ≤ s for all i ∈ [n] and

∑n
i=1 ∥xi∥2

h ≤ σ2,
where rank(x) is the number of nonzero hyperbolic eigenvalues of x. Then, we have

E
r∼{±1}n

[∥∥∥∥∥
n∑

i=1
rixi

∥∥∥∥∥
h

]
≤ 2
√

log(s) · σ.

Furthermore, for every t > 0, and for some fixed constant c > 0,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1
rixi

∥∥∥∥∥
h

> t

]
≤ 2 exp

(
− ct2

σ2 log(s + 1)

)
.

We discuss the optimality of Theorem 1 in different cases:
Degree-1 case: When the hyperbolic polynomial’s degree d = s = 1, the hyperbolic
polynomial is h(z) = z. Then, we have ∥x∥h = |x| and we get the the Hoeffding’s
inequality [37]:

Pr
r∼{±1}n

[∣∣∣ n∑
i=1

rixi

∣∣∣ > t
]

≤ exp
(

− Ω
(

t2/(
n∑

i=1
x2

i )
))

.

It implies that our result is optimal in this case.
A special degree-2 case: h(z) = z2

1 − z2
2 − · · · − z2

m. Let v1, . . . , vn be any (d − 1)-
dimensional vectors. Then, we define xi :=

[
0 vi

]
∈ Rd for i ∈ [n]. We know that

∥xi∥h = ∥vi∥2, and Theorem 1 gives the following result:

Pr
r∼{±1}n

[∥∥∥ n∑
i=1

rivi

∥∥∥
2

> t
]

≤ exp(−Ω(t2/σ2)),

where σ2 :=
∑n

i=1 ∥vi∥2, which recovers the dimension-free vector-valued Bernstein
inequality [63].
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10:4 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

Constant degree case: When d > 1 is a constant, consider h being the de-
terminant polynomial of d-by-d matrix. Since s ≤ d = O(1), we can show that
σ = (

∑n
i=1 ∥xi∥2)1/2 = Θ(∥

∑n
i=1 x2

i ∥1/2), and Theorem 1 exactly recovers the mat-
rix Chernoff bound [86], which implies that our result is also optimal in this case.
Constant rank case: When all the vectors have constant hyperbolic rank, we still
take h = det(X), but X1, . . . , Xn are constant rank matrices with arbitrary dimension.
In this case, we can obtain a dimension-free matrix concentration inequality:

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1
riXi

∥∥∥∥∥ > t

]
≤ 2 exp

(
−Ω(t2/σ2)

)
.

It will beat the general matrix Chernoff bound [86] when σ is not essentially larger than
∥
∑n

i=1 X2
i ∥1/2. Thus, Theorem 1 is nearly optimal in this case. However, Theorem 1 is

also sub-optimal in this case if we consider the high degree polynomial h(z) =
∏n

i=1 zi,
and xi = ei ∈ Rn. Then, we have ∥xi∥h = 1, and ∥

∑n
i=1 rixi∥h = 1 for any r ∈

{±1}n. Therefore, the probability density function of the hyperbolic spectral norm of the
Rademacher sum is a delta functioni in this case. But our concentration result cannot
characterize such a sharp transition.

Theorem 1 works for arbitrary vectors in Rm. We also consider the maximum and
minimum hyperbolic eigenvalues of the sum of random vectors in the hyperbolic cone,
which is a generalization of the positive semi-definite (PSD) cone for matrices. Recall
that for independent random PSD matrices X1, . . . , Xn with spectral norm at most R, let
µmax := λmax(

∑
i E[Xi]). Then, matrix Chernoff bound for PSD matrices [86] shows that

Pr[λmax(
∑

i Xi) ≥ (1 + δ)µmax] ≤ de−Ω(δµmax) for any δ ≥ 0. The following theorem gives a
hyperbolic version of this result:

▶ Theorem 2 (Hyperbolic Chernoff bound for random vectors in hyperbolic cone). Let h be an
m-variate, degree-d hyperbolic polynomial with hyperbolic direction e ∈ Rm. Let Λ+ denote the
hyperbolic coneii of h with respect to e. Suppose x1, . . . , xn are n independent random vectors
with supports in Λ+ such that λmax(xi) ≤ R for all i ∈ [n]. Define the mean of minimum
and maximum eigenvalues as µmin :=

∑n
i=1 E[λmin(xi)] and µmax :=

∑n
i=1 E[λmax(xi)].

Then, we have

Pr
[

λmax

(
n∑

i=1
xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax/R

∀δ ≥ 0,

Pr
[

λmin

(
n∑

i=1
xi

)
≤ (1 − δ)µmin

]
≤ d ·

(
(1 − δ)1−δ

e−δ

)−µmin/R

∀δ ∈ [0, 1].

1.2 Hyperbolic anti-concentration
Anti-concentration is an interesting phenomenon in probability theory, which studies the
opposite perspective of concentration inequalities. A simple example is the standard Gaussian
random variable, which has probability at most O(∆) for being in any interval of length ∆.

i The delta function is defined as δ(x) =
{

1 if x = 1,
0 otherwise.

ii The hyperbolic cone is a set containing all vectors with non-negative hyperbolic eigenvalues. See
Definition 13 for the formal definition.
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For Rademacher random variables x ∼ {±1}d, the celebrated Littlewood-Offord theorem [53]
states that for any degree-1 polynomial p(x) =

∑d
i=1 aixi with |ai| ≥ 1, the probability of

p(x) in any length-1 interval is at most O( log d√
d

). Later, the theorem was improved to O( 1√
d
)

by Erdös [26], and generalized to higher degree polynomials by [22, 79, 61]. From a geometric
prospective, the Littlewood-Offord theorem says that the maximum fraction of hypercube
points that lay in the boundary of a halfspace 1⟨a,x⟩≤θ with |ai| ≥ 1 for i ∈ [d] is at most
O( 1√

d
). [67] extended this result from half-space to polytope and [11] further extended to

positive spectrahedron.
Following this line of research, we prove the following hyperbolic anti-concentration

theorem, which shows that the hyperbolic spectral norm of Rademacher sum of vectors in
the hyperbolic cone cannot concentrate within a small interval.

▶ Theorem 3 (Hyperbolic anti-concentration theorem, informal). Let h be an m-variate degree-
d hyperbolic polynomial with hyperbolic direction e ∈ Rm. Let {xi}i∈[n] ⊂ Λ+ be a sequence of
vectors in the hyperbolic cone such that λmax(xi) ≤ τ for all i ∈ [n] and

∑n
i=1 λmin(xi)2 ≥ 1.

Then, for any y ∈ Rm and any ∆ ≥ 20τ log d, we have

Pr
ϵ∼{−1,1}n

[
λmax

(
n∑

i=1
ϵixi − y

)
∈ [−∆, ∆]

]
≤ O(∆).

From the geometric viewpoint, we can define a “positive hyperbolic-spectrahedron” as the
space {α ∈ Rn : λmax(α1x1 + · · · + αnxn − y) ≤ 0}, where x1, . . . , xn are in the hyperbolic
cone. Then, Theorem 3 states that the hyperbolic spectral norm of a positive hyperbolic-
spectrahedron cannot be concentrated in a small region.

1.3 Hyperbolic discrepancy theory

Hyperbolic polynomial is an important tool in the discrepancy theory, which is an important
subfield of combinatorics, with many applications in theoretical computer science. Following
Meka’s blog post [60], by combining scalar version Chernoff bound and union bound, we can
easily prove that, for any n vectors x1, . . . , xn ∈ {−1, 1}n, there exists r ∈ {−1, 1}n such
that |⟨r, xi⟩| ≤ O(

√
n log n) for every i ∈ [n]. In a celebrated result “Six Standard Deviations

Suffice”, Spencer showed that it can be improved to |⟨r, xi⟩| ≤ 6
√

n [83].
For the matrix case, by the matrix Chernoff bound, it follows that for any symmetric

matrix X1, . . . , Xn ∈ Rd×d with ∥Xi∥ ≤ 1, for uniformly random signs r ∈ {−1, 1}n, with
high probability, ∥

∑n
i=1 riXi∥ ≤ O(

√
log(d)n).

An important open question is, can we shave the log(d) factor for some choice of the
signs?

▶ Conjecture 4 (Matrix Spencer Conjecture). For any symmetric matrices X1, . . . , Xn ∈ Rd×d

with ∥Xi∥ ≤ 1, there exist signs r ∈ {−1, 1}n such that ∥
∑n

i=1 riXi∥ = O(
√

n).

The breakthrough paper by Marcus, Spielman and Srivastava [56] proved the famous Kadison-
Singer conjecture [41], which was open for more than half of a century.

▶ Theorem 5 (Kadison-Singer, [41, 56]). Let k ≥ 2 be an integer and ϵ a positive real number.
Let x1, . . . , xn ∈ Cm such that ∥xix

∗
i ∥ ≤ ϵ ∀i ∈ [n], and

∑n
i=1 xix

∗
i = I. Then, there exists

a partition S1 ∪ S2 ∪ · · · ∪ Sk = [n] such that ∥
∑

i∈Sj
xix

∗
i ∥ ≤ ( 1√

k
+

√
ϵ)2 ∀j ∈ [k].
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10:6 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

The Kadison-Singer theorem implies that for rank-1 matrices X1, . . . , Xn with ∥Xi∥ ≤ ϵ in
isotropic positioniii, there exists a choice of r ∈ {−1, 1}n such that ∥

∑n
i=1 riXi∥ ≤ O(

√
ϵ).iv

Theorem 5 can be generalized for higher rank matrices by Cohen [21] and Brändén [18]
independently. However, their results still need the isotropic condition. On the other hand,
Kyng, Luh, and Song [44] proved a stronger version of rank-1 matrix Spencer theorem
(Conjecture 4) by showing that when the spectral norm of the sum of the squared matrices
(the variance of the random matrices) is bounded, the matrix discrepancy upper bound is at
most four deviations. Formal theorem statements will be presented in the full version of this
paper [82].

Similar to the scalar and matrix cases, the discrepancy theory can be further generalized
to the hyperbolic spectral norm. Brändén [18] proved a hyperbolic Kadison-Singer theorem,
which generalizes Theorem 5 to the hyperbolic spectral norm and vectors with arbitrary rank
and in isotropic condition. Our first result relaxes the isotropic condition to sub-isotropic:

▶ Theorem 6 (Hyperbolic Kadison-Singer with sub-isotropic condition, informal). Let k ≥ 2 be
an integer and ϵ, σ > 0. Suppose h is hyperbolic with respect to e ∈ Rm, and let x1, . . . , xn be
n vectors in the hyperbolic cone such that

trh[xi] ≤ ϵ ∀i ∈ [n], and
∥∥∥ n∑

i=1
xi

∥∥∥
h

≤ σ. (2)

where trh[x] :=
∑d

i=1 λi(x). Then, there exists a partition S1 ∪ S2 ∪ · · · ∪ Sk = [n] such that
for all j ∈ [k],∥∥∥∥∥∑

i∈Sj

xi

∥∥∥∥∥
h

≤
(√

ϵ +
√

σ/k
)2

.

Theorem 6 implies the high rank case of [56] result (Theorem 5) without the isotropic
condition. We note that there is a naive approach to relax the isotropic condition in [56, 18]’s
results by adding several small dummy vectors to make the whole set in isotropic position.
(See [30] for more details.) However, Theorem 6 is slightly better than this approach, since
the naive approach will increase the number of vectors which results in a worse bound.

Theorem 6 also implies the following hyperbolic discrepancy result:

▶ Corollary 7 (Hyperbolic discrepancy for sub-isotropic vectors). Let 0 < ϵ ≤ 1
2 . Suppose

h ∈ R[z1, . . . , zm] is hyperbolic with respect to e ∈ Rm, and let x1, . . . , xn ∈ Λ+(h, e) that
satisfy Eq. (2). Then, there exist signs r ∈ {−1, 1}n such that∥∥∥∥∥

n∑
i=1

rixi

∥∥∥∥∥
h

≤ 2
√

ϵ(2σ − ϵ).

We note that this result is incomparable with [44] due to the following reasons: 1) [44] only
works for rank-1 matrices while our result holds for arbitrary rank vectors in the hyperbolic
cone; 2) the upper bound of [44] depends on ∥

∑n
i=1 X2

i ∥1/2 while our result depends on the
hyperbolic trace and spectral norm of the sum of vectors.

To obtain a hyperbolic discrepancy upper bound for arbitrary vectors (as in the case of
Conjecture 4), we can apply hyperbolic Chernoff bound (Theorem 1) and get the following
discrepancy result which holds with high probability:

iii Isotropic means X1 + · · · +Xn = I.
iv For more details and consequences of the Kadison-Singer theorem, we refer the readers to [19, 58].
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▶ Corollary 8. Let h be a degree-d hyperbolic polynomial with respect to e ∈ Rm. We are
given vectors x1, x2, · · · , xn ∈ Rm such that ∥xi∥h ≤ 1 and rank(xi) ≤ s for all i ∈ [n] and
some s ∈ N+. Then for uniformly random signs r ∼ {−1, 1}n,∥∥∥∥∥

n∑
i=1

rixi

∥∥∥∥∥
h

≤ O(
√

n log(s + 1))

holds with probability at least 0.99.

This result may not be tight when the ranks of the input vectors are large. It is
thus interesting to study whether we can do better to improve the

√
log d factor in the

non-constructive case. We thus conjecture the following hyperbolic discrepancy bound:

▶ Conjecture 9 (Hyperbolic Spencer Conjecture). We are given vectors x1, x2, · · · , xn ∈ Rm

and a degree d hyperbolic polynomial h ∈ R[z1, . . . , zm] with respect to e ∈ Rm, where
∥xi∥h ≤ 1 for all i ∈ [n]. Then, there exist signs r ∈ {−1, 1}n, such that∥∥∥∥∥

n∑
i=1

rixi

∥∥∥∥∥
h

≤ O(
√

n).

Note that Conjecture 9 is more general than the matrix Spencer conjecture (Conjecture 4).
And for constant degree d or constant maximum rank s, this conjecture is true by Corollary 8.

1.4 Related work
Chernoff-type bounds

There is a long line of work generalizing the classical scalar Chernoff-type bounds to the
matrix Chernoff-type bound [77, 5, 78, 85, 55, 29, 45, 66, 10, 40]. [77, 78] showed a Chernoff-
type concentration of spectral norm of matrices which are the outer product of two random
vectors. [5] first used Laplace transform and Golden-Thompson inequality [31, 84] to prove a
Chernoff bound for general random matrices. It was improved by [85] and [68] independently.
[55] proved a series of matrix concentration results via Stein’s method of exchangeable pairs.
Our work further extends this line of research from matrix to hyperbolic polynomials and can
fully recover the result of [5]. On the other hand, [29] showed an expander matrix Chernoff
bound. [45] prove a new matrix Chernoff bound for Strongly Rayleigh distributions.

Hyperbolic polynomials

The concept of hyperbolic polynomials was originally studied in the field of partial differential
equations [27, 39, 42]. Güler [32] first studied the hyperbolic optimization (hyperbolic
programming), which is a generalization of LP and SDP. Later, a few algorithms [71, 64, 75, 72,
65, 73] were designed for hyperbolic programming. On the other hand, a lot of recent research
focused on the equivalence between hyperbolic programming and SDP, which is closely related
to the “Generalized Lax Conjecture” and its variants [36, 52, 17, 43, 80, 7, 69]. In addition
to the hyperbolic programming, hyperbolic polynomial is a key component in resolving
Kadison-Singer problem [56, 18] and constructing bipartite Ramanujan graphs [57]. Gurvits
[34, 35] proved some Van der Waerden/Schrijver-Valiant like conjectures for hyperbolic
polynomials, giving sharp bounds for the capacity of polynomials. [81] gave an approach
to certify the non-negativity of polynomials via hyperbolic programming, generalizing the
Sum-of-Squares method.
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10:8 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

Discrepancy theory

For discrepancy theory, we give a few literature in Section 1.3 and we provide more related
work here. For Kadison-Singer problem, after the breakthrough result [56], Anari and Oveis
Gharan [8] generalized it for Strongly Rayleigh distributions. Alishahi and Barzegar [6]
extended the “paving conjecture” to real stable polynomialsv. Zhang and Zhang [89] further
relaxed the determinant polynomial in [8] and [44] to homogeneous real-stable polynomials.
More recently, [38, 23] proved some special cases of the matrix Spencer conjecture. For
algorithmic results, Bansal [12] proposed the first constructive version of partial coloring
for discrepancy minimization. Based on this work, more approaches [54, 76, 51, 25, 13, 24]
were discovered in recent years. For applications of the discrepancy theory, [8, 9] used the
Strongly Rayleigh version of Kadison-Singer theorem to improve the integrality gap of the
Asymmetric Traveling Salesman Problem. [47] used the rank-1 matrix Spencer theorem
in [44] to obtain a two-sided spectral rounding result. For more applications, we refer to the
excellent book by Matousek [59].

1.5 Technique overview
In this section, we provide a proof overview of our results. We first show how prove hyperbolic
Chernoff bounds by upper bounding each polynomial moment. After that, we show how
to apply our new concentration inequality to prove hyperbolic anti-concentration. Finally,
we show how to relax the isotropic condition in [18], and also how to get a more general
discrepancy result via hyperbolic concentration.

1.5.1 Our technique for hyperbolic Chernoff bound for Rademacher sum
The main idea of our proof of hyperbolic Chernoff bound is to upper bound the polynomial
moments.

By definition, the hyperbolic spectral norm of X is the ℓ∞ norm of the eigenvalues λ(X).
Inspired by the proof of the matrix Chernoff bound by Tropp [87], we can consider the ℓ2q

norm of λ(X), for q ≥ 1. When the hyperbolic polynomial h is the determinant polynomial,
this norm is just the Schatten-2q norm of matrices. For general hyperbolic polynomials, we
define hyperbolic-2q norm as ∥x∥h,2q := ∥λ(x)∥2q. By the result of [14], hyperbolic-2q norm
is actually a norm in Rm. And the following inequality shows the connection between a
hyperbolic spectral norm and hyperbolic-2q norm:

E
r∼{±1}n

[∥X∥h] ≤
(

E
r∼{±1}n

[
∥X∥2q

h,2q

])1/(2q)
.

In order to compute ∥X∥2q
h,2q =

∑rank(X)
i=1 λi(X)2q, we use a deep result about hyperbolic

polynomials: the Helton-Vinnikov Theorem [36], which proved a famous conjecture by
Lax [48], to translate between hyperbolic polynomials and matrices. The theorem is stated
as follows.

▶ Theorem 10 ([36]). Let f ∈ R[x, y, z] be hyperbolic with respect to e = (e1, e2, e3) ∈ R3.
Then there exist symmetric real matrices A, B, C ∈ Rd×d such that f = det(xA + yB + zC)
and e1A + e2B + e3C ≻ 0.

v A polynomial is real stable if it is hyperbolic with respect to every e ∈ Rn
>0.
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Gurvits [33] proved a corollary (Corollary 22) that for any m-variate hyperbolic polynomial
h, and x, y ∈ Rm, there exist two symmetric matrices A, B ∈ Rd×d such that for any a, b ∈ R,
λ(ax + by) = λ(aA + bB), where the left-hand side means the hyperbolic eigenvalues of the
vector ax + by and the right-hand side means the eigenvalues of the matrix aA + bB.

Therefore, we try to separate and consider one random variable ri at a time. We first
consider the expectation over r1. By conditional expectation, let X2 :=

∑n
i=2 rixi and we

have

E
r∼{±1}n

[
∥X∥2q

h,2q

]
= E

r2,...,rn∼{±1}

[
E

r1∼{±1}

[
∥r1x1 + X2∥2q

h,2q

]]
,

By Corollary 22, there exist two matrices A1, B1 such that λ(r1x1 + X2) = λ(r1A1 + B1)
holds for any r1. And it follows that

E
r1∼{±1}

[
∥r1x1 + X2∥2q

h,2q

]
= E

r1∼{±1}

[
∥r1A1 + B1∥2q

2q

]
.

It becomes much easier to compute the expected Schatten-2q norm of matrices. We can
prove that

E
r∼{±1}n

[
∥X∥2q

h,2q

]
≤

q∑
k1=0

(
2q

2k1

)
∥x1∥2k1

h · E
r2,...,rn

[
∥X2∥2q−2k1

h,2q−2k1

]
.

Now, we can iterate this process for the remaining expectation Er2,...,rn

[
∥X2∥2q−2k1

h,2q−2k1

]
. After

n − 1 iterations, we get that(
E

r∼{±1}n

[
∥X∥2q

h,2q

])1/(2q)
≤
√

2q − 1 · s1/(2q) · σ, (3)

where σ2 =
∑n

i=1 ∥xi∥2
h and s is the maximum rank of x1, . . . , xn. Then, by taking

q := log(s) and ∥X∥h ≤ ∥X∥2q
h,2q, we get the desired upper bound for the expectation

Er∼{±1}n [∥
∑n

i=1 rixi∥h] in Theorem 1.
To obtain the concentration probability inequality, We can apply the result of Ledoux and

Talagrand [49] for the concentration of Rademacher sums in a normed linear space, which
will imply:

Pr
r∼{±1}n

[∥X∥h > t] ≤ 2 exp
(

− t2
/(

32 E
r∼{±1}n

[∥X∥2
h]
))

. (4)

However, we need to verify that the hyperbolic spectral norm ∥ · ∥h is indeed a norm, which
follows from the result of Gårding [28]. Since by Khinchin-Kahane inequality ([82, Theorem
A.16]) the second moment of ∥X∥h can be upper-bounded via the first moment. Hence, we
can put our expectation upper bound into Eq. (4) and have

Pr
r∼{±1}n

[∥X∥h > t] ≤ C1 exp
(

− C2t2

σ2 log(s + 1)

)
,

for constants C1, C2 > 0, and hence Theorem 1 is proved. We defer the formal proof in the
full version [82, Section B].

1.5.2 Our technique for hyperbolic Chernoff bound for positive vectors
We can use similar techniques in the previous section to prove Theorem 2.

APPROX/RANDOM 2022



10:10 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

For any random vectors x1, . . . , xn ∈ Λ+, we may assume ∥xi∥h ≤ 1. Using the Taylor
expansion of the mgf, we can show that:

Pr
[

λmax

(
n∑

i=1
xi

)
≥ t

]
≤ inf

θ>0
e−θt ·

∑
q≥0

θq

q! E

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥
q

h,q

 . (5)

Then, for the q-th moment, we separate x1 and
∑n

i=2 xi and have

E≥1

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥
q

h,q

 = E≥2E1 [tr [(A1 + B1)q]] ,

where A1 and B1 are two PSD matrices obtained via Gurvits’s result (Corollary 22) such
that A1 depends on x1 and B1 depends on x2, . . . , xn. The next step is different from the
case of Rademacher sum, since we cannot drop half of the terms by the distribution of x1.
Instead, we can fully expand the matrix products in the trace and use Horn’s inequality to
upper bound the eigenvalue products. We have

E≥2E1 [tr [(A(x1) + B)q]] ≤ E1

 q∑
k1=0

(
q

k1

)
λmax(x1)k1 · E≥2

∥∥∥∥∥
n∑

i=2
xi

∥∥∥∥∥
q−k1

h,q−k1

 .

By repeating this process, we finally have

E

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥
q

h,q

 ≤ d · E

[(
n∑

i=1
∥xi∥h

)q]
.

Then, we put the above upper bound into Eq. (5), which gives:

Pr
[

λmax

(
n∑

i=1
xi

)
≥ t

]
≤ inf

θ>0
e−θt · d ·

n∏
i=1

E
[
eθ∥xi∥h

]
.

Now, we use some similar calculations in the matrix case [85] to prove that

Pr
[

λmax

(
n∑

i=1
xi

)
≥ t

]
≤ inf

θ>0
d · exp

(
−θt + (eθ − 1)µmax

)
.

By taking θ := log(t/µmax) and t := (1 + δ)µmax, we get that

Pr
[

λmax

(
n∑

i=1
xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax

(6)

For the minimum eigenvalue case, we can define x′
i := e − xi for i ∈ [n]. Then, by the

property of hyperbolic eigenvalues (Fact 19) and the assumption that ∥xi∥h ≤ 1, we know
that x′

i are also in the hyperbolic cone and λmax(x′
i) = 1 − λmin(x′

i). Therefore, we can obtain
the Chernoff bound for the minimum eigenvalue of x by applying Eq. (6) with x′

i. We defer
the formal proof in the full version [82, Section C].

1.5.3 Our technique for hyperbolic anti-concentration
In this part, we will show how to prove the hyperbolic anti-concentration result (Theorem 3)
via the hyperbolic Chernoff bound for vectors in the hyperbolic cone (Theorem 2).
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In [67], they studied the unate functions on hypercube {−1, 1}n, which is defined as the
function being increasing or decreasing with respect to any one of the coordinates. Then, they
showed that the Rademacher measure of a unate function is determined by the expansion
of its indicator set in hypercube. In particular, for the maximum hyperbolic eigenvalue, it
is easy to see that the indicator function

[
λmax

(∑n
i=1 ϵix

j
i − yj

)
∈ [−∆, ∆]

]
is unate when

xi ∈ Λ+. Hence, we can show the anti-concentration inequality by studying the expansion in
the hypercube, which by [11], is equivalent to lower-bound the minimum eigenvalue of each
vector. However, for the initial input xi, we only assume that

∑n
i=1 λmin(xi)2 ≥ 1, but we

need a Ω( 1√
log d

) lower bound for each xi to prove the theorem. To amplify the minimum
eigenvalue, we follow the proof in [11] that uses a random hash function to randomly assign
the input vectors into some buckets and considers the sum of the vectors in each bucket as
the new input. They proved that the “bucketing” will not change the distribution. Then, we
can use Theorem 2 to lower bound the minimum hyperbolic eigenvalue of each bucket, which
is a sum of independent random vectors in the hyperbolic cone. Hence, we get that

Pr
[

λmin

(
n∑

i=1
zi,jxi

)
≤ Ω( 1√

log d
)
]

≤ 1
10 ,

which zi,j ∈ {0, 1} is a random variable indicating that xi is hashed to the j-th bucket. Then,
by the standard Chernoff bound for negatively associated random variables, we can prove
that most of the buckets have large minimum eigenvalues, which concludes the proof of the
hyperbolic anti-concentration theorem. We defer the formal proof in the full version [82,
Section D].

1.5.4 Our technique for hyperbolic discrepancy
To relax the isotropic condition in [18], we basically follow their proof. The high-level
idea is to construct a compatible family of polynomialsvi such that the probability in the
hyperbolic Kadison-Singer problem (Theorem 6) can be upper-bounded by the largest root
of the expected polynomial of the family, which can be further upper-bounded by the largest
root of the mixed hyperbolic polynomial h[v1, . . . , vn] ∈ R[x1, . . . , xm, y1, . . . , yn], defined as
h[v1, . . . , vn] :=

∏m
i=1(1 − yiDvi

)h(x), where Dvi
is the directional derivative with respect to

vi. In particular, we can consider the roots of the linear restriction h[v1, . . . , vn](te+1) ∈ R[t].
Then, using Gårding’s result [28] on hyperbolic cone, we know that the largest root equals
the minimum ρ > 0 such that the vector ρe + 1 is in the hyperbolic cone Γ+ of h[v1, . . . , vn],
which can be upper-bounded via similar techniques in [56, 44] to iteratively add each vector
vi while keeping the sum in the hyperbolic cone. Our key observation is that the proof in [18]
essentially proved that

ϵµe +
(
1 − 1

n

)
δ
∑n

i=1 vi

1 + µ−1
n

+ 1 ∈ Γ+

holds for any vectors vi ∈ Λ+. Hence, once we assume that ∥
∑n

i=1 vi∥h ≤ σ, then by the
convexity of the hyperbolic cone, we get that ρ ≤ (ϵµ+(1− 1

n )δσ)
1+ µ−1

n

, which will imply the upper
bound in Theorem 6. We defer the formal proof in the full version [82, Section E].

vi The compatible family of polynomials is closely related to the interlacing family in [56, 57]. See [82,
Definition E.16].

APPROX/RANDOM 2022



10:12 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

To obtain the discrepancy result for arbitrary vectors (Corollary 8), we can use the
hyperbolic Chernoff bound for Rademacher sum (Theorem 1) to derive the discrepancy upper
bound. For any vectors x1, . . . , xn with maximum rank s, by setting t = O(σ

√
log s) in

Theorem 1, we get that ∥
∑n

i=1 rixi∥h ≤ O(σ
√

log s) holds with high probability for uniformly
random signs r ∼ {±1}n.

1.6 Discussion and Open problems

In this paper, we initiate the study of concentration with respect to the hyperbolic spectral
norm, and we generalize several classical concentration and anti-concentration results to the
hyperbolic polynomial setting. Our results are closely related to the discrepancy theory and
pseudorandomness. We provide some open problems in below.

Tighter hyperbolic Chernoff bound?

Our current result has a worse dependence on the variance σ2 than the matrix Chernoff
bound [86]. Can we match the results when h = det(X)? We note that there is a limitation
for using the techniques like Golden-Thompson inequality and Lieb’s theorem, which were
used in [68, 85] to improve the original matrix Chernoff bound [5], to tighten our result.
Because for any symmetric matrix X, we can define a mapping such that ϕ(X)’s eigenvalues
are the p-th power of X’s eigenvalues for any p > 0, where the mapping is just Xp. However,
we cannot find such a mapping for vectors with respect to the hyperbolic eigenvalues. Some
new techniques may be required to get a hyperbolic Chernoff bound matching the matrix
results.

Resolving the hyperbolic Spencer conjecture?

Inspired by the matrix Spencer conjecture (due to Meka [60]), we came up with a more general
conjecture for hyperbolic discrepancy. Can we prove or disprove this conjecture? It is also
interesting to study the connection between hyperbolic Spencer conjecture and the generalized
Lax conjecture [36, 52, 17, 43, 80, 7, 69]. If we assume the matrix Spencer conjecture and the
generalized Lax conjecture, can we prove the hyperbolic Spencer conjecture? On the other
hand, in a very recent work by Reis and Rothvoss [70], they conjectured a weaker matrix
Spencer by considering the Schatten-p norm of matrices. We can also define such an ℓp version
of the hyperbolic Spencer conjecture by looking at the ℓp-norm of hyperbolic eigenvalues
(the hyperbolic-p norm). Any progress towards the ℓp-hyperbolic Spencer conjecture will
provide more insights in matrix and hyperbolic discrepancy theory.

Fooling hyperbolic cone?

One of the results in this paper is showing an anti-concentration inequality with respect to the
hyperbolic spectral norm, which generalizes the results in [67, 11]. They actually combined
the anti-concentration results with the Meka-Zuckerman [62] framework to construct PRGs
fooling polytopes/positive spectrahedrons. Hence, an open question in complexity theory and
pseudorandomness is: can we apply the hyperbolic anti-concentration inequality to construct
a PRG fooling positive hyperbolic-spectrahedrons, or even hyperbolic cones?
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Concentration of random tensors?

Tensor concentration is another natural generalization of matrix concentration. Although
there have been a large number of works on this problem [46, 50, 4, 3, 88, 2], it is still unclear
what is the optimal concentration bound for the Euclidean norm of random tensor X ∈ Rnd ,
even in the simple case when X = x1 ⊗ · · · ⊗ xd for random vectors x1, . . . , xd ∈ Rn. On
the other hand, people also care about whether random tensors are well-conditioned, which
is more related to TCS problems including tensor decompositions and learning Gaussian
mixtures. The current results [88, 1, 16] have a large gap between the matrix case. For these
tensor concentration problems, is it possible to study them via hyperbolic polynomials and
obtain tighter bounds?
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A Basics of Hyperbolic Polynomial

A.1 Basic definitions of hyperbolic polynomials
We provide the definition of hyperbolic polynomial.

▶ Definition 11 (Hyperbolic polynomial). A homogeneous polynomial h : R → R is hyperbolic
with respect to a vector e ∈ Rm if h(e) ̸= 0, and for all x ∈ Rm, the univariate polynomial
t 7→ h(te − x) has only real zeros.

The following fact shows how to factorize a hyperbolic polynomial, which easily follows
from the homogeneity of the polynomial:

▶ Fact 12 (Hyperbolic polynomial factorization). For a degree-d polynomial h ∈ R[z1, . . . , zm]
hyperbolic with respect to e ∈ Rm, we have

h(te − x) = h(e)
d∏

i=1
(t − λi(x))

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) are real roots of h(te − x).

All the vectors with nonnegative hyperbolic eigenvalues form a cone, which is proved by
Gårding [28]. It is a very important object related to the geometry of hyperbolic polynomials.
The formal definition is as follows:

▶ Definition 13 (Hyperbolic cone). For a degree d hyperbolic polynomial h with respect to
e ∈ Rm, its hyperbolic cone is

Λ+(e) := {x : λd(x) ≥ 0}.

The interior of Λm
+ is

Λ++(e) := {x : λd(x) > 0}.

Gårding [28] showed the following fundamental properties of the hyperbolic cone:

▶ Theorem 14 ([28]). Suppose h ∈ R[z1, . . . , zm] is hyperbolic with respect to e ∈ Rn. Then,
1. Λ+(e), Λ++(e) are convex cones.
2. Λ+ + (e) is the connected component of {x ∈ Rm : h(x) ̸= 0} which contains e.
3. λmin : Rm → R is a concave function, and λmax : Rm → R is convex.
4. If e′ ∈ Λ++(e), then h is also hyperbolic with respect to e′ and Λ++(e′) = Λ++(e).

For simplicity, we may use Λ+ and Λ++ to denote Λ+(e), Λ++(e), when e is clear from
context. In this paper, we always assume that e is any fixed vector in the hyperbolic cone of
h.

We define the trace, rank and spectral norm respect to hyperbolic polynomial h.

▶ Definition 15 (Hyperbolic trace, rank, spectral norm). Let h be a degree d hyperbolic
polynomial with respect to e ∈ Rm. For any x ∈ Rm,

trh[x] :=
d∑

i=1

λi(x), rank(x) := #{i : λi(x) ̸= 0}, ∥x∥h := max
i∈[d]

|λi(x)| = max{λ1(x),−λd(x)}.

We define the p norm with respect to hyperbolic polynomial h.

APPROX/RANDOM 2022



10:18 Hyperbolic Concentration, Anti-Concentration, and Discrepancy

▶ Definition 16 (∥ · ∥h,p norm). For any p ≥ 1, we define the hyperbolic p-norm ∥ · ∥h,p

defined as:

∥x∥h,p := ∥λ(x)∥p =
( d∑

i=1
|λi(x)|p

)1/p

∀x ∈ Rm.

It has been shown that ∥ · ∥h and ∥ · ∥h,p are indeed norms:

▶ Theorem 17 ([28, 18, 73]). ∥ · ∥h is a semi-norm.
Furthermore, if Λ+ is regular, i.e., (Λ+ ∩ −Λ+) = {0}, then ∥ · ∥h is a norm on Rm.

▶ Theorem 18 ([14]). For any p ≥ 1, ∥ · ∥h,p is a semi-norm. Moreover, if the hyperbolic
cone Λ+ is regular, then ∥ · ∥h,p is a norm.

A.2 Basic properties of hyperbolic polynomials
We state a fact for the eigenvalues λ(·) of degree-d hyperbolic polynomial h.

▶ Fact 19 ([14]). For all i ∈ [d],

λi(s · x + t · e) =
{

s · λi(x) + t, if s ≥ 0;
s · λd−i(x) + t, if s < 0.

Then, we show that the elementary symmetric sum-products of eigenvalues can be computed
from the directional derivatives of the polynomial.

▶ Observation 20 ([14]). For a degree-d hyperbolic polynomial h with respect to e, we have

h(te + x) = p(e) ·
d∏

i=1
(t + λi(x)) =

d∑
i=0

si(λ(x)) · td−i,

where λ(x) = (λ1(x), · · · , λd(x)) are the hyperbolic eigenvalues of x and si : Rd → R is the
i-th elementary symmetric polynomial:

si(y) :=


∑

S∈([d]
i )
∏

j∈S yj , ∀i ∈ [d];

1 if i = 0.

Furthermore, for each i ∈ {0, 1, · · · , d},

h(e) · si(λ(x)) = 1
(d − i)! · ∇d−ih(x) [e, e, . . . , e]︸ ︷︷ ︸

(d−i) terms

.

If i ∈ [d], then si ◦ λ is hyperbolic with respect to e of degree i.

▶ Corollary 21. tr[x] is a linear function.

Proof. By Observation 20, we have

trh[x] = s1(λ(x)) = 1
h(e) · (d − 1)! · ∇d−1h(x)[e, e, . . . , e].

Since h is of degree d, ∇d−1h is a degree-1 polynomial. Hence, trh[x] is a linear function. ◀
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A.3 Helton-Vinnikov Theorem
We state a corollary of Helton-Vinnikov Theorem (Theorem 10), proved by Gurvits [33]:

▶ Corollary 22 (Proposition 1.2 in [33]). Let h(x) be a m-variable degree-d hyperbolic polyno-
mial. Then, for x, y ∈ Rm, there exists two symmetric real matrices A, B ∈ Rd×d such that
for any a, b ∈ R, the ordered eigenvalues λ(ax + by) = λ(aA + bB).

This Corollary relates the hyperbolic eigenvalues of a vector ax + by to the eigenvalues of
matrix aA + bB, which allows us to study some properties of hyperbolic eigenvalues using
results in matrix theory.
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Abstract
Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the
values of low degree polynomials, evaluated in every point in Fm

p . Similarly to Reed-Muller codes,
multiplicity codes have a local nature that allows for local correction and local testing. Recently,
[6] showed that the plane test, which tests the degree of the codeword on a random plane, is a
good local tester for small enough degrees. In this work we simplify and extend the analysis of
local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show
that multiplicity codes MRMp(m, d, s) over prime fields with arbitrary d are locally testable by an
appropriate k-flat test, which tests the degree of the codeword on a random k-dimensional affine
subspace. The relationship between the degree parameter d and the required dimension k is shown
to be nearly optimal, and improves on [6] in the case of planes.

Our analysis relies on a generalization of the technique of canonincal monomials introduced in
[5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs
which exploit the algebraic structure of multiplicity codes.
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1 Introduction

The Reed-Muller code RMp(m, d) is the set of evaluation tables of m-variate degree-d
polynomials. That is, a function f : Fm

p → Fp is in RMp(m, d) if there exists a polynomial
P of degree at most d such that f(a) = P (a) for any a ∈ Fm

p . The RM code is a popular
building block in CS constructions, due, to a large extent, to its strong local properties.

We say a code C ⊂ Σn is locally-testable if given a word w ∈ Σn, the tester distinguishes
between the case w ∈ C and the case that w is ϵ-far from C while reading few characters of
w. More precisely, for a code C and a word w, we define δ(w, C) to be the relative Hamming
distance of w to the closest codeword in C, i.e., δ(w, C) = minz∈C(Pri∈[n](wi ̸= zi)). Then,

▶ Definition 1. A local tester A for C ⊂ Σn is a distribution on subsets of [n].
We say A is q-query if any subset in its support is of size ≤ q.
We say A has soundness function s if for any w ∈ Σn,

REJA(w) = Pr
S∼A

(w|S ̸∈ C|S) ≥ s(δ(w, C)).

A typical soundness function s is of the form s(δ) = min (αδ, c) for some constants α and c.
We say A is a good local test for C if it has a nonzero soundness function independent of n.
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We also work with a weaker notion called local characterization. We say A is a local
characterization for C if REJA(w) = 0 implies w ∈ C.

Local testing Reed-Muller codes has been studied extensively and in several parameter
regimes [14, 3, 1, 8, 2, 5, 7]. A natural local tester for RMp(m, d) is the line test, where we
pick a random line and check if its restriction is consistent with a low-degree polynomial.
More generally, the k-flat test is uniformly distributed over k-dimensional affine subspaces of
Fm

p . We denote the rejection probability of the k flat test by REJk,d.
Any polynomial in k variables is equal everywhere to one whose degree in every variable

is at most p − 1, and therefore of total degree at most dk
def= k(p − 1). Therefore, the k-flat

test is not a local characterization for RMp(m, d) when d ≥ dk.
Quite surprisingly, it was shown in [8] that for any d < k(p − 1) the k-flat test is a

local characterization for RMp(m, d), and that it has soundness independent of m. That is,
whenever the line test is not trivially bad, it is a good local test. More concretely, suppose a
word w : Fm

p → Fp has distance δ from RMp(m, d). The k-flat test selects pk points in Fm
q ,

and so the probability that a “bad” character is read is ≤ δpk. Therefore, the best soundness
one could hope for in the k-flat test is δpk. Remarkably, later analysis of the k-flat [5, 7] test
shows it is essentially optimal given the number of queries in a wide range of parameters 1:

▶ Theorem 2 (Soundness of the RM k-flat test, [7]). There exists a constant c > 0 (independent
of p) such that the k-flat test rejects with probability at least p−c min(pkδ, 1)

1.1 The k-flat test for Multiplicity codes
Multiplicity codes were defined in [13, 12, 4, 11]. MRMp(m, d, s) is the set of evaluation
tables of m-variate, degree d polynomials, where we also record the evaluations of all its
derivatives up to order s. More precisely, we define a “multiplicity table” as a function
T : Fm

p → Σm,s, where Σm,s
∼= Fp

(m+s−1
s−1 ) is indexed by m-tuples of weight less than s. Given

a polynomial P ∈ Fp[x1, x2, . . . , xm] we define its evaluation table T P as a multiplicity table
satisfying, for any x ∈ Fm

p and any m-tuple I with wt(I) < s,

T P (x)I =P (I)(x)

where P (I)(x) denotes the direction-I Hasse derivative of P at the point x (see Section 2).
Then, the multiplicity code MRMp(m, d, s) is defined as the set of evaluation tables of
polynomials of degree at most d. Notice that this definition makes sense even for d > p.

With some care, the k-flat test may be adapted to multiplicity codes. When restricting
MRMp(m, d, s) to a k-flat we want to reduce the alphabet from Σm,s to Σk,s. Given a k-flat
Q with a chosen basis for its linear part h1, . . . , hk, one may define the chain rule map
ϕ : Σm,s → Σk,s given in [6](following the k = 1 case from [10]) by:

(ϕ(z))J =
∑

I∈Nm

zI ·
∑

I1+···+Ik=I
w(Ir)=jr

(
I

I1, . . . , Ik

) k∏
i=1

hIk

k (1)

For a polynomial P , this is the map that calculates the derivative in direction J of P |Q
from the directional derivatives of P . Accordingly, if w : Fm

p → Σm,s is in MRMp(m, d, s)
then ϕ ◦ w|Q is in MRMp(k, d, s).

1 We note the above discussion can be generalized to prime power fields where the following is known: if
Fq is of characteristic p then [8] show the k-flat test is a local characterization for d < k(q − q

p ) and
that this bound is tight. Additionally, in this case the k-flat test also gives a good local test.
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1.2 For which degree can the k-flat test be effective?
Given a function f : Fm

p → Fp, any function equivalent to it mod

Im = ⟨xp
1 − x1, xp

2 − x2, . . . , xp
m − xm⟩

takes the same values on all of Fm
p , and a polynomial P has the same evaluation table as Q

if and only if P ≡ Q mod Im.
It is established in [6] that analogously to the Reed-Muller case, two polynomials P, Q

have the same multiplicity tables if and only if their difference P − Q is in the ideal

Is
m =

〈
s∏

k=1
(xp

ik
− xik

) | (i1, . . . , is) ∈ [m]s
〉

This fact establishes a degree bound on any multiplicity table given m, s. If a monomial∏
xei

i has
∑ ⌊

ei

p

⌋
≥ s then we may subtract a multiple of one of the generators of Is

m to
lower its degree. It follows that any polynomial is equivalent (in the sense of having the same
multiplicity table) to one with

∑ ⌊
ei

p

⌋
< s, which implies d ≤ dk,s

def= k(p − 1) + (s − 1)p.

1.3 Previous work: The plane test is effective for degree d < ps

The previous discussion means that the k-flat test does not characterize MRMp(m, d, s) for
d ≥ dk,s. As dk,s is larger than dk - and significantly so for large s - one may hope that the
k-flat test is a local test for larger d in the case of multiplicity codes than for Reed-Muller
codes. For example, one could hope that the line test is useful even for degrees up to sp.
However, a simple example in [6] shows the line test fails for s = 2 even for d = p + 1.

Local testing for multiplicity codes is studied in [6], with an emphasis on the 2-flat (“plane”)
test. Two main results are obtained: one for characterization and one for robustness. For
characterization, [6] show that the plane test is a local characterization in degrees nearly
reaching dk,s. Concretely,

▶ Theorem 3 (The plane test is a local characterization). Let Fq be a field of size q of
characteristic p and assume s ≤ min {d, q − 1}. Let d < q(s − 1

p ). Then the plane test is a
local characterization for MRMp(m, d, s).

In this paper we focus on the prime field case, in which case the condition becomes
d < ps−1. The bound d < ps−1 should be compared to d2,s = 2(p−1)+(s−1)p = ps+p−2.
While not tight, this result comes close to the trivial limit d2,s.

The second result in [6] concerns robustness. It shows that if the k-flat test is a good local
test for RMp(m, d) then it is also a local characterization and local test for MRMp(m, d, s),
albeit with worse soundness. This is intuitive because multiplicity tables contain function
evaluations, and the derivatives only add more information, and what is left to be shown is
that when we pass the test the derivatives are also consistent with the function evaluations.

▶ Theorem 4 (Local testing is preserved from RM to MRM, [6]). Let Fp be a field of size q of
characteristic p, and assume s ≤ min {d, q − 1}. Suppose for RM(q, m, d) there exists α > 0
and c0 ≤ 1 such that for every f the rejection probability of the k-flat test satisfies

REJRM
k,d (f) ≥ min {α · δ(f, RM(q, m, d)), c0} .

Then, for every T we have

REJMRM
k,d (T ) ≥ min {α′ · δ(T, MRM(q, m, d, s)), c0}

for

α′ = α
q − (s − 1)

q

1
α + qd/(p−1)

APPROX/RANDOM 2022



11:4 Improved Local Testing for Multiplicity Codes

Combining Theorems 3 and 4 one gets that under the same conditions as in Theorem 3,
the plane test is a good local test.

1.4 Our new results
The main result of this paper is a new analysis of the plane test, which is based on the
canonical monomials of [5], and that we explain in detail in Section 1.5.1. This new analysis
is simpler, applies to general k-flat test (k ≥ 2) rather then just the plane test, and, more
importantly, is tighter. Concretely, we prove:

▶ Theorem 5. Let p be prime, m ≥ 1, k ≥ 2 and s < p. Then the k-flat test is a local
characterization for MRMp(m, d, s) for any d < dk,s − (s − 1).

Thus, the theorem generalize the plane test result of [6] to general k. Moreover, let us
compare the k = 2 case, we see that the trivial argument shows the k-flat test must fail for
d ≥ d2,s = 2(p − 1) + (s − 1)p = (s + 1)p − 2, [6] show the test is a local characterization
for d ≤ ps − 2, and, our results show the test is a local characterization for d ≤ d2,s − s =
(s + 1)p − s − 2.

We remark, that as before, under the same conditions the k-flat test is also a good local
test. The technique used in [6] does not give good enough soundness in the general case, so
we use a different technique based on the soundness analysis in [5]

▶ Theorem 6. There exist constants c1, c2 such that for any prime p, integers m ≥ 1,
k ≥ 2, s < p and d < dk,s − (s − 1) the k-flat test is a local tester with soundness function
min(δp−4s−c1 , p−4s−c2).

Result-wise our works raises several intriguing questions:
The question of what is the true degree threshold is intriguing and we suspect that the
true answer is indeed the bound dk,s − (s − 1) that we obtained, i.e., that there is an
example of a polynomial of degree dk,s − (s − 1) + 1 where the k-flat test fails to be
a local characterization. In Appendix C we give an example showing tightness for the
case k = 2, s = 2 in as well as an example that shows that the degree bound cannot be
improved within our technique.
Another intriguing question is the appearance of the condition s < p in our results (and
also in [6]). Is there an inherent obstacle that appears when we try to take the (Hasse)
multiplicity above the field size?
The state of the art RM results give nearly-optimal soundness for the k-flat test as long
as it is a local characterization. Can this be done for multiplicity codes as well? For
instance, is it possible to show soundness on the order of ≈ pkδ for small δ?
This work deals with prime fields, while previous works [5, 6] handle general finite fields
for Reed Muller codes and multiplicity codes respectively. Can the improvements in this
work be applied to the general finite field case?

We now explain the canonical monomial method of [5] and its use for multiplicity codes.

1.5 The technique
We continue the discussion in Section 1.2. Multiplicity tables of multiplicity s are equivalent
to elements of

Rm,s
def=Fp[x1, x2, . . . , xm] mod Is

m (2)
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That is, any multiplicity table has a unique representative in Rm,s, and any two polynomials
have the same evaluation table if and only if their difference is in Is

m. We choose

Bm,s =
{

m∏
i=1

xei
i :

m∑
i=1

⌊
ei

p

⌋
< s

}
(3)

as a basis for Rm,s (this basis is different than the one chosen in [6]). A table is in
MRMp(m, d, s) if and only if its representative polynomial in Rm,s when written in the basis
Bm,s has no monomials of degree larger than d.

We may view the k flat test for multiplicity codes algebraicly. Given a linear map
L : Fk

p → Fm
p , any polynomial P ∈ Is

m has P ◦ L ∈ Is
k. Therefore, L reduces to a map

L̄ : Rm,s → Rk,s. Phrased this way, the k-flat test takes a polynomial P ∈ Rm,s, applies a
random full-rank affine map L̄ : Rm,s → Rk,s and asks whether L̄(P ) is of degree larger than
d (when written using Bk,s). This view of the k-flat test will be crucial for the soundness
analysis appearing in Section 5.

1.5.1 Canonical monomials for Reed-Muller codes
An important observation is that both the code RMp(m, d) and the k-flat test are affine
invariant. In fact, many of the results regarding Reed-Muller codes generalize to general
affine-invariant codes, see e.g. [9].

In [5], this fact is used to analyze the soundness of the k-flat test. The idea is, given a
polynomial P , to first find an affine transformation L that puts P into a form convenient for
analyzing, and then prove the soundness for the polynomial P ◦ L.

To this end they introduce the notion of a canonical monomial.

▶ Definition 7 ([5, Definition 4.1]). A canonical monomial of degree d in n ≤ m variables in
Fp[x1, . . . , xm] is a monomial

∏n
i=1 xei

i such that (1)
∑m

i=1 ei = d (2) For every 1 ≤ i < n

ei = p − 1 (3) en ≤ p − 12.

Intuitively, this is a monomial which is supported on as few variables as possible.
Further, in [5] it is shown that any polynomial can be composed with a linear map L so

that P ◦ L contains a canonical monomial of degree deg P . Given that a polynomial contains
a canonical monomial, local characterization and testing proofs become much easier.
A map L for which P ◦ L contains a canonical monomial is given by the linear transformation
maximizing (in the graded lexicographic order) the maximal monomial of P ◦ L. The proof
contains two stages:

First, the result is shown for the special case m = 2.
An inductive argument generalizes this to any number of variables.

We recount the m = 2 case here.

▶ Lemma 8 ([5, Lemma 4.2]). Let f(x1, x2) be a degree d ≤ 2(p − 1) polynomial in Fp[x1, x2].
Then there exists α ∈ Fp such that f(x1, x2 + αx1) contains a canonical monomial of degree
d.

The proof is given in Appendix A for completeness.

2 The definition for prime power fields is more complicated.
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11:6 Improved Local Testing for Multiplicity Codes

1.5.2 Canonical monomials for multiplicity codes
When composed with the correct chain rule map defined in Equation (1), multiplicity codes
are also affine invariant. Similarly to [5] we want to establish a canonical monomial result
for multiplicity codes. This is made more complicated by the fact that individual degrees
may be larger than p.

Let s = 2. The polynomial D2 = xp
2x1 − x2xp

1 is the minimal representative of its class in
R2,2. For a linear map L : F2

p → F2
p we have D2 ◦ L = det(L)D2. Therefore, despite the fact

that the degree of x1 is not at the maximum possible value, we cannot shift the monomial
xp

1y1 into xp+1
1 .

Where does the proof of Lemma 8 fail? Looking at the coefficient of xp+1
1 in f(x1, x2+zx1),

we see it is equal to g(z) def= z − zp. While this polynomial is nonzero, it still evaluates to 0
everywhere on Fp. This is possible because its degree is larger than p.

Let P be a reduced polynomial in R2,2 of degree d < 2p. As in the proof of Lemma 8, the
coefficient of xd

1 in P (x1, x2 + zx1) is cd(z) =
∑

r≤d αd−rzr. As seen above, this polynomial
may be 0 everywhere, in which case we may not be able to achieve the monomial xd

1. This
happens precisely when g(z) = zp − z | cd.

Compromising, we next look at the coefficient of xd−1
1 x2.

cd−1(z) =
∑

r≤d−1
αd−1−r

(
r + 1

1

)
zr

It is readily observed that cd−1 is in fact the Hasse derivative of cd. If both cd and cd−1 are
zero everywhere in Fp, it follows that in fact g(z)2 | cd. However, this implies that P has
degree at least 2p, a contradiction. Therefore, we see that when d < 2p either the monomial
xd

1 or xd−1
1 x2 can be achieved.

For larger s, the polynomial Ds−1
2 has leading monomial x

q(s−1)
1 xs−1

2 , and due to its
linear invariance we cannot get a higher degree for x1. The argument from the pre-
ceding paragraph can be applied, and it shows that (if d < ps) one of the monomials
xd

1, xd−1
1 x2, . . . , x

d−(s−1)
1 xs−1

2 must appear in some composition P ◦ L.
The case d ≥ ps is trickier but still true. In general, we prove

▶ Theorem 9. Let p be prime, s < p and let P be a reduced polynomial in R2,s of degree
d. Let dx

max = p(s − 1) + (p − 1) and let dx
opt = min (d, dx

max). There exists a linear map
L : F2

p → F2
p such that P ◦ L contains a monomial xe

1xd−e
2 with e ≥ dx

opt − (s − 1).

We clarify the different degree variables introduced so far:
The degree dm,s is the highest total degree a reduced polynomial in Bm,s can have.
The degree dx

max is the highest degree in x1 a reduced polynomial in Bm,s can have.
The degree dx

opt is the highest degree in x1 we might hope for P ◦ L to have. Indeed, by
definition its degree in x1 will be ≤ dx

max, and the total degree of P ◦ L is d, so its degree
in x1 cannot be larger than this.

The proof of this theorem is given in Section 3. The proof, while similar in spirit to
Lemma 8 requires analyzing several of the polynomials ck together as well as careful use of
which monomials exist in Bm,s and which do not.

We state a simple corollary of Theorem 9

▶ Corollary 10. Under the same assumptions as Theorem 9, there exists a linear map
L : F2

p → F2
p such that the maximal monomial of P ◦ L, xa

1xb
2 satisfies b ≤ p − 1.
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Proof. We take the same linear map as in Theorem 9. Suppose dx
max = d. Then a ≥ d−(s−1)

and so b ≤ (s − 1) < p − 1. The other case is dx
max = p(s − 1) + (p − 1) in which case

a ≥ p(s − 1) and so due to xa
1xb

2 being in B2,s it must be the case that b < p. ◀

Like in the Reed-Muller case, Theorem 9 can be extended inductively to a canonical
monomial statement about general multivariate polynomials. The reduction is slightly
more complicated because the product of an Is

m1
-reduced polynomial and an Im2-reduced

polynomial is not necessarily Im1+m2 reduced when s > 1.
Taking a slightly different approach from the Reed-Muller definitions, we define canonical

monomials as the highest (in graded lexicographic order) monomial achievable by composing
with a linear map, and then display their properties.

▶ Definition 11 (Canonical monomial – general s). Let m, s be integers, m ≥ 2, s ≥ 1.
Let P ∈ Fp[X1, . . . , Xm] be reduced modulo Is

m. The canonical monomial of P modulo
Is

m, denoted Can(P, m, s), is the largest leading monomial of P ◦ L mod Is
m in the deg-lex

ordering (where X1 > . . . > Xm), where the maximum is taken over all linear transformations
L : Fm

p → Fm
p .

▶ Theorem 12 (Canonical monomials – general s). Let p be a prime, m ≥ 2 and s ≤ p − 2.
Let P ∈ Fp[X1, . . . , Xm] be reduced modulo Is

m and suppose
∏m

i=1 xei
i ∈ Bm,s is the canonical

monomial of P modulo Is
m. Then,

1.
∑m

i=1 ei = deg(P )
2. ei ≥ ei+1 for all i ∈ [m − 1].
3. e1 ≥ min {p(s − 1) + (p − 1), d} − (s − 1).
4. If n is the last integer such that en > 0, then ei = p − 1 for all i ∈ {2, . . . , n − 1}.

This theorem is proved in Section 4.

1.5.3 Canonical monomials imply local testing
Suppose a reduced polynomial P in Rm,s has degree > d and distance δ from MRMp(m, d, s).
Informally, the approach to proving the robustness of the plane test in [6] is to select a
plane by first selecting an intermediate uniform 2s-dimensional subspace H, and within it a
uniform plane Q. The reason this method has soundness on the order of p−O(s) is:

Due to Theorem 4 with probability ≥ δ 1
p the restriction P |H has degree > d.

Due to Theorem 3 at least one plane Q in H has deg P |Q > d.
The number of planes in H is O(pcs) for some constant c, so the overall soundness is
≥ δΩ(p−cs−1).

When trying to generalize this approach to the k-dimensional test, some issues occur. As
the degree bound on d is ≈ (p − 1)k + (s − 1)p, the space H needs to have dimension k + 2s.
In this case the first step still works. However, the number of k-dimensional subspaces in
Fk+2s

p can be on the order of pO(ks+s2), and this would affect the soundness.
Instead, we replace the second stage with a stronger statement regarding the soundness

of the k-dimensional test within Fk+2s
p , analogous to the following lemma in [5].

▶ Lemma 13 ([5], Lemma 4.6). Let d < k(p − 1) and let f : Fk+1
p → Fp have degree larger

than d. Then the k-dimensional test rejects f with probability ≥ 1
p .

For the case of multiplicity codes, we show

▶ Lemma 14. Let d < k(p − 1) + (s − 1)p − (s − 1) and let f : Fk+1
p → Σk+1,s have degree

larger than d. Then the k-dimensional test rejects f with probability ≥ 1
p2 .

APPROX/RANDOM 2022



11:8 Improved Local Testing for Multiplicity Codes

This lemma is then applied repeatedly 2s times, showing total soundness of at least p−4s.
It follows that the probability that a k-dimensional subspace Q within the intermediate

subspace H has deg P |Q > d is at least p−O(s), giving Theorem 6.

2 Preliminaries

For a comprehensive survey of multiplicity codes, see [10]. We present some properties
that we use here for completeness. We denote the polynomial ring Fp [X1, . . . , Xm] by F [X].
Given a non-negative tuple i = (i1, . . . , im), Xi denotes the monomial

∏m
j=1 X

ij

j .

▶ Definition 15 (Hasse derivative). For P (X) ∈ Fp [X] and a non-negative tuple i, the
direction i Hasse derivative of P , denoted P (i)(X) is the coefficient of Zi in the polynomial
P (X + Z)

▶ Proposition 16 (Basic properties of Hasse derivatives). Let P (X), Q(X) ∈ Fp[X]m and let
i, j be vectors of non-negative tuples. Then:
1. P (i)(X) + Q(i)(X) = (P + Q)(i)(X).
2. (P · Q)(i)(X) =

∑
0⩽e⃗⩽i P (e⃗)(X) · Q(i−e⃗)(X).

3.
(
P (i))(j) (X) =

(i+j
i

)
P (i+j)(X).

▶ Definition 17 (Vanishing multiplicity). We say a polynomial P has vanishing multiplicity s

at x, and write Mult(P ; x) ≥ s, if for any i with wt(i) < s, P (i)(x) = 0. We say P vanishes
with multiplicity exactly s at x, if Mult(P ; x) is at least s but not s + 1.

A simple fact derived from Item 2 is:

▶ Corollary 18. Mult(P · Q; x) ≥ Mult(P ; x) + Mult(Q; x).

We also need the following:

▶ Lemma 19 (See, e.g. [6]). A polynomial has vanishing multiplicity ≥ s if and only if

P ∈ Is
m =

〈
s∏

k=1
(xp

ik
− xik

) | (i1, . . . , is) ∈ [m]s
〉

▶ Lemma 20. Let P be a bivariate homogeneous polynomial, and (a, b) ∈ Fp × Fp \ (0, 0).
Then, Mult(P ; (a, b)) ≥ t iff (bx − ay)t|P .

Proof. From Item 2 it is clear that (bx − ay)t|P implies Mult(P ; (a, b)) ≥ t. We prove the
other direction by induction on t. Suppose Mult(P ; (a, b)) ≥ t, and let d = deg(P ).

For t = 1, suppose w.l.o.g. that b ̸= 0 and define p(x) = P (x, 1). Then

0 = P (a, b) = P (b · (a

b
, 1)) = bd · p(a

b
).

Thus p( a
b ) = 0 and (x − a

b )|p, i.e., (bx − a)|p. Then, the homogeneous form of bx − a divides
the homogeneous form of p, i.e., (bx − ay)|P .

Now let us assume for t ≥ 1 and prove for t + 1. Suppose Mult(P ; (a, b)) ≥ t + 1. Then,
by induction, P = (bx − ay)t · Q for some homogeneous polynomial Q. Let i be of weight t.
Then,

0 = P (i)(a, b) =Q(0,0)(a, b) · ((bx − ay)t)i(a, b),

because all (bx − ay)t derivatives of weight less than t vanish. However, for some i of weight
t we must have ((bx − ay)t)i(a, b) ̸= 0 (e.g., if a ̸= 0, take i = (t, 0)) and therefore Q(a, b) = 0.
Thus, by the base case, bx − ay|Q, and therefore (bx − ay)t+1|P as desired. ◀



D. Karliner and A. Ta-Shma 11:9

2.1 The Moore matrix
We pay special attention to the case where m = 2 and P is homogeneous. The Moore matrix

of order 2 is
(

x xp

y yp

)
and the Moore determinant of order 2 is

D2(x, y) def= det
(

x xp

y yp

)
= xyp − yxp.

D2 = x(yp − y) − y(xp − x) is a homogeneous polynomial with vanishing multiplicity 1.
As D2 vanishes on the whole of Fp × Fp, by Lemma 20 we get the well known fact:

▶ Corollary 21.

D2(x, y) =(−y) ·
∏

a∈Fp

(x − ay).

We show D2 is essentially the only example of a bivariate homogeneous polynomial vanishing
over Fq × Fq:

▶ Lemma 22. Let s < p. Suppose P is a degree-d homogeneous polynomial that vanishes
over Fp × Fp with multiplicity s. Then P is divisible by Ds

2.

Proof. For every point (a, b) ∈ Fp × Fp \ (0, 0) such that Mult(P ; (a, b)) ≥ s, we have
by Lemma 20 that (bx − ay)t|P . Taking the points {(a, 1)}a∈Fp∗ and (1, 0) we see that
(−y)t, (x − ay)t divide P , for every a ∈ F∗

p. As these polynomials are co-prime we get that
their product divides P . Using Corollary 21 we see that Dt

2|P as desired. ◀

We also need:

▶ Lemma 23. Let P =
∑

i αix
iyd−i be a degree-d homogeneous bivariate polynomial. Suppose

P is divisible by Dr
2. Then each polynomial Pc =

∑
i≡c mod (p−1) αix

iyd−i is individually
divisible by Dr

2.

Proof. Let P = Dr
2 · Q. Write Q =

∑
i βix

iyd−i, and define Qc =
∑

i≡c mod (p−1) βix
iyd−i.

Notice that all the powers of x in Dr
2 = (xyp − xpy)r are r mod (p − 1). Therefore,

Pc = Dr
2 · Qc−r mod (p−1). ◀

2.2 The basis Bm,s

We recall the definition

Bm,s =
{

m∏
i=1

xei
i :

m∑
i=1

⌊
ei

p

⌋
< s

}

We set up the notation ei = pe1
i + e0

i where e0
i < p. That is, e1e0 is the base p expansion

of e. Due to working with s < p, we require only two digits for the exponents. With this
notation, the restriction on the set of exponents becomes

∑m
i=1 e1

i < s.
The following is results on Bm,2 are technical and given in Appendix B.

▷ Claim 24. The highest degree in x a monomial in B2,s can have is

dx
max = p(s − 1) + (p − 1) = ps − 1.
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11:10 Improved Local Testing for Multiplicity Codes

▷ Claim 25. Let s < p and and suppose d = dx
max + dgap where dgap ≥ 0 (and notice that

dgap ≤ p − 1). The monomial xiyd−i is in B2,s if and only if 0 ≤ i ≤ d and i mod p ∈
{dgap, dgap + 1, . . . p − 1}.

We now show that a homogeneous polynomial with few monomials is not divisible by a
high power of D2.

▶ Lemma 26. Let P =
∑

i αix
iyd−i be a non-zero, degree-d homogeneous bivariate polyno-

mial, reduced modulo Is
m for s < p. Suppose further that the set

{i mod p |αi ̸= 0} ⊆ {t, t + 1, . . . , t + k} ,

i.e., it is contained in a consecutive sequence of at most k +1 integers. Then P is not divisible
by Dk+1

2 .

Proof. Let c be such that Pc =
∑

i≡c mod (p−1) αix
iyd−i is non-zero. We can write

Pc =
∑
j∈J

αc+j(p−1)x
c+j(p−1)yd−(c+j(p−1)),

for some non-empty J ⊂ N, where for every j ∈ J , αc+j(p−1) ̸= 0.

▷ Claim 27. J ⊆ {c − t − k, . . . , c − t}.

Proof. As P is reduced modulo Is
m its degree in x is at most ps − 1. Therefore, for j ∈ J ,

c + j(p − 1) < ps. Hence, j < p · s
p−1 ≤ p. Now notice that c + j(p − 1) = c − j mod p.

Thus, the assumption that {i mod p | αi ̸= 0} is contained in {t, . . . , t + k}, implies that
J ⊆ {c − t − k, . . . , c − t}. ◁

Therefore, the number of nonzero monomials in Pc is at most k + 1 (because different j

lead to different i mod p, as j < p) and it can be written as

Pc =
c−t∑

j=c−t−k

αc+j(p−1)x
c+j(p−1)yd−(c+j(p−1))

=xc+(c−t−k)(p−1)yd−c−(c−t)(p−1)
k∑

j=0
αc+(c−t−k+j)(p−1)x

j(p−1)y(k−j)(p−1).

Suppose r is the largest integer such that Dr
2 divides P . By Lemma 23 Dr

2 divides Pc.
By Corollary 21,

∏
a∈F∗

p
(x − ay) divides D2, and therefore

(
∏

a∈F∗
p

(x − ay))r |
k∑

j=0
αc+(c−t−k+j)(p−1)x

j(p−1)y(k−j)(p−1).

Thus, a polynomial of degree r(p − 1) divides a polynomial of degree k(p − 1). It follows
that r ≤ k as desired. ◀

3 The two variable case

We restate the main result proven in this section.

▶ Theorem 28. Let p be prime, 2 ≤ s < p, and let P be a reduced polynomial in R2,s of
degree d. Let dx

opt = min (d, dx
max) = min (d, p(s − 1) + (p − 1)). There exists a linear map

L : F2
p → F2

p such that P ◦ L mod Is
m contains a monomial xiyd−i with i ≥ dx

opt − (s − 1).
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Recall that dx
opt is the highest degree we could hope for P ◦ L to have in x: its degree in

x cannot be higher than d and cannot be higher than dx
max. The lemma states that while we

cannot guarantee reaching dx
opt, we can get close to it.

Proof. We first note that it suffices to prove the lemma in the case where P is a degree
d homogeneous polynomial. Indeed, given a general polynomial P of degree d, express it
as P = Pd + Prest, where Pd is homogeneous degree d, and deg(Prest) < d. Thus, if we
know the result for homogeneous polynomials, then Pd ◦ L contains a monomial as required,
and Prest ◦ L cannot cancel that monomial, because deg(Prest ◦ L) ≤ deg(Prest) < d, and
therefore all monomials in Prest ◦ L have degree smaller than d.

So assume P is homogeneous of degree d and write P =
∑d

i=0 αix
iyd−i. Let MON(P )

be the union over all linear maps L : F2
p → F2

p of the monomials of Bm,s that appear in
(P ◦ L) mod Im,s.

▷ Claim 29. Suppose ℓ < p. If xd−ℓyℓ appears in Bm,s but not in MON(P ) then for every
t1, t2 such that t1 + t2 = ℓ, P (t1,t2) vanishes over Fp × Fp.

Proof. Suppose for any linear map L : x → a1x + a2y, y → b1x + b2y the coefficient of xd−ℓyℓ

in (P ◦ L) mod Im,s is 0. We write out the coefficient of xd−ℓyℓ explicitly:

P ◦ L(x, y) =
d∑

i=0
αi(a1x + a2y)i(b1x + b2y)d−i

=
d∑

i=0
αi

d∑
ℓ=0

xd−ℓyℓ
∑

t1+t2=ℓ

(
i

t1

)
ai−t1

1 at1
2 ·

(
d − i

t2

)
bd−i−t2

1 bt2
2 .

Therefore, the coefficient of xd−ℓyℓ in P ◦ L is

cℓ(a1, a2, b1, b2) =
d∑

i=0
αi

∑
t1+t2=ℓ

(
i

t1

)
ai−t1

1 at1
2 ·

(
d − i

t2

)
bd−i−t2

1 bt2
2

We now look at (P ◦ L)mod Im,s. Notice that each monomial xiyj either appears in Bm,s, in
which case it is left untouched, or not, in which case it gets reduced and becomes a strictly
lower degree polynomial. By assumption xd−ℓyℓ appears in Bm,s and is reduced modulo Im,s.
It also has total degree d, and therefore cannot be mixed with residues from other terms.
Thus, the fact that it does not appear in MON(P ) implies that cℓ(a1, a2, b1, b2) = 0 for all
a1, a2, b1, b2 ∈ Fp.

Now fix arbitrary a1, a2 ∈ Fp and look at Cℓ,a1,a2(a2, b2) = cℓ(a1, a2, b1, b2). Cℓ,a1,a2 is
a homogeneous polynomial in a2, b2 of degree ℓ < p. Since it is zero on all of Fp × Fp, by
Schwartz-Zippel it must be the zero polynomial. Hence, for all (a1, a2) ∈ Fp × Fp and all
t1, t2 such that t1 + t2 = ℓ, we have:

d∑
i=0

αi ·
(

i

t1

)
ai−t1

1 ·
(

d − i

t2

)
bd−i−t2

1 = 0.

The value on the left is P (t1,t2)(a1, a2), and therefore P (t1,t2)(a1, a2) = 0 ◁

▷ Claim 30. If dx
opt = d, P contains a monomial xeyd−e with e ≥ dx

opt − (s − 1).

Proof. Suppose dx
max = d. We want to show there exists a monomial xd−ℓyℓ ∈ MON with

0 ≤ ℓ ≤ s − 1, because then d − ℓ = dx
max − ℓ ≥ dx

max − (s − 1) as desired.
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11:12 Improved Local Testing for Multiplicity Codes

Suppose not. Then, for every 0 ≤ ℓ ≤ s − 1, xd−ℓyℓ is not in MON . Also, notice that
for every such ℓ, xd−ℓyℓ is a monomial in Bm,s (because d ≤ dx

max and ℓ < s < q). Thus,
by Claim 29, and using s − 1 < p, P (t1,t2) vanishes over Fp × Fp for all (t1, t2) such that
t1 + t2 < s. In other words, Mult(P,F2

p) ≥ s and P ∈ I2,s. Thus, the reduced form of P in
R2,s is zero. A contradiction to P being degree d. ◁

Define dgap = d − dx
opt. When dgap = 0, i.e., dx

opt = d, we proved the theorem (Claim 30).
We now assume dgap > 0. Define r = min {p − 1 − dgap, s − 1}.

▶ Lemma 31. If dgap ≥ 0 then for every (t1, t2) with t1 + t2 = dgap, P (t1,t2) is not divisible
by Dr+1

2 .

Proof. As r = min {p − 1 − dgap, s − 1} we have two cases:
Case 1: r = s − 1.
Let αxiyj be a monomial in P with a nonzero coefficient (i + j = d). Let (t1, t2) be
such that t1 + t2 = dgap. The derivative P (t1,t2) contains the term α

(
i

t1

)(
j
t2

)
xi−t1yj−t2 .

However, by Claim 25 we know i mod p ≥ dgap, and by definition dgap = t1 + t2 ≥ t1,
so i mod p ≥ t1. Hence, by Lucas’ theorem, the binomial coefficient

(
i

t1

)
is nonzero.

Similarly,
(

i
t2

)
is nonzero. Thus, since P is nonzero so is P (t1,t2). P (t1,t2) is still reduced

mod Is
m and, homogeneous and nonzero, and so, P (t1,t2) is not divisible by Ds

2.
Case 2: r = p − 1 − dgap.
Let (t1, t2) be such that t1 + t2 = dgap. Write P (t1,t2) =

∑
βix

iyd−dgap−i and note that

βi = αi+t1 ·
(

i + t1

t1

)
·
(

d − (i + t1)
t2

)
.

Applying Claim 25 to P we see any i with αi ̸= 0 has

i mod p ∈ {dgap, dgap + 1, . . . , p − 1}

Therefore, any i with βi ̸= 0 has

i mod p ∈ {dgap − t1, dgap − t1 + 1, . . . , p − 1 − t1} .

By Lemma 26 the largest power of D2 dividing P (t1,t2) is at most (p − 1) − dgap = r. I.e.,
P (t1,t2) is not divisible by Dr+1

2 . ◀

We are now ready to prove:

▶ Lemma 32. If dgap > 0 then, P contains a monomial xiyd−i with i ≥ dx
opt − (s − 1).

Proof. We want to show there exists a monomial xd−ℓyℓ ∈ MON with dgap ≤ ℓ ≤ dgap + r,
because then d − ℓ ≥ (d − dgap) − r = dx

opt − r ≥ dx
opt − (s − 1) as desired.

Suppose not. Then, for every ddap ≤ ℓ ≤ dgap + r, xd−ℓyℓ is not in MON . Also, notice
that for every such ℓ, xd−ℓyℓ is a monomial in Bm,s (because d − ℓ ≤ d − dgap = dx

max and
ℓ ≤ dgap + r < p). Thus, by Claim 29, and using dgap + r < p, P (t1,t2) vanishes over Fp × Fp

for all (t1, t2) such dgap ≤ t1 + t2 ≤ dgap + r.
Let t1, t2 be some non-negative integers with t1 + t2 = dgap. Using property 3 in

Proposition 16 we conclude that for any non-negative s1, s2 with s1 + s2 ≤ r,

(P (t1,t2))(s1,s2) =
(

t1 + s1

s1

)(
t2 + s2

s2

)
P (t1+s1,t2+s2),

vanishes over Fp × Fp. Therefore it follows that P (t1,t2) ∈ Ir+1
2 , or, equivalently (using

Lemma 22) that Dr+1
2 divides P (t1,t2). But this is a contradiction to Lemma 31. ◀
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Thus, no matter if dgap = 0 or dgap > 0, in either case P contains a monomial xiyd−i

with i ≥ dx
opt − (s − 1), and the proof is complete. ◀

4 The multivariate case

In this section we prove:

▶ Theorem 33 (Canonical monomials – general s). Let p be a prime, m ≥ 2 and s < p. Let
P ∈ Fp[X1, . . . , Xm] be reduced modulo Is

m and suppose
∏m

i=1 xei
i ∈ Bm,s is the canonical

monomial of P modulo Is
m. Then,

1.
∑m

i=1 ei = deg(P )
2. ei ≥ ei+1 for all i ∈ [m − 1].
3. e1 ≥ min {p(s − 1) + (p − 1), d} − (s − 1).
4. If n is the last integer such that en > 0, then ei = p − 1 for all i ∈ {2, . . . , n − 1}.

Notice that Theorem 33 gives Definition 7 when s = 1.

Proof. The proof is by reduction to one of the following base cases:
m = 1 and arbitrary s (vacuous),
m = 2 and arbitrary s (as follows from Theorem 9)
s = 1 and arbitrary m (from [5]).

Let L be the linear map maximizing the leading monomial of P ◦L mod Is
m in the deg-lex

order. Notice that deg(P ◦ L mod Is
m) = deg(P ), because otherwise the leading monomial of

P is larger than that of P ◦ L mod Is
m in the deg-lex order. We replace P by P ◦ L mod Is

m.
Let

∏m
i=1 xei

i be the leading monomial of P . It is immediate that e1 ≥ e2 . . . ≥ em, for
otherwise changing variables gives a larger leading monomial in the deg-lex order. Thus, we
immediately have properties Items 1 and 2.

Before we start proving properties Items 3 and 4 we prove a general principle:

▶ Lemma 34. Let P ∈ F [X1, . . . , Xm] be reduced modulo Is
m. Suppose

∏m
i=1 xei

i is the
canonical monomial of P modulo Is

m.
Let J ⊂ [m] be a set of cardinality t. For notational clarity, suppose J = {a1, . . . , at} and

[m] \ J = {b1, . . . , bm−t} Express P as

P (x1, . . . , xm) =
∑

i1,...,im−t

P(i1,...,im−t)(xa1 , . . . , xat) · xi1
b1

· . . . · x
im−t

bm−t
,

and denote srest =
∑

i̸∈J⌊ ei

p ⌋. Then∏
j∈J

x
ej

j =x
ea1
a1 · . . . · x

eat
at

is the canonical monomial of P(eb1 ,...,ebm−t
) modulo Is−srest

t .

Proof. Suppose not. Then there exists a linear transformation L′ : Ft
p → Ft

p such that

P(eb1 ,...,ebm−t) ◦ L′ mod Is−srest
t

gives a larger monomial in the deg-lex ordering. Define a linear transformation on L′′ : Fm
p →

Fm
p that applies L′ on the variables in location a1, . . . , at and is identity otherwise. Then we

claim that P ◦ L′′mod Is
m gives a larger monomial than

∏m
i=1 xei

i .
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Intuitively, since by our assumption, P(eb1 ,...,ebm−t
) ◦ L′ mod Is−srest

t has a monomial∏
j∈J x

fj

j that is larger than
∏

j∈J x
ej

j in the deg-lex ordering, then also(P(eb1 ,...,ebm−t
) ◦ L′)(mod Is−srest

t )(xa1 , . . . , xat
) ·

∏
i̸∈J

xei
i

 mod Is
m

has the monomial
∏

j∈J x
fj

j ·
∏

i̸∈J xei
i that is larger than

∏
i xei

i in the deg-lex ordering.
What remains to be shown is that this is true even without the (mod Is−srest

t ) term in the
middle, i.e., that(P(eb1 ,...,ebm−t

) ◦ L′)(xa1 , . . . , xat
) ·

∏
i̸∈J

xei
i

 mod Is
m

has the same monomial
∏

j∈J x
fj

j ·
∏

i̸∈J xei
i as a coefficient, which is a contradiction to the

maximality of
∏

i xei
u .

To prove this we define the polynomial

P̃ (x1, . . . , xm) =
∑

i1,...,im−t

P(i1,...,im−t)(xa1 , . . . , xat) · ϕ(xb1 , i1) · . . . · ϕ(xbm−t , im−t),

where ϕ(x, j) = (xp − x)j1
xj−j1 and j1 = ⌊ j

p ⌋. Notice that P̃ is not homogeneous, and
that the maximal degree homogeneous part of P̃ is exactly P . Therefore, the maximal
degree part of P̃ ◦ L′′ mod Is

m equals the maximal degree part of P ◦ L′′ mod Is
m. Hence,

if P̃ ◦ L′′ mod Is
m has a maximal-degree monomial larger than

∏
i xei

i in the deg-lex order,
so does P ◦ L′′ mod Is

m. We are therefore allowed to look at P̃ ◦ L′′ mod Is
m instead of

P ◦ L′′ mod Is
m. When working with P̃ ◦ L′′ mod Is

m, it is that there it is easy to see the
inner modulo is correct. Indeed:

We first look at the part contributed by i1 = eb1 , . . . , im−t = ebm−t . We see that:

(Peb1 ,...,ebt
◦ L′)(xa1 , . . . , xat) ·

∏
i̸∈J

ϕ(xi, ei)) mod Is
m

=(Peb1 ,...,ebt
◦ L′) mod Is−srest

m (xa1 , . . . , xat) ·
∏
i̸∈J

ϕ(xi, ei) mod Is
m,

because
∏

i̸∈J ϕ(xi, ei) ∈ Isrest
m .

Thus,
∏

j∈J x
fj

j ·
∏

i̸∈J ϕ(xi, ei) appears as a monomial of the above term, because it is
reduced modulo Is

m (because
∑

j∈J⌊ fj

p ⌋ +
∑

j ̸∈J⌊ ej

p ⌋ ≤ (s − srest − 1) + srest = s − 1).
Furthermore, this term is not cancelled by terms contributed by other (i1, . . . , im−t),
because the monomials ϕ(xb1 , eb1) · . . . ϕ(xbm−t

, im−t) are independent. Therefore, we
conclude that

∏
j∈J x

fj

j ·
∏

i̸∈J ϕ(xi, ei) appears as a monomial of (P̃ ◦ L′′) mod Is
m.

By the above discussion, the maximal-degree homogeneous part of∏
j∈J

x
fj

j ·
∏
i̸∈J

ϕ(xi, ei)

appears as a monomial of (P ◦ L′′) mod Is
m. Thus,∏

j∈J

x
fj

j ·
∏
i̸∈J

xei
i

appears as a monomial of (P ◦ L′′) mod Is
m. This is a contradiction to the maximality of∏

i xei
i , and the proof is complete. ◀
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Similarly, we can prove:

▶ Lemma 35. Let P ∈ F [X1, . . . , Xm] be reduced modulo Is
m. Suppose

∏m
i=1 xei

i is the
canonical monomial of P modulo Is

m.
Let J ⊂ [m] be a set of cardinality t. For notational clarity, suppose J = {a1, . . . , at} and

[m] \ J = {b1, . . . , bm−t} . Express P as

P (x1, . . . , xm) =
∑

i1,...,im−t

P(i1,...,im−t)(xa1 , . . . , xat
) · xi1

b1
· . . . · x

im−t

bm−t
,

and denote s′ =
∑

i∈J⌊ ei

p ⌋. Then
∏

j∈J x
ej

j = x
ea1
a1 · . . . · x

eat
at is the canonical monomial of

P(eb1 ,...,ebm−t
) modulo Is′+1

t .

Proof. Suppose for some L′, Peb1 ,...,ebt
◦ L′ mod Is′+1

t has a larger monomial in the deg-lex
ordering. Since s′ ≤ s − srest − 1 so does Peb1 ,...,ebt

◦ L′ mod Is−srest
t . The claim then follows

from Lemma 34. ◀

With Lemmas 34 and 35 we prove:

▷ Claim 36. e2 ≤ p − 1.

Proof. Let srest =
∑

i≥3⌊ ei

p ⌋ ≤ s − 1. By Lemma 34, xe1
1 xe2

2 is the canonical monomial of
P(e3,...,em)(x1, x2) modulo Is−srest

2 . However, Corollary 10 shows that for m = 2 (and any
s′ ≥ 1) the canonical monomial xi2

1 xi2
2 has i2 < p. Thus e2 < p. ◁

Thus, for all i ≥ 2 we have ei ≤ p − 1. Next we prove Item 4:

▷ Claim 37. Let n be the largest integer such that en > 0. Then e2 = e3 = . . . = en−1 = p−1.

Proof. Let s′ =
∑m

i=2⌊ ei

p ⌋. As ei ≤ p − 1 for all i ≥ 2, we have s′ = 0. By Lemma 35,
xe2

2 · . . . · xen
n is the canonical monomial of P(e1)(x2, . . . , xm) modulo Is′+1

m−1. As s′ + 1 = 1,
Definition 7 implies that e2 = e3 = . . . = en−1 = p − 1 as desired. ◁

Finally we prove Item 3:

▷ Claim 38. e1 ≥ min {(s − 1)p + (p − 1), d} − (s − 1).

Proof. Let srest =
∑

i≥3⌊ ei

p ⌋. As ei ≤ p − 1 for all i ≥ 2, we have srest = 0. By Lemma 34,
xe1

1 xe2
2 is the canonical monomial of P(e3,...,em)(x1, x2) modulo Is−srest

2 , i.e., modulo Is
2 . By

Theorem 28 we see that

e1 ≥ min {p(s − 1) + p − 1, e1 + e2} − (s − 1).

If e3 = 0 we have e1 + e2 = d. Thus, e1 ≥ min {p(s − 1) + p − 1, d} − (s − 1) as desired.
If e3 > 0, then e2 = p − 1. If e1 + e2 ≤ p(s − 1) + p − 1, then e1 ≥ e1 + e2 − (s − 1).
Thus, e2 ≤ s − 1 < p − 1. A contradiction. Thus p(s − 1) + (p − 1) ≤ e1 + e2. But then
e1 ≥ p(s − 1) + (p − 1) − (s − 1) as desired. ◁

◀

APPROX/RANDOM 2022
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5 Proof of the main theorem

In this section, we use Theorem 12 to prove our main theorem, Theorem 6.
We start with simple consequence of the definition of canonical monomials for multiplicity

codes. The lemma shows that if the canonincal monomial has more than two variables, the
variable x already has the largest multiple of p possible in Bm,s in its exponent.

▶ Lemma 39. Suppose
∏m

i=1 xei
i is a canonical monomial for P of degree d. Then either

e1 ≥ p(s − 1) + (p − 1) − (s − 1) or m ≤ 2.

Proof. By the definition of canonical monomials, we know e1 ≥ min {p(s − 1) + (p − 1), d}−
(s − 1). If m > 2, we know e2 = p − 1 and e3 ≥ 1. Therefore, e1 < d − p < d − (s − 1),
so it must the case that min {p(s − 1) + (p − 1), d} = p(s − 1) + (p − 1). Therefore, e1 ≥
p(s − 1) + (p − 1) − (s − 1). ◀

We proceed similarly to [5] and show that reducing the dimension of tests from k + 1 to
k does not hurt soundness too much. This is Lemma 13 in in the RM case. It should be
noted that this lemma is the central tool in the soundness analysis in [7].

We now show an analogous lemma for multiplicity codes

▶ Lemma 40. Let d < k(p − 1) + (s − 1)p − (s − 1) and let f : Fk+1
p → Σk+1,s have degree

larger than d. Then the k-dimensional test rejects f with probability at least 1
p2 .

Again, we assume WLOG that f contains a canonical monomial
∏m

i=1 xei
i , m ≤ k + 1

and we consider the restriction to a dimension k space as modding out by a single linear
equation L. The general strategy of the proof is to show that if the x1 coefficient of the
linear equation L is zero, everything behaves like the Reed-Muller case. As the x1 coefficient
is zero with probability 1

p , the overall rejection probability will be at least 1
p · 1

p = 1
p2 .

Essentially, because the power of x1 is ≥ (s−1)p and because we are focused on monomials
with the highest x1-degree, we can do the same calculation as in the Reed-Muller case.

Proof. Write L = L1x1 + L2x2 + · · · + Lk+1xk+1 + c. We first handle the case m = 2. In this
case, any L with L1 = 0, L2 = 0 will retain the monomial xe1

1 xe2
2 , which has degree deg f .

Therefore, the probability that deg (f |L=0) ≥ deg f > d is at least 1
p2 .

Otherwise, write f =
∑e1

i=0 xi
1fi(x2, . . . , xk+1). By Lemma 39 we may assume e1 ≥

(s − 1)p + (p − 1) − (s − 1). Due to e1 ≥ (s − 1)p, all degrees in fe1 are < p, because
otherwise e1fe1 would be Ik+1-reducible. Additionally, deg(fe1) = deg(f) − e1 > d − e1, and
d − e1 < (k − 1)(p − 1). Hence fe1 satisfies the conditions of Lemma 13 for with d = d − e1
and k = k − 1. Therefore, conditioned on L1 = 0, we know that with probability at least 1

p

there exists a polynomial g with deg(g) > d − e1 and h
def= (g − fe1 |L=0) ∈ Ik.

In this case, h(xp
1 − x1)s−1 ∈ Is

k+1, therefore so is hx
e−s(p−1)
1 (xp

1 − x1)s−1. Subtracting
this from

(
xe1

1 fe1 |L=0
)

= xe1
1 (fe1 |L=0) we see that xe1

1 fe1 |L=0 is Is
k+1-equivalent to xe1

1 g plus
terms with a lower power of x1. This means deg f ≥ deg

(
xe1

1 fe1 |L=0
)

= e1 + deg g > d. ◀

▶ Corollary 41. Let d < k(p − 1) + (s − 1)p − (s − 1) and let f : Fk+t
p → Σk+t,s have degree

larger than d. Then the k-dimensional test rejects f with probability at least 1
p2t .

Proof. This corollary is simply t repeated applications of Lemma 40, when noting that
the distribution on k-dimensional affine subspaces in Fk+t

p given by selecting a k + t − 1
dimensional subspace uniformly, and within it a k + t − 2 dimensional subspace is uniform
over all k + t − 2 dimension subspaces. ◀
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We now prove Theorem 6.

▶ Theorem 42. There exist constants c1, c2 such that for any prime p, integers m ≥ 1,
k ≥ 2, s < p and d < dk,s − (s − 1) the k-flat test is a local tester with soundness function
min(δp−4s−c1 , p−4s−c2).

Proof. Let f : Fm
p → Σm,s, and let δ = δ(f, MRMp(m, d, s)).

We will choose our k-dimensional subspace by choosing a k + 2s-dimensional subspace
H1 and within it a k-dimensional subspace H2. H2 is uniformly distributed.

By Theorem 4 together with Theorem 2 we know that there exists a universal constant c

such that PH1

(
deg f |H1

> d
)

≥ min {α, p−c} with

α = pk+2s−c p − (s − 1)
p

1
pk+2s−c + pd/(p−1) = 1

pO(1)

By Corollary 41 we know

PH2

(
deg f |H2

> d
)

≥ p−4sPH1

(
deg f |H1

> d
)

≥ p−4s min
{

δp−c1 , p−c2
}

,

and the proof is complete. ◀
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A Proof of bivariate Reed Muller canonincal monomials

The following proof is taken from [5].

Proof. Write f(x1, x2) =
∑

e:0≤e,d−e<p αexe
1xd−e

2 . Monomials of degree lower than d may
be ignored because they will never affect the degree-d homogeneous part of f ◦ L. Let emax
be the maximal degree of x1 in f . If emax = p − 1 we are done. Otherwise, consider the
polynomial f(x1, x2 + zx1). By the binomial theorem it follows that

f(x1, x2 + zx1) ≡I2

∑
e≤d

αexe
1

∑
r≤d−e

(
d − e

r

)
(zx1)rxd−e−r

2

Look at the coefficient of xemax+1
1 x

d−(emax+1)
2 as a polynomial in z. It is equal to

∑
r≤emax+1

αemax+1−r

(
d − (emax + 1 − r)

r

)
zr

This is a polynomial of degree at most p − 1. It is not the zero polynomial because the
coefficient of z is αemax

(
d−emax

1
)

̸= 0 mod p. Therefore, it is nonzero when z = α for some
α ∈ Fp.

In this way we may increase the maximal degree of x1 until we obtain a maximal
monomial. ◀

B Monomials in Bm,2

In this appendix, we establish bounds on the degrees of monomials in Bm,2.
For d < ps, any monomial of degree d is contained in Bm,s. Indeed, if

∑m
i=1 e1

i ≥ s then
d =

∑
ei ≥ ps.

On the other hand, the highest possible degree is

dm,s = p(s − 1) + (p − 1)m.

Indeed, p
∑m

i=1 e1
i is bounded by p(s − 1) and

∑m
i=1 e0

i is bounded by (p − 1)m. We now
check which monomials of degree ps ≤ d ≤ dm,s appear in Bm,s.

In the case m = 2 this gives

▷ Claim 43. The highest degree in x a monomial in B2,s can have is

dx
max =p(s − 1) + (p − 1) = ps − 1.

In general,

▷ Claim 44. Let s < p and and suppose d = dx
max + dgap where dgap ≥ 0 (and notice that

dgap ≤ p − 1). The monomial xiyd−i is in B2,s if and only if 0 ≤ i ≤ d and i mod p ∈
{dgap, dgap + 1, . . . p − 1}.

Proof. Fix xiyd−i. Let us denote j = d − i. We have:

i + j =d = dx
max + dgap = ps − 1 + dgap, and,

i + j =p(i1 + j1) + (i0 + j0)
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and hence

ps + dgap − 1 =p(i1 + j1) + (i0 + j0). (4)

Now, if xiyd−i is in B2,s then, by definition, i1 + j1 ≤ s − 1. In fact i1 + j1 = s − 1 for
otherwise i0 + j0 ≤ 2(p − 1) cannot complete p(s − 2) to d ≥ ps − 1. Thus,

i0 + j0 =p − 1 + dgap.

As j0 ≤ p − 1 we have i0 ≥ dgap as desired.
For the other direction, if xiyd−i is not in Bm,s then i1 + j1 ≥ s. Hence,

ps + dgap − 1 = p(i1 + j1) + (i0 + j0) ≥ps + i0 + j0.

It follows that i0 ≤ i0 + j0 ≤ dgap − 1 as desired. ◁

C Tightness of results

In this subsection, we demonstrate that some of the degree bounds in the results described
above are tight. The first example is derived from the Moore determinant, D2 = xp

1x2 − xp
2x1.

More properties of the Moore determinant are given in Section 2.1.

▶ Lemma 45. The loss of (s − 1) in Theorem 9 cannot be improved. That is, there exists a
polynomial P in R2,s for which, for any linear map L, the degree of x1 is at most dx

opt −(s−1)

Proof. The polynomial P = Ds−1
2 is of degree (p + 1)(s − 1), so for it dx

opt = deg(P ). This
polynomial has leading monomial x

p(s−1)
1 xs−1

2 . As is shown in Section 2.1, D2 ◦L = det(L)D2.
Therefore, the degree p(s − 1) is the highest achievable for x1. ◀

We now give an example of the tightness of Theorem 5 for a special case. This example
was found using linear algebra.

▶ Lemma 46. The degree bound in is tight for k = 2, s = 2.

To demonstrate this, we need to show a polynomial of degree d2,2 = 2(p−1)+p(2−1) = 3p−2
that drops a degree when restricted to any plane. Define

P = x1xp−1
2 xp−1

3 (−xp−1
1 + xp−1

2 + xp−1
3 )

This polynomial is of degree 3p − 2. We claim that it drops a degree when restricted to any
plane.

Proof. When restricting to a plane with variables y1, y2, there are only two relevant monomials
of degree 3p − 2 in B2,2: y2p−1

1 yp−1
2 and yp−1

1 y2p−1
2 . Given a generic linear substitution

(x1, x2, x3) = (a1, a2, a3)y1 + (b1, b2, b3)y2, the coefficient of y2p−1
1 yp−1

2 may be expressed as
a polynomial C(ai, bi) in a1, a2, a3, b1, b2, b3. The polynomial C may be confirmed to be
divisible by −a7

2a3b1 + a2a7
3b1 + a7

1a3b2 − a1a7
3b2 − a7

1a2b3 + a1a7
2b3, which is 0 for all values

of ai, bi. By symmetry, the coefficient of yp−1
1 y2p−1

2 will also always be 0. ◀
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Unbalanced Expanders from Multiplicity Codes
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Abstract
In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless condenser based
on Parvaresh-Vardy codes. This lossless condenser is a basic building block in many constructions,
and, in particular, is behind the state of the art extractor constructions.

We give an alternative construction that is based on Multiplicity codes. While the bottom-line
result is similar to the GUV result, the analysis is very different. In GUV (and Parvaresh-Vardy
codes) the polynomial ring is closed to a finite field, and every polynomial is associated with related
elements in the finite field. In our construction a polynomial from the polynomial ring is associated
with its iterated derivatives. Our analysis boils down to solving a differential equation over a finite
field, and uses previous techniques, introduced by Kopparty (in [9]) for the list-decoding setting. We
also observe that these (and more general) questions were studied in differential algebra, and we use
the terminology and result developed there.

We believe these techniques have the potential of getting better constructions and solving the
current bottlenecks in the area.
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1 Introduction

A condenser is a probabilistic mapping from a large universe {0, 1}n to a smaller universe
{0, 1}m that preserves the entropy of not too large sets. More formally, C : {0, 1}n × [D]→
{0, 1}m is a (k1, k2, ϵ) condenser, if for every distribution X on {0, 1}n with k1 min-entropy,
the output distribution C(X, UD) is ϵ-close to having k2 min-entropy (see Definition 6 for a
formal definition).

Ideally, we would like to explicitly build a condenser for any n, k1 < n, and ϵ = ϵ(n) > 0
and have D as small as possible, k2 as close as possible to k1 + log(D), and have k2 as close
as possible to m. Let us call d = log(D) the seed length of C, it measures the amount of
randomness the probabilistic construction uses, and clearly the smaller the better. Similarly,
let us call k1 + d−k2 the entropy loss of C. The entropy loss measures the difference between
the amount of entropy in the system (k1 + d) and the amount of entropy we preserve (k2),
and we want it small. Finally, let us call m − k2 the entropy gap of C. The entropy gap
measures how dense the output distribution C(X, UD) is in its ambient space {0, 1}m, and
the smaller the better. Thus, in this terminology, given n, k1 and ϵ we would like to find an
explicit construction simultaneously minimizing the seed length, entropy loss and entropy
gap of the condenser.
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An important special case is when the entropy gap m − k2 is 0, and then C is called
a (k1, ϵ) extractor. Non-explicitly, there are extractors (and so the entropy gap zero) with
entropy loss 2 log( 1

ϵ ) + O(1) and seed length log(n− k1) + 2 log( 1
ϵ ) + O(1), and each one of

these bounds is tight (even individually) [13].
Dodis et al. [3] observe that if we allow some entropy gap (and in particular even if it is

only a constant) then non-explicitly the entropy loss dramatically drops to O(log log( 1
ϵ )) and

the seed length to log(n− k) + 1 · log( 1
ϵ ) + O(1). With larger entropy gaps, the entropy loss

continues to drop until it basically turns into zero, and then we get a lossless condenser. For
the dependence of the entropy loss on the entropy gap see [3] (and also [1]).

The GUV lossless condenser [7] has logarithmic seed length and constant fraction entropy
gap. Specifically,

▶ Theorem 1 (The GUV condenser, [7, Theorem 1.7]). For every n ∈ N, kmax ≤ n, ϵ > 0, and
0 < α ≤ 1, there exists an m ≤ 2d + (1 + α)kmax and an explicit function

C : {0, 1}n × {0, 1}d → {0, 1}m

with d = (1 + 1/α) · (log n + log kmax + log 1/ϵ) + O(1) such that for all k ≤ kmax, C is an
(n, k)→ϵ (m, k + d) (lossless) condenser.

The GUV condenser has found numerous applications (as can be easily seen by looking
at the hundreds of papers that cite it). In particular, GUV present an extractor construction
by first applying the GUV lossless condenser, and then an extractor construction specifically
designed for high min-entropy sources (see [7, Section 4]). Roughly speaking, this extractor
construction inherits its entropy loss from the entropy gap of the lossless condenser. As a
result, the extractor construction presented in [7] has linear entropy loss.

The problem of constructing explicit extractors with short seed length and small entropy
loss is widely open and there has been only modest improvement over the extractor of [7]
that has linear entropy loss. Specifically, [4] construct explicit extractors with the slightly
sub-linear entropy loss k

polylog(k) . Their construction uses improved mergers that are obtained
using the polynomial method with multiplicities. In another work, [15] modify the GUV
condenser construction and using again the multiplicity method of [4] together with other
ideas, give a condenser with small entropy loss and the slightly sub-linear entropy gap

m
polylog(n) . This condenser implies an explicit extractor with a short seed and the same
slightly sub-linear entropy loss. Constructing an extractor with a short seed and a better
entropy loss is still a major open problem.

In this paper we give another explicit construction of a GUV like lossless condenser.
While we do not improve the parameters, our construction uses a different analysis that we
believe has the potential to substantially improve current state of the art results. Specifically,
we prove:

▶ Theorem 2 (Our condenser). For every n ∈ N, kmax ≤ n, ϵ > 0, and 16 log n
ϵ√

kmax
≤ α ≤ 1, there

is an m ≤ d + (1 + α)kmax and an explicit function

C : {0, 1}n × {0, 1}d → {0, 1}m

with d = (1 + 1/α) · (log n + log kmax + log 1/ϵ) + O(1) such that for all k ≤ kmax, C is an
(n, k)→ϵ (m, k + d) (lossless) condenser.

In a similar fashion to [7], our condenser follows from a new construction of an unbalanced
bipartite expander graph.
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▶ Theorem 3. For every field Fq, n, s ∈ N such that 15 ≤ s + 2 ≤ n ≤ char(Fq), there exists
an explicit graph Γ : Fn

q × Fq → Fs+2
q , which is a (K, A) expander for every K > 0 with

A = q − n(s + 2)
2 · (qK)

1
s+2 . (1)

In [7] there is a similar expression with A = q − (n− 1)(s + 1)(K
1

s+1 − 1).
While the bound on m in Theorem 2 is slightly better than the one in Theorem 1, the

former has more restrictions on α then the latter. In any case, those two differences are
minor, and as stated before, the main contribution of Theorem 2 is the method used to prove
it, which is very different then the one used in [7], as we next explain.

1.1 Our construction and the GUV construction
Both our construction and the GUV construction have the following structure. The input
that we want to condense is interpreted as a degree n− 1 uni-variate polynomial over Fq,
i.e., as an element f from F<n

q [X]. Given the output length s + 2 ∈ N (with s + 2 < n) both
constructions associate f with s + 1 different polynomials f0, . . . , fs where fi ∈ F<n

q [X]. In
GUV the association is done as follows:
1. First, put a field structure on F<n

q [X] and fix h ∈ N, that way fhi (where multiplication
and powering is in the field) can also be interpreted as a degree less than n polynomial.

2. Define fi = fhi .

For example, one may choose a degree n irreducible polynomial E ∈ Fq[X] and define
the field F = Fq[X] mod E. Then, the condenser construction is as follows:

The condenser C

Parameters: Fix a field Fq, n, s ∈ N, n, s ≥ 1. Identify the elements of Fn
q with

univariate polynomials of degree less than n.
Construction: Define C : Fn

q × Fq → F(s+2)
q by:

C(f, y) = (y, f0(y), f1(y), . . . , fs(y)) (2)

Our construction has the same structure, but our choice of the associated functions
f0, . . . , fs is different. Instead of choosing f0, . . . , fs as in GUV, we choose

fi =f (i),

i.e., f (i) is the i’th iterated derivative of f in Fq[X].
To see why our construction is natural, let us look at it from a coding theory perspective.

We can associate a function C : V × [D]→ Σ with a linear code of length D and alphabet Σ,
where for every v ∈ V we have the codeword

(c(v)1, . . . , c(v)D) ∈ ΣD

where c(v)i = C(v, i). Using this translation, the GUV construction exactly corresponds to
the PV code [12] and our construction exactly corresponds to Multiplicity codes [10, 8].

PV codes and Multiplicity codes are among the few explicit constructions of ECC with
close to optimal list-decoding capacity. In the list-decoding problem our goal is to find a
construction such that for every given word (w1, . . . , wD) ∈ ΣD there are few v ∈ V such
that c(v) is close to w. In the condenser construction problem we wish to solve a problem
similar to the list-recoverability problem, our input is a large subset W ⊆ Σ, and the output
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12:4 Unbalanced Expanders from Multiplicity Codes

should be the (hopefully few) v ∈ V such that c(v)i ∈ W for every i ∈ [D] (or the variant
where c(v)i ∈W for most i ∈ [D]). Indeed, GUV write that the known connection between
codes and extractors (pointed out, e.g., in [17]) and the fact that PV codes have list-decoding
close to capacity motivated them to explore whether PV codes give condensers with good
list-recoverability.

Looking at it from this perspective, in this paper we ask whether Multiplicity codes,
which are known to have list-decoding close to capacity, also have good list-recoverability
and hence give good condensers. In Theorems 2 and 3 we show that this is indeed the case.

Another code which has close to optimal list-decoding capacity is the Folded Reed-
Solomon code defined in [6]. Consequently, the condenser it produces has been analyzed in
[7, Section 6], and achieved worse parameters than the PV based condenser. Interestingly,
the parameters are also worse than the ones achieved by our Multiplicity condenser, making
this the first time, to the best of our knowledge, that a construction based on Multiplicity
codes achieves better results than one based on FRS codes.

While our construction and the GUV construction are similar in structure, they are very
different in implementation. In GUV the ring of polynomials F<n

q [X] is “lifted” to a finite
field, and the associated functions fi are chosen so that they lie on a curve, specifically, over
the extension field F, all the functions fi are just polynomials in one common variable. The
challenge is proving that if Q(y, f0, . . . , fm) is a non-zero polynomial in the polynomial ring,
then Q composed with the curve is a non-zero, univariate polynomial over the extension
field F. In general, proving that a non-zero polynomial composed with a given curve remains
non-zero is a non-trivial challenge, and GUV solve it with a specific trick, that works, but
gives constant entropy gap.

In contrast, our construction does not lift to an extension field. Instead the associated
functions are just the derivatives of the given input. Thus, we completely avoid the question
of proving that a non-zero polynomial composed with a curve remains non-zero, and, instead,
we are left with a question similar to interpolation from derivatives. This leads to a widely
different analysis as we explain next. We hope that further extensions of it might lead to
constructions better than the current state of the art.

1.2 The proof technique
We give a proof sketch of Theorem 3 (the expanding graph). It is enough to prove that for
every W ⊆ Fs+2

q of size at most AK − 1 we have |LIST(W )| < K. Fix a set W ⊆ Fs+2
q of

size AK − 1. Our goal is to bound the number of degree n − 1 polynomials f such that
Γ(f) ⊆W .

Our starting point is to find a non-zero, low-degree, multi-variate polynomial
Q(X, Y0, . . . , Ys) such that Q(w) = 0 for every w ∈W . This step is identical to the first step
in the proof of GUV. The total degree of Q is O(|W |1/(s+2)s). It is a standard observation
that for every f with Γ(f) ⊆W it must be that

Q ◦ df = Q(x, f(x), f ′(x), . . . , f (s)(x))

is the zero polynomial, i.e., f solves the differential equation Q. The challenge now is to
bound that number of functions f such that Γ(f) ⊆W .

To bound the number of degree n − 1 polynomials such that Γ(f) ⊆ W we adapt the
list-decoding algorithm of [9] to the list-recovery setting (much the same as GUV adapt the
[12] list-decoding algorithm to the list-recovery setting). The main lemma Kopparty uses is
that given (y, w0, . . . , ws) ∈ Fq × Fs+1

q , there is usually at most one degree n− 1 polynomial
f such that:
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The first s derivatives of f at y agree with w0, . . . , ws, i.e., f (i)(y) = wi, for i = 1, . . . , s,
and,
Q ◦ df is the zero polynomial.

Formally, this is true whenever the Separant of the equation, ∂Q
∂Ys

, is non-singular at w, i.e.,

∂Q

∂Ys
(y, w0, . . . , ws) ̸= 0.

Kopparty proves this lemma using Hensel lifting. We rephrase the proof using differential
algebra terminology and intuition from [14]. We believe our proof is simpler, and also more
amenable to generalizations. Furthermore, this theory was generalized in [11, 5], where
generalized Separants were introduced, and we believe these generalization might be useful
for future improvements of the analysis.

Going back to the list-recovery problem, and following the list-decoding algorithm from [9],
let us denote by W1 the set of all w ∈W such that ∂Q

∂Ys
(w) ̸= 0. We see that for every f such

that Γ(f) ⊆W and Γ(f) ∩W1 ̸= ∅, we can recover f by going over all w ∈W1, and for each
such w output the unique suitable degree n− 1 polynomial, given by the above main lemma.

We are then left with the task of outputting all the degree n− 1 polynomials such that
Γ(f) ⊆ W0 = W \W1. We notice that each of these polynomials solve the lower degree
differential equation ∂Q

∂Ys
(x, f(x), . . . , f (s)) = 0. Reiterating the process we get a new list of

solution. As each time we get a lower degree differential equation, we can iterate the process
at most deg(Q) times. Doing the calculation more carefully (as is done in [9]) saves even
this loss, and, furthermore, shows expansion by a factor of about q− sn s+2

√
|W |. We explain

the thin details in Section 4.

2 Preliminaries

We use the following notation:

(n)t =n · (n− 1) · . . . · (n− t + 1) = n!
(n− t)! ,

where for t = 0, (n)0 = 1. Thus, (n)t = t!
(

n
t

)
.

Also, for J = (j1, . . . , jm) and I = (i1, . . . , im) we define

(J)I =
m∏

ℓ=1
(jℓ)iℓ

,

(
J
I

)
=

m∏
ℓ=1

(
jℓ

iℓ

)
, and,

I! =
m∏

ℓ=1
iℓ!.

Thus, (J)I = I!
(J

I
)
. Finally, J− I = (j1 − i1, . . . , jm − im).

2.1 Multi-variate derivatives
Let R = F[X1, . . . , Xm] be the ring of polynomials in m variables over F. For I = (i1, . . . , im)
with i1, . . . , im ∈ N we define the partial derivative in direction I as the linear operator on R

defined by ∂XJ

∂I = (J)I ·XJ−I. We denote
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12:6 Unbalanced Expanders from Multiplicity Codes

Q(I)(X) =∂Q

∂I (X).

The order of I is w(I) = i1 + . . . + im. Notice that for uni-variate polynomials Q(X), Q(i)(X)
coincides with the i’th iterated derivative.

Let w = (w1, . . . , wm) where wi ∈ N. The w-weighted degree of a monomial XJ =
Xj1

1 · . . . ·Xjm
m is

∑m
i=1 wi · ji. The w-weighted degree of Q, denoted degw(Q), is the largest

w-weighted degree of a monomial in Q. We let |w| denote
∑

wi, Π(w) = Πwi, and Mw,t the
number of monomials XJ with w-weighted degree at most t. Beged-Dov gave upper and
lower bounds on Mw,t:

▶ Lemma 4 ([2]).

tm

m! ·Π(w) ≤ Mw,t ≤
(t + |w|)m

m! ·Π(w)

2.2 Condensers
In this subsection let C : {0, 1}n × {0, 1}d → {0, 1}m.

▶ Definition 5. We say C is a (K, A) expander if for every S ⊆ {0, 1}n of cardinality K

the set

Γ(S) =
⋃

s∈S,y∈{0,1}d

C(s, y)

has cardinality at least K ·A.

We next define a condenser:

▶ Definition 6. We say C is an (n, k)→ϵ (m, k′) condenser if for all distributions X with
min-entropy at least k, the distribution C(X, Ud) is ϵ-close to a distribution with min-entropy
at least k′. The condenser is explicit if C can be computed in time poly(n, 1

ϵ ).

To prove that a function is a condenser or an expander, we use the “list-decoding”
approach described in [7]. For C : {0, 1}n × {0, 1}d → {0, 1}m and T ⊆ {0, 1}m define:

LIST(T ) = {x : Γ(x) ⊆ T}

LIST(T, ϵ) =
{

x : Pr
y

[C(x, y) ∈ T ] ≥ ϵ

}
▶ Lemma 7 ([7, Lemma 3.2]). C is a (K, A) expander iff for every set T ⊆ {0, 1}m of
cardinality at most AK − 1, LIST(T ) has cardinality at most K − 1.

And for condensers:

▶ Lemma 8 ([16, Theorem 8.1],[7, Lemma 5.4]). Let C : {0, 1}n × {0, 1}d → {0, 1}m be a
function.

If C is a (K, (1− ϵ)2d) expander, then C is a (n, k)→ϵ (m, k + d) condenser, i.e., it is a
lossless condenser with error ϵ,
If for all T ⊆ {0, 1}m of size at most L the set LIST(T, ϵ) has cardinality at most H, then
C is a (n, log( H

ϵ ))→2ϵ (m, log( L
ϵ )− 1) condenser.
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3 The Separant

Let Q ∈ Fq[X, Y0, . . . , Ys]. When we think of Q as a differential equation, we look for all
(low-degree) polynomials f ∈ Fq[X] such that

Q(X, f(X), f (1)(X), . . . , f (s)(X)) =0 ∈ Fq[X].

Let us define

df =(X, f(X), f (1)(X), . . . , f (s)(X), . . . , f (n)(X), . . .)

Notice that if f ∈ F<n
q [X], then f (i)(X) is identically zero for all i ≥ n. Let us also think of

Q as a polynomial Q ∈ Fq[X, Y0, . . . , Ys, . . . , Yn . . .] that depends only on X and Y0, . . . , Ys.
In this notation f solves the differential equation Q iff Q ◦ df = 0 ∈ Fq[X].

A differential equation Q can be itself derived. While formally Q depends on X and
Y0, . . . , Yn, . . ., we think of Y0 as a function depending on X, Y0 = f(X) and of Yi+1 as ∂Yi

∂X .
This motivates the following definition:

▶ Definition 9. Let Q ∈ Fq[X, Y0, . . . , Ys], define the infinite sequence of polynomials
Q(0), Q(1), . . . where Q(k) ∈ F[X, Y0, . . . , Yk+s] is defined by:

Q(0) = Q

Q(k+1) = ∂Q(k)

∂X
+

k+s∑
i=0

∂Q(k)

∂Yi
· Yi+1.

The motivation behind this definition is apparent given:

▶ Lemma 10. For every f ∈ Fq[X] and ℓ ≥ 0

(Q ◦ df)(ℓ) =Q(ℓ) ◦ df.

Proof. By induction. The case ℓ = 0 is immediate. Assume for ℓ and let us prove for ℓ + 1.
Using the chain rule:

(Q ◦ df)(ℓ+1) =((Q ◦ df)(ℓ))′ = (Q(ℓ) ◦ df)′

=∂Q(ℓ)

∂X
◦ df +

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi
◦ df · ∂f (i)

∂X

=∂Q(ℓ)

∂X
◦ df +

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi
◦ df · f (i+1)

=(∂Q(ℓ)

∂X
+

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi
· Yi+1) ◦ df

=Q(ℓ+1) ◦ df,

where the first equality is because we use iterated derivations, the second is induction, the
third is the chain rule (and notice that Q(ℓ) depends on X, Y0, . . . , Ys+ℓ). ◀

We call Q(ℓ) the ℓ-th derivative of Q. This operation comes from differential algebra [14].
As its name suggests, this operator has some properties similar to regular derivative
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12:8 Unbalanced Expanders from Multiplicity Codes

▷ Claim 11 ([14]).
1. (linearity) For every Q, P ∈ Fq[X, Y0, . . . ], λ, µ ∈ Fq, ℓ ≥ 0

(λQ + µP )(ℓ) = λQ(ℓ) + µP (ℓ)

2. (Leibniz product rule) For every Q, P ∈ Fq[X, Y0, . . . ]

(P ·Q)(1) = P (1) ·Q + P ·Q(1)

3. (repeated derivation) For every Q ∈ Fq[X, Y0, . . . ], ℓ1, ℓ2 ≥ 0

(Q(ℓ1))(ℓ2) = Q(ℓ1+ℓ2)

▷ Claim 12. Let Q ∈ Fq[X, Y0, . . . , Ys] and ℓ ∈ N.
deg(0,1,1,...) Q(ℓ) = deg(0,1,1,...) Q, and,
deg(0s+2,1,2,3,...) Q(ℓ) ≤ ℓ. I.e., if we give X, Y0, . . . , Ys weight 0, and Ys+j weight j, then
the ℓ’th derivative degree is at most ℓ.

Proof. For the first item notice that ∂Q(ℓ)

∂X is either zero or does not change the degree in
Y0, . . .. Also, the effect of ∂Q

∂Yi
· Yi+1 is to reduce the degree in Yi by one and increase the

degree in Yi+1 by one.
For the second item, we prove by induction. The case ℓ = 0 is immediate. For the

induction step, ∂Q(ℓ)

∂X and ∂Q(ℓ)

∂Yi
· Yi+1 for i < s, are either zero or do not change the weighted

degree, while ∂Q(ℓ)

∂Yi
· Yi+1 for i ≥ s increase the weighted degree by one. ◁

One consequence of Claim 12 is that Ys+ℓ appears with degree at most 1 in Q(ℓ) and that
the coefficient of Ys+ℓ in Q(ℓ) is a function of X, Y0, . . . , Ys alone. Indeed, we next prove the
coefficient of Ys+ℓ in Q(ℓ) is ∂Q

∂Ys
.

▶ Definition 13 (Separant). Let Q ∈ F[X, Y0, . . . , Ys]. The Separant of Q, denoted SQ, is

SQ = ∂Q

∂Ys
.

A classical lemma from differential algebra (see [14, Page 30]) states that:

▶ Lemma 14. For every ℓ ≥ 1,

Q(ℓ) =SQ · Ys+ℓ + Rℓ

where Rℓ ∈ F[X, Y0, . . . , Ys+ℓ−1] does not depend on Ys+ℓ.

Proof. By induction. For ℓ = 1, the only way to get Ys+1 in Q(1) is in the term ∂Q
∂Ys
· Ys+1.

Assume for ℓ and let us prove for ℓ + 1. The only way to get Ys+ℓ+1 in Q(ℓ+1) is by taking
∂Q(ℓ)

∂Ys+ℓ
. By induction, Ys+ℓ only appears in Q(ℓ) in the linear term SQ · Ys+ℓ. Thus, the only

term involving Ys+ℓ+1 in Q(ℓ+1) is ∂(SQ·Ys+ℓ)
∂Ys+ℓ

· Ys+ℓ+1 = SQ · Ys+ℓ+1. ◀

▶ Lemma 15. Fix Q ∈ Fq[X, Y0, . . . , Ys], (α, b) = (α, b0, . . . , bs) ∈ Fs+2
q and SQ(α, b) ̸= 0.

Suppose f ∈ Fq[X] such that:
f (i)(α) = bi, for i = 0, . . . , s, and
Q ◦ df = 0.

Then there are unique values bs+1, . . . , bn such that f (i)(α) = bi.
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Proof. We prove by induction on n. The base case n = s is clear. Assume for n and let
us prove for n + 1. By assumption we know there are unique values bs+1, . . . , bn such that
bi = f (i)(α) for i = s + 1, . . . , n. Our goal is to show there is a unique value possible for
f (n+1)(α).

We will use Q(n−s+1) and the fact that Yn+1 appears linearly in it with coefficient SQ,
and that at (α, b), SQ(α, b) ̸= 0. First we notice that

Q(n−s+1)(α, b0, . . . , bn, f (n+1)(α)) =Q(n−s+1)(α, f(α), . . . , f (n+1)(α))

=Q(n−s+1) ◦ df(α)

=(Q ◦ df)(n−s+1)(α) = 0,

where the first equality is by induction, the second by definition, the third using Lemma 10,
and the last equality because we know Q ◦ df is the zero polynomial in Fq[X].

Next we recall that by Lemma 14

Q(n−s+1)(X, Y0, . . . , . . . , Yn+1) =SQ(X, Y0, . . . , Ys) · Yn+1 + R(X, Y0, . . . , Yn),

and therefore

0 =Q(n−s+1)(α, b0, . . . , bn, f (n+1)(α))

=SQ(α, b) · f (n+1)(α) + R(α, b0, . . . , bn).

Thus, f (n+1)(α) = −R(α,b0,...,bn)
SQ(α,b) is uniquely determined. ◀

In words, this means the following. f solves the differential equation if Q ◦ df = 0. We
can think of the conditions f (i)(α) = bi, for i = 0, . . . , s, as s + 1 initial conditions on the
Taylor expansion of f at α. In this terminology, Lemma 15 says that that if the separant
SQ is non-zero at the point (α, b) then there can be at most one solution to the differential
equation Q with degree smaller than the characteristic, satisfying the initial conditions (α, b).

4 Reconstruction with the Polynomial Method

In this section we present a “de-condensing” procedure that given Γ : Fn
q × Fq → Fs+2

q and
a set W ⊆ Fs+2

q outputs LIST(W ). Throughout this section we assume that n ≤ char(Fq).
The de-condensing algorithm works as follows. Given W we first find a low-degree polynomial
Q that vanishes over W , namely,

▷ Claim 16. There exists a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys] with

deg(1,n,...,n−s) Q ≤ D =
⌈

n ·
[
|W | · (s + 2)!

] 1
s+2

⌉
that vanishes on W .

Proof. By Lemma 4 the number of monomials in Fq[X, Y0, . . . , Ys] with (1, n, n−1, . . . , n−s)-
weighted degree at most D is some value F such that

F ≥ Ds+2

(s + 2)! ·
∏s

j=0(n− j)
> |W |.

To find a polynomial Q that vanishes on W , we write a homogeneous linear system over Fq

where the variables are the coefficients of the above monomials, and for every w ∈ W we
have a linear equation forcing that the polynomial vanishes on w. As the number of variables
is larger than the number of constraints, there is a non-zero solution. ◁
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12:10 Unbalanced Expanders from Multiplicity Codes

It then follows that every f ∈ F<n
q [T ] with Γ(f) ⊆W satisfies the differential equation

Q(x, f(x), . . . , f (s)(x)) = 0. Formally,

▷ Claim 17. If f ∈ LIST(W ), and q > D, than

Rf (T ) = Q(T, f(T ), . . . , f (s)(T )) ∈ Fq[T ]

is the zero polynomial.

Proof. As deg(1,n,...,n−s)(Q) ≤ D and deg(f (i)) < n− i, Rf has degree at most D. Also, for
every α ∈ Fq,

Rf (α) = Q(α, f(α), . . . , f (s)(α)) = 0.

As q > D we must have Rf = 0 in Fq[T ]. ◁

The main challenge is proving the number of low-degree solutions to the differential
equation Q with starting conditions W is small, and designing an algorithm finding all such
solutions. For that we define algorithm Solve. The input to the algorithm is a polynomial
Q̇ ∈ Fq[X, Y0, . . . , Ys] and Ẇ ⊆ Fs+2

q . The output contains all polynomials f ∈ F<n
q [X] such

that Γ(f) ⊆ Ẇ and Q̇ ◦ df = 0. The algorithm works as follows:

Algorithm 1 Solve(Q̇, Ẇ ).

1 If Q̇ does not depend on Y0, . . . , Ys return ∅.
2 Let s∗ be the largest j ∈ {0, . . . , s} for which Q̇ depends on Yj .
3 Set L1 ← ∅ and

Ẇ1 ←
{

w ∈ Ẇ | ∂Q̇

∂Ys∗
(w) ̸= 0

}
.

4 for w = (α, w0, . . . , ws) ∈ Ẇ1 do
5 Assuming there exits some polynomial g ∈ Fq[X] such that Q̇ ◦ dg = 0 ∈ Fq[X]

and g(i)(α) = wi for all 0 ≤ i ≤ s, find the unique values ws+1, . . . , wn−1 such
that g(i)(α) = wi for all 0 ≤ i < n. Such a unique solution exits by Lemma 15.

6 Define

f(x) =
n−1∑
i=0

wi

i! (x− α)i.

7 If Γ(f) ⊆ Ẇ add f to L1.
8 Set

Ẇ0 ←
{

w ∈ Ẇ | ∂Q̇

∂Ys∗
(w) = 0

}
.

9 L0 ← Solve( ∂Q̇
∂Ys∗ , W0)

10 return L0 ∪ L1
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With that the de-condensing algorithm is:

Algorithm 2 Decondensing.

Input: Parameters q, s, n, the condenser Γ : Fn
q × Fq → F(s+2)

q , and a set W ⊆ Fs+2
q

Output: All f ∈ F<n
q [X] such that Γ(f) ⊆W

1 Set D ←
⌈

n ·
[
|W | · (s + 2)!

] 1
s+2

⌉
2 Construct a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys] with

deg(1,n,...,n−s) Q ≤ D

that vanishes on W .
3 return Solve(Q, W )

4.1 Analysis of Solve

▶ Lemma 18 (Correctness of Solve). Fix a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys] such
that deg(1,n,...,n−s)(Q) < q, and W ⊆ Fs+2

q . Every f ∈ F<n
q [T ] for which Γ(f) ⊆ W and

Q(x, f(x), . . . , f (s)(x)) = 0 appears in the output of Solve(Q, W ).

Proof. The proof is by induction on the degree of Q as a polynomial in Y0, . . . , Ys, i.e.,
deg(0,1,...,1)(Q). In the base case Q depends only on X, thus Q = Q(X). As Q ̸= 0, there
are no solutions to Q(T, f(T ), . . . , f (s)(T )) = Q(T ) = 0 and L = ∅ is the correct output.

Now let f(T ) ∈ F<n
q [T ] such that Γ(f) ⊆W and Q(T, f(T ), . . . , f (s)(T )) = 0. We have

two cases:

1. ∂Q
∂Ys∗ (T, f(T ), . . . , f (s)(T )) ̸= 0. Note that

deg
(

∂Q

∂Ys∗
(T, f(T ), . . . , f (s)(T ))

)
≤ deg(1,n,...,n−s)

(
∂Q

∂Ys∗
(X, Y0, . . . , Ys)

)
≤ deg(1,n,...,n−s) (Q(X, Y0, . . . , Ys)) < q.

Therefore there must be some α ∈ Fq for which

∂Q

∂Ys∗
(α, f(α), . . . , f (s)(α)) ̸= 0.

As (α, f(α), . . . , f (s)(α)) ∈ Γ(f) ⊆ W , in the for loop we iterate over this vector and
therefore in line 5 we find the unique solution of the ODE with these initial conditions,
and because of the uniqueness this solution must be f . As Γ(f) ⊆ W we add it to the
list L in line 7.

2. ∂Q
∂Ys∗ (T, f(T ), . . . , f (s)(T )) = 0. We notice that in this case Γ(f) ⊆ W0, as for every
α ∈ Fq we have ∂Q

∂Ys∗ (α, f(α), . . . , f (s)(α)) = 0. Also deg(0,1,...,1)(
∂Q

∂Ys∗ ) < deg(0,1,...,1)(Q),
hence by induction f ∈ L0. ◀

▶ Lemma 19 (List size of Solve). For every non-zero Q ∈ Fq[X, Y0, . . . , Ys] with
deg(1,n,n−1,...,n−s)(Q) ≤ D < q and every W ⊆ Fs+2

q , the size of the output of Solve(Q, W )
is at most |W |

q−D .

APPROX/RANDOM 2022
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Proof. We prove by induction on the (0, 1, . . . , 1)-degree of Q. If deg(0,1,...,1)(Q) is zero, the
list is empty, the list size is zero and the claim holds. We next prove the induction step.

For every w = (α, w0, . . . , ws) ∈ W1, there exists a unique f that may be joined to the
list. Furthermore, since w ∈W1 we have that:

∂Q

∂Ys∗
(α, f(α), . . . , f (s)(α)) = ∂Q

∂Ys∗
(α, w0, . . . , ws) ̸= 0,

thus ∂Q
∂Ys∗ (T, f(T ), . . . , f (s)(T )) ̸= 0, and its degree is at most D, meaning that it equals 0

for at most D values of T , hence it is non-zero for at least q −D values of T ∈ Fq. Also,
if f appears in the list then Γ(f) ⊆ W . Hence, each of those q −D values lies in W (and
therefore in W1) and reconstructs f . We conclude that f is reconstructed from at least q−D

different points in W1, thus |L1| ≤ |W1|
q−D .

We remain with the list size of L0 which is obtained from Solve( ∂Q
∂Ys∗ , W0). Since

deg(0,1,...,1)(
∂Q

∂Ys∗ ) < deg(0,1,...,1)(Q), and the (1, n, . . . , n − s)-weighted degree of ∂Q
∂Ys∗ is at

most D, we know by induction that |L0| ≤ |W0|
q−D . Altogether, |L| ≤ |W1|

q−D + |W0|
q−D = |W |

q−D . ◀

4.2 Putting it together
Proof of Theorem 3. By Lemma 7 it is enough to prove that for every W ⊆ Fs+2

q of size at
most AK − 1 we have |LIST(W )| < K. Fix a set W ⊆ Fs+2

q of size AK − 1 < qK. Let Q be
as in Claim 16, with

D =
⌈

n ·
[
qK · (s + 2)!

] 1
s+2

⌉
≤ n · (qK)

1
s+2 · (((s + 2)!)

1
s+2 + 1)

≤ n(s + 2)
2 · (qK)

1
s+2 = q −A

Where the second to last inequality is due to the fact that (k!)1/k + 1 ≤ k
2 for every k ≥ 15.

Let L be the output list of Solve(Q, W ). Then,

LIST(W ) ≤ |L| ≤ |W |
q −D

≤ AK − 1
q −D

< K,

where the first inequality is by Lemma 18, the second by Lemma 19 and the last inequality
by using the fact that A ≤ q −D. ◀

By choosing the parameters of in the same way as done in [7, Theorem 3.5] we get the
following expander

▶ Theorem 20. For every positive integers N , Kmax ≤ N , all ϵ > 0, and 16 log ( log N
ϵ )√

log Kmax

≤ α ≤

1, there is an M ≤ D ·K1+α
max and an explicit (≤ Kmax, (1−ϵ)D) expander Γ : [N ]× [D]→ [M ]

with degree D = O(((log N(log Kmax))/ϵ)1+1/α).

For completeness we repeat the proof from [7].

Proof. Let n = log N and k = log Kmax. Let h0 = (2nk/ϵ)1/α, h = ⌈h0⌉, and let q be a
prime in the interval (h1+α/2, h1+α].

Set s + 2 = ⌈k/ log h⌉, so that hs+1 ≤ Kmax ≤ hs+2. As 15 ≤ s + 2 ≤ n ≤ q =
char(Fq), by Theorem 3, the graph Γ : Fn

q × Fq → Fs+2
q is a (≤ hs+2, A) expander for

A = q − n(s+2)
2 · (qK)

1
s+2 , because Kmax ≤ hs+2, it is also a (≤ Kmax, A) expander.
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Note that the number of left-vertices in Γ is qn ≥ N , and the number of right-vertices is

M = qs+2 ≤ q · h(1+α)(s+1) ≤ q ·K1+α
max

The degree is

D = q ≤ h1+α ≤ (h0 + 1)1+α

= O(h1+α
0 ) = O((nk/ϵ)1+1/α)

Lastly, we consider the expansion factor, A = q − n(s+2)
2 · (qK)

1
s+2 ≥ q − nkhq

1
s+2

2 , of the
graph, first notice

nkh ≤ ϵ
h1+α

2 ≤ ϵq

where the first equality is due to the fact that nk/ϵ ≤ hα/2. Secondly, we can convert our
lower bound on α to a lower bound on k

k ≥ 256
α2 log

(n

ϵ

)
and by using it we get

s + 2 ≥ k

log h
≥

256
α2 log2 (

n
ϵ

)
log h

≥
64
α2 log2 (

nk
ϵ

)
log h

≥
16
α2 log2 (

2 nk
ϵ

)
log h

= 16 log2 h0

log h
≥ 4 log2 h

log h
= 4 log h ≥ (1 + α) log h ≥ log q

by combining the two inequalities

nkhq1/(s+2)

2 = nkh · q1/(s+2)

2 ≤ ϵq.

By substituting back to A we get A ≥ (1− ϵ)q = (1− ϵ)D, which concludes the proof. ◀

Finally, Theorem 2 is an immediate consequence of Lemma 8 applied to Theorem 20.
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Abstract
We initiate a broad study of classical problems in the streaming model with insertions and deletions
in the setting where we allow the approximation factor α to be much larger than 1. Such algorithms
can use significantly less memory than the usual setting for which α = 1 + ϵ for an ϵ ∈ (0, 1). We
study large approximations for a number of problems in sketching and streaming, assuming that the
underlying n-dimensional vector has all coordinates bounded by M throughout the data stream:
1. For the ℓp norm/quasi-norm, 0 < p ≤ 2, we show that obtaining a poly(n)-approximation

requires the same amount of memory as obtaining an O(1)-approximation for any M = nΘ(1),
which holds even for randomly ordered streams or for streams in the bounded deletion model.

2. For estimating the ℓp norm, p > 2, we show an upper bound of O(n1−2/p(log n log M)/α2) bits
for an α-approximation, and give a matching lower bound for linear sketches.

3. For the ℓ2-heavy hitters problem, we show that the known lower bound of Ω(k log n log M)
bits for identifying (1/k)-heavy hitters holds even if we are allowed to output items that are
1/(αk)-heavy, provided the algorithm succeeds with probability 1 − O(1/n). We also obtain a
lower bound for linear sketches that is tight even for constant failure probability algorithms.

4. For estimating the number ℓ0 of distinct elements, we give an n1/t-approximation algorithm
using O(t log log M) bits of space, as well as a lower bound of Ω(t) bits, both excluding the
storage of random bits, where n is the dimension of the underlying frequency vector and M is
an upper bound on the magnitude of its coordinates.

5. For α-approximation to the Schatten-p norm, we give near-optimal Õ(n2−4/p/α4) sketching
dimension for every even integer p and every α ≥ 1, while for p not an even integer we obtain
near-optimal sketching dimension once α = Ω(n1/q−1/p), where q is the largest even integer
less than p. The latter is surprising as it is unknown what the complexity of Schatten-p norm
estimation is for constant approximation; we show once the approximation factor is at least
n1/q−1/p, we can obtain near-optimal sketching bounds.
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1 Introduction

The data stream model is an important model for analyzing massive datasets, where the
sheer size of the input imposes severe restrictions on the resources available to an algorithm.
Such algorithms have only a small amount of memory and can only make a few passes over
the data. Given a stream of elements from some universe, the algorithm maintains a short
sketch, or summary, of what it has seen. Often such sketches are linear, which has multiple
benefits, e.g., (1) the sketches can handle both insertions and deletions of items, and (2) the
sketches are mergeable, meaning that given the sketch of a stream S and the sketch of a
stream S′, the sketch of the concatenation of streams S and S′ is the sum of the two sketches.

Many streaming algorithms have been developed to study fundamental problems in
databases, such as estimating the number ℓ0 of distinct elements, which is useful for query
optimization and data mining. Among other things, this statistic can be used for selecting a
minimum cost query plan [47], the design of databases [24], OLAP [44, 48], data integration
[17, 20], and data warehousing [1]. Other important streaming problems include finding the
heavy hitters, also known as the top-k, most popular items, frequent items, elephants, or
iceberg queries. These can be used in association rules and frequent itemsets [2, 27, 28, 46, 50],
and for iceberg queries and iceberg datacubes [11, 23, 26]. Other important applications
include estimating the frequency moments Fp [3], which for p ≥ 1 correspond to the p-th
power of the ℓp norm of the vector of frequencies of items, where the frequency of an item
is its number of occurrences in the stream. For p ≥ 2, Fp indicates the degree of skew of
the data, which may determine the selection of algorithms for data partitioning [21]. The
case p = 2 is the self-join size, which is useful for algorithms involving joining a relation with
itself. The frequency moments of a vector are special cases of the Schatten-p norms of a
matrix, and there is a large body of work in the data stream model studying these intriguing
norms [42, 43, 41, 15, 16], as well as the related cascaded norms [19, 5, 31, 6].

Given that the memory of a data stream algorithm is often significantly sublinear in the
size of a stream S, such algorithms are usually both randomized and approximate, and very
often come with a guarantee that for a function f(S), the output X of the algorithm satisfies
that (1− ϵ)f(S) ≤ X ≤ (1 + ϵ)f(S), with probability at least 2/3 over the coin tosses of the
algorithm, where ϵ ∈ (0, 1) is a parameter of the algorithm. Here the 2/3 probability can
typically be amplified to 1− δ by repeating the algorithm O(log(1/δ)) times independently
and outputting the median estimate. While a large body of work in the last two decades
has resolved the space complexity of many of the aforementioned problems for ϵ ∈ (0, 1), for
certain applications the lower bounds on the space complexity may be too large to be useful.
For such applications it is therefore natural to allow for a larger approximation factor α > 1,
in the hope of obtaining a smaller amount of memory. Namely, one could instead ask for the
output X of the streaming algorithm to satisfy f(S) ≤ X ≤ α · f(S). This motivates our
main question:

What is the space complexity of classical streaming problems when the approximation factor
α is allowed to be much larger than 1?

Perhaps surprisingly, this question does not seem to be well-understood, and is in fact
open for all of the abovementioned problems in a data stream. There are a few related works,
such as [18], which studies large approximation factors for deterministically estimating the
number of distinct elements, ℓp-estimation, entropy estimation, as well as maximum matching
size in a graph stream; see also [7] for large approximation factor lower bounds for randomized
algorithms for maximum matching. Other streaming problems where large approximation
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factors were studied include dynamic time warping [14], maximum k-coverage [29] and the
p-to-q norms [37]. In contrast to [18], our focus is on tight bounds for randomized algorithms,
for which significantly less memory can be achieved than deterministic algorithms, and for a
wide range of fundamental problems in the data stream model that do not appear to have
been studied before for large approximation factors.

1.1 Our Results
A summary of our upper and lower bounds for a number of data stream problems can be
found in Tables 1 and 2.

For estimating the ℓp norm for 0 < p ≤ 2, we show that obtaining a poly(n)-approximation
requires the same amount of memory as obtaining an O(1)-approximation, under the common
assumption that M = poly(n). Namely, we show an Ω(log n) lower bound even with a random
oracle for these problems. Previously, only an Ω(1) lower bound was known for poly(n)-
approximation in this setting. Our result also holds if the stream is randomly ordered, or in
the bounded deletion model [30], in which deletions are allowed but the norm should not
drop by more than a constant factor from what it was at a previous point in time. Our
lower bound can also be extended to a wide class of statistical M -estimators. We also show
a two-pass algorithm that uses less space than the best existing one-pass algorithm.

For estimating the ℓp norm of an underlying n-dimensional vector, p > 2, we show an
upper bound of O(n1−2/p(log n log M)/α2) bits for α-approximation for any α > 1, and a
matching lower bound for almost the full range of α on the bit complexity of linear sketches,
which gives a matching streaming lower bound under the conditions of [40], though these
conditions can be restrictive, see, e.g., [34] for discussion. One important motivation for
studying such norms is to data-augmented streaming algorithms. For example, it was shown
in [32] that for estimating the ℓp norm with a so-called learned oracle, one can achieve an
O(1)-approximation using Õ(n1/2−1/p) bits of space. However, this requires a successfully
trained oracle, which could have an arbitrarily bad approximation in the worst case. By
instead running our worst-case Õ(n1/4−1/(2p))-approximation algorithm for ℓp estimation
with Õ(n1/2−1/p) bits of memory in parallel, we can ensure that we do at least as well as
the learned algorithm in the same amount of memory (up to a constant factor), but we can
ensure we never return worse than an Õ(n1/4−1/(2p))-approximation. Another important
consequence of our ℓp-estimation algorithm is that it can be used as a subroutine to obtain
large approximations for the (p, q)-cascaded-norm (p ≥ 1, q > 2) and rectangle ℓp (p > 2)
problems, showing that the previous space bounds can be reduced by an α2 factor for an
α-approximation. These results are shown in Sections E and F.

In the ℓ2-heavy hitters problem, the goal is to output a subset S of {1, 2, . . . , n} which
contains every i for which x2

i ≥ 1
k∥x∥

2
2, and no i for which x2

i < 1
2k∥x∥

2
2. It is known [8, 33]

that the space complexity of this problem is Θ(k log n log M) bits, if we are promised that
x ∈ {−M, . . . , M}n. A natural relaxation would be to instead require only that S contains
every index i for which x2

i ≥ 1
k∥x∥

2
2 and no i for which x2

i < 1
αk∥x∥

2
2. We show a strong

negative result, that for any α = O((n/k)(log log n)2/(log n)2), this problem still requires
Ω(k log n log M) bits of memory for any linear sketch, which gives a matching streaming
lower bound under the conditions of [40]. For our bit complexity lower bound we assume the
algorithm succeeds with probability 1−O(1/n), while our sketching dimension lower bound
only requires that the algorithm succeeds with constant probability. Interestingly, the proofs
of our lower bounds do not use the usual hard instances for finding ℓ2-heavy hitters [8, 33],
and instead use a hard instance for ℓp-estimation in [51].

APPROX/RANDOM 2022
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For estimating the number ℓ0 of distinct elements, we show that to obtain an α = n1/t-
approximation, an upper bound of O(t log log M) bits is possible and there is a lower bound
of Ω(t) bits, where n denotes the dimension of the underlying frequency vector and M

is an upper bound on the absolute value of its coordinates. We state our results in the
random oracle model, where a public random string is known to the algorithm. Without
such a random string, a simple reduction from the Equality communication problem gives
an Ω(log n) bit lower bound for any multiplicative approximation, see, e.g., [3] for similar
arguments1. Nevertheless, our results are still interesting outside of the random oracle
model, since in the common setting of M ≤ poly(n), setting t = (log n)/ log log n gives us an
O(log n)-approximation with O(log n) bits of memory, and since O(log n) bits of randomness
is also sufficient, this matches the Ω(log n) bit lower bound from the Equality problem. The
previous best algorithm [36] required at least O(log n log log M) bits for any multiplicative
approximation factor. We also study estimating the number of distinct elements in two
and three passes, showing a separation for the problem between one and two passes and a
near-optimal three-pass algorithm.

The Schatten-p norm of an n × n input matrix A is just the ℓp-norm of the vector of
singular values of A. For α-approximation to the Schatten-p norm, we give a linear sketch of
dimension Õ(n2−4/p/α4), which is optimal up to logarithmic factors, for every even integer p

and every α ≥ 1, while for p not an even integer we obtain a near-optimal sketch dimension
of Õ(n2−4/p/α4) once α = Ω(n1/q−1/p), where q is the largest even integer less than p.
Interestingly, we obtain the first near-optimal multiplicative approximations for Schatten-p
norms for non-integer p for a wide range of non-trivial approximation factors α, whereas it is
still unknown and a major open question (see, e.g., [41] for discussion) to obtain optimal
multiplicative approximations for Schatten-p norms for non-integer p when α = O(1). Our
work highlights that surprisingly, the difficulty of this problem stems from the approximation
factor rather than the problem being hard for every approximation factor.

1.2 Our Techniques

For our lower bound for estimating ℓp-norms for 0 < p ≤ 2 (or more generally for M -
estimators), we give a reduction from the the coin problem introduced in [12] and strengthened
in [13]. Consider a sequence of independent coin flips with either a heads probability of
1/2 + β or a heads probability of 1/2− β. The coin problem asks us to distinguish between
the two cases with the fewest number of flips. Given a sequence of n coin flips, for an
underlying vector x in a stream we can perform x1 ← x1 + 1 or x1 ← x1 − 1, depending on
whether the coin is a heads or a tail. To ensure a bounded deletion stream, we initialize
x = (2nβ, 0, . . . , 0). Then, with constant probability, we have x1 = 4nβ ± O(

√
n) in one

case and x1 = ±O(
√

n) in the other, resulting in an α-factor difference in the ℓp-norm when
4nβ = Ω(α

√
n). Note that our goal is to obtain a lower bound for α = ω(1). The earlier

lower bound for the coin problem [12] instead considers β ∼ 1/
√

n, which only translates
into α = Θ(1) at best, for which we know an upper bound of O(log n) words exists. The
newer result [13] shows an O(log n) bit lower bound for β < n1/3−ε. Such a β translates
into α = nΩ(1), as desired. This is also the first application of the newer result [13] to data
streams.

1 Briefly, Alice has x ∈ {0, 1}n and inserts i for which xi = 1. Bob has y ∈ {0, 1}n and deletes i for which
yi = 1. If x = y then ℓ0 = 0, otherwise it is non-zero, and the private coin randomized communication
complexity of Equality is Ω(log n) bits.
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Table 1 Summary of previous results and the results obtained in this work. We assume that
M = poly(n) and p is constant. The reported space bounds are measured in bits except for
the Schatten-p norm, where we consider the sketching dimension. In this table, Ω̃(f) denotes
Ω(f poly log f) and, for the rectangle ℓp estimation problem, O∗(f) denotes f · poly(d, log(mn/δ)).
For the ℓ2-heavy hitters problem, both our lower bound and our upper bound for bit complexity
assume that the success probability is at least 1 − O(1/n), while for the sketching dimension results
we assume constant success probability.

Problem Large Approx. Ratio Constant Approx. Ratio

ℓp Estimation (0 < p ≤ 2) poly(n) Ω(log n) Thm 7
O(log n) [35]
Ω(log n) [35]

ℓp Estimation (p > 2) α
Õ(n1−2/p/α2) Thm 12 Õ(n1−2/p) e.g. [6]
Ω̃(n1−2/p/α2) Thm 18 Ω̃(n1−2/p) e.g. [51]

ℓ2 Heavy Hitters Õ(n/k) Ω(k log2 n) Thm 21
O(k log2 n)
Ω(k log2 n) [33]

ℓ2 Heavy Hitters
Õ(n/k) Ω(k log n) Thm 24

O(k log n)
(Sketching Dimension) Ω(k log n) [45]

Distinct Elements n1/t O(t log log n) Thm 25 O(log n log log n) [36]
Ω(t) Thm 29 Ω(log n log log n) [52]

Schatten-p Norm α
Õ(n2−4/p/α4) Thm 35, 36 O(n2−4/p) even p[41]
Ω(n2−4/p/α4) Thm 38 Ω(n2−4/p) [41]

Cascaded Norm
α

Õ(n1−2/pd1−2/q/α2) Thm 39 Õ(n1−2/pd1−2/q) [6]
(p, q > 2) Ω(n1−2/pd1−2/q/α2) Thm 40 Ω(n1−2/pd1−2/q) [31]

Cascaded Norm
α

Õ(d1−2/q/α2) Thm 39 Õ(d1−2/q) [6]
(1 ≤ p < 2, q > 2) Ω̃(d1−2/q/α2) Thm 40 Ω(d1−2/q) [31]

Rectangle Fp
α

O∗(nd(1−2/p)/α2) Thm 41 O∗(nd(1−2/p)) [49]
Estimation (p > 2) Ω(nd(1−2/p)/α2) Thm 18 Ω(nd(1−2/p)) [49]

Table 2 Summary of previous results and the results obtained in this work to obtain a (1 ± ε)-
approximation. The reported space bounds are measured in bit complexity.

Problem Type New Alg Previous 1-pass Alg

Distinct Elements
2-pass O(log n + ε−2 log log M(log(1/ε) + log log M)) O(ε−2 log n log log nM)

Theorem 30 [36]

3-pass O(log n + ε−2(log(1/ε) + log log M)) Ω(ε−2 log n log log nM)
Theorem 31 [52]

ℓp Moment (p ≤ 2) 2-pass O(log n + ε−2(log M + log 1/ε)) O(ε−2 log nM)
Theorem 32 [35]

For our upper bound for estimating ℓp-norms for p > 2, we connect the problem to an
instance of the same problem with a different parameter. Namely, suppose that q is such
that n1−2/q = Θ(n1−2/p/α2), where α is the approximation factor. Then from relationships
between norms we have ∥x∥p ≤ ∥x∥q ≤ α ∥x∥p. Hence, a constant factor approximation to
the ℓq norm actually gives an α approximation to the ℓp norm. This “self-reduction” from an
instance of the problem under one norm to an instance of the same problem under a different
norm also helps us derive our algorithm for estimating the Schatten-p norms of a matrix
when α = Ω(n1/q−1/p), where q is the largest even integer less than p. For our lower bound
for ℓp-norm estimation for p > 2, we consider the multiparty disjointness (DISJn

s ) problem in
the public-coin simultaneous message passing model, which was initially proposed in [51].
We show that the hard instance can still give a matching lower bound for α-approximation if
we set the number of players appropriately.
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13:6 Streaming Algorithms with Large Approximation Factors

For the ℓ2 heavy hitters problem, the usual hard instances for this problem (see, e.g., [33]
and [8]) fail to give an extra log n factor for large approximations. The reason is that
when reducing from the so-called Augmented Indexing problem, to make the two cases
distinguishable for an α-approximation, one would need to partition the vector into logα(n)
levels, which for α = nΩ(1), is only O(1). In contrast, we consider the same multiparty
disjointess problem we use for the ℓp norm estimation problem and show that a similar
hard instance gives a matching lower bound for the ℓ2 heavy hitters problem with a large
approximation factor. Thus, we use a fundamentally different hard instance for this problem.

For our upper bound for estimating the number ℓ0 of distinct elements, suppose that the
approximation factor α = n1/t. We sub-sample the input coordinates into t levels, with a
geometrically decreasing sampling probability. In each level, the surviving coordinates are
hashed into a constant number of buckets. If the ℓ0 of the sub-sampled vector in a level is at
most a constant, then only a small number of these buckets will be occupied. Based on this,
we can find the specific level j∗ for which the ℓ0 norm in this level is between 0 and n1/t

and show that after rescaling it is a good estimator to the overall ℓ0 of the original vector.
To use less memory in each bucket, we choose a random prime p = poly(log M) and only
store each counter mod p. Our lower bound is based on a reduction from the Augmented
Indexing problem mentioned above, which in more detail is a two player communication
problem in which Alice holds a binary vector u ∈ {0, 1}t and asks for Bob to recover ui

given ui+1, . . . , ut. We divide the vector x into l = Θ(t) segments, where the i-th segment
has length Θ(ni/l), and fill the i-th segment with all 1s if and only if ui = 1. Then ∥x∥0
differs by a factor of Θ(n1/t) between the cases of ui = 0 and ui = 1, whence an Ω(t) lower
bound follows. Despite the fact that a log(1/ε)-factor gap remains in the upper and lower
bounds for (1 ± ε)-approximation for ℓ0 (see, e.g., [22] for discussion), we obtain a tight
Θ(log n) space bound for α = Θ(log n) approximation, for example. Our bounds also show
a separation between the estimation of the ℓp-norm (0 < p ≤ 2) and the ℓ0-norm with an
nΘ(1)-approximation factor, since we show an Ω(log n) lower bound via the coin problem for
p > 0 and nΩ(1) approximation, while we have an O(log log n) upper bound for p = 0 and
nO(1) approximation.

We also consider multi-pass algorithms for ℓ0 and ℓp (0 < p ≤ 2) estimation. For the ℓ0
estimation problem, we show that if we obtain an O(log n)-approximation in the first pass,
then we can obtain a (1±ε)-approximation in the second pass using O(ε−2 log log M(log(1/ε)+
log log M)) bits of space. This can be further reduced to O(ε−2(log(1/ε) + log log M))
bits of space using a third pass. For ℓp estimation, we show that if we can obtain a
constant approximation Z in the first pass, then in the second pass, we can sample the
coordinates with probability O(ε−2Mp/Z). Hence, we only need to generate certain p-stable
random variables used in our algorithm with precision (M/ε)O(1), from which we obtain an
O(ε−2(log M + log(1/ε))) bits of space algorithm in the second pass, which is better than
the previous result of O(ε−2 log nM) when M is small.

2 Preliminaries

Notation. For a vector x ∈ Rn, its ℓp norm is ∥x∥p = (
∑n

i=1 |xi|p)
1
p , where p ≥ 1. We also

write Fp(x) = ∥x∥p
p. We also define ∥x∥∞ = maxi |xi|. When p < 1, the quantity ∥x∥p is not

a norm though it is a well-defined quantity and ∥x∥p
p tends to the number of nonzero entries

of x as p→ 0+. In view of this limit, we denote the number of nonzero entries of x by ∥x∥0
and also refer to it as ℓ0.
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For a matrix A ∈ Rm×n, we define its Schatten-p norm to be ∥A∥p =
(
∑min{m,n}

i=1 (σi(A))p)
1
p for each p ≥ 1, where σ1(A) ≥ σ2(A) ≥ · · · are the singular val-

ues of A. We also define the (p, q)-cascaded norm of A to be ∥A∥p,q =(
∑

i(
∑

j |Ai,j |q)
p
q )

1
p

for p, q ≥ 1.

Turnstile streaming model. In the turnstile model of data streams, there is an underlying
n-dimensional vector x which is initialized to 0 and keeps receiving updates of the form
(i, ∆) ∈ [n]×R, which represents xi ← xi + ∆. Here ∆ can be either positive or negative. In
this paper we assume that the underlying vector is guaranteed to be bounded by M , i.e.,
it always holds that ∥x∥∞ ≤ M throughout the data stream. The length of the stream is
denoted by m. When the vector x is given by a stream S in the turnstile model, we abuse
notation and also write ℓp(S) for ∥x∥p.

When the input describes a matrix A ∈ Rm×n, we can view the matrix as an mn-
dimensional vector and each item in the stream updates an entry of the matrix.

A variant of the streaming model for a matrix A concerns rectangular updates. Here x is
a tensor indexed by [n]d and each update has the form (R, ∆), where R ⊆ [n]d is a rectangle,
representing the update xi ← xi + ∆ for all i ∈ R. The rectangle ℓp problem is considered
under this model (see, e.g., [49]), which asks to estimate ∥A∥p = (

∑
i∈[n]d |xi|p)1/p.

Subspace Embeddings. Suppose that A ∈ Rn×d. A matrix S ∈ Rm×n is called an (ε, δ)-
subspace-embedding for A if it holds with probability at least 1 − δ that (1 − ε) ∥Ax∥2 ≤
∥SAx∥2 ≤ (1 + ε) ∥Ax∥2 for all x ∈ Rd simultaneously. A classical construction is to
take S to be a Gaussian random matrix of i.i.d. N(0, 1/m) entries, where m = O((d +
log(1/δ)/ε2). Recall the minimax characterization of singular values of a matrix A: σi(A) =
supH infx∈H:∥x∥2=1 ∥Ax∥2, where the supremum is taken over all subspaces H such that
dim(H) = i. This implies (see e.g., Lemma 7.2 of [41]) that (1 − ε)σi(A) ≤ σi(SA) ≤
(1 + ε)σi(A) with probability at least 1− δ, for all i = 1, . . . , min{m, n}, i.e., S preserves all
singular values of A if S is an (ε, δ)-subspace-embedding for A.

3 Lower Bound for M -Estimators

We start by giving a very general lower bound for M -estimator estimation with a large
approximation factor. M -estimators can be seen as generalizations of the p-th frequency
moments of the underlying vector x. We first show this lower bound in the turnstile streaming
model and later we will show that it still holds even in the bounded deletion and random
order models.

▶ Definition 1 (M -estimator with parameter γ). Suppose G : R→ R≥0 is a function. We say
∥y∥G =

∑
i G(yi) is an M -estimator with parameter γ if G satisfies the following conditions:

G(0) = 0;
G(x) = G(−x);
G(x) is non-decreasing in |x|;
For all x, y with |y| > |x| > 0, G(y)

G(x) ≥
∣∣ y

x

∣∣γ .

We will give a reduction from the following coin problem. In [13], the authors show an
Ω(log n) lower bound even when the parameter β is allowed to be very small:

▶ Definition 2 (Coin Problem). Let X1, ..., Xn be a stream of i.i.d. random bits, which either
(1) comes from a distribution with heads probability 1

2 + β or (2) comes from a distribution
with heads probability 1

2 − β. We are asked to distinguish these two cases at the end of the
stream, with probability 2/3.
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13:8 Streaming Algorithms with Large Approximation Factors

▶ Theorem 3 ([13]). For all constant ε > 0, any length-n Read-Once Branching Program
that solves the coin problem for bias β < n−1/3−ε, requires nΩ(ε) width.

▶ Corollary 4. For all constants ε > 0, any randomized streaming algorithm that solves the
coin problem with bias β < n−1/3−ε requires Ω(log n) space. This holds even if we give the
algorithm access to an arbitrarily long random tape.

Suppose that we are given an M -estimator with parameter γ. We define a distribution D
on the sequences of n random bits as follows: suppose that β = n−1/3−ε for a small constant
ε. Let X1, . . . , Xn be a binary sequence coming from a distribution with heads probability 1

2
or a distribution with heads probability 1

2 + β, where Xi = 1 if the i-th coin is a head and
Xi = 0 if the i-th coin is a tail. Let x be the underlying vector in the streaming algorithm.
During the stream we perform updates x1 ← x1 + 1 if Xi = 1, or x1 ← x1 − 1 otherwise.
We will show that any streaming algorithm that gives an O(n(1/6−ε)γ)-approximation for
∥x∥G can distinguish the above two distributions with large constant probability. We first
analyze the sum |

∑n
i=1 Xi| for these two distributions. The following two lemmas can be

easily proved using Chebyshev’s inequality and thus the proofs are omitted.

▶ Lemma 5. Suppose that the sequence (X1, ..., Xn) ∈ {±1}n comes from the distribution
with heads probability 1

2 . Then with probability at least 1−1/(4k), we have |
∑n

i=1 Xi| ≤
√

kn.

▶ Lemma 6. Suppose that the sequence (X1, ..., Xn) ∈ {±1}n comes from the distribution
with heads probability 1

2 + n−1/3−ε. Then with probability at least 1 − 1/(4k), we have∑n
i=1 Xi ≥ 2n2/3−ε −

√
kn.

We are now ready to give our lower bound.

▶ Theorem 7. Suppose that G is an M -estimator with parameter γ. Then any randomized
streaming algorithm which outputs an O(M (1/6−ε)γ)-approximation to ∥x∥G with probability
at least 2/3 requires Ω(log M) bits of space, excluding the storage for random bits.

Proof. Suppose that we have a streaming algorithm which outputs an O(M (1/6−ε)γ)-
approximation to ∥x∥G. We shall show that we can distinguish the two distributions
with bias β in the coin problem with large constant probability.

We initialize the vector x = (0, 0, . . . , 0). Suppose we have a stream of bits X1, . . . , XM

coming from the distribution with heads probability 1
2 or with heads probability 1

2 + β =
1
2 + M−1/3−ε. Then, during the stream, we perform the update x1 ← x1 + 1 if Xi = 1 and
x1 ← x1 − 1 otherwise.

Let x(0) be the underlying vector if the heads probability for the distribution is 1
2 and

x(1) be the underlying vector if the heads probability is 1
2 + β. From Lemmas 5 and 6

we have that with probability at least 9/10,
∣∣∣x(0)

1

∣∣∣ = O(
√

M) at the end of the stream,

while
∣∣∣x(1)

1

∣∣∣ = Ω(M2/3−ε) in the second case. It follows from the definition of γ that
∥x(1)∥

G

∥x(0)∥
G

= Ω(M (1/6−ε)γ) for the two cases. This implies that if the streaming algorithm can

output an O(n(1/6−ε)γ)-approximation to ∥x∥G, then we can distinguish the two distributions
with bias β in the coin problem. From Corollary 4, such a streaming algorithm needs
Ω(log M) bits of space. ◀

▶ Corollary 8. Any randomized streaming algorithm outputting an O(M1/6−ε)-approximation
to ∥x∥p

p requires Ω(p · log M) bits of space, excluding the storage for random bits. Moreover,
under the assumption that M = poly(n), any randomized streaming algorithm outputting a
poly(n)-approximation to ∥x∥p

p requires Ω(p · log n) bits of space.
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3.1 Lower Bound in Other Streaming Models
Bounded Deletions. Our Ω(log M) lower bound still holds even with the assumption of
bounded deletions. In this model, the updates ∆j can be positive or negative, but one is
promised that the norm ∥x∥2 never drops by more than an α-fraction of what it was at any
earlier point in the stream, for a constant parameter α. We only state the theorem below,
whose proof can be found in the full version.

▶ Theorem 9. Suppose G is an M-estimator with parameter γ. Then any randomized
streaming algorithm outputting an O(M (1/6−ε)γ)-approximation of ∥x∥G in the bounded
deletion model needs Ω(log M) bits, excluding the storage for random bits.

Random Order. In the random order model, we assume the updates ∆j come in a random
order. We note that the updates for the distribution in Theorem 7 are a sequence of random
±1 variables. Hence it satisfies the random order assumption automatically, which means we
obtain the following theorem.

▶ Theorem 10. Suppose G is an M-estimator with parameter γ. Then any randomized
streaming algorithm which outputs an O(M (1/6−ε)γ)-approximation to ∥x∥G in the random
order model requires Ω(log M) bits of space, excluding the storage for its random bits.

4 ℓp Estimation p > 2

In this section, we consider the problem of estimating ∥x∥p with a large approximation
factor when p > 2. We present an algorithm that gives an α-approximation to ∥x∥p using
Õ(n1−2/p/α2) bits of space. We will also give a matching lower bound for this problem.

Upper bound. Suppose that we want an α-approximation where n1−2/p/α2 = Ω(1)
(otherwise there is a trivial Ω(1) lower bound) and let q be the number such that
n1−2/q = Θ(n1−2/p/α2). Then we have 2 ≤ q < p. The following lemma shows that
∥x∥q is an α-approximation to ∥x∥p.

▶ Lemma 11. Suppose that p ≥ q ≥ 2 and α ≥ 1 satisfies n1−2/q = n1−2/p/α2 = Ω(1).
Then it holds that ∥x∥p ≤ ∥x∥q ≤ α ∥x∥p.

Proof. From our choice of q, we have that α = n1/q−1/p. The ℓp norm is decreasing in p,
and thus ∥x∥q ≥ ∥x∥p. By Hölder’s inequality, it also holds that ∥x∥q ≤ n1/q−1/p ∥x∥p =
α ∥x∥p ◀

The preceding lemma shows that we can use any O(1)-approximation algorithm for ℓq to
obtain an α-approximation to the ℓp norm. For example, we can use the O(n1−2/q log2 n)-bit
algorithm of [4], or the algorithm of [25]. Our theorem follows immediately.

▶ Theorem 12. Suppose that p > 2 is a constant. There is an algorithm whose output is
Z, which satisfies that ∥x∥p ≤ Z ≤ α ∥x∥p with probability at least 0.9. Furthermore, the
algorithm uses O(n1−2/p log n log M/α2) bits of space.

Application to Data-augmented Algorithm Design. One important motivation for ℓp

estimation with large approximation is worst-case guarantees for learning-augmented data
stream algorithm design. In [32], it was shown that given a heavy hitter oracle which can
decide, for each input i, whether or not |xi| ≥ n−p/2 ∥x∥p, one can estimate ∥x∥p up to
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a constant factor with probability at least 0.9 using O(n1/2−1/p log n log M) bits of space.
In this case, we say the oracle is successful. However, when the oracle is not successful,
there is no worst-case guarantee on the quality of approximation. An observation here
is that when the oracle is not successful, the estimation will be an under-estimate with
high probability. Letting α = Θ(n1/4−1/(2p)) in the preceding theorem, we obtain an α-
approximation algorithm whose output Z satisfies 1

α ∥x∥p ≤ Z ≤ ∥x∥p with probability
at least 0.9 using the same O(n1/2−1/p log n log M) bits of space. Hence we can run our
algorithm and the oracle algorithm in parallel and take a maximum. This guarantees an
α-approximation in O(n1/2−1/p log n log M) bits of space with probability at least 0.8.

▶ Theorem 13. Assuming a successful oracle, there is a streaming algorithm which runs in
O(n1/2−1/p log M log n) bits of space, and for which the output Z satisfies ∥x∥p ≤ Z ≤ 2 ∥x∥p.
Moreover, even if the oracle is not successful, the output Z always satisfies ∥x∥p ≤ Z ≤
n1/4−1/(2p) ∥x∥p.

Lower Bound. We next show an Ω(n1−2/p(log(M) log(1/δ))/α2) lower bound for obtaining
an α-approximation to ∥x∥p, or, equivalently, an Ω(n1−2/p(log(M) log(1/δ))/α2/p) lower
bound for obtaining an α-approximation of Fp(x). We first note that it is easy to get an
Ω(n1−2/p/α2/p) lower bound from the following ℓk

∞ communication problem in [9]: there are
two parties, Alice and Bob, holding vectors x, y ∈ Zn respectively, and their goal is to decide
if ∥x− y∥∞ ≤ 1 or ∥x− y∥∞ ≥ k. This problem requires Ω(n/k2) bits of communication [9].
Let k = 21/pα1/pn1/p. For the case where ∥x− y∥∞ ≤ 1, we have ∥x− y∥p

p ≤ n. For the
case where ∥x− y∥∞ ≥ k, we have ∥x− y∥p

p ≥ kp = 2αn. Suppose there is an algorithm A
which can output a number Z such that ∥x∥p ≤ Z ≤ α ∥x∥p with probability at least 2/3.
Then Alice can perform the update x to the algorithm A and send the memory contents
of A to Bob. Bob then performs the update −y to A. From the discussion above, Bob can
determine which of the two cases it is with probability at least 2/3.

To obtain a stronger lower bound, we consider the following version of multiparty
disjointness (DISJn

s ), coupled with an input distribution, in the public-coin simultaneous
message passing model of communication (SMP), as proposed in [51]. In this setting, there
are s players, each of whom has a bit string Xi ∈ {0, 1}n (i ∈ [s]) as input. The inputs are
generated according to the following distribution η.

▶ Definition 14 (Distribution η). The distribution η is the joint distribution of (X1, . . . , Xs) ∈
({0, 1}n)s, generated as follows.

For each i ∈ [n], j ∈ [s], set Xj,i ∼ B(1/s) independently at random.
Pick a uniformly random coordinate I ∈ [n].
Pick a Z ∈ {0, 1}. If Z = 1, set Xj,I = 1 for all j ∈ [s]. (If Z = 0, keep all coordinates
as before.)

We call the instance of the inputs {Xi}i∈[s] a “YES” instance when Z = 1, and a “NO”
instance when Z = 0.

The players simultaneously send a message Mi(Xi, R) to a referee, where R de-
notes the public coins shared among the players. The referee then decides, based on
M1(X1, R) . . . , Ms(Xs, R) and R, whether {Xi}i∈[s] forms a YES instance or a NO instance.
As observed in [51], if X ∼ Bin(s, 1/s), then Pr[X > ℓ] ≤ (e/ℓ)ℓ. Hence, by a union bound
for all coordinates i ∈ [n], it holds in a NO instance, with probability at least 1− 1/ poly(n),
that

∑s
j=1 Xj,i ≤ c log n/(log log n) for all i ∈ [n]. On the other hand, in a YES instance

it always holds that
∑s

j=1 Xj,I = s. Thus, YES and NO instances are distinguishable for
s = Ω(log n/ log log n).
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The following is an augmented version of this problem.

▶ Definition 15 (Aug-DISJ(r, s, δ)). The augmented disjointness problem Aug-DISJ(r, s, δ)
is the following s-party communication problem. The players receive r instances of
DISJn

s (X1
1, . . . , X1

s), (X2
1, . . . , X2

s), . . . , (Xr
1, . . . , Xr

s) and the referee, in addition, receives
an index T ∈ [r] which is unknown to the players, along with the last (r − T ) inputs
{(Xt

1, . . . , Xt
s)}r

t=T +1. The inputs are generated according to the following distribution:
(i) T is chosen uniformly at random from [r];
(ii) (XT

1 , . . . , XT
s ) ∼ η;

(iii) For each t ̸= T , (Xt
1, . . . , Xt

s) ∼ η0 independently, where η0 is the conditional distribu-
tion of η given Z = 0.

At the end of the protocol, the referee should output whether the T -th instance (XT
1 , . . . , XT

s )
is a YES or a NO instance, i.e., the players need to solve DISJn

s (XT
1 , ..., XT

s ), with probability
1− δ.

▶ Theorem 16 ([51]). Suppose that δ ≥ n · 2−s. Any deterministic protocol that solves
Aug-DISJ(r, s, δ) (as defined in Definition 15) requires Ω(rn min(log 1

δ , log s)/s) bits of total
communication.

A Reduction to Streaming: To lower bound the space complexity of a streaming algorithm
we need a way of relating it to the communication cost of a protocol for this communication
problem. In [51], the authors use a result of [40], showing under certain conditions that any
streaming algorithm A which solves the problem P with probability at least 1− δ can be
converted to a “path-independent” streaming algorithm B which solves P with probability at
least 1−7δ, and which uses the same space up to an additive (log n+log log m+log 1/δ) factor.
The latter then gives a protocol for the Aug-DISJ(r, s, δ) problem. Here path-independence
means that the output of the algorithm only depends on the initial state and the underlying
frequency vector. In other words, the order of the updates of the same frequency vector will
not cause different outputs to such an algorithm. We now assume that the algorithm A we
have enjoys this path-independence property. For a more detailed discussion, we refer the
readers to Section 5 in [51].

Suppose there is a path-indepedent 1-pass streaming algorithm A which gives an α-
approximation to ∥x∥p

p with probability 1− δ. We shall use this to solve the Aug-DISJ(r, s, δ)
problem for s = Θ(α1/pn1/p) and r = log(M/s), from which a space lower bound of Ω(n1−2/p

log(M) log(1/δ)/α2/p) bits follows if M = Ω((nα)1/p+O(1)).
We design the following protocol π between the players and the referee. For each i ∈ [s],

player i has r instances (X1
i , X2

i , . . . , Xr
i ). Player i performs the update 10j−1 · Xj

i to
the algorithm A, for each j ∈ [r], and sends the memory contents of A to the referee.
Under the path-independence assumption, the referee can determine an equivalent frequency
vector (i.e., leading to the same state of the algorithm) from each player and then add up
the corresponding updates itself. After receiving T and {(Xt

1, . . . , Xt
s)}r

t=T +1, the referee
performs the update −10j−1 · (

∑s
i=1 Xj

i ) to the algorithm A, for each j ≥ T + 1. Suppose
that A outputs a set S. The referee will output YES is |S| = 1 and NO if S = ∅.

Next we analyze correctness of the above protocol π. We recall that the referee needs
to output the answer to the T -th instance. For simplicity, we define Yj =

∑s
i=1 Xj

i for the
j-th instance. After taking a union bound, for every instance j,

∥∥Yj
∥∥

∞ ≤ c log n/ log log n

if it is a NO instance. Also from a Chernoff bound, it is easy to see that
∥∥Yj

∥∥2
2 = Ω(n) for

all j with probability at least 1 − e−Ω(n). Note that the actual underlying vector that A
maintains has the same output as the frequency vector Y =

∑T
t=1 10t−1Yt after the referee

performs the updates. We need the following concentration bounds for Y [51]. We note an
omission in the proof in that paper and included a corrected one in Appendix A.
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▶ Lemma 17 ([51]). Let σr(∥Y−I∥p
p) = (E[| ∥Y−I∥p

p − E[∥Y−I∥p
p]|r])1/r. It holds that

E[∥Y−I∥p
p] ≤ Kp

1 ppn · 10pT , (1)

σr(∥Y−I∥p
p) ≤ Kp

2 pp r

ln r
max{2p

√
n, rpn1/r} · 10pT , (2)

where r ≥ 2 is arbitrary and K1, K2 > 0 are absolute constants.

Taking r = 3 ln n in (2) gives that

Pr[| ∥Y−I∥p
p − E[∥Y−I∥p

p]| > 0.1n · 10pT ]

≤ Pr[| ∥Y−I∥p
p − E[∥Y−I∥p

p]| > 2σℓ(∥Y−I∥p
p)]

≤ 2−r ≤ 1/n2.

(3)

We condition on all of the events above. Notice that in all cases, the value ∥x∥∞ of the un-
derlying vector x the algorithm A maintains is less than

(∑r−1
i=1 10i−1 · log n

log log n + 10r−1 · s
)

<

10r · s = O(M) for r = log(M/α1/pn1/p).
We first consider the case for which the T -th instance is a YES instance. In this case,

YT
I = s and thus, ∥Y∥p

p ≥ 10(T −1)p · s = Ω(10(T −1)p · αn).
Next consider the case in which the T -th instance is a NO instance. In this case, we have

from (1) and (3) that ∥Y∥p
p = ∥Y−I∥p

p + Yp
I ≤ Kp · 10pT n + 10pT ( log n

log log n )p ≤ 1.1Kp · 10pT n,
where Kp is a constant that depends only on p.

From the same argument in Section 5 we know that if there is an algorithm that can output
a Z such that ∥x∥p

p ≤ Z ≤ K ′
pα ∥x∥p

p, we can use this algorithm to solve the Aug-DISJ(r, s, δ)
problem. From Theorem 16, we obtain the following theorem.

▶ Theorem 18. Suppose that p is a constant and M = Ω((αn)1/p+O(1)). Then, for δ ≥
2−Θ((nα)1/p), any one-pass streaming algorithm which outputs a number Z for which ∥x∥p

p ≤
Z ≤ α ∥x∥p

p with probability at least 1 − δ requires Ω(n1−2/p log(M) log(1/δ)/α2/p) bits
of space. In particular, when δ = Θ(1/n), any one-pass streaming algorithm requires
Ω(n1−2/p log(M) log(n)/α2/p) bits of space.

5 ℓ2 Heavy Hitters

In the heavy hitters problem, we want to find a set S ∈ [n] of indices for the underlying
vector x such that:

(i) S contains every i such that |xi|2 ≥ 1
k ∥x∥

2
2;

(ii) S does not contain any i such that |xi|2 < 1
2k ∥x∥

2
2.

We call S a (1/k)-heavy set of x if S satisfies the above conditions. Using the classical
Count-Sketch, we can solve the above problem in O(k log n log M) bits of space with high
probability.

▶ Lemma 19. There is a randomized one-pass streaming algorithm which can be implemented
in O(k log n log M) bits of space such that with probability 1 − 1/ poly(n), it can output a
1
k -heavy set S of x.

In this section, we consider the following relaxation of the heavy hitters problem, where
we want to find a set S of indices such that:

(i) S contains every i such that |xi|2 ≥ 1
k ∥x∥

2
2;

(ii) S does not contain any i such that |xi|2 < 1
αk ∥x∥

2
2.
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We call such a set S a ( 1
k , α)-heavy set of S. Our result is negative, where we show that any

one-pass streaming algorithm outputting a ( 1
k , α)-heavy set of x with probability at least

1− 1/n still requires Ω(k log n log M) bits of space if α = O((n/k)(log log n)2/(log n)2).
We will consider the augmented disjointness problem Aug-DISJ(r, s, δ) defined in Defini-

tion 15.
Suppose that there is a path-indepedent one-pass streaming algorithm A which can

solve the ( 1
k , α)-heavy hitters problem with probability 1 − O(1/n), where α = O(n/k ·

(log log n/ log n)2). Then we can use it to solve the Aug-DISJ(r, s, δ) problem for r =
log(M/n1/2), s = Θ(

√
n/k), δ = 1/n, from which a space lower bound of Ω(k log n log M)

bits follows if M = Ω(n1/2+O(1)).
We design the following protocol π between the players and referee. For each i ∈ [s],

player i has the r instances (X1
i , X2

i , . . . , Xr
i ). Player i then performs the update 10j−1 ·Xj

i

to the algorithm A for each j ∈ [r] and sends the memory of A to the referee. Under the
path-independence assumption, the referee can determine an equivalent frequency vector
(i.e., leading to the same state of the algorithm) from each player and then add up the
corresponding updates. After receiving T and {(Xt

1, . . . , Xt
s)}r

t=T +1, the referee performs the
update −10j−1 · (

∑s
i=1 Xj

i ) to the algorithm A for each j ≥ T + 1. Suppose that A outputs
a set S. The referee will output YES if |S| = 1 and NO if S = ∅.

Now we analyze the correctness of the above protocol π. We recall that the referee needs
to output the answer to the T -th instance. For simplicity, we define Yj =

∑s
i=1 Xj

i for
the j-th instance. Recall that after taking a union bound, for every instance j,

∥∥Yj
∥∥

∞ ≤
c log n/ log log n if it is a NO instance. Also from a Chernoff bound, it is easy to see that∥∥Yj

∥∥2
2 = Ω(n) for all j with probability at least 1− e−Ω(n). Note that the actual underlying

vector that algorithm A maintains has the same output as the frequency vector Y =∑T
t=1 10t−1Yt after the referee performs the updates. We need the following concentration

bounds, which are a special case of Lemma 17 with p = 2.

▶ Lemma 20 ([51], special case of Claim 6.2). It holds that

E
[
∥Y−I∥2

2

]
≤ K1n · 102T , (4)

σℓ

(
∥Y−I∥2

2

)
≤ K2

ℓ

ln ℓ
max{4

√
n, ℓ2n1/ℓ} · 102T , ∀ℓ ≥ 2, (5)

where K1, K2 > 0 are absolute constants.

Taking ℓ = 3 ln n in (5) gives that

Pr
[∣∣∣∥Y−I∥2

2 − E
[
∥Y−I∥2

2

]∣∣∣ > 0.1n · 102T
]

≤ Pr
[∣∣∣∥Y−I∥2

2 − E
[
∥Y−I∥2

2

]∣∣∣ > 2σℓ

(
∥Y−I∥2

2

)]
≤ 2−ℓ ≤ 1/n2.

(6)

Condition on all of the events above occurring. In all cases, the value
∥x∥∞ of the underlying vector x that algorithm A maintains is less than(∑r−1

i=1 10i−1 · log n
log log n + 10r−1 ·

√
n/k

)
< 10r ·

√
n = O(M) for r = log(M/n1/2).

We first consider the case in which the T -th instance is a YES instance. In this case,
YT

I = s, and thus

YI ≥ 10T −1 · s.
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Meanwhile, for all j ̸= I,

Yj ≤ c
T∑

t=1
10t−1 log n

log log n
< c · 10T log n

log log n
. (7)

It follows from (4) and (6) that

Ω(102T · n) ≤ ∥Y∥2
2 = ∥Y−I∥2

2 + Y2
I ≤ (K1 + 0.1)n · 102T + s2.

It thus holds that Y2
I ≥ (1/k) ∥Y∥2

2, or equivalently, s2/100 ≥ s2/k + (K1 + 0.1)n/k

when k > 100 and s = Ω(
√

n/k). Furthermore, for j ̸= I, Y2
j ≤ ∥Y∥

2
2 /(αk) when

α = O((n/k)(log log n/ log n)2). Therefore, our choices of k, s and α imply that the set
S = {I}.

Now we consider the case when the T -th instance is a NO instance. In this case, (7) holds
for all j ∈ [n]. Since ∥Y∥2

2 ≥ Ω(102T · n), it follows that Y2
j ≤ ∥Y∥

2
2 /(αk) for all j, provided

that α = O((n/k)(log log n/ log n)2). It follows that S = ∅.
To conclude, we have proved the following theorem.

▶ Theorem 21. Suppose that k = Ω(1), α = O
(

n
k ( log log n

log n )2)
and M = Ω(n1/2+O(1)). Then,

any one-pass streaming algorithm that solves the (1/k, α)-heavy hitters problem with failure
probability O(1/n) requires Ω(k log n log M) bits of space, where the algorithm can store any
number of random bits.

Sketching dimension lower bound. One limitation of the above theorem is that it requires
the algorithm A to succeed with high probability. Below we show that any algorithm A
using a linear sketch to solve the (1/k, α)-heavy hitters problem with constant probability
requires the sketching dimension to be O(k log(n/k)) if α = O(n/(k log n)).

We will consider the following communication game in [45]. Let F ⊂ {S ⊂ [n] | |S| = k/2}
be a family of k-sparse supports such that:
|S∆S′| ≥ k for S ̸= S′ ∈ F ,
PrS∈F [i ∈ S] = k/(2n) for all i ∈ [n], and
log |F| = Ω(k log(n/k)).

Let X = {x ∈ {0,±2
√

n/k}n | supp(x) ∈ F}. Let w ∼ N (0, In). Consider the following
process. First, Alice chooses S ∈ F uniformly at random. Then x ∈ X is uniformly at random
subject to supp(x) = S, and then w ∼ N (0, In). Then, Alice computes y = Az = A(x + w),
where A ∈ Rm×n is the sketching matrix in A, and Alice sends y to Bob. Then Bob needs
to recover S from y.

▶ Theorem 22 ([45]). Suppose that Bob can recover S with probability at least 2/3. Then
m = Ω(k log(n/k)).

Next we will show that Alice and Bob an use a ( 1
k , α)-heavy hitters algorithm to solve

the communication game above if α = O(n/(k log n)). To show correctness, we need the
following bounds for w.

▶ Lemma 23 (folklore). Suppose that w ∼ N (0, In). Then with probability 9/10 we have the
following:

(i) 0.9n ≤ ∥w∥2
2 ≤ 1.1n;

(ii) ∥w∥∞ ≤ c ·
√

log n.
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Condition on the events above. For each i ∈ [n], we have

zi ≥ 2
√

n/k − c
√

log n ≥ 1.9
√

n/k, i ∈ S,

zi ≤ c
√

log n, i ̸∈ S.

We also have from Lemma 23 that

0.9n < ∥w∥2
2 < ∥z∥2

2 ≤ ∥w∥
2
2 + ∥x∥2

2 + 4ck
√

log n
√

n/k < 4n .

It follows that any ( 1
k , α)-heavy set T will exactly be the support set S if α = O(n/(k log n)).

The following theorem is immediate.

▶ Theorem 24. Suppose that α = O(n/(k log n)). Then, any linear sketching algorithm
that solves the (1/k, α)-heavy hitters problem with constant probability requires a sketching
dimension of Ω(k log(n/k)).

6 Additional Results

We present improved one-pass and multipass algorithms for the ℓ0 estimation problem in
Section B.1, our two-pass algorithm for the Fp estimation (0 < p ≤ 2) problem in Section C,
our results for Schatten-p norm estimation in Section D, and finally, our results for cascaded
norms and rectangle-efficient Fp estimation in Section E and Section F, respectively. All
proofs are omitted and can be found in the full version of this paper.
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A Proof of Lemma 17

The first result, Equation (1), was proved in [51]. Now we prove the second result.
By a standard symmetrization technique (see, e.g., [39, p153]),

(
E

∣∣∣∥Y−I∥p
p − E

[
∥Y−I∥p

p

]∣∣∣r) 1
r

=

E
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∑
i̸=I

(Yp
i − EYp

i )

∣∣∣∣∣∣
r

1
r

≤ 2

E

∣∣∣∣∣∣
∑
i̸=I

εiYp
i

∣∣∣∣∣∣
r

1
r

, (8)

multline where the εi are independent Rademacher variables.
By Latała’s inequality ([38, Corollary 3]), it holds for r ≥ 2 thatE
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 , (9)

where K1 > 0 is an absolute constant.
It was shown in [51, Lemma 6.3] that

EYp
i ≤ Kp

2 pp10T p, p ≥ 1,

for some absolute constant K2 > 0. It then follows thatE
∑
i̸=I

Yrp
i

 1
r

≤ Kp
2 (rp)pn1/r10pT (10)

The result follows from combining (8), (9) and (10).

Remark. We note an omission in [51]. In that paper, the proof of the second result, i.e.,
Equation (5), assumes that the larger term in (9) is (E

∑
i̸=I Y2r

i )1/p, which is not necessarily
the case. Lemma 2.5 in that paper is also an incorrect citation from [38], since the conclusion
should be max{∆1(X), ∆ℓ(X)} for nonnegative variables X, but this would be too large
for the proof. Hence we first symmetrize the variables, which allows for a better bound on
max{∆2(X), ∆ℓ(X)}.

B ℓ0 Estimation

B.1 One-pass Algorithm
We describe a randomized algorithm which gives an n1/t-approximation with constant
probability using O(t log log M)) bits of space, excluding the storage for random bits. We
assume that n1/t ≥ c2 for some constant c2, otherwise an optimal algorithm is known [35].

The algorithm is presented in Algorithm 1. The idea behind the algorithm is to subsample
the coordinates at t levels, with a geometrically decreasing sampling probability. In each
level, the surviving coordinates are hashed into a constant number of buckets. If the ℓ0 of
the subvector (which is the vector of surviving coordinates) at a level is at most a constant,
then only a small number of these buckets will be occupied. Otherwise, all the buckets will
be occupied with high probability. Based on this, we design a criterion to determine the
occupancy of these buckets to infer the ℓ0 of the subvector at a level. Finally, we find the
specific level J such that the ℓ0 in level J is between 0 and at most n1/t, and then it can
shown that nJ/t is a good estimator to the overall ℓ0.
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Algorithm 1 n1/t-approximator for ℓ0.

1 Initialize cKt counters C1,1,1, . . . , Ct,K,c to 0;
2 c1 ← β

√
c;

3 Initialize pairwise independent hash functions h : [n]→ [n], g : [n]→ [c];
4 Initialize K 4-wise independent hash functions si : [n]→ {−1, 1};
5 Pick a prime p ∈ Θ(c3 log2 M);
6 foreach (x, v) in the data stream do
7 b← the largest j such that h(x) mod ⌊n1/t⌋j = 0;
8 for i← 1 to b do
9 for j ← 1 to K do

10 Ci,j,g(x) ← (Ci,j,g(x) + v · sj(x)) mod p;
11 end
12 end
13 end
14 if there exists j such that |{k | ∃l, Cj,l,k ̸= 0}| > c1 then
15 J ← the largest j such that |{k | ∃l, Cj,l,k ̸= 0}| > c1;
16 else
17 J ← 0;
18 end
19 return c2nJ/t;

▶ Theorem 25. Algorithm 1 outputs Z, which with probability at least 0.9 satisfies that
ℓ0/n1/t ≤ Z ≤ L0n1/t. Furthermore, Algorithm 1 uses O(t log log M) bits of space, excluding
its random tape.

▶ Remark 26. Algorithm 1 uses O(log n) random bits since the hash functions h, g are
pairwise independent and the si are 4-wise independent.

B.2 Lower Bound
We now prove a space lower bound of Ω(t) bits for estimating ℓ0 up to an n1/t-approximation
factor. Our lower bound holds even if the algorithm has access to an arbitrarily long random
tape, which we do not charge for in its space. We reduce the ℓ0 estimation problem to the
Augmented Indexing communication problem, in the one-way public coin model, which we
now define. We assume that t = O(log n).

▶ Definition 27 (Augmented Indexing). Alice has a string u ∈ {0, 1}l, Bob has an index
i∗ ∈ [l] and ui∗+1, . . . , ul. Alice is allowed to send a single message to Bob, and Bob wants
to learn ui∗ from Alice with probability at least 2/3.

▶ Lemma 28 ([10]). The one-way communication complexity of Augmented Indexing is Ω(l)
in the public coin model.

Assume we have a streaming algorithm A. Alice runs A on her stream s(a), then sends
the state of A to Bob. Bob feeds his stream s(b) into A and obtains an estimate of ℓ0. We
show how to design s(a) and s(b) so that Bob can solve the Augmented Indexing problem.

Without loss of generality, we assume that t is divisible by 8. Let u be the vector in an
instance of the Augmented Indexing problem with l = t/8. We shall create an input vector x

for the ℓ0 estimation problem.
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▶ Theorem 29. Estimating ℓ0 with approximation factor n1/t requires Ω(t) bits, even if the
algorithm has an arbitrarily long random tape.

B.3 Multi-pass ℓ0 Estimation
We state our results for two-pass and three-pass algorithms below.

▶ Theorem 30. There exists an absolute constant ε0 and a two-pass algorithm such that the
following holds. For all ε ∈ (0, ε0), the algorithm outputs Z satisfying (1−ε)ℓ0 ≤ Z ≤ (1+ε)ℓ0
with probability at least 0.8. The algorithm uses O(log n+ε−2 log log M(log(1/ε)+log log M))
bits of space.

▶ Theorem 31. There exists an absolute constant ε0 and a three-pass algorithm such that the
following holds. For all ε ∈ (0, ε0), the algorithm outputs Z satisfying (1−ε)ℓ0 ≤ Z ≤ (1+ε)ℓ0
with probability at least 0.75. Furthermore, the algorithm uses O(log n + ε−2(log(1/ε) +
log log M)) bits of space.

C Two-Pass Algorithm for Fp (0 < p ≤ 2)

As we have shown in the previous section, for the ∥x∥p
p estimation problem, even a large

approximation also requires Ω(log n) bits of space. In this section, we will show that after
obtaining a constant approximation to ∥x∥p

p in the first pass using O(log n) bits, we can
obtain a (1 ± ε)-approximation to ∥x∥p

p using O(log n + ε−2(log M + log 1
ε )) bits. This is

better than the previous O(ε−2 log nM) space bound in one-pass if M is small.

▶ Theorem 32. Suppose that 0 < p ≤ 2. There is a two-pass streaming algorithm which
can be implemented in O(log n + ε−2(log M + log 1

ε )) bits of space and which outputs a
(1± ε)-approximation to ∥x∥p

p with probability at least 9/10.

D Schatten-p Norm Estimation

In this section, we consider approximating the Schatten-p norm ∥A∥p of a given matrix A

with large approximation factor α, where σi(A) is the i-th singular value of A. We assume
A ∈ Rn×n here because for a general matrix A ∈ Rn×d, we can first apply a subspace
embedding to the left or to the right of A to preserve each of its singular values up to a
constant factor and then pad with zero rows or columns (see, e.g., Appendix C of [40] for the
details of this argument). As in the majority of previous work on Schatten norm estimation,
we focus on the sketching dimension complexity.

Upper Bound. We will show that for an even integer p and an arbitrary α = Ω(1), there
is an O(n2−4/p/α4) dimension sketching algorithm, while for p not an even integer, the
O(n2−4/p/α4) dimension bound still holds if α is not too small. Our algorithm is based on a
constant approximation algorithm for ∥A∥p when p is an even integer.

▶ Lemma 33 (Theorem 8.2, [41]). Suppose that p is an even integer. There is a sketch-
ing algorithm whose output Z satisfies ∥A∥p ≤ Z ≤ 2 ∥A∥p with probability at least 2/3.
Furthermore, the sketching dimension of this algorithm is O(n2−4/p).

Our algorithm is given in Algorithm 2. For an even integer p, we maintain the matrix
GAHT where G and H are defined in algorithm 2 and use the constant approximation
algorithm Aq to estimate the Schatten-q norm of GAHT . The following lemma shows that
∥GA∥q can be an α-approximation to ∥A∥p.
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Algorithm 2 α-approximation for ∥A∥p.

1 Set q = p if p ∈ 2Z, or to be the largest even integer less than p otherwise;
2 Let Aq be a streaming algorithm that can output a constant-factor approximation to
∥A∥q;

3 Set t = (n1/2−1/p/α)1/(1/2−1/q) ;
4 Let G be an r = t poly log(n/t)× n matrix with i.i.d N (0, 1/r) entries (these are i.i.d.

normal random variables with mean 0 and variance 1/r) and let H be an
independent r = O(t)× n matrix with i.i.d N (0, 1/r) entries.

5 foreach ∆i,j in the data stream do
6 Compute the matrix G∆i,jHT ;
7 Add G∆i,jHT to the input stream for Aq;
8 end
9 Let Z be the output from Aq;

10 return Z ;

▶ Lemma 34 (rewording of Theorem 22, [43]). Suppose that p ≥ q ≥ 2, q is an even integer,
and t = O(n). Let G be an r × n matrix with i.i.d. N (0, 1/r) entries, where r = O(t) when
q = 2 and r = O(t log1/(1/2−1/q)(n/t)) when q ≥ 4. Then, with probability at least 1−exp(c′t),
we have ∥A∥p ≤ ∥γGA∥q ≤ (n1/2−1/p)/(t1/2−1/q) ∥A∥p , where γ is an appropriate scaling
factor.

If H is a (1/2)-subspace embedding of GA, then the singular values of GAHT are different
from those of GA by at most a constant factor (see Section 2), and thus

∥∥GAHT
∥∥

q
is a constant

approximation to ∥GA∥q. Recall that our sketch is a matrix of dimensions r ×O(t), where
r = t poly(log t), so the sketching dimension of our algorithm is Õ(t2−4/p) = Õ(n2−4/p/α4).

▶ Theorem 35. Suppose that p ≥ 2 is an even integer. Then there is a sketching algorithm
whose output Z satisfies ∥A∥p ≤ Z ≤ α ∥A∥p with probability at least 2/3. Furthermore, the
sketching dimension of this algorithm is Õ(n2−4/p/α4).

When p is not an even integer (and could even be a non-integer), let q be the largest
even integer that is smaller then p. Then our choice of t still satisfies that t = O(n) if
α = Ω(n1/p−1/q). Our arguments above continue to hold and we obtain the following theorem.

▶ Theorem 36. Suppose that p ≥ 2 is not an even integer. Let q be the largest even integer
less than p and α = Ω(n1/q−1/p). Then there is a sketching algorithm whose output Z satisfies
∥A∥p ≤ Z ≤ α ∥A∥p with probability at least 2/3. Furthermore, the sketching dimension of
this algorithm is Õ(n2−4/p/α4).

Lower Bound. Below we show that our upper bound is optimal up to polylog(n) factors.
In [41], the authors give the following n2/α4 lower bound for α-approximating ∥A∥op.

▶ Lemma 37 (Corollary 3.3, [41]). Suppose that α ≥ 1 + c where c is an arbitrarily small
constant. Then, any sketching algorithm estimating ∥A∥op within a factor α with failure
probability smaller than 1/6 requires sketching dimension n2/α4.

Since ∥x∥∞ ≤ ∥x∥p ≤ n1/p ∥x∥∞, an α-approximation of ∥A∥p implies an αn1/p approx-
imation to ∥A∥∞ = σ1(A). The following lower bound follows.
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▶ Theorem 38. Suppose that α ≥ 1 + c, where c > 0 is an arbitrarily small constant. Then,
any sketching algorithm estimating ∥A∥p within a factor α with failure probability smaller
than 1/6 requires sketching dimension O(n2−4/p/α4).

E Cascaded Norms

In this section, we consider approximating the cascaded (p, q)-norm of a matrix X, defined as
∥X∥p,q = (

∑
i(

∑
j |xij |q)p/q)1/p, for a large approximation factor α, when p ≥ 1 and q > 2.

We have the following upper bound and show it is tight up to poly(log n) factors.

▶ Theorem 39. Suppose that α ≥ 8. Then there is an algorithm whose output is Z,
which satisfies that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at least 2/3. Furthermore,
the algorithm uses O(n1−2/pd1−2/q · (pq log n)O(1)/α2) bits of space when p, q > 2 and uses
O(d1−2/q · (q log n)O(1)/α2) bits of space when 1 ≤ p < 2 and q > 2.

▶ Theorem 40. For the case that p, q > 2, any one-pass streaming algorithm which out-
puts a number Z such that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at least 2/3 requires
Ω(n1−2/pd1−2/q/α2) bits of space. For the case that 1 ≤ p < 2 and q > 2, any one-pass
streaming algorithm which outputs a Z such that ∥X∥p,q ≤ Z ≤ α ∥X∥p,q with probability at
least 1− δ requires Ω(d1−2/q log(M) log(1/δ)/α2) bits of space.

F Rectangle Fp (p > 2)

In this section, we consider the rectangle Fp problem. A rectangle-efficient algorithm was
proposed in [49]. Instead of updating the counter in each coordinate inside a rectangle, they
develop a rectangle-efficient data structure called RectangleCountSketch. We follow
their notation that O∗(f) denotes a function of the form f · poly(log(mn/δ)) for constant
rectangle dimension d.

▶ Theorem 41. Suppose that p > 2. There is a rectangle-efficient one-pass streaming
algorithm which outputs a number Z that is an α-approximation to ∥x∥p

p, i.e., ∥x∥p
p ≤

Z ≤ α ∥x∥p
p, with probability at least 1 − δ. It uses O∗(nd(1−2/p)/α2/p) bits of space and

O∗(nd(1−2/p)/α2/p) time to process each rectangle in the stream.
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1 Introduction

Autonomous, locally interacting agents can collectively organize to accomplish a variety of
complex tasks such as foraging for food, building large-scale structures, and transporting
objects many times heavier than their weight, as is routinely observed in the living world, in
swarms of ants, flocks of birds, and schools of fish [34, 39, 38, 33]. A key component of these
diverse self-organized behaviors is achieving consensus in large collectives of autonomous
agents with only local interactions. The problem of achieving alignment in collectives of
directed agents is an important example of such a consensus problem, and is a fundamental
aspect of flocking: large scale collective motion in swarms of motile agents [34, 37, 28, 41, 38, 1].
While flocking has been studied extensively [18, 28, 36, 1] with few rigorous results, the more
basic problem of alignment has received considerably less attention.

Here, we study alignment in self-organizing particle systems (SOPS) – a collection of
simple, active computational particles that individually execute local distributed algorithms.
We consider oriented particle systems on a two-dimensional lattice, where particles are
oriented in one of q directions (with no global compass), for q ≥ 2, and at most one particle
occupies each lattice site. Particles perform moves independently and concurrently by making
spatial moves to neighboring empty sites or reorient themselves in new directions with the
goal of reaching nearly global alignment.

We consider a stochastic approach, used previously in [7, 8] to achieve compression, where
connected sets of homogeneous particles self-organize to gather together tightly, separation
in heterogeneous particle systems, where all of the particles compress, but also gather most
tightly with other particles of the same type [5, 6], and aggregation of homogeneous particles
that are not required to be connected, where most particles accumulate in a small, compact
neighborhood [21]. In all of these, phase changes were used to characterize desirable behaviors
at stationarity, with high probability. Following a similar approach, we begin by defining an
energy function that assigns the highest weight (or lowest energy) to preferable configurations,
and design a Markov chain whose long term behavior favors these low energy configurations
using transition probabilities given by the Metropolis-Hastings algorithm [25, 15]. We
ensure that the transition probabilities of the Markov chain can be computed locally and
asynchronously, allowing them to be easily translated to a fully local, distributed algorithm
that each particle can run independently. The collective behavior of this distributed algorithm
is thus described by the long term behavior of the Markov chain.

1.1 Related work
The alignment problems we study can be viewed as finite, unsaturated variants of the
ferromagnetic Potts model from statistical physics [40], and a related model known as the
clock or planar Potts model [40, 29]. In the Potts model, vertices of a graph G are assigned
one of q possible “spins,” represented here as orientations, and neighboring sites prefer to
agree. Let J > 0 be a parameter related to inverse temperature and let δ(X,Y ) = 1 if X = Y

and 0 otherwise. Then the probability of a standard Potts configuration σ is given as

π(σ) = exp
(

− J
∑
x∼y

δ(σ(x), σ(y))
)
/Z,

where the sum is taken over all nearest neighbors in G and Z is the normalizing constant or
partition function. In the unsaturated setting studied here, spins are identified with particles,
not sites, and particles can make spatial moves to unoccupied sites in addition to updating
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their spins. We present alignment algorithms for two natural variants: (a) the connected
setting, where particles are constrained to be simply connected in the lattice, and (b) the
general setting, where particles occupy any distinct lattice sites regardless of connectivity.

Recent work on a closely related site-diluted Potts model [40, 9] also allows a non-zero
fraction of lattice sites to be unoccupied, but the number of particles is not fixed, so particles
can appear and disappear, in addition to making spatial moves. Chayes et al. [9] beautifully
demonstrate the presence of ordered (aligned and occupied) and disordered (non-aligned and
vacant) phases, along with novel “staggered” phases in this model. However, our constraint
fixing the number of particles, which is necessary in SOPS models in programmable matter,
makes our system fundamentally different from the site-diluted Potts model akin to the
difference between the fixed magnetization Ising model, which has a fixed number of + spins,
and the Ising model in the presence of a magnetic field, where the number of + spins can vary.
Notably, the coexistence of phases that characterize the aligned and compressed behaviors
we are seeking will not occur unless we fix the magnetization (or numbers of particles) as
these configurations are exponentially unlikely in the site-diluted model and thus do not
inherit any of its properties.

Since particles can make spatial moves, the boundary between the particle occupied sites
and the unoccupied sites can assume arbitrary shapes, which makes achieving alignment more
challenging than achieving compression. Consider the configurations shown in Figure 1(a),(b),
where the particles can be oriented along one of two possible directions (q = 2) shown by
black and grey circles, with a total of n particles. While the number of unaligned pairs of
adjacent particles is O(

√
n) for the configuration in Figure 1(a), it can be as low as O(1)

for the configuration shown in Figure 1(b), owing to the bottleneck shaped part of the
configuration boundary, making it likely that the regions on either side of it will be aligned
along different directions. Hence, achieving alignment requires suppressing the likelihood of
such bottlenecks in the boundary of the particle configuration.

While the concept of an interfacial free energy can be used to constrain the shape of the
boundary of a dilute system of homogeneous particles i.e., when q = 1, as in [26, 17, 2, 30],
because particle occupied sites and vacant sites are akin to distinct coexisting phases of the
system. However, the same ideas do not readily generalize to the case when q ≥ 2. Instead,
we show build on the notion of compression introduced in [7, 8], and use isoperimetric
inequalities to show that for sufficiently compressed configurations, bottlenecks such as the
one shown in Figure 1(b) are precluded with high probability.

1.2 Results
We present the first rigorous local distributed algorithms for achieving both low perimeter
boundaries and alignment, for any number of orientations q ≥ 2, in both connected and
general settings. Informally, we say a particle system is aligned if a significant percentage of
the particles have the same orientation.

In the connected SOPS setting, we define an energy function that encourages compression
of the entire configuration and also defines a ferromagnetic interaction between particles’
orientations, inspired by the clock and Potts models. These two contributions are controlled
by two independent parameters λ and γ. In this setting, we show that given any α > 1,
for any λ > 1 and γ > 29.3(q − 1) such that λγ > 7α/(α−1), the algorithms achieve α-
compression with high probability. Furthermore, when γ satisfies additional constraints given
in Theorem 11, we show that the compressed configurations are very likely to be aligned.
Next, we show that setting λ large and γ small will generate compressed configurations
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(a) A configuration without bottlenecks. (b) A configuration with a bottleneck.

Figure 1 Configurations with two dominant orientations (black vs. gray circles); large interfaces
as in (a) are unlikely for large γ, whereas small interfaces as in (b) are likely for any finite γ.

with an equitable balance of orientations (Theorem 18), while setting λ small will generate
configurations that are expanded, nearly maximizing their perimeters, allowing the SOPS to
explore space, potentially to forage for resources, for example (see Theorem 19).

For both the Potts and clock models in the connected setting, the proofs rely on the
cluster expansion [23, 14, 20] from statistical physics, introducing a new so-called polymer
model inspired by the relationship between flows and the Potts model [13]. Informally, the
cluster expansion allows us to obtain upper and lower bounds on the so-called “polymer
partition function” in terms of the volume and surface contributions, as in [5, 6, 14], to prove
that our algorithms achieve compression (or aggregation), with high probability. Moreover,
using isoperimetric inequalities, we prove the absence of bottlenecks in sufficiently highly
compressed configurations, which is necessary to get the system to globally align. Finally,
we use the bridging techniques first proposed in [27] and later adapted in [5, 6], to expand
the information theoretic arguments in [5, 6] to prove that for sufficiently compressed
configurations, our algorithms achieve alignment with high probability. Conversely, we show
that our algorithms can achieve expansion and/or non-alignment (with all directions nearly
equitably balanced), with the same algorithm by adjusting only two global parameters.

In the general SOPS setting, with no connectivity constraints, we present an algorithm
based on a single parameter coupling both compression and ferromagnetism simultaneously.
When this parameter is sufficiently large, we achieve aggregation and alignment, while when
it is small we achieve expansion and a balance among the orientations (Theorem 21). We
believe these parameters can be independently controlled in the general (disconnected) setting,
but the proofs seemingly become significantly more challenging and coupling them into one
parameter seems sufficient for most applications in programmable matter and swarm robotics.
Because configurations tend to be highly disconnected, proofs in the general setting require
additional technology to account for many small clusters that can be distributed throughout
the lattice. Here we generalize the bridging techniques to account for more complex contours
that form an interconnected network to show that the contour lengths of the bridging system
can be made arbitrarily close to their minimum possible length and, as a result, alignment
occurs with high probability. We note that our algorithms for alignment in both settings
work for all q ≥ 2; separation (where the sizes of the color classes are fixed) has only been
shown for q = 2, although the methods should also generalize to more colors [6].
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2 Preliminaries

Our model of programmable matter is based on the amoebot model, introduced in [11] and
described in detail in [10], which has served as the basis for previous stochastic algorithms
for SOPS [8, 7, 6, 5]. In the amoebot model, particles occupy the nodes of a graph with
each node occupied by at most one particle. When executing a spatial move, a particle
expands into an adjacent unoccupied node, temporarily occupying both nodes and then
contracts to the new node. Each particle stores whether it is expanded or contracted and
can read whether its neighbors are expanded or contracted. No particle has access to global
information such as system size or a shared co-ordinate system or compass.

We extend the amoebot model to model heterogeneous particles, where each particle has
one of q orientations, akin to the variant introduced in [6, 5]. Each particle, when activated,
chooses either a spatial move as in the original amoebot model, or an “orientation move”
that updates its direction, each equal probability. The system performs these atomic actions,
following the ASYNC model of computation from distributed computing [22]. It has been
shown in this model that for any concurrent asynchronous execution of atomic actions, there
exists a sequential ordering of actions with the same end state provided that all conflicts
arising in the concurrent asynchronous execution are resolved. We assume that conflicts due
to multiple particles expanding into an unoccupied node are resolved arbitrarily so that only
one particle expands into the unoccupied node, allowing us to consider only one particle to
be active at any given time.

2.1 The Potts and clock models
In our models, each configuration is an assignment of n particles to distinct vertices of a finite
triangular lattice G∆ of N > n vertices with the toroidal topology. In addition, each particle
is also assigned an orientation from {0, 1, . . . , q − 1}. We assume G∆ to inhabit a

√
N ×

√
N

square region with periodic boundary conditions. Each vertex (x, y) of G∆ has six outgoing
edges, to the vertices (x+ 1, y), (x, y + 1), (x+ 1, y + 1), (x− 1, y), (x, y − 1), (x− 1, y − 1),
where addition and subtraction is taken modulo

√
N − 1. Moreover, in this setup, the set

of particles in our configurations must always be connected and hole-free. Given such a
configuration, we define its boundary P to be the minimal closed walk over occupied sites
of G∆ that encloses all of the occupied sites in the configuration. The perimeter p(σ) of a
configuration σ is then defined to be the length of this closed walk.

We consider the following Potts Hamiltonian, on G∆, a variant of the site-diluted Potts
model [9]:

HPotts(σ) = −J
∑
⟨i,j⟩

ninj δ(θi, θj) − κ
∑
⟨i,j⟩

ninj ,

where the sum is over all pairs of adjacent sites: ⟨i, j⟩ i.e., sites connected by a single lattice
edge in G∆, ni ∈ {0, 1} indicates whether site i is occupied or not, θi indicates the orientation
of the particle on site i, and J, κ are positive constants. We only consider configurations σ
in Ω, i.e., where the total number of particles is equal to n, and the particle-occupied sites
form a connected, hole-free region.

The probability of a configuration πPotts(σ) is given by the Boltzmann distribution:

πPotts(σ) = e−βHPotts(σ)/ZPotts, where ZPotts =
∑
σ′∈ Ω

e−βHPotts(σ′) ,

where β denotes the inverse temperature. Setting parameters λ = exp(βκ), and γ = exp(βJ),
the above probability distribution can be expressed as:
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πPotts(σ) = wPotts(σ)
ZPotts

, wPotts(σ) = (λ γ)−p(σ)γ−h(σ) , Zclock =
∑
σ′∈ Ω

wPotts(σ′), (1)

where h(σ) is the number of heterogeneous edges in σ, i.e., edges connecting particles
with different orientations, and p(σ) is its perimeter, as defined earlier. Here πPotts is the
stationary distribution for our Markov chain algorithm based on the ferromagnetic Potts
model interactions.

Similarly, we consider the following clock model Hamiltonian on G∆:

Hclock(σ) = −J
∑
⟨i,j⟩

ninj cos(2π(θi − θj)/q) − κ
∑
⟨i,j⟩

ninj .

The probability of a configuration πclock(σ) is given by the Boltzmann distribution as before,
and can be expressed in terms of the parameters λ, γ as:

πclock(σ) = wclock(σ)
Zclock

, wclock(σ) = (λ γ)−p(σ)
∏
⟨i,j⟩

γ−dij , Zclock =
∑
σ′∈ Ω

wclock(σ′), (2)

where λ > 0, γ > 0 (as before), dij := 1 − cos(2π(θi − θj)/q), and the product is over all pairs
of adjacent occupied sites. Here πclock will be the stationary distribution for our Markov
chain algorithm based on the clock model.

For each of the above models, we will refer to w(σ) (wPotts or wclock) as the weight of a
configuration. The stationary probability distribution π (πPotts or πclock) is thus simply the
weight function w normalized by the partition function Z (ZPotts or Zclock).

2.2 Cluster expansions and bridging
Our proofs build on several tools from statistical physics and combinatorics, so we begin by
introducing two key methods. The cluster expansion is one of the oldest tools in statistical
physics [23, 24, 14], and has led to the development of the Pirogov-Sinai theory [31, 32], playing
an important role in recent advances in efficient sampling and counting algorithms [16, 19, 3].
The cluster expansion expresses the logarithm of a polymer partition function as a sum over
polymer clusters.

Let L be a finite set of polymers {ξi}, where each polymer ξi has weight w(ξi). We also
define “compatibility” between polymers - each pair of polymers ξ, ξ′ is either compatible
(ξ ∼ ξ′) or incompatible (ξ ≁ ξ′). The polymer partition function is then given by:

Ξ =
∑
τ∈ΩL

∏
ξ∈τ

w(ξ) ,

where ΩL is the set of all collections of pairwise compatible polymers in L. The cluster
expansion expresses the logarithm of the polymer partition function in terms of clusters, where
a cluster X is an ordered multiset of polymers {ξ1, . . . , ξk} such that their incompatibility
graph H(X) is connected, where the incompatibility graph is constructed by representing
each polymer by a vertex and connecting two vertices if the corresponding polymers are
incompatible. The cluster expansion gives:

log Ξ =
∑
X∈C

Ψ(X) , where Ψ(X) := 1
|X|!

 ∑
G⊆HX

(−1)|E(G)|

  ∏
ξ∈X

w(ξ)

 ,
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where the sum is taken over connected, spanning subgraphs G and C is the set of all clusters.
A sufficient condition for the convergence of the cluster expansion was given by Kotecký
and Preiss [20]. We will prove this condition in Lemma 7 and use the cluster expansion to
separate the volume and surface contributions to the partition function, as done in [14, 6].

Bridging is a combinatorial technique used to show that large contours are uncommon,
while allowing for the possibility of many small contours corresponding to “defects”. It was
first introduced in [27] and later adapted in [6]. We note that a constant fraction of defects
will be unavoidable - an example of this is in the Ising model and Potts models, where a
constant fraction of the vertices will not follow the majority color even at stationarity. Each
configuration corresponds to a set of contours - informally, a bridge system comprises of a
set of bridges, which are edges on the dual graph on the lattice that connect contours to the
boundary of the lattice. Contours that are connected this way are called bridged contours,
while the remaining contours are unbridged.

Bridge systems are defined so that the total length of the bridges is at most a constant
fraction of the total length of the bridged contours, which allows us to bound the number of
bridge systems with total bridged contour length ℓ by Cℓ for some constant C. Consequently,
a Peierls argument can be used to show that the gain in energy (probability weight) by
the removal of the bridged contours is greater than the loss in entropy by the removal of
these contours. Explicit constructions of bridge systems are shown in [6] and in our proof of
alignment for disconnected SOPS (see Appendix A).

3 Compression and Alignment in Connected SOPS

Starting with any simply connected set of particles, we define a local Markov chain aiming
to simultaneously compresses the configuration and align all but a small fraction of their
orientations. On each iteration, a particle is activated uniformly at random using a Poisson
clock. When activated, a particle chooses to attempt a spatial move or a reorientation
move with a equal probability. Informally, spatial moves consist of the particle moving
to a randomly chosen neighboring site, provided that site is unoccupied and the particle
configuration remains simply connected, while a reorientation move allows the particle to
change its orientation to point in a new direction. While it is surprising that a property such
as connectivity can be determined locally, a set of local moves were defined in Cannon et al. [8]
that prevent the configuration from disconnecting or forming holes and yet the chain remains
ergodic on the infinite lattice, so all valid configurations can still be reached. This ergodicity
result carries over to our setting as the we use a lattice that while finite, is sufficiently
large that self-intersections via wraparound are not possible. Using the Metropolis-Hastings
algorithm [25], once a move is determined to be valid, it is implemented with probability
min{1, π(σ′)/π(σ)}, where π is the desired stationary distribution.

More precisely, consider a spatial move from a location ℓ to an empty adjacent location ℓ′.
Let the sets of lattice sites adjacent to the locations ℓ and ℓ′ be N(ℓ) and N(ℓ′) respectively.
Furthermore, let N(ℓ ∪ ℓ′) denote N(ℓ) ∪N(ℓ′) \ {ℓ, ℓ′}, and S := N(ℓ) ∩N(ℓ′) denote the
set of sites adjacent to both ℓ and ℓ′ so that |S| ∈ {0, 1, 2}.

▶ Definition 1. A move from ℓ to ℓ′ is valid if ℓ′ is unoccupied, the number of particle-occupied
sites in N(ℓ) is less than 5, and either of the following two properties are satisfied:

Property 1: |S| ≥ 1 and every particle-occupied site in N(ℓ ∪ ℓ′) is connected to a
particle-occupied site in S through N(ℓ ∪ ℓ′).

Property 2: |S| = 0, ℓ and ℓ′ each have at least one neighbor, and all particle-occupied
sites in N(ℓ) \ {ℓ′} are connected by paths within this set, and all occupied sites in N(ℓ′) \ {ℓ}
are connected by paths within this set.
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Note that in Section 4, we will consider almost the same algorithm in the general SOPS
setting where there are no connectivity restrictions, so there all spatial moves from an
occupied site to an adjacent unoccupied site are valid.

It is important to note that the ratio between the probabilities π(σ′)/π(σ) that arises from
the Metropolis-Hastings algorithm can be calculated by an activated particle using only local
information - the positions and orientations of particles in its immediate neighborhood, as
well as those in the neighborhood of the destination site if the particle is moving. Specifically,
changes in perimeter in connected SOPS can be computed locally as shown in [8, 7].

We now proceed to show that when s λ and γ are sufficiently large, the alignment
algorithm will cause the system to compress to form a low-perimeter configurations with
high probability. Moreover, in both the Potts and clock model settings, in any configuration
with sufficiently low-perimeter, one of the q orientations will dominate with high probability.

We note that we did not attempt to give rigorous bounds on the rates of convergence
for our Markov chains. We expect that convergence will be fast when the parameters λ and
γ are small and the system evolves to a disordered (gaseous) state, but the connectivity
constraint makes proving this challenging. In contrast, we expect convergence to equilibrium
will be slow in the ordered (solid) state when λ is large, but we conjecture that desirable
compressed and aligned states will be reached quickly, long before the system is very close to
stationarity.

3.1 Compression in Connected SOPS
We denote the set of possible configurations in this paradigm by Ω. Recall that N represents
the number of sites of the lattice G∆. To ensure that the proof of ergodicity from [7] carries
over to our setting, we use a sufficiently large value of N , namely N ≥ (n+ 1)2, although we
expect the results to hold for smaller N .

▶ Definition 2 (Compression). A simply connected configuration σ of n particles on a lattice is
said to be α-compressed if its perimeter is at most α · pmin(n), where pmin(n) is the minimum
possible perimeter of a configuration of n particles.

The main result of this section is the following theorem.

▶ Theorem 3. Given any α > 1, if constants λ > 1 and γ > 29.3 (q−1) satisfy λ γ > 7α/(α−1)

and n is sufficiently large, then the probability a configuration drawn from the stationary
distribution πPotts is not α-compressed is exponentially small.

Let P denote the boundary of some configuration σ in our configuration space Ω. As σ
is connected, hole-free, and contains a finite (n) number of particles, P is a single closed
walk on G∆ and the perimeter of the configuration, p(σ), is equal to |P|, the total length
of walk P. If we restrict our particle configurations to be connected and hole-free, there is
a one-to-one correspondence between the possible sets of occupied sites and the possible
boundaries P. Let ΩP denote the set of configurations in Ω with boundary P, and let
ΛP ⊆ G∆ be the induced subgraph of the triangular lattice G∆ by the particle-occupied
vertices for any configuration in ΩP . A configuration in ΩP thus corresponds to a mapping
of the vertices of ΛP to the orientations {0, . . . , q − 1}.

We consider the subset of configurations Ω0
P ⊆ ΩP where all particles on the boundary P

have the same color 0. We will later analyze the weight of configurations in Ω0
P using a

polymer model and the cluster expansion. We would first like to obtain an upper bound
on w(ΩP), the total weight of configurations in ΩP , in terms of w(Ω0

P), the total weight of
configurations in Ω0

P .
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Figure 2 Particle configuration in Ω0
P , and its corresponding polymer configuration in ΩL

P (with
two polymers).

▶ Lemma 4. For γ > 3q, we have

w(ΩP) < w(Ω0
P) · q 2|P| γ

γ − 3q .

The proof is a generalized version of that in [6], by defining maps from ΩP → Ω0
P such

that all vertices on boundary P are of orientation 0. We will use the cluster expansion to
analyze the total weight w(ΩP) :=

∑
σ∈ΩP

w(σ) of the configurations in ΩP . Since the cluster
expansion can only be applied to polymer partition functions, we begin by representing the
configurations of ΩP with a polymer model.

The Polymer Model. We say two edges of G∆ are adjacent if they share a common vertex.
A polymer ξ in L is defined to be a labeling ξ : E(G∆) → {0, 1, . . . , q− 1} of the edges of G∆
such that the set E(ξ), defined to be the edges of G∆ with a non-zero label in ξ, is non-empty
and connected under the above notion of adjacency. The labeling must also be consistent, as
defined below.

▶ Definition 5 (Consistent Labeling). We fix a canonical direction for each edge in G∆. This
direction can be arbitrarily defined, so for simplicity we say that the edge is oriented toward
the vertex with the larger x, followed by y coordinate, where the coordinate axes are oriented
such that the x coordinate increases from left to right and the y coordinate increases from
top to bottom.

We define labels ξ : E(G∆) → {0, 1, . . . , q− 1}. These edge labels represent “flows” in our
defined canonical direction, modulo q. In other words, when summing up the total flow along
a walk on G∆, for each edge e on the walk, we add the label ξ(e) to the sum if the walk is in
the canonical direction of the edge, and q − ξ(e) if the walk is in the opposite direction. We
call an assignment of labels consistent if every closed walk on G∆ has a total flow summing
to 0 modulo q.

Consider a fixed boundary P as defined above, corresponding to some configuration in Ω.
For a polymer ξ, denote by V (ξ) the set of vertices incident to an edge with a non-zero label
in ξ. We say a polymer ξ is within P if V (ξ) ⊆ ΛP . As described earlier, the set ΩL

P of
polymer configurations corresponding to P is the set of all subsets of L of pairwise compatible
polymers within P . The weight w(τ) of a configuration τ ∈ ΩL

P is the product of the weights
of its constituent polymers.

Two polymers ξ1, ξ2 are incompatible if there are edges e1 ∈ E(ξ1) and e2 ∈ E(ξ2) such
that e1 and e2 are adjacent. The weight of a polymer ξ is defined as w(ξ) := γ−|E(ξ)|, in the
Potts model, and w(ξ) :=

∏
e∈E(ξ) γ

cos( 2π
q ξ(e))−1 in the clock model.

▶ Lemma 6. There is a bijection ϕ between Ω0
P and ΩL

P with the property that for any
σ ∈ Ω0

P , we have w(σ) = (λγ)−p(σ)w(ϕ(σ)).
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The map ϕ simply encodes the orientations of particles in a configuration σ ∈ Ω0
P as

differences between orientations on the edges of G∆. This is illustrated in Figure 2. The full
version of the paper gives a full description of this mapping and a proof that it is indeed a
bijection. From Lemma 6, we have

w(Ω0
P) =

∑
σ∈Ω0

P

(λγ)−|P|
w(ϕ(σ)) =

∑
τ∈ΩL

P

(λγ)−|P|
w(τ) = (λγ)−|P| ΞP ,

where ΞP is the partition function for the set of polymer configurations ΩL
P :

ΞP :=
∑
τ∈ΩL

P

w(τ) =
∑
τ∈ΩL

P

∏
ξ∈τ

w(γ).

The Potts Model. From now, our analysis will be specific to the Potts model. The clock
model will be discussed in Section 3.1. The following Lemmas and proofs are slight variations
of those used in [6].

▶ Lemma 7. For any polymer ξ ∈ L, whenever γ > 29.3(q − 1), we have for c = 0.0001,∑
ξ′∈L
ξ′≁ξ

w(ξ′) exp(c|V (ξ′)|) ≤ c|V (ξ)|,

where V (ξ′) denotes the set of vertices in the polymer ξ′, and |V (ξ′)| denotes the number of
vertices in ξ′.

The proof is on the lines of that in [6]. The key part of this proof is the use of an upper
bound ν(m, q) ≤ (6e(q − 1))m/2 from [4], where ν(m, q) represents the number of polymers
with m edges containing some fixed vertex v ∈ V (G∆).

Lemma 7 has an important consequence in addition to guaranteeing the convergence
of the cluster expansion, as stated in the original paper of Kotecký and Preiss [20], and
rephrased in [19]. Consider the function Ψ(X) defined earlier for any cluster X. An additional
consequence [20, 19] of Lemma 7 is that Ψ(X) will satisfy the following inequality∑

X∈X
X≁ξ

|Ψ(X)| ≤ c|V (ξ)|. (3)

for any polymer ξ, where X is the set of all clusters of polymers, and a cluster X ≁ ξ if there
exists a polymer ξ′ ∈ X such that ξ′ ≁ ξ. The support of a cluster X is denoted by X̄ and is
given by X̄ =

⋃
ξ∈X V (ξ).

Consider an arbitrary vertex v ∈ G∆, and let ξv be the smallest polymer consisting of six
edges of equal weight attached to v. From Equation (3), we have:∑

X∈X
X≁ξv

|Ψ(X)| ≤ c|V (ξv)| = 7c ⇒
∑
X∈X
v ∈X̄

|Ψ(X)| ≤
∑
X∈X
X≁ξv

|Ψ(X)| ≤ 7c. (4)

▶ Lemma 8. If for any polymer ξ ∈ L, there exists a constant c such that∑
ξ′∈L
ξ′≁ξ

w(ξ′) exp(c|V (ξ′)|) ≤ c|V (ξ)|,

then for any connected region ΛP with boundary P, the partition function ΞP satisfies

ψ|ΛP | − 7c|∂Λ| ≤ ln ΞP ≤ ψ|ΛP | + 7c|∂Λ|.



H. Kedia, S. Oh, and D. Randall 14:11

The proof follows on the lines of the proof of a similar Lemma in [6], and section 5.7.1
of [14]. Using Lemma 8, and noting that |∂ΛP | ≤ p(σ) ∀σ ∈ ΩP and |ΛP | = n, we get:

nψ − 7c p(σ) ≤ ln ΞP ≤ nψ + 7c p(σ) (5)

Note that the partition function ZPotts is greater than the contribution from particle
configurations in Ω0

P where the length of the boundary is the smallest attainable perimeter
|P| = pmin:

ZPotts ≥ w(Ω0
P) = (λ γ)−pmin ΞP ≥ (λ γ)−pmin enψ−7cpmin . (6)

Given α > 1, let Sα be all configurations that are not α-compressed. We will prove
that the probability of the set Sα in the stationary distribution is exponentially small for
sufficiently large λ, γ:

▶ Lemma 9. Given any α > 1, when constants λ > 1, c = 0.0001, and γ > 29.3 (q − 1)
satisfy

λ γ > (4 + 2
√

2))
α

α−1
(
e7c) α+1

α−1 (7)

and n is sufficiently large, then the probability that a configuration drawn from the stationary
distribution πPotts is not α-compressed is exponentially small, πPotts(Sα) < ζ

√
n.

Note that Equation (7) is satisfied if λ γ > 7α/(α−1), proving Theorem 3. The proof of the
Lemma requires using Lemma 4, Lemma 8 and Equation (6), and an upper bound on the
number of self-avoiding walks of a given length on the triangular lattice from [12, 8].

The Clock Model. The proof of compression for the clock-model-inspired algorithm follows
along the same lines as the proof for the Potts-model-inspired algorithm. The set of allowed
particle configurations is the same as before, so the set of configurations in Ω0

P is in a
one-to-one correspondence with compatible collections of polymers with the same polymer
model as above, albeit with the weight of a polymers redefined as wclock(ξ) =

∏
e∈ξ γ

−de ,
where de = 1 − cos(2πℓ(e)/q), and ℓ(e) ∈ {1, 2, . . . , q− 1} is the label associated with an edge
e ∈ ξ. This changes the prefactor in Lemma 4, replacing γ with γ− cos(2π/q), and requiring
γ− cos(2π/q) > 3q. The polymer partition function becomes

ΞP =
∑

L′⊆LP
compatible

∏
ξ∈L′

wclock(ξ).

Since the maximum weight of an edge in a polymer is now γ−(1−cos(2π/q)), instead of γ−1, the
condition for Lemma 7 to hold becomes γ1−cos(2π/q) > 29.3(q − 1). Lemmas 8 and Theorem
3 follow without modification except for the modified condition: γ1−cos(2π/q) > 29.3(q − 1)
in Theorem 3.

3.2 Alignment in Compressed Configurations
▶ Definition 10 (Alignment). We say a configuration of n particles with q orientations is
δ-aligned if there exists an orientation θ ∈ {0, 1, . . . , q − 1}, such that the number of particles
of orientation θ is at least (1 − δ)n.

Our main result is the following theorem:
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▶ Theorem 11. Denote by πPotts,P the stationary distribution πPotts conditioned on the
boundary of the configuration being P. For any η where 1/2 < η < 1, there exists a constant
α∗ = α∗(η, q) > 1, such that for all α where 1 < α < α∗, there exists a sufficiently large
γ∗ = γ∗(η, q, α, α∗) where as long as γ > γ∗ and P is α-compressed, the probability that a
configuration drawn from πPotts,P is not (1 − η)-aligned is exponentially small.

In particular, possible values of α∗ and γ∗ are:

α∗(η, q) = min
{√

η +
√

1 − η,
√
q−1 +

√
1 − q−1

}
γ∗(η, q, α, α∗) =

(
3

2α
α∗−α · 4

3
4 + α∗−1

2δ∗(η,q)(α∗−α)

)q−1
where δ∗(η, q) := min{1 − η, q−1}.

For any particle configuration, let 2πθp/q, be the most popular orientation, or the
orientation possessed by the greatest number of particles, where θp ∈ {0, 1, . . . , (q − 1)}, and
let ρp be the fraction of particles with orientation θp. Note that 1/q ≤ ρp ≤ 1, and ρp ≥ η

for a (1 − η)-aligned configuration.
The dual lattice, G9, to the triangular lattice G∆ is obtained by creating a dual vertex

in the center of each triangle in G∆, and joining these dual vertices with edges if their
corresponding triangular faces share an edge. Each edge e∆ of G∆ corresponds with the
edge e9 of G9 that crosses it. This corresponding edge e9 separates the two endpoints of e∆
in G∆. A contour refers to a self-avoiding walk on the edges of the dual lattice G9. The
length of a contour refers to the number of edges in the contour.

In this setting, we distinguish between the boundary contour and the internal boundary
contour of a region R ⊆ V (ΛP). The boundary contour refers to the set of edges on the dual
lattice G9 corresponding to edges between sites in R and sites not in R, while the internal
boundary contour includes edges only from E(ΛP) rather than all of E(G9). We make use
of the following geometric result, which we show in the full version of the paper:

▶ Lemma 12. For a connected hole-free α-compressed configuration with n particles, a
particle-occupied region R containing κn particles has an internal boundary contour bdint(R)
of length at least ν

√
n(

√
κ+

√
1 − κ− α) for any ν < 2

√
3 for sufficiently large n.

For the rest of this section, we assign particles the color c1 if they are of orientation θp, and
the color c2 otherwise. This lets us directly apply the bridging construction from [6].

▶ Lemma 13 ([6], Lemma 7.3). Fix δ ∈ (0, 1/2). For each particle configuration σ ∈ ΩP ,
there exists a function Rδ : ΩP → 2ΩP giving a region Rδ(σ) such that all particles on the
boundary of Rδ(σ) have the color c1, all particles on the boundary of its complement R̄δ(σ)
have the color c2, Rδ(σ) contains at most δ fraction of particles with the color c2, and R̄δ(σ)
contains at most δ fraction of particles with the color c1.

We use the bridging construction from [6] to define the region Rδ(σ) in Lemma 13.

▶ Lemma 14. For any particle configuration σ ∈ ΩP with total number of particles n and ρp
fraction of particles of color c1, given any δ > 0, the region Rδ(σ) defined in Lemma 13 is such
that the number of particles in Rδ(σ), nRδ

satisfies: (ρp− δ)n/(1− δ) ≤ nRδ
≤ (ρpn)/(1− δ).

The proof of Lemma 14 follows from noting that the particles in Rδ(σ) and R̄δ(σ) are
predominantly of the colors c1 and c2 respectively, with an error fraction bounded by δ, and
enforcing that the total number of particles with the color c1 is ρp n.
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▶ Lemma 15. For a connected hole-free α-compressed configuration σ ∈ ΩP that is not
(1 − η)-aligned for some η < 1, given any δ where 0 < δ < min{q−1, 1 − η}, the internal
boundary contour length |bdint(Rδ)| of the region Rδ(σ) defined in Lemma 13 obeys the lower
bound |bdint(Rδ)| ≥ ν

√
n(αc(δ, η, q) − α) for any ν < 2

√
3 and n sufficiently large, where

αc(δ, η, q) := min
{√

q−1 − δ

1 − δ
+

√
1 − q−1

1 − δ
,

√
η

1 − δ
+

√
1 − (η + δ)

1 − δ

}
.

Lemma 15 is a direct consequence of Lemmas 14 and 12. Given an α-compressed
boundary P, let SηP ⊆ ΩP be the set of α-compressed configurations with boundary P that
are not (1 − η)-aligned for some η < 1. For each configuration σ ∈ SηP , let R̄δ(σ) be the
complement of the region Rδ(σ) defined in Lemma 13.

Let P int
R̄δ

denote the walk on the edges of G∆, each of whose endpoints is a particle in
R̄δ(σ) that is connected by an edge in G∆ to a particle in Rδ(σ). Let Θint

R̄δ
denote the

set of orientations of particles that are incident to an edge in P int
R̄δ

, where the orientation
of a particle appears as many times as the number of edges connecting that particle to a
particle in Rδ(σ). Note that |Θint

R̄δ
| = |bdint(R̄δ)|. Let the orientation which appears the

most number of times in the set Θint
R̄δ

be 2πθ̄p/q, where θ̄p ∈ {0, 1, . . . , q − 1}. We consider a
map fη : SηP → ΩP which applies a cyclic shift to the orientations of all particles in R̄δ(σ),
so that under fη, a particle orientation θ is mapped to (θ + (θp − θ̄p)) (mod q). Note that
this transformation maps the orientation θ̄p to θp.

▶ Lemma 16 ([6]). For a configuration τ ∈ Im(fη(SηP)), the number of preimages σ ∈ SηP
for which |bdint(Rδ(σ))| = ℓ, where Rδ(σ) is defined in Lemma 14, is at most q 3|P|4 1+3δ

4δ ℓ.

The proof follows from Lemma 7.6 in [6] and by noting that once the internal boundary
contour of Rδ(σ) is known, one of q cyclic shifts in R̄δ(σ) recovers σ, given τ .

In this section so far, our results were valid for both the Potts and the clock models.
We now consider specifically the case of the Potts model with stationary distribution πPotts.
Using the definition of fη, we find the following.

▶ Lemma 17. For a configuration σ ∈ SηP , let region Rδ(σ) be defined as in Lemma 13 with
|bdint| = ℓ. For the new configuration fη(σ) under the map fη, the ratio w(σ)/w(f(σ)) is at
most (1/γ)ℓ/(q−1).

The proof of Theorem 11 follows from an information theoretic argument similar to that
in [6], by showing that the minimum gain in the weight of a configuration under the map
fη outweighs the maximum number of preimages of the map, and using Lemma 15 to get a
lower bound on the gain under fη. A key component is ensuring that it is possible to choose
the parameter 0 < δ < q−1, so that the conditions on α and γ described in the theorem
statement can be simultaneously satisfied.

The Clock Model. Lemma 17 and Theorem 11 hold for the clock model with stationary
distribution πclock, with γ replaced by γ1−cos(2π/q) in both. The proofs follow on similar lines
as for the Potts model.

3.3 Non-Alignment and Expansion in Connected SOPS
An interesting artifact of the alignment algorithm is that when λ, γ are small, the opposite
properties are achieved, namely nonalignment and expansion. We outline the main results.

APPROX/RANDOM 2022
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Non-alignment in compressed configurations. For ϵ > 0, we say a configuration is ϵ-non-
aligned if the fraction of particles of each orientation is within an ϵ-neighborhood of q−1. Let
SϵP denote the set of configurations which have perimeter P and are not ϵ-non-aligned, and
let Sϵ be the set of configurations that are not ϵ-non-aligned. Our main result is as follows:

▶ Theorem 18. When γ > 0 satisfies:

γ3 <

(
1 − ϵ

q

q − 1

) q−1
q −ϵ

(1 + ϵ q)
1
q +ϵ = 1 + ϵ2q2

q − 1 +O(ϵ3) ,

the probability that a configuration sampled from the stationary distribution of the Markov
chain algorithm πPotts is not ϵ-non-aligned is exponentially small, for sufficiently large n.

The proof follows from Stirling’s approximation [35] for the number of configurations that
are not ϵ-non-aligned, and using rough lower and upper bounds on the weight of configurations
in ΩP . The result also holds for the clock model with γ replaced with γ2.

Expansion in Connected SOPS. We define the notion of expansion, on the lines of [8], as
follows. We say a configuration σ is β-expanded when its perimeter p(σ) is greater than
β pmax, where 0 < β < 1. Consider the set of configurations Sβ that are not β-expanded.
Our main result is:

▶ Theorem 19. For constants λ, γ > 0, c1 = 2.17, c2 = 2 +
√

2 such that λ γ5/2 < c1, and
for any β such that:

0 < β <
log c1 − log λ− 5

2 log γ
log c2 − log λ− log γ ,

the probability that a configuration drawn from the stationary distribution π is not β-expanded
is exponentially small.

We can get rough upper and lower bounds for the weight of configurations in ΩP by estimating
the number of ways of getting a fixed perimeter using the bounds in [12, 8].

The same theorem holds for the clock model, with γ5/2 replaced by γ4 in the theorem
statement, and the proof follows on similar lines.

4 Aggregation and Alignment in General SOPS

In general SOPS, occupying any selection of n out of the N possible sites of G∆ is a valid
configuration. Hence, we apply the same Metropolis-Hastings Markov chain as the connected
SOPS model, with the exception that any move into an unoccupied location is considered
valid regardless of connectivity effects. In this disconnected setting, particles exist on a
lattice region with toroidal boundary conditions. We assume the particles occupy a constant
fraction ρ of the lattice. Specifically, we define a ρ ∈ (0, 1

3 ) so that n = ρN . The set of
possible configurations is denoted Ω̃ρN .

Similar to before, boundary contour bd(R) of a region R ⊆ V (G∆) refers to the set of
dual edges on G9 corresponding to edges between sites in R and V (G∆) \R. The boundary
length of R is |bd(R)|. Let bdmin(k) denote the minimum boundary length of a region of k
sites in V (G∆). We restrict ρ to be less than 1

3 as cases with so many particles (filled sites)
that minimum boundary length configurations wrap around the torus G∆ is not instructive
for our purposes (a precise explanation for this restriction is in the full version of the paper).
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We show that in this general SOPS model, both alignment and aggregation can be achieved
with high probability using only local movements. Alignment is defined in Section 3.2, and
aggregation is defined as follows:

▶ Definition 20 (Aggregation). For α > 1, δ > 0 we say a configuration of n particles is
α, δ-aggregated if there exists a region R such that
1. The number of empty sites within R is at most δ|R|.
2. The number of particles outside of R is at most δ(N − |R|)
3. The boundary length of R is at most α · bdmin(n).

Note that changes in the perimeter of the configuration cannot be locally computed if
the set of particles is disconnected. So instead, we make use of the boundary contour length
to define our Hamiltonian. More precisely, we consider the following Potts Hamiltonian,
another variant of the site-diluted Potts Hamiltonian [9], on G∆:

H̃Potts(σ) = −J
∑
⟨i,j⟩

[
ninj

(
δθi,θj

− 1
)

+ (ni(nj − 1) + nj(ni − 1))
]
,

where the sum is over all pairs of adjacent sites: ⟨i, j⟩ i.e., sites connected by a single lattice
edge in G∆, ni ∈ {0, 1} indicates whether site i is occupied or not, θi indicates the orientation
of the particle on site i, and J is a positive constant. We only consider configurations σ in
Ω̃ρN i.e., where the total number of particles is equal to n.

The probability of a configuration π̃Potts(σ) is given by the Boltzmann distribution which
can be expressed in terms of the parameter λ = exp(βJ) as:

π̃Potts(σ) = w̃Potts(σ)
Z̃Potts

, w̃Potts(σ) = λ−a(σ)−h(σ) , Z̃Potts =
∑

σ′∈Ω̃ρN

w̃Potts(σ′) (8)

where λ > 0, h(σ) is the number of heterogeneous edges in the configuration σ, and a(σ) is
the number of edges between occupied and unoccupied sites in G∆.

We prove the following theorem that establishes aggregation and alignment for appropriate
settings of the parameters.

▶ Theorem 21. Fix ρ < 1
3 and assume that there will always be exactly ρN filled sites on

the lattice. For any δ > 0 and α > 1, there exists a λ0 = λ0(q, ρ, α, δ) such that for all
λ > λ0, with probability 1 − ζ

√
N for some constant ζ = ζ(q, ρ, α, δ, λ) < 1, there exists a

region R ⊆ V (G∆), where
1. There is an orientation θ ∈ {0, 1, . . . , q−1} where the number of filled sites with orientation

θ in R is at least (1 − δ)|R|.
2. The number of filled sites not in R is at most δ(N − |R|)
3. The boundary length of R is at most α · bdmin(ρN).
Due to space limitations, we relegate the main details of the proofs to Appendix A.
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A Details for Aggregation and Alignment in General SOPS

In the general SOPS setting, we can treat the problem as a q + 1-state Potts model on G∆
with q + 1 orientations {−1, 0, 1, . . . , q − 1} in which the number of sites assigned −1 is fixed
to be exactly (1 − ρ)N , where N = |V (G∆)|. In other words, sites of the lattice are no longer
filled or unfilled, but are instead assigned one of q + 1 orientations with the special spin
−1 assigned to unoccupied lattice sites. We refer to any edge between particles of differing
orientations as “heterogeneous edges,” including those assigned the special orientation −1.

We again use a Peierls argument to show that for suffiently large λ, the configuration
will compress and one of the q orientations will dominate, with high probability. This proof
is an adaptation of the bridging argument used for separation in [5, 6] and thus follows their
arguments very closely. The following sections build up to a proof of Theorem 21.

We observe that the result of Theorem 21 will imply both alignment and aggregation
(for some values of α and δ) as given in Definitions 10 and 20. The key component of our
proof is the construction of a δ-bridge system (δ ∈ (0, 1) is a positive constant) for each
configuration in Ω̃ρN . Recall that a bridge system is a connected network of the long contours
of a configuration σ, that is used to “remove” long contours in the Peierls argument to show
that they are unlikely. It will also be used to define the region R required for Theorem 21.

Let Ewrap be the set of edges on G9 corresponding to the edges on G∆ that wrap around
the torus. Thus |Ewrap| = 2

√
N − 1. In a setting with more than three possible orientations,

regions of differing orientations are divided up by networks of contours rather than closed
walks separating two different orientations. We call these contour networks complex contours.
Formally, a complex contour refers to a connected subgraph of G9 of minimum degree at
least 2. For a given configuration σ ∈ Ω̃ρN , the set of edges C on G9 corresponding to its
heterogeneous edges will be a union of complex contours. The complex contours of σ thus
refers to the edge sets of connected components of the subgraph induced by C in G9.

We now define a bridge system (B, I,Θ) where the set I represents the complex contours
in the bridge system, B represents the bridges used to connect these complex contours, and
Θ is a mapping that assigns an orientation to each of the components formed after removing
the edges of G∆ corresponding to the edges in I.
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▶ Definition 22 (Bridge Systems). Fix δ > 0. Consider a tuple (B, I,Θ), where B and I

are subsets of E(G9) and Θ : V (G∆) → {−1, 0, 1, . . . , q − 1} is a function assigning each
vertex an orientation or the value −1 (which we will use to represent vacant sites). We say
(B, I,Θ) is a δ-bridge system if:
1. The subgraph induced in G9 by I has no vertex of degree less than 2. Practically, I

represents a union of complex contours that subdivides G∆ into regions.
2. The subgraph induced in G9 by B ∪ I ∪ Ewrap is connected and has no vertex of degree

less than 2.
3. B ∩ I = ∅ and |B| ≤ 1−δ

2δ |I|
4. For any two neighboring sites u, v ∈ G∆, Θ(u) = Θ(v) if and only if the dual edge

corresponding to {u, v} is not in I.

Consider a set of edges I, that is a union of the edge sets of complex contours. Let σ be
a configuration in Ω̃ρN . We say a complex contour C of σ is bridged (by I) if C ⊆ I. We say
a site v is bridged (by I) if there is a path over G∆ using only sites of the same orientation
(including −1) in σ as v to a site incident to an edge in I. Consider a region R ⊆ V (G∆)
that is connected as an induced subgraph of G∆. We call R a bridged region if bd(R) ⊆ I

and a minimal bridged region if there is no bridged region R′ where R′ ⊆ R. Notably, the
edge set I partitions V (G∆) into minimal bridged regions.

▶ Definition 23 (Bridge System for a Configuration). Fix δ > 0 and a configuration σ ∈ Ω̃ρN .
We say a tuple (B, I,Θ) is a δ-bridge system for a configuration σ If
1. Each minimal bridged region R by (B, I,Θ) contains at most δ|R| unbridged particles.
2. No complex contour C of σ meets any edge in B ∪ I ∪Ewrap. Formally, the edge-induced

subgraphs G∆[C] and G∆[B ∪ I ∪ Ewrap] do not share any vertices.
3. For each minimal bridged region R, Θ(v) must have the same value for every site v ∈ R

and this value Θ(v) must correspond to the orientation in σ of some bridged particle in R.

▶ Definition 24 (Orientation of a Minimal Bridged Region). Given a δ-bridge system (B, I,Θ)
for a configuration σ ∈ Ω̃ρN . We can associate with each minimal bridged region R of I an
orientation yR ∈ {−1, 0, 1, . . . , q − 1}.

To determine yR, we denote by R∗ the set of sites v ∈ R with a path over G∆ using only
sites of the same orientation in σ as v to a site incident to an edge in bd(R). We note that
bd(R) ⊆ I and the edges B ∪ I ∪Ewrap connect the components of bd(R) in G9. This implies
that every vertex in R∗ must have the same orientation in σ, as any contour C between
regions of differing orientations in R∗ must intersect B ∪ I ∪ Ewrap, implying that C also
must be included in the set I, allowing us to subdivide R, contradicting its minimality. The
orientation yR of R is thus defined to be the common orientation of the sites of R∗.

Thus, for each minimal bridged region R with orientation yR, we must have Θ(v) = yR for
all v ∈ R. The proofs of the Lemmas will be given in the long version of the paper.

Our next step is to associate with each σ ∈ Ω̃ρN a δ-bridge system.

▶ Lemma 25. For each σ ∈ Ω̃ρN and δ ∈ (0, 1), we can construct a δ-bridge system
Bδ(σ) = (Bδ(σ), Iδ(σ),Θδ(σ)).

Without reference to any specific configuration in Ω̃ρN , we use the connectedness require-
ment of bridge systems to compute an upper bound on the number of bridge systems that is
exponential on |I|. This is important as the Peierls argument “removes” the heterogeneous
edges in I, which gives an improvement in weight of a similar order of growth.

APPROX/RANDOM 2022
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▶ Lemma 26. The number of δ-bridge systems (B, I,Θ) where |I| = ℓ is at most 7 · 62
√
N−1 ·

(3(q + 1)) 1+δ
2δ ℓ.

Assuming δ ∈ (0, ρ), we define Ω̃ρNℓ := {σ ∈ Ω̃ρN : |Iδ(σ)| = ℓ}, where Iδ(σ) is comes
from the δ-bridge system constructed for σ. Also, let Ω̃≤δN be the the set of configurations
over G∆ where at least (1 − δ)N sites have orientation −1 (this corresponds to empty sites
in our model). Note that Ω̃≤δN ̸⊆ Ω̃ρN . For the Peierls argument, we define two functions,
f1
ℓ : Ω̃ρNℓ → Ω̃≤δN and f2 : Ω̃≤δN → Ω̃ρN . The function f1

ℓ is used to erase the heterogeneous
edges in I, creating a configuration of significantly higher weight, though not one with ρN

particles. To fix this, a second function, f2 is used to restore the number of particles back to
ρN . This way, f2 ◦ f1

ℓ maps each σ in Ω̃ρNℓ to a valid configuration with exactly ρN filled
sites. The definitions of f1

ℓ and f2 are given in the full version of the paper.
As the bridge system with just a polynomial amount of additional information can be

used to reconstruct σ from f2 ◦ f1
ℓ , our upper bound on the number of bridge systems can

be used to upper bound |(f2 ◦ f1
ℓ )−1(τ)| for any τ in the image of f2 ◦ f1

ℓ . This allows us to
prove the following Lemma:

▶ Lemma 27. Fix ρ < 1
3 , any α > 1, δ ∈ (0,min{ρ, 1− 1

α2 }) and λ > λ0(q, ρ, α, δ) sufficiently
large, where:

λ0(q, ρ, α, δ) :=
(

(3(q + 1))α
1+δ
2δ 36

1
4
√

3ρ

) 1
α− 1√

1−δ .

Denote by Ω̃ρN≥α·bdmin(ρN) the set of configurations σ where |Iδ(σ)| ≥ α · bdmin(ρN), where
bdmin(k) is the minimum possible boundary length of a region of k ∈ N particles. Then
there exists a constant ζ = ζ(q, ρ, α, δ, λ) < 1 such that π̃Potts(Ω̃ρN≥α·bdmin(ρN)) < ζ

√
N for all

sufficiently large values of N .

As the bridge system with just a polynomial amount of additional information can be used
to reconstruct σ from f2 ◦ f1

ℓ , our upper bound on the number of bridge systems can be used
to upper bound |(f2 ◦ f1

ℓ )−1(τ)| for any τ in the image of f2 ◦ f1
ℓ . This allows us to prove

the following Lemma:
The use of Lemma 27 along with some results on the minimum possible boundary lengths

of regions of k particles allows us to show that there will exist a low perimeter region
dominated by a single color, allowing us to prove Theorem 21.
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This paper develops sharp bounds on moments of sums of k-wise independent bounded random
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1 Introduction

1.1 Motivation
Consider sums of random variables, possibly differently distributed. What can be said about
the probability distribution, particularly the tails, if we only assume k-wise independence, that
is any k of the n summands are independent? Such a dependency condition is an appealing
concept studied in a broad class of problems related to pseudoradomness, including hashing,
random graphs, random projections and circuits [34, 3, 28, 6]; specifically, concentration
results under k-wise independence find important applications including (but not limited to)
constructions of pseudorandom generators [25], load balancing [29, 50], derandomization [49,
23, 14], streaming algorithms [36] and cryptography [7, 5, 17, 4].

At first glance, the problem seems well addressed by concentration inequalities, such as the
classical bounds due to Bernstein, Chernoff, Hoeffding, Bennet [10, 15, 24, 8] or their modern
sub-gaussian or sub-gamma generalizations [13] (obtained from moment generating functions);
at the very least one may hope to utilize more exotic moment bounds such as Rosenthal-type
inequalities [47, 12] or more general frameworks [32]. However, the exponential moment
methods are inadequate for limited dependence, whereas moment methods are hard to apply
for sums of heterogenic terms. The state-of-the-art is held by the two influential works [50, 7]
which resort to direct moment calculations, offering bounds for certain parameter regimes.

The goal of the current paper is to establish sharp moment bounds for sums of bounded
k-wise independent variables, strengthening the state-of-art results [50, 7]. As in prior work,
we assume that the summands are bounded and the sum variance is known. Formally:
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Let S =
∑n

i=1 Xi be a sum of k-wise independent random variables, possibly
differently distributed. Suppose that a) Xi ∈ [−1, 1] and b) the average variance
is 1

n

∑n
i=1 V[Xi] = σ2. What is the best bound on moments of S − ES?

Answering this question obviously gives desired Chernoff-like tail bounds, via an applica-
tion of Markov’s inequality. This approach, called the moment method, is the state-of-art
technique of establishing tail bounds [13, 32], even superior to the exponential moment
method [44], so it should give us as much as we can get.

1.2 Our Contribution
The novelty of this work has the following aspects

sharp bounds are found for all parameter regimes, which improves upon prior works
some elegant techniques, novel in this context, are demonstrated; particularly the powerful
method of symmetrization from high-dimensional probability [51] and extreme inequalities
for symmetric polynomials [48] 1

other applications, in particular sharp bounds for moments of binomial distribution

We now move to present our results, adopting the following notation: for two expressions
A, B we write A ≲ B when A ⩽ K · B for some absolute constant K, and A ≃ B when
the inequality holds in both direction. By ∥Z∥d = (E|Z|d)1/d we denote the d-th norm of a
random variable Z. By EZ and V[Z] we denote, respectively, the mean and variance of Z.

1.2.1 Sharp Bounds for k-wise Independent Sums
The theorem below gives the complete answer to the posed problem.

▶ Theorem 1 (Moments of k-wise Independent Sums). Consider random variables (Xi)n
i=1

satisfying the following conditions
(a) (Xi)i are k-wise independent (k ⩾ 2) and |Xi − EXi| ⩽ 1
(b)

∑n
i=1 V[Xi] ⩽ nσ2 (the sum variance bounded)

Then for S =
∑n

i=1 Xi and any positive even integer d ⩽ k we have:

max
(Xi)

∥S − ES∥d ≃ M(n, σ2, d) =


√

dnσ2 log(d/nσ2) < max(d/n, 2)
d

log(d/nσ2) max(d/n, 2) ⩽ log(d/nσ2) ⩽ d

(nσ2)1/d d < log(d/nσ2)
, (1)

where the maximum is over all r.vs. (Xi)i satisfying the conditions (a) and (b).
Moreover, the maximal value is realized (up to a constant) when

Xi ∼ B − B′, B, B′ ∼iid Bern(p), p = 1
2(1 −

√
1 − 2σ2). (2)

▶ Remark 2 (Value of k). In applications value of k should be possibly big, so that we can use
as high moments d as possible. For example, some cryptographic applications use k = 80 [17].

1 The prior work [50] actually recognized usefulness of symmetry, but was not able to exploit it in the
case of general [−1, 1]-valued random variables.
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▶ Remark 3 (Formula Regimes). The formulas may look a little exotic, especially to a reader
familiar with previous works. The reason is that the novel bounds above are sharp and
capture some non-standard behaviors. The branch with

√
dnσ2 should be familiar, as this

is the d-th moment of gaussian distribution with variance nσ2; in this regime it would
produce the tail Pr[|S − ES| > t] ⩽ e−Ω(t2/nσ2). The branch with d/ log(d/nσ2) gives the
behavior slightly faster than this of the exponential distribution; it would produce the tail
Pr[|S − ES| > t] ⩽ e−ω(t). Finally, the branch with (nσ2)1/d resembles the behavior of a
distribution bounded by σ2.

▶ Remark 4 (Odd values of d). It can be shown that the same upper bounds apply when
d > 2 is odd, due to interpolation inequalities [9].

▶ Remark 5 (Explicit Tail Bounds). For M as in Equation (1) we obtain the following tail
bound (which depends on the parameters regime), for any t > 0

Pr[|S − ES| > t] ⩽ O(M(n, σ2, d)/t)d. (3)

For t = cM(n, σ2, d) with an appropriate constant c, we obtain the tail of 2−Ω(d).

1.2.2 Techniques
We show that for even d ⩽ k we can assume in addition c) full independence and d) full
symmetry of the summands, leveraging symmetrization [51]. Then we proceed in two steps.

1.2.2.1 Characterization of Extreme Distribution

First, we characterize “worst-case” distributions Xi that maximize ∥
∑

i Xi∥d. This result is
the core of our approach and of broader interest, we thus present it as the standalone lemma.

▶ Lemma 6 (IID Majorization of Symmetric Sums). Let (Zi)n
i=1 be independent symmetric

random variables with values in [−1, 1] with average variance σ2 = 1
n

∑n
i=1 V[Zi]. Then for

any positive even integer d we have that

∥
∑

i

Zi∥d ⩽ ∥
∑

i

Z ′
i∥d (4)

where Z ′
i are independent and identically distributed as

Z ′
i ∼


+1 w.p. σ2/2
0 w.p. 1 − σ2

−1 w.p. σ2/2
. (5)

▶ Remark 7 (Interpretation). Observe that V[Z ′
i] = 2 · σ2/2 = σ2, thus the theorem essentially

says that moments of the sum
∑

i Zi are maximized for Zi that are iid with the distribution
(5). This three-point distribution is extreme, in the sense that it pushes as much mass as
possible towards the edge of the interval constraint. This behavior may look intuitive, but
we should beware of such intuitions as even for simple symmetric problems whether the
maximizer’s behavior is “push to boundary” or “pull to the middle” may not be that intuitive,
depending on Schur convexity properties of the optimized expression [21]; to be specific the
problems of maximization of

∑
i̸=j pipj and

∑
i p2

i have quite different behavior. Our proof
requires some non-trivial facts about multivariate symmetric polynomials.

APPROX/RANDOM 2022
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▶ Remark 8 (Proof Techniques). The symmetry assumption is crucial, and makes it possible
to greatly simplify the multinomial expansion of the moment formula. We manage to regroup
expressions and see them as positive combinations of elementary symmetry polynomials;
then specialized inequalities from the theory of symmetric functions [39] come then to the
rescue, allowing for proving that our extreme distribution is indeed the maximizer.

1.2.2.2 Closed-Form Bounds for Extreme Distributions

In addition to characterizing the worst-case behavior, we give the closed-form formula for the
bound in Lemma 6. As we will see later, this is also a fact of broader interest; for example,
we use it to derive bounds for binomial moments which are sharp in all parameter regimes.

▶ Corollary 9 (Best bounds for IID). For independent (d-wise independent) symmetric Zi

with values {−1, 0, 1} and variance σ2 and positive even integer d we have

∥∥∥∥∥
n∑

i=1
Zi

∥∥∥∥∥
d

≃


√

dnσ2 log(d/nσ2) < max(d/n, 2)
d

log(d/nσ2) max(d/n, 2) ⩽ log(d/nσ2) ⩽ d

(nσ2)1/d d < log(d/nσ2)
. (6)

▶ Remark 10 (Proof techniques). The proof requires some effort to compute moments for
Equation (5). Loosely speaking, we leverage the specific form of the distribution to obtain
regular combinatorial patterns in multinomial expansions. We then obtain an explicit formula,
being a weighted sum of binomial-like expressions which involve n, d and σ. Establishing the
order of growth, with the help of some calculus, completes the proof.

1.3 Related Work
There are many bounds which cover different models of dependencies among random variables,
for example Janson’s correlation inequality [27] which has become very popular in analyses of
random graphs [18], or the theory of negative dependence [11] best known from applications
to various “balls and bins” problems [19]. However the focus of this paper is on k-wise
independence, in which the state-of-art bounds are due to Schmidt at al. [50] and Bellare
and Rompel [7], derived in the essentially same setup as ours (moment bounds under the
variance constraint). These bounds, although useful for many applications, hold only in
certain regimes and are not sharp in general; when discussing our applications we will show
that in most cases they are inferior to Theorem 1.

It in our work we consider the most natural variance constraint, following prior works [50,
7]. However, one might consider more exotic structural assumptions; recently there has been
an attempt, limited only to k = 2, to characterize worst bounds by exploring the whole
sequence (rather than the sum variance) of Bernoulli parameters of Xi [45].

Regarding the established concentration bounds, we will see that known inequalities actu-
ally imply stronger bounds that those developed by Schmidt et al. and Bellare, Rompel [50, 7].
However, even with the use of state-of-art moment inequalities [13] we were not able to
recover the sharp bounds from our main result and the characterization from Lemma 6. The
key challenge is to precisely characterize the worst-case behavior, while allowing differently
distributed random variables.

An interesting way of attacking the problem, possibly working for much more exotic
constraints, may be to formally follow the presented idea of majorization and establish
formally some Schur-convexity properties; this approach has been successfully applied in the
past to many other problems (see [20] and follow-up works).
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Table 1 Bounds for moments of sum S =
∑n

i=1 Xi of d-wise independent random variables,
where d ⩾ 2. As discussed, our bounds are strictly better than those of Schmidt at al., which in
turn are strictly better than those of Bellare and Rompel.

Bound on ∥S − ES∥d Author Assumptions

max(
√

dnσ2, d/ log(d/nσ2), (nσ2)1/d) this paper nσ2 = V[S], |Xi − EXi| ⩽ 1

max(
√

dnσ2, d) Schmidt at al., optimized nσ2 = V[S], |Xi − EXi| ⩽ 1

min(
√

dn,
√

dnµ + d2) Bellare and Rompel nµ = E[S], 0 ⩽ Xi ⩽ 1

1.4 Applications
1.4.1 Limited Independence: Clarifying the State-of-Art
We will demonstrate how our bounds improve on those of Schmidt at al. [50] and Bellare
and Rompel [7], clarifying this way the state-of-the-art. In what follows we assume, as in
our theorem, that ∥Xi − EXi| ⩽ 1, Xi are k-wise independent, and d ⩽ k for positive even d.
The best bound due to Schmidt at al. reads as (cf Eq. 10 in [50])

∥S − ES∥d
d ⩽

√
2 · cosh(

√
d3/36C) · (dC/e)d/2, C ⩾ nσ2, σ2 = V[S]/n.

The authors did not fully optimize the choice of C, offering a bunch of weaker corollaries
instead. In order to clarify the state-of-the-art, we do this effort (see Section 3.4) obtaining

∥S − ES∥d ≲ max(
√

dnσ2, d). (7)

When dnσ2 ⩾ 1 the formula matches ours, but otherwise it is much worse: by a factor of
log(d/nσ2) in the regime max(2, d/n) ⩽ log(d/nσ2) ⩽ d, and by a factor of d in the regime
d < log(d/nσ2) (which necessarily means nσ2 < 1). In applications, these factors can be a
big constant or more, so derived tail bounds are worse by a big constant in the exponent.

In turn, the bound due to Bellare and Rompel [7] states that when Xi ∈ [0, 1]

∥S − ES∥d ≲ min(
√

dn,
√

dnµ + d2), µ = 1
n
ES. (8)

We claim this is worse than our optimized version of Schmidt at al., in all regimes. Namely,

max(
√

dnσ2, d) ≲ min(
√

dn,
√

dnµ + d2).

Indeed, when d > n the left-hand side is at most n, while the right-hand side is at least n.
When d ⩽ n, due to µ ⩽ 1 (a consequence of Xi ⩽ 1) we see that min(

√
dn,
√

dnµ + d2) ≃√
dnµ + d2. But we have V[Xi] ⩽ EXi, as the consequence of 0 ⩽ Xi ⩽ 1, and thus σ2 ⩽ µ;

this shows min(
√

dn,
√

dnµ + d2) ≳
√

dnσ2 and the claim follows.
This discussion should be of broader interest to the TCS community, as it seems that no

rigorous comparison between [7] and [50] has been done before (the surveys such as [38] and
application works credit both exchangably). In Table 1 we give a readable summary.

1.4.2 Obtaining Previous Results form Classical Inequaliteis
Our literature search shows, perhaps surprisingly, that the optimized bounds of Schmidt
at. al are actually a simple consequence of classical inequalities; we note that the prior
works [7, 50] do not discuss the related literature on concentration bounds. The intent of
this discussion is to bring those inequalities to the awareness of the wider TCS audience,
particularly given the huge interest and the citation credit given to the bounds in [7, 50].
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Assume that Xi are k-wide independent; recall that the event moment of order d ⩽ k

can be calculated as if the summands were independent. More precisely, we have
∑

i ∥Xi −
EXi∥d =

∑
i ∥X ′

i −EX ′
i∥d where X ′

i are distributed as Xi and independent. The tail bounds
due to a century old (!) Bernstein’s inequality [10] imply that the tail of S′ =

∑
i X ′

i satisfies
Pr[|S′ − ES′| > t] ⩽ exp(−Θ(min(t2/nσ2, t))) for any positive t, if Xi are bounded, and
nσ2 =

∑
i V[X ′

i] =
∑

i V[X ′
i]. By the standard tail integration formula, we find that the

moments of the IID sum are ∥S′ − ES′∥d ≲ max(
√

ndσ2, d). As remarked, this matches
∥S −ES∥d when d < k, so we recover the optimized (!) bounds of Schmidt at al., and implies
the bounds of Bellare and Rompel. Another argument can be given by the use of Rosenthal’s
inequality, a version of which [22] implies ∥S − ES∥d ≲ d · (

∑n
i=1 E|Xi − EXi]d)1/d + d1/2 ·

(
∑n

i=1 E|Xi − EXi]2)1/2. This can be further bounded by max(
√

dnσ2, d).

1.4.3 Sharp Explicit Bounds on Binomial Moments
Somewhat surprisingly, to the best of author’s knowledge, there are no good closed-form
estimates on moments of the binomial distribution, despite the clear demand from applications
(such as the analysis of random projections [2, 26]). The sharp (up to an o(1) relative error
term) tail bounds due to Littlewood [33, 37] in theory imply sharp moment estimates, but
calculations lead to very difficult integrals with Kullback-Leibler divergence in the exponent.
We obtain closed-form bounds for even binomial moments as a byproduct of our analysis,
which are sharp in all paramater regimes. More precisely, we have

▶ Corollary 11. Let S ∼ Binom(n, p) where p ⩽ 1/2 and d be a positive even integer. Then

∥S − ES∥d ≃


√

dnp log(d/np) < max(d/n, 2)
d

log(d/np) max(d/n, 2) ⩽ log(d/np) ⩽ d

(np)1/d d < log(d/np)
. (9)

This follows from the fact that the extreme variables Z ′
i in our main result can be expressed

as symmetrized Bernoulli distributions, namely Z ′
i ∼ B − B′ where B, B′ ∼iid Bern(p) with

p = 1
2 (1 −

√
1 − 2σ2). Let S ∼ Binom(n, p). By symmetrization ∥S − ES∥d ≃ ∥S − S′∥d

and thus ∥S − ES∥d ≃ ∥
∑

i(Bi − B′
i)∥d ≃ ∥

∑
i Z ′

i∥d, thus by our result ∥S − ES∥d obeys
the bound as above with p replaced by σ2. It remains to observe that σ2 = 2p(1 − p) so
p ⩽ σ2 ⩽ 2p, and that the bounds above do not change by a more than a constant when p is
replaced by p′ ∈ [p, 2p].

1.4.4 Exact Binomial Moments
Binomial moments can be evaluated by means of combinatorics, which yields somewhat
complicated recursions [30]. Interestingly, a byproduct of Corollary 9 gives an exact formula
for symmetrized binomials which has very simple form.

1.4.5 Estimating binomial-like moments
The line of research focused on estimating Renyi entropy of unknown probability distribu-
tions ([1, 43]) faces the problem of estimating moments of sum of random variables in “small
variance” regime, that is when nσ2 ≪ 1. For example, the collision estimator requires bounds
on the 4-th sum moment. This has been previously done by exploiting somewhat tedious
combinatorial identities, but follows easier from Corollary 9 and Lemma 6.
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2 Preliminaries

2.1 Multinomial Expansion
The multinomial coefficient is defined as(

d

j

)
= d!/

∏
j∈j

j! (10)

when all components of j are non-negative and
∑

j∈j j = d. We also extend this to
(

d
j
)

= 0
when min{j : j ∈ j} < 0 or

∑
j∈j ̸= d; this allows for concise notation. The multinomial

formula takes the form (
∑

i xi)d =
∑

i
∏

i∈i xi.
▶ Remark 12. Factorials, and therefore binomial coefficients can be formally extended to
negative numbers by means of Gamma function. Then indeed multinomial coefficients are
zero when negative integers appear as downward arguments [31].
We will occasionally use the Stirling’s formula in estimation of multinomial coefficients [40, 46]

(d/ℓ)! ≃
√

d/ℓ · (d/eℓ)d/ℓ. (11)

2.2 Symmetrization
We will need the following facts about symmetrization (cf [51]).

▶ Proposition 13 (Convex Symmetrization). For zero-mean iid X, X ′ and convex f

Ef(X) ⩽ Ef(X − X ′). (12)

Proof of Proposition 13. By independence Ef(X − X ′) = EXEX′ [f(X − X ′)|X] and by
Jensen’s inequality EX′ [f(X − X ′)|X] ⩾ f(X − EX ′). By the zero-mean assumption
f(X − EX ′) = f(X). The inequality follows by chaining these three bounds. ◀

▶ Proposition 14 (Moments are robust under symmetrization). For any iid random variables
∥X∥d ⩽ ∥X − X ′∥d ⩽ 2∥X∥d

Proof of Proposition 14. Since ∥X∥d = (E|X|d)1/d, the left-hand side follows by apply-
ing Proposition 13 to f(u) = |u|d. The right-hand side is due to the triangle inequality
(Minkovski’s inequality for Lp spaces). ◀

2.3 Symmetric Functions
The ℓ-th elementary symmetric polynomial in variables u = (ui)i is defined as

Πℓ(u) =
∑

i1<...<iℓ

ui1ui2 · . . . · uiℓ
. (13)

The fundamental theorem on symmetric polynomials states that they generate all other
symmetric polynomials (in a sense of the algebraic ring) [16]. We will need some facts about
their extreme properties, which we recall below.

▶ Proposition 15 (Newton Inequalities [41]). For u = (ui)n
i=1 let Sℓ(u) ≜ Πℓ(u)/

(
n
ℓ

)
be the

ℓ-th elementary symmetric mean. Then Sℓ−1(u)Sℓ+1(u) ⩽ Sℓ(u)2.

This implies the useful inequality due to Maclaurin

▶ Proposition 16 (Maclaurin’s Inequality [35, 42].). For u = (ui)n
i=1 we have the inequality

Sℓ(u)1/ℓ ⩾ Sℓ′(u)1/ℓ′ when 1 ⩽ ℓ < ℓ′ ⩽ n (with the equality when ui are equal).

APPROX/RANDOM 2022
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3 Proofs

3.1 Proof of Lemma 6
We use the fact that d is an even integer and the multinomial formula to expand

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

= E

(
n∑

i=1
Zi

)d

=
∑

j

(
d

j

)
E[Zj1

1 · . . . · Zjn
n ] (14)

The summation is over integer tuples j ∈ Zn called also multiindices. Utilizing the independ-
ence assumption, we obtain

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

=
∑

j

(
d

j

)
E[Zj1

1 ] · . . . · E[Zjn
n ] (15)

Since Zi are symmetric, all odd moment vanish. Thus, we can write

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

=
∑

j

(
d

2j

)
E[Z2j1

1 ] · . . . · E[Z2jn
n ]. (16)

Since Zi are absolutely bounded by 1 and symmetric, we have E|Zi|2j ⩽ E|Zi|2 ⩽ V[Zi] for
j ⩾ 1. Denoting σ2

i = V[Zi] we can write

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

⩽
∑

j

(
d

2j

) ∏
i:ji ̸=0

σ2
i . (17)

▶ Remark 17. The equality is met when Zi are symmetric with values in the set {−1, 0, 1},
as this implies E|Zi|j = E|Zi|2.
Let ∥j∥0 = #{i : ji ̸= 0} be the number of non-zero indices in the multiindex j. Clearly
ℓ = ∥j∥0 can take values from 1 to d

2 and thus

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

⩽
d/2∑
ℓ=1

∑
j:∥j∥0=ℓ

(
d

2j

) ∏
i:ji ̸=0

σ2
i︸ ︷︷ ︸

Sℓ

. (18)

Note that Sℓ is multilinear of order ℓ in ui = σ2
i . We claim that it equals the elementary

symmetric polynomial, up to a constant multiplier (this is not clear a-priori as different
weights could break the symmetry).

▷ Claim 18. The polynomial Sℓ is a (non-negative) multiplicity of the ℓ-th elementary
symmetric polynomial Πℓ in variables σ2

i .

Proof of Claim. Indeed, consider Sℓ as the weighted sum of monomials
∏

i∈I σ2
i , where

∥I∥ = ℓ. Every such a monomial appears with the coefficient cI ≜
∑

j:ji ̸=0⇔i∈I

(
d
2j
)
. Due to

the symmetry of the multinomial coefficient
(

d
2j
)
, namely the invariance under permuting j,

we claim that cI is the same for every set I. Indeed, if ρ(I ′) = I for a bijection ρ then

cI′ =
∑

j:ji′ ̸=0⇔i′∈I′

(
d

2j

)
=

∑
j:jρ(i) ̸=0⇔ρ(i)∈I

(
d

2j

)
=

∑
j:jρ(i) ̸=0⇔ρ(i)∈I

(
d

2ρ(j)

)
= cI (19)

It follows that Sℓ is a multiplicity of the ℓ-th elementary symmetric polynomial (as it contains
all monomials of order ℓ with equal coefficients). This proves the claim. ◁
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We now establish extreme properties of Sℓ. Namely

▷ Claim 19. The expression Sℓ is maximized, subject to the constraint that
∑

σ2
i is kept

constant, when all σi are equal.

Proof of Claim. This follows by Maclaurin’s Inequality in Proposition 16. ◁

Let σ2 = 1
n

∑
i σ2

i , from the claim we obtain

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

⩽
d/2∑
ℓ=1

∑
j:∥j∥0=ℓ

(
d

2j

)
· σ2ℓ (20)

The right-hand side is like in Equation (18) with all σi equal, and by the remark we know
that it equals E |

∑n
i=1 Z ′

i|
d if Z ′

i is symmetric with values {−1, 0, 1} and has variance σ2.

3.2 Proof of Corollary 9
For Zi as in Lemma 6 the previous section derives the identity

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

=
d/2∑
ℓ=1

∑
j:∥j∥0=ℓ

(
d

2j

)
· σ2ℓ. (21)

We will further simplify this expression. Considering positive components of j we obtain

∑
j:∥j∥0=ℓ

(
d

2j

)
=

d/2∑
ℓ=1

∑
i1<...<iℓ

∑
j:ji⩾1⇔i∈{i1,...,iℓ}

(
d

2j

)
· σ2ℓ. (22)

Since the expression is invariant under permutations of j we obtain

∑
j:∥j∥0=ℓ

(
d

2j

)
=

d/2∑
ℓ=1

∑
j=(j1,...,jℓ)⩾1

(
d

2j

)
·
(

n

ℓ

)
(23)

where
(

n
ℓ

)
counts the number of choices for i1, . . . , iℓ. Therefore

E

∣∣∣∣∣
n∑

i=1
Zi

∣∣∣∣∣
d

=
d/2∑
ℓ=1

∑
j=(j1...jℓ)⩾1

(
d

2j

)(
n

ℓ

)
σ2ℓ. (24)

We now estimate the moment up to constants. Since for any positive ai we have (
∑d

i=1 ai)1/d ≃
(maxi ai)1/d up to some absolute constants (in fact, constants are 1 and d1/d ⩽ 2), we obtain

∥∥∥∥∥
n∑

i=1
Zi

∥∥∥∥∥
d

≃ max
ℓ=1,...,d/2


∑

j=(j1,...,jℓ)⩾1

(
d

2j

)
︸ ︷︷ ︸

F (ℓ)

·
(

n

ℓ

)
· σ2ℓ


1/d

(25)

In the next step we estimate F (ℓ)1/d.

▷ Claim 20. We have F (ℓ)1/d ≃ ℓ.

APPROX/RANDOM 2022
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Proof. For the lower bound we can assume that ℓ (and hence d) are sufficiently big (otherwise
the bound is trivial). We can also assume that ℓ divides d and that r = ⌊d/ℓ⌋ is even;
otherwise we replace ℓ with ℓ′ between ℓ and ℓ/2 which satisfies this, use F (ℓ) ⩾ F (ℓ′) and
prove for ℓ′. Consider the term 2j1 = . . . 2jℓ−1 = d/ℓ, we have

F (ℓ) ⩾
(

d

r, . . . , r

)
= d!

(r!)ℓ
.

Observe that (d!)1/d ≃ d, (r!)1/r ≃ r and (q!)1/q ≃ q (Stirling’s formula). Since r · ℓ
d ⩽ 1 we

get (r!) ℓ
d ≃ rr· ℓ

d = r (the relation ≃ can be raised to a bounded power). This gives

F (ℓ)1/d ≳
d

r
= ℓ.

As for the upper bound, we simply note that

F (ℓ)1/d <

 ∑
j=(j1,...,jℓ)

(
d

j

)1/d

⩽ (ℓd)1/d = ℓ.

These two bounds completes the proof. ◁

By Claim 20 and Equation (25) we obtain the following, much simpler bound∥∥∥∥∥
n∑

i=1
Zi

∥∥∥∥∥
d

≃ max
ℓ=1,...,d/2

[
ℓd ·

(
n

ℓ

)
· σ2ℓ

]1/d

. (26)

With some more effort we simplify even further. Namely, we can assume ℓ ⩽ n as for
ℓ > n we have

(
n
ℓ

)
= 0. By the elementary inequality (n/ℓ)ℓ ⩽

(
n
ℓ

)
⩽ (ne/ℓ)ℓ we have(

n
ℓ

)1/d ≃ (n/ℓ)ℓ/d, for ℓ = 1 . . . d/2. Thus∥∥∥∥∥
n∑

i=1
Zi

∥∥∥∥∥
d

≃ max
ℓ=1,...,min(d/2,n)

[
ℓd ·

(
n

ℓ

)
· σ2ℓ

]1/d

≃ max
ℓ=1,...,min(d/2,n)

[
ℓ · (n/ℓ)ℓ/d · σ2ℓ/d

]
. (27)

Losing not more than a constant factor, we can extend the maximum to the continuous
interval (the expression under maximum differs by at most a constant factor between two
values of ℓ that differ by one or less). Let q = d/ℓ, we have the equivalent constraint
max(2, dn/n) ⩽ q ⩽ d and the maximum of d/q · (nσ2/d)1/q · q1/q. Since q1/q ≃ 1 when q ⩾ 1∥∥∥∥∥

n∑
i=1

Zi

∥∥∥∥∥
d

≃ max
q:max(2,d/n)⩽q⩽d

[
d/q · (nσ2/d)1/q

]
. (28)

It now suffices to analyze the auxiliary function g(q) ≜ 1/q · a1/q for q > 0. The derivative
test shows that it is decreasing when a > 1 and has the global maximum at q = log(1/a)
with the value 1/e log(1/a) when a < 1. This behavior is illustrated on Figure 1.

Applying this fact to Equation (28), with a = nσ2/d, and comparing log(1/a) with the
interval boundaries finishes the proof.
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1
log(1/B)

1
e log(1/a)

g(q) = 1/q · a1/q

Figure 1 Auxiliary function g which determines the moment behavior (for a < 1).

3.3 Proof of Theorem 1
We recall the folklore fact that the moment of order d ⩽ k of the sum of k-wise independent
r.vs. can be computed as if they were independent. That is, let X ′

i be distributed as Xi but
independent. For even d we have

E|
∑

i

Xi|d = E|
∑

i

X;i |d (29)

which follows by applying the multinomial expansion on both sides and observing that the
obtained formulas depend only on products of at most d of random variables Xi (respectively
X ′

i). Without loss of generality, we can also assume that Xi are centered. Now the result
follows if Xi are symmetric, by Lemma 6 and Corollary 9. If they are not symmetric, we can
use the general reduction as in Proposition 14; namely, we apply the proof to X ′

i − X ′′
i where

X ′
i, X ′′

i ∼iid Xi. The moments differ by at most a factor of two. Particularly, the variance
changes by a factor of 2, which has no impact on the asymptotic bounds in Equation (1).
More precisely, we use the fact that M(n, σ2, d) ≃ M(n, σ′2, d) where σ2/2 ⩽ σ2 ⩽ 2σ′2.

3.4 Optimized moment bound of Schmidt at al.
Up to a constant factor, their bound is equivalent to

∥S − ES∥d ≲ cosh(
√

d/36C)
√

dC, for any C ⩾ V[S]. (30)

Let t =
√

d/36C, the the upper bound is equivalent to c · d · cosh(t)/t where c is an absolute
constant. We use this to function understand the behavior of Equation (30) on C, which is as
illustrated on Figure 2. Since C is constrained by C ⩾ V[S], the best bound is obtained for

C = max(C∗,V[S]), (31)

which gives the claimed bound of

∥S − ES∥d ≲ max(
√

dnσ2, d). (32)

APPROX/RANDOM 2022
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C∗ ≈ 0.696 · d/36
C

cosh(
√

d/36C)
√

dC

Figure 2 The moment bound of Schmidt at al., dependency on C.

4 Conclusion

We have developed sharp estimates on the moments of (non necessarily identically distributed)
sums of random variables, assuming the variance is constrained. This essentially closes the
problem of establishing good concentration bounds, discussed in prior works. Our approach
demonstrates the power of symmetrization technique, and is of independent interest. We
also showed applications, not limited to k-wise independence.
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Abstract
Fast mixing of random walks on hypergraphs (simplicial complexes) has recently led to myriad
breakthroughs throughout theoretical computer science. Many important applications, however, (e.g.
to LTCs, 2-2 games) rely on a more general class of underlying structures called posets, and crucially
take advantage of non-simplicial structure. These works make it clear that the global expansion
properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear
algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the
advantage of different poset architectures in both a spectral and combinatorial sense, highlighting
how regularity controls the spectral decay and edge-expansion of corresponding random walks.

We show that the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha
APPROX-RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues
controlled by the regularity of the underlying poset. This gives a simple condition to identify poset
architectures (e.g. the Grassmann) that exhibit strong (even exponential) decay of eigenvalues,
versus architectures like hypergraphs whose eigenvalues decay linearly – a crucial distinction in
applications to hardness of approximation and agreement testing such as the recent proof of the
2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight
characterization of edge-expansion on expanding posets in the ℓ2-regime (generalizing recent work of
Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the
Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann
graphs. We note for clarity that our results do not recover the characterization of expansion used in
the proof of the 2-2 Games Conjecture which relies on ℓ8 rather than ℓ2-structure.

2012 ACM Subject Classification Theory of computation Ñ Expander graphs and randomness
extractors

Keywords and phrases High-dimensional expanders, posets, eposets

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.16

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2205.00644 [24]

Funding Jason Gaitonde: Supported by NSF Award CCF-1408673 and AFOSR Award FA9550-19-
1-0183.
Max Hopkins: Supported by NSF Award DGE-1650112.
Tali Kaufman: Supported by ERC and BSF.
Shachar Lovett: Supported by NSF Award CCF-1909634.

© Jason Gaitonde, Max Hopkins, Tali Kaufman, Shachar Lovett, and Ruizhe Zhang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jsg355@cornell.edu
mailto:nmhopkin@eng.ucsd.edu
mailto:kaufmant@mit.edu
mailto:slovett@cs.ucsd.edu
mailto:ruizhe@utexas.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.16
https://arxiv.org/abs/2205.00644
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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1 Introduction

Random walks on high dimensional expanders (HDX) have been the object of intense study
in theoretical computer science in recent years. Starting with their original formulation by
Kaufman and Mass [31], a series of works on the spectral structure of these walks [33, 16, 2]
led to significant breakthroughs in approximate sampling [4, 2, 3, 12, 13, 11, 22, 28, 41, 9],
CSP-approximation [1, 6], error-correcting codes [29, 30], agreement testing [19, 15, 32], and
more. Most of these works focus on the structure of expansion in hypergraphs (also called
simplicial complexes). However, hypergraphs are not always the appropriate object – recent
breakthroughs in locally testable [17] and quantum LDPC codes [42, 40, 39] rely crucially on
cubical structure not seen in hypergraphs, while many agreement testing results like the proof
of the 2-2 Games Conjecture [44] relies on linear algebraic rather than simplicial structure.

In this work, we study a generalized notion of HDX on partially ordered sets (posets)
introduced by Dikstein, Dinur, Filmus, and Harsha (DDFH) [16] called expanding posets
(eposets). Random walks on eposets capture a broad range of structures beyond their
hypergraph analogs, including natural sparsifications of the Grassmann graphs recently
crucial to the resolution of the 2-2 Games Conjecture [44, 37, 21, 20, 8, 36]. While originally
a global notion of expansion, Kaufman and Tessler (KT) [34] recently extended the study of
eposets by introducing local-to-global analysis to the setting and by identifying regularity as
a key parameter controlling expansion. The authors strengthened local-to-global theorems
for strongly regular posets like the Grassmann, giving the first general formulation for
characterizing expansion based on an eposet’s underlying architecture.

While analysis of the second eigenvalue is certainly important, a deeper understanding of
the spectral structure of eposets is required for applications like the proof of the 2-2 Games
Conjecture. Our main focus in this work lies in characterizing the spectral and combinatorial
behavior of walks on eposets beyond the second eigenvalue. Strengthening DDFH and work of
Bafna, Hopkins, Kaufman, and Lovett (BHKL) [6], we prove that at a coarse level (walks on)
eposets exhibit the same spectral and combinatorial characteristics as expanding hypergraphs
(e.g. spectral stripping, expansion of pseudorandom sets). On the other hand, as in KT,
we show that the finer-grained properties of these objects are controlled by the underlying
poset’s regularity, including the rate of decay of the spectrum and combinatorial expansion of
associated random walks. This gives a strong separation between structures like hypergraphs
with weak (linear) eigenvalue decay, and Grassmann-based eposets with strong (exponential)
decay (a crucial property in the proof of the 2-2 Games Conjecture [44]).

1.1 Background
We briefly overview the theory of expanding posets and higher order random walks (see
Section 2 for details). A d-dimensional graded poset is a set X equipped with a partial
order “<” and a ranking function r : X Ñ rds that respects “<” and partitions X into levels
Xp0qY . . .YXpdq. When x ă y and rpyq “ rpxq` 1, we write x Ì y. We assume throughout
this work that our posets are downward regular : there exists a regularity function Rpk, iq

such that every k-dimensional element is greater than exactly Rpk, iq i-dimensional elements.
Graded posets come equipped with a natural set of operators called the up and down

operators that lift or lower functions f : Xpiq Ñ R by averaging:

Uifpxq “ E
yÌx

rfpyqs Difpyq “ E
xÍy

rfpxqs.

Composing the averaging operators leads to a natural notion of random walks on the
underlying poset called higher order random walks (HD-walks). The simplest example is the
upper (lower) walk Di`1Ui (Ui´1Di) which moves between elements x, x1 P Xpiq via a common
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element y P Xpi ` 1q (Xi´1) with y ą x, x1 (y ă x, x1). We also consider longer variants of
the upper and lower walks called canonical walks pN i

k “ Dk`1 ˝ . . . ˝ Dk`i ˝ Uk`i´1 ˝ . . . ˝ Uk

and qN i
k “ Uk ˝ . . . ˝ Uk´i ˝ Dk´i`1 ˝ . . . ˝ Dk which similarly walk between k-dimensional

elements in Xpkq via a shared element in Xpk ` iq or Xpk ´ iq respectively.
Following DDFH [16], we call a poset a pδ, γq-expander for δ P r0, 1sd´1 and γ P R` if the

upper and lower walks are spectrally similar up to a laziness factor:

∥Di`1Ui ´ p1 ´ δiqI ´ δiUi´1Di∥ ď γ.

This generalizes standard spectral expansion which can be equivalently defined as looking at
the spectral norm of AG ´ U0D1, where AG (the adjacency matrix) is exactly the non-lazy
upper walk.1 While most of our results hold in general, we assume a weak non-laziness
condition on our underlying posets that holds in most cases of interest (see Definition 13).

1.2 Results
We now give an overview of our results, splitting this section into three parts for readability:
spectral stripping, characterizing edge expansion, and applications to the Grassmann.

Eigenstripping. We start with our generalized spectral stripping theorem.

▶ Theorem 1 (Spectrum of HD-Walks (informal Corollary 20)). Let M be an HD-walk on the
kth level of a pδ, γq-eposet. Then the spectrum of M is highly concentrated in k ` 1 strips:

SpecpMq P t1u Y
k
ď

i“1
rλipMq ´ e, λipMq ` es

where e ď Ok,δpγq. Moreover, the span of eigenvectors in the ith strip approximately
correspond to functions lifted from Xpiq to Xpkq.

This substantially simplifies and improves an analogous result of BHKL [6] on expanding
hypergraphs, which had sub-optimal error dependence of Okpγ

1{2q. The main improvement
stems from an optimal spectral stripping result for arbitrary inner product spaces of independ-
ent interest. Theorem 1 follows by showing that the HD-Level-Set Decomposition, a natural
basis on eposets introduced by DDFH [16], gives such an approximate eigendecomposition.

In full generality, the approximate eigenvalues in Theorem 1 depend on the eposet
parameters δ, and can be fairly difficult to interpret. However, we show that under weak
assumptions (see Section 2) the eigenvalues can be associated with the regularity of the
underlying poset. We state the result just for lower walks for simplicity:

▶ Theorem 2 (Regularity Controls Spectral Decay (informal Theorem 22)). The approximate
eigenvalues of the lower walk qNk´i

k on a pδ, γq-eposet are controlled by the poset’s regularity
function: λjp qN

k´i
k q P

Rpi,jq
Rpk,jq ˘ Ok,δpγq.

This generalizes work of Kaufman and Tessler [34] on the second eigenvalue, and reveals a
major distinction among poset architectures: posets with higher regularity enjoy faster decay
of eigenvalues.2 Theorem 2 gives a new method of identifying poset architectures exhibiting

1 For a broad range of posets, this is equivalent (up to constants) to local-spectral expansion, a notion of
high dimensional expansion introduced by Dinur and Kaufman [19], as originally proved for simplicial
complexes by DDFH [16], and later extended to a larger class of posets by Kaufman and Tessler [34].

2 We note that Theorem 1 can also be obtained by combining our spectral stripping result with recent
independent work of Dikstein, Dinur, Filmus, and Harsha [16, Section 8.4.1].

APPROX/RANDOM 2022
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strong spectral decay in the sense that for any δ ą 0, the lower walk only contains Oδp1q
approximate eigenvalues larger than δ. This property is crucial for both the run-time of
approximation algorithms on HDX [6] and the proof of the 2-2 Games Conjecture [44].

Characterizing Edge Expansion. Much of our motivation for studying the spectrum of
HD-walks is to understand the edge expansion of subsets S, denoted ΦpSq (see Section 5 for
formal definition). Characterizing edge-expansion in HD-walks has recently proven crucial to
understanding both algorithms for [5, 6] and hardness of unique games [44]. On expanding
hypergraphs, it is known that links give the canonical example of small non-expanding sets.

▶ Definition 3 (Link). Let X be a d-dimensional graded poset. The k-dimensional link,
called a “k-link,” of an element σ P X is the set of rank k elements greater than σ3, i.e.
Xk

σ “ ty P Xpkq : y ą σu. When k is clear from context, we write Xσ for Xk
σ for simplicity.

BHKL [6] proved that on hypergraphs, the expansion of links is exactly controlled by their
corresponding spectral strip. While their proof of this fact relied crucially on simplicial
structure, we show via a more general analysis that the result can be recovered for eposets.

▶ Theorem 4 (Expansion of Links (informal Theorem 29)). Let X be a pδ, γq-eposet and M an
HD-walk on Xpkq. Then for all 0 ď i ď k and τ P Xpiq, ΦpXτ q “ 1 ´ λipMq ˘ OM,k,δpγq.

Conversely one might ask: are all non-expanding sets explained by links? Following BHKL [6],
given a set S, consider the function defined on a link τ P Xpiq by LS,ipτq :“ E

Xτ

r1Ss ´ Er1Ss.
Two standard formulations of “non-expansion is explained by links” correspond to LS,i having
noticeable ℓ2 or ℓ8-norm for a non-expanding set S. Thus, we say S is pseudorandom if LS,i

is small with respect to one of these norms for all i ď ℓ (see Section 4 for precise definitions).
We prove that pseudorandom sets expand near-optimally.

▶ Theorem 5 (Pseudorandom Sets Expand (informal Theorem 33)). Let X be a pδ, γq-eposet
and M a walk on Xpkq. Then the expansion of any pε, iq-pseudorandom set S is at least:

ΦpSq ě 1 ´ λi`1 ´ OδpRpk, iqεq ´ Ok,δ,M pγq.

The main technical component behind Theorem 5 is a result called a “level-i” inequality
(cf. Theorem 26) which asserts that pseudorandomness controls the projection of the indicator
of a subset S onto eigenstrips. This strictly generalizes the result for simplicial complexes
in [6] where Rpk, iq “

`

k
i

˘

, and is tight for other important settings such as the Grassmann
(discussed below). Theorem 5 and Theorem 26 can also be viewed as another separation
between eposet architectures, this time in terms of combinatorial properties.

Applications: q-Eposets and the Grassmann Graphs. We conclude with applications of our
results to a particularly important class of eposets called “q-eposets.” Just like standard high
dimensional expanders arise from expanding subsets of the complete complex (hypergraph),
q-eposets arise from expanding subsets of the Grassmann Poset:

▶ Definition 6 (Grassmann Poset). The Grassmann Poset is a graded poset pX,ăq where X

is the set of all subspaces of Fn
q of dimension at most d, the partial ordering “ă” is given by

inclusion, and the rank function is given by dimension.

3 In the literature, a link is often defined to be all such elements, not just those of rank k. We adopt this
notation since we are mostly interested in working at a fixed level of the complex.
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We call a (downward-closed) subset of the Grassmann poset a q-simplicial complex, and
an expanding q-simplicial complex a q-eposet (see Section 2 for exact details). Using our
machinery for general eposets, we prove a tight level-i inequality for pε, ℓq-pseudorandom
sets S Ď Xpkq (see Theorem 37): for all 1 ď i ď ℓ,

|x1S ,1S,iy| ď

˜

ˆ

k

i

˙

q

ε ` Oq,kpγq

¸

x1S ,1Sy,

where 1S,i is the ith level of the HD-Level-Set Decomposition and
`

k
i

˘

q
“

p1´qk
q¨¨¨p1´qk´i`1

q

p1´qiq¨¨¨p1´qq

is the Gaussian binomial coefficient. We also prove this bound cannot be improved by any
constant factor, even in the ℓ8-regime. Furthermore, it is well known the dependence on k is
necessary [37], even if one is willing to suffer a worse dependence on the pseudorandomness ε.
This differs from simplicial complexes where the dependence can be removed in the ℓ8-regime
[36, 7, 25]. Still, it is possible that the dependence on k can be removed by changing the
definition of pseudorandomness, as was done on the Grassmann poset via finer-grained local
structure called “zoom-in zoom-outs” [44]. The existence of a notion of locality based on the
underlying poset structure that gives rise to k-independent bounds in the ℓ8-regime is an
interesting open problem.

Finally, we give applications of these results to edge-expansion in an important class of
walks that give rise to the well-studied Grassmann graphs.

▶ Definition 7 (Grassmann Graphs). The Grassmann Graph Jqpn, k, tq is the graph on
k-dimensional subspaces of Fn

q where pV, W q P E exactly when dimpV X W q “ t.

Note that non-lazy upper walk on the Grassmann poset is exactly the Grassmann graph
Jqpn, k, k ´ 1q. In Section 6, we show how to express any Jqpn, k, tq (in fact, for any q-
simplicial complex) as a sum of standard higher order random walks. This leads to a set
of natural sparsifications of the Grassmann graphs that may be of independent interest
for agreement testing, PCPs, and hardness of approximation. For simplicity, on a given
q-simplicial complex X, we refer to these “sparsified” Grassmann graphs as JX,qpn, k, tq for
the moment. The level-i inequality then implies for a pε, ℓq-pseudorandom set S Ď Xpkq

(Corollary 40):

ΦpSq ě 1 ´ Er1Ss ´ ε
ℓ
ÿ

i“1

ˆ

t

i

˙

q

´ q´pℓ`1qj ´ Oq,kpγq.

In practice, t is generally thought of as being Ωpkq (or even k ´ Op1q), which results in a
k-dependent bound. It remains an open problem whether a k-independent version can be
proved for any q-eposet beyond the Grassmann poset itself.

1.3 Related Work
Higher Order Random Walks. Higher order random walks were introduced in 2016 by
Kaufman and Mass [31]. Their spectral structure was later elucidated in a series of works
by Kaufman and Oppenheim [33], DDFH [16], Alev, Jeronimo, and Tulsiani [1], Alev and
Lau [2], and finally BHKL [6]. With the exception of DDFH, all of these works focused
on hypergraphs rather than general posets. Our spectral stripping theorem for eposets
essentially follows from combining eposet machinery developed by DDFH with our improved
variant of BHKL’s general spectral stripping theorem.

APPROX/RANDOM 2022



16:6 Eigenstripping, Spectral Decay, and Edge-Expansion on Posets

Among the myriad applications of higher order random walks described above, our work
is closest to that of Bafna, Barak, Kothari, Schramm, and Steurer [5], and BHKL [6], who
used the spectral and combinatorial structure of HD-walks to build new algorithms for unique
games. The analysis in this paper also lends itself to the algorithmic techniques developed in
those works, but we are unaware of interesting examples beyond those in BHKL.

High Dimensional Expansion Beyond Hypergraphs. Most works listed above focus only on
the setting of hypergraphs. However, recent years have also seen the nascent development and
application of expansion beyond this setting [18, 42, 40, 39, 26], including the seminal work of
DDFH [16] on expanding posets as well as more recent breakthroughs on locally testable and
quantum codes [17, 42]. While DDFH largely viewed eposets as having similar structure, we
strengthen the case that different underlying poset architectures exhibit different properties.
This complements the results of Kaufman and Tessler [34], who showed that expanding posets
with strong regularity conditions such as the Grassmann exhibit more favorable properties
with respect to the second eigenvalue. Our results provide a statement of the same flavor
looking at the entire spectrum, along with additional separations in more combinatorial
settings. A related connection between poset regularity and the approximate spectrum of
walks was independently developed by DDFH in a recent update of their seminal work [16].

Expansion and Unique Games. One motivation behind this work is towards building a
more general framework for understanding the structure underlying the Unique Games
Conjecture [35], a standard hardness assumption in complexity for many combinatorial
optimization problems (see e.g. Khot’s survey [38]). In 2018, Khot, Minzer, and Safra [44]
made a major breakthrough towards the UGC in proving the weaker 2-2 Games Conjecture,
completing a long line of work in this direction [37, 21, 20, 8, 36, 44]. The key to the proof
is the “Grassmann expansion hypothesis,” which states that any non-expanding set in the
Grassmann graph Jqpd, k, k ´ 1q is non-trivially concentrated inside a local-structure called
“zoom-in zoom-outs.” As noted in the previous section, this result differs from our analysis in
two key ways: it lies in the ℓ8-regime, and must be totally independent of dimension.

Unfortunately, little progress has been made towards the UGC since, as KMS’ proof
of the Grassmann expansion hypothesis is quite complicated and highly tailored to the
exact structure of the Grassmann, making it difficult to generalize to related conjectures [8].
However, just as the ℓ2-regime analysis of DDFH and BHKL recently lead to a dimension
independent bound in the ℓ8-regime for standard HDX [7, 25], we expect the groundwork
laid in this paper will be important for proving generalized dimension independent expansion
hypotheses in the ℓ8-regime beyond the special case of the Grassmann graphs.

2 Preliminaries

Graded Posets. A partially ordered set (poset) P “ pX,ăq is a set of elements X endowed
with a partial order “ă”. A graded poset has a rank function r : X Ñ N satisfying:
1. r preserves “ă”: if y ă x, then rpyq ă rpxq.
2. r preserves cover relations: if x is the smallest element greater than y, then rpxq “ rpyq`1.
The function r partitions X into subsets by rank Xp0qY . . .YXpdq, where maxXprq “ d, and
Xpiq “ r´1piq. We refer to a poset with maximum rank d as “d-dimensional”, and elements
in Xpiq as “i-faces”. Throughout this work, we consider d-dimensional graded posets that:
(i) have a unique minimal element, and (ii) are “pure”: all maximal elements have rank d.
Many graded posets of interest, like pure simplicial complexes and the Grassmann poset,
satisfy certain regularity conditions which will be crucial to our analysis.
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▶ Definition 8 (Regularity). A d-dimensional graded poset is downward regular if for all
i ď d there exists some constant Rpiq such that every element x P Xpiq covers exactly Rpiq

elements y P Xpi ´ 1q.
A d-dimensional graded poset is middle-regular if for all 0 ď i ď k ď d, there exists a

constant mpk, iq such that for any xk P Xpkq and xi P Xpiq satisfying xk ą xi, there are
exactly mpk, iq chains4 of elements xk ą xk´1 ą . . . ą xi`1 ą xi where each xj P Xpjq.

A poset is regular if it is both downward and middle regular.

We will assume all posets we discuss in this work are regular from this point forward. Regular
posets also have the nice property that for any dimensions i ă k, there exists a higher order
regularity function Rpk, iq such that any x P Xpkq is greater than exactly Rpk, iq elements in
Xpiq (see Appendix A). We define Rpi, iq “ 1 and Rpj, iq “ 0 whenever j ă i for convenience.

Measured Posets and The Random Walk Operators. A measured poset is a graded poset
X endowed with a distribution Π “ pπ0, . . . , πdq, where each marginal πi is a distribution
over Xpiq. We focus on the case where Π is induced entirely from πd. That is, @ 0 ď i ă d:

πipxq “
1

Rpi ` 1, iq

ÿ

yÍx

πi`1pyq.

In other words, each lower dimensional distribution πi may be induced through the following
process: an element y P Xpi ` 1q is selected with respect to πi`1, and an element x P Xpiq

such that x ă y is then chosen uniformly at random.
The averaging operators U and D are defined analogously to their notions on simplicial

complexes, with the main change being the use of the general regularity function Rpi ` 1, iq:

Uifpyq “
1

Rpi ` 1, iq

ÿ

xÌy

fpxq Di`1fpxq “
1

πi`1pXxq

ÿ

yÍx

πi`1pyqfpyq,

where for i ă k and x P Xpiq, the appropriate normalization factor is

πkpXxq “
ÿ

yPXpkq:yąx

πkpyq “ Rpk, iqπipxq.

In Appendix A, we show that the up operators compose nicely, and in particular that:

Uk
i fpyq :“ Uk´1 ˝ . . . ˝ Uifpyq “

1
Rpk, iq

ÿ

xPXpiq:xăy

fpxq.

As with simplicial complexes, the down and up operators are adjoint with respect to the
standard inner product on measured posets: for any f : Xpkq Ñ R and g : Xpk ´ 1q Ñ R,

xf, Uk´1gyXpkq “ xDkf, gyXpk´1q, where xf, gyXpkq “
ÿ

τPXpkq

πkpτqfpτqgpτq.

We omit Xpkq from the notation when clear from context. This useful fact allows us to define
basic self-adjoint notions of higher order random walks just like on simplicial complexes.

4 Such objects are sometimes called flags, e.g. in the case of the Grassmann poset.

APPROX/RANDOM 2022
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Higher Order Random Walks. Let Ck denote the set of functions f : Xpkq Ñ R. Following
prior work, we define natural sets of random walk operators via the averaging operators.

▶ Definition 9 (Walk Operators [31, 16, 1]). Given a measured poset pX, Πq, a k-dimensional
pure walk Y : Ck Ñ Ck on pX, Πq (of height hpY q) is a composition Y “ Z2hpY q ˝ ¨ ¨ ¨ ˝ Z1,

where each Zi is a copy of D or U , and there are hpY q of each type.
Let Y be a family of pure walks Y : Ck Ñ Ck on pX, Πq. We call an affine combination

M “
ř

Y PY
αY Y a k-dimensional HD-walk on pX, Πq if it is stochastic and self-adjoint. The

height of M , denoted hpMq, is the maximum height of any pure Y P Y with a non-zero
coefficient. The weight of M , denoted wpMq, is |α|1.

▶ Definition 10 (Canonical Walk). Given a d-dimensional measured poset pX, Πq and para-
meters k ` j ď d, the upper canonical walk is pN j

k :“ Dk`j
k Uk`j

k , while for j ď k the lower
canonical walk is qN j

k :“ Uk
k´jDk

k´j , where Uk
ℓ “ Uk´1 . . . Uℓ, and Dk

ℓ “ Dℓ`1 . . . Dk.

Since the non-zero spectrum of pN j
k and qN j

k`j are equivalent (c.f. [2]), we focus in this work
mostly on the upper walks which we write simply as N j

k .
For certain specially structured posets, we will also study an important class of HD-walks

known as (partial) swap walks. We will introduce these well-studied walks momentarily.

Expanding Posets and the HD-Level-Set Decomposition. DDFH [16] observed that one
can use the averaging operators to define an extension of spectral expansion to graded posets:

▶ Definition 11 (Eposet [16]). Let pX, Πq be a measured poset, δ P r0, 1sd´1, and γ ă 1. X

is an pδ, γq-eposet if for all 1 ď i ď d ´ 1:

∥Di`1Ui ´ p1 ´ δiqI ´ δiUi´1Di∥ ď γ.

Much of our analysis in this work will be based off of an elegant approximate Fourier
decomposition for eposets introduced by DDFH [16].

▶ Theorem 12 (HD-Level-Set Decomposition, Theorem 8.2 [16]). Let pX, Πq be a d-dimensional
pδ, γq-eposet with γ sufficiently small. For all 0 ď k ď d, let H0 “ C0, Hi “ KerpDiq, V i

k “

Uk
i Hi. Then Ck “ V 0

k ‘ . . . ‘ V k
k . In other words, every f P Ck has a unique decomposition

f “ f0 ` . . . ` fk such that fi “ Uk
i gi for gi P KerpDiq.

It is well known that the HD-Level-Set Decomposition is approximately an eigenbasis for
HD-walks on simplicial complex [16, 1, 6]. We will show this statement extends to all eposets
(extending DDFH’s similar analysis of the upper walk N1

k ).
We will further assume for simplicity throughout this work an additional property of

eposets we called (approximate) non-laziness.

▶ Definition 13 (β-Non-Lazy Eposets). Let pX, Πq be a d-dimensional measured poset. We
call pX, Πq β-non-lazy if for all 1 ď i ď d, maxσPXpiqt1

T
σ Ui´1Di1σu ď β.

This condition asserts that no element in the poset carries too much weight, even upon
conditioning. All of our results hold for general eposets,5 but their form is significantly more
interpretable when the poset is additionally non-lazy. In fact, most γ-eposets of interest are
Opγq-non-lazy. It is easy to see for instance that any “γ-local-spectral” expander satisfies
this condition, an equivalent notion of expansion to γ-eposets under suitable regularity
conditions [34]. We discuss this further in Appendix A.

5 The one exception is the lower bound of Theorem 4.
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The Grassmann Poset and q-Eposets. At the moment, there are only two known families
of expanding posets of significant interest in the literature: those based on pure simplicial
complexes (the downward closure of a k-uniform hypergraph), and pure q-simplicial complexes
(the analogous notion over subspaces). The ℓ2-structure of the former is studied in detail
in [6]; we focus on the latter which is less-studied, but responsible for a number of important
results including the resolution of the 2-to-2 Games Conjecture [44].

▶ Definition 14 (q-Simplicial Complex). Let Gqpn, dq denote the d-dimensional subspaces
of Fn

q . A weighted, pure q-simplicial complex pX, Πq is given by a family of subspaces
X Ď Gqpn, dq and a distribution Π over X. We will usually consider the downward closure
Xp0qY . . .YXpdq, where Xpiq Ď Gqpn, iq consists of all i-dimensional subspaces contained in
some element in X “ Xpdq. Further, on each level Xpiq, Π induces a natural distribution πi:

@V P Xpiq : πipV q “
1

`

d
i

˘

q

ÿ

WPXpdq:WĄV

πdpW q,

where πd “ Π and
`

d
i

˘

q
“

p1´qd
q¨¨¨p1´qd´i`1

q

p1´qiq¨¨¨p1´qq is the Gaussian binomial coefficient.

Taking X “ Gqpn, dq yields the Grassmann poset, the q-analog of the complete simplicial
complex. The Grassmann poset is well known to be a expander in this sense (see e.g. [43]) –
in fact it is a 0-eposet with parameters

δi “
pqi ´ 1qpqn´i`1 ´ 1q
pqi`1 ´ 1qpqn´i ´ 1q , (1)

the q-analog of the eposet parameters for the complete complex [16]. With this in mind, let’s
define a special class of eposets based on q-simplicial complexes.

▶ Definition 15 (γ-q-Eposet [16]). A pure, d-dimensional weighted q-simplicial complex
pX, Πq is a γ-q-eposet if it is a pδ, γq-eposet satisfying δi “ q qi

´1
qi`1´1 for all 1 ď i ď d ´ 1.

Constructing bounded-degree q-eposets (a problem proposed by DDFH [16]) remains an
interesting open problem. Kaufman and Tessler [34] recently made some progress in this
direction, but the expansion parameter of their construction is fairly poor (around 1{2).

Finally, in our applications to the Grassmann we consider a particularly important class
of walks called partial-swap walks, which are non-lazy variants of the upper canonical walks.

▶ Definition 16 (Partial-Swap Walk). Let pX, Πq be a weighted, d-dimensional q-simplicial
complex. The partial-swap walk Sj

k is the restriction of the canonical walk N j
k to faces whose

intersection has dimension k ´ j. In other words, if |V X W | ą k ´ j then Sj
kpV, W q “ 0,

and otherwise Sj
kpV, W q 9 N j

kpV, W q.

When applied to the Grassmann poset itself, it is clear by symmetry that the partial-swap
walk Sj

k returns exactly the Grassmann graph Jqpd, k, k ´ jq. On the other hand, it is not
immediately obvious these objects are even HD-walks when applied to a generic q-simplicial
complex. We prove this is the case in Section 6.

3 Eigenstripping and the Spectra of HD-Walks

We now discuss HD-walks’ spectral structure. It turns out that on expanding posets, these
walks exhibit almost exactly the same properties as on the special case of simplicial complexes
studied in [33, 16, 1, 6]: a walk’s spectrum lies concentrated in strips corresponding to levels
of the HD-Level-Set Decomposition. The key to proving this lies in a more general theorem
characterizing the spectral structure of any inner product space admitting an “approximate
eigendecomposition” [6]. We prove a significantly simpler, tight variant of this result.

APPROX/RANDOM 2022
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▶ Theorem 17 (Eigenstripping). Let M be a self-adjoint operator over an inner product
space V , and suppose V “ V 1 ‘ . . . ‘ V k satisfies }Mf ´ λif} ď ci}f} for all f P V i for
parameters λ1 ě . . . ě λn and ci ě 0. Then as long as ci ` ci`1 ă λi ´ λi`1, the spectrum
of M is concentrated around each λi:

SpecpMq Ď

k
ď

i“1
rλi ´ ci, λi ` cis

Proof. For each i, consider the (self-adjoint) operator M2
i “ pM ´ λiIq

2. We claim it is
enough to show that M2

i has exactly dimpV iq eigenvalues less than c2
i in absolute value. To

see why, observe that the eigenvalues of M2
i are exactly pµ ´ λiq

2 for each µ in SpecpMq

(with matching multiplicities), and therefore that any eigenvalue µi P SpecpM2
i q less than c2

i

implies the existence of a corresponding eigenvalue of M in rλi ˘ cis. If each M2
i has dimpV iq

eigenvalues less than c2
i , then M has at least dimpV iq eigenvalues in each interval rλi ˘ cis.

Moreover, since these intervals are disjoint by assumption and
ř

dimpV iq “ dimpV q, this
must account for all eigenvalues of M .

To prove the claim, we apply the Courant-Fischer theorem [23], which asserts that the
kth smallest eigenvalue of self-adjoint operator A is

λn´k`1 “ min
U

"

max
fPU

"

xf, Afy

xf, fy

*
ˇ

ˇ

ˇ

ˇ

dimpUq “ k

*

.

Taking U “ V i, A “ M2
i and k “ dimpV iq (noting that xf, M2

i fy “ }pM ´ λiIqf}
2 by

self-adjointness) with the approximate eigendecomposition assumption yields the claim. ◀

Note that this result is also trivially tight for any true eigendecomposition. We remark that
similar strategies have been used in the numerical analysis literature (see e.g. [27]).

Thus it is enough to prove that the HD-Level-Set Decomposition is an approximate
eigenbasis. This follows similarly as for local-spectral expanders [6], though somewhat more
care is required to deal with general eposet parameters. First, an inductive application
of [16, Claim 8.8] (itself a repeated application of Definition 11) shows that functions in the
HD-Level-Set Decomposition are close to being eigenvectors (see full version for details).

▶ Proposition 18. Let pX, Πq be a pδ, γq-eposet, and Y the pure balanced walk of height j,
with down operators at positions pi1, . . . , ijq. For 1 ď ℓ ď k, let fℓ “ Uk

ℓ gℓ for some gℓ P Hℓ,
and let

δk
j “

k
ź

i“k´j

δi, γk
j “ γ

j´1
ÿ

i“´1
δk

i ,

where δk
i “ 1 for any i ă 0 for notational convenience. Then fℓ is an approximate eigenvector

of Y :∥∥∥∥∥Y fℓ ´

j
ź

s“1

´

1 ´ δk´2s`is
k´2s`is´ℓ

¯

fℓ

∥∥∥∥∥ ď ∥gℓ∥
j
ÿ

s“1

γk´2s`is
k´2s`is´ℓ

s´1
ź

t“1

´

1 ´ δk´2t`it
k´2t`it´ℓ

¯

ď pj ` kqjγ ∥gℓ∥ .

When γ “ 0, this implies that the HD-Level-Set decomposition is a true eigendecomposition.
Since balanced walks are simply affine combinations of pure walks, this immediately implies
a similar result for the more general case.

Before proceeding, for a d-dimensional pδ, γq-eposet, and 0 ď ℓ ď k ă d, define:

ρk
ℓ “

k´ℓ
ź

i“1

`

1 ´ δk´i
k´ℓ´i

˘

, ρmin “ min
0ďℓďk

tρk
ℓ u. (2)



J. Gaitonde, M. Hopkins, T. Kaufman, S. Lovett, and R. Zhang 16:11

The parameter ρk
ℓ arises throughout much of our work, and while it is difficult to interpret

on general eposets, we prove it has a very natural form as long as non-laziness holds.

▷ Claim 19 (ρk
ℓ for Regular Eposets). Let pX, Πq be a regular, γ-non-lazy6 d-dimensional

pδ, γq-eposet. Then for any i ď k ă d, we have:

ρk
i P

1
Rpk, iq

˘ err,

where err ď O
´

i3k2Rmax
δip1´δi´1q

γ
¯

. Likewise as long as γ ď O
´

maxitδip1´δi´1qu
i3k2R2

max

¯

we have ρ´1
min ď

OpRmaxq, where Rmax :“ max0ďiďktRpk, iqu.

This gives a nice generalization of the interpretation of ρk
i on hypergraphs, where ρk

i “
`

k
i

˘´1

[16]. We prove this claim in Appendix A. For simplicity, we will assume throughout the rest
of this work that our eposets are γ-non-lazy, which is true for most cases of interest (see
Appendix A). All results hold in the more general case using ρk

i unless otherwise noted.
Combining Proposition 18 and [16, Lemma 8.11] immediately implies that the HD-Level-

Set Decomposition is an approximate eigendecomposition:

▶ Corollary 20. Let pX, Πq be a pδ, γq-eposet and let M “
ř

Y PY
αY Y be an HD-walk. For

1 ď ℓ ď k, if fℓ “ Uk
ℓ gℓ for some gℓ P Hℓ, then for γ ď O

´

maxitδip1´δi´1qu
k5R2

max

¯

:∥∥∥∥∥Mfℓ ´

˜

ÿ

Y PY
αY λY,δ,ℓ

¸

fℓ

∥∥∥∥∥ ď cγ ∥fℓ∥ ,

where λY,δ,ℓ is the corresponding eigenvalues of the pure balanced walk Y on a pδ, 0q-eposet
(the form of which are given in Proposition 18), and c ď O pphpMq ` kqhpMqRpk, ℓqwpMqq.

Theorem 17 then immediately implies that for any self-adjoint walk (e.g. canonical or swap
walk), the true spectrum is concentrated around these approximate eigenvalues.

A straightforward, but useful example application of Corollary 20 immediately yields the
approximate spectrum of a basic higher order random walk.

▶ Corollary 21 (Spectrum of Lower Canonical Walks). Let pX, Πq be a pδ, γq-eposet. The
approximate eigenvalues of the canonical lower walk qNk´ℓ

k are:

λjp qN
k´ℓ
k q “

k´ℓ
ź

s“1
p1 ´ δk´s

k´s´jq.

Similar to the case of ρk
i , while this is difficult to interpret in the general setting, the

eigenvalues have a very natural form on non-lazy eposets given by the regularity parameters.

▶ Theorem 22. Let pX, Πq be a γ-non-lazy pδ, γq-eposet. The approximate eigenvalues of
the canonical lower walk qNk´i

k are λjp qN
k´i
k q P

Rpi,jq
Rpk,jq ˘ cγ, where c ď O

´

i4k2Rmax
δip1´δi´1q

γ
¯

.

The proof requires machinery developed in Section 5 and is given in Appendix A.

6 One can prove this claim more generally for any β-non-laziness, but most γ-eposets of interest are
additionally γ-non-lazy, so this simplified version is generally sufficient.
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4 Pseudorandomness and the HD-Level-Set Decomposition

Now that we know the spectral structure of HD-walks, we shift to studying their combinatorial
structure. In particular, we will focus on how natural notions of pseudorandomness control
the projection of functions onto the HD-Level-Set Decomposition. As much of this theory
generalizes arguments of BHKL, we defer the proofs in this section to the full version.

We start with the definition of pseudorandomness in the ℓ2-regime, which measures the
variance of a set across links.

▶ Definition 23 (ℓ2-Pseudorandom Functions [6]). A function f P Ck is pε1, . . . , εℓq-ℓ2-
pseudorandom if its variance across i-links is small for all 1 ď i ď ℓ:

VarpDk
i fq ď εi|Erf s|.

In their work on simplicial complexes, BHKL [6] observed a close connection between ℓ2-
pseudorandomness, the HD-Level-Set Decomposition, and the spectra of the lower canonical
walks. Using the approximate eigendecomposition developed in the previous section in
Corollary 21, it turns out that the same connection holds in general for eposets.

▶ Theorem 24. Let pX, Πq be a pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu
k5R2

max

¯

. If f P Ck has
HD-Level-Set Decomposition f “ f0 ` . . . ` fk, then for any ℓ ď k, VarpDk

ℓ fq is controlled
by its projection onto V 0

k ‘ . . . ‘ V ℓ
k in the following sense:

VarpDk
ℓ fq P

ℓ
ÿ

j“1
λjp qN

k´ℓ
k qxf, fjy ˘ ckγ}f}2,

where ck ď Opk5{2Rmaxq and λjp qN
k´ℓ
k q “

śk´ℓ
s“1p1 ´ δk´s

k´s´jq.

While ℓ2-pseudorandomness is useful in its own right (e.g. for local-to-global algorithms
for unique games [5, 6]), there is also significant interest in a stronger ℓ8-variant in the
hardness of approximation literature [36, 44].

▶ Definition 25 (ℓ8-Pseudorandom Functions [6]). A function f P Ck is pε1, . . . , εℓq-ℓ8-
pseudorandom if for all 1 ď i ď ℓ its local expectation is close to its global expectation:

›

›Dk
i f ´ Erf s

›

›

8
ď εi.

In their recent work on ℓ2-structure of expanding simplicial complexes, BHKL prove a basic
reduction from ℓ8 to ℓ2-pseudorandomness that allows for an analogous level-i inequality
for this notion as well. We show the same result holds for general eposets by applying
Theorem 24 with Claim 19 to obtain a level-i inequality for pseudorandom sets (see the full
version for the more general version). The key idea is to lower bound the variance of Dk

i by
the ith component in the expansion of variance given by Theorem 24.

▶ Theorem 26. Let pX, Πq be a pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu
k5R2

max

¯

and suppose
that for S Ď Xpkq, 1S is pε1, . . . , εℓq-ℓ8 pseudorandom. Then 1S is also pε1, . . . , εℓq-ℓ2
pseudorandom, and for all 1 ď i ď ℓ:

|x1S ,1S,iy| ď pRpk, iqεi ` cγqEr1Ss,

where c ď O
´

k5R2
max

maxitδip1´δi´1qu

¯

.

This recovers the tight inequality for simplicial complexes given in [6] where Rpk, iq “
`

k
i

˘

,
as well as providing the natural q-analog for q-simplicial complexes where Rpk, iq “

`

k
i

˘

q
.
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5 Expansion of HD-walks

It is well known that higher order random walks on simplicial complexes are not small-set
expanders. BHKL gave an exact characterization of this phenomenon for local-spectral
expanders: they showed that the expansion of any i-link with respect to an HD-walk M is
almost exactly 1 ´ λipMq. Moreover, using the level-i inequality from the previous section,
BHKL proved a tight converse to this result in an ℓ2-sense: any non-expanding set must have
high variance across links. This gave a complete ℓ2-characterization of non-expanding sets on
local-spectral expanders, and lay the structural groundwork for new algorithms for unique
games over HD-walks. In this section, we extend these results to general expanding posets.

▶ Definition 27 (Weighted Edge Expansion). Let M be a k-dimensional HD-Walk on a
graded poset pX, Πq. Let Mpv, XpkqzSq “

ř

yPXpkqzS

Mpv, yq where Mpv, yq is the transition

probability from v to y. The weighted edge expansion of a subset S Ă Xpkq with respect to
M is

ΦpSq “ E
v„πk|S

rMpv, XpkqzSqs .

Before we prove the strong connections between links and expansion, we need to introduce
an important property of HD-walks, monotonic eigenvalue decay.

▶ Definition 28 (Monotonic HD-walk). Let pX, Πq be a pδ, γq-eposet. We call an HD-walk M

monotonic if its approximate eigenvalues λipMq (given in Corollary 20) are non-increasing.

Most HD-walks of interest (e.g. pure walks, partial-swap walks on simplicial or q-simplicial
complexes, etc.) are monotonic. This property will be crucial to understanding expansion.
To start, let’s see how it allows us to upper bound the expansion of links.

▶ Theorem 29 (Local Expansion vs Global Spectra). Let pX, Πq be a pδ, γq-eposet and M be
a k-dimensional monotonic HD-walk. Then for all 0 ď i ď k and τ P Xpiq, it holds that

ΦpXτ q P 1 ´ λipMq ˘ cγ, where c ď O

ˆ

k5R2
maxphpMq`kqhpMqwpMq

δk
k´i

p1´δi´1q

˙

.

The key to proving Theorem 29 is to show that the weight of an i-link lies almost entirely
on level i of the HD-Level-Set Decomposition. To show this, we rely on another connection
between regularity and eposet parameters for non-lazy posets.

▷ Claim 30. Let pX, Πq be a d-dimensional pδ, γq-eposet. Then for every 1 ď k ď d and
0 ď i ď k, the following relation between the eposet and regularity parameters holds:

λipN
1
k q P

Rpk, iq

Rpk ` 1, iq
˘
`

γk
k´i ` Rpk, iqδk

k´iγ
˘

.

We prove this relation in Appendix A. With this in hand, we can show links project mostly
onto their corresponding level. We defer the proof to the full version, but the key idea is to
express the (non)-expansion of the link both directly using the regularity parameters and
using the approximate eigenvalues in the HD-Level-Set decomposition to argue that the only
way these quantities can be equal is if the desired conclusion holds.

▶ Lemma 31. Let pX, Πq be a d-dimensional pδ, γq-eposet with γ ď O
´

maxitδip1´δi´1qu
k5R2

max

¯

.
Then for all 0 ď i ď k ă d and τ P Xpiq, for all j ‰ i:

ˇ

ˇ

ˇ

ˇ

x1Xτ ,i,1Xτ ,jy

x1Xτ
,1Xτ

y

ˇ

ˇ

ˇ

ˇ

ď O

˜

k3Rmax

δk
k´ip1 ´ δi´1q

γ

¸

.
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We note that the above is the only result in our work that truly relies on non-laziness (it
is used only to replace ρ with regularity in all other results). It is possible to recover the
upper bound in Theorem 29 for general eposets via arguments used in [6], but the lower
bound remains open for concentrated posets. With that in mind, we now prove Theorem 29.

Proof of Theorem 29. By the previous lemma, we have
ˇ

ˇ

ˇ

ˇ

x1Xτ ,1Xτ ,jy

x1Xτ
,1Xτ

y

ˇ

ˇ

ˇ

ˇ

ď O

˜

1
δk

k´ip1 ´ δi´1q
¨

ˆ

k3

ρmin
γ ` Rpk, iqγ

˙

¸

.

Expanding out Φ̄p1Xτ
q then gives:

Φ̄p1Xτ q “
1

x1Xτ ,1Xτ y

i
ÿ

j“0
x1Xτ , M1Xτ ,jy

ď
1

x1Xτ
,1Xτ

y

i
ÿ

j“0
λipMqx1Xτ ,1Xτ ,jy ` c2γ

ď λipMq
x1Xτ ,1Xτ ,iy

x1Xτ
,1Xτ

y
` err1

ď λipMq ` err2.

where c2, err1, err2 ď O

ˆ

k
δk

k´i
p1´δi´1q

´

k2
phpMq`kqhpMqwpMq

ρmin
γ ` Rpk, iqγ

¯

˙

and the last step

follows from the previous lemma. The conclusion then follows from applying Claim 19. ◀

Thus, for sufficiently nice expanding posets, the expansion of any i-link with respect to an
HD-walk is almost exactly 1´λipMq. As HD-walks are generally poor expanders (have large
λ1pMq), Theorem 29 implies that links are examples of small, non-expanding sets. Following
BHKL, we now prove a converse to this result: any non-expanding set must be explained by
some structure inside links. To give a precise statement, we need the following definition:

▶ Definition 32 (Stripped Threshold Rank [6]). Let pX, Πq be a pδ, γq-eposet and M a
k-dimensional HD-walk with γ small enough that the HD-Level-Set Decomposition has a
corresponding decomposition of disjoint eigenstrips Ck “

À

W i
k. The ST-Rank of M with

respect to η is the number of strips containing an eigenvector with eigenvalue at least η:

RηpMq “ |tW i
k : Df P V i, Mf “ λf, λ ą ηu|.

With this definition, we provide a converse to Theorem 29 in both ℓ2 and ℓ8 senses:

▶ Theorem 33. Let pX, Πq pδ, γq-eposet, M a k-dimensional, monotonic HD-walk, and γ

small enough that the eigenstrip intervals of Theorem 17 are disjoint. For any η ą 0, let
r “ RηpMq ´ 1. Then the expansion of a set S Ă Xpkq of density α is at least:

ΦpSq ě 1 ´ α ´ p1 ´ αqη ´

r
ÿ

i“1
pλipMq ´ ηqRpk, iqεi ´ cγ

where S is pε1, . . . , εrq-pseudorandom and c ď O
´

k5R2
maxphpMq`kqhpMqwpMq

maxitδip1´δi´1qu

¯

.

The argument is similar to [6] for simplicial complexes and relies on similar manipulations
to Theorem 29, so we defer the proof to the full version. Theorem 33 recovers the analogous
result for simplicial complex in [6] with the appropriate value Rpk, iq “

`

k
i

˘

. BHKL also
prove this special case is tight in multiple senses; see the discussion there for more details.
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6 The Grassmann and q-eposets

In this section, we specialize to expanding subsets of the Grassmann poset. We will show
that our analysis is tight in this regime.

Spectra. We start by examining the spectrum of HD-walks on the Grassmann and q-eposets,
focusing on the most widely used walks in the literature, the canonical and partial-swap
walks. To start, recall that the Grassmann poset itself is a 0-eposet. Plugging the parameters
in Equation (1) into Proposition 18, along with an analogous calculation for q-eposets, gives
a nice exact form for the spectra of canonical walks.

▶ Corollary 34 (N j
k Spectra). Let X “ Gqpn, dq be the Grassmann Poset, k ` j ď d, and

fℓ “ Uk
ℓ gℓ for some gℓ P Hℓ. Then N j

kfℓ “ λℓfℓ, where

λℓ “ qℓj

`

k`j´ℓ
j

˘

q
`

k`j
j

˘

q

`

n´k´ℓ
j

˘

q
`

n´k
j

˘

q

« q´ℓj .

Similarly, let pX, Πq be a d-dimensional γ-q-eposet with γ ď q´Ωpk2
q, k ` j ď d, and

fℓ “ Uk´1
ℓ gℓ for some gℓ P Hℓ. Then:∥∥∥∥∥∥N j
kfℓ ´

`

k`j´ℓ
j

˘

q
`

k`j
j

˘

q

fℓ

∥∥∥∥∥∥ ď O

˜

jpj ` kq

ˆ

k

ℓ

˙

q

¸

γ ∥fℓ∥

The first equation above recovers a very simple proof of classical results to this effect (see
e.g. [14]). Note that for small enough γ, Theorem 17 implies that the true spectra is then
concentrated around these values as well. These eigenvalues are, as one would expect, the
natural q-analog of the corresponding eigenvalues on simplicial complexes.

Moreover, this carries over to the class of partial-swap walks, which were originally
analyzed by AJT on simplicial complexes [1]. To see this, we first need to show (in Appendix B)
these walks are indeed HD-walks, which follows from the q-analog of statements in AJT [1].

▶ Lemma 35. Let pX, Πq be a pure, measured q-simplicial complex. Then:

N j
k “

j
ÿ

i“0
qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

Si
k, and Sj

k “
1

qj2` k
k´j

˘

q

j
ÿ

i“0
p´1qj´iqp

j´i
2 q

ˆ

j

i

˙

q

ˆ

k ` i

i

˙

q

N i
k.

This is unsurprisingly the q-analog of the analogous statement on simplicial complexes (see
[1, Corollary 4.13]). Finally, combining the previous result with Corollary 20 and Corollary 34,
it is possible to show that the eigenvalues of partial-swap walks on q-simplicial complexes are
given by the natural q-analog of the simplicial complex case (see the full version for details):

▶ Corollary 36. Let pX, Πq be a d-dimensional γ-q-eposet with γ sufficiently small, k` j ď d,
and fℓ “ Uk

ℓ gℓ for some gℓ P Hℓ. Then:∥∥∥∥∥Sj
kfℓ ´

`

k´j
ℓ

˘

q
`

k
ℓ

˘

q

fℓ

∥∥∥∥∥ ď O

˜

ˆ

q

q ´ 1

˙minpj,k´jq`2
k2
ˆ

k

ℓ

˙

q

¸

γ ∥fℓ∥

Again, since the swap walks are self-adjoint Theorem 17 implies that for small enough γ

the true spectra is closely concentrated around these values as well.
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Pseudorandom Functions and Small Set Expansion. With an understanding of the spectra
of HD-walks on q-simplicial complexes, we move to studying its combinatorial structure. By
direct computation, it is not hard to show that on q-eposets, ρk

ℓ “
`

k
ℓ

˘´1
q

(Claim 19 would
only imply this is approximately true). As a result, we get a level-i inequality for q-simplicial
complexes that is the natural q-analog of BHKL’s inequality for basic simplicial complexes.

▶ Theorem 37. Let pX, Πq be a γ-q-eposet with γ ď q´Ωpk2
q and let S Ď Xpkq. If 1S is

pε1, . . . , εℓq-ℓ8-pseudorandom, then for c ď qOpk2
q,

|x1S ,1S,iy| ď

˜

ˆ

k

i

˙

q

εi ` cγ

¸

Er1Ss @ 1 ď i ď ℓ.

For large enough q, γ´1, this result is exactly tight. The key to showing this fact is to
examine a local structure unique to the Grassmann called co-links. The co-link of an element
W P Xpk1q, is all of the subspaces contained in W , i.e. X̄W “ tV P Xpkq : V Ď W u. Just
like links, it turns out that co-links of dimension i (that is k1 “ d ´ i) also come through
levels 0 through i of the complex, although this is somewhat trickier to see. The essential
observation is that co-links satisfy enough symmetries to explicitly construct a function in Ci

whose image under Uk
i yields the desired function; see the full version for the construction.

▶ Lemma 38 (HD-Level-Set Decomposition of Co-Links). Let X “ Gqpd, kq and S “ XW be
a co-link of dimension i for W P Xpd ´ iq. Then, we have 1S P V 0

k ‘ ¨ ¨ ¨ ‘ V i
k .

Using this fact, we can show that our level-i inequality is exactly tight on co-links,
deferring the proof to Appendix B.

▶ Proposition 39. Let X “ Gqpd, kq be the Grassmann poset. For any i ď k P N and c ă 1,
there exist large enough q, d and a pi, εiq-pseudorandom set S Ă Xpkq such that

x1S ,1S,iy ą c

ˆ

k

i

˙

q

εix1S ,1Sy.

Finally, Theorem 37 directly implies that for the canonical and partial-swap walks,
sufficiently pseudorandom functions expand near perfectly.

▶ Corollary 40 (q-Eposets Edge-Expansion). Let pX, Πq be a d-dimensional γ-q-eposet, S Ă

Xpkq a subset whose indicator function 1S is pε1, . . . , εℓq-pseudorandom. Then the edge
expansion of S with respect to the canonical walk N j

k is bounded by:

Φπk
pN j

k , Sq ě 1 ´ Er1Ss ´

ℓ
ÿ

i“1

`

k`j´i
j

˘

q
`

k`j
j

˘

q

ˆ

k

i

˙

q

εi ´ q´pℓ`1qj ´ qOpk2
qγ.

Further, the edge expansion of S with respect to the partial-swap walk Sj
k is bounded by:

Φπk
pSj

k, Sq ě 1 ´ Er1Ss ´

ℓ
ÿ

i“1

ˆ

k ´ j

i

˙

q

εi ´ q´pℓ`1qj ´ qOpk2
qγ.

Note that Sj
k on q-eposets is a generalization of the Grassmann Graphs (and are equivalent

when X is the Grassmann Poset). While our definition of pseudorandomness is weaker than
that of [44] and therefore necessarily depends on the dimension k, we take the above as
evidence that the framework of expanding posets may be important for making further
progress on the Unique Games Conjecture. In particular, combined with recent works
removing this k-dependence on simplicial complexes [7, 25], it seems plausible that the
framework of expanding posets may lead to a more general understanding of the structure
underlying the Unique Games Conjecture.
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A Eposet Parameters and Regularity

In this section, we discuss connections between notions of regularity, the averaging operators,
and eposet parameters. To start, we’ll show that downward and middle regularity (which
are defined only on adjacent levels of the poset) imply extended regularity between any two
levels.

▶ Proposition 41. Let pX, Πq be a d-dimensional regular measured poset. Then for any
i ă k ď d, there exist regularity constant Rpk, iq such that for any xk P Xpkq, there are
exactly Rpk, iq elements xi P Xpiq such that xk ą xi.

Proof. Given any element xk P Xpkq, downward regularity promises there are exactly
śk

j“i`1 Rpjq unique chains xk ă xk´1 ă . . . ă xi`1 ă xi. By middle regularity, any fixed
xi P Xpiq which appears in this fashion appears in exactly mpk, iq chains. Noting that
xi ă xk if and only if xi appears in such a chain, the total number of xi ă xk must be exactly
Rpk, iq “

śk
j“i`1 Rpjq

mpk,iq . ◀

A similar argument shows that regularity allows the up operators to compose in the natural
way.

▶ Proposition 42. Let pX, Πq be a d-dimensional regular measured poset. Then for any
i ă k ď d we have:

Uk
i fpxkq “

1
Rpk, iq

ÿ

xiăxk

fpxiq

Proof. Expanding out Uk
i fpyq gives:

Uk
i fpxkq “

1
k
ś

j“i`1
Rpjq

ÿ

xk´1ăxk

. . .
ÿ

xiăxi`1

fpxiq

The number of times each xi appears in this sum is exactly the number of chains starting at
xk and ending at xi, so by middle regularity:

1
k
ś

j“i`1
Rpjq

ÿ

xk´1ăxk

. . .
ÿ

xi`1ăxi

fpxiq “
mpk, iq
k
ś

j“i`1
Rpjq

ÿ

xiăxk

fpxiq

“
1

Rpk, iq

ÿ

xiăxk

fpxiq. ◀
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We’ll now take a look at the connection between eposet parameters and regularity. It is
convenient to first start with a lemma stating that non-laziness is equivalent to bounding the
maximum transition probability of the lower walk.

▶ Lemma 43. Let pX, Πq be a d-dimensional measured poset. Then for any 0 ă i ď d, the
maximum laziness of the lower walk is also the maximum transition probability:

max
σPXpiq

␣

1
T
σ Ui´1Di1σ

(

“ max
σ,τPXpiq

␣

1
T
σ Ui´1Di1τ

(

.

Proof. Assume that τ ‰ σ. Then the transition probability from τ to σ is exactly

1
T
σ Ui´1Di1τ “

πτ pσzτq

Rpi, i ´ 1q

ď
1

Rpi, i ´ 1q
ÿ

τÌσ

πτ pσzτq

“ 1
τ
σUi´1Di1σ,

which implies the result. ◀

We now prove our two claims relating the eposet parameters to regularity.

▷ Claim 44. Let pX, Πq be a d-dimensional pδ, γq-eposet. Then for every 1 ď k ď d and
0 ď i ď k, the following approximate relation between the eposet and regularity parameters
holds:

λipN
1
k q P

Rpk, iq

Rpk ` 1, iq
˘
`

γk
k´i ` Rpk, iqδk

k´iγ
˘

where we recall λipN
1
k q “ 1 ´

k
ś

j“i

δj .

Proof. We require a refinement of [16, Claim 8.8] given in [6, Lemma A.1]:7

Dk`1Uk`1
i “ p1 ´ δk

k´iqU
k
i ` δk

k´iU
k
i´1Di `

k´i´1
ÿ

j“´1
Uk

k´j´1ΓjUk´j´1
i (3)

where
ř

∥Γj∥ ď γk
k´i. The idea is now to examine the “laziness” of the two sides of this

equality. In other words, given a starting k-face τ , what is the probability that the resulting
i-face σ satisfies σ ă τ?

To start, we’ll argue that the laziness of the lefthand side is exactly Rpk,iq
Rpk`1,iq . This follows

from noting that there are Rpk, iq i-faces σ satisfying σ ă τ , and Rpk ` 1, iq options after
taking the initial up-step of the walk to τ 1 ą τ . After the down-steps, the resulting i-face is
uniformly distributed over these Rpk ` 1, iq options σ ă τ 1, and since every σ ă τ ă τ 1, all
original Rpk, iq lazy options are still viable after the up-step to τ 1.

Analyzing the right-hand side is a bit trickier. The initial term p1´ δk
k´iqU

k
i is completely

lazy, so it contributes exactly p1 ´ δk
k´iq “ λipN

1
k q. We’ll break the second term into two

steps: walking from Xpkq to Xpiq via Uk
i , then from Xpiq to Xpiq via the lower walk Ui´1Di.

Starting at a k-face τ , notice that after applying the down step Uk
i we are uniformly spread

over σ ă τ . Computing the laziness then amounts to asking what the probability of staying

7 Formally the result is only stated for simplicial complexes in [6], but the same proof holds for eposets.
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in this set is after the application of UD, which one can naively bound by the maximum
transition probability times the set size Rpk, iq. By non-laziness, the maximum transition
probability is at most γ (see Lemma 43).

The third term can be handled similarly. The first down step Uk
k´j´1 spreads τ evenly

across σ ă τ in Xpk ´ j ´ 1q. The resulting i-face σ1 after applying ΓjUk´j´1
i is less than

τ if and only if the intermediary pk ´ j ´ 1q-face after applying Γj is less than τ , which is
bounded by the spectral norm ∥Γj∥.8

Putting everything together, since both sides of Equation (3) must have equivalent
laziness, we get that λipN

1
k q must be within

ř

∥Γj∥ ` δk
k´iRpk, iqγ as desired. ◁

Claim 19 and Theorem 22 can both be proving an analogous theorem for the upper walk.

▷ Claim 45 (Regularity and Upper Walk Spectrum). Let pX, Πq be a d-dimensional pδ, γq-eposet.
Then for any j ď i ď k ă d, we have:

λjpN
k´i
i q P

Rpi, jq

Rpk, iq
˘ err,

where err ď O
´

i4k2Rmax
δip1´δi´1q

γ
¯

.

Proof. This follows almost immediately from the fact that i-links lie almost entirely on the
ith eigenstrip (Lemma 31). In particular, it is enough to examine the expansion of i-links
with respect to the upper canonical walk Nk´i

i . On the one hand, for any j ď i and τ P Xpjq

we have:

Φ̄pXi
τ q “

x1Xi
τ
, Nk´i

i 1Xi
τ
y

x1Xi
τ
,1Xi

τ
y

“
xUk

j 1τ , Uk
j 1τ y

xU i
j1τ , U i

j1τ y

“
Rpi, jq2

Rpk, iq2
x1Xk

τ
,1Xk

τ
y

x1Xi
τ
,1Xi

τ
y

“
Rpi, jq

Rpk, iq

x1τ ,1τ y

x1τ ,1τ y

“
Rpi, jq

Rpk, iq
.

where we have applied the fact that xXℓ
τ , Xℓ

τ y “ Rpℓ, jqx1τ ,1τ y. On the other hand, by
Lemma 31 we also have that:

Φ̄p1Xi
τ
q “

1
x1Xi

τ
,1Xi

τ
y

i
ÿ

ℓ“0
x1Xi

τ
, Nk´i

i 1Xi
τ ,ℓy

P
1

x1τ ,1τ y

i
ÿ

ℓ“0
λjpN

k´i
i qx1Xi

τ
,1Xi

τ ,ℓy ` cγ

P λjpN
k´i
i q

x1τ ,1τ,jy

x1τ ,1τ y
`

i
ÿ

j“0
err1

P λjpN
k´i
i q ` err2

where as in the proof of Theorem 29, c, err1, err2 ď O
´

i4k2Rmax
δi

i´j
p1´δj´1q

γ
¯

. ◁

8 We note that Γj is not stochastic, but it is self-adjoint and an easy exercise to see that the analogous
reasoning still holds.
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Claim 19 follows immediately from observing that ρk
i “ λipN

k´i
i q (by Proposition 18). The-

orem 22 follows from observing that pNk´i
i and qNk´i

k have the same approximate eigenvalues
(similarly by Proposition 18).

Finally we close out the section by discussing the connection between non-laziness and a
variant of eposets called local-spectral expanders [34].

▶ Definition 46 (Local-Spectral Expander [19, 34]). A d-dimensional measured poset pX, Πq

is a γ-local-spectral expander if the graph underlying every link9 of dimension at most d ´ 2
is a γ-spectral expander.10

Under suitable regularity conditions (see [34]), local-spectral expansion is equivalent to the
notion of expanding posets used in this work. A simple argument shows that γ-local-spectral
expanders are γ-non-lazy.

▶ Lemma 47. Let pX, Πq be a d-dimensional γ-local-spectral expander, and 0 ă i ă d. The
laziness of the lower walk on level i is at most:

max
σPXpiq

"

x1σ, Ui´1Di1σy

x1σ,1σy

*

ď γ.

Proof. Through direct computation, the laziness probability of the lower walk at σ P Xpiq is
exactly

x1σ, Ui´1Di1σy

x1σ,1σy
“

1
Rpi, i ´ 1q

ÿ

τÌσ

πτ pσzτq

It is therefore enough to argue that πτ pσzτq ď γ, as the graph underlying the link Xτ is a
γ-spectral expander. Recall that an equivalent formulation of this definition states that:

∥Aτ ´ UDτ ∥ ď γ,

where Aτ is the standard (non-lazy upper) walk and UDτ is the lower walk on the graph
underlying Xτ . This implies that the weight of any vertex v in the graph is at most γ, as:

x1v, UDτ1vy

x1v,1vy
“

x1v, pUDτ ´ Aτ q1vy

x1v,1vy
ď ∥Aτ ´ UDτ ∥ ď γ

where we have used the fact that Aτ is non-lazy by definition. Since πτ pσzτq is exactly the
weight of the vertex σzτ in Xτ , this completes the proof. ◀

B Deferred Proofs

Proof of Lemma 35. We follow the structure and notation of [1, Lemma 4.11]. Assume
that the canonical walk starts at a subspace V P Xpkq, and walks up to W P Xpk ` jq. We
wish to analyze the probability that upon walking back down to level k, a subspace V 1 with
intersection k ´ i is chosen, i.e. dimpV X V 1q “ k ´ i. Let such an event be denoted EipW q.
It follows from elementary q-combinatorics (see e.g. [10, Lemma 9.3.2]) that

Pr
V 1ĂW

rEipW q | W s “ qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

,

9 Here the link of τ is not just its top level faces, but the complex given by taking this set, removing τ
from each face, and downward closing.

10 A graph is a γ-spectral expander if its weighted adjacency matrix has no non-trivial eigenvalues greater
than γ in absolute value.
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where V 1 P Xpkq is drawn uniformly from the k-dimensional subspaces of W . To relate this
process to the swap walk Si

k, note that while the swap walk (as defined) only walks up to
Xpk ` iq, walking up to Xpk ` jq and conditioning on intersection i, a process called the i-
swapping j-walk by [1], is exactly the same due to symmetry (via the regularity condition, see
[Proposition 4.9 of [1]] for a more detailed explanation). Thus consider the i-swapping j-walk,
and let T 1

i denote the variable standing for the subspace chosen by the walk. Conditioned on
picking the same W as the canonical walk in its ascent, we may relate T 1

i to the canonical
walk:

PrrT 1
i “ T | W s “ PrrV 1 “ T | W and EipW qs

We may now decompose the canonical walk by intersection size:

N j
kpV, T q “

j
ÿ

i“0

ÿ

WPXpk`jq

PrrW sPrrEipW q | W sPrrV 1 “ T | W and EipW qs

“

j
ÿ

i“0

ÿ

WPXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

E
WĄV

rPrrV 1 “ T | W and EipW qss

“

j
ÿ

i“0

ÿ

WPXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

E
WĄV

rPrrT 1
i “ T | W ss

“

j
ÿ

i“0

ÿ

WPXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

PrrT 1
i “ T s

“

j
ÿ

i“0

ÿ

WPXpk`jq

qi2

`

j
i

˘

q

`

k
k´i

˘

q
`

k`j
k

˘

q

Si
kpV, T q.

From this point, the claim can be obtained by applying a q-binomial inversion theorem
(Theorem 2.1 of [45]), see the full version for details. ◀

Proof of Proposition 39. For W P Xpd ´ iq, consider the co-link X̄W “ tV P Xpkq : V Ă

W u. For simplicity, let S :“ X̄W . The density of S in any j-link XV is:

αj “
pqd´i´j ´ 1q . . . pqd´k`1´i ´ 1q
pqd´j ´ 1q . . . pqd´k`1 ´ 1q “ q´ipk´jq ` oq,dp1q.

The idea is now to examine the (non)-expansion of the co-link with respect to the lower
walk Uk´1Dk. By direct computation, the probability of returning to X̄W after moving to a
pk ´ 1q-dimensional subspace is exactly:

Φ̄pX̄W q “
qd´i ´ qk´1

qd ´ qk´1 “ q´i ˘ q´Ωpdq (4)

By Proposition 18, the approximate eigenvalues of the lower walk are

λj “
qk´j ´ 1
qk ´ 1 “ q´j ´ Opq´kq

Since a dimension-i co-link has no projection onto levels i ` 1 through k, it also holds that:

Φ̄pX̄W q “
1

x1S ,1Sy

i
ÿ

j“0
q´jx1S ,1S,jy ´ Opq´kq

APPROX/RANDOM 2022
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for large enough q, d. Combined with Equation (4), there exists a universal constant c1 such
that for large enough q and d, 1X̄W

cannot have more than a c1

q fraction of its mass on levels
1 through i ´ 1. Finally, noticing that

`

k
i

˘

q
αi “ 1 ` oqp1q, we obtain

x1S ,1S,iy

x1S ,1Sy
ě

q ´ c1

q
ě c

ˆ

k

i

˙

q

αi

since the latter is strictly bounded away from 1 for large enough q. This completes the result
since X̄W is pαi, iq-pseudorandom. ◀
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Abstract
Polarization is an unprecedented coding technique in that it not only achieves channel capacity, but
also does so at a faster speed of convergence than any other technique. This speed is measured by
the “scaling exponent” and its importance is three-fold. Firstly, estimating the scaling exponent
is challenging and demands a deeper understanding of the dynamics of communication channels.
Secondly, scaling exponents serve as a benchmark for different variants of polar codes that helps
us select the proper variant for real-life applications. Thirdly, the need to optimize for the scaling
exponent sheds light on how to reinforce the design of polar code.

In this paper, we generalize the binary erasure channel (BEC), the simplest communication
channel and the protagonist of many polar code studies, to the “tetrahedral erasure channel” (TEC).
We then invoke Mori–Tanaka’s 2 × 2 matrix over F4 to construct polar codes over TEC. Our main
contribution is showing that the dynamic of TECs converges to an almost–one-parameter family of
channels, which then leads to an upper bound of 3.328 on the scaling exponent. This is the first
non-binary matrix whose scaling exponent is upper-bounded. It also polarizes BEC faster than all
known binary matrices up to 23 × 23 in size. Our result indicates that expanding the alphabet is a
more effective and practical alternative to enlarging the matrix in order to achieve faster polarization.
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Polar coding was invented by Arıkan around 2008 [2]. During that time, Arıkan was
experimenting with channel combining and splitting. By treating two independent binary
channels as a single quaternary channel (combining) and tasking ourselves with guessing
certain linear combinations of the inputs (splitting), he synthesized two channels, denoted
by W and W⊙• , out of the original channel W . Arıkan realized that, when combining and
splitting is applied recursively, the channels undergo an intriguing dynamic that ultimately
results in most synthetic channels being either almost noiseless or extremely noisy. This is
channel polarization, the first ingredient underlying polar codes.

The second ingredient of polar codes, also given by Arıkan in said seminal paper, is the
relation between the dynamic of synthetic channels and the construction and performance of
the code. Arıkan’s insight was that synthetic channels that become almost noiseless can be
used to transmit information bits, and synthetic channels that become extremely noisy can
be “frozen” to some fixed values. The rate at which we communicate meaningful bits is then
the proportion of synthetic channels that are almost noiseless. So, whether we can achieve
channel capacity becomes a problem of counting the numbers of good and bad synthetic
channels.

It then became apparent, perhaps even appealing, that one can study the dynamic of
synthetic channels by means of stochastic processes. Take the binary erasure channel (BEC)
as an example. Let W be BEC(ε), the BEC with erasure probability ε, where 0 < ε < 1.
The channels W and W⊙• are BEC(2ε− ε2) and BEC(ε2), respectively. A process {Hn}n

is thus defined by having H0 := ε and Hn+1 := 2Hn −H2
n or H2

n with equal probability. It
can be shown that if

P{Hn ⩽ f(n) } = 1 −H0 − g(n),

where f, g > 0 are functions in n, then there is a polar code of length 2n, miscommunication
probability 2nf(n), and gap to capacity g(n).

It was at this point that the study of polar codes branched. On one branch, called the
error exponent regime, g is a constant and the asymptotics of f is examined. On the other
branch, called the scaling exponent regime, f is a constant1 and the asymptotics of g is
examined. On the error exponent branch, it was shown that f(n) is roughly exp(−eβn),
where β > 0 is a constant depending on the matrix used in the code construction. The task
of determining β for each matrix has been fully resolved; interested readers are referred to
[3, 26, 22, 33].

On the scaling exponent branch, making progress is harder and slower. For BECs, [21, 25]
managed to estimate that g(n) ≈ 2−n/3.527. For binary memoryless symmetric (BMS)
channels, it was first shown that g(n) < 2−n/µ for some constant 0 < µ < ∞ [20]. This
makes polar codes the only known code family that converges to capacity at a polynomial
rate in the block length. More realistic estimates of µ were given later: 3.553 < µ [18],
3.579 < µ < 6 [23], µ < 5.702 [17], µ < 4.714 [31], and very recently µ < 4.63 [49]. Now that
we know the µ for polar code and the optimal value being µ ≈ 2 for random code [4, 24, 37],
the discrepancy begs the question: Can one modify polar code to reach a smaller scaling
exponent?

1 Not always; sometimes f → 0 but only exponentially fast in n. Note that 2nf(n), the upper bound on
the miscommunication probability, is allowed to exceed 1, so the corresponding code can be meaningless.
Yet the asymptotics of g capture the behaviors of other meaningful codes.
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The answer is positive: Arıkan used the matrix [110
1] (this is called the kernel in literature)

to combine and split channels. Instead, one can use a larger matrix, for instance
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1

 ,
to combine and split channels. In [16, 50, 46, 45, 5, 28], binary matrices ranging from 3 × 3
to 64 × 64 are deployed and the scaling exponents over BECs are estimated. The best scaling
exponent up to every matrix size is plotted in Figure 2. There are also meta-asymptotic results
stating that µ ≈ 2 can be achieved using larger and larger matrices. This statement was
proved over q-ary erasure channels [36], binary erasure channels [15], all BMS channels [19],
and finally discrete memoryless channels [48].

As much as we want to lower polar code’s scaling exponent, there is one caveat that
renders large matrices impractical: the smallest matrix whose scaling exponent is strictly
better than [110

1] is the 8 × 8 matrix above. Using this matrix takes twice more time to decode
(estimate based on the method of [9]), whereas the benefit we gain is that µ slightly decreases
from 3.627 to 3.577. As the matrix gets larger and deviates more from the tensor powers of
[110

1], the time complexity grows drastically. For this reason, it is unlikely that we will ever
see polar code based on large matrices (unless it is for other concerns [6]).

Large matrix aside, many other techniques emerge with empirical evidence that they
improve polar code – concatenation, cyclic redundancy check, and list decoder to name a few.
But none of them sees a proof of improvements in the scaling exponent; in fact, quite the
opposite was reported [30]. So we are back to the starting point where we want to improve
polar codes’ scaling exponent while minimizing the complexity penalty.

One approach that seems promising, albeit very little is known due to its innate technical
difficulty, is to use a non-binary input alphabet. This line of research started from Şaşoğlu [42,
41, 13], wherein the goal was to find at least one way to polarize arbitrary finite alphabets
regardless of the speed. In particular, the usual matrix [110

1] is known to polarize prime fields.
Later, Sahebi–Pradhan [40] and Park–Barg [35] showed that [110

1] cannot polarize non-prime
fields. Then, Mori–Tanaka [33] classified all matrices that can polarize finite fields (i.e., the
alphabet size must be a prime power). One step forward, Nasser [34] classified all binary
operators (i.e., bivariate functions) that can polarize arbitrary finite alphabets. In [7, 8], the
authors showed that, for any polarizing matrix over prime fields, one has µ < ∞. In [48], the
authors showed that µ ≈ 2 is reachable over arbitrary finite alphabets.

Why is a non-binary input alphabet attractive? There are at least three reasons. First,
modulation2: For quadrature amplitude modulation (QAM) and amplitude and phase-shift
keying (APSK), a constellation point is more likely to be confused with constellation points
nearer to it. A non-binary channel models this proximity relation more naturally than
a series of correlated binary channels do [44, 11]. Second, two-stage polarization: If we
weakly-polarize a binary channel with [110

1], treat two binary channels as a quaternary channel,
and strongly-polarize the quaternary channel with the 4 × 4 Reed–Solomon matrix, we can
improve the asymptotics of f(n) from exp(−20.5n) to exp(−20.5731n) [38] (see also [1, 12]).
Third, and most importantly, scaling exponent: Several works have observed that non-binary
matrices of the form [1ω0

1] just polarize faster than [110
1] [51, 29, 43]. Could it be that the

non-binary scaling exponents are smaller?

2 Modulation means translating digital signals to analog signals. A digital signal will be mapped to a
point on the complex plane, which represents a sine wave with certain amplitude and phase; such a
point is called a constellation point, the union of all points a constellation diagram.

APPROX/RANDOM 2022



17:4 Accelerating Polarization via Alphabet Extension

Consider [39]’s technique that uses [110
1] to polarize non-binary channels; their result has

an implication that non-binary channels’ scaling exponent is at least as good as binary
channels’. In this paper, we aim to answer the question of whether the former is strictly
better than the latter. By defining a toy model that contains a pair of BECs as a special
case and estimating the scaling exponent of [1ω0

1], we provide a proof of concept result that
an expansion in alphabet size does result in an improvement in scaling exponent. Recall that
BECs form a one-parameter family and that this property makes its scaling behavior easy
to analyze. This paper’s overall strategy is to show that the descendants of a quaternary
channel converge to an almost–one-parameter family; we then analyze the scaling behavior
of this family and conclude the following.

▶ Theorem 1 (main theorem). Treating a pair of BECs as a quaternary channel, the 2 × 2
matrix [1ω0

1] over F4 induces a scaling exponent less than 3.451. Here, ω2 + ω + 1 = 0.

This paper is organized as follows. Section 2 reviews the essence of polar code. Section 3
defines tetrahedral erasure channels (TECs), defines balanced TECs to be those that possess
some symmetry, and defines edge-heavy TECs to be those that will be polarized faster.
Section 4 defines serial combination and parallel combination that will be used to polarize
TECs. Section 5 shows that unbalanced TECs tend to become very close to balanced TECs,
so it suffices to consider the speed of polarization of the latter. Section 6 shows that edge-light
TECs tend to become very close to edge-heavy TECs, so it suffices to consider the speed
of polarization of the latter. Section 7 shows the speed of polarization of a generic TEC is
faster than the classical BEC.

2 Polar Code

Readers who are familiar with polar code can safely skip this section. This section serves
a simplified, high-level summary of classical polar code. More details are found in [47,
Chapter 2]. We assume BEC throughout the section.

Let X ∈ F2 be a random variable following the uniform distribution. Let Y ∈ F2 ∪ {?} be
a random variable with P{Y = X } = 1 − ε and P{Y = ? } = ε. Here, ε ∈ [0, 1] is called the
erasure probability. The pair (X|Y ) is called a binary erasure channel (BEC) and denoted by
BEC(ε). The entropy H(BEC(ε)) = H(X|Y ) = ε is defined through Shannon’s mean.

Let (X1|Y1) and (X2|Y2) be two iid copies of BEC(ε). Define the serial combination
BEC(ε) to be (X1 +X2|Y1, Y2). That is, what do we know about X1 +X2 when given Y1
and Y2? One sees that it is information theoretically equivalent to BEC(2ε− ε2). Define the
parallel combination BEC(ε)⊙• to be (X1|Y1, Y2, X1 +X2). That is, what do we know about
X1 when given Y1, Y2, and X1 +X2? One sees that it is information theoretically equivalent
to BEC(ε2).

Serial and parallel combinations apply recursively. A polar code of block length 2n

consists of a subset of strings I ⊆ { ,⊙•}n. In this code, a synthetic channel(
· · ·

(
(BEC(ε)c1)c2

)
· · ·

)cn

(1)

will be used to transmit useful information iff (c1, c1, . . . , cn) ∈ I. The code rate of this polar
code is |I|/2n. The exact miscommunication probability of this polar code is hard to find,
but has an upper bound of∑

I
H

((
· · ·

(
(BEC(ε)c1)c2

)
· · ·

)cn
)
.
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Figure 1 The Euler diagram of channels featured in this paper. The cross is the set of pairs
of BECs; it will converge to the set of balanced TECs (Section 5). The balanced TECs will then
converge to edge-heavy TECs (Section 6). And then edge-heavy TECs polarize faster than BECs.
Note that BECs are a one-parameter family of extreme BMS channels, hence the thick curve.

To define a good I, choose a function f(n) and collect all strings (c1, c1, . . . , cn) ∈ { ,⊙•}n

such that H(formula (1)) is less than f(n). The fact that the erasure probabilities undergo
simple evolutions ε 7→ 2ε− ε2 and ε 7→ ε2 motivates the following stochastic process: define
{Hn}n by initial value H0 := ε and evolution rule Hn+1 := 2Hn − H2

n or H2
n with equal

probability. Then the code rate |I|/2n coincides with P{Hn ⩽ f(n) }. The gap to capacity
g(n) := 1 −H0 − |I|/2n = 1 −H0 − P{Hn ⩽ f(n) } is thus motivated.

In a way, the study of polar code over BEC is the study of the cdf of Hn, with emphasis
put on the hard threshold at 1 − H0. Abusing the same logic, this paper is a study of a
stochastic process {Wn}n that lives in [0, 1]5 ∩ { p+ q + r + s+ t = 1 }, which happens to
have peculiar implications in coding theory.

3 A New Channel Model

We are to define a type of quaternary channels in this section. This should be the smallest
possible set of quaternary channels that meet the following: (a) it should model a pair of
BECs as a special case; and (b) it should be closed under pre-processing the input using
invertible linear transformations.

3.1 Tetrahedral erasure channel
Let the input alphabet be F2

2; and we assume the uniform input distribution throughout the
paper. For any input (x1, x2) ∈ F2

2, the output will be in (F2 ∪ {?})3 and assume one of the
following five erasure patterns:

(x1, x1 + x2, x2) with probability p;
(x1, ?, ?) with probability q;
(?, x1 + x2, ?) with probability r;
(?, ?, x2) with probability s;
(?, ?, ?) with probability t.

APPROX/RANDOM 2022



17:6 Accelerating Polarization via Alphabet Extension

Here we call p, q, r, s, t the subspace erasure probabilities and they sum to 1. Such a channel is
denoted by TEC(p, q, r, s, t). For brevity, we say a TEC outputs (x1, x2), outputs x1, outputs
x1 + x2, outputs x2, and outputs nothing to represent the five erasure patterns.

A TEC can be related to a tetrahedron whose vertices are (0, 0, 0) , (1, 1, 0) , (1, 0, 1) ,
and (0, 1, 1). Outputting (x1, x2) corresponds to the vertex (x1, x1 + x2, x2). Outputting x1
corresponds to the edge (x1, x1, 0) – (x1, 1 − x1, 1). Outputting nothing corresponds to the
tetrahedron per se. That is to say, a TEC takes a vertex as an input and outputs the same
vertex with probability p, outputs an edge attached to that vertex with probability q + r+ s,
and output the entire tetrahedron with probability t.

There is another way to interpret a TEC. Consider F4 and let ω be a primitive element
therein. A TEC takes x := x1ω + x2 ∈ F4 as an input and outputs x, tr(x), tr(ωx), tr(x/ω),
or nothing, each with probability p, q, r, s, and t. Here, tr : F4 → F2 is the field trace. It is
the matrix trace if we use the matrices [000

0], [100
1], [111

0], [011
1] to represent 0, 1, ω, 1 + ω ∈ F4.

TEC is not an ad hoc channel that we happen to know how to deal with. It relates to
other channels that have been discussed in literature.

▶ Proposition 2. The “q-ary erasure channel with erasure probability ε” [32, 36], when
q = 4, is a TEC of the form TEC( 1 − ε , 0 , 0 , 0 , ε ).

▶ Proposition 3. When transmitting two bits x1 and x2 through BEC(δ) and BEC(ε),
respectively, the outputs can be simulated by TEC( (1 − δ)(1 − ε), (1 − δ)ε, 0, δ(1 − ε), δε ).

The proofs are trivial. The propositions imply that any scaling exponent estimate for
TEC immediately generalizes to 4-ary erasure channels and BECs.

3.2 Channel functionals
The conditional entropy (hereafter entropy) of a TEC is defined by the following; it is meant
to be compatible with Shannon’s definition:

H(TEC(p, q, r, s, t)) := q + r + s

2 + t.

The edge mass of a TEC is defined by the following; it measures the “polarizability” of a
TEC:

E(TEC(p, q, r, s, t)) := q + r + s.

The Quetelet index of a TEC W is defined by

Q(W ) := E(W )
H(W )(1 −H(W )) .

Clearly, 0 ⩽ E(W ) ⩽ 2 min(H(W ), 1 −H(W )) and 0 ⩽ Q(W ) ⩽ 4. We call a TEC W edge-
heavy if Q(W ) ⩾ 2

√
7 − 4. Adolphe Quetelet invented the body mass index that determines

if a person is overweight or underweight. Here, we use Quetelet index to determine if a TEC
possesses too much edge mass (easy to polarize) or too little (hard to polarize).

A TEC is balanced if q = r = s. Put it another way, the edges of the tetrahedron weigh
the same. It is not hard to see that H and E uniquely determine a balanced TEC by

p = 1 −H(W ) − E(W )
2 , q = r = s = E(W )

3 , t = H(W ) − E(W )
2 .

The moment of inertia of a TEC is defined by

A(TEC(p, q, r, s, t)) := (q − r)2 + (r − s)2 + (s− q)2.

A TEC is balanced iff its moment of inertia vanishes. See also the “symmetric over the
product” condition in [10] and the “equidistance” condition in [42].
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4 Channel Synthesis

TECs can be serially combined or parallelly combined as in the theory of density evolution [27].

4.1 Serial combination

Let U := TEC(p, q, r, s, t) and V := TEC(p′, q′, r′, s′, t′) be two TECs. The serial combination
of U and V is defined to be the task of guessing (u1 +v1, u2 +v2) given the output of inputting
(u1, u2) into U and the output of inputting (v1, v2) into V . Let us go over all 25 erasure
patterns that are classified into five scenarios.

Scenario one – U outputs (u1, u2) and V outputs (v1, v2): Now we know (u1 + v1, u2 + v2)
in its entirety. This scenario happens with probability pp′.

Scenario two – U outputs u1 with or without u2, and V outputs v1 with or without
v2, but either u2 or v2 is missing: In this case, we can infer u1 + v1, but we cannot infer
u2 + v2. So this case feels like (x1, x2) := (u1 + v1, u2 + v2) underwent a TEC and only x1
went through. The probability that only x1 went through is pq′ + qq′ + qp′.

Scenario three – U outputs (u1, u2) or u1 + u2, and V outputs (v1, v2) or v1 + v2, but
scenario one does not happen: For this case, we know neither u1 + v1 nor u2 + v2. But we
can infer (u1 + v1) + (u2 + v2). So this case feels like (x1, x2) := (u1 + v1, u2 + v2) underwent
a TEC and only x1 + x2 went through. The probability that only x1 + x2 went through is
pr′ + rr′ + rp′.

Scenario four – U outputs u2 with or without u1, and V outputs v2 with or without v1,
but either u1 or v1 is missing: In this case, we can infer x2 := u2 + v2 but not x1 := u1 + v1.
So this case feels like x1 is erased. This scenario happens with probability ps′ + ss′ + sp′.

Scenario five – U outputs one bit (u1 or u1 + u2 or u2) and V outputs one bit (v1 or
v1 + v2 or v2) but the erasure patterns do not match; or at least one of U and V outputs
nothing: We cannot infer u1 + v1 because either u1 or v1 is missing. We cannot infer u2 + v2
because either u2 or v2 is missing. We cannot infer (u1 + v1) + (u2 + v2), either. So this case
feels like both x1 := u1 + v1 and x1 := u2 + v2 are erased, so is x1 + x2. The probability that
we learn nothing about (x1, x2) is (q + r + s)(q′ + r′ + s′) − qq′ − rr′ − ss′ + t+ t′ − tt′.

Note that these five scenarios correspond to the five erasure patterns in the definition
of TEC. Denote by U

⋆

V the serial combination of U and V ; it is a TEC with subspace
erasure probabilities

U

⋆

V := TEC( pp′, pq′ +qq′ +qp′, pr′ +rr′ +rp′, ps′ +ss′ +sp′, 1−the four to the left ).

4.2 Parallel combination

The parallel combination of U := TEC(p, q, r, s, t) and V := TEC(p′, q′, r′, s′, t′) is defined to
be the task of guessing (u1, u2) given (u1 + v1, u2 + v2) (the perfect output of U ⋆

V ), the
result of feeding (u1, u2) into U , and the result of feeding (v1, v2) into V .

Denote by U ⊙•⋆V the parallel combination of U and V . One can go over its erasure
scenarios like the previous subsection does. For instance, if U outputs u1 and V outputs
v1 + v2, then we can infer v1 (using u1 and u1 + v1), followed by v2 (using v1 and v1 + v2),
and finally u2 (using v2 and u2 +v2); and hence we can completely recover u1 and u2. Details
omitted, it can be shown that U ⊙•⋆V is a TEC with subspace erasure probabilities

U⊙•⋆V := TEC( 1−the four to the right, tq′ +qq′ +qt′, tr′ +rr′ +rt′, ts′ +ss′ +st′, tt′ ).
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Note that there is a duality between TEC(p, q, r, s, t) and TEC(t, s, r, q, p) that keeps E
as is, maps H to 1 −H, and swaps parallel and serial combinations. The duality grants us
the convenience of proving half of a theorem and the other half follows by symmetry.

4.3 Mori–Tanaka’s twisting kernel
A 2 × 2 polarization kernel K over F4 is defined with a “twist” as follows: For a pair of
inputs u, v ∈ F4, let K be the linear transformation that reads (u, v) 7−→ (u + ωv, v) or,
equivalently,

[
u v

]
7−→

[
u v

] [
1 0
ω 1

]
.

This kernel was studied by Mori–Tanaka [33] and is shown to be polarizing. If we treat F4 as
F2

2, then K reads
(

(u1, u2) , (v1, v2)
)

7−→
(

(u1 + v1 + v2, u2 + v1) , (v1, v2)
)

or, equivalently,

[
u1 u2 v1 v2

]
7−→

[
u1 u2 v1 v2

] [
1 0 0 0
0 1 0 0
1 1 1 0
1 0 0 1

]
,

where u1, u2, v1, v2 ∈ F2. The kernel K combines two TECs U and V to synthesize U ⋆ (V ω)
and U ⊙•⋆(V ω), where V ω is the channel that multiplies the input by ω before feeding it into
V . For brevity, W ⋆ (Wω) and W ⊙•⋆(Wω) are denoted by W and W⊙• , respectively.

Multiplying a TEC by ω behaves like a rotation of order 3 (after all, ω3 = 1 and it is
rotating the tetrahedron). It maps TEC(p, q, r, s, t) to TEC(p, s, q, r, t). If W is balanced,
rotation does not alter it: W = Wω. If it is not balanced, then the rotation helps mis-match
q, r, s so that a large probability is paired with a small probability. More precisely,

TEC(p, q, r, s, t) := TEC( p2, ps+sq+qp, pq+qr+rp, pr+rs+sp, 1−the other four ),

TEC(p, q, r, s, t)⊙• := TEC( 1−the other four, ts+sq+qt, tq+qr+rt, tr+rs+st, t2 ).

Twisting makes it easier to reduce q, r, and s and redistribute the mass to p and t.

4.4 Channel process
For a TEC W , we call W the serial-child of W and W⊙• the parallel-child of W . Together,
they are the children of W . The descendants of W are the children of W together with the
descendants of the children of W . The nth-generation descendants of W are the (n− 1)th-
generation descendants of the children of W ; the 0th is W itself.

When W is understood from the context, let W0 be W . For n a positive integer, let Wn

be a random child of Wn−1 with equal probability.
The common strategy used to estimate the scaling exponent concerns a concave function

ψ : [0, 1] → R such that ψ(0) = ψ(1) = 0 and is positive elsewhere. With ψ, one finds a
0 < µ < ∞ such that

ψ(H(W )) + ψ(H(W⊙• ))
2ψ(H(W )) ⩽ 2−1/µ

With this “eigenvalue,” a routine argument [47, Sections 5.8–5.10] will show that

P
{
H(Wn) < exp

(
−en1/3) }

> 1 −H(W0) − 2−n/µ.
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5 Unbalanced TEC Becomes Balanced

In this section, we argue that TECs undergoing the polarization process tend to become
more balanced than before. We do so by showing that the moments of inertia are decreasing.

▶ Theorem 4 (uniform loss of inertia). A(W ), A(W⊙• ) ⩽ A(W )(1 − A(W )/3) for any
TEC W .

A proof of the theorem is in Appendix A.1 of the full version [14]. Now the recurrence
relation A(Wn+1) ⩽ A(Wn)(1 −A(Wn)/3) is equivalent to A(Wn+1) −A(Wn) ⩽ −A(Wn)2/3
and analogous to the ordinary differential equation f ′(n) ⩽ −f(n)2/3. Solving it, we get
f(n) = O(1/n); analogously, A(Wn) = O(1/n).

▶ Corollary 5 (ultimate loss of inertia). Fix a TEC W , then A(Wn) = O(1/n) as n → ∞.

Another way to look at it is the average decay of A(Wn).

▶ Proposition 6 (average loss of inertia). A(W ) +A(W⊙• ) ⩽ A(W ) for any TEC W .

A proof of the proposition is in Appendix A.2 of the full version [14]. By the proposition,
A(W ) ⩾ A(W ) +A(W⊙• ) ⩾ A(W ) +A(W ⊙• ) +A(W⊙• ) +A(W⊙• ⊙• ) ⩾ A(W ) · · · .
Hence the expectation of A(Wn) over all Wn is at most A(W )/2n.

Corollary 5 and Proposition 6 imply that any unbalanced TEC will promptly become very
similar to a balanced one.3 The speed of polarization of unbalanced TECs is thus dominated
by that of balanced TECs. We now turn to the analysis of the polarization speed of balanced
TECs.

6 Balanced TECs Hoard Edge Mass

In this section, we argue that the Quetelet index Q(Wn) := E(Wn)/H(Wn)(1 −H(Wn)) of a
sufficiently deep descendant is about 1.6. Put another way, there is a “trap” that constrains
the relation between E(Wn) and H(Wn).

Recall that a balanced TEC W is edge-heavy if Q(W ) ⩾ 2
√

7−4. Let α := 2
√

7−4 ≈ 1.3.

▶ Theorem 7 (trapping region). If W is balanced and edge-heavy, then its children are
edge-heavy.

A proof of the theorem is in Appendix B.1 of the full version [14]. The theorem implies
that all descendants of an edge-heavy are edge-heavy. For a TEC that is not edge-heavy, its
descendants will still become “edge-heavier” by the following theorem.

▶ Theorem 8 (attraction toward the trap). Fix any ε > 0; choose δ := 3ε/8. Let W be
any balanced TEC. We have that Q(W ) ⩽ α− ε implies Q(W ) ⩾ Q(W )

(
1 +H(W )δ

)
and

Q(W⊙• ) ⩾ Q(W )
(
1 + (1 −H(W ))δ

)
.

A proof of the theorem is in Appendix B.2 of the full version [14]. It is clear that the
factors H(W ) and 1 − H(W ) before δ slow down the rate at which Q(Wn) approaches
2
√

7 − 4, especially when H(W ) is close to 0 or 1, respectively. These factors cannot be
optimized away. To see why, suppose that H(W ) = x ≈ 1 and E(W ) = y ≈ 0. Then

3 Note that Corollary 5 is a weak statement about every single descendant of W , while Proposition 6
implies a strong statement about A(Wn) averaged over all nth-generation descendants. Only Corollary 5
will be used later.
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H(W⊙• ) is about x2 + O(y2) and E(W⊙• ) is about 2xy + O(y2). Hence Q(W⊙• ) is about
2xy/x2(1 − x2) ≈ y/x(1 − x) = Q(W ). That being the case, we would like to add that TECs
whose Quetelet index can hardly be improved are already polarized, so we shall not worry
about them. Besides, we can prove uniform attraction using Theorem 8.

▶ Theorem 9 (uniform attraction). Fix any ε > 0. For any balanced TEC W such that
Q(W ) ⩽ α − ε, there exists an integer m > 0 such that Q(Wn) ⩾ Q(W )(1 + ε/8) for all
n ⩾ m.

A proof of the theorem is in Appendix B.3 of the full version [14]. Uniform attraction
means that every child is at least making some positive progress toward the trap. Small
steps of the descendants accumulate to a giant leap of the family.

▶ Corollary 10 (ultimate attraction). For any ε > 0 and any balanced TEC W such that
Q(W ) > 0, there exists an integer m > 0 such that Q(Wn) ⩾ α− ε for all n ⩾ m.

Proof. Apply the uniform attraction theorem repeatedly. Every application improves the
Quetelet index by a factor of 1 + (α−Q(Wn))/8. So after a finite number of applications
the Quetelet index can be made ⩾ α− ε. ◀

To summarize this and the previous section, we have two trends: unbalanced TECs tend
to become balanced; and “edge-light” TECs tend to become edge-heavy.

The following proposition is a bound on Quetelet index in the opposite direction.

▶ Proposition 11 (attraction on the other side). Let W be a balanced TEC with Q(W ) ⩽ 2.
Then Q(W ) ⩽ 2 and Q(W⊙• ) ⩽ 2.

Some comments on how to prove this proposition is in Appendix B.4 of the full version [14].
The following proposition gives a tighter trapping region than Theorem 8 and Proposi-

tion 11 do. A proof is omitted but similar to those of Theorem 8 and Proposition 11. For
the optimal trapping region, see the discussion in Appendix D of the full version [14].

▶ Proposition 12. Let f(x) := x(1−x)(1.66−0.38x(1−x)). Then E(W ) ⩽ f(H(W )) implies
E(W ) ⩽ f(H(W )) and E(W⊙• ) ⩽ f(H(W⊙• )). Let g(x) := x(1 − x)(2 − 2x(1 − x)/3).
Then E(W ) ⩾ g(H(W )) implies E(W ) ⩾ g(H(W )) and E(W⊙• ) ⩾ g(H(W⊙• )).

7 Edge-heavy TECs Polarize Faster

Let W be any balanced TEC with a fixed H(W ) = x and a variable E(W ) = y. Then
H(W ) = 2x− x2 + y2/12 is increasing in y and H(W⊙• ) = x2 − y2/12 is decreasing in y.

The monotonicity has two applications. Application one: If we know too little to lower
bound Q(W ), we will upper bound H(W⊙• ) using x2. In this case, the speed of polarization
is at least µ ≈ 3.627, the number induced by the standard polar code. Application two:
If we know Q(W ) ⩾ α, we will upper bound H(W⊙• ) using x2 − (αx(1 − x))2/12. This
time, H(W⊙• ) and H(W ) are more separated so the speed of polarization is strictly better
than µ ≈ 3.627. Any positive α, not necessarily 2

√
7 − 4, can improve the scaling. This is

demonstrated by the following lemma that uses 9/7 in place of α.

▶ Lemma 13 (eigenfunction and eigenvalue). Let ψ(x) := (x(1 − x))0.697(5 −
√
x(1 − x)).

For balanced TECs with Q(W ) ⩾ 9/7,

ψ(H(W )) + ψ(H(W⊙• ))
2ψ(H(W )) < 0.818.
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Comments on how to verify the lemma is in Appendix C of the full version [14].

▶ Theorem 14 (main theorem). Consider a pair of BECs treated as a TEC, or consider any
TEC where pqrst > 0. The 2 × 2 matrix [1ω0

1] over F4 induces a scaling exponent less than
3.451.

Proof. Two iid copies of BEC(ε) can be seen as W := TEC( (1−ε)2, (1−ε)ε, 0, ε(1−ε), ε2 ).
If ε is 0 or 1, there is nothing to prove. Suppose 0 < ε < 1, then both W and W⊙• have
five positive subspace erasure probabilities. (That is, their “p, q, r, s, t” are all positive). The
descendants of a TEC with five positive subspace erasure probabilities satisfy the same
property. In particular, all descendants have positive Quetelet index.

Let W be a TEC whose descendants all have positive Q. By Corollary 5, it takes W a
finite number of generations to become very similar to a balanced TEC. That is, for any
δ > 0 there exists an m > 0 such that A(Wm) < δ. Although Wn is never balanced, what
we proved about balanced TECs still hold for “almost-balanced” TECs up to a diminishing
error term. So we may proceed as if Wn is balanced for n ⩾ m.

By Corollary 10, it takes another finite number of generations to become “almost edge-
heavy.” In particular, there exists an m′ such that Q(Wm′) ⩾ 9/7 (note that 9/7 ≈ 1.286
and 2

√
7 − 4 ≈ 1.291).

Before the m′th generation, the eigenvalues of the form

ψ(H(Wn )) + ψ(H(W⊙•
n ))

2ψ(H(Wn))

was less than 1. After the m′th generation, the eigenvalues of said form will be less than
0.818 < 2−1/3.451, by Lemma 13. As n goes to infinity, 0.818 dominates the overall scaling
behavior. Hence W , and hence any BEC, enjoys scaling exponent less than 3.451. ◀

In the abstract, we claim that the scaling exponent of [1ω0
1] over TECs (and hence BECs)

is < 3.328. This number will be derived in Appendix D of the full version [14] with more
intense numerical calculations. In particular, there is a new trapping region that is bounded
by two linear splines and is significantly smaller than the region bounded by ax(1 − x) for
a = 2

√
7 − 4 and 2; the attraction toward the new trap is witnessed by sampling TECs with

low edge-mass. In Appendix E of the full version [14], we also examine the actual values of
H(Wn) and its asymptotic behavior aligns with the estimate 3.328.

8 Conclusions

In this paper, we argue that [1ω0
1] polarizes BECs faster than [110

1] does. We first show that a
pair of BECs will be transformed into balanced TECs. We then show that balanced TECs
will be transformed into edge-heavy TECs. Finally, we show that edge-heavy TECs assume
a better scaling exponent.

Our rigorous overestimate of the scaling exponent is 3.451; there is another overestimate
of 3.328 with strong numerical evidence. Compared to Arıkan’s 2 × 2 matrix with µ ≈ 3.627,
Fazeli–Vardy’s 8 × 8 matrix with µ ≈ 3.577 [16], Trofimiuk–Trifonov’s 16 × 16 matrix with
µ ≈ 3.346 [46], and Yao–Fazeli–Vardy’s 32 × 32 matrix with µ ≈ 3.122 [50], our result
suggests that one should consider expanding the alphabet size prior to enlarging the matrix
size. More precisely, the rigorous estimate is analogous to a 15 × 15 binary matrix; the more
accurate estimate is analogous to a 20 × 20 binary matrix (see Figure 2).
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Figure 2 Horizontal axis: matrix size; vertical axis: scaling exponent of the best known matrix
[16, 50, 46, 45, 5]. A matrix size will be skipped if no known matrix outruns all smaller matrices.
Underlying channel is BEC. Our estimates 3.451 and 3.328 are marked as dotted lines.
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We study the problems of adjacency sketching, small-distance sketching, and approximate distance
threshold (ADT) sketching for monotone classes of graphs. The algorithmic problem is to assign
random sketches to the vertices of any graph G in the class, so that adjacency, exact distance
thresholds, or approximate distance thresholds of two vertices u, v can be decided (with probability
at least 2/3) from the sketches of u and v, by a decoder that does not know the graph. The goal is
to determine when sketches of constant size exist.

Our main results are that, for monotone classes of graphs: constant-size adjacency sketches exist
if and only if the class has bounded arboricity; constant-size small-distance sketches exist if and only
if the class has bounded expansion; constant-size ADT sketches imply that the class has bounded
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1 Introduction

A common type of problem, with many theoretical and practical uses in computer science, is
to assign short labels to each of n elements of a space, so that certain “local” information
can be deduced from the labels. The Boolean hypercube graph of size n = 2d, with vertex
set {0, 1}d and edges (x, y) where x, y ∈ {0, 1}d differ on exactly 1 coordinate, has the trivial
but useful property that one can assign to each vertex x ∈ {0, 1}d a label of d = log n bits,
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18:2 Sketching Distances in Monotone Graph Classes

so that any function f(x, y) on vertex pairs can be decided given only the labels of x and y.
Sometimes, the label size can be improved drastically by allowing randomized labels, which
we refer to as sketches. For example:
1. Adjacency in the hypercube can be computed (with probability at least 2/3) from sketches

of constant size (which follows from the Hamming distance communication protocol [42]);
2. Distinguishing between dist(x, y) ≤ r and dist(x, y) > r can be done with sketches of size

depending only on r (which also follows from the Hamming distance protocol);
3. Distinguishing between dist(x, y) ≤ r and dist(x, y) > αr (for constant α > 1) can be

done with sketches of size independent of r and n [51].
We call these adjacency sketches, small-distance sketches, and approximate distance threshold
(ADT) sketches, respectively (see Section 1.2 for formal definitions). It is natural to ask which
classes of graphs, other than the hypercubes, admit similarly efficient sketches. Motivated by
a connection between communication complexity, sketching, and graph labelling schemes,
recent work [40] asked which hereditary classes of graphs admit constant-size adjacency
sketches, and also gave some examples of constant-size (i.e. independent of the number of
vertices) small-distance sketches, including for planar graphs, answering a question of [38].
Sketches for deciding dist(x, y) ≤ r vs. dist(x, y) > αr are well-studied, and characterizing
the metrics which admit this type of sketch is a well-known open problem [62, 10, 46, 61],
but little is known about the natural case of path-distance metrics in graphs.

We study the relationships between these three types of sketches for the important special
case of monotone classes of graphs. A class of graphs is a set of (labelled1) graphs closed
under isomorphism. It is hereditary if it is closed under taking induced subgraphs, and
monotone if it is closed under taking subgraphs. Monotone graph classes are ubiquitous:
typical examples include minor-closed classes, graphs avoiding some subgraph H, or graphs
with bounded chromatic number.

In this paper, we completely determine the monotone graph classes which admit constant-
size adjacency sketches and constant-size (i.e. independent of the number of vertices) small-
distance sketches, and show that constant-size (i.e. independent of the number of vertices and
the parameter r) ADT sketches imply the existence of constant-size small-distance sketches.
We show that the classes which admit constant-size adjacency sketches are exactly the classes
with bounded arboricity, and the classes which admit constant-size small-distance sketches
are exactly the classes with bounded expansion2. Classes which admit constant-size ADT
sketches must also have bounded expansion, and any class with constant expansion (i.e. any
proper minor-closed class) has a constant-size ADT sketch, but on the other hand a class
can have expansion growing arbitrarily slowly and yet does not admit a constant-size ADT
sketch. We describe these results in more detail below.

1.1 Motivation & Prior Work
Labelling schemes and sketches are important primitives for distributed computing, stream-
ing, communication, data structures for approximate nearest neighbors, and even classical
algorithms (see e.g. [47, 30, 63, 60, 20], and [4, 44, 10, 61, 11] and references therein). As
such, a great deal of research has been done on finding other spaces having nice sketching
and labelling properties.

1 Standard terminology is that a labelled n-vertex graph is one with vertex set [n]; not to be confused
with informative labelling schemes.

2 We mean bounded expansion in the sense of sparsity theory [57], which is distinct from expansion in
the context of expander graphs.
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One direction of research investigates the metric spaces which admit approximate distance
threshold (ADT) sketches, of the third type described above, as defined in [62]. This is
a well-known open problem in sublinear algorithms (see e.g. [10, 46, 61]). Here, n points
X ⊆ X in a metric space (X , dist), should be assigned random sketches sk : X → {0, 1}∗ such
that dist(x, y) ≤ r or dist(x, y) ≥ αr can be determined (with probability at least 2/3) from
sk(x) and sk(y). The goal is to obtain sketches whose size depends only on α. This problem
is fairly well-understood when the metric is a norm: there is a constant-size sketch for the
ℓp (quasi-)norm, for any 0 < p ≤ 2 [44], so any metric that can be embedded into such an
ℓp is sketchable; conversely, sketching a norm is equivalent to embedding it into ℓ1−ε [11].
Outside of norms, the problem is less well-understood: there are sketchable metrics that are
not embeddable into ℓ1−ε [48].

Another direction of research investigates the classes F of graphs that admit (deterministic)
labelling schemes for various functions, generally called informative labelling schemes [60].
The most well-studied labelling schemes are for adjacency, introduced in [47, 55]. The main
open problem is to identify the hereditary classes of graphs that admit adjacency labelling
schemes of size O(log n). A solution was suggested in [47] and later conjectured in [63], but
recently refuted in a breakthrough of [41], leaving the problem wide open. Randomized
adjacency labelling (i.e. adjacency sketching) was studied in [24, 38, 40]. It was observed in
[38, 40] that a constant-size sketch implies an O(log n) labelling scheme, as desired in the
above open problem, and it was further observed in [40] that the set of hereditary graph
classes which admit constant-size adjacency sketches is equivalent to the set of Boolean-valued
communication problems that admit constant-cost public-coin protocols, whose structure is
unknown [37]. This raises the following question, which was the main motivation of [40]:

▶ Question 1. Which hereditary classes of graphs admit constant-size adjacency sketches?

Perhaps the next most commonly studied graph labelling problem is distance labelling [31],
where the goal is to compute dist(x, y) from the labels (see e.g. [7, 9, 25, 32]). Intermediate
between distance and adjacency labelling is the decision version of distance labelling: for
given r, decide whether dist(x, y) ≤ r from the labels. We call this small-distance labelling,
following the terminology of [6, 29]. For r = 1, this coincides with adjacency labelling. The
natural generalization of constant-size adjacency sketches is to ask for small-distance sketches
whose size depends only on r; it was shown in [38] that such sketches exist for trees, and
in [40] that they exist for any Cartesian product graphs and any stable3 class of bounded
twin-width (including, for example, planar graphs or any proper minor-closed class; see [27]).

▶ Question 2. Which hereditary classes of graphs admit small-distance sketches whose size
depends only on r?

It is common to weaken distance labelling to approximate distance labelling [28], where the
goal is to approximate dist(x, y) up to a constant factor (see e.g. [65, 1, 8]). The decision
version is to distinguish, for a given r, between dist(x, y) ≤ r and dist(x, y) > αr; we will
call this problem α-approximate distance threshold (ADT) labelling and sketching. This is a
similar formulation as the distance sketching problem mentioned above, with the n points
from the metric space X being replaced with a size n graph from a class F . Despite significant
interest in distance sketching and labelling, the only prior work explicitly relating the two, or
studying randomized ADT labelling, appears to be the unpublished manuscript [10] (although
there is extensive literature on the related problem of embedding graph metrics into normed

3 See [40] for a discussion of stability, which is not necessary for the current paper.
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18:4 Sketching Distances in Monotone Graph Classes

spaces [54, Chapter 15]; embedding planar graphs into ℓ1 with constant distortion is a major
open problem [35]). This raises the following question, which is a special case of the open
problem of identifying sketchable metrics:
▶ Question 3. Which classes of graphs admit constant-size ADT sketches?
It holds by definition (see definitions below) that a small-distance sketchable class F is
adjacency sketchable, but the relationships between other types of sketching are otherwise
unclear, a priori. It seems reasonable to suspect that these three types of sketching require
similar conditions on the graph class F ; so we ask:
▶ Question 4. What is the relationship between adjacency, small-distance, and ADT sketch-
ing?

1.2 Our Results
In this paper, we resolve Questions 1, 2, and 4 for monotone classes of graphs, and make
progress towards Question 3. The sketches we obtain usually do not assume that the classes
under consideration are monotone, but our lower bounds crucially rely on this assumption.
We first formally define the main three types of sketchability that we are concerned with.
We will generalize these definitions in Section 2.2. For a graph class F , we say:
1. F admits an adjacency sketch of size s(n) if there is a function D : {0, 1}∗×{0, 1}∗ → {0, 1}

such that ∀G ∈ F with size n, there is a random function sk : V (G) → {0, 1}s(n) satisfying

∀x, y ∈ V (G) : Pr [D(sk(x), sk(y)) = 1 ⇐⇒ x, y are adjacent] ≥ 2/3 .

F is adjacency sketchable if it admits an adjacency sketch of constant size.
2. F admits a small-distance sketch of size s(n, r) if for every r ∈ N there is a function

Dr : {0, 1}∗ × {0, 1}∗ → {0, 1} such that ∀G ∈ F with size n, there is a random function
sk : V (G) → {0, 1}s(n,r) satisfying

∀x, y ∈ V (G) : Pr [Dr(sk(x), sk(y)) = 1 ⇐⇒ distG(x, y) ≤ r] ≥ 2/3 .

F is small-distance sketchable if it admits a small-distance sketch of size independent of
n.

3. For constant α > 1, F admits an α-ADT sketch of size s(n) if for every r ∈ N there is a
function Dr : {0, 1}∗ × {0, 1}∗ → {0, 1} such that ∀G ∈ F with size n, there is a random
function sk : V (G) → {0, 1}s(n) satisfying

∀x, y ∈ V (G) : dist(x, y) ≤ r =⇒ Pr [Dr(sk(x), sk(y)) = 1] ≥ 2/3
dist(x, y) > αr =⇒ Pr [Dr(sk(x), sk(y)) = 0] ≥ 2/3 .

For a constant α > 1, we say that F is α-ADT sketchable if F admits an α-ADT sketch
with size independent of n. F is ADT sketchable if there is a constant α > 1 such that F
is α-ADT sketchable.

Our results imply the following hierarchy, which answers Question 4 for monotone classes of
graphs. Let ADJ be the adjacency sketchable monotone graph classes, SD the small-distance
sketchable monotone graph classes, and ADT the ADT sketchable monotone graph classes.
Then

ADT ⊊ SD ⊊ ADJ .

That SD ⊆ ADJ follows by definition, and SD ̸= ADJ is witnessed by the arboricity-2 graphs
(as observed in [38]). Our contribution to this hierarchy is ADT ⊊ SD (which does not
necessarily hold for non-monotone classes), a complete characterization of the sets SD and
ADJ, and some results towards a characterization of ADT.
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1.2.1 Adjacency Sketching
We resolve Question 1 for monotone classes by showing that they are adjacency sketchable if
and only if they have bounded arboricity. A graph G has arboricity k if its edges can be
partitioned into k forests. A class F has arboricity k if all graphs G ∈ F have arboricity at
most k. If there exists some constant k such that F has arboricity k, we say F has bounded
arboricity.

▶ Theorem 1.1. Let F be a monotone class of graphs. Then F is adjacency sketchable if
and only if F has bounded arboricity.

All proofs for adjacency sketching are in Section 3. Using standard random hashing and
the adjacency labelling scheme of [47], it is easy to see that any class of bounded arboricity
is adjacency sketchable; this was stated explicitly in [38, 40] (the latter giving slightly
improved sketch size). We prove the converse for monotone classes (which does not hold
for hereditary classes in general [40]). We use the probabilistic method to find a subgraph
of small discrepancy in any class of unbounded arboricity, inspired by the recent proof of
[36, 37] that refuted the main conjecture of [40], and we find that the subgraphs of the
hypercube are an easier-to-define counterexample to the conjecture of [40]).

It is interesting that the hashing-based sketch uses randomization only to compute
Equality subproblems; i.e. it can be simulated by a constant-cost deterministic commu-
nication protocol with access to a unit-cost Equality oracle. This type of sketch is called
equality-based in [40]. Equality-based sketches imply some structural properties of the graph
class, such as the strong Erdős-Hajnal property [37]. Recent work has studied the power of
the Equality oracle and found that it does not capture the full power of randomization
[15, 37, 40]; in particular, the Boolean hypercubes (and any Cartesian product graphs) are
adjacency sketchable, but not with an equality-based sketch [37, 40]. Our result shows that
Equality captures the power of randomization for sketching monotone classes of graphs. In
fact, it is only necessary to compute a disjunction of equality checks, which we think of as
the simplest possible type of sketch.

We remark that sketches (especially small-distance or ADT sketches) which compute a
disjunction of equality checks can be used to obtain locality-sensitive hashes, a widely-used
algorithmic tool introduced in [45]. Almost all of our positive results are of this type. See
Remark 2.6.

1.2.2 Small-Distance Sketching
We answer Question 2 by proving that the monotone graph classes that are small-distance
sketchable are exactly those with bounded expansion (as in [57]; see our Definition 2.2).
Informally, bounded expansion means that the edge density of a graph increases only as a
function of r when contracting subgraphs of radius r into a single vertex. Many graph classes
of theoretical and practical importance have bounded expansion, including bounded-degree
graphs, proper minor-closed graph classes, and graphs of bounded genus [57], along with
many random graph models and real-world graphs [17].

To state our theorem, we briefly describe another type of sketch that generalizes small-
distance sketching, called first-order sketching. A graph class F is first-order sketchable if
any first-order (FO) formula ϕ(x, y) over the vertices and edge relation of the graph (with
two free variables whose domain is the set of vertices) is sketchable (see Section 2.2). This
type of sketch was introduced in [40] and generalizes small-distance sketching, along with
(for example) testing whether vertices x, y belong to a subgraph isomorphic to some fixed
graph H. We show that, for monotone graph classes, first-order sketchability is equivalent to
small-distance sketchability. All proofs for small-distance sketching are in Section A.

APPROX/RANDOM 2022
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▶ Theorem 1.2. Let F be a monotone class of graphs. Then the following are equivalent:
1. F is small-distance sketchable;
2. F is first-order sketchable;
3. F has bounded expansion.
The implications (3) =⇒ (2) =⇒ (1) do not require monotonicity. (2) =⇒ (1) holds
by definition. The proof of (3) =⇒ (2) is straightforward, but relies on a structural result
of [26] whose proof is highly technical. We actually get the stronger result that any first-order
transduction of a class with bounded expansion is first-order sketchable, which improves the
results of [40]. It was proved in [40], using structural results of [27], that any stable class
of bounded twin-width is first-order sketchable. A stable class has bounded twin-width if
and only if it is a transduction of a class of bounded sparse twin-width [27]. Every class of
bounded sparse twin-width has bounded expansion, but the converse does not hold (e.g. for
cubic graphs) [14], so our result generalizes the result of [40]. It essentially follows from using
the structural results of [26] instead of [27].

Our proof of (1) =⇒ (3) (Section A.4) requires our proof of Theorem 1.1 and some
results in sparsity theory [50, 57]. We actually prove a stronger statement: for any monotone
class F , the existence of a sketch for deciding dist(x, y) ≤ r vs. dist(x, y) > 5r − 1, with size
depending only on r, implies bounded expansion. Under a conjecture of Thomassen [64],
we can replace the constant 5 with any arbitrarily large constant; see the remark after
Conjecture A.17. Note that, even with a constant-factor gap between distance thresholds,
this problem is distinct from ADT sketching, since the small-distance sketch size is allowed
to depend on r. If we could replace the constant 5 with any arbitrarily large constant, this
would immediately imply ADT ⊆ SD.

We also present a more direct proof of (3) =⇒ (1), without going through first-order
sketching, that allows for quantitative results. Going through first-order sketching (as was
also done in [40]) proves the existence of a function f(r) bounding the sketch size, without
giving it explicitly. We obtain explicit bounds in terms of the weak coloring number [57],
written as wcolr(F) for any r ∈ N (Definition A.2). Using known bounds on the weak
coloring number [66], we obtain the following corollary. As was the case for adjacency
sketching, we observe that this proof (unlike the more general one for first-order sketching)
produces sketches that only use randomization to compute a disjunction of Equality checks,
establishing that this extremely simple type of sketch suffices for monotone classes.

▶ Corollary 1.3. Any graph class F with bounded wcolr(F) admits a small-distance sketch
of size O(r + wcolr(F) log(wcolr(F))). In particular, planar graphs admit a small-distance
sketch of size O(r3 log r), and the class of Kt-minor-free graphs admits a small-distance
sketch of size O(rt−1 log r). Furthermore, planar graphs admit a small-distance labelling
scheme of size O(r3 log n) and Kt-minor-free graphs admit a small-distance labelling scheme
of size O(rt−1 log n).

1.2.3 Approximate Distance Sketching
In light of Theorem 1.2, a reasonable question is whether ADT sketching for monotone classes
is also determined by expansion. Our first result is that bounded expansion is necessary. All
proofs on approximate distance sketching are omitted here due to space limitations, but can
be found in the full version of the paper.

▶ Theorem 1.4. If a monotone class F is ADT sketchable, then it has bounded expansion.
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Combined with Theorem 1.2, this proves ADT ⊆ SD. Our proof uses a recent and fairly
involved result in extremal graph theory [53], along with the theory of sparsity [57], to show
that an α-ADT sketch for a monotone class F of unbounded expansion could be used to get
a constant-size sketch for deciding dist(x, y) ≤ 1 vs. dist(x, y) > α in arbitrary graphs, which
(as we show) is a contradiction.

We are then concerned with the converse. We show that the class of max-degree 3 graphs,
which has expansion exponential in r [56], is not ADT sketchable. After proving this theorem,
we learned of an unpublished result [10] which proves a Θ(log(n)/α) bound for one-way
communication of the α-ADT problem on degree-3 expander graphs. This could be used
in place of our theorem to get the same qualitative (constant vs. non-constant) results, but
not the quantitative bound: note that communication complexity cannot give sketching or
labelling lower bounds better than Θ(log n).

▶ Theorem 1.5. For any α > 1, any α-ADT sketch for the class of graphs with maximum
degree 3 has size at least Ω(n

1
4α −ε), for any constant ε > 0.

This establishes that ADT ̸= SD (and negatively answers open problem 2 of [2] about
approximate distance labels for bounded-degree graphs, which [10] does not). But max-
degree 3 graphs have exponential expansion. Smaller bounds on the expansion are associated
with structural properties: for example, in monotone classes, polynomial expansion is
equivalent to the existence of strongly sublinear separators [19]. One may then wonder if
smaller bounds on the expansion suffice to guarantee ADT sketchability. We prove that
this is not the case for two natural examples: subgraphs of the 3-dimensional grid (with
polynomial expansion [57]), and subgraphs of the 2-dimensional grid with crosses (with linear
expansion [18]) are not ADT sketchable. For this we require our Theorem 1.5.

▶ Proposition 1.6. For the class of subgraphs of the 3-dimensional grid (the Cartesian
product of 3 paths), and the class of subgraphs of the 2-dimensional grid (the strong product
of 2 paths), an α-ADT sketch requires size at least nΩ(1/α).

We strengthen this result by showing that one can obtain monotone classes of graphs with
expansion that grows arbitrarily slowly, which are not ADT sketchable.

▶ Theorem 1.7. For any function ρ tending to infinity, there exists a monotone class of
expansion r 7→ ρ(r) that is not ADT sketchable. Moreover, for any ε > 0, there exists a
monotone class F of expansion r 7→ O(rε), such that, if F admits an α-ADT sketch of size
s(n), then we must have s(n) = nΩ(1/α).

We conclude with a brief discussion of upper bounds for ADT sketching. A number of
concepts have been introduced in the literature that can be used to obtain ADT sketches,
including sparse covers [12] and padded decompositions [49].

Using the sketches obtained from sparse covers, combined with results of [23] on sparse
covers (based on [49, 22]), we obtain the following, which complements our Theorem 1.7;
note that the graph classes with constant expansion are exactly the proper minor-closed
classes [57].

▶ Corollary 1.8. For any t ≥ 4, the class of Kt-minor-free graphs has a O(2t)-ADT sketch
of size O(t2 log t). The sketch is equality-based and has one-sided error. As a consequence,
every monotone class of constant expansion is ADT sketchable.
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It is also relatively straightforward to obtain ADT sketches from padded decompositions,
with an interesting difference. These sketches may not have one-sided error and, unlike all
other positive examples of sketches in this paper, they may not be equality-based. On the
other hand, they are extremely small. We can use constructions of padded decompositions
due to [52, 3] to obtain the following remarkable corollary:

▶ Corollary 1.9. For any t ≥ 4, the class of Kt-minor-free graphs has an O(t)-ADT sketch
of size 2. For g ≥ 0, the class of graphs embeddable on a surface of Euler genus g has an
O(log g)-ADT sketch of size 2.

1.3 Discussion & Open Problems
The main problem left open by this paper is Question 3 for monotone classes of graphs;
we have shown that a constant bound on the expansion implies ADT sketchability, while
arbitrarily small non-constant bounds do not, but this does not rule out a monotone, ADT
sketchable class with non-constant expansion.

We have examples showing that ADT sketching does not imply small-distance sketching,
in general. But our examples are not even hereditary. Is there a hereditary class that is ADT
sketchable, but not small-distance or adjacency sketchable?

Our Theorem 1.2 shows that bounded expansion implies first-order sketchability, and
that for monotone classes the converse also holds. We showed more generally that classes of
structurally bounded expansion are first-order sketchable. To extend our study of sketchability
beyond monotone classes, it would be interesting to investigate whether the converse of
this statement holds: does first-order sketchability of a hereditary class imply structurally
bounded expansion?

In the preprint of this paper, we asked whether the class of subgraphs of hypercubes
is a counterexample to the Implicit Graph Conjecture (IGC), which asks for deterministic
adjacency labels of size O(log n). This conjecture was refuted recently in [41] by a non-
constructive argument, and it would be interesting to find a more natural class that refutes
the conjecture. The induced subgraphs of hypercubes are adjacency sketchable and therefore
admit adjacency labels of size O(log n) (see e.g. [40]), but our Corollary 3.6 shows that the
subgraphs are not adjacency sketchable. Prior work (e.g. [16]) has not succeeded in finding
labeling schemes of size O(log n) for this class. These observations made it plausible to us
that efficient labeling schemes for this class do not exist. However, efficient adjacency labels
for this class have since been found in [21]. A related question is whether we may characterize
the monotone classes of graphs which admit adjacency labeling schemes of size O(log n).

We have focused on determining whether there exists a constant α such that a class is
α-ADT sketchable. It is also of interest to obtain sketches for arbitrarily small α > 1, with
sketch size depending on α. One strategy is to embed the graph isometrically into ℓ1, but
this is not always the best option. We obtained a (1 + ε)-ADT sketch for the class of forests
with size O

( 1
ε log 1

ε

)
, but this result appeared earlier in [10]; this sketch is more efficient

than the one obtained by embedding the trees isometrically in ℓ1. We remark that a class
(monotone or not) that admits a (1 + ε)-ADT sketch for ε < 1 must also admit an adjacency
sketch.

Finally, we point out an interesting conjecture of [37], that all constant-cost public-coin
communication problems contain a large monochromatic rectangle. In our terminology, using
the equivalence between constant-cost communication and adjacency sketching from [40], this
conjecture states that all adjacency sketchable graph classes have the strong Erdős-Hajnal
property.
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2 Preliminaries

2.1 Notation
Throughout the paper, log denotes the logarithm base 2, while ln denotes the natural
logarithm.
We will write 1[E] for the indicator variable for the event E, which takes value 1 if E is true.
Given a graph G, the length of a path P in G is the number of edges of P . Given two
vertices x, y ∈ V (G), we define distG(x, y) to be the infimum of the length of a path between
x and y in G; we define distG(x, y) = ∞ if there exists no path between x and y. Notice that
(V (G), distG) is a metric space (with possibly infinite distances between pairs of vertices if G
is disconnected).
The girth of a graph G is defined as the size of a shortest cycle in G (if G is acyclic, its girth
is infinite).

2.2 Distance and First-Order Sketching
We will require more general notions of sketching than those introduced above. For a class F of
graphs, we will say that a sequence {fG}G∈F of partial functions fG : V (G)×V (G) → {0, 1, ∗}
is a partial function f parameterized by graphs G ∈ F . We will write f to refer to this
sequence.

For a graph class F , we define an f -sketch for F as a decoder D : {0, 1}∗×{0, 1}∗ → {0, 1},
such that for every G ∈ F the following holds. There is a probability distribution over
functions sk : V (G) → {0, 1}∗, such that for all x, y ∈ V (G),

fG(x, y) ̸= ∗ =⇒ Pr[D(sk(x), sk(y)) = fG(x, y)] ≥ 2/3 .

We define the size of the sketch as

max
G∈Fn

sup
sk

max
x∈V (G)

|sk(x)| ,

where the supremum is over the set of functions sk : V (G) → {0, 1}∗ in the support of the
distribution defined for G, and |sk(x)| is the number of bits of sk(x). We will say that a class
F is f-sketchable if there exists an f -sketch for F with size that does not depend on the
number of vertices n.

For a graph class F , we also define an f -labelling scheme for F similar to above, except
that for every G ∈ F there is a deterministic function ℓ : V (G) → {0, 1}∗ such that for all
x, y ∈ V (G),

fG(x, y) ̸= ∗ =⇒ D(ℓ(x), ℓ(y)) = fG(x, y) .

The following simple proposition (observed in [38, 40]) relates sketches to labelling schemes:

▶ Proposition 2.1. If F admits an f -sketch of size s(n), then it admits an f -labelling scheme
of size O(s(n) log n).

We now define certain important types of f -sketches. Let F be a class of graphs. For any
r1 ≤ r2, a distance-(r1, r2) sketch for F is an f -sketch, as defined above, when for any graph
G we define the function

fG(x, y) =


1 if distG(x, y) ≤ r1

0 if distG(x, y) > r2

∗ otherwise.
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The size of such a sketch may depend on r1, r2, the number of vertices n, or other graph
parameters.

Recall the definitions of adjacency sketchable, small-distance sketchable, and ADT sketch-
able. It is clear that:
1. A class F is adjacency sketchable if it is distance-(1, 1) sketchable;
2. A class F is small-distance sketchable if for every r ≥ 1 it is distance-(r, r) sketchable.
3. A class F is α-ADT sketchable if for every r ≥ 1 it is distance-(r, αr) sketchable, and

furthermore the size of the sketch does not depend on r.
Following [40], we will also define FO-sketchable classes, for which we require some terminology
(see e.g. [59] for more on the following terminology). A relational vocabulary Σ is a set of
relation symbols, with each R ∈ Σ having an arity arity(R) ∈ N \ {0}. A Σ-structure A
consists of a domain A, and for each relation symbol R ∈ Σ an interpretation RA ⊆ Aarity(R),
which is a relation. Fix a countably infinite set X of variables. Atomic formulas of vocabulary
Σ are of the form

x = y for x, y ∈ X; or,
R(x1, . . . , xr) for x1, . . . , xr ∈ X, R ∈ Σ and r = arity(R), which evaluates to true when
(x1, . . . , xr) ∈ R.

First-order (FO) formulas of vocabulary Σ are inductively defined as either atomic formulas,
or a formula of the form ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, or ∃x.ϕ or ∀x.ψ, where ϕ and ψ are each FO
formulas. A free variable of a formula ϕ is one which is not bound by a quantifier. We will
write ϕ(x1, x2, . . . , xk) to show that the free variables of ϕ are x1, . . . , xk ∈ X. For a value
u ∈ A, we write ϕ[u/x] for the formula obtained by substituting the constant u for the free
variable x.

Let ϕ(x, y) be any formula with two free variables and relational vocabulary Σ =
{E′, R1, . . . , Rk} where E′ is symmetric of arity 2 and each Ri is unary (i.e. of arity 1).
We will say that a graph class F is ϕ-sketchable if it is f -sketchable for any f chosen as
follows. For any graph G = (V,E), we choose any Σ-structure with domain V where E is the
interpretation of the symbol E′. Then set fG(u, v) = 1 if and only if ϕ(u/x, v/y) evaluates
to true.

We remark that for any graph G, there are many ways to choose a Σ-structure with
domain V with E being the interpretation of E′. To be first-order sketchable, a class F must
be f -sketchable for every such choice of functions fG. A concrete example is that, for any
r ∈ N, we can choose the formula

ϕ(x, y) = ∃u1, u2, . . . , ur−1 : (E′(x, u1)∨x = u1)∧(E′(u1, u2)∨u1 = u2)∧· · ·∧(E′(ur, y)∨ur = y) ,

which evaluates to true if and only if distG(x, y) ≤ r.

2.3 Bounded expansion
Here we introduce the notion of expansion from sparsity theory, as discussed in [57].

▶ Definition 2.2 (Bounded Expansion). Given a graph G and an integer r ≥ 0, a depth-r
minor of G is a graph obtained by contracting pairwise disjoint connected subgraphs of radius
at most r in a subgraph of G. For any function f , we say that a class of graphs G has
expansion at most f if any depth-r minor of a graph of G has average degree at most f(r)
(see [57] for more details on this notion). We say that a class G has bounded expansion if
there is a function f such that G has expansion at most f .

Note that, for example, every proper minor-closed family has constant expansion.
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2.4 Equality-Based Labelling Schemes and Sketches
An equality-based labelling scheme is one which assigns to each vertex a deterministic
label, comprising a data structure of size s that holds k “equality codes”, which can be
used only for checking equality. These labelling schemes: 1) capture the constant-cost
randomized communication protocols that can be simulated by a constant-cost deterministic
communication protocol with access to an Equality oracle (as studied in e.g. [15, 13, 37, 40]);
and 2) capture a common type of adjacency labels, including those of [47] for bounded
arboricity graphs (see [40] for others).

One might formalize these schemes in a few ways; we slightly adapt the definition from [40].
This definition is intended to simplify notation rather than optimize label size, since we care
mainly about constant vs. non-constant.

▶ Definition 2.3 (Equality-Based Labeling Scheme). Let F be a class of graphs and let
f : N × N × F → {0, 1, ∗} be a partial function. An (s, t, k)-equality-based f -labelling scheme
for F is an algorithm D, called a decoder, which satisfies the following. For every G ∈ F
with vertex set [n] and every x ∈ [n], there is a sequence of the form

ℓG(x) = [(p1(x) | q⃗1(x)), (p2(x) | q⃗2(x)), . . . , (pt(x) | q⃗t(x))] ,

where the vectors pi(x) ∈ {0, 1}∗ are called the prefixes, and the entries of the vectors
q⃗i(x) ∈ N∗ are called equality codes (which we may assume are positive integers). We must
have

∑t
i=1 |pi(x)| ≤ s and

∑t
i=1 |q⃗i(x)| ≤ k (recall that given a vector v of binary numbers or

integers, |v| denotes the number of entries of v). We insist on the fact that k bounds the total
number of equality codes associated with any vertex x, but not necessarily the total number of
bits needed to store these codes (see Example 2.4 below, where k = 2 but storing the codes
would require 2 log n bits per vertex). On inputs ℓG(x), ℓG(y), the algorithm D chooses a
function Dp(x),p(y), where p(x) = (p1(x), . . . , pt(x)), and outputs

Dp(x),p(y)(Qx,y) ,

where

Qx,y(i1, i2, j1, j2) = 1[(q⃗i1(x))j1 = (q⃗i2(x))j2 ] (1)

is the set of equality values for every pair of equality codes. It is required that, for every
G ∈ F and x, y ∈ V (G),

f(x, y,G) ̸= ∗ =⇒ Dp(x),p(y)(Qx,y) = f(x, y,G) .

We make the further distinction of calling a labelling scheme (s, k)-disjunctive if it is an
(s, t, k)-equality-based labelling scheme, where each function Dp(x),p(y) is simply a disjunction
over a subset of values Qx,y(i1, i2, j1, j2).

When an element (pi(x) | q⃗i(x)) in an equality-based label has pi(x) of size 0, we will write
(− | q⃗i(x)); similarly, we write (p1(x) | −) when q⃗i(x) is empty.

▶ Example 2.4. The adjacency labelling scheme of [47] for forests can be written as an
equality-based labelling scheme. For each x in an n-vertex forest G with arbitrarily rooted
trees, which we assume has vertex set [n], we assign the label ℓG(x) = [(− | (x, p(x)))] where
p(x) is the parent of x if it has one, or 0 otherwise. Here q⃗1(x) = (x, p(x)) ∈ N2. The decoder
simply outputs the disjunction of p(x) = y or p(y) = x, so in fact this is a (0, 1, 2)-disjunctive
labeling scheme.
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An equality-based labelling scheme is easily transformed into a standard deterministic
labelling scheme or a sketch. The following simple proposition was observed in [40]. We
sketch the proof for the sake of clarity.

▶ Proposition 2.5. Let F be a class of graphs and f : N × N × F → {0, 1, ∗} be a partial
function. If there is an (s, t, k)-equality-based f-labelling scheme for F then there is an
f-sketch for F of size at most O(s + t + k log k). If the scheme is disjunctive, the sketch
has one-sided error: when f(x, y,G) = 1, the sketch will produce the wrong output with
probability 0.

Proof sketch. Choose a random function ξ : N → [w] for w = 3k2. For any vertex x of a
graph G, replace each vector q⃗i(x) = (qi,1(x), . . . , qi,m(x)) with (ξ(qi,1(x)), . . . , ξ(qi,m(x))).
We have replaced each of the (at most) k equality codes (q⃗i(x))j with ξ((qi(x))j), using
k logw = O(k log k) bits in total. The sketch has size O(s+ t+ k log k) since we must include
each pi(x) (using s bits in total), the O(k log k) bits for the equality codes, and O(t) bits to
encode the symbols ( | ).

For two vertices x, y, write Qξ
x,y(i1, i2, j1, j2) = 1[ξ((q⃗i1(x))i2) = ξ((q⃗j1(y))j2)]. Since

there are at most k equality codes in each label, there are at most k2 equality comparisons.
By the union bound, the probability that any of these comparisons have

1[ξ((q⃗i1(x))i2) = ξ((q⃗j1(y))j2)] ̸= 1[(q⃗i1(x))i2 = (q⃗j1(y))j2 ]

is at most k2 · (1/w) = 1/3, so with probability at least 2/3 all of the comparisons made
by the decoder have the correct value, so the decoder will be correct. Note that when
(q⃗i1(x))i2 = (q⃗j1(y))j2 , the random values under ξ will be equal with certainty. We conclude
from this that disjunctive schemes will produce sketches with one-sided error. ◀

▶ Remark 2.6. Disjunctive labelling schemes with s = 0 (i.e. the p values are empty) can
be transformed into locality-sensitive hashes (LSH) [45]. A (r1, r2, γ1, γ2)-LSH must map
any two points x, y with dist(x, y) ≤ r1 to the same hash value with probability at least γ1,
and map any two points x, y with dist(x, y) > r2 to the same hash value with probability at
most γ2, where r1 < r2 and γ1 > γ2. By boosting the success probability of each Equality
check in the disjunction, and then sampling a uniformly random term from the disjunction,
one obtains an LSH with distance parameters that depend on the original sketch. All of the
equality-based sketches presented in this paper, except the first-order sketches, are of this
form.

3 Adjacency Sketching

In this section, we prove Theorem 1.1, and include the additional equivalent statement that
F admits a constant-size disjunctive adjacency sketch. We think of disjunctive sketches as
the simplest possible use of randomization in a sketch, with the theorem establishing that
the simplest possible sketches are sufficient for monotone classes.

▶ Theorem 3.1. Let F be a monotone class of graphs. Then the following are equivalent:
1. F is adjacency sketchable.
2. F admits a constant-size disjunctive adjacency labelling scheme.
3. F has bounded arboricity.
A disjunctive labelling scheme for graphs of arboricity k can be obtained from the adjacency
labelling scheme of [47], as in Example 2.4. This leads to a sketch of size O(k log k) by
Proposition 2.5, which was improved slightly in [40]:
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▶ Proposition 3.2 ([40]). Let F be any class with arboricity at most k. Then F admits a
(0, 1, k + 1)-disjunctive adjacency labelling scheme, and an adjacency sketch of size O(k).

Therefore, to prove Theorem 3.1, it suffices to prove (1) =⇒ (3), which we will prove by
contrapositive. This proof will use the notion of discrepancy from communication complexity.
Our proof is inspired by the recent proof of Hambardzumyan, Hatami, & Hatami [37],
which refuted the main conjecture of [40]. Our proof also leads to another, more natural
counterexample to the conjecture of [40]: the class of subgraphs of the hypercube.

Consider a graph G = (V,E), let f : V × V → {0, 1, ∗} be a partial function, and let
µ be a probability distribution over V × V that is supported on pairs (x, y) which satisfy
f(x, y) ̸= ∗. Let X,Y ⊆ V . Then we define the discrepancy of R = X × Y as

Discµ,f (G,R) =
∣∣∣∣Pr

µ
[(x, y) ∈ R ∩ f−1(1)] − Pr

µ
[(x, y) ∈ R ∩ f−1(0)]

∣∣∣∣ ,
where (x, y) is drawn from µ. The discrepancy of G under µ is defined as

Discµ,f (G) = max
R

Discµ,f (G,R) ,

where the maximum is over all sets R = X × Y with X,Y ⊆ V . The following lemma is
essentially a restatement of a standard lower-bound technique in communication complexity.

▶ Lemma 3.3. Let G = (V,E) be any graph on n vertices, let F be any class of graphs
containing G, and let f be a partial function parameterized by graphs in F . Let µ be any
probability distribution over V × V supported on a subset of {(x, y) : fG(x, y) ̸= ∗}. Then
any f -sketch for Fn has size at least 1

2 log 1
3Discµ,f (G) .

A spanning subgraph of a graph G = (V,E) is a subgraph of G with vertex set V . Our
next lemma will give a lower bound on the adjacency sketch size for the class G of spanning
sugraphs of a graph G of minimum degree d. We will actually prove the lower bound for a
weaker type of adjacency sketch, which is only required to be correct on pairs (x, y) that
were originally edges in G. This stronger statement is not necessary for the current section,
but will be used in the proof of Theorem A.16.

For a graph G = (V,E) and the class G of spanning subgraphs of G, and any subgraph
H ∈ G, we will define the partial function adjEH : V × V → {0, 1, ∗} as

adjEH(x, y) =
{

adjH(x, y) if (x, y) ∈ E

∗ otherwise.

In the remainder of this section, we view adjE as the function (adjEH)H∈G parametrized by
H ∈ G. In particular, an adjE-sketch for G computes the partial function adjEH for each
H ∈ G.

We show by the probabilistic method that there is a distribution µ and a subgraph of G
with discrepancy O(1/

√
d) with respect to µ. We will require the standard Chernoff bound

for the binomial distribution with parameters n and 1
2 (see Corollary A.1.2 in [5]): for any

t > 0,

Pr(|Bin(n, 1
2 ) − n

2 | > t) < 2 exp(−2t2/n).

▶ Lemma 3.4. Let G = (V,E) be a graph of minimum degree d, and let G be the class of
spanning subgraphs of G. Then any adjE-sketch for G requires size at least Ω(log d).
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Proof. Let H be a random spanning subgraph of G obtained by including each edge of G
independently with probability 1/2. Note that H ∈ G with probability 1. Let m = |E| and
let µ be the probability distribution over V × V such that for every (x, y) ∈ V × V , we have
µ((x, y)) = 1/m if (x, y) ∈ E, and µ((x, y)) = 0 otherwise (so that µ is uniform over the
edges of G). For simplicity, write Discµ for Discµ,f where f = adjE . We will prove that
Discµ(H) is small, with nonzero probability over H.

Consider a set R = X × Y with X,Y ⊆ V , and let k ≤ m be the number of edges (x, y)
of G with (x, y) ∈ R. Let H be any subgraph of G with |E(H) ∩R| = ℓ ≤ k. Then

Discµ(H,R) =
∣∣∣∣Pr

µ
[(x, y) ∈ E(H) ∩R] − Pr

µ
[(x, y) ∈ R \ E(H)]

∣∣∣∣
=

∣∣∣∣ ℓm − k − ℓ

m

∣∣∣∣ = |2ℓ− k|
m

.

For fixed R = X × Y , it then holds that Discµ(H, R) is a random variable |2ℓ−k|
m , where

ℓ ∼ Bin(k, 1/2). Then, by the Chernoff bound, we have for any ε > 0 that

Pr[Discµ(H, R) > ε] = Pr
[∣∣Bin

(
k, 1

2
)

− k
2
∣∣ > 1

2 εm
]

≤ 2 exp
(

− ε2m2

2k

)
≤ 2 exp

(
−ε2m/2

)
,

where the last inequality is due to k ≤ m. There are at most 22n sets R = X × Y ⊆ V × V ,
so by the union bound,

Pr [∃R = X × Y ⊆ V × V : Discµ(H, R) > ε] ≤ 22n+1 exp
(
−ε2m/2

)
= exp

(
(2n+ 1) ln(2) − ε2m/2

)
.

Now, since G has minimum degree d, we have m ≥ dn/2. Setting ε = Ω
(

1√
d

)
with a

sufficiently large implicit multiplicative constant, we get an upper bound on this probability of

exp
(
(2n+ 1) ln(2) − ε2m/2

)
≤ exp

(
(2n+ 1) ln(2) − ε2dn/4

)
< 1 .

Therefore there exists a subgraph H with Discµ(H) = O(1/
√
d). Applying Lemma 3.3, we

see that any adjE-sketch for G must have size at least Ω(log(
√
d)) = Ω(log d). ◀

We may now complete the proof of Theorem 3.1. We aim to prove (1) =⇒ (3), which we
will prove by contrapositive: i.e. that any class of unbounded arboricity has non-constant
adjacency sketch size.

▶ Lemma 3.5. Let F be any monotone class of graphs with unbounded arboricity. Then F
does not admit a constant-size adjacency sketch.

Proof. It is well-known that the degeneracy of a graph is within factor 2 of the arboricity, so
the degeneracy of F must also be unbounded. Then for any integer d ∈ N, there is a graph
G ∈ F with degeneracy at least d. By definition, G contains a subgraph H of minimum
degree at least d. Let G be the class of spanning subgraphs of G. Since F is monotone, we
have G ⊆ F . Then by Lemma 3.4, any adjacency sketch for G must have size at least Ω(log d).
Then for any integer d, we obtain a lower bound of Ω(log d) on the size of an adjacency
sketch for F ; it follows that any adjacency sketch for F is of non-constant size. ◀

As a consequence, we obtain the following counterexample to the main conjecture of [40].
We remind the reader that the conjecture was already refuted in [36], using an interesting
construction of a graph class that was originally used to establish a “proof barrier” in
communication complexity [37]. Our counterexample, the subgraphs of the hypercube, is
more easily defined. The following bound on the number of subgraphs of the hypercube was
observed by Viktor Zamaraev (personal communication). See [40] for a definition of stable.
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▶ Corollary 3.6. Let F be a class of subgraphs of the hypercube. Then:
1. F is stable, and there are at most 2O(n log n) graphs on n vertices in F .
2. F is not adjacency sketchable.

Proof. Since the d-dimensional hypercube of size N = 2d has minimum degree d = logN ,
F has non-constant adjacency sketch size. To bound the number of n-vertex subgraphs of
the hypercubes, we first observe that there are at most 2O(n log n) induced subgraphs of the
hypercube on n vertices, which follows from the O(log n) adjacency labelling scheme for this
class [38] (see a simpler exposition at [39]). It is known that any n-vertex induced subgraph
of the hypercube has at most O(n log n) edges [33], so each induced subgraph admits at most
2O(n log n) spanning subgraphs. Therefore the number of n-vertex subgraphs of the hypercube
is at most 2O(n log n) · 2O(n log n) = 2O(n log n). Any monotone class of graphs which is not
stable contains Kt,t, for every t ∈ N, and therefore contains the class of all bipartite graphs.
This does not hold for F (or indeed for any class of factorial speed), so F must be stable. ◀
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A Small-Distance Sketching

In this section we prove Theorem 1.2. As in Theorem 3.1, we refine the theorem by showing
that the sketches are in fact disjunctive.

▶ Theorem A.1. Let F be a monotone class of graphs. Then the following are equivalent:
1. F is small-distance sketchable.
2. For some function f : N → N and every r ∈ N, F admits a disjunctive small-distance

labelling scheme of size f(r).
3. F is first-order sketchable.
4. F has bounded expansion.
It holds by definition that (3) =⇒ (1) and (2) =⇒ (1), even without the assumption of
monotonicity. We will prove (4) =⇒ (3) and (4) =⇒ (2) using different methods. We
prove (4) =⇒ (3) (again without the assumption of monotonicity) in Section A.2 using
the structural result of [26]. This proof does not give explicit bounds on the sketch size.
(4) =⇒ (2) is proved in Section A.3 and gives explicit upper bounds on the sketch size. The
final piece of the theorem, (1) =⇒ (4), is proved in Section A.4.

A.1 Bounded expansion
▶ Definition A.2 (Weakly r-reachable). Given a total order (V,<) on the vertex set V of
a graph G and an integer r ≥ 0, we say that a vertex v ∈ V is weakly r-reachable from a
vertex u ∈ V if there is a path of length at most r connecting v to u in G, and such that for
any vertex w on the path, v ≤ w (in words, v is the smallest vertex on the path with respect
to (V,<)). For a graph G and an integer r ≥ 0, we denote by wcolr(G) the smallest integer
k for which the vertex set of G has a total order (V,<) such that for any vertex u ∈ V , at
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most k vertices are weakly r-reachable from u with respect to (V,<). For a graph class F , we
write wcolr(F) for the supremum of wcolr(G), for G ∈ F .

▶ Definition A.3 ((k, ℓ)-Subdivisions). For a graph G and two integers 0 ≤ k ≤ ℓ, a (k, ℓ)-
subdivision of G is any graph obtained from G by subdividing each edge of G at least k times
and at most ℓ times (i.e. we replace each edge of G by a path with at least k and an most ℓ
internal vertices). A (k, k)-subdivision is also called a k-subdivision for simplicity;

▶ Definition A.4 (Depth-r Topological Minor). We say that H is a depth-r topological minor
of a graph G if G contains a (0, 2r)-subdivision of H as a subgraph. In the proof below it will
be convenient to use the following equivalent definition of bounded expansion [57].

▶ Theorem A.5. For a class F of graphs, the following are equivalent:
1. F has bounded expansion.
2. There is a function f : N → N such that for any r ∈ N, wcolr(F) ≤ f(r).
3. There is a function f : N → N such that for any r ∈ N and any G ∈ F , any depth-r

topological minor of G has average degree at most f(r).
We will also require the following standard fact about the expansion of monotone classes,
which is a simple consequence of Theorem A.5 (see for instance [58]) combined with a result
of Kühn & Osthus [50].

▶ Corollary A.6. Let F be a monotone class of unbounded expansion. Then there is a
constant r ≥ 0, so that for any d ≥ 0, F contains an r-subdivision of a bipartite graph of
minimum degree at least d and girth at least 6.

The proof is omitted here due to the space limitation.

A.2 Bounded Expansion Implies FO Labelling Schemes
To prove that any class of bounded expansion is first-order sketchable, we use the result
of [26] that shows how to decompose any class of (structurally) bounded expansion into a
number of graphs of bounded shrubdepth. We will require an adjacency sketch for classes of
bounded shrubdepth, given below.

A.2.1 Adjacency Sketching for Bounded Shrubdepth
We must first define shrubdepth. A connection model for a graph G is a rooted tree T whose
nodes are colored with a bounded number of colors such that:

the vertices of G are the leaves of T ; and
for two vertices u, v ∈ V (G), whether u and v are adjacent in G depends only on the
colors of u and v in T , and the color of the lowest common ancestor of u and v in TG.

To avoid ambiguity, we say G has vertices while T has nodes. Note that we can assume
without loss of generality that all leaves are at the same distance from the root in T . A
class G has bounded shrubdepth if there are some d, k ∈ N such that every G ∈ G has a
connection model of depth d with colors in [k] (we recall that the depth of a rooted tree T is
the maximum number of vertices on a root-to leaf path in T ).

▶ Lemma A.7. Any class G of bounded shrub-depth admits a constant-size equality-based
adjacency labelling scheme.

Proof. Let d, k be such that any graph G ∈ G has a connection model TG of depth d using
color set [k]. We denote by φG : [k]3 → {0, 1} the function such that if u has color a, v has
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color b, and the lowest common ancestor of u and v has color c in TG, then u and v are
adjacent in G if and only if φG(a, b, c) = 1. For every node u of TG, write χ(u) for the color
of u in the connection model.

We now construct our equality-based labels for G. For any vertex x, let
t1(x), t2(x), . . . , td(x) be the leaf-to-root path for x, where t1(x) = x and td(x) is the root of
TG. Then the label for x is the sequence (φG | −), (χ(t1(x)) | t1(x)), . . . , (χ(td(x)) | td(x)).

On inputs

(φG | −), (χ(t1(x)) | t1(x)), . . . , (χ(td(x)) | td(x)) ,
(φG | −), (χ(t1(y)) | t1(y)), . . . , (χ(td(y)) | td(y)) ,

the decoder operates as follows. It finds the smallest i ∈ [d] such that 1[ti(x) = ti(y)] and
outputs φG(χ(t1(x)), χ(t1(y)), χ(ti(x))).

The correctness of this labelling scheme follows from the fact that we will have ti(x) = ti(y)
if and only if the node ti(x) = ti(y) is an ancestor of both x and y in TG, so the smallest
i ∈ [d] such that ti(x) = ti(y) identifies the lowest common ancestor of x and y in TG. ◀

A.2.2 Structurally Bounded Expansion Implies First-Order Sketching
Following [26], we say that a class of graphs has structurally bounded expansion if it can
be obtained from a class of bounded expansion by first-order (FO) transductions. We omit
the precise definition of FO transductions in this paper, as they are not necessary to our
discussion, and instead refer the reader to [26]. We just note that a particular case of FO
transduction is the notion of FO interpretation, which is of specific interest to us. Consider
an FO formula ϕ(x, y) with two free variables and relational vocabulary Σ = {F,R1, . . . , Rk}
where F is symmetric of arity 2. We will say that a graph class F ′ is an FO interpretation
of a graph class F with respect to ϕ if for any graph G′ = (V,E′) ∈ F ′ there is a graph
G = (V,E) ∈ F and a Σ-structure with domain V where E is the interpretation of the
symbol F , such that for any pair u, v ∈ V , uv ∈ E′ if and only if ϕ(u/x, v/y) evaluates to
true. For instance, if ϕ(u/x, v/y) encodes the property distG(u, v) ≤ r for some fixed integer
r ≥ 1 (which can be written as an FO formula), then the corresponding FO interpretation of
the class F is the class of all graph powers {Gr |G ∈ F}. FO transductions are slightly more
involved, as it is allowed to consider a bounded number of copies of a graph before applying
the formula, and then it is possible to delete vertices. We will use the following structural
result for classes of structurally bounded expansion, proved in [26].

▶ Theorem A.8 ([26]). A class G of graphs has structurally bounded expansion if and only
if the following condition holds. For every p ∈ N, there is a constant m = m(p) such that for
every graph G ∈ G, one can find a family F(G) of vertex subsets of G with |F(G)| ≤ m and
the following properties:

for every X ⊆ V (G) with |X| ≤ p, there is A ∈ F(G) such that X ⊆ A; and
the class {G[A] |G ∈ G, A ∈ F(G)} of induced subgraphs has bounded shrubdepth.

We directly deduce the following result.

▶ Lemma A.9. Any class G of structurally bounded expansion admits a constant-size equality-
based adjacency labelling scheme.

Proof. Let m and F be given by applying Theorem A.8 to G with p = 2. By definition, for
every graph G ∈ G and every pair of vertices u, v ∈ V (G), there is a set A ∈ F(G) containing
u and v. Moreover, F(G) contains at most m sets and the family C of all graphs G[A], for
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G ∈ G, and A ∈ F(G), has bounded shrubdepth. It follows from Lemma A.7 that there is a
constant-size equality-based adjacency labelling scheme for C. We denote the decoder of this
scheme by D, and the corresponding labels as ℓ′

G[A].
Consider some graph G ∈ G, and let F(G) = {A1, . . . , Am}. For each vertex x of G and

i ∈ [m], we write a(x) = (a1(x), . . . , am(x)) where ai(x) = 1[x ∈ Ai]. Then we define the
label for x by taking the prefix a(x) and appending the labels ℓ′

G[Ai](x) for each induced
subgraph G[Ai] ∈ C to which x belongs. Given the labels for vertices x and y, the decoder
finds any i ∈ [m] such that ai(x) = ai(y) = 1; and outputs D′(ℓ′

G[Ai](x), ℓ′
G[Ai](y)). Such a

number i ∈ [m] always exists due to Theorem A.8. The correctness of this labelling scheme
follows from Theorem A.8 and Lemma A.7. ◀

Since FO-transductions compose (see e.g. [59]), sketching FO formulas in a class of
structurally bounded expansion is equivalent to sketching adjacency in another class of
structurally bounded expansion. We obtain the following direct corollary of Theorem A.9.

▶ Corollary A.10. Any class G of structurally bounded expansion is first-order sketchable.

As the property distG(x, y) ≤ r can be written as an FO formula, this directly implies
that classes of bounded expansion are small-distance sketchable. However, this does not
tell anything on the size of the sketches as a function of r, unlike the approach using weak
coloring numbers described in the next section.

A.3 Bounded Expansion Implies Small-Distance Sketching
Recall the definition of weak reachability from Definition A.2. We give a quantitative
bound on the small-distance sketch of any graph class F in terms of wcolr(F). Recall from
Theorem A.5 that any class with bounded expansion has wcolr(F) ≤ f(r) for some function
f(r); therefore we obtain the existence of small-distance sketches for any class of bounded
expansion.

▶ Theorem A.11. For any r ∈ N, any class F has an (0, r,wcolr(F))-disjunctive distance-
(r, r) labelling scheme.

Proof. Let G ∈ F , and consider a total order (V,≺) such that for any vertex x ∈ V , at most
wcolr(F) vertices are weakly r-reachable from v in G with respect to (V,≺). We say that
vertex y ∈ V has x-rank k if y is weakly k-reachable from x but not weakly (k− 1)-reachable
from x. For each vertex x and k ∈ [r], write Sk(x) for the set of vertices y with x-rank k.

We construct a disjunctive labelling scheme as follows. Each vertex x is assigned the label

(− | q⃗1(x)), (− | q⃗2(x)), . . . , (− | q⃗r′(x))

where r′ ≤ r is the maximum number such that Sr′(x) ̸= ∅, and the equality codes q⃗i(x) are
names of vertices in the set Si(x). Each label contains at most wcolr(G) equality codes, plus
a constant number of bits per equality code and O(r) bits to separate the elements of the
list. Given labels for x and y, the decoder outputs 1 if and only if there exist 0 ≤ i, j ≤ r

such that i+ j ≤ r and Si(x) ∩ Sj(y) ̸= ∅, which can be checked using the equality codes in
q⃗i(x) and q⃗j(y).

Suppose that distG(x, y) ≤ r and let P ⊆ V (G) be a path of length distG(x, y). Let z ∈ P

be the minimal element of P with respect to ≺. Then z is weakly i-reachable from x and
weakly j-reachable from y, for some values i, j such that i+ j ≤ r. Then z ∈ Si(x) ∩ Sj(y),
so the decoder will output 1 given the labels for x and y. On the other hand, if the
decoder outputs 1, then there are values i, j such that i+ j ≤ r and Si(x) ∩ Sj(y) ̸= ∅. Let
z ∈ Si(x) ∩ Sj(y), so that z is weakly i-reachable from x and weakly j-reachable from y.
Then distG(x, y) ≤ distG(x, z) + distG(z, y) ≤ i+ j ≤ r. ◀
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We noticed after proving this result that a similar idea was used in [34, Lemma 6.10] to
obtain sparse neighborhood covers in nowhere-dense classes.

We will need the following quantitative results for planar graphs and graphs avoiding
some specific minor, due to [66].

▶ Theorem A.12 ([66]). For any planar graph G, and any integer r ≥ 0, wcolr(G) ≤
(2r + 1)

(
r+2

2
)

= O(r3).

▶ Theorem A.13 ([66]). For any integer t ≥ 3, any graph G with no Kt-minor, and any
integer r ≥ 0, wcolr(G) ≤

(
r+t−2

t−2
)
(t− 3)(2r + 2) = O(rt−1).

In the proof of Theorem A.11, the equality codes are just the names of vertices; so we can
use ⌈log n⌉ bits to encode each of the wcolr(F) equality codes to obtain an adjacency label.
Then, combined with Proposition 2.5, we obtain the following corollary:

▶ Corollary A.14. If a class F has bounded expansion, then F has a small-distance sketch
of size at most O(r + wcolr(F) log(wcolr(F))). If F is the class of planar graphs, then the
sketch has size O(r3 log r) and if F is the class of Kt-minor free graphs for some fixed integer
t ≥ 3, then the sketch has size O(rt−1 log r). Furthermore, F admits a distance-(r, r) labelling
scheme of size O(r + wcolr(F) log n); if F is the class of planar graphs, then the scheme
has size O(r3 log n) and if F is the class of Kt-minor free graphs, then the scheme has size
O(rt−1 log n).

▶ Remark A.15. The fact that the sketch size is independent of the number of vertices in
Corollary A.14 implies that the scheme actually works for infinite graphs. It was proved in [43]
that for infinite graphs G, wcolr(G) is the supremum of wcolr(H) for all finite subgraphs H
of G (this was actually proved explicitly for the strong coloring numbers instead of the weak
coloring numbers, but the proof is the same). This shows that Theorems A.12 and A.13, and
thus Corollary A.14, also hold for infinite graphs.

A.4 Small-Distance Sketching Implies Bounded Expansion
To complete the proof of Theorem A.1, we must show that any monotone class of graphs
that is small-distance sketchable has bounded expansion, which we do by contrapositive. In
fact, we will prove a stronger statement: even having a weaker (r, 5r − 1)-distance sketch of
size f(r) implies bounded expansion.

▶ Theorem A.16. Let F be a monotone class of graphs and assume that there is a function
f such that for any r ≥ 1, F has a (r, 5r − 1)-distance sketch of size f(r). Then F has
bounded expansion.

Proof. Assume for the sake of contradiction that F has unbounded expansion. By Corollary
A.6, there is a constant k such that for every d ≥ 0, F contains a k-subdivision of some
bipartite graph G = (V,E) of minimum degree at least d and girth at least 6. Let G be the
class consisting of the graph G, together with all its spanning subgraphs. By monotonicity,
F contains k-subdivisions of all the graphs of G.

Recall the definition of the partial function adjE parameterized by graphs H ∈ G, from
the discussion preceding Lemma 3.4. We will show that the (k + 1, 5(k + 1) − 1)-distance
sketch of size f(k+ 1) for F can be used to obtain a adjE-sketch for G, which must have size
Ω(log d) due to Lemma 3.4. This is a contradiction since we must have f(k) = Ω(log d) for
arbitrarily large d, whereas f(k + 1) is a constant independent of d.
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LetH be any spanning subgraph of G and let H(k) denote the k-subdivision of H . Consider
two vertices u, v ∈ V (H) ⊆ V (G) that are adjacent in G. Observe that distH(k)(u, v) =
(k + 1)distH(u, v), and thus if u, v are adjacent in H then distH(k)(u, v) ≤ k + 1. Assume
now that u, v are non-adjacent in H. Since u, v are adjacent in G, G has girth at least 6,
and H is a spanning subgraph of G, it follows that in this case distH(u, v) ≥ 5, and thus
distH(k)(u, v) ≥ 5(k + 1). Therefore, by using the same decoder as the (k + 1, 5(k + 1) − 1)-
distance sketch for F , and using the random sketch sk defined for G, we obtain an adjEH -sketch
for H. This gives an adjE-sketch for G of size f(k + 1). ◀

In our proof of Theorem A.16 we have used Corollary A.6, which is based on the result of
[50], stating that every graph of large minimum degree contains a bipartite subgraph of girth
at least 6 and large minimum degree. The following stronger statement was conjectured by
Thomassen [64].

▶ Conjecture A.17 ([64]). For every integer k, every graph of sufficiently large minimum
degree contains a bipartite subgraph of girth at least k and large minimum degree.

If Conjecture A.17 is true, it readily follows from our proof that the constant 5 in
Theorem A.16 can be replaced by an arbitrarily large constant.
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Abstract
The Collision problem is to decide whether a given list of numbers (x1, . . . , xn) ∈ [n]n is 1-to-1 or
2-to-1 when promised one of them is the case. We show an nΩ(1) randomised communication lower
bound for the natural two-party version of Collision where Alice holds the first half of the bits of
each xi and Bob holds the second half. As an application, we also show a similar lower bound for a
weak bit-pigeonhole search problem, which answers a question of Itsykson and Riazanov (CCC 2021).
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1 Introduction

Collision problem

The Collision problem ColN : [N ]N → {0, 1, ∗} is the following partial (promise) function.
The input is a list of numbers z = (z1, . . . , zN ) ∈ [N ]N where N is even. The goal is to
distinguish between the following two cases, when promised that z satisfies one of them.

ColN (z) = 0 iff z is 1-to-1, that is, every number in the list z appears in the list once.
ColN (z) = 1 iff z is 2-to-1, that is, every number in the list z appears in the list twice.

The Collision problem has been studied exhaustively in quantum query complexity
[10, 1, 5, 14, 20, 6, 2, 3, 12]. It was initially introduced to model the task of breaking
collision resistant hash functions, a central problem in cryptanalysis. A robust variant of
Collision is complete for NISZK [8], and consequently it has been featured in black-box oracle
separations [21, 9]. The problem has also been used in reductions to show hardness of other
problems such as set-equality [23] and various problems in property testing [11]. Upper
bounds for Collision has been used to design quantum algorithms for triangle finding [22]
and approximate counting [4].

In this paper, we consider a natural bipartite communication version of this problem,
where we split the binary encoding of each number between two parties, Alice and Bob.
Specifically, for N = 2n where n is even, we will define a bipartite function

BiColN : ({0, 1}n/2)N × ({0, 1}n/2)N → {0, 1, ∗}.

Here Alice gets as input a list of half-numbers x = (x1, . . . , xN ) ∈ ({0, 1}n/2)N , Bob gets a list
of half-numbers y = (y1, . . . , yN ) ∈ ({0, 1}n/2)N , and we view their concatenation z := x � y,
defined by zi := xiyi, as an input to ColN . Their goal is to compute BiColN (x, y) :=
ColN (x � y).
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Upper bounds

We first observe that BiColN admits a deterministic protocol that communicates at most
O(

√
N log N) bits. Indeed, if x � y is 1–1, then since Alice’s half-numbers are n/2 bits long,

there are
√

N distinct half-numbers, each appearing
√

N many times in x. We may assume
this is true also if x � y is 2–1 (as otherwise it is easy to tell that we are in case 2–1). Consider
the set of indices I := {i ∈ [N ] : xi = 0n/2}, |I| =

√
N . Then x � y restricted to indices I

is 1–1 (resp. 2–1) if the original unrestricted input is 1–1 (resp. 2–1). Hence Alice can send
the indices I to Bob, who can determine the value of the function.

If we are allowed randomness, we can do slightly better: there is a randomised protocol
of cost O(N1/4 log N). In this protocol, Alice samples a subset I ′ ⊆ I of size |I ′| = Θ(N1/4)
uniformly at random and sends it to Bob, who checks for a collision in his part of the input.
If the original input was 2–1, then by the birthday paradox, Bob will observe a collision with
high probability.

Lower bound

As our main result, we prove a small polynomial lower bound for BiColN , which shows that
the above randomised protocol cannot be improved too dramatically.

▶ Theorem 1. BiColN has randomised (and even quantum) communication complexity
Ω(N1/12).

We conjecture that the O(N1/4 log N)-bit protocol for BiColN is essentially optimal (up to
logarithmic factors) for randomised protocols. It is an interesting open problem to close this
gap.

1.1 Application
Bit-pigeonhole principle

We also show a lower bound for a search problem associated with the pigeonhole principle. We
define PHPM

N where M > N as the following search problem: On input z = (z1, . . . , zM ) ∈
[N ]M the goal is to output a collision, that is, a pair of distinct indices i, j ∈ [M ] such that
zi = zj . We note that PHPM

N is a total search problem (not a promise problem); it always
has a solution since we require M > N . As before, we can turn PHPM

N naturally into a
bipartite communication search problem BiPHPM

N where N = 2n so that
Alice holds x = (x1, . . . , xM ) ∈ ({0, 1}n/2)M ;
Bob holds y = (y1, . . . , yM ) ∈ ({0, 1}n/2)M ; and
the goal is find a collision, that is, distinct i, j ∈ [M ] such that xiyi = xjyj .

Lower bounds

Itsykson and Riazanov [17] proved that BiPHPN+1
N requires Ω(

√
N) bits of randomised

communication. Their proof was via a randomised reduction from set-disjoitness. A corollary
of their result is that any proof system that can be efficiently simulated by randomised pro-
tocols (most notably, tree-like Res(⊕) [18]) requires exponential size to refute bit-pigeonhole
formulas featuring N + 1 pigeons and N holes. They asked whether a similar communication
lower bound could be proved for the weak pigeonhole principle with M = 2N pigeons and N

holes. We answer their question in the affirmative in the following theorem.
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▶ Theorem 2. BiPHP2N
N has randomised (and even quantum) communication complexity

Ω(N1/12).

Previously, Hrubeš and Pudlák [15] showed a small polynomial lower bound for BiPHPM
N

for every M > N against deterministic (and even dag-like) protocols. By contrast, Theorem 2
is the first randomised lower bound in the M = 2N regime.

1.2 Techniques
Our proof of Theorem 1 proceeds as follows. A popular method to prove communication
lower bounds is to start with a partial boolean function f : {0, 1}n → {0, 1, ∗} that is
hard to compute for decision trees and then apply a lifting theorem (we use one due to
Sherstov [26]) to conclude that the function f ◦g obtained by composing f with a small gadget
g : Σ × Σ → {0, 1} is hard for communication protocols. Here f ◦ g : Σn × Σn → {0, 1, ∗} is
the communication problem where Alice holds x ∈ Σn, Bob holds y ∈ Σn, and their goal is
to output

(f ◦ g)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

A straightforward application of lifting often produces communication problems that are
“artificial” since they are of the composed form. In particular, at first blush, it seems that
the BiColN problem cannot be written in the form f ◦ g for any f and any g for which a
lifting theorem holds. To address this issue, our main technical innovation is to show how
the composed function ColN ◦ g, where g is a sufficiently “regular” gadget, can indeed be
reduced to the natural problem BiColN ′ . In this reduction, the input length will blow up
polynomially, N ′ = NΘ(1), which is the main reason why we only get a small polynomial
lower bound. Our new reduction generalises a previous reduction from [17, §6], which was
tailored for the 2-bit Xor gadget.

To prove Theorem 2 we give a randomised decision-to-search reduction from BiColN

to BiPHP2N
N . That is, we show that if there is an efficient randomised protocol for solving

the total search problem BiPHP2N
N , then there is an efficient randomised protocol for solving

the promise problem BiColN . Given this reduction, Theorem 2 then follows from Theorem 1.
Similar style of randomised reductions have been considered in prior works [25, 16, 13, 17],
although they have always reduced from set-disjointness.

2 Reductions and regular functions

We assume some familiarity with communication complexity; see, e.g., the textbooks [19, 24].
In particular, it is often useful to view a bipartite function f : {0, 1}n × {0, 1}n → {0, 1} as
a 2n-by-2n boolean matrix. We now give several definitions for the purposes of the proof of
our main result.

▶ Definition 3 (Rectangular reduction). For bipartite functions f, g with domains {0, 1}n ×
{0, 1}n and {0, 1}m × {0, 1}m, we write f ≤ g if there is a rectangular reduction from f

to g, that is, there exist a : {0, 1}n → {0, 1}m and b : {0, 1}n → {0, 1}m such that f(x, y) =
g(a(x), b(y)) for all x, y.

Next, using basic language from group theory, we define a new class of highly symmetric
boolean functions that we call regular. (We borrow the term regular from group theory where
group actions satisfying the property in Definition 4 below are called regular.)
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Let Πn denote the symmetric group on [n], that is, the set of all permutations [n] → [n].
Let S ⊆ Πn × Πn be any group. We let S act on the set [n] × [n] by permuting the rows
and columns, that is, an element s = (sA, sB) ∈ S acts on (x, y) ∈ [n] × [n] by s · (x, y) :=
(sA(x), sB(y)). For (x, y) ∈ [n] × [n], we define its orbit by S · (x, y) := {s · (x, y) : s ∈ S}.

▶ Definition 4 (Regular function). A bipartite function f : {0, 1}k ×{0, 1}k → {0, 1} is regular
if there is a group S ⊆ Π2k × Π2k acting on the domain of f such that the orbit of any
(x, y) ∈ f−1(b), where b ∈ {0, 1}, equals f−1(b), and, moreover, for every pair of inputs
(x1, y1), (x2, y2) ∈ f−1(b) there is a unique s ∈ S such that s · (x1, y1) = s · (x2, y2).

It follows from the definition that |S| = |f−1(b)| = 22k−1 for both b ∈ {0, 1}. A simple
example of a regular function is the 2-bit Xor function together with the 2-element group
consisting of the identity map and the map (x, y) 7→ (¬x, ¬y). However, the Xor function
does not satisfy a fully general lifting theorem. This is why we consider the following more
complicated gadget, called a versatile gadget, which has been shown to satisfy various lifting
theorems [26, 13, 7].

▶ Definition 5. Ver : Z4×Z4 → {0, 1} is defined by Ver(x, y) := 1 iff x+y (mod 4) ∈ {2, 3}.

▶ Lemma 6. Ver is regular.

Proof. Consider the group S ⊆ Π4 × Π4 generated by the elements (x, y) 7→ (x + 1, y − 1)
and (x, y) 7→ (1 − x, −y) where we use modulo 4 arithmetic. By explicit computations, we
see that (here we list each element as a function of (x, y))

S =
{

(x, y), (x + 1, y − 1), (x + 2, y − 2), (x + 3, y − 3),
(1 − x, −y), (2 − x, 3 − y), (3 − x, 2 − y), (−x, 1 − y)

}
.

It is straightforward to check that S gives rise to orbits Ver−1(0) and Ver−1(1); see Figure 1.
Moreover, since |S| = 8 = |Ver−1(b)| for b ∈ {0, 1}, the uniqueness property holds, too. ◀

Previously, [13] showed that Ver is random self-reducible, that is, it admits a randomised
reduction that maps any fixed input (x, y) ∈ Ver−1(b) into a uniform random input in
Ver−1(b). It is easy to see that if a function is regular, then it is also random self-reducible
(the random self-reduction is to apply a random symmetry from S). The converse, however,
is unclear to us: If f is random self-reducible and balanced (meaning |f−1(0)| = |f−1(1)|), is
it necessarily regular?

3 Lower bound for bipartite collision

In this section we prove Theorem 1. We start with a standard application of a lifting theorem
to establish a lower bound for the (somewhat artificial) composed function ColN ◦ Ver.
Here we think of ColN as a boolean function ({0, 1}n)N → {0, 1} where N = 2n.

▶ Lemma 7. ColN ◦ Ver has randomised (and even quantum) communication complexity
Ω(N1/3).

Proof. Aaronson and Shi [5] (building on [1]) showed that deg1/3(ColN ) ≥ Ω(N1/3)
where deg1/3(f) for a partial boolean function f is the least degree of a multivariate polyno-
mial p(x) such that p(x) = f(x) ± 1/3 for all x such that f(x) ∈ {0, 1} and |p(x)| ≤ 4/3 for
all x with f(x) = ∗. Sherstov [26, §12] proved that for any partial boolean function f , we
have that the randomised (and even quantum) communication complexity of f ◦ Ver is at
least Ω(deg1/3(f)). Combining these two results proves the lemma. ◀
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Figure 1 (a) The bipartite function Ver : Z4 ×Z4 → {0, 1}. (b) The group relative to which Ver
is regular is generated by two elements whose actions on Ver−1(1) are illustrated here. The first
generator is (x, y) 7→ (x + 1, y − 1) (black arrows) and the second is (x, y) 7→ (1 − x, −y) (orange
arrows).

The challenging part of the proof is to find a reduction from ColN ◦g to BiColN ′ where g

is a regular gadget and N ′ is polynomially larger than N . Choosing g := Ver in the following
theorem and combining it with Lemma 7 completes the proof of Theorem 1. Note that the
input length becomes N ′ := N4 so that we obtain the lower bound Ω(N1/3) = Ω(N ′1/12), as
claimed.

▶ Theorem 8. Let g : {0, 1}k × {0, 1}k → {0, 1} be a regular gadget. For every N = 2n,

ColN ◦ g ≤ BiColN2k .

Proof. Consider the bipartite function ColN ◦ g. Alice’s input is an N -tuple (a(1), . . . , a(N))
where a(j) ∈ ({0, 1}k)n for each j ∈ [N ]. Bob’s input (b(1), . . . , b(N)) has a similar form.
These bipartite inputs encode, via the gadgets, the input (z(1), . . . , z(N)) to ColN such that

z(j) := gn(a(j), b(j)) := (g(a(j)
1 , b

(j)
1 ), . . . , g(a(j)

n , b(j)
n )) ∈ {0, 1}n where a

(j)
i , b

(j)
i ∈ {0, 1}k.

Let S ⊆ Π2k × Π2k be the symmetry group relative to which g is regular. Recall that
|S| = 22k−1 and each s ∈ S has the form s = (sA, sB) with sA, sB ∈ Π2k . We fix an arbitrary
ordering of the elements of S and write S(i) for the i-th element in this ordering. Thus
S = {S(1), . . . , S(22k−1)}.

We first describe how the reduction expands each individual input (a, b) := (a(j), b(j)) to
gn into an ordered list of inputs to gn. In more detail, the reduction

takes an input (a, b) = (a1, . . . , an, b1, . . . , bn) ∈ ({0, 1}k)2n to gn, and
returns Unfold(a, b) ∈ ({0, 1}2kn)N2k−1 , an ordered list of N2k−1 many inputs to gn.

For any n-tuple of indices I = (i1, . . . in) ∈ [|S|]n, we define the I-th pair in Unfold(a, b) by

Unfold(a, b)I := (sA
1 (a1)sA

2 (a2) . . . sA
n (an)︸ ︷︷ ︸

Alice’s half

, sB
1 (b1)sB

2 (b2) . . . sB
n (bn)︸ ︷︷ ︸

Bob’s half

) where sj := S(ij).

Besides each pair in the list Unfold(a, b) being an input to gn, we will also soon interpret
them as pairs of half-numbers that are part of the input to BiColN2k . Below, we write
SetUnfold(a, b) ⊆ {0, 1}2kn for the set of elements in the list Unfold(a, b), that is, ignoring
the ordering and multiplicity of elements.
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19:6 Communication Complexity of Collision

▷ Claim 9. We have the following properties.
(i) SetUnfold(a, b) = (gn)−1(z) = g−1(z1) × · · · × g−1(zn) where zi := g(ai, bi).
(ii) All pairs in Unfold(a, b) are distinct.
(iii) Suppose gn(a, b) ̸= gn(a′, b′). Then SetUnfold(a, b) ∩ SetUnfold(a′, b′) = ∅.
(iv) Suppose gn(a, b) = gn(a′, b′). Then SetUnfold(a, b) = SetUnfold(a′, b′).

Proof. Item (i): Up to reordering of bits, the set equals (S · (a1, b1)) × (S · (a2, b2)) × · · · ×
(S · (an, bn)). By regularity, the orbit S · (ai, bi) is equal to g−1(zi) for any i. Item (ii): The
uniqueness property of the regular group action ensures that we do not get any repeated
elements. Item (iii): If z := gn(a, b) ̸= gn(a′, b′) =: z′ then there is some i such that zi ̸= z′

i.
The i-th component of every pair in Unfold(a, b) lies in g−1(zi) while the i-th component
of every pair in Unfold(a, b) lies in g−1(z′

i). The claim follows since these preimage sets are
disjoint. Item (iv): If gn(a, b) = gn(a′, b′), then i shows Unfold produces the same set for
both (a, b) and (a′, b′). ◁

Our final reduction from ColN ◦ g maps Alice’s (a(1), . . . , a(N)) and Bob’s (b(1), . . . , b(N))
(which together encode the input z = (z(1), . . . , z(N)) to ColN ) to an input to BiColN2k

given by

Unfold(a(1), b(1)), . . . , Unfold(a(N), b(N)).

Note that the reduction is rectangular: Alice can compute her part of the input, and Bob his.
It remains to check that the reduction treats 1–1 and 2–1 inputs correctly. If the

input z to ColN is 1–1, then the reduction produces a 1–1 input by ii and iii. If the
input z to ColN is 2–1 then for every index i there is exactly one more index j such
that z(i) := gn(a(i), b(i)) = gn(a(j), b(j)) =: z(j). Hence, by iv the lists Unfold(a(i), b(i))
and Unfold(a(j), b(j)) have every element colliding with each other. This produces a 2–1
input. ◀

4 Lower bound for bipartite pigeonhole

In this section we prove Theorem 2. We do it by describing a reduction from the decision
problem BiColN to the search problem BiPHP2N

N .

▶ Theorem 10. If there is a randomised protocol for BiPHP2N
N of communication cost d,

then there is a randomised protocol for BiColN of cost O(d).

Proof. The proof idea is to start with an input to BiColN and then append it with more
numbers to construct an input to BiPHP2N

N . Adding more numbers will create some new
collisions in the input list, but our reduction will remember which collisions where “planted”
during the reduction. We then randomly shuffle the input list so as to make the planted
collisions indistinguishable from collisions (if any) coming from the original input to BiColN .
We now explain this in more detail.

Let (x, y) be an input to BiColN . That is, Alice holds x = (x1, . . . , xN ) ∈ ({0, 1}n/2)N

and Bob holds y = (y1, . . . , yN ) ∈ ({0, 1}n/2)N . In the reduction, we first append Alice’s
input by the planted half-numbers (a1, . . . , aN ) ∈ ({0, 1}n/2)N and Bob’s input by the planted
half-numbers (b1, . . . , bN ) ∈ ({0, 1}n/2)N where the concatenated strings aibi, i ∈ [N ], range
lexicographically over all binary numbers in {0, 1}n.

Next, Alice and Bob use public randomness to sample a permutation π : [2N ] → [2N ]
uniformly at random, which they then use to permute their lists of length 2N . While doing
so, they remember which positions in the permuted list occupy planted numbers (namely,
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Figure 2 Illustration of collisions in 1–1 and 2–1 inputs. The original input (x, y) is drawn at the
top, and the planted numbers (a, b) are drawn at the bottom.

those in positions π({N + 1, . . . , 2N})). Call the resulting list (x′, y′). We now let Alice and
Bob run the hypothesised protocol P for BiPHP2N

N on input (x′, y′) to find some collision
x′

iy
′
i = x′

jy′
j where i ̸= j. (We assume for simplicity that P finds a collision with probability

1. The following analysis can be adapted even when P errs with bounded probability.)
We have two cases depending on whether (x, y) was 1–1 or 2–1 (see Figure 2):

If (x, y) was 1–1 then (x′, y′) is 2–1. Moreover, each collision in (x′, y′) involves a planted
number. In particular, the collision {i, j} found by the protocol always features at least
one planted number.

If (x, y) was 2–1 then (x′, y′) is an input where N/2 many numbers appear thrice, and
N/2 numbers appear once. We claim that the collision {i, j} found by P will not feature
a planted number with probability at least 1/3 (over the random choice of π). Indeed,
let k /∈ {i, j} be the third position such that x′

iy
′
i = x′

jy′
j = x′

ky′
k. Then conditioned on π

having produced the input (x′, y′), each position in {i, j, k} is equally likely to occupy a
planted number. Thus, with probability 1/3, the planted number lies in position k and
not in {i, j}.

Our protocol for BiColN guesses that (x, y) is 2–1 if the collision {i, j} returned by
P does not involve a planted number. We can further reduce the error probability down
to (2/3)t by repeating the randomised reduction and P some t = O(1) times and seeing if
any one of these runs finds a collision without a planted number. ◀

APPROX/RANDOM 2022
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Abstract
In the range avoidance problem, the input is a multi-output Boolean circuit with more outputs than
inputs, and the goal is to find a string outside its range (which is guaranteed to exist). We show
that well-known explicit construction questions such as finding binary linear codes achieving the
Gilbert-Varshamov bound or list-decoding capacity, and constructing rigid matrices, reduce to the
range avoidance problem of log-depth circuits, and by a further recent reduction [Ren, Santhanam,
and Wang, FOCS 2022] to NC0

4 circuits where each output depends on at most 4 input bits.

On the algorithmic side, we show that range avoidance for NC0
2 circuits can be solved in

polynomial time. We identify a general condition relating to correlation with low-degree parities
that implies that any almost pairwise independent set has some string that avoids the range of every
circuit in the class. We apply this to NC0 circuits, and to small width CNF/DNF and general De
Morgan formulae (via a connection to approximate-degree), yielding non-trivial small hitting sets
for range avoidance in these cases.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Pseudorandomness, Explicit constructions, Low-depth circuits, Boolean
function analysis, Hitting sets

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.20

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/102

Funding Venkatesan Guruswami: Research supported in part by NSF CCF-2210823 and a Simons
Investigator Award.

Acknowledgements We thank anonymous reviewers for helpful comments and suggestions.

1 Introduction

We study a basic computational problem in circuit analysis called the range avoidance
problem (which we call Avoid henceforth): given the description of a multi-output Boolean
circuit C mapping n input bits to m := m(n) > n output bits1, find a y ∈ {0, 1}m that is
outside the range of C (i.e., C(x) ̸= y for every x ∈ {0, 1}n). This is a total search problem
that has been the subject of a few recent works [11, 13, 21], which highlight its significance
and connections to central themes in computational complexity including circuit complexity,
proof complexity, and pseudorandomness.

1 The function m(n) is called the stretch of the circuit.

© Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 20; pp. 20:1–20:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:venkatg@berkeley.edu
mailto:xinlyu@berkeley.edu
mailto:wangxh19@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://eccc.weizmann.ac.il/report/2022/102
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness

To gain some intuition about the problem, note that Avoid can be trivially solved by a
Monte Carlo algorithm: a random guess would solve Avoid with probability 1 − 2n−m ≥ 1

2 .
There is also a straightforward ZPPNP algorithm for Avoid: the algorithm just repeatedly
samples a string y ∈ {0, 1}m and tests if y ∈ Range(C) by calling the NP oracle. Remarkably,
the work by Korten [13] showed that if we can deterministically solve Avoid, then we can
obtain explicit constructions of many important objects in CS theory and mathematics,
including Ramsey graphs, two-source extractors, rigid matrices, Boolean functions hard
against polynomial-size circuits, etc. These reductions put Avoid in a central position among
several notoriously hard explicit construction questions that have resisted attack for decades.

In this work, we study Avoid problem for low-depth Boolean circuits (in particular, NC0

and NC1 circuits). For every constant k ≥ 1, we say a circuit C : {0, 1}n → {0, 1}m is an
NC0

k-Avoid instance, if each output bit of C depends on at most k input bits. Similarly,
we say C is an NC1

k instance, if each output bit of C can be computed by a (k log n)-depth
Boolean circuit of fan-in two. A recent work by Ren, Santhanam and Wang [21] demonstrates
some attractive motivations to study Avoid problem for these weak circuit models. In
particular, they showed the following.

▶ Theorem 1 (Theorem 5.8 of [21]). Suppose there is an FP (resp. FPNP)2 algorithm for
NC0

4-Avoid. Then the following statements are true.
For every k ≥ 1, there is an FP (resp. FPNP) algorithm for NC1

k-Avoid.
For every ε > 0, there is a family of functions in E (resp. ENP) that does not have Boolean
circuits of depth n1−ε.

Item (1) shows that NC0
4-Avoid is as hard as NC1-Avoid. Item (2) shows that finding

explicit Boolean functions hard against low-depth circuits can be reduced to NC0
4-Avoid.

Together, these connections demonstrate that studying Avoid for weak circuit classes is
already challenging and fruitful. This suggests two new research directions to approach
Avoid from above and below: (i) we can show the “usefulness” of Avoid for “weak” circuit
classes by reducing further explicit construction problems to it, and (ii) starting from weak
circuit classes such as NC0

2, we can try to design algorithms for Avoid of increasingly powerful
models. Ultimately, we aim for an Avoid algorithm for a circuit class expressive enough to
capture some elusive explicit construction questions.

1.1 Our Results
In this work, we make progress on both directions mentioned above. On the one hand, we
reduce a sample of famous explicit construction problems to NC1-Avoid. This improves
the previous results by Korten [13], who only showed reductions to Avoid of general
polynomial-size circuits. Reducing the explicit construction problems to NC1-Avoid makes
them potentially more tractable.

On the other hand, towards solving Avoid of low-depth circuits unconditionally, we offer
two approaches to design deterministic algorithms for Avoid of low-depth circuits. We give
a simple deterministic algorithm for NC0

2-Avoid, and a novel approach to construct hitting
sets for Avoid instances. This is to say, for a class of circuits C ⊆ {C : {0, 1}n → {0, 1}m}
that satisfy certain conditions, we can deterministically construct a set S ⊆ {0, 1}m of size
|S| = poly(m), such that for every C ∈ C, we have S ̸⊆ Range(C). Note that a hitting set

2 Recall that FP, FPNP are function classes analogue of the decision problem classes P, PNP.
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construction implies an FPNP algorithm to solve Avoid of C. It is incomparable to an FP
algorithm, because the hitting set is oblivious to the actual circuit, and the same hitting set
can work for a broad class of “weak” circuits.

In the following, we elaborate on our contributions and their implications.

1.1.1 Reductions to NC1-AVOID

As our first set of results, we reduce a sample of famous and central explicit construction
questions to NC1

k-Avoid for constant k. In particular, we consider the following explicit
construction tasks.

Rigid matrices. A matrix M ∈ Fn×n
2 is called (ε, δ)-rigid, if one cannot reduce the rank

of M to εn by alternating at most δn2

log n entries in M . The motivation to study explicit
constructions of rigid matrices is due to its connection to circuit lower bounds [26].
Binary linear codes which meet the Gilbert-Varshamov bound (the best known rate vs.
distance trade-off for binary codes which is achieved by random linear codes). This is an
outstanding challenge that has been open for much of coding theory’s history. Recently
there has been impressive progress in the low-rate regime [23], but the general question
remains a tantalizing challenge at the intersection of coding theory and pseudorandomness.
Binary linear codes that achieve list-decoding capacity. While there are explicit codes
over large alphabets that achieve list-decoding capacity (i.e., are decodable up to the
information-theoretically largest fraction of worst-case errors with small lists) [7], the
best known binary codes fall well short of achieving capacity [8].

We reduce these explicit construction questions to Avoid. We first define explicit
construction problems in the complexity-theoretic language: let Π ∈ {Linear Code,

List-Decodable Code, Rigid Matrix} be a property of algebraic objects. Define the
Π-construction problem: given as input 1n, output an object of size n that satisfies the
property Π.

▶ Theorem 2 (Informal). Suppose that for each k ≥ 1, there is an FP (resp. FPNP) algorithm
for NC1

k-Avoid. Then, there is an FP (resp. FPNP) algorithm for Π-Construction for
Π ∈ {Linear Code, List-Decodable Code, Rigid Matrix}.

Furthermore, by Theorem 1, the same conclusion holds if we assume the existence of an
FP (resp. FPNP) algorithm for NC0

4-Avoid.

Our reductions for linear codes are new, and the reduction for rigid matrices improves a
similar result in [13], in the sense that we reduce the question to Avoid on logarithmic-depth
circuits. Our technique is general enough that it can be applied to many other construction
problems to give reductions to Avoid of low-depth circuits3. For brevity, we only present
three representative examples in this paper.

Proof idea. All of the three reductions follow the same framework. To illustrate the idea,
we briefly discuss the reduction for rigid matrices. We follow the idea of Korten [13]. That is,
we carefully construct a circuit C : {0, 1}n2−1 → {0, 1}n2 , whose outputs, when interpreted
as matrices in Fn×n

2 , contain all “non-rigid” matrices. To design the circuit, note that if a

3 However, we note that the reduction for two-source extractors in [13] might be an exception. Still, by
combining [13] with our technique, one can reduce two-source extractor construction to NC2-Avoid.
i.e., each output can be computed by a Boolean circuit of depth O(log2 n).

APPROX/RANDOM 2022
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matrix M ∈ Fn×n
2 is not rigid, then there is a way to compress the matrix. Namely, we can

write M = L · R + S where L, R are n × εn and εn × n matrices, and S is a sparse matrix
with only δn2

log n entries being 1. Note that for ε, δ ∈ (0, 1) sufficiently small, we can encode
L, R, S with 2εn2 + 2 log n · δn2

log n < n2 bits and recover M in polynomial time. In more detail,
the encoding just stores L, R explicitly, and stores a list of δn2

log n pairs (x, y) ∈ [n]2, specifying
the non-zero entries of S.

Given this encoding, the reduction to Avoid is simple: we design a circuit C as follows.
The input to C is a tuple (L, R, S), where L, R are n × εn and εn × n matrix, respectively. S
is a list of n2

log n pairs describing a sparse matrix S. Given the tuple, the circuit C computes
the matrix L · R + S. It is easy to see that the range of C includes every non-rigid matrix.
Hence, we can construct a rigid matrix by finding a matrix outside the range of C. However,
it is not clear from the reduction whether C can be implemented in logarithmic depth.

In fact, computing L · R can be done by a logarithmic circuit easily. If the matrix S is
presented in its natural form as a square matrix, adding S to L ·R is also easy. Therefore, the
main bottleneck in this reduction is to recover the sparse matrix S from its short description
S. Note that using a short encoding of S is essential for the reduction, as we need to ensure
that the input length is strictly smaller than n2. Still, there is some room for manoeuvre: it
is not necessary to encode S in an information-theoretically optimal way, and we can afford
a certain amount of redundancy, as long as the overall number of bits to encode L, R, S is
bounded by n2 − 1.

Succincter comes into play. We achieve the improvement by utilizing techniques from
succinct data structures (see, e.g., [17, 31]). Succinct data structures allow storage of a data
set using an amount of memory that is close to the information-theoretic lower bound, but they
still allow for retrieving information efficiently. In particular, there is a classic data structure
[17], which can store an n-bit string of Hamming weight k using log

(
n
k

)
+ O(n/ log2 n) bits.

Moreover, one can recover any bit of the string by querying at most O(log n) bits in the
memory. This data structure perfectly fits our purpose: we can encode the sparse matrix
S by the memory configuration4 of the data structure storing S, which is denoted by S ′ in
the following. Then, we can recover each entry of S by querying O(log n) bits in S ′. By a
simple construction (Lemma 26), this implies that each entry of S can be computed by a
logarithmic-depth circuit given S ′.

Therefore, given L, R and S ′, there is a logarithmic-depth circuit C ′ that computes
L · R + S. The number of bits to describe L, R, S ′ is bounded by

2εn2 + log
(

n2

δn2

log n

)
+ O(n2/ log2 n) < (1 − Ω(1))n2 + O(n2/ log2 n) < n2.

Hence, C ′ is a valid NC1-Avoid instance, and any matrix outside the range of C ′ is (εn, δn2

log n )-
rigid.

This completes the proof sketch for the rigid matrix reduction. Reductions for linear
codes follow the same approach. Namely, every generator matrix M that fails to generate
a desired code can be compressed, where the compression of M consists of a structured
algebraic part A and a low-Hamming weight binary string B. The structured part A has
an efficient encoding/decoding scheme, and the combination of A and B to recover M is

4 In our application, we do not care about the complexity of preparing the data structure, as the Avoid
problem asks one to avoid every output in the range of the circuit.
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also efficiently computable. Using a naive encoding scheme for B results in an inefficient (in
terms of circuit depth) decoding procedure. Replacing the naive encoding scheme with the
succinct data structure gives the desired efficient reduction.

1.1.2 Unconditional Algorithms for AVOID of Weak Circuits
On the positive side, we show an algorithm for NC0

2-Avoid, as well a hitting set construction
for solving Avoid of low-depth circuits and large stretch.

A polynomial time algorithm for NC0
2-AVOID. When the given circuit C : {0, 1}n →

{0, 1}m is in NC0
2 (i.e., each output bit depends on only two input bits), we can solve Avoid

of C by a simple deterministic polynomial-time algorithm.

▶ Theorem 3. There is a polynomial time algorithm which, given an NC0
2 circuit C :

{0, 1}n → {0, 1}m where m > n, outputs a string y ∈ {0, 1}m that is not in the range of C.

The idea behind Theorem 3 is simple. Let C1(x) be the first output bit of C. We observe
that there is always a way to fix C1 to a constant, so that we can reduce the problem to
solving NC0

2-Avoid for a smaller circuit C ′ : {0, 1}n−1 → {0, 1}m−1. To illustrate, suppose
that C1(x) is an AND of two variables (say, x1 and x2). Then, by setting C1 to 1, we have
effectively restricted that x1 and x2 must be 1. Hence, we can replace every appearance of
x1, x2 with constant 1 in C, and get a new NC0

2-Avoid instance C ′ : {0, 1}n−2 → {0, 1}m−1.
Suppose y ∈ {0, 1}m−1 is not in the range of C ′. Then we claim that 1 ◦ y (where ◦ denotes
string concatenation) is not in the range of C. In fact, for C1(x) evaluating to 1, one has to set
both x1 and x2 as 1. But then there is no way to find an input x where C(x)2...m = C ′(x) = y.

The argument above illustrates one step of the reduction. To design an algorithm for
NC0

2-Avoid, we can recursively apply the reduction, until at one point where we are left with
a circuit C ′′ : {0, 1}0 → {0, 1}m−n. At this point, C ′′ always outputs a fixed string, while
the number of possible outputs is 2m−n > 1, which allows us to solve Avoid for C ′′ trivially.
Finally, we can backtrack to recover a string y ∈ {0, 1}m, which solves Avoid for the original
circuit C.

Since the result in [21] (see also Theorem 1) gives a strong evidence suggesting that
solving NC0

4-Avoid unconditionally is hard and would imply surprisingly strong circuit lower
bounds, the strategy above probably fails to give an algorithm for NC0

4-Avoid. Still, finding
out the complexity of NC0

3-Avoid remains an interesting question.

Approaching AVOID via hitting sets. We also introduce a novel technique for solving
Avoid in FPNP. Informally, we show that there is an FPNP algorithm for simple circuits if
the stretch m(n) is large enough. Here is the list of our results.

▶ Theorem 4 (Informal). Let m = m(n), s = s(n) be two non-decreasing functions and
k, w ≥ 1 be two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function.
There is an FPNP algorithm for Avoid(C) if one of the following statements hold:

Each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n;
Each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw;
Each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s);

Each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)).

Formally, our result is stronger than FPNP algorithm. Our construction is a hitting set
which is independent of the circuit C. That is, we can output a set of polynomial size which
always contains a solution for Avoid(C), without looking at the input circuit C. We formally
list our results here.
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▶ Theorem 5. Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be
two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. The following
statements hold.

If each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n, then there
is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and satisfies
S ̸⊆ Range(C).
If each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw,
then there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is computable in polynomial
time and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s),

then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)),
then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).

In all cases, the set S is independent of the circuit C. Namely, only knowing m, n, s, k, w

suffices to construct the set S.

Perhaps surprisingly, we construct the hitting set by exploiting an interesting connection
to pseudorandomness of distributions. In particular, we carry out a two-step plan as follows.

For a class of simple circuits C ⊆ {C : {0, 1}n → {0, 1}m}, we show that if the stretch
m is sufficiently large, then under any input distribution x over {0, 1}n, the output
distribution C(x) cannot be pairwise independent over {0, 1}m.
On the other hand, we can sample a pairwise independent string of length m, with only
2 log m truly random bits.

Putting two items together, we conclude that the support of a low-entropy pairwise
independent distribution D over {0, 1}m constitutes a hitting set for Avoid of C. Indeed,
if the support of D is contained in Range(C) for some C ∈ C, then we know that under
a proper input distribution x over {0, 1}n, C(x) can sample D perfectly, which leads to a
contradiction to Item (1).

Here, Item (2) is standard [1]. We achieve Item (1) by generalizing a technique by Mossel,
Shpilka and Trevisan [15], where the authors showed that it is impossible for NC0

3 circuits to
expand n uniformly random bits into a (4n + 1)-bit string that fools every linear test (i.e.,
the output fails to be a low-biased distribution). We generalize the [15] result by considering
an arbitrary distribution (instead of uniform distribution) over inputs.

We briefly describe the high-level proof strategy below. We start with a simplicity measure
of Boolean functions, parameterized by an integer d ≥ 1 and a real δ ∈ (0, 1). A function
f : {0, 1}n → {0, 1} is called (d, δ)-simple, if under any distribution x over {0, 1}n, there is a
parity test over a set S ⊆ [n] of size |S| ≤ d, such that∣∣∣Pr

x

[
f(x) =

⊕
q∈S

xq

]
− 1

2

∣∣∣ ≥ δ.

The following theorem shows our general template to construct hitting sets based on
simplicity of functions.

▶ Theorem 6. Suppose m > n ≥ 2. Let C : {0, 1}n → {0, 1}m be a circuit and ε > 0 be a
parameter. Suppose each output bit Ci is a (d, ε)-simple function of input bits and m > 2

ε2 nd.
Then, for every distribution x over the input space {0, 1}n, the output distribution C(x) is
not pairwise independent.
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We prove Theorem 6 following the technique of [15]. Let x be sampled from an arbitrary
but fixed distribution. Since there are m ≥ 2

ε2 nd outputs and each output is correlated
with a parity test on at most d inputs, by pigeonhole principle, there are at least 2

ε2 output
bits that are ε-correlated with the same parity test. Then we follow [15] and carry out a
second-moment argument, which shows that there is a pair of indices i, j ∈ [m] among the
2
ε2 outputs, such that Ci(x) and Cj(x) have a correlation lower-bounded by 3

8 ε2, meaning
that C(x) does not sample a pairwise independent distribution.

Note that the argument above also shows a lower bound of the correlation between two
output bits. This allows us to use an almost pairwise independent distribution in the final
construction, which makes the size of our hitting set even smaller. See Section 4 for the
details.

Instantiating Theorem 6 with some canonical circuit classes, we deduce the results listed
in Theorem 5.

The results for NC0
k circuits and constant-width DNF/CNFs are proved by ad-hoc but

straightforward arguments. We remark that [15] has shown that every NC0
k function is

either an F2 polynomial of degree ⌈k/2⌉ or correlated with a parity test on at most ⌈k/2⌉
inputs under the uniform distribution of inputs. We managed to prove a correlation lower
bound under arbitrary distributions, but we need to use parity tests on at most (k − 1)
inputs, which in turn determines that our construction only works for NC0

k-Avoid with
stretch at least Ω(nk−1). Still this is non-trivial in the sense that prior to our work, even
an algorithm for NC0

k-Avoid with stretch o(nk) appears to not have been known.
The results for unbounded-width CNF/DNFs and small-size De Morgan formulae are
proved by relating the simplicity of functions to their (large-error) approximate degree, a
central notion in complexity theory that has been studied extensively (see, e.g., [12, 19, 4]).
Specifically, to show the simplicity of a function, it suffices (and, in some sense, is necessary)
to find a low-degree polynomial over reals that point-wise approximates the function
within a slightly non-trivial error (e.g. within error 1

2 − 1
n )5. This connection allows us

to translate known approximate degree upper bounds for CNF/DNF [12] and small-size
De Morgan formulae [20] to the simplicity of corresponding function classes.

Discussions. We find the connection to pseudorandomness quite interesting. In some
sense, following Razborov and Rudich’s natural proof [18], our argument establishes a
separation result for weak circuits (with large stretches) by studying a natural property
about distributions6 over hypercubes. Namely, we consider the property of being a pairwise
independent distribution. By standard pseudorandomness constructions [1], there is a low-
entropy distribution that attains this property easily, while our results rule out the possibility
of sampling such distributions by weak circuit classes that only receive a short random seed,
even if the random seed can come from an arbitrary distribution.

We leave it as an intriguing question to further explore the potential of this framework.
Namely, can we identify more (pseudorandom) property of distributions, where there exists
a low-entropy (and hopefully polynomial-time constructible) distribution with this property,
but every weak circuit from a class C fails to sample a distribution with this property, even
if its input distribution can be carefully tailored?

5 Note that the polynomial p(x) ≡ 1
2 trivially 1

2 -approximates every Boolean function.
6 This is in contrast with the typical notion of natural proofs, where natural properties of languages/-

Boolean functions are considered.
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Note that the existence of such a “pseudorandom” property usually implies an efficient
statistical test to distinguish the output of C-circuits from uniform (in our example, this is a
linear test on two output bits of C). Thus, under the cryptography assumption that NC1

circuits can compute PRG of polynomial stretch, it seems difficult to push this technique
to NC1. Still, we note there is a gap between our results and the best-known lower bounds
and pseudorandomness results: for example, we know strong lower bounds and good PRGs
against AC0 (see e.g. [10, 25, 14]). Moreover, when the input distribution is uniform, we
have very good sampling lower bounds against AC0 circuits of quasi-polynomial stretches
[27, 28]. If, quantitatively, solving C-Avoid is as hard as proving lower bounds/constructing
PRGs for C, then these results suggest that one should be able to solve AC0-Avoid of (large)
quasi-polynomial stretches. However, our result can only give a hitting set construction for
AC0 circuits of sub-exponential stretch7. We leave it as an interesting open question to close
the gap between the known pseudorandomness results and our hitting sets. Namely, can we
give better hitting sets for AC0 circuits of smaller stretch, or is there any formal evidence
suggesting that Avoid of low-end models (e.g., AC0) is strictly harder than designing PRG
for AC0?

Comparison with previous works. Attempting to solve Avoid of weak circuits with large
stretch, Ren, Santhanam and Wang [21] presented an algorithmic framework in FPNP, which
is based on Williams’ algorithmic method [29] and rectangular PCPs [3]. Our framework
is not directly comparable to theirs. A polynomial-size hitting set construction appears
to be stronger than an FPNP algorithm, as a hitting set implies an FPNP algorithm in a
straightforward way. But our assumption (the existence of a proper “natural property” of
distributions) is incomparable to the assumption in [21].

We note that [21] also showed an FPNP algorithm for De Morgan formula-Avoid with
stretch m ≥ 2ω(

√
s log(s)) as an application of their technique. To devise the algorithm, they

also used the approximate degree upper bounds [20] as a key technical ingredient. For this
application, our result compares favorably with theirs. First, our hitting set construction is
considerably simpler and can also handle a somewhat smaller stretch: the algorithm in [21]
needs a “constructive version” of the approximate degree upper bounds, which roughly says
that one can deterministically find a degree-(

√
s log s) polynomial approximating a given

size-s De Morgan formula. The log(s) overload in turn determines that their algorithm
can only handle stretches larger than nω(

√
s log s). In contrast, our solution only needs the

existence of a low-degree approximate polynomial, enabling us to construct hitting sets for
stretch nO(

√
s). Second, the framework in [21] cannot obtain a non-trivial algorithm from

large-error (ε = 1 − n−Ω(1)) approximate degree. In particular, their framework does not
naturally apply to polynomial-size DNF/CNFs as our result does.

1.2 Conclusion & Open Questions
In this work, we study the range avoidance problem for low depth circuits. We reduce some
explicit construction challenges to the range avoidance problem of NC0

4 circuits. On the
algorithmic side, we give a polynomial time algorithm for NC0

2-range avoidance. We also
introduce a hitting set construction for the range avoidance problem of weak circuit classes
with large stretch.

7 We explicitly give a construction for depth-2 circuits (e.g., DNFs) with stretch 2n1/2
. It is easy to

see that we can extend our results to depth-d AC0 circuit of stretch roughly 2n1−Ω(1/d)
by the known

approximate degree upper bound for AC0.
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As suggested by [21], NC0
4-Avoid might be hard to solve. For NC0

3, our hitting set
construct works when the stretch is at least C · n2 for a large constant C. For smaller stretch,
the complexity of NC0

3 is less clear. It is natural to ask:

Open Question 1. Is there a deterministic polynomial time algorithm for NC0
3-Avoid with

stretch n1+o(1), even when an NP oracle is available?
As we have mentioned, our hitting set construction suggests a new approach to solve

Avoid for weak computational models. It naturally raises the following questions.

Open Question 2. For some weak computational models (e.g., AC0), is there a distribution
that can be efficiently sampled using a short seed but cannot be sampled by these models?
They are some known sampling lower bounds for AC0 when the input distribution is uniform
[27, 28]. Do techniques in those works help in proving a sampling lower bound under arbitrary
distributions?

Open Question 3. For a class of circuits C ⊆ {{0, 1}n → {0, 1}m}, it is easy to see
(via the probabilistic method) that there exists a hitting set H for Avoid of C with size
|H| ≤ poly(log |C|). Note that such a hitting set constitutes a “universal” solution to explicit
construct problems. Namely, for every explicit construction problem Π that is reducible
to C-Avoid, there is a string x ∈ H that has the property Π. It would be interesting to
identify the construction of the hitting set H itself as an explicit construction problem,
and study its complexity and/or algorithms via various kinds of approaches (including the
pseudorandomness approach considered in this work).

1.3 Organization
The rest of the paper is organized as follows. In Section 2, we put some preliminaries,
including the problems we study and some mathematical tools used in our proofs. In Section
3, we show how to reduce some explicit construction problems to NC0

4-Avoid. In Section
4, we show a general framework to construct hitting sets for Avoid by correlations with
low-degree parities. Finally we show some applications of this method.

2 Preliminaries

In this section, we state necessary background knowledge and set up some useful pieces of
notation.

Range Avoidance. We first define the Avoid problem, which is the primary subject of this
work.

▶ Definition 7 (Avoid [13, 21]). Avoid is the following problem: given a Boolean circuit
C : {0, 1}n → {0, 1}m where m > n, find an m-bit string outside the range of C. If the input
circuit is guaranteed to be in some circuit class C, we also call the problem C-Avoid.

▶ Definition 8 (NC circuits). For each k ≥ 1, we define NC0
k and NC1

k as follows. NC0
k

contains all functions that depend on at most k input bits. For every n ≥ 1, NC1
k contains

all n-bit functions that are computable by (k log n)-depth Boolean circuits of fan-in two.

We will be mainly interested in NC0
k-Avoid and NC1

k-Avoid for constant k’s. When we
say an explicit construction problem reduces to NC1-Avoid, we mean there exists k ≥ 1 such
that the problem reduces to NC1

k-Avoid.
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Explicit Constructions. We study the following explicit construction problems, starting
with rigid matrices.

▶ Definition 9 (rigid matrix [26]). Let q ≥ 1 be a prime power and r, s ≥ 1 be two integers.
We say an n × n matrix M over Fq is (r, s)-rigid, if for any matrix S ∈ Fn×n

q with at most s

non-zero entries, the rank of M + S is at least r.

An explicit construction of (Ω(n2), n1+ε)-rigid matrices would imply a lower bound against
linear-size, logarithmic-depth arithmetic circuits [26]. By probabilistic method, a random
matrix is (Ω(n2), Ω(n2/ log n))-rigid with high probability. This motivates us to formulate
the following problem.

▶ Definition 10 (Rigid). (ε, δ, q)-Rigid is the following problem: given input 1n, output an
n × n matrix over Fq that is

(
εn, δn2

log n

)
-rigid.

The next object we consider is linear codes with good rates and distances.

▶ Definition 11 (linear code [9]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say an k × n

matrix G of full row rank over F2 is a generator matrix of a (r, p)-linear code, if every two
distinct codewords generated by G have Hamming distance at least pn, or equivalently, the
Hamming weight of any nonzero codeword is at least pn.

By probabilistic method, for every r, p ∈ (0, 1) such that r < 1 − h(p), there is a
family of linear codes with rate r and distance pn (the inequality r < 1 − h(p) is called
Gilbert-Varshamov bound in literature). However, despite an extensive line of efforts, an
explicit construction meeting this bound remains widely open. We formulate the linear code
construction in the complexity-theoretic language as follows.

▶ Definition 12 (LinearCode). (r, p)-LinearCode is the following problem: given input
1n, output a matrix G ∈ Frn×n

2 such that G is a generator matrix of a (r, p)-linear code.

Finally, we study linear codes with good list-decoding capacity.

▶ Definition 13 (list-decodable code [6, 30]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say
an rn × n matrix G over F2 is a generator matrix of a (p, L)-list decodable code if for every
z ∈ Fn

2 , the number of codewords c ∈ Im(G) within Hamming distance pn from z is at most
L, i.e.

|{s ∈ Frn
2 : wt(sG − z) ≤ pn}| ≤ L

where wt(s) denotes the number of ones in the string s.

The probabilistic method shows the existence of (r, p, L)-list decodable codes, provided
that r < 1 − h(p) − 2

log2 L . Again, finding an explicit family of linear codes approaching this
limit remains an outstanding challenge.

▶ Definition 14 (ListDecodable). (r, p, L)-ListDecodable is the following problem:
given input 1n, output a matrix G ∈ Frn×n

2 such that G is a generator matrix of a (p, L)-list
decodable code.

2.1 Boolean Functions
In this subsection, we list some useful notations about Boolean functions. To represent a
Boolean variable, we sometimes use F2 as the domain and sometimes use {−1, 1} as the
domain. When the domain is F2, we use 1 to represent True and 0 to represent False. When
the domain is {−1, 1}, we use −1 to represent True and 1 to represent False.
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▶ Definition 15 (parity functions). For every set S ⊆ [n], define the parity function χS :
{−1, 1}n → {−1, 1} by

χS(x) =
∏
i∈S

xi.

▶ Definition 16 (equality functions). For every set S ⊆ [n] and z ∈ {−1, 1}n, we define the
equality function EQS,z(x) to be 1 if xi = zi holds for every i ∈ S and 0 otherwise.

It can be easily verified that parity functions and equality functions have the following
relation:

▶ Fact 17. For every set S ⊆ [n] and z ∈ {−1, 1}n, we have

EQS,z(x) = 1
2|S|

∑
T ⊆S

(∏
i∈T

zi

)
χT (x).

▶ Definition 18 (inner product). For two Boolean functions f, g : {−1, 1}n → R, we define
their inner product by:

⟨f, g⟩ = 1
2n

∑
x∈{−1,1}n

f(x)g(x).

For a given distribution φ : {−1, 1}n → [0, 1] where φ(x) := Prx∼φ[x = x], we define their
inner product over φ by:

⟨f, g⟩φ =
∑

x∈{−1,1}n

f(x)g(x)φ(x).

▶ Definition 19 (correlation). We say two Boolean functions f, g : {−1, 1}n → {−1, 1} are
ε-correlated if

|⟨f, g⟩| ≥ ε.

For a given distribution φ : {−1, 1}n → [0, 1], we say they are ε-correlated under φ if

|⟨f, g⟩φ| ≥ ε.

2.2 Miscellaneous
▶ Definition 20 (binary entropy). The binary entropy function h : [0, 1] → R is defined as

h(p) := −p log2 p − (1 − p) log2(1 − p).

For a distribution D, we use x ∼ D to denote that a random variable x is drawn from D.
We then define ε-biased distribution and ε-almost pairwise independent distribution here.

▶ Definition 21 (ε-biased distribution). A distribution D on {−1, 1}n is ε-biased if for every
nonempty T ⊆ [n], it holds that

−ε ≤ E
x∼D

[∏
i∈T

xi

]
≤ ε.
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▶ Definition 22 (ε-almost pairwise independent distribution). A distribution D on {−1, 1}n is ε-
almost pairwise independent if for every two distinct indices i, j ∈ [n] and vector v⃗ ∈ {−1, 1}2,
it holds that∣∣∣∣ Pr

x∼D
[(xi, xj) = v⃗] − 1

4

∣∣∣∣ < ε.

We have the following standard constructions of ε-biased distribution and ε-almost
pairwise independent distribution.
▶ Theorem 23 ([16, 2]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time
computable) ε-biased distribution with support size O(n2/ε2).
▶ Theorem 24 ([2]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time
computable) ε-almost pairwise independent distribution with support size O(log2 n/ε2).

3 Explicit Constructions Reduce to NC0
4-AVOID

In this section, we reduce several central explicit construction problems in coding theory and
complexity theory to solving Avoid for logarithmic depth circuits.

3.1 Technical Ingredients
We need the following technical tools from literature.
▶ Lemma 25 ([17], Theorem 1). Given an array of n elements from an alphabet Σ, and let
fσ > 0 be the number of occurences of letter σ in the array. There is a data structure storing
the array with at most

O(|Σ| log n) +
∑
σ∈Σ

fσ log2
n

fσ
+ O(n/ log2 n)

bits of memory. Moreover, there is an algorithm that, upon receiving an index i ∈ [n], queries
at most O(log n) bits in the data structure and returns the i-th entry of the array.

Note that the
∑

σ∈Σ fσ log2
n
fσ

term is the entropy of the array, i.e. the information-
theoretical lower bound to store the array.

The query process of the data structure can be modeled as a depth-O(log n) decision tree.
The following lemma converts it to an NC1 circuit to suit our purpose.
▶ Lemma 26. Every function that can be computed by a depth-d decision tree can be computed
by a depth-2d circuit.
Proof. Prove by induction. When d = 1, the output then only depends on a single bit and
can be trivially computed by a circuit of depth 2.

Suppose the statement holds for d. Let T be a depth-(d + 1) decision tree. Suppose the
root of T queries xi and proceeds to the left or right subtree, depending on whether xi is 0
or 1. By our assumption, the two subtrees can be computed by circuits of depth 2d. Let the
circuits be C0, C1. Then we construct a circuit C as

C(x) := (xi ∧ C1(x)) ∨ (¬xi ∧ C0(x)).

It is easy to verify that C(x) computes T (x) correctly and has depth 2(d+1), which completes
the proof. ◀

The following lemma asserts that the summation of integers is in NC1.
▶ Lemma 27 ([22]). Iteratively adding (i.e., summing up) n n-bit integers can be done in
NC1.
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3.2 Rigid Matrices
In this subsection, we reduce constructing rigid matrices to NC1-Avoid.

▶ Theorem 28. For any fixed ε, δ such that ε + δ < 1
2 and any prime power q, (ε, δ, q)-Rigid

reduces in polynomial time to NC1-Avoid.

Proof. WLOG we can assume n is sufficiently large since for small values of n we can solve
the problem by brute force and reduce to a trivial instance. Let M be an n × n matrix
over Fq that is not

(
εn, δn2

log n

)
rigid. That is, M can be written as X + S where X has

rank at most εn and S has at most δn2

log n non-zero entries. X can be equivalently expressed
as the product of an n × εn matrix L and εn × n matrix R. S can be encoded by the
data structure in Lemma 25. Given this observation, we construct a circuit as follows. We
interpret the input bits as the encoding of L, R and the data structure encoding S. For
the output bit representing Mij , we first compute

∑
k∈[εn] LikRkj , which can be done by a

circuit of O(log n)-depth. Then we compute Sij by making a query to the data structure,
which can also be done by a circuit of O(log n)-depth by Lemma 26. Finally, we compute
Mij by XOR-ing these two results.

To encode L and R, we need 2εn2 log q bits. One way to encode S is by storing the indices
of the non-zero entries and their values, which requires 2 log n + log q bits per non-zero entry.
Thus the optimal encoding requires at most (2 log n + log q) δn2

log n bits, and our data structure
needs

(2 log n + log q) δn2

log n
+ 2q log n + O(n2/ log2 n) < 2δn2 log q

number of bits. Note that the number of output bits is n2 log q. As ε + δ < 1
2 , the

number of input bits is less than the number of output bits. Thus the resulting instance
is a valid NC1-Avoid instance, and any string outside the range of the circuit must be(

εn, δn2

log n

)
-rigid. ◀

By similar techniques, we can reduce constructing binary codes that approach the Gilbert-
Varshamov bound and constructing binary codes that achieve list-decoding capacity to
NC1-Avoid.

▶ Theorem 29. For any r, p ∈ (0, 1) such that r < 1 − h(p), (r, p)-LinearCode reduces in
polynomial time to NC1-Avoid.

▶ Theorem 30. For any fixed r, p, L such that r < 1−h(p)− 2
⌈log2 L⌉ , (r, p, L)-ListDecodable

reduces in polynomial time to NC1-Avoid.

We omit the proof here. Readers can refer to our full version for a concrete proof.

3.3 Reduction to NC0
4-AVOID

In this subsection, we use the reduction by Ren, Santhanam and Wang [21] (i.e., Theorem 1)
to further reduce these explicit construction problems to NC0

4-Avoid. This result shows that
solving even NC0

4-Avoid would have unexpected consequences in pseudorandomness and
complexity theory.

Specifically, combining Theorem 1 with our reductions (Theorem 28, 29 and 30), we get
the following corollary.
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▶ Corollary 31. Suppose there is a polynomial-time deterministic algorithm for NC0
4-Avoid.

Then the following are true.
For every ε, δ such that ε + δ < 1

2 , there is a family of
(

εn, δn2

log n

)
-rigid matrices that are

computable in deterministic polynomial time.
For every rate r ∈ (0, 1) and p < 1 − h(r), there is a family of (r, p)-linear code, whose
generator matrices are computable in deterministic polynomial time.
For every rate r ∈ (0, 1) and parameters p ∈ (0, 1), L ≥ 1 such that r < 1 − h(p) − 2

⌈log2 L⌉ ,
there is a family of (r, p, L)-list-decodable code, whose generator matrices are computable
in deterministic polynomial time.

From an algorithmic perspective, Corollary 31 provides a potential approach to at-
tack these notoriously hard explicit construction problems. From a pessimistic viewpoint,
Corollary 31 gives further evidence supporting the hardness of solving NC0

4 unconditionally.

4 A Hitting Set Construction for AVOID

In this section, we use {−1, 1} to represent True and False, respectively. By Boolean function
we mean functions of the form f : {−1, 1}n → {−1, 1}.

4.1 The General Template
We first show the general framework to construct hitting sets for Avoid instances of weak
circuits. We start with a definition of “simple functions”.

▶ Definition 32. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let d ∈ N and δ > 0.
We say f is a (d, δ)-simple function, if for any distribution φ over {−1, 1}n, there is a set
S ⊆ [n] of size at most d such that the correlation between χS and f under φ is at least δ.
That is,

|⟨f, χS⟩φ| :=

∣∣∣∣∣∑
x

φ(x)f(x)χS(x)

∣∣∣∣∣ ≥ δ.

Suppose F ⊆ {f : {−1, 1}n → {−1, 1}} is a collection of functions. We say F is a (d, δ)-
simple collection, if each function in F is (d, δ)-simple.

For intuition, it is easy to see that every k-bit function f : {−1, 1}k → {−1, 1} is
(k, 2−k)-simple.

The meta-construction of hitting set. The following theorem shows our “meta-construction”
of hitting set: roughly, for every Avoid-instance C : {−1, 1}n → {−1, 1}m, if the stretch
m = m(n) is sufficiently large (relative to the “simplicity” of the function class), then the
support of an almost pairwise independent distribution would be a hitting set for Avoid(C).

▶ Theorem 33. Suppose m > n ≥ 2. Let C : {−1, 1}n → {−1, 1}m be a circuit and ε > 0
be a parameter. Suppose each output bit Ci is a (d, ε)-simple function of input bits and
m > 2

ε2 nd. Let D be any 3
8 ε2-almost pairwise independent distribution over {0, 1}m. Then,

the support of D is a hitting set for Avoid(C). That is, supp(D) ̸⊆ Range(C).

Using a standard construction of ε-almost pairwise independent distributions (The-
orem 24), the support of D has size bounded by O(log2 m/ε4). Therefore, by Theorem 33
we can construct a hitting set of size O(log2 m/ε4) for Avoid(C). Remarkably, the hitting
set is oblivious to the circuit C: one can construct it without actually looking into C.
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Proof of Theorem 33. Suppose by contradiction that there exists a pairwise independent
distribution D such that supp(D) ⊆ Range(C). Then, every string y ∈ supp(D) is an output
of C. This implies that under a proper input distribution φ over {−1, 1}n, the output
distribution of {C(x) : x ∼ φ} is exactly D, which is a 3

8 ε2-almost pairwise independent
distribution. In the following, we show that C cannot sample a 3

8 ε2-almost pairwise inde-
pendent distribution under any input distribution. This would lead to a contradiction and
complete the proof.

Let φ be a distribution supported on {−1, 1}n. Given φ, every output of C is correlated
with χS for some |S| ≤ d by Definition 32. By pigeonhole principle, there must be m

2·nd >
1
ε2 =: t outputs C1, C2, . . . , Ct that are correlated with the same set S. By negating the
output if necessary, we can assume WLOG that

Pr
x∼φ

[Ci(x) = χS ] ≥ 1
2 + ε, ∀i ∈ [t].

Define

Z(x) = |#{i ∈ [t] : Ci(x) = 0} − #{i ∈ [t] : Ci(x) = 1}|.

We note that

E
x∼φ

[Z(x)] ≥ E
x∼φ

[|#{i ∈ [t] : Ci(x) = χS(x)}| − |#{i ∈ [t] : Ci(x) ̸= χS(x)}|] ≥ 2εt.

Define Zi,j(x) to be 1 if Ci(x) = Cj(x) and −1 otherwise. Then clearly Zi,i(x) = 1.
Note that Z(x)2 =

∑
i,j Zi,j(x), then

E
x∼φ

∑
i,j

Zi,j(x)

 = E
x∼φ

[Z(x)2] ≥ E
x∼φ

[Z(x)]2 ≥ 4ε2t2 = 4t.

It then follows that

E
x∼φ

∑
i̸=j

Zi,j(x)

 ≥ 3t.

Hence, there must be some i ̸= j such that Ex∼φ[Zi,j(x)] ≥ 3t
t(t−1) > 3ε2

2 , meaning that

Pr
x∼φ

[C(x)i = C(x)j ] − Pr
x∼φ

[C(x)i ̸= C(x)j ] = E
x∼φ

[C(x)i · C(x)j ] >
3ε2

2 .

By averaging principle, either Prx∼φ[(C(x)i, C(x)j) = (1, 1)] or Prx∼φ[(C(x)i, C(x)j) =
(−1, −1)] is greater than 1

4 + 3ε2

8 . This contradicts to the fact that C(φ) samples a 3ε2

8 -almost
pairwise independent distribution. ◀

In the following, we show that for many natural circuit classes (NC0
k for constant k,

constant-width CNF/DNFs, small-size De Morgan formulae, etc.), functions computable
in these classes are (d, δ)-simple with interesting parameters. Consequently, it allows us to
apply Theorem 33 to construct hitting set for Avoid problem of those circuit classes (for
large enough stretch).

▶ Theorem 5. Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be
two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. The following
statements hold.

APPROX/RANDOM 2022
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If each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n, then there
is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and satisfies
S ̸⊆ Range(C).
If each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw,
then there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is computable in polynomial
time and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s),

then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ nω(

√
n log s), then

there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and
satisfies S ̸⊆ Range(C).

In all cases, the set S is independent of the circuit C. Namely, only knowing m, n, s, k, w

suffices to construct the set S.

We defer the proof to Appendix A.
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A Proof of Theorem 5

A.1 Applications
NC0

k circuits. Our first application is a hitting set for NC0
k-Avoid with stretch m(n) ≥

ω(nk−1).

▶ Lemma 34. For every k ≥ 2 and every k-bit Boolean function f : {−1, 1}k → {−1, 1} that
is not χ[k] or −χ[k], the following is true. For any distribution φ : {−1, 1}k → [0, 1], there is
some S ⊊ [k] and some z and such that∣∣∣∣∣∣

∑
x∈{−1,1}k

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 2−2k.

Proof. Let k ≥ 2 and δ = 2−2k. Suppose there is a function f : {−1, 1}k → {−1, 1} and a
distribution φ violating the statement of lemma. We derive a contradiction in the following.

We say that two inputs x, y are adjacent if they only differ at one coordinate. Suppose
there are two adjacent x, y such that they differ at the i-th coordinate and |φ(x) − φ(y)| ≥ δ.
We construct S = [k] \ {i} and observe that∣∣∣∣∣∣

∑
z∈{−1,1}k

φ(z)f(z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x)f(x) + φ(y)f(y)| ≥ |φ(x) − φ(y)| ≥ δ.

Since we assumed that f and φ violate the lemma statement, we have

Observation 1: |φ(x) − φ(y)| < δ holds for every adjacent x, y ∈ {−1, 1}k.

Next, since f is not χ[k] or −χ[k], there must be adjacent inputs x, y such that f(x) = f(y).
Suppose they differ at the i-th coordinate. Let S = [k] \ {i}. Similarly, we have∣∣∣∣∣∣

∑
z∈{−1,1}k

φ(z)f(z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x)f(x) + φ(y)f(y)| = φ(x) + φ(y).

Having assumed that f and φ violate the lemma statement, we have

Observation 2: There are adjacent x, y ∈ {−1, 1}k such that φ(x) ≤ φ(x) + φ(y) ≤ δ.

Finally, for each z ∈ {−1, 1}k, let dis(x, z) denote the Hamming distance between x and
z. By two observations above, we have∑

z∈{−1,1}k

φ(z) ≤
∑

z∈{−1,1}k

(dis(x, z) + 1) · δ ≤ k2kδ ≤ k2−k < 1.

This contradicts to the fact that φ is a distribution. ◀

▶ Lemma 35. For every k ≥ 2, every k-bit Boolean function f : {−1, 1}k → {−1, 1} that is
not χ[k] or −χ[k] is (k − 1, 2−2k)-simple.

Proof. By Lemma 34 and Fact 17, there exists some S ⊊ [k] and z ∈ {−1, 1}k such that∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)
∑
T ⊆S

1
2|S|

(∏
i∈T

zi

)
χT (x)

∣∣∣∣∣∣ ≥ 2−2k.
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As
∏

i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S ⊊ [k] such that

|⟨f, χT ⟩φ| =

∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)χT (x)

∣∣∣∣∣∣ ≥ 2−2k. ◀

▶ Corollary 36. Let C : {−1, 1}n → {−1, 1}m be a NC0
k circuit where m > 24k+1nk−1 + n,

then there is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and
S ̸⊆ Range(C).

Proof. Let S be the support of a
( 3

2 · 2−4k
)
-biased distribution over {−1, 1}m. By Theorem

23, it is of size 2O(k)m2 and can be computed in polynomial time. We consider two cases.
Suppose there are at least n + 1 outputs that are parities of exactly k input bits. Without
loss of generality assume they are C1, . . . , Cn+1. In this case, we interpret each Ci as
a function Ci : Fn

2 → F2 by identifying −1, 1 with 1, 0 respectively. Then we know for
each i ∈ [n + 1], Ci is an affine function of input bits. Since there are only n input
bits, C1, . . . , Cn+1 are linearly dependent. That is, there is ∅ ≠ J ⊆ [n + 1] such that∏

i∈J Ci(x) is a constant. On the other hand, as S is the support of a 3
2 · 2−4k-biased

distribution, there must be y1, y2 ∈ S such that∏
i∈J

y1
i ̸=

∏
i∈J

y2
i .

Therefore, at least one of y1, y2 is not in the range of C.
It remains to consider the case that there are at least m − n outputs that are not in
the form ±χS where |S| = k. In this case, the correctness follows directly by combining
Theorem 33 and Lemma 35. ◀

Constant-width CNF/DNFs. Next, we apply our construction to constant-width CNF and
DNFs.

▶ Lemma 37. For every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w
size-s CNF/DNF, and any distribution φ : {−1, 1}n → [0, 1], there exists a set S ⊆ [n] and
some z such that |S| ≤ w and∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 1
4s

.

Proof. WLOG we assume f is a DNF. Suppose f =
∨s

i=1 Ci, where each Ci is a logical
AND over at most w literals (i.e., variables or their negations). We can first assume
Prx∼φ[f(x) = True] ∈ ( 1

4 , 3
4 ), or otherwise we can set S = ∅ and z = 0n such that∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =
∣∣∣∣ Pr
x∼φ

[f(x) = False] − Pr
x∼φ

[f(x) = True]
∣∣∣∣ >

1
2 >

1
4s

.

By averaging principle, there exists i ∈ [n] such that Prx∼φ[Ci(x) = True] ≥ 1
4s . Let S be

the variables in Ci and z be an arbitrary assignment satisfying Ci, then we have |S| ≤ w and∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 1
4s

. ◀
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▶ Lemma 38. Every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w
size-s CNF/DNF is

(
w, 1

4s

)
-simple.

Proof. By Lemma 37 and Fact 17, there exists some S ⊆ [n] and z ∈ {−1, 1}n such that
|S| ≤ w such that∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)
∑
T ⊆S

1
2|S|

(∏
i∈T

zi

)
χT (x)

∣∣∣∣∣∣ ≥ 1
4s

.

As
∏

i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S such that
|T | ≤ |S| ≤ w and

|⟨f, χT ⟩φ| =

∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)χT (x)

∣∣∣∣∣∣ ≥ 1
4s

. ◀

▶ Corollary 39. Let C : {−1, 1}n → {−1, 1}m be a circuit where m > 32s2nw and each
output can be computed by a width-w size-s CNF/DNF, then there is a set S ⊆ {−1, 1}m of
size O(s2 log2 m) that is computable in polynomial time and S ̸⊆ Range(C).

Proof. Let S be the support of a
( 3

8 · 1
16s2

)
-almost pairwise independent distribution. By

Theorem 24, it is of size O(s2 log2 m) and can be computed in polynomial time. The
correctness directly follows from Theorem 33 and Lemma 38. ◀

A.2 Simplicity of Functions from Approximate Degree
In this section, we derive the simplicity of functions (as per Definition 32) by connecting
it with (large-error) approximate degree of Boolean functions, a well-studied complexity
measure of Boolean functions in literature (see, e.g., [12, 19, 20, 4]).

▶ Definition 40. Let f : {−1, 1}n → {−1, 1} be a Boolean function. For any ε ∈ [0, 1), the
ε-approximate degree of f , denoted by degε(f), is the least d ∈ N such that there is a degree-d
real polynomial p : Rn → R satisfying |p(x) − f(x)| ≤ ε for every x ∈ {−1, 1}n.

In the literature, when ε is not specified, it is typically set as ε = 1
3 . However, for us it is

also beneficial to study case that ε is very close to 1 (Note that the zero polynomial trivially
1-approximates every Boolean function).

We show that upper bounds for ε-approximate degree translate to simplicity of functions.

▶ Theorem 41. Suppose n ≥ 10. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let
ε ∈ (0, 1), d ∈ N be such that deg1−ε(f) ≤ d. Then f is

(
d, ε

3nd/2

)
-simple.

Proof. Let p(x) =
∑

S⊆[n],|S|≤d p̂(S) · χS(x) be a degree-d real polynomial such that |f(x) −
p(x)| ≤ 1 − ε holds for every x ∈ {−1, 1}n. By Parseval’s identity, we have∑

S⊆[n]

p̂(S)2 = E
x∼{−1,1}n

[p(x)2] ≤ (1 + 1 − ε)2 ≤ 4.

By Cauchy-Schwarz inequality, we have

4 · 2nd ≥

∑
S⊆[n]

p̂(S)2

 ∑
S⊆[n],|S|≤d

1

 ≥

 ∑
S⊆[n],|S|≤d

|p̂(S)|

2

.
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Therefore,∑
S⊆[n],|S|≤d

|p̂(S)| ≤ 3nd/2.

Note that from f(x) ∈ {−1, 1} and |p(x) − f(x)| ≤ 1 − ε we have f(x)p(x) ≥ ε. Hence, for
every distribution φ over {−1, 1}n, we have∑

x∈{−1,1}n

φ(x) · f(x) · p(x) ≥
∑

x∈{−1,1}n

φ(x) · ε = ε.

Write p(x) =
∑

S⊆[n],|S|≤d p̂(S) · χS(x). By averaging principle, there is S ⊆ [n], |S| ≤ d such
that ∑

x∈{−1,1}n

φ(x) · f(x) · χS(x) ≥ ε

3nd/2 .

Since this argument holds for every distribution φ, we conclude that f is
(
d, ε

3nd/2

)
-simple. ◀

Approximate degree of natural circuit classes. We have the following known upper bounds
on approximate degree.

For f being a size-s De Morgan formula, following a lone ling of efforts [20, 24], we now
know that deg1/3(f) = O(

√
s). Consequently, f is

(
O(

√
s), n−O(

√
s)
)

-simple.
For f being a CNF/DNF of unbounded width and size s, it is known that deg1− 1

s
(f) =

O(
√

n log s) [12, 5]. Consequently, f is
(√

n log(s), n−O(n1/2 log s)
)

-simple.

Combining these approximate degree upper bounds with Theorem 33 and 41, as well as
the construction from Theorem 24, the following corollary is immediate.

▶ Corollary 42. Let m = m(n), s = s(n) be two non-decreasing functions. Suppose C :
{−1, 1}n → {−1, 1}m is a multi-output function. The following statements hold.

If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(
√

s),
then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ nω(

√
n log(s)), then

there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and
satisfies S ̸⊆ Range(C).

In both cases, the set S is independent of the circuit C.

APPROX/RANDOM 2022
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(k)
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Detr(M (k)) = Detr(L(π(k))).

Our work follows the works [22, 7] which use lower bound methods in arithmetic complexity to
design average case learning algorithms. It also vastly generalizes the result in [22] about learning
depth three circuits, which is a special case where each gi is just a monomial. At the core of our
algorithm is the partial derivative method which can be used to prove lower bounds for generalized
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1 Introduction

Arithmetic circuits are a natural model for computing polynomials using basic arithmetic
operations like addition and multiplication. The problem of learning arithmetic circuits
a.k.a. reconstruction is an important and well studied problem. It can be defined for
various arithmetic circuit models. Unsurprisingly, there is enough evidence to point out
that the problem is likely to be hard in the worst case for most arithmetic circuit models
[14, 5, 23, 31].1 Hence, it is imperative to explore algorithms for learning arithmetic circuits
that are efficient and work in the average case. One classic example of a stark contrast
between the worst case and average case complexities is the tensor decomposition problem.
Let us focus on n × n × n tensors for simplicity. In the language of arithmetic complexity,
tensor decomposition corresponds to learning depth three set-multilinear circuits. We have
three sets of variables y = {y1, . . . , yn}, z = {z1, . . . , zn}, w = {w1, . . . , wn}. Then the
problem is to decompose a set-multilinear polynomial f(y, z, w) =

∑
j,k,ℓ Tj,k,ℓyjzkwℓ as

s∑
i=1

ℓi1(y) ℓi2(z) ℓi3(w)

for the smallest possible s (here ℓij ’s are linear forms). This is NP-hard in the worst case [14].
However, it is possible to design efficient algorithms for tensor decomposition which work
well under some mild assumptions. One such algorithm is due to Jennrich [13, 27] and states
that given f(y, z, w) we can find the above decomposition in polynomial time if s ≤ n and
(ℓ1a, . . . , ℓsa) are linearly independent for all a ∈ [3]. Note that the algorithm works under a
bound2 on s and also a mild assumption on the linear forms (which is satisfied when the
linear forms are chosen randomly). Our algorithms will also work under such non-degeneracy
conditions. Kayal and Saha [22] designed algorithms for learning depth three arithmetic
circuits in the non-degenerate case. That is, they design an algorithm for decomposing

f(x) =
s∑

i=1

d∏
j=1

ℓij(x)

assuming a bound on s and certain non-degeneracy conditions on the ℓij ’s. Note that the
above model is different from tensor decomposition or set-multilinear circuits since there
is no partitioning of variables into disjoint sets and the linear forms can depend on all the
variables. We prove a far-reaching generalization of the result of [22].

1.1 The model and our results
We study the model of generalized depth three circuits. A circuit in this class computing a
degree d polynomial f(x) is an expression of the following kind,

f(x) = g1(ℓ11, . . . , ℓ1m) + · · · + gs(ℓs1, . . . , ℓsm),

where gi’s are m-variate degree d homogeneous polynomials and ℓij ’s are linear forms in the
variables x = (x1, . . . , xn). Our main result is an algorithm for learning decompositions of
the above kind assuming certain non-degeneracy conditions.

1 Despite this, there has been much success in designing worst case reconstruction algorithms. This includes
reconstruction algorithms for the models of sparse polynomials [25], read-once algebraic branching
programs (ROABPs) [1, 24] and for models with bounded top fan-in [23, 17, 11, 32, 2, 3].

2 This bound usually corresponds to the best known lower bounds we can prove for the corresponding
model.
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▶ Theorem 1 (Learning generalized depth three circuits in the non-degenerate case). There
is a randomized algorithm that given black-box access to an n-variate degree d polynomial
f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for a homogeneous m-variate polynomial gi,
outputs black-boxes for the individual summands Ti’s. The running time of the algorithm
is poly(n, m, d, s). The algorithm works under certain non-degeneracy conditions and also
under some additional technical assumptions such as n ≥ (md)2, s ≤ nd/4, |F| ≥ poly(nd, s)
and char(F) = 0 or char(F) > d.

The non-degeneracy conditions are mentioned explicitly in Section 2.1. These non-
degeneracy conditions are satisfied when the coefficients of the linear forms are chosen
uniformly and independently at random from a large enough set and when the gi’s are either
random or one of the well-known polynomials in arithmetic complexity such as determinant,
permanent, elementary symmetric polynomial etc. Let us mention one such appealing
corollary which follows from Theorem 1 and the algorithms for equivalence-testing of the
determinant [19, 6].

▶ Corollary 2 (Learning sums of random projections of determinants). Suppose n, r,F, s be
such that n ≥ r6, s ≤ nr/4, |F| ≥ poly(nr, s) and char(F) = 0 or char(F) > r. There is
a randomized poly(n, r) time algorithm that given black-box access to an f = Detr(L(1)) +
. . . + Detr(L(s)), where L(k) = (ℓ(k)

i,j )i,j with ℓ
(k)
i,j ’s being linear forms in n variables whose

coefficients are chosen independently and uniformly at random from an arbitrary set S ⊂ F
of size |S| ≥ poly(nr, s), it outputs matrices of linear forms (M (k))k s.t. there exists a
permutation π : [s] → [s] with Detr(M (k)) = Detr(L(π(k))).

Remarks
1. Once we have the black-boxes for the Ti’s as in Theorem 1, it is not hard to output

black-boxes for g̃i’s and also ℓ̃i1, . . . , ℓ̃im s.t. Ti = g̃i

(
ℓ̃i1, . . . , ℓ̃im

)
. This is done by finding

a invertible linear transformation on gi that restrict it to its “essential variables”, see
[18, Thm 4.1]. Note that we cannot hope to exactly recover the gi’s since there is some
redundancy. One can always apply a linear transformation to the input variables of gi’s
to obtain different decompositions.

2. We get a similar result (as in Corollary 2) with gi’s being the elementary symmetric
polynomial, permanent, iterated matrix multiplication, monomials etc. Note that it could
be a mixture of these. It might seem strange that we are able to handle permanent,
but note that we are only dealing with black-boxes and hence the complexity of the
permanent does not come into play. It is already known how to do equivalence-testing of
the permanent efficiently [19] which is similar in spirit to the s = 1 case.

3. The field size and the size of the set S in Theorem 1 and Corollary 2 depends exponentially
on the degree. This does not affect the runtime since one can do arithmetic in exponentially
large fields in polynomial time. It is possible to get a polynomial dependence on the
degree. We have not elaborated on this to preserve simplicity of analysis but we provide
a sketch of an argument to reduce the field size in Appendix C.

1.2 Techniques and proof overview
We follow the meta framework of [22, 7] for designing learning algorithms for arithmetic
circuits in the non-degenerate case via lower bounds. We note that while the meta framework
is quite general, still a lot of technical work is needed to carry it out for a particular circuit
class if one has lower bounds for that class. The same holds for this paper. We will not go
into the full generality of the framework and refer the reader to the exposition in [7]. Instead,
we will explain the details for our special case.

APPROX/RANDOM 2022
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Let us first see how one would prove a lower bound (on the number of summands s)
for the model of generalized depth three circuits. Consider the set of all partial differential
operators of order k i.e. L = ∂ = k

x . These are linear maps from F[x]d to F[x]d−k, where F[x]t
denote the ring of homogeneous degree t polynomials in F[x]. Note that

dim(⟨L ◦ Ti⟩) ≤
(

m + k − 1
k

)
,

if Ti is of the form gi(ℓi1, . . . , ℓim). This is easy to verify if Ti were equal to gi(x1, . . . , xm).
Then one can use the fact that the dimension of the partial derivative space doesn’t change
upon an invertible linear transformation of the variables. Also note that

⟨L ◦ f⟩ ⊆ ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩ (1)

dim(⟨L ◦ f⟩) ≤
s∑

i=1
dim(⟨L ◦ Ti⟩) ≤ s

(
m + k − 1

k

)
.

It is not too hard to design an f for which dim(⟨L ◦ f⟩) ≈
(

n+k−1
k

)
(when k ≤ ⌊d/2⌋) and

for such an f we get a lower bound ≈ (n/m)k. We can choose k = ⌊d/2⌋ to get the highest
lower bound.

It is natural to wonder what is the connection to learning, if there is any at all. Consider
Equation 1. One can hope that in the generic case, one would get

⟨L ◦ f⟩ = ⟨L ◦ T1⟩ ⊕ · · · ⊕ ⟨L ◦ Ts⟩. (2)

That is the inclusion becomes an equality and the sum becomes a direct sum. Furthermore,
let us assume that it holds for L′ = ∂

= (k+1)
x as well. That is,

⟨L′ ◦ f⟩ = ⟨L′ ◦ T1⟩ ⊕ · · · ⊕ ⟨L′ ◦ Ts⟩. (3)

So we have U := ⟨L ◦ f⟩, V := ⟨L′ ◦ f⟩ and the linear maps ∂=1
x from U to V . Let

Ui := ⟨L ◦ Ti⟩ and Vi := ⟨L′ ◦ Ti⟩. Note that the linear maps ∂=1
x map Ui into Vi. So one is

naturally led towards the following vector decomposition problem.

▶ Problem 3 (Vector space decomposition). Given the triple (M, U, V ) consisting of vector
spaces U and V and a set of linear maps M from U to V , decompose U and V as

U = U1 ⊕ · · · ⊕ Us V = V1 ⊕ · · · ⊕ Vs

s.t. ⟨M ◦ Ui⟩ ⊆ Vi for all i ∈ [s].

For our setting, one such decomposition is described in Equations (2) and (3). Once one
has access to Ui’s (black-box access to a basis), it is not hard to obtain black-boxes for the
Ti’s. So the only thing remains to prove is the uniqueness of vector space decomposition
(in addition to (2) and (3) themselves). There are many efficient algorithms to solve the
vector space decomposition problem. Please refer to Appendix A for specialized algorithms
that work for our setting, and [7] for a thorough discussion on the general problem and
related work. Let us now describe our approaches to prove Equations (2) and (3) and also
the uniqueness of decomposition.

For proving uniqueness of decomposition, we employ the use of the notion of an adjoint
algebra, following [7]. The adjoint algebra essentially captures “homomorphisms” of the
triple (M, U, V ). That is,

Adj(M, U, V ) = {(D, E) : D : U → U, E : V → V linear maps and LD = EL ∀ L ∈ M}
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Suppose the triple (M, U, V ) admits a vector space decomposition U = U1 ⊕ · · · ⊕ Us,
V = V1 ⊕ · · · ⊕ Vs. Then the projection maps (ΠUi

, ΠVi
) (which are identity on Ui, Vi

respectively and map other vector spaces in the direct sum to 0) lie in the adjoint. We
say that the adjoint algebra is trivial if it is spanned by these projectors. It is not hard
to show that if the adjoint algebra is trivial, then the above vector space decomposition is
unique (Lemma 34). Note that one can always combine blocks in an arbitrary way, but the
decomposition is unique among all “finest” decompositions where one cannot decompose any
block further. So we are left with proving the uniqueness of the decomposition in Equations
(2) and (3). We prove that the adjoint algebra is trivial in this case (proof of Theorem 5)
using a non-degeneracy condition on the gi’s (Item 3 in Section 2.1; also see Section 3.3).

So now let us see how to prove Equations (2) and (3). Showing the direct sum U1 +
· · · + Us = U1 ⊕ · · · ⊕ Us (and the same for Vi’s) is done in a similar way to [22], Schwartz-
Zippel lemma yields the direct sum once one can show the existence of some set of linear
forms satisfying the direct sum property. This is done using a design construction based on
Nisan-Wigderson designs. This construction is inspired from [22] but more general. We differ
significantly from previous works [22, 7] in our technique for showing that U = U1 + · · · + Us.
The previous works relied on intricate design constructions to exhibit linear forms which
satisfy this property (followed by a use of Schwartz-Zippel lemma). For our setting, one can
get away with the above design based approach, but this can become more cumbersome and
challenging as the circuit models become more complicated. Hence, we devise a general way
of proving statements of the form

⟨L ◦ f⟩ = ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩

for f = T1 + · · · + Ts, which is conceptually more appealing. It is useful to have the linear
maps L from a subspace of the operators (so for our case think of L = ⟨∂ = k

x ⟩). Since

⟨L ◦ f⟩ ⊆ ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩,

it suffices to prove that ⟨L ◦ Ti⟩ ⊆ ⟨L ◦ f⟩ for all i. Let us consider the operators annihilating
a particular term Ti.

Lnull
i := {L ∈ L : L ◦ Ti = 0}

Now note that for any L ∈ ∩j ̸=iLnull
j , L ◦ f = L ◦ Ti. If the subspace of operators ∩j ̸=iLnull

j

was rich enough, at least to the extent relevant to Ti, then we would be done. We are able to
show this by moving to the duals of the vector spaces Lnull

i (with respect to an appropriate
bilinear form) and proving a direct sum property there (the proof of which turns out to be
almost identical to the proof we have for the direct sum of the Ui’s!). For more details, see
Section 2.

Comparison with previous works. Our work closely follows the papers [22, 7] on learning
arithmetic circuits in the non-degenerate case via lower bounds. However, there are substantial
differences as well. Firstly, as explained above, we devise a general technique for proving
statements of the kind ⟨L ◦ f⟩ = ⟨L ◦ T1⟩ + · · · + ⟨L ◦ Ts⟩. Secondly, ours is the first paper
that uses the full machinery of the learning from lower bounds framework in [22, 7]. In
[22], the framework was present in a rudimentary form and that made the analysis more
cumbersome. While the framework was fully laid out in [7], for their application of learning
sums of powers of low degree polynomials, they eventually implement a somewhat ad hoc
approach. Without this learning framework, it seems rather challenging to get such a general
result as in Theorem 1.

APPROX/RANDOM 2022
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1.3 Related work
[9] proved a lower bound for the more general model of generalized depth-four circuits
(bounded bottom-fanin). [17] study the worst case learning algorithms for a model which
is similar to our model in many ways, but their parameters are different (they also call
their model generalized depth three circuits). There has been a lot of work on worst case
reconstruction algorithms which includes reconstruction algorithms for the models of sparse
polynomials [25], read-once algebraic branching programs (ROABPs) [1, 24] and for models
with bounded top fan-in [23, 17, 11, 32, 2, 3].

In [10], a randomized polynomial-time proper learning algorithm was given for non-
degenerate3 multilinear formulas having fan-in two. A randomized polynomial-time proper
learning algorithm for non-degenerate regular formulas having fan-in two was given in [12].
An efficient randomized reconstruction for non-degenerate homogeneous ABPs of width at
most

√
n

2 is presented in [20]. [22] designed algorithms for learning non-degenerate depth
three circuits which is a special case of our model with the gi’s being a monomial. [7],
following [22], developed a meta framework for learning non-degenerate arithmetic circuits
via lower bounds. They implemented it to learn sums of powers of low degree polynomials in
the non-degenerate case.

As already mentioned, the problem of tensor decomposition is a special case for our
model. Tensor decomposition is widely studied in the machine learning community as well
(also known as CP decomposition), e.g. see the surveys [26, 4, 15]. Another kind of tensor
decomposition, Tucker decomposition is also widely studied, see Section 4 in [26]. Tensor
decomposition roughly corresponds to the m = 1 case in our model4 Tucker decomposition
roughly corresponds to s = 1 in our model.5 Given the wide variety of applications of these
two problems in machine learning, we hope that (noise-resilient versions of) our algorithms
will handle much more challenging problems in machine learning.

1.4 Roadmap of the paper
In Section 2, we present our algorithm for learning non-degenerate generalized depth three
circuits, the corresponding non-degeneracy conditions and the analysis of the algorithm
assuming the non-degeneracy conditions. In Section 3, we prove that the non-degeneracy
conditions are satisfied for random circuits. Section 4 contains the summary of the work and
some of the open problems that arise from this work. Section A contains some basic facts
about the vector space decomposition problem. Finally, Section B contains some facts about
how to perform linear algebra given black boxes.

2 The learning algorithm and its analysis

In this section, we describe our algorithm for learning non-degenerate generalized depth
three circuits and the analysis assuming the non-degeneracy conditions. Since we are aiming
for poly(s) time-complexity, we can assume that we know s. For a field F and d ∈ N, let
F[x]d denote the ring of homogeneous degree d polynomials in F[x]. Consider a homogeneous

3 The papers [10, 12] state the results for random formulas, but it is not difficult to state the non-degeneracy
conditions by taking a closer look at the algorithms.

4 Strictly speaking m = 1 would be symmetric tensor decomposition and exactly modeling general tensor
decomposition would require higher m but in spirit tensor decomposition is closer to the m = 1 case
than higher m.

5 Again, ignoring some symmetry considerations here.
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degree d polynomial f ∈ F[x]d which is computed by a homogeneous generalized depth three
circuit i.e., f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for i ∈ [s]. Here ℓij ’s are linear
forms.

2.1 Non-degeneracy conditions
We impose the following non-degeneracy conditions on f (or more precisely the circuit
computing it):
1. For each i ∈ [s], the linear forms (ℓi1, . . . , ℓim) are linearly independent. Also the vector

spaces W
(d−k)
1 := F[ℓ11, . . . , ℓ1m]d−k, . . . , W

(d−k)
s := F[ℓs1, . . . , ℓsm]d−k form a direct sum

i.e.

W
(d−k)
1 + · · · + W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕ W (d−k)

s .

The same assumption for the vector spaces W
(d−k−1)
i ’s.

2. We will use ∂ = k to denote the set of order-k partial differential operators in the variables
x. Consider the vector spaces U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩, Ui := ⟨∂ = kTi⟩, Vi =
⟨∂ = (k+1)Ti⟩. We will assume that

U = U1 ⊕ · · · ⊕ Us

and

V = V1 ⊕ · · · ⊕ Vs.

3. For the polynomials gi ∈ F[z]d, z = (z1, . . . , zm), the triple
(

∂ = 1
z , ⟨∂ = k

z gi⟩, ⟨∂ = (k+1)
z gi⟩

)
has a trivial adjoint algebra for all i ∈ [s] (see Definitions 30 and 32). That is, if
D : ⟨∂ = k

z gi⟩ → ⟨∂ = k
z gi⟩ and E : ⟨∂ = (k+1)

z gi⟩ → ⟨∂ = (k+1)
z gi⟩ are linear maps s.t.

∂zj
D(p) = E(∂zj

p) for all j ∈ [m] and all p ∈ ⟨∂ = k
z gi⟩ , then D, E are both identity

maps (up to a scalar multiplication). Note that Corollary 39 implies that this condition
is preserved if we apply an invertible linear transformation to the z variables.

The algorithm is stated in Algorithm 1. We will need the following lemma in the proof of
the main theorem.

▶ Lemma 4. Let h ∈ F[x]d be a homogeneous degree d polynomial and ℓ1, . . . , ℓm ∈ F[x]1 be
linearly independent linear forms. Then h ∈ F[ℓ1, . . . , ℓm]d iff

∑n
j=1 αj∂xj

h(x) = 0 for all
α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m].

Proof. Let ℓi =
∑n

j=1 ℓijxj . In one direction, suppose h ∈ F[ℓ1, . . . , ℓm]d so that h =
g(ℓ1, . . . , ℓm) for g ∈ F[z], z = (z1, . . . , zm). Then

n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

m∑
i=1

ℓij∂zi
g(z)|z=(ℓ1,...,ℓm)

=
m∑

i=1
ℓi(α)∂zig(z)|z=(ℓ1,...,ℓm)

= 0

for all α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m]. In the other direction, suppose
∑n

j=1 αj∂xj
h(x) = 0

for all α ∈ Fn s.t. ℓi(α) = 0 for all i ∈ [m]. Extend ℓ1, . . . , ℓm to a full basis of F[x]1, ℓ1, . . . , ℓn

(in an arbitrary way). We can write h as g(ℓ1, . . . , ℓn) for some g ∈ F[w], w = (w1, . . . , wn).
Our goal now is to prove that ∂wig(w) = 0 for all i ∈ {m + 1, . . . , n}. Now
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n∑
j=1

αj∂xj
h(x) =

n∑
j=1

αj

n∑
i=1

ℓij∂wi
g(w)|w=(ℓ1,...,ℓn)

=
n∑

i=1
ℓi(α)∂wi

g(w)|w=(ℓ1,...,ℓn).

For i ∈ {m + 1, . . . , n}, we can choose an α s.t. ℓj(α) = 0 for all j ̸= i and ℓi(α) ̸= 0. Then
from the assumption and the above calculation we get that ∂wi

g(w)|w=(ℓ1,...,ℓn) = 0. Since
ℓ1, . . . , ℓn are linearly independent, we get that ∂wig(w) = 0 for all i ∈ {m + 1, . . . , n}. ◀

Algorithm 1 Learning generalized depth three circuits.

Input: black-box access to an f ∈ F[x]d that is computed by a non-degenerate homogeneous
generalized depth three circuit i.e., f = T1 + · · · + Ts, where Ti = gi(ℓi1, . . . , ℓim) for i ∈ [s].
Output: s black-boxes B1, . . . , Bs such that there exists a permutation π : [s] → [s] s.t.
Bi provides black-box access to Tπ(i).
Subroutines:
1. Computing black-boxes for partial derivatives from the black-box for a polynomial.

(Fact 29)
2. Vector space decomposition (Algorithm 2 and Corollary 41).
Parameters: The order of partial derivatives: k.

1: Compute black-boxes for a basis of the vector spaces U := ⟨∂ = kf⟩ and V := ⟨∂ = (k+1)f⟩
using Subroutine 1.

2: Using Subroutine 2, obtain a vector space decomposition U = U ′
1 ⊕ · · · ⊕ U ′

s′ and
V = V ′

1 ⊕ · · · ⊕ V ′
s′ for the triple

(
∂ = 1, U, V

)
. If s′ ̸= s, then abort. Otherwise continue.

3: For each α s.t.
∑n

i=1 αi = k, write the corresponding differential operator acting on f ,
∂αf , as u′

α1 + · · · + u′
αs with u′

αi ∈ U ′
i (note that there is a unique such representation).

We only obtain black-boxes for the polynomials u′
αi’s. This step can be carried out using

Corollary 41.
4: The black-box Bi on input x will output (d−k)!

d!
∑

α

(
k

α1,...,αn

)
xα u′

αi(x).

The next theorem states the correctness of Algorithm 1 assuming the non-degeneracy
conditions.

▶ Theorem 5. Suppose the non-degeneracy conditions stated above are satisfied. Then
Algorithm 1 never aborts. Suppose B1, . . . , Bs be the black-boxes output by the algorithm.
Then there exists a permutation π : [s] → [s] s.t. Bi is a black-box for Tπ(i).

Proof. It suffices to prove uniqueness of decomposition for the triple
(
∂ = 1, U, V

)
(see

Definition 33). Assuming uniqueness of decomposition, s′ = s and there exists a permutation
π : [s] → [s] s.t. U ′

i = Uπ(i) and V ′
i = Vπ(i). Since the U ′

i ’s form a direct sum, there is a
unique way of writing each element u ∈ U as u = u′

1 + · · · + u′
s with u′

i ∈ U ′
i . For u = ∂αf ,

u = ∂αTπ(1) + · · · + ∂αTπ(s) is one such decomposition and hence the only one. Thus
u′

αi = ∂αTπ(i) in which case Bi computes the black-box for Tπ(i) by Lagrange’s formula,

h(x) = (d − k)!
d!

∑
α

(
k

α1, . . . , αn

)
xα ∂αh(x)

for a homogeneous degree d polynomial h.



V. Bhargava, A. Garg, N. Kayal, and C. Saha 21:9

To prove uniqueness of decomposition, it suffices to prove that the adjoint algebra for the
triple

(
∂ = 1, U, V

)
is trivial because of Lemma 34. Consider linear maps D : U → U and

E : V → V s.t. ∂xj
D(u) = E(∂xj

u) for all u ∈ U . Then we need to prove that D(Ui) ⊆ Ui,
E(Vi) ⊆ Vi for all i ∈ [s] and that (D, E) are scalar multiples of identity when restricted to
(Ui, Vi) respectively. The latter follows from Item 3 in the non-degeneracy conditions, so we
only need to prove the former. To prove the former, consider (D, E) in the adjoint algebra.
Note that Ui ⊆ F[ℓi1, . . . , ℓim]d−k and Vi ⊆ F[ℓi1, . . . , ℓim]d−k−1. Hence if u ∈ Ui, then

n∑
j=1

αj∂xj u(x) = 0

for all α s.t. ℓi1(α) = · · · = ℓim(α) = 0, by Lemma 4. Because of the relation ∂xj
D(u) =

E(∂xj u), we get that
n∑

j=1
αj∂xj D(u)(x) = 0

for all α s.t. ℓi1(α) = · · · = ℓim(α) = 0. Hence by Lemma 4, we get that D(u) ∈
F[ℓi1, . . . , ℓim]d−k. Hence D(u) ∈ U ∩ F[ℓi1, . . . , ℓim]d−k = Ui (because of the direct sum
structure of the vector spaces F[ℓi1, . . . , ℓim]d−k in Item 1). This completes the proof that
D(Ui) ⊆ Ui. Now the space Vi has a basis which consists of a subset of polynomials from
∂βTi as β varies over monomials of degree k + 1. We can write ∂βTi as ∂xj

∂αTi for some
j ∈ [n] and some α of degree k. Then

E(∂βTi) = E(∂xj
∂αTi) = ∂xj

D(∂αTi).

Since D(∂αTi) ∈ Ui, we get that E(∂βTi) ∈ Vi. This completes the proof that E(Vi) ⊆ Vi. ◀

We will now proceed to proving Theorem 1.

Proof of Theorem 1. We will run Algorithm 1 on the given black-box with the parameter
k being set to ⌈ 2 log s

log n ⌉. Notice that, by Fact 29, the time complexity of subroutine 1 is
poly(dk, n) = poly(s, n). See Remark 6. Since Theorem 5 guarantees the correctness of our
output, we just have to verify its running time. Note that the time complexity of remaining
steps is poly(nk, s) = poly(n, s), which concludes the proof. ◀

3 Non-degeneracy of random circuits

In this section we will show that if n > (md)2, s ≤ nd/4 and k = ⌈ 2 log s
log n ⌉, then a random

(n, d, s, {gi}i∈[s]) homogeneous generalized depth three circuit is non-degenerate with high
probability. To better understand the regime of parameters, we record a few relations among
the parameters n, d, s and k in the following easy to verify remark.
▶ Remark 6. If s ≤ nd/4, md ≤

√
n and k = ⌈ 2 log s

log n ⌉ then k ≤ d/2 and
(

m+k−1
k

)
≤ ns.

We will proceed by showing that each of our non-degeneracy conditions is satisfied for
random circuits, and then the result will hold directly by the union bound. We also show
that (n, d, s, {gi}i∈[s]) homogeneous generalized depth three circuits are non-degenerate if the
gi’s belong to special polynomial families like Detd, Permd, IMMr,d, Symr,d and only ℓi,j ’s are
chosen randomly. This is because non-degeneracy condition 1 and 2 just depend6 on ℓi,j ’s

6 Strictly speaking, non-degeneracy condition 2 does depend on gi’s, but we show that it holds if we just
pick ℓi,j ’s randomly. See Lemma 16
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and non-degeneracy condition 3 depends on the gi’s, and we can show that aforementioned
polynomial families satisfy these mild technical conditions required to show non-degeneracy
condition 3.

3.1 Non-degeneracy of random circuits: Condition 1
Let’s begin by restating our first non-degeneracy condition for a generalized depth three
circuit

s∑
i=1

gi(ℓi,1, ℓi,2, . . . , ℓi,m).

Non-degeneracy condition 1. The vector spaces W
(d−k)
1 := F[ℓ11, . . . , ℓ1m]d−k, . . . ,

W
(d−k)
s := F[ℓs1, . . . , ℓsm]d−k form a direct sum i.e.

W
(d−k)
1 + · · · + W (d−k)

s = W
(d−k)
1 ⊕ · · · ⊕ W (d−k)

s .

And, the same assumption for the vector spaces W
(d−k−1)
i ’s.

We will show that if m ≤
√

n
t and s ≤ nt/2 then a random choice of {ℓi,j}(i,j)∈([s],[m]) sat-

isfies the equality
∑s

i=1 W
(t)
i = ⊕W

(t)
i . To show this we will need the notion of combinatorial

designs.

▶ Definition 7 (Nisan-Wigderson designs [29]). A family of sets A = {A1, . . . , As} is said to
be an (n, m, d) design if Ai ⊆ [n] with |Ai| = m for all i ∈ [s]. And, for i ̸= j, |Ai ∩ Aj | < d.

We will be using a standard construction of such designs based on the Reed-Solomon
codes.

▶ Lemma 8 (Explicit Design). Let m ≤
√

n. There exists an (n, m, d)-design {A1, . . . , As}
for s ≤ md.

▶ Lemma 9. Let S ⊆ F be a finite set. If m ≤
√

n
t and s ≤ nt/2 then for a random choice

of {ℓi,j}(i,j)∈([s],[m]) linear forms over S,

s∑
i=1

W
(t)
i = ⊕i∈[s]W

(t)
i

with probability at least 1 − s·(m+t−1
t )·t

|S| .

For proof of the above lemma see the full version.
As a direct consequence of Lemma 9 for t = d − k − 1 and t = d − k we get that the

non-degeneracy condition 1 holds with high probability.

▶ Corollary 10. If (md)2 ≤ n, k = ⌈2 log s
log n ⌉, s ≤ nd/4 and |S| ≥ poly(nd) then for a random

choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over a set S,
∑s

i=1 W
(d−k)
i = ⊕i∈[s] W

(d−k)
i and∑s

i=1 W
(d−k−1)
i = ⊕i∈[s] W

(d−k−1)
i with probability 1 − o(1).

3.2 Non-degeneracy of random circuits: Condition 2
Our next non-degeneracy condition for f(x) =

∑s
i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m) requires that the

vector spaces U := ⟨∂ = kf⟩ and V := ⟨∂ = (k+1)f⟩ have a direct sum structure. That is,

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, (4)
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where Ui := ⟨∂ = kTi⟩ and Vi := ⟨∂ = (k+1)Ti⟩ where Ti := gi(ℓi,1, ℓi,2, . . . , ℓi,m). Note that
as Ui ⊆ W

(d−k)
i , the direct sum structure of W

(d−k)
i directly gives U1 + U2 + . . . + Us =

U1 ⊕ U2 ⊕ . . . ⊕ Us. Indeed for the regime of parameters we are interested in, W
(d−k)
i do have

a direct sum structure for random ℓi,j ’s by Lemma 9. Thus in order to show non-degeneracy
condition 2 for random circuits, it suffices to show

U = U1 + U2 + . . . + Us. (5)

Clearly, U ⊆ U1 + U2 + . . . + Us. To show the other direction, it suffices to show that
U ⊇ Ui for all i ∈ [s]. We show this via a novel technique of studying the space of partial
derivative operators (i.e. ⟨∂ = k⟩) themselves, as opposed to the space when they are applied
to a polynomial (i.e. ⟨∂ = kf⟩). Interestingly, our proof is very general and works for action
of any general linear operators on a space! Thus, we state and prove it in full generality and
later instantiate the setting needed for our work.

We start by elaborating on our abstract setting. Let f = T1 + T2 + . . . + Ts where
Ti ∈ Ci and L is a vector space of linear operators from F[x] to W . Here, Ci is a circuit
class consisting of polynomials in F[x]. Also, let B : L × L → F be a non-degenerate bilinear
form, that is for any non-zero u ∈ L there exists a v ∈ L s.t. B(u, v) ̸= 0. Furthermore, let
L⊥

i := {L ∈ L | Lh = 0, ∀ h ∈ Ci}. Using the bilinear product B and any subspace U of
L, we define U⊥B as the linear operators (in L) s.t. for all u ∈ U the bilinear product is 0.
Formally, U⊥B := {L ∈ L | ∀ u ∈ U, B(L, u) = 0}.

Our next lemma shows that under a direct sum structure of
∑

i∈[s]
(L⊥

i )⊥B , L(f) =
∑

i∈[s]
L(Ti).

▶ Lemma 11. Let L, B, f(x), and Ti’s be as defined above. If
∑

i∈[s]
(L⊥

i )⊥B = ⊕i∈[s](L⊥
i )⊥B

then L(f) =
∑

i L(Ti).

For proof of the above lemma see the full version.
For our application of showing U ⊃ Ui, we set L = ⟨∂ = k⟩, Ci is the class of polynomials

gi(ℓi,1, ℓi,2, . . . , ℓi,m) where gi is an m-variate degree d polynomial and ℓi,1, ℓi,2, . . . , ℓi,m are
random n-variate linear forms. Also, L⊥

i = D⊥
i := {D ∈ ⟨∂ = k⟩| Dh = 0, ∀h ∈ W

(d)
i }. Note

that in order to apply Lemma 11 in our setting, we have to come up with a non-degenerate
bilinear map B, s.t.

∑
i(D⊥

i )⊥B = ⊕i(D⊥
i )⊥B . Let’s first note that if (D⊥

i )⊥B does satisfy
the direct sum property then we are done! Indeed, on setting, L = ⟨∂ = k⟩ and L⊥

i = D⊥
i to

L(f) =
∑

i L(Ti) gives ⟨∂ = k(f)⟩ =
∑

i⟨∂ = k⟩(Ti), thus implying (5).
In the rest of the section, we will focus on coming up with a bilinear form and showing

that it is indeed non-degenerate. And later, via another application of Lemma 9, show the
direct sum structure of (D⊥

i )⊥B . For two polynomials f and g, define

B(f, g) := f( ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
) · g.

This inner product among two polynomials is known as apolar inner product, and is a
fundamental notion with a lot of applications, see [30] and the references therein. It is easy
to see that B(ℓ1, ℓ2) = vℓ1 · vℓ2 ; where ℓ1(x), ℓ2(x) are two linear forms, vℓ1 , vℓ2 are canonical
vectors associated with them and vℓ1 · vℓ2 is the standard dot product among vectors. The
non-degenerate bilinear map needed for our purpose acts on L × L instead of polynomials as
defined above. But in our case L = ⟨∂=k⟩ is nothing but polynomials of degree k with ∂

∂xi

as variables, thus the definition of B extends naturally.
In order to show that our bilinear map is non-degenerate, it will be convenient to work

with an orthogonal basis of ℓi,j ’s. We will therefore need the following lemma.
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▶ Lemma 12. When char(F) ̸= 2, there exists an orthogonal basis of any finite dimensional
vector space over F with respect to any non-degenerate bilinear (dot) product.

For proof of the above lemma see the full version.
Let V be the space of some linear forms in F[x], then by the above lemma one can assume

that there exist an orthogonal basis of V as long as char(F) ̸= 2. Now, we will state an
observation on what is B(f, ·) when f and g are expressed as polynomials in an orthogonal
basis.

▶ Observation 13. If ℓ1(x), . . . , ℓn(x) is an orthogonal basis of F[x]1 then if g =
∑

α cα ℓα

and f =
∑

α dα ℓα are degree d polynomials. Then

B(f, g) =
∑

α

cα · dα α!.

Here α! =
∏

i∈[n]
αi! and α as an index varies over exponent vector of n-variate monomials of

degree exactly d.

The above observation follows directly by observing it when g is a monomial and extending
by linearity. Now, if char(F) > d or 0, then using this observation we directly get that B(f, g)
is non-degenerate.

▶ Lemma 14. The bi-linear map B(f, g) over F[x]d is non-degenerate if char(F) > d or 0.
That is for all non-zero g ∈ F[x]d there exist f ∈ F[x]d s.t. B(f, g) ̸= 0.

Proof. Let ℓ1(x), . . . , ℓn(x) be an orthogonal basis of F[x]1. Now, for any g =
∑

α cαℓα ̸= 0,
let αo be an exponent vector s.t. cαo

̸= 0. On choosing f = ℓαo we get B(f, g) = cαo
αo! ̸= 0

if char(F) > d or 0. ◀

3.2.1 Direct sum structure of (D⊥
i )⊥B

The only thing left to show non-degeneracy condition 2 is a direct sum structure on derivative
operators (D⊥

i )⊥B . We will first study the space D⊥
i , as it will help us show the required

direct sum structure. Let’s assume (WLOG) that ℓi,1, . . . ℓi,m, qi,1, . . . qi,n−m is an orthogonal
basis of Fn w.r.t. B. That is, for i ̸= j ⟨ℓ1,i, ℓ1,j⟩ = 0, ⟨ℓ1,i, q1,j⟩ = 0 and ⟨ℓ1,i, ℓ1,i⟩ ̸= 0.
Notice that,

D⊥
i ⊇ qi,1 · ⟨∂ = (k−1)⟩ + qi,2 · ⟨∂ = (k−1)⟩ + . . . + qi,n−m · ⟨∂ = (k−1)⟩. (6)

▷ Claim 15. Let char(F) > d or char(F) = 0, then W
(k)
i := F[ℓi,1, ℓi,2, . . . ℓi,m]k ⊇ (D⊥

i )⊥B .

Proof. For brevity we will denote the space (qi,1 · ⟨∂ = (k−1)⟩ + qi,2 · ⟨∂ = (k−1)⟩ + . . . + qi,n−m ·
⟨∂ = (k−1)⟩) by Q. We have that D⊥

i ⊇ Q, thus (D⊥
i )⊥B ⊆ Q⊥B . The proof concludes by

showing that Q⊥B = W
(k)
i . Clearly, Q⊥B ⊇ W

(k)
i . For the other direction, let p ∈ Q⊥B

s.t. p /∈ W
(k)
i . We can write, p = w + q where w ∈ W

(k)
i and q ∈ Q s.t. q ≠ 0. Now,

since p ∈ Q⊥B , B(p, q′) = 0 ∀q′ ∈ Q. Notice that for any q′ ∈ Q, B(w, q′) = 0. Thus,
B(p, q′) = B(q+w, q′) = B(q, q′). Now, just like in the proof of Lemma 14 we can choose q′ ∈ Q

s.t. B(q, q′) ̸= 0. That is, pick q′ to be any monomial in F[ℓi,1, ℓi,2, . . . ℓi,m, qi,1, . . . qi,m]d with
non-zero coefficient in q and by observation 13 we get that B(q, q′) ̸= 0. This implies p ∈ Q

and B(p, q′) ̸= 0 p(∂̄) · p(x̄) ̸= 0, thus contradicting p ∈ Q⊥B . ◁
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▶ Lemma 16. For homogeneous degree d polynomials {gi}i∈[s], let f =∑s
i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m) ∈ F[x]d and U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩, Ui := ⟨∂ = kTi⟩,

Vi = ⟨∂ = (k+1)Ti⟩. If char(F) > d or char(F) = 0, (md)2 ≤ n, k = ⌈2 log s
log n ⌉ and s ≤ nd/4

then for a random choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over a set S ⊂ F such that
|S| ≥ poly(nd) , U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs with probability at least 1 − o(1).

Proof. By Lemma 9 we get that for a finite set S ⊆ F, if m ≤
√

n
d and s ≤ nd/4 then

for a random choice of {ℓi,j}(i,j)∈([s],[m]) linear forms over S,
∑s

i=1 W
(k)
i = ⊕W

(k)
i with

probability at least 1 − o(1). Now, since W
(k)
i has a direct sum structure, the same will

hold for their respective subspaces. Thus,
∑

i∈[s](D⊥
i )⊥B = ⊕i∈[s](D⊥

i )⊥B . Now, using
Lemma 11 with L = ⟨∂ = k⟩ and L⊥

i = D⊥
i := {D ∈ ⟨∂ = k⟩| Dh = 0, ∀h ∈ W

(d)
i } implies

U = U1 + U2 + . . . + Us. And, as Ui ⊆ W
(d−k)
i , the direct sum structure of W

(d−k)
i directly

gives U1 + U2 + . . . + Us = U1 ⊕ U2 ⊕ . . . ⊕ Us. Notice that, W
(d−k)
i have direct sum structure

by corollary 10 as m ≤
√

n
d and s ≤ nd/4. The proof for V = V1 ⊕ · · · ⊕ Vs is identical. ◀

3.3 Non-degeneracy condition 3: Adjoint algebra is trivial
We will start by restating non-degeneracy condition 3.

Non-degeneracy condition 3. For a generalized depth 3 circuit f =
∑s

i=1 gi(ℓi,1, ℓi,2, . . . , ℓi,m)

where gi ∈ F[z]d, z = (z1, . . . , zm), the triple
(

∂ = 1
z , ⟨∂ = k

z gi⟩, ⟨∂ = (k+1)
z gi⟩

)
has a trivial

adjoint algebra for all i ∈ [s]. That is, if D : ⟨∂ = k
z gi⟩ → ⟨∂ = k

z gi⟩ and E : ⟨∂ = (k+1)
z gi⟩ →

⟨∂ = (k+1)
z gi⟩ are linear maps s.t. ∂zj

D(p) = E(∂zj
p) for all p ∈ ⟨∂ = k

z gi⟩, then D, E are both
identity maps (up to a scalar multiple).

We will show this for random gi’s as well as various interesting polynomial families like
monomials, determinant, permanent, elementary symmetric polynomial and iterated matrix
multiplication. This is done by observing that under mild technical conditions on g, the
triple

(
∂ = 1

z , ⟨∂ = k
z g⟩, ⟨∂ = (k+1)

z g⟩
)

has a trivial adjoint algebra. Define {∂ = k
z g} := {∂ = k

m g |
∀ m degree k monomials in F[z]}. And, let var(f) denote the set of variables f depends on.
We start by stating our technical condition:

▶ Technical condition 17. Let g ∈ F[z]d, we need var(p) ̸= var(p′) for any non-zero
(and distinct) p, p′ ∈ {∂ = k

z g}. And all non-zero elements of {∂ = k+1
z g} to be F-linearly

independent.

▶ Lemma 18. Let g ∈ F[z]d that satisfies condition 17 and D : ⟨∂ = k
z g⟩ → ⟨∂ = k

z g⟩ and
E : ⟨∂ = (k+1)

z g⟩ → ⟨∂ = (k+1)
z g⟩ be two linear maps. If ∀j ∈ [m] and all p ∈ ⟨∂ = k

z g⟩,
∂zj D(p) = E(∂zj p) , then D(p) = cp · p for all p ∈ {∂ = k

z g} , where cp ∈ F which could
depend on p.

For proof of the above lemma see the full version.
Note that, the above lemma doesn’t imply that the adjoint algebra is trivial, as cpi could

possibly depend on gi. To show that the adjoint algebra is trivial, we need to prove that
cpi is the same constant for all pi’s. In order to do that we will need the following notion of
graph associated with a polynomial.

▶ Definition 19. For a polynomial g ∈ F[z]d, let Gk
g be the graph whose vertices are degree

k multilinear monomials m s.t. ∂=k
m g ̸= 0 and the edge set consist of pairs of monomials

(m1, m2) with ∆(m1, m2) = 2 and ∂=k+1
lcm(m1,m2)g ≠ 0. Here ∆(m1, m2) is the hamming

distance among the exponent vectors of m1 and m2.
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▶ Lemma 20. Let g ∈ F[z]d be a polynomial s.t. it satisfies condition 17. Additionally, if
Gk

g is connected, then the triple
(

∂ = 1
z , ⟨∂ = k

z g⟩, ⟨∂ = (k+1)
z g⟩

)
has a trivial adjoint algebra.

For proof of the above lemma see the full version.
It is an easy exercise to see that for a random multilinear g condition 17 is satisfied and

Gk
f is connected. We will now show the same holds for various polynomial families which

includes monomials, determinant, permanent, elementary symmetric polynomial and iterated
matrix multiplication. The argument for showing connectivity of Gk

g stems from this simple
observation.

▶ Observation 21. If m1 and m2 are degree k monomials with ∆(m1, m2) = δ and let m1 =
m(0), m(1), . . . , m(δ) = m2 be a path made of distance two monomials (i.e. ∆(m(i−1), m(i)) = 2
for i ∈ [δ]) from m1 to m2 s.t. ∂m̃(i)g ̸= 0 (m̃(i) := lcm(m(i), m(i+1))) then m1 and m2 are
connected.

▶ Lemma 22. If g is one of the following polynomials Detd, Permd (with 3k ≤ d); Symr,d,
monomial (with k + 1 < d) or IMMr,d (with 3k ≤ d) then Gk

g is connected and condition 17
is satisfied.

For proof of the above lemma, see the full version.

3.4 Adjoint algebra for random gi’s
We will now show that the adjoint algebra is trivial for random gi’s. This is done by showing
that the adjoint algebra is trivial if the space spanned by k-th order partial derivatives
applied to g have full dimension. Followed by observing that random gi’s have this property.

▶ Lemma 23. Let g ∈ F[z]d be a polynomial such that dim
(
⟨∂=k g⟩

)
=

(
k+m−1

k

)
. Also, let

Ug = ⟨∂ = kg⟩, Vg = ⟨∂ = k+1g⟩ and D : Ug → Ug and E : Vg → Vg be any linear maps. If for
all j ∈ [m] and p ∈ Ug, ∂zj

D(p) = E(∂zj
p), then D and E are identity maps up to a scalar

multiple. That is, the triple
(
∂ = 1, ⟨∂ = kg⟩, ⟨∂ = (k+1)g⟩

)
has a trivial adjoint algebra.

For proof of the above lemma see the full version.
We can instantiate the above lemma for random gi’s. Indeed, the condition

dim
(
∂ = (k) g

)
=

(
k+m−1

k

)
boils down to showing that the determinant of a matrix with di-

mension
(

k+m−1
k

)
is non-zero. And, there exist standard constructions of explicit polynomials

with this property (see [8]). Thus, via the Schwartz-Zippel lemma, we get the following
corollary.

▶ Corollary 24. For a random choice of degree d homogeneous polynomials {gi}i∈[s] over
a set S, the triple

(
∂ = 1

z , ⟨∂ = k
z gi⟩, ⟨∂ = (k+1)

z gi⟩
)

has a trivial adjoint algebra for all i ∈ [s],

with probability at least 1 − sd·(m+k−1
k )

|S| .

Now, we can combine corollary 10, 24 and Lemma 22, 16 to show that a random generalized
depth 3 circuit is non-degenerate with high probability.

▶ Lemma 25 (Random generalized depth 3 circuits are non-degenerate). Let C ≡
s∑

i=1
gi(ℓi,1, ℓi,2, . . . , ℓi,m) be a homogeneous generalized depth 3 circuit, where {gi}i∈[s] are

homogeneous degree d polynomials, and n ≥ (md)2. Suppose the coefficients of ℓi,j’s are
chosen uniformly and independently at random from a set S ⊂ F of size |S| ≥ poly(nd, s).
Additionally, suppose one of the following cases is true:
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1. gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials
with s ≤ nd/6.

2. Coefficients of all gi’s are chosen uniformly and independently at random from S and
s ≤ nd/4.

Then, with probability 1 − o(1), C is non-degenerate.

The proof is immediate using union bound along with Remark 6 and hence omitted. As a
direct consequence of Lemma 25 and Theorem 5, we get the following theorem about learning
random generalized depth circuits.

▶ Theorem 26 (Learning random generalized depth 3 circuits). Let C ≡
s∑

i=1
gi(ℓi,1, ℓi,2, . . . , ℓi,m)

be a homogeneous generalized depth 3 circuit, where {gi}i∈[s] are homogeneous degree d

polynomials, and n ≥ (md)2. Suppose the coefficients of ℓi,j’s are chosen uniformly and
independently at random from a set S ⊂ F of size |S| ≥ poly(nd, s) and char(F) > d or
char(F) = 0. Additionally, suppose one of the following cases is true:
1. gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials

with s ≤ nd/6.
2. Coefficients of all gi’s are chosen uniformly and independently at random from S and

s ≤ nd/4.
Then, given black-box access to C we can reconstruct it in randomized poly(n, m, d, s) time.

Note that, the m subsumes the dependence on r in the above theorem. Also, the
reconstruction algorithm of Theorem 26 is proper, i.e. it outputs a homogeneous generalized
depth 3 circuit.

3.5 From black-box access to learning generalized depth three circuits
Theorem 5 gives a black-box for each gi’s under the technical conditions discussed. It is
natural to ask if we can find ℓi,j ’s and a generalized depth 3 representation as well. This
is related to the well studied equivalence-testing problem, specifically to the search version
of it. The equivalence-testing question is the following: given polynomials f and g, find
an invertible linear transformation A on variables such that f = g(Ax), if such A exists.
Observe that if gi belongs to a family for which we can solve the equivalence-testing problem,
then we can find ℓi,j ’s as well. This follows directly by seeing each blackbox as an instance of
equivalence-testing (search version). Note that in our non-degenerate setting, ℓi,j ’s are linearly
independent for each i ∈ [s] thus satisfies the requirement that the linear transformation has
to be invertible. As a direct consequence of this we get the following corollary.

▶ Corollary 27. Suppose we are given black-box access to f , an n-variate, homogeneous degree
d polynomial computable by a generalized depth 3 circuit of size s, s.t. the non-degeneracy
condition 1, 2 and 3 hold. Additionally, if each gi belongs to a family of polynomials for
which there exist a poly(n, m, d) time equivalence-testing algorithm. Then there exist a
poly(s, n, d, m) time algorithm that learns a generalized depth 3 representation of f .

Note that if gi is just a monomial (the special case for depth 3 circuits) then equivalence-
testing follows directly from black-box factoring [16]. Hence, when gi’s are monomials the
previous corollary along with Lemma 22 (monomials satisfy non-degeneracy condition 3)
gives an algorithm for learning non-degenerate homogenous depth three circuits! Thus, our
result is truly a generalization of the result by [22].

In general, equivalence-testing is considered to be a very hard problem (see [19, 18])
but it has been solved in several interesting cases, we list some of them below. For ease of
representation, let us define some notation representing the complexity of the search version of
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the polynomial equivalence problem over a particular field. Given m, d, r ∈ N and black-box
access to an m-variate polynomial g of degree d, let EqvF(r, d, m, f) denote the randomized
time complexity of finding an invertible linear transformation A s.t. g(x) = f(Ax) if it exists,
otherwise output “no-solution”.

▶ Theorem 28. Following results are known for equivalence-testing of special families of
polynomials:
1. EqvF(r, d, m, Symr,d) = poly(r, d, m), if char(F) > d or 0. See [19].
2. EqvF(r, d, m, Permr) = poly(r, d, m). See [19].
3. EqvF(r, d, m, Detr) = poly(r, d, m) if char(F) ∤ r(r − 1) or F = C . See [19, 6].
4. EqvF(r, d, m, IMMr,d) = poly(r, d, m) if char(F) = 0 or greater than dc (c some fixed

constant). See [21].

Thus, corollary 27 along with Theorem 28 and 26 gives a randomized poly(n, d, m, s)-time
algorithm that outputs a generalized depth three representation, assuming ℓi,j ’s are chosen ran-
domly, gi’s belong to one of the polynomial families: Detd, Permd, IMMr,d, Symr,d, monomials
and the corresponding assumptions on F holds.

4 Conclusion and open problems

We design an algorithm for learning generalized depth three circuits in the non-degenerate
case. We follow the learning from lower bounds framework of [22, 7] and design new tools
for proving that non-degeneracy conditions hold for random circuits, which could be useful
for other such problems. Our model captures widely applicable problems such as tensor
decomposition and Tucker decomposition as special cases. We are hopeful that our algorithms
will find powerful applications in machine learning. We list some of the most interesting
open problems next.

1. Going beyond tensor decomposition. Can we capture more general and powerful
problems in machine learning via the model of generalized depth three circuits?

2. Making the algorithms noise-resilient. Can we make our algorithms robust to noise?
That is, if one is given (explicitly or black box access) f(x) =

∑s
i=1 gi(ℓi1, . . . , ℓim)+E(x),

for some error term E(x), can we approximately recover the summands? Such a noise-
resilient version is relevant for machine learning applications. While our algorithm may
seem too algebraic to be made robust, it is in fact linear algebraic and there is a good
chance it can be made noise-resilient using standard tools such as SVD etc.

3. Learning other arithmetic circuit models. Can we learn other arithmetic circuit
models in the non-degenerate case, for which we already have lower bounds? Perhaps the
most appealing model to go for next is that of constant depth set-multilinear circuits.
There are even new lower bounds for this model now [28].
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A Adjoint algebra and vector space decomposition

In this section, we prove some basic facts about the adjoint algebra and vector space
decomposition, for completeness. We will start by stating that we can compute black-box
access to partial derivatives of f from black-box access to f .

▶ Fact 29. Given black-box access to a (n, d) polynomial f and a monomial xα, a black-box
access to ∂=k

α f can be computed in deterministic poly(n, dk) time.

This follows from the fact that black-box access to a first-order derivative of f can be
computed in deterministic polynomial time from black-box access to f .

Next, we define the adjoint algebra.

▶ Definition 30 (Adjoint algebra). Consider a collection of linear maps L from vector space
U to vector space V (over a field F). The adjoint algebra for this collection of linear maps is
defined as follows:

Adj(L, U, V ) = {(D, E) | D : U → U, E : V → V are linear maps s.t. LD = EL for all L ∈ L}.

Next we define the notion of a vector space decomposition.

https://doi.org/10.1109/FOCS.2019.00053
https://doi.org/10.1109/FOCS.2019.00053
http://arxiv.org/abs/1611.01559
http://arxiv.org/abs/1611.01559
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▶ Definition 31 (Vector space decomposition). Consider a collection of linear maps L from
vector space U to vector space V . We say that U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs

is a vector space decomposition for the triple (L, U, V ) if L(Ui) ⊆ Vi for all i ∈ [s] (and
at least one of Ui, Vi is a non-trivial subspace). We say that the decomposition is further
indecomposable if the triples (L, Ui, Vi) are indecomposable for all i.

The next definition is about when the adjoint algebra is trivial.

▶ Definition 32 (Trivial Adjoint algebra). Consider a collection of linear maps L from vector
space U to vector space V . Also consider a decomposition, U = U1⊕· · ·⊕Us, V = V1⊕· · ·⊕Vs

that is further indecomposable. We say that the adjoint algebra is trivial if

Adj(L, U, V ) = {(D, E) : ∃scalars λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}.

Next we define what we mean by uniqueness of decomposition.

▶ Definition 33 (Uniqueness of decomposition). Consider a collection of linear maps L
from vector space U to vector space V . Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us,
V = V1 ⊕ · · · ⊕ Vs that is further indecomposable. We say that the decomposition is unique if
for any other further indecomposable decomposition, U = U ′

1 ⊕ · · · ⊕ U ′
s′ , V = V ′

1 ⊕ · · · ⊕ V ′
s′ ,

it turns out that s = s′ and there exists a permutation π : [s] → [s] s.t. U ′
i = Uπ(i) and

V ′
i = Vπ(i) for all i ∈ [s].

The next lemma states the uniqueness of decomposition in the case when the adjoint
algebra is trivial. The uniqueness of decomposition holds in a much more general setting by
a reduction to the Krull-Schmidt theorem (see [7]) but here we only focus on a special case
that is relevant to us.

▶ Lemma 34. Consider a collection of linear maps L from vector space U to vector space V .
Also consider a decomposition, U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs that is further indecom-
posable. Suppose the adjoint algebra is trivial. Then the above is the unique decomposition
that is further indecomposable.

For proof of the above lemma see the full version.
Next we state an algorithm for vector space decomposition. While an algorithm in a

much more general setting follows from known algorithms for module decomposition (see [7]),
the algorithm we state here has the advantage that it is simpler and works for large enough
fields (as opposed to algebraically closed fields). This algorithm is also present in [7] but not
in a very explicit form, so we restate it here for completeness as well.

▶ Lemma 35. Algorithm 2 with parameter ℓ computes the correct decomposition when the
adjoint algebra is trivial, with probability at least 1 −

(
s
2
)
/ℓ.

Proof. Since the adjoint algebra is trivial,

Adj(L, U, V ) = {(D, E) : ∃ λ1, . . . , λs s.t. D|Ui
= λi1Ui

, E|Vi
= λi1Vi

for all i ∈ [s]}

Let (λ(j)
1 , . . . , λ

(j)
s ) be the tuple corresponding to (Dj , Ej). Then

D′|Ui
=

 s∑
j=1

µjλ
(j)
i

1Ui
.
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Algorithm 2 Vector space decomposition when adjoint algebra is trivial.

Input: Set of linear maps L between vector spaces U and V s.t. the triple (L, U, V ) admits
a further indecomposable decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs. Also the
adjoint algebra is trivial.
Output: s vector spaces U ′

1, . . . , U ′
s s.t. there exists a permutation π : [s] → [s] s.t.

U ′
i = Uπ(i).

Subroutine: Diagonalizing a diagonalizable linear map D : U → U .
Parameters: Randomness parameter ℓ.

1: Compute a basis (D1, E1), . . . , (Ds, Es) of the adjoint algebra Adj(L, U, V ) (this is a
system of linear equations). (If dimension is not s, then abort).

2: Pick µ1, . . . , µs uniformly at random from a set of size ℓ. Set D′ = µ1D1 + · · · µsDs.
3: Compute the eigenvalues of D′. If it has s distinct eigenvalues, call them λ1, . . . , λs. If

not (or it is not diagonalizable), abort.
4: Set U ′

i to be the eigenspace of D′ corresponding to λi.

We know that the vectors (λ(j)
1 , . . . , λ

(j)
s ), for j ∈ [s], are linearly independent. Hence the

vectors (λ(1)
i , . . . , λ

(s)
i ), for i ∈ [s], are also linearly independent. Hence for i ≠ i′, the linear

polynomial (in the µj ’s)
∑s

j=1 µj(λ(j)
i − λ

(j)
i′ ) is non-zero and hence if the µj ’s are chosen at

random from a set of size ℓ, then with probability at least 1 − 1/ℓ,

s∑
j=1

µj(λ(j)
i − λ

(j)
i′ ) ̸= 0.

By a union bound, with probability at least 1 −
(

s
2
)
/ℓ, for any i ̸= i′,

s∑
j=1

µj(λ(j)
i − λ

(j)
i′ ) ̸= 0.

Thus there are s distinct eigenvalues of D′, one each corresponding to the eigenspace Ui.
This completes the proof. ◀

We next define the concept of isomorphism between tuples (L, U, V ) and (L′, U ′, V ′), and
relate the adjoint algebras for isomorphic tuples.

▶ Definition 36 (Isomorphic tuples). We say that (L, U, V ) and (L′, U ′, V ′) are isomorphic
if there is an invertible linear transformation ϕ : ⟨L⟩ → ⟨L′⟩ and invertible linear maps
T : U → U ′, S : V → V ′ s.t. ϕ(L)T = SL for all L ∈ L.

▶ Proposition 37 (Adjoint algebras under isomorphism). Let (L, U, V ) and (L′, U ′, V ′) be
isomorphic tuples. Then (D, E) ∈ Adj(L, U, V ) iff (TDT −1, SES−1) ∈ Adj(L′, U ′, V ′).

Proof. It suffices to prove one direction because of symmetry. Suppose (D, E) ∈ Adj(L, U, V )
i.e. LD = EL for all L ∈ L.Then

ϕ(L)TDT −1 = SLDT −1 = SELT −1 = SES−1ϕ(L)

for all L ∈ L. Since {ϕ(L)}L∈L span ⟨L′⟩, we get that L′TDT −1 = SES−1L′ for all L′ ∈ L′.
That is (TDT −1, SES−1) ∈ Adj(L′, U ′, V ′). ◀
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This yields the following corollary:

▶ Corollary 38. Let (L, U, V ) and (L′, U ′, V ′) be isomorphic tuples. Then Adj(L, U, V ) is
trivial iff Adj(L′, U ′, V ′) is trivial.

Next we state an instantiation of the above corollary which we need for our analysis.

▶ Corollary 39. Let g ∈ F[z]d, z = (z1, . . . , zm). Also h = g(ℓ1, . . . , ℓm), where ℓ′
is linearly

independent linear forms in the z variables. Then Adj
(

∂ = 1
z , ⟨∂ = k

z g⟩, ⟨∂ = (k+1)
z g⟩

)
is trivial

iff Adj
(

∂ = 1
z , ⟨∂ = k

z h⟩, ⟨∂ = (k+1)
z h⟩

)
is trivial.

For proof of the above lemma see the full version.

B Linear algebra with black boxes

In Algorithm 1, we need to perform linear algebra given black boxes for polynomials. We
give references for how to do this here. We will need the following lemma from [18].

▶ Lemma 40 (Section A.1 in [18]). Given black boxes for the polynomials f1, . . . , fℓ ∈ F[x]d,
there is a randomized poly(n, ℓ, d) time algorithm that computes a basis for the following
vector space

(f1, . . . , fℓ)⊥ := {(α1, . . . , αℓ) :
ℓ∑

i=1
αifi = 0}.

In particular, we get the following corollary.

▶ Corollary 41. Given black boxes for the polynomials f1, . . . , fℓ ∈ F[x]d which are linearly
independent and for a p ∈ F[x]d which linearly depends on f1, . . . , fℓ, there is a randomized
poly(n, ℓ, d) time algorithm that computes β1, . . . , βℓ s.t.

p =
ℓ∑

i=1
βifi.

Using Corollary 41, one can compute the matrices corresponding to the linear maps L in
Algorithm 2 if one is given only black boxes for bases of U and V . One can also carry out
the Step 3 in Algorithm 1 using Corollary 41.

C Reducing the field size

In this section, we provide a sketch of how to reduce the field size in Theorem 1. For this, we
will have to change the non-degeneracy conditions slightly. We state the new non-degeneracy
conditions next for the circuit f =

∑s
i=1 gi(ℓi1, . . . , ℓim).

1. For each i ∈ [s], the linear forms (ℓi1, . . . , ℓim) are linearly independent. Let us denote
by di,k := dim

(
∂ = k

z gi(z)
)
. Consider the vector spaces U := ⟨∂ = kf⟩, V := ⟨∂ = (k+1)f⟩

(here the partials are w.r.t. the x variables). We impose dim(U) =
∑s

i=1 di,k and
dim(V ) =

∑s
i=1 di,k+1.

2. We impose that Adj(∂ = 1, U, V ) is trivial i.e. dim
(
Adj(∂ = 1, U, V )

)
= s.

3. This is the same as the Item 3 in Section 2.1.
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Let us first compare these conditions with the conditions in Section 2.1. It can be verified
that Item 1 is the same as U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs i.e. Item 2 in Section
2.1. Item 2 here is new and assuming this implies uniqueness of decomposition and this can
be used directly in the proof of Theorem 5 (instead of Item 1 in Section 2.1).

We now sketch the argument on why random ℓi,j ’s would satisfy these conditions. In
Sections 3.1 and 3.2, we provide a particular setting of ℓi,j ’s s.t. Items 1 and 2 in Section 2.1)
are satisfied. These imply that Items 1 and 2 stated here are satisfied (for Item 2, one
would need to combine the proof of Theorem 5 and Item 3). So we just need the Schwartz-
Zippel argument. First consider Item 1. The condition about U , for example, is about the
rank of a matrix whose dimensions are

(
n+k−1

k

)
×

(
n+d−k−1

d−k

)
and entries are homogeneous

polynomials of degree k in the coefficients of ℓi,j ’s. We know that the rank is always atmost
D :=

∑s
i=1 di,k and also that the rank is equal to D for a particular setting of ℓi,j ’s. This

implies the existence of a D × D minor which has full rank for a particular setting of ℓi,j ’s.
Hence by Schwartz-Zippel lemma, we get that this minor is full rank for a random choice of
ℓi,j ’s if the field size is atleast poly(D, k) = poly(s

(
m+k−1

k

)
, k) which is poly(n, d, s) since we

choose Θ(log(s)/ log(n)).
Regarding the condition on the adjoint, note that adjoint is the solution to a linear

system of equations. Hence dim
(
Adj(∂ = 1, U, V )

)
= s is equivalent to the corank of a

matrix being atmost s (it is atleast s by definition). The dimensions of the matrix are
(dim(U)2 + dim(V )2) × (n · dim(U) · dim(V )) and the entries are homogeneous polynomials
of degree O(k) in the coefficients of ℓi,j ’s. Again here the Schwartz-Zippel argument can be
carried out over a field of size poly(dim(U), dim(V ), n, k) which is poly(n, d, s) because of
the choice of k.
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1 Introduction

A sign matrix is a matrix with ±1 entries. The sign-rank of a sign matrix Am×n is
the smallest rank of a real matrix Bm×n such that the entries of B are nonzero and
have the same signs as their corresponding entries in A. This fundamental notion arises
naturally in areas as diverse as learning theory [5, 27, 42, 44, 13, 14], discrete geometry
and geometric graphs [1, 18, 19, 45, 12], communication complexity [36, 9, 41, 24], circuit
complexity [37, 7, 43], and the theory of Banach spaces [33, 35].

The notion of sign-rank was formally defined in 1986 in connection with randomized
communication complexity in the unbounded-error model [36]. After almost four decades of
research, sign-rank remains one of the most elusive matrix parameters in discrete analysis. To
the best of our knowledge, there are only three known methods for proving lower bounds on the
sign-rank of an explicit matrix: VC-dimension, size of the largest monochromatic rectangle,
and Forster’s method, and among those, only Forster’s method can imply super-logarithmic
lower bounds.

The results presented in this paper arose from our attempts to solve two fundamental open
problems about sign-rank, presented as Question 1.4 and Question 1.11 below. Attempting to
give negative answers to these questions, we proved that none of the known techniques could
yield adequate sign-rank lower bounds for these purposes. Of course, this observation does
not necessarily imply that the techniques are inherently weak, as there is a possibility that
the correct answer to both questions is positive. As a natural next step, we examined the
limitations of these techniques more carefully and, among other things, proved the existence
of n × n matrices with sign-rank nΩ(1), for which none of these methods could provide a
super-constant lower bound.

We start by reviewing and reformulating the results that are relevant to this article.

Counting argument

Shortly after the introduction of sign-rank in [36], Alon, Frankl, and Rödl [1] used results
of [34, 46, 47] on the number of connected components of real algebraic varieties and obtained
a linear lower bound on the sign-rank of random sign matrices. This argument was later
refined in [2, Lemma 24] to the following bound on the number of low sign-rank matrices.

▶ Lemma 1.1 (See [2, Lemma 24]). For d ≤ n
2 , the number of n×n sign matrices of sign-rank

at most d does not exceed (O(n/d))2dn ≤ 2O(dn log(n)).

It follows from Lemma 1.1 that most n × n sign matrices have sign-rank Ω(n).

The VC-dimension lower bound

The Vapnik-Chervonenkis (VC) dimension of a sign matrix A is the largest k such that A

contains a submatrix with k columns and 2k distinct rows. To state the relation between the
VC dimension and sign-rank, we discuss a geometric definition of sign-rank.

A real matrix BX ×Y has rank d iff the entries of B can be represented as Bxy = ⟨ux, vy⟩
for vectors ux, vy ∈ Rd. Since the normalization of these vectors does not affect the signs of
⟨ux, vy⟩, we can restate the definition of sign-rank as follows.

▶ Definition 1.2 (Sign-rank). The sign-rank of a sign matrix AX ×Y , denoted by rank±(A),
is the smallest d such that there exist unit vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩) for
all (x, y) ∈ X × Y.
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The vectors in Definition 1.2 represent A as points and half-spaces in the d-dimensional
space: Axy = 1 iff the point ux belongs to the half-space {z : ⟨z, vy⟩ > 0}. Since the VC
dimension of any such configuration of points and half-spaces in Rd is at most d, we have

rank±(A) ≥ VC(A). (1)

This lower bound was already implicit in the paper of Paturi and Simon [36, Theorem 4].
Since the VC dimension of every n × n matrix is at most log n, this method cannot prove
super-logarithmic lower bounds on sign-rank. In addition, Alon, Moran, and Yehudayoff [2]
established strong separations between the two parameters. For example, they showed that
there are n × n sign matrices of VC dimension 3 that have sign-rank Ω

( √
n

log n

)
.

Margin and Discrepancy

There is another natural parameter that is associated with the representations of a sign
matrix as points and half-spaces. The quantity minx,y |⟨ux, vy⟩| is called the margin of such a
representation; it measures the smallest distance between the points ux and the hyperplanes
defined by vy.

▶ Definition 1.3 (Margin). The margin of a sign matrix AX ×Y is

m(A) := sup min
x,y

|⟨ux, vy⟩| ,

where the supremum is over all d ∈ N and unit vectors ux, vy ∈ Rd with Axy = sgn(⟨ux, vy⟩).

Linial and Shraibman [30] proved that margin essentially coincides with the well-studied
parameter of discrepancy in communication complexity, defined as

disc(A) := inf
µ

max
S⊆X
T ⊆Y

|Exy∼µ[Axy1S(x)1T (y)]| , (2)

where the infimum is over all probability distributions µ on X × Y . They proved

disc(A) ≤ m(A) ≤ 8 disc(A).

The notion of discrepancy is a well-understood parameter, and many lower bounds in
communication complexity are established by proving that the discrepancy of the corre-
sponding matrix is small. Such proofs often entail finding a “hard” distribution µ such that
the maximum in Equation (2) is small. We shall discuss this more later in the context of
Forster’s lower bound method.

The problem of understanding the relation between sign-rank and margin is an important
one because these notions optimize two fundamental attributes of the geometric represen-
tations of the matrix. Sign-rank minimizes the dimension while allowing the margin to be
arbitrarily small. Margin maximizes the margin of the representation while allowing the
dimension to be arbitrarily large.

Hatami, Hosseini, and Lovett [24] constructed n × n sign matrices that have a very small
margin (equivalently discrepancy) of O

(
log(n)
n1/8

)
while their sign-rank is only 3. The converse

direction regarding the question of margin vs sign-rank remains open. Does large margin
imply small sign-rank?

▶ Question 1.4. Is there a function η such that for every sign matrix A, we have rank±(A) ≤
η(m(A)−1)?

APPROX/RANDOM 2022
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Question 1.4 is essentially due to [29, Corollary 3.2, Lemma 4.2, and Section 8], where they
proved the inequality rank±(A) ≤ m(A)−2 · log(n), and asked whether the log factor in this
inequality is necessary.

It is known that margin, discrepancy, public-coin randomized communication complexity,
and approximate γ2 norms are all related, in the sense that each can be used to provide an
upper bound on any other (see Section 3.3 for more details). Therefore, one can equivalently
restate Question 1.4, with m(A)−1 replaced with any of the mentioned parameters. We
propose the following conjecture that would imply a negative answer to Question 1.4, as
m(Qd)−1 = O(1) (see Proposition 3.4).

▶ Conjecture 1.5 (Sign-rank of hypercube graphs). Let Qd be the 2d−1 × 2d−1 sign matrix
whose rows and columns are indexed with, respectively, odd-parity and even-parity elements
of {0, 1}d, and Qd(x, y) = −1 iff x and y differ in exactly one coordinate. Then

lim
d→∞

rank±(Qd) = ∞.

Forster’s sign-rank lower bound

For explicit matrices, the VC-dimension lower bound remained state of the art for almost
two decades until the breakthrough work of Forster [15]. Forster used a convex geometric
approach to prove a linear lower bound on the sign-rank of Hadamard matrices, establishing
the first super-logarithmic lower bound on the sign-rank of an explicit matrix.

Forster’s proof first transforms the vectors vy to be in isotropic position, and then uses
the anti-concentration of measure in low dimensions to show that the average Ey |⟨ux, vy⟩|
is relatively large for every vector ux. In other words, the “average margin” of such a
representation is large. This powerful fact in convex geometry was first established by
Barthe [4] as a key step in his proof of a reverse form of the Brascamp-Lieb inequality.
It seems that Forster was unaware of Barthe’s paper, and he gave a different proof in his
paper [15].

We use a variation of the aforementioned geometric fact due to [25] in order to formulate
a slight generalization of Forster’s approach that allows arbitrary distributions on Y.

▶ Definition 1.6 (Average margin). The average margin of a sign matrix AX ×Y with respect
to a probability distribution ν on Y is defined as

mavg
ν (A) = sup min

x
Ey∼ν |⟨ux, vy⟩|,

where the supremum is over all sign-representations of A using unit vectors ux, vy ∈ Rd for
any d. The average margin of A is defined as mavg(A) = infν mavg

ν (A).

Note that mavg(A) ≥ m(A) since Ey∼ν |⟨ux, vy⟩| ≥ miny |⟨ux, vy⟩|. A slightly different
notion of average margin is studied by Kallweit and Simon in [26], however, since mavg(A) is
always smaller than Kallweit and Simon’s notion of average margin, it provides a stronger
lower bound on sign-rank in Theorem 1.7 below. We summarize Forster’s approach as the
following theorem.

▶ Theorem 1.7 (Forster [15]). For every sign-matrix A, we have

rank±(A) ≥ mavg(A)−1.
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Since our formulation of Forster’s approach is slightly more general than the original
statement of Forster’s theorem [15], we provide a proof of Theorem 1.7 in the full-length
version of this paper. Later, in Proposition 2.2, we show how Theorem 1.7 implies Forster’s
original statement [15] as well as Linial and Shraibman’s refinement of it [31].

Forster’s original paper [15] applies the average margin method to show that sign-rank
is large when the spectral norm is small. Subsequent works [16, 17, 37] showed that, more
generally, this method can extend discrepancy bounds to lower bounds on sign-rank if the
witnessing hard distribution µ in Equation (2) is well-spread on most of the entries. This
is intuitive considering that discrepancy is equivalent to margin, and the lower bound in
Theorem 1.7 is based on average margin.

The following proposition shows that VC dimension is essentially a weaker lower bound
technique than Forster’s method.

▶ Proposition 1.8. For every sign matrix A, we have mavg(A)−1 ≥
√

VC(A).

Proof. Suppose VC(A) = k. By the definition of the VC dimension, A contains a 2k × k

submatrix Uk with all the possible different rows. Note that

UT
k Uk = 2kIk.

In particular, we have ∥Uk∥ = 2k/2, gives

mavg(A) ≤ mavg(Uk) ≤ 2k/2
√

k2k
= 1√

k
,

where the second inequality follows from Proposition 2.2 below. ◀

Monochromatic rectangles and sign-rank

A submatrix of a matrix A is called a monochromatic rectangle if all the entries in this
submatrix have the same value. In addition to VC-dimension and Forster’s method, there is
a third known approach for proving super-constant lower bounds on sign-ranks of explicit
matrices, which is based on the size of the largest monochromatic rectangle.

We define the following parameter based on the size of monochromatic rectangles.

▶ Definition 1.9 (Monochromatic rectangle ratio). For every sign-matrix AX ×Y , define

rect(A) = inf
µ×ν

max
R

µ × ν(R),

where the infimum is over all product probability measures µ×ν on X ×Y, and the maximum
is over all monochromatic rectangles in A.

Alon, Pach, Pinchasi, Radoičić and Sharir [3] proved that every m × n sign matrix of
sign-rank d contains an m

2d+1 × n
2d+1 monochromatic rectangle. Similar bounds are obtained

by Fox, Pach, and Suk [20] using the cutting lemma of Chazelle [10]. We provide a different
proof in Proposition A.1. While Proposition A.1 follows from the result of [20], we believe
our short and simple proof could provide some geometric intuition for why matrices of low
sign-rank contain large monochromatic rectangles.

The following relation between sign-rank and monochromatic rectangle ratio follows from
the bound of [3, Theorem 1.3].

▶ Theorem 1.10 (See [3, Theorem 1.3]). For every sign-matrix A, we have

rank±(A) ≥
log2

(
rect(A)−1)

2 − 1. (3)
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22:6 Lower Bound Methods for Sign-Rank and Their Limitations

Note that similar to the VC-dimension, Theorem 1.10 cannot imply super-logarithmic
lower bounds on sign-rank, since every n × n sign matrix satisfies rect(A) ≥ 1

2n . To see the
latter claim, note that for every probability distribution µ on the rows, there is always a row
x with measure ≥ 1

n , and any probability distribution ν over the columns has measure at
least 1

2 on either the 1’s or the −1’s of this row.

Sign-rank of semi-algebraic matrices, an open problem

A real semi-algebraic set in Rd is the set of all points that satisfy a given finite Boolean
combination of polynomial inequalities in the d coordinates. We say that such a set has
description complexity t if in some representation, the number of inequalities and the degrees
of the corresponding polynomials are all bounded from above by t.

Every collection of points u1, . . . , um ∈ Rd and semi-algebraic sets K1, . . . , Kn ⊆ Rd

define a sign matrix Am×n where Aij = 1 iff ui ∈ Kj . We say that A has a representation in
Rd with description complexity t if every Ki has description complexity t.

We call a class of sign matrices semi-algebraic if there exists d, t ∈ N such that every
matrix in this class has a representation in Rd of description complexity at most t. Semi-
algebraic classes of sign matrices capture natural geometric constructions of graphs on finite
dimensional real spaces, such as interval graphs, incidence graphs, disc graphs, and more
generally, all graph classes where vertices are points in a real Euclidean space and the edges
are defined by a semi-algebraic relation of constant complexity.

An affirmative answer to the following question would imply that semi-algebraic classes
of sign matrices coincide with bounded sign-rank classes.

▶ Question 1.11 (Sign-rank of semi-algebraic matrices). Is there a function η : N × N → N
such that every sign matrix with a d-dimensional representation of description complexity t

has sign-rank at most η(d, t)?

For the converse direction, note that if rank±(A) = η, then the corresponding sign-
representation of A using vectors ui, vj ∈ Rη is a representation with description complexity
1: We have Aij = 1 iff ui ∈

{
x ∈ Rd : ⟨vj , x⟩ > 0

}
, and note that ⟨vj , x⟩ is a polynomial of

degree 1 in the coordinates of x.
Let Γ : {−1, 1}t → {−1, 1} be a predicate and let A1, . . . , At be m × n sign matrices. Let

Γ(A1, . . . , At) denote the m × n sign matrix with ij-entries Γ(A1(i, j), . . . , At(i, j)). As we
will discuss in Appendix B, a simple linearization trick shows that Question 1.11 can be
reformulated as the following question.

▶ Question 1.12 (First reformulation of Question 1.11). Is there a function η : N × N → N
such that for every predicate Γ : {−1, 1}t → {−1, 1} and every set of m × n sign matrices
A1, . . . , At with sign-ranks at most d, we have

rank±(Γ(A1, . . . , At)) ≤ η(d, t)?

The formulation in Question 1.12 is interesting from the perspective of learning theory:
Consider a binary data set encoded as a sign matrix Γ. The entry Γij is called the label of
the data-point j according to the concept i. Suppose that these labels are determined by a
few other binary labels. For example, whether a person i is likely to watch a movie j may be
determined by whether j is the genre of movie that they like, whether j features some of
their favorite actors, and whether j is available at a theater near them. Now suppose that
each of these latter binary data sets has a low-dimensional representation. Does this mean
that our data set has a low-dimensional representation?
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The formulation in Question 1.12 is also interesting from the perspective of communi-
cation complexity: since the logarithm of sign-rank is equivalent to the unbounded-error
communication complexity (see Equation (8) below), Question 1.12 asks whether a matrix
constructed by the entrywise application of a logical predicate to matrices A1, . . . , At, each
with a small unbounded-error communication complexity, must have a small unbounded-error
communication complexity. It is straightforward to show that a similar statement is indeed
true in the bounded-error case.

Question 1.12 can be further simplified to a fascinating simple-to-state question. Let
A ∧ B be the matrix whose ij-th entries are the point-wise minimums of the entries of A

and B, corresponding to the Boolean and operator. Let ¬A := −A. Recall that {∧, ¬} is a
complete basis, i.e., it is a functionally complete set in the logical sense. Hence the function Γ
in Question 1.12 can be implemented using the two operations ∧ and ¬, and since for every
sign matrix A, we have rank±(A) = rank±(¬A), Question 1.12 is equivalent to the following.

▶ Question 1.13 (Second reformulation of Question 1.11). Is there a function η : N → N such
that for every two sign matrices A and B with sign-ranks at most d, we have rank±(A ∧ B) ≤
η(d)?

In comparison, let us consider the Hadamard product A ◦ B of two matrices A and B,
which corresponds to entrywise ⊕ operator in the Boolean setting. It is well-known that
rank(A ◦ B) ≤ rank(A) · rank(B), which implies that for every two m × n sign matrices A

and B, we have

rank±(A ◦ B) ≤ rank±(A) · rank±(B).

However, this cannot be used in a similar argument as the and case above to answer
Question 1.11, as {⊕, ¬} is not a complete basis.

Contributions and organization

For the following discussion, recall the three aforementioned lower bound techniques for
sign-rank:

VC(A) ≤ rank±(A), mavg(A)−1 ≤ rank±(A),
log2

(
rect(A)−1)

2 − 1 ≤ rank±(A),

and note that all these lower bounds are non-increasing when restricting to submatrices: For
every submatrix M of A, we have

VC(M) ≤ VC(A), mavg(M)−1 ≤ mavg(A)−1, rect(M)−1 ≤ rect(A)−1.

In Section 3.1, we study the relation between the average margin and the rectangle ratio.
In Theorem 3.1, we prove that

mavg(A)−1 ≤ rect(A)−1,

which, combined with Proposition 1.8, shows√
VC(A) ≤ mavg(A)−1 ≤ rect(A)−1. (4)

These inequalities demonstrate that if the monochromatic rectangle ratio cannot provide
a super-constant lower bound for the sign-rank of a matrix, then the other two methods
will fail as well.
The significance of Theorem 3.1 is that proving an upper bound on rect(A)−1 is often
much easier than directly analyzing the average margin. This allows us to demonstrate
some limitations of Forster’s method.
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In Section 3.2, we combine Theorem 3.1 with a counting argument to prove our main
separation result: In Theorem 3.2, we show the existence of n × n sign matrices A that
have sign-rank nΩ(1) but VC(A), m(A)−1 and rect(A)−1 are all O(1). In other words,
there exists matrices of very large sign-rank such that none of the known lower bound
techniques can provide a lower bound that is larger than O(1).
In Section 3.3, we discuss the limitation of sign-rank lower bounds in answering Ques-
tion 1.4 and Conjecture 1.5. In particular, in Proposition 3.4 we observe that rect(Qd)−1 =
O(1), and thus none of the known lower bound methods can prove Conjecture 1.5.
In Section 3.4, we study a question that is closely related to the relation between margin
and sign-rank (i.e., Question 1.4). As discussed above, one can equivalently rephrase
Question 1.4 in terms of upper-bounding sign-rank by a function of the approximate
γ2 norm (see Definition 2.1). As stated in Conjecture 1.5, we believe the answer to be
negative. However, one can strengthen the assumption and ask whether the sign-rank
can be upper-bounded by a function of the γ2 norm instead:
▶ Conjecture 1.14. There exists a function η such that for every sign matrix A, we have
rank±(A) ≤ η(∥A∥γ2).
Towards proving Conjecture 1.14, in Theorem 3.8, we show that

rank±(A) ≤ 4Deq(A), (5)

where Deq(A) denotes the deterministic communication complexity of the matrix A

with access to an equality oracle. In Corollary 3.9, we combine this with Green and
Sanders’ [21, 22, 39, 38, 40] quantitative versions of Cohen’s idempotent theorem and a
theorem of [23] to verify Conjecture 1.14 for a broad class of sign-matrices: We prove
there exists a function η such that if f : G → {−1, 1} for a finite group G, and AG×G is
the sign matrix with entries A(x, y) = f(xy−1), then

rank±(A) ≤ η(∥A∥γ2).

In the case of abelian G, we have

rank±(A) ≤ exp(exp(C∥A∥4
γ2

)),

where C is a universal constant. Note that taking G = Zn
2 corresponds to the class of

xor-lifts.
Equation (5) is also interesting from the point of view of communication complexity. It
implies

U(A) ≤ 2 Deq(A) + O(1).

where U(A) denotes the unbounded-error randomized communication complexity of A,
formally defined in Equation (8).
In Appendix B, we study the sign-rank of semi-algebraic sign matrices. In Corollary B.1,
we prove that if A and B are two sign matrices of sign-rank at most d, then

VC(A ∧ B) ≤ 20d and mavg(A ∧ B)−1 ≤ rect(A ∧ B)−1 ≤ 24d+4.

These demonstrate the inability of the known lower bound techniques to give a negative
answer to Question 1.11 by providing a super-constant lower bound on the sign-rank of
semi-algebraic matrices.
In Appendix C we prove that sign matrices of sign-rank d have small communication
complexity in the average communication model over any product distribution.
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2 Notation, Background, and Basic Observations

We will use the standard computer science asymptotic notations [11] of O(·), Ω(·), Θ(·), o(·),
and ω(·). We denote the indicator function of a set S by 1S , that is, 1S(x) := 1 if x ∈ S,
and 1S(x) := 0 otherwise. For i = 1, . . . , d, we denote the i-th standard vector by ei ∈ Rd.
For a vector u ∈ Rd, we denote the Euclidean norm of u by ∥u∥.

For a real matrix BX ×Y , we denote by sgn(B) the sign matrix corresponding to the
signs of the entries of B. We say that the unit vectors ux, vy ∈ Rd sign-represent AX ×Y if
Axy = sgn(⟨ux, vy⟩) for all x ∈ X and y ∈ Y.

A finite set of vectors v1, . . . , vm ∈ Rd are in isotropic position if for every unit vector
u ∈ Rd, we have

1
m

m∑
i=1

|⟨u, vi⟩|2 = 1
d

.

All matrices in this article are real and finite, and all normed spaces are defined over the
reals. The spectral norm of a matrix AX ×Y is defined as

∥A∥ = max
x∈RY :∥x∥=1

∥Ax∥,

and its trace norm is defined as

∥A∥tr = tr(
√

AtA) =
min(|X |,|Y|)∑

i=1
σi,

where σi are the singular values of A. Next, we define the γ2 norm of a matrix, which is an
important tool for proving lower and upper bounds in discrepancy theory and communication
complexity [31].

▶ Definition 2.1 (γ2 norm). The γ2 norm of a matrix AX ×Y , denoted by ∥A∥γ2 , is the smallest
c ≥ 0 such that there exists d ∈ N and vectors ux, vy ∈ Rd with maxx,y ∥ux∥ · ∥vy∥ ≤ c and
Axy = ⟨ux, vy⟩ for all x, y.

For ϵ ∈ [0, 1), the approximate γ2 norm of AX ×Y with error parameter ϵ is defined as

∥A∥γ2,ϵ = inf
B

∥B∥γ2 ,

where the infimum is over all real matrices BX ×Y with maxx,y |Axy − Bxy| ≤ ϵ. Note that
despite what the notation might suggest, ∥ · ∥γ2,ϵ is not a norm.

By definition, a matrix BX ×Y satisfies ∥B∥γ2 = 1 if and only if for some d ∈ N, there
exist unit vectors ux, vy ∈ Rd with Bxy = ⟨ux, vy⟩ for all (x, y) ∈ X × Y. Hence, one can
reformulate Definition 1.3 and Definition 1.6 in terms of the γ2 norm as

m(A) = sup
B:∥B∥γ2 =1
sgn(B)=A

min
x,y

|Bxy|,

and

mavg
ν (A) = sup

B:∥B∥γ2 =1
sgn(B)=A

min
x

Ey∼ν |Bxy|.

APPROX/RANDOM 2022
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Finally, note that the dual of the γ2 norm is

∥A∥γ∗
2

:= sup
B:∥B∥γ2 =1

tr(ABt) = sup
B:∥B∥γ2 =1

∑
x,y∈X ×Y

AxyBxy, (6)

where both A and B are X × Y matrices.
Note that for any matrix AX ×Y and unit vectors ux, vy ∈ Rd, we have∑
x,y

Axy⟨ux, vy⟩ ≤ ∥A∥
√

|X ||Y|.

Therefore, by Equation (6), we have ∥A∥γ∗
2

≤ ∥A∥
√

|X ||Y|. Forster’s original paper [15] shows

rank±(A) ≥
√

|X ||Y|
∥A∥ . Later [31] improved this bound to rank±(A) ≥ |X ||Y|

∥A∥∗
γ2

. The following
proposition, which is based on [31, 15], recovers these bounds, as rank±(A) ≥ mavg(A)−1 by
Theorem 1.7.

▶ Proposition 2.2. For every sign-matrix AX ×Y , we have

mavg(A)−1 ≥ |X ||Y|
∥A∥∗

γ2

≥
√

|X ||Y|
∥A∥

.

3 Main Results

3.1 Monochromatic rectangle ratio vs average margin
Our first theorem relates the monochromatic rectangle ratio of a sign matrix to its average
margin. We omit the proof which is based on the minimax theorem due to space limitations.

▶ Theorem 3.1. For every sign matrix A, we have

mavg(A)−1 ≤ rect(A)−1.

3.2 Sign-rank vs. current lower bound methods
Our next theorem shows a significant limitation for the three discussed lower bound methods.
It shows that there are matrices with polynomially large sign-rank, while neither of the
known methods can yield super constant bounds.

▶ Theorem 3.2 (Main Theorem). There exists n × n sign matrices A with sign-rank Ω( n1/3

log(n) )
that satisfy

VC(A) ≤ 2 and mavg(A)−1 ≤ rect(A)−1 ≤ 215.

Proof. The idea is to construct a large collection of sign matrices, each with a large monochro-
matic rectangle ratio. The statement then would follow from the upper bound on the number
of matrices of small sign-rank, presented in Lemma 1.1.

Let N be a positive integer, and consider the sets

P = {(x, y) ∈ Z2 : 1 ≤ x ≤ N, 1 ≤ y ≤ 2N2}

and

L = {(a, b) ∈ Z2 : 1 ≤ a ≤ N, 1 ≤ b ≤ 2N2}.
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We think of the elements ℓ = (a, b) ∈ L as lines y = ax + b in R2, and we consider (x, y) ∈ P
as points in R2.

Define the sign matrix FL,P by point line incidences:

Fℓ,p =
{

−1 p ∈ ℓ

1 p ̸∈ ℓ
.

Set n = N3 and note that F is a 2n × 2n matrix, and for every ℓ = (a, b) and p = (x, y), we
have

Fℓ,p = sgn
(

(ax + b − y)2 − 1
2

)
= sgn

(
a2x2 − 2axy + y2 + 2abx − 2by +

(
b2 − 1

2

))
.

Since each term in the last line corresponds to a rank 1 matrix, we have

rank±(F ) ≤ 6.

Additionally, F has the following useful properties:
1. Since any two distinct lines have at most one point in common, F does not contain any

2 × 2 (−1)-monochromatic subrectangles.
2. Each line ℓ = (a, b) with b ≤ N2 goes through N = n1/3 points from P . Consequently, F

contains at least n
4
3 negative entries.

Consider all 2n × 2n sign matrices A that can be obtained from F by changing the sign
of a subset of the negative entries to positive. There are at least 2n4/3 such matrices. By
Lemma 1.1, most such matrices A have sign-rank Ω(n1/3/ log n). Let A be any such matrix
obtained from F , so that rank±(A) = Ω(n1/3/ log n).

Since A is obtained from a submatrix of F by only changing its −1 entries, A also
satisfies the first property above. That is, A does not contain any 2 × 2 (−1)-monochromatic
subrectangle, and consequently VC(A) ≤ 2 as desired.

We proceed to bounding the rectangle ratio and hence also the average margin of A. Let
µ × ν be any product distribution on L × P . Since rank±(F ) ≤ 6, by Theorem 1.10, there
exists a monochromatic rectangle R of F with

µ × ν(R) ≥ 2−14.

If R is a 1-monochromatic rectangle in F , then it is also a 1-monochromatic rectangle in A.
On the other hand, if R is a (−1)-monochromatic rectangle in F , then by the first property
above, it is either a 1 × k or a k × 1 rectangle for some k. In both cases R contains a
subrectangle R′ ⊆ R that is monochromatic in A and satisfies

µ × ν(R′) ≥ µ × ν(R)
2 ≥ 2−15.

We conclude that

rect(A) ≥ 2−15.

Finally, by Theorem 3.1, we have mavg(A)−1 ≤ rect(A)−1 ≤ 215. ◀

APPROX/RANDOM 2022
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3.3 Does large margin imply small sign-rank?
Next, we discuss the relation between sign-rank and margin, namely Question 1.4 and
Conjecture 1.5. We start with a short discussion of the equivalence of margin and several
other complexity and analytic parameters associated with sign matrices. We have already
mentioned the result of Linial and Shraibman [30] stating

disc(A) ≤ m(A) ≤ 8 disc(A).

Let Rϵ(A) denote the public-coin randomized communication complexity of the matrix A

with two-sided error ϵ. We refer the reader to [28] for a formal definition of this complexity
measure. The following folklore proposition shows that for any fixed ϵ ∈ (0, 1

2 ), the gap
between disc(A)−1 and Rϵ(A) is at most exponential.

▶ Proposition 3.3 (folklore). For every ϵ ∈ (0, 1
2 ) and every sign-matrix A, we have

log
(
(1 − 2ϵ) · disc(A)−1)

≤ Rϵ(A) ≤ O

(
log(1

ϵ
) disc(A)−2

)
. (7)

By Proposition 3.3, one can equivalently consider Rϵ(A) instead of m(A)−1 in Question 1.4
and Conjecture 1.5. This is particularly interesting in light of the equivalence of the logarithm
of sign-rank and the unbounded-error communication complexity U(A), due to Paturi and
Simon [36]:

U(A) := lim
ϵ↗ 1

2

Rprv
ϵ (A) = log(rank±(A)) + O(1). (8)

We refer the reader to [28] for the definition of the private-coin randomized communication
complexity Rprv

ϵ (A).
Finally, let us discuss the equivalence to approximate γ2 norms. The following relationship

with public-coin randomized communication complexity is known

log ∥A∥γ2,ϵ ≤ R ϵ
2
(A) ≤ O

(
log(1/ϵ)
(1 − ϵ)2 ∥A∥2

γ2,ϵ

)
, (9)

where A is a sign matrix and ϵ ∈ (0, 1). The lower bound is from [31] and the upper bound
is proven in [23, Corollary 2.8 (c)]. However, since those papers use a different notation, for
the convenience of the reader, we provide a proof in Proposition D.2.

To summarize, for every fixed ϵ ∈ (0, 1
2 ), we have

m(A)−1 ≈ disc(A)−1 ≈ ∥A∥γ2,ϵ ≈ Rϵ(A), (10)

where the equivalence notation ≈ means that each parameter can be bounded by applying a
universal function (that could depend on ϵ) to the other parameter.

The following proposition shows that a positive answer to Conjecture 1.5 is beyond the
reach of the current known lower bound techniques.

▶ Proposition 3.4 (Barrier to Conjecture 1.5). Let Qd be the sign matrix defined in Conjec-
ture 1.5. There exists a constant c such that for every d ∈ N, we have

m(Qd)−1 ≤ c,

and

VC(Qd), mavg(Qd)−1, rect(Qd)−1 ≤ c.
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Proof. The bound m(Qd)−1 = O(1) follows from the equivalence of the margin and the
randomized communication complexity discussed above, and the fact that R1/3(Qd) = O(1),
due to [48]. Since

√
VC(A) ≤ mavg(Qd)−1 ≤ m(Qd)−1, it only remains to show rect(Qd)−1 =

O(1).
Next, we will show how to bound rect(Qd)−1. Let X and Y be the set of odd-parity

and even-parity elements of {0, 1}d corresponding, respectively, to the rows and columns of
Qd. Let µ and ν be distributions, respectively, over X and Y. Recall that Qd(x, y) = −1
iff x ∈ X and y ∈ Y differ in exactly one coordinate. We will use the fact that Qd does
not contain any 2 × 3 or 3 × 2 (−1)-monochromatic rectangles, which also directly implies
VC(Qd) ≤ 3. We will consider two cases.

Case 1. Suppose

Pr
x∼µ,y∼ν

[Qd(x, y) = −1] ≥ c := 1/2.

Applying Jensen’s inequality twice, we have

c6 ≤
(
Ex∼µ,y∼ν [1Qd(x,y)=−1]

)6 ≤
(
Ex∼µ(Ey∼ν [1Qd(x,y)=−1])3)2

=

Ex∼µ Ey1,y2,y3∼ν

[ ∏
j

1Qd(x,yj)=−1

]2

≤ Ey1,y2,y3∼ν

Ex∼µ

[ 3∏
j=1

1Qd(x,yj)=−1

]2

= Ex1,x2∼µ,y1,y2,y3∼ν

[ ∏
i,j

1Qd(xi,yj)=−1

]
.

The last term is the probability that the random rectangle {x1, x2} × {y1, y2, y3} is a (−1)-
monochromatic rectangle of Qd. Since Qd does not contain any 2 × 3 (−1)-monochromatic
rectangle, we must have

Pr[x1 = x2 ∨ |{y1, y2, y3}| ≤ 2] ≥ c6.

Therefore, one of the two distributions µ or ν has noticeable collision probability. Specifically,
either Prx,x′∼µ Pr[x = x′] ≥ c6/4 or Pry,y′∼ν [y = y′] ≥ 1

3 Pr[|{y1, y2, y3}| ≤ 2] ≥ c6/4.
Without loss of generality, assume that the former is true. In this case

Pr[x = x′] =
∑
a∈X

Pr[x = a]2 ≤ max
a∈X

Pr[x = a].

Therefore, there is an a ∈ X such that Pr[x = a] ≥ c6/8. Now, note that the a’th row of Qd

either has a µ × ν-measure of at least c6/16 on its (−1)’s or on its 1’s.

Case 2. If Case 1 does not hold, then

Pr
x∼µ,y∼ν

[|x − y|1 ≥ 3] ≥ 1/2, (11)

where |x − y|1 denotes the Hamming distance between x and y. For a subset S ⊆ [d], let
ϕS : {0, 1}d → {0, 1, 2, 3} be defined as ϕS(x) =

∑
i∈S xi mod 4.

APPROX/RANDOM 2022
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For x, y ∈ {0, 1}d satisfying |x − y|1 ≥ 3, let j1, j2, j3 be distinct indices where they differ.
Pick S ⊆ [d] uniformly at random by first picking a random subset S1 ⊆ [d] \ {j1, j2, j3} and
then taking its union with a random S2 ⊆ {j1, j2, j3}. For every choice of S1, there exists at
least one choice of S2 such that |ϕS(x) − ϕS(y)| = 2. Therefore,

Pr
S

[|ϕS(x) − ϕS(y)| = 2] ≥ 1/8.

Combining with Equation (11), we have

Pr
S

x∼µ,y∼ν

[|ϕS(x) − ϕS(y)| = 2] ≥

Pr
S

[|ϕS(x) − ϕS(y)| = 2 | |x − y|1 ≥ 3] Pr
x∼µ,y∼ν

[|x − y|1 ≥ 3] ≥ 1/16. (12)

Hence, there is a choice of S ⊆ [d] such that

Pr
x∼µ,y∼ν

[|ϕS(x) − ϕS(y)| = 2] ≥ 1/16.

Hence, there exist r, t ∈ {0, 1, 2, 3} with |r − t| = 2 such that

Pr
x∼µ,y∼ν

[ϕS(x) = r and ϕS(y) = t] ≥ 2−8.

In this case, the set {x|ϕS(x) = r}×{y|ϕS(y) = t} is a 1-monochromatic rectangle of measure
at least 2−8. ◀

In light of Proposition 3.4 it might seem worthwhile to seek a different candidate sign
matrix for establishing a negative answer to Question 1.4. By Proposition 1.8 and the
definition of average margin, for every sign matrix A, we have√

VC(A) ≤ mavg(A)−1 ≤ m(A)−1, (13)

and thus Forster’s method and the VC dimension method cannot imply a negative answer to
Question 1.4. Therefore, rect(A)−1 remains the only known approach.

The following conjecture of Chattopadhyay, Lovett, and Vinyals [8, Problem 6.1] (see
also [23, Conjecture I]), if true, would imply that rect(A)−1 is also small if m(A)−1 is small.

▶ Conjecture 3.5 (Chattopadhyay, Lovett, Vinyals [8]). There exists a function η such that
every sign matrix AX ×Y contains an |X |

k × |Y|
k monochromatic rectangle for k ≤ η(m(A)−1).

Conjecture 3.5 is in fact equivalent to the existence of a function η such that every sign
matrix AX ×Y , we have

rect(A)−1 ≤ η(m(A)−1).

In particular, assuming Conjecture 3.5, even rect(A)−1 cannot be used towards giving a
negative answer to Question 1.4.

3.4 Communication Complexity with Equality Oracle
In Section 3.3, we showed that Question 1.4 can be formulated in terms of the approximate
γ2 norm: Is it true that for sign matrices, ∥A∥γ2,ϵ = O(1) implies rank±(A) = O(1)? As
we mentioned in Conjecture 1.5, we believe that the answer to this question is negative.
However, it seems plausible that such a statement could hold if we strengthen the assumption
by replacing the approximate γ2 norm with the γ2 norm:
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▶ Conjecture 3.6 (Conjecture 1.14 restated). There exists a function η such that for every
sign matrix A, we have rank±(A) ≤ η(∥A∥γ2).

Zero-one valued matrices that satisfy ∥A∥γ2 = O(1) are important in operator theory as
they correspond to the bounded idempotents of the algebra of Schur multipliers. Inspired by
Cohen’s idempotent theorem in harmonic analysis, a characterization of these matrices was
conjectured in [23]. To state this conjecture, we need to introduce the notion of a blocky
matrix. We call a zero-one valued matrix MX ×Y blocky if

{(x, y) | Mxy = 1} =
⋃

i

Xi × Yi,

for disjoint sets Xi ⊆ X and disjoint sets Yi ⊆ Y . A simple example of a blocky matrix is the
identity matrix. Note that every blocky matrix can be obtained from the identity matrix by
duplicating rows and columns and adding all zero rows and columns. Since the γ2 norm is
invariant under these operations, every non-zero blocky matrix M satisfies ∥M∥γ2 = 1. It is
shown in [32] that blocky matrices are precisely the set of Boolean matrices with ∥M∥γ2 ≤ 1.

Blocky matrices are related to deterministic communication complexity with access to an
equality oracle. In this model, a protocol for a sign matrix A corresponds to a binary tree.
Each non-leaf node v in the tree corresponds to a query to eq(av(x), bv(y)), where eq(a, b) = 1
if a = b and −1 otherwise. Note that av(x) and bv(y) can be computed, respectively, by
the first and the second party in the communication protocol. Every input (x, y) naturally
corresponds to a path from the root of the tree to a leaf, and it is required that the leaf is
labeled with the correct value Axy. The cost of the protocol is the depth of the tree. The
deterministic communication complexity of the matrix A with access to an equality oracle,
denoted by Deq(A), is the smallest depth of such a protocol for A.

Note that for any two functions a(x) and b(y), the function (x, y) 7→ eq(a(x), b(y))
corresponds to an X × Y blocky matrix as its 1’s consist of a union of row-disjoint and
column-disjoint rectangles.

▶ Conjecture 3.7 ([23, Conjecture III]). For every sign-matrix A, if ∥A∥γ2 = O(1), then A can
be expressed as a ±1-linear combination of O(1) blocky matrices, equivalently Deq(A) = O(1).

The following theorem shows that if Conjecture 3.7 is true, then the answer to Conjec-
ture 1.14 is positive.

▶ Theorem 3.8. For every sign matrix AX ×Y , we have

rank±(A) ≤ 4Deq(A).

Proof. We proceed by induction on d := Deq(A). When d = 1, A corresponds to a blocky
matrix, which in fact has rank±(A) ≤ 3. For larger d, consider a cost d protocol for a
sign matrix A and suppose the equality query at the root of tree is eq(a(x), b(y)). We may
assume without loss of generality that a(x), b(y) ∈ N. Let SX ×Y be the matrix with entries
Sxy = 1a(x)=b(y). We branch according to the output of the first query either to the left or
the right subtree of the root, each corresponding to a protocol of cost at most d − 1. Let the
corresponding matrices for these protocols be Π1 and Π2, and note that

A = S ◦ Π1 + (J − S) ◦ Π2,

where J := JX ×Y is the all-ones matrix. By the induction hypothesis, Π1 and Π2 have
sign-rank at most ≤ 4d−1. Let Π̃1 and Π̃2 be real matrices with rank at most 4d−1 that
satisfy sgn(Π̃1) = Π1 and sgn(Π̃2) = Π2. Let EX ×Y be the rank-3 matrix with entries
Exy = (a(x) − b(y))2. Note that for a sufficiently large k, we have

APPROX/RANDOM 2022
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A = sgn(Π̃1 + kE ◦ Π̃2).

Finally, we have

rank(Π̃1 + kΠ̃2 ◦ E) ≤ rank(Π̃1) + rank(Π̃2) · rank(E) ≤ 4d−1 + 3 · 4d−1 = 4d. ◀

Conjecture 3.7 is inspired by quantitative versions of Cohen’s seminal idempotent theorem
in harmonic analysis, developed by Green and Sanders [21, 22] and Sanders [39, 38, 40]. As
it is noticed in [23], these theorems verify Conjecture 3.7 for a large natural class of matrices:
sign matrices AG×G where G is a finite group and the entries are defined as Axy = f(xy−1) for
some f : G → {−1, 1}. Note that taking G = Zn

2 corresponds to the class of xor-lifts, which
is a well studied class of functions in communication complexity. The following corollary is
proved by combining these results with Theorem 3.8 to verify Conjecture 1.14 for this class
of matrices.

▶ Corollary 3.9. There exists a function η such that the following holds. If f : G → {−1, 1}
for a finite group G, and AG×G is the sign matrix with entries A(x, y) = f(xy−1), then

rank±(A) ≤ η(∥A∥γ2).

In the case of abelian G, we have

rank±(A) ≤ exp(exp(C∥A∥4
γ2

)),

4 Concluding remarks

In light of the results in the present paper, the following open problem captures the limitation
of the currently known lower bound techniques for sign-rank.

▶ Problem 4.1. Construct an explicit sequence of matrices An such that rect(An)−1 = O(1)
and

lim
n→∞

rank±(An) = ∞.

By Theorem 3.2, we know such sequences of matrices exist. On the other hand, by Theorem 3.1
and Proposition 1.8, we have√

VC(A) ≤ mavg(A)−1 ≤ rect−1(A),

and thus none of the known lower bound techniques are capable of solving Problem 4.1. Note
that a positive answer to Conjecture 1.5 would solve Problem 4.1.

Finally, let us mention that it is unclear whether the proof of Proposition B.3 can be
generalized to infinite matrices, which raises the following intriguing question.

▶ Question 4.2. Is the sign-rank of an infinite sign matrix AN×N finite if the sign-rank of
every finite submatrix of AN×N is bounded by a fixed constant d?
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A Small sign-rank implies large monochromatic rectangles

In this section, we provide a short and robust geometric argument for the fact that sign
matrices of small sign-rank contain large monochromatic rectangles. Our proof is quite
different from the proof of [20], which is based on the divide-and-conquer cutting lemma of
Chazelle [10]. However, we note that our bound is slightly weaker than the n

2O(d log d) × n
O(1)

bound of [20].

▶ Proposition A.1. There exists a constant c > 0 such that the following holds. Every sign
matrix An×n with sign-rank d contains a monochromatic rectangle of size

n

2cd log d
× n

4d
.

Proof. Let Sd−1 denote the unit sphere in Rd. Consider a sign representation of A with unit
vectors ui, vj ∈ Rd. Without loss of generality, we can assume that the vj ’s are in isotropic
position.

For every u ∈ Sd−1, consider the spherical cap of height α := 1√
2d

, defined as

Cu =
{

x ∈ Sd−1 : ⟨u, x⟩ ≥
√

1 − α2
}

,

and the equator region

Eu =
{

x ∈ Sd−1 : |⟨u, x⟩| ≤ α
}

.

Note that the sets

R+
u := {i : ui ∈ Cu} × {j : vj ̸∈ Eu, ⟨vj , u⟩ > 0}

and

R−
u := {i : ui ∈ Cu} × {j : vj ̸∈ Eu, ⟨vj , u⟩ < 0}

correspond, respectively, to a (+1)-monochromatic and a (−1)-monochromatic rectangle
in A.

Since the vj ’s are in isotropic position, for every u ∈ Sd−1, we have

n∑
j=1

⟨u, vj⟩2 = n

d
.
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On the other hand∑
j:vj∈Eu

⟨u, vj⟩2 ≤ nα2 = n

2d
,

which shows

|{j : vj ̸∈ Eu}| ≥ n

d
− n

2d
= n

2d
.

In particular

|{j : vj ̸∈ Eu, ⟨vj , u⟩ > 0}| ≥ n

4d
or |{j : vj ̸∈ Eu, ⟨vj , u⟩ < 0}| ≥ n

4d
.

To estimate the surface area of Cu, recall that the surface area of the d-dimensional sphere
of radius r is given by

Ad(r) := 2πd/2

Γ(d/2)rd−1 =
∫ 1

−1
Ad−1

(√
1 − h2

)
dh = 2π

d−1
2

Γ( d−1
2 )

∫ 1

−1

(√
1 − h2

)d−2
dh.

Hence the ratio between the surface area of Cu and the whole sphere Sd−1 can be estimated
as

|Cu|
Ad(1) =

∫ 1√
1−α2

(√
1 − h2

)d−2
dh∫ 1

−1
(√

1 − h2
)d−2

dh
≥

∫ √
1− α2

4√
1−α2

(√
1 − h2

)d−2
dh∫ 1

−1 1dh

≥

√
1 − α2

4 −
√

1 − α2

2 × (α/2)d−2 = 2−O(d log d).

Picking a u ∈ Sd−1 uniformly at random, with positive probability, one of the rectangles
R+

u or R−
u satisfies the assertion of the theorem. ◀

B Sign-rank of Semi-algebraic matrices, an open problem

We start by discussing why Question 1.11, Question 1.12, and Question 1.13 are equivalent.
Recall that a d-dimensional semi-algebraic set of description complexity t is of the form{

y ∈ Rd : Γ(1p1(y)≥0, . . . , 1pt(y)≥0) = 1
}

.

for a predicate Γ : {0, 1}t → {0, 1} and polynomials p1, . . . , pt on d variables.

Proof of Equivalence of Question 1.11 and Question 1.12. Clearly, Question 1.12 is a spe-
cial case of Question 1.11. In order to prove the nontrivial direction of this equivalence,
consider a semi-algebraic sign-matrix A defined by points u1, . . . , um ∈ Rd and semi-algebraic
sets K1, . . . , Kn ⊆ Rd, each with description complexity t. Note that there are only 22t differ-
ent possible predicates {0, 1}t → {0, 1}, and hence in Question 1.11, we can assume without
loss of generality that all the sets Ki are defined using the same predicate Γ : {0, 1}t → {0, 1}.

Let p ∈ R[x1, . . . , xd] be a polynomial of degree t. Let Id,t denote the set of all α =
(α1, . . . , αd) ∈ Zd

≥0 with
∑d

i=1 αi ≤ t. The monomials of degree at most t in variables
x1, . . . , xd are indexed by α ∈ Id,t with the correspondence xα = xα1

1 . . . xαd

d . Note that every
polynomial p(x) =

∑
α∈Id,t

aαxα of degree at most t corresponds to an inner product

p(x) = ⟨Ψt(p), Φt(x)⟩,
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where Ψt(p) := (aα)α∈Id,t
∈ R|Id,t| and Φt(x) := (xα)α∈Id,t

∈ R|Id,t|. Applying this lineariza-
tion idea to all the defining polynomials of the semi-algebraic sets allows us to view the
matrix A as a single predicate applied to a collection of sign matrices, each of sign-rank at
most |Id,t| each. ◀

Hence, Question 1.11, Question 1.12, and Question 1.13 are all equivalent. Question 1.13,
in particular, has a simple statement. Regarding this formulation, Bun, Mande, and Thaler [6]
used Forster’s method to show the existence of matrices A and B of sign-rank d such that
rank±(A ∧ B) ≥ 2Ω(log2 d). However, the following corollary of Theorem 3.1 shows that
neither of the known methods can imply a negative answer to Question 1.13.

▶ Corollary B.1 (Corollary to Theorem 3.1). If A and B are two m × n sign matrices of
sign-rank at most d, then

VC(A ∧ B) ≤ 20d and mavg(A ∧ B)−1 ≤ rect(A ∧ B)−1 ≤ 24d+4.

Intersections of Half-spaces

The problem of bounding the sign-rank of A ∧ B is closely related to bounding the sign-rank
of the matrices that are defined by points and intersections of pairs of half-spaces. For
distinct y, y′ ∈ Rd, let Iy,y′ = {z | ⟨y, z⟩ > 0} ∩ {z | ⟨y′, z⟩ > 0} ⊂ Rd denote the intersection
of the two half-spaces defined by y and y′, respectively. We refer to these sets as half-space
intersections. Given a finite set of points X ⊆ Rd and a finite set of half-space intersections
I in Rd, define the matrix FX ×I as

Fx,I =
{

1 x ∈ I

−1 x ̸∈ I
.

Is the sign-rank of F bounded by a constant cd? Note that for x ∈ X and Iy,y′ ∈ I,
we have Fx,I = sgn ⟨x, y⟩ ∧ sgn ⟨x, y′⟩, and thus F can be expressed as the ∧ of two sign
matrices of sign-rank d. Consequently, such a constant cd exists if the answer to Question 1.13
regarding the sign-rank of A ∧ B is positive.

It turns out that the opposite direction is also true, but with a slight increase in the value
of d.

▷ Claim B.2. If the constant c2d−1 exists, then for sign matrices A and B with rank±(A) ≤ d

and rank±(B) ≤ d, we have rank±(A ∧ B) = O(c2d−1).

It is communicated to us by Shay Moran that it is known that the matrix F defined
by half-space intersections in R3 has bounded sign-rank. We omit the proof in the present
version.

▶ Proposition B.3 (Communicated by Shay Moran). There exists a constant c3 such that
given a finite set X of points x ∈ R3 and a finite set I of half-space intersections Iy,y′ in R3,
the matrix FX ×I with entries

Fx,I =
{

1 x ∈ I

−1 x ̸∈ I

satisfies rank±(F ) ≤ c3.

Proposition B.3 combined with Claim B.2 implies the following special case of Ques-
tion 1.13 for sign matrices of sign-rank at most 2.

▶ Corollary B.4. There is a constant c > 0 such that for every two sign matrices Bm×n and
Cm×n with sign-rank at most 2, we have rank±(B ∧ C) ≤ c.
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C Average Communication Complexity

In this section, we observe a simple connection between sign-rank and another model of
communication complexity, average communication complexity. For any distribution µ over
X × Y , let CCavg

µ (A) be the smallest expected communication complexity of a deterministic
protocol that computes A correctly on all inputs. Moreover, define

CCavg(A) = sup
µ

CCavg
µ (A),

where µ ranges over all product distributions over X × Y .

▶ Proposition C.1. For every sign-matrix AX ×Y , we have

CCavg(A) ≤ 2 rect(A)−1.

Proof. Let µ be any distribution on X × Y and let δ = rect(A). By definition, A has a
monochromatic rectangle R = S ×T such that µ(R) ≥ δ. The two parties recursively proceed
as follows. Given x and y as inputs, after communicating the two bits 1x∈S and 1y∈T , they
can agree on whether (x, y) ∈ R. At which point, they have reduced their search to one of the
four matrices AS×T , ASc×T , AS×T c , and ASc×T c . Note that in the first case, both parties
know the answer and can conclude the protocol. In all the other three cases, the µ-measure
of the search-space has been reduced to at most 1 − δ, and they can recurse on the resulting
submatrix according to the same protocol applied to µ conditioned on the submatrix.

For a distribution µ, let cµ denote the average cost of the above protocol, and let µ be
the maximizer for cµ. Let µ1, µ2, µ3 denote µ conditioned on S × T c, Sc × T c, and Sc × T

respectively. We have

cµ ≤ 2 Pr[(x, y) ∈ R]+Pr[(x, y) ̸∈ R]·(2+max
i

cµi
) = 2+Pr[(x, y) ̸∈ R] max

i
cµi

≤ 2+(1−δ)cµ.

Therefore, cµ ≤ 2/δ as claimed. ◀

Combined with Theorem 1.10, we get the following bound in terms of sign-rank.

▶ Corollary C.2. For every sign matrix A we have

CCavg(A) ≤ 22rank±(A)+3.

Theorem 3.2 shows that there is no converse to Corollary C.2. In particular, there are
n × n sign matrices A with sign-rank nΩ(1) and rect(A) = O(1). By Proposition C.1, we have
CCavg(A) = O(1), and thus there is a strong separation between sign-rank and CCavg(A).

D Gamma-2 norm and randomized communication complexity

Recall the following well-known inequality.

▶ Lemma D.1 (Hoeffding’s inequality). For i = 1, . . . , n, let Xi be independent random
variables taking values from range [ai, bi] and let X =

∑n
i=1 Xi. Then,

Pr[|X − E[X]| ≥ t] < 2 exp
(

− 2t2∑
i(bi − ai)2

)
.

The next proposition proves the equivalence of the approximate γ2 norm and the ran-
domized communication complexity.
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▶ Proposition D.2 ([31, 23]). For every sign matrix AX ×Y and every ϵ ∈ (0, 1), we have

log ∥A∥γ2,ϵ ≤ R ϵ
2
(A) ≤ O

(
log(1/ϵ)
(1 − ϵ)2 ∥A∥2

γ2,ϵ

)
.

Proof.
Lower-bound: Consider a randomized protocol πR of cost c = R ϵ

2
(A) that computes AX ×Y

with two-sided error at most ϵ
2 . In this notation, the subscript R denotes the random variable

that corresponds to the randomness in the protocol, and any fixation of R to a value r

corresponds to a deterministic protocol πr of communication cost at most c. Let Πr denote
the matrix that corresponds to the output of the deterministic protocol πr. A deterministic
communication protocol πr of cost c provides a partition of X × Y into at most 2c rectangles,
and thus Πr can be written as a sum of at most 2c rank-1 sign matrices. Since the γ2 norm
of a non-zero rank-1 sign matrix is 1, we have ∥Πr∥γ2 ≤ 2c. By convexity

∥ER[ΠR]∥γ2 ≤ ER [∥ΠR∥γ2 ] ≤ max
r

∥Πr∥γ2 ≤ 2c.

Since πR has error at most ϵ/2, we have

|Axy − ER[πR(x, y)]| = 2 · Pr[Axy ̸= πR(x, y)] ≤ ϵ,

which implies ∥A∥γ2,ϵ ≤ 2c as desired.

Upper-bound: The approximate norm ∥A∥γ2,ϵ is defined as the infimum of ∥B∥γ2 such that
∥A − B∥ ≤ ϵ. Hence, for every η > 0, there exists a real matrix B with ∥B∥γ2 ≤ ∥A∥γ2,ϵ and
∥A − B∥∞ ≤ ϵ + η. Pick a small positive η < 1−ϵ

2 , and consider such a B.
As it is stated in [30, Equation (2.3)], it follows from Grothendieck’s inequality that the

γ2 norm is equivalent to the so-called ν-norm. In particular, there exist rank-1 sign matrices
B1, . . . , Bm and real numbers λ1, . . . , λm ∈ R with L :=

∑m
i=1 |λi| ≤ π

2 ln(1+
√

2) ∥B∥γ2 such
that

B =
m∑

i=1
λiBi.

We will convert this to a randomized protocol. Pick D randomly from {B1, . . . , Bm}
according to the probability distribution

Pr[D = Bi] = |λi|∑k
i=1 |λi|

.

Note that for every (x, y) ∈ X × Y, we have E[Dxy] = Bxy/L and |Dxy| = 1. Let δ = 1−ϵ
2

and N = 2δ−2L2 log(4/ϵ) = 8L2 log(4/ϵ)
(1−ϵ)2 . Let D1, . . . , DN be i.i.d. copies of D and define

D̃ = L
N

∑N
i=1 Di.

Note that for every (x, y) ∈ X × Y , by applying Hoeffding’s inequality (Lemma D.1), we
have

Pr[|D̃xy − Bxy| ≥ δ] < 2 exp
(

− 2δ2

4N · (L/N)2

)
≤ ϵ

2 ,

where the last inequality is by the choice of N .
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Let E be the ±1 rounding of D̃, that is Exy = 1 iff D̃xy ≥ 0. Since ∥B − A∥∞ ≤ ϵ + η,
for every (x, y) ∈ X × Y , we have

Pr[Exy ̸= Axy] ≤ Pr[|D̃xy − Bxy| ≥ 1 − ϵ − η] ≤ Pr[|D̃xy − Bxy| ≥ 1 − ϵ

2 ]

≤ Pr[|D̃xy − Bxy| ≥ δ] ≤ ϵ

2 .

Each Di can be computed with communication cost at most 2. Since D̃xy can be computed
by rounding a linear combination of N such Di’s, it can be computed with communication
cost at most 2N = O

(
log(1/ϵ)
(1−ϵ)2 ∥A∥2

γ2,ϵ

)
. This concludes the statement. ◀
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Hrubeš and Wigderson [11] initiated the complexity-theoretic study of noncommutative formulas
with inverse gates. They introduced the Rational Identity Testing (RIT) problem which is to decide
whether a noncommutative rational formula computes zero in the free skew field. In the white-box
setting, there are deterministic polynomial-time algorithms due to Garg, Gurvits, Oliveira, and
Wigderson [10] and Ivanyos, Qiao, and Subrahmanyam [13].

A central open problem in this area is to design an efficient deterministic black-box identity
testing algorithm for rational formulas. In this paper, we solve this for the first nested inverse
case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm for
noncommutative rational formulas of inversion height two via a hitting set construction. Several
new technical ideas are involved in the hitting set construction, including concepts from matrix
coefficient realization theory [19] and properties of cyclic division algebras [15]. En route to the
proof, an important step is to embed the hitting set of Forbes and Shpilka for noncommutative
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1 Introduction

The broad goal of algebraic complexity is to study the complexity of computing polynomials
and rational functions using basic arithmetic operations: additions, multiplications, and
inverses. Arithmetic circuits and arithmetic formulas are two extensively studied models of
computation. An important sub-area of algebraic complexity is noncommutative computation:
the set of monomials over variables X is the free monoid X∗ of all words. In particular,
variables in X do not commute (i.e. xy ̸= yx). If we allow only the addition and multiplication
gates in the noncommutative formulas/circuits, they compute noncommutative polynomials
(similar to the commutative case) in the free algebra.
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23:2 Black-Box RIT of Noncommutative Rational Formulas of Inversion Height Two

In the commutative case, the role of inverses is well understood, but in the noncommutative
world it is quite subtle. To elaborate, it is known that any commutative rational expression
can be expressed as fg−1 where f and g are two commutative polynomials [18]. However,
noncommutative rational expressions (formulas with inverses) such as x−1 + y−1 or xy−1x

cannot be represented as fg−1 or f−1g. If we have nested inverses, it makes the rational
expression more complicated, for example (z + xy−1x)−1−z−1. Moreover, a noncommutative
rational expression is not always defined on a matrix substitution. For a noncommutative
rational expression r, its domain of definition is the set of matrix tuples (of any dimension)
where r is defined. We denote it by dom(r). Two rational expressions r1 and r2 are equivalent
if they agree on dom(r1) ∩ dom(r2). This induces an equivalence relation on the set of all
noncommutative rational expressions (with nonempty domain of definition). It was used by
Amitsur in his characterization of the universal free skew field [2] and the equivalence classes
are called noncommutative rational functions.

The inversion height of a rational formula is the maximum number of inverse gates
in a path from an input gate to the output gate. It is known [11] that the inversion
height of a rational formula of size s is bounded by O(log s). Hrubeš and Wigderson [11]
consider the rational identity testing problem (RIT) of testing the equivalence of two rational
formulas. It is the same as testing whether a rational formula computes the zero function
in the free skew field. In other words, decide whether there exists a matrix tuple (of
any dimension) such that the rational formula evaluates to nonzero on that substitution.
Rational expressions exhibit peculiar properties which seem to make the RIT problem quite
different from polynomial identity testing. For example, Bergman has constructed an explicit
rational expression, of inversion height two, which is an identity for 3 × 3 matrices but
not an identity for 2× 2 matrices [4]. Also, the apparent lack of canonical representations,
like a sum of monomials representation for polynomials, and the use of nested inverses in
noncommutative rational expressions complicate the problem. For example, the rational
expression (x + xy−1x)−1 + (x + y)−1 − x−1 of inversion height two is a rational identity,
known as Hua’s identity [12]. However, Hrubeš and Wigderson give an efficient reduction
from the RIT problem to the singularity testing problem of linear pencils.

A linear pencil L of size s over noncommuting variables
¯
x = {x1, . . . , xn} is a s×s matrix

whose entries are linear forms in
¯
x variables, i.e. L = A0 +

∑n
i=1 Aixi, where each Ai is an

s× s matrix over the field F. A rational function r in F⦓
¯
x⦔ has a linear pencil representation

L of size s, if for some i, j ∈ [s], r = (L−1)i,j . In particular, if r is a rational formula of size s,
Hrubeš and Wigderson have shown that r has a linear pencil representation L of size at most
2s such that r is defined on a matrix tuple if and only if L is invertible on that tuple [11].
Using this connection, they reduce the RIT problem to the problem of testing whether a
given linear pencil is invertible over the free skew field in deterministic polynomial time.

The latter is the noncommutative SINGULAR problem, whose commutative analog is the
symbolic determinant identity testing problem. The deterministic complexity of symbolic
determinant identity testing is completely open [14] in the commutative setting. In contrast,
the SINGULAR problem in noncommutative setting has deterministic polynomial-time
algorithms in the white-box model due to [10, 13]. The algorithm in [10] is based on operator
scaling and the algorithm in [13] is based on the second Wong sequence and a constructive
version of the regularity lemma. As a consequence, a deterministic polynomial-time white-box
RIT algorithm follows.

A central open problem is to design an efficient deterministic RIT algorithm in the
black-box case [10]. There is a randomized polynomial-time black-box algorithm for the
problem [7]. Can we derandomize this result even in some restricted settings, for example
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when the inversion height of the input rational formula is small? Notice that inversion height
zero rational formulas are just noncommutative formulas, and a result of Forbes and Shpilka
have shown a deterministic quasipolynomial-time identity testing for those (more generally,
for noncommutative ABPs) via a hitting set construction [9]. Whether their approach can
be extended to the RIT problem for rational formulas is a natural direction and we prove
the following theorem which is our main result.

▶ Theorem 1.1. For the class of rational formulas in Q⦓x1, . . . , xn⦔ of inversion height
two and size at most s, we can construct a hitting set H ⊆ Matn

d (Q) of size (ns)O(log ns) in
deterministic (ns)O(log ns)-time. The parameter d is poly(s, n) bounded.

Before this work, no such hitting set construction was known that could handle nested
inverses. As we discuss in the next section, even to derandomize RIT for the special case of
inversion height two, we need to accumulate several ideas involving cyclic division algebras [15]
and matrix coefficient realization theory [19] combined with the hitting set construction
in [9].

Proof Idea
Consider the following noncommutative rational formula, r = [x, y]−1 = (xy− yx)−1. Clearly
there is no point in dom(r) from the ground field, and the natural idea is to expand the
series around a matrix point. Let (p1, p2) be a matrix pair such that [p1, p2] is invertible and
let r(p1, p2) = [p1, p2]−1 = q. Then,

r(x+ p1, y + p2) = ([p1, p2]− [p2, x]− [y, p1]− [y, x])−1
.

Simplifying this we can write r(x+ p1, y + p2) = (I − g(x, y))−1q where g(x, y) = q([p2, x] +
[y, p1] + [y, x]). Now expanding this using (I − g(x, y))−1 =

∑
i≥0(g(x, y))i, we can see

that every term in the expansion looks like a0z1a1z2 . . . ad−1zdad where each aj is a matrix
and zj ∈ {x, y}. In the language of matrix coefficient realization theory [19], such terms
(resp. series) are called generalized words or monomials (resp. generalized series). In fact
if a rational formula r of size s has a defined point

¯
u in some dimension l (in other words

¯
u ∈ dom(r), and we use it interchangeably), Volčič shows that one can associate a special
class of generalized series, a recognizable generalized series to the shifted rational formula [19]:

r(
¯
x+

¯
u) = c

I2ls −
n∑

j=1
Axj

−1

b.

Here c ∈ (Matl(F))1×2s and b ∈ (Matl(F))2s×1. The matrices Axj , 1 ≤ j ≤ n are of
dimension 2s × 2s as a block matrix and (k1, k2)th entry of Axj is given by a generalized
linear form Ck1,k2,jxjC

′
k1,k2,j where Ck1,k2,j , C

′
k1,k2,j ∈ Matl(F).

Focusing on our problem for rational formulas of inversion height two, the first step is
to construct a quasipolynomial-size set H1 of matrix tuples of small dimension such that
for every nonzero rational formula r of inversion height two, there exists a point

¯
u ∈ H1 on

which r is defined. Given such a point, testing whether r is zero or not reduces to testing
whether the generalized series r(

¯
x+

¯
u) is zero or not. This is formally stated in Theorem 2.8.

For a recognizable series in algebraic automata theory, a standard result by Schützenberger
shows that the identity testing of such infinite series is equivalent to the identity testing of
polynomial obtained by truncation of the series up to a small degree [8, Corollary 8.3]. We
can adapt this result in the case of generalized series too and observe that the truncated
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23:4 Black-Box RIT of Noncommutative Rational Formulas of Inversion Height Two

generalized polynomial (of small degree d) can be represented by an algebraic branching
program with edge labels are linear forms over matrices. Such ABPs can be identity tested
efficiently using an adaptation of the hitting set construction shown by Forbes-Shpilka [9].

Although it is not clear how to carry out the truncation in the black-box setting, we can
show that a suitable scaling of the hitting set for such generalized ABPs is good enough to
hit the generalized series too. To fit the dimension correctly, throughout the computation
the coefficient matrices should be embedded in the matrix algebra of dimension dl using the
inclusion map ι : a→ a⊗ Id. This is shown in Proposition 5.1.

Clearly, r is defined at a point
¯
u if and only if all the maximal sub-formulas of inversion

height one in r evaluate to invertible matrices on
¯
u. One can consider the product of all such

maximal sub-formulas of inversion height one. Observe that the product is also of inversion
height one and of size at most s. Thus our goal is now re-defined: construct H1 such that for
every size-s rational formula r of inversion height one, there is a point

¯
u ∈ H1 at which r(

¯
u)

is invertible. We call such a hitting set a strong hitting set. We give the formal definition.

▶ Definition 1.2 (Strong hitting set). For a class of rational functions (resp. polynomials)
a hitting set H is strong if any nonzero rational function (resp. polynomial) in that class
evaluates to an invertible matrix at some point in H.

Before we describe our construction of a strong hitting set for rational formulas of inversion
height one, notice that a rational formula r of inversion height one is defined at a point

¯
v if

and only if all sub-formulas which are input to inverse gates evaluate to invertible matrices on

¯
v. These sub-formulas are just noncommutative formulas. Since the Forbes-Shpilka hitting
set [9] for noncommutative formulas consists of tuples of nilpotent matrices, it is not directly
applicable to our problem.

However, it is possible to adapt their construction and get a strong hitting set, also of
quasipolynomial size, such that every size-s nonzero noncommutative formula evaluates to an
invertible matrix on some matrix tuple in the strong hitting set 1. Expanding r around such
a point would again lead to a generalized series, and (a somewhat more involved) truncation
and scaling argument show that we can get a strong hitting set for r by constructing a strong
hitting set for generalized ABPs whose edges are labeled by linear forms over matrices. This
is the essence of the second part of Proposition 5.1.

At this point, we face a serious obstacle. How do we find invertible matrices in the image
of the generalized ABPs? In other words, how to construct a strong hitting set for generalized
ABPs? The main insight is that, if the matrices present in the linear forms of the generalized
ABPs are from a division algebra, then one can construct a strong hitting set from a hitting
set. To implement this, we construct the hitting set for noncommutative formulas (which
are of inversion height zero) over a division algebra of small index and expand the rational
formula with respect to the points in that hitting set. Why does it work? Roughly speaking,
as already mentioned it is easier to find a nonzero in the image of generalized ABPs and
if the computation occurs in a division algebra then a computed nonzero element is also
invertible.

Section 4 elaborates on this idea. In particular, Lemma 4.2 provides an existential
argument showing that if the linear forms of the generalized ABP are defined over a division
algebra D of dimension ℓ, then there exists a substitution to the variables from D such that
the generalized ABP evaluates to an invertible matrix. The proof uses two ideas. Firstly,
we show that such a point exists in the full matrix algebra of dimension ℓ. Then we use

1 This was first explicitly constructed in [3].
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Proposition 2.13 to find such a certificate in D. Once we establish the existential argument,
we can use a reduction to the hitting set construction of ROABPs (in unknown order) [1] to
construct the hitting set in quasi-polynomial time. To work out the technical details we need
to employ the inclusion map ι′ : a→ Id ⊗ a for the coefficients which are now elements of
division algebra. In ring theory the maps ι and ι′ are compatible: by the Skolem-Noether
theorem [16, Theorem 3.1.2] there is an invertible matrix q0 such that q0(Id⊗ a)q−1

0 = a⊗ Id

for all a. However, in our case, we give a simple explicit construction of a permutation
matrix q0.

In the remaining part of the proof sketch, we informally describe how to find a hitting set
for noncommutative formulas (more generally for noncommutative ABPs) in a division algebra
of a small index. For simplicity, suppose the ABP degree is 2d. The Forbes-Shpilka hitting
set [9] has a recursive construction and it is by a reduction to the hitting set construction
for ROABPs (read-once algebraic branching programs) over the commutative variables
u1, u2, . . . , u2d . The recursive step in the construction is by combining hitting sets (via
hitting set generator Gd−1) for two halves of degree 2d−1 [9] with a rank preserving step of
matrix products to obtain the generator Gd at the dth step. More precisely, Gd is a map from
Fd+1 → F2d that stretches the seed (α1, . . . , αd+1) to a 2d tuple for the read-once variables.

For our purpose, we take a classical construction of cyclic division algebras [15, Chapter 5].
The division algebra D = (K/F, σ, z) is defined using a indeterminate x as the ℓ-dimensional
vector space:

D = K ⊕Kx⊕ · · · ⊕Kxℓ−1,

where the (noncommutative) multiplication for D is defined by xℓ = z and xb = σ(b)x for
all b ∈ K. Here σ : K → K is an automorphism of the Galois group Gal(K/F ). The field
F = Q(z) and K = F (ω), where z is an indeterminate and ω is an ℓth primitive root of unity.
The matrix representation of a general element in D is of the following form:

0 b 0 · · · 0
0 0 σ(b) · · · 0
...

...
. . . . . .

...
0 0 · · · 0 σℓ−2(b)

zσℓ−1(b) 0 · · · 0 0

 .

To embed the hitting set of [9], we need to choose ℓ = 2L appropriately larger than 2d.
As it turns out the construction of the division algebra requires a tower of extension fields of
F , with a higher-order root of unity at each stage.

Specifically, let ωi = ω2ai for a1 > a2 > · · · > ad > 0, where ai are positive integers
suitably chosen. Let Ki = F (ωi) be the cyclic Galois extension for 1 ≤ i ≤ d giving a tower
of extension fields

F ⊂ F (ω1) ⊂ F (ω2) ⊂ · · · ⊂ F (ωd) ⊂ F (ω).

As we show in Section 3 that we require two properties of ωi, 1 ≤ i ≤ d. Firstly, for the
hitting set generator Gi we will choose the root of unity as ωi and the variable αi will take
values only in the set Wi = {ωj

i | 1 ≤ j ≤ 2L−ai}. We also require that the K-automorphism
σ has the property that for all 1 ≤ i ≤ d the map σ2i fixes ωi. In fact we will ensure that
σ2i has F (ωi) as its fixed field. The construction of D satisfying the above properties is the
main technical step in Section 3.
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23:6 Black-Box RIT of Noncommutative Rational Formulas of Inversion Height Two

Implementing all these steps we get a quasipolynomial-size hitting set over Q(ω, z). Then
we show how to transfer the hitting set over Q itself by a relatively standard idea that treats
the parameters ω and z as fresh indeterminates t1, t2 and vary them over a suitably chosen
polynomial-size set. This is sketched in Section 5.

We include a brief discussion in the full version about possibly extending our approach
to any constant inversion height formula.

Organization

In Section 2, we collect some background results from algebraic complexity theory, matrix
coefficient realization theory, and cyclic division algebra. Section 3 contains the proof that
the Forbes-Shpilka hitting set can be embedded in a cyclic division algebra of small index.
In Section 4, we construct a quasipolynomial-size strong hitting set for generalized ABPs
over division algebra. Finally, in Section 5 we combine the results developed in Section 3
and Section 4 to obtain our main result which gives a quasipolynomial-size hitting set for
rational formulas of inversion height two.

2 Background and Notation

Throughout the paper, we use F, F,K for fields. The notation Matm(F) (respectively,
Matm(F ), Matm(K)) are used for m dimensional matrix algebra over F (respectively over
F,K) where m is clear from the context. D is used to denote cyclic division algebras. Let

¯
x

be the set of variables {x1, . . . , xn}. Sometime we use notation like
¯
u,

¯
v,

¯
p,

¯
q to denote the

matrix tuples in suitable matrix algebras. The free noncommutative ring of polynomials over
a field F is denoted by F⟨

¯
x⟩. The ring of formal power series is denoted by F⟨⟨

¯
x⟩⟩. For a

series (or polynomial) S, the coefficient of a monomial (word) in S is denoted by [m]S.

2.1 Algebraic Complexity

▶ Definition 2.1 (Algebraic Branching Program). An algebraic branching program (ABP)
is a layered directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , d, with
directed edges only between adjacent layers (i to i+ 1). There is a source vertex of in-degree
0 in the layer 0, and one out-degree 0 sink vertex in layer d. Each edge is labeled by an
affine F-linear form. The polynomial computed by the ABP is the sum over all source-to-sink
directed paths of the ordered product of affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the
maximum number of nodes in a layer. The ABP model is defined for computing commutative
or noncommutative polynomials. ABPs of width r can also be seen as iterated matrix
multiplication c ·M1M2 · · ·Mℓ · b, where c, b are 1 × r and r × 1 vectors respectively and
each Mi is a r × r matrix, whose entries are affine linear forms over

¯
x.

We also consider commutative set-multilinear ABPs and read-once oblivious ABPs
(ROABPs). For the set-multilinear case, the (commutative) variable set is partitioned as
Y = Y1 ⊔ Y2 ⊔ · · · ⊔ Yd where for each j ∈ [d], Yj = {yij}n

i=1. An ABP B is homogeneous
set-multilinear if each edge in the jth layer of the ABP is labelled by linear forms over Yj . For
ROABP, a different variable is used for each layer, and the edge labels are univariate polyno-
mials. Therefore, an ROABP of d layers can be represented as c ·M1(v1)M2(v2) · · ·Mvd

(d) ·b.
We say that the ROABP respects the variable order v1 < v2 < · · · < vd.
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Identity testing results

We say a set H ⊆ Fn is a hitting set for a circuit class C if for every n-variate polynomial f
in C, f ̸≡ 0 if and only if f(

¯
a) ̸= 0 for some

¯
a ∈ H. For the class of ROABPs, Forbes and

Shpilka [9] obtained the first quasipolynomial-time black-box algorithm by constructing a
hitting set of the same size.

▶ Theorem 2.2. For the class of polynomials computable by a width r, depth D, individual
degree < n ROABPs of knwon order, if |F| ≥ (2Dnr3)2, there is a poly(D,n, r)-explicit
hitting set of size at most (2Dn2r4)⌈log D+1⌉.

Indeed, they proved something more general.

▶ Definition 2.3 (Hitting Set Generator). A polynomial map G : Ft → Fn is a generator for
a circuit class C if for every n-variate polynomial f in C, f ≡ 0 if and only if f ◦ G ≡ 0.

▶ Theorem 2.4 ([9, Construction 3.13, Lemma 3.21]). For the class of polynomials computable
by a width r, depth D, individual degree < n ROABPs of known order, one can construct a
hitting set generator G : F⌈log D+1⌉ → FD of degree Dnr4 efficiently.

The hitting set is defined as H ⊆ Matn
d (F) for any class of noncommutative polynomials.

For the black-box case, Forbes and Shpilka [9], have shown an efficient construction of
quasipolynomial-size hitting set for noncommutative ABPs. Consider the class of noncom-
mutative ABPs of width w, and depth d computing polynomials in F⟨X⟩. The result of
Forbes and Shpilka provide an explicit construction (in quasipolynomial-time) of a set Hw,d,n

contained in Md+1(F), such that for any ABP (with parameters w and d) computing a
nonzero polynomial f , there always exists (p1, . . . , pn) ∈ Hw,d,n such that f(

¯
p) ̸= 0.

▶ Theorem 2.5 (Forbes and Shpilka [9]). For all w, d, n ∈ N, if |F| ≥ poly(d, n, w), then there
is a hitting set Hw,d,n ⊂ Matd+1(F) for noncommutative ABPs of parameters w, d, n such
that |Hw,d,n |≤ (wdn)O(log d) and there is a deterministic algorithm to output the set Hw,d,n

in time (wdn)O(log d).

Recognizable series

A comprehensive treatment is in the book by Berstel and Reutenauer [5]. We will require the
following concepts. Recall that F⟨⟨

¯
x⟩⟩ is the formal power series ring over a field F. A series S

in F⟨⟨
¯
x⟩⟩ is recognizable if it has the following linear representation: for some integer s, there

exists a row vector
¯
c ∈ F1×s, a column vector

¯
b ∈ Fs×1 and an s× s matrix M whose entries

are homogeneous linear forms over x1, . . . , xn i.e.
∑n

i=1 αixi such that S =
¯
c

(∑
k≥0 M

k
)

¯
b.

Equivalently, S =
¯
c(I −M)−1

¯
b. We say, S has a representation (

¯
c,M,

¯
b) of size s.

The following theorem is a basic result in algebraic automata theory.

▶ Theorem 2.6. A recognizable series with representation (
¯
c,M,

¯
b) of size s is nonzero if

and only if
¯
c

(∑
k≤s−1 M

k
)

¯
b is nonzero.

It has a simple linear algebraic proof [8, Corollary 8.3, Page 145 ]. This result is generally
attributed to Schützenberger. For this paper, the theorem is used to apply that the truncated
series is computable by a small noncommutative ABP, therefore, reducing zero-testing of
recognizable series to the identity testing of noncommutative ABPs.
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23:8 Black-Box RIT of Noncommutative Rational Formulas of Inversion Height Two

2.2 Matrix Coefficient Realization Theory
We require some basic notions and results about generalized automata and generalized
recognizable series from Volčič’s article [19]. A detailed exposition is given in it [19].

A generalized word or a generalized monomial in x1, . . . , xn over the matrix algebra
Matm(F) allows the matrices to interleave between variables. That is to say, a generalized
monomial is of the form: a0xk1a2 · · · ad−1xkd

ad, where ai ∈ Matm(F), and its degree is the
number of variables d occurring in it. A finite sum of generalized monomials is a generalized
polynomial in the ring Matm(F)⟨

¯
x⟩. A generalized formal power series over Matm(F) is

an infinite sum of generalized monomials such that the sum has finitely many generalized
monomials of degree d for any d ∈ N. The ring of generalized series over Matm(F) is denoted
Matm(F)⟨⟨

¯
x⟩⟩.

A generalized series (resp. polynomial) S over Matm(F) admits the following canonical
description. Let E = {ei,j , 1 ≤ i, j ≤ m} be the set of elementary matrices. Express each
coefficient matrix a in S in the E basis by a F-linear combination and then expand S. Naturally
each monomial of degree-d in the expansion looks like ei0,j0xk1ei1,j1xk2 · · · eid−1,jd−1xkd

eid,jd

where eil,jl
∈ E and xkl

∈
¯
x. We say the series S (resp. polynomial) is identically zero if and

only if it is zero under such expansion i.e. the coefficient associated with each generalized
monomial is zero.

The evaluation of a generalized series over Matm(F) is defined on any k′m×k′m matrix al-
gebra for some integer k′ ≥ 1 [19]. To match the dimension of the coefficient matrices with the
matrix substitution, we use an inclusion map ι : Matm(F)→ Matk′m(F), for example, ι can be
defined as ι(a) = a⊗Ik′ or ι(a) = Ik′⊗a. Now, a generalized monomial a0xk1a1 · · · ad−1xkd

ad

over Matm(F) on matrix substitution (p1, . . . , pn) ∈ Matn
k′m(F) evaluates to

ι(a0)pk1ι(a1) · · · ι(ad−1)pkd
ι(ad)

under some inclusion map ι : Matm(F)→ Matk′m(F). All such inclusion maps are known to
be compatible by the Skolem-Noether theorem [16, Theorem 3.1.2]. Therefore, if a series S
is zero with respect to some inclusion map ι : Matm(F)→ Matk′m(F), then it is zero w.r.t.
any such inclusion map.

The two notions of zeroness are equivalent [19, Proposition 3.13].

▶ Definition 2.7 ([19]). A generalized series S in Matm(F)⟨⟨
¯
x⟩⟩ is said to be recognizable

if it has the following linear representation. For some integer s, there exists a row-tuple
of matrices c ∈ (Matm(F))1×s, and b ∈ (Matm(F))s×1 and an s × s matrix M whose
entries are homogeneous generalized linear forms over x1, . . . , xn i.e.

∑n
i=1 p̃ixip̂i where each

p̃i, p̂i ∈ Matm(F) such that S = c(I−M)−1b. We say, S has a linear representation (c,M, b)
of size s over Matm(F).

The linear representation is said to be over a subalgebra A ⊆ Matm(F) if c ∈ A1×s, and
b ∈ As×1 and each p̃i, p̂i ∈ A.

▶ Theorem 2.8 ([19, Corollary 5.1, Proposition 3.13]).
1. Given a noncommutative rational formula r of size s over x1, . . . , xn and a matrix tuple

¯
p ∈ Matn

m(F) in the domain of definition of r, r(
¯
x+

¯
p) is a recognizable generalized series

with a representation of size at most 2s over Matm(F). Moreover, if A ⊆ Matm(F) is
the subalgebra generated by the matrices p1, . . . , pn then r(

¯
x +

¯
p) has, in fact, a linear

representation over the subalgebra A.
2. Additionally, r(

¯
x) is zero in the free skew field if and only if r(

¯
x+

¯
p) is zero as a generalized

series.
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Proof. For the first part, see Corollary 5.1 and Remark 5.2 of [19].
To see the second part, suppose r(

¯
x) is zero in the free skew field. Then the fact that r(

¯
x+

¯
p)

is a zero series follows from [19, Proposition 3.13]. If r(
¯
x) is nonzero in the free skew field,

then there exists a matrix tuple (q1, . . . , qn) ∈ Matn
l (F) such that r(

¯
q) is nonzero. W.l.o.g.

we can assume l = k′m for some integer k′. Fix an inclusion map ι : Matm(F)→ Matk′m(F).
Define a matrix tuple (q′

1, . . . , q
′
n) ∈ Matn

k′m(F) such that q′
i = qi− ι(pi). Therefore, the series

r(
¯
x+

¯
p) on (q′

1, . . . , q
′
n) evaluates to r(

¯
q), under the inclusion map ι, which is nonzero [19,

Remark 5.2]. Therefore, r(
¯
x+

¯
p) is nonzero. ◀

▶ Remark 2.9. Moreover we have the following [19, Section 5]. Let r(
¯
x) be a rational formula

of size s and
¯
p ∈ Matn

m(F) be in the domain of definition of r. Then r(
¯
x +

¯
p) has a linear

representation (c,M, b) of size 2s over Matm(F). Then M is a 2s× 2s matrix with entries of
the form

∑n
i=1 p̃ixip̂i, p̃i, p̂i ∈ Matm(F). For an inclusion map ι : Matm(F)→ Matk′m(F) and

a matrix tuple
¯
q ∈ Matn

k′m(F), replacing each
∑n

i=1 p̃ixip̂i by
∑n

i=1 ι(p̃i)qiι(p̂i), we obtain a
2sk′m× 2sk′m matrix ι(M)(

¯
q). Then,

r(
¯
q + ι(

¯
p)) = ι(c)

(
I2sk′m − ι(M)(

¯
q)

)−1
ι(b),

where ι(c) and ι(b) are an k′m× k′ms and an k′ms× k′m matrix respectively obtained by
applying ι on every m×m blocks of c and b.

2.3 Cyclic Division Algebras
A division algebra D is an associative algebra over a (commutative) field F such that all
nonzero elements in D are units (they have a multiplicative inverse). In the context of
this paper, we are interested in finite-dimensional division algebras. Specifically, we focus
on cyclic division algebras and their construction [15, Chapter 5]. Let F = Q(z), where
z is a commuting indeterminate. Let ω be an ℓth primitive root of unity. To be specific,
let ω = e2πi/ℓ. Let K = F (ω) = Q(ω, z) be the cyclic Galois extension of F obtained
by adjoining ω. The elements of K are polynomials in ω (of degree at most ℓ − 1) with
coefficients from F .

Define σ : K → K by letting σ(ω) = ωk for some k relatively prime to ℓ and stipulating
that σ(a) = a for all a ∈ F . Then σ is an automorphism of K with F as fixed field and it
generates the Galois group Gal(K/F ).

The division algebra D = (K/F, σ, z) is defined using a new indeterminate x as the
ℓ-dimensional vector space:

D = K ⊕Kx⊕ · · · ⊕Kxℓ−1,

where the (noncommutative) multiplication for D is defined by xℓ = z and xb = σ(b)x for all
b ∈ K. Then D is a division algebra of dimension ℓ2 over F [15, Theorem 14.9]. The index
of D is defined to be the square root of the dimension of D over F . In our example, D is of
index ℓ. Its elements have matrix representations in Kℓ×ℓ (the regular matrix representation
defined by multiplication from the left) given below:

The matrix representation M(x) of x and M(b) of b ∈ K are:

M(x) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
z 0 · · · 0 0

 , M(b) =



b 0 0 0 0 0
0 σ(b) 0 0 0 0
0 0 σ2(b) 0 0 0

0 0 0
. . . 0 0

0 0 0 0 σℓ−2(b) 0
0 0 0 0 0 σℓ−1(b)


.
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▶ Remark 2.10. We note that M(x) has a “circulant” matrix structure and M(b) is a diagonal
matrix. For a vector v ∈ Kℓ, it is convenient to write circ(v1, v2, . . . , vℓ) for the ℓ× ℓ matrix
with (i, i+ 1)th entry vi for i ≤ ℓ− 1, (ℓ, 1)th entry as vℓ and remaining entries zero. Thus,
we have M(x) = circ(1, 1, . . . , 1, z). Similarly, we write diag(v1, v2, . . . , vℓ) for the diagonal
matrix with entries vi.

▶ Fact 2.11. The F -algebra generated by M(x) and M(b), b ∈ K is an isomorphic copy of
the cyclic division algebra in the matrix algebra Matℓ(K).

▶ Proposition 2.12. For all b ∈ K, circ(b, σ(b), . . . , zσℓ−1(b)) = M(b) ·M(x).

Define Ci,j = M(ωj−1) ·M(xi−1) for 1 ≤ i, j ≤ ℓ. Observe that, B = {Cij , i, j ∈ [ℓ]} be a
F -generating set for the division algebra D.

A standard fact is the following.

▶ Proposition 2.13 ([15, Section 14(14.13)]). Then K linear span of B is the entire matrix
algebra Matℓ(K).

3 Embedding Forbes-Shpilka Hitting Set in a Division Algebra

Given any noncommutative algebraic branching program of size s computing a polynomial
h ∈ F⟨x1, . . . , xn⟩ of degree d̃, the hitting set H contains a matrix tuple (p1, . . . , pn) such that
h(p1, . . . , pn) is nonzero. Forbes and Shpilka [9] have shown a quasipolynomial-size hitting
set construction contained in Matn

d̃+1(F). For ABPs over Q, we will show the construction of
a hitting set H which is contained in Dn such that D is a cyclic division algebra of index ℓ
where ℓ is suitably chosen depending on n, d̃ and s.

Before we present our construction, we recall the matrix substitutions from the Forbes-
Shpilka hitting set construction. Their idea is to reduce PIT for noncommutative ABPs
to PIT for commutative read-once oblivious ABP (ROABP) and to design a hitting set
generator for the latter. Without loss of generality, we can assume that the given ABP is
a d̃-product of r × r matrices M = A1 · A2 · · ·Ad̃, where the entries of each matrix Ai are
homogeneous linear forms in x1, x2, . . . , xn. The matrix Ai corresponds to the ith of the
ABP. The polynomial f in F⟨x1, . . . , xn⟩ that the ABP computes is of degree d̃ = 2d, and f

is an entry of this matrix product M .
We can write Aj =

∑n
i=1 Aijxi, 1 ≤ j ≤ d̃, where Aij ∈ Fr×r. The entries Mij of the

matrix M are homogeneous polynomials in F⟨
¯
x⟩. The polynomial f is computed at some

entry of M as the output polynomial. Let {u1, . . . , ud̃} be distinct commuting indeterminates.
In [9], the authors make the following (d̃+ 1)× (d̃+ 1) matrix substitution for each xi, the
only nonzero entries are in the super-diagonal and for each j, the (j, j + 1)th entry is ui

j .
Evaluating the ABP for f on this matrix substitution xi ←M(xi) produces a (d̃+ 1)×

(d̃+ 1) matrix whose (1, d̃+ 1)th entry is an ROABP as it effectively replaces each xi variable
at layer j by ui

j . Therefore, the index j of uj encodes the layer of the noncommutative ABP.
The black-box PIT algorithm then follows from the construction of a hitting set generator

for commutative ROABPs:

Gd : (α1, . . . , αd, αd+1) 7→ (f0(α1, . . . , αd, αd+1),f1(α1, . . . , αd, αd+1),
. . . , f2d−1(α1, . . . , αd, αd+1)),

where each fi is a polynomial of degree poly(2d, r, n). The actual points of the hitting set are
obtained by choosing values for each variable αi from a subset of scalars U ⊆ F of poly(2d, r, n)
size. This makes the size of the hitting set quasipolynomial. The final substitution for each
xi variable in the noncommutative ABP is the following:
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M(xi) =


0 f i

0(α1, . . . , αd+1) 0 · · · 0
0 0 f i

1(α1, . . . , αd+1) · · · 0
...

...
. . . . . .

...
0 0 · · · 0 f i

2d−1(α1, . . . , αd+1)
0 0 · · · 0 0

 . (1)

Therefore, one approach to embedding the matrix substitutions in a cyclic division algebra
D = (K/F, σ, z) (where F = Q(z)) of index ℓ (where ℓ is the index of D which is larger than
2d that we fix later) would be to find a hitting set generator

Gd : (α1, . . . , αd, αd+1) 7→ (f0(α1, . . . , αd, αd+1),f1(α1, . . . , αd, αd+1),
. . . , f2d−1(α1, . . . , αd, αd+1)),

with the following additional property: fi+1(α1, . . . , αd+1) = σ(fi(α1, . . . , αd+1)) for each
0 ≤ i ≤ ℓ− 2. In that case, consider the following ℓ× ℓ matrix substitutions:

M(xi) =



0 f i
0(

¯
α) 0 · · · 0 0 · · · 0

0 0 f i
1(

¯
α) · · · 0 0 · · · 0

...
...

. . . . . .
...

...
. . .

...
0 0 0 · · · f i

d̃−1(
¯
α) 0 · · · 0

0 0 0 · · · 0 f i
d̃
(
¯
α) · · · 0

...
...

. . . . . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · f i

ℓ−2(
¯
α)

zf i
ℓ−1(

¯
α) 0 0 · · · 0 0 · · · 0


.

Notice that the top-left (d̃ + 1) × (d̃ + 1) submatrix of this substitution is exactly the
substitution described in Equation 1. Therefore, evaluating a degree-d̃ noncommutative ABP
B over {x1, . . . , xn} on these matrices will output the evaluation of corresponding ROABP in
the (1, d̃+ 1)th entry as in [9]. Moreover, by Proposition 2.12, we can ensure that each M(xi)
is in the cyclic division algebra D assuming that each fi(¯

α) ∈ K. Therefore, the output will
also be in the division algebra D only. To conclude, for a nonzero noncommutative ABP, the
image will be nonzero and in a division algebra, hence invertible.

Our goal is now to find a cyclic division algebra D = (K/F, σ, z) (where F = Q(z)) of
index ℓ (more than d̃) and to construct a hitting set generator Gd :

¯
α 7→ (f0(

¯
α), . . . , f2d−1(

¯
α))

for commutative ROABPs with the additional property that fi+1(α1, . . . , αd+1) =
σ(fi(α1, . . . , αd+1)) for each 0 ≤ i ≤ ℓ− 2.

We now examine the Forbes-Shpilka construction to incorporate these aspects. The
construction is recursive. Suppose that we have the construction for degree 2d−1.

The hitting set for degree 2d is obtained in [9] by combining two copies of the hitting set
for degree 2d−1 using the following key technical lemma, [9, Lemma 3.7], rephrased below in
somewhat different notation.

Let pℓ′(v), 1 ≤ ℓ′ ≤ r2 denote the Lagrange interpolation polynomials, defining a basis for
univariate polynomials interpolating values from [r2]. Given β1, . . . , βr2 ∈ F, the Lagrange
interpolation polynomials with respect to r2 and the βi’s are the unique polynomials pℓ′(v)
of degree less than r2 such that

pℓ′(βi) =
{

1 if ℓ′ = i

0 otherwise.
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▶ Lemma 3.1 ([9, Lemma 3.7]). Let Mi and Ni, 0 ≤ i ≤ 2d−1 − 1, be r × r matrices
with entries from F[x] of degree less than n. Let (f0(u), f1(u), . . . , f2d−1−1(u)) ∈ F[u] be
polynomials of degree at most m. Let ω ∈ F (or in an extension field) be an element of order
at least (2dnm)2. Define polynomials in one indeterminate v:

f ′
i =

r2∑
ℓ′=1

fi(ωℓ′
αd)pℓ′(v), 0 ≤ i ≤ 2d−1 − 1

f ′
i+2d−1 =

r2∑
ℓ′=1

fi((ωℓ′
αd)µ)pℓ′(v), 0 ≤ i ≤ 2d−1 − 1,

where µ = 2κ+d−1 + 1 and κ is chosen such that 2κ ≥ 2dnm.
Then, for all but at most (2dnmr)2 many values of αd, the F-linear span of the matrix

coefficients of the matrix product
∏2d−1−1

i=0 Mi(fi(x))
∏2d−1−1

i=0 Ni(fi(y)) is contained in the
F-linear span of the matrix coefficients of the product

∏2d−1−1
i=0 Mi(f ′

i(v))
∏2d−1

i=2d−1 Ni(f ′
i(v)).

Lemma 3.1 essentially gives the construction for going from the degree 2d−1 hitting set
generator to the degree 2d hitting set generator as proved in [9].

▶ Remark 3.2. In our modified construction we will use different roots of unity (for the
element ω) for different stages of the recursive construction. In particular, roots of unity ωi,
i < d, used in stages i < d will be of lower order. We explain below in detail, the choice of
the parameters: ℓ, κ, ωi, and αi for the modified construction.

We now adapt Lemma 3.1 to ensure the additional properties that will guarantee that
the points of the hitting set are from Dn, for a suitably large cyclic division algebra D.

▶ Theorem 3.3. In deterministic quasipolynomial-time, we can construct a hitting set H
of size (nrd̃)O(log d̃) in Dn for the class of noncommutative polynomials in Q⟨x1, . . . , xn⟩
computed by ABPs of width at most r with d̃ many layers where the index of the cyclic
division algebra D, the parameter ℓ(> d̃) is bounded by poly(r, n, d̃).

The detailed proof has been added in Section A of the appendix. Note that H is a strong
hitting set for any such noncommutative ABP.

4 Strong Hitting Set for Generalized ABPs over Division Algebra

In this section, we first define the notion of generalized ABPs and ABPs over a division
algebra. Then we show the construction of a quasipolynomial-size strong hitting set for
generalized ABPs over a division algebra such that any nonzero generalized ABP will evaluate
to an invertible matrix at some point in the hitting set.

▶ Definition 4.1. A generalized ABP over the matrix algebra Matm(F) is defined in the same
way as a noncommutative ABP, except for the fact that the linear forms labeling the edges
are of the form

∑n
i=1 aixibi, where ai, bi ∈ Matm(F). Such an ABP computes a generalized

polynomial in the generalized polynomial ring Matm(F)⟨X⟩, where the polynomial is defined
as the sum of products of the linear forms along all s-to-t paths of the ABP, where s is the
source node and t is the sink node of the directed acyclic graph underlying the ABP.

For a division algebra D, if the linear forms labeling the edges of the ABP are of the form∑n
i=1 aixibi, ai, bi ∈ D then it is a generalized ABP over the division algebra D.
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Let D = (K/F, σ, z) (here F = Q(z)) be a cyclic division algebra of index ℓ as defined in
Section 2.3. Let B = {Cij}i,j∈[ℓ] be the F -basis of D for i, j ∈ [ℓ] as described in Section 2.
Informally, our idea is to reduce the problem of finding strong hitting set for generalized
ABPs over division algebra to the hitting set construction of a product of commutative
ROABPs.

▶ Lemma 4.2. For any nonzero generalized ABP B of degree d over D⟨
¯
x⟩, there exists a

substitution for each xk of the following form:

M(xk) =


0 pk1 0 · · · 0
0 0 pk2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 pk(d−1)
pkd 0 · · · 0 0

 ,

such that for each l ∈ [d], pkl is in D and image of B is invertible on that substitution under
the inclusion map a 7→ Id ⊗ a where a ∈ D.

Proof. Let ℓ be the index of the division algebra D. We first prove that for any nonzero
generalized ABP B of degree d over D⟨

¯
x⟩, there exists a substitution for each xk of the

following form:

M(xk) =


0 qk1 0 · · · 0
0 0 qk2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 qk(d−1)
qkd 0 · · · 0 0

 ,

such that for each l ∈ [d], qkl is in Matℓ(K) and the image of B is nonzero on that substitution
with a block-diagonal structure. To evaluate B on such matrix substitution the coefficients
a ∈ D (which have matrix representations in Matℓ(K)) are fit to the correct dimension using
the inclusion map ι′ : Matℓ(K)→ Matdℓ(K) where ι′(a) = Id ⊗ a.

Let ψ be the substitution map that replaces each variables {xk}k∈[n] by an ℓ× ℓ matrix
of noncommuting variables {zijk}i,j∈[ℓ],k∈[n]. One can naturally extend the definition of
ψ : Matℓ(K)⟨

¯
x⟩ → Matℓ(K⟨¯

z⟩) i.e. ψ maps a generalized polynomial over matrix algebra
Matℓ(K) to an ℓ× ℓ matrix of noncommutative polynomials in K⟨

¯
z⟩. Indeed, the map ψ is

identity preserving (see [19, Equation 3.10] for example).
Introduce a new set of commuting variables Z̃ = {z̃ijkl} where i, j ∈ [ℓ], k ∈ [n] and

l ∈ [d] and consider the following substitution for each xk:

Z̃k =


0 Z̃k1 0 · · · 0
0 0 Z̃k2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 Z̃k(d−1)
Z̃kd 0 · · · 0 0

 ,

where Z̃kl = (z̃ijkl)1≤i,j≤ℓ. In effect, the substitution of the xk variables by the matrices Z̃k

is just set-multilinearization of ψ(B) position-wise and hence identity preserving.
What is the effect of this substitution on a degree-d generalized word? To understand that

consider a generalized word w = a0xk1a1xk2 · · · ad−1xkd
ad where each ai ∈ Matℓ(K). Observe

that w(Z̃1, . . . , Z̃n) is a block-diagonal matrix (using the inclusion map ι′) with (i, i)th block
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entry a0Z̃k1πi(1)a1 · · · ad−1Z̃kdπi(d)ad where πi, 1 ≤ i ≤ d is the cyclic permutations on [d]
such that πi(1) = i, πi(2) = i+ 1 and so on. To elaborate further, we give an example for
the degree three case in the full version.

Let B =
∑
a0xk1a1xk2a2 . . . ad−1xkd

aid
. So the (i, i)th entry of B(Z̃1, . . . , Z̃n) is

Bπi =
∑

a0Z̃k1πi(1)a1Z̃k2πi(2) . . . ad−1Z̃kdπi(d)aid
.

Hence the final output matrix will be the following:

B(Z̃) =


Bπ1

Bπ2

. . .
Bπd

 .
We now claim the following.

▷ Claim 4.3. For each i ∈ [d], Bπi is nonzero.

Proof. As B in D⟨
¯
x⟩ is nonzero and ψ is an identity preserving substitution, ψ(B) ∈

Matℓ(K⟨¯
z⟩) is also nonzero. We now consider the entry-wise set-multilinearization of ψ(B)

with respect to the cyclic permutation πi i.e. encoding any word using πi(j) as the position
index for the jth position for each entry of ψ(B). Notice that, it outputs the matrix Bπi .
Moreover, as ψ(B) is nonzero, Bπi must be nonzero as set-multilinearization preserves
identity. ◁

Hence, there exist substitutions qkl from Matℓ(K) for the Z̃ variables such that B is
nonzero.

Now we use Proposition 2.13 which says that K-linear span of B is the entire matrix
algebra Matℓ(K). The above argument shows that if we replace each qkl in M(xk) by a
linear combination∑

i,j

yijklCij ,

each diagonal block matrix of the output matrix obtained from the image of B on this
evaluation is still nonzero over the {yijkl} variables. We now find substitutions for the Y
variables from the ground field F to make each diagonal block matrix nonzero. As any
F -linear combination of Cij is in the division algebra, each such linear combinations is in D.
So, define pkl =

∑
i,j βijklCij ∈ D where βijkl are the substitutions for yijkl variables from

F . In fact the values for the variables βijkl can be found from Q itself by a standard use of
Polynomial Identity Lemma [6, 20, 17]. Notice that, each diagonal block will also be in D.
Since each diagonal block matrix is nonzero and in D it is invertible. Therefore, the image
of B is also invertible on the chosen matrix tuple. ◀

We are now ready to prove the main result of this section.

▶ Theorem 4.4. Given the parameters n, ℓ, r, d, in deterministic quasipolynomial-time we
can construct strong hitting set H′ of size (nrdℓ)O(log ndℓ) for any nonzero generalized ABP
B of degree d and width r over D⟨

¯
x⟩ where ℓ is the index of D.

Because of the space constraints, the proof is added in Section B of the appendix.
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5 Putting all together

In this section we prove our main result, the construction of a hitting set for noncommutative
rational formulas of inversion height two. An intermediate step is to construct a strong
hitting set for rational formulas of inversion height one. En route to our proof, we crucially
use the connection of rational identity testing with the identity testing of generalized ABPs.
We make it explicit in Proposition 5.1.

Now we are ready to prove the main proposition.

▶ Proposition 5.1. Let r be a noncommutative rational formula over x1, . . . , xn of size s and
(q1, . . . , qn) ∈ Matn

m(F) be a matrix tuple such that r is defined on
¯
q. Suppose, r(

¯
x+

¯
q) is a

recognizable generalized series over Matm(F)⟨⟨
¯
x⟩⟩ with a linear representation (c,M, b) of size

at most 2s over Matm(F). Define S{d} = c ·Md · b computing a generalized polynomial in
Matm(F)⟨

¯
x⟩. Then r is nonzero in F⦓

¯
x⦔ if and only if S{d} is nonzero for some d ≤ 2sm−1.

Additionally, there exists some N ≤ poly(ksm) such that if |F| > N , then for any T ⊆ F,
|T | = N and for some matrix tuple (p1, . . . , pn) ∈ Matn

km(F), evaluating S{d} at
¯
p under the

inclusion map ι : Matm(F)→ Matkm(F) (where ι(a) = a⊗ Ik) for each d ≤ 2sm− 1,
1. If S{d} evaluates nonzero for some d , then there exists an α ∈ T such that r is nonzero

at the following matrix tuple:

(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik).

2. If S{d}(
¯
p) is invertible for some d, there exists an α ∈ T such that r is invertible at the

following matrix tuple:

(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik).

The proof is added in Section C of the appendix.

Strong hitting set for rational formulas of inversion height one
We now show the construction of a strong hitting set for noncommutative rational formulas
of inversion height one.

▶ Theorem 5.2. Given n, s, we can construct a strong hitting set H̃1 of size (ns)O(log ns)

over Matn
d′(K) for the class of noncommutative rational formulas r ∈ Q⦓x1, . . . , xn⦔ of size s

and of inversion height one. The parameter d′ is poly(n, s) and K = Q(ω, z) is the extension
field by adjoining a primitive root of unity ω of order ℓ where ℓ = poly(n, s).

Proof. Let r(
¯
x) be a rational formula of inversion height one in Q⦓

¯
x⦔ of size s. Let h1, . . . , hk

be all the sub-formulas input to the inverse gates in the rational formula for r. Consider the
noncommutative formula h = h1h2 · · ·hk in Q⟨

¯
x⟩ which is of size at most s and degree is

also bounded by s.
By Theorem 3.3, we construct a hitting set H0 in Dn where D = (K/F, σ, z) is a cyclic

division algebra of index ℓ = poly(n, s) for noncommutative ABPs in Q⟨
¯
x⟩ of width and

layers at most s. Then there is a point
¯
q ∈ H0 such that h(

¯
q) is invertible and hence r(

¯
q) is

defined.
Following Theorem 2.8, if r(

¯
x) is nonzero then r(

¯
x+

¯
q) can be represented as a nonzero

recognizable generalized series. Indeed, it is a recognizable generalized series over D following
Theorem 2.8. Moreover, using the second part of Proposition 5.1, to obtain a strong hitting
set for r(

¯
x), it suffices to find a strong hitting set of a generalized ABP over D of width
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r ≤ 2s and degree d ≤ 2sℓ− 1. We now use the strong hitting set H1 in Matn
dℓ(K) (recall

that K = Q(z, ω) where ω is the primitive root of unity of order ℓ) for generalized ABPs of
degree d over D (here ℓ is the index of D) obtained in Theorem 4.4. Inspecting the proof of
Proposition 5.1, the final quasipolynomial-size hitting set is the following:

Ĥ1 = {α
¯
p+

¯
q ⊗ Id :

¯
p ∈ H1,

¯
q ∈ H0, α ∈ T} ⊆ Matn

dℓ(K).

Here T ⊆ Q of size poly(n, s) that we can find efficiently. ◀

Hitting set for rational formulas of inversion height two
We are now ready to prove our main theorem.

Proof of Theorem 1.1. Let r(
¯
x) be a rational formula of inversion height two in Q⦓

¯
x⦔ of

size s. Let F be the collection of all those inverse gates in the formula such that for every
g ∈ F , the path from the root to g does not contain any inverse gate. For each gi ∈ F , let hi

be the sub-formula input to gi. Consider the formula h = h1h2 · · ·hk (where k = |F|) which
is of size at most s since for each i, j, hi and hj are disjoint. h is of inversion height one. By
Theorem 5.2, we construct a strong hitting set Ĥ1 in Matd(K) where d = poly(n, s). Then
there is a point

¯
q ∈ Ĥ1 such that h(

¯
q) is invertible and hence r(

¯
q) is defined.

Following Theorem 2.8, if r(
¯
x) is nonzero then r(

¯
x+

¯
q) can be represented as a nonzero

recognizable generalized series over Matd(K). Moreover, using the first part of the proof of
Proposition 5.1, to obtain a hitting set for r(

¯
x), it suffices to find a hitting set for generalized

ABP B over Matd(K) of width r ≤ 2s and degree d̂ ≤ 2sd− 1, the degree-d̂ truncated part
of the generalized series r(

¯
x +

¯
q). We recall the substitution map ψ from Proposition 5.1

and consider ψ(B). Each entry of ψ(B) is computable by a noncommutative ABP of width
2sd and degree d̂ over Z = {zi,j,k′} variables. Let HF S ⊆ Matnd2

d̂+1(K) be the hitting set for
ABPs of width 2sd and of degree d̂ over nd2 many variables obtained from Theorem 2.5. We
now define H̃F S ∈ Matn

d(d̂+1)(K) in the following way. For every matrix substitution in HF S ,
define a matrix substitution for each xk′ as a d(d̂+ 1)×d(d̂+ 1) matrix which can be thought
of as a d× d block matrix whose (i, j)th block is the matrix substituted for zi,j,k′ variable
from HF S . It follows that HF S is a hitting set of B under the inclusion map a 7→ a⊗ Id̂+1.
To explain the purpose of the inclusion map, see the remark in the full version.

Inspecting the proof of Proposition 5.1, we can now find a subset T ⊆ Q of size poly(n, s)
and the final quasipolynomial-size hitting set is the following:

H2 = {α
¯
p+

¯
q ⊗ Id̂+1 :

¯
p ∈ H̃F S ,

¯
q ∈ Ĥ1, α ∈ T}. (2)

To get a hitting set over Q itself, we add a discussion in subsection C.1 of the appendix. ◀
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below. Thus, ω = e

2π

2L is a 2L-th primitive root of unity. Let F = Q(z) and K = F (ω, z)
which gives the cyclic division algebra D = (K/F, σ, z) where we fix the K-automorphism σ as

σ(ω) = ω2κ+1,
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and κ will be suitably chosen in the following analysis, fulfilling the constraints of Lemma 3.1
and some additional requirements.

Let ωi = ω2ai for a1 > a2 > · · · > ad > 0, where ai are positive integers to be chosen.
Let Ki = F (ωi) be the cyclic Galois extension for 1 ≤ i ≤ d. This gives a tower of extension
fields

F ⊂ F (ω1) ⊂ F (ω2) ⊂ · · · ⊂ F (ωd) ⊂ F (ω).

We require two properties of ωi, 1 ≤ i ≤ d.
1. For the hitting set generator Gi we will choose the root of unity as ωi and the variable αi

will take values only in the set Wi = {ωj
i | 1 ≤ j ≤ 2L−ai}.

2. We require that the K-automorphism σ has the property that for all 1 ≤ i ≤ d the map
σ2i fixes ωi. In fact we will ensure that σ2i has F (ωi) as its fixed field.

We take up the second property. As σ(ω) = ω2κ+1, we have σ(ωi) = ω2ai (2κ+1). Therefore

σ2i

(ωi) = ω2ai (2κ+1)2i

.

Now, (2κ + 1)2i =
∑2i

j=0
(2i

j

)
2κj . Choosing κ = L/2, we have ω2κj = 1 for j ≥ 2.

Therefore,

σ2i

(ωi) = ω2ai (2i+κ+1) = ωi · ω2ai+i+κ

.

We can set ai + i+ κ = L for 1 ≤ i ≤ d to ensure that σ2i fixes ωi. Putting L = 2κ, we
obtain

ai = κ− i for 1 ≤ i ≤ d. (3)

It remains to choose κ. In the construction of our hitting set generator Gi, the parameter
αi will take values only in Wi defined above. We note that |Wi| = 2L−ai = 2κ+i. By
Lemma 3.1 there are at most (2dnmr)2 many bad values of αi for any i. Thus, it suffices to
choose κ such that 2κ > (2dnmr)2. It suffices to set

κ = 2d+ ⌈2 log2(nmr)⌉+ 1.

The choice of κ determines the value of parameter µ in Lemma 3.1.
Coming back to the modified construction of Gd, inductively, we can assume that the

hitting set generator Gd−1 : (α1, . . . , αd−1, u) 7→ (f0(u), f1(u), . . . , f2d−1−1(u)) (where for
0 ≤ i ≤ 2d−1 − 1, the polynomial fi(u) ∈ Kd−1[u]) has that property. Namely, suppose
fi+1(u) = σ(fi(u)) holds for all i ≤ 2d−1 − 2. Now define Gd using Lemma 3.1. Since pℓ′(v)
has only integer coefficients, σ(pℓ′(v)) = pℓ′(v). Therefore, for 0 ≤ i ≤ 2d−1 − 2 and for
2d−1 ≤ i ≤ 2d − 2 we have f ′

i+1(v) = σ(f ′
i(v)).

Now, consider i = 2d−1 − 1. We need to ensure that σ(f ′
2d−1−1(v)) = f ′

2d−1(v). Equival-
ently, we need to ensure that

σ

 r2∑
ℓ′=1

f2d−1−1(ωℓ′

d αd)pℓ′(v)

 =
r2∑

ℓ′=1
f1((ωℓ′

d αd)µ)pℓ′(v).

This is enforced by requiring that

σ2d−1

 r2∑
ℓ′=1

f1(ωℓ′

d αd)pℓ′(v)

 =
r2∑

ℓ′=1
f1((ωℓ′

d αd)µ)pℓ′(v).
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Since αd will be chosen from Wd (all powers of ωd), we can write ωℓ′

d αd = ωj
d for

some j. Now, σ2d−1
f1(ωj

d) = f1(σ2d−1(ωj
d)) as σ2d−1 fixes all coefficients of f1 (because

f1(u) ∈ Kd−1[u]). Now,

σ2d−1
(ωj

d)) = ω
j·(2κ+1)2d−1

d = ω
j(1+2d−1+κ)
d = (ωℓ

dαd)µ,

which verifies the choice of µ in Lemma 3.1 is 1 + 2d−1+κ.
As shown in [9], the parameter v (whose place holder is αd+1 in the description of Gd)

should vary over a set of size poly(2d, n,m, r). This way we ensure that fi+1 = σ(fi) for
0 ≤ i ≤ 2d − 2. Now define f2d+j = σ(f2d+j−1) for 0 ≤ j ≤ ℓ− 2d − 1. The fact that Gd is
indeed a generator follows from the span preserving property and the proof is identical to
the proof of [9, Lemma 3.19]. ◀

B Missing proof from Section 4

Proof of Theorem 4.4. By Lemma 4.2, we know that there exists matrix tuple (p1, . . . , pn)
in Matn

dℓ(K) of the following form

pk = M(xk) =


0 pk1 0 · · · 0
0 0 pk2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 pk(d−1)
pkd 0 · · · 0 0

 ,

where each pkl ∈ D : 1 ≤ k ≤ n, 1 ≤ l ≤ d such that B(p1, p2, . . . , pn) is an invertible matrix.
Write each pkl as pkl =

∑
i,j∈[ℓ] yijklCij for some commuting indeterminates Y = {yijkl}

whose values we need to determine. On such a substitution, B evaluates to the following
matrix:

B1
B2

. . .
Bd

 .
where each Bl, 1 ≤ l ≤ d is nonzero by Lemma 4.2 (using the inclusion map ι′). We now
observe the following.

▷ Claim B.1. For each l ∈ [d], Bl is a matrix of commutative set-multilinear ABPs each of
width rℓ.

Proof. To see this, consider the matrix B1. We can think of B1 as the matrix obtained by
substituting pkl for xk in layer l of the input generalized ABP B over D of index ℓ. This
computation can also be thought of by making ℓ-many copies of each node in B.

More precisely, each coefficient a ∈ D in B has a ℓ × ℓ matrix representation over K.
Now consider each edge

∑n
k=1 akxkbk between the layer l and l + 1. Since xk is replaced by

pkl and ak, bk ∈ D, this edge can be replaced by an ℓ× ℓ bipartite graph such that for each
i, j ∈ [ℓ], the edge connecting the ith node (from left) to the jth node (to right) is labeled by
the (i, j)th entry of the product of akpklbk, a linear form over K[Y ]. Clearly, it produces an
ℓ-input ℓ-output setmultilinear ABP of width rℓ. Therefore, each entry in B1 is computed
by a set-multilinear ABP of width rℓ and degree d. The situation for other Bl : 2 ≤ l ≤ d

are similar. ◁
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Therefore we can use a hitting set generator for commutative set-multilinear ABPs of
width rℓ and degree d to obtain a point such that the image for each Bl is nonzero on that
evaluation.

However, our goal is to obtain an invertible image for the image of B. In other words, we
want a substitution of Y variables for which each Bl would be invertible. Notice that if for
substitution of Y variables from F at least one entry of Bl is nonzero, then the matrix Bl is
also invertible as the image of Bl is a nonzero element in D. Hence, to obtain a strong hitting
set for the input generalized ABP over D (equivalently, to obtain a substitution on which
the product of the matrices Bl, 1 ≤ l ≤ d is invertible), it suffices to obtain a hitting set for
the product of set-multilinear ABPs (product of one of the nonzero entries of each Bl).

We do this by first converting each set-multilinear ABP to an ROABP encoding each yijkl

to v(ℓ+1)2i+(ℓ+1)j+k
l

2. By construction each encoded Bl yields a known variable partition for
the corresponding ROABP. More precisely, for each l the ROABP computed in the (l, l)th

diagonal block follows the variable partition:

vl < vl+1 < . . . < vd < v1 < . . . < vl−1.

Therefore, for each ndℓ2-variate ROABP of degree d and of width ℓr computed in each
diagonal block, we can use the hitting set generator of Theorem 2.4. Now, for a d-fold
product of such ROABPs of different but known orders, the same hitting set generator will
also work. This is because we can ensure that the hitting set generator of Theorem 2.4 has
the property that more than 1− 1/d fraction of seeds for the generator works for a given
ROABP with the above parameters. Then, by a standard union bound argument it follows
that there is a choice of seed for the generator that will hit the product of these d many
ROABPs. Notice that the ROABPs are all ndℓ2-variate, d-degree, and of width ℓr. Thus by
Theorem 2.4, the size of the hitting set for them is (ndℓr)O(log ndℓ). Hence, we can now find
a substitution for the vl variables such that each Bl is invertible, hence B is also invertible.

This gives us a hitting set H under the inclusion map ι′ : Matℓ(K)→ Matdℓ(K) where
ι′(a) = Id ⊗ a. However for the purpose of Section 5, we find a hitting set H′ under the
inclusion map ι : Matℓ(K) → Matdℓ(K) where ι(a) = a ⊗ Id. Although it is technically
possible to work with two inclusion maps thanks to Remark 2.9, we find it mathematically
nicer to work with a single inclusion map. For this we explicitly find a permutation matrix
q0 of dimension dℓ such that q0(Id ⊗ a)q−1

0 = a⊗ Id for all a ∈ Matℓ(K). Once we find q0,
the final hitting set can be defined as H′ = {(q0p1q

−1
0 , . . . , q0pnq

−1
0 ) |

¯
p ∈ H}. To see this, let

B =
∑

a0xk1a1 · · · ad−1xkd
ad.

Let M = B(q1, . . . , qn) is an invertible matrix for
¯
q ∈ H. We know that,∑

(Id ⊗ a0)qk1(Id ⊗ a1) · · · (Id ⊗ ad−1)qkd
(Id ⊗ ad) = M. (4)

By conjugating M with q0, obtain the following:∑
q0(Id ⊗ a0)q−1

0 q′
k1
q0(Id ⊗ a1)q−1

0 · · · q0(Id ⊗ ad−1)q−1
0 q′

kd
q0(Id ⊗ ad)q−1

0 = q0Mq−1
0 , (5)

where q′
kj

= q0qkj
q−1

0 . In other words B(q′
1, . . . , q

′
n) is the invertible matrix M ′ = q0Mq−1

0
under the inclusion map ι. In the full version, we show that the permutation matrix q0 can
be constructed explicitly. ◀

2 Note that by the choice, ℓ is larger than n and d.
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C Missing Proofs from Section 5

▶ Lemma C.1. Let r ∈ F⦓
¯
x⦔ be a rational formula of size s. Let

¯
p = (p1, . . . , pn) ∈

Matn
m(F(t1, t2)) be an n-tuple of matrix of bivariate rational functions where the degrees of

the numerator and denominator polynomials over t1, t2 at each entry are at most d′ and r is
defined at

¯
p. Then, evaluating r on

¯
p outputs r(

¯
p) ∈ Matm(F(t1, t2)) such that each entry of

the output matrix is of form P (t1,t2)
Q(t1,t2) where P and Q are bivariate polynomials of degree at

most O(smd′).

Proof. As already stated in Section 1 that r has a linear pencil L of size (at most) 2s such
that for any tuple

¯
p, r(

¯
p) is defined if and only if L(

¯
p) is invertible [11, Proposition 7.1].

Moreover, r(
¯
p) = L−1

i,j (
¯
p) for some (i, j)th entry of L i.e. r(

¯
p) is the (i, j)th block of L−1(

¯
p)

thinking of it as a 2s × 2s block matrix where each block is of size m. Notice that, if
L =

∑n
i=1 Aixi, then L(

¯
p) =

∑n
i=1 Ai⊗ pi. Therefore, L(

¯
p) is a 2sm× 2sm matrix such that

each entry is a polynomial over t1, t2 of degree at most d′. From the standard computation
of matrix inverse, it is immediate that each entry of L−1(

¯
p) (therefore, each entry of r(

¯
p)) is

a commutative rational function such that the numerator and the denominator are bivariate
polynomials over t1, t2 with degree bound O(smd′). ◀

Proof of Proposition 5.1. By Theorem 2.8, we know that r(
¯
x) is zero if and only if r(

¯
x+

¯
q)

is zero. Let Z = {zi,j,k′}1≤i,j≤m,1≤k′≤n be a set of noncommuting variables. Consider a
substitution map ψ that substitutes each variable xk′ , 1 ≤ k′ ≤ n of r(

¯
x+

¯
q) by an m×m

matrix Zk′ consisting of fresh noncommutative variables {zi,j,k′}1≤i,j≤m. Consider r(ψ(
¯
x)+

¯
q)

and observe that, ψ is an identity preserving and degree preserving substitution.
From the definition, r(

¯
x+

¯
q) = c(I−M)−1b where M is of size at most 2s by Theorem 2.8.

Therefore, r(ψ(
¯
x) +

¯
q) = C(I − ψ(M))−1B, where it is convenient to think of c (respectively

b) as an m× 2ms (resp. 2ms×m) rectangular matrix C (resp. B), and ψ(M) as 2ms× 2ms
matrix.

Observe that, for the matrix r(ψ(
¯
x) +

¯
q), the (i, j)th entry is the following recognizable

series which has linear representation of size at most 2sm:

Ci(I − ψ(M))−1Bj

where Ci is the ith row of C and Bj is the jth column of B. If r(
¯
x +

¯
q) is nonzero, then

some (i, j)th entry of r(ψ(
¯
x) +

¯
q) is also nonzero. Clearly, the degree-d truncated part of the

matrix r(ψ(
¯
x) +

¯
q) is ψ(S{d}). Moreover, for the matrix ψ(S{d}), each entry is computed by

a noncommutative ABP of width 2sm and depth d over Z variables. By Theorem 2.6, there
exists a minimum d ≤ 2sm− 1 such that ψ(S{d}) and thus S{d} is nonzero. Clearly S{d} is
computable by a generalized ABP.

Proof of Part (1). Now, for some matrix tuple (p1, . . . , pn) ∈ Matkm(F), let d ≤ 2sm− 1
such that S{d} is nonzero at

¯
p under the inclusion map ι : Matm(F) → Matkm(F) given

by ι : a → a⊗ Ik. Consider the evaluation of r at (tp1 + q1 ⊗ Ik, . . . , tpn + qn ⊗ Ik) where
t is some commuting indeterminate. Let M(t) = r(tp1 + q1 ⊗ Ik, . . . , tpn + qn ⊗ Ik). We
now interpret M(t) in two ways. First, think of M(t) as the evaluation of the generalized
series r(

¯
x+

¯
q) at (tp1, . . . , tpn) under the inclusion map ι : Matm(F)→ Matkm(F) given by

ι : a→ a⊗ Ik. We can write M(t) = tdS{d}(
¯
p) +M ′(t) where t-degree of each term of the

matrix M ′(t) is strictly more than d. Therefore, M(t) is nonzero.
Another way to interpret M(t) is to evaluate the rational formula r on (tp1 + q1 ⊗

Ik, . . . , tpn + qn⊗ Ik). Since r is a rational formula of size s, each entry of the matrix M(t) is
an element of the function field F(t). Moreover by Lemma C.1, the t-degrees of the numerator
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and denominator polynomials of each such commutative rational expression computed at
all the nodes, are bounded by d̂ = poly(ksm). Therefore, the final choice of the parameter
t should be such that it avoids the zeros of the numerator and denominator polynomials
involved in the computation of M(t). This is clearly possible by varying t over a poly(ksm)
size set T ⊆ F.

Proof of Part (2). The proof of the second part is similar. For some matrix tuple
(p1, . . . , pn) ∈ Matkm(F), let d ≤ 2sm−1 such that S{d} is invertible at

¯
p under the inclusion

map ι : Matm(F)→ Matkm(F) given by ι : a→ a⊗ Ik. Let M(t) = r(tp1 + q1 ⊗ Ik, . . . , tpn +
qn⊗ Ik). As before, consider two interpretations of M(t). Think of M(t) as the evaluation of
the generalized series r(

¯
x+

¯
q) at (tp1, . . . , tpn) again under the inclusion map ι : Matm(F)→

Matkm(F) given by ι : a → a ⊗ Ik. We write detM(t) = tmkd detS{d}(
¯
p) + M ′′(t) where

t-degree of each term of the matrix M ′′(t) is strictly more than mkd. Therefore, detM(t) is
nonzero.

Interpret M(t) as the evaluation of the rational formula r on (tp1+q1⊗Ik, . . . , tpn+qn⊗Ik).
Since r is a rational formula of size s, each entry of the matrix M(t) is an element of the
function field F(t). Again by Lemma C.1, the t-degrees of each numerator and denominator
polynomial involved in the computation of M(t) and detM(t) is also bounded by poly(ksm).
Therefore, the final choice of the parameter t should be such that it avoids the zeros of all
such the numerator and denominator polynomials involved in the computation of M(t) and
det(M(t)). This is clearly possible by varying t over any poly(ksm) size set T ⊆ F.

Final substitution is of the following form in both the cases:

{(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik)}, (6)

for some suitably chosen α ∈ T ⊆ F. ◀

C.1 Obtaining a hitting set over Rationals
Now we discuss how to obtain a hitting set over Q itself. In the hitting set points suppose
we replace ω and z by commuting indeterminates t1, t2 of degree bounded by ℓ. Then, for
any nonzero rational formula r of size s there is a matrix tuple in the hitting set on which
r evaluates to a nonzero matrix M(t1, t2) of dimension poly(n, s) over the commutative
function field Q(t1, t2). By Lemma C.1, each entry of M(t1, t2) is a rational expression of
the form a/b, where a and b are polynomials in t1 and t2 and the degrees of both a and b

are bounded by poly(n, s). Hence by the argument sketched in Proposition 5.1, we can vary
the parameters t1, t2 over a sufficiently large set T̃ ⊆ Q of size poly(n, s) such that we avoid
the roots of the numerator and denominator polynomials involved in the computation. This
gives our final hitting set H̃2 = {

¯
q′(α1, α2) :

¯
q′(ω, z) ∈ H2, (α1, α2) ∈ T̃ × T̃}.
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Abstract
We consider the problem of sampling from the ferromagnetic Potts and random-cluster models
on a general family of random graphs via the Glauber dynamics for the random-cluster model.
The random-cluster model is parametrized by an edge probability p ∈ (0, 1) and a cluster weight
q > 0. We establish that for every q ≥ 1, the random-cluster Glauber dynamics mixes in optimal
Θ(n log n) steps on n-vertex random graphs having a prescribed degree sequence with bounded
average branching γ throughout the full high-temperature uniqueness regime p < pu(q, γ).

The family of random graph models we consider includes the Erdős–Rényi random graph
G(n, γ/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts
model on Erdős–Rényi random graphs for the full tree uniqueness regime. We accompany our results
with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics,
in the same settings where our Θ(n log n) bounds for the random-cluster Glauber dynamics apply.
This reveals a novel and significant computational advantage of random-cluster based algorithms for
sampling from the Potts model at high temperatures.
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1 Introduction

The ferromagnetic Potts model is a classical spin system model in statistical physics and
computer science. It is defined on a finite graph G = (V, E), by a set of spins (or colors)
[q] = {1, ..., q} and an edge weight or inverse temperature parameter β > 0. A configuration
σ ∈ {1, . . . , q}V of the model is an assignment of spins to the vertices of V . The probability
of σ is given by the Gibbs distribution:

µG,β,q(σ) = 1
ZG,β,q

exp(−βD(σ)) , (1)

where D(σ) = |{{v, w} ∈ E : σ(v) ̸= σ(w)}| is the number of edges whose endpoints have
different spins in σ, and ZG,β,q is a normalizing factor known as the partition function. The
Ising model of ferromagnetism corresponds to the case where q = 2.
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24:2 Sampling from Potts on Random Graphs of Unbounded Degree

Sampling from the Potts Gibbs distribution (1) is one of the most frequently encountered
problems when running simulations in statistical physics or when solving a variety of inference
tasks in computer science; see [33, 32, 54, 52, 25, 24, 49] and the references therein for a
sample of these applications. There is a family of powerful sampling algorithms for the Potts
model based on its random-cluster representation, defined subsequently. Such algorithms,
which include the Glauber dynamics of the random-cluster model and the widely-used
Swendsen–Wang dynamics [55], are an attractive option computationally since they are
often efficient at “low-temperatures” (large β), where standard Markov chains for the Potts
model (including the canonical Glauber dynamics) often converge exponentially slowly; see,
e.g., [13, 14, 18, 11, 38].

To be more precise, the random-cluster model on a finite graph G = (V, E), is defined by
an edge probability parameter p ∈ (0, 1) and a cluster weight q > 0. The set of configurations
of the model is the set of all subsets of edges ω ⊆ E. The probability of each configuration ω

is given by the Gibbs distribution:

πG,p,q(ω) = 1
ZG,p,q

p|ω|(1 − p)|E|−|ω|qc(ω), (2)

where c(ω) is the number of connected components (also called clusters) in the subgraph (V, ω),
and ZG,p,q is the corresponding partition function. The random-cluster model was introduced
by Fortuin and Kasteleyn [26] as a unifying framework for studying random graphs, spin
systems, and electrical networks, and it is also known as the FK-representation of the Ising
and Potts model.

For integer q ≥ 2, a sample ω ⊆ E from the random-cluster Gibbs distribution πG,p,q

can be easily transformed into one for the ferromagnetic q-state Potts model with inverse
temperature β(p) = − ln(1 − p), by independently assigning a random spin from {1, . . . , q}
to (all vertices in) each connected component of (V, ω) [26, 23, 37]. As such, any sampling
algorithm for the random-cluster model yields one for the ferromagnetic Potts model with
essentially no computational overhead. This has led to significantly improved sampling
algorithms for the Potts model in various low-temperature settings [55, 29, 47, 12, 57, 42]
and more generally, to a broad interest in dynamics for the random-cluster model [15, 38, 7,
6, 3, 8, 5].

In this paper, we focus on the Glauber dynamics of the random-cluster model, which for
easy distinction we will henceforth call the FK-dynamics. From a configuration ωt ⊆ E, one
step of this Markov chain transitions to a new configuration ωt+1 ⊆ E as follows:
1. Choose an edge et ∈ E uniformly at random;

2. Set ωt+1 = ωt ∪ {et} with probability
{

p̂ := p
q(1−p)+p if et is a “cut-edge” in (V, ωt);

p otherwise;
3. Otherwise set ωt+1 = ωt \ {et}.
Here, we say e is a cut-edge in (V, ωt) if changing the state of et changes the number
of connected components c(ωt) in (V, ωt). The probabilities in step (2) are exactly the
conditional probabilities of et being in the configuration ωt given the remainder of ωt. As
such, this Markov chain is reversible with respect to πG,p,q and converges to it. We are
interested in its mixing time tmix; i.e., the number of steps until the dynamics is within total
variation distance 1/4 of πG,p,q, starting from the worst possible initial configuration.

As mentioned, the FK-dynamics is by now well-studied in its own right, though sharp
analyses of its mixing time are only available on certain structured graphs like the complete
graph [6, 36, 8], boxes in the infinite integer lattice graph Zd [7, 5, 34, 35, 40, 31, 14], and
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trees [1]. Recently, in [3], the authors studied the FK-dynamics on random regular graphs and
established an optimal Θ(n log n) mixing time bound throughout the entire high-temperature
tree uniqueness regime.

Our aim in this paper is to study the FK-dynamics in settings in which the maximum
degree of the underlying graph is much larger than its average degree. Such settings introduce
hard technical challenges and have been well-studied for other models; see [20] for some early
work. For instance, high-degree vertices are an obstruction to the fast convergence of the
Ising/Potts Glauber dynamics. We later prove (see Section 1.2) that on a general class of
random graphs on n vertices with maximum degree dmax, the Ising/Potts Glauber dynamics
requires n · exp(Ω(dmax)) steps to converge at high temperatures.

We reveal here that, for the same general family of random graphs, random-cluster based
algorithms are not affected by the presence of high-degree vertices; both their mixing times
and fast mixing parameter regimes are determined instead by the average degree of the
graph. This reveals a novel and significant computational advantage of random-cluster based
algorithms for sampling from the ferromagnetic Potts model at high temperatures. Indeed,
prior to this work, random-cluster based sampling algorithms were only found to be more
efficient than Ising/Potts Glauber dynamics at low temperatures.

More precisely, we study the mixing time of the FK-dynamics on random graphs of
average branching γ > 0 in the full uniqueness (high-temperature) regime p < pu(q, γ).
At integer γ, the threshold pu(q, γ), formally defined in (4), was identified in [39] as a
uniqueness/non-uniqueness phase transition point of the random-cluster model on the wired
γ-ary tree, i.e., where the leaves are externally wired to be in the same connected component.
For us, pu(q, γ) is the natural extension of that function to non-integer γ, which we prove
corresponds to the high-temperature uniqueness threshold of the random-cluster model on
general trees of average branching γ for all q ≥ 1. (This result could be of independent
interest.)

Before we describe our general results for random graph models with fixed degree sequence
(which we define in the next subsection) we present a special case of our main result of
particular interest concerning the FK-dynamics on sparse Erdős–Rényi random graphs.

▶ Theorem 1. Fix q ≥ 1, γ > 0 and p < pu(q, γ). If G is an Erdős–Rényi random graph
G ∼ G(n, γ/n), then with probability 1 − o(1), G is such that the FK-dynamics on G satisfies
tmix = Θ(n log n).

This yields a sampler for the Potts distribution on Erdős–Rényi random graphs with
near-optimal running time. Let βu(q, γ) = − ln(1−pu(q, γ)) be the corresponding uniqueness
point for the Potts model.

▶ Corollary 2. Fix q ≥ 2, γ > 0 and β < βu(q, γ). There is a sampling algorithm that, with
probability 1 − o(1) over the choice of an Erdős–Rényi random graph G ∼ G(n, γ/n), outputs
a configuration whose distribution is within total-variation distance δ > 0 of µG,β,q in time
O(n(log n)3 log(1/δ)).

Corollary 2 is a direct consequence of Theorem 1 and the aforementioned connection
between the random-cluster model and the ferromagnetic Potts model. The extra O((log n)2)
factor in the running time of the algorithm comes from the (amortized) cost of checking
whether the chosen edge is a cut-edge in each step of the FK-dynamics (see [43, 56]).

To the best of our knowledge, this is the first polynomial-time sampling algorithm for
the Potts model on Erdős–Rényi random graphs for q ≥ 3 and β = Ω(1). Even for the
better understood q = 2 case (i.e., the Ising model), Corollary 2 provides the fastest known
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24:4 Sampling from Potts on Random Graphs of Unbounded Degree

sampling algorithm for this parameter regime, improving upon the running time of samplers
based on the Glauber dynamics for the Ising model which converges in n1+Θ( 1

log log n ) steps
for all β < βu(2, γ) [51].

We mention that the thresholds pu(q, γ) and βu(q, γ) should be sharp, in the sense that
the FK-dynamics is conjectured to undergo polynomial or exponential slowdowns (depending
on q) at the point pu(q, γ) (and when q > 2 in a whole critical window (pu, p′

u)). This is by
analogy with the FK-dynamics on the complete graph [36] and on random regular graphs [17];
see also [30, 42, 19].

1.1 Results on random graphs with general degree sequences
We next provide our main results on random graph models with a fixed degree sequence. Let
dn = (d1, ..., dn) be the degree sequence giving the degree of each vertex v ∈ {1, ..., n}. Our
results will hold for uniform random graphs with degree sequence dn under certain mild
conditions on this degree sequence. The first condition we make on dn is that the sequence
is graphical: i.e., that there exists at least one simple graph having degree sequence dn.

Given a graphical sequence dn, we define Prg(dn) as the uniform distribution over all
simple graphs on n vertices having degree sequence dn. The governing quantity in this degree
sequence, in terms of the uniqueness thresholds for the Potts and random-cluster models
on G ∼ Prg(dn), will be what we call the effective offspring distribution Pdn

. In words, the
distribution Pdn will correspond to choosing d − 1 with probability proportional to the total
degree of vertices having degree d. This determines the offspring distribution corresponding
to the random trees one obtains when looking at balls of small radius around a vertex of
a random graph G ∼ Prg(dn). Specifically, a vertex of degree d is selected to be the next
vertex added to the random tree with probability proportional to the total degree of all such
vertices, and once it is selected and connected to its parent, it has d − 1 available edges to
connect to other randomly chosen vertices. Formally, Pdn

is defined as the distribution over
the set M(dn) = {dv − 1 : v ∈ {1, ..., n}} where x ∈ M(dn) is assigned probability:

Pdn
(x) =

∑
v(x + 1)1{dv=x+1}∑

v dv
. (3)

Our results apply to graphical degree sequences where Pdn
has bounded finite moments, as

we detail next.

▶ Definition 3. Let Dγ,κ be the set of graphical degree sequences (dn)n such that D ∼ Pdn
has

mean that is uniformly bounded away from γ and uniformly bounded κ-th moment. Formally,
1. There exists ε > 0 such that Edn

[D] < γ − ε for all sufficiently large n; and
2. There exists finite K > 0 such that Edn [Dκ] < K for all sufficiently large n.

This framework is fairly standard in the random graphs literature [10] and is similar to
e.g., the setting of [28] for studying sampling from Potts on random graphs with fixed degree
sequences at sufficiently low temperatures. While Definition 3 yields a fairly general family
of random graphs, we draw attention to some well-studied examples which fall under its
umbrella.

▶ Example 4. ∆-regular random graph. In this case, dn = (∆, . . . , ∆) and the effective
offspring distribution simply assigns probability 1 to ∆ − 1; thus (dn)n ∈ Dγ,κ for every
γ > ∆ − 1 and every κ.

▶ Example 5. Erdős–Rényi random graph G(n, λ/n). It was shown in [45] that if dn is
drawn as an i.i.d. sequence of Poisson random variables of mean λ, then Prg(dn) is contiguous
with respect to G(n, λ/n). (Two random graph models are contiguous when any sequence of
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events that has a probability of 1 − o(1) in one has a probability of 1 − o(1) in the other
model as well.) Hence, it suffices to prove the desired results with high probability over such
dn. Standard concentration estimates for Poisson random variables then give that for every
γ > λ and every κ, with high probability, (dn)n ∈ Dγ,κ.

Our main result is an optimal mixing time bound for the FK-dynamics on G ∼ Prg(dn),
which applies to all the examples above and more generally to random graphs with degree
sequences in Dγ,κ.

▶ Theorem 6. Fix q ≥ 1, γ > 0, and p < pu(q, γ). There exists κ such that if (dn)n ∈ Dγ,κ,
then with probability 1 − o(1), G ∼ Prg(dn) is such that the FK-dynamics on G satisfies
tmix = Θ(n log n).

This parameter regime in Theorem 6 is tight as FK-dynamics have been very recently
shown [17] to exponentially slow down as soon as p > pu(q, γ) for random regular graphs
(Example 4) at integer q > 2.

The proof of the upper bound in Theorem 6 is the main content of this paper. As
mentioned, the special case of the ∆-regular random graph (i.e., dn = (∆, ..., ∆)) was the
content of an earlier paper [3]. However, as soon as the degree sequence is not homogeneous,
substantial further obstacles arise.

First, the uniqueness threshold for the random-cluster model on wired heterogeneous
trees (specifically, with offspring distribution Pdn

) had not been established. In our proof
of Theorem 6 we in fact require something much stronger; namely, an exponential decay of
connectivities with the correct rate (see Lemma 17). The fact that pu(q, γ) is the uniqueness
threshold in the regular case goes back to the work of Häggström [39] (see also [44, 2]).
The exponential decay rate was established in [3]. To establish analogous results for the
heterogeneous case, we combine the approach of [48] (which considered the special case of
the Ising model q = 2) with ideas from [2], so as to recurse, not on the marginal of an edge
of the tree, but rather on a functional of its probability of downwards connection to infinity.

The second technical obstacle concerns establishing that the FK-dynamics on G ∼ Prg(dn)
shatters, i.e., that its components have size at most O(nε) after O(n) steps of the dynamics.
This is proved using a delicate revealing procedure for the random graph with the FK-dynamics
configuration on top of it, a technique introduced in [3] for the case of random regular graphs.
The heterogeneity of the degrees in the current setting, however, introduces extra correlations
between the underlying graph and the FK-dynamics configuration, necessitating substantial
modifications to the revealing procedure from [3].

The changes we make to deal with the above-described dependencies include: (i) modific-
ations to the revealing process so that it is based on half-edges rather than vertices and the
dynamics is run in continuous time, and (ii) a new criteria to truncate potentially unbounded
increments in the revealing procedure. The more robust procedure yields a notable further
improvement: we show that the shattering time is O(n) (as opposed to O(n log n) in [3]).
Though this improvement has no impact on the eventual mixing time bound, the more precise
understanding of the shattering phase may be useful in other settings. A more detailed proof
sketch of this theorem and the new complications that arise is provided in Section 2.

1.2 Slowdown for the Ising/Potts Glauber dynamics
Returning to the advantage of FK-dynamics in the presence of high-degree vertices, the
following theorem shows that, in the same setting as Theorem 6, the mixing time of the
Ising/Potts Glauber dynamics depends exponentially on the maximum degree.

APPROX/RANDOM 2022



24:6 Sampling from Potts on Random Graphs of Unbounded Degree

▶ Theorem 7. Fix q ≥ 2, γ > 0 and β < βu(q, γ). Then there exists κ such that if
(dn)n ∈ Dγ,κ, then with probability 1 − o(1), G ∼ Prg(dn) is such that the Glauber dynamics
for the ferromagnetic Potts model on G has tmix = n · exp(Ω(∥dn∥∞)).

Intuitively, the slowdown comes from the fact that the neighborhood of a vertex of degree
∥dn∥∞ is a star graph, where the Ising/Potts Glauber dynamics mixes slowly for β ≫
1/∥dn∥∞. In random graphs at high temperatures (β < βu(q, γ)) there is no interference
with this effect from the rest of the graph. In contrast, the FK-dynamics in the star graph is
fast mixing at all temperatures, so this obstruction is not present.
▶ Remark 8. We remark that under various decay of correlation conditions (see, e.g., [21, 41,
22, 16]) the mixing time of the Ising/Potts Glauber dynamics is known to be poly(n) when
(roughly) β ≤ 1/∥dn∥∞. This does not contradict Theorem 7, which holds when β = Ω(1).
In fact, if one tracks the dependence on β in our proof, it gives tmix = n · exp(Ω(β2∥dn∥∞)).

The known n1+Ω( 1
log log n ) slowdown of the Ising/Potts Glauber dynamics on the Erdős–

Rényi random graph [50, 51], where ∥dn∥∞ = Θ( log n
log log n ), is a special case of Theorem 7.

Below are a few examples where this slowdown is more dramatic, indeed stretched exponential
in the total number of vertices.

▶ Example 9. Power-law degree distributions. Consider graphical sequences (dn)n satisfying
item (1) in Definition 3, and for which the fraction of degrees of size ℓ is Θ(ℓ−ζ). For every
κ, if ζ > κ + 2, one would have (dn)n ∈ Dγ,κ. In such situations, ∥dn∥∞ = Θ(n1/ζ) and
tmix = exp(Ω(n1/ζ)).

▶ Example 10. Planted high-degree vertices. Consider a random ∆-regular random graph
and change the degree of one vertex to Θ(nε). If ε < 1/(κ + 1) and γ > ∆ − 1, then
(dn) ∈ Dγ,κ and tmix = exp(Ω(nε)).

In the above instances where the maximum degree is polynomial in n but the average
degree is constant, there is an exponential vs. polynomial difference in the high-temperature
mixing times of the Ising/Potts Glauber dynamics and of the FK-dynamics. At this level, the
computational benefits of random-cluster based sampling methods also extend to the often
implemented Swendsen–Wang dynamics [55]. In particular, using the comparison inequalities
from [57] the upper bounds of Theorems 1 and 6 translate into O(n2 log n) upper bounds on
the mixing time of the Swendsen–Wang dynamics in those settings.

2 Proof outline

In this section, we present our technical contributions about random graphs (Section 2.1),
the exponential decay of correlations and uniqueness on hetereogeneous trees (Section 2.2),
and the shattering phenomenon of the FK-dynamics (Section 2.3), all of which we combine in
Section 2.4 to yield our main result: the mixing time upper bound of Theorem 6. Throughout
the paper, a subset ω ⊂ E is naturally identified with an assignment of {0, 1}, or closed and
open, to E, via ω(e) = 1 if and only if e ∈ ω. All our results should also be understood to
hold uniformly over all sufficiently large n.

2.1 Random graphs
We start by describing the locally treelike structure and exponential rate of volume growth
of random graphs with fixed degree sequence (dn)n ∈ Dγ,κ. It will be convenient to work
with the configuration model, a useful and standard tool for studying random graphs with
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fixed degree sequence. The configuration model Pcm(dn) is a distribution over multigraphs
on n vertices with degree sequence dn. It is defined by giving dv half-edges to every vertex
v and drawing a uniform random perfect matching on the

∑
v dv many half-edges to form

the 1
2

∑
v dv edges of the graph [9]. It is a standard fact that for any (dn)n ∈ Dγ,κ, and any

sequence of sets An of simple graphs on n vertices, we have

Prg(dn)(G ∈ An) = o(1) if and only if Pcm(dn)(G ∈ An) = o(1) :

see [9, 27]. It thus suffices to prove Theorems 6-7 for G ∼ Pcm(dn).
For a graph G = (V, E) and a vertex v ∈ V , we define the ball of radius R around v as:

BR(v) := {w ∈ V : d(w, v) ≤ R} ,

where d(·, ·) is the graph distance. For a set B ⊂ V define E(B) = {{v, w} ∈ E : v, w ∈ B}.

▶ Definition 11. We say that a graph G = (V, E) is L-Treelike if there is a set H ⊂ E with
|H| ≤ L such that the graph (V, E \ H) is a tree. We say that G is (L, R)-Treelike if for every
v ∈ V the subgraph (BR(v), E(BR(v)) is L-Treelike.

The following lemma says that small balls of the random graph G ∼ Pcm(dn) are tree-
like. Indeed, BR(v) in G ∼ Pcm(dn) is typically a random tree with offspring distribution
approximately Pdn , defined in (3).

▶ Lemma 12. There exists κ such that if (dn)n ∈ Dγ,κ the following holds. For
every δ > 0, there exists L = L(δ) such that if 1 ≤ R ≤ ( 1

2 − δ) logγ n, we have
Pcm(dn)

(
G is (L, R)-Treelike

)
= 1 − o(n−10) .

Using standard concentration estimates for the volume of Galton–Watson trees, we also
establish that if (dn)n ∈ Dγ,κ, then G ∼ Pcm(dn) has average exponential rate γ of volume
growth.

▶ Definition 13. A graph G = (V, E) on n vertices is said to have (γ, ε)-volume growth if
for every v ∈ V and every integer r ∈ [ε logγ n, 1

2 logγ n] the graph has |Br(v)| ≤ γr .

▶ Lemma 14. Fix ε ∈ (0, 1
2 ). There exists κ(ε) such that if (dn)n ∈ Dγ,κ, then

Pcm(dn)
(
G has (γ, ε)-growth

)
≥ 1 − o(n−10) .

2.2 Exponential decay and uniqueness on general trees and treelike
graphs

Given the local tree structure of the random graphs from Pcm(dn), to control the decay rate
of connectivities of the random-cluster model on G ∼ Pcm(dn), we need to first understand
how these connectivities decay on heterogeneous (i.e., non-regular) trees. The relevant
random-cluster measure on the tree requires the addition of boundary conditions mimicking
the possible presence of open edges in the random graph outside of the treelike ball. Towards
this, let us formally define boundary conditions.

▶ Definition 15. A random-cluster boundary condition ξ on G = (V, E) is a partition of V ,
such that the vertices in each element of the partition are identified with one another. The
random-cluster measure with boundary conditions ξ, denoted πξ

G,p,q, is the same as in (2)
except the number of connected components c(ω) = c(ω; ξ) would be counted with this vertex
identification, i.e., if v, w are in the same element of ξ, they are always counted as being in
the same connected component of ω in (2). The boundary condition can alternatively be seen
as external “wirings” of the vertices in the same element of ξ.
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24:8 Sampling from Potts on Random Graphs of Unbounded Degree

▶ Remark 16. The free boundary condition, ξ = 0, corresponds to the case of no external
wirings; i.e., its partition is the one consisting of only of singletons. For a subset ∂V ⊂ V ,
the wired boundary condition on ∂V , denoted ξ = 1, is the one whose partition has
all vertices of ∂V in the same element (and all vertices of V \ ∂V as singletons); i.e.,
ξ = {∂V } ∪

⋃
{v : v ∈ V \ ∂V }. For boundary conditions ξ, ξ′ we say ξ ≤ ξ′ if ξ is a finer

partition than ξ′. When q ≥ 1, the random-cluster model has the following monotonicity
property: for any two boundary conditions ξ ≥ ξ′, πξ

G,p,q ≽ πξ′

G,p,q where ≽ denotes stochastic
domination [37].

Now define the threshold

pu(q, γ) := 1 − 1
1 + infy>1 h(y) , where h(y) := (y − 1)(yγ + q − 1)

yγ − y
. (4)

The work [39] studied the random-cluster measure on homogeneous, d-ary trees, with wired
boundary conditions and identified pu(q, d) as the uniqueness threshold such that whenever
p < pu(q, d), the probability that the root is connected to a distance h in the wired d-ary tree
goes to zero as h → ∞; a different proof was given in [2]. In [3], it was shown that this decay
is in fact exponential with rate p̂ = p/(p+q(1−p)). However, the methods of those papers do
not easily extend to the non-regular setting, where there may be vertices of unbounded degree,
but one would expect the threshold for connectivity decay to only depend on the average
branching rate. In [48], it was shown that the analogue βu(2, γ) of (4) gives the correct
uniqueness threshold in the case of the Ising model q = 2, for general (non-homogenous)
trees of average branching γ. However, the argument there recursed over the single-site spin
marginals, and relied on the fact that it was an Ising model whose interactions are nearest-
neighbor. In the case of the random-cluster model, interactions between edge-marginals are
non-local, and we therefore have to work with a more complicated functional encoding the
probability of an edge being downward connected to the wired boundary. Combining ideas
from [48] and [2], we are then able to establish uniqueness, and that connectivities decay
exponentially with rate p̂ on general heterogenous trees of average branching factor γ for all
q ≥ 1 and all p < pu(q, γ). When p < pu(q, γ), we have p̂ < 1/γ (see e.g., [39, Theorem 1.5]);
this indicates by a union bound why there will typically be no connections to the boundary
in a tree of average branching γ.

More formally, let Th = (V (Th), E(Th)) be an arbitrary finite tree, rooted at ρ, and of
height h. Let ∂Th ⊂ V (Th) be the set of vertices of Th at distance exactly h from ρ. For
v ∈ V (Th), let Tv be the subtree of Th rooted at v, let h(v) denotes the height of Tv, and let
∂Tv = ∂Th ∩ Tv. For a random-cluster configuration ω on Th, let Cρ(ω) denote the connected
component of ω that contains the root ρ of Th. Finally, let (1,⟲) denote the boundary
condition that wires all vertices of ∂Th together, and also wires them up to the root, and let
π

(1,⟲)
Th

be the random-cluster measure with this boundary condition.

▶ Lemma 17. Fix q ≥ 1, γ > 1, p < pu(q, γ), and ε ∈ [0, 1). Suppose that |∂Tv| ≤ γh(v) for
every v ∈ V (Th) with h(v) > εh. Then, there exists a constant C = C(p, q, γ) such that for
any u ∈ ∂Th

π
(1,⟲)
Th

(ω : u ∈ Cρ(ω)) ≤ Cp̂(1−ε)h .

We note that the condition that |∂Tv| ≤ γh(v) for every v ∈ V (Th) with h(v) > εh in the
lemma holds with high probability for random trees with averaging branching γ. In addition,
the exponential decay rate in Lemma 17 is essentially optimal, and together with Lemmas 12–
14, allows us to derive precise estimates on the exponential decay of connectivities on the
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treelike balls around each vertex of the random graph G ∼ Pcm(dn). We will actually need a
sharp bound on the rate of influence decay between the boundary and the center of the ball
BR(v); we find that this is the square of the rate of connectivity decay on a corresponding
tree of depth R. (Intuitively, this is because two disjoint paths are required to reach the
center of the ball in order for the boundary to have any effect on it.) To be more precise, let
G = (V, E) be a graph and for v ∈ V , let Ev ⊆ E denote the set of edges incident to v.

▶ Definition 18. A random-cluster boundary condition ξ on a graph H is said to be K-Sparse
if the number of vertices in non-trivial (non-singleton) boundary components of ξ is at
most K.

▶ Theorem 19. Fix γ > 0, q ≥ 1, and p < pu(q, γ). Suppose G is (L, R)-Treelike for some L

and some R ≤ 1
2 logγ n. Also suppose G has (γ, ε)-volume growth for some ε > 0 sufficiently

small. There exists a constant C > 0 such that for every v ∈ G, and any two K-Sparse
boundary conditions ξ and τ on BR(v):

∥πξ
BR(v)(ω(Ev) ∈ ·) − πτ

BR(v)(ω(Ev) ∈ ·)∥tv ≤ Cp̂(2−CL
√

ε)R .

2.3 Shattering of the FK-dynamics
With Theorem 19 in hand, the core of our argument becomes establishing that the boundary
conditions induced by the FK-dynamics chains on the small balls around each vertex are
shattered. This is formalized as follows.

▶ Definition 20. A random-cluster configuration ω on G = (V (G), E(G)) is (K, R)-Sparse
if, for every v ∈ V (G), the boundary conditions induced on BR(v) by ω(E(G) \ E(Br(v)))
are K-Sparse.

▶ Remark 21. It will be technically convenient to prove our results in continuous time instead
of discrete time. In the continuous-time FK-dynamics, each edge of the graph has a rate-1
Poisson clock and every time a clock rings, the corresponding edge is updated as in the
discrete-time version of the FK-dynamics; that is, according to the conditional distribution
given the configuration off of this edge. It is a standard fact (see e.g., [46, Theorem 20.3])
that the discrete-time mixing time is comparable to |E(G)| times the continuous-time mixing
time. It therefore suffices for us to establish the mixing time bounds of Theorems 1 and 6 as
Θ(log n) bounds for the continuous-time version of the FK-dynamics. From this point on,
we let Xx0

t denote the continuous-time FK-dynamics on G initialized from the configuration
x0, and use the superscripts 1 and 0 to denote the full (all-open) and empty (all-closed)
configurations, respectively.
The following theorem says that after O(1) continuous time, the configuration of the FK-
dynamics from the all wired, and by monotonicity from any, initialization is (K, R)-Sparse,
for R ≤ 1

2 logγ n and constant K.

▶ Theorem 22. Fix q ≥ 1, γ > 0 and p < pu(q, γ). For every δ > 0, there exists κ such
that if (dn)n ∈ Dγ,κ, there exists T = T (p, q, γ) and K = K(p, q, γ, δ) such that for any
t ≥ T , and every R ≤ ( 1

2 − δ) logγ n, with probability 1 − o(1), G ∼ Pcm(dn) is such that
P

(
X1

t is (K, R)-Sparse
)

≥ 1 − o(n−5) .

Our proof of Theorem 22 relies on a delicate simultaneous revealing procedure for the
random graph, along with the connected component of a vertex v in X1

t , showing that after
a burn-in period, the configuration X1

t is shattered. This technique was introduced for
random regular graphs in [3]. The revealing scheme for the component of a vertex v in the
FK-dynamics chain X1

t roughly proceeds as follows (see Figure 1). First set the starting
vertex v as “exposed”, and iteratively, for each exposed vertex u do the following:

APPROX/RANDOM 2022
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r v

Figure 1 Three “generations” of the revealing procedure. In each figure, the purple vertices
are the current generation of exposed vertices; the revealing procedure reveals the ball of radius r

around such a vertex v, and a dominating localized FK-dynamics configuration ω̃(Br(v)) on that
ball. The next generation of exposed vertices (blue) consists of those on the boundary Br(v) that
are in the connected component of v in the configuration ω̃(Br(v)). Exposed vertices from previous
generations are then colored black.

1. Reveal the ball Br(u) in the random graph for a large r = O(1);
2. Reveal a configuration ω̃(Br(u)) that dominates the configuration of the FK-dynamics at

time t on Br(u). This configuration will come from simulating the FK-dynamics that
ignores all updates outside of Br(u) (effectively inducing the wired boundary condition
on Br(u)) and thus can be obtained independently of the dynamics on the rest of the
graph;

3. Add to the set of exposed vertices all vertices of ∂Br(u) that get connected to u in
ω̃(Br(u)).

The key point of the argument is then to stochastically dominate the exposed vertices by a
branching process, which can be shown to be sub-critical (see Lemma 17). In our setting,
the heterogeneity of the degrees causes substantial complications to the argument from [3],
because in balls where the branching rate is locally larger than γ, the overlayed FK-dynamics
configuration will actually be highly connected. The presence of high degrees also destroys
the O(1) bounds on the maximum number of new vertices that could possibly get exposed in
step (3) above; this complicates relevant concentration arguments, as our branching process
martingale will no longer have bounded increments.

2.4 Proof of main result
We end this section by proving the mixing time upper bound of Theorem 6. The proofs of all
other results are deferred to the full version of this paper [4]. It suffices to prove the result
for γ > 1 since limγ↓1 pu(q, γ) = 1, and if γ ≥ γ′, then Dγ′,κ ⊂ Dγ,κ.

Proof of Theorem 6: upper bound. Fix q > 1, γ > 1 and p < pu(q, γ). Let R = ( 1
2 −

δ) logγ n, where δ > 0 is a small constant we choose later. For K and L fixed positive
constants, ε ∈ (0, 1/2) and t ≥ 0, let Γt = Γt(L, K, δ, ε, γ) be the subset of (multi)graphs on
n vertices with degree sequence dn given by:

Γt = {G :G is (L, R)-Treelike, has (γ, ε)-volume growth,
and P(X1

G,t is (K, R)-Sparse) ≥ 1 − n−5} .
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By Lemmas 12 and 14, as well as Theorem 22, for every δ ∈ (0, 1/2) and ε ∈ (0, 1/2),
there exist constants κ(p, q, γ, δ), L(δ), K(p, q, γ, δ), and T (p, q, γ) such that if (dn)n ∈ Dγ,κ

then Pcm(dn)(Γc
T ) = o(1) . Hence, it suffices for us to prove that the mixing time of the

FK-dynamics on any G ∈ ΓT is O(log n).
Fix any G ∈ ΓT . Let ((Xx0

t )t≥0)x0 be the family of FK-dynamics initialized from all
possible configurations x0, coupled via the standard grand coupling for the FK-dynamics; i.e.,
using the same clock rings and the same uniform random variables to make the edge updates
while running the chain from different initializations. Recall that this coupling is monotone
when q ≥ 1 so that for every t ≥ 0, if Xx0

t ≤ Xy0
t , then Xx0

t′ ≤ Xy0
t′ for all t′ ≥ t. Using the

standard fact that the coupling time provides a bound on the mixing time (see e.g., [46]), by
a union bound over the edges, it suffices to show that under this grand coupling,

P
(
X1

T̂
(e) ̸= X0

T̂
(e)

)
= o(1/|E(G)|) for every e ∈ E(G) . (5)

Now fix any such e = {u, v} and for ease of notation, set Bv = E(BR(v)) and Bc
v =

E(G) \ Bv. Consider two auxiliary copies of the FK-dynamics Y 1
t and Y 0

t that censor (ignore)
all updates on edges of Bc

v after time T . The censoring inequality from [53] applied to the
FK-dynamics [35, Theorem 2.5] implies that Y 1

t ≽ X1
t and Y 0

t ≼ X0
t for all t ≥ 0 and thus

P
(
X1

t (e) ̸= X0
t (e)

)
= P

(
X1

t (e) = 1
)

− P
(
X0

t (e) = 1
)

≤ P
(
Y 1

t (e) = 1
)

− P
(
Y 0

t (e) = 1
)

.

Let Hv be the set of configurations on Bc
v such that the boundary conditions they induce

on Bv are K-Sparse. (Here and throughout the paper, the boundary condition induced by
a configuration ω(Bc) on a set B wires two vertices w, w′ ∈ V (B) if they are in the same
connected component of ω(Bc).) By definition of ΓT and monotonicity, we have for every
G ∈ ΓT , P(Y 0

T (Bc
v) /∈ Hv) ≤ P(Y 1

T (Bc
v) /∈ Hv) ≤ n−5, because up to time T there is no

censoring, and so Y 1
T , Y 0

T have the same distribution as X1
T , X0

T , respectively. Therefore,
P(Y 1

t (e) = 1) − P(Y 0
t (e) = 1) is bounded by

max
ϕ1,ϕ0∈Hv

[
P(Y 1

t (e) = 1 | Y 1
T (Bc

v) = ϕ1) − P(Y 0
t (e) = 1 | Y 0

T (Bc
v) = ϕ0)

]
+ 2n−5 .

Fix any ϕ1, ϕ0 ∈ Hv, and let t = T + s. By the triangle inequality, the difference in the
brackets is at most∣∣P(Y 1

T +s(e) = 1 | Y 1
T (Bc

v) = ϕ1) − πG(ω(e) = 1 | ω(Bc
v) = ϕ1)

∣∣ (6)
+

∣∣πG(ω(e) = 1 | ω(Bc
v) = ϕ1) − πG(ω(e) = 1 | ω(Bc

v) = ϕ0)
∣∣ (7)

+
∣∣P(Y 0

T +s(e) = 1 | Y 0
T (Bc

v) = ϕ0) − πG(ω(e) = 1 | ω(Bc
v) = ϕ0)

∣∣ . (8)

Observe that the chain (Y 1
T +s)s≥0 may be viewed as an FK-dynamics on Bv with the

boundary condition induced by ϕ1, initialized from the (random) configuration Y 1
T (Bv) and

with stationary distribution πG(ω(Bv) ∈ · | ω(Bc
v) = ϕ1) = πϕ1

Bv
; the analogous statement is

true for (Y 0
T +s)s≥0 and πϕ0

Bv
.

In order to bound (6) and (8), we use as an input a bound on the rate of convergence
of FK-dynamics on treelike graphs with sparse boundary conditions. This bound comes
from a straightforward (Dirichlet form) comparison to the FK-dynamics on a tree with free
boundary conditions, and its proof is deferred to the full version [4].

▶ Lemma 23. Consider an L-Treelike graph G = (V, E) with a K-Sparse boundary condition ξ.
Let πmin = minx∈Ω πξ

G(x). For every p ∈ (0, 1) and q > 0, there exists α0 = α0(p, q, L, K) > 0
such that

maxx0∈Ω ∥P(Xx0
t ∈ ·) − πξ

G∥tv ≤ e−α0t
√

2 log(1/πmin) .

APPROX/RANDOM 2022
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Setting T̂ = T + Ŝn where Ŝn = Ĉ log n for a constant Ĉ(p, q, γ, L, K) sufficiently large,
since Bv is L-Treelike and ϕ1 is K-Sparse, by Lemma 23, we obtain the following, and its
analogue for (8):∣∣P(Y 1

T̂
(e) = 1 | Y 1

T (Bc
v) = ϕ1) − πG(ω(e) = 1 | ω(Bc

v) = ϕ1)
∣∣ ≤ n−5 .

Finally, since both ϕ1 and ϕ0 induce K-Sparse boundary conditions on Bv and G is (L, R)-
Treelike with (γ, ε)-volume growth, by Theorem 19 there exists C = C(p, q, L, K, γ) > 0 such
that (7) is at most

∥πϕ1

Bv
(ω(Ev) ∈ ·) − πϕ0

Bv
(ω(Ev) ∈ ·)∥tv ≤ Cp̂2(1−C

√
ε)R ≤ Cp̂(1−2δ)(1−C

√
ε) logγ n ,

where Ev is the set of edges incident to v, and we used R = ( 1
2 − δ) logγ n. Setting

θ = (1 − 2δ)(1 − C
√

ε),

∥πϕ1

Bv
(ω(Ev) ∈ ·) − πϕ0

Bv
(ω(Ev) ∈ ·)∥tv ≤ Cp̂θ logγ n = Cn

−θ(1− 1
logp̂γ γ )

. (9)

Since p̂ < 1/γ, logp̂γ γ < 0, there is some cp,γ > 0 such that the right-hand side is Cn−θ(1+cp,γ ).
By taking ε, δ sufficiently small, θ can be made arbitrarily close to 1, so that (9) is o(1/n).

Now notice that |E(G)| = O(n). To see this, observe that by Jensen’s inequality
( 1

n

∑
v dv)2 ≤ 1

n

∑
v d2

v, and since (dn) ∈ Dγ,κ, we also have
∑

v d2
v ≤ (1 + γ)

∑
v dv. Com-

bining these two inequalities we find that |E(G)| ≤ (1+γ)n
2 . Therefore, each of (6)–(8) are

o(1/|E(G)|), implying (5) as desired. ◀
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Abstract
We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hyper-
graphs with maximum degree ∆. For any δ > 0, if k ≥ 20(1+δ)

δ
and q ≥ 100∆

2+δ
k−4/δ−4 , the running

time of our algorithm is Õ(poly(∆k) · n1.01), where n is the number of vertices. Our result requires
fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun,
and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).
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1 Introduction

The past few years have witnessed a bloom in techniques targeted at approximate counting
and sampling problems, among which constraint satisfaction problems (CSPs) are probably
the most studied. In fact, many problems can be cast as CSPs, e.g., Boolean satisfiability
problems (SATs), proper colourings of graphs and hypergraphs, and independent sets, to
name a few. In general, even deciding if a CSP instance can be satisfied or not is NP-hard.
However, efficient algorithms become possible when the number of appearances of each
variable (usually referred to as the degree) is not too high. For these instances, the Lovász
Local Lemma [6] provides a fundamental criterion to guarantee the existence of a solution.
Although the original local lemma does not provide an efficient algorithm, after two decades
of effort [2, 1, 28, 5, 32, 29], the celebrated work of Moser and Tardos [30] provides an efficient
algorithm matching the same conditions as the local lemma.

Unfortunately, the output distribution of the Moser–Tardos algorithm does not suit the
need of approximate counting and sampling. This deficiency is fundamental, as it can be
NP-hard to (uniformly or near-uniformly) sample satisfying assignments even when the
criterion of the local lemma is satisfied and the corresponding searching problem lies in P
[3, 14].1 In other words, sampling problems are fundamentally more difficult than searching
problems in the local lemma regime. Part of the difficulty comes from the possibility that

1 As far as we are aware, all hardness results for sampling (including the ones mentioned in this paper)
allow errors in total variation distances. It is not clear if stronger hardness results exist for perfect
sampling (i.e. with no error).

© Weiming Feng, Heng Guo, and Jiaheng Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wfeng@ed.ac.uk
https://orcid.org/0000-0003-4636-1023
mailto:hguo@inf.ed.ac.uk
https://orcid.org/0000-0001-8199-5596
mailto:jiaheng.wang@ed.ac.uk
https://orcid.org/0000-0002-5191-545X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.25
https://arxiv.org/abs/2202.05554
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Improved Bounds for Randomly Colouring Simple Hypergraphs

the state space can be disconnected from local moves, but traditional algorithmic tools like
Markov chain Monte Carlo rely on the connectivity. This barrier has been bypassed recently
by some exciting developments [27, 16, 17, 23], and in particular the projected Markov chain
approach [8, 9, 24, 19]. For searching problems, the local lemma is known to give a sharp
computational transition threshold from P to NP-hard [30, 15] as the degree increases.
Recent efforts aim to find and establish a similar threshold for sampling problems as well.

One very promising problem to establish such a threshold is (proper) q-colourings of
hypergraphs, which is the original setting where the local lemma was developed [6], and has
received considerable recent attention. A hypergraph H = (V, E) consists of a set of vertices
V and a set of hyperedges E ⊆ 2V . We say H = (V, E) is k-uniform, if every hyperedge e ∈ E
satisfies |e| = k. A colouring of a hypergraph is proper if no hyperedge is monochromatic.
An efficient (perfect) sampler exists when q ≳ ∆3/(k−4) (where ≳ or ≲ hides some constant
independent from q, k, and ∆) for k-uniform hypergraphs with maximum degree ∆ [24, 19],
while the sampling problem is NP-hard whenever q ≲ ∆2/k for even q [14]. For comparison,
the local lemma shows that a proper q-colouring exists if q ≳ ∆1/(k−1) (see also [35] for a
recent alternative approach leading to a slightly better constant).

On the other hand, before the recent wave of local lemma inspired sampling algorithms,
randomly sampling q-colourings in simple k-uniform hypergraphs2 has already been studied
[12, 11]. In particular, Frieze and Anastos [11] gave an efficient sampling algorithm when
the number of colours satisfies q ≥ max{Ck log n, 500k3∆

1
k−1 }, where n is the number of

vertices and Ck depends only on k. Their algorithm is the standard Glauber dynamics with
a random initial (not necessarily proper) colouring. The logarithmic lower bound on the
number of colours is crucial to their analysis, as it guarantees that there is a giant connected
component in the state space so that connectivity is not an issue.

In this paper, we study the projected Markov chain for sampling q-colourings in simple
hypergraphs. Our result improves the bound of [24, 19] for general hypergraphs, and does
not require unbounded number of colours, unlike in [12, 11]. Let µ denote the uniform
distribution over all proper colourings. Our main result is stated as follows.

▶ Theorem 1. For any δ > 0, there is a sampling algorithm such that given any ϵ ∈ (0, 1), a
k-uniform simple hypergraph H = (V, E) with maximum degree ∆, where k ≥ 20(1+δ)

δ , and an
integer q ≥ 100∆

2+δ
k−4/δ−4 , it returns a random q-colouring that is ϵ-close to µ in total variation

distance in time Õ(k5∆2n
(

n∆
ϵ

)0.01), where n = |V | and Õ hides a polylog(n, ∆, q, 1/ϵ) factor.

A few quick remarks are in order. First of all, the exponent of n in the running time can
be made even closer to 1 if more colours are given. See Theorem 10 for the full technical
statement. Secondly, our algorithm can be modified into a perfect sampler by applying
the bounding chain method [21] based on coupling from the past (CFTP) [31], following
the same lines of [19]. Moreover, using known reductions from approximate counting to
sampling [25, 34, 22, 26] (see [8] for simpler arguments specialized to local lemma settings),
one can efficiently and approximately count the number of proper colourings in simple
hypergraphs under the same conditions in Theorem 1.

Our algorithm follows the recent projected Markov chain approach [8] with state compres-
sion [9]. Roughly speaking, instead of assigning colours to vertices, we split [q] into √q buckets
of size √q each and assign buckets to vertices. We run a (systematic scan) Markov chain on
these bucket assignments to generate a sample, and then conditional on this sample to draw
a nearly uniform q-colouring. The benefit of this bucketing is that, under the conditions of

2 A hypergraph is simple if any two hyperedges intersect in at most one vertex. Simple hypergraphs are
also known as linear hypergraphs.
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Theorem 1, conditional on the assignments of all but one vertices, the assignment of the
remaining vertex is close to uniformly at random. This implies that any atomic event3 is
exponentially unlikely in the number of distinct vertices it depends on. In order to show
that this approach works, we need to show two things: 1) the projected Markov chain is
rapidly mixing; 2) each step of the Markov chain can be efficiently implemented. For general
hypergraphs, the previous q ≳ ∆3/(k−4) bound comes from balancing the conditions so that
the two claims are true simultaneously. However, there is no room left for relaxation on
either claim. This means that, for our improvements in simple hypergraphs, new ingredients
are required for both claims.

For rapid mixing, we take the information percolation approach [20, 24, 19], where the
main effort is to trace discrepancies through a one-step greedy coupling, and to show that
they are unlikely after a sufficient amount of time. In simple hypergraphs, an individual
discrepancy path through time has more distinct updates of vertices than in the general
case, and are thus more unlikely. This allows us to relax the condition. Our mixing time
analysis is largely inspired by the work of Hermon, Sly, and Zhang [20], although we do
need to handle some new complicacies, such as hyperedges whose vertices are consecutively
updated in the discrepancy path.

For efficient implementation, we use rejection sampling. Here we want to sample the
colour/bucket of a vertex conditional on the buckets of all other vertices. We can safely prune
hyperedges containing vertices of different buckets. The remaining connected component
containing the update vertex needs to have logarithmic size to guarantee efficiency of our
rejection sampling. The standard approach to bound its size is to do a union bound over
certain combinatorial structures with sufficiently many distinct vertices. Most previous
analysis is based on enumerating so-called “2-trees”, a notion first introduced by Alon [1].
Unfortunately, under the conditions of Theorem 1, there are too many “2-trees” to our
need. Instead, we introduce a new structure called “2-block-trees” (see Definition 15). Here
each “block” is a collection of θ connected hyperedges, and these blocks satisfy connectivity
properties similar to a 2-tree. Since the hypergraph is simple, a block has at least θk −

(
θ
2
)

distinct vertices. As long as θ ≪ k, we have a good lower bound on the number of distinct
vertices, which in turn implies a good upper bound on the probability of these structures
showing up. To finish off with the union bound, we give a new counting argument for the
number of 2-block-trees, which is based on finding a good encoding of these structures.

The exponent (roughly 2/k) of ∆ in Theorem 1 is unlikely to be tight, although it
appears to be the limit of current techniques. In fact, we conjecture that the computational
transition for sampling q-colourings in simple hypergraphs happens around the same threshold
of the local lemma (namely, the exponent should be roughly 1/k). This conjecture is
supported by the hardness result of Galanis, Guo, and Wang [14] for general q, and by the
algorithm of Frieze and Anastos [11] for q = Ω(log n). Note that for a simple k-uniform
hypergraph with maximum degree ∆, Frieze and Mubayi [10] showed that the chromatic

number χ(H) ≤ Ck

(
∆

log ∆

) 1
k−1 where Ck depends only on k. Their bound is asymptotically

better than the bound given by the local lemma. Thus there may still be a gap between the
searching threshold and the sampling threshold.

A final remark is that our method would still work as long as the overlap of hyperedges
is much smaller than k. The condition on the parameters will deteriorate slightly but would
still be better than those for general hypergraphs. In light of this, our method can potentially

3 An event is atomic if each variable it depends on must take one particular value. In discrete spaces, any
event can be decomposed into atomic ones.
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be applied to improve the constant of [13] on sampling solutions to random CNF formulas,
where the overlaps are at most 2 with high probability. On the other end of the spectrum,
if any two intersecting hyperedges intersect at at least k/2 vertices, the algorithm by Guo,
Jerrum, and Liu [16] almost matches the hardness result [14]. It is an intriguing question
how the size of overlaps affects the complexity of these sampling problems, or whether it is
possible to improve sampling algorithms via a better use of the overlap information.

Due to space limitation, we omit many proofs and only give sketches for a few important
results. Complete proofs can be found in the full version.

2 Preliminaries

In this section we gather some preliminary definitions and results for later use. We generally
use the bold font to denote vectors, matrices, and/or random variables. The notation [q]
stands for {1, 2, · · · , q}.

2.1 Graph theory
Throughout this paper, we use the following notations for a graph G = (V, E):

G[A]: the induced subgraph of G on the vertex subset A ⊆ V .
distG(A, B): the distance between two vertex sets A ⊆ V and B ⊆ V on G, which is
defined by distG(A, B) := minu∈A,v∈B distG(u, v) and distG(u, v) is the length of the
shortest path between u and v in G.
Γi

G(A): the set of vertices u such that distG(A, u) = i. Specifically, when i = 1, this
notation represents the neighbourhood of the given set A ⊆ V , and is also denoted by
ΓG(A).

We sometimes do not distinguish u and the singleton set {u} in sub- or sup-scripts. For the
sake of convenience, we may drop the subscript G when the underlying graph is clear from
the context.

We need some more definitions for later use.

▶ Definition 2 (Graph power). Let G be an undirected graph. The i-th power of G, denoted
by Gi, is another graph that has the same vertex set as G, and {u, v} is an edge in Gi iff
1 ≤ distG(u, v) ≤ i.

▶ Definition 3 (Line graph). Let H = (V, E) be a hypergraph. Its line graph Lin(H) = (VL, EL)
is given by VL = E, and {e, e′} ∈ EL iff e ∩ e′ ̸= ∅.

2.2 Coupling and Markov chains
Consider a discrete state space Ω and two distributions µ and ν over it. The total variation
distance between µ and ν is defined by

dTV(µ, ν) := 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

A coupling between µ and ν is a joint distribution (X, Y ) ∈ Ω2 such that its marginal
distribution over X (resp. Y ) is µ (resp. ν). The next lemma, usually referred to as the
coupling lemma, bounds the total variation distance between µ and ν by any of their couplings.

▶ Lemma 4 (Coupling lemma). For any coupling (X, Y ) between between µ and ν, dTV(µ, ν) ≤
Pr[X ̸= Y ]. Moreover, there exists an optimal coupling reaching the equality.
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Given a finite state space Ω, a discrete-time Markov chain is a sequence {Xt}t≥0 where
the probability of each possible state of Xt+1 only depends on the state of Xt. The
transition of the chain is represented by the transition matrix P : Ω2 → R[0,1], where
P (i, j) = Pr[Xt+1 = j | Xt = i]. When the state space Ω is clear from context, we simply
denote the chain by its transition matrix. A Markov chain P is:

irreducible, if for any X, Y ∈ Ω, there exists t > 0 such that P t(X, Y ) > 0;
aperiodic, if for all X ∈ Ω, it holds that gcd{t | P t(X, X) > 0} = 1; and
reversible with respect to a distribution π, if ∀X, Y ∈ Ω, π(X)P (X, Y ) = π(Y )P (Y, X).
This equation is usually known as the detailed balance condition.

A distribution π is stationary for P , if πP = π (regarding π as a row vector). The
detailed balance condition actually implies that the corresponding distribution is stationary.
Furthermore, if a Markov chain is both irreducible and aperiodic, then it converges to a
unique stationary distribution π. The speed of convergence towards π is characterised by its
mixing time, defined by

tmix(P , ϵ) := min
{

t | max
X∈Ω

dTV(P t(X, ·), π) < ϵ

}
.

The joint process (Xt, Yt)t≥0 is a coupling of Markov chain P if (Xt)t≥0 and (Yt)t≥0
individually follow the transition rule of P , and if Xi = Yi then Xj = Yj for all j ≥ i. By the
coupling lemma, for any coupling (Xt, Yt)t≥0 of P , it holds that dTV(P t(X0, ·), P t(Y0, ·)) ≤
Pr[Xt ̸= Yt]. Hence, the mixing time of P can be bounded by

tmix(P , ϵ) ≤ max
X0,Y0∈Ω

min {t | Pr[Xt ̸= Yt] ≤ ϵ} . (1)

2.3 Lovász Local Lemma

Let R = {R1, · · · , Rn} be a set of mutually independent random variables. Given an event
A, denote the set of variables that determines A by vbl(A) ⊆ R. Let B = {B1, · · · , Bn} be a
collection of “bad” events. For any event A (not necessarily in B), let Γ(A) := {B ∈ B | B ≠
A, vbl(B) ∩ vbl(A) ̸= ∅}. We will use the following version of Lovász Local Lemma from [18].

▶ Theorem 5 ([6, 18]). If there exists a function x : B → (0, 1) such that for any bad event
B ∈ B,

Pr[B] ≤ x(B)
∏

B′∈Γ(B)

(1− x(B′)), (2)

then it holds that

Pr
[ ∧

B∈B
B̄

]
≥
∏

B∈B
(1− x(B)) > 0.

Moreover, for any event A,

Pr
[

A |
∧

B∈B
B̄

]
≤ Pr[A]

∏
B∈Γ(A)

(1− x(B))−1. (3)
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2.4 List hypergraph colouring and local uniformity
In our algorithm and analysis, we consider the general list hypergraph colouring problem.
Let H = (V, E) be a k-uniform hypergraph with maximum degree ∆. Let (Qv)v∈V be a
set of colour lists. We say X ∈ ⊗v∈V Qv is a proper list colouring if no hyperedge in H is
monochromatic with respect to X. Let µ denote the uniform distribution of all proper list
hypergraph colourings. The following local uniformity property holds for the distribution µ.
Its proof follows from the argument in [17].

▶ Lemma 6 (local uniformity [17]). Let q0 = minv∈V |Qv| and q1 = maxv∈V |Qv|. For any
r ≥ k ≥ 2, if qk

0 ≥ eq1r∆, then for any v ∈ V and c ∈ Qv,

1
|Qv|

exp
(
−2

r

)
≤ µv(c) ≤ 1

|Qv|
exp

(
2
r

)
,

where µv is the marginal distribution on v induced by µ.

3 Algorithm

Let H = (V, E) be a k-uniform hypergraph and [q] a set of colours. Let µ denote the uniform
distribution of proper hypergraph colourings. Our algorithm is a variant of the projected
dynamics from [8], using a particular projection scheme from [9]. We first introduce some
basic definitions and notations, and then describe the sampling algorithm.

3.1 Projection scheme, projected distribution and conditional
distribution

Our sampling algorithm is based on the following projection scheme introduced in [9].

▶ Definition 7 (projection scheme [9]). Let 1 ≤ s ≤ q be an integer. A (balanced) projection
scheme with image size s is a function h : [q]→ [s] such that for any j ∈ [s],

∣∣h−1(j)
∣∣ = ⌊ q

s⌋
or
∣∣h−1(j)

∣∣ = ⌈ q
s⌉.

For any X ∈ [q]V , define the projection image Y ∈ [s]V of X by

∀v ∈ V, Yv = h(Xv).

For simplicity, we often denote Y = h(X), and for any subset Λ ⊆ V , we denote YΛ = h(XΛ).
Given a projection scheme, the following projected distribution can be naturally defined.

▶ Definition 8 (projected distribution). Given a projection scheme h, the projected distribution
ν is the distribution of Y = h(X), where X ∼ µ.

Given an image of the projection, we can define the following conditional distribution
over [q]V .

▶ Definition 9 (conditional distribution). Let Λ ⊆ V be a subset of vertices. Given a (partial)
image σΛ ∈ [s]Λ, the conditional distribution µσΛ is the distribution of X ∼ µ conditional on
h(XΛ) = σΛ.

By definition, µσΛ is a distribution over [q]V . We use µσΛ
S to denote the marginal distribution

on S ⊆ V projected from µσΛ , and we simply denote µσΛ
{v} by µσΛ

v .
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Algorithm 1 Sampling algorithm for hypergraph colouring.

Input: A hypergraph H = (V, E), a set of colours [q], an error bound 0 < ϵ < 1, and
a balanced projection scheme h : [q]→ [s], where s =

⌈√
q
⌉

Output: A random colouring X ∈ [q]V
1 sample Y ∈ [s]V uniformly at random;
2 for t from 1 to T = ⌈50n log 2n∆

ϵ ⌉ do
3 let v be the vertex with label (t mod n);
4 X ′

v ← Sample
(
H, h, {v}, YV \{v}, ϵ

4T

)
;

/* The Sample subroutine is given in Algorithm 2. */
5 Yv ← h(X ′

v);
6 return X ← Sample

(
H, h, V, Y , ϵ

4T

)
;

3.2 The sampling algorithm

In this section and what follows, we always assume that all vertices in V are labeled by
{0, 1, . . . , n − 1}. We also fix the parameter s =

⌈√
q
⌉
. Given a projection scheme h with

image size s, our sampling algorithm first samples Y ∈ [s]V from the projected distribution ν,
and then uses it to sample a random hypergraph colouring from the conditional distribution
µY . The pseudocode is given in Algorithm 1.

The main ingredient of Algorithm 1 is the part that samples Y (Line 1 to Line 5). It
is basically a systematic scan version of the Glauber dynamics for ν. In order to update
the state of a particular vertex, we invoke a subroutine Sample, given in Algorithm 2, to
sample X ′

v first from the distribution conditional on YV \{v}. Also, Sample is used to generate
the random colouring conditional on Y in Line 6. The subroutine Sample in fact returns
an approximate sample with high probability. Here we have to settle with some small
error because exactly calculating the conditional distribution is intractable. To implement
Sample, we use standard rejection sampling, which is described in Algorithm 3. Showing the
correctness and efficiency of Algorithm 2 and Algorithm 3 is one of our main contributions.

In the following we flesh out the outline above. Let Λ ⊆ V and YΛ ∈ [s]Λ. Note that
during the execution of Algorithm 1, YΛ is a random input to Sample. Let S ⊆ V and
ζ ∈ (0, 1). The subroutine Sample (H, h, S, YΛ, ζ) in Algorithm 1 returns a random sample
XS ∈ [q]S such that with probability at least 1− ζ, the total variation distance between XS

and µYΛ
S is at most ζ, where the probability is taken over the randomness of the input YΛ.

In the t-th step of the systematic scan in Algorithm 1, we pick the vertex v with label (t
mod n), and use Line 4 and Line 5 to update the value of Yv. Ideally, we want to resample
the value of Yv according to the conditional distribution ν

YV \{v}
v , where ν is the distribution

projected from µ. However, exactly computing the conditional distribution is not tractable,
and we approximate it by projecting from the random sample X ′

v ∈ [q] given by Sample in
Line 4. It is straightforward to verify that Yv approximately follows the law of ν

YV \{v}
v as

long as X ′
v approximately follows the law of µ

YV \{v}
v . In the last step, we use Sample to draw

approximate samples from the conditional distribution µY .
We explain the details of Sample (H, h, S, YΛ, ζ) next. First we need some notations.

Given a partial image YΛ, we say an hyperedge e ∈ E is satisfied by YΛ if there exists
u, v ∈ e ∩ Λ such that Yu ̸= Yv. In other words, for all X ∈ [q]V such that YΛ = h(XΛ), the
hyperedge e is not monochromatic with respect to X, and thus e is always “satisfied” given

APPROX/RANDOM 2022



25:8 Improved Bounds for Randomly Colouring Simple Hypergraphs

Algorithm 2 Sample (H, h, S, YΛ, ζ).

Input: A hypergraph H = (V, E), a projection scheme h : [q]→ [s], a subset S ⊆ V ,
a (partial) image YΛ ∈ [s]Λ where Λ ⊆ V , and an error bound ζ ∈ (0, 1)

Output: A random (partial) colouring XS ∈ [q]S
1 remove all hyperedges in H that are satisfied by YΛ to obtain HYΛ = (V, EYΛ);
2 let Hi = (Vi, EYΛ

i ) for 1 ≤ i ≤ ℓ be the connected components such that Vi ∩ S ̸= ∅;
3 if ∃1 ≤ i ≤ ℓ such that |EYΛ

i | > 4∆k3 log
(

n∆
ζ

)
then

4 return XS ∈ [q]S uniformly at random;
5 for i from 1 to ℓ do

6 Xi ← RejectionSampling(Hi, h, YΛ∩Vi
, R), where R =

⌈
10
(

n∆
ζ

) 1
1000η log n

ζ

⌉
;

/* The RejectionSampling subroutine is given in Algorithm 3. */
7 if Xi =⊥ then
8 return XS ∈ [q]S uniformly at random ;

9 return XS where X =
⊎ℓ

i=1 Xi;

YΛ. Let HYΛ = (V, EYΛ) be the hypergraph obtained from H by removing all hyperedges
satisfied by YΛ. Let HYΛ

1 , HYΛ
2 , . . . , HYΛ

m denote the connected components of HYΛ , where
HYΛ

i = (Vi, EYΛ
i ). The following fact is straightforward to verify

µYΛ = µ
YΛ∩V1
1 × µ

YΛ∩V2
2 × . . .× µ

YΛ∩Vm
m ,

where µi is the uniform distribution over proper q-colourings of the sub-hypergraph HYΛ
i

(namely, µ
YΛ∩Vi
i is the uniform distribution over list colourings of HYΛ

i conditional on
YΛ∩Vi

). Without loss of generality, we assume S ∩ Vj ̸= ∅ for 1 ≤ j ≤ ℓ. To draw a
random sample from µYΛ

S , it suffices to draw a random sample from the product distribution
µ

YΛ∩V1
1 × µ

YΛ∩V2
2 × . . .× µ

YΛ∩Vℓ

ℓ , which we will do by drawing from each µ
YΛ∩Vi
i individually

using standard rejection sampling (given in Algorithm 3).
One final detail about Algorithm 2 and Algorithm 3 is about their efficiency. Basically

we set some thresholds to guard against two unlikely bad events. We break out from the
normal execution immediately and return an arbitrary random sample if one of the following
two bad events occur:

for some 1 ≤ i ≤ ℓ, |EYΛ
i | > 4∆k3 log

(
n∆
ζ

)
;

for some 1 ≤ i ≤ ℓ, the rejection sampling for µ
YΛ∩Vi
i fails after R trials, where

R :=
⌈

10
(

n∆
ζ

) 1
1000η

log n

ζ

⌉
and η := 1

∆

( q

100

) k−3
2

. (4)

In the analysis (see Lemma 13), we will show that both of the two bad events above occur with
low probability, and thus with high probability the Sample subroutine returns an approximate
sample with desired accuracy.
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Algorithm 3 RejectionSampling(H, h, YΛ, R).

Input: A hypergraph H = (V, E), a projection scheme h : [q]→ [s], a (partial) image
YΛ ∈ [s]Λ where Λ ⊆ V and an integer R

Output: A random colouring X ∈ [q]V or a special symbol ⊥
1 for each v ∈ V , let Qv ← h−1(Yv) if v ∈ Λ, and Qv ← [q] if v /∈ Λ;
2 for i from 1 to R do
3 sample Xv ∈ Qv uniformly at random for all v ∈ V and let X = (Xv)v∈V ;
4 if X is a proper hypergraph colouring of H then
5 return X;

6 return ⊥;

4 Proof of the main theorem

Let H = (V, E) be a simple k-uniform hypergraph with maximum degree ∆. Let [q] be a set
of q colours. Recall s =

⌈√
q
⌉
, where s is the parameter of projection scheme h (Definition 7).

To construct h, we partition [q] into s intervals, where the first (q mod s) of them contains
⌈q/s⌉ elements each while the rest contains ⌊q/s⌋ elements each. For each i ∈ [q], set

h(i) = j where i belongs to the j-th interval. (5)

Note that this h satisfies Definition 7. In our algorithm, h is implemented as an oracle,
supporting the following two types of queries.

Evaluation: given i, the oracle returns h(i).
Inversion: given j, the oracle returns a uniform element in h−1(j).

Obviously, each query can be answered in time O(log q) because of the construction of h.
The next theorem is a stronger form of Theorem 1. It shows that our algorithm can run

in time arbitrarily close to linear in n, the number of vertices, as long as sufficiently many
colours are available.

▶ Theorem 10. The following result holds for any δ > 0 and 0 < α ≤ 1. Given any
ϵ ∈ (0, 1), any q-colouring instance on k-uniform simple hypergraph H = (V, E) with
maximum degree ∆, and a balanced projection scheme, if k ≥ 20(1+δ)

δ and q ≥ 100
(∆

α

) 2+δ
k−4/δ−4 ,

Algorithm 1 returns a random colouring that is ϵ-close to µ in total variation distance in
time O

(
∆2k5n

(
n∆

ϵ

)α/100 log4
(

n∆q
ϵ

))
.

▶ Remark 11. The parameter α captures the relation between the local lemma condition and
the running time of the algorithm. If α becomes smaller, the condition is more confined, and
the running time is closer to linear. In particular, Theorem 1 is implied by setting α = 1.

We need two lemmas to prove Theorem 10. The first lemma analyses the mixing time of
the idealised systematic scan. Let ν be the projected distribution. The idealised systematic
scan chain Pscan for ν is defined as follows. Initially, let X0 ∈ [s]V be an arbitrary initial
configuration. In the t-th step, the systematic scan does the following update steps.

Pick the vertex v ∈ V with label (t mod n) and let Xt(V \ {v})← Xt−1(V \ {v}).
Sample Xt(v) ∼ ν

Xt−1(V \{v})
v .

▶ Lemma 12. If q ≥ 40∆
2

k−4 and k ≥ 20, the systematic scan chain Pscan for ν is irreducible,
aperiodic and reversible with respect to ν. Furthermore, the mixing time satisfies

∀0 < ϵ < 1, Tmix(Pscan, ϵ) ≤
⌈

50n log n∆
ϵ

⌉
.
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25:10 Improved Bounds for Randomly Colouring Simple Hypergraphs

Lemma 12 is shown in Section 6.
Our next lemma analyzes the Sample subroutine. Let (Yt)T

t=0 denote the sequence of
random configurations in [s]V generated by Algorithm 1, where Y0 ∈ [s]V is the initial
configuration and Yt is the configuration after the t-th iteration of the for-loop. For any
1 ≤ t ≤ T + 1, consider the t-th invocation of Sample and define the following two bad events:
Bcom(t): in the t-th invocation, XS is returned by Line 4 in Algorithm 2;
Brej(t): in the t-th invocation, XS is returned by Line 8 in Algorithm 2.

Note that the (T + 1)-th invocation of the subroutine Sample is in Line 6 in Algorithm 1.
Let H = (V, E) denote the input hypergraph of Algorithm 1.

▶ Lemma 13. For 1 ≤ t ≤ T +1, the t-th invocation of the subroutine Sample (H, h, S, YΛ, ζ),
where h is given by (5), satisfies

1. the running time of the subroutine is bounded by O

(
|S|∆2k5

(
n∆
ζ

) 1
1000η log3

(
n∆q

ζ

))
;

2. conditional on neither Bcom(t) nor Brej(t) occurs, the subroutine returns a perfect sample
from µYΛ

S ;
3. if q ≥ 100∆

2
k−3 and k ≥ 20, then Pr[Brej(t)] ≤ ζ;

4. for any δ > 0, if k ≥ 20(δ+1)
δ , q ≥ 100∆

2+δ
k−4/δ−3 , and H is simple, then Pr[Bcom(t)] ≤ ζ.

Properties 1, 2 and 3 are very standard and hold in general hypergraphs. They can be
established by mimicking the argument in [8, 9]. The challenge here is to prove Property 4,
which is established in Section 5.

Given Lemma 12 and Lemma 13, it is straightforward to establish Theorem 10. Lemma 12
shows that the idealized systematic scan chain is rapidly mixing, and Lemma 13 shows that
our implementation of the chain is efficient. Lemma 13 also shows that the exceptions and
errors in our implementation have low probability to happen. Thus, by a coupling argument
and the coupling lemma, Lemma 4, the output of our algorithm is within ϵ total variation
distance to the desired one.

5 Analysis of connected components

In this section, we provide a proof sketch for Property 4 in Lemma 13. Note that this
property needs the input hypergraph H being simple. Fix 1 ≤ t ≤ T + 1. Consider the
t-th invocation of the subroutine Sample. If 1 ≤ t ≤ T , we use vt to denote the vertex
picked by the t-th step of the systematic scan, i.e. vt is the vertex with label (t mod n),
and let Λ := V \ {vt}. If t = T + 1, let Λ := V . Recall that Yt ∈ [s]V is the random
configuration generated by Algorithm 1 after the t-th iteration of the for-loop. To simplify
the notation, we define Y = Yt−1(Λ), so that the input partial configuration to Sample is
Y (see Algorithm 1). Hence, we consider the subroutine Sample (H, h, S, Y , ζ). Note that
Y ∈ [s]Λ is a random configuration, and therefore HY is a random hypergraph, where HY is
obtained by removing all the hyperedges in H satisfied by Y . Fix an arbitrary vertex v ∈ V .
We use HY

v = (V Y
v , EY

v ) to denote the connected component in HY that contains the vertex
v. Note that EY

v can be an empty set. A hyperedge e ∈ E is incident to v in the hypergraph
H if v ∈ e. We prove the following lemma, which implies Property 4 by a straightforward
union bound.

▶ Lemma 14. For any δ > 0, if k ≥ 20(1+δ)
δ , q ≥ 100∆

2+δ
k−4/δ−3 , and H is simple, then for

any v ∈ V , any e incident to v in H, it holds that

PrY

[
e ∈ EY

v ∧ |EY
v | ≥ 4∆k3 log

(
n∆
ζ

)]
≤ ζ

n∆ .
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Denote by LH = (VL, EL) = Lin(H) the line graph of H (recall Definition 3). Let e be
the hyperedge in Lemma 14 and let u = ue be the vertex in LH corresponding to e. Let
LY

H = (V Y
L , EY

L ) denote the line graph of HY . Note that LY
H is random, and the randomness

of LY
H is determined by the randomness of Y .

Let C ⊆ VL denote the random set of all vertices in the connected component of LY
H that

contains the vertex u. If u /∈ V Y
L , let C = ∅. Define an integer parameter θ :=

⌈ 4
δ

⌉
. To prove

Lemma 14, it suffices to show that

∀M > θ, PrY [|C| ≥M ] ≤
(

1
2

) M
2θk2∆

−1
. (6)

This is because k ≥ 20(δ+1)
δ >

⌈ 4
δ

⌉
+ 1 = θ + 1, and setting M = 4∆k3 log

(
n∆
ζ

)
proves

Lemma 14.
Define the following collection of subsets

Conu(M) := {C ⊆ VL | u ∈ C ∧ |C| = M ∧ LH [C] is connected} .

It is straightforward to verify that

PrY [|C| ≥M ] ≤ PrY

[
∃C ∈ Conu(M) s.t. C ⊆ V Y

L

]
.

In our proof, we partition the set Conu(M) into two disjoint subsets Con(1)
u (M) and

Con(2)
u (M), and bound their corresponding probabilities separately, by showing

PrY

[
∃C ∈ Con(1)

u (M) s.t. C ⊆ V Y
L

]
<

(
1
2

) M
2θk2∆

; (7)

PrY

[
∃C ∈ Con(2)

u (M) s.t. C ⊆ V Y
L

]
<

(
1
2

)M

. (8)

We use Algorithm 4 to partition the set Conu(M). Taking as an input any C ∈ Conu(M),
Algorithm 4 outputs an integer ℓ = ℓ(C) and disjoint sets C1, C2, . . . , Cℓ ⊆ C. The set
C falls into C ∈ Con(1)

u (M) if ℓ(C) ≥ M
2θk2∆ , and Con(2)

u (M) otherwise. We remark that
Algorithm 4 is only used for analysis, and we do not need to implement this algorithm.

To characterise the output of Algorithm 4, we introduce a notion called “2-block-tree”.

▶ Definition 15 (2-block-tree). Let θ ≥ 1 be an integer. Let G = (V, E) be a graph. A set
{C1, C2, . . . , Cℓ} is a 2-block-tree with block size θ and tree size ℓ in G if
1. for any 1 ≤ i ≤ ℓ, Ci ⊆ V , |Ci| = θ, and the induced subgraph G[Ci] is connected;
2. for any distinct 1 ≤ i, j ≤ ℓ, distG(Ci, Cj) ≥ 2;
3. {C1, · · · , Cℓ} is connected on G2. (Recall Definition 2 of graph powers.)

One can easily observe that the notion of 2-block-trees is a generalisation of 2-trees
in [1] by setting θ = 1. According to the next proposition, the output of Algorithm 4 is a
2-block-tree in LH . This explains the name “2-block-tree generator”.

▶ Proposition 16. The output {C1, C2, . . . , Cℓ} of Algorithm 4 satisfies that
1. {C1, C2, . . . , Cℓ} is a 2-block-tree in LH with block size θ satisfying u ∈ C1 and ∪ℓ

i=1Ci ⊆
C;

2. if all vertices in ΓG(Ci) are removed from G, where G = LH [C], then the resulting
graph G[C ′] is a collection of connected components whose sizes are at most θ, where
C ′ = C \ (∪ℓ

i=1ΓG(Ci)).
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25:12 Improved Bounds for Randomly Colouring Simple Hypergraphs

Algorithm 4 2-block-tree generator.

Input: the parameter δ ∈ (0, 1) in Lemma 14, the line graph LH , an integer M > θ,
a vertex u in LH , and a subset C ∈ Conu(M)

Output: an integer ℓ and connected subgraphs C1, · · · , Cℓ ⊆ C

1 let G = LH [C] = (C, EC) be the subgraph of LH induced by C;
2 θ ←

⌈ 4
δ

⌉
, ℓ← 0, V ← C;

3 while |V | ≥ θ do
4 ℓ← ℓ + 1;
5 if ℓ = 1 then uℓ ← u;
6 if ℓ > 1 then let uℓ be an arbitrary vertex in ΓG(C \ V );
7 let Cℓ ⊆ V be an arbitrary connected subgraph in G such that |Cℓ| = θ and

uℓ ∈ Cℓ;
8 V ← V \ (Cℓ ∪ ΓG(Cℓ));
9 for each connected component G′ = (V ′, E′) in G[V ] such that |V ′| < θ do

10 V ← V \ V ′;

11 return ℓ, {C1, C2, . . . , Cℓ};

To prove (7), it is not hard to see that for any C ∈ Con(1)
u (M), there is a 2-block-tree

tree {C1, C2, . . . , Cℓ} in the line graph LH with block size θ and tree size ℓ satisfying

u ∈ C1 ∪ C2 ∪ . . . ∪ Cℓ and C1 ∪ C2 ∪ . . . ∪ Cℓ ⊆ C (9)

where ℓ =
⌈

M
2θk2∆

⌉
. We denote a 2-block-tree tree with block size θ and tree size ℓ by

(θ, ℓ)-2-block-tree. This implies that

PrY

[
∃C ∈ Con(1)

u (M) s.t. C ⊆ V Y
L

]
≤ PrY

[
∃ (θ, ℓ)-2-block-tree {Ci} in LH satisfying (9) s.t. ∀1 ≤ i ≤ ℓ, Ci ⊆ V Y

L

]
.

We apply a union bound on the RHS over all possible 2-block-trees. The probability of
any 2-block-tree is bounded by

PrY

[
∀1 ≤ i ≤ ℓ, Ci ⊆ V Y

L

]
≤

(
(es)θ

(
1
s

+ 1
q

)θ(k−θ)
)ℓ

. (10)

To bound the number of 2-block-trees, we use the following lemma.

▶ Lemma 17. Let θ ≥ 1 be an integer. Let G = (V, E) be a graph with maximum degree d.
For any integer ℓ ≥ 1, any vertex v ∈ V , the number of 2-block-trees {C1, C2, . . . , Cℓ} with
block size θ and tree size ℓ such that v ∈ ∪ℓ

i=1Ci is at most (θeθdθ+1)ℓ.

One may attempt Lemma 17 using the count of connected components with a degree
bound in [4] based on [33]. However, it is too loose to our need, and our refined estimation
in Lemma 17 is shown by a more complicated encoding argument. Our encoding has ℓ + 1
components. The first one encodes how Ci’s are connected in G2, and the rest encodes each
individual Ci. To encode, we need to carefully perform a depth-first-search (DFS) in G and
generate an encoding for Ci whenever we meet one. The DFS generates a tree encoding how
Ci’s are connected in G2. This way, we can uniquely recover the original 2-block-tree and
map each component to some subtree of a suitable infinite tree to bound their numbers.
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The inequality (7) follows directly from (10) and Lemma 17.
To prove (8), we take a union bound directly over connected components of size M . Using

Algorithm 4, we can get a good lower bound on the number of distinct vertices in the original
hypergraph for a component. This implies that each component in Con(2)

u (M) happens with
probability much smaller than the total number of such components, and the union bound
succeeds.

6 Mixing of systematic scan

In this section, we give the proof sketch of the mixing lemma for the projected systematic
scan Markov chain of hypergraph colourings (Lemma 12). It is straightforward to verify
that the systematic scan is aperiodic and reversible with respect to ν. Irreducibility follows
from the local lemma, Theorem 5. More precisely, Theorem 5 implies that for any τ ∈ [s]V ,
ν(τ) > 0 if q ≥ 40∆

2
k−4 and k ≥ 20. Hence, the systematic scan has the unique stationary

distribution ν.
For the mixing time, the analysis is based on an information percolation argument. Define

a coupling C of the systematic scan (Xt, Yt)t≥0. Let X0, Y0 ∈ [s]V be two arbitrary initial
configurations. In the t-th transition step,

let v ∈ V be the vertex with label (t mod n) and set (Xt(u), Yt(u))← (Xt−1(u), Yt−1(u))
for all other vertices u ∈ V \ {v};
sample (Xt(v), Yt(v)) from the optimal coupling between ν

Xt−1(V \{v})
v and ν

Yt−1(V \{v})
v .

We prove the following lemma in this section.

▶ Lemma 18. Suppose k ≥ 20 and q ≥ 40∆
2

k−4 . For any initial configurations X0, Y0 ∈ [s]V ,
any ϵ ∈ (0, 1), let T =

⌈
50n log n∆

ϵ

⌉
, it holds that

∀v ∈ V, PrC [XT (v) ̸= YT (v)] ≤ ϵ

n
.

By Lemma 18, a union bound over all vertices and the coupling lemma (Lemma 4), it holds
that maxX0,Y0∈[s]V dTV(XT , YT ) ≤ PrC [XT ̸= YT ] ≤ ϵ, which proves the mixing time part
of Lemma 12 via (1). In the rest of this section, we use the information percolation technique
to analyse the coupling C and prove Lemma 18.

Consider the coupling procedure (Xt, Yt)t≥0. For each t ≥ 1, let vt denote the vertex
picked in the t-th step of systematic scan, namely, vt is the vertex with label (t mod n).
Consider the t-th transition step, where t > 0. Define the set of agreement vertices when
updating vt at time t by At := {v ∈ V \{vt} | Xt−1(v) = Yt−1(v)}. We say a hyperedge e ∈ E
is satisfied by At if there exist two distinct vertices u, v ∈ e∩At such that Xt−1(u) ̸= Xt−1(v)
(and hence Yt−1(u) ̸= Yt−1(v) ). We remove all the hyperedges e ∈ E satisfied by At to
obtain a sub-hypergraph Ht. Let Hv

t denote the connected component in Ht containing v.

▶ Lemma 19. If Xt(vt) ̸= Yt(vt) for some t ≥ 1, then there exists u ̸= vt in Hvt
t such that

Xt−1(u) ̸= Yt−1(u).

Lemma 19 can be proved by contradiction. Note that Xt(vt) (resp. Yt(vt)) depends only
on the configuration of Xt−1 (resp. Yt−1(vt)) restricted on the vertices in Hvt

t . If Xt−1 and
Yt−1 are the same on the vertices in Hvt

t , then Xt(vt) and Yt(vt) must be coupled perfectly.
We say that a hyperedge sequence e1, e2, . . . , eℓ is a path in a hypergraph if for each

1 < i ≤ ℓ, ei−1 ∩ ei ̸= ∅ and ei−1 ̸= ei. The following result is a straightforward corollary of
Lemma 19.
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▶ Corollary 20. Let t ≥ 1. If Xt(vt) ̸= Yt(vt), then there exists a vertex u ̸= vt satisfying
Xt−1(u) ̸= Yt−1(u) and a path e1, e2, . . . , eℓ in hypergraph H such that

v ∈ e1 and u ∈ eℓ;
for any hyperedge ei in the path, there exists c ∈ [s] such that for all vertex w ∈ ei and
w ̸= vt, either Xt−1(w) = Yt−1(w) = c or Xt−1(w) ̸= Yt−1(w).

Corollary 20 is a key result for the information percolation analysis. For any time 0 ≤ t ≤
T , any vertex v ∈ V , define the set of previous update times by S(t, v) := {1 ≤ i ≤ t | vi = v},
where vi is the vertex picked in the i-th transition step. Define the last update time for v up
to t by

timeud(t, v) :=
{

maxi∈S(t,v) i if S(t, v) ̸= ∅;
0 otherwise.

By Corollary 20, if the coupling on vertex v failed at time t, then there must exist a
vertex u such that the coupling on u failed at time t′ = timeud(t, u). We apply Corollary 20
recursively until we find a vertex w such that X0(w) ̸= Y0(w). This gives us an update time
sequence t = t1 > t2 > . . . > tℓ = 0 such that the coupling of each ti-th transition fails,
together with a set of paths satisfying the properties in Corollary 20. We will show that such
an update time sequence and the set of paths occur with small probability, which bounds
the probability of Xt(vt) ̸= Yt(vt). For this analysis, we will use the notions of extended
hyperedges and extended hypergraphs introduced by He, Sun, and Wu [19].

Fix an integer T ≥ 1 to be the total number of transitions of the systematic scan. Define
the set of extended vertex V ext by

V ext = {(t, vt) | 1 ≤ t ≤ T} ∪ {(0, v) | v ∈ V },

where vt is the vertex with label (t mod n). Each vertex (t, u) ∈ V ext represents an update,
i.e. u is updated at the t-th transition step. We regard all vertices “updated” at the
initial step (t = 0). Consider the systematic scan process (Xt)t≥0. For any hyperedge
e ∈ E , the configuration Xt(e) of e at time t satisfies for all u ∈ e, Xt(u) = Xt′(u), where
t′ = timeud(t, u), namely, the value of u at time t is the same as the value of u at time
t′ = timeud(t, u). Besides, the configuration of hyperedge e remains unchanged until some
vertex in e is updated. This motivates the following definition.

▶ Definition 21. The set Eext of extended hyperedges is defined by Eext := ∪T
t=0Eext

t , where

Eext
0 :=

⋃
e∈E
{(0, v) | v ∈ e},

∀1 ≤ t ≤ T, Eext
t :=

⋃
e:vt∈e

{(t′, v) | v ∈ e ∧ t′ = timeud(t, v)} .

The extended hypergraph is Hext = (V ext, Eext).

At the beginning, each hyperedge e ∈ E takes its initial value, and thus we add all the
extended hyperedges with t = 0 to Eext

0 . For each update at time 1 ≤ t ≤ T , only the value
of vt is updated. Thus the configurations of only the hyperedges containing vt are updated,
and we add only those to Eext

t .
Corollary 20 shows that for any t ≥ 1, if the coupling in the t-th transition step fails (i.e.

Xt(vt) ̸= Yt(vt)), then we can find a specific path in the hypergraph H. Our next lemma
lifts such a path to Hext. Note that there is a slight difference regarding vt comparing to
Corollary 20.
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▶ Lemma 22. Let 1 ≤ t ≤ T be an integer. Suppose Xt(vt) ̸= Yt(vt). There exist a vertex
(t′, u) ∈ V ext satisfying t′ < t and Xt′(u) ̸= Yt′(u), together with a path eext

1 , eext
2 , . . . , eext

ℓ in
Hext such that

(t, vt) ∈ eext
1 and (t′, u) ∈ eext

ℓ ;
for any hyperedge eext

i in the path, there exists c ∈ [s] such that for all (j, w) ∈ eext
i , either

Xj(w) = Yj(w) = c or Xj(w) ̸= Yj(w).

We may repeatedly apply Lemma 22 to trace a discrepancy from some time t to time 0.
By pruning “cycles” (in some hypergraph sense) from such a path from t to 0 in Hext, we
can find a path satisfying the properties in the following lemma.

▶ Lemma 23. Let 1 ≤ t ≤ T be an integer. Suppose Xt(vt) ̸= Yt(vt). There exists a path
eext

1 , eext
2 , . . . , eext

ℓ in the extended hypergraph Hext such that
(t, vt) ∈ eext

1 , min{j | (j, w) ∈ eext
i } > 0 for all i < ℓ and min{j | (j, w) ∈ eext

ℓ } = 0;
for any 1 ≤ i, i′ ≤ ℓ satisfying |i− i′| ≥ 2, eext

i ∩ eext
i′ = ∅;

for any hyperedge eext
i in the path, there exists c ∈ [s] such that for all (j, w) ∈ eext

i , either
Xj(w) = Yj(w) = c or Xj(w) ̸= Yj(w).

Finally, we give the proof sketch of Lemma 18.

Proof sketch of Lemma 18. Let t = timeud (T, v) ≥
⌈
40n log n

ϵ

⌉
. We only need to bound

the probability of Xt(v) ̸= Yt(v). Fix a path P = eext
1 , eext

2 , . . . , eext
ℓ satisfying the first two

properties in Lemma 23. Call P bad if P satisfies the third property in Lemma 23. We
bound the probability of P being bad, and then take a union bound over all possible paths.

To bound the probability, we truncate the last extended hyperedge eext
ℓ in P to obtain a

new path P ′ of length ℓ− 1. By using the local lemma, we can show that

Pr[P is bad] ≤
(

1.16
√

q

(
1 + 5

k

))N(P′)
,

where N(P ′) denotes the number of distinct extended vertices in P ′ and the constant 1.16
comes from comparing s = ⌈√q⌉ and √q.

In our analysis, we need to use some detailed structure of the extended hypergraph.
Each eext ∈ Eext corresponds to a unique hyperedge edge (eext) ∈ E in the input hypergraph,
or more formally, edge (eext) := {v | (t, v) ∈ eext}. For two adjacent extended hyperedges
eext, f ext ∈ Eext, eext is an out-neighbor of f ext if edge (eext) ̸= edge (f ext), and eext is a
self-neighbor of f ext if edge (eext) = edge (f ext). For each eext, the number of out-neighbours
is at most ∆k2, whereas the number of self-neighbours is at most 2k.

Back to the path P ′. Consider two adjacent extended hyperedges eext
i and eext

i+1 in P ′.
If eext

i is an out-neighbour of eext
i+1, then eext

i and eext
i+1 share at most one extended vertex

because the input hypergraph is simple. In this case, P ′ has many distinct extended
vertices. Hence, we can control the probability that P is bad.
If eext

i is an self-neighbour of eext
i+1, then eext

i and eext
i+1 may share a lot of extended vertices.

In this case we have to choose non-consecutive hyperedges to bound the number of distinct
extended vertices. However, thankfully, given eext

i , there are at most 2k choices for eext
i+1,

and there are not very many paths with many self-neighbours inside.
With these two cases analysed, to apply the union bound and finish the proof, we parametrise
the number of self-neighbours in a path and show that the number of all paths does not
outweigh the probability of them being bad. ◀
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Abstract
Lifting theorems are theorems that bound the communication complexity of a composed function f◦gn

in terms of the query complexity of f and the communication complexity of g. Such theorems
constitute a powerful generalization of direct-sum theorems for g, and have seen numerous applications
in recent years.

We prove a new lifting theorem that works for every two functions f, g such that the discrepancy
of g is at most inverse polynomial in the input length of f . Our result is a significant generalization
of the known direct-sum theorem for discrepancy, and extends the range of inner functions g for
which lifting theorems hold.
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1 Introduction

The direct-sum question is a fundamental question in complexity theory, which asks whether
computing a function g on n independent inputs is n times harder than computing it on a
single input. A related type of result, which is sometimes referred to as an “XOR lemma”, says
that computing the XOR of the outputs of g on n independent inputs is about n times harder
than computing of g on a single coordinate. Both questions received much attention in the
communication complexity literature, see, e.g., [24, 13, 23, 7, 31, 21, 3, 22, 25, 2, 20, 33, 5, 4].

A lifting theorem is a powerful generalization of both direct-sum theorems and XOR
lemmas. Let f : {0, 1}n → O and g : {0, 1}b ×{0, 1}b → {0, 1} be functions (where O is some
arbitrary set). The block-composed function f ◦ gn is the function that corresponds to the
following task: Alice gets x1, . . . , xn ∈ {0, 1}b, Bob gets y1, . . . , yn ∈ {0, 1}b, and they wish
to compute the output of f on the n-bit string whose i-th bit is g(xi, yi). Lifting theorems
say that the “natural way” for computing f ◦ gn is more-or-less the best way. In particular,
direct-sum theorems and XOR lemmas can be viewed as lifting theorems for the special cases
where f is the identity function and the parity function respectively.

A bit more formally, observe that there is an obvious protocol for computing f ◦ gn: Alice
and Bob jointly simulate a decision tree of optimal height for solving f . Any time the tree
queries the i-th bit, they compute g on (xi, yi) by invoking the best possible communication
protocol for g. A (query-to-communication) lifting theorem is a theorem that says that this
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protocol is roughly optimal. Specifically, let Ddt(f) and Dcc(g) denote the deterministic
query complexity of f and communication complexity of g respectively, and let Rdt(f) and
Rcc(g) denote the corresponding randomized complexities. Then, a lifting theorem says that

Dcc(f ◦ gn) = Ω
(
Ddt(f) · Dcc(g)

)
(in the deterministic setting) (1)

Rcc(f ◦ gn) = Ω
(
Rdt(f) · Rcc(g)

)
(in the randomized setting).

In other words, a lifting theorem says that the communication complexity of f ◦ gn is close
to the upper bound that is obtained by the natural protocol.

In recent years, lifting theorems found numerous applications, such as proving lower bounds
on monotone circuit complexity and proof complexity (e.g. [28, 16, 30, 26, 14, 27, 11, 12]),
the separation of partition number and deterministic communication complexity [17], proving
lower bounds on data structures [10], and an application to the famous log-rank conjecture
[19], to name a few.

For most applications, it is sufficient to prove a lifting theorem that holds for every outer
function f , but only for one particular choice of the inner function g. Moreover, it is desirable
that the inner function g would be a simple as possible, and that its input length b would
be a small as possible in terms of in the input length n of the outer function f . For these
reasons, the function g is often referred to as the “gadget”.

On the other hand, if we view lifting theorems as a generalization of direct-sum theorems,
then it is an important research goal to prove lifting theorems for as many inner functions g

as possible, including “complicated” ones. This goal is not only interesting in its own right,
but might also lead to additional applications. Indeed, this goal is a natural extension of the
long line of research that attempts to prove direct-sum theorems for as many functions as
possible. This is the perspective we take in this work, following Chattopadhyay et. al. [9, 8].
In particular, we intentionally avoid the term “gadget”, since we now view the function g as
the main object of study.

Previous work

The first lifting theorem, due to Raz and McKenzie [29], holds only when the inner function g

is the index function. For a long time, this was the only inner function for which lifting
theorems were known to hold for every outer function f . Then, the works of Chattopadhyay
et. al. [9] and Wu et. al. [35] proved a lifting theorem for the case where g is the inner
product function. The work of [9] went further than that, and showed that their lifting
theorem holds for any inner function g that satisfies a certain hitting property. This includes,
for example, the gap-Hamming-distance problem.

All the above results are stated only for the deterministic setting. In the randomized
setting, Göös, Pitassi, and Watson [18] proved a lifting theorem with the inner function g

being the index function. In addition, Göös et. al. [15] proved a lifting theorem in the
non-deterministic setting (as well as several related settings) with g being the inner product
function.

More recently, Chattopadhyay et. al. [8] proved a lifting theorem that holds for every
inner function g that has logarithmic input length and exponentially small discrepancy. This
theorem holds in both the deterministic and randomized setting, and includes the cases
where g is the inner product function or a random function. Since our work builds on the
lifting theorem of [8], we discuss this result in more detail. The discrepancy of g, denoted
disc(g), is a natural and widely-studied property of functions, and is equal to the maximum
bias of g in any combinatorial rectangle. Formally, it is defined as follows:
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▶ Definition 1. Let g : {0, 1}b × {0, 1}b → {0, 1} be a function, and let U, V be independent
random variables that are uniformly distributed over {0, 1}b. Given a combinatorial rectangle
R ⊆ {0, 1}b × {0, 1}b, the discrepancy of g with respect to R, denoted discR(g), is defined as
follows:

discR(g) = |Pr [g(U, V ) = 0 and (U, V ) ∈ R] − Pr [g(U, V ) = 1 and (U, V ) ∈ R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all
combinatorial rectangles R ⊆ {0, 1}b × {0, 1}b.

Informally, the main theorem of [8] says that if disc(g) = 2−Ω(b) and b ≥ c · log n for some
constant c, then

Dcc(f ◦ gn) = Ω
(
Ddt(f) · b

)
and Rcc

1/3(f ◦ gn) = Ω
(

Rdt
1/3(f) · b

)
.

We note that when disc(g) = 2−Ω(b), it holds that Dcc(g) ≥ Rcc(g) ≥ Ω(b), and therefore
the latter result is equivalent to Equation (1).

The research agenda of [8]

As discussed above, we would like to prove a lifting theorem that holds for as many inner
functions g as possible. Inspired by the literature on direct-sum theorems, [8] conjectured
that lifting theorems should hold for every inner function g that has a sufficiently large
information cost IC(g).

▶ Conjecture 2 (special case of [8, Conj. 1.4]). There exists a constant c > 0 such that
the following holds. Let f : {0, 1}n → O and g : {0, 1}b × {0, 1}b → {0, 1} be an arbitrary
function such that IC(g) ≥ c · log n. Then

Rcc(f ◦ gn) = Ω
(
Rdt(f) · IC(g)

)
.

Proving this conjecture is a fairly ambitious goal. As an intermediate goal, [8] suggested
to prove this conjecture for complexity measures that are simpler than IC(g). In light of
their result, it is natural to start with discrepancy. It has long been known that the quantity
∆(g) def= log 1

disc(g) is a lower bound on Rcc(g) up to a constant factor. More recently, it has
even been shown that ∆(g) is a lower bound on IC(g) up to a constant factor [6]. Motivated
by this consideration, [8] suggested the following natural conjecture: for every function g such
that ∆(g) ≥ c · log n, it holds that Rcc(f ◦ gn) = Ω

(
Rdt(f) · ∆(g)

)
(see Conjecture 1.5 there).

The lifting theorem of [8] proves this conjecture for the special case where ∆(g) = Ω(b).

Our result

In this work, we prove the latter conjecture of [8] in full, by waiving the limitation of
∆(g) = Ω(b) from their result. We note that a full proof can be found in the full version
that will be published later. As in previous works, our result holds even if f is replaced
with a general search problem S. In what follows, we denote by Rdt

β (S) and Rcc
β (S ◦ gn)

the randomized query complexity of S with error β and the randomized communication
complexity of S ◦ gn with error β respectively. We now state our result formally.

▶ Theorem 3 (Main theorem). There exists a universal constant c such that the following holds:
Let S be a search problem that takes inputs from {0, 1}n, and let g : {0, 1}b × {0, 1}b → {0, 1}
be an arbitrary function such that ∆(g) ≥ c · log n. Then

Dcc(S ◦ gn) = Ω
(
Ddt(S) · ∆(g)

)
,
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and for every β > 0 it holds that

Rcc
β (S ◦ gn) = Ω

((
Rdt

β′(S) − O(1)
)

· ∆(g)
)

,

where β′ = β + 2−∆(g)/50.

▶ Remark 4. It is interesting to note that one of the first direct-sum results in the randomized
setting went along these lines. In particular, the work of Shaltiel [31] implies that for
every function g such that ∆(g) ≥ c for some universal constant c, it holds that Rcc(gn) =
Ω (n · ∆(g)). Our main theorem can be viewed as a generalization of that result.

▶ Remark 5. A natural question is whether the requirement that ∆(g) ≥ c · log n is necessary.
In principle, it is possible that this requirement could be relaxed. Any such relaxation,
however, would imply a lifting theorem that allows gadgets of smaller input length than is
currently known which would be considered a significant breakthrough.

▶ Remark 6. In order to facilitate the presentation, we restricted our discussion on the
previous work to lifting theorems that hold for every outer function f (and indeed, every
search problem S). If one is willing to make certain assumptions on the outer function f , it
is possible to prove stronger lifting theorems that in particular allow for a wider variety of
inner functions (see, e.g., [32, 34, 16, 19, 12, 1]).

▶ Remark 7. We note that Definition 1 is in fact a special case of the common definition of
discrepancy. The general definition refers to an arbitrary distribution µ over {0, 1}b × {0, 1}b.
The discrepancy of g over µ is defined similarly to Definition 1 except that the random
variables U, V are distributed according to µ rather than the uniform distribution.

1.1 Our Techniques
Following the previous works, we use a “simulation argument”: We show that given a protocol
that computes f ◦ gn with communication complexity C, we can construct a decision tree
that computes f with query complexity O( C

∆(g) ). In particular, we follow the simulation
argument of [8] and extend their main technical lemma. We now describe this argument
in more detail, focusing on the main lemma of [8] and our extension of that lemma. For
simplicity, we focus on the deterministic setting, but the proof in the randomized setting
follows similar ideas. In this paper, due to space constraints, the simulation argument is
omitted. Only the proof of the main lemma is presented in the paper.

The simulation argument

We assume that we have a protocol Π that computes f ◦ gn, and would like to construct
a decision tree T that computes f . The basic idea is that given an input z ∈ {0, 1}n, the
tree T uses the protocol Π to find a pair of inputs (x, y) ∈ ({0, 1}b)

n
× ({0, 1}b)

n
such that

(f ◦ gn)(x, y) = f(z), and then returns the output of Π on (x, y).
In order to find the pair (x, y), the tree T maintains a pair of random variables (X, Y ).

Initially, the variables (X, Y ) are uniformly distributed over ({0, 1}b)
n

× ({0, 1}b)
n
. Then,

the tree gradually changes the distribution of (X, Y ) until they satisfy (f ◦ gn)(X, Y ) = f(z)
with probability 1, at which point the tree chooses (x, y) to be an arbitrary pair in the
support of (X, Y ). This manipulation of the distribution of (X, Y ) is guided by a simulation
of the protocol Π on (X, Y ) (hence the name “simulation argument”). Throughout this
process, the decision tree maintains the following structure of (X, Y ):
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There is a set of coordinates, denoted F ⊆ [n], such that for every i ∈ F it holds that
g(Xi, Yi) = zi with probability 1.
X[n]\F and Y[n]\F are dense in the following sense: for every J ⊆ [n] \F , the variables
XJ and YJ have high min-entropy.

Intuitively, the set F is the set of coordinates i for which the simulation of Π has already
computed g(Xi, Yi), while for the coordinates i ∈ [n] \F the value g(Xi, Yi) is unknown.
Initially, the set F is empty, and then it is gradually expanded until it holds that (f ◦
gn)(X, Y ) = f(z).

The main lemma of [8]

Suppose now that as part of the process described above, we would like to expand the
set F by adding a new set of coordinates I ⊆ [n] \F . This means that we should condition
the distribution of (X, Y ) on the event that gI(XI , YI) = zI . This conditioning, however,
decreases the min-entropy of (X, Y ), which might cause X[n]\F and Y[n]\F to lose their
density.

In order to resolve this issue, [8] defined a notion of “sparsifying values” of X and Y .
Informally, a value x in the support of X is called sparsifying if after conditioning Y on the
event gI(xI , YI) = zI , the variable Y[n]\(F ∪I) ceases to be dense. A sparsifying value of Y is
defined similarly. It is not hard to see that if X and Y do not have any sparsifying values in
their supports, then the density of X[n]\F and Y[n]\F is maintained after the conditioning on
gI(XI , YI) = zI . Therefore, [8] design their decision tree such that before every conditioning
on the event gI(xI , YI) = zI , the tree first removes the sparsifying values from the supports
of X and Y .

The removal of sparsifying values, however, raises another issue: when we remove values
from the supports of X and Y , we decrease the min-entropy of X and Y . In particular, the
removal of the sparsifying values might cause X[n]\F and Y[n]\F to lose their density. This
issue is resolved by the main technical lemma of [8]. Informally, this lemma says that if
X[n]\F and Y[n]\F are dense, then the sparsifying values are very rare. This means that the
removal of these values barely changes the min-entropy of X and Y , and in particular, does
not violate the density property.

Our contribution

Recall that the lifting theorem of [8] requires that ∆(g) = Ω(b), and that our goal is to waive
that requirement. Unfortunately, it turns out that main lemma of [8] fails when ∆(g) is very
small relatively to b. In fact, the full version provide an example in which all the values
in the support of X are sparsifying. In such a case, it is simply impossible to remove the
sparsifying values.

In short, unlike [8], we cannot afford to remove the sparsifying values before conditioning
on the event gI(XI , YI) = zI . Therefore, in our simulation X[n]\F and Y[n]\F sometimes
lose their density after the conditioning. Nevertheless, we observe that even if the density
property breaks in this way, it can often be restored by removing some more values from
the supports of X and Y . We formalize this intuition by defining a notion of “recoverable
values”. Informally, a value x in the support of X is called recoverable if after conditioning Y

on the event gI(xI , YI) = zI , the density of Y[n]\(F ∪I) can be restored by discarding some
values from its support.

Our main lemma says, informally, that if X[n]\F and Y[n]\F are dense, then almost all the
values of X and Y are recoverable. In particular, we can afford to remove the unrecoverable
values of X and Y without violating their density. Given our lemma, it is easy to fix
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the simulation argument of [8]: whenever our decision tree is about to condition on an
event gI(xI , YI) = zI , it first discards the unrecoverable values of X and Y ; then, after the
conditioning, the decision tree restores the density property by discarding some additional
values. The rest of our argument proceeds exactly as in [8].

The proof of our main lemma

The definition of a sparsifying value of X can be stated as follows: the value x is sparsifying
if there exists a value yJ such that the probability

Pr [YJ = yJ | g(xI , YI) = zI ] (2)

is too high. On the other hand, it can be showed that a value x is unrecoverable if there are
many such corresponding values yJ . Indeed, if there are only few such values yJ , then we
can recover the density of Y[n]\(F ∪I) by discarding them.

Very roughly, the main lemma of [8] is proved by showing that for every yJ , there is
only a very small number of corresponding x’s for which the latter probability is too high.
Then, by taking union bound over all possible choices of yJ , it follows that there are only
few values x for which there exists some corresponding yJ . In other words, there are only
few sparsifying values.

This argument works in the setting of [8] because they can prove a very strong upper
bound on the number of values x for a single yJ — indeed, the bound is sufficiently strong
to survive the union bound. In our setting, on the other hand, the fact that we assume a
smaller value of ∆(g) translates to a weaker bound on the number of values x for a single yJ .
In particular, we cannot afford to use the union bound. Instead, we take a different approach:
we observe that, since for every yJ there is only a small number of corresponding x’s, it
follows by an averaging argument that there can only be a small number of x’s that have
many corresponding yJ ’s. In other words, it follows from the averaging argument that there
can only be a small number of unrecoverable x’s.

Implementing this idea is more difficult than it might seem at a first glance. The key
difficulty is that when we say “values x that have many corresponding yJ ’s” we do not
refer to the absolute number of yJ ’s but rather to their probability mass. Specifically, the
probability distribution according to which the yJ ’s should be counted is the probability
distribution of Equation (2). Unfortunately, this means that for every value x, we count
the yJ ’s according to a different distribution, which renders a simple averaging argument
impossible. We overcome this difficulty by proving a finer upper bound on the number of x’s
for each yJ and using a careful bucketing scheme for the averaging argument.

2 The Main Lemma

In this section, we state and prove our main lemma. As discussed in the introduction, our
simulation argument maintains a pair of random variables X, Y ∈ Λn. A crucial part of
the simulation consists of removing certain “dangerous” values from the supports of these
variables. Our main lemma says that almost all values are safe.

There are two types of “dangerous” values: non recoverable values are values that might
lead to a violation of the structure of X, Y (as per density, defined in [8]); non almost
uniform values are values for which gI (xI , YI) is not close enough to uniform and therefore
might cause the simulation to leak too much information about X and Y . Additionally,
the assumption that gI (xI , YI) is close to uniform allow the simulation to assume that
X | gI (XI , YI) = zI is close to X even when X, Y are not structured. We first define those
notions formally and then compere between those notions and the notions from [8].
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▶ Definition 8 (dangerous values). Let ε, α ≥ 0. Let Y be a random variable and ρ a
restriction. Let x ∈ Λn, and let σY > 0 be such that Yfree(ρ) is σY -sparse. We say that x is
almost uniform if for any set I ⊆ free (ρ) and an assignment zI ∈ {0, 1}I it holds that

Pr
[
gI(xI , YI) = zI

]
∈ 2−|I|

(
1 ± 2− ∆

10

)
.

We say that x is (ε, α)-recoverable if for all I ⊆ free (ρ) and zI the following holds: exist
event E such that Pr

[
E | gI(xI , YI) = zI

]
≥ 1 − 2−α∆ and the random variable

Yfree(ρ)−I | E and gI(xI , YI) = zI

is (σY + ε)-sparse. We say that x is (ε, α)-safe if it is both almost uniform and (ε, α)-
recoverable. Almost uniform, recoverable, and safe values of Y are defined analogously.

The notion of “dangerous” (Alternatively, not safe) in this paper is closely connected to
the definition presented in [8]. We will now discuss the differences and the reasons for the
changes. The first type of “dangerous” values, that is non recoverable values, are connected
to notion of sparsifying from [8]. Any non recoverable value is sparsifying, but the converse is
false. Both definitions regard the sparsity of the random variable Y[n]−I | gI(xI , YI) = zI , if
this variable is not dense then it sparsifying. We suggest to “recover” Y[n]−I | gI(xI , YI) = zI

by conditioning it on high-probability event that make this random variable sparse enough.
If such option is viable we say that x is recoverable. As show in the full version, using the
original definition of sparsifying in the setting of ∆ ≪ b can lead to the marking all values
x as dangerous, and therefore the weakening is required. Regrading the second type of
“dangerous” values, the definition of almost uniform is strictly stronger than the definition
of non leaking. Both definition regard the values of Pr

[
gI (xI , YI) = zI

]
, almost uniform

bound the value tightly both from above and bellow while non leaking bound only from
bellow. The definition of almost uniform allow us to get tight connection between Pr [E ] and
Pr

[
E | gI (xI , YI) = zI

]
as can be seen in proof of correctness of the randomized theorem in

the full version, where leaking is not sufficient for the analysis of the recovering process.
We turn to state our main lemma.

▶ Proposition 9 (Main Lemma). Let ε ≥ 5
c , α > 1

c , γ > 0, and let X and Y be independent
(ρ, τ)-structured random variables. Let σX , σY > 0 be such that Xfree(ρ) is σX-sparse, and
Yfree(ρ) is σY -sparse. If σX + 2σY ≤ 9

10 − 22
c − γ − α. Then

Pr
x∼X

[x is not (ε, α)-safe] ≤ 2−γ·∆.

In the rest of this section, we prove the main lemma. Let ε, α, σX , σY be as in the lemma.
Additionally, we let X, Y to be independent (ρ, τ)-structured random variables such that
Xfree(ρ) is σX -sparse, and Yfree(ρ) is σY -sparse and let τ

def= σX + σY . We note that we do
not assume that σX + 2σY ≤ 9

10 − 22
c − γ − α in the following lemmas, and some other

requirements are used instead. For simplicity, we assume that fix(ρ) = ∅ and free(ρ) = [n]
(otherwise, we can restrict our attention to the coordinates in free(ρ)). The first step of the
proof is to upper bound the probability that X takes a non almost uniform value.

▶ Proposition 10. Let γ > 0. Additionally assume that τ ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proposition 10 is proved in Section 2.1 below. We now introduce the definition sparsifying,
informally, a value x is (ε, t)-sparsifying with respect to yJ if in the distribution YJ |
gI (xI , YI) = zI the value yJviolets the (σY + ε)-sparsity of Y . While all sparsifying values
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violate the (σY + ε)-sparsity of Y , some of them violate it more strongly than others, and
this is measured by the additional parameter t. The next steps of the proof use the following
notion.

▶ Definition 11. Let x ∈ Λn, J ⊆ [n], and yJ ∈ ΛJ . We say that x is (ε, t)-sparsifying for
yJ if there exist I ⊆ [n] and zI ∈ ΛI such that

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε)·∆·|J|+t−b·|J|.

Informally, a value x is not recoverable if it is sparsifying for many yJ ’s, whereas a
value x is sparsifying according to the terminology of [8] if it is sparsifying for some yJ .

The following proposition upper bounds the probability that X takes a sparsifying value
for specific value yJ , and is proved in Section 2.2.

▶ Proposition 12. Let γ > 2
c . Additionally assume that ε ≥ 5

c and τ ≤ 1 − 14
c − γ. Then,

for every J ⊆ [n] and for every yJ ∈ ΛJ , the probability that X takes an almost uniform
value x that is (ε, t)-sparsifying for yJ is at most 2−γ·∆· c·ε

2 ·|J|−2t.

Proposition 12 is essentially a more refined version of the analysis in [8]. An important
point about this proposition is that it gives a stronger bound for larger values of t. In
contrast, the analysis [8] does not consider the parameter t and gives the same upper bound
for all values x. In the final part of the proof, which is described in Section 2.3, we derive
the main lemma from Propositions 10 and 12.

To prove the propositions in this section we will use the following lemma from [8]

▶ Lemma 13 (see, e.g., [8, Cor. 2.13]). Let γ, λ > 0 and let S ⊆ [n]. If it holds for X, Y that

D∞(XS) + D∞(YS) ≤ (∆(g) − 7 − γ − λ) · |S| .

Then the probability that X takes a value x ∈ Λn such that

bias
(
g⊕S(xS , YS)

)
> 2−λ|S|

is less than 2−γ|S|.

2.1 Proof of Proposition 10
In this section we prove Proposition 10, following the ideas of [8]. Essentially, the proof
uses the fact that X and Y have low sparsity together with the discrepancy of g to argue
that with high probability the random variable XS takes a value xS such that all parities
g⊕S(xS , YS) are relatively unbiased. Then, the proof uses the latter claim together with the
Vazirani lemma to conclude that the random strings gI(xI , YI) are almost uniform.

▶ Proposition 10. Let γ > 0. Additionally assume that τ ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proof. We start by observing that for every x ∈ Λn, if it holds that bias(g⊕S(xS , YS)) ≤
2− ∆

10 · (2n)−|S| for every non-empty set S ⊆ [n], then x is almost uniform. Indeed, let x ∈ Λn

be a value that satisfies the above condition, and let I ⊆ [n]. Then, by applying the first
variant of Vazirani’s lemma to the random variable gI(xI , YI), it holds that

Pr
[
gI(xI , YI) = zI

]
∈

(
1 ± 2− ∆

10

)
· 2−|I|

for every zI ∈ {0, 1}I . It follows that x is almost uniform.
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It remains to show that with probability at least 1 − 2−γ·∆ the random variable X takes
a value x that satisfies the latter condition on the biases. We start by lower bounding
the probability that bias(g⊕S(xS , YS)) ≤ 2− ∆

10 · (2n)−|S| for a specific set S ⊆ [n]. Fix a
non-empty set S ⊆ [n]. By assumption, it holds that

D∞(XS) + D∞(YS) ≤ (1 − 11
c

− γ − 1
10) · ∆ · |S|

=
(

∆ − 7∆
c

− γ∆ − ∆
10 − 4∆

c

)
· |S|

≤
(

∆ − 7 − γ∆ − ∆
10 − 2 log n − 2

)
· |S| .

By applying Lemma 13 with γ = γ∆ + log n + 1 and λ = log n + 1 + ∆
10 it follows that with

probability at least 1 − 2−γ∆−1 · 1
n|S| , the random variable X takes a value x such that

bias
(
g⊕S(xS , YS)

)
≤ (2− ∆

10 · 2n)−|S| ≤ 2− ∆
10 · (2n)−|S|

.

Next, by taking the union bound over all non-empty sets S ⊆ [n], it follows that the
probability that there exists some non-empty set S with bias(g⊕S(xS , YS)) > 2− ∆

10 · (2n)−|S|

is at most∑
S⊆[n]:S ̸=∅

2−γ∆−1 · 1
n|S| (binomial like bound)

< 2−γ∆−1 · 2
= 2−γ∆.

It follows that with probability at least 1 − 2−γ∆, the random variable X takes a value x

such that bias(g⊕S(xS , YS)) ≤ 2− ∆
10 · (2n)−|S| for all non-empty sets S ⊆ [n], as required. ◀

2.2 Proof of Proposition 12
In this section, we prove Proposition 12 using a refined version of the analysis of [8]. The
proof consists of three main steps: first, we use Bayes’ formula to reduce the task of upper
bounding the probability of sparsifying values into the task of upper bounding the probability
of a related type of values, called skewing values; then, we use Vazirani’s lemma to reduce
the latter task to the task of the upper bounding the biases of g(xI , YI). Finally, we upper
bound the biases of g(xI , YI) using the low deficiency of X and Y and the discrepancy of g.
We start by formally defining skewing values, and then prove their connection to sparsifying
values.

▶ Definition 14. Let J ⊆ [n] and let yJ ∈ ΛJ . Let e(yJ) be the real number such that

Pr [YJ = yJ ] = 2σY ·∆·|J|−b·|J|−e(yJ )

We note that this number is non-negative as we assume Y is σY -sparse. We say that x is
(ε, t)-skewing for yJ if there exist I ⊆ [n] − J such that

D∞
(
gI(xI , YI) | YJ = yJ

)
> ε · ∆ · |J | + e (yJ) + t − 1

▶ Proposition 15. Let x ∈ Λn, J ⊆ [n], and yJ ∈ ΛJ . If x is (ε, t)-sparsifying for yJ and is
almost uniform then x is (ε, t)-skewing for yJ .
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Proof. The proof is straightforward and been omitted due to space constraints. The proof
can be found in the full version of this paper. ◀

We now formally define biasing values and connect them to skewing values via the usage
of Vazirani lemma, thus allowing us to focus on the biases. Informally, biasing values are
values x such that when conditioning on YJ = yJ , the bias of g⊕S (xS , YS) is too high.

▶ Definition 16. Let J ⊆ [n] and let yJ ∈ ΛJ . We say that x is (ε, t)-biasing for yJ if there
exists a set S ⊆ [n] − J such that |S| ≥ c · ε · |J | + t+e(yJ )−2

log n and

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

.

▶ Proposition 17. Let x ∈ Λn, let J ⊆ [n], and let yJ ∈ ΛJ . If x is not (ε, t)-biasing for yJ

then x is not (ε, t)-skewing for yJ .

Proof. The proof is omitted due to space constraints and can be found in the full version of
this paper. ◀

We finally prove Proposition 12, restated next.

▶ Proposition 12. Let γ > 2
c . Additionally assume that ε ≥ 5

c and τ ≤ 1 − 14
c − γ. Then,

for every J ⊆ [n] and for every yJ ∈ ΛJ , the probability that X takes an almost uniform
value x that is (ε, t)-sparsifying for yJ is at most 2−γ·∆· c·ε

2 ·|J|−2t.

Proof. Let J ⊆ [n] and let yJ ∈ ΛJ . We first observe that it suffices to prove that with
probability at least 1 − 2−γ·∆·|J|−2t, the random variable X takes a value x that is not (ε, t)-
biasing for yJ . Indeed, if x is a value that is not (ε, t)-biasing for yJ , then by Proposition 17
it is not (ε, t)-skewing for yJ , and then by Proposition 15 it cannot be both (ε, t)-sparsifying
for yJ and almost uniform. It remains to upper bound the probability that x is (ε, t)-biasing
for yJ .

We start by upper bounding the probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

for some non-empty fixed set S ⊆ [n] − J such that |S| ≥ c · ε · |J | + t+e(yJ )−2
log n . Let S be

such a set. In order to upper bound the latter probability, we use Lemma 13, which in turn
requires us to upper bound the deficiencies D∞(XS) and D∞(YS |YJ = yJ ). By assumption,
we know that D∞(XS) ≤ σX · ∆ · |S|. We turn to upper bound D∞(YS |YJ = yJ ). For every
yS ∈ ΛS , it holds that

Pr [YS = yS | YJ = yJ ] = Pr [YS∪J = yS∪J ]
Pr [YJ = yJ ]

= Pr [YS∪J = yS∪J ]
2σY ·∆·|J|−b·|J|−e(yJ ) (Definition of e(yJ))

≤ 2σY ·∆·(|S|+|J|)−b·(|S|+|J|)

2σY ·∆·|J|−b·|J|−e(yJ ) (Y is σY -sparse)

= 2σY ·∆·|S|+e(yJ )−b·|S|.

It follows that

D∞(YS | YJ = yJ) ≤ σY · ∆ · |S| + e(yJ).
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By our assumption on the size of S, it follows that

e(yJ) ≤ log n · |S| + 2 ≤ 3 · log n · |S| ≤ 3
c

· ∆ · |S| .

It follows that

D(XS) + D∞(YS | YJ = yJ)

≤(σX + σY + 3
c

) · ∆ · |S|

≤(1 − 11
c

− γ) · ∆ · |S| (σX + σY ≤ 1 − 14
c

− γ)

=
(

∆ − 7∆
c

− γ∆ − 4∆
c

)
· |S|

≤ (∆ − 7 − γ∆ − 3 log n − 1) · |S| .

Now, by applying Lemma 13 with γ = γ∆ + 2 log n and λ = log n + 1, it follows that the
probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

is at most

2−γ·∆·|S| · 1
n2|S| ≤ 2−γ·∆·|S| · 1

n|S|+1 ,

where the inequality holds since S is assumed to be non-empty. By taking union bound over
all relevant sets S, it follows that the probability that X takes a value x that is (t, ε)-biasing
for yJ is at most∑

S⊆[n]:|S|≥c·ε·|J|+ t+e(yJ )−2
log n

2−γ·∆·|S| · 1
n|S|+1

≤
∑

S⊆[n]:|S|≥( c·ε
2 +2)|J|+ t−2

log n

2−γ·∆·|S| · 1
n|S|+1 (e(yJ) ≥ 0, ε ≥ 5

c
)

≤ 2 · 2−γ·∆·(( c·ε
2 +2)|J|+ t−2

log n ) · 1
n

(binomial like bound)

≤ 2−γ·∆·( c·ε
2 +2)|J| · 2−2t+( γ·∆·2

log n ) (γ ≥2
c

≥ 2 log n

∆ , n ≥ 2)

≤ 2−γ·∆· c·ε
2 ·|J|−2t · 2γ·∆·( 2

log n −2) (|J | ≥ 1)

≤ 2−γ·∆· c·ε
2 ·|J|−2t (n≥2)

as required. ◀

2.3 Proof of the Main Lemma from Propositions 10 and 12
In this section, we derive the main lemma from the previous propositions. The difficult
part is to prove an upper bound on the probability of non-recoverable values x, which is
essentially equivalent to proving the following statement:

There are very few values x that are sparsifying for many values yJ .
Proposition 12 essentially tells us the following statement:

For every yJ , there are very few values x that are sparsifying for it.
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It is tempting to try to deduce the first statement from the second statement via an averaging
argument. However, there is a significant obstacle here: in the first statement, when we say
“for many values yJ”, we count the values yJ with respect to a distribution that depends on x.
This complication renders a naive averaging argument impossible. In order to overcome this
obstacle, we consider all the pairs (x, yJ) such that x is (ε, t)-sparsifying for yJ , and place
them into buckets according to the value of t. Then, we bound the weight of each bucket
separately, while making use of the fact that Proposition 12 provides a stronger upper bound
for larger values of t. Using this bucketing scheme turns out to be sufficient for the averaging
argument to go through.

We start by defining the notion of a “light” value of X, which is a value x that is not
sparsifying for many values yJ for a particular set J ⊆ [n]. The term “light” is motivated by
the intuitive idea that the relevant values yJ are “heavy” in terms of their probability mass,
so a “light” value x is one that does not make many values yJ “heavy”. We show that “light”
values of x are recoverable, intuitively this is true as one can remove all the relevant values
yJ that cause the sparsity by condition on high the probability event of not choosing any of
them. We then consider x that are not light with respect to some specific J . We proceed by
bounding the probability of x that are not light with respect to single J , and complete the
proof by taking union bound over all J .

▶ Definition 18. Let x ∈ Λn and let J ⊆ [n]. For every set I ⊆ [n] − J and a value
zI ∈ {0, 1}I , we denote by

Hx,J,I,zI

def=
{

yJ ∈ ΛJ : Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε− 1

∆ )·∆·|J|−b·|J|
}

the set of “heavy” values yJ . We say that a value x is (ε, α)-light if for every disjoint I, J

and zI ∈ {0, 1}I it holds that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

▶ Proposition 19. Let α ≥ 1
∆ . If x ∈ Λn is (ε, α)-light with respect to every J ⊆ [n] then it

is (ε, α)-recoverable.

Proof. Let α ≥ 1
∆ and let x ∈ Λn be (ε, α)-light with respect to every J ⊆ [n]. We show

that x is (ε, α)-recoverable by showing that for every I ⊆ [n] and zI ∈ ΛI there exists an
event E such that the random variable

Y[n]−I | E and gI (xI , YI) = zI

is (σY + ε)-sparse. We choose E to be the event that YJ /∈ Hx,J,I,zI
for any non-empty set

J ⊆ [n] − I. We first prove that Pr [¬E | g (xI , YI) = zI ] < 2−α∆. By the union bound, it
holds that

Pr [¬E | g (xI , YI) = zI ]

= Pr

 ∨
∅̸=J⊆[n]−I

YJ ∈ Hx,J,I,zI
| g (xI , YI) = zI


≤

∑
∅̸=J⊆[n]−I

Pr [YJ ∈ Hx,J,I,zI
]

≤
∑

∅̸=J⊆[n]−I

2−α∆ ·
(

1
2n

)|J|

≤2−α∆ (binomial like bound)
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It remains to prove that the random variable

Y[n]−I | E and gI (xI , YI) = zI

is (σY + ε)-sparse. For every J ⊆ [n] − I, it holds that

Pr
[
YJ = yJ | E and gI (xI , YI) = zI

]
=Pr [YJ = yJ and E | g (xI , YI) = zI ]

Pr [E | g (xI , YI) = zI ]

≤Pr [YJ = yJ | g (xI , YI) = zI ]
Pr [E | g (xI , YI) = zI ]

≤2(σY +ε− 1
∆ )·∆·|J|−b·|J|

1 − 2−α∆

≤2(σY +ε)·∆·|J|−b·|J|−1

1 − 1
2

(since α ≥ 1
∆ )

≤2(σY +ε)·∆·|J|−b·|J|,

and therefore the above random variable is (σY + ε)-sparse, as required. ◀

▶ Definition 20. Let x ∈ Λn, J ⊆ [n], I ⊆ [n] − J and zI ∈ {0, 1}I , recall that

Hx,J,I,zI

def=
{

yJ ∈ ΛJ : Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε− 1

∆ )·∆·|J|−b·|J|
}

.

We say that a value x is (ε, α)-light with respect to J if for every I ⊆ [n] − J and zI ∈ {0, 1}I

it holds that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

It is easy to see that by definition a value x is (ε, α)-light if it is (ε, α)-light with respect
to every J ⊆ [n]. We now use this notion to bound the probability of x been not light for
every J and later get bound on the probability that X is (ε, α)-light by binomial like bound.

▶ Proposition 21. Assume that σX + 2 · σY ≤ 1 − 19
c − γ − α. For every J ⊆ [n], the

probability that X takes an almost uniform value x that is not (ε, α)-light for J is at most
2−γ·∆·|J|.

Proof. Let J ⊆ [n]. Let X and YJ denote the supports of X and YJ respectively. For every
x ∈ X and yJ ∈ YJ , let tx,yJ

denote the maximal value t such that x is (ε − 1
∆ , t)-sparsifying

for yJ . Next, consider a two dimensional table whose rows and columns are indexed by X
and YJ respectively. For every row x ∈ X and column yJ ∈ YJ , we set the corresponding
entry to be

ent(x, yJ) def=
{

2(σY +ε− 1
∆ )·∆·|J|−b·|J|+tx,yJ tx,yJ

> 0 and x is almost uniform
0 otherwise.

Now we use bucketing argument to bound the probabilities of high values of ent(x, yJ ) to
occur. Let γ′ = γ + σY + 2

c + α + 3
c . By applying Proposition 12 with γ = γ′, we get that

for every yJ and every t ∈ Z>0 it holds that

Pr [⌈tX,yJ
⌉ = t and X is almost uniform] ≤ 2−γ′·∆· c·ε

2 ·|J|−2(t−1).
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Therefore, for every yJ ∈ YJ , the expected random entry in the yJ -th column (over the
random choice of X) is

E [ent(X, yJ)] ≤ 2(σY +ε− 1
∆ )·∆·|J|−b·|J| ·

∞∑
t=1

Pr [⌈tX,yJ
⌉ = t and X is not leaking] · 2t

≤ 2(σY +ε− 1
∆ )·∆·|J|−b·|J| ·

∞∑
t=1

2−γ′·∆· c·ε
2 ·|J|−2(t−1) · 2t

= 2−γ′·∆· c·ε
2 ·|J|+2 · 2(σY +ε− 1

∆ )·∆·|J|−b·|J| ·
∞∑

t=1
2−t

≤ 2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|−b·|J|.

It follows that the expected sum of a random row of the table (over the random choice
of X) is

E

 ∑
yJ ∈YJ

ent(X, yJ)


=

∑
yJ ∈YJ

E [ent(X, yJ)]

≤
∑

yJ ∈YJ

2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|−b·|J|

=2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|

=2(σY +ε− 1
∆ −γ−σY − 2

c · c·ε
2 −α− 3

c + 2
c )·∆·|J| (definition of γ′,·c · ε

2 ≥ 1)

≤2−(γ+α)·∆·|J|. (∆ ≥ c)

By Markov’s inequality, the probability that X is almost uniform and the sum of the
X-th row is more than 2−α·∆|J| is upper bounded by 2−γ·∆·|J|. We now prove that if a
value x ∈ X is almost uniform and the sum in the x-th row is at most 2−α·∆|J|, then x is
(ε, α)-light with respect to J , and this will finish the proof of the proposition.

Let x ∈ X be such a value. We prove that x is (ε, α)-light with respect to J . Let
I ⊆ [n] − J and let zI ∈ {0, 1}I . We would like to prove that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

Observe that for every value yJ ∈ Hx,J,I,zI
, it holds that x is (ε − 1

∆ , t′)-sparsifying for yJ

with some t′ ≥ 0. Therefore, for every such yJ it holds that tx,yJ
> 0 and in particular

ent(x, yJ ) = 2(σY +ε− 1
∆ )·∆·|J|−b·|J|+tx,yJ . Furthermore, recall that by the definition of tx,yJ

it
holds that

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
≤ 2(σY +ε− 1

∆ )·∆·|J|−b·|J|+tx,yJ .

It follows that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤

∑
yJ ∈Hx,J,I,zI

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
≤

∑
yJ ∈Hx,J,I,zI

ent(x, yJ).

≤ 2−α∆·|J|

as required. ◀
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▶ Remark. In the preceded proof we bound the probability that

Pr [⌈tX,yJ
⌉ = t and X is almost uniform]

. At a first glance the usage of ceiling may be unclear. The ceiling in this argument is
merely the implantation of the bucketing argument that used in the proof. Furthermore, the
bucketing argument is needed as our tools such as Proposition 12 bound the probability of t

to pass some threshold, if we not additionally give upper bound on t then the increment of
the contribution for the exception become unlimited and those we need some for of bucketing.
On the other hand one suggest creating “zero sized” buckets around every value of t, and
thus removing the need for ceiling but that way the sum can be infinite.

We conclude the following bound by taking union bound of the probability for x to be
not light over all J , yielding a bound for the probability that x is not light.

▶ Corollary 22. Assume that σX + 2 · σY ≤ 1 − 21
c − γ − α. Then, the probability that X

takes an almost uniform value x that is not (ε, α)-recoverable is at most 2−γ·∆.

Proof. By applying Proposition 21 with γ = γ + 2
c , we obtain that for every set J ⊆ [n], the

probability that X takes an almost uniform value x that is not (ε, α)-light for J is at most
2−γ·∆ · 1

(2n)|J| . By binomial like bound, we obtain that with probability at least 1 − 2−γ·∆,
the random variable X takes a value x that is (ε, α)-light for J ⊆ [n]. Such a value x is
(ε, α)-recoverable by Proposition 19, so the required result follows. ◀

We finally complete the proof of Proposition 9, restated next.

▶ Proposition 9 (Main Lemma). Let ε ≥ 5
c , α > 1

c , γ > 0, and let X and Y be independent
(ρ, τ)-structured random variables. Let σX , σY > 0 be such that Xfree(ρ) is σX-sparse, and
Yfree(ρ) is σY -sparse. If σX + 2σY ≤ 9

10 − 22
c − γ − α. Then

Pr
x∼X

[x is not (ε, α)-safe] ≤ 2−γ·∆.

Proof. Any value that is not (ε, α)-safe must be not almost uniform or almost uniform
but not (ε, α)-recoverable. By applying Proposition 10 with γ = γ + 1

c , it follows that the
probability that X takes a non almost uniform value is at most 2−(γ+ 1

c )·∆ ≤ 2−γ∆−1, By
applying Corollary 22 with γ = γ + 1

c , α = α, and ε = ε, it follows that the probability
that X takes an almost uniform and not (ε, α)-recoverable value is at most 2−(γ+ 1

c )·∆ ≤
2−γ∆−1. Therefore, the probability that X takes that is not (ε, α)-safe value is at most
2−γ∆−1 + 2−γ∆−1 = 2−γ∆. ◀
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Abstract
The framework of distribution testing is currently ubiquitous in the field of property testing. In
this model, the input is a probability distribution accessible via independently drawn samples from
an oracle. The testing task is to distinguish a distribution that satisfies some property from a
distribution that is far in some distance measure from satisfying it. The task of tolerant testing
imposes a further restriction, that distributions close to satisfying the property are also accepted.

This work focuses on the connection between the sample complexities of non-tolerant testing of
distributions and their tolerant testing counterparts. When limiting our scope to label-invariant
(symmetric) properties of distributions, we prove that the gap is at most quadratic, ignoring poly-
logarithmic factors. Conversely, the property of being the uniform distribution is indeed known to
have an almost-quadratic gap.

When moving to general, not necessarily label-invariant properties, the situation is more com-
plicated, and we show some partial results. We show that if a property requires the distributions
to be non-concentrated, that is, the probability mass of the distribution is sufficiently spread out,
then it cannot be non-tolerantly tested with o(

√
n) many samples, where n denotes the universe

size. Clearly, this implies at most a quadratic gap, because a distribution can be learned (and
hence tolerantly tested against any property) using O(n) many samples. Being non-concentrated
is a strong requirement on properties, as we also prove a close to linear lower bound against their
tolerant tests.

Apart from the case where the distribution is non-concentrated, we also show if an input
distribution is very concentrated, in the sense that it is mostly supported on a subset of size s of the
universe, then it can be learned using only O(s) many samples. The learning procedure adapts to
the input, and works without knowing s in advance.
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27:2 Tolerant and Non-Tolerant Distribution Testing

1 Introduction

Let D be a distribution over a finite set Ω, and P be a property, that is, a set of distributions
over Ω. Given access to independent random samples from Ω according to the distribution
D, we are interested in the problem of distinguishing whether the distribution D is η-close to
having the property P, or is ε-far from having the property P, where η and ε are two fixed
proximity parameters such that 0 ≤ η < ε ≤ 2. The distance of the distribution D from the
property P is defined as min

D′∈P
||D − D′||1, where ||D − D′||1 denotes the ℓ1-distance between

the distributions D and D′ 1. A distribution D is said to be η-close to P, if the distance of
D from P is at most η. Similarly, D is said to be ε-far if the distance of D from P is at least
ε. The goal is to design a tester that uses as few samples as possible. For η > 0, the problem
of distinguishing the two cases is referred to as the tolerant distribution testing problem of P ,
and the particular case where η = 0 is referred to as the non-tolerant distribution testing
problem of P. The sample complexity (tolerant and non-tolerant testing) is the number of
samples required by the best algorithm that can distinguish with high probability (usually
with probability at least 2

3 ) whether the distribution D is η-close to having the property P,
or is ε-far from having the property P.

While results and techniques from distribution testing are already interesting in their own
right, they have also found numerous applications in central problems in Theoretical Computer
Science, and in particular, in property testing, e.g. graph isomorphism testing [27, 29] and
function isomorphism testing [6], learning theory [10, 23, 22], and differential privacy [5, 32,
41, 1]. Thus, understanding the tolerant and non-tolerant sample complexity of distribution
testing is a central problem in theoretical computer science.

There have been extensive studies of non-tolerant and tolerant testing of some specific
distribution properties like uniformity, identity with a fixed distribution, equality of two
distributions and independence of a joint distribution [9, 8, 35, 40, 37, 38]. Various other
specific distribution properties have also been studied [7, 24]. Then, some works investigated
general tests for the large class of all shape-restricted properties of distributions, which
contains properties like monotonicity, log-concavity, modality etc. [15, 26]. This paper proves
general results about the gap between tolerant and non-tolerant distribution testing that
hold for large classes of properties.

1.1 Our results
We now informally present our results. The formal statements of the theorems are presented in
the corresponding sections where they are proved, after the formal definitions are presented in
Section 2. We assume that the distributions are supported over a set Ω = [n] = {1, 2, . . . , n}.
We first prove a result about label-invariant distribution properties (properties that are
invariant under all permutations of Ω). We show that, for any label-invariant distribution
property, there is at most a quadratic blowup in its tolerant sample complexity as compared
to its non-tolerant counterpart, ignoring poly-logarithmic factors.

▶ Theorem 1.1 (Informal). Any label-invariant distribution property that can be non-tolerantly
tested using Λ samples, can also be tolerantly tested using Õ(min{Λ2, n}) samples, where n

is the size of the support of the distribution 2.

1 Strictly speaking it is an infimum, but since all properties we consider are compact sets, it is equal to
the minimum.

2 Õ(·) hides a poly-logarithmic factor.
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This result gives a unified way for obtaining tolerant testers from their non-tolerant
counterparts. The above result will be stated and proved formally in Section 3. We also
design a constructive variant of the tolerant tester of Theorem 1.1, when the property can
be expressed as the feasible solution to a set of linear inequalities.

▶ Theorem 1.2 (Informal). Any label-invariant distribution property that can be non-tolerantly
tested using Λ samples and can be expressed as a feasible solution to m linear inequalities,
can also be tolerantly tested using Õ(min{Λ2, n}) samples and in time polynomial in m and
n, where n is the size of the support of the distribution.

We believe that this result can be generalized to the case where the property can be
expressed as the feasible solution to a set of convex constraints, using more advanced
techniques.

Note that if Λ = Ω(
√

n), Theorem 1.1 is obvious. It is only interesting if Λ = o(
√

n). Now
we present a property for which this connection is useful. Consider a natural distribution
property: given a distribution D and a parameter k, we want to decide whether the support
size of D is at most k or ε-far from having support at most k. If k = o(

√
n), the query

complexity for testing this problem is O( k
log k ) [39].

It is a natural question to investigate the extent to which the above theorem can be
generalized. Though we are not resolving this question completely, as a first step in the
direction of extending the above theorem for properties that are not necessarily label-invariant,
we consider the notion of non-concentrated properties. By the notion of a non-concentrated
distribution, intuitively, we mean that there is no significant portion of the base set of
the distribution that carries only a negligible weight, making the probability mass of the
distribution well distributed among its indices. Specifically, any subset X ⊆ [n], for which
|X| is above some threshold (say βn with β ∈ (0, 1

2 )), has probability mass of at least
another threshold (say α with α ∈ (0, 1

2 )). A property is said to be non-concentrated if only
non-concentrated distributions can satisfy the property. We prove a lower bound on the
testing of any non-concentrated property (not necessarily label-invariant).

▶ Theorem 1.3 (Informal). In order to non-tolerantly test any non-concentrated distribution
property, Ω(

√
n) samples are required, where n is the size of the support of the distribution.

The quadratic gap between tolerant testing and non-tolerant testing for any non-
concentrated property follows from the above theorem, since by a folklore result, only
O(n) many samples are required to learn any distribution approximately.

The proof of Theorem 1.3 for label-invariant non-concentrated properties is a generalization
of the proof of the Ω(

√
n) lower bound for classical uniformity testing, while for the whole

theorem, that is, for the general (not label-invariant) non-concentrated properties, a more
delicate argument is required. The formal proof is presented in Section 5.

The next natural question is about the sample complexity of any tolerant tester for
non-concentrated properties. We address this question for label-invariant non-concentrated
properties by proving the following theorem in Section 4.2. However, the question is left
open for non-label-invariant properties.

▶ Theorem 1.4 (Informal). The sample complexity for tolerantly testing any non-concentrated
label-invariant distribution property is Ω(n1−o(1)), where n is the size of the support of the
distribution.

A natural question related to tolerant testing is:

How many samples are required to learn a distribution?

APPROX/RANDOM 2022
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As pointed out earlier, any distribution can be learnt using O(n) samples. But what if
the distribution happens to be very concentrated? We present an upper bound result for
learning a distribution, in which the sample complexity depends on the minimum cardinality
of any set S ⊆ [n] over which the unknown distribution is concentrated.

▶ Theorem 1.5 (Informal). To learn a distribution approximately, O(|S|) samples are enough,
where S ⊆ [n] is an unknown set of minimum cardinality whose mass is close to 1. Note that
|S| is also unknown, and the algorithm adapts to it.

Observe that we cannot learn a distribution supported on the set S using o(|S|) samples,
so the above result is essentially tight.

Organization of the paper

Section 2 contains the definitions used throughout the paper. Section 3 contains the formal
statement and proof of Theorem 1.1, where some of the lemmas, along with the proof of
Theorem 1.2 (the constructive variant), are in the appendix. Theorems 1.3, 1.4 and 1.5 are
formally stated and proved in Section 4, Section 5 and Section 6 respectively.

1.2 Related works
Several forms of distribution testing have been investigated for over a century in statistical
theory [33, 19], while combinatorial properties of distributions have been explored over the
last two decades in Algorithm Theory, Machine Learning and Information Theory [28, 34, 20].
In Algorithm Theory, the investigation into testing properties of distributions started with the
work of Goldreich and Ron [30], even though it was not directly stated there in these terms.
Batu, Fortnow, Rubinfeld, Smith, and White [9] launched the intensive study of property
testing of distributions with the problem of equality testing 3. Later, Batu, Fischer, Fortnow,
Kumar, Rubinfeld and White [8] studied the problems of identity and independence testing
of distributions 4. Since then there has been a flurry of interesting works in this model. For
example, Paninski [35] proved tight bounds on uniformity testing, Valiant and Valiant [37]
resolved the tolerant sample complexity for a large class of label-invariant properties that
includes uniformity testing, Acharya, Daskalakis, and Kamath [2] proved various optimal
testing results under several distance measures, and Valiant and Valiant [38] studied the
sample complexity of instance optimal identity testing. In [7], Batu and Cannone studied the
problem of generalized uniformity testing, where the distribution is promised to be supported
on an unknown set S, and proved a tight bound of Θ̃(|S|2/3) samples for non-tolerant
uniformity testing. This is in contrast to the non-tolerant uniformity testing of a distribution
supported over [n], whose sample complexity is Θ(

√
n), ignoring the dependence on the

proximity parameter. Daskalakis, Kamath, and Wright [21] studied the problem of tolerant
testing under various distance measures. Very recently, Canonne, Jain, Kamath, and Li [16]
revisited the problem of determining the sample complexity of tolerant identity testing, where
they proved the optimal dependence on the proximity parameters. Going beyond studying
specific properties, Canonne, Diakonikolas, Gouleakis, and Rubinfeld [15] studied the class of

3 Given two unknown probability distributions that can be accessed via samples from their respective
oracles, equality testing refers to the problem of distinguishing whether they are same or far from each
other.

4 Given an unknown distribution accessible via samples, the problem of identity testing refers to the
problem of distinguishing whether it is identical to a known distribution or far from it.
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shape-restricted properties of a distribution, a condition general enough to contain several
interesting properties like monotonicity, log-concavity, t-modality etc. Their result was later
improved by Fischer, Lachish, and Vasudev [26]. See the survey of Cannone [14] for a more
exhaustive list.

While the most studied works concentrate on non-tolerant testing of distributions, a
natural extension is to test such properties tolerantly. Since the introduction of tolerant
testing in the pioneering work of Parnas, Ron and Rubinfeld [36], that defined this notion for
classical (non-distribution) property testing, there have been several works in this framework.
Note that it is nontrivial in many cases to construct tolerant testers from their non-tolerant
counterparts, as in the case of tolerant junta testing [12] for example. In a series of works,
it has been proved that tolerant testing of the most natural distribution properties, like
uniformity, requires an almost linear number of samples [40, 37] 5. Now a natural question
arises about how the sampling complexity of tolerant testing is related to non-tolerant testing
of distributions in general. To the best of our knowledge, there is no known example with
more than a quadratic gap.

It would also be interesting to bound the gap for sample-based testing as defined in the
work of Goldreich and Ron [31]. This model was investigated further in the work of Fischer,
Lachish and Vasudev [25], where a general upper bound for non-tolerant sample-based testing
of strongly testable properties was provided.

2 Notation and definitions

A probability distribution D over a universe Ω = [n] is a non-negative function D : Ω → [0, 1]
such that

∑
i∈Ω D(i) = 1. For S ⊆ Ω, the mass of S is defined as D(S) =

∑
i∈S D(i), where

D(i) is the mass of i in D. The support of a probability distribution D on Ω is denoted by
Supp(D). For any distribution D, by top t elements of D, we refer to the first t elements in
the support of D when the elements in the support are sorted according to the non-increasing
order of their probability masses in D. When we write Õ(·), it suppresses a poly-logarithmic
term in n and the inverse of the proximity parameter(s) 6. Although there are several other
distance measures, in this work, we mainly focus on the ℓ1 distance. We subsume polynomial
dependencies only on the proximity parameters in our results for clarity of presentation.

▶ Definition 2.1 (Distribution property). Let D denote the set of all distributions over Ω.
A distribution property P is a topologically closed subset of D 7. A distribution D ∈ P is
said to be in the property or to satisfy the property. Otherwise, D is said to be not in the
property or to not satisfy the property.

▶ Definition 2.2 (Label-invariant property). Let us consider a property P. For a distribution
D and a permutation σ : Ω → Ω, consider the distribution Dσ defined as Dσ(σ(i)) = D(i)
(equivalently, Dσ(i) = D(σ−1(i))) for each i ∈ Ω. If for every distribution D in P, Dσ is
also in P for every permutation σ, then the property P is said to be label-invariant.

5 To be precise, the exact lower bounds for non-tolerant uniformity testing is Ω(
√

n), and for tolerant
uniformity testing it is Ω( n

log n ), where n is the support size of the distribution and the proximity
parameter ε is constant.

6 We will also use Õ(·) to suppress polynomials of the inverses of the differences of proximity parameters.
7 We put this restriction to avoid formalism issues. In particular, the investigated distribution properties

that we know of (such as monotonicity and being a k-histogram) are topologically closed.
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▶ Definition 2.3 (Distance between two distributions). The distance between two distributions
D1 and D2 over Ω is the standard ℓ1 distance between them, which is defined as ||D1−D2||1 :=∑
i∈Ω

|D1(i) − D2(i)|. For η ∈ [0, 2], D1 and D2 are said to be η-close to each other if

||D1 − D2||1 ≤ η. Similarly, for ε ∈ [0, 2], D1 and D2 are said to be ε-far from each other if
||D1 − D2||1 ≥ ε.

▶ Definition 2.4 (Distance of a distribution from a property). The distance of a distribution
D from a property P is the minimum ℓ1-distance between D and any distribution in P. For
η ∈ [0, 2], a distribution D is said to be η-close to P if the distance of D from P is at most
η. Analogously, for ε ∈ [0, 2], a distribution D is said to be ε-far from P if the distance of D

from P is at least ε.

▶ Definition 2.5 ((η, ε)-tester). An (η, ε)-tester for a distribution property is a randomized
algorithm that has sample access to the unknown distribution (upon query it can receive
elements of Ω, each drawn according to the unknown distribution, independently of any
previous query or the algorithm’s private coins), and distinguishes whether the distribution is
η-close to the property or ε-far from the property, with probability at least 2

3 , where η and ε

are proximity parameters such that 0 ≤ η < ε ≤ 2. The tester is said to be tolerant when
η > 0, and non-tolerant when η = 0.

Now we define the notions of non-concentrated distributions and non-concentrated
properties.

▶ Definition 2.6 (Non-Concentrated distribution). A distribution D over the domain Ω = [n]
is said to be (α, β)-non-concentrated if for any set S ⊆ Ω with size βn, the probability mass
on S is at least α, where α and β are two parameters such that 0 < α ≤ β < 1

2 .

▶ Definition 2.7 (Non-Concentrated property). Let 0 < α ≤ β < 1
2 . A distribution property P

is defined to be (α, β)-non-concentrated, if all distributions in P are (α, β)-non-concentrated.

Note that the uniform distribution is (α, α)-non-concentrated for every α, and so is
the property of being identical to the uniform distribution. Also, for any 0 < α < 1

2
such that αn is an integer, the uniform distribution is the only (α, α)-non-concentrated
one. Finally, observe that any arbitrary distribution is both (0, β)-non-concentrated and
(α, 1)-non-concentrated, for any α, β ∈ (0, 1).

3 Non-tolerant vs. tolerant sample complexities of label-invariant
properties (Proof of Theorem 1.1)

We will prove that for any label-invariant property, the sample complexities of tolerant
and non-tolerant testing are separated by at most a quadratic factor (ignoring some poly-
logarithmic factors). Formally, the result is stated as follows:

▶ Theorem 3.1 (Theorem 1.1 formalized). Let P be a label-invariant distribution property.
Also, let there exist an (0, ε)-tester (non-tolerant tester) for the property P with sample
complexity Λ(n, ε), where Λ ∈ N and 0 < ε ≤ 2. Then for any γ1, γ2 with γ1 < γ2 and
0 < γ2 + ε < 2, there exists a (γ1, γ2 + ε)-tester (tolerant tester) that has sample complexity
O
(

1
(γ2−γ1)2 · min{Λ2 log2 Λ, n}

)
, where Λ = Λ(n, ϵ), and n is the size of the support of the

distribution.
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Let us assume that D is the unknown distribution and Λ(n, ϵ) ≥ Ω( 1
ε ) 8. First note that

if Λ = Ω(
√

n), then we can construct a distribution D̂ such that ||D − D̂||1 < γ2−γ1+ε
2 , by

using O
(

n
(γ2−γ1+ε)2

)
samples from D. Thereafter we can report D to be γ1-close to the

property if and only if D̂ is γ2+γ1+ε
2 -close to the property. In what follows, we discuss an

algorithm with sample complexity Õ(Λ2) when Λ = o(
√

n). Also, we assume that n and Λ
are larger than some suitable constant. Otherwise, the theorem becomes trivial.

The idea behind the proof is to classify the elements of Ω with respect to their masses in
D into high and low, as formally defined below in Definition 3.2. We argue that since P is
(0, ε)-testable using Λ(n, ε) = O(q) samples, there cannot be two distributions D1 and D2
that are identical on all elements whose probability mass is at least 1

q2 , for q = θ(Λ) (the
set High1/q2 defined below), where D1 ∈ P but D2 is ε-far from P. We will formally show
this in Lemma 3.3, where we will use the fact that P is label-invariant. Using Lemma 3.3,
we prove Lemma 3.4, that (informally) says that if two distributions are close with respect
to the high mass elements, then it is not possible that one distribution is close to P while
the other one is far from it. In our algorithm, we intend to maintain the masses of the set
High1/q2 , and the term Λ2 in the query complexity of our algorithm corresponds to that.

▶ Definition 3.2. For a distribution D over Ω and 0 < κ < 1, we define

Highκ(D) = {x ∈ Ω | D(x) ≥ κ}

Now we define a quantity q ∈ N where q = Θ(Λ) 9. Assume that c∗ is a suitable large
constant (independent of Λ) such that, if we take Λ many samples from a distribution, then
with probability at least 3

4 , we will not get any sample x whose mass is at most ( c∗

Λ )2 more
than once. We define

q := Λ
c∗ . (1)

We will complete the proof of Theorem 3.1 by using the following two lemmas which we
will prove later.

▶ Lemma 3.3. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε) samples
and consider q as defined in Equation 1. Let D1 and D2 be two distributions such that
High1/q2(D1) = High1/q2(D2), and for all x ∈ High1/q2(D1), the probability of x is the same
for both distributions, that is, D1(x) = D2(x). Then it is not possible that D1 satisfies P
while D2 is ε-far from satisfying P.

▶ Lemma 3.4. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε) samples,
and consider q as defined in Equation (1). Let D and D̃ be two distributions over Ω (|Ω| > 4q2)
and let H contain the top q2 elements of D. Also, assume that

∣∣∣D̃(Ω \ H) − D(Ω \ H)
∣∣∣ ≤ γ.

If ∑
x∈H

∣∣∣D(x) − D̃(x)
∣∣∣ ≤ α, (2)

then the following hold:

8 This is a reasonable assumption for any non-trivial property.
9 Note that q and Λ essentially denotes the same quantity. We have introduced q for writing proofs more

rigorously.
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1. If D is β-close to P, then there exists a distribution D1 in P such that High1/q2(D1) ⊆ H

and∑
x∈H

∣∣∣D1(x) − D̃(x)
∣∣∣+
∣∣∣D1(Ω \ H) − D̃(Ω \ H)

∣∣∣ ≤ (α + β + γ). (3)

2. If D is (ε + 3α + β + 2γ)-far from P and D1 is a distribution such that High1/q2(D1) ⊆ H

and∑
x∈H

∣∣∣D1(x) − D̃(x)
∣∣∣+
∣∣∣D1(Ω \ H) − D̃(Ω \ H)

∣∣∣ ≤ (α + β + γ), (4)

then the distribution D1 does not satisfy the property P.

Using the above two lemmas, we will prove Theorem 3.1 in Section 3.1. We present the
proofs of Lemma 3.3 and Lemma 3.4 in Appendix A.

3.1 Proof of Theorem 3.1
Let D be the unknown distribution that we need to test, and assume that ζ = γ1, η = γ2 − γ1,
and η′ = η

64 . We now provide a tolerant (γ1, γ2 + ε)-tester, that is, a (ζ, ζ + ε + η)-tester for
the property P, as follows:

1. Draw W = O
(

q2

η′ log q
)

many samples from the distribution D. Let S ⊆ Ω be the set of
(distinct) samples obtained.

2. Draw additional O
(

W
η′2 log W

)
many samples Z to estimate the value of D(x) for all

x ∈ S 10.
3. Construct a set H as the union of S and arbitrary q2 many elements from Ω \ (S ∪ Z).
4. Define a distribution D̃ such that, for x ∈ H,

D̃(x) = # x in the multi-set Z

|Z|
.

And for each x ∈ Ω \ H,

D̃(x) =
1 −

∑
x∈H

D̃(x)

|Ω| − |H|
.

5. If there exists a distribution D1 in P that satisfies both the following conditions:
(A)

∑
x∈H

∣∣∣D1(x) − D̃(x)
∣∣∣+ |D1(Ω \ H) − D̃(Ω \ H)| ≤ 26η′ + ζ.

(B) High1/q2(D1) ⊆ H.
then ACCEPT D.

6. If there does not exist any D1 in P that satisfies both Conditions (A) and (B) above,
then REJECT D.

Note that Step 5 as mentioned above is not completely constructive in a computational
sense. In Appendix B, we give a constructive variant of the tester where the property P can
be expressed as a set of linear inequalities. We also give an example of a natural property
that can be expressed as a set of linear inequalities.

10 Instead of two sets of random samples (where the first one is to generate the set S and the other one
is the multi-set Z), one can work with only one set of random samples. But in that case, the sample
complexity becomes O(q2 log n), as opposed to O(q2 log q) that we are going to prove.
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Sample Complexity

The sample complexity of the tester is O( q2

η2 log2 q) = O( Λ2 log2 Λ
(γ2−γ1)2 ), which follows from the

above description.

Correctness of the algorithm

The proof of correctness of our algorithm is divided into a sequence of lemmas.

▶ Lemma 3.5. The set H and the distribution D̃ satisfies the following three properties:
(i) With probability at least 1 − 1

q , Highη′/q2(D) ⊆ S ⊆ H.
(ii) For any x ∈ H, if D(x) ≥ η′

10W , (1 − η′)D(x) ≤ D̃(x) ≤ (1 + η′)D(x) holds with
probability at least 1 − 1

q4 .
(iii) For any x ∈ Ω with D(x) ≤ η′

10W , either x /∈ H, or D̃(x) ≤ (1 + η′) η′

10W holds with
probability at least 1 − 1

q4 .

Proof. Let us prove the three parts one by one:
(i) Consider any x ∈ Highη′/q2(D), that is, D(x) ≥ η′

q2 . Then the probability that x /∈ H is
at most (1 − η′

q2 )|H| ≤ 1
q4 . Applying the union bound over all the elements in Highη′/q2(D)

(at most q2

η′ = O(q3) 11 many elements), the claim follows.
(ii) Since |Z| = O( W

η′2 log W ), applying Chernoff bound, we see that (1 − η′)D(x) ≤
D̃(x) ≤ (1 + η′)D(x) does not hold with probability at most 1

q4 .
(iii) Since |Z| = O( W

η′2 log W ), if x is in H (otherwise, we are already done), applying
Chernoff bound (only on one side), the bound follows. ◀

We now bound the ℓ1-distance between D and D̃ with respect to H.

▶ Lemma 3.6.
∑

x∈H

∣∣∣D(x) − D̃(x)
∣∣∣ ≤ 5η′(1 + η′) ≤ 10η′ holds with probability at least 1 − 3

q .

Proof. Recall the definition of Highη′/10W (D). Note that∑
x∈H

∣∣∣D(x) − D̃(x)
∣∣∣ =

∑
x∈Highη′/10W (D)

∣∣∣D(x) − D̃(x)
∣∣∣+

∑
x∈H\Highη′/10W (D)

∣∣∣D(x) − D̃(x)
∣∣∣

Applying Lemma 3.5 (ii) for each x ∈ Highη′/10W (D), and then using union bound over
all such x ∈ Highη′/10W (D), the first term is bounded by η′ with probability at least 1 − 1

q .
Now the second term, notice that for each x ∈ H \ Highη′/10W (D), D(x) ≤ η′

10W . By
Lemma 3.5 (iii), and using the union bound over all elements in H \ Highη′/10W (D) (note
that |H| ≤ 2W = O(q3)), with probability at least 1 − 2

q , D̃(x) ≤ η′(1 + η′)/10W for all
x ∈ H \ Highη′/10W (D). Since |H| ≤ 2W , the second term is bounded by 4η′(1 + η′) with
probability at least 1 − 2

q . ◀

Now we prove a lemma that shows that for every distribution D, there is a another
distribution D that is “similar” to D, and for which H contains the top q2 elements of D.

▶ Lemma 3.7. There exists a distribution D such that H contains top q2 elements of D.
Moreover, the following hold:

(i) ||D − D||1 ≤ 2η′, with probability at least 1 − 2
q .

11 This follows from the assumption that Λ(n, ϵ) is at least Ω(1/ϵ).
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(ii)
∑

x∈H

∣∣∣D(x) − D̃(x)
∣∣∣ ≤ 12η′, with probability at least 1 − 5

q .

(iii) |D(Ω \ H) − D̃(Ω \ H)| ≤ 12η′, with probability at least 1 − 5
q .

Proof. Let T be the set of q2 largest elements of D. If T ⊆ S, H (as S ⊂ H) contains the
largest q2 elements of D. In that case, setting D to be D gives us the above results.

Now, let us consider the case where T ̸⊆ S. By Lemma 3.5 (part (i)), with probability
at least 1 − 2

q , Highη′/q2(D) ⊆ S. Thus for any x ∈ H \ S, D(x) < η′

q2 . Consider the
set U = T \ H. Notice that since |H \ S| = q2 and |T | = q2, |U | ≤ |H \ (T ∪ S)|. Let
U = {y1, . . . , y|U |} ⊂ Ω \ H, and let z1. . . . , z|U | be some |U | elements of H \ (T ∪ S). Note,
by definition of T and U , the set {z1. . . . , z|U |} and the set {y1. . . . , y|U |} are disjoint.

Consider the distribution D defined as follows:
For elements in {z1. . . . , z|U |}, we define D(zi) = D(yi).
For elements in {y1. . . . , y|U |}, we define D(yi) = D(zi).
For all other x, we define D(x) = D(x).

Note that since all the elements in the sets {z1. . . . , z|U |} and {y1. . . . , y|U |} were from
Ω \ S, from Lemma 3.5 (part (i)), with probability at least 1 − 2

q , D(yi) ≤ η′

q2 and D(zi) ≤ η′

q2 ,
for all i ∈ Ω \ S. Moreover, as |U | ≤ q2, we have condition (i) as well. Furthermore, H

contains the largest q2 elements of D due to its construction.
Using the triangle inequality (relative to H) along with Lemma 3.6 and the above

expression, we can say that, with probability at least 1 − 5
q , (ii) follows.

Let us now prove (iii). Since D and D̃ are distributions,
∑

x∈H

D(x) +
∑

x∈Ω\H

D(x) =∑
x∈H

D̃(x) +
∑

x∈Ω\H

D̃(x). Thus,

∣∣∣D(Ω \ H) − D̃(Ω \ H)
∣∣∣ =

∣∣∣∣∣∑
x∈H

D̃(x) −
∑
x∈H

D(x)

∣∣∣∣∣ ≤
∑
x∈H

∣∣∣D̃(x) − D(x)
∣∣∣ ≤ 12η′

The last inequality follows from (ii). ◀

Now we finally establish the correctness of the algorithm.

Proof of correctness of the algorithm. For completeness, consider the case where D is ζ-
close to P. By Lemma 3.7 (i) and the triangle inequality, we know that there exists a
distribution D that is (ζ + 2η′)-close to P and H contain the largest q2 elements of D. Since∑
x∈H

∣∣∣D(x) − D̃(x)
∣∣∣ ≤ 12η′ and

∣∣∣D(Ω \ H) − D̃(Ω \ H)
∣∣∣ ≤ 12η′ hold from Lemma 3.7 (ii) and

(iii), following Lemma 3.4 for α = 12η′, β = ζ + 2η′ and γ = 12η′, we can say that there
exists a distribution D1 in P satisfying Equation (3) (which is same as satisfying Condition
(A) and Condition (B) in Step 5 of the algorithm). Hence, our algorithm accepts D in
Step 5.

For soundness, consider a distribution D that is (ε + ζ + η)-far from P. Then following
Lemma 3.7 (i), we know that there exists a distribution D that is (ε + ζ + η − 2η′)-far from
P, that is, (ε + 3α + β + 2γ)-far from P, where α = 12η′, β = ζ + 2η′. Here, we are using
that η = 64η′ and γ = 12η′. Also Lemma 3.7 guarantees that H contains the top q2 elements
of D. Following Lemma 3.4, we know that there does not exist any such distribution D1 in
P that satisfies both Condition (A) and Condition (B) of Step 5 of the algorithm. Thus
the algorithm will REJECT the distribution D in Step 6.

Note that the total failure probability of the algorithm is bounded by the probability
that Lemma 3.7 does not hold, which is at most 12

q . ◀
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4 Sample complexity of testing non-concentrated label-invariant
properties

In this section we first prove a lower bound of Ω(
√

n) on the sample complexity of non-tolerant
testing of any non-concentrated label-invariant property. Then we proceed to prove a tolerant
lower bound of Ω(n1−o(1)) samples for such properties in Section 4.2.

4.1 Non-tolerant lower bound (Proof of Theorem 1.3 for label-invariant
properties)

Here we first prove a lower bound result analogous to Theorem 1.3, where the properties are
non-concentrated and label-invariant. In Section 5, we discuss why the proof of Theorem 4.1
does not directly work for Theorem 1.3, and then prove Theorem 1.3 using a different
argument.

▶ Theorem 4.1 (Analogous result of Theorem 1.3 for non-concentrated label-invariant properties).
Let P be any (α, β)-non-concentrated label-invariant distribution property, where 0 < α ≤
β < 1

2 . For ε with 0 < ε < α, any (0, ε)-tester for property P requires Ω(
√

n) many samples,
where n is the size of the support of the distribution.

Proof. Let us first consider a distribution Dyes that satisfies the property. Since P is
an (α, β)-non-concentrated property, by Definition 2.7, Dyes is an (α, β)-non-concentrated
distribution. From Dyes, we generate a distribution Dno such that the support of Dno is a
subset of that of Dyes, and Dno is ε-far from P. Hence, if we apply a random permutation
over the elements of Ω, we show that Dyes and Dno are indistinguishable, unless we query
for Ω(

√
n) many samples. Below we formally prove this idea.

We will partition the domain Ω into two parts, depending on the probability mass of
Dyes on the elements of Ω. Given the distribution Dyes, let us first order the elements of Ω
according to their probability masses. In this ordering, let L be the smallest 2βn elements of
Ω. We denote Ω \ L by H. Before proceeding further, note that the following observation
gives an upper bound on the probabilities of the elements in L.

▶ Observation 4.2. For all x ∈ L, Dyes(x) ≤ 1−2α
1−2β

1
n .

Proof of Observation 4.2. By contradiction, assume that there exists x ∈ L such that
Dyes(x) > 1−2α

1−2β
1
n . This implies, for every y ∈ H, that Dyes(y) > 1−2α

1−2β
1
n . So,

1 =
∑
x∈Ω

Dyes(x) =
∑
x∈L

Dyes(x) +
∑
y∈H

Dyes(y) > Dyes(L) + |H| 1 − 2α

1 − 2β

1
n

.

As |L| = 2βn and Dyes is an (α, β)-non-concentrated distribution, Dyes(L) ≥ 2α. Also,
|H| = (1 − 2β)n. Plugging these into the above inequality, we get a contradiction. ◀

Note that Observation 4.2 implies that if S is a multi-set of o
(√

1−2β
1−2α n

)
samples from

Dyes, then with probability 1 − o(1), no element from L appears in S more than once. Now
using the distribution Dyes and the set L, let us define a distribution Dno such that Dno is
ε-far from P. Note that Dno is a distribution that comes from a distribution over a set of
distributions, all of which are not (α, β)-non-concentrated. The distribution Dno is generated
using the following random process:
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We partition L randomly into two equal sets of size βn. Let the sets be {x1, . . . , xβn}
and {y1, . . . , yβn}. We first pair the elements of L randomly into βn pairs. Let
(x1, y1), . . . , (xβn, yβn) be a random pairing of the elements in L, which is represented as
PL, that is, PL = {(x1, y1), . . . , (xβn, yβn)}.
The probability mass of Dno at z is defined as follows:

If z ̸∈ L, then Dno(z) = Dyes(z).
For every pair (xi, yi) ∈ PL, Dno(xi) = Dyes(xi) + Dyes(yi), and Dno(yi) = 0.

We start by observing that the distribution Dno constructed above is supported on a
set of at most (1 − β)n elements. So, any distribution Dno constructed using the above
procedure is ϵ-far from satisfying the property P for any ε < α.

We will now prove that Dyes and Dno both have similar distributions over the sequences
of samples. More formally, we will prove that any algorithm that takes o(

√
n) many samples,

cannot distinguish between Dyes from Dno with probability at least 2
3 .

Since any Dno produced using the above procedure has exactly the same probability
mass on the elements in H as Dyes, any tester that distinguishes between Dyes and Dno

must rely on samples obtained from L. Recall that the algorithm is given a uniformly
random permutation of the distribution. Since Supp(Dno) ⊂ Supp(Dyes) (particularly,
Supp(Dno) ∩ L ⊂ Supp(Dyes) ∩ L), it is not possible to distinguish between Dyes and Dno,
unless an element of L appears at least twice. Otherwise, as in the proof of Lemma 3.3,
the elements drawn from L are distributed identically to a uniformly random non-repeating
sequence. But observe that Dyes(i) = O( 1

n ) and Dno(i) = O( 1
n ) when i is in L. Thus any

sequence of o(
√

n) samples will provide only a distance of o(1) between the two distributions,
completing the proof. ◀

4.2 Tolerant lower bound (Proof of Theorem 1.4)
▶ Theorem 4.3 (Theorem 1.4 formalized). Let P be any (α, β)-non-concentrated label-invariant
distribution property, where 0 < α ≤ β < 1

2 . For any constant ε1 and ε2 with 0 < ε1 < ε2 < α,
any (ε1, ε2)-tester for P requires Ω(n1−o(1)) samples, where n is the size of the support of
the distribution.

To prove the above theorem, we recall some notions and a theorem from Valiant’s paper
on a lower bound for the sample complexity of tolerant testing of symmetric properties [40].
These definitions refer to invariants of distributions, which are essentially a generalization of
properties.

▶ Definition 4.4. Let Π : Dn → R denote a real-valued function over the set Dn of all
distributions over [n].
1. Π is said to be label-invariant if for any D ∈ Dn the following holds: Π(D) = Π(Dσ) for

any permutation σ : [n] → [n].
2. For any γ, δ with γ ≥ 0 and δ ∈ [0, 2], Π is said to be (γ, δ)-weakly-continuous if for all

distributions p+, p− satisfying ||p+ − p−||1 ≤ δ, we have |Π(p+) − Π(p−)| ≤ γ.

For a property P of distributions, we define ΠP : Dn → [0, 2] with respect to property P
as follows:

For D ∈ Dn, ΠP(D) := the distance of D from P.

From the triangle inequality property of ℓ1 distances, ΠP (which refers to the distance
function from the property P) is (γ, γ)-weakly continuous, for any γ ∈ [0, 2].
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▶ Theorem 4.5 (Low Frequency Blindness [40]). Consider a function Π : Dn → R that is
label-invariant and (γ, δ)-weakly-continuous, where γ ≥ 0 and δ ∈ [0, 2]. Let there exist two
distributions p+ and p− in Dn with n being the size of their supports, such that Π(p+) > b,
Π(p−) < a, and they are identical for any index occurring with probability at least 1

n in
either distribution, where a, b ∈ R. Then any tester that has sample access to an unknown
distribution D and distinguishes between Π(D) > b−γ and Π(D) < a+γ, requires Ω(n1−oδ(1))
many samples from D 12.

Note that in Theorem 4.5, we have assumed that p+ and p− are identical for any index
that has probability mass at least 1

n . We can actually replace this condition to O( 1
n ) by

adding O(n) many “dummy elements” to the support of p+ and p−. Now we are ready to
prove Theorem 4.3.

Proof of Theorem 4.3. Consider ΠP as defined above. As P is a label-invariant property,
the function ΠP is also label-invariant. We have already noted that ΠP is (γ, γ)-weakly
continuous as “distance from a property” satisfies the triangle inequality, for any γ ∈ [0, 2].
Now recall that the distributions Dyes and Dno considered in the proof of Theorem 4.1. The
probability mass of each element in the support of Dyes and Dno is O( 1

n ). Note that Dyes

is in P and Dno is ε-far from P, for any ε < α, and both of them have a support size of
Θ(n). Here we take ε > ε2. Now, we apply Theorem 4.5 with a = 0, some b < ε and γ with
γ < min{ε1, ε − ε2}. Observe that this completes the proof of Theorem 4.3. ◀

5 Sample complexity of non-concentrated properties (Proof of
Theorem 1.3)

▶ Theorem 5.1 (Theorem 1.3 formalized). Let P be any (α, β)-non-concentrated distribution
property for 0 < α < β < 1

2 . For any ε with 0 < ε < α, any (0, ε)-tester for P requires
Ω(

√
n) many samples, where n is the size of the support of the distribution.

Why does the proof of Theorem 4.1 work only for label-invariant properties?

Note that the proof of Theorem 4.1 crucially uses the fact that the property P is label-
invariant. Recall that, while constructing Dno from Dyes, for each i ∈ [βn], moving the
masses of both xi and yi in Dyes to xi to produce Dno is possible as the property P is
label-invariant. Because of this feature, we can apply a random permutation over Ω, and
still the permuted distribution will behave identically with respect to P . After applying the
random permutation, the samples coming from Dyes and Dno are indistinguishable as long
as there are no collisions among the elements in L, which is the case when we take o(

√
n)

samples. However, this technique does not work when the property is not label-invariant,
as the value of the distribution with respect to P may not be invariant under the random
permutation over Ω. This requires a new argument; although the proof is similar in spirit to
the proof of Theorem 4.1, there are some crucial differences, and we present the proof next.
In order to prove Theorem 5.1, instead of moving the masses of both xi and yi in Dyes to xi

to produce Dno, we randomly move the sum to either xi or yi proportionally to the masses
of xi and yi.

12 oδ(·) suppresses a term in δ.
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5.1 Proof of Theorem 5.1
The proof of Theorem 5.1 starts off identically to the proof of Theorem 4.1, but there is
a departure in the construction of Dyes and Dno. Due to shortage of space, we only give
the constructions of Dyes and Dno here, along with a brief sketch of the proof. See the full
version of the paper [17] for the complete proof.

Let us first consider Dyes, L and PL as discussed in the proof of Theorem 4.1, only here
we cannot and will not pass Dyes through a random permutation. The difference starts from
the description of the distribution Dno. In fact, Dno will be randomly chosen according to a
distribution over a set of distributions, all of which are not (α, β)-non-concentrated. The
distribution Dno is generated using the following random process:

We partition L arbitrarily into two equal sets of size βn. Let the sets be {x1, . . . , xβn}
and {y1, . . . , yβn}. We first pair the elements of L arbitrarily into βn pairs. Let
(x1, y1), . . . , (xβn, yβn) be an arbitrary pairing of the elements in L. Let PL be the set
of pairs. So PL = {(x1, y1), . . . , (xβn, yβn)}. We refer to xi and yi as the corresponding
elements of each other with respect to PL, and denote π(xi) = yi and π(yi) = xi.
The probability mass of Dno at z is defined as follows:

If z ̸∈ L, then Dno(z) = Dyes(z).
For every pair (xi, yi) ∈ PL, use independent random coins and
∗ With probability Dyes(xi)

Dyes(xi)+Dyes(yi) , set Dno(xi) = Dyes(xi)+Dyes(yi) and Dno(yi) =
0.

∗ With the remaining probability, that is, with probability Dyes(yi)
Dyes(xi)+Dyes(yi) , set

Dno(xi) = 0 and Dno(yi) = Dyes(xi) + Dyes(yi).

Observe that any Dno constructed by the above procedure is supported on a set of at
most (1 − β)n elements. So, any distribution Dno constructed using the above procedure is
ε-far from satisfying the property P, for any ε < α. But since any Dno produced using the
above procedure has exactly the same probability mass on elements in H as Dyes, any tester
that distinguishes between Dyes and Dno must rely on samples obtained from L. However,
we can prove that unless we receive two samples from the same pair in L (which occurs with
low probability), the sample sequence cannot distinguish Dyes from Dno.

6 Learning a distribution (Proof of Theorem 1.5)

In this section, we prove an upper bound related to the tolerant testing of more general
properties. Following a folklore result, when provided with oracle access to an unknown
distribution D, we can always construct a distribution D′, such that the ℓ1 distance between
D′ and D (the unknown distribution) is at most ε, by using O( n

ε2 ) samples from D 13. In
this section, we provide a procedure that can be used for tolerant testing of properties, and
in particular hints at how general tolerance gap bounds could be proved in the future. Our
algorithm learns an unknown distribution approximately with high probability, adapting to
the input, using as few samples as possible. Specifically, we prove that given a distribution
D, if there exists a subset S ⊆ [n] which holds most of the total probability mass of D, then
the distribution D can be learnt using O(|S|) samples (even if the algorithm is unaware of
|S| in advance). Our result is formally stated as follows:

13 There is a writeup of this folklore result by Cannone [13].
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▶ Theorem 6.1 (Theorem 1.5 formalized). Let D denote the unknown distribution over
Ω = [n], and assume that there exists a set S ⊆ [n] with D(S) ≥ 1 − η

2
14, where η ∈ [0, 2) is

known but S and |S| are unknown. Then there exists an algorithm that takes δ ∈ (0, 2] as
input and constructs a distribution D′ satisfying ||D − D′||1 ≤ η + δ with probability at least
2
3 . Moreover, the algorithm uses, in expectation, O

(
|S|
δ2

)
many samples from D.

Note that in the above theorem, the algorithm has no prior knowledge of |S|. Before
directly proving the above, we first show that if |S| is known, then O(|S|) many samples are
enough to approximately learn the distribution D. We would like to point out that similar
question has been studied under the local differential privacy model with communication
constraints by Acharya, Kairouz, Liu and Sun [4] and by Chen, Kairouz and Özgür [18].

▶ Lemma 6.2 (Theorem 6.1 when |S| is known). Let D be the unknown distribution over
Ω = [n] such that there exists a set S ⊆ [n] with |S| = s, and η ∈ [0, 2) such that D(S) ≥ 1− η

2 ,
where s ∈ [n] and η ∈ (0, 1) are known. Then there exists an algorithm that takes δ ∈ (0, 2]
as an input and constructs a distribution D′ satisfying ||D − D′||1 ≤ η + δ with probability at
least 9

10 . Moreover, the algorithm uses O
(

s
δ2

)
many samples from D.

We note that Lemma 6.2 can be obtained from the work of Acharya, Diakonikolas, Li
and Schmidt [3] (Theorem 2). For completeness, we give a self-contained proof of this lemma
in the full version of the paper [17].

We later adapt the algorithm of Lemma 6.2 to give a proof to the scenario where |S| is
unknown, using a guessing technique. The idea is to guess |S| = s starting from s = 1, and
then to query for O (s) many samples from the unknown distribution D. From the samples
obtained, we construct a distribution Ds, and use Lemma 6.3 presented below to distinguish
whether Ds and D are close or far. We argue that, for s ≥ |S|, Ds will be close to D with
probability at least 9

10 . We bound the total probability for the algorithm reporting a D′

that is too far from D (for example when terminating before s ≥ |S|), and also bound the
probability of the algorithm not terminating in time when s becomes at least as large as |S|.

▶ Lemma 6.3 ([37]). Let Du and Dk denote the unknown and known distributions over
Ω = [n] such that the support of Du is a set of s elements of [n]. Then there exists an algorithm
Tol-Alg(Du, Dk, ε1, ε2, κ) that takes the full description of Dk, two proximity parameters
ε1, ε2 with 0 ≤ ε1 < ε2 ≤ 2 and κ ∈ (0, 1) as inputs, queries O

(
1

(ε2−ε1)2
s

log s log 1
κ

)
many

samples from Du, and distinguishes whether ||Du − Dk||1 ≤ ε1 or ||Du − Dk||1 ≥ ε2 with
probability at least 1 − κ 15.

Note that Theorem 6.1 talks about learning a distribution with O(s) samples, where
there exists an unknown set S with s elements and D(S) ≥ 1 − η/2. To prove Theorem 6.1,
we use Lemma 6.3 that crucially uses less than s queries for tolerant identity testing (as
opposed to learning).

The original bound following the paper of Valiant and Valiant [37] is O
(

1
(ε2−ε1)2

n
log n

)
,

which holds for any general distributions Du and Dk with constant success probability. When
deploying Lemma 6.3, we “contract” the set Ω \ Supp(Dk) to a single element, which allows
us to substitute s + 1 for n. Note that this does not change the distance between Dk and

14 Recall that the variation distance between two distribution is half than that of ℓ1 distance between
them. So, we take D(S) ≥ 1 − η

2 (with η ∈ [0, 2)) instead of D(S) ≥ 1 − η (with η ∈ [0, 1)) .
15 The multiplicative factor log 1

κ is for amplifying the success probability from 2
3 to 1 − κ.
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Du. Hence, O
(

1
(ε2−ε1)2

s
log s

)
samples from Du are enough for constant success probability.

Following a recent work of Cannone, Jain, Kamath and Li [16], the dependence on the
proximity parameters can be slightly improved. However we are not using that result since
the focus of this work is different.

Proof of Theorem 6.1. The algorithm is as follows:
1. Set s = 1.
2. Query for a multi-set Zs of O

(
s

δ2

)
many samples from D.

3. Construct a distribution Ds : [n] → [0, 1] such that

Ds(x) = # times x appears in Zs

|Zs|

4. Call the algorithm Tol-Alg
(

Ds, D, η + δ
2 , η + δ, 1

100 log2 s

)
(corresponding to Lemma 6.3)

to distinguish whether ||D − Ds||1 ≤ η + δ
2 or ||D − Ds||1 ≥ η + δ. If we get ||D − Ds||1 ≤

η + δ
2 as the output of Tol-Alg, then we report D′ as the output and Quit. Otherwise,

we double the value of s. If s ≤ 2n, go back to Step 2. Otherwise, report Failure.

Let S denote the event that the algorithm quits with the desired output. We first show
that Pr(S) ≥ 2

3 . Then we analyze the expected sample complexity of the algorithm.
Observe that the algorithm quits after an iteration with guess s such that Alg-Tol

reports ||D − Ds||1 ≤ η + δ
2 . So, in that case, the probability that the algorithm exits with

an output not satisfying ||D − Ds||1 ≤ η + δ is at most 1
100 log2 s

. When summing this up over
all possible s (all powers of k, even up to infinity), the probability that the algorithm does
not produce the desired output, given that it quits, is at most

∞∑
k=1

1
100k2 ≤ 1

10 . So, denoting

Q as the event that the algorithm quits without reporting Failure, Pr(S | Q) ≥ 9
10 .

For the lower bound on Pr(Q), consider the case where s ≥ |S|. In this case, ||Ds −D||1 ≤
η + δ

2 with probability at least 9
10 , and Tol-Alg quits by reporting Ds as the output with

probability at least 1 − 1
100 log2 s

. So, for any guess s ≥ |S|, the algorithm quits and reports
the desired output with probability at least 4

5 . So, the probability that the algorithm quits
without reporting failure is at least the probability that the algorithm quits with a desired
output at some iteration with a guess s ≥ |S|, which is at least 1 − ( 1

5 )(log n−log |S|+1). That
is, Pr(Q) ≥ 4

5 .
Hence, the success probability of the algorithm can be lower-bounded as

Pr(S) ≥ Pr(Q) · Pr(S | Q) ≥ 9
10 · 4

5 >
2
3 .

Now, we analyze the sample complexity of the algorithm. The algorithm queries for O(s)
samples when it runs the iteration whose guess is s. The algorithm goes to the iteration
with guess s > |S| if all prior iterations which guessed more than |S| failed, which holds
with probability at most O

(
( 1

5 )⌊log s/|S|⌋). Hence the expected sample complexity of the
algorithm is at most∑

k:s=2k<|S|

O(s) +
∑

k:s=2k≥|S|

O

((
1
5

)⌊log(s/|S|)⌋

· s

)
= O(|S|).

To explain the above equality, note that in the LHS of the above equation, each term of
the second sum is bounded by O(( 1

5 )(k−log |S|) ·2(k−log |S|) · |S|). Thus, substituting k− log(|S|)
by r, we see that the second part of the LHS is upper bounded by

∑
r≥0

O
(
( 2

5 )r · |S|
)

which is

clearly O(|S|). Thus we have the above bound. ◀
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A Proof of Lemma 3.3 and Lemma 3.4

Proof of Lemma 3.3. We will prove this by contradiction. Let us assume that there are
two distributions Dyes and Dno such that (i) Dyes ∈ P, (ii) Dno is ε-far from P, (iii)
High1/q2(Dyes) = High1/q2(Dno) = A, and (iv) for all x ∈ A, Dyes(x) = Dno(x). Now
we argue that any (0, ε)-non-tolerant tester requires more than Λ(n, ε) samples from the
unknown distribution D to distinguish whether D is in the property or ε-far from it.

Let DY be a distribution obtained from Dyes by permuting the labels of Ω \ A using a
uniformly random permutation. Specifically, consider a random permutation π : Ω \ A →
Ω \ A. The distribution DY is as follows: (i) DY (x) = Dyes(x) for each x ∈ A and (ii)
DY (π(x)) = Dyes(x) for each x ∈ Ω \ A. Similarly, consider the distribution DN obtained
from Dno by permuting the labels of Ω \ A using a uniformly random permutation. Note
that DY is in P, whereas DN is ε-far from P, which follows from P being label-invariant.

We will now prove that DY and DN provide similar distributions over sample sequences.
More formally, we will prove that any algorithm that takes at most Λ(n, ε) many samples,
cannot distinguish DY from DN with probability at least 2/3. We argue that this claim holds
even if the algorithm is provided with additional information about the input: Namely, for
all x ∈ A, it is told the value of DY (x) (which is the same as DN (x)). When the algorithm
is provided with this information, it can ignore all samples obtained from A.

By the definition of A, for all x ∈ Ω\A, both DY (x) and DN (x) are at most 1/q2. Let SY

be a sequence of samples drawn according to DY . If |SY | ≤ Λ(n, ε), then with probability at
least 3/4, the sequence (Ω \ A) ∩ SY has no element that appears twice. In other words, the
set (Ω \ A) ∩ SY is a set of at most Λ(n, ε) distinct elements from Ω \ A. Since the elements
of Ω \ A were permuted using a uniformly random permutation, with probability at least 3/4,
the sequence (Ω \ A) ∩ SY is a uniformly random sequence of distinct elements from Ω \ A.
Similarly, if SN is a sequence of samples drawn according to DN , then with probability at
least 3/4, the sequence (Ω \ A) ∩ SN is a uniformly random sequence of distinct elements
from Ω \ A. Thus, the distributions over the received sample sequence obtained from DY or
DN are of distance 1/4 of each other, which is strictly less than 1/3.

Hence, if the algorithm obtains at most Λ(n, ε) many samples from the unknown distribu-
tion D, it cannot distinguish, with probability at least 2/3, whether the samples are coming
from DY or DN . ◀

To prove Lemma 3.4, we will need the following simple claim, whose proof we omit here.

▷ Claim A.1. Let σ : [n] → [n] be a permutation and let a1, a2, . . . , an and b1, b2, . . . , bn

be two sets of n positive real numbers. If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn

and
∑

i∈[n] ai =
∑

i∈[n] bi = 1, then the sum
∑

i∈[n]
∣∣ai − bσ(i)

∣∣ is minimized when σ is the
identity permutation.

Now we present the proof of Lemma 3.4.

Proof of Lemma 3.4. We consider the two cases separately. (1) If D is β-close to P , there
exists a distribution D1 in P such that

∑
x

∣∣D(x) − D1(x)
∣∣ ≤ β. Since P is label-invariant,

any permutation of D1 is also in P . Without loss of generality, let us assume that the domain
Ω is a subset of {1, . . . , n}.

By Claim A.1, the permutation σ that minimizes
∑

x

∣∣D(x) − D1(σ(x))
∣∣ ≤ β is the one

that orders the i-th largest element of D1 with the i-th largest element of D, that is, if x

is the element with the i-th largest probability mass in D1, then σ(x) has the i-th largest
probability mass in D. Consider the distribution Dσ

1 that is defined by Dσ
1 (x) = D1(σ(x)).
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Clearly, H contains the largest q2 elements of D, and hence also High1/q2(Dσ
1 ) ⊆ H. As∑

x∈Ω |Dσ
1 (x) − D(x)| ≤ β,

∑
x∈H |D(x) − D̃(x)| ≤ α and |D(Ω \ H) − D̃(Ω \ H)| ≤ γ, by

the triangle inequality, we obtain∑
x∈H |Dσ

1 (x) − D̃(x)|+ |Dσ
1 (Ω \ H) − D̃(Ω \ H)|

≤
∑

x∈H |Dσ
1 (x) − D(x)|+

∑
x∈H

|D(x) − D̃(x)|

+|Dσ
1 (Ω \ H) − D(Ω \ H)| + |D(Ω \ H) − D̃(Ω \ H)|

≤
∑

x∈H |Dσ
1 (x) − D(x)|+

∑
x∈H

|D(x) − D̃(x)|

+
∑

x∈Ω\H

|Dσ
1 (x) − D(x)| + |D(Ω \ H) − D̃(Ω \ H)|

=
∑

x∈Ω |Dσ
1 (x) − D(x)|+

∑
x∈H

|D(x) − D̃(x)| + |D(Ω \ H) − D̃(Ω \ H)|

≤ α + β + γ

(2) We will prove this case by contradiction. Let D1 ∈ P be a distribution such that
High1/q2(D1) ⊆ H and

∑
x∈H |D1(x) − D̃(x)| + |D1(Ω \ H) − D̃(Ω \ H)| ≤ α + β + γ. Then,

as
∑

x∈H |D(x) − D̃(x)| ≤ α, by the triangle inequality, we have∑
x∈H

|D1(x) − D(x)| + |D1(Ω \ H) − D̃(Ω \ H)| ≤ 2α + β + γ. (5)

Consider the distribution D̂ defined as follows:
For all x ∈ H, D̂(x) = D1(x).
If D1(H) ≥ D(H), then for all x ∈ Ω \ H, D̂(x) = D(x) · ϕ, where ϕ = 1−D1(H)

1−D(H)
. Notice

that in this case ϕ ≤ 1.
If D1(H) ≤ D(H), then pick the set T ⊂ Ω \ H with |T | = 2q2 that minimizes D(T ).
Then for all x ∈ T , D̂(x) = D(x) + D(H)−D1(H)

2q2 and for all x ∈ Ω \ (T ∪ H), D̂(x) = D(x)
Let us first prove that High1/q2(D̂) ⊆ H. In the case where D1(H) ≥ D(H), for all
x ∈ Ω \ H, D̂(x) ≤ D(x). Since High1/q2(D) ⊆ H, High1/q2(D̂) ⊆ H. Now, in the case
where D1(H) ≤ D(H), the only x ∈ Ω \ H for which D̂(x) > D(x) are those in T . Since
|Ω| > 4q2, the lowest 2q2 elements on D must each have mass less than 1

2q2 . So even if we
add 1

2q2 for any element x ∈ T , D̂(x) < 1/q2. Hence in this case also High1/q2(D̂) ⊆ H since
High1/q2(D) ⊆ H and High1/q2(D1) ⊆ H. Now let us bound the ℓ1 distance between D̂ and
D. Observe that

∑
x∈Ω\H |D̂(x) − D(x)| = |D̂(Ω \ H) − D(Ω \ H)|. This is because, in the

case where D̂(H) ≥ D(H), we have D̂(x) = ϕ · D(x) ≤ D(x) for all x ∈ Ω \ H. On the other
hand, in the case where D̂(H) ≤ D(H) then for all x ∈ Ω \ H, D̂(x) ≥ D(x). Thus,∑

x∈Ω\H

|D̂(x) − D(x)| = |D̂(Ω \ H) − D(Ω \ H)|

≤ |D̂(Ω \ H) − D̃(Ω \ H)| + |D(Ω \ H) − D̃(Ω \ H)|
≤ |D̂(Ω \ H) − D̃(Ω \ H)| + γ

Also note that, from the construction of D̂, we have for all x ∈ H, D̂(x) = D1(x) and thus
D̂(Ω \ H) = D1(Ω \ H). Thus,
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||D̂ − D||1 =
∑
x∈H

|D̂(x) − D(x)| +
∑

x∈Ω\H

|D̂(x) − D(x)|

≤
∑
x∈H

|D̂(x) − D(x)| + |D̂(Ω \ H) − D̃(Ω \ H)| + γ

= (
∑
x∈H

|D1(x) − D(x)| + |D1(Ω \ H) − D̃(Ω \ H)|) + γ

(From the construction of D̂)
≤ 2α + β + 2γ (By Equation (5))

Moreover, as High1/q2(D1) ⊆ H and by the construction of D̂, we have High1/q2(D1) =
High1/q2(D̂) and for all x ∈ High1/q2(D1), D1(x) = D̂(x). Since we assumed that D1 is in P ,
using Lemma 3.3, D̂ is ε-close to P . And since ||D̂ − D||1 ≤ 2α + β + 2γ, we conclude that
D is (ε + 2α + β + 2γ)-close to P, which is a contradiction. ◀

B Computationally efficient tolerant testers

In this section we present a constructive variant of the tolerant tester studied in Section 3.1.
Let us first recall the definitions of polyhedron and projection map.

▶ Definition B.1 (Polyhedron). Let A be a M × N real matrix, b ∈ RM be a real vector and
Ax ≤ b be a system of linear inequalities. The solution set {x ∈ RN | Ax ≤ b} of the system
of inequalities is called a polyhedron. The complexity of a polyhedron is defined as MN .

▶ Definition B.2 (Projection map). Let n be an integer. For all integers N ≤ n, a projection
map is denoted as πn : RN → Rn and is defined as the projection of the points in RN on the
first n coordinates.

Before proceeding to our results, we first define linear property.

▶ Definition B.3 (Linear property). Without loss of generality, let us assume Ω = [n]. A
distribution property P is said to be a linear property if there exists a polyhedron LP ={

x ∈ RN | Ax ≤ b
}

, where A is a M × N real matrix and b ∈ RM be a real vector, and
πn (LP) 16 is the set of distributions satisfying the property P, that is, for every z :=
(z1, . . . , zn, . . . , zN ) ∈ LP, the distribution Dz, defined as Dz(i) = zi, ∀i ∈ [n] satisfies the
property P. Conversely, for every distribution D that satisfies P, there exists some z ∈ LP
such that D = Dz as defined above. The complexity of P is defined as M × max {N, n}.

Now we give an example of a linear property.

▶ Remark B.4 (An example of a linear property: Approximate uniformity property). A distribution
D over [n] is said to be uniform if D(i) = 1

n for all i ∈ [n]. Let the property Pu,ε denote
the set of all distributions that are ε-close to the uniform distribution, where ε ∈ (0, 1) is a
parameter. Consider the following polyhedron LPu,ε in R2n:(∑

i∈[n] zn+i ≤ ε
) ∧ (

zi ≥ 0 ∀i ∈ [2n]
) ∧ (

− zn+i ≤ zi − 1
n ≤ zn+i ∀i ∈ [n]

)
16 Note that πn (LP) will also be a polyhedron in Rn, see, e.g., Corollary 2.5 in Chapter 2 from the book

by Bertsimas and Tsitsiklis [11]. However, the number of linear inequalities defining the property, which
affects the running time of the tester, can sometimes be greatly reduced by using this projection.
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Now observe that πn (LPu,ε) will give us the set of distributions that are ε-close to uniform,
i.e., the set Pu,ε (this would serve as the linear transformation mentioned in Definition B.3).
Also note that approximate uniformity property has complexity O

(
n2).

For a distribution property P , let CP ⊂ Rn denote the geometric representation of the set
of probability distributions over the set [n] that satisfy P by considering of each distribution
over [n] as a point in Rn. For all β ∈ [0, 1], k ≤ n and a ∈ Rn, we define the following convex
set:

∆ (k, q, a, β) :=

x ∈ Rd :
k∑

i=1
|xi − ai| +

∣∣∣∣∣∣
∑
j>k

xj −
∑
j>k

aj

∣∣∣∣∣∣ ≤ β ∧ ∀i>k xi <
1
q2


▶ Theorem B.5. Let P be a label-invariant distribution property. If there is a (0, ε)-tester
(non-tolerant tester) with sample complexity Λ(n, ε), then for any γ1, γ2 with γ1 < γ2 and
0 < γ1 < γ2 + ε < 2, there exists a (γ1, γ2 + ε)-tester (tolerant tester) that takes s = Õ(Λ2)
many samples and makes a single emptiness query to the set CP ∩ ∆(Õ(s), Λ, D̃, β), where
D̃ is a known probability distribution and β = γ1 + γ2−γ1

3 .

Proof. Recall that in Step 5 of the tolerant tester presented in Section 3.1, the tester checks
whether there is any distribution D1 ∈ P that satisfies the following two conditions:

(i)
∑

x∈H

∣∣∣D1(x) − D̃(x)
∣∣∣+
∣∣∣D1(Ω \ H) − D̃(Ω \ H)

∣∣∣ ≤ 26η′ + ζ

(ii) High1/q2(D1) ⊆ H

where ζ = γ1, η = γ2 − γ1, η = γ2 − γ1 and η′ = η
64 . The set H and the distribution D̃ are

defined in the tolerant tester presented in Section 3.1.
Without loss of generality, we can assume that H = {1, . . . , |H|}. Therefore, in order to

perform Step 5 of the tolerant tester, the following equations are needed to be satisfied:

D1 ∈ CP and D1 ∈ ∆
(

|H| , q, D̃, 26η′ + ζ
)

We now present the tolerant (γ1, γ2 + ε)-tester in its entirety, that is, a (ζ, ζ + ε + η)-tester
for the property P, where ζ = γ1, η = γ2 − γ1, and η′ = η

64 .

1. Draw W = O
(

q2

η′ log q
)

many samples from the distribution D. Let S ⊆ Ω be the set of
(distinct) samples obtained.

2. Draw additional O
(

W
η′2 log W

)
samples Z to estimate the value of D(x) for all x ∈ S.

3. Construct a set H as the union of S and arbitrary q2 many elements from Ω \ (S ∪ Z).
4. Define a distribution D̃ such that, for x ∈ H, D̃(x) = # x in the multi-set Z

|Z| , and for

each x ∈ Ω \ H, D̃(x) =
1−
∑

x∈H

D̃(x)

|Ω|−|H| .

5. If there exists a distribution D1 ∈ CP ∩ ∆
(

|H| , q, D̃, 26η′ + ζ
)

, then ACCEPT D.
6. If there does not exist any distribution D1 that passes Step 5, then REJECT D.

Observe that the sample complexity of the tester is O
(
q2 log2 q/η2) = Õ(Λ2) in addition

to a single emptiness query to the set P ∈ CP ∩ ∆
(

|H| , q, D̃, 26η′ + ζ
)

in Step 5. The
correctness proof of the above tester follows from the correctness argument presented in
Section 3.1. ◀
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B.1 Emptiness checking when P is a linear property: Proof of
Theorem 1.2

Now we proceed to analyze the time complexity of the (γ1, γ2 + ε)-tester described in
Theorem B.5 when P is also a linear property. Recall that as P is a linear property, there
exists a polyhedron LP =

{
x ∈ RN | Ax ≤ b

}
, where A is a M ×N real matrix and b ∈ RM

be a real vector, and πn (LP) is the set of distributions satisfying the property P (See,
Definition B.3). Now in Observation B.6, we show that checking emptiness of πn(LP) ∩
∆
(

|H| , q, D̃, 26η′ + ζ
)

is equivalent to testing the feasibility of a family of inequalities.

▶ Observation B.6. Without loss of generality, assume that H = {1, . . . , |H|} and Ω =
{1, . . . , n}. Checking emptiness of πn(LP) ∩ ∆(|H| , q, D̃, 26η′ + ζ) is equivalent to testing
the feasibility of the following set of inequalities:(

Az ≤ b
) ∧ (

zi < 1
q2 ∀i ∈ [n] \ {1, . . . , |H|}

)
|H|∑
i=1

∣∣∣zi − D̃(i)
∣∣∣+

∣∣∣∣∣∣
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i)

∣∣∣∣∣∣ ≤ 26η′ + ζ (6)

Note that the inequality in Equation (6) can be expressed as the following set of linear
inequalities using slack variables zN+i for all i ∈ [|H| + 1]:(∑|H|

i=1 zN+i + zN+|H|+1 ≤ 26η′ + ζ
) ∧ (

zN+i ≥ 0 ∀i ∈ [|H| + 1]
)

− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

− zN+|H|+1 ≤
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1

Therefore checking the emptiness of πn(LP)∩∆
(

|H| , q, D̃, 26η′ + ζ
)

is equivalent to checking
the feasibility of the following set of linear inequalities:(

Az ≤ b
) ∧ (∑|H|

i=1 zN+i + zN+|H|+1 ≤ 26η′ + ζ
) ∧ (

zi < 1
q2 ∀i ∈ [n] \ {1, . . . , |H|}

)(
zN+i ≥ 0 ∀i ∈ [|H| + 1]

) ∧ (
− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

)
− zN+|H|+1 ≤

n∑
i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1

The feasibility of the above set of linear inequalities can be solved in a polynomial time
in the complexity of the polyhedron, that is, in a polynomial time in N and M using the
Ellipsoid Method, where recall that A is a M × N real matrix (see, e.g., [11]). Thus, we have
an efficient (γ1, γ2 + ε)-tester for P, that runs in time polynomial in the complexity of the
linear property P which is also label-invariant. This concludes the proof of Theorem 1.2.
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Abstract
The Chinese restaurant process is a stochastic process closely related to the Dirichlet process that
groups sequentially arriving objects into a variable number of classes, such that within each class
objects are cyclically ordered. A popular description involves a restaurant, where customers arrive
one by one and either sit down next to a randomly chosen customer at one of the existing tables
or open a new table. The full state of the process after n steps is given by a permutation of the
n objects and cannot be represented in sublinear space. In particular, if we only need specific
information about a few objects or classes it would be preferable to obtain the answers without
simulating the process completely.

A recent line of research [15, 28, 5, 12] attempts to provide access to huge random objects
without fully instantiating them. Such local access implementations provide answers to a sequence of
queries about the random object, following the same distribution as if the object was fully generated.
In this paper, we provide a local access implementation for a generalization of the Chinese restaurant
process described above. Our implementation can be used to answer any sequence of adaptive queries
about class affiliation of objects, number and sizes of classes at any time, position of elements within
a class, or founding time of a class. The running time per query is polylogarithmic in the total size
of the object, with high probability. Our approach relies on some ideas from the recent local access
implementation for preferential attachment trees by Even et al. [12]. Such trees are related to the
Chinese restaurant process in the sense that both involve a “rich-get-richer” phenomenon. A novel
ingredient in our implementation is to embed the process in continuous time, in which the evolution
of the different classes becomes stochastically independent [21]. This independence is used to keep
the probabilistic structure manageable even if many queries have already been answered. As similar
embeddings are available for a wide range of urn processes [2], we believe that our approach may be
applicable more generally. Moreover, local access implementations for birth and death processes
that we encounter along the way may be of independent interest.
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1 Introduction

Random objects are often used to model how data is generated. Examples include Gaussian
mixture models, random graph models such as the preferential attachment model [3], Erdős-
Renyi graphs [11] and the stochastic block model [19]. Usually, the process to generate such
an object is fairly easy to describe and implement. However, if we think of these objects as
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modelling very large data sets it may be time and space consuming to generate an instance
of the model. In particular, if we want to evaluate a sampling based algorithm on such
a model or we want to study some local properties of the generated object, it would be
interesting to provide local access to the object without fully instantiating it immediately.
For example, can we easily determine the neighbourhood of a vertex in a webgraph taken
from the preferential attachment model without first fully computing the graph? Can we
compute the nearest neighbour of a point in a Gaussian mixture model without generating
all data points? If we were able to provide consistent and efficient answers to such queries,
we could, for example, run sampling algorithms on very large input graphs without fully
generating them. Of course, such a local access must provide to all sequences of queries and
answers the same distribution as if the object was immediately fully instantiated.

The challenge is that answers to queries must be correlated in the right way, i.e. the
distribution of the answer for a query must be a conditional distribution that takes into
account all answers given to previous queries. In a Gaussian mixture model, for instance,
revealing the location x of one point makes it more likely that additional points are located
close to x.

The Chinese restaurant process. An intuitive description of the Chinese restaurant process
(CRP) as generalised in [6] involves a restaurant with round tables of unbounded capacity,
corresponding to classes of objects, and customers, corresponding to the objects. We imagine
that every dish has an objective tastiness and a distribution Φ on (0,∞) captures how tasty
a random dish from the menu is. In every round one customer arrives, and the n-th customer
has n options. She may sit down next to one of the n− 1 earlier customers and order the
same dish as him, or she sits at a new table and orders a random dish from the menu. She
makes each choice with a probability proportional to how appealing it is. The appeal of
sitting next to customer c is the tastiness of the dish of c and the appeal of sitting at a new
table is 1. Applications in biology motivate us to speak of fitness rather than tastiness in the
following. Instead of being assigned to dishes, we may instead assume that fitness values
are assigned to the customers themselves or simply to the tables, as all customers at a table
always order the same dish.

The CRP is closely related to Dirichlet processes and the Pólya urn model. Its easy
iterative definition has contributed to its popularity as a model for clustering in Bayesian
statistics, for example for gene expression data [27, 29] or in image analysis [25]. The
random partition induced by the CRP is the Ewens distribution that describes the allelic
partition of DNA in the infinite alleles models under assumptions of neutrality and no
recombination [10, 8].

Our Contribution. In this paper we provide a local access implementation of the N -round
CRP and several related processes. The number of steps required to compute the answer to
a query is polylogarithmic in N . An informal version of our main theorem is as follows.

▶ Theorem 1 (Main, informal). Let Φ be a distribution on (0,∞) with some means of
sampling from Φ, and let N ∈ N. A local access implementation of the N -round CRP with
parameter Φ can be achieved such that any (possibly adaptive) sequence of queries from the
list below can be answered in polylog(N) time per query whp.

Which customer sits right/left of customer c after n ≤ N rounds?
What is the fitness of customer c’s table?
Who founded customer c’s table?
How many customers are at each of the tables after n ≤ N rounds?
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A formal version of this theorem can be found in Section 2.2.

1.1 Related Work
The problem of providing local access to a random object has appeared in several earlier works.
Goldreich, Goldwasser and Nussboim [15] define a framework to study implementations of
random objects. They assume the random object can be described as a function and require
that queries to the function are answered in polylogarithmic time. They discuss perfect imple-
mentations (which have the same distribution as the original object), close implementations
(which have approximately the same distribution) and pseudoimplementations (which cannot
be efficiently distinguished from the original object). They also consider the truthfulness
of implementations meaning that if every random object has property T then also every
object in the implementation is required to have property T . They give several examples of
implementations and further examples are found in [28]. Perfect implementations are also
known as local access implementations or local access generators. These have been developed
for preferential attachment trees by Even et al. [12], for Erdős-Renyi graphs and Dyck paths
by Biswas et al. [5], and for random walks by Biswas et al. [4].

A related line of research includes partitioning oracles [17, 23, 22] that provide sublinear
time access to a random partition of an input graph. While the partition is also a random
object, randomness is used to guarantee that the partition cuts only few edges and that
queries can be answered efficiently.

Yet another related direction is local computation algorithms developed by Rubinfeld
et al. [30] and Alon et al. [1] that give sublinear time local access to the solution of a
computational task. Examples for problems for which local computation algorithms are known
include sparse spanning graphs [24], set cover [16], mechanism design [18], clustering [13]
and maximum matching [26].

1.2 Technical Overview
In our pursuit of a local access implementation of the CRP we develop local access imple-
mentations of several related processes that may be of independent interest. An overview is
given in Figure 1. Two aspects of the CRP are captured separately. In the following, we
outline some difficulties in dealing with them as well as how we overcome these difficulties.

CRP

STPRRT.
Prop. 3, s.a. [12] Prop. 7

TGPCT-TGPSBPSDP. Prop. 10 Lem. 11 Prop. 12 Lem. 13
Thm. 2

Section 3 Section 4

Section 5 Section 6
Section 7

Figure 1 Random processes that capture aspects of the CRP. The picture indicates the theorem,
proposition or lemma that establishes a local access implementation of these processes, the sections
where they are found, as well as what each result builds upon.

The Single Table Process (STP). The simpler aspect concerns the order of customers at a
single table, i.e. we have to answer who sits left or right of whom. Let us ignore other tables
for now and simply assume customers [n] := {1, . . . , n} join a table one by one, and each
i ∈ {2, . . . , n} sits down to the right of a customer sampled uniformly at random from [i− 1].
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The final ordering of the customers is given by a uniformly random cyclic permutation
π : [n]→ [n], with π(c) being c’s final right neighbour. A local access implementation of π

would be easy to come by but is insufficient for our purposes. This is because we permit queries
regarding earlier points in time, i.e. a query may request the right neighbour of customer
c after n′ ∈ {c, . . . , n} steps of the process. Within the sequence (π(c), π2(c), π3(c), . . . ) of
customers towards the right of c in the final ordering, the query asks for the first element c′

with c′ ≤ n′, i.e. the first customer who was already present at time n′. Doing this naively
by generating the sequence may be too costly.

To allow computing c′ quickly, we consider the random recursive tree (RRT), which
is a rooted tree T with vertex set [n] generated as customers arrive. We begin with just
customer 1 as a root vertex. When customer c ≥ 2 arrives and takes her seat to the right of
customer p, then c is prepended to the list of children of vertex p in T . As it turns out, a
depth first search of T then visits the vertices in the order (1, π(1), . . . , πn−1(1)), reflecting
the final ordering of customers. Since T has logarithmic depth and logarithmic maximum
degree whp we can determine the predecessor and successor of a given vertex in the DFS
ordering by issuing a logarithmic number of neighbourhood queries to T whp. Moreover –
and crucially – information about the order of customers at any time step n′ < n is naturally
contained in T within the subtree T ′ induced by vertex set [n′]. In other words, to find the
right neighbour of a vertex c at time n′ we find its DFS successor in T ′.

We therefore have to implement local access to a random recursive tree T . This has
already been achieved by Even et al [12]. We simplify their implementation in two ways.
Firstly, we always reveal the neighbourhood of any requested vertex in its entirety instead
of revealing only the “next child” in its adjacency list. This simplifies the structure of the
residual probability space without negatively impacting running time. Secondly, we employ
what we call the “harmonic sampling trick” which allows sampling a set X ⊆ [N ] in O(|X|)
steps that contains each i ∈ [N ] independently with probability 1/i. The algorithm is quite
simple: Sample x uniformly from [N ], then recursively sample a set X ′ ⊆ [x−1] that contains
each i ∈ [x− 1] independently with probability 1/i, and return X = {x} ∪X ′. The intuition
why the trick is useful is that vertex 1 in T has vertices 2, 3, 4, . . . as children with probability
1
1 , 1

2 , 1
3 , . . . , respectively. When combined with rejection sampling, the trick remains useful

also when vertices other than 1 are concerned and when partial information about T has
been revealed.

The Table Growth Process (TGP). The more difficult aspect concerns the number of
customers at each of the tables over time. The growth of a single table T is correlated with the
other tables. This is true for the obvious reason that after n steps all table sizes add to n, but
also because the creation of a new table with high fitness can significantly hamper the ability
of other tables to attract customers in the future. Even in the absence of table creations and
with identical fitness values a considerable challenge remains: Assume we have revealed that
at times n1 and n2 with n1 < n2 there are ℓ tables with fitness value 1 each and that the
numbers of customers at these tables has risen from a1, a2, . . . , aℓ to a1+d1, a2+d2, . . . , aℓ+dℓ.
Assume further that the customer counts a1 + d′

1, a2 + d′
2, . . . , aℓ + d′

ℓ at an intermediate
time n ∈ {n1, . . . , n2} is requested. Then (d′

1, . . . , d′
ℓ) has a multivariate hypergeometric

distribution, i.e. d′
i is the number of balls of colour i when drawing n − n1 balls from an

urn without replacement where the urn contains dj balls of colour j for each j ∈ [ℓ]. The
intimidating prospect of having to efficiently sample from such a distribution prompted us
to choose a different path. While we have since been made aware that fast approximate
sampling from multivariate hypergeometric distributions has been achieved in [5, Appendix
D], we still do not know how table creations and fitness values could be incorporated into
such an approach.
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We dodge these complications by adopting a continuous time view of the table growth
process where each table gains customers independently of all other tables. More precisely,
every table gains additional customers with a rate proportional to both its fitness and size,
and new tables are founded with a rate of 1. Properties of the exponential distribution ensure
that the next customer to arrive will always be destined for a specific (new or old) table with
a probability proportional to that table’s rate, as required. A complication is that the times
at which customers arrive are now random. In particular, if we are interested in the state of
the process after n customers have arrived, we first have to locate a corresponding point in
time using binary search in the time dimension.

In our continuous time table growth process (CT-TGP), the growth of a single table with
fitness 1 is governed by a simple birth process (SBP, also called Yule process) that begins
with a single element and from then on gains elements with a rate equal to its size. A fitness
̸= 1 merely amounts to rescaling time. A SBP can be seen as a simple death process
(SDP) played in reverse, where a SDP starts with some number N of elements and each
element dies independently of the others with a rate of 1, i.e. it has an Exp(1)-distributed
lifetime.

Our most fundamental problem is therefore that of providing a local access implementation
to the SDP, which can answer for a given time t ∈ R≥0 how many elements die until time t.
The rough idea for dealing with the first query is as follows. Let m be the median of the
exponential distribution. The number of elements dying at a time in [0, m] has distribution
N ′ ∼ Bin(N, 1

2 ) and if t < m we need only obtain further information on those N ′ elements to
answer the query. In that case, let 0 < m′ < m be the median of the exponential distribution
when conditioned on attaining values in [0, m]. The number N ′′ of elements dying within
[0, m′] has distribution N ′′ ∼ Bin(N ′, 1

2 ) and depending on whether t ≤ m′ or t > m′ we
would have to continue worrying about the precise death times of only N ′′ or N ′ − N ′′

elements – roughly half in expectation. To fully answer the query at hand and further queries
like it we lazily construct a binary tree where inner nodes record numbers of elements (such
as N ′ and N ′′) with death times falling within respective ranges. The elements themselves
are represented in leafs which are at depth O(log N) whp. To sample the necessary Binomial
random variables in O(log N) time whp we use a result by [7].

2 Preliminaries and formal statement of main result

2.1 The Chinese restaurant process with table fitness
The variant of the Chinese restaurant process considered in this paper was proposed in [6]
and is parametrised by a distribution Φ on (0,∞). An outcome of the CRP is given by a
(random) mapping

S : N→ N such that S(n) ∈ [n]

where n := {1, . . . n}. It can be interpreted as follows. In a Chinese restaurant an unbounded
number of circular tables are initially empty and customers arrive one by one. If S(i) < i then
the i-th customer takes her place at an existing table directly to the right of customer S(i).
If S(i) = i then customer i is understood to become her own right neighbour by becoming
the founder of a new table (customer 1 is necessarily a founder). This process gives rise to a
sequence (πn)n∈N of permutations πn in the symmetric group Symn, where πn indicates for
a customer i ∈ [n] the customer πn(i) sitting directly to the right of customer i at time n.
An example is given in Figure 2. The figure also visualises the cycles of πn as the connected
components in the graph ([n], {(i, π(i)) | i ∈ [n]}) and showcases the well-subscribed cycle
notation.
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1
5

4
7

2
3

8
6c 1 2 3 4 5 6 7

π7(c) 5 3 2 7 4 6 1

π7 = (1 5 4 7)(2 3)(6)

i 1 2 3 4 5 6 7
S(i) 1 2 2 1 1 6 4

Figure 2 Some values for S, the permutation π7 they give rise to, the cycle representation of
π7 and a visualisation. In the interpretation of the CRP the elements 1, 2 and 6 are founders and
thereby representatives of three tables. In green we show the effect on the second table if S(8) = 2.

The distribution of S involves fitness values f1, f2, . . . ∈ (0,∞) assigned to customers
(say the tastiness of their dish). Formally, when n− 1 customers have entered the restaurant,
and S(1), . . . , S(n− 1), f1, . . . , fn−1 and π1, . . . , πn−1 are given, the n-th customer enters.

She either chooses S(n) = i ∈ [n− 1] at random with probability

P(S(n) = i) = fi

1+
∑n−1

j=1
fj

.

In this case fn = fi (customer n orders the same dish as her neighbour) and πn(i) =
n, πn(n) = πn−1(i) and πn(k) = πn−1(k) for k ∈ [n] \ {i, n}.
Otherwise she chooses S(n) = n with probability

P(S(n) = n) = 1
1+

∑n−1
j=1

fj

.

In this case customer n occupies a new table. We sample fn ∼ Φ and let πn(n) = n and
πn(k) = πn−1(k) for k ∈ [n− 1]. This always occurs for customer 1.

Further quantities of interest are easily derived from S and (πn). The set F of founders
is precisely the set of fixed points of S, i.e.

F =
{

n ∈ N : S(n) = n
}

.

The founders F = {n1 < n2 < . . .} can act as representatives of their tables, i.e. by the k-th
table we mean the table at which nk is placed. The number of non-empty tables at time n is
kn = |F ∩ [n]|, which is also the number of cycles in the permutation πn. The customers at
table nk at time n are the elements of the cycle of πn containing nk. To find the customer
founder(n) who founded the table at which customer n is sitting we can iteratively apply S

starting with the argument n, until (after at most n iterations) we find a fixed point.

Related Objects. The classical single type Chinese restaurant process has only a single
parameter θ > 0, which is a weight for the probability of founding a new table. It arises as a
special case of our variant when Φ is the trivial distribution putting all probability mass on
the value θ−1. Several aspects of the CRP are known under different names.

If ai denotes the number of tables of size i after n steps of the CRP with parameter θ

then the distribution of (a1, . . . , an) is known as the Ewens distribution.
If we treat all fitness values as though they were 1 and reinterpret fi as the dish ordered
by customer i (with all dishes having the same quality) then f1, f2, . . . is the Dirichlet
process with base distribution Φ.
If we initialise the CRP with some customers at some of the tables, all of which have
the same fitness, and condition on the event that no further tables are created, then the
number of customers at the tables over time is a Pólya urn model.
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Call a directed graph with vertex set V = [n], where each v ∈ V has exactly one outgoing
edge towards p(v) ≤ v (loops are allowed) a recursive forest. If θ = 1 then the graph
T = ([n], {(i, S(i)) | i ∈ [n]}) generated from the outcome S of the CRP is a uniformly
random recursive forest. If we condition on the event {∀i > 1 : S(i) ̸= i} then T is a
uniformly random recursive tree.

2.2 Formal statement of main result
In this paper, an event En occurs with high probability (whp) if for any constant c > 0 we
have 1− P(En) = O(n−c). We allow the constant hidden by O-notation to depend on c. For
a random variable Xn and a function g we say Xn = O(g(n)) whp if

∀c > 0 : ∃n0, C : ∀n ≥ n0 : P(Xn > C · g(n)) ≤ n−c,

in particular C may depend on c. Conveniently, whenever we have a polynomial number
of events that individually occur whp, then these events jointly occur whp. We say Xn is
polylog(n) whp if Xn = O(logb(n)) whp for some constant b > 0.

Local Access Implementation. Our goal is known under several different names. We
loosely follow the terminology of local access implementation by [5], which is a stateful
implementation in the sense of [15] and a random access generator in the sense of [12].

Assume we are given a huge random object X by a distribution D on a set X. A local
access implementation of a family F1, . . . , Fq : X→ R of attributes (random variables) with
values in some set R is a data structure that answers a sequence of (possibly adaptive) queries
i1, i2, . . . with a sequence of results r1, r2, . . . such that (r1, r2, . . . ) has the same distribution
as (Fi1(X), Fi2(X), . . . ). If, for every x ∈ X, the attributes F1(x), . . . , Fq(x) determine the
object x completely we also speak of a local access implementation of X (via F1, . . . , Fq).

We can now formally state our main result.

▶ Theorem 2 (Local Access Implementation of the CRP). Let Φ be a distribution on (0,∞)
with some means of sampling from Φ (e.g. using an oracle), and let N ∈ N. A local access
implementation of the N -round CRP with parameter Φ providing access via the attributes
listed in Table 1 can be achieved such that each (possibly adaptive) query takes polylog(N)
time whp.

Note that the family of attributes grows with N . For instance, we can query the Chinese
restaurant process for πn(c) for any 1 ≤ c ≤ n ≤ N . In the flat view used above this
constitutes a separate attribute for every valid pair (n, c). Our implementation must be given
a parameter N ∈ N beforehand and then one can query all attributes arising from rounds
with index n ≤ N .

Model of Computation. Since we use an embedding of the CRP in continuous time, our
algorithms involve uniform sampling from [0, 1] ⊆ R and arithmetic operations on real
numbers as would be allowed in the real RAM model. We suspect that our construction
could be adapted for the word RAM model with moderate technical complications regarding
the content of Section 6, but we do not pursue such a result.

3 Local access implementation of Random Recursive Trees

The random recursive tree TN is the N -th element in a random sequence (Tn)n∈N where Tn

is a rooted tree with vertex set [n] and Tn+1 arises from Tn by assigning the new vertex n + 1
a single neighbour parent(n + 1) ∈ [n] uniformly at random. In this section, we provide a
random access generator for TN in the following sense.
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Table 1 Attributes that can be queried by our local access implementation of the CRP and
corresponding parameters.

attribute parameters interpretation

πn(c) and π−1
n (c) 1 ≤ c ≤ n ≤ N customer sitting right and left of customer c after

n rounds
fc 1 ≤ c ≤ N fitness of customer c, i.e. weight for the probability

with which customers are seated next to c.
founder(c) 1 ≤ c ≤ N founder of customer c’s table

tableSizes(n) 1 ≤ n ≤ N number of customers at each of the kn tables after
n rounds in the order in which tables were founded

F ∩ [N ] — set of all kN founders within the first N rounds

▶ Proposition 3 (Local access implementation of the RRT). Let N ∈ N. A local access
implementation of TN that provides for any given vertex v ∈ [N ] access to all neighbours of v

can be achieved such that each query takes polylog(N) time whp.

A proof of this proposition is implicit in the work of Even et al. [12]. We still provide our
own construction, which uses a slightly simplified invariant and exploits what we call the
harmonic sampling trick. We begin with two facts that are also stated in [12].

▶ Lemma 4.
(i) The maximum degree of TN is O(log(N)) whp.
(ii) The height of TN is O(log(N)) whp.

Proof.
(i) Let ci be the number of children of vertex i. We have ci =

∑N
j=i+1 Xj where Xj is

the indicator that i is the parent of j. These indicators are independent and Xj is
Bernoulli distributed with parameter 1

j−1 , hence E[ci] = O(log(N)). Moreover, ci is
Poisson binomial distributed and simple Chernoff bounds for this case suffice to show
that ci = O(log(N)) whp. A more fine-grained analysis is provided in [9, Thm 1].

(ii) A proof can be found in [14, Thm 6.32]. ◀
To prove Proposition 3 we need two simple ideas presented in the following two lemmas.

▶ Lemma 5 (Harmonic Sampling Trick). For i ∈ [N ] let Xi ∼ Ber( 1
i ) be independent Bernoulli

random variables and X = {i ∈ [N ] | Xi = 1}. The algorithm HST samples X in O(log N)
time whp.

Algorithm HST(N ∈ N):
X ← ∅
while N ≥ 1 do

sample i ∈ [N ] uniformly
X ← X ∪ {i}
N ← i− 1

return X

Proof. First note that Pr[max(X) = i] = Pr[Xi = 1, Xi+1 = . . . = XN = 0] = 1
i ·

i
i+1 · . . . ·

n−1
n = 1

n . Hence max(X) is uniformly distributed in [N ] and is correctly sampled in the first
iteration of the while-loop. The remaining set X \ {max(X)} = {j ∈ [max(X)− 1] | Xj = 1}
can then be sampled using the same method since no information on X1, . . . , Xmax(X)−1 has
been revealed.
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To bound the running time of HST, we use a connection to random recursive trees. In
TN+1, the parent of a vertex v ∈ [N + 1] \ {1} is uniformly distributed in [v − 1]. Therefore
the set X ′ of ancestors of vertex N + 1 in TN+1 can be sampled using HST and X ′ therefore
has the same distribution as X. We can now use Lemma 4 (ii) to conclude that X has size
O(log N) whp and thus HST runs in time O(log N) whp. ◀

▶ Lemma 6 (Auxiliary Set Data Structure). There is a data structure for representing a
dynamic set Q ⊆ [N ] (initialised with Q = ∅) and its complement Q̄ := [N ] \Q that uses
O((|Q|+ 1) log N) bits and supports the following operations in O(log N) time.

(i) Deciding for v ∈ [N ] whether v ∈ Q.
(ii) Adding an element v ∈ Q̄ to Q.
(iii) Computing for v ∈ Q̄ the number rankQ̄(v) = |Q̄ ∩ [v]|.
(iv) Selecting for r ∈ [N ] the unique element v ∈ Q̄ with rankQ̄(v) = r, if it exists.

Proof. Simply store Q in a balanced search tree data structure (e.g. an AVL tree) where
subtrees are annotated with the number of elements they contain (see e.g. [31]). Implementing
the operations as stated is then straightforward. ◀

Proof of Proposition 3. The tree TN is determined by a family (parent(v))2≤v≤N of inde-
pendent random variables. Whenever we reveal the neighbourhood of some v0 ∈ [N ] then
this fully reveals parent(v0) and parent(c1), . . . , parent(ck) for the children c1, . . . , ck of v0.
It also reveals that parent(v) ̸= v0 for all v ∈ {v0 + 1, . . . , N} \ {c1, . . . , ck}. Since every
piece of information relates only to one random variable, the family (parent(v))2≤v≤N is still
independent conditioned on that information (this would not be true if we only revealed
deg(v0) for instance).

In contrast to Even et al. [12] we always reveal the entire neighbourhood of a requested
vertex v0. At any point in time let Q be the set of vertices that were previously queried and
Q̄ := [N ] \Q. Our invariant is very simple:

Conditioned on the information we have revealed, the family (parent(v))2≤v≤N is still
independent. For each 2 ≤ v ≤ N , either parent(v) is known (and not random any
more) or uniformly distributed in Q̄ ∩ [v − 1].

We use the data structure from Lemma 6 to store Q and Q̄. Moreover we store all edges
that were previously revealed.

We now explain how a query for v ∈ [N ] is handled. If v ∈ Q then we simply reproduce
the answer previously returned for v. Now assume v ∈ Q̄. If parent(v) is not yet revealed we
have to select it uniformly from Q̄∩ [v− 1]. To this end we compute rankQ̄(v) = |Q̄∩ [v− 1]|,
then sample r′ uniformly from [rankQ̄(v) − 1] and select as parent(v) the element v′ with
rankQ̄(v′) = r′ using the O(log N) time operations from Lemma 6. Some vertices from Q

may already be known children of v. Moreover, every vertex v′ ∈ {v + 1, . . . , N} ∩ Q̄ where
parent(v′) is not yet known has a probability of 1

rank(v′)−1 to have v as its parent. Call
such vertices potential children of v. It is important to note that two potential children
v′

1 < v′
2 have distinct unit fractions from { 1

1 , 1
2 , . . . , 1

N } as a probability for having v as parent
because the potential parents of v′

2 include all potential parents of v′
1 and v′

1 itself. We
sample X ⊆ [N ] using Lemma 5, which contains each i ∈ [N ] with probability 1

i . We then
make a potential child v′ of v an actual child of v if rank(v′)− 1 ∈ X. To do this quickly,
we iterate over the (small) set X and check for each i ∈ X with a select-query whether a
corresponding potential child of v exists (and ignoring i if this is not the case). As a last
step we add v to Q and return v’s parent and children.
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Note that (adaptive) queries can affect the way in which TN is sampled but not its
distribution. Since a query for v ∈ [N ] takes time deg(v) · O(log n) its running time is
polylog(N) whp by Lemma 4 (i). ◀

4 Local access implementation of the Single Table Process

The single table process (STP) is the CRP conditioned on the event {F = {1}}, i.e. no
tables are founded after the first. This makes the parameter Φ irrelevant. In simple terms,
the STP generates a sequence (τn)n∈N of cyclic permutations where τ1 = (1) and where
τn+1 ∈ Symn+1 is obtained from τn by inserting n + 1 into the cycle at a uniformly random
position. Clearly this makes τn a uniformly random cyclic permutation. We now implement
fast random access to this process in the following sense by exploiting a close correspondence
between the STP and the random recursive trees (Tn)1≤n≤N from the previous section.

▶ Proposition 7 (Local access implementation of the STP). Let N ∈ N. A local access
implementation of the N -round STP that provides access to τn(c) and τ−1

n (c) for any given
1 ≤ c ≤ n ≤ N can be achieved such that queries take polylog(N) time whp.

Proof of Proposition 7. While Tn is defined as an unordered tree, we may assume that
the children of a vertex are implicitly decreasingly ordered. The unique depth first search
traversal of Tn produces a vertex list Ln = (v1 = 1, v2, . . . , vn). We can associate this list
with a cyclic permutation τ ′

n via

τ ′
n(vi) = vi+1 for i ∈ [n− 1] and τ ′

n(vn) = v1.

By definition Tn+1 is obtained from Tn by prepending the vertex n + 1 to the child list of
a uniformly random vertex from [n]. Thus, the list Ln+1 is obtained from Ln by inserting
n + 1 after a uniformly random element, and τ ′

n+1 is obtained from τ ′
n by inserting n + 1

into a uniformly random position of the cycle. So clearly the sequence (τ ′
n)1≤n≤N has

the same distribution as the sequence (τn)1≤n≤N from the STP. A query for τn(i) and
τ−1

n (i) concerning the STP corresponds to a query for the preorder successor and preorder
predecessor of the vertex i in Tn (where v1 is regarded as the successor of vn in Tn).

By Proposition 3 we have access to adjacencies in TN in polylogarithmic time. This also
gives us access to adjacencies in the subtree Tn of TN simply by ignoring any incidences
to vertices v > n. To determine preorder successors and predecessors in Tn as required,
we need only follow a path in Tn which comes with an additional O(log(N)) factor by
Lemma 4 (ii). ◀

5 Local access implementation of the Simple Birth Process

In this section we provide a random access generator for simple death processes. By reversing
time, we then extend the result to (bounded) simple birth processes.

Simple Death Process. In a simple death process (SDP) with N elements and parameter
f > 0, each element i ∈ [N ] is assigned a lifetime ℓi ∼ Exp(f) independently. The SDP is
then (Yt)t≥0 where Yt := |{i ∈ [N ] | ℓi ≥ t}| is the number of elements surviving until time t

and the duration τ of the process is defined as τ := inf{t ≥ 0 | Yt = 0}.
Recall four simple facts abouts exponentially distributed random variables.
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▶ Fact 8.
(i) P(X ≥ t) = e−λ·t for λ > 0, t ≥ 0 and X ∼ Exp(λ).
(ii) P(X ≥ t | X ≥ t0) = P(X ≥ t− t0) for λ > 0, t ≥ t0 ≥ 0 and X ∼ Exp(λ).

This property is known as the memorylessness of the exponential distribution.
(iii) For k ∈ N, λ1, . . . , λk > 0 and independent Xi ∼ Exp(λi) for i ∈ [k] we have

min
i∈[k]

Xi ∼ Exp(
∑
i∈[k]

λi) and P(j = arg min
i∈[k]

Xi) = λj∑
i∈[k]

λi

for j ∈ [k].

In the lemma that follows we need to quickly sample binomial random variables and use the
following theorem from [7], which even works in the word RAM model.

▶ Theorem 9 ([7, Section A.2 Thm 5]). On a word RAM with word size Ω(log N) it is
possible to sample from Bin(N, 1

2 ) in expected time O(1) and whp in time O(log N).

▶ Proposition 10 (Local access implementation of the SDP). Let N ∈ N and f > 0. A local
access implementation of a SDP (Yt)t≥0 with parameters N and f that provides access to τ

and Yt for given t ∈ [0, τ ] can be achieved such that queries take polylog(N) time whp.

Proof. If (Yt)t≥0 and (Y ′
t )t≥0 are SDPs with parameters 1 and f , respectively, and both

with N elements, then (Yft)t≥0
d= (Y ′

t )t≥0. In other words, the parameter f only rescales
time so we may assume f = 1 without loss of generality. The proof idea is to first describe
how an outcome of a SDP can be represented using a binary tree. Second, we show how
queries can be answered quickly using the tree. Lastly, we argue that the tree can be lazily
generated.

Rather than sampling the lifetimes (ℓi)i∈[N ] from Exp(1), we sample (ℓ′
i)i∈[N ] uniformly

from the interval (0, 1) and define ℓi := − ln(ℓ′
i). This works because for t ≥ 0

P(ℓi > t) = P(− ln(ℓ′
i) > t) = P(ln(ℓ′

i) < −t) = P(ℓ′
i < e−t) = e−t, (1)

meaning ℓi ∼ Exp(1) as desired. We may assume that the set L = {ℓ′
1, . . . , ℓ′

N} has size N

(values are pairwise distinct). Instead of L we consider a binary tree T = T (L) that is defined
recursively. The root of T is responsible for [0, 1). If a vertex v of T is responsible for an
interval [a, b) ⊆ [0, 1) then the subtree rooted at v stores L∩ [a, b). Let s(v) := |L∩ [a, b)|. If
s(v) ≥ 2 then v has two children v1 and v2 responsible for [a, a+b

2 ) and [ a+b
2 , b), respectively.

If s(v) ≤ 1 then v is a leaf and if s(v) = 1 then v is annotated with the unique element from
L ∩ [a, b).

Note that we need not store the values a and b because they are implicit in the location
of v in T . More precisely we have a = i

2d and b = i+1
2d where d is the depth of v in T and i is

the binary number obtained when encoding the path from the root of T to v as a sequence
of left (0) and right (1) choices. We do however store the value s(v) explicitly in v.

It is quite clear that T has height O(log N) whp because an inner vertex at depth d

means that two values x, y ∈ L fall within the same interval of size 2−d. The expected
number of such pairs is O(N22−d), which is O(N−c) for d ≥ (c + 2) log2 N . It is also clear
that T allows us to answer any query in time proportional to the depth of T : To compute τ

it suffices to find the left-most leaf of τ (with minimal ℓ′
i, hence corresponding to maximal

ℓi). To compute Yt, observe that

Yt = |{i ∈ [N ] | ℓi ≥ t}| = |{i ∈ [N ] | − ln(ℓ′
i) ≥ t}| = |{i ∈ [N ] | ℓ′

i ≤ e−t}|.

It therefore suffices to locate where e−t would be in T and compute, using the values s(v)
along the path, the number of leafs that lie left of the path towards e−t.
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We now describe how T can be generated on the fly (or more precisely a tree with the
same distribution). We generate the children of a vertex only when the vertex is first looked
at. Initially there is only the root r annotated with s(r) = N . Now assume a vertex is
reached for the first time. If s(v) = 0 then there is nothing to do. If s(v) ≥ 2 then we create
its two children v1 and v2. Since each child is responsible for exactly half the interval that v is
responsible for, we have s(v1) ∼ Bin(s(v), 1

2 ) and s(v2) = s(v)− s(v1). We can sample s(v1)
in O(log N) time whp by Theorem 9. If s(v) = 1, then we instantiate the single value ℓ ∈ L

that is represented in v by sampling it uniformly from the interval that v is responsible for.
During a single query one descending path in T has to be generated in this way, which

takes O(log(N) ·height(T )) = O(log2(N)) time whp. Note again that the (possibly adaptive)
queries may affect the way in which T is generated, but not its distribution. ◀

Simple Birth Process. Consider a Markov process (Xt)t≥0 with Xt ∈ N0 for t ∈ R≥0 that
is monotonic in t. Let ti := inf{t ≥ 0 | Xt ≥ i + 1} be the time when it jumps from ≤ i to
≥ i + 1 for i ∈ N0. If X0 = 1 and the waiting times ∆i := ti − ti−1 are independent random
variables with distribution Exp(i · f) for some f > 0, then (Xt)t≥0 is called a simple birth
process (SBP) or Yule-process with parameter f . Intuitively a SBP is just a SDP that is run
in reverse. The following lemma makes this precise.

▶ Lemma 11. Let N ∈ N and f > 0. Let (Xt)t≥0 be a SBP with parameter f and
(Yt)t≥0 a SDP with parameters N and f . Let τ denote the random duration of (Yt)t≥0 and
tN := inf{t ≥ 0 | Xt > N}. Then

(τ, (Yt)t>0) d= (tN , (XtN −t)t>0) where we define Xt = 0 for t < 0.

Proof. The amount of time that (Yt)t≥0 lingers at value N is mini∈[N ] ℓi ∼ Exp(N · f) by
Fact 8 (iii). Using the memorylessness of the exponential distribution (Fact 8 (ii)) and
induction we can say more generally that (Yt)t≥0 lingers at value i for an Exp(i·f)-distributed
time, independently for each i ∈ [N ]. By definition, the same is true for (Xt)t≥0, except in
reverse order and for all i ∈ N. The claimed distributional equality follows easily. Note that
we had to remove the exceptional case t = 0 due to Y0 = N ̸= N + 1 = Xτ . ◀

6 Local access implementation of the Table Growth Process

In this section we capture the aspects of the CRP that remain if customers are indistinguish-
able, i.e. those aspects related only to the sizes of tables.

The Table Growth Process. The table growth process (TGP) is, like the CRP, parametrised
by a distribution Φ on (0,∞). For n ∈ N0, the n-th state Sn has the form

Sn =
(

(a(1)
n , . . . , a(kn)

n ), (f (1), . . . , f (kn))
)

where kn ≤ n is a number of tables, (a(1)
n , . . . , a(kn)

n ) are table sizes with
∑kn

j=1 a(j)
n = n, and

(f (1) , . . . , f (kn)) are table fitness values. The process begins with k0 = 0, i.e. S0 = ((), ()).
Given the n-th state, there are kn + 1 possibilities for the (n + 1)-th state: Either for some
j ∈ [kn] the j-th table gains a customer or a new table is created. With the normalisation
factor Z = 1 +

∑kn

j=1 a(j)
n f (j) we have: With probability a(j)

n f (j)/Z the j-th table grows to
size a(j)

n+1 = a(j)
n + 1 while all other table sizes are unchanged. With the remaining probability

1/Z a new table is founded, meaning that kn+1 = kn + 1, a(kn+1)
n+1 = 1 and f

(kn+1) is sampled
from Φ. We prove the following.
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▶ Proposition 12 (Local access implementation of the TGP). Let Φ be a distribution on (0,∞)
with some means of sampling from Φ, and let N ∈ N. A local access implementation of the
N -round TGP that provides access to Sn for any given 1 ≤ n ≤ N can be achieved such that
queries take polylog(N) time whp.

Note that this implies that the total number kN of tables is at most polylog(N) whp simply
because a query’s output size is a lower bound on its running time.

Continuous Time TGP. We now describe the continuous-time table growth process (CT-
TGP), which is closely linked to the TGP with parameter Φ. Let δj ∼ Exp(1) for j ∈ N be
independent random variables, let sj :=

∑j
i=1 δj be the creation time of the j-th table, let

f (j) ∼ Φ be the fitness of the j-th table and let (X(j)
t )t≥0 be a SBP with parameter f (j) that

describes the size X(j)
t−sj

of the j-th table at any time t ≥ sj . The state S′(t) of the CT-TGP
at time t ≥ 0 describes the fitness and sizes of all tables at time t, formally defined as

S′(t) :=
(

(X(1)
t−s1

, . . . , X
(k(t))
t−sk(t)

), (f (1), . . . , f (k(t)))
)

where k(t) := max{j ∈ N0 | sj ≤ t} is the number of tables created at time t. The number
count(t) :=

∑k(t)
j=1 X(j)

t−sj
of customers at time t is clearly monotone in t. Let us define the

n-th state S′
n of the CT-TGP as S′

n = S(tn) where tn := inf{t ≥ 0 | count(t) ≥ n}. With
probability 1 all tn are distinct and count(tn) = n for all n ∈ N0.

We now show that the sequence of states in the CT-TGP and in the TGP have the same
distribution. This type of argument, known as Athreya-Karlin embedding in the literature
on urn processes, is well suited for the study of processes with type or fitness dependent
progression rules, see for example [20].

▶ Lemma 13. Let Φ be as in Proposition 12. The sequences (Sn)n∈N0 and (S′
n)n∈N0 of states

traversed by the TGP and the CT-TGP, respectively, have the same distribution.

Proof. The sequences of fitness values are independently sampled from Φ in both cases,
so it suffices to show that the distribution of the table sizes coincide for the TGP and
the CT-TGP, when both processes are conditioned on using any fixed sequence (f (j))j∈N
of fitness values. We may then suppress fitness values when writing states, i.e. we write
Sn = (a(1)

n , . . . , a(kn)
n ) and S′

n = (X(1)
t−s1

, . . . , X (k(t))
t−sk(t)

). We shall consider the probabilities
for all possible state transitions. Let therefore Y = (y(1), . . . , y(k)) ∈ Nk be any state with
k ∈ N and

∑
j∈[k] y(j) = n. Morever let Yj := (y(1), . . . , y(j) + 1, . . . , y(k)) for j ∈ [k] and

Y0 := (y(1), . . . , y(k), 1) be possible successor states of Y . Since both the TGP and the
CT-TGP are Markov processes starting with S0 = S′

0 = (), it suffices to show that

P(Sn+1 = Yj | Sn = Y ) = P(S′
n+1 = Yj | S′

n = Y ) for all Y and all j = 0, . . . , k. (2)

In the TGP we have with Z = 1 +
∑

j∈[k] y(j) · f (j) by definition

P(Sn+1 = Yj | Sn = Y ) =
{

y(j) · f (j)/Z for j ∈ [k]
1/Z for j = 0.

For the CT-TGP the situation is similar: Conditioned on S′
n = Y being the state at

time tn the delay until the next time t(j) > tn when table j ∈ [k] grows has distribution
t(j) − tn ∼ Exp(y(j) · f (j)) by the definition of SBPs and by the memorylessness of the
exponential distribution (see Fact 8 (ii)). Similarly the delay until the time t(0) = sk+1 when
the (k + 1)-th table is founded has distribution t(0) − tn ∼ Exp(1). Whichever of these k + 1
events occurs first determines S′

n+1, i.e.
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P(S′
n+1 = Yj | S′

n = Y ) = P( arg min
i∈{0,...,k}

t(i) − tn = j | S′
n = Y )

Fact 8(iii)=
{

y(j) · f (j)/Z for j ∈ [k]
1/Z for j = 0.

This establishes Equation (2). ◀

This equivalence is the first crucial step for local access to the TGP.

Proof of Proposition 12. We promised a local access implementation of the TGP with
parameters Φ and N . By Lemma 13 we may instead give a local access implementation of
the CT-TGP that provides access to S′

n for given n ∈ [N ].
We begin by describing the setup phase where we determine the parameters of all relevant

tables, i.e. those tables that are created before the sum of table sizes exceeds N . Using the same
trick as in Equation (1) on Page 11, we sample δ′

1, δ′
2, . . . uniformly from [0, 1) and define the

delays δ1, δ2, . . . between table creations as δk = − ln(δ′
k), which ensures δ1, δ2, . . . ∼ Exp(1).

We can then compute the creation times s1, s2, . . . of tables as sk :=
∑k

j=1 δj and sample the
fitness values f (1), f (2), . . . ∼ Φ. For the k-th table we would instantiate, by definition of the
CT-TGP a SBP with parameter f (k). However, we are interested in this SBP only until its
size reaches N and may, by Lemma 11, instead instantiate a SDP with parameters f (k) and
N + 1. Let τk be the duration of the SDP. The size of table k for any time t ∈ [sk, sk + τk)
can be assessed by querying the SDP for time sk + τk − t.

To decide after the creation of the first k tables whether a (k + 1)-th table is needed, we
consider its designated birth time sk+1. If sk+1 ≥ sj + τj for some j ∈ [k] then the birth of
the (k + 1)-th table would occur after the j-th table has grown to size N + 1, so it is not
needed. Otherwise we determine the size of the first k tables at time sk+1. Let Nk be the
sum of these sizes. If Nk < N then the (k + 1)-th table is created, otherwise it is not needed.

We now argue that at most a polylogarithmic number of tables is created whp. This
implies that the setup just described can be carried out in polylog(N) time by Proposition 10.
We begin with a simple tail bound on the duration τ of a SDP with parameters f and N

(recall that ℓi ∼ Exp(f) is the lifetime of the i-th element):

P(τ > t) = P(max
i∈[N ]

ℓi > t) ≤ N · P(ℓ1 > t) = N · e−ft. (3)

In particular τ = O( log N
f ) whp. Since we made no assumptions on Φ, we may occasionally

see very small fitness values, but since we do not permit Φ to depend on N there is a
constant ε > 0 such that Pf∼Φ(f ≥ ε) ≥ 1

2 . Therefore there is whp at least one table j

with parameter f (j) ≥ ε among the first O(log N) tables, which guarantees τj = O(log N)
whp. The total number of tables is then at most j + X where X is the number of tables
scheduled for creation within [sj , sj + τj). Though we have not yet stated it in this way,
table creation is governed by a Poisson process with parameter 1 and hence X ∼ Po(τj). A
simple concentration argument implies that X is O(log N) whp. Hence, the total number of
tables is j + X = O(log N) whp.

We now describe how queries to the CT-TGP are answered. Reporting fitness values
is straightforward as all of them have been determined during setup. The challenge is to
report for any given n ∈ [N ] the sizes of each table at some point in time when the sum of
these sizes is n. The idea is quite simple: First determine the number of tables k = k(n) that
exist at such times by iterating over the numbers N0 = 0, N1, N2, . . . encountered during
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setup. Typically, k is characterised by Nk−1 < n ≤ Nk and we should focus on the time
interval I = [sk, sk+1) when k tables exist. In the special case where n > Nk−1 and the
(k + 1)-th table was never created, we may not have computed Nk and we use the time
interval I = [sk, minj∈[k] sj + τj). In both cases we use binary search to find a time point
t ∈ I where table sizes add up to n and answer the query with the corresponding state S′(t)
of the CT-TGP.

It should be clear that this approach yields the correct result. Moreover, we have already
argued that the relevant number of tables is k = O(log N) whp and by Proposition 10 a single
table’s size can be determined in polylog(N) time whp for any t ∈ I. To obtain polylog(N)
running time overall whp the only thing left to consider is the number of rounds needed by
the binary search. For this let f̂ := maxj∈[k] f (j). Because I ⊆ [sj , sj + τj ] for every j ∈ [k]
and using τj = O( log N

f(j) ) by Equation (3), the size |I| of I satisfies

|I| ≤ min
j∈[k]

τj = O(min
j∈[k]

log N
f(j) ) = O( log N

f̂
) whp.

We also need a lower bound on the delays ∆i = ti+1 − ti between the arrival times of
two consecutive customers. Recall that in the “flat view” of the CRP fc for c ∈ [N ]
is the fitness of customer c. Given the state at time ti we have ∆i ∼ Exp(ri) where
ri = 1 +

∑
c∈[i] fc. We say the i-th delay is p-long if ∆i ≥ p

ri
, which is the case with

probability Pr[∆i ≥ p
ri

] = Pr[Exp(ri) ≥ p
ri

] = e−p ≥ 1 − p. In particular, for any c > 0
any i ∈ [N − 1] the i-th delay is N−c-long with probability 1−N−c. By union bound, all
N − 1 delays are (simultaneously) N−c−1-long with probability 1−N−c. In this sense all
delays are N−O(1)-long whp. Let now ∆̂ be the smallest delay between any two consecutive
arrivals within I. Assuming that all delays are N−O(1)-long we have ∆̂ ≥ N−O(1)/r̂ where r̂

is the largest arrival rate (ri above) that occurs within I. Since the number of customers is
bounded by N and the fitness of any customer is bounded by f̂ we have r̂ ≤ Nf̂ . Hence

∆̂ = N−O(1)

r̂ = N−O(1)

Nf̂
= N−O(1)

f̂
.

Using our bounds on |I| and ∆̂ we conclude that the binary search takes at most

log2(|I|/∆̂) = log2

(
log N

N−O(1)

)
= log2(NO(1)) = O(log N)

steps whp as desired.
So far we have not explicitly worried about the fact that queries can be adaptive. Could an

attacker, after collecting some information, concoct a specific query that is – while generally
fast whp – exceptionally difficult conditioned on the information that has been revealed?
Luckily this worry can be dispelled for the reason that the number of distinct attributes is
small enough: Our bounds on query time relate only to circumstances regarding the random
processes that the attacker does not control. Since these circumstances are favourable whp
for any fixed query, they are – using our definition of “whp” – also simultaneously favourable
for each of the polynomially many possible queries. This concludes the argument. ◀

7 Local access implementation of the Chinese Restaurant Process

We are finally ready to prove Theorem 2 based on Propositions 7 and 12.

Proof of Theorem 2. The setup is straightforward: To provide a local access implementation
of the N -round CRP with parameter Φ, we use our local access implementation the N -round
TGP with parameter Φ, which determines how customers are distributed to tables. This
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yields the correct distribution because customers that share a table in the CRP process also
share the same fitness value, so the way in which fitness is assigned to tables in the TGP is
adequate. We query the TGP for n = N to learn the final table sizes (a(1)

N , . . . , a
(kN )
N ) and

instantiate kN copies of the STP with these sizes as parameters. The j-th STP provides
access to a sequence (τ (j)

n )1≤j≤a
(j)
N

of permutations and is responsible for the ordering of the
customers at the j-th table. Note that fitness parameters are not needed since whenever a
customer joins a specific table in the CRP all positions at that table are equally likely due to
shared fitness values. Any query to the TGP takes polylog(N) time whp by Proposition 12
and any query to a STP takes polylog(N) time whp by Proposition 7. In particular the
described setup takes polylog(N) time whp.

To answer CRP queries (see below), we have to translate between the two distinct ways in
which customers are referenced by the TGP and the STPs. If the c-th customer overall joins
the j-th table and is the c′-th customer at that table, then we call (c′, j) the local identity of
the customer while c is her global identity. Given the global identity c of a customer we can
obtain her local identity by querying the TGP for round c − 1 and round c. Let j be the
index of the unique table that either grew in size or was newly created in round c. Then
(a(j)

c , j) is the local identity of c. Conversely, given the local identity (c′, j) of a customer, her
global identity is the unique number c with a

(j)
c = c′ and a

(j)
c−1 = c′ − 1 (assuming a

(j)
c has

an implicit value of 0 when kc < j). This number can be determined with binary search in
O(log N) queries to the TGP since a

(j)
c is monotonic in c. Any translation operation takes

polylog(N) time whp.
We now show how any query to the CRP can be answered by issuing an at most

polylogarithmic number of queries to the kN + 1 processes we have instantiated. In that
context, we may freely translate between local and global identities as explained in the
previous paragraph.

πn(c), π−1
n (c). Let (c′, j) be the local identity of customer c and n′ = a(j)

n the size of her
table after round n. The query asks for the global identities of the customers with local
identities (τ (j)

n′ (c′), j) and ((τ (j)
n′ )−1(c′), j), respectively. We obtain the values τ (j)

n′ (c′) and
(τ (j)

n′ )−1(c′) by querying the j-th STP.
fc. Simply return f (j) where (c′, j) is the local identity of customer c.
founder(c). Let (c′, j) be the local identity of customer c. Then founder(c) is the global

identity of the customer with local identity (1, j).
F ∩ [N ]. This asks for the global identities of the customers with local identities (1, j) for

all 1 ≤ j ≤ kN .
tableSizes(n). This query can simply be forwarded to the TGP, the correct answer being

(a(1)
n , . . . , a(kn)

n ). ◀

For reasons already discussed in the proof of Proposition 12, the fact that queries can be
chosen adaptively poses no problem.
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Abstract
The semi-random graph process is a single player game in which the player is initially presented an
empty graph on n vertices. In each round, a vertex u is presented to the player independently and
uniformly at random. The player then adaptively selects a vertex v, and adds the edge uv to the
graph. For a fixed monotone graph property, the objective of the player is to force the graph to
satisfy this property with high probability in as few rounds as possible.

We focus on the problem of constructing a Hamiltonian cycle in as few rounds as possible. In
particular, we present an adaptive strategy for the player which achieves it in αn rounds, where
α < 2.01678 is derived from the solution to some system of differential equations. We also show that
the player cannot achieve the desired property in less than βn rounds, where β > 1.26575. These
results improve the previously best known bounds and, as a result, the gap between the upper and
lower bounds is decreased from 1.39162 to 0.75102.
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1 Introduction and Main Results

1.1 Definitions
In this paper, we consider the semi-random graph process suggested by Peleg Michaeli,
introduced formally in [3], and studied recently in [2, 9, 11, 1, 7, 13] that can be viewed
as a “one player game”. The process starts from G0, the empty graph on the vertex set
[n] := {1, . . . , n} where n ≥ 1. In each step t, a vertex ut is chosen uniformly at random
from [n]. Then, the player (who is aware of graph Gt and vertex ut) must select a vertex vt

and add the edge utvt to Gt to form Gt+1. The goal of the player is to build a (multi)graph
satisfying a given property P as quickly as possible. It is convenient to refer to ut as a

1 https://math.ryerson.ca/~pralat/research.html#publications

© Pu Gao, Calum MacRury, and Paweł Prałat;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 29; pp. 29:1–29:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pu.gao@uwaterloo.ca
http://www.math.uwaterloo.ca/~p3gao/
mailto:cmacrury@cs.toronto.edu
http://www.cs.toronto.edu/~cmacrury/
mailto:pralat@ryerson.ca
https://math.ryerson.ca/~pralat/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.29
https://arxiv.org/abs/2205.02350
https://math.ryerson.ca/~pralat/research.html#publications
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Hamiltonian Cycles in the Semi-Random Graph Process

square, and vt as a circle so every edge in Gt joins a square with a circle. We say that vt

is paired to ut in step t. Moreover, we say that vertex x ∈ [n] is covered by the square
ut arriving at round t, provided ut = x. The analogous definition extends to the circle vt.
Equivalently, we may view Gt as a directed graph where each arc directs from ut to vt, and
thus we may use (ut, vt) to denote the edge added in step t. For this paper, it is easier to
consider squares and circles for counting arguments.

A strategy S is defined by specifying for each n ≥ 1, a sequence of functions (ft)∞
t=1, where

for each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n] which depends on the
vertex ut, and the history of the process up until step t−1. Then, vt is chosen according to this
distribution. If ft is an atomic distribution, then vt is determined by u1, v1, . . . , ut−1, vt−1, ut.
We then denote (GS

i (n))t
i=0 as the sequence of random (multi)graphs obtained by following

the strategy S for t rounds; where we shorten GS
t (n) to Gt or Gt(n) when clear.

Suppose P is a monotonely increasing property. Given a strategy S and a constant 0 <

q < 1, let τP(S, q, n) be the minimum t ≥ 0 for which P[Gt ∈ P ] ≥ q, where τP(S, q, n) := ∞
if no such t exists. Define

τP(q, n) = inf
S

τP(S, q, n),

where the infimum is over all strategies on [n]. Observe that for each n ≥ 1, if 0 ≤ q1 ≤ q2 ≤ 1,
then τP(q1, n) ≤ τP(q2, n) as P is increasing. Thus, the function q → lim supn→∞ τP(q, n) is
non-decreasing, and so the limit,

τP := lim
q→1−

lim sup
n→∞

τP(q, n)
n

,

is guaranteed to exist. The goal is typically to compute upper and lower bounds on τP for
various properties P.

1.2 Main Results
In this paper, we concentrate on the property of having a Hamiltonian cycle, which we
denote by HAM. As observed in [3], if Gt has a Hamiltonian cycle, then Gt has minimum
degree at least 2. Thus, τHAM ≥ τP = ln 2 + ln(1 + ln 2) ≥ 1.21973, where P corresponds to
having minimum degree 2. On the other hand, it is known that the famous 3-out process
is Hamiltonian with probability tending to 1 as n → ∞ (a.a.s.) [6]. As the semi-random
process can be coupled with the 3-out process, we get that τHAM ≤ 3. A new upper bound was
obtained in [9] in terms of an optimal solution to an optimization problem whose value is
believed to be 2.61135 by numerical support. In the same paper, the lower bound mentioned
above was shown to not be tight. The lower bound was increased by ε = 10−8 and so
numerically negligible.

The upper bound on τHAM of 3 obtained by simulating the 3-out process is non-adaptive.
That is, the strategy does not depend on the history of the semi-random process. The above
mentioned improvement proposed in [9] uses an adaptive strategy but in a weak sense. The
strategy consists of 4 phases, each lasting a linear number of rounds, and the strategy is
adjusted only at the end of each phase (for example, the player might identify vertices of low
degree, and then focus on connecting circles to them during the next phase).

In this paper, we propose a fully adaptive strategy that pays attention to the graph
Gt and the position of ut for every single step t. As expected, such a strategy creates a
Hamiltonian cycle substantially faster than our weakly adaptive strategy, and it allows us to
improve the upper bound from 2.61135 to 2.01678.
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▶ Theorem 1. τHAM ≤ α ≤ 2.01678, where α is derived from a system of differential equations.

Moreover, by investigating some specific structures that are generated by the semi-
random process, which guarantee the existence of a large set of families of edges that cannot
simultaneously contribute to the construction of a Hamiltonian cycle, we improve the lower
bound of ln 2 + ln(1 + ln 2) ≥ 1.21973 to 1.26575. The structures we investigate in this work
are different from the ones in [9]. We attain a simpler proof than in [9], and a much stronger
bound.

▶ Theorem 2. Let f(s) = 2 + e−3s(s + 1)
(

1 − s2

2 − s3

3 − s4

8

)
+ e−2s

(
2s + 5s2

2 + s3

2

)
−

e−s (3 + 2s), and let β ≈ 1.26575 be the positive root of f(s) − 1 = 0. Then, τHAM ≥ β.

1.3 Previous Results
Let us briefly describe a few known results on the semi-random process. In the very first
paper [3], it was shown that the process is general enough to approximate (using suitable
strategies) several well-studied random graph models. In the same paper, the process was
studied for various natural properties such as having minimum degree k ∈ N or having a fixed
graph H as a subgraph. In particular, it was shown that a.a.s. one can construct H in less
than n(d−1)/dω rounds where d ≥ 2 is the degeneracy of G and ω = ω(n) is any function that
tends to infinity as n → ∞. This property was recently revisited in [1] where the conjecture
from [3] was proven for any graph H: a.a.s. it takes at least n(d−1)/d/ω rounds to create H.

Another property that was studied in the context of semi-random processes is a property
of having a perfect matching, which we denote by PM. Since the 2-out process has a perfect
matching a.a.s. [8], we immediately get that τPM ≤ 2. By coupling the semi-random process
with another random graph that is known to have a perfect matching a.a.s. [12], the bound can
be improved to 1 + 2/e < 1.73576. This bound was recently improved by the authors of this
paper by investigating another fully adaptive algorithm [11]. The currently best upper bound
is τPM < 1.20524. In the same paper, the lower bound observed in [3] (τPM ≥ ln(2) > 0.69314)
was improved as well, and now we know that τPM > 0.93261 [11].

Finally, let us discuss what is known about the property of containing a given spanning
graph H as a subgraph. It was asked by Noga Alon whether for any bounded-degree H, one
can construct a copy of H a.a.s. in O(n) rounds. This question was answered positively in
a strong sense in [2], in which it was shown that any graph with maximum degree ∆ can
be constructed a.a.s. in (3∆/2 + o(∆))n rounds. They also proved that if ∆ = ω(log(n)),
then this upper bound improves to (∆/2 + o(∆))n rounds. Note that both of these upper
bounds are asymptotic in ∆. When ∆ is constant in n, such as in both the perfect matching
and Hamiltonian cycle setting, determining the optimal dependence on ∆ for the number of
rounds needed to construct H remains open.

2 Proof of Theorem 1

2.1 Algorithmic Preliminaries
In this section, we introduce some notation as well as the basic ideas used in the design of
all of our strategies.

The main ingredient for proving Theorem 1 is to specify a strategy which keeps augmenting
or extending a path, until the path becomes Hamiltonian. Then, with a few more steps, the
Hamiltonian path can be completed into a Hamiltonian cycle. Let us suppose that after
t ≥ 0 steps, we have constructed the graph Gt which contains the path Pt. Define Ut to be

APPROX/RANDOM 2022
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the set of vertices not in Pt, which we refer to as the unsaturated vertices of [n]. It will be
convenient to denote the (induced) distance between vertices x, y ∈ V (Pt) on the path Pt by
dPt

(x, y). We also define dPt
(x, Q) := minq∈Q dPt

(x, q) for x ∈ V (Pt) and Q ⊆ V (Pt).

Let us first assume that ut+1 lands in Ut. In this case, we can clearly extend the path
Pt by an edge by choosing vt+1 to be an endpoint of Pt. We call such a move a (greedy)
path extension. Now, suppose that ut+1 lands on a vertex x ∈ Pt. In this case, we cannot
perform a greedy path extension, however we can still choose vt+1 in a way that will help us
extend the path in the future rounds. Specifically, set vt+1 := r for some r ∈ Ut, and colour
the vertex x as well as the edge xr. Suppose that in some round i > t + 1, ui lands on y next
to the coloured vertex x on Pi (i.e., dPi

(x, y) = 1). In this case, set vi = r. Observe now that
we can add r to the current path by adding the edges yr and xr to it, and by removing the
edge yx. Thus, despite us not landing on an unsaturated vertex, we are still able to perform
a move which extends its length by one. We call such an operation a path augmentation.

2.2 Proof Overview

In order to prove Theorem 1, we analyze a strategy which proceeds in three distinct stages. In
the first stage, we execute DegreeGreedy, an algorithm which makes greedy path extensions
whenever possible, and otherwise sets up path augmentation operations for future rounds
in a degree greedy manner. Specifically, vt+1 is chosen amongst the unsaturated vertices of
minimum coloured in-degree. This degree greedy decision is done to minimize the number of
coloured vertices which are destroyed when path augmentations and extensions are made
in later rounds. This stage lasts for N phases, where N is any non-negative integer that
may be viewed as the parameter of the algorithm (here a phase is a contiguous set of steps
within the current stage). For the claimed (numerical) upper bound of Theorem 1, N is set
to 100. Setting smaller values of the parameter N – in particular, setting N = 0 – yields
an algorithm that is easier to analyse. Setting N > 100 can slightly improve the bound in
Theorem 1, but the gain is rather insignificant. The second stage starts at some random step
t0 (i.e. t0 −1 is the total number of steps in stage one), and we execute FullyRandomized, an
algorithm which makes greedy path extensions whenever possible, and otherwise chooses vt+1
randomly amongst the unsaturated vertices. We execute FullyRandomized until we are left
with εn unsaturated vertices, where ε = ε(n) tends to 0 as n → ∞ arbitrarily slowly. At this
point, we proceed to the final stage where a clean-up algorithm is run, which also uses path
augmentations. Using elementary concentration inequalities we prove that a Hamiltonian
cycle can be constructed in an additional O(

√
εn) = o(n) steps.

In Section 2.3, we first describe FullyRandomized, as it is easier to state and ana-
lyze than DegreeGreedy. Moreover, if we take N = 0, which corresponds to executing
FullyRandomized from the beginning, then we will be left with a path on all but εn vertices
after α∗n steps where α∗ ≤ 2.07721. Our third stage clean-up algorithm from Section 2.4
allows us to complete the Hamiltonian cycle in another o(n) steps. Thus, Sections 2.3 and 2.4
provide a self-contained proof of an upper bound on τHAM of α∗ ≤ 2.07721 (see Theorem 9).
Afterwards, in Section 2.5 we formally state and analyze our first stage algorithm. This is the
most technical section of the paper, as DegreeGreedy makes decisions in a more intelligent
manner than FullyRandomized which necessitates more random variables in its analysis. By
executing these three stages in the aforementioned order, we attain the claimed upper bound
of Theorem 1.



P. Gao, C. MacRury, and P. Prałat 29:5

2.3 A Fully Randomized Algorithm
In order to describe our algorithm, it will be convenient to colour certain edges of Gt red. This
helps us define certain vertices used by our algorithm for path augmentations. Specifically,
x ∈ V (Pt) is one-red provided it is adjacent to precisely one red edge of Gt. Similarly,
x ∈ V (Pt) is two-red, provided it is adjacent to precisely two red edges of Gt. We denote the
one-red vertices and two-red vertices by L1

t and L2
t , respectively, and refer to Lt := L1

t ∪ L2
t

as the red vertices of Gt. By definition, L1
t and L2

t are disjoint. It will also be convenient
to maintain a set of permissible vertices Qt ⊆ V (Pt) which specifies which uncoloured
vertices on the path can be turned red. In order to simplify our analysis, we specify the
size of Qt and ensure that it only contains vertices of path distance at least 3 from the red
vertices on Pt. Formally:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt ̸= ∅, then each x ∈ Qt satisfies dPt(x, Lt) ≥ 3.

When Lt = ∅, we simply take Qt = V (Pt). Otherwise, since |{x ∈ V (Pt) : dPt
(x, Lt) ≤ 2}| ≤

5|Lt|, we can maintain these properties by initially taking {x ∈ V (Pt) : dPt(x, Lt) ≥ 3},
and then (if needed) arbitrarily removing |{x ∈ V (Pt) : dPt

(x, Lt) ≥ 3}| − (|V (Pt)| − 5|Lt|)
vertices from it.

Upon the arrival of ut+1, there are four main cases our algorithm must handle. The first
two cases involve extending the length of the path, whereas the latter two describe what to
do when it is not possible to extend the path in the current round.

1. If ut+1 lands within Ut, then greedily extend Pt.
2. If ut+1 lands at path distance one from some x ∈ Lt, then augment Pt via an arbitrary

red edge of x.
3. If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst Ut, and colour ut+1vt+1 red. This

case creates a one-red vertex.
4. If ut+1 lands in L1

t , then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This
case converts a one-red vertex to a two-red vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing
on the round, meaning the edge utvt will not be used to construct a Hamiltonian cycle. In
particular, the algorithm passes rounds in which ut+1 lands at path distance two from some
x ∈ Lt. This guarantees that no two red vertices are at distance two from each other and so
when ut+1 lands next to a red vertex, this neighbouring red vertex is uniquely identified. Let
us say that a red vertex is well-spaced, provided it is at distance at least 3 on the path
from all other red vertices, and it is not an endpoint of Pt. Observe that each well-spaced
red vertex yields precisely two vertices on Pt where a path augmentation involving ut+1 can
occur. By construction, all but at most 2 of the algorithm’s red vertices are well-spaced.

We now formally describe step t + 1 of the algorithm when ut+1 is drawn u.a.r. from [n].
Specifically, we describe how the algorithm chooses vt+1, how it constructs Pt+1, and how it
adjusts the colours of Gt+1, thus updating L1

t and L2
t .

We define the random variables X(t) = |V (Pt)|, L1(t) = |L1
t |, L2(t) = |L2

t |, and L(t) =
|Lt| = L1(t) + L2(t). Note that L(t) is an auxiliary random variable which we define only
for convenience. We use ∆ to denote the one step changes in our random variables (i.e.,
∆X(t) := X(t + 1) − X(t)). Recall that t0 is the step when FullyRandomized is called. Let
us first show that our random variables cannot change drastically in one round.

▶ Lemma 3 (Boundedness Hypothesis – FullyRandomized). With probability 1 − O(n−1),

max{|∆X(t)|, |∆L1(t)|, |∆L2(t)|} = O(log n)

for all t0 ≤ t ≤ 3n with n − X(t) ≥ n/ log n.

APPROX/RANDOM 2022



29:6 Hamiltonian Cycles in the Semi-Random Graph Process

Algorithm FullyRandomized Step t + 1.

1: if ut+1 ∈ Ut then ▷ greedily extend the path.
2: Let vt+1 be an arbitrarily chosen endpoint of Pt.
3: Set V (Pt+1) = V (Pt) ∪ {ut+1}, E(Pt+1) = E(Pt) ∪ {ut+1vt+1}.
4: Uncolour all of the edges adjacent to ut+1.
5: else if dPt

(ut+1, Lt) = 1 then ▷ path augment via red vertices
6: Let x ∈ Lt be the (unique) red vertex adjacent to ut+1
7: Denote xr ∈ E(Gt) an arbitrary red edge of x, and set vt+1 = r, where r ∈ Ut.
8: Set V (Pt+1) = V (Pt) ∪ {r} and E(Pt+1) = E(Pt) ∪ {ut+1r, xr} \ {ut+1x}.
9: Uncolour all of the edges adjacent to r.

10: else if ut+1 ∈ Qt ∪ Lt then ▷ construct red vertices
11: Choose vt+1 u.a.r. from Ut.
12: Colour ut+1vt+1 red. ▷ construct a one-red or two-red vertex
13: Set Pt+1 = Pt.
14: else ▷ pass on using edge ut+1vt+1.
15: Choose vt+1 arbitrarily from [n].
16: Set Pt+1 = Pt.
17: end if
18: Update Qt+1 such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|.

Proof. Note that, by design, the path can only increase its length but it cannot absorb
more than one vertex in each round. Hence, the desired property clearly holds for the
random variable X(t). To estimate the maximum change for the random variables L1(t)
and L2(t), we need to upper bound the number of red edges adjacent to any particular
unsaturated vertex v. Observe that at any step t ≤ 3n, since we have assumed there are at
least n/ log n unsaturated vertices, the number of red edges adjacent to v is stochastically
upper bounded by the binomial random variable Bin(3n, log n/n) with expectation 3 log n.
It follows immediately from Chernoff’s bound that with probability 1 − O(n−3), the number
of red edges adjacent to v is O(log n), and so the desired bound holds by union bounding
over all 3n2 vertices and steps. ◀

Let us denote Ht = (X(i), L1(i), L2(i))0≤i≤t. Note that Ht does not encompass the
entire history of the random process after t rounds (i.e., G0, . . . , Gt, the first t + 1 graphs
constructed by the algorithm). This deferred information exposure permits a tractable
analysis of the random positioning of vt when ut is red. We observe the following expected
difference equations.

▶ Lemma 4 (Trend Hypothesis – FullyRandomized). For each t ≥ t0, if n − X(t) ≥ n/ log n,
then

E[∆X(t) | Ht] = 1 − X(t)
n

+ 2L(t)
n

+ O(log n/n) (1)

E[∆L1(t) | Ht] = X(t) − 5L(t)
n

+ 2L1(t)
n

(
2L2(t)

n − X(t) − L1(t)
n − X(t) − 1

)
+2L2(t)

n

(
1 + 2L2(t)

n − X(t) − L1(t)
n − X(t)

)
− L1(t)

n

+
(

1 − X(t)
n

) (
2L2(t)

n − X(t) − L1(t)
n − X(t)

)
+ O(log n/n) (2)
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E[∆L2(t) | Ht] = L1(t)
n

−
(

1 − X(t)
n

)
2L2(t)

n − X(t) − 2L1(t)
n

2L2(t)
n − X(t)

−2L2(t)
n

(
1 + 2L2(t)

n − X(t)

)
+ O(log n/n). (3)

The proof is obtained by examining how the landing of ut affects the random variables
under study. For instance, for X(t), observe that ∆X(t) is 1 when ut+1 lands on an
unsaturated vertex, or adjacent to a red vertex; and is 0 otherwise. Combining with the
probabilities of the above two events yields (1). The proofs for (2) and (3) are similar and
the details can be found in Appendix A.

In order to analyze FullyRandomized, we shall employ the differential equation
method [15]. This method is commonly used in probabilistic combinatorics to analyze
random processes that evolve step by step. The step changes must be small in relation
to the entirety of the discrete structure. For instance, in our application, this refers to
adding one edge at a time to the graph on [n] vertices. The method allows us to derive
tight bounds on the associated random variables which hold a.a.s. at every step of the
random process. We refer the reader to [4] for a gentle introduction to the methodology,
and to Theorem 16 of Appendix C for a statement of the method which be sufficient for
our purposes. The execution of FullyRandomized starts at some random step t0, which we
will prove is a.a.s. asymptotic to s0n for some constant 0 ≤ s0 < 1. Let X(t0) denote the
number of vertices on Pt after the execution of DegreeGreedy. We shall prove that there
exists some constant x̂(s0) such that |X(t0)/n − x̂(s0)| ≤ λ for some λ = o(1). If N is set to
0, then t0 = s0 = X(0) = x̂(0) = 0.

Let us now fix a sufficiently small constant ε > 0, and define the bounded domain

Dε := {(s, x, ℓ1, ℓ2) : −1 < s < 3, −1 < x < 1 − ε, |ℓ1| < 2, |ℓ2| < 2}.

Consider the system of differential equations in variable s with functions x = x(s), ℓ1 = ℓ1(s),
and ℓ2 = ℓ2(s):

x′ = 1 − x + 2(ℓ1 + ℓ2) (4)

ℓ′
1 = x − 5(ℓ1 + ℓ2) + ℓ1

(
2ℓ2 − ℓ1

1 − x
− 1

)
+ 2ℓ2

(
1 + 2ℓ2 − ℓ1

1 − x

)
− ℓ1 + 2ℓ2 − ℓ1 (5)

ℓ′
2 = ℓ1 − 2ℓ2 − 2ℓ1

(
2ℓ2

1 − x

)
− 2ℓ2

(
1 + 2ℓ2

1 − x

)
. (6)

The right-hand side (r.h.s.) of each of the above equations is Lipchitz on the domain Dε.
Define

TDε
= min{t ≥ 0 : (t/n, X(t)/n, L1(t)/n, L2(t)/n) /∈ Dε}.

Now, the “Initial Condition” of Theorem 16 is satisfied with values (s0, x̂(s0), 0, 0) and some
λ = o(1). Moreover, the “Trend Hypothesis” and “Boundedness Hypothesis” are satisfied
with some δ = O(log n/n), β = O(log n) and γ = o(n−1), by Lemmas 3 and 4. Thus, for
every δ > 0, X(t) = nx(t/n) + o(n), L1(t) = nℓ1(t/n) + o(n) and L2(t) = nℓ2(t/n) + o(n)
uniformly for all t0 ≤ t ≤ (σ(ε) − δ)n, where x, ℓ1 and ℓ2 are the unique solution to (4)–(6)
with initial conditions x(s0) = x̂(s0), ℓ1(s0) = ℓ2(s0) = 0, and σ(ε) is the supremum of s to
which the solution can be extended before reaching the boundary of Dε. For N = 0, s0 = 0
and the initial conditions are simply x(0) = ℓ1(0) = ℓ2(0) = 0. This immediately yields the
following.
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▶ Lemma 5 (Concentration of FullyRandomized’s Random Variables). For every δ > 0, a.a.s.
for all t0 ≤ t ≤ (σ(ε) − δ)n,

max{|X(t) − x(t/n)n|, |L1(t) − ℓ1(t/n)n|, |L2(t) − ℓ2(t/n)n|} = o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonely nondecreasing as ε → 0. Thus,

α∗ := lim
ε→0+

σ(ε) (7)

exists. It is obvious that |L1(t)/n| and |L2(t)/n| are both bounded by 1 for all t and thus,
when t/n approaches α∗, either X(t)/n approaches 1 or t/n approaches 3. Formally, we have
the following proposition.

▶ Proposition 6. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following
holds.

X(t) > (1 − ε)n for all t ≥ (α∗ − δ)n;
α∗ = 3.

The ordinary differential equations (4)–(6) do not have an analytical solution. In both cases
N = 0 and N = 100, numerical solutions show that α∗ < 2.1. (For N = 0, α∗ ≈ 2.07721.)
Thus, by the end of the execution of FullyRandomized, there are εn unabsorbed vertices
remaining, for some ε = o(1).

2.4 A Clean-up Algorithm

Suppose that we are presented a path P on (1 − ε)n vertices of [n], where 0 < ε = ε(n) <

1/1000. The assumption on ε is a mild but convenient assumption. We will apply the
argument for ε = o(1). In this section, we provide an algorithm for the semi-random
graph process which absorbs the remaining εn vertices into P to form a Hamiltonian
path, after which a Hamiltonian cycle can be constructed. The whole procedure takes
O(

√
εn + n3/4 log2 n) = o(n) further steps in the semi-random graph process. Moreover, the

algorithm is self-contained in that it only uses the edges of P in its execution.

▶ Lemma 7 (Clean-up Algorithm). Let 0 < ε = ε(n) < 1/1000, and suppose that P is a path
on (1−ε)n vertices of [n]. Then, given P initially, there exists a strategy for the semi-random
graph process which builds a Hamiltonian cycle from P in O(

√
εn + n3/4 log2 n) steps a.a.s.

▶ Remark 8. The constant hidden in the O(·) notation does not depend on ε. The strategy
used in the clean-up algorithm is similar to that in FullyRandomized but the analysis is
done in a much less accurate way, as we only need to prove an o(n) bound on the number of
steps required to absorb εn vertices. The proof is presented in Appendix A.

By setting N = 0 we immediately get an algorithm which a.a.s. constructs a Hamiltonian
cycle in α̂n steps, where α̂ ≤ 2.07721. To obtain the better bound in Theorem 1, we set
N = 100, and the execution of DegreeGreedy will be analysed in the next subsection.

▶ Theorem 9. τHAM ≤ α̂ ≤ 2.07721, where α̂ is defined in (7) with initial conditions for (4)–(6)
set by x(0) = ℓ1(0) = ℓ2(0) = 0.

Proof. This follows by Proposition 6, the numerical value of α∗, and Lemma 7. ◀
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2.5 A Degree-Greedy Algorithm
Let us suppose that after t ≥ 0 steps, we have constructed the graph Gt which contains the
path Pt. As before, our algorithm uses path augmentations, and we colour the edges of Gt to
help keep track of when these augmentations can be made. We now use two colours, namely
red and blue, to distinguish between edges which are added randomly (red) and greedily
(blue). Our blue edges will be chosen so as to minimize the number of blue edges destroyed
by path augmentations in future rounds.

We say that x ∈ V (Pt) is blue, provided it is adjacent to a single blue edge of Gt, and no
red edge. Similarly, x ∈ V (Pt) is red, provided it is adjacent to a single red edge of Gt, and
no blue edge. Finally, we say that x ∈ V (Pt) is magenta (mixed), provided it is adjacent
to a single red edge, and a single blue red. We denote the blue vertices, red vertices, and
magenta (mixed) vertices by Bt, Rt and Mt, respectively, and define Lt := Bt ∪ Rt ∪ Mt to
be the coloured vertices. By definition, Bt, Rt and Mt are disjoint. Once again, we denote
our unsaturated vertices by Ut, and also maintain a set of permissible vertices Qt which
indicate which saturated vertices are allowed to be coloured blue. Specifically, using the
same reasoning as before, we ensure the following:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt ̸= ∅, then each x ∈ Qt satisfies dPt

(x, Lt) ≥ 3.
Upon the arrival of ut+1, there are five main cases our algorithm must handle. The first two
cases involve extending the length of the path, whereas the latter three describe what to do
when it is not possible to extend the path in the current round.
1. If ut+1 lands within Ut, then greedily extend Pt.
2. If ut+1 lands at path distance one from x ∈ Lt, then augment Pt via a coloured edge of

x, where a blue edge is taken over a red edge if possible.
3. If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum

blue degree. The edge ut+1vt+1 is then coloured blue, and a single blue vertex is created.
4. If ut+1 lands in Rt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum

blue degree. The edge ut+1vt+1 is then coloured blue, and a single red vertex is converted
to a magenta (mixed) vertex.

5. If ut+1 lands in Bt, then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This
case converts a blue vertex to a magenta vertex.

In all the remaining cases, we choose vt+1 uniformly at random, and interpret the algorithm
as passing on the round. As in FullyRandomized, we ensure that all of the algorithm’s
coloured vertices are at path distance at least 3 from each other, and we define a coloured
vertex to be well spaced in the same way. Note that red vertices are only created when
the blue edges of magenta vertices are uncoloured as a side effect of path extensions and
augmentations (see lines (4) and (14) below). We now formally describe step t + 1 of the
algorithm upon receiving ut+1:
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Algorithm DegreeGreedy Step t + 1.

1: if ut+1 ∈ Ut then ▷ greedily extend the path
2: Let vt+1 be an arbitrarily chosen endpoint of Pt.
3: Set V (Pt+1) = V (Pt) ∪ {ut+1}, E(Pt+1) = E(Pt) ∪ {ut+1vt+1}.
4: Uncolour all of the edges adjacent to ut+1.
5: else if d(ut+1, Lt) = 1 then ▷ path augment via coloured vertices
6: Let x ∈ Lt be the (unique) coloured vertex adjacent to ut+1
7: if x is red then
8: Denote xy ∈ E(Gt) the red edge of x, where y ∈ Ut.
9: else ▷ x is blue or magenta

10: Denote xy ∈ E(Gt) the blue edge of x, where y ∈ Ut.
11: end if
12: Set vt+1 = y.
13: Set V (Pt+1) = V (Pt) ∪ {y} and E(Pt+1) = E(Pt) ∪ {ut+1y, xy} \ {ut+1x}.
14: Uncolour all of the edges adjacent to y.
15: else if ut+1 ∈ Qt ∪ Rt then ▷ construct coloured vertices
16: Choose vt+1 u.a.r. from the vertices of Ut of minimum blue degree.
17: Colour ut+1vt+1 blue. ▷ create a blue or magenta vertex
18: Set Pt+1 = Pt.
19: else if ut+1 ∈ Bt then
20: Choose vt+1 u.a.r. from Ut.
21: Colour the edge ut+1vt+1 red. ▷ create a magenta vertex
22: Set Pt+1 = Pt.
23: else ▷ pass on using edge ut+1vt+1
24: Choose vt+1 u.a.r. from [n].
25: Set Pt+1 = Pt.
26: end if
27: Update Qt+1 such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|. ▷ update permissible vertices

For each t ≥ 0, define the random variables X(t) := |V (Pt)|, B(t) := |Bt|, R(t) := |Rt|,
M(t) := |Mt| and L(t) := |Lt| = B(t) + R(t) + M(t). For each q ≥ 0 and t ≥ 0, define Dq(t)
to be the number of unsaturated vertices adjacent to precisely q blue edges. We define the
stopping time τq to be the smallest t ≥ 0 such that Dj(t) = 0 for all j < q, and Dq(t) > 0.
It is obvious that τq is well-defined and is non-decreasing in q. By definition, τ0 = 0. Let
us refer to phase q as those τq−1 ≤ t < τq. Observe that during phase q, each unsaturated
vertex has blue degree q − 1 or q.

Suppose that τq−1 ≤ t < τq. It will be convenient to denote D(t) := Dq−1(t). Given
k1, k2 ≥ 0, we say that y ∈ Ut is of type (k1, k2), provided it is adjacent to k1 blue
edges within Bt and k2 blue edges within Mt. Similarly, x ∈ Bt ∪ Mt is of type (k1, k2),
provided its (unique) blue edge connects to an unsaturated vertex of type (k1, k2). We
denote the number of unsaturated vertices of type (k1, k2) by Ck1,k2(t), the blue vertices of
type (k1, k2) by Bk1,k2(t), and the magenta (mixed) vertices of type (k1, k2) by Mk1,k2(t).
Observe that Bk1,k2(t) = k1 · Ck1,k2(t) and Mk1,k2(t) = k2 · Ck1,k2(t). Moreover, Dj(t) =∑

k1,k2:
k1+k2=j

Ck1,k2(t).

In Section 3, we inductively define the functions x, r and ck1,k2 for k1 + k2 ≥ 0, as well as
a constant σq ≥ 0, such that the following lemma holds:
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▶ Lemma 10. A.a.s. τq ∼ σqn for every 0 ≤ q ≤ N .2 Moreover, at step τq, a.a.s.

X(τq) ∼ x(σq)n, R(τq) ∼ r(σq)n,

Ck1,k2(τq) ∼ ck1,k2(σq)n for all (k1, k2) where k1 + k2 = q.

Although the method in the proof of Lemma 10 is similar to that of Lemmas 3, 4, 5 and
Proposition 6, the analysis is much more intricate and involved. Before proving Lemma 10,
we explain how we use it to prove Theorem 16.

Proof of Theorem 1. Set N = 100. By Lemma 10, the execution of DegreeGreedy ends
at some step t0 ∼ σN n. Moreover, X(t0) ∼ x(σN )n. Numerical computation shows that
σN ≈ 2.00189. Next, the algorithm executes FullyRandomized. Let α∗ be as defined in
(7) where the initial conditions to the differential equations (4)–(6) are set by s0 = σN ,
x(s0) = x(σN ) ≈ 0.99991, and ℓ1(s0) = ℓ2(s0) = 0. Numerical computations show that
α∗ ≈ 2.01678. By Proposition 6 and the fact that α∗ < 3, the execution of the first two
stages (DegreeGreedy and FullyRandomized) finishes at some step (α∗ + o(1))n, and the
number of unsaturated vertices remaining is o(n). Finally, the clean-up algorithm constructs
a Hamiltonian cycle with an additional o(n) steps by Lemma 7. The theorem follows. ◀

3 Proving Lemma 10

We once again must first argue that our random variables cannot change drastically in one
round during phase q.

▶ Lemma 11 (Lipschitz Condition – DegreeGreedy).
If |∆C(t)| := max k1,k2∈N∪{0}:

k1+k2∈{q−1,q}
|∆Ck1,k2(t)|, then with probability 1 − O(n−1),

max{|∆X(t)|, |∆C(t)|, |∆R(t)|} = O(log n)

for all τq−1 ≤ t < τq with n − X(t) = Ω(n).

Proof. Since q ≤ N is a constant which does not depend on n, we can apply the same
argument to bound the red edges of each ∆Ck1,k2(t) as in Lemma 3, and then union bound
over all k1, k2 ≥ 0 such that k1 + k2 ∈ {q − 1, q}. ◀

We now state the conditional expected differences of our random variables. For space
considerations, we defer their derivations to the full version of the paper [10].

Let Ht denote the history of the above random variables during the first t rounds. where
we assume that τq−1 ≤ t < τq is such that n − X(t) = Ω(n). Firstly, observe that once again:

E[∆X(t) | Ht] = 1 − X(t)
n

+ 2L(t)
n

+ O(1/n) (8)

We now consider ∆R(t):

E[∆R(t) | Ht] = M(t)
n

− R(t)
n

− 2(B(t) + M(t))
n

R(t)
(n − X(t))

+
∑
j,h:

j+h∈{q−1,q}

2h(Mj,h(t) + Bj,h(t))
n

−2R(t)
n

(
1 + R(t)

n − X(t) − M(t)
n − X(t)

)
− R(t)

n
+ O(1/n) (9)

2 For functions f = f(n) and g = g(n), f ∼ g is shorthand for f = (1 + o(1))g.
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Consider ∆Ck1,k2(t) and first assume that k1 + k2 = q − 1:

E[∆Ck1,k2 (t) | Ht] = Mk1−1,k2+1(t)
n

· 1k1>0 − Ck1,k2 (t)
n

− Mk1,k2 (t)
n

(10)

+2(B(t) + M(t))
n

(
Mk1−1,k2+1(t)

n − X(t) · 1k1>0 − Mk1,k2 (t)
n − X(t)

)
−2(Bk1,k2 (t) + Mk1,k2 (t))

n

+2R(t)
n

(
Mk1−1,k2+1(t)

n − X(t) · 1k1>0 − Mk1,k2 (t)
n − X(t) − Ck1,k2 (t)

n − X(t)

)
− (X(t) − 5L(t))

n

Ck1,k2 (t)
D(t)

+Bk1+1,k2−1(t)
n

· 1k2>0 − R(t)
n

Ck1,k2 (t)
D(t) − Bk1,k2 (t)

n
+ O(1/n)

When k1 + k2 = q, two terms from the above expression are modified slightly, and have
their signs reversed:

E[∆Ck1,k2 (t) | Ht] = Mk1−1,k2+1(t)
n

· 1k1>0 − Ck1,k2 (t)
n

− Mk1,k2 (t)
n

(11)

+2(B(t) + M(t))
n

(
Mk1−1,k2+1(t)

n − X(t) · 1k1>0 − Mk1,k2 (t)
n − X(t)

)
−2(Bk1,k2 (t) + Mk1,k2 (t))

n

+2R(t)
n

(
Mk1−1,k2+1(t)

n − X(t) · 1k1>0 − Mk1,k2 (t)
n − X(t) − Ck1,k2 (t)

n − X(t)

)
+(X(t) − 5L(t))

n

Ck1−1,k2 (t)
D(t)

+Bk1+1,k2−1(t)
n

· 1k2>0 + R(t)
n

Ck1,k2−1(t)
D(t) − Bk1,k2 (t)

n
+ O(1/n)

We are now ready to prove Lemma 10. Firstly, when q = 0, by definition τ0 = 0, and so
σ0 := 0 trivially satisfies the conditions of Lemma 10. Let us now assume that q ≥ 1 and for
each of 0 ≤ i ≤ q − 1 we have defined σi and functions x, r and cj,h on [0, σi] for each j, h ≥ 0
with j + h = i, and Lemma 10 holds for all 0 ≤ i ≤ q − 1. We shall define σq which satisfies
σq > σq−1, extend each x, r and cj,h to [0, σq], and define new functions ck1,k2 on [0, σq] for
k1 + k2 = q. We shall then prove that these functions satisfy the assertion of Lemma 10 with
respect to τq and σq, which will complete the proof of the lemma.

Fix a sufficiently small constant ε > 0, and define the bounded domain

Dε :=

{
(s, x, r, (cj,h)j+h∈{q−1,q}) : σq−1 − 1 < s < 3, |x| < 1 − ε, |r| < 2, |cj,h| < 2, ε <

∑
j,h: j+h=q−1

cj,h < 2

}
.

It will be convenient to define auxiliary functions to simplify our equations below. Specifically,
set bk1,k2 = k1 · ck1,k2 and mk1,k2 := k2 · ck1,k2 , as well as b =

∑
j,h:

j+h∈{q−1,q}
bj,h and

m =
∑

j,h:
j+h∈{q−1,q}

mj,h. Finally, set d =
∑

j,h:
j+h=q−1

cj,h. Observe the following system of

differential equations:

x′ = 1 − x + 2 (12)

r′ = m − r − 2(b + m)r
1 − x

+
∑
j,h:

j+h∈{q−1,q}

2h(mj,h + bj,h)
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−2r

(
1 + r

1 − x
− m

1 − x

)
− r (13)

If k1 + k2 = q − 1, then:

c′
k1,k2

= mk1−1,k2+1 · 1k1>0 − ck1,k2 − mk1,k2

+2(b + m)
(

mk1−1,k2+1 · 1k1>0 − mk1,k2

1 − x

)
− 2(bk1,k2 + mk1,k2)

+2r

(
mk1−1,k2+1 · 1k1>0 − mk1,k2 − ck1,k2

1 − x

)
−(x − 5ℓ)ck1,k2

d
+ bk1+1,k2−1 · 1k2>0 − r

ck1,k2

d
− bk1,k2 (14)

Otherwise, if k1 + k2 = q, then:

c′
k1,k2

= mk1−1,k2+1 · 1k1>0 − ck1,k2 − mk1,k2

+2(b + m)
(

mk1−1,k2+1 · 1k1>0 − mk1,k2

1 − x

)
− 2(bk1,k2 + mk1,k2)

+2r

(
mk1−1,k2+1 · 1k1>0 − mk1,k2 − ck1,k2

1 − x

)
+(x − 5ℓ)ck1−1,k2

d
+ bk1+1,k2−1 · 1k2>0 + r

ck1,k2−1

d
− bk1,k2 (15)

The right-hand side (r.h.s.) of each of the above equations is Lipchitz on the domain Dε, as
d is bounded below by ε. Define

TDε
:= min{t ≥ 0 : (t/n, X(t)/n, R(t)/n, (Ck1,k2(t)/n)k1+k2∈{q,q−1}) /∈ Dε}

By the inductive assumption, the “Initial Condition” of Theorem 16 is satisfied for some
λ = o(1) and values σq−1, x(σq−1), r(σq−1) and cj,h(σq−1), where cj,h(σq−1) := 0 for j+h = q.
Moreover, the “Trend Hypothesis” is satisfied with δ = O(1/n), by the expected differences
of (8)-(11). Finally, the “Boundedness Hypothesis” is satisfied with β = O(log n) and
γ = O(n−1) by Lemma 11. Thus, by Theorem 16, for every δ > 0, a.a.s. X(t) = nx(t/n)+o(n),
R(t) = nr(t/n) + o(n) and Ck1,k2(t) = nck1,k2(t/n) + o(n) uniformly for all σq−1n ≤ t ≤
(σ(ε) − δ)n, where x, ℓ1 and ck1,k2 are the unique solution to (12)-(15) with the above initial
conditions, and σ(ε) is the supremum of s to which the solution can be extended before
reaching the boundary of Dε. This immediately yields the following lemma.

▶ Lemma 12 (Concentration of DegreeGreedy’s Random Variables). For every δ > 0, a.a.s.
for all τq−1 ≤ t ≤ (σ(ε) − δ)n and k1, k2 ≥ 0 such that k1 + k2 ∈ {q, q − 1},

max{|X(t) − x(t/n)n|, |R(t) − r(t/n)n|, |Ck1,k2(t) − ck1,k2(t/n)n||} = o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonely nondecreasing as ε → 0, and so σq :=
limε→0+ σ(ε) exists. Moreover, the derivatives of the functions x, r, and ck1,k2 are uniformly
bounded on (σq−1, σq), which implies that the functions must be uniformly continuous.
The latter condition implies that the functions are (uniquely) continuously extendable to
[σq−1, σq], and so the following limits exist:

x(σq) := lim
s→σq−

x(s) (16)

r(σq) := lim
s→σq−

r(s) (17)

ck1,k2(σq) := lim
s→σq−

ck1,k2(s). (18)
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Random variables |R(t)/n| and |Ck1,k2(t)/n| for k1 + k2 ∈ {q, q − 1} are both bounded by
1 for all t. Thus, when t/n approaches σq, X(t)/n approaches 1, or t/n approaches 3, or
D(t)/n :=

∑
j,h:

j+h=q−1
Cj,h(t)/n approaches 0. Formally, we have the following proposition:

▶ Proposition 13. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following
holds.

D(t) < εn for all t ≥ (σq − δ)n;
X(t) > (1 − ε)n for all t ≥ (σq − δ)n;
σq = 3.

The ordinary differential equations (12)-(15) again do not have an analytical solution.
However, numerical solutions show that σq < 3, and x(σq) < 1. Thus, after executing
DegreeGreedy for t = σqn + o(n) steps, there are D(t) < εn vertices of type q − 1 remaining
for some ε = o(1). At this point, by observing the numerical solution (16)–(18) at σq, we
know that there exists some absolute constant 0 < p < 1 such that (X(t) − 5L(t))/n ≥ p,
where we recall that L(t) counts the total number of coloured vertices at time t. Hence, at
each step, some vertex of type q − 1 becomes of type q with probability at least p. Thus, by
applying Chernoff’s bound, one can show that a.a.s. after another O(εn/p) = o(n) rounds, all
vertices of type q − 1 are destroyed. It follows that a.a.s. |τq/n − σq| = o(1), and so Lemma
10 is proven.

4 Proof of Theorem 2

Suppose Gt has a Hamiltonian cycle Ht = H after t ≥ 0 steps. Recall that for the (directed)
semi-random edge (ui, vi), we refer to ui as its square and vi as its circle. We begin with the
following observations:
1. H uses exactly n squares;
2. H uses at most 2 squares on each vertex;
3. Suppose (ui, vi) is an edge of Gt, and vi received at least two squares. Then, either H

uses at most one square on vi, or H does not contain the edge (ui, vi).
The first two observations above are obvious. For 3, notice that if H uses exactly 2 squares
on vi, then these 2 squares correspond to 2 edges in H that are incident to vi. Moreover,
neither of these edges can be (ui, vi), as ui is the square of (ui, vi). Thus, the edge (ui, vi)
cannot be used by H as vi has degree 2 in H.

Define Zx as the number of squares on vertex x ∈ [n], the observation 2 above indicates
the consideration of the random variable

Z =
n∑

x=1
(1Zx=1 + 2 · 1Zx≥2) = 2n −

n∑
x=1

(2 · 1Zx=0 + 1Zx=1) ,

which counts the total number of squares that can possibly contribute to H, truncated at 2
for each vertex. Observation 3 above indicates the consideration of the following two sets of
structures:

Let W1 be the set of pairs of vertices (x, y) at time t such that
(a) x receives its first square in some step i < t, and y receives the corresponding circle in

the same step;
(b) no more squares land on x after step i;
(c) at least two squares land on y after step i.

Let W2 be the set of pairs of vertices (x, y) at time t such that
(a) x receives its first square in some step i < t, and y receives the corresponding circle in

the same step;
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(b) exactly one more square lands on x either before or after step i;
(c) at least two squares land on y after step s.

Note that for every (x, y) ∈ W1, at most 2 squares on x and y together can be used in H ,
although x and y together contribute 3 to the value of Z. Similarly, for every (x, y) ∈ W2, at
most 3 squares on x and y together can be used in H, although x and y together contribute
4 to the value of Z.

Therefore, the total number of squares contributing to H is at most Z − |W1| − |W2| +
W , where W accounts for double counting, which sometimes happens when there are
(x1, y1), (x2, y2) ∈ W1 ∪ W2 where {x1, y1} ∩ {x2, y2} ̸= ∅. More precisely, let

T1 = {((x1, y1), (x2, y2)) ∈ W1 × W2 : y1 = x2}
T2 = {((x1, y1), (x2, y2)) ∈ W2 × W2 : y1 = x2}.

Then, W := |T1| + |T2|.3

The random variable Z is well understood. From the limiting Poisson distribution of the
number of squares in a single vertex, we immediately get that a.a.s. Z ∼ (2 − 2e−s − e−ss)n
for s := t/n.

We will estimate the expectation of |W1|, |W2|, |T1|, |T2| as well as the concentration of
these random variables. However, concentration may fail if the semi-random process uses
a strategy which places many circles on a single vertex. Intuitively, placing many circles
on a single vertex is not a good strategy for quickly building a Hamiltonian cycle, as it
wastes many edges. To formalise this idea, let µ :=

√
n (indeed, choosing any µ such that

µ → ∞ and µ = o(n) will work). We say that a strategy for the semi-random process
is µ-well-behaved up until step t, if no vertex receives more than µ circles in the first t

steps. In [11, Definition 3.2 – Proposition 3.4], it was proven that it is sufficient to consider
µ-well-behaved strategies in the first t = O(n) steps for establishing a lower bound on the
number of steps needed to build a perfect matching. These definitions and proofs can be
easily adapted for building Hamilton cycles in an obvious way. We thus omit the details and
only give a high-level explanation below.

The key idea is that within t = O(n) steps of any semi-random process, the number of
vertices of in-degree greater than µ is at most O(n/µ) = o(n). Therefore, if a Hamiltonian
cycle C is built in t steps, then the subgraph H of C induced by the set S of vertices of in-degree
at most µ in Gt is a collection of paths spanning all vertices in S which must also contain
n − O(n/µ) = (1 − o(1))n edges. We call such a pair (S, H) an approximate Hamiltonian
cycle. It follows from the above argument that it takes at least as long time to build a
Hamiltonian cycle as to build an approximate Hamiltonian cycle. It is then easy to show by
a coupling argument that if a strategy builds an approximate Hamiltonian cycle in t = O(n)
steps, then there exists a well-behaved strategy that builds an approximate Hamiltonian
cycle in t steps as well. Note that observations 2–3 hold for approximate Hamiltonian cycles,
and 1 holds for approximate Hamiltonian cycles with n replaced by (1 − o(1))n. Thus, no
approximate Hamiltonian cycles can be built until step Z − |W1| − |W2| + W ≥ (1 − o(1))n.
We now estimate the sizes of W1, W2, T1, and T2 in the semi-random process when executing
a well-behaved strategy S. Crucially, the sizes of these sets do not rely on the decisions made
by S. Recall that (GS

s )s≥0 denotes the sequence of graphs produced by S.

3 Note that the cases where ((x1, y1), (x2, y2)) ∈ W1 × W1 such that y1 = y2 and ((x1, y1), (x2, y2)) ∈
W2 × W2 such that y1 = x2 do not cause double counting.
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▶ Lemma 14. Suppose S is µ-well-behaved. For every t = Θ(n), the following a.a.s. holds
in GS

t ,

Z − |W1| − |W2| + W ∼ f(s)n,

where s := t/n and f(s) is defined in Theorem 2.

Proof of Theorem 2. Recall that β is the positive root of f(s) = 1. Then, for every ε > 0,
Z − |W1| − |W2| + W ≤ (1 − O(ε))n a.a.s. in GS

(β−ε)n for any µ-well-behaved S. Therefore,
τHAM ≥ β. ◀

5 Conclusion and Open Problems

We have made significant progress on reducing the gap between the previous best upper and
lower bounds on τHAM. That being said, we do not believe that any of our new bounds are
tight. For instance, in the case of our lower bound, one could study the appearance of more
complicated substructures which prevent any strategy from building a Hamiltonian cycle.
One way to likely improve the upper bound would be to analyze an adaptive algorithm whose
decisions are all made greedily. Rather, in the terminology of DegreeGreedy, when a (second)
square lands on a blue vertex, the edge is greedily chosen amongst unsaturated vertices of
minimum blue degree (opposed to u.a.r.). Unfortunately, it seems challenging to analyze this
algorithm via the differential equation method, but it is likely that this algorithm will lead
to an improved upper bound on τHAM of less than 2.

Another direction is to understand which graph properties exhibit sharp thresholds. It
is known that for basic properties, such as minimum degree k ≥ 1, sharp thresholds do exist
[3]. Moreover, in [2] it was shown that if H is a spanning graph with max degree ∆ = ω(log n),
then the appearance of H takes (∆/2 + o(∆))n rounds, and H (deterministically) cannot be
constructed in fewer than ∆n/2 rounds. However, in general it remains open as to whether
or not a sharp threshold exists when H is sparse (i.e., ∆ = O(log n)). Very recently, Surya
and the second author [13], a developed a general machinery for proving the existence of
sharp thresholds in adaptive random graph processes. Applied to the semi-random graph
process, they show that sharp thresholds exist for the property of being Hamiltonian as well
as to containing a perfect matching. This provides some evidence that sharp thresholds do
exist when ∆ = O(log n), and we leave this an interesting open problem.

References
1 Natalie Behague, Trent Marbach, Paweł Prałat, and Andrzej Ruciński. Subgraph games in

the semi-random graph process and its generalization to hypergraphs. arXiv preprint, 2022.
doi:10.48550/ARXIV.2105.07034.

2 Omri Ben-Eliezer, Lior Gishboliner, Dan Hefetz, and Michael Krivelevich. Very fast construc-
tion of bounded-degree spanning graphs via the semi-random graph process. Proceedings of
the 31st Symposium on Discrete Algorithms (SODA’20), pages 728–737, 2020.

3 Omri Ben-Eliezer, Dan Hefetz, Gal Kronenberg, Olaf Parczyk, Clara Shikhelman, and Miloš
Stojaković. Semi-random graph process. Random Structures & Algorithms, 56(3):648–675,
2020.

4 Patrick Bennett and Andrzej Dudek. A gentle introduction to the differential equation method
and dynamic concentration. CoRR, 2020. doi:10.48550/ARXIV.2007.01994.

5 J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98, 2017.

https://doi.org/10.48550/ARXIV.2105.07034
https://doi.org/10.48550/ARXIV.2007.01994


P. Gao, C. MacRury, and P. Prałat 29:17

6 Tom Bohman and Alan Frieze. Hamilton cycles in 3-out. Random Structures & Algorithms,
35(4):393–417, 2009.

7 Sofiya Burova and Lyuben Lichev. The semi-random tree process, 2022. doi:10.48550/ARXIV.
2204.07376.

8 Alan M Frieze. Maximum matchings in a class of random graphs. Journal of Combinatorial
Theory, Series B, 40(2):196–212, 1986.

9 Pu Gao, Bogumił Kamiński, Calum MacRury, and Paweł Prałat. Hamilton cycles in the
semi-random graph process. European Journal of Combinatorics, 99:103423, 2022. doi:
10.1016/j.ejc.2021.103423.

10 Pu Gao, Calum MacRury, and Pawel Pralat. A fully adaptive strategy for hamiltonian cycles
in the semi-random graph process. CoRR, abs/2205.02350, 2022. doi:10.48550/ARXIV.2205.
02350.

11 Pu Gao, Calum MacRury, and Paweł Prałat. Perfect matchings in the semi-random graph
process. SIAM Journal on Discrete Mathematics, in press, 2022.

12 Michal Karoński, Ed Overman, and Boris Pittel. On a perfect matching in a random digraph
with average out-degree below two. Journal of Combinatorial Theory, Series B, 143, March
2020. doi:10.1016/j.jctb.2020.03.004.

13 Calum MacRury and Erlang Surya. Sharp thresholds in adaptive random graph processes.
CoRR, 2022.

14 Lutz Warnke. On wormald’s differential equation method. CoRR, abs/1905.08928, 2019.
doi:10.48550/ARXIV.1905.08928.

15 Nicholas C Wormald. The differential equation method for random graph processes and greedy
algorithms. Lectures on approximation and randomized algorithms, 73:155, 1999.

A Proofs of Lemmas 4 and 7

Proof of Lemma 4. As discussed, FullyRandomized ensures that at time t there are at
most 2 red vertices which are not well-spaced. Thus, since our expected differences each allow
for a O(log n/n) term, without loss of generality, we can assume that all our red vertices are
well-spaced. Note that all our explanations below assume that we have conditioned on Ht.
We focus on the second and third expected differences, where we make use of the following
crucial observation:
1. Conditional on Ht, the circles of the red edges of Lt are distributed u.a.r. amongst the

unsaturated vertices Ut.
Note that were we to condition on the full history, i.e., G0, . . . , Gt, then these circles would
be determined by the history of the process, and so the only randomness in the expectations
would be over the draw of ut+1. By averaging over this additional randomness, we are able
to get the claimed expected differences.

Consider now the second expected difference and assume that ut+1 lands on an unsaturated
vertex. Firstly, observe that this event occurs with probability 1 − X(t)/n. On the other
hand, all the red edges adjacent to ut+1 will be uncoloured after the path augmentation
involving ut+1 is made. Now, because of 1., there are L1(t)

n−X(t) red edges belonging to L1
t

which are adjacent to ut+1 in expectation. After the path augmentation involving ut+1, these
edges are uncoloured and so L1(t)

n−X(t) one-red vertices are destroyed in expectation. Now, in
expectation there are also 2L2(t)

n−X(t) + O(log n/n) red edges adjacent to ut+1 which belong to
distinct two-red vertices. To see this, fix a two-red vertex x ∈ L2

t and observe that because of
1., precisely one red edge of x is adjacent to ut+1 with probability 2

n−X(t) − 1
(n−X(t))2 . Since

n − X(t) ≥ n/ log n by assumption, this probability is 2
n−X(t) + O((log n/n)2), and so the

2L2(t)
n−X(t) + O(log n/n) term follows after summing over all the vertices of L2

t . Now, after the
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path augmentation involving ut+1, these red edges are uncoloured. Since these red edges
belonged to distinct two-red vertices, the path augmentation creates 2L2(t)

n−X(t) +O(log n/n) new

one-red vertices in expectation. These two cases explain the
(

1 − X(t)
n

) (
2L2(t)

n−X(t) − L1(t)
n−X(t)

)
term.

Let us now consider when ut+1 lands on a saturated vertex and dPt
(ut+1, Lt) = 1, where

x is the unique red vertex adjacent to ut+1. If x is a one-red vertex, then let r be such that
xr is the red edge of x. Observe that after the augmentation, xr will be uncoloured, and x

will no longer be a red vertex. Moreover, in expectation there are L1(t)
n−X(t) + O(log n/n) other

red edges belonging to L1
t which will be uncoloured. Thus, 1 + L1(t)

n−X(t) + O(log n/n) one-red
vertices will be destroyed in expectation. On the other hand, there are 2L2(t)

n−X(t) + O(log n/n)
red edges adjacent to r which belong to distinct two-red vertices in expectation. Thus,
2L2(t)

n−X(t) + O(log n/n) two-red vertices will become one-red vertices in expectation after
augmenting via xr and ut+1r. Since ut+1 lands next to a one-red vertex with probability,
2L1(t)

n , this explains the 2L1(t)
n

(
2L2(t)

n−X(t) − L1(t)
n−X(t) − 1

)
term. An analogous argument explains

the 2L2(t)
n

(
1 + 2L2(t)

n−X(t) − L1(t)
n−X(t)

)
term.

Consider when ut+1 lands in Qt. Observe that this occurs with probability |Qt|
n =

X(t)−5L(t)
n . In this case, vt+1 is chosen u.a.r. amongst Ut and ut+1vt+1 is coloured red. Thus,

ut+1 becomes a red vertex, and so L1(t) increases by 1 and we get ∆L1(t) = 1. This explains
the X(t)−5L(t)

n term.
The final case to consider is when ut+1 lands on a saturated vertex, and ut+1 ∈ L1

t .
Observe that this occurs with probability L1(t)

n . Moreover, the algorithm will then choose
vt+1 u.a.r. amongst Ut and colour the edge ut+1vt+1 red. After this move, ut+1 will be
converted from a one-red vertex to a two-red vertex, and so ∆L1(t) = 1. This explains the
−L1(t)

n term.
By combining the contributions from all of the above cases, we get the second expected

difference. The third expected difference follows via an analogous argument. ◀

Proof of Lemma 7. Let j0 = εn. For each k ≥ 1, let jk = (1/2)jk−1 if jk−1 > n1/4, and let
jk = jk−1 − 1 otherwise. Clearly, jk is a decreasing function of k. Let τ1 be the smallest
natural number k such that jk ≤ n1/4. Let τ be the natural number k such that jk = 0.
Obviously, τ1 = O(log n) and τ = O(n1/4).

We use a cleaning-up algorithm, which runs in iterations. The k-th iteration repeatedly
absorbs jk−1 − jk vertices into P , leaving jk unsaturated vertices in the end. The k-th
iteration of the cleaning-up algorithm works as follows.

(i) (Initialising): Uncolour all vertices in the graph;
(ii) (Building reservoir): Let mk :=

√
ε(1/2)k/2n for k ≤ τ1 and mk := n1/2 if τ1 < k ≤ τ .

Add mk semi-random edges as follows. If ut lands on an unsaturated vertex, a red
vertex or a neighbour of a red vertex in P , then let vt be chosen arbitrarily. This
edge utvt will not be used in our construction. Otherwise, colour ut red and choose
an arbitrary vt among those unsaturated vertices with the minimum number of red
neighbours. Colour utvt red. Note that each red vertex is adjacent to exactly one red
edge;

(iii) (Absorbing via path augmentations): Add semi-random edges as follows. Suppose that
ut lands on P and at least one neighbour of ut on P is red. (Otherwise, vt is chosen
arbitrarily, and this edge will not be used in our construction.) Let x be such red vertex
(if ut has two neighbours on P that are red, then select one of them arbitrarily). Let y

by the neighbour of x where xy is red, and let vt = y. Extend P by deleting the edge
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xut and adding the edges xy and yut. Uncolour all red edges incident to y and all red
neighbours of y (which, of course, includes vertex x).

Notice that, in each iteration, mk ≥ n1/2. Indeed, this is obviously true for τ1 < k ≤ τ .
On the other hand, if k ≤ τ1, then jk = εn(1/2)k and so mk =

√
njk ≥

√
n (in fact,

mk = Ω(n5/8)).
Let Tk denote the length of the k-th iteration of the cleaning-up algorithm. It remains

to prove that a.a.s.
∑

k≤τ Tk = O(
√

εn). Let Rk be the number of red vertices obtained
after step (ii) of iteration k. Obviously, Rk ≤ mk. On the other hand, each ut is coloured
red with probability at least 1 − jk−1/n − 3mk/n ≥ 1 − ε − 3

√
ε ≥ 0.95. Hence, Rk can

be stochastically lower bounded by the binomial random variable Bin(mk, 0.95). By the
Chernoff bound, with probability at least 1 − n−1, Rk ≥ 0.9mk, as mk ≥ n1/2.

First, we consider iterations k ≤ τ1. Let R̃k be the number of red vertices at the end
of step (iii). Note that the minimum degree property of step (ii) ensures each unsaturated
vertex is adjacent to at most Rk/jk−1 + 1 ≤ mk/jk−1 + 1 red vertices. Moreover, exactly
jk−1 − jk = (1/2)jk−1 vertices are absorbed in step (iii). As a result,

R̃k ≥ Rk −
(

mk

jk−1
+ 1

)
· jk−1

2 ≥ 0.9mk − mk

2 − jk−1

2 ≥ 0.3mk,

as jk−1 = 2jk ≤ 2
√

εmk ≤ 0.1mk. It follows that throughout step (iii), there are at least
0.3mk red vertices. Thus, for each semi-random edge added to the graph, the probability
that a path extension can be performed is at least 0.3mk/n = 0.3

√
ε(1/2)k/2. Again, by the

Chernoff bound, with probability at least 1 − n−1, the number of semi-random edges added
in step (iii) is at most

2(jk−1 − jk) · 2k/2

0.3
√

ε
≤ 7

√
ε(1/2)k/2n.

Combining the number of semi-random edges added in step (ii), it follows that with probability
at least 1 − n−1, Tk ≤ mk + 7

√
ε(1/2)k/2n = 8

√
ε(1/2)k/2n.

Next, consider iterations τ1 < k ≤ τ . In each iteration, exactly one unsaturated vertex
gets absorbed. The number of semi-random edges added in step (ii) is mk = n1/2. We have
argued that with probability at least 1 − n−1, Rk ≥ 0.9mk. Thus, for each semi-random
edge added to the graph, the probability that a path extension can be performed is at least
0.9mk/n = 0.9n−1/2. By the Chernoff bound, with probability at least 1 − n−1, the number
of semi-random edges added in step (iii) is at most n1/2 log2 n. Thus, with probability at
least 1 − n−1, Tk ≤ n1/2 + n1/2 log2 n ≤ 2n1/2 log2 n.

Taking the union bound over all k ≤ τ , since τ = O(n1/4), it follows that a.a.s.∑
k≤τ

Tk ≤
∑
k≤τ1

8
√

ε(1/2)k/2n +
∑

τ1<k≤τ

2n1/2 log2 n = O(
√

εn + n3/4 log2 n)

We have shown that a.a.s. by adding O(
√

εn + n3/4 log2 n) additional semi-random edges
we can construct a Hamiltonian path P . To complete the job and turn it into a Hamiltonian
cycle, let u and v denote the left and, respectively, the right endpoint of P . First, add
n1/2 semi-random edges utvt where vt is always u, discarding any multiple edges that could
possibly be created. For each such semi-random edge utu, colour the left neighbour of ut on
P blue. Next, add add n1/2 log2 n semi-random edges utvt where vt is always v. Suppose
that some ut = x is blue. Then, a Hamiltonian cycle is obtained by deleting xy from P and
adding the edges xv and uy, where y is the right neighbour of x on P . By Chernoff bound,
a.a.s. a semi-random edge added during the second round hits a blue vertex, completing the
proof. ◀
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B Proof of Lemma 14

▶ Lemma 15. Suppose S is µ-well-behaved up until time t = Θ(n). A.a.s. the following
holds for GS

t :

|W1| ∼ n
∑
i≤t

1
n

(
1 − 1

n

)t ∑
i≤j1<j2≤t

1
n2

(
1 − 1

n

)j2

(19)

|W2| ∼ n
∑

i1≤i2≤t

1
n2

(
1 − 1

n

)t
 ∑

i1≤j1<j2≤t

1
n2

(
1 − 1

n

)j2

+
∑

i2<j1<j2≤t

1
n2

(
1 − 1

n

)j2


(20)

|T1| ∼ n
∑
i≤t

1
n

(
1 − 1

n

)t ∑
i≤j1<j2≤t

1
n2

(
1 − 1

n

)t

×

 ∑
j1≤h1<h2≤t

1
n2

(
1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1
n2

(
1 − 1

n

)h2

 (21)

|T2| ∼ n
∑

i1<i2≤t

1
n2

(
1 − 1

n

)t ∑
i1≤j1<j2≤t

1
n2

(
1 − 1

n

)t

×

 ∑
j1≤h1<h2≤t

1
n2

(
1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1
n2

(
1 − 1

n

)h2


+

∑
i1<i2≤t

1
n2

(
1 − 1

n

)t ∑
i2≤j1<j2≤t

1
n2

(
1 − 1

n

)t

×

 ∑
j1≤h1<h2≤t

1
n2

(
1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1
n2

(
1 − 1

n

)h2

 . (22)

Proof. We prove (19) and briefly explain the expressions in (20)–(22) whose proofs are
similar to that of (19). Fix a vertex x ∈ [n] and a square ui for i ≤ t. The probability that
ui lands on x in step i is 1/n. Condition on this event. The probability that x receives no
squares in any steps other than i is (1 − 1/n)t−1 ∼ (1 − 1/n)t. Let y be the vertex which the
strategy chooses to pair with ui with. Fix any two integers i < j1 < j2 ≤ t, the probability
that y receives its first two squares at times j1 and j2 is n−2(1 − 1/n)j2−2 ∼ n−2(1 − 1/n)j2 .
Summing over all possible values of i, j1, j2 and multiplying by n, the number of choices for
x, gives E|W1|.

For concentration of |W1| we prove that E|W1|2 ∼ (E|W1|)2. For any pair of
((x1, y1), (x2, y2)) in W1 × W1, either x1, y1, x2, y2 are pairwise distinct, or y1 = y2. It
is easy to see that the expected number of pairs where x1, y1, x2, y2 are pairwise distinct is

n2
∑
i1≤t
i2≤t

1
n2

(
1 − 1

n

)2(t−1) ∑
i1≤j1<j2≤t
i2≤h1<h2≤t

1
n4

(
1 − 1

n

)j2−2+h2−2
∼ (E|W1|)2.

The expected number of pairs where y1 = y2 is at most µn as there are most n choices for x1
and given (x1, y1), there can be at most µ choices for (x2, y2) since S is µ-well-behaved. Since
µ = o(n), µn = o(n2) which is o((E|W1|)2). Thus we have verified that E|W1|2 ∼ (E|W1|)2

and thus by the second moment method, a.a.s. |W1| ∼ E|W1|.
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The proofs for the expectation and concentration of |W2|, |T1| and |T2| are similar. We
briefly explain the expressions in (20)–(22):

In (20), i1 and i2 denote the two steps at which x receives a square. Since there are two
squares on x, there are two choices of circles, namely vi1 and vi2 . The two summations over
(j1, j2) accounts for the two choices of vi1 and vi2 , depending on which is to be covered by
two squares. Thus, j1 and j2 denote the steps where the first two squares on vi1 or vi2 arrive.

In (21), i denotes the step where x1 receives its only square; j1 and j2 denote the two
steps where y1 = x2 receives its two squares. Hence, there are two choices for y2, and h1 and
h2 denote the two steps of the first two squares y2 receives.

In (22), i1 and i2 denote the two steps where x1 receives its two squares – hence there
are two choices for y1. Integers j1 and j2 denote the two steps where y1 = x1 receives its two
squares – hence there are two choices for y2. Finally, h1 and h2 denote the steps where y2
receives its first two squares. ◀

From Lemma 15, we deduce that for t = sn,

|W1| ∼ ne−s

∫ s

0
dx

∫ s

x

dy1

∫ s

y1

e−y2dy2 = ne−s

(
1 − e−ss2

2 − e−ss − e−s

)
|W2| ∼ ne−s

∫ s

0
dx1

∫ s

x1

dx2

(∫ s

x1

dy1

∫ s

y1

e−y2dy2 +
∫ s

x2

dy1

∫ s

y1

e−y2dy2

)
= ne−s

(
s − e−ss2 − e−ss3

2 − e−ss

)
|T1| ∼ ne−2s

∫ s

0
dx

∫ s

x

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +
∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−1 + s − e−ss3

3 − e−ss2

2 − e−ss4

8 + es

)
|T2| ∼ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x1

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +
∫ s

y2

dz1

∫ t

z1

e−z2dz2

)
+ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x2

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +
∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−s + s2 − e−ss

(
s4

8 + s3

3 + s2

2 − 1
))

It follows now that Z − |W1| − |W2| + W ∼ f(s)n where recall that

f(s) = 2 + e−3s(s + 1)
(

1 − s2

2 − s3

3 − s4

8

)
+ e−2s

(
2s + 5s2

2 + s3

2

)
− e−s (3 + 2s) .

C The Differential Equation Method

In this section, we provide a self-contained non-asymptotic statement of the differential
equation method. The statement combines [14, Theorem 2], and its extension [14, Lemma
9], in a form convenient for our purposes, where we modify the notation of [14] slightly. In
particular, we rewrite [14, Lemma 9] in a less general form in terms of a stopping time T . We
need only check the “Boundedness Hypothesis” (see below) for 0 ≤ t ≤ T , which is exactly
the setting of Lemmas 3 and 11.

Suppose we are given integers a, n ≥ 1, a bounded domain D ⊆ Ra+1, and functions
(Fk)1≤k≤a where each Fk : D → R is L-Lipschitz-continuous on D for L ≥ 0. Moreover,
suppose that R ∈ [1, ∞) and S ∈ (0, ∞) are any constants which satisfy max1≤k≤a |Fk(x)| ≤
R for all x = (s, y1, . . . , ya) ∈ D and 0 ≤ s ≤ S.
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▶ Theorem 16 (Differential Equation Method, [14]). Suppose we are given σ-fields F0 ⊆ F1 ⊆
· · · , and for each t ≥ 0, random variables ((Yk(t))1≤k≤a which are Ft-measurable. Define
TD to be the minimum t ≥ 0 such that

(t/n, Y1(t)/n, . . . , Yk(t)/n) /∈ D.

Let T ≥ 0 be an (arbitrary) stopping time4 adapted to (Ft)t≥0, and assume that the following
conditions hold for δ, β, γ ≥ 0 and λ ≥ δ min{S, L−1} + R/n:

(i) The “Initial Condition”: For some (0, ŷ1, . . . , ŷa) ∈ D,

max
1≤k≤a

|Yk(0) − ŷkn| ≤ λn.

(ii) The “Trend Hypothesis”: For each t ≤ min{T, TD − 1},

|E[Yk(t + 1) − Yk(t) | Ft] − Fk(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ δ.

(iii) The “Boundedness Hypothesis”: With probability 1 − γ,

|Yk(t + 1) − Yk(t)| ≤ β,

for each t ≤ min{T, TD − 1}:
Then, with probability at least 1 − 2a exp

(
−nλ2

8Sβ2

)
− γ, we have that

max
0≤t≤min{T,σn}

max
1≤k≤a

|Yk(t) − yk(t/n)n| < 3λ exp(LS)n, (23)

where (yk(s))1≤k≤a is the unique solution to the system of differential equations

y′
k(s) = Fk(s, y1(s), . . . , ya(s)) with yk(0) = ŷk for 1 ≤ k ≤ a, (24)

and σ = σ(ŷ1, . . . , ŷa) ∈ [0, S] is any choice of σ ≥ 0 with the property that (s, y1(s), . . . , ya(s))
has ℓ∞-distance at least 3λ exp(LS) from the boundary of D for all s ∈ [0, σ).
▶ Remark 17. Standard results for differential equations guarantee that (24) has a unique
solution (yk(s))1≤k≤a which extends arbitrarily close to the boundary of D.
▶ Remark 18. The proof of Theorem 16 works for any choice of R ∈ [1, ∞) and T ∈ (0, ∞)
which satisfy max1≤k≤a |Fk(x)| ≤ R for all x = (s, y1, . . . , ya) ∈ D and 0 ≤ s ≤ T .

4 The stopping time T ≥ 0 is adapted to (Ft)t≥0, provided the event {τ = t} is Ft-measurable for each
t ≥ 0.
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We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the
regime when the degree distribution obeys a power law with exponent in the range (2, 3). In
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and a.a.s. and the last in expectation (with respect to the HRG).

We prove these results by determining the effective resistance either between an average vertex
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vertices. We bound the effective resistance by the energy dissipated by carefully designed network
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1 Introduction

In 2010, Krioukov et al. [52] proposed the Hyperbolic Random Graph (HRG) as a model
of “real-world” networks such as the Internet (also referred to as complex networks). Early
results via non-rigorous methods indicated that HRGs exhibited several key properties
empirically observed in frequently studied networks (such as networks of acquaintances,
citation networks, networks of autonomous systems [13], etc.). Many of these properties were
later established formally, among these are power-law degree distribution [37], short graph
distances [1, 46] (a.k.a. small world phenomena), and strong clustering [17, 31, 37]. Many
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other fundamental parameters of the HRG model have been studied since its introduction
(see the related work section), however notable exceptions are key quantities concerning
the behaviour of random walks. This paper is a first step in redressing this situation. The
random walk is the quintessential random process, and studies of random walks have proven
relevant for algorithm design and analysis; this coupled with the aforementioned appealing
aspects of the HRG model motivates this research.

The (simple) random walk is a stochastic process on the vertices of a graph, which at each
time step uniformly samples a neighbour of the current vertex as its next state [3, 56]. A key
property of the random walk is that, for any connected graph, the expected time it takes for
the walk to visit a given vertex (or to visit all vertices) is polynomial in the number of vertices
in the graph. These times are known as the hitting and cover times, respectively. This ability
of a random walk to explore an unknown connected graph efficiently using a small amount
of memory was, for example, used to solve the undirected s − t connectivity problem in
logarithmic space [4]. Other properties such as the ability to sample a vertex independently
of the start vertex after a polynomial (often logarithmic) number of steps (mixing time)
helped random walks become a fundamental primitive in the design of randomized and
approximation algorithms [59]. In particular, random walks have been applied in tasks such
as load balancing [68], searching [35], resource location [44], property testing [26, 53, 54],
graph parameter estimation [8] and biological applications [38].

One issue to keep in mind when working with HRGs is that for the most relevant range of
parameters of the model (that one for which it exhibits the properties observed in “real-world”
networks) the graphs obtained are disconnected with probability that tends to 1 as the order
of the graph goes to infinity. Quantities such as average hitting time and commute time are
not meaningful for disconnected graphs (i.e., they are trivially equal to infinity). However,
again for the range of parameters we are interested in, Bode, Fountoulakis and Müller [11]
showed that it is very likely the graph has a component of linear size. This result was then
complemented by the first author and Mitsche [46] who showed that all other connected
components were of size at most polylogarithmic in the order of the graph. This justifies
referring to the linear size component as the giant component. With this work being among
the first study of characteristics of simple random walks in HRGs, it is thus natural and
relevant to understand their behavior in the giant component of such graphs. This is the
main challenge we undertake in this paper.

Among our main contributions are the determination of the order of the hitting and cover
times of random walks on the giant component of HRGs. To achieve this, we appeal to a
connection of the former to effective resistances in the graph [56, Section 9]. The effective
resistance is a metric, and the resistances between all pairs of vertices uniquely determines
the graph [40]. The effective resistance has also found applications to graph clustering [5],
spectral sparsification [69], graph convolutional networks [2], and flow-based problems in
combinatorial optimization [6, 18, 61].

1.1 Main Results
Our main contributions are to determine several quantities related to random walks on the
largest connected component Cα,ν(n) of the (Poissonized) hyperbolic random graph Gα,ν(n).
We refer to this component as the giant and note that it is known to have Θ(n) vertices
a.a.s. [11]. The primary probability space we will be working in is the one induced by the
HRG and we use P for the associated measure. We also deal with the expected stopping
times of random walks, and we use bold type (e.g. E) for the expectation with respect to the
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random walk on a fixed graph. We say that a sequence of events (w.r.t. the HRG) holds
asymptotically almost surely (a.a.s.) if it occurs with probability going to 1 as n → ∞. We
give brief descriptions of the objects we study here, for full definitions see Section 2.

The effective resistance R (x ↔ y) between two vertices x, y of a graph G is the energy
dissipated by a unit current flow from x to y. Due to a connection with simple random walks,
we consider effective resistance in the case when all edges have unit resistances, see Section 2.5
for a formal definition. The sum of all resistances in G is the Kirchhoff index K(G), this
has found uses in centrality [57], noisy consensus problems [67], and social recommender
systems [73]. Our first result shows the expected effective resistance between two vertices
of the giant chosen uniformly at random is bounded, and gives the expected order of the
Kirchhoff index.

▶ Theorem 1. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then

E(K(C)) = Θ(n2), and E
( 1

|V (C)|2
∑

u,v∈V (C)

R (u ↔ v)
)

= Θ(1).

The upper bounds in Theorem 1 are established by exploiting the well known relation between
effective resistance and energy dissipated by network flows. The two results in this theorem
are very closely related but do not directly imply each other as |V (C)|, the size of the center
component, is a random variable that is not independent from the resistances.

Our construction of low energy flows relies on a tiling of the hyperbolic plane. In this
regard, it bears some similarity to how various authors have obtained estimates of the size of
the giant and upper bounds on the diameter of the HRG [64]. However, when constructing a
desirable flow one often needs multiple paths (as opposed to just one when bounding the
diameter) or else the energy dissipated by the flow could be too large to get a tight bound
on the effective resistance. Abdullah et al. [1] showed that hyperbolic random graphs of
expected size Θ(n) have typical distances of length Θ(log log n) (within the same component),
in contrast we show that typical resistances are Θ(1). The diameter of the HRG when
1
2 < α < 1 was only recently determined precisely [64], though the lower bound, non-tight
upper bounds, and the diameter for other values of α, were established earlier [46, 33]. The
tight O(log n) upper bound for the diameter of the giant of the HRG when 1

2 < α < 1 [64]
was proved using a coupling with the Fountoulakis-Müller upper half-plane HRG model [30]
and is also based in a tiling-construction. The tiling on which we rely to construct flows is
closely related to the Fountoulakis-Müller tiling of the half-plane model. In fact, our tiling is
approximately equal to the latter (see the discussion in the last paragraph of the detailed
description of our tiling in Secton 3.1).

The target time t⊙(G) of a graph G (also known as Kemeny’s constant) is the expected
time for a random walk to travel between two vertices chosen independently from the
stationary distribution π, see Section 2.4. When considering a random walk on a graph, the
stationary distribution is arguably the most natural measure on the vertices. Thus the target
time should be considered as the “average” hitting time. We show that on the giant of the
HRG this notion of average hitting time is of order n in expectation.

▶ Theorem 2. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then E

(
t⊙(C)

)
= Θ(n).

The hitting time of a vertex v from a vertex u in a graph G is the expected time it take a
random walk started from u to first visit v. Let thit(G) denote the maximum hitting time,
this is the maximum over all pairs of vertices u, v in V (G) of the hitting time of u from v.
We let the cover time tcov(G) be the expected time for the walk to visit all vertices of G

(taken from a worst case start vertex), see Section 2.4. We show that both of these quantities
concentrate on the giant of the HRG.
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▶ Theorem 3. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then a.a.s. and in expectation

thit(C) = Θ(n log n) and tcov(C) = Θ(n log2 n).

The result above also establishes that the maximum resistance between two vertices of the
giant is Θ(log n) a.a.s., compared to Θ(1) for a typical pair by Theorem 1. This discrepancy
between the maximum and the average resistances is also seen in graph distances in the
giant, as the maximum and average distances are Θ(log n) [64] and Θ(log log n) [1] a.a.s.,
respectively. Interestingly, there are enough (polynomially many) pairs of vertices with
resistance matching the maximum to ensure that the cover time is a factor Θ(log2 n) larger
than the average hitting time, many random graphs (e.g., connected Erdős-Rényi, preferential
attachment) are expanders and do not have this feature.

Stating additional contributions of this paper, as well as providing more detail about
those already stated, requires a bit more terminology and notation, which we introduce below
after discussing the related literature.

1.2 Further Related Work and Our Techniques
Over the last two decades, the cover time of many random graph models has been determined.
These networks include the binomial random graph [20, 22], random geometric graph [23],
preferential attachment model [21], configuration model [25], random digraphs [24] and the
binomial random intersection graph [10]. These results were all proven using Cooper and
Frieze’s first visit lemma, see the aforementioned papers or [62]. This result is based on
expressing the probability that a vertex has been visited up-to a given time by a function of the
return probabilities. One (simplified) condition required to easily apply the first visit lemma
is that trel · maxv∈V π(v) = o(1), where π is the stationary distribution and trel(G) := 1

1−λ2
is

the relaxation time of G, and λ2 is the second-largest eigenvalue of the transition matrix of the
(lazy) random walk on G. However, inserting the best known bounds on trel and maxv∈V π(v)
for the HRG, by [47] and [37] respectively, gives trel ·maxv∈V π(v) ⩽ (n2α−1 log n) ·n 1

2α −1+o(1)

which is not o(1) for any 1
2 ⩽ α ⩽ 1.

Another key ingredient of the first visit lemma is good bounds on the expected number
of returns to a vertex before the walk mixes, i.e.

∑tmix
t=0 P t

v,v where P t
x,y is the probability

a (lazy) random walk from x is at vertex y after exactly t steps. Obtaining such bounds
in the HRG appears challenging due to the large mixing time and irregular local structure
of the HRG. This also effects arguably the most natural approach to obtaining bounds
on the average hitting time, that is applying the formula π(v)Eπ[τv] =

∑∞
t=0[P t

v,v − π(v)],
see [3, Lemma 2.11], as this involves the same sum (which only needs to be considered up to
relaxation/mixing time).

Given the perceived difficulty in determining the cover time using the return probabilities
as described above, the approach taken in this paper is to determine the hitting and cover
times via the effective resistances {R (u ↔ v)}u,v∈V . There is an intimate connection between
reversible Markov chains and electrical networks as certain quantities in each setting are
determined by the same harmonic equations. Classically this connection has been exploited to
determine whether random walks on infinite graphs are transient or recurrent [60, Chapter 2],
and more recently the effective resistance metric has been understood to relate the blanket
times of random walks on finite graphs to the Gaussian free field [28]. The main connection
we shall use is that the commute time (sum of hitting times in either direction) between
two vertices is equal to the number of edges times the effective resistance between the two
points [16, 71]. This result has been used to bound hitting and cover times in several random
graph models, notably in the binomial random graph [41, 70] and the geometric random
graph [7]. Luxburg et al. [72] recently refined a previous bound of Lovász [59] to give
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∣∣∣∣R (u ↔ v) − 1
d(u) − 1

d(v)

∣∣∣∣ ⩽ trel + 2
dmin

(
1

d(u) + 1
d(v)

)
, (1)

for any non-bipartite graph G and u, v ∈ V (G), where d(v) is the degree of the vertex v and
dmin = minv∈V d(v) is the minimum degree. For the HRG with parameter 1

2 < α < 1, with
high probability, trel ⩾ n2α−1/(log n)1+o(1) [47] and the average degree is constant - thus (1)
does not give a good bound.

Since their introduction in 2010 [52], hyperbolic random graphs have been studied by
various authors. Apart from the results already mentioned (power-law degree distribution,
short graph distances, strong clustering, giant component, spectral gap and diameter),
connectivity was investigated by Bode et al. [12]. Further results exist on the number
of k-cliques and the clique number [32], the existence of perfect matchings and Hamilton
cycles [29], the tree-width [9] and sub-tree counts [65]. Two models, commonly considered
closely related to the hyperbolic random graphs, are scale-free percolation [27] and geometric
inhomogeneous random graphs [14].

Few random processes on HRGs have been rigorously studied. Among the notable
exceptions is the work by Linker et al. [58] which studies the contact processes in the HRG
model, bootstrap percolation by Candellero and Fountoulakis [15] and Marshall et al. [63],
and, for geometric inhomogeneous random graphs, by Koch and Lengler [50]. Komjáthy and
Lodewijks [51] studied first passage percolation on scale free spatial network models.

To the best of our knowledge, the only work that explicitly studies random walks that
deals with (a more general model of) HRGs is the work by Cipriani and Salvi [19] on mixing
time of scale-free percolation. However, some aspects of simple random walks have been
analyzed on infinite versions of HRGs. Specifically, Heydenreich et al. study transience
and recurrence of random walks in the scale-free percolation model [39] (also known as
heterogeneous long-range percolation) which is a “lattice” version of the HRG model. For
similar investigations, but for more general graphs on Poisson point processes, see [36].
Additionally, the first author, Linker, and Mitsche [45] have studied a dynamic variant of the
HRG generated by stationary Brownian motions.

2 Preliminaries

In this section we introduce notation, define some objects and terms we will be working
with, and collect, for future reference, some known results concerning them. We adopt some
conventions in Section 2.1, we recall a large deviations bound in Section 2.2, then we formally
define the HRG model in Section 2.3, we discuss random walks in Section 2.4 and electrical
networks in Section 2.5.

2.1 Conventions
Throughout, we use standard notions and notation concerning the asymptotic behavior of
sequences. If (an)n∈N, (bn)n∈N are two sequences of real numbers, we write an = O(bn) to
denote that for some constant C > 0 and n0 ∈ N it holds that |an| ⩽ C|bn| for all n ⩾ n0.
Also, we write an = Ω(bn) if bn = O(an), and an = Θ(bn) if an = O(bn) and an = Ω(bn).

Unless stated otherwise, all asymptotics are as n → ∞ and all other parameters are
assumed fixed. Expressions given in terms of other variables that depend on n, for ex-
ample O(R), are still asymptotics with respect to n. As we are interested in asymptotics,
we only claim and prove inequalities for n sufficiently large. So, for simplicity, we always
assume n sufficiently large. For example, we may write n2 > 5n without requiring n > 5.
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30:6 Cover and Hitting Times of Hyperbolic Random Graphs

An event, more precisely a family of events parameterized by n ∈ N, is said to hold with
high probability (w.h.p.), if for every c > 0 the event holds with probability at least 1−O(n−c).

We shall follow standard notation, such as denoting the vertex and edge sets of G

by V (G) and E(G), respectively. We use dG(u, v) to denote the graph distance between two
vertices u, v ∈ V (G), let N(v) := {u ∈ V | dG(u, v) = 1} denote the neighbourhood of a
vertex, and let d(v) := |N(v)|.

2.2 Poisson Random Variables
We will be working with a Poissonized model, where the number of points within a given
region is Poisson-distributed. Thus, we will need some elementary results for Poisson random
variable. The first is a (Chernoff) large deviation bound.

▶ Lemma 4. Let P have a Poisson distribution with mean µ. The following holds
(i) P(P ⩽ 1

2 µ) ⩽ e− 1
8 µ.

(ii) If δ ⩾ e
3
2 , then P(P ⩾ δµ) ⩽ e− 1

2 δµ.

Several times, when bounding various expectations, we use the following crude but useful
bound on the raw moments of Poisson random variables.

▶ Lemma 5. Let X be a Poisson random variable with mean µ. Then, for any real κ ⩾ 1,
we have E(Xκ) ⩽ µκ ·

(
40 · min

{
κ

5µ , 1
})κ

.

2.3 The HRG model
We represent the hyperbolic plane (of constant Gaussian curvature −1), denoted H2, by points
in R2. Elements of H2 are referred to by the polar coordinates (r, θ) of their representation as
points in R2. The point with coordinates (0, 0) will be called the origin of H2 and denoted O.
When alluding to a point u ∈ H2 we denote its polar coordinates by (ru, θu). The hyperbolic
distance dH2(u, v) between two points u, v ∈ H2 is determined via the Hyperbolic Law of
Cosines as the unique solution of

cosh dH2(u, v) = cosh ru cosh rv − sinh ru sinh rv cos(θu − θv).

In particular, the hyperbolic distance between the origin and a point u ∈ H2 equals ru. For
a point p ∈ H2 the ball of radius ρ > 0 centered at p will be denoted Bp(ρ), i.e.,

Bp(ρ) := {q ∈ H2 | dH2(p, q) < ρ}.

We will work in the Poissonized version of the HRG model which we describe next. For
a positive integer n and positive constant ν we consider a Poisson point process on the
hyperbolic disk centered at the origin O and of radius R := 2 ln(n/ν). The intensity function
at polar coordinates (r, θ) for 0 ⩽ r < R and θ ∈ R equals

λ(r, θ) := νe
R
2 f(r, θ) = nf(r, θ) (2)

where f(r, θ) is the joint density function of independent random variables θ and r, with θ

chosen uniformly at random in [0, 2π) and r chosen according to the following density
function:

f(r) := α sinh(αr)
cosh(αR) − 1 · 1[0,R)(r) where 1[0,R)(·) is the indicator of [0, R).
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Figure 1 Instances of Gα,ν(n) for n = 100, ν ≈ 1.832, α = 0.6 (left) and α = 0.9 (right).

The parameter α > 0 controls the distribution: For α = 1, the distribution is uniform in H2,
for smaller values the vertices are distributed more towards the center of BO(R) and for
bigger values more towards the border. (See Figure 1 for an illustration of instances of Gα,ν(n)
for two distinct values of α.)

We shall need the following useful approximation to the density f(·).

▶ Lemma 6 ([33, Equation (3)]). f(r) = αe−α(R−r) · (1 + Θ(e−αR + e−2αr)) · 1[0,R)(r).

We denote the point set of the Poisson process by V and we identify elements of V with
the vertices of a graph whose edge set E is the collection of vertex pairs uv such that
dH2(u, v) < R. The probability space over graphs (V, E) thus generated is denoted by Gα,ν(n)
and referred to as the HRG. Note in particular that E|V | = n since∫

BO(R)
λ(r, θ) dθdr = νe

R
2

∫ ∞

0
f(r) dr = n.

The parameter ν controls the average degree of Gα,ν(n) which, for α > 1
2 , is (1+o(1)) 2α2ν

(α−1/2)2

(see [37, Theorem 2.3]).
The Hyperbolic Law of Cosines turns out to be complicated to work with when computing

distances in hyperbolic space. Instead, it is more convenient to consider the maximum
angle θR(ru, rv) that two points u, v ∈ BO(R) can form with the origin O and still be within
(hyperbolic) distance at most R provided u and v are at distance ru and rv from the origin,
respectively.
▶ Remark 7. Replacing in (7) the terms dH2(u, v) by R and θu − θv by θR(ru, rv), taking
partial derivatives on both sides with respect to ru and some basic arithmetic gives that
the mapping ru 7→ θR(ru, rv) is continuous and strictly decreasing in the interval [0, R).
Since θR(ru, rv) = θR(rv, ru), the same is true of the mapping rv 7→ θR(ru, rv). (See [48,
Remark 2.1] for additional details.)
The following estimate of θR(r, r′), due to Gugelmann, Panagiotou and Peter is very useful
and accurate (especially when R − (r + r′) goes to infinity with n).

▶ Lemma 8 ([37, Lemma 6]). If 0 ⩽ r ⩽ R and r + r′ ⩾ R, then θR(r, r′) = 2e
1
2 (R−r−r′)(1 +

Θ(eR−r−r′)).
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We will need estimates for measures of regions of the hyperbolic plane, and specifically
for the measure of balls. We denote by µ(S) the measure of a set S ⊆ H2, i.e., µ(S) :=∫

S
f(r, θ) drdθ. The following approximation of the measures of the ball of radius ρ centered

at the origin and the ball of radius R centered at p ∈ BO(R), both also due to Gugelmann
et al., will be used frequently in our analysis.

▶ Lemma 9 ([37, Lemma 7]). For α > 1
2 , p ∈ BO(R) and 0 ⩽ r ⩽ R we have

µ(BO(r)) = e−α(R−r)(1 + o(1)),

µ(Bp(R) ∩ BO(R)) = 2αe− 1
2 rp

π(α − 1
2 )

(
1 + O(e−(α− 1

2 )rp + e−rp)
)
.

Next, we state a result that is implicit in [11] (later refined in [30]) concerning the size
and the “geometric location” of the giant component of Gα,ν(n). First, observe that the set
of vertices of Gα,ν(n) that are inside BO( R

2 ) are within distance at most R of each other.
Hence, they form a clique and in particular belong to the same connected component. The
graph induced by the connected component of Gα,ν(n) to which the vertices in BO( R

2 ) belong
will be referred to as the center component of Gα,ν(n).

▶ Theorem 10 ([11, Theorem 1.4],[48, Theorem 1.1]). If 1
2 < α < 1, then a.a.s. the center

component of Gα,ν(n) has size Θ(n) and all other connected components of Gα,ν(n) are of
size polylogarithmic in n.

The previous result partly explains why we focus our attention on simple random walks
in the center component of Gα,ν(n). In the following remark we justify formally why we,
henceforth, consider both the giant and the center component as being the same component,
and consequently denote both of them by Cα,ν(n).
▶ Remark 11. Let Sn be the event that the giant (the largest component) is equal to the center
component, then P(Sn) = 1 − e−Ω(n) by [11]. It follows immediately that all of our results
holding a.a.s. for the center component also hold for the giant component. For statements of
the form E(X(C)), where X(G) is a function of a graph satisfying 1 ⩽ X(G) ⩽ |V (G)|κ for
some fixed κ > 0, for example (non-trivial) cover/hitting times, the results also carry over.
That is, if C′ is the giant of the HRG then E(X(C′)) = (1 + o(1))E(X(C)). To see this, since
E(|V (G)|κ) = O(nκ) by Lemma 5, we have the following by Cauchy–Schwartz,

E(X(C′)) = E(X(C′)1Sn
)+

√
E|V (C′)|2κ · P(Sc

n) ⩽ E(X(C))+nκe−Ω(n) = (1+o(1))E(X(C)).

This also holds with the roles of C′ and C reversed, giving the result.
The condition α > 1

2 guarantees that Gα,ν(n) has constant average degree depending
on α and ν only [37, Theorem 2.3]. If on the contrary α ⩽ 1

2 , then the average degree
grows with n. If α > 1, the largest component of Gα,ν(n) is sublinear in n [11, Theorem 1.4].
For α = 1 whether the largest component is of size linear in n depends on ν [11, Theorem 1.5].
Hence, the parameter range where 1

2 < α < 1 is where HRGs are always sparse, exhibit
power law degree distribution with exponent between 2 and 3 and the giant component
is, a.a.s., unique and of linear size. All these are characteristics ascribed to so called “social”
or “complex networks” which HRGs purport to model. Our main motivation is to contribute
to understand processes that take place in complex networks, many of which, as already
discussed in the introduction, either involve or are related to simple random walks on such
networks. Thus, we restrict our study exclusively to the case where 1

2 < α < 1, but in order
to avoid excessive repetition, we omit this condition from the statements we establish.

The last known property of HRGs that we recall is that, w.h.p. the center component
has a linear in n number of edges.
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▶ Lemma 12 ([47, Lemma 15]). For 1
2 < α < 1, w.h.p. |E(Cα,ν(n))| is O(n).

To conclude this section we point out that everything we do throughout this paper can be
easily adapted to the case where H2 has Gaussian curvature −η2 instead of −1 and all stated
results hold provided α is replaced by α/η everywhere.

2.4 Random Walks
The simple random walk (Xt)t⩾0 on a graph G = (V, E) is a discrete time random process
on V which at each time moves to a neighbour of the current vertex u ∈ V uniformly with
probability 1/d(u). We use P (·) := PG (·) to denote the law of the random walk on a
graph G (as opposed to P for the random graph). For a probability distribution µ on V we
let PG

µ ( · ) := PG( · | X0 ∼ µ ) be the conditional probability of the walk on G started from
a vertex sampled from µ. In the case where the walk starts from a single vertex u ∈ V we
write u instead of µ, for example EG

u ( · ) := EG( · | X0 = u ). We shall drop the superscript G

when the graph is clear from the context. We now define the cover time tcov(G) of G by

tcov(G) := max
u∈V

EG
u ( τcov ) , where τcov := inf

{
t ⩾ 0 :

t⋃
i=0

{Xi} = V (G)
}

.

Similarly, for u, v ∈ V we let Eu( τv ), where τv := inf{t ⩾ 0 | Xt = v}, be the hitting time
of v from u. We shall use π to denote the stationary distribution of a single random walk on
a connected graph G, given by π(v) := d(v)

2|E| for v ∈ V . Let

thit(G) := max
u,v∈V

EG
u ( τv ) , and t⊙(G) :=

∑
u,v∈V (G)

EG
u ( τv ) π(u)π(v),

denote the maximum hitting time and the target time, respectively. We define each of these
times to be 0 if G is either the empty graph or consists of just a single vertex. The target
time t⊙(G), also given by EG

π ( τπ ), is the expected time for a random walk to travel between
two vertices sampled independently from the stationary distribution [56, Section 10.2]. We
will consider the random walk on the center component C := Cα,ν(n) of the HRG and so each
of the expected stopping times tcov(C), thit(C) and t⊙(C) will in fact be random variables. We
shall also refer to Eu( τv ) + Ev( τu ) as the commute time between the vertices u, v.

2.5 Electrical Networks & Effective Resistance
An electrical network, N := (G, C), is a graph G and an assignment of conductances
C : E(G) → R+ to the edges of G. For an undirected graph G we define E⃗(G) :=
{x⃗y | xy ∈ E(G)} as the set of all possible oriented edges for which there is an edge in G.
For some S, T ⊆ V (G), a flow from S to T (or (S, T )-flow, for short) on N is a function
f : E⃗(G) → R satisfying f(x⃗y) = −f(y⃗x) for every xy ∈ E(G) as well as Kirchoff’s node law
for every vertex apart from those that belong to S and T , i.e.∑

u∈N(v)

f(u⃗v) = 0 for each v ∈ V \ (S ∪ T ).

A flow from S to T is called a unit flow if, in addition, its strength is 1, that is,∑
s∈S

∑
u∈N(s)

f(s⃗u) = 1.
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We say that the (S, T )-flow is balanced if∑
u∈N(s)

f(s⃗u) =
∑

u∈N(s′)

f(s⃗′u) and
∑

u∈N(t)

f(u⃗t) =
∑

u∈N(t′)

f(u⃗t′) for all s, s′ ∈ S and t, t′ ∈ T .

When S = {s} and T = {t} we write (s, t)-flow instead of ({s}, {t})-flow. Note that (s, t)-
flows are always balanced. Given two flows f and g on N := (G, C), we say that g can be
concatenated to f if f + g is a flow on N and for every oriented edge e⃗ ∈ E⃗ either f(e⃗) and
g(e⃗) are both 0, or they have opposite signs, so (f(e⃗) + g(e⃗))2 ⩽ (f(e⃗))2 + (g(e⃗))2.

For the network N := (G, C) and a flow f on N define the energy dissipated by f ,
denoted E(f), by

E(f) :=
∑

e∈E⃗(G)

f(e)2

2C(e) , (3)

For future reference, we state the following easily verified fact:
▷ Claim 13. Let N := (G, C) be an electrical network and S, M, T ⊆ V (G). If f and g are
balanced (S, M) and (M, T ) flows on N , respectively, and g can be concatenated to f , then
f + g is a balanced (S, T )-flow on N and E(f + g) ⩽ E(f) + E(g). Moreover, if f and g are
unit flows, so is f + g.

For S, T ⊆ V (G), the effective resistance between S and T , denoted RC (S ↔ T ), is

RC (S ↔ T ) := inf {E(f) | f is a unit flow from S to T} . (4)

The set of conductances C defines a reversible Markov chain [60, Chapter 2]. In this
paper we shall fix C(e) = 1 for all e ∈ E(G) as this corresponds to a simple random walk. In
this case, we write RG (S ↔ T ) (or R (S ↔ T ) if the graph is clear) instead of RC (S ↔ T ).
The following is well known.
▶ Proposition 14 ([56, Corollary 10.8]). The effective resistances form a metric space on any
graph, in particular they satisfy the triangle inequality.
Choosing a single shortest path P between any two vertices s, t (if one exists) in a network
(with C(e) = 1 for each e ∈ E) and routing a unit flow down the edges of P we obtain,
straight from the definition (4) of R (s ↔ t), the following basic but useful result.
▶ Lemma 15 ([16, Lemma 3.2]). For any graph G and s, t ∈ V (G), we have R (s ↔ t) ⩽
dG(s, t).

Another very useful tool is Rayleigh’s monotonicity law (RML).
▶ Theorem 16 (Rayleigh’s Monotonicity Law [56, Theorem 9.12]). Let {C(e)}e∈E and
{C ′(e)}e∈E be sets of conductances on the edges of the same graph G = (V, E). If C(e) ⩾ C ′(e)
for all e ∈ E, then

RC (S ↔ T ) ⩽ RC′ (S ↔ T ) for all S, T ⊆ V .

The Kirchhoff index K(G) of a graph G is the sum of resistances in the graph, that is

K(G) =
∑

u,v∈V (G)

R (u ↔ v) .

The Kirchhoff index has applications in mathematical chemistry, see [66] and citing papers.
The following result allows us to relate hitting times to effective resistance.

▶ Lemma 17 ([56, Proposition 10.6]). For any graph G and any pair of vertices u, v ∈ V (G)
we have

Eu( τv ) + Ev( τu ) = 2|E(G)| · R (u ↔ v) . (Commute time identity)
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3 Overview of the Proofs of the Main Results

Owing to space we give a brief (heavily abridged, non-rigorous) overview of the ideas used in
the proofs of the main theorems from Section 1.1. Proofs of all claims can be found in the
full version of this paper [49].

3.1 Theorems 1 & 2: Average Effective Resistance & Target Time
To control the resistance R (s ↔ t) between two vertices s and t of the center compon-
ent Cα,ν(n) we bound the energy dissipated by a carefully designed (s, t)-flow fs,t associated
to a tiling of the hyperbolic plane on which we overlay a forest-like structure. We shall first
describe the tiling, then the flow, before explaining how to bound the resistance from this
flow.

Tiling

We define a set of tiles {Ti,j}i,j⩾0 of the hyperbolic plane H2 centered around the origin O.
This tiling is spherical in nature (see Figure 2) and, roughly speaking, tile Ti,j is i tiles
from the origin (we say it is at level i) and it is the jth tile, at level i, when going clockwise
from a fixed ray emanating from O, at 0 degrees “north”. A region of H2 between two rays
emanating from the origin O will be called a sector, and refer to the angle of the sector as
the (smallest) angle between the two rays.

There will be a distinguished collection of tiles, called root tiles {T0,j}j∈N0 , corresponding
to the elements of the equipartition of BO( R

2 ) into N0 = Θ(1) sectors, hence each sector has
angle θ0 = 2π/N0. We then define three sequences Ni, θi and hi, for i ∈ N where Ni := 2iN0,
θi := 2π/Ni, and (very roughly speaking) h0 = R/2 and hi ≈ R/2 + i · ln 2. The rest of the
tiling is specified by setting Ti,j to be the region at distance between hi−1 and hi from O

that lies in the smallest sector between rays at angles θi · j and θi · (j + 1). Thus each sector
has central angle θi and there is a total of Ni = 2Ni−1 sectors for a given i, see Figure 2.

We say that Ti,j is the parent tile of both Ti+1,2j and Ti+1,2j+1 and refer to the latter
two tiles as children of tile Ti,j (root tiles are assumed to be their own parent). For a tile Ti,j

we refer to the tiles of height i′ ⩽ i that intersect a ray from O that passes though Ti,j as
the ancestors of Ti,j . A tile T will be said to be a descendant of another tile T ′ if the latter
is an ancestor of the former. Given a tile Ti,j let {T 0

i,j , T 1
i,j} be the “natural” equipartition

of Ti,j into two tiles along a ray from O though the center of Ti,j . We refer to T 0
i,j , T 1

i,j as
the half-tiles of Ti,j and say T 0

i,j is the twin of T 1
i,j , and vice versa. Given a tile T we call

H the parent half-tile of T if it is a half-tile of the parent of T and a line segment from the
origin to any point in the interior of T intersects H.

Recall that two points at distance at most R are connected by an edge of Gα,ν(n). The
sequences Ni, θi and hi are chosen in such a way so that the tiling satisfies the following two
properties.

(i) Two points in a given tile are within distance at most R of each other.
(ii) Any point in a tile is within distance at most R from any point in its parent half-tile.

These two properties allow us too describe a flow based on how it moves between blocks,
rather than getting bogged down with specific vertices.

Comparison with a Tiling Due To Fountoulakis and Müller [30]

In this article we work in the so called Gans model [34] or native model [52] of hyperbolic
space, in contrast to [30] where the Poincaré half-plane model is used. Although the two
tilings are approximately equal, ours is a partition of R2 instead of the half-plane, i.e., each
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O

R

ρ

t

s

Figure 2 (a) Partial illustration of a tiling of BO(R) (not at scale). (b) Depiction of flow between
vertices s and t with no common ancestor tile. Coloured regions contain vertices through which flow
from s to t is routed. Flow is pushed radially towards the origin O from a yellow shaded tile to its
parent half-tile. Flow is pushed in an angular direction from dark to light yellow shaded half-tiles.
The direction of flow is reversed in green shaded region.

tiling partitions the set used to represent hyperbolic space. Since both representations are
alternative models of H2, both tilings can be cast in one or the other. Doing so, one gets that
the similarity of both tilings increases the further towards infinity their tiles are, i.e., further
from the origin in the Gans model and closer to the half-plane boundary in the Poincaré
half-plane model. For points close to the origin in the former or far from the boundary in
the latter representation, both tilings differ significantly, although this is irrelevant for the
analyses performed either here or in [30, 64]. However, working with our tiling avoids having
to perform, as in [30], a coupling between the HRG and a point process in the half-plane
and also avoids some of the approximations incurred by working with the idealized model
of Müller and Staps [64]. We believe this explains why we can guarantee that most of our
results hold with probability 1 − O(n−c) for all c > 0 instead of the same probability but
just for some c > 0.

Definition of the Flow

We now sketch the construction of our unit (s, t)-flow, between two distinct vertices s and t of
Gα,ν(n). The energy dissipated by this flow yields bounds on the effective resistance between
s and t.

The flow fs,t is built up as a sum of five separate flows, that is

fs,t := fs + f t
s + fs,t + fs

t + ft. (5)
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The rough idea is to find the tile T that is a common ancestor of s and t at furthest distance
from O and create flows to this tile from s, and from this tile to t. If s and t have no
common ancestor then the flows meet up in the center BO( R

2 ) (which is a clique), with the
centre essentially taking the place of T . The first term fs in (5) spreads flow from s evenly
across the half-tile it is contained in, likewise ft collects flow from vertices in the half-tile
containing t and sends it to t. The term f t

s moves flow towards the centre by first moving flow
from the current half-tile to its twin, then from the current (full) tile to its parent half-tile,
and repeating like this until reaching the half-tile of the common ancestor (or a root half-tile
in the center BO( R

2 )). The term f t
s does the same in reverse, taking flow out from the center

to t, see the yellow and green parts of Figure 2 for an illustration. Finally the term fs,t

moves the flow from the half-tile in the common ancestor in the ray that intersects s to its
twin (or across root tiles), this flow is zero if s and t lie in a ray from O.

The main ideas of this construction are that it spreads the flow over as evenly as possible
over the vertices in each tile. Its modular construction also makes it easy to analyse,
in particular when bounding the energy dissipated. One can show that if each half-tile
encountered in the above sketched construction of fs,t is non-empty, then fs,t indeed gives a
valid (s, t)-flow. Moreover, since this flow is balanced and the parts can be concatenated, we
have

E(fs,t) ⩽ E(fs) + E(f t
s) + E(fs,t) + E(fs

t ) + E(ft).

Validity and Energy of the Flow

At this juncture we turn our attention to determining conditions under which fs,t exists
(i.e., every tile contains a vertex), and more importantly is a good flow in the sense that
it dissipates a small amount of energy. Clearly, the larger the number of vertices in each
half-tile, the smaller the energy dissipated by the flow.

We say that a half-tile H is sparse if the number of vertices it contains is fewer than half
the ones expected, i.e., if |V ∩ H| < 1

2E|V ∩ H|. We say that a tile T is faulty if either one of
its two associated half-tiles is sparse. For C > 0 a large constant to be determined, let

ρ := R −
ln(C R

ν )
1 − α

. (6)

Using standard arguments concerning Poisson point processes we argue that,

w.h.p., none of the tiles T contained in BO(ρ) are faulty. (7)

We say that a tile T is robust if none of its ancestors (including itself) is faulty. Thus, (7)
implies that w.h.p. every tile T contained in BO(ρ) is robust. The condition T ⊆ BO(ρ)
cannot be relaxed significantly, so we will have to settle for a weaker statement. For C ′ > 0,
let

ρ′ := R −
ln( 2C′

ν )
1 − α

. (8)

Thus some points in BO(ρ′) are only a constant distance from the boundary. We show that

a tile contained in BO(ρ′) has at least a constant probability of being robust. (9)

We finally establish the following:

if s and t belong to robust tiles then fs,t is a unit (s, t)-flow and E(fs,t) = O(1). (10)
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Bounding Average Resistance and Target Time

Together, (9) and (10) show that a constant fraction of pairs of points in BO(ρ′) have
bounded resistance between them. We are yet far from done, as a significant fraction of
the vertices of the giant component of G := Gα,ν(n) fall outside the ball BO(ρ′). For any
vertex w ∈ V (G) let Υ(w) be the smallest sector containing w whose closure contains vertices
in V (G) ∩ (BO(ρ′) \ BO(ρ′ − ln 2)) both clockwise and anti-clockwise of w that reside in
robust tiles. We then prove the following.

Let w be a vertex in the giant and w′ ∈ V (G) ∩ BO(ρ′) be a robust vertex which
is closest (in graph distance) to w. Then, d(w, w′) ⩽ 1 + |V (G) ∩ Υ(w)|.

(11)

By the triangle inequality (as R (· ↔ ·) is a metric), and (11) and (10), for any s, t in the
giant

R (s ↔ t) ⩽ |V (G) ∩ Υ(s)| + |V (G) ∩ Υ(t)| + O(1). (12)

Armed with (12) we can now bound the resistance between s and t by bounding the number
of vertices in the smallest sectors containing s and t defined by rays through robust vertices.
We prove some further (more technical) results in the spirit of (9) that give improved bounds
on the probability of a vertex being robust as a function of its location. Using these bounds,
together with some elaborate arguments discussed in the full version of this article [49], for a
vertex w ∈ V (G) \ BO(ρ) we can bounds the tails of |V (G) ∩ Υ(w)| by a stretched exponential
function. That is, roughly speaking, we can show that there exists constants κ1, κ2 > 0 such
that for any w ∈ V (G) \ BO(ρ) and p ∈ N \ {0},

P (|V (G) ∩ Υ(w)| ⩾ κ1 · 2p) ⩽ exp
(

− 2κ2·p)
. (13)

Applying the Campbell-Mecke formula [55, Theorem 4.4], a powerful tool from point process
theory expressing expectations of functions of point processes as integrals of their mean
measure, with (13) we show that E(

∑
w∈V (G)\BO(ρ) |V (G) ∩ Υ(w)|κ) = O(n) for any fixed

real κ ⩾ 1. Taking κ = 1 now gives Theorem 1. With some additional effort and a bound on
the raw moments of degrees in the HRG we can also prove Theorem 2 using the commute
time identity and Hölders inequality.

3.2 Theorem 3: Max Hitting and Cover Times
Due to the well known bound Ex[τy] ⩽ d(x, y) · 2|E|, we obtain thit = O(n log n) since
a.a.s. the diameter is Θ(log n) and there are Θ(n) many edges. A bound of O(n log2 n) on
the cover time then follows from Matthews bound.

The lower bounds are significantly more demanding and the basic Matthews lower bound
gives a bound on the cover time that is a polynomial factor off the upper bound. We establish
the following result which is implicit in [46]:

w.h.p. there are nΩ(1) maximal dangling paths of length at least Ω(ln n) in Cα,ν(n), (14)

and since the resistance between any pair of endpoints of the paths in (14) is Ω(log n), we
deduce that the commute time is Ω(n log n). A refinement of Matthews bound due to Kahn,
Kim, Lovász and Vu [42, Theorem 1.3] then gives the desired bound on the cover time from
which the claimed lower bound on the hitting time immediately follows.
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4 Concluding remarks

In this paper we determined the expected order of the maximum hitting time, cover time,
target time and effective resistance between two uniform vertices, with the first two results
also holding a.a.s. (w.r.t. the HRG). Our main finding to take away is that (in expectation)
there are order log n gaps between each of the quantities. This indicates that most vertices in
the giant are well-connected to the center of the graph, but a significant proportion are not.

We restricted our study to the giant component of the graph in the regime 1
2 < α < 1,

although this is arguably the most interesting regime it would still be interesting to determine
the aforementioned quantities on the other smaller components or when α /∈ ( 1

2 , 1). Another
problem we leave open is to discover the leading constants hidden behind our asymptotic
notation, if the expression for the clustering coefficient of the HRG [31] is anything to go by
these constants may have very rich and complex expressions as functions of α and ν. An
interesting problem is to determine the order of meeting time, that is, the expected time it
takes two (lazy) random walks to occupy the same vertex when started from the worst case
start vertices [43]. Finally, the mixing time of a (lazy) random walk on the giant HRG is
known up to polylogarithmic factors by [47]. Closing this gap is of great importance, but it
may well be quite challenging.
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Abstract
We introduce data structures for solving robust regression through stochastic gradient descent
(SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling.
Although SGD is widely used for large scale machine learning, it is well-known for possibly experien-
cing slow convergence rates due to the high variance from uniform sampling. On the other hand,
importance sampling can significantly decrease the variance but is usually difficult to implement
because computing the sampling probabilities requires additional passes over the data, in which case
standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that
approximately samples T gradients of dimension d from nearly the optimal importance sampling
distribution for a robust regression problem over n rows. Thus our algorithm effectively runs T steps
of SGD with importance sampling while using sublinear space and just making a single pass over the
data. Our techniques also extend to performing importance sampling for second-order optimization.
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1 Introduction

Given a matrix A ∈ Rn×d with rows a1, . . . , an ∈ Rd and a measurement/label vector b ∈ Rn,
we consider the standard regression problem

min
x∈Rd
L(x) :=

n∑
i=1

M(⟨ai, x⟩ − bi),

where M : R→ R≥0 is a function, called a measure function, that satisfies M(x) = M(−x)
and is non-decreasing in |x|. An M-estimator is a solution to this minimization problem
and for appropriate choices of M , can combine the low variance of L2 regression with the
robustness of L1 regression against outliers.

The Huber norm, for example, is defined using the measure function H(x) = x2

2τ for
|x| ≤ τ and H(x) = |x| − τ

2 for |x| > τ , where τ is a threshold that governs the interpolation
between L2 loss for small |x| and L1 loss for large |x|. Indeed, it can often be more reasonable
to have robust treatment of large residuals due to outliers or errors and Gaussian treatment of
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small residuals [12]. Thus the Huber norm is especially popular and “recommended for almost
all situations” [39], because it is the “most robust” [13] due to “the useful computational and
statistical properties implied by the convexity and smoothness” [9] of its measure function,
which is differentiable at all points.

Since the measure function H for the Huber norm and more generally, the measure function
M for many common measure functions is convex, we can consider the standard convex
finite-sum form optimization problem min

x∈Rd
F (x) := 1

n

∑n
i=1 fi(x), where f1, . . . , fn : Rd → R

is a sequence of convex functions that commonly represent loss functions. Whereas gradient
descent (GD) performs the update rule xt+1 = xt − ηt∇F (xt) on the iterate xt at iterations
t = 1, 2, . . . , T , stochastic gradient descent (SGD) [32, 27, 26] picks it ∈ [n] in iteration t

with probability pit
and performs the update rule xt+1 = xt − ηt

npit
∇fit

(xt), where ∇fit
is

the gradient (or a subgradient) of fit
and ηt is some predetermined learning rate. Effectively,

training example it is sampled with probability pit
and the model parameters are updated

using the selected example. The SGD update rule only requires the computation of a single
gradient at each iteration and provides an unbiased estimator to the full gradient, compared to
GD, which evaluates n individual gradients in each iteration and is prohibitively expensive for
large n. However, since SGD is often performed with uniform sampling, so that the probability
pi,t

1 of choosing index i ∈ [n] at iteration t is pi,t = 1
n at all times, the variance introduced by

the randomness of sampling a specific vector function can be a bottleneck for the convergence
rate of this iterative process. Thus, the subject of variance reduction beyond uniform sampling
has been well-studied in recent years [33, 18, 11, 31, 40, 10, 25, 35, 19, 21, 34, 30].

A common technique to reduce variance is importance sampling, where the probabilities
pi,t are chosen so that vector functions with larger gradients are more likely to be sampled.
One such setting of importance sampling is to set the probability of sampling a gradient with
probability proportional to its L2 norm, so that

pi,t =
∥∇fi(xt)∥2∑

j∈[t] ∥∇fj(xt)∥2
.

Under these sampling probabilities, importance sampling gives variance

σ2
opt,t = 1

n2

( n∑
i=1
∥∇fi(xt)∥2

)2

− n2 · ∥∇F (xt)∥2
2

 ,

where we define the variance of a random vector v to be Var(v) := E
[
∥v∥2

2

]
− ∥E [v]∥2

2, and
we define σ2

opt,t to be the variance of the random vector v produced at time t by importance
sampling.

By comparison, the probabilities for uniform sampling pi,t = 1
n imply σ2

t = Var
(

1
npit,t

)
and thus the variance σ2

uni,t for uniform sampling satisfies

σ2
uni,t = 1

n2

(
n

n∑
i=1
∥∇fi(xt)∥2

2 − n2 · ∥∇F (xt)∥2
2

)
.

By the root mean square-arithmetic mean inequality, the variance of importance sampling
is always at most the variance of uniform sampling, and can be significantly less. Hence
σ2

opt,t ≤ σ2
uni,t, so that the variance at each step is reduced, possibly substantially, by

performing importance sampling instead of uniform sampling.

1 In contrast to pi,t, the term pit denotes the probability associated with the specific index it chosen at
time t.
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To see examples where uniform sampling an index performs significantly worse than
importance sampling, consider ∇fi(x) = ⟨ai, x⟩ · ai. Then for A = a1 ◦ . . . ◦ an:

▶ Example 1. When the non-zero entries of the input A are concentrated in a small number
of vectors ai, uniform sampling will frequently sample gradients that are small and make
little progress, whereas importance sampling will rarely do so. In an extreme case, the input
A can contain exactly one non-zero vector ai and importance sampling will always output
the full gradient, whereas uniform sampling will only find the non-zero row with probability
1
n , so that σ2

uni,t = n · σ2
opt,t.

▶ Example 2. It may be that all rows of A have large magnitude, but x is nearly orthogonal
to most of the rows of A, but is well-aligned with row ar. Then ⟨ai, x⟩ · ai is small in
magnitude for most i, but ⟨ar, x⟩ · ar is large so uniform sampling will often output small
gradients while importance sampling will output ⟨ar, x⟩ · ar with high probability, so that it
can be that σ2

uni,t = Ω(n) · σ2
opt,t.

▶ Example 3. More generally for a parameter ν ∈ [0, 1], if a ν-fraction of the n gradients
lengths are bounded by O (n) while the other 1 − ν fraction of the n gradient lengths
are bounded by poly(d) ≪ n, then the variance for uniform sampling satisfies σ2

uni,t =
O
(
νn2)+ poly(d) while the variance for importance sampling satisfies O

(
ν2n2)+ poly(d).

In fact, it follows from the Cauchy-Schwarz inequality that the importance sampling
probability distribution is the optimal distribution for variance reduction.

However, computing the probability distribution for importance sampling requires com-
puting the gradients in each round, which creates a “chicken and egg” problem because
computing the gradients is too expensive in the first place, or else it is feasible to just run
gradient descent. Unfortunately, computing the sampling probabilities in each iteration often
requires additional passes over the data, e.g., to compute the gradients in each step, which is
generally prohibitively expensive. This problem often prevents importance sampling from
being widely deployed.

In this paper, we overcome this problem by introducing efficient sketches for a wide range
of M -estimators that can enable importance sampling without additional passes over the
data. Using our sketches for various measure functions, we give a time-efficient algorithm
that provably approximates the optimal importance sampling distribution within a constant
factor. Thus we can surprisingly simulate T steps of SGD with (nearly) the optimal sampling
distribution, while only using a single pass over the data, which avoids the aforementioned
problem.

▶ Theorem 4. Given an input matrix A ∈ Rn×d whose rows arrive sequentially in a data
stream along with the corresponding labels of a measurement vector b ∈ Rd, and a measure
function M whose derivative is a continuous union of piecewise constant or linear functions,
there exists an algorithm that performs T steps of SGD with variance within a constant factor
of the optimal sampling distribution. The algorithm uses Õ

(
nd2 + Td2) pre-processing time

and Td2 polylog(Tnd) words of space.

For T iterations, both GD and optimal importance sampling SGD require T passes over
the data, while our algorithm only requires a single pass over the data and uses sublinear
space for nd≫ Td2. We remark that although the number T of iterations for SGD may be
large, a major advantage of GD and SGD with importance sampling is a significantly smaller
number of iterations than SGD with uniform sampling, e.g., as in Example 1 and Example 2,
so we should expect n≫ T . In particular from known results about the convergence of SGD,
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e.g., see Theorem 8, if the diameter of the search space and the gradient lengths ∥∇fi(xt)∥2
are both bounded by poly(d), then we should expect T ∝ poly(d) even for uniform sampling.
More generally, if νn of the gradients have lengths Θ(n), while the remaining gradients
have lengths poly(d)≪ n, then Example 3 and Theorem 8 show that the number of steps
necessary for convergence for uniform sampling satisfies T ∝ O

(
ν2n4)+ poly(d), while the

number of steps necessary for convergence for importance sampling satisfies T ∝ O
(
ν4n4).

Thus for νn = O
(
nC
)

for C < 1, i.e., a sublinear number of gradients have lengths that
exceed the input size, we have T = O

(
n4C

)
and hence for C < 1

4 , we have roughly T = o(n)
steps are necessary for convergence for SGD with importance sampling.

Finally, we show in the full version of the paper that our techniques can also be generalized
to perform importance sampling for second-order optimization.

1.1 Our Techniques
In addition to our main conceptual contribution that optimal convergence rate of importance
sampling for SGD can surprisingly be achieved (up to constant factors) without the “chicken
and egg” problem of separately computing the sampling probabilities, we present a number
of technical contributions that may be of independent interest. Our first observation is that
if we were only running a single step of importance sampling for SGD, then we just want a
subroutine that outputs a gradient G(⟨ai, x⟩ − bi, ai) with probability proportional to its
norm ∥G(⟨ai, x⟩ − bi, ai)∥2.

G-sampler. In particular, we need an algorithm that reads a matrix A = a1◦. . .◦an ∈ Rn×d

and a vector x ∈ Rd given after processing the matrix A, and outputs (a rough approximation
to) a gradient G(⟨ai, x⟩ − bi, ai) with probability roughly

∥G(⟨ai, x⟩ − bi, ai)∥2∑n
j=1 ∥G(⟨aj , x⟩ − bj , aj)∥2

.

We call such an algorithm a G-sampler and introduce such a single-pass, memory-efficient
sampler with the following guarantees:

▶ Theorem 5. Given an (α, ε)-smooth gradient G, there exists an algorithm Sampler
that outputs a noisy vector v such that ∥v − ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)|∥2 and
E [v] = ai(⟨ai, x⟩ − bi) is (1±O (ε)) ∥G(⟨ai,x⟩−bi,ai)∥2∑

j∈[n]
∥G(⟨aj ,x⟩−bj ,aj)∥2

+ 1
poly(n) . The algorithm uses

d2 poly
(
log(nT ), 1

α

)
update time per arriving row and Td2 poly

(
log(nT ), 1

α

)
total bits of

space.

We say a gradient G is (α, ε)-smooth if a vector u that satisfies ∥u − v∥2 ≤ α∥v∥2
implies that (1 − ε)∥G(v)∥2 ≤ ∥G(u)∥2 ≤ (1 + ε)∥G(v)∥2. In particular, the measure
functions discussed in Section 1.2 have gradients that are (O (ε) , ε)-smooth. For example,
the subgradient of the Huber estimator is ai · sgn(⟨ai, x⟩− bi) for |⟨ai, x⟩− bi| > τ , which may
change sign when ⟨ai, x⟩ − bi is close to zero, but its norm will remain the same. Moreover,
the form G(⟨ai, x⟩ − bi, ai) necessitates that the gradient can be computed strictly from
the two quantities ⟨ai, x⟩ − bi and ai. Thus Theorem 5 implies that our algorithm can also
compute a noisy vector v′ such that ∥v′ −G(⟨ai, x⟩ − bi, ai)∥2 ≤ ε∥G(⟨ai, x⟩ − bi, ai)∥2.

Observe that an instance of Sampler in Theorem 5 can be used to simulate a single step
of SGD with importance sampling and thus T independent instances of Sampler provide
an oracle for T steps of SGD with importance sampling. However, this naïve implementation
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does not suffice for our purposes because the overall runtime would be Õ
(
Tnd2) so it would

be more efficient to just run T iterations of GD. Nevertheless, our G-sampler is a crucial
subroutine towards our final algorithm and we briefly describe it here.

An alternative definition of G-sampler is given in [16]. In their setting, the goal is to
sample a coordinate i ∈ [n] of a frequency vector f with probability proportional to G(fi),
where G in their notation is a measure function rather than a gradient. However, because
the G-sampler of [16] is not a linear sketch, their approach cannot be easily generalized to
our setting where the sampling probability of each row ai is a function of ⟨ai, x⟩, but the
vector x arrives after the stream is already processed.

Furthermore, because the loss function f may not be scale-invariant, then we should also
not expect its gradient to be scale invariant at any location x ∈ Rd, i.e., ∇f(Cx) ̸= Cp ·∇f(x)
for any constants p, C > 0. Hence, our subroutine Sampler cannot use the standard Lp

sampler framework used in [20, 2, 15, 22], which generally rescales each row of ai by the
inverse of a uniform or exponential random variable. A somewhat less common design
for Lp samplers is a level set and subsampling approach [24, 17], due to their suboptimal
dependencies on the accuracy parameter ε. Fortunately, because we require ε = O (1) to
achieve a constant factor approximation, we can use the level set and subsampling paradigm
as a starting point for our algorithm. Because the algorithms of [24, 17] only sample entries
of a vector implicitly defined from a data stream, our G-sampler construction must (1)
sample rows of a matrix implicitly defined from a data stream and (2) permit updates to the
sampling probabilities implicitly defined through multiplication of each row ai with a vector
x that only arrives after the stream is processed.

G-sampler through level sets and subsampling. To illustrate our method and simplify
presentation here, we consider L2 regression with gradient Aix := ⟨ai, x⟩ · ai, by folding in
the measurement vector b into a column of A – our full algorithm in Section 2 handles both
sampling distributions defined with respect to the norm of a general gradient G in the form
of Theorem 5, as well as an independent measurement vector b.

We first partition the rows of A into separate geometrically growing classes based on their
L2 norms, so that for instance, class Ck contains the rows ai of A such that 2k ≤ ∥ai∥2 < 2k+1.
We build a separate data structure for each class Ck, which resembles the framework for Lp

norm estimation [14]. We would like to use the approximate contributions of the level sets
Γ1, . . . , ΓK , with K = O

(
log n

α

)
, toward the total mass F2(S) =

∑n
i=1 ∥Aix∥2, where a level

set Γj is informally the set of rows ai with ∥Aix∥2 ∈
[

F2(S)
(1+α)j−1 , F2(S)

(1+α)j

]
and the contribution

of a level set Γj is
∑

i∈Γj
∥Aix∥2. Then we could first sample a level set Γj from a class Ck

and then uniformly select a row ai among those in Γj . Indeed, we can run a generalized
version of the L2 heavy-hitter algorithm CountSketch [7] on the stream S to identify the
level set Γ1, since its rows will be heavy with respect to F2(S). However, the rows of the level
sets Γj for large j may not be detected by CountSketch. Thus, we create L = O (log n)
substreams S1, . . . , SL, so that substream Sℓ samples each row of A with probability 2−ℓ+1,
and run an instance of CountSketch on each substream Sℓ to detect the rows of each level
set and thus estimate the contribution of each level set.

Sampling from level sets with small contribution. However, there is still an issue – some
level sets have contribution that is too small to well-approximate with small variance. For
example, if there is a single row with contribution F2(S)

(1+α)j , then it might not survive the
subsampling at a level Sℓ that is used to detect it, in which case it will never be sampled.
Alternatively, if it is sampled, it will be rescaled by a large amount, so that its level set will
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be sampled with abnormally large probability. Instead of handling this large variance, we
instead add a number of dummy rows to each level set, to ensure that their contributions
are all “significant” and thus be well-approximated.

Now we have “good” approximations to the contributions of each level set within a
class, so we can first select a level set with probability proportional to the approximate
contributions of each level set and then uniformly sample a row from the level set. Of course,
we may uniformly sample a dummy row, in which case we say the algorithm fails to acquire
a sample. We show that the contribution added by the dummy rows is a constant fraction,
so this only happens with a constant probability. Thus with O

(
log 1

δ

)
constant number of

independent samples, we can boost the probability of successfully acquiring a sample to 1− δ

for any δ ∈ (0, 1]. We then set δ = 1
poly(n,T,d) .

Unbiased samples. Unfortunately, CountSketch using O
( 1

α2

)
buckets only guarantees

additive α L2(S) error to a particular row with constant probability. To achieve the standard
“for-all” guarantee across all n rows, an estimate for each row ai is then output by taking the
row with the median length across O (log n) independent instances. However, the median
row is no longer unbiased, which could potentially affect the convergence guarantees of SGD.
Instead, we use d separate instances of CountSketch, so that each instance handles a
separate coordinate of the vector. Thus if the goal is to output a noisy estimate to ai, we
have a separate CountSketch report each coordinate (ai)j , where j ∈ [d]. It can be shown
that the median of each estimated coordinate is an unbiased estimate to the true value (ai)j

of the coordinate because the probability mass function is symmetric about the true value
for each coordinate. Moreover, the error to a single coordinate (ai)j may be large relative to
the value of the coordinate in the case that (ai)j is not heavy with respect to {(ai)j}i∈[n].
However, we show that the “overall” error to all coordinates of ai is small relative to ∥ai∥2,
due to ai being a “heavy” row at the appropriate subsampling level.

Stochastic gradient descent with importance sampling. The main problem with the
proposed G-sampler is that it requires reading the entire matrix A but it cannot be repeatedly
used without incurring dependency issues. In particular, if a sampler at the first iteration of
SGD outputs a gradient Ai1x1 that is used to construct x2, then x2 is not independent of
the sampler and thus the same sampler should not be used to sample Ai2x2. This suggests
that if we want to perform T steps of SGD with importance sampling, then we would require
T separate data structures, which would require Tnd time to construct for dense matrices,
but then we might as well just perform full gradient descent!

Instead in Section 3, we partition the matrix A among multiple buckets and create a
sampler for each bucket. Now as long as each bucket should have been sampled a single
time, then we will have a fresh sampler with independent randomness for each time a new
bucket is sampled. If we perform T steps of SGD with importance sampling, then roughly T

buckets should suffice, but we cannot guarantee that each bucket is sampled a single time.
For example, if only a single Ai is non-zero, then whichever bucket Ai is assigned to will be
sampled every single time.

Now the challenge is identifying the submatrices Ai = a⊤
i ai that may be sampled multiple

times, since we do not know the values of the vectors x1, . . . , xT a priori. Fortunately, we
know that ∥Aixt∥2 can only be large if ai has high sensitivity, where we define the sensitivity

for a row ai in A to be the quantity maxx∈Rd
∥a⊤

i (⟨ai,x⟩)∥2∑n

j=1∥a⊤
j

(⟨aj ,x⟩)∥2

. Thus if a block is sampled

multiple times, then one of its rows must have large sensitivity.
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Hence, we would like to identify the buckets that contain any row with sensitivity at least
1
T and create T independent samplers for those buckets so that even if the same bucket is
sampled all T times, there will be a fresh sampler available. Crucially, the process of building
separate buckets for the rows with the large sensitivities can be identified in just a single
pass over the data.

We remark that since each row has sensitivity maxx∈Rd
∥a⊤

i (⟨ai,x⟩)∥2∑n

j=1∥a⊤
j

(⟨aj ,x⟩)∥2

, then it can be

shown that the sum of the sensitivities is O (d log n) by partitioning the rows into O (log n)
classes C1, C2, . . . of exponentially increasing norm, so that ai ∈ Cℓ if 2ℓ ≤ ∥ai∥2 < 2ℓ+1. We
then note that the sensitivity of each row ai ∈ Cℓ is upper bounded by maxx∈Rd

|⟨ai,x⟩|∑
aj ∈Cℓ

|⟨aj ,x⟩|
.

However, this latter quantity is an L1 sensitivity, whose sum is known to be bounded by
O (d), e.g., [8]. Thus the sum of the sensitivities in each class is at most O (d) and so for a
matrix A whose entries are polynomially bounded by n, the sum of the sensitivities is at
most O (d log n).

Unfortunately, since the sensitivities sum to O (d log n), there can be up to Td rows with
sensitivity at least 1

T , so creating T independent samplers corresponding to each of these
rows would yield Ω(T 2d) samplers, which is a prohibitive amount of space. Instead, we
simply remove the rows with large sensitivities from the buckets and store them explicitly.
We then show this approach still avoids any sampler from being used multiple times across
the T iterations while also enabling the data structure to just use Õ (Td) samplers. Now
since we can explicitly consider the rows with sensitivities roughly at least 1

T , then we can
use Θ(T ) buckets in total to ensure that the remaining non-zero entries of A are partitioned
evenly across buckets that will only require Θ(log(Td)) independent samplers.

1.2 Applications
In this section, we discuss applications of our result to commonly used loss functions, such
as Lp loss or various M -estimators, e.g., [9, 8, 37, 29].

L1 and L2 regression. The Lp regression loss function is defined using fi(x) = |a⊤
i x− bi|p.

The case p = 2 corresponds to the standard least squares regression problem, while p = 1
corresponds to least absolute deviation regression, which is more robust to outliers than least
squares, but also less stable and with possibly multiple solutions. For p = 1, the subgradient
is ai · sgn(⟨ai, x⟩ − bi) while for p = 2, the subgradient is 2ai(⟨ai, x⟩ − bi).

Huber estimator. As previously discussed, Huber loss [13] is commonly used, e.g., [39, 9], to
achieve Gaussian properties for small residuals [12] and robust properties for large residuals
due to outliers or errors. The Huber estimator is also within a constant factor of other
M -estimators that utilize the advantage of the L1 loss function to minimize the impact
of large errors/outliers and that of the L2 loss function to be convex, such as the L1-L2
estimator and the Fair estimator [4]. Given a threshold τ > 0, the Huber loss H is defined
by H(x) = x2

2τ for |x| ≤ τ and H(x) = |x| − τ
2 for |x| > τ . Thus the subgradient for H is

ai

τ (⟨ai, x⟩ − bi) for |⟨ai, x⟩ − bi| ≤ τ and ai · sgn(⟨ai, x⟩ − bi) for |⟨ai, x⟩ − bi| > τ .

Ridge regression. It is often desirable for a solution x to be sparse. The natural approach
to encourage sparse solutions is to add a regularization λ∥x∥0 term to the loss function, for
some parameter λ > 0. However, since ∥x∥0 is not convex, ridge regression is often used as a
convex relaxation that encourage sparse solutions. The ridge regression loss function satisfies
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fi(x) = (a⊤
i x−bi)2 +λ ∥x∥2

2 for each i ∈ [n], so that λ regularizes the penalty term associated
with the squared magnitude of x. Higher values of λ push the optimal solution towards zero,
which leads to lower variance, as a particular coordinate has a smaller effect on the prediction.
The gradient for the ridge regression loss function satisfies ∇fi(x) = 2ai(⟨ai, x⟩ − bi) + 2λx.

Lasso. Another approach that encourages sparsity is using the L1 regularization instead of
the L2 regularization. Least absolute shrinkage and selection operator (Lasso) regression uses
the loss function fi(x) = (a⊤

i x− bi)2 + λ ∥x∥1. Whereas the penalty term associated for ridge
regression will drive down the Euclidean norm of x for larger λ, solutions with large L1 norm
are still possible if the mass of x is spread across a large number of coordinates. By contrast,
the penalty term associated for Lasso drives down the total magnitude of the coordinates
of x. Thus, in this sense, Lasso tends to drive coordinates to zero and encourages sparsity,
which does not usually happen for ridge regression. The subgradient for the Lasso regression
loss function satisfies ∇fi(x) = 2ai(⟨ai, x − bi) + 2λ sgn(x), where we abuse notation by
using sgn(x) to denote the coordinate-wise sign of the entries of x.

Group lasso. [38] proposed Group Lasso as a generalization to Lasso. Suppose the weights
in x can be grouped into m groups: x(1), . . . , x(m). We group the columns of A = a1 ◦ . . .◦an

so that A(i) is the set of columns that corresponds to the weights in x(i). The Group Lasso
function is defined as fi(x) = (a⊤

i x− bi)2 + λ
∑m

j=1
√

Gj∥x(j)∥2, where Gj represents the
number of weights in x(j). Note that Group Lasso becomes Lasso for m = n.

1.3 Preliminaries
For an integer n > 0, we use [n] to denote the set {1, 2, . . . , n}. We use boldfaced font
for variables that represent either vectors of matrices and plain font to denote variables
that represent scalars. We use the notation Õ (·) to suppress polylog factors, so that
f(T, n, d) = Õ (g(T, n, d)) implies that f(T, n, d) ≤ g(T, n, d) polylog(Tnd). Let A ∈ Rn×d

and B ∈ Rm×d. We use ◦ to denote vertical concatenation, so that A ◦B =
[
A
B

]
, and ⊗ to

denote outer product, so that the (i, j)-th entry of the matrix u ⊗ v ∈ Rm×n for u ∈ Rm

and v ∈ Rn is uivj . For a vector v ∈ Rn, we let ∥v∥p
p =

∑n
i=1 vp

i and ∥v∥∞ = maxi |vi|. For

a matrix A ∈ Rn×d, we denote the Frobenius norm of A by ∥A∥F =
√∑n

i=1
∑d

j=1 A2
i,j . We

also use ∥A∥p =
(∑n

i=1
∑d

j=1 |Ai,j |p
) 1

p . For a function f , we use ∇f to denote its gradient.

▶ Definition 6. A function f : Rd → R is convex if f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ for all
x, y ∈ Rd.

▶ Definition 7. A continuously differentiable function f : Rd → R is µ-smooth if

∥∇f(x)−∇f(y)∥2 ≤ µ ∥x− y∥2 ,

for all x, y ∈ Rd. Then it follows, e.g., by Lemma 3.4 in [6], that for every x, y ∈ Rd,

|f(y)− f(x)− ⟨∇f(x), y− x⟩| ≤ µ

2 ∥y− x∥2
2 .

Recall that SGD offers the following convergence guarantees for smooth convex functions:
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▶ Theorem 8 ([26, 23]). Let F be a µ-smooth convex function and xopt = argmin F (x). Let
σ2 be an upper bound for the variance of the unbiased estimator across all iterations and
xk = x1+...+xk

k . Let each step-size ηt be η ≤ 1
µ . Then for SGD with initial position x0, and

any value of k,

E [F (xk)− F (xopt)] ≤
1

2ηk
∥x0 − xopt∥2

2 + ησ2

2 .

This means that k = O
(

1
ε2

(
σ2 + µ ∥x0 − xopt∥2

2

)2
)

iterations suffice to obtain an ε-

approximate optimal value by setting η = 1√
k

.

2 G-Sampler Algorithm

In this section, we describe our G-sampler, which reads a matrix A = a1 ◦ . . .◦an ∈ Rn×d and
a vector x ∈ Rd given after processing the matrix A, and outputs a gradient G(⟨ai, x⟩−bi, ai)
among the n gradients {G(⟨a1, x⟩ − b1, a1), . . . , G(⟨an, x⟩ − bn, an)} with probability roughly

∥G(⟨ai,x⟩−bi,ai)∥2∑n

j=1
∥G(⟨aj ,x⟩−bj ,aj)∥2

. However, it is not possible to exactly return G(⟨ai, x⟩ − bi, ai) using

sublinear space; we instead return a vector v such that E [v] = G(⟨ai, x⟩ − bi, ai) and
∥v−G(⟨ai, x⟩ − bi, ai)∥ ≤ ε∥G(⟨ai, x⟩ − bi, ai)∥2. To achieve our G-sampler, we first require
a generalization of the standard L2-heavy hitters algorithm CountSketch [7], which we
describe in Section 2.1. We then describe our G-sampler in full in Section 2.2.

2.1 Heavy-Hitters
Before describing our generalization of CountSketch, we first require the following FG es-
timation algorithm that generalizes both well-known frequency moment estimation algorithm
of [1, 36] and symmetric norm estimation algorithm of [3] by leveraging the linear sketches
used in those data structures to support “post-processing” with multiplication by any vector
x ∈ Rd.

▶ Theorem 9 ([3]). Given a constant ε > 0 and an (α, ε)-smooth gradient G, there exists a
one-pass streaming algorithm Estimator that takes updates to entries of a matrix A ∈ Rn×d,
as well as vectors x ∈ Rd and b ∈ Rd that arrive after the stream, and outputs a quantity F̂

such that (1− ε)
∑

i∈[n] ∥G(⟨ai, x⟩− bi, ai)∥2 ≤ F̂ ≤ (1 + ε)
∑

i∈[n] ∥G(⟨ai, x⟩− bi, ai)∥2. The
algorithm uses d2

α2 polylog(nT ) bits of space and succeeds with probability at least 1− 1
poly(n,T ) .

We now describe a straightforward generalization of the L2-heavy hitter algorithm
CountSketch so that (1) it can find the “heavy rows” of a matrix A = a1 ◦ . . . ◦ an ∈
Rn×d rather than the “heavy coordinates” of a vector and (2) it supports post-processing
multiplication by a vector x ∈ Rd that arrives only after A is processed. Let Ai = ai ⊗ ai ∈
Rd×d for all i ∈ [n]. We define tail(c) to be the n − c rows that do not include the
top c values of ∥Aix∥2. For a given ε > 0, we say a block Ai with i ∈ [n] is heavy if
∥Aix∥2 ≥ ε

∑
i∈tail(2/ε2) ∥Aix∥2.

The standard CountSketch algorithm for finding the L2-heavy hitters among the
coordinates of a vector v of dimension n works by hashing the universe [n] across O

( 1
ε2

)
buckets. Each coordinate i ∈ [n] is also given a random sign σi and so the algorithm
maintains the O

( 1
ε2

)
signed sums

∑
σixi across all the coordinates hashed to each bucket.

Then to estimate xi, the algorithm simply outputs σiCh(i), where Ch(i) represents the
counter corresponding to the bucket to which coordinate i hashes. It can be shown that
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E
[
σiCh(i)

]
= xi, where the expectation is taken over the random signs σ and the choices of

the hash functions. Similarly, the variance of the estimator can be bounded to show that
with constant probability, the estimator has additive error O (ε) ∥x∥2

2 to xi with constant
probability. Thus if xi > ε ∥x∥2

2, the algorithm will be able to identify coordinate i as a
heavy-hitter (in part by allowing some false positives). We give the algorithm in full in
Algorithm 1.

Algorithm 1 Output heavy vectors (⟨ai, x⟩)ai, where x can be a vector that arrives after A is
processed.

Input: Matrix A ∈ Rn×d, vector x ∈ Rd, accuracy parameter ε > 0, failure parameter
δ ∈ (0, 1].

Output: Noisy vectors a⊤
i aix with

∥∥a⊤
i aix

∥∥2
2 ≥ ε2∑

i∈tail(2/ε2)
∥∥a⊤

i aix
∥∥2

2.
1: b← Ω

( 1
δε4

)
2: Let T contain b buckets, each initialized to the all zeros Rd×d matrix.
3: Let σi ∈ {−1, +1} be drawn from 4-wise independent family for i ∈ [n].
4: Let h : [n]→ [b] be 2-wise independent
5: Process A:
6: Let A = a1 ◦ . . . ◦ an, where each ai ∈ Rd.
7: for each j = 1 to n do
8: Aj ← aj ⊗ aj

9: Add σjAj to the matrix in bucket h(j).
10: Let Mj be the matrix in bucket j of T for i ∈ [r], j ∈ [b].
11: Process x:
12: for j ∈ [b] do
13: vj ←Mjx
14: On query k ∈ [n], report σkvh(k).

Thus Algorithm 1 can be used to give the following guarantee by taking the median of
the norms of O (log(nT )) copies, as well as the vector that realizes the median.

▶ Lemma 10 ([22]). There exists an algorithm that uses O
(

d2

ε2 log2 n
)

space and outputs
a set S of indices so that with probability 1 − 1

poly(n,T ) , for all i ∈ [n], i ∈ S if ∥Aix∥2 ≥
ε
∑

j∈tail(2/ε2) ∥Ajx∥2 and i /∈ S if ∥Aix∥2 ≤
ε
2
∑

j∈tail(2/ε2) ∥Ajx∥2. The algorithm uses

O
(

d2

ε2 log2(nT )
)

space.

However, the vector that realizes the median of the norms may no longer be an unbiased
estimate to each heavy-hitter. Unfortunately, we shall require unbiased estimates to each
heavy-hitter, because we will use estimated heavy-hitters as unbiased gradients as part of
SGD with importance sampling. Thus we give an additional algorithm so that for each
i ∈ S reported by Algorithm 1, the algorithm outputs an unbiased estimate to the vector
(⟨ai, x⟩)ai with a “small” error, in terms of the total mass

∑
i∈tail(2/ε2) ∥Aix∥2 excluding the

largest 2
ε2 rows.

To that end, we instead run d separate instances of CountSketch to handle the d

separate coordinates of each heavy-hitter Aix. We show that the median of each estimated
coordinate is an unbiased estimate to the coordinate (Aix)j , since the probability mass
function is symmetric about the true value for each coordinate. Furthermore, we show that
although the error to a single coordinate (Aix)j may be large compared to |(Aix)j |, the
error is not large compared to

∑
i∈tail(2/ε2) ∥Aix∥2.
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▶ Lemma 11. There exists an algorithm that uses O
(

d2

ε2 log2(nT )
)

space and outputs a
vector yi for each index i ∈ [n] so that | ∥yi∥2 − ∥Aix∥2 | ≤ ε

∑
i∈tail(2/ε2) ∥Aix∥2 and

E [yi] = Aix with probability at least 1− 1
poly(n,T ) .

However if say, we want to identify the heavy gradients (⟨ai, x⟩ − bi)ai, then we create
separate data structures for the constant (in x) term biai and the linear term (ai ⊗ ai)x,
using the same buckets, hash functions, and random signs. For the constant term data
structure, we hash the scaled rows biai into O

( 1
ε2

)
buckets, so that each bucket contains a

vector that represents the signed sum of the (scaled) rows of A that hash to the bucket. For
the linear term data structure, we hash the outer products Ai := ai⊗ ai into O

( 1
ε2

)
buckets,

so that each bucket contains a vector that represents the signed sum of the matrices Ai that
hash to the bucket. Once the vector x arrives after A is processed, then we can multiply
each of the matrices stored by each bucket by x. Since the signed sum is a linear sketch, this
procedure is equivalent to originally taking the signed sums of the vectors Aix. Similarly, by
linearity, we can then take any linear combination of the two data structures to identify the
heavy gradients (⟨ai, x⟩ − bi)ai.

2.2 G-Sampler Algorithm
In this section, we first describe our G-sampler algorithm, where we sample a gradient
G(⟨ai, x⟩ − bi, ai) with probability proportional to ∥G(⟨ai, x⟩ − bi, ai)∥2. Given an accuracy
parameter ε > 0, let α be a constant, parametrized by ε, so that (1− ε)FG(v) ≤ FG(u) ≤
(1 + ε)FG(v), for any u with ∥u−v∥2 ≤ α∥v∥2. As our data structure will be a linear sketch,
we focus on the case where we fold the measurement vector b into a column of A, so that we
want to output a gradient Aix := (ai ⊗ ai)x.

Our algorithm first partitions the rows of A into classes, based on their L2 norm. For
example, if all entries of A are integers, then we define class Ck := {ai : 2k−1 ≤ ∥ai∥2 < 2k}.
We create a separate data structure for each class. We will use the FG estimation algorithm
on each class to first sample a particular class. It then remains to sample a particular vector
(ai ⊗ ai)x from a class.

Depending on the vector x, the vectors (ai⊗ai)x in a certain class Ck can have drastically
different L2 norm. We define level set Γj as the vectors that satisfy (1+ε)j−1 ≤ ∥(ai⊗ai)x∥2 <

(1 + ε)j . If we could estimate |Γj |, then we could estimate the contribution of each level set
Γj toward the overall mass

∑
i∈Ck

∥(ai ⊗ ai)x∥2, so we can then sample a specific level set
Γj from the class Ck. To that end, we create L = O (log n) substreams, S1, . . . , SL, so that
we sample each row with probability 1

2ℓ−1 in substream Sℓ.
The point is that if the contribution of level set Γj is “significant”, then there exists a

specific substream Sℓ in which the vectors of Γj will be likely detected by the heavy-hitter
algorithm we introduced in Section 2.1, if they are sampled by Sℓ. We can then use these
vectors that are output by the heavy-hitter algorithm to estimate the contribution of level
set Γj . However, if the contribution of level set Γj is not significant, then there may not
be any vectors of Γj that survive the sampling in substream Sℓ. Thus we add a number of
“dummy rows” to each level set to insist that all level sets are significant, so that we can
estimate their contributions.

We then sample a level set Γj with probability proportional to its contribution and
uniformly select a (noisy) vector from the level set. If the selected vector is one of the original
rows of the matrix, then we output the noisy vector. Otherwise, we say the sampler has
failed. We show that the sampler only fails with constant probability, so it suffices to run
O
(
log 1

δ

)
independent instances to boost the probability of success to any arbitrary 1− δ.

The algorithm for selecting a level set Γj from a specific class Ck appears in Algorithm 2.
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We first show that the dummy rows only contribute at constant multiple of the mass
FG(S) =

∑n
i=1 ∥Aix∥2, where we assume for simplicity that all rows of A are in the same

class.

▶ Lemma 12. Let S be the input data stream with subsamples S1, . . . , SL. Let S̃ be the input
data stream with the additional dummy rows and corresponding subsamples S̃1, . . . , S̃L. Then
2FG(S) ≥ FG(S̃) ≥ FG(S).

We would now like to show that with high probability, each of the substreams have
exponentially smaller mass FG(Sj). However, this may not be true. Consider a single row
ai that contributes a constant fraction of FG(S). Then even for j = log n, the probability
that ai is sampled is roughly 1

n ≫
1

poly(n) . Instead, we note that CountSketch satisfies
the stronger tail guarantee in Lemma 11. Hence for each j ∈ [K], we define S

tail(t)
j to be

the frequency vector Sj with its t largest entries set to zero and we show an exponentially

decreasing upper bound on FG(S̃tail(t)
j ).

▶ Lemma 13. With high probability, we have that for all j ∈ [K], FG(S̃tail(t)
j ) ≤

FG(S)
2j log(nT ) for t = O

(
log n
α3

)
.

We also show that the estimated contribution of each level set (after incorporating the
dummy rows) is a (1 + α)-approximation of the true contribution.

▶ Lemma 14. With high probability, we have that for all j ∈ [K], (1− ε)FG(S̃j) ≤ F̃G(S̃j) ≤
(1 + ε)FG(S̃j).

Finally, we show that each row is sampled with the correct distribution and is an unbiased
estimate.

▶ Lemma 15. Suppose that 2k < ∥ai∥2 ≤ 2k+1 for all i ∈ [n]. Then the probability that
Algorithm 2 outputs a noisy vector v such that ∥v− ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)|∥2
with E [v] = ai(⟨ai, x⟩ − bi) is pv = (1±O (ε)) G(ai(⟨ai,x⟩−bi))

FG(S̃)
+ 1

poly(nT ) .

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

3 SGD Algorithm and Analysis

Before introducing our main SGD algorithm, we recall the following algorithm, that essentially
outputs noisy version of the rows with high “importance”. Although Sampler outputs a
(noisy) vector according to the desired probability distribution, we also require an algorithm
that automatically does this for indices i ∈ [n] that are likely to be sampled multiple
times across the T iterations. Equivalently, we require explicitly storing the rows with high
sensitivities.

▶ Theorem 16 ([5]). Given a constant ε > 0, there exists an algorithm Sens that returns
all indices i ∈ [n] such that supx

|ai(⟨ai,x⟩−bi)|∑n

j=1
|aj(⟨aj ,x⟩−bj)|

≥ 1
200T d for some x ∈ Rn, along with

the vector ai(⟨ai, x⟩ − bi). The algorithm requires a single pass over A = a1 ◦ . . . ◦ an, uses
Õ
(
nd2 + Td2) runtime and Õ

(
Td2) space, and succeeds with probability 1− 1

poly(n) .

The quantity supx
∥ai(⟨ai,x⟩−bi)∥2∑n

j=1
∥aj(⟨aj ,x⟩−bj)∥2

can be considered the sensitivity of row ai and can

be interpreted as a measure of “importance” of the row ai with respect to the other rows
of A.
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Algorithm 2 G-sampler for a single class of rows.

Input: Rows a1, . . . , an of a matrix A ∈ Rn×d with 2k ≤ ∥ai∥2 < 2k+1 for all i ∈ [n],
function G, accuracy parameter α for sampling parameter ε

Output: Noisy row v with the correct sampling distribution induced by G

1: γ uniformly at random from [1/2, 1], K ← O
(

log n
α

)
, L← O (log n)

2: for ℓ ∈ [L] do ▷Processing stage
3: Form a stream Sℓ by sampling each row with probability 2−ℓ+1

4: Run CountSketch(1)
ℓ with threshold O

(
α3

log n

)
and failure probability 1

poly(n,T ) by

creating a table A
(1)
ℓ with entries a⊤

j aj in Sℓ and a table B
(1)
ℓ with entries aj ▷Identify

heavy-hitters
5: Run CountSketch(2)

ℓ with threshold O
(

α3

log n

)
and failure probability 1

poly(n,T ) by

creating a table A
(2)
ℓ with entries a⊤

j aj in Sℓ and a table B
(2)
ℓ with entries aj and

separately considering coordinates after post-processing ▷Unbiased estimates of
heavy-hitters, see Lemma 11

6: for ℓ ∈ [L] do ▷Post-processing
7: Set C

(i)
ℓ = A

(i)
ℓ x + B

(i)
ℓ with post-multiplication by x for i ∈ {1, 2}

8: Query M̂ ∈ [M/2, 2M ], where M =
∑n

i=1 ∥G(⟨ai, x⟩ − bi, ai)∥2
9: for j ∈ [K] do

10: if j > log(1+α)
log2 n

α3 then
11: Add O

(
(1+α)jα3

log n

)
dummy rows that each contribute O

(
M̂

(1+α)jα2

)
to FG

12: Let H
(i)
ℓ be the heavy rows of C

(i)
ℓ for i ∈ {1, 2} from CountSketch(i)

ℓ

13: for j ∈ [K] do
14: Lj ← max

(
1, log α2(1+α)j

log n

)
15: Let Xj be the estimated heavy-hitters v from H

(2)
j that are reported by H

(1)
j with

G(v) in
[

8γM̂
(1+α)j+1 , 8γM̂

(1+α)j

)
16: if Lj = 1 then
17: F̃G(S̃j)←

∑
v∈Xj

8γM̂
(1+α)j+1

18: else if Lj > 1 and |Xj | > 1
α2 then

19: F̃G(S̃j)←
∑

v∈Xj

8γM̂
(1+α)j+1 · 2Lj

20: else
21: F̃G(S̃j)← 0
22: Sample j ∈ [K] with probability F̃G(S̃j)∑

F̃G(S̃j)

23: Sample v from Xj with probability 1
Xj

24: if v is a dummy row then
25: return ⊥
26: else
27: return v

We now proceed to describe our main SGD algorithm. For the finite-sum optimization
problem min

x∈Rd
F (x) := 1

n

∑n
i=1 G(⟨ai, x⟩ − bi, ai), where each G is a piecewise function of a

polynomial with degree at most 1, recall that we could simply use an instance of Sampler
as an oracle for SGD with importance sampling. However, naïvely running T SGD steps
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requires T independent instances, which uses Tnd runtime by Theorem 5. Thus, as our main
theoretical contribution, we use a two level data structure by first implicitly partitioning
the rows of matrix A = a1 ◦ . . . ◦ an into β := Θ(T ) buckets B1, . . . , Bβ and creating an
instance of Estimator and Sampler for each bucket. The idea is that for a given query
xt in SGD iteration t ∈ [T ], we first query xt to each of the Estimator data structures to
estimate

∑
i∈Bj

G(⟨ai, x⟩ − bi, ai) for each j ∈ [β]. We then sample index j ∈ [β] among the

buckets B1, . . . , Bβ with probability roughly
∑

i∈Bj
G(⟨ai,x⟩−bi,ai)∑n

i=1
G(⟨ai,x⟩−bi,ai)

. Once we have sampled
index j, it would seem that querying the instance Sampler corresponding to Bj simulates
SGD, since Sampler now performs importance sampling on the rows in Bj , which gives the
correct overall probability distribution for each row i ∈ [n]. Moreover, Sampler has runtime
proportional to the sparsity of Bj , so the total runtime across the β instances of Sampler
is Õ (nd).

However, an issue arises when the same bucket Bj is sampled multiple times, as we
only create a single instance of Sampler for each bucket. We avoid this issue by explicitly
accounting for the buckets that are likely to be sampled multiple times. Namely, we show that
if G(⟨ai,xt⟩−bi,ai)∑n

j=1
G(⟨aj ,xt⟩−bj ,aj)

< O
( 1

T

)
for all t ∈ [T ] and i ∈ [n], then by Bernstein’s inequality,

the probability that no bucket Bj is sampled at least 2 log T times is at least 1 − 1
poly(T ) .

Thus we use Sens to separate all such rows ai whose sensitivities violate this property from
their respective buckets and explicitly track the SGD steps in which these rows are sampled.

The natural approach would be to create T samplers for each of the rows with sensitivity
at least Ω

( 1
T

)
, ensuring that each of these samplers has access to fresh randomness in each

of the T SGD steps. However since the sensitivities sum to O (d log n), there can be up to
O (Td log n) rows with sensitivity at least Ω

( 1
T

)
, so creating T samplers for each of these

rows could create up to Θ(T 2d log n) samplers, which is prohibitively expensive in T . Instead,
we simply keep each row with sensitivity at least Ω

( 1
T

)
explicitly, while not including them

in the bucket. Due to the monotonicity of sensitivities, the sensitivity of each row may only
decrease as the stream progresses. In the case that a row had sensitivity at least Ω

( 1
T

)
at

some point, but then no longer exceeds the threshold at some later point, then the row is
given as input to the sampler corresponding to the bucket to which the row hashes and then
the explicit storage of the row is deleted. This ensures we need only Õ (Td) samplers while
still avoiding any sampler from being used multiple times across the T SGD steps. We give
the algorithm in full in Algorithm 3.

The key property achieved by Algorithm 3 in partitioning the rows and removing the
rows that are likely to be sampled multiple times is that each of the Sampler instances are
queried at most once.

▶ Lemma 17. With probability at least 98
100 , each t ∈ [T ] uses a different instance of

Samplerj.

Theorem 4 then follows from Lemma 17 and the sampling distribution guaranteed by
each subroutine in Lemma 15. In particular, Lemma 17 crucially guarantees that each step
t ∈ [T ] of SGD will receive a vector with fresh independent randomness. Moreover, we have
that each (noisy) vector has small variance and is an unbiased estimate of a subgradient
sampled from nearly the optimal importance sampling probability distribution.

▶ Theorem 4. Given an input matrix A ∈ Rn×d whose rows arrive sequentially in a data
stream along with the corresponding labels of a measurement vector b ∈ Rd, and a measure
function M whose derivative is a continuous union of piecewise constant or linear functions,
there exists an algorithm that performs T steps of SGD with variance within a constant factor
of the optimal sampling distribution. The algorithm uses Õ

(
nd2 + Td2) pre-processing time

and Td2 polylog(Tnd) words of space.
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Algorithm 3 Approximate SGD with Importance Sampling.

Input: Matrix A = a1 ◦ . . . ◦ an ∈ Rn×d, parameter T for number of SGD steps.
Output: T gradient directions.

1: Preprocessing Stage:
2: β ← Θ(T ) with a sufficiently large constant in the Θ.
3: Let h : [n]→ [β] be a uniformly random hash function.
4: Let Bj be the matrix formed by the rows ai of A with h(i) = j, for each j ∈ [β].
5: Create Θ(log(Td)) instances Estimatorj and Samplerj for each Bj with j ∈ [β] with

ε = 1
2 .

6: Run Sens to find a set L0 of rows with sensitivity at least Ω
( 1

T

)
.

7: Gradient Descent Stage:
8: Randomly pick starting location x0
9: for t = 1 to T do

10: Let qi be the output of Estimatorj on query xt−1 for each i ∈ [β].
11: Sample j ∈ [β] with probability pj = qj∑

i∈[β]
qi

.

12: if there exists i ∈ L0 with h(i) = j then
13: Use Estimatorj , L0, and Samplerj to sample gradient wt = ∇̂fit

(xt)
14: else
15: Use fresh Samplerj to sample gradient wt = ∇̂fit

(xt)
16: p̂i,t ←

∥wt∥2
2∑

j∈[β]
qj

17: xt+1 ← xt − ηt

np̂i,t

·wt

Proof. Consider Algorithm 3. By Lemma 17, each time t ∈ [T ] uses a fresh instance of
Samplerj , so that independent randomness is used. A possible concern is that each instance
Estimatorj is not using fresh randomness, but we observe that the Estimator procedures
are only used in sampling a bucket j ∈ [β]; otherwise the sampling uses fresh randomness
whereas the sampling is built into each instance of Samplerj . By Theorem 5, each index i is
sampled with probability within a factor 2 of the importance sampling probability distribution.
By Theorem 9, we have that p̂i,t is within a factor 4 of the probability pi,t induced by optimal
importance sampling SGD. Note that wt = ̂G(⟨ai, xt⟩ − bi, ai) is an unbiased estimator of
G(⟨ai, xt⟩ − bi, ai) and G(wt) is a 2-approximation to G(xt) by Theorem 5. Hence, the
variance at each time t ∈ [T ] of Algorithm 3 is within a constant factor of the variance
σ2 = (

∑n
i=1 G(⟨ai, xt⟩ − bi, ai))

2−
∑n

i=1 G(⟨ai, xt⟩− bi, ai)2 of optimal importance sampling
SGD.

By Theorem 5, Theorem 9, and Theorem 16, the preprocessing time is d2 polylog(nT ) for
ε = O (1) and β = Θ(T ), but partitioning the non-zero entries of A across the β buckets and
the space used by the algorithm is Õ

(
Td2). Once the gradient descent stage of Algorithm 3

begins, it takes Td2 polylog(n) time in each step t ∈ [T ] to query the β = Θ(T ) instances of
Sampler and Estimator, for total time Td2 polylog(n). ◀

Finally, we derandomize our algorithm in Appendix B with an extra logarithmic factor in
the space complexity by using the following formulation of Nisan’s pseudorandom generator:

▶ Theorem 18 (Nisan’s Pseudorandom Generator). [28] Let A be an algorithm that uses
S = Ω(log n) space and R random bits. Then there exists a pseudorandom generator for A
that succeeds with high probability and runs in O (S log R) bits.
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A Missing Proofs from Section 2

Proof of Lemma 11. Given A ∈ Rn×d, let Ai = a⊤
i ai for all i ∈ [n]. For a fixed coordinate

k ∈ [d], we define a vector v(k) ∈ Rn so that for each i ∈ [n], the i-th coordinate of v(k) is
the k-th coordinate of Aix ∈ Rd.

Suppose we run a separate CountSketch instance on v(k). For a fixed index i ∈ [n],
let h(i) be the bucket of T to which v

(k)
i hashes. For each j ∈ [n], let Ij be the indicator

variable for whether v
(k)
j also hashes to bucket h(i), so that Ij = 1 if h(i) = h(j) and Ij = 0

if h(i) ̸= h(j). Similarly for each j ∈ [n], let sj be a random sign assigned to j, so that the
estimate for v

(k)
i by a single row of CountSketch is∑

j∈[n]

sisjIjv
(k)
j = v

(k)
i +

∑
j:h(j)=h(i)

rjv
(k)
j ,

where rj = sisj satisfies rj = 1 with probability 1
2 and rj = −1 with probability 1

2 . Thus if
yi is the estimate for v

(k)
i , then for any real number u, we have that

Pr
[
yi = v

(k)
i + u

]
= Pr

[
yi = v

(k)
i − u

]
,

so that the probability mass function of yi is symmetric about v
(k)
i . Thus given ℓ independent

instances of CountSketch with estimates y
(k,1)
i , . . . , y

(k,ℓ)
i for v

(k)
i and any real numbers

u(1), . . . , u(ℓ),

Pr
[
y

(k,1)
i = v

(k)
i + u(1), . . . , y

(k,ℓ)
i = v

(k)
i + u(ℓ)

]
= Pr

[
y

(k,1)
i = v

(k)
i − u(1), . . . , y

(k,ℓ)
i = v

(k)
i − u(ℓ)

]
.

Therefore, the joint probability mass function is symmetric about (v(k)
i , . . . , v

(k)
i ) and so the

median across the ℓ instances of CountSketch is an unbiased estimator to v
(k)
i . Finally,

we have due to the properties of CountSketch that if each hash function h maps to a
universe of size O

( 1
ε2

)
and ℓ = O (log(nT )), then with probability at least 1− 1

poly(T,n) , the

output estimate for v
(k)
i has additive error at most ε ·

(∑
j∈tail(2/ε2)(v

(k)
i )2

)1/2
.

Thus using each of the estimated outputs across all k ∈ [d], then for a fixed i ∈ [n], we
can output a vector yi such that E [yi] = Aix and with probability at least 1− 1

poly(T,n) ,

| ∥yi∥2 − ∥Aix∥2 | ≤ ε ·

 ∑
i∈tail(2/ε2)

∥Aix∥2
2

1/2

.
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For a fixed k ∈ [d], then our algorithm intends to hash the k-th coordinate of Aix ∈ Rd.
However, since x is only given after the data structure is already formed and in particular,
after Ai is given, then CountSketch must hash the k-th row of Ai entirely, thus storing
O
(

d
ε2 log2(nT )

)
bits for each coordinate k ∈ [d]. Hence across all k ∈ [d], the algorithm uses

the total space O
(

d2

ε2 log2(nT )
)

. ◀

Proof of Lemma 12. Since S̃ includes all the rows of S, then FG(S̃) ≥ FG(S). Since each
level j ∈ [K] acquires O

(
(1+α)jα3

log n

)
dummy rows that each contribute O

(
M̂

(1+α)jα2

)
to

FG in S̃, then each level of FG(S) contributes at most O
(

M̂ ·α
log n

)
more to FG(S̃). Because

K = O
(

log n
α

)
, then the total additional contribution by the dummy rows is at most O

(
M̂
)

.

Since M̂ ≤ 2FG(S), then it follows that for sufficiently small constant in the contribution of
each dummy row, we have FG(S̃)− FG(S) ≤ FG(S) and thus, FG(S̃) ≤ 2FG(S). ◀

Proof of Lemma 13. Observe that the number of rows that exceed M̂
2j is at most 2j+1. Thus

the expected number of rows that exceed M̂
2j sampled by Sj is at most 1

2 . Hence by Chernoff
bounds, the probability that the number of rows that exceed M̂

2j sampled by Sj is more than
t = O

(
log n
α3

)
is 1

poly(nT ) . ◀

Proof of Lemma 14. Suppose that for each j ∈ [K], level j consists of Nj rows and note
that Nj ≥ O

(
(1+α)jα3

log n

)
elements due to the dummy rows. Each element is sampled with

some probability pLj , where Lj = max
(

1, log α2(1+α)j

log n

)
and thus pLj (1 + α)j > 1 since

pLj
= 1

2Lj
. Let N̂j be the number of items sampled in S̃Lj

. We have E
[
2Lj · N̂j

]
= Nj

and the second moment is at most Nj · 2Lj ≤ α2

log n (Nj)2. Thus by Chernoff bounds with
O (log n)-wise independence, we have that with high probability,

(1−O (α))Nj ≤ 2Lj · N̂j ≤ (1 +O (α))Nj .

Each estimated row norm is a (1 + α)-approximation to the actual row norm due to
Lemma 13. Thus by Lemma 12, we have that FG(S̃j) ≤ 2FG(Sj) so that each of the N̂j rows
will be detected by the threshold of CountSketch with the tail guarantee, i.e., Lemma 11.
Moreover, we assume that a noisy row with (1 + α)-approximation to the row norm of the
original vector suffices to obtain a (1 + ε)-approximation to the contribution of the row.
Therefore, the result then follows in an ideal scenario where G(v) ∈

[
M̂
2j , 2M̂

2j

)
if and only if

the corresponding row ai satisfies G(ai) ∈
[

M̂
2j , 2M̂

2j

)
. Unfortunately, this may not be true

because G(ai) may lie near the boundary of the interval
[

M̂
2j , 2M̂

2j

)
while the estimate G(v)

has a value that does not lie within the interval. In this case, G(v) is used toward the
estimation of some other level set.

Hence, our algorithm randomizes the boundaries of the level sets
[

4γM̂
2j , 8γM̂

2j

)
by choosing

γ ∈ [1/2, 1) uniformly at random. Since the threshold of CountSketch is O
(

α3

log n

)
then the

probability that each row ai is misclassified over the choice of γ is at most O (ε). Moreover,
if ai is misclassified, then its contribution can only be classified into level set j − 1 or
j + 1, inducing an incorrect multiplicative factor of at most two. Hence, the error due
to the misclassification across all rows is at most O (ε) fraction of FG(Sj) in expectation.
By Markov’s inequality, this error is a most ε-fraction of FG(Sj) with probability at least
3/4. Then by taking the median across O (log(nT )) independent instances, we obtain high
probability of success. ◀
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Proof of Lemma 15. Conditioned on the correctness of each of the estimates F̃G(S̃j), which
occurs with high probability by Lemma 14, the probability that the algorithm selects
j ∈ [K] is F̃G(S̃j)∑

j∈[K]
F̃G(S̃j)

. Conditioned on the algorithm selecting j ∈ [K], then either the

algorithm will choose a dummy row, or it will choose a row uniformly at random from
the rows v ∈ Xj , where Xj is the set of heavy-hitters reported by Hj with L2 norm in[

8γM̂
(1+α)j+1 , 8γM̂

(1+α)j

)
. The latter event occurs with probability F̃G(Sj)

F̃G(S̃j)
. Due to the tail guarantee

of CountSketch in Lemma 11, we have that each heavy hitter v ∈ Xj corresponds to a
vector ai(⟨ai, x⟩ − bi) such that ∥v− ai(⟨ai, x⟩ − bi)∥2 ≤ ε∥ai(⟨ai, x⟩ − bi)|∥2. Moreover, by
Lemma 11, we have that E [v] = ai(⟨ai, x⟩ − bi). Hence the probability that vector v is
selected is (1±O(α))G(ai(⟨ai,x⟩−bi)

F̃G(Sj)
. ◀

Putting things together, we have the guarantees of Theorem 5 for our G-sampler.

▶ Theorem 5. Given an (α, ε)-smooth gradient G, there exists an algorithm Sampler
that outputs a noisy vector v such that ∥v − ai(⟨ai, x⟩ − bi)∥2 ≤ α∥ai(⟨ai, x⟩ − bi)|∥2 and
E [v] = ai(⟨ai, x⟩ − bi) is (1±O (ε)) ∥G(⟨ai,x⟩−bi,ai)∥2∑

j∈[n]
∥G(⟨aj ,x⟩−bj ,aj)∥2

+ 1
poly(n) . The algorithm uses

d2 poly
(
log(nT ), 1

α

)
update time per arriving row and Td2 poly

(
log(nT ), 1

α

)
total bits of

space.

Proof. We define a class Ck of rows as the subset of rows of the input matrix A such that
2k ≤ ∥ai∥2 < 2k+1. We first use the estimator algorithm in Theorem 9 to sample a class k of

rows with probability
∑

ai∈Ck
G(⟨ai,x⟩−bi,ai)∑

j∈[n]
G(⟨aj ,x⟩−bj ,aj)

. Once a class Ck is selected, then outputting a

row from Ck under the correct distribution follows from Lemma 15. The space complexity
follows from storing a d× d matrix in each of the O

(
log2(nT )

α3

)
buckets in CountSketch

for threshold O
(

α3

log(nT )

)
and high probability of success. ◀

B Missing Proofs from Section 3

Proof of Lemma 17. Let C > 0 be a sufficiently large constant. For any t ∈ [T ] and i ∈ [n],
G(ai(⟨ai, x⟩ − bi)) ≥ 1

CT

∑
j∈[n] G(aj(⟨aj , x⟩ − bj)) only if there exists a row in ai ◦ bi whose

sensitivity is at least 1
CT . However, we have explicitly stored all rows ai ◦ bi with sensitivity

Ω
( 1

T

)
and removed them from each G-sampler.

Thus, for all j ∈ [β] so that h(i) ̸= j for any index i ∈ [n] such that G(ai(⟨ai, x⟩ − bi)) ≤
1

CT

∑
k∈[n] G(ak(⟨ak, x⟩ − bk)), we have

∑
i:h(i)=j

G(ai(⟨ai, x⟩ − bi)) ≤
log(Td)
200T

∑
k∈[n]

G(ak(⟨ak, x⟩ − bk)),

with probability at least 1− 1
poly(T d) by Bernstein’s inequality and a union bound over j ∈ [β],

where β = Θ(T ) is sufficiently large. Intuitively, by excluding the hash indices containing
“heavy” matrices, the remaining hash indices contain only a small fraction of the mass with
high probability.

We analyze the probability that any bucket containing rows with sensitivity less than
O
( 1

T

)
are sampled more than Ω(T log(Td)) times, since we create O (T log(Td)) separate

G-samplers for each of these buckets. By a coupling argument and Chernoff bounds, the
probability that any j ∈ [β] with

∑
i:h(i)=j G(ai(⟨ai, x⟩−bi)) ≤ log(T d)

200T

∑
k∈[n] G(ak(⟨ak, x⟩−
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bk)) is sampled more than 200 log(Td) times is at most 1
poly(T d) for any t ∈ [T ], provided

there is no row with h(i) = j whose sensitivity is at least 1
CT . Thus, the probability that some

bucket j ∈ [β] is sampled more than 200 log(Td) times across T steps is at most 1
poly(T d) .

In summary, we would like to maintain T separate instances of G-samplers for the heavy
matrices and Θ(log(Td)) separate instances of G-samplers for each hash index that does not
contain a heavy matrix, but this creates a Ω(T 2) space dependency. Instead, we explicitly
store the heavy rows with sensitivity Ω

( 1
T

)
, removing them from the heavy matrices, and

manually perform the sampling, rather than rely on the G-sampler subroutine. There can be
at most O (Td log n) such rows, resulting in O

(
Td2 log n

)
overall space for storing these rows

explicitly. Since the resulting matrices are light by definition, we can maintain Θ(log(Td))
separate instances of G-samplers for each of the Θ(T ) buckets, which results in Õ

(
Td2)

space overall. With probability at least 98
100 , any hash index not containing a heavy matrix is

sampled only once, so each time t ∈ [T ] has access to a fresh G-sampler. ◀

Derandomization of the algorithm. To derandomize our algorithm, we first recall the
following formulation of Nisan’s pseudorandom generator.

▶ Theorem 19 (Nisan’s Pseudorandom Generator, [28]). Let A be an algorithm that uses
S = Ω(log n) space and R random bits. Then there exists a pseudorandom generator for A
that succeeds with high probability and runs in O (S log R) bits.

The goal of Nisan’s PRG is to fool a small space tester by generating a number of pseudoran-
dom bits in a read-once tape in place of a number of truly random bits. In the row-arrival
model, the updates to each row ai of A ∈ Rn×d arrive sequentially, so it suffices to use
a read-once input tape. Thus a tester that is only allowed to S space cannot distinguish
between the output of our algorithm using true randomness and pseudorandom bits gen-
erated by Nisan’s PRG. Since our algorithm uses S = Td2 polylog(Tnd) bits of space and
R = poly(n, T, d) bits of randomness, then it can be randomized by Nisan’s PRG while using
Td2 polylog(Tnd) total space.

APPROX/RANDOM 2022





Finding the KT Partition of a Weighted Graph in
Near-Linear Time
Simon Apers !

CNRS and IRIF, Paris, France

Paweł Gawrychowski !

Institute of Computer Science, University of Wrocław, Poland

Troy Lee !

Centre for Quantum Software and Information, University of Technology Sydney, Australia

Abstract

In a breakthrough work, Kawarabayashi and Thorup (J. ACM’19) gave a near-linear time de-
terministic algorithm to compute the weight of a minimum cut in a simple graph G = (V, E). A
key component of this algorithm is finding the (1 + ε)-KT partition of G, the coarsest partition
{P1, . . . , Pk} of V such that for every non-trivial (1 + ε)-near minimum cut with sides {S, S̄} it
holds that Pi is contained in either S or S̄, for i = 1, . . . , k. In this work we give a near-linear
time randomized algorithm to find the (1 + ε)-KT partition of a weighted graph. Our algorithm
is quite different from that of Kawarabayashi and Thorup and builds on Karger’s framework of
tree-respecting cuts (J. ACM’00).

We describe a number of applications of the algorithm. (i) The algorithm makes progress towards
a more efficient algorithm for constructing the polygon representation of the set of near-minimum
cuts in a graph. This is a generalization of the cactus representation, and was initially described
by Benczúr (FOCS’95). (ii) We improve the time complexity of a recent quantum algorithm for
minimum cut in a simple graph in the adjacency list model from Õ(n3/2) to Õ(

√
mn), when the

graph has n vertices and m edges. (iii) We describe a new type of randomized algorithm for minimum
cut in simple graphs with complexity O(m + n log6 n). For graphs that are not too sparse, this
matches the complexity of the current best O(m+n log2 n) algorithm which uses a different approach
based on random contractions.

The key technical contribution of our work is the following. Given a weighted graph G with m

edges and a spanning tree T of G, consider the graph H whose nodes are the edges of T , and where
there is an edge between two nodes of H iff the corresponding 2-respecting cut of T is a non-trivial
near-minimum cut of G. We give a O(m log4 n) time deterministic algorithm to compute a spanning
forest of H.
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1 Introduction

Given a weighted and undirected graph G with n vertices and m edges1, the minimum cut
problem is to find the minimum weight λ(G) of a set of edges whose removal disconnects
G. When G is unweighted, this is simply the minimum number of edges whose removal
disconnects G, also known as the edge connectivity of G. The minimum cut problem is a
fundamental problem in theoretical computer science whose study goes back to at least the
1960s when the first polynomial time algorithm computing edge connectivity was given by
Gomory and Hu [12]. In the current state-of-the-art, there are near-linear time randomized
algorithms for the minimum cut problem in weighted graphs [9, 15,21] and near-linear time
deterministic algorithms in the case of simple graphs2 [14,18]. Very recently, Li [19] has given
an almost-linear time (i.e. time O(m1+o(1))) deterministic algorithm for weighted graphs
as well.

The best known algorithms for weighted graphs all rely on a framework developed by
Karger [15] which, for an input graph G, relies on finding O(log n) spanning trees of G

such that with high probability one of these spanning trees will contain at most 2 edges
from a minimum cut of G. In this case the cut is said to 2-respect the tree. A key insight
of Karger is that, given a spanning tree T of G, the problem of finding a 2-respecting cut
of T that has minimum weight in G can be solved deterministically in near-linear time,
specifically time O(m log2 n). After standing for 20 years, the bound for this minimum-weight
2-respecting cut problem was recently improved by Gawrychowski, Mozes, and Weimann [9],
who gave a deterministic O(m log n) time algorithm, and independently by Mukhopadhyay
and Nanongkai [21] who gave a randomized algorithm with complexity O(m log n + n log4 n).

The best algorithms in the case of a simple graph G rely on a quite different approach,
pioneered by Kawarabayashi and Thorup [18]. This approach begins by finding the minimum
degree d of a vertex in G. Then the question becomes if there is a non-trivial cut, i.e. a cut
where both sides of the corresponding bipartition have cardinality at least 2, whose weight is
less than d. This problem is solved by finding what we call the (1 + ε)-KT partition of the
graph. Let Bnt

ε (G) be the set of all bipartitions {S, S̄} of the vertex set corresponding to
non-trivial cuts whose weight is at most (1 + ε)λ(G). The (1 + ε)-KT partition of G is the
coarsest partition {P1, . . . , Pk} of the vertex set such that for any {S, S̄} ∈ Bnt

ε (G) it holds
that Pi is contained in either S or S̄, for each i = 1, . . . , k. If one considers the multigraph
G′ formed from G by identifying vertices in the same set Pi, then G′ preserves all non-trivial
(1 + ε)-near minimum cuts of G. Kawarabayashi and Thorup further show that for any
ε < 1 the graph G′ only has Õ(n) edges. This bound crucially uses that the original graph is
simple. The edge connectivity of G is thus the minimum of d and the edge connectivity of
G′. One can use Gabow’s deterministic O(λm′ log n) edge connectivity algorithm [8] for a
multigraph with m′ edges and edge connectivity λ to check in time Õ(nd log n) = Õ(m) if
the edge connectivity of G′ is less than d and, if so, compute it. In the most technical part of
their work, Kawarabayashi and Thorup give a deterministic algorithm to find the (1 + ε)-KT
partition of a simple graph G in time Õ(m), giving an Õ(m) time deterministic algorithm
overall for edge connectivity. The key tool in their algorithm is the PageRank algorithm,
which they use for finding low conductance cuts in the graph.

1 Throughout this paper we will use n and m to denote the number of vertices and edges of the input
graph.

2 A simple graph is an unweighted graph with no self loops and at most one edge between any pair of
vertices.
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The KT partition has proven to be a very useful concept. Rubinstein, Schramm, and
Weinberg [23] also go through the (1+ε)-KT partition to give a near-optimal Õ(n) randomized
query algorithm determining the edge connectivity of a simple graph in the cut query model.
In the cut query model one can query a subset of the vertices S and receive in return the
number of edges with exactly one endpoint in S. En route to their result, [23] also improved
the bound on the number of inter-component edges in the (1 + ε)-KT partition of a simple
graph to O(n), for any ε < 1. In the case ε = 0 this was independently done by Lo, Schmidt,
and Thorup [20]. The KT partition approach is also used in the current best randomized
algorithm for edge connectivity, which runs in time O(min{m + n log2 n, m log n}) [10].3

1.1 Main result
In this work we give the first near-linear time randomized algorithm to find the (1 + ε)-KT
partition of a weighted graph, for 0 ≤ ε ≤ 1/16. An interesting aspect of our algorithm is
that it uses Karger’s 2-respecting cut framework to find the (1 + ε)-KT partition, thereby
combining the aforementioned major lines of work on the minimum cut problem.

We describe the result in more detail. Let G = (V, E, w) be a weighted graph, where E

is the set of edges and w : E → R+ assigns a positive weight to each edge. For a set S ⊆ V

let ∆G(S) be the set of all edges of G with exactly one endpoint in S. A cut of G is a set of
edges of the form ∆G(S) for some ∅ ≠ S ⊊ V . We call S and S̄ the shores of the cut. Let
w(∆G(S)) =

∑
e∈∆(S) w(e). We use λ(G) = min∅̸=S⊊V w(∆(S)) for the minimum weight of

a cut in G.
We will be interested in partitions of V and the partial order on partitions induced by

refinement. For two partitions X , Y of V we say that X ⪯ Y iff for every X ∈ X there
is a Y ∈ Y with X ⊆ Y . In this case we say X is a refinement of Y. The meet of two
partitions X and Y, denoted X ∧ Y, is the partition Z such that Z ⪯ X , Z ⪯ Y and for
any other partition W satisfying these two conditions W ⪯ Z. In other words, X ∧ Y is the
greatest lower bound on X and Y under ⪯. Explicitly, X ∧ Y is the partition consisting
of all non-empty pairwise intersections between sets from X and Y. For a set of partitions
D = {D1, . . . , DK} we write

∧
D = D1 ∧ · · · ∧ DK .

For our applications we need to consider not only minimum cuts, but also near-minimum
cuts. For ε ≥ 0, let Bε(G) = {{S, S̄} : w(∆G(S)) ≤ (1 + ε)λ(G)} be the set of all bipartitions
of V corresponding to (1 + ε)-near minimum cuts. Let Bnt

ε (G) ⊆ Bε(G) be the set of all the
non-trivial cuts in Bε(G). The (1 + ε)-KT partition of G is exactly

∧
Bnt

ε (G).
Both

∧
Bε(G) and

∧
Bnt

ε (G) are important sets for understanding the structure of (near)-
minimum cuts in a graph. Consider first

∧
B0(G), the meet of the set of all bipartitions

corresponding to minimum cuts. This set arises in the cactus decomposition of G [7], a
compact representation of all minimum cuts of G. A cactus is a connected multigraph where
every edge appears in exactly one cycle. The edge connectivity of a cactus is 2 and the
minimum cuts are obtained by removing any two edges from the same cycle. A cactus
decomposition of a graph G is a cactus H on O(n) vertices and a mapping ϕ : V (G) → V (H)
such that ∆G(ϕ−1(S)) is a mincut of G iff ∆H(S) is a mincut of H . The mapping ϕ does not
have to be injective, so multiple vertices of G can map to the same vertex of H . In this case,
however, the cactus decomposition property means that all vertices in ϕ−1({v}) must be on
the same side of every minimum cut of G, for every v ∈ V (H). Thus as v ranges over V (H)

3 The bound quoted in [10] is O(m + n log3 n) but the improvement to Karger’s algorithm by [9] reduces
this to O(m + n log2 n).
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the sets ϕ−1({v}) give the elements of
∧

B0(G) (note that ϕ−1({v}) can also be empty). A
cactus decomposition of a weighted graph can be constructed by a randomized algorithm in
near-linear time [16], thus this also gives a near-linear time randomized algorithm to compute∧

B0(G).
Lo, Schmidt, and Thorup [20] give a version of the cactus decomposition that only

represents the non-trivial minimum cuts. In fact, they give a deterministic O(n) time
algorithm that converts a standard cactus into one representing the non-trivial minimum
cuts. Combining this with the near-linear time algorithm to compute a cactus decomposition,
this gives a near-linear time randomized algorithm to compute

∧
Bnt

0 (G) as well.
The situation changes once we go to near-minimum cuts, which can no longer be rep-

resented by a cactus, but require the deformable polygon representation from [3–5]. This
construction is fairly intricate, and the best known randomized algorithm to construct a
deformable polygon representation of the (1+ε)-near mincuts of a graph builds on the Karger-
Stein algorithm and takes time O(n2(1+ε)) [3, Section 6.3]. A prerequisite to constructing a
deformable polygon representation is being able to compute

∧
Bε(G) as, analogously to the

case of a cactus, these sets will be the “atoms” that label regions of the polygons.
Our main result in this work is to give a randomized algorithm to compute

∧
Bε(G) and∧

Bnt
ε (G) in time O(m log5 n).

▶ Theorem 1. Let G = (V, E, w) be a graph with n vertices and m edges. For 0 ≤ ε ≤ 1/16
let Bε = {{S, S̄} : w(∆(S)) ≤ (1 + ε)λ(G)} and Bnt

ε ⊆ Bε be the subset of Bε containing only
non-trivial cuts. Both

∧
Bε and

∧
Bnt

ε can be computed with high probability by a randomized
algorithm with running time O(m log5 n).

In the rest of this paper, we focus on computing
∧

Bnt
ε . It is easy to construct

∧
Bε from∧

Bnt
ε deterministically in O(n) time (see full version [1]).

1.2 Applications
By building on our KT partition algorithm, we make progress on a number of problems.

1. The polygon representation is a compact representation of the set of near-minimum cuts
of a weighted graph, originally described by Benczúr [3, 4] and Benczúr-Goemans [5]. It
extends the cactus representation [7], which only works for the set of exact minimum
cuts, and has played a key role in recent breakthroughs on the traveling salesperson
problem [11,17]. For a general weighted graph the polygon representation has size O(n2),
and Benczúr has given a randomized algorithm to construct a polygon representation of
the (1 + ε)-near mincuts of a graph in time O(n2(1+ε)) [3, Section 6.3] by building on
the Karger-Stein algorithm. It is an open question whether we can construct a polygon
representation in time Õ(n2) for ε > 0. In his thesis [3, pg. 126], Benczúr says, “It already
seems hard to directly identify the system of atoms within the Õ(n2) time bound,” where
the system of atoms is defined analogously to the (1 + ε)-KT partition but for the set of
all (1 + ε)-near minimum cuts, not just the non-trivial ones. One can easily construct the
set of atoms from a (1 + ε)-KT partition, thus our KT partition algorithm gives a Õ(m)
time algorithm for this task as well, making progress on this open question.

2. The (1 + ε)-KT partition of a weighted graph is exactly what is needed to give an optimal
quantum algorithm for minimum cut: Apers and Lee [2] showed that the quantum query
and time complexity of minimum cut in the adjacency matrix model is Θ̃(n3/2√

τ) for
a weighted graph where the ratio of the largest to smallest edge weights is τ , with the
algorithm proceeding by finding a (1 + ε)-KT partition.
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In the case where the graph is instead represented as an adjacency list, they gave
an algorithm with query complexity Õ(

√
mnτ) but whose running time is larger at

Õ(
√

mnτ + n3/2). The bottleneck in the time complexity is the time taken to find a
(1 + ε)-KT partition of a weighted graph with Õ(n) edges. Using the near-linear time
randomized algorithm we give to find a (1 + ε)-KT partition here improves the time
complexity of this algorithm to Õ(

√
mnτ), matching the query complexity.

Both quantum algorithms also used the following observation [2, Lemma 2]: if in a
weighted graph G the ratio of the largest edge weight to the smallest is τ , then the total
weight of inter-component edges in a (1 + ε)-KT partition of G for ε < 1 is O(τn), which
can be tight.

3. The best randomized algorithm to compute the edge connectivity of a simple graph is
the 2-out contraction approach of Ghaffari, Nowicki, and Thorup [10], which has running
time O(min{m+n log2 n, m log n}). Using our algorithm to find a (1 + ε)-KT partition in
a weighted graph we can follow Karger’s 2-respecting tree approach to compute the edge
connectivity of a simple graph in time O(m + n log6 n), thus also achieving the optimal
bound on graphs that are not too sparse.

A detailed treatment of these applications is deferred to the full version [1]. Apart from these
examples, we are hopeful that our near-optimal randomized algorithm for finding the KT
partition of a weighted graph will find further applications.

2 KT partition algorithm

We now give a more detailed treatment of our algorithm to compute the KT partition
∧

Bnt
ε .

The first obstacle we face is that the number of near-minimum cuts in G can be Ω(n2), so
we cannot afford to consider all of them. An idea to get around this is to try the following:

1. Efficiently find a “small” subset B′ ⊆ Bnt
ε such that

∧
B′ =

∧
Bnt

ε . We call such a subset
a generating set.

A greedy argument shows that such a subset B′ exists of size at most n − 1. We initialize
B′ = {{S, S̄}} for some element {S, S̄} in Bnt

ε . We then iterate through the elements {T, T̄}
of Bnt

ε and add it to B′ iff
∧

B′ ∪ {T, T̄} ≠
∧

B′. Each bipartition added to B′ increases the
number of elements in

∧
B′ by at least 1. As this size can be at most n, and begins with

size 2 the total number of sets at termination is at most n − 1. This shows that a small
generating set exists, but there still remains the problem of finding such a generating set
efficiently.

Assuming we get past the first obstacle, there remains a second obstacle. The most
straightforward algorithm to compute the meet of k partitions of a set of size n takes time
Θ(kn log n), which is again too slow if k = Θ(n). Thus we will also need to

2. Exploit the structure of B′ to compute
∧

B′ efficiently.

Apers and Lee [2] give an approach to accomplish (1) and (2) following Karger’s framework
of tree respecting cuts. Karger shows that in near-linear time one can compute a set of
K ∈ O(log n) spanning trees T1, . . . , TK of G such that every (1 + ε)-near minimum cut of
G 2-respects at least one of these trees. Let Bi ⊆ Bnt

ε be the bipartitions corresponding to
non-trivial near-minimum cuts that 2-respect Ti. To compute

∧
Bnt

ε it suffices to compute
Ci =

∧
Bi for each i = 1, . . . , K and then compute

∧K
i=1 Ci. The latter can be done in time

O(n log2 n) by the aforementioned algorithm. This leaves the problem of computing
∧

Bi.
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A key observation from [2] gives a generating set B′
i for Bi of size O(n). It is constructed

as follows. First we add bipartitions to Bi that correspond to near-minimum cuts that
1-respect Ti. This is a set of size O(n), and Karger has shown that all near-minimum cuts
that 1-respect a tree can be found in time O(m).

Next, we focus on the cuts that strictly 2-respect Ti. There can be O(n2) such cuts. To
handle them one creates a graph H whose nodes are the edges of Ti and where there is an
edge between nodes e and f iff the 2-respecting cut of Ti defined by {e, f} is a near-minimum
cut in Bi. Let F be a spanning forest of H . We then add to B′

i the 2-respecting cuts indexed
by the edges in E(F ). The resulting set B′

i has size O(n) and it follows from [2, Lemma
29]that the resuling B′

i is a generating set for Bi.
Apers and Lee give a quantum algorithm to find a spanning forest of H with running time

Õ(n3/2). They then give a randomized algorithm to compute
∧

B′
i in time Õ(n). As our

main technical contribution, we give a deterministic algorithm to find a spanning forest of H

in time O(m log4 n). We also replace the randomization used in the algorithm to compute∧
B′

i with an appropriate data structure to give an Õ(n) deterministic algorithm to compute
the meet. The details of this last procedure are deferred to the full version [1].

3 Spanning tree of near-minimum 2-respecting cuts in near-linear time

By the preceding discussion, we reduced the problem of constructing the KT partition to
that of finding a spanning forest in a new graph H. This graph is derived from the original
graph G and a given spanning forest T of G. Here we describe a deterministic near-linear
time algorithm for this task, which is our main technical contribution.

Before describing the spanning forest algorithm, it is interesting to compare the problem
of finding a spanning forest of H with the original problem solved by Karger of finding a
minimum-weight 2-respecting cut of T . To find a spanning forest of H we potentially have
to find Ω(n) many (1 + ε)-near minimum cuts, which we accomplish with only an additional
logarithmic overhead in the running time. The first insight to how this might be possible
is to note that Karger’s original algorithm to find the minimum weight 2-respecting cut
actually does something stronger than needed. Let cost(e, f) be the weight of the 2-respecting
cut of T defined by {e, f}. For every edge e of T Karger’s algorithm attempts to find an
f∗ ∈ arg minf cost(e, f). It does not always succeed in this task, but if the candidate f ′

returned for edge e is not such a minimizer, then for f∗ ∈ arg minf cost(e, f) it must be the
case that the candidate g returned for f∗ satisfies cost(f∗, g) ≤ cost(e, f∗). In this way, the
algorithm still succeeds to find a minimum weight 2-respecting cut in the end.

In contrast, we give an algorithm that for every edge e of T actually finds

f∗ ∈ arg min
f

{cost(e, f) : {e, f} defines a non-trivial cut} .

We then show that this suffices to implement a round of Borůvka’s spanning forest algorithm
[22] on H in near-linear time. Borůvka’s spanning forest algorithm consists of log n rounds
and maintains the invariant of having a partition {S1, . . . , Sk} of the vertex set and a spanning
tree for each set Si. The algorithm terminates when there is no outgoing edge from any set
of the partition, at which point the collection of spanning trees for the sets of the partition is
a spanning forest of H. The sets of the partition are initialized to be individual nodes of H.

In each round of Borůvka’s algorithm the goal is to find an outgoing edge from each
set Si of the partition which is not already a connected component. Consider a node e of
H with e ∈ Si. We can find the best partner f for e and check if {e, f} indeed gives rise
to a non-trivial (1 + ε)-near minimum cut and so is an edge of H. The problem is that f



S. Apers, P. Gawrychowski, and T. Lee 32:7

could also be in Si in which case the edge {e, f} is not an outgoing edge of Si as desired.
To handle this, we maintain a data structure that allows us to find both the best partner f

for e, but also the best partner f ′ for e that lies in a different set of the partition from f .
We call this operation a categorical top two query. If there actually is an edge of H with
one endpoint e and the other endpoint outside of Si then either {e, f} or {e, f ′} will be such
an edge. Following the approach of [9] to the minimum-weight 2-respecting cut problem,
combined with an efficient data structure for handling categorical top two queries, we are
able to do this for all nodes e of H in near-linear time, which allows us to implement a round
of Borůvka’s algorithm in near-linear time.

3.1 Spanning tree of near-minimum 2-respecting cuts in near-linear time
We give a more precise description of the algorithm after settling on some notation. Let
G = (V, E, w) be a weighted undirected graph. We will assume throughout that G is
connected, and in particular that m ≥ n − 1, as the KT partition of a disconnected graph can
be easily determined from its connected components. Let T be a spanning tree of G. We will
choose an r ∈ V with degree 1 in T to be the root of T . We view T as a directed graph with
all edges directed away from r. With some abuse of notation, we will also use T to refer to
this directed version. If we remove any edge e ∈ E(T ) from T then T becomes disconnected
into two components. We use e↓ ⊆ V to denote the set of vertices in the component not
containing the root, and Te ⊆ E(T ) to denote the set of edges in the subtree rooted at the
head of e, i.e. the edges in the subgraph of T induced by e↓. We further use the shorthand
cost(e) = w(∆(e↓)) for the weight of the cut with shore e↓.

Two edges e, f ∈ E(T ) define a unique cut in G which we denote by cutT (e, f) (or
cut(e, f) if it is clear from the context which T we are referring to). The cut depends on the
relationship between e and f . If e ∈ Tf or f ∈ Te then we say that e and f are descendant
edges. Without loss of generality, say that f ∈ Te. Then the cut defined by e and f is
cut(e, f) = ∆(e↓ \f↓). If e and f are not descendant edges, then we say they are independent.
For independent edges we see that cut(e, f) = ∆(e↓ ∪ f↓). In both cases we use cost(e, f) to
denote the weight of the corresponding cut.

In a KT partition we are only interested in non-trivial cuts. We first state the following
simple claim that characterizes when cut(e, f) is trivial, the proof of which is in the full
version [1].

▶ Proposition 2. Let G = (V, E, w) be a connected graph with n vertices and let T be a
spanning tree of G with root r. For e, f ∈ E(T ) if cut(e, f) is trivial then
1. If e, f are independent then they must be the unique edges incident to the root.
2. If e, f are descendant then there is a vertex v ∈ V such that e is the edge incoming to v

and f is the unique edge outgoing from v, or vice versa.
By choosing a root r for T that has degree 1 we avoid the case of item 1 of Proposition 2.
Thus we only have to worry about trivial cuts when e, f are descendant.

With that out of the way, we now turn to our main theorem, which is the key routine in
our (1 + ε)-KT partition algorithm.

▶ Theorem 3. Let G = (V, E, w) be a connected graph with n vertices and m edges and let
T be a spanning tree of G. For a given parameter β, define the graph H, with V (H) = E(T )
and E(H) = {{e, f} ∈ E(T )(2) : cost(e, f) ≤ β and cut(e, f) non-trivial}. There is a
deterministic algorithm that given adjacency list access to G and T outputs a spanning forest
of H in O(m log4 n) time.
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We prove Theorem 3 by following Borůvka’s algorithm to find a spanning forest of H.
Throughout the algorithm we maintain a subgraph F of H that is a forest, initialized to
be the empty graph on vertex set V (H) = E(T ). At the end of the algorithm, F will be a
spanning forest of H . The algorithm proceeds in rounds. In each round, for every tree in the
forest, we find an edge connecting it to another tree in the forest, if such an edge exists. If
H has k connected components, then in each round the number of trees in F minus k goes
down by at least a factor of 2, and so the algorithm terminates in O(log n) rounds.

The main work is implementing a round of Borůvka’s algorithm. We will think of the
nodes of F as having colors, where nodes in the same tree of the forest have the same color,
and nodes in distinct trees have distinct colors. The goal of a single round is to find, for
each color c, a pair of edges e, f ∈ T such that c = color(e) ̸= color(f) and {e, f} ∈ E(H),
or detect that there is no such pair with these properties, in which case the nodes colored c

in F already form a connected component of H. As we need to refer to such pairs often we
make the following definition.

▶ Definition 4 (partner). Let T and H be as in Theorem 3. Given an assignment of colors
to the edges of T we say that f is a partner for e if {e, f} ∈ E(H) and color(e) ̸= color(f).

We will actually do something stronger than what is required to implement a round of
Borůvka’s algorithm, which we encapsulate in the following code header.

Algorithm 1 RoundEdges.

Input: Adjacency list access to G, a spanning tree T of G, a parameter β, and an assignment
of colors to each e ∈ E(T ).

Output: For every e ∈ E(T ) output a partner f ∈ E(T ), or report that no partner for e

exists.

The implementation of RoundEdges is our main technical contribution. Let us first see
how to use RoundEdges to find a spanning forest of H.

▶ Lemma 5. Let G, T and H be as in Theorem 3. There is a deterministic algorithm that
makes O(log n) calls to RoundEdges and in O(n log n) additional time outputs a spanning
forest of H.

Proof. We construct a spanning forest of H by maintaining a collection of trees F that
will be updated in rounds by Borůvka’s algorithm until it becomes a spanning forest. We
initialize F = (E(T ), ∅) and give all e ∈ E(T ) distinct colors. We maintain the invariants
that F is a forest and that nodes in the same tree have the same color and those in different
trees have distinct colors.

Consider a generic round where F contains q trees. We call RoundEdges with the current
color assignment. For every e which has one we obtain a partner f such that {e, f} ∈ E(H)
and color(e) ̸= color(f). For each color class c we select one e with color(e) = c which has a
returned partner (if it exists) and let X be the set of selected edges. We then find a maximal
subset of edges X ′ ⊆ X that do not create a cycle among the color classes by computing a
spanning forest of the graph whose supervertices are given by the color classes and edges
given by X. We add the edges in X ′ to E(F ). Finally we merge the color classes of the
connected components in F by appropriately updating the color assignments, and we pass
the updated forest and color assignments to the next round of the algorithm. Each of the
steps in a single round can be executed in O(n) time.
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We have that |X ′| ≥ (q − cc(H))/2 where cc(H) is the number of connected components
of H. Each edge from X ′ added to F decreases the number of trees in F by one. Thus
q − cc(H) decreases by at least a factor of 2 in each round and the algorithm terminates
after O(log n) rounds. The time spent outside of the calls to RoundEdges is O(n) for each of
the O(log n) rounds. This is O(n log n) overall. ◀

If a node e has a partner f , then {e, f} can either be a pair of descendant or independent
edges. To implement RoundEdges we will separately handle these cases, as described in the
next two subsections.

3.2 Descendant edges
We follow the approach from [9] originally designed to find a single pair {e, f} of descendant
edges that minimizes cost(e, f) over all e, f ∈ E(T ) in O(m log n) time. Their approach
actually does something stronger (as does Karger’s original algorithm): for every e ∈ E(T ) it
finds the best match in the subtree Te, i.e., it returns an edge f∗ ∈ arg min{cost(e, f) | f ∈ Te}.
In order to implement the descendant edge part of RoundEdges we have three additional
complications to handle:
1. The edge f∗ might have the same color as e.
2. The resulting cut(e, f∗) might be a trivial cut.
3. Edge e may have no partner in Te but still have a partner f such that e ∈ Tf . This

partnership may not be discovered when we are looking for partners of f if there is
another g ∈ Tf with cost(f, g) ≤ cost(e, f).

Item 1 can be easily solved by, in addition to finding f∗, also finding g∗ ∈
arg min{cost(e, f) | f ∈ E(Te), color(f) ̸= color(f∗)}. Phrasing things in this way, rather
than simply looking for the edge h with color different from e which minimizes cost(e, h),
helps to limit the dependence of the query on e and thus reduce the query time. If there is
an f ∈ Te with color(f) ̸= color(e) and cost(e, f) ≤ β then at least one of f∗, g∗ will satisfy
this too.

For item 2, we use the result of Proposition 2 that descendant edges that give rise to
trivial cuts have a very constrained structure. This allow us to avoid trivial cuts when looking
for a partner of e.

Item 3 is relatively subtle and does not arise in the minimum weight 2-respecting cut
problem. To explain the issue we have to first say something about the high level structure
of our implementation of RoundEdges. We will perform an Euler tour of T and, when the
tour visits edge e for the first time, we will look for a partner f for e in Te. The issue is the
following, which we explain in the context of the very first round of Borůvka’s algorithm
so we do not have to worry about nodes having different colors. Suppose that in the graph
H the only edge incident to node e is a node f with e ∈ Tf . Thus in the execution of
RoundEdges we want to find f as a partner of e. When the Euler tour is at e we will not
find any suitable partner for e, as there is none in Te. We would like to identify f as a
partner for e when the Euler tour visits f for the first time. However, if there is a g ∈ Tf

with cost(f, g) < cost(f, e) then the algorithm will return g as a partner of f rather than
e. To handle this we will actually make two passes over T . In the first pass, when we visit
edge e for the first time we look for a partner f in Te. In the second pass, we handle the
case where the partner of e might be an ancestor of e. To do this we need to de-activate
nodes. When the Euler tour visits f for the first time, we first find the lowest cost partner
for f in Tf . We then de-activate this node, and again find the best active partner for f in
Tf . Repeating this process, we will eventually find e if {e, f} is indeed an edge of H and e, f

have different colors.
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Now we turn to more specific implementation details. A key idea in [9] is that we can do
an Euler tour of T while maintaining a data structure such that when we first visit an edge
e we can easily look up cost(e, f) for any f ∈ Te. The way this is maintained can be best
understood by noting that for f ∈ Te:

cost(e, f) = w(∆(e↓ \ f↓))
= w(e↓ \ f↓, (e↓)c) + w(e↓ \ f↓, f↓)
= cost(e) + cost(f) − 2w(f↓, (e↓)c)︸ ︷︷ ︸

scoree(f)

, (1)

where for convenience we defined scoree(f) = cost(f) − 2w(f↓, (e↓)c), where the superscript
c denotes taking the complement.

We begin the algorithm by computing cost(e) for every e ∈ E(T ), which can be done in
O(m) time [15]. We then do an Euler of T while maintaining a data structure such that,
when we are considering e ∈ E(T ), for every f ∈ Te the value of the data structure at
location f is cost(e, f). For f ̸∈ Te this will not in general be the case.

As can be seen from Equation (1), the key to maintaining this data structure is how to
update the values w(f↓, (e↓)c) when we descend edge e. Consider the case where we are
currently at edge e′ = (z, x) and move to a descending edge e = (x, y). For two vertices u, v

let p(u, v) be the set of edges on the path from u to v in T , and let lca(u, v) be their lowest
common ancestor in T . For f ∈ Te we see that

w(f↓, (e↓)c) = w(f↓, (e′↓)c) +
∑

{u,v}∈E
f∈p(u,v),lca(u,v)=x

w({u, v}) . (2)

By its definition in (1) we can compute scoree(f) from scoree′(f) by subtracting 2w({u, v})
from for every {u, v} ∈ E such that f ∈ p(u, v) and lca(u, v) = x. We implement this step
for all f by looping over all {u, v} ∈ E with lca(u, v) = x. After this update we have that
cost(e, f) = cost(e) + score(f) for every f ∈ Te. This shows how to descend down T while
keeping the invariant. The full tree is then explored by taking an Euler tour through T ,
and whenever we go back up in the tree we revert the score updates. This allows us to find
candidate f ∈ Te for every e ∈ E(T ). To bound the number of updates, note that each of
the m edges has a unique lca, and we only do an update corresponding to an edge when the
lca is visited by the Euler tour. Since the Euler tour visits every vertex at most twice, the
number of updates is at most 2m. In addition, the number of categorical top two queries is
n − 1.

The resulting algorithm is formalized in the full version [1], and it leads to the following
theorem.

▶ Theorem 6. Given an assignment e.color for each e ∈ E(T ), there is a deterministic
algorithm that runs in time O(m log2 n) and for each e finds an f such that
1. {e, f} ∈ H

2. e ∈ Tf or f ∈ Te

3. e.color ̸= f.color
if such an f exists.

3.3 Independent edges
The goal now is to find, for every edge e ∈ E(T ), a partner f ∈ E(T ) such that e, f are
independent, or decide that there is no such f . As we chose the root of T to have degree 1,
by Proposition 2 we do not have to worry about trivial cuts in the independent edge case.
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Instead of considering all edges e ∈ E(T ) one-by-one, we first find a so-called heavy path
decomposition of T [13, 24], which is a partition of the edges of T into heavy paths. We
define this partition recursively: first, find the heavy path starting at the root by repeatedly
descending to the child of the current node with the largest subtree. This creates the topmost
heavy path starting at the root (called its head) and terminating at a leaf (called its tail).
Second, remove the topmost heavy path from T and repeat the reasoning on each of the
obtained smaller trees. The crucial property is that, for any node u, the path from u to the
root in T intersects at most log n heavy paths.

We can now iterate over all pairs of heavy paths h, h′ to look for a partner f ∈ h′ for
every e ∈ h. We cannot literally carry out this plan as the number of pairs of heavy paths
can be Ω(n2) and so we cannot explicitly consider every pair. We show next that many pairs
h, h′ result in a trivial case and that all these trivial pairs can be solved together in one
batch. We then bound the number of non-trivial pairs and show that in near-linear time we
can explicitly process all of them. The idea of processing pairs of heavy paths, and explicitly
considering only the non-trivial ones, was introduced in the context of 2-respecting cuts by
Mukhopadhyay and Nanongkai [21] (see also [9]).

Consider two distinct heavy paths h, h′, where h is the path u1 − u2 − · · · − uq and h′ is
the path v1 − v2 − . . . vq′ . We let ei = (ui, ui+1) for i = 1, . . . , q − 1 and fi = (vi, vi+1) for
i = 1, . . . , q′ − 1. It can be that not all pairs ei, fj are independent, see Figure 1. However,
we can easily identify the subpaths of h, h′ containing pairwise independent edges in constant
time by computing the lowest common ancestor v of the tails of h, h′. If v = vp′ lies on h′

then ei, fj will be independent for 1 ≤ i < q and p′ ≤ j < q′, and similarly if v lies on h.
In general we assume that p, p′ have been determined so that ei, fj are independent for all
p′ ≤ i < q and p′ ≤ j < q′, and that these pairs comprise all of the independent pairs on
h, h′. We can associate to h, h′ a (q − 1)-by-(q′ − 1) matrix M (h,h′) where for p′ ≤ i < q and
p′ ≤ j < q′

M (h,h′)[i, j] = cost(ei, fj)

= cost(ei) + cost(fj) − 2w(e↓
i , f↓

j ) , (3)

and M (h,h′) is undefined otherwise.4 All values of cost(e) can be computed in O(m) total
time [15]. To efficiently evaluate M (h,h′), we will prepare a list L(h, h′) of all edges that
contribute to w(e↓, f↓) for independent e, f with e ∈ h, f ∈ h′. For many h, h′ the list L(h, h′)
will be empty, leading to the trivial case mentioned above. The following lemma bounds the
size of all the non-empty lists and shows they can be constructed efficiently (proof in full
version [1]).

▶ Lemma 7. The total length of all lists L(h, h′) is O(m log2 n) and all non-empty lists
L(h, h′) can be constructed deterministically in time O(m log2 n).

We can now describe how to find a partner f for every e such that e, f are independent.
The algorithm first solves together in one batch the case where the partner of e ∈ h is in a
heavy path h′ where L(h, h′) is empty. After that we explicitly consider all h, h′ with L(h, h′)
non-empty. We consider these two cases in the next two subsections.

4 We could restrict M (h,h′) to the submatrix on which it is defined, but find it notationally easier for the
i, j indices in M (h,h′) to match the edge labels.
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v1

vq′uq
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vp′

ui = lca(uq, u)

vj = lca(vq′ , v)
i

jp′ q′ − 1

q − 1

p

Figure 1 Contribution of an edge {u, v} ∈ L(h, h′) (denoted in green on the left) to M (h,h′)[·, ·]
(denoted in grey on the right).

3.3.1 Empty lists
▶ Lemma 8. There is a deterministic algorithm that in time O(m + n) finds a partner for
every edge e ∈ E(T ) that has a partner f such that e, f are independent and e ∈ h, f ∈ h′

with L(h, h′) empty.

Proof. The key observation is that if L(h, h′) is empty then cost(e, f) = cost(e) + cost(f)
by Equation (3). As can be seen from Equation (1) and Equation (3), for any edge
f ′ it always holds that cost(e, f ′) ≤ cost(e) + cost(f ′), whether e, f ′ are descendant or
independent. Thus in this case it suffices for us to find any f ′ of color different from e such
that cost(e) + cost(f ′) ≤ β, and cut(e, f ′) is non-trivial as this ensures cost(e, f ′) ≤ β. We
are guaranteed such an f ′ exists as f satisfies this.

We can compute cost(f ′) for every f ′ ∈ E(T ) in time O(m) [15]. Then in time O(n) with
one pass over E(T ) we compute the edge f1 of lowest cost and the edge f2 of lowest cost
that is of color different to f1. We then repeat this categorical top two query twice more,
each time excluding all previously found edges. At the end we obtain edges f1, . . . , f6. We
claim that for every e, at least one of these must be a valid partner.

Consider any particular e. The first categorical top two query can only fail to find a
valid partner for e if one of f1, f2 creates a trivial cut with e. In this case, the second
categorical top two query can only fail if one of f3, f4 creates a trivial cut with e as well. By
Proposition 2, however, there are at most two possible edges that can create a trivial cut
with e, thus in this case the third categorical top two query must succeed and we find a valid
partner for e. ◀

3.3.2 Non-empty lists
The more difficult case is to find partners among pairs h, h′ with L(h, h′) non-empty. While we
defer the proof details to the full paper [1], we describe the key insight of the algorithm, which
relies on the special structure of M (h,h′). As above, say that h is the path u1 − u2 − · · · − uq
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and h′ is the path v1 −v2 −. . . vq′ , and let ei = (ui, ui+1) for i = 1, . . . , q−1 and fi = (vi, vi+1)
for i = 1, . . . , q′ − 1. Further suppose ei, fj are independent for all p ≤ i < q, p′ ≤ j < q′. We
have that M (h,h′)[i, j] = cost(ei)+cost(fj)−2w(e↓

i , f↓
j ) for p ≤ i < q, p′ ≤ j < q′. Recall that

L(h, h′) is defined precisely as the list of edges that contribute to w(e↓, f ′↓) for independent
e ∈ h, f ′ ∈ h′. The contribution of a specific edge {u, v} ∈ L(h, h′) can be understood as
follows: let ui be the lowest common ancestor of u and uq, and vj be the lowest common
ancestor of v and vq′ . Then the weight of {u, v} contributes to M [a, b] for every p ≤ a ≤ i,
p′ ≤ b ≤ j. This is depicted in Figure 1. We can compute these indices i and j for every
{u, v} ∈ L(h, h′). This takes constant time per edge using an appropriate LCA structure [6],
and so total time O(|L(h, h′)|).

Our algorithm crucially builds on this “sparse” representation of M (h,h′) to efficiently
transfer non-empty lists. The following lemma is proven in the full version [1].

▶ Lemma 9. Let F = {e | ∃h, h′, f : e ∈ h, f ∈ h′, e, f are partners and L(h, h′) non-empty}.
There is a deterministic algorithm to find a partner for every e ∈ F in time O(m log3 n).
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Abstract
The problem of finding a maximum size matching in a graph (known as the maximum matching
problem) is one of the most classical problems in computer science. Despite a significant body of
work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass
semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching,
and this way obtains 1/2-approximation. Some previous works described two/three-pass algorithms
that improve over this approximation ratio by using their second and third passes to improve the
above mentioned maximal matching. One contribution of this paper continues this line of work
by presenting new three-pass semi-streaming algorithms that work along these lines and obtain
improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively.

Unfortunately, a recent work [30] shows that the strategy of constructing a maximal matching in
the first pass and then improving it in further passes has limitations. Additionally, this technique
is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1/2-
approximation. Therefore, it is interesting to come up with algorithms that do something else
with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such
algorithms are currently known (to the best of our knowledge), and the main contribution of this
paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and
three passes, respectively, for general graphs (the result for three passes improves over the previous
state-of-the-art, but is worse than the result of this paper mentioned in the previous paragraph for
general graphs). The improvements obtained by these results are, unfortunately, numerically not
very impressive, but the main importance (in our opinion) of these results is in demonstrating the
potential of non-maximal-matching-first algorithms.
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1 Introduction

The problem of finding a maximum size matching in a graph (known as the maximum
matching problem) is one of the most classical problems in computer science, and many
polynomial time algorithms have been designed for it over the years (see, e.g., [9, 15, 23]).
Due to its central role, the maximum matching problem is often one of the first problems
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considered when new computational models are suggested. One such model is the data
stream model, which is motivated by Big-Data applications, and has been the subject of an
enormous amount of research over the last couple of decades.

In the data stream model, the algorithm receives the input in the form of a stream which
it can read sequentially, but due to memory restrictions, the algorithm can store only a
small part of this stream. This means that the algorithm has to process (in some sense) the
input stream while reading it, and never gets an opportunity to see all the parts of the input
at the same time. Traditional algorithms for this model, known as streaming algorithms,
are allowed only memory that is poly-logarithmic in the natural parameters of the problem.
Obtaining a streaming algorithm for a problem is very desirable, but is often not possible.
In particular, many graph problems provably do not admit streaming algorithms, and the
maximum matching problem is among these problems if one would like an algorithm for the
problem to output an (approximately) maximum matching because such a matching might
be of linear size in the number of vertices. Nevertheless, non-trivial streaming algorithms
have been designed for the maximum matching problem when only the (approximate) size of
a maximum matching is desired (see Section 1.1 for details).

The resistance of many graph problems to streaming algorithms has motivated Feigenbaum
et al. [19] to suggest semi-streaming algorithms, which are algorithms for the data stream
model that are allowed a space complexity of O(n logc n) for some constant c ≥ 0, where n

is the number of vertices in the graph. Such algorithms turn out to be a sweet-spot that
on the one hand allows many results of interest, and on the other hand, does not lead to
triviality because O(n logc n) is less than the space necessary for storing the input graph
(unless this graph is very sparse). In particular, Feigenbaum et al. [19] observed that one can
obtain 1/2-approximation for the maximum matching problem using a simple semi-streaming
algorithm that greedily constructs a maximal matching.1

The above 1/2-approximation semi-streaming algorithm for the maximum matching
problem also has the desirable property that it reads the input stream only once (i.e., it
makes a single pass over it). Surprisingly, no single-pass semi-streaming algorithm improving
over the approximation ratio of this simple algorithm was suggested in the decade and a half
that has already passed since the work of [19] (in contrast, Kapralov [26] showed that no
such algorithm can have an approximation ratio better than 1/(1 + ln 2) ≈ 0.59, improving
over previous inapproximability results due to [22, 25]). Given this lack of progress, interest
arose in obtaining improved approximation ratios for relaxed versions of the above problem.
Perhaps, one of the simplest such relaxations is to allow the algorithm to make a few (usually
two or three) sequential passes over the input stream.

The last line of work was introduced by Konrad et al. [29], and was later studied by [18].
The state-of-the-art results for it are summarized in Table 1. We note that beside the
state-of-the-art results for general input graphs, Table 1 also gives improved results for
bipartite and triangle-free graphs. All the known results in this line of work (to the best of
our knowledge) start by greedily constructing a maximal matching during the first pass over
the input stream, and then augmenting this matching in the subsequent passes. Recently,
Konrad and Naidu [30] showed that this technique has limitations (specifically, even for
bipartite graphs, a two-pass semi-streaming algorithm based on this technique cannot obtain
a better than 2/3-approximation, which is much more strict than the inapproximability
known for general two-pass semi-streaming algorithms [2]). Additionally, and arguably

1 A maximal matching is a matching that is inclusion-wise maximal, and it is well-known that the size of
any maximal matching is a 1/2-approximation for the size of a maximum matching.
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Table 1 The state-of-the-art approximation ratios for semi-streaming algorithms using two or
three passes, and our improvements over these ratios (the number to the right of each improvement
is the number of the theorem formally stating it).

Number Type of State-of-the-Art This Paper Approachof Passes Graphs

Two-Pass
Bipartite 2 −

√
2 ≈ 1

2 + 1
11.66 [28] – –

≈ 0.5857
Triangle-Free 1

2 + 1
16 = 0.5625 [24] – –

General 1
2 + 1

32 = 0.53125 [24] 1
2 + 1

26 ≈ 0.5385 (1) non-MMF

Three-Pass

Bipartite 0.6067 ≈ 1
2 + 1

9.37 [28] 1
2 + 1

9 ≈ 0.6111 (3) MMF

Triangle-Free 1
2 + 1

10 = 0.6 [24] 1
2 + 1

9 ≈ 0.6111 (3) MMF

General
1
2 + 81

1600 ≈ 1
2 + 1

19.753 [24]
1
2 + 1

14.4 ≈ 0.5694 (4) MMF

≈ 0.5506 1
2 + 1

18 ≈ 0.5555 (2) non-MMF

more importantly, multi-pass algorithms that use their first pass for constructing a maximal
matching are unlikely to be a step towards a single-pass semi-streaming algorithm with a
better than 1/2-approximation guarantee.

Given the above observations, it is natural to believe that the future of the study of
semi-streaming algorithms for the maximum matching problem lies in algorithms that use
their first pass in a more sophisticated way than simply constructing the traditional maximal
matching. We term such algorithms non-maximal-matching-first algorithms (or non-MMF
algorithms for short). In this paper, we present the first non-MMF algorithms, which leads
to improvements over the state-of-the-art both for two and three passes. Admittedly, the
improvements we obtain are numerically not very impressive, but their main importance (in
our opinion) is in demonstrating the potential of non-MMF algorithms.

To intuitively understand our non-MMF algorithms, one should note that greedily con-
structing a maximal matching is equivalent to greedily constructing a graph whose connected
components are of size at most 2 (where the size of a connected component is defined as the
number of vertices in it). Therefore, a natural generalization is to greedily construct in the
first pass a graph whose connected components are of size at most 3. There are two intuitive
advantages for doing that compared to constructing a maximal matching.

A connected component of size 3 can contribute two edges to the output matching if
it is “augmented” during the next passes with a single additional edge. In contrast,
doing the same with a connected component of size 2 requires “augmenting” it with two
additional edges. It is important to note that there is a significant conceptual difference
between an augmentation of a connected component with one or two edges. Augmenting
a connected component with two edges requires finding pairs of edges that augment the
same connected component, while augmenting with a single edge does not require such a
synchronization.
If we are not able to enjoy the above advantage because many connected components end
up being of size 2 rather than 3. Then, the fact that this has happened despite us only
restricting the components to be of size at most 3 implies that few edges of a maximum
matching intersect only a single connected component of the constructed graph; and
therefore, the constructed graph must have many connected components compared to
the size of a maximum matching.

Using the above ideas, we prove the following two theorems. The proof of Theorem 1 appears
in Section 3, while the adaptation of this proof leading to Theorem 2 is deferred to the full
version of this paper [20].
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▶ Theorem 1. There exists a non-MMF 2-pass (7/13 = 1/2+1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

▶ Theorem 2. There exists a non-MMF 3-pass (5/9 = 1/2 + 1/18)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

As mentioned above, both Theorems 1 and 2 represent an improvement over the state-of-
the-art. However, it turns out that we can further improve over Theorem 2 using new MMF
algorithms (i.e., algorithms that construct a maximal matching in their first pass). This leads
to the following theorems whose proofs appear in Section 4 and Appendix A, respectively.

▶ Theorem 3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming
algorithm for finding a maximum size matching in a triangle-free graph.2

▶ Theorem 4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm
for finding a maximum size matching in a general graph.

The algorithms used to prove Theorems 3 and 4 are strongly based on the algorithms
suggested by Kale and Tirodkar [24]. For example, the first two passes of the algorithm
suggested by Theorem 3 are identical to a two-pass algorithm presented by [24], and the
third pass of this algorithm is very similar to the third pass of the three-pass algorithm
of [24]. Our novelty, however, is in our ability to analyze the algorithm obtained by putting
these two components together.

1.1 Related Work
As mentioned in Section 1, streaming algorithms are not appropriate for the maximum
matching problem when the algorithm is required to output an (approximately) maximum
matching. However, some non-trivial streaming algorithms are known for this problem when
the algorithm is only required to estimate the size of the maximum matching. Kapralov et
al. [27] designed a poly-log approximation streaming algorithm for this problem under the
assumption that the edges in the input stream are ordered in a uniformly random order.
A different line of work [13, 17, 32] considered graphs of bounded arboricity α, comulating
with the work of McGregor and Vorotnikova [33], who designed (α + 2)(1 + ε)-approximation
streaming algorithm for this problem requiring only O(ε−2 log n) space. In contrast, Assadi
et al. [5] showed that (1− ε)-approximation of the size of the maximum matching cannot be
obtained by a single pass algorithm, even if this algorithm is allowed a semi-streaming space
complexity, and [6, 8] lower bounded the number of passes required to obtain such a good
approximation using a sub-polynomial space complexity.

Recall that, to date, the best single-pass semi-streaming algorithm for the maximum
matching problem is still the natural greedy algorithm, which guarantees 1/2-approximation.
Chitnis et al. [12] presented an exact single-pass algorithm for this problem. However, this
algorithm requires Õ(k2) memory, where k is an upper bound on the size of the maximum
matching (which the algorithm needs to know upfront), and thus, this algorithm is a
semi-streaming algorithm only when k = Õ(

√
n). Given the difficultly to improve over

the guarantee of the greedy algorithm using single-pass semi-streaming algorithms, people

2 We recall that every bipartite graph is triangle-free, and therefore, the same result is obtained also for
bipartite graphs.
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consider also relaxed versions of the maximum matching problem. One standard relaxation
is to allow the algorithm to make multiple passes over the input stream. Section 1 surveys
algorithms of this kind that use two or three passes. Another line of work considers algorithms
that assume a constant (but possibly large) number of passes. The first result of this kind
was presented by Feigenbaum et al. [19] (in the same paper that also introduced the notion
of semi-streaming algorithms), and guaranteed (2/3− ε)-approximation using O(ε−1 log ε−1)
passes for bipartite graphs. Later [31] showed how to obtain (1−ε)-approximation for general
graphs using (ε−1)O(ε−1) passes, and the number of passes necessary to obtain this guarantee
was improved by many further works (see, e.g., [1, 4, 7, 21]). Another standard relaxation for
the maximum matching problem is to assume that the edges of the input stream appear in a
uniformly random order. The state-of-the-art for this relaxation is a (2/3+ε0)-approximation
single-pass semi-streaming algorithm, where ε0 > 0 is some absolute constant [3, 10] (see
also the references therein for previous works on this relaxation).

The related maximum weight matching problem was also studied heavily in the context
of the data stream model. Here, it is not immediately clear that one can obtain a constant
approximation ratio using a single-pass semi-streaming algorithm. However, Feigenbaum et
al. [19] presented the first such algorithm guaranteeing 1/6-approximation, and this ratio was
improved in series of works [14, 16, 31, 35]. The current state-of-the-art for the problem is
(1/2− ε)-approximation due to Paz and Schwartzman [34]. Since this approximation ratio is
essentially identical to the state-of-the-art for the (unweighted) maximum matching problem,
any further progress on the maximum weight matching problem (beyond removing the ε)
will imply an improvement over the guarantee of the greedy algorithm for the (unweighted)
maximum matching problem. It is also worth mentioning that a recent reduction due to
Bernstein et al. [11] shows that the reverse is also true in a sense. More specifically, any
semi-streaming algorithm for bipartite unweighted graphs can be translated into such an
algorithm for weighted graphs with the same number of passes and a loss of only 1− ε in
the approximation guarantee. Naturally, this reduction automatically extends some of our
results to the weighted case.

2 Preliminaries

In this section we present the problem that we study more formally, and also introduce
the notation used throughout the rest of the paper. We are interested in semi-streaming
algorithms for the problem of finding a maximum size matching in a graph G = (V, E)
of n vertices. A semi-streaming algorithm for this problem is an algorithm with a space
complexity of O(n logc n) (for some constant c ≥ 0) that initially has no knowledge about
the edges of E. Instead, the edges of E appear sequentially in an “input stream”, and the
algorithm may make one or more passes over this input stream. In each pass the algorithm
sees the edges one by one, and may do arbitrary calculations after viewing each edge. It is
important to note that the space complexity allowed for the algorithm does not suffice for
storing all the edges of the graph (unless the graph is very sparse), and this is the reason
that the algorithm might benefit from doing multiple passes over the input stream. It is
standard to assume that the vertices of V are known upfront, and that each vertex of V can
be stored using O(log n) bits (which implies that every edge of E can also be stored using
this asymptotic number of bits).

Throughout the paper, we consider only unweighted graphs and matchings. We also
denote by M∗ an arbitrary maximum matching of G (i.e., an arbitrary optimal solution for
our problem). Notation-wise, we treat M∗ (and any other matching considered in the paper)
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as a set of the edges included in it. Similarly, when considering a connected component C of
a graph, we treat it as a set of the vertices in it, which in particular, implies that |C| is the
number of such vertices.

Given a set of edges S or a path P in a graph, we denote by V (S) and V (P ) the set of
vertices intersecting any edge of S or P , respectively. Similarly, the set of edges included in
the path P is denoted by E(P ). Often we need to consider collections of paths (or triangles)
in a given graph. For clarity, such collections are always denoted using calligraphic letters,
and we extend the above notation to such collections. In other words, if P is a collection of
paths, then V (P) and E(P) is the set of vertices and edges, respectively, that are included
in these paths. Finally, given a set S of edges and a vertex v, we use degS(v) to denote the
degree of the vertex v in the subgraph (V, S).

3 Two-Pass Non-MMF Algorithm

In this section we prove Theorem 1, which we repeat below for convenience.

▶ Theorem 1. There exists a non-MMF 2-pass (7/13 = 1/2+1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

The algorithm whose existence is guaranteed by Theorem 1 appears as Algorithm 1. In
its first pass, this algorithm greedily grows a set P of edges that form either triangles or
partial triangles (i.e., isolated edges or paths of length 2). For simplicity, we refer below
to the connected components of (V, P ) that are not isolated vertices as partial triangles
although, technically, they can also be full triangles. In the second pass of Algorithm 1, the
algorithm tries to convert the partial triangles of P into more involved structures in one of
two ways. To understand these ways, we need to define some terms. First, we designate
some of the vertices of every partial triangle as “connection vertices”. Specifically, all the
vertices of a triangle are considered connection vertices; in a path of length 2 only the two
end points are considered to be connection vertices; and finally, in an isolated edge there are
no connection vertices. We refer to a partial triangle that was not converted yet into a more
involved structure as a “naïve” partial triangle. The first way in which Algorithm 1 tries to
convert the partial triangles of P into more involved structures is by greedily adding edges
that connect a connection vertex of a naïve partial triangle with an isolated vertex. The set
A1 in the algorithm includes the edges that were added in this way. In parallel, the algorithm
also tries a second way to convert the partial triangles of P into more involved structures,
which is to greedily add edges that connect a connection vertex of a naïve partial triangle
either to a connection vertex of another naïve partial triangle or to an isolated vertex. The
set A2 in the algorithm includes the edges that were added in this way. Upon termination,
Algorithm 1 outputs a maximum matching in the set of all the edges that it kept. We recall
that given a connected component C of a graph, the notation |C| represents the number of
vertices in C.

We begin the analysis of Algorithm 1 by noting that it is indeed a semi-streaming algorithm.
The proof of the next observation can be found in the full version of this paper [20].

▶ Observation 5. Algorithm 1 is a semi-streaming algorithm.

In the rest of this section we analyze the approximation ratio of Algorithm 1. Recall that
we use M∗ to denote some maximum matching of G. Our first objective in the analysis of the
approximation ratio of Algorithm 1 is to lower bound the number of edges of M∗ that can
potentially be added either to A1 or to A2. Towards this goal, we define a charging scheme
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Algorithm 1 Maximum Matching via Greedy Triangles – Two Passes.

// First Pass
1 Let P ← ∅.
2 for every edge e that arrives do
3 if every connected component of the graph (V, P ∪ {e}) is either an isolated vertex,

a path of length at most 2 or a triangle (cycle of size 3) then Add e to P .

// Second Pass
4 Let A1 ← ∅ and A2 ← ∅.
5 for every edge (u, v) ̸∈ P that arrives do
6 Let Cu and Cv be the connected components of u and v, respectively, in (V, P ).

We assume without loss of generality that |Cu| > 1, otherwise we swap the
roles of u and v. // Note that we cannot have |Cu| = |Cv| = 1 because
the edge (u, v) was not added to P in the first pass.

7 if no edge of A1 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of
Cu then Add the edge (u, v) to A1.

8 if no edge of A2 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of
Cu then Add the edge (u, v) to A2.

9 else if no edge of A2 intersects Cu and Cv, and u and v are connection vertices
of Cu and Cv, respectively then Add the edge (u, v) to A2.

10 return a maximum matching in the graph (V, P ∪A1 ∪A2).

π. Under the charging scheme π, every edge (u, v) ∈M∗ charges the connected components
of u and v in (V, P ). Each one of these connected components is charged one unit by (u, v),
unless it is an isolated edge or an isolated vertex, in which case it is charged only half a unit
or nothing by (u, v), respectively. We note that when u and v belong to the same connected
component of (V, P ), then this connected component is charged twice by (u, v).3

The following observation provides an upper bound on the total charged by all the edges
of M∗ together. Let (#single) be the number of isolated edges in P , (#double) be the
number of connected components in (V, P ) that are paths of length 2 and (#triangle) be the
number of triangles in P .

▶ Observation 6. The total charge according to π is at most (#single) + 3(#double) +
3(#triangle).

Proof. Every positive amount charged by π is charged to some connected component of
(V, P ) which is not an isolated vertex. Therefore, to prove the observation we only need to
show that every isolated edge of (V, P ) is charged at most one unit, and every connected
component of (V, P ) that is either a path of length 2 or a triangle is charged at most 3 units.
Below we are argue that this is indeed the case.

Each connected component C of (V, P ) can be charged at most once for every one of
its vertices since the fact that M∗ is a matching implies that every vertex of C can appear
in at most a single edge of M∗. For isolated edges of (V, P ), this implies that they can be

3 Intuitively, the charge assigned to the connected components of u and v is proportional to the “blame”
that can be assigned to them if (u, v) ends up to be outside P . For example, an isolated edge could
not alone prevent (u, v) from being added to P , but two such edges (one intersecting u and the other
intersecting v) could, together, prevent (u, v) from being added to P . Therefore, we assign a charge of
1/2 to isolated edges. Observation 7 is based on this intuition.
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charged at most twice, and therefore, they are charged at most one unit because they are
charged half a unit in each charge. Similarly, connected components of (V, P ) that are either
paths of length 2 or triangles contain 3 vertices, and therefore, can be charged at most three
times. Since every one of these charges is of a single unit, the total charge to each connected
component of these kinds is at most 3. ◀

To complement the last observation, let us now describe a simple lower bound on the
total charging done by all the edges of M∗ according to π. Let (#component-free) be the
number of edges of M∗ that connect a connection vertex of a connected component of (V, P )
to an isolated vertex of (V, P ), (#component-component) be the number of edges of M∗ that
connect connection vertices of two different connected components of (V, P ), (#single-single)
be the number of edges of M∗ whose two end points belong to (not necessarily distinct)
isolated edges of (V, P ), (#single-component) be the number of edges of M∗ that connect
a vertex of an isolated edge of (V, P ) with a connection vertex of some (other) connected
component of (V, P ) and (#middle) be the number of edges that either intersect the middle
vertex of a length 2 path connected component of (V, P ) or are included within a triangle
connected component of (V, P ). For convenience, the definitions of the notation we use are
summarized in Appendix B.

▶ Observation 7. The total charge of all the edges of M∗ according to the charging
scheme π is at least (#component-free) + 2(#component-component) + (#single-single) +
1.5(#single-component) + (#middle).

Proof. Since the edges of M∗ counted by (#component-free) intersect a connection vertex,
they must intersect a connected component of (V, P ) which is not an isolated vertex or an
isolated edge, and therefore, they charge this connected component one unit. Hence, the total
charge by all the edges counted by (#component-free) is at least (#component-free). Similar
logic shows that the total charge by all the edges counted by (#component-component),
(#single-single), (#single-component) and (#middle) is at least 2(#component-component),
(#single-single) , 1.5(#single-component) and (#middle), respectively. The observation now
follows since the edges of M∗ counted by (#component-free), (#component-component),
(#single-single), (#middle) and (#single-component) are distinct. ◀

Combining Observations 6 and 7, we get the following inequality.

(#component-free) + 2(#component-component) + (#single-single) (1)
+ 1.5(#single-component) + (#middle) ≤ (#single) + 3(#double) + 3(#triangle) .

In its current form, Inequality (1) is not very useful. We later derive from it a more
convenient inequality, but before doing this we need to prove a few other inequalities. Let
(#non-M∗-triangles) denote the number of triangle connected components of (V, P ) that do
not include any edge of M∗ within them.

▶ Lemma 8. The following inequalities hold

(#component-free) + (#component-component) + (#single-single)
+(#middle) + (#single-component) ≥ |M∗| ,

(2)

(#double) + (#triangle)− (#non-M∗-triangles) ≥ (#middle) , (3)
2(#single-single) + (#single-component) ≤ 2(#single) , (4)
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and they imply together

(#component-free) + (#component-component) + 2(#single)
+ (#double) + (#triangle)− (#non-M∗-triangles) ≥ |M∗| .

Proof. Since every edge that is included in a connected component of (V, P ) which is a
path of length 2 must include the middle vertex of this path, every edge e ∈ M∗ that
is not counted by either (#component-free), (#component-component), (#single-single),
(#single-component) or (#middle) must either connect a vertex of an isolated edge of (V, P )
to an isolated vertex or connect two isolated vertices of (V, P ). However, such edges cannot
exists. Specifically, assume towards a contradiction that (u, v) is an edge of M∗ such that u

is an isolated vertex of (V, P ) and v is either another isolated vertex of (V, P ) or belongs
to an isolated edge of this graph. Then, the edge (u, v) should have been added by Algo-
rithm 1 to P upon arrival, which contradicts the fact that its end point u ended up as an
isolated vertex of (V, P ). Hence, every edge e ∈M∗ is counted by either (#component-free),
(#component-component), (#single-single), (#single-component) or (#middle), which im-
plies Inequality (2).

Recall that every edge counted by (#middle) must either be included in a triangle
connected component of (V, P ) or intersect the middle vertex of a path of length 2 connected
component of (V, P ). Since M∗ is a matching, only one edge of M∗ can intersect the middle
vertex of a given length 2 path or be included in a given triangle, and therefore, every edge
counted by (#middle) can be associated with a distinct path of length 2 or triangle component
of (V, P ) that is not counted by (#non-M∗-triangles), which implies Inequality (3).

Every edge counted by (#single-single) touches two end-points of isolated edges of (V, P ).
Similarly, every edge counted by (#single-component) intersects an end-point of an isolated
edge of (V, P ). Since every end-point of an isolated edge of (V, P ) can be touched by at most
a single edge of M∗ because M∗ is a matching, this implies that the number of end points
of the isolated edges of (V, P ) is at least 2(#single-single) + (#single-component). However,
this number is also equal to 2(#single), which implies Inequality (4). ◀

The last inequality in the previous lemma provides a lower bound on (#component-free)+
(#component-component), and one can view (#component-free)+(#component-component)
as a count of edges of M∗ that have potential to be added to A2 in Algorithm 1. The next
lemma is the promised derivative of Inequality (1), and it provides a lower bound on
(#component-free). Observe that (#component-free) is a count of edges of M∗ that have
the potential to be added to A1.

▶ Lemma 9. 2|M∗| ≤ (#component-free)−(#non-M∗-triangles)+2(#single)+4(#double)+
4(#triangle).

Proof. Adding twice Inequality (2) to Inequality (1), we get

2|M∗| − (#component-free)− (#single-single)− 0.5(#single-component)− (#middle)
≤ (#single) + 3(#double) + 3(#triangle) .

The lemma now follows by adding Inequality (3) and half of Inequality (4) to the last
inequality. ◀

So far we have shown lower bounds on the size of the sets of edges that have a potential
to be added to A1 or A2 by Algorithm 1. Our next step is to lower bound the size of the
sets A1 and A2 that Algorithm 1 ends up constructing using this potential.
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Figure 1 A graphical study of the maximum number of M∗ edges that can intersect connection
vertices of various types of partial triangles. Sub-figures (a) and (b) show that at most two such
edges can intersect the connection vertices of a path of length 2 and an M∗-triangle (i.e., a triangle
that includes an edge of M∗). Sub-figure (c) shows that the connection vertices of a non-M∗-triangle
can intersect up to 3 edges of M∗.

▶ Lemma 10. 3|A1| ≥ (#component-free)− (#non-M∗-triangles).

Proof. We say that an edge e of M∗ counted by (#component-free) is excluded by an edge
f ∈ A1 if e and f intersect the same connected component of (V, P ). One can observe
that every edge e counted by (#component-free) is excluded by some edge of A1 (possibly
itself) when Algorithm 1 terminates because otherwise Algorithm 1 would have added e

to A1, which would have resulted in e excluding itself. Therefore, we can upper bound
(#component-free) by counting the number of edges excluded by the edges of A1.

Let (u, v) be an edge of A1, and assume without loss of generality that v is the end point
of this edge which is an isolated vertex of (V, P ). This implies that u is a connection vertex of
a connected component Cu of (V, P ) which is either a path of length 2 or a triangle. If Cu is
a path of length 2, then the edge (u, v) can exclude only edges counted by (#component-free)
that intersect either v or a connection vertex of Cu, and there can be only 3 such edges
because M∗ is a matching (see Figure 1a). Next, consider the case in which Cu is a triangle
which is not counted by (#non-M∗-triangles). In this case there can be at most 2 edges of
M∗ intersecting Cu (see Figure 1b), and since (u, v) can exclude only edges that intersect
either Cu or v, we get that it can exclude at most 3 edges.4 It remains to consider the case
in which Cu is a triangle counted by (#non-M∗-triangles). In this case, (u, v) can again
exclude every edge of M∗ that intersects Cu or v, and this time there can be at most 4 such
edges (see Figure 1c). Combining all the above, we get that the number of edges excluded
by all the edges of A1 is at most

3|A1|+ |{e ∈ A1 | e intersects a triangle counted by (#non-M∗-triangles)}| .

As explained above, this expression is an upper bound on (#component-free). Furthermore,
since A1 includes at most a single edge intersecting every connected component of (V, P ), the
second term in this expression is upper bounded by (#non-M∗-triangles). Therefore, we get

(#component-free) ≤ 3|A1|+ (#non-M∗-triangles) .

The lemma now follows by rearranging this inequality. ◀

4 One of the two M∗ edges intersecting Cu is guaranteed to be an edge of the triangle itself since the triangle
is not counted by (#non-M∗-triangles). Since such edges cannot be counted by (#component-free), we
get that the edge (u, v) can exclude at most 2 edges of (#component-free) rather than 3. However, we
ignore this observation as it does not lead to a better approximation guarantee.
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The next corollary now follows by combining Lemmata 9 and 10.

▶ Corollary 11. 2|M∗| ≤ 3|A1|+ 2(#single) + 4(#double) + 4(#triangle).

▶ Lemma 12. It holds that 4|A2| ≥ (#component-component) + (#component-free) −
(#non-M∗-triangles).

The proof of Lemma 12 is quite similar to the proof of Lemma 10. Therefore, and due to
space constrained, we defer it to Appendix C. The next corollary now follows by combining
Lemma 12 and the final inequality in Lemma 8.

▶ Corollary 13. |M∗| ≤ 4|A2|+ 2(#single) + (#double) + (#triangle).

Let us now denote L = (#single) + (#double) + (#triangle) + max{|A1|, |A2|}. We argue
below that L is a lower bound on the size of the solution produced by Algorithm 1. However,
before proving this, let us show first that L is large.

▶ Lemma 14. L ≥ 7/13|M∗|.

Proof. Plugging the definition of L into Corollaries 11 and 13 yields the inequalities 2|M∗| ≤
3L − (#single) + (#double) + (#triangle) and |M∗| ≤ 4L − 2(#single) − 3(#double) −
3(#triangle). Adding the first of these inequalities three times to the second one gives
7|M∗| ≤ 13L − 5(#single) ≤ 13L, where the second inequality holds since (#single) is
non-negative by definition. The lemma now follows by rearranging the above inequality. ◀

As promised, we now argue that Algorithm 1 produces a matching of size at least L.

▶ Lemma 15. Algorithm 1 outputs a matching of size at least L.

Proof. Since Algorithm 1 outputs a maximum matching in (V, P ∪ A1 ∪ A2), to prove
the lemma it suffices to show that the graph (V, P ∪ A1) includes a matching of size
(#single) + (#double) + (#triangle) + |A1| and the graph (V, P ∪A2) includes a matching
of size (#single) + (#double) + (#triangle) + |A2|. We prove below only the claim regarding
(V, P ∪A2). The claim regarding (V, P ∪A1) can be proved analogously.

Let H be the number of edges in A2 that connect two non-isolated vertices of (V, P ).
Then, we classify the connected components of (V, P ∪A2) as follows, and show how to build
a large matching M based on this classification.

(V, P ∪A2) includes (#single)+(#double)+(#triangle)−|A2|−H connected components
that are (i) not an isolated node, and (ii) appear also in (V, P ). Each one of these connected
components contains at least one edge, and therefore, can contribute some edge to M .
(V, P ∪A2) includes |A2|−H connected components that consist of a connected component
C of (V, P ) that has connection vertices and an edge e connecting a connection vertex
of C to an isolated vertex of (V, P ). One can observe that the combination of C and e

must be either a path of length 3 or a triangle and an edge attached to one of its vertices,
and in both cases this combined connected component contains two vertex disjoint edges
which it can contribute to the matching M .
(V, P ∪A2) includes H connected components that consist of two connected components
C1, C2 of (V, P ) that have connection vertices and an edge e connecting a connecting
vertex of C1 with a connecting vertex of C2. There are three shapes that the connected
component obtained in this way can take: a path of length 5, a triangle with a path of
length 3 attached to one of its vertices or two triangles and an edge connecting them.
However, one can observe that all these shapes include three vertex disjoint edges that
can be contributed to the matching M .
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By collecting from every connected component of (V, P ∪A2) the edges that it can contribute
to M according to the above analysis, we get a matching in (V, P ∪A2) of size at least

[(#single) + (#double) + (#triangle)− |A2| −H] + 2[|A2| −H] + 3H

= (#single) + (#double) + (#triangle) + |A2| . ◀

Lemmata 14 and 15 imply together the following corollary. Together with Observation 5,
this corollary implies Theorem 1.

▶ Corollary 16. Algorithm 1 is a 7/13-approximation algorithm.

Before concluding this section, we note that Theorem 2 is proved in the full version of
this paper [20] by splitting the second pass of Algorithm 1 into two passes. One pass that
constructs A1, and a second pass that constructs A2, while making sure not to use again
connected components of (V, P ) already used by A1.

4 Three-Pass Algorithm for Triangle-Free Graphs

In this section we prove Theorem 3, which we repeat here for convenience.

▶ Theorem 3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming
algorithm for finding a maximum size matching in a triangle-free graph.

We refer to the algorithm whose existence is guaranteed by Theorem 3 as Triangle-
FreeAlg. In its first pass, TriangleFreeAlg constructs a maximal matching M0 of G.
Formally, the pseudocode for this pass appears as Algorithm 2.

Algorithm 2 TriangleFreeAlg – First Pass.

1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

We say that an edge e ∈ E is a wing if e includes exactly one vertex of V (M0). Intuitively,
the reason we are interested in wings is that one can obtain an augmenting path5 for M0
by combining an edge (u, v) ∈M0 with two wings: one wing that intersects u and one wing
that intersects v. The second pass of TriangleFreeAlg grows a set W of wings. Since we
hope to construct multiple augmenting paths using these wings, the algorithm makes sure to
limit the number of wings in W that intersect any given vertex u (specifically, the algorithm
allows only a single wing in W to intersect u if u ∈ V (M0), and otherwise it allows up to
two wings of W to intersect u). The pseudocode of this second pass appears as Algorithm 3.

Algorithm 3 also includes a post-processing step in which a set P1 of augmenting paths
(with respect to M0) is constructed using W . This is done by constructing an auxiliary
multi-graph GA over the vertices of V \ V (M0) in which there is an edge between two nodes
u, v ∈ V \ V (M0) for every path Pu,v of length 3 in W ∪M0 between them. One can note
that every such path Pu,v must be an augmenting path consisting of an edge e ∈ M0 and
two wings from W : one intersecting u and an end-point of e, and the other intersecting v

and the other end-point of e. Algorithm 3 finds a maximum size matching MA in GA, and
then sets P1 to be the collection of (augmenting) paths corresponding to the edges of MA.

5 A path P is an augmenting path for a matching M if M ⊕ E(P ) is a valid matching of size |M | + 1.



M. Feldman and A. Szarf 33:13

Algorithm 3 TriangleFreeAlg – Second Pass.

1 Let W ← ∅.
2 for every edge e that arrives do
3 if e intersects exactly one vertex u ∈ V (M0) then
4 Let v denote the other end-point of e (i.e., the end-point that is not u).
5 if degW (u) < 1 and degW (v) < 2 then Add e to W .

// Post-processing
6 Let GA be a multi-graph over the vertices V \ V (M0). For every path Pu,v of length

3 in W ∪M0 between two vertices u, v ∈ V \ V (M0), we add an edge (u, v) to the
graph GA. // This is a multi-graph because there might be multiple
such paths between a pair of vertices of V \ V (M0).

7 Find a maximum size matching MA in GA.
8 Let P1 ← {Pu,v | (u, v) ∈MA}.

Consider now an edge e ∈M0 that does not appear in any path of P1 and is connected
by some wing w ∈ W to some vertex u ̸∈ V (M0) ∪ V (P1). The pair e, w can be extended
into an augmenting path if one can find another wing w′ connecting the other end of e (the
end that does not intersect w) to a vertex v ̸∈ V (M0) ∪ V (P1) that is not u. The third pass
of TriangleFreeAlg greedily constructs a collection P2 of augmenting paths in this way.
A pseudocode of this pass appears as Algorithm 4. After completing the pass, Algorithm 4
returns the matching obtained by augmenting M0 with the augmenting paths of P1 and P2.

Algorithm 4 TriangleFreeAlg – Third Pass.

1 Let P2 ← ∅.
2 for every edge w′ that arrives do
3 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u ̸∈ V (M0),

(ii) w′ = (u, a), (iii) (a, b) ∈M0 and (iv) (b, v) ∈W then
4 Add the path u, a, b, v to P2. // Note that u ̸= v because otherwise

u, a, b, v would have been a triangle.

5 return M0 ⊕
(⋃

P ∈P1∪P2
E(P )

)
.

We begin the analysis of TriangleFreeAlg with the following lemma, which shows
that this algorithm returns a matching, and also gives a basic lower bound on the size of this
matching. Due to space constraints, the proof of this lemma is deferred to Appendix C.

▶ Lemma 17. The paths in P1 and P2 are vertex disjoint, and therefore, the output of
TriangleFreeAlg is a matching of size |M0|+ |P1|+ |P2|.

Using the last lemma we can also bound the space complexity of Algorithm 4. The
technical proof of the next corollary can be found in the full version of this paper [20].

▶ Corollary 18. TriangleFreeAlg is a semi-streaming algorithm.

It remains to analyze the approximation ratio of TriangleFreeAlg. Our analysis
roughly follows the flow of the algorithm, and thus, we begin by observing that the matching
M0 constructed in the first pass of this algorithm is of size at least |M∗|/2 (recall that M∗ is
a maximum size matching of G) because M0 is a maximal matching of G by construction.
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In its second pass, TriangleFreeAlg constructs the set W of wings. Our next objective
is to lower bound the size of W . Towards this goal, we need to define WM to be the set of
all edges of M∗ that are wings (we recall that an edge e is a wing if exactly one of its end
points appear in V (M0)).

▶ Observation 19. |WM | ≥ 2(|M∗| − |M0|).

Proof. Since M0 is a maximal matching, every edge of M∗ intersects at least one edge of M0.
Hence, every edge of WM includes a single end-point of an edge of M0, and every edge of
M∗\WM includes two end-points of edges of M0 (the two end-points might belong to different
edges or to the same edge), which implies |M0| ≥ (|WM |+ 2|M∗ \WM |)/2 = |M∗| − |WM |/2.
Rearranging this inequality completes the proof of the observation. ◀

▶ Lemma 20. |W | ≥ 2
3 |WM | ≥ 4

3 (|M∗| − |M0|).

Proof. Let I = V (M0) ∩ V (WM ), and let IF be the set of vertices in I that do not appear
in any edge of W . Every vertex a ∈ IF ⊆ I must belong to some wing w(a) ∈ WM by the
definition I. However, this wing was not added to W (because a ∈ IF ), which implies that
the condition in Line 5 of Algorithm 3 evaluated to FALSE when w(a) arrived. Since a is
not covered by any edge of W (i.e., degW (v) = 0), the fact that this condition evaluated
to FALSE implies that the end point of w(a) that does not belong to V (M0) must have a
degree of 2 under W . Formally, if we denote by u(a) the end point of w(a) that does not
belong to V (M0), then we must have degW (u(a)) = 2.

We now observe that (i) every wing in WM contains a disjoint vertex of V \ V (M0)
because WM is a subset of the optimal matching M∗, and (ii) every wing in W contains only
one vertex of V \ V (M) because it is a wing. These two observations imply together

|W | ≥
∑

a∈IF

degW (u(a)) = 2|IF | . (5)

In contrast, since (i) every wing in W contains a single vertex of V (M0), and (ii) all the
vertices of I \ IF ⊆ V (M0) appear in some wing of W ,

|W | ≥ |I| − |IF | = |WM | − |IF | , (6)

where the equality holds since every edge of WM is a wing, and therefore, intersects a
single vertex of V (M0). The lemma now follows by adding two copies of Inequality (6) to
Inequality (5). ◀

We now get to the analysis of the third pass of TriangleFreeAlg, and our first goal
in this analysis is to identify a set of paths that have a potential (in some sense) to end up
in P2. Let P ′ be the set of paths of length 3 in G that consist of a wing of WM followed
by an edge of M0 and then a wing of W . We think of the paths in P ′ as directed from
their WM to their W edge, and consider two paths that differ only in their direction to be
different paths. This is important because if there is an edge e ∈M0 incident to two edges
w1, w2 ∈ W ∩WM , then the path w1, e, w2 fulfills the requirements to belong to P ′ both
when w1 is considered the first edge in it and when w2 is considered the first edge of the
path. Thus, the fact that we treat the direction of the path as part of the path’s definition
allows both the paths w1, e, w2 and w2, e, w1 to appear in P ′.

▶ Observation 21. |P ′| ≥ 10
3 |M

∗| − 16
3 |M0|.
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Proof. Since degW (a) ≤ 1 for every vertex a ∈ V (M0), there are |W | end-points of M0
that intersect an edge of W . Let us denote these end-points by VW , and for every end-
point a ∈ VW , we denote by b(a) the other end-point of the same edge of M0. Formally,
VW = V (M0) ∩ V (W ), and b(a) is the single element of the set {b | (a, b) ∈M0}. One can
now observe that P ′ includes a (distinct) path for every wing of WM that intersect b(a) for
some vertex a ∈ VW . Therefore,

|P ′| = |{b(a) | a ∈ VW } ∩ V (WM )}|
≥ |{b(a) | a ∈ VW }|+ |V (WM ) ∩ V (M0)}| − |V (M0)| = |W |+ |WM | − |V (M0)|
≥ 4

3 (|M∗| − |M0|) + 2(|M∗| − |M0|)− |V (M0)| = 10
3 |M

∗| − 16
3 |M0| ,

where the first equality holds since {b(a) | a ∈ VW } is a subset of V (M0), and the last
inequality follows from Observation 19 and Lemma 20. ◀

A path in P ′ has a potential to be added to P2 only if none of its vertices appears in
P1. Let P ′′ be the set of such paths (formally, P ′′ = {P ∈ P ′ | V (P ) ∩ V (P1) = ∅}). The
following lemma lower bounds the size of P ′′.

▶ Lemma 22. |P ′′| ≥ |P ′| − 6|P1| ≥ 10
3 |M

∗| − 16
3 |M0| − 6|P1|.

Proof. The second inequality of the lemma follows from Observation 21, and therefore, we
concentrate on proving the first inequality. Towards this goal, assume that P ′ ∈ P ′ is a
path that intersects with a path P1 ∈ P1 on an internal vertex. Since the middle edge of
both paths is an edge of M0, this implies that the two paths intersect on both their internal
vertices. Furthermore, since both end-edges of P1 and one end-edge of P ′ belong to W , there
must be an internal vertex a ∈ V (M0) of both paths that intersects an edge of W in both
paths. However, since degW (a) ≤ 1, the edges of W intersecting a in both paths must be
identical, which implies that the paths P ′ and P1 intersect also on some end-point. Since
P ′ and P1 where chosen as general paths of P ′ and P1, respectively, that intersect on an
internal node, this implies that the difference |P ′| − |P ′′| is equal to the number of paths in
P ′ that intersect a path of P1 in an end-point. The rest of the proof is devoted to proving
that the last number is at most 6|P1|.

Since each path of P1 has only two end points, to prove that the paths of P1 intersect at
most 6|P1| paths of P ′ at an end-point, it suffices to show that every vertex of V \ V (M0)
can appear in at most 3 paths of P ′. To see why that is the case, consider an arbitrary vertex
u ∈ V \ V (M0). If u belongs to some path P ′ ∈ P ′, then it must be in one of two roles as
follows.

If u is the last vertex of the path, then the last edge of the path is an edge e ∈W that
includes u, and the other edges of the path P ′ are the single edge of M0 intersecting e

and the single edge of WM intersecting e. Note that this means that the identity of the
entire path is determined by the edge e, and therefore, the number of paths of P ′ in
which u is the last vertex can be upper bounded by degW (u) ≤ 2.
If u is the first vertex of the path, then the first edge of the path is the single edge
e ∈ WM that includes u, and the other edges of the path are the single edge e′ ∈ M0
that intersect e and the single edge e′′ ∈W that intersects e′. Hence, the entire path is
determined by the fact that u is its first vertex, and therefore, there can be only a single
path in P ′ in which u is the first vertex. ◀

Originally, all the paths of P ′′ can be picked in the third pass of TriangleFreeAlg
(Algorithm 4) since they are vertex disjoint from the paths of P1. However, as Algorithm 4
starts to add paths to P2, it stops being possible to add some paths of P ′′ to P2. Still, we
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can lower bound the size of P2 in terms of the size of P ′′. The proof of the next lemma is
based on a logic similar to the one used in the previous proof. Thus, we defer this proof to
Appendix C.

▶ Lemma 23. |P2| ≥ 1
6 |P

′′| ≥ 5
9 |M

∗| − 8
9 |M0| − |P1|.

▶ Corollary 24. The size of the output of TriangleFreeAlg is |M0| + |P1| + |P2| ≥
11
18 |M

∗| = ( 1
2 + 1

9 )|M∗|.

Proof. The size of the output of TriangleFreeAlg is |M0|+ |P1|+ |P2| by Lemma 17,
thus, we only need to lower bound this sum. To do this, note that

|M0|+ |P1|+ |P2| ≥ |M0|+ |P1|+ { 5
9 |M

∗| − 8
9 |M0| − |P1|}

= 5
9 |M

∗|+ 1
9 |M0| ≥ 5

9 |M
∗|+ 1

18 |M
∗| = 11

18 |M
∗| ,

where the first inequality follows from Lemma 23, and the second inequality follows from the
observation made at the beginning of this section (namely, that |M0| is a 1/2-approximation
for |M∗| because M0 is a maximal matching). ◀

Theorem 3 now follows from Corollaries 18 and 24.

5 Conclusion and Future Work

We have presented in this paper a new approach for semi-streaming algorithms for the
maximum matching problem, and showed that this approach can be used to improve the
state-of-the-art in two and three passes. Our approach calls for a more sophisticated logic
in the first pass rather than simply building a maximal matching in a greedy fashion, as is
done by previous algorithms. In our implementation of this approach, we greedily built in
this pass connected components of size 3 (recall that greedily building a maximal matching
is equivalent to greedily building connected components of size 2). Similarly, one can try to
greedily construct in the first pass larger connected component, which we believe is likely to
yield even better approximation guarantees. However, the analysis of algorithms based on
such a first pass is likely to be inelegant, and to require a lot of case analysis since larger
components allow many more configurations compared to smaller components. It might
also be interesting to try to come up with an interesting algorithm that uses a completely
different kind of logic in its first pass.

In addition to the above, we have used in this paper the traditional technique to improve
over the state-of-the-art for three passes. Further improving the approximation ratio of
two-pass and three-pass algorithms (or proving that this is not possible), is a nice question
that is still open. We conclude by recalling that the most basic open question in this field of
research is still breaking the (almost trivial) 1/2-approximation for single-pass algorithms.
We hope that our new approach will lead to progress on both the above open questions.
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A Three-Pass Algorithm for General Graphs

In this section we prove Theorem 4, which we repeat here for convenience.

▶ Theorem 4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm
for finding a maximum size matching in a general graph.

The algorithm that we use to prove Theorem 4 is given as Algorithm 5. Since this
algorithm is very similar to the algorithm TriangleFreeAlg presented in Section 4, we
use below the terminology and notation defined in the last section.

Intuitively, the reason why TriangleFreeAlg does not apply to general graphs is that
given an edge (a, b) ∈M0, a wing (u, a) ∈WM and a wing (b, v) ∈W , we are not guaranteed
that these three edges form an augmenting path for the matching M0 because they might
represent a triangle. To overcome this hurdle, Algorithm 5 constructs two sets of edges in
its second pass: a set W1 constructed exactly like the set W in TriangleFreeAlg, and a
set W2 constructed in the same way, but while excluding the edges of W1. Since W1 and
W2 are disjoint, given an edge (a, b) ∈M0 and a wing (u, a) ∈WM , at most one of the sets
W1 or W2 can contain a wing that forms a triangle together with these two edges, which
intuitively allows us to bound the deterioration in the approximation guarantee resulting
from the existence of such triangles.

We note that the analysis of TriangleFreeAlg up to Lemma 20 applies to Algorithm 5
with a single modification. Namely, Lemma 20 provides a lower bound on the size of the set
W , which translates into an identical lower bound on the size of the corresponding set W1 in
Algorithm 5.

In the rest of this section, it will be convenient to work with the set W ′
2 constructed by

Algorithm 6 (note that Algorithm 6 is used for analysis purposes only). Intuitively, W ′
2 is

constructed in the same general way in which W1 and W2 are constructed; however, while all
the edges of the input stream are considered in the construction of W1, and only the edges of
E \W1 are considered in the construction of W2, the construction of W ′

2 takes into account
the edges of (E \W1) ∪WM .
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Algorithm 5 Maximum Matching via Augmenting Paths – General Graphs.

// First Pass
1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

// Second Pass
4 Let W1 ← ∅, W2 ← ∅.
5 for every edge e that arrives do
6 if e intersects exactly one vertex u ∈ V (M0) then
7 Let v denote the other end-point of e (i.e., the end-point that is not u).
8 if degW1(u) < 1 and degW1(v) < 2 then Add e to W1.
9 else if degW2

(u) < 1 and degW2
(v) < 2 then Add e to W2.

// Post-processing
10 Let GA be a multi-graph over the vertices V \V (M0). For every path Pu,v of length 3

in W1 ∪W2 ∪M0 between two distinct vertices u, v ∈ V \ V (M0), we add an edge
(u, v) to the graph GA. // This is a multi-graph because there might be
multiple such paths between a pair of vertices of V \ V (M0).

11 Find a maximum size matching MA in GA.
12 Let P1 ← {Pu,v | (u, v) ∈MA}.

// Third Pass
13 Let P2 ← ∅.
14 for every edge w′ that arrives do
15 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u ̸∈ V (M0),

(ii) w′ = (u, a), (iii) (a, b) ∈M0, (iv) (b, v) ∈W1 ∪W2 and (v) u ̸= v then
16 Add the path u, a, b, v to P2.

17 return M0 ⊕
(⋃

P ∈P1∪P2
E(P )

)
.

Since W ′
2 is a subset of W1 ∪W2 by construction, the set W1 ∪W2 that is often referred

to by Algorithm 5 is identical to the set W1 ∪W ′
2. Furthermore, one can observe that the

lower bound proved by Lemma 20 for W1 applies also to W ′
2 because all the edges of WM

are considered for addition to W ′
2 at some point (either during the construction of W2 or in

Algorithm 6). This implies the following observation.

▶ Observation 25. |W1|+ |W ′
2| ≥ 4

3 |WM |.

We now define a multi-set P ′ similar to the set of the same name used in the analysis of
TriangleFreeAlg. Specifically, P ′ includes every triangle or path obtained by combining
an edge (u, a) ∈WM , an edge (a, b) ∈M0 and an edge (b, v) of either W1 or W ′

2. Moreover,
if there are multiple options to obtain a path or triangle in this way, then the multiplicity of
the path or triangle in P ′ will be equal to the number of these options. To make this point
clearer, we provide a pseudocode for constructing P ′ as Algorithm 7 (again, Algorithm 7 is
used for analysis purposes only).

▶ Observation 26. |P ′| ≥ 20
3 |M

∗| − 32
3 |M0|.
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Algorithm 6 Construction of W ′
2.

1 Let W ′
2 ←W2.

2 for every edge (u, v) ∈W1 ∩WM do
3 Assume without loss of generality that u is the end point of (u, v) that belongs to

V (M0).
4 if degW ′

2
(u) < 1 and degW ′

2
(v) < 2 then Add (u, v) to W ′

2.

Algorithm 7 Construction of P ′.

1 Let P ′ ← ∅.
2 for every edge (u, a) ∈WM do
3 for every edge (a, b) ∈M0 do
4 for every edge (b, v) ∈W1 do Add the path/triangle (u, a), (a, b), (b, v) to P ′.
5 for every edge (b, v) ∈W ′

2 do Add the path/triangle (u, a), (a, b), (b, v) to P ′.

Proof. Repeating the proof of Observation 21, we get that at least |W1|+ |WM | − |V (M0)|
paths are added to P ′ in Line 4 of Algorithm 7, and at least |W ′

2|+ |WM | − |V (M0)| paths
are added to P ′ in Line 5 of Algorithm 7. Therefore,

|P ′| ≥ |W1|+ |W ′
2|+ 2|WM | − 2|V (M0)| ≥ ( 4

3 + 2)|WM | − 2|V (M0)|
≥ 2( 4

3 + 2)(|M∗| − |M0|)− 2|V (M0)| = 20
3 |M

∗| − 32
3 |M0| ,

where the second inequality follows from Observation 25, and the last inequality follows from
Observation 19. ◀

An element (path or triangle) of P ′ has a potential to be added to P2 by Algorithm 5
only if it is a path (i.e., not a triangle) and none of its vertices appears in P1. Let P ′′ be the
multi-set of such paths. The following lemma lower bounds the size of P ′′.

▶ Lemma 27. |P ′′| ≥ |P ′| − 12|P1| − |M0| ≥ 20
3 |M

∗| − 35
3 |M0| − 12|P1|.

Proof. The second inequality of the lemma follows from Observation 26, and therefore, we
concentrate on proving the first inequality. Let P̃ ′ be the multi-set of paths/triangles from
P ′ that do not intersect any vertex of P1. Repeating the proof of Lemma 22, we get that
P̃ ′ contains all the paths/triangles added to P ′ by Line 4 of Algorithm 7 except for up to
6|P1| paths/triangles, and the same is true for the paths/triangles added to P ′ by Line 5 of
Algorithm 7. Since every path/triangle in P ′ was added to this mutli-set by either Line 4 or
Line 5 of Algorithm 7, we get |P̃ ′| ≥ |P ′| − 12|P1|.

Since P ′′ includes every path of P̃ ′, to complete the proof of the lemma it remains to
show that P̃ ′ contains at most |M0| triangles. To see this, we recall that every triangle (or
path) in P̃ ′ must include a single edge of M0, and we claim that no two triangles in P̃ ′ can
share this edge (and therefore, the number of triangles is upper bounded by the number of
edges in M0). Assume towards a contradiction that this claim does not hold, i.e., that there
exist two triangles T1, T2 ∈ P̃ ′ sharing an edge e ∈ M0. Each one of these triangles must
include one edge of WM . Let e1 and e2 denote the edges of WM in T1 and T2, respectively,
and let e′

1 the single edge of T1 which is not e or e1 and e′
2 be the single edge of T2 which is

not either e or e2. We now need to consider two cases. The first case is when e1 = e2. In this
case e′

1 and e′
2 must be also identical, and cannot belong to WM because e1 = e2 belongs to
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WM and WM is a subset of the matching M∗. However, this leads to a contradiction because
one of the edges e′

1 or e′
2 must belong to W1, and the other of these edges must belong to

W ′
2, and the sets W1 and W ′

2 can intersect only on edges of WM .
It remains to consider the case in which e1 ̸= e2. Let u1, u2 be the end-points of these

edges, respectively, that do not belong to the edge e of M0. Since e1 ̸= e2 are edges of the
WM , which is a subset of the matching M∗, u1 and u2 must be distinct. Consider now the
path e′

1, e, e′
2. One can observe that this is indeed a path because (i) u1 ≠ u2 and (ii) the

fact that e1 and e2 are vertex disjoint implies that e′
1 and e′

2 intersect different end-points of
e. Furthermore, since T1, T2 ∈ P̃ ′, this path does not intersect any vertex of P1, and thus,
its existence contradicts the maximality of the matching MA constructed by Algorithm 5
because both e′

1 and e′
2 belong to W1 ∪W ′

2 = W1 ∪W2. ◀

We are now ready to lower bound the number of augmenting paths found by Algorithm 5
during its third pass.

▶ Lemma 28. |P2| ≥ |P ′′|/12 ≥ 5
9 |M

∗| − 35
36 |M0| − |P1|.

Proof. The proof of the lemma is very similar to the proof of Lemma 23, except that now
every path of P2 might get a charge of up to 12 because the paths of P ′′ originally added to
P ′ by Line 4 of Algorithm 7 can contribute up to 6 to this charge, and the same goes for the
paths of P ′′ originally added to P ′ by Line 5 of this algorithm. ◀

Theorem 4 now follows from Corollary 18 and the next corollary.

▶ Corollary 29. The size of the matching produced by Algorithm 5 is at least ( 1
2 + 1

14.4 )|M∗|.

Proof. By Lemma 17, the size of the matching produced by Algorithm 5 is at least

|M0|+ |P1|+ |P2| ≥ 5
9 |M

∗|+ 1
36 |M0| ≥ 5

9 |M
∗|+ 1

72 |M
∗| = ( 1

2 + 1
14.4 )|M∗| ,

where the first inequality holds by Lemma 28, and the second inequality holds since M0 (as
a maximal matching) is of size at least 1

2 |M
∗|. ◀

B Notation Summary

The next table summarizes the notation used in the analyses of our non-MMF algorithms.

Notation Explanation
(#single) The number of isolated edges in (V, P ).

(#double) The number of connected components in (V, P ) that are paths of
length 2.

(#triangle) The number of triangles in (V, P ).

(#component-free) The number of edges of M∗ that connect a connection vertex of a
connected component of (V, P ) to an isolated vertex of (V, P ).

(#component-component) The number of edges of M∗ that connect connection vertices of two
different connected components of (V, P ).

(#single-single) The number of edges of M∗ whose two end points belong to (not
necessarily distinct) isolated edges of (V, P ).

(#single-component)
The number of edges of M∗ that either connect a vertex of an
isolated edge of (V, P ) with a connection vertex of some (other)
connected component of (V, P ).

(#middle)
The number of edges that either (i) intersect the middle vertex of a
length 2 path connected component of (V, P ), or (ii) are included
within a triangle connected component of (V, P ).
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C Omitted Proofs

▶ Lemma 12. It holds that 4|A2| ≥ (#component-component) + (#component-free) −
(#non-M∗-triangles).

Proof. The proof of Lemma 12 is very similar to the proof of Lemma 10, and therefore,
we only sketch it. We first define that an edge e ∈ A2 excludes an edge f of M∗ counted
by either (#component-component) or (#component-free) if they both intersect the same
connected component of (V, P ). Like in the proof of Lemma 10, it can be argued that
(#component-component) + (#component-free) is upper bounded by the total number of
edges of M∗ excluded by the edges of A2, and on the other hand, every edge e of A2 excludes
up to 4 + T (e) edges, where T (e) is the number of triangles counted by (#non-M∗-triangles)
that intersect e. Therefore,

(#component-component) + (#component-free) ≤
∑

e∈A2

[4 + T (e)]

≤ 4|A2|+ (#non-M∗-triangles) ,

where the second inequality holds since every connected component of (V, P ) intersects only
a single edge of A2. The lemma now follows by rearranging the last inequality. ◀

▶ Lemma 17. The paths in P1 and P2 are vertex disjoint, and therefore, the output of
TriangleFreeAlg is a matching of size |M0|+ |P1|+ |P2|.

Proof. Given the above discussion, it is clear that all the paths in P1 ∪P2 are augmentation
paths with respect to M0, which implies that the first part of the lemma indeed implies
the second part. Furthermore, one can observe that the condition in Line 3 of Algorithm 4
guarantees that the paths in P2 are vertex disjoint from each other and from the paths of
P1. Thus, to complete the proof of the lemma, it remains to argue that the paths in P1 are
also vertex disjoint.

Recall that the end-points of every path in P1 belong to V \V (M0) and the internal points
of these paths belong to V (M0). Hence, to show that the paths in P1 are vertex disjoint, it
suffices to argue this separately for their end-points and their internal nodes. Every path
Pu,v ∈ P1 corresponds to an edge (u, v) in the matching MA. Since the end-points of the
path Pu,v are also the end-points of this edge, we get that the paths in P1 must have disjoint
end-points because MA is a matching. Consider now some path Pu,v ∈ P1, and let us denote
the internal nodes of this path by a and b. Since a and b appear only in the edge (a, b) of M0
(because M0 is a matching), we get that if one of them belongs to a path of P1, then the other
belongs to this path as well. Furthermore, by Line 5 of Algorithm 3, degW (a) = degW (b) = 1,
which implies that any path of P1 that includes the nodes a and b as internal nodes must in
fact be identical to Pu,v itself. Hence, no two paths in P1 share internal nodes. ◀

▶ Lemma 23. |P2| ≥ 1
6 |P

′′| ≥ 5
9 |M

∗| − 8
9 |M0| − |P1|.

Proof. We begin the proof by observing that no edge e ∈ M0 is connect by two distinct
wings w1, w2 ∈W to vertices of V \ (V (M0) ∪ V (P1)). Assume towards a contradiction that
this is not true, then there is an edge e in GA corresponds to the path P defined as w1, e, w2.
Since MA is a maximum matching in GA, it must include at least one edge that contains
some end-point of P (otherwise, the edge corresponding to P could be added to MA, which
violates its maximality); which contradicts the definition of either w1 or w2.

For every path P ′′ ∈ P ′′, let us charge a cost of 1 to some path of P2 that intersects
it. To see why such a path must exist, let us denote by eM the edge of P ′′ that belongs to
WM (the first edge of P ′′). When eM arrives, the path P ′′ was one candidate to be added
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to P2 by Algorithm 4. If this candidate was still feasible at this time (in the sense that it
was vertex disjoint from P2), then Algorithm 4 must have added either P ′′ to P2 or another
path that includes eM . In either case, following the arrival of eM , some path intersecting P ′′

(which is possibly P ′′ itself) appears in P2 – and can be charged.
Our next goal is to show that the total cost charged to any single path of P2 is at most 6,

which implies the lemma because the total cost charged to all the paths of P2 is exactly |P ′′|.
We do that by making two observations.

Since P ′′ ⊆ P ′, we get by the proof of Lemma 22 that at most 3 paths of P ′′ can include
any given vertex u ∈ V \ V (M0).
Our second observation is that, if a path P ′′ ∈ P ′′ intersects a path P2 ∈ P2, then they
must intersect on an end-point of P2. Assume towards a contradictions that they only
intersect on an internal node a. Since the middle edges of both paths are edges of M0
that include a, both internal edges must be the same. Let us denote this internal edge
by e. Furthermore, as explained above, there can be only a single edge w ∈ W that
intersects e and does not include a vertex of V (P1). This edge must belong also to both
paths, and therefore, the end-point of w that does not belong to V (M0) is an end-point
of both P ′′ and P2.

Combining the above two observations, we get that, for every path P2 ∈ P2, only paths of
P ′′ intersecting an end-point of P2 can charge a cost to P2, and there can be at most 3 paths
of P ′′ intersecting each such end-point. Since P2 has only two end-points, this implies that
at most 6 paths of P ′′ can charge P2. ◀
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Abstract
We study a natural generalization of the celebrated ordered k-median problem, named robust ordered
k-median, also known as ordered k-median with outliers. We are given facilities F and clients
C in a metric space (F ∪ C, d), parameters k, m ∈ Z+ and a non-increasing non-negative vector
w ∈ Rm

+ . We seek to open k facilities F ⊆ F and serve m clients C ⊆ C, inducing a service
cost vector c = {d(j, F ) : j ∈ C}; the goal is to minimize the ordered objective w⊤c↓, where
d(j, F ) = mini∈F d(j, i) is the minimum distance between client j and facilities in F , and c↓ ∈ Rm

+

is the non-increasingly sorted version of c. Robust ordered k-median captures many interesting
clustering problems recently studied in the literature, e.g., robust k-median, ordered k-median, etc.

We obtain the first polynomial-time constant-factor approximation algorithm for robust ordered
k-median, achieving an approximation guarantee of 127. The main difficulty comes from the presence
of outliers, which already causes an unbounded integrality gap in the natural LP relaxation for robust
k-median. This appears to invalidate previous methods in approximating the highly non-linear
ordered objective. To overcome this issue, we introduce a novel yet very simple reduction framework
that enables linear analysis of the non-linear objective. We also devise the first constant-factor
approximations for ordered matroid median and ordered knapsack median using the same framework,
and the approximation factors are 19.8 and 41.6, respectively.
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1 Introduction

k-supplier and k-median are two of the most fundamental clustering problems. In both
problems, we are given facilities F and clients C in a metric space (F ∪C, d) and a parameter
k ∈ Z+; we need to select k facilities F ⊆ F , and only the objective functions are different.
In k-supplier, the goal is to minimize the maximum distance from each client to its nearest
facility in F , i.e., maxj∈C d(j, F ); k-supplier is NP-hard to approximate to a factor better
than 3 [18], and a tight 3-approximation is given in [18]. In k-median, the objective is
the sum of distances from each client to its nearest facility, i.e.,

∑
j∈C d(j, F ); k-median is

NP-hard to approximate to a factor of (1 + 2/e− ϵ) for every ϵ > 0 [20], and several constant-
factor approximations are developed [2, 9, 11, 14, 21, 26]; currently the best approximation
guarantee is (2.675 + ϵ) due to Byrka et al. [4].

Under the basic input (F , C, d, k), let c0 = {d(j, F ) : j ∈ C} be the service cost vector
induced by solution F . The theoretical computer science community has lately shown
increasingly more interests in clustering problems with more nuanced objective functions
than k-supplier and k-median. For example, the ordered k-median problem (OkMed) naturally
unifies these two problems via the ordered objective w⊤

0 c↓
0, where c↓

0 is the non-increasingly
sorted version of c0 and w0 is a given non-increasing non-negative vector; it is easy to
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see that OkMed recovers k-supplier and k-median using only 0-1 vectors for w0. Several
constant-factor approximations have been developed for OkMed [5, 7], and currently the best
ratio is (5 + ϵ) due to Chakrabarty and Swamy [8].

Meanwhile, a parallel line of research called robust clustering (also known as clustering
with outliers) also attracts a lot of attention. These problems allow us to discard a certain
number of clients and define the clustering objective on the remaining clients. In robust k-
center (RkCen), we are given an additional integer parameter m ≤ |C| besides the basic input
(F , C, d, k) where F = C; we need to open k facilities F ⊆ F and choose m clients C ⊆ C,
and the objective is the maximum service cost in C, i.e., maxj∈C d(j, F ). Charikar et al. [10]
give a 3-approximation algorithm for RkCen. Chakrabarty et al. [6] improve the result to a
best-possible 2-approximation (also see Harris et al. [17]). It is easy to see that the objective
of RkCen is equivalent to e⊤

|C|−m+1c↓
0, where et = {0, . . . , 0, 1, 0, . . . , 0} is the all-zero vector

except for its t-th coordinate, which is 1. In robust k-median (RkMed), the input is the same
as RkCen except that C and F are distinct, and the objective is the sum of service costs in
C, i.e.,

∑
j∈C d(j, F ). Chen [13] gives the first constant-factor approximation for RkMed.

Krishnaswamy et al. [23] employ an iterative rounding method and obtain an approximation
ratio of (7.081 + ϵ) for RkMed, which is later improved to (6.994 + ϵ) by Gupta et al. [16].
The objective of RkMed is equivalent to σ⊤

|C|−m+1c↓
0, where σt = {0, . . . , 0, 1, . . . , 1} is the

all-one vector except for its first (t− 1) coordinates, which are 0’s.
In this paper, we study a new problem called robust ordered k-median (ROkMed).

Formally, given the basic input (F , C, d, k), a parameter m ≤ |C| and a non-increasing
non-negative vector w ∈ Rm

+ , we are asked to open k facilities F ⊆ F and serve m clients
C ⊆ C, inducing a service cost vector c = {d(j, F ) : j ∈ C} ∈ RC

+ (notice that c is different
from c0, since c0 is indexed by C); the goal is to minimize w⊤c↓. Clearly, ROkMed unifies
the aforementioned problems of OkMed, RkCen and RkMed by choosing m and w suitably.

We can also define the objective of ROkMed using c0 = {d(j, F ) : j ∈ C} as follows. Let
w0 ∈ R|C|

+ be a non-negative vector, such that its first (|C| −m) coordinates are 0’s, and
the remaining coordinates are non-increasing; the objective of ROkMed is w⊤

0 c↓
0. We notice

that this weight vector w0 exhibits a distinctly unimodal shape; that is, there exists an
index t (which is (|C| −m + 1) here) such that w0 is non-decreasing on indexes {1, . . . , t}
and non-increasing on indexes {t, . . . , |C|} (see Figure 1 for an example). Therefore, this
objective function places a heavier emphasis on clients that are close to the “mode” of w0.
This can also be motivated by the following real-world scenario. Suppose the underlying
metric d models the latencies of an online streaming service in different regions (i.e., clients),
where the facilities represent potential data center locations. From a business point of view,
one could strategically disregard clients that have very poor latencies (they might stop using
the service anyway) and clients that have very good latencies (they typically have relatively
few issues or complaints); the majority of maintenance and servicing costs will then come
from clients with medium latencies. By choosing w0 properly, the objective of ROkMed can
be the sum of sorted service costs, say, between the 35th percentile and the 65th percentile,
thus acting as a good optimization objective for this scenario. We believe this motivating
example for ROkMed offers a practical clustering criterion, and our results will stimulate
more studies towards clustering objectives with arbitrary unimodal weight vectors.

1.1 Our Contributions
We first study robust ordered k-median and obtain the following main result of this paper.

▶ Theorem 1. There exists a polynomial-time 127-approximation algorithm for ROkMed.
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e|C|−m+1

1

(a) RkCen.

σ|C|−m+1

1

(b) RkMed.

w0

(c) OkMed.

w0

(d) ROkMed.

Figure 1 An illustration of different weight vectors used in the objectives of RkCen, RkMed,
OkMed and ROkMed. The coordinates are represented using unit-width rectangles.

At a high level, we build a simple reduction framework that reduces each ROkMed
instance I to an instance J of a new problem; the objective of J is still non-linear, but
is formulated as a simple sum and easier to approximate. Moreover, by (approximately)
solving the new problem, we show that the approximation guarantee of the solution in J

is preserved up to a constant factor in I (see Theorem 3 for the formal statement). Thus,
it suffices to obtain a constant-factor approximate solution for each new instance J . To
this end, we adapt the iterative rounding algorithm by Krishnaswamy et al. [23]. We note
that this rounding algorithm is only applicable to the non-linear objective of J thanks to
our parameterized reduction framework. Though Gupta et al. [16] give a slightly improved
iterative rounding algorithm, we do not adapt their algorithm here. We choose the original
algorithm in [23] for its simplicity of presentation. The improvement based on [16] is likely
to be small due to our different metric discretization method.

We extend our results to ordered matroid median (OMatMed) and ordered knapsack
median (OKnapMed), which are natural generalizations of OkMed by replacing the cardinality
constraint |F | ≤ k with a matroid constraint and a knapsack constraint, respectively (see
Section 3.2 for the formal definitions). To the best of our knowledge, no approximation
algorithms are known for OMatMed and OKnapMed prior to our study.

▶ Theorem 2. There exist a polynomial-time 19.8-approximation algorithm for OMatMed
and a polynomial-time 41.6-approximation algorithm for OKnapMed.

1.2 Overview of Techniques
Above all, we need to have apt approximate forms of the ordered objective and write a
suitable LP relaxation for ROkMed. To start with, let us first review the sparsification method
proposed by Aouad and Segev [1] and Byrka et al. [5] for OkMed. In the pre-processing phase,
one first guesses disjoint intervals I0, I1, . . . with each It ⊆ R+ having the form (x, (1 + ϵ)x]
for some small ϵ > 0, so that the service costs falling into the same interval differ by only a
multiplicative factor of (1 + ϵ). Let wavg

I be the average weight multiplied with service costs
in the interval I in a fixed optimal solution. If we apply the same weight wavg

I to all service
costs in I, we can show that the optimal solution exhibits a similar objective by only losing
a (1 + O(ϵ)) factor. The pre-processing phase proceeds to build the premise that the guessed
intervals {I0, I1, . . . } and the guessed average weights {wavg

I0
, wavg

I1
, . . . } roughly agree with

the unknown optimal solution; this is done by showing the number of necessary guesses is
bounded by a polynomial, thus we can use exhaustive search. To “pre-apply” the average
weights in an LP relaxation, we define a function f as f(d(i, j)) = wavg

I · d(i, j) for d(i, j) ∈ I,
and put f(d(i, j)) instead of d(i, j) in the LP objective. Byrka et al. [5] implicitly use such a
function and give a (38 + ϵ)-approximation for OkMed.

Unfortunately for ROkMed, this objective function seems to suffer from the inherent
unbounded integrality gap in the natural relaxation for basic RkMed (see, e.g., [23]; also
recall that RkMed is a special case of ROkMed). Note that this is not an issue for OkMed
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since the integrality gap in the natural relaxation for k-median is a constant [11, 20]. Roughly
speaking, to overcome this gap in the robust case and obtain constant-factor approximation
guarantees, one usually strengthens the relaxation by adding more constraints, obtains
an almost-integral solution via an auxiliary LP, and rounds the last few fractionally-open
facilities to integral ones. During the last step, extra facility-client connections will incur
extra costs; to the best of our efforts, the non-linearity of the ordered objective prevents us
from obtaining a constant-factor approximate solution, even if we use the aforementioned
new LP objective defined via f .

We overcome this technical barrier by considering another simple but effective objective
function. We replace f(d(i, j)) with f(λd(i, j)), where λ ∈ (0, 1] is a small constant parameter
and f is defined similarly as above. We note that the same function has been used in [1] to
provide a logarithmic approximation guarantee for OkMed; we give a much tighter analysis
here and achieve a constant guarantee. Intuitively speaking, by scaling the underlying metric
and still comparing the solutions with the original optimum, we can bound the extra costs
incurred in the robust case. We point out that for the optimal service cost vector o, the
gap between each f(oj) and f(λoj) may be ω(1/λ), since f is in fact non-decreasing and
superlinear. Nevertheless, we overcome this new gap by obtaining a linear upper bound for
any integral solution to the new relaxation. More specifically, let opt ≥ 0 be the optimum
of the original instance; we show that any integral solution with an objective of V in the
λ-scaled relaxation induces a solution to the original problem with an objective of at most
λ−1(V + O(1)opt). Furthermore, we show that there exists an algorithm which outputs an
integral solution with an objective of V = O(λ)opt. Combining these two results, we obtain
an approximate solution for ROkMed with an objective that is O(1/λ) times the optimum.

1.3 Other Related Work
Clustering problems with more general combinatorial constraints have been extensively
studied in recent years. Chen et al. [12] give a 3-approximation for matroid center.
Krishnaswamy et al. [22] give the first constant-factor approximation for matroid me-
dian, and thereafter the ratio is improved in [11, 27]; currently the best ratio is 7.081 due
to Krishnaswamy et al. [23]. Hochbaum and Shmoys [18] study knapsack center and give
a 3-approximation. As for knapsack median, Kumar [24] gives the first constant-factor
approximation algorithm; the ratio is later improved in [3, 11, 23, 27], and the best ratio so
far is (6.387 + ϵ) due to Gupta et al. [16].

2 The Reduction Framework

In this section, we maintain a generic problem called OrdClst, i.e., ordered clustering, which
can be later instantiated as different concrete problems such as ROkMed. An instance I of
OrdClst consists of a facility set F , a client set C, a finite metric d on F ∪C, feasible facility
sets F ⊆ 2F , feasible client sets C ⊆ 2C , and a non-increasing non-negative vector w ∈ Rm

+ ;
each C ∈ C satisfies |C| = m, and d(u, v) ≥ 1 for u, v ∈ F ∪ C that are not co-located. The
goal is to choose F ∈ F and C ∈ C that induce a service cost vector c = {d(j, F ) : j ∈ C}
such that the ordered objective cost(w; c) = w⊤c↓ is minimized.

We devise a general framework that reduces OrdClst instances to other clustering
problems with simpler objective functions. Given an instance I = (F , C, d, F , C , w) of
OrdClst and a non-decreasing function f : R+ → R+, we say J = (F , C, d, F , C , f) is a
reduced instance of I , whose goal of optimization is to choose F ∈ F and C ∈ C such that
the new objective

∑
j∈C f(d(j, F )) is minimized. Using this reduction, we will show that
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when f satisfies some certain nice properties, we only need to study the reduced instance
J , whose objective might be more tangible and easier to deal with. Moreover, we will show
that an approximate solution to the original instance I can be directly recovered from an
approximate solution to J by only losing a constant factor in the approximation guarantee.

The framework adapts previous sparsification methods [1, 5] for OkMed, and generalizes
the helper functions therein to overcome the technical difficulties that may be present in
OrdClst (see Section 1.2 for the discussion). For convenience, for each function f : R+ → R+
and λ > 0, we define fλ(x) := f(λx), ∀x ≥ 0. We let n0 = |F ∪ C| and present the following
core theorem of the reduction framework.

▶ Theorem 3. Let I = (F , C, d, F , C , w) be an instance of OrdClst with optimum opt ≥ 0.
For each ϵ ∈ (0, 1), there exists an algorithm that outputs (n0/ϵ)O(1/ϵ) non-decreasing
functions R+ → R+, such that there is an output f satisfying the following for each λ ∈ (0, 1].
We say such f is faithful.

The reduced instance Jfλ
= (F , C, d, F , C , fλ) has an optimum of at most λ(1 + 9ϵ)opt.

If an algorithm produces a solution with objective V for Jfλ
, the same solution attains

an objective of at most λ−1(V + (1 + 4ϵ)opt) for I .

As a direct consequence, if we obtain a solution to any “faithfully” reduced instance Jfλ

with an objective of V ≤ γopt, it is a λ−1(1 + γ + 4ϵ)-approximate solution to I . Before
we proceed with the proof, we discuss the sparsification method used for constructing such
functions. We shall only consider these functions in the remainder of this section. We note
that the same functions are also used in a much more straightforward fashion in [5].

Let (F ⋆, C⋆) be a fixed (unknown) optimal solution to the original problem, o ∈ RC⋆

+ be
the corresponding service cost vector, and opt = cost(w; o) be the optimal objective thereof.
We first guess the exact value of o↓

1, i.e., the largest service cost, which only has a polynomial
number of possible values. We use exhaustive search and assume o↓

1 is correctly guessed in
the sequel; we also assume o↓

1 > 0, otherwise the solution is trivial.
Let T be the smallest integer s.t. ϵ(1 + ϵ)T > m and define intervals IT +1, IT , ..., I0 where

IT +1 =
[

0,
ϵo↓

1
m

]
; It =

(
ϵo↓

1
m

(1 + ϵ)T −t,
ϵo↓

1
m

(1 + ϵ)T −t+1
]

, ∀t ∈ [T ]; I0 =
(

ϵo↓
1

m
(1 + ϵ)T , +∞

)
.

Since
⋃T +1

t=0 It = R+ and they are mutually disjoint, each d(i, j) falls into exactly one interval.
Next, to avoid technical difficulties caused by weights that are too small, we define a

new vector w̃ where w̃i = max{wi,
ϵw1
m }, i ∈ [m]. We obtain the following simple fact, by

observing w̃ ≥ w and cost(w̃; v)− cost(w; v) ≤ m · ϵw1
m · v↓

1 ≤ ϵ · cost(w; v).

▶ Fact 4. For each v ⊆ Rm
+ , one has cost(w; v) ≤ cost(w̃; v) ≤ (1 + ϵ)cost(w; v).

Now, let us consider the optimum opt = w⊤o↓. In particular, we consider the entries of
o↓ that fall into different intervals IT +1, IT , ..., I0, and (iteratively) define the average weight
wavg

t w.r.t. o↓, w̃ and interval It, such that wavg
0 = w̃1 and

wavg
t =


(∑

j:o↓
j

∈It
w̃j

)/ ∣∣o↓ ∩ It

∣∣ o↓ ∩ It ̸= ∅, t ≥ 1,

wavg
t−1 o↓ ∩ It = ∅, t ≥ 1.

Since w̃ is non-increasing, it follows that wavg is also non-increasing. Though the actual
sequence wavg is unknown, we can estimate it using another non-increasing sequence wgss

such that for each 0 ≤ t ≤ T + 1, wgss
t is an integer power of (1 + ϵ) and satisfies mins wavg

s ≤
wgss

t ≤ (1 + ϵ) maxs wavg
s . Since the entries of wavg are at least minj w̃j ≥ ϵw1/m and
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at most w1, the number of possible values is O(log1+ϵ(m/ϵ)). By the definition of T , we
have T = O(log1+ϵ(m/ϵ)). Thus, using routine calculation, the number of all possible non-
increasing sequences for wgss is at most (m/ϵ)O(1/ϵ). Up to now, we have only guessed o↓

1 and
wgss, hence the total number of possible guesses is at most (n0/ϵ)O(1/ϵ) since m ≤ |C| ≤ n0.

Proof of Theorem 3. For each guess (o↓
1, {wgss

t }T +1
t=0 ), we define a piece-wise linear function

f(x) = wgss
t x, x ∈ It, 0 ≤ t ≤ T + 1.

Because wgss is non-increasing, f : R+ → R+ is non-decreasing and superlinear (i.e.,
f(αx) ≥ αf(x) for each α ≥ 1 and x ≥ 0). According to the previous analysis, we consider
at most (n0/ϵ)O(1/ϵ) such functions.

To prove the theorem, it suffices to show the existence of a faithful function. In the sequel,
we assume that the guessed values are as desired; that is, o↓

1 is precisely the largest service
cost in the optimal solution and for each 0 ≤ t ≤ T + 1, one has wgss

t ∈ [wavg
t , (1 + ϵ)wavg

t ).
We show that the corresponding function f is faithful. We need the following two lemmas.

▶ Lemma 5. Let c = {d(j, F ) : j ∈ C} ∈ RC
+ where F ∈ F and C ∈ C . For each λ ∈ (0, 1],

one has λ · w̃⊤c↓ ≤
∑

j∈C f(λcj) + (1 + 3ϵ + ϵ2)opt.

Proof. Recall that |C| = m for each feasible C ∈ C . We suppose C = [m] for convenience.
Consider each j ∈ [m] s.t. λw̃jc↓

j > f(λc↓
j ). Notice that λc↓

j /∈ I0, otherwise one has
wgss

0 ≥ wavg
0 = w̃1 ≥ w̃j and λw̃jc↓

j > f(λc↓
j ) = wgss

0 (λc↓
j ) ≥ λw̃jc↓

j , which is a contradiction.
If λc↓

j ∈ IT +1 = [0, ϵo↓
1/m], one has λw̃jc↓

j ≤ w̃j(ϵo↓
1/m) ≤ ϵ ·w⊤o↓/m since w̃j ≤ w̃1 = w1.

Then, suppose λc↓
j ∈ It, t ∈ [T ]. We claim λc↓

j ≤ (1 + ϵ)o↓
j . For the sake of contradiction,

assume otherwise, i.e., λc↓
j > (1 + ϵ)o↓

j , thus λc↓
j and o↓

j must be in different intervals by the
definition of It. Suppose o↓

j ∈ It′ for some t′ > t, which implies wavg
t ≥ w̃j , because wavg

t

is the average weight on It w.r.t. o↓, and w̃j is the weight for o↓
j ∈ It′ . Therefore, because

wgss
t ≥ wavg

t using our initial conditions, we have f(λc↓
j ) = wgss

t (λc↓
j ) ≥ λwavg

t c↓
j ≥ λw̃jc↓

j ,
contradicting our initial assumption. Thus the claim is true.

The above analysis shows that λw̃jc↓
j ≤ f(λc↓

j ) + (1 + ϵ)w̃jo↓
j + ϵw⊤o↓/m for each

j ∈ [m]. We take the sum over j ∈ [m] and obtain

λ · w̃⊤c↓ = λ
∑

j∈[m]

w̃jc↓
j ≤

∑
j∈[m]

f(λc↓
j ) + (1 + ϵ)cost(w̃; o) + ϵ · cost(w; o).

Combining with Fact 4 and opt = cost(w; o), the lemma follows. ◀

▶ Lemma 6. For each λ ∈ (0, 1], one has
∑

j∈C⋆ f(λoj) ≤ λ((1 + ϵ)3 + ϵ + ϵ2)opt.

Proof. Recall that (F ⋆, C⋆) is optimal for I . Consider any non-empty o ∩ It, and it is easy
to verify that t > 0. Since λ ≤ 1, some entries in λ(o∩ It) may be “shifted” to It′ with t′ > t.
If t ≤ T , the contribution of λ(o ∩ It) on the LHS is at most∑

j:o↓
j

∈It,

λo↓
j

/∈It

λwgss
t+1o↓

j +
∑

j:o↓
j

∈It,

λo↓
j

∈It

λwgss
t o↓

j ≤ λ
∑

j:o↓
j

∈It

(1 + ϵ)wavg
t o↓

j ≤ λ(1 + ϵ)2
∑

j:o↓
j

∈It

w̃jo↓
j , (1)

where the first inequality is due to non-increasing wgss and wgss
t ∈ [wavg

t , (1 + ϵ)wavg
t ); the

second inequality is because within the same interval It where t ≤ T , the values of o↓
j differ

by a factor no more than (1 + ϵ). More formally, we have
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∑
j:o↓

j
∈It

wavg
t o↓

j =

 1
|o ∩ It|

∑
j:o↓

j
∈It

w̃j

 ∑
j′:o↓

j′ ∈It

o↓
j′

=
∑

j:o↓
j

∈It

 1
|o ∩ It|

∑
j′:o↓

j′ ∈It

o↓
j′

 w̃j ≤
∑

j:o↓
j

∈It

(1 + ϵ)o↓
j w̃j ,

hence the inequality above follows.
If t = T + 1, each such o↓

j ≤ ϵo↓
1/m, thus the contribution of λ(o ∩ IT +1) is at most

ϵλwgss
1 o↓

1 ≤ ϵ(1 + ϵ)λw̃1o↓
1 ≤ λ(ϵ + ϵ2)opt, since wgss

1 ≤ (1 + ϵ)wavg
1 ≤ (1 + ϵ)w̃1. The lemma

follows by taking the sum of (1) over each o ∩ It plus λ(ϵ + ϵ2)opt for o ∩ IT +1, which is

∑
j∈C⋆

f(λoj) ≤ λ(1 + ϵ)2
T∑

t=1

∑
j:o↓

j
∈It

w̃jo↓
j + λ(ϵ + ϵ2)opt

(Fact 4) ≤ λ(1 + ϵ)3cost(w; o) + λ(ϵ + ϵ2)opt. ◀

We return to the original theorem and fix λ ∈ (0, 1]. Since (F ⋆, C⋆) is a feasible solution
to both I and Jfλ

, the first assertion follows using ϵ < 1 and Lemma 6. For the second
assertion, let (F, C) be the solution returned by the algorithm, thus V =

∑
j∈C f(λd(j, F )).

Therefore, using Fact 4 and Lemma 5, the objective of (F, C) in the OrdClst instance I is
at most cost(w; c) ≤ cost(w̃; c) ≤ λ−1(V + (1 + 4ϵ)opt), where c = {d(j, F ) : j ∈ C}. ◀

3 Applications

In this section, we provide applications of our reduction framework in Theorem 3. Due to
the space limitations, we defer some proofs and details of the algorithms to the appendix.

3.1 Robust Ordered k-Median
In ROkMed, OrdClst is instantiated such that F consists of all subsets of F with cardinality
at most k, i.e., F = {F ⊆ F : |F | ≤ k}; C consists of all subsets of C with cardinality exactly
m, i.e., C = {C ⊆ C : |C| = m}. Via enumerating all possible functions in Theorem 3,
suppose that we have a faithful function f in what follows.

As noted before, using Theorem 3, we want to obtain a constant-factor approximate
solution to Jfλ

for some small constant λ ∈ (0, 1). We adapt the iterative rounding
algorithm [23]. Let xij ∈ [0, 1] denote the extent of assigning client j to facility i, and
yi ∈ [0, 1] denote the extent of opening facility i. The natural relaxation for Jfλ

is given as
follows.

min
∑
j∈C

∑
i∈F

xijfλ(d(i, j)) (LP(fλ))

s.t.
∑
j∈C

∑
i∈F

xij ≥ m

∑
i∈F

xij ≤ 1 ∀j ∈ C∑
i∈F

yi ≤ k

0 ≤ xij ≤ yi ≤ 1 ∀i ∈ F , j ∈ C.
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Before we look at the full algorithm, let us begin with a brief overview. The algorithm
consists of the following two phases, namely, pre-processing and iterative rounding.

Pre-processing. As is discussed in the introduction, the integrality gap in LP(fλ) is
unbounded since ROkMed recovers RkMed. Thus, instead of directly solving LP(fλ), we
employ some pre-processing techniques and simplify the instance. In what follows, let
λ1 ∈ (λ, 1] be another constant. The values of λ and λ1 will be determined in the full
algorithm.

First, we guess a constant number of facilities S0 as must-have choices and remove some
clients in advance. Consequently, we obtain a new extended instance J ′

f on the remaining
clients C′; the family C ′ ⊆ 2C′ of client subsets in J ′

f consists of all m′-subsets of C′, that
is, C ′ = {C ′ ⊆ C′ : |C ′| = m′} for some fixed parameter m′ ≤ m; J ′

f also requires that the
pre-selected facilities in S0 must be part of the solution. By exhaustive search, we show that
there exists some J ′

f with certain “sparse” properties, which is easier to approximate using
an LP relaxation. More specifically, there exists a solution (F, C) to J ′

f such that S0 ⊆ F

and (F, C) satisfies the following for two small constants ρ, δ ∈ (0, 1) (see Theorem 7). Here,
opt ≥ 0 is the optimum of the original ROkMed instance.

For each facility i ∈ F \ S0, the clients assigned to i contribute at most ρ · opt; that is,∑
j∈C assigned to i f(d(i, j)) ≤ ρ · opt.

For each p ∈ F ∪C′, let cp = d(p, F ). The product of (a) f((1− δ)cp) and (b) the number
of served clients in C within a distance of δcp from p is at most ρ · opt; that is,

|{j ∈ C : d(j, p) ≤ δcp}| · f((1− δ)cp) ≤ ρ · opt.

Intuitively speaking, this means that after removing the clients C \ C′, there cannot be
too many clients with “large” contributions inside any such closed ball.

Further, a straightforward greedy algorithm on the removed clients C \ C′ recovers a good
approximate solution to Jf . The two basic instances {J ′

f , Jf} will be useful in the analysis.
Second, we formulate a stronger relaxation S-LP(fλ1) that has the same objective as

LP(fλ) except for using a larger coefficient λ1. It has both the constraints of LP(fλ), and
additional constraints that guarantee certain sparse properties in its solutions; in particular,
J ′

f also conforms to these sparsity constraints. Thus, we show that any sparse solution
to J ′

fλ1
is also feasible to S-LP(fλ1). We emphasize that during the algorithm, we solve

S-LP(fλ1) instead of LP(fλ); LP(fλ) will only be used in the analysis of the algorithm.

Iterative rounding. After obtaining a fractional optimal solution to S-LP(fλ1), we use
the iterative rounding algorithm and obtain an integral solution (F̂ , Ĉ ′) to J ′

fλ1
. As

aforementioned, it is easy to extend (F̂ , Ĉ ′) to another solution (F̂ , Ĉ) that is feasible to
Jfλ1

. However, because the function f in the LP objective is superlinear and our rounding
algorithm incurs multiplicative factors on the input of f , we cannot directly analyze the
approximation guarantee via Jfλ1

and S-LP(fλ1). Nevertheless, (F̂ , Ĉ) is also feasible to
LP(fλ) where the coefficient λ is smaller than λ1, making it possible for us to bound the
objective of (F̂ , Ĉ) in the instance Jfλ

. Finally, we invoke Theorem 3 on Jfλ
and obtain

the overall approximation ratio.

3.1.1 The Algorithm for Robust Ordered k-Median
In this section, we present our constant-factor approximation algorithm for ROkMed and
prove Theorem 1. Suppose we have a faithful function f : R+ → R+ via Theorem 3 and
exhaustive search. Let the reduced instance be J = (F , C, d, F , C , f). Recall n0 = |F ∪ C|.
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3.1.1.1 The Sparse Instance

Let (F ⋆ ∈ F , C⋆ ∈ C ) be a fixed unknown optimal solution to the original ROkMed instance
I = (F , C, d, F , C , w) and opt ≥ 0 be the optimum thereof; define c⋆

p = mini∈F ⋆ d(p, i),
κ⋆

p = arg mini∈F ⋆ d(p, i) for each p ∈ F ∪ C (ties broken arbitrarily), and closed balls
BallS (p, R) = {i ∈ S : d(i, p) ≤ R}. We guess U ∈ [V ⋆, (1 + ϵ)V ⋆) via binary search, where
V ⋆ is the optimum of J . We have V ⋆ ≤ (1 + O(ϵ))opt using Theorem 3. We need the
following theorems on pre-processing. The proofs are given in the appendix.

▶ Theorem 7. (Similar to [23]). Given ρ, δ ∈ (0, 1) and U , there exists an n
O(1/ρ)
0 -time al-

gorithm that finds an extended instance J ′ = (F , C′, d, F , C ′, f, S0) satisfying the following.
(7.1) C′ ⊆ C, C ′ = {C ′ ⊆ C′ : |C ′| = m′ := |C⋆ ∩ C′|} and S0 ⊆ F ⋆ with |S0| = O(1/ρ).
(7.2) Denote C ′⋆ = C⋆ ∩ C′. For each i ∈ F ⋆ \ S0, we have

∑
j∈C′⋆:κ⋆

j
=i f(c⋆

j ) ≤ ρU .

(7.3) For each p ∈ F ∪ C′, we have
∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≤ ρU .

(7.4) Denote U ′ =
∑

j∈C′⋆ f(c⋆
j ). We have

∑
j∈C⋆\C′ f

(
1−δ
1+δ d(j, S0)

)
+ U ′ ≤ U.

Roughly speaking, Theorem 7 says that after removing a constant number of facilities
S0 from F ⋆ and some clients C \ C′ from C⋆, the remaining solution has some nice sparse
properties. Moreover, we can easily extend a solution on J ′ to another solution on J using
(7.4) such that the objective can still be bounded in terms of U ≤ (1 + O(ϵ))opt.

▶ Theorem 8. (Similar to [23]). Given the instance J ′ found in Theorem 7, we can
efficiently compute a set of upper bounds {R̂j ≥ 0 : j ∈ C′} satisfying the following.
(8.1) There exists a solution (F ⋆, C ′) to J ′, such that each j ∈ C ′ is assigned to κ′

j ∈ F ⋆

and c′
j := d(κ′

j , j) ≤ (1 + 3δ/4)R̂j. Moreover, one has

∑
j∈C′

f

(
2

2 + δ
c′

j

)
≤ U ′;

∑
j∈C′:κ′

j
=i

f

(
2

2 + δ
c′

j

)
≤ ρU, ∀i ∈ F ⋆ \ S0.

(8.2) For each t > 0 and p ∈ F ∪ C′, one has∣∣∣∣{j ∈ BallC′

(
p,

δ

4 t

)
: R̂j ≥ t

}∣∣∣∣ ≤ ρU

f((1− δ)(1− δ/4)t) .

Roughly speaking, Theorem 8 says that we can efficiently find an upper bound R̂j for
each j ∈ C′ such that there exists a solution for J ′ that roughly respects these upper
bounds and exhibits a similar sparse property as (7.2). Moreover, (8.2) is a stronger but
somewhat different version of (7.3); its parameterized form will be useful in the analysis of
the approximation guarantee.

3.1.1.2 The Strengthened LP

Let Rj = (1 + 3δ/4)R̂j in Theorem 8 and define the following stronger LP relaxation for
0 < λ1 ≤ 2/(2 + δ). We note that S-LP(fλ1) is built on the new instance J ′, hence admits
a more “regular” solution according to Theorem 8. In our algorithm, we solve S-LP(fλ1)

APPROX/RANDOM 2022
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instead of LP(fλ), and conduct iterative rounding on its solution.

min
∑
j∈C′

∑
i∈F

xijfλ1(d(i, j)) (S-LP(fλ1))

s.t.
∑
j∈C′

∑
i∈F

xij ≥ m′

∑
i∈F

xij ≤ 1 ∀j ∈ C′

∑
i∈F

yi ≤ k

0 ≤ xij ≤ yi ≤ 1 ∀i ∈ F , j ∈ C′

yi = 1 ∀i ∈ S0 (S-LP.5)
xij = 0 d(i, j) > Rj (S-LP.6)
xij = 0 ∀i /∈ S0, f (2d(i, j)/(2 + δ)) > ρU (S-LP.7)∑

j∈C′

f (2d(i, j)/(2 + δ)) xij ≤ ρUyi ∀i /∈ S0. (S-LP.8)

▶ Lemma 9. The optimal objective value of S-LP(fλ1) is at most λ1(2+δ)
2 U ′.

Proof. Using (8.1), there exists an integral solution with an objective of at most U ′ when
λ1 = 2/(2 + δ). For λ1 ≤ 2/(2 + δ), the same solution is still feasible because the constraints
are independent of λ1. For α ≤ 1, z > 0, we have f(αz) ≤ αf(z) because f is non-decreasing
and superlinear, thus

∑
j∈C′ f(λ1c′

j) ≤ λ1(2+δ)
2

∑
j∈C′ f

(
2

2+δ c′
j

)
≤ λ1(2+δ)

2 U ′. ◀

After we solve S-LP(fλ1) and obtain an optimal solution (x⋆, y⋆), to eliminate the x⋆

variables and work with an auxiliary LP that is purely on the y⋆ variables, we need the
following lemma due to [23]. Note that this is different from simple facility duplication [11],
since we need a certain sparse property of the modified solution (see 5), which helps us bound
the additional rounding cost in the final analysis.

▶ Lemma 10. We can add co-located copies to F , create a vector y⋆ ∈ [0, 1]F and define
subsets Fj ⊆ BallF (j, Rj) for each client j ∈ C′, such that the following holds.
(10.1) y⋆(Fj) ≤ 1 for each j ∈ C′ and

∑
j∈C′

( ∑
i∈Fj

y⋆
i

)
≥ m′.

(10.2)
∑

i∈F y⋆
i ≤ k.

(10.3) For each i ∈ S0,
∑

i′ co-located with i y⋆
i = 1.

(10.4)
∑

j∈C′
∑

i∈Fj
y⋆

i fλ1(d(i, j)) ≤ λ1(2+δ)
2 U ′.

(10.5) For each i not co-located with S0,
∑

j∈C′:i∈Fj
f

(
2

2+δ d(i, j)
)
≤ 2ρU .

Proof. We start with an optimal solution (x⋆, y⋆) to S-LP(fλ1) with objective at most
λ1(2+δ)

2 U ′ according to Lemma 9. To avoid confusion in notation, we create a copy F ′ = F ,
define Fj = {i ∈ F ′ : x⋆

ij > 0} and ȳ⋆ ← y⋆ both supported on F ′. For each copy i′ ∈ F ′ of
i ∈ F , define its star cost as

∑
j∈C′:i′∈Fj

f( 2
2+δ d(i, j)).

We iteratively perform the following procedures. For each i ∈ F and j ∈ C′ such that
x⋆

ij > 0, we sort all copies of i in F ′ in non-decreasing order of their current star costs, and
choose the first several copies such that their ȳ⋆ values add up to exactly x⋆

ij . If we need to
split a facility i′ into two copies to make the sum exact, we replace i′ with {i′

1, i′
2} in F ′, set

ȳ⋆
i′

1
to whichever value is needed and ȳ⋆

i′
2
← ȳ⋆

i′ − ȳ⋆
i′

1
. Remove from Fj all copies of i, and

add the selected copies to Fj again. For any other j′ ̸= j, if some i′ ∈ Fj′ is split in two,
Fj′ ← Fj′ \ {i′} ∪ {i′

1, i′
2}.
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After the procedures, we set F ← F ′ and the corresponding y⋆ ← ȳ⋆, {Fj}j∈C′ such that
they are supported on F . 1 to 4 are easy to verify, since the original solution to S-LP(fλ1)
is preserved up to facility duplication. To see 5, consider each (original) facility i and all
clients j such that x⋆

ij > 0, denoted by Ji ⊆ C′. It is easy to see each copy of i only appears
in

⋃
j∈Ji

Fj . We use induction to show that, after each iteration, the difference between the
maximum and minimum star costs among all copies of i is at most ρU .

The copies of i and their star costs may only change after an iteration where i is selected.
Suppose Ji = {j1, . . . , jℓ} and we consider the iterations in the order of (i, j1), . . . , (i, jℓ). As
the base case, before (i, j1) is considered, the claim is true because i has only one copy in F ′.

Suppose the claim is true after (i, jt−1), t ≥ 1. In the start of the iteration on (i, jt), we
sort the copies of i in non-decreasing order of their current star costs; each client js, s ≥ t

contributes equally to the star cost of each copy of i, including jt in particular, and the
difference between the maximum and minimum is at most ρU , using the induction hypothesis.
During this iteration, we remove the contributions of jt to all copies, and add them back to
copies that have the smallest star costs. Since f( 2

2+δ d(i, jt)) ≤ ρU by (S-LP.7), it is easy to
verify that the difference between the maximum and minimum after the iteration is still at
most ρU . This finishes the induction.

For facility i, we let F(i) ⊆ F ′ be the copies of i after the procedures. It follows that∑
i′∈F(i)

ȳ⋆
i′

∑
j∈C′:i′∈Fj

f

(
2

2 + δ
d(i, j)

)
=

∑
j∈Ji

f

(
2

2 + δ
d(i, j)

) ∑
i′∈F(i)∩Fj

ȳ⋆
i′

=
∑
j∈Ji

x⋆
ijf

(
2

2 + δ
d(i, j)

)
≤ ρUy⋆

i ,

where the last inequality is due to (S-LP.8). Hence, the minimum star cost is at most
ρUy⋆

i /
∑

i′∈F(i) ȳ⋆
i′ = ρU , and the maximum is at most 2ρU , yielding 5. ◀

3.1.1.3 Iterative Rounding

We obtain y⋆ ∈ [0, 1]F and {Fj}j∈C′ using Lemma 10. To optimize our approximation factor,
we use the following deterministic metric discretization. Fix τ > 1; define D−2 = −1, D−1 = 0
and Dl = τ l for each l ≥ 0; let d′(i, j) = min{Dl ≥ d(i, j) : l ≥ −2}. For each j ∈ C′, we call
Fj its outer ball, define its radius level lj ∈ Z such that Dlj

= maxi∈Fj
d′(i, j), and define its

inner ball Bj = {i ∈ Fj : d′(i, j) ≤ Dlj−1}. For 0 < λ2 ≤ 1/τ , we define an auxiliary LP.

min
∑

j∈Cpart

∑
i∈Fj

yifλ2(d′(i, j)) +
∑

j∈Cfull

 ∑
i∈Bj

yifλ2(d′(i, j)) + (1− y(Bj))fλ2(Dlj
)


(A-LP(fλ2))

s.t. y(Fj) = 1 ∀j ∈ Ccore (A-LP.1)
0 ≤ yi ≤ 1 ∀i ∈ F (A-LP.2)
y(Bj) ≤ 1 ∀j ∈ Cfull (A-LP.3)
y(Fj) ≤ 1 ∀j ∈ Cpart (A-LP.4)
y(F) ≤ k (A-LP.5)

|Cfull|+
∑

j∈Cpart

y(Fj) ≥ m′. (A-LP.6)

The objective of A-LP(fλ2) is determined by three subsets of clients Cfull, Cpart, and
Ccore, such that Cfull ∪ Cpart = C′; each client in Cfull is to be assigned an open facility
relatively close to it, and Ccore is used for placing these facilities. Initially, we set Cfull = ∅,
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Cpart = C′ and Ccore = S0; each i ∈ S0 is called a virtual client and its initial radius level is
−1, since

∑
i′ co-located with i y⋆

i = 1 by 3 and D−1 = 0. We use the following Algorithm 1 to
iteratively change y⋆ and A-LP(fλ2).

Algorithm 1 Iterative Rounding [23].

Input : outer balls {Fj : j ∈ C′}, radius levels {lj : j ∈ C′}, inner balls
{Bj : j ∈ C′}, S0

Output : an output solution y′

1 Cfull ← ∅, Cpart ← C′, Ccore ← S0
2 while true do
3 find an optimal basic feasible solution y′ to A-LP(fλ2)
4 if there exists j ∈ Cpart such that y′(Fj) = 1 then
5 Cpart ← Cpart \ {j}, Cfull ← Cfull ∪ {j}, Bj ← {i ∈ Fj : d′(i, j) ≤ Dlj−1},

update-Ccore(j)
6 else if there exists j ∈ Cfull such that y′(Bj) = 1 then
7 lj ← lj − 1, Fj ← Bj , Bj ← {i ∈ Fj : d′(i, j) ≤ Dlj−1}, update-Ccore(j)
8 else break
9 return y′

10 update-Ccore(j)
11 if there exists no j′ ∈ Ccore with lj′ ≤ lj and Fj ∩ F ′

j ̸= ∅ then
12 remove from Ccore all j′ such that Fj ∩ Fj′ ̸= ∅, Ccore ← Ccore ∪ {j}

▶ Lemma 11. In each iteration, y′ is feasible after modifying the LP. The objective value of
y′ is non-increasing throughout the algorithm.

Proof. There are two cases. The first is when we move some j from Cpart to Cfull when
y′(Fj) = 1. Since Bj ⊆ Fj , it satisfies the new constraints in (A-LP.3) and (A-LP.1), if it is
added to Ccore. Since Fj = Bj ∪ (Fj \Bj), the contribution of j to the new objective is the
same as when it is in Cpart, because each i ∈ Fj \Bj satisfies d′(i, j) = Dlj

by definition.
The second case is when we decrease the radius level lj and invoke the subroutine on

j ∈ Cfull, where y′(Bj) = 1. Comparing the contributions of j before and after the iteration,
they are equal since the old contribution has 1− y′(Bj) = 0, and we can partition the new
outer ball Fj ← Bj in the same way as above.

In both cases, the objective of y′ does not change during an iteration. At the beginning
of each iteration, we solve for an optimal basic feasible solution, thus the lemma follows. ◀

▶ Property 12. After each iteration of Algorithm 1, the following properties hold.
(12.1) Cfull and Cpart form a partition of C′, S0 ⊆ Ccore and Ccore \ S0 ⊆ Cfull.
(12.2) {Fj : j ∈ Ccore} are mutually disjoint.
(12.3) For each j ∈ C′, Dlj

≤ τRj.
(12.4) For each j ∈ C′, lj ≥ −1.
(12.5) For each i not co-located with S0,

∑
j∈C′:i∈Fj

f( 2
2+δ d(i, j)) ≤ 2ρU .

Proof. First, by iteratively decreasing the radius levels, we claim that no client can have a
radius level of −2 or smaller. This is because when lj = −1, its inner ball is Bj = {i ∈ Fj :
d′(i, j) ≤ D−2 = −1} = ∅, the constraint y(Bj) ≤ 1 cannot be tight, and we will not invoke
the subroutine update-Ccore on j. This shows (12.4).
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To see (12.1), we only need to show that virtual clients in S0 cannot be removed from
Ccore. From the subroutine update-Ccore, j′ can be removed by j only when lj < lj′ . But
each virtual client starts with a radius level of −1, and removing any such virtual client
means a radius level of −2, a contradiction.

(12.2) clearly follows by the definition of the subroutine. (12.3) is due to Fj ⊆ BallF (j, Rj)
at the beginning of iterative rounding, hence Dlj

≤ maxi∈Fj
d′(i, j) ≤ τ maxi∈Fj

d(i, j) ≤ τRj .
Lastly, since each Fj , j ∈ C′ is inclusion-wise non-increasing during Algorithm 1, the sum in
(12.5), being the star cost of i, is also non-increasing and at most 2ρU due to 5. This yields
(12.5). ◀

We now establish the connection between S-LP(fλ1) and A-LP(fλ2), making it possible
to compare their objectives, before and after the iterative rounding process.

▶ Lemma 13. For each λ1 ∈ (0, 1] and λ2 = λ1/τ , the solution y⋆ obtained in Lemma 10 is
feasible to A-LP(fλ2) with its objective not increased.

Proof. y⋆ is the same as the optimal solution for S-LP(fλ1) up to facility duplication. Before
Algorithm 1, we have Ccore = S0. Because we require yi = 1 for each i ∈ S0 in S-LP(fλ1) and
we can let Fi consist of all copies of i (as a virtual client), (A-LP.1) is satisfied by y⋆. Initially,
Cfull is empty and we only have y(Fj) ≤ 1 for j ∈ C′ (i.e., (A-LP.4)) and

∑
j∈C′ y(Fj) ≥ m′

(i.e., (A-LP.6)), which are also satisfied by y⋆ due to Lemma 10. Therefore, y⋆ is indeed
feasible to A-LP(fλ2).

In S-LP(fλ1), each facility-client pair (i, j) has a contribution of x⋆
ijfλ1(d(i, j)). In

A-LP(fλ2), because Cfull = ∅, its contribution is y⋆
i fλ2(d′(i, j)) only when i ∈ Fj and zero

otherwise. Since d′ is rounded-up by a factor of at most τ and λ1 = τλ2, we further obtain

y⋆
i f(λ2d′(i, j)) ≤ y⋆

i f(λ1d(i, j)),

thus for y⋆, the objective of A-LP(fλ2) is at most the objective of S-LP(fλ1). ◀

▶ Lemma 14. There are at most two fractional variables in the output solution y′. At the
conclusion of the algorithm, for each j ∈ Cfull,∑

i∈F :d(i,j)≤ 3τ−1
τ−1 Dlj

y′
i ≥ 1.

Proof. Since y′ is an optimal basic feasible solution, if it has t > 0 strictly fractional variables,
there are at least t non-trivial (i.e., not in the form of yi ≥ 0 or yi ≤ 1) and independent
constraints of A-LP(fλ2) that are tight at y′ (see, e.g., [25]). The remaining constraints form
a knapsack constraint (A-LP.6), and a laminar family (A-LP.1) plus (A-LP.5), according to
(12.2). The number of such tight independent constraints is therefore at most t/2 + 1. This
means that t/2 + 1 ≥ t, and thus t ∈ {1, 2}.

To show the second assertion, we first use induction to show that, for each j that is added to
Ccore during Algorithm 1 with radius level l, the final solution satisfies

∑
i∈F :d(i,j)≤ τ+1

τ−1 Dl
y′

i ≥
1. The base case is simple for l = −1, since we know such j cannot be removed from Ccore,
and y′ satisfies the inequality due to (A-LP.1). Suppose the claim is true up to l − 1, l ≥ 0.
For j added to Ccore with radius level l, if it is not later removed from Ccore, the claim
directly follows from (A-LP.1). Otherwise, if j is later removed by j′ with lj′ < lj = l

and Fj′ ∩ Fj ̸= ∅, using the induction hypothesis, the inequality holds for j′ and lj′ , where
Dlj′ ≤ Dl/τ . Using the triangle inequality, all these facilities are at a distance at most
τ+1
τ−1 Dlj′ + Dlj′ + Dl ≤ ( τ+1

τ(τ−1) + 1
τ + 1)Dl = τ+1

τ−1 Dl from j, showing the induction step.
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Back to the proof of the lemma. When we invoke j on its final radius lj , if we can indeed
add j to Ccore, the claim above is sufficient since τ+1

τ−1 ≤
3τ−1
τ−1 . If it cannot be added to Ccore,

it is because there exists j′ ∈ Ccore with Fj′ ∩ Fj ≠ ∅ and lj′ ≤ lj . Using the claim on the
iteration when we add j′ to Ccore with radius level lj′ , and using the triangle inequality, all
the facilities in the sum are at a distance at most τ+1

τ−1 Dlj′ + Dlj′ + Dlj
≤ 3τ−1

τ−1 Dlj
, whence

the lemma follows. ◀

The following lemma is concerned with the objective value of y′ in LP(fλ), where we
replace (m, C) with (m′, C′) and use the name LP(fλ) here with a slight abuse of notation.

▶ Lemma 15. Let 0 < λ ≤ 2τ−2
τ(3τ−1)(2+δ) . Let y⋆ and outer balls {Fj}j∈C′ be obtained

from Lemma 10 and S-LP(fλ1) where λ1 = τ(3τ−1)
τ−1 λ. The iterative rounding algorithm on

A-LP(fλ2) where λ2 = 3τ−1
τ−1 λ returns a solution y′ with at most two fractions. Moreover, y′

is a feasible solution to LP(fλ) with objective at most λτ(3τ−1)(2+δ)
2τ−2 U ′.

Proof. From Lemma 9 and Lemma 13, y⋆ is feasible to A-LP(fλ2) and its objective value is
upper bounded by λ1(2+δ)

2 U ′ = λτ(3τ−1)(2+δ)
2(τ−1) U ′. From Lemma 14, the final solution y′ has

at most two fractional values; if we further take y′ to LP(fλ), we can assign each client in
Cfull \ Ccore to an extent of 1 to facilities at most 3τ−1

τ−1 Dlj
away; the feasibility of y′ w.r.t.

LP(fλ) is guaranteed by Lemma 11 and Property 12. From Lemma 11 and Lemma 13, the
objective value of y′ in LP(fλ) is upper-bounded by (recall that d′ ≥ d and Cfull ∪ Cpart is a
partition of C′)

∑
j∈Cpart

∑
i∈Fj

y′
ifλ(d′(i, j)) +

∑
j∈Cfull

 ∑
i∈Bj

y′
ifλ(d′(i, j)) + (1− y′(Bj))fλ

(
3τ − 1
τ − 1 Dlj

) . (2)

Because λ2 = λ 3τ−1
τ−1 , (2) is at most the objective of A-LP(fλ2) and ≤ λτ(3τ−1)(2+δ)

2τ−2 U ′. ◀

The following theorem converts the almost-integral solution y′ to an integral one ŷ.

▶ Theorem 16. There exists λ > 0 depending on δ and τ such that we can efficiently compute
an integral solution ŷ to LP(fλ) with objective value at most 5ρU larger than that of y′.

Proof. The case of less than 2 fractions are easier thus omitted here; in the rest of the proof,
suppose y′

i1
and y′

i2
are the two fractional variables. Because y′ is a basic feasible solution,

we must have y′
i1

+ y′
i2

= 1 since the tight constraints in A-LP(fλ2) represent the intersection
of a laminar family and a knapsack constraint. Let C1 = {j ∈ Cpart : i1 ∈ Fj , i2 /∈ Fj}
and C2 = {j ∈ Cpart : i1 /∈ Fj , i2 ∈ Fj}. W.l.o.g., we assume |C1| ≥ |C2|. One has
|C1|+ |Cfull| ≥ y′

i1
|C1|+ y′

i2
|C2|+ |Cfull| ≥ m′ using (A-LP.6). Define ŷ such that ŷi1 = 1,

ŷi2 = 0 and ŷi = y′
i for i ∈ F \ {i1, i2}. Let F̂ = {i ∈ F : ŷi = 1} and Ĉ ′ = C1 ∪ Cfull.

Using (12.5), the extra cost of assigning all of C1 to i1 is at most∑
j∈C1

fλ(d(i1, j)) ≤
∑

j∈C1

f

(
2d(i1, j)

2 + δ

)
≤

∑
j:i1∈Fj

f

(
2d(i1, j)

2 + δ

)
≤ 2ρU ⇐ λ ≤ 2

2 + δ
. (3)

Next, because we reduce the extent of opening i2 to zero, it remains to bound the extra
cost of re-assigning full clients that were assigned to i2, defined as J = {j ∈ Cfull : i2 ∈ Bj};
we choose J here because these are the full clients whose contributions are changed in (2).
Let γ > 0 be some constant which we will determine later. Let i⋆ be the nearest facility to
i2 in F̂ and t′ = d(i2, i⋆). Let J1 = {j ∈ J : d(j, i2) > γt′} and J2 = {j ∈ J : d(j, i2) ≤ γt′}.
For j ∈ J1, we have d(j, i⋆) ≤ d(j, i2)+d(i2, i⋆) < (1+ 1

γ )d(j, i2), thus if we want the following
upper bound on the extra assignment costs,
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∑
j∈J1

f(λd(j, i⋆)) ≤
∑
j∈J1

f

(
2

2 + δ
d(j, i2)

)
≤ 2ρU ⇐ λ ≤ 2

2 + δ
· γ

1 + γ
. (4)

For j ∈ J2, let i′ be the nearest open facility to j. It is easy to verify that d(j, i′) ≤ 3τ−1
τ−1 Dlj

using Lemma 14 and the definition of ŷ. Since i⋆ is the nearest to i2, one has

d(j, i′) ≥ d(i2, i′)− d(j, i2) ≥ d(i2, i⋆)− γt′ = (1− γ)t′

using the triangle inequality, and thus Rj ≥ Dlj
/τ ≥ τ−1

τ(3τ−1) (1−γ)t′. Let t = τ−1
τ(3τ−1) (1−γ)t′.

Suppose that δ
4+3δ t ≥ γt′, then using (8.2) and recalling Rj = (1 + 3δ/4)R̂j , we have

|J2| ≤
∣∣∣∣{j ∈ BallC′

(
i2,

δ

4 + 3δ
t

)
: Rj ≥ t

}∣∣∣∣ ≤ ρU

f( (1−δ)(1−δ/4)
1+3δ/4 t)

.

Using the triangle inequality, we have d(j, i⋆) ≤ (1 + γ)t′. The total extra cost of assigning
J2 to i⋆ is at most∑

j∈J2

f(λd(j, i⋆)) ≤ f(λ(1 + γ)t′)|J2| ≤ ρU ⇐ λ ≤ (1− δ)(1− δ/4)
(1 + 3δ/4) · τ − 1

τ(3τ − 1) ·
1− γ

1 + γ
. (5)

Denote σ = τ−1
τ(3τ−1) and let γ = δσ

4+3δ+δσ so that δ
4+3δ t = γt′. By letting λ be the

minimum of (3)(4)(5) and summing over the three cases, the increase of objective value w.r.t.
LP(fλ) is at most 2ρU + 2ρU + ρU = 5ρU , thus the theorem follows. ◀

3.1.1.4 Proof of Theorem 1

Let τ−1
τ(3τ−1) = 0.101 and δ = 0.81765, thus λ ∈ (0.008856, 0.008857) (see the proof of

Theorem 16). We fix ϵ > 0 and obtain a faithful function f using Theorem 3. Fix two
small constants δ, ρ > 0, compute C′, m′, S0, {Rj : j ∈ C′} via Theorem 7 and Theorem 8,
and solve S-LP(fλ1) with λ1 = τ(3τ−1)

τ−1 λ. Using iterative rounding, we obtain an almost-
integral solution to LP(fλ) using Lemma 15. Next, we compute an integral solution ŷ using
Theorem 16, with the objective w.r.t. LP(fλ) increased by at most 5ρU .

Let F̂ = {i ∈ F : ŷi = 1} and Ĉ ′ = C1 ∪ Cfull as in the proof of Theorem 16. There are
at least m′ clients in Ĉ ′. We assume |Ĉ ′| ≤ m, otherwise the following argument is simpler.
We greedily connect m − |Ĉ ′| ≤ m −m′ clients in C \ C′ to their nearest open facilities in
F̂ , minimizing f

(
1−δ
1+δ d(j, F̂ )

)
for each of them and output the final solution (F̂ , Ĉ). We

consider the objective of (F̂ , Ĉ) in Jfλ
on Ĉ \ C′ and Ĉ ∩ C′ separately.∑

j∈Ĉ\C′

f(λd(j, F̂ )) +
∑

j∈Ĉ∩C′

f(λd(j, F̂ ))

≤
∑

j∈C⋆\C′

λ(1 + δ)
1− δ

f

(
1− δ

1 + δ
d(j, F̂ )

)
+

(
λτ(3τ − 1)(2 + δ)

2τ − 2 U ′ + 5ρU

)

≤max
{

λ(1 + δ)
1− δ

,
λτ(3τ − 1)(2 + δ)

2τ − 2

}  ∑
j∈C⋆\C′

f

(
1− δ

1 + δ
d(j, S0)

)
+ U ′

 + 5ρU

≤ 0.12354U + 5ρU. (6)

In the above, the first inequality is due to Lemma 15, Theorem 16 and the greedy selection of
Ĉ \ C′. The second is because S0 ⊆ F̂ . The last is due to (7.4) and our choices of parameters.

APPROX/RANDOM 2022



34:16 Ordered k-Median with Outliers

Recall that U ≤ (1+ϵ)V ⋆ where V ⋆ is the optimal objective of Jf and U ≤ (1+O(ϵ))opt.
Using (6) and Theorem 3 again, the objective of (F̂ , Ĉ) in the original instance I is at most
(0.12354U + 5ρU + (1 + O(ϵ))opt)/λ ≤ (126.9 + O(ϵ + ρ))opt ≤ 127opt, by choosing small
enough ρ and ϵ. The running time is obtained from the enumeration process and bounded
by a polynomial. ◀

3.2 Ordered Matroid/Knapsack Median
We consider the ordered matroid median problem (OMatMed) and the ordered knapsack
median problem (OKnapMed). Formally, in OMatMed, we instantiate OrdClst such that
F is the set of independent sets of an arbitrary matroid M = (F , F ) and C = {C}; in
OKnapMed, we instantiate OrdClst such that each facility i ∈ F has a weight wti ≥ 0, F is
the set of facility subsets with total weight at most W , i.e., F = {F ⊆ F :

∑
i∈F wti ≤W}

and C = {C}. It is easy to see that OMatMed and OKnapMed generalize matroid center and
matroid median, knapsack center and knapsack median, respectively. Moreover, since the
cardinality constraint |F | ≤ k is trivially recovered by the matroid and knapsack constraints,
OkMed is also generalized by OMatMed and OKnapMed.

Theorem 2 is obtained using the same reduction by Theorem 3 and similar iterative
rounding algorithms as ROkMed. We provide the details of the algorithms and the proofs in
Appendix B and Appendix C.
▶ Remark. We remark on the difficulties of OMatMed and OKnapMed under previous methods
for OkMed. The integrality gap in the natural relaxation for matroid median is a constant
(see, e.g., [22]), thus it is likely that the algorithm by Byrka et al. [5] could provide a
constant-factor approximation for OMatMed after some modifications; this would hardly be
surprising since our reduction algorithm also gives a simpler analysis for OMatMed, compared
with ROkMed. For OKnapMed, however, it appears that previous methods will fail due to
the unbounded integrality gap in the natural relaxation for knapsack median (see, e.g., [24]);
our reduction framework can circumvent this issue analogously to ROkMed.

4 Conclusion

In this paper, we present a reduction framework for a class of clustering problems with
ordered objectives, which preserves the approximation guarantee up to constant factors. This
leads to the first polynomial-time constant-factor approximation algorithms for three natural
clustering problems, namely, robust ordered k-median, ordered matroid median and ordered
knapsack median. We find the problem of robust ordered k-median particularly interesting,
since its objective exhibits a certain unimodal shape, which can be nicely motivated by
real-world applications.

We list some open questions here that we find interesting.
Our reduction framework is based upon the sparsification methods proposed by Aouad
and Segev [1] and Byrka et al. [5]. On the ordered objective and symmetric monotone
norms in general, there have been other approximation methods, e.g., [8, 19]. It would be
interesting to see whether our approximation guarantees can be improved by leveraging
other techniques and ideas in the literature.
Although the objective of robust ordered k-median is distinctly unimodal in its shape
(see Figure 1), there are still more general unimodal objective functions that are not
captured by it. Obtaining an approximation algorithm for arbitrary unimodal vectors,
even with an O(log n)-factor approximation guarantee, is beyond the scope of our current
framework, so it might require some brand new ideas to handle these objectives.
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j∈C⋆ f(c⋆

j ).
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j
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Next, we put C ′⋆ = C⋆ ∩ C′ at all times. Whenever there exists p ∈ F ∪ C′ such that∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≥ ρU , set C′ ← C′ \ BallC′

(
p, δc⋆

p

)
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j ) ≥ f(c⋆
p−d(j, p)) ≥ f((1−δ)c⋆
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∣∣BallC′⋆

(
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p

)∣∣ · f((1− δ)c⋆
p) ≥ ρU .

Using a similar argument, this process can also be repeated for at most O(1/ρ) times. The
condition in (7.3) is then satisfied by definition.

Note that each such removed client j ∈ C \ C′ has, by the triangle inequality again,

f

(
1− δ

1 + δ
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where the last inequality is because c⋆
j ≥ c⋆

p − d(j, p) ≥ (1 − δ)c⋆
p. Therefore, by summing

over all j ∈ C⋆, (7.4) follows since∑
j∈C⋆\C′

f

(
1− δ

1 + δ
d(j, S0)

)
+ U ′ ≤

∑
j∈C⋆\C′

f(c⋆
j ) +

∑
j∈C⋆∩C′

f(c⋆
j ) = V ⋆ ≤ U.

Finally, we remove the dependence of the procedures on (F ⋆, C⋆), by noticing that
|S0| = O(1/ρ), and C′ is obtained from C by removing O(1/ρ) closed balls. Since m′ = |C⋆∩C′|
only takes values in [m], the total number of possible outcomes is at most n

O(1/ρ)
0 , and

we can simply enumerate all possible configurations of (C′, m′, S0). (7.1) also follows by
definition. ◀

Proof of Theorem 8. We iteratively construct {R̂j : j ∈ C′} that always maintain (8.2),
then prove (8.1). Initially, let R̂j = 0 for each j ∈ C′. In each iteration k ≥ 1, we try to
assign the k-th largest distance t′ in {d(i, j) : i ∈ F , j ∈ C′} \ {0} sequentially to unassigned
clients {j ∈ C′ : R̂j = 0} without violating (8.2); it is easy to verify that (8.2) is always
maintained, since it suffices to consider the case of t = t′ for each p ∈ F ∪ C′ (cf. [23]).

Recall that C ′⋆ = C⋆ ∩ C′. We construct a one-to-one mapping ϕ : C ′⋆ → C′ and show
the solution (F ⋆, ϕ(C ′⋆)) satisfies (8.1). Initially, we let ϕ be the identity function on C ′⋆.
Consider the clients in {j ∈ C ′⋆ : c⋆

j > (1 + 3δ/4)R̂j} in non-decreasing order of c⋆
j . For each

such j, we want to update ϕ(j) to an “unused” client in the current C′ \ ϕ(C ′⋆) such that
d(ϕ(j), j) ≤ δc⋆

j /2 and R̂ϕ(j) ≥ c⋆
j . If such ϕ(j) exists for each j ∈ C ′⋆, we assign ϕ(j) to κ⋆

j ,
define κ′

ϕ(j) = κ⋆
j and thus c′

ϕ(j) = d(ϕ(j), κ⋆
j ) ≤ c⋆

j +d(j, ϕ(j)) ≤ (1+δ/2)c⋆
j ≤ (1+δ/2)R̂ϕ(j).

Moreover, one has

∀i ∈ F ⋆ \ S0,
∑

j∈ϕ(C′⋆):κ′
j
=i

f

(
2

2 + δ
c′

j

)
≤

∑
j∈C′⋆:κ⋆

j
=i

f(c⋆
j ) ≤ ρU,

where the last inequality is due to (7.2). Similarly, one has∑
j∈ϕ(C′⋆)

f

(
2

2 + δ
c′

j

)
=

∑
j∈C′⋆

f

(
2

2 + δ
c′

ϕ(j)

)
≤

∑
j∈C′⋆

f(c⋆
j ) = U ′,

therefore (8.1) is satisfied by (F ⋆, ϕ(C ′⋆)) in this case.
It remains to show that such an unused j′ ∈ C′ \ ϕ(C ′⋆) can always be found for each

j ∈ C ′⋆ with c⋆
j > (1 + 3δ/4)R̂j . Notice that we have R̂j = 0 when t′ = c⋆

j is considered
during the construction, so setting R̂j = c⋆

j would be a violation in (8.2); that is, there exists
p ∈ F ∪ C′ such that d(p, j) ≤ δc⋆

j /4 and the set Hj =
{

j′ ∈ BallC′
(
p, δc⋆

j /4
)

: R̂j′ ≥ c⋆
j

}
satisfies

|Hj ∪ {j}| = |Hj |+ 1 >
ρU

f((1− δ)(1− δ/4)c⋆
j ) . (7)

Further, if there exists some j′ ∈ Hj \ ϕ(C ′⋆), we can set ϕ(j) = j′ since R̂j′ ≥ c⋆
j and

d(j, j′) ≤ d(j′, p) + d(p, j) ≤ δc⋆
j /2 using the triangle inequality. Therefore, it suffices to

prove Hj ̸⊆ ϕ(C ′⋆).
For the sake of contradiction, assume Hj ⊆ ϕ(C ′⋆) when we want to update ϕ(j). For

each ϕ(ĵ) ∈ Hj , we have d(p, ĵ) ≤ d(p, ϕ(ĵ)) + d(ĵ, ϕ(ĵ)) ≤ 3c⋆
j /4, because we consider

the clients in non-decreasing order of c⋆
j and hence d(ĵ, ϕ(ĵ)) ≤ δc⋆

ĵ
/2 ≤ δc⋆

j /2 in earlier
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iterations. This shows that (currently) ϕ−1(Hj) ⊆ BallC′⋆

(
p, 3δc⋆

j /4
)
. We further have

c⋆
p ≥ c⋆

j − d(p, j) ≥ (1− δ/4)c⋆
j and δc⋆

p ≥ δ(1− δ/4)c⋆
j ≥ (3δ/4)c⋆

j as δ < 1. Thus ϕ−1(Hj) ⊆
BallC′⋆

(
p, 3δc⋆

j /4
)
⊆ BallC′⋆

(
p, δc⋆

p

)
. Because j /∈ ϕ−1(Hj) and j ∈ BallC′⋆

(
p, δc⋆

p

)
, we have∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≥ (|Hj |+ 1)f((1− δ)c⋆

p)
≥ (|Hj |+ 1)f((1− δ)(1− δ/4)c⋆

j ) >(7) ρU,

which is a contradiction to (7.3). ◀

B Ordered Matroid Median

In this section, we give the first constant-factor approximation for OMatMed. As is pointed
out in [23], the natural LP relaxation for matroid median has a small integrality gap; we
skip the pre-processing steps of ROkMed and provide a sketch on how the iterative rounding
algorithm directly outputs the desired approximate solution. Suppose we have a faithful
function f in what follows via Theorem 3 and exhaustive search.
1. Ignore the pre-processing steps (i.e., Theorem 7 and Theorem 8) in the ROkMed algorithm.

To obtain a natural relaxation for any reduced instance Jfλ
, replace the cardinality

constraint
∑

i∈F yi ≤ k in LP(fλ) with
∑

i∈S yi ≤ rM(S), ∀S ⊆ F ; here, rM is the rank
function of the given matroidM = (F , F ), and these matroid polytope constraints follow
from a classic result by Edmonds [15].

2. We no longer have the stronger relaxation as the ROkMed case does. We solve the natural
relaxation and proceed to the auxiliary LP, which is similar to A-LP(fλ2) except for the
matroid constraints; because each client is fully assigned to an extent of 1 in OMatMed, we
also remove (A-LP.6) and change (A-LP.4) to equality constraints. We use Algorithm 1
for iterative rounding; since we do not have S0 or virtual clients, Algorithm 1 starts with
Cpart ← C and Ccore ← ∅.

3. Because we do not have any outliers and each client will end up in Cfull, the remaining
tight constraints after iterative rounding are either from a partition matroid (i.e., y(Fj) = 1
for each j ∈ Ccore) or from the input matroid (i.e.,

∑
i∈S yi ≤ rM(S) for each S ⊆ F).

Therefore, the corresponding output solution y′ is integral [15].
4. Using the same argument as Lemma 15, the objective value of y′ in the natural relaxation

LP(fλ) (we use the same names as ROkMed here with a slight abuse of notation) is
bounded by the objective of y′ in A-LP(fλ2) where λ2 = 3τ−1

τ−1 λ, and further bounded by
the optimal objective of LP(fλ1) where λ1 = τ(3τ−1)

τ−1 λ. Similar to Lemma 9, the optimum
of LP(fλ1) is at most λ1(1 + O(ϵ))opt, so the objective of y′ in LP(fλ) is also at most
λ1(1 + O(ϵ))opt.

5. Using Theorem 3 on the reduced instance Jfλ
, the integral solution induced by y′ has

an approximation ratio of

1
λ

(λ1(1 + O(ϵ)) + (1 + O(ϵ))) = (1 + O(ϵ))
(

τ(3τ − 1)
τ − 1 + 1

λ

)
,

where we have λ ≤ τ−1
τ(3τ−1) ∈ (0, 5 − 2

√
6] because λ1 ≤ 1 in LP(fλ1). Therefore, the

approximation ratio is minimized when λ = τ−1
τ(3τ−1) and τ(3τ−1)

τ−1 is minimized, giving

10 + 4
√

6 + O(ϵ) ≤ 19.798 + O(ϵ) ≤ 19.8,

where we choose a small enough constant ϵ > 0.
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C Ordered Knapsack Median

In this section, we give the first constant-factor approximation for OKnapMed. We closely
follow the procedures in [23] and use an iterative rounding algorithm akin to ROkMed.
Suppose we have a faithful function f in what follows via Theorem 3 and exhaustive search.
The following two theorems are similar to Theorem 7 and Theorem 8 in ROkMed. Let
(F ⋆, C⋆ = C) be the optimal solution to the original OKnapMed instance I with optimum
opt ≥ 0. Recall that we guess U ∈ [V ⋆, (1+ϵ)V ⋆) via binary search, where V ⋆ is the optimum
of J = (F , C, d, F , C , f); we have V ⋆ ≤ (1 + O(ϵ))opt using Theorem 3.

▶ Theorem 17. Given ρ, δ ∈ (0, 1) and U , there exists an n
O(1/ρ)
0 -time algorithm that finds

an extended instance J ′ = (F , C′, d, F , C ′, f, S0) satisfying the following.
(17.1) C′ ⊆ C, C ′ = {C′} and S0 ⊆ F ⋆ with |S0| = O(1/ρ).
(17.2) For each i ∈ F ⋆ \ S0, we have

∑
j∈C′:κ⋆

j
=i f(c⋆

j ) ≤ ρU ,

(17.3) For each p ∈ F ∪ C′, we have
∣∣BallC′

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) < ρU ,

(17.4) Denote U ′ =
∑

j∈C′ f(c⋆
j ). We have

∑
j∈C\C′ f

(
1−δ
1+δ d(j, S0)

)
+ U ′ ≤ U.

▶ Theorem 18. Given the instance found in Theorem 17, we can efficiently compute a set
of upper bounds {Rj ≥ 0 : j ∈ C′} such that for each j ∈ C′, we have

c⋆
j ≤ Rj = max {R > 0 : |BallC′ (j, δR)| · f((1− δ)R) ≤ ρU} .

The two theorems above are almost identical to those for ROkMed, thus we omit their
proofs here. By replacing the cardinality constraint y(F ) ≤ k with the relaxed knapsack
constraint

∑
i∈F wti · yi ≤W , and removing the coverage constraint for outliers, we consider

a stronger LP similar to S-LP(fλ1). We also use iterative rounding on an auxiliary LP similar
to A-LP(fλ2). Using a similar argument as in Lemma 14, we see that after iterative rounding,
the resulting solution y′ corresponds to the intersection of a laminar family and a knapsack
constraint, hence it contains at most 2 fractional variables. We now focus on obtaining an
integral solution ŷ from y′.

▶ Theorem 19. There exists λ > 0 depending on δ and τ , such that we can efficiently
compute an integral solution ŷ to LP(fλ) (in the knapsack case), and its objective value is at
most 3ρU larger than that of y′.

Proof. If there is only one fractional facility i2, we close it. If there are two, suppose i1, i2
are the two fractional facilities and i1 is the one with a smaller weight; because y′ is a basic
feasible solution, we again have y′

i1
+ y′

i2
= 1; we fully open i1 and close i2. The set of open

facilities F̂ is similarly defined as in Theorem 16. Because wti1 ≤ wti2 , it is also easy to
verify that

∑
i∈F wti ≤W , thus F̂ is indeed a feasible solution.

Unlike ROkMed, each client is fully assigned, so it remains to bound the cost incurred
from re-assigning clients that were assigned to i2, that is, J = {j ∈ Cfull : i2 ∈ Bj}. Let
γ > 0 be a constant that we determine later, i⋆ be the nearest open facility to i2 in F̂ and
t′ = d(i2, i⋆). Let J1 = {j ∈ J : d(j, i2) > γt′} and J2 = {j ∈ J : d(j, i2) ≤ γt′}. For j ∈ J1,
we have d(j, i⋆) ≤ d(j, i2) + d(i2, i⋆) < (1 + 1

γ )d(j, i2), thus

∑
j∈J1

f(λd(j, i⋆)) ≤
∑
j∈J1

f (d(j, i2)) ≤ 2ρU ⇐ λ ≤ γ

1 + γ
. (8)
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Fix some j ∈ J2. Similar as before, we have Rj ≥ Dlj /τ ≥ τ−1
τ(3τ−1) (t′ − d(j, i2)) ≥

τ−1
τ(3τ−1) (1− γ)t′. Suppose δRj ≥ 2γt′, then by Theorem 18 and the triangle inequality,

|J2| ≤ |BallC′ (i2, γt′)| ≤ |BallC′ (j, 2γt′)| ≤ |BallC′ (j, δRj)| ≤ ρU

f((1− δ)Rj) .

Using the triangle inequality again, we have d(j, i⋆) ≤ (1 + γ)t′ and the following total cost
of assigning J2 to i⋆ is at most∑

j∈J2

f(λd(j, i⋆)) ≤ |J2|f(λ(1 + γ)t′) ≤ ρU ⇐ λ ≤ (1− δ) · τ − 1
τ(3τ − 1) ·

1− γ

1 + γ
. (9)

We let σ = τ−1
τ(3τ−1) and let γ = δσ

2+δσ so that δRj ≥ 2γt′. By letting λ be the minimum
of (8)(9) and summing over the two cases, the increase of objective value w.r.t. LP(fλ) is at
most 2ρU + ρU = 3ρU , thus the theorem follows. ◀

Let δ = 2/3 and thus λ = σ
3+2σ . Similar to Lemma 9, the objective value of S-LP(fλ1),

λ1 = τ(3τ−1)
τ−1 λ is at most λ1U ′. Using the same argument as Lemma 15, the objective value

of y′ in the original relaxation LP(fλ) is at most that of A-LP(fλ2), λ2 = 3τ−1
τ−1 λ, which can

be bounded by λ1U ′ akin to Lemma 13. Using Theorem 19, the objective of ŷ to LP(fλ) is
at most λ1U ′ + 3ρU . Finally, using (17.4) and similarly to (6), the approximation ratio is(

max
{

5λ,
τ(3τ − 1)

τ − 1 λ

}
+ 1 + O(ρ)

)
1 + ϵ

λ
=

(
λ

σ
+ 1 + O(ρ)

)
1 + ϵ

λ
= 1

σ
+ 1

λ
+O(ϵ+ρ).

By letting τ = 1 +
√

2
3 and σ = 5− 2

√
6, the approximation ratio is at most

4
σ

+ 2 + O(ϵ + ρ) = 22 + 8
√

6 + O(ϵ + ρ) ≤ 41.596 + O(ϵ + ρ) ≤ 41.6,

where one chooses ϵ and ρ that are small enough. The running time is obtained from the
enumeration process and bounded by a polynomial.
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1 Introduction

In this paper we consider the sketching complexity of solving constraint satisfaction problems
(CSPs) approximately where the constraints are given by linear threshold functions over a
collection of Boolean literals. We introduce these terms below.

CSPs

Given a Boolean function f : {−1, 1}k → {0, 1}, the Boolean CSP associated with f , denoted
Max-CSP(f) is the following optimization problem. Given m constraints C1, . . . , Cm on n

Boolean variables X1, . . . , Xn, where each constraint applies f to a sequence of k distinct
literals from the set {X1, . . . , Xn, −X1, . . . , −Xn}, find the maximum fraction of constraints
that can be satisfied by an assignment to the n variables. For an instance Ψ of Max-CSP(f)
we use valΨ to denote this maximum value. We are interested in approximating valΨ and
this task is known to be equivalent to solving a gapped decision version of Max-CSP(f). For
0 ≤ β < γ ≤ 1 we define the (γ, β)-gapped version of Max-CSP(f), abbreviated to (γ, β)-
Max-CSP(f), to be the following promise decision problem: Given an instance Ψ satisfying
valΨ ≥ γ or valΨ < β decide which one of the two conditions holds.

Sketching algorithms

The class of algorithms we consider (and rule out) are randomized sketching algorithms.
Inputs to these algorithms arrive as a stream of elements, in our case a stream of constraints.
We consider algorithms that use some bounded amount of space, denoted s(n), to process
the stream and maintain a sketch of their output. When the stream ends the algorithm
outputs it verdict based on the current sketch. A key restriction of a sketching algorithm
is that its sketch should satisfy the following composability property. Given two streams σ

and τ and a fixing of the randomness, the sketch of their concatenation S(σ ◦ τ) should be
determined by their sketches S(σ) and S(τ) alone.1 Most existing algorithms for streaming
CSPs are sketching algorithms. We say a sketching algorithm solves a (gapped) decision
problem if on every input its answer is correct with probability at least 2/3.

Approximability and approximation resistance

For α ∈ [0, 1], we say an algorithm is an α-approximation algorithm for Max-CSP(f) if the
following holds: on every input instance Ψ, the algorithm outputs v such that α · valΨ ≤
v ≤ valΨ with probability at least 2/3. Note that the existence of an α-approximation
algorithm is equivalent to the existence of an algorithm for solving (γ, β)-Max-CSP(f) for
every γ, β ∈ [0, 1] with β ≤ α · γ.

For a function f : {−1, 1}k → {0, 1}, define ρ(f) = 2−k · |{x ∈ {−1, 1}k|f(x) = 1}|. For
every f and every instance Ψ of Max-CSP(f), a random assignment satisfies ρ(f) fraction
of the constraints in expectation and so every Ψ satisfies valΨ ≥ ρ(f). Thus the (1, ρ(f))-
Max-CSP(f) problem is trivially solvable by the algorithm that always outputs valΨ ≥ 1
(since the set {Ψ|valΨ < ρ(f)} is empty). We say Max-CSP(f) is sketching approximable
within space s(n) if there is an ε > 0 and a sketching algorithm using at most s(n) space that
solves (1 − ε, ρ(f) + ε)-Max-CSP(f). We say that Max-CSP(f) is approximation resistant to
space s(n) if for every ε > 0, every sketching algorithm for (1, ρ(f) + ε)-Max-CSP(f) requires
Ω(s(n)) space.

1 In contrast, a general streaming algorithm maintains a state S(σ ◦ τ) that may depend on S(σ) and all
of τ .
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1.1 Motivation and related work
There has been an increasing interest in studying the approximability of CSPs in the streaming
setting [16, 13, 14, 8, 7, 15, 6, 4, 5, 19, 2, 3]. In particular, recently Chou, Golovnev, Sudan,
and Velusamy [4, 5] gave a dichotomy result for sketching approximability of all finite CSPs.
Specifically, they proved the following theorem.

▶ Theorem 1 ([5]). For every k, every predicate f : {−1, 1}k → {0, 1} and every 0 ≤ β <

γ ≤ 1 one of the following holds: (1) (γ, β)-Max-CSP(f) is solvable by an O(log(n))-space
sketching algorithm, or (2) for every ε > 0, (γ − ε, β + ε)-Max-CSP(f) is not solvable by any
o(

√
n)-space sketching algorithm. Furthermore there is a decidable procedure that determines,

given F , γ and β, which of the two conditions hold.

We note that a followup paper by the same authors [4] extends the result to a more
general setting: Specifically they allow non-Boolean variables, allow a set of predicates rather
than a single function; and allow the predicates to be applied to variables rather than literals.
While their result is more general all results in this paper work in the more restricted setting
of [5] and so we will describe our results in their language (which can be somewhat simpler
for problems that are expressible in their setting).

While the results of [5] imply a dichotomy, to explicitly get the optimal sketching
approximation ratio for a given predicate f , they need to solve an optimization problem
which in general needs computer-aided analysis. In order to get more explicit results one
needs to restrict the families of functions considered, and even then it is unclear if there
can be a closed-form expression. In the only example we are aware of, Boyland, Hwang,
Prasad, Singer, and Velusamy [2] gave closed-form expressions for the optimal sketching
approximation ratio of some symmetric Boolean CSPs. This still leaves the question of
exploring the sketching approximability of other subfamilies of CSPs and extracting some
qualitative results yielding necessary or sufficient conditions for non-trivial approximability.

1.2 Main results
In this paper we study sketching approximability of CSPs on linear threshold functions. Below
we define the classes of linear threshold functions and balanced linear threshold functions.

▶ Definition 2 (Linear threshold function). A linear threshold function, or LTF, is a Boolean
function f : {−1, 1}k → {0, 1} of the form

f(x) = sign
(

k∑
i=1

wixi + θ

)
,

where w1, . . . , wk, θ ∈ R. The function sign(z) has value 1 if z > 0 and 0 if z ≤ 0; w1, . . . , wk

are called the weights of f and θ is the threshold.

▶ Definition 3 (Balanced linear threshold function). A balanced linear threshold function, or
balanced LTF, is an LTF with threshold 0 and the additional restriction that for every x ∈
{−1, 1}k, we have

∑k
i=1 wixi ̸= 0. Specifically, a balanced LTF f satisfies f(−x) = 1 − f(x)

for every x.

Note that for a balanced LTF f , ρ(f) = 1/2, and the goal of approximability is to beat
this factor. Balanced LTFs form a technically important class of functions to study visavis
CSP approximability. For instance Potechin [18] studies them in the polynomial time regime
giving a (somewhat complex) approximation-resistant function in this class. In the sketching
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setting, interest in this class of functions comes from [5, Theorem 1.3] which shows that if a
function f supports one-wise independence (i.e., f−1 supports a distribution on {−1, 1}k

that is uniform on each of the k marginals) then Max-CSP(f) is approximation resistant to
o(

√
n) space streaming algorithms. Balanced LTFs are the most basic class of functions that

do not support one-wise independence and hence are not covered by this theorem. Studying
this class thus offers the possibility of finding new classes of CSPs that are approximation
resistant to o(

√
n)-space streaming algorithms.

Our first result shows that every balanced LTF on up to 4 variables is sketching approx-
imable. (So to search for new approximation resistant functions we need to look at functions
on more variables!) We note that there are only finitely many such LTFs, but already this
theorem gives the first example of an asymmetric Boolean CSP which is approximable by
sketching algorithms.2

▶ Theorem 4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching
approximable in O(log(n)) space.

Our next result shows that there do exist balanced LTFs functions on 5 or more variables
that are sketching approximation resistant. The specific family of functions we show this
for are the “Monarchy” functions. For k ∈ N, MONk : {−1, 1}k → {0, 1} is given by
MONk(x1, . . . , xk) = sign ((k − 2)x1 + x2 + · · · + xk). It may be easily verified that MONk

is a balanced LTF. We have the following theorem.

▶ Theorem 5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to
space o(

√
n).

Thus we get the first examples of functions that do not support one-wise independence
that are approximation resistant to space o(

√
n) sketching algorithms. In fact, the theorem

gives infinitely many such examples. We suspect that the Balanced LTF constructed in [18]
should also be approximation-resistant but so far we don’t have a proof. The monarchy
functions, by virtue of the simplicity allow a simpler analytic proof, though admittedly even
in this case we do not have great intuition for the proof and do not know how to extend it to
other classes of functions.

Finally we also give an infinite subclass of balanced LTFs that are approximable us-
ing O(log(n)) space. The functions we consider here are what we call “weak monarchy”
functions.3 For j ≤ k ∈ N, let WMONk,j : {−1, 1}k → {0, 1} be the function given by
WMONk,j(x1, . . . , xk) = sign (j · x1 + x2 + · · · + xk). It may be easily verified that when
j + k is even, then WMONk,j is a balanced LTF. We have

▶ Theorem 6. For all integers j ≥ 2 and k ≥ 7j3 such that k+j is even, Max-CSP(WMONk,j)
is sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely
many k such that Max-CSP(WMONk,j) is sketching approximable.

The results above give the first examples of asymmetric Boolean CSPs for which
Max-CSP(f) is sketching approximable. Again we get an infinite family of such functions.

2 Note that Max-DICUT (shown to be sketching approximable in [6, 4]) is not considered a Boolean CSP
in [5] since the Max-DICUT constraints are applied on variables and not on literals.

3 Such functions are also sometimes called presidential type predicates [10].
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Comparison to the polynomial time regime

Hast [9] proves that (a generalization of) Theorem 23 holds in the polynomial time regime
(thus, implying an analogue of Theorem 6 in the polynomial time regime). Austrin, Benabbas,
and Magen [1] prove that MONk is approximable in polynomial time, which is in sharp
contrast to the result of Theorem 5 in the sketching setting. Huang and Potechin [10] show
that almost all WMON predicates are approximable in polynomial time. Finally, Potechin [18]
gives a balanced LTF which is (conditionally) approximation resistant in the polynomial
time regime.

Organization of the paper

We start with giving formal definitions and stating relevant previous results in Section 2.
The three main theorems are proved in Section 3, Section 4, and Section 5, respectively.

2 Preliminaries

We use N,R, and R≥0 to denote the sets of all natural, real, and non-negative real numbers,
respectively. We use [n] to denote the set {1, . . . , n}. We write vector variables in boldface,
e.g., x, and we use xi to denote their ith entry. For two vectors of the same length x, y ∈ Rk,
x ⊙ y ∈ Rk denotes the entry-wise product of x and y. For p ∈ [0, 1], Bern(p) denotes the
Bernoulli distribution taking value 1 with probability p, and value −1 with probability 1 − p.
We adopt the convention that

(
n
k

)
= 0 for k < 0 or k > n. By

(
n

≤k

)
we denote the sum∑k

i=0
(

n
i

)
.

2.1 Sketching approximability and approximation resistance
For a function f : {−1, 1}k → {0, 1}, let ρ(f) = 2−k · |{a ∈ {−1, 1}k | f(a) = 1}| denote the
probability that a uniformly random assignment of the variables satisfies f .

▶ Definition 7 (Sketching approximation resistance). For a function f : {−1, 1}k → {0, 1},
we say that f is sketching approximation resistant to space s(n) if for every ε > 0, every
sketching algorithm for (1, ρ(f) + ε)-Max-CSP(f) requires Ω(

√
n) space.

▶ Definition 8 (Sketching approximability). For a function f : {−1, 1}k → {0, 1}, we say that
f is sketching approximable in space s(n) if there exist ε > 0 and a sketching algorithm that
solves (1 − ε, ρ(f) + ε)-Max-CSP(f) using space s(n).

At first glance, it seems that if f is not sketching approximation resistant then it’s
not necessarily sketching approximable. Nonetheless, [5] proved that every f is either
approximable or approximation resistant.4

2.2 Characterization of approximability from [5]
In this work, we focus on CSPs that use a single function f applied to literals. Thus, we
will use the machinery from [5] instead of the more general (and more notationally-heavy)
version in [4]. For a distribution D ∈ ∆({−1, 1}k), by µ(D) we denote its marginals, i.e.,
µ(D) = (µ1, . . . , µk) where µi = Eb∼D[bi] for all i ∈ [k].

4 Concretely, as the sets KY , KN are closed (see Lemma 10), an algorithm for (1, ρ(f) + ε)-Max-CSP(f)
implies an algorithm for (1 − ε′, ρ(f) + ε)-Max-CSP(f) for some ε′ > 0, which in turn implies that
Max-CSP(f) is approximable.
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▶ Definition 9 ([5, Definitions 2.1 and 2.2]). For γ, β ∈ R, we define the sets of distributions
SY

γ and SN
β as

SY
γ = SY

γ (f) = {DY ∈ ∆({−1, 1}k) | E
b∼DY

[f(b)] ≥ γ}

and

SN
β = SN

β (f) = {DN ∈ ∆({−1, 1}k) | E
b∼DN

E
a∼Bern(p)k

[f(b ⊙ a)] ≤ β, ∀p ∈ [0, 1]} ,

and the sets of marginals of these distributions

KY
γ = KY

γ (f) = { µ(DY ) | DY ∈ SY
γ }

and

KN
β = KN

β (f) = { µ(DN ) | DN ∈ SN
β } .

We will use the following properties of the sets KY
γ and KN

β .

▶ Lemma 10 ([5, Lemma 2.4]). For every γ, β ∈ [0, 1] the sets KN
γ and KY

β are bounded,
closed and convex.

With these definitions, we are ready to present the approximability criteria from [5].5

▶ Theorem 11 ([5, Corollary 1.2]). For every k ∈ N and every function f : {−1, 1}k → {0, 1},
if KY

1 (f) ∩ KN
ρ(f)(f) = ∅, then f is sketching approximable within space O(log(n)), if

KY
1 (f) ∩ KN

ρ(f)(f) ̸= ∅, then f is sketching approximation resistant to space o(
√

n).

2.3 (Weak) Monarchy functions
▶ Definition 12. A monarchy predicate on k ≥ 2 variables MONk : {−1, 1}k → {0, 1} is
defined as

MONk(x1, . . . , xk) = sign
(

(k − 2)x1 +
k∑

i=2
xi

)
.

Here x1 is commonly referred to as the president and the rest of xis are called citizens.

▶ Definition 13 (Weak monarchy functions). A weak monarchy predicate of order j on k ≥ 2
variables WMONk,j : {−1, 1}k → {0, 1} is defined as

WMONk,j(x1, . . . , xk) = sign
(

j · x1 +
k∑

i=2
xi

)
.

Similar to ordinary monarchy functions, x1 is commonly referred to as the president and the
rest of xis are called citizens.

It is straightforward to see that MONk is a balanced LTF for every k ≥ 2 and WMONk,j

is a balanced LTF whenever k + j is even.

5 Strictly speaking the statement in Corollary 1.2 in [5] is somewhat different, but their proof of
Corollary 1.2 asserts this explicitly.
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2.4 Fourier analysis of Boolean functions
We will need the following basic notions from Fourier analysis over the Boolean hypercube
(see, for instance, [17]).

▶ Definition 14 (Characteristic functions). For every S ⊆ [k] such that |S| ≥ 1, the charac-
teristic function χS : {−1, 1}k → {−1, 1} is defined as χS(x) =

∏
i∈S xi. The characteristic

function corresponding to the empty set is defined as the constant function χ∅(x) = 1 for all
x ∈ {−1, 1}k.

▶ Definition 15 (Fourier expansions). The Fourier expansion of a Boolean function f :
{−1, 1}k → {0, 1} is given by

f =
∑

S⊆[k]

f̂(S) · χS ,

where f̂(S) = Ex∼Unif{−1,1}k [f(x)·χS(x)] and Unif({−1, 1}k) denotes the uniform distribution
on {−1, 1}k.

▶ Definition 16 (Chow parameters). The Chow parameters of a Boolean function f :
{−1, 1}k → {0, 1} are the degree-0 Fourier coefficient and the k degree-1 Fourier coeffi-
cients of f , i.e., f̂(∅), f̂({1}), . . . , f̂({k}).

▶ Proposition 17. For every Boolean function f : {−1, 1}k → {0, 1},
1. ρ(f) = f̂(∅),
2. for every S ⊆ [k], |f̂(S)| ≤ f̂(∅), and
3. for every x ∈ {−1, 1}k, −f̂(∅) · k ≤

∑k
i=1 f̂({i}) · xi ≤ f̂(∅) · k.

Proof. The first statement of the proposition follows directly from the definition of ρ(f):
ρ(f) = Ex∼Unif({−1,1}k)[f(x)] = f̂(∅). For the second statement, observe that for all S ⊆ [k],

|f̂(S)| = |Ex∼Unif({−1,1}k)[f(x) · χS(x)]|
≤ Ex∼Unif({−1,1}k)[|f(x) · χS(x)|]
= Ex∼Unif({−1,1}k)[f(x)]

= f̂(∅) .

It immediately follows that for all x ∈ {−1, 1}k,∣∣∣∣∣
k∑

i=1
f̂({i}) · xi

∣∣∣∣∣ ≤
k∑

i=1
|f̂({i}) · xi| ≤ f̂(∅) · k . ◀

3 Approximability of Balanced LTFs on 4 variables

In this section, we show that all balanced LTFs on at most 4 variables are sketching
approximable in O(log(n)) space. We start by proving that Max-CSP(MON4) is approximable.

3.1 Approximability of MON4

Recall that by Theorem 11, it suffices to show that KY
1 (MON4)∩KN

1/2(MON4) = ∅. For k ≥ 2,
the inputs x2, . . . , xk are symmetric, and we will only consider distributions D ∈ ∆({−1, 1}k)
where all vectors having the same sum of coordinates and the same value in the first
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coordinate have the same probability masses. Concretely, for x, y ∈ {−1, 1}k, if x1 = y1
and

∑
i xi =

∑
i yi, then D(x) = D(y). Such a distribution D is uniquely specified by a

pair of vectors u = (u0, . . . , uk−1), v = (v0, . . . , vk−1) ∈ Rk
≥0 with

∑
i ui + vi = 1, where for

0 ≤ i ≤ k − 1,

ui = Pr{x1 = 1 and exactly i of the rest of xis are 1} ,

vi = Pr{x1 = −1 and exactly i of the rest of xis are 1} .

Note that when
∑

i ui + vi = 1, u, v define a distribution D with marginals µ(D) =
(µ1, µ′, . . . , µ′) where

µ1 =
k−1∑
i=0

(ui − vi) and µ′ =
k−1∑
i=0

( 2i

k − 1 − 1)(ui + vi) . (1)

Next we show that for MONk functions, restricting our attention to this class of distribu-
tions is without loss of generality.

▶ Definition 18. For γ, β ∈ R and k ≥ 2,

K̃Y
γ (MONk) = { (µ1, µ′) | (µ1, µ′, . . . , µ′) ∈ KY

γ (MONk)}

and K̃N
β (MONk) = { (µ1, µ′) | (µ1, µ′, . . . , µ′) ∈ KN

β (MONk)} .

▶ Lemma 19. For γ, β ∈ R and k ≥ 2,

KY
γ (MONk) ∩ KN

β (MONk) = ∅ if and only if K̃Y
γ (MONk) ∩ K̃N

β (MONk) = ∅ .

Proof. First, if (µ1, µ′, . . . , µ′) ∈ K̃Y
γ (MONk) ∩ K̃N

β (MONk), then by Definition 18,
(µ1, µ′, . . . , µ′) ∈ KY

γ (MONk) ∩ KN
β (MONk).

For the other direction. Assume that there is a vector µ = (µ1, µ2, . . . , µk) ∈ KY
γ (MONk)∩

KN
β (MONk). Consider two distribution DY ∈ SY

γ and DN ∈ SN
β yielding the vector µ =

µ(DY ) = µ(DN ). Given that the variables x2, · · · , xk are symmetric, any distribution that is
yielded by permuting x2, · · · , xk in DY (or DN ) is also in SY

γ (or SN
β ). Note that the marginals

of these distributions are also permutations of µ. By Lemma 10, KY
γ and KN

β are convex, so
they also contain the averages of these vectors: (µ1, µ′, . . . , µ′) ∈ KY

γ (MONk)∩KN
β (MONk) for

µ′ = (µ2+. . .+µk)/(k−1). Finally, by Definition 18, (µ1, µ′) ∈ K̃Y
γ (MONk)∩K̃N

β (MONk). ◀

Next, we characterize the set K̃Y
1 (MONk).

▶ Lemma 20. For every k ≥ 2, K̃Y
1 (MONk) = {(µ1, µ′) ∈ [−1, 1]2 : µ1(k−2)+µ′(k−1) ≥ 1}.

Proof. For µ1, µ′ ∈ [−1, 1] satisfying µ1(k − 2) + µ′(k − 1) ≥ 1, consider the distribution
DY given by u1 = (k−1)(1−µ′)

2(k−2) , uk−1 = (k−1)µ′+(k−2)µ1−1
2(k−2) , vk−1 = (1 − µ1)/2, and ui = 0 for

i ̸∈ {1, k − 1} and vj = 0 for j ̸= k − 1. Note that u1, vk−1 ≥ 0 from µ1, µ′ ∈ [−1, 1], and
uk−1 ≥ 0 from µ1(k − 2) + µ′(k − 1) ≥ 1. It is also easy to check that u1 + uk−1 + vk−1 = 1
which implies that DY is a distribution, and that it is supported on the preimages of 1 under
MONk. Therefore (µ1, µ′) ∈ K̃Y

1 (MONk).
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For the other direction, a distribution DY supported on the preimages of 1 under MONk

satisfies u1 + . . . + uk−1 + vk−1 = 1. Then, from (1),

µ1(k − 2) + µ′(k − 1) = (k − 2)
k−1∑
i=0

(ui − vi) +
k−1∑
i=0

(2i − k + 1)(ui + vi)

=
k−1∑
i=1

(2i − 1)ui + vk−1

≥
k−1∑
i=1

ui + vk−1 = 1 ,

where the second equality uses that u0 = 0 and vj = 0 for j < k − 1. This concludes the
proof of the lemma. ◀

Now we show that for the MON4 function, K̃Y
1 and K̃N

1/2 are disjoint, and, thus, MON4
is approximable in O(log(n)) space.

▶ Lemma 21. Max-CSP(MON4) is sketching approximable in O(log(n)) space.

Proof. Note that Lemma 20 gives that K̃Y
1 (MON4) = {(µ1, µ′) ∈ [−1, 1]2 : 2µ1 + 3µ′ ≥ 1}.

We show that K̃Y
1 and K̃N

1/2 are disjoint, and then Lemma 19 and Theorem 11 imply that
Max-CSP(MON4) is sketching approximable in space O(log(n)). Next, we prove that no
distribution D ∈ SN

1/2 has marginals that lie in K̃Y
1 .

We start by characterizing KN
1/2 (for general MONk). Take a distribution D ∈ ∆({−1, 1}k).

In order for D to lie within SN
1/2, the following needs to be satisfied:

E
b∼DN

E
a∼Bern(p)k

[f(b ⊙ a)] ≤ β, ∀p . (2)

Let the function hD(p) denote the probability of an assignment from D that has undergone
bit flips with respect to Bern(p)k to satisfy the monarchy predicate with the probability of
β = 1/2 or less. With this definition, D ∈ SN

1/2 if and only if hD(p) ≤ 1
2 for all 0 ≤ p ≤ 1.

Note that negating all variables xi flips the output of the monarchy predicate. Therefore, the
negation of a “true” assignment is “false” and vice versa. This gives that hD(p) = 1−hD(1−p)
for all 0 ≤ p ≤ 1 which implies that D ∈ SN

1/2 if and only if for all 0 ≤ p ≤ 1

hD(p) = 1
2 .

We now write down the coefficients of the polynomial hD(p) in terms of ui and vi

describing the distribution (as used earlier in this section).
If one draws an assignment from D where x1 = 1 and exactly i of the rest of the variables

are 1, the probability of the resulting assignment satisfying the monarchy predicate after the
Bernoulli flipping is

p(1 − (1 − p)ipk−1−i) + (1 − p)k−ipi .

Similarly, if x1 = −1 and exactly i of the rest of the variables are 1, the probability of the
resulting assignment satisfying the monarchy predicate after the Bernoulli flipping is

(1 − p)(1 − (1 − p)ipk−1−i) + (1 − p)k−1−ipi+1 .
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This gives that

hD(p) =
k−1∑
i=0

ui

[
p(1 − (1 − p)ipk−1−i) + (1 − p)k−ipi

]
+

k−1∑
i=0

vi

[
(1 − p)(1 − (1 − p)ipk−1−i) + (1 − p)k−1−ipi+1] (3)

To prove this lemma, we form the polynomial hD(p) for k = 4 and show that no set of
uis and vis satisfy both hD(p) = 1

2 and 2µ1 + 3µ′ ≥ 1 (where, by (1), µ1 =
∑3

i=0(ui − vi)
and µ′ =

∑3
i=0( 2i

3 − 1)(ui + vi).)

hD(p) = u0
[
p(1 − p3) + (1 − p)4]

+u1
[
p(1 − (1 − p)p2) + (1 − p)3p

]
+u2

[
p(1 − (1 − p)2p) + (1 − p)2p2]

+u3
[
p(1 − (1 − p)3) + (1 − p)p3]

+v0
[
(1 − p)(1 − p3) + (1 − p)3p

]
+v1

[
(1 − p)(1 − (1 − p)p2) + (1 − p)2p2]

+v2
[
(1 − p)(1 − (1 − p)2p) + (1 − p)p3]

+v3
[
(1 − p)(1 − (1 − p)3) + p4]

= u0 + v0 + v1 + v2

+p · (−3u0 + 2u1 + u2 − v1 − 2v2 + 3v3)
+p2 · (6u0 − 3u1 + 3u3 − 3v0 + 3v2 − 6v3)
+p3 · (−4u0 + 2u1 − 2u3 + 2v0 − 2v2 + 4v3)

Every distribution (whose marginals are) in K̃N
1/2(MON4) must satisfy the following

system of equations and inequalities, where (4)–(7) are equivalent to hD(p) = 1
2 , and (8)–(10)

guarantee that uis and vis describe a distribution.

u0 + v0 + v1 + v2 = 1
2 (4)

− 3u0 + 2u1 + u2 − v1 − 2v2 + 3v3 = 0 (5)
6u0 − 3u1 + 3u3 − 3v0 + 3v2 − 6v3 = 0 (6)
− 4u0 + 2u1 − 2u3 + 2v0 − 2v2 + 4v3 = 0 (7)

3∑
i=0

(ui + vi) = 1 (8)

ui ≥ 0, ∀0 ≤ i ≤ 3 (9)
vi ≥ 0, ∀0 ≤ i ≤ 3 (10)

Summing up (5) multiplied by 3, (7) multiplied by −13/6, and (8) multiplied by 2/3, we
have that

2/3 = u0/3 + 7u1/3 + 11u2/3 + 5u3 − 11v0/3 − 7v1/3 − v2 + v3

≥ −u0 + u1 + 3u2 + 5u3 − 5v0 − 3v1 − v2 + v3

= 2µ1 + 3µ′ ,

where the last equality uses (1). By Lemma 20, K̃Y
1 (MON4) = {(µ1, µ′) ∈ [−1, 1]2 : 2µ1 +

3µ′ ≥ 1}, and from the above inequality every vector (µ1, µ′) ∈ K̃N
1/2(MON4) satisfies

2µ1 + 3µ′ ≤ 2/3. This implies that K̃Y
1 (MON4) ∩ K̃N

1/2(MON4) = ∅, and finishes the
proof. ◀
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3.2 Balanced LTFs on 4 variables

In this section, we prove Theorem 4.

▶ Theorem 4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching
approximable in O(log(n)) space.

We remark that there are non-balanced LTFs on fewer than four variables that are approx-
imation resistant. For example, if f(x1, x2) = x1 OR x2, then Max-CSP(f) is approximation
resistant to space o(n) even in the larger class of streaming algorithms (see, e.g., Corollary 4.2
in [6]).

Proof of Theorem 4. After relabeling and negating some of the variables of f , we can assume
that f(x1, x2, x3, x4) = sign(w1x1 + w2x2 + w3x3 + w4x4), where w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0
(if f depends on i < 4 variables, then we set wi+1 = . . . = w4 = 0). Since f is balanced,
ξ1w1 + ξ2w2 + ξ3w3 + ξ4w4 ̸= 0 for all ξi ∈ {−1, 1}. Now consider the following three cases.

If w1 > w2 + w3 + w4, then f = sign(x1) is a dictator function, so Max-CSP(f) can be
trivially (1 − ε)-approximated in O(log(n)/ε2) space by an ℓ1-sketch algorithm [11, 12].
If w2 + w3 − w4 < w1 < w2 + w3 + w4, then f = MON4 is a monarchy function on k = 4
variables. Indeed, in this case only the sum of the votes of the three last variables overrules
the vote of the first variable. By Lemma 21, Max-CSP(f) is sketching approximable in
O(log(n)) space.
If w1 < w2 + w3 − w4, then f = MAJ(x1, x2, x3) is the majority function on 3 variables.
Indeed, the sum of any two weights of the first three variables outweighs the sum of
the remaining weights. In this case, Max-CSP(f) is known to be sketching approximable
in space O(log(n)) (this follows from the characterization of sketching approximable
symmetric functions in [5, Lemma 2.14] and the fact that a balanced LTF doesn’t support
one-wise independent distributions).
Another way to see that the majority function is sketching approximable is via Theorem 25.
Indeed, since majority is a symmetric function, the (non-empty) Chow parameters of
the majority function are all equal and non-zero (see, e.g., [17, Theorem 5.19] for
the exact values of the Fourier coefficients of the majority function). Then the Chow
parameters define the majority function itself, and, by Theorem 25, Max-CSP(f) is
sketching approximable in space O(log(n)). ◀

4 Approximation resistance of Monarchy Functions

In this section, we prove Theorem 5: we show that for k ≥ 5, the MONk function is
approximation resistant. Recall that by Lemma 19 it suffices to show that K̃Y

1 (MONk) ∩
K̃N

1/2(MONk) ̸= ∅ for k ≥ 5.
In the following we show that for k ≥ 5, there exist vectors (u, v) with certain properties

that will be useful in showing that K̃Y
1 (MONk) ∩ K̃N

1/2(MONk) ̸= ∅.
We defer the proof of Lemma 22 to the full version of the paper.

▶ Lemma 22. For every k ≥ 5, there exists u, v ∈ Rk
≥0 satisfying the following conditions.

(i)
∑

i(ui + vi) = 1, i.e., u, v define a distribution D. In particular, the marginals of D is
(µ1, µ′, . . . , µ′) where µ1 =

∑
i(ui − vi), and µ′ =

∑
i(

2i
k−1 − 1)(ui + vi).
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(ii) u and v satisfy

(1/2 − δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi

+
k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2 − δ)k−i + (1/2 − δ)i(1/2 + δ)k−i

)
+

k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2 − δ)k−1−i + (1/2 − δ)i+1(1/2 + δ)k−1−i

)
=1/2

for every δ ∈ [−1/2, 1/2]. In particular, this implies that D ∈ SN
1/2.

(iii) p′ ≥ 1 − k−2
k−1 p1 where p′ = Prx∼D[x2 = 1] = 1

k−1 (
∑

i iui +
∑

i ivi) and p1 =
Prx∼D[x1 = 1] =

∑
i ui. In particular, this implies the existence of DY ∈ SY

1 and
µ(DY ) = (µ1, µ′, . . . , µ′).

Now, we are ready to prove Theorem 5 using Lemma 22 and Theorem 11.

▶ Theorem 5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to
space o(

√
n).

Proof. For every k ≥ 5, let u, v ∈ Rk
≥0, and µ1, µ′ ∈ [−1, 1] be the vectors given

by Lemma 22. Note that condition (i) guarantees that u, v define a distribution D with
marginal (µ1, µ′, . . . , µ′).

First, we show that condition (ii) is a sufficient condition for (µ1, µ′) ∈ K̃N
1/2. Recall that

DN ∈ SN
1/2(MONk) if for every δ ∈ [−1/2, 1/2], Eb∈DN

Ea∼Bern(1/2+δ)[MONk(b ⊙ a)] = 1/2.
Since Prx[MONk(x) = 1] = Prx[x1 = 1] − Prx[x = 10k−1] + Prx[x = 01k−1], we have that
Eb∈DN

Ea∼Bern(1/2+δ)[MONk(b⊙a)] = Pr
b,a

[b1 ⊙a1 = 1]− Pr
b,a

[b⊙a = 1(−1)k−1]+ Pr
b,a

[b⊙a = (−1)1k−1] .

We compute these three probabilities in terms of u, v, δ.

Pr
b,a

[b1 ⊙ a1 = 1] = (1/2 − δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi ,

Pr
b,a

[b ⊙ a = 1(−1)k−1] =
k−1∑
i=0

ui(1/2 + δ)i(1/2 − δ)k−i +
k−1∑
i=0

vi(1/2 + δ)i+1(1/2 − δ)k−1−i ,

Pr
b,a

[b ⊙ a = (−1)1k−1] =
k−1∑
i=0

ui(1/2 − δ)i(1/2 + δ)k−i +
k−1∑
i=0

vi(1/2 − δ)i+1(1/2 + δ)k−1−i .

Note that condition (ii) implies that

Pr
b,a

[b1 ⊙ a1 = 1] + Pr
b,a

[b ⊙ a = 1(−1)k−1] + Pr
b,a

[b ⊙ a = (−1)1k−1] = 1
2

for every δ ∈ [−1/2, 1/2] as desired. This implies that D ∈ SN
1/2(MONk). As condition (i)

gives µ(DN ) = (µ1, µ′, . . . , µ′), we have (µ1, µ′) ∈ K̃N
1/2 as desired.

Next, as p′ = µ′+1
2 and 1 − k−2

k−1 p1 = 1 − (k−2)(µ1+1)
2(k−1) , condition (iii) implies µ1(k − 2) +

µ′(k − 1) ≥ 1. By Lemma 20, this implies that (µ1, µ′) ∈ K̃Y
1 (MONk) as desired.

To sum up, Lemma 22 gives us (µ1, µ′) ∈ K̃Y
1 ∩ K̃N

1/2 for every k ≥ 5 and Lemma 19
implies (µ1, µ′, . . . , µ′) ∈ KY

1 ∩ KN
1/2. By Theorem 11, we conclude that MONk is sketching

approximation resistant to space o(
√

n) and, hence, complete the proof of Theorem 5. ◀



C.-N. Chou, A. Golovnev, A. Shahrasbi, M. Sudan, and S. Velusamy 35:13

5 Chow parameters and the approximability of weak monarchies

In this section, we prove that infinitely many weak monarchy functions are sketching
approximable within O(log(n)) space. We first prove in Section 5.1 that every LTF defined by
its Chow parameters (i.e., degree-1 Fourier coefficients as weights and threshold 0) is sketching
approximable within O(log(n)) space. And later in Section 5.2, we prove that infinitely many
weak monarchy functions are balanced LTFs defined by their Chow parameters.

5.1 Approximability of LTFs defined by their Chow parameters
▶ Theorem 23. For every Boolean function f : {−1, 1}k → {0, 1} of the form

f(x) = sign
(

k∑
i=1

f̂({i})xi

)
,

Max-CSP(f) is sketching approximable in O(log(n)) space.

▶ Definition 24. Define ε0(f) = min{
∑k

i=1 f̂({i}) · xi : f(x) = 1}. Define ε∗(f) =
min{ ε0(f)

3k , 2ε0(f)2

9ρ(f)k2 }.

We will use the following theorem to prove Theorem 23.

▶ Theorem 25. For every Boolean function f : {−1, 1}k → {0, 1} and every ε > 0, there
exists an O(log(n)) space (ρ(f) + ε∗(f) − ε)-approximation algorithm for Max-CSP(f).

First we show how to prove Theorem 23 using Theorem 25.

Proof of Theorem 23. If f(x) is the constant zero function, then it’s trivially approximable
in O(log(n)) space. Otherwise, when f(x) = sign

(∑k
i=1 f̂({i}) · xi

)
, we have ε0(f) =

min{
∑k

i=1 f̂({i}) · xi : f(x) = 1} > 0 and hence ε∗(f) > 0 by their definitions. Now for
ε = ε∗(f)/2, Theorem 25 implies that there is a (ρ(f) + ε∗(f)/2)-approximation algorithm
for Max-CSP(f), and finishes the proof. ◀

Before we prove Theorem 25, we will describe some useful definitions and lemmas from [5].
Let f : {−1, 1}k → {0, 1} be a Boolean constraint function of arity k and X1, . . . , Xn

be variables. A constraint C consists of j = (j1, . . . , jk) ∈ [n]k and b = (b1, . . . , bk) ∈
{−1, 1}k where the ji’s are distinct. The constraint C reads as requiring f(b ⊙ X|j) =
f(b1Xj1 , . . . , bkXjk

) = 1. A Max-CSP(f) instance Ψ contains m constraints C1, . . . , Cm with
non-negative weights w1, . . . , wm where Ci = (j(i), b(i)) and wi ∈ R for each i ∈ [m]. For an
assignment σ ∈ {−1, 1}n, the value valΨ(σ) of σ on Ψ is the fraction of weight of constraints
satisfied by σ, i.e., valΨ(σ) = 1

W

∑
i∈[m] wi · f(b(i) ⊙ σ|j(i)), where W =

∑m
i=1 wi. The

optimal value of Ψ is defined as valΨ = maxσ∈{−1,1}n valΨ(σ).

▶ Definition 26 (Bias (vector)). For λ = (λ1, . . . , λk) ∈ Rk, and instance Ψ =
(C1, . . . , Cm; w1, . . . , wm) of Max-CSP(f) where Ci = (j(i), b(i)) and wi ≥ 0, we let the
λ-bias vector of Ψ, denoted biasλ(Ψ), be the vector in Rn given by

biasλ(Ψ)ℓ = 1
W

·
∑

i∈[m],t∈[k]:j(i)t=ℓ

λtwi · b(i)t ,

for ℓ ∈ [n], where W =
∑

i∈[m] wi. The λ-bias of Ψ, denoted Bλ(Ψ), is the ℓ1 norm of
biasλ(Ψ), i.e., Bλ(Ψ) =

∑n
ℓ=1 |biasλ(Ψ)ℓ|.
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▶ Lemma 27 ([5, Lemma 4.7]). For every λ ∈ Rk, we have Bλ(Ψ) =
maxa∈{−1,1}n⟨a, biasλ(Ψ)⟩.

▶ Lemma 28 ([5, Lemma 4.4]). For every vector λ ∈ Rk and ε > 0, there exists a O(log(n))
space sketching algorithm A that on input a stream σ1, . . . , σℓ, representing an instance
Ψ = (C1, . . . , Cm; w1, . . . , wm), outputs a (1 ± ε)-approximation to Bλ(Ψ), i.e., for every Ψ,
(1 − ε)Bλ(Ψ) ≤ A(Ψ) ≤ (1 + ε)Bλ(Ψ), with probability at least 2/3.

Below, we describe Algorithm 1 and show that it is an O(log(n)) space (ρ(f) + ε∗(f) − ε)-
approximation algorithm for Max-CSP(f).

Algorithm 1 A sketching (ρ(f) + ε∗(f) − ε)-approximation algorithm for Max-CSP(f).

Input: a stream σ1, . . . , σℓ representing an instance Ψ of Max-CSP(f) where σi =
((j(i), b(i)), wi).

1: Let λ = (f̂({1}), . . . , f̂({k})) ∈ Rk and ε′ = ε/8.
2: Use the algorithm A from Lemma 28 to compute B̃ to be a (1 ± ε′) approximation to

Bλ(Ψ), i.e., (1 − ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ) with probability at least 2/3.
3: Let δ̃ = min{ 1

3k , 2B̃
9ρ(f)k2 }.

4: Output: v = ρ(f) + B̃δ̃
(1+ε′)2 .

It is clear that the algorithm above runs in O(log(n)) space (in particular by Lemma 28
for Step 2). We now turn to analyzing the correctness of the algorithm.

5.1.1 Analysis of the correctness of Algorithm 1
Before we analyse Algorithm 1, we establish some upper and lower bounds on valΨ in terms
of Bλ(Ψ) where λ = (f̂({1}), . . . , f̂({k})).

▶ Lemma 29 (Lower bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function, and
Ψ be an instance of Max-CSP(f). Then

valΨ ≥ ρ(f) + Bλ(Ψ)δ(Ψ) ,

where λ = (f̂({1}), . . . , f̂({k})) and δ(Ψ) = min{ 1
3k , 2Bλ(Ψ)

9ρ(f)k2 }.

▶ Lemma 30 (Upper bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function, ε0(f)
be as defined in Definition 24, and Ψ be an instance of Max-CSP(f). Then

valΨ ≤ Bλ(Ψ) + ρ(f) · k

ε0(f) + ρ(f) · k
,

where λ = (f̂({1}), . . . , f̂({k})).

We defer the proofs of Lemma 29 and Lemma 30 to the full version of the paper. We
now show the correctness of Algorithm 1 using these lemmas.

5.1.2 Proof of Theorem 25
Proof of Theorem 25. First, by Lemma 28, with probability at least 2/3, B̃ is a (1 ± ε′)
approximation to Bλ(Ψ), i.e., (1 − ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ). Next, we show that with
probability at least 2/3, (i) v ≤ valΨ and (ii) v ≥ (ρ(f) + ε∗(f) − ε) · valΨ.



C.-N. Chou, A. Golovnev, A. Shahrasbi, M. Sudan, and S. Velusamy 35:15

(i) v ≤ valΨ
We have

v = ρ(f) + B̃δ̃

(1 + ε′)2 ≤ ρ(f) + Bλ(Ψ)δ(Ψ) ≤ valΨ ,

where the last inequality follows from Lemma 29.

(ii) v ≥ (ρ(f) + ε∗(f) − ε) · valΨ
We have

v = ρ(f) + B̃δ̃

(1 + ε′)2 ≥ ρ(f) + Bλ(Ψ)δ(Ψ)
(

1 − ε′

1 + ε′

)2
≥ ρ(f) + Bλ(Ψ)δ(Ψ)(1 − ε) , (11)

where the last inequality follows from the choice of ε′. Let us first consider the case when
Bλ(Ψ) ≥ ε0(f). We have

Bλ(Ψ)δ(Ψ) ≥ ε0(f) · min
{

1
3k

,
2ε0(f)

9ρ(f)k2

}
≥ ε∗ , (12)

where the last equality follows from the definition of ε∗(f) in Definition 24.
Combining Equation (11) and Equation (12), we get

v ≥ ρ(f) + ε∗(f)(1 − ε) ≥ (ρ(f) + ε∗(f) − ε)valΨ ,

where the last inequality follows from valΨ ≤ 1.
Now, let us consider the case when Bλ(Ψ) < ε0(f). It follows from Proposition 17 that

ε0(f) ≤ ρ(f)k. Therefore,

2Bλ(Ψ)
9ρ(f)k2 ≤ 2ε0(f)

9ρ(f)k2 ≤ 2
9k

<
1
3k

,

and so δ(Ψ) = 2Bλ(Ψ)
9ρ(f)k2 . Combining Equation (11) and Lemma 30, we have

v

valΨ
≥ (1 − ε)

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

(ρ(f) + ε0(f)
k

)
.

We show that for 0 ≤ Bλ(Ψ) ≤ ε0(f),

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

≥
ρ(f) + 2ε0(f)2

9ρ(f)k2

ρ(f) + ε0(f)
k

. (13)

This immediately implies that

v

valΨ
≥ (1 − ε)

(
ρ(f) + 2ε0(f)2

9ρ(f)k2

)
≥ (1 − ε)(ρ(f) + ε∗(f)) > ρ(f) + ε∗(f) − ε .

Consider the function g(p) =
ρ(f)+ 2p2

9ρ(f)
ρ(f)+p . In order to show Equation (13), it suffices to show

that in the range p ∈ [0, ε0(f)
k ], g(p) attains the minimum value at p = ε0(f)

k , i.e, g′(p) < 0 in

this range. We have g′(p) =

(
2(p+ρ(f))2

9ρ(f) − 11ρ(f)
9

)
(ρ(f)+p)2 and for p ∈ [0, ε0(f)

k ], we have(
2(p + ρ(f))2

9ρ(f) − 11ρ(f)
9

)
≤
(

2(ε0(f)/k + ρ(f))2

9ρ(f) − 11ρ(f)
9

)
≤ 8ρ(f)

9 − 11ρ(f)
9 = −ρ(f)

3 < 0 .

This completes the proof of Theorem 25. ◀
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5.2 Approximability of weak monarchy functions
In this section, we analyze the streaming approximability of Max-CSP(f) where f is a weak
monarchy function. Note that in order for WMONk,j to be a balanced LTF, the total number
of votes, i.e., j + k − 1, needs to be odd. Therefore, we make such assumption throughout
the rest of this section. We defer the proof of Lemma 31 to the full version of the paper.

▶ Lemma 31. For all integers j ≥ 2 and k ≥ 7j3 such that k + j is even,

WMONk,j(x) = sign
(

k∑
i=1

̂WMONk,j({i})xi

)
.

Note that Lemma 31 along with Theorem 23 directly conclude Theorem 6 restated below.

▶ Theorem 6. For all integers j ≥ 2 and k ≥ 7j3 such that k+j is even, Max-CSP(WMONk,j)
is sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely
many k such that Max-CSP(WMONk,j) is sketching approximable.

References
1 Per Austrin, Siavosh Benabbas, and Avner Magen. On quadratic threshold csps. In LATIN

2010, pages 332–343. Springer, 2010.
2 Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy.

Closed-form expressions for the sketching approximability of (some) symmetric Boolean CSPs.
CoRR, abs/2112.06319, February 2022.

3 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini
Velusamy. Linear Space Streaming Lower Bounds for Approximating CSPs. In STOC 2022,
2022. To appear.

4 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approxim-
ability of all finite CSPs with linear sketches. In FOCS 2021, pages 1197–1208. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00117.

5 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approxim-
ability of all Boolean CSPs with linear sketches. CoRR, abs/2102.12351v8, 11th february
2022.

6 Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming Approx-
imations for all Boolean Max-2CSPs and Max-kSAT. In FOCS 2020, pages 330–341. IEEE,
2020. doi:10.1109/FOCS46700.2020.00039.

7 Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In APPROX
2019, pages 5:1–5:12. Schloss Dagstuhl, 2019.

8 Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming Complexity
of Approximating Max 2CSP and Max Acyclic Subgraph. In APPROX 2017, pages 8:1–8:19.
Schloss Dagstuhl, 2017.

9 Gustav Hast. Beating a random assignment: Approximating constraint satisfaction problems.
PhD thesis, KTH, 2005.

10 Neng Huang and Aaron Potechin. On the approximability of presidential type predicates. In
APPROX 2020, pages 58:1–58:20. Schloss Dagstuhl, 2020.

11 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings and data stream
computation. In FOCS 2000, pages 189–197. IEEE, 2000.

12 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of
sketching and streaming small norms. In SODA 2010, pages 1161–1178. SIAM, 2010.

13 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approx-
imating MAX-CUT. In SODA 2015, pages 1263–1282. SIAM, 2015.

https://doi.org/10.1109/FOCS52979.2021.00117
https://doi.org/10.1109/FOCS46700.2020.00039


C.-N. Chou, A. Golovnev, A. Shahrasbi, M. Sudan, and S. Velusamy 35:17

14 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + ω(1))-
approximation to MAX-CUT requires linear space. In SODA 2017, pages 1703–1722. SIAM,
2017.

15 Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating
MAX-CUT. In STOC 2019, pages 277–288. ACM, 2019. doi:10.1145/3313276.3316364.

16 Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In ITCS
2015, pages 367–376. ACM, 2015.

17 Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
18 Aaron Potechin. On the approximation resistance of balanced linear threshold functions. In

STOC 2019, pages 430–441. ACM, 2019.
19 Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance

of every ordering CSP. In APPROX 2021, pages 17:1–17:19. Schloss Dagstuhl, 2021.

APPROX/RANDOM 2022

https://doi.org/10.1145/3313276.3316364




Integrality Gap of Time-Indexed Linear
Programming Relaxation for Coflow Scheduling
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Abstract
Coflow is a set of related parallel data flows in a network. The goal of the coflow scheduling is
to process all the demands of the given coflows while minimizing the weighted completion time.
It is known that the coflow scheduling problem admits several polynomial-time 5-approximation
algorithms that compute solutions by rounding linear programming (LP) relaxations of the problem.
In this paper, we investigate the time-indexed LP relaxation for coflow scheduling. We show that
the integrality gap of the time-indexed LP relaxation is at most 4. We also show that yet another
polynomial-time 5-approximation algorithm can be obtained by rounding the solutions to the
time-indexed LP relaxation.
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1 Introduction

Coflow scheduling was introduced by Chowdhury and Stoica [7]. It is motivated by cluster
computation frameworks such as MapReduce and Hadoop. Because these frameworks involve
a huge amount of communication within a computer cluster, it is crucial to efficiently schedule
this communication to achieve high computation performance. Coflow is an abstraction of
data flow created by the processing of a task within the computer cluster. The goal of coflow
scheduling is to find the most efficient scheduling of coflows.

Among the many variations of the coflow scheduling problem, weighted completion
minimization under a bipartite matching model is the most extensively studied setting. In
this setting, a coflow is represented as a bipartite undirected multigraph. An edge in the
coflow represents the demand of sending one unit of data from one node to another. We are
given a set of coflows F1, . . . , Fk, all of which are on the same bipartition (X, Y ) of the node
set. Each coflow Fi is associated with a weight wi ≥ 0 and a release time ri ∈ Z+, where Z+
is the set of non-negative integers. The required task is to schedule all demands of the coflows
under the congestion constraint and the release time constraint. The congestion constraint
requires all nodes to send or receive at most one unit of data at any moment, and the release
time constraint requires the demand of coflow Fi to not be processed before release time ri.
The completion time Ci of coflow Fi is defined as the time at which all demands of Fi have
been processed. The objective of the problem is to minimize the weighted completion time,
defined as

∑k
i=1 wiCi. More information on the problem setting is given in Section 2.

This coflow scheduling problem includes the concurrent open shop scheduling problem,
which corresponds to the special case where X = {x1, . . . , xn}, Y = {y1, . . . , yn} and each
edge of the given coflows joins nodes xi and yi for some i ∈ {1, . . . , n}. For concurrent open
shop scheduling, achieving (2 − ϵ)-approximation for any ϵ > 0 is know to be NP-hard [16].
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36:2 Integrality Gap of Time-Indexed LP for Coflow Scheduling

Thus, the same approximation hardness holds for coflow scheduling. The best approximation
factor for coflow scheduling is achieved by the algorithms proposed by Shafiee and Ghaderi [17]
and Ahmadi et al. [2], respectively. The factor is 4 when the release times for all given
coflows are identical and 5 when they are not identical. Narrowing the gap between the
upper and lower bounds of the approximation factor is an interesting open problem.

The above approximation algorithms [2, 17] for coflow scheduling are both based on linear
programming (LP) relaxations of the problem. The algorithm of Shafiee and Ghaderi [17]
uses a relaxation with ordering variables and that of Ahmadi et al. [2] uses a relaxation
with parallel inequalities. These relaxations are commonly used in the machine scheduling
literature. Their algorithms also give upper bounds on the integrality gap of these LP
relaxations.

1.1 Our contribution
Our contribution is to investigate the time-indexed LP relaxation, which is another standard
formulation of LP relaxations for machine scheduling problems. We show that the integrality
gap of the time-indexed LP relaxation is at most 4 even for non-identical release times,
which is better than the known upper bounds on the integrality gap of other LP relaxations.
Our integrality gap analysis relies on Hall’s theorem [1] on existence of perfect matchings
in bipartite hypergraphs. We show that a 4-approximate solution is obtained by finding a
perfect matching in a bipartite hypergraph constructed from an optimal solution solution to
the time-indexed LP relaxation.

Unfortunately, our integrality gap analysis does not provide a polynomial-time algorithm
of approximation factor that matches the integrality gap bound because there are no known
polynomial-time algorithms for computing hypergraph perfect matchings implied by Hall’s
theorem. Nevertheless, we believe that our analysis is useful for obtaining an improved
polynomial-time approximation algorithm in the future.

We would also like to point out that our analysis is a new interesting application of
the Hall’s theorem on hypergraphs. Previously Hall’s theorem on hypergraphs has been
used for developing approximation algorithms for min-max allocation problems in a series of
studies (see e.g., [4, 5]). We note that this line of studies was initiated by Asadpour, Feige,
and Saberi [5], the algorithm given in which is not a polynomial-time algorithm.

In addition to the integrality gap bound, we give a polynomial-time rounding algorithm
for the time-indexed LP relaxation. Although our algorithm does not improve upon the
currently best approximation algorithms [2, 17], we prove that our algorithm achieves the
same approximation factors as them. Namely, its approximation factor is 4 for the identical
release times, and 5 for non-identical release times.

Inspired by our polynomial-time rounding algorithm, we also observe that, if a hypergraph
is constructed from the coflow scheduling with identical release times, then a perfect matching
can be found in polynomial-time time. This gives an alternative 4-approximation algorithm
for the coflow scheduling with identical release times.

Summing up, our contributions can be summarized as follows.
We show that the rounding of a solution to the time-indexed LP relaxation can be reduced
to finding a perfect matching in a hypergraph. This implies that the integrality gap of
the time-indexed LP relaxation is at most 4, which improves on the integrality gap upper
bounds on LP relaxations for non-identical release times.
We propose a polynomial-time rounding algorithm for the time-indexed LP relaxation.
Its approximation factor is 4 for identical release times and 5 for non-identical release
times. These factors match those of the currently known best approximation algorithms
for coflow scheduling.
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We propose a polynomial-time algorithm for computing perfect matchings in hypergraphs
constructed in the reduction of rounding solutions to the time-indexed LP relaxation
with identical release times.

1.2 Organization
The rest of this paper is organized as follows. Section 2 introduces preliminary facts and
related studies on coflow scheduling and hypergraph perfect matching. Section 3 formulates
the time-indexed LP relaxation. Section 4 presents the analysis of the integrality gap of the
time-indexed LP relaxation. Section 5 describes the proposed polynomial-time rounding
algorithm for the time-indexed LP relaxation. Section 6 describes the proposed polynomial-
time algorithm for computing perfect matchings in hypergraphs constructed from the coflow
scheduling with identical release times. Section 7 concludes this work.

2 Preliminary facts and related studies

2.1 Coflow scheduling
Throughout this paper, an edge between two nodes x and y is denoted by xy. The set of
integers 1, . . . , n is denoted by [n]. For an edge set I and a node v, the set of edges in I

incident to v is denoted by δI(v). The subscript is omitted when the edge set is clear from
the context. The maximum degree of a graph G is denoted by ∆(G).

As mentioned in Section 1, the inputs of the bipartite matching model of the coflow
scheduling problem are coflows F1, . . . , Fk with weights w1, . . . , wk ≥ 0 and release times
r1, . . . , rk ∈ Z+, where coflows are bipartite multigraphs on the bipartition (X, Y ) of the
node set. We usually identify a graph with the set of edges. Let F denote

⋃k
i=1 Fi.

We denote the time horizon of schedules by T . In this paper, we consider finding a
discrete-time integer schedule, for which the time interval [0, T ) is divided into intervals
[0, 1), [1, 2), . . . , [T − 1, T ) and the data flow does not vary within an interval. We refer to
interval [t − 1, t) as the t-th round. In contrast to a discrete-time schedule, a continuous-time
schedule can change the data flow at any moment. In an integer schedule, data flow forms
a matching in each round by the congestion constraint. Thus, a schedule is equivalent
to a sequence (M1, . . . , MT ) of matchings such that

⋃T
t=1 Mt = F and Mt ∩ Fi = ∅ for

each i ∈ [n] and t ∈ [ri]. The completion time Ci of coflow Fi in the schedule is given by
max{t : Mt ∩ Fi ̸= ∅}. The objective of the problem is to minimize the weighted completion
time

∑k
i=1 wiCi. In addition to integer schedules, we can also consider a fractional schedule,

where data flow within a round forms a fractional matching, i.e., a vector x ∈ [0, 1]E such
that

∑
e∈δ(v) x(e) ≤ 1 for each v ∈ X ∪ Y .

Since its introduction by Chowdhury and Stoica [7], coflow scheduling has been extensively
studied from both practical and theoretical viewpoints [2, 8, 9, 14, 17, 18]. Several extensions
of the problem setting have been presented. For example, Im et al. [13] considered the matroid
coflow scheduling problem, which replaces the congestion constraint with a constraint that
requires the set of elements scheduled in a round to be independent in a given matroid. Note
that the bipartite matching model cannot be modeled by the matroid coflow, and hence the
result of Im et al. cannot be applied to the bipartite matching model. Chowdhury et al. [6]
considered flows in general graphs instead of bipartite matchings in the congestion constraint.
Their model is a generalization of the bipartite matching model. However, the algorithm
of Chowdhury et al. outputs only a fractional schedule, and thus it cannot be used for
computing an integer schedule.
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2.2 Hypergraph perfect matching
Let H = (V, E) be a hypergraph with node set V and hyperedge set E. Here, we regard each
hyperedge as a set of nodes.

A matching M in a hypergraph H = (V, E) is a subset of E such that |δM (v)| ≤ 1 for
all v ∈ V , where we naturally extend the notation δ to hypergraphs. A transversal U of
H = (V, E) is a subset of V such that U ∩ e ̸= ∅ for all e ∈ E. The maximum size of
matchings and the minimum size of transversals of H are called the matching number and the
transversal number of H, denoted by ν(H) and τ(H), respectively. A fractional matching is
a function x : E → [0, 1] such that

∑
e∈δ(v) x(e) ≤ 1 for each v ∈ V . The maximum value of∑

e∈E x(e) among all fractional matchings x in H is called the fractional matching number of
H and is denoted by ν∗(H). Note that ν(H) ≤ ν∗(H) ≤ τ(H) holds for any hypergraph H.

H is said to be r-uniform if |e| = r for each e ∈ E, and is said to be bipartite if its node set
has a bipartition (A, B) such that |A∩e| = 1 for all e ∈ E. Hereafter, we suppose that H is an
r-uniform bipartite hypergraph with bipartition (A, B). We denote the nodes in A by A-nodes
and those in B by B-nodes. A perfect matching in H is a matching whose size is |A| (i.e., all
A-nodes are covered by some hyperedge in the matching). For X ⊆ A, let HX represent the
hypergraph with the node set B and the hyperedge set EX := {e \ A : e ∈ E, e ∩ X ≠ ∅}.
The following sufficient conditions for the existence of perfect matching are known.

▶ Theorem 1 (Haxell [11]). If an r-uniform bipartite hypergraph H with the node set
bipartition (A, B) satisfies

τ(HX) > (2r − 3)(|X| − 1) for any X ⊆ A, (1)

then H has a perfect matching.

▶ Theorem 2 (Aharoni and Haxell [1]). If an r-uniform bipartite hypergraph H with the node
set bipartition (A, B) satisfies

ν(HX) > (r − 1)(|X| − 1) for any X ⊆ A, (2)

then H has a perfect matching.

Note that these two theorems extend the sufficient condition implied by Hall’s theorem
to the existence of perfect matchings in bipartite graphs (although the condition in Hall’s
theorem is necessary and sufficient, the conditions in the above two theorems are not).

The proofs of these theorems are not algorithmic. Nevertheless, Annamalai [3] gave
an algorithmic proof of Haxell’s theorem by introducing a small amount of slack into the
condition. More concretely, Annamalai showed that, if there exists a constant ϵ > 0 such
that the hypergraph H satisfies τ(HX) > (2r − 3 + ϵ)(|X| − 1) for any X ⊆ A, then there
exists a polynomial-time algorithm for finding a perfect matching in H. There is no known
polynomial-time algorithm for finding a perfect matching in a hypergraph that satisfies
condition (2). Note that finding perfect matchings in 3-uniform bipartite hypergraphs is
NP-hard in general because it includes 3-dimensional matching [15].

3 Time-indexed LP relaxation

In this section, we introduce the time-indexed LP relaxation for the coflow scheduling
problem.

We set T to an upper bound on the time horizon of optimal coflow scheduling. For
example, T can be set to |F |. Indeed, we can see that 2∆(F ) + maxi∈[k] ri is also an upper
bound because of the observations explained below in Lemma 6.
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In the time-indexed LP, we have a variable xt,e ∈ [0, 1] for each t ∈ [T ] and e ∈ F , and a
variable ci for each i ∈ [k]. When the variables take integer values, variable xt,e indicates
whether the demand e is processed in the t-th round (i.e., time interval [t−1, t)), and variable
ci is the completion time of coflow Fi.

The time-indexed LP is formulated as follows.

minimize
∑
i∈[k]

wici

subject to
∑

t∈[T ]

txt,e ≤ ci, ∀i ∈ [k], ∀e ∈ Fi, (3)

∑
e∈δF (v)

xt,e ≤ 1, ∀t ∈ [T ], ∀v ∈ V, (4)

∑
t∈[T ]

xt,e = 1, ∀i ∈ [k], ∀e ∈ Fi, (5)

xt,e = 0, ∀i ∈ [k], ∀e ∈ Fi, ∀t ∈ [ri], (6)
xt,e ≥ 0, ∀e ∈ F, ∀t ∈ [T ].

Constraint (3) requires ci to be at least the time of processing e ∈ Fi. Constraint (4) requires
at most one edge incident to a node v to be processed within the t-th round. Constraint (5)
requires each demand e in coflow Fi to be processed in some round. Constraint (6) requires
the demands in coflow Fi to not be processed before the release time ri.

Each solution for the time-indexed LP relaxation represents a discrete-time fractional
schedule that consists of fractional matchings x1, . . . , xT ∈ [0, 1]F . Let Ci be the completion
time of coflow Fi in this schedule, expressed as

Ci = max{t ∈ [T ] : xt,e > 0 for some e ∈ Fi}.

Thus, the weighted completion time of this fractional schedule is
∑

i∈[k] wiCi. Note that this
value is possibly larger than the objective value

∑
i∈[k] wici of the relaxation.

In the bipartite matching model, the discrete-time fractional schedule can be transformed
into a continuous-time integer schedule without increasing the completion time of each
coflow as follows. By the integrality of the fractional matching polytope, the fractional
matching xt can be represented as a convex combination of (integer) matchings. Namely,
there exists a set of matchings M1, . . . , Mm and nonnegative numbers λ1, . . . , λm such that
xt =

∑m
j=1 λjχMj and

∑m
j=1 λj = 1 hold, where χMj is the characteristic vector of matching

M . A continuous-time integer schedule is obtained by scheduling the matching Mj for time
λj within the t-th round.

Conversely, a continuous-time integer schedule can be transformed into a discrete-time
fractional schedule. Let λM be the time spent for processing a matching M in the t-th round
of the integer schedule. Then, the convex combination of matchings with coefficients λM

is a fractional matching. A discrete-time fractional schedule is obtained by scheduling this
fractional matching in the t-th round. If the completion time of coflow Fi in the integer
schedule is C ′

i, the completion time of Fi in the constructed fractional schedule is ⌈C ′
i⌉.

▶ Remark. The size of the time-indexed LP linearly depends on T , and hence running time
for solving the LP is at least a polynomial with regards to T . Although this running time is
polynomial in the input size of the instance of the coflow scheduling problem, it may be a
disadvantage compared with other LP relaxations such as those used in [2, 17]. However, the
size of the time-indexed LP can be reduced using a commonly used technique (see e.g., [12])
so that it depends on O(log T ) with a loss of 1 + ϵ in the approximation factor for any
constant ϵ > 0.
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4 Integrality gap analysis

This section proves that the integrality gap of the time-indexed LP relaxation is at most 4
for the bipartite matching model. In the proof, we first show that there exists a discrete-time
fractional schedule whose weighted completion time is at most twice the optimal objective
value of the relaxation. Then, this fractional schedule is rounded into an integer schedule that
is subject to the completion time of each coflow being at most twice that in the fractional
schedule. This rounding is done by finding a perfect matching in a hypergraph constructed
from the fractional schedule.

4.1 Random stretching of fractional schedule

As mentioned in Section 3, a solution (x, c) for the time-indexed LP relaxation represents a
discrete-time fractional schedule, but the completion time Ci of coflow Fi in this schedule
is possibly larger than ci. However, as studied in [6, 13], random stretching gives another
fractional schedule wherein the expected completion time of Fi is at most 2ci. The details
are as follows.

For e ∈ F and t ∈ [T ], let ve(t) =
∑

t′∈[t] xt′,e. Furthermore, we extend the definition of
ve(t) to any t ∈ [0, T ] via linear interpolation. Namely, if t ∈ [t′ − 1, t′) for some t′ ∈ [T ],
then ve(t) := ve(t′ − 1) + (t − t′ + 1)(ve(t′) − ve(t′ − 1)).

For i ∈ [k] and θ ∈ [0, 1], we define Ci(θ) as the time at which θ-fraction of coflow Fi

is completed in the discrete-time fractional schedule implied by the solution (x, c) to the
relaxation. That is, Ci(θ) is the minimum value of t ∈ [0, T ] such that ve(t) ≥ θ for all
e ∈ Fi.

In the random stretching operation, we randomly sample θ from [0, 1] according to the
probability density function f(θ) := 2θ. Then, we stretch the schedule by the factor 1/θ.
This means that if a demand is processed in a time interval [t′, t′′], then it is processed in
[t′/θ, t′′/θ]. The processing of a demand is truncated when the processing time reaches one
unit of time. This gives a continuous-time fractional schedule such that the completion time
of a coflow Fi is Ci(θ)/θ.

The continuous-time fractional schedule can be transformed into a discrete-time fractional
schedule as follows. For t ∈ [T ] and e ∈ F , let x̄t,e be the fraction of e processed in time
[t−1, t) of the continuous-time fractional schedule. Then, it can be verified that {x̄t,e : e ∈ F}
forms a fractional matching for any t ∈ [T ], and thus it gives a discrete-time fractional
schedule. In this discrete-time schedule, the process of coflow Fi is within an interval
[ri, ⌈Ci(θ)/θ⌉].

We have thus obtained a discrete-time fractional schedule by stretching the schedule
represented by the LP optimal solution. The following lemma shows that the expected
completion time in this schedule can be bounded by twice the objective value of the time-
indexed LP.

▶ Lemma 3. For each i ∈ [k], E[⌈Ci(θ)/θ⌉] ≤ 2ci.

This lemma is proven in [6, 13] for other variations of the coflow scheduling problem, and
these proofs also apply to our problem. We omit the proof of Lemma 3 in this paper.

In the rest of the paper, we let C̄i denote ⌈Ci(θ)/θ⌉.
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4.2 Reduction to hypergraph perfect matching
By Lemma 3, a schedule of processing coflow Fi within the interval [ri, C̄i] achieves a weighted
completion time that is at most twice the optimal objective value of the relaxation. Moreover,
the discrete-time fractional schedule implied by x̄ does so. What remains is to round this
fractional schedule into a discrete-time integer schedule.

For the matroid coflow scheduling problem, Im et al. [13] showed that this rounding
process can be done without loss of the approximation factor. This is because the fractional
schedule is included in the intersection of a matroid polytope and a base polytope, where the
matroid polytope is defined based on a constraint that requires demands processed in each
round to be independent in the given matroid. Because the intersection forms an integer
polytope, the fractional schedule can be represented as a convex combination of integer
schedules, any of which processes coflow Fi within [ri, C̄i]. This approach is not available for
our problem because bipartite matchings do not form a matroid but a matroid intersection;
thus the set of the fractional schedules is the intersection of two matroid polytopes and a
base polytope, that is not integer in general.

Instead, we reduce the rounding process to hypergraph perfect matching. We first
construct a hypergraph as follows. We prepare T copies of the node set, each of which
corresponds to a round. We let Vt denote the copy corresponding to the t-th round for
each t ∈ [T ], and let vt denote the node in Vt corresponding to v ∈ X ∪ Y . In addition,
we introduce a node ae corresponding to each demand e ∈ F . Let A := {ae : e ∈ F} and
B :=

⋃
t∈[T ] Vt. A hyperedge in the hypergraph is defined by an edge e = xy ∈ Fi and time

t ∈ [ri + 1, C̄i] as he,t := {xt, yt, ae}. Let H = (VH , EH) denote the hypergraph with the
node set VH = A ∪ B and the hyperedge set EH = {he,t : i ∈ [k], e ∈ Fi, t ∈ [ri + 1, C̄i]}.
Note that H is a 3-uniform bipartite hypergraph with bipartition (A, B).

From a perfect matching in H, we define a discrete-time integer schedule so that a
demand e = uv is processed in the t-th round whenever the hyperedge he,t is included in the
matching. Because each node in B is incident to at most one hyperedge in a matching, the
demands processed in each round of the schedule form a matching. Moreover, because each
node ae ∈ A is covered by exactly one hyperedge in the perfect matching, and because all
hyperedges incident to ae are defined only for the t-th rounds with t ∈ [ri + 1, C̄i] if e ∈ Fi,
the demand e ∈ Fi is processed within an interval [ri, C̄i] in the schedule. Therefore, the
defined integer schedule is feasible.

Based on this discussion, it suffices to find a perfect matching in H. However, we do
not know whether H has a perfect matching. To ensure the existence of a perfect matching,
we modify H so as to satisfy the Aharoni-Haxell condition (2). For this purpose, let us
bound ν(HX) for X ⊆ A. First, observe that HX is a bipartite graph, with the node set
B =

⋃
t∈[T ] Vt and the edge set {utvt : auv ∈ X, t ∈ [ri +1, C̄i] for i with uv ∈ Fi}. Therefore,

τ(HX) = ν∗(HX) = ν(HX). Moreover, x̄t,uv can be regarded as a weight assigned to edge
utvt in HX . It forms a fractional matching in HX . Because

∑
t∈[T ] x̄t,uv = 1, HX has a

fractional matching of size |X|. These facts indicate that ν(HX) ≥ |X|.
This bound is insufficient to satisfy the Aharoni-Haxell condition, which requires satisfying

ν(HX) > 2(|X| − 1) since r = 3 in our case. Thus, we modify H as follows. In the original
definition, for each round t ∈ [T ], we have the corresponding node set Vt, and the node set
of H is defined as A ∪ (

⋃
t∈[T ] Vt). For each i ∈ [k], e = uv ∈ Fi, and t ∈ [ri + 1, C̄i], H

has a hyperedge {ae, ut, vt}. In the new definition, for each round t ∈ [T ], we define two
node sets V2t−1 and V2t, and define the node set as A ∪ (

⋃
t∈[T ] V2t−1 ∪ V2t). Hyperedges

{ae, u2t−1, v2t−1} and {ae, u2t, v2t} are defined for each i ∈ [k], e = uv ∈ Fi, and t ∈ [ri+1, C̄i].
Let H ′ denote the obtained hypergraph.
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▶ Lemma 4. H ′ has a perfect matching.

Proof. H ′ is still a 3-uniform bipartite hypergraph, with the bipartition (A,
⋃2T

t=1 Vt). Let
us show that H ′

X satisfies ν(HX) ≥ 2|X| for any X ∈ A, which indicates the existence of a
perfect matching in H ′ by Lemma 2.

Note that each edge utvt in H ′
X is defined by a hyperedge {ae, ut, vt} incident to an

A-node ae ∈ X. We define x′
utvt

as x̄⌈t/2⌉,e for each edge utvt in H ′
X . Then, x′ is a fractional

matching in H ′
X because x̄t is a fractional matching for each t ∈ [T ]. Moreover, because∑

t∈[T ] x̄t,e = 1,
∑

t∈[2T ] x′
utvt

= 2 holds. Thus, the size of the fractional matching x′ is 2|X|,
and hence ν∗(H ′

X) ≥ 2|X|. Note that H ′
X is a bipartite graph, and hence ν(H ′

X) = ν∗(HX).
Therefore, the claim is proven. ◀

We can define a discrete-time integer schedule from a perfect matching in H ′; if ae is
covered by a hyperedge {ae, ut, vt} in the perfect matching, then demand e is processed in
the t-th round. Because each A-node ae has incident hyperedges corresponding to rounds
in [2(ri + 1) − 1, 2C̄i] if e ∈ Fi, the constructed integer schedule satisfies the release time
constraint and all demands of coflow Fi are completed by time 2C̄i. Therefore, the weighted
completion time of this schedule is at most 2

∑
i∈F wiC̄i. This fact and Lemma 3 prove the

following theorem.

▶ Theorem 5. The integrality gap of the time-indexed LP relaxation is at most 4.

As for a lower bound on the integrality gap of the time-indexed LP, the following simple
instance shows that it is at least 2. Suppose that there is a single coflow that consists of
M parallel edges, and its weight and release time are 1 and 0. The minimum weighted
completion time of integer schedules for this instance is M . On the other hand, the fractional
schedule that processes 1/M unit of all edges in each round achieves the weighted completion
time (M + 1)/2. The ratio of this value to M approaches 2 as M grows. We are aware of no
instance that indicates integrality gap larger than 2.

As mentioned in Section 2.2, the Aharoni-Haxell condition ensures the existence of a
perfect matching but does not provide a polynomial-time algorithm for finding it. The
algorithm of Annamalai [3] finds a perfect matching in a hypergraph that satisfies the Haxell
condition with a constant slack, i.e., τ(H ′

X) > (2r − 3 + ϵ)(|X| − 1) for any X ⊆ A and
any constant ϵ > 0 (again, recall that r = 3 in our case). Using this algorithm gives us a
polynomial-time rounding algorithm, but making the hypergraph satisfy the condition results
in an approximation factor of 6, which is worse than that for existing coflow scheduling
algorithms.

5 Polynomial-time rounding algorithm

In this section, we present a polynomial-time rounding algorithm for the time-indexed LP. It
achieves 4-approximation for identical release times and 5-approximation for non-identical
release times.

The algorithm first sorts the coflows in the non-decreasing order of c. Then, it schedules
the demands greedily, giving higher priority to demands of earlier coflows. The details of
this algorithm are given in Algorithm 1.

▶ Lemma 6. The completion time of coflow Fi in the schedule output by Algorithm 1 is at
most ri + 2∆(

⋃i
j=1 Fj) − 1 for each i ∈ [k].
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Algorithm 1 Rounding Algorithm.

1 solve the time-indexed LP to obtain an optimal solution (x, c);
2 sort the coflows so that c1 ≤ c2 ≤ · · · ≤ ck;
3 Mt := ∅ for each t ∈ [T ];
4 for i = 1, . . . , k do
5 for uv ∈ Fi do
6 find the minimum t ∈ [ri + 1, T ] such that δMt(u) = δMt(v) = ∅;
7 Mt := Mt ∪ {uv}

8 output (M1, . . . , Mt)

Proof. Let uv be a demand in Fi that is processed last, and let t be the round in which uv

is processed (i.e., t is the completion time of Fi). Then, in each round in [ri + 1, . . . , t − 1],
a demand incident to u or v is processed. This means that t − 1 − ri ≤ |δ⋃i

j=1
Fj

(u)| − 1 +

|δ⋃i

j=1
Fj

(v)| − 1 ≤ 2∆(
⋃i

j=1 Fj) − 2 holds. Therefore, the completion time of Fi is at most

ri + 2∆(
⋃i

j=1 Fj) − 1. ◀

Now, we prove the following.

▶ Lemma 7. For each i ∈ [k], ∆(
⋃i

j=1 Fj) ≤ 2ci.

Proof. Suppose that the indices of coflows indicate those after sorting in line 3 of the
algorithm. Namely, c1 ≤ c2 ≤ · · · ≤ ck. We fix i ∈ [k] and v ∈ X ∪ Y , and we prove that the
degree of v in the graph

⋃i
j=1 Fj is at most 2ci.

Since
∑

t∈[T ] xt,e = 1 holds for any e by (5), we have∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[T ]

xe,t =
∑
j∈[i]

∑
e∈δFj

(v)

1 =
∑
j∈[i]

|δFj
(v)|.

It suffices to show that this value is at most 2ci. For arriving at a contradiction, suppose
that this is more than 2ci, i.e.,

2ci <
∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[T ]

xe,t. (7)

Let e ∈ Fj for some j ≤ i. Then, (3) and the assumption of cj ≤ ci show that∑
t∈[T ]

txt,e ≤ cj ≤ ci. (8)

Moreover, since
∑

t∈[T ] xt,e = 1 holds by (5), we have

ci −
∑

t∈[T ]

txt,e =
∑

t∈[T ]

cixt,e −
∑

t∈[T ]

txt,e

=
∑

t∈[T ]

(ci − t)xt,e

=
∑

1≤t≤ci

(ci − t)xt,e +
∑

ci<t≤T

(ci − t)xt,e.
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Since (8) indicates that this is at least 0, we have∑
ci<t≤T

(t − ci)xt,e ≤
∑

1≤t≤ci

(ci − t)xt,e.

Summing this inequality over all j ∈ [i] and e ∈ δFj
(v) gives∑

j∈[i]

∑
e∈δFj

(v)

∑
ci<t≤T

(t − ci)xt,e ≤
∑
j∈[i]

∑
e∈δFj

(v)

∑
1≤t≤ci

(ci − t)xt,e. (9)

Since
∑

e∈δF (v) xt,e ≤ 1 for each t ∈ [T ] by (4), the right-hand side of (9) is bounded as

∑
j∈[i]

∑
e∈δFj

(v)

∑
1≤t≤ci

(ci − t)xt,e ≤
∑

1≤t≤ci

(ci − t)
∑

e∈δF (v)

xt,e ≤
∑

1≤t≤ci

(ci − t) = ci(ci − 1)
2 . (10)

On the other hand, from (7), we have∑
ci<t≤T

∑
j∈[i]

∑
e∈δFj

(v)

xe,t > 2ci −
∑

1≤t≤ci

∑
j∈[i]

∑
e∈δFj

(v)

xe,t ≥ ci.

Thus the left-hand side of (9) is bounded as

∑
j∈[i]

∑
e∈δFj

(v)

∑
ci<t≤T

(t−ci)xt,e =
∑

ci<t≤T

∑
j∈[i]

∑
e∈δFj

(v)

(t−ci)xt,e >
∑

ci<t≤2ci

(t−ci) = ci(ci + 1)
2 .

(11)

(9), (10), and (11) give a contradiction. ◀

Combining Lemmas 6 and 7 proves the following theorem.

▶ Theorem 8. Algorithm 1 is a 4-approximation algorithm for identical release times and a
5-approximation algorithm for non-identical release times.

Proof. By Lemmas 6 and 7, the schedule output by Algorithm 1 processes the coflow Fi

by time ri + 4ci − 1. Note that ri ≤ ci holds for each i ∈ [k]. Therefore, the weighted
completion time of the schedule is at most 5

∑
i∈[k] wici, which means that the algorithm

achieves 5-approximation. In the identical release time case, we can assume that ri = 0
for all i ∈ [k]. Then, the weighted completion time of the schedule is at most 4

∑
i∈[k] wici,

which means that it achieves 4-approximation. ◀

▶ Remark. The above analysis does not depend on the assumption that coflows F1, . . . , Fk

are bipartite. Thus, it applies to the general graph model, where given coflows are not
bipartite graphs and the congestion constraint requires that the demands processed in each
round form a (non-bipartite) matching. Although this is not mentioned in previous works,
similar analysis shows that the approximation algorithms of [2, 17] can also work for the
general graph model. In other words, these approximation algorithms do not make full use
of the assumption that the coflows are bipartite. In contrast, the integrality gap analysis
given in Section 4 uses the bipartiteness.
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6 Finding perfect matchings in hypergraphs

We proved Theorem 5 by showing that the hypergraph H ′ (defined in Section 4.2) has
a perfect matching. Unfortunately, we do not know how to find the perfect matching in
polynomial time even though its existence is implied by Theorem 2. In this section, we
present a polynomial-time algorithm for finding a perfect matching in H ′ when ri = 0 for
all i ∈ [k]. This gives an alternative proof of the statement for identical release times in
Theorem 8.

Algorithm 2 Perfect Matching Algorithm.

1 sort the coflows so that C̄1 ≤ C̄2 ≤ · · · ≤ C̄k;
2 M := ∅;
3 for i = 1, . . . , k do
4 for uv ∈ Fi do
5 find the minimum t ∈ [2C̄i] such that both ut and vt have no incident

hyperedge in M ;
6 add hyperedge {auv, ut, vt} to M

7 output M

The algorithm is given in Algorithm 2. The next theorem shows that it finds a perfect
matching.

▶ Theorem 9. Algorithm 2 outputs a perfect matching in polynomial time.

Proof. On line 5 of Algorithm 2, there always exists t ∈ [2C̄i] such that both ut and vt have
no incident hyperedge in M . If this claim is true, M is a perfect matching in H ′ at the
termination of the algorithm. Because the algorithm runs in polynomial time, this proves
the theorem.

To prove the above claim, we first show that
∑

j∈[i] |δFj
(v)| ≤ C̄i holds for each i ∈ [k]

and v ∈ V . Recall that there exists x̄t,e ∈ [0, 1] (e ∈ Fj , t ∈ C̄j) such that
∑

t∈[C̄j ] x̄t,e = 1
for each e ∈ Fj , and

∑
j∈[k]

∑
e∈δFj

(v) x̄t,e ≤ 1 for each t ∈ [T ] and v ∈ V . Then,∑
j∈[i]

|δFj
(v)| =

∑
j∈[i]

∑
e∈δFj

(v)

1 =
∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[C̄j ]

x̄t,e

=
∑

t∈[C̄i]

∑
j∈[i]

∑
e∈δFj

(v)

x̄t,e ≤
∑

t∈[C̄i]

1 = |C̄i|.

Here, the third equality uses the fact that C̄j ≤ C̄i for all j ∈ [i].
Then, when uv ∈ Fi is chosen on line 4 of Algorithm 2, the number of hyperedges in M

incident to nodes u1, . . . , u2C̄i
is at most

∑
j∈[i] |δFj

(u)| − 1 ≤ C̄i − 1. Similarly, the number
of hyperedges in M incident to nodes v1, . . . , v2C̄i

is at most
∑

j∈[i] |δFj
(v)| − 1 ≤ C̄i − 1.

Therefore, among 2C̄i pairs of {ut, vt} (t ∈ [2C̄i]), there exist at least 2C̄i − 2(C̄i − 1) = 2
pairs such that no hyperedge in M is incident to nodes in the pairs. ◀

7 Conclusion

We showed that the integrality gap of the time-indexed LP relaxation for the coflow scheduling
problem is at most 4. We also proposed a polynomial-time rounding algorithm that achieves
4-approximation for identical release times and 5-approximation for non-identical release
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times. In addition, we proposed a polynomial-time algorithm for finding a perfect matching
in the bipartite hypergraph constructed from a solution for the time-indexed LP relaxation
with identical release times.

There are many interesting directions of further study. One of them is to improve the
approximation factor, in particular for non-identical release times. Based on our integrality
gap analysis, this can be achieved by developing a polynomial-time algorithm for finding
perfect matchings in 3-uniform bipartite hypergraphs that satisfy the Aharoni-Haxell condi-
tion (2). However, designing such an algorithm is regarded as a difficult problem. Indeed,
it is mentioned in [10] as “Thus algorithmic versions of these results would also be very
interesting and useful, but currently seem out of reach.” We believe that it is interesting
to investigate algorithms for hypergraphs constructed in our rounding of solutions to the
time-indexed LP relaxation with non-identical release times.
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colors). Our algorithm is based on proving that the sticky Brownian motion rounding of [Abbasi
Zadeh-Bansal-Guruganesh-Nikolov-Schwartz-Singh SODA’20] copes well with uncut edges.
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much attention since the introduction of Correlation-Clustering close to two decades ago
by Bansal, Blum and Chawla [12]. The first, denoted as Max-Agreement, is to maximize the
total weight of edges that are in agreement:
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C
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e=(u,v)∈E+:C(u)=C(v)

w(e) +
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where C(u) denotes the cluster in C that vertex u belongs to. The second, denoted as
Min-Disagreement, is to minimize the total weight of edges that are in disagreement:

min
C

 ∑
e=(u,v)∈E+:C(u)̸=C(v)

w(e) +
∑

e=(u,v)∈E−:C(u)=C(v)

w(e)

 .

Correlation-Clustering has attracted much attention [7, 9, 19, 23, 39, 5, 24, 25, 6, 18,
28], both from the theoretical and practical perspectives. From a theoretical perspective
Correlation-Clustering captures some fundamental graph cut problems such as Multicut
and Multiway-Cut. From a practical perspective, it has found numerous practical applications
in a wide range of settings, e.g., image segmentation [41], cross lingual link detection [40],
coreference resolution [35], to name a few (refer to the survey of Wirth [41] for additional
details).

Chierichetti, Kumar, Lattanzi and Vassilvitskii [21] introduced the notion of fairness
in clustering where they considered the k-Center and k-Median problems. Informally, in
fair clustering problems, each vertex has a type and each cluster needs to contain not
too many and not too few vertices from each type. In general, fairness in clustering has
received much attention in recent years that goes beyond k-Center and k-Median, e.g.,
[2, 11, 14, 33, 38, 15, 1, 4] (refer to surveys [16, 20] for additional details). One of the main
reasons for considering fairness in algorithms in general, and clustering in particular, arises
from human-centric applications. The goal is to ensure that the solutions are not biased with
respect to a sensitive feature such as gender or race. For example, clustering and learning
algorithms used for college admissions, bank loans, job applications etc. might be biased
[16, 20]. Thus, there is a lot of effort to develop fair clustering algorithms as seen in the
literature referenced above.

In this work we consider fairness in Correlation-Clustering. Formally, each vertex v is
associated with one of k given colors {1, . . . , k} and we denote v’s color by c(v). Additionally,
we denote by Vi all vertices of color i, i.e., Vi ≜ {u : c(u) = i} for every i = 1, . . . , k. We are
also given the ratios of these colors in V , i.e., there exists h ∈ N such that V contains h · pi

vertices of the ith color (where p1, . . . , pk ∈ N≥1).1 We denote these ratios by p1 : . . . : pk.2
The fairness constraint on the clustering C is that for every cluster in C and for every two
colors i and j the ratio of the number of vertices in the cluster of color i to the number of
vertices in the cluster of color j equals pi/pj . Hence, every cluster in C preserves the color
ratios of the vertices in the input graph G. We denote the problem of Min-Disagreement
with a fairness constraint as Fair-Min-Disagreement and the problem of Max-Agreement
with a fairness constraint as Fair-Max-Agreement. Typically, all the above mentioned
applications of fairness in clustering satisfy that

∑k
i=1 pi = o(n).

Fair-Min-Disagreement in complete unweighted graphs was considered by Ahmadi,
Galhotra, Saha and Schwartz [1] and by Ahmadian, Epasto, Kumar and Mahdian [4]. For
two colors and a ratio of 1 : 1 [1] present an approximation of (3α + 4) where α is the best
known approximation for Min-Disagreement in complete unweighted graphs (α = 2.06 [19]).
For two colors and a ratio of 1 : p [4, 1] present an approximation of O(p2). For a general
number of colors k and ratios 1 : p2 : . . . : pk an approximation of k2 ·maxi=2,...,k{p2

i } was
also given by [4, 1], as well as relaxed bi-criteria guarantees. All the above results reduce the
problem to Min-Disagreement (without any fairness requirements) by matching nodes of
different colors and merging them.

1 It is assumed without loss of generality that there does not exist a number s > 1 such that pi/s ∈ N for
all i = 1, . . . , k.

2 Note that pi/pj = |Vi|/|Vj | for every i, j = 1, . . . , k.
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To the best of our knowledge, no approximation algorithms are known for general instances
of Fair-Min-Disagreement as the above results of [1, 4] apply only to complete unweighted
graphs. Additionally, to the best of our knowledge, no approximation algorithms are known
for Fair-Max-Agreement.

1.1 Our Results and Techniques
We show that Fair-Min-Disagreement is hard to approximate within any finite approxima-
tion factor. Moreover, we prove that this hardness holds even for the special case of only two
colors and a ratio of 1 : 1. This is summarized in the following theorem.

▶ Theorem 1. If Fair-Min-Disagreement with 2 colors and a ratio of 1 : 1 admits a
polynomial time approximation algorithm with a finite approximation guarantee, then P =
NP .

This hardness result is extended to bi-criteria algorithms, and it holds even for the
special case of only three colors and ratios of 1 : 1 : 1. We say that an algorithm for
Fair-Min-Disagreement is a bi-criteria (α, 1 + ε)-approximation if it outputs a clustering
C = {C1, . . . , Cl} that satisfies: (1) the cost of C is at most α times the cost of an optimal
solution; and (2) for each 1 ≤ r ≤ l it holds that |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε)pi/pj for every
(ordered) pair of colors i and j. This is summarized in the following theorem.

▶ Theorem 2. For every α ≥ 1 and ε > 0, if Fair-Min-Disagreement with 3 colors and
ratios of 1 : 1 : 1 admits a bi-criteria (α, 1 + ε) polynomial time approximation algorithm,
then P = NP .

Let us focus now on Fair-Max-Agreement. Obtaining an approximation of (roughly) 1/2

is easy (see Section 2), and thus the challenge is improving it. In order to achieve such an
improvement, we first notice that one can restrict attention to solutions that contain only
two clusters. We prove that if one returns the best of: (1) an α-approximate fair two-cluster
solution; and (2) a suitably chosen solution that is comprised of the smallest possible fair
clusters (note that each such cluster contains exactly pi vertices of color i), then we can
obtain an approximation better than 1/2 for Fair-Max-Agreement assuming α is sufficiently
large. The resulting approximation for Fair-Max-Agreement depends on α, thus the bulk of
the effort is focused on obtaining a good approximation for the problem where the output is
restricted to having only two clusters.

First, we consider a case study with two colors and a ratio of 1 : 1. For this case study
problem, we prove that one can reduce the two-cluster problem to a cut maximization
problem that captures both Max-Bisection and Max- n

2 -Uncut (see Section 1.3 for the
exact definitions) with no fairness constraints. Thus, we use machinery developed for
Max-Bisection and Max- n

2 -Uncut, that is based on rounding a Lassere SDP hierarchy
relaxation (see [37, 10, 42]), to obtain the following theorem.

▶ Theorem 3. Fair-Max-Agreement with two colors and a ratio of 1 : 1 admits a polynomial
time 0.609-approximation algorithm.

When considering general instances, it is not clear if (or how) one can reduce the two-cluster
problem to a problem that has no fairness constraints. Hence, a different approach is needed.
We adopt the sticky Brownian motion approach of Abbasi-Zadeh, Bansal, Guruganesh,
Nikolov, Schwartz and Singh [43], which was successfully used for approximating Max-Cut
with side constraints (see Section 2.2 for the definition). In order to apply this approach to
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our problem, we prove that it can simultaneously handle both edges that cross between the
two clusters and edges that do not cross between the two clusters (it is important to note
that the work of [43] deals only with edges that cross the cut when considering Max-Cut with
side constraints). However, this comes at a price of a slightly worse bi-criteria approximation
when compared to the case study which has two colors and a ratio of 1 : 1.

We say that an algorithm for Fair-Max-Agreement is a bi-criteria (α, ε)-approximation
if it outputs a clustering C = {C1, . . . , Cl} that satisfies: (1) the value of C is at least
α times the value of an optimal clustering; and (2) for every 1 ≤ j ≤ l there exists a
hj ∈ {1, . . . , n/

∑k
i=1 pi} such that

∣∣|Cj ∩ Vi| − hj · pi

∣∣ ≤ εn for all 1 ≤ i ≤ k.

▶ Theorem 4. Fair-Max-Agreement with k ≥ 2 colors and ratios of p1 : . . . : pk admits
for every 0 < ε < 1−

∑k
i=1 pi/n a bicriteria ((0.591− ε)(1−

∑k
i=1 pi/n), ε)-approximation

whose running time is O(npoly(log (k)/ε)).

Recalling that
∑k

i=1 pi = o(n) is the typical case, the approximation in the above theorem is
in fact 0.591 − ε − o(1). Moreover, if k = O(1) then the running time of the algorithm is
polynomial.

1.2 Related Work
Correlation-Clustering has received a lot of attention since its introduction by Bansal,
Blum, and Chawla [12] close to two decades ago. The best known approximation al-
gorithm Min-Disagreement in general graphs obtains a O(log n) approximation [24, 18]. For
Max-Agreement the best known approximations are obtained by rounding the natural SDP
relaxation and achieve a guarantee of 0.7666 [39] and 0.7664 [18]. For complete unweighted
graphs Max-Agreement admits a PTAS [12] while Min-Disagreement has a long sequence of
works [12, 19, 18, 6] where the current best known achieves an approximation of 2.06 [19].

Fairness in clustering has attracted much attention since the work of Chierichetti, Kumar,
Lattanzi and Vassilvitskii [21] for k-Center and k-Median. It was followed by works on
the same two problems [14, 15, 11], as well as k-Means [38, 27]. Moreover, [33] considered
fairness in the context of spectral clustering. Related notions of fairness were also studied
[3, 14]. Fairness in Correlation-Clustering was considered by [1, 4] and also extended to
hierarchical clustering [2].

In this work we use Lasserre SDP hierarchy to formulate relaxations. The Lasserre
hierarchy [34] has been used to develop approximation algorithms for numerous combinatorial
optimization problems. Here we mention only few of the related works that directly relate
to our problem. Focusing on Max-Bisection, Raghavendra and Tan [37] obtained a 0.85
approximation ratio using the Lasserre SDP hierarchy. Following their work, Austrin,
Benabbas and Georgiou [10] improved this ratio to 0.8776 which almost matches the Goemans-
Williamson approximation ratio for Max-Cut [29]. Wu, Du and Xu [42] considered other
graph bisection maximization problems and generalized the algorithm of [10] and showed
that Max- n

2 -Uncut admits an approximation ratio of 0.8776.

1.3 Preliminaries
We denote a cut as S = {S, V \S} where δ(S) = {(u, v) ∈ E|(u ∈ S∧v /∈ S)∨(u /∈ S∧v ∈ S)}
is the collection of edges crossing S, and E(S) = {(u, v) ∈ E|u, v ∈ S} is the collection of
edges that have both endpoints in S. For every X ⊆ E we denote w(X) =

∑
e∈X w(e) the

sum of weights of edges in X. We similarly use the notations above for E+ and E−, i.e.,
w−(X) = w(X ∩ E−) and w+(X) = w(X ∩ E+). For the Max-Agreement objective and a
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clustering C we denote the weight of edges in agreement in C as v(C) (alternatively, v(C) is
the value of the clustering C). Additionally, we denote an optimal clustering by C∗ and its
value by OPT = v(C∗). Moreover, we denote by v+(C) and v−(C) the contribution of the +
and − edges to v(C), respectively. Let us now define the variant of the problem where the
number of clusters is bounded.

▶ Definition 5. Fair-Max-Agreement where the numbers of clusters in a solution is required
to be at most r is denoted as Fair-Max-Agreement[r].

Note that Fair-Max-Agreement[n] is essentially Fair-Max-Agreement with no restriction on
the number of clusters in the output. Fair-Max-Agreement[2] is related to Max-Bisection
and Max- n

2 -Uncut problems which are defined as follows. Given a graph G = (V, E) the goal
is to find a cut S ⊆ V where |S| = n/2 such that w(δ(S)) is maximized for Max-Bisection
and w(E(S)) + w(E(V \ S)) is maximized for Max- n

2 -Uncut.
In this work we use Lasserre SDP hierarchy relaxations, which contain vectors vS for

subsets S ⊆ V . We use the following abbreviated notations: vi = v{i} for the singleton set
{i}, v0 = v∅ for the empty set, µi = vi · v0 denotes the “marginal probability” of vertex i,
and ρij = vi · vj is the covariance between vertices i and j. Additionally, w̃i = vi − µiv0 is
the component of vi in the linear subspace that is orthogonal to v0, and wi = w̃i/∥w̃i∥2 is
its normalized vector.

2 Algorithms for Fair-Max-Agreement

We split this section into two parts. In the first part we consider the case study with two
colors and a uniform ratio of 1 : 1. In the second part we consider general instances with
k ≥ 2 colors and ratios p1 : . . . : pk.

2.1 Case Study – Two Colors with Ratio 1:1

2.1.1 A Simple (1/2)-Approximation
▶ Observation 6. Let G = (V1 ∪ V2, E+ ∪ E−) be an instance with two colors and a ratio
of 1 : 1. Let f : V1 → V2 be a bijection such that M− ≜ {(u, f(u)) : u ∈ V1} minimizes
w(M− ∩ E−). Then every clustering C satisfies v−(C) ≤ w(E−)− w(M− ∩ E−). 3

The proof of the following theorem, which is based on Observation 6, appears in Ap-
pendix A.

▶ Theorem 7. There is a polynomial time (1/2)-approximation algorithm for Fair-Max-
-Agreement in general weighted graphs with two colors and a ratio of 1 : 1.

2.1.2 Beating the (1/2)-Approximation Ratio
The following lemma shows that there is a solution with only two clusters whose value is
sufficiently large (a similar idea was used in, .e.g., Charikar and Wirth [17]). Its proof
appears in Appendix B.

3 Intuitively, for every clustering C we create a matching M between V1 and V2 such that every matched
pair of nodes appears in the same cluster in C (note that there can be more than one such matching).
Thus, every clustering C must incur a loss due to the − edges whose value is at least the total weight of
− edges in M , i.e., w(M ∩ E−).

APPROX/RANDOM 2022
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▶ Lemma 8. For every clustering C there is a clustering S = {S, S} satisfying: v(S) ≥
v+(C) + 1

2 v−(C).

The following lemma reduces Fair-Max-Agreement to Fair-Max-Agreement[2] with
bounded loss in the approximation factor (its proof appears in Appendix C).

▶ Lemma 9. If there is an α-approximation algorithm for Fair-Max-Agreement[2] with
two colors and a ratio of 1 : 1, then there is a (2α)/(2 + α)-approximation algorithm for
Fair-Max-Agreement with two colors and a ratio of 1 : 1.

We note that if α > 2/3 then Lemma 9 implies an approximation better than 1/2 for
Fair-Max-Agreement. Therefore, we focus our attention now on presenting an approximation
that is strictly better than 2/3 for Fair-Max-Agreement[2] assuming two colors and a ratio
of 1 : 1. To achieve this goal we define the following optimization problem.

▶ Definition 10. The Max-Agreement-Bisection problem is defined as follows. Given an
edge weighted graph G = (V, E) equipped with non-negative edge weights w : E → R+, where
each edge is labeled either + or −, the task is to partition the nodes into two clusters of equal
size so as to maximize the overall agreement, i.e.,

max
S⊆V :|S|=n/2

{
w−(δ(S)) + w+(E(S)) + w+(E(S))

}
.

It is important to note that in Max-Agreement-Bisection there are no colors, therefore
no fairness constraints. Nonetheless, relying on the fact that the number of colors is only
two and the ratio is 1 : 1, we present an approximation preserving reduction from Fair-
-Max-Agreement[2] to Max-Agreement-Bisection. This is summarized in the following
lemma.

▶ Lemma 11. Fair-Max-Agreement[2] with two colors and a ratio of 1 : 1 has an approx-
imation preserving reduction to Max-Agreement-Bisection.

Proof. We are given an instance of Fair-Max-Agreement[2] with two colors and a ratio of
1 : 1. I.e., a graph G = (V1 ∪ V2, E+ ∪ E−) where |V1| = |V2|. We construct an instance for
Max-Agreement-Bisection as follows. Consider the graph G̃ = (V1 ∪ V2, Ẽ+ ∪ Ẽ−) where

Ẽ+ ≜ {(u, v) ∈ E+ | c(u) = c(v)} ∪ {(u, v) ∈ E− | c(u) ̸= c(v)}
Ẽ− ≜ {(u, v) ∈ E− | c(u) = c(v)} ∪ {(u, v) ∈ E+ | c(u) ̸= c(v)}.

For every solution S = {S, S} for Max-Agreement-Bisection we efficiently construct a
solution S ′ = {S′, S′} for Fair-Max-Agreement[2]. Let S = {S, S} be a solution to the
former problem, we construct a clustering S ′ = {S′, S′} as follows: S′ = {u ∈ S | c(u) =
1} ∪ {u ∈ S | c(u) = 2}. One can note that S′ is obtained from S by swapping the side of
the cut all vertices of color 2 reside in.

Note that every edge e ∈ E which was in agreement in the solution {S, S} for Max-
-Agreement-Bisection, has a corresponding edge ẽ ∈ Ẽ which is in agreement in the
solution {S′, S′} for Fair-Max-Agreement[2], and vice versa. Thus, v(S) = v(S ′), i.e. the
value of the solution remains the same. All that remains to prove is that S ′ satisfies the
fairness constraints. First, one can note that |V1 ∩ S| = n/2 − |V2 ∩ S| since |S| = n/2.
Moreover, n/2− |V2 ∩S| = |V2 ∩S| since |V2| = n/2 (recall that the ratio is 1 : 1 and there are
n vertices on total). From the definition of S′ we can infer that: |V2 ∩ S′| = |V2 ∩ S|. This
proves |V2 ∩ S′| = |V1 ∩ S′|, i.e., S′ satisfies the fairness constraints (and therefore S′ also
satisfies the fairness constraints). This concludes the proof. ◀
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We emphasize that the above approach of reducing Fair-Max-Agreement[2] to a graph
bisection problem, heavily relies on the fact that there are only two colors with a ratio of
1 : 1 and it fails for a general instance. Thus, for general instances a different approach is
required.

In order to cope with Max-Agreement-Bisection we apply the approach of Raghavendra
and Tan [37], and the subsequent works of [10, 42], which is based on rounding a Lasserre
SDP hierarchy relaxation.

Following Halperin and Zwick [31] and Han, Ye and Zhang [32], we present a general
graph bisection problem. This problem is parametrized by four coefficients c0, c1, c2, c3 and
is defined as follows (via a quadratic formulation):

max
∑

e=(i,j)∈E w(e)(c0 + c1x0xi + c2x0xj + c3xixj)
s.t.

∑
i∈V x0xi = 0

x2
i = 1 0 ≤ i ≤ n

Note that in this problem, xi ∈ {±1} for every i ∈ V , since the last constraint is x2
i = 1.

Therefore, the first constraint,
∑

i∈V x0xi = 0 is equivalent to the fact that exactly half the
variables equal 1 and the other half equal −1.

The coefficients c0, c1, c2, c3 depend on the exact graph bisection problem which we aim
to solve. For example, when considering Max-Bisection the coefficients are c0 = 1/2, c1 =
0, c2 = 0, c3 = −1/2. Additionally, when considering Max- n

2 -Uncut the coefficients are
c0 = 1/2, c1 = 0, c2 = 0, c3 = 1/2.

We note that Max-Agreement-Bisection resembles both Max-Bisection and Max- n
2 -

-Uncut since: (1) in all three problems we aim to find a cut that contains exactly half of the
vertices; and (2) the objective of Max-Agreement-Bisection can be seen as the sum of the
objectives of Max-Bisection and Max- n

2 -Uncut on two graphs over the same set of vertices V

(the graph (V, E−) corresponds to the Max-Bisection objective whereas (V, E+) corresponds
to the Max- n

2 -Uncut objective). Therefore, the objective for Max-Agreement-Bisection can
be formally written as follows:

∑
e=(i,j)∈E+

w(e)
(

1
2 + 1

2xixj

)
+

∑
e=(i,j)∈E−

w(e)
(

1
2 −

1
2xixj

)
.

Equivalently, Max-Agreement-Bisection can be seen as an extension of the general graph
bisection problem in which the c0, . . . , c3 coefficients are not uniform over the edges of the
graph. Specifically, for + edges the coefficients are c0 = 1/2, c1 = 0, c2 = 0, c3 = 1/2 and for −
edges the coefficients are c0 = 1/2, c1 = 0, c2 = 0, c3 = −1/2.

Our main observation is that the algorithm and analysis of [10] for Max-Bisection, and
the followup work of [42] for the general graph bisection problem described above, can
be extended to Max-Agreement-Bisection with virtually no change in the analysis. We
refer to Appendix D to the high level details as to why Max-Agreement-Bisection admits
an approximation of 0.8776 (an approximation of 0.8776 is the guarantee [10] proved for
Max-Bisection and [42] for Max- n

2 -Uncut). This enables us to obtain the following Corollary.

▶ Corollary 12. Fair-Max-Agreement[2] with two colors and a ratio of 1 : 1 is approximable
in polynomial time to within a factor 0.8776.

Proof of Theorem 3. Follows from Corollary 12 and Lemma 9. ◀

APPROX/RANDOM 2022
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2.2 Approximating General Instances
For general instances (either k > 2 or non-uniform ratios) the approximation guarantees we
provide are slightly worse than for instances with two colors and a ratio of 1 : 1. The main
use of Lemma 8 is that there is a good solution that has only two clusters. It is important to
note that this lemma holds for any number of colors and any ratios, hence it also applies to
general instances. However, Lemma 9, which reduces the problem to the two cluster variant,
does not hold for a general instance with the exact same guarantee. The reason is that even
for the case of uniform ratios 1 : . . . : 1 and k colors we are required to find a min cost
perfect matching in a k-partite graph (where the cost of a hyperedge is the total weight of −
edges between nodes in the hyperedge). Hence, we no longer can find in polynomial time a
clustering C which satisfies the condition v−(C) ≥ v−(C∗). To overcome the above difficulty
we use a different approach in which we randomly choose a clustering that is based on a
random k-partite matching between the colors. This approach incurs only a small loss in
the approximation guarantee. Let us first describe the simple randomized approximation
algorithm which obtains an approximation ratio of 1/2 − o(1) and then describe how to
improve upon this ratio.

2.2.1 Simple (1/2 − o(1))-Approximation
Our random clustering algorithm is summarized in Algorithm 1.

Algorithm 1 Random k-Partite Matching.

Input: G = (V1 ∪ . . . ∪ Vk, E), {pi}k
i=1;

C ← ∅;
while V ̸= ∅ do

C ← ∅;
for i← 1 to k do

Let Si be a uniform random set of pi nodes from Vi;
C ← C ∪ Si;
Vi ← Vi \ Si;

end
C ← C ∪ {C};

end
return C;

▶ Observation 13. Let G = (V, E) be a graph with k ≥ 2 colors and ratios of p1 : p2 : . . . : pk.
Let C be the output of Algorithm 1. Then E[v−(C)] ≥ (1− (

∑k
i=1 pi)/n) · w(E−).

The following extends Theorem 7, which provided an approximation of 1/2 for the case
there are two colors and a ratio of 1 : 1, to a general number of colors k and ratios p1 : . . . : pk

while suffering a small loss of (
∑k

i=1 pi)/(2n) in the approximation guarantee. Note that if∑k
i=1 pi = o(n) then this loss is at most o(1). This is achieved by replacing the clustering

that corresponds to the matching M− of Observation 6 with the clustering C generated by
Algorithm 1.

▶ Theorem 14. There is a randomized polynomial time (1/2−(
∑k

i=1 pi)/(2n))-approximation
algorithm for Fair-Max-Agreement in general weighted graphs with k ≥ 2 colors and ratios
of p1 : p2 : . . . : pk.
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Proof. The algorithm chooses the best from the following two solutions: a single cluster
containing all the nodes or the output of Algorithm 1. The value of the former clustering
is the total weight of + edges, i.e., w(E+). On the other hand, the expected value of the
latter clustering is at least (1− (

∑k
i=1 pi)/n) · w(E−) (see Observation 13). Let us denote

by CALG the chosen clustering, i.e., CALG = arg max{v(C), v({V })}. One can note that
E[v(CALG)] ≥ 1/2 · (w(E+) + (1− (

∑k
i=1 pi)/n) · w(E−)) ≥ (1/2− (

∑k
i=1 pi)/(2n)) · w(E) ≥

(1/2− (
∑k

i=1 pi)/(2n)) ·OPT . ◀

2.2.2 Beating the (1/2 − o(1))-Approximation Ratio

The following lemma shows that one can reduce Fair-Max-Agreement to Fair-Max-Agreeme-
nt[2], for general instances, with a small loss in the approximation guarantee (similarly
to Lemma 9). If

∑k
i=1 pi = o(n) then the approximation guarantee of the following lemma

equals (2α)/(2 + α)− o(1).

▶ Lemma 15. If there is an α-approximation algorithm for Fair-Max-Agreement[2] with

k ≥ 2 colors and ratios of p1 : . . . : pk, then there is a (1−
∑k

i=1
pi

n )( 1
α ( 2+α

2 −
∑k

i=1
pi

n ))−1-
approximation algorithm for Fair-Max-Agreement with k ≥ 2 colors and ratios of p1 : . . . : pk.

Proof. The proof is similar to the proof of Lemma 9 except that instead of choosing the best
of two solutions when one of them has a value of at least v−(C∗) for some optimal clustering
C∗, we need to settle for a solution with value (1 − (

∑k
i=1 pi)/n) · v−(C∗) (swapping the

clustering Observation 6 guarantees with the clustering Observation 13 guarantees). The
rest of the calculations are similar. ◀

All that remains is to find a good approximation for Fair-Max-Agreement[2]. When
considering an approximation better than 1/2, we note that the approach taken for two colors
and a ratio of 1 : 1, which reduces Fair-Max-Agreement[2] to Max-Agreement-Bisection,
does not work for general instances. Instead we take the approach of Abbasi-Zadeh, Bansal,
Guruganesh, Nikolov, Schwartz and Singh [43] which presented the problem of Max-Cut
with side constraints (denoted by Max-Cut-Sc) and an algorithm for it. In the Max-Cut-Sc
problem we are given an n-vertex graph G = (V, E), a collection F = {F1, . . . , Fk} of k

subsets of V , and cardinality bounds b1, ..., bk ∈ N. The goal is to find a subset S ⊆ V

that maximizes the total weight of edges that cross S, subject to satisfying |S ∩ Fi| = bi

for all 1 ≤ i ≤ k. Their algorithm uses a sticky Brownian motion for the rounding process
of a suitable semi-definite relaxation for Max-Cut-Sc. In order to utilize this approach we:
(1) present a generalization of Max-Cut-Sc which also handles uncut edges (this problem
is denoted by Max-Agreement-Sc); and (2) prove that the rounding approach of [43] can
handle uncut edges, i.e., + edges, with the same approximation guarantee of the cut edges.4
Formally, the input for the Max-Agreement-Sc problem is the same as Max-Cut-Sc, with
the addition that every edge is labeled either with a + or a −. The goal is to find a subset
S ⊆ V that maximizes w−(δ(S)) + w+(E(S)) + w+(E(S)) subject to the same constraints
as in Max-Cut-Sc.

4 The algorithm of [43] for Max-Cut-Sc in fact takes the best out of two solutions: the Brownian motion
rounding and randomized rounding. The latter algorithm is needed for the case that the value of
the optimal solution is small. In our case we prove that the instance for which we need to solve
Max-Agreement-Sc cannot have an optimal solution of small value (see Lemma 17), thus our algorithm
just utilizes the Brownian motion approach.
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Following the above discussion, we show how one can handle Fair-Max-Agreement[2] by
solving a sequence of Max-Agreement-Sc instances with an appropriate choice of cardinality
bounds. Specifically, given an instance of Fair-Max-Agreement[2] with k colors, we choose
F = {V1, . . . , Vk} and all the cardinality bounds bi = h · pi for all i = 1, . . . , k. The
sequence of Max-Agreement-Sc is defined by enumerating over all values of h in the range
h = 1, . . . , n/

∑k
i=1 pi. Finding a solution to this problem for all possible h values captures

the fairness constraints. This is true since an optimal clustering of Fair-Max-Agreement[2]
corresponds to some specific (unknown) value of h in the above range. Note that an instance
as above to the Max-Agreement-Sc is always feasible for every value of h in the range between
1 and n/

∑k
i=1 pi. This is summarized in Algorithm 2.

Algorithm 2 Fair-Max-Agreement[2] via Max-Agreement-Sc.

Input:G = (V1 ∪ . . . ∪ Vk, E+ ∪ E−), {pi}k
i=1;

F ← {V1, . . . , Vk};
for h← 1 to n/

∑k
i=1 pi do

bi ← h · pi ∀1 ≤ i ≤ k;
Let Ch be the sticky Brownian motion solution for Max-Agreement-Sc with
bounds {bi}k

i=1;
end
return argmax{v(Ch) : h = 1, . . . , n/

∑k
i=1 pi};

The bulk of the effort is in solving Max-Agreement-Sc via the Brownian motion approach
of [43]. Theorem 3 in [43] provides, for every ε > 0, an algorithm for Max-Cut-Sc whose
running time is O(npoly(log(k)/ε)) which finds a solution S ⊆ V with the following properties
(in what follows S∗ is an optimal solution for Max-Cut-Sc): (1) E[w−(δ(S))] ≥ (0.843− ε) ·
w−(δ(S∗)); and (2) for every color i = 1, . . . k ||S∩Vi|−bi| ≤ εn. We prove that the rounding
algorithm of [43] can also handle, in addition to the above two properties, the contribution of
the + edges. Specifically, we show how one can easily change the SDP relaxation and then
apply the rounding algorithm of [43] to also guarantee that

E[w+(E(S)) + w+(E(S))] ≥ (0.843− ε) · (w+(E(S∗)) + w+(E(S∗))),

where S∗ here denotes an optimal solution to Max-Agreement-Sc for the correct choice of h.
First, let us start by formulating Max-Agreement-Sc as a quadratic optimization problem:

max
∑

e=(i,j)∈E− w(e) · (xi − xj)2 +
∑

e=(i,j)∈E+ w(e) · (1− (xi − xj)2)
s.t.

∑
j∈Fi

xj = bi i = 1, . . . , k

xj · (1− xj) = 0 j = 1, . . . , n

Recall that in the above bi equals pi · h (for some value of h).
We denote the above quadratic problem by Q and the solutions to the ℓ-level Lasserre

strengthening of the standard SDP relaxation of Q by SoS(Q). A solution in SoS(Q) can
be represented by a collection of unit vectors vS for all subsets S ⊆ V (|S| ≤ ℓ). For
completeness we write the ℓ-round SDP relaxation for the problem:

max
∑

e=(i,j)∈E− w(e) · ∥vi − vj∥2 +
∑

e=(i,j)∈E+ w(e) · (1− ∥vi − vj∥2)
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s.t.
∑

j∈Fi
v0 · vj = bi i = 1, . . . , k

v0 · v0 = 1
vS1 · vS2 = vS3 · vS4 ∀S1, S2, S3, S4 ⊆ V,

S1 ∪ S2 = S3 ∪ S4
and |S1 ∪ S2| ≤ ℓ

v0 · vi + vj · v0 − vivj ≤ 1 1 ≤ i, j ≤ n

vi · v0 ≥ vi · vj 1 ≤ i, j ≤ n

vi · vj ≥ 0 1 ≤ i, j ≤ n

For completeness of presentation, let us now focus on defining the rounding algorithm
of [43], as we require some of the notations in order to present the analysis of the uncut
+ edges. Recall that w̃i ≜ vi − µiv0 and wi ≜ w̃i/∥w̃i∥2. Let W and W̃ be the PSD
correlation matrices defined by the above vectors, that is Wij = wi ·wj and W̃ij = w̃i · w̃j,
for every 1 ≤ i, j ≤ n. The following lemma is used to obtain the input vectors to the
rounding algorithm, this lemma is based on [13] and [30] and appears as Lemma 10 in [43].
We refer the reader to [13, 30, 43] for its proof.

▶ Lemma 16. Let ε0 ≤ 1, ℓ ≥ 1/ε4
0 +2, for any solution in SoSℓ(Q) where ℓ ≥ 1/ε4

0 +2, there
exists an efficiently computable solution in SoSℓ−1/ε4

0
(Q) such that

∑n
i=1

∑n
j=1 W̃2

ij ≤ ε4
0n2.

Second, let us focus on the rounding algorithm. The input to the rounding algorithm is
the vectors obtained by Lemma 16. To round the vectors, the algorithm performs a sticky
Brownian motion inside the hypercube [0, 1]n, that is the random process {Xt}t≥0 which is
defined as follows. The starting point of the random walk is X0 such that (X0)i = µi for
every 1 ≤ i ≤ n. Denote {Bt}t≥0 as the standard Brownian motion in Rn. Let τ1 = inf{t :
X0 +W1/2Bt /∈ [0, 1]n}, then for all 0 ≤ t ≤ τ1: Xt = X0 +W1/2Bt. Let At = {i|(Xt)i ≠ 0, 1}
be the collection of active nodes at time t, and Ft = {x ∈ [0, 1]n|xi = (Xt)i, ∀i /∈ At}. The
covariance matrix Wt used for the random walk at time t is based on W and an entry in
this matrix is not 0 only for the indices in At, i.e., (Wt)ij = Wij if i, j ∈ At (otherwise
(Wt)ij = 0). After time τ1 the random process is changed to Xt = Xτ1 + W1/2

τ1 (Bt −Bτ1),
it is defined for τ1 ≤ t ≤ τ2 where τ2 = inf{t : Xτ1 + W1/2

τ1 (Bt −Bτ1) /∈ Fτ1}. In general,
τi = inf{t : Xτi−1 + W1/2

τi−1(Bt − Bτi−1) /∈ Fτi−1} and when τi−1 ≤ t ≤ τi the process is
defined as follows: Xt = Xτi−1 + W1/2

τi−1(Bt −Bτi−1). The algorithm does not terminate at
time τn but it is stopped at a fixed pre-specified time τ (which is chosen to be Θ(log(1/ε)))
and rounds to 1 the remaining nodes i ∈ Aτ with probability (Xτ )i. The output cut S ⊆ V

contains all the nodes i for which (Xτ )i = 1.
As previously mentioned, the algorithm for Max-Cut-Sc in [43] distinguishes between

two cases. For instances with small optimal value a different approach was taken instead
of the Brownian motion approach described above. However, since we use a sequence of
Max-Agreement-Sc instances to solve Fair-Max-Agreement[2], this case is not possible due
to the following lemma. It states that the optimal value of Fair-Max-Agreement[2] is not
small, hence for the correct choice of h the optimal value of Max-Agreement-Sc is also not
small. Thus, we can focus solely on instances whose optimal value is not small.

▶ Lemma 17. The optimal value of an instance G = (V1 ∪ . . . ∪ Vk, E+ ∪E−) to Fair-Max-
-Agreement[2] is at least (1/2−

∑k
i=1 pi/(2n))w(E).

Proof. Let C be the output of Algorithm 1. The simple algorithm which outputs S = {S, S}
by placing all the nodes of each cluster C ∈ C together in S or S with probability 1/2 (and
independently over the different clusters in C) results in a solution to Fair-Max-Agreement[2]
with an expected value of (1/2−

∑k
i=1 pi/(2n))w(E). This is true since E[v+(S)] = 1/2 ·w(E+)

and E[v−(S)] = 1/2 · (1−
∑k

i=1 pi/n)w(E−) (the latter follows from Observation 13) ◀
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The analysis of the Brownian motion based algorithm relies heavily on the following
theorem which appears in [36]. Intuitively, this theorem captures the connection between
diffusion processes and partial differential equations (see chapter 9 in [36]). We present it
here since we require it for the analysis of the + edges.

▶ Theorem 18 (Theorem 9 in [43] and Theorem 9.14 in [36]). Given a domain D = (0, 1)2 ⊆ R2,
suppose L is uniformly elliptic in D of the form

L =
2∑

i,j=1
aij(x) ∂2

∂xi∂xj

where 1
2 σσT = [aij ] for σ ∈ R2×2. For x ∈ D consider the process Xt = X0 + σBt. Denote

τD = inf{t > 0; Xt /∈ D} (the stopping time of Xt). Let ϕ be a bounded continuous function
on ∂D. Put u(x) = Ex[ϕ(XτD

)] where Ex denotes the expected value when X0 = x. Then u

solves the Dirichlet problem
1. Lu = 0 in D.
2. limx→y u(x) = ϕ(y) for all regular y ∈ ∂D.

Let us fix two nodes i and j and denote Xt as the projection of the random process Xt

to the coordinates i, j and let

W =
(

1 ρij

ρij 1

)
.

In our analysis σ = W
1/2, i.e., the entries aij in the above theorem are the entries of W.

When performing an edge-wise analysis we can consider the projection of Xt we described
above. We note that the first guarantee in the following lemma is identical to [43], but is
included for completeness. The novelty of the following theorem lies in the second guarantee.5

▶ Lemma 19. Let i, j ∈ V and vi, vj the corresponding vectors in the SDP solution. It holds
that
1. Pr[Xτn i ̸= Xτn j ] ≥ 0.843 · ∥vi − vj∥2.
2. Pr[Xτn i = Xτn j ] ≥ 0.843 · (1− ∥vi − vj∥2).

Proof. Guarantee 1 of the lemma is identical to Lemma 11 in [43], and thus its proof is
omitted.

Let us focus on guarantee 2 above. Let us denote θij = arccos(wi · wj). Recall that
∥vi∥2 = µi and vi = µi · v0 +

√
µi − µ2

i ·wi. Therefore, the contribution of the + edges to
the objective of the relaxation can be re-written as follows:

1− ∥vi − vj∥2 = 1− (µi + µj − 2 · µi · µj + 2 cos(θij) ·
√

(µi − µ2
i ) · (µj − µ2

j )).

For simplicity we denote x = µi, y = µj , θ = θij and the expression above as SDP (x, y, θ).
Observe that the probability that the edge (i, j) is uncut equals the probability that the
Brownian motion Xt is absorbed in (0, 0) or (1, 1). Denote uθ(x, y) as the probability of
ending in (0, 0) or (1, 1) conditioned on starting the walk at point (x, y):

uθ(x, y) = Pr[(Xτn i = Xτn j)|(X0)i = x, (X0)j = y].

5 We mention that one can derive Lemma 19 via rotational symmetry of the boundary conditions of
∂[0, 1]2 for both cut and uncut edges, and similar rotational symmetry of the contribution to the SDP
relaxation of both cut and uncut edges.
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Observe that the boundary condition on uθ(x, y) is the following: uθ(x, y) = 1− (x + y −
2xy) ∀(x, y) ∈ ∂[0, 1]2. Following Theorem 18 uθ is the unique solution to the Dirichlet
problem:

∂2uθ

∂2x
+ ∂2uθ

∂2y
+ 2 cos(θ) ∂2uθ

∂x∂y
= 0 ∀(x, y) ∈ Int[0, 1]2

uθ(x, y) = 1− (x + y − 2xy) ∀(x, y) ∈ ∂[0, 1]2

The problem above can be numerically solved for any configuration (x, y, θ). Therefore, the
approximation ratio for uncut edges is min(x,y,θ)∈F

uθ(x,y)
SDP (x,y,θ) where F is the collection of

all feasible configurations. Specifically, (x, y, θ) ∈ F if it satisfies the triangle inequalities
which are derived from the ℓ-round SDP relaxation (see Appendix D Lemma 11 [43]). The
numerical calculation via adaptation of the code used in [43] results in an approximation
ratio of 0.843 for the uncut edges. ◀

Lemmas 19 and 17 are sufficient to extend the proof of Theorem 3 of [43] to Fair-Max-
-Agreement[2], this is summarized in the following theorem.

▶ Theorem 20. There exists a O(npoly(log(k)/ε))-time algorithm for Fair-Max-Agreeme-
nt[2], which for an instance G = (V1 ∪ . . . ∪ Vk, E) outputs a (0.843− ε, ε)-approximation
with high probability.

Proof of Theorem 4. Follows from Theorem 20 and Lemma 15. ◀

3 Hardness of Fair-Min-Disagreement

In this section we present the hardness results for Fair-Min-Disagreement. First we prove
Theorem 1.

Proof of Theorem 1. We present a reduction from the 3-Partition problem, as defined in
[8, 26]. In 3-Partition we are given n = 3ℓ integer numbers a1, a2, ..., an and a threshold
A such that A

4 < ai < A
2 and

∑n
i=1 ai = ℓA (where a1, . . . , an and A are polynomial in n).

The goal is to decide if the numbers can be partitioned into triplets such that each triplet
sums up to exactly A. This problem is known to be strongly NP-complete [26].

Given an instance of the 3-Partition problem we construct a graph for the Fair-Min-
-Disagreement problem as follows (we denote the two colors by red and blue). For each
number ai construct a clique with ai red nodes, the edges in this clique are all labeled with
+. Additionally, construct ℓ cliques where each of them contains A blue nodes and the edges
within such a clique are all labeled with +. For every pair of blue nodes which are not in the
same clique, place an edge between them which is labeled with −. This finishes the definition
of our instance for Fair-Min-Disagreement.

We claim that there is a solution to the given 3-Partition instance if and only if there
is a clustering of the Fair-Min-Disagreement instance whose cost is zero. Given a solution
to the 3-Partition instance we can construct a clustering of zero cost as follows. For each
triplet ai1 , ai2 , ai3 in the solution for 3-Partition (recall that ai1 + ai2 + ai3 = A), define a
cluster which contains the three red cliques corresponding to the numbers ai1 , ai2 , ai3 and a
single blue clique of size A. One can note that this is a valid, i.e., fair, clustering since the
number of red and blue nodes is equal in all clusters. Furthermore, there are no unclustered
nodes since

∑n
i=1 ai = ℓA. The cost of this clustering is zero since: (1) all cliques, either red

or blue, are contained as a whole in a single cluster, and thus all + edges are in agreement;
and (2) every cluster contains exactly a single blue clique, and thus all − edges are also in
agreement.
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Given a clustering of cost zero we prove that one can partition the numbers to triplets
such that the sum of each triplet is exactly A. Note that each clique, either red or blue, in
the graph is contained as a whole in a single cluster, otherwise there is a + edges that is
in disagreement which stands in contradiction to the fact that the clustering has zero cost.
Moreover, each cluster contains exactly a single blue clique as a whole. The reason is that
there cannot be no blue cliques in the cluster (if this occurs then the cluster has no blue nodes
at all and this contradicts the fact the clustering is fair) and there cannot be two or more
blue cliques in the cluster (if this occurs the cluster contains a − edge and this contradicts
the fact the clustering has zero cost). Thus, the number of blue nodes in the cluster is A.
Since the clustering is fair the number of red nodes in the cluster is also A. Recall that every
number ai satisfies that A

4 < ai < A
2 . Hence, the cluster must contain exactly three red

cliques that correspond to three numbers that sum up exactly to A. Therefore, the triplets
we define as a solution to 3-Partition are those that correspond to the three red cliques in
each cluster. ◀

Let us now prove that a bi-criteria approximation is also not possible unless P = NP .

Proof of Theorem 2. We present a reduction from Triangle-Partition, which is known to
be NP-hard [22]. In this problem the goal is to decide whether there is a set of node-disjoint
triangles in a tripartite graph which covers all the nodes of the given tripartite graph. Note
that without loss of generality one can assume that each of the three parts of the tripartite
graph contains the same number of nodes. Otherwise, it is clear that the input graph cannot
have all its nodes covered by node-disjoint triangles.

Given an instance G = (A ∪ B ∪ C, E) to Triangle-Partition we construct a graph
G′ = (A ∪B ∪ C, E′) for Fair-Min-Disagreement as follows. Each part of the three parts
of G is given a unique color, i.e., V1 = A, V2 = B, and V3 = C. Define the edges in G′ as
follows: E′− ≜ {(u, v)|(u, v) /∈ E} and E′+ ≜ ∅. This finishes the definition of our instance
for Fair-Min-Disagreement.

We claim that there is a solution to Triangle-Partition if and only if there is a solution
C = {C1, . . . , Cl} to Fair-Min-Disagreement whose cost is zero and it satisfies that for
every 1 ≤ r ≤ l: |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε) for every (ordered) pair of colors i and j.

Given a solution to Triangle-Partition we can construct a solution to Fair-Min-
-Disagreement by setting every triangle to be a different cluster. The nodes in each triangle
are connected by edges in E. Therefore, there are no − edges between these nodes in
E′. Since there are no + edges in E′, we can conclude that the cost of this solution for
Fair-Min-Disagreement equals zero. Moreover, each cluster in the solution for Fair-Min-
-Disagreement contains exactly one node from each of the three colors. Hence, we proved
the existence of the desired solution for Fair-Min-Disagreement.

Let C = {C1, C2, ..., Cl} be a solution to Fair-Min-Disagreement that has zero cost and
satisfies that for every 1 ≤ r ≤ l: |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε) for every (ordered) pair of
colors i and j. Note that for every 1 ≤ r ≤ l and i = 1, 2, 3: |Cr ∩ Vi| ≤ 1. The reason for
that is that two nodes of the same color are connected with a − edge in E′. Since C has
zero cost, any nodes of the same color cannot be in the same cluster. Moreover, for every
1 ≤ r ≤ l and i = 1, 2, 3: |Cr ∩ Vi| > 0. The reason for that is that if there is a (non-empty)
cluster Cr and a color i for which |Cr ∩ Vi| = 0, then Cr contains at least one node of color
j, j ̸= i. For this ordered pair of colors (j and i) the condition on C is violated. Therefore,
every cluster Cr contains exactly one node from every color, i.e., one node from every part
of G. Because the cost of the clustering is zero, there are no − edges from E′ inside each
cluster which means that it forms a triangle in G. Clearly, these triangles are node-disjoint
and contain all nodes in A ∪ B ∪ C since C is a partition of A ∪ B ∪ C. This finishes the
proof. ◀
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A Proof of Theorem 7

Proof. The algorithm chooses the best from the following two solutions: a single cluster
containing all nodes and a solution with all clusters of size two that correspond to M− from
Observation 6 (we note M− can be computed efficiently by finding a minimum cost perfect
matching in a bipartite graph). The former solution has value of at least w(E+), whereas
the latter solution has value of at least w(E−) − w(M− ∩ E−). Following observation 6,
OPT ≤ w(E+) + w(E−) − w(M− ∩ E−). If w(E+) > w(E−) − w(M ∩ E−) we note that
the single cluster solution has value of at least 1/2 · OPT . Otherwise the solution with all
clusters of size two, that correspond to M−, has value of at least 1/2 ·OPT . Hence, the above
algorithm achieves an approximation of 1/2. ◀

B Proof of Lemma 8

Proof. Given a clustering C = {C1, . . . , Cl} we can construct a clustering that has only two
clusters S = {S, S} as follows. For every Ci, with a uniform probability (and independently
over the clusters) we place all the nodes of Ci either in S or in S. Note that all + edges that
are in agreement in C always remain in agreement in S, thus v+(S) ≥ v+(C). Moreover, the
probability of every − edge that is in agreement in C to still be in agreement in S is exactly
1/2. Therefore, E[v−(S)] ≥ 1

2 v−(C). Hence, we can conclude that E[v(S)] ≥ v+(C) + 1
2 v−(C)

(so there exists a cluster S with a value of at least v+(C) + 1
2 v−(C)). This finishes the

proof. ◀
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C Proof of Lemma 9

Proof. We are given an instance of Fair-Max-Agreement with two colors and a ratio of 1 : 1.
Let C∗ = {C∗

1 , . . . , C∗
l } be an optimal clustering for this instance. Following observation 6

we can output the clustering M− induces, and we note that the value of this clustering is at
least v−(C∗). Following Lemma 8 when applied for C∗ the given α-approximation algorithm
can be used to obtain a clustering S = {S, S} with value v(S) ≥ α · (v+(C∗) + 1

2 v−(C∗)).
Therefore, choosing the best of the above two clusterings, we can output a solution whose
value is at least max{α · (v+(C∗) + 1

2 v−(C∗)), v−(C∗)} (we denote this value by y). Now we
show that for 0 < α < 1 it holds that y ≥ 2α

2+α · v(C∗).
The first case is when y = v−(C∗) and the second case is when y = α ·v+(C∗)+ 1

2 α ·v−(C∗).
Let us focus on the first case, and note that assuming y = v−(C∗), the definition of y implies
v+(C∗) ≤ (1/α− 1/2)v−(C∗). This in turn implies that:

v(C∗) = v+(C∗) + v−(C∗) ≤ v−(C∗) (1 + (1/α− 1/2)) = (2+α)/(2α) · y.

This concludes the proof for the first case. Let us now focus on the second case, and note that
assuming y = α ·v+(C∗)+ 1

2 α ·v−(C∗), the definition of y implies v−(C∗) ≤ (2α)/(2−α) ·v+(C∗).
This in turn implies that:

v(C∗) = v+(C∗) + v−(C∗) = v+(C∗) + (2+α)/4 · v−(C∗) + (2−α)/4 · v−(C∗)
≤ v+(C∗) + (2+α)/4 · v−(C∗) + (2−α)/4 · (2α)/(2−α) · v+(C∗)

= 2 + α

2α

(
α · v+(C∗) + α

2 · v
−(C∗)

)
= 2 + α

2α
· y.

This concludes the proof for the second case. ◀

D Approximating Max-Agreement-Bisection

We claim that one can use the algorithm of Wu, Du and Xu [42], who built upon the work of
Austrin, Benabbas and Georgiou [10] for Max-Bisection, to obtain a good approximation
for Max-Agreement-Bisection. The algorithms of [10, 42] both perform the following three
phases ([10] for the Max-Bisection problem and [42] for the general graph bisection problem).
In the first phase the following ℓ-round Lasserre SDP relaxation is solved:

max
∑

e=(i,j)∈E+ w(e)(1/2 + 1/2⟨vi, vj⟩)) +
∑

e=(i,j)∈E− w(e)(1/2− 1/2⟨vi, vj⟩))

s.t. ⟨v∅,
∑

i∈V vS△{i}⟩ = 0 ∀S ⊆ V, |S| < ℓ

⟨vS1 , vS2⟩ = ⟨vS3 , vS4⟩ ∀S1, S2, S3, S4 ⊆ V,

|S1|, |S2|, |S3|, |S4| ≤ ℓ,

S1△S2 = S3△S4
⟨v∅, v∅⟩ = 1

Let us denote by {vS
∗}S⊆V,|S|<ℓ an optimal solution to the above relaxation. The following

theorem shows how one can extract vectors {vi}n
i=0, from {vS

∗}S⊆V,|S|<ℓ, such that the
value of the objective does not deteriorate much and the vectors {vi}n

i=0 have low correlation.
Before formally stating the above, we introduce the following notation:

SDPV al({vi}) ≜
∑

e=(i,j)∈E+

w(e)(1/2 + 1/2⟨vi, vj⟩)) +
∑

e=(i,j)∈E−

w(e)(1/2− 1/2⟨vi, vj⟩)).

When reading the following theorem, the reader should recall the definitions of µi, ρi,j , and
wi, given in Section 1.3.
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▶ Theorem 21 (Theorem 3.1 in [10], Theorem 2 in [42]). There is an algorithm which given
a graph G = (V, E) and t ∈ N≥1 outputs a set of vectors {vi}n

i=0 in time nO(t) such that:
1. SDPV al({vi}) ≥ SDPV al({vi

∗})− 10t− 1
2 .

2.
∑n

i=1⟨v0, vi⟩ = 0.
3. The following triangle inequalities are satisfied for every 1 ≤ i, j ≤ n:

µi + µj + ρij ≥ −1, µi − µj − ρij ≥ −1

−µi + µj − ρij ≥ −1,−µi − µj + ρij ≥ −1

4. Ei,j∈V [|⟨wi, wj⟩|] ≤ t− 1
4 .

We note that the above theorem was proved in [10] for the objective of Max-Bisection
and in [42] for the objective of Max- n

2 -Uncut (both heavily rely on Raghavendra and Tan [37]).
However, one can note that the same proof holds for our definition of SDPV al({vi}) for
Max-Agreement-Bisection.

In the second phase the rounding algorithm of [10] uses {vi}n
i=0 to extract a cut S̃ =

{S̃, V \ S̃}. This rounding algorithm has the following properties: (1) the rounding does
not depend on the coefficients c0, c1, c2, c3; and (2) the analysis is performed edge-wise, i.e.,
the ratio of the probability of an edge being satisfied by the rounding algorithm to the
contribution of the same edge to the value of the relaxation is lower bounded. We note that
this cut might not be a bisection, i.e., |S̃| might not equal n/2, thus corrections must be
made. The following lemma is immediate from Lemma 4 in [42] and Lemma 3.2 in [10],
where the former is for the Max- n

2 -Uncut objective and the latter for the Max-Bisection
objective.

▶ Lemma 22. (following Lemma 4 in [42] and Lemma 3.2 in [10])
E[v(S̃)] ≥ α0 · SDPV al({vi}n

i=0), where α0 ≥ 0.8776.

The last phase is a size adjusting phase in which a subset of vertices from the larger side
of the cut S̃ is moved to the smaller side of the cut in order to create a bisection. This is
performed either by choosing a random subset (as is done in [10]), or equivalently, greedily (as
is done [42]). This phase incurs an additive loss of o(1) in the approximation guarantee. We
can choose any of the above two options. The following lemma summarizes the approximation
guarantee for Max-Agreement-Bisection, its proof follows from Theorem 21 and Lemma 22
similarly to [10, 42].

▶ Lemma 23. Max-Agreement-Bisection is approximable in polynomial time to within a
factor 0.8776.
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Abstract
A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate
f : {−1, 1}k → {0, 1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each
of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev,
and Velusamy [8] obtained explicit ratios characterizing the

√
n-space streaming approximability of

every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [7] proved a general dichotomy
theorem for

√
n-space sketching algorithms: For every f , there exists α(f) ∈ (0, 1] such that for

every ϵ > 0, Max-CSP(f) is (α(f) − ϵ)-approximable by an O(log n)-space linear sketching algorithm,
but (α(f) + ϵ)-approximation sketching algorithms require Ω(

√
n) space.

In this work, we give closed-form expressions for the sketching approximation ratios of multiple
families of symmetric Boolean functions. Letting α′

k = 2−(k−1)(1 − k−2)(k−1)/2, we show that for
odd k ≥ 3, α(kAND) = α′

k, and for even k ≥ 2, α(kAND) = 2α′
k+1. Thus, for every k, kAND

can be (2 − o(1))2−k-approximated by O(log n)-space sketching algorithms; we contrast this with
a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [5] implying that streaming
(2 + ϵ) · 2−k-approximations require Ω(n) space! We also resolve the ratio for the “at-least-(k − 1)-1’s”
function for all even k; the “exactly- k+1

2 -1’s” function for odd k ∈ {3, . . . , 51}; and fifteen other
functions. We stress here that for general f , the dichotomy theorem in [7] only implies that α(f)
can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have
existed a priori. Our analyses involve identifying and exploiting structural “saddle-point” properties
of this dichotomy.

Separately, for all threshold functions, we give optimal “bias-based” approximation algorithms
generalizing [8] while simplifying [7]. Finally, we investigate the

√
n-space streaming lower bounds

in [7], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND) − ϵ)-
approximations in o(

√
n) space.
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1 Introduction

In this work, we consider the streaming approximability of various Boolean constraint satis-
faction problems, and we begin by defining these terms. See [7, §1.1-2] for more details on
the definitions.

1.1 Setup: The streaming approximability of Boolean CSPs
1.1.1 Boolean CSPs
Let f : {−1, 1}k → {0, 1} be a Boolean function. In an n-variable instance of the problem
Max-CSP(f), a constraint is a pair C = (b, j), where j = (j1, . . . , jk) ∈ [n]k is a k-tuple of
distinct indices, and b = (b1, . . . , bk) ∈ {−1, 1}k is a negation pattern.

For Boolean vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ {−1, 1}n, let a ⊙ b denote
their coordinate-wise product (a1b1, . . . , anbn). An assignment σ = (σ1, . . . , σn) ∈ {−1, 1}n

satisfies C iff f(b ⊙ σ|j) = 1, where σ|j is the k-tuple (σj1 , . . . , σjk
) (i.e., σ satisfies C iff

f(b1σj1 , . . . , bkσjk
) = 1). An instance Ψ of Max-CSP(f) consists of constraints C1, . . . , Cm

with non-negative weights w1, . . . , wm where Ci = (j(i), b(i)) and wi ∈ R for each i ∈ [m];
the value valΨ(σ) of an assignment σ to Ψ is the (weighted) fraction of constraints in Ψ
satisfied by σ, i.e., valΨ(σ) def= 1

W

∑
i∈[m] wi · f(b(i) ⊙ σ|j(i)), where W =

∑m
i=1 wi. The

value valΨ of an instance Ψ is the maximum value of any assignment σ ∈ {−1, 1}n, i.e.,
valΨ

def= maxσ∈{−1,1}n valΨ(σ).

1.1.2 Approximations to CSPs
For α ∈ [0, 1], we consider the problem of α-approximating Max-CSP(f). In this problem,
the goal of an algorithm A is to, on input an instance Ψ, output an estimate A(Ψ) such
that with probability at least 2

3 , α · valΨ ≤ A(Ψ) ≤ valΨ. For β < γ ∈ [0, 1], we also consider
the closely related (β, γ)-Max-CSP(f). In this problem, the input instance Ψ is promised
to either satisfy valΨ ≤ β or valΨ ≥ γ, and the goal is to decide which is the case with
probability at least 2

3 .

1.1.3 Streaming and sketching algorithms for CSPs
For various Boolean functions f , we consider algorithms which attempt to approximate
Max-CSP(f) instances in the (single-pass, insertion-only) space-s streaming setting. Such
algorithms can only use space s (which is ideally small, such as O(log n), where n is the
number of variables in an input instance), and, when given as input a CSP instance Ψ, can
only read the list of constraints in a single, left-to-right pass.

https://notebookarchive.org/2022-03-a5vpzhg/
https://notebookarchive.org/2022-03-a5vpzhg/
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We also consider a (seemingly) weak class of streaming algorithms called sketching
algorithms, where the algorithm’s output is determined by an length-s string called a “sketch”
produced from the input stream, and the sketch itself has the property that the sketch of
the concatenation of two streams can be computed from the sketches of the two component
streams. (See [7, §3.3] for a formal definition.) A special case of sketching algorithms are
linear sketches, where each sketch (i.e., element of {0, 1}s) encodes an element of a vector
space and we perform vector addition to combine two sketches.

1.2 Prior work and motivations

1.2.1 Prior results on streaming and sketching Max-CSP(f)

We first give a brief review of what is already known about the streaming and sketching approx-
imability of Max-CSP(f). For f : {−1, 1}k → {0, 1}, let ρ(f) def= Prb∼Unif({−1,1}k)[f(b) = 1],
where Unif({−1, 1}k) denotes the uniform distribution on {−1, 1}k. For every f , the
Max-CSP(f) problem has a trivial ρ(f)-approximation algorithm given by simply outputting
ρ(f) since Ea∼Unif({−1,1}n)[valΨ(a)] = Prb∼Unif({−1,1}k)[f(b) = 1] = ρ(f). We refer to a func-
tion f as approximation-resistant for some class of algorithms (e.g., streaming or sketching
algorithms with some space bound) if it cannot be (ρ(f) + ϵ)-approximated for any constant
ϵ > 0. Otherwise, we refer to f as approximable for the class of algorithms.

The first two CSPs whose o(
√

n)-space streaming approximabilities were resolved were
Max-2XOR and Max-2AND. Kapralov, Khanna, and Sudan [18] showed that Max-2XOR is
approximation-resistant to o(

√
n)-space streaming algorithms. Later, Chou, Golovnev, and

Velusamy [8], building on earlier work of Guruswami, Velusamy, and Velingker [12], gave an
O(log n)-space linear sketching algorithm which ( 4

9 − ϵ)-approximates Max-2AND for every
ϵ > 0 and showed that ( 4

9 + ϵ)-approximations require Ω(
√

n) space, even for streaming
algorithms.

In two recent works [7, 6], Chou, Golovnev, Sudan, and Velusamy proved so-called
dichotomy theorems for sketching CSPs. In [7], they prove the dichotomy for CSPs over the
Boolean alphabet with negations of variables (i.e., the setup we described in Section 1.1.1).
In [6], they extend it to the more general case of CSPs over finite alphabets.1 See [6, §1] and
[21] for more general background on CSPs in the streaming setting.

[7] is most relevant for our purposes, as it concerns Boolean CSPs. For a fixed constraint
function f : {−1, 1}k → {0, 1}, the main result in [7] is the following dichotomy theorem: For
any 0 ≤ γ < β ≤ 1, either
1. (β, γ)-Max-CSP(f) has an O(log n)-space linear sketching algorithm, or
2. For all ϵ > 0, sketching algorithms for (β + ϵ, γ − ϵ)-Max-CSP(f) require Ω(

√
n) space.

Distinguishing whether (1) or (2) applies is equivalent to deciding whether two convex
polytopes (which depend on f, γ, β) intersect. We omit a technical statement of this
criterion, and instead focus on the following corollary: there exists an α(f) ∈ [0, 1] such
that Max-CSP(f) can be (α(f) − ϵ)-approximated by O(log n)-space linear sketches, but not
(α(f) + ϵ)-approximated by o(

√
n)-space sketches, for all ϵ > 0; furthermore, α(f) equals

the solution to an explicit minimization problem, which we describe in Section 2.1 (in the
special case where f is symmetric).

1 More precisely, [7] and [6] both consider the more general case of CSPs defined by families of functions
of a specific arity. We do not need this generality for the purposes of our paper, and therefore omit it.
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A priori, it may be possible to achieve an (α(f) + ϵ)-approximation with a o(
√

n)-space
streaming algorithm. But [7] also extends the lower bound (case 2 of the dichotomy) to
cover streaming algorithms when special objects called padded one-wise pairs exist. See
Section 2.4 below for a definition (again, specialized for symmetric functions). The padded
one-wise pair criterion is sufficient to recover all previous streaming approximability results
for Boolean functions (i.e., [18, 8]), and prove several new ones. In particular, [7] proves
that if f : {−1, 1}k → {0, 1} has the property that there exists D ∈ ∆(f−1(1)) such
that Eb∼D[bi] = 0 for all i ∈ [k] (where [k] def= {1, . . . , k}), then Max-CSP(f) is streaming
approximation-resistant. For symmetric Boolean CSPs, they also prove the converse, and
thus give a complete characterization for approximation resistance [7, Lemma 2.14]. However,
besides Max-2AND, [7] does not explicitly analyze the approximation ratio of any CSP that
is “approximable”, i.e., not approximation resistant.

1.2.2 Questions from previous work

In this work, we address several major questions about streaming approximations for Boolean
CSPs which Chou, Golovnev, Sudan, and Velusamy [7] leave unanswered:
1. Can the framework in [7] be used to find closed-form sketching approximability ratios

α(f) for approximable problems Max-CSP(f) beyond Max-2AND?
2. As observed in [5, §1.3], [7] implies the following “trivial upper bound” on streaming

approximability: for all f , α(f) ≤ 2ρ(f). How tight is this upper bound?
3. Does the streaming lower bound (the “padded one-wise pair” criterion) in [7] suffice to

resolve the streaming approximability of every function?
4. The optimal (α(f) − ϵ)-approximation algorithm for Max-CSP(f) in [7] requires running a

“grid” of O(1/ϵ2) distinguishers for (β, γ)-Max-CSP(f) distinguishing problems in parallel.
Can we obtain simpler optimal sketching approximations?

1.3 Our results

We study the questions in Section 1.2.2 for symmetric Boolean CSPs. Symmetric Boolean
functions are those functions that depend only on the Hamming weight of the input, i.e.,
number of 1’s in the input.2 For a set S ⊆ [k], we define fS,k : {−1, 1}k → {0, 1} as the
indicator function for the set {b ∈ {−1, 1}k : wt(b) ∈ S} (where wt(b) denotes the Hamming
weight of b). That is, fS,k(x) = 1 if and only if wt(x) ∈ S. Some well-studied examples of
functions in this class include kAND = f{k},k, the threshold functions Thi

k = f{i,i+1,...,k},k,
and “exact weight” functions Exi

k = f{i},k.3

2 Note that the inputs are in {−1, 1}k; we define the Hamming weight as the number of 1’s, and not −1’s
(which is arguably more “natural” under the mapping b ∈ {0, 1} 7→ (−1)b ∈ {−1, 1}), for consistency
with [7].

3 By [7, Lemma 2.14], if S contains elements s ≤ k
2 and t ≥ k

2 , not necessarily distinct, then fS,k supports
one-wise independence and is therefore approximation-resistant (even to streaming algorithms). Thus,
we focus on the case where all elements of S are either larger than or smaller than k

2 . Moreover,
note that if S′ = {k − s : s ∈ S}, every instance of Max-CSP(fS,k) can be viewed as an instance of
Max-CSP(fS′,k) with the same value, since for any constraint C = (b, j) and assignment σ ∈ {−1, 1}n,
we have fS,k(b ⊙ σ|j) = fS′,k(b ⊙ (−σ)|j). Thus, we further narrow our focus to the case where every
element of S is larger than k

2 .
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1.3.1 The sketching approximability of Max-kAND
Chou, Golovnev, and Velusamy [8] showed that α(2AND) = 4

9 (and ( 4
9 +ϵ)-approximation can

be ruled out even for o(
√

n)-space streaming algorithms). For k ≥ 3, while Chou, Golovnev,
Velusamy, and Sudan [7] give optimal sketching approximation algorithms for Max-kAND,
they do not explicitly analyze the approximation ratio α(kAND), and show only that it lies
between 2−k and 2−(k−1).

In this paper, we analyze the dichotomy theorem in [7], and obtain a closed-form expression
for the sketching approximability of Max-kAND for every k. For odd k ≥ 3, define the constant

α′
k

def=
(

(k − 1)(k + 1)
4k2

)(k−1)/2
= 2−(k−1) ·

(
1 − 1

k2

)(k−1)/2
. (1)

In Section 4, we prove the following:

▶ Theorem 1. For odd k ≥ 3, α(kAND) = α′
k, and for even k ≥ 2, α(kAND) = 2α′

k+1.

Since ρ(kAND) = 2−k, Theorem 1 also has the following important corollary:

▶ Corollary 2. limk→∞
α(kAND)
2ρ(kAND) = 1.

Recall that [7] implies that α(f) ≤ 2ρ(f) for all functions f . Indeed, Chou, Golovnev, Su-
dan, Velusamy, and Velingker [5] show that any function f cannot be (2ρ(f)+ϵ)-approximated
even by o(n)-space streaming algorithms. On the other hand, in Section 1.3.3 below, we de-
scribe simple O(log n)-space sketching algorithms for Max-kAND achieving the optimal ratio
from [7]. Thus, as k → ∞, these algorithms achieve an asymptotically optimal approximation
ratio even among o(n)-space streaming algorithms!

1.3.2 The sketching approximability of other symmetric functions
We also analyze the sketching approximability of a number of other symmetric Boolean
functions. Specifically, for the threshold functions Thk−1

k for even k, we show that:

▶ Theorem 3. For even k ≥ 2, α(Thk−1
k ) = k

2 α′
k−1.

We prove Theorem 3 in Section 5.1 using techniques similar to our proof of Theorem 1.
We also provide partial results for Ex(k+1)/2

k , including closed forms for small k and an
asymptotic analysis of α(Ex(k+1)/2

k ):

▶ Theorem 4 (Informal version of Theorem 25). For odd k ∈ {3, . . . , 51}, there is an explicit
expression for α(Ex(k+1)/2

k ) as a function of k.

▶ Theorem 5. limodd k→∞
α
(

Ex(k+1)/2
k

)
ρ
(

Ex(k+1)/2
k

) = 1.

We prove Theorems 4 and 5 in Section 5.2. Finally, in Section 5.3, we explicitly resolve
fifteen other cases (e.g., f{2,3},3 and f{4},5) not covered by Theorems 1, 3, and 4.

1.3.3 Simple approximation algorithms for threshold functions
Chou, Golovnev, and Velusamy’s optimal ( 4

9 −ϵ)-approximation for 2AND [8], like Guruswami,
Velingker, and Velusamy’s earlier ( 2

5 −ϵ)-approximation [12], is based on measuring a quantity
called the bias of an instance Ψ, denoted bias(Ψ), which is defined as follows: For each i ∈ [n],
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diffi(Ψ) is the difference in total weight between constraints where xi occurs positively and
negatively, and bias(Ψ) def= 1

km

∑n
i=1 |diffi(Ψ)| ∈ [0, 1].4 In the sketching setting, bias(Ψ) can

be estimated using standard ℓ1-norm sketching algorithms [16, 17].
In Section 7, we give simple optimal bias-based approximation algorithms for threshold

functions:

▶ Theorem 6. Let fS,k = Thi
k be a threshold function. Then for every ϵ > 0, there exists a

piecewise linear function γ : [−1, 1] → [0, 1] and a constant ϵ′ > 0 such that the following is a
sketching (α(fS,k) − ϵ)-approximation for Max-CSP(fS,k): On input Ψ, compute an estimate
b̂ for bias(Ψ) up to a multiplicative (1 ± ϵ′) error and output γ(̂b).

Our construction generalizes the algorithm in [8] for 2AND to all threshold functions, and
is also a simplification, since the [8] algorithm computes a more complicated function of b̂.

For all CSPs whose approximability we resolve in this paper, we apply an analytical
technique which we term the “max-min method;” see the discussion in Section 2.3 below.
For such CSPs, our algorithm can be extended to solve the problem of outputting an
approximately optimal assignment (instead of just the value of such an assignment). Indeed,
for this problem, we give a simple randomized streaming algorithm using O(n) space and
time:

▶ Theorem 7 (Informal version of Theorem 34). Let fS,k be a function for which the max-min
method applies, such as kAND, or Thk−1

k (for even k). Then there exists a constant p∗ ∈ [0, 1]
such that following algorithm, on input Ψ, outputs an assignment with expected value at
least α(fS,k)valΨ: Assign variable i to 1 if diffi(Ψ) ≥ 0 and −1 otherwise, and then flip each
variable’s assignment independently with probability p∗.

Our algorithm can potentially be derandomized using universal hash families, as in Biswas
and Raman’s recent derandomization [1] of the Max-2AND algorithm in [8].

1.3.4 Sketching vs. streaming approximability
Theorem 1 implies that α(3AND) = 2

9 . We prove that the padded one-wise pair criterion of
Chou, Golovnev, Sudan, and Velusamy [7] is not sufficient to completely resolve the streaming
approximability of Max-3AND:

▶ Theorem 8 (Informal version of Theorem 12 + Observation 13). The padded one-wise pair
criterion in [7] does not rule out a o(

√
n)-space streaming ( 2

9 + ϵ)-approximation for 3AND
for every ϵ > 0; however, it does rule out such an algorithm for ϵ ⪆ 0.0141.

We state these results formally in Section 2.4 and prove them in Section 6. Separately,
Theorem 3 implies that α(Th3

4) = 4
9 , and the padded one-wise pair criterion can be used

to show that ( 4
9 + ϵ)-approximating Max-CSP(Th3

4) requires Ω(
√

n) space in the streaming
setting (see Observation 22 below).

1.4 Related work
The classical approximability of Max-kAND has been the subject of intense study, both in
terms of algorithms [11, 10, 26, 23, 25, 13, 14, 4] and hardness-of-approximation [15, 24,
22, 19, 9, 20], given its intimate connections to k-bit PCPs. Charikar, Makarychev, and

4 [12, 8] did not normalize by 1
kW .
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Makarychev [4] constructed an Ω(k2−k)-approximation to Max-kAND, while Samorodnitsky
and Trevisan [20] showed that k2−(k−1)-approximations and (k + 1)2−k-approximations are
NP- and UG-hard, respectively.

Interestingly, recalling that α(kAND) → 2ρ(kAND) = 2−(k−1) as k → ∞, in the large-k
limit our simple randomized algorithm (given in Theorem 7) matches the performance
of Trevisan’s [23] parallelizable LP-based algorithm for kAND, which (to the best of our
knowledge) was the first work on the general kAND problem! The subsequent works [13, 14, 4]
superseding [23] use more complex techniques involving semidefinite programming, but are
structurally similar to our algorithm in Theorem 7: They all involve “guessing” an assignment
x ∈ Zn

2 and then perturbing each bit with constant probability.

2 Our techniques

In this section, we give a more detailed background on the technical aspects of the dichotomy
theorem in [7], and explain the novel aspects of our analysis.

2.1 The Chou, Golovnev, Sudan, and Velusamy [7] framework for
symmetric functions

In this section, we describe the Chou, Golovnev, Sudan, and Velusamy [7] framework for
finding the optimal sketching approximation ratio of a symmetric Boolean function fS,k.

Let ∆({−1, 1}k) denote the space of all distributions on {−1, 1}k. For a distribution
D ∈ ∆({−1, 1}k) and x ∈ {−1, 1}k, we use D(x) to denote the probability of sampling x in D.
To a distribution D ∈ ∆({−1, 1}k) we associate a canonical instance ΨD of Max-CSP(fS,k)
on k variables as follows. Let j = (1, . . . , k). For every negation pattern b ∈ {−1, 1}k, ΨD
contains the constraint (b, j) with weight D(b).

We say a distribution D ∈ ∆({−1, 1}k) is symmetric if all vectors of equal Hamming
weight are equiprobable, i.e., for every x, y ∈ {−1, 1}k such that wt(x) = wt(y), D(x) = D(y).
Let ∆k ⊆ ∆({−1, 1}k) denote the set of all symmetric distributions on {−1, 1}k. Given
D ∈ ∆k, let D⟨i⟩ def=

∑
x∈{−1,1}k:wt(x)=i D(x) denote the total probability mass on vectors of

Hamming weight i. Note that any vector (D⟨0⟩, . . . , D⟨k⟩) of nonnegative values summing to
1 uniquely determines a distribution D ∈ ∆k; we write D = (D⟨0⟩, . . . , D⟨k⟩) for notational
convenience.

Let Bern(p) represent a random variable which is 1 with probability p and −1 with
probability 1 − p. For D ∈ ∆({−1, 1})k and p ∈ [0, 1], let

λS(D, p) def= E
a∼D,b∼Bern(p)k

[fS,k(a ⊙ b)] = E
b∼Bern(p)k

[valΨD (b)] (2)

denote the expected value of a “p-biased symmetric assignment” on D’s canonical instance.
Also, for a symmetric distribution D ∈ ∆k, we define its (scalar) marginal

µ(D) def= E
b∼D

[b1] = · · · = E
b∼D

[bk]. (3)

In general, λS is linear in D and degree-k in p, and µ is linear in D. For D ∈ ∆k, we
provide explicit formulas for λS and µ in Section 3.

Roughly, [7] states that Max-CSP(fS,k) is hard to approximate in the sketching setting if
there exist distributions DN , DY ∈ ∆k such that (1) µ(DN ) = µ(DY ) and (2) DY ’s canonical
instance is highly satisfied by the trivial (all-ones) assignment but (3) DN ’s canonical
instance is not well-satisfied by any “biased symmetric assignment”. To be precise, for
D ∈ ∆({−1, 1}k), let
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βS(D) def= sup
p∈[0,1]

λS(D, p) and γS(D) def= λS(D, 1), (4)

and define

α(fS,k) def= inf
DN ,DY ∈∆k: µ(DN )=µ(DY )

(
βS(DN )
γS(DY )

)
. (5)

For every symmetric function fS,k, [7] proves that α(fS,k) is the optimal sketching
approximation ratio for Max-CSP(fS,k):

▶ Theorem 9 (Combines [7, Theorem 2.10 and Lemma 2.14]). Let fS,k : {−1, 1}k → {0, 1}
be a symmetric function. Then for every ϵ > 0, there is an linear sketching (α(fS,k) −
ϵ)-approximation to Max-CSP(fS,k) in O(log n) space, but any sketching (α(fS,k) + ϵ)-
approximation to Max-CSP(fS,k) requires Ω(

√
n) space.

▶ Remark. In the general case where f : {−1, 1}k → {0, 1} is not symmetric, the approx-
imability of f is no longer characterized by Equation (5). Instead, [7] requires taking an
infimum over all (not necessarily symmetric) distributions DN , DY ∈ ∆({−1, 1})k. Moreover,
a general distribution D ∈ ∆({−1, 1})k no longer has a single scalar marginal (as in Equa-
tion (3)). Instead, we must consider a vector marginal µ(D) = (µ1, . . . , µk) with i-th
component µi = Eb∼D[bi]; correspondingly, DN and DY are required to satisfy the constraint
µ(DN ) = µ(DY ). These issues motivate our focus on symmetric functions in this paper.
Since we need to consider only symmetric distributions in Equation (5), DY and DN are
each parameterized by k + 1 variables (as opposed to 2k variables), and there is a single
linear equality constraint (as opposed to k constraints).

2.2 Formulations of the optimization problem
In order to show that α(2AND) = 4

9 , Chou, Golovnev, Sudan, and Velusamy [7, Example
1] use the following reformulation of the optimization problem on the right hand side of
Equation (5). For a symmetric function fS,k and µ ∈ [−1, 1], let

βS,k(µ) = inf
DN ∈∆k: µ(DN )=µ

βS(DN ) and γS,k(µ) = sup
DY ∈∆k: µ(DY )=µ

γS(DY ); (6)

then

α(fS,k) = inf
µ∈[−1,1]

(
βS,k(µ)
γS,k(µ)

)
. (7)

The optimization problem on the right-hand side of Equation (7) appears simpler than
that of Equation (5) because it is univariate, but there is a hidden difficulty: Finding an
explicit solution requires giving explicit formulas for βS,k(µ) and γS,k(µ). In the case of
2AND = f{2},2, Chou, Golovnev, Sudan, and Velusamy [7] show that γ{2},2(µ) is an explicit
linear function of µ; maximize the quadratic λ{2}(DN , p) over p ∈ [0, 1] to find β{2}(DN );
and then minimize β{2}(DN ) given µ(DN ) = µ to find β{2},2(µ). However, while for general
symmetric functions fS,k we can describe γS,k(µ) as an explicit piecewise linear function of µ

(see Lemma 16 below), we do not know how to find closed forms for βS,k(µ) even for 3AND.
Thus, in this work we introduce a different formulation of the optimization problem:

α(fS,k) = inf
DN ∈∆k

(
βS(DN )

γS,k(µ(DN ))

)
. (8)
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This reformulation is valid because

α(fS,k) = inf
µ∈[−1,1],DN ∈∆k: µ(DN )=µ

(
βS(DN )
γS,k(µ)

)
= inf

DN ∈∆k

(
βS(DN )

γS,k(µ(DN ))

)
.

We view optimizing directly over DN ∈ ∆k as an important conceptual switch. In
particular, our formulation emphasizes the calculation of βS(DN ) as the centrally difficult
feature, yet we can still take advantage of the relative simplicity of calculating γS,k(µ).

2.3 Our contribution: The max-min method
A priori, solving the optimization problem on the right-hand side of Equation (8) still requires
calculating βS(DN ), which involves maximizing a degree-k polynomial. To get around this
difficulty, we have made a key discovery, which was not noticed by Chou, Golovnev, Sudan,
and Velusamy [7] even in the 2AND case. Let D∗

N minimize the right-hand side of Equation (8),
and p∗ maximize λS(D∗

N , ·). After substituting βS(D) = supp∈[0,1] λS(D, p) in Equation (8),
and applying the max-min inequality, we get

α(fS,k) = inf
DN ∈∆k

sup
p∈[0,1]

(
λS(DN , p)

γS,k(µ(DN ))

)
≥ sup

p∈[0,1]
inf

DN ∈∆k

(
λS(DN , p)

γS,k(µ(DN ))

)
≥ inf

DN ∈∆k

(
λS(DN , p∗)
γS,k(µ(DN ))

)
.

(9)

Given p∗, the right-hand side of Equation (9) is relatively easy to calculate, being a ratio
of a linear and piecewise linear function of DN . Our discovery is that, in a wide variety of
cases, the quantity on the right-hand side of Equation (9) equals α(fS,k); that is, (D∗

N , p∗) is
a saddle point of λS(DN ,p)

γS,k(µ(DN )) .5
This yields a novel technique, which we call the “max-min method”, for finding a closed

form for α(fS,k). First, we guess D∗
N and p∗, and then, we show analytically that λS(DN ,p)

γS,k(µ(DN ))
has a saddle point at (D∗

N , p∗) and that λS(DN , p) is maximized at p∗. These imply that
λS(D∗

N ,p∗)
γS,k(µ(D∗

N
)) is a lower and upper bound on α(fS,k), respectively. For instance, in Section 4,

in order to give a closed form for α(kAND) for odd k (i.e., the odd case of Theorem 1), we
guess D∗

N ⟨ k+1
2 ⟩ = 1 and p∗ = k+1

2k (by using Mathematica for small cases), and then check
the saddle-point and maximization conditions in two separate lemmas (Lemmas 17 and 18,
respectively). Then, we show that α(kAND) = α′

k by analyzing the right hand side of the
appropriate instantiation of Equation (9). We use similar techniques for kAND for even k

(also Theorem 1) and for various other cases in Sections 5.1–5.3.
In all of these cases, the D∗

N we construct is supported on at most two distinct Hamming
weights, which is the property which makes finding D∗

N tractable (using computer assistance).
However, this technique is not a “silver bullet”: it is not the case that the sketching
approximability of every symmetric Boolean CSP can be exactly calculated by finding
the optimal D∗

N supported on two elements and using the max-min method. Indeed, (as
mentioned in Section 5.3) we verify using computer assistance that this is not the case for
f{3},4.

5 This term comes from the optimization literature; such points are also said to satisfy the “strong
max-min property” (see, e.g., [2, pp. 115, 238]). The saddle-point property is guaranteed by von
Neumann’s minimax theorem for functions which are concave and convex in the first and second
arguments, respectively, but this theorem and the generalizations we are aware of do not apply even to
3AND.
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Finally, we remark that the saddle-point property is precisely what defines the value p∗

required for our simple classical algorithm for outputting approximately optimal assignments
for Max-CSP(fS,k) where fS,k = Thi

k is a threshold function (see Theorem 34).

2.4 Streaming lower bounds

Chou, Golovnev, Sudan, and Velusamy [7] also define the following condition on pairs
(DN , DY ), stronger than µ(DN ) = µ(DY ), which implies hardness of (γ, β)-Max-CSP(f) for
streaming algorithms:

▶ Definition 10 (Padded one-wise pairs, [7, §2.3] (symmetric case)). A pair of distributions
(DY , DN ) ∈ ∆k forms a padded one-wise pair if there exists τ ∈ [0, 1] and distributions
D0, D′

Y , D′
N ∈ ∆k such that (1) µ(D′

Y ) = µ(D′
N ) = 0 and (2) DY = τD0 + (1 − τ)D′

Y and
DN = τD0 + (1 − τ)D′

N .

▶ Theorem 11 (Streaming lower bound for padded one-wise pairs, [7, Theorem 2.11] (symmetric
case)). Let (DY , DN ) be a padded one-wise pair. Then for every ϵ > 0, (βS(DY )+ϵ, γS(DN )−
ϵ)-Max-CSP(f) requires Ω(

√
n) space in the streaming setting.

We prove that Theorem 11 fails to rule out streaming ( 2
9 +ϵ)-approximations to Max-3AND

in the following sense:

▶ Theorem 12. There is no infinite sequence (D(1)
Y , D(1)

N ), (D(2)
Y , D(2)

N ), . . . of padded one-wise
pairs on ∆3 such that

lim
t→∞

β{3}(D(t)
N )

γ{3}(D(t)
Y )

= 2
9 .

Theorem 12 is proven formally in Section 6; we give a proof outline in Appendix A.
Yet we still can achieve decent bounds using padded one-wise pairs:

▶ Observation 13. The padded one-wise pair DN = (0, 0.45, 0.45, 0.1), DY = (0.45, 0, 0, 0.55)
(discovered by numerical search) does prove a streaming approximability upper bound of
≈ .2362 for 3AND, which is still quite close to α(3AND) = 2

9 .

3 Formulas for µ, λS, and γS,k

In this section, we give explicit formulas for the quantities µ(D), λS(D, p), and γS,k(µ)
(defined in Equations (2), (3), and (6), respectively) which will be used throughout the rest
of the paper. For i ∈ [k], let ϵi,k

def= −1 + 2i
k .

▶ Lemma 14. For any D ∈ ∆k,

µ(D) =
k∑

i=0
ϵi,k D⟨i⟩.

Proof of Lemma 14. By definition (Equation (3)), µ(D) = Eb∼D[b1]. We use linearity of
expectation; the contribution of weight-i vectors to µ(D) is D⟨i⟩ · 1

k (i · 1 + (k − i) · (−1)) =
ϵi,k D⟨i⟩. ◀
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▶ Lemma 15. For any D ∈ ∆k and p ∈ [0, 1], we have

λS(D, p) =
∑
s∈S

k∑
i=0

 min{i,s}∑
j=max{0,s−(k−i)}

(
i

j

)(
k − i

s − j

)
qs+i−2jpk−s−i+2j

D⟨i⟩

where q
def= 1 − p.

The proof of Lemma 15 is given in the full version [3].

▶ Lemma 16. Let S ⊆ [k], and let s be its smallest element and t its largest element (they
need not be distinct). Then for µ ∈ [−1, 1],

γS,k(µ) =


1+µ

1+ϵs,k
µ ∈ [−1, ϵs,k)

1 µ ∈ [ϵs,k, ϵt,k]
1−µ

1−ϵt,k
µ ∈ (ϵt,k, 1]

(which also equals min
{

1+µ
1+ϵs,k

, 1, 1−µ
1−ϵt,k

}
).

The proof of Lemma 16 is given in the full version [3].

4 Analysis of α(kAND)

In this section, we prove Theorem 1 (on the sketching approximability of Max-kAND). Recall
that in Equation (1), we defined

α′
k =

(
(k − 1)(k + 1)

4k2

)(k−1)/2
.

Theorem 1 follows immediately from the following two lemmas:

▶ Lemma 17. For all odd k ≥ 3, α(kAND) ≤ α′
k. For all even k ≥ 2, α(kAND) ≤ 2α′

k+1.

▶ Lemma 18. For all odd k ≥ 3, α(kAND) ≥ α′
k. For all even k ≥ 2, α(kAND) ≥ 2α′

k+1.

To begin, we give explicit formulas for γ{k},k(µ(D)) and λ{k}(D, p). Note that the smallest
element of {k} is k, and ϵk,k = 1. Thus, for D ∈ ∆k, we have by Lemmas 14 and 16 that

γ{k},k(µ(D)) =
1 +

∑k
i=0(−1 + 2i

k ) D⟨i⟩
2 =

k∑
i=0

i

k
D⟨i⟩. (10)

Similarly, we can apply Lemma 15 with s = k; for each i ∈ {0} ∪ [k], max{0, s − (k − i)} =
min{i, k} = i, so we need only consider j = i, and then

(
i
j

)
=
(

k−i
s−j

)
= 1. Thus, for q = 1 − p,

we have

λ{k}(D, p) =
k∑

i=0
qk−ipi D⟨i⟩ (11)

The proof of Lemma 17 is given in Appendix A. We also prove Lemma 18 in Appendix A
using the max-min method. We rely on the following proposition which is a simple inequality
for optimizing ratios of linear functions, which we prove in the full version [3]:

▶ Proposition 19. Let f : Rn → R be defined by the equation f(x) = a·x
b·x for some

a, b ∈ Rn
≥0. For every y(1), . . . , y(r) ∈ Rn

≥0, and every x =
∑r

i=1 αiy(i) with each xi ≥ 0,
we have f(x) ≥ mini f(y(i)). In particular, taking r = n and y(1), . . . , y(n) as the standard
basis for Rn, for every x ∈ Rn

≥0, we have f(x) ≥ mini
ai

bi
.
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5 Further analyses of α(f) for symmetric Boolean functions f

5.1 Thk−1
k for even k

In this subsection, we prove Theorem 3 (on the sketching approximability of Thk−1
k for even

k ≥ 2). It is necessary and sufficient to prove the following two lemmas:

▶ Lemma 20. For all even k ≥ 2, α(Thk−1
k ) ≤ k

2 α′
k−1.

▶ Lemma 21. For all even k ≥ 2, α(Thk−1
k ) ≥ k

2 α′
k−1.

Firstly, we give explicit formulas for γ{k−1,k},k and λ{k−1,k}. We have Thk−1
k = f{k−1,k},k,

and ϵk−1,k = −1 + 2(k−1)
k = 1 − 2

k . Thus, Lemmas 14 and 16 give

γ{k−1,k},k(µ(D)) = min
{

1 +
∑k

i=0(−1 + 2i
k ) D⟨i⟩

2 − 2
k

, 1
}

= min
{

k∑
i=0

i

k − 1 D⟨i⟩, 1
}

. (12)

Next, we calculate λ{k−1,k}(D, p) with Lemma 15. Let q = 1 − p, and let us examine the
coefficient on D⟨i⟩. s = k contributes qk−ipk. In the case i ≤ k − 1, s = k − 1 contributes
(k − i)qk−i−1pi+1 for j = i, and in the case i ≥ 1, s = k − 1 contributes iqk−i+1pi−1 for
j = i − 1. Thus, altogether we can write

λ{k−1,k}(D, p) =
k∑

i=0
qk−i−1pi−1 ((k − i)p2 + pq + iq2) D⟨i⟩. (13)

The proofs of Lemmas 20 and 21 are given in Appendix A.

▶ Observation 22. For Th3
4 the optimal D∗

N = (0, 0, 4
5 , 1

5 , 0) does participate in a pad-
ded one-wise pair with D∗

Y = ( 4
15 , 0, 0, 11

15 , 0) (given by D0 = (0, 0, 0, 1, 0), τ = 1
5 , D′

N =
(0, 0, 1, 0, 0), and D′

Y = ( 4
15 , 0, 0, 8

15 , 0)) so we can rule out streaming ( 4
9 + ϵ)-approximations

to Max-CSP(Th3
4) in o(

√
n) space.

5.2 Ex(k+1)/2
k for (small) odd k

In this section, we prove bounds on the sketching approximability of Ex(k+1)/2
k for odd

k ∈ {3, . . . , 51}. Define D0,k ∈ ∆k by D0,k⟨0⟩ = k−1
2k and D0,k⟨k⟩ = k+1

2k . We prove the
following two lemmas:

▶ Lemma 23. For all odd k ≥ 3, α(Ex(k+1)/2
k ) ≤ λ{ k+1

2 }(D0,k, p′
k), where p′

k
def=

3k−k2+
√

4k+k2−2k3+k4

4k .

▶ Lemma 24. The following holds for all odd k ∈ {3, . . . , 51}. For all p ∈ [0, 1], the

expression
λ

{ k+1
2 }

(·,p)

γ
{ k+1

2 },k
(µ(·)) is minimized at D0,k.

We begin by writing an explicit formula for λ{ k+1
2 }. Lemma 15 gives

λ{ k+1
2 }(D, p) =

k∑
i=0

 min{i, k+1
2 }∑

j=max{0,i− k−1
2 }

(
i

j

)(
k

k+1
2 − j

)
(1 − p)(k+1)/2+i−2jp(k−1)/2−i+2j

 D⟨i⟩.

For i ≤ k−1
2 , the sum over j goes from 0 to i, and for i ≥ k+1

2 , it goes from i − k−1
2 to k+1

2 .
Thus, plugging in D0,k, we get:

λ{ k+1
2 }(D0,k, p) =

(
k

k+1
2

)(
k − 1

2k
(1 − p)(k+1)/2p(k−1)/2 + k + 1

2k
(1 − p)(k−1)/2p(k+1)/2

)
. (14)

By Lemmas 14 and 16, γ{ k+1
2 },k(µ(D0,k)) = γ{ k+1

2 },k( 1
k ) = 1. Thus, Lemmas 23 and 24

together imply the following theorem:
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▶ Theorem 25. For odd k ∈ {3, . . . , 51},

α(Ex(k+1)/2
k ) =

(
k

k+1
2

)(
k − 1

2k
(1 − p′

k)(k+1)/2(p′
k)(k−1)/2 + k + 1

2k
(1 − p′

k)(k−1)/2(p′
k)(k+1)/2

)
,

where p′
k = 3k−k2+

√
4k+k2−2k3+k4

4k as in Lemma 23.

Recall that ρ(f(k+1)/2,k) =
(

k
k+1

2

)
2−k. Although we currently lack a lower bound on

α(Ex(k+1)/2
k ) for large odd k, the upper bound from Lemma 23 suffices to prove Theorem 5,

i.e., it can be verified that

lim
k odd→∞

(
k

k+1
2

) (
k−1
2k (1 − p′

k)(k+1)/2(p′
k)(k−1)/2 + k+1

2k (1 − p′
k)(k−1)/2(p′

k)(k+1)/2)
ρ(Ex(k+1)/2

k )
= 1.

We remark that for Ex(k+1)/2
k , our lower bound (Lemma 24) is stronger than what we

were able to prove for kAND (Lemma 18) and Thk−1
k (Lemma 21) because the inequality

holds regardless of p. This is fortunate for us, as the optimal p∗ from Lemma 23 is rather
messy.6 The proofs of Lemmas 23 and 24 are given in the full version [3].

5.3 More symmetric functions
In Table 1 below, we list four more symmetric Boolean functions (beyond kAND, Thk−1

k ,
and Ex(k+1)/2

k ) whose sketching approximability we have analytically resolved using the
“max-min method”. These values were calculated using two functions in the Mathematica
code, estimateAlpha – which numerically or symbolically estimates the DN , with a given
support, which minimizes α – and testMinMax – which, given a particular DN , calculates p∗

for that DN and checks analytically whether lower-bounding by evaluating λS at p∗ proves
that DN is minimal.

Table 1 Symmetric functions for which we have analytically calculated exact α values using
the “max-min method”. For a polynomial P : R → R with a unique positive real root, let rootR(p)
denote that root, and define the polynomials P1(z) = −72 + 4890z − 108999z2 + 800000z3, P2(z) =
−908 + 5021z − 9001z2 + 5158z3, P3(z) = −60 + 5745z − 183426z2 + 1953125z3, P4(z) = −344 +
1770z − 3102z2 + 1811z3. (We note that in the f{4},5 and f{4,5},5 calculations, we were required to
check equality of roots numerically (to high precision) instead of analytically).

S k α D∗
N

{2, 3} 3 1
2 +

√
3

18 ≈ 0.5962 (0, 1
2 , 0, 1

2 )
{4, 5} 5 8 rootR(P1) ≈ 0.2831 (0, 0, 1 − rootR(P2), rootR(P2), 0, 0)
{4} 5 8 rootR(P3) ≈ 0.2394 (0, 0, 1 − rootR(P4), rootR(P4), 0, 0)

{3, 4, 5} 5 1
2 + 3

√
5

125 ≈ 0.5537 (0, 1
2 , 0, 0, 0, 1

2 )

We remark that two of the cases in Table 1 (as well as kAND), the optimal DN is rational
and supported on two coordinates. However, in the other two cases in Table 1, the optimal
DN involves roots of a cubic.

6 The analogous statement is false for e.g. 3AND, where we had D∗
N = (0, 0, 1, 0), but at p = 3

4 ,

λ{3}((0, 1
2 , 1

2 , 0), 3
4 )

γ{3},3(µ(0, 1
2 , 1

2 , 0))
= 3

16 ≤ 27
128 =

λ{3}((0, 0, 1, 0), 3
4 )

γ{3},3(µ(0, 0, 1, 0)) .
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In Section 5.2, we showed that D∗
N defined by D∗

N ⟨0⟩ = k−1
2k and D∗

N ⟨k⟩ = k+1
2k is optimal

for Ex(k+1)/2
k for odd k ∈ {3, . . . , 51}. Using the same D∗

N , we are also able to resolve 11 other
cases in which S is “close to” { k+1

2 }; for instance, S = {5, 6}, {5, 6, 7}, {5, 7} for k = 9. (We
have omitted the values of α and DN because they are defined using the roots of polynomials
of degree up to 8.)

In all previously-mentioned cases, the condition “D∗
N has support size 2” was helpful, as it

makes the optimization problem over D∗
N essentially univariate; however, we have confirmed

analytically in two other cases (S = {3}, k = 4 and S = {3, 5}, k = 5) that “max-min
method on distributions with support size two” does not suffice for tight bounds on α

(see testDistsWithSupportSize2 in the Mathematica code). However, using the max-min
method with DN supported on two levels still achieves decent (but not tight) bounds on α.
For S = {3}, k = 4, using DN = ( 1

4 , 0, 0, 0, 3
4 ), we get the bounds α(f{3},4) ∈ [0.3209, 0.3295]

(the difference being 2.67%). For S = {3, 5}, k = 5, using DN = ( 1
4 , 0, 0, 0, 3

4 , 0), we get
α(f{3,5},5) ∈ [0.3416, 0.3635] (the difference being 6.42%).

Finally, we have also analyzed cases where we get numerical solutions which are
very close to tight, but we lack analytical solutions because they likely involve roots
of high-degree polynomials. For instance, in the case S = {4, 5, 6}, k = 6, setting
DN = (0, 0, 0, 0.930013, 0, 0, 0.069987) gives α(f{4,5,6},6) ∈ [0.44409972, 0.44409973], dif-
fering only by 0.000003%. (We conjecture here that α = 4

9 .) For S = {6, 7, 8}, k = 8, using
DN = (0, 0, 0, 0, 0.699501, 0.300499), we get the bounds α(f{6,7,8},8) ∈ [0.20848, 0.20854] (the
difference being 0.02%).7

6 Incompleteness of streaming lower bounds: Proving Theorem 12

In this section, we prove Theorem 12, showing that the streaming lower bounds from [7]
(Theorem 11) cannot characterize the streaming approximability of 3AND.

▶ Lemma 26. For D ∈ ∆3, the expression

λ{3}(D, 1
3 D⟨1⟩ + 2

3 D⟨2⟩ + D⟨3⟩)
γ{3},3(µ(D))

is minimized uniquely at D = (0, 0, 1, 0), with value 2
9 .

Proof. Letting p = 1
3 D⟨1⟩ + 2

3 D⟨2⟩ + D⟨3⟩ and q = 1 − p, by Lemmas 14–16 the expression
expands to

D⟨0⟩ p3 + D⟨1⟩ p2(1 − p) + D⟨2⟩ p(1 − p)2 + D⟨3⟩ (1 − p)3

1
2 (1 − D⟨0⟩ − 1

3 D⟨1⟩ + 1
3 D⟨2⟩ + D⟨3⟩)

.

The expression’s minimum, and its uniqueness, are confirmed analytically in the Mathematica
code. ◀

▶ Lemma 27. Let X be a compact topological space, Y ⊆ X a closed subspace, Z a topological
space, and f : X → Z a continuous map. Let x∗ ∈ X, z∗ ∈ Z be such that f−1(z∗) = {x∗}.
Let {xi}i∈N be a sequence of points in Y such that {f(xi)}i∈N converges to z∗. Then x∗ ∈ Y .

7 Interestingly, in this latter case, we get bounds differing by 2.12% using DN = (0, 0, 0, 0, 9
13 , 4

13 , 0, 0, 0) in
an attempt to continue the pattern from f{7,8},8 and f{8},8 (where we set D∗

N = (0, 0, 0, 0, 16
25 , 9

25 , 0, 0, 0)
and (0, 0, 0, 0, 25

41 , 16
41 , 0, 0, 0) in Section 5.1 and Section 4, respectively).
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Proof. By compactness of X, there is a subsequence {xji
}i∈N which converges to a limit x̃.

By closure, x̃ ∈ Y . By continuity, f(x̃) = z∗, so x̃ = x∗. ◀

Finally, the proof of Theorem 12 is given in Appendix A.

7 Simple sketching algorithms for threshold functions

The main goal of this section is to prove Theorem 6, giving a simple “bias-based” sketch-
ing algorithm for threshold functions Thi

k. Given an instance Ψ of Max-CSP(Thi
k), for

i ∈ [n], let diffi(Ψ) denote the total weight of clauses in which xi appears positively
minus the weight of those in which it appears negatively; that is, if Ψ consists of clauses
(b(1), j(1)), . . . , (b(m), j(m)) with weights w1, . . . , wm, then

diffi(Ψ) def=
∑

ℓ∈[m] s.t. j(ℓ)t=i for some t∈[k]

b(ℓ)twℓ.

Let bias(Ψ) def= 1
kW

∑n
i=1 |diffi(Ψ)|, where W =

∑m
ℓ=1 wℓ is the total weight in Ψ.

Let S = {i, . . . , k} so that Thi
k = fS,k. Recall the definitions of βS,k(µ) and γS,k(µ) from

Equation (7). Our simple algorithm for Max-CSP(Thi
k) relies on the following two lemmas,

which we prove below:

▶ Lemma 28. valΨ ≤ γS,k(bias(Ψ)).

▶ Lemma 29. valΨ ≥ βS,k(bias(Ψ)).

Together, these two lemmas imply that outputting α(Thi
k) ·γS,k(bias(Ψ)) gives an α(Thi

k)-
approximation to Max-CSP(Thi

k), since α(Thi
k) = infµ∈[−1,1]

βS,k(µ)
γS,k(µ) (Equation (7)). We can

implement this as a small-space sketching algorithm (up to an arbitrarily small constant ϵ > 0
in the approximation ratio) because bias(Ψ) is measurable using ℓ1-sketching algorithms (as
used also in [12, 8, 7]) and γS,k(·) is piecewise linear:

▶ Theorem 30 ([16, 17]). For every ϵ > 0, there exists an O(log n/ϵ2)-space randomized
sketching algorithm for the following problem: The input is a stream S of updates of the form
(i, v) ∈ [n] × {−poly(n), . . . , poly(n)}, and the goal is to estimate the ℓ1-norm of the vector
x ∈ [n]n defined by xi =

∑
(i,v)∈S v, up to a multiplicative factor of 1 ± ϵ.

▶ Corollary 31. For f : {−1, 1}k → {0, 1} and every ϵ > 0, there exists an O(log n/ϵ2)-space
randomized sketching algorithm for the following problem: The input is an instance Ψ of
Max-CSP(Thi

k) (given as a stream of constraints), and the goal is to estimate bias(Ψ) up to
a multiplicative factor of 1 ± ϵ.

Proof. Invoke the ℓ1-norm sketching algorithm from Theorem 30 as follows: On each
input constraint (b = (b1, . . . , bk), j = (j1, . . . , jk)) with weight w, insert the updates
(j1, wb1), . . . , (jk, wbk) into the stream (and normalize appropriately). ◀

Theorem 6 then follows from Lemmas 16, 28, and 29 and Corollary 31; we include a
formal proof in Appendix A for completeness.

To prove Lemmas 28 and 29, we require a bit more setup. Adapting notation from [7, §4.2],
given an instance Ψ of Max-CSP(Thi

k) and a “negation pattern” a = (a1, . . . , an) ∈ {−1, 1}n

for the variables, let Ψa be the instance which results from Ψ by “flipping” the variables
according to a (formally, each constraint (b, j) is replaced with (b ⊙ a|j, j)). We summarize
the useful properties of this operation in the following claim:

APPROX/RANDOM 2022
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▶ Proposition 32. Let Ψ be an instance of Max-CSP(Thi
k) and a = (a1, . . . , an) ∈ {−1, 1}n.

Then:
i For each i ∈ [n], diffi(Ψa) = aidiffi(Ψ).
ii bias(Ψ) = bias(Ψa).
iii For any σ ∈ {−1, 1}n, valΨa(σ) = valΨ(a ⊙ σ).
iv valΨa = valΨ.

The proof of Proposition 32 is given in the full version [3].
Also, given an instance Ψ, we define its “symmetrized canonical distribution” Dsym

Ψ ∈ ∆k

to be the distribution obtained by sampling a constraint at random from Ψ and outputting
its “randomly permuted negation pattern”. Formally, let Sk denote the set of permutations
[k] → [k]. For a vector b = (b1, . . . , bk) ∈ {−1, 1}k and a permutation π ∈ Sk, let
π(b) = (bπ(1), . . . , bπ(k)). Let C(i) = (b(i), j(i)) denote the i-th constraint of Ψ, with
weight wi, and let W =

∑m
i=1 wi be the total weight. To sample a random vector from Dsym

Ψ ,
we sample i ∈ [m] with probability wi/W , sample a permutation π ∼ Unif(Sk), and output
π(b(i)). The useful properties of Dsym

Ψ are summarized in the following claim:

▶ Proposition 33. Let Ψ be an instance of Max-CSP(Thi
k). Then:

i For any p ∈ [0, 1], Ea∼Bern(p)n [valΨ(a)] = λS(Dsym
Ψ , p).

ii µ(Dsym
Ψ ) = 1

kW

∑n
i=1 diffi(Ψ) ≤ bias(Ψ).

iii If diffi(Ψ) ≥ 0 for all i ∈ [n], then µ(Dsym
Ψ ) = bias(Ψ).

The proof of Proposition 33 is given in the full version [3]. The proofs of Lemmas 28
and 29 are given in Appendix A.

Finally, we state another consequence of Lemma 28 – a simple randomized, O(n)-time-
and-space streaming algorithm for outputting approximately-optimal assignments when the
max-min method applies.

▶ Theorem 34. Let Thi
k be a threshold function and p∗ ∈ [0, 1] be such that the max-min

method applies, i.e.,

α(Thi
k) = inf

DN ∈∆k

(
λS(DN , p∗)
γS,k(µ(DN ))

)
.

Then the following algorithm, on input Ψ, outputs an assignment with expected value at least
α(Thi

k) · valΨ: Assign every variable to 1 if diffi(Ψ) ≥ 0, and −1 otherwise, and then flip
each variable’s assignment independently with probability p∗.

The proof of Theorem 34 is given in the full version [3].

Discussion

In this paper, we introduce the max-min method and use it to resolve the streaming
approximability of a wide variety of symmetric Boolean CSPs (including infinite families
such as Max-kAND for all k, and Thk−1

k for all even k). However, these techniques are in
a sense “ad hoc” since we use computer assistance to guess the optimal solution for our
optimization problem. We leave the question of whether the max-min method can be applied
to determine the sketching approximability for all symmetric Boolean CSPs as an interesting
open problem.

Separately, we also establish that the techniques developed in [7] are not sufficient to
characterize the streaming approximability of all CSPs. Indeed, we show that their streaming
lower bound based on “padded one-wise pairs” cannot match the approximation ratio of their
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optimal sketching algorithm for Max-3AND. While we believe that no o(
√

n)-space streaming
algorithm can beat their sketching algorithm for Max-3AND, proving this will require new
techniques.
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We can show that the minimizer of γ{3} for a particular µ is in general unique. Hence, it suf-
fices to furthermore show that D∗

N is the unique minimizer of β{3}(·)
γ{3},3(µ(·)) . For this purpose, the

max-min method is not sufficient because λ{3}(·,p∗)
γ{3},3(µ(·)) is not uniquely minimized at D∗

N (where
we chose p∗ = 2

3 ). Intuitively, this is because p∗ is not a good enough estimate for the max-
imizer of λ{3}(DN , ·). To remedy this, we observe that λ{3}((1, 0, 0, 0), ·), λ{3}((0, 1, 0, 0), ·),
λ{3}((0, 0, 1, 0), ·) and λ{3}((0, 0, 0, 1), ·) are minimized at 0, 1

3 , 2
3 , and 1, respectively. Hence,

we instead lower-bound λ{3}(DN , ·) by evaluating at 1
3 DN ⟨1⟩ + 2

3 DN ⟨2⟩ + DN ⟨3⟩, which
does suffice to prove the uniqueness of D∗

N . The theorem then follows from continuity
arguments. ◀

Proof of Lemma 17. Consider the case where k is odd. Define D∗
N by D∗

N ⟨ k+1
2 ⟩ = 1 and

let p∗ = 1
2 + 1

2k . Since

α(kAND) ≤
β{k}(D∗

N )
γ{k},k(µ(D∗

N )) and β{k}(DN ) = sup
p∈[0,1]

λ{k}(D∗
N , p),

by Equations (4) and (8), respectively, it suffices to check that p∗ maximizes λ{k}(D∗
N , ·) and

λ{k}(D∗
N , p∗)

γ{k},k(µ(D∗
N )) = α′

k.

Indeed, by Equation (11),

λ{k}(D∗
N , p) = (1 − p)(k−1)/2p(k+1)/2.

To show p∗ maximizes λ{k}(D∗
N , ·), we calculate its derivative:

d

dp

[
(1 − p)(k−1)/2p(k+1)/2

]
= −(1 − p)(k−3)/2p(k−1)/2

(
kp − k + 1

2

)
,

which has zeros only at 0, 1, and p∗. Thus, λ{k}(D∗
N , ·) has critical points only at 0, 1, and p∗,

and it is maximized at p∗ since it vanishes at 0 and 1. Finally, by Equations (10) and (11)
and the definition of α′

k,

λ{k}(D∗
N , p∗)

γ{k},k(µ(D∗
N )) =

( 1
2 − 1

2k

)(k−1)/2 ( 1
2 + 1

2k

)(k+1)/2

1
2
(
1 + 1

k

) = α′
k,

as desired.
Similarly, consider the case where k is even; here, we define D∗

N by D∗
N ⟨ k

2 ⟩ = ( k
2 +1)2

( k
2 )2+( k

2 +1)2

and D∗
N ⟨ k

2 + 1⟩ = ( k
2 )2

( k
2 )2+( k

2 +1)2 , and set p∗ = 1
2 + 1

2(k+1) . Using Equation (11) to calculate

the derivative of λ{k}(D∗
N , ·) yields

d

dp

[ (
k
2 + 1

)2(
k
2
)2 +

(
k
2 + 1

)2 (1 − p)k/2pk/2 +
(

k
2
)2(

k
2
)2 +

(
k
2 + 1

)2 (1 − p)k/2−1pk/2+1

]

= − k

2 + 2k + 2k2 (1 − p)k/2−2pk/2−1
(

k

2 + 1 − 2p

)(
(k + 1)p −

(
k

2 + 1
))

,

so λ{k}(D∗
N , ·) has critical points at 0, 1, 1

2 + k
4 . and p∗; p∗ is the only critical point in

the interval [0, 1] for which λ{k}(D∗
N , ·) is positive, and hence is its maximum. Finally, it

can be verified algebraically using Equations (10) and (11) that λ{k}(D∗
N ,p∗)

γ{k},k(µ(D∗
N

)) = 2α′
k+1, as

desired. ◀
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Proof of Lemma 18. First, suppose k ≥ 3 is odd. Set p∗ = 1
2 + 1

2k = k+1
2k . We want to show

that

α′
k ≤ inf

DN ∈∆k

λ{k}(DN , p∗)
γ{k},k(µ(DN )) (max-min inequality, i.e., Equation (9))

= inf
DN ∈∆k

∑k
i=0(1 − p∗)k−i(p∗)i DN ⟨i⟩∑k

i=0
i
k DN ⟨i⟩

. (Equations (10) and (11))

By Proposition 19, it suffices to check that

∀i ∈ {0} ∪ [k], (1 − p∗)k−i(p∗)i ≥ α′
k · i

k
.

By definition of α′
k, we have that α′

k = (1 − p∗)(k−1)/2(p∗)(k−1)/2. Defining r = p∗

1−p∗ = k+1
k−1

(so that p∗ = r(1 − p∗)), factoring out (1 − p∗)k, and simplifying, we can rewrite our desired
inequality as

∀i ∈ {0} ∪ [k], 1
2(k − 1)ri− k−1

2 ≥ i. (15)

When i = k+1
2 or k−1

2 , we have equality in Equation (15). We extend to the other values of i

by induction. Indeed, when i ≥ k+1
2 , then “i satisfies Equation (15)” implies “i + 1 satisfies

Equation (15)” because ri ≥ i + 1, and when i ≤ k−1
2 , then “i satisfies Equation (15)” implies

“i − 1 satisfies Equation (15)” because 1
r i ≥ i − 1.

Similarly, in the case where k ≥ 2 is even, we set p∗ = 1
2 + 1

2(k+1) and r = p∗

1−p∗ = k+2
k .

In this case, for i ∈ {0} ∪ [k] the following analogue of Equation (15) can be derived:

∀i ∈ {0} ∪ [k], 1
2kri− k

2 ≥ i,

and these inequalities follow from the same inductive argument. ◀

Proof of Lemma 20. As in the proof of Lemma 17, it suffices to construct D∗
N and p∗ such

that p∗ maximizes λ{k−1,k}(D∗
N , ·) and λ{k−1,k}(D∗

N ,p∗)
γ{k−1,k},k(µ(D∗

N
)) = k

2 α′
k−1.

We again let p∗ = 1
2 + 1

2(k−1) , but define D∗
N by D∗

N ⟨ k
2 ⟩ = ( k

2 )2

( k
2 )2+( k

2 −1)2 and D∗
N ⟨ k

2 + 1⟩ =

( k
2 −1)2

( k
2 )2+( k

2 −1)2 . By Equation (13), the derivative of λ{k−1,k}(D∗
N , ·) is now

d

dp

[ (
k
2
)2(

k
2
)2 +

(
k
2 − 1

)2 (1 − p)k/2−1pk/2−1
(

k

2 p2 + pq + k

2 q2
)

+

(
k
2 − 1

)2(
k
2
)2 +

(
k
2 − 1

)2 (1 − p)k/2−2pk/2
((

k

2 − 1
)

p2 + pq +
(

k

2 + 1
)

q2
)]

= − 1
8(k2 − 2k + 2)(1 − p)k/2−3pk/2−2(−k + (2(k − 1)p)ξ(p),

where ξ(p) is the cubic

ξ(p) = −8k(k − 1)p3 + 2(k3 + k2 + 6k − 12)p2 − 2(k3 − 4)p + k2(k − 2).

Thus, λ{k−1,k}’s critical points on the interval [0, 1] are 0, 1, p∗ and any roots of ξ in this
interval. We claim that ξ has no additional roots in the interval (0, 1). This can be verified
directly by calculating roots for k = 2, 4, so assume WLOG k ≥ 6.
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Suppose ξ(p) = 0 for some p ∈ (0, 1), and let x = 1
p − 1 ∈ (0, ∞). Then p = 1

1+x ; plugging
this in for p and multiplying through by (x + 1)3 gives the new cubic

(k3 − 2k2)x3 + (k3 − 6k2 + 8)x2 + (k3 − 4k2 + 12k − 8)x + (k3 − 8k2 + 20k − 16) = 0 (16)

whose coefficients are cubic in k. It can be verified by calculating the roots of each coefficient
of x in Equation (16) that all coefficients are positive for k ≥ 6. Thus, Equation (16) cannot
have roots for positive x, a contradiction. Hence λ{k−1,k}(D∗

N , ·) is maximized at p∗. Finally,
it can be verified that λ{k−1,k}(D∗

N ,p∗)
γ{k−1,k},k(µ(D∗

N
)) = k

2 α′
k−1, as desired. ◀

Proof of Lemma 21. Define p∗ = 1
2 + 1

2(k−1) . Following the proof of Lemma 18 and using
the lower bound γ{k−1,k},k(µ(DN )) ≤

∑k
i=0

i
k−1 DN ⟨i⟩, it suffices to show that

k

2 α′
k−1 ≤ inf

DN ∈∆k

∑k
i=0(1 − p∗)k−i−1(p∗)i−1((k − i)(p∗)2 + p∗(1 − p∗) + i(1 − p∗)2) DN ⟨i⟩∑k

i=0
i

k−1 DN ⟨i⟩

for which by Proposition 19, it in turn suffices to prove that for each i ∈ {0} ∪ [k],
k

2 α′
k−1

i

k − 1 ≤ (1 − p∗)k−i−1(p∗)i−1((k − i)(p∗)2 + p∗(1 − p∗) + i(1 − p∗)2).

We again observe that α′
k−1 = (1 − p∗)k/2−1(p∗)k/2−1, define r = p∗

1−p∗ = k
k−2 , and factor

out (1 − p∗)k−1, which simplifies our desired inequality to
1
2ri− k

2 −1 · k − 2
k − 1

(
i + r + (k − i)r2) ≥ i. (17)

for each i ∈ {0} ∪ [k]. Again, we assume k ≥ 6 WLOG; the bases cases i = k
2 − 1, k

2 can be
verified directly, and we proceed by induction. If Equation (17) holds for i, and we seek to
prove it for i + 1, it suffices to cross-multiply and instead prove the inequality

r(i + 1 + r + (k − (i + 1))r2)i ≥ (i + 1)(i + r + (k − i)r2),

which simplifies to

(k − 2i)(k − 1)(k2 − 4i − 4) ≤ 0,

which holds whenever k
2 ≤ i ≤ k2−4

4 (and k2−4
4 ≥ k for all k ≥ 6). The other direction (where

i ≤ k
2 − 1 and we induct downwards) is similar. ◀

Proof of Theorem 6. To get an (α − ϵ)-approximation to valΨ, let δ > 0 be small enough
such that 1−δ

1+δ α(Thi
k) ≥ α(Thi

k) − ϵ. We claim that calculating an estimate b̂ for bias(Ψ)
(using Corollary 31) up to a multiplicative δ factor and outputting v̂ = α(Thi

k)γS,k( b̂
1+δ ) is

sufficient.
Indeed, suppose b̂ ∈ [(1 − δ)bias(Ψ), (1 + δ)bias(Ψ)]; then b̂

1+δ ∈ [ 1−δ
1+δ bias(Ψ), bias(Ψ)].

Now we observe

γS,k

(
b̂

1 + δ

)
≥ γS,k

(
1 − δ

1 + δ
bias(Ψ)

)
(monotonicity of γS,k)

= min
{

1 + 1−δ
1+δ bias(Ψ)
1 + ϵs,k

, 1
}

(Lemma 16)

≥ 1 − δ

1 + δ
min

{
1 + bias(Ψ)

1 + ϵs,k
, 1
}

(δ > 0)

= 1 − δ

1 + δ
γS,k(bias(Ψ)). (Lemma 16)
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Then we conclude

(α(Thi
k) − ϵ)valΨ ≤ (α(Thi

k) − ϵ)γS,k(bias(Ψ)) (Lemma 28)

≤ α(Thi
k) · 1 − δ

1 + δ
γS,k(bias(Ψ)) (assumption on δ)

≤ v̂ (our observation)
≤ α(Thi

k)γS,k(bias(Ψ)) (monotonicity of γS,k)
≤ βS,k(bias(Ψ)) (Equation (7))
≤ valΨ, (Lemma 29)

as desired. ◀

Proof of Theorem 12. By Lemma 26, β{3}(DN )
γ{3},3(µ(DN )) is minimized uniquely at D∗

N = (0, 0, 1, 0).
By Lemma 14 we have µ(D∗

N ) = 1
3 , and by inspection from the proof of Lemma 16 below,

γ{3}(DY ) with µ(DY ) = 1
3 is uniquely minimized by D∗

Y = ( 1
3 , 0, 0, 2

3 ).
Finally, we rule out the possibility of an infinite sequence of padded one-wise pairs which

achieve ratios arbitrarily close to 2
9 using topological properties. View a distribution D ∈ ∆3

as the vector (D⟨0⟩, D⟨1⟩, D⟨2⟩, D⟨3⟩) ∈ R4. Let D ⊂ R4 denote the set of such distributions.
Let M ⊂ D × D ⊂ R8 denote the subset of pairs of distributions with matching marginals,
and let M ′ ⊂ M denote the subset of pairs with uniform marginals and P ⊂ M the subset
of padded one-wise pairs. D, M , M ′, and P are compact (under the Euclidean topology);
indeed, D, M , and M ′ are bounded and defined by a finite collection of linear equalities
and strict inequalities, and letting M ′ ⊂ M denote the subset of pairs of distributions with
matching uniform marginals, P is the image of the compact set [0, 1] × D × M ′ ⊂ R13 under
the continuous map τ × D0 × (D′

Y , D′
N ) 7→ (τD0 + (1 − τ)D′

Y , τD0 + (1 − τ)D′
N ). Hence, P

is closed.
Now the function

α : M → R ∪ {∞} : (DN , DY ) 7→
β{3}(DN )
γ{3}(DY )

is continuous, since a ratio of continuous functions is continuous, and β{3} is a single-variable
supremum of a continuous function (i.e., λS) over a compact interval, which is in general
continuous in the remaining variables. Thus, if there were a sequence of padded one-wise
pairs {(D(i)

N , D(i)
Y ) ∈ P}i∈N such that α(D(i)

N , D(i)
Y ) converges to 2

9 as i → ∞, since M is
compact and P is closed, Lemmas 26 and 27 imply that (D∗

N , D∗
Y ) ∈ P , a contradiction. ◀

Proof of Lemma 28. Let opt ∈ {−1, 1}n denote the optimal assignment for Ψ. Then

valΨ = valΨ(opt) (definition of opt)
= valΨopt(1n) (Item iii of Proposition 32)
= λS(Dsym

Ψopt , 1) (Item i of Proposition 33 with p = 1)
= γS(Dsym

Ψopt) (definition of γS , Equation (4))
≤ γS,k(µ(Dsym

Ψopt)) (definition of γS,k, Equation (6))
≤ γS,k(bias(Ψopt)) (Item ii of Proposition 33 and monotonicity of γS,k)
= γS,k(bias(Ψ)), (Item ii of Proposition 32)

as desired. ◀
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Proof of Lemma 29. Let maj ∈ {−1, 1}n denote the assignment assigning xi to 1 if
diffi(Ψ) ≥ 0 and −1 otherwise. Now

valΨ = valΨmaj (Item iv of Proposition 32)

≥ sup
p∈[0,1]

(
E

a∼Bern(p)n
[valΨmaj(a)]

)
(probabilistic method)

= sup
p∈[0,1]

(λS(Dsym
Ψmaj , p)) (Item i of Proposition 33)

≥ βS(Dsym
Ψmaj) (definition of βS , Equation (4))

≥ βS,k(µ(Dsym
Ψmaj)) (definition of βS,k, Equation (6))

= βS,k(bias(Ψmaj)) (Item iii of Proposition 33)
= βS,k(bias(Ψ)), (Item ii of Proposition 32)

as desired. ◀
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39:2 Massively Parallel Algorithms for Small Subgraph Counting

1 Introduction

Estimating the number of small subgraphs, cliques in particular, is a fundamental problem
in computer science, and has been extensively studied both theoretically and from an applied
perspective. Given its importance, the task of counting subgraphs has been explored in various
computational settings, e.g., sequential [7, 91, 28], distributed and parallel [89, 78, 68, 80, 72],
streaming [16, 66, 24, 76], and sublinear-time [44, 5, 13, 45]. There are usually two perspectives
from which subgraph counting is studied: first, optimizing the running time (especially
relevant in the sequential and sublinear-time settings) and, second, optimizing the space or
query requirement (relevant in the streaming, parallel, and distributed settings). In each
of these perspectives, there are two, somewhat orthogonal, directions that one can take.
The first is exact counting. However, in most scenarios, algorithms that perform exact
counting are prohibitive, e.g., they require too much space or too many parallel rounds to be
implementable in practice.

Hence, the second direction of obtaining an estimate/approximation on the number of
small subgraphs is both an interesting theoretical problem and of practical importance.
If H# is the number of subgraphs isomorphic to H, the main question in approximate
counting is whether we can design algorithms that, under given resource constraints, provide
approximations that concentrate well. This concentration is usually parametrized by H#
(and potentially some other parameters). In particular, most known results do not provide a
strong approximation guarantee when H# is very small, e.g., |H#| = O(1). So, the main
attempts in this line of work is to provide an estimation that concentrates well while imposing
as small a lower bound on H# as possible.

Due to ever increasing sizes of data stores, there has been an increasing interest in designing
scalable algorithms. The Massively Parallel Computation (MPC) model is a theoretical
abstraction of popular frameworks for large-scale computation such as MapReduce [41],
Hadoop [93], Spark [95] and Dryad [62]. MPC gained significant interest recently, most
prominently in building algorithmic toolkits for graph processing [57, 74, 17, 8, 18, 59, 4, 83,
61, 38, 11, 12, 51, 58, 30, 14, 29, 21, 19, 23, 9, 15, 53, 50, 55, 71, 63, 34, 52, 54]. Efficiency of
an algorithm in MPC is characterized by three parameters: round complexity, the space per
machine in the system, and the number of machines/total memory used. Our work aims to
design efficient algorithms with respect to all three parameters and is guided by the following
question:

How does one design efficient massively parallel algorithms for small subgraph counting?

1.1 The MPC Model
In this paper, we are working in the Massively Parallel Computation (MPC) model introduced
by [67, 57, 17]. The model operates as follows. There exist M machines that communicate
with each other in synchronous rounds. The graph input is initially distributed across
the machines in some organized way such that machines know how to access the relevant
information via communication with other machines. During each round, the machines first
perform computation locally without communicating with other machines. The computation
done locally can be unbounded (although the machines have limited space so any reasonable
program will not do an absurdly large amount of computation). At the end of the round,
the machines exchange messages to inform the computation for the next round. The total
size of all messages that can be received by a machine is upper bounded by the size of its
local memory, and each machine outputs messages of sufficiently small size that can fit into



A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:3

its memory. If N is the total size of the data and each machine has S words of space, we are
interested in the settings when S is sublinear in N . We use total space to refer to M · S,
which is the total space that is available across all the machines.

1.2 Our Contributions

Table 1 Summary of our main MPC triangle counting results compared to previous work. Our
results are bolded. “ALB” refers to the approximation lower bound on the number of triangles
required to obtain a (1 + ε)-approximation, with high probability. α is the arboricity of the input
graph and is generally small (logarithmic) in real-world networks. Parameter δ > 0 is any constant.

Problem Work MPC Rounds Space Per Machine Total Space ALB

Exact
Triangle
Counting

[89]
[89]
[36]

folklore
Ours

2
1

O(n)
O(log n)

Oδ(log log n)

O(
√

m)
o(m)
O(n)
Ω(α2)
O(nδ)

O(m3/2)
ω(m)
O(m)

O(mα)
O(mα)

-
-
-
-
-

Approximate
Triangle
Counting

[78]
[85]

Ours

O(1)
O(1)
O(1)

Ω(m)
O(nδ)
Õ(n)

O(m)
O(m)
Õ(m)

Ω(davg)
Ω

(∑
v∈V

deg(v)2)
Ω(

√
davg)

1.2.1 Triangle Counting
We provide a number of results for triangle counting in both the approximate and exact
settings. Let G = (V, E) be a graph with n vertices, m edges and T triangles. First we study
the question of approximately counting the number of triangles under the restriction that
the round and total space complexities are essentially optimal, i.e., O(1) and Õ(m), where Õ

hides O(poly log n) factors, respectively. Here and throughout, we use Oδ and Oε to hide
factors of δ and ε, respectively, where we consider constant factors of δ, ε > 0 in this paper.

Our algorithm is surprisingly simple with a more complicated analysis, but improves on
the previous best-known result by giving a (1 + ε)-approximation, with high probability,
while achieving a quadratic improvement on the number of triangles required to ensure this
approximation. The specific bounds are given in Table 1.

▶ Theorem 1. Let G = (V, E) be a graph with n vertices, m edges, and let T be the number
of triangles in G. Assuming

(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{ √
m
ε , n2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total
space MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1)
rounds.

For S = Θ(n log n) (specifically, S > 100n log n) in Theorem 1, we derive the following
corollary.

▶ Corollary 2. Let G be a graph and T be the number of triangles it contains. If T ≥
√

davg,
then there exists an MPC algorithm that in O(1) rounds with high probability outputs a
(1 + ε)-approximation of T . This algorithm uses a total space of Õ(m) and space Õ(n) per
machine. davg is the average degree of the vertices in the graph.

APPROX/RANDOM 2022
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There is a long line of work on computing approximate triangle counting in parallel
computation [37, 90, 89, 94, 78, 69, 79, 85, 10, 80, 68, 64, 42] and references therein. Despite
this progress, and to the best of our knowledge, on one hand, each MPC algorithm for
exact triangle counting either requires strictly super-polynomial in m total space, or the
number of rounds is super-constant (as seen in Table 1). On the other hand, the best-known,
classic algorithm for approximate triangle counting by Pagh and Tsourakakis [78] requires
T ≥ davg even when the space per machine is Θ(n). We design an algorithm that has
essentially optimal total space and round complexity, while at least quadratically improving
the requirement on T .

Furthermore, since the amount of messages sent and received by each machine is bounded
by O(n), by [20], our algorithm directly implies an O(1)-rounds algorithm in the Congested-
Clique model1 under the same restriction T = Ω(

√
m/n). The best known (to our know-

ledge) triangle approximation algorithm for general graphs in this model, is an O(n1/3/T 2/3)-
rounds algorithm by [43]. The best-known previous bound only results in constant round
complexity when T = Ω(

√
n).

▶ Corollary 3. Given a graph G = (V, E) with T triangles, if T = Ω(
√

m/n), then there exists
a O(1)-rounds algorithm in the Congested-Clique model that gives a (1+ε)-approximation
of T with high probability.

The second question we consider is the question of exact counting, for which we present an
algorithm whose total space depends on the arboricity of the input graph. The arboricity of
a graph (roughly) equals the average degree of its densest subgraph. The class of graphs with
bounded arboricity includes many important graph families such as planar graphs, bounded
degree graphs and randomly generated preferential attachment graphs. In addition, many
real-world graphs exhibit bounded arboricity [56, 48, 87], making this property important
also in practical settings. For many problems, a bound on the arboricity of the graph allows
for much more efficient algorithms and/or better approximation ratios [6, 48].

Specifically for the task of subgraph counting, in a seminal paper, Chiba and Nishizeki [35]
prove that triangle enumeration can be performed in O(mα) time, and assuming 3SUM-
hardness this result is optimal up to dependencies in O(poly log n) [81, 70]. Many applied
algorithms also rely on the property of having bounded arboricity in order to achieve better
space and time bounds, e.g., [84, 36, 73]. Our main theorem with respect to this question is
the following.

▶ Theorem 4. Let G = (V, E) be a graph with n vertices, m edges and arboricity α. Count-
Triangles(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for any δ > 0, and

O (mα) total space.

It is interesting to note that our total space complexity matches the time complexity
(both upper and conditional lower bounds) of combinatorial2 triangle counting algorithms
in the sequential model [35, 81, 70]. The best-known previous algorithm in this setting is
the folklore algorithm of placing each vertex and its out-neighbors in the same machine and
counting the incident triangles. Such an approach requires O(log n) rounds and Ω(α2) space
per machine (summarized in Table 1). We prove the above theorem in Section 4.

1 A distributed model where nodes communicate with each other over a complete network using O(log n)
bit messages [75].

2 Combinatorial algorithms, usually, refer to algorithms that do not rely on fast matrix multiplication.
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1.2.2 Clique Counting
All of our above triangle counting results can be extended to k-clique counting. In our full
paper [27], we prove that our exact triangle counting result can be extended to exactly
counting k-cliques for any constant k:

▶ Theorem 5. Let G = (V, E) be a graph with n vertices, m edges and arboricity α. Count-
Cliques(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for any δ > 0, and

O
(
mαk−2)

total space.

We can improve on the total space usage if we are given machines where the memory
for each individual machine satisfies α < nδ′/2 where δ′ < δ. In this case, we obtain an
algorithm that counts the number of k-cliques in G using O(nα2) total space and Oδ(log log n)
communication rounds.

Furthermore, our approximate triangle counting results can be extended to counting any
subgraph of size K where K is constant. Specifically, we obtain the following result:

▶ Theorem 6. Let G = (V, E) be a graph with n vertices, m edges, and let B be the number
of occurrences of a subgraph H with K vertices in G. If B ≥ d

K/2−1
avg , then there exists an

MPC algorithm that gives a (1 + ε)-approximation of B in O(1) rounds, total space Õ(m),
and Õ(n) space per machine, with high probability. Here, davg is the average degree of the
vertices in the graph.

1.3 Other Small Subgraphs
Finally, we consider the problem of exactly counting subgraphs of size at most 5, and show
that the recent result of Bera, Pashanasangi and Seshadhri [25] for this question in the
sequential model, can be implemented in the MPC model. Ours is the first result for counting
any arbitrary subgraph of size at most 5 in poly(log n) rounds in the MPC model. Here too,
our total space complexity matches the time complexity of the sequential model algorithm. It
is an interesting open question whether our results can be extended to more general subgraphs
following the results of [32, 26]. Section 6 summarizes the difficulties of implementing these
algorithms in the MPC model and we present this question as interesting future work.

▶ Theorem 7. Let G = (V, E) be a graph with n vertices, m edges, and arboricity α. The
algorithm of BPS for counting the number of occurrences of a subgraph H over k ≤ 5
vertices in G can be implemented in the MPC model in Oδ(

√
log n log log m) rounds, with

high probability. The space requirement per machine is O(n2δ) and the total space is O(mα3).

1.4 Related Work
There has been a long line of work on small subgraph counting in massive networks in
the MapReduce model whose results translate to the MPC model. We first describe the
works for exact triangle and k-clique counting. [89] first designed an algorithm for triangle
counting, but their approach requires a super-linear total space of O(m3/2). Another work,
[2], shows how to count small subgraphs by using b3 machines, each requiring O(m/b2)
space per machine. Hence, it uses a total space of O(mb). Therefore, this approach either
requires super-linear total space or almost O(m) space per machine. [89] were the first to
achieve constant number of rounds in MPC, where they design two algorithms. The first
of those algorithms, that runs in 2 rounds, requires O(

√
m) space per machine and total

space O(m3/2). Their second algorithm requires only one round for exact triangle counting,
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total space O(ρm) and space per machine O(m/ρ2). Therefore, for this algorithm to work
with polynomially less than space m per machine, it has to allow for a total space that is
polynomially larger than m. [36] focus on algorithms that require a total space of O(m). In
the worst case, their algorithm performs O(|E|/S) MPC rounds to output the exact count
where S is the maximum space per machine. [49] extended and provided new algorithms for
clique counting but they also require Ω(m3/2) total space.

[90, 10] designed randomized algorithms for approximate triangle counting also in the
MapReduce model (whose results, again, can be translated rather straightforwardly to the
MPC model). Their approach first sparsifies the input graph by sampling a subset of edges,
and executes some of the known algorithms for triangle counting on the sampled subgraph.
Denoting their sampling probability by p, their approach outputs a (1 + ε)-approximate
triangle count with probability at most 1− 1/(ε2p3T ). 3 To contrast this result with our
approach, consider a graph G where m = Θ(n2). Let G′ be the edge-sparsified graph as
explained above. To be able to execute the first algorithm of [89] on G′ such that the total
space requirement is O(m), one can verify that it is needed to set p = Θ(n−2/3). This in turn
implies that the result in [90, 10] outputs the correct approximation with constant probability
only if T = Ω(n2). An improved lower-bound can be obtained by using the second algorithm
of [89]. By balancing out ρ and p and for S = O(n), one can show that the sparsification
results in a constant probability of success for T = Ω(n). On the other hand, for S = O(n),
our approach obtains the same guarantee even when T = Θ(

√
davg(G)) = Θ(

√
n).

The best-known algorithm of [78] is a randomized algorithm for approximate triangle
counting based on graph partitioning. The graph is partitioned into 1/p pieces, where p is at
least the ratio of the maximum number of triangles sharing an edge and T . When all the
triangles share one edge, then p ≥ 1, and hence such an approach would require the space
per machine to be Ω(m). Furthermore, this approach requires the number of triangles to be
lower bounded by T = Ω (davg). Another more recent work of [85] uses wedge sampling and
provides a (1 + ε)-approximation of the triangle count in O(1) rounds when T is a constant
fraction of the sum of squares of degrees. The comparison of our bounds with these previous
results are summarized in Table 1.

Other related work. Subgraph counting (primarily triangles) was also extensively studied in
the streaming model, see [16, 66, 31, 65, 76, 24, 13] and references therein. This culminated
in a result that requires space Õ

(
m3/2/(Tε2)

)
to estimate the number of triangles within a

(1 + ε)-factor. In the semi-streaming setting it is assumed that one has Õ(n) space at their
disposal. This result fits in this regime for T ≥ m3/2/n = davg ·m1/2. As a reminder, our
MPC result requires T ≥

√
davg when S = Õ(n).

In a celebrated result, [7] designed an algorithm for triangle counting in the sequential
settings that runs in O(m2ω/(ω+1)) time, where ω is the best-known exponent of matrix
multiplication. Since then, several important works have extended this result to k-clique
counting [46, 91]. In the work-depth (shared-memory parallel processors) model, several
results are known for this problem. There has been significant work on practical parallel
algorithms for the case of triangle counting (e.g. [10, 89, 79, 80, 88] among others). There is
even an annual competition for parallel triangle counting algorithms [1]. For counting k = 4
and k = 5 cliques, efficient practical solutions have also been developed [3, 40, 47, 60, 82].
[39] recently implemented the Chiba-Nishizeki algorithm [35] for k-cliques in the parallel
setting; although, their work does not achieve polylogarithmic depth. Even more recently, [86]

3 The actual probability is even smaller and also depends on pairs of triangles that share an edge.
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enumerated k-cliques in the work-depth model in O
(
mαk−2)

expected work and O
(

logk−2 n
)

depth with high probability, using O(m) space. Among other distinctions from our setting,
the work-depth model assumes a shared, common memory.

In the CONGESTED-CLIQUE model, [33] present an Õ(n1−2/ω) = Õ(n0.158) rounds
algorithm for matrix multiplication, implying the same complexity for exact triangle counting.
[43] present an algorithm for approximate triangle counting in general graphs whose expected
running time is O(n1/3/T 2/3). They also present an O(α2/n)-rounds algorithm for bounded
arboricity graphs.

2 Preliminaries

Counting Duplicates. We make use of interval trees for certain parts of our paper to count
the number of repeating elements in a sorted list, given bounded space per machine. We use
the interval tree implementation given by [57] to obtain our count duplicates algorithm in
the MPC model. We prove the following theorem in the MPC model regarding our count
duplicates tree implementation. The proofs of the following claims are given in our full
paper [27].

▶ Theorem 8. Given a sorted list of N elements implemented on processors where the space
per processor is S and the total space among all processors is O(N), for each unique element
in the list, we can compute the number of times it repeats in O (logS N) communication
rounds.

We also use the following two new MPC primitives in proving our bounds. These
primitives may be of use in other algorithms beyond the scope of our paper.

▶ Lemma 9. Given two sets of tuples Q and C (both of which may contain duplicates), for
each tuple q ∈ Q, we return whether q ∈ C in O(|Q ∪C|) total space and Oδ(1) rounds given
machines with space O(nδ) for any δ > 0.

▶ Lemma 10. Given a machine M that has space O(n2δ) for any δ > 0 and contains data
of O(nδ) words, we can generate x copies of M , each holding the same data as M , using
O(M · x) machines with O(nδ) space each in O(lognδ x) rounds.

3 Overview of Our Techniques

3.1 Exact Triangle Counting
Let G = (V, E) be a graph with n vertices, m edges and arboricity at most α. We tackle
the task of exactly counting the number of triangles in G in Oδ(log log n) rounds using the
following ideas. In each round i, we partition the vertices into low-degree vertices Ai and
high-degree vertices, according to a degree threshold γi, which grows doubly exponentially
in the number of rounds. We then count the number of triangles incident to the set of low
degree vertices Ai. Each low-degree vertex v ∈ Ai sends a list of its neighbors to all its
neighbors. Then, any neighbor u of v that detects a common neighbor w to u and v, adds
the triangle (u, v, w) to the list of discovered triangles.

Once all triangles incident to the vertices in Ai are processed, we remove this set from
the graph and continue with the now smaller graph. This removal of the already processed
vertices allows us to handle larger and larger degrees from step to step while using a total
space of O(mα). This behavior also leads to the Oδ(log log n) round complexity, as after
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this many rounds all vertices are processed. The key insight in our proof that we maintain
O(mα) total space even when we increase the degree threshold doubly exponentially. Such
insight allows us to obtain our improved number of rounds while maintaining the same total
space as the previous folklore algorithm. Finally, we achieve improved space per machine to
O(nδ) for any constant δ > 0 via a number of new MPC primitives. Our algorithm and its
analysis are provided in Section 4.

3.2 Approximate Triangle Counting
Our work reduces approximate triangle counting to exact triangle counting in multiple
(randomly chosen) induced subgraphs of the original graph. In our work, and in contrast to
prior approaches (e.g., [78]), the induced sugraphs on different machines might overlap in
both vertices and edges. This enables us to obtain better concentration bounds compared to
prior work, but also brings many challenges. Surprisingly, our algorithm is very simple (with
a more complicated analysis), but is able to achieve a better lower bound on the number of
triangles required to achieve a (1 + ε)-approximation with high probability.

The high level idea is that each machine Mi samples a subset of vertices Vi by including
each vertex in Vi with probability p̂. Then, each machine computes the induced subgraph
G[Vi] and the number of triangles in that subgraph. The total number of triangles seen
across all the machines is used as an estimator. We repeat in parallel this sampling process
O(log n) times and return the median of the estimates. The main challenge this approach
raises is: How do we efficiently collect overlapping induced subgraphs? (Indeed, approximate
triangle counting, even when the number of triangles is O(1), can be reduced to counting the
number of edges in sparse induced subgraphs with the total size of subgraphs being Õ(m).)
We now describe how to handle this task in our case.

Computing induced overlapping subgraphs. It is unclear how to compute the induced
subgraph on each machine in O(1) rounds without exceeding the total allowed space of
Õ(m). This task becomes easier if the subgraphs are disjoint. For example, such an issue
is avoided when the graph is partitioned across machines as in the algorithm of Pagh and
Tsourakakis [78] since there is one copy of each vertex among all the machines. This is not
the case for our algorithm.

The trivial strategy of sampling vertices into the machines and querying for all possible
edges between any pair of two vertices takes total space at least

∑M
i=1 X2

i where Xi is the
number of vertices sampled to each machine i. In general, this approach requires much
larger than Õ(m) space. We tackle this challenge by using a globally known hash function
h : V × [M] → {0, 1}, to indicate whether vertex v is sampled in the ith machine. By
requiring that the hash function is known to all machines, we can efficiently compute which
edges to send to each machine, i.e., which edges belong to the subgraph G[Vi]. However, in
order for all machines to be able to compute the hash function, the hash function has to
use limited space. Hence, we cannot hope for a fully independent function, rather we can
only use an (S/ log n)-wise independent hash function. Still, we manage to show that we are
able to handle the dependencies introduced by the hash function, even if we allow as little as
O(log n)-independence.

3.3 Counting k-cliques and 5-subgraphs
We use similar techniques for both problems of exactly counting the number of k-cliques and
of exactly counting subgraphs up to size 5. Our final result is the first MPC algorithm for
counting any arbitrary subgraph H of size at most 5 in poly(log n) MPC rounds.
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Let H denote the subgraph of interest. We say that a subgraph that can be mapped to a
subset of H of size i is a i-subcopy of H . Our main contribution in this section is a new MPC
procedure that in each round, tries to extend i-subcopies of H to (i + 1)-subcopies of H by
increasing the total space by a factor of at most α. This is possible by ordering the vertices
in H such that each vertex has at most O(α) outgoing neighbors so that in each iteration
only α possible extensions should be considered per each previously discovered subcopy.

Challenges. The major challenge we face here is dealing with finding and storing copies
of small (constant-sized) subgraphs in individual machines. This is a challenge due to the
fact that an entire neighborhood of a vertex v may not fit on one machine (recall that we
have no restrictions on how large the constant δ in O(nδ) machine size can be). Thus, we
cannot compute all such small subgraphs on one machine. However, if not done carefully,
computing small subgraphs across many machines could potentially result in many rounds of
computation (since we potentially have to try all combinations of vertices in a neighborhood).
We solve this issue by formulating a new MPC procedure (Lemma 10) in which we carefully
duplicate neighborhoods of vertices across machines. The detailed analysis of our algorithm
is given in our full paper [27].

4 Exact Triangle Counting in O(mα) Total Space

In this section we describe our algorithm for (exactly) counting the number of triangles in
graphs G = (V, E) of arboricity α and prove Theorem 4, restated here, in Appendix A.1. We
first provide an overview of our algorithm and its challenges.

▶ Theorem 11. Let G = (V, E) be a graph over n vertices, m edges and arboricity α.
Count-Triangles(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for some

constant 0 < δ < 1, and O (mα) total space.

Importantly, unlike previous methods, we do not need to assume knowledge of the
arboricity of the graph α as input into our algorithm. The arboricity only shows up in our
space bound as a property of the graph but we do not need to have knowledge of its value
as we run the algorithm. The folklore algorithm shown in Table 1 requires an assumption
of an upper bound on α since in order to achieve O(log n) rounds, we must count triangles
incident to and remove all vertices with degree less than or equal to 2α in each round. The
procedure gets stuck if we remove vertices with degree c where c < α in each round because
there exists an induced subgraph with degree at least α in a graph with arboricity α. One
can estimate the arboricity of the graph using O(log n) additional rounds or an O(log n)
additional factor in space. Our algorithm does not require this additional step.

In this section, we assume that individual machines have space Θ(nδ) where δ is some
constant 0 < δ < 1. Given this setting, there are several challenges associated with this
problem.

▶ Challenge 12. The entire subgraph neighborhood of a vertex may not fit on a single
machine. This means that all triangles incident to a particular vertex cannot be counted on
one machine. Even if we are considering vertices with degree at most α, it is possible that
α > nδ. Thus, we need to have a way to count triangles efficiently when the neighborhood of
a vertex is spread across multiple machines.

The second challenge is to avoid over-counting.
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▶ Challenge 13. When counting triangles across different machines, over-counting the
triangles might occur, e.g., if two different machines count the same triangle. We need some
way to deal with duplicate counting of the triangles to obtain the exact count of the triangles.

We deal with the above challenges in our procedures below. We assume in our algorithm
that each vertex can access its neighbors in O(1) rounds of communication; such can be ensured
via standard MPC techniques. Let dQ(v) be the degree of v in the subgraph induced by vertex
set Q, i.e. in G[Q]. Our main algorithm consists of the following Count-Triangles(G)
procedure.

Algorithm 1 Count-Triangles(G = (V, E)).

1: Let Qi be the set of vertices not yet processed by iteration i. Initially set Q0 ← V .
2: Let T be the current count of triangles. Set T ← 0.
3: for i = 0 to i = ⌈log3/2(log2(n))⌉ do
4: γi ← 2(3/2)i .
5: Let Ai be the list of vertices v ∈ Qi where dQi

(v) ≤ γi. Set Qi+1 ← Qi \Ai.
6: parfor v ∈ Ai do
7: Retrieve the list of neighbors of v and denote it by Lv.
8: Send each of v’s neighbors a copy of Lv.
9: end parfor

10: parfor w ∈ Qi do
11: Let Lw =

⋃
v∈(N(w)∩Ai) Lv be the union of neighbor lists received by w.

12: Set T ← T + Find-Triangles(w,Lw). ▷ Algorithm 2
13: end parfor
14: Return T .

Round compression is a technique formulated by [77, 38] that randomly partitions the
vertices in a graph across machines where each machine then stores the induced subgraph
induced by the partition. Then, a problem (e.g. maximum matching) is solved locally in
each induced subgraph in each machine. The solutions in each machine allows one to remove
certain vertices, reducing the degree of the remaining graph. In each round compression
step, the maximum degree of the graph drops by a polynomial factor. This degree reduction
then allows for more aggressive sampling in the next round compression step. This leads to
O(log log ∆) round compression steps until the maximum degree is poly(log n); in this case,
the remaining graph can be placed on a single machine.

Our algorithm, although similar, is simpler than the round compression technique. We
do not require sampling since vertices are assigned to machines by degree, deterministically.
The crux of our argument is showing that allowing for total space in terms of the arboricity
α leads to a simpler and deterministic argument. Furthermore, for this specific problem, we
also do not need to place the induced subgraph on one machine. In the next section, we
show an implementation that allows us to operate in the sublinear space per machine regime.
We hope our algorithm and analysis will lead to other deterministic algorithms for bounded
arboricity graphs in sublinear space per machine and O(log log n) rounds.

4.1 MPC Implementation Details
In order to implement Count-Triangles(G) in the MPC model, we define our
Find-Triangles(w,L) procedure and provide additional details on sending and storing
neighbor lists across different machines. We define high-degree vertices to be the set of
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vertices whose degree is > γ and low-degree vertices to be ones whose degree is ≤ γ (for some
γ defined in our algorithm). We now define the function Find-Triangles(w,L) used in the
above procedure:

Algorithm 2 Find-Triangles(w, Lw).

1: Sort all elements in (Lw ∪ (N(w) ∩Qi)) lexicographically, using the procedure given in
Lemma 4.3 of [57]. Let this sorted list of all elements be S.

2: Let T denote the corrected4 number of duplicates in S using Theorem 8.
3: Return T .

Allocating machines for sorting. Since each v ∈ Qi could have multiple neighbors whose
degrees are ≤ γ, the total size of all neighbor lists v receives could exceed their allowed space
Θ

(
nδ

)
. Thus, we allocate O

(
γdQi

(v)
nδ

)
machines for each vertex v ∈ Qi to store all neighbor

lists that v receives.
The complete analysis for Theorem 11 is given in Appendix A.1.
We provide two additional extensions of our triangle counting algorithm to counting

k-cliques:

▶ Theorem 14. Given a graph G = (V, E) with arboricity α, we can count all k-cliques
in O(mαk−2) total space, Oδ(log log n) rounds, on machines with O(n2δ) space for any
0 < δ < 1.

We can prove a stronger result when we have some bound on the arboricity of our input
graph. Namely, if α = O(nδ′/2) for any δ′ < δ, then we obtain the following result:

▶ Theorem 15. Given a graph G = (V, E) with arboricity α where α = O(n δ′
2 ) for any δ′ < δ,

we can count all k-cliques in O
(
nα2)

total space and Oδ(log log n) rounds, on machines with
O(nδ) space for any 0 < δ < 1.

The proofs of these theorems are provided in our full paper [27].

5 Approximate Triangle Counting in General Graphs

In this section we provide our algorithm for estimating the number of triangles in general
graphs (see Algorithms 3 and 6) and hence prove Theorem 1.

▶ Theorem 1. Let G = (V, E) be a graph with n vertices, m edges, and let T be the number
of triangles in G. Assuming

(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{ √
m
ε , n2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total
space MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1)
rounds.

The rationale behind the lower bound constraints in Theorem 1 will become clear when
we discuss the challenges and analysis (formally presented in the following sections).

APPROX/RANDOM 2022
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5.1 Overview of the Algorithm and Challenges
Our approach is to use the collection of machines to repeat the following experiment multiple
times in parallel. Each machine Mi samples a subset of vertices Vi, and then counts the
number of triangles T̂i seen in each induced graph G[Vi]. We then use the sum T̂ of all T̂i’s
as an unbiased estimator (after appropriate scaling) for the number of triangles T in the
original graph.

Algorithm 3 Approximate-Triangle-Counting(G=(V,E)).

1: R← 0
2: parfor i← 1 . . .M do
3: Let Vi be a random subset of V ▷ See Section 5.2 for details about the sampling
4: if size of G[Vi] exceeds machine space S then
5: Ignore this sample and set T̂i ← 0
6: else
7: Let T̂i be the number of triangles in G[Vi]
8: R← R + 1
9: end parfor

10: Let T̂ =
∑M

i=1 T̂i

11: return 1
p̂3R T̂

Moving forwards, for the most part, we will focus on a specific machine Mi containing Vi

(a single experiment). We list the main challenges in the analysis of this algorithm, along
with the sections that describe them.
1. Section 5.2: The induced subgraph G[Vi] fits into the memory S of Mi (thus allowing

us to count the number of triangles in G[Vi] in one round).
2. Section 5.3: We can efficiently (in one round) collect all the edges in the induced

subgraph G[Vi]. This involves presenting an MPC protocol such that the number of
messages sent and received by any machine is at most the space per machine S.

3. Section 5.4 With high constant probability, the number of messages sent and received
by each machine Mi is at most S.

4. Section 5.5: With high constant probability (of at least 0.9), the sum of triangles
across all machines, T̂ , is close to its expected value. Then, repeating the algorithm
polylogarithmic number of times with only a polylogarithmic increase in total space, and
by using the median trick, allows us to get a high probability bound. The specifics are
discussed in Appendix A.1.7.

In each of the following sections, we first present a high level overview of the challenges
that we need to solve and then follow these high-level descriptions with detailed proofs.

5.2 Challenge (1): Ensuring That G[Vi] Fits on a Single Machine
Ensuring that edges fit on a machine

Our algorithm constructs Vi by including each v ∈ V with probability p̂, which implies that
the expected number of edges in G[Vi] is p̂2m. Since we have to ensure that each induced
subgraph G[Vi] fits on a single machine, we obtain the constraint p̂2m = O(S). Concretely,
we achieve this by defining:

p̂
def= 1

10 ·
√

S

mk
, (1)

where the parameter k = O(log n) will be exactly determined later (See Section 5.3).
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Ensuring that vertices fit on a machine

In certain regimes of values of n and m, the expected number of vertices ending up in an
induced subgraph – p̂n, may exceed the space limit S. Avoiding this scenario introduces an
additional constraint p̂n = O(S) ⇐⇒ S = Ω(kn2/m).

Getting a high probability guarantee

As discussed above, the value of p̂ = Θ̃ε(
√

S/m) is chosen specifically so that the expected
number of edges in the induced subgraphs G[Vi] is p̂2m ≤ Θ(S), thus using all the available
space (asymptotically). In order to guarantee that this bound holds with high probability (see
Appendix A.1.4), we require additional constraints on the space per machine S = Ω̃ε(

√
m).

We remark that this lower bound S = Ω̃ε(
√

m) is essentially saying that M = Õε(
√

m),
i.e. the space per machine is much larger than the number of machines. This is a realistic
assumption as in practice we can have machines with 1011 words of local random access
memory, however, it is unlikely that we also have as many machines in our cluster.

Lower Bound on space per machine

Combining the above two constraints, we get:

S > max
{

15
√

mk

ε
,

100kn2

m

}
=⇒ S = Ω̃ε

(
max

{√
m,

n2

m

})
(2)

Note that Eq. (2) always allows linear space per machine, as long as m = Ω(n). The following
sections, Appendices A.1.4 and A.1.5 present a detailed analysis, showing that the number
of vertices and edges in each subgraph is at most S with high probability. In this high-level
overview of the challenges, we defer a detailed analysis of these bounds to the later sections
(Appendices A.1.4 and A.1.5) since the formal proof of these bounds also require a discussion
of Section 5.3.

5.3 Challenge (2): Using k-wise Independence to Compute the Induced
Subgraph G[Vi] in MPC

For each sub-sampled set of vertices Vi, we need to compute G[Vi], i.e. we need to send all
the edges in the induced subgraph G[Vi] to the machine Mi. Let Qu denote the set of all
machines containing u. Each edge (u, w) then needs to be sent to all machines that contain
both u and w, Qu ∩ Qw. Naively, one could try to send the sets Qu and Qw to the edge
e = (u, w), for all e ∈ E. However, this strategy could result in Qv being replicated d(v)
times. Since the expected size of Qv is |Qv| = p̂M the total expected memory usage of this
strategy would be

∑
v∈V |Qv| · d(v) = Θ̃ε (m · p̂M) = ω̃ε(m), since p̂ = Θ̃(1/

√
M). This

defies our goal of optimal total memory.
Instead, we address this challenge by using globally known hash functions to sample

the vertices on each machine. That is, we let h : V × [M]→ {0, 1} (formally presented in
Definition 16) be a hash function known globally to all the machines. Then we can compute
the induced subgraphs G[Vi] as follows.

▶ Definition 16. The hash function h(v, i) indicates whether vertex v is sampled in Vi or
not. Specifically, h : V × [M]→ {0, 1} such that P[h(v, i) = 1] = p̂ for all v ∈ V and i ∈ [M].
Recall that M is the number of machines, and p̂ = 1

10 ·
√

S
mk is the sampling probability set

in Eq. (1).
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Algorithm 4 Compute-Induced-Subgraphs.

1: Qv ← {i ∈ [M] | h(v, i) = 1} .

2: Qw ← {i ∈ [M] | h(w, i) = 1} .

3: parfor i ∈ Qv ∩Qw do
4: Send e to machine Mi, containing Vi.
5: end parfor

Using limited independence. Ideally, we would want a perfect hash function, which would
allow us to sample the Vi’s i.i.d. from the uniform distribution on V . However, since the hash
function needs to be known globally, it must fit into each of the machines. This implies that
we cannot use a fully independent perfect hash function. Rather, we can use one that has a
high level of independence. Specifically, given that the space per machine is S, we can have a
globally known hash function h that is k-wise independent5 for any k < Θ(S/ log n). In fact,
we can get away with as little as (6 log n)-wise independence (i.e., k = 6 log n). Recalling
Eq. (1), this also fixes the sampling probability to be p̂ =

√
S/600m log n.

5.4 Challenge (3): Showing that, with high constant probability, the
size of the sent/received messages is bounded

We need to show that the number of edges sent and received by any machine Mi is at most
S with high constant probability. To this end, we partition the vertex set V into Vlight and
Vheavy by picking a threshold degree τ for the vertices. Following this, we define light edges as
ones that have both end-points in Vlight, and conversely, any edge with at least one end-point
in Vheavy is designated as heavy. In order for the protocol to suceed, the following must hold:
(A) The number of light edges concentrates (see Appendix A.1.4).
(B) The number of heavy edges concentrates (see Appendix A.1.5).
(C) The number of sent messages is at most S (see Appendix A.1.6).

The first two items ensure that each machine Mi receives at most S messages, and the
last item ensures that each machine sends at most S messages. Given the above, we proceed
to address the last challenge.

5.5 Challenge (4): T̂ is close to its expected value
In this section, we provide merely a brief discussion of this challenge for intuition, and we fully
analyze the approximation guarantees of our algorithm in Appendix A.1.3. That analysis
also makes clear the source of our advertised lower-bound on T for which an estimated count
concentrates well.

Lower Bound on Number of Triangles. In order to output any approximation (note that
we are ignoring all factors of ε and O(poly log n) here) to the triangle count, we must see
Ω(1) triangles amongst all of the induced subgraphs on all the machines. The expected
number of triangles in a specific induced G[Vi] is p̂3T , and therefore, the expected number of
triangles overall is p̂3TM which must be Ω(1) for some setting of T . Since we set p̂ such
that p̂2m = Θ(S), this gives that p̂2 = O(S/m) which implies p̂2 · M = p̂2 · (m/S) = Θ(1).

5 A k-wise independent hash function is one where the hashes of any k distinct keys are guaranteed to be
independent random variables (see [92]).



A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:15

This then immmediately implies that to show that p̂3T is Ω(1), we need only show that
p̂ · T is Ω(1). Specifically, we show in Lemma 20 that when T > 1/p̂, we can obtain a
(1± ε)-approximation. To get some intuition for this lower bound on T , note that, in the
linear memory regime, when S = Θ(n), this translates to T >

√
davg, where davg is the

average degree of G.

T >
1
p̂

= Θ̃
(√

m

S

)
for S=Θ̃(n)===========⇒ T > Θ̃

(√
davg

)
.

6 Open Questions

There are many interesting open questions that result from our study; among these open
questions include improving the bounds presented in our algorithm: the round complexity
and total space usage in our exact algorithms and the space per machine in our approximation
algorithms. In addition to these questions, we also discussion two additional open questions
with a larger research scope.

Small subgraph counting counting for a broader class of small subgraphs

Two recent works of [32, 26] extend the result of [25] to a broader set of small subgraphs in
the sequential model. However, their results depend crucially on a DAG tree decomposition
which is non-trivial to implement in the MPC model. Furthermore, even given this DAG
tree decomposition, their approach requires iterating through the tree from the leaf level by
level up the tree. Such a procedure when implemented in the MPC model requires number
of rounds that is O(depth) where depth is the depth of the tree. The depth may not be
poly(log n). In order to obtain efficient MPC implementation of these new algorithms, we
must find novel solutions to the above two challenges.

Counting in the AMPC model

A new (stronger) model of MPC, called the adaptive MPC model, was recently introduced
by [22]. The AMPC model allows access to a shared distributed hash table at the end of
every round; additionally, the algorithms are allowed adaptive access to this hash table. Such
a model has shown to be very practical and have led to improvements in the number of
rounds over previous MPC algorithms. Such a model seems to be quite relevant to our work
since one of the main challenges in our approximation algorithms is to find the set of edges
to give to each machine. (Such a challenge may no longer exist given a shared-memory
distributed hash table.) We leave as an interesting open question to obtain better, more
round efficient approximate triangle counting algorithms in the AMPC model.

Triangle Counting in O(1) Rounds in Sparse Graphs

For sparse graphs where m = Õ(n), our approximation algorithm requires Ω̃(n) space per
machine which means that (almost) the entire graph can fit on one machine. This naturally
leads to an interesting open question for whether we can obtain an approximate or exact
triangle counting algorithm in O(1) rounds in sparse graphs while using sublinear space per
machine (nδ space for any constant δ > 0).

APPROX/RANDOM 2022
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A Exact Triangle Counting Analysis

A.1 Detailed Analysis
In this section we give the full details and analysis of algorithm Algorithm 1 given in Section 4,
for exactly counting the number of triangles in the graph.

We first provide a detailed version of Algorithm 2 that also takes into account over
counting due to the fact that each triangle might be counted by several endpoints, and then
continue to prove the main theorem of this section, Theorem 4.

A.1.1 Details about finding duplicate elements using Theorem 8
Find-Triangles(w,Lw) finds triangles by counting the number of duplicates that occur
between elements in lists. Theorem 8 provides a MPC implementation for finding the count of
all occurrences of every element in a sorted list. Provided a sorted list of neighbors of v ∈ Qi

and neighbor lists in Lv, this function counts the number of intersections between a neighbor
list sent to v and the neighbors of v. Every intersection indicates the existence of a triangle.
As given, Find-Triangles(w,Lw) (see v Algorithm 2) returns a 6-approximation of the
number of triangles in any graph. We provide a detailed and somewhat more complicated
algorithm Find-Triangles-Exact(w,Lw) that accounts for over-counting of triangles and
returns the exact number of triangles.
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Since Theorem 8 returns the total count of each element, we subtract the value returned
by 1 to obtain the number of intersections. Finally, each triangle containing one low-degree
vertex will be counted twice, each containing two low-degree vertices will be counted 4 times,
and each containing three low-degree vertices will be counted 6 times. Thus, we need to
divide the counts by 2, 4, and 6, respectively, to obtain the exact count of unique triangles.

Algorithm 5 Find-Triangles-Exact(w, Lw).

1: Set the number of triangles Ti ← 0.
2: Sort all elements in (Lw ∪ (N(w) ∩Qi)) lexicographically using the procedure given in

Lemma 4.3 of [57]. Let this sorted list of all elements be S.
3: Count the duplicates in S using Theorem 8.
4: parfor all v ∈ N(w) do
5: Let R be the number of duplicates of v returned by Theorem 8.
6: if dQi

(v) > γi and dQi
(w) > γi then

7: Increment Ti ← Ti + R−1
2 .

8: else if (dQi
(v) > γi and dQi

(w) ≤ γi) or (dQi
(v) ≤ γi and dQi

(w) > γi) then
9: Increment Ti ← Ti + R−1

4 .
10: else
11: Increment Ti ← Ti + R−1

6 .
12: end parfor
13: Return Ti.

Substituting Find-Triangles-Exact in Count-Triangles finds the exact count of
triangles in graphs with arboricity α using O(mα) total space.

A.1.2 Proof of Theorem 4

First, all proofs below assume we start at a cutoff of γ = 4α. Because we increase the cutoff
bound doubly exponentially, we can reach such a bound in O(log log α) rounds. Thus, in
the following proofs, we ignore all rounds before we get to a round where γ ≥ 4α. Before
proving the theorem, we provide several useful lemmas stating that the number of vertices
and edges remaining at the beginning of each iteration is bounded.

▶ Lemma 17. At the beginning of iteration i of Count-Triangles, given γi = 2(3/2)i · (2α)
as stated in Algorithm 1, the number of remaining vertices Ni = |Qi| is at most n

22·((3/2)i−1) .

Proof. Let Ni be the number of vertices in Qi at the beginning of iteration i. Since the
subgraph induced by Qi must have arboricity bounded by α, we can bound the total degree
of Qi,∑

v∈Qi

dQi
(v) < 2α|Qi| = 2Niα.

At the end of the iteration, we only keep the vertices in Qi+1 = {v ∈ Qi | dQi
(v) > γi}.

If we assume that |Qi+1| > Ni

γi/(2α) , then we obtain a contradiction since this implies that

∑
v∈Qi+1

dQi(v) > |Qi+1| · γi > 2Niα >
∑

v∈Qi

dQi(v).
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Then, the number of remaining vertices follows directly from the above by induction on i

with base case N1 = n,

Ni ≤
Ni−1

γi/(2α) = Ni−1

2(3/2)i−1 ≤
n

i−1∏
j=0

2(3/2)j

= n

22·((3/2)i−1) . ◀

We can show a similar statement for the number of edges that remain at the start of the
ith iteration.

▶ Lemma 18. At the beginning of iteration i of Count-Triangles, given γi, the number
of remaining edges mi is at most mi ≤ m

22·((3/2)i−1−1) .

Proof. The number of vertices remaining at the beginning of iteration i is given by |Qi|.
Thus, because the arboricity of our graph is α, we can upper bound mi by

mi ≤ |Qi|α.

Then, we can also lower bound the number of edges at the beginning of iteration i− 1
since the vertices that remain at the beginning of round i are ones which have greater than
γi−1 degree,

mi−1 ≥
1
2

∑
v∈Qi−1

dQi−1(v) ≥ 1
2 |Qi|γi−1.

Thus, we conclude that mi ≤ 2αmi−1
γi−1

. By induction on i with base case m0 = m, we
obtain,

mi ≤ 2α

(
mi−1

γi−1

)
≤ m∏i−2

j=0 2(3/2)j
= m

22·((3/2)i−1−1) . ◀

The above lemmas allows us to bound the total space used by the algorithm.

▶ Lemma 19. Count-Triangles(G) uses O(mα) total space when run on a graph G with
arboricity α.

Proof. The total space the algorithm requires is the sum of the space necessary for storing
the neighbor lists sent by all vertices with degree ≤ γi and the space necessary for all vertices
to store their own neighbor lists. The total space necessary for each vertex to store its own
neighbor list is O(m).

Now we compute the total space used by the algorithm during iteration i. The number
of vertices in Qi at the beginning of this iteration is at most Ni ≤ n

22·((3/2)i−1) by Lemma 17.
Each vertex v with dQi

(v) ≤ γi, makes dQi
(v) copies of its neighbor list (N(v) ∩ Qi) and

sends each neighbor in N(v) ∩Qi a copy of the list. Thus, the total space required by the
messages sent by v is dQi

(v)2 ≤ γ2
i . v sends at most one message of size dQi

(v) ≤ γi along
each edge (v, w) for w ∈ N(v) ∩Qi. Then, by Lemma 18 the total space required by all the
low-degree vertices in round i is at most (as at most two messages are sent along each edge):

2mi · γi <
m

22·((3/2)i−1−1) ·
[
2(3/2)i

(2α)
]

= 16mα. ◀

We are now ready to prove Theorem 4.
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Proof of Theorem 4. By Lemma 17, the number of vertices remaining in Qi at the beginning
of iteration i is n

22·((3/2)i−1) . This means that the procedure runs for O(log log n) iterations
before there will be no vertices. For each of the O(log log n) iterations, Count-Triangles(G)
uses Oδ(1) rounds of communication for the low-degree vertices to send their neighbor lists
to their neighbors. The algorithm then calls Find-Triangles-Exact(w,Lw) on each
vertex w ∈ Qi (in parallel) to find the number of triangles incident to w and vertices in
Ai ⊆ Qi. Find-Triangles-Exact(w,Lw) requires O (lognδ (mα)) = O(1/δ) rounds by
Lemma 4.3 of [57] and Theorem 8. Therefore, the total number of rounds required by
Count-Triangles(G) is O

(
log log n

δ

)
= Oδ(log log n). ◀

A.1.3 Showing Concentration for the Triangle Count
In the subsequent proofs, we will use the following assumptions from within Theorem 1 (note
that we added specific constants).

T ≥ 10
√

mk

S
S ≥ max

{
15
√

mk

ε
,

100kn2

m

}
M = 2000mk

ε2S
(3)

Note that we set the number of machines to a specific value, instead of lower bounding it.
This is acceptable, because we can just ignore some of the machines.

Algorithm 3 outputs an estimate on the number of triangles in G (Line 11). It is not hard
to show that in expectation this output equals T even with limited independence as discussed
above. The main challenge is to show that this output also concentrates well around its
expectation. Specifically, we show the following claim.

▶ Lemma 20. Ignore Line 4 of Algorithm 3. Let T̂ be as defined on Line 10 and M = 20
ε2p̂2

be as defined in Eq. (3), and assume that T ≥ 1/p̂. Then, the following hold:
(A) E

[
T̂

]
= p̂3 ·R · T , and

(B) P
[
|T̂ − E

[
T̂

]
| > εE

[
T̂

]]
< 1

10 .

We will prove Property (B) of the claim by applying Chebyshev’s inequality, for which we
need to compute Var

[
T̂

]
. Let ∆(G) be the set of all triangles in G. For a triangle t ∈ ∆(G),

let T̂i,t = 1 if t ∈ V [Gi], and T̂i,t = 0 otherwise. Hence, T̂i =
∑

t∈∆(G) T̂i,t. We begin by

deriving E
[
T̂

]
and then proceed to showing that Var

[
T̂

]
=

∑R
i=1 Var

[
T̂i

]
. After that we

upper-bound Var
[
T̂i

]
and conclude the proof by applying Chebyshev’s inequality.

A.1.3.1 Deriving E
[
T̂

]
Let t be a triangle in G. Let T̂t be a random variable denoting the total number of times t

appears in G[Vi], for all i = 1 . . . R. Given that P [u ∈ Vi] = p̂, we have that P [t ∈ G[Vi]] = p̂3.
Therefore, E

[
T̂t

]
= R · p̂3.

Since T̂ =
∑

t∈∆(G) T̂t, we have

E
[
T̂

]
=

∑
t∈∆(G)

E
[
T̂t

]
= p̂3 ·R · T. (4)

This proves Property (A) of this claim.
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A.1.3.2 Decoupling Var
[
T̂

]
To compute variance, one considers the second moment of a given random variable. So, to
compute Var

[
T̂

]
, we will consider products T̂i,t1 · T̂j,t2 . Each of those products depend on

at most 6 vertices. Now, given that we used a 6-wise independent function (see Section 5.3)
to sample vertices in each Vi, one could expect that Var

[
T̂i

]
and Var

[
T̂j

]
for i ̸= j behave

like they are independent, i.e., one could expect that it holds Var
[
T̂

]
=

∑R
i=1 Var

[
T̂i

]
. As

we show next, it is indeed the case. We have

Var
[
T̂

]
= E

[
T̂ 2

]
− E

[
T̂

]2
= E


 R∑

i=1

∑
t∈∆(G)

T̂i,t

2
−

 R∑
i=1

∑
t∈∆(G)

E
[
T̂i,t

]2

Consider now T̂i,t1 and T̂j,t2 for i ̸= j and some t1, t2 ∈ ∆(G) not necessarily distinct. In the
first summand of (5), we will have E

[
2T̂i,t1 · T̂j,t2

]
. The vertices constituting t1 and t2 are 6

distinct copies of some (not necessarily all distinct) vertices of V . Since they are chosen by
applying a 6-wise independent function, we have E

[
2T̂i,t1 · T̂j,t2

]
= 2E

[
T̂i,t1

]
· E

[
T̂j,t2

]
.

On the other hand, the second summand of (5) also contains 2E
[
T̂i,t1

]
· E

[
T̂j,t2

]
, which

follows by direct expansion of the sum. Therefore, all the terms E
[
2T̂i,t1 · T̂j,t2

]
in Var

[
T̂

]
for i ̸= j cancel each other. So, we can also write Var

[
T̂

]
as

Var
[
T̂

]
=

R∑
i=1

E


 ∑

t∈∆(G)

T̂i,t

2
− R∑

i=1

 ∑
t∈∆(G)

E
[
T̂i,t

]2

=
R∑

i=1
Var

[
T̂i

]
.

Therefore, to upper-bound Var
[
T̂

]
it suffices to upper-bound Var

[
T̂i

]
.

A.1.3.3 Upper-bounding Var
[
T̂i

]
We have

Var
[
T̂i

]
= E


 ∑

t∈∆(G)

T̂i,t

2
−

 ∑
t∈∆(G)

E
[
T̂i,t

]2

≤ E


 ∑

t∈∆(G)

T̂i,t

2


= E

 ∑
t∈∆(G)

T̂ 2
i,t

 + E

 ∑
t1,t2∈∆(G);t1 ̸=t2

T̂i,t1 · T̂i,t2

 . (5)

Since each T̂i,t is a 0/1 random variables, T̂ 2
i,t = T̂i,t. Let t1 ̸= t2 be two triangles in ∆(G).

Let k be the number of distinct vertices they are consisted of, which implies 4 ≤ k ≤ 6.
Then, observe that E

[
T̂i,t1 · T̂i,t2

]
= p̂k ≤ p̂4. We now have all ingredients to upper-bound

Var
[
T̂i

]
. From (5) and our discussion it follows

Var
[
T̂i

]
≤ T p̂3 + T 2p̂4 ≤ 2T 2p̂4, (6)

where we used our assumption that T ≥ 1/p̂.
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A.1.3.4 Finalizing the proof

From (5) and (6) we have

Var
[
T̂

]
≤ 2RT 2p̂4.

So, from Chebyshev’s inequality and (4) we derive

P
[
|T̂ − E

[
T̂

]
| > εE

[
T̂

]]
<

Var
[
T̂

]
ε2E

[
T̂

]2 ≤
2RT 2p̂4

ε2p̂6R2T 2 = 2
ε2p̂2R

.

Hence, for R ≥ 20
ε2p̂2 we get the desired bound.

A.1.4 Bounding the Number of Light Edges Received by a Machine
We will now bound the probability that any of the induced subgraphs does not fit on a
machine. To that end, we set a degree threshold τ = k

p̂ , and define the set of light vertices
Vlight to be the ones with degree less than τ . All other vertices are heavy, and we let them
comprise the set Vheavy.

Fix a machine Mi. We prove that, with probability at least 9/10, the number of edges in
G[Vi] is upper bounded by S.

We start with analyzing the contribution of the light vertices to the induced subgraphs.
We first consider the simpler case of bounding the number of edges in G[Vi] that have both
end-points in Vlight. We refer to such edges as light edges and denote them by Elight. For
every edge e ∈ Elight, we define a random variable Z

(i)
e as follows.

Z(i)
e =

{
1 if e ∈ G[Vi],
0 otherwise.

We let Z(i) be the sum over all random variables Zi
e, Zi =

∑
e∈Elight

Zi
e, and we let

mℓ denote the total number of edges with light endpoints in the original graph G, i.e.,
mℓ = |Elight|. Due to space constraints, the proof of the following lemma can be found in
our full paper [27].

We prove the following lemma.

▶ Lemma 21. With probability at least 9/10, for every i ∈ [M], G[Vi] contains at most 1
4 S

light edges.

We can now use Chebyshev’s inequality to conclude that

P
[
|Z(i) − E[Z(i)]| > S/

√
3
]
≤

Var
[
Z(i)]

S2/3

=⇒ P
[
Z(i) > 3S/4

]
≤ 3

30S
= 1

10S

Finally, we can use union bound over all M machines to upper bound the probability
that, any of the Z(i) values exceeds 3S/4 (using the the constraints descrbed in Eq. (3) to
simplify).

M
10S

= 2000mk

ε2S
· 1

10S
≤ 200mk

ε2 · 1
(15
√

mk/ε)2
= 200mk

ε2S2 ,

Therefore, with probability at least 9/10, none of the induced subgraphs G[Vi] will contain
more than 3S/4 light edges.
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A.1.5 Bounding the Number of Heavy Edges Received by a Machine
Next, we turn our attention to the edges that have at least one endpoint in Vheavy (we
call such edges heavy). We will show that for each v ∈ Vheavy ∩ Vi, the number of edges
contributed by v concentrates around its expectation.6 In this section, we will use 2mh to
denote the total degree of all the heavy vertices i.e. 2mh =

∑
v∈Vheavy

d(v). Due to space
constraints, we present the proofs of the following theorems in our full paper [27].

▶ Theorem 22 (Heavy edges). With high probability, the number of edges in G[Vi] that have
some endpoint with degree larger than τ is at most S/8.

Combining this result with Theorem 22, we conclude the following:

▶ Theorem 23. With probability at least 9/10, the maximum number of edges in any of
the G[Vi]s (where i ∈ [R]) does not exceed S, and hence Algorithm 3 does not terminate on
Line 4.

A.1.6 Upper-Bounding the Number of Messages Sent by any Machine
Recalling Algorithm 4, we note that the number of messages received by the machine
containing Vi, is equal to the number of edges in G[Vi]. Therefore, the last section essentially
proved that the number of messages (edges) received by a particular machine is upper-bounded
by S. Conversely, in this section, we will justify that the number of messages sent by any
machine is O(S). Since the number of edges stored in a machine is ≤ S, it suffices to to show
that for each edge e, Algorithm 4 sends only O(1) messages (each message is a copy of the
edge e). Our full proofs are included in our full paper [27].

Let Z
(e)
i be the {0, 1} indicator random variable for e ∈ G[Vi], and let Z(e) be the sum of

Z
(e)
i for all i ∈ [M]. Here, Z(e) represents the number of messages that are created by edge

e. Additionally we make r = SM/m = Oε(log n) copies of each edge e, and ensure that all
replicates reside on the same machine. We distribute the Z(e) messages evenly amongst the
replicates, so that each replica is only responsible for Z(e)/r messages.

Since all replicates are on the same machine, this last step is purely conceptual, but it
will simplify our arguemnt, by allowing us to charge the outgoing messages to each replicate
(as opposed to each edge). Our goal will be show that each replicate is responsible for only
O(1) messages, which is the same as showing that w.h.p. Z(e)/r = O(1).

Clearly µ = E[Z(e)] = p̂2 · M = SM
100mk . With δ = 100e1/3mk2

SM

P
[
Z(e) > δµ

]
≤ e−⌊k/2⌋ = 1

n3 =⇒ P
[

Z(e)

r
>

e1/3k

r

]
≤ 1

n3

Using the assumption (from Eq. (3)) that M > 2000mk/S =⇒ r > 2000k, we see that
with high probability, the number of messages sent by any replicate is bounded above by
e1/3/2000 ≤ 1. So, the number of messages sent from any machine is bounded by S with
high probability.

A.1.7 Getting the High Probability Bound
By building on Lemma 20 and Algorithm 3, we design Algorithm 6 that outputs an ap-
proximate triangle counting with high probability, as opposed with only constant success
probability. It is important to note that in the below algorithm, all O(log n) independent
iterations (Line 3) are done in parallel, simultaneously, not sequentially.

6 Intuitively, this is because v has high degree, and therefore the number of its sampled neighbors
(|N(v) ∩ Vi|) will concentrate.

APPROX/RANDOM 2022



39:28 Massively Parallel Algorithms for Small Subgraph Counting

Algorithm 6 Approximate Triangle Counting.

1: function Approx-Triangles-Main(G = (V, E))
2: Let I ← 100 · log n.
3: parfor i← 1 . . . I do ▷ Perform all I iterations in parallel simultaneously in O(1)

rounds.
4: Let Yi be the output of Algorithm 3 invoked on G. We assume that each invocation

of Algorithm 3 uses fresh randomness compared to previous runs.
5: end parfor
6: Let Y be the list of all Yi, for i = 1 . . . I.
7: Sort Y in non-decreasing order.
8: return the median of Y

We have the following guarantee for Algorithm 6.

▶ Theorem 24. Let Y be the output of Algorithm 6. Then, with high probability it holds

|Y − T | ≤ εT.

In the proof of this theorem we use the following concentration bound.

▶ Theorem 25 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking
values in [0, 1]. Let X

def=
∑k

i=1 Xi and µ
def= E [X]. Then, or any δ ∈ [0, 1] it holds

P [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.
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Abstract
Marcus, Spielman and Srivastava (Annals of Mathematics 2014) solved the Kadison–Singer Problem
by proving a strong form of Weaver’s conjecture: they showed that for all α > 0 and all lists of
vectors of norm at most

√
α whose outer products sum to the identity, there exists a signed sum

of those outer products with operator norm at most
√

8α + 2α. We prove that it is NP-hard to
distinguish such a list of vectors for which there is a signed sum that equals the zero matrix from
those in which every signed sum has operator norm at least η

√
α, for some absolute constant η > 0.

Thus, it is NP-hard to construct a signing that is a constant factor better than that guaranteed to
exist.

For α = 1/4, we prove that it is NP-hard to distinguish whether there is a signed sum that
equals the zero matrix from the case in which every signed sum has operator norm at least 1/4.
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1 Introduction

Implicit in Weaver’s [17] conjecture KS2 is the following discrepancy problem: given vectors
v1, . . . , vn, find an x ∈ {±1}n minimizing the operator norm of

∑
i x(i)viv∗

i , where v∗
i is the

conjugate 1 transpose of vi. Weaver proved that conjecture KS2 implies a positive resolution
of the Kadison–Singer Problem. It is equivalent2 to the statement that there are constants
α > 0 and β < 1 such that for all vectors v1, . . . , vn that satisfy

∥vi∥2 ≤ α, for all i, and
n∑

i=1
viv∗

i = I,

there exists a x ∈ {±1}n so that∥∥∥∥∥∑
i

x(i)viv∗
i

∥∥∥∥∥ ≤ β.

1 While all vectors in this paper have Real entries, Weaver’s conjecture remains natural over the Complexes.
2 Weaver’s statement is slightly different from this, but he proves it is equivalent to this in part b of his

Theorem 2. See the Remarks section for some explanation.
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40:2 Hardness Results for Weaver’s Discrepancy Problem

Here, ∥vi∥ refers to the standard Euclidean norm of a vector and the norm around the signed
sum of outer products refers to the operator norm induced by the Euclidean vector norm:

∥M∥ = max
t:∥t∥=1

∥Mt∥ .

Marcus, Spielman, and Srivastava [14] solved the Kadison–Singer Problem by proving that
Weaver’s conjecture is true with β =

√
8α + 2α. Their result was improved by Bownik,

Casazza, Marcus, and Speegle [4], who reduced the bound on β to a little below
√

8α.
Neither of these results are accompanied by efficient algorithms, and many have wondered

if there are efficient algorithms for choosing vectors x that satisfy the conditions of Weaver’s
Conjecture. The currently best known algorithm for constructing such an x runs in time
O(2 3√n/α), and achieves β arbitrarily close to

√
8α+2α [1]. Jourdan, Macgregor, and Sun [11]

give a quasipolynomial time algorithm that approximates the best β when the number of
vectors is exponential in the dimension.

In this paper, we prove that it is NP-hard to distinguish between the cases in which there
exists an x that makes the signed sum of outer products the all-0 matrix from the case in
which all x result in a signed sum with operator norm at least η

√
α, for some constant η > 0.

Before stating our results in more detail, we introduce some notation that makes those
statements compact. Given a list of vectors V = v1, . . . , vn and a vector x ∈ {±1}n, we let
M(V, x) denote the signed sum of outer products,∑

i

x(i)viv∗
i .

When just given the list of vectors V, we define the minimum achievable operator norm of
such a signed sum of outer products to be

W (V) = min
x∈{±1}n

∥M(V, x)∥ .

We say that a list of vectors v1, . . . , vn is α-Weaver if
∑

i viv∗
i = I and ∥vi∥2 ≤ α for all

i. In this notation, Weaver’s conjecture KS2 says that for some α > 0 and β < 1, every
α-Weaver list of vectors V satisfies W (V) < β.

We prove that there is a constant η > 0 such that for every α > 0 it is NP-hard to
distinguish α-Weaver lists of vectors with W (V) = 0 from those for which W (V) ≥ η

√
α. As

we know W (V) ≤
√

8α, this result is optimal up to the constant η. Our proof depends on the
NP-hardness of approximating Max 2-2 Set Splitting [9, 6]. The factor α can depend on the
number of vectors: we only require α ≥ Ω(n−1/2). We begin by showing that for 1/4-Weaver
vectors V, it is NP-hard to distinguish whether W (V) = 0 or W (V) ≥ 1/4. Interestingly,
this result only depends on the NP-hardness of 2-2 Set Splitting. Jourdan, Macgregor, and
Sun [11] independently proved that it is hard to approximate W (V) for 1/4-Weaver vectors
V. Their result builds on the NP-hardness of NAE-3SAT, from which the hardness of 2-2
Set Splitting is naturally derived.

Our results are inspired by and analogous to the hardness results for Spencer’s Discrepancy
Problem established by Charikar, Newman, and Nikolov [7]. Spencer [16] proved that for
vectors v1, . . . , vn in {0, 1}n, there always exists a x ∈ {±1}n such that ∥

∑
i x(i)vi∥∞ ≤ 6

√
n.

Charikar, Newman, and Nikolov prove that there is a constant c for which it is NP-hard to
distinguish vectors for which this sum can be made zero from those for which the sum always
has infinity norm at least c

√
n. We follow their lead in deriving hardness from the hardness

of approximating Max 2-2 Set Splitting. However, our reduction seems very different from
theirs. For Spencer’s discrepancy problem, the NP-hardness of approximating Max 2-2 Set
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Splitting immediately implies that it is NP-hard to distinguish vectors v1, . . . , vn ∈ {0, 1}n

for which there exists an x ∈ {±1}n satisfying
∑n

i=1 x(i)vi = 0 from those for which every
x ∈ {±1}n must have ∥

∑n
i=1 x(i)vi∥∞ ≥ 2. The main challenge of [7] is amplifying this

discrepancy gap from 0 vs 2 to 0 vs c
√

n. For Weaver’s problem, the NP-hardness of 2-2 Set
Splitting immediately implies that it is NP-hard to distinguish rank-3 matrices A1, . . . , An

of norm at most 1/4 that satisfy
∑n

i=1 Ai = I for which there exists an x ∈ {±1}n satisfying∑n
i=1 x(i)Ai = 0 from those for which every x ∈ {±1}n must have ∥

∑n
i=1 x(i)Ai∥ ≥ 1/2.

The first challenge in our work is that of turning these rank-3 matrices into rank-1 matrices
that satisfy the conditions of Weaver’s problem. Our analog of amplification appears when
we produce vectors of smaller norm. Another difference between these problems is that we
do not know a polynomial time algorithm that approximately solves Weaver’s problem, while
Bansal [3] showed that Spencer’s problem could be approximately solved in polynomial time.

2 Notation

We write ei for the elementary unit vector with a 1 in coordinate i, and we let 1 denote the
vector will all entries 1.

As mentioned earlier, we write v∗ for the conjugate transpose of a vector v. As this paper
only constructs vectors with Real entries, one can just treat this as the transpose. We let
∥v∥ =

√
v∗v denote the standard Euclidean norm of the vector v. Unless otherwise specified,

when we write the norm of a matrix we mean the operator norm. We recall that the operator
norm of a matrix is at least as large as the operator norm of every one of its submatrices.
For a symmetric matrix, the operator norm is the largest absolute value of its eigenvalues.

The other norm we consider of a matrix is its Frobenius norm, written ∥M∥F , which
equals the square root of the sum of the squares of the entries of M . From the identity
∥M∥2

F = Tr (MM∗), one can see that the square of the Frobenius norm of M equals the sum
of the squares of the singular values of M .

3 2-2 Set Splitting

The 2-2 Set Splitting Problem was defined and proved NP-complete by Guruswami [9]. An
instance of the problem consists of a list of sets S1, . . . , Sm, each of which contains exactly
four elements of {1, . . . , n} which we identify with ±1 valued variables x(1), . . . , x(n). A
vector x ∈ {±1}n satisfies a set Sj if

∑
i∈Sj

x(i) = 0, and an x satisfies the instance if it
satisfies all the sets. We say that an instance is γ-unsatisfiable if for every x at least a γ

fraction of the sets are unsatisfied. Guruswami proves that for every ϵ > 0 it is NP-hard
to distinguish satisfiable instances from those that are (1/12 − ϵ)-unsatisfiable. Charikar,
Guruswami, and Wirth [6] observe that Guruswami’s construction has the property that
there is a constant B so that no variable appears in more than B sets.

▶ Theorem 1 (Guruswami). For every ϵ > 0 there is a constant B so that for instances of
the 2-2 Set Splitting Problem in which every variable appears in at most B sets, it is NP-hard
to distinguish satisfiable instances from those 1/12 − ϵ unsatisfiable.

As the fact that there is a constant upper bound on the number of occurrences of each
variable is not explicitly stated in [9], we sketch a simple proof with a worse constant in the
Appendix.

We define the (3,2-2) Set Splitting Problem to be the restriction of the 2-2 Set Splitting
Problem to instances in which every variable appears in at most 3 sets.

APPROX/RANDOM 2022
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Figure 1 A depiction of the equality gadget, and a setting of the variables that satisfies all the
clauses when a = b = 1.

▶ Lemma 2. The (3,2-2) Set Splitting Problem is NP-hard. This remains true if we require
that no pair of sets intersect in more than one variable. Moreover, there is a constant γ > 0
such that it is NP hard to distinguish satisfiable instances of the (3,2-2) Set Splitting Problem
from those that are γ-unsatisfiable.

The key to proving this lemma is the introduction of an equality gadget that forces
variables to have the same value. To force variables a and b to have the same value, we
introduce variables c and y1, . . . , y12 and the seven sets

{a, y1, y2, y3} , {b, y4, y5, y6} , {c, y7, y8, y9} , {c, y10, y11, y12} , (1)
{y1, y4, y7, y10} , {y2, y5, y8, y11} , {y3, y6, y9, y12} .

▶ Lemma 3. No variable appears in more than 2 of the 7 sets listed in (1), and variables a

and b each appear once. No pair of these sets intersects in more than 1 variable. If all 7
of the sets are satisfied, then a = b. And, if a = b then there is a setting of the remaining
variables that satisfies all the sets.

Proof. The Figure 1 shows a setting of the variables that satisfies all the sets in the case
that a = b = 1. If a = b = −1, we need merely reverse all the signs.

To see that a = b when these sets are satisfied, note that the last three sets require half
of the variables y1, . . . , y12 to be 1 and half to be −1. If the first 4 sets are satisfied we can
combine this the fact with the double-occurrence of c to conclude that there must be an even
number of 1s among a, b, y1, . . . , y12, and so a can be 1 if and only if b is as well. ◀

Proof of Lemma 2. Let S1, . . . , Sm be any instance of the 2-2 Set Splitting problem on
variables x1, . . . , xn. We replace each variable with many copies of itself, and use equality
gadgets to force all those copies to be equal. More formally, if variable xi appears k times,
then we create k new variables xi,1, . . . , xi,k, and replace each occurrence of xi with one of
these. Call the resulting sets on the new variables the substituted sets.

We then add k − 1 equality gadgets with distinct extra variables to force xi,j to equal
xi,j+1 for 1 ≤ j < k. Each of the variables xi,j appears in at most 3 sets: one substituted
set and one set in each of up to two equality gadgets. The substituted sets are all mutually
disjoint, as are the equality gadgets. The only sets that can intersect are inside equality
gadgets, or a substituted set and a set in an equality gadget that both contain a variable
xi,j . This would be the only variable in which they intersect.

The derivation of the inapproximability result uses standard techniques, such as those
from [9, Section 2.1]. Assume that the input instance is 1/13-unsatisfiable. As each equality
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gadget involves 7 sets and the number of equality gadgets is at most 4m, the total number
of sets in the new system is at most 29m. For any setting of the variables xi,j , let u0 be the
number of unsatisfied substituted sets and u1 be the number of unsatisfied sets in equality
gadgets. Call an index i inconsistent if there exist j and k for which xi,j ̸= xi,k. The
number of inconsistent indices is at most u1. If all the indices were consistent, we would have
u0 ≥ m/13. As each original variable appears in at most B sets, the number of unsatisfied
substituted sets must be at least m/13 − Bu1. Thus, the number of unsatisfied sets is at
least

max(u0, u1) ≥ m

13
1

B + 1 ,

and the new instance is γ-unsatisfiable for γ ≥ 1/(13 · 29 · (B + 1)). ◀

4 α = 1/4

▶ Theorem 4. Given a list of 1/4-Weaver vectors V, it is NP-hard to distinguish whether
W (V) = 0 or W (V) ≥ 1/4.

If we were considering sums of arbitrary matrices rather than sums of outer products, we
could prove something like Theorem 4 by constructing m-by-m diagonal matrices D1, . . . , Dn

such that

Di(j, j) =
{

1/4 if i ∈ Sj

0 otherwise.

The corresponding 2-2 Set Splitting instance is then satisfiable if and only if there exists
an x ∈ {±1}n so that

∑
i x(i)Di = 0. In the case where no such sum exists, some entry of

the sum must have absolute value at least 1/2. Note that
∑

i Di = I. To turn this problem
about sums of matrices into an instance of Weaver’s problem, we express each Di as a sum
of orthogonal vectors.

Define

q1 =

−1/3
2/3
2/3

 , q2 =

 2/3
−1/3
2/3

 , and q3 =

 2/3
2/3

−1/3

 . (2)

Observe that each qi is a unit vector, and that

q1q∗
1 + q2q∗

2 + q3q∗
3 = I3.

We will use the following special property of these vectors.

▶ Lemma 5. For every z ∈ {±1}3 whose entries are not all equal and for every diagonal
matrix X,∥∥∥∥∥X +

∑
i

z(i)qiq∗
i

∥∥∥∥∥ ≥ 1.

Proof. If one of the entries of z differs from the other two, then the matrix
∑

i z(i)qiq∗
i is

equal to plus or minus a permutation of the matrix

R1
def= I − 2q1q∗

1 = 1
9

7 4 4
4 1 −8
4 −8 1

 .

APPROX/RANDOM 2022
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We now show that for every diagonal matrix X, the operator norm of R1 + X is at least 1.
Let

Y
def= 1

16

0 2 2
2 0 −7
2 −7 0

 .

The matrix Y has inner product 1 with every matrix of the form R1 + X. The eigenvalues of
Y are λ1 = −1/2, λ2 = 1/16, and λ3 = 7/16. But, what really matters is that their absolute
values sum to 1. Let corresponding unit-norm eigenvectors be ϕ1, ϕ2, ϕ3, and recall that
Y =

∑
i λiϕiϕ

∗
i Then for every diagonal X,

1 = Tr
(
(R1 + X)T Y

)
=

∑
i

λiϕ
∗
i (R1 + X)ϕi ≤

∑
i

|λi| ∥R1 + X∥ = ∥R1 + X∥ . ◀

Proof of Theorem 4. Let S1, . . . , Sm be an instance of the (3,2-2) Set Splitting Problem on
variables x1, . . . , xn such that no two sets intersect in more than one variable. Lemma 2 tells
us that deciding whether the instance is satisfiable is NP-hard.

As suggested by the discussion before Lemma 5, we would like to construct vectors for
each variable in the (3,2-2) Set Splitting Problem whose coordinates correspond to the sets in
the instance. To use Lemma 5, we need the vectors we construct to have exactly 3 non-zero
coordinates. However, some of the variables in the Set Splitting Problem instance might
appear in fewer than 3 sets. To accommodate these, we introduce extra coordinates. For
each i let Ai be the indices of the sets in which variable xi appears. The number of extra
coordinates we need is b

def=
∑

i 3 −|Ai|. Let B1, . . . , Bm be a partition of {m + 1, . . . , m + b}
with |Bi| = 3 − |Ai|. The set Bi supplies the extra coordinates we need for variable xi, and
will be empty if xi appears in exactly 3 sets. Let A = {1, . . . , m} and B = ∪iBi.

We now let Ti
def= Ai ∪ Bi be the 3 coordinates associated with variable i. Define three

vectors qi,h ∈ Rm+b to be zero everywhere but on coordinates in Ti, on which they equal
(1/2)qh. Let Di be the diagonal matrix that is 1/4 on rows and columns indexed by Ti and
0 elsewhere, so that

qi,1q∗
i,1 + qi,2q∗

i,2 + qi,3q∗
i,3 = Di. (3)

For the i for which Bi is non-empty, we introduce vectors rj,h = (1/2)ej for j ∈ Bi and
1 ≤ h ≤ 3.

We now consider Weaver’s problem on the list of vectors V consisting of
{

qi,h

}
and {r i,h}.

To see that this collection of vectors is 1/4-Weaver, first observe that each vector of form
qi,h or r i,h has norm 1/2. The sum of their outer products is

M(V, 1) =
∑

1≤i≤n,1≤h≤3
qi,hq∗

i,h +
∑

j∈B,1≤h≤3
rj,hr∗

j,h.

To see that M(V, 1) is the identity, first observe that all of its off-diagonal entries are zero.
For j ∈ A, the (j, j) entry is the sum of 1/4 for every variable in set Sj , and is thus 1. For
j ∈ B, the (j, j) entry receives a contribution of 1/4 from the sum

∑
1≤h≤3 qi,hq∗

i,h for the i

such that j ∈ Bi, and another 1/4 from each rj,hr∗
j,h where 1 ≤ h ≤ 3.

Let z(i, h) be the sign for the outer product qi,hq∗
i,h and let w(j, h) be the sign for the

outer product rj,hr∗
j,h, and extend the definition of M so that we can write the signed sum

of outer products as M(V, z, w).
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If the (3,2-2) Set Splitting instance is satisfied by x, then set z(i, h) = x(i) for each i,
and for each j in a non-empty Bi, set w(j, 1) = x(i) and w(j, 2) = w(j, 3) = −x(i). This
causes the signed sum of the outer products of the vectors to be the zero matrix:

M(V, z, w) =
∑

1≤i≤n,1≤h≤3
z(i, h)qi,hq∗

i,h +
∑

1≤i≤n

∑
j∈Bi,1≤h≤3

w(j, h)rj,hr∗
j,h

=
∑

1≤i≤n,1≤h≤3
x(i)qi,hq∗

i,h − 1
4

∑
1≤i≤n,j∈Bi

x(i)eje∗
j

=
∑

1≤i≤n

x(i)Di − 1
4

∑
1≤i≤n,j∈Bi

x(i)eje∗
j

= 0

where the last equation holds since the (3,2-2) Set Splitting instance is satisfied by x.
If the (3,2-2) Set Splitting instance is unsatisfiable, we will show that for every z and w,

the norm of M(V, z, w) is at least 1/4. We break our analysis into two cases. In the first, we
examine what happens if there exists a vector x so that for all i and h, z(i, h) = x(i). In
this case,∑

1≤i≤n,1≤h≤3
z(i, h)qi,hq∗

i,h =
∑

1≤i≤n

x(i)Di.

As the (3,2-2) Set Splitting instance is not satisfied by x, there must be some set j for
which the absolute value of sum of x(i) for i ∈ Sj is at least 2, and thus the (j, j) entry of
M(V, z, w) has absolute value at least 1/2. As the operator norm of a matrix is at least the
absolute value of its largest diagonal, in this case the norm of the signed sum must be at
least 1/2.

In the other case there is some i for which not all of the z(i, h) are equal. Now, consider
the entries of M(V, z, w) that appear in rows and columns indexed by Ti. As each pair of
sets Ti and Tk can intersect in at most one element for i ̸= k, the off-diagonal entries of this
submatrix are equal to the off-diagonals of

∑
1≤h≤3 z(i, h)qhq∗

h. Regardless of the diagonals,
Lemma 5 tells us that this submatrix has operator norm at least 1/4, and thus M(V, z, w)
does as well. ◀

5 General α

▶ Theorem 6. There exists a constant η > 0 so that for every integer k ≥ 2 it is NP-hard
to distinguish a list of 1/2k-Weaver vectors W for which W (W) = 0 from those for which
W (W) ≥ η/

√
k.

The proof employs two reductions, the first of which is a variation of the one used in the
previous section. When this reduction is applied to a γ-unsatisfiable (3,2-2) Set Splitting
instance, it produces a set of vectors V so that for all x, a constant fraction of the diagonals
of M(V, x) have absolute value at least 1/50. The second reduction converts these into
instances of 1/2k-Weaver vectors such that every signed sum of those vectors has operator
norm at least η/

√
k.

In the first reduction, we use the following four orthogonal vectors:

q1
def= 1

5


1
4

−2
−2

 q2
def= 1

5


4
1
2
2

 q3
def= 1

5


−2
2

−1
4

 q4
def= 1

5


−2
2
4

−1

 .
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▶ Lemma 7. For every z ∈ {±1}4 that doesn’t equal ±1, for every w ∈ {±1}3, and for
every 1 ≤ j ≤ 4,∣∣∣∣∣

4∑
i=1

(1/4)z(i)(qi(j))2 +
3∑

h=1
(1/4)w(h)

∣∣∣∣∣ ≥ 1/50.

Proof. The multiset of values of (qi(j))2 as i varies from 1 through 4 is
(1/25, 4/25, 4/25, 16/25). Thus, every non-constant signed sum of these numbers must
be an odd multiple of 1/25 with absolute value less than 1 and every non-constant signed
sum of 1/4 times these numbers must have absolute value between 1/100 and 23/100. As
the term

∑3
h=1(1/4)w(h) can only take values in {±25/100, ±75/100}, the total sum must

have absolute value at least 2/100 = 1/50. ◀

We model our first reduction on the one from the previous section, but using these vectors.
Let S1, . . . , Sm be an instance of the (3,2-2) Set Splitting Problem on variables x1, . . . , xn.
For each i let Ai be the indices of the sets in which variable xi appears. If variable xi appears
in k sets, introduce 4 − k new coordinates for that variable, and call the set of them Bi.
As k ≤ 3, Bi will not be empty. Let Ti = Ai ∪ Bi. Define four vectors qi,h that are zero
everywhere except on coordinates in Ti, on which they equal (1/2)qh. For each variable and
each j ∈ Bi, we introduce vectors rj,h = (1/2)ej,h for j ∈ Bi and 1 ≤ h ≤ 3. Let V consist of
the vectors

{
qi,h

}
and {rj,h}. This collection of vectors is 1/4-Weaver. Let A = {1, . . . , m},

B = ∪iBi, and note that |B| ≤ 3m.

▶ Lemma 8. Let z(i, h) be {±1} variables for 1 ≤ i ≤ n and 1 ≤ h ≤ 4. Also let w(j, h) be
in ±1 for j ∈ B and 1 ≤ h ≤ 3. If there are k values of i for which z(i, h) is not constant
over h, the matrix M(V, z, v) must have at least k diagonal entries in columns in B with
absolute value at least 1/50.

Proof. For every i for which z(i, h) is not constant over h, Lemma 7 tells us that every
diagonal indexed by Bi must have absolute value at least 1/50. ◀

▶ Lemma 9. Let V be the vectors produced by this reduction on a (3,2-2) Set Splitting
Problem instance. Every vector in V has at most 4 non-zero entries, and no coordinate is
in the support of more than 7 of the vectors. If the set splitting instance is satisfiable, then
W (V) = 0. If the set splitting instance is γ-unsatisfiable, then for every z and w, at least a
γ/12 fraction of the diagonal entries of M(V, z, w) must have absolute value at least 1/50.

Proof. If the set splitting instance is satisfiable, let x be the vector that satisfies it. We
then set z(i, h) = x(i) for each i, and for each j in Bi we set w(j, 1) = x(i) and w(j, 2) =
w(j, 3) = −x(i). With this signing, M(V, z, w) becomes the all-0 matrix.

Now, assume that the set splitting instance is γ-unsatisfiable. Let K be the set of i

for which z(i, h) is not constant in h. That is, for which there exist h and h̃ for which
z(i, h) ̸= z(i, h̃). Lemma 8 tells us that at least k = |K| of the diagonals of M(V, z, w)
indexed by B have absolute value at least 1/50. As the dimension of M(V, z, w) is at most
4m, it suffices to prove that at least (γ/3)m of its diagonals have have absolute value at least
1/50.

If k ≥ (γ/3)m, this finishes the proof. If not, define ẑ(i, h) = z(i, 1) for i ̸∈ K, and
1 ≤ h ≤ 4, and set ẑ(i, h) = 1 for i ∈ K. As the set splitting instance is γ-unsatisfiable, at
least γm of the diagonals of M(V, ẑ, w) in columns in A have absolute value at least 1/4. It
remains to see how these diagonals change between ẑ and z.
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For each i, the variables z(i, h) only appear in 3 diagonals indexed by A. So, M(V, z, w)
and M(V, ẑ, w) can differ in at most 3k diagonals in columns in A. Thus, at least γm − 3k

diagonals of M(V, z, w) in columns of A have absolute value at least 1/4. In total, we find
that the number of diagonals that have absolute value at least 1/50 is at least

γm − 3k + k ≥ (γ/3)m, for k ≤ (γ/3)m. ◀

Fix an integer k. We let Π be a k − 1-by-k matrix whose rows are an orthonormal basis
of the nullspace of the all-1 vector in k dimensions. Let B be the k-by-

(
k
2
)

matrix whose
columns contain all

(
k
2
)

vectors with two non-zero entries, the first of which is 1 and the
second of which is −1. Our reduction uses the matrix G

def= ΠB/
√

k.

▶ Lemma 10. The matrix G is a (k − 1)-by-
(

k
2
)

matrix such that
a. every column of G has norm

√
2/k,

b. GG∗ = I, and
c. for every

(
k
2
)
-dimensional square diagonal matrix D,

∥GDG∗∥ ≥ 1
k

√
2

k − 1 ∥D∥F ,

where ∥D∥F is the Frobenius norm of D – the square root of the sum of the squares of its
entries.

Proof. As every column of B is orthogonal to the all-ones vector, so multiplying by Π does
not change its norm. As these columns have norm

√
2, the columns of G have norm

√
2/k.

To compute GG∗, first observe that BB∗ = kI − J , where J is the all-ones matrix of
dimension k. This matrix has eigenvalue k with multiplicity k − 1 and one eigenvalue of 0.
As Π is a projection orthogonal to the nullspace of B, ΠBB∗Π equals kIk−1.

Every diagonal entry of D appears twice as an off-diagonal of the matrix BDB∗. One
easy way to see this is to index the columns of B by pairs (i, j) with i < j, where column
(i, j) equals ei − ej . If we index the diagonal entries of D similarly and label them di,j we
have

BDB∗ =
∑
i<j

di,j(ei − ej)(ei − ej)∗.

Thus,

∥BDB∗∥2
F ≥ 2 ∥D∥2

F .

As the columns of B have sum 0, they lie in the span of the rows of Π. So,

∥ΠBD(ΠB)∗∥2
F = ∥BDB∗∥2

F ,

and we may conclude that

∥GDG∗∥2
F ≥ 1

k2 ∥BDB∗∥2
F .

As the Frobenius norm is the sum of the squares of the (k − 1) eigenvalues of GDG∗,

∥GDG∗∥2
2 ≥ 1

k − 1 ∥GDG∗∥2
F ≥ 1

(k − 1)k2 ∥BDB∗∥2
F ≥ 2

(k − 1)k2 ∥D∥2
F . ◀
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We now describe the second reduction. Let V be the set of vectors produced by the first
reduction and described by Lemma 9, and let m1 be the dimension of the space in which
they reside. We now partition the coordinates of these vectors, {1, . . . , m1} into at most 22
classes so that for each vector and each class, the vector has at most one non-zero entry a
coordinate in that class. To see that this is possible, and that such a partition is computable
efficiently, note this this is a problem of 22-coloring a graph with maximum degree at most
21: the vertices are the coordinates, the edges go between coordinates that are in the support
of the same vector, and the graph has degree at most 21. So, a greedy coloring algorithm
will do the job. Let C1, . . . , C22 be the classes of coordinates, and let ci = |Ci| for each i.

Given a choice of k, we would like to partition each class Ci into sets of size
(

k
2
)
. As

this is not necessarily possible, for each i let ai be the integer between 0 and
(

k
2
)

− 1 so
that ci + ai is divisible by

(
k
2
)
, and let a =

∑
i ai. We add a additional coordinates, and

assign ai of them to class Ci for each i. Let m2 = m1 + a be the number of coordinates after
these are added. We then create a new list of vectors, U by embedding each vector of V
into the m2 dimensional space by setting each extra coordinate to 0, and for each of the a

new coordinates, j, adding 4 vectors rj,h = (1/2)ej for 1 ≤ h ≤ 4. The list of vectors U is
(1/4)-Weaver.

If W (V) = 0, then W (U) = 0 as well: use the same signing for each vector derived from V ,
and then for each new coordinate j assign half of the rj,h a positive sign and half a negative
sign.

Now, partition each class of coordinates into groups of size
(

k
2
)
, and call the resulting

l
def= m2/

(
k
2
)

classes D1, . . . , Dl. We now describe a rectangular matrix F with m2 columns
and (k − 1)l rows. Partition the rows of F into l sets of size k − 1, which we call E1, . . . , El.
This partition can be arbitrary, but to ease visualization one could make each set consecutive.
We define F to be zero everywhere, except on submatrices consisting of rows indexed by Ei

and the columns indexed by Di, on which it equals G. The final set of vectors produced by
our reduction, W, is the result of multiplying each vector in U by F .

▶ Lemma 11. Let V be the set of vectors produced by the first reduction and analyzed in
Lemma 9. Let m1 be the dimension of the space in which the vectors in V lie, and assume that
m1 ≥ 22

(
k
2
)
. Let W be the result of the second reduction. The vectors W are 1/2k-Weaver.

If W (V) = 0, then W (W) = 0. If for every ±1 vector x at least a ϕ fraction of the diagonals
of M(V, x) have absolute value greater than δ, then

W (W) ≥ δ

√
ϕ

2k

Proof. We exploit the algebraic characterization of the second reduction:

M(W, x) = FM(U , x)F ∗.

This immediately tells us that an x that makes the right side zero will also make the left side
zero. It also implies that for every i the submatrix of M(U , x) indexed by rows and columns
in Di is diagonal. This is because every vector in U has at most one nonzero entry indexed
by Di, and the matrix M(U , x) is a signed sum of outer products of vectors in U .

To see that W is 1/2k-Weaver, we first compute the norms of these vectors. As the
non-zero entries of each vector in U appear in disjoint blocks, and every column of F has
norm

√
2/k, the squared norm of F times any vector in U is (2/k) times the squared norm

of that vector: (1/4)(2/k) = 1/2k. Also note that FF ∗ = I, so

M(W, 1) = FM(U , 1)F ∗ = FIF ∗ = I.
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Consider a vector x for which at least a ϕ fraction of the diagonals of M(V, x) have
absolute value at least δ. Note that a ≤ 22

(
k
2
)
, so the assumption that m1 ≥ 22

(
k
2
)

implies
m2 ≤ 2m1. This means that at least a ϕ/2 fraction of the diagonals of M(U , x) have absolute
value at least δ. As the sets D1, . . . , Dl partition the columns of this matrix, there must be
some set of columns Di such that at least a ϕ/2 fraction of the diagonals in the rows and
columns indexed by Di have absolute value at least δ. Call this submatrix Mi, and notice
that it has squared Frobenius norm at least

(
k
2
)
δ2ϕ/2. So,

∥M(W, x)∥ = ∥FM(U , x)F ∗∥ ≥ ∥GMiG
∗∥ ≥ 1

k

√
2

k − 1 ∥Mi∥F ≥ δ

√
ϕ

2k

where the second-to-last inequality follows from part c of Lemma 10. This implies W (W) ≥
δ
√

ϕ
2k . ◀

Proof of Theorem 6. On input an instance of the (3,2-2) Set Splitting Problem, let V be
the set of vectors produced by the first reduction, and let W be the set of vectors produced
by the second. By applying Lemmas 9 and 11, we see that if the instance is satisfiable, then
W (V) = W (U) = W (W) = 0. On the other hand, if the instance is γ-unsatisfiable, then
Lemma 9 implies that for all ±1 vectors z and w at least a ϕ = γ/12 fraction of the diagonal
entries of M(V, z, w) have absolute value at least δ = 1/50. Lemma 11, then allows us to
conclude that

W (W) ≥ 1
50

√
γ

24k
= η√

k
, where η

def= 1
100

√
γ

6 .

So, the problem of distinguishing whether a (3,2-2) set splitting instance is satisfiable
or γ-unsatisfiable is polynomial-time reducible to the problem of distinguishing a set of
1/2k-Weaver vectors W with W (W) = 0 from a set for which W (W) ≥ η/

√
k. ◀

We remark that this construction can be carried out whenever the original (3,2-2) Set
Splitting instances has a number of sets that exceeds 22

(
k
2
)
. This will result in a number of

vectors that is a most a constant times the number of sets. Thus, we only require that k be
at least some constant times the square root of the number of vectors.

6 Remarks

We first emphasize that our hardness results do not say that it is hard to find an x giving an
operator norm at or above the guarantee provided by [14, 4]. We only prove that it is hard
to improve on this guarantee by a constant factor.

The original form of Weaver’s conjecture KS2 states that there exist constants α > 0
and β < 1 such that for vectors vi of norm at most

√
α whose outer products have sum with

operator norm less than 1, there exists a partition of those vectors into two sets so that in
each set the sum of the outer products has operator norm at most β. These vectors could
differ from those in α-Weaver position in that the sum of their outer products does not need
to equal the identity. Weaver proved that the conjecture is unchanged if one requires the
sum of the outer products of the vectors to be the identity. Instead of considering the sum
of the outer products in each set, we consider the difference of the sum of the outer products
by assigning a +1 to every vector in one set and a −1 to every vector in the other. However,
when we consider such signed sums the condition that the sum of the outer products is the
identity is no longer equivalent to the condition that the sum has operator norm at most
1. To prove an upper bound on the discrepancy for vectors of bounded norm whose sum
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of outer products has operator norm at most 1, one can use the results of Kyng, Luh, and
Song [12]. Instead of outer products of vectors, Cohen [8] and Brändén [5] have shown that it
is possible to prove analogous discrepancy results for sums of positive semidefinite matrices
of bounded trace.

One may wonder what to make of our results when the vectors W produced are not rational,
because it is not clear that they can be represented exactly, and thus their representation
in floating point might not be precisely α-Weaver. One way to fix this is to round them to
floating point numbers, and then apply a linear transformation that forces the sum of their
outer products to be the identity. If done with enough precision, this will cause their norms
to increase negligibly. We also observe that the vectors can be made rational whenever k is a
square. If k = s2, then one can choose Π to be the horizontal concatenation of the vector
−1k−1/s with the matrix Ik−1 − Jk−1(s/(k(s + 1))), where Jk−1 is the (k − 1)-dimensional
square matrix with all entries 1.
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A Hardness of 2-2 Set Splitting

The purpose of this section is to sketch a simple proof that it is NP-hard to distinguish
satisfiable (3,2-2) set splitting instances from γ-unsatisfiable ones, for some constant γ > 0.

We first sketch a proof that 2-2 Set Splitting is NP-hard. We then explain why it is hard
to distinguish satisfiable instances from γ-unsatisfiable ones, for some constant γ > 0, even
when each variable appears in at most a constant number of sets.

Our notation follows that of Håstad [10] and Guruswami [9]. Whereas the purpose
of those papers is to obtain tight hardness of approximation results, our purpose in this
appendix is just to obtain simple proofs of hardness up to some constant.

We begin by recalling the NP-hardness of E3-SAT: 3-SAT in which every clause contains
exactly 3 distinct variables. We will reduce this to NAE-E3-SAT, where we recall that the
NAE-SAT problem consists of not-all-equal clauses that are satisfied when their terms are
not all equal, and NAE-Ek-SAT is the restriction of NAE-SAT to instances in which every
clause contains exactly k distinct variables.

The standard reduction from E3-SAT to NAE-E4-SAT is obtained by creating one extra
variable, z, and replacing every clause in a SAT instance with an NAE clause that contains
the same terms along with z. If the SAT instance is satisfied by an assignment x, then the
NAE-SAT instance is satisfied by the same assignment and z set to false. Conversely, observe
that satisfying assignments of NAE-SAT instances remain satisfying if one negates all the
variables. So, if the NAE-E4-SAT instance is satisfiable, we may assume that z is false and
that the remaining variables provide a satisfying assignment to the SAT instance.

We then reduce the NAE-E4-SAT instance to an NAE-E3-SAT instance by splitting up
each NAE clause. For each NAE clause with terms t1, t2, t3, t4, we introduce one new variable
y, and then replace the clause with two clauses: one with terms t1, t2, y and one with y, t3, t4.

To reduce NAE-E3-SAT to 2-2 Set Splitting, we first show that we can reduce it to
an NAE-E3-SAT problem in which no variable is negated in any NAE clause. We may
accomplish this by introducing a gadget that forces variables to be the negations of each
other. To force variables x and y to be negations of each other, we introduce extra variables
a, b, and c, and include the NAE-E3 clauses

(x, y, a), (x, y, b), (x, y, c), (a, b, c).

If x is the negation of y, then these clauses are satisfied by any choice of a, b, and c that
are not all equal. Conversely, if a, b, and c are not all equal then these clauses can only be
satisfied if x differs from y.

Finally, we may reduce NAE-E3-SAT to 2-2 Set Splitting by appending one extra variable
to every clause, and making the result a set to be split.

If every variable occurs at most a constant number of times in the original E3-SAT
instance, then every variable will occur at most a constant number of times in the 2-2 Set
Splitting instance, except for the variable z which was added in the reduction from E3-SAT to
NAE-E4-SAT. To fix this, we replace the variable z with many variables, and then force them
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all to be equal. In particular, if the E3-SAT instance has m clauses, we introduce variables
z1, . . . , zm, and add one to each clause to create an NAE-E4-SAT clause. We must then
introduce gadgets that force those variables to be equal. For simplicity, for each 1 ≤ j < m,
we could introduce a new variable wj , and include the NAE-E3 clauses that force zj ̸= wj

and wj ̸= zj+1. Of course, we do not need to split these clauses when we reduce the other
NAE-E4-SAT clauses to NAE-E3-SAT clauses.

To preserve constant-factor unsatisfiability, we add more constraints than this to the
variables z1, . . . , zm. First, we recall the formulation by Håstad [10, Theorem 2.24] of one of
the main results of Arora et. al. [2]:

▶ Theorem 12. There exists a constant c > 0 such that it is NP-hard to distinguish a
satisfiable E3-SAT instance in which every variable appears in at most 5 clauses from one
that is c-unsatisfiable.

The reductions we have described so far convert satisfiable E3-SAT instances to satisfiable
2-2 set splitting instances, and they ensure that if each variable appears at most 5 times
in the original instance, then each variable appears in at most a constant number of sets
in the set splitting instance. To make sure that each c-unsatisfiable E3-SAT instance is
converted into a c′-unsatisfiable NAE-E3-SAT instance, we impose equality relations between
z1, . . . , zm in the pattern of an expander graph.

For example, we could use a 4-regular Ramanujan graph [15, 13] on m or slightly more
than m vertices. If the graph has exactly m vertices, then for every edge (i, j) in the graph,
we use the gadgets described above to force zi = zj . If the graph has more than m vertices,
when we introduce even more copies of z so that we have one for each vertex, and then
proceed as before. The gadgets ensure that if more than k of the copies of z differ from the
majority, then at least ωk of the clauses in the gadgets will be unsatisfied, for some ω > 0. If
the E3-SAT instance is c-unsatisfiable and only a small enough fraction of the copies of z

disagree with the majority, then some constant fraction of the other NAE-E3-SAT clauses
must be unsatisfied.

As the other parts of the reduction only involve a constant number of locally substituted
clauses, we may prove as in Lemma 2 that the c-unsatisfiable E3-SAT instances become
constant-unsatisfiable 2-2 set splitting instances. As each variable appears in at most a
constant number of sets, we can then use Lemma 2 to ensure that each variable occurs in at
most three sets.
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We define and introduce these problems, and provide the first approximation algorithms: a
(1 + 4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the
weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative
Survivable Network Design with only a single demand with a connectivity requirement of 3. To
obtain these results, we introduce a number of technical ideas that may of independent interest.
First, we give a generalization of Jain’s iterative rounding analysis that works even when the
cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition we
introduce and term local weak supermodularity. Second, we prove a structure theorem and design
an approximation algorithm utilizing a new decomposition based on important separators, which
are structures commonly used in fixed-parameter algorithms that have not commonly been used in
approximation algorithms.
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41:2 Relative Survivable Network Design

fault-tolerance, which typically takes the form of edge connectivity. Informally, these look
like guarantees of the form “if up to k edges fail, then the nodes I want to be connected are
still connected.” For example, consider the following two classical problems.

The Minimum k-Edge Connected Subgraph problem (k-ECSS), where we are given a
graph G and a value k and are asked to find the k-edge connected subgraph of G of
minimum size (or weight). In other words, if fewer than k edges fail, the graph should
still be connected.
The more general Survivable Network Design problem (SND, sometimes referred to as
Generalized Steiner Network), where we are given a graph G and demands {(si, ti, ki)}i∈[ℓ],
and are supposed to find the minimum-weight subgraph H of G so that there are at least
ki edge-disjoint paths between si and ti for every i ∈ [ℓ]. In other words, for every i ∈ [ℓ],
if fewer than ki edges fail then si and ti will still be connected in H even after failures.

Both of these problems have been studied extensively (for a small sample, see [24, 19, 10,
17]), and are paradigmatic examples of network design problems. But there is a different
notion of fault-tolerance which is stronger, and in some ways more natural: relative fault-
tolerance. Relative fault-tolerance makes guarantees that rather than being absolute (“if
at most k edges fail the network still functions”) are relative to an underlying graph or
system (“if at most k edges fail, the subgraph functions just as well as the original graph
post-failures”). This allows us to generalize the traditional definition: if the underlying
graph has strong enough connectivity properties then the two definitions are the same, but
the relative version allows us to make interesting and nontrivial guarantees even when the
underlying graph does not have strong connectivity properties.

For example, the definition of Survivable Network Design has an important limitation:
if G itself can only support a small number of edge disjoint si − ti paths (e.g., 3), then of
course we cannot ask for a subgraph with more edge-disjoint paths. There simply would
be no feasible solution. But this is somewhat unsatisfactory. For example, while we cannot
guarantee that si and ti would be connected after any set of 5 faults (since those faults may
include an (si, ti) cut of size 3), clearly there could be some set of 5 faults which do not in
fact disconnect si from ti in G. And if these faults occur, it is natural to want si and ti

to still be connected in (what remains) of H. In other words: just because there exists a
small cut, why should we give up on being tolerant to a larger number of faults which do not
contain that cut?

1.1 Our Results and Techniques
In this paper we initiate the study of relative fault-tolerance in network design, by defining
relative versions of Survivable Network Design and k-ECSS.

▶ Definition 1. In the Relative Survivable Network Design problem (RSND), we are given a
graph G = (V, E) with edge weights w : E → R≥0 and demands {(si, ti, ki)}i∈[ℓ]. A feasible
solution is a subgraph H of G where for all i ∈ [ℓ] and F ⊆ E with |F | < ki, if there is a
path in G \ F from si to ti then there is also a path in H \ F from si to ti. Our goal is to
find the minimum weight feasible solution.

▶ Definition 2. The k-Edge Fault-Tolerant Subgraph problem (k-EFTS) is the special case
of RSND where there is a demand between all pairs and every ki is equal to k. In other
words, we are given a graph G = (V, E) with edge weights w : E → R≥0. A feasible solution
is a subgraph H of G where for all F ⊆ E with |F | < k, any two nodes which have a path
between them in G \ F also have a path between them in H \ F (the connected components of
H \ F are identical to the connected components of G \ F ). Our goal is to find the minimum
weight feasible solution.
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For both of these problems, we say that they are unweighted if all edges have the same
weight (or equivalently w(e) = 1 for all e ∈ E). Note that if si and ti are ki-connected in
G for every i ∈ [ℓ], then RSND is exactly the same as SND, and if G is k-connected then
k-EFTS is exactly the same as k-ECSS. Hence we have generalized these classical problems.

We note that the fault-tolerance we achieve is really “one less” than the given number
(there are strict inequalities in the definitions). This is “off-by-one” from the related relative
fault-tolerance literature [9, 5, 6], but makes the connection to SND and k-ECSS cleaner.

Difficulties. Before discussing our results or techniques, we briefly discuss what makes these
problems difficult. The non-relative versions are classical and have been studied extensively:
why can’t we just re-use the ideas and techniques developed for them? Particularly since
there is only a difference in the setting when there are small cuts in the graph, in which case
we already know that the edges of those cuts must be included in any feasible solution?

Unfortunately, it turns out that this seemingly minor change has a dramatic impact on the
structure of the problem. Most importantly, the cut requirement function has dramatically
different properties. In k-ECSS, Menger’s theorem implies that H is a valid solution if and
only if for all S ⊂ V with S ̸= ∅, there are at least k edges between S and S̄. Hence we
can rephrase k-ECSS as the problem of finding a minimum cost subgraph such that that
there are at least f(S) edges across the cut (S, S̄) for all S ⊂ V with S ̸= ∅, where f(S) = k.
Similarly, we can rephrase SND as the same problem but where f(S) = maxi∈[ℓ]:si∈S,ti ̸∈S ki

(as was shown in [24]). Thus both problems can be thought of as choosing a minimum cost
subgraph subject to satisfying some cut-requirement covering function f : 2V → R. So a
natural starting point for any approximation algorithm is to write the natural covering LP
relaxation which has a covering constraint of f(S) for every cut S. And indeed, the covering
LP using the cut-requirement function was the starting point for both the primal-dual
O(maxi∈ℓ ki)-approximation for SND of [24] and the seminal 2-approximation for SND using
iterative rounding due to Jain [19]. It has also been used for k-ECSS [17], although (unlike
SND) there are also purely combinatorial approximations [10].

Hence the natural starting point for us to study RSND and k-EFTS would be to formulate
them in terms of cut-requirement functions and try the same approaches as were used in SND
and k-ECSS. But this is easier said than done. The functions are a little more complicated,
but it is not too hard to construct a cut requirement function that characterizes feasible
solutions. However, in order to use the iterative rounding technique of Jain [19] (or any of
the weaker techniques which it superceded), the cut requirement function needs to have a
structural property known as weak (or skew) supermodularity [19]. This turns out to be
crucial, and there are still (to the best of our knowledge) no successful uses of iterative
rounding in settings without weak supermodularity. And unfortunately, it turns out that
our cut requirement functions are not weakly supermodular. So while we can phrase our
problems as satisfying a cut requirement function, we cannot actually use iterative rounding,
uncrossing, or any other part of the extensive toolkit that has grown around [19].

Our approaches. We get around this difficulty in two ways. For k-EFTS, we define a new
property of cut requirement functions which we call local weak supermodularity, and prove
that our cut requirement function has this property and that it is sufficient for iterative
rounding. This is, to the best of our knowledge, the first use of iterative rounding without weak
supermodularity. For RSND with a single demand, we use an entirely different combinatorial
approach based on decomposing the graph into a chain of connected components using
important separators [22], an important tool from fixed-parameter tractability that, to the
best of our knowledge, has not been used before in approximation algorithms.
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1.1.1 k-Edge Fault-Tolerant Subgraph
We begin in Section 2 with k-EFTS, where we prove the following two theorems.

▶ Theorem 3. There is a polynomial-time 2-approximation for the k-EFTS problem.

▶ Theorem 4. There is a polynomial-time (1 + 4/k)-approximation for the unweighted
k-EFTS problem.

Both of these theorems are consequences of a structural property we prove about the
cut-requirement function for k-EFTS: while it is not weakly supermodular, it does have a
weaker property which we term local weak supermodularity. We define this property formally
in Section 2.1.2, but at a high level it boils down to proving that while the inequalities
required for weak supermodularity do not hold everywhere (as would be required for weak
supermodularity), they hold for particular sets (i.e., they hold locally) which are the sets
where the inequalities are actually applied by Jain’s analysis. In other words, we prove
that the places in the function where weak supermodularity are violated are precisely the
places where we do not care if weak supermodularity holds. After overcoming a few more
technical complications (we actually need local weak supermodularity even in the “residual”
problem to use iterative rounding), this means that we can apply Jain’s algorithm to prove
Theorem 3.

To prove Theorem 4, it was observed for unweighted k-ECSS by [17] (with later im-
provements by [16]) that one of the main pieces of Jain’s approach, the fact that the tight
constraints can be “uncrossed” to get a laminar family with the same span, implies a
(1 + 4/k)-approximation via a trivial threshold rounding. They pointed out that the fact
that the linearly independent tight constraints form a laminar family implies that there are
only 2n linearly independent tight constraints, while there are m variables, and hence at any
basic feasible solution the remaining m − 2n tight constraints defining the point must be the
bounding constraints. These bounding constraints being tight means that the associated
variables are in {0, 1}, and hence there are only 2n fractional variables in any basic feasible
solution. Rounding all of these variables to 1 increases the cost by 2n, but since OPT ≥ kn/2
(since the input graph G must be k-connected) this results in a (1 + 4/k)-approximation.

Thanks to our local weak supermodularity characterization the laminar family result is
still true even for k-EFTS, so it is still true that there are at most 2n nonzero variables at any
extreme point. But since we are not guaranteed that G is k-connected we are not guaranteed
that OPT ≥ kn/2, and so this does not imply the desired approximation. Instead, we prove
that the number of fractional variables at any basic feasible solution is at most 2nh, where
nh is the number of “high-degree” nodes. It is then easy to argue that OPT ≥ nhk/2, which
gives Theorem 4.

1.1.2 Relative Survivable Network Design With a Single Demand
For k-EFTS, we strongly used the property that all pairs have the same demand. This is not
true for RSND, which makes the problem vastly more difficult. We still do not know whether
there exists a cut requirement function which characterizes the problem and is locally weakly
supermodular. In this paper, we study the simplest case where not all demands are the same:
when there is a single nonzero demand (s, t, k), and k is either 2 or 3 (the case of k = 1 is
simply the shortest-path problem). It turns out to be relatively straightforward to prove a
2-approximation for k = 2 even when there are many demands (see Section 3), but the k = 3
case is surprisingly difficult. We prove the following theorem in Section 4.
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▶ Theorem 5. In any RSND instance with a single demand (s, t, 3), there is a polynomial-time
7 − 1

4 = 27
4 -approximation.

To prove this, we start with the observation that if the minimum s − t cut is at least
3 then this is actually just the traditional SND problem (and in fact, the even simpler
problem of finding 3 edge-disjoint paths of minimum weight between s and t, which can
be solved efficiently via min-cost flow). So the only difficulty is when there are cuts of size
1 or 2. Cuts of size 1 can be dealt with easily (see Section 3), but cuts of size 2 are more
difficult. To get rid of them, we construct a “chain” of 2-separators (cuts of size 2 that
are also important separators [22]). Inside each component of the chain there are no 2-cuts
between the incoming separator and the outgoing separator, which allows us to characterize
the connectivity requirement of any feasible solution restricted to that component. These
connectivity requirements turn out to be quite complex even though we started with only
a single demand, as fault sets with different structure can force complicated connectivity
requirements in intermediate components. The vast majority of the technical work is proving
a structure lemma which characterizes them. With this lemma in hand, though, we can
simply approximate the optimal solution in each component.

Interestingly, to the best of our knowledge this is the first use of important separators in
approximation algorithms, despite their usefulness in fixed-parameter algorithms [22].

1.2 Related Work
The most directly related work is the 2-approximation of Jain for Survivable Network
Design [19], which introduced iterative rounding (see [20] for a detailed treatment of iterative
rounding in combinatorial optimization). This built off of an earlier line of work on survivable
network design beginning over 50 years ago with [23]. Since the success of Jain’s approach
for SND, there has been a significant amount of work on vertex-connectivity versions rather
than edge-connectivity, which is a significantly more difficult setting. This has culminated in
the state of the art approximation of [11]. There is also a long line of work on k-ECSS, most
notably including [10, 17].

While not technically related, the basic problems in this paper are heavily inspired by
recent work on relative notions of fault-tolerance in graph spanners and other non-optimization
network design settings. A relative definition of fault-tolerance for graph spanners which
is very similar to ours (but which takes distances into account due to the spanner setting)
was introduced by [9], who gave bounds on the size of f -fault-tolerant t-spanners for both
edge and vertex notions of fault-tolerance. This spawned a line of work which improved
these bounds for both vertex and edge fault-tolerance [14, 4, 7, 15, 5, 6], culminating in [5]
for vertex faults and [6] for edge faults. The basic spanner definition also inspired work
on relative fault-tolerant versions of related problems, including emulators [3], distance
sensitivity oracles for multiple faults [8], and single-source reachability subgraphs [2, 21].
What all of these results shared, though, was that they were not doing optimization: they
were looking for existential bounds (and algorithms to achieve them) for these objects. In this
paper, by contrast, we take the point of view of optimization and approximation algorithms
and compare to the instance-specific optimal solution.

2 k-Edge Fault-Tolerant Subgraph

Both Theorems 3 and 4 depend on the same LP relaxation, which is based on a modification
of the “obvious” cut-requirement function. So we begin by discussing this relaxation, and
then use it to prove the two main theorems.
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2.1 LP Relaxation
2.1.1 Basics
The natural place to start is the LP used by Jain [19], but with a cut requirement function
f(S) = min(|δG(S)|, k). Unfortunately, while this results in a valid LP relaxation, it
is not weakly supermodular (see Section 2.1.2 for the definition, and Appendix A for a
counterexample). So instead we modify this cut requirement function by removing edges
which are “forced”. For every subset S of V , let δG(S) be the set of edges with exactly one
endpoint in S. Let F = {e ∈ E | ∃S where e ∈ δG(S) and |δG(S)| ≤ k}. In other words, F

is the set of all edges that are in some cut of size at most k. Clearly we can compute F in
polynomial time by simply checking for every edge (u, v) whether the minimum u − v cut
in G has size at most k. For every set S ⊂ V with S ̸= ∅, we define the cut requirement
function fF (S) = min(k, |δG(S)|) − |δG(S) ∩ F |. Note that every edge in F must be in any
feasible solution, since if any edge is missing then a fault set consisting of the rest of the cut
(at most k − 1 edges) would disconnect the endpoints of the missing edge in the solution
but not in G, giving a contradiction. Then fF (S) is essentially the “remaining requirement”
after F has been removed.

Since iterative rounding will add other edges and remove them from the residual problem,
we will want to define a similar cut requirement function for supersets: formally, for any
F ′ ⊇ F , let fF ′(S) = min(k, |δG(S)|) − |δG(S) ∩ F ′|. For any F ′ ⊇ F , consider the following
linear program which we call LP(F ′), which has a variable xe for every edge e ∈ E \ F ′:

min
∑

e∈E\F ′

w(e)xe

s.t.
∑

e∈δG(S)\F ′

xe ≥ fF ′(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E \ F ′

(LP(F ′))

It is not hard to see that this is a valid LP relaxation (when combined with F ′), but we
prove this for completeness.

▶ Lemma 6. Let H be a valid k-EFTS and let F ′ ⊇ F . For every edge e ∈ E \ F ′, let xe = 1
if e ∈ H, and let xe = 0 otherwise. Then x is a feasible integral solution to LP(F ′).

Proof. Clearly 0 ≤ xe ≤ 1 for all e ∈ E \ F ′. Consider some S ⊆ V . Since H is a valid
k-EFTS, the number of edges in H ∩ δG(S) is at least min(k, |δG(S)|) (or else the edges in
H ∩ δG(S) would be a fault set of size less than k such that the connected components of H

post-faults are different from the connected components of G post-faults). Hence∑
e∈δG(S)\F ′

xe = |(H ∩ δG(S)) \ F ′| = |H ∩ δG(S)| − |H ∩ δG(S) ∩ F ′|

≥ |H ∩ δG(S)| − |δG(S) ∩ F ′| ≥ min(k, |δG(S)|) − |δG(S) ∩ F ′| = fF ′(S),

as required. ◀

▶ Lemma 7. Let F ′ ⊇ F and let x be an integral solution to LP(F ′). Let E′ = {e : xe = 1}.
Then H = E′ ∪ F ′ is a valid k-EFTS.

Proof. Suppose for contradiction that H is not a valid k-EFTS. Then there are two nodes
u, v ∈ V and a minimal set A ⊆ E with |A| < k so that u, v are not connected in H \ A but
are connected in G \ A. Let S be the nodes reachable from u in G \ A, and so by minimality
of A we know that A = H ∩ δG(S).
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Note that |δG(S)| > k, or else all edges of δG(S) would be in F , implying that E ∩δG(S) =
H ∩ δG(S) = A and so u and v would not be connected in G \ A. Thus∑

e∈δG(S)\F ′

xe = |H ∩ δG(S)| − |F ′ ∩ δG(S)| = |A| − |δG(S) ∩ F ′|

< min(k, |δG(S)|) − |δG(S) ∩ F ′| = fF ′(S),

which contradicts x being a feasible solution to LP(F ′). ◀

These lemmas (together with the fact that every edge in F must be in any valid solution)
imply that if we can solve and round this LP while losing some factor α, then we can add F

to the rounded solution to get an α-approximation. Hence we are interested in solving and
rounding this LP.

We first argue that we can solve the LP using the Ellipsoid algorithm with a separation
oracle. Note that unlike k-ECSS, here a violated constraint does not just correspond to a cut
with LP values less than k, since our cut-requirement function is more complicated. Indeed,
if we compute a global minimum cut (with respect to the LP values) then we may end up
with a small cut which is not violated even though there are violated constraints. So we need
to argue more carefully that we can find a violated cut when one exists.

▶ Lemma 8. For every F ′ ⊇ F , LP(F ′) can be solved in polynomial time.

Proof. We give a separation oracle, which when combined with the Ellipsoid algorithm
implies the lemma [18]. Consider some vector x indexed by edges of E \ F ′. Suppose that x

is not a feasible LP solution, so we need to find a violated constraint. Obviously if there
is some xe ̸∈ [0, 1] then we can find this in linear time. So without loss of generality, we
may assume that there is some S ⊆ V such that

∑
e∈δG(S)\F ′ xe < fF ′(S). This implies that

fF ′(S) > 0 and that there is some edge e∗ ∈ δG(S) \ F ′ with xe∗ < 1 (since otherwise the LP
would not be satisfiable, contradicting Lemma 6 and the fact that G itself is a valid k-EFTS).
Let e∗ = {u, v}. Since e∗ ̸∈ F ′, and F ⊆ F ′, we know that e∗ cannot be part of any cuts in
G of size at most k, and thus the minimum u − v cut in G has more than k edges.

On the other hand, if we extend x to F ′ by setting xe = 1 for all e ∈ F ′, then since S is
a violated constraint we have that∑

e∈δG(S)

xe =
∑

e∈δG(S)\F ′

xe + |F ′ ∩ δG(S)| < fF ′(S) + |F ∩ δG(S)|

= min(k, |δG(S)|) − |δG(S) ∩ F ′| + |δG(S) ∩ F ′|
= k.

Thus if we interpret x as edge weights (with xe = 1 for all e ∈ F ), if we compute the
minimum s − t cut we will find a cut S′ with more than k edges (since all u − v cuts have
more than k edges) with total edge weight strictly less than k. Let S′ be this cut. Thus∑

e∈δG(S′)\F ′ xe < k − |δG(S′) \ F ′| = fF ′(S′), so S′ is also a violated constraint.
Hence for our separation oracle we simply compute a minimum s − t cut using x as edge

weights for all s, t ∈ V , and if any cut we finds corresponds to a violated constraint then we
return it. By the above discussion, if there is some violated constraint then this procedure
will find some violated constraint. Thus this is a valid separation oracle. ◀

After solving this LP, we apply an obvious transformation used also in [19]: we delete
every edge e with xe = 0. This allows us to assume without loss of generality that every edge
has LP value xe > 0 in our LP solution.
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2.1.2 Local Weak Supermodularity
As discussed in Section 1.1.1, it would be nice if this LP were weakly supermodular, as
this would immediately let us apply Jain’s iterative rounding algorithm to obtain a 2-
approximation. Recall the definition of weak supermodularity from [19].

▶ Definition 9. Let f : 2V → Z. Then f is weakly supermodular if for every A, B ⊆ V ,
either f(A) + f(B) ≤ f(A \ B) + f(B \ A), or f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B).

Unfortunately, our cut requirement function is not weakly supermodular; see Appendix A
for a counterexample. But we can make a simple observation that, to the best of our
knowledge, has not previously been noticed or utilized in iterative rounding: Jain’s iterative
rounding algorithm does not actually need the weak supermodularity conditions to hold for
all pairs of sets A, B. It only needs weak supermodularity to “uncross” the tight sets of
an LP solution into a laminar family of tight sets with the same span. Recall that a set is
tight in a given LP solution if its corresponding cut constraint is tight, i.e., is satisfied with
equality. Moreover, note that in our setting, depending on our choice of F ′ some cuts might
be entirely included in F ′. These cuts would not have any edges remaining, resulting in an
“empty” constraint in LP(F ′). Such a constraint cannot be tight by definition, and also is
not linearly independent with any other set of constraints.

Hence in order to use Jain’s iterative rounding, we simply need our cut-requirement
function fF ′ to satisfy the weak supermodularity requirements for A, B where there is actually
a nontrivial constraint for A, B and where F ′ ⊇ F (here F ′ will consist of F together with
edges that Jain’s iterative rounding algorithm has already set to 1). We formalize this as
follows. Given F ′ ⊇ F , we say that S is an empty cut if δG(S) ∩ F ′ = δG(S), and otherwise
it is nonempty.

▶ Definition 10. Given a graph G = (V, E), a set F ′ ⊆ E, and a function g : 2V → Z, we
say that g is locally weakly supermodular with respect to F ′ if for every A, B ⊆ V with both
A and B nonempty cuts, at least one of the following conditions holds:

g(A) + g(B) ≤ g(A \ B) + g(B \ A), or
g(A) + g(B) ≤ g(A ∩ B) + g(A ∪ B).

We will now prove that for any F ′ ⊇ F , the function fF ′ is locally weakly supermodular
with respect to any F ′. This is the key technical idea enabling Theorems 3 and 4.

We say that S is large if |δG(S)| > k, and otherwise S is small. Note that since F ′ ⊇ F ,
any small cut is also an empty cut. We first prove a useful lemma.

▶ Lemma 11. Let F ′ ⊇ F . If A and B are nonempty cuts for fF ′ , then either A \ B and
B \ A are nonempty cuts, or A ∩ B and A ∪ B are nonempty cuts.

Proof. Let

S1 = δG(A \ B, V \ (A ∪ B)), S2 = δG(A \ B, B \ A), S3 = δG(A \ B, A ∩ B),
S4 = δG(B \ A, V \ (A ∪ B)), S5 = δG(B \ A, A ∩ B), S6 = δG(A ∩ B, V \ (A ∪ B)).

Suppose that A \ B and A ∩ B are both empty cuts. Each edge in δG(A) is in S1, S2, S5,
or S6. Additionally, S1 and S2 are subsets of δG(A \ B), while S5 and S6 are subsets of
δG(A ∩ B). This means that every edge in δG(A) is in an empty cut, and so all edges in
δG(A) are in F ′. Thus A is an empty cut, contradicting the assumption of the lemma. Thus
at least one of A \ B and A ∩ B is nonempty. If we instead assume that B \ A and A ∩ B

are empty cuts, then we can use a similar argument to prove that B is an empty cut. This
proves that at least one of B \ A and A ∩ B are nonempty. Hence if A ∩ B is empty, then
both A \ B and B \ A are nonempty, proving the lemma.
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Now suppose that A \ B and A ∪ B are both empty cuts. Each edge in δG(B) is in S2,
S3, S4, or S6. Additionally, S2 and S3 are subsets of δG(A \ B), while S4 and S6 are subsets
of δG(A ∪ B). This means that every edge in δG(B) is in an empty cut, and so all edges in
δG(B) are in F ′. Thus B is an empty cut, contradicting the assumption of the lemma. Thus
at least one of A \ B and A ∪ B is nonempty. If we instead assume that B \ A and A ∪ B

are empty cuts, then we can use a similar argument to prove that A is empty, and hence at
least one of B \ A and A ∪ B is nonempty. Hence if A ∪ B is empty, then both A \ B and
B \ A are nonempty, proving the lemma.

Thus either both A \ B and B \ A are nonempty, or both A ∩ B and A ∪ B are nonempty,
proving the lemma. ◀

We can now prove the main technical result: fF ′ is locally weakly supermodular.
▶ Theorem 12 (Local Weak Supermodularity). For any F ′ ⊇ F , the cut requirement function
fF ′ is locally weakly supermodular with respect to F ′.
Proof. Let F ′ ⊇ F , and suppose A and B are nonempty cuts. Let

S1 = δG(A \ B, V \ (A ∪ B)), S2 = δG(A \ B, B \ A), S3 = δG(A \ B, A ∩ B),
S4 = δG(B \ A, V \ (A ∪ B)), S5 = δG(B \ A, A ∩ B), S6 = δG(A ∩ B, V \ (A ∪ B)).

We also let si = |Si ∩ F ′| for i ∈ [6].
A and B are nonempty cuts, so A and B must be large cuts and min(k, |δG(A)|) =

min(k, |δG(B)|) = k. Each edge in δG(A) is in exactly one of S1, S2, S5, and S6, and each edge
in δG(B) is in exactly one of S2, S3, S4, and S6, so we have that |δG(A)∩F ′| = s1 +s2 +s5 +s6
and |δG(B) ∩ F ′| = s2 + s3 + s4 + s6. We therefore have the following:

fF ′(A) = min(k, |δG(A)|) − |δG(A) ∩ F | = k − s1 − s2 − s5 − s6

fF ′(B) = min(k, |δG(B)|) − |δG(B) ∩ F | = k − s2 − s3 − s4 − s6

=⇒ fF ′(A) + fF ′(B) = 2k − s1 − 2s2 − s3 − s4 − s5 − 2s6. (1)

A and B are nonempty so by Lemma 11, either A \ B and B \ A are nonempty cuts, or
A ∩ B and A ∪ B are nonempty cuts. Suppose first that A \ B and B \ A are nonempty cuts,
which implies that min(k, |δG(A \ B)|) = min(k, |δG(B \ A)|) = k. Each edge in δG(A \ B)
is in exactly one of S1, S2, and S3, and each edge in δG(B \ A) is in exactly one of S2, S4,
and S5, so we have that |δG(A \ B) ∩ F ′| = s1 + s2 + s3 and |δG(B \ A) ∩ F ′| = s2 + s4 + s5.
Putting this all together, we get the following for fF ′(A \ B) and fF ′(B \ A):

fF ′(A \ B) = min(k, |δG(A \ B)|) − |δG(A \ B) ∩ F ′| = k − s1 − s2 − s3

fF ′(B \ A) = min(k, |δG(B \ A)|) − |δG(B \ A) ∩ F ′| = k − s2 − s4 − s5

=⇒ fF ′(A \ B) + f(B \ A) = 2k − s1 − 2s2 − s3 − s4 − s5.

This and (1) imply that fF ′(A) + fF ′(B) ≤ fF ′(A \ B) + fF ′(B \ A) if A \ B and B \ A are
nonempty cuts.

Now suppose that A ∩ B and A ∪ B are nonempty cuts, and so min(k, |δG(A \ B)|) =
min(k, |δG(B \A)|) = k. Each edge in δG(A∩B) is in exactly one of S3, S5, and S6, and each
edge in δG(A ∪ B) is in exactly one of S1, S4, and S6, so we have that |δG(A ∩ B) ∩ F ′| =
s3 + s5 + s6 and |δG(A ∪ B) ∩ F ′| = s1 + s4 + s6. Putting this all together, we get the
following for fF ′(A ∩ B) and fF ′(A ∪ B):

fF ′(A ∩ B) = min(k, |δG(A ∩ B)|) − |δG(A ∩ B) ∩ F ′| = k − s3 − s5 − s6

fF ′(A ∪ B) = min(k, |δG(A ∪ B)|) − |δG(A ∪ B) ∩ F ′| = k − s1 − s4 − s6

=⇒ fF ′(A ∩ B) + fF ′(A ∪ B) = 2k − s1 − s3 − s4 − s5 − 2s6.

This and (1) imply that fF ′(A) + fF ′(B) ≤ fF ′(A ∩ B) + fF ′(B ∪ A) if A ∩ B and A ∪ B are
nonempty cuts. ◀
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2.2 Unweighted k-EFTS
To prove Theorem 4 we need to look inside [19]. The following two lemmas from [19] are the
main “uncrossing” lemmas which depend on weak supermodularity, and in which we can
use local weak supermodularity instead without change. As in [19], for each S ⊆ V we use
AG(S) to denote the row of the constraint matrix corresponding to S. In other words AG(S)
is a vector indexed by elements of E \ F which has a 1 in the entry for e if e ∈ δG(S) \ F ,
and otherwise has a 0 in that entry.

▶ Lemma 13 (Lemma 4.1 of [19]). If two sets A and B are tight then at least one of the
following must hold
1. A \ B and B \ A are also tight, and AG(A) + AG(B) = AG(A \ B) + AG(B \ A)
2. A ∩ B and A ∪ B are also tight, and AG(A) + AG(B) = AG(A ∩ B) + AG(A ∪ B)

Let T denote the family of all tight sets. For any family F of tight sets, let Span(F)
denote the vector space spanned by {AG(S) : S ∈ F}.

▶ Lemma 14 (Lemma 4.2 of [19]). For any maximal laminar family L of tight sets, Span(L) =
Span(T ).

Recall that nh is the number of high-degree nodes, i.e., nodes of degree at least k in G.
Then we have the following lemma, which is a modification of Lemma 4.3 of [19] where we
give a stronger bound on the number of sets.

▶ Lemma 15. The dimension of Span(T ) is at most 2nh − 1.

Proof. Let L be a maximal laminar family of tight sets. Lemma 14 implies that Span(L) =
Span(T ), so it suffices to upper bound the number of sets in L. And since we care about the
span, if there are two sets S, S′ with AG(S) = AG(S′) then we can remove one of them from
L arbitrarily, so no two sets in L have identical rows in the constraint matrix.

Any set that consists of exclusively low degree nodes cannot be tight, since the set has no
corresponding row in the constraint matrix. Thus, all sets in L must contain at least one
high degree node, and hence all minimal sets in L have at least one high degree node.

Let S ∈ L, and let S′ ⊃ S so that every node in S′ \ S is a low-degree node. Then every
edge edge in (δG(S) \ δG(S′)) ∪ (δG(S′) \ δG(S)) must be incident on at least one low-degree
node and hence is in F . Thus AG(S) = AG(S′), and hence S′ is not in L. Therefore, any
superset S′ in the laminar family of some other set S in the laminar family must have at
least one more high degree node than S.

Since any minimal set in L has at least one high degree node, and every set in L contains
at least one more high degree node than any set in L that it contains, if we restrict each set
in L to the high-degree nodes then we have a laminar family on the high-degree nodes. Thus
|L| ≤ 2nh − 1. ◀

We can now prove Theorem 4.

Proof of Theorem 4. We first solve LP(F ) using Lemma 8 to get some basic feasible solution
x. Since there are |E \ F | variables, this point is defined by |E \ F | linearly independent
tight constraints. Lemma 15 implies that at most 2nh − 1 of these are from tight sets, and
hence all of the other tight constraints must be of the form xe = 0 or xe = 1 for some edge
e ∈ E \ F . Thus at most 2nh − 1 edges are assigned a fractional value in x. Hence if we
include all such edges in our solution H , together with all edges with xe = 1 and all edges in
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F , we have a solution which is feasible (by Lemma 7). Note that any high-degree node must
have degree at least k in any feasible solution, and thus OPT ≥ k

2 nh. Hence our solution H

has size at most

|H| ≤
∑

e∈E\F

xe + |F | + 2nh ≤ OPT + 2nh ≤ OPT + 4
k

OPT =
(

1 + 4
k

)
OPT. ◀

2.3 Weighted k-EFTS
Jain’s approximation algorithm solves the initial LP, rounds up and removes any edges with
xe ≥ 1/2 which results in a residual problem, and repeats. This is obviously a 2-approximation
(see [19] for details), but requires proving that there is always at least one edge with xe ≥ 1/2
so we can make progress (even in the residual problems). This is accomplished by proving
Lemmas 13 and 14 to show that the tight constraints can be “uncrossed” into a laminar
family. This requires weak supermodularity, but as discussed, since in our LP every tight
constraint must be a nonempty constraint, it is sufficient to replace this with local weak
supermodularity. Jain then uses a complex counting argument based on this laminar family
of tight constraints to prove that some edge e must have xe ≥ 1/2. Importantly, nothing
in this counting argument depends on the cut requirement having any particular structure
(e.g., weak supermodularity); it depends only on the fact that the family of tight constraints
can be uncrossed to be laminar.

Since local weak supermodularity is sufficient to uncross the tight constraints into a
laminar family, we can simply apply Jain’s counting argument on this family for LP(F ′) to
obtain the following lemma (as in Theorem 3.1 of [19]).

▶ Lemma 16. For all F ′ ⊇ F , in any basic feasible solution x of LP(F ′) there is at least
one e ∈ E \ F ′ with xe ≥ 1/2.

Hence we have the following iterative rounding algorithm for weighted k-EFTS:

Let F ′ = F

While F ′ is not a feasible solution:
Let x be a basic feasible solution for LP(F ′) (obtained in polynomial time using
Lemma 8)
Let E1/2 = {e ∈ E \ F ′ : xe ≥ 1/2}, which must be nonempty by Lemma 16
Add E1/2 to F ′

This clearly returns a feasible solution, and the analysis of [19] (particularly Theorem
3.2) implies that this is a 2-approximation, which implies Theorem 3.

3 2-Connectivity and k = 2

We will now move on from k-EFTS to the more general RSND problem. It turns out to
be relatively straightforward to handle cuts of size 1: removing such cuts gives a tree of
2-connected components, and we can essentially run an algorithm independently inside each
component. This gives the following theorem, the proof of which can be found in the full
version [13].

▶ Theorem 17. If there exists an α-approximation algorithm for RSND on 2-edge connected
graphs, then there is an α-approximation algorithm for RSND on general graphs.
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Extending this slightly gives the following theorem (proof in the full version [13]), where
2-RSND denotes the special case of the RSND problem where ki ≤ 2 for all i.

▶ Theorem 18. There is a 2-approximation algorithm for 2-RSND.

4 RSND with a Single Demand: k = 3

In this section we prove Theorem 5. In the Single Demand RSND problem, we are given a
graph G = (V, E) (possibly with edge weights w : E → R+) and a k-relative fault tolerance
demand for a single vertex pair (s, t). In other words, the set of connectivity demands is
just {(s, t, k)}. We give a 7 − 1

4 = 27
4 -approximation algorithm for the k = 3 Single Demand

RSND problem. The main idea is to partition the input graph using important separators,
prove a structure lemma which characterizes the required connectivity guarantees within each
component of the partition, and then achieve these guarantees using a variety of subroutines:
a min-cost flow algorithm, a 2-RSND approximation algorithm (Theorem 18), and a Steiner
Forest approximation algorithm [1].

4.1 Decomposition
By Theorem 17, an α-approximation algorithm for RSND on 2-connected graphs implies
an α-approximation algorithm for RSND on general graphs. Hence going forward, we will
assume the input graph G is 2-connected. In this section we define important separators and
describe how to construct what we call the s − t 2-chain of G.

▶ Definition 19. Let X and Y be vertex sets of a graph G. An (X, Y )-separator of G is a
set of edges S such that there is no path between any vertex x ∈ X and any vertex y ∈ Y in
G \ S. An (X, Y )-separator S is minimal if no subset S′ ⊂ S is also an (X, Y )-separator. If
X = {x} and Y = {y}, we say that S is an (x, y)-separator.

The next definition, which is a slight modification of the definition due to [22], is a
formalization of a notion of a “closest” separator.

▶ Definition 20. Let S be an (X, Y )-separator of graph G, and let R be the vertices reachable
from X in G \ S. Then S is an important (X, Y )-separator if S is minimal and there is no
(X, Y )-separator S′ such that |S′| ≤ |S| and R′ ⊂ R, where R′ is the set of vertices reachable
from X in G \ S′.

This definition corresponds to a “closest” separator, while the original definition of [22]
correspond to a “farthest” separator. Important separators have been studied extensively
due to their usefulness in fixed-parameter tractable algorithms, and so much is known about
them. For our purposes, we will only need the following lemma, which follows directly from
Theorem 2 of [22].

▶ Lemma 21. Let X, Y ⊆ V be two sets of vertices in graph G = (V, E), and let d ≥ 0. An
important (X, Y )-separator of size d can be found in time 4d · nO(1) (if one exists), where
n = |V |.

By Lemma 21, we can find an important (X, Y )-separator of size 2 in polynomial time.
We now describe how to use this to construct what we call the s − t 2-chain of G. First, if
there are no important (s, t)-separators of size 2 in G, then every (s, t)-separator has size at
least 3. Hence we can just use the 2-approximation for Survivable Network Design [19] with
demand (s, t, 3) to solve the problem (or can exactly solve it by finding the cheapest three
pairwise disjoint s − t paths in polynomial time using a min-cost flow algorithm).
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Figure 1 The s − t 2-chain of G.

If such an important separator exists, then we first find an important (s, t)-separator S0
of size 2 in G, and let R0 be the set of vertices reachable from s in G \ S0. We let V(0,r) be
the nodes in R0 incident on S0, and let V(1,ℓ) be the nodes in V \ R0 incident on S0. We
then proceed inductively. Given V(i,ℓ), if there is no important (V(i,ℓ), t) separator of size 2
in G \ (∪i−1

j=0Rj) then the chain is finished. Otherwise, let Si be such a separator, let Ri be
the nodes reachable from V(i,ℓ) in (G \ (∪i−1

j=0Rj)) \ Si, let V(i,r) be the nodes in Ri incident
on Si, and let V(i+1,ℓ) be the nodes in V \ (∪i

j=0Rj) incident on Si.
After this process completes we have our s−t 2-chain, consisting of components R0, . . . , Rp

along with important separators S0, . . . , Sp−1 between the components. See Figure 1.
We can now use this chain construction to give a structure lemma which characterizes

feasible solutions. Informally, the lemma states that a subgraph H of G is a feasible solution
if and only if in the s − t 2-chain of G, all edges between components are in H, and in every
component Ri certain connectivity requirements between V(i,ℓ) and V(i,r) are met.

Let G = (V, E) be a graph, and let H be a subgraph of G. Going forward, we will say
that in H, a vertex set A ⊂ V has a path to (or is reachable from) another vertex set B ⊂ V

if there is a path from a vertex a ∈ A to a vertex b ∈ B in H. Additionally, let X and Y

be vertex sets. We also say that H satisfies the RSND demand (X, Y, k) on input graph G

if the following is true: for every F ⊆ E with |F | < k, if there is a path from at least one
vertex in X to at least one vertex in Y in G \ F then there is a path from at least one vertex
in X to at least one vertex in Y in H \ F . The demand (X, Y, k) on input G is equivalent
to contracting all nodes in X to create super node vX , contracting all nodes in Y to create
super node vY , and including demand (vX , vY , k). We will also let G[Ri] and H[Ri] be the
subgraphs of G and H, respectively, induced by the component Ri.

▶ Lemma 22 (Structure Lemma). Let G be the input graph, and let H be a subgraph of
G. Additionally, let R0, . . . , Rp denote the components in the s − t 2-chain of G, and let
S0, . . . , Sp−1 denote the edge sets between components in the chain, as defined previously.
Let Gi = G[Ri], and Hi = H[Ri]. Then H is a feasible solution to the k = 3 Single Demand
RSND problem if and only if all edges in S0, . . . , Sp−1 are included in H, and Hi has the
following properties for every i:
1. There are at least 3 edge-disjoint paths from V(i,ℓ) to V(i,r).
2. Hi is a feasible solution to RSND on input graph Gi with demands{

(V(i,ℓ), vr, 2) : vr ∈ V(i,r)
}

∪
{

(V(i,r), vℓ, 2) : vℓ ∈ V(i,ℓ)
}

.

3. Hi is a feasible solution to RSND on input graph Gi with demands{
(u, v, 1) : (u, v) ∈ V(i,ℓ) × V(i,r)

}
.

The proof of this structure lemma is a highly technical case analysis, which due to space
constraints can be found in the full version [13]. At a very high level, though, our proof
is as follows. For the “only if” direction, we first assume that we are given some feasible
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solution H. Then for each of the properties in Lemma 22, we assume it is false and derive a
contradiction by finding a fault set F ⊆ E with |F | ≤ 2 where there is a path from s to t

in G \ F , but not in H \ F . The exact construction of such an F depends on which of the
properties of Lemma 22 we are analyzing.

For the more complicated “if” direction, we assume that H satisfies the conditions of
Lemma 22 and consider a fault set F ⊆ E with |F | ≤ 2 where s and t are connected in G \ F .
We want to show that s and t are connected in H \ F . We analyze two subchains of the
s − t 2-chain of G: the minimal prefix of the chain which contains at least 1 fault, and the
minimal prefix of the chain which contains both faults. We first show that the set of vertices
reachable from s at the end of the first subchain is the same in G \ F and in H \ F . We then
use this to show that there is at least one reachable vertex at the end of the second subchain
in H \ F , even though (unlike the first subchain) the set of reachable vertices at the end of
the second subchain may be smaller in H \ F than in G \ F . From there we show that there
is a path to t in H \ F from this one reachable vertex. There are a large number of cases
depending on the structure of F (whether it intersects some of the separators in the chain,
whether both faults are in the same component, etc.), and we have to use different properties
of Lemma 22 in different cases, making this proof technically involved.

4.2 Algorithm and Analysis
We can now use Lemma 22 to give a 7 − 1

4 = 27
4 -approximation algorithm for the k = 3

setting of Single Demand RSND on 2-connected graphs which, by Theorem 17, gives a
27
4 -approximation algorithm for the k = 3 Single Demand RSND problem on general graphs.

Our algorithm uses a variety of subroutines, including an algorithm for min-cost flow,
the 2-RSND approximation algorithm of Theorem 18, and a Steiner Forest approximation
algorithm. For reference, we state the latter of these.

▶ Lemma 23 ([1]). There is a
(
2 − 1

k

)
-approximation algorithm for the Steiner Forest

problem, where k is the number of terminal pairs in the input.

We can now give our algorithm. Given a graph G = (V, E) with edge weights w : E → R≥0
and demand {(s, t, 3)}, we first create the s − t 2-chain of G in polynomial time, as described
in Section 4.1. After building the chain, within each component we run a set of algorithms
to satisfy the demands characterized by Lemma 22: a combination of min-cost flow, 2-RSND,
and Steiner Forest algorithms. We include the outputs of these algorithms in our solution H ,
together with all edges in the separators S = S1 ∪ S2 ∪ · · · ∪ Sp−1.

We first create an instance of min-cost flow on G[Ri] (in polynomial time). Contract
the vertices in V(i,ℓ) and contract the vertices in V(i,r) to create super nodes vℓ and vr,
respectively. Let vℓ be the source node and vr be the sink node. For each edge e ∈ E(Ri)
set the capacity of e to 1 and set the cost of e to w(e). Require a minimum flow of 3, and
run a polynomial-time min-cost flow algorithm on this instance [12]. Since all capacities are
integers the algorithm will return an integral flow, so we add to H all edges with non-zero
flow.

We then create our first instance of 2-RSND on G[Ri]. Contract the vertices in V(i,ℓ) to
create super node vℓ, and set demands {(vℓ, u, 2) : u ∈ V(i,r)}. For our second instance of 2-
RSND on Ri, contract V(i,r) to create super node vr, and set demands {(u, vr, 2) : u ∈ V(i,ℓ)}.
We run the 2-RSND algorithm (Theorem 18) on each of these instances and include all
selected edges in H.
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Finally, we create an instance of the Steiner Forest problem on G[Ri]. For each vertex
pair (vℓ, vr) ∈ V(i,ℓ) × V(i,r), we check in polynomial time if vℓ and vr are connected in
G[Ri]. If they are connected, then we include (vℓ, vr) as a terminal pair in the Steiner Forest
instance. Additionally, for e ∈ E(Ri), we set the cost of e to w(e). We run the Steiner Forest
approximation algorithm (Lemma 23) on this instance, and add all selected edges to H.

The following lemma is essentially directly from Lemma 22 (the structure lemma) and
the description of our algorithm.

▶ Lemma 24. H is a feasible solution.

Proof. For each i, let Hi denote the subgraph of H induced by Ri and let Gi denote the
subgraph of G induced by Ri. We will show that H satisfies the conditions of Lemma 22,
and hence is feasible. By construction, H contains all edges S in the important separators.

To show property 1 of Lemma 22, recall that in each Hi we included the edges selected
via a min-cost flow algorithm from V(i,ℓ) to V(i,r) with flow 3. Since there are at least three
edge-disjoint paths from V(i,ℓ) to V(i,r) in Gi (by Lemma 22 since G itself is feasible), this
will return three edge-disjoint paths from V(i,ℓ) to V(i,r). Hence H satisfies the first property.

Property 2 of Lemma 22 is direct from the algorithm, since Hi includes the output of
the 2-RSND algorithm from Theorem 18 when run on demands

{
(V(i,ℓ), vr, 2) : vr ∈ V(i,r)

}
∪{

(V(i,r), vℓ, 2) : vℓ ∈ V(i,ℓ)
}

. Similarly, within each component Hi in the s − t 2-chain, the
edges selected by the Steiner Forest algorithm form a path from vertex vℓ ∈ V(i,ℓ) to vertex
vr ∈ V(i,r) if vℓ and vr are connected in G. This satisfies Property 3 in Lemma 22. ◀

Let H∗ denote the optimal solution, and for any set of edges A ⊆ E, let w(A) =
∑

e∈A w(e).
The next lemma follows from combining the approximation ratios of each of the subroutines
used in our algorithm.

▶ Lemma 25. w(H) ≤ 27
4 · w(H∗)

Proof. Let Hi = H[Ri] be the subgraph of H induced by Ri, and let H∗
i = H∗[Ri] be the

subgraph of the optimal solution induced by Ri. We also let HM
i denote the subgraph of Hi

returned by the min-cost flow algorithm run on Ri (i.e., the set of edges with non-zero flow),
let HN1

i and HN2

i denote the subgraphs returned by the first and second 2-approximation
2-RSND algorithms run on Ri, respectively, and we let HF

i denote the subgraph of Hi

returned by the Steiner Forest algorithm on Ri. We also let M∗
i be the optimal solution to

the Minimum-Cost Flow instance on Ri, let N1∗

i and N2∗

i be the optimal solutions to the
first and second 2-RSND instances on Ri, respectively, and let F ∗

i be the optimal solution to
the Steiner Forest instance on Ri. Subgraph HM

i is given by an exact algorithm, subgraphs
HN1

i and HN2

i are given by a 2-approximation algorithm, and subgraph HF
i is given by a(

2 − 1
k

)
-approximation algorithm. Note that there are at most 4 terminal pairs in the Steiner

Forest instance, so k ≤ 4 and the algorithm gives a 7
4 -approximation. Hence we have the

following for each component Ri:

w(HM
i ) = w(M∗

i ), w(HN1

i ) ≤ 2w(N1∗

i ), w(HN2

i ) ≤ 2w(N2∗

i ), w(HF
i ) ≤ 7

4w(F ∗
i ).

Summing over all components in the chain, we get the following:
p∑

i=0
w(HM

i ) =
p∑

i=0
w(M∗

i ),
p∑

i=0
w(HN1

i ) ≤ 2 ·
p∑

i=0
w(N1∗

i ),

p∑
i=0

w(HN2

i ) ≤ 2 ·
p∑

i=0
w(N2∗

i ),
p∑

i=0
w(HF

i ) ≤ 7
4 ·

p∑
i=0

w(F ∗
i ).
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We also have that

w(Hi) ≤ w(HM
i ) + w(HN1

i ) + w(HN2

i ) + w(HF
i ).

Summing over all components in the chain and then substituting the above, we get the
following:

p∑
i=0

w(Hi) ≤
p∑

i=0
w(HM

i ) +
p∑

i=0
w(HN1

i ) +
p∑

i=0
w(HN2

i ) +
p∑

i=0
w(HF

i )

≤
p∑

i=0
w(M∗

i ) + 2 ·
p∑

i=0
w(N1∗

i ) + 2 ·
p∑

i=0
w(N2∗

i ) + 7
4 ·

p∑
i=0

w(F ∗
i ).

The optimal subgraph H∗ is a feasible solution, so by Lemma 22, each property in the
lemma statement must be met on subgraph H∗

i for all i. For all properties in the lemma
to be satisfied on H∗

i , the set of edges E(H∗
i ) must be a feasible solution to each of the

Minimum-Cost Flow, 2-RSND, and Steiner Forest instances on Ri. Therefore, the cost of
H∗

i must be at least the cost of the optimal solution to each of the Minimum-Cost Flow,
2-RSND, and Steiner Forest instances. We therefore have the following:

p∑
i=0

w(Hi) ≤
p∑

i=0
w(H∗

i ) + 2
p∑

i=0
w(H∗

i ) + 2
p∑

i=0
w(H∗

i ) + 7
4

p∑
i=0

w(H∗
i ) ≤ 27

4

p∑
i=0

w(H∗
i ).

Finally, we must account for the edges between components in the s − t 2-chain. Let S be
the set of edges between components in the chain that are included in the algorithm solution,
and let S∗ be the set of edges between components included in the optimal solution. By
Lemma 22, any feasible solution must include all edges between the components of the chain.
We therefore have that S = S∗ and we get the following:

w(H) =
p∑

i=0
w(Hi) + w(S) ≤ 27

4

p∑
i=0

w(H∗
i ) + w(S) ≤ 27

4

(
p∑

i=0
w(H∗

i ) + w(S∗)
)

≤ 27
4 w(H∗). ◀

Theorem 5 is directly implied by Lemmas 24 and 24 together with the obvious observation
that our algorithm runs in polynomial time.

References
1 Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: an approximation algorithm

for the generalized Steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
doi:10.1137/S0097539792236237.

2 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for single
source reachability: Generic and optimal. In Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC ’16, pages 509–518, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2897518.2897648.

3 Greg Bodwin, Michael Dinitz, and Yasamin Nazari. Vertex fault-tolerant emulators. In Mark
Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
volume 215 of LIPIcs, pages 25:1–25:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.25.

4 Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal
vertex fault tolerant spanners (for fixed stretch). In Artur Czumaj, editor, Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 1884–1900. SIAM, 2018.

https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1145/2897518.2897648
https://doi.org/10.4230/LIPIcs.ITCS.2022.25


M. Dinitz, A. Koranteng, and G. Kortsarz 41:17

5 Greg Bodwin, Michael Dinitz, and Caleb Robelle. Optimal vertex fault-tolerant spanners
in polynomial time. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, 2021.

6 Greg Bodwin, Michael Dinitz, and Caleb Robelle. Optimal vertex fault-tolerant spanners in
polynomial time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2924–2938. SIAM, 2022.
doi:10.1137/1.9781611976465.174.

7 Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant
spanners. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC ’19, pages 541–543, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3293611.3331588.

8 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles
and routing schemes. In Mark de Berg and Ulrich Meyer, editors, Algorithms – ESA 2010,
pages 84–96, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

9 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM J. Comput., 39(7):3403–3423, 2010.

10 Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM Journal on Computing, 30(2):528–560, 2000. doi:
10.1137/S009753979833920X.

11 Julia Chuzhoy and Sanjeev Khanna. An o(k3 log n)-approximation algorithm for vertex-
connectivity survivable network design. Theory Comput., 8(1):401–413, 2012. doi:10.4086/
toc.2012.v008a018.

12 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

13 Michael Dinitz, Ama Koranteng, and Guy Kortsarz. Relative survivable network design, 2022.
doi:10.48550/ARXIV.2206.12245.

14 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011.

15 Michael Dinitz and Caleb Robelle. Efficient and simple algorithms for fault-tolerant spanners.
In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles of
Distributed Computing, pages 493–500. ACM, 2020. doi:10.1145/3382734.3405735.

16 Harold N. Gabow and Suzanne R. Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.
doi:10.1137/080732572.

17 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the smallest k-edge connected spanning subgraph by lp-rounding. Networks, 53(4):345–357,
2009.

18 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
doi:10.1007/978-3-642-97881-4.

19 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

20 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, USA, 1st edition, 2011.

21 Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. A brief note on
single source fault tolerant reachability, 2019. doi:10.48550/ARXIV.1904.08150.

22 Dániel Marx. Important separators and parameterized algorithms. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 5–10. Springer, 2011.

23 K. Steiglitz, P. Weiner, and D. Kleitman. The design of minimum-cost survivable networks.
IEEE Transactions on Circuit Theory, 16(4):455–460, 1969. doi:10.1109/TCT.1969.1083004.

24 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-
dual approximation algorithm for generalized steiner network problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

APPROX/RANDOM 2022

https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1145/3293611.3331588
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.4086/toc.2012.v008a018
https://doi.org/10.4086/toc.2012.v008a018
https://doi.org/10.48550/ARXIV.2206.12245
https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1137/080732572
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1007/s004930170004
https://doi.org/10.48550/ARXIV.1904.08150
https://doi.org/10.1109/TCT.1969.1083004
https://doi.org/10.1007/BF01299747


41:18 Relative Survivable Network Design

A Counterexamples from Section 2

We show some counterexample to obvious approaches to k-EFTS; in particular, we show
that our cut requirement function fF is not weakly supermodular, and the most obvious cut
requirement function f(S) = min(k, |δG(S)|) is also not weakly supermodular.

Recall that δG(S) denotes the edges in G with exactly one endpoint in S. We extend
this notation for disjoint sets A, B by letting δG(A, B) denote the edges with one endpoint
in A and one endpoint in B.

▶ Theorem 26. The function fF is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V, E) which
has two sets A, B ⊆ V with the following properties.

|δG(A \ B, V \ (A ∪ B))| = 49 |δG(B \ A, V \ (A ∪ B))| = 105
|δG(A ∩ B, V \ (A ∪ B))| = 3 |δG(A \ B, B \ A)| = 0

|δG(A \ B, A ∩ B)| = 2 |δG(B \ A, A ∩ B)| = 49

Anything not specified is extremely dense and well-connected, so an edge is in F if and
only if it is part of a small cut made up of the above sets. It is not hard to see that the
small cuts are precisely A \ B (since |δG(A \ B)| = 49 + 0 + 2 = 51 < 100) and A ∩ B (since
|δG(A ∩ B) = 3 + 2 + 49 = 54 < 100). All other cuts are large. Hence F consists of all edges
involving A or B other than δG(B \ A, V \ (A ∪ B)), or more specifically,

F =δG(A \ B, V \ (A ∪ B)) ∪ δG(A ∩ B, V \ (A ∪ B))
∪ δG(A \ B, A ∩ B) ∪ δG(B \ A, A ∩ B).

We can now calculate fF on the subsets we care about:

fF (A) = 100 − 49 − 3 − 49 = −1
fF (B) = 100 − 3 − 2 = 95

fF (A \ B) = 0 (A \ B is small)
fF (B \ A) = 100 − 49 = 51
fF (A ∩ B) = 0 (A ∩ B is small)
fF (A ∪ B) = 100 − 49 − 3 = 48

Thus

fF (A) + fF (B) = 94 fF (A \ B) + fF (B \ A) = 51 fF (A ∪ B) + fF (A ∩ B) = 48

Hence fF is not weakly supermodular. ◀

Note that the above example is not a contradiction of f being locally weakly supermodular
since A is an empty cut.

▶ Theorem 27. The function f = min(k, |δG(S)|) is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V, E) which
has two sets A, B ⊆ V with the following properties. All of A \ B and B \ A and A ∩ B and
V \ (A ∪ B) are extremely large and dense (e.g., large cliques). There are no edges between
A \ B, B \ A, or A ∩ B. The other cut sizes are:

|δG(A ∩ B, V \ (A ∪ B))| = 55
|δG(A \ B, V \ (A ∪ B))| = 95

|δG(B \ A), V \ (A ∪ B))| = 95
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Then it is easy to see that

f(A) = 100 f(b) = 100
f(A \ B) = 95 f(B \ A) = 95
f(A ∪ B) = 100 f(A ∩ B) = 55

Hence f is not weakly supermodular. ◀
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a clique. With high probability, the clique number of such hypergraphs is O(log(n)
1

k−1 )
for constant p, and approaches n as p approaches 1 − O(n−(k−1)) [11]. Our goal is to find
polynomial time algorithms that certify a bound as close to this ground truth as possible.

In the case of Erdös-Renyi random graphs from G(n, p), i.e., when k = 2, the Lovász
theta function provides a semidefinite programming relaxation that certifies a bound of
O(

√
n) in polynomial time with high probability over the draw of the graph, when p = O(1).

A long line of work [7, 8, 13, 5, 9, 14, 3] has explored the power of spectral methods and
semidefinite programming hierarchies for improving on this bound. This question is also
closely related to the planted clique problem [10, 12, 2, 7, 8], where the size of the cliques
that can be efficiently recovered is similar to the best known polynomially-certifiable upper
bounds on the clique number of random graphs.

For k > 2, the problem was first studied by Coja-Oghlan, Goerdt and Lanka [4], who
provided a polynomial time algorithm based on spectral methods to certify an upper bound
of εn on the clique number of random 3- and 4-uniform hypergraphs, where ε is a constant.
Unlike the case of k = 2, their algorithm relies on a reduction, via the famous XOR trick of
Feige [6], to the problem of refuting random k-XOR formulas. Specifically, they construct
a polynomial f(x) = 1

(n
k)

∑
C∈([n]

k ) bC

∏
i∈C xi, where bC = 1 − p if C ∈ H and bC = −p if

C /∈ H , and they show that (1) if ω(H) is large, then f(x) is large for some x ∈ [−1, 1]n, and
(2) with high probability over H ∼ H(k, n, p), their k-XOR refutation algorithm certifies a
nontrivial upper bound on maxx∈[−1,1]n f(x), and thus on ω(H). This connection was later
utilized by Allen, O’Donnell and Witmer [1] who used their k-XOR refutation algorithms
to improve the bounds and handle the case of all k ≥ 3. For any k, when p = O(1), the
algorithm of [1] certifies ω(H) ≤ Õ(n3/4).1

In this paper, we show that the certificates obtained via the “XOR method” are in fact
suboptimal by providing a substantially improved certificate for the clique numbers of random
hypergraphs at all densities p. Our certificates are based on a natural generalization of the
“direct” Lovász SDP for clique numbers of graphs. The bounds obtained by our algorithm for
any fixed k match those obtained in the case of graphs (i.e., k = 2) up to polylogarithmic
factors in n.2 Specifically, we show:

▶ Theorem 1 (Theorem 3, specialized to poly(n)-time and p = O(1)). There is an algorithm
that takes as input a k-uniform hypergraph H on n vertices and a parameter p ∈ [0, 1]
with p = O(1), and outputs in nO(k)-time a value ωalg(H) ∈ [0, n] with the following two
properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H.
(2) High probability bound: If H ∼ H(k, n, p), then with probability 1 − 1/poly(n), ωalg(H) ≤

Õ(
√

n).
The result above is based on a (surprisingly) simple spectral algorithm that is a natural
analog, for k-uniform hypergraphs, of the algorithm that uses the spectral norm of the
adjacency matrix of a graph to certify an upper bound on its clique number. This is in
contrast to the methods from [4, 1] that rely on a reduction to refuting random k-XOR
formulas.

1 We use the notation Õ(f(n)) to mean O(f(n)polylog(n)).
2 We believe that with a more fine-grained analysis, our bound can be improved from Õ(

√
n) to O(

√
n).

However, for simplicity we use “off-the-shelf” concentration inequalities, which lose polylog(n) factors
over sharper methods.
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It is easy to observe that a clique in H is an independent set in the complement hypergraph
H := {C : C /∈ H}, and that H ∼ H(k, n, 1 − p) when H ∼ H(k, n, p). Thus, Theorem 1
certifies a bound of Õ(

√
n) on the size of the maximum independent set in a random

H ∼ H(k, n, 1 − p) with high probability, and hence also certifies with high probability that
the chromatic number of a random H is at least Ω̃(

√
n).

Theorem 1 is a special case of our more general theorem (Theorem 3), which we present
in full in Section 2. The algorithm in Theorem 3 has a tradeoff between the runtime and the
strength of the certificate, and also handles the more general case of nonconstant p.

▶ Remark 2 (Detecting planted cliques vs. refutation). We note that it is easy to distinguish
between a random H ∼ H(k, n, 1/2) and a random H ∼ H(k, n, 1/2) with a planted clique of
size Θ̃(

√
n); the extra polylog(n) factor makes the degrees of vertices in the planted clique be

noticeably larger than other vertices, so one can easily extract the planted clique. However,
we are considering the formally harder task of refutation, so merely being able to distinguish
a random H ∼ H(k, n, 1/2) from a H from this particular planted distribution is insufficient.
For example, it is easy to construct a hypergraph H where the vertices in the planted clique
do not have larger-than-average degree, which would, e.g., trivially fool the aforementioned
simple distinguisher.

2 The Spectral Algorithm

In this section, we prove the following theorem, which has Theorem 1 as a special case.

▶ Theorem 3. There is an algorithm that takes as input a k-uniform hypergraph H on
n vertices, a parameter p := p(n) ∈ [0, 1], and an integer d := d(n) ≥ 1, and outputs in
nO(d+k)-time a value ωalg(H) ∈ [0, n] with the following two properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H.
(2) High probability bound: If H ∼ H(k, n, p), then with probability 1 − 1/poly(n),

ωalg(H) ≤ d + O(k)
(

d log2 n

1 − p

) 2
k′ √

max(np( d
k′−1), d log n) ,

where k′ = k if k is even, and k′ = k − 1 if k is odd.
Before continuing with the proof, we first interpret Theorem 3 and compare it to the works
of [4, 1].

When k = 3, [4] certifies ω(H) ≤ εn for constant ε when p ≤ 1 − O(n−3/2), and when
k = 4, [4] certifies ω(H) ≤ εn for constant ε for p ≤ 1 − O( 1

n2 ). [1] improves upon [4] and
certifies ω(H) ≤ Õ(n3/4+θ/2k) when p = 1 − Õ(n−θ); in particular, for, e.g., p = 1

2 , they
certify that ω(H) ≤ Õ(n3/4), and this bound gets worse as p increases. When p = O(1), our
algorithm certifies a bound of ω ≤ Õ(

√
n) in polynomial time for any fixed k. Theorem 3

thus beats the current best known algorithm in [1] by a factor of n1/4, i.e., a polynomial
factor.

More generally, for any d ∈ N, our algorithm certifies a bound of ω ≤ Õ(1)+Õ(
√

np( d
k′−1))

in time nO(d+k). On the other hand, for H ∼ H(k, n, p) with p ≤ 1 − O(n−(k−1)), [11] shows
that with high probability, the true clique size is ω(H) ≤ O((1−p)− 1

k−1 (log(nk−1(1−p)))
1

k−1 ).
So, for, e.g., d = O(log n) and p ≤ O(1), our algorithm outputs ωalg(H) ≤ Õ(1), which is the
true clique number up to polylog(n) factors.

We now turn to the proof of Theorem 3.
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Proof of Theorem 3. We break the proof of Theorem 3 into three steps. First, we give a
simple refutation algorithm that achieves the guarantees of Theorem 3 when k is even and
d = 1. Then, we prove the case when k is even and d is arbitrary by reduction to the case
when d = 1. Finally, we reduce the case of odd k to the case of even k.

For a set S and integer t, we will let
(

S
t

)
denote the set of all subsets of S of size exactly

t. E.g.,
([n]

k

)
:= {C ⊆ [n], |C| = k}.

The basic refutation algorithm. We first give a basic refutation algorithm. This algorithm
achieves the guarantees of Theorem 3 in the case when k is even and d = 1.

▶ Lemma 4. Let k be even. There is an algorithm A that takes as input a k-uniform
hypergraph H on n vertices and a parameter p := p(n) ∈ [0, 1], and outputs in nO(k)-time a
value ωalg(H) ∈ [0, n] with the following two properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H ⊆

([n]
k

)
.

(2) High probability bound: If H ∼ H(k, n, p), then for any c ≥ 1, with probability 1 − n−c,

ωalg(H) ≤ O(k)
(

c log n

1 − p

) 2
k √

n .

We prove Lemma 4 in Section 2.1.

Case 1: k is even. We now prove Theorem 3 when k is even. To do this, we need the
following claim.

▷ Claim 5. Let H be a k-uniform hypergraph on n vertices, let d ≥ k − 1 be a positive
integer, and let J ⊆ [n] be a set of size d. Let VJ = {i ∈ [n] \ J : ∀J ′ ∈

(
J

k−1
)
, J ′ ∪ {i} ∈ H},

and let HJ =
(

VJ

k

)
∩ H. Then, ω(H) ≤ d + maxJ∈(n

d) ω(HJ). Moreover, if H ∼ H(k, n, p),

then |VJ | ∼ Bin(n − d, p( d
k−1)), and conditioned on VJ , HJ ∼ H(k, |VJ |, p).

We prove Claim 5 in Section 2.2
With Claim 5 in hand, we finish the proof of Theorem 3 when k is even. Let A be the

algorithm in Lemma 4, and let the algorithm A′ operate as follows: on input H, (1) enumerate
over all J ∈

([n]
d

)
and compute A(HJ), and then (2) output d + max

J∈([n]
d ) A(HJ). Clearly,

A′ runs in nO(d) ·nO(k) = nO(d+k) time. We observe that by Lemma 4 and Claim 5, we clearly
have that ω(H) ≤ d + max

J∈([n]
d ) ω(HJ) ≤ d + max

J∈([n]
d ) A(HJ) = A′(H), so Item 1 holds.

We now prove Item 2. Fix J ∈
([n]

d

)
. We observe that by Claim 5, VJ ∼ Bin(n − d, p( d

k−1)).
We bound |VJ | using the standard Chernoff bound, which we recall below.

▶ Fact 6 (Chernoff Bound). Let X ∼ Bin(n, p), and let δ ≥ 0. Then, Pr[X ≥ (1 + δ)np] ≤
exp( −δ2np

2+δ ).

Fact 6 implies that |VJ | ≤ max(np( d
k−1), d log n) with probability ≥ 1−n−2d. Now, conditioned

on |VJ |, by Claim 5 we have that HJ ∼ H(k, |VJ |, p). Hence, if |VJ | ≥ 1, setting c = O(d log n)

in Lemma 4, we have that with probability ≥ 1 − n−2d, A(HJ) ≤ O(k)
(

d log2 n
1−p

) 2
k √

|VJ |.
(If |VJ | = 0, then A(HJ) = k − 1.) Hence, for a fixed J , with probability ≥ 1 − 2n−2d,

we have A(HJ) ≤ O(k)
(

d log2 n
1−p

) 2
k

√
max(np( d

k−1), d log n). By union bound over all J , we

thus conclude that A′(H) ≤ d + O(k)
(

d log2 n
1−p

) 2
k

√
max(np( d

k−1), d log n) with probability
≥ 1 − 2n−d = 1 − 1/poly(n). This finishes the proof of Theorem 3 when k is even.
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Case 2: k is odd We now turn to the case when k is odd. For the odd case, we use the
following claim, which we prove in Section 2.3.

▷ Claim 7. Let H be a k-uniform hypergraph on n vertices with k ≥ 3. For each i ∈ [n],
let Hi = {C \ {i} : C ∈ H ∧ i ∈ C}. Then, ω(H) ≤ 1 + maxi∈[n] ω(Hi). Moreover, if
H ∼ H(k, n, p), then for any fixed i ∈ [n], Hi ∼ H(k, n − 1, p).

Let A′ be the algorithm in Theorem 3 when k is even, described earlier. Let A′′ be
the algorithm that operates as follows: on input H, a k-uniform hypergraph where k

is odd, (1) for each i ∈ [n], compute A′(Hi), (2) output 1 + maxi∈[n] A′(Hi). Clearly,
A′′ runs in nO(d+k) time, and by Claim 7, we have that ω(H) ≤ 1 + maxi∈[n] ω(Hi) ≤
1 + maxi∈[n] A′(Hi) = A′′(H). Thus, Item 1 holds. To see Item 2, we observe that
by Claim 7, Hi ∼ H(k, n − 1, p). Hence, with probability ≥ 1 − 2n−d, it holds that

A′(Hi) ≤ d + O(k)
(

d log2 n
1−p

) 2
k−1

√
max(np( d

k−2), d log2 n). By union bound over the choice
of i, we see that with probability 1 − 1/poly(n),

A′′(H) ≤ d + O(k)
(

d log2 n

1 − p

) 2
k−1 √

max(np( d
k−2), d log n) ,

which finishes the proof of Theorem 3. ◀

2.1 The basic algorithm: proof of Lemma 4

Proof. For C ∈
([n]

k

)
, let AC ∈ R( [n]

k/2)×( [n]
k/2) be the matrix where AC(S, T ) = 1 if S ∪ T = C,

and 0 otherwise. Note that this implies that S ∩ T = ∅ also.
Let A =

∑
C∈([n]

k ) bCAC , where bC = 1 − p if C ∈ H, and bC = −p if C /∈ H . The output

of the algorithm is ωalg(H) := ω = max(k − 1, k
(

p
1−p

(
k

k/2
)

· ∥A∥2
2

) 1
k ). We observe that A

can be constructed in nO(k) time and has size nO(k), and so we can compute ∥A∥2 (and thus
also ω) in nO(k) time.

We now prove Item 1. Let I ⊆ [n] be a clique in H. If |I| ≤ k − 1, then we are done,
as ω ≥ k − 1 always holds. So, suppose that |I| ≥ k. Let x ∈ R( [n]

k/2) be defined as xS = 1
if S ⊆ I, and 0 otherwise. Note that ∥x∥2

2 =
( |I|

k/2
)
. We observe that x⊤Ax is simply√

1−p
p

(|I|
k

)
·
(

k
k/2

)
. This is because for each C ∈

(
I
k

)
, there are

(
k

k/2
)

ways to partition C into
(S, T ), and all such C are in H, and thus bC = 1 − p. We thus conclude that

∥A∥2 ≥ x⊤Ax

∥x∥2
2

= (1 − p)
(

|I|
k

)
·
(

k

k/2

)
· 1( |I|

k/2
)

≥ (1 − p)

√(
|I|
k

)(
k

k/2

)
≥ (1 − p)

√(
|I|
k

)k (
k

k/2

)
,

where we use that (|I|
k )

( |I|
k/2)

2 ≥ 1
( k

k/2)
, and that

(|I|
k

)
≥

(
|I|
k

)k

. Hence, we have shown that

ω ≥ k

(
1

(1 − p)2

(
k

k/2

)
· ∥A∥2

2

) 1
k

≥ |I|

for any clique I in H with |I| ≥ k. This finishes the proof of Item 1.
We now prove Item 2. The key step here is to show an upper bound on ∥A∥2, with high

probability over H ∼ H(k, n, p). We will do this by applying the standard Matrix Bernstein
concentration inequality, which we recall below.
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▶ Fact 8 (Matrix Bernstein, Theorem 1.4 of [15]). Let X1, . . . , Xk be independent random
n × n symmetric matrices with E[Xi] = 0 and ∥Xi∥2 ≤ R for all i. Let σ2 ≥ ∥E[

∑k
i=1 X2

i ]∥2.
Then for any c > 0, Pr[∥

∑k
i=1 Xi∥2 ≥ O(Rc log n + σ

√
c log n)] ≤ n−c.

We observe that A =
∑

C∈([n]
k ) bCAC is the sum of

(
n
k

)
independent, mean 0 random matrices.

We have that ∥AC∥2 ≤ R := max(p, 1 − p) = 1 for every C, as each row/column of AC has
at most one nonzero entry, which is at most R in magnitude. We also observe that E[A2] =∑

C A2
C is a diagonal matrix, where the S-th diagonal entry is ≤

(
n−k/2
k−k/2

)
=

(
n−k/2

k/2
)

≤ nk/2,
as each A2

C is diagonal, has E[b2
C ] in the S-th diagonal entry if S ⊆ C, and E[b2

C ] ≤ 1. Hence,
by Fact 8, with probability 1 − n−c, we have that

∥A∥2 ≤ O(Rc log nk/2) + O(
√

cnk/2 log nk/2) ≤ O(n k
4 ck log n)

=⇒ k

(
1

(1 − p)2

(
k

k/2

)
· ∥A∥2

2

) 1
k

≤ k

(
1

(1 − p)2

(
k

k/2

)
· O(nk/2c2k2 log2 n)

) 1
k

≤ O(k)
(

c log n

1 − p

) 2
k √

n .

Finally, we have that

ω = max(k − 1, O(k)
(

c log n

1 − p

) 2
k √

n) = O(k)
(

c log n

1 − p

) 2
k √

n. ◀

2.2 Reduction for larger d: proof of Claim 5
Proof. Let I be a clique in H with |I| = ω(H). Let J ⊆ I be an arbitrary subset of size d.
We claim that I ′ := I \ J is a clique in HJ . Indeed, we first observe that for each i ∈ I ′, we
have i ∈ VJ , as for any J ′ ∈

(
J

k−1
)
, we have J ′ ∪ {i} is a subset of I of size k, and hence is in

H. Next, let C ⊆ I ′ be any subset of size k (if |I ′| ≤ k − 1, so that no such C exists, then I ′

is trivially a clique in HJ). Then, C ∈ H, as I was a clique, and so C ∈ HJ . Hence, I ′ is a
clique in HJ . As ω(H) = |J | + |I ′| = d + |I ′| ≤ d + ω(HJ), this proves the first part of the
claim.

For the second part of the claim, we think of sampling H as follows. First, for every
J ′ ∈

(
J

k−1
)

and i ∈ [n], add J ′ ∪ {i} to H with probability p. Then, add every other C ∈
([n]

k

)
to H with probability p. We note that H ∼ H(k, n, p) clearly, and that after the first step,
we have determined VJ . In the first step, we see that i is added to VJ independently for each
i /∈ J , and each i is added with probability p( d

k−1). Hence, |VJ | ∼ Bin(n − d, p( d
k−1)). As all

the hyperedges in HJ are sampled in the second step, the claim follows. ◀

2.3 Reduction from odd k to even k: proof of Claim 7
Proof. Let I ∈ H be a clique with |I| = ω(H). If |I| = k − 1, then we are done, as
ω(Hi) ≥ k − 2 for all i since k ≥ 3. So, suppose |I| ≥ k. Let i ∈ I, and let J = I \ {i}. Then,
J is a clique in Hi. Indeed, for any C ′ ∈

(
J

k−1
)
, we must have C ′ ∪ {i} ∈ H, and therefore

we have C ′ ∈ Hi. So, it follows that ω(Hi) ≥ |J | = |I| − 1, which finishes the proof of the
first part of the claim.

For the second part, we observe that if H ∼ H(k, n, p), then each C ∈
([n]

k

)
with i ∈ C

is added to H independently with probability p. So, each C ′ ∈
([n]\{i}

k−1
)

is added to Hi

independently with probability p, which finishes the proof. ◀
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Abstract
Constraint satisfaction problems (CSPs) are ubiquitous in theoretical computer science. We study
the problem of Strong-CSPs, i.e. instances where a large induced sub-instance has a satisfying
assignment. More formally, given a CSP instance G(V, E, [k], {Πij}(i,j)∈E) consisting of a set of
vertices V , a set of edges E, alphabet [k], a constraint Πij ⊂ [k] × [k] for each (i, j) ∈ E, the goal of
this problem is to compute the largest subset S ⊆ V such that the instance induced on S has an
assignment that satisfies all the constraints.

In this paper, we study approximation algorithms for UniqueGames and related problems
under the Strong-CSP framework when the underlying constraint graph satisfies mild expansion
properties. In particular, we show that given a StrongUniqueGames instance whose optimal
solution S∗ is supported on a regular low threshold rank graph, there exists an algorithm that runs
in time exponential in the threshold rank, and recovers a large satisfiable sub-instance whose size is
independent on the label set size and maximum degree of the graph. Our algorithm combines the
techniques of Barak-Raghavendra-Steurer (FOCS’11), Guruswami-Sinop (FOCS’11) with several
new ideas and runs in time exponential in the threshold rank of the optimal set. A key component
of our algorithm is a new threshold rank based spectral decomposition, which is used to compute
a “large” induced subgraph of “small” threshold rank; our techniques build on the work of Oveis
Gharan and Rezaei (SODA’17), and could be of independent interest.
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1 Introduction

An instance of a 2-Constraint Satisfaction Problem (2-CSP) G(V,E, [k], {Πij}(i,j)∈E) consists
of a set of vertices V , a set of edges E, alphabet [k], and a constraint Πij ⊆ [k]× [k] for each
(i, j) ∈ E. The goal of this problem is to compute an assignment f : V → [k] such that the
fraction of constraints satisfied is maximized; this optimal fraction is also called the value
of this instance, and is formally denoted by Val(G). Many common optimization problems
such as Max Cut, Unique Games, Graph Coloring, 2-SAT, etc. are 2-CSPs. Designing
approximation algorithms for specific CSPs are central problems in the study of algorithms
and have been studied extensively, for e.g., Max-Cut [20], Unique Games [11, 12], etc. There
is also a long line of work which deal with algorithms for general CSPs (see [35, 36, 8, 21]).
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43:2 Approximating CSPs with Outliers

A particular parameter regime of interest is when the CSP instance is “almost” fully
satisfiable. There are several ways for quantifying this, one of which is by asking the value
of the CSP instance be close to 1. This can also be viewed as the setting where deleting a
small number of edges from the instance results in an instance that is fully satisfiable. There
has been extensive work on designing algorithms for CSPs in this regime; we give a brief
survey in Section 1.2. Another way a CSP can be almost satisfiable is if a small number of
outlier vertices can be deleted (all the edges incident on these vertices would also be deleted)
to obtain an instance which is fully satisfiable. The main focus of our work is to study
algorithms for CSPs in this model; we define it below formally.

▶ Problem 1 (Strong-CSP). Given an instance G(V,E, [k], {Πij}(i,j)∈E) consisting of a
set of vertices V , a set of edges E, alphabet [k], and a constraint Πij ⊆ [k] × [k] for each
(i, j) ∈ E, compute the largest subset S ⊆ V such that the instance induced on S has value 1.

We refer to an optimal set of vertices for Problem 1 as good vertices1, and denote them
by Vgood. A naturally arising such instantiation of Strong-CSP’s is the OddCycleTrans-
versal problem. Here, given a graph G = (V,E) as input, the objective is to delete the
smallest fraction of vertices so that the graph induced on the remaining vertices is bipartite.
This is easily seen as an instance of a Strong-CSP – here the predicate on the edges is
the “Not Equals” predicate on the label set {0, 1}. OddCycleTransversal is a well
studied problem. In general, it is known be constant factor inapproximable [7] (assuming
the Unique Games Conjecture), and the best known upper bounds (in terms of fraction of
vertices deleted) are O(δ

√
log |V |) [1] and O(

√
δ log d) [18] – where δ is the optimal fraction

of vertices to be deleted and d is the maximum degree of the graph – the latter bound
is also tight upto constant factors assuming the Unique Games Conjecture [18]. Given
these worst case bounds, one might ask if there are natural classes of instances under which
OddCycleTransversal admits better approximation?

For the specific setting of OddCycleTransversal, there are several such classes which
exhibit improved approximation guarantees. For instance, for the setting of planar graphs,
the natural linear programming relaxation is known to be exact [14], and therefore admits
an exact polynomial time algorithm. Furthermore, for Kr-minor closed graphs, Alev and
Lau [2] gave an O(r)-approximation algorithm. On the other hand, since OddCycle-
Transversal is fixed parameter tractable with respect to treewidth [26], it admits exact
polynomial time algorithms for graphs with bounded treewidth. Note that these also happen
to be characterizations which end up implying easy instances for Max-CSPs. Motivated by
this connection, we investigate whether there are spectral characterizations under which
OddCycleTransversal (and more generally, Strong-CSP’s) admit improved approxim-
ation. In particular, we study instances which are expanding, or more generally, have low
threshold rank. Formally, the threshold rank of a graph is defined as follows.

▶ Definition 2 (Threshold rank). Given an undirected graph G = (V,E), let A denote its
weighted adjacency matrix G and let D denote the diagonal matrix where D(i, i) is the
weighted degree of vertex i. The (1 − ε) threshold rank of G, denoted by rank≥1−ε(G) is
defined as the number of eigenvalues of D− 1

2AD− 1
2 that are greater than or equal to 1− ε.

In the setting of CSPs, low threshold rank instances have been studied extensively –
the study of such instances was instrumental in the development of sub-exponential time
algorithms for UniqueGames and SmallSetEdgeExpansion [24, 3, 8]. In particular, for

1 Note that such a set of vertices may not be unique, in which case, we will fix such a collection of vertices,
and call it the set of good vertices.
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the edge deletion analogue of OddCycleTransversal i.e., Max-Cut, [8] gave a (1/λt)-
approximation algorithm running in time npoly(t), where λt is the tth largest eigenvalue of
the normalized Laplacian. Surprisingly, to the best of our knowledge, no such analogous
results are known for OddCycleTransversal. Furthermore, random instances of CSPs
are expanding, and naturally have low threshold rank. This motivates us to explore the
approximability of OddCycleTransversal and other Strong-CSP’s in low threshold
instances. In fact, we study them under the more stringent setting where only the graph
induced on good vertices (constituting the fully satisfiable sub-instance) is assumed to have
low threshold rank, as opposed to the full graph having low threshold rank.

Max-CSPs vs. StrongCSPs. This choice of the setting, in addition to making the task more
challenging, is also motivated by our wish to exhibit a separation between the approximability
of edge deletion and vertex deletion problems, i.e., namely Max-CSPs and Strong-CSP’s.
We point out that under an identical setting (where only a (1 − δ)-sized subset has low
threshold rank), Max-CSPs can be arbitrarily hard to approximate. Indeed, consider a Max-
CSP instance where the (1− δ)-sized subset Vgood induces a constant degree expander with
trivially satisfiable constraints, and the edges going across Vgood, V

c
good encode a denser hard

to approximate Unique Game instance with large gap and larger vertex degrees. It is easy
to see that such instances do not admit efficient constant factor approximation guarantees
with respect to the edge satisfaction objective i.e., that of finding an assignment that satisfies
the maximum fraction of constraints. On the other hand, our results in the current work
show that the same instances when interpreted as Strong-CSP’s are easy (i.e, with respect
to the vertex deletion objective, see Definition 1). Therefore, it is not immediately obvious if
the conditions under which Max-CSPs are easy also translate to conditions under which
Strong-CSP’s are easy, and vice versa. Consequently, the broader agenda of identifying
clean characterizations under which there is a separation in the approximability of the two
classes of problems might yield useful insights towards understanding the limitations of the
approximation techniques for problems from either class.

Connection to Fortification. A final motivation for studying Strong-CSP’s in the above
setting is that the problem of finding slightly smaller sub-instances with better “local”
approximation guarantees is closely related to notion of fortification. Informally, a Max-CSP
instance is said to be fortified if every large sub-instance of the CSP has (relative) optimal
value no larger than the global optimal. Fortification is widely studied in the context of
parallel repetition [32, 9, 33], and in particular, recent works [33] show that fortified Unique
Game instances with hypercontractive small set expansion profiles can be used to bypass
bottlenecks towards establishing strong parallel repetition for Unique Game instances.
Consequently, this reduces the task of establishing UGC to that of showing that a family
of fortified Boolean CSPs on small-set-expanders are hard. Given that Strong-CSP’s can
be re-interpreted as the task of deciding whether an instance is fortified (in the perfect
completeness regime), and the tight connections between small-set-expansion and threshold
rank (e.g., [3, 25, 28]), these considerations further motivate the study of Strong-CSP’s
even in the simpler setting where the full underlying constraint graph has low threshold rank.
Motivated by the above considerations, we study the StrongUniqueGames and related
problems in this setting:

▶ Problem 3 (StrongUniqueGames). Given an instance G(V,E, [k], {Πij}(i,j)∈E) con-
sisting of a set of vertices V , a set of edges E, alphabet [k], and a bijection πij ⊆ [k]× [k]
for each (i, j) ∈ E, the goal of this problem is to compute the largest S ⊆ V such that the
instance induced on S has value 1.
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The StrongUniqueGames problem is a natural variant of UniqueGames, it and its
variants express several well studied problems such as OddCycleTransversal, among
others. There have been extensive work on the above problems, see Section 1.2 for a detailed
review. Our main results in this paper are improved approximation algorithms for these
problems in the setting where the induced graph on the good vertices has low threshold rank.

1.1 Our Results
Our main result is a new approximation algorithm for the StrongUniqueGames problem
where the induced sub-graph on the satisfiable set has low threshold rank. In order to make
the theorem statements concise, we will define the notion of a subset being λ∗-good.

▶ Definition 4 (λ∗-good). Given a CSP constraint graph G = (V,E), a subset V ∗ ⊆ V is
said to be λ∗-good if the following conditions hold.
1. rank≥1−λ∗ (G[V ∗]) ≤ (1/λ∗)10. 2

2. G[V ∗] is regular.

The above is a quantitative characterization of induced low-rank instances studied in
this paper – all of our results are based on the above setting. Our first result is for
StrongUniqueGames instances with small vertex induced low threshold rank, as stated in
the following theorem.

▶ Theorem 5. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G(V,E, [k], {πe}e∈E) be a
StrongUniqueGames instance such that there exists3 a λ∗-good subset Vgood of size at
least (1− δ)n such that Val (G[Vgood]) = 1. Then there exists a randomized algorithm that
runs in time npoly(k/δ) and outputs a subset Ṽ ⊆ V of size at least (1− δ1/12)n and a partial
labeling σ : Ṽ → [k] such that σ satisfies all induced constraints in G[Ṽ ].

The above theorem illustrates the tractability of the StrongUniqueGames problem in
the setting where just the instance induced on the satisfiable set has low threshold rank. To
put the above result in perspective, [18] showed that given a StrongUniqueGames instance
with value (1 − δ), it is Unique Games hard to output a satisfiable subset of relative size
(1− Ω(

√
δ log d log k)), where d is the maximum degree of the graph and k is the label set

size. We remark that the exponent in the fraction of vertices deleted (i.e., δ1/12) might
be improvable and we have not made further attempts towards optimizing it. Theorem 5
almost directly leads to quantitatively similar results for the OddCycleTransversal and
BalancedVertexSeparator problems, stated as corollaries.

▶ Corollary 6. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G = (V,E) be a graph for
which there exists a λ∗-good subset Vgood ⊆ V of size at least (1− δ)n such that G[Vgood] is
bipartite. Then there exists an algorithm which runs in times npoly(1/δ) which outputs a set
V ′ ⊆ V of size at least (1− δ1/12)n such that G[V ′] is bipartite.

▶ Theorem 7. Let δ, λ∗ ∈ (0, 1) be such that δ ≤ (λ∗)100. Let G = (V,E) be a graph
for which there exists a λ∗-good subset Vgood ⊆ V of size at least (1 − δ)n such that the
following holds. There exists a partition Vgood = A ⊎B such that EG[Vgood](A,B) = ∅ i.e, A
is disconnected from B in G[Vgood]. Then there exists a randomized algorithm which runs in
time npoly(1/δ) and outputs a set S of size at most O(δ1/12n) and a partition A′, B′ of V \ S
such that (a) EG[V \S](A,B) = ∅ and (b) (γ − δ1/12)n ≤ min(|A′|, |B′|) ≤ (γ + δ1/12)n where
γ = min(|A|, |B|)/n.

2 The constant 10 in the exponent is arbitrary, and can be chosen to any large constant C, at the cost of
loss in poly(C)-multiplicative factors in the fraction of vertices deleted by the algorithm. We instantiate
it to be 10 for ease of notation.

3 We do not assume that such a set is unique, we just need the existence at least one such subset.
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For both OddCycleTransversal as well as BalancedVertexSeparator, the best
known approximation algorithm for general instances have an approximation guarantee of
O(

√
log |V |) [13, 1]. Furthermore, [18] showed that given a (1 − δ)-satisfiable instance of

OddCycleTransversal, assuming UGC, it is NP-Hard to find set of size (1−Ω(
√
δ log d))

which induces a bipartite graph. It is important to note that our results hold for more
restrictive setting where we assume the low threshold rank guarantee on the good set. In
particular, the technical core of our results is a spectral decomposition theorem which can
be used to find a large subset that induces a sub-graph with relatively small threshold rank.
We state an informal version of it here for reference.

▶ Theorem 8 (Informal version of Theorem 4.2 [19]). The following holds for every 0 < δ ≤ 0.1.
Let G = (V,E) be a d-regular graph on n-vertices such that there exists a set Vgood ⊆ V of
size at least (1−δ)n such that rank≥1−δ0.1(G[Vgood]) ≤ K. Furthermore, suppose K ≤ 1/δ100.
Then there exists an efficient algorithm outputs a set V ′′ ⊆ V of size at least (1−O(δ1/10))n
such that rank≥1−δ0.1(G[V ′′]) ≤ poly(1/δ). Moreover, the subset V ′′ itself is a disjoint union
of constant number of Ω(n)-sized subsets, each of which induces an expander.

The above decomposition result adds to the already extensive literature on spectral
decomposition – however, the above decomposition result is incomparable in terms of its
setting and guarantees to the ones existing in the literature. For comparison, we describe
the two previous such results which are closest to this work in terms of the setting and the
guarantees:

In [3], Arora, Barak and Steurer show that any n-vertex graph can be decomposed
into non-expanding subsets which induce sub-graphs of (1− ε5)-threshold rank at most
nε. While their result does not require the graph to contain a large low threshold rank
sub-graph, their decomposition result can only guarantee a substantially weaker threshold
rank bound of nε (as opposed to the constant bounds guaranteed in Theorem 8). We
clarify that their n-dependent bound on the threshold rank is indeed unavoidable, since
they make no assumptions on the threshold rank structure of the graph [34].
In [15], Oveis Gharan and Rezaei show that given a regular graph which contains a κn-
sized spectral expander, one can efficiently find subset of size at least 3κn/8 with spectral
gap multiplicatively comparable to that of the optimal induced expander. Again, their
result is not directly comparable to ours since even in graphs which contain a (1−δ)n-sized
induced expander, their algorithm is only guaranteed to output a 3(1− δ)n/8-sized subset
which induces an expander. In comparison, for similar instances, Theorem 8 guarantees
a (1 − δ0.1)-sized subset which induces a “low threshold rank graph” – which itself is
guaranteed to be a union of linear sized expanders. On the other hand, our result only
applies in the setting κ→ 1, whereas their result holds for any constant κ ∈ (0, 1).

We point out that our actual spectral decomposition theorem (see Theorem 4.2 of [19])
differs from the informal version stated above (i.e., Theorem 8) in a couple of crucial ways.
Firstly, we only assume that only the underlying good graph G[Vgood] is regular (as opposed to
the full graph being regular) and make no assumptions on the degree distribution of the set of
outlier vertices V \Vgood – indeed, these assumptions allow us to include instances which show
a separation between the approximability of the Max-CSP and Strong-CSP objectives.
Secondly, our actual guarantee is slightly more robust in the following sense: given any
(1− δO(1))-sized subset V ′ ⊆ V (where V ′ ̸⊂ Vgood), one can find another subset V ′′ ⊆ V ′ of
size (1− δO(1)) such that rank1−δO(1)(G[V ′′]) ≤ poly(1/δ). The structural fact that we can
still recover a large low threshold rank subgraph within any large subset V ′ is interesting on its
own, we are not aware of similar results in the previous literature on spectral decomposition.
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43:6 Approximating CSPs with Outliers

▶ Remark 9 (On the regularity assumption). We point out that our threshold rank decom-
position result, and more generally the approximation guarantees from Theorem 5 and its
corollaries also hold as is as long as Vgood is λ∗-good (Definition 4) and is contained in any
subset Ṽ (where Ṽ may strictly contain Vgood) for which G[Ṽ ] induces a regular subgraph –
this naturally subsumes the more commonly studied setting where the full graph has low
threshold rank and is regular [3, 8]. As in these works, our results will also hold for the setting
where the graph is non-regular; in that setting, the guarantees of the threshold decomposition
result and our algorithm will involve bounds on the volume of the subset deleted by the
algorithm (as opposed to bounds on the size of the subset).

Hardness of STRONG-CSPs
Given our algorithmic results hold for structured instances i.e., the subgraph induced by
the good set has low threshold rank, an immediate question is if it is possible to obtain
quantitatively similar approximation guarantees without making any assumptions. Towards
that, our first observation is that arbitrary Strong 2-CSPs can be almost polynomially hard
to approximate, as stated by the following fact.

▶ Observation 10 (Hardness of General Strong 2-CSPs). The following holds for any small
ε > 0. Given a 2-CSP Ψ(V,E, {ψ}e∈E) over label set {0, 1}, it is NP-Hard to find a subset
V ′ ⊆ V of size |V ′| ≥ n1−ε|V ∗| such that all induced constraints on V ′ are satisfiable. Here
V ∗ is a set of largest cardinality for which there exists a labeling which satisfies all the induced
constraints on V ∗.

The fact follows simply by using the observation that the Maximum Independent Set
problem can be modeled as Strong-CSP on label set {0, 1} with arity 2 (see Appendix B of
the full version [19] for a formal explanation). On the other hand, it is known that all general
2-CSPs admit constant factor approximation (when the label set size is a constant). For
e.g., for any 2-CSP on {0, 1} just a random assignment itself satisfies at least 1/4-fraction
of constraints in expectation. This shows that Strong-CSP’s can be strictly harder that
Max-CSPs. Clearly, one can expect general Strong-CSP’s to only get harder for larger
arities, so we choose to relax the requirements of Strong-CSP’s and ask the following
question. Consider a Max-CSP which is known to be hard to approximate to a factor of α.
Then it is natural to ask, if given such an instance, can we delete a few vertices, and then
output a labeling on the remaining instance which has approximation factor strictly better
than α. The following theorem answers the question in the negative for the specific setting
where the CSP is Max-4-Lin.

▶ Theorem 11. The following holds for any constants α, η, ν ∈ (0, 1). Given a system of
equations Ψ of arity 4, on variables X1, X2, . . . , Xn taking values in F2, it is NP-Hard to
distinguish between the following cases:

There exists an assignment to the variables which satisfies at least (1 − η)-fraction of
constraints in Ψ.
No subset S ⊆ V of size at least αn induces a system of equations for which there exists
an assignment which satisfies at least (1/2 + ν) fraction of the induced constraints.

The above can be thought of as an instance of approximation resistance in a Strong-
CSP sense; it is a strengthening of (1/2 + ν)-inapproximability for Max-3-Lin shown by
Håstad in the seminal work [23]. We prove the above hardness result by combining the
techniques from [23] with novel application of expansion properties of the inner and outer
verifiers. In particular, Theorem 11 says that one cannot hope to do slightly better than its
inapproximability factor (which is matched by the naive random guessing algorithm) on any
smaller sub-instance for approximation resistant predicates.
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1.2 Related Work
Strong Unique Games

Ghoshal and Louis [18] gave an algorithm that takes as input an instance of StrongU-
niqueGames having a satisfiable set of size (1 − ε)n, and outputs a satisfiable subset of
size at least

(
1− Õ

(
k2)

ε
√

log n
)
n. In a similar setting, they also gave another algorithm

which outputs satisfiable subsets of size
(
1− Õ

(
k2)√

ε log d
)
n, where d is the largest vertex

degree of the instance. Complementing these upper bounds, they also showed that it is
Unique Games hard (in certain regimes of parameters) to compute a set of size larger
than 1 − O(

√
ε log d log k) such that the induced instance on this set is satisfiable. These

results were obtained via a connection between StrongUniqueGames and small-set vertex
expansion in graphs, and used the machinery (hypergraph orthogonal separators) developed
in the context of approximation algorithms for small-set vertex expansion in graphs and
hypergraph small-set expansion [27] in obtaining their approximation algorithms.

General CSPs

There have been several works which give approximation algorithms for 2-CSPs. [5] were
the first to study UniqueGames in the setting where the underlying constraint graph is an
expander; they gave an algorithm with the approximation factor depending on only the second
largest eigenvalue of the normalized Laplacian matrix of the instance. Subsequent works by
Barak, Raghavendra and Steurer [8] and Guruswami and Sinop [21] extended this framework
to general 2-CSPs when the underlying constraint graph and the label extended graph have low
threshold rank respectively, with the algorithms running time exponential in threshold rank.
On the other hand, Kolla [24] gave spectral approximation algorithms for UniqueGames and
SmallSetEdgeExpansion. Building on this, Arora, Barak and Steurer [3] gave sub-
exponential time algorithms for UniqueGames and SmallSetEdgeExpansion. In a recent
work, [6] give efficient algorithms for UniqueGames based on the Sum Of Squares (SoS)
hierarchy, when the underlying constraint graph is an SoS certifiable small set expander.

Graph Partitioning and CSPs with Cardinality Constraints

Graph partitioning with vertex/edge expansion objectives has been extensively studied
under the lens of approximation algorithms. Feige, Lee and Hajhiyaghayi [13] and Louis,
Raghavendra and Vempala [29] give approximation algorithms for finding small size balanced
vertex separators and minimizing vertex expansion respectively. Guruswami and Sinop
[21, 22] gave improved approximation algorithms for several graph partitioning problems
dealing with edge expansion for low threshold rank instances. [30] studied a planted model
of instances where the graph induced on either side of the planted cut satisfies a lower bound
requirement on its spectral gap in addition to satisfying some other properties; they gave
exact and constant factor bi-criteria approximation algorithms for balanced vertex expansion
for various ranges of parameters. They also gave a constant factor bi-criteria approximation
algorithm for balanced vertex expansion for instances where one side of the optimal cut has
a subgraph on Ω(n) vertices satisfying a lower bound requirement on its spectral gap. [31]
gave some similar results for k-way edge expansion and k-way vertex expansion.

The problem of decomposing a graph into expanders is also a well studied problem and has
several applications to approximation algorithms. In [38], Trevisan gave a decomposition of
a graph into non-expanding set which induce expanders. There have been several subsequent
works [3, 16, 17] which deal with the problem of partitioning a graph into expanding/low
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threshold rank graphs. Oveis Gharan and Rezeai [15] study the problem of finding a large
subset of vertices such that the graph induced on them is an expander; we discuss this more
in Section 2.

2 Overview and Techniques

We begin by reviewing the by now standard Propagation Rounding based framework which was
introduced informally in [5] and then later developed in [8, 21]. For simplicity, we shall restrict
our discussion to the setting of UniqueGames. Consider the following convex program
which is the R-level Sum-of-Squares (SoS) lifting of SDP relaxation for UniqueGames:

min
µ is a degree-R

pseudo-distribution4

E(i,j)=e∼E Pr
(Xi,Xj)∼µ

[Xi ̸= πj→i(Xj)] . (1)

The above convex program is intended to minimize the number of unsatisfied edges by the
(pseudo)-distribution. The algorithm proceeds along the following steps.

1. Solve the R-round Lasserre relaxation for the SDP where R is chosen large enough as
a function of the error to be tolerated, and the threshold-rank of the instance. Let
µ := {µS,α} be the degree-R pseudo-distribution corresponding to the optimal value of
the relaxation.

2. Choose a subset S appropriately, sample an assignment xS to the variables in S from the
local distribution µS .

3. Label the remaining vertices i ∈ V \ S by sampling from their respective conditional
distributions µi|xS

independently.

The main idea used in the aforementioned works for relating the expected value of the
rounded solution to the SDP objective is the so called local-to-global correlation property
[8, 21], which has the following key consequence. If the underlying constraint graph has
constant threshold rank, then conditioning on constant levels of the SoS solution should
result in pseudo-distributions that have small average local correlation i.e.,

E(i,j)∼E

[
Corrµ|xS

(Xi, Xj)
]
≤ o(1).

Consequently, independent sampling from the marginals of conditional pseudo-distribution
µ|xS will results in labelings that which have value close to optimal of the lifted SDP. While
this recipe and its variants has been remarkably successful in dealing with Max-CSPs
[8, 21, 6], it is easy to see that the this framework does not translate well to the framework
of Strong-CSP’s studied in this paper, as we briefly describe below.

Firstly, note that in the setting of Strong-CSP’s, the emphasis is on deleting vertices to
ensure that all surviving constraints are simultaneously satisfiable. This is in direct contrast to
the aforementioned results where the algorithms are allowed to output labelings which satisfy
“almost all”, but not necessarily, “all”, constraints. A naive approach towards extending the
above to our setting would be to first find a good labeling that satisfies almost all edges, and
then delete the vertices corresponding to the violated edges. However, doing so might result
in approximation guarantees that are worse by a factor of the max-degree. Furthermore, this

4 Informally, a degree-R pseudo-distribution is a collection of local distributions {µS}S for every subset
S ⊆ V of size at most R, which are pairwise consistent up to all variables sets of size at most R (see
Section 3.2 of the full version [19] for more details).
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approach can fail badly in instances where the induced sub-instance on the good vertices
G[Vgood] is sparse (i.e, constant degree), but the full graph is relatively dense and almost
non-satisfiable, since these algorithms are designed to compete against the global optimum
for the edge-satisfaction version of the problem. A final hurdle is that the local-to-global
correlation guarantee, which was the key property used to guarantee the goodness of the
rounding algorithm, might not hold for the full constraint graph of G since in our setting, the
constant threshold-rank guarantee may only hold for the constraint graph induced on Vgood.
In fact, the threshold rank of the full graph can be as large as Ω(|V \ Vgood|) which implies
that conditioning on constant levels of the SoS solution might result in pseudo-distributions
that don’t guarantee any local-to-global correlation like property. These issues taken together
guide our approach to the design of our algorithm (described informally in Figure 1); we
describe and motivate the various steps of the algorithm details in the remainder of this
section.

Input: A UniqueGames instance G(VG , EG , [k], {πe}e∈E) satisfying the conditions of
Theorem 5.
Algorithm:
▶ Threshold Rank Decomposition. As a first step, we compute a (1−O(δc))-sized

subset V ′′ of VG with low threshold-rank and bounded degree using our spectral
decomposition algorithm.

▶ SDP with Slack Variables. We solve the R-level SoS relaxation of a modified
SDP for UniqueGames instance induced on V ′′ with the extended label set [k]∪{∗},
where the label ∗ is meant to indicate vertices which are to be deleted.

▶ Low Variance Rounding. We sample an assignment α for an appropriately chosen
subset S, and then label the vertex i ∈ V with the label with the largest probability
in the conditional marginal µi|XS=α.

Figure 1 StrongUG-Informal.

Finding a large bounded-degree low threshold-rank graph

Since the full instance in our setting can have arbitrarily large threshold rank (due to the
edges incident on the set of outlier vertices), a natural way to overcome this issue would be
to zoom into a large (i.e, (1− oδ(1)-sized) subset of vertices which induces a subgraph with
(comparably) low threshold rank. We do this by using a new threshold rank based spectral
decomposition algorithm with the following guarantee: given a graph G = (V,E) for which
there exists a (1− δ)|V | sized subset that induces a regular low threshold rank sub-graph,
the algorithm returns a (1 − δO(1))-sized subset with threshold5 rank at most poly(1/δ).
This algorithm is the main technical contribution of this paper; in particular, it combines
a classical approximation algorithm for the partial vertex cover problem and extensions of
spectral partitioning primitives from Oveis Gharan and Rezaei [15] to the setting of low
threshold rank graphs. We defer a more detailed discussion of this step to Section 2.1 for
now and proceed with our discussion of the subsequent steps of the full algorithm.

5 Here the threshold parameter is dependent on δ and the optimal value of the StrongUniqueGames in-
stance.
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Solve SoS relaxation with Slack Variables

In the next step, we consider the SDP for UniqueGames modified with slack variables.
Specifically, let G(V,E, [k], {πe}e∈E) be the UniqueGames instance. Due to the above
step, we can directly assume that the full graph has low threshold-rank and bounded vertex
degrees. Furthermore, since the previous step only removes a tiny fraction of vertices, we can
assume that there exists a subset Vsat ⊆ V such that |Vsat| ≥ (1− 2δ)|V | and G[VSat] is fully
satisfiable6. Now given G, we consider a partial7 Unique Game G′(V,E, [k] ∪ {∗}, {Πe}e∈E)
with the global constraint that the fraction of vertices that can be labeled ′∗′ is at most 2δ.
Here the label ∗ is meant to indicate vertices that are supposed to be deleted. Consequently,
for any edge e ∈ E, we define the extended constraint set Πe = πe ∪ ({∗} × Σ) ∪ (Σ× {∗}).
Note that this constraint is no longer a “unique game” constraint. The final SoS relaxation
used is almost identical to Eq. 1, along with the following modifications:
C1: The pseudo-distribution is now over assignments to variables from the extended label

set [k] ∪ {∗}.
C2: We add the global cardinality constraint Pri∼V PrXi∼µ[Xi = ∗] ≤ 2δ.
C3: We also add the constraint

Pr
(Xi,Xj)∼µ

[πi→j(Xi) ̸= Xj ] ≤ Pr
Xi∼µ

[Xi = ∗] + Pr
Xj∼µ

[Xj = ∗],

for every edge (i, j) ∈ E

The cardinality constraint (C2) is intended to ensure that conditioned on any assignment
that is assigned a non-zero probability mass by the SDP solution, the fraction of vertices that
are labeled ∗ under the resulting conditional distribution is at most δ. The edge violation
constraints (C3) are intended to ensure that an edge constraint is allowed to be violated only
when one of the end points is labeled ∗. It is easy to verify that this SDP is feasible for G′.
Furthermore, since the previous step guarantees that the max-degree of the surviving graph
is at most a constant times the average degree, this implies that the optimal value of the
SoS relaxation is at most δO(1).

Low Variance Rounding

In the final step, we have to round the SDP solution to output a large set with the correspond-
ing labeling which satisfies all induced constraints. As mentioned above, the local-to-global
correlation argument in itself is not sufficient for this purpose, as it can only guarantee that
a labeling which violates a small fraction of edges. However, it is well known that for certain
kinds of CSPs e.g,. UniqueGames, 3-Coloring, the low threshold-rank guarantee implies
the stronger property of “conditioning reduces variance” [8, 21, 4]8, which says that for an
appropriately chosen subset S ⊆ V we have

EXS∼µS

[
Ei∼V Var

[
Xi|XS

]]
≤ SDP

λm
, (2)

whenever rank≥1−λm
(G) ≤ m. Note that this is a strictly stronger property than local-to-

global correlation (see Appendix D of [19] for an example which separates the two properties).
To see why this property is useful in constructing labelings which satisfy all induced constraints,

6 Note that Vsat may be a strict subset of Vgood since the previous step may remove a few vertices from
Vgood.

7 The nomenclature “partial” Unique Game was introduced in [37] and refers to a Unique Game with the
additional property that a fixed fraction of vertices are allowed to be left as unlabeled.

8 [4] actually showed a variant of this statement tailored towards finding large independent sets.
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consider a constraint (i, j) ∈ EG such that for some partial assignment XS ← α, the
conditional marginals of vertices i and j have low variance i.e,. Var[Xi|XS = α] ≤ 0.1 and
Var[Xj |XS = α] ≤ 0.1. Therefore, it follows that there exists labels a, b ∈ [k] ∪ {∗} for which
µi=a|XS=α ≥ 0.9 and µj=b|XS=α ≥ 0.9. Furthermore, suppose we assume that a, b ∈ [k].
Then we claim that the SDP constraints imply that πi→j(a) = b. This is because for any
(a′, b′) ∈ [k]× [k] which violates the edges (i, j), using the edges violation constraints (C3)
and a union bound we get that

Pr
(Xi,Xj)∼µ|XS=α

[
Xi = a′, Xj = b′

]
≤ 0.2.

On the other hand, our choice of labels a and b for vertices i and j (respectively) imply that

Pr
(Xi,Xj)∼µ|XS=α

[
Xi = a,Xj = b

]
≥ 1− Pr

Xi∼µ|XS=α

[
Xi ̸= a

]
− Pr

Xj∼µ|XS=α

[
Xj ̸= b

]
≥ 0.8.

Therefore, it must be that πj→i(a) = b i.e, the labeling (a, b) satisfies the edge (i, j). In
summary, low variance vertices whose leading labels are not ′∗′ induce a satisfiable instance.
We point out that a similar observation was also made by Arora and Ge [4] who used it to
find large independent sets in low threshold-rank graphs. The above discussion naturally
suggests the following rounding process:
1. Let S be the subset for which Eq. 2 holds. Sample an assignment α ∼ µS for XS

2. Delete the vertices for which Varµ|XS=α[Xi] > 0.1.
3. For the remaining vertices i ∈ V , assign the maximum likelihood labeling

σ(i) = argmax
a∈[k]∪{∗}

Pr
Xi∼µ|XS=α

[
Xi = a

]
.

4. Delete the vertices labeled as ∗ and output the surviving vertices with the corresponding
labeling.

The above discussion ensures that the set output by the rounding scheme is satisfiable.
Combining (2) with the SDP bound and the threshold-rank bound established in the previous
steps imply that O(δO(1)) vertices get deleted in step 3. Furthermore, the global cardinality
constraint ensures that the fraction of vertices labeled ′∗′ (and hence deleted in the round
step) is O(δ). This with the bound on the vertices deleted in the previous steps imply that
the total fraction of vertices deleted is δO(1), which concludes the analysis of the algorithm.

2.1 Threshold Rank based Spectral Partitioning
As mentioned above, the first step of our algorithm (i.e, the threshold rank decomposition step)
is the key technical contribution of this work. Formally, our objective here is the following:
given a graph G = (V,E) which contains a (1− δ)-sized subset Vgood that induces a regular
subgraph with low threshold rank, the objective is to recover a (1− oδ(1))-sized subset that
has relatively small threshold rank (say poly(1/δ)). This in itself is a well motivated question
and various versions of it have been studied in the design of approximation algorithms for
UniqueGames and SmallSetEdgeExpansion (see [3] and references therein). However,
we point out that the techniques from these earlier works do not immediately apply to our
setting as in these works, the emphasis there is rather on finding sub-linear sized sets which
induce graphs with threshold rank growing with the number of vertices (with of course, no
assumption on the spectrum of the full graph). In our setting, we instead want to design
algorithms that exploit the “almost low threshold” structure of the instance and output
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43:12 Approximating CSPs with Outliers

sets that satisfy the stronger guarantees of being ≈ (1 − o(1))-sized and having constant
threshold rank. In the remainder of this section, we motivate and describe the design of such
an algorithm.

Finding a Linear Sized Low Rank Set. To begin with, let us first consider the simpler
setting where we assume that the max-degree of the graph is at most a constant times
the degree of the induced good graph G[Vgood] (we shall later discuss how to achieve this
condition at the cost of deleting a few additional vertices). Furthermore, let us first address
the even simpler goal of finding a linear (say n/1000) sized subset which induces a low
threshold rank graph. Again, this in itself is a well motivated problem, and several previous
works [38, 15] study the related question when the induced subgraph has to be an expander9.
Most of these works build on the following basic spectral partitioning primitive that also
forms the basis of our algorithm:

▷ There exists an efficient algorithm that given a graph G = (V,E),
outputs a partition P := (S, T ) of V such that either |S| ≥ 3n/4

and G[S] is an expander, or (S, T ) is balanced10and has small expansion. (3)

The above algorithm is a simple recursive application of the spectral partitioning algorithm
from Cheeger’s inequality (see Lemmas 3.1, 5.1 from the full version [19] for more details).
Note that the above algorithm may either output a large set which induces an expander
(in which case we are done), or a balanced partition (say P0) with small expansion. How
do we proceed if the latter is the case? Following an idea from [15], we again apply the
spectral partitioning (i.e, (3)) to each set in the partition in partition P0 to construct a
refinement of the partition, say P1. Again, if P1 contains a linear sized subset which induces
an expander, then we are done – otherwise, we again keep repeating the above process. We
iteratively continue constructing a sequence of refinements P0 ⊆ P1 ⊆ · · · ⊆ Pt until one
of the partitions contains a linear sized set which induces an expander. But then one can
ask that how can we guarantee that the process terminates? This is where the higher order
Cheeger’s inequality [28, 25] comes to the rescue i.e., we show that if the process continues
beyond some iteration t = t(δ), then Pt is a balanced K := 2t−1- partition of the vertex set.
In particular, using the higher order Cheeger inequality and the fact that G[Vgood] as low
threshold rank, we can show that at least one of the K-sets in the partition must have large
edge boundary i.e.,

max
i∈[K]

|∂G(Si)| ≥ Ω(εdn) (by an appropriate instantiation of parameters for (3).) (4)

On the other hand, note that since the algorithm proceeds beyond iteration t, it follows that
for each application of (3) in each of the t iterations, the spectral partitioning algorithm
returns a non-expanding partition (using the “or” guarantee from (3)), and hence the fraction
of edges crossing the various sets in the partition Pt must be small i.e.,∑

i∈[K]

|∂G(Si)| ≤ O(ε2dn), (5)

9 Here we refer to any graph whose spectral gap is at least a constant as an expander.
10 Here we say a partition V = S ⊔ T is balanced if |S|, |T | ∈ [|V |/4, 3|V |/4].
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which contradicts the upper bound on the expansion from (4). In summary, the above
arguments taken together imply that the above process must terminate during some iteration
t′ ≤ t, resulting in a subset of size at least 2−t′ · n = Ω̃(n)11 which induces an expander.

Finding Many Low Rank Sets. Now that we have an algorithm that finds a Ω(n)-sized
set (say S1) which induces an expander, the next step is to find many such vertex disjoint
sets in the graph. This is easily achieved by deleting the first such subset S1 recovered by
the above algorithm, and then again running the above algorithm on the graph G[V \ S1] to
recover a linear sized subset S2 ⊆ V \ S1 which again induces an expander in G. However,
note that the induced sub-graph G[V \ S1] does not automatically inherit the structural
properties of G[Vgood] and hence, additional care is need to ensure that the above algorithm
will still succeed on the smaller induced sub-graph G[V \ S1]. In particular, we shall again
need to establish an analogue of (4) where we show that any balanced K-way partition P of
the smaller set V \ S1 will still have one expanding set. This is done by showing that any
balanced K-way partition of V \ S1 can be carefully extended to a balanced K-way partition
P ′ of V such that

max
S∈P

∣∣∂G[V \S1](S)
∣∣ ≳ max

S′∈P′

∣∣∂G[V ](S′)
∣∣ , (6)

Note that the above immediately implies the desired K-way expansion bound for P since the
latter term can again be lower bounded by combining the higher order Cheeger’s inequality
with the threshold rank guarantee of the full graph G[V ]. We point out that establishing (6)
is precisely where the bounded degree assumption on the graph comes in handy. The above
(i.e., (6)), along with an appropriately tailored version of (5) will allow us to establish that
the algorithm will again find a linear sized subset S2 ⊂ V1 \ S1 which induces an expander.
Overall, we keep iteratively finding and removing linear sized subsets S2, S3, . . . , – each of
which induces an expander – until only oδ(1)-vertices remain; this results in an almost12

partition P := {Si}i∈[N ] of the vertex set where each of the subsets in partition has small
edge boundary, is linear sized, and induces an expander in the full graph G.

Stitching the sets together. Recall that our final objective is not to find an almost partition
consisting of induced low threshold rank subgraphs, but to find one large (1− oδ(1))-subset
V ′ that induces a low threshold rank subgraph. To that end, we just show that the set
V ′ := ∪i∈[N ]Si is itself such a set. To see this, observe that the adjacency matrix A[V ′] of
induced subgraph G[V ′] is almost block diagonal (since the above step guarantees that only
few edges cross the partition {Si}i∈[N ]). Hence with some additional work we can conclude
that the number of large eigenvalues in A[V ′] must be at most the sum of number of large
eigenvalues in each of the blocks A[S1], . . . , A[SN ], each of which is again small on account
of G[Si]’s being expanders i.e., we can conclude rank1−δO(1)(G[V ′]) ≤ O(N). Furthermore,
since each of the sets in the partition P is linear sized, this establishes that N is at most
a constant (possibly depending on δ), which implies that the threshold rank of G[V ′] is at
most Oδ(1).

Reducing to the Bounded Degree Setting. Lastly, we address the issue that in general
the max degree of the underlying constraint graph can be arbitrarily large compared to
the degree d of the underlying good graph G[Vgood]. Towards addressing this, we introduce

11 Here Ω̃ hides poly-logarithmic in δ factors.
12 An almost partition of a set [n] is a collection of disjoint sets whose union contain (1 − o(1))-fraction of

the elements.
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an additional pre-processing step which reduces the average degree of the remaining graph
to O(d) by deleting a small number of vertices, and then additionally deletes the vertices
in the remaining subgraph which have degree larger than d/δO(1). For the first part, we
use a 2-factor approximation algorithm for the Partial Vertex Cover problem [10] that can
be used to identify a small number of vertices that hits ≈ (davg(G))− d)n/2 edges (where
davg denotes the average degree). The subsequent deletion step again just removes a small
number of vertices; this follows from a simple application of Markov’s inequality. Finally, we
remark that this again perturbs the spectral structure of the graph used that is used in the
subsequent steps, and hence additional care is needed to make all of the above arguments go
through.
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Abstract
In submodular optimization we often deal with the expected value of a submodular function f

on a distribution D over sets of elements. In this work we study such submodular expectations
for negatively dependent distributions. We introduce a natural notion of negative dependence,
which we call Weak Negative Regression (WNR), that generalizes both Negative Association and
Negative Regression. We observe that WNR distributions satisfy Submodular Dominance, whereby
the expected value of f under D is at least the expected value of f under a product distribution
with the same element-marginals.

Next, we give several applications of Submodular Dominance to submodular optimization. In
particular, we improve the best known submodular prophet inequalities, we develop new rounding
techniques for polytopes of set systems that admit negatively dependent distributions, and we prove
existence of contention resolution schemes for WNR distributions.
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1 Introduction

A function f : 2U → R on universe U = {1, . . . , n} is submodular if it satisfies f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ U . These functions capture the concept of diminishing
returns, and are therefore useful in many fields such as machine learning, operations research,
mechanism design, and combinatorial optimization; see books [20, 3, 36, 31].

Although f is a discrete function, for many applications it is useful to define a continuous
relaxation fcont : [0, 1]n → R of f , since that allows us to use techniques from continuous
optimization. Here, by a relaxation we mean that fcont equals f at the indicator vectors
of the sets, i.e., fcont(1S) = f(S) for all S ⊆ U . A standard way to define such continuous
relaxations is to first define a probability distribution D(x) over subsets of U with element-
marginals x ∈ [0, 1]n, and then define fcont(x) to be the expectation with respect to this
distribution, i.e., fcont(x) := ES∼D(x)[f(S)], where S is a random set drawn from D(x). For
example, the popular multilinear relaxation F (x) is defined by taking D(x) to be the product
distribution with marginals x. Other examples include the convex closure relaxation f−(x)
(which is equivalent to the Lovász extension for submodular functions), the concave closure
relaxation f+(x), and the relaxation f∗(x) [38]. Studying the properties of submodular
expectations for these distributions has been a fruitful direction, which has led us to several
optimal/approximation algorithms for submodular optimization [3, 39, 7, 18, 2, 16].

Given the success of the above continuous relaxations, it is natural to ask what other
continuous relaxations, or equivalently, what other submodular expectations and distributions
D(x) could be defined that are useful for new or improved applications. In this work, we study
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44:2 Submodular Dominance and Applications

submodular expectations for negatively dependent distributions and use them to improve
the best known submodular prophet inequalities, to develop new rounding techniques, and
to design contention resolution schemes for negatively dependent distributions.

1.1 Submodular Dominance
Since the multilinear extension F is commonly employed in combinatorial optimization, one
avenue to explore other continuous relaxations is by comparing them to F .

▶ Definition 1 (Submodular Dominance). A distribution D over 2U with marginals x ∈ [0, 1]n
satisfies Submodular Dominance if for every submodular function f : 2U → R,

E
S∼D

[f(S)] ≥ F (x) .

Shao [37] studied a similar concept that he called a comparison theorem, which involved
a subclass of submodular functions. Christofides and Vaggelatou [13] later studied what they
called the supermodular ordering, which is essentially equivalent to Submodular Dominance.
Both viewed the problem through the lens of probability theory, whereas we approach it
from the standpoint of combinatorial optimization.

It is not difficult to see how one might apply Submodular Dominance, e.g., it immediately
yields an algorithm to round multilinear extension subject to feasibility constraints. However,
Submodular Dominance implies a much wider variety of results in stochastic settings, where
most of our current understanding relies on the independence of random variables. By
relating product distributions to more complex distributions, Submodular Dominance allows
us to improve existing results and study more general problems.

1.2 Negative Dependence and Submodular Dominance
Positive correlations can only decrease the expectations of submodular functions due to their
diminishing marginal returns, so we turn our attention to negatively dependent distributions.
Pemantle initiated a systematic study of such distributions in [32]. In this work, we introduce
the following generalization of Negative Association (NA) and Negative Regression (NR),
two popular notions of negative dependence (details in Section 2).

▶ Definition 2 (WNR). A distribution D over 2U satisfies Weak Negative Regression (WNR)
if for any i ∈ U and any monotone function f : 2U → R,1

E
S∼D

[f(S \ i) | i ∈ S] ≤ E
S∼D

[f(S \ i) | i ̸∈ S] . (1)

Equivalently, D is WNR if S \ i conditioned on i ̸∈ S stochastically dominates S \ i condi-
tioned on i ∈ S for all i ∈ U . This captures an intuitive notion of negative dependence where
conditioning on including an element lowers the probability of other inclusion events. WNR
distributions satisfy Submodular Dominance as well as many desirable closure properties.

Submodular Dominance for Negatively Dependent Distributions. Christofides and Vag-
gelatou [13] proved that NA distributions over continuous random variables satisfy Submod-
ular Dominance for a continuous generalization of submodular functions. We strengthen
their result in Section 3 in the setting of Bernoulli random variables from NA to WNR
distributions, a strict superset of the union of NA and NR distributions.

1 A function f is monotone if it satisfies f(S) ≤ f(T ) for all S ⊆ T . Elements should be taken as singleton
sets depending on context, e.g., S \ i means S \ {i}.
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▶ Theorem 3. WNR distributions satisfy Submodular Dominance.

It turns out that there exist distributions that satisfy Submodular Dominance but are not
WNR. This raises the question: what conditions are necessary for Submodular Dominance?
We first recall the classic notion of Negative Cylinder Dependence (see, e.g., [21]).

▶ Definition 4 (NCD). A distribution D over 2U with marginals x satisfies Negative Cylinder
Dependence (NCD) if for any T ⊆ U ,2

Pr
S∼D

[T ⊆ S] ≤ Pr
S∼x

[T ⊆ S] and Pr
S∼D

[T ⊆ Sc] ≤ Pr
S∼x

[T ⊆ Sc] .

NCD can be interpreted as saying that any subset of elements are negatively correlated.

▶ Theorem 5. All distributions that satisfy Submodular Dominance are NCD.

This can be useful when Submodular Dominance is an easier property to prove. For
example, the distribution arising from randomized swap rounding can be shown to satisfy
Submodular Dominance via a straightforward convexity argument, but a direct proof that
the distribution is NCD is more involved [10]; this theorem shows that such results follow due
to a natural relationship between Submodular Dominance and negative dependence rather
than any algorithm specific properties.

Although NCD is necessary for Submodular Dominance, it is insufficient on its own.
While this insufficiency result was previously known [11],3 we strengthen it by constructing
an example of an NCD distribution which violates Submodular Dominance and is additionally
homogeneous, meaning it is distributed only on sets of the same size. Such distributions
occur often enough to be of interest, e.g., distributions over the bases of a matroid.

1.3 Applications
Besides being a natural question, Submodular Dominance has several applications.

Submodular Prophet Inequalities. The Prophet Inequality is a classical problem where a
gambler sees the realizations of non-negative random variables one-by-one, choosing a random
variable in an online fashion and attempting to maximize its value. The celebrated result of
Krengel, Sucheston, and Garling [28, 29] demonstrates a 1/2 prophet inequality, meaning that
just knowing the distributions in advance is enough to obtain 1/2 the expectation obtained
by the prophet that knows all the realizations in advance.

Motivated by applications to mechanism design, several works extended the 1/2 prophet
inequality to gamblers selecting multiple random variables subject to a packing constraint
to maximize a linear objective function, e.g., [24, 8, 1, 27, 34]. The Submodular Prophet
Inequality (SPI) was introduced by Rubinstein and Singla [35] as a further generalization to
submodular objective functions to capture combinatorial applications.

One significant complication in SPI is that beyond simple Bernoulli settings, we deal with
expectations that are no longer taken over product distributions. Chekuri and Livanos [9]
obtain an efficient4 c · (1− e−b) · (e−b − ϵ) SPI for set systems with solvable polytopes5 and

2 S ∼ x means S is sampled from the product distribution with marginals x.
3 Observing that certain randomized rounding algorithms give rise to distributions satisfying both

Submodular Dominance and NCD, Chekuri, Vondrák, and Zenklusen [11] remarked that there exist
NCD distributions which violate Submodular Dominance, so NCD was not sufficient for Submodular
Dominance. Our Theorem 5 shows the other direction, that Submodular Dominance implies NCD.

4 We use efficient to mean algorithms that run in probabilistic polynomial time.
5 The polytope PI of a set system I is formed by taking the convex hull of the indicator vectors of

maximal independent sets in I, and is solvable if linear objective functions can be efficiently maximized
over it.

APPROX/RANDOM 2022



44:4 Submodular Dominance and Applications

an efficient (b, c)-selectable greedy online contention resolution scheme (OCRS) for product
distributions (see formal definitions in Section 4). Crucially, their result loses a factor of
e−b − ϵ to handle the non-product distributions of SPI. We use Submodular Dominance to
re-analyze the performance of greedy OCRSs in Section 4.3, which allows us to save this
factor of e−b − ϵ and improve the best known SPIs.

▶ Theorem 6 (Submodular Prophet Inequalities). For fixed ϵ > 0, if a set system I ⊆ 2U has
a solvable polytope and an efficient (b, c)-selectable greedy OCRS for product distributions:

There is an efficient c · (1− e−b− ϵ) SPI for monotone non-negative submodular functions.
There is an efficient c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions.

Combining with known greedy OCRSs, this implies efficient SPIs as given in Table 1.

Table 1 Submodular Prophet Inequalities for different feasibility constraints.

Feasibility Constraint Prior Best [9] Our Results

Monotone General Monotone General

Uniform Matroid of rank k → ∞ 1/4.30 1/17.20 1 − 1/e − ϵ 1/6.33

Matroid 1/7.39 1/29.54 1/5.02 1/20.07

Matching 1/9.49 1/37.93 1/6.75 1/27.00

Knapsack 1/17.41 1/69.64 1/13.40 1/53.60

It is known that even for offline monotone submodular maximization over uniform
matroids, no efficient algorithm can do better than a (1− 1/e)-approximation [30]. Thus, we
obtain the first optimal efficient 1− 1/e− ϵ monotone SPI over large rank uniform matroids.

Submodular Maximization. Another application is sampling from WNR distributions as
a randomized rounding technique where the integral solution obtains at least the value of
the fractional solution in expectation. A common method in submodular optimization is
to first maximize the multilinear extension, which Vondrák [39] showed can be done for
downward-closed set systems with solvable polytopes. For matroids, we know of methods
which round the fractional solutions to sets without losing value [6, 10, 11], but set systems
with solvable polytopes are far more general than matroids. Thus, the challenge in going
beyond matroids is rounding the multilinear extension. By Submodular Dominance, an
algorithm that efficiently generates a WNR distribution for a polytope automatically rounds
the multilinear extension, which we show has immediate consequences for submodular
maximization (details in Section 5.1).

▶ Theorem 7 (Submodular Maximization). Let f : 2U → R≥0 be a monotone submodular
function. If a downward-closed set system I ⊆ 2U has a solvable polytope and efficiently
admits WNR distributions, there exists an efficient algorithm that returns T ∈ I such that
E[f(T )] ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Adaptivity Gaps for Stochastic Probing. A natural generalization of submodular maximiz-
ation is by adding stochasticity: replace elements by random variables called items. Such
problems are often known as Stochastic Probing [22, 2, 23, 5, 17]. In addition to knowing the
distributions of the items, we also allow algorithms to learn the realization of an item after
selecting it. This opens up the concept of adaptive algorithms, which modify their behavior
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conditioned on such realizations. Though adaptivity can result in better algorithms, it also
introduces significant complexity; for example, a decision tree can be of exponential size.
Therefore, non-adaptive algorithms may be preferable if their performance is comparable to
that of the optimal adaptive algorithm, a concept known as the adaptivity gap. By sampling
from WNR distributions to round the multilinear extension, we adapt the analysis of the
adaptivity gap upper bound by Asadpour and Nazerzadeh [2] from matroids to any set
system for which WNR distributions exist (details in Section 5.2).

▶ Theorem 8 (Stochastic Probing). For a downward-closed set system I that admits WNR
distributions, the adaptivity gap for Stochastic Probing is upper-bounded by e

e−1 .

Contention Resolution Schemes. Contention resolution schemes (CRS) are another random-
ized rounding technique, with the concept being formally introduced by [12] for submodular
maximization. (Similar but less thoroughly explored notions appear in earlier works such
as [4].) Since submodular maximization usually occurs via approximations of the multilinear
extension, CRSs have generally been studied with respect to product distributions. Recently,
Dughmi [14, 15] initiated the study of CRSs for non-product distributions because of their
applications in settings such as the Matroid Secretary Problem. We extend the CRS of [12]
for matroids from product distributions to WNR distributions, which gives possible directions
to generalize our understanding of CRSs (details in Section 5.3).

▶ Theorem 9 (Contention Resolution Schemes). For a matroid M, there exists a (1− 1/e)-
selectable CRS for any WNR distribution with marginals x ∈ PM.

2 WNR and Other Negatively Dependent Distributions

In this section, we first discuss popular notions of negative dependence, and then introduce
WNR and study its various properties. Lengthier proofs are deferred to Appendix A.1.

▶ Definition 10 (NA). A distribution D over 2U satisfies Negative Association (NA) if for
any monotone f, g : 2U → R depending on disjoint sets of elements, CovS∼D[f(S), g(S)] ≤ 0.

This property is very similar to the Positive Association (PA) condition in the FKG
inequality, with the main difference being the reversed inequality and disjoint sets. Although
the FKG Inequality gives a straightforward condition to check for PA, no analogous result
exists for NA, and in general, it is difficult to prove that a distribution is NA [26, 32].

Another way to define negative dependence is based on the idea that conditioning on
“larger” inclusion events should reduce the probability of other inclusion events.

▶ Definition 11 (NR). A distribution D over 2U satisfies Negative Regression (NR) if for
any sets R−, R+, T ⊆ U such that R− ⊆ R+ ⊆ T and any monotone function f : 2U → R,

E
S∼D

[f(S \ T ) | (S ∩ T ) = R+] ≤ E
S∼D

[f(S \ T ) | (S ∩ T ) = R−] .

Equivalently, D is NR if S \ T conditioned on S ∩ T = R− stochastically dominates S \ T

conditioned on S∩T = R+ for all R− ⊊ R+ ⊆ T ⊆ U . It turns out that NR is also a difficult
property to check.

Since NA and NR are both natural forms of negative dependence, it is surprising that the
exact relationship between them is unknown. While it is known that NA does not imply NR,
it is conjectured that NR implies NA [32]. One might then ask whether we can generalize
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NA and NR to get the best of both worlds: a weaker notion of negative dependence that is
easier to check while still satisfying many desirable properties. This is our motivations for
defining WNR distributions.

We first reformulate the WNR condition in terms of covariance.

▷ Claim 12. The WNR condition (1) is equivalent to CovS∼D[f(S \ i),1i∈S ] ≤ 0.

Proof. Let D have marginals x. The covariance inequality is equivalent to ES∼D[f(S \ i) ·
1i∈S ] ≤ ES∼D[f(S \ i)]ES∼D[1i∈S ]. Then observe that if we expand LHS by conditioning
on i, the expectation conditioned on i ̸∈ S is 0 due to the indicator. We can also simplify
RHS using ES∼D[1i∈S ] = xi, so the covariance inequality is equivalent to

xi · E
S∼D

[f(S \ i) · 1i∈S | i ∈ S] ≤ E
S∼D

[f(S \ i)] · xi .

Canceling the xi and noting that the indicator on LHS is always 1, we have ES∼D[f(S\i) | i ∈
S] ≤ ES∼D[f(S \ i)]. This is equivalent to the WNR condition since the expectation is just a
weighted sum of the conditional expectation on i ∈ S and i ̸∈ S. ◁

Next, we prove that WNR distributions generalize NA and NR distributions.

▶ Proposition 13. NA and NR imply WNR, and WNR implies NCD, but the reverse
implications do not hold. In other words, the union of NA and NR distributions is a strict
subset of WNR distributions, which is a strict subset of NCD distributions.

Proof. The WNR condition is a special case of the NR condition when T := {i}, and by
Claim 12, it is also a special case of the NA condition when g(S) := 1i∈S , so both NA and
NR imply WNR. For strict containment, we give a WNR distribution that is neither NA
nor NR in Appendix A.1. Theorems 3 and 5 and the example distributions in Section 3
demonstrate that WNR distributions are a strict subset of NCD distributions. ◀

Negative
Association

Negative
Regression

Negative Cylinder Dependence

Submodular Dominance

Weak Negative Regression

Figure 1 Hierarchy of negative dependence and its relation to Submodular Dominance.

Finally, we observe that WNR satisfies two closure properties, proved in Appendix A.1.

▶ Definition 14 (Projection). Let D be a distribution over 2U . Its projection onto U ′ ⊆ U is
the distribution which samples S ∼ D and returns S ∩ U ′.

▶ Definition 15 (Products). Let A and B be distributions over 2A and 2B for disjoint A, B.
Their product distribution independently samples S ∼ A and T ∼ B, then returns S ∪ T .

▶ Proposition 16. WNR is closed both under projection and under products.
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Joag-Dev and Proschan [26] showed that NA distributions are NCD, closed under projec-
tion, closed under products, and closed under taking monotone functions of disjoint subsets
of variables.6 Since WNR shares three of these properties with NA and requires a weaker
condition while also generalizing NR, it appears to be a useful notion of negative dependence.

3 Towards a Characterization of Submodular Dominance

3.1 WNR is a Sufficient Condition
▶ Theorem 3. WNR distributions satisfy Submodular Dominance.

Proof. We prove by induction on the number of elements. The base case of 1 element is
trivial because the marginals fully specify the distribution.

We will show that any WNR distribution D over 2[k] with marginals x satisfies Submodular
Dominance, assuming by induction that all WNR distributions over 2[k−1] satisfy Submodular
Dominance. We assume that xk ≠ 0, 1 because otherwise, we can interpret D as a distribution
over 2[k−1] and trivially be done.

Let D \ k and x \ k denote the projections of D and x onto [k − 1]. Let Dk denote the
distribution which samples S ∼ D \ k, then returns S ∪ k w.p. xk and returns S otherwise,
i.e., Dk is D but with element k sampled independently.

Let f : 2[k] → R be a submodular function. To prove Submodular Dominance, we will
show the following inequalities hold:

E
S∼D

[f(S)]
Claim 18
≥ E

S∼Dk

[f(S)]
Claim 17
≥ E

S∼x
[f(S)] . (2)

▷ Claim 17. The second inequality of (2) holds, i.e., ES∼Dk
[f(S)] ≥ ES∼x[f(S)].

Proof. Since k is independently sampled in both Dk and x, we can write

E
S∼Dk

[f(S)] = E
S∼D\k

[xk · f(S ∪ k) + (1− xk) · f(S)] and

E
S∼x

[f(S)] = E
S∼x\k

[xk · f(S ∪ k) + (1− xk) · f(S)] .

Convex combinations of submodular functions are submodular, D \ k is WNR by closure
under projection (Proposition 16), and the marginals of D \ k are equal to the marginals of
x \ k. Therefore, by the induction hypothesis,

E
S∼D\k

[xk · f(S ∪ k) + (1− xk) · f(S)] ≥ E
S∼x\k

[xk · f(S ∪ k) + (1− xk) · f(S)] ,

which implies ES∼Dk
[f(S)] ≥ ES∼x[f(S)]. ◁

▷ Claim 18. The first inequality of (2) holds, i.e., ES∼D[f(S)] ≥ ES∼Dk
[f(S)].

Proof. Expanding expectations for Dk (as in the proof of Claim 17) and moving it to LHS,

E
S∼D

[f(S)− xk · f(S ∪ k)− (1− xk) · f(S \ k)] ≥ 0 .

6 This last property is useful in the setting of continuous random variables studied in [26] because
properties closed under convolutions are extremely powerful. However, it is not so relevant in the
discrete settings we study.
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Conditioning on k yields

xk · E
S∼D

[f(S ∪ k)− xk · f(S ∪ k)− (1− xk) · f(S \ k) | k ∈ S]

+ (1− xk) · E
S∼D

[f(S \ k)− xk · f(S ∪ k)− (1− xk) · f(S \ k) | k ̸∈ S] ≥ 0 ,

which simplifies to

xk(1−xk)
(

E
S∼D

[f(S∪k)−f(S \k) | k ∈ S]+ E
S∼D

[f(S \k)−f(S∪k) | k ̸∈ S]
)
≥ 0 .

Dividing out xk(1− xk) and moving the second term to RHS gives

E
S∼D

[f(S ∪ k)− f(S \ k) | k ∈ S] ≥ E
S∼D

[f(S ∪ k)− f(S \ k) | k ̸∈ S] . (3)

Let fk(S) := f(S ∪ k)− f(S \ k). fk does not depend on k, and by the submodularity of f ,
−fk is a monotone function. Thus, (3) is directly implied by the WNR condition (1). ◁

Claims 17 and 18 complete the proof of Theorem 3. ◀

The following proposition, which we prove in Appendix A.2, shows that WNR is not a
necessary condition for Submodular Dominance.

▶ Proposition 19. The distribution D which samples uniformly from ∅, {1}, {2}, {1, 2}, {1, 3},
{2, 3} satisfies Submodular Dominance, but D violates WNR for f(S) := max(11∈S ,12∈S)
and i = 3.

3.2 NCD is a Necessary Condition
Since WNR is not equivalent to Submodular Dominance, we search for necessary conditions to
better understand the relationship between negative dependence and Submodular Dominance.

▶ Theorem 5. All distributions that satisfy Submodular Dominance are NCD.

Proof. Let D be a distribution over 2U with marginals x which satisfies Submodular Domin-
ance. For any T ⊆ U , consider the functions

fT (S) := 1− 1T ⊆Sc and gT (S) := |S ∩ T | − 1T ⊆S .

Equivalently, fT , gT are the rank functions of the uniform matroids of rank 1 and |T | − 1
over the ground set T . The only fact about matroid rank functions we use here is that all
matroid rank functions are submodular (though one can also easily check that fT , gT are
submodular via the definition of submodularity). Since subtracting a linear function from a
submodular function results in a submodular function, −1T ⊆S and −1T ⊆Sc are submodular
functions. Thus, by Submodular Dominance we have

− Pr
S∼D

[T ⊆ S] = E
S∼D

[−1T ⊆S ] ≥ E
S∼x

[−1T ⊆S ] = − Pr
S∼x

[T ⊆ S] and

− Pr
S∼D

[T ⊆ Sc] = E
S∼D

[−1T ⊆Sc ] ≥ E
S∼x

[−1T ⊆Sc ] = − Pr
S∼x

[T ⊆ Sc] .

Multiplying both sides by −1 yields the definition of NCD (Definition 4). ◀

The following two propositions, which we prove in Appendix A.2, show that NCD is not
a sufficient condition for Submodular Dominance.
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▶ Proposition 20. The distribution D over 2[4] which chooses uniformly at random i ∈ [4],
then returns w.p. 1/2 either i or [4] \ i, is NCD. However, D violates Submodular Dominance
for the submodular function f(S) := min(2, |S|).

▶ Proposition 21. The distribution D over 2[8] which chooses uniformly at random i ∈
A := {1, 2, 3, 4} and j ∈ B := {5, 6, 7, 8}, then returns w.p. 1/2 either i ∪ (B \ j) or
(A \ i)∪ j, is NCD. However, D violates Submodular Dominance for the submodular function
f(S) := min(2, |S ∩A|).

Thus, the class of distributions which satisfy Submodular Dominance is a strict subset of
NCD distributions and a strict superset of WNR distributions. It is unclear whether the
“right” answer will turn out to be a useful notion of negative dependence.

4 Applications to Submodular Prophet Inequalities

In SPI, we have items U , which are discrete random variables with disjoint images and
arbitrary probability mass functions. We denote realizations of items as elements. WLOG,
let the image of i ∈ U be {ij : j ∈ [m]}, and let the realization of i be ij w.p. pij . Let
E := [n]× [m] denote the set of elements. The distributions of each item are independent
and known to us in advance.

We are given a set system I ⊆ 2U and a submodular objective function f : 2E → R≥0.
Notice that while the items are independent, the elements do not follow a product distribution.
As we are optimizing over the element-space, this is a non-trivial complication.

Each item arrives one-by-one. When an item arrives, we learn its realization, and must
choose whether to accept or reject it. The set of accepted items must be in I, and the goal
is to maximize f on the realizations of the accepted items. The arrival order is chosen by an
almighty adversary, who knows in advance the outcomes of all randomness, such as the item
realizations, the decisions of our algorithm, etc.

If there exists an α-competitive algorithm compared to the prophet, we say there is an α

SPI. Rubinstein and Singla [35] proved Ω(1) SPIs over matroids, and Chekuri and Livanos [9]
refined their analysis to obtain better constants, as well as results for a broader range of set
systems. We further improve upon their approach using Submodular Dominance, obtaining
results such as the first tight SPI for large rank uniform matroids.

4.1 Core Approach: SPI for Bernoulli Items
Before tackling the full problem, it is helpful to first consider a simplified version, Bernoulli
SPI, where each item i is only a Bernoulli random variable, taking value 1 w.p. pi and taking
value 0 otherwise. Here, there is no notion of elements (or rather, elements are effectively
synonymous with items), so we consider a submodular objective function f : 2U → R≥0. As
in the full problem, we have a set system constraint I ⊆ 2U .

This is quite similar to the problem of submodular maximization from Section 5.1, but
with a stochastic component (each item being usable only w.p. pi) and an online component
(items are revealed one-by-one). Therefore, it makes sense to borrow the high level approach
of optimizing the multilinear extension F , then rounding the fractional solution. Since I is a
discrete constraint and F is a continuous function, the following relaxation is useful in offline
submodular maximization:

▶ Definition 22. For any downward-closed set system I ⊆ 2U , its polytope PI ⊆ [0, 1]n is
the convex hull of the indicator vectors representing the maximal sets of I.
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For Bernoulli SPI, we consider a modified polytope P ′
I := {x ∈ [0, 1]n : x ∈ PI , xi ≤

pi ∀i ∈ U}. Since the fractional solution corresponds to a distribution over I, the additional
constraint xi ≤ pi ensures that no item is included more often than it takes value 1. It turns
out that we can efficiently optimize F over P ′

I under mild conditions.
As for rounding, we can use online contention resolution schemes (OCRS). OCRSs

function in the following setting: we have a set system I ⊆ 2U and a distribution D over 2U

with marginals x. Let items i ∈ S for some S ∼ D be called active. The items then arrive
one-by-one in adversarial order. When item i arrives, we learn whether it is active, and if so,
must decide to accept or reject it, subject to the set of accepted items being in I. An OCRS
πI,D is an algorithm that plays this game. The following notion is a way to measure the
performance of an OCRS.

▶ Definition 23 ((b, c)-selectable OCRS). For b, c ∈ [0, 1], a set system I ⊆ 2U , and a
distribution D over 2U with marginals x ∈ b · PI , an OCRS πI,D is (b, c)-selectable if the
probability of πI,D accepting i is at least c · xi for all i ∈ U . If b = 1, we say πI,D is
c-selectable.

Feldman, Svensson, and Zenklusen [19] obtained the following approximation result for
rounding via greedy OCRSs (we omit the definition as it is not relevant).

▶ Proposition 24 ([19]). For a set system I ⊆ 2U , a monotone submodular function
f : 2U → R≥0, and x ∈ b · PI , applying a (b, c)-selectable greedy OCRS to S ∼ x obtains
T ∈ I such that ES∼x[f(T )] ≥ c ·F (x). Further, the greedy OCRS can be efficiently modified
such that even for non-monotone f , the modified greedy OCRS obtains T ∈ I such that
ES∼x[f(T )] ≥ c/4 · F (x).

In Bernoulli SPI, there is no notion of elements and we optimize over items. Thus, the
distribution of active items is already a product distribution, and simply applying greedy
OCRSs already yields approximation results using Proposition 24.

4.2 Generalizing to Arbitrary Discrete Random Variables

We now return to the full version of SPI. Again, let U be the set of items, I ⊆ 2U be a
downward-closed set system with a solvable polytope, E := [n]× [m] be the set of elements,
p ∈ [0, 1]nm be the element realization probabilities, and f : 2E → R≥0 be a submodular
function. The first step is to compute a fractional solution. Chekuri and Livanos [9] define
the polytope

P ′′
I := {x ∈ [0, 1]nm : ∃z ∈ PI satisfying

∑
jxij = zi ∀i ∈ U, xij ≤ pij ∀ij ∈ E} .

Here, the summation constraint is a natural relaxation of P ′
I from the item-space to the

element-space. Chekuri and Livanos prove a series of results7 which culminates in the
following (note that we do not require monotonicity of f):

▶ Proposition 25 ([9]). Let OPT be the expectation obtained by the prophet, I ⊆ 2U be a
set system with a solvable polytope, and f : 2U → R≥0 be a submodular function. Then for
any fixed ϵ > 0, we can efficiently compute x ∈ b · P ′′

I such that F (x) ≥ (1− e−b − ϵ) ·OPT.

7 See Section 3 of [9] for details, in particular, Claim 3.4, Theorem 1.3, and Remark 3.7.
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It remains to round the fractional solution. While it is fairly straightforward to convert a
(b, c)-selectable greedy OCRS for the item-space to a (b, c)-selectable greedy OCRS for the
element-space (indeed, we do this in Algorithm 1), we cannot obtain approximation results
directly from Proposition 24 like in the Bernoulli case because the distribution of elements
is not a product distribution. Chekuri and Livanos handle this by incurring an additional
loss of e−b − ϵ to “mask” the elements under a product distribution. We save this factor by
re-analyzing a simpler algorithm.

4.3 Improved Analysis
Let x ∈ b · P ′′

I be the solution computed as per Proposition 25. Define xi :=
∑

j xij , and
define x⃗ := (xi : i ∈ U). By definition of P ′′

I and the fact that x ∈ b · P ′′
I , we have that

x⃗ ∈ b · PI , so let πI,x⃗ be an efficient (b, c)-selectable greedy OCRS.
We first consider monotone f . Our rounding algorithm is almost identical to [9, Al-

gorithm 1], removing some steps that our improved analysis demonstrates to be unnecessary.

Algorithm 1 Monotone Rounding (U, E, p, f, x, πI,x⃗).

TALG = ∅
for t← 1 to n do

Let i ∈ U be the item that arrives on day t

Let ij ∈ E be the realization of i

With probability xij/pij , reveal active i to πI,x⃗, otherwise reveal inactive i to πI,x⃗

if πI,x⃗ accepts i then
TALG ← TALG ∪ {ij}

end
end
Return TALG

Denote element ij as active when ij is the realization of i, and Algorithm 1 reveals
active i to πI,x⃗. Since the elements do not follow a product distribution, we cannot apply
Proposition 24 even though the algorithm acts like a greedy OCRS. However, we provide
a new analysis which states that a c-approximation for product distributions implies a
c-approximation for the following wider class of distributions.

▶ Definition 26. A product of singletons distribution over 2E with marginals x ∈ [0, 1]nm

such that
∑

j xij ≤ 1 for all i is a distribution which independently samples 0 or 1 elements
from each set {ij : j ∈ [m]} according to the marginals x.

It is not difficult to see that the active elements follow a product of singletons distribution
with marginals x. The following lemma, which we prove in Appendix A.3, draws a connection
between product of singletons distributions and product distributions.

▶ Lemma 27. Let D be a product of singletons distribution over 2E with marginals x ∈
[0, 1]nm. Let xi :=

∑
j xij , and let x⃗ := (xi : i ∈ U). For any u ∈ [m]n, let Eu := {iui : i ∈ U}

and let Du be a product distribution over 2Eu with marginals x⃗. Then for any g : 2E → R,

E
S∼D

[g(S)] =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
. (4)

In simpler terms, Du is the distribution which samples S ∼ D, then replaces each element
ij ∈ S with the element iui. Lemma 27 states that any product of singletons distribution
with marginals x can be written as a convex combination of product distributions with
marginals x⃗.
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▶ Lemma 28. For monotone f , Algorithm 1 returns TALG such that E[f(TALG)] ≥ c · F (x).

Proof. Let D be the distribution of active elements. While the adversary sees the item
realizations and which items Algorithm 1 will reveal as active to πI,x⃗, the adversary cannot
influence D because the decisions to reveal active i do not depend on the item ordering.

Therefore, it is valid for us to “partition” the outcomes of randomness contributing to
D. Since D is a product of singletons distribution with marginals x, Lemma 27 tells us
that there exists a partition such that each part is a product distribution Du over 2Eu with
marginals x⃗. We fix some u ∈ [m]n and analyze the performance of Algorithm 1 on the
subset of randomness corresponding to the distribution Du.

Since Du is a product distribution, x⃗ ∈ b · PI , and the algorithm copies the acceptances of
πI,x⃗, Algorithm 1 acts exactly like a (b, c)-selectable greedy OCRS over Du. Most importantly,
Du being product distribution means we can apply Proposition 24 to get

E
S∼Du

[f(TALG)] ≥ c · E
S∼Du

[f(S)] .

TALG is implicitly a randomized function of S, so we can rewrite LHS as

E
S∼Du

[
E[f(TALG) | S = S′]

]
≥ c · E

S∼Du
[f(S)] ,

where the inner expectation is taken over the possible randomization of the underlying greedy
OCRS πI,x⃗ and the adversarial ordering of the items. As this holds for any u, weighting the
inequality and summing over all u ∈ [m]n yields∑

u∈[m]n

(
E

S∼Du

[
E[f(TALG) | S = S′]

]
·
∏
i∈U

xiui

xi

)
≥

∑
u∈[m]n

(
c · E

S∼Du
[f(S)] ·

∏
i∈U

xiui

xi

)
.

Factoring out the c on RHS, then applying Lemma 27 to the functions E[f(TALG) | S = S′]
and f(S) simplifies to ES∼D[f(TALG)] ≥ c · ES∼D[f(S)].

A distribution which samples only sets of size 0 or 1 is WNR because conditioning on
inclusion of an element excludes all other elements. Further, products of WNR distributions
are WNR (Proposition 16). Thus, product of singletons distributions are WNR, and applying
Submodular Dominance (Theorem 3) on D gives the following and completes the proof:

E
S∼D

[f(TALG)] ≥ c · E
S∼D

[f(S)] ≥ c · F (x) . ◀

▶ Remark 29. For general f , we can replace the greedy OCRS πI,x⃗ by its efficient modification
mentioned in Proposition 24, then just repeat the proof of Lemma 28. We lose an additional
factor of 1/4 when we invoke Proposition 24 on the modified greedy OCRS, which gives us a
c/4-approximation algorithm when f is not monotone.

▶ Theorem 6 (Submodular Prophet Inequalities). For fixed ϵ > 0, if a set system I ⊆ 2U has
a solvable polytope and an efficient (b, c)-selectable greedy OCRS for product distributions:

There is an efficient c · (1− e−b− ϵ) SPI for monotone non-negative submodular functions.
There is an efficient c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions.

Combining with known greedy OCRSs, this implies efficient SPIs as given in Table 1.

Proof. Combining Proposition 25 and Lemma 28 gives us a c · (1−e−b− ϵ) SPI for monotone
non-negative submodular functions, and, as noted in Remark 29, a similar argument gives us
a c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions. From [19], we can
efficiently construct greedy OCRSs satisfying the following properties:
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(b, 1− b)-selectable over matroids, for b ∈ [0, 1].
(b, e−2b)-selectable over matchings, for b ∈ [0, 1].
(b, 1−2b

2−2b )-selectable over knapsacks, for b ∈ [0, 1/2].
(1− o(1))-selectable over uniform matroids of rank k →∞ [9].

To obtain the results in Table 1, we simply choose b which maximizes c · (1− e−b − ϵ). ◀

5 Applications to Rounding

A common problem setting is optimization constrained to some feasible set system I.

▶ Definition 30. For a downward-closed set system I ⊆ 2U , its polytope PI ⊆ [0, 1]n is the
convex hull of the indicator vectors representing the maximal sets of I.

Under mild conditions, we can efficiently optimize over the polytope, then round the
fractional solution x ∈ PI to an integral solution S ∈ I. It is natural to think of x as a
distribution over I with those marginals. If these distributions exhibit certain properties,
then sampling can be an effective rounding technique. We give results for set systems which
satisfy the following property:

▶ Definition 31. A set system I ⊆ 2U admits WNR distributions if for any x ∈ PI , there
exists a WNR distribution over I with marginals x. If we can efficiently sample from these
distributions, we say I efficiently admits WNR distributions.

5.1 Submodular Maximization
For a set system I ⊆ 2U and a monotone submodular function f : 2U → R≥0, a classical
optimization problem is to efficiently find T ∈ I such that f(T ) is a good approximation of
maxS∈I f(S). We start by optimizing over PI .

▶ Proposition 32 ([39]). For any set system I with a solvable polytope, we can efficiently
compute x ∈ PI such that F (x) ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Now, we want to round x to an integral solution with at least value F (x). Pipage [6] and
randomized swap rounding [10] achieve this for matroid polytopes, but it is unclear how to
extend it. Submodular Dominance gives new approaches for submodular maximization.

▶ Theorem 7 (Submodular Maximization). Let f : 2U → R≥0 be a monotone submodular
function. If a downward-closed set system I ⊆ 2U has a solvable polytope and efficiently
admits WNR distributions, there exists an efficient algorithm that returns T ∈ I such that
E[f(T )] ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Proof. We compute x ∈ PI as per Proposition 32, then sample from a WNR distribution
over I with marginals x. By Theorem 3, this returns T ∈ I such that E[f(T )] ≥ F (x) ≥
(1− 1/e− o(1)) ·maxS∈I f(S). ◀

5.2 Adaptivity Gaps for Stochastic Probing
Stochastic Probing is a generalization of submodular maximization with randomized inputs.
Elements are replaced by items, and we probe items to learn their realizations. The goal is to
maximize the expectation of a function over the realizations of probed items. We consider a
simple version of the problem where we have a monotone submodular function f : 2U → R≥0
and each item Xi contains element i independently w.p. pi and is empty otherwise.

As probing reveals information, we differentiate between adaptive algorithms, which behave
differently conditioned on the realizations of probed items, and non-adaptive algorithms.

APPROX/RANDOM 2022
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▶ Definition 33. The adaptivity gap is the ratio between the expectations obtained by the
optimal adaptive algorithm and optimal non-adaptive algorithm.

Asadpour and Nazerzadeh [2] give a tight result that the adaptivity gap for stochastic
probing subject to a matroid constraint is e

e−1 . The approach is to first define an auxiliary
function f ′, where f ′(S) is the expectation of f upon probing items {Xi : i ∈ S}. It turns
out that the multilinear extension F ′ of f ′ satisfies the property that maxx∈PI F ′(x) is a
(1− 1/e)-approximation of the expectation obtained by the optimal adaptive algorithm.8

With this approximation result, the idea is to use x to design a non-adaptive algorithm.
Simply probing each item w.p. xi may violate the matroid constraint, so Asadpour and
Nazerzadeh design non-adaptive algorithms using pipage rounding. We go beyond matroids
by designing non-adaptive algorithms using WNR distributions.

▶ Theorem 8 (Stochastic Probing). For a downward-closed set system I that admits WNR
distributions, the adaptivity gap for Stochastic Probing is upper-bounded by e

e−1 .

Proof. Our analysis follows that of [2] until we obtain argmaxx∈PI
F ′(x). As I admits WNR

distributions, there exists a WNR distribution D over I with marginals x. By Theorem 3,
we have ES∼D[f ′(S)] ≥ F ′(x). Therefore, the non-adaptive algorithm which samples S ∼ D
and probes {Xi : i ∈ S} obtains at least F ′(x) in expectation. No adaptive algorithm can
obtain expectation greater than e

e−1 · F
′(x), so e

e−1 upper-bounds the adaptivity gap. ◀

5.3 Contention Resolution Schemes
▶ Definition 34 (CRS). A contention resolution scheme (CRS) for a set system I ⊆ 2U and
a distribution D over 2U with marginals x is a (possibly randomized) mapping πI,D : 2U → I
such that for all S ⊆ U , we have πI,D(S) ⊆ S.

Contention resolution schemes have applications to submodular maximization as a round-
ing technique. The following is the simplest measure of performance for a CRS.

▶ Definition 35 (c-selectable CRS). For c ∈ [0, 1], a set system I ⊆ 2U , and a distribution D
over 2U with marginals x ∈ PI , a CRS πI,D is c-selectable if PrS∼D[i ∈ πI,D(S)] ≥ c · xi

for all i ∈ U .

In submodular maximization, rounding fractional solutions is closely related to the
multilinear extension, so study of CRSs is primarily centered around product distributions.
However, as Dughmi [14, 15] recently showed, CRSs over non-product distributions have
applications in settings such as the Matroid Secretary Problem. We use Submodular
Dominance to extend a selectability result to WNR distributions, which provides a direction
by which other CRS results may be generalized to correlated distributions.

▶ Theorem 9 (Contention Resolution Schemes). For a matroid M, there exists a (1− 1/e)-
selectable CRS for any WNR distribution with marginals x ∈ PM.

Proof. [12] demonstrated this result for product distributions via strong LP duality. Following
the same idea, Dughmi [14] reduced this result to proving Submodular Dominance:

8 We omit many of the finer details because our result does not alter this part of the analysis. Section 3
of [2] covers this in depth.
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▶ Proposition 36 ([14]). For a matroid M and a distribution D over 2U with marginals
x ∈ PM, there exists a (1 − 1/e)-selectable CRS if every submodular function f : 2U → R
satisfies ES∼D[f(S)] ≥ ES∼x[f(S)].

Theorem 9 follows directly from Proposition 36 and Theorem 3. ◀

6 Conclusion and Open Questions

In this paper, we explore Submodular Dominance and its applications. In the process, we
introduce a notion of negative dependence that we refer to as Weak Negative Regression
(WNR), which is a natural generalization of both Negative Association (NA) and Negative
Regression (NR) and may be of use in other applications. We prove that WNR distributions
satisfy Submodular Dominance, and that all distributions satisfying Submodular Dominance
also satisfy Negative Cylinder Dependence (NCD). Finally, we give a variety of applications
for Submodular Dominance, improving the best known submodular prophet inequalities,
developing new rounding techniques, and generalizing results for contention resolution schemes
to negatively dependent distributions.

Sampling for More General Set Systems. Although our results for negatively distributions
satisfying Submodular Dominance already have several applications, their usage could be
broadened further by finding new techniques to generate negatively dependent distributions.
An interesting future direction is to design algorithms to sample from negatively dependent
distributions for more general set systems. For example, can we efficiently sample from a
WNR/NA/NR distribution for any marginals in a given matroid polytope? We remark that
[33] claimed such a result for NA distributions, but later, a gap in their proof was found. Max-
entropy distributions over matroids are also not negatively dependent in general, as it is known
that there exist matroids for which the uniform distribution (which is entropy-maximizing
without constrained marginals) exhibits positive correlations [25].

Approximate Submodular Dominance. While we showed that NCD distributions do
not always satisfy Submodular Dominance, one question is whether these weaker no-
tions of negative dependence obtain constant-factor approximation variants of Submodular
Dominance; that is, for a non-negative submodular function f , what distributions satisfy
ES∼D[f(S)] ≥ O(1) · F (x)? What about for monotone f? Another direction is to generalize
Submodular Dominance to a larger class of functions. XOS functions are functions that can
be expressed as the maximum of a collection of linear functions, and are a strict superset
of submodular functions. While no non-product distribution satisfies “XOS Dominance”
(consider max(X1 + X2, 1) and max(X1, X2), which are both XOS; the former decreases in
expectation if X1 and X2 are negatively correlated, the latter if X1 and X2 are positively
correlated), we might similarly ask if approximate versions hold for XOS functions.

Concentration Inequalities. Another important direction is understanding concentration
inequalities for negatively dependent distributions. Submodular Dominance demonstrates
that the expectation of negatively dependent distributions behaves favorably compared to
product distributions, but we may also be interested in whether these distributions are
concentrated around their mean. We know dimension-dependent concentration inequalities
for arbitrary Lipschitz functions over NR distributions [21]. Proving dimension-independent
concentration inequalities for submodular functions is an interesting future direction.
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A Missing Proofs

A.1 Weak Negative Regression Proofs
▶ Proposition 13. NA and NR imply WNR, and WNR implies NCD, but the reverse
implications do not hold. In other words, the union of NA and NR distributions is a strict
subset of WNR distributions, which is a strict subset of NCD distributions.

Proof. We proved in Section 2 that the union of NA and NR distributions is a subset of
WNR, and that WNR distributions are a subset of NCD distributions. Appendix A.2 provides
example distributions demonstrating strict containment of WNR in NCD.

To show strict containment of NA and NR in WNR, we consider the following distribution
D, which was given by Joag-Dev and Proschan [26].9 We treat D as a distribution over
Bernoulli random variables X = (X1, X2, X3, X4) to simplify notation.

Table 2 A distribution which is WNR, but not NA or NR.

D (X1, X2)

(X3, X4)

(0, 0) (0, 1) (1, 0) (1, 1) Marginal

(0, 0) 0.0577 0.0623 0.0623 0.0577 0.24

(0, 1) 0.0623 0.0677 0.0677 0.0623 0.26

(1, 0) 0.0623 0.0677 0.0677 0.0623 0.26

(1, 1) 0.0577 0.0623 0.0623 0.0577 0.24

Marginal 0.24 0.26 0.26 0.24

D violates NA because CovX∼D[X1X2, X3X4] > 0, and D violates NR because the
conditional expectation EX∼D[X1X2 | X3 = 1, X4] is increasing in X4.

By observing that the value in column 2 is larger than in column 4 for any row of Table 2,
we see that for any x3, x4 ∈ {0, 1}, the condtional expectation EX∼D[X2 | X3 = x3, X4 =
x4, X1] is decreasing in X1. Therefore, we can convert the distribution D conditioned on
X1 = 0 into the distribution D conditioned on X1 = 1 by only transferring probability mass
“downwards,” which cannot increase the expectation of a monotone function f : {0, 1}4 → R.
Thus, for any such function which does not depend on X1,

9 They studied NA distributions over continuous random variables, and gave this distribution as an
example that Negative Orthant Dependence (this is equivalent to NCD for Bernoulli random variables)
does not imply NA.
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E
X∼D

[f(X) | X1 = 1] ≤ E
X∼D

[f(X) | X1 = 0] ,

which is the WNR condition. Since X1, X2 and (X1, X2), (X3, X4) are both exchangeable,
we can repeat this analysis for all Xi. Thus, D is WNR, but neither NA nor NR. ◀

▶ Proposition 16. WNR is closed both under projection and under products.

Proof. Closure under projection follows trivially because the WNR condition (1) is satisfied
for all monotone functions, and monotone functions restricted to a subset of elements are
still monotone.

For closure under products, let A and B be WNR distributions over 2A and 2B for disjoint
A, B, and let D be their product. WLOG, fix i ∈ A and a monotone function f : 2A∪B → R.
Since A and B are independent, ES∼D[f(S \ i) | S ∩B = T ] = ES∼A[f((S \ i) ∪ T )]. Since
A is WNR and f(S ∪ T ) is still a monotone function,

E
S∼D

[f(S \ i) | S ∩B = T, i ∈ S] ≤ E
S∼D

[f(S \ i) | S ∩B = T, i ̸∈ S] .

Taking expectations over S ∩ B gives ES∼D[f(S \ i) | i ∈ S] ≤ ES∼D[f(S \ i) | i ̸∈ S],
completing the proof. ◀

A.2 Submodular Dominance Example Distributions
▶ Proposition 19. The distribution D which samples uniformly from ∅, {1}, {2}, {1, 2}, {1, 3},
{2, 3} satisfies Submodular Dominance, but D violates WNR for f(S) := max(11∈S ,12∈S)
and i = 3.

Proof. Using the definition of Dk from the proof of Theorem 3, notice that D1 is a product
distribution. Therefore, we only need the analysis in Claim 18 to follow, which only requires
that the WNR condition (1) holds for i = 1. D conditioned on 1 ∈ S samples ∅, {2}, and
{3} w.p. 1/3, and D conditioned on 1 ̸∈ S samples ∅, {2}, and {2, 3} w.p. 1/3, which cannot
obtain lower expectation for a monotone function, so the WNR condition holds for i = 1 and
D satisfies Submodular Dominance.
D violates WNR for f and i = 3 because D conditioned on 3 ∈ S always samples either 1

or 2, whereas D conditioned on 3 ̸∈ S can sample ∅. Thus, there exist distributions which
satisfy Submodular Dominance but violate WNR. ◀

▶ Proposition 20. The distribution D over 2[4] which chooses uniformly at random i ∈ [4],
then returns w.p. 1/2 either i or [4] \ i, is NCD. However, D violates Submodular Dominance
for the submodular function f(S) := min(2, |S|).

Proof. Notice that D is identical under permutations of elements. Further, because i or
[4] \ i is returned with equal probability, we have the property that for any T ⊆ [4],

Pr
S∼D

[T ⊆ S] = Pr
S∼D

[T ⊆ Sc] .

Therefore, it is sufficient to show that PrS∼D[1, 2 ∈ S] ≤ 1/4, PrS∼D[1, 2, 3 ∈ S] ≤ 1/8, and
PrS∼D[1, 2, 3, 4 ∈ S] ≤ 1/16 to prove D is NCD.

For 1, 2 ∈ S, we need to choose i = 3, 4, then return [4] \ i. This occurs w.p. 1/2 · 1/2 = 1/4.
For 1, 2, 3 ∈ S, we need to choose i = 4, then return [4] \ i. This occurs w.p. 1/4 · 1/2 = 1/8.
There is no way for 1, 2, 3, 4 ∈ S.
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Thus, D is NCD. f is a matroid rank function, so it is submodular. Letting x be the marginals
of D, a simple expected value computation shows that ES∼D[f(S)] = 12/8 < 13/8 = F (x), so
D violates Submodular Dominance. ◀

▶ Proposition 21. The distribution D over 2[8] which chooses uniformly at random i ∈
A := {1, 2, 3, 4} and j ∈ B := {5, 6, 7, 8}, then returns w.p. 1/2 either i ∪ (B \ j) or
(A \ i)∪ j, is NCD. However, D violates Submodular Dominance for the submodular function
f(S) := min(2, |S ∩A|).

Proof. This example extends the previous example to a homogeneous distribution. Similar
to the previous example, D is closed under permutations of A, permutations of B, and swaps
of A with B. Since we already showed any T ⊆ A satisfies the NCD condition, it is sufficient
to show that PrS∼D[1, 5 ∈ S] ≤ 1/4, PrS∼D[1, 2, 5 ∈ S] ≤ 1/8, PrS∼D[1, 2, 5, 6 ∈ S] ≤ 1/16, and
PrS∼D[1, 2, 3, 5 ∈ S] ≤ 1/16 (since only sets of size 4 are drawn, if |T | > 4 it automatically
satisfies the NCD condition).

For 1, 5 ∈ S, we need to choose i = 1 and j = 6, 7, 8, then return i ∪ (B \ j), or choose
i = 2, 3, 4 and j = 5, then return (A \ i) ∪ j. This occurs w.p. 2 · 1/4 · 3/4 · 1/2 = 3/16 ≤ 1/4.
For 1, 2, 5 ∈ S, we need to choose i = 3, 4 and j = 5, then return (A \ i) ∪ j. This occurs
w.p. 1/2 · 1/4 · 1/2 = 1/16 ≤ 1/8.
There is no way for 1, 2, 5, 6 ∈ S.
For 1, 2, 3, 5 ∈ S, we need to choose i = 4 and j = 5, then return (A \ i) ∪ j. This occurs
w.p. 1/4 · 1/4 · 1/2 = 1/32 ≤ 1/16.

Thus, D is NCD, and we again have ES∼D[f(S)] = 12/8 < 13/8 = ES∼x[f(S)], so D violates
Submodular Dominance. ◀

A.3 Product of Singletons is a Convex Combination of Product
Distributions

▶ Lemma 27. Let D be a product of singletons distribution over 2E with marginals x ∈
[0, 1]nm. Let xi :=

∑
j xij , and let x⃗ := (xi : i ∈ U). For any u ∈ [m]n, let Eu := {iui : i ∈ U}

and let Du be a product distribution over 2Eu with marginals x⃗. Then for any g : 2E → R,

E
S∼D

[g(S)] =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
. (4)

Proof. For some weights pS , we can rewrite RHS of (4) as∑
S⊆E

g(S) · pS .

Our approach is to show that pT = PrS∼D[S = T ] for any T ⊆ E. Then the summation is
simply the expectation of g over D and we are finished.

Fix some set T ⊆ E. The distributions for which T is in the image of Du are those where
for all ij ∈ T , ui = j. Therefore,

pT =
∑

u∈[m]n

ui=j ∀ij∈T

(
Pr

S∼Du

[
S = T

]
·

∏
i∈U

xiui

xi

)
.

Let T ∗ ⊆ U be a set where i ∈ T ∗ if there exists some j for which ij ∈ T . Then,

pT =
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i∈T ∗

xi

∏
i̸∈T ∗

(1− xi) ·
∏

i∈T ∗

xiui

xi

∏
i̸∈T ∗

xiui

xi

)
.
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We combine the products over i ∈ T ∗, and move the first product over i ̸∈ T ∗ outside the
summation as the inner term does not depend on u.

pT =
∏

i̸∈T ∗

(1− xi) ·
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i∈T ∗

xiui

∏
i̸∈T ∗

xiui

xi

)
.

Because the summation is restricted to u where ui = j for all ij ∈ T , the coordinates of u
for i ∈ T ∗ can only take one value. Thus, the product over i ∈ T ∗ is always the same, and
can be factored out of the summation.

pT =
∏

i̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i̸∈T ∗

xiui

xi

)
.

As we just observed, the summation only enforces a condition on i ∈ T ∗, so we sum up over
all possible ui ∈ [m] for i ̸∈ T ∗. We can rewrite this as

pT =
∏

i̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i̸∈T ∗

( ∑
j∈[m]

xij

xi

)

=
∏

i̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i̸∈T ∗

(
1
xi
·

∑
j∈[m]

xij

)

=
∏

i̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i̸∈T ∗

(
1
xi
· xi

)
=

∏
i̸∈T ∗

(1− xi) ·
∏

ij∈T

xij

= Pr
S∼D

[S = T ] .

Since these computations follow for any T ⊆ E, we have

E
S∼D

[g(S)] =
∑
S⊆E

g(S) · pS =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
,

which completes the proof. ◀
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Abstract
In the problem of online facility location with delay, a sequence of n clients appear in the metric
space, and they need to be eventually connected to some open facility. The clients do not have to be
connected immediately, but such a choice comes with a certain penalty: each client incurs a waiting
cost (equal to the difference between its arrival and its connection time). At any point in time, an
algorithm may decide to open a facility and connect any subset of clients to it. That is, an algorithm
needs to balance three types of costs: cost of opening facilities, costs of connecting clients, and the
waiting costs of clients. We study a natural variant of this problem, where clients may be connected
also to an already open facility, but such action incurs an extra cost: an algorithm pays for waiting
of the facility (a cost incurred separately for each such “late” connection). This is reminiscent of
online matching with delays, where both sides of the connection incur a waiting cost. We call this
variant two-sided delay to differentiate it from the previously studied one-sided delay, where clients
may connect to a facility only at its opening time.

We present an O(1)-competitive deterministic algorithm for the two-sided delay variant. Our
approach is an extension of the approach used by Jain, Mahdian and Saberi [STOC 2002] for
analyzing the performance of offline algorithms for facility location. To this end, we substantially
simplify the part of the original argument in which a bound on the sequence of factor-revealing
LPs is derived. We then show how to transform our O(1)-competitive algorithm for the two-sided
delay variant to O(log n/ log log n)-competitive deterministic algorithm for one-sided delays. This
improves the known O(log n) bound by Azar and Touitou [FOCS 2020]. We note that all previous
online algorithms for problems with delays in general metrics have at least logarithmic ratios.
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1 Introduction

The facility location problem [1] is one of the best-known examples of network design problems,
extensively studied both in operations research and in computer science. The problem is
defined in a metric space X . An algorithm is given a set of n clients and its goal is to open

© Marcin Bienkowski, Martin Böhm, Jarosław Byrka, and Jan Marcinkowski;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 45; pp. 45:1–45:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-2453-7772
mailto:boehm@cs.uni.wroc.pl
https://orcid.org/0000-0003-4796-7422
mailto:jaroslaw.byrka@cs.uni.wroc.pl
https://orcid.org/0000-0002-3387-0913
mailto:jasiekmarc@cs.uni.wroc.pl
https://orcid.org/0000-0002-6517-0014
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.45
https://github.com/bohm/fl-double-sided-waiting
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


45:2 Online Facility Location with Linear Delay

a set of facilities (chosen points of X ) minimizing the total cost, defined as the sum of costs of
opening facilities plus the costs of connecting clients. Our focus is on the non-uniform case,
where the opening cost of a facility may depend on its position in X . The connection cost of
a given client is simply its distance to the nearest open facility. This simple statement hides
a surprisingly rich combinatorial structure and gave rise to series of algorithms and extensions.
In particular, the problem is NP-complete and APX-hard [31] and its approximation ratio
has been studied in a long sequence of improvements [41, 36, 34, 33, 25, 23, 39, 21], with the
current record of 1.488 proved by Li [37].

In the online scenario, the set of clients is not known up-front, but it is revealed to
an (online) algorithm one element at a time. Once a client becomes known, an algorithm
has to make an irrevocable and immediate decision whether to open additional facilities
and to which facility the current client should be connected.1 As in the offline scenario, the
algorithm is compared to the best offline solution, and in online scenarios, we use the name
competitive ratio instead of approximation ratio. This scenario has been fully resolved: tight
asymptotic lower and upper bounds of Θ(log n/ log log n) are known both for randomized
and deterministic algorithms [40, 2, 29, 30].

In the last few years, many online problems have been considered in scenarios with delays.
In the case of online facility location, first studied by Azar and Touitou [9], the clients arrive
in time, and while each of them has to be connected eventually, such action does not have to
be executed immediately. This additional degree of freedom comes, however, with a price:
each waiting client incurs an extra cost that (in the basic setting studied in this paper) is
equal to its total waiting time (time between its arrival and its connection). We note that in
terms of achievable competitive ratios, the classic models and models with delays are rarely
comparable as the possibility of delaying actions is allowed also in the benchmark offline
solution.

Facility location with one-sided delay

This variant has been introduced and studied in [9, 10]. There each facility is ephemeral: it
is opened only momentarily at time t chosen by an algorithm, and all connections to this
facility must be made at time t. The algorithm can open another facility at the same location
at a different time t′, but the opening cost must be paid again. The waiting costs of clients
are as described above.

The best known algorithm for this problem variant is O(log n)-competitive [10]. (Interest-
ingly, it is not known whether this particular variant admits constant-factor approximation
in the offline setting when all client arrivals are known up-front.)

Facility location with two-sided delay

We propose the following slight deviation from the one-sided variant described above: once
a facility becomes open at time t, it remains open forever and can be connected to in
the future. However, any client that connects to such facility at time t′ > t needs to pay
an additional waiting cost of t′ − t. We call this amount facility-side waiting cost, which
needs to be paid on top of the “standard” (client-side) waiting cost. We emphasize that
such connections, dubbed late connections, can be made both by clients that arrived before
facility opening and also after this time. Similarly to the one-sided delay model, we allow
opening of multiple facilities in the same location at different points in time.

1 The best option is clearly to connect a given client to the closest facility, but some naturally defined
algorithms may not have this property.
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The two-sided model can be seen as an approximation of the early-late adopter behavior
in crowdfunding models. In crowdfunding platforms for technology products [42] such as
Kickstarter, any specific project is started by gathering initial contributions by enthusiasts
up to a certain threshold, which should (in an ideal case) imply opening of a production line
for the specified technology product. Contributors in this pre-production phase are called
early adopters.

As we move forward in time, while the production may already begin, it may still be
possible for so-called late adopters to join the crowdfunding project on the Kickstarter website
and receive the final product. As early adoption is more beneficial for the producer of the
technology product, late adoption is sometimes penalized with an increased cost of the same
product compared to the early adoption.

In the framework of crowdfunding models, we can see online facility location with two-
sided delay as facility location in an early-late adopter setting, where a technology product
can be manufactured at multiple factories and late adopters may join into the crowdfunding
scheme and thus contribute towards offsetting the cost of the production while it is in
progress. However, the clients who join late need to deal with the missed-opportunity cost
(the client-side cost) as well as the late adopter increase in price (the facility-side waiting
cost).

1.1 Our Results and Techniques
Our first positive contribution is showing that facility location with two-sided delay admits a
constant-competitive online algorithm, which is an important open problem for the one-sided
case. Namely, we show:

▶ Theorem 1. There exists an 3.869-competitive deterministic algorithm for the online
facility location problem with two-sided delay, where all waiting costs are equal to the waiting
times.

We analyze a natural greedy algorithm, which grows budgets with increasing waiting delays
and opens facilities for subsets of clients once sums of these budgets reach certain thresholds.
To analyze this algorithm, we use dual fitting methods. Our analysis is a substantial extension
of the approach used by Jain et al. [34, 33] for analyzing the performance of offline algorithms
for (non-delayed) facility location.

The central part of the analysis is a linear program (LP), parameterized by an integer k,
whose objective value is an upper bound on the competitive ratio of our algorithm provided
the number of clients in the input is at most k. As the objective function of this LP grows
with k, simply solving the LP would yield the correct upper bound only for instances of
limited size. As a replacement for the technical original argument in [33] we propose a much
more intuitive one that is based on an upper bound to this sequence by the value of a finite
linear program.

We would like to stress that we see our novel approach to the competitive analysis of
facility location dual-fitting LP as an important contribution of this paper to the area of
facility location with delays. Our approach has a significant computer-assisted component
(Section 4) and it can thus be quickly deployed to give provable estimates on the potential
competitive ratio or an approximation ratio of factor-revealing linear programs in other
settings. Our code for the algorithmic part is publicly available [13].

Our second result is showing that O(1)-competitive algorithm for the two-sided variant
yields an improved guarantee also for the one-sided variant.

APPROX/RANDOM 2022
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▶ Theorem 2. There exists an O(log n/ log log n)-competitive deterministic algorithm for
the online facility location problem with one-sided delay, where all waiting costs are equal to
the waiting times.

We prove this result via a reduction that can be applied to any algorithm solving the
two-sided variant provided it satisfies a certain technical condition that we call sensibility. In-
formally speaking this property means that the waiting costs associated with late connections
are not very large; we defer the precise definition to Section 3.

Theorem 2 improves the known O(log n)-bound by Azar and Touitou [10]. While the
improvement is small, we note that all previous online algorithms for problems with delays
have at least logarithmic ratios (in the number of used points of the metric space), so ours is
the first to break this natural barrier.

1.2 Related work

Recently many online graph problems have been considered in a variant that allows requests
to be delayed. Apart from the facility location problem studied in this paper, examples
include the Steiner tree problem [9, 10], multi-level aggregation [15, 24, 19, 9, 11, 12], Steiner
forest/network [10], directed Steiner tree [10], multi-cut [10], online matching [27, 3, 4, 17,
16, 38, 28, 6, 8], set cover [22, 5] and k-server (known in this setting as online service with
delay) [7, 18, 9].

That said, the concept of delaying requests itself is not new. Famous studied problems
include the TCP acknowledgement problem [26, 35] and joint replenishment problem [20, 14]
(that are equivalent to the recently studied multi-level aggregation problem on one-level or
two-level trees).

General waiting costs

The waiting costs considered in this paper are equal to waiting times. Another studied case
are deadlines, where waiting costs are zero till a request-specific time (the deadline) and
infinite afterwards. For some problems, easier algorithms or better bounds are known when
the waiting costs are in the deadline form (see, e.g., [14, 19]).

Many of the results listed above can be extended to waiting costs being arbitrary non-
decreasing left-continuous functions of waiting times. These extensions are straightforward if
an algorithm is defined by simple thresholds on (sums of) waiting costs; when these thresholds
are reached, they trigger an appropriate action of the algorithm. For instance, algorithms for
the TCP acknowledgement problem were constructed for linear waiting costs, but they can
be trivially extended to general costs.

There are however a few cases where general waiting costs are more problematic. Most
notably, the online matching problem was studied for linear waiting costs [27, 3, 4, 17, 16,
28, 6], then shown to be more difficult (in terms of achievable competitive ratios) for convex
waiting costs [38], and only recently competitive algorithms were shown for concave waiting
costs [8].

The algorithms presented in this paper also fall into the latter category: our LP-based
analysis heavily depends on the linearity of the waiting functions, and thus our algorithms
cannot be easily extended to general waiting costs. (We note that the O(log n)-competitive
algorithm by Azar and Touitou [10] can handle arbitrary waiting costs.)
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1.3 Remark about Facility-Side Waiting Costs

Recall that in the two-sided variant that we study in our paper, we assume that each late
connection incurs an additional waiting cost at the facility side (equal to the time that passes
between facility opening and client connection). Below, we argue that setting this cost to
zero would cause the optimal competitive ratio to be Θ(log n/ log log n). This shows that for
the O(1)-competitive result of Theorem 1, some assumptions about waiting cost functions
are necessary.

▶ Observation 3. In the two-sided variant of the facility location problem with delays, setting
facility-side waiting costs to zero causes the optimal competitive ratio (both deterministic and
randomized) to become asymptotically equal to Θ(log n/ log log n).

Proof. Assume no penalty for facility-side waiting. For any input instance, without an in-
crease of the cost, Opt may open all its facilities at time 0 and connect all clients immediately
when they arrive. Thus, the optimal solution incurs no waiting cost at all.

As the waiting cost can be avoided also for an online algorithm (by serving all clients
immediately upon their arrival), the desired competitive ratio can be attained by running
an O(log n/ log log n)-competitive algorithm (deterministic or randomized) for the online
facility location problem (without delays) [40, 30],

For showing a lower bound, we may simply use an adversarial strategy for the online
facility location problem (without delays) [30]; however, now the next request is presented
only after an algorithm serves the previous one. This way, waiting becomes useless for
an online algorithm, and the lower bound of Ω(log n/ log log n) [30] applies also for the
waiting model. ◀

1.4 Preliminaries

We use the following notions throughout the paper.
The pair (X , dist) denotes the underlying metric space with its distance function, and

Y ⊆ X denotes the positions of potential facilities. The function open : Y → R⩾0 ∪ {∞}
defines the cost of opening a facility at a specific location.

The clients are numbered from 1 to n and arrive in time; each is associated with a point
in X . Their total number is not known up-front to an online algorithm. For a client j, we
use xj to denote its position and tj to denote the time of its arrival. We say that a client is
active from the time of its arrival until it gets connected to a facility by an online algorithm,
and it is inactive after the connection.

At any time, an algorithm may open a facility at any point y ∈ Y, paying opening
cost open(y). An active client j may be connected by an algorithm at time tc

j ⩾ tj to a
facility that was open at time τ , such that

τ = tc
j , for the one-sided delay variant;

τ ⩽ tc
j , for the two-sided delay variant.

Such a connection incurs a connection cost dist(xj , y) and two types of waiting costs: a client-
side waiting cost tc

j − tj and a facility-side waiting cost tc
j − τ . Note that the latter waiting

cost is always zero for the one-sided delay variant.
The goal of an algorithm is to minimize the total cost, defined as the sum of opening

costs, connection costs, and waiting costs.
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2 Algorithm for the Two-Sided Variant

We will now describe the algorithm for the online facility location with two-sided linear
waiting cost. Our algorithm is parameterized with a constant γ > 1 that will be fixed later.
We say that an active client j at time t ⩾ tj , after experiencing waiting cost of t − tj , has
a connectivity budget

αj(t) = γ · (t − tj).

In the analysis, we use αj to denote the connectivity budget of client j at time tc
j , when it

becomes connected to a facility.
At any time t, for each potential facility location y ∈ Y, an active client j has an offer

of a contribution towards the opening of a facility at y equal to βt
j(y) = max{0, αj(t) −

dist(xj , y)}. When client j becomes connected (and inactive), it no longer offers any
contribution.

The algorithm follows the natural continuous flow of time of the online sequence and
reacts to the events occurring throughout its runtime.

▶ Algorithm 1. At any time t, do the following.
(a) If a new client j arrives at point xj (client j becomes active): From this time onward

start growing its connectivity budget.
(b) If for any location y ∈ Y, the sum of offered contributions βt

j(y) towards this location
from all the currently active clients reaches open(y) (the facility opening cost at y): Let
At(y) be the set of active clients j for which αj(t) ⩾ dist(xj , y), i.e., those that can
afford the distance. Open a facility at y, and connect every client j ∈ At(y) to it.

(c) If for a facility that has already been open at time τ ⩽ t at location y, and for an active
client j, it holds that t − τ = αj(t) − dist(xj , y): Connect client j to this facility. We
call this action late connection.

In Case b and Case c, all clients that get connected become inactive.

2.1 Basic observations

One may observe that Algorithm 1 is a generalization of (the simpler version of) the algorithm
by Jain et al. [34]. Furthermore, if it is run on an instance where all clients appear at the same
time, it produces the same solution (the same facility locations and the same connections) as
the original offline approximation algorithm.

It is convenient to think that the connectivity budget of a client is first spent on connection
cost, and the remaining part either contributes to the opening of a new facility or pays for
the facility-side waiting cost of an already open facility.

▶ Observation 4. The total cost of the solution produced by Algorithm 1 is (1 + 1/γ) ·
∑

j αj .

Proof. The sum of opening costs, connection costs and facility-side waiting costs in the
produced solution equals the sum of final connectivity budgets

∑
j αj . The total client-side

waiting cost is (1/γ) ·
∑

j αj . ◀

To estimate the competitive ratio of the algorithm, it thus suffices to compare the cost of
the optimal solution to (1 + 1/γ) ·

∑
j αj , which we do in Section 3.
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2.2 Sensibility
Our later construction for the one-sided waiting variant requires that the used online algorithm
for the two-sided variant has the following property, which bounds the number of clients that
connect late to an already open facility.

▶ Definition 5 (sensibility). Fix any λ > 1 and ξ > 1. An algorithm solving the two-sided
variant is called (λ, ξ)-sensible if it satisfies the following property for any facility f opened
at time τ and location y: for any w > 0, the number of clients connected to f within the
interval (τ + w, τ + λ · w] is at most ξ · open(y)/w.

We show that for some constants λ and ξ, our algorithm is (λ, ξ)-sensible: if clients
connecting late to an open facility incurred large (facility-side) waiting costs, then our
algorithm would rather create a new copy of this facility, and connect these clients to the
copy.

▶ Lemma 6. Fix a parameter γ > 1 of Algorithm 1. For any λ ∈ (1, 1 + 1/(γ − 1)),
Algorithm 1 is (λ, (γ − (γ − 1) · λ)−1)-sensible.

Proof. Fix a facility f opened at time τ at location y. Let Cw be the set of clients that
are connected late to f within interval (τ + w, τ + λ · w]. Take any client j ∈ Cw and let
tc
j = τ + h be its connection time. We define the residual budget of client j at time t as

rj(t) = αj(t) − dist(xj , y).
We now estimate the residual budget of client j at time τ + w. Let τ + g be the time when

its residual budget becomes zero, i.e., rj(τ + g) = 0. Its residual budget at time τ + h is then
rj(τ +h) = αj(τ +h)−αj(τ +g) = γ · (h−g). On the other hand, rj(τ +h) = (τ +h)−τ = h,
as j forms a late connection to f at time τ + h. Hence, γ · g = (γ − 1) · h ⩽ (γ − 1) · λ · w,
which implies rj(τ + w) = γ · (w − g) ⩾ (γ − (γ − 1) · λ) · w. (Note that for our choice of λ,
this amount is positive.)

By the definition of Algorithm 1, the residual budgets are spent either on opening new
facilities or on facility-side waiting of an already opened facility. Hence, at time τ + w, the
sum of residual budgets of all clients from Cw cannot be larger than open(y), as in such
case Algorithm 1 would open another copy of the facility at y. This argument implies that
|Cw| · (γ − (γ − 1) · λ) · w ⩽ open(y), which concludes the proof. ◀

For example, by Lemma 6, Algorithm 1 with γ = 2 is (3/2, 2)-sensible.

3 Competitive Analysis via Factor Revealing LP

Fix an optimal offline solution. We will heavily use the structure of this solution being
a collection of stars, each of them composed of a single open facility and a set of clients
connected in the optimal solution to this facility. Just as in the analysis of the JMS
algorithm [34, 33], we will focus on a single star S of Opt, and compare

∑
j∈S αj to the cost

of this star.
Let τ be the time of opening the facility f in the considered star S of the optimal

solution. Note that our online algorithm could connect clients j ∈ S to facilities opened by
the online algorithm both before and after τ . For a client j ∈ S that arrived at time tj and
got connected by the algorithm at time tc

j , we set aj = tj − τ and sj = tc
j − τ to denote

the arrival time and the service time of j (time when j is connected to a facility by the
algorithm) relative to τ . Note that our algorithm grows αj until it reaches value γ · (sj − aj).
Variable dj will denote the distance between the locations of the client j and the facility f .
Let open(f) denote the cost of opening the facility f .
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Consider the following factor revealing LP:

▶ Linear Program 1.

zk(γ) = max
(1 + γ) ·

∑k−1
i=0 (si − ai)

open(f) +
∑k−1

i=0 (di + |ai|)
(1a)

si ⩽ si+1 ∀0⩽i<k−1 (1b)
(γ − 1) · si − γ · ai ⩽ di + dj + (γ − 1) · sj − γ · aj ∀0⩽j<i<k (1c)

k−1∑
i=ℓ

max {γ · (sℓ − ai) − di, 0} ⩽ open(f) ∀ℓ<k (1d)

di ⩾ 0, si ⩾ ai ∀0⩽i<k (1e)

▶ Lemma 7. zk(γ) is an upper bound on the competitive ratio of the algorithm for a fixed
value of parameter γ on a star of Opt with k clients.

Proof. It suffices to argue that the constraints (1b-1e) are satisfied for any values di, ai, si

representing the situation of clients from a single star of Opt in an actual run of the online
algorithm.

We consider the set of clients in the order of them being connected by the online
algorithm. If two clients are connected at the same time, we first take the one that arrived
first. Constraints (1b) are trivially satisfied by this ordering.

Constraints (1d) reflect the situation just before time tc
ℓ when client ℓ gets connected by

Algorithm 1. The left-hand side is a sum of the contributions of still active clients towards
opening a facility in the very same spot as Opt has a facility for this star. Obviously, these
contributions cannot exceed the cost of opening a facility.

Finally, to argue for Constraints (1c) being satisfied we consider two cases. If si = sj ,
then aj ⩽ ai, and the constraint is trivially satisfied. Otherwise, si > sj . Consider the
moment just before client i gets connected. Client i cannot have a budget that would be
more than sufficient to connect to the facility where client j is connected. The connectivity
budget of i is then γ · (si − ai) and the distance to the facility serving j plus waiting at this
facility for i can be upper bounded by di + dj + (si − sj) + γ · (sj − aj), see Figure 1. ◀

3.1 Bounding the LP value
Here we will show an alternative (an in our opinion conceptually much simpler than the
original one from Sec 5.2 of [33]) method to upper-bound a sequence of factor-revealing linear
programs.

Our task now is to bound the value of zk(γ) for every k. It is insufficient to compute
zk(γ) for some fixed k as it is monotonically increasing with k (a fact which we prove in
a slightly weaker form). In this section, we will however show that it converges to a constant
as k goes to infinity.

▶ Proposition 8. For any γ > 0 and k, m ∈ N+, it holds that zk(γ) ⩽ zk·m(γ).

Proof. Let ⟨d, a, s⟩ ∈ Rk ×Rk ×Rk be a solution to LP1 optimizing zk(γ). We will construct
a solution ⟨d′, a′, s′⟩ ∈ Rk·m × Rk·m × Rk·m of the same value.

For i ∈ [k] and r ∈ [m], let d′
m·i+r = di/m, a′

m·i+r = ai/m, and s′
m·i+r = si/m. The

inequalities (1b), (1c), and (1e) are satisfied by the new solution, since the same numbers
appear in these inequalities in the solution ⟨d, a, s⟩. To show feasibility of ⟨d′, a′, s′⟩ we need
to argue that (1d) is satisfied for ℓ not divisible by m:
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xi xjxf xf ′
ai

aj

si

sj

di

dj

Figure 1 Illustration for Constraint (1c) (the triangle inequality). Before time si, the budget
of client i must not be sufficient to connect i to the facility f ′ currently serving j – otherwise the
algorithm would have already connected it. The cost of such a connection can be bounded by a sum
of di + dj (upper bounds dist(xi, xj)), si − sj (the waiting cost on the facility side since sj), and
γ · (sj − aj) (upper-bounds dist(xj , yf ′ ) and the remainder of waiting of f ′).

m·k−1∑
i=ℓ

max {γ · (s′
ℓ − a′

i) − d′
i, 0}

⩽
m·k−1∑

i=m·⌊ℓ/m⌋

max {γ · (s′
ℓ − a′

i) − d′
i, 0} (more summands)

=
m·k−1∑

i=m·⌊ℓ/m⌋

max {γ · (s′
m·⌊ℓ/m⌋ − a′

i) − d′
i, 0} (since s′

ℓ = s′
m·⌊ ℓ

m ⌋)

=
k−1∑

i=⌊ℓ/m⌋

max {γ · (s⌊ℓ/m⌋ − ai) − di, 0} (by definition of ⟨d′, a′, s′⟩)

⩽ open(f). ◀

To determine how z(γ) converges, we will define another LP, whose optimal value will always
upper-bound LP1.

▶ Linear Program 2. This program with optimal value equal yk(γ) is defined to be the same
as LP1 except for the following inequality swapped for (1d):

k−1∑
i=ℓ+1

max {γ · (sℓ − ai) − di, 0} ⩽ open(f) ∀l<k. (2d)

▶ Proposition 9. For any γ > 0 and k, m ∈ N+ it holds that yk(γ) ⩾ yk·m(γ).

Proof. Let ⟨d, a, s⟩ ∈ Rk·m × Rk·m × Rk·m be the solution to LP2 maximizing yk·m(γ). We
define a solution ⟨d′, a′, s′⟩ ∈ Rk × Rk × Rk of the same value as:

d′
i =

m−1∑
r=0

dm·i+r, a′
i =

m−1∑
r=0

am·i+r, s′
i =

m−1∑
r=0

sm·i+r, ∀0⩽i<k.
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Again, we only need to focus on the inequality (2d):

k−1∑
i=ℓ+1

max{γ · (s′
ℓ − a′

i) − d′
i, 0}

=
k−1∑

i=ℓ+1
max

{
m−1∑
r=0

γ · (sm·ℓ+r − am·i+r) − dm·i+r, 0
}

(def. of ⟨d′, a′, s′⟩)

⩽
k−1∑

i=ℓ+1
max

{
m−1∑
r=0

γ · (sm·(ℓ+1)−1 − am·i+r) − dm·i+r, 0
}

(monotonicity of si)

⩽
k−1∑

i=ℓ+1

m−1∑
r=0

max
{

γ · (sm·(ℓ+1)−1 − am·i+r) − dm·i+r, 0
}

(Jensen’s inequality)

=
m·k−1∑

i=m·(ℓ+1)

max
{

γ · (sm·(ℓ+1)−1 − ai) − di, 0
}

⩽ open(f). ◀

Finally we show the relation between the corresponding z and y values.

▶ Proposition 10. For any γ > 0 and k ∈ N+ it holds that yk(γ) ⩾ zk(γ).

Proof. Let ⟨d, w, s⟩ ∈ Rk × Rk × Rk be the solution to LP1 maximizing zk(γ). The same
solution if feasible for LP2, as (2d) is weaker (has strictly fewer summands on the left side)
than (1d). ◀

Proposition 10 completes the picture and lets us compare z(γ) with y(γ) for any k, even
with the weak monotonicity we show in Propositions 8 and 9.

▶ Corollary 11. For any γ > 0 and for any k1, k2 ∈ N+, we have

zk1(γ)
P8
⩽ zk1·k2(γ)

P10
⩽ yk1·k2(γ)

P9
⩽ yk2(γ).

We can now solve yk(γ) for some k and obtain a bound on all {zℓ(γ)}ℓ∈N+
. The higher k we

choose, the more precise bound we get in return.

4 Computation of the competitive bounds

Having Corollary 11 ready to use, we now can lean on a major strength of our proof strategy:
We can now simply use a linear programming solver to compute a valid bound the competitive
ratio.

Our computational results are summarized in Figure 2. We have been able to solve LPs
with up to 1500 clients, which allows us to make the following two claims, one formally
proved and one empirical:

▷ Claim 12. There exists an optimal solution for the linear program LP2 with parameters
k = 1500 and γ = 2.868 of objective value y1500(2.868) ≈ 3.869.

Proof. We provide the proof in the form of feasible LP solution and a feasible dual solution of
the same objective value. The solutions are available along with the rest of our data at [13].

◁
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gamma

ra
ti
o

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.868 3 3.1

3.817

3.861

3.9

4

3.869

x + 1

Figure 2 Visual representation of the computed bounds on the competitive ratio as functions
of γ. Each data point corresponds to a single optimal solution of LP1 or LP2, the curves are
interpolated. The blue (solid) curves correspond to the upper bound LP2 for k = 100, 500, 1000
and 1500 respectively. The red (dashed) curves represent the solutions of LP1 for the same steps of
k. We obtain that our algorithm is 3.869-competitive for γ = 2.868 (Claim 12), and it is not better
than 3.861-competitive (Empirical Claim 13). Note that in line with results of Section 3, for a fixed
value of γ, the value of zk(γ) increases with increasing k while yk(γ), its upper bound, decreases
with k.

▷ Empirical Claim 13. The objective function z1500(γ) of LP1, viewed as a function of γ, is
minimized for γ ≈ 2.867 with objective value z1500(2.867) ≈ 3.861.

With Claim 12, we can complete the proof of Theorem 1:

Proof of Theorem 1. We partition the cost of Opt into costs associated with a single facility
that Opt opens, forming a star with the facility in the center. Lemma 7 gives us that zk(γ)
is an upper bound on the competitive ratio of Algorithm 1 for a single star, and Corollary 11
implies that computing a single optimal solution of the upper bound LP2 is sufficient for the
bound on competitive ratio. Finally, Claim 12 tells us that for γ = 2.868, the competitive
ratio on a single star – and thus, on all stars – is, after rounding, at most 3.869. ◀

The complementary Empirical Claim 13 provides a lower bound on the efficiency of our
method, as it suggests that Algorithm 1 is not better than 3.861-competitive, and thus our
analysis is almost tight.

In Figure 2, we can see that all curves for LP2 begin to follow the line y = x + 1 once they
intersect it, which is not the case for the dashed curves of LP1. The following observation
explains the structure of feasible solutions once the y = x + 1 line is crossed.

▶ Observation 14. Consider the linear program LP2 with parameters k ≥ 2 and γ, and let
us set open(f) +

∑k−1
i=0 (di + |ai|) = 1. Then, there is a feasible solution to LP2 with objective

value γ + 1.

Proof. Recall that LP2 is designed for the case the optimal solution opens a facility at
time τ , which we can think of as 0. For our feasible solution, we set all distances to be
identically zero and we release the first client at time a0 = −1, with a1 = a2 = · · · = ak−1 = 0.
The cost of opening a facility is also zero. For the service times of the algorithm, we set
s0 = s1 = · · · = sk−1 = 0.
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We first double check that indeed, setting these values gives us open(f)+
∑k−1

i=0 (di+|ai|) =
1; we now proceed to check that the solution is feasible. As all distances and service times
are zero, all constrains except the type (2d) are trivially satisfied.

Let us restate the last set of constraints, (2d):

k−1∑
i=ℓ+1

max {γ · (sℓ − ai) − di, 0} ⩽ open(f) ∀ℓ<k.

Observe that a0 does not appear in any constraint of this type, and so it is never checked
that γ(s0 − a0) ⩽ open(f) = 0, which would be false for any s0 > −1. All constraints of this
type only check variables a1, . . . , ak−1 and s1, . . . , sk−1, which are all set to zero, causing the
constraints to be indeed satisfied. ◀

The quirk from Observation 14 does not cause any issues for us, as the minimum of zk(γ),
which serves as a lower bound of the competitive ratio of Algorithm 1, is attained before the
curve zk(γ) intersects y = x + 1 (see Figure 2).

For our computations, we use the LP solver Gurobi Optimizer version 9 [32]. The source
code of our generator and selected few solutions (that can be verified) can be found online
at [13].

5 From Two-Sided to One-Sided Delay

We will now show how an online algorithm that solves the two-sided variant of the facility
location problem can be transformed into an algorithm for the one-sided variant. We
require that the former algorithm is (λ, ξ)-sensible for some constants λ > 1 and ξ > 1
(cf. Definition 5). Recall that by Lemma 6, Algorithm 1 is (3/2, 2)-sensible for γ = 2.

5.1 Algorithm definition
On the basis of an arbitrary online (λ, ξ)-sensible algorithm ATS for the two-sided variant,
we construct an online algorithm for the one-sided variant in the following way.

▶ Algorithm 2. Our algorithm simulates the execution of ATS on the input instance, and
when ATS opens a facility f at point y at time τ , and connects a subset of clients to this
facility, our algorithm does the same at time τ .

From this point on, our algorithm tracks, in an online manner, all (late) connections to
facility f . Clients that are already connected by ATS but not yet connected by our algorithm
are called pending for f . At some times (defined below), our algorithm opens a new facility
at y (called a copy of f), and connects all clients pending for f to this copy.

Let τ + b be the earliest time when p · b ⩾ open(y), where p denotes the number of pending
clients. (The inequality may be strict if it becomes true because of the increment of p.) If
there are no pending clients at time τ + open(y), we set b = open(y).
In either case, the first copy of f is opened at time τ + b.
Let

ñ = λ · ξ

λ − 1 · open(y)
b

,

Note that ñ > 1 by the choice of b. Let q =
√

log ñ and let ℓ be the smallest integer
such that qℓ > ñ. Subsequent facility copies are opened at times τ + b · qi for all integers
i ∈ {1, . . . , ℓ}.
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In total, Algorithm 2 opens a facility at y at time τ , and ℓ + 1 of its copies at times
τ + b · qi, for i ∈ {0, . . . , ℓ}.

5.2 Analysis
In the following, we assume that ATS is (λ, ξ)-sensible for some fixed constants λ > 1 and
ξ > 1. We show that Algorithm 2 is a valid algorithm (i.e., it eventually connects all clients),
and we upper-bound its total cost in comparison to the cost paid by ATS.

We perform the cost comparison for each facility f opened by ATS; in the following, we
use y to denote its location and τ to denote its opening time in the solution of ATS. We
also use values of b, ñ, q and ℓ as computed by Algorithm 2 when handling clients connected
to f by ATS.

Correctness

We start with the following helper claim.

▶ Lemma 15. It holds that ñ ⩽ n · λ · ξ/(λ − 1).

Proof. Let p′ be the number of clients ATS connected to f within the interval (τ, τ + b]. If
p′ = 0, then b = open(y) and thus ñ = (λ · ξ)/(λ − 1). The lemma follows trivially as n ⩾ 1.
Otherwise, p′ > 0, and then p′ · b ⩾ open(y). In this case, ñ = (λ · ξ) · (λ − 1)−1 · open(y)/b ⩽
(λ · ξ) · (λ − 1)−1 · p′. As p′ ⩽ n, the lemma follows. ◀

▶ Lemma 16. Algorithm 2 connects all clients.

Proof. The last copy of the facility f is opened by Algorithm 2 at time τ + b · qℓ. Thus, it
suffices to show that ATS connects no clients to f after this time.

Fix any t > 0, any integer i ⩾ 0, and consider time interval

It
i =

(
τ + λi · t, τ + λi+1 · t

]
.

As ATS is (λ, ξ)-sensible, it connects at most ξ · open(y)/(λi · t) clients within interval It
i .

Note that
⊎∞

i=0 It
i = (τ + λ0 · t, ∞) = (τ + t, ∞). Thus, for an arbitrary t, by summing

over all i ⩾ 0, the number of clients connected after time τ + t is at most

∞∑
i=0

ξ · open(y)
λi · t

= λ · ξ

λ − 1 · open(y)
t

= ñ · b

t
.

Hence, the number of clients connected after time τ + b · qℓ is at most ñ · b/(b · qℓ) = ñ/qℓ < 1.
As the number of clients is integral, it must be zero. ◀

Bounding the waiting time

Now we focus on bounding the total waiting time of Algorithm 2. Let C be the set of clients
connected by ATS to the facility f at y. We split C into four disjoint parts: the clients
connected by ATS at time τ , within interval (τ, τ + b), at time τ + b, and after τ + b. We
denote these parts C=τ , C(τ,τ+b), C=τ+b and C>τ+b, respectively. For any client j ∈ C, let
wATS

j and wj denote its waiting cost in the solutions of ATS and Algorithm 2, respectively.

▶ Lemma 17. For any client j ∈ C \ C(τ,τ+b), it holds that wj ⩽ q · wATS
j .
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Proof. For any client j, let tj be the time of its arrival and tc
j the time ATS connects it to

facility f .
In the case j ∈ C=τ , in both solutions of ATS and Algorithm 2, client j waits till τ , and

thus wj = wATS
j . The case j ∈ C=τ+b is possible only if tj = τ +b, and then wj = 0 ⩽ q ·wATS

j .
It remains to consider the case j ∈ C>τ+b, i.e., tc

j > τ + b. Let winit
j = tc

j − tj ; this
amount represents the inevitable waiting time that j incurs in both solutions. Note that
wATS

j − winit
j = tc

j − τ corresponds to the facility-side waiting cost of j in the solution
of ATS. By Lemma 16, tc

j ⩽ τ + b · qℓ. Thus, there exists an integer i ∈ {1, . . . , ℓ}, such that
τ + b · qi−1 < tc

j ⩽ τ + b · qi. Algorithm 2 connects j at time τ + b · qi, and therefore

wj − winit
j = τ + b · qi − tc

j ⩽ b · qi = q ·
(
b · qi−1)

< q · (tc
j − τ) = q · (wATS

j − winit) .

The proof is concluded by adding winit
j to both sides. ◀

▶ Lemma 18. It holds that
∑

c∈C w(c) ⩽ open(y) + q ·
∑

c∈C wATS(c).

Proof. We use the same notions of tj , tc
j , wj , wATS

j and winit
j as in the previous proof.

Fix any client j ∈ C(τ,τ+b). Clearly, tc
j > τ . Furthermore, j is served by Algorithm 2 at

time τ + b, and thus∑
j∈C(τ,τ+b)

(
wj − winit

j

)
=

∑
j∈C(τ,τ+b)

(
τ + b − tc

j

)
⩽ |C(τ,τ+b)| · b < open(y) .

The last inequality follows by the definition of b in Algorithm 2. By adding
∑

c∈C(τ,τ+b)
winit

j

to both sides, we obtain∑
j∈C(τ,τ+b)

wj ⩽ open(y) +
∑

j∈C(τ,τ+b)

winit
j ⩽ open(y) +

∑
j∈C(τ,τ+b)

wATS
j .

By combining the inequality above with Lemma 17 applied to all C \ C(τ,τ+b), we obtain the
lemma statement. ◀

Competitive ratio

Finally, we use our bounds to prove Theorem 2, i.e., show that the competitive ratio of
Algorithm 2.

Proof of Theorem 2. We fix any (λ, ξ)-sensible O(1)-competitive algorithm ATS for the
two-sided variant. By Lemma 6, such algorithm exists for λ = 3/2 and ξ = 2.

We fix any facility opened by ATS at location y; let C denote the set of clients that
are connected to this facility in the solution of ATS. Below we show that the total cost
pertaining to clients from C in the solution of Algorithm 2 is at most O(log n/ log log n)
times larger than the cost pertaining to these clients in the solution of ATS.

The theorem will then follow by summing this relation over all facilities opened by ATS,
and observing that the value of Opt for the one-sided variant can be only more expensive
than Opt for the two-sided variant (as the two-sided variant is a relaxation of the one-sided
variant).

We relate parts of cost of solution produced by Algorithm 2 to the corresponding costs of
ATS.

The cost of connecting clients from C by Algorithm 2 is trivially equal to the connection
cost in the solution of ATS.
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To bound the waiting cost of clients from C, we apply Lemma 18 obtaining that∑
c∈C w(c) ⩽ open(y) + q ·

∑
c∈C wATS(c). As q =

√
log ñ = O(

√
log n) =

O(log n/ log log n), the total waiting cost of Algorithm 2 is at most open(y) +
O(log n/ log log n) ·

∑
c∈C wATS(c).

Algorithm 2 opens a facility at location y at time τ and then ℓ + 1 of its copies at
times τ + b · qi for i ∈ {0, . . . , ℓ}. Thus, its overall opening cost is (ℓ + 2) · open(y).
Recall that ℓ = ⌈log ñ/ log q⌉ = O(log ñ/ log log ñ). By Lemma 15, the latter amount is
O(log n/ log log n). Thus, the opening cost of Algorithm 2 is O(log n/ log log n) · open(y)
while that of ATS is open(y).

The proof follows by adding guarantees of all the cases above. ◀
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Abstract
We consider the online bipartite stochastic matching problem with known i.d. (independently
distributed) online vertex arrivals. In this problem, when an online vertex arrives, its weighted
edges must be probed (queried) to determine if they exist, based on known edge probabilities. Our
algorithms operate in the probe-commit model, in that if a probed edge exists, it must be used
in the matching. Additionally, each online node has a downward-closed probing constraint on its
adjacent edges which indicates which sequences of edge probes are allowable. Our setting generalizes
the commonly studied patience (or time-out) constraint which limits the number of probes that can
be made to an online node’s adjacent edges. Most notably, this includes non-uniform edge probing
costs (specified by knapsack/budget constraint). We extend a recently introduced configuration
LP to the known i.d. setting, and also provide the first proof that it is a relaxation of an optimal
offline probing algorithm (the offline adaptive benchmark). Using this LP, we establish the following
competitive ratio results against the offline adaptive benchmark:
1. A tight 1

2 ratio when the arrival ordering π is chosen adversarially.
2. A 1 − 1/e ratio when the arrival ordering π is chosen u.a.r. (uniformly at random).
If π is generated adversarially, we generalize the prophet inequality matching problem. If π is u.a.r.,
we generalize the prophet secretary matching problem. Both results improve upon the previous best
competitive ratio of 0.46 in the more restricted known i.i.d. (independent and identically distributed)
arrival model against the standard offline adaptive benchmark due to Brubach et al. We are the
first to study the prophet secretary matching problem in the context of probing, and our 1 − 1/e

ratio matches the best known result without probing due to Ehsani et al. This result also applies to
the unconstrained bipartite matching probe-commit problem, where we match the best known result
due to Gamlath et al.
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1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty
and more specifically, stochastic optimization. Unlike more standard forms of stochastic
optimization, it is not just that there is some stochastic uncertainty in the set of inputs,
stochastic probing problems involve inputs that cannot be determined without probing (at
some cost and/or within some constraint). Applications of stochastic probing occur naturally
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in many settings, such as in matching problems where compatibility cannot be determined
without some trial or investigation (for example, in online dating, online advertising, and
kidney exchange applications). There is by now an extensive literature for stochastic probing
problems.

Although we are only considering “one-sided online bipartite matching”, stochastic
matching was first considered in the context of a general graph by Chen et al. [18]. In this
problem, the algorithm is presented an adversarially generated stochastic graph G = (V,E)
as input, which has a probability pe associated with each edge e and a patience (or time-out)
parameter ℓv associated with each vertex v. An algorithm probes edges in E in some adaptive
order within the constraint that at most ℓv edges are probed incident to any particular vertex
v. The patience parameter can be viewed as a simple budgetary constraint, where each probe
has unit cost and the patience parameter is the budget. When an edge e is probed, it is
guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, then the
algorithm must commit to the edge – that is, it must be added to the current matching. The
goal is to maximize the expected size of a matching constructed in this way.

In addition to generalizing the results of Chen et al. to edge weights, Bansal et al. [6]
introduced the online bipartite stochastic matching problem. In this problem, a single seller
wishes to match their offline (indivisible) items to (unit-demand) buyers which arrive online
one by one. The seller knows the possible type/profile of each online buyer, which is specified
by edge probabilities, edge weights and a patience parameter. Here an edge probability
models the likelihood a buyer type will purchase an item if the seller presents it to them, and
an edge weight represents the revenue the seller will gain from making such a sale successfully.
The patience of a buyer type indicates the maximum number of items they are willing to be
shown. The online buyers are drawn i.i.d. from a known distribution, where the type of each
online buyer is presented to the seller upon its arrival. The (potential) sale of an item to
an online buyer must be made before the next online buyer arrives, and the seller’s goal is
to maximize their expected revenue. As in the Chen et al. model, the seller must commit
to the first sale to which an online buyer agrees. Fata et al. observed that this problem is
closely related to the multi-customer assortment optimization problem, which has numerous
practical applications in revenue management (see [24] for details).

We study the online bipartite stochastic matching problem in the more general known i.d.
setting. Specifically, each online buyer is drawn from a (potentially) distinct distribution, and
the draws are done independently. When online buyers arrive adversarially, we generalize the
prophet inequality matching problem of Alaei et al. [4]. When online buyers arrive in random
order, we generalize the prophet secretary matching problem of Ehsani et al. [22]. We note
that prophet inequalities give rise to (and in some sense are equivalent to) order oblivious
posted price mechanisms, as first studied in Hajiaghayi et al. [31] and further developed
for multi-parameter settings in Chawla et al. [17] and recently in Correa et al. [19]. There
have been a number of very recent works studying prophet matching problems with limited
distributional sample access [16, 33]. In these works, a main emphasis has been towards
understanding whether a few samples is sufficient to obtain the best known competitive
ratios when one is instead given full access to the distributions. Our work is motivated by
analogous questions for competitive ratios in the probe-commit model, and we provide a
positive answer for adversarial arrivals as well as for random order arrivals.

The online bipartite stochastic matching problem models the altruistic kidney exchange
problem where the offline nodes correspond to donors and the online nodes correspond
to recipients (or vice versa). A trial (probe) must be performed to determine whether a
donor/recipient pair may exchange kidneys, and the edge probability corresponds to the
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likelihood of a permissible exchange. The online arrival setting models the restriction that
the algorithm must process the recipients (or donors) in an order of which it cannot control.
Our generalization of patience to downward-closed probing constraints is motivated by this
application. Specifically, our framework includes knapsack/budget constraints, which allows
us to model non-uniform trial costs. Another application is to online advertising, where an
advertiser presents ads to consumers, and the edge probabilities represent the likelihood
they will “click” on the presented ad. Basically, any matching problem in which there is
uncertainty in whether the matches will succeed is a relevant application.

2 Preliminaries and Our Results

An input to the online stochastic matching problem with known i.d. arrivals firstly
includes a type graph Htyp = (U,B, F ), which is a bipartite graph with edge weights
(wf )f∈F and edge probabilities (pf )f∈F where F := U × B. We refer to U as the offline
nodes of Htyp and B as its type nodes. An online probing algorithm is given access
to Htyp, and for each u ∈ U , and b ∈ B, pu,b indicates the probability that an active
edge between u and b exists, and wu,b ≥ 0 indicates the reward for matching u to b.
Given an arbitrary set S, let S(∗) denote the set of all tuples (strings) formed from S,
whose entries (characters) are all distinct. Note that we use tuple/string notation and
terminology interchangeably. Each b ∈ B has its own (online) probing constraint
Cb ⊆ ∂(b)(∗), where ∂(b) := U × {b}. This probing constraint indicates whether the edges of
e = (e1, . . . , ek) ∈ ∂(b)(∗) may be probed by the algorithm in the order of its indices. Here a
probe of an edge informs the algorithm whether or not the edge is active. We make the
minimal assumption that Cb is downward-closed; that is, if e ∈ Cb, then any substring or
permutation of e is also in Cb. This includes matroid constraints, as well when b ∈ B has
a budget Lb ≥ 0, and (edge) probing costs (cu,b)u∈U , such that e = (e1, . . . , ek) ∈ Cb
provided

∑k
i cei ≤ Lb. Observe that if b has uniform probing costs, then this corresponds to

the previously discussed case of an integer patience parameter ℓb ≥ 1.
The input additionally consists of a sequence of distributions (Di)ni=1 supported on B,

where n ≥ 1 indicates the number of online vertices to be presented to the algorithm.
Specifically, for i = 1, . . . , n, vertex vi is drawn independently from Di, and we define V to be
the multiset including v1, . . . , vn. The online probing algorithm executes on the stochastic
graph G = (U, V,E) where E := U × V , and we denote G ∼ (Htyp, (Di)ni=1) to indicate
G is drawn from (Htyp, (Di)ni=1). We assume that each e ∈ E is active independently with
probability pe, where the edge state st(e) ∼ Ber(pe) indicates this event.

Initially, the online algorithm is only given access to (Htyp, (Di)ni=1), yet its goal is to
build a matching of active edges of G of largest possible expected weight. In the adversarial
order arrival model (AOM), a permutation π is generated by an oblivious adversary,
in which case π is a function of Htyp and (Di)ni=1. In the random order arrival model
(ROM), π is generated u.a.r., independent of all other randomization. In either setting, π is
unknown to the algorithm. For each t = 1, . . . , n, vertex vπ(t) is presented to the algorithm,
along with its edge weights, probabilities, and online probing constraint. Note that the
algorithm is also presented the value π(t), and thus learns from which distribution vπ(t) was
drawn. However, the edge states (st(e))e∈∂(vπ(t)) initially remain hidden to the algorithm.
Instead, using all past available information regarding vπ(1), . . . , vπ(t−1), the algorithm must
probe the edges of ∂(vπ(t)) to reveal their states, while adhering to Cvπ(t) . The algorithm
operates in the probe-commit model, in which there is a commitment requirement
upon probing an edge. Specifically, if an edge e = (u, v) is probed and turns out to be
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active, then the online probing algorithm must make an irrevocable decision as to whether
or not to include e in its matching, prior to probing any subsequent edges. This definition of
commitment is the one considered by Gupta et al. [30], and is slightly different but equivalent
to the Chen et al. [18] model in which an active edge must be immediately accepted into the
matching. The algorithm always has the option to pass on vπ(t), yet its (potential) match
must be made before the next online vertex arrives.

In general, it is easy to see that that even when the edges are unweighted and the
algorithms initially knows the stochastic graph we cannot hope to obtain a non-trivial
competitive ratio against the expected size of an optimal matching of the stochastic graph.
Consider a stochastic graph with a single online vertex with patience 1, and k ≥ 1 offline
(unweighted) vertices where each edge e has probability 1

k of being active. The expectation
of an online probing algorithm will be at most 1

k while the expected size of an optimal
matching will be 1− (1− 1

k )k → 1− 1
e as k →∞. The standard approach in the literature

is to instead consider the offline stochastic matching problem and benchmark against
an optimal offline probing algorithm [6, 2, 14, 15]. An offline probing algorithm knows
G = (U, V,E), but initially the edge states (st(e))e∈E are hidden. Its goal is to construct
a matching of active edges of G with weight as large as possible in expectation. It can
adaptively probe the edges of E in any order, but must satisfy the probing constraints
(Cv)v∈V at each step of its execution. That is, edges e ∈ E(∗) may be probed in order,
provided ev ∈ Cv for each v ∈ V , where ev is the substring of e restricted to edges of ∂(v).
It must also operate in the same probe-commit model as an online probing algorithm. We
define the (offline) adaptive benchmark as an optimal offline probing algorithm, and
denote OPT(G) as the expected weight of its matching when executing on G. An alternative
weaker benchmark used by Brubach et al. [11, 12] is the online adaptive benchmark.
This is defined as an optimal offline probing algorithm which executes on G and whose edge
probes respect some adaptively chosen vertex ordering on V . Equivalently, the edge probes
involving each v ∈ V occur contiguously: if e′ = (u, v′) ∈ E is probed after e = (u, v) for
v′ ̸= v, then no edge of ∂(v) is probed following e′. We benchmark against E[OPT(G)],
where the expectation is over the randomness in G ∼ (Htyp, (Di)ni=1). For clarity, we denote
E[OPT(G)] by OPT(Htyp, (Di)ni=1).

Observe that if pe ∈ {0, 1} for each e ∈ F of Htyp = (U,B, F ), then probing is unnecessary,
and the offline adaptive benchmark and the online adaptive benchmark both correspond to
the expected weight of the maximum matching of G. In this special case, the online algorithm
also does not need to probe edges, and so no matter which benchmark is chosen, the problem
generalizes either the prophet inequality matching problem or the prophet secretary
matching problem, depending on whether π is adversarial or u.a.r., respectively.

▶ Theorem 1. If M(π) is the matching returned by Algorithm 8 when presented the online
vertices of G ∼ (Htyp, (Di)ni=1) in an adversarial order π : [n] → [n], then E[w(M(π))] ≥
1
2 OPT(Htyp, (Di)ni=1).

▶ Remark 2. We say that Algorithm 8 attains a 1/2 competitive ratio or is 1/2-competitive
(against adversarial arrivals). This is a tight bound since the problem generalizes the classic
single item prophet inequality for which 1

2 is an optimal competitive ratio. Recently, Brubach
et al. [11, 12] independently proved the same competitive ratio against the online adaptive
benchmark when G has patience values and the arrival order is adversarial yet known to
the algorithm. Our results are incomparable, as their results can be applied to an unknown
patience framework (at a loss in competitive ratio), whereas our results apply to known
downward-closed online probing constraints, and hold against a stronger benchmark.
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▶ Theorem 3. If M is the matching returned by Algorithm 9 when presented the online ver-
tices of G ∼ (Htyp, (Di)ni=1) in random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(Htyp, (Di)ni=1).

▶ Remark 4. In part due to its applications to multi-customer assortment optimization, the
special case of identical distributions with one-sided patience values has been studied in
multiple works [6, 2, 14, 15], beginning with the 0.12 competitive ratio of Bansal et al. [6].
The previously best known competitive ratio of 0.46 for arbitrary patiences is due to Brubach
et al. [15]. Fata et al. [24] improved this competitive ratio to 0.51 for the special case
of unbounded patience. In an early 2020 arXiv version of this paper [8], we proved a
competitive ratio of 1−1/e for arbitrary patience values. All these previous competitive ratios
(including ours) are proven against the offline adaptive benchmark. Theorem 3 generalizes
this result, as it is the first to apply to non-identical distributions, as well as to more general
probing constraints. Brubach et al. [11, 12] independently achieved a 1− 1/e competitive
ratio for arbitrary patience values in the known i.i.d. setting, however their ratio is against
the weaker online adaptive benchmark, and so is incomparable with previous results in the
literature. Interestingly, 1− 1/e remains the best known competitive ratio in the prophet
secretary matching problem due to Ehsani et al. [22], despite significant progress in the case
of a single offline node (see [5, 20]). Huang et al. [32] very recently proved a 0.703 hardness
result for multiple offline nodes and known i.i.d. arrivals.

In order to discuss the efficiency of our algorithms in the generality of our probing
constraints, we work in the membership oracle model. An online probing algorithm may
make a membership query to any string e ∈ ∂(b)(∗) for b ∈ B, thus determining in a
single operation whether or not e ∈ ∂(b)(∗) is in Cb. All our algorithms are implementable in
polynomial time, as we prove in the full version of the paper (hereby denoted [9]).

A well studied special case of the online stochastic matching problem with known i.d.
online arrivals is the case of a known stochastic graph (see [18, 1, 6, 2, 7, 27, 13, 35]).
In this setting, the input Htyp = (V,B, F ) satisfies n = |B|, and the distributions (Di)ni=1
are all point-mass on distinct vertices of B. Thus, the online vertices of G are not randomly
drawn, and G is instead equal to Htyp. The online probing algorithm thus knows the
stochastic graph G in advance, but remains unaware of the edge states (st(e))e∈E , and so
it still must sequentially probe the edges to reveal their states. Again, it must operate in
the probe-commit model, and respect the probing constraints (Cv)v∈V as well as the arrival
order π on V .

▶ Corollary 5 (of Theorem 3). If M is the matching returned by Algorithm 6 when presented
the online vertices of G in random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(G).

▶ Remark 6. When Algorithm 9 executes in the known graph setting, it is non-adaptive in
that its probes are a (randomized) function of G. In [9], we complement Corollary 5 with a
1− 1/e hardness result which applies to all non-adaptive probing algorithms (even probing
algorithms which execute offline, and thus do not respect the arrival order π of V ).

▶ Remark 7. Gamlath et al. [27] consider an online probing algorithm when G is uncon-
strained – i.e., Cv = ∂(v)(∗) for all v ∈ V – and known to the algorithm. Both our algorithm
and theirs attain a performance guarantee of 1− 1/e against very different non-standard LPs
– LP-config and LP-QC, respectively. Note that LP-QC has exponentially many constraints
and polynomially many variables, whereas LP-config has polynomially many constraints
and exponentially many variables (see Appendix B for a statement of LP-QC). To the best
of our knowledge, LP-QC does not seem to have an extension even to arbitrary patience
values, as it is unclear how to generalize its constraints while maintaining polynomial time
solvability. Despite having such different forms, in the unconstrained setting the LPs take
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on the same value, as we prove in Proposition 28 of Appendix B. Thus, Theorem 3 can
be viewed as a generalization of their work to downward-closed online probing constraints
and known i.d. random order arrivals. Very recently, Pollner et al. [35] proved a 0.426
competitive ratio against the offline adaptive benchmark in the special case of a bipartite
graph with (one-sided) patience values. Our results are incomparable, as their algorithm
works for random order edge arrivals, whereas ours requires one-sided random order vertex
arrivals, yet has a better competitive ratio and works for more general probing constraints.

2.1 An Overview of Our Techniques
For simplicity, we first describe our techniques in the known stochastic graph setting.
Afterwards, we explain how our techniques extend to the known i.d. setting. Let us suppose
that we are presented a stochastic graph G = (U, V,E). For the case of patience values
(ℓv)v∈V , a natural solution is to solve an LP introduced by Bansal et al. [6] to obtain
fractional values for the edges of G, say (xe)e∈E , such that xe upper bounds the probability
e is probed by the offline adaptive benchmark. Clearly,

∑
e∈∂(v) xe ≤ ℓv is a constraint

for each v ∈ V , and so by applying a dependent rounding algorithm (such as the GKSP
algorithm of Gandhi et al. [28]), one can round the values (xe)e∈∂(v) to determine ℓv edges
of ∂(v) to probe. By probing these edges in a carefully chosen order, and matching v to
the first edge revealed to be active, one can guarantee that each e ∈ ∂(v) is matched with
probability reasonably close to pexe. This is the high-level approach used in many stochastic
matching algorithms (for example [6, 2, 7, 15, 13, 35]). However, even for a single online node,
this LP overestimates the value of the offline adaptive benchmark, and so any algorithm
designed in this way will match certain edges with probability strictly less than pexe. This is
problematic, for the value of the match made to v is ultimately compared to

∑
e∈∂(v) pewexe,

the contribution of the variables (xe)e∈∂(v) to the LP solution. In fact, Fata et al. [24]
showed that the ratio between OPT(G) and an optimum solution to this LP can be as small
as 0.51, so the 1− 1/e competitive ratio of Theorem 3 cannot be achieved via a comparison
to this LP, even for the special case of patience values.

Defining LP-config. Our approach is to work with a configuration LP (LP-config) which we
initially called LP-new in our 2020 arXiv paper [8] and used in our companion paper [10] to
attain an (optimal) 1/e competitive ratio for the edge-weighted secretary matching problem
in the probe-commit model. This LP has exponentially many variables which accounts for
the many probing strategies available to an arriving vertex v with probing constraint Cv.
For each e ∈ E(∗), define q(e) =

∏
f∈e(1− pf ), to be the probability that all the edges of e

are inactive, where q(λ) := 1 for the empty string/character λ. For f ∈ e, we denote e<f
to be the substring of e from its first edge up to, but not including, f . Observe then that
val(e) :=

∑
f∈e wf · pf · q(e<f ) corresponds to the expected weight of the first active edge

revealed if e is probed in order of its entries. For each v ∈ V , we introduce a decision variable
xv(e) and write the following LP:

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑
v∈V

∑
e∈Cv :

(u,v)∈e

pu,v · q(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (1)

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (2)

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (3)
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In this work, we provide the first proof that LP-config is a relaxation of the offline adaptive
benchmark. This result is stated but not proven in our companion paper, instead crediting
the full arXiv version [9] of this paper. Unlike previous LPs used in the literature, we are not
aware of an easy proof of this fact, and so we consider our proof to be a technical contribution.

▶ Theorem 8. OPT(G) ≤ LPOPT(G).

▶ Remark 9. For the case of patience values, a closely related LP was independently introduced
by Brubach et al. [11, 12] to design probing algorithms for known i.i.d. arrivals and known
i.d. adversarial arrivals. Their competitive ratios are proven against an optimal solution to
this LP, which they argue relaxes the online adaptive benchmark.
When each Cv is downward-closed, LP-config can be solved efficiently by using a deterministic
separation oracle for the dual of LP-config, in conjunction with the ellipsoid algorithm [36, 29].
In [10], we introduce a greedy probing algorithm for offline vertex weights which attains 1/2
and 1− 1/e competitive ratios for adversarial and random order arrivals, respectively. These
ratios are proven by applying the primal-dual method to a non-standard LP (distinct from
LP-config). We also showed that this greedy probing algorithm can be used as a separation
oracle for the dual of LP-config, as this ensures our 1/e-competitive edge weights algorithm
is efficient. For completeness, we provide the details for extending to the known i.d. case
in [9], as well as a buyer/seller interpretation of the separation oracle problem.

Proving Theorem 8. In order to prove Theorem 8, the natural approach is to view xv(e)
as the probability that the offline adaptive benchmark probes the edges of e in order, where
v ∈ V and e ∈ Cv. Let us suppose that hypothetically we could make the following restrictive
assumptions regarding the offline adaptive benchmark:
P1 If e = (u, v) is probed and st(e) = 1, then e is included in the matching, provided v is

currently unmatched.
P2 For each v ∈ V , the edge probes involving ∂(v) are made independently of the edge states

(st(e))e∈∂(v).

Observe then that P1 and P2 would imply that the expected weight of the edge assigned
to v is

∑
e∈Cv

val(e) · xv(e). Moreover, the left-hand side of (1) would correspond to the
probability u ∈ U is matched, so (xv(e))v∈V,e∈Cv would be a feasible solution to LP-config,
and so we could upper bound OPT(G) by LPOPT(G). Now, if we were working with the
online adaptive benchmark, then it is clear that we could assume P1 and P2 simultaneously1

w.l.o.g. On the other hand, if a probing algorithm does not respect an adaptive vertex
ordering on V (i.e„ does not probe edges in ∂(v) consecutively), then the probes involving
v ∈ V will in general depend on (st(e))e∈∂(v). For instance, if e ∈ ∂(v) is probed and inactive,
then perhaps the offline adaptive benchmark next probes e′ = (u, v′) ∈ ∂(v′) for some v′ ≠ v.
If e′ is active and thus added to the matching by P1, then the offline adaptive benchmark can
never subsequently probe (u, v) without violating P1, as u is now unavailable to be matched
to v. Thus, the natural interpretation of the decision variables of LP-config does not seem to
easily lend itself to a proof of Theorem 8.

Our solution is to consider a combinatorial relaxation of the offline stochastic matching
problem, which we define to be a new stochastic probing problem on G whose optimal
value OPTrel(G) satisfies OPT(G) ≤ OPTrel(G). We refer to this problem as the relaxed

1 It is clear that we may assume the offline adaptive benchmark satisfies P1 w.l.o.g., but not P2.

APPROX/RANDOM 2022



46:8 Prophet Matching in the Probe-Commit Model

stochastic matching problem, a solution to which is a relaxed probing algorithm.
Roughly speaking, a relaxed probing algorithm operates in the same framework as an
offline probing algorithm, yet it returns a one-sided matching of the online vertices which
matches each offline node at most once in expectation. We provide a precise definition
in Section 3. Crucially, there exists an optimal relaxed probing algorithm which is non-
adaptive – that is, a (randomized) function of G – and which satisfies P1. Non-adaptivity
is a much stronger property than P2, and so by the above discussion we are able to conclude
that OPTrel(G) ≤ LPOPT(G). Since OPT(G) ≤ OPTrel(G) by construction, this implies
Theorem 8. Proving the existence of an optimal relaxed probing algorithm which is non-
adaptive is one of the most technically challenging parts of the paper, and is the main
content of Lemma 14 of Section 3. Note that there may be a simpler proof of Theorem
8, however our relaxed stochastic matching problem exactly characterizes LP-config (i.e.,
OPTrel(G) = LPOPT(G)), and so it helps us understand LP-config. For instance, in
Appendix B, we show that in the unconstrained patience setting, LP-QC of [27] is also
characterized by our relaxed matching problem. This implies that the LPs take on the same
value, despite having very different formulations in this special setting.

Defining the probing algorithms: After proving that LP-config is a relaxation of the
offline adaptive benchmark, we use it to design online probing algorithms. Suppose that we
are presented a feasible solution, say (xv(e))v∈V,e∈Cv

, to LP-config for G. For each e ∈ E,
define

x̃e :=
∑

e′∈Cv :
e∈e′

q(e′
<e) · xv(e′). (4)

We refer to the values (x̃e)e∈E as the edge variables of the solution (xv(e))v∈V,e∈Cv
. If

we now fix s ∈ V , then we can easily leverage constraint (2) to design a simple fixed vertex
probing algorithm which matches each edge of e ∈ ∂(s) with probability exactly equal to
pex̃e. Specifically, draw e′ ∈ Cs with probability xs(e′). If e′ = λ, then return the empty set.
Otherwise, set e′ = (e′

1, . . . , e
′
k) for k := |e′| ≥ 1, and probe the edges of e′ in order. Return

the first edge which is revealed to be active, if such an edge exists. Otherwise, return the
empty set. We refer to this algorithm as VertexProbe, and denote its output on the input
(s, ∂(s), (xs(e))e∈Cs

) by VertexProbe(s, ∂(s), (xs(e))e∈Cs
).

▶ Lemma 10. For each e ∈ ∂(s), P[VertexProbe(s, ∂(s), (xs(e))e∈Cs) = e] = pex̃e.

▶ Remark 11. We can view Lemma 10 as an exact rounding guarantee. The fact that
such a guarantee exists, no matter the choice of Cs, is one of the main benefits of working with
LP-config, opposed to LP-std or LP-QC. As discussed, a solution to LP-std provably cannot
be rounded exactly in this way. There does exist an exact rounding guarantee for LP-QC,
however it only applies to the unconstrained setting of Cv = ∂(s)(∗), and the procedure is
much more complicated than ours (see Theorem 29 of Appendix B for details).

▶ Definition 12. We say that VertexProbe commits to the edge e = (u, s) ∈ ∂(s), or
equivalently the vertex u ∈ N(s), provided the algorithm outputs e when executing on the
fixed node s ∈ V . When it is clear that VertexProbe is being executed on s, we say that s
commits to e (equivalently the vertex u).

Consider now the following online probing algorithm, where π is either u.a.r. or adversarial.
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Algorithm 1 Known Stochastic Graph.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of active edges of G.

1: M← ∅.
2: Compute an optimal solution of LP-config for G, say (xv(e))v∈V,e∈Cv

3: for s ∈ V in order based on π do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs

).
5: if e = (u, s) for some u ∈ U , and u is unmatched then ▷ this line ensures e ̸= ∅
6: Add e to M.
7: end if
8: end for
9: return M.

▶ Remark 13. Technically, line (6) should occur within the VertexProbe subroutine to adhere
to the probe-commit model, however we express our algorithms in this way for conciseness.

Improvement via online contention resolution. Algorithm 1 does not attain a constant
competitive ratio for adverarial arrivals, and its competitive ratio is only 1/2 in the random
order arrivals. Thus, we must modify the algorithm to prove Theorems 1 and 3, even in
the known stochastic graph setting. Our modification involves concurrently applying an
appropriate rank one matroid contention resolution scheme (CRS) to each offline vertex
of G, a concept formalized much more generally in the seminal paper by Chekuri, Vondrak,
and Zenklusen [38]. Contention resolution has become a fundamental tool for stochastic
optimization problems, and we illustrate its versatility by applying it to a non-standard LP.

Fix u ∈ U , and observe that constraint (1) ensures that
∑
e∈∂(u) pex̃e ≤ 1. Moreover, if we

set ze := pex̃e, then observe that as VertexProbe executes on v, each edge e = (u, v) ∈ ∂(u)
is committed to u independently with probability ze. On the other hand, there may be
many edges which commit to u so we must resolve which one to take. In Algorithm 1, u
is matched greedily to the first online vertex which commits to it, regardless of how π is
generated. We apply existing online and random order contention resolution schemes to
ensure that e is matched to u with probability 1/2 · ze when π is generated by an adversary,
and (1− 1/e) · ze when π is generated u.a.r. These lower bounds on the edge variables allow
us to conclude the desired competitive ratios, as

∑
e∈E wepex̃e upper bounds OPT(G) by

Theorem 8. We provide the specific schemes used for adversarial arrivals and random orders
arrivals in Section 4. In the latter setting, the CRS based approach simplifies the pricing
based approach Gamlath et al. [27] used to attain a competitive ratio of 1 − 1/e in the
special unconstrained setting (see Remark 7). This simplified approach was also observed
by Fu et al. [26] in the context of the Gamlath et al. LP (LP-QC). They focus on the
unconstrained probe-commit model, and design a 8/15-competitive algorithm for general
graph random order vertex arrivals. It remains open whether their results can be extended
to general patience values and random order edge arrivals. For context, 0.395 is the best
known competitive ratio when allowing for arbitrary patience values and random order edge
arrivals [35]. We focus on the bipartite graphs with one-sided arrivals, as the main goal of
this paper was to fully resolve the complications posed by one-sided probing constraints in
this arrival model.

Extending to known i.d. arrivals. In Appendix A, we prove Theorems 1 and 3 in their full
generality when G is unknown and drawn from (Htyp, (Di)ni=1). We do so by first generalizing
LP-config to a new LP called LP-config-id. This LP departs from previous ones used in the
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probing literature, as it depends both on the type graph as well as the distributions. For
each i ∈ [n], we introduce a collection of variables (xi(e || b))e∈Cb,b∈B associated with the
distribution Di. We again apply known contention resolution schemes, however the additional
variables associated with the possible types of vi ∼ Di introduce correlated events which
must be treated delicately in the context of CRS selectibility. Crucially, the schemes we
employ do not make use of the type of vertex vi, and so we are able to argue that analogous
edge variable lower bounds hold as in the known stochastic graph setting.

3 Relaxing the Offline Adaptive Benchmark via LP-config

Given a stochastic graph G = (U, V,E), we define the relaxed stochastic matching
problem. A solution to this problem is a relaxed probing algorithm A, which operates
in the previously described framework of an (offline) probing algorithm. That is, A is
firstly given access to a stochastic graph G = (U, V,E). Initially, the edge states (st(e))e∈E
are unknown to A, and A must adaptivity probe these edges to reveal their states, while
respecting the downward-closed probing constraints (Cv)v∈V . As in the offline problem, A
returns a subset M of its active edge probes, and its goal is to maximize E[w(M)], where
w(M) :=

∑
e∈M we. However, unlike before where M was required to be a matching of G,

we relax the required properties of M:
1. Each v ∈ V appears in at most one edge of M.
2. If Nu counts the number of edges of ∂(u) which are included in M, then E[Nu] ≤ 1 for

each u ∈ U .
We refer toM as a one-sided matching of the online nodes, and abuse terminology slightly
and say that e ∈ E is matched by A if e ∈ M. In constructing M, A must operate in
the previously described probe-commit model. We define the relaxed benchmark as an
optimal relaxed probing algorithm, and denote its expected value when executing on G by
OPTrel(G). Observe that since any offline probing algorithm is a relaxed probing algorithm,
we have that

OPT(G) ≤ OPTrel(G). (5)

We say that A is non-adaptive, provided the probes are a (randomized) function of
G. Equivalently, A is non-adaptive if the probes of A are statistically independent from
(st(e))e∈E . Unlike for the offline stochastic matching problem, there exists a relaxed probing
algorithm which is both optimal and non-adaptive:

▶ Lemma 14. For any stochastic graph G = (U, V,E) with downward-closed probing con-
straints (Cv)v∈V , there exists an optimum relaxed probing algorithm B which satisfies the
following properties:
Q1 If e = (u, v) is probed, st(e) = 1, and v was previously unmatched, then B matches e.
Q2 B is non-adaptive on G.
▶ Remark 15. Note that Q2 implies the hypothetical property P2, yet is much stronger.
Let us assume that Lemma 14 holds for now.

Proof of Theorem 8. Consider B of Lemma 14, and define xv(e) to be the probability that
B probes the edges of e in order for v ∈ V and e ∈ Cv. Since B is a relaxed probing algorithm,
we can apply properties Q1 and Q2 to show that (xv(e))v∈V,e∈Cv is a feasible solution to
LP-config. Moreover, if N is returned when B executes on G, then

E[w(N )] =
∑
v∈V

∑
e∈Cv

val(e) · xv(e).

Thus, the optimality of B implies that OPTrel(G) ≤ LPOPT(G), and so together with (5),
Theorem 8 follows. ◀
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▶ Remark 16. As mentioned, LP-config is an exact LP formulation of the relaxed stochastic
matching problem, as we prove in Theorem 27 of Appendix B.

3.1 Proving Lemma 14
Let us suppose that G = (U, V,E) is a stochastic graph with downward-closed probing
constraints (Cv)v∈V . In order to prove Lemma 14, we must show that there exists an optimal
relaxed probing algorithm which is non-adaptive and satisfies Q1. Our high level approach
is to consider an optimal relaxed probing algorithm A which satisfies Q1, and then to
construct a new non-adaptive algorithm B by stealing the strategy of A, without any loss
in performance. More specifically, we construct B by writing down for each v ∈ V and
e ∈ Cv the probability that A probes the edges of e in order. These probabilities necessarily
satisfy certain inequalities which we make use of in designing B. In order to do so, we need a
technical randomized rounding procedure whose precise relevance will become clear in the
proof of Lemma 14.

Suppose that e ∈ E(∗), and recall that λ is the empty string/character. Let us now
assume that (yv(e))e∈Cv

is a collection of non-negative values which satisfy yv(λ) = 1, and∑
e∈∂(v):

(e′,e)∈Cv

yv(e′, e) ≤ yv(e′), (6)

for each e′ ∈ Cv. For space considerations, we defer the proof of the below proposition to [9].

▶ Proposition 17. Given a collection of values (yv(e))e∈Cv
which satisfy yv(λ) = 1 and

(6), there exists a distribution Dv supported on Cv, such that if Y ∼ Dv, then for each
e = (e1, . . . , ek) ∈ Cv with k := |e| ≥ 1, it holds that

P[(Y1, . . . ,Yk) = (e1, . . . , ek)] = yv(e), (7)

where Y1, . . . ,Yk are the first k characters of Y (where Yi := λ if Y has no ith character).

Proof of Lemma 14. Suppose that A is an optimal relaxed probing algorithm which returns
the one-sided matching M after executing on the stochastic graph G = (U, V,E). In a slight
abuse of terminology, we say that e is matched by A, provided e is included in M. We shall
also make the simplifying assumption that pe < 1 for each e ∈ E, as the proof can be clearly
adapted to handle the case when certain edges have pe = 1 by restricting which strings of
each Cv are considered.

Observe that since A is optimal, it is clear that we may assume the following properties
hold w.l.o.g. for each e ∈ E:
1. e is probed only if e can be added to the currently constructed one-sided matching.
2. If e is probed and st(e) = 1, then e is included in M.
Thus, in order to prove the lemma, we must find an alternative algorithm B which is non-
adaptive, yet continues to be optimal. To this end, we shall first express E[w(M(v))] in a
convenient form for each v ∈ V , where w(M(v)) is the weight of the edge matched to v

(which is 0 if no match occurs).
Given v ∈ V and 1 ≤ i ≤ |U |, we define Xv

i to be the ith edge adjacent to v that is probed
by A. This is set equal to λ by convention, provided no such edge exists. We may then
define Xv := (Xv

1 , . . . , X
v
|U |), and Xv

≤k := (Xv
1 , . . . , X

v
k ) for each 1 ≤ k ≤ |U |. Moreover,

given e = (e1, . . . , ek) ∈ E(∗) with k ≥ 1, define S(e) to be the event in which ek is the only
active edge amongst e1, . . . , ek. Observe then that
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E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[S(e) ∩ {Xv

≤k = e}],

as (1) and (2) ensure v is matched to the first probed edge which is revealed to be active.
Moreover, if e = (e1, . . . , ek) ∈ Cv for k ≥ 2, then

P[S(e) ∩ {Xv
≤k = e}] = P[{st(ek) = 1} ∩ {Xv

≤k = e}], (8)

as (1) and (2) ensure Xv
≤k = e only if e1, . . . , ek−1 are inactive. Thus,

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[S(e) ∩ {Xv

≤k = e}]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[{st(ek) = 1} ∩ {Xv

≤k = e}]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
pek

P[Xv
≤k = e],

where the final equality holds since A must decide on whether to probe ek prior to revealing
st(ek). As a result, after summing over v ∈ V ,

E[w(M)] =
∑
v∈V

∑
e=(e1,...,ek)∈Cv :

k≥1

wek
pek

P[Xv
≤k = e]. (9)

Our goal is to find a non-adaptive relaxed probing algorithm which matches the value of
(9). Thus, for each v ∈ V and e = (e1, . . . , ek) ∈ Cv with k ≥ 1, define xv(e) := P[Xv

≤k = e],
where xv(λ) := 1. Observe now that for each e′ = (e′

1, . . . , e
′
k) ∈ Cv,∑

e∈∂(v):
(e′,e)∈Cv

P[Xv
≤k+1 = (e′, e) |Xv

≤k = e′] ≤ 1− pe′
k
. (10)

To see (10), observe that the the left-hand side corresponds to the probability A probes some
edge e ∈ ∂(v), given it already probed e′ in order. On the other hand, if a subsequent edge is
probed, then (1) and (2) imply that e′

k must have been inactive, which occurs independently
of the event Xv

≤k = e′. This explains the right-hand side of (10). Using (10), the values
(xv(e))e∈Cv

satisfy∑
e∈∂(v):

(e′,e)∈Cv

xv(e′, e) ≤ (1− pe′
k
) · xv(e′), (11)

for each e′ = (e′
1, . . . , e

′
k) ∈ Cv with k ≥ 1. Moreover, clearly

∑
e∈∂(v) xv(e) ≤ 1.

Given e = (e1, . . . , ek) ∈ Cv for k ≥ 1, recall that e<k := (e1, . . . , ek−1) where e<1 := λ if
k = 1. Moreover, q(e<k) :=

∏k−1
i=1 (1− pei

), where q(λ) := 1. Using this notation, define for
each e ∈ Cv

yv(e) :=
{
xv(e)/q(e<|e|) if |e| ≥ 1,
1 otherwise.

(12)
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Observe that (11) ensures that for each e′ ∈ Cv,∑
e∈∂(v):

(e′,e)∈Cv

yv(e′, e) ≤ yv(e′), (13)

and yv(λ) := 1. As a result, Proposition 17 implies that for each v ∈ V , there exists a
distribution Dv such that if Y v ∼ Dv, then for each e ∈ Cv with |e| = k ≥ 1,

P[Y v
≤k = e] = yv(e). (14)

Moreover, Y v is drawn independently from the edge states, (st(e))e∈E . Consider now the
following algorithm B, which satisfies the desired properties Q1 and Q2 of Lemma 14:

Algorithm 2 Algorithm B.

Require: a stochastic graph G = (U, V,E).
Ensure: a one-sided matching N of G of active edges.

1: Set N ← ∅.
2: Draw (Y v)v∈V according to the product distribution

∏
v∈V Dv.

3: for v ∈ V do
4: for i = 1, . . . , |Y v| do
5: Set e← Y v

i . ▷ Y v
i is the ith edge of Y v

6: Probe the edge e, revealing st(e).
7: if st(e) = 1 and v is unmatched by N then
8: Add e to N .
9: end if

10: end for
11: end for
12: return N .

Using (14) and the non-adaptivity of B, it is clear that for each v ∈ V ,

E[w(N (v))] =
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[S(e)] · P[Y v

≤k = e]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
pek

q(e<k)yv(e)

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
pek

xv(e) = E[w(M(v))].

Thus, after summing over v ∈ V , it holds that E[w(N )] = E[w(M)] = OPTrel(G), and so in
addition to satisfying Q1 and Q2, B is optimal. Finally, it is easy to show that each u ∈ U is
matched by N at most once in expectation since M has this property. Thus, B is a relaxed
probing algorithm which is optimal and satisfies the required properties of Lemma 14. ◀

4 Proving Theorems 1 and 3 for a Known Stochastic Graph

Given k ≥ 1, consider the ground set [k] := {1, . . . , k}, and P := {z ∈ [0, 1]k :
∑k
i=1 zi ≤ 1}.

Fix z ∈ P, and let R(z) ⊆ [k] denote the random set where each i ∈ [k] is included in
R(z) independently with probability zi. Feldman et al. [25] considered a restricted class of
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contention resolution schemes called online contention resolution schemes (OCRS). The
elements of [k] are presented to the OCRS ψ in adversarial order, where in each step, an
arriving i ∈ [k] reveals if it is in R(z), at which point ψ must make an irrevocable decision as
to whether it wishes to return i as its output. We refer the reader to [9] for a brief overview
of CRS terminology.

Suppose the elements of [k] arrive according to some permutation σ : [k] → [k] (i.e.,
σ(1), . . . , σ(k)), and z ∈ [0, 1]k satisfies

∑k
i=1 zi ≤ 1. Upon the arrival of element σ(t) ∈ [k],

compute qt :=
(

2−
∑t−1
i=1 zσ(i)

)−1
. Observe that 1/2 ≤ qt ≤ 1, as 0 ≤

∑k
i=1 zi ≤ 1, and so

the following OCRS is well-defined:

Algorithm 3 OCRS – Ezra et al. [23].

Require: z = (z1, . . . , zk) ∈ P .
Ensure: at most one element of [k].

1: for t = 1, . . . , k do
2: if σ(t) ∈ R(z) then
3: Compute qt based on the arrivals σ(1), . . . , σ(t− 1).
4: return σ(t) independently with probability qt.
5: end if
6: end for
7: return ∅. ▷ pass on returning an element of [k]

▶ Theorem 18 (Ezra et al. [34]). Algorithm 3 is an OCRS which is 1/2-selectable.

Both Lee and Singla [34], as well as Adamczyk and Wlodarczyk [3], defined a special
type of CRS called a random order contention resolution scheme (RCRS). Such a
CRS is defined in the same way as an OCRS, except that the elements of [k] arrive u.a.r.
Suppose Yi ∼ [0, 1] u.a.r. and independently for i = 1, . . . , k.

Algorithm 4 RCRS – Lee and Singla [34].

Require: z = (z1, . . . , zk) ∈ P .
Ensure: at most one element of [k].

1: for i ∈ [k] in increasing order of Yi do
2: if i ∈ R(z) then
3: return i independently with probability exp(−Yi · zi)
4: end if
5: end for
6: return ∅. ▷ pass on returning an element of [k].

▶ Theorem 19 (Lee and Singla [34]). Algorithm 4 is a 1− 1/e-selectable RCRS.

Suppose now G = (U, V,E) is a known stochastic graph, whose online vertices v1, . . . , vn
are presented according to the below algorithm via an adversarially chosen permutation
π : [n] → [n] (i.e., vπ(1), . . . , vπ(n)). Let (xv(e))v∈V,e∈Cv be an optimum solution to LP-
config for G with edge variables (x̃e)e∈E . For each t ∈ [n] and u ∈ U , define qu,t :=(

2−
∑t−1
i=1 zu,vπ(i)

)−1
, where ze := pex̃e for e ∈ E, and qu,1 := 1/2. Clearly,

∑
v∈V zu,v ≤ 1,

by constraint (1) of LP-config, and so 1/2 ≤ qu,t ≤ 1:
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Algorithm 5 Known Stochastic Graph – AOM – Modified.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv

.
3: for t = 1, . . . , n do
4: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .
5: Set e← VertexProbe

(
vπ(t), ∂(vπ(t)), (xvπ(t)(e))e∈Cvπ(t)

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M independently with probability qu,t. ▷ OCRS is used here
8: end if
9: end for

10: return M.

▶ Proposition 20. Algorithm 5 is 1/2-competitive against adversarial arrivals.

Proof. Given u ∈ U , let M(u) denote the edge matched to u by M, where M(u) := ∅ if no
such edge exists. Observe now that if C(e) corresponds to the event in which VertexProbe
commits to e ∈ ∂(u), then P[C(e)] = pex̃e by Lemma 10. Moreover, the events (C(e))e∈∂(u)
are independent, and satisfy∑

e∈∂(u)

P[C(e)] =
∑
e∈∂(u)

pex̃e ≤ 1, (15)

by constraint (1) of LP-config. As such, denote z := (ze)e∈∂(u) where ze = pex̃e, and observe
that (15) ensures that z ∈ P , where P is the convex relaxation of the rank one matroid on
∂(u). Let us denote R(z) as those those e ∈ ∂(u) for which C(e) occurs.

If ψ is the OCRS defined in Algorithm 3, then we may pass z to ψ, and process the edges
of ∂(u) in the order induced by π. Denote the resulting output by ψz(R(z)). By coupling
the random draws of lines (4) and (7) of Algorithms 3 and 5, respectively, we get that

w(M(u)) =
∑
e∈∂(u)

we · 1[e∈R(z)] · 1[e∈ψz(R(z))]

Thus, after taking expectations,

E[w(M(u))] =
∑
e∈∂(u)

we · P[e ∈ ψz(R(z)) | e ∈ R(z)] · P[e ∈ R(z)].

Now, Theorem 18 ensures that for each e ∈ ∂(u), P[e ∈ ψz(R(z)) | e ∈ R(z)] ≥ 1/2. It
follows that E[w(M(u))] ≥ 1

2
∑
e∈∂(u) wepex̃e, for each u ∈ U . Thus,

E[w(M)] =
∑
u∈U

E[w(M(u))] ≥ 1
2

∑
e∈E

wepex̃e = LPOPT(G)
2 ,

where the equality follows since (xv(e))v∈V,e∈Cv
is an optimum solution to LP-config. On

the other hand, LPOPT(G) ≥ OPT(G) by Theorem 8, and so the proof is complete. ◀

For each v ∈ V , draw Ỹv ∈ [0, 1] independently and u.a.r. We assume that the vertices of
V are presented to the below online probing algorithm in non-decreasing order according to
the values (Ỹv)v∈V . Note that this is equivalent to presenting V to the algorithm in random
order.

APPROX/RANDOM 2022
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Algorithm 6 Known Stochastic Graph – ROM– Modified.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv

.
3: for s ∈ V in increasing order of Ỹs do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs

).
5: if e = (u, s) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Ỹs · pu,s · x̃u,s).
7: end if
8: end for
9: return M.

▶ Proposition 21 (Restatement of Corollary 5 and Remark 6). Algorithm 6 is non-adaptive
and 1− 1/e-competitive against random order arrivals.

Algorithm 6 is clearly non-adaptive, and the proof that it is 1 − 1/e-competitive follows
similarly to the proof of Proposition 20 (see [9] for the details).

5 Open problems

There are some basic questions that are unresolved. Perhaps the most basic question which
is also unresolved in the classical setting without probing is to bridge the gap between the
positive 1−1/e competitive ratio and in-approximations in the context of known i.d. random
order arrivals. In terms of the single item prophet secretary problem (without probing),
Correa et al. [20] obtain a 0.669 competitive ratio following Azar et al. [5] who were the first
to surpass the 1− 1/e “barrier”. Correa et al. [20] also establish a 0.732 in-approximation
for the i.d. setting, and Huang et al. [32] recently established a 0.703 in-approximation
for i.i.d. arrivals in the multi-item case. Can we surpass 1 − 1/e in the probing setting
for i.d. input arrivals or for the special case of i.i.d. input arrivals? Is there a provable
difference between stochastic bipartite matching (with probing constraints) and the classical
online settings? Can we obtain the same competitive results against an optimal offline
non-committal benchmark which respects the probing constraints but doesn’t operate in the
probe-commit model? The 0.51 in-approximation result of Fata et al. [24] suggests that 0.51
may be the optimal competitive ratio against this stronger benchmark.

One interesting extension of the probing model is to allow non-Bernoulli edge random
variables to describe edge uncertainty. Even for a single online vertex in the unconstrained
setting, this problem is interesting as it corresponds to computing an optimal policy for the
free-order prophets problem, which was recently studied by Segev and Singla in [37].
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A Extending to Known I.D. Arrivals

Suppose that (Htyp, (Di)ni=1) is a known i.d. input, where Htyp = (U,B, F ) has downward-
closed online probing constraints (Cb)b∈B. If G ∼ (Htyp, (Di)ni=1), where G = (U, V,E) has
vertices V = {v1, . . . , vn}, then define ri(b) := P[vi = b] for each i ∈ [n] and b ∈ B, where
we hereby assume that ri(b) > 0. We generalize LP-config to account for the distributions
(Di)ni=1. For each i ∈ [n], b ∈ B and e ∈ Cb, we introduce a decision variable xi(e || b) to
encode the probability that vi has type b and e is the sequence of edges of ∂(vi) probed by
the relaxed benchmark.
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maximize
∑

i∈[n],b∈B,e∈Cb

val(e) · xi(e || b) (LP-config-id)

subject to
∑

i∈[n],b∈B

∑
e∈Cb:

(u,b)∈e

pu,b · q(e<(u,b)) · xi(e || b) ≤ 1 ∀u ∈ U (16)

∑
e∈Cb

xi(e || b) = ri(b) ∀b ∈ B, i ∈ [n] (17)

xi(e || b) ≥ 0 ∀b ∈ B, e ∈ Cb, i ∈ [n] (18)

Let us denote LPOPT(Htyp, (Di)ni=1) as the value of an optimum solution to LP-config-id.

▶ Theorem 22. OPT(Htyp, (Di)ni=1) ≤ LPOPT(Htyp, (Di)ni=1).

One way to prove Theorem 22 is to use the properties of the relaxed benchmark on G

guaranteed by Lemma 14, and the above interpretation of the decision variables to argue
that E[OPTrel(G)] ≤ LPOPT(Htyp, (Di)ni=1), where OPTrel(G) is the value of the relaxed
benchmark on G. Specifically, we can interpret (16) as saying that the relaxed benchmark
matches each offline vertex at most once in expectation. Moreover, (17) holds by observing
that if vi is of type b, then the relaxed benchmark selects some e ∈ Cb to probe (note e

could be the empty-string). We provide a morally equivalent proof of Theorem 22 in [9].
Specifically, we consider an optimum solution of LP-config with respect to G, and apply a
conditioning argument in conjunction with Theorem 8.

Given a feasible solution to LP-config-id, say (xi(e || b))i∈[n],b∈B,e∈Cb
, for each u ∈ U, i ∈

[n] and b ∈ B define

x̃u,i(b) :=
∑

e∈Cb:
(u,b)∈e

q(e<(u,b)) · xi(e || b). (19)

We refer to x̃u,i(b) as an edge variable, thus extending the definition from the known
stochastic graph setting. Suppose now that we fix i ∈ [n] and b ∈ B, and consider the variables,

(xi(e || b))e∈Cb
. Observe that (17) ensures that

∑
e∈Cb

xi(e || b)
ri(b) = 1. Hence, regardless of which

type node vi is drawn as,
∑

e∈Cvi

xi(e || vi)

ri(vi) = 1. We can therefore generalize VertexProbe as
follows. Given vertex vi, draw e′ ∈ Cvi with probability xi(e′ || vi)/ri(vi). If e′ = λ, then
return the empty-set. Otherwise, set e′ = (e′

1, . . . , e
′
k) for k := |e′| ≥ 1, and probe the

edges of e′ in order. Return the first edge which is revealed to be active, if such an edge
exists. Otherwise, return the empty-set. We denote the output of VertexProbe on the input
(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi

) by VertexProbe(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi
). Define

C(u, vi) as the event in which VertexProbe outputs the edge (u, vi), and observe the following
extension of Lemma 10:

▶ Lemma 23. If VertexProbe is passed
(
vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi

)
, then for any

b ∈ B and u ∈ U , P[C(u, vi) | vi = b] = pu,b·x̃u,i(b)
ri(b) .

▶ Remark 24. As in Definition 12, if C(u, vi) occurs, then u commits to (u, vi) (or vi).

We now generalize Algorithm 1 where π is generated either u.a.r. or adversarially.
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Algorithm 7 Known I.D.

Require: a known i.d. input (Htyp, (Di)ni=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Di)ni=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say

(xi(e || b))i∈[n],b∈B,e∈Cb
.

3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t). ▷ to simplify notation

5: Set e← VertexProbe
(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1

π(t)(a)
)

e∈Ca

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M.
8: end if
9: end for

10: return M.

Similarly, to Algorithm 1, one can show that Algorithm 7 attains a competitive ratio of
1/2 for random order arrivals. Interestingly, if the distributions (Di)ni=1 are identical – that
is, we work with known i.i.d. arrivals – then it is relatively easy to show that this algorithm
becomes 1− 1/e-competitive.

▶ Proposition 25. If Algorithm 7 is presented a known i.i.d. input, say the type graph Htyp
together with the distribution D, then E[w(M)] ≥ (1− 1/e) OPT(Htyp,D).

▶ Remark 26. Proposition 25 is proven explicitly in an earlier 2020 arXiv version of this
paper for the case of patience values.
Returning to the case of non-identical distributions, observe that in the execution of Algorithm
7 the probability that vi commits to the edge (u, vi) for u ∈ U is precisely

zu,i :=
∑
b∈B

pu,b · x̃u,i(b) =
∑
b∈B

∑
e∈Cb:

(u,b)∈e

pu,b · q(e<(u,b)) · xi(e || b). (20)

Moreover, the events (C(u, vi))ni=1 are independent, so this suggests applying the same
contention resolutions schemes as in the known stochastic graph setting. We first focus on
the adversarial arrival model, where we assume the vertices v1, . . . , vn are presented in some
unknown order π : [n] → [n]. We make use of the OCRS from before (Algorithm 3). For
each t ∈ [n] and u ∈ U , define

qu,t := 1
2−

∑t−1
i=1 zu,π(i)

, (21)

where qu,1 := 1/2. Note that 1/2 ≤ qu,t ≤ 1 as
∑
j∈[n] zu,j ≤ 1 by constraint (16) of

LP-config-id. We define Algorithm 8 by modifying Algorithm 7 using the OCRS to ensure
that each i ∈ [n] is matched to u ∈ U with probability zu,i/2. However, to achieve a
competitive ratio of 1/2, we require the stronger claim that for each type node a ∈ B,
the probability (u, vi) is added to the matching and vi is of type a is lower bounded by
pu,ax̃u,i(a)/2. Crucially, if we condition on u ∈ U being unmatched when vi is processed, vi
having type a, and C(u, vi), then the probability the OCRS matches u to vi does not depend
on a. This implies the desired lower bound of pu,ax̃u,i(a)/2, and so Algorithm 8 attains a
competitive ratio of 1/2 by (19) and Theorem 22 (we provide the details in the proof below).
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Algorithm 8 Known I.D. – AOM – Modified.

Require: a known i.d. input (Htyp, (Di)ni=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say

(xi(e || b))i∈[n],b∈B,e∈Cb
.

3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t).
5: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .

6: Set e← VertexProbe
(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1

π(t)(a)
)

e∈Ca

)
.

7: if e = (u, vt) for some u ∈ U , and u is unmatched then
8: Add e to M independently with probability qu,t.
9: end if

10: end for
11: return M.

Proof of Theorem 1. For notational simplicity, let us assume that π(t) = t for each
t ∈ [n], so that the online vertices arrive in order v1, . . . , vn. Now, the edge variables
(x̃u,t(b))u∈U,t∈[n],b∈B satisfy LPOPT(Htyp, (Di)ni=1) =

∑
u∈U,t∈[n],b∈B pu,bwu,bx̃u,t(b). Thus,

to complete the proof it suffices to show that

P[(u, vt) ∈M and vt = b] ≥ x̃u,t(b)
2 (22)

for each u ∈ U, t ∈ [n] and b ∈ B, where we hereby assume w.l.o.g. that x̃u,t(b) > 0. In
order to prove this, we first observe that by the same coupling argument used in the proof of
Proposition 20,

P[(u, vt) ∈M] ≥ zu,t
2 = 1

2
∑
b∈B

pu,bx̃u,t(b) (23)

as a result of the 1/2-selectability of Algorithm 3. Let us now define Rt as the unmatched
vertices of U when vt arrives. Observe then that

P[(u, vt) ∈M| vt = b, C(u, vt) and u ∈ Rt] = qu,t. (24)

Now, P[vt = b, C(u, vt) and u ∈ Rt] = pu,b · x̃u,t(b) · P[u ∈ Rt], by Lemma 23 and the
independence of the events {vt = b} ∩ {C(u, vt)} and {u ∈ Rt}. Thus, by the law of
total probability,∑

b∈B

pu,bx̃u,tqu,t · P[u ∈ Rt] = P[(u, vt) ∈M] ≥ zu,t
2 = 1

2
∑
b∈B

pu,bx̃u,t(b)

where the second inequality follows from (23). Thus, qu,t · P[u ∈ Rt] ≥ 1/2, and so combined
with (24), (22) follows, thus completing the proof. ◀

Suppose now that each vertex vt has an arrival time, say Ỹt ∈ [0, 1], drawn u.a.r. and
independently for t ∈ [n]. The values (Ỹt)nt=1 indicate the increasing order in which the
vertices v1, . . . , vn arrive.
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Algorithm 9 Known I.D. – ROM – Modified.

Require: a known i.d. input (Htyp, (Dt)nt=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Dt)nt=1), say

(xt(e || b))t∈[n],b∈B,e∈Cb
.

3: for t ∈ [n] in increasing order of Ỹt do
4: Set e← VertexProbe

(
vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt

)
.

5: if e = (u, vt) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Ỹt · zu,t).
7: end if
8: end for
9: return M.

Proof of Theorem 3. The competitive ratio of 1−1/e follows by the same coupling argument
as in Proposition 21, together with the same observations used in the proof of Theorem 1,
and so we omit the argument. ◀

B LP Relations

Suppose that we are given an arbitrary stochastic graph G = (U, V,E). In this section, we
first prove the equivalence between the relaxed stochastic matching problem and LP-config.
We then state LP-std, the standard LP in the stochastic matching literature, as introduced
by Bansal et al. [6], as well as LP-QC, the LP introduced by Gamlath et al. [27]. We then
show that LP-QC and LP-config have the same optimum value when G is unconstrained.

▶ Theorem 27. OPT(G) = LPOPTconf(G)

Proof. Clearly, Theorem 8 accounts for one side of the inequality, so it suffices to show that
LPOPT(G) ≤ OPTrel(G). Suppose we are presented a feasible solution (xv(e))v∈V,e∈Cv to
LP-config. Consider then the following algorithm:
1. M← ∅.
2. For each v ∈ V , set e← VertexProbe(v, ∂(v), (xv(e))e∈Cv

). If e ̸= ∅, then add e to M.
3. Return M.
Using Lemma 10, it is clear that E[w(M)] =

∑
v∈V

∑
e∈Cv

val(e) · xv(e). Moreover, each
vertex u ∈ U is matched by M at most once in expectation, as a consequence of constraint
(1) of LP-config, and so the algorithm satisfies the required properties of a relaxed probing
algorithm. The proof is therefore complete. ◀

Consider LP-std, which is defined only when G has patience values (ℓv)v∈V . Here each
e ∈ E has a variable xe corresponding to the probability that the offline adaptive benchmark
probes e.

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑
e∂(u)

pe · xe ≤ 1 ∀u ∈ U (25)

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (26)
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∑
e∈∂(v)

xe ≤ ℓv ∀v ∈ V (27)

0 ≤ xe ≤ 1 ∀e ∈ E. (28)

Gamlath et al. modified LP-std in the unconstrained setting by adding in exponentially
many extra constraints. Specifically, for each v ∈ V and S ⊆ ∂(v), they ensure that∑

e∈S
pe · xe ≤ 1−

∏
e∈S

(1− pe), (29)

In the same variable interpretation as LP-std, the left-hand side of (29) corresponds to the
probability the adaptive benchmark matches an edge of S ⊆ ∂(v), and the right-hand side
corresponds to the probability an edge of S is active2.

maximize
∑
e∈E

we · pe · xe (LP-QC)

subject to
∑
e∈S

pe · xe ≤ 1−
∏
e∈S

(1− pe) ∀v ∈ V, S ⊆ ∂(v) (30)∑
e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (31)

xe ≥ 0 ∀e ∈ E. (32)

Let us denote LPOPTQC(G) as the optimum value of LP-QC.

▶ Proposition 28. If G is unconstrained, then LPOPTQC(G) = LPOPT(G).

In order to prove Proposition 28, we make use of a result of Gamlath et al. We mention that
an almost identical result is also proven by Costello et al. [21] using different techniques.

▶ Theorem 29 ([27]). Suppose that G = (U, V,E) is an unconstrained stochastic graph, and
(xe)e∈E is a solution to LP-QC. For each v ∈ V , there exists an online probing algorithm Bv
whose input is (v, ∂(v), (xe)e∈∂(v)), and which satisfies P[Bv matches v to e] = pexe for each
e ∈ ∂(v).

Proof of Proposition 28. Observe that by Theorem 27, in order to prove the claim it suffices
to show that LPOPTQC(G) = OPTrel(G). Clearly, OPTrel(G) ≤ LPOPTQC(G), as can be
seen by defining xe as the probability that the relaxed benchmark probes the edge e ∈ E.
Thus, we focus on showing that LPOPTQC(G) ≤ OPTrel(G). Suppose that (xe)e∈E is an
optimum solution to LPOPTQC(G). We design the following algorithm, which we denote
by B:
1. M← ∅.
2. For each v ∈ V , execute Bv on (v, ∂(v), (xe)e∈∂(v)), where Bv is the online probing

algorithm of Theorem 29. If Bv matches v, then let e′ be this edge, and add e′ to M
3. Return M.
Using Theorem 29, it is clear that E[w(M)] =

∑
e∈E wepexe. Moreover, each vertex u ∈ U is

matched by M at most once in expectation, as a consequence of constraint (32). As a result,
B is a relaxed probing algorithm. Thus, LPOPTQC(G) =

∑
e∈E wepexe ≤ OPTrel(G), and

so the proof is complete. ◀

2 The LP considered by Gamlath et al. in [27] also places the analogous constraints of (29) on the vertices
of U . That being said, these additional constraints are not used anywhere in the work of Gamlath et
al., so we omit them.
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Abstract
The p-biased Homogeneous r-Lin problem (Hom-r-Linp) is the following: given a homogeneous system
of r-variable equations over F2, the goal is to find an assignment of relative weight p that satisfies
the maximum number of equations. In a celebrated work, Håstad (JACM 2001) showed that the
unconstrained variant of this i.e., Max-3-Lin, is hard to approximate beyond a factor of 1/2. This
is also tight due to the naive random guessing algorithm which sets every variable uniformly from
{0, 1}. Subsequently, Holmerin and Khot (STOC 2004) showed that the same holds for the balanced
Hom-r-Lin problem as well. In this work, we explore the approximability of the Hom-r-Linp problem
beyond the balanced setting (i.e., p ̸= 1/2), and investigate whether the (p-biased) random guessing
algorithm is optimal for every p. Our results include the following:

The Hom-r-Linp problem has no efficient 1
2 + 1

2 (1 − 2p)r−2 + ε-approximation algorithm for every
p if r is even, and for p ∈ (0, 1/2] if r is odd, unless NP ⊂ ∪ε>0DTIME(2nε

).
For any r and any p, there exists an efficient 1

2 (1 − e−2)-approximation algorithm for Hom-r-Linp.
We show that this is also tight for odd values of r (up to or(1)-additive factors) assuming the
Unique Games Conjecture.

Our results imply that when r is even, then for large values of r, random guessing is near optimal for
every p. On the other hand, when r is odd, our results illustrate an interesting contrast between the
regimes p ∈ (0, 1/2) (where random guessing is near optimal) and p → 1 (where random guessing is
far from optimal). A key technical contribution of our work is a generalization of Håstad’s 3-query
dictatorship test to the p-biased setting.
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1 Introduction

The problem of finding solutions to systems of linear equations is one of fundamental import-
ance. While in theory, the exact running time complexity of even efficiently solvable instances
has profound implications in the theory of algorithms [26], the question of approximability
of infeasible systems is also fundamental and has been studied widely [19, 12, 24, 14, 8]. A
particularly useful instantiation of this is the Max-r-Lin problem1 where given a (possibly
infeasible) system of r-variables equations over F2, the objective is to find an assignment

1 In the literature, the Max-r-Lin problem is typically referred to as Max-r-Linq, where the indexing by q
indicates that the equations are over Fq. We drop the indexing by q since the current work deals only
with the setting q = 2.
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to the variables that satisfies the maximum fraction of equations. The Max-r-Lin problem
manifests as various computational problems in error correcting codes, combinatorial op-
timization, probabilistically checkable proofs among many others. In particular, its study
played a seminal role in the development Proabablistically Checkable Proofs based reduc-
tions [7, 19, 24], and techniques introduced for studying its hardness have now become staple
tools in hardness of approximation.

A standout result among these is the celebrated work of Håstad [19] who showed that for
r ≥ 3, the Max-r-Lin problem is NP-hard to approximate beyond a factor of 1/2. This is clearly
tight since the naive algorithm which outputs a uniformly random assignment also satisfies
at least 1/2-fraction of constraints2. This property of the “random guessing algorithm being
optimal” also happens to hold for a much broader class of combinatorial optimization problems,
and is formally studied under the notion of “approximation resistance”. The ubiquity of this
notion has lead to several works which systematically study such problems [5, 4, 10], including
landmark results such as which give complete conditional and unconditional characterizations
of approximation resistant predicates [3, 25].

A key problem studied in this context is the Balanced Homogeneous Max-3-Lin problem,
where given a homogeneous system of linear equations, the goal is to find a balanced assignment
that satisfies the maximum fraction of constraints. Clearly, naive random guessing is still a
candidate algorithm for this setting as well, since it produces balanced3 assignments that
satisfy at least half of the constraints. Naturally, this leads one to ask if random guessing is
still optimal in this setting as well? This was answered in the affirmative by Holmerin and
Khot [22] who ruled out efficiently approximability beyond 1/2 assuming SAT does not admit
sub-exponential time algorithms. Subsequently, Håstad and Manokaran [21] strengthened
the above hardness result to rule out quasi-polynomial time algorithms which give better
than 1/2 approximation assuming NP ̸⊂ DTIME(exp(log n)O(1)).

In this work, we study a natural generalization of the above and investigate the approx-
imability of the homogeneous Max-3-Lin problem beyond the balanced setting. Formally,
we study the p-biased version of the above problem, which we refer to as the Hom-r-Linp

problem. We define it formally below:

▶ Definition 1 (Hom-r-Linp). Given p ∈ (0, 1), an instance ψ([n], E) of the p-biased Hom-r-
Lin problem is given by a set of homogeneous equations over F2 defined by a set of r-arity
hyperedges E := {e1, . . . , em} over variables {x1, . . . , xn}, where the ith hyperedge ei implies
the constraint ⊕j∈eixj = 0. Here, the objective is to find a labeling of relative weight p which
satisfies the maximum fraction of hyperedges (constraints).

Clearly, for p = 1/2, the above recovers the balanced setting, for which the aforementioned
works show that the uniformly random guessing algorithm is optimal. On the other hand,
for any p ∈ (0, 1), one can naturally consider the following extension of random guessing: set
each variable to 1 independently with probability p – we refer to this as p-biased random
guessing. Clearly, with high probability, p-biased random guessing will return an assignment

2 In fact, a simpler deterministic 1/2-approximation algorithm is known for Max-r-Lin: given any
assignment to the set of the variables, that or its negation will always satisfy at least 1/2 of the
constraints – hence, outputting the best of any assignment and its negation is gives a trivial 1/2-
approximation. However, since negating the assignment can also change its relative weight, this
approach doesn’t yield an algorithm for the weight constrained setting considered in this paper.

3 Strictly speaking, it produces almost balanced assignments, which can be converted to exactly balanced
assignments by changing on(1)-variables. This only affects the approximation factor in lower order o(1)
terms.
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with relative weight ≈ p, i.e., it is again a feasible candidate algorithm. And keeping with
the above trend, one may ask if the p-biased random guessing algorithm is still optimal for
the Hom-r-Linp problem, for every p. In other words, we ask the following:

Is the Hom-r-Linp problem approximation resistant for every p ∈ (0, 1)?

The above is the main motivating question which we seek to address in the current work. At
a finer level, our goal is to understand the approximability of the Hom-r-Linp problem as
a function of the parameter p and the arity r. This formulation of the problem brings in
several additional dimensions to the existing literature on approximation resistance which
typically deals with uniformly random guessing, as opposed to the more general p-biased
guessing studied in the current work.

1.1 Our Results
In this work, we study the bias dependent approximability of Hom-r-Linp, and make sub-
stantial progress towards understanding the above question. In the interest of keeping the
presentation concise, we will first state our results for the setting when r is odd, since this
setting exhibits a more interesting dependence on the parameter p. We will then point out
how the results change when r is even.

The p ≤ 1/2 setting. Our first result is the following theorem which shows that Hom-r-Linp

predicate is close to being approximation resistant for large values of r.

▶ Theorem 2. Fix p, η ∈ (0, 1/2), and r ≥ 3. Then assuming NP ̸⊆ ∪ε>0DTIME(2nε) the
following holds. Given an instance ψ of Hom-r-Lin, there is no polynomial time algorithm
that can distinguish between the following cases:

YES Case. There exists an assignment of relative hamming weight p, which satisfies at
least 1 − η fraction of constraints.
NO Case. No assignment of relative hamming weight p satisfies more than 1

2 + 1
2 (1 −

2p)r−2 + η fraction of constraints.

The above theorem implies that there are no efficient algorithms which give a better than
1
2 (1 + (1 − 2p)r−2)-approximation. On the other hand, it is easy to verify that the p-biased
random guessing is a 1

2 (1 + (1 − 2p)r)-approximation algorithm for Hom-r-Linp. Hence, the
above theorem implies that for large r, biased random guessing is almost optimal.

The p > 1/2-setting. Our second result shows that the almost approximation resistant
behavior of the Hom-r-Linp predicate breaks down in the p > 1/2 setting. This is implied
by the following theorem which gives an efficient randomized p-independent approximation
algorithm for Hom-r-Linp.

▶ Theorem 3. For every r ≥ 3 and every p ∈ (0, 1), there exists an efficient randomized
βr/2-approximation algorithm for Hom-r-Linp. Here βr := 1 − (1 − 1/r)2r is a decreasing
function of r satisfying limr→∞ βr = (1 − e−2).

The algorithm for the above theorem is based on a linear programming + rounding
approach inspired by algorithms for hitting set and is markedly different from random
guessing. The above theorem implies that even for r = 3, the random guessing algorithm is
strictly sub-optimal for all p > 1/2(1 + e−2/3). We also show that the above approximation
guarantee is tight (up to or(1)-factors) assuming the Unique Games Conjecture [23].
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▶ Theorem 4. Assuming the Unique Games Conjecture, the following holds for every odd
r ≥ 3 and η ∈ (0, 1). Let p := 1 − 1/r.Given a Hom-r-Lin instance ψ it is NP-hard to
distinguish between the following cases:

YES Case. There exists an assignment of relative weight p which satisfies at least
(1 − η)-fraction of constraints.
NO Case. No assignment of relative weight p satisfies more than

(
βr

2 +O(1/r)
)

-fraction
of constraints.

The even r-setting . It is easy to see that when r is even, the p ≥ 1/2 and p ≤ 1/2
regimes are symmetric. To see this, given a system of equations ψ([n], E), and an assignment
(x1, . . . , xn) of relative weight p, consider the negated assignment x′

i = 1 ⊕ xi. Since r is even
and the constraints are homogeneous, the negated assignment will satisfy a constraint if and
only if the original assignment satisfied the constraint. Furthermore, the negated assignment
will have a relative weight of 1 − p. This observation implies that the Hom-r-Linp problem
behaves identically under the bias constraints p and 1 − p for every p. This observation along
with Theorem 2 results in the following corollary.

▶ Corollary 5. For every p, ε ∈ (0, 1) and even r ≥ 4, there is no polynomial time 1
2 (1 + (1 −

2p)r−2) + ε-approximation algorithm for Hom-r-Linp unless NP ⊂ DTIME(2nε) for any ε > 0.

Threshold Phenomena. The above results show that when p < 1/2, then the random
guessing algorithm is almost optimal, whereas this behavior breaks down for the p > 1/2
regime when r is odd. In particular, in the setting of large p’s the Hom-r-Lin predicate
exhibits a hitting set like behavior – our algorithm and hardness results (Theorem 4 and 3)
are based on this connection. In fact, we believe that when p ≤ 1/2, the p-biased random
guessing algorithm is indeed optimal, and the current gap in the hardness result is due
to technical bottlenecks4 that arise more generally in the context of hardness reductions
involving problems with global constraints.

Furthermore, our results hint at the possibility of the existence of a threshold pr beyond
which the approximation resistance of Hom-r-Lin breaks. In particular, the hard distribution
for Theorem 4 seems to indicate that this threshold is 1 − 1/r. Lastly, we point out that
the even and odd r settings contrast nicely against each other as while Hom-r-Linp can
be approximation resistant only for a certain range of p when r is odd, it is possibly
approximation resistant for every p when r is even.

1.2 Related Works
The Max-r-Lin Problem. The Max-r-Lin problem has been studied extensively in the
literature. In particular, when r = 2, it expresses the affine UniqueGames problem which is
central to Khot’s Unique Games Conjecture (UGC) [23], and has been extensively studied
by several works [12, 11, 24]. In particular, the algorithmic results from [11] show that the

4 In particular, the gap of (1 − 2p)2 in the second term is primarily due to the following reason. As is
standard in Label Cover based reductions, out of the r-queries made by out dictatorship test, 2 of its
queries are made to the large side table for the consistency check. However, the outer verifier (i.e.,
Mixing Label Cover) can only guarantee mixing w.r.t. vertices on the smaller side (due to which we are
able to recover the (1 − 2p)r−2)-factor, and doesn’t guarantee mixing on the larger side (due to which
we lose out by a factor (1 − 2p)2 in the p-dependent term). The question of constructing hard outer
verifiers with mixing guarantees with respect all vertices is a fundamental technical challenge in itself in
this area.
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r = 2 setting is not approximation resistant. For r ≥ 3, Håstad [19] showed that Max-r-Lin is
hard to approximate beyond a factor of 1/2 + ε. In fact, Håstad’s result actually shows that
the Max-r-Lin problem is approximation resistant over any finite abelian group, which was
later strengthened to the setting of infeasible instances over non-abelian groups [14]. More
recently, Bhangale and Khot [8] give tight hardness results for satisfiable Hom-r-Lin instances
over non-abelian finite groups. Specifically, given a non-abelian group G, they showed that it
is hard to approximate the satisfiable Hom-r-Lin problem beyond a factor of 1/|[G,G]| + ε,
where [G,G] is the commutator sub-group of G – this is matched by a folklore algorithm for
the same, we refer interested readers to [8] for more details on this.

Approximation Resistance. Starting with the work of Håstad [19], the question of under-
standing the conditions under which random guessing is optimal has generated great interest,
and has been studied by several works. In particular, the work of Håstad [20] showed that
2-arity CSPs can never be approximation resistant. For when the arity r is 3, it is known that
a CSP on a predicate can be approximation resistant if and only if the predicate is implied
by 3-XOR [19, 32]. The work of Hast [18], gives an almost complete characterization for
4-arity CSPs. On the other hand, stronger results are known assuming stronger hypotheses.
For e.g., assuming UGC, Håstad and Austrin [3] showed that a uniformly random predicate
is approximation resistant with high probability. Austrin and Khot [4] gave a complete
characterization of approximation resistance for k-partite CSPs, which was later strengthened
to the setting of all CSPs by Khot, Tulsiani and Worah [25].

Globally Constrained CSPs. The Hom-r-Linp problem also falls within the framework of
Max-CSPs with global cardinality constraints i.e., CSPs where the objective is to find a
labeling that satisfies the maximum number of edge constraints while “strictly” respecting
global constraints. Such CSPs express extensively studied problems such as Max-Bisection [28,
2], Densest-k-Subgraph [15, 9], Small Set Expansion [29, 30]. There have been several works
which also systematically study such CSPs under a more general framework. For e.g., the
works of Guruswami and Sinop [17] and Bansal et al. [1] propose general purpose algorithmic
frameworks for solving globally constrained CSPs. A closely related work is that of Ghoshal
and Lee [16], who study the bias parameter dependent approximation curve for globally
constrained Boolean CSPs, and give upper and lower bounds which are matching up to
constant factors for constant arity, assuming the Small Set Expansion Hypothesis. In
particular, their results imply that there exists a Ω(2−r)-approximation algorithm, which
again is p-independent but deteriorates with increasing r.

2 Warm-up : The p ≤ 1/2 vs. p > 1/2 settings

In this section, we first provide some intuition on why the behavior of the approximation
curve of the Hom-r-Lin predicate in the p ≥ 1/2 regime is different from that of p < 1/2 when
r is odd. Consider the random guessing algorithm for the Hom-r-Lin problem which sets every
variable to 1 with probability p. Then, elementary computation shows that this assignment
satisfies 1

2 + 1
2 (1 − 2p)r-fraction of constraints in expectation and w.h.p. the relative weight

of the assignment returned by the algorithm is ≈ p. Clearly, the approximation guarantee of
this algorithm improves as p decreases and is trivially optimal in the limit p = 0, and hence
it might not be a stretch to posit that the random guessing algorithm is indeed optimal in
this regime.
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47:6 The Biased Homogeneous r-Lin Problem

On the other hand, as p increases, the approximation guarantee of the random guessing
algorithm worsens, eventually reaching 0 as p → 1. However, while random guessing might
be almost optimal when p ∈ (0, 1/2), there is an inherent reason as to why it should be
sub-optimal in the almost all-ones regime. The key insight here is that the random guessing
can be wasteful in term of choosing the zeros when the budget of zeros is small (i.e, when
p → 1). For instance, consider a Hom-r-Linp instance ψ([n], E) whose optimal assignment
satisfies nearly all constraints. Then one can show that there exists a small set of vertices in
V which intersects (hits) nearly all hyperedges in ψ – this is witnessed by the zero set of the
optimal assignment. In contrast, the solutions output by the random guessing algorithm will
have the set of zeros spread uniformly throughout the constraint hypergraph, and hence such
assignments are likely to miss out on the potential exploits guaranteed by the combinatorial
structure of the instance, thus ending up satisfying far fewer than the optimal fraction of
constraints. On the other hand, the existence of such a hitting set opens up other possible
approach which can use this. For instance, the surrogate problem of finding a small size set
which hits the maximum number of hyperedges itself is known to admit efficient constant
factor approximation algorithms using simple greedy/linear programming based approaches.
The above observations indicate that one might be able to strictly better than random
guessing by exploiting the combinatorial structure of the instance.

3 Hardness for p ≤ 1/2

Our result for p ≤ 1/2 (Theorem 2) is based on a careful generalization of the standard
3-query dictatorship test of Håstad to the setting of biased long codes. In order to highlight
the challenges towards establishing the hardness result, it will be useful to go over the
reduction for the hardness of balanced setting (i.e., p = 1/2) from [22]. The reduction in [22]
for Hom-r-Lin consisted of two key components:

(i) The 3-query dictatorship test of Håstad for 3-Lin.
(ii) A variant of Label Cover5 with one-sided mixing properties.

While the 3-query test from (i) was established much before the work of Holmerin and
Khot [22], the key contribution of [22] was a variant of Label Cover with the property
that the larger side of the Label Cover instance L has good expansion – this is needed
to ensure that globally balanced assignments also translate to locally balanced assignments
in the reduction. As we shall see, while we can use the outer verifier from (ii) as is in our
reduction, most of the work will go into modifying and analyzing the inner verifier (i.e, the
dictatorship test). Now we shall first briefly describe how (i) and (ii) can be put together to
prove the hardness for the balanced setting, and then we will discuss the challenges and the
techniques used for going beyond the balanced case.

The 3-query test. In order to understand the challenges towards designing a r-query test
that works in our setting, it is instructive to recall the well known 3-query test of [19]. The
design of the 3-query test is based on the principle that linear functions with small number of
influential coordinates must be close to being dictators, which readily yields test in Figure 1.

5 A Label Cover instance L(U, V,E, [s], [l], {πe}e∈E) is a 2-CSP on the bipartite constraint graph with
left and right vertex sets U and V respectively, with the edge constraint set E. Every edge (u, v) ∈ E is
identified with a projection constraint πu,v : [l] → [s]. The objective is to find a global labeling of U
and V using [s] and [l] respectively, that satisfies the maximum fraction of edge constraints in E.
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Input. Long code table f : {0, 1}k → {±1} satisfying Ex∼{0,1}k [f(x)] = 0.
Test.
1. Sample x, y ∼ {0, 1}k

1/2 and ρ ∼ {0, 1}k
η. Set z := x⊕ y ⊕ ρ.

2. Accept if and only if

f(x) · f(y) · f(z) = 1.

Figure 1 3-query test.

The analysis of this test proceeds through the following well-traversed path. Firstly, it
is easy to see that the dictator assignment f = χi is balanced and passes the test with
probability (1 − η). On the other hand, the soundness direction proceeds as follows: given a
balanced assignment f : {0, 1}k → {±1}, we can arithmetize the acceptance probability of
the test in term of f and express it as:

Pr [ Test Accepts ] = 1
2 + 1

2Ex,y,z [f(x)f(y)f(z)] .

Furthermore, by standard Fourier analytic arguments, we can manipulate the RHS of the
above and further write the RHS in terms of the Fourier coefficients of f as

Pr [ Test Accepts ] = 1
2 + 1

2
∑

β ̸=0k

f̂(β)3(1 − η)|β|, (1)

where note that the summation term does not feature the term β = 0k since the Fourier
coefficient corresponding to the all zeros term vanishes due to the balancedness of the long
code table. Hence, if the test passes with probability strictly bounded away from 1/2, then
the summation term is strictly positive, which allows one to show that there exists β ∈ {0, 1}k

such that f̂(β) ≥ Ω(1) and |β| ≤ O(1/η) i.e., f has non-trivial correlation with a low degree
term. In particular, note that since the summation omits the β = 0k term, the low degree
term is guaranteed to be non-trivial – this property is used crucially in the composition step
which we describe next.

Composing with Mixing Label Cover. Given the above dictatorship test, the next step is to
compose it with the outer verifier (i.e., Label Cover). This is a standard step in dictatorship
test based reductions, and roughly goes as follows. Informally, given a Label Cover instance
L(U, V,E,Σ, {πe}e∈E), the reduction introduces a long code table fw : {0, 1}|Σw| → {±1}
for every vertex w ∈ U ∪ V – the entries of the long code tables correspond to the variable
set of the reduction. The constraint set of the reduction corresponds to the distribution over
checks generated by the following process:

Sample a random edge (u, v) ∼ L.
Run the 3-query test by querying the positions from the long code tables fu(x) fv(v) and
fv(πe(x) ⊕ y ⊕ z).

The above seeks to simultaneously test the following (i) the tables fu and fv are correlated
with non-trivial low degree terms, and (ii) the sets corresponding to the low degree terms
have non-trivial intersection under the projection map πe. These checks are indeed useful
due to the following principle: if (i) and (ii) hold simultaneously for a non-negligible faction
of fraction of edges incident on a vertex v ∈ V , then the assignment to the long code tables
can be used to decode a labeling that satisfies a non-trivial fraction of constraints incident
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on v in L. However, lifting the soundness guarantee of the test to ensure (i) and (ii) from
above requires the empty set Fourier coefficient term to vanish in expectation for a random
choice of u ∼ NL(v) (recall that this is critical in ensuring that the low degree term in (i) is
non-trivial). This is precisely where the mixing property is useful – it ensures that if the
global set of U -tables are balanced, then for most choices of v ∈ V , the long code tables in
the neighborhood NL(v) of v are also balanced (in expectation). In terms of the soundness
analysis of the full reduction, this translates to the guarantee that for most choices of v, empty
set Fourier coefficient term has negligible contribution. However, the mixing property of the
Label Cover instance comes at the cost of super-polynomial sized constructions, due to which
the inapproximability only holds under stronger assumptions such as NP ̸⊂ ∪ε>0DTIME(2nε).

3.1 The Biased r-query test

Towards generalizing the above to the setting of any p ≤ 1/2, a clear first obstacle is to design
a dictatorship test that has the right completeness and soundness guarantees as functions
of p and r. It turns out that this is the key issue that we need to address, as once we are
equipped with the right test, the composition step and its analysis follows almost as is using
the techniques from the balanced case. Formally, our goal is to design a r-query test with
the following property:

Completeness: If f : {0, 1}k → {±1} is a dictator, then it passes the test with probability
1 − η, and induces an assignment of relative weight p i.e., Ex∼{0,1}k

p
[f(x)] = 1 − 2p.

Soundness: If f is an assignment of relative weight p and passes the probability at least
1
2 (1 + (1 − 2p)r−2) + Ω(1), then f is correlated with a non-trivial Fourier character of
low-degree .

It is easy to see that the 3-query test from Figure 1 does not imply the above conditions,
and in particular, fails the completeness guarantee. This is due to the observation that
since the marginal distribution of the points queried by the test is uniform over {0, 1}k,
any dictator assignment will be balanced under the distribution. This leads us to consider
analogous p-“biased” dictatorship tests over the p-biased hypercube6.

Towards designing such a “biased” dictatorship test, a natural first approach (while
ignoring the noise component ρ) would be to consider the distribution over triples over
choices of (x, y, z) such that x⊕ y ⊕ z = 0k such that x, y and z are marginally distributed
as {0, 1}k

p – such a test was explored (for slices of the hypercube) in the context of direct sum
testing in [13] for the regime where the soundness of the test approaches 1. However, to the
best of our knowledge, the techniques used in [13] seem to rely on the soundness parameter
being close to 1, whereas our application would require us to establish guarantees in settings
where the soundness parameter is bounded away from 1. Furthermore, even in the regime
where the soundness approaches 1, it is not easy to see how the techniques of [13] generalize
to the setting of higher values of r. Finally, the techniques used in the analysis of the above
test (Figure 1) do not generalize well to this setting, since establishing (1) heavily relies on
the fact that the Fourier characters for the unbiased distribution are linear operators over
F

k
2 i.e., χα(x⊕ y) = χα(x) ⊕ χα(y), a property that does not hold for the general p-biased

Fourier characters (i.e., when p ̸= 1/2).

6 The p-biased Boolean k-hypercube is the k-hypercube {0, 1}k equipped with the following measure:
µ(x) := p|x|(1 − p)k−|x|.
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The above observations instead motivate us to consider a test with an asymmetric test
distribution, where the first (r − 2)-query positions are independent p-biased strings and the
remaining two strings are uniformly distributed but correlated. Formally, we consider the
distribution in the following figure.

Input. Long code table f : {0, 1}k → {±1} satisfying Ex∼{0,1}k
p

[f(x)] = 1 − 2p.
Test.
1. Sample x1, . . . , xr−2 ∼ {0, 1}k

p.
2. Sample y ∼ {0, 1}k

1/2 and ρ ∼ {0, 1}k
η. Set z :=

(
⊕i∈[r−2]xi

)
⊕ y ⊕ ρ.

3. Accept if and only if ∏
i∈[r−2]

f(xi)

 · f(y) · f(z) = 1.

Figure 2 The p-biased r-query test.

The above distribution allows us to have the best of both worlds: the (r − 2) independent
p-biased strings ensure that the completeness and soundness parameters have the desired
dependence on the parameters p and r, where as the uniformity of y and z ensures that the
analysis can exploit the linearity of Fourier characters in the necessary steps and recover
the quadratic term required to show correlation with a low degree term. We conclude our
discussion by giving a brief sketch of the completeness and soundness analysis of the above test.
As in the 3-query test, it is straightforward to establish that a dictator function will again pass
the test with probability 1 −η and induce an assignment of weight 1 − 2p. On the other hand,
analyzing the soundness direction is requires additional care. In particular, note that since
the marginal distributions of the first (r−2)-distribution are p-biased, where as the remaining
two strings are uniformly distributed, we have to expand the arithmetization in a hybrid
bases consisting of p-biased Fourier expansion for the first (r − 2)-strings and the unbiased
Fourier expansion for the others. This approach introduces additional complications since
the p-biased Fourier characters are non-linear operators over F2 and hence the arguments
from the p = 1/2 setting don’t apply as is. Nevertheless, using the properties of the Fourier
characters we can still establish the following analogue of (1).

Pr [ Test Accepts ] ≤ 1
2 + 1

2(1 − 2p)r−2 + 2r ·
∑

β ̸=0k

∑
α⊆β

f̂p(α)f̂(β)2(1 − η)|β|

where {f̂p(α)}α and {f̂(β)}β are the Fourier coefficients of f with respect to the p-biased
and unbiased Fourier expansion respectively. Establishing the above involves the most of the
work in the soundness analysis and requires a careful application of properties of the p-biased
Fourier characters. Note that the above immediately implies the soundness guarantee of
the test: if the test passes with probability bounded away from 1

2 (1 + (1 − 2p)r−2), the
summation term of the above equation is strictly positive, which with some additional work
can be used to show that f has a low degree term of significant magnitude, thus implying
non-trivial correlation with a non-trivial low degree Fourier character.
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4 1
2(1 − e−2)-approximation for all p

As observed earlier in Section 2, the key to doing better than the random guessing algorithm
lies in carefully identifying the zero set of the assignment – in particular, we use the fact
that the zero set of the optimal assignment must hit a large fraction of hyperedges. Formally
we observe the following. Let ψ([n], E) be a Hom-r-Linp instance whose optimal value is
α. Then we claim that there exists a set of size (1 − p)n which hits at least α-fraction
of hyperedges (constraints) in ψ. This is due to the observation that since r is odd, the
all-ones string is not a satisfying assignment to the Hom-r-Linp predicate, and hence if an
assignment satisfies a constraint e ∈ E, then at least one of the variables in e must be set to
0. Furthermore, the problem of hitting the largest number of hyperedges with a cardinality
constraint is a coverage type problem, which readily admits a linear programming based
(1 − 1/e)-approximation algorithm.

The above observations immediately suggests the following approach which leads to a
constant factor but sub-optimal approximation guarantee. (i) Find the set S of size (1 − p)n
which is a (1 − 1/e)-approximation to the coverage problem. (ii) Set all variables in V \S to 1
and all variables variables in S uniformly. This results in a (1 − (1 − p)/2)-weight assignment
which satisfies 1

2 (1 − 1/e) · Opt(ψ)-fraction of constraints7. Our actual algorithm uses a slight
modification of the above approach, and is based on the observation that simply using a
single hitting set of size (1 − p)n to round off the final assignment is wasteful, since that only
sets (1 − p)/2-fraction of variables to 0, where as the final solution allows for (1 − p)-fraction
of variables to be set to 0. Instead, our algorithm actually first independently rounds off two
hitting sets of size (1 − p)n (from the same fractional solution), and then uses the union of
these two sets to construct an assignment of weight p. We outline the steps of our algorithm
below.

Solve the following linear programming relaxation for finding a set which hits maximum
fraction of hyperedges in ψ.

Maximize
∑
e∈E

xe

Subject to
∑
i∈e

zi ≥ xe ∀ e ∈ E∑
i∈V

zi ≤ 2(1 − p)n

0 ≤ xe, zi ≤ 1 ∀e ∈ E, i ∈ V.

Independently round off two sets S1, S2 of size ≈ (1 − p)n by independent rounding using
{zi}i∈V .
Set all variables in [n] \ (S1 ∪ S2) to 1 and every variable in S1 ∪ S2 is set to {0, 1}
uniformly.

We give a brief sketch of the correctness of the above algorithm. Firstly, using a slight
modification of the standard analysis of LP rounding for coverage type problems (for e.g.,
see Section 16.3 [31]), we can show that S1 ∪ S2 will hit at least (1 − e−2) · Opt(ψ)-fraction
of hyperedges – the negative exponent of e in the approximation factor is 2 instead of 1 due
to the fact that we are using the union of two independently rounded sets to hit hyperedges.

7 Here Opt(ψ) denotes the optimal number of constraints that can be satisfied in ψ.
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Furthermore, we observe that any constraint hit by S1 ∪ S2 is going to be satisfied with
probability 1/2 under the rounding, and hence the expected fraction of constraints satisfied
by the assignment returned is 1

2 (1 − e−2) · Opt(ψ). Finally, observe that using the constraint∑
i zi = (1 − p)n, we have E [|S1|] = E [|S2|] = (1 − p)n and hence using Chernoff bound,

we can argue that w.h.p. we have |S1 ∪ S2| ≤ 2(1 − p)n, and the weight of the assignment
returned by the algorithm will be at least p(1 − o(1))n with high probability..

5 1
2(1 − e−2)-hardness assuming UGC

As is standard, our UGC based matching hardness from Theorem 3 is again a dictatorship
test based reduction. However, unlike the reduction for Theorem 2, here our test isn’t a
generalization of Håstad’s 3-query test and instead uses the existence of pairwise independent
distributions with certain biases that are supported on the set of accepting strings of the
Hom-r-Lin predicate. Formally, we show the following.

▶ Lemma 6 (Informal). For every large odd r ∈ N, there exists a pairwise independent
permutation invariant distribution supported on the set of accepting strings of Hom-r-Lin pre-
dictate, such that marginally each bit is (1 − 1/(r − 1))-biased.

As in [5], the above distribution can be immediately used to construct a dictatorship test,
as described in Figure 3.

Input. Long code f : {0, 1}k → {±1} satisfying Ex∼{0,1}k
p
[f(x)] = 1 − 2p where

p := 1 − 2/r.
Test Let µ be the distribution from Lemma 6.
1. Sample row vectors x(1), . . . , x(k) ∼ µ independently.
2. Sample (1 − η)-correlated copies x′

i ∼
1−η

xi for every i ∈ [r].
3. Accept if and only if∏

i∈[r]

f(x′
i) = 1.

Figure 3 UGC Test.

We now briefly summarize the completeness and soundness guarantees of the test. For the
completeness direction, observe that if f = χℓ is a dictator function, then Ex∼{0,1}k

p
[f(x)] =

1 − 2p i.e., f is feasible for the test. Furthermore, with probability at least 1 − rη we have∏
i∈[r]

f(x′
i) =

∏
i∈[r]

χℓ(x′
i) =

∏
i∈[r]

xi(ℓ) = 1,

where in the last step we used the fact that x(ℓ) = (xi(ℓ))i∈[k] is always an accepting string
for Hom-r-Lin due to our choice of µ from Lemma 6. On the other hand, for the soundness
direction, suppose f : {0, 1}k → {±1} is a long code satisfying the weight constraint having
no influential coordinates8. Then as a first step, we again proceed by arithmetizing the
probability of the test accepting as

8 In the context of this dictatorship test, we use a function having no influential coordinates as the
notion of being non-correlated with low-degree terms – this is quite standard in Unique Games based
reductions [24].
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Pr [ Test Accepts ] = 1
2 + 1

2Ex∼µ⊗k

 ∏
i∈[r]

f(x′
i)

 .
Now note that the distribution of (xi)i∈[r] is pairwise independent and hence its covariance
structure matches that of the fully independent p-biased distribution {0, 1}k⊗r

p i.e, the
distribution where x1, . . . , xr are independent p-biased k-length strings. This along with
the fact that f has no influential coordinates allows us to pass on from µ to be the fully
independent p-biased distribution using the Invariance principle [27] i.e.,

1
2 + 1

2Ex∼µ⊗k

 ∏
i∈[r]

f(x′
i)

 ≈ 1
2 + 1

2Ex∼({0,1}r
p)⊗k

 ∏
i∈[r]

f(x′
i)

 .
Finally, using the fact that the expected average weight of f is 1 − 2p and using the
independence of x′

i’s in the new distribution we have

1
2 + 1

2Ex∼({0,1}r
p)⊗k

 ∏
i∈[r]

f(x′
i)

 = 1
2 + 1

2 (1 − 2 (1 − 2/r)r) ≈ 1
2(1 − e−2),

which gives us the desired soundness. Our final reduction composes the above test with
UniqueGames as the outer verifier. While the completeness of the reduction follows as
is, additional care has to taken in establishing the soundness of the full reduction owing
to the following issue. In the setting of the full reduction from UniqueGames instance
G(VG , EG , [k], {πe}e∈E), the set of variables is defined by a collection of long codes {fv}v∈VG

satisfying the global bias constraint EvExfv(x) = 1 − 2p. Now, by combining standard
techniques for analyzing UniqueGames based reductions with the soundness analysis of the
test from above, we can show that for NO instances, the soundness of the reduction can be
expressed as:

1
2 + 1

2Ev∼V [(1 − 2pv)r]

where pv = Ew∼NG(v)Ex∼{0,1}k
p

[fv(x)] is the local average weight of long codes around v. As
before, if we could show that pv ≈ p for most choices of v ∈ VG , then we would be done.
However, unlike in the setting of Theorem 2, the outer UniqueGames instance cannot have
strong mixing properties9, and hence here we cannot hope to show that pv ≈ v for most
choices of v. Instead, by combining the fact that r is odd with a careful argument we can
show that the mapping pv 7→ (1 − 2pv)r−2 is concave for most points of the distribution over
pv, and hence using Jensen’s inequality, we can push the expectation operator inside to show
that

1
2 + 1

2Ev∼V [(1 − 2pv)r] ≤ 1
2 + 1

2 (1 − 2Ev∼VG [pv])r + or(1) = 1
2(1 − e−2) + or(1),

where the or(1)-additive factor is due to the fact that the function is concave in all but
or(1)-mass of the distribution.

9 In fact, even mildly expanding UniqueGames instances are known to admit polynomial time al-
gorithms [6]
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The h-index is a metric used to measure the impact of a user in a publication setting, such as a
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)
, where h is the actual h-index which
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n, h, ε, and δ.
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1 Introduction

The Hirsch index, or h-index for short, is a metric used to measure the impact of a researcher’s
publications [20]. It is an integer that considers both the number of publications and citations
a researcher has and is used in a number of contexts including consideration for grants and
job opportunities. We can abstract out this problem by modeling each individual researcher
as an array A[1 : n] where n is the number of papers they have published and A[i] is the
number of citations paper i ∈ [n] has. The h-index of A is then defined as follows.

▶ Definition 1. The h-index of an array A[1 : n], denoted by h(A), is the maximum integer
h such that A[1 : n] has at least h indices, ij, where for each j ∈ [h], A[ij ] ⩾ h.

There are simple algorithms that can compute the value of h(A) for any given array A in
O(n) time. For instance, we can change each entry of A[i] to min {A[i], n} without changing
h(A) (since h(A) ⩽ n) and then run counting sort on A in linear time to sort A in decreasing
order. We can then make another pass over A and output the largest index i ∈ [n] such that
A[i] ⩾ i which will be equal to h(A) now that A is sorted. This solves the h-index problem
in Θ(n) time.

The question we focus on in this paper is whether we can solve this problem even faster
than reading the entire input, namely, via a sublinear time algorithm, assuming we can read
each single entry of A in O(1) time. There are easy observations that show that the answer to
this question is No without relaxing the problem: deterministic algorithms cannot solve this
problem in sublinear time even approximately, and randomized algorithms cannot find an
exact answer1. Such observations however are commonplace when it comes to sublinear time
algorithms. Our goal in this paper is thus to solve this problem allowing both randomization
and approximation.

▶ Result 2. There is an algorithm that for any array A and any ε, δ ∈ (0, 1), with
probability at least 1 − δ, outputs an estimate h̃ such that |h̃− h(A)| ⩽ ε · h(A) in
O( n·ln (1/δ)

ε2·h(A) ) time. Moreover, we prove that this algorithm is asymptotically optimal in
all parameters involved.

Result 2 gives a randomized sublinear time algorithm for a (1± ε)-approximation of the
h-index problem, where the runtime improves depending on the value of the h-index itself.
This is quite common in sublinear time algorithms; see, e.g. [9, 11, 1] for estimating the
number of subgraphs, [4] for minimum cut, or [14, 15, 10, 31] for sampling small subgraphs,
among others. In all the aforementioned examples, such dependences are necessary, which is
also the case for ours by the lower bound we prove.

Our Result 2, however, is quite novel from a different perspective: the obtained bounds
are asymptotically optimal in all the parameters of the problem, including ε and δ. We are
not aware of any prior work with such strong guarantees as we will discuss in more detail in
the next subsection. Moreover, as a corollary of our techniques in proving the lower bound

1 A deterministic algorithm running in o(n) time cannot distinguish between an array A which is all zeros
and an array B obtained from A by making n/2 entries have value n/2 instead. This is because the
first n/2 queries of the algorithm to indices of A or B can be 0 in both cases. Yet, we have h(A) = 0
and h(B) = n/2. Similarly, a randomized algorithm running in o(n) time cannot distinguish between an
array A with value n as every entry and an array B obtained from A by changing exactly one of the
entries to n − 1 instead. This can be proven for instance by using the Ω(n) lower bound on the query
complexity of the OR problem [6]. In this case h(A) = n and h(B) = n − 1.
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for Result 2 with dependence on both ε and δ, we also obtain an asymptotically optimal
lower bound for the well-studied problem of counting triangles in sublinear time that now
matches the dependence on ε and δ as well, improving upon the prior work in [9, 13, 1].

1.1 Key Motivations
There are two key, yet disjoint, motivations behind our work that we elaborate on below.

Measuring “impact” quickly

Consider any “publication setting” that allows for user feedback. This can range from social
networks with users posting topics and others liking them all the way to the academic domain
with researchers publishing papers and others citing them. A question studied frequently
in social sciences is how to measure the “impact” of a single user in such a setting for
many different contexts, including identifying impactful users for marketing or propagating
information; see, e.g. [28] and the references therein.

One of the well-accepted measures of impact in these publication settings is the h-index
measure we study in this paper [20, 28]. Given the ubiquity of massive publication settings
and their evolving nature, say, social networks, we need algorithms that are able to compute
the h-index of different users efficiently; see, e.g. [18] that design such algorithms in the
closely related streaming model (which focuses on the space usage of algorithms instead
of their time). Thus, a key motivation behind our Result 2 is to provide a time-efficient
algorithm for this purpose. In general, it seems like a fascinating area of research to obtain
efficient algorithms for measuring various notions of impact in these massive publication
settings in parallel to the line of work, e.g., in [28], that searches for the “right” measure
itself.

In particular, the h-index has numerous applications within network science. In [8], it
is shown that when the h-index of a graph is large enough, the algorithm they design to
approximate the degree distribution is sublinear. In [24], the focus is on computing coreness
through iteratively using an operator that can calculate the h-index of any node to identify
influential nodes: an important step in understanding a network’s dynamics and structure.
Both works do not specify how their algorithm computes the h-index, so the use of our
algorithm could help prevent impractical runtimes. Building on [24], [29] generalizes using
an iterative h-index operator for truss and nucleus decomposition to find dense subgraphs.
They use the classical linear algorithm for calculating the h-index, which therefore leaves the
opportunity to use our algorithm to achieve better efficiency.

Asymptotically optimal sublinear time algorithms

Traditionally, the work on sublinear time algorithms have been rather cavalier with the
dependence on the error parameter ε, confidence parameter δ, and logarithmic factors. It
is certainly important to focus on the “high order terms” in the complexity of problems,
say, in numerous works on subgraph counting; see, e.g., [9, 11, 12] and references therein.
However, as already observed in [17]: “the dependence of the complexity on the approximation
parameter is a key issue”. For instance, in any (1± ε)-approximation algorithm, for a typical
value of ε ∼ 1%, one extra factor of 1/ε in the runtime translates to roughly a 100x slower
algorithm, which is almost always a deal breaker for the practical purposes of sublinear time
algorithms! Similar considerations also apply, but perhaps to a lower extent, to having a
large dependence on logarithmic factors instead of asymptotically optimal bounds. In terms
of the confidence parameter, δ, the runtime dependence of sublinear time algorithms almost
always includes the term ln(1/δ). It is important for practical considerations to determine
whether this dependence is necessary.

APPROX/RANDOM 2022
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Despite this, such considerations have not been studied in sublinear time algorithms. The
only prior work we are aware of is the very recent work of [31] that improved the O(ε−1/2)-
dependence of the algorithm of [14] for sampling edges ε-point-wise close to uniform to an
O(log (1/ε))-dependence. This is in stark contrast with the large body of work in related
areas such as streaming [21, 23, 5], graph streaming [25, 2], compressed sensing [26, 27],
sampling [22], and dynamic graph algorithms [30, 19, 3] which put emphasis on obtaining
asymptotically optimal algorithms and lower bounds on all parameters.

In light of this discussion, another key motivation of our work has been to use the h-index
problem as a medium for designing general techniques for obtaining asymptotic bounds for
sublinear time algorithms in general. For instance, our algorithm involves careful subroutines
that side-step typical “binary search” approaches in prior work that results in additional
O(ε−1 · log n) terms in the runtimes of algorithms and a more careful analysis of the error that
bypasses a trivial union bound which leads to additional O(log n) factors. More importantly,
we design a new lower bound technique, based on a new query complexity result that we
establish, that allows us to prove lower bounds that depend on both parameters ε and δ. This
approach can now be used to replace prior sublinear time lower bounds both based on ad-hoc
arguments such as the ones in [9] or the ones based on communication complexity [14, 1].
As a result, we also obtain asymptotically optimal lower bounds for the problem of counting
triangles in a graph that now matches the dependence on ε and δ as well, improving upon
the prior work in [9, 13, 1].

1.2 Notation
For any integer t ⩾ 1, we define [t] := {1, 2, . . . , t}. For any p ∈ (0, 1), we use B(p) to denote
the Bernoulli distribution with mean p. For a set S of integers, we write i ∈R S to mean i is
chosen uniformly at random from S.

1.3 Appendix
Due to space limitations, some details and proofs marked by a star are postponed to the
full version of the paper which appears on arXiv. Appendix A includes the concentration
results, other basic probabilistic tools, basic definitions and tools from query complexity, and
measures of distance between distributions that we use in this paper.

2 The Algorithm

We describe our main algorithm for the h-index problem in this section.

▶ Theorem 3. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n], approximation and confidence parameters ε, δ ∈ (0, 1), with probability at least

1− δ outputs an estimate h̃ of h(A) such that |h̃− h(A)| ⩽ ε · h(A) in O(n · ln(1/δ)
ε2 · h(A) ) time.

The algorithm in Theorem 3 is a combination of a “weak” and “strong” estimator that
we design. The weak estimator only outputs whether h(A) is at least as large as a given
threshold, but it is efficient and can be used to provide a lower bound on h(A). The strong
estimator, which has a slower runtime, then uses the lower bound to output an estimate of
h(A). In the next two subsections, we present these two estimators and then conclude the
proof of Theorem 3 through a careful combination of them that preserves the asymptotic
runtime of the overall algorithm.
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2.1 A Weak Estimator
We present an algorithm that determines with high probability whether h(A) is at least as
large as a given threshold.

▶ Lemma 4. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n] and an integer T ⩾ 1 in O(n/T ) time outputs an answer satisfying the
following:

(i) if h(A) ⩾ T , the answer is Large with probability at least 1− 1/16;
(ii) if h(A) < T/4, the answer is Small with probability at least 1− h(A)/(4T );
(iii) either Small or Large can be outputted in the remaining cases.

Let us point out the asymmetric guarantee of the algorithm: it does not underestimate
h(A) with a certain constant probability while it does not overestimate h(A) with probability
proportional to the “rate” of overestimation. This guarantee will be crucial in our final
algorithm. We also note that the guarantee on the runtime of the algorithm is deterministic.

2.1.1 The Algorithm
At a high level, our algorithm, h-index-weak-estimator, queries random indices from A

and calculates the proportion of those indices that are above a threshold representing the
mid-point between a h-index of T/4 and T . If the proportion is below the threshold, the
algorithm outputs Small; otherwise, it outputs Large.

Algorithm 1 h-index-weak-estimator(A[1 : n], T ).

1 Sample k := 64 · n/T indices S independently and uniformly with repetition from [n].
2 Let X denote the number of indices i ∈ S such that A[i] ⩾ T .
3 If X ⩾ kT/(2n), output Large. Otherwise, output Small.

The runtime of h-index-weak-estimator is simply O(n/T ) as we are sampling these
many indices in S and then for each i ∈ S, we need to query A[i]; counting the value of X

and outputting the answer can also be done in O(n/T ) time, which bounds the runtime as
desired.

2.1.2 The Analysis
We now analyze the correctness of the algorithm. For any j ∈ [k], define an indicator random
variable Xj which is 1 iff the j-th sample in S, namely, ij ∈ [n], satisfies A[ij ] ⩾ T . This
way, for the counter X in the algorithm, we have X =

∑k
j=1 Xj . Recall that the output of

the algorithm depends on the value of X. In the following, we will separately consider the
value of X in the case when the output is supposed to be Large versus when it is supposed
to be Small.

Case I: the “Large” case

We first consider the case when the output should be Large, or when h(A) ⩾ T . Thus,

E [X] =
k∑

j=1
E [Xj ] =

k∑
j=1

Pr
ij∈R[n]

(A[ij ] ⩾ T ) ⩾ k · T

n
, (1)

APPROX/RANDOM 2022
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since A consists of at least T indices with value ⩾ T when h(A) ⩾ T , and we are sampling
indices ij ∈ [n] for j ∈ [k] uniformly at random. We can similarly bound the variance of X

using Fact 29 since variables Xj for j ∈ [k] are independent, and thus,

Var [X] = Var

 k∑
j=1

Xj

 =
k∑

j=1
Var [Xj ] ⩽

k∑
j=1

E
[
X2

j

]
=

k∑
j=1

E [Xj ] = E [X] , (2)

where the second to last equality is because for all j ∈ [k], Xj is an indicator random variable.
We use Chebyshev’s inequality (Proposition 30) to finalize the proof of this case.

▷ Claim 5 (⋆). When h(A) ⩾ T , we have Pr (algorithm outputs Small) ⩽ 1/16.

This claim is now enough to establish property (i) in Lemma 4.

Case II: the “Small” case

We now consider the case when the output should be Small, namely, when h(A) < T/4. In
this case, we have,

E [X] =
k∑

j=1
E [Xj ] =

k∑
j=1

Pr
ij∈R[n]

(A[ij ] ⩾ T ) < k · T

4n
, (3)

as there are less than T/4 indices in A with value ⩾ T when h(A) < T/4, and we are sampling
indices ij ∈ [n] for j ∈ [k] uniformly at random. We will also bound the variance of X

similarly to Equation (2) but in a slightly more careful manner. By Fact 29, since variables
Xj for j ∈ [k] are independent, we have,

Var [X] =
k∑

j=1
Var [Xj ] ⩽

k∑
j=1

E [Xj ] =
k∑

j=1
Pr

ij∈R[n]
(A[ij ] ⩾ T ) ⩽ k · h(A)

n
, (4)

where in the last inequality, we use the fact that the number of indices in A with value larger
than T is at most h(A) (since we already know that h(A) < T ).

To conclude the proof, we again use Chebyshev’s inequality but with a slightly different
analysis.

▷ Claim 6 (⋆). When h(A) < T/4, we have Pr (algorithm outputs Large) ⩽ h(A)/(4T ).

Lemma 4 now follows from the previous two claims.

2.2 A Strong Estimator
We now present our second intermediate algorithm which outputs an estimate of h(A) when
given the guarantee that h(A) is at least as large as a given threshold.

▶ Lemma 7. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n], an integer T ⩽ h(A), and approximation parameter ε ∈ (0, 1), in O(n/(ε2T ))
time outputs an estimate h̃ of h(A) such that Pr(|h̃− h(A)| ⩽ ε · h(A)) ⩾ 2/3.

The guarantee on the runtime of the algorithm holds deterministically even when T > h(A).

We emphasize that while the guarantee on the runtime of the algorithm in Lemma 7
holds even when T > h(A), we clearly have no guarantee on the correctness in this case.
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Algorithm 2 h-index-strong-estimator(A[1 : n], T , ε).

1 Sample k := 6n/(ε2T ) indices S independently and uniformly with repetition from
[n].

2 Let B[1 : k] be an array consisting of integers A[i] for i ∈ S.
3 Return2 the largest integer q ∈ [n] such that k · q/n indices in B are at least q.

2.2.1 The Algorithm
The algorithm, h-index-strong-estimator, queries a set of random indices from A and
finds a scaled estimate of the h-index.

The first two lines of h-index-strong-estimator can be implemented in O(k) =
O(n/(ε2T )) time in a straightforward way. We show that the last step can also be im-
plemented in O(k) time.

▶ Lemma 8 (⋆). h-index-strong-estimator runs in O(n/(ε2T )) time.

2.2.2 The Analysis
We prove the correctness of h-index-strong-estimator in this subsection. We consider
each case in which the algorithm may overestimate or underestimate h(A) separately.

Probability of overestimation

We first bound the probability that h̃ > (1 + ε) · h(A). For this event to happen, we need B

to have more than (k/n) · (1 + ε) · h(A) indices with a value greater than (1 + ε) · h(A). We
bound the probability of this happening in the following.

For any j ∈ [k], define an indicator random variable Xj which is 1 iff the j-th sample
ij ∈ S satisfies A[ij ] > (1 + ε) · h(A). Define X =

∑k
j=1 Xj . By the above discussion,

Pr
(
h̃ > (1 + ε) · h(A)

)
= Pr(X > (k/n) · (1 + ε) · h(A)). (5)

We bound the probability of the RHS of this equation.

▷ Claim 9 (⋆). Pr (X > (k/n) · (1 + ε) · h(A)) < 1/6.

Probability of underestimation

We now bound the probability that h̃ < (1− ε) · h(A). This case is essentially symmetric to
the other one and is provided for completeness. For this event to happen, we need B to have
less than (k/n) · (1− ε) · h(A) indices with a value of at least (1− ε) · h(A). We bound the
probability of this happening in the following.

For any j ∈ [k], define an indicator random variable Yj which is 1 iff the j-th sample
ij ∈ S satisfies A[ij ] ⩾ (1− ε) · h(A). Define Y =

∑k
j=1 Yj . By the above discussion,

Pr
(
h̃ < (1− ε) · h(A)

)
= Pr (Y < (k/n) · (1− ε) · h(A)) . (6)

We bound the probability of the RHS of this equation.

▷ Claim 10 (⋆). Pr (Y < (k/n) · (1− ε) · h(A)) < 1/6.

Combining Claim 9 and Claim 10 concludes the proof of Lemma 7.

APPROX/RANDOM 2022
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2.3 The Sublinear Time h-Index-Estimator Algorithm

We now combine our weak and strong estimators to obtain a sublinear time algorithm for
estimating the h-index and prove Theorem 3. The algorithm runs h-index-weak-estimator
on smaller and smaller thresholds to determine a threshold that tightly lower bounds h(A).
Then, h-index-strong-estimator uses that threshold to output an estimate of h(A). Finally,
to ensure a probability of success of at least 1− δ, we combine the median/majority trick in
a rather non-black-box way using the asymmetric guarantee of h-index-weak-estimator in
part (ii) of Lemma 4.

Algorithm 3 h-index-estimator(A[1 : n], ε, δ).

1 Let r1 := 7 ln(8/δ) and r2 := 108 ln(8/δ) and initialize T to n.
2 While the majority answer of running h-index-weak-estimator(A, T ) r1 times

returns Small, update T ← T/4.
3 For the current value of T , run h-index-strong-estimator(A, T/16, ε) r2 times

and return the median answer as the final estimate h̃.

We bound the runtime of the algorithm in the following lemma.

▶ Lemma 11. h-index-estimator runs in O
(n · ln(1/δ)

ε2 · h(A)

)
time with probability 1− δ/2.

Proof. The runtime depends on both running h-index-weak-estimator on (potentially)
multiple thresholds and running h-index-strong-estimator.

We define T ∗ as the “optimal” threshold: the first threshold given to
h-index-weak-estimator that is not larger than h(A), namely, T ∗ ⩽ h(A) < 4 · T ∗. The
following claim bounds the probability that the while-loop in step two of h-index-estimator
does not stop even after iteration T ∗.

▷ Claim 12 (⋆). Pr (h-index-estimator continues its while-loop beyond T ∗) ⩽ δ/2.

In the following, we condition on the complement of the event in Claim 12 which happens
with probability at least 1 − δ/2, which means we have only run the while-loop until at
most iteration T ∗. Let T0 = n, T1 = n/4, . . . , Tt = n/4t = T ∗ denote the thresholds in these
iterations. By Lemma 4 on the runtime of h-index-weak-estimator we have,

runtime of while-loop =
t∑

j=0
O( n

Tj
) ·O(ln (1/δ)) = O

( n

T ∗ · ln (1/δ)
)
·

t∑
j=0

1
4j

= O

(
n

h(A) · ln (1/δ)
)

,

since T ∗ is a 4-approximation to h(A) by definition and the given geometric series converges.
Moreover, by Lemma 7 on the runtime of h-index-strong-estimator, in this case,

we have that the last line of the algorithm takes O( n·ln (1/δ)
ε2·T ∗ ) = O( n·ln (1/δ)

ε2·h(A) ) time as well,
again since T ∗ is a 4-approximation to h(A) (computing the medians can be done with the
Median-of-Medians algorithm in O(r2) time which is negligible in the above bounds).

All in all, we have that with probability 1 − δ/2, the algorithm runs in O( n·ln (1/δ)
ε2·h(A) )

time. ◀
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2.3.1 The Analysis
We prove the correctness of our algorithm in this subsection. Consider the parameter T ∗

defined earlier as the “optimal” threshold in the while-loop, meaning that T ∗ ⩽ h(A) < 4 ·T ∗.
There are two potential sources for error:
1. Event Eweak: In the while-loop, h-index-weak-estimator outputs Large for an iteration

T > 16T ∗; assuming this happens, the threshold passed to h-index-strong-estimator
is not necessarily valid, meaning that it may not be a lower bound on h(A).

2. Event Estrong: The threshold T obtained by the runs of h-index-weak-estimator in
the while-loop satisfies T ⩽ 16T ∗ and thus is valid, but h-index-strong-estimator
nevertheless fails to output an accurate estimate of h(A).

Among these, the probability of the second event is quite easy to bound using Lemma 7.
Thus, in the following, we focus primarily on proving the first part.

▷ Claim 13 (⋆). In h-index-estimator, for any T = 4ℓ · T ∗ for an integer ℓ ⩾ 2,
Pr (the while-loop terminates at iteration T ) ⩽ (δ/8)ℓ−1.

We can now bound the error probability due to event Eweak. We have,

Pr (Eweak) ⩽
∑
ℓ⩾2

Pr
(
the while-loop terminates at T = 4ℓ · T ∗)

⩽
∑
ℓ⩾2

(
δ

8

)ℓ−1
(by Claim 13)

= (δ/8)
1− (δ/8) <

δ

4 . (as
∑∞

j=1 xj = x
1−x for x ∈ (0, 1))

We now bound the other source of error. Assuming Eweak does not happen, for the
parameter T that the while-loop terminates on, we have T ⩽ 16T ∗ ⩽ 16h(A) by the definition
of T ∗. This implies that the parameter T/16 passed to h-index-strong-estimator is a
lower bound on h(A). Thus, by Lemma 7, each of the r2 runs of h-index-strong-estimator
outputs a (1± ε)-approximation to h(A) with probability at least 2/3.

▷ Claim 14 (⋆). Pr
(
Estrong | Eweak

)
⩽ δ/4.

Therefore, by the union bound, the total probability of error is at most δ/4 + δ/4 = δ/2.
This concludes the analysis of h-index-estimator.

3 The Lower Bound

We now prove the asymptotic optimality of the bounds obtained by our algorithm in The-
orem 3.

▶ Theorem 15. Any algorithm that, given query access to an array A[1 : n], approximation
parameter ε ∈ (0, 1/4), and confidence parameter δ ∈ (0, 1/100), with probability 1− δ uses
at most q queries and outputs an estimate h̃ such that |h̃− h(A)| ⩽ ε · h(A) needs to satisfy
q = Ω(min(n, n·ln(1/δ)

ε2·h(A) )).

To prove Theorem 15, we define a new problem which we call the Popcount Thresholding
Problem (PTP) and prove a lower bound on its randomized query complexity. We will then
perform a reduction from this problem to establish our theorem.
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▶ Remark 16. Let us suppose that 100 < h(A) < ln(1/δ) · 12/ε2. There exists some ε′ > ε

and δ′ > δ such that h(A) = ln(1/δ′) · 12/ε′2, and therefore, (n · ln(1/δ′))/(ε′2 · h(A)) = Ω(n).
So, the lower bound in Theorem 15 of Ω(n) given the above promises on the value of h(A) is
arbitrarily proven. In the following, we focus on proving that when h(A) ⩾ ln(1/δ) · 12/ε2,
the randomized query complexity is Ω((n · ln(1/δ))/(ε2 · h(A))).
In passing, we note that PTP seems quite a natural and general problem of its own independ-
ent interest; we will also use this problem in the subsequent section to prove asymptotically
optimal lower bounds for the well-studied problem of estimating the number of triangles in a
graph in sublinear time.

3.1 Popcount Thresholding Problem (PTP)
We define the Popcount Thresholding Problem as follows.

▶ Problem 17. In PTPm,k,γ , for integers m, k,⩾ 1 and parameter γ ∈ (0, 1), we are given a
string x ∈ {0, 1}m sampled with equal probability from either D0 where for each index i ∈ [m],
xi is independently set to 1 with probability p0 := (1− 2γ) · k/m or D1 where for each index
i ∈ [m], xi is independently set to 1 with probability p1 := (1 + 2γ) · k/m. The answer is Yes
if x was drawn from D1, and it is No if x was drawn from D0.

We prove the following lemma on the query complexity of PTP.

▶ Lemma 18. For any γ ∈ (0, 1/4), δ ∈ (0, 1/100), and integers m ⩾ 1, ln (1/δ) · 12/γ2 ⩽
k ⩽ m/6, Rδ(PTPm,k,γ) ⩾ m·ln (1/(4δ))

24 γ2·k where Rδ(·) denotes the randomized query complexity
with error probability δ.

To prove Lemma 18, we use the easy direction of Yao’s minimax principle (Proposition 28)
which allows us to focus on deterministic algorithms for PTP on the input distribution. As
per Problem 17, the input distribution is D = (1/2) ·D0 + (1/2) ·D1.

▶ Lemma 19 (⋆). In the distribution D,

Pr (|x|1 > (1− γ) · k | D0) ⩽ δ and Pr (|x|1 < (1 + γ) · k | D1) ⩽ δ.

Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k or
|x|1 ⩽ (1− γ) · k with probability 1− δ can also solve PTP with probability 1− 2δ. This is
simply because when x ∼ Dθ for θ ∈ {0, 1}, with probability at most δ, |x|1 is not within the
“right” range for such an algorithm to detect, and with another probability δ, the algorithm
may fail to output the correct answer. A union bound then implies the bound of 1− 2δ on
the probability of correctly solving PTP. We will use this later to prove Theorem 15 and in
our extension to triangle counting.

For the rest of the proof, let A be any deterministic query algorithm on D with the
worst-case number of queries q(A) := q < m·ln (1/(4δ))

24 γ2·k . Without loss of generality, we assume
that A always makes q queries on any input (by potentially making “dummy” queries to
reach q if needed). For an input x ∼ D, we use QA(x) ∈ {0, 1}q to denote the string of
answers returned to the query algorithm based on x.

Distribution of QA(x)

A key observation is that given only QA(x) = (b1, . . . , bq), since A is a deterministic algorithm,
we will learn the value of exactly q specific entries in x: b1 is the value of the index of x queried
first by A, then, b2 is the value of the second index queried by A where the query is uniquely
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determined after seeing the answer b1 to the first query, and so on and so forth. Thus, for any
choice of θ ∈ {0, 1}, conditioned on x being sampled from Dθ, for any i ∈ [m], independent
of the value of (b1, . . . , bi−1), the value of bi is sampled from a Bernoulli distribution with
mean pθ. This means that:

distribution (QA(x) | D0) is B(p0)q and distribution (QA(x) | D1) is B(p1)q.

The following claim bounds the KL-divergence (Equation (8)) between these two distributions.

▷ Claim 20. For any q ⩾ 1 and 0 < p0, p1 < 1/3, we have, D(B(p0)q || B(p1)q) < ln (1/(4δ)).

Proof. By the chain rule of KL-divergence and using the fact that both arguments are product
distributions (Fact 32), we have

D(B(p0)q || B(p1)q) = q · D(B(p0) || B(p1)).

Moreover, for each term, using Proposition 33, we have

D(B(p0) || B(p1)) ⩽ (p0 − p1)2

p1 · (1− p1) ⩽
(4γ · k/m)2

(1 + 2γ) · k/m · 2/3 ⩽ 24γ2 · k

m
,

concluding the proof. ◁

Let us now use Claim 20 to conclude the proof. As argued earlier, all the information
that is revealed to the algorithm A is the string QA(x) on an input x ∼ D, and its task is to
distinguish whether x is sampled from D0 or D1. By Fact 31, the best probability of success
of A is then:

1
2 + 1

2 · ∥(QA(x) | D0) − (QA(x) | D1)∥tvd ⩽ 1 − 1
4 · exp (−D(QA(x) | D0 || QA(x) | D1))

(by the extension of Pinsker’s inequality in Proposition 34)

= 1 − 1
4 · exp (−D(B(p0)q || B(p1)q))
(by the distribution of QA(x) argued earlier)

< 1 − 1
4 · exp (ln (4δ)) = 1 − δ.

(by Claim 20 as k ⩽ m/6, γ < 1/4, and thus p0, p1 < 1/3)

This means that A can succeed with probability < 1− δ in distinguishing between D0 and
D1. Combined with the easy direction of Yao’s minimax principle (namely, an averaging
principle, Proposition 28), this concludes the proof of Lemma 18.

3.2 Reducing PTP to the H-Index Problem
We now prove Theorem 15 via a reduction from PTP and our lower bound for the latter
problem in Lemma 18. Suppose towards a contradiction that there is an algorithm Ah for
h-index that with probability 1− δ/2 uses o(n ln (1/δ)/(ε2h(A))) queries on input array A

and estimates h(A) to within a (1± ε)-factor. Given an instance of PTPm,k,γ , we use Ah to
solve PTP with probability 1− δ in PTP-estimator.

It is clear that the worst-case query complexity of PTP-estimator is < τ(n, k, ε, δ) by
the condition on the second line of the algorithm. In terms of parameters for PTPm,k,γ , this
translates to the bound of m·ln (1/(4δ))

24 γ2·k on the worst-case query complexity of PTP-estimator.
In the following, we will prove that if Ah truly exists, then PTP-estimator solves PTPm,k,γ

with probability of success at least 1− δ. But, then PTP-estimator contradicts the lower
bound of Lemma 18 – this implies that Ah cannot exist, and we get our desired lower bound
in Theorem 15.
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Algorithm 4 PTP-estimator(x, k, γ, δ).

1 Run Ah with parameters n = m, ε = γ and error δ/2 on an array A defined as
follows: for any query of Ah to A[i] for i ∈ [n], return A[i] = (1 + ε) · k if xi = 1 and
return 0 otherwise.

2 If at any point, the number of queries of Ah reaches

τ(n, k, ε, δ) = n · ln(1/(4δ))
24ε2 · k

,

stop Ah and return No as the answer.
3 If we never stopped Ah, return Yes if Ah returns h̃ ⩾ k − ε2 · k; otherwise return No.

▶ Lemma 21. PTP-estimator outputs the correct answer to any instance of PTPm,k,γ with
probability at least 1− δ.

Proof. Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k
or |x|1 ⩽ (1 − γ) · k with probability 1 − δ/2 can also solve PTP with probability 1 − δ.
Therefore, it is sufficient to prove that PTP-estimator outputs Yes when |x|1 ⩾ (1 + γ) · k
and No when |x|1 ⩽ (1− γ) · k with probability at least 1− δ/2. We consider each case of
the right answer to PTP separately.

Case I. Suppose first that the input x to PTP is a Yes-instance, meaning that |x|1 ⩾ (1+γ)·k.
Consider the array A implicitly constructed by PTP-estimator. Given that ε = γ, A contains
at least (1 + ε) · k entries each with a value of at least (1 + ε) · k. Moreover, it does not
contain any entry with a value larger than (1 + ε) · k. Thus, we have h(A) = (1 + ε) · k. By
the guarantee of Ah on its correctness and since h(A) > k, the probability that Ah outputs
a value

h̃ < h(A)− ε · h(A) = (1 + ε) · k − ε · k − ε2 · k = k − ε2 · k

or makes more than τ(n, k, ε, δ) queries on A and thus we stop it is at most δ/2.

Case II. Suppose now that the input x to PTP is a No-instance, meaning that |x|1 ⩽ (1−γ)·k.
Consider the array A implicitly constructed by PTP-estimator. Given that ε = γ, A contains
at most (1− ε) · k non-zero entries, so h(A) ⩽ (1− ε) · k. Thus, by the guarantee of Ah on
its correctness, the probability that Ah outputs a value

h̃ ⩾ k − ε2 · k = (1− ε) · k + ε · k − ε2 · k ⩾ h(A) + ε · h(A)

is at most δ/2. This means that if we do not stop Ah (because it has made too many
queries), the output will only be wrong with probability at most δ/2. But now note that we
do not have any particular guarantee on the probability that we stop Ah as it is possible that
h(A) is much less than k and thus the bound of o(n ln (1/δ)/(ε2h(A))) on the queries of Ah

will still be way less than τ(n, k, ε, δ). Nevertheless, even if we stop the algorithm, we output
No as the answer and thus make no error here. Thus, in this case also, the probability of
outputting a wrong answer is δ/2 at most as desired.

This concludes the proof of Lemma 21. ◀

Theorem 15 now follows immediately from Lemma 18 and Lemma 21 as argued earlier.
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4 Triangle Counting Problem

In this section, we switch from the main theme of our paper which was on the h-index problem
and instead show an application of our lower bound techniques to the well-studied problem
of subgraph counting using local queries, in particular, the triangle counting problem.

▶ Problem 22. In TCPn,m,ε, for integers n, m ⩾ 1 and parameter ε ∈ (0, 1), we are given
an undirected graph G = (V, E) with n vertices and m edges, and the goal is to estimate the
number of triangles, namely, cliques on three vertices, in G to within a (1 ± ε)-factor. In
order to do this, we can make the following queries to the graph:
1. Degree queries: Given a vertex v ∈ V , return the degree of v (deg(v)).
2. Neighbor queries: Given a vertex v ∈ V and i ∈ [n], return the ith neighbor of v if

i ⩽ deg(v) and “None” otherwise.
3. Pair queries: Given two vertices u, v ∈ V , return 1 if (u, v) ∈ E and 0 otherwise.
4. Edge-sample queries: Return an edge e ∈ E independently and uniformly at random.

We refer the reader to [9, 11, 13, 1] and references therein for more on the background of
this problem. Here, we only note that [9] designed an algorithm for this problem with time
complexity O∗( n

t1/3 + m3/2

t ), where t is the number of triangles and O∗ hides the dependence
on ε, error probability δ, and logarithmic factors in n. The algorithm of [9] only requires the
first three types of queries mentioned above, which is generally considered the baseline for
sublinear time algorithms and is referred to as the general query model. Later, by using the
fourth type of query also, [1] obtained an algorithm for this problem with time complexity
O( m3/2·ln (1/δ)

ε2·t ) (the algorithm of [1] extends to counting all subgraphs, not just triangles,
with a runtime depending on the fractional edge cover of the subgraph we are counting;
see [1]).

On the lower bound front, [13], building on [9], proved a lower bound of Ω( m3/2

t ) for the
triangle counting problem under the four queries mentioned. This lower bound, however,
only holds for some constant ε and δ and does not incorporate the dependence on them.

In this section, using our lower bound for the PTP problem in Lemma 18, we will improve
the lower bound of [13] and obtain a lower bound that matches the algorithmic bounds
of [1], settling the asymptotic complexity of the triangle counting problem in all parameters
involved.

▶ Theorem 23. Any algorithm that given access to an undirected graph G = (V, E) through
degree, neighbor, pair, and edge-sample queries, approximation parameter ε ∈ (0, 1/4), and
confidence parameter δ ∈ (0, 1/100), outputs an estimate t̃ of the number of triangles, t, in G

such that Pr(|t̃− t| ⩽ ε · t) ⩾ 1− δ requires Ω(min(m,
m3/2 · ln(1/δ)

ε2 · t
)) queries to the graph

provided that t = o(ε ·m).

Similarly to the h-index problem, we prove Theorem 23 via a reduction from PTP and our
lower bound for that problem in Lemma 18.
▶ Remark 24. For concreteness, we focused on proving a lower bound only for the triangle
counting problem as a representative of the wider family of subgraph counting problems.
However, by using our PTP in place of the lower bound arguments in [11] and [1], one can
also extend their lower bounds to asymptotically optimal bounds (matching the algorithm
of [1]) for larger cliques as well as odd-cycles.
▶ Remark 25. To avoid confusion, in the rest of this proof, we use m to denote the number
of edges in the triangle counting problem and instead use M (in place of the original m) for
the dimension of the PTP problem.
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Suppose towards a contradiction that there is an algorithm At for triangle counting that
queries input undirected graph, G, and estimates t to within a (1± ε)-factor with probability
at least 1− δ/2 using o(m3/2 ln(1/δ)/(ε2t)) queries. Given an instance of PTPM,k,γ , we use
At to solve PTP with probability 1− δ.

Define M = (
√

m/2)2 = m/4. We define a mapping from inputs of PTP, x ∈ {0, 1}M , to
Gx(V, E) on n = 2

√
m vertices and m edges.

Let the vertices of Gx consist of two sets, U ∪ V , such that U = {u1, ..., u√
m} and

V = {v1, ..., v√
m}. There is no overlap between the two sets, so U ∩ V = ∅. Let U

consist of two sets, U1∪U2, such that U1 = {u1, ..., u√
m/2} and U2 = {u√

m/2+1, ..., u√
m}.

Similarly, let V consist of two sets, V1 ∪ V2, such that V1 = {v1, ..., v√
m/2} and V2 =

{v√
m/2+1, ..., v√

m}.
We view x as being indexed by pairs i ∈ [

√
m/2], j ∈ [

√
m/2+1,

√
m] such that i < j. Now,

we add edges in the following way. If xij = 1, Gx contains edges (ui, uj) ∈ U1 × U2 and
(vi, vj) ∈ V1 × V2. If xij = 0, Gx contains edges (ui, vj) ∈ U1 × V2 and (vi, uj) ∈ V1 × U2.
Additionally, for each vertex u1 ∈ U1 and v1 ∈ V1, Gx contains edge (u1, v1). For each
vertex u2 ∈ U2 and v2 ∈ V2, Gx contains edge (u2, v2). There are no other edges that are
added.

See Figure 1 for an illustration.

Figure 1 The graph Gx for x = 0001. The bits are indexed by the vertex pairs (13, 14, 23, 24).

We call the reduction algorithm PTP-estimator-two.
It is clear that the worst-case query complexity of PTP-estimator-two is < τ(m, k, ε, δ).

In terms of parameters for PTPM,k,γ , this translates to the bound of M · ln(1/(4δ))
24γ2 · k

on the
worst-case query complexity of PTP-estimator-two. In the following, we will prove that
if At exists, then PTP-estimator-two solves PTPM,k,γ with probability of success at least
1−δ. But then, PTP-estimator-two contradicts the lower bound of Lemma 18 which implies
that At cannot exist, and we get our desired lower bound in Theorem 23.

We note that in the following lemma, the lower bound on k and upper bound on ε is
benign as otherwise the Ω(m) part of our lower bound in Theorem 23 should instead kick in.

▶ Lemma 26. PTP-estimator-two outputs the correct answer to any instance of PTPM,k,γ

with probability at least 1− δ as long as k = ω(ln (1/δ)/ε2), k = o(ε ·m), and ε = ω(1/
√

m).

Proof. Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k
or |x|1 ⩽ (1 − γ) · k with probability 1 − δ/2 can also solve PTP with probability 1 − δ.
Therefore, it is sufficient to prove that PTP-estimator-two outputs Yes when |x|1 ⩾ (1+γ)·k
and No when |x|1 ⩽ (1− γ) · k with probability at least 1− δ/2.
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Algorithm 5 PTP-estimator-two(x ∈ {0, 1}M , k, γ, δ).

1 Run At with parameters n = 2
√

m, m = 4M , ε = γ, and error δ/2 on an undirected
graph G defined as follows:

2 Degree queries. For any degree query of At, return
√

m.
3 Neighbor queries. For any neighbor query of At, do the following. Assume w.l.o.g.

that we get a vertex ui ∈ U1 and want to find the kth neighbor. If k ⩽
√

m/2,
return vi. Otherwise, set j ← k. Then, if xij is 1, return uj ; else, vj .

4 Pair queries. For any pair query of At, if an edge between a vertex u ∈ U1 and a
vertex v ∈ V1 or between u ∈ U2 and v ∈ V2 is queried, return 1. If an edge between
any two vertices in U1, U2, V1, or V2 is queried, return 0. Else, for some query
(ui, vj) such that i < j, return ¬xij . For some query (ui, uj) such that i < j, return
xij .

5 Edge-sample queries. For any random edge-sample query made by At, uniformly at
random pick a vertex v ∈ V and then uniformly at random pick one of its neighbors
u. Return the edge (u, v).

6 If at any point, the number of queries of At reaches

τ(m, k, ε, δ) = m · ln(1/(4δ))
9600ε2 · k

,

stop At and return No as the answer.
7 If we never stopped At, return Yes if At returns t̃ ⩾ 2k(

√
m− 2)(1− ε2); otherwise,

return No.

Within Gx, we will define red edges. Let the red edges include any edges between any
two vertices ∈ U1. The set of red edges will also include any edges between any two vertices
∈ V1. For every vertex v, we define reddeg(v) as the number of red edges incident on v.

We consider each case of the right answer to PTP separately.

Case I. Suppose first that the input x to PTP is a Yes-instance, meaning that for each
index i ∈ [M ], xi was set to 1 independently with probability (1 + 2γ) · k/M . Consider the
graph G implicitly constructed by PTP-estimator-two. For every bit set to 1 in x, there
are two red edges in Gx. Each red edge (u, v) creates (

√
m − 2) − reddeg(u) − reddeg(v)

triangles.
We want to ensure that in the Yes-instance, there are enough triangles. We first lower

bound the total number of red edges. Since the number of red edges corresponds to |x|1, we
can use Lemma 19. By the choice of k = ω(ln (1/δ)/ε2), we can see that the probability that
|x|1 < (1+γ)·k is bounded by δ/2. Now, we bound for each edge, (u, v), reddeg(u)+reddeg(v).
Let us first bound the number of red edges incident on each vertex.

▷ Claim 27. When x is a Yes-instance, for each vertex v, Pr(reddeg(v) > ε/3 ·
√

m) ⩽ δ/
√

m.

Proof. For each vertex v, the probability of an edge incident on it being red is (1+2ε)·k/(m/4)
and there are potentially

√
m/2 red edges. Therefore, E[reddeg(v)] = (1+2ε)·k/(m/4)·

√
m/2.

By the lower bound on k, E[reddeg(v)] ⩽ ε/4 ·
√

m. We now use the Chernoff bound
(Proposition 30) to bound the probability that reddeg(v) is too large and have

Pr(reddeg(v) > ε/3 ·
√

m) ⩽ exp(− (1/3)2 · E[reddeg(v)]
3 ) ⩽ δ/

√
m

where the last inequality is because of the lower bound on ε. ◁
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Claim 27 implies that any edge (u, v), reddeg(u) + reddeg(v) is at most 2/3 · ε/
√

m.
Thus, by the guarantee of At on its correctness, the probability that At outputs a value

t̃ < t− ε · t ⩽ 2(
√

m− 2)(1 + ε) · k − ε · 2(
√

m− 2)(1 + ε) · k = 2k(
√

m− 2)(1− ε2)

is at most δ/2. This means that if we do not stop At (because it has made too many queries),
the output will only be wrong with probability at most δ/2. Additionally, since t/(2(

√
m−

2)) > k and the number of queries made by At is supposed to be o(m3/2 ln(1/δ)/(ε2t)), At

will never make more than τ(m, k, ε, δ) queries on G. Therefore, in this case, the probability
of outputting a wrong answer is at most δ/2 as desired.

Case II. Suppose instead that the input x to PTP is a No-instance, meaning that for each
index i ∈ [M ], xi was set to 1 independently with probability (1− 2γ) · k/M . Consider the
graph G implicitly constructed by PTP-estimator-two. Every red edge can create at most
(
√

m− 2) triangles with vertices on the other side of the bipartition.
We first bound the total number of red edges. Since the number of red edges corresponds

to |x|1, we can use Lemma 19. By the choice of k = ω(ln (1/δ)/ε2), we can see that the
probability that |x|1 > (1− γ) · k is bounded by δ/2. Therefore, by the guarantee of At on
its correctness, the probability that At outputs a value

t̃ ⩾ 2k(
√

m− 2)(1− ε2) = 2(
√

m− 2)(1− ε) · k + ε · 2(
√

m− 2)(1− ε) · k ⩾ t + ε · t

is at most δ/2. This means that if we do not stop At (because it has made too many queries),
the output will only be wrong with probability at most δ/2. But now note that we do not
have any particular guarantee on the probability that we stop At since it is possible that
t/(2(

√
m−2)) is much less than k and thus the bound of o(m3/2 ln(1/δ)/(ε2t)) on the queries

of At will still be much less than τ(m, k, ε, δ). Nevertheless, even if we stop the algorithm, we
output No as the answer and thus make no error here. Thus, in this case also, the probability
of outputting a wrong answer is δ/2 at most as desired.

This concludes the proof of Lemma 26. ◀
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A Detailed Preliminaries

A.1 Basics of Query Complexity
We use the basics of query complexity to establish our lower bounds on the runtime of
sublinear algorithms (as the number of queries made to the input is always a lower bound on
the runtime).

Let f : {0, 1}n 7→ {0, 1} be any Boolean function. A query algorithm for f on any input
x can query the values of xi for i ∈ [n] and determine the value of f(x) with a minimal
number of queries. We will work with the following definitions:

Randomized query complexity: For any δ ∈ (0, 1), Rδ(f) denotes the worst-case
number of queries made by the best randomized algorithm that computes f on any input
with probability of success at least 1− δ.
Distributional query complexity: For any δ ∈ (0, 1) and any distribution µ on
{0, 1}n, Dµ,δ(f) denotes the worst-case number of queries made by the best deterministic
algorithm that computes f on inputs sampled from µ with probability of success at least
1− δ.

Yao’s minimax principle [33] relates these two measures.

▶ Proposition 28 (Yao’s minimax principle [33]). For any f : {0, 1}n 7→ {0, 1} and δ ∈ (0, 1):
(i) Easy direction (averaging argument): For any distribution µ on {0, 1}n, Dµ,δ(f) ⩽

Rδ(f).
(ii) Hard direction (duality): There is some distribution µ∗ on {0, 1}n such that Dµ∗,δ(f) =

Rδ(f).

A.2 Basic Probabilistic Tools
We use the linearity of variance of independent random variables.

▶ Fact 29. For any two independent random variables X and Y , Var [X + Y ] = Var [X] +
Var [Y ].

The following proposition lists the standard concentration inequalities we use in this paper.

▶ Proposition 30 (Concentration Inequalities; cf. [7]).
(i) Chebyshev’s inequality: For any random variable X and t > 0,

Pr (|X − E [X]| ⩾ t) ⩽ Var [X]
t2 .

(ii) Chernoff bound: Suppose X1, . . . , Xn are n independent random variables in [0, 1] and
define X :=

∑n
i=1 Xi. Then, for any ε ∈ (0, 1) and µ ⩾ E [X],

Pr (X > (1 + ε) · µ) ⩽ exp
(
−ε2 · µ

3

)
and Pr (X < (1− ε) · µ) ⩽ exp

(
−ε2 · µ

3

)
.

Moreover, for any t ⩾ 1 and µ ⩾ E [X], Pr (|X − E [X]| ⩾ t · µ) ⩽ 2 · exp
(
− t·µ

3
)
.

A.3 Measures of Distance Between Distributions
We use two main measures of distance (or divergence) between distributions, namely the
total variation distance and the Kullback-Leibler divergence (KL-divergence).
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Total variation distance

We denote the total variation distance between two distributions µ and ν on the same support
Ω by ∥µ− ν∥tvd, defined as:

∥µ− ν∥tvd := max
Ω′⊆Ω

(µ(Ω′)− ν(Ω′)) = 1
2 ·

∑
x∈Ω
|µ(x)− ν(x)| . (7)

We use the following basic property of total variation distance.

▶ Fact 31. Suppose µ and ν are two distributions with same support Ω; then, given a single
sample from either µ or ν, the best probability of successfully deciding whether s came from
µ or ν is 1

2 + 1
2 · ∥µ− ν∥tvd.

KL-divergence

For two distributions µ and ν over the same probability space, the Kullback-Leibler divergence
between µ and ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log Prµ(a)

Prν(a)

]
. (8)

A key property of KL-divergence is that it satisfies a chain rule.

▶ Fact 32 (Chain rule for KL-divergence). Given two distributions p(x1, . . . , xt) and
q(x1, . . . , xt) on t-tuples, we have,

D(p || q) =
t∑

i=1
E

p(x<i)
D(p(xi | x<i) || q(xi | x<i)).

In particular, if p and q are product distributions, then,

D(p || q) =
t∑

i=1
D(p(xi) || q(xi)).

The following result gives a simple upper bound for the KL-divergence of two Bernoulli
distributions that we shall use in our proofs.

▶ Proposition 33 (KL-divergence on Bernoulli distributions; c.f. [16, Theorem 5]). For any
0 < p, q < 1, the following is true:

D(B(p) || B(q)) ⩽ (p− q)2

q · (1− q) .

We shall also use the following extension of Pinsker’s inequality to relate total variation
distance and Kullback-Leibler divergence.

▶ Proposition 34 (c.f. [32], p. 88-89). Given two distributions µ and ν over the same discrete
support, ∥µ− ν∥tvd ⩽ 1− 1

2 exp (−D(µ || ν)).
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This paper studies the problem of maximizing a monotone submodular function under an unknown
knapsack constraint. A solution to this problem is a policy that decides which item to pack next
based on the past packing history. The robustness factor of a policy is the worst case ratio of
the solution obtained by following the policy and an optimal solution that knows the knapsack
capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature c
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1 Introduction

This paper is concerned with the problem

maximize
{

f(S)

∣∣∣∣∣ S ⊆ N and
∑
i∈S

s(i) ≤ C

}
(1)

of maximizing a submodular, monotone, and normalized function f : 2N → R≥0 under a
knapsack constraint, where N is a finite set of items, s(i) ∈ R>0 is the size of item i ∈ N ,
and C ∈ R>0 is a knapsack capacity. This optimization problem is an important abstraction
of many problems that appear in various applications, such as facility location (Cornuéjols et
al. [4]), sensor placement (Krause and Guestrin [12], Krause et al. [13]), marketing in social
networks (Kempe et al. [10]), and maximum entropy sampling (Lee [14]).

For the special case of a cardinality constraint where s(i) = 1 for all i ∈ N , a straightfor-
ward greedy algorithm by Nemhauser et al. [17] computes a solution with an approximation
guarantee of 1 − 1/e and this ratio is best possible for any polynomial algorithm unless
P = NP (Feige [7]). For the case of a general knapsack constraint, combining the greedy
algorithm with a partial enumeration of all subsolutions with at most three items yields the
same approximation guarantee (Sviridenko [19]).
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While these results are tight, the algorithms often perform much better than their
theoretical guarantees. In order to explain and quantify this phenomenon, Conforti and
Cornuéjols [3] introduce the concept of the curvature of a submodular function. Recall that
a function f : 2N → R≥0 is submodular if the marginal increase f(A ∪ {u}) − f(A) of an
element u ∈ N \A is non-increasing as A increases. The curvature c ∈ [0, 1] measures how
much this marginal increase of an item u varies when varying A and is defined as

c = 1−min
j∈N

f(N)− f(N \ {j})
f({j}) ,

where we further used that f is normalized, i.e., f(∅) = 0. It is easy to see that c = 0 if and
only if the function is modular (i.e., linear). The other extreme case c = 1 is, e.g., attained
when f is the rank function of a matroid. Conforti and Cornuéjols [3] show that the greedy
algorithm for the cardinality constraint case has an improved approximation guarantee of
(1− e−c)/c. A more sophisticated algorithm for the same problem by Sviridenko et al. [20]
achieves an even better approximation guarantee of 1− c/e− ε for any ε > 0.

In all of the results above it is assumed that all data of the problem (1) is given completely.
In this paper, we consider a variant of the problem where the set of items N , their sizes
s(i) ∈ R>0, and the function f : 2N → R≥0 are known, but the knapsack capacity C ∈ R>0
is unknown. In this context, a solution to the problem is a policy that decides which item
to pack next, based on the previous packing history. More formally, a policy is a binary
decision tree where nodes correspond to items with the property that no item appears more
than once on a path from the root to a leaf. The item at the root of the tree is the item
that is attempted to be packed first. If it fits, it is irrevocably included in the solution, the
(unknown) capacity is reduced by the size of the item, and the solution proceeds with the
left subtree of the decision tree. If the item does not fit, it is discarded, the (unknown)
capacity stays the same, and the solution proceeds with the right subtree. This process
stops after a leaf is reached. The assumption that the policy can resume packing smaller
items after a larger item does not fit is suitable when the knapsack capacity is interpreted as
a monetary budget. Generally speaking, such packing policies are desirable when packing
problems of this kind have to be solved repeatedly for varying knapsack capacities. For
illustration, consider the marketing problem in social networks. By analyzing the social
network, a packing policy can be constructed that can then be used in order to run marketing
campaigns for all possible budgets, without the need to rerun any optimization. In a similar
vein, consider the problem of maximum entropy sampling. The Shannon entropy of a set of
(dependent) random variables is a submodular function of the (index set) of the variables.
Suppose that observing the realization of a random variable comes at a cost (for market
research, for evaluating the data, etc.). With our algorithm, one can compute a policy that
for all budgets allows to retrieve close to optimal information without any need to rerun the
optimization for different budgets.

In the examples above, we clearly want to obtain solutions that are good for any possible
capacity. We evaluate the quality of a policy in terms of its robustness factor. Fix an
instance of (1), and a corresponding policy Π. For a capacity C ∈ R>0, let Π(C) be the
set of items packed by the policy when the knapsack capacity is C, and let Opt(C) be
the items included in an optimal solution for capacity C. The robustness factor is defined
as α := infC f(Π(C))/f(Opt(C)). A policy with robustness factor of α ∈ [0, 1] is called
α-optimal.
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impossible [5]
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Figure 1 Robustness factors α as a function of the curvature c achieved by this and previous
work.

1.1 Our Results and Techniques
For the case that f is modular (corresponding to the case that c = 0), Disser et al. [5] show
that every instance admits a 1/2-optimal policy, and that the factor of 1/2 is best possible.
Kawase et al. [9] consider the fully submodular case corresponding to the case c = 1. They
provide a deterministic policy with robustness factor 2(1− 1/e)/21 ≈ 0.06 and a randomized
policy with robustness factor of (1− 1/e)/2 ≈ 0.32.

We provide a deterministic polynomial algorithm that constructs a deterministic policy
Π with a robustness factor of

α = 1− x

2− (2− c)x (2)

where x is the unique root in [0, 1] of the equation 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z .
For the most general case of a submodular function with curvature c = 1, this yields a

robustness factor of ≈ 0.35 which improves over the factor of ≈ 0.06 by Kawase et al.; for
smaller values of c < 1 the robustness factor increases and retaines the optimal factor of
α = 1/2 in the modular case when c = 0. For an illustration; see Figure 1.

A central technique for solving submodular maximization problems with a known or
unknown knapsack capacity are greedy algorithms, and this work is no exception. Disser
et al. [5] compare the solution obtained by their policy with a greedy algorithm called
MGreedy that either takes the greedy sequence or the first item that does not fit the
knapsack anymore. As discussed by Kawase et al. [9] this approach seems difficult to apply
to submodular functions because the greedy sequence is different for different sizes of the
knapsack due to the substitute effects among the items for the objective. They instead single
out valuable items that provide a significant ratio of the optimum solution. This approach,
however, comes at the expense of a much lower robustness factor.

We circumvent this issue by analyzing a different kind of greedy algorithm that we call
AGreedy and that seems to be more compatible with robust policies. We first analyze this
algorithm for the case of a known knapsack capacity in Section 3 and show that it provides
an approximation guarantee as in (2). As a byproduct of our analysis, we further obtain that
the MGreedy algorithm also has the approximation guarantee as in (2). This generalizes
a result of Wolsey [22] who analyzed this algorithm only for the general submodular case
where c = 1. In Section 4, we then devise a robust policy that achieves a robustness ratio
that is at least as good as the approximation guarantee of AGreedy.
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1.2 Further Related Work

The problem of maximizing a submodular function under different constraints has a long his-
tory in the optimization literature. Nemhauser et al. [18] consider the problem of maximizing
a monotonic submodular function under a cardinality constraint and show that the greedy
algorithm that iteratively adds an item that maximizes the increase of the objective function
achieves an approximation guarantee of (1− 1/e) ≈ 0.63. Nemhauser and Wolsey [17] prove
that this ratio is best possible for algorithms that have only access to f via a value oracle
that can only be queried a polynomial number of times. For the special case that f is given
explicitly and corresponds to a maximum coverage function, there is no better approximation
possible in polynomial time, unless P = NP, as shown by Feige [7]. Wolsey [22] considers the
more general problem of maximizing a submodular function under a knapsack constraint
and achieves an approximation guarantee of 1− e−x ≈ 0.35 where x is the unique root of the
equation ex = 2− x. Sviridenko [19] shows that a combination of the greedy algorithm with
a partial enumeration scheme achieves an approximation guarantee of 1− 1/e. Another way
to generalize the cardinality constrained case is to allow for arbitrary matroid constraints.
For this case, the greedy algorithm yields an approximation guarantee of 1/2, as shown by
Fisher et al. [8]. Calinescu et al. [2] achieve a 1− 1/e approximation by solving a fractional
relaxation of the problem and combining it with a suitable rounding technique.

Conforti and Cornuéjols [3] introduce the curvature c as a measure for the non-linearity of
a (submodular) function and show that the greedy algorithm has an approximation guarantee
of (1− e−c)/c for the case of a cardinality constraint and 1/(c + 1) for the case of a matroid
constraint. Vondrák [21] shows that the continuous greedy algorithm yields an approximation
guarantee of (1 − e−c)/c for the case of a matroid constraint, and proves that no better
approximation is possible in the value oracle model with a polynomial number of queries.
Sviridenko et al. [20] give an algorithm with approximation guarantee of 1 − c/e − O(ε)
for the problem with a matroid constraint. Yoshida [23] obtains the same approximation
guarantee for the problem under a knapsack constraint. The algorithm relies on a continuous
version of the greedy algorithm which seems to be incompatible with an unknown knapsack
constraint since many items will be fractional during the course of the algorithm for smaller
knapsack constraints. Also the distinction between small and large items which is elementary
in the algorithm cannot be employed when the capacity is not known.

Packing problems with an unknown knapsack are studied by Megow and Mestre [15].
They consider the modular case and assume that the policy stops when an item does not fit
the knapsack. In this setting, no constant robustness factor is achievable on all instances
and Megow and Mestre provide a polynomial time approximation scheme (PTAS) for the
computation of an optimal policy. Navarra and Pinotti [16] show how to construct a policy
with robustness factor 1/2 for instances that have the property that every item fits into the
empty knapsack. Disser et al. [6] consider the optimization of a fractionally subadditive
objective with the additional property that every singleton set has a value of 1, and give a
policy with robustness factor of ≈ 0.30. For the case of an unknown cardinality constraint,
there is no difference between policies that continue or stop packing after an item does
not fit. Bernstein et al. [1] introduce a property on the objective function that they term
accountability and that is more general than submodularity. They show that the optimal
robustness factor for maximization of an accountable objective under an unknown cardinality
constraint is between 1/(1 + ϕ) ≈ 0.38 where ϕ is the golden ratio and 0.46.
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2 Preliminaries

2.1 Submodular Functions
Let N be a finite set. A function f : 2N → R≥0 is called monotone if f(A) ≤ f(B) for
every A, B ∈ 2N with A ⊆ B, is called normalized if f(∅) = 0, and is called submodular if
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A, B ∈ 2N . For our purposes, it is without loss
of generality to assume that f({j}) > 0 for all j ∈ N since an element j with f({j}) = f(∅),
by submodularity, has no influence on the value of f and, thus, can be removed from (1). It
is well-known that a function f is submodular if and only if one of the following statements
is satisfied:

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B) for all A ⊆ B ⊆ N , u ∈ N \B,

f(A ∪ {u1}) + f(A ∪ {u2}) ≥ f(A ∪ {u1, u2}) + f(A)
for all A ⊂ N , u1, u2 ∈ N \A, u1 ̸= u2.

If is straightforward to verify that a submodular and monotone function satisfies the following
inequality, see, e.g., Nemhauser et al. [18] for a reference

f(B) ≤ f(A) +
∑

u∈B\A

f(A ∪ {u})− f(A) for all A ⊆ B ⊆ N. (3)

2.2 Curvature
The curvature of a normalized, monotone and submodular function f : 2N → R≥0 is defined
as

c = 1−min
j∈N

f(N)− f(N \ {j})
f({j}) .

The following lemma summarizes a couple of inequalities that are valid for submodular
functions with a given curvature that are easy to show yet useful for the remainder of the
paper. For a proof, see Appendix A.

▶ Lemma 1. For a normalized, monotonic, and submodular function f : 2N → R≥0 with
curvature c ∈ [0, 1], the following inequalities are satisfied:

(i) (1− c)f({j}) ≤ f(A ∪ {j})− f(A) for all A ⊂ N and all j ∈ N \A;
(ii) f(A ∪B) ≥ f(A) + (1− c)

∑
i∈B f({i}) for all A, B ⊂ N with A ∩B = ∅.

2.3 Submodular Maximization under a Knapsack Constraint
An instance of the submodular maximization problem under a known knapsack constraint is
given by a set of n items N = {i1, i2, . . . , in} where each item i ∈ N has a size s(i) ∈ R>0.
We further have given a monotone, normalized and submodular function f : 2N → R≥0 that
assigns a value f(A) to every subset A ⊆ N of items, and a capacity C ∈ R>0. For a subset
A ⊆ N , we write s(A) :=

∑
i∈A s(i). A solution to the problem is a set of items A ⊆ N . A

solution A is called feasible if s(A) ≤ C, and called optimal if f(A) ≥ f(B) for every feasible
solution B.

An instance of the submodular maximization problem under an unknown knapsack
constraint is as above except that we do not know the capacity C ∈ R>0, i.e., we are again
given a set of items N , their sizes s(i), i ∈ N and the submodular function f . A solution to
this problem is a policy Π that governs the order in which items are added to the solution.
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(a) Modified Greedy Algorithm MGreedy.

1: G0 ← ∅; j ← 1
2: U ← {i ∈ N | s(i) ≤ C}
3: while U ̸= ∅ do
4: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
5: if s(Gj−1 ∪ {ij}) ≤ C then
6: Gj ← Gj−1 ∪ {ij}
7: U ← U \ {ij}
8: j ← j + 1
9: else

10: break
11: k ← j − 1
12: if U = ∅ then
13: return Gk

14: else
15: if f(Gk) ≥ f({ik+1}) then
16: return Gk

17: else
18: return {ik+1}

(b) Alternative Greedy Algorithm AGreedy.

1: G0 ← ∅; j ← 1
2: U ← {i ∈ N | s(i) ≤ C}
3: while U ̸= ∅ do
4: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
5: if s(Gj−1 ∪ {ij}) ≤ C then
6: Gj ← Gj−1 ∪ {ij}
7: U ← U \ {ij}
8: j ← j + 1
9: else

10: break
11: k ← j − 1
12: if U = ∅ then
13: return Gk

14: else
15: if f(Gk) ≥ f(Gk∪{ik+1})−f(Gk) then
16: return Gk

17: else
18: return {ik+1}

Figure 2 Greedy algorithms for maximizing a submodular function f over a knapsack constraint.

3 Submodular Knapsack Problem with Known Capacity

In this section, we analyze the approximation guarantee for two natural greedy algorithms
that, for the sake, of a better distinction, we call modified greedy algorithm (MGreedy) and
alternative greedy algorithm (AGreedy). The modified greedy algorithm was proposed and
analyzed by Wolsey [22] where he shows that it has an approximation ratio of 1− e−x ≈ 0.35
where x is the unique root of the equation ex = 2− x. To the best of our knowledge, there is
no better analysis of this algorithm for submodular functions with bounded curvature. The
alternative greedy algorithm is a slight variation of this algorithm that we need in order to
derive policies for the optimization problem with unknown knapsack constraints in Section 4.

Both algorithms first discard all items i that do not fit into an empty knapsack, i.e.,
s(i) > C. Then, the algorithms start in iteration 0 with an empty solution G0 = ∅. In every
iteration j = 1, 2, . . . , both algorithms choose an item

ij ∈ arg max
{

f(Gj−1 ∪ {i})− f(Gj−1)
s(i)

∣∣∣∣ i ∈ N \Gj−1

}
that is not yet contained in the solution Gj−1 and maximizes the ratio of the increment
of the objective function and the size of the item. If item ij still fits the knapsack, i.e.,
s(Gj−1 ∪ {ij}) ≤ C, then the item is added to the solution. Otherwise, the algorithm stops.
Let k be the last index such that item ik still fits into the knapsack.

Then, algorithm MGreedy either returns the better of the solutions Gk and {ik+1}, i.e.,
it either returns the maximum prefix of the greedy sequence that still fits into the knapsack,
or the first item that did not fit into the knapsack anymore. The alternative greedy also
either returns Gk or {ik+1} but the rule when to return one of the solutions slightly differs.
The item {ik+1} is only returned if the increment f(Gk ∪ {ik+1})− f(Gk)} of adding it to
Gk is larger than f(Gk). In all other cases, Gk is returned.
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Since MGreedy always returns the better of the two solutions Gk and {ik+1} while
AGreedy may also return Gk even though f(Gk) < f({ik+1}), it is clear that the solution
returned by MGreedy is always at least as good as the one returned by AGreedy. Despite
this fact, we are still interested in analyzing AGreedy for two reasons. First, it turns out
that AGreedy is better suited in order to design robust packing policies for the problem
with an unknown knapsack capacity. Second, it will turn out, that in the worst case, the
approximation guarantees that we obtain for MGreedy and AGreedy are actually the
same.

In the following, we fix an instance of the submodular maximization problem under a
knapsack constraint with known capacity. Furthermore, we assume that the items are ordered
N = {i1, i2, . . . , in} in the order as they would be considered by the greedy algorithms. We
also set sj = s(ij) for all j ∈ {1, . . . , n}. We further let k be the maximal prefix of this
ordering that still fits into the knapsack, i.e., k = max{j ∈ {1, . . . , n} |

∑j
i=1 s(i) ≤ C}.

Note that we order the items in this order beyond the (k + 1)-st item when the algorithms
stop. We further set Gj =

⋃
l=1,...,j{il} and δj = f(Gj)− f(Gj−1) for all j ∈ {1, . . . , n}. We

let MG denote the set of items returned by MGreedy, and let AG denote the set of items
returned by AGreedy. Let Opt denote the set of items in an optimal solution. Additionally,
let χj be the indicator for ij ∈ Opt, i.e., χj = 1 if ij ∈ Opt, and χj = 0, otherwise. We
further set Sj = s(Opt ∩Gj).

Summarizing the above discussion, the following result is immediate.

▶ Proposition 2. For every instance, f(MG) ≥ f(AG).

We first provide a lemma that bounds the increase of the value of the greedy solution
from below in two different ways. The proofs use standard submodularity arguments as well
as the property of the greedy sequence; for the proof see Appendix B.

▶ Lemma 3. For all j ∈ {1, . . . , k + 1}, we have

(i) δj ≥
csj

C

(
f(Opt)−

j−1∑
m=1

δm

)
+ (1− c)sj

C − Sj−1

(
f(Opt)−

j−1∑
m=1

χmδm

)
,

(ii) δj ≥
sj

C − (1− c)s(Gj−1)

(
f(Opt)−

j−1∑
m=1

δm

)
.

The following theorem bounds the value of every prefix of the greedy sequence f(Gj) in
terms of f(Opt). For the proof, we use inductive arguments together with Lemma 3; see
Appendix C.

▶ Theorem 4. For all j ∈ {1, . . . , k + 1} we have f(Gj) ≥ 1
c

(
1− exp

(
−c

s(Gj)
C

))
f(Opt).

For j = k + 1 we can derive from Theorem 4 that

f(AG) ≥ 1
2f(Gk+1) ≥ 1

2c

(
1− e−c

)
f(Opt),

but we can improve the robustness factor with the ideas Wolsey [22] uses for MGreedy in
the general submodular case. Specifically, we obtain the following approximation guarantee.
The main ideas of the proof are similar to that in Wolsey [22]; see Appendix D for the proof.

▶ Theorem 5. Let c ∈ (0, 1]. For AGreedy we have

f(AG) ≥ 1− x

2− (2− c)xf(Opt),

where x is the unique root of 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z for z ∈ [0, 1].
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The result of Theorem 5 coincides with the known robustness factors of MGreedy for
the cases c = 0 and c = 1. For the limit c→ 0 we have

lim
c→0

1
c

(
1− e−cz

)
= z,

and the equation simplifies to z = 1/2 which is the known robustness factor for the modular
case; see, e.g., the textbook by Korte and Vygen [11]. For the other extreme case of c = 1
the equation simplifies to 1− e−z = 1−z

2−z , which was shown by Wolsey [22].

4 Submodular Knapsack Problem with Unknown Capacity

In this section we introduce an algorithm that generates a policy which is always at least as
good as AGreedy even though it does not know the capacity of the knapsack. For that
purpose we introduce indispensable items in the first part of this section. They are defined
similar to swap items defined by Disser et al. [5], which they used to achieve their 1/2-optimal
policy for the linear case.

As discussed by Kawase et al. [9], one major challenge when going from the case of a
linear objective function to a submodular objective function is that the greedy order of items
depends on the capacity of the knapsack. When an item is packed into the knapsack then
other items that have a large overlap in terms of the objective with the packed item decrease
in density. On the other hand, for another capacity where the first item is not packed since
it does not fit they remain attractive. This issue makes it difficult to compare the outcome
of a packing policy that does not know the capacity with the outcome of the MGreedy
algorithm as it was done in Disser et al. [5].

Kawase et al. [9] overcome this issue by introducing the concept of the single-valuable
items i with the property f({i}) ≥ 2f(Opt(s(i)/2)), i.e., Kawase et al. do not compare
items with the greedy solution at all and instead compare the value of an item directly with
Opt. In their policy, the most valuable single-valuable item that fits in the knapsack is
inserted first. Afterwards, they try to insert the rest of the items in their greedy order. This
deterministic policy achieves a robustness factor of 2(1− 1/e)/21 ≈ 0.06.

We use another idea to overcome the capacity-dependency of the greedy order. We define
the concept of an indispensable item. These are items that the alternative greedy algorithm
AGreedy returns instead of the greedy solution. It turns out that the performance of this
algorithm can be also obtained by a policy that does not know the capacity.

4.1 Indispensable Items
▶ Definition 6. An item i ∈ N is called indispensable if there exists a capacity C ∈ R>0 for
which AGreedy returns {i} = {ik+1} instead of the greedy solution Gk.

We say that an item i ∈ N is indispensable for capacity C ∈ R≥s(i) if AGreedy returns
{i} = {ik+1} instead of the greedy solution Gk for capacity C.

For ease of exposition, we assume in the following that there are no ties when an algorithm
compares items by value, differences in value, or density. In practice this could be achieved
by small perturbations of the values, or by using a lexicographic order that breaks ties in a
systematic way. However, to avoid heavy notation, we assume that ties do not exist.

For a capacity C ∈ R>0, let GC = (i1, i2, . . . inC
) be the greedy order of all items in

NC = {i ∈ N | s(i) ≤ C} with nC = |NC |. The following lemma contains important
properties of indispensable items that are key to our definition of robust policies.
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▶ Lemma 7. Let item i ∈ N be an indispensable item for capacity C ∈ R≥s(i) and let GC =
(i1, i2, . . . inC

) be the greedy order for the given capacity with i = ik+1 for k ∈ {0, . . . , nC − 1}.
Then the following properties hold:

(i) k ≥ 1 and sk+1 >
∑k

j=1 sj.
(ii) i is and only is an indispensable item for capacities in the interval [C1, C2[, with

C1 = sk+1,

C2 = min
{

s({i1, . . . , ik+1}),

min
{

C̃ > C | the first k + 1 items in GC̃ are not

the first k + 1 items of the greedy-order GC1

}}
.

(iii) Let C̃ be the smallest capacity larger than sk+1, such that the first k + 1 items in GC̃

are not the first k + 1 items in Gsk+1 . Then the first item in GC̃ that is larger than
sk+1 is either the first item in GC̃ or an indispensable item for capacity C̃.

Proof. In the following we denote the indispensable item i by ik+1.
We start to show (i). Obviously, i1 cannot be an indispensable item for capacity C by

definition. Therefore, 1 ≤ k ≤ nC − 1. Since ik+1 is an indispensable item, we have for all
j ∈ {1, 2, . . . , k} that

f(Gk) < f(Gk ∪ {ik+1})− f(Gk) ≤ f(Gj ∪ {ik+1})− f(Gj). (4)

Additionally, we know for every greedy order that for all j ∈ {1, 2, . . . , k} it holds that

f(Gj−1 ∪ {ij})− f(Gj−1)
sj

≥ f(Gj−1 ∪ {ik+1})− f(Gj−1)
sk+1

. (5)

Furthermore, we have

f(Gk) =
k∑

j=1
f(Gj−1 ∪ {ij})− f(Gj−1) ≥

k∑
j=1

sj

sk+1
(f(Gj−1 ∪ {ik+1})− f(Gj−1))

where the first sum is telescopic and then we used inequality (5). We obtain

sk+1 ≥
k∑

j=1
sj

f(Gj−1 ∪ {ik+1})− f(Gj−1)
f(Gk) >

k∑
j=1

sj

by inequality (4).
We next show (ii). Let C be a capacity for which ik+1 is an indispensable item. Obviously,

C ≥ C1 = sk+1. By (i) we know that the size of every item ij , j ∈ {1, . . . , k} is smaller
than the size of ik+1. Therefore, we have that the first k items of the greedy order GC are
identical to the first k items of the greedy order GĈ for all capacities Ĉ ∈ [C1, C] and thus,
ik+1 is an indispensable item for all those capacities.

For all capacities Ĉ > C we have that ik+1 is an indispensable item until there is a
capacity for which the first k + 1 items of the greedy order change or ik+1 does no longer
exceed the capacity, which is the case for s(i1, . . . , ik+1), if the greedy order does not change.
Therefore, ik+1 is an indispensable item for all capacities Ĉ ∈ [C, C2[.

Assume that ik+1 is an indispensable item for a capacity higher or equal to C2 and
therefore, it is the first item in the greedy order that exceeds the capacity. Then we have
that the first k + 1 items of the greedy order have to have changed in comparison to GC .
But then, there is an item in front of ik+1 in the greedy order, which is larger than ik+1.
That contradicts property (i) for indispensable items.
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Algorithm 1 Determine indispensable items.

1: procedure isIndispensable(N, i⋆)
2: G0 ← ∅, j ← 1
3: U ← {i ∈ N | s(i) ≤ s(i⋆)}
4: while s(Gj−1) ≤ s(i⋆) do
5: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
6: if ij = i⋆ then
7: if j ≥ 2 and f(Gj−1 ∪ {ij})− f(Gj−1) > f(Gj−1) then
8: return (True, Gj−1)
9: else

10: return (False, ∅)
11: else
12: Gj ← Gj−1 ∪ {ij}
13: U ← U \ {ij}
14: j ← j + 1
15: return (False, ∅)

Finally, we show (iii). Let GC̃ be the greedy order for capacity C̃ and let G̃j denote the
first j items in GC̃ . Further let ı̃k̃+1 be the first item in GC̃ that has a larger size than ik+1.
It holds k̃ ≤ k, Gj = G̃j for all j ∈ {1, . . . , k̃} and s(̃ık̃+1) = C̃. We proceed to prove that
ı̃k̃+1 is an indispensable item for C̃, if k̃ ≥ 1. Since s(G̃k̃) = s(Gk̃) < sk+1 < s(̃ık̃+1) we have
that ı̃k̃ is the first item in the greedy order GC̃ that exceeds the capacity. Additionally, we
have

f(G̃k̃ ∪ {ı̃k̃+1})− f(G̃k̃) > f(G̃k̃ ∪ {ik+1})− f(G̃k̃)
≥ f(Gk ∪ {ik+1}) − f(Gk) > f(Gk) ≥ f(G̃k̃).

The first inequality holds, since ı̃k̃+1 is in front of ik+1 in the greedy order GC̃ and s(̃ık̃+1) >

s(ik+1). Second and last inequality follow from submodularity and the fact that G̃k̃ = Gk̃ ⊆
Gk. The third inequality holds, because ik+1 is an indispensable item. ◀

With Lemma 7 (ii) we can determine if an item i is an indispensable item by checking
if it is indispensable for the capacity s(i). Such a procedure is given in Algorithm 1.
The algorithm builds the greedy order Gs(i) until the first item exceeds the capacity or
item i is chosen. Only if i is the item that exceeds the capacity and fulfills the condition
f(Gj−1 ∪ {i})− f(Gj−1) > f(Gj−1), the algorithm returns True together with the greedy
items in front of i, which will be helpful later on.

4.2 Robust Policy
The general idea of the adaptive policy is to choose a reasonable start item based on
Lemma 7 (iii). We build a list of those items and then start to build our solution with the
biggest item of the list that fits in the knapsack. Note that AGreedy always returns the
greedy solution for all capacities smaller than the size of the smallest indispensable item,
thus we start the list with the smallest indispensable item and only add larger items to the
list. By Lemma 7 (iii) we have for an indispensable item ik+1, that it is part of the output of
AGreedy until there is a capacity for which there is a larger indispensable item or there is
a new first item in the greedy order for this capacity. Therefore, we add exactly those items
to the list.
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Algorithm 2 List of start items.

1: procedure StartItemList(N)
2: i1, . . . , i|N | ← < items sorted non-decreasingly by size >

3: F ← [ ], j ← 1
4: while j ≤ |N | do
5: U ← {i ∈ N | s(i) ≤ s(ij)}
6: i← arg max

{
f({i})

s(i) | i ∈ U
}

7: (isIndis, G)← isIndispensable(N, i)
8: if isIndis = True then
9: F ← [i] + F

10: else if i = i1 and F ̸= [ ] then
11: F ← [i] + F

12: j ← j + 1
13: return F

We create a list of start items as follows. It starts by ordering the items non-decreasingly
by size. For every item i it is checked if the item is indispensable or if it is the first item
in the greedy order for capacity s(i). Indispensable items are always added to the list and
items, which are first in the greedy order, are only added if there is already an item in the
list. Thus, the smallest indispensable item is the first item added to the list. Note that it
is not possible that two items of the same size are added to the list. Since the algorithm
always adds an item to the start of the list, the size of items in the list is strictly decreasing.
For a formal description; see Algorithm 2.

Finally, Algorithm 3 generates an adaptive policy for the submodular knapsack problem
with unknown capacity. The algorithm consists of three main steps.
Step 1. If possible, insert the largest item from the list of starting items F that fits in the

knapsack. Let this item be ik+1.
Step 2. If ik+1 is an indispensable item, try to insert the first k items of the greedy order

Gs(ik+1).
Step 3. Try to pack all other items in their greedy order.
If AGreedy returns an indispensable item, Step 1 guarantees that this indispensable item is
also in the solution returned by Algorithm 3. For the case, when an indispensable item ik+1
is added to the solution in Step 1, but the capacity is higher or equal to s({i1, . . . , ik+1}),
such that ik+1 is not an indispensable for this capacity, we want to add the items {i1, . . . , ik},
contained in Gk to our solution (Step 2). In Step 3 we complete the solution. We try to add
items to the knapsack in their greedy order. We will show in Theorem 8 that this policy
generated by Algorithm 3 is always as good as AGreedy.

▶ Theorem 8. For a capacity C ∈ R>0 let Π(C) be the policy generated from Algorithm 3
and let AG(C) be the output of AGreedy. Then, we have f(Π(C)) ≥ f(AG(C)) for every
capacity C ∈ R>0.

Proof. Let F be the list of starting items created by Algorithm 2. If there are no indispensable
items in N , then F and Gk are empty in Algorithm 3 and the algorithm tries in Step 3 to
insert all items in their greedy order. Furthermore, AGreedy always returns the greedy
solution in this case. Assume that Algorithm 3 tries to pack an item in the knapsack that is
not part of the greedy solution returned by AGreedy, before the algorithm has packed all
items of the greedy solution. Since this item was not considered by AGreedy, it has to be
larger than the knapsack capacity and thus, cannot be inserted by Algorithm 3. Therefore,
we obtain f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ R>0 in this case.
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Algorithm 3 Robust policy.

1: S ← ∅, G← ∅
2: F ← StartItemList(N)
3: j ← 1
4: while S = ∅ and j ≤ len(F ) do
5: ik+1 ← F [j]
6: if ik+1 fits in the knapsack then
7: (∼, Gk)← isIndispensable(N, ik+1)
8: S = {ik+1}
9: else

10: N ← {i ∈ N | s(i) < s(ik+1)}
11: j ← j + 1
12: for i ∈ Gk do
13: if S ∪ {i} fits in the knapsack then
14: S ← S ∪ {i}
15: N ← N \ {i}
16: while N ̸= ∅ do
17: imax ← arg max{ f(S∪{i})−f(S)

s(i) | i ∈ N}
18: if S ∪ {imax} fits into the knapsack then
19: S ← S ∪ {imax}
20: N ← N \ {imax}
21: else
22: N ← {i ∈ N | s(i) < s(imax)}
23: return S

Now we assume there is at least one indispensable item, implying that F is not empty.
Let f1, . . . , f|F | be the items in F sorted increasingly by size. Consider the partition of
all capacities in the intervals [Ij , Ij+1) for j ∈ {0, . . . , |F |}, with I0 = min{s(i) | i ∈ N},
I|F |+1 = s(N) and Ij = s(fj) for j ∈ {1 . . . , |F |}.

First, we consider all capacities C ∈ [I0, I1). Since, the capacities are smaller than
any item in F , Algorithm 3 inserts no item from F and Gk remains empty. Therefore,
Algorithm 3 again tries to insert all items by their greedy order and AGreedy returns the
greedy solution for all those capacities, because all indispensable items have a larger size.
We have f(Π(C)) ≥ f(AG(C)) by the same argumentation as in the case where F is empty.

Second, we consider all capacities C ∈ [Ij , Ij+1) for an arbitrary j ∈ {1 . . . , |F |}. Note
that Algorithm 3 inserts the item fj from F for all those capacities as the first item. We
distinguish the cases where fj is an indispensable item and where fj is not an indispensable
item. In the following we denote item fj as ik+1.

Case 1: ik+1 is an indispensable item. By Lemma 7 (ii) we have that ik+1 is packed by
AGreedy instead of the greedy solution Gk for all capacities C ∈ [C1, C2). For all capacities
C ∈ [C1, C2) ∩ [Ij , Ij+1) we have f(Π(C)) ≥ f(AG(C)), since Algorithm 3 inserts the same
indispensable item in step 1. Since C1 = Ij , there are only two more cases to distinguish:
C ∈ [C2, Ij+1) if C2 < Ij+1 and C ∈ [Ij+1, C2) if C2 > Ij+1.
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Subcase 1.1: C ∈ [C2, Ij+1) if C2 < Ij+1 Note that we have C2 = s({i1, . . . , ik+1}),
because C2 < s(i1, . . . , ik+1) implies that an item with size C2 changed the greedy order of
the first k + 1 items. Such an item would have been added to F , since it is an indispensable
item or the first item in the greedy order by Lemma 7 (iii), but then C2 = Ij+1.

For all capacities C ∈ [C2, Ij+1) we know by Lemma 7 (iii) that the first k + 1 items in
the greedy order GC are still identical to the first k + 1 items of Gsk+1 . We also know that
there is no indispensable item for any capacity C ∈ [C2, Ij+1). Therefore, AGreedy returns
the greedy solution. After Algorithm 3 packed the indispensable item ik+1, the algorithm
continues in step 2 to insert the first k greedy items of the greedy order Gs(ik+1). We already
discussed that all these items fit in the knapsack, since C ≥ C2 = s({i1, . . . , ik+1}) and that
they are also the first k + 1 items packed by AGreedy.

After the first k + 1 items, AGreedy continues to pack more items greedily until the first
item exceeds the capacity. Algorithm 3 also continues in step 3 to pack more items greedily
and thus we have f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ [C2, Ij+1).

Subcase 1.2: C ∈ [Ij+1, C2) if C2 > Ij+1 We will show that this case cannot occur.
Consider item fj+1 ∈ F with s(fj+1) = Ij+1. It is either an indispensable item for capacity
Ij+1 or the first item in the greedy order GIj+1 .

By Lemma 7 (ii) we know, that fj+1 is not allowed to change the first k + 1 items in the
greedy order Gsk+1 , since then we would have C2 = Ij+1. Thus, fj+1 cannot be the first item
in the greedy order GIj+1 and as an indispensable item for capacity Ij+1 it has to appear
behind the first k+1 items of Gsk+1 . But this also gives a contradiction, since

s(fj+1) >
k+1∑
j=1

sj ≥ C2 > Ij+1 = s(fj+1). (6)

The first inequality follows from Lemma 7 (i) and the second inequality from Lemma 7 (ii).

Case 2: ik+1 is not an indispensable item Then, ik+1 is the first item in the greedy order
Gs(ik+1) and it is the first item in the greedy order GC for every capacity C ∈ [Ij , Ij+1) too,
since a new first item would have been added to F . Additionally, we know that there is no
indispensable item for all capacities C ∈ [Ij , Ij+1), since it also would have been added to F .
Therefore, AGreedy returns the greedy solution for all capacities C ∈ [Ij , Ij+1) and the
first item packed by Algorithm 3 is always the first item of the greedy solution returned by
AGreedy. In step 2 of Algorithm 3 no items are added to the knapsack, because Gk is empty,
if ik+1 is not an indispensable item. Then, Algorithm 3 tries to insert items exactly by their
greedy order in step 3 and this yields f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ [Ij , Ij+1).

Thus, the statement holds for all capacities in the intervals [Ij , Ij+1), j ∈ {0, . . . , |F |}.
For capacities smaller than I0 no item can be packed and for capacities greater than I|F |+1
every item can be packed in the knapsack. This completes the proof. ◀

From Theorem 5 and Theorem 8 we obtain the main result of this paper.

▶ Theorem 9. The policy Π generated by Algorithm 3 has a robustness factor of α = 1−x
2−(2−c)x

where x is the unique root in [0, 1] of the equation 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z .
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A Proof of Lemma 1

Proof. We first show (i). Let A ⊂ N and j ∈ N \A be arbitrary. We calculate

1− c = min
i∈N

f(N)− f(N \ {i})
f({i}) ≤ f(N)− f(N \ {j})

f({j}) ≤ f(A ∪ {j})− f(A)
f({j})

where for the equation, we used the definition of curvature, and for the last equation, we
used submodularity.

To show (ii), we successively apply (i) on the elements in B. ◀

B Proof of Lemma 3

Proof. Using Lemma 1 (ii) with A = Opt and B = Gj−1 \Opt, we obtain

f(Opt) + (1− c)
∑

i∈Gj−1\Opt

f({i})− f(Gj−1) ≤ f(Opt ∪Gj−1)− f(Gj−1). (7)

We proceed to bound the term f(Opt ∪Gj−1)− f(Gj−1) that appears on the right hand
side of (7) via

f(Opt ∪Gj−1)− f(Gj−1) ≤
∑

i∈Opt\Gj−1

f(Gj−1 ∪ {i})− f(Gj−1)

=
∑

i∈Opt\Gj−1

s(i)f(Gj−1 ∪ {i})− f(Gj−1)
s(i)

≤

( ∑
i∈Opt\Gj−1

s(i)
)

f(Gj−1 ∪ {ij})− f(Gj−1)
sj

= s(Opt \Gj−1)f(Gj)− f(Gj−1)
sj

= s(Opt \Gj−1)δj

sj
,
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where we used (3) and the definition of the greedy sequence. To show (i), we bound the term
(1− c)

∑
i∈Gj−1\Opt f({i})− f(Gj−1) on the left hand side of (7) by

(1− c)
∑

i∈Gj−1\Opt

f({i})− f(Gj−1) ≥ (1− c)
j−1∑
m=1

(1− χm)δm − f(Gj−1)

= (1− c)
j−1∑
m=1

(1− χm)δm −
j−1∑
m=1

δm

= −(1− c)
j−1∑
m=1

χmδm − c

j−1∑
m=1

δm,

where we used submodularity for the inequality. Both bounds applied to inequality (7) yield

s(Opt \Gj−1)δj

sj
≥ f(Opt)− (1− c)

j−1∑
m=1

χmδm − c

j−1∑
m=1

δm

= c
(

f(Opt)−
j−1∑
m=1

δm

)
+ (1− c)

(
f(Opt)−

j−1∑
m=1

χmδm

)
.

Multiplication with sj

s(Opt\Gj−1) and applying s(Opt \Gj−1) ≤ C − Sj−1 ≤ C completes the
proof of (i).

To prove (ii), we bound
∑

i∈Gj−1\Opt f({i}) in a different way by

∑
i∈Gj−1\Opt

f({i}) ≥
j−1∑
m=1

(1− χm)δm

=
j−1∑
m=1

(1− χm)sm
δm

sm

≥
( j−1∑

m=1
(1− χm)sm

)δj

sj
= s(Gj−1 \Opt)δj

sj
,

where for the first inequality we used submodularity and for the second inequality we used
a property of the greedy sequence. Applied to inequality (7) together with the first bound
yields

f(Opt)− f(Gj−1) ≤ s(Opt \Gj−1)δj

sj
− (1− c)s(Gj−1 \Opt)δj

sj

=
(

s(Opt \Gj−1)− (1− c)s(Gj−1 \Opt)
)δj

sj

≤
(

s(Opt)− (1− c)s(Gj−1)
)δj

sj

≤
(

C − (1− c)s(Gj−1)
)δj

sj
,

as claimed. ◀
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C Proof of Theorem 4

Proof. Applying the bound of Lemma 3 (i) for all j, we obtain the following lower bound
on Gj .

▷ Claim 10. For all j ∈ {1, . . . , k + 1} and for all l ∈ {0, . . . , j} we have

f(Gj) ≥ f(Opt)−
(

j∏
m=l+1

(
1− csm

C

))(
f(Opt)−

l∑
m=1

δm

)

+ 1− c

c

C

C − Sl

(
1−

j∏
m=l+1

(
1− csm

C

))(
f(Opt)−

l∑
m=1

χmδm

)
. (8)

For a fixed j ∈ {1, . . . , k + 1} we proof the claim by induction over l starting with l = j and
going down by one in the induction step.

For l = j both products in (8) are equal to 1 and the right side simplifies to
∑j

m=1 δm =
f(Gj). For the induction step assume that the statement of the claim holds for l ∈ {1, . . . , j}
and consider the statement for l − 1. To shorten the notation we set

Pt :=
j∏

m=t

(
1− csm

C

)
,

for t = 1, . . . , j + 1. The induction hypothesis is

f(Gj) ≥ f(Opt)− Pl+1

(
f(Opt)−

l∑
m=1

δm

)
+ 1− c

c

C

C − Sl

(
1− Pl+1

)(
f(Opt)−

l∑
m=1

χmδm

)
.

To apply Lemma 3 (i) for j = l, we rearrange δl terms. Those terms read(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
δl.

We can transform the factor of δl to see that it is greater or equal to zero. Note that the
factor 1/c vanishes in 1− Pl+1.

Pl+1 − χl
1− c

c

C

C − Sl

(
1− Pl+1

)
= (1− c) + c

(
1− 1

c

(
1− Pl+1

))
− χl(1− c) C

C − Sl

1
c

(
1− Pl+1

)
= c
(

1− 1
c

(
1− Pl+1

))
+ (1− c)

(
1− χl

C

C − Sl

1
c

(
1− Pl+1

))
≥ 0.

Applying

δl ≥
csl

C

(
f(Opt)−

l−1∑
m=1

δm

)
+ (1− c)sl

C − Sl−1

(
f(Opt)−

l−1∑
m=1

χmδm

)
,

yields

f(Gj) ≥ f(Opt)− α
(

f(Opt)−
l−1∑

m=1
δm

)
+ β

(
f(Opt)−

l−1∑
m=1

χmδm

)
,
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with

α = Pl+1 −
csl

C

(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
=
(

1− csl

C

)
Pl+1 + χl(1− c) sl

C − Sl

(
1− Pl+1

))
= Pl + χl(1− c) sl

C − Sl

(
1− Pl+1

))
,

and

β = 1− c

c

C

C − Sl

(
1− Pl+1

)
+ (1− c)sl

C − Sl−1

(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
= 1− c

c

C

C − Sl

(
1− χl

(1− c)sl

C − Sl−1

)(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl

(C − Sl−1 − χlsl

C − Sl−1
+ χl

csl

C − Sl−1

)(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl−1

(
1− Pl+1

)
+ χl

1− c

c

C

C − Sl

csl

C − Sl−1

(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl−1

(
1− (1− csl

C
)Pl+1

)
+ χl(1− c) C

C − Sl

sl

C − Sl−1

(
1− Pl+1

)
= 1− c

c

C

C − Sl−1

(
1− Pl

)
+ χl(1− c) C

C − Sl

sl

C − Sl−1

(
1− Pl+1

)
≥ 1− c

c

C

C − Sl−1

(
1− Pl

)
+ χl(1− c) sl

C − Sl

(
1− Pl+1

)
.

Thus, we have

f(Gj) ≥ f(Opt)− Pl

(
f(Opt)−

l−1∑
m=1

δm

)
+ 1− c

c

C

C − Sl−1

(
1− Pl

)(
f(Opt)−

l−1∑
m=1

χmδm

)
+ χl(1− c) sl

C − Sl

(
1− Pl+1

)( l−1∑
m=1

δm −
l−1∑

m=1
χmδm

)
≥ f(Opt)− Pl

(
f(Opt)−

l−1∑
m=1

δm

)
+ 1− c

c

C

C − Sl−1

(
1− Pl

)(
f(Opt)−

l−1∑
m=1

χmδm

)
,

as claimed.
For j ∈ {1, . . . , k + 1} and l = 0 the statement of the claim simplifies to

f(Gj) ≥ f(Opt)−
(

j∏
m=1

(
1− csm

C

))
f(Opt) + 1− c

c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

=
(

1 + 1− c

c

)(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

= 1
c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt).
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We derive the final statement of the theorem

f(Gj) ≥ 1
c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

≥ 1
c

(
1−

(
1
j

j∑
m=1

(
1− csm

C

))j)
f(Opt)

= 1
c

(
1−

(
1− c

jC

j∑
m=1

sm

)j)
f(Opt)

= 1
c

(
1−

(
1− cs(Gj)

jC

)j)
f(Opt)

≥ 1
c

(
1− exp

(
−c

s(Gj)
C

))
f(Opt),

where we used that the geometric mean is always smaller or equal to the arithmetic mean
for non-negative values and that (1 + x

j )j ≤ ex for all j ≥ 1 and x ∈ R. ◀

D Proof of Theorem 5

Proof. We define z := s(Gk)
C . By Theorem 4 we have for j = k that

f(Gk) ≥ 1
c

(
1− e−cz

)
f(Opt). (9)

Additionally, we have by Lemma 3 (ii) for j = k + 1 that

δk+1 ≥
sk+1

C − (1− c)s(Gk) (f(Opt)− f(Gk)).

Solving for f(Opt) and replacing s(Gk) by zC gives

f(Opt) ≤ f(Gk) + C(1− (1− c)z)
sk+1

δk+1.

With C < s(Gk) + sk+1 = zC + sk+1 we have C < sk+1
1−z and this yields

f(Opt) ≤ f(Gk) + 1− (1− c)z
1− z

δk+1

≤ f(AG) + 1− (1− c)z
1− z

f(AG) = 2− (2− c)z
1− z

f(AG),

where the last inequality holds in both cases of AGreedy. Together with (9) we get

f(AG) ≥ min
z∈[0,1]

max
{

1
c

(
1− e−cz

)
,

1− z

2− (2− c)z

}
f(Opt).

Note that 1
c

(
1− e−cz

)
is monotonically increasing and 1−z

2−(2−c)z is monotonically decreasing
for z ∈ [0, 1] and a fixed c ∈ (0, 1) and that they have a unique intersection for z ∈ [0, 1].
Therefore, the minimum is attained at this intersection. ◀
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Some Results on Approximability of Minimum Sum
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Abstract
We study the Minimum Sum Vertex Cover problem, which asks for an ordering of vertices in a
graph that minimizes the total cover time of edges. In particular, n vertices of the graph are visited
according to an ordering, and for each edge this induces the first time it is covered. The goal of the
problem is to find the ordering which minimizes the sum of the cover times over all edges in the
graph.

In this work we give the first explicit hardness of approximation result for Minimum Sum Vertex
Cover. In particular, assuming the Unique Games Conjecture, we show that the Minimum Sum
Vertex Cover problem cannot be approximated within 1.014. The best approximation ratio for
Minimum Sum Vertex Cover as of now is 16/9, due to a recent work of Bansal, Batra, Farhadi, and
Tetali.

We also revisit an approximation algorithm for regular graphs outlined in the work of Feige,
Lovász, and Tetali, and show that Minimum Sum Vertex Cover can be approximated within 1.225
on regular graphs.
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1 Introduction

In the Minimum Sum Vertex Cover problem, as an input we are given a graph G = (V, E),
and the goal is to find an ordering of vertices which minimizes the total cover time of edges in
E. In particular, we visit vertices in |V | steps, one at each step, and an edge e is considered
to be covered at the time t ∈ {1, . . . , |V |} if the first time one of its endpoints is visited by
the ordering is t.

The Minimum Sum Vertex Cover (MSVC) problem was introduced by Feige, Lovász, and
Tetali [9], as a special case of the Minimum Sum Set Cover problem, which was of primary
interest in that work. The same work showed that MSVC can be approximated within a
factor of 2 using linear programming. That work also studied MSVC on regular graphs,
and observed that a greedy algorithm approximates the optimal value within a factor of
4/3. In addition to this, it was shown that 4/3 factor can be improved using semidefinite
programming to some non-explicit constant β smaller than 4/3.
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The 2-approximation algorithm was subsequently improved by Barenholz, Feige, and
Peleg [7], who gave a 1.999946-approximation algorithm for this problem. This was then
substantially improved by Bansal, Batra, Farhadi, and Tetali, who, using linear programming
with fairly involved rounding procedure, showed that MSVC can be approximated within
a factor of 16/9. Furthermore, the same work gives a linear programming integrality gap
matching the approximation ratio.

So far explicit hardness of approximation results for this problem have been lacking, and
to the best knowledge of the author, the only inapproximability result [9] gives hardness of
1 + ε, for some small non-explicit ε > 0, using a reduction from the Minimum Vertex Cover
problem on bounded degree graphs [1, 4]. In this work we give the first explicit hardness for
MSVC, which we state in the following theorem.

▶ Theorem 1. Assuming the Unique Games Conjecture, Minimum Sum Vertex Cover is
NP-hard to approximate within 1.014.

We use the Unique Games Conjecture introduced by Khot [10] as our hardness assumption.
This conjecture has been the central open problem in the hardness of approximation area
since its introduction, and many already known (and optimal) hardness of approximation
results rely on the validity of this conjecture [15, 2, 13, 6].

Furthermore, our hardness reduction outputs regular graphs, for which better approxima-
tion algorithms are known compared to the general case.

Further to this, we will also revisit the approximation algorithm of Feige, Lovász, and
Tetali [9] for regular graphs. Our contribution can be described as follows. The algorithm
for regular graphs outlined in [9] uses an approximation algorithm for a problem called
Max-k-VC in a “black box” manner. Max-k-VC problem is the problem of finding k vertices
in a graph that cover as many edges as possible. The approximation ratio of the algorithm
for regular graphs in [9] depends on the approximation ratio α for Max-k-VC problem. Due
to the developments since the publication of [9] on Max-k-VC, a better value of α can be
achieved, and hence by using this value we can obtain stronger approximation. Furthermore,
a certain bound1 used in an argument outlined in [9] for the approximation algorithm on
regular graphs is incorrect, which we show by giving a counterexample in the appendix.
We correct this by proving the optimal bound, and observe that the rest of the argument
still holds. Let us remark that the sharpness of the bound affects the approximation ratio,
and hence finding the optimal bound is desirable in this case. In conclusion, we obtain the
following result

▶ Theorem 2. Minimum Sum Vertex Cover can be approximated within 1.225 on regular
graphs.

1.1 Techniques and Proof Ideas
In this section we give an overview of the proof and briefly discuss techniques used.

The starting point of our reduction are Unique Games, which we formally describe in
Section 2. More precisely, we use regular Affine Unique Games as an input to our reduction.
Regular Affine Unique Games are Unique Games in which the alphabet is understood as
an additive group ZL, and the constraints are of form xu − xv = ce for an edge e = (u, v),
while the word regular indicates that the constraint graph is regular. Interestingly, in this

1 We do not discuss what this bound exactly is here, for the sake of clarity.
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work the structure of Affine Unique Games actually helps us achieve better completeness
and therefore a stronger inapproximability result. The property of Affine Unique Games
that we use can be described as follows. Let us consider the completeness case, in which we
have some assignment z of labels to the vertices in the Affine Unique Games, which satisfies
almost all the constraints. Then, for any a ∈ ZL, the assignment za = z + a gives another
assignment which satisfies almost all the constraints. Furthermore, if we let Va, a ∈ ZL, to
be the vertex subset in the label extended graph comprised of vertex labels “selected” by the
map za, then the sets Va are disjoint, and this gives us enough structure to find an ordering
with a low sum set cover value.

Let us elaborate. Our reduction uses the same standard long code dictatorship testing
as the celebrated paper of Khot, Kindler, Mossel, and O’Donnell [11], which among other
results gave the optimal hardness of Max-Cut assuming the Unique Games Conjecture. This
is the same reduction that appeared in [4, 5], and hence the graphs that are output by the
reduction satisfy the same properties as outlined in these works, which turns out to be useful
for studying soundness. In particular, in the soundness case, for each r ∈ (0, 1), and each
vertex subset of fractional size r, we have a lower bound b := b(r) on the number of edges
with both endpoints in this subset. Therefore, no matter which order of visiting the vertices
we choose, after t ∈ {1, . . . , n} steps, we have not covered edges which have both endpoints in
vertices visited after the time t, and hence at the time t we have at least b(1 − t/n) uncovered
edges. This gives us a lower bound of form

∑n
i=1 b(1 − r/n) ≈

∫ 1
0 b(x)dx.

In the completeness case, we are supposed to specify an ordering of the vertices in each
of k ∈ N long codes. Given this ordering, in the first pass we would pick first vertex in each
of the k long codes, after which we would pick the second vertex in each long code, etc. The
order in which we visit k long codes will not be impactful. Hence, it is very important to
pick order of visiting vertices in each long code well. This is where the affine structure of
Unique Games proves to be useful. In the case we have only one good labeling (as it is the
case with “classical” Unique Games), an obvious observation is that we can take first all
vertices with 0 in the coordinate fixed by a good labelling z = z0, and then all vertices with 1
in the same coordinate. However, there are many vertices in a long code which have 0 in the
coordinate fixed by a good labelling, and hence many orderings can be chosen. Therefore,
the question is which order should one pick the vertices with in this subset? Since in Affine
Unique Games we have a second satisfying assignment, namely z1, there is a natural ordering
among these. We iterate through vertices that have 0 in the coordinate fixed by z1, and after
visiting the whole subgraph, visit vertices that have 1 in the coordinate fixed by z1. We can
repeat this idea and visit smaller and smaller subgraphs, the last of which will consist only
of two vertices and for which we will use zL−1.

The idea of using multiple good assignments in reductions from Unique Games already
appeared in [8], but it is still fairly uncommon. Hence, it would be interesting to see whether
it would be useful for some other problems as well.

As we mentioned in the introduction, the output of the hardness reduction is a weighted
graph, and we need to remove its weights. The idea for this is simple: we replace each vertex
v with m new vertices which we group in a set Av, for m is sufficiently large. We then replace
each edge e = (u, v) by sampling edges between Au and Av at a correct density. This graph
indeed looks like the initial graph and is almost regular, however, proving that it preserves
soundness and completeness properties, and making it exactly regular, requires some effort.
Due to the size limitation, we defer the details of this part to the full version of this paper.

APPROX/RANDOM 2022
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1.2 Organization
In Section 2 we introduce the notation used in this work, recall some well known facts, and
formally introduce the Minimum Sum Vertex Cover problem. Then, in Section 3, we give
our hardness reduction which outputs weighted graphs and discuss how it can be used to
show Theorem 1.

Then, in Section 4 we show how Minimum Sum Vertex Cover on regular graphs can
by approximated within a factor of 1.225, by recalling the algorithm from [9] and making
necessary changes.

2 Preliminaries

For n ∈ N we use [n] to denote [n] = {1, 2, . . . , n}. In this paper we work with undirected
(multi)graphs G = (V, E). For a set S ⊆ V of vertices we use Sc to denote its complement
Sc = V \ S, and write U ⊔ V for a disjoint union of sets U and V .

The initial graph output by our reduction will be edge weighted. The weights of edges
are given by a function w : E → [0, 1]. For a subset K ⊆ E we interpret w(K) as the sum
of weights of edges in K. Furthermore, we will typically normalize the weights so that
w(E) = 1. For S, T ⊆ V , we write w(S, T ) for the total weight of edges from E which have
one endpoint in S, and other in T . Note that, since we work with undirected graphs, the
order of endpoints is not important, and therefore w(S, T ) = w(T, S). We remark that the
sets S, T, do not need to be disjoint. We also use N(S, T ) to denote the set of all edges with
one endpoint in S and other endpoint in T . For a vertex v ∈ V , we use N(v) to denote the
set of its neighbours.

The following definition will be useful in discussing properties of our reduction.

▶ Definition 3. A graph G is (r, h)-dense if every subset S ⊆ V with w(S) = r satisfies
w(S, S) ≥ h.

Minimum Sum Vertex Cover is arguably more natural in an unweighted setting, i.e., the
setting in which the weights of all edges are equal. Let us now introduce the Min Sum Vertex
Cover problem for unweighted graphs.

▶ Definition 4. Consider an unweighted graph G = (V, E), and let n = |V |. For an ordering
of vertices represented as a bijection σ : [n] ↔ V , and an edge (u, v) = e ∈ E, let us denote
with cσ,e the “time” at which edge e is covered, that is

cσ,e = min(σ−1(u), σ−1(v)).

Then the Sum Vertex Cover under scheduling σ, which we denote by SVCG(σ), is given as

SVCG(σ) = 1
|E|

∑
e∈E

cσ,e. (1)

The value of Min Sum Vertex Cover is the minimal value of SV CG(σ) over all possible
permutations σ, that is

MSVC(G) = min
σ : [n]↔V

SVCG(σ). (2)

We have normalized the expression for SVCG(σ) by 1
|E| for the sake of writing convenience.

This does not affect our results, since the normalization factor will be cancelled out when
studying approximation ratios. We can also reformulate the expression (1), stating the value
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of Sum Vertex Cover under scheduling σ, as follows. At the time t ∈ [n], the total number of
edges not covered2 is w(σ([t])c, σ([t])c), and let us assign them the cost of 1 at that time.
The cost cσ,e of an edge e under σ is exactly the number of times t the edge was not covered,
and hence we can write

SVCG(σ) = 1
|E|

n∑
t=1

w(σ([t])c, σ([t])c). (3)

We remark that this allows us to define Mininimum Sum Vertex Cover for edge weighted
graphs, by replacing 1

|E| above with 1
w(E) , i.e., for weighted graphs we have

SVCG(σ) = 1
w(E)

n∑
t=1

w(σ([t])c, σ([t])c).

We can also discuss Minimum Sum Vertex Cover for weighted graphs in the sense of definitions
(1) and (2) by letting

SVCG(σ) = 1
w(E)

∑
e∈E

wecσ,e.

As mentioned in the introduction, we can extend this definition in a natural way to include
vertex weights. However, we have not found vertex weights to be useful for hardness reduction,
and hence we omit further discussing this for the sake of simplicity.

In order to state the quantities appearing in our result, it is necessary to introduce some
more notation. We use ϕ(x) = 1√

2π
e−x2/2 to denote the density function of a standard normal

random variable, and Φ(x) =
∫ x

−∞ ϕ(y)dy to denote its cumulative distribution function
(CDF). We also work with bivariate normal random variables, and to that end introduce the
following function.

▶ Definition 5. Let ρ ∈ [−1, 1], and consider two jointly normal random variables X, Y, with

mean 0, and covariance matrix Cov(X, Y ) =
[
1 ρ

ρ 1

]
. We define Γρ : [0, 1]2 → [0, 1] as

Γρ(x, y) = Pr
[
X ≤ Φ−1(x) ∧ Y ≤ Φ−1(y)

]
.

We also write Γρ(x) = Γρ(x, x).

The hardness result stated in this paper is based on the Unique Games Conjecture. In order
to state this conjecture, we first introduce Unique Games.

▶ Definition 6. A Unique Games instance Λ = (U , V, E , Π, [L]) consists of an unweighted
bipartite multigraph (U ⊔ V , E), a set Π = {πe : [L] → [L] | e ∈ E and πe is a bijection}
of permutation constraints, and a set [L] of labels. The value of Λ under the assignment
z : U ⊔ V → [L] is the fraction of edges satisfied, where an edge e = (u, v), u ∈ U , v ∈ V , is
satisfied if πe(z(u)) = z(v). We write Valz(Λ) for the value of Λ under z, and Opt(Λ) for
the maximum possible value over all assignments z.

Let us remark that we require Unique Games instance graph (U , V, E) to be regular. Since
Unique Games belong to the class of problems known as Constraint Satisfaction Problems
(CSPs), without loss of generality we can assume regularity, as shown in [16].

The Unique Games Conjecture [10] can be stated as follows ([12], Lemma 3.4).

2 We interpret σ([t]) as σ([t]) = {σ(i) | i ∈ [t]}.
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▶ Conjecture 7 (Unique Games Conjecture). For every constant γ > 0 there is a sufficiently
large L ∈ N, such that for a Unique Games instance Λ = (U , V, E , Π, [L]) with a regular
bipartite graph (U ⊔ V , E), it is NP-hard to distinguish between

Opt(Λ) ≥ 1 − γ,
Opt(Λ) ≤ γ.

The starting point of hardness result in this work are Affine Unique Games, which are a type
of Unique Games defined as follows.

▶ Definition 8. An Affine Unique Games instance Λ = (U , V, E , Π, [L]) is a Unique Games
Instance Λ in which all permutation constraints πe are affine constraints. Furthermore, the
alphabet [L] is identified with an additive group ZL, and for each E ∋ e = (u, v) we have
πe(x) = x − ce, where ce ∈ ZL is a constant.

We remark that approximating Affine Unique Games is equally hard as approximating Unique
Games, in the sense stated by the lemma below which was proved in [11].

▶ Lemma 9 (Affine Unique Games Hardness). Assuming the Unique Games Conjecture, the
following statement holds. For every constant γ > 0, there is a sufficiently large L ∈ N, such
that for an Affine Unique Games instance Λ = (U , V, E , Π, [L]) with a regular bipartite graph
(U ⊔ V , E), it is NP-hard to distinguish between

Opt(Λ) ≥ 1 − γ,
Opt(Λ) ≤ γ.

3 Hardness Reduction

In this section we state and prove our main result. In Section 3.1 we give a reduction from
Affine Unique Games to weighted graphs which satisfy properties sufficient for showing
hardness of approximating Min Sum Vertex Cover.

3.1 Reduction from Unique Games to Weighted Graphs
We remark that we use the same type of reduction as in [11, 4, 5], with the only difference
being that we now use Affine Unique Games as the starting point, and compared to [5]
we are here interested only3 in the unbiased setting (q = 1/2). The main challenge lies in
proving completeness, since we will reuse the soundness property of the reduction in the
aforementioned results.

Before giving the full proof of the result, we will sketch the ideas behind studying the
completeness case now. Consider having a labelling z which satisfies almost all the edges. Let
us describe what happens locally on two vertices u, v, with a common neighbour w, which
are chosen such that (u, w) and (v, w) edges are satisfied by z. For the sake of simplicity,
let us assume that the affine constraints on e1 = (u, w), and e2 = (v, w), are trivial, that
is, ce1 = ce2 = 0, so that the labels xu and xv are matched by z if and only if xu = xv.
Then, we replace both u and v with 2L strings of length L. Let us call the sets of strings
which replaced u and v as R and S, respectively. We drop indices u, v here for the sake of
readability. Hence, we have

S = {(s1, . . . , sL) | si ∈ {0, 1} , i ∈ [L]} , R = {(r1, . . . , rL) | ri ∈ {0, 1} , i ∈ [L]} .

3 We remark that one could also consider using a reduction with biased bits, i.e., the reduction from [5]
with q ̸= 1/2. However, this does not yield better inapproximability.
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Edges between S and R are created as follows. The reduction first fixes some negat-
ive correlation parameter ρ ∈ (−1, 0), samples L times pairs of unbiased, ρ correlated
bits, (si, ri), i = 1, . . . , L, and then adds an edge between s = (s1, . . . , sL) ∈ S and
r = (r1, . . . , rL) ∈ R. Let us use ν to denote the probability distribution of two ρ cor-
related, unbiased bits, i.e.,

ν(0, 0) = ν(1, 1) = 1 + ρ

4 , ν(0, 1) = ν(1, 0) = 1 − ρ

4 ,

and study Minimum Sum Vertex Cover on this graph. We will upper bound the value of
MSVC on this graph GL by4 some TL, by exhibiting an ordering σL. Actually, we build
our ordering for vertices in GL by using the ordering on GL−1, which is a graph that would
have been created with an alphabet size L − 1. In particular, we observe that the induced
subgraph of GL obtained by fixing s1 = r1 = 0 is isomorphic to GL−1. Hence, if we use
σL−1 to visit vertices in this subgraph, edges with both endpoints in it will be visited by the
time TL−1 on average. Since the total weight of edges in this subgraph is ν(0, 0), the cost of
covering edges in this subgraph is at most

ν(0, 0) · TL−1.

We have spent 2L steps in visiting this subgraph. Observe that we also covered the edges
between strings s, r, which have (s1, r1) ∈ {(0, 1), (1, 0)}. In particular, we will show that
they are covered by the time 2L/2 on average, which intuitively can be seen by observing
that we visit GL−1 in 2L steps, and an average edge will be visited in half that time. This
gives us a cost

(ν(0, 1) + ν(1, 0)) · 2L−1.

Finally, the subgraph with s, r such that s1 = r1 = 1 is also isomorphic to GL−1, and once
again use the ordering σL−1 to traverse it in 2L steps. In this case, we have a delay of 2L

due to visiting vertices with r1 = 0 or s1 = 0, and hence the edges are covered by the time
2L + TL−1, and their total cost is

ν(1, 1) · (2L + TL−1).

Hence, we have that

TL ≤ ν(0, 0) · TL−1 + (ν(0, 1) + ν(1, 0)) · 2L−1 + ν(1, 1) · (2L + TL−1).

Letting tL = TL/2L+1 and replacing the values of ν yields

tL ≤ 1 + ρ

4 tL−1 + 1
4 ,

which is a recurrence relation, and solving it shows that tL → 1
3−ρ , regardless of t1. Hence,

for sufficiently large L we should expect to get MSVC close to 1
3−ρ .

With this intuition in mind, we now state and prove the theorem which gives the hardness
reduction from Affine Unique Games to weighted graphs.

▶ Theorem 10. For any ε > 0, ρ ∈ (−1, 0), γ > 0, there is a sufficiently large alphabet size
L ∈ N and a reduction from regular Affine Unique Games instances Λ = (U , V, E , Π, [L]) to
weighted multigraphs G = (V, E) with the following properties:

4 Without loss of generality, we assume that weights of edges sum up to 1 here.
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Completeness: If Opt(Λ) ≥ 1 − γ, then MSVC(G) ≤
(

1
3−ρ + ε + 3γ

)
|V |.

Soundness: If Opt(Λ) ≤ γ, then for every r ∈ [0, 1], G is (r, Γρ(r) − ε)-dense.
Moreover, the running time of the reduction is polynomial in |U|, |V|, |E|, and exponential in
L. If we use D to denote the degree of the regular Unique Games instance, then the weights
of edges in G belong to the set

{( 1+ρ
4
)i ( 1−ρ

4
)L−i

}L

i=0
. The size of |V | is at least 2L. Finally,

the output graph G is also regular, in the following two senses. First, if we consider G as an
unweighted graph, every vertex is of degree D2. The graph G is also regular in the weighted
sense, i.e., the value WE(u, N(u)) is uniform across all u ∈ V , and it equals D22−L+1.

Proof. Let ν : {0, 1}2 → [0, 1] be the probability distribution over correlated uniformly
distributed bits with negative correlation coefficient ρ < 0. In other words, we have

ν(0, 0) = ν(1, 1) = 1 + ρ

4 , ν(0, 1) = ν(1, 0) = 1 − ρ

4 .

Let us now describe how the multigraph G can be constructed from Λ. We define the
vertex set of G to be V = V × {0, 1}L = {(v, x) | v ∈ V , x ∈ {0, 1}L}. In particular, for
every vertex v ∈ V we create 2L vertices of G, which we identify with L-bit strings in {0, 1}L.
We also write vx for a vertex (v, x) of the graph G. The edges of G are constructed in the
following way. For every u ∈ U , and for every two v1, v2 ∈ N(u), we create an edge between
vertices vx

1 , vy
2 with weight

ν⊗L(x ◦ πe1 , y ◦ πe2), where e1 = (u, v1), e2 = (u, v2).

Expressed formally, the edge set E is

E = {(ex
1 , ey

2) | e1 = (u, v1), e2 = (u, v2), u ∈ U , v1, v2 ∈ V , x, y ∈ {0, 1}L}.

The number of vertices in G is |V|2L, and the number of edges is |V|D22L, so the construction
is indeed polynomial in |U|, |V| and |E|, and exponential in L. Also, since V ̸= ∅ we have
|V | ≥ 2L, and the weights of the edges indeed belong to the set specified in the statement of
the theorem. Finally, the total weight of edges incident upon each vertex vx is the same for
any vx, and since WE(E) = D2|V|, we have that wE(vx, N(vx)) = 2D2|V| 1

|V | = D22−L+1

for all vx ∈ V .
We are using the same reduction5 as the one used in Theorem 3.1. from [5], and the

only difference is that we are starting from Affine Unique Games instead of (general) Unique
Games. Since we are using the same reduction and Affine Unique Games are subsumed by
the Unique Games, our graph G satisfies the same soundness property as the one expressed
by Theorem 3.1. in [5], and this is exactly the soundness property stated above. Hence, we
only need to show completeness.

For the completeness case let us assume Opt(Λ) ≥ 1 − γ. Therefore, there is a labelling
z : U ⊔ V → ZL such that Valz(Λ) ≥ 1 − γ. In particular, there is Ê ⊆ E , |Ê | ≥ (1 − γ)|E|,
such that for each e = (u, v) ∈ Ê we have z(u) − z(v) = ce. Let us use Ê ⊆ E to denote
the set

Ê := {(ex
1 , ey

2) ∈ E | e1, e2 ∈ Ê}.

Observe that |Ê| ≥ |E| · (1 − 2γ). Since the complement of Ê is of small fractional size,
i.e., smaller than 2γ, in the analysis we will focus on cover times of edges in Ê, and we will

5 This is the same as the Max-Cut hardness reduction in [11]. Same reduction and soundness result also
appeared in [4], albeit with biased bits.
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trivially upper bound the cover time of edges in Êc by |V |. In particular, let us denote with
Ĝ the graph Ĝ = (V, Ê) and find an ordering σ such that SV CĜ(σ) ≤ ( 1

3−ρ + ε + γ)|V |. As
discussed this would then give us the stated completeness

SV CG(σ) ≤
(

1
3 − ρ

+ ε + 3γ

)
|V |,

by bounding the cover time of edges in Êc by |V |.
Before explaining how σ is constructed, let us first introduce some notation. We use

z1, . . . , zL : U → ZL to denote the mappings defined by

zi(u) : = z(u) + i, for i ∈ [L].

Let us then define sets F 0
i , F 1

i ⊆ V , as the sets in which, for every v ∈ V, inside the long
code (v, x) we fix the zi(v)-th coordinate to 0 or 1, respectively. In particular, we have

F 0
i =

{
(v, x) ∈ V | xzi(v) = 0

}
, F 1

i =
{

(v, x) ∈ V | xzi(v) = 1
}

.

Intuitively, the sets F 0
i (or F 1

i ) for a fixed i fix the values at the coordinates in which labels
“agree”. Then, we use the sets F 0

i and F 1
i to construct ordering inductively. First, we define

the ordering on CL−1 = F 0
1 ∩ F 0

2 ∩ . . . F 0
L−1, then using this ordering we define ordering on

CL−2 = F 0
1 ∩ F 0

2 ∩ . . . F 0
L−2, and so on until we construct an ordering on C1 = F 0

1 and finally
on C0 which we define to be C0 := V . As we are defining orderings on Ci, i = 0, . . . , L − 1,
we will be expressing an upper bound Ti for the average time edges Ei with both endpoints
endpoints in Ci are covered by the ordering. Before discussing our ordering, let us make an
observation that |Ci| = 2 · |Ci+1|, since Ci has one more free coordinate for each v ∈ V .

We discuss the ordering for CL−1 first. Before that, let us remark that the particular
ordering and the cost of covering edges in CL−1 will be inconsequential for the final value
that we get in this theorem. The main reason we discuss this case here is because we believe
it will be a good preparation for discussing the inductive step that will follow. Let us first
normalize the weights of edges in EL−1 so that they sum up to 1. In the first step, we iterate
through v ∈ V in a random order6, and pick (v, x) ∈ CL−1 such that7 xzL(v) = 0. Then, we
iterate through v ∈ V in a random order and pick the remaining vertex at each (v, x), i.e.,
the vertex with xzL(v) = 1. Let us upper bound the average time an edge e ∈ EL−1 with
both endpoints in CL−1 is visited by this schedule. Observe that we spent 1

2 |CL−1| time
in the first step, and 1

2 |CL−1| in the second step. Thus, if an edge with both endpoints in
CL−1 has at least one endpoint with a label 0 at xzL(v), then this point will be picked in
the first step on average by the time 1

4 |CL−1|. Otherwise, if the edge e has both endpoints
vx

1 , vy
2 picked in the second step, i.e. xZL(v1) = 1, yZL(v2) = 1, then it will be picked on

average by the time 3
4 |CL−1|. Since the weight of edges from EL−1 picked in the first step is

ν(0, 0) + ν(0, 1) + ν(1, 0) = 3−ρ
4 , and the weight of the remaining edges that we consider is

ν(1, 1) = 1+ρ
4 , the average cover time is

TL−1 = 3 − ρ

4 · 1
4 |CL−1| + 1 + ρ

4
3
4 |CL−1| = 3 + ρ

8 |CL−1|.

We observe that this also shows that there is an ordering σL−1 which covers an edge in EL−1
on average by the time TL−1.

6 As we have said, the value obtained in the first step is not relevant as it will be seen later. Hence, we
can also choose to visit v ∈ V in any fixed order in which case we can also use a trivial upper bound of
|VL−1| on TL−1.

7 Due to symmetry it is not important whether we pick xzL(v) = 0 or xzL(v) = 1 in the first iteration, as
long as we keep that choice fixed.
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Let us now fix i = 0, . . . , L − 2, and assume that we have an ordering σi+1 of vertices in
Ci+1 such that the edges in Ei+1 are covered by the time Ti+1 on average, and let us use this
procedure to construct an ordering of the vertices in Ci and derive a suitable upper bound
on Ti. We assume that the weights of the edges Ei are normalized so that they sum up to 1.
The ordering in Ci works as follows. First, using σi+1 we visit vertices in Ci+1 = Ci ∩ F 0

i .
The total weight of the edges with both endpoints in Ci ∩ F 0

i is ν(0, 0), and they are covered
by σi+1 until Ti on average. Hence, the cost for these edges is

Ti+1 · ν(0, 0). (4)

Furthermore, during this pass, we have also visited all the edges with one endpoint in Ci ∩ F 0
i

and another endpoint in Ci ∩ F 1
i , and their total weight is ν(0, 1) + ν(1, 0). Also, these covers

are disjoint (each one of these edges will be visited only once in the first pass). Since the
starting Unique Games instance was regular and we removed at most 2γ edges, the edges
will be covered by the time

1 + 2γ

2 |Ci+1| (5)

at most. Hence, the cost for these edges is

(ν(0, 1) + ν(1, 0))1 + 2γ

2 |Ci+1|. (6)

Finally, we pass through the vertices in Ci ∩ F 1
i . The graph induced by this vertex set is

actually isomorphic to Ci+1 = Ci ∩ F 0
i , and hence we can once again use the ordering σi+1.

Then, the edges in this graph are visited on average by the time

|Ci+1| + Ti+1,

where the |Ci+1| term is due to the delay coming from the first pass. Hence, the cost of these
edges is at most

ν(1, 1)(|Ci+1| + Ti+1). (7)

Adding up (4),(6) and (7) we get that

Ti ≤ 1 + ρ

4 Ti+1 + 1 − ρ

2
1 + 2γ

2 |Ci+1| + 1 + ρ

4 · (|Ci+1| + Ti+1). (8)

If we let ti = Ti/|Ci| and divide both sides by |Ci| = 2|Ci+1|, we can write (8) as

ti ≤ 1 + ρ

8 ti+1 + 1 − ρ

4
1 + 2γ

2 + 1 + ρ

4

(
1 + ti+1

2

)
,

which can be simplified to

ti ≤ 1
4 + 1 + ρ

4 ti+1 + 1 − ρ

4 γ. (9)

Let us show that ti ≤ 1
3−ρ + γ + 2−L+i as follows. Let us define ri = ti − γ − 1

3−ρ . By
substituting ti = 1

3−ρ + γ + ri into (9) we obtain

γ

2 + ri ≤ 1 + ρ

4 ri+1. (10)
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Since ρ ∈ (−1, 0) and γ > 0 we have

ri ≤ 1
2ri+1. (11)

Hence, since by calculation for TL−1 we have rL−1 ≤ 1
2 , which with (11) implies that

ri ≤ 2−L+i, and therefore t0 ≤ 1
3−ρ + γ + 2−L. By letting L be large enough so that 2−L ≤ ε

and recalling that t0 = T0/|V | we get

T0 ≤ ( 1
3 − ρ

+ γ + ε)|V |,

which is what we wanted to prove. ◀

This reduction outputs a weighted graph. In the full version of this paper we will show
how this weighted graph can be transformed into an unweighted graph with essentially the
same properties using a polynomial time reduction. For now, let us briefly discuss how the
soundness and completeness properties stated in the theorem above are useful for studying
Min Sum Vertex Cover.

For completeness, we will get that MSVC(G) ≤
(

1
3−ρ + ε + 3γ

)
|V |. On the other hand,

in the soundness case we have that for any ordering σ and given any η > 0 we have

SVCG(σ) =
|V |∑
t=1

w(σ([t])c, σ([t])c) ≥
n−⌈ηn⌉∑

t=1
w(σ([t])c, σ([t])c) ≥

n−⌈ηn⌉∑
t=1

Γρ(1 − t/n) − ε

=
(∫ 1−η

0
Γρ(1 − r)dr − ε

)
· |V | + O(1) =

(∫ 1

η

Γρ(r)dr − ε

)
· |V | + O(1).

Hence, by letting η → 0, γ → 0, ε → 0, |V | → ∞, we get an inapproximability ratio of∫ 1
0 Γρ(r)dr

1
3−ρ

.

This expression is minimized for ρ ≈ −0.52, for which the inapproximability ratio is approx-
imately 1.014.

Numerical simulations show that the best ratio we can get with these techniques is 1.014,
and it is obtained for ρ = −0.52.

4 Approximating Min Sum Vertex Cover on Regular Graphs

In this section we will revisit an approximation algorithm for Minimum Sum Vertex Cover on
regular graphs introduced in [9], in Theorem 11. The authors in that work did not explicitly
state the approximation ratio obtained by that algorithm, since their primary interest was
showing that 4/3-approximation achieved by the greedy algorithm can be beaten by more
advanced techniques.

We will here give an explicit constant, also taking into account progress in the approx-
imation of the so called Max-k-VC problem, which is used in that approach, and for which
better algorithms exist since the publication of the aforementioned article.

Before discussing the algorithm, let us define the Max-k-VC problem. In this problem
a graph G = (V, E) is given as an input, and the goal is to find S ⊆ V, |S| = k, such that
w(S, V ) is as big as possible. Austrin, Benabbas and Georgiou [3] show that Max-2-Sat with
a bisection constraint, that is, Max-2-Sat in which admissible assignments have exactly half

APPROX/RANDOM 2022
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of the variables set to 1, and the other half to 0, can be approximated within αLLZ ≈ 0.9401.
Let us remark that αLLZ is the optimal8 approximation ratio for Max-2-Sat problem [14, 2].
Since this problem subsumes Max-k-VC when k = n/2, we can approximate Max-n/2-VC
within αLLZ ≈ 0.9401.

Let us also recall the following two facts for regular graphs:
The greedy algorithm on regular graphs covers edges on average by the time 1

3 |V |,
The optimal solution covers an edge on average by the time at least 1

4 |V |.

Let us now discuss the algorithm introduced in [9]. We will closely follow the argument
outlined there. Let ε > 0 be some constant that we will fix later. In case the optimal solution
covers an edge by the time ( 1

4 + ε)|V | later, the greedy algorithm approximates the optimal
value within a factor of

1/3
1
4 + ε

= 4
3 + 3

4 ε
.

Otherwise, the optimal solution covers an edge on average at the time ( 1
4 + δ)|V |, for some

δ ∈ (0, ε). In this case, we have the following lemma.

▶ Lemma 11. Let G = (V, E) be a regular graph, let n := |V |, and let the optimal solution
of Minimum Sum Vertex Cover be ( 1

4 + δ)|V |. Then the optimal solution covers at least
(1 −

√
δ) fraction of edges in the first n/2 steps.

Proof. Let us denote the degree of the graph with D ∈ N, and with m the number of edges
m = nD/2. We argue by contradiction, and assume that the optimal solution covers less
than (1 −

√
δ) fraction of edges in the first n/2 steps. Let us use ui, i = 1, . . . , n, to denote

the number of uncovered edges at the time step i, and let s := un/2. Then by assumption
s >

√
δm. Furthermore, the value of the minimum sum vertex cover is 1

m

∑n
i=1 ui. Let us

show that 1
m

∑n
i=1 ui > ( 1

4 + δ)n yielding a contradiction to the assumption that the optimal
solution of Minimum Sum Vertex Cover is ( 1

4 + δ)n.
Let us use ci = ui − ui−1 to denote the number of additionally covered edges at step i.

Since we are considering the optimal solution to MSVC, the sequence ci is non-increasing
(otherwise changing the order would yield a smaller solution). Furthermore, let us use c to
denote cn/2.

Now, assuming that cn/2 = c, un/2 = s, let us calculate the smallest possible value of
MSVC. We know that after i steps, we can cover at most i · D edges (this happens if all the
edges chosen are disjoint). Furthermore, since we assumed that after n/2 steps we leave s

edges uncovered, and since c = cn/2 and c is non-increasing, we have that at the step i we
leave at least s + (n/2 − i) · c edges uncovered. This shows that

ui ≥ max
(

nD

2 − iD, s + (n/2 − i) · c, 0
)

, i ∈ [n].

In particular, the right hand side is a maximum of three linear functions, and therefore, the
following scenario for covering the edges will lower bound ui. In the first t fraction of steps,
edges get covered at the optimal rate (at each step we cover D new edges), where t is a
parameter calculated later. Then, after t fraction of steps, we cover c edges, until we cover
all the edges9.

8 Assuming the Unique Games Conjecture
9 In the last step we might cover less than c edges, but we will ignore this case for the sake of simplicity.
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Since we spend t fraction of time covering D edges in each step, the cost of edges covered
in this time is

1
m

t·n∑
i=1

Dn

2 − iD ≥ nt(1 − t).

The remaining time x · n, for some x ∈ (0, 1), is spent on covering c edges at each step. Since
after x fraction of steps we covered all the edges, we have

m = t · n · D + x · n · c,

and since m = nD/2 we have that

x = D

2 · 1 − 2t

c
. (12)

Hence, the average cost of edges incurred in the remaining time is

1
m

x · n · (m − t · n · D)1
2 = xn

(
1
2 − t

)
,

which with (12) yields the cost

D

2 · 1 − 2t

c
n

(
1
2 − t

)
= n

D

4c
(1 − 2t)2.

Hence, the total cost is

nt(1 − t) + n
D

4c
(1 − 2t)2 (13)

Let us now calculate the value of t in terms of s and c. We use the fact that after t fraction
of steps we covered t · n · D edges, and after n/2 steps we covered m − s edges. Since we are
covering c edges at each step i ∈ [tn, n/2] we have that

m − s = tnD + (n

2 − tn) · c,

and from here we get

t =
m − s − n·c

2
n · D − n · c

= 1
2 − s

n(D − c) .

Replacing this in (13) we get that the total cost is at least

n

(
1
4 − s2

n2(D − c)2 + D

4c

(
2 s

n(D − c)

)2
)

which reduces to

n

(
1
4 + s2

n2
1

(D − c)c

)
Now, by our contradiction hypothesis we have s >

√
δm, and 1

(D−c)c ≥ 4 1
D2 (since c ∈ (1, D)),

we have that the total cover time is strictly greater than

n

(
1
4 + δm2

n2
4

D2

)
= n

(
1
4 + δ

)
,

which contradicts the fact that the optimal solution to MSVC on the graph G has value
n( 1

4 + δ). This concludes our proof. ◀
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In [9] it is claimed that in the setup of Lemma 11, the optimal solution covers (1 − δ) fraction
of edges. However, this is not correct, and we illustrate that with a counterexample provided
in the appendix. Nevertheless, this does not greatly change the conclusion in [9], as using
the correct version of the lemma just replaces one unspecified constant below 4/3 by another
unspecified constant below 4/3.

Let us now fix k = n/2, and use the Max-k-VC algorithm. This will give us a set S ⊆ V

such that w(S, V ) ≥ αLLZ(1 −
√

δ). We next consider the following ordering of vertices in V

and calculate Minimum Sum Vertex Cover for it. We first pick vertices from S in a random
order, and then take the remaining vertices in random order as well. Then, the vertices
in N(S, S) are covered by the time |V |/4 in expectation, while the remaining vertices are
covered by the time |V |

2 + 1
3

|V |
2 . Hence, we can find an ordering for which Sum Vertex Cover

has value

w(S, V ) |V |
4 + w(Sc, Sc)( |V |

2 + |V |
6 ) ≤ αLLZ(1 −

√
δ) |V |

4 +
(

1 − αLLZ(1 −
√

δ)
)

· 2|V |
3 .

We can simplify this expression as(
−5αLLZ + 5αLLZ

√
δ

12 + 2
3

)
|V |.

Hence, we get an approximation ratio of
−5αLLZ +5αLLZ

√
δ

12 + 2
3

1
4 + δ

.

In conclusion, for fixed ε we have that the approximation ratio is given as

max
(

4
3 + 3

4 ε
, sup

δ∈(0,ε]

−5αLLZ +5αLLZ

√
δ

12 + 2
3

1
4 + δ

)
.

Optimizing over different values of ε gives us that the approximation ratio of this algorithm
is approximately 1.225.
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A Addressing Argument in Theorem 11 in [9]

Let δ > 0. We construct a 2-regular graph G = (V, E) with |V | = n, |E| = m, such that the
minimum sum vertex cover has value(

1
4 + δ

)
n,

while any set S ⊆ V, |S| = n
2 , satisfies |w(S, V )| ≤ (1 −

√
δ). This shows that the factor

(1 −
√

δ) in Lemma 11 can not be replaced by a sharper (1 − δ), as it was done in [9].
Let t = ( 1

2 − 3
√

δ)n and s = 2
√

δ · n, where n ∈ N is chosen such that t, s ∈ N (we also
approximate

√
δ by a rational number), and such that t is even. Then, we construct the

graph G by taking t/2 disjoint copies of K2,2 and s disjoint copies of K3. Let V1 be the set
composed of only “the left sides” of t/2 disjoint copies of K2,2, V2 the set composed of only
“the right sides” of t/2 disjoint copies of K2,2, and let V3 be composed of the vertices from s

disjoint copies of K3.
Then, the optimal solution for MSVC will work in the following three stages:
Stage 1: Pick vertices from V1 in any order.
Stage 2: Pick one vertex from each K3 in V3.
Stage 3: Pick another vertex from each K3 in the set V3.

APPROX/RANDOM 2022

https://doi.org/10.1109/FOCS.2009.23
http://arxiv.org/abs/2010.01459
http://arxiv.org/abs/2010.01459
https://doi.org/10.1007/s00453-004-1110-5
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1109/CCC.2003.1214437
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1016/j.ipl.2022.106244


50:16 Some Results on Approximability of Minimum Sum Vertex Cover

It is clear that this is the minimum sum vertex cover. The total cost is then split into the
following costs:

Edges covered in the first stage. In this case we pick t · 2 edges, and an edge is picked on
average at the time t/2, so the cost is

t

2 · 2 · t = t2.

Edges covered in the second stage. We pick s · 2 edges, and each edge is picked on average
at the time t + s/2, where the factor t exists because this step happens after the first
stage. We have the cost of

2 · s(t + s/2) = 2 · s · t + s2.

Edges covered in the third stage. We pick s edges, and each edge is picked on average at
the time t + s + s/2, where the factor t + s exists because this step happens after the
second stage. We have the cost of

s(t + s + s/2) = st + s2 + s2/2.

Hence, the total cost is

t2 + 2 · s · t + s2 + st + s2 + s2/2 = t2 + 3st + 5s2

2 .

Now, recalling that t = ( 1
2 − 3

√
δ)n and s = 2

√
δ · n, we have that the cost is

n2 ·
(

1
4 − 3

√
δ + 9δ

)
+ 3 · 2

√
δ · n ·

(
1
2 − 3

√
δ

)
· n + 5 · 4δ · n2

2

= 1
4n2 − 3

√
δn2 + 9δn2 + 3

√
δn2 − 18δn2 + 10δn2

= 1
4n2 + δn2.

Now, since our graph is 2-regular graph on n = 2t + 3s vertices, we have that m = n, and we
can write the total cost as

n

(
1
4 + δ

)
,

as claimed. It remains to show that for any set S ⊆ V with |S| = n/2 we have

|E(S, V )| ≤ (1 −
√

δ) · m.

It is obvious that the worst case S is exactly the set of vertices picked in the first n/2 steps
in the algorithm above. In this case, the number of edges not covered is s/2, since after n/2
steps we are left with one edge uncovered in exactly half of the K3 triangles. Hence, the
number of uncovered edges is

s

2 =
√

δ · n =
√

δ · m,

and hence

|E(S, V )| ≤ (1 −
√

δ) · m,

as required.
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Abstract
Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge
that has been intensively studied. Currently existing solutions for this problem either build a
sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline,
or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a
stretch-space tradeoff of 2κ− 1 versus n1+1/κ, for an integer parameter κ. (In fact, existing solutions
also incur an extra factor of 1 + ϵ in the stretch for weighted graphs, and an additional factor of
logO(1) n in the space.) The only existing solution of the second type uses n1/2−O(1/κ) passes over
the stream (for space O(n1+1/κ)), and applies only to unweighted graphs.

In this paper we show that (1+ϵ)-approximate single-source shortest paths can be computed with
Õ(n1+1/κ) space using just constantly many passes in unweighted graphs, and polylogarithmically
many passes in weighted graphs. Moreover, the same result applies for multi-source shortest paths,
as long as the number of sources is O(n1/κ). We achieve these results by devising efficient dynamic
streaming constructions of (1 + ϵ, β)-spanners and hopsets.

On our way to these results, we also devise a new dynamic streaming algorithm for the 1-sparse
recovery problem. Even though our algorithm for this task is slightly inferior to the existing
algorithms of [26, 11], we believe that it is of independent interest.
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1 Introduction

Processing massive graphs is an important algorithmic challenge. This challenge is being met
by intensive research effort. One of the most common theoretical models for addressing this
challenge is the semi-streaming model of computation [22, 2, 36]. In this model, edges of an
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The model comes in two main variations. In the first one, called static or insertion-only
model [22], the edges can only arrive, and never get deleted. If the algorithm employs
multiple passes, then the streams of edges observed on these passes may be permutations
of one another, but are otherwise identical. In the more general dynamic (also known as
turnstile) streaming setting [2], edges may either arrive or get deleted.

1.1 Distances in the Streaming Model
An important thread of the literature on dynamic streaming algorithms for graph problems is
concerned with computing distances and constructing spanners and hopsets. This is also the
topic of the current paper. For a pair of parameters α ≥ 1, β ≥ 0, given an undirected graph
G = (V, E), a subgraph G′ = (V, H) of G is said to be an (α, β)-spanner of G, if for every
pair u, v ∈ V of vertices, it holds that dG′(u, v) ≤ α · dG(u, v) + β, where dG and dG′ are the
distance functions of G and G′, respectively. A spanner with β = 0 is called a multiplicative
spanner and one with α = 1 is called an additive spanner. There is another important variety
of spanners called near-additive spanners for which β ≥ 0 and α = 1 + ϵ, for an arbitrarily
small ϵ > 0. The near-additive spanners are mostly applicable to unweighted graphs, even
though there are some recent results about weighted near-additive spanners [14].

Spanners are very well-studied from both combinatorial and algorithmic viewpoints. It is
well-known that for any parameter κ = 1, 2, . . . , and for any n-vertex graph G = (V, E), there
exists a (2κ−1)-spanner with O(n1+1/κ) edges, and this bound is nearly-tight unconditionally,
and completely tight under Erdős-Simonovits girth conjecture [38, 4]. The parameter 2κ − 1
is called the stretch parameter of the spanner. Also, for any pair of parameters, ϵ > 0 and
κ = 1, 2, . . . , there exists β = βEP = β(κ, ϵ), so that for every n-vertex undirected graph
G = (V, E), there exists a (1 + ϵ, β)-spanner with Oκ,ϵ(n1+1/κ) edges [18]. The additive term

β = βEP in [18] behaves as β(κ, ϵ) ≈
(

log κ
ϵ

)log κ

, and this bound is the state-of-the-art. A
lower bound of Ω( 1

ϵ·log κ )log κ for it was shown in [1].
Given an n-vertex weighted undirected graph G = (V, E, ω) and two parameters ϵ > 0

and β = 1, 2, . . ., a graph G′ = (V, H, ω′) is called a (1 + ϵ, β)-hopset of G, if for every pair of
vertices u, v ∈ V , we have

dG(u, v) ≤ d
(β)
G∪G′(u, v) ≤ (1 + ϵ) · dG(u, v).

Here d
(β)
G∪G′(u, v) stands for β-bounded distance (See Definition 3) between u and v in G ∪ G′.

The parameter β is called the hopbound of the hopset G′.
Just like spanners, hopsets are a fundamental graph-algorithmic construct. They are

extremely useful for computing approximate shortest distances and paths in various com-
putational settings, in which computing shortest paths with a limited number of hops is
significantly easier than computing them with no limitation on the number of hops. A partial
list of these settings includes streaming, distributed, parallel and centralized dynamic models.
Cohen [10] showed that for any undirected weighted n-vertex graph G, and parameters
ϵ > 0, ρ > 0, and κ = 1, 2, . . . , there exists a (1 + ϵ, βC)-hopset with Õ(n1+1/κ) edges, where

βc =
(

log n
ϵ

)O( log κ
ρ )

. Elkin and Neiman [16] improved Cohen’s result, and constructed hop-
sets with constant hopbound. Specifically, they showed that for any ϵ > 0, κ = 1, 2, . . ., and
any n-vertex weighted undirected graph, there exists a (1 + ϵ, βEN )-hopset with Õ(n1+1/κ)
edges, and βEN = βEP ≈ ( log κ

ϵ )log κ. The lower bound of [1], β = Ω( 1
ϵ·log κ )log κ is applicable

to hopsets as well. Generally, hopsets (see [10, 28, 16]) are closely related to near-additive
spanners. See a recent survey [17] for an extensive discussion on this relationship.
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Most of the algorithms for computing (approximate) distances and shortest paths in
the streaming setting compute a sparse spanner, and then employ it for computing exact
shortest paths and distances in it offline, i.e., in the post-processing, after the stream is
over [23, 12, 7, 21, 15, 3, 32, 24, 25]. Specifically, in the dynamic streaming model, algorithms
for computing approximately shortest paths (with space Õ(n1+1/κ), for a parameter κ =
1, 2, . . .), can be divided into two categories. The algorithms in the first category build
a sparse multiplicative (2κ − 1)-spanner, and they provide a multiplicative stretch of at
least 2κ − 1 [3, 32, 24, 25]. Moreover, due to existential lower bounds for spanners, this
approach is doomed to provide stretch of at least 4

3 κ [35]. The algorithms in the second
category compute exact single source shortest paths in unweighted graphs, but they employ
n1/2−O(1/κ) passes [9, 13]. In the current paper, we partially fill in the gap between these
two extremes, and devise a dynamic streaming (1 + ϵ)-approximate SSSP algorithm with
space Õ(n1+1/κ) that uses

(
κ
ϵ

)κ(1+o(1)) passes. Table 1 summarizes the existing algorithms
for the problem of computing approximate shortest paths in streaming setting on unweighted
graphs, and compares them to our results.

Table 1 Prior Work on the Problem.

Citation Model Stretch Space No. of Passes Technique

[23] Static (2κ + 1) Õ(n1+1/κ) 1 Multiplicative Spanner
[12, 7] Static (2κ− 1) Õ(n1+1/κ) 1 Multiplicative Spanner
[21, 15] Static (1 + ϵ, βEN ) Õ(n1+1/κ) βEN Near-Additive Spanner

[29] Static (1 + ϵ) n1+o(1) ·O( log Λ
ϵ

) 2O(
√

log n log log n) = no(1) Hopsets
[16] Static (1 + ϵ) Õ(n1+ρ), for ρ > 0

( log n
ϵ·ρ

) 1
ρ

(1+o(1)) Hopsets
[13] Static Exact O(n · p), for 1 ≤ p ≤ n O(n/p) Hopsets
[3] Dynamic (2κ− 1) Õ(n1+1/κ) κ Multiplicative Spanner
[24] Dynamic (2κ− 1) Õ(n1+1/κ) ⌊κ/2⌋+ 1 Multiplicative Spanner
[3] Dynamic O(κlog2 5) Õ(n1+1/κ) O(log κ) Multiplicative Spanner
[25] Dynamic O(κlog2 3) Õ(n1+1/κ) O(log κ) Multiplicative Spanner
[9] Dynamic Exact Õ(n + p2), for 1 ≤ p ≤ n Õ(n/p) Exact BFS

(This Paper) Dynamic (1 + ϵ) Õ(n1+1/κ) Constant (unweighted graphs) Near-Additive Spanners
and polylog (weighted graphs) and Hopsets

The algorithms of [23, 12, 7] apply to unweighted graphs, but they can be extended to
weighted graphs by running many copies of them in parallel, one for each weight scale. Let
Λ = Λ(G) denote the aspect ratio of the graph, i.e., Λ = maxu,v∈V dG(u,v)

minu,v∈V dG(u,v)
. Also, let ϵ ≥ 0 be a

slack parameter. Then by running O( log Λ
ϵ ) copies of the algorithm for unweighted graphs

and taking the union of their outputs as the ultimate spanner, one obtains a one-pass static
streaming algorithm for 2(1 + ϵ)κ-spanner with Õ(n1+ 1

κ · (log Λ)/ϵ) edges [19].
In [21], the authors devised static streaming algorithms for building (1 + ϵ, βEZ)-spanners

where, βEZ = βEZ(ϵ, ρ, κ) =
(

log κ
ϵ·ρ

)O( log κ
ρ )

, for any parameters ϵ, ρ > 0 and κ = 1, 2, . . ..
This result was improved in [15], where a static streaming algorithm with similar properties,

but with β = βEN =
(

log κρ+1/ρ
ϵ

)log κρ+1/ρ

was devised. The algorithms of [21, 15] directly
give rise to β-pass static streaming algorithms with space Õ(n1+ρ) for (1 + ϵ, β)-APASP (All
Pairs Almost Shortest Paths) in unweighted graphs where β(ρ) ≈ (1/ρ)(1/ρ)(1+o(1)). They
can also be used for producing purely multiplicative (1 + ϵ)-approximate shortest paths and
distances in O(β/ϵ) passes and Õ(n1+ρ) space from up to nρ(1−o(1)) designated sources to
all other vertices. There are also a number of additional not spanner-based static streaming
algorithms for computing approximate shortest paths. Henzinger et al. [29] and Elkin and
Neiman [16] devised (1 + ϵ)-approximate single-source shortest paths (henceforth, SSSP)
algorithms for weighted graphs, that are based on hopsets.
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Recently Chang et al. [9] devised a dynamic streaming algorithm for this problem in
unweighted graphs. Their algorithm uses Õ(n/p) passes (for parameter 1 ≤ p ≤ n as above)
and space Õ(n+p2) for the SSSP problem, and space Õ(|S|n+p2) for the S ×V approximate
shortest path computation.

Ahn et al. [3] devised the first dynamic streaming algorithm for computing approximate
distances. Their algorithm computes a (2κ−1)-spanner (for any κ = 1, 2, . . .) with Õ(n1+1/κ)
edges (and the same space complexity) in κ passes over the stream. This bound was recently
improved by [24]. Their algorithm computes a spanner with the same properties using
⌊κ/2⌋+1 passes. Ahn et al. [3] also devised an O(log κ)-pass algorithm for building O(κlog2 5)-
spanner with size and space complexity Õ(n1+1/κ). This bound was recently improved by
[25], whose algorithm produces O(κlog2 3)-spanner with the same pass and space complexities,
and the same size.

Another dynamic streaming algorithm was devised by Kapralov and Woodruff [32]. It
produces a (2κ − 1)-spanner with Õ(n1+1/κ) edges (and space usage) in two passes. Kapralov
et al. [25] improved the stretch parameter of the spanner to 2 κ+3

2 −3, with all other parameters
the same as in the results of [32]. Kapralov et al. [25] also devised a general tradeoff in
which the number of passes can be between 2 and κ, and the stretch of the spanner decreases
gracefully from exponential in κ (where the number of passes is 2) to 2κ−1 (when the number
of passes is κ). They have also devised a single pass algorithm with stretch Õ(n 2

3 (1−1/κ)). As
was mentioned above, most of these spanner-based algorithms provide a solution for (2κ − 1)-
APASP for unweighted graphs with space Õ(n1+1/κ) and the number of passes equal to that
of the spanner-construction algorithm. Like their static streaming counterparts [23, 12, 7],
they can be extended to weighted graphs, at the price of increasing their stretch by a factor
of 1 + ϵ (for an arbitrarily small parameter ϵ > 0), and their space usage by a factor of
O

(
log Λ

ϵ

)
.

1.2 Our Results
In the current paper, we present the first dynamic streaming algorithm for SSSP with stretch
1 + ϵ, space Õ(n1+1/κ), and constant (as long as ϵ and κ are constant) number of passes
for unweighted graphs. For weighted graphs, our number of passes is polylogarithmic in
n. Specifically, the number of passes of our SSSP algorithm is ( κ

ϵ )κ(1+o(1)) for unweighted

graphs, and
(

(log n)κ
ϵ

)κ(1+o(1))
for weighted ones. Moreover, within the same complexity

bounds, our algorithm can compute (1+ϵ)-approximate S ×V shortest paths from |S| = n1/κ

designated sources. Moreover, in unweighted graphs, all pairs almost shortest paths with
stretch (1 + ϵ,

(
κ
ϵ

)κ) can also be computed within the same space and number of passes.
(That is, paths and distances with multiplicative stretch 1 + ϵ and additive stretch

(
κ
ϵ

)κ.)
Note that our multiplicative stretch (1 + ϵ) is dramatically better than (2κ − 1), exhibited
by algorithms based on multiplicative spanners [3, 32, 24, 25], but this comes at a price of
at least exponential increase in the number of passes. Nevertheless, our number of passes
is independent of n, for unweighted graphs, and depends only polylogarithmically on n for
weighted ones.

1.3 Technical Overview
We devise algorithms for building near-exact hopsets and near-additive spanners in dynamic
streaming model. These structures help us compute almost shortest paths in the input
graph. The following theorem summarizes the resource usage and properties of our hopset
construction.
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▶ Theorem 1 (Theorem 9 in Section 3.4). For any n-vertex graph G(V, E, ω) with aspect
ratio Λ, 2 ≤ κ ≤ (log n)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ϵ < 1, our dynamic streaming algorithm
computes whp, a (1 + ϵ, β) hopset H with expected size O(n1+1/κ · log n) and the hopbound

β given by, β = O
(

(log κρ+1/ρ) log n
ϵ

)log κρ+1/ρ

. It does so by making O(β · (log κρ + 1/ρ))
passes through the stream and using O(n · log3 n · log Λ) bits of space in the first pass and
O( β

ϵ · log2 1/ϵ · n1+ρ · log5 n) bits of space (respectively O( β2

ϵ · log2 1/ϵ · n1+ρ · log5 n) bits of
space for path-reporting hopset) in each of the subsequent passes.

The hopset is then used (in Section 4) to compute almost shortest paths in weighted graphs.
In the extended version, we also show a similar algorithm for constructing near-additive

spanners. This result is summarized in the following theorem.

▶ Theorem 2. For any unweighted graph G(V, E) on n vertices, parameters 0 < ϵ < 1,
κ ≥ 2, and ρ > 0, our dynamic streaming algorithm computes a (1 + ϵ, β)-spanner with
Oϵ,κ,ρ(n1+1/κ) edges, in O(β) passes using O(n1+ρ log4 n) space with high probability, where

β is given by, β =
(

log κρ+1/ρ
ϵ

)log κρ+1/ρ

.

Our algorithms for spanner and hopset construction extend the results of [15, 16] from the
static streaming setting to dynamic streaming one. The algorithms of [15, 16], like their
predecessor, the algorithm of [18], are based on the superclustering-and-interconnection
(henceforth, SAI) approach. Our algorithms in the current paper also fall into this framework.
Algorithms that follow the SAI approach proceed in phases, and in each phase they maintain
a partial partition of the vertex set V of the graph. Some of the clusters of G are selected to
create superclusters around them. This is the superclustering step. Clusters that are not
superclustered into these superclusters are then interconnected with their nearby clusters.
The main challenge in implementing this scheme in the dynamic streaming setting is in the
interconnection step. Indeed, the superclustering step requires a single and rather shallow
BFS exploration, and implementing depth-d BFS in unweighted graphs in d passes over the
dynamic stream can be done in near-linear space (See, e.g., [3, 9]). For the weighted graphs,
we devise a routine for performing an approximate Bellman-Ford exploration up to a given
hop-depth d, using d passes and Õ(n) space.

On the other hand, the interconnection step requires implementing simultaneous BFS
(Bellman-Ford for the weighted case) distance explorations originated at multiple sources.
A crucial property that enabled [15, 16] to implement it in the static streaming setting is
that one can argue that with high probability, not too many distance explorations traverse
any particular vertex. Let us denote by N , an upper bound on the number of explorations
(traversing any particular vertex). In the dynamic streaming setting, however, at any point
of the stream, there may well be much more than N explorations that traverse a specific
vertex v ∈ V , based on the stream of updates observed so far. Storing data about all these
explorations would make the space requirement of the algorithm prohibitively large.

To resolve this issue (and a number of related similar issues), we incorporate a sparse
recovery routine into our algorithms. Sparse recovery is a fundamental and well-studied
primitive in the dynamic streaming setting [26, 11, 30, 5]. It is defined for an input which is a
stream of (positive and negative) updates to an n-dimensional vector →

a = (a1, a2, . . . , an). In
the strict turnstile setting, which is sufficient for our application, ultimately each coordinate
ai (i.e., at the end of the stream) is non-negative, even though negative updates are allowed
and intermediate values of coordinates may be negative. In the general turnstile model
coordinates of the vector →

a may be negative at the end of the stream as well. The support
of →

a , denoted supp(→
a ), is defined as the set of its non-zero coordinates. For a parameter
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s, an s-sparse recovery routine returns the vector →
a , if |supp(→

a )| ≤ s, and returns failure
otherwise. (It is typically also allowed to return failure with some small probability δ > 0,
given to the routine as a parameter, even if |supp(→

a )| ≤ s.)
Most of sparse recovery routines are based on 1-sparse recovery, i.e., the case s = 1.

The first 1-sparse recovery algorithm was devised by Ganguly [26], and it applies to the
strict turnstile setting. The space requirement of the algorithm of [26] is O(log n). The
result was later extended to the general turnstile setting by Cormode and Firmani [11] (See
also [37]). We devise an alternative streaming algorithm for this basic task in the strict
turnstile setting. The space complexity of our algorithm is O(log n), like that of [26]. The
processing time-per-item of [26]’s algorithm is however O(1), instead of polylog(n) of our
algorithm.1 Nevertheless, we believe that our new algorithm for this task is of independent
interest.

In the current paper paper we analyze our algorithm in terms of the aspect ratio Λ of the
input graph, given by Λ = maxu,v∈V dG(u,v)

minu,v∈V dG(u,v)
. (All dependencies are polylogarithmic in Λ.) In

the extended version [20], we also show that [34]’s weight reduction (see also [16]) can be
implemented in the dynamic streaming model. As a result, we replace all appearances of log Λ
in the hopset’s size, hopbound and number of passes of our construction by O(log n). However,
the space complexity of our algorithm still mildly depends on log Λ. Specifically, it is Õ(n1+ρ)+
Õ(n) · log Λ. In all existing dynamic streaming algorithms for computing multiplicative
spanners or computing approximate shortest paths in weighted graphs [3, 32, 24, 25], both
the spanner’s size and the space requirements are Õ(n1+1/κ · log Λ). But using our weight
reduction in conjunction with these algorithms, one can produce spanners of size Õ(n1+1/κ)
(without dependence on log Λ), using space Õ(n1+1/κ) + Õ(n) · log Λ. However, the number
of passes increases by an additive term of 1. Completely eliminating the dependence on log Λ
from these results is left as an open problem.

1.4 Outline
The rest of the paper is organized as follows. Section 2 provides necessary definitions and
concepts. Section 3 presents an algorithm for constructing hopsets with constant hopbound.
All the missing proofs and a more thorough analysis of our hopset construction are available
in the extended version [20]. Section 4 shows how we use the algorithm of Section 3 to
compute (1 + ϵ)-approximate shortest paths in weighted graphs. The spanner construction
algorithm is very similar to the hopset construction algorithm. The spanner construction
algorithm and details on its usage in computing approximate shortest paths in unweighted
graphs are available in the extended version [20] of this paper. The subroutine for performing
a limited depth Bellman-Ford exploration in the input graph is described in Appendix B.
Appendix appears after the references.

2 Preliminaries

2.1 Streaming Model
In the dynamic streaming model of computation, the set of vertices V of the input graph is
known in advance and the edge set E is revealed one at a time. The edges can be added
as well as removed. For a weighted input graph, the stream S arrives as a sequence of

1 If the algorithm knows in advance the dimension n of the vector →
a and is allowed to compute during

preprocessing, before seeing the stream, a table of size n, then our algorithm can also have O(1)
processing time per update. This scenario occurs in dynamic streaming graph algorithms, including
those discussed in the current paper.
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edge updates S = ⟨s1, s2, · · · ⟩, where st = (et, eSignt, eWeightt), where et is the edge being
updated and eWeightt is its weight. The eSignt ∈ {+1, −1} value of an update indicates
whether the edge et is to be added or removed. A value of +1 indicates addition and a value
of −1 indicates removal.

For a weighted undirected graph G = (V, E, ω), we assume that the edge weights are
scaled so that the minimum edge weight is 1. Let maxW denote the maximum edge weight
ω(e), e ∈ E. For a non-edge (u, v) /∈ E, we define ω((u, v)) = ∞.

▶ Definition 3. Given a weighted graph G(V, E, ω), a positive integer parameter t, and a
pair u, v ∈ V of distinct vertices, a t-bounded u-v path in G is a path between u and v

that contains no more than t edges (also known as hops), and t-bounded distance between
u and v in G denoted d

(t)
G (u, v) is the length of a shortest t-bounded u-v path in G.

2.2 Samplers, Hash Functions and Vertex Encodings
The main technical tool in our algorithms is a space-efficient sampling technique which
enables us to sample a single vertex or a single edge from an appropriate subset of the vertex
set or the edge set of the input graph, respectively. Algorithms for sampling from a dynamic
stream are inherently randomized and often use hash functions as a source of randomness.
Appendix A is devoted to hash functions.

2.3 Vertex Encodings
We assume that the vertices have unique IDs from the set {1, . . . , n}. The maximum possible
ID (which is n) of a vertex in the graph is denoted by maxV ID. The binary representation
of the ID of a vertex v can be obtained by performing a name operation name(v). For an
integer k ≥ 1, [k] denotes the set {1, 2, . . . , k}.

We also need standard definitions of convex combination, convex hull and a convexly
independent set. We will use the following CIS-based encoding for the vertices of the graph:
CIS Encoding Scheme ν: We assign a unique code in Z2 to every vertex v ∈ V . The
encoding scheme works by generating a set of n convexly independent integer vectors in Z2.
Specifically, our encoding scheme uses as its range, the extremal points of the convex hull of
Ball2(R) ∩ Z2, where Ball2(R) is a two-dimensional disc of radius R centered at origin. A
classical result by [31], later refined by [6], states that the number of extremal points of the
convex hull of a set of integer points of a disc of radius R is Θ(R2/3). We set R = Θ(n3/2) to
allow for all the possible n = Θ(R2/3) vertices to be encoded in O(log n) bits. The encoding
of any vertex v can be obtained by performing an encoding operation denoted by ν(v).

We prove the following lemma in extended version which will be be useful in Section 3.2
to detect if the sampling procedure succeeded in sampling exactly one vertex from a desired
subset of the set V .

▶ Lemma 4. Let c1, c2, · · · , cn be non-negative integer coefficients of a linear combination of

a set P = {p1, p2, · · · pn} of n convexly independent points in Z2 such that
∑n

j=1
cj ·pj∑n

j=1
cj

= pi,

for some pi ∈ P . Then cj = 0 for every j ̸= i, and ci ̸= 0.

3 Hopsets with Constant Hopbound in Dynamic Streaming Model

We adapt the insertion-only streaming algorithm of [16] for hopset construction to work
in the dynamic streaming setting. The algorithm is based on the SAI (Superclustering
and Interconnection) approach. (See [16] for more details.) The main ingredient of both
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the superclustering and interconnection steps is a set of Bellman-Ford explorations (B-F
explorations, henceforth) up to a given distance in the input graph from a set of chosen
vertices. The insertion-only streaming algorithm of [16] identifies all the edges spanned by
Θ(β) iterations of certain B-F explorations up to a distance δ from a set of chosen vertices,
by making Θ(β) passes through the stream. Other parts of the hopset construction, such as
identifying the vertices of the graph from which to perform B-F explorations and subsequently
adding edges corresponding to certain paths traversed by these explorations to the hopset,
are performed offline.

We devise a technique to perform a given number of iterations of a B-F exploration
from a set of chosen vertices and up to a given distance in the graph in the dynamic
streaming setting, and as in [16], perform the rest of the work offline. The difference however
is that in the dynamic streaming setting, we do not perform an exact and deterministic
B-F exploration (as in [16]). A randomized algorithm for performing an approximate B-F
exploration originated at a subset of source vertices in a weighted graph, that succeeds whp,
is described in Appendix B. We use this algorithm as a subroutine in the superclustering
step of our main algorithm. The interconnection step is more challenging and involves
performing multiple simultaneous B-F explorations in a weighted graph, each from a separate
source vertex. Here, each vertex in the graph needs to identify all the B-F explorations it
is a part of, and to find its (approximate) distance to the source of each such exploration.
Due to the dynamic nature of the stream, a given vertex may find itself on a lot more
explorations than it finally ends up belonging to. This can be dealt with by combining a
delicate encoding/decoding scheme for the IDs of exploration sources with a space-efficient
sampling technique.

In the following section, we provide an overview of our hopset construction algorithm.

3.1 Overview

Our hopset construction algorithm takes as input an n-vertex weighted undirected graph
G = (V, E, ω) with aspect ratio Λ, and parameters 0 < ϵ′ < 1/10, κ = 1, 2, . . . and
1/κ < ρ < 1/2, and produces as output a (1 + ϵ′, β′)-hopset of G. The hopbound parameter

β′ is a function of ϵ′, Λ, κ, ρ and is given by β′ = O
(

log Λ
ϵ′ · (log κρ + 1/ρ)

)log κρ+1/ρ

.
Let k = 0, 1, . . . , ⌈log Λ⌉ − 1. Given two parameters ϵ > 0 and β = 1, 2, . . ., a set of

weighted edges Hk on the vertex set V of the input graph is said to be a (1+ϵ, β)-hopset for the
scale k or a single-scale hopset, if for every pair of vertices u, v ∈ V with dG(u, v) ∈ (2k, 2k+1]
we have that

dG(u, v) ≤ d
(β)
Gk

(u, v) ≤ (1 + ϵ) · dG(u, v),

where Gk = (V, E ∪ Hk, ωk) and ωk(u, v) = min{ω(u, v), ωHk
(u, v)}, for every edge (u, v) ∈

E∪Hk. Let ϵ > 0 be a parameter that will be determined later in the sequel. (See Section 3.3.)
Set also ℓ = ⌊log κρ⌋ + ⌈ κ+1

κρ ⌉ − 1. Let β = (1/ϵ)ℓ.
The algorithm constructs a separate (1 + ϵ, β)-hopset Hk for every scale

(20, 21], (21, 22], . . . , (2⌈log Λ⌉−1, 2⌈log Λ⌉] one after another. For k ≤ ⌊log β⌋ − 1, we set Hk = ϕ.
We can do so because for such a k, it holds that 2k+1 ≤ β, and for every pair of vertices u, v

with dG(u, v) ≤ 2k+1, the original graph G itself contains a shortest path between u and v

that contains at most β edges. (We remark that after rescaling, we will have β′ = β. See
Section 3.3.) In other words, dG(u, v) = d

(β)
G (u, v). Denote k0 = ⌊log β⌋ and kΛ = ⌈log Λ⌉ − 1.

We construct a hopset Hk for every k ∈ [k0, kΛ].
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During the construction of the hopset Hk for some k ≥ k0, we need to perform explorations
from certain vertices in V up to distance δ ≤ 2k+1 in G. An exploration up to a given
distance from a certain vertex in G may involve some paths with up to n − 1 hops. This can
take up to O(n) passes through the stream. We overcome this problem by using the hopset
edges H(k−1) =

⋃
k0≤ j ≤k−1 Hj for constructing hopset Hk. The hopset Hk has to take

care of all pairs of vertices u, v with dG(u, v) ∈ (2k, 2k+1], whereas the edges in E ∪ H(k−1)

provide a (1 + ϵk−1)-approximate shortest path with up to β hops, for every pair u, v with
dG(u, v) ≤ 2k. The value of ϵk−1 will be specified later in the sequel. (See Section 3.3.)
Denote by G(k−1) the graph obtained by adding the edge set H(k−1) to the input graph G.
Instead of conducting explorations from a subset S ⊆ V up to distance δ ≤ 2k+1 in the input
graph G, we perform 2β + 1 iterations of B-F algorithm on the graph G(k−1) up to distance
(1 + ϵk−1) · δ. The following lemma from [16] provides a justification for this approach.
▶ Lemma 5 ([16]). For u, v ∈ V with dG(u, v) ≤ 2k+1, the following holds:

d
(2β+1)
G(k−1) (u, v) ≤ (1 + ϵk−1) · dG(u, v) (1)

3.2 Constructing Hk

We now proceed to the construction of the hopset Hk for the scale (2k, 2k+1], for some
k ∈ [k0, kΛ]. We start by initializing the hopset Hk as an empty set and proceed in phases
0, 1, . . . , ℓ. All phases of our algorithm except for the last one consist of two steps, a
superclustering step and an interconnection step. In the last phase, we go directly to the
interconnection step. Throughout the algorithm, we build clusters of nearby vertices. The
input to phase i ∈ [0, ℓ] is a set of clusters Pi, a distance threshold parameter δi and a degree
parameter degi. For phase 0, the input P0 is a partition of the vertex set V into singleton
clusters. Every cluster created by our algorithm has a designated center vertex. We denote
by rC the center of cluster C. In particular, each singleton cluster C = {v} is centered
around v. For a cluster C, we define Rad(C) = max{dG(C)(rC , v) | v ∈ C}. For a set of
clusters Pi, Rad(Pi) = max

C∈Pi

{Rad(C)}.
The degree threshold parameter degi of phase i is used to define the sampling probability

with which the centers of clusters in Pi are selected to grow superclusters around them. We
partition the phases of the algorithm into two stages based on how the degree parameter
grows in each stage. The two stages are the exponential growth stage and the fixed grown
stage. In the exponential growth stage, which consists of phases 0, 1, . . . , i0 = log⌊κρ⌋, we set
degi = n

2i

κ . In the fixed growth stage, which consists of phases i0+1, i0+2, . . . , i1 = i0+⌈ κ+1
κρ ⌉,

we set degi = nρ. Observe that for every index i, we have degi ≤ nρ.
The distance threshold parameter increases by a factor of 1/ϵ in every phase. The sequence

of the distance threshold parameters for the centralized construction as defined in [16] is given
by α = α(k) = ϵℓ ·2k+1, δi = α(1/ϵ)i +4Ri, where R0 = 0 and Ri+1 = Ri +δi = α(1/ϵ)i +5Ri

for i ≥ 0. Here α can be perceived as a unit of distance. To adjust for the fact that
explorations are performed on the graph G(k−1), and not on the input graph G, we multiply
all the distance thresholds δi by a factor of 1+ϵk−1, the stretch guarantee of the graph G(k−1).
We further modify this sequence to account for the fact that our B-F explorations in the
dynamic stream are not exact and incur a multiplicative error. Throughout the construction
of Hk, we set the multiplicative error of every approximate B-F Exploration we perform to
1 + χ, for a parameter χ > 0 which will be determined later (in Section 3.3). Therefore we
multiply all the distance thresholds by a factor of 1 + χ. We define R′

i = (1 + χ) · (1 + ϵk−1)Ri

and δ′
i = (1 + χ) · (1 + ϵk−1)δi for every i ∈ [0, ℓ]. In the centralized setting, Ri serves as

an upper bound on the radii of the input clusters of phase i. As a result of rescaling, R′
i

becomes the new upper bound on the radii of input clusters of phase i.
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Superclustering. The phase i begins by sampling each cluster C ∈ Pi independently at
random with probability 1/degi. Let Si denote the set of sampled clusters. We now have
to conduct (approximate) distance exploration up to depth δ′

i in G(k−1) rooted at the set
CSi =

⋃
C∈Si

{rC}. By Lemma 5, this can be achieved by 2β + 1 iterations of B-F algorithm
on the graph G(k−1). For this, we invoke the approximate B-F exploration algorithm of
Appendix B on graph G(k−1) with set CSi as the set S of source vertices and parameters
η = 2β + 1, ζ = χ. We slightly modify the algorithm of Appendix B and then invoke the
modified version. In the modified version, at the end of each pass through the stream, for
every vertex v ∈ V , we scan through the edges incident to v in the set H(k−1) and update
its distance estimate d̂(v) as:

d̂(v) = min{d̂(v), min
(v,w)∈H(k−1)

{d̂(w) + ωH(k−1)(v, w)}}.

The parent of v, p̂(v) is also updated accordingly. Note that this modification does not
affect the space complexity, stretch guarantee or the success probability of the algorithm of
Appendix B. This provides us with a (1 + χ)-approximation of d

(2β+1)
G(k−1) (v, CSi), for all v ∈ V .

Hence, by Theorem 14, an invocation of modified version of approximate B-F algorithm of
Appendix B during the the superclustering step of phase i generates whp, an approximate
B-F exploration of the graph G(k−1), rooted at the set CSi ⊆ V in 2β + 1 passes. It outputs
for every v ∈ V an estimate d̂(v) of its distance to set CSi such that:

d
(2β+1)
G(k−1) (v, CSi) ≤ d̂(v) ≤ (1 + χ) · d

(2β+1)
G(k−1) (v, CSi). (2)

Moreover, the set of parent variables p̂(v) of every v ∈ V with d̂(v) < ∞ spans a forest F of
G(k−1) rooted at the set of sampled centers CSi.

For every cluster center rC′ , C ′ ∈ Pi \ Si, such that d̂(rC′) ≤ δ′
i, the algorithm adds

an edge (rC , rC′) of weight d̂(rC′) to the hopset Hk, where rC is the root of the tree in
F to which rC′ belongs. We also create a supercluster rooted at rC which contains all
the vertices of C ′ as above. Note that if dG(rC , rC′) ≤ δi, then by equations (1) and (2),
d̂(rC′) ≤ (1 + χ) · (1 + ϵk−1)dG(rC , rC′) = δ′

i. Therefore, edge (rC , rC′) will be added to the
hopset and the cluster C ′ will be superclustered into a cluster centered at rC .

Interconnection. Next we describe the interconnection step of each phase i ∈ {0, 1, . . . , ℓ}.
Let Ui be the set of clusters of Pi that were not superclustered in phase i. Let CUi =⋃

C∈Ui
{rC}. In the interconnection step of phase i ≥ 0, we want to connect every cluster

C ∈ Ui to every other cluster C ′ ∈ Ui that is close to it. To do this, we want to perform
2β +1 iterations of a (1+χ)-approximate B-F exploration from every cluster center rC ∈ CUi

separately in G(k−1). These explorations are, however, conducted to a bounded depth (in
terms of number of hops), and to bounded distance. Specifically, the hop-depth of these
explorations will be at most 2β + 1, while the distance to which they are conducted is roughly
δi/2. For every cluster center rC′ , C ′ ∈ Ui within distance δi/2 from another center rC in
G, we want to add an edge e = (rC , rC′) of weight at most (1 + χ) · d

(2β+1)
G(k−1) (rC , r′

C) to the
hopset Hk. To do so, we turn to the stream to find an estimate of d

(2β+1)
G(k−1) (v, rC) for every

v ∈ V and every center rC ∈ Ui. We cannot afford to invoke the algorithm of Appendix B
multiple times in parallel to conduct a separate exploration from every center rC in CUi,
due to space constraints. As shown in [16] (See Lemmas 3.2 and 3.3 of [16]), the following
lemma holds in the interconnection step of our (single-scale) hopset construction:
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▶ Lemma 6 ([15]). For any vertex v ∈ V , the expected number of explorations that visit v

in the interconnection step of phase i is at most degi. Moreover, for any constant c′
1, every

vertex v is explored by at most c′
1 · ln n · degi explorations in phase i with probability at least

1 − 1/nc′
1−1.

Specifically, if one conducts B-F explorations to depth at most δ′
i/2 in G(k−1) to hop-depth

at most 2β + 1, then, whp, every vertex is traversed by at most O(degi ln n) explorations.
Therefore, we devise a randomized technique to efficiently identify for every v ∈ V , the
sources of all the explorations it gets visited by in phase i. Moreover, for every vertex v ∈ V

with a non-empty subset Uv
i ⊆ Ui of explorations that visit v, we find for every cluster

C ∈ Uv
i , an estimate of d

(2β+1)
G(k−1) (v, rC).

Throughout the interconnection step of phase i, we maintain for every vertex v ∈ V , a
set LCurrentv (called estimates list of v) of sources of B-F explorations that visited v so far.
Each element of LCurrentv is a tuple (s, d̂(v, s)), where s is the center of some cluster in Ui,
and d̂(v, s) is the current estimate of d

(2β+1)
G(k−1) (v, s). For any center s′ ∈ CUi, for which we do

not yet have a tuple in LCurrentv, d̂(v, s′) is implicitly defined as ∞. Initially, the estimates
lists of all the vertices are empty, except for the centers of clusters in Ui. The estimates list
of every center rC ∈ CUi is initialized with a single element (rC , 0) in it. The interconnection
step of phase i is carried out in 2β + 1 sub-phases. Next, we describe the purpose of each of
the 2β + 1 sub-phases of the interconnection step and the way they are carried out.

Sub-phase p of the interconnection step. Denote ζ ′ = χ
2·(2β+1) . Our goal is to ensure that

by the end of sub-phase p, for every vertex v ∈ V and every exploration source s ∈ CUi with
a p-bounded path to v in G(k−1) , there is a tuple (s, d̂(v, s)) in the estimates list LCurrentv

such that

d
(p)
G(k−1)(v, s) ≤ d̂(v, s) ≤ (1 + ζ ′)p · d

(p)
G(k−1)(v, s).

To accomplish this, in every sub-phase p, we search for every vertex v ∈ V , a better (smaller
than the current value of d̂(v, s)) estimate (if exists) of its (2β + 1)-bounded distance to
every source s ∈ CUi, by keeping track of edges e = (u, v) incident to v in G(k−1). In each of
the 2β + 1 sub-phases, we make two passes through the stream. For a given vertex v ∈ V ,
an exploration source s ∈ CUi is called an update candidate of v in sub-phase p, if a better
estimate of d

(2β+1)
G(k−1) (v, s) is available in sub-phase p through some edge e = (u, v) on the

stream. (Recall that the current estimate of d
(2β+1)
G(k−1) (v, s′) for some source s′ ∈ CUi for

which we do not yet have an entry in LCurrentv is ∞.) We go through the edge set H(k−1)

offline at the end of every sub-phase and update all our estimates lists with the best available
estimates in H(k−1).

In the first pass of sub-phase p, we identify for every v ∈ V , all of v’s update candidates
in sub-phase p. All of these update candidates are added to a list called the update list of
v, denoted LUpdatev. Each element of LUpdatev is a tuple (s, range, r), where s is the ID
of an exploration source in CUi for which a better estimate of d

(2β+1)
G(k−1) (v, s) is available,

range is the distance range I = (low, high] in which the better estimate is available, and r

is the number of vertices u ∈ ΓG(v), such that d̂(u, s) + ω(u, v) ∈ range. The second pass of
sub-phase p uses the update list of every vertex v ∈ V to find a better estimate of d

(2β+1)
G(k−1) (v, s),

for every update candidate s in LUpdatev. The new better estimate of d
(2β+1)
G(k−1) (v, s) for every

source s in LUpdatev is then used to update the estimates list LCurrentv of v.

First pass of sub-phase p of phase i. By Lemma 6„ the number of update candidates of v

in any sub-phase of interconnection step of phase i is at most c′
1 · ln n · degi whp. (Recall that

all the explorations are restricted to distance at most δ′
i/2.) We denote Ni = c′

1 · ln n · degi
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and µi = 16 · c4 · Ni · ln n, where c4 ≥ 1 is a sufficiently large positive constant. At a
high level, in the first pass of every sub-phase, we want to recover, for every vertex v ∈ V ,
a vector (containing sources of explorations that visit v in sub-phase p) with at most Ni

elements in its support. In other words, we want to perform an s-sparse recovery for every
vertex v ∈ V , where s = Ni. We do so by performing multiple simultaneous invocations
of a procedure called FindNewCandidate, for every v ∈ V . The pseudocode for procedure
FindNewCandidate is given in Algorithm 1. The procedure FindNewCandidate enables us to
sample an update candidate s of v (if exists), with a better (than the current) estimate of
d

(2β+1)
G(k−1) (v, s) in a specific distance range.

Algorithm 1 Pseudocode for procedure F indNewCandidate.

1: Procedure FindNewCandidate(v, h, I)
2: ▷ Initialization
3: slots← ∅ ▷ An array with λ = ⌈log n⌉ elements indexed from 1 to λ.

▷ Each element of slots is a tuple (sCount, sNames). For a given index 1 ≤ τ ≤ λ, fields sCount

and sNames of slots[τ ] can be accessed as slots[τ ].sCount and slots[τ ].sNames, respectively.
▷ slots[τ ].sCount counts the update candidates u seen by v with hash values h(u) ∈ [2τ ]. It is
set to 0 initially.
▷ slots[τ ].sNames is an encoding of the names of candidate sources seen by v with hash values
in [2τ ]. It is set to ϕ initially.

▷ Update Stage
4: while (there is some update (et, eSignt, eW eightt) in the stream) do
5: if (et is incident on v and some u ∈ V ) then
6: for each (s, d̂(u, s)) ∈ LCurrentu do
7: if ((d̂(u, s) + eW eightt) ∈ I and
8: d̂(u, s) + eW eightt < d̂(v, s)) then
9: τ ← ⌈log h(s)⌉

10: repeat ▷ Update slots[τ ] for all ⌈log h(s)⌉ ≤ τ ≤ λ

11: slots[τ ].sCount← slots[τ ].sCount + eSignt

12: slots[τ ].sNames← slots[τ ].sNames + ν(s) · eSignt

13: ▷ The function ν is described in Section 2.3.
14: ▷ The addition in line 12 is a vector addition.
15: τ = τ + 1
16: until τ > λ

▷ Recovery Stage
17: if (slots vector is empty) then
18: return (ϕ, ϕ)
19: else if (∃ index τ s.t. slots[τ ].sNames

slots[τ ].sCount
= ν(s) for some s in V ) then

20: return (s, slots[τ ].sCount)
21: else
22: return (⊥,⊥)

For every vertex v ∈ V , we divide the possible range of better estimates of v’s (2β + 1)-
bounded distances to its update candidates, into sub-ranges on a geometric scale. We then
invoke the procedure FindNewCandidate repeatedly in parallel to perform an Ni-sparse
recovery for v on every sub-range. Specifically, we divide the search space of potential better
estimates, [1, δ′

i/2], into sub-ranges Ij =
(
(1 + ζ ′)j , (1 + ζ ′)j+1]

, for j ∈ {0, 1, . . . , γ}, where
γ = ⌈log1+ζ′ δ′

i/2⌉ − 1. For j = 0, we make the sub-range I0 =
[
(1 + ζ ′)0, (1 + ζ ′)1]

closed
to include the value 1. Note that we are only interested in distances at most δ′

i/2. Therefore
we restrict our search for distance estimates to the range [1, δ′

i/2].
In more detail, we make for for each v ∈ V and for each sub-range Ij , µi = Θ(Ni · ln n)

attempts in parallel. In a specific attempt for a given vertex v and a given sub-range Ij ,
we make a single call to procedure FindNewCandidate which samples an update candidate
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s (if exists) of v with a better estimate of d
(2β+1)
G(k−1) (v, s) in the sub-range Ij . Henceforth,

we will refer to an update candidate s of a vertex v with a better estimate of d
(2β+1)
G(k−1) (v, s)

in a given distance range I, as the update candidate of v in the range I. A single call to
procedure FindNewCandidate succeeds only with a constant probability. Hence multiple
parallel calls are required to boost the probability of success. In the extended version we
show that making µi parallel attempts ensures that a specific update candidate s for some
input vertex v and a distance subrange Ij gets sampled whp (assuming that it exists).

The procedure FindNewCandidate takes as input the ID of a vertex, a hash function
h chosen at random from a family of pairwise independent hash functions and an input
range I = (low, high]. (The input range may be closed as well.) A successful invocation
of FindNewCandidate for an input vertex v and a distance range I returns a tuple (s, cs),
where s is the ID of an update candidate of v in the range I, and cs is the number of edges
(v, u) ∈ E such that d̂(u, s) + ω(v, u) ∈ I. If there is no update candidate of v in the input
range I, procedure FindNewCandidate returns a tuple (ϕ, ϕ). If there are update candidates
of v in the input range, but procedure FindNewCandidate fails to isolate an ID of such a
candidate, it returns (⊥, ⊥). Before we start making our attempts in parallel, we sample
uniformly at random a set of functions Hp (|Hp| = µi) from a family of pairwise independent
hash functions h : {1, . . . , maxV ID} → {1, . . . , 2λ}, where λ = ⌈log maxV ID⌉ = ⌈log n⌉.
Then, for every vertex v ∈ V and every distance sub-range Ij , j ∈ {0, 1, . . . , γ}, we make µi

parallel calls to procedure FindNewCandidate(v, h, Ij), one call for each h ∈ Hp.

Procedure FindNewCandidate. Procedure FindNewCandidate uses the input hash function
h to sample for the input vertex v, an update candidate of v in the input range I. Let d

(I)
v

be the number of update candidates of v in the input range I. If we knew the exact value of
d

(I)
v , we could sample every new update candidate witnessed by v with probability 1/d

(I)
v

to extract exactly one of them in expectation. However, all we know about d
(I)
v is that it

is at most degi in expectation (Lemma 6) and at most O(degi · ln n) whp. We therefore
sample every new update candidate seen by v on a range of probabilities. We use an array
slots of λ elements, indexed by slot-levels from 1 to λ = ⌈log n⌉, to implement sampling on a
range of probabilities. We want a given update candidate s to be sampled into slot-level τ

with probability 1/2λ−τ . When d
(I)
v ≈ 2λ−τ , with a constant probability there is exactly one

exploration source that gets mapped to slots[τ ].
Each element of slots is a tuple (sCount, sNames). The field sCount of element at

slot-level τ counts the new update candidates seen by v with hash values in [2τ ]. It is set to 0
initially. The field sName of element at slot-level τ is an encoding of the names of candidate
sources seen by v with hash values in [2τ ]. It is set to ϕ initially.

The update stage of the procedure for an input vertex v and an input distance range I

(See lines 4-16 of Algorithm 1) proceeds as follows. For every update (et, eSignt, eWeightt)
to an edge et incident to v and some vertex u, we look at every exploration source s in the
estimates list LCurrentu of u, (see line 6 of Algorithm 1) and check whether the distance
estimate of v to s via edge et = (v, u) is better than the current value of d̂(v, s), and whether
it falls in the input distance range I. (See line 8 of Algorithm 1.) If this is the case, then, we
sample s (on a range of probabilities) by updating the elements of slots array from slot-levels
⌈log h(s)⌉ to λ. (See Lines 11 and 12.) We use the CIS-based encoding scheme ν described in
Section 2.3 to encode the names of the exploration sources we sample, and use Lemma 4 to
check (See line 19 of Algorithm 1), if we have successfully isolated the ID of a single update
candidate in the desired distance range.
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We need to make sure that for some 1 ≤ τ ≤ λ, only one exploration source will get
mapped to slots[τ ]. By Corollary 13 (see Appendix A), only one exploration source gets
mapped to slots[τ ] for τ = λ − ⌈log d

(I)
v ⌉ − 1, with at least a constant probability. Therefore,

a single call to FindNewCandidate succeeds with at least a constant probability. For a vertex
v ∈ V , if there are no update candidates of v in sub-phase p, all the calls to procedure
FindNewCandidate in all the attempts return (ϕ, ϕ). For every such vertex, we do not need
to add anything to its update list LUpdatev. At the end of the first pass, if no invocation of
procedure FindNewCandidate returns as error, we extract for every vertex v ∈ V and every
distance range Ij (j ∈ {0, 1, . . . , γ}), all the distinct update candidates of v in the range Ij

sampled by µi attempts made for v and sub-range Ij . For a given update candidate s of v,
let j = jv,s be the smallest index in {0, 1, . . . , γ}, such that a tuple (s, cs) (for some cs > 0)
is returned by a call to procedure FindNewCandidate(v, h, Ij). We add a tuple (s, Ij , cs)
to the list of update candidates LUpdatev of v. Recall that the set LUpdatev of vertex v

contains tuples (s, range, rs), where s is the ID of an update candidate of v, range is the
distance range in which a better estimate of d

(2β+1)
G(k−1) (v, s) lies, and r is the number of edges

(u, v) ∈ ΓG(v) such that d̂(u, s) + ω(u, v) ∈ range.

Second pass of sub-phase j of phase i. The second pass of sub-phase p starts with the
update lists LUpdatev of every v ∈ V . We find for every tuple (s, range, r) in LUpdatev,
a better estimate of d

(2β+1)
G(k−1) (v, s) in the sub-range range, by invoking procedure Guess-

Distance (described in Appendix B.1) O(log n) times. We sample uniformly at random
a set of c1 log7/8 n = O(log n) pairwise independent hash functions H ′

p from the family
h : {1, . . . , maxVID} → {1, 2, . . . , 2λ} (λ = ⌈log n⌉), to be used by invocations of procedure
GuessDistance.

Note that the current estimate d̂(v, s) of input vertex v’s distance to its update candidate
s is either available in its estimates list LCurrentv or is implicitly set to ∞. The latter
happens if v has not yet been visited by the exploration rooted at source s. At the end
of the second pass, we have the results of all the invocations of procedure GuessDistance,
for a given vertex v corresponding to the tuple (s, range, r) ∈ LUpdatev. We update the
corresponding tuple (s, d̂(v, s)) in the estimates list LCurrentv of v with the minimum value
returned by any invocation of GuessDistance for vertex v. If an entry corresponding to s is
not present in the estimates list LCurrentv at this stage (i.e., d̂(v, s) = ∞ as above), then
we add a new tuple to the estimates list of v. Finally, the updates lists of all the vertices are
cleared to be re-used in the next sub-phase. At the end of second pass of sub-phase p, we
go through the edges of the lower level hopsets and check for each v ∈ V whether a better
estimate of d

(2β+1)
G(k−1) (v, s) for any source s ∈ CUi is available through one of the hopset edges.

If this is the case, then we update the estimates lists accordingly.
Finally, after 2β + 1 sub-phases of the interconnection step of phase i, we go through the

estimates list of every center rC ∈ CUi to check for every center r′
C ∈ CUi, whether, there is

a tuple (r′
C , d̂(rC , r′

C)) ∈ LCurrentrC
and d̂(rC , r′

C) ≤ δ′
i/2. Then, for every such center r′

C

found, we add an edge (rC , r′
C) of weight d̂(rC , r′

C) into hopset Hk.
Next, we analyze the properties of our final hopset H.

3.3 Size, Stretch and Hopbound Anlaysis
Size: The size of our hopset H is the same as that of the insertion-only algorithm of [16],
since we follow the same criteria (as in [16]), when deciding which cluster centres to connect
via a hopset edge during our construction. Thus, the overall size of the hopset produced by
our construction is O(n1+1/κ · log Λ) in expectation.
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Stretch and Hopbound. Recall that ϵk is the value such that the graph G(k) (which is a
graph obtained by adding the edges of hopset H(k) =

⋃
k0≤j≤k Hj to the input graph G)

provides stretch at most 1 + ϵk. Also, recall that k0 = ⌊log β⌋ and kΛ = ⌈log Λ⌉. Write
c5 = 2. We need the following lemma from [16] regarding the stretch of a single scale hopset
Hk, k ∈ [k0, kΛ] produced by the insertion-only algorithm. We refer the reader to Lemma
3.10 and preamble of Theorem 3.11 of [16] for the proof.

▶ Lemma 7 ([16]). Let x, y ∈ V be such that 2k ≤ dG(x, y) ≤ 2k+1, then it holds that

d
(hℓ)
G∪Hk

(x, y) ≤ (1 + ϵk−1)(1 + 16 · c5 · ℓ · ϵ)dG(x, y), (3)

and hℓ = O( 1
ϵ )ℓ is the hopbound. (Here c5 is a fixed constant.)

Rescaling. Define ϵ′′ = 16 · c5 · ℓ · ϵ. Therefore, the stretch of a single scale hopset Hk,
k ∈ [k0, kΛ], produced by the insertion-only algorithm of [16] becomes (1+ϵk−1)(1+ϵ′′). After
rescaling, the hopbound hℓ becomes O( ℓ

ϵ′′ )ℓ. Recall that ℓ = ℓ(κ, ρ) = ⌊log(κρ)⌋+⌈ κ+1
ρκ ⌉−1 ≤

log(κρ) + ⌈1/ρ⌉, is the number of phases of our single-scale hopset construction. It follows
that the hopbound of the insertion-only algorithm is

βEN = O

(
log κρ + 1/ρ

ϵ′′

)log κρ+1/ρ

. (4)

Observe that for k = k0, graph G(k−1) is the input graph G itself, since Hk for all k < k0 is an
empty set. (See Section 3.1 for details.) Therefore, 1+ϵk−1 for k = k0 is equal to 1. It follows
therefore that the stretch 1+ϵk = 1+ϵkEN

, of the insertion-only algorithm follows the following
sequence: 1 + ϵk0EN

= (1 + ϵ′′) and for the higher scales, 1 + ϵk+1EN
= (1 + ϵ′′) · (1 + ϵkEN

).
The stretch of our single scale hopset construction (Section 3.2) for any scale (2k, 2k+1],

k0 ≤ k ≤ kΛ is (1 + χ) times the stretch of the corresponding hopset produced by the
insertion-only algorithm. We set χ = ϵ′′. Incorporating the additional stretch incurred by
our algorithm into the stretch analysis of [16], we get the following lemma about the stretch
of our dynamic streaming algorithm.

▶ Lemma 8. For k ∈ [k0, kΛ], we have

1 + ϵk0 = (1 + ϵ′′)2

1 + ϵk = (1 + ϵ′′)2(1 + ϵk−1) for k > k0

Observe that Lemma 8 implies that the overall stretch of our hopset H is at most (1+ϵ′′)2 log Λ.
Recall that the desired stretch of our hopset construction is 1 + ϵ′ (see Section 3.1), where
ϵ′ > 0 is an input parameter of our algorithm. We set ϵ′′ = ϵ′

4·log Λ , and it follows that our

overall stretch is
(

1 + ϵ′

4 log Λ

)2 log Λ
≤ 1 + ϵ′. It follows that ϵ = ϵ′

64·c5·ℓ·log Λ .

Plugging in ϵ′′ = ϵ′

4·log Λ in (4), we get the following expression for the hopbound of our
dynamic streaming hopset:

β′ = O

(
log Λ

ϵ′ (log κρ + 1/ρ)
)log κρ+1/ρ

. (5)

Also recall that we had defined β = ( 1
ϵ )ℓ for using 2β +1 as the hop-depth of our explorations.

After the two rescaling steps as above, we get that β = β′.
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3.4 Summary

A detailed analysis of the resource usage of the hopset construction algorithm is provided in
extended version. In the extended version we also generalize our result to path-reporting
hopsets, and integrate it with a weight reduction that eliminates most of the dependencies
on log Λ. We summarize the results below.

▶ Theorem 9. For any n-vertex graph G(V, E, ω) with aspect ratio Λ, 2 ≤ κ ≤ (log n)/4,
1/κ ≤ ρ ≤ 1/2 and 0 < ϵ′ < 1, our dynamic streaming algorithm computes whp, a (1 + ϵ′, β′)
hopset H with expected size O(n1+1/κ · log n) and the hopbound β′ given by

β′ = O

(
(log κρ + 1/ρ) log n

ϵ′

)log κρ+1/ρ

It does so by making O(β′·(log κρ+1/ρ)) passes through the stream and using O(n·log3 n·log Λ)
bits of space in the first pass and O( β′

ϵ′ · log2 1/ϵ′ · n1+ρ · log5 n) bits of space (respectively
O( β′2

ϵ′ · log2 1/ϵ′ ·n1+ρ · log5 n) bits of space for path-reporting hopset) in each of the subsequent
passes.

4 (1 + ϵ)-Approximate Shortest Paths

Consider the problem of computing (1 + ϵ)-approximate shortest paths (henceforth (1 + ϵ)-
ASP) for all pairs in S × V , for a subset S, |S| = s, of designated source vertices, in a
weighted undirected n-vertex graph G = (V, E, ω) with aspect ratio Λ. Let ϵ, ρ > 0 be
parameters, and assume that s = O(nρ). Our dynamic streaming algorithm for this problem
computes a path-reporting (1 + ϵ, β)-hopset H of G with β = O( log n

ϵρ )1/ρ using our hopset
construction algorithm, with κ = 1/ρ. Once the hopset H has been computed, we conduct
(1 + ϵ)-approximate Bellman-Ford explorations in G ∪ H to depth β from all the sources of
S. (See the algorithm from Appendix B.) By Theorem 14, this requires O(β) passes of the
stream, and space O(|S| · n · poly(log n, log Λ)), and results in (1 + ϵ)-approximate distances
d

(β)
G∪H(s, v), for all (s, v) ∈ S × V . (Note that following every pass over G, we do an iteration

of Bellman-Ford over the hopset H offline, as H is stored by the algorithm.) In addition, for
every pair (s, v) ∈ S × V , we also get the parent of v on the exploration rooted at source
s. We compute the path πG∪H(s, v) between s and v in graph G ∪ H from these parent
pointers. The path-reporting property of our hopset H enables us to replace any hopset
edge e = (x, y) ∈ H on the path πG∪H(s, v) with a corresponding path πG(x, y) in G. In
the extended version we also argue that these replacements can be performed using Õ(n1+ρ)
space. By definition of the hopset, we have dG(s, v) ≤ d

(β)
G∪H(s, v) ≤ (1 + ϵ) · dG(s, v), and the

estimates d̂(s, v) computed by our approximate Bellman-Ford algorithm satisfy d
(β)
G∪H(s, v) ≤

d̂(s, v) ≤ (1 + ϵ) · d
(β)
G∪H(s, v). Thus, we have, dG(s, v) ≤ d̂(s, v) ≤ (1 + ϵ)2 · dG(s, v). By

rescaling ϵ′ = 3ϵ, we obtain (1 + ϵ)-approximate S × V paths, the total space complexity
of the algorithm is O(n1+ρ · poly(log n, log Λ)), and the number of passes is poly(log n). We
derive the following theorem:

▶ Theorem 10. For any parameters ϵ, ρ > 0, and any n-vertex undirected weighted graph
G = (V, E, ω) with polynomial in n aspect ratio, and any set S ⊆ V of nρ distinguished
sources, (1 + ϵ)-ASP for S × V can be computed in dynamic streaming setting in Õ(n1+ρ)
space and log

1
ρ +O(1) n = polylog(n) passes.
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A Hash Functions

A hash function h maps elements from a given input domain to an output domain of bounded
size. Ideally, we would like to draw our hash function randomly from the space of all possible
functions on the given input/output domain. However, since we are concerned about the
space used by our algorithm, we will rely on hash functions with limited independence. A
family of functions H = {h : U → [m]}, from a universe U to [m], for some positive integers
m and k, is said to be k-wise independent, if it holds that, when h is chosen uniformly at
random from H then for any k distinct elements x1, x2, · · · , xk ∈ U , and any k elements
z1, z2, · · · , zk ∈ [m], x1, x2, · · · , xk and mapped by h to z1, z2, · · · , zk with probability 1/mk,
i.e., as if they were perfectly random. Such functions can be described more compactly,
but are sufficiently random to allow formal guarantees to be proven. The following lemma
summarizes the space requirement of limited independence hash functions:

▶ Lemma 11 ([8]). A function drawn from a family of k-wise independent hash functions
can be encoded in O(k log n) bits.

Specifically, we will be using pairwise independent hash functions.
The following lemma, a variant of which has also been proved in [27, 33] in a different

context, is proved in the extended version.

▶ Lemma 12. Let h : U → [2λ] be a hash function sampled uniformly at random from a
family of pairwise independent hash functions H. If we use h to hash elements of a given set
S ⊆ U such that |S| = s, then a specific element d ∈ S hashes to the set [2t], t = λ−⌈log s⌉−1
and no other element of S does so with probability at least 1

8s .

Lemma 12 implies the following corollary:

▶ Corollary 13. Let h : U → [2λ] be a hash function sampled uniformly at random from a
family of pairwise independent hash functions H. If we use h to hash elements of a given set
S ⊆ U with |S| = s, then exactly one element in S hashes to the set [2t], t = λ − ⌈log s⌉ − 1,
with probability at least 1

8 .

APPROX/RANDOM 2022

http://arxiv.org/abs/1502.03320
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1090/dimacs/010/07
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1137/1.9781611973075.92
https://doi.org/10.1002/jgt.3190130114


51:20 (1 + ϵ)-Approximate Shortest Paths in Dynamic Streams

B Approximate Bellman-Ford Explorations

In this section, we describe an algorithm for performing a given number of iterations of an
approximate B-F (Bellman-Ford) exploration from a given subset S ⊆ V of source vertices
in a weighted undirected graph G(V, E, ω) with aspect ratio Λ. For a given vertex v ∈ V

and a set S ⊆ V , the t-bounded distance between v and S in G, denoted d
(t)
G (v, S), is the

length of a shortest t-bounded path between v and some s ∈ S (See Definition 3) such that
d

(t)
G (v, s) = min{d

(t)
G (s′, v) | s′ ∈ S}.

Given an n-vertex weighted graph G(V, E, ω), a set S ⊆ V of vertices, an integer parameter
η > 0 and an error parameter ζ ≥ 0, an (η, ζ)-B-F exploration of G rooted at S outputs for
every vertex v ∈ V , a (1 + ζ)-approximation of its η-bounded distance to to the set S.

Throughout the execution of our algorithm, we maintain two variables for each vertex
v ∈ V . One of them is a current estimate of v’s η-bounded distance to set S, denoted d̂(v),
and the other is the ID of v’s neighbour through which it gets its current estimate, denoted
p̂(v), and called the parent of v. We start by initializing d̂(s) = 0, p̂(s) =⊥, for each s ∈ S

and d̂(v) = ∞, d̂(v) =⊥ for each v ∈ V \ S. As the algorithm proceeds, d̂(v) and p̂(v) values
of every vertex v ∈ V \ S are updated to reflect the current best estimate of d

(η)
G (v, S). The

final value of d̂(v) for each v ∈ V is such that d
(η)
G (v, S) ≤ d̂(v) ≤ (1 + ζ) · d

(η)
G (v, S), and the

final value of p̂(v) for each v ∈ V contains the ID of v’s parent on the forest spanned by
(η, ζ)-B-F exploration of G rooted at the set S. The algorithm proceeds in phases, indexed
by p, 1 ≤ p ≤ η. We make one pass through the stream in each phase.

Phase p. In every phase, we search for every vertex v ∈ V \ S, a better (smaller than
the current value of d̂(v)) estimate (if exists) of its η-bounded distance to the set S, by
keeping track of updates to edges e = (v, u) incident to v. Specifically, we divide the search
space of potential better estimates, [1, 2 · Λ], into sub-ranges Ij =

(
(1 + ζ ′)j , (1 + ζ ′)j+1]

,
for j ∈ {0, 1, . . . , γ}, where γ = ⌈log1+ζ′ 2 · Λ⌉ − 1 and ζ ′ is set to ζ/2η for technical reasons.
For j = 0, we make the sub-range I0 =

[
(1 + ζ ′)0, (1 + ζ ′)1]

closed to include the value 1.
Recall that we are doing a (1 + ζ)-approximate B-F exploration (and not an exact one).
Due to this, some of the better estimates we get in a given phase may be between Λ and
(1 + ζ) · Λ ≤ 2 · Λ, where Λ is the aspect ratio of the input graph. We therefore keep our
search space from 1 to 2Λ instead of Λ. In more detail, we make for for each v ∈ V \ S, γ

guesses, one for each sub-range. In a specific guess for a vertex v corresponding to sub-range(
(1 + ζ ′)j , (1 + ζ ′)j+1]

for some j, we make multiple simultaneous calls to a randomized
procedure called GuessDistance which samples an edge (if exists) between v and some vertex
u such that

d̂(u) + ω(v, u) ∈ Ij .

The exact number of calls we make to procedure GuessDistance in each guess will be
specified later in the sequel. The smallest index j ∈ [0, γ], for which the corresponding guess
denoted Guess

(j)
v successfully samples an edge which gives a distance estimate better than

the current estimate of v, is chosen to update d̂(v).
The pseudocode for procedure GuessDistance is given in Algorithm 2.
The procedure GuessDistance takes as input the ID of a vertex, a hash function h

chosen at random from a family of pairwise independent hash functions and an input range
I = (low, high]. The input range may be closed as well.

A successful invocation of procedure GuessDistance for an input vertex x and input
range I, returns a tuple (dist, parent), (if there is at least one edge (x, y) in G such that
d̂(y) + ω(x, y) ∈ I, and (∞, ∞) otherwise), where dist is an estimate of x’s η-bounded
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Algorithm 2 Pseudocode for Procedure GuessDistance.

1: Procedure GuessDistance(x, h, I) ▷ Initialization
2: slots← ∅ ▷ An array with λ elements indexed from 1 to λ, where λ = ⌈log n⌉.

▷ Each element of slots is a tuple (xCount, xDist, xName). For a given index 1 ≤ τ ≤ λ, fields
xCount, xDist and xName of slots[τ ] can be accessed as slots[τ ].xCount, slots[τ ].xDist and
slots[τ ].xName, respectively.
▷ slots[τ ].xCount is the number of sampled edges (x, y) with h(y) ∈ [2τ ]. Initially, it is set to 0.
▷ slots[τ ].xDist is the distance estimate for x provided by an edge (x, y) with h(y) ∈ [2τ ].
Initially, it is set to 0.
▷ slots[τ ].xName is encoding of the names of the endpoints y of sampled edges (x, y) with
h(y) ∈ [2τ ]. Initially, it is set to ϕ.

▷ Update Stage
3: while (there is some update (et, eSignt, eW eightt) in the stream) do
4: if (et is incident on x and some y such that d̂(y) + eW eightt ∈ I) then
5: τ ← ⌈log h(y)⌉
6: repeat ▷ Update slots[τ ] for all ⌈log h(y)⌉ ≤ τ ≤ λ.
7: slots[τ ].xCount← slots[τ ].xCount + eSignt

8: slots[τ ].xDist← slots[τ ].xDist + (d̂(y) + eW eightt) · eSignt

9: slots[τ ].xName← slots[τ ].xName
⊕

name(y) ▷
⊕

stands for bitwise XOR.
10: τ = τ + 1
11: until τ > λ

▷ Recovery Stage
12: if (slots array is empty) then
13: return (∞,∞)
14: else if (∃ index τ | slots[τ ].xCount = 1) then
15: return (slots[τ ].xDist, slots[τ ].xName)
16: else
17: return (⊥,⊥)

distance to the set S in the range I, and parent is the parent of x in the forest spanned by
(η, ζ)-B-F exploration of G rooted at the set S. The procedure GuessDistance may fail to
return (with a constant probability) a distance estimate in the desired range, even when such
an estimate exists. It returns an error, denoted by (⊥, ⊥), in that case.

Before we start making calls to procedure GuessDistance, we sample uniformly at random
a set of functions Hp of size c1 log8/7 n from a family of pairwise independent hash functions
h : {1, . . . , maxV ID} → {1, . . . , 2λ}, where λ = ⌈log n⌉ and c1 is an appropriate constant.
For every guess for a given vertex x ∈ V \ S and a given subrange Ij , we make |Hp| parallel
calls to procedure GuessDistance, one for each h ∈ Hp, to get an estimate of d

(η)
G (x, S) in

the given subrange. The multiple parallel calls are required since a single call to procedure
GuessDistance succeeds only with a constant probability, while we need to succeed with high
probability.

Additionally, before we start the phase p, we create for each v ∈ V \ S, a copy d̂′(v) of its
current distance estimate d̂(v). Any update to the distance estimate of a vertex v during
phase p is made to its shadow distance estimate d̂′(v). On the other hand, the variable d̂(v)
for vertex v ∈ V \ S remains unchanged during the execution of phase p. At the end of phase
p, we update d̂(v) as d̂(v) = d̂′(v). The purpose of using the shadow variable is to avoid any
issues arising due to simultaneous reading from and writing to the distance estimate variable
of a vertex by multiple parallel calls to procedure GuessDistance.
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B.1 Procedure GuessDistance
For a given vertex x, and a given distance range I, let y ∈ ΓG(x) be such that

d̂(y) + ω(x, y) ∈ I.

In what follows, we will refer to such a vertex y ∈ ΓG(x) as a candidate neighbour and
the corresponding edge (x, y) as a candidate edge in the range I. For a given vertex x, let
c

(p,j)
x be the number of candidate neighbours of x in the sub-range Ij . A call to procedure

GuessDistance for vertex x with input range I = Ij works by sampling a candidate neighbour
with probability 1

c
(p,j)
x

. We use the input hash function h to assign hash values to the
candidate edges in the range {1, . . . , 2λ}, where λ = ⌈log n⌉. We only know an upper bound
of n and not the exact value of c

(p,j)
x . Therefore, we try to guess c

(p,j)
x on a geometric scale of

values 2λ−τ , τ = 1, 2, . . . , λ, and sample every candidate neighbour on a range of probabilities
corresponding to our guesses of c

(p,j)
x .

To implement sampling on a range of probabilities, we use an array slots of λ elements in-
dexed by slot-levels from 1 to λ. Every new candidate neighbour y witnessed by x is assigned a
hash value h(y) by h. In every element of slots, we maintain a tuple (xCount, xDist, xName),
and xCount, xDist and xName of slots[τ ] can be accessed as slots[τ ].xCount, slots[τ ].xDist

and slots[τ ].xName, respectively. The variable xCount ∈ Z at slot-level τ maintains the
number of candidate neighbours with hash values in [2τ ]. It is initialized to 0 at the beginning
of the stream. Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ ] appears
on the stream, slots[τ ].xCount is updated by adding the eSignt value of et to its current
value. The variable xDist at slot-level τ is an estimate of η-bounded distance of x limited to
the input distance range I provided by edge (x, y) with h(y) ∈ [2τ ]. Initially, it is set to 0.
Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ ] appears on the stream,
slots[τ ].xDist is updated by adding the value of the expression (d̂(y) + eWeightt) · eSignt

to its current value. (Recall that it is initialized as 0.) The variable xName is encoding of
the names of endpoints y of the sampled edges (x, y) with h(y) ∈ [2τ ]. It is set to ϕ initially.
Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ ] appears on the stream,
slots[τ ].xName is updated by performing a bitwise XOR of its current value with name(y).

At the end of the stream, if the slots array is empty, then there are no candidate neighbours
in ΓG(x) and the procedure GuessDistance returns (∞, ∞). If there is a slot-level τ such that
slots[τ ].xCount = 1, then only one candidate neighbour is mapped to slot-level τ . In this
case, slots[τ ].xDist gives us an estimate of x’s η-bounded distance to the set S in the input
distance range I, and slots[τ ].xName gives us the name of x’s parent on the forest spanned
by the (η, ζ)-B-F exploration of G rooted at set S. Indeed, if no smaller scale estimate will be
discovered, the vertex recorded in slots[τ ].xName will become the parent of x in the forest.
The procedure GuessDistance returns (slots[τ ].xDist, slots[τ ].xName). If the slots vector is
not empty but there is no slot level with xCount = 1, then the procedure GuessDistance
has failed to find a distance estimate in the input range I for x, and thus it returns an error
(⊥, ⊥).

If the input vertex x has some candidate neighbours in the input distance range, we
need to make sure that for some 1 ≤ τ ≤ λ, only one candidate neighbour will get mapped
to slots[τ ]. By Corollary 13, only one of the c

(p,j)
x candidate neighbours gets mapped to

the set [2τ ], for τ = λ − ⌈log c
(p,j)
x ⌉ − 1, with at least a constant probability. Therefore, a

single invocation of procedure GuessDistance for a given vertex x and a given distance range
succeeds with at least a constant probability. Since we are running |Hp| parallel invocations
of procedure GuessDistance for a given input vertex x and a given distance range I, we pick
the output of a successful invocation of procedure GuessDistance as an estimate for x in the
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input range. In the case that all the invocations of GuessDistance in a guess return an error,
the algorithm terminates with an error. In the extended version, we show that when the set
Hp is appropriately sized, the event of all the invocations of procedure GuessDistance in a
given guess failing has a very low probability.

Once all the γ = O( log Λ
ζ′ ) guesses for a given vertex x have completed their execution

without failure, we pick the smallest index j for which the corresponding guess guess
(j)
x

has returned a finite (non-failure) value, and compare this value with d̂(x). If this value
gives a better estimate than the current value of d̂(x), we update the corresponding shadow
variable d̂′(x), and the parent variable p̂(x). At the end of phase p, if the algorithm has not
terminated with an error, for every vertex x ∈ V \ S, we update its current distance estimate
variable with the value in the corresponding shadow variable as d̂(x) = d̂′(x).

A detailed analysis of the algorithm is available in the extended version. The following
theorem summarizes the results.

▶ Theorem 14. For a sufficiently large positive constant c, given an integer parameter η, an
error parameter ζ, an input graph G(V, E, ω), and a subset S ⊆ V , our distance exploration
algorithms performs, with probability at least 1 − 1

nc , a (1 + ζ)-approximate Bellman-Ford
exploration of G rooted at the set S to depth η, and outputs for every v ∈ V , an estimate d̂(v)
of its distance to set S and v’s parent p̂(v) on the forest spanned by this exploration such
that d

(η)
G (v, S) ≤ d̂(v) ≤ (1 + ζ) · d

(η)
G (v, S) in η passes through the dynamic stream using

Oc(η/ζ · n · log2 n · log Λ(log n + log Λ)) space in every pass.

Note also that the space used by the algorithm on different passes can be reused, i.e., the
total space used by the algorithm is Oc(η/ζ · n · log2 n · log Λ(log n + log Λ)).
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Abstract
Caching is among the most well-studied topics in algorithm design, in part because it is such a
fundamental component of many computer systems. Much of traditional caching research studies
cache management for a single-user or single-processor environment. In this paper, we propose two
related generalizations of the classical caching problem that capture issues that arise in a multi-user
or multi-processor environment. In the caching with reserves problem, a caching algorithm is required
to maintain at least ki pages belonging to user i in the cache at any time, for some given reserve
capacities ki. In the public-private caching problem, the cache of total size k is partitioned into
subcaches, a private cache of size ki for each user i and a shared public cache usable by any user.
In both of these models, as in the classical caching framework, the objective of the algorithm is to
dynamically maintain the cache so as to minimize the total number of cache misses.

We show that caching with reserves and public-private caching models are equivalent up to
constant factors, and thus focus on the former. Unlike classical caching, both of these models turn
out to be NP-hard even in the offline setting, where the page sequence is known in advance. For
the offline setting, we design a 2-approximation algorithm, whose analysis carefully keeps track of a
potential function to bound the cost. In the online setting, we first design an O(ln k)-competitive
fractional algorithm using the primal-dual framework, and then show how to convert it online to a
randomized integral algorithm with the same guarantee.
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1 Introduction

Caching is one of the most well-studied problems in online computation and also one of the
most crucial components of many computer systems. In the classical caching (also referred
to as paging) problem, page requests arrive online and an algorithm must maintain a small
set of pages to hold in a cache so as to minimize the number of requests that are not served
from the cache. Caching algorithms have been widely studied through the lens of competitive
analysis and tight results are known [1, 10, 14]. Tight algorithms are also known for many
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generalizations such as weighted paging [3, 4], generalized caching [2, 5] and paging with
rejection penalties [9]. Due to its practical importance, a large number of heuristic algorithms
have been proposed such as Least Recently Used (LRU), Least Frequently Used (LFU),
CAR [7], ARC [15], and many others. Although they do not provide the best worst-case
performance, they attempt to maximize the hit rate of the cache on practical instances.
However, such traditional caching policies (both theoretical and practical) attempt to optimize
the global efficiency of the system and are not necessarily suitable for cache management in
a multi-user or multi-processor environment. In many of today’s cloud computing services,
caches are shared among all the users utilizing the service and optimizing only for global
efficiency can lead to highly undesirable allocation for some users. For example, a user who
only accesses pages at long intervals may reap no benefit from the cache at all. In this paper,
we propose two generalizations of the classical caching problem that are suited for caching in
a shared multi-processor environment.

In a multi-user setting, a naive way to guarantee that all users benefit from the cache is
to partition the cache among them and effectively maintain separate caches for each user.
However, such a system can be extremely inefficient and lead to low overall throughput as
the cache can remain underutilized. Instead, a number of recent systems [12, 13, 16, 17] aim
to maximize the global efficiency of the cache while attempting to provide (approximate)
isolation guarantees to each user, i.e., the cache hit rate for each user is at least as much as
what it would be if the user was allocated its own isolated cache (of proportionally smaller
size). We model the multi-user scenario as the caching with reserves problem wherein a
caching algorithm is required to maintain at least ki pages belonging to user i in the cache
at any time for some input reserve capacities ki. As in the classical caching framework,
the objective of the algorithm is to dynamically maintain the cache so as to minimize the
total number of cache misses. The reserve capacities for users provide an implicit isolation
guarantee since ki cache slots are reserved for pages of user i. We remark that when the
reserve capacities are all zero, then the problem reduces to classical unweighted caching.

A similar issue arises in the multi-processor setting where we have different “levels” of
caches. Lower-level caches tend to be smaller and dedicated to a particular processor, while
higher-level caches can be used by multiple processors and are larger in size. Consider a
system with m separate processors, each of which has its own independent cache. In addition,
there is a separate public cache shared by all the processors. We model such a setting as
the public-private caching problem where a cache of total size k is partitioned into (m + 1)
subcaches, one private cache for each user and a shared public cache. In contrast with
classical caching, in this case cache slots themselves have identities and a page requested by
user i cannot be placed in a cache slot that belongs to the private cache of some other user j.

1.1 Our Contributions
We propose and study the caching with reserves and public-private caching problems. We
show that the two problems are equivalent up to constant factors (Section 3).

▶ Proposition 1. If A is a c-competitive online algorithm for caching with reserves, then
there exists an online algorithm A′ that is 2c-competitive for public-private caching. Similarly,
if B is a c-competitive online algorithm for public-private caching, then there exists an online
algorithm B′ that is 2c-competitive for caching with reserves.

Our next set of results considers the offline scenario where the entire request sequence
is known in advance. Recall that in the classical setting, there is a simple exact solution
(Belady’s algorithm [8], which evicts the page that is requested farthest in the future). In
our more complex setting, we show both variations are NP-hard.
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▶ Theorem 2. Both the offline caching with reserves problem and the offline public-private
caching problem are strongly NP-hard.

We defer the full proof of the NP-hardness to the full version of the paper [11] and note
here the key difficulty in our reduction from 3-SAT. A naive strategy to reduce 3-SAT to
our problem is to try to transform boolean variable assignments (e.g. x1 = T, x2 = F ) into
the contents of cache at a particular point in time (e.g., agent 1 has its “true” page in cache
and agent 2 has its “false” page in cache). This runs into a stumbling block: to check that a
clause is satisfied, one needs to request the relevant pages. Since we only expect one of them
to actually be in cache, this provides the opportunity for a cheating solution to swap the
contents of cache. Our construction sidesteps this issue by embracing page swapping and
instead demanding that a variable assignment be encoded as a particular sequence of page
swaps.

Despite this hardness result, we still provide constant-approximation algorithms in the
offline setting. Due to the equivalence of the two models, we focus on caching with reserves
problem for the rest of the paper. We give a 2-approximation algorithm in Section 4 for the
offline setting. It is a non-trivial adaptation of Belady’s algorithm to the multi-agent setting.
The analysis utilizes a potential function that was recently proposed to give an alternative
proof of optimality for Belady’s algorithm [6]. It tracks how far in the future the cached
pages are for the algorithm vs. the optimum.

▶ Theorem 3. There is a 2-approximation algorithm for offline caching with reserves.

In the online scenario, where the algorithm knows nothing about page requests until they
occur, we give a fractional algorithm (which may keep pages fractionally in cache) using the
primal-dual framework (Section 5).

▶ Theorem 4. There is a 2 ln(k + 1)-competitive fractional algorithm for online caching with
reserves.

We also show that the fractional solution can be rounded online in a way that preserves
the competitive ratio up to a constant, obtaining an online randomized (integral) algorithm
(Section 6).

▶ Theorem 5. There is an O(ln k)-competitive integral algorithm for online caching with
reserves.

2 Preliminaries and Notation

In the classical caching problem, we are given U , a universe of n pages, together with a cache
of size k. At each time step, at most k pages are in cache. We are presented a sequence of
page requests σ = ⟨p1, p2, . . .⟩, where each pt ∈ U . At time t, page pt arrives. If pt is not in
cache, then a cache miss occurs and the algorithm incurs unit cost. It must then fetch page
pt into the cache, possibly by evicting some other page from the cache. That is, if there
would be k + 1 pages in cache, the algorithm must remove some page other than pt from
cache. An online algorithm makes the eviction choice without knowing the future request
sequence, whereas an offline algorithm is assumed to know the entire request sequence in
advance.

Motivated by applications in multi-processor caching and shared cache systems, we define
two new related problems. Let I = {1, . . . , m} be a set of m agents and suppose that the
universe U is a disjoint union of pages belonging to each agent, i.e., U = ⊔i∈IU(i). In the
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public-private caching model, the cache of total size k is subdivided as follows: each agent
i ∈ I is allocated ki cache slots and the remaining k0 ≜ k−

∑
i∈I ki slots are public.∗ In this

model, only pages belonging to agent i can be placed in any of the ki cache slots allocated to
agent i, while any page can be held in the public slots. As in the traditional caching problem,
the goal of the algorithm is to minimize the total number of evictions. In the caching with
reserves model, the cache is not divided, but instead for each agent i ∈ I, the algorithm
is required to maintain at least ki pages from U(i) in the cache at any time. To avoid any
complications, we assume that we already have pages in cache that meet this constraint at
the start of the algorithm. (These may be dummy pages that are never requested during the
actual sequence.) Throughout, we let ni = |U(i)| denote the number of distinct pages owned
by agent i, and for any page p ∈ U(i), we let ag(p) = i be the agent that owns page p.

We analyze the online algorithm in terms of its competitive ratio. This is the maximum
ratio, over all possible problem instances, of the cost incurred by the algorithm over the cost
of the optimal offline solution of this instance.

3 Equivalence of Public-Private Caching and Caching with Reserves

We now prove Proposition 1 (restated below for convenience), showing that the two models
defined in the introduction are equivalent up to constant factors.

▶ Proposition 1. If A is a c-competitive online algorithm for caching with reserves, then
there exists an online algorithm A′ that is 2c-competitive for public-private caching. Similarly,
if B is a c-competitive online algorithm for public-private caching, then there exists an online
algorithm B′ that is 2c-competitive for caching with reserves.

Proof. We first explain how to convert back-and-forth between caching strategies for the
two problems. Note that both of the following conversions can be done online and we will
maintain that the cache states in the two problems are identical after every page request.

The easy direction is turning a public-private caching strategy into a caching with reserves
strategy. Suppose a page request p comes in. If p is in cache, then we do not evict any page
in either strategy. If it is not, then the public-private caching strategy evicts some page q

to make room for it. Our caching with reserves strategy makes precisely the same eviction,
which we show maintains the reserve constraints:

If evicted page q was in a private cache, then p is placed in that same private cache.
Hence, p and q have the same agent i. And agent i has the same number of pages before
and after the arrival of p, maintaining our reserve constraint.
If q was in a public cache, then let i be the agent that owns q. Agent i must have at least
ki pages in cache other than q, namely the ki pages in its private cache. So evicting q

does not put agent i below its reserve for our caching with reserves algorithm.

We now turn to the harder case of turning a caching with reserves strategy into a public-
private caching strategy. To keep the analysis clean, we permit the public-private caching
strategy to perform extra evictions at any step (but it is still charged for each one). Suppose
a page request p comes in. If p is in cache, then we do not evict in either strategy. If it is
not, then the caching with reserves strategy evicts some page q to make room for it, which
belongs to some agent i. We can handle this with at most two evictions, as the following
shows:

∗ We assume throughout the paper that
∑

i∈I ki < k. If
∑

i∈I ki = k, the problem can be solved as m

separate instances of classical caching.
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If q is currently in the public cache, then we evict it and replace it with p, making the
two caches match again.
If q is currently in a private cache and the agent of p is also i, then we again can evict it
and replace it with q, making the two caches match again.
If q is currently in a private cache and the agent of p is not i, then agent i must have at
least ki + 1 pages in cache at the start of this step since we’re about to evict q. Hence,
there must be some page q′ in public cache. “Move” q′ into private cache by evicting
both q and q′, then placing q′ into the slot previously occupied by q. We can then place
p into the slot previously occupied by q′ in public cache.

We now have conversions between the two problems that approximately preserve the
number of evictions, and are ready to prove the main claim. We will use τe to denote the first
transformation, from public-private caching strategies into caching with reserves strategies.
We will use τh to denote the second transformation, from caching with reserves strategies to
public-private caching strategies.

Suppose we have some algorithm A for caching with reserves, and let A′ ≜ τh(A).
Furthermore, let the optimal solutions to caching with reserves and public-private caching
be Ocr and Oppc, respectively.

evictions(A′) ≤ 2 · evictions(A) Transformation Guarantee
≤ 2c · evictions(Ocr) A is a c-approximation
≤ 2c · evictions(τe(Oppc)) Ocr Optimality
≤ 2c · evictions(Oppc) Transformation Guarantee

Similarly, suppose we have some algorithm B for public-private caching and let B′ ≜ τe(B).
Again, let the optimal solutions to caching with reserves and public-private caching be Ocr

and Oppc, respectively.

evictions(B′) ≤ evictions(B) Transformation Guarantee
≤ c · evictions(Oppc) B is a c-approximation
≤ c · evictions(τh(Ocr)) Oppc Optimality
≤ 2c · evictions(Ocr) Transformation Guarantee

This completes the proof. ◀

4 Offline Caching with Reserves

In this section, we present a 2-approximation algorithm for the offline caching with reserves
problem. The algorithm itself can be thought of as a generalization to Belady’s classic
Farthest-in-Future algorithm [8]. Indeed, the algorithm we present reduces to it in the trivial
case that ki = 0 for all i. However, in general, in our setting, there are cases where the
farthest-in-future page cannot be evicted due to the reserve constraints.

Our algorithm maintains a partition of the pages in cache into sets Ni. For i > 0, the set
Ni consists only of pages for agent i; further, we maintain |Ni| = ki at the beginning of each
time step. The set N0 contains the remaining cached pages. When a page p associated with
agent i arrives and is not already in cache, we insert it into Ni. This causes |Ni| = ki + 1, so
we move the farthest-in-future page from Ni to N0. This, in turn, causes N0 to be too large.
So we evict the farthest-in-future page from N0. Notice that we are always allowed to evict
such a page, since we maintain ki pages of agent i in each Ni. In the case that p arrives but
is already in N0, we first move it to Ni, then proceed similarly. In this way, an arriving page
always “passes through” Ni. The full details are in Algorithm 1.
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Algorithm 1 Offline algorithm for caching with reserves.

Let N ← set of pages in the cache initially
Partition N = ⊔m

i=0Ni where each Ni (for i ≠ 0) contains some arbitrary ki pages belonging
to agent i and N0 contains all the remaining pages

Set rank(q), for each page q, to the time of q’s first request
for each requested page p do

Let i = ag(p)
if p ∈ Ni then /* Cache hit in a set reserved for i. */

Serve page p from cache
else if p ∈ N0 then /* Cache hit in a set not reserved for i. */

Serve page p from cache
/* Move p from N0 to Ni. */
Ni ← Ni ∪ {p} and N0 ← N0 \ {p}
/* Move highest-ranked page from Ni to N0. */
Let qi ∈ Ni be the page in Ni with maximum rank (if ki = 0, this will be p)
Ni ← Ni \ {qi} and N0 ← N0 ∪ {qi}

else /* Cache miss. */
/* Add p to Ni, then move highest-ranked page from Ni to N0. */
Ni ← Ni ∪ {p}
Let qi ∈ Ni be the page in Ni with maximum rank (if ki = 0, this will be p)
Ni ← Ni \ {qi} and N0 ← N0 ∪ {qi}
/* Evict highest-ranked page from N0. */
Let q be the page in N0 with maximum rank (q ̸= p even if qi = p)
N0 ← N0 \ {q}
Evict page q, fetch page p into cache and serve it

Set rank(p) to the time of p’s next request (if none, set it later than the last request)

Our analysis proving the 2-approximation generalizes a potential argument for Belady’s
algorithm (proposed recently [6]), but is technically more complicated due to the multi-tiered
approach we take. The proof compares our sets Ni with sets N∗

i for the optimal algorithm.
(To be more precise, the optimal algorithm maintains a certain set of pages in cache at each
time step. We define a partition of these pages into the N∗

i such that each N∗
i consists only

of pages from agent i, and |N∗
i | = ki at the beginning of each time step.) We call any page’s

next request time its rank. We define, for any rank s, the value ni(s) to be the number of
pages in the set Ni with rank at least s at a given time. Similarly, n∗

i (s) is the number of
pages in the set N∗

i with rank at least s.†

We define our potential function as

Φ =
m∑

i=0
ϕi , where ϕi = max

s
[ni(s)− n∗

i (s)].

Notice that ϕi ≥ 0 for every i, because when s is larger than the rank of any page in cache,
we have ni(s) = n∗

i (s) = 0. Hence Φ ≥ 0.
We show that Algorithm 1 satisfies the requirements of Theorem 3 (restated below).

▶ Theorem 3. There is a 2-approximation algorithm for offline caching with reserves.

† The sets Ni and N∗
i and the quantities ni(s) and n∗

i (s) vary over time, but we suppress the dependence
on t in the notation for brevity.
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The proof requires repeated reasoning about how the potential Φ changes with each
step. For example, adding a page to Ni will increase ϕi by at most 1 (and possibly leave
it unchanged). However, adding a page p to Ni whose rank is higher than anything in N∗

i

guarantees that ϕi will increase by exactly 1 (since ni(s) increases by 1 for every s ≤ rank(p)).
Initially let N∗

i = Ni for all i from 0 to m (the sets Ni are initialized by Algorithm 1).
Let ALG be the cost incurred by Algorithm 1 and OPT be the cost incurred by an opti-
mal algorithm. Let ∆(ALG), ∆(Φ), ∆(OPT ) be incremental changes in ALG, Φ, OPT ,
respectively, with older value subtracted from the newer value.

▶ Lemma 6. The runs of Algorithm 1 and of the optimal algorithm on a given sequence of page
requests can be partitioned into steps such that for each step, ∆(ALG) + ∆(Φ) ≤ 2 ·∆(OPT ).

Knowing Lemma 6, the approximation factor of 2 now follows from summing over all the
incremental steps indexed by t, where ·(t) is the value of each function after step t. We have
ALG(0) = Φ(0) = OPT (0) = 0 initially. By Lemma 6, for each t,

ALG(t)−ALG(t− 1) + Φ(t)− Φ(t− 1) ≤ 2 · (OPT (t)−OPT (t− 1)).

Summing over all t (up to the last step T ) and telescoping,

ALG(T )−ALG(0) + Φ(T )− Φ(0) ≤ 2 · (OPT (T )−OPT (0))
ALG(T ) ≤ 2 ·OPT (T ),

where the last inequality uses Φ(T ) ≥ 0.

Proof of Lemma 6. To prove Lemma 6, we break the runs of Algorithm 1 and the optimal
algorithm (together with updates to sets N∗

i ) into steps, and for each step show that
∆(ALG) + ∆(Φ) ≤ 2 ·∆(OPT ). All the steps below constitute the processing of one request
for a page p belonging to agent i. Let δi(s) = ni(s)− n∗

i (s), so that ϕi = maxs δi(s).

Step 1 (Add p to both Ni and N∗
i )

Update Ni ← Ni ∪ {p} and N∗
i ← N∗

i ∪ {p}.
Neither ALG nor OPT changes in this step, since we don’t evict anything. In addition,

the potential Φ doesn’t increase. To see this, we’ll use the fact that the rank of p is the
smallest among any page in cache (for our algorithm as well as for the optimal algorithm),
since it is the page that has just arrived. We consider four cases based on whether Ni and
N∗

i contained p before this step.
If both Ni and N∗

i contained p already, then nothing changes.
If neither contained it, then both ni(s) and n∗

i (s) increase by 1 for all s ≤ rank(p), so
their difference is unchanged.
If p was newly added only to N∗

i , then Φ can only decrease.
The remaining case is that p was newly added only to Ni. Note that since p is the page
that was just requested (and its rank hasn’t been updated to the next occurrence yet), it
has the minimum rank of all pages. We prove that Φ doesn’t increase by showing that
before this step, ϕi ≥ 1, and after this step, any δi(·) that might have changed are at most
1. Specifically, before this step, |Ni| = |N∗

i | = ki. Since Ni did not contain p, and all other
pages have higher rank, before this step we had ni(rank(p) + 1) = ki. Since N∗

i contained
p, we had n∗

i (rank(p) + 1) = ki − 1. Thus, before this step, ϕi ≥ δi(rank(p) + 1) = 1.
After this step, ni(s) = ki + 1, n∗

i (s) = ki, and δi(s) = 1 for s ≤ rank(p) (and δi(s) is
unchanged for s > rank(p)). Thus, Φ doesn’t increase.
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Step 2 (Remove p from both N0 and N∗
0 )

Update N0 ← N0 \ {p} and N∗
0 ← N∗

0 \ {p}.
Again, ALG and OPT don’t change since we make no evictions. Further, removing p –

the lowest-ranked page in cache for both our algorithm and the optimal algorithm – does not
increase Φ; the reasoning is similar to above.

If neither N0 nor N∗
0 changes, then Φ remains the same.

If p is newly removed from both, then n0(s) and n∗
0(s) decrease by 1 for all s ≤ rank(p),

and δ0(s) for all s are unchanged.
If p is newly removed only from N0, Φ can only decrease.
The remaining case is that p was newly removed only from N∗

0 . Before this step, |N0| =
|N∗

0 | = k0. Since p is the page with minimum rank, before the step, n0(s) = n∗
0(s) = k0 for

s ≤ rank(p). Also, since before the step p /∈ N0 and p ∈ N∗
0 , we had n0(rank(p)+1) = k0

and n∗
0(rank(p) + 1) = k0 − 1, implying Φ ≥ δ0(rank(p) + 1) = 1. After the removal of p,

n0(s) = k0, n∗
0(s) = k0 − 1 and δ0(s) = 1 for s ≤ rank(p). Thus, Φ doesn’t increase.

Step 3 (Ensure |Ni| = |N∗
i | = ki)

In Step 1, we added p to Ni (resp., N∗
i ). If it wasn’t already there, we increased the size by

1. If that happened, then in this step, we move a page from Ni to N0 to ensure |Ni| = ki

(resp., move from N∗
i to N∗

0 to ensure |N∗
i | = ki). Let qi be the page in Ni with maximum

rank. If |Ni| = ki + 1, then qi is moved to N0, consistent with Algorithm 1. We choose which
page to move from N∗

i to N∗
0 based on the cases below. It could be the page p itself if it

is the only one available, the page q ∈ N∗
i with minimum rank other than p (so it actually

has the second-minimum rank in N∗
i ), or the page q∗

i ∈ N∗
i with maximum rank. ALG and

OPT don’t change in this step, and in each case we show that Φ doesn’t increase.
If ki = 0, then Ni = N∗

i = {p}. Move p from Ni to N0 and from N∗
i to N∗

0 .
Φ is unaffected in this case because for any s, ni(s) changes by the same amount as n∗

i (s),
and n0(s) changes by the same amount as n∗

0(s).
All the cases below assume that ki > 0.
If |Ni| = ki + 1 but |N∗

i | = ki, move qi from Ni to N0.
We show that when qi is removed from Ni, ϕi decreases by 1. Since Ni had more pages
than N∗

i , before this step ϕi ≥ 1. Also before this step, δi(s) ≤ 0 for s > rank(qi) (since
ni(s) = 0 for those s), so the maximum was not achieved for those values of s. And for
s ≤ rank(qi), δi(s) decreases by 1 after this step, leading to the decrease of ϕi. Now,
when qi is added to N0, ϕ0 increases by at most 1. But this is compensated by the
decrease in ϕi, showing that overall Φ doesn’t increase.
If |Ni| = ki but |N∗

i | = ki + 1, move the second-lowest-ranked page q ∈ N∗
i to N∗

0 . Note
that by our assumption that ki > 0, N∗

i has at least two pages.
Adding a page to N∗

0 can only decrease the potential. Now we consider the effect on
ϕi of removing q from N∗

i . We show that for any s for which δi(s) could have changed,
it was negative before this step. For any s > rank(q), δi(s) doesn’t change. Note that
page p has minimum rank in both Ni and N∗

i . So, before this step, for s ≤ rank(p),
n∗

i (s) = |N∗
i | = ki + 1 and ni(s) = |Ni| = ki, so δi(s) < 0. For s ∈ (rank(p), rank(q)],

n∗
i (s) = ki and ni(s) ≤ ki − 1, so again δi(s) < 0. Thus when δi(s) for s ≤ rank(q)

increases by 1, it remains at most 0, and does not increase Φ (which is always at least 0).
Recall that qi ∈ Ni and q∗

i ∈ N∗
i are the pages with maximum ranks in the respective

sets. If |Ni| = |N∗
i | = ki + 1 and rank(qi) ≤ rank(q∗

i ), move qi from Ni to N0 and q∗
i

from N∗
i to N∗

0 .
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N∗
i

p q q∗
i

Ni

p qi

Figure 1 Illustration for the last case of Step 3 in the proof of Lemma 6.

We first consider the removal of qi from Ni and of q∗
i from N∗

i . For s ≤ rank(qi), both
ni(s) and n∗

i (s) decrease by 1, so δi(s) doesn’t change. For s > rank(q∗
i ), ni(s), n∗

i (s),
and δi(s) are unchanged. For s ∈ (rank(qi), rank(q∗

i )], before this step we had ni(s) = 0
and n∗

i (s) ≥ 1, with δi(s) ≤ −1. So increasing δi(s) by 1 for these s does not change Φ.
Now we consider the addition of qi to N0 and of q∗

i to N∗
0 . For any s, n∗

0(s) increases at
least as much as n0(s) does, so Φ does not increase.
If |Ni| = |N∗

i | = ki + 1 and rank(q∗
i ) < rank(qi), move qi to N0 and the second-lowest-

ranked page in N∗
i (call it q) to N∗

0 . Note again that N∗
i has at least two pages.

In this case ϕ0 may increase by 1, but we show that this is offset by a decrease in ϕi. We
analyze what happens for values of s in the intervals separated by three values: rank(p) <

rank(q) < rank(qi) (see Figure 1). Before this step, δi(rank(qi)) = ni(rank(qi)) −
n∗

i (rank(qi)) = 1− 0 = 1, so ϕi ≥ 1. Page p is the page with minimum rank in both Ni

and N∗
i . For s ≤ rank(p), before the step δi(s) = 0, and it stays 0 after the step. For

s ∈ (rank(p), rank(q)], before the step n∗
i (s) = |N∗

i | − 1 = ki and ni(s) ≤ |Ni| − 1 = ki,
so δi(s) ≤ 0, and it stays that way. For s > rank(qi), also δi(s) = 0 and stays 0. Thus,
the maximum δi(s) was achieved for some s ∈ (rank(q), rank(qi)). But in this interval,
ni(s) decreases by 1, while n∗

i (s) stays the same. Thus, the maximum δi(s) decreases by
1, causing ϕi to also decrease.

Step 4 (OPT moves)

If p was in cache, then the optimal algorithm doesn’t do anything. Note that in this case,
based on previous rearrangements, |N∗

0 | = k0. Neither OPT nor Φ changes. If p was not in
cache, the optimal algorithm fetches p and evicts some page, say q ∈ N∗

j . Then ∆(OPT) = 1.
Also note that in this case the previous steps added p to

⋃
ℓ N∗

ℓ , resulting in |N∗
0 | = k0 + 1.

If j = 0, delete q from N∗
0 . This restores |N∗

0 | = k0 and increases Φ by at most 1. If j ̸= 0,
then there must be some q′ ∈ N∗

0 belonging to agent j (otherwise it would mean that agent
j had only kj pages in cache, and the optimal algorithm violated reserve sizes by evicting
agent j’s page). Move q′ from N∗

0 to N∗
j and delete q from N∗

j . This increases Φ by at most
2, satisfying the desired inequality.

Step 5 (ALG moves)

If p was in cache, then do nothing. Otherwise, fetch p and evict the page q with maximum
rank in N0, also deleting it from N0. In this case, ∆(ALG) = 1. We show that this is
compensated by ∆(Φ) = −1. Before this step, we had |N0| = k0 + 1 but |N∗

0 | = k0, so ϕ0 ≥ 1.
For s > rank(q), we had δ0(s) ≤ 0, and this doesn’t change. So the maximum must have
been achieved for s ≤ rank(q), and δ0(s) for those s decreases by 1.

Step 6 (Update the rank of p)

At this point, if ki = 0, then p ∈ N0 ∩N∗
0 ; otherwise, p ∈ Ni ∩N∗

i . In either case, changing
rank(p) preserves δ0(s) and δi(s) for all s, so Φ is unchanged. ◀

This completes the proof of Lemma 6 and the proof of Theorem 3.
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5 Online Caching with Reserves

In this section, we design an O(log k)-competitive fractional online algorithm for caching
with reserves. In particular, we prove Theorem 4, which is restated here for convenience.
In Section 6, we show that any fractional algorithm for online caching with reserves can
be rounded to obtain a randomized integral algorithm by losing only a constant factor in
the competitive ratio. We remark that our rounding algorithm does not necessarily run in
polynomial time.

▶ Theorem 4. There is a 2 ln(k + 1)-competitive fractional algorithm for online caching with
reserves.

The fractional algorithm is based on the primal-dual framework and closely follows the
analysis of [4]. As page requests arrive, the algorithm maintains a feasible solution to the
primal LP, which corresponds to its eviction decisions, and an approximately feasible solution
to the dual LP. The costs of these two solutions are within a factor 2 of each other. Using
LP duality, this results in a bound on the cost of the algorithm compared to the optimum.

5.1 Notation
Consider some fixed page p ∈ U , and let tp,1 < tp,2 < ... be the time steps when page p is
requested in the online sequence. For any a ≥ 0, define I(p, a) = {tp,a + 1, . . . , tp,a+1 − 1} to
be the time interval between the ath and (a + 1)st requests for page p (assume that tp,0 = 0
for all pages). Let a(p, t) be the number of requests to page p that have been seen until
time t (inclusive). Hence, by definition, for any time t, and any page p ∈ U \ {pt}, we have
t ∈ I(p, a(p, t)). At any time t, an agent i ∈ I is said to be tight if exactly ki pages of agent
i are held in cache. Let T denote the set of tight agents.‡

5.2 Formulation
We use the variable x(p, a) ∈ {0, 1} to denote whether page p is evicted between its ath and
(a + 1)th request, i.e., in the interval I(p, a) (where 1 denotes an eviction). We have the
following linear programming relaxation and its dual formulation.§

Primal LP

min
∑
p∈U

∑
a≥1

x(p, a)

subject to:∑
p∈U,p ̸=pt

x(p, a(p, t)) ≥ n− k ∀t (1)

∑
p∈U(i),p ̸=pt

x(p, a(p, t)) ≤ ni − ki ∀t, ∀i (2)

x(p, a) ≤ 1 ∀p, ∀a (3)
x ≥ 0 (4)

Dual LP

max
∑

t

(n− k)α(t)−
∑

t,i

(ni − ki)β(t, i)

−
∑
p,a

γ(p, a)

subject to:∑
t∈I(p,a)

(
α(t)− β(t, ag(p))

)
− γ(p, a)

≤ 1 ∀p, ∀a (5)
α, β, γ ≥ 0 (6)

‡ The set of tight agents varies with the time t, but we suppress the dependence on t for convenience.
§ We assume without loss of generality that the algorithm is aware of the total number of pages belonging

to each agent, ni = |U(i)|.
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The primal objective simply measures the total number of evictions. The first constraint
enforces that at any time t at least n− k pages apart from pt are outside the cache, which
implies that at most k pages (including pt) are inside the cache. The second constraint
enforces that at any time, at most (ni − ki) pages of agent i are outside cache (which implies
that at least ki pages are inside the cache). Note that this is true even if pt ∈ U(i), since then
we know that pt must be in cache, so of the remaining ni − 1 pages, at least ki − 1 must be
in the cache, so the total amount outside cache must be at most (ni − 1)− (ki − 1) = ni − ki.

5.3 Algorithm
For convenience, we assume without loss of generality that the cache is initialized to an
arbitrary feasible configuration, i.e., each agent i has some arbitrary ki pages in the cache,
and the rest of the cache has k0 other arbitrary pages. The LP variables are also initialized
to reflect this initial configuration. At each time step, as a new page request arrives online,
a new set of constraints for the primal LP are revealed, along with the corresponding new
variables in the dual. All newly introduced variables are initialized to zero. Note that after
the arrival of a new page request at time t, only the primal constraint (1) may now be
unsatisfied; however, (2) and (3) remain feasible. So to maintain a feasible primal solution, we
modify the primal (and dual) variables until Constraint (1) is satisfied. The online algorithm
is required to maintain that all the primal variables x(p, a) only monotonically increase over
time. We remark that the dual solution that we maintain will always be approximately
feasible. The violation in (5) is at most O(log k) at all times (Claim 8).

Algorithm 2 Fractional Online Algorithm for Caching with Reserves.

Let η ← 1
k

foreach request for page p at time t do
Initialize x(p, a(p, t))← 0, α(t)← 0, γ(p, a(p, t))← 0 and ∀i ∈ I, β(t, i)← 0
while primal constraint (1) is unsatisfied do

Increase dual variable α(t) by dα

foreach tight agent i ∈ T do
Increase dual variable β(t, i) by dα

foreach page q ∈ U do
if ag(q) ∈ T then

Do nothing
else if x(q, r(q, t)) = 1 then

Increase γ(q, r(q, t)) by dα

else
Increase x(q, r(q, t)) by dx = (x(q, r(q, t)) + η)dα

5.4 Analysis
First, we note that the primal solution that we construct is feasible by design.

▷ Claim 7. At all times t, we maintain the inequality: Primal Objective ≤ 2 · Dual Objective.

Proof. At time t = 0, both the primal and dual solutions are initialized to have an objective
of zero. Since the algorithm increases the primal and dual variables in a continuous fashion,
consider any infinitesimal time step and let ∆P and ∆D denote the change in the primal
and dual objectives in this step respectively. It suffices to show that ∆P ≤ 2 ·∆D holds at
all times.
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Let T denote the set of agents that are tight during this step. Also partition the set
U \ {p} into three parts: T is the set of pages belonging to tight agents, E = {q ∈ U \ T |
x(q, r(q, t)) = 1} is the set of pages of non-tight agents that have been fully evicted, and S is
the remaining set of pages. So we have |T |+ |S|+ |E| = n− 1, and |T | =

∑
i∈T ni. We also

define k′ := k −
∑

i∈T ki.
The change in the dual objective is given by:

∆D = (n− k)dα−
∑
i∈T

(ni − ki)dα− |E|dα =
(

n− k − |T |+
∑
i∈T

ki − |E|
)

dα

=
(
|S| −

(
k −

∑
i∈T

ki

)
+ 1

)
dα = (|S| − k′ + 1)dα

On the other hand, the change in primal objective is given by:

∆P =
∑
q∈S

(
x(q, r(q, t)) + η

)
dα

=
( ∑

q∈U\{p}

x(q, r(q, t))−
∑
q∈T

x(q, r(q, t))−
∑
q∈E

x(q, r(q, t)) + |S|η
)

dα

Since the variables are updated only as long as constraint (1) is not satisfied, we can bound
the first term in the above expression by n− k. All pages in T belong to tight agents, so we
have

∑
q∈T x(q, r(q, t)) =

∑
i∈T (ni − ki). Lastly, all pages in E have x(q, r(q, t)) = 1. So

∆P ≤
(

n− k −
∑
i∈T

(ni − ki)− |E|+ |S|η
)

dα =
(
|S| −

(
k −

∑
i∈F

ki

)
+ 1 + |S|η

)
dα

≤
(
|S| − k′ + 1 + |S|/k′)dα (since η = 1/k ≤ 1/k′)

≤ 2(|S| − k′ + 1)dα = 2 ·∆D

It remains to justify the final inequality, which is equivalent to showing that |S| ≥ k′. By
definition, we have |S| = n− 1− |E| − |T |. Since (1) is violated and (2) is tight for i ∈ T ,
the following strict inequality holds:∑

q∈S

x(q, r(q, t)) + |E|+
∑
i∈T

(ni − ki) =
∑

q∈S∪T ∪E

x(q, r(q, t)) < n− k.

Combining the above, we get |S| > k′ − 1, which implies that |S| ≥ k′. ◁

▷ Claim 8. Dual solution maintained by the algorithm is ln(k + 1)-approximately feasible.

Proof. Consider any page p and interval I(p, a) = {tp,a + 1, . . . , tp,a+1 − 1}. We show that
the following inequality holds at all times:∑

t∈I(p,a)

(α(t)− β(t, ag(p)))− γ(p, a) ≤ ln(k + 1),

which implies dual feasibility of the solution (α, β, γ) scaled down by a factor ln(k + 1).
We analyze the changes that occur in the LHS of the above inequality. We interpret the

set I(p, a) in an online fashion: time t ∈ {tp,a + 1, . . . , tp,a+1 − 1} is included in I(p, a) at
the start of time step t. Note that x(p, a) = 0 and the LHS is 0 at the start of time tp,a + 1.
Over time, as page requests pt( ̸= p) arrive during times t ∈ {tp,a + 1, . . . , tp,a+1 − 1}, the
LHS increases whenever the α(t) variable increases, but there is no corresponding increase
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in the β(t, ag(p)) or γ(p, a) variables. We couple such increases to increases in the primal
variable x(p, a). Note that x(p, a) gets capped at 1, and after that γ(p, a) is coupled with
α(t).

At any infinitesimal step, if some α(t) increases by dα, then we have one of three cases.
Case 1: Agent ag(p) is tight and β(t, ag(p)) increases by dα; Case 2: x(p, a) = 1 and γ(p, a)
increases by dα; Case 3: x(p, a) increases by dx = (x(p, a) + η)dα. In the first two cases, the
LHS does not change at all, while in the second case, the LHS changes by dα. So overall

d(LHS) =
(

1
x(p, a) + η

)
dx(p, a)

A straightforward integration gives:

LHS =
∫ X

0

(
1

x(p, a) + η

)
dx(p, a) (where X is the final value of x(p, a))

≤
∫ 1

0

(
1

x(p, a) + η

)
dx(p, a)

= [ln(x(p, a) + η)]10 = ln
(1 + η

η

)
= ln(k + 1) ◁

Proof of Theorem 4. The proof follows directly from the two claims above. Let (x, α, β, γ)
denote the primal and dual variables constructed by Algorithm 2, and (x∗, α∗, β∗, γ∗) be the
corresponding variables in the optimal solutions. Using LP duality for the last step, we have:∑

p∈U

∑
a≥1:

tp,a≤T

x(p, a) ≤ 2
(∑

t

(n− k)α(t)−
∑
t,i

(ni − ki)β(t, i)−
∑
p,a

γ(p, a)
)

(by Claim 7)

≤ 2 ln(k + 1)
(∑

t

(n− k)α∗(t)−
∑
t,i

(ni − ki)β∗(t, i)−
∑
p,a

γ∗(p, a)
)

(by Claim 8)

≤ 2 ln(k + 1)
(∑

p∈U

∑
a≥1:

tp,a≤T

x∗(p, a)
)

◀

6 Rounding

We now describe an O(1)-approximate rounding scheme for the fractional algorithm of
Section 5, thus proving Theorem 5.

▶ Theorem 5. There is an O(ln k)-competitive integral algorithm for online caching with
reserves.

Proof. For any time t = 1, 2, . . ., the randomized integral algorithm will maintain a distribu-
tion µt of cache states such that for any page p, the probability that p is not in the cache (of
the randomized algorithm) at time t is exactly xt(p, r(p, t)), where xt denotes the value of
LP variable x at time t. By the design of our primal-dual algorithm, the x-variables never
decrease, so the cost incurred by the fractional algorithm to serve page pt is given by:

cost(t) :=
∑

p∈U ,p ̸=pt

(
xt+1(p, r(p, t))− xt(p, r(p, t))

)
.
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We will shortly describe how the integral algorithm moves from the distribution µt to µt+1

while ensuring that the expected number of fetches and evictions is at most O(cost(t)). We
remark that our rounding algorithm does not necessarily run in polynomial time. This is
because the support size of µt can be super-polynomial in |U| and k. This is not an issue for
competitive analysis of online algorithms, so we simply assume that we are maintaining a
probability distribution over

(|U|
k

)
cache states.

Fix some time t. For each page p ∈ U \ {pt}, define y(p) := 1 − xt(p, r(p, t)) and
y′(p) := 1 − xt+1(p, r(p, t)) to be the portion of page p that is in the cache at the start of
times t and t + 1, respectively. Also define y(pt) = 1− xt(pt, r(pt, t)) and y′(pt) := 1; note
that the fractional algorithm pays cost 1− y(pt) to fully fetch pt into the cache by the end of
time step t. With the above notation, for any page p ∈ U , we have PrC∼µt [p ∈ C] = y(p)
and PrC∼µt+1 [p ∈ C] = y′(p).

To simplify the description of our rounding scheme, we further assume that the changes
that occur in the primal solution between states xt and xt+1 do so through a sequence of
smaller changes where the x-value changes for exactly two pages (and hence the y-value also
changes for exactly two pages). Let p, q ∈ U and ϵ ∈ [0, 1] be such that y′(p) = y(p) + ϵ,
y′(q) = y(q) − ϵ, and y′(p′) = y(p′) for all p′ ∈ U \ {p, q}.¶ Let µ, µ′ denote distributions
over integral cache states that agree with y and y′, respectively. The cost incurred by the
fractional algorithm to move from y to y′ is exactly ϵ (because it only pays for evictions).
We now describe how the integral algorithm moves from µ to µ′ by incurring a cost of at
most 6ϵ. To modify a δ probability measure of the cache-state from C to C ′, the integral
algorithm pays a cost of δ · |C \ C ′|. We divide the modification steps into three phases:
1. Fixing the marginals: In this phase, we modify the distribution µ so that for any

page p′ ∈ U , PrC∼µ[p′ ∈ C] changes from y(p′) to y′(p′). We accomplish this by: (i)
adding p to an ϵ probability measure of cache states from µ that do not contain p; and (ii)
removing q from an ϵ measure of cache states from µ that contain q. The cost incurred
in this step is exactly ϵ.
By the end of this phase, for any (possibly infeasible) cache state C in µ, we have
|C| ∈ {k − 1, k, k + 1}. Let 0 ≤ ϵ1 ≤ ϵ denote the probability measure of cache states
with exactly k − 1 pages. By the description of the modification step, it is clear that
exactly ϵ1 measure of cache states have cardinality k + 1. Further, let 0 ≤ ϵ2 ≤ ϵ denote
the measure of cache states that violate the reserve constraint for some agent. Since only
removing the page q could lead to a constraint violation, we must have |C| ∈ {k − 1, k}
for any such violating cache state.

2. Fixing the size: In this phase, we match an ϵ1 measure of cache-states of size k − 1
with an ϵ1 measure of cache-states of size k + 1. Let C and C ′ denote page-sets of size
k − 1 and k + 1, respectively, that are matched with some positive measure α. Pick an
arbitrary page p′ ∈ C ′ \ C. We remove p′ from an α measure of state C ′, and add it to
an α measure of state C. The total cost incurred in this phase is exactly ϵ1 ≤ ϵ.
By the end of this phase, all cache-states have cardinality exactly k. However, the removal
of the page p′ above may cause violations of the reserve constraint. Let ϵ3 ∈ [0, 1] denote
the measure of cache states that satisfied all reserve constraints at the end of the first
phase, but now violate some reserve constraint. By the above discussion, such cache
states arise from the removal of page p′ ∈ C ′ \C from C ′ (that had size k + 1), so ϵ3 ≤ ϵ1.
Overall, exactly ϵ2 + ϵ3 measure of cache states violate some reserve constraint. In fact,
every violated cache state violates a single reserve constraint.

¶ Here, p plays the role of page pt that is fetched into the cache, and q plays the role of pages in U \ {pt}
that are evicted to make space for pt.
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3. Fixing the violated reserve constraint: We now fix all violated reserve constraints
by matching an ϵ2 + ϵ3 measure of cache states with exactly an ϵ2 + ϵ3 measure of cache
states that have an excess in that reserve constraint. More precisely, if C is a cache state
that violates the reserve constraint for agent i ∈ I, then we match an α > 0 measure
of C with another cache state C ′ that satisfies |C ′ ∩ U(i)| ≥ ki + 1. Such a matching
exists because the fractional solution y′ satisfies all reserve constraints and (by the end
of the first phase we ensured that) the distribution µ satisfies the reserve constraint in
expectation: for every cache state C with |C ∩ U(i)| < ki, there must exist another cache
state C ′ with |C ′ ∩ U(i)| > ki. We move an arbitrary page p′ ∈ U(i) ∩ (C ′ \ C) from
C ′ to C. In exchange for p′, we move an arbitrary page q′ ∈ (U \ U(i)) ∩ (C \ C ′) from
C to C ′ that does not violate any reserve constraints for the state C. The choice of
q′ is well-defined because the size of C is k + 1 right after p′ is moved from C ′ to C,
and we also have |C ∩ U(i)| = ki, so there must exist some other agent j ̸= i satisfying
|C ∩ U(j)| > kj . The cost incurred in this phase is at most 2(ϵ2 + ϵ3) ≤ 4ϵ.
At the end of this step, all cache states have size exactly k and satisfy all reserve constraints.
The marginal probabilities in the resulting distribution µ′ matches y′.

This completes the description of our rounding scheme. In the first step, we incurred a
total cost of exactly ϵ while in the second and third steps, we incurred a total cost of at most
ϵ1 ≤ ϵ and 2(ϵ2 + ϵ3) ≤ 4ϵ. Since the fractional algorithm incurs a cost of ϵ, the theorem
follows. ◀
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Abstract
We optimally resolve the space complexity for the problem of finding an α-approximate minimum
vertex cover (αMVC) in dynamic graph streams. We give a randomised algorithm for αMVC which
uses O(n2/α2) bits of space matching Dark and Konrad’s lower bound [CCC 2020] up to constant
factors. By computing a random greedy matching, we identify “easy” instances of the problem which
can trivially be solved by returning the entire vertex set. The remaining “hard” instances, then have
sparse induced subgraphs which we exploit to get our space savings and solve αMVC.

Achieving this type of optimality result is crucial for providing a complete understanding of
a problem, and it has been gaining interest within the dynamic graph streaming community. For
connectivity, Nelson and Yu [SODA 2019] improved the lower bound showing that Ω(n log3 n) bits
of space is necessary while Ahn, Guha, and McGregor [SODA 2012] have shown that O(n log3 n)
bits is sufficient. For finding an α-approximate maximum matching, the upper bound was improved
by Assadi and Shah [ITCS 2022] showing that O(n2/α3) bits is sufficient while Dark and Konrad
[CCC 2020] have shown that Ω(n2/α3) bits is necessary. The space complexity, however, remains
unresolved for many other dynamic graph streaming problems where further improvements can still
be made.
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1 Introduction

Graph streaming is a setting in which a graph is specified by a sequence of edges, typically in
arbitrary order. It is particularly useful for processing massive graphs where having random
access to the edges of the graph is either impossible or computationally infeasible.

Research in this area began with insertion-only streams, where the stream is made up of
a sequence of edge insertions only. In their seminal work, Feigenbaum, Kannan, McGregor,
Suri, and Zhang [19] showed that for many problems including minimum spanning tree,
connectivity, and bipartiteness, Ω(n) bits of space is necessary and O(n log n) bits is sufficient
for any n-vertex graph. This logarithmic gap was often overlooked and deemed not important
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when proving optimality for graph problems, but it left unresolved the question of whether the
logarithmic factor was required for simply storing edges or if other techniques could remove
it. About a decade later, Sun and Woodruff [39] showed that the logarithmic factor was
indeed necessary by improving the lower bounds to Ω(n log n) bits, asymptotically matching
the upper bounds up to constant factors.

Dynamic graph streams, which allow for sequences of both edge insertions and deletions,
prove to be more difficult. Edges that arrive in the stream are not necessarily in the final
graph as they may later be deleted. In fact, it is well-known in the community that it is
impossible to deterministically return a single edge of a dense graph without storing all of its
edges. As a result, almost all dynamic graph streaming algorithms rely on counters which
use O(log n) bits of space or they rely on L0-sampling which optimally uses Θ(log3 n) bits of
space1 [22, 25]. In essence, counters are used to solve the problem of determining whether
an edge is present in an edge induced subgraph [18] (see also [15]), whereas L0-sampling also
returns the identity of a uniform random edge if one is present [1, 2, 27, 15, 9, 7, 30, 26, 11].
A notable exception includes spectral sparsification [23, 24] which relies on L2-heavy-hitters
(non-uniform sampling).

Resolving the space complexity up to constant factors for dynamic graph streaming
problems has continued to be an elusive task. Ahn, Guha, and McGregor [1] gave an
algorithm for connectivity using O(n log3 n) bits of space, and for several years, the best
known lower bound was the insertion-only bound of Ω(n log n) bits [39]. However, in 2019,
Nelson and Yu [36] improved the lower bound to Ω(n log3 n) bits in the dynamic graph
streaming setting. To the best of our knowledge, this is the only problem in this setting
which has space bounds that prove the necessity of the Θ(log3 n) overhead of randomly
sampling an edge (using L0-sampling). The approximate minimum cut problem which has a
Ω(n log3 n) bit lower bound [36] (and a O(n log4 n) bit upper bound [1]) similarly shows that
logarithmic factors are necessary. A perhaps more surprising result was the recent progress
on α-approximate maximum matching (αMM). The lower bound of Ω(n2

/α3) bits [18] (see
also [9]) and the previous upper bound of O(n2

/α3 · log4 n) bits [9, 15] seem to indicate that
the logarithmic overhead of sampling an edge is required. However, Assadi and Shah [11]
improved the upper bound to O(n2

/α3) bits showing that this is not the case. On the other
hand, for problems such as vertex cover [18], dominating set [26], and spectral sparsification
[24], their space bounds have a gap of logarithmic factors, and therefore further improvements
can still be made.

Our Results. In this work, we optimally resolve the space complexity up to constant factors
for the problem of finding an α-approximate minimum vertex cover (αMVC) in a dynamic
graph stream. In particular, we improve the upper bound to O(n2

/α2) bits, matching the
Ω(n2

/α2) bits lower bound [18] and showing that the logarithmic overhead is not required.
Our main result is the following:

▶ Theorem 1. There exists a randomised dynamic graph streaming algorithm for αMVC that
succeeds with high probability and uses O(n2

/α2) bits of space for any α ≤ n1−δ where δ > 0.

Previous Work. It has been shown by Dark and Konrad [18] that Ω(n2
/α2) bits is necessary

for αMVC. They also gave a simple deterministic algorithm which uses O(n2
/α2 · log α) bits

of space, matching the lower bound up to logarithmic factors. Their algorithm arbitrarily

1 This optimal space bound applies when the probability of success is at least 1 − 1
poly(n) .
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partitions the vertex set into n/α groups of size α and uses counters, which introduce the
logarithmic overhead, to maintain the number of edges between each of the Θ(n2

/α2) pairs of
vertex groups. The solution follows by computing a group-level minimum vertex cover, and
then returning the vertices of the covering groups.

Main Techniques. We improve the approach of Dark and Konrad [18] by additionally
computing a supporting random Greedy matching and randomly partitioning the vertex set
into n/α groups, effectively using randomisation to reduce the space required. The random
Greedy matching returned is either large enough to imply a trivial solution for αMVC (“easy”
case) or implies sparseness properties of the residual subgraph induced by the unmatched
vertices (“hard” case). To solve the “hard” cases, we use the sparseness properties and the
random partitioning to argue that there are only O(1) many edges between each pair of
vertex groups in the residual subgraph. Therefore, storing edge counters for each of the
Θ(n2

/α2) many pairs, as done by Dark and Konrad [18], now requires only O(n2
/α2) bits of

space in total.

Sampling Strategies. The sparseness properties (of the residual subgraph) implied are
reliant on the method of randomly sampling edges from the graph. Uniformly sampling
from the edge set only implies sparseness properties sufficient for a small range of α since
it is skewed to sampling high degree vertices. On the other hand, non-uniform sampling –
sampling from the neighbourhood of a random set of vertices, coined neighbourhood edge
sampling by Assadi and Shah [11] – is less biased towards high degree vertices and implies
the necessary sparseness properties for the full range of α. Indeed, Assadi and Shah [11]
also use the approach of computing a Greedy matching on non-uniformly sampled edges
to identify the “easy” and “hard” instances of αMM. However, for αMVC, our “easy” and
“hard” instances differ from those of αMM, so we require different guarantees. Furthermore,
we use different techniques for solving the “hard” instances.

Further Related Work. Resolving the space complexity up to constant factors has also
been achieved for non-graph problems in the general data streaming setting. For instance,
Braverman, Katzman, Seidell, and Vorsanger [14] gave an upper bound for finding a constant
factor approximation to the k-th frequency moment in constantly many passes that matches
the lower bound of Woodruff and Zhang [40]. Price and Woodruff [37] showed a lower bound
for any adaptive sparse recovery scheme that matches the upper bound of Indyk, Price, and
Woodruff [21]. Graph problems in other streaming settings have also been studied. For
example, the settings which allow multiple passes over the stream [31, 28, 6, 10, 32, 4, 8],
have a random arrival order [31, 5, 12], or have highly structured deletions via a sliding
window [16, 17, 13] have been considered. See the work by McGregor [33] for an excellent
survey on graph streaming algorithms.

Outline. We begin in Section 2 with some important notation and tools which we will later
use. In Section 3, we discuss the guarantees required from a random Greedy matching for
αMVC. In Section 4, we present and analyse our algorithm that proves Theorem 1. Then, we
conclude in Section 5.
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53:4 Space Optimal Vertex Cover in Dynamic Streams

2 Preliminaries

For any n-vertex graph G = (V, E), let µ(G) be the size of the maximum matching of the
graph, let V ∗(G) be a minimum vertex cover, and let opt(G) be its size. We will simply use
µ, V ∗ or opt if the graph is clear from context. For any subset of edges F ⊆ E, we denote
the set of their endpoints by V (F ). For any subgraph H of G and vertex v ∈ V , we use
NH(v) to denote the neighbourhood of v in H .

The graph G may be specified as a dynamic graph stream2 σ = (σ1, σ2, ..., σN ) such that
σj = (ij , ∆j) where ij ∈ [m] for m =

(
n
2
)

and ∆j ∈ {1, −1} (insertions or deletions). Note
that edges may only be deleted if they have previously been inserted. Additionally, the
stream must produce a vector vec(E) ∈ {0, 1}m that defines the edge set E, i.e., the ith

entry of the vector indicates the presence of the edge indexed by i ∈ [m].
In our work, we will rely on limited independence hash functions to reduce the space

complexity of our algorithm. Roughly speaking, a hash function sampled from a family of
k-wise independent hash functions behaves like a totally random function when considering
at most k elements. For simplicity, when we mention a k-wise independent hash function, we
will mean a hash function sampled from a family of k-wise independent hash functions. We
use the following standard result for k-wise independent hash functions.

▶ Proposition 2 ([34]). For all integers n, m, k ≥ 2, there is a family of k-wise independent
hash functions H = {h : [n] → [m]} such that sampling and storing a function h ∈ H takes
O(k · (log n + log m)) bits of space.

We shall also use the following concentration result on an extension of Chernoff-Hoeffding
bounds for k-wise independent hash functions.

▶ Proposition 3 ([38]). Suppose h is a k-wise independent hash function and X1, . . . , Xm

are m random variables in {0, 1} where Xi = 1 iff h(i) = 1. Let X :=
∑m

i=1 Xi. Then, for
any ε > 0,

Pr (|X − E [X]| ≥ ε · E [X]) ≤ exp
(

− min
{

k

2 ,
ε2

4 + 2ε
· E [X]

})
.

Finally, we will use the following sketching tool for dynamic graph streams to test the
size of the neighbourhood of a subset of vertices.

▶ Proposition 4 ([11]). Let a ≥ b ≥ 2 be known integers. Consider a n-vertex graph
G = (V, E) specified in a dynamic stream and let S ⊆ V be a known set. Then, given a
set T ⊆ V of size at most a at the end of the stream, there exists a randomised algorithm
that returns “Yes” if |NG(S)\T | ≥ b or “No” if |NG(S)\T | ≤ 1

2 · b, uses O( a
b · log3 n) bits

of space, and succeeds with probability at least 1 − n−3. We denote one such algorithm as
ALGNT(S; a, b).

3 Sampling Strategies for Random Greedy Matchings

In this section, we discuss and present the tool that we use to either find a large matching or
show that the residual subgraph induced by the unmatched vertices is sparse.

2 A dynamic graph stream is a special case of the strict turnstile data streaming model [35] where we
consider only bit-vectors which represent the edges of a graph.
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This approach was also used in Assadi and Shah’s recent work for αMM [11] to identify
“easy” and “hard” instances of the problem. For αMVC, the “easy” case is finding a large
enough matching to imply that we can trivially return the entire vertex set to solve the
problem. The “hard” case is when we get a sparse residual subgraph, which is where our
main savings in space come from. Identifying these cases can be accomplished by computing
a Greedy matching on randomly sampled edges of the graph.

Uniformly sampling as many edges as possible from a n-vertex graph (using L0-sampling)
without exceeding O(n2

/α2) bits of space followed by computing a Greedy matching implies
sparseness properties based on an already known maximum degree bound of the residual
subgraph induced by the unmatched vertices [3, 29, 20]. Intuitively, uniform sampling is
skewed towards sampling edges incident to high degree vertices. Hence, a Greedy matching
either matches these high degree vertices or matches many of its neighbours (decreasing their
residual degree), and regardless of the size of the matching found, this gives a poly(α) max
degree bound in the residual graph. Furthermore, we can show that this also bounds the
average degree (even when a small matching is found) since a worst-case instance3 practically
has all vertices in the residual subgraph with max degree. This degree bound, however, is
only sufficient for solving αMVC for any α ≪ n

1
3.5 .

Non-uniformly sampling the edges using neighbourhood edge sampling followed by
Greedy, as done by Assadi and Shah [11], proves to give better sparseness properties,
and thus a better average degree bound4. The benefit of neighbourhood edge sampling is
that it biases away from sampling high degree vertices. Furthermore, when a small Greedy
matching is found, the implication is that the residual subgraph is sparse. Therefore, the
average degree bound is sufficient for solving the “hard” case of αMVC for the full range of α.

As previously mentioned, Assadi and Shah’s algorithm called Match-or-Sparsify [11], does
exactly this, although its guarantees are not sufficient for our purposes. Hence, we first
discuss their algorithm, and then explain the alterations we make.

Match-or-Sparsify. For some parameter β ≤ n, Assadi and Shah’s Match-or-Sparsifyβ

algorithm non-uniformly samples edges using space O(β2
/α3) bits, and then computes a

Greedy matching from them. They give an intricate analysis to show that their algorithm
either finds a large matching of size at least β/8α or implies that the residual subgraph has at
most 20 · β · log4 n edges [11, Lemma 16]. Unlike uniform sampling, the residual properties
(sufficiently) only hold when the matching is small – a key property exploited in their analysis.
Additionally, in order for the guarantees to hold, they rely on the assumption that β ≥ α2 ·nδ.
Informally, when β is set as the size of the maximum matching µ, Match-or-Sparsifyµ finds a
large matching in “easy” graph cases and a sparse residual subgraph in the “hard” graph cases.
However, µ is not known, so they find a setting of β close to µ by running Match-or-Sparsifyβ

in parallel with β as all powers of 2 between 1 and n.

Our Alterations. The first thing to note is that the “easy” and “hard” instances for αMM
and αMVC are not the same. Consider Match-or-Sparsifyβ when a large Greedy matching
is found. Since at least one endpoint of each matching edge must be in a vertex cover, it
implies that opt ≥ β

8α . However, returning a solution to αMVC at this stage can only be

3 Consider a graph with a large clique on Θ(n/α) vertices where most the edges are sampled from, and
many smaller cliques which assert the guaranteed max degree bounds.

4 Having an average degree bound is more difficult to work with, but in this case, the bound on the
average degree is much smaller than the bound on the max degree in the uniform case.

APPROX/RANDOM 2022
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of size at most Θ(β), which would not be a trivial solution (the entire vertex set) with
β ≪ n. Furthermore, we have no guaranteed sparseness properties since the matching
found is large. Hence, instead of needing β ≈ µ, which requires log n many runs to find, we
only need a single run of Match-or-Sparsifyn (with the parameter β fixed as n). Secondly,
their assumption that β ≥ α2 · nδ implies that α ≤ n

1−δ
2 , but we require it to hold for any

α ≤ n1−δ. Since we have an additional α factor of space (see [18]), we can increase the
number of non-uniformly sampled edges to use O(n2

/α2) bits instead, which allows us to
remove the assumption. Finally, the increase in the number of samples also allows us to
increase the sparseness guarantees of the residual subgraph by an α factor. Therefore, this
altered Match-or-Sparsifyn algorithm, denoted by ALGMS, gives us the following lemma (the
full proof is given in the arXiv version for completeness).

▶ Lemma 5. There is a linear sketch for dynamic graph streams that, given any graph
G = (V, E) specified via vec(E), uses O(n2

/α2) bits of space and with high probability outputs
a matching Measy that satisfies at least one of the following conditions for any α ≤ n1−δ and
δ > 0:

Match-case: The matching Measy has at least n
8α edges;

Sparsify-case: The induced subgraph of G on vertices not matched by Measy, denoted
by GR, has at most 20 · n

α · log4 n edges.

4 Main Result

In this section, we give a dynamic graph streaming algorithm for αMVC for any n-vertex
graph which implies our main result:

▶ Theorem 1. There exists a randomised dynamic graph streaming algorithm for αMVC that
succeeds with high probability and uses O(n2

/α2) bits of space for any α ≤ n1−δ where δ > 0.

Before proceeding, we give the following standard assumption (with reason) which
simplifies what we need to prove.

▶ Assumption 6. A randomised dynamic graph streaming Θ(α)-approximation algorithm
that uses O(n2

/α2) bits of space and succeeds on graphs where opt ≥ n
α·log2 n

is sufficient to
prove Theorem 1.

Reason. Let A be an algorithm that returns a (c · α)-approximation using O(n2
/α2) bits of

space. Run A with parameter α/c to get an α-approximation which similarly uses O(n2
/α2)

bits.
Then, since we can run Θ(1) many algorithms which use O(n2

/α2) bits of space in parallel
without asymptotically increasing the space, we run an additional algorithm which detects
and outputs a solution for graphs with small opt.

Algorithm for small opt. We use the well-known algorithm for finding an exact minimum
vertex cover in dynamic graph streams given the promise that opt ≤ k with k = n

α·log2 n
[15].

If opt < k, then we get an optimal solution; otherwise, we get a set of vertices of size k which
are not necessarily a solution. Thus, we can detect this case by the size of the returned vertex
cover being smaller than k. The space taken by the algorithm is O(k2 · log4 n) = O(n2

/α2)
bits and it works for all α = ω(1) (for α = Θ(1) we can store the entire graph). ◀



K. K. Naidu and V. Shah 53:7

Algorithm 1 Optimal Dynamic Vertex Cover.
Input: A dynamic graph stream σ for a n-vertex graph G = (V, E), a small constant δ > 0,
and a positive integer α ≤ n1−δ

Output: A vertex cover VC of G

Pre-processing:
1: Initialise M to be an instance of ALGMS (Lemma 5)
2: Randomly partition V into groups V1, V2, ..., V n

α
having size in [α/2, 2α]

3: For each group Vi, initialise Ni to be an instance of ALGNT(Vi; a, b) (Proposition 4) with
a = n/α and b = nδ/2

4: Set c = 15/δ

Processing the stream:
5: Update M and each Ni using σ

6: For every pair of groups Vi and Vj , store a counter Ci,j for the number of edges between
them modulo c

7: For every group Vi, store a counter Ci for the number of internal edges

Post-processing:
8: Let Measy be the matching returned by M
9: if Measy has at least n

8·α edges then return V

10: Let VC be the union of all groups Vi containing a vertex of Measy or with Ci > 0
11: Add to VC all remaining vertex groups Vi where Ni returns “Yes” when T = V (Measy)
12: Consider the multi-graph G′ obtained by contracting the vertices of each remaining

vertex group Vi into a single vertex vi where Ci,j represents the multiplicity modulo c of
each edge (vi, vj) in G′

13: Greedily compute a vertex cover V ′
C of G′

14: For all vi ∈ V ′
C , add vertex group Vi to VC

15: return VC

Algorithm Description. Let G = (V, E) be specified by a dynamic graph stream, δ > 0,
and α ≤ n1−δ be the inputs to Algorithm 1. The algorithm, in its pre-processing step,
partitions V into n/α groups using a (10 · log n)-wise independent hash function (when the
space allows, i.e., for small α, we do this using a uniform random permutation instead), and
we later show that all their sizes lie between α/2 and 2α with high probability. During the
stream, it maintains counters modulo some constant for the number of edges between each
pair of groups and (standard) counters for the number of internal edges of each group. In
parallel, it computes a random matching Measy using an instance of ALGMS (Lemma 5)
and maintains residual neighbourhood size testers for each vertex group using instances of
ALGNT (Proposition 4). In the post-processing step, if the matching is of size at least n

8·α ,
then the entire vertex set is returned. Otherwise, the vertex groups containing any vertex
of the matching or any internal edges are entirely picked in the solution – we call these
simple vertex groups. Next, the remaining vertex groups Vi whose residual neighbourhood
is large, |NGR

(Vi)| = |NG(Vi)\V (Measy)| ≥ nδ/2 where GR = G[V \V (Measy)], are added to
the solution – we call these residual vertex groups. Finally, among the leftover clean vertex
groups, the algorithm uses the counters modulo some constant to perform a group-level vertex
cover, and then further adds the covering groups to the solution before returning it.

APPROX/RANDOM 2022
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▶ Definition 7 (Simple Vertex Groups). We say that a vertex group Vi is simple if any of its
vertices are matched by Measy or it has at least one internal edge, i.e., |Vi ∩ V (Measy)| > 0
or Ci > 0.

▶ Definition 8 (Residual Vertex Groups). We say that a vertex group Vi is residual if it is
not simple and has a large residual neighbourhood, i.e., |NGR

(Vi)| ≥ nδ/2.

▶ Definition 9 (Clean Vertex Groups). We say that a vertex group Vi is clean if it is not
simple or residual, i.e., |Vi ∩ V (Measy)| = 0, Ci = 0 and |NGR

(Vi)| < nδ/2.

Note that throughout the subsequent analysis of Algorithm 1, all results succeed with
high probability. Hence, at any point, we can do a simple union bound to show that they all
hold with high probability. As such, we condition on this event here to avoid explicitly doing
so during the analysis.

Let G be the input graph of the algorithm. We begin the analysis with the following
observation: If G contains a matching of size at least n

8·α , then V is a valid (8·α)-approximation
of a minimum vertex cover V ∗ since at least one endpoint of a matching edge must be in a valid
vertex cover. Therefore, if the condition of Algorithm 1 is satisfied, the algorithm terminates
and the solution is a valid Θ(α)-approximation (“easy” graph instances). Otherwise, the
algorithm progresses with |Measy| < n

8·α , i.e., the sparsify-case of Lemma 5 (“hard” graph
instances). This implies that the residual subgraph GR is sparse with at most 20 · n

α · log4 n

many edges. As such, we need to prove that we also get a Θ(α)-approximation in the
sparsify-case.

We highlight here that the algorithm adds vertex groups to the solution for various
reasons, which are determined by whether it is a simple, residual, or clean vertex group (see
Definitions 7–9). Hence, we proceed with the analysis of the sparsify-case by considering
these different types of vertex groups separately.

Simple Vertex Groups. Let Is be the index set of the simple vertex groups. We argue that
there are not too many of these, so we can add all of them to the solution.

▷ Claim 10. The number of simple vertex groups |Is| is at most 2 · opt(G).

Proof. Each edge of the matching Measy can cause up to two vertex groups to be classified
as simple; however, they must have at least one vertex of V ∗ since at least one endpoint of
every matching edge must be in V ∗. Therefore, for every two groups classified as simple
in this way, there is at least one vertex of V ∗ in their union. On the other hand, a group
could also be classified as simple if it contains an internal edge, where one of its endpoints
must be in V ∗. Hence, for each group classified as simple in this way, there is at least one
vertex of V ∗ in it. Then, it follows that the number of simple vertex groups must be at most
2 · |V ∗| = 2 · opt. ◁

Residual Vertex Groups. Let Ir be the index set of the residual vertex groups. Recall
that any residual vertex group must have at least nδ/2 many residual neighbours. We note,
however, that due to the guarantees of the neighbourhood size tester algorithm ALGNT (see
Proposition 4), there are some misclassifications, so some residual vertex groups are also
of size between 1

2 · nδ/2 and nδ/2. This will not be an issue, and moving forward, when we
mention residual vertex groups, we assume that this includes the misclassifications. Now,
we argue that there are not too many residual vertex groups, so we can add them all to the
solution.

▷ Claim 11. The number of residual vertex groups |Ir| is at most opt(G) with high
probability.
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Proof. We have that |V (Measy)| is at most n
4·α and GR has at most 20 · n

α · log4 n many edges.
As such, GR has n − |V (Measy)| ≥ n

2 vertices, and the average degree of a vertex in GR is at
most 20 · n

α · log4 n · 2
n = 40 log4 n

α . Since each non-simple vertex group Vi is fully contained
in GR and has at most 2α vertices, we have that E [|NGR

(Vi)|] ≤ 40 log4 n
α · 2α = 80 log4 n.

Then, it follows by Markov’s inequality that

Pr (Vi is residual | Vi is non-simple) ≤ Pr
(

|NGR
(Vi)| ≥ 1

2 · n
δ/2

)
≤ 2 · 80 log4 n

nδ/2
≤ log5 n

nδ/2
. (1)

Let Xi be the indicator random variable that a non-simple vertex group Vi is a residual
vertex group, then R =

∑
i∈[ n

α ]\Is
Xi is the number of residual vertex groups. By Equation (1),

we have the following:

E[R] =
∑

i∈[ n
α ]\Is

Pr (Xi) ≤
∑

i∈[ n
α ]

log5 n

nδ/2
= n · log5 n

α · nδ/2
.

Finally, since opt(G) ≥ n
α·log2 n

(Assumption 6), a further application of Markov’s inequality
implies the result:

Pr (|Ir| > opt) ≤ Pr
(

R >
n

α · log2 n

)
≤ n · log5 n

α · nδ/2
· α log2 n

n
≤ n−δ/4.

Note that we can easily increase the success probability by running the algorithm in
parallel 40/δ times and detecting failures when the number of residual groups is more than
n/α·log2 n. Then, with probability at least 1 − n−10, one of the runs will succeed. This only
increases the space of the algorithm by a constant factor since 40/δ = Θ(1). ◁

Clean Vertex Groups. Let Ic be the index set of the clean vertex groups and let I+
c be

the ones added to the solution, which also corresponds to the group-level vertex cover V ′
C in

Algorithm 1.
Before analysing the group-level vertex cover, we note that the relevant counters are

stored modulo c. This means that if the number of edges between clean vertex groups is
some multiple of c, the corresponding counter would be 0 and the group-level vertex cover
would be incorrect. Hence, we want the number of edges between clean vertex groups to be
less than c with high probability.

▷ Claim 12. For all pairs of clean vertex groups Vi and Vj , with high probability,

|NG(Vi) ∩ Vj | < c.

Proof. We prove a slightly generalised statement which implies what we need. We show that
there are less than c edges of GR between any clean vertex group Vi and any other vertex
group Vj . This implies what we need since, by definition, all edges between clean vertex
groups are in GR.

Consider the random partitioning of V using an at least (3 · c)-wise independent hash
function (the algorithm uses (10 · log n)-wise independence). A residual neighbour of the
clean vertex group v ∈ NGR

(Vi) uniformly belongs to any of the other vertex groups. Since
there are n

α − 1 of these (including Vj , but not including Vi), the probability that v ∈ Vj is
at most 2α

n .

APPROX/RANDOM 2022
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Now, since clean vertex groups are non-residual, |NGR
(Vi)| ≤ nδ/2, and for a fixed Vi and

Vj , we have that

Pr (|NGR
(Vi) ∩ Vj | ≥ c) ≤

(
nδ/2

c

)
·
(

2α

n

)c

≤
(

2α

n1−δ/2

)15/δ

≤ n−7

where we have used α ≤ n1−δ and c = 15/δ in the final inequalities. Then, the result holds
with probability at least 1 − n−5 by a union bound over all pairs of vertex groups.

Note that for small α we will partition V into groups of size exactly α with a uniform
random permutation due to concentration and space reasons (see Claim 15), but the above
arguments also hold in this case. ◁

With Claim 12, we can assume that all the counters between clean vertex groups count
exactly the number of edges with high probability, that is, the modulo has no effect on the
correctness of the algorithm. Thus, the setting is now identical to that of Dark and Konrad’s
algorithm [18], and we follow a similar argument as they did to analyse the group-level vertex
cover and the corresponding subset of clean vertex groups added.

▷ Claim 13. The number of clean vertex groups added |I+
c | is at most 2 · opt(G).

Proof. Consider the subgraph H = G[∪i∈IcVi] induced by the clean vertex groups. Observe
that since H is an induced subgraph of G, opt(H) ≤ opt(G). Then, since the vertex
contractions to obtain the multi-graph G′ from H cannot increase the size of its minimum
vertex cover, we have that opt(G′) ≤ opt(H). Finally, since we greedily compute the group-
level vertex cover V ′

C , it is a 2-approximation and we have that |I+
c | = |V ′

C | ≤ 2 · opt(G′) ≤
2 · opt(G). ◁

By combining the analysis of the simple, residual, and clean vertex groups, we prove the
approximation factor of the algorithm.

▶ Lemma 14. Algorithm 1 returns a valid Θ(α)-approximation of a minimum vertex cover
for any input graph G with opt ≥ n

α·log2 n
.

Proof. We first show that the solution VC is indeed a valid vertex cover, then we prove that
it is a Θ(α)-approximation.

Validity. For the sake of finding a contradiction, let e ∈ E be an edge which is not covered
by VC . Observe that any non-clean vertex group Vi is added to VC ; thus, all edges with at
least one endpoint in any of these vertex groups are covered. So, we have that e must be in
G[∪i∈Ic

Vi], the subgraph induced by the clean vertex groups.
Let i, j ∈ Ic be such that e has endpoints in the clean vertex groups Vi and Vj , implying

that there is an edge between their corresponding contracted vertices vi and vj in the
multi-graph G′. It follows that one of vi or vj must be in the computed group-level vertex
cover V ′

C , so all vertices of either Vi or Vj , including at least one endpoint of e, are added to
VC . However, this means that e is covered by VC , a contradiction.

Approximation. Observe that the solution VC is comprised of a (disjoint) union of all simple
vertex groups, all residual vertex groups, and a subset of clean vertex groups. Recall that Is,
Ir and I+

c are the corresponding index sets of these groups.
By Claims 10, 11, and 13, we have that |Is| + |Ir| + |I+

c | ≤ 5 · opt. Finally, since the size
of each vertex group is at most 2α, we can bound the size of the solution as follows:

|VC | =
∑

i∈Is∪Ir∪I+
c

|Vi| ≤ 2α · (|Is| + |Ir| + |I+
c |) ≤ 10α · opt. ◀
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It remains to show that the algorithm can be implemented using O(n2
/α2) bits of space.

Algorithm 1 randomly partitions V , maintains several instances of ALGMS (Lemma 5)
and ALGNT (Proposition 4), and stores various counters. To show the space usage of the
algorithm, we first consider each of these components separately.

▷ Claim 15. The partitioning of V into n
α vertex groups of size in the range [α/2, 2α] uses

O(n2
/α2) bits of space and succeeds with high probability.

Proof. We show that for small α < log2 n, i.e, when we have sufficient space, we can achieve
this with a uniform random permutation, and for large α ≥ log2 n, we use a (10 · log n)-wise
independent hash function.

Small α. For any α < log2 n, we can randomly permute the vertices using O(n log n) =
O(n2

/α2) random bits to create a uniform random partitioning of V into n
α groups of size α.

Large α. For any α ≥ log2 n, we can partition V using a (10 · log n)-wise independent hash
function h : [n] →

[
n
α

]
which uses O(log2 n) = O(n2

/α2) bits by Proposition 2. We bound
the size of the groups as follows: Consider any group Vj (j ∈

[
n
α

]
) and let Xi be the random

variable that is 1 if vertex i is hashed to Vj , i.e., h(i) = j. Let X =
∑

i Xi represent the
number of vertices in group Vj . We have E [X] = n · (α/n) = α. Using Proposition 3 with
ε = 0.1,

Pr (|X − E [X]| ≥ ε · E [X]) ≤ exp (−5 log n) ≤ n−5.

A union bound over all groups implies that with probability at least 1 − n−4, all groups have
size between 0.9α and 1.1α. ◁

▷ Claim 16. The instances of ALGMS and ALGNT, and the counters use O(n2
/α2) bits of

space.

Proof. We use one instance of ALGMS (Lemma 5) which takes space O(n2
/α2) bits. We

use n/α instances of ALGNT (Proposition 4) with parameters a = n/α and b = nδ/2 each of
which take space O( a

b log3 n) = O((n/α) · (log3 n/nδ/2)) = o(n/α) bits. This implies that the
total space used by n/α instances is O(n2

/α2) bits. We maintain counters modulo a constant
c = 15/δ for the number of edges between every pair of vertex groups. Each takes O(1) bits of
space, and since there are O(n2

/α2) many of these counters, this totals O(n2
/α2) bits of space.

We also maintain counters for the number of internal edges for each group which requires
O(log n) = o(n/α) bits of space each. Since there are n

α many groups, this totals O(n2
/α2)

bits of space. ◁

Hence, by Claims 15 and 16, we have shown that the components of Algorithm 1 use
O(n2

/α2) bits in total. We still, however, need to consider the format of the output. When α

gets large enough, the space is only o(n), whereas simply storing the output – the vertices of
a solution – could require Θ(n) bits of space. We solve this by showing that we can implicitly
store the solution when there is limited space.

▷ Claim 17. The output of Algorithm 1 can be maintained using O(n2
/α2) bits of space.

Proof. For α < log2 n, we can maintain the vertices of the solution explicitly. For α ≥ log2 n,
we rely on the hash function h used to partition V (see Claim 15). Recall that vertices
are added to the solution at a group level, so we can simply maintain a bit vector of
length n

α representing the groups added to the solution. Then, the output consists of h and
the bit vector which is sufficient for checking if a vertex belongs to the solution and uses
O(log2 n + n

α ) = O(n2
/α2) bits of space. ◁
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We have now shown that Algorithm 1 can be implemented using O(n2
/α2) bits of space.

Therefore, combined with Lemma 14 and Assumption 6, we have proven our main result,
Theorem 1.

5 Conclusion

In this paper, we have resolved the space complexity of αMVC for the full range of α. We
have provided a randomised algorithm which asymptotically matches the lower bound [18]
up to constant factors, showing that Θ(n2

/α2) is necessary and sufficient for this problem.
The previous best algorithm for αMVC was a deterministic one using O(n2

/α2 · log α) bits
of space [18]. We have shown that we can remove the logarithmic overhead using randomness.
Can we, however, remove this logarithmic factor using deterministic techniques or otherwise
prove a deterministic lower bound which shows that it is necessary?

Our work continues the direction set by the results on connectivity [1, 36] and matchings
[18, 11]; we resolve the space complexity (up to constant factors) of another problem in the
dynamic graph streaming setting. However, other problems still remain open. Hence, can we
achieve this for other dynamic graph streaming problems such as dominating set [26] and
spectral sparsification [24]?
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Abstract
We study the problem of aligning multiple sequences with the goal of finding an alignment that
either maximizes the number of aligned symbols (the longest common subsequence (LCS) problem),
or minimizes the number of unaligned symbols (the alignment distance aka the complement of LCS).
Multiple sequence alignment is a well-studied problem in bioinformatics and is used routinely to
identify regions of similarity among DNA, RNA, or protein sequences to detect functional, structural,
or evolutionary relationships among them. It is known that exact computation of LCS or alignment
distance of m sequences each of length n requires Θ(nm) time unless the Strong Exponential Time
Hypothesis is false. However, unlike the case of two strings, fast algorithms to approximate LCS
and alignment distance of multiple sequences are lacking in the literature. A major challenge in this
area is to break the triangle inequality. Specifically, by splitting m sequences into two (roughly)
equal sized groups, then computing the alignment distance in each group and finally combining
them by using triangle inequality, it is possible to achieve a 2-approximation in Õm(n⌈ m

2 ⌉) time.
But, an approximation factor below 2 which would need breaking the triangle inequality barrier is
not known in O(nαm) time for any α < 1. We make significant progress in this direction.

First, we consider a semi-random model where, we show if just one out of m sequences is
(p, B)-pseudorandom then, we can get a below-two approximation in Õm(nBm−1 + n⌊ m

2 ⌋+3) time.
Such semi-random models are very well-studied for two strings scenario, however directly extending
those works require one but all sequences to be pseudorandom, and would only give an O( 1

p
)

approximation. We overcome these with significant new ideas. Specifically an ingredient to this
proof is a new algorithm that achives below 2 approximations when alignment distance is large in
Õm(n⌊ m

2 ⌋+2) time. This could be of independent interest.
Next, for LCS of m sequences each of length n, we show if the optimum LCS is λn for some

λ ∈ [0, 1], then in Õm(n⌊ m
2 ⌋+1)1 time, we can return a common subsequence of length at least λ2n

2+ϵ

for any arbitrary constant ϵ > 0. In contrast, for two strings, the best known subquadratic algorithm
may return a common subsequence of length Θ(λ4n).
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1 Introduction

Given m sequences each of length n, we are interested to find an alignment that either
maximizes the number of aligned characters (the longest common subsequence problem
(LCS)), or minimizes the number of unaligned characters (the minimum alignment distance
problem, aka the complement of LCS) 2. Both these problems are extremely well-studied,
are known to be notoriously hard, and form the cornerstone of multiple sequence align-
ment [29, 26, 16], which according to the survey in Nature is one of the most widely used
modeling methods in biology [31]. Long back in 1978, the multi-sequence LCS problem
(and therefore, the minimum alignment distance problem) was shown to be NP Hard [23].
Moreover, for any constant δ > 0, the multi-sequence LCS and alignment distance cannot
be approximated within n1−δ unless P = NP [18]. These hardness results hold even under
restricted conditions such as for sequences over relatively small alphabet [9], or with certain
structural properties [10]. Various other multi-sequence based problems such as finding
the median or center string are shown “hard” by reduction from the minimum alignment
distance problem [25]. Interested readers may refer to the chapter entitled “Multi String
Comparison-the Holy Grail” of the book [16] for a comprehensive study on this topic.

From a fine-grained complexity viewpoint, an O(nm−ϵ) algorithm to compute alignment
distance of m sequences for any constant ϵ > 0 will refute the Strong Exponential Time
Hypothesis (SETH) [1]. On the other hand, a basic dynamic programming solves these
problems in time O(mnm). This raises the question whether we can solve these problems
faster in O(nαm) time for α < 1 by allowing approximation. The approximation vs running
time trade-off for m = 2 (edit distance problem) has received extensive attention over the
last two decades with many recent breakthroughs [21, 7, 6, 8, 3, 5, 11, 14, 27, 13, 19, 4]. To
bypass the worst-case hardness in the two-strings setting, multiple prior works have studied
semi-random models for sequence comparisons [2, 20, 12]. Semi-random models may capture
real-life scenarios better where adversarial examples are rare. In addition, it may also carry
several inherent difficulties of the worst case model. Thus studying semi-random models can
be a stepping stone towards attacking the worst-case model.

More than a decade back, such a study was initiated by Andoni and Krauthgamer [2],
where the authors studied smoothed complexity of sequence alignment. They proposed a
semi-random model as follows: first, an adversary chooses two binary strings of length n and
a longest common subsequence A of them. Then, every character is perturbed independently
with probability p, except that A is perturbed in exactly the same way inside the two
strings. Kuszmaul further generalized this model and considered one input string to be
pseudorandom (any pair of disjoint substrings are at large edit distance) whereas the other
input string can be adversarial [20] . Both of these works [2, 20] provide O(1) approximation
of the edit distance in almost linear time, and face the triangle inequality barrier. Recently
Boroujeni, Seddighin, and Seddighin [12] improved the approximation guarantee to (1 + ϵ)
thus bypassing the triangle inequality hardness while increasing the running time from
near-linear to subquadratic. Therefore, if we aim to generalize the pseudorandom model
for multiple strings, it is not obvious how to achieve the best of the above two results
simultaneously: (i) a running time of O(nm/2), and (ii) a below 2 approximation. Another
major issue is that any direct generalization of [2, 20, 12] for multiple strings require all but
one string to be pseudorandom.

2 While one may define alignment distance in many different ways among multiple sequences, taking the
complement of LCS is possibly the cleanest way of defining such a distance both because indel distance
between two strings naturally generalizes to it, and due to its close connection to LCS.
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In this work we consider a much stronger model where only one input string is pseudor-
andom and the rest m− 1 input strings can be adversarial. We show how it is possible to
accomplish the best of both the running time and the approximation guarantee by giving an
Õ(nm/2+3) time algorithm that breaks the triangle inequality and computes truly below 2
approximation of alignment distance. Towards this we first design an algorithm that takes as
input m adversarially chosen strings and provides a below 2 approximation of their alignment
distance in time Õ(nm/2+2) provided the distance is large. Note this model considers all
strings to be adversarial and thus can be of independent interest. Moreover we show that
these techniques can be extended to design an algorithm computing constant approximation
of the LCS of m strings in time Õ(nm/2+2) provided the length of the LCS is large.

It is interesting to note that our results on LCS implies a constant approximation of LCS
of three strings is possible in the large distance regime in quadratic time (a reduction from
cubic to quadratic time complexity), whereas a worse constant approximation is currently
known in the large distance regime for the LCS of two strings to go below the quadratic
running time [28].

Contributions. We now describe our results in more details.

Minimizing Alignment Distance of Multiple Sequences with One Pseudorandom String.
Let L(s1, . . . , sm) denote the length of LCS of m strings s1, s2, .., sm (each of length n) and
A(s1, . . . , sm) = n − L(s1, . . . , sm) denote the optimal alignment distance of s1, s2, ..., sm.
We consider the case where one input string is pseudorandom out of m strings, and the
rest of m − 1 strings are chosen adversarially. We provide an algorithm that breaks the
triangle inequality barrier and provides (2− 3p

512 + ϵ) (for any arbitrary small constant ϵ > 0)
approximation of A(s1, . . . , sm) in time Õm(nBm−1 + n⌊m/2⌋+3). Formally we show the
following.

▶ Definition 1 ((p, B)-pseudorandom). Given a string s of length n and parameters p, B ≥ 0
where p is a constant, we call s a (p, B)-pseudorandom string if for any two disjoint B length
substrings x, y of s, A(x, y) ≥ pB.

▶ Theorem 2. Given a (p, B)-pseudorandom string s1, and m − 1 adversarial strings
s2, . . . , sm of length n, there exists an algorithm that for any arbitrary small constant ϵ > 0
computes (2− 3p

512 + ϵ) approximation of A(s1, . . . , sm) in time Õm(nBm−1 + n⌊m/2⌋+3).

The theorem can be extended to get a c(1− 3p
1024 + ϵ) approximation in Õm(nB⌈2m/c⌉−1 +

n⌈m/c⌉+3) time. Assuming c to be even, we divide the input strings into c
2 groups each

containing at most ⌈ 2m
c ⌉ strings. Then for each group we compute a below 2-approximation

of the alignment distance in time Õm(nB⌈2m/c⌉−1 + n⌈m/c⌉+3). Finally, we apply triangle
inequality c

2 times to combine these groups to get a c
2 (2 − 3p

512 + ϵ) = c(1 − 3p
1024 + ϵ

2 )
approximation.

What do we know in the two strings case? Let us contrast this result to what is known
for m = 2 case [2, 20, 12]. When one of the two strings is (p, B)-pseudorandom, Kuszmaul
gave an algorithm that runs in time Õ(nB) time but only computes an O( 1

p ) (can be large
constant) approximation to edit distance [20]. Boroujeni, Seddighin and Seddighin consider
a different random model for string generation under which they give a (1 + ϵ) approximation
but in subquadratic time [12]. While their model captures the case when one string in
generated uniformly at random, it does not extend to pseudorandom strings. In fact, there
is no result in the two strings case that breaks the triangle inequality barrier and provides
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below-2 approximation when one of the strings is pseudorandom. Moreover, in order to
apply their technique to multi-string setting, we would need all but one string to be generated
according to their model. Interestingly, our algorithm obtains all the desired results and
provides below-2 approximation of alignment distance with just one pseudorandom string.
We stress that this is one of the important contributions of our work and is technically
involved.

Key Tool: breaking triangle inequality for large alignment distance. To construct the
above mentioned algorithm, we first design an algorithm that takes as input m adversarially
chosen strings and provides truly below 2 approximation of their alignment distance provided
the distance is large. More generally we show if A(s1, . . . , sm) = θn then for any arbitrary
small constant ϵ > 0, it is possible to obtain a c(1 − 3θ

32 + ϵ) approximation3 in time
Õm(n⌈m/c⌉+2) time.

▶ Theorem 3. Given m strings s1, . . . , sm of length n over some alphabet set Σ such that
A(s1, . . . , sm) = θn, where θ ∈ (0, 1), there exists an algorithm that for any arbitrary small
constant ϵ > 0 computes a (2− 3θ

16 +ϵ) approximation of A(s1, . . . , sm) in time Õm(n⌊m/2⌋+2).
Moreover, for any integer c > 0, there exists an algorithm that computes c(1 − 3θ

32 + ϵ)
approximation of A(s1, . . . , sm) in time Õm(n⌈m/c⌉+2).

For constant θ, the above theorem asserts that there exists an algorithm that breaks the
triangle inequality barrier and computes a truly below 2-approximation of A(s1, . . . , sm) in
time Õm(n⌊m/2⌋+2). Note here all the input strings are adversarially chosen and this result
can be of independent interest. Moreover we show these techniques can be extended to
compute LCS of multiple strings.

LCS of Multiple Sequences. We show if L(s1, . . . , sm) = λn for some λ ∈ [0, 1], then we
can return a common subsequence of length λ2n

2+ϵ in time Õm(n⌊m/2⌋+1). To contrast, we
can get a quadratic algorithm for m = 3 with λ

2+ϵ approximation (for any arbitrary small
constant ϵ > 0), whereas the best known bound for m = 2 case may return a subsequence of
length Θ(λ4n) in Õ(n1.95) time [28].

▶ Theorem 4. Given m strings s1, . . . , sm of length n over some alphabet set Σ such that
L(s1, . . . , sm) = λn, where λ ∈ [0, 1], there exists an algorithm that for any arbitrary small
constant ϵ > 0 computes an λ

2+ϵ approximation of L(s1, . . . , sm) in time Õm(n⌊m/2⌋+1).

1.1 Technical Overview
Notation

We use the following notations throughout the paper. Given m strings s1, . . . , sm, each of
length n over some alphabet set Σ, the longest common subsequence (LCS) of s1, . . . , sm,
denoted by LCS(s1, . . . , sm) is one of the longest sequences that is present in each si. Define
L(s1, . . . , sm) = |LCS(s1, . . . , sm)|. The optimal alignment distance (AD) of s1, . . . , sm,
denoted by A(s1, . . . , sm) is n− L(s1, . . . , sm).

For a given string s, s[i] represents the ith character of s and s[i, j] represents the substring
of s starting at index i and ending at index j. Given a LCS σ of s1, . . . , sm define σ(sj) ⊆ [n]
be the set of indices such that for each k ∈ σ(sj), sj [k] is aligned in σ and σ̄(sj) ⊆ [n] be the

3 We will assume c is even for simplicity. But all the algorithms work equally well if c is odd.
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set of indices of the characters in sj that are not aligned in σ. Define the alignment cost of σ

to be |σ̄(s1)| and the cumulative alignment cost of σ to be
∑m

j=1 |σ̄(sj)| = m|σ̄(s1)|. Given a
set T ⊆ [n] and a string s, let sT denote the subsequence of s containing characters with
indices in T .

Given a string s, we define a window w of size d of s to be a substring of s having length
d. Given m strings s1, . . . , sm, we define a m-window tuple to be a set of m windows denoted
by (w1, . . . , wm), where wj is a window of string sj .

Given two characters a, b ∈ Σ, a ◦ b represents the concatenation of b after a. Given two
string x, y, x ◦ y represents the concatenation of string y after x. For notational simplicity
we use Õm to hide factors like cm logm n, where c is a constant. Moreover we use Õ to hide
polylog factors.

1.1.1 Breaking the Triangle Inequality Barrier for Large Alignment
Distance and Approximating LCS

We first give an overview of our algorithms leading to Theorem 5 (Section 2). Let us consider
the problem of minimizing the alignment distance. Given m (say m is even) sequences
s1, s2, ..., sm each of length n, partition them into two groups G1 = {s1, s2, ..., sm/2} and
G2 = {sm/2+1, .., sm}. Suppose the optimum alignment distance of the m sequences is d = θn.
With each alignment, we can associate a set of indices of s1 that are not aligned in that
alignment. Let σ∗ be an optimum alignment and σ̄∗(s1) be that set. We have |σ̄∗(s1)| = d.
Let X1 = {(σi, σ̄i(s1))} denote all possible alignments σi of G1 of cost at most d, |σ̄i(s1)| ≤ d.
Then (σ∗, σ̄∗(s1)) ∈ X1. Therefore, if we can (i) find all possible alignments X1, and (ii) for
each (σi, σ̄i(s1)) ∈ X1 can verify if that is a valid alignment of G2, we can find an optimal
alignment.

Unfortunately, it is possible that |X1| =
∑

l≤d

(
n
l

)
which is prohibitively large. Therefore,

instead of trying to find all possible alignments, we try to find a cover for X1 using a
few alignments (τj , τ̄j(s1)), j = 1, 2, .., k such that for any (σi, σ̄i(s1)) ∈ X1, there exists a
(τj , τ̄j(s1)) with large |σ̄i(s1) ∩ τ̄j(s1)|. In fact, one of the key ingredients of our algorithm is
to show such a covering exists and can be obtained in time (roughly) n|G1|. With just k = 4

θ

alignments, we show it is possible to cover X1 such that for any (σi, σ̄i(s1)) ∈ X1, there exists
a (τj , τ̄j(s1)) having |σ̄i(s1) ∩ τ̄j(s1)| ≥ 3θ2n

16 .
The algorithm to compute the covering starts by finding any optimal alignment (σ1, σ̄1(s1))

of G1. Next it finds another alignment (σ2, σ̄2(s1)) of cost at most d which is farthest from
(σ1, σ̄1(s1)), that is |σ̄1(s1) ∩ σ̄2(s1)| is minimized. We find these alignments using dynamic
programming. If |σ̄1(s1) ∩ σ̄2(s1)| ∼ |σ̄2(s1)|, then it stops. Otherwise, it finds another
alignment (σ3, σ̄3(s1)) such that |(σ̄1(s1) ∪ σ̄2(s1)) ∩ σ̄3(s1)| is minimized. We show the
process terminates after at most 4

θ rounds.
Suppose without loss of generality, |σ̄∗(s1)∩ τ̄1(s1)| ≥ 3θ2n

16 . Given τ̄1(s1), τ̄2(s1), ..., τ̄k(s1),
for each (τi, τ̄i(s1)), we find an alignment (ρi, ρ̄i(s1)) of G2 ∪ s1 of cost at most d such that
ρ̄i(s1) is nearest to τ̄i(s1), that is |ρ̄i(s1) ∩ τ̄i(s1)| is maximized. Then, we must have
|ρ̄i(s1) ∩ τ̄1(s1)| ≥ |σ̄∗(s1) ∩ τ̄1(s1)| ≥ 3θ2n

16 . Our alignment cost is minj (|τ̄j(s1) ∪ ρ̄j(s1)|) ≤
|τ̄1(s1)∪ ρ̄1(s1)| ≤ 2d− 3θ2n

16 = d(2− 3θ
16 ) giving the desired below-2 approximation when θ is

a constant.
Of course, there are two main parts in this algorithm that we have not elaborated; given a

set of indices T of s1, and a group of strings G, we need to find an alignment of cost at most
d of G ∪ s1 that is farthest from (nearest to) T . In general, any application that needs to
compute multiple diverse (or similar) alignments can be benefited by such subroutines. We

APPROX/RANDOM 2022
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can use dynamic programming to solve these problems; however, it is important to keep in
mind – an alignment that has minimum cost may not necessarily be the farthest (or nearest).
Thus, we need to check all possible costs up to the threshold d to find such an alignment.

Our algorithm for obtaining a λ
(2+ϵ) approximation for multi-sequence LCS is nearly

identical to the above, and in fact simpler. This helps us to improve the running time slightly
(contrast Theorem 4 with Theorem 5). Moreover, the result holds irrespective of the size of
LCS. We provide the details in Section 4.

1.1.2 Approximating Alignment Distance with just One Pseudorandom
String

Next we consider the case where the input consists of a single (p, B) pseudorandom string
and m− 1 adversarial strings each of length n. We give an overview of our algorithm that
returns a below 2 approximation of the optimal alignment distance (even for small regime)
proving Theorem 2. The details are provided in Section 3.

In most of the previous literature for computing edit distance of two strings, the widely
used framework first partitions both the input strings into windows (substrings) and finds
distance between all pairs of windows. Then using dynamic program all these subsolutions are
combined to find the edit distance between the input strings. However instead of considering
two arbitrary strings as input if one input is (p, B) pseudorandom, then as we know that
any pair of disjoint windows from the pseudorandom string have large edit distance, if we
consider a window from the adversarial string then by triangle inequality, there exists at most
one window in the pseudorandom string with which it can have small edit distance (≤ pB

4 ).
We call this low cost match between an adversarial string window and a pseudorandom string
window a unique match. Notice if we can identify one such unique match that is part of an
optimal alignment, we can put restriction on the indices where the rest of the substrings can
be matched. This observation still holds for multiple strings but only when we compare a
pair of windows, one from the pseudorandom string and the other from an adversarial string.
Thus it is not obvious how we can extend this restriction on pairwise matching to a matching
of m-window tuples as (m− 1)-window tuples come from (m− 1) different adversarial strings
and their unique matches with the pseudorandom string can be very different from each
other. Another drawback of this approach is that, to optimize the running time, here the
algorithm aims to identify only the matchings with low cost i.e. < pB

4 . Hence the best
approximation ratio we can hope for is O(1/p) which can be a large constant.

Therefore to shed the approximation factor below 2, we also need to find a good ap-
proximation of the cost of pair of windows having distance ≥ pB

4 . We call a matching with
cost ≥ pB

4 a large cost match. However as the unique match property fails here, without
having any prior knowledge about the optimal alignment we need to compute the cost for all
pairs of windows having large cost. However doing it trivially can not provide us the desired
running time. Fortunately, as p is a constant pB/4 = Ω(B) and thus we can use our large
alignment distance approximation algorithm to get a improved running time while ensuring
below 2 approximation of the cost for these large cost match tuples. Though this simple idea
seems promising, if we try to compute an approximation over all large distance m-window
tuples the running time can become as large as Õm(n 11m

16 ). We show this with an example.
Given m input strings, start by partitioning each string into windows of length β = n

5
8 (for

simplicity assume the windows are disjoint). Hence there are n
3
8 windows in each string.

Now there can be as many as n
3m

8 many m-window tuples of large cost. If we evaluate each
of their cost using our large alignment distance algorithm then time taken for each m-tuple
is roughly Õm(n 5m

16 ). Hence total time required is Õm(n 11m
16 ). Note to improve this running
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Figure 1 Construction of windows for the (p, B)-pseudorandom string s1.

time by reducing the number of windows, we can not grow the window size arbitrarily large
as in that case identifying the unique (low cost) match m-window tuples will become more
time consuming. Later we show for window size β this time can be Õm(βm).

Thus to further reduce the running time, instead of evaluating all window tuples having
large cost match, we restrict the computation by estimating the cost of only those tuples
that maybe necessary to compute an optimal alignment. This is challenging as we do not
have any prior information of the optimal alignment. For this purpose we use an adaptive
strategy where depending on the unique matches computed so far, we perform a restricted
search to estimate the cost of window tuples having large alignment distance. Moreover the
length of these windows are also decided adaptively. We remark that this adaptive strategy
differs significantly from the previous windowing strategies where the window lengths are
fixed to start with. Next we give a brief overview of the three main steps of our algorithm.
In Step 1, we provide the construction of windows of the input strings that will be used as
input to Step 2 and 3. In Step 2, we estimate the alignment cost of the m-window tuples
such that the matching is unique i.e. the optimal alignment distance is at most pB/4. In
step 3, we further find an approximation of the cost of m-window tuples that are relevant for
an optimal alignment and have large cost i.e. ≥ pB/4.

1.1.2.1 Step 1

The windows of the input strings are constructed in two stages. In stage one, we follow
a rather straightforward strategy similar to the one used in [15] and partition the (p, B)
pseudorandom string into n

β disjoint windows each of size β (except the right most one).
Here β = max(B,

√
n). For the rest of the strings we generate a set of overlapping variable

sized windows. If the distance threshold parameter is θ and the error tolerance parameter
is ϵ, then for each adversarial strings we generate windows of size {(β − θβ), (1 + ϵ)(β −
θβ), (1 + ϵ)2(β − θβ), . . . , (β + θβ)} and from starting indices in {1, ϵθβ + 1, 2ϵθβ + 1, . . . }.
These windows are fed as an input to Step 2 of our algorithm.
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Figure 2 An example of large cost match.

The second stage is much more involved where the strategy significantly differs from the
previous literature. The primary difference here is that instead of just considering a fixed
length partition of the pseudorandom string (e.g. β in stage one), we take variable sizes that
are multiple of β i.e. {β, 2β, . . . , n} and the windows start from indices in {1, β+1, 2β+1, . . . }.
Next for each adversarial string, we adaptively try to guess a set of useful substrings/windows
that can be matched with the large cost windows of the pseudorandom string under the
optimal alignment (we fix one for the analysis purpose). These guesses are guided by the
unique low cost matches found in Step 2. Next for each such useful substring/window
from the adversarial string and each length in {β, 2β, . . . , n}, we create a set of overlapping
windows as described in stage one. Note the windows created in this stage are used as an
input to Step 3 of the algorithm.

We explain the motivation behind the variable sized window partitioning for the pseu-
dorandom string and the restricted window construction for the adversarial strings with an
example(see Figure 2).

Let we are given three strings s1, s2, s3 each of length n as input where s1 is (p, B)-
pseudorandom. We divide all three strings in windows (for simplicity assume these windows
are disjoint) of size β. For the analysis purpose fix an optimal alignment where window w1 is
aligned with window w2, w3 and window w′

1 is aligned with window w′
2, w′

3. Moreover their
costs are ≤ pβ

4 . Hence we get an estimation of the alignment cost of these window tuples at
Step 2. Also assume that all the windows appearing between w1 and w′

1 in s1 has alignment
cost > pβ

4 but ≤ β
2 . Hence, for these windows we can not use a trivial maximum cost of β in

order to get a below two approximation. Here we estimate the cost of these windows using
Algorithm LargeAlign(). Now if we compute this estimation separately for each β size window
between w1 and w′

1 in s1, as there can be as many as
√

n (assume β =
√

n) such windows
and each call to algorithm LargeAlign() takes time O(nm/4), the total running time will be
O(n3m/4). Thus to achieve the promised running time, instead of considering all small β size
windows separately we consider the whole substring between w1 and w′

1 as one single window
W1 and compute its cost estimation. Observe as we do not have the prior information about
the optimal alignment (and therefore w1 and w′

1) we try all possible lengths in β, 2β, . . . , n.
The overall idea here is to use a window length, so that we can represent the whole substring
with large optimal alignment distance lying between two windows having low cost unique
match in the optimal alignment with a single window.
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Figure 3 (a) Each hatch window of s1 is matched with 16
pϵ

windows of one adversarial string.
Deleting all these windows deletes 32β

pϵ
characters from each string. (b) The optimal alignment

deletes < 16β
pϵ

characters from each string.

1.1.2.2 Step 2

In step 2, we start with a set of windows, each of size β, generated from strings s1, . . . , sm

(assume s1 to be the (p, B)-pseudorandom string). Our objective is to identify all m-window
tuples that have optimal alignment distance ≤ pβ

4 . Here we use the fact that for every
adversarial window there exists at most one window in the pseudorandom string at distance
≤ pβ

4 . We start the algorithm by computing for each window w from the pseudorandom
string, and for each adversarial string sj the set Sw

j containing all windows from sj that
are at distance ≤ pβ

4 from w. Notice for two string case, if for a pseudorandom window w,
|Sw

j | ≥ 16
pϵ (i.e. many windows from sj are close to w), then as in the optimal alignment at

most one adversarial window from Sw
j can be matched with w with cost ≤ pβ

4 and the rest
of the windows from Sw

j have cost at least pβ
4 , the optimal cost for all the windows from Sw

j

is ≥ β
ϵ . Thus even if we take a cost estimation β (maximum cost) for the pseudorandom

window w this still gives a (1 + ϵ) approximation of the alignment cost. For multiple strings
we can not use a similar idea as for a pseudorandom window w we can not take a trivial cost
estimation if for only one adversarial string, there are many windows which are close to w.
Thus we need to device a new strategy.

We explain with an example. Consider k windows w1, . . . , wk (where k ≥ 32
pϵ ) from the

pseudorandom string such that for each wj , there are 16
pϵ windows from the adversarial string

sj+1 that are at distance ≤ pβ
4 with wj and for every other string there is exactly one window

with distance ≤ pβ
4 . Here following the above argument if for each of the k pseudorandom

windows, we take a trivial cost estimation of β then the total cost will be kβ ≥ 32β
pϵ . Whereas

the optimal cost can be 16β
pϵ (check Figure 3 (a)).

Therefore for every window wi of the pseudorandom string, we count the total number of
windows in all adversarial strings that are at distance ≤ pβ

4 and if the count is at least 16m
pϵ ,

then we take a trivial cost estimation of |wi| for wi. (Note here for two different windows from
the pseudorandom string, the sets of close windows from the adversarial strings are disjoint.)
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Otherwise if the count is small letWj be the set of windows from string sj that are close to wi.
Then we can bound |W2|×· · ·×|Wm| ≤ [(|W2|+ · · ·+ |Wm|)/(m− 1)]m−1 ≤ ( 32

pϵ )m = Õm(1)
and for each choice of m-window tuples in wi ×W2 × · · · ×Wm, we find the exact alignment
cost in time Õm(βm). As there are n/β disjoint windows in the pseudorandom string we can
bound the total running time by Õm(nβm−1).

1.1.2.3 Step 3

In this step, our objective is to find a cost estimation for all the windows of the pseudorandom
string that have large alignment cost in the optimal alignment. Consider Figure 2 (consider
m = 3), and let W1 be such a window form s1. Also assume that it can not be extended to left
or right, i.e. both w1 and w′

1 have small cost match which we have already identified in Step
2. Let the length of W1 is cβ where c ≥ 1 and assume no β length window of W1 has small
cost match. Note, we have the assurance that window W1 is generated in Step 1. Next to
find the match of W1, instead of checking whole s2 and s3, we consider the substring between
w2 and w′

2 in s2 and w3 and w′
3 in s3. Now if the sum of the length of all the substrings is

large (i.e. |s′
2|+ |s′

3| ≥ 5m|W1| = 15|W1|), we can claim that the cost of W1 in the optimal
alignment is very large and we can take a trivial cost estimation of |W1|. Otherwise, we can
ensure that the total choices for m-window tuples that need to be evaluated for W1 is at
most Õm(1) and for each of them, we calculate a below 2 approximation of the cost using
Algorithm LargeAlign(). In the algorithm, as we don’t know the optimal alignment, for
every window of the pseudorandom string generated in Step 1 stage two, we assume it to
be large cost and check whether the β length window appearing just before and after this
window has a small cost unique match (notice this observation is very crucial to decide the
maximal length of any large cost window). If not we discard it and consider a larger window.
Otherwise we use LargeAlign() to find its cost estimation.

Overall in Step 2 and 3, we ensure that for every window of the pseudorandom string, our
algorithm provides < 2 cost approximation. Moreover if the window has small cost match
then in Step 2 we evaluate the cost of at most Õm(1) m-window tuples where each cost
estimation takes time Õm(βm) (as the window size is β) and otherwise if the cost is large we
use algorithm LargeAlgin() that computes an approximation in time Õm(nm/2) (here the
window length can be as large as n). As the number of windows generated for string s1 is
polynomial in n, taking β = max(B,

√
n) we get the required running time bound.

Organization

In Section 2, we give the algorithm for minimizing alignment distance when the distance is
large. Section 3 provides the details of the below-2 approximation algorithm for alignment
distance when one string is (p, B) pseudorandom. In Section 4, we give our λ

2+ϵ approximation
algorithm for multi-sequence LCS.

2 Below-2 Approximation for Multi-sequence Alignment Distance

In this section, we provide an algorithm LargeAlign() that given m strings s1, . . . , sm each
of length n, such that A(s1, . . . , sm) = θn, where θ ∈ (0, 1) computes a (2 − 3θ

16 + ϵ)
approximation of A(s1, . . . , sm) in time Õm(n⌊m/2⌋+2). Notice when θ = Ω(1), this implies a
below 2 approximation of A(s1, . . . , sm).
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▶ Theorem 5. Given m strings s1, . . . , sm of length n over some alphabet set Σ such
that A(s1, . . . , sm) = θn, where θ ∈ (0, 1), there exists an algorithm that for any arbit-
rary small constant ϵ > 0 computes a (2− 3θ

16 + ϵ) approximation of A(s1, . . . , sm) in time
Õm(n⌊m/2⌋+2). Moreover, there exists an algorithm that computes a c(1− 3θ

32 + ϵ) approxim-
ation of A(s1, . . . , sm) in time Õm(n⌈m/c⌉+2).

As we do not have any prior knowledge of θ, instead of proving the theorem directly, we
solve the following gap version for a given fixed threshold θ. We define the gap version as
follows.

GapMultiAlignDist(s1, . . . , sm, θ, c). Given m strings s1, . . . , sm of length n over some
alphabet set Σ, θ ∈ (0, 1) and a constant c > 1, decide whether A(s1, . . . , sm) ≤ θn

or A(s1, . . . , sm) > cθn. More specifically if A(s1, . . . , sm) ≤ θn we output 1, else if
A(s1, . . . , sm) > cθn we output 0, otherwise output any arbitrary answer.

▶ Theorem 6. Given m strings s1, . . . , sm of length n over some alphabet set Σ and a para-
meter θ ∈ (0, 1), there exists an algorithm that computes GapMultiAlignDist(s1, . . . , sm, θ, (2−
3θ
16 )) in time Õm(n⌊m/2⌋+2).

Proof of Theorem 5 from Theorem 6. Let us consider an arbitrary small constant ϵ′ > 0,
and fix a sequence of parameters θ0, θ1, . . . as follows: for i = 0, 1, . . . , log1+ϵ′ n, θi =
1/(1 + ϵ′)i. Find the largest i such that GapMultiAlignDist(s1, . . . , sm, θi, (2− 3θ

16 )) = 1. Let
A(s1, . . . , sm) = θn. Then there exists a θi, such that θin ≥ θn > θi+1n as θi = (1 + ϵ′)θi+1.
In this case the algorithm outputs a value at most (2− 3θ

16 )θin ≤ (2− 3θ
16 + ϵ′(2− 3θ

16 ))θn. As
θ ≥ 1/n, by appropriately scaling ϵ′, we get the desired running time of Theorem 5. ◀

The rest of the section is dedicated towards proving Theorem 6. Before providing the
the algorithm for computing GapMultiAlignDist(s1, . . . , sm, θi, (2− 3θ

16 )), we first outline
another two algorithms that will be used as subroutines in our main algorithm.

2.1 Finding Alignment with Maximum Deletion Similarity

Given m strings s1, . . . , sm of length n, a set S ⊆ [n] and a parameter 0 ≤ d ≤ n, our
objective is to compute an alignment σn of s1, . . . , sm with alignment cost at most d such
that |σ̄n(s1) ∩ S| is maximized.

▶ Theorem 7. Given m strings s1, . . . , sm, each of length n, a set S ⊆ [n] and a parameter
0 ≤ d ≤ n, there exists an algorithm that computes a common alignment σn such that∑

k∈[m] |σ̄n(sk)| ≤ dm and |σ̄n(s1) ∩ S| is maximized in time Õ(2mmnm+1).

We design an algorithm MaxDelSimilarAlignment() that uses dynamic programming to
compute σn. We defer the details to the full version.

If d = θn where θ ∈ (0, 1), then as we know from every string no more than θn characters
will be deleted, using [30] we can claim the following.

▶ Corollary 8. Given m strings s1, . . . , sm, each of length n, a set S ⊆ [n] and a parameter
d = θn, where θ ∈ (0, 1) there exists an algorithm that computes a common alignment σn

such that
∑

k∈[m] |σ̄n(sk)| ≤ dm and |σ̄n(s1) ∩ S| is maximized in time Õ(2mθmmnm+1).
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2.2 Finding Alignment with Minimum Deletion Similarity
Given m strings s1, . . . , sm of length n, q sets S1, . . . , Sq ⊆ [n] and a parameter 0 ≤ d ≤ n,
our objective is to compute an alignment σn of s1, . . . , sm with alignment cost at most d

such that | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized.

▶ Theorem 9. Given m strings s1, . . . , sm, each of length n, q sets S1, . . . , Sq ⊆ [n] and a
parameter 0 ≤ d ≤ n, there exists an algorithm that computes a common alignment σn such
that

∑
k∈[m] |σ̄n(sk)| ≤ dm and | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized in time Õ(2mmnm+1).

We design an algorithm MinDelSimilarAlignment() that uses dynamic programming just
like the one used in finding alignment with maximum deletion similarity to compute σn.
We defer the details to the full version. If d = θn where θ ∈ (0, 1), again using [30] we can
claim the following. Note in this case we only need to compute θmnm entries in the dynamic
program table.

▶ Corollary 10. Given m strings s1, . . . , sm, each of length n, q sets S1, . . . , Sq ⊆ [n] and a
parameter 0 ≤ d ≤ θn, there exists an algorithm that computes a common alignment σn such
that

∑
k∈[m] |σ̄n(sk)| ≤ dm and | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized in time Õ(2mθmmnm+1).

2.3 Algorithm for (2 − 3θ
16 + ϵ)-approximation of A(s1, . . . , sm)

To compute the value of GapMultiAlignDist(s1, . . . , sm, θ, (2− 3θ
16 )) the procedure

GapMultiAlignDist(s1, . . . , sm, θ) calls procedure MultiAlign(s1, . . . , sm, θ) that returns a
string σ. If σ is a null string it outputs 0 and otherwise it outputs 1.

We show if A(s1, . . . , sm) ≤ θn, MultiAlign(s1, . . . , sm, θ) computes a common sub-
sequence σ such that |σ̄(s1)| ≤ (2 − 3θ

16 )θn and otherwise if A(s1, . . . , sm) > (2 − 3θ
16 )θn it

computes a null string. Next we describe Algorithm MultiAlign(s1, . . . , sm, θ). It starts by
partitioning the input strings into two groups G1 and G2 where G1 contains the strings
s1, . . . , s⌈m/2⌉ and G2 contains the strings s1, s⌈m/2⌉+1, . . . , sm.

Assume A(S1, . . . , sm) ≤ θn. Next we state an observation that is used as one of the key
elements to conceptualize our algorithm. Any common subsequence of s1, . . . , sm is indeed
a common subsequence of G1. Therefore, as A(s1, . . . , sm) ≤ θn, if we can enumerate all
common subsequences of G1 of length at least n− θn, we generate the optimal alignment as
well. Notice after generating each common subsequence of G1, it can be checked whether
it is a common subsequence of G2 or not. The main hurdle here is that enumerating all
common subsequences of G1 of length at least n− θn is time consuming.

We overcome this barrier by designing Algorithm EnumerateAlignments(s1, . . . , sm, θ)
that generates k (where k = O(1/θ)) different sets L1, . . . , Lk where Lj ⊆ [n], |Lj | ≤ θn and
each Lj corresponds to a common subsequence σj of G1 such that Lj = σ̄j(s1). Moreover,
we can ensure that either ∃j ∈ [k] where |Lj | ≤ 3θn

4 or for any common subsequence σ of G1

with σ̄(s1) ≤ θn there exists a Li where |σ̄(s1) ∩ Li| ≥ 3θ2n
16 .

Algorithm EnumerateAlignments() starts by computing a LCS σ1 of G1 such that
|σ̄1(s1)| ≤ θn. Let L1 = σ̄1(s1). If |L1| ≤ 3θn

4 return L1. Otherwise it calls the algorithm
MinDelSimilarAlignment() to compute a common subsequence σ2 of G1 of cost at most
θn such that L2 ∩ L1, where L2 = σ̄2(s1) is minimized. At the ith step given i − 1 sets
L1, . . . , Li−1, the algorithm computes an alignment σi of G1 with Li being the set of
indices of unaligned characters of s1 such that the intersection of Li with ∪j∈[i−1]Lj is
minimized. The algorithm continues with this process until it reaches a round k such that
| ∪i∈[k−1] (Lk(s1) ∩ Li(s1))| ≥ θ2n(k−1)

4 . Let L1, . . . , Lk be the sets generated. Output all
these sets.
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Next for each Li returned by Algorithm EnumerateAlignments(), call the algorithm
MaxDelSimilarAlignment() to find an alignment σ′ of G2 of cost at most θn such that
the intersection of Li and L′

i = σ̄′(s1) is maximized. If |Li ∪ L′
i| ≤ (2 − 3θ

16 )θn, define
σ = s1[i1] ◦ · · · ◦ s1[ip] where, [n] \ (Li ∪ L′

i) = {i1, . . . , ip}. Output σ.
We now prove two crucial lemmas to establish the correctness.

▶ Lemma 11. Given strings s1, . . . , s|G1| of length n such that A(s1, . . . , s|G1|) ≤ θn, where
θ ∈ (0, 1), there exists an algorithm that computes k ≤ 4/θ, different sets L1, . . . , Lk ⊆ [n]
each of size at most θn such that ∀j ∈ [k], there exists a common subsequence σj of G1 where,
Lj = σ̄j(s1) and one of the following is true.
1. ∃j ∈ [k] such that |Lj | ≤ 3θn

4 .
2. For any common subsequence σ of G1 with σ̄(s1) ≤ θn there exists a Li, where |σ̄(s1) ∩

Li| ≥ 3θ2n
16 . The running time of the algorithm is Õ(2mmn|G1|+1).

Proof. Let σ′ = LCS(s1, . . . , s|G1|). If |σ′| ≥ n − 3θn
4 , then |σ̄′(s1)| ≤ 3θn

4 and we satisfy
condition 1. Otherwise assume |σ̄′(s1)| > 3θn

4 . Let L1, . . . , Lk be the sets returned by
Algorithm EnumerateAlignments(). By construction, for each Li there exists a common
subsequence σi of G1 where Li = σ̄i(s1). Note every Li has size at least 3θn

4 . Moreover
if the algorithm does not terminate at round i, then |Li(s1) \ {L1(s1) ∪ · · · ∪ Li−1(s1)}| ≥
3θn

4 −
θ2n(i−1)

4 . Hence after k steps we have

| ∪i∈[k] Li(s1)| ≥ 3θn

4 + (3θn

4 − θ2n

4 ) + · · ·+ (3θn

4 − (k − 1)θ2n

4 )

= 3kθn

4 − θ2n

4 (1 + 2 + · · ·+ (k − 1))

= 3kθn

4 − k(k − 1)θ2n

8

>
3kθn

4 − k2θ2n

8

Substituting k = 4/θ, we get | ∪i∈[k] Li(s1)| > n. Now if the algorithm stops at round
i < 4/θ, then we know for each common subsequence σ of G1 of length at least n − θn if
σ /∈ {L1, . . . , Li−1}, | ∪j∈[i−1] (σ(s1) ∩ Lj(s1))| ≥ (i−1)θ2n

4 . Hence there exists at least one
j ∈ [i− 1] such that |Lj(s1) ∩ σ(s1)| ≥ θ2n

4 . Otherwise if the algorithm runs for 4/θ rounds
then ∪i∈[4/θ]Li(s1) = [n]. Hence for each common subsequence σ of cost in [ 3θn

4 , θn], σ̄(s1)
will have intersection at least 3θ2n

16 with at least one Li.
As |k| ≤ 4/θ the algorithm runs for at most 4/θ rounds where at the ith round it

calls MinDelSumilarAlignment() with strings in G1, and sets L1, . . . , Li−1 (where i ≤ 4/θ)
and parameter θn. By Corollary 10 each call to MinDelSumilarAlignment() takes time
Õ(2|G1|θ|G1||G1|n|G1|+1). Hence the total running time taken is Õ(2|G1||G1|n|G1|+1). ◀

We set |G1| = ⌈m
2 ⌉ ≤ ⌊m/2⌋+ 1 to obtain a running time of Õ(2⌊m/2⌋+1mn⌊m/2⌋+2).

▶ Lemma 12. Given A(s1, . . . , sm) ≤ θn, Algorithm MultiAlign(s1, . . . , sm, θ) generates a
string σ, such that σ is a common sequence of s1, . . . , sm and the alignment cost of σ is at
most (2− 3θ

16 )θn. Moreover the running time of the algorithm is Õm(n⌊ m
2 ⌋+2).

Proof. Let η be some LCS of s1, . . . , sm such that |η̄(s1)| ≤ θn. First assume A(G1) ≤ 3θn
4 .

Then Algorithm EnumerateAlignments() computes a LCS σ1 of G1 and returns the set
L1 = |σ̄1(s1)| where |L1| ≤ 3θn

4 to Algorithm MultiAlign(). Next Algorithm MultiAlign()
calls MaxDelSimilarAlignmemnt(G2, L1, θn) which returns a set L′

1 = σ̄′(s1), where σ′
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is a common subsequence of G2 and |L′
1| ≤ θn. Notice σ ← s1[i1] ◦ · · · ◦ s1[ip] (where,

[n] \ (Li ∪ L′
i) = {i1, . . . , ip}) is a common subsequence of s1, . . . , sm and |σ̄(s1)| ≤ (|L1|+

|L′
1|) ≤ ( 3θn

4 + θn) = (2 − 1
4 )θn ≤ (2 − θ

4 )θn as θ ∈ (0, 1). Hence Algorithm MultiAlign()
computes a common subsequence σ of s1, . . . , sm such that the alignment cost of σ is at most
(2− θ

4 )θn.
Next assume A(G1) > 3θn

4 . Then by Lemma 11, Algorithm EnumerateAlignments()
computes a set Li = σ̄i(s1) where σi is a common subsequence of G1, |Li| ≤ θn and
Li ∩ η̄(s1) ≥ 3θ2n

16 . Notice as η is a common subsequence of G2, when Algorithm MultiAlign()
calls MaxDelSimilarAlignmemnt(G2, Li, θn), it returns a set L′

1 = σ̄′(s1), where σ′ is a
common subsequence of G2, |L′

1| ≤ θn and |Li ∩ L′
1| ≥ 3θ2n

16 . Therefore |Li ∪ L′
1| ≤

θn + θn− 3θ2n
16 = (2− 3θn

16 )θn, and Algorithm MultiAlign() computes a common subsequence
σ of s1, . . . , sm such that the alignment cost of σ is at most (2− 3θ

16 )θn.
Next we analyze the running time of Algorithm MultiAlign(). First we compute LCS(G1)

which takes time Õ(2⌊m/2⌋+1n⌊m/2⌋+1) using the classic dynamic program algorithm (note
|G1| = ⌈m

2 ⌉ ≤ ⌊
m
2 ⌋+1). Next we call EnumerateAlignments(s1, . . . , sm/2, θ). By Lemma 11

this takes time Õ(2⌊m/2⌋+1mn⌊m/2⌋+2). Moreover it returns at most O(1/θ) sets and for each
of them Algorithm MultiAlign() calls MaxDelSimilarAlignment() on G2. As |G2| ≤ ⌊m

2 ⌋+1
and each set has size at most θn, each call takes time Õ(2⌊m/2⌋+1θ⌊m/2⌋+1mn⌊m/2⌋+2). Hence
total time taken is Õ(2⌊m/2⌋+1mn⌊m/2⌋+2). Next each union of Li and L′

i and corresponding
σ can be computed in time O(n). Hence the running time of Algorithm MultiAlign() is
Õ(2⌊m/2⌋+1mn⌊m/2⌋+2) = Õm(n⌊ m

2 ⌋+2). ◀

▶ Lemma 13. GapMultiAlignDist(s1, . . . , sm, θ) computes
GapMultiAlignDist(s1, . . . , sm, θ, (2− 3θ

16 )) in time Õm(n⌊ m
2 ⌋+2).

Proof. First assume the case where A(s1, . . . , sm) ≤ θn. from Lemma 12 we have Algorithm
MultiAlign() returns a common subsequence σ of s1, . . . , sm such that the alignment cost of
σ is at most (2− 3θ

16 )θn. Hence, Algorithm GapMultiAlignDist() outputs 1. Next assume
A(s1, . . . , sm) > (2 − 3θ

16 )θn. In this case in Algorithm MultiAlign(), for each set Li ∈ E ,
|Li ∪ L′

i| > (2− 3θ
16 )θn. Hence Algorithm MultiAlign() returns a null string and Algorithm

GapMultiAlignDist() outputs 0. The bound on the running time is directly implied by the
running time bound of Algorithm MultiAlign(). ◀

3 Below-2 Approximation for Multi-sequence Alignment Distance with
One Pseudorandom String

In the last section we present an algorithm that given m strings, computes a truly below 2
approximation of the optimal alignment distance of the input strings provided the distance
is large i.e. Ω(n). In this section we use this algorithm as a black box and show given
a (p, B)-pseudorandom string s1, and m− 1 adversarial strings s2, . . . , sm, there exists an
algorithm that for any arbitrary small constant ϵ > 0 computes (2− 3p

512 + ϵ) approximation of
A(s1, . . . , sm) in time Õm(nβm−1 + n⌊m/2⌋+3). Here β = max(B,

√
n). Notice as the approx-

imation factor is independent of θ = A(s1,...,sm)
n , we can assure truly below-2 approximation

of the alignment cost for any distance regime. Formally we show the following.

▶ Theorem 14 (2). Given a (p, B)-pseudorandom string s1, and m− 1 adversarial strings
s2, . . . , sm each of length n, there exists an algorithm that for any arbitrary small constant
ϵ > 0 computes (2− 3p

512 +89ϵ) approximation of A(s1, . . . , sm) in time Õm(nβm−1+n⌊m/2⌋+3).
Here β = max(B,

√
n).

The details of the algorithm and the analysis are provided in the full version.
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4 λ
2+ϵ

-approximation for Multi-sequence LCS

In this section we provide an algorithm that given m strings s1, . . . , sm each of length n, such
that L(s1, . . . , sm) = λn, where λ ∈ (0, 1) computes an λ

2+ϵ approximation of L(s1, . . . , sm).
The algorithm is nearly identical to the algorithm described in Section 2, and in fact slightly
simpler which helps us to improve the running time further. In particular, we get the
following theorem.

▶ Theorem 15 (4). For any constant ϵ > 0, given m strings s1, . . . , sm of length n over
some alphabet set Σ such that L(s1, . . . , sm) = λn, where λ ∈ (0, 1), there exists an algorithm
that computes an λ

2+ϵ approximation of L(s1, . . . , sm) in time Õm(n⌊m/2⌋+1 + mn2).

Since we do not have any prior knowledge of λ, we solve a gap version: given m strings
s1, . . . , sm of length n over some alphabet set Σ, λ ∈ (0, 1) and a constant c > 1, the
objective is to decide whether L(s1, . . . , sm) ≥ λn or L(s1, . . . , sm) < λ2n

c . More specifically
if L(s1, . . . , sm) ≥ λn we output 1, else if L(s1, . . . , sm) < λ2n

c we output 0 otherwise output
any arbitrary answer. We design an algorithm that decides this gap version for c = 2. This
immediately implies an ( λ

2+ϵ ) approximation of LCS(s1, s2, .., sm) following a similar logic
of going from Theorem 6 to Theorem 5. We now prove Theorem 4.

4.1 Algorithm for λ
2+ϵ

-approximation of LCS(s1, . . . , sm)
We partition the input strings into two groups G1 and G2 where G1 contains the strings
s1, . . . , s⌈m/2⌉ and G2 contains the strings s⌈m/2⌉+1, . . . , sm. Next compute a longest common
subsequence L1 of G1 with |L1| ≥ λn. Remove all aligned characters of s1 in L1. We represent
the modified s1 by s

[n]\L1(s1)
1 : string s1 restricted to the characters with indices in [n]\L1(s1).

Compute an LCS L2 of s
[n]\L1(s1)
1 , s2, . . . , s⌈m/2⌉. At ith step given i−1 common subsequences

L1, . . . , Li−1, we compute an LCS Li of s
[n]\∪j∈[i−1]Lj(s1)
1 , s2, . . . , s⌈m/2⌉. We continue this

process until it reaches a round k such that |Lk| < λn − λ2n(k−1)
2 . Let L1, . . . , Lk be the

sequences generated.
Next for each Li returned, we compute a longest common subsequence L′

i of
Li, s⌈m/2⌉+1, . . . , sm. If there exists an i ∈ [k] such that |L′

i| ≥ λ2n
2 , output L′

i.

▶ Lemma 16. Given strings s1, . . . , s|G1| of length n and a parameter λn as input, where
λ ∈ (0, 1], there exists a set of k ≤ 2/λ different common subsequences L1, . . . , Lk of
s1, . . . , s|G1| each of length at least λn− λ2n(k− 1)/2 such that for any common subsequence
σ of s1, . . . , sm of length at least λn there exists a Li, where |σ(s1)∩Li(s1)| ≥ λ2n

2 . These k

subsequences can be computed in time Õm(n|G1| + mn2).

Proof. Given k subsequences L1, L2, . . . , Lk of s1 such that for each i ∈ [k], |Li| ≥ λn −
nλ2(k−1)

4 , and L1(s1), L2(s1), . . . are disjoint, we have

| ∪i∈[k] Li(s1)| ≥ λn + (λn− λ2n

2 ) + · · ·+ (λn− (k − 1)λ2n

2 )

= kλn− λ2n

2 (1 + 2 + · · ·+ (k − 1))

> kλn− k2λ2n

4

Substituting k = 2/λ we get | ∪i∈[k] Li(s1)| > n. Now if we compute L1, . . . , Lj and
j < 2/λ, then we know for each common subsequence σ of s1, . . . , sm with length at least
λn if σ /∈ {L1, . . . , Lj−1}, then | ∪i∈[j−1] (σ(s1) ∩ Lj(s1))| ≥ (j−1)λ2n

2 . Hence there exists at
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least one i ∈ [j − 1] such that |Li(s1) ∩ σ(s1)| ≥ λ2n
2 . Otherwise if the algorithm runs for

2/λ rounds then ∪j∈[2/λ]Lj(s1) = [n]. Then for any common subsequence σ of s1, . . . , sm

with length at least λn, σ will have an intersection at least λ2n
2 with at least one Li.

As |k| ≤ 2/λ the algorithm runs for at most 2/λ rounds where at each round it computes
the LCS of G1 strings such that

∑
j |Lj | ≤ n where Ljs are pairwise disjoint. This can be

performed using Theorem 17 in Õm(n|G1| + mnλ) = Õm(n|G1| + mn2) time. ◀

By setting |G1| = ⌈m/2⌉ ≤ ⌊m
2 ⌋+ 1, we get a running time of Õm(n⌊m/2⌋+1 + mn2). Now by

Lemma 16 if σ is an LCS of s1, s2, .., sm, then there exists a Li such that |Li(s1)∩σ(s1)| ≥ λ2n
2 .

Thus, when we compute the LCS of Li(s1), s⌈m/2⌉+1, .., sm, we are guaranteed to return a
common subsequence of s1, s2, ..., sm of length at least λ2n

2 . Hence, taking the right choice
of λ following the gap version we get the claimed approximation bound. Using Theorem 17,
the running time to compute a common subsequence of Lj(s1), s⌈m/2⌉+1, .., sm for all j is
Õm(n⌊m/2⌋+1 + mn2). This completes the proof of Theorem 4. ◀
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A An Õ(m2km) algorithm for Alignment Distance of Multiple
Sequences with Õ(mn) Preprocessing

We first recall an algorithm developed in [30, 21, 22, 24] that computes edit distance between
two strings in O(n + k2) time.

Warm-up: An O(n + k2) algorithm for Edit Distance
The well-known dynamic programming algorithm computes an (n + 1)× (n + 1) edit-distance
matrix D[0...n][0...n] where entry D[i, j] is the edit distance, ED(Ai, Bj) between the prefixes
A[1, i] and B[1, j] of A and B, where A[1, i] = a1a2...ai and B[1, j] = b1b2...bj . The following
is well-known and easy to verify coupled with the boundary condition D[i, 0] = D[0, i] = i

for all i ∈ [0, n].
For all i, j ∈ [0, n]

D[i, j] = min


D[i− 1, j] + 1 if i > 0;
D[i, j − 1] + 1 if j > 0;
D[i− 1, j − 1] + 1(ai ̸= bj) if i, j > 0.

The computation cost for this dynamic programming is O(n2). To obtain a significant cost
saving when ED(A, B) ≤ k << n, the O(n+k2) algorithm works as follows. It computes the
entries of D in a greedy order, computing first the entries with value 0, 1, 2, ...k respectively.
Let diagonal d of matrix D, denotes all D[i, j] such that j = i+d. Therefore, the entries with
values in [0, k] are located within diagonals [−k, k]. Now since the entries in each diagonal of
D are non-decreasing, it is enough to identify for every d ∈ [−k, k], and for all h ∈ [0, k], the
last entry of diagonal d with value h. The rest of the entries can be inferred automatically.
Hence, we are overall interested in identifying at most (2k + 1)k such points. The O(n + k2)
algorithm shows how building a suffix tree over a combined string A$B (where $ is a special
symbol not in Σ) helps identify each of these points in O(1) time, thus achieving the desired
time complexity.

Let Lh(d) = max{i : D[i, i + d] = h}. The h-wave is defined by Lh = ⟨Lh(−k), ..., Lh(k)⟩.
Therefore, the algorithm computes Lh for h = 0, ..k in the increasing order of h until a wave
e is computed such that Le(0) = n (in that case ED(A, B) = e), or the wave Lk is computed
in the case the algorithm is thresholded by k. Given Lh−1, we can compute Lh as follows.

Define

Equal(i, d) = max
q≥i

(q | A[i, q] = B[i + d, q])

Then, L0(0) = Equal(0, 0) and

Lh(d) = max


Equal(Lh−1(d) + 1, d) if h− 1 ≥ 0;
Equal(Lh−1(d− 1), d) if d− 1 ≥ −k, h− 1 ≥ 0;
Equal(Lh−1(d + 1) + 1, d) if d + 1, h + 1 ≤ k.

Using a suffix tree of the combined string A$B, any Equal(i, d) query can be answered
in O(1) time, and we get a running time of O(n + k2).

An Õ(m2km) algorithm for Alignment Distance of Multiple Sequences
with Õ(nm) Preprocessing
We now extend the above Õ(n + k2) algorithm to computing alignment distance of m strings.
Recall that we are given m strings s1, s2, ..., sm each of length n. The following is an O(nm)
time-complexity dynamic programming to obtain the edit distance of m strings. We fill up an
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m-dimensional dynamic programming matrix D[[0, n]....[0, n]] where the entry D[i1, i2, .., im]
computes the edit distance among the prefixes s1[1, i1], s2[1, i2], ..., sm[1, im]. As a starting
condition, we have D[0, ..., 0] = 0. Let e⃗i = [0, 0, .., 1︸︷︷︸

ith index

, 0, 0..], and Vj represents an

m-dimensional vector ⟨j, j, j, ..., j⟩. The dynamic programming is given by the following
recursion. For all i1, i2, ..., im ∈ [0, n]

D[i1, i2, ..., im] = min


D[⟨i1, i2, .., im⟩ − e⃗j ] + 1 for all j = 1, 2, .., m

if ⟨i1, i2, .., im⟩ − e⃗j ≥ ⟨0, 0, ..., 0⟩;
D[i1 − 1, i2 − 1, .., im − 1] if s1[i1] = s2[i2] = ... = sm[im] and

i1, i2, ..., im > 0.

In order to compute D[i1, i2, ..., im], we can either delete an element sj [ij ], or align
s1[i1], s2[i2], .., sm[im] if they all match. The time to compute each entry D[i1, i2, ..., im] is
m. The overall running time is O(mnm).

Observation. In order to design an Õ(m2km) algorithm with preprocessing Õ(mn), first
observe that if A(s1, s2, ..., sm) ≤ k then it is not possible that in the final alignment, we
have m indices i1, i2, ..., im aligned to each other such that max |ij − ik|, j, k ∈ [1, 2, .., m] > k.
Since all strings have equal length, this would imply a total number of deletions > mk, or
A(s1, s2, ..., sm) > k.

Algorithm. Let diagonal d⃗ of matrix D denotes an (m− 1) dimensional vector, and contains
all D[i1, i2, ..im] such that ⟨i2, i3, .., im⟩ = Vi1 + d⃗. Let Dk = {d⃗ | maxj |d[j]| ≤ k}. Then
|Dk| = (2k + 1)m−1 since each entry ij ∈ ii + {−k,−k + 1, .., 0, 1, ..., k}, for j = 2, 3, .., k. We
want to identify the entries with values in [0, km] located within diagonals Dk.

We similarly define Lh(d) = max{i : D[i,Vi + d⃗] = h}. The h-wave is defined by
Lh = {Lh(d⃗) | d⃗ ∈ Dk}. Therefore, the algorithm computes Lh for h = 0, .., km in
the increasing order of h until a wave e is computed such that Le(⃗0) = n (in that case
A(A, B) = e), or the wave Lkm is computed in the case the algorithm is thresholded by k.
Given Lh−1, we can compute Lh as follows.

Define

Equal(i, d⃗) = max
q≥i

(q | s1[i, q] = s2[i + d[1], q]) = s3[i + d[2], q] = .... = sm[i + d[m− 1], q]).

That is Equal(i, d⃗) computes the longest prefix of the first string starting at index i that can
be matched to all the other strings following diagonal d⃗.

Next, we define the neighboring diagonals N1(d⃗) and N2(d⃗) of d⃗.

N1(d⃗) = {d⃗′ | ||d− d′||1 = 1 & d⃗′ < d⃗}.

N2(d⃗) = {d⃗′ = d⃗ + V+1}.

Then, L0(0) = Equal(0, 0⃗) and

Lh(d⃗) = max
{

Equal(Lh−1(d⃗′ ∈ N1(d⃗)), d⃗) if d⃗′ ∈ Dk , h− 1 ≥ 0;
Equal(Lh−1(d⃗′ ∈ N2(d⃗)) + 1, d⃗) if d⃗′ ∈ Dk, h− 1 ≥ 0.

Next, we show that it is possible to preprocess si, i = 1, 2, ..m separately so that even
then each Equal(i, d⃗) query can be implemented in O(m log n) time.
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Preprocessing Algorithm
The preprocessing algorithm constructs log(n)+1 hash tables for each string s. The ℓ-th hash
table corresponds to window size 2ℓ; we use a rolling hash function (e.g. Rabin fingerprint)
to construct a hash table of all contiguous substrings of s of length 2ℓ in time O(n). Since
there are log n + 1 levels, the overall preprocessing time for s is O(n log n). Let Hsi

[ℓ] store
all the hashes for windows of length 2ℓ of si for i = 1, 2, .., m. Hence the total preprocessing
time is Õ(nm).

Answering Equal(i, d⃗) in O(m log n) time
Equal(i, d⃗) queries can be implemented by doing a simple binary search over the presorted
hashes in O(m log n) time. Suppose Equal(i, d⃗[j]) = qj . We identify the smallest ℓ ≥ 0 such
that qj < 2ℓ, and then do another binary search for qj between i + 2ℓ−1 to i + 2ℓ. Finally,
we set Equal(i, d⃗) = min (q2, ..., qm).

B An Õm(λnm) Algorithm for Multi-sequence LCS

▶ Theorem 17. Given m strings s1, . . . , sm each of length n such that L(s1, . . . , sm) = λn

where λ ∈ (0, 1), there exists an algorithm that computes L(s1, . . . , sm) in time Õm(λnm +
nm).

The algorithm is build over the algorithm of [17], that given two strings x, y of length
n such that L(x, y) = λn, computes L(x, y) in time Õ(λn2). Though the algorithm of [17]
shares a similar flavor with the classical quadratic time dynamic program algorithm, the
main contribution of this work is that it introduces the concept of minimal ℓ-candidates
that ensure that to compute the LCS, instead of enumerating the whole DP, it is enough
to compute some selective entries that are important. Moreover they show if the LCS is
small then the total number of minimal ℓ-candidates can be bounded. Also they can be
constructed efficiently.

An Õ(λn2) Algorithm for LCS

We first provide a sketch of the algorithm of [17]. We start with a few notations. Given two
indices i, j ∈ [n], let L(i, j) denotes the length of the LCS of x[1, i] and y[1, j] and xi denotes
the ith character of string x.

Given indices i, j we call < i, j > an ℓ-candidate if xi = yj and ∃i′, j′ ∈ [n] such that
i′ < i, j′ < j and < i′, j′ > is an (ℓ− 1)-candidate. We say that < i, j > is generated over
< i′, j′ >. Also define < 0, 0 > to be the 0-candidate. (for this purpose add a new symbol α

at the beginning of both x, y. Hence x[0] = y[0] = α) With this definition using induction
we can claim that < i, j > is an ℓ-candidate iff L(i, j) ≥ ℓ and xi = yj . Moreover as
L(x, y) = λn, the maximum value of ℓ for which there exists an ℓ-candidate is λn. Hence to
compute the LCS what we need to do is to construct a sequence of 0-candidate, 1-candidate,
. . . , (λn− 1)-candidate and a λn-candidate such that the ith candidate can be generated
from the (i− 1)th candidate. Note as for each i, there can be many ℓ-candidates enumerating
all of them will be time consuming.

Therefor the authors bring the notion of minimal ℓ-candidate that are generated as follows.
Consider two ℓ-candidates < i1, j1 > and < i2, j2 >. If i1 ≥ i2 and j1 ≥ j2, then it is enough
to keep only < i2, j2 > as any (ℓ + 1)-candidate that is generated from < i1, j1 >, can be
generated from < i2, j2 > as well. Call < i1, j1 > a spurious candidate.
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▶ Lemma 18. Let the set {< iℓ, jℓ >, ℓ ∈ {1, 2, . . . }} denotes the set of ℓ-candidates. After
discarding all spurious ℓ-candidates it can be claimed that i1 < i2 < . . . and j1 > j2 > . . . .

Proof. For any two ℓ-candidates < i1, j1 > and < i2, j2 >, either 1) i1 < i2 and j1 ≤ j2 or 2)
i1 < i2 and j1 > j2 or 3) i1 = i2 and j1 ≤ j2 or 4) i1 = i2 and j1 > j2. In the first and third
case < i2, i2 > is spurious and in the forth case < i1, j1 > is spurious. Hence after removing
all spurious candidates it can be ensured that i1 < i2 < . . . and j1 > j2 > . . . . ◀

The ℓ-candidates which are left after the removal of all spurious candidates are called
minimal ℓ-candidates. Notice as for each i there is at most one minimal ℓ candidate, total
number of minimal ℓ-candidates for all choices of i and ℓ is at most λn2. Using this bound
and Lemma 3 in [17], an algorithm can be designed to compute all the minimal ℓ-candidates
and thus L(x, y) in time Õ(λn2).

Generalization for m strings

Now we provide an upper bound on the number of minimal ℓ-candidates for m strings
given L(s1, . . . , sm) = λn. Given indices i1, . . . , im we call < i1, . . . , im > an ℓ-candidate
if s1[i1] = · · · = sm[im] and ∃i′

1, . . . , i′
m ∈ [n] such that i′

j < ij , and < i′
1, . . . , i′

m > is an
(ℓ− 1)-candidate. We say that < i1, . . . , im > is generated over < i′

1, . . . , i′
m >. Similar to

the two string case using induction we can prove < i1, . . . , im > is an an ℓ-candidate iff
L(s1, . . . , sm) ≥ ℓ and s1[i1] = · · · = sm[im]. Therefore to compute L(s1, . . . , sm) it will be
enough to generate a sequence of 0-candidate, 1-candidate, . . . , (λn− 1)-candidate and a
λn-candidate such that the ith candidate can be generated from the (i − 1)th candidate.
Next we describe the notion of spurious candidates and bound the total number of minimal
ℓ-candidates.

For two ℓ-candidates < i1, . . . , im−2, im−1, im > and < i1, . . . , im−2, i′
m−1, i′

m >, if im−1 ≥
i′
m−1 and im ≥ i′

m then we call the tuple < i1, . . . , im−2, im−1, im > spurious and discard it
as any (ℓ + 1) tuple that is generated from < i1, . . . , im−2, im−1, im > can be generated from
< i1, . . . , im−2, i′

m−1, i′
m > as well. The tuples that survives are called minimal ℓ-candidates.

Hence following a similar argument as given for Lemma 18, we can claim the following.

▶ Lemma 19. Let the set {< i1, . . . , im−2, iℓ
m−1, iℓ

m >, ℓ ∈ {1, 2, . . . }} denotes the set of
ℓ-candidates for fixed values of i1, . . . , im−2. After discarding all spurious ℓ-candidates it can
be claimed that i1

m−1 < i2
m−1 < . . . and i1

m > i2
m > . . . .

Note this implies that for a fixed choice of i1, . . . , im−1, there exists at most one minimal
ℓ-candidate. As ℓ = λn, total number of minimal ℓ-candidates over all choices of i1, . . . , im−1
and ℓ is at most λnm.

Next we state a lemma that is a generalisation of Lemma 3 of [17] for m strings.

▶ Lemma 20. For ℓ ≥ 1 < i1, . . . , im−2, im−1, im > is a minimal ℓ-candidate iff
< i1, . . . , im−2, im−1, im > is a ℓ-candidate with the minimum mth coordinate value such that
low < im < high where high is the minimum mth coordinate value of all ℓ-candidates having
first m− 2 coordinate values i1, . . . , im−2 and the (m− 1)th coordinate value less than im−1
and low is the minimum mth coordinate value of all (ℓ − 1)-candidates having first m − 2
coordinate values i1, . . . , im−2 and the (m− 1)th coordinate value less than im−1.

Together with the above lemma and the bound on the number of minimal ℓ-candidates
following the algorithm of [17], we can design an algorithm that computes L(s1, . . . , sm) in
time Õm(λnm + nm).
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Abstract
We study the problem of multicommodity flow and multicut in treewidth-2 graphs and prove
bounds on the multiflow-multicut gap. In particular, we give a primal-dual algorithm for computing
multicommodity flow and multicut in treewidth-2 graphs and prove the following approximate
max-flow min-cut theorem: given a treewidth-2 graph, there exists a multicommodity flow of value f

with congestion 4, and a multicut of capacity c such that c ≤ 20f . This implies a multiflow-multicut
gap of 80 and improves upon the previous best known bounds for such graphs. Our algorithm runs
in polynomial time when all the edges have capacity one. Our algorithm is completely combinatorial
and builds upon the primal-dual algorithm of Garg, Vazirani and Yannakakis for multicut in trees
and the augmenting paths framework of Ford and Fulkerson.
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1 Introduction

Given an undirected graph with edge capacities and k source-sink pairs, the maximum
multicommodity flow problem asks for the maximum amount of flow that can be routed
between the source-sink pairs. If the flows are restricted to be integral, then the problem is
called the maximum integral multicommodity flow. An important special case of this problem
is the maximum edge disjoint paths problem, where the objective is to find the maximum
number of source-sink pairs that can simultaneously be connected by edge-disjoint paths.
In a multicommodity flow with congestion c, an edge may be used by up to c flow paths.
The maximum edge disjoint paths problem is NP-Hard, even in very restricted settings such
as when the graph is series-parallel [14]. Maximum edge disjoint paths problem is hard
to approximate in general (even with congestion, see Section 2.1 for further discussion).
Multicommodity flow problems have been studied extensively over the last five decades and
find extensive applications in VLSI design, routing and wavelength assignment etc. [17].
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A natural dual to the maximum multicommodity flow problem is the minimum multicut
problem. Given an edge-capacitated graph with k source-sink pairs, a multicut is a set of
edges whose removal disconnects all the source-sink pairs, and the capacity (or value) of the
cut is the sum of capacities of the edges in it. The value of any feasible multicommodity
flow is at most the capacity of any feasible multicut. The ratio of the values of the minimum
multicut and maximum multicommodity flow is called the multiflow-multicut gap. The ratio
of the values of the minimum multicut and maximum multicommodity flow with congestion-c
is called the multiflow-multicut gap with congestion c. In case c is 1 or 2, we call it the
integral or half-integral multiflow-multicut gap respectively. Minimum multicut is NP-Hard
to compute, even in very restricted setting such as trees [11]. More precisely, it is known to
be equivalent to the vertex cover problem in stars with unit weights [11], which implies that
it is APX-Hard in series-parallel graphs. There is a rich literature on proving bounds on the
multiflow-multicut gap. Perhaps the most famous of them is the max-flow min-cut theorem
of Ford and Fulkerson [7], which states that the value of the minimum multicut is equal to
the maximum (integral) flow when k = 1. Hu [12] extended the result of Ford and Fulkerson
to show that the multiflow-multicut gap is 1 even when k = 2. Another tight example,
closely related to our work, is the case where the graph obtained by adding an edge for each
source-sink pair is series-parallel [5]. There are many other special cases where the multiflow-
multicut gap is 1, for example when G is a path or a cycle, but in general it can be arbitrarily
large. Garg et al. [10] proved a tight bound of Θ(log k) on the multiflow-multicut gap for
any graph G. For Kr minor-free graphs, Tardos and Vazirani [16] used the decomposition
theorem of Klein et al. [13] to prove a bound of O(r3) on the multiflow-multicut gap. The
integral multiflow-multicut gap can be Ω(

√
|V |), even for planar graphs (see Figure 1).

Garg et al. [11] gave a tight bound of 2 on the integral multiflow-multicut gap when
G is a tree. For graphs of treewidth r, Abraham et al. [1] gave a bound of O(r) on the
multiflow-multicut gap by rounding a natural linear programming relaxation. Chekuri et
al. [3] and Ene et al. [6] showed how to round a fractional multicommodity flow solution into
an integral one by losing a factor of O(r3). Combining their results gives a bound of O(r4)
on the integral multiflow-multicut gap for graphs of treewidth r. Note that this implies a
O(1) bound on the multiflow-multicut gap for treewidth 2 graphs. All the results mentioned
above are algorithmic in nature and also imply an approximation algorithm for the (integral)
multicommodity flow and multicut problems. Except for the case when G is a tree, all the
results mentioned above are proved by rounding a natural linear programming relaxation to
the problem.

We extend the augmenting paths framework of Ford and Fulkerson [7] to develop a primal-
dual algorithm for multiflow and multicut for treewidth 2 graphs (see Theorem 2). It is a well
known fact that the augmenting paths framework cannot be used for multicommodity flows
in general. To the best of our knowledge, this is the first time augmenting paths framework
has been adapted (in a non-trivial manner) for developing an algorithm for multicommodity
flows and multicuts.

A simple topological obstruction of Garg et al. [11] shows that the integral multiflow-
multicut gap is Ω(r) for graphs with treewidth r (see Figure 1). Chekuri et al. [2] and Ene
et al. [6] raised the question if the integrality gap of the natural linear programming for
multicommodity flows is O(r) for graphs with treewidth r. We believe that the topological
obstruction of Garg et al. [11] gives the best possible lower bound on the integral multiflow-
multicut gap for graphs of treewidth r. To this end, we make the following conjecture, which
strengthens the one stated by Ene et al. [6].

▶ Conjecture 1. The integral multiflow-multicut gap for graphs with treewidth r is Θ(r).
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Figure 1 In the above instance, all the edges have unit capacity and hence only one source-sink
pair can be connected by edge-disjoint paths. We need at least k edges to disconnect all the
source-sink pairs and hence the integral multiflow-multicut gap is at least Ω(k). The graph has a
treewidth of Θ(k). This shows that the integral multiflow-multicut gap can be Ω(r) for graphs with
treewidth r.

It is known that the integrality gap for the linear programming relaxation for the multicut
and the integer multicommodity flow for treewidth r graphs is Ω(log r) and Ω(r) respectively.
Hence, any algorithm which rounds the linear programming relaxation for multicommodity
flow and multicut separately won’t be able to resolve this conjecture. We believe that a
primal-dual algorithm, which works with multicommodity flow and multicut simultaneously
will lead to the resolution of this conjecture. We also believe that the techniques we develop
in this paper makes important progress towards developing such an algorithm.

2 Our Contribution

As already noted in Section 1, results of Abraham et al. [1] and Ene et al. [6] imply an
O(1) bound on the (integral) multiflow-multicut gap for treewidth 2 graphs, albeit with a
large (unspecified) constant. Our main technical contribution is developing the first primal-
dual algorithm for multiflow and multicut for treewidth 2 graphs. We prove the following
approximate max-flow min-cut theorem for treewidth 2 graphs (see Section 3 for precise
definitions):

▶ Theorem 2. Let G be an undirected, (integer) edge capacitated treewidth 2 graph and
{(si, ti)}k

i=1 be the source-sink pairs. Then there exists an integral multicommodity flow of
value f with congestion 4 and a multicut of value c such that c ≤ 20f . Furthermore, there
exists a primal-dual algorithm that computes such a flow and cut in time polynomial in size of
the graph and the largest capacity. For unit capacity graphs, the algorithm runs in polynomial
time.

Our proof of Theorem 2 is completely combinatorial and does not require us to solve a
linear program. It is based on the primal-dual framework. This leads to a more explicit
algorithm and sheds further light on the structure of the multicuts and multicommodity flows
in treewidth 2 graphs. All previous algorithms for computing multicommodity flows and
multicuts were based on rounding the standard linear programming relaxation (except for
some special cases, see Section 2.1). In many combinatorial optimization problems, algorithms
based on the primal-dual schema give (near) optimal bounds on the approximation ratio,
and we hope that further extensions of our approach will lead to tight results in the context
of this problem as well. We would also like to point out that the bounds of Theorem 2 are
the best known.

APPROX/RANDOM 2022
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The broad outline of our proof follows the Ford-Fulkerson algorithm for computing the
maximumum (s, t)-flow and minimum (s, t)-cut in a graph. Since multiflows and multicuts
are linear programming dual of each other, our algorithm can also be seen as a primal-dual
algorithm. In each iteration, we increase the total flow by performing an augmenting step,
ie. rerouting previously routed flow paths. This is done by generalizing the well known
augmenting paths framework of Ford and Fulkerson [7] for single commodity flow. This
generalization requires new ideas as it is well known that the augmenting paths framework
can not be used directly for multicommodity flows. We then use the reachability graphs
defined by the flows at the end of the algorithm to find a multicut for the instance, which
can also be seen as generalisation of the cut-picking algorithm of Ford-Fulkerson [7].

The problem of computing minimum multicut can be formulated as an integer linear
program. We can relax the integrality constraints to obtain a linear programming (LP)
relaxation for multicut. The ratio between the optimum solution to the integer program and
the LP relaxation is called the integrality gap of the relaxation. Theorem 2 also implies the
same bound on the integrality gap of the integer programming relaxation for multicut in
treewidth 2 graphs.

In Section 3, we formally define the problem statement and state the connection between
treewidth 2 and series-parallel graphs. In Section 4, we give a quick overview of the
augmenting paths algorithm of Ford-Fulkerson [7] for the single commodity case. In Section
5, we illustrate the basic ideas of our algorithm for a special case, ie. parallel-path graphs. In
Section 7 and Section 8, we give the full algorithm for series-parallel graphs. We then go on
to show how to pick a multicut in Section 9.

2.1 Other Related Work

Garg et al. [11] gave a primal-dual 2-approximation algorithm for finding an integral mul-
ticommodity flow and multicut for trees. Their result also implies a tight bound on the
integral multiflow-multicut gap for trees. By combining the results of [8, 9], we can obtain a
primal-dual algorithm for computing a multicut and integral flow when the graph obtained by
adding an edge for every source-sink pair to G is planar. These also imply a tight half-integral
multiflow-multicut gap of 2 and integral multiflow-multicut gap of 4 for such instances. To
the best of our knowledge, there are no other completely combinatorial algorithm proving
bounds on the multiflow-multicut gap for non-trivial class of instances.

The problem of finding maximum edge disjoint paths is NP-Hard, even in very restricted
settings [14]. There is an O(

√
n) approximation algorithm for finding maximum edge disjoint

paths in general (undirected) graphs on n vertices [2]. This also matches the integrality gap
of the natural linear programming relaxation for the problem [11]. Recently, Chuzhoy et al.
showed that it is not possible to approximate the maximum edge disjoint paths problem
better than 2Ω(log1−ϵ n) under reasonable hardness assumptions and it is an outstanding open
problem to improve the O(

√
n) approximation algorithm, even for planar graphs. If we relax

the edge-disjointedness condition and allow every edge to be used by up to c paths for some
integer c ≥ 2, then the problem is called the maximum edge disjoint paths with congestion c.
A long line of impressive work culminated in a O(polylog n) approximation algorithm for
general graphs [4] and a constant factor approximation algorithm for planar graphs [15] when
a congestion of 2 is allowed. Both these results also imply the same bound on the integrality
gap of the natural linear programming relaxation. The exact integrality gap of the maximum
edge disjoint paths with congestion 2 for Kr minor-free graphs is still not known and is an
interesting open question.
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3 Preliminaries

Let G = (V, E) be a simple undirected graph with edge capacities c : E → Z≥0; we call this
the supply graph. Let H = (V, F ) be a simple graph each edge of which corresponds to a
commodity and the endpoints of that edge are the source-sink of that commodity. H is the
demand graph and its edges the demands.

Let P be the set of all paths in G between a source and its corresponding sink. For a
path P ∈ P , we refer to fP as the value of flow on P . A multiflow f : P → R≥0 is feasible if
for every edge e ∈ E, the total flow on all paths containing the edge,

∑
P :e∈P fP , is at most

the capacity of the edge, c(e). We say that a multiflow has congestion l if the flow paths
are allowed to use an edge up to l times its capacity, ie.

∑
P :e∈P fP ≤ l · c(e). If the value

of flow on every path is an integer (resp. half-integer), then the flow is called an integral
(resp. half-integral) multiflow.

A maximum multiflow is a feasible flow f which maximises
∑

P ∈P fP . A multicut is a
set of edges E′ ⊆ E such that every P ∈ P contains at least one edge in E′. Equivalently,
a multicut is a set of edges whose removal disconnects every source-sink pair. Since a
multicut contains an edge of every path in P, the value of any feasible multicut is at least
the value of any feasible multiflow. The ratio of the minimum multicut to the maximum
(integral/half-integral) multiflow is called the (integeral/half-integral) multiflow-multicut gap.

A cut S ⊆ V is a partition of the vertex set (S, V \ S). Let δE(S) denote the edges in E

with exactly one endpoint in S. For a subset E′ ⊆ E let c(E′) be the total capacity of edges
in E′. Let δmin(u, v, G) denote the minimum value cut between u and v in G.

Series-Parallel Graphs. We will mostly focus on 2-terminal series-parallel graphs as the
problem in treewidth-2 graphs can be easily converted to one in 2-terminal series-parallel
graphs (see Proposition 3). From now on, we omit 2-terminal series-parallel graphs as simply
series-parallel graphs. We will use a well known recursive definition of series-parallel graphs.
A series-parallel graph has two distinguished vertices (also called the merge vertices) u, v.
An edge is a series-parallel graph with its endpoints as the two merge vertices. Starting from
an edge, any series-parallel graph can be constructed by two operations: parallel and series
composition. Given two series-parallel graphs G1, G2 with merge vertices (u1, v1), (u2, v2), a
parallel composition Gp of G1, G2 is constructed by setting u = u1 = u2, v = v1 = v2 and
(u, v) as the merge vertices. Given two series-parallel graphs G1, G2 with merge vertices
(u1, v1), (u2, v2), a series composition Gs of G1, G2 is constructed by setting v1 = u2 and
(u1, v2) as the merge vertices. See Fig. 6 for an illustration. Consider k ≥ 2 simple node
disjoint paths P1, P2, . . . , Pk between two vertices u, v. We call such a graph a parallel-path
graph. In other words, parallel-path graphs have two distinguished vertices u and v and
consist of internally vertex-disjoint u-v paths.

Series-Parallel Tree Decomposition. For a series-parallel graph G, we associate with it
a tree-decomposition T (G). This is the canonical tree-decomposition of a series-parallel
graph and consists of either 2 or 3 vertices in each bag. The tree-decomposition T (G) can be
defined recursively as follows: if G is just an edge {u, v} then T (G) consists of a single bag
{u, v}; if G is a parallel-composition of G1, G2, . . . , Gr with merge vertices u and v, then
T (G) is obtained by taking the bag R = {u, v} as the root and adding edges from R to the
root of each of T (G1), T (G2), . . . , T (Gr); if G is a series composition of G1, G2 with merge
vertices u, v and the common merge vertex of G1 and G2 being w, then T (G) is obtained
by taking the bag R = {u, v, w} as the root and adding edges from R to the root of each of
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T (G1) and T (G2). We will use T throughout to denote the series-parallel tree-decomposition
of the input series-parallel graph G, and for a node X of T , we use TX to denote the sub-tree
of T rooted at X. Also, we use GX to denote the graph induced in G by the union of vertices
in all the nodes in TX .

We will work with series-parallel graphs in the paper. But the results apply also to
treewidth-2 graphs because of the following proposition.

▶ Proposition 3. Given an edge-capacitated treewidth-2 graph G and source-sink pairs T ,
one can in polynomial time find a series-parallel graph H ⊇ G such that any multicommodity
flow with congestion g in H with respect to T is a multicommodity flow with congestion g in
G with respect to T , and any multicut of H with respect to T is a multicut of G with respect
to T having the same capacity.

Proof. It is well known that every treewidth-2 graph is the sub-graph of a (2-terminal)
series-parallel graph and such a super-graph that is (2-terminal) series-parallel can be found
in polynomial time. We add the extra edges to make the graph series-parallel and set their
capacities to 0. It is easy to see that then the proposition follows. ◀

For the sake of presentation, we make the following simplifying assumption. Let v ∈ V

be a vertex and suppose that k source-sink pairs are incident on v. Then we add k edges
(v, v1), (v, v2), . . . , (v, vk) to G and set the capacity of each (v, vi) to be equal to a large
number, say

∑
e∈E ce. If a source-sink pair (v, t) is incident on v, we replace it by (vi, t), such

that each vi has exactly one source-sink pair incident on it. We repeat this process for each
vertex in the graph and let U be the set of new vertices introduced by this operation. Now
every source-sink pair is incident on vertices in U and any vertex has at most one source-sink
pair incident on it. Furthermore, there is one to one correspondence between any feasible
multiflow and multicut with value at most

∑
e∈E ce in the original and the modified graph.

Hence, from now on we assume that exactly one source-sink edge is incident on any vertex
of G.

4 Ford-Fulkerson Algorithm for Single Source

We heavily use the augmenting paths framework of Ford-Fulkerson [7] to design our algorithm.
We give a brief overview of their algorithm here. Given a source vertex s and a set of sink
vertices T = {t1, t2, . . . , tm}, we wish to find the maximum amount of flow that can be routed
from s to vertices in T . It is convenient to work with a directed network N = (V, E′), where
each edge (u, v) ∈ E is replaced by two directed edges (arcs) (u, v) and (v, u) in N . The
capacity of each of the arcs is equal to the capacity of the corresponding original edge. All
the flow paths are directed from s to T in N . One can show that if a flow of value f can be
routed in N , then a flow of value f can be routed in G as well. This allows us to work with
N instead of G.

Let F be a set of flow paths directed from s to T in N and f(e) be the flow through
arc e in F . We define the residual network with respect to F , NF = (V, E′), as follows: if
f(u, v) ≥ f(v, u), then we set the capacity of (u, v) to cuv − f(u, v) + f(v, u) and the capacity
of the arc (v, u) to cuv +f(u, v)−f(v, u) in Nf . Note that when f is empty, then the capacity
of the forward and the backward arcs is equal to the capacity of the original edge in G.

The algorithm works in iterations. In each iteration, we increase the amount of flow from
s to T by 1. At the beginning of each iteration, we find the set of reachable vertices RF in
the residual network NF with respect to the current flow F . If there exists a ti ∈ RF , then
we augment a unit of flow along a path from s to ti in NF . We update our residual graph as
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described above and repeat the procedure until some vertex of T is reachable from s in the
residual graph. We stop when none of the vertices of T are reachable from s in the residual
graph. If the algorithm terminates after f iterations, then there exist f flow paths in the
original graph G from s to T . In fact such flow paths can be computed directly from the
final residual graph in polynomial time.

Let S be the set of reachable vertices in the residual network at the termination of the
algorithm and f be the total number of flow paths routed. Ford-Fulkerson [7] showed that
δ(S) = f , ie. the maximum amount of flow from s to T in G is equal to the minimum (total)
capacity set of edges which disconnect s from T . This is also known as the max-flow min-cut
theorem for sinlge-commodity flow.

Residual Graph for Multicommodity Flow. We can analogously define a residual network
NF of a graph G with respect to any (directed) flow F , and not just the single commodity
flow. From now on, we will refer to NF as the residual network of G with a current (directed)
flow F . We will use f−(v) and f+(v) to denote the net incoming and outgoing flow incident
at the vertex v.

5 Algorithm for Parallel-Path Graphs

To illustrate the basic ideas of our approach, we first describe the algorithm for parallel-path
graphs. Let G be a parallel-path graph and (u, v) be its merge vertices. We make a further
simplifying assumption that all the source-sink pairs lie on different paths of G. This implies
that all the source-sink paths contain either u or v. Let p be the maximum amount of flow
that can routed between u and v in G.

Our algorithm works with four copies of G, i.e. G(1) = G(2) = G(3) = G(4) = G each with
the same capacities as G. Our flow paths at the end will lie in the union of the four copies.
The capacity constraints on the edges will be satisfied within each copy. Thus, we will have
a flow with congestion at most 4. We use the augmenting paths framework of Ford and
Fulkerson to route flow in G(1). As it is well known, the augmenting paths framework can
lead to infeasible flows when applied to a multicommodity setting. We carefully use the
edges in G(2), G(3), G(4) to correct the infeasible flows routed in G(1).

In G(1), we identify u, v as a single vertex and use the Ford-Fulkerson algorithm to
construct a flow and cut as follows: let r be the vertex formed by identifying u, v. Observe
that r is a cut-vertex and all the source-sink paths go through r. We think of a path between
an si − ti pair as the union of two (directed) paths: one from r to si and the other from r to
ti. To send f units of flow between an si − ti pair, we first send a flow of value f from r to si

and then another flow of value f from r to ti. We call each of these as a half-flow-path of
the flow between si and ti. Note that all the half-flow-paths are directed away from r. Since
every flow path is rooted at r, we treat it as the common source and use the augmenting
paths algorithm of Ford-Fulkerson (see Figure 2). We use this process iteratively to route
more flow between the source-sink pairs and distinguish between two cases:

Case 1. Suppose the algorithm terminates with a total flow of f < p (recall that p is the
maximum u-v flow). Let S be the set of all the reachable vertices from r at the end of
the algorithm. If there exists an i such that si, ti ∈ S, then we would have been able to
send more flow from r to si and r to ti. Note that an r − si path does not overlap with an
r − ti path since si and ti are assumed to be in different paths of the parallel-path graph G.
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(a) Step 0: Source-sink pairs in G(1). (b) Step 1: Identify u, v as a single vertex r.

(c) Step 2: Augment flows from r. (d) Step 3: Separate u, v and use a (u, v)
path in G(2) to get a feasible flow.

Figure 2 Routing flow in a parallel-path graph.

Since it is not possible to send any additional flow between the source-sink pairs, it must be
true that S does not contain at least one of si, ti, and hence the edges δ(S) form a feasible
multicut for this instance. Since r was formed by combining u, v, we may not have a feasible
flow of value f , i.e. for a source-sink pair, one half-flow-path may be routed from u while the
other one is routed from v. To convert this into a feasible flow, we use (at most) f units of
u-v flow in G(2). This results in a flow with congestion 2. Since every half-flow path uses at
most one edge of the cut δ(S), we have that the value of the multicut is at most 2 times the
total flow routed (with congestion 2).

Case 2. Suppose at some point in the algorithm, that the total flow routed (in G(1)) becomes
exactly p. Since the maximum u-v flow in G is p, there exists a set of edges, say C, of value
p whose removal separates u and v in G(1) (by the max flow-min cut theorem [7]). In this
case, we pick a set of cut edges C with total value p in G(1). Let G(1)

1 , G(1)
2 be the graphs

formed after removing the edges in C and let u ∈ G(1)
1 , v ∈ G(1)

2 .
Now, let us re-split r into u and v as it was. Each of the half-flow-paths are now rooted

at either u or v. If both G(1)
1 , and G(1)

2 do not contain any source-sink pairs within them,
we terminate. If there are source-sink pairs that are not separated by the removal of C, we
augment flow from u in G(1)

1 and from v in G(1)
2 to increase our total flow. To do this, we use

the augmenting paths algorithm with u (resp. v) as the single source for G(1)
1 (resp. G(1)

2 ).
Note that G(1)

1 (resp. G(1)
2 ) may contain flow edges of half-flows rooted at v (resp. u). In the

residual network, we orient a flow-edge in the opposite direction to the flow, irrespective of
where the flow is rooted.

Since G(1)
1 possibly contains parts of half-flow-paths rooted at v, some of the half-flow-

paths for source-sink pairs routed in G(1)
1 (after removing C) may also be mismatched after

augmentation (see Fig 3), i.e. one of them is rooted at u and the other is rooted at v, even
though both were routed from the single source u in G(1)

1 . The same also can happen for
G(2)

2 .
Let M be the set of pairs of mismatched half-flow-paths that were routed after removing

the edges of C. In any pair of mismatched half-flow-paths in M , at least one of them uses
an edge of C. Hence, total number of mismatched half-flow-paths in M is at most p. We use
the p u-v flow paths in G(4) to correct them, i.e., we obtain a complete flow path between si

and ti by using the two half-flow paths (ignoring direction) in G(1) and a path from u to v

in G(4).
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Figure 3 In the first picture (from left), we route a unit of flow from v to s1 and v to t1 and also
pick a (u, v) cut (in green). This creates two connected components, one containing u and the other
containing v. Observe that a part of the half-flow path from v to s1 is also present in the component
containing u. In the second picture, we augment a unit of flow from u to s2 and u to t2. This results
in flow paths as shown in third figure, i.e. u to s1, s2 and v to t1, t2. Since any mismatched flow-path
routed after picking the (green) cut has to cross an edge of the cut, they can be at most its capacity.
As shown in last figure, we use one (u, v) flow path in the second copy to correct (s1, t1) flow and
another (u, v) path in the fourth copy to correct (s2, t2) flow.

Similarly, we correct the p units of flow routed before deleting C by using at most p

u-v flow paths in G(2). After these corrections we have as much resultant flow between the
terminal pairs as the number of half-flow pairs routed. Note that we did not use G(3) yet,
but we will need it for routing in the general case (see Section 7). Hence, we obtain a flow of
congestion 3 in this case.

Let S1 (resp. S2) be the set of reachable vertices from u in G(1)
1 (resp. from v in G(1)

2 )
at the end of the algorithm (i.e. when we are not able to send any more flow in G(1)

1 and
G(1)

2 ). We pick C ∪ δ(S1) ∪ δ(S2) as our multicut. It is straightforward from construction
that this is indeed a multicut. Hence the value of the multicut is p + |δ(S1)| + |δ(S2)|. Note
that |δ(S1)| + |δ(S2)| is at most the total number of half-flows routed as each edge in δ(S1)
(resp. δ(S2)) is saturated with flow going outside of S1 (resp. S2). Using the fact that p is at
most the total number of half-flow pairs routed, we have that the value of the multicut is at
most 3 times the total flow. It is easy to see that the run time of the above algorithm is
similar to that of the Ford-Fullkerson algorithm, and hence we have the following theorem.

▶ Theorem 4. Given an edge-capacitated parallel-path graph and source-sink pairs such that
none of the source-sink pairs lie on one of the parallel paths, we can find an integral flow of
value f with congestion 3, and a multicut of value at most 3f in time polynomial in size of
the graph and the largest capacity. For unit capacity graphs, the algorithm runs in polynomial
time.

6 Augmenting External Flows into a Parallel-Path Graph

We showed in the previous section how to successfully augment multicommodity flows in
a parallel-path graph H (with no terminal pairs on a path). Now, suppose H occurs as a
building block of a series-parallel composition during the construction of a (larger) series-
parallel graph. In our algorithm for series-parallel graphs, it is crucial that we are able to
augment flows coming from vertices outside H into H through its merge vertices. Moreover,
this has to be done in a way that the flows routed already inside do not get destroyed.
We show in this section that a careful use of copies of the graph allows us to extend the
augmenting paths framework of Ford and Fulkerson [7] to augment external flows into a
parallel-path graph.

We first process all the source-sink pairs which are contained inside H using the algorithm
described in Section 5. If a cut separating u and v in H is picked by the algorithm, then
as shown in Section 5, we may safely continue to augment flow coming into H (1) by using
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the augmenting paths algorithm. This is because the maximum number of mismatched
half-flow-paths arising after a u-v cut is picked is at most the value of the minimum (u, v)
cut and can be corrected by using one of the u-v flow paths in H (4). Also, mismatched
half-flow-paths that were routed before the (u, v) cut was picked can be corrected using u-v
flow paths in H (2).

We next show that we can safely continue to augment flows into H (1) from outside (i.e. for
source-sink pairs not contained inside H) even in the other case i.e. when a (u, v)-cut has
not been picked by the algorithm. As before, let p denote the value of minimum u-v cut in
H. Suppose that a total flow less than p is routed by the algorithm. This implies that no
(u, v)-cut is picked. Let the number of half-flow-paths incident at u, v be fu, fv respectively
and the total flow be f = fu + fv. Let H (1)

w be the graph formed by adding a vertex w to
H (1) and connecting it to u and v with edges of capacity fwu and fwv respectively. Suppose
we are able to augment fw = fwu + fwv units of flow in H (1)

w from w in the residual graph
(note that in the residual graph, all the flow paths in H (1) are rooted and directed away from
u and v). Then we show how to use the additional 2f ≤ 2p edge-disjoint paths from u to v,
in H (2) and H (3) (f flow-paths in each) to reconstruct feasible flow paths, i.e. for each flow
augmentation that happened from w to a vertex y, we produce a flow path from w to y, in
addition to the flow paths that were already routed inside H.

▶ Lemma 5. All flow paths (old and new) in H (1)
w can be reconstructed by using at most 2f

u-v paths.

Proof. To prove the lemma, we need the following crucial observation: if we augment a unit
flow from the vertex w to x in H (1)

w , then the amount of outgoing and incoming flow after
augmentation remains unchanged for every vertex on the augmenting path except for w and
x. The net flow (i.e. the amount of outgoing flow minus the incoming flow) of w increases by
1 while that of x decreases by 1. Let (s1, t1), . . . , (sq, tq) be the q source-sink pairs which were
routed inside H (1) and h1, h2, . . . , hq be the amount of flow routed for each one of them. Let
w1, w2, . . . , wl be the vertices to which we augmented flow from w in H (1)

w and d1, d2, . . . , dl

be the flow routed for each of them. Let O = {s1, t1, . . . , sq, tq} and N = {w1, w2, . . . , wl}.
Before the augmentations from w, the net flow out of u and v in H (1) is fu and fv respectively
and the net flow out of each vertex in O is −hi. After the augmentations, the net flow out of
u and v within H (1) (i.e. without taking into account flow on edges wu and wv) are fu + fwu

and fv + fwv respectively, while that of vertices in O, N are −hi, −dj respectively.
Since u and v have positive net flow in H (1), vertices in O ∪ N have negative net flow and

rest of the vertices have zero net flow, we must have flow paths (with suitable flow value)
from u, v to all the vertices in O ∪ N . We first correct the flow paths corresponding to the
source-sink pairs (s1, t1), . . . , (sq, tq) by using min(fu, fv) ≤ f edge disjoint paths between u

and v in H (2) and H (3). If exactly fwu (resp. fwv) edge disjoint paths starting at u (resp. v)
terminate at vertices in N , then we already have a feasible flow. If fwu+g (resp. fwv −g) units
of flow incident at u (resp. v) terminate at vertices in N , then we use g flow paths from u to v

to correct the flow paths originating at w. We now argue that |g| ≤ max(fu, fv). This follows
from the fact that fu −g (resp. fv +g) paths incident at u (resp. v) must terminate in O, hence
|g| ≤ fu or |g| ≤ fv which gives |g| ≤ max(fu, fv). Hence total number of paths between u

and v used to correct the flows is at most max(fu, fv)+min(fu, fv) = fu +fv = 2f ≤ 2p. ◀

We will build on the intuition developed in this section to give a routing algorithm for
the general case in the next section.
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7 Routing Algorithm for Series-Parallel Graphs

Building upon the ideas developed in the previous sections, we now describe the full algorithm
for routing flows in series-parallel graphs. We will also pick some cut-edges during the routing
here, but they will not form the whole multicut; the algorithm for picking the complete
multicut will be presented later in Section 9. Our routing algorithm is recursive using the
recursive construction of series-parallel graphs through series and parallel compositions.

Let G be the input series-parallel graph and let u and v be its merge vertices. We
construct four copies of G denoted by G(1), G(2), G(3) and G(4), each with the same capacities
as G. The algorithm outputs the following: a set of (directed) flow paths F in G(1), a set of
cut-edges C (not necessarily a multicut), and two numbers (l(2), l(4)). During the algorithm
we will reserve some flow-paths between the merge vertices u and v in G(2), G(3), and G(4)

for flow correction. The reserved flow will be used in the flow-correction phase in Section 8
to correct the mismatched flows in G(1). The number l(2) gives the number of flow paths
available in each of G(2) and G(3) between u and v for flow-correction in the future, after we
have reserved the flow-paths for correcting the flows routed so far. The number l(4) gives
the same for G(4). In a sense, l(2), l(3), l(4) are the residual flow-correcting capacities that G

passes on up to its parent in the recursion call.
We also maintain a global tuple D = {d1, d2, . . . , dk} where di denote the amount of

flow routed for terminal pairs (si, ti). We will maintain throughout the algorithm that
di = f−(si) = f−(ti), where f−(x) denote the incoming flow to x in F . Whenever we
augment a new unit of flow for an si-ti pair, we assume that di increases by one, even if not
mentioned explicitly.

We first describe the base case, i.e. if G is an edge (u, v) with capacity c(u, v). If (u, v)
do not form a source-sink pair, then the algorithm returns an empty flow, l(2) = l(4) = c(e)
and C = ∅. If (u, v) is a source-sink pair i.e. if (u, v) = (si, ti), we send c(e) units of
(directed) flow from u to v in G(1), reserve c(e) amount of flow-paths from u to v in each of
G(2), G(3), G(4) and return l(2) = l(4) = 0 and C = {(u, v)}.

Now, we go to the recursion step. Let G be composed of G1 and G2 in series or parallel.
Let u1, v1 be the merge vertices of G1 and u2, v2 be the merge vertices of G2. We first run
the routing algorithm on G1 and G2 separately. For i = 1, 2, let (Fi, l(2)

i , l(4)
i , Ci) be the

output of the algorithm. Depending on whether G1 and G2 are joined in series or parallel,
the algorithm now branches out into two cases.

7.1 Parallel Case
Recall that in the parallel case, G is obtained by connecting G1 and G2 in parallel i.e. by
setting u = u1 = u2, and v = v1 = v2. Before routing flow, we remove all the edges in C1
and C2 from G(1). Our algorithm here is similar to the parallel-path case in Section 5. We
say that a terminal pair is newly connected if one of the terminals is in G1 and the other
is in G2. If no source-sink pairs get newly connected due to the parallel combination, we
simply return F1 ∪ F2, l(i) = l(i)

1 + l(i)
2 for i = 2, 4 and C = C1 ∪ C2.

Otherwise, some source-sink pairs get newly connected. All paths between the newly
connected source-sink pairs have to contain either u or v. Let s be the vertex obtained by
identifying u and v as a single vertex. We initialize the flow F to be F1 ∪ F2. Let Rs be
the set of reachable vertices from s in the residual graph of G(1) with respect to the flow
F . We say that a newly connected source-sink pair (sj , tj) is reachable from s if both
sj ∈ Rs & tj ∈ Rs.

If there is such a reachable newly connected source-sink pair then we augment in F , one
unit of flow each to sj and tj from the vertex s and set dj = dj + 1. Since sj ∈ G1 and
tj ∈ G2, the two augmenting paths from the vertex s to sj and tj are vertex disjoint except
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at s. Hence we can augment along both the paths simultaneously. However, note that this
does not mean we can directly construct a flow path between sj and tj by combining both of
these half-flows (ignoring directions), as the half-flow path to sj may begin at u while the
half-flow path to tj may begin at v. Later in the correction step in Section 8, we will use a
(u, v) path in either G(2), G(3), or G(4) to obtain a feasible flow.

As in the parallel-path case, we repeat the above routing procedure until one of the
following happens: either there are no more reachable source-sink pairs from s, or we have
routed l(2)

1 +l(2)
2 many units. Let f denote the number of half-flow pairs routed after connecting

G1, G2 in parallel.

1. In case 1, i.e. if the routing terminates with f < l(2)
1 + l(2)

2 , then we reserve f out of the
available l(2)

1 + l(2)
2 u-v paths for flow correction in each of G(2) and G(3). We return the

flow F , cut edges C = C1 ∪ C2, and numbers l(2) = l(2)
1 + l(2)

2 − f, and l(4) = l(4)
1 + l(4)

2 .
2. In case 2, i.e. if f = l(2)

1 + l(2)
2 , then we pick a min-cut separating u and v in G(1), say Cs.

We set C = C1 ∪ C2 ∪ Cs. Let G(1)
u and G(1)

v be the two graphs formed after removing
the edges of Cs from G(1). Even after removing the cut edges in Cs, there might be
source-sink pairs that are reachable from u in G(1)

u or v in G(1)
v . We augment F by routing

from u in G(1)
u (resp. from v in G(1)

v ) to the reachable source-sink pairs and update D

accordingly. We do this until no source-sink pairs are reachable from u in Gu and v in Gv.
We reserve l(2)

1 + l(2)
2 u-v paths in each of G(2) and G(3) and l(4)

1 + l(4)
2 u-v paths in G(4) for

flow corrections and return l(2) = l(4) = 0 along with the flow F and cut C = C1 ∪ C2 ∪ Cs.

7.2 Series Case
Recall that in the series case, G is obtained by connecting G1 and G2 in series, i.e. by
identifying w = v1 = u2. Before routing flow, we remove all the edges in C1 and C2 form the
first copy of G. To make the presentation simpler, w.l.o.g we assume that l(2)

1 ≤ l(2)
2 .

If no new source-sink pairs get connected due to the series combination, we simply return
F1 ∪ F2, l(i) = min{l(i)

1 , l(i)
2 } for i = 2, 4 and C = C1 ∪ C2.

Otherwise, some new source-sink pairs get connected. All paths between the newly
connected source-sink pairs have to contain w. Nevertheless we route from any of u1, w and
v2 as below. We identify u1, w and v2 into a super-source vertex, say s, and find a source-sink
pair (sj , tj) such that both sj and tj are reachable from s in the residual graph of G(1) with
respect to flow F , which is initialized to F1 ∪ F2. We call such source-sink pairs reachable
from s. Note that if both are reachable then both can be routed simultaneously, as one of
them lies in G1 and the other in G2. We augment in F one unit of flow from s to sj and
from s to tj and update D accordingly. However, note that this might not directly give us a
flow path from sj to tj , as the half-flow path to sj may begin at u1 while the half-flow path
to tj may begin at v2. Later in the correction step, we will use a (u1, v2) path in G(2), G(3),

or G(4) to obtain a feasible flow.
We keep augmenting as above until one of the following happens: either no more source-

sink pairs are reachable from s or we have routed min{l(2)
1 , l(2)

2 } units of flow. Let f denote
the total source-sink flow routed after connecting G1, G2 in series.

1. In case 1, i.e. if the routing terminates with f < min{l(2)
1 , l(2)

2 }, then we reserve f flow
paths between u1-v2 in G(2) and G(3) (note that these reserved flow-paths goes through w

and in the flow-correction phase, we may use such a flow-path to correct a flow between
u1 and w, or w and v2, or u1 and v2). We return the flow F , the cut C = C1 ∪ C2, and
l(2) = min{l(2)

1 , l(2)
2 } − f, and l(4) = min{l(4)

1 , l(4)
2 }.
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Figure 4 On the left part (u1, w), we have l(2)
1 = 4 and on the right part, (w, v2) we have l(2)

2 = 5.

2. In case 2, i.e. if f = min{l(2)
1 , l(2)

2 } = l(2)
1 (w.l.o.g), then we pick a min-cut separating u1

and w in G(1), say Cu1,w. We set C = C1 ∪ C2 ∪ Cu1,w and G(1)
u1

and G(1)
w,v2

be the two
graphs formed after removing the edges of C from G(1). Let s′ be the vertex formed by
identifying w, v2 as a single vertex. Even after removing the cut edges in Cu1,w, there
might be source-sink pairs that are reachable from s′ in G(1)

w,v2
. We augment flow (in

F ) from s′ in G(1)
w,v2

to the reachable source-sink pairs from s′ until one of the following
happens: either no more source-sink pairs are reachable from s′ or we have augmented
l(2)
2 − l(2)

1 units of such flow.
a. In case a), i.e. if no more terminal pairs are reachable from s′ and f < l(2)

2 (here f

is the total amount of flow augmented after connecting G1 and G2 in series), then
we reserve f − l(2)

1 units of flow paths between w and v2 in G(2) and G(3), reserve
l(4)
1 flow-paths between u1 and w in G(4), and return the flow F , l(2) = l(4) = 0 and

C = C1 ∪ C2 ∪ Cu1,w.
b. In case b), i.e. if f = l(2)

2 (i.e. l(2)
1 units of flow was routed before deleting Cu1,w and

l(2)
2 − l(2)

1 units of flow afterwards), then we pick a min-cut separating w and v2 in
G(1)

w,v2
, say Cw,v2 . We set C = C1 ∪ C2 ∪ Cu1,w ∪ Cw,v2 and let G(1)

w and G(1)
w,v2

be the
two graphs formed after removing the edges of C from G(1)

w,v2
. Even after removing

the cut edges in Cw,v2 , there might be source-sink pairs that are reachable from w in
G(1)

w . We augment flow (in F ) from w in G(1)
w to the reachable source-sink pairs from

w. We do this until no source-sink pairs are reachable from w in G(1)
w . We reserve

l(2)
1 + l(2)

2 amount of w − v2 flow-paths in G(2) and G(3). We also reserve l(4)
1 amount of

u1 − w flow and l(4)
2 amount of w − v2 flow in G(2). We return F, l(2) = l(4) = 0, and

C = C1 ∪ C2 ∪ Cu1,w ∪ Cw,v2 .

(a) Case 2a. (b) Case 2b.

8 Constructing Feasible Flows

Let D = {d1, d2, . . . , dk} be the vector of all the source-sink flow values at the end of the
algorithm. We will show that a feasible flow between the terminal pairs of value

∑k
i=1 di

can be constructed using the second, third and fourth copy of G. First we note some of the
properties of the routing algorithm, which will be helpful in proving further results.
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Let G be a series-parallel graph with merge vertices (u, v). Let (F, l(2), l(4), C) be the
output of the algorithm on G and let f be the total flow (i.e. the number of half-flow pairs
routed) in F . When G is not an edge we will assume that G is formed by the series or
parallel composition of G1 and G2 with merge vertices (u1, v1) and (u2, v2) respectively. Let
(F1, l(2)

i , l(4)
i , Ci) denote the output of the algorithm for Gi for i = 1, 2.

▶ Lemma 6. After G has been processed, there exists a (u, v)-cut of value at most l(4) in
G \ C.

▶ Lemma 7. c(C) ≤ 2f .

Recall that while routing in G, we reserved some flow paths between u and v for flow
corrections. The next claim shows that the total value of reserved flow paths (across all
iterations) is at most four times the total value of flow routed in G.

▷ Claim 8. The value of reserved flow paths in each of G(2) and G(3) is at most f and that
in G(4) is at most 2f .

8.1 The Augmentation Property and Flow Correction
We now show that a feasible flow of value equal to the total augmented flow can be obtained
by using the reserved flow paths, at each stage of the algorithm. To prove this result, we
inductively maintain an invariant called as the augmentation property, specified below.
Let G∗ be the final graph and G be the graph obtained at an intermediate stage. Let (u, v) be
the merge vertices of G. For giving the augmentation property, we distinguish between two
cases, depending on whether a cut separating (u, v) has been picked by the algorithm so far.
In both cases the augmentation property states that we can reconstruct all the source-sink
flow paths that were augmented inside G (i.e. all the flow paths augmented inside G before
its processing is finished), using only the flow paths reserved in the copies of G. In addition,
to this, the property also states the following depending on the case.

Case 1. No (u, v) cut has been picked by the algorithm so far: suppose a flow of
f1, f2, . . . , fk was augmented to (terminal) vertices t1, t2, . . . , tk after the processing of
G was finished (these are external flows that come from outside of G). Furthermore,
suppose that fu and fv units of flow was augmented from u and v respectively into G

(by external flows) after the processing of G is finished, i.e. fu + fv =
∑k

i=1 fi. Then
the augmentation property states that we can additionally reconstruct these flow paths
using only the reserved paths in copies of G such that: (i) exactly fu (resp. fv) units of
flow path emerge from u (resp. v) (ii) there is exactly fi units of incoming flow incident
at each ti. In other words, we reconstruct all flow paths corresponding to augmenting
paths, except that they might originate from either u or v (there might have been a path
originally augmented from u to ti, but in the reconstructed paths the path to ti might be
from v).
Case 2. A (u, v) cut has been picked by the algorithm: let Gu, Gv be the two connected
components of G (after deleting the cut edges) containing the vertices u, v respectively.
Suppose a flow of value f1, f2, . . . , fk was augmented into Gu (via u) to (terminal) vertices
t1, t2, . . . , tk after the processing of G was finished. Then the augmentation property
states that we can reconstruct feasible flow paths (in addition to the source-sink flow paths
that were augmented inside G before its processing was finished) using only the reserved
flows for G, such that there is a flow of value fi from u into ti for each i = 1, 2, . . . , k.
The same holds true for Gv as well.



T. Friedrich, D. Issac, N. Kumar, N. Mallek, and Z. Zeif 55:15

We show the following lemma by using induction on the structure of series-parallel graphs.
This also implies that there exists a feasible flow of value

∑k
i=1 di.

▶ Lemma 9. For any graph G obtained during an intermediate stage of the routing algorithm,
the augmentation property holds.

9 Picking a Multicut

Let C be the cut edges picked after the completion of routing phase for G. In this section, we
assume that the edges of C have been removed from G. In addition to the cut edges C, we
pick another set of edges Y such that C ∪ Y is a feasible multicut for the given instance. We
say that the edges in C were picked during the phase 1 of the algorithm. We now describe the
phase 2 of the algorithm, where we pick the edges in Y . We start with all the vertices of G

as unmarked and initialize the set Y as empty. We process the nodes of a tree-decomposition
T of G (with treewidth 2) in a top-down manner, i.e. we process a node only after all its
ancestors are processed. Let X be the current node we are processing. Recall that each node
X corresponds to a series or a parallel combination of two subgraphs of G and it consists of
union of the merge vertices of these two subgraphs. Let CX be the set of reachable vertices
in the residual graph of GX , from X, just after the processing of X in phase 1 has been
completed. Recall that the residual graph arises w.r.t to the current (directed) flow in the
first copy of the graph. If all the vertices in X are already marked then do nothing. Let X ′

be the set of unmarked vertices in X. For any vertex x, let CompG(x) denote the connected
component containing x in the current graph (i.e. G \ (Y ∪ C)). For each x ∈ X ′, mark
all the vertices in CX ∩ CompG(x), add the edges in YX := δ(CX) ∩ E(CompG(x)) to Y , and
delete those edges from G. Repeat this process until all the vertices of G have been marked.
Then the union of Y and C is our required multicut.

▶ Lemma 10. Let X ′ be a node of T and X be a node of TX′ . Then, CX′ ∩ V (GX) ⊆ CX .

Proof. Since any path in the residual graph from outside GX has to enter through X and all
edges in δ(CX) are directed inwards to CX in the residual graph, the vertices in V (GX) \ CX

can never become reachable from any vertex outside GX in the residual graph. The lemma
follows from this easily. ◀

▶ Lemma 11. C ∪ Y is a multicut of G for the given terminal-pairs.

Proof. Suppose Y ∪ C does not cut some terminal pair s, t. This means G − Y − C contains
a path P between s and t. Let X be the bottom-most node in T such that GX contains both
s and t. Clearly P contains at least one vertex from X. Let this vertex be x. We branch
into 2 cases depending on when x was marked in phase 2.

In Case 1, we suppose x was marked during the processing of X. Without loss of generality
we can assume that the sub-path of P between x and s contains an edge of δG−C(CX), say
e (follows from phase 1 algorithm). Since e is in the same connected component as x in
G − C − Y , and e ∈ CX , we have that e would have been picked into Y during the processing
of X, a contradiction.

In Case 2, we suppose x was marked before the processing of X. Let X ′ be the node
during whose processing, x was marked. Clearly X is in TX′ . Thus, by Lemma 10, we have
that CX′ ∩ V (GX) ⊆ CX . Hence, without loss of generality we can assume that the sub-path
of P between x and s contains an edge of δG−C(CX′), say e. Since e is in the same connected
component as x in G − C − Y , and e ∈ CX′ , we have that e would have been picked into Y

during the processing of X ′. ◀
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For a node X of T , let f(X) denote the number of half-flow paths introduced during the
processing of X in phase 1. Since every flow path consists of two half flow paths, we have
that total flow routed in phase 1, f =

∑
X∈T f(X)/2. For a node X of T , let r(X) denote

the number of flow paths reserved between the vertices of X when TX was being processed
in phase 1. From Claim 8, it follows that

∑
X∈T r(X) ≤ 4

2 ·
∑

X∈T f(X) ≤ 2 ·
∑

X∈T f(X).
Let M(X) denote the set of previously unmarked vertices that becomes marked during

the processing of X in Phase 2. Let I(X) denote the set of nodes of T that have non-empty
intersection with M(X).

▶ Lemma 12. For a node X of T , the total capacity of edges picked into the cut Y during
the processing of X in Phase 2 is at most

∑
X′∈I(X) f(X ′) +

∑
X′∈I(X) r(X ′).

▶ Lemma 13. For a node X ′ of T , the number of nodes X of T such that X ′ ∈ I(X) is at
most 3.

Proof. During the processing in Phase 2 of each X such that X ′ ∈ I(X), at least one
unmarked vertex in X ′ becomes marked. The lemma follows as there are at most 3 vertices
in X. ◀

▶ Lemma 14. |Y ∪ C| is at most 20 times the amount of flow routed between the terminal
pairs by our algorithm.

Proof. Recall that
∑

X∈T r(X) ≤ 2 ·
∑

X∈T f(X). From Lemma 13 and Lemma 12, it follows
that |Y | is at most 3 · (

∑
X∈T f(X) + 2 ·

∑
X∈T r(X)) ≤ 9 ·

∑
X∈T f(X). Hence, the total

capacity of edges in Y is at most 18 times the total flow routed in phase 1. From Lemma 7,
we have that |C| is at most twice the total flow routed by the phase 1 algorithm. Therefore,
total capacity of edges in Y ∪ C is at most 20 times the total flow routed by the phase 1
algorithm. ◀

This concludes our main result Theorem 2 and also implies the following corollary.

▶ Corollary 15. Let G be an undirected, (integer) edge capacitated treewidth-2 graph and
{(si, ti)}k

i=1 be the source-sink pairs. Our algorithm gives an 80-approximation for computing
a multicut w.r.t. the source-sink pairs.
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Figure 7 Series-Parallel Tree-Decomposition.
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