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Preface

This volume contains the papers presented at the 25th International Conference on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX 2021) and the 26th
International Conference on Randomization and Computation (RANDOM 2021), which due
to COVID-19 were organized as parallel virtual conferences from September 19-21, 2022.
APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally-difficult problems, and the 2022 edition
was the 25th in the series. RANDOM is concerned with applications of randomness to compu-
tational and combinatorial problems, and the 2022 edition was the 26th in the series. Prior to
2003, APPROX took place in Aalborg (1998), Berkeley (1999), Saarbriicken (2000), Berkeley
(2001), and Rome (2002), while RANDOM took place in Bologna (1997), Barcelona (1998),
Berkeley (1999), Geneva (2000), Berkeley (2001), and Harvard (2002). Since 2003, APPROX
and RANDOM have been co-located, taking place in Princeton (2003), Cambridge (2004),
Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009), Bar-
celona (2010), Princeton (2011), Boston (2012), Berkeley (2013), Barcelona (2014), Princeton
(2015), Paris (2016), Berkeley (2017), Princeton (2018), Boston (2019), and online (2020,
2021).

Topics of interest for APPROX and RANDOM are: approximation algorithms, hardness
of approximation, small space, sub-linear time and streaming algorithms, online algorithms,
approaches that go beyond worst case analysis, distributed and parallel approximation, em-
beddings and metric-space methods, mathematical-programming methods, spectral methods,
combinatorial optimization, algorithmic game theory, mechanism design and economics,
computational-geometry problems, approximate learning, design and analysis of randomized
algorithms, randomized complexity theory, pseudorandomness and derandomization, random
combinatorial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings, error-correcting
codes, average-case analysis, smoothed analysis, property testing, and computational learning
theory.

The volume contains 24 contributed papers, selected by the APPROX Program Committee
out of 46 submissions, and 31 contributed papers, selected by the RANDOM Program
Committee out of 60 submissions. We would like to thank all the authors who submitted
papers, the members of the program committees, and the external reviewers. We are grateful
for the guidance of the steering committees: Jarostaw Byrka, Samir Khuller, Monaldo
Mastrolili, Laura Sanita, Laszl6 Végh, Virginia Vassilevska Williams, and David P. Williamson
for APPROX, and Oded Goldreich, Raghu Meka, Cris Moore, Anup Rao, Omer Reingold,
Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel, Alistair Sinclair, and Paul Spirakis
for RANDOM.
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1 Introduction

Given a universe of elements U = {1,...,n} and a collection S = {51, ..., S} of subsets
S; C U, the discrepancy of the set system S is defined as

disc(§) = min  max ’ Z w(])‘ .

{U—{-1,1} i€ :
U =11y ie(m] | £

That is, the discrepancy is the minimum imbalance that must occur in at least one of the
sets in S over all bipartitions of U. More generally for an m x n matrix A, the discrepancy
of A is defined as disc(A) = minge(_1,13n [|Az|| . Note that the definition for set systems
corresponds to choosing A as the incidence matrix of S, ie., A;; = 1if j € S; and 0
otherwise. Discrepancy is a well-studied area with several applications in both mathematics
and theoretical computer science (see [14, 17, 28]).

Spencer’s problem. In a celebrated result, Spencer [34] showed that the discrepancy of
any set system with m = n sets is O(y/n), and more generally O(1/nlog(2m/n)) for m > n.
To show this, he developed a general partial-coloring method (a.k.a. the entropy method),
building on a counting argument of Beck [13], that has since been used widely for various
other problems. A similar approach was developed independently by Gluskin [20]. Roughly,
here the elements are colored in O(logn) phases. In each phase, an Q(1) fraction of the
elements get colored while incurring a small discrepancy for each row.
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A Unified Approach to Discrepancy Minimization

Beck-Fiala and Komlés problems. Another central question is the Beck-Fiala problem
where each element appears in at most & sets in S. Equivalently, every column of the incidence
matrix is k-sparse. The long-standing Beck-Fiala conjecture [15] states that disc(S) = O(Vk).
A further generalization is the Komlds problem, also called the vector balancing problem,
about the discrepancy of matrices A with column ¢e-norms at most 1. Komlés conjectured
that disc(4) = O(1) for any such matrix. Note that the Komlds conjecture implies the
Beck-Fiala conjecture.

Banaszczyk showed an O(y/logn) bound for the Komlés problem based on a deep
geometric result [3]. Here, the full coloring is constructed directly (in a single phase), and
this result has also found several applications. The resulting O(y/klogn) bound for the
Beck-Fiala problem is also the best known bound for general k.!

In contrast, the partial coloring method only gives weaker bounds of O(logn) and
O(k'/?logn) for these problems — the O(logn) loss is incurred due to the O(logn) phases of
partial coloring.

Limitations of Banaszczyk’s result. Even though Banaszczyk’s method gives better bounds
for the Komlés problem, it is not necessarily stronger, and is incomparable to the partial
coloring method. E.g., it is not known how to obtain Spencer’s O(y/n) result (or anything
better than the trivial O(y/nlogn) random-coloring bound) using Banaszczyk’s result. A
very interesting question is whether there is a common generalization that unifies both these
results and techniques.

Algorithmic approaches. Both the partial coloring method and Banaszczyk’s result were
originally non-algorithmic, and a lot of recent progress has resulted in their algorithmic
versions. Starting with the work of [4], several different algorithmic approaches are now
known for the partial coloring method [27, 33, 21, 18], based on various elegant ideas from
linear algebra, random walks, optimization and convex geometry.

In further progress, an algorithmic version of the O(y/logn) bound for the Komlds
problem was obtained by [5], see also [7], and [6] for the more general algorithmic version of
Banaszczyk’s result. In related work, Levy et al. [26] gave deterministic polynomial time
constructive algorithms for the Spencer and Komlés settings matching O(y/nlog(2m/n))
and O(y/logn) respectively.

A key underlying idea behind many of these results is to perform a discrete Brownian
motion (random walk with small steps) in the {—1,1}" cube, where the update steps are
correlated and chosen to lie in some suitable subspace. However, the way in which these
subspaces are chosen for the partial coloring method and the Komlds problem are quite
different. We give a high level description of these approaches as this will be crucial later on.

In the partial coloring approach, the walk is performed in a subspace orthogonal to the
tight discrepancy constraints. If the discrepancy for some row A; reaches its target discrepancy
bound, the update Az to the coloring satisfies A; - Az = 0. As the walk continues over time,
the subspace dimension gets smaller and smaller until the walk is stuck. At this point, the
subspace is reset and the next phase resumes.

On the other hand, the algorithm for the Komlds problem does not consider the discrepancy
constraints at all, and chooses a different subspace with a certain sub-isotropic property
which ensures the discrepancy incurred for a row is roughly proportional to its ¢ norm,

! For k = o(logn) an improved bound follows from the 2k — 1 bound by [15].
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while ensuring that the rows with large fs-norm incur zero-discrepancy. In particular, in
contrast to the partial coloring method, all the elements are colored in a single phase, and
the discrepancy constraints are ignored.

The need for a combined approach. Even though the O(v/klogn) bound for the general
Beck-Fiala problem is based on Banaszczyk’s method, all the important special cases where
the conjectured O(\/E) bound holds are based on the partial coloring method. For example,
Spencer’s problem with m = O(n) sets corresponds to special case of the Beck-Fiala problem
with k = O(n). So Spencer’s six-deviations result resolves the Beck-Fiala conjecture for this
case, which we do not know how to obtain from Banaszczyk’s result.

The Beck-Fiala conjecture also holds for the case of random set systems with m > n.

In particular, Potukuchi [32] considers the model where each column has 1’s in k randomly
chosen rows and shows that the discrepancy is O(v/k) with high probability. See also
[19, 9, 22, 1] for related results. Potukuchi’s result crucially relies on the partial coloring
approach, and it is not clear at all how to exploit the properties of random instances in
Banaszcyck’s approach.

Thus a natural question and a first step towards resolving the Beck-Fiala and Komlds
conjecture, and making progress on other discrepancy problems, is whether there exist more
general techniques to obtain both Spencer’s and Potukuchi’s result and the O(y/klogn)
bound for the Beck-Fiala problem in a unified way.

1.1  Our results

We present a new unified framework that recovers all the results mentioned above, and various
other state-of-the-art results as special cases. Our algorithm is based on a derandomization
of a stochastic process that is guided by a barrier-based potential function. We were inspired
by an elegant idea of Lee and Singh [23] who showed how the barrier function approach can
be used to give a proof of Spencer’s result without any partial coloring phases. A related idea
was also explored in [21]. The barrier function approach itself has been used extensively in
various settings such as graph and matrix sparsification [12, 24], covariance estimation [35],
isoperimetric inequalities [25], bandit algorithms [2] and also in the context of discrepancy
minimization [10, 21, 11].

Given a matrix A, the algorithm starts with the all-zero coloring z. Let x; € [—1,1]" be
the coloring at time. The algorithm maintains a barrier b, > 0 over time and defines the
slack of row i at time ¢ as

sit) =br— Y a;i()z(i) =AY ai(§)*(1 —z()?). (1)
j=1 j=1

current discrepancy remaining variance

Notice that when all z;(j) eventually reach +1, the remaining variance term is zero and the
slack measures the gap between the discrepancy and the barrier.
We define the potential

B(t) =Y si(t)” 2)

for some fixed p > 1, that penalizes the rows with small slacks and blows up to infinity if
some slack approaches zero. If we can ensure that the slacks are always positive and the
potential is bounded, then the discrepancy is upper bounded by value of the barrier when
the algorithm terminates.

1:3
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At each time step, the algorithm picks a random direction v; that is orthogonal to some
of the rows with the least slack, and satisfies some additional properties, and updates the
coloring by a small amount in the direction v;. The barrier b; is also updated. These updates
are chosen to ensure that the potential does not increase in expectation, and hence all the
slacks stay bounded away from 0. We give a more detailed overview in Section 2.

By changing the parameters p, A\ depending on the problem at hand, we obtain several
results using a unified approach.

1. Set coloring [34]. For any set system on n elements and m > n sets, disc(S) =
O(y/mlog(@m/m).

2. Komlés problem [7]. For any A € R™*" with columns norms ’|Aj||2 < 1, disc(A) =
O(/Togn).

3. Random/Spectral Hypergraphs [32]. Let A € {0,1}"*" be the incidence matrix of a

set system with n elements and m sets, where element lies in at most k sets and let
v =max, | 1,|y|=1 ||Av|. Then for m > n, disc(S) = O(Vk + 7).

4. Gaussian Matrix [16]. For a random matrix A € R™*" with each entry
A;; ~ N(0,0%) independently, with probability at least 1 — (1/m?), disc(4) =

0 (o (vn+ Iogm) - y/log 277”)
More generally, given a matrix A, we state the following result based on optimizing the

various parameters of the algorithm, depending on the properties of A. This allows our
framework to be applied in a black-box manner to a given problem at hand.

» Theorem 1. For a A € R™*"™ with HAjH2 < L and |a;(j)| < M for alli € [m],j € [n], let
h:R* = R be a non-increasing function such that for every subset S C [n] and i € [m],

> ai(i)* < 18| - h(S]). (3)

jeS

Then, for any p > 1, there exists a vector x € {—1,1}" such that ||Azx|| < 5bo + 2M, where

bo = min (\/S(p +1)(48m)1/ - B, 250L/log (2m)> . (4)

where 3 = f;;? h(n —t)(n —t)~'/Pdt.

Let us see how Theorem 1 directly leads to the results stated above.

Set coloring. As || 47|y < /m, we have L = y/m, and as >jes a;(5)* < |S], we can set
h(t) =1 for all ¢t € [n]. Consider (4) and suppose p > 1.1 so that p/(p — 1) = O(1). Then

n—2
B = / h(n — t) . (n _ t)’l/pdt — O(nlﬂ/p)7
t=0

and the first bound in (4) gives by = O(pn'/2(m/n)'/P). Setting p = log(2m/n) gives
Spencer’s O(y/nlog(2m/n)) bound.

Interestingly, the above result gives a new proof of Spencer’s six-deviations result based
on a direct single-phase coloring. In contrast, all the previously known proofs of this result
[4, 27, 33, 18] required multiple partial coloring phases.
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Komlés problem. Here L = 1 and the second term in (4) directly gives a O(y/logm) bound?.
This also implies an O(y/logn) bound as at most n? rows can have ¢;-norm more than 1,
and we can assume that m < n2.

Similarly, bounding h(t) using standard concentration bounds, directly gives the following
results for various models of random matrices.

» Theorem 2 (Sub-Gaussian Matrix). Let A € R™*™ with each column drawn independently
from a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0
and variance 0. Then, for n <m < 200" disc(A) = O(o+\/nlog(2m/n)), with probability
at least 1 — (1/m?).

» Theorem 3 (Random Matrix). Let A € R™*™ m > n such that every column of A is drawn
independently from the uniform distribution on {x € R™ : ||z||, < 1}. Then disc(4) = O(1)
with probability at least 1 — (1/m?).

1.1.1 Flexibility of the method

An important advantage of the method is it flexibility, which can be used to obtain several
additional results.

Subadditivity. Given A, B € R™*" can we bound disc(4 + B) given bounds on disc(A)
and disc(B)? Such questions can be directly handled by this framework by considering a
weighted combination of two different potential functions — one for A and another for B.
More precisely, let us define sdisc(A), the Stochastic Discrepancy of a matrix A, to be
the upper bound on discrepancy obtained by the Potential Walk described in Algorithm 1.
For this notion, we have the following approximate subadditivity for arbitrary matrices.

» Theorem 4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices
A, B € R™*" | there exists v € {—1,1}" such that

[{a;, )| < sdisc(A)  for every row a; of A, and
|(b;, x)| < sdisc(B)  for every row b; of B.

In particular, this implies that sdisc(A + B) < sdisc(A) + sdisc(B).

Here a < b means that a = O(1)b. The theorem is algorithmic if A, B are given. It also
implies that for any matrix A, we have sdisc(A4) < ming(sdisc(B) + sdisc(A — B)).

Similar questions have been studied previously in the context of understanding the
discrepancy of unions of systems [30, 31]. For example, other related quantities such as the
~o-norm and the determinant lower bound are also subadditive [30, 31], We remark that the
additive bound cannot hold for the (actual) discrepancy or even hereditary discrepancy?,
and a logarithmic loss is necessary. For this reason, the previous additive bounds based on
~vo-norm and the determinant lower bound lose extra polylogarithmic factors when translated
to discrepancy.

A direct application of Theorem 4 is the following.

2 Tt would be interesting to construct an explicit family of examples where the discrepancy obtained by
our approach is Q(y/logn).

3 A classical example due to Hoffman gives two set systems A and B, each with hereditary discrepancy 1,
but their union has discrepancy (log n/loglogn) [29].
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» Theorem 5 (Semi-Random Komlés). Let C' € R™*™ be an arbitrary matriz with columns
satisfying |‘CjH2 <1 for all j € [n], and R € R™*™ be a matriz with entries drawn i.i.d.

from N(0,02). Then, for n <m < 200%™ with probability at least 1 — (1/m?),

disc(C+ R) =0 (\/logn + U\/nlog(Zm/n)) .

For m = O(n), the bound above is O(y/logn + o/n), which is better than the bound of
O(+v/logn(1 + o4/n)) obtained by directly applying the best-known bound for the Komlés
problem to C' + R.

As another application, consider a matrix C' with n columns and two sets of rows, A and
B, where each row in A has entries in {0, 1}, and the column norm of every column restricted
to rows in B is at most 1. Suppose that A has O(n) rows. Applying the framework gives a
coloring with O(y/n) discrepancy for rows in A and O(y/logn) for rows in B.* Notice that
using previous techniques, if we apply the partial coloring method to get O(y/n) discrepancy
for A, this would give O(logn) for rows of B. On the other hand, if we apply try to obtain
O(+/Togn) discrepancy for B, all the known methods would incur O(y/nlogn) discrepancy
for A.

Relaxing the function h(:). Recall that the function h in Theorem 1, that controls how the
f5 norms of rows decrease when restricted to subsets S of columns, and plays an important
role in the bounds. In many random or pseudo-random instances however, a worst case
bound on h can be quite pessimistic. For example, here even though most rows decrease
significantly when restricted to .S, h can remain relatively high due to a few outlier rows. The
following result gives improved bound for such settings where for any subset S of columns,
most row sizes restricted to S do not deviate much from their expectation if S is chosen at
random.

» Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A € {0,1}"™*™ such that
||AjH1 < k. Suppose there exists B < k s.t. for any S C [n] and any ¢ > 0, the number of
rows of A with

| > ait) = llaslly - (1S1/m)| = 8 (5)

JjES
is at most ¢=2|S|. Then disc(A) = O(VE + B).

As discussed in [32], one can set 3 < max, 1 |v|=1 [|[Av]| in (5), which in particular gives
Potukuchi’s result [32] for random k-regular hypergraphs as 8 = O(k'/?) in this case.

Combining with Theorem 4, this extends to the following semi-random setting. Consider
a random k-regular hypergraph A with n vertices and n edges. Suppose an adversary can
arbitrarily modify A by adding or deleting vertices from edges such that degree of any vertex
changes by at most t. How much can this affect the discrepancy of the hypergraph?

» Theorem 7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with
incidence matriz A € R™*™ with m > n, and let C € {—1,0,1}"™*™ be an arbitrary matriz

with at most t non-zero entries per column. Then disc(A+ C) = O (\/E—&— Vtlog n) with

probability 1 — n= 1)

4 This answers a question of Haotian Jiang.
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2 The Framework

Given a matrix A € R™*", we start at some zy and our goal is to reach an xr in {—1,1}"
with small discrepancy. The basic idea will be to apply a small random update (of size §)
to z; at step t for T steps, where the update will be chosen with care. We use the slack
function and the potential function defined in (1) and (2) to implement this approach. The
figure below gives a high level description of the algorithm.

Algorithm 1 PotentialWalk.

1 Input: A matrix A € R™*" a potential function ® : R x R" — RT.

2 Let 20 =0,t =0. Let T = (n — 2)/5°.

3 for t € [T] do

4 Select v; such that: (i) E.[®(t + 1,2 + edvy)] < D(E, a¢), (ii) a¢ + vy € [—1, 1],
and (iii) (z¢,v:;) = 0, where € is a Rademacher random variable (+1 with
probability 1/2).

5 Let x¢p1 = x4 + €dvy.

6 Output: zr

2.1 Example: Komlés setting

We first give an overview of the ideas by describing how the framework above works for the
Komlés setting. Recall that here A € R™*™ has columns satisfying HAj H , < 1. To minimize
notation, let us assume here that m = n (this is also the hardest case for the problem).

At time ¢, let V, = {j € [n] : |z:(j)] < 1—1/2n} and let ny, = |[V;|. These are the variables
that are “alive”, and not yet “frozen”. To ensure that z; € [—1,1]", the update v; will only
change the variables in V;. We also set (v, ;) = 0, which ensures that ||z|* = 62t for any
t €10,T]. So v; satisfies

ve(j) =0 for all j €V, and (v, z4) = 0. (6)
As |z(j)] > (1 —1/2n) for all j ¢ V;, we have (n —n;)(1 — 1/2n)? < 2 iV, z,(5)? <
> jeln Tt (7)% = 6%t. So the number of alive variables at time ¢ satisfies n, > n — (6%t)/(1 —

(1/(2n)))? > n — 62t — 1.

Blocking large rows. To ensure the two-sided bound | a;(j)z(j)| < bo, we create a new
row —a; for each row a; at the beginning. Now, as the squared 2-norm of every column
of A is at most 2, at any time ¢, the number of rows with > ..\, a;(7)? > 12 is at most
[V¢|/6 = n;/6. Let us call such rows large (at time t). Otherwise, the row is small. We
additionally constrain v; so that

(ai,v) = 0 for all rows {i : Z ai(§)? > 12}. (7)
JEV:

This ensures that a row only starts to incur any discrepancy once it becomes small. So at
step t, we will define the slacks only for small rows and only such rows will contribute to
the potential ®(t). Let Z; denote the set of small rows at time ¢. In the slack function (1),
we will set by = by for all t and A = 27°by. So, at the beginning of the algorithm, when

. . . — p
zo(j) = 0 for all j, we have ®(0) = Ziezu(bo - Zje[n] a;i(5)3)7P < % <n (%) .
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At any time ¢, the change in potential ®(t+1)—®(¢) is due to (i) new rows becoming small
and entering Z; ;1 and (ii) and the change slack of rows in Z;. As each row has discrepancy 0
until it becomes small, the total contribution of step (i) over the entire algorithm is at most
n(2/bp)P. So the main goal will be to show that ® does not rise due to step (ii). This will
ensure that the potential throughout the algorithm is at most 2n(2/bg)?, which gives the

> ai(j)z(4) < bo for all i.

Bounding the increase in ®. We now describe the main ideas of the algorithm and
computations for the change in ® in step (ii). The desired O(y/logn) will then follow directly
by optimizing the parameters by and p in (1).

Let e;; denote a vector in R™ with j-th entry a;(j)?z:(j). At step ¢, x; changes as
Zyr1 — 2y = €0 - vy and, by a simple calculation, the approximate change in s;(¢) is:

si(t4+1) — si(t) = (2X\{evs, vi) — {a;,vy)) €6 + )\<a£2)’ v§2)>(52 ,

where ¢ is a Rademacher random variable and a(? denotes the vector with j-th entry a(j)?.

The error terms not included above are all higher powers of §, and can be ignored for small
enough § as long as all coefficients are bounded. We formalize this in Section 2.2.
Then, up to second order terms in §, ®(t + 1) — ®(t) =~ f(t)d? + g(t)ed where,
(@;”,0”) | pp+1) §~ @Mewi ) = (@i, 00)
£) = —pA i ,
) = 3 Ot 20 1) 5

i(t)erl 2 si(t)l’+2 ’

i€l i€L

g(t) —p Z (2)\<€t,i8,;1t>p:_1<ai, ’Ut>) .

i€z (t)

Note that the expectation of the second term g(t)ed is zero. So it suffices to prove that
there is a choice of v; such that f(¢) < 0. This will ensure the expected change of ® is at
most zero, and there will be a choice of € that ensures ® is non-increasing. The difficulty in
making f(t) at most zero is that the positive part (the second term of f(¢)) has an extra
factor of s;(¢) in the denominator. So if some s;(t) becomes very small, the positive term
could dominate. To ensure this doesn’t happen, we choose v; to be in a subspace that makes
this positive term zero for the smallest slack indices.

Blocking small slacks. Let J; be the subset of Z corresponding to all but the |n;/12]
smallest values of s;(t) at time t. Select v; such that

(2X (et i, vty — (a;,ve)) = 0 for all i € T\ T, (8)

Then as ), s,(t)"?) < ®(t), and the smallest n,/12 slacks are “blocked”, we have

1 < D(t) )1/”
max < ,
J€T: 8;(t) ng/12

and so,

- A
Si(t)p"'l JET: Si(t)p""l

2 2
(Aenss o) = laie))” | (a? v; >>>
i€l

S; (t)erl Nt si(t)erl

(2Aleti, ve) = {ai,vr)) (12@@))1““ ) <a§2>,v£2>>>
€z



N. Bansal, A. Laddha, and S. Vempala

In addition to (6) and (8), suppose v; also satisfies

(2Xet; — a;, v (2) )>
Z—S()p+l <12 Z pﬂ . (9)

i€Jt €Tt

Choosing the update v;. Later in Section 2.2, we will see how to find a vector v, satisfying
(6), (8), (7), and (9). Then,

0@ L@ 1p
0 <3 ) (s (220) 7).

i€Jt ¢

To show that f(¢) <0, it thus suffices to have 6(p + 1) (12<I>(t)/nt)1/p —-A<0.

As @(t)% < 2(2n)'/? /by by the inductive hypothesis, and n; > 1, it suffices to have
12(p+1) (24n)1/p — X -by 0. Choosing p = logn so that n'/? = O(1), and as A = 2~%by,
we can pick by = O(y/logn) to satisfy the above. This gives the desired discrepancy bound.

2.2 The General Framework

We now describe the algorithm more formally. Given a matrix A € R"™*" with HAj H , <1
for all j € [n], extend A such that for each original row a; of A, there are two rows a; and
—a; in A. Additionally, partition every row a; into 2 rows, af and a’, with small and large
entries, as follows:

S(j) = {0 il > 1720 o {am) i Ja ()] > 1/2)

a; ’ i .
0 otherwise,

a;(j) otherwise
where )\ is a parameter to be determined later. After this transformation, for any xz € R™,
|Az||, = max;(af + aF, x), and the squared 2-norm of any column of A is at most 2.

Let 7 denote the index set of all rows of A, and Z% denote the index set of rows of the
first type above.

The step-size of the algorithm is ¢ and the algorithm will run for T' = "5—_22 steps. Starting
with zg = 0, let v; € R™ with (z,v;) = 0. For ¢ € [T,

Ti_1+0vi_1  W.p. 1/27
Ty =
Tg_q1 —O0ve—1  w.p. 1/2.

As t increases, some variables will start approaching 1 in magnitude. To ensure that
x¢ € [—1,1]™, we restrict v; to be in the space of alive variables, defined as V; = {i € [n] :
|z: ()] < 1—1/(2n).

For any t € [T], ||z:||* = 6t as

lze)* = lwe—1 + 80ill* = llzer|* + 8% fJue|* = 6°(t = 1) + 6% = 8°¢. (10)

Let ny = |V4| denote the number of alive variables at ¢. By (10), (n—n;)(1 —¢)? < §2¢, which
gives ntzn—% >n— 6%t —1.

To select a vy such that for all t € [T], x; € [—1,1]™ and (a;, x+) is bounded for all rows,
we classify the rows according to how many variables are still “uncolored” in a row.

Let the set of s-Alive rows at time ¢ be defined as 7, = {i € 7% : )
The choice of 20 here is arbitrary, and large enough constant works.

We can now define the slack and the potential function.

JEVL

a;(j)* < 20}.

1:9
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Slack. For any i € Z, the slack function is defined as
8i(t) = by — (as, x) — A~ Zaz‘(j)Q(l — z4(§)*).
j=1

We call b; the barrier, and for ¢ € [T], we also move it as b; = b;_1 +§2d;_1, for some function
d;. We set A = ¢by where ¢ = 1/42 and by is the initial barrier.

Potential function. The potential function has a parameter p > 1 and is defined as

o) = si(t)P

€Ty

We will only consider slacks for alive rows and ensure that they are always positive.
Moreover, we will consider only the small s-Alive rows as the rows in ! will be easily
handled. To ensure that s;(t) does not become too “small” for any s-Alive row, the choice of
v should not decrease the smallest slacks. This motivates the following definitions.

Blocked rows: Let C; be the subset of Z; corresponding to the |n;/12] smallest values of

Si(t).

Let J; = Z;\C;. These are the “large slack” rows.

To prove that all the slacks are positive, we will upper bound the potential throughout
by bounding the change in ®(¢) at each step. Note that ®(¢) will experience jumps whenever
a new index gets added to Z;, however the total contribution of jumps is easily shown to be
bounded (see Lemma 19) and can essentially be ignored. To bound the one-step change in ®,
we use the second order Taylor expansion of ®(¢ 4+ 1) centered at ®(¢). Details of this can be
found in the arXiv version of this paper [8].

2.3 Algorithm and Analysis

Recall that e;; denotes the vector in R™ with j-th entry a;(j)?z+(j). We can now state the
algorithm for selecting vy.

Algorithm 2 Algorithm for Selecting v;.

1 Initialize xg < 0

2 fort=1,...,T = ”5;22 do

3 Let Wy = {w € R" : w(i) =0, Vi ¢ Vi} // restrict to alive variables
4 Let Uy = {w € Wy : {(w,2Xer; — a;) = 0,Vi € C; and (w, z) = 0}

// restrict to large slack rows

5 Let Yy ={w € Wy : (w,a;) =0,Vi € I\1;} // restricted to s-Alive rows
Let G, denote the subspace
) ) 2 , (2
B ] ((2Xet, —az),w)2 (a;”, w'?)
gt—{wEWz.Zsi(t)pHS‘lOZSi(t)pH (11)
i€Jt €Tt

7 Consider the subspace Z: = U; N Ve N G; and let W = {w1,w2,...,wi} be an
orthonormal basis for Z;. Choose

vy = arg fgv% 2;(2)\6“- — ai,w)?s;(t) P, (12)
€Tt
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We now re-state our main theorem. In words, the assumption of the theorem is that there
is a non-decreasing function h(.) such that for any row, the squared norm in any subset of
coordinates S is proportional to h(]S|) times the size of the subset S. Under this condition,
we can bound the discrepancy as a function of h.

» Theorem 1. For a A € R™*" with HA”‘Q < L and |a;(j)| < M for alli € [m],j € [n], let
h:R* = R be a non-increasing function such that for every subset S C [n] and i € [m],

> ailh)? < |51 - h(IS]). (3)

jeSs

Then, for any p > 1, there exists a vector x € {—1,1}" such that ||Az| < 5bo + 2M, where

bp = min <\/8(p +1)(48m)1/P - B, 250L+/log (2m)) . (4)

where 3 = ftn:_(f h(n —t)(n —t)~'/Pdt.
The case when h(t) = h is often useful, for which case we have following corollary.

» Corollary 8. For a matriz A € R™ "™ with ||A?|| < L and |a;(j)| < M for alli € [n],j € [m],
let h be such that for every subset S C [n] and every i € [m], 3 . g a;(5)% <|S| - h. Then,

disc(A) < 5bg + 2M, where by = min(26+/hnlog(2m/n), 250L+/log (2m)).

Roadmap of the proof. The first main lemma below (Lemma 10) establishes that there
is a large feasible subspace from which v; as defined above can be chosen. Using this we
prove Lemma 11, which bounds the change in potential. This will allow us to bound the
discrepancy of each row and hence prove Theorem 1.

A key fact used for proving Lemma 10 is the following lemma in [7].

» Lemma 9 ([7]). Let G, H € R™*" be matrices such that |G;;| < a|H;;| for all i € [m] and
j € [n]. Let K = diag(H" H). Then for any 3 € (0,1], there exists a subspace W C R™ such
that dim(W) > (1= f)n, and Yw € W, wTGTGw < % - w Kuw.

We now arrive at the main Lemma.

» Lemma 10 (Subspace Dimension). For allt € T, dim(Z;) > [2n,/3].

Setting the parameters. To show the two bounds in (4), we will set the parameters by, d;
(the change in b;) and p in two ways:

Case 1: dy = 4(p + 1) - h(ny) - max s;(t)~* for all t € [T], and p, by arbitrary (13)
1 t
Case 2: p=2log(2m), by = 840(p + 1) - max s;(t)"" and d; = 0 for all t € [T7. (14)
1€t
Bounding the potential. The next lemma shows that in both these cases, the potential
function remains bounded.

» Lemma 11 (Bounded Potential). In either of the cases given by (13) and(14), we have
that ®(t) < 4m(2/bg)?, for allt =0,...,T.

The next lemma gives a bound on the minimum value of slack for any active row, given
the bound on potential function.

1:11
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» Lemma 12. For any t € {0,...,T}, if ®(t) < 4m(2/b)?, then max;cz, s;(t)~! <

1
2 (48m> P
bo ng ’
» Lemma 13. For any t € [T, the choice of vy satisfies

2)et — aq, vy 2 8h(ny
) <S(t)p+1> <> si(t()w)l- (15)

1€Jt (ASVE,

These lemmas will allow us to prove the main theorem (see Appendix).

3 Applications

3.1 Set Coloring

We bound the discrepancy of a set system (U,S) with |U| = n, |S| = m, and m > n. As
| A7]]2 < /m, we have L = \/m, and as Yjes a;(j)? < |S|, we can set h(t) = 1 for all ¢ € [n].
Consider (4) and suppose p > 1.1 so that p/(p — 1) = O(1). Then

n—2
o= [ hn 1)ty = 00 ),
t=0

and the first bound in (4) gives by = O(pn'/?(m/n)'/P). Setting p = log(2m/n) gives
Spencer’s O(y/nlog(2m/n)) bound.

3.2 Vector Balancing

We now consider the discrepancy a matrix A € R”™*" with column £s-norms at most 1.

Here L = 1 and the second term in (4) directly gives a O(y/logm) bound. This also
implies an O(y/logn) bound as at most n? rows can have f;-norm more than 1, and we
can assume that m < n?. In particular, for a row a; with |la;|l, < 1/n'/?, we have
l{a;, z)| < laill; < /nllaill, <1 and it can be ignored. The sum of squares of elements in

A is at most n the number of rows with ||a; |, > 1/n'/? is at most n?.

3.3 Sub-Gaussian Matrices and Random Matrices

We give the proofs for these application in the appendix.

4 Flexibility of the Method

An advantage of the potential function approach is its flexibility. We describe two illustrative
applications. In Section A.2 we show how the bounds for matrices A and B obtained using
the framework can be used to directly give bounds for C' = A+ B by combining the potentials
for A and B in a natural way.

In Section 4.1 we consider how the requirement on the function h(-) in Theorem 1 can be
relaxed, and use it to bound the discrepancy of sparse hypergraphs (the Beck-Fiala setting)
satisfying a certain pseudo-randomness condition.
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4.1 Discrepancy of Sparse Pseudo-random Hypergraphs

In this section, we consider 0/1 matrices that satisfy a certain regularity property, namely,
for most rows, the sum of their entries in any subset of columns is close to the sum of the
full row scaled by the fraction of columns in the subset. This property is satisfied, e.g., by
the matrices that correspond to sparse random hypergraphs. In particular, we show the
following.

» Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A € {0,1}™*™ such that
HAJHl < k. Suppose there exists § < k s.t. for any S C [n] and any ¢ > 0, the number of
rows of A with

| > ait) = sl - (1S1/m)| = 8 (5)
jeSs

is at most ¢=2|S|. Then disc(A) = O(VE + B).

Proof outline. At a high level the proof is similar to that of Theorem 4, using a weighted
potential function. However, rather than just two potentials, we will have to consider a
combination of O(logn) potentials, and it will take some care to make sure this doesn’t create
an overhead in the discrepancy. We note that the main algorithm remains: at each step

choose a vector in a subspace defined by a set of constraints based on the current vector x;.

We next discuss the details of the algorithm and the proof of Theorem 6. The full proof
can be found in the arXiv version of this paper [8].

Partitioning rows according to £;-norm. First, extend A such that for each original row
a;, there are two rows a; and —a; in A. Since our goal is to prove discrepancy O(\/E),
we can ignore all rows will £1-norm less than Vk. Then m < nv'k because the number of
rows with £;-norm greater than v/k is at most 2nk/vk = 2nvk. Let N = [log, n/k] and
Q = {0} U [N]. Partition the rows of A into based on their initial ¢;-norm into |Q] = N + 1
classes:

Ao ={i €T :Vk < |ai||, < 2k}.

For each i € [N], let A; = {i € T :2'k < ||a;]|, < 2°"k}.
The sum of ¢;-norms of rows in A is at most 2nk, therefore for any i, 2'k|A;| < 2nk and
|Al| < 21—in,

We create N + 1 potential functions {®;(¢)}¥,, one associated with each row partition.

The potential functions use the same p, by parameters, and A = cbg with ¢ = 1/42, but have
different rate of change of barrier functions d,(-), based on g. We will run Algorithm 2 on
each partition separately but use the same x; and v; at each step. In this case, we can select
parameters to ensure that each potential function is decreasing in expectation (see Lemma
18). However, there might not exist a vector v; that ensure that moving in v, direction
decreases all the potential functions simultaneously. To deal with this, we use a weighted
combination of ®, as the potential function:

d(t) = % Do (t) + Y 2% Dy (1), (16)

q>1

1:13
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4.1.1 A suitable subspace

To identify the constrained subspace for the PotentialWalk (Algorithm 6), we use the following
definitions. The set of Active rows is defined as 7, = {i € T : )y, |a;(j)| < 12k}. For each
class g, let h, : R — R be a non-increasing function such that for every subset S C n, at
most n¢/16 rows i from class A, violate the condition

D laii) < 1] hg(1S]). (17)
jES
While following the general framework from Section 2.2, we make three crucial changes:

Move orthogonal to rows with large deviation. At step t, the ¢; norm of row a; will
be close to (n¢/n) - ||a;||; for most rows. Let a;; denote a vector in R™ with j-th entry
ljev,a;(4), ie., a; ¢ is row a; restricted to the alive coordinates at time ¢. Then the set of
large deviation rows consists of rows that deviate significantly from this expected value

By ={i € Z:[|laisll, — llailly - (n:/n)] = 45}. (18)

For any ¢ € [T], (5) implies that dim(B;) < |n;/16].
Ignore Dead rows. As soon as the £1-norm of some row becomes less than 83, we drop it
from the potential function. The set of dead rows at step t is defined as

Dy={ic€T: |lai, <86} (19)

For a dead row, rather than keeping track of its discrepancy using a slack function, we
uniformly bound the the additional discrepancy gained by a row after it becomes dead.
Block rows based on their initial size. For ¢ € Q, let C} be the subset of A, N Z,
corresponding to the |2°7%n? /n| smallest values of {s;(t) : i € A, NZ;}, and let J! =
Al\{Ct" U 'Dt}.

We are ready to state the algorithm for selecting v;.

Algorithm 3 Algorithm for Selecting v;.

1 Let hy(ng) = 2972 /n and w,(t) = 25~ 1 (%)1/4
2 fort=1,...,7T do
3 Let Wy ={w e R" : w(i) =0, Vi € V;} // restrict to alive variables
4 Let Uy = {w € Wy : (w,2¢chbpes; — a;) = 0,Vi € Cp and (w, z,) =0}
// restrict to large slack rows
5 Let Yy = {w e W; : (w,a;) =0,V¥i € I\Z;} // move orthogonal to large norm
rows
6 Let Gy = {w € W; : (a;,w) =0, Vi € B;}
// move orthogonal to large deviation rows
Let Z: =U; N Yy NGy and let W = {wy,...,w,} be an orthonormal basis for Z;
Let vy € W such that for all ¢ € Q,

> " (2cboeri — i ve)si(8) P < Swy(t) - hg(ne) > si(t) P (20)

e/ i€J!




N. Bansal, A. Laddha, and S. Vempala

4.2 Proof Outline

The following lemma bounds the number of active classes at step ¢.

» Lemma 14. At step t, the following two conditions hold: (i) The number of classes q for
which Ay N{Z\{B: UD;}} # 0 is at most log(16n/nt) and (ii) hy(t) = 2972k /n satisfies (17)
for all g € Q.

So at any step t, the set of active rows is from the first log,(16n/n;) classes of rows.

It also helps us define two important parameters associated with a row class ¢q. At step ¢,
consider a ¢ € Q with A, N{Z,\{B, UD,}} # 0.

Since n— 8%t —1 < ny < 16-279n, for ¢ > 1, let ¢, := max {0, nd2(1-16-279— 1/n)}

Similarly, let tg := nd—2 (1 —16k~1/2 — l/n)
On the other hand, ¢ must satisfy 29 < f—f. Let g, := argmax;>o {2i <16- (n/nt)}

The next two lemmas are analogous to Lemma 10 and Lemma 13, respectively.
» Lemma 15. For any t € [T, it holds that dim(Z;) > [n:/2].

» Lemma 16. For allt € [T, there exists v, € Z; such that Vg € Q,
D (2cboeri — i i) si(t) P < Swg(t) - hg(ng) > si(t) P (21)
ieJ! ieJ?

Note that for any row i € A,, at t < t,, (2cboe;r — a;,v¢) = 0. So, we can set df = 0 for
rows in class ¢. Lemma 11 and Lemma 16 imply that for all the potential functions to be
decreasing, it suffices to have

0 ift <t
d1(t) = Bt (22)
4(p+1) - wy(t) - hq(ne) - max;e 7 5;(t)~t  otherwise.

The next lemma helps us bound the rate of change of b,(t), which eventually gives a
bound on b,(T) in Theorem 6.

P
» Lemma 17. For anyt € {0,...,T}, if D(¢t) < 8n (%) (13—:‘), then

I L el (nﬂ) ifg=0
max s;(t)" " <

. a - 1+(15—3q)/ 3/p .
e (N

P
» Lemma 18. For p =8 and d, given by (22), for allt € [T], we have ®(t) < 2'n? (%) .

Proof of Theorem 6. If row ¢ € A, becomes dead after step ¢ — 1, then

ai xr)| < s x|+ [(aF, a7 — 24)| < bi(q) +2 ) lai(4)] < br(q) + 168.
JEV:

Substituting the bound on max;e 7 s5;(t)7! from (23), and using wg(t) = 2°79/* . (n/n;)'/*

and hy(t) = 2972 /n, equation (22) gives d,(t) = 0 for t < t,, and

5/8
i ok - 23‘771:314 e if ¢g>1andt >t
’I(t - 9 gld n 5/8 .
9k8%<m) if g =0 and t > t,.

1:15
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For any ¢ > 1, summing up d,(-),

T-1 T . 93q/4+12+(15—3q)/8 5/8
9k - 2°1
by(T) = bo + 62 § d,(0) < 52/ ( " ) dt

tth t:tq leo n — 52t - 1
- /nz ok . 934/8+14 n 5/8 b 920
=0 t=582t, ’nbo n—t—1 - bo '

For by = 2'%Vk, b,(T) < 2"k for all ¢ > 1. Similar calculation for ¢ = 0 show that
bo = 2'°Vk and br(0) = 21k suffice.

Let x € {—1,1}™ be obtained from z7 by the rounding z(j) = sign(xr(j)). Since T' =
(n—2)/62, |zp|* = n—2 with |zp(j)| < 1 for all j € [n]. After rounding z7 to z, ||z|* = n
and |(a;, z)| < [{as, o) + (@i, ¢ —2r)| < 200 + 166+ 3 |2(5) — 27 (j)| < br +165+2. <

Random and Semi-random Sparse Hypergraphs. This gives an alternate proof of the
result [32] of Potukuchi that disc(#) = O(VE) for regular random k-regular hypergraph #,
on n vertices and m edges with m > n and k = o(ml/ 2). In particular, Potukuchi showed
that such hypergraphs satisfy condition (5) with high probability.

Proof of Theorem 7. By the subadditive property of stochastic discrepancy, disc(A + C) <
O(VE) + O(y/tlogn). However, this bound is not algorithmic because it requires running
the algorithm separately on A and A, — A. <
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A Appendix: Proof of main theorem

Proof of Lemma 11. We will prove this by induction. Clearly, this holds at ¢ = 0 as
®(0) < 2m(2/bp)P. For the inductive step, we will show that for any j =0,...,7 — 1, if
®(5) < 4m(2/bg)P then

B+ 1) < 80 + 1y + T\ (f) | (24)

Note that |Z;41\Z;| is the number of additional rows in Z° that may become alive at step j.
This gives the result by induction as summing (24) over j =0,...,T — 1 will give

— 1 2\" = 2\" 1 2\”
P(t+1) < P(0 — — i \Z;| <2m- | — — <dm-{— | . (25
(t+1) < <>+;0Tbg+(bo) 3. o\ < 2m () +g<am(z) - @

We now focus on proving (24) for j = t.
By the induction hypothesis, ®(t) < 4m (2/by)”. By Lemma 19, one of the signs for ;1

p
gives E(®(t +1)) = ®(t) < f(t) + 7 + |Ti41\Til - (%) , where

’ 2 (2 52 i —{ai, 2
)y = —pp2 3o AN | PR B ) )

1€Ls 1€Ls

So to prove (24), it suffices to show that f(¢) < 0. We first consider the case when b, d; and
p are given by (13). As 2X(et;,v) — (a;,v,) =0 for all i ¢ J;, f(t) satisfies

2 @) D2
i+ Mo, v "), pp+1)0 max s, (t)
s;(t)ptL 2 JET

1 Z ((2Xet,; — ai,vt))Q.

si()PH

ft) < —pd® >
€Tt €Tt

(26)

By a simple averaging argument described in Lemma 13, we also have that

3 (2X\(ewi, ve) — (ai, ve)) <y 8h(n) (27)

si()Pr si(t)prt

i€Ly i€ZLy

Plugging (27) in (26) gives
2
R D R e LIUIED e L3 (28)

i€Jt

Therefore, if d; satisfies equation (13), then f(¢) < 0.
We now consider the case in (14). As v; € Gy, we have

<a(,2)7 Ut(2)>

3

S; (t)p+1

2X{es i, v1) — (a;, vy
Z( (eri,ve) — {ai, vy))

2
Si (t)p+1 = 40- Z

€Tt

(29)
i€Jt

Next, as d; = 0 and A = by/42, (26) and (29) give
2/,(2) ) (2)
Fiy < SR u )
si(t)IH’l

b
= 4 20(p+1) - maxs; (t)‘l) .
1€ET

42 jed:

So if by satisfies equation (14), then f(¢) < 0. <
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Proof of Lemma 12. By the definition of J;, for any i € J;, there are at least [n;/12| +1
indices j in Z; such that s;(t) < s;(t). Therefore,

1 1
1 120(t) \ » 2 (4 »
max < ®) < - Asm ) (30)
i€ si(t) T bo \ ny
where the last inequality follows by the assumption, ®(t) < 4m(2/bg)P. <

Proof of Lemma 13. Using (a+b)? < 2(a?4b?), and as [2Xer;(5)] = [2Aa; (5)% 2+ (5)] < |a:i(5)]
as |a;(j)| < 1/2 for any j and i € Z%, we have that for any w,

(2Xer; — a;, w)? 2(a;, w)? + 2(2Xes i, w)? {a;, w)?
—_— < : <4
2 <> ; >

s;(t)PH1 i(t)PH = si(t)prT

i€Jt i€Jt €Tt

Let Wy = {w1,...,wg} be an orthonormal basis for Z; and k = dim(Z;). As Z; C Vy,

Z Z§:1<ai,wj>2 < Z Zjevt ai(j)? < Z h(ny)

. +1 . +1 +1°
€Tt Sz(t)p i€Tt Sz(t)p i€Tt (t)p

where the second inequality uses that > .y, a; (7)? < ny - h(ny) by the definition of h.
As k > [ny/2], this gives

k
1 2)\et i az, wi): omy 4h(nt) 8h(ny)
— < — < .
D P e T

The result now follows as v; in (12) minimizes Y, - (2Xer; — az, w;)?s;(t) P! over all
w; € W;. <

Proof of Lemma 10. To lower bound the dimension of Z; we lower bound the dimensions
of Uy, V; and G;.

First, we have dim(U;) > ny —dim(Cy)—1 > [11n:/12]—1. Second, at time ¢, as the sum of
e, a;(7)? < 2n;. So the
a;(j)? > 20 is at most |n;/10] and dim(Y;) > n; — [n;/10] =

{o-norm square of all columns is at most 2n;, we have that ), >~
number of rows a; with >
[9n:/10].

We now bound dim(G;) by applying Lemma 9. Let G denote the matrix with columns j
corresponding to variables in V, and rows ¢ restricted to ¢ € J; with (4, 7) entry (2Xe;;(j) —
ai(5))s:(t) "/,

Let H be the matrix with entries a;(j) - s;(t)~®?tV/2 for i € J;} and j € V,. As
la;;] < 1/(2X) for i € Z;, we have

JEV:

|Gl = 122ai ()24 () — a;(D)] < [22a5(7)*xe (7)] + laj (0)] < 2]a;(i)] = 2|Hij).

Let K = diag(H " H). Then, using Lemma 9 with o = 2 and 3 = 1/10, we get that there
is a subspace G; with dim(G;) > [9n,/10] such that G; = {w € W, : w ' GTGw < 40-w ' Kw},
which by the definition of G and H is equivalent to that given by (11).

Putting together the bounds on the dimensions of these subspaces gives,

Proof of Theorem 1. Recall that we divide each row a of A as a = a° 4+ a”. We will bound
(a*,z7) and (a®, x7) separately.

APPROX/RANDOM 2022
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Let t; denote the earliest when the squared norm of a” (restricted to the alive variables)
is at most 20, and let n; be number of non-zeros in a” restricted to the set Vi,. As
la®(4)] > 1/(2]) for each j, the number of non-zero variables n; in a” at time ¢; is at most
80MA2, as np/(4M?) < Zjevtl a*(7)? < 20. Moreover, as a” incurs zero discrepancy until ¢,
the overall discrepancy satisfies

[(a®,2r)| = Ha® we) + [a® or — 2| < Vi (Y ab()*)M? <80A<3b.  (31)

JEVH

Henceforth, we focus on the rows a®. We first show that the slacks are always positive.
1
Let v = by/4(4m)?. By Lemma 11, for all ¢t € [T], ®(¢t) < 4m(2/by)? < ~P. This implies
that |s;(t)| >~ for all i € Z and t € [T]. In one step of the algorithm,

|si(t) — si(t — 1)| < 8*de—1 + [{as, ze) — (@i, 24-1)|
S 52dt_1 + |5<ai,vt_1>| S 20n0 S 2’}/

So, if s;(t —1) > v and ®(t) < v~ P, then s;(t) > 0, i.e., the slack s;(¢) cannot go from being
greater than 7 to less than —y in a single step. So, for every i € Z° and t € [T, s4(t) > 7 and
{a;,z7) < bp. Together with (31) this gives, |(a, z7)| < [(a¥, 27)| + |(a’, z7)| < by + 3b.

Let € {—1,1}" be obtained from zr by the rounding z(j) = sign(zr(j)). As T =
(n—2)/8%, ||ar|* = n—2 with |z.(j)| < 1 for all j € [n]. After rounding z7 to #, we have
|z||* = n. For any row a of A, the discrepancy is bounded by

@, 2)| = [(a, 21)| + [(a, 2 — xr)| < [{a,x0)| + MY |2(j) — 21 (§)] < br + 3bo + 2M.
=1

We now consider the two cases for by, di, p. If the second case given by (14), then by (30),
bo < 1680(p + 1) - (48m/ny)*/?/by. As ny > 1 for all t € [T] and p = log(2m), we have
(48m/nt)1/p < 10e, and setting by = 2504/log(2m) suffices. Since d; = 0, by = by and
| Az, < 4bo+2M.
In the first case given by (13), then by (30), we have d; = 8(p + 1)(48m)% . b};;#/)p for all
t

t € [T]. Summing d; over t gives

T—1 T—1
by —bo =02 dy = 8(p+1)(48m) 762 - > h(ny)/(bon;’?).
t=0 t=0

As ny > n — 6% — 1 > and h is non-increasing, 42 - Z;_Ol h(nt)nt_l/p < B, so that by <

bo + 8(p + 1)(48m) /P 3/by. Optimizing by = (8(p + 1)(48m)'/?3)'/2 gives that by = 2by and
thus ||Az|| < br + 3bg +2M < 5by + 2M, giving the desired result.
<

Proof of Corollary 8. For a constant h, we have 5 = f0n72(n—t)_1/phdt <n'=Ph/(1-1/p).
Choosing p = log(2m/n) to optimize the first term in (4) gives the result. <

A.1 Sub-Gaussian Matrices and Random Matrices

Let X be a random variable with E(X) = 0. X is called Sub-Gaussian with variance o2 if
its moment generating function satisfies E(e*X) < €7 *°/2 for all s € R. For a Sub-Gaussian
random variable, E(X?) < 402
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Proof of Theorem 2. As a;(j) is a Sub-Gaussian with variance o2, a;(j)% — E(a;(j)?) is a
mean zero and sub-exponential random variable with parameter 1602 [36].

For any S C [n] with |S| = s, Bernstein’s inequality for sub-exponential random vari-
ables [36] (Theorem 2.8.1) gives that,

Pr(z a;()? = E(a;i(4)?) > st) < exp(— min(s*t?/160?, st/160%)). (32)
JjES

Setting t = 9602 (log(ne/s) + (logm)/s) and as E(a;(j)?) < 402, and taking a union bound
over all the rows and all possible subsets of s columns, we get that,

> ai(j) < 1000°|S| (log(ne/|S|) +logm)/|S])) (33)
jes

for every S C [n], i € [m], with probability at least 1 — 1/2m?.

Similarly, as a;(j) is sub-Gaussian with mean 0 and variance o2, with probability at least
1 —1/2m?, we have |a;(j)| < 30+/log(mn) for all i € [m],j € [n], and thus the ¢>-norm of a
column is at most L = 3y/mo+/log(mn) and M = 30+/logmn. By (33), we can set

_ 9 ne logm
h(t) = 1000 <log( - ) n ) .

t

A direct computation gives § = On_Q h(n —t)(n — t)~YPdt = O(c?(n'~/? + plogm)).
Using Theorem 1 with p = 2[log(2m/n)], gives by = O(a(p(m/n)"/?(n +n'/Pplogm))'/?) =
O(on'/?log(2m/n)).

Thus, with high probability ||Az|| < (5bg +2M) = O(o+/nlog(2m/n)). <

Proof of Theorem 3. Consider a random vector X chosen uniformly at random from the
unit ball, {x € R™ : ||z||, < 1}. Then every coordinate of X is sub-Gaussian with variance
0% = C/\/m, where C is a constant [36] (Theorem 3.4.6, Ex 3.4.7). The result now follows
from Theorem 5. <

A.2 Subadditive Stochastic Discrepancy

Proof of Theorem 4. Let ®;(t), ®2(t) be the potential functions corresponding to A and
B, respectively. Let the parameters for Algorithm 2 on A be b}, p1,d;, hi(+) and for B be
b%7p27 d%a hQ()

Note that it might not be possible to select an update v; at time ¢, that ensures that
both ®1(t+1) < ®4(t) and Pt +1) < Po(t) hold, but we can find a v; for which a weighted
sum of ®;(t) and Po(t) decreases at every step.

Consider the potential function ®(t) = (b§/2)"" ®1(t) + (b3/2)P2®2(t). We apply the
same algorithmic framework. For ¢t = 1,...,T , select v; such that E(®(¢ + 1)) < ®(¢), and
select the sign of € for which ®(¢+1) < ®(t), and set x111 = 2+ +edvy. To this end, it suffices
to find a vy such that E(®1(t + 1)) < ®1(¢) and E(Po(t + 1)) < Po(t).

Let Z! and Z?2 be the feasible subspaces at step ¢ for A and B respectively from Algorithm

2. We will search for v; in Z, = Z}! N Z2. By Lemma 10, dim(Z}),dim(Z?) > [2n;/3].

Therefore, dim(Z;) = dim(Z} N 22) > [2n¢/3] + [2n4/3] — ny > ny/3.
Using Lemma 13 on A and B, along with Markov’s inequality implies that there exists a
vector w € Z; such that

(2cbyer; — a;,w)? 25h1 (ny) (2cb3er; — a;,w)? 25ha(ny)
> s (P11 <> s, ()P and ) 5, (£)P2+1 <> si(t)petl’
€z} €1}

ie€Z} i€}
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(34)

Comparing (34) with (15), the functions k() and hs(-) only increase by a constant factor
when compared to running Algorithm 2 on A and B independently. So it suffices to multiply
d} and d? by 4 to ensure that by Lemma 11,

and  E[D(t)] — Ba(t — 1) < s — (35)

E[®1(t)] — ®1(t — 1) < Tt

1
Tn(bg)"
Plugging (35) in the definition of ®(t), we get E[®(t)] — ®(t — 1) < 2/(Tn). So one of the
two choices of x; gives ®(t) — ®(¢t — 1) < 2/(T'n). Summing over ¢,

B(t) < (0) + % < (bj)p 1 (0) + (bf)p B5(0) + %

By Lemma 19, ®1(0) < 2m-(2/b})P* and ®(0) < 2m-(2/b3)P2, thus ®(¢) < ®(0)+2/n < 5m.
For a row i € J/ for £ € {1,2}, we have (|n;/12] +1) - (b§/2)P - 5;(t)~P* < ®(¢) < 5m, which
implies that for any ¢, and ¢ € {1,2},

1
2 [/60m\ re
52?7? ()7 < bé ( ny ) . (36)

Upon comparing (36) with (30), notice that maxc 71 si(t)~! and maxje 72 si(t)~! are

only a constant factor larger when compared to running Algorithm 2 on A and B separately,
and hence the discrepancies for both A and B are only a constant factor larger. |

B Appendix: Bounding the step size

» Lemma 19. For A € R™*",
D P
o(0) + X, [T \Tl - (2) <2m- (2)
P
Forallt € {0,1,..., T —1}, if ®(t) < 2"m? (%) and dy = O(pn - max;e 7, s;(t)~1), then
for step size 62 < (Cn?mSp*)~1,

P
E(@(t+1))—o(t) < f(t) + ﬁ + | T 1 \Ze | - (;()) , where
0

2 (2 2 g )2
() = 52 S di + cbola;, vy ") | plp +1)d T (2¢boer,i — ai,vy)

si(t)PH si(t)P+?

1€Ls i€y



Fourier Growth of Regular Branching Programs
Chin Ho Lee &
Harvard University, Cambridge, MA, USA

Edward Pyne &
Harvard University, Cambridge, MA, USA

Salil Vadhan =
Harvard University, Cambridge, MA, USA

—— Abstract

We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted Li ), of read-once
regular branching programs. We prove that every read-once regular branching program B of width
w € [1,00] with s accepting states on n-bit inputs must have its Lq ; bounded by

min{ Pr(B(U,) = 1)(w ~ 1)", - O((nlogn)/K) 7 }.

For any constant k, our result is tight up to constant factors for the AND function on w — 1 bits,
and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k =1
we have L1,1(B) < s, with no dependence on the width w of the program.

Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs).
Furthermore, we obtain an explicit generator for unordered permutation branching programs of
unbounded width with a constant factor stretch, where no PRG was previously known.

Applying a composition theorem of Blasiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM
2021), we extend our results to “generalized group products,” a generalization of modular sums and
product tests.
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1 Introduction

Every Boolean function f: {—1,1}" — {0,1} can be identified by its unique multilinear
extension

f@) =3 7 [ =
SC[n) ies

where the coefficients

f9) = B |f@]]=
z~{—1,1}7 :
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are called the Fourier coefficients of f. Over the past few decades, the analysis of these
coefficients of Boolean functions has become an indispensable tool in theoretical computer
science and mathematics. We refer the readers to the excellent textbook by O’Donnell [46]
for a broad introduction.

Given the wide applicability of this tool, researchers have proposed and analyzed different
quantitative measures of Fourier coefficients of Boolean functions. In this work we focus on
the Ly Fourier norm at level k:

» Definition 1 (L; Fourier norm at level k). The L; Fourier norm of a function {-1,1}" —
{0,1} at level k is

Lis(f):= Y 1JS)

SC[n]:|S|=k
For a function class F, we use Ly ,(F) to denote maxser L1 1 (f).

The notion of Fourier growth is a convenient way of capturing the growth of L; ; with
respect to levels k.

» Definition 2 (Fourier growth). A function class F C {f: {-1,1}" — {0,1}} has Fourier
growth Ly(a,b) if L1 1(F) < a-b* for every k.

By the Cauchy—Schwarz inequality, every Boolean function has its L; ; bounded by (2) 1/2

and thus has Fourier growth L;(1,/n).

Fourier growth was first studied by Mansour to obtain sample-efficient algorithms for
learning DNFs [42]. Tt was later formally introduced by Reingold, Steinke and Vadhan in [51],
where they constructed explicit unconditional pseudorandom generators for permutation

)

branching programs. Subsequently, this notion has led to many exciting developments in
learning theory [36, 25] and pseudorandomness [19, 16, 26, 18, 15]. In recent years researchers
have also discovered new applications to other areas such as separating quantum and classical
computation [50, 59, 5, 54, 27], and proving correlation bounds with the Majority function
(and its variants) [17, 15, 61].

Thus given a function class, it has now become a natural question to analyze its Fourier
growth. Indeed, in the past decade it has been shown that several well-studied classes of
functions exhibit bounded Fourier growth. These include (parity) decision trees [47, 7, 59, 54,
28], constant-depth circuits [42, 58], subclasses of low-degree Fa-polynomials [16, 28, 15], low-
degree real polynomials [36, 25], functions with bounded sensitivity [32], product tests [37],
and read-once branching programs [51, 57, 19].

Motivated by derandomization of space-bounded algorithms, in this work we continue
the line of research on the Fourier growth of read-once branching programs.

» Definition 3 (Read-once branching programs). An (unordered) read-once branching program
B of length n and width w computes a function B: {—1,1}" — {0,1}. On input x € {—1,1}",
the program B fizes a permutation 7: [n] — [n] and computes as follows. It starts at a fized
start state vy € [w]. Then fort =1,...,n, it reads the next input bit x;) and updates its
state according to a transition function By: [w]x{—1,1} — [w] by taking viy1 1= Bi(vg, Tr(p))-
Note that the transition function By can differ at each time step. The program has a fized
set of accept states Viee C [w], and B(x) = L(vpt1 € Vace)-

For a branching program B of length n and width w, we will view it as a directed layered
graph with n + 1 layers of vertices denoted by Vi,...,V, 11, each consists of w vertices. For
every two consecutive layers V; and Vi1, every vertex u € V; has two outgoing edges labeled
by b € {—1, 1}, where the b-edge goes to the vertex B;(u,b) in Vi11.
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As we will not consider non-read-once branching programs in this work, henceforth we
will often omit the word “read-once” and use “branching programs” to refer to read-once
branching programs for simplicity. Furthermore, as the Fourier growth of a function is
unaffected by reordering the input bits, for the purpose of establishing L; ; bounds we can
restrict our attention to the case where 7 is the identity permutation.

A well-studied subclass of branching programs is the class of reqular branching programs.
This model has received a lot of attention in the literature [52, 21, 56, 13, 51, 9], in part due
to the fact that pseudorandomness against this restricted subclass sometimes suffices for
pseudorandomness against general branching programs, and hence the derandomization of
space-bounded computation [52, 9].

» Definition 4 (Read-once regular branching programs). A read-once regular branching
program is a read-once branching program where for every time step t and state v € [w],
there are exactly 2 pairs (u,b) € [w] x {—1,1} such that Bi(u,b) = v.

Note that the underlying graph of a regular branching program forms a regular directed
layered graph. A more restricted class that has also been well-studied is the class of
permutation branching programs, where in addition to being a regular graph, the (—1)-edges
and 1-edges between every two adjacent layers in the graph give rise to two permutations
on [w].

» Definition 5 (Read-once permutation branching programs). A read-once permutation
branching program is a read-once reqular branching program where for every time step t and
pair of states (u,u’), if Bi(u,b) = B(u',V') then either u=1u' or b#b'.

A recent line of works constructed explicit pseudorandom objects for regular and per-
mutation branching programs of unbounded width with a bounded number of accept
states! [34, 48, 49, 9], a model for which prior to these works even non-explicit constructions
were not known to exist. Motivated by these results, we investigate the Fourier growth of
these same models.

1.1 Our results

We obtain near-optimal L, ; bounds for regular branching programs of any width, improving
the bounds in [51] and obtaining the first non-trivial bounds for unbounded width programs.

» Theorem 6. Let B: {—1,1}" — {0,1} be a regular branching program of width w € [1, o0
with s accept states in its final layer. Then

k—1
2

L1 x(B) < min{Pr[B(Un) =1]- (w—1)* s-0((nlogn)/k) }

1 2

Note that the two bounds are incomparable: the first bound is independent of the input
length n, and the second bound is independent of the width w. The first bound is tight
for the AND,,_1 function on w — 1 bits, which can be computed by a width-w permutation
branching program, since

L1 j(AND,_) = 2= (=1 <w; 1> = Pr[AND,_1(Up_1) = 1] - <“’ . 1>.

! Note that unbounded width permutation programs with an unbounded number of accept states can
compute arbitrary Boolean functions.

2:3
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For k = 1, our second bound can be sharpened to s - Pr[B(U,) = 0] (see Theorem 21).
We complement Theorem 6 by a lower bound showing that our second upper bound is in
k—1

fact tight up to a factor of ©4(1) - (logn) =z for k > 2, even for the restricted subclass of
permutation branching programs.

» Proposition 7. For all positive integers k,n, and s where s < vVkn, there exists a
permutation branching program B: {—1,1}" — {0,1} of width ©(V'kn) with s accept states
such that Ly ;(B) > T Qn k)2 = (1) - s - nz.

We now make some remarks on Theorem 6. Previously, Reingold, Steinke and Vadhan
proved an upper bound of (2w?)* [51]. Hence, our first upper bound improves their bound
on two fronts. Our first improvement is a quadratic sharpening on the dependence on
the width w. Our second improvement is the additional acceptance probability factor in
our bounds, which, as we will discuss in the next section, has further implications. L j
bounds with a dependence on the acceptance probability have proved to be useful, both
in extending the bounds to higher levels &’ > k [19] and extending the bounds to other
classes of tests [37, 8]. Indeed, we obtain both our L bounds for k > 1 by applying the
reduction in [19] to bounds at a lower level, and this reduction requires obtaining an L;
bound that scales linearly with respect to the acceptance probability of the function. We note
that functions admitting L; ; bounds that scale linearly with acceptance probability include
arbitrary Boolean functions [46, 37], constant-width read-once branching programs [19],
Fy-polynomials [28, 8], and product tests with outputs {—1, 1} [37, 8]. Therefore, Theorem 6
adds the class of regular branching programs to this list.

Our second upper bound gives the first non-trivial L; ; bounds for regular branching
programs of unbounded width. Recall that every bounded function has its L; ; bounded by

(%); so this upper bound is interesting only when s = o(+/n/(k(logn)k—1)).

Proposition 7 follows from the observation that symmetric Fo-polynomials of degree w
can be computed by a permutation branching program of width at most 2w [6], where Lq j
lower bounds on the former class were recently established in [8]. For the same reason,
Theorem 6 recovers the L; j, bounds for symmetric Fo-polynomials in [8, Theorem 8] with a
different proof.

1.2 Applications

We describe several consequences of Theorem 6.

1.2.1 Coin problem

Let X5 = (X4,...,X,) be the distribution over {—1,1}", where the X;’s are independent and
each X; has expectation §. The d-coin problem studies the maximum advantage for a function
class F to distinguish between the distributions X5 and Xy = U,,. This basic problem has
been studied extensively for various restricted classes of tests, and has a wide range of
applications in computational complexity, including circuit complexity [4, 60, 53, 40, 29],
pseudorandom generators [14], quantum computing [1, 2], streaming algorithms [11], and
multiparty computation [20]. In particular, there has been a rich line of work on the coin
problems for branching programs [14, 55, 38, 11, 12].

It is known that bounds on the Fourier growth of F imply bounds on the distinguishing
advantage for the coin problem of functions in F (see [37, Fact 9]). Thus we obtain the
following corollary of Theorem 6.
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» Corollary 8. There exists a constant a > 0 such that the following holds. Let B: {—1,1} —
{0,1} be a regular branching program of width w € [1,00] with s accept states. For every

§ < amax{1/w,1/y/nlogn}, we have
|E[B(X5)] — E[B(Xo)]| < 65+ 6% O(min{w2, sy/nlog n})

Moreover, Avishay Tal showed (see [3, Lemma 9]) that if a class F is closed under
restrictions, then L; ; bounds on F already implies bounds on the coin problem for F. Since
the class of permutation branching programs is closed under restrictions, we obtain the
following stronger coin problem bounds for that class:

» Corollary 9. Let B: {—1,1} — {0,1} be a permutation branching program with s accept
states. Then |E[B(X;s)] — E[B(Xo)]| < 125 s .

> Claim 10. For every 6 > 0 and positive integer s < 32/4, there exists a permutation
branching program B of length 32/§% and width 128/§ with s accept states such that

E[B(Xs)] - E[B(Xo)] > 1355-

Corollaries 8 and 9 can be interpreted as follows. Regular (and permutation) programs
with a single accept state cannot distinguish (sufficiently small) biased coins from uniform
much better than simply outputting their first input bit.

Previously Braverman, Rao, Raz, and Yehudayoff [13] obtained a coin problem bound
of § - s (w—1) for width-w regular branching programs with s accept states. Corollaries 8
and 9 improve this to roughly § - s when ¢ is very small (Corollary 8) or when we restrict to
permutation branching programs (Corollary 9). Claim 10 shows that the upper bound in
Corollary 9 is tight up to constant factors.

1.2.2 Pseudorandom generators

Theorem 6 also implies new pseudorandom generators for permutation branching programs.

» Definition 11 (Pseudorandom generators). A function G: {0,1}* — {—1,1}" 4s a pseudo-
random generator (PRG) for a function class F with seed length s and error ¢, if for every

ferF,
[ELf(U.)] = B[f(GU))]| < e

G is explicit if it can be computed in polynomial time.

Recall that we consider unordered branching programs, where a program can read its
inputs in arbitrary order before its execution. Starting from the work of Bogdanov, Papakon-
stantinou, and Wan [10], there has been extensive research on constructing pseudorandom
generators for unordered branching programs [10, 35, 51, 57, 33, 39, 19, 43, 26, 22, 37, 23, 24],
in search for new ideas for improving Nisan’s PRG for ordered branching programs [45],
which remains the best PRG for derandomizing space-bounded computation to date. This
line of research recently led to the first improvement over Nisan’s PRG for the special case
of width-3 (ordered) branching programs [43].

Applying our L, bounds to the “polarizing random walk” framework of [16, 18, 15], we
obtain the following pseudorandom generator.

» Corollary 12. There is an explicit pseudorandom generator for width-w permutation
branching programs with seed length w? - O(log(n/e€))(log(1/¢€) + loglogn) and error e.

2:5
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Corollary 12 gives a slight improvement on the PRG given by [16], reducing the dependence
on width from w* to w?, stemming directly from the L; x(B) < (w—1)¥ bound in Theorem 6,
which improves the L; x(B) < (2w?)* bound of [51]. (Corollary 12 is for permutation
branching programs rather than regular branching programs, because the polarizing random
walk framework requires that the class is closed under restriction). By the reduction of [9], this
also implies a hitting set generator (HSG) for permutation branching programs of unbounded
width with seed length O(1/€?) - log(n/€)(log(1/€) + loglog n), quadratically improving the
dependence on €. (An ¢-HSG for a class F is a function G: {0,1}* — {—1,1}" where for all
f € F with Pr[f(U,) = 1] > € there is an = € {0,1}*® such that f(G(z)) = 1.)

From Corollary 9, we also obtain the first nontrivial pseudorandom generator that fools
unordered permutation branching programs of unbounded width with constant factor stretch
and constant error.2 For simplicity we state our result for constant error, and do not optimize
constants.

Let H(z) := zlog(1) + (1 — x)log(1X-) denote the binary entropy function.

» Theorem 13. Given any constant § € (0,1/2) independent of n, there is an explicit PRG
for unordered permutation branching programs with a single accept state with seed length
H(1/2+0.4996) - n+ o(n) and error {25 + %,

This is proven by noting that with the specified seed length, we can approximately sample n
independent d-biased coins, which are pseudorandom by Corollary 9. We are not aware of
any PRGs prior to our result.

As mentioned above, there exist explicit hitting-set generators (HSGs) with better seed
length for this class [9]. For the easier case of ordered permutation programs, Hoza, Pyne,
and Vadhan [34] constructed an explicit PRG with significantly better seed length, namely
O(logn - log(1/€)).

We note that our results do not give any PRGs for regular programs, because all of the
methods for obtaining PRGs from Fourier growth bounds require the class to be closed
under restrictions. In particular, even in the ordered setting, it remains unknown whether a
nontrivial PRG for unbounded width regular programs exists.

1.2.3 Generalized group products

As mentioned in the previous section, Ly , bounds with the acceptance probability factor (as
in Theorem 6) are useful for obtaining L, , bounds for wider function classes. To make this
precise, we recall the definition of disjoint composition of two function classes.

» Definition 14 (Disjoint composition). Let F be a class of functions from {—1,1}" to
{~1,1} and let G be a class of functions from {—1,1}* to {—1,1}. Define the class F o G of
disjoint composition of F and G to be the class of all functions from {—1,1}™¢ to {—1,1} of
the form

h(z',...,2™) = f(gi(xh), ..., gm(z™)),
where g1, ...,9m € G are defined on m disjoint sets of variables and f € F.

Blasiok, Ivanov, Jin, Lee, Servedio and Viola [8] proved a composition theorem showing
that if both F and G are closed under negation of their outputs, and F is closed under
restrictions, then L; , bounds with the acceptance probability factor for F and G imply L 4

2 The co-HSG of [9] can be interpreted as an explicit PRG for permutation programs with error 1—1/(n+1).
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bounds on the disjoint composition of F and G. Specifically, if for every 1 < k < K, we have
L1k (f) < Pr[f(Un) = 1] - bk, for every f € F and Ly 1(g) < Pr[g(Us) = 1]- bk, for every
g € G, then for every function h € F o G, we have that

LI,K(h) < Pr[h(Um ) = 1] : (binnerbouter)K-

Therefore, we also obtain new L; j bounds for the disjoint composition of permutation
branching programs and other classes of functions that admit the acceptance probability factor
in their L; , bounds (see Section 1 for a list). As a concrete example of such composition,
we introduce the class of generalized group products.

» Definition 15 (Generalized group products). A function f: {-1,1}" — {0,1} is a (m, £, G)-
group product if there exist m disjoint subsets Iy,..., I, C [n] of size at most £ such
that

fl@) =1 (Hgf’”’” c s) ,
i=1

for some subset S C G, group elements g; € G, and functions fi: {—1,1}1+ — {0,1}. Here
xy, are the |I;| bits of x indexed by I;.

Note that generalized group products are unordered by definition. They are a generalization
of several function classes that have received some attention in the past, including modular
sums [41, 44, 30] (when G is the cyclic group and ¢ = 1), product tests with outputs {-
1,1} [33, 38, 39, 37] (when G = {—1,1}), and unordered combinatorial shapes [31, 30] (when
G= Zm+1)'

An (m, ¢, G)-group product can be written as the disjoint composition of a width-|G|
permutation branching program and arbitrary Boolean functions on ¢ bits. Since both of
these classes admit L; , bounds with the acceptance probability factor, using the composition
theorem of [8] we obtain Fourier growth bounds for generalized group products.

» Corollary 16. Let f: {—1,1}" — {0,1} be an (m, ¢, G)-group product. Then Ly ,(f) <
Pr(f(U,) =1] - O(¢-|G])*.

Corollary 16 extends the Fourier growth bounds for product tests studied in [37] (where
G = {-1,1}). Plugging our bounds into the polarizing random walk framework, we also
obtain new pseudorandom generators for generalized group products.

» Corollary 17. There is an explicit pseudorandom generator for (m, £, G)-group products
with seed length O({ -|G|)? - log(n/e€) - (log(1/€) + loglogn) and error .

Note that an (m,1,G)-group product can be computed by a permutation branching
program of width |G|, and a (m, ¢, G)-group product can be computed by a general branching
program of width w = 2¢.|G|. When £ > 2, we are not aware of any PRG that fools
(m, £, G)-group products better than unordered general branching programs. For the latter
class, the current best PRGs are given by Forbes and Kelley [26] which, with the above choice
of w, have seed lengths O( 4 log(|G|) + log(n/€)) log? n and O(2¢ + |G|) log(n/€) log n. For
comparison, for any error € = O(1), our PRG for generalized group products has seed length
(¢-|G])% - O(log n), which is nearly optimal when ¢ - |G| = O(1), whereas the Forbes—Kelley
PRGs have seed lengths Q(log® n).

Finally, we note that when G = {—1, 1}, there exists a PRG [37, 23] with seed length
O(l +log(m/e€)) + poly(log log(n/€)), which is nearly optimal.

2:7
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1.3 Techniques

Our main contribution is a simple inductive proof for bounding the first level L; ; of a regular
branching program in terms of the number of its accept states and rejection probability.
Specifically, for a regular branching program B of s accept states, we prove that

L11(B) < s Pr[B(U,) = 0]. (1)

We prove Equation (1) by induction on n, the length of the program. We give some intuition
for where Equation (1) came from. Let S be the set of accept states in the final layer. By
regularity, the set of states 7" in the previous layer that lead to S must be at least the size of S.
If they have the same size then the current layer is redundant. So we must have a nonempty
set 11 of vertices that have only one outgoing edge leading to S. Since these vertices also
have one edge leading to the complement of S, they all contribute to the probability that the
program rejects. This suggests bounding L, ; in terms of |S| and the rejection probability.
In the proof we use regularity of the program to relate |S| to |T| and |T3].

Our first L; j bound L x(B) < Pr[B(U,) = 1] - (w — 1)* then follows from the same
inductive argument in [19], where the authors proved L; ; bounds for general constant-
width branching programs. We note that this inductive argument relies on bounding the
L1 of the local monotonization of a branching program [14], which does not preserve the
permutation property. Therefore, even for proving Fourier growth bounds of permutation
programs, to apply this argument it is crucial to establish Equation (1) for the wider class

k-1
2

of regular programs. Proving our second bound L; ;(B) < s-O ((nlogn)/k) 2 is slightly
more involved. Our proof combines the inductive idea in [19] with the “level-k inequalities
of Lee [37] (Lemma 22), which give L , bounds for an arbitrary Boolean function in terms
of its acceptance probability, and the approximator from Bogdanov, Hoza, Prakriya, and
Pyne [9] (Lemma 23).

Given a regular branching program B of unbounded width, as in [9] we first construct a
regular program B’ that approximates B by rejecting all the states in B that can be reached
with probability at most ¢ := 5(1 /v/n). In [9], they observed that the probability that

the program B accepts via any of these “sudden reject” states is at most g. So the error

2

function B — B’ has small acceptance probability, and by the level-k inequalities it has small
L1 . So it suffices to bound the Lq j of the approximator B’. We use the fact that B’ has
at most 1/¢ non-sudden-reject states in each layer, and so the total number of non-reject
states in B’ is bounded by n/q = poly(n). This allows us to apply an inductive argument
to reduce bounding L; 1 (B’) to bounding (roughly) the product of L; ,_1(B’) and Ly 1(B’).
For L; ;,—1(B’) we again use the level-k inequalities, and for Ly 1(B) we use the bound in
Equation (1). Note that while the states in B’ all have reaching probability at least ¢ in the
original program B, some of them may have reaching probability much smaller than ¢ in the
approximator B’. To deal with this, we take a similar approach in [19] to handle states with
small reaching probabilities separately.

Organization

We begin by introducing some notation in the next paragraph. In Section 2, we prove our
L, bounds of regular branching programs (Theorem 6 and Proposition 7) and generalized
group products (Corollary 16). In Section 3, we prove our coin problem bounds (Corollaries 8
and 9 and Claim 10), and construct our pseudorandom generators for permutation programs
(Corollary 12 and Theorem 13) and generalized group products (Corollary 17).
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Notation

When we view a branching program as a graph, we will overload notation and consider the
transition function as a map B;: Vi x {—1,1} — V441 in addition to thinking of it as a map
B;: [w] x {-1,1} — [w]. Similarly, we will often think of the start state v; as being an
element of V; instead of an element of [w], and Vaee C V41 instead of Viee C [w], ete.

For a vertex v in some layer V;, we use B_,, to denote the sub-branching program of length
t — 1 but with v being the only accept vertex. We also use B,_, to denote the sub-branching
program of length n 4+ 1 — ¢ that starts at v and ends in V,, with accept vertices V.

For ease of notation we use u(f) to denote the expectation of f under uniform inputs.

2 L, ; bounds of regular branching programs

In this section we prove our L; ;, bounds for regular branching programs (Theorem 6) and
generalized group products (Corollary 16). We start with bounding the first level Ly 1 of
regular branching programs.

» Lemma 18. Let B: {—1,1}" — {0,1} be a regular branching program of width w € [1, 0]
with s accept states. Then

L1 1(B) < min{s - Pr[B(U,) =0],Pr[B(U,) = 1] - (w —1)}.

Proof. We prove the first bound by induction on n. For n = 0 the bound is vacuous. Now
assume it holds for n — 1 and consider a regular program B(x1,...,z,) with a set S of s
accept states. Define the following 3 subsets 7', Ty and T of states in layer n — 1, where
T is the set of states with both of its edges leading to S, T is the set of states with only
1-edges leading to S, and likewise for T_ and (—1)-edges. Observe that we can write B as

1+ =z,
2

11—z,

2

B(z1,...,xn) = g(T1,. .., Tn_1) + g+ (T1, .oy Tp_1) + g—(T1, ... Tn_1),

where ¢, g4,g— are functions computable by regular branching programs of length n — 1
with T, T’y and T_ as the sets of accept vertices, respectively. Note that s = |T| +
Define g; := g + g4 and Ty := T UT_. Now observe that for ¢ € [n — 1]

BN| = |3 + 5 (770D + 70| < S| + S + a (i)
and
1 1
|B({n})| = \ug+ = wlg-)| < 5 (lgr) + nlg-)) = 5pg1)
u(B) = u(g) + 19

Finally, as T and T3 are disjoint, the function g 4+ g; is Boolean and is computable by a

regular program of length n — 1 with |T'| 4 |T1| accept states, and u(g + g1) = u(g) + p(g1)-

So applying our induction assumption on g and g + g1, we have

[T |+|T |
5 .

2:9
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2L 1 ( Z

=1

i {}|+Z|g+gl {iD)] + p(gr)

= Ll,l(g) + L11(g+91) + plg1)
<|T]- (1= ulg)) + (171 + |Ta]) - (1 = plg + g1)) + plg1)
= @71 +173]) = (IT] - 1lg) + (1] + IT3l) - g + 92) = pl91))

=25 — ((ITI+ 11l - wlo) + (171 + T3] = 1) - pu(gn))
<25 (@1 + 1) (o) + (171 + ) o))

723—23(/1( )+ £ )>
=2s-(1-u(B)),

where the last inequality uses that ‘ -u(g1) > u(g1), since Ty is either empty or has size at

least 2.

To prove the second bound, suppose B is a regular program of width w < co with a set
S of accept states. For every state v € S, the function 1 — B_,, is computable by a regular
branching program with w — 1 accept states. Since Ly 1(B_,) = L1,1(1 — B_,,), it follows
from the first bound we just proved that L 1(B_,) < Pr[B_,(U,) = 1]+ (w —1). Summing
over all the accept states v € S gives the second bound. |

To obtain L j bounds at higher levels, we will apply the inductive argument in [51, 19].
We first recall the local monotonization of a branching program introduced in [14, 19]. For a
branching program B, we define the local monotonization B’ of B by the following process.
For every layer t, state u € V4, and input b € {—1, 1}, let v, := By(u,b) and define

B'(u b) _ Bt(u7 _b) if N(Bm%) < M(Bv71%)
Bi(u,b)  otherwise.

In words, we swap the two outgoing edge-labels of v whenever (B, ) < u(B,_,—,). As the
underlying graph of B’ remains the same as B, if B is regular then B’ is also regular (with
the same set of accept states). Also u(B,—) = u(B._,) for every state v. By construction
we have |B({i})| = B'({i}) for every i € [n].

The following claim reduces bounding L, j of a branching program to bounding its L ;1.

> Claim 19 ([19]). Let B: {-1,1}" — {0,1} be a branching program, and B’ be its local
monotonization. Then Ly x11(B) < 327 3 ey (L1x(Boy) - Bl ({i})).
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Proof. We have

Lin®-Y ¥ |BEu)]

i=1 SC{1,...,i—1}:
|S|=k

=2 >
i=1 SC{1,...,i—1}:
IS|=k

<> ¥ (s Em )

i=1 SC{1,...,i—1}: ve€V;

> BB ()

veV;

|S|=k
Ty ( ) \@(5)]) B
i=1veV; \SC{1,...,i—1}:
1S|=k
=33 (La(Bo) - B D), 2

» Theorem 20. Let B: {—1,1}" — {0,1} be a regular branching program of width w. Then
L1 x(B) < Pr[B(U,) =1] - (w — 1)k

Proof. Let B’ be the local monotonization of B. By Claim 19,

Lip+1(B) < Z Z <L1 k(Bow) - 1)4({1}))

1=1veV;

< (=" 3 Pr[BLL(U) = 1) B ()

i=1 veV;
= (w-1)*>" N Pr(B,(U;) = 1]- B ({i})
i=1veV;
= (w-DF Y F(
<Pr[B(U,) =1]- (w — 1)**1. <

» Theorem 21. Let B: {—1,1}" — {0,1} be any regular branching program with s accepting
states. Then

L1 4(B) < s Pr(B(U,) = 0 ~0(Z (1 ilog(rwmgm:o])>>

We will use the following “L; level-k inequalities,” which follows from applying Cauchy—
Schwarz to Lemma 10 in [37], and the observation that every non-constant Boolean function

[ has p(f) = 27"
» Lemma 22. For every Boolean function f:{0,1}" — {0,1}, we have

k-1

L) < (Z) w0 (l‘)g (u(f2)/)>k/ < Pr{f(U,) = 1]- O(n)*.

We also need the following lemma in [9], which follows from applying a union bound over all
the s accept vertices to Claim 3.1 in [9].

2:11
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» Lemma 23 (Claim 3.1 in [9]). Let B: {—1,1}" — {0,1} be a regular branching program
with s accept vertices. Let V¢ := {v : u(B_,) < €} be the set of states in B that have at
most € probability of being reached over uniform inputs. Then for every state v,

Pr [B_w(m) =1ABoy(x1,...,2¢) =1 for some t € [n] and u € VE] <s-e.

z~U,

Proof of Theorem 21. Let i :=1— p(B), and define

Let V2 be the set of states v in B with u(B_,,) < ¢. As in [9], we construct another regular
program B’ that approximates B as follows. For each state u € V4, we “sudden reject” u by
rewiring its outgoing edges to an “unused” state. Specifically, we construct B’ by modifying
B as follows. We iterate each u € V¢ and do the following: Suppose u € V; N VY for some
layer t. Let ' € V; be a new dummy state that is initially always wired to itself in other
layers and such has p(B_./) = u(By—) = 0. We swap the outgoing b-edges of u and o/’
for both b € {—1,1}. Observe that for every state v in B’ that is reached with positive
probability we have u(B_,) > ¢ and so in each layer of B’ there are at most 1/¢ many
non-sudden-reject states with u(B’,,,) > 0.
We now bound above Ly j11(B) by Ly j41(B — B’) + Ly x4+1(B’). By Lemma 23,

1]
= Pr [B(z) =1AB,y(21,...,2,) = 1 for some t and u € V9] < 5-¢.

As B — B’ has small acceptance probability, it follows from Lemma 22 that

Ly x+1(B - B)

k41

<ow* (kil)'s'q(logqlﬁm)z
SO(UM(Z)T'”'(mggw/myﬂ(uwlj/m)k?
(0= 2) (o (=)

It remains to bound Lj x41(B’). Let B” be the local monotonization of B’. By Claim 19
and Lemma 22,

A\
Q
_
=

|

<o (). >y (u(B;v> log (M(B,i)w)m - Eﬁ({i})) .

i=1 UGVi'

We separate the double sum above into two parts, depending on whether the states v can be
reached with probability at least gji/n.
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We first consider those with reaching probability less than ¢ii/n, As the function x —
xlog(2/x'/*)k/? is increasing for x € [0, 1], we have

N 5 k)2
Z Z (H(B—w) -log (W) B;fa({i})>

veV):
H(B—)'u)<%

log(ns/p k2 qn =T
<o)t (14 SR L0 Z > BLG)
veV/
0<u(B, v)<q?’,1

o\ k/2
<oy (14 2B

where the last inequality is because |§\” v—({7})] < 1 and we are summing over at most n-1/q
many vertices.

For those states that are reached with probability at least gii/n, we apply Lemma 22 and
our Lp; bound in Lemma 18. We have

- /2

where by Lemma 18 we get

Z > (nBL)-BL)

e

—Z ZV (u(BL.,) - B () (u(B,,) = n(B.,.))
u(BL,,)> %

<ZI§/( (B.) BL({i}) (B i) 2 0)

<> B'({i}) <s-Pr[B"(U,) = 0] < 2sfi,

i=1

where we use Pr[B”(U,) = 0] = Pr[B'(U,)
inequality. Hence,

Lua(®) <0oF- (1) iZ( 0 ton( ) B }))

= 0] < Pr[B(U,) = 0] + sq < 2[1 in the last

i=1veV/

cof3 ()
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Therefore, we have

Ly k+1(B) < Ly g41(B — B') + L1 11(B')
N k2
<O)* si- <Z <1 + 10g(7;5/u))>

<Ok sp- <Z <1+ bg(;/;b)))k/Q’

where the last inequality is because if s > y/n, then the conclusion directly follows from
Lemma 22; so we can assume s < /7. |

Theorem 6 now follows from Theorems 20 and 21.

Proof of Theorem 6. The first bound L; x(B) < Pr[B(U,) = 1] - (w — 1)* directly follows
from Theorem 20. We now show that Theorem 21 implies the second bound L ;(B) <
s - O((nlogn)/k)%. Let i := Pr[B(U,) = 0]. As the function = — mlog(2/x1/k)% is
increasing for x € [0, 1], we have

k-1 k—1

(1) (s (1))

Hence, by Theorem 20,

wanzewoft () "o

We now prove Proposition 7. This is a direct consequence of a result of Blasiok, Ivanov,
Jin, Lee, Servedio and Viola:

» Theorem 24 (Theorem 24 of [8]). For all positive integers n and k where k < n, there is a
symmetric Fy-polynomial p(x1, ..., x,) of degree a power of two in [vVkn,8Vkn| such that

S A(8)| > (e */2) (Z)I/Q.

|S|=k
Their result is stated for L x(p), but the proof holds without modification for Mjy(p).

My (p) :==

Proof of Proposition 7. Given n and k, let p(z1,...,x,) be the Fo-symmetric polynomial
in Theorem 24. As observed in [8], as a consequence of a result of Bhatnagar, Gopalan,
and Lipton [6], p can be computed by a permutation branching program B of width
16vkn. As >_18=k B(S) = D 0eVie 20|S|=k E;(S), the conclusion follows by an averaging
argument. <

We end this section by proving the L; j bounds for generalized group products. To do so,
we recall the formal statement of the composition theorem of [8].

» Theorem 25 (Theorem 31 in [8]). Suppose F and G are closed under negation of their
outputs. Let g1,...,9m € G and let f € F, where F is closed under restrictions. Suppose
that for every 1 < k < K, we have
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1. Lix(f) < Pr[f(Un) = 1] - douter - b5 er for every f € F, and
2. L1 x(g9) < Prlg(Ue) = 1] - Ginner - bE o for every g € G.
Then for every function h € F o G, we have that

LI,K(h) < Pr[h(UmZ) = 1] * Gouter * (ainnerbinnerbouter)K

Proof of Corollary 16. An (m, ¢, G)-product can be computed by the disjoint composition
of a width-|G| permutation branching program and arbitrary Boolean functions on ¢ bits,
where both classes are closed under negation of their outputs and restrictions. Note that
applying the map f — 2f — 1 to a {0, 1}-valued function f only affects its Ly , by at most a
factor of 2. So we can apply Theorem 25 to Theorem 6 and Lemma 22. |

3 Coin theorems and pseudorandom generators

In this section, we prove our coin problem bounds for regular and permutation branching

programs (Corollaries 8 and 9 and Claim 10), and construct PRGs for permutation branching

programs (Corollary 9 and Theorem 13) and generalized group products (Corollary 17).
We start with Corollary 8.

Proof of Corollary 8. Let B be a regular branching program. We identify B with its
multilinear extension. By linearity of expectation and Theorem 6, we have

- —.

|E[B(X5)] — E[B(Xo)]| = |B(5) — B(0)]

<> 8" > B

k=1 |S|=k

<6L11(B)+ > ¥ Ly x(B)
k=2

<os+ Y 8*min{w®, s O(y/nlogn))* '}

k=2

< ds+62- O(min{wQ, s\/nlogn}),

where the last inequality is because when § < amax{1l/w,1/v/nlogn}, then at least one of
the summations Y, (6w)* and 3, O(dy/nlogn)* is a geometric sum with ratio at most 1/2,
and thus is bounded by twice of its first term. <

Corollary 9 follows from applying a result of Avishay Tal establishing that L; ; bounds
imply coin problem bounds for classes that are closed under restrictions to Theorem 6.

» Lemma 26 (Lemma 3.2 in [3]). Let F be a function class that is closed under restrictions.
Then for every f € F,

)LM(}“) <

< =Lia(F).

[BI(Xs)] ~ BU (X)) < (7

We now prove Claim 10. The idea is similar to proof idea behind Proposition 7. Here we
give a self-contained argument. We approximate the Majority function on some n = ©(1/62)
bits by computing it correctly on inputs of Hamming weights between n/2 + ©(y/n) and
n/2 — ©(y/n). This can be implemented by counting their Hamming weights modulo ©(,/n)
and hence can be done using a permutation program of width ©(y/n).

2:15
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Proof of Claim 10. Let n := 32/6% and m := 64/5. Consider the function f: {—(m —
1),...,m} — {0,1} defined by f(¢) := 1 if and only if £ > m/4. We first construct
the permutation program B, which on inputs x where ), x; € ¢ 4 2mZ for some ( €
{=(m —=1),...,m}, outputs B(x) := f(¢). By counting modulo 2m, this can be computed
with width 2m and at least m/2 accept states. By the Chernoff bound,

n

> (Xs)i

i=1

Pr[B(X;) = 0] < Pr[ > m} + Pr[i(X(;)i < m/4} < 1/20.

Similarly, Pr[B(Xy) = 1] < 1/20. Therefore, E[B(X;s)] — E[B(Xy)] > 9/10.

We now modify B by choosing s of its at most m many accept states uniformly at random,
then letting B accept only at these s states and reject the rest of them. It follows by an
averaging argument that there exists a choice of s accepting states such that the modified
program B’ satisfies

E[B'(X,)] — EB'(Xo)] = (s/m) - (9/10) = 50/1000. <

We now construct PRGs for bounded width permutation branching programs and gener-
alized group products. We will use the following result that constructs PRGs from Fourier
growth bounds using the “polarizing random walk framework.”

» Theorem 27 (Theorem 1.3 in [16]). Let F be a function class on n bits that is closed
under restrictions. Suppose Ly j(F) < bk for some b > 1. Then there exists an explicit
pseudorandom generator for F with seed length b* - O(log(n/e€))(log(1/€) + loglogn) and
error €.

Corollaries 12 and 17 then follow from applying Theorem 27 to Theorem 6 and Corollary 16,
respectively.

We prove Theorem 13 by approximately sampling d-biased coins. To do this efficiently,
we follow the approach in [33], and defer the proof to Appendix A.
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A  Proof of Theorem 13

Recall that H(z) = zlog(1) + (1 — 2) log(12-) denotes the binary entropy function. For two

x
distributions X and Y, we use || X — Y|; to denote their total variation distance.

» Lemma 28. Given d > 0, there is some s = H(1/2+0.4995)n+o0(n) and a polynomial-time
computable function f: {0,1}° — {—1,1}" such that | X5 — f(Us)|l1 < §/100.

As its proof is a only a slight modification of the one in [33], we defer it to the end of
this section. To construct our PRG, it suffices to sample a distribution close to X5 using
Lemma 28.

Proof of Theorem 13. Let f: {0,1}* — {—1,1}" be the function obtained from Lemma 28
with the given d, where

s < H(1/2 4 0.4998)n + o(n) + O(log(1/8)) = (H(1/2 + 0.4995) + o(1))n.

Let B: {—1,1}" — {0,1} be a permutation branching program with a single accept state.
Then


https://doi.org/10.1145/1132516.1132583
https://doi.org/10.1137/080735096
https://doi.org/10.1145/3406325.3451019
https://doi.org/10.1109/CCC.2013.33
http://eccc.hpi-web.de/report/2012/083
http://eccc.hpi-web.de/report/2012/083
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1109/FOCS46700.2020.00030
https://doi.org/10.1016/0196-6774(84)90016-6
https://doi.org/10.4230/LIPIcs.ICALP.2021.111

C.H. Lee, E. Pyne, and S. Vadhan

< [E[B(Un)] - E[B(Xs)]| + [E[B(Xs)] - E[B(f(Us))]|

< |E[B(U,)] — E[B(Xs)]| + 6/100 (Lemma 28)

< 1%6 + % (Corollary 9),
proving the theorem. |

It remains to prove Lemma 28. We will use a lemma in [33] enabling us to approximately
sample distributions.

» Lemma 29 (Lemma 36 in [33]). Let D be a distribution on [m]. Suppose that given i € [m]
we can compute in time polynomial in O(logm) the cumulative distribution Pr[D < i].
Then there is a polylog(mt)-time computable function f such that given any t > 1, f uses
s = [log(mt)] bits to sample an element from the support of D such that || f(Us) — D|l1 < 1/t.

We will also bound above the binomial coefficients in terms of the entropy function.

» Remark 30. For every p > 0 we have

n
log< >< 1+o0(1))n-H(1/2+ p).
(1 s 1) < Fon- HL/24 )
We now prove the lemma, by giving an appropriate sampling procedure:

Proof of Lemma 28. Let Xj as the distribution over {0,1}", where the coordinates are
independent and each coordinate is 1 with probability 1/2 + 6/2 and 0 otherwise. Our
sampling procedure below will sample a distribution D over {0,1}" that is close to X} (over
{0,1}"™), then apply x; — 2x; — 1 to each coordinate x; of D to sample the target distribution
over {—1,1}™.

Consider the following procedure for sampling a string x from Xj. First sample the
Hamming weight ¢ of  according to Binomial(n,1/24 d/2), where each weight ¢ € {0,...,n}
is chosen with probability (7)(1/2+ §/2)%(1/2 — §)"~*. Then given i € {0,...,n}, sample
2 uniformly from the set of strings with weight exactly i. By performing both steps in an
approximate manner, we obtain f.

To do this, we apply Lemma 29 to sample the weight i from a distribution D (over
{0,...,n}) that is within §/300 in total variation distance to Binomial(n,1/2 4 6/2), which
costs O(logn + log(1/6)) bits. Given i ~ D, if i < [n(1/2 + 0.4996)] then we return the
all Os string; otherwise, we apply Lemma 29 to sample from the set of strings of Hamming
weight i > [n(1/2 + 0.4996)].

As D is (§/300)-close to | Xj]|, for every sufficiently large n, we have

Pr[D < [n(1/2 +0.4996)]] < Pr[|X;| < [n(1/2 + 0.4996)1] + 6/300 < 6/150.

Here, we use Remark 30 to bound the log of the description size of the universe, i.e. the
number of strings of some Hamming weight ¢ > [n(1/2 + 0.4999)1, by

log (fn(l /2 + 0.4996)]

Furthermore, Haramaty, Lee, and Viola show (in the proof of [33, Lemma 35]) that we can

> < (14 o(1)H(1/2 + 0.4998)n = H(1/2 + 0.4998)n + o(n).

sample from the distribution of strings of length n with Hamming weight ¢ in time poly(n).

Thus, the total number of random bits required to sample a distribution within /100 in
total variation distance to X is at most s = H(1/2+0.4999) - n + o(n) + o(n) + O(log(1/9)),
and f can be computed in polynomial time as desired. |
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—— Abstract

Recent works have shown that expansion of pseudorandom sets is of great importance. However, all

current works on pseudorandom sets are limited only to product (or approximate product) spaces,
where Fourier Analysis methods could be applied. In this work we ask the natural question whether
pseudorandom sets are relevant in domains where Fourier Analysis methods cannot be applied, e.g.,
one-sided local spectral expanders.

We take the first step in the path of answering this question. We put forward a new definition
for pseudorandom sets, which we call “double balanced sets”. We demonstrate the strength of our
new definition by showing that small double balanced sets in one-sided local spectral expanders
have very strong expansion properties, such as unique-neighbor-like expansion. We further show
that cohomologies in cosystolic expanders are double balanced, and use the newly derived strong
expansion properties of double balanced sets in order to obtain an exponential improvement over
the current state of the art lower bound on their minimal distance.
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1 Introduction

The study of pseudorandom (or “global”) functions has led to many recent advancements. It
has been shown that they possess an effective hypercontractive inequality in many domains
such as the p-biased cube [15], the slice [16], the Grassmann graph [17] and two-sided
local spectral expanders [6]. The common observation in all of these works is that while
hypercontractivity does not hold for any general function, it holds for a certain subclass of
pseudorandom functions. This phenomenon has been the key to many breakthroughs, most
famously the resolution of Khot’s 2-to-2 Games Conjecture [17].

While this study of pseudorandom functions has been very fruitful in many domains,
currently it is still limited only to domains where Fourier Analysis methods could be applied.
These domains are product (or approximate product) spaces, so each function has an
orthogonal (or an approximate orthogonal) decomposition. While these domains are enough
for a lot of applications, there are many applications that require other domains. Some
examples are the recent works on efficient sampling algorithms (e.g., [5, 4, 2, 3] and more).
The domains in these works are one-sided local spectral expanders, which inherently do not
possess an orthogonal decomposition.
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In this work we make the first step in the study of pseudorandom functions in other
domains where Fourier Analysis methods cannot be applied. We put forward an alternative
definition for pseudorandom functions, which we call “double balanced sets”. We demonstrate
the strength of our new definition by showing that small double balanced sets in one-sided
local spectral expanders have very strong expansion properties. We further show that
cohomologies in cosystolic expanders are double balanced, and then by the strong expansion
properties of double balanced sets, we achieve an exponential improvement over the state of
the art lower bound on their minimal distance.

1.1 Double balanced sets

In order to present our definition of double balanced sets, we need to set some notations
first. A d-dimensional simplicial complex X is a (d + 1)-hypergraph which is closed under
inclusions, i.e., if ¢ € X then every 7 C ¢ is also in X. A k-face is a hyperedge of size k + 1
and the set of k-faces in the complex is denoted by X (k). For any face o € X, the link of o,
denoted by X, is the subcomplex that is obtained by all the faces that contain ¢ and then
removing o from all of them.

Let f C X (k) be a subset of k-faces in X. For any face o € X (¢), ¢ < k, we denote by
fo C Xo(k — £ —1) the localization of f to the link of o, where a face 7 € X,(k — ¢ — 1) is
in f, if and only if TUo € f. We also denote by f? the restriction of f to the link of o,
where f7 = f N X, (k). Note that both f, and f? “live” in the link of o, but f, is a subset
of (k — ¢ — 1)-faces whereas f7 is a subset of k-faces.

For simplicity, we assume in the introduction that the complex has a uniform probability
distribution in every dimension. In the body of the paper we will take into account general
probability distributions.

» Definition 1 (Double balanced sets). We say that f C X (k) is a-double balanced in
dimension ¢, ¢ < k, if for every £-face o € X (¢) it holds that

|fo‘ ’(fcr\v)v‘
X, (k— (1), So‘u]eEang(k—e)J' M)

We say that f is a-double balanced if it is a-double balanced in dimension ¢ for every { < k.

In order to get some intuition, let us focus on low dimensions first. Let X be a 3-
dimensional complex and f C X(2) (i.e., a set of triangles in a complex with pyramids).

For every vertex v € X(0), the left-hand side of (1) translates to the fraction of triangles
in f that contain v out of all the triangles that contain v, and the right-hand side of (1)
translates to a times the fraction of triangles in f that together with v form a pyramid
out of all the pyramids that contain v.

For every edge {u,v} € X(1), the left-hand side of (1) translates to the fraction of
triangles in f that contain {u,v} out of all the triangles that contain {u,v}, and the
right-hand side of (1) translates to « times the average fraction of triangles in f that
contain u or v and together with v or wu, respectively, form a pyramid out of all the
pyramids that contain {u,v}.

In general, the left-hand side of (1) translates to the fraction of k-faces in f that contain
o, and the right-hand side translates to the average fraction of k-faces in f that contain
|o| — 1 vertices from o and together with o forms a (k + 1)-face.

Let us explain briefly the motivation behind this definition. From a spectral point of
view, it is known that high dimensional random walks with intersections do not mix rapidly,
whereas random walks without intersections (also known as swap walks [1] or complement
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walks [7]) have an optimal mixing rate!. Previous works on pseudorandom sets (e.g., [6])
benefit from the optimal mixing rate of non-intersecting random walks, but for that the
complex has to be of a very high dimension, i.e., in order to gain anything on a pseudorandom
set of dimension k, the complex has to be of dimension at least 2k (so we can move between
k-faces without intersections). Our definition of double balanced sets benefits from the
optimal mixing rate of non-intersecting random walks even when d = k + 1. The reason is
that the right-hand side of (1), when viewed in the link of ¢ \ v for some vertex v € o, is
concerned with faces that do not contain v, i.e., it is related to a non-intersecting random
walk inside the link of o \ v.

From a topological point of view, our definition of double balanced sets relates faces of two
consecutive dimensions (i.e., (k—£¢—1)-faces in the left-hand side of (1) and (k—¢)-faces in the
right-hand side), similar to usual topological operators (e.g., the boundary and coboundary
operators). In this sense, our definition has the potential to benefit also from the topological
properties of the complex. Indeed, we show that cohomologies in high dimensional expanders
are double balanced by utilizing the topological expansion of the complex.

To summarize the above discussion, our definition of double balanced sets has the potential
to imitate a situation where the complex has many dimensions above (like in previous works)
while having only one dimension above. It benefits both from spectral and topological
properties of the complex, whereas previous works could only use spectral properties. We
believe that utilizing the topological properties of the complex, as well as spectral properties,
would lead to many breakthroughs in the future.

1.2 Relation to the common definition

We would like to formalize the intuitive similarity of our new definition (of double balanced
sets) to the common definition (of pseudorandom sets).

The common definition of pseudorandom sets, as given in [6]2, says that a set of k-faces
f is e-pseudorandom in dimension ¢, ¢ < k, if for every {-face o € X ({) it holds that

A
X (k-] = ?

As demonstrated in the following lemma, our definition of double balanced sets implies
almost pseudorandomness.

» Lemma 2. Let X be a good enough one-sided local spectral expander®. For any a-double
balanced set of k-faces f € X (k) and any dimension £ < k, if

o e
X (k)] — (£+1)at
then
| f5| |f]
Pr —_— <[ >1-¢
oex(0) [|[Xo(k—C—=1)] = ] | X (k)]

By random walks with intersections we mean that we move from an i-face o to a j-face 7 through a
k-face that contain both ¢ and 7, where the intersection ¢ N 7 may be non-empty, whereas random
walks without intersections require that o N7 would be empty.

The actual definition is considered with general functions from X (k) to R. For simplicity we consider
only functions from X (k) to {0,1}, i.e., functions that correspond to subsets of k-faces.

The definition of one-sided local spectral expansion will be introduced later in the paper.

APPROX/RANDOM 2022



3:4

Double Balanced Sets in High Dimensional Expanders

In words, for a sufficiently small set, if the set is a-double balanced then it is also
almost pseudorandom, i.e., all /-faces besides of a negligible fraction of them satisfy the
pseudorandomness property.

1.3 Inheritance property

An interesting property that applies to double balanced sets is that it is inherited by lower
dimensions. We show that a set of k-faces which is double balanced in dimension ¢ is also
double balanced in all dimensions below ¢. This result is obtained by applying the following
lemma step by step.

» Lemma 3 (Double balance inheritance). If f C X (k) is a-double balanced in dimension £,
then f is o -double balanced in dimension £ — 1, where

o — ol
S+ 1-a

It is worth to note that when f is perfectly double balanced, i.e., when o = 1, then
lemma 3 implies that f is also perfectly double balanced in all dimensions below ¢. In other
words, perfect double balance is inherited by lower dimensions without any loss.

1.4 ¢, -expansion of small double balanced sets

In recent years, a few different notions of high dimensional expansion have been studied.
One such notion is d;-expansion, which can be viewed as a generalization of unique-neighbor
expansion in graphs. It is a strong expansion notion that is usually very hard to get. For a
set of k-faces f C X(k), 61(f) is defined as the set of (k 4 1)-faces that contain exactly one
k-face from f. We say that f is d;-expanding if

5.(7)] 7l
X(k+ 1] = XM ®)

In [14] it has been shown that d;-expansion for small sets implies group-independent cosystolic
expansion, i.e., cosystolic expansion over any group.

In order to demonstrate the strength of our definition of double balanced sets, we show
that small double balanced sets are §;-expanding. On one hand, we show that when a double
balanced set f is sufficiently small, it has a nearly perfect §;-expansion, i.e., € in equation (3)
is very close to k+2. On the other hand, for larger double balanced sets (which are still small,
but not that small), we show that they have some d;-expansion, i.e., € > 0 in equation (3).
We prove the following two theorems.

» Theorem 4 (Nearly optimal d;-expansion for sufficiently small double balanced sets). Let X
be a good enough one-sided local spectral expander. For any a-double balanced set of k-faces
fCX(k)ande >0, if

I .
X&) = (k+ 1)k
then
16:(5)] 1
X = T EEE DR
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» Theorem 5 (Some d;-expansion for small double balanced sets). Let X be a good enough
one-sided local spectral expander. For any a-double balanced set of k-faces f C X (k) and
e>0, if

] 1
X0 = (rr Dat
then
16.(5)]
X"

Both of theorems 4 and 5 demonstrate the strength of our definition of double balanced
sets. The key idea that since f is a small set, its double balance property implies that it
has to be small in every link as well, which in turn implies §;-expansion. The novelty over
previous works (e.g., [13, 9, 14]) is to benefit from the optimal mixing rate of non-intersecting
random walks. As explained in section 1.1, our definition of double balanced sets is related

in a sense to non-intersecting random walks and hence benefits from an optimal mixing rate.

This is in contrast to previous works, which essentially used only intersecting random walks,
and hence could obtain worse bounds and only for much smaller sets.

1.5 Application to minimal distance of cohomologies

Cohomologies stand in the center of recent studies in Mathematics, and they have already
found some applications in Theoretical Computer Science as well. Complexes with large
cohomologies have played a key role in the construction of efficiently decodable quantum
LDPC codes with a large distance [10]. It is known by now to construct quantum LDPC

codes with a larger distance [20, 18], however these are not known to be efficiently decodable.

Complexes with large cohomologies were also the main block in the first construction of explicit
3XOR instances that are hard for the Sum-of-Squares Hierarchy [8]. Other constructions

which are hard for more levels of the the Sum-of-Squares Hierarchy [12] are known by now.

Nonetheless, the construction of [8] is still the best known construction from simplicial
complexes and it has been the first step in this line of works.
In order to define cohomologies, let us identify a set of k-faces in X with an Fs-valued

function f : X (k) — F2 and denote by C*(X) the space of all Fa-valued functions on X (k).

The coboundary operator % : C¥(X) — C**1(X) is defined by
6" f(o) = f(o\{u}) mod 2.
ueo

The image of 0¥~ ! is called the k-coboundaries and is denoted by
B*(X)={s""'f | fe C* 1 (X))

The kernel of §* is called the k-cocycles and is denoted by
ZMX) ={f € C*(X) | 6" f = 0}.

It is not hard to check that B*(X) C Z¥(X) C C*(X). The k-cohomology of X is the
quotient space H*(X) = Z*(X)/B*(X).

Previous works could only obtain complexes with some constant lower bound on the
size of their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a
topological sense), all of their cohomology elements are double balanced. We then utilize the
d1-expansion of double balanced sets in order to obtain a lower bound on their size, achieving
an exponential improvement upon the current state of the art.

3:5
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» Theorem 6 (Cohomologies are double balanced). For a complex whose links are topological
expanders, every k-cohomology element is ((k+1)/8)-double balanced, where f3 is the expansion
constant in the links of the complex.

» Theorem 7 (Lower bound on cohomology elements). For a good enough one-sided local
spectral expander whose links are topological expanders, every k-cohomology element must be
of density at least ¥ /(k +1)!, where B is the expansion constant in the links of the comple.

» Remark. The current state of the art lower bound on the size of cohomologies prior to this
work is & (8% /k1)2" [14, Lemma 3.10).

1.6 Organization

In section 2 we provide the required preliminaries. In section 3 we introduce the formal
definition of double balanced sets and prove its inheritance property. In section 4 we show that
small double balanced sets in one-sided local spectral expanders have the strong d;-expansion
property, and also explain how to prove lemma 2. In section 5 we show that cohomologies in
a complex with topological expanding links are double balanced, obtaining an exponential
improvement upon the current state of the art lower bound on their minimal distance.

2 Preliminaries

2.1 Simplicial complexes

Recall that a d-dimensional simplicial complex X is a downwards closed (d + 1)-hypergraph.
A k-face of X is a hyperedge of size k + 1, and the set of k-faces of X is denoted by X (k).
An assignment of values from Fs to the k-faces, k < d, is called a k-cochain, and the space
of all k-cochains over Fy is denoted by C*(X).

Any assignment to the k-faces f € C*(X) induces an assignment to the (k + 1)-faces by
the coboundary operator §. For any (k + 1)-face 0 = {vg, ..., vx+1}, 0(f)(0) is defined by

k+1

(o) = flo\{u}) (mod2).
=0

The kernel of the coboundary operator is called the k-cocycles and denoted by
Z5(X) = {f e C*(X) | 8(f) = 0}

The image of ¢ is called the k-coboundaries and denote by
B (X) ={o(f) | fe C*H (X))

One can check that 6(5(f)) = 0 always holds, hence B*¥(X) C Z¥(X) C C*(X). The quotient
space Z¥(X)/B*(X) is called the k-cohomologies and denoted by H*(X).

For a d-dimensional simplicial complex X, let Py : X(d) — Rx>( be a probability
distribution over the d-faces of the complex. For simplicity, we will assume in this work
that Py is the uniform distribution. This probability distribution over the d-faces induces a
probability distribution Py for every dimension k < d by selecting a d-face o4 according to
P,; and then selecting a k-face o C 04 uniformly at random.

The weight of any k-cochain f € C*¥(X) is defined by

171 = Px, [f(on) # 0],

i.e., the (weighted) fraction of non-zero elements in f. The distance between two k-cochains
f,g € CF(X) is defined as dist(f,g) = || f — gl|-
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We also add a useful definition of a mutual weight of two cochains. For £ < k and two
cochains f € C*(X), g € C*(X) we define their mutual weight by

1(f,9ll=  Pr [f(ox) #0Ag(oe) # 0],
op~Py,00Cog
where oy, is chosen according to the distribution P, and oy is an ¢-face chosen uniformly
from oy, (i.e., o4 is chosen according to P, conditioned on oy, being chosen).

2.2 Cosystolic and coboundary expansion

Coboundary expansion has been introduced by Linial and Meshulam [19] and independently
by Gromov [11]. It is a generalization of edge expansion of graphs to higher dimensions.

» Definition 8 (Coboundary expansion). A d-dimensional simplicial complex X is said to be
an e-coboundary expander if for every k < d and f € C*(X)\ B*(X) it holds that

Wl
dist(f, BE(X)) = ©

where dist(f, B¥(X)) = min{dist(f,g) | g € B*(X)}.

Cosystolic expansion is similar to coboundary expansion, with the main difference that it
can have non-trivial cohomologies as long as they are large.

» Definition 9 (Cosystolic expansion). A d-dimensional simplicial complex X is said to be
an (g, u)-cosystolic expander if for every k < d:
1. For any f € C*(X)\ Z*(X) it holds that

bWl
dist(f, ZF(X)) = °

where dist(f, Z*(X)) = min{dist(f,g) | g € Z¥(X)}.
2. For any f € Z¥(X)\ B*(X) it holds that || f|| > p.

2.3 Links, localization and restriction

For every face o € X, its local view, also called its link, is a (d — |o| — 1)-dimensional
simplicial complex defined by X, = {7\ o | 0 C 7 € X}. The probability distribution over
the top faces of X, is induced from the probability distribution of X, where for any top face
7 € Xy(d —|o| — 1), its probability is the probability to choose o U7 in X conditioned on
choosing 0. Since we assume in this work that the probability distribution over the top faces
of X is the uniform distribution, it follows that the probability distribution over the top
faces of X, is the uniform distribution.

For any k-cochain f € C*(X) and an (-face o € X (¢), the localization of f to the link of
o is a (k — £ — 1)-cochain in the link of o, f, € C*~*~1(X,) defined by

fo(m) = f(cUT).

The restriction of f to the link of o is a k-cochain in the link of o, f© € C*(X,) defined by

3:7
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2.4 Local spectral expansion

Another notion of high dimensional expansion, called local spectral expansion is concerned
with the spectral properties of the links of the complex.

» Definition 10 (Two-sided local spectral expansion). A d-dimensional simplicial complex X
is called a A-two-sided local spectral expander, A\ > 0, if for every k < d —2 and o € X (k),
the underlying graph* of X, is a A-two-sided spectral expander, i.e., its spectrum is bounded
from above by A and from below by —\.

» Definition 11 (One-sided local spectral expansion). A d-dimensional simplicial complex X
is called a A-one-sided local spectral expander, A > 0, if for every k < d—2 and o € X(k),
the underlying graph* of X, is a A-one-sided spectral expander, i.e., its spectrum is bounded
from above by A.

2.5 Minimal and locally minimal cochains

One of the technical notions we use in this work is the notion of a minimal cochain. We say that
a k-cochain f € C*(X) is minimal if its weight cannot be reduced by adding a coboundary
to it, i.e., for every g € B¥(X) it holds that ||f|| < ||f — gl Recall that the distance of f
from the coboundaries is defined by dist(f, B¥(X)) = min{|f —¢g| | ¢ € B¥(X)}. Since
0 € B*(X), it follows that for every f € C*(X), ||f|| > dist(f, B¥(X)). Thus, f is said to
be minimal if and only if || f|| = dist(f, B¥(X)).

We also define the notion of a locally minimal cochain, where we say that f € C*(X) is
locally minimal if for every vertex v, the localization of f to the link of v is minimal in the
link, i.e., f, is minimal in X, for every v € X(0). It is not hard to check that any minimal
cochain is also locally minimal.

3 Double balanced sets

We start by providing the formal definition of a double balanced cochain. Recall that for any
k-cochain f € C*(X) and a vertex u € X(0), we denote by f* the restriction of f to the
k-faces in the link of u, i.e., f* € C*(X,,).

» Definition 12 (Double balanced cochains). Let X be a d-dimensional simplicial complex.
A k-cochain f € C*(X) is said to be a-double balanced in dimension ¢, where a > 1 and
0<?¢<k-—1, if for every £-face o € X (¢) it holds that

Ifoll <o E [ (Fora)“[l-

f is said to be a-double balanced if f is a-double balanced in dimension £ for every £ < k.

3.1 Balance inheritance

An interesting property that applies to double balanced cochains is that it is inherited by
lower dimensions. We show that a cochain of k-faces which is double balanced in dimension
£ is also double balanced in all dimensions below £. We prove lemma 3 from the introduction,
which we restate here for convenience.

4 The graph whose vertices are X, (0) and its edges are X, (1).
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» Lemma 13 (Double balance inheritance). Let f € C*(X) be an a-double balanced cochain
in dimension £. Then f is o'-double balanced in dimension £ — 1, where

oot
“ = (+1—a
Proof. Let 7 € X (£ —1).
1ol = E o[l
<, B [ B 0]

o al
B [ 100+ 25 1G]]

o v
o B A B | a0l
= F I 2 B )

where the inequality follows since f is a-double balanced in dimension ¢ and all the other
steps follow from laws of probability. This implies that

al

| f-]l < 771 —aver

E [[(Fr0)”- )

It is worth to note that when f is perfectly double balanced, i.e., when o = 1, then
lemma 13 implies that f is also perfectly double balanced in all dimensions below ¢. In other
words, perfect double balance is inherited by lower dimensions without any loss.

» Corollary 14. Let f € C*(X) be a 1-double balanced cochain in dimension . Then f is
also 1-double balanced in all dimensions below £.

4  J,-expansion for small double balanced sets

In this section we show that small double balanced sets are J;-expanding. On one hand,
we show that when a double balanced set f is sufficiently small, it has a nearly optimal
d1-expansion. On the other hand, for larger double balanced sets (which are still small, but
not that small), we show that they have some d1-expansion, i.e., ||§;(f)|| > 0. We prove
theorems 4 and 5 from the introduction, which we restate here in a formal way.

» Theorem 15 (Nearly optimal d;-expansion for sufficiently small double balanced sets). For
everyd > 2, a>1 and 0 < e < 1 there exists A = \(d, a, ) such that the following holds:
Let X be a d-dimensional -one-sided local spectral expander. For any k-cochain f € C*(X),

1 <k < d, such that f is a-double balanced and || f]| < S it holds that
(k4 1)2ak

161 (NI = (k+2)(1 = 3e) [ £]] -

» Theorem 16 (Some d;-expansion for small double balanced sets). For everyd > 2, o > 1 and
0 < e <1 there exists A = \(d, a, ) such that the following holds: Let X be a d-dimensional

A-one-sided local spectral expander. For any k-cochain f € C*(X), 1 < k < d, such that f is

1 —
a-double balanced and || f| < e it holds that
(k+1)ak
«

161 (I > 0.
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We split the proof of these theorems to two parts. In the first part we show that if almost
all of the (k — 1)-faces of a cochain are not dense then its d; is optimal. In the second part,
we show that for sufficiently small double balanced cochains, almost all of their (k — 1)-faces
are indeed not dense.

4.1 Part | — Bound 4;(f) by the dense (k — 1)-faces

Let X be a d-dimensional A-one-sided local spectral expander and 0 < 1 < 1 a density
constant.
For any k-cochain f € C*(X) we define the set of dense (k — 1)-faces by

DENSE,_1 ={c e X(k—1)| |fs|l > n}.
We show in this section that ||d1(f)|| can be bounded by the fraction of dense (k —1)-faces.

» Proposition 17. Let X be a d-dimensional A-one-sided local spectral expander and 0 < n < 1
a density constant. For any k-cochain f € C*(X), 1 <k < d,

1D =k +2)1£] (1 e DA wwm—lll)) |

171l

The proof of this proposition will follow from the following two lemmas. The first lemma
holds for any simplicial complex.

» Lemma 18. Let X be a d-dimensional simplicial complez. For any k-cochain f € C*(X),
1<k<d,
1
DGR EEICED SN AR EV D SN (TS RETY

ceX (k—1) ceX (k—1)

Proof. Denote by 0;(f) the set of (k+1)-faces that contain exactly ¢ k-faces from f. Summing
91(f5) in the links of all o € X (k — 1) equals

k+1 .

S G0l =S 2D s ). (4)

oeX(k—1) i=1 ( 2 )

Summing d2(f,) in the links of all o € X (k — 1) equals

k+2 )

Do 1G(fo) o)l =Y 725 16 (- (5)
ceX (k—1) = ("3)
Multiplying (5) by 2k yields

k42 o k+2 . .

D DI [ ANS! I SRl LT NPT LRSS Y PET ) ©

ceX (k1) = () = (3
Subtracting (6) from (4) yields

2

S Gl =2k S @G0l € g

ceX (k—1) ceX (k—1)

162 (I

Multiplying both sides by (k + 2)/2 finishes the proof. <
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The following lemma holds for any A-one-sided local spectral expander.

» Lemma 19. Let X be a d-dimensional A-one-sided local spectral expander and 0 <n <1 a
density constant. For any k-cochain f € C*(X), 1 <k < d,

Lo Y lGi(fo) o)l = 2(1 = A=n) [|(f, SPARSE1)|

ceX(k—1)

2. ) 2fo),0)ll < II(f, DENSER_1)I| + (A +n) [|(f, SPARSEx 1),
ceX(k—1)
where SPARSE,_1 = X (k — 1) \ DENSEj,_1.

Proof. Since X is a one-sided local spectral expander, f, is a subset of vertices in X, so
both inequalities follow immediately form the well known Cheeger inequality. |

We can now prove Proposition 17.
Proof of Proposition 17. Since
11l = I(f, DENSE;_1)|[ + [|(f, SPARSE_1)||,

lemma 19(1) yields

Y Gufo) o)l = 201 =X =n) [If| = 2||(f, DENSE_1)]| (7)

ceX(k—1)

and lemma 19(2) yields

Y 1G(fo)s o)l < A+ ) £l + I(f, DENSER_1)]] (®)
ceX(k—1)
Substituting (7) and (8) in lemma 18 finishes the proof. <

4.2 Part Il — Bound the fraction of dense (k — 1)-faces

We show in this section that for every double balanced and small cochain in a good enough
one-sided local spectral expander, the fraction of dense (k — 1)-faces is very small.

We first extend the definition of dense faces to every dimension —1 < i < k — 1. Given a
density constant 0 < 7 < 1 and € > 0, we set np_1 = n and for every 0 <i < k — 1 we define

o €
M=y (k +1)2ak—t"

We then define the dense faces in dimension ¢ to be
DENSE; = {o € X(0) | |If5]l > m:i}-
Our goal in this subsection is to prove the following proposition.

» Proposition 20. Let X be a d-dimensional A-one-sided local spectral expander, 1 < k < d
any dimension, a > 1 a balance constant, 0 < n < 1 a density constant and € > 0. For any
k-cochain f € C*(X) such that f is a-double balanced and || f|| < n_1 it holds that

k+1)%ak A\’
|DENSE), || < 3k!<(6)> I1£1]

We start by showing that in a A-one-sided local spectral expander, the restriction of a
cochain to almost every vertex is seen with the right proportion.

APPROX/RANDOM 2022
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» Lemma 21. Let X be a d-dimensional A-one-sided local spectral expander. For any
k-cochain f € C*(X), 0 <k < d, and € > 0 it holds that

pr U7 > 1+ el < (BE22) g,

u€X(0)

Proof. Define the following graph G = (V, E), where V = X (k), i.e., all k-faces of X, and
E = {{o1,02} | Fu € X(0) s.t. o1 Yu,00 Uu € X(k+ 1)}, i.e., there is an edge between
o1 and o5 if and only if there exists some vertex in X that completes both o1 and o5 to a
(k + 1)-face.

We define a probability distribution on G that corresponds to the probability distribution
of X as follows:

The probability of a vertex o € V equals to the probability of the corresponding k-face

o€ X(k).

The probability of an edge {01,02} € E equals E,¢cx ) Prlor Uu | u] - Prlog Uu | u],

where all the probabilities are taken according to the complex X.

Since X is a A-one-sided local spectral expander, by [7, Claim 4.9] G is a ((k + 1)\)%-
spectral expander, because its adjacency operator is a two steps walk of the 0, 2-complement
walk of [7].

Now, define i : X(0) = R by u(u) = ||f*|| =Pr[c € f | e Uu € X(k + 1)]. The following
holds by laws of probability:

Bl = B Prlo€ flovue X+ 1) =Prloe f]=|f]. ()

Prioy € florWue X(k+1)]-Prlos € f|oaUu € X(k+1)]

E E
uw€EX (0) w€EX (0)
(10)

B {017§§}€E[01 €fhoz€ f] = HE(f)H’

where E(f) is the set of edges {01,002} in G such that both oy and o9 are in f. Since G is a
((k 4 1)X\)2-spectral expander, it follows that | E(A)|| < || f]|* + ((k+1)A)? | A]|. Substituting
in (10) and combining (9) yields

w1l = ueg(o)[“(u)Q] - ueg(o)[“(“)]2 < ((E+DN)*[I£1I-

Now, by Chebyshev’s inequality

Pr (> 171+ €] = Pr ) > B + o] < Yo < (S0 .

This completes the proof. |

In the next lemma we show that for every dimension 4, if f is double balanced in dimension
i then the fraction of dense i-faces is not much more than the fraction of dense (i — 1)-faces.

» Lemma 22. Let X be a d-dimensional \-one-sided local spectral expander and f € C*(X),
0<k<d. Forevery0<i<k,if fis a-double balanced in dimension i then

—i 2ak—’i 2
(k+1—-0)(k+1) )\) Il

IDENSE;|| < (i + 1) | DENSE;_1 || + (i + 1) ( -
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Proof. Note that for every o € DENSE; there must exist a vertex u € o such that
i
H(fa\u)uH > Jv (11)
«a
since otherwise

1761 = 7 2 U] <

uco

and o ¢ DENSE,;.
For every o € DENSE;, fix one (i — 1)-face 7(0) = ¢ \ u that satisfies (11). By laws of
probability

||DENSEZ|| = Pf[O’Z‘ € DENSEZ] = (’L + 1) PF[O'Z' € DENSE; ANo;_1 = T(Ui)] <

(Z + 1) ||DENSEi_1|| + (Z + 1) PI‘[O'Z' S DENSEz A g;—1 = T(O’i) | T(O’Z‘) §é DENSEi_l],
(12)

where the inequality holds by splitting to the two cases whether 7(0;) € DENSE;_1.

We focus now on the right summand of (12) which is the case where 7(0;) ¢ DENSE;_;.
Recall that 7(o;) satisfies (11). Thus, we can bound the probability of this event by the
probability to choose a sparse (i — 1)-face and then a vertex such that (11) holds, i.e.,

i
Prlo; € DENSE;Aoi_1 = 7(0; ; i) < )u f].
rlo; € i1 =7(03) [ 7(00) §DENSEi ] < B ek o LI > 5
(13)
Since 7 € SPARSE;_1, it holds that || f|| < n;—1. Thus,
E_ P [l > 2] <
TESPARSE; 4 uEXT(O) o -
_ (14)
E p )" N+ = |
TeSPARSEi,lueXf(o) [Kf V> 1+ (k+1)2ak—
where the inequality holds since
€ € Ui
1 f-1l + (k+ 1)2ak—i = Ni-1+ k+ 12k~ a
Combining (12), (13) and (14) yields
|IDENSE;|| <
€
, + 1) || DENSE; _ 4+ 1 E P ) T ——| <
G+ ) kP > 1A e <
. . (k+1—1d)(k+1)2akix\?
1) |DENSE;_ 1 <
G+ esseal+ 1) B - 11| <
: , k41— i) (k+1)2ak 2\
(4 1) DENSE; | + -4 1) (=) I,
where the second inequality follows by lemma 21. This completes the proof. |

We can now prove Proposition 20.

APPROX/RANDOM 2022
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Proof of Proposition 20. We apply lemma 22 for i =k — 1,k — 2,...,0 step by step.

2k +1)2aA\”
|DENSE;_1]| < k ||DENSE_o|| + k<(€)> IF]l <

k(k — 1) |DENSE;_3|| + (k(k - 1)(3(k+1)2a2/\) + k(2<k+1)2a/\> ) A1l

5 €
k+1)%af A\ 2(k +1)%a\\
< .. < k!|DENSE_, || + (k'<(+5)a> +_“+k<(+€)a) IFdl
S ( (k+1—1i)(k+1)2ak~ 1/\> T
i=0 €
(k+1)2akA\? &2 (k+ 1 —i)?
<m(EEt) STy
=0
k+1)%af A\
< 3k!((>) 191
5
where the equality holds since || fy|| = || f]] < -1, i.e., the empty set is not dense, and hence

IDENSE_;|| = 0. The rest of the inequalities are just calculations. This completes the
proof. |

4.3 Proof of Theorems 15 and 16
Proof of Theorem 15. Let A < W, / % and n = (kETl) By simple calculation

€
1= ek

Thus, since || f|| < n—1, Proposition 20 implies that

(k +1)3akA\
DENSE,_1|| < 3k! 15
Iomxse, | < 3 () < 2y, (15)
Substituting (15) in Proposition 17 finishes the proof. <
1-— k+1
Proof of Theorem 16. Let \ < d%fd*l (di il and n = ([;/il—;) By simple calcu-
lation
N
T et ak
Thus, since || f|| < n—1, Proposition 20 implies that
2
(k + 1)3ozk)\> €
DENSE;_1|| < 3k! < . 16
Ioexse | < 3 (502 < e (16)
Substituting (16) in Proposition 17 finishes the proof. <

We conclude this section by noting that the proof of lemma 2 from the introduction is
exactly the same as the proof of Proposition 20, with the only difference that we start by
setting 7 = € and bound the fraction of dense ¢-faces instead of the dense (k — 1)-faces.
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5 Cohomologies are double balanced

Previous works could only obtain complexes with some constant lower bound on the size of
their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a topological
sense), all of their cohomology elements are double balanced. We then utilize the §;-expansion
of double balanced sets in order to obtain a lower bound on their size, achieving an ezponential
improvement upon the current state of the art.

We start by proving Theorem 6 from the introduction, which we restate here in a formal
way.

» Theorem 23 (Cohomologies are double balanced). Let X be a d-dimensional complex such
that every non-trivial link in X is a f-coboundary expander. For every ¢ < k < d, any

k-cohomology element is -double balanced in dimension /.

Proof. Let f € H*(X) be a k-cohomology and o € X (£) be an ¢-face. Consider a (k —¢)-face

T € §(f,). Let us denote o = {vg,v1,...,ve} and 7 = {vp41, Vo2, ..., Vk+1}. By definition
k+1 k+1
Z flour\v) = Z fo(T\v;) #0,
i=0+1 i=0+1

where the inequality holds since 7 € §(f,). Since f is a k-cohomology, it holds that

k+1

Zf(O'UT\Ui):O.

i=0

Therefore, there must exist 0 < j < £ such that f(o U\ v;) # 0. By definition of restriction
and localization, it means that

(foro;, )7 () = (frvo;)(7) # 0.

In other words, for every 7 € 0(f,), there exists a vertex v € o such that 7 € (fy\,)". It
follows that

[EAIES) PN (AW P (17)

veo

Now, since f is a k-cohomology, f is minimal and hence also locally minimal. The (-
coboundary expansion of the links implies that

16Cf)ll = B foll- (18)

Combining (17) and (18) implies that

1 oy L+ 1 v
Hfa’“ < B; H(fa\v) || - Tv]ga ||(f<7\'u) H .
This complete the proof. <

We conclude by proving Theorem 7 from the introduction, which we restate here in a
formal way.

3:15
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» Theorem 24 (Lower bound on cohomology elements). For every d > 2, >0 and e >0
there exists A = \(d, B, €) such that the following holds. Let X be a d-dimensional \-one-sided
local spectral expander such that every non-trivial link in X is a $-coboundary expander. For
every k < d, any k-cohomology element f € H*(X) satisfies

(1—¢)B*
> .
HER==
- : . (1—¢)p*
Proof. Assume towards contradiction that there exists f € H*(X) with || f|| < NS

By Theorem 23, f is ((¢ + 1)/3)-double balanced in dimension ¢ for every ¢ < k. Then
Theorem 16 implies® that ||61(f)|| > 0 in contradiction to f being a cohomology elements

(i.e., 8(f) = 0). <
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—— Abstract
We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or
graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with
a carefully chosen rejection filter and works under a percolation subcriticality condition. We show
that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted
graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite
graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give
near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets
in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm
for polymer models gives improved sampling algorithms for spin systems at low temperatures on
expander graphs and unbalanced bipartite graphs, among other applications.
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1 Introduction

Sampling is a fundamental computational task: given a specification of a probability distri-
bution on a (large) set of combinatorial objects, output a random object with the specified
distribution or with a distribution close to the specified distribution. This task becomes
challenging when the specification of the distribution is much more succinct than the set of
objects, and one wants to sample using time and space commensurate with the specification.
Fundamental examples include sampling from Markov random fields and probabilistic graph-
ical models and sampling substructures of graphs. We will address both of these examples
here and connect them in a new way.
? Antonio Blanca, Sgrah Cannon, ar'ld Will Perkins;

5v icensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 4; pp. 4:1-4:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:ablanca@cse.psu.edu
mailto:scannon@cmc.edu
mailto:math@willperkins.org
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.4
https://arxiv.org/abs/2202.05907
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Fast and Perfect Sampling of Subgraphs and Polymer Systems

We consider a natural sampling problem: given a bounded-degree graph G, sample
a graphlet (a connected, vertex-induced subgraph) of G containing a fixed vertex r with
probability proportional to an exponential in the size of the subgraph. That is, sample
a graphlet S containing vertex r with probability proportional to A8, where A > 0 is a
distribution parameter and |S| denotes the number of vertices in S. In this paper we are
concerned with small values of A, where the expected size of a sampled graphlet is much
smaller than the size of the graph.

Sampling graphlets is an important task in data science, network analysis, bioinformatics,
and sociology, as it allows us to gain information about massive graphs from small sections
of it; see, e.g., [38, 28, 41, 4]. A number of variants of the problem have consequently
been studied, including sampling graphlets of a given size uniformly at random or sampling
weighted graphlets of all sizes [46, 5, 37, 15, 10, 11, 43, 1, 42, 45, 12, 9]. The variant we
consider here, i.e., sample a graphlet S with probability proportional to AI°!, arises as a key
subroutine in recent sampling algorithms for spin systems (hard-core model, Ising model,
Potts model, etc.) in the regime of strong interactions via polymer models described below in
Section 1.2; see [32, 13, 40, 25, 7, 36, 35, 14, 17].

One major limitation of previous sampling algorithms for graphlets and polymer models
(those in, e.g., [32, 40, 45, 16, 24], among others) is the use of exhaustive enumeration of
graphlets of a given size; this requires restrictive parameter regimes or large polynomial
running times, with the maximum degree A of the graph appearing in the exponent of the
polynomial. Here we design a fast perfect sampling algorithm for weighted graphlets based
on a vertex percolation process combined with a rejection filter. This method bypasses the
enumeration barrier and allows us to design perfect sampling algorithms for a number of ap-
plications, substantially improving upon existing algorithms in three ways: 1) our algorithms
have considerably faster running times, with no dependence on A in the exponent; 2) our
algorithms return perfect, rather than approximate, samples from the desired distributions;
and 3) our algorithms are conceptually simple and practical to implement.

Our algorithm proceeds as follows. First, run a vertex percolation process on the graph
G beginning at vertex r in a breadth-first search manner, repeatedly adding each adjacent
vertex to the graphlet with a carefully-chosen probability p. Once the percolation process
terminates, the graphlet is accepted as the random sample with a certain probability that
depends on the graphlet and rejected otherwise; if the graphlet is rejected, the algorithm
restarts another percolation process from r. Because of the careful way we choose the
percolation and rejection probabilities, we can prove the final accepted sample is drawn
exactly from the desired distribution and the expected running time is bounded by a constant
that depends only on A and the maximum degree A.

1.1 Sampling rooted graphlets

Our key contribution is a new algorithm for perfectly sampling weighted graphlets containing
a given vertex r. Formally, let G = (V, E) be a finite or infinite graph of maximum degree A.
For r € V, let S(G, ) be the set of all connected, vertex-induced subgraphs of G' containing
r. (The subgraph induced by U C V has vertex set U and includes all the edges of G with
both endpoints in U.) We call r the root of G and the elements of S(G,r) graphlets rooted
at r. For A > 0 define the probability distribution vg . on S(G,r) by

, where Zg,x= Z AIST, (1)
SeS(G,r)
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The distribution is well defined when the normalizing constant Zg ;. x, known as the partition
function, is finite. This is the case for every graph of maximum degree A and every r when
A is below the critical threshold:

(A —2)A2

A(A) = (A—1)a 1 ; (2)

(see Lemma 3 below). We give an efficient perfect sampling algorithm for vg , » for A < A (A).

» Theorem 1. Fiz A > 3 and let A < A\, (A). There is a randomized algorithm that for
any graph G = (V, E) of mazimum degree A and any r € V outputs a graphlet distributed
according to vg . x with expected running time bounded by a constant that depends only on A
and A.

We assume a model of computation that allows for querying the adjacency list of a given
vertex in a bounded degree graph in constant time, the standard model used in the study
of sublinear algorithms [27]. We also assume access to a stream of perfectly random real
numbers in [0, 1]. The model of computation is chosen for consistency; in particular, our
methods extend to other models, only requiring to adjust the running time to account for
any additional computational overhead.

Previous algorithms to generate e-approximate samples from v¢ .  (e.g., those in [32, 45,
16, 24]) exhaustively enumerate all graphlets of size < k, for some k that depends on the
error parameter € that describes how accurate the sample must be. This results in algorithms
with (1/£)©0°82) running times. Applications such as sampling from polymer models require
multiple samples from vg . x and, consequently, have small error tolerance per sample; in
particular, they require € < 1/n, which results in inefficient algorithms with overall running
time n©U°82)  The algorithm in Theorem 1, on the other hand, is an exact sampler whose
expected running time depends only on A and A and thus provides a significant advantage
in applications as we detail below.

We also show that Theorem 1 is sharp in two ways. First, we establish that there is no
polynomial-time approximate sampling algorithm for v, x» when A > A, (A) for the class of
graphs of maximum degree at most A unless RP=NP. Second, in the infinite setting, the
normalizing constant Zg , » may diverge (and consequently the distribution v¢ , 5 is not
well-defined) when A > A, (A); conversely, we prove that Zg . » is finite on every graph of
maximum degree A when A < A\, (A).

» Lemma 2. If for every finite graph G = (V, E) of mazimum degree A > 3 and everyr € V,
there is a polynomial-time approzimate sampler for va ., when A > A\ (A), then RP=NP.

» Lemma 3. The partition function Zgrx is finite for every (possibly infinite) graph
G = (V, E) of mazimum degree A and every r € V if and only if A < A\ (A).

The proofs of these lemmas are omitted, but can be found in the full version of this paper [6].

Finally, we mention that the algorithmic result in Theorem 1 cannot be extended even
to the case A = A, (A): for the infinite A-regular tree, we can show that the expected size
of a graphlet sampled from v, is infinite when A = A\, (A), and so it is impossible to
have sampling algorithms with finite expected running time. In summary, the algorithm in
Theorem 1 for A < A.(A), combined with the hardness/impossibility results in Lemmas 2
and 3 for A > A\.(A), provide a resolution to the computational problem of sampling
from vg , » on graphs of maximum degree at most A.
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As mentioned, our sampling algorithm is based on exploring the connected component
of r in a vertex-percolation process. We carefully choose a specific percolation parameter
p € (0,1) as a function of A and A (see Lemma 9). We then perform breadth-first search
(BFS) from r, labeling each new vertex encountered “active” with probability p and “inactive”
with probability 1 — p independently over all vertices; we continue the BFS exploring only
unexplored neighbors of active vertices. In this way we uncover the “active” component of 7,
call it v. We then accept v with a given probability depending on A, A, |y| and |07|, where
0v denotes the set of vertices outside of v that are adjacent to 7. If we reject v, we begin
again with a new percolation process. We note that only when A < A.(A) does there exist a
suitable percolation probability p that results in a subcritical percolation process, so that
the size of the active component has finite expectation and exponential tails. Sampling a
graphlet by exploring a random component and performing a rejection step has been used
in the past (most notably in the recent work of Bressan [9] to sample uniformly random
graphlets of size k; see also [2]). The weighted model we sample from is particularly well
suited to this type of exploration algorithm because of the direct connection to a subcritical
percolation process.

We prove a more general version of Theorem 1 in Section 2, allowing for vertex-labeled
graphlets and modifications of the weights by multiplication by a non-negative function
bounded by 1. These generalizations are needed for the application to polymer models in
Section 1.2.

1.2 Sampling from polymer models

We use our algorithm for sampling weighted rooted graphlets to design fast and perfect
samplers for polymer models. Polymer models are systems of interacting geometric objects
representing defects from pure ground states (i.e., most likely configurations) in spin systems
on graphs in classical statistical physics [29, 39, 22]. These geometric objects are most often
represented by vertex-labeled graphlets from a given host graph. Recently, polymer models
have found application as an algorithmic tool to sample from spin systems on various classes of
graphs in strong interaction regimes; see, e.g., [32, 13, 40, 16, 31, 24, 25, 7, 36, 35, 14, 20, 17].
In these applications, the problem of sampling weighted vertex-labeled rooted graphlets
emerged as a significant computational barrier.

We will work with subset polymer models in which all polymers are vertex-labeled graphlets
from a host graph G = (V, E). These models were defined in [29] and generalized in [39].
Such a polymer model consists of:

A set C = C(G) of polymers, each of which is a graphlet in G with the vertices of the

graphlet labeled with colors from a set % of size q.

Weights w, > 0 for each v € C.

An incompatibility relation ~ defined by connectivity. We say two polymers v, € C

are incompatible and write v = «/ if the union of their corresponding vertices induces a

connected subgraph in G. Otherwise they are compatible and we write v ~ +/'.

Let Q(C) denote the set of all sets of pairwise compatible polymers from C. The polymer
model is the Gibbs distribution p on Q(C) defined by

M(X):M, where Z(C) = Z va

Z(C) XeQ(C)veX

is the polymer model partition function. We say the weights of a polymer model are
computationally feasible if w, can be computed in time polynomial in |y|. The size |y| of a
polymer ~ is the number of vertices in the corresponding graphlet.
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Table 1 Comparison of conditions and running times of known polymer sampling algorithms.

Condition Bound on exponential | Running Time | Type of Sampler
decay of weights
Kotecky—Preiss [32, 35, 13] wy < (e2gA)~ 1] nOUog ) approximate
Polymer Sampling [16, 24] wy < (65q3A3)7M O(nlogn) approximate
Clique dynamics [23] wy < (egA)~1 nOUog ) approximate
This work (Theorem 4) wy, < (eqA)~1 O(nlogn) perfect

We will assume without loss of generality that all vertex-labeled graphlets of G, including
each individual vertex v € V, are elements of C, by setting w, = 0 when necessary. We let
C, be all polymers containing vertex v.

Algorithms for sampling polymer models fall into two classes: those based on truncating
the so-called cluster expansion of a polymer model to approximate a partition function and
using self-reducibility to sample, and those based on Markov chains on the set of collections
of compatible polymers. The cluster expansion approach, while giving polynomial-time
algorithms, generally is relatively inefficient, with the degree of the polynomial bound on the
running time growing with the degree of the underlying graph; e.g., running time n©°4) in
n-vertex graph of maximum degree A. The Markov chain approach in principle can be much
faster (near linear time in the size of the graph) but runs into one hitch: a stricter condition
on the parameters of the model is needed to perform one update step of the Markov chain
(the “polymer sampling condition” in [16, 24]). We solve this problem by adapting our rooted
graphlet sampler to sample polymers models, leading to a near linear-time perfect sampling
algorithm for polymer models under the least restrictive conditions known (see Table 1).

» Theorem 4. Consider a subset polymer model on a family of n-vertex graphs of maximum
degree A with computationally feasible weights satisfying:

(A —2)A72

w, < A for all y € C where A < M\ (A, q) := dB AT (3)

Suppose further that for all vertezr v,

Z,WU [ywy <1+ Z,yecv Wy (4)

Then, there is a perfect sampling algorithm for p with expected running time O(nlogn).

The threshold defined in (3) is the generalization of the critical threshold for rooted graphlet
sampling to the labeled case (taking ¢ = 1 recovers the definition in (2)). Theorem 4
improves upon the known results for sampling from polymer models in two ways. For a very
general class of polymer models, our algorithm simultaneously provides perfect sampling with
near-linear running time under weak conditions on the polymer weights. We now review
previous works to illustrate these improvements; see the accompanying Table 1.

A number of conditions on polymer weights have been used to provide efficient sampling
algorithms. The first papers in this direction (including [32, 35, 13]) used the Kotecky—Preiss

condition for convergence of the cluster expansion of the polymer model partition function [39]:

Dyt wyeh/' < |y| Vv € C. This condition is typically verified by ensuring that:

Z’YM) ww"y‘ <1 WweV. (5)
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Since the number of vertex-labeled rooted graphlets of size k£ in a maximum degree A graph
grows roughly like (eqA)*~1 (see [8]), weights of polymers of size k must decay roughly like
(e2gA)~F for the polymer model to satisfy (5), with the extra factor of e coming from the
exponential in the left hand side of the condition (5).

The major downside to the algorithms based on the cluster expansion, i.e., those using (5)
or the Kotecky—Preiss condition, is that the running times obtained are of the form n@(°84),
Subsequent works, namely [16, 24], addressed this downside but at the cost of a significantly
stricter condition on the polymer weights.

In [16], the authors devised a new Markov chain algorithm for sampling from polymer
models. The condition on the polymer weights for rapid mixing of this chain is somewhat
less restrictive than the Kotecky—Preiss condition; it is the Polymer Mixing condition:

Z . Y'lwy <0y ¥y eC for some 6 € (0,1). (6)
oy

This requires weights of polymers of size k to decay like (eqA)~*, a savings of a factor e
in the base of the exponent over (5). However, to implement a single step of this Markov
chain in constant expected time, a stronger condition (the Polymer Sampling condition) was
required:

wy < (65A3q3)7|7| ) (7)

This is a significant loss of a factor e2A2¢? in the base of the exponent compared to (5), but
the resulting sampling algorithm does run in near linear time.

In [23], the authors use a different Markov chain condition, the Clique Dynamics condition,
similar to (6), which requires weights of polymers of size k to decay like (eqA)~*, saving the
same factor e over (5). Their running times, though, are again of the form n®(°84) since
implementing one step of their Markov chain involves enumerating rooted polymers of size
O(logn).

Our results are a “best-of-both-worlds” for polymer sampling: under the conditions (3)
and (4) that both require polymer weights to decay like (eqA)~* — the precise conditions are
similar to but slightly less restrictive than the polymer mixing condition (6) — we obtain a
near linear time algorithm. Moreover, unlike any of the previous results, our algorithm is a
perfect sampler.

To conclude this section, we comment briefly on the algorithm we design to sample from .
Our starting point is the polymer dynamics Markov chain from [16]. We use it to implement
a Coupling from the Past (CFTP) algorithm (see [44]). To do so efficiently (in terms of the
number of steps of the Markov chain), we design a new “bounding Markov chain” for the
polymer dynamics, a method pioneered in [33, 30], and to implement each step of the Markov
chain efficiently, we turn to our sampler for weighted rooted graphlets from Theorem 1.

1.3 Applications to spin systems

Our new algorithm for sampling subset polymer models can be used as a subroutine in
essentially all previous applications of polymer models for spin system sampling at low
temperatures, including those in [35, 13, 40, 16, 31, 24, 25, 14, 20, 17]. This results in
faster sampling algorithms under less restrictive conditions on model parameters in all those
settings. As examples, we fleshed out here the details in two of these applications; more
details are provided in the full version of this paper [6].



A. Blanca, S. Cannon, and W. Perkins

Hard-core model on bipartite graphs. The hard-core model on a graph G is the probability
distribution u on Z(G), the set of all independent sets of G, with

A

hc hc I

uec(I) = ZE where  Z&(N) = E AL (8)
1€7(G)

The complexity of approximate counting and sampling from Méf on bounded-degree graphs is
well understood: there is a computational threshold at some A (A), with efficient algorithms
for A < A:(A) [49, 3, 18, 19] and hardness above the threshold (no polynomial-time algorithms
unless NP=RP) [47, 26, 48]. However, on bipartite graphs, the complexity of these problems
is unresolved and is captured by the class #BIS (approximately counting independent sets
in bipartite graphs) defined by Dyer, Goldberg, Greenhill, and Jerrum [21].

Theorem 4 implies the existence of a fast perfect sampling algorithm for the hard-core
model in a certain class of bipartite graphs called unbalanced bipartite graphs, considered
in [13, 23].

» Corollary 5. There is a perfect sampling algorithm for ,ugc running in expected time
O(nlogn) for n-vertex bipartite graphs G with bipartition (L, R), with mazimum degree Ay,
in L, maximum degree A in R, and minimum degree i in R if

M1+ (1+e)(Ap —1)AR) < (1+ \)0r/AL, (9)

Approximate sampling algorithms with large polynomial run times were pre-
viously given for this problem when 6AALAg < (1+A)°#/22 in [13] and when
3.3353M\AL AR < (1 4+ A\)?"/A2 in [23]. Our result applies to a comparable parameter
range: inequality (9) holds, for instance, when (1 4+ e)AALAR < (1 + \)?"/AL ) or when
BAALAR < (14 M)2R/A2 and Ap, < 6. More importantly, our algorithm is the first to achieve
perfect sampling and near-linear running time.

Potts model on expander graphs. The @Q-color ferromagnetic Potts model on a graph
G = (V, E) is the probability distribution p2*** on the set of Q-colorings of the vertices of
G;ie., {1,...,Q}V. Each Q-coloring o is assigned probability u2""*(o) oc ™) where
m(G, o) is the number of monochromatic edges of G under the coloring o and 8 > 0 is a
model parameter. When the parameter S is large, and G has some structure (e.g., G is an
expander graph), typical configurations drawn from u2"** are dominated by one of the Q
colors; that is, there is phase coexistence in the model. This enables sampling using subset
polymer models.

Recall that an n-vertex graph G = (V, E) is an a-expander if for all subsets S C V with

|S] < n/2, the number of edges in F with exactly one endpoint in S is at least a|S].

» Corollary 6. Consider the Q-color ferromagnetic Potts model on an a-expander n-vertex
graph of mazimum degree A. Suppose

1+1log (A5 +1) +1log((Q — 1)A) .
(6%

B =

Then there is a sampling algorithm with expected running time O(nlogn) that outputs a

sample o with distribution i so that ||y — 2™ ||z < e~ ),

(10)

Previously, [16] provided a e-approximate sample for p£°** in time O(nlog(n/e)log(1/¢))
whenever g > 232198(Q@=D2A) = condition (10) holds when 8 > %@_DA), S0 our

«
algorithm applies to a larger range of parameters and removes the dependence on ¢ from the

running time. We do not achieve perfect sampling in this application only because the subset

polymer models used give approximations of uf"*® rather than describing %" exactly.
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1.4 Sampling unrooted graphlets in finite graphs

As another application of our algorithm for sampling weighted rooted graphlets, we consider
next the problem of sampling weighted unrooted graphlets in a finite graph. Given a finite
graph G, let S(G) be the set of all graphlets of G. Define the distribution v¢ y on S(G) by

PNkl
— 7]
Zo ,  where Zg Zwes(g) AT

VG,)\('Y) =

Read-McFarland and Stefankovic [45] gave a polynomial-time approximate sampling algorithm
for v for the class of maximum-degree A graphs when A < A,(A) and prove that there
is no such algorithm for A € (A.(A), 1) unless NP=RP'. We give a new algorithm for this
problem, covering the entire A < A\,(A) regime, and improving on the result of [45] in two
ways: (i) our running time is constant in expectation (with no dependence on n), while the
running time of the e-approximate sampler in [45] is n - (1/)?1°82); and (ii) our algorithm
outputs a perfect sample instead of an approximate one (and thus the running time has no
dependence on any approximation parameter).

» Theorem 7. Fiz A > 3 and let A < A.(A). Then for the class of finite graphs of mazimum
degree A there is a randomized algorithm running in constant expected time that outputs a
perfect sample from vg . The expected running time is bounded as a function of A and .

The algorithm we use for this theorem is a modification of the one for sampling rooted
graphlets. We pick a uniformly random v € V| run the same BFS percolation exploration, and
accept the connected component of v with an adjusted probability (to account for the fact that
a graphlet can be generated from any of its vertices). The acceptance probability is bounded
away from 0 and so the algorithm runs in constant expected time. As mentioned earlier, the
g-approximate sampling algorithm from [45] is based on the exhaustive enumeration of all
subgraphs of size < k, for some k that depends on €. Our new algorithm entirely bypasses
this enumeration barrier.

2  Graphlet sampling: algorithms

In this section we present our efficient perfect sampling algorithm for weighted, vertex-labeled
graphlets containing a fixed vertex r from a maximum degree A graph; in particular, in
Section 2.1, we prove a generalized version of Theorem 1 from the introduction. We also
provide in Section 2.2 our algorithm for sampling weighted graphlets (i.e., the unrooted,
unlabeled case) and establish Theorem 7.

2.1 Sampling rooted vertex-labeled graphlets

Let G = (V, E) be a (possibly infinite) graph of maximum degree A. For U C V|, let G[U]
denote the corresponding vertex-induced subgraph of G; specifically, G[U| = (U, E(U)),
where E(U) C FE is the set of edges of G with both endpoints in U. A vertex-induced
subgraph is a graphlet if it is connected. For r € V', let S(G, ) be the set of all graphlets of
G that contain vertex r. We call the graphlets in S(G,r) the graphlets rooted at r.

! Tn [45], the threshold is incorrectly stated as A < A« (A + 1); this is due to a minor error interchanging
the infinite A-regular tree with the infinite A-ary tree; with this small correction their analysis goes
through with the bound on A as stated here.
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Let ¥ = {1,...,q} be a set of vertex labels or colors, and let S(G,7,q) = Ugesa.r »s
be the set of all vertex-labeled graphlets rooted at r. Given a real parameter A > 0, we
assign to each rooted vertex-labeled graphlet v € S(G,r,q) U {0} with |y| vertices the weight
w,, = AV f(v), where f: S(G,7,q) U {0} — [0,1]. Note that 0 < w, < A", which will be
important for later analysis.

Define the probability distribution vg . x on S(G,r,q) U {0} by setting

Wy

VG,r,/\(’Y) = m,

where Z(G,r,\) = Zv’ES(G,T,q)U{V}} wy. We assume that G, f, ¢ and A are such that
Z(G,r, ) is finite, so that this distribution is well defined. When ¢ =1 and f(y) = 1(y # 0),
VG . corresponds exactly to the distribution defined in (1) over the unlabeled graphlets of
G rooted at 7.

We consider the problem of sampling from v, x; this more general version of the sampling

(11)

problem is later used as a subroutine for sampling polymer systems in Section 3. Let

(A —2)272
q(A —1)A71

cf., (2). Our main algorithmic result for sampling colored rooted graphlets is the following.

A(Aq) =

» Theorem 8. Suppose A >3, A >0, and ¢ > 1 are such that A < A«(A,q) and let a > 0 be
a fized constant. There is a randomized algorithm to exactly sample from vg . x for graphs G
of mazimum degree A and functions f : S(G,r,q) U{0} — [0,1] where f(v) is computable
in time O(|y|%); this randomized algorithm has expected running time bounded by C - Z&}T’)\,
where C' > 0 is a constant that depends only on q, A\, A and a.

Theorem 1 from the introduction corresponds to the special case when ¢ = 1 and
f(v) = L(y # 0) (in this case Zg,» > A). Other mild assumptions on the function f, e.g.,
f(@) =1or f(r) =1, ensure that Zg , » is bounded away from 0 and, consequently, that the
sampling algorithm in the theorem has constant expected running time.

As a warm-up, let us consider first our algorithm for sampling labeled rooted graphlets on a
finite graph G = (V, E) with f = 1, and purposely omit certain non-essential implementation
details for clarity. First, we find p € (0,1) such that g(l — p)A72 = \; this choice of p
will be justified in what follows. The algorithm then repeats the following process until a
vertex-labeled graphlet is accepted:

1. Each vertex of the graph is independently assigned with probability p a uniform random
color from {1,...,q}, or it is marked as “not colored” with the probability 1 — p.

2. Let v be the vertex-labeled graphlet from S(G,r,q) U {(} corresponding the colored
connected component of r; i.e., the set of vertices connected to r by at least one path of
colored vertices.

3. Observe that the probability of obtaining v is (p/q)"/(1 — p)I?7l, where 97 denotes to
set of vertices in G that are not in v but are adjacent to a vertex in  (with a slight
abuse of notation, we let |0f] = 1). Our aim is to output v with probability oc A7l which
has no dependence on 9v. Therefore, we use a “rejection filter” and only accept v with
probability (1 — p)(A_2)|“/|“‘2_‘8"Y|7 so that the probability that v is the output becomes:

(g) Ivl(1 _ )21 = p)A-DhH2-100 — (1 _p)2 (g(l _p)A,g) ] — (1—p)2Ah. (12)

From (12), the choice of p such that %(1 —p)272 = X is apparent. We will prove that
only when A < A (A, q) there exists p € (0,1) such that £(1 —p)272 = X\. In the actual
implementation of the algorithm, it will in fact suffice to find an approximation for p.
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We comment briefly on the intuition for the rejection filter. The acceptance probability
must include a factor of (1 — p)_‘a"”7 so that the final acceptance probability depends on
|v| but not on |9v|. However, (1 —p)~1271 > 1 is not a valid probability, so we use instead
(1 — p)A=2+2=1971 " which is at most 1 since (A — 2)|y| + 2 > |d7|. This bound on |37| is
best possible since it is tight for the A-regular tree. We note that using looser bounds for |07|
affects the range of the parameter A for which we can find p € (0,1) so that L (1 —p)A2 =

Finally, we mention that the algorithm as described requires Q(|V]) time per iteration
and cannot be extended to infinite graphs. This is easily corrected by assigning colors
starting from r and revealing only the colored component of r in a breadth-first fashion.
The threshold M. (A, q) is sharp in the sense that only when A < A\.(4,q) is the value of p
such that the revealing process is a sub-critical process that creates a small component with
high probability. This ensures the algorithm can be implemented efficiently. In particular,
we stress that our algorithm avoids exhaustively enumerating labeled graphlets, as done in
previous methods [16].

Before giving the implementation details of our algorithm and proving Theorem 8, we
consider the problem of finding p € (0,1) such that %(1 —p)A~2 = X For A > 3 and
q > 1, consider the real function g(z) = s(1- 2)272. Tt can be readily checked that the
function g is continuous and differentiable in [0, 1], has a unique maximum at z = ﬁ with
9(x=7) = A(A, q), is increasing in [0, x2], and decreasing in [<1+,1]. This implies that
only when A < A\, (4, q), there exists a value of p € [0, ﬁ) such that g(p) = A. In particular,
when A > A.(4,q), there is no value of p for which g(p) = A and when A = A.(4,q), the
only possible value is p = ﬁ. The latter case would result in a critical percolation process,
corresponding to the fact that the expected size of a graphlet from v, » has no uniform
upper bound in the class of graphs of maximum degree A; in fact, it is infinite on the
A-regular tree. We can find a suitable approximation for p when A < A.(A,¢) via a simple
(binary search) procedure.

» Lemma 9. For any A € [0,\.(4A,q)) we can ﬁnd rational numbers p € [0, x) and

[0,
A€ [\ A(A, q)] such that g(p) = X in O(]log Tew )\)|) time.

The proof of this lemma appears after the proof of Theorem 8. We now prove Theorem 8,
including giving a more detailed version of the algorithm outlined above that includes the
previously omitted implementation details and allows for general functions f : S(G,r,q) U

{0} — [0,1].

Proof of Theorem 8. For ease of notation, let A\, = A.(A,q). Our algorithm to sample from
va,r,x When A < A, explores from r in a breadth-first manner and stops once it has revealed
the colored connected component of r. It proceeds as follows:

1. Find p € [O <) and XA € [M\ ) such that g(p) = A. This can be done in time
O(|log vewEy |) per Lemma 9.
2. Let Q be a queue With probability 1 — p do not add r to Q; otherwise, assign r a color
uniformly at random from {1,...,q} and add r to Q. Mark r as explored.
3. While Q # 0, repeat the following:
(3.1) Pop a vertex v from Q.
(3.2) For each unexplored neighbor w of v, with probability 1 — p do not add w to @Q;
otherwise, assign w a color uniformly at random from {1,...,¢} and add w to Q.
Mark w as explored (regardless of whether it was added to @ or not).
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4. Let v be the vertex-labeled graphlet from S(G,r,q) U {0} corresponding the colored
connected component of r. Accept v with probability:

F(y) - (1 — p)Ad-2hl+2-10n| (%) |7|.

5. If v is rejected, go to Step 2 and repeat.
The probability of obtaining v € S(G,r,¢) U {0} in an iteration of the algorithm is:

(g) M)l g1 - pya-Dhlon] (%)'7\ = (1= f() A" = (1= p) w,,

and thus the overall acceptance probability in an iteration is:

p:=(1-p)? > wy = (1= 9)*Za.r
vES(G,r,q)U{0}

Then,

(1=5)2w, (1—py=1 = LDV

Pr[y € S(G,r,q)U{0} is the output] = Y p

- VG,T',)\(’Y)'

We next bound the expected running time of the algorithm. We claim first that expected
running per iteration is at most a constant that depends only on a, A and ¢. If v is the
configuration generated in an iteration, it is discovered in O(|y| + |97v|) = O(]y|) time and,
by assumption, f(7) can be computed in at most O(]y|*) time, for suitable a constant a > 0.
Let 4 the output distribution of Step 3 of the algorithm. Then, there exists a constant
C = C(q,A) > 0 such that the expected running time of each iteration is at most:

c Y e Prly] = OBy
yeS(G,r,q)Ud

ypmextial] (13)

We show next that |y| (under fi) is stochastically dominated by a random variable
W=X+Y (ie., |y] < W), where X and Y are i.i.d. random variables corresponding to the
cluster size of a homogeneous Galton-Watson tree with offspring distribution Bin(A — 1,p).
To see this, first note that |y| < L, where L is the cluster size of a heterogeneous Galton-
Watson tree, in which the root vertex has offspring distribution Bin(A,p) and every other
vertex has offspring distribution Bin(A — 1,p). This is because the branching process
generating v includes the root only with probability p (the root is always present in the
Galton-Watson tree), and, in addition, it considers at most A (from the root) or A —1 (from
any other vertex) potential branches. In turn, we have that L < X + Y, since we can couple
the first A — 1 branches of the root with X (starting at the root) and the remaining branch
with Y (starting at the child of the root not coupled with X).

It is well-known that X and Y have finite moments when (A —1)p < 1 (see, e.g., [34]).
In particular, there exists a constant A = A(a, A, p) > 0 such that

Eullv]*] <E[L*] <E[(X +Y)*] < 2*(E[X] + E[Y*]) < A. (14)

This together with (13) shows that the expected running time in each iteration of the
algorithm is bounded by C - A.

Now, let R be the number of times Steps 2-5 are repeated, let T be the overall the
running time of the algorithm. Then:

CA

E[T)=Y E[T|R=#Pr[R=1<C-A-) t(1-p)'p<—, (15)
t>1 t>1 p
and the result follows. <
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We conclude this section with the proof of Lemma 9.

171]. This can be done via binary search in ¢

Proof of Lemma 9. Tt suffices to find p € [p,
< —p. Since ¢’ < %, it follows from the mean

steps, provided ¢ > 0 is such that ﬁ . 2%

~D

A1
value theorem that ¢(A. — ) < ﬁ — p. Thus for the binary search to require at most ¢

steps it is sufficient to pick ¢ so that ﬁ . 2% < g(A« — A), and the result follows. <

2.2 Sampling unrooted graphlets

We consider next the problem of sampling weighted graphlets from a finite graph G = (V, E)
of maximum degree A; specifically, in this variant of the sampling problem we consider
unrooted, unlabeled, weighted graphlets of G. Let S(G) be the set of all graphlets of G. We
define the probability distribution vg x on S(G) by setting

AlSl

vaa(S) = Zox

where Zg ) = ZS,ES(G))JS,'. The problem of (approximately) sampling from vg ) is
quite natural. In [45], it was established that this problem is computationally hard when

A > A(A) = %; an e-approximate sampling algorithm was also given in [45] for
the case when A < \,(A) with running time n - (1/£)?1°82). We now provide the proof of
Theorem 7, which says we can perfectly sample from v¢ ) in constant expected time when

A < A (A).

Proof of Theorem 7. For ease of notation, we set A\, = A\.(A) throughout this proof. Our
algorithm to sample from v » is based on the algorithm to sample from vg . (the rooted,
vertex-labeled, weighted case). The idea is to pick a root uniformly at random and run the
algorithm for the rooted case from this random vertex with the rejection filter adjusted to
account for the fact that a graphlet can be generated from any of its vertices. It proceeds as
follows:
1. Find p € [0, x5) and A € [\, A.) such that g(p) = A using the method from Lemma 9.
2. Pick a vertex r € V uniformly at random.
3. Let @ be a queue. With probability p add r to @ and mark it as colored. Mark r as
explored.
4. While Q # 0, repeat the following:
(4.1) Pop a vertex v from Q.
(4.2) For each unexplored neighbor w of v, with probability p add w to @ and mark w
as colored. Mark w as explored.
5. Let S € S(G) be the graphlet corresponding to the colored connected component of v.
Accept S with probability:

L (12 pya-isiea-os) (A)'S'_

5] A

6. If S is rejected, go back to Step 2 and repeat.

The analysis of this algorithm is similar to that in the proof of Theorem 8. Let n = |V|.
The probability that the algorithm outputs S in an iteration is:

)\)ISI _ (1—p)*A (16)

1 . 1 (A _
3= I )P (1 A IsIH |8S\<7
vESn |S‘ A

Hence, conditioned on acceptance, the probability of obtaining S € S(G) is thus vg A (S),
and so the output distribution of the algorithm is vg ».

n
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For the running time of the algorithm, we note that Step 4 of the algorithm is analogous
to Step 3 of the algorithm in the proof of Theorem 8, and so the expected running time
of each round is also bounded by a constant C = C(A,p) > 0. Let T be the overall the
running time of the algorithm. From (16), we have that the overall acceptance probability in
a round is p = %ﬂz(cx) Then, as in (15), we deduce that E[T] = O(nZ(G, \)~1). Since
Z(G,\) > nA, we have E[T] = O(1). <

3 Applications to Polymer Models

In this section, we show how to use our algorithm for sampling rooted vertex-labeled graphlets
from Section 2 to sample from subset polymer models and prove Theorem 4.

Consider a subset polymer model on an n-vertex graph G = (V| E); see Section 1.2 for
the definition. Recall that we use C, for the set of all polymers containing vertex v € V, and
let v denote the empty polymer. Define the distribution v, on C, U {4} by

v(7) = m—2——r

2 5eC,Utro} W
where we assign w,, = 1. The following Markov chain on Q(C), introduced in [16], has
stationary distribution p and mixes rapidly in O(nlogn) steps under the polymer mixing
condition (6).

Polymer dynamics. Given a configuration X; € Q(C), form X;, as follows:

1. Pick v € V uniformly at random and let S, = {7y € X; : v € v} (note that S, is either
empty or contains 1 polymer).

2. With probability 1/2, let X1 = X; \ So.

3. With probability 1/2 (exclusively of step 2), sample v from v,. Let X1 = Xy U {~} if
X U{y} € Q(C) and let X;11 = X; otherwise.

To implement a single update step, one must sample from v, in Step 3. To do so efficiently,
in [16] the much stricter polymer sampling condition (7) was required. Here we give a fast
perfect sampler for v, under a much weaker condition.

» Theorem 10. Consider a subset polymer model on a family of n-vertex graphs of maximum
degree A > 3 with computationally feasible weights that satisfy w., < A for some A <
A(A, q). There is a randomized algorithm to sample perfectly from v, for any v € V with
expected running time bounded by a function of A\, A, and q.

Proof. This follows from Theorem 8. <

Using this theorem and the fast mixing result for the polymer dynamics of [16], one
can approximately sample from p whenever both the polymer mixing condition (6) and the
assumptions of Theorem 10 hold. We further improve this by giving a perfect sampling
algorithm that works whenever a new condition (4) is satisfied (our algorithm also requires
the assumptions in Theorem 10). In all known examples, condition (4) is more permissive
than the polymer mixing condition (6) from [16].

3.1 Perfect Sampling for polymer systems: Proof of Theorem 4

As mentioned, the polymer dynamics from [16] is not a perfect sampler. We propose here
a different algorithm to output a perfect sample from p. Our algorithm uses the coupling
from the past method [44] and the notion of bounding Markov chains [33, 30] to efficiently
implement it.

4:13
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We proceed with the proof of Theorem 4. We start with the description of a grand
coupling for the polymer dynamics, which is then used to implement a coupling from the past
algorithm. For an n-vertex graph G = (V, E), let {X| } denote an instance of the polymer
dynamics started from the polymer configuration T' € Q(C). For all T' € Q(C), the chains
{XF}} are coupled by choosing the same uniform random random vertex v € V, the same
polymer 7 sampled from v, and the same uniform random number in [0, 1] to decide whether
to remove S, (Step 2) or to add v (Step 3). A coupling from the past algorithm will find
a time —7T such the grand coupling started from all possible states at time —T coalesces
to a single state by time 0. This guarantees that the output of the algorithm, that is the
state at time 0, has distribution g (see Theorem 1 from [44]). Such a T' can be found with a
binary search procedure. Unfortunately, implementing the coupling from the past algorithm
in this manner for the polymer dynamics Markov chain is infeasible in our setting, since it
requires simulating an exponential number of copies of the polymer dynamics, one from each
I'e Q).

To work around this, we consider a bounding Markov chain for the polymer dynamics
rather than the polymer dynamics chain itself. Bounding Markov chains were pioneered
in [33, 30] as a method for efficiently implementing coupling from the past. The bounding
chain for the polymer dynamics has state space Q(C) x 2¢ and will be denoted by {B;, D;},
where By € Q(C) and D, C C are sets of polymers. The chain will maintain throughout that
all polymers in B; are compatible and that every polymer in B; is compatible with every
polymer in D;. The polymers in D; do not need to be compatible with each other. A step of
the bounding Markov chain is defined next.

Polymer Dynamics Bounding Chain. Given {B;, D;}, the chain generates {B;y1, D41}
by:
1. Uniformly at random, select v € V.
2. With probability 1/2, remove all polymers containing v by setting B;+; = B \ C, and
Diy1 =D\ C,.
3. With the remaining probability 1/2, draw a sample v according to v, and:
a. If v is compatible with B; and «y is compatible with D; \ {~}, let Byy1 = B; U {7} and
let Diyq = De\ {7}.
b. Else if v is compatible with B; but v is not compatible with Dy, let By, = B; and let
Dt+1 = Dt U {’7}
c. If v is incompatible with By, do nothing: By41 = By and Dyy1 = Dy.
Observe that polymers are only added to B; if they are compatible with all other polymers
in By; hence, if By is a valid polymer configuration, so is B, for all t > 0.
To implement a step of the polymer dynamics bounding chain it suffices to pick a vertex
v € V uniformly at random, a uniform random number in [0, 1], and a polymer ~ from v,
just like for the polymer dynamics. Hence, we can couple the evolution of {By, D;} with the
grand coupling of the polymer dynamics described earlier. If we set By = () and Dy = C, it
can be checked that for all T' € Q(C) and all ¢ > 0:

B; C X! C B;UD;.

Indeed, this holds initially for ¢ = 0, and the grand coupling ensures that whenever a polymer
is removed from X} it is also removed from B;, and whenever a polymer is added to X[
it is also added to B; or D;. Consequently, {B¢, D;} is a bounding chain for the polymer
dynamics. In particular, the first time B; = B; U Dy, all instances X; have necessarily
coalesced to the same configuration. This bounding chain allows us to implement the coupling
from the past algorithm efficiently, as follows.
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Coupling from the Past. Set &k =1.

(A) For t = —2F —2F + 1 ... —2F=1 generate p; = (v¢,7¢,7¢) by choosing v; € V uniformly
at random, r; € [0, 1] uniformly at random, and by sampling v; € C,, from v,.

(B) Set B_or =@ and D_qx =C.

(C) Simulate the polymer dynamics bounding chain from time —2* to time 0 using
P_2ky ey P—1-

(D) If By = By U Dy, then output By; otherwise set k — k 4+ 1 and repeat the process from
Step (A).

This implementation of the coupling from the past algorithm provides a perfect sample
from p; see [44]. It remains for us to show that it can be efficiently implemented. For this,
we show first that the expected number of steps of the polymer dynamics bounding chain
throughout the execution of the algorithm is O(nlogn). Afterwards, we will show how to
implement steps so that they can be executed in amortized constant expected time.

» Lemma 11. Suppose the subset polymer model satisfies condition (4). Then, the expected
number of steps of the polymer dynamics bounding chain in the coupling from past algorithm

is O(nlogn).

Proof. See the full version [6], where a potential ¢; describing the size of Dy is introduced
and shown to decrease quickly. <

It remains to consider how to efficiently implement the steps of the polymer dynamics
bounding chain. This is subtle because D; may initially contain an exponentially large
number of polymers, and care is thus needed in how D; is represented and stored. The
following lemma says we can represent and update B; and D; efficiently.

» Lemma 12. There exists a compact representation of By and Dy that uses O(n +t) space
in expectation. Using this representation, each iteration of the Polymer Dynamics Bounding
Chain can be executed in amortized constant expected time.

Proof. See the full version [6]. <
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—— Abstract

In this work, we define a notion of local testability of codes that is strictly stronger than the basic
one (studied e.g., by recent works on high rate LTCs), and we term it amplified local testability.
Amplified local testability is a notion close to the result of optimal testing for Reed-Muller codes
achieved by Bhattacharyya et al.

We present a scheme to get amplified locally testable codes from high dimensional expanders. We
show that single orbit Affine invariant codes, and in particular Reed-Muller codes, can be described
via our scheme, and hence are amplified locally testable. This gives the strongest currently known
testability result of single orbit affine invariant codes, strengthening the celebrated result of Kaufman
and Sudan.
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1 Introduction

High dimensional expansion implies amplified local testability

The aim of this work is to show that codes arising from high dimensional expanding set
systems have a strong notion of local testability, which we call amplified locally testability
(see exact definition below). Specifically, we define the notion of High Dimensional Expanding
System (HDE-System ) that is a two layer expanding set system that generalizes two layer
set systems arising from high dimensional expanders. Using this new concept, we show that
codes whose constraints form an HDE-System are amplified locally testable.

Testability of well studied codes via high dimensional expansion

We further show that most well studied locally testable codes such as Reed-Muller codes and
more generally affine-invariant codes are, in fact, HDE-System codes. Hence, their (amplified)
local testability could be re-inferred using our current work; and could be attributed to the
high dimensional expansion phenomenon. Specifically, we give a high dimension expansion
based proof to the amplified local testability of single orbit affine invariant codes, that
strengthen the well known result of Kaufman and Sudan [10].
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Amplified local testability

In our work, we study a strong notion of local testability for a family of locally testable codes
and show that this strong testing property is holds for HDE-System codes.

In order to better explain the notion of amplified local testability, we recall the following
formulation of locally testable codes:

» Definition 1 (Locally testable code). Given a linear code C' C ]FI‘,/ defined by a set Ec of
k-query tests (i.e., tests that query k-bits of the codeword), define rej : F;,/ — [0,1] where
rej(c) is the fraction of k-query tests that ¢ fails (by definition, ¢ € C if and only if rej(c) = 0).
We refer to querying an equation in Ec as the basic test of the code.

Let C be a sequence of codes such that there is k = k(C) such that every C € C is defined
by a set Ec of k-query tests. We say that a family of linear codes C is locally testable if
there is a constant r¢ > 0 such that for every C' € C the following robustness property holds:
For every c € IF‘X,

rej(c) = re min|lc - N

where ||c — || is the fraction of the bits in which ¢ and ¢ differ.

Note that in the above definition the number of bits queried in the basic test for a code
C € C is constant (independent of C') and thus one does not care if r¢ depends on k. For
instance in the recent celebrated work of Dinur at el. [4], the basic test queries k bits, and
r¢ is of the order of ﬁ (see [4, Theorem 4.5]).

However, a sequence of locally testable codes is usually a part of a larger family of codes
where k does vary. The motivating example is (binary) Reed-Muller codes RM(d, n), where
d is the degree of the polynomial and n is the number of variables. When fixing d and
considering the sequence of codes where n tends to infinity, it is a classical result that this
sequence is a locally testable code with the number of bits queried in the basic test is k = 2¢
(see [1]). If we consider the family of codes RM(d,n) where d also varies (and n is large
enough with respect to d), we get a larger family of codes in which k(C') is no longer constant.
For this example of binary Reed-Muller codes, Bhattacharyya at el. [2] proved a striking
result of optimal testing for binary Reed-Muller codes:

» Theorem 2 ([2, Theorem 1]). Let
C ={RM(d,n) :d € N,d > 2,n € N sufficiently large with respect to d}

be the family of all binary Reed-Muller codes. There is a constant rry > 0 such that for
every C = RM(d,n) € C with k(C) = 2¢, it holds for every c € Fg‘" , that
1
rej(c) 2 k(C)rpm min{min|lc — ', ot

In other words, [2] show that the family of all binary Reed-Muller codes is locally testable
even when changing the degree! This Theorem can be interpreted as follows: As noted above,
for every RM(d,n) € C, k(RM(d,n)) = 2%. Thus the above theorem states that for every
ce F]g;, if mingecllc — ¢[|< o, then

rej(c) > 2%rrm minflc -

and if mingec|lc — (> 2%, then

rej(c) > rrm > TRM gleigHg -
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Motivated by the above result, we define amplified local testability as a relaxation of
optimal testability:

» Definition 3 (Amplified locally testable codes). Let C be a family of codes such that every
C € C is defined by a set Ec of k(C)-query (basic) tests. We say that a family of linear codes
C is amplified locally testable if there are constants tc > 1 and r¢ > 0 such that for every
C € C the following robustness property holds: For every c € IFX,

1
rej(c) > k(C)r¢ min {gggﬁ —, (k(C’))tC} :
» Remark 4 (Role of t¢). The best we can hope for amplified local testing is t¢c = 1. If this
happens, then the family has optimal local testability as in the result of [2]. Our methods
below do not give optimal local testability, but only amplified local testability with to = 3.

» Remark 5. A similar relaxation of optimal testability was studied for lifted codes by
Haramaty, Ron-Zewi and Sudan in [6].

In this work we show that a code which can be described via HDE-System, not only we
can infer local testability for it, but rather we can infer amplified local testability for it. As
already noted above, this is not the case of the the analysis of the family of codes of [4]: In
[4] the basic test samples k-bits and r¢ (in the notation of Definition 1 above) behaves like
ﬁ and thus decreases as k increases.

By applying our machinery to single orbit affine invariant codes, we get that these codes
are amplified locally testable, which is the strongest notion of testability known for these

codes, strengthening the well known work of Kaufman and Sudan [10].

Local testability of single orbit affine invariant codes via HDE-System

In the following we refer to single orbit affine invariant codes which were shown to be locally
testable by the Kaufman-Sudan work [10]. These codes contain the well known Reed-Muller
codes. We show that they are HDE-System codes, so their local testability is implied by
our current work. Kaufman and Sudan have shown that single orbit affine invariant codes

which are characterized by k-weight constraints that form a single orbit are locally testable.

We will show that the Kaufman-Sudan requirement allows to show that single orbit affine
invariant codes are modelled over HDE-System and thus are amplified locally testable.

» Theorem 6 (Testability of single orbit affine invariant codes — informal, for formal, see
the related full version of this paper). Let Coffine-inv,p e the family of all single orbit affine

n(C)
inwvariant codes C' C ]F,H.f(c) with

K(C)[" D= 21 p? (k(C))*,

where k(C) is the size of the support of the constraint defining C. Then the family of all
these codes is amplified locally testable. FEwplicitly, for every C € Coffine-invp ond every

c e FXO" 4t hotds that

. 1 . . 1
rec) 2 K(C) g3 min {mg |, m} |

We compare this result to the (non-amplified) local testing for affine invariant codes of
Kaufman and Sudan [10, Theorem 2.9] who showed the following:
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» Theorem 7 ([10, Theorem 2.9]). For every C € Coffine-inv,p it holds that

rej(c) > 1min min|lc — || 1
N =3 cec €€ oz [
1

Our Theorem and [10, Theorem 2.9] both give a rejection of Q(W) when ming ccf|c—¢'||
is large. However, when mingcc|c—c[|<< k(—é)g, and k(C) is large, our result gives a much

better rejection rate.

Local testability via unique neighbor expansion

We show that A\-expanding HDE-System has some form of unique neighbor expansion property
associated with it. We also show that if the HDE-system has a strong enough unique neighbor
expansion property, then a linear code defined based on this system is amplified locally
testable. We prove that this is the case for affine-invariant codes with the single orbit property.
Thus, HDE-system provides a mechanism to get amplified local testability of codes.

2 Comparison to prior works

We already mentioned the celebrated work of Dinur at el. [4] that uses ideas from high
dimensional expansion to construct locally testable codes with constant rate, distance and
locality. As noted above, our work is in a different direction and achieves different goals (we
do not achieve the result of [4], but do achieve amplified local testability).

Another work that seems superficially close to the methods of this paper is the recent
work of Dikstein at el. [3] that also relies on ideas from high dimensional expansion to deduce
local testability. The reader should note that there are major difference between the works:

Our work has the benefit of deducing not only local testability, but rather amplified local

testability which was not achieved in [3].

As far as we know, the work of [3] does not apply to the family of affine invariant codes,

but only to a sub-family of lifted codes. Thus, in terms of generality, our work seems to

apply in a more general setting.

The work of Dikstein at el. [3] relies on the idea that “global” local testability can be

inferred from “local” local testability. Le., in [3], the assumption is that the code contains

many small (i.e., “local”) locally testable codes and by expansion considerations, it follows
that the global code is locally testable. This is also the point of view of [7, 5, 8] that
considered what can be thought of as “co-cycle codes” and the global testability was
derived assuming they are composed of small local codes that are locally testable (aka

“the links” code). In contrast to [3] (and to [7, 5, 8]), the focus of this current work is

to get local testability of codes directly from high dimensional expansion phenomenon.

Deducing local testability of codes directly from high dimensional expansion (without

relying on any local code that is locally testable) is new and is achieved here for the first

time.

It is also beneficial to compare the results of this paper to previous results regarding
single orbit affine invariant codes. In [10, Theorem 2.9], it was shown that single orbit affine
invariant codes are locally testable. Using our new machinery, we improve on this result,
showing the the family of all single orbit affine invariant codes has amplified local testability.
As noted above, a stronger result was known for Reed-Muller codes (which is a sub-family
of the family of affine invariant codes), but, prior to our work, no general treatment was
available to the entire family of single orbit affine invariant codes.



T. Kaufman and |. Oppenheim

3 High Dimensional Expanding System (HDE-System)

Our main definition towards defining high dimensional expander codes is called High-
Dimensional-Expanding-System or HDE-System for short.

We start by defining a (s, k, K)-Two layer system:

» Definition 8 ((s, k, K)-Two layer system). A two layer system X is a system X = (V,E,T)
of three sets:

1. A finite set V whose elements are called vertices.

A set E C 2V such that |t|=k for every 7 € E and J, cp7=V.

A set T C 2% such that |o|= K for every o € T and |J,op0 = E.

By abuse of notation, we will denote v € o for v e V,o € T if there is T € o such that
v € 7. Using this notation, for every o € T and every v € o,

Lol o\

2<|{{reo:ver}<s.

Roughly speaking, HDE-System is a two layer system with good expansion properties.
In order to give the definition, we need to define several graphs associated with a two layer
system. We note that all the graphs defined below will be actually considered as weighted
graphs with a weight function induced by weights on 7', but in the introduction we suppress
this fact in order to keep things simple.

» Definition 9 (The ground graph). For a two layer system X = (V, E,T), the ground graph
of X is the graph whose vertices are V' and edges are {{v,u} : 37 € E,u,v € 7}.

» Definition 10 (Link of a vertex). For a two layer system X = (V,E,T) and v € V, the
link of v is the graph whose vertex set is E, = {7 € E : v € 7} and whose edge set is

T,={{r,7'} : 7 # 7" and Jo € T such that 7,7’ € o}.

» Definition 11 (The non-intersecting graph). For a two layer system X = (V, E,T), the
non-intersecting graph of X is a graph whose vertex set is E and edge set is

{{r, 7'} 77" =0 and o € T, such that 7,7" € c}.

This graph corresponds to the Non-Intersecting Walk, i.e., to the walk from a between elements
of E that do NOT intersect (as subsets of V') via a T element that contains both of them.

An HDE-System is a two layer system X in which all these graphs are expanding. More
precisely, for 0 < A < 1, we call a (weighted) graph G a A-expander if it is connected and
either the second largest eigenvalue of the is < A or (which is less restrictive) its (generalized)
Cheeger constant is > 1 — A (see related full version of this paper for exact definition).

» Definition 12 (High Dimensional Expanding System (HDE-System) — informal, for formal
see the related full version of this paper). For 0 < X\ < 1, a (weighted) two layer system
X = (V,E,T) is called \-expanding-HDE-System if the ground graph and the links of all the
vertices are A-expanders and the non-intersecting graph is either totally disconnected (i.e., it
has no edges) or a A-expander.
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High Dimensional expanders imply HDE-System

Part of our motivation for the Definition of HDE-systems is to mimic the definition of high
dimensional expanders based on simplicial complexes (called A-local spectral expander — see
[9, Definitions 2,3]). The simplest example is when Y is a 2-dimensional simplicial complex.
In this case, we define a two layer system X = (V, E,T) as follows: V is the vertex set of Y,
F is the edge set of Y and T is the sets of triples of edges that form a triangle in Y. We note
that in this case the parameters of X are s = 2,k = 2, K = 3. Note that the ground graph is
the 1-skeleton of Y, the link of each vertex in X is the link in the simplicial complex and the
non-intersecting graph is totally disconnected (since every two edges that are in the same
triangle share a vertex). Thus, by definition if Y is a A-local spectral expander, then the
1-skeleton of Y and all the links of Y are A-expanders and it follows that X is A-expanding.

Expanding HDE’s have unique neighbor expansion for small sets that are also locally
small

Our main motivation for the definition of HDE-System is the ability to deduce unique
neighbor expansion theorem from them, for “small” sets that are also “locally small”. This
unique neighbor expansion theorem that we state below will play a major role in proving
local testability based on HDE-System.

In order to state this Theorem, we will need the following definition:

» Definition 13 (§-Locally-small set — informal, for formal see the related full version of this
paper). Let X = (V,E,T) be a two layer system and let A C E be a non-empty set. For a
vertetv € V, define A, = {r € A:v e 1}. Fora constant 0 < § < 1, a vertex v is called
d-small if the size of A, in the link of v (when accounting for the weight function on the
link) is smaller than ¢ fraction of the size of E,. Vertices that are not 0-small are called
0-large. A set A C E is called §-locally small, if the fraction of its mass that is distributed
on vertices that are d-large is negligible with respect to the total mass of A.

Following we define a notion of unique neighbor expansion that applies for small sets that
are also d-locally small.

» Definition 14 (Unique neighbor expansion property — informal, for formal see the related
full version of this paper). We say that A C E has a unique neighbor expansion into T if
there exists o € T' that contains exactly one k-set from A. Let X = (V,E,T) be a two layer
system and let A C E be a non-empty set. For constants g > 0, § > 0, we say that X
has (9, €p)-unique neighbor expansion property if for every non-empty set A C E and every
e < eg if A e-small (i.e., its mass is at most a e-fraction of the total mass of E) and 6-locally
small, then A has unique neighbor expansion into T .

» Theorem 15 (Main Theorem 1: Unique neighbor expansion property for HDE-System —
informal, for formal see the related full version of this paper). Given a A-expanding HDE-System
X, with \ sufficiently small, there are 6 > 0 and €9 > 0 such that X has the (9, eq)-unique
neighbor expansion property. Moreover, if s =2, then § — 1 as A — 0.

On the ability to get unique neighbor expansion from HDE-systems

The idea behind the proof of Main Theorem 1 is to use the expansion of the links in order to
derive unique neighbor expansion. The links are very good expanders so a set that is locally
small has the property that its local views in the links expand a lot. Each link induces by
its local view many “potential unique neighbors”. However, it could be that the local views
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of the links will interfere and the “potential unique neighbors” by the “links opinion” will
turn out to be non unique neighbors. Since the system is expanding the total interference
between links is small and thus the overall unique neighbor property is implied.

4 HDE-System Codes

Given a two layer system X = (V, E,T) as above, we want to use it as a “foundation” and

for constructing a code. Such a construction is not unique and cannot be done for every X.

However, for a code that “could be constructed via X7, its testability could be inferred from
the expansion properties of X.
Before describing this construction, we need to establish some terminology and notation:
Let C C IFX be a linear code (where V is a finite set) with a check matrix H.
We denote by € = E(H) the rows H and we refer to £ as the constraints of the code (or
k-constraints if they all have a support of size k — see below). Thus, £ are 1 x n vectors
and for c € ]FX, c € C if and only if for every e € £, e- ¢ =0 (recall that e, ¢ are indexed
by the elements in V, thus e- ¢ = >, e(v)c(v)).
For e € &, we define the support of e as

supp(e) = {v € V : e(v) # 0}.

A linear dependency of £ is a function 1d : & — F, such that for every ¢ € IF;/,
> cce ld(e)(e - ¢) = 0. In other words, if we think of the row vector 1d = (ld(e))cee, then
IdH = 0. As above, the support of 1d is the set

supp(ld) = {e € £ : ld(e) # 0}.

» Example 16. Consider C C FY, V = {vy, 3} given by the parity check matrix
10
H=1|0 1
1 1
If e, denotes the i-th row of H, then Id : {e;, €5, €5} — Fa defined by
ld(e;) = 1,Vi = 1,2,3,
is a linear dependency. Indeed,
d=(1 1 1),

and one can verify that IdH = 0.

» Definition 17 (Code modelled over a two layer system). Let X = (V, E,T) be a two layer
system. A code C' is said to be modelled over X if the following holds:

There is a prime power p such that C' C IE‘Z‘,/.

There is a check matriz H and € = E(H) such that

E = {supp(e) : e € £},

and such that for every ey, e, € £, if e; # e,, then supp(e;) # supp(ey). In other words,
there is a bijection ® : £ — E given by ®(e) = supp(e). Note that under this assumption,
the size of the support of all the constraints is k (the constant of the system X ) and we
refer to the elements of € as the k-constraints of the code, when there is no chance for
ambiguity.
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There is a set T of linear dependencies such that
T = {{supp(e) : e € supp(ld)} : 1d € T}.

» Example 18. Let X = (V, E,T) the following two layer system: V = {vi,v9,v3}, E =
{rij={vi,v;} 1 1<i<j<3tand T ={o={r,;:1<i<j<3}}. Then for every prime
power p, we can define a code C' C IF;,/ modelled over X as follows: define the check matrix
of the code to be

H=[ o 1 p-1

One can see that for this matrix the support of the i-the row is {v;,vi41 mod 3} € E and
that no two rows have the same support. Further define a linear dependency 1d : £ — F,, to
be the constant function 1, thus one can verify that the support of 1d is 0 € T and that this
is indeed a linear dependency.

Our motivation for considering codes modelled over two layer system is the following

» Theorem 19 (Main Theorem 2: Codes modelled over two layer systems with unique neighbor
property are amplified locally testable — informal, for formal see the related full version of this
paper). For every p prime, t' € N;t' >0, u >0 and § > pp%l, let C(6,p,t', 1) be the family
of p-ary codes (i.e., codes of the form C C ]FX(C) ) modelled over two layer systems such that

C(57p7 t’7u)

= {C : 3eo(C) > 0 such that C has the (8,e0(C))-unique neighbor property and o > k(g)t'} .

Then the family C(6,p,t', u) is amplified locally testable with tc =t + 1.

On the ability to get amplified local testability from unique neighbor expansion

We will explain how to get amplified local testability from unique neighbor expansion for
p = 2 (this is to avoid carrying p as a constant) and 6 = %.

We assume we are in a situation that we have a code that is modelled over an HDE-system.
Thus, we know that each k-constraint of the code is participating in a linear dependency.
This means that on every dependency, if there is one violated constraint that touches it,
there must be another one that touches it.

We are given a vector ¢ that falsifies |A| constraints from the code and we want to show
that such a vector is close to the code. We can try to correct it by flipping variables such
that this flipping reduces the number of violated constraints by a fixed proportion: Assume
that each bit is a member of N equations and we change the value of the bit if the number
of falsified equations containing it is more than %N . In this case, flipping the bit corrects
many equations (since all the equations that were false are now true and vice-versa): i.e.,
flipping the bit corrects at least %N equations. Let us compute what is the maximal number
of steps for such a correcting procedure to stop: we assumed that there were the corrupted
code word had |A] falsified equations, i.e., rej(c) = 141 Thus, the number of bits flipping in

El
Al _ 2[4

the correction procedure is at most 1 = =5. and in the end of this procedure, each vertex
2

is %-locally small.

Assume the HDE-System on which the code is modelled has (d,eg)-unique neighbor
expansion and that % < 9. The unique neighbor expansion implies that there are linear
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dependencies that “sees” only one violating constraint. However, as we said, this is not

possible. So when we arrived at a situation where no more flipping is possible, we, in fact,

arrived at a codeword that is close to our initial vector. Explicitly, the fraction of flipped
2(A|

bits is less or equal to T];I

Note that if |V'| denotes the number of bits, then the number of equations is |E|= W

(each equation contains k-bits and each bit is a member of N equations). It follows that the
number of flipped bits is less or equal to

LGB 2142
Vi El VI NWVIEl k7

and thus
i(c) = = min ¢ — |
rej(c 1m || c C
NG =Fypegle™ ¢

as needed.

» Definition 20 (HDE-System Code). We call a code C' as above a HDE-System-code if it
is modelled over a A-expanding HDE-System.

Codes that give rise to HDE-System with s = 2 are amplified locally testable

By Main Theorem 2, the family Cs,,, of codes C' C ]Fz‘f modelled a two layer systems with
a (0,£0(C))-unique neighbor property are locally testable given that § > pp%l. We have
furthered showed (see Main Theorem 1 above) that given any § < 1, there is A sufficiently
small such that every A-expanding HDE-System with s = 2 has the (4, ¢)-unique neighbor
property (where ey depends on the parameters of the HDE-System). Thus, overall we get
that the family of all codes C C IFX modelled over M-expanding HDE-System with s = 2
(and A sufficiently small) is amplified locally testable.

» Corollary 21 (Codes modelled over expanding-HDE-System with s = 2 are amplified locally
testable — informal, for formal see the related full version of this paper). The family of all codes
CC IFX of k(C)-constraints modelled over expanding HDE systems with s = 2 is amplified
locally testable. Moreover, under some mild assumptions (passing to a large sub-family)
te = 3 where te is as in Definition 3.

Above, we stated Theorem 6 regarding amplified local testability of single orbit affine
invariant codes. This Theorem is deduced from the above Corollary, because we show that
single orbit affine invariant codes are modelled over expanding HDE systems with s = 2.

Local testability when s > 2

The main focus of this work is proving amplified local testability for codes modelled over
HDE-systems with s = 2 as all our examples satisfy the s = 2 assumption (Reed-Muller codes
and single orbit affine invariant codes satisfy s = 2). We further have a more general treatment
for codes modelled over HDE-system with general s > 3 under some extra-assumptions
(although we currently do not have examples for such codes). Roughly speaking, for the
case of s > 3 we need the extra assumption that the code is composed of local small codes
that are locally testable. The difficulty in the case where s > 3 is that the bit flipping
argument we described above can only correct the code to be pTTl—locally small, while “The
unique neighbor Theorem” says that we can deduce the (, €g)-unique neighbor property from
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expansion given that § < ﬁ Thus, in the case where s > 3, we may not be able correct a
corrupted codeword by bit flipping to a setting in which we can apply our unique neighbor
argument. This difficulty is dealt by adding the assumption of “local” local testability that
grantees that correcting by bit flipping converges to a word that is d-locally small (and thus
we can use our previous machinery). This new method requires some additional definitions

and we refer the reader to the related full version of this paper for further details.

Distance of HDE codes

An additional result is that for codes modelled over HDE-systems, the distance of the code
can be bounded in terms of the expansion of the HDE system.
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—— Abstract

We prove that for every 3-player (3-prover) game G with value less than one, whose query distribution
has the support S = {(1,0,0), (0,1,0),(0,0,1)} of Hamming weight one vectors, the value of the n-
fold parallel repetition G®™ decays polynomially fast to zero; that is, there is a constant ¢ = ¢(G) > 0

such that the value of the game G®" is at most n~°.

Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result
is the missing piece that implies a similar bound for a much more general class of multiplayer games:
For every 3-player game G over binary questions and arbitrary answer lengths, with value less than

1, there is a constant ¢ = ¢(G) > 0 such that the value of the game G®™ is at most n"°.

Our proof technique is new and requires many new ideas. For example, we make use of the
Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not
been explored in this context prior to our work.
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1 Introduction

Our main object of study is multiplayer (multiprover) games. A k-player game G consists of k
players who are playing against a referee. The game begins by the referee sampling a k-tuple
of questions (z?, ..., 2") from some global distribution Q. The referee then gives the question
27 to the j*! player, for each j € [k], based on which they give back an answer a’. Finally,
the referee evaluates a predicate V((z!,...,2%), (a',...,a")) and says that the players win
if and only if the predicate evaluates to true. The value val(G) of the game is defined to be
the maximum winning probability for the players. Note that the probability here is over the
randomness used by the referee to sample (z?,...,2%) ~ @, and the maximum is over the
strategies used by the players.

Given a game G with value val(G) < 1, it is natural to consider the parallel repetition
of the game G, defined as follows: In the n-fold repetition G®" of the game G, the referee
independently samples questions for n copies of the game G; that is, the referee samples

(z},...,2%) ~ Q independently for i € [n]. Then, the referee simultaneously gives questions
xl,...,x) to the j'* player, for each j € [k], who then gives back answers af,...,a),. The
players are said to win the game if for each i € [n], the predicate V((z},...,z¥), (al,...,a¥))

evaluates to true.

With the above definition of the n-fold repeated game G®", it is interesting to study
the behavior of val(G®™) with respect to n, and the initial parameters of the game G [14].
Observe that val(G®™) > val(G)™, since any strategy that achieves value val(G) in the game
G, when repeated independently for all copies ¢ € [n], achieves the value val(G)" in the game
G®". While one would expect such an inequality to be tight, this is far from true; there are
games such that val(G®™) is exponentially larger (with respect to n) compared to val(G)".
The crucial reason why this can happen is that in the game G®" the players are allowed to
correlate their answers among different copies ¢ € [n] of the game. That is, it is not necessary
(and not optimal) for every player’s answer for the i*! copy of the game to depend only on
the i*" question they receive.

Nevertheless, Raz [30] proved that for any 2-player game G with val(G) < 1, it holds that
val(G®™) = 2=%(")_ This, and related techniques and results, turned out to be sufficient for
a large number of applications: in the theory of interactive proofs [5], PCPs and hardness
of approximation [4, 11, 18], geometry of foams [12, 23, 1], quantum information [8], and
communication complexity [27, 2, 7]. The reader is referred to this survey [31] for more details.
There have been many subsequent improvements that improve the constants in the bounds,
and even get better bounds based on the value val(G) of the initial game [20, 29, 3, 32, 10, 6].

The case of 2-player games, hence, is fairly well-understood with regards to the operation
of parallel repetition. On the other hand, despite much effort, the general question of parallel
repetition for multiplayer games remains wide open. The only general bound, by [33], that
applies to all k-player games, says that if val(G) < 1, then val(G®™) < ﬁ, where a(n) is a
function which grows like the (extremely slowly growing) inverse Ackermann function. The
weak bounds here result from a black-box use of the Density Hales-Jewett Theorem [15, 28]
from extremal combinatorics.

While there are some known potential applications of bounds on parallel repetition of
multiplayer games, for example, [24] show a connection between parallel repetition and
super-linear lower bounds for non-uniform Turing machines, we believe that the notion of
parallel repetition is so basic that it deserves attention in its own right. As mentioned by [9],
there are many problems in complexity theory that are inherently high dimensional, and
which share this sudden difficulty of being tractable beyond dimension two. For example,
whereas direct sum and direct product theorems are known for two-party communication



U. Girish, K. Mittal, R. Raz, and W. Zhan

complexity, no such results are known for multiparty communication complexity in the
number-on-forehead model (which is deeply related to proving new lower bounds in circuit
complexity), for seemingly similar reasons to why there has not been much progress on
multiplayer parallel repetition.
Recent work, however, has made some progress on proving parallel repetition bounds for
some special classes of multiplayer games:
1. Connected Games: Dinur, Harsha, Venkat and Yuen [9] consider games which satisfy
a certain connectedness property and show that the value of any such game satisfies an

exponential decay bound under parallel repetition: if val(G) < 1 then val(G®") = 2-%(™),

A k-player game G is said to have this connectedness property if the graph Hg defined as
follows is connected: The vertices of the graph are all the possible k-tuples of questions
to the players (which are asked with non-zero probability), and there is an edge between
two such k-tuples if they differ in the question to exactly one of the k players.
The proof for these games uses information theoretic techniques, and builds on the works
on 2-player games by [30, 20].

2. The GHZ Games: [21, 16] show that any game G over the set of questions

{(m,y,z) €{0,1¥ :2+y+2=0 (mod 2)}

satisfies a polynomial bound on the value of parallel repetition: if val(G) < 1 then

val(G®™) = n~%(1)_ For such games, all vertices in the graph Hg (as defined above in

point 1) are isolated, and the techniques of [9] fail to be applicable.

The known proofs for this case use Fourier analytic techniques that crucially rely on the

fact that the inputs to the players define a linear subspace of F3.

3. A recent work [17] considers the problem of parallel repetition for 3-player games in which
each player is asked a binary question. They do a case analysis of all such games and
divide the general problem into the following cases:

a. Connected games or games that are essentially 2-player games: An exponential decay
bound is known [30, 9].

b. Games over the question set of the GHZ game (see point 2): A polynomial decay
bound is known.

c. Games over the question set {(m, y,z) € {0, 1}3 cr+y+z# 2}: They show that such
games fall into a class of games which they call playerwise connected games, a
generalization of the class of connected games. Informally, a game G is said to be
playerwise connected if the projection of the graph Hg onto each of the k-players is
connected. They show that any playerwise connected game satisfies a polynomial

decay bound in the value of parallel repetition: if val(G) < 1 then val(G®") = n=?1),

d. Games over the question set {(m, y,z) € {0, 1}3 tz= wy}: They call this the four-point
AND distribution, and show that any such game satisfies a polynomial bound in the
value of parallel repetition.

e. Games over the set of questions § = {(1,0,0),(0,1,0),(0,0,1)} of Hamming weight

one: They do not prove a general bound for games in this class, but rather only for
games where the answers given by each of the three players is also binary. Under this
extra assumption, they are in fact able to prove an exponential decay bound under
parallel repetition.
A very interesting game which they consider is the anti-correlation game defined as
follows: The referee samples the questions (z!, 22, 23) € S uniformly at random, and
the two players who receive the input 0 must produce different outputs in {0,1}. This
game has the special property that while its non-signalling value is less than 1, the
non-signalling value does not decrease at all under parallel repetition [22].
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The main topic of interest of the current paper are games described above in point 3e,
that is, all games over the question set S = {(1,0,0), (0,1,0), (0,0,1)}. The work [17] shows
that any bounds for a special subclass of such games qualitatively translate to the same
bounds for all games in this class. In particular, polynomial decay bounds for the value of
parallel repetition for the following subclass of games implies polynomial decay bounds for
all games over the question set S = {(1,0,0), (0,1,0), (0,0,1)}:

» Definition 1. Let k € N, and let S = {(1,0,0),(0,1,0),(0,0,1)}. We define a 3-player

game Gy, on 3 players Alice, Bob and Charlie as follows:

1. The referee samples (xz,y, z) € S uniformly at random, and gives x,y, z to the three players
respectively.

2. The players answer a € {0, l}k ,b € {0, l}k ,c¢ € [k] respectively.

3. The winning predicate is defined as:

bc = 07 Zf (.’L’,y,Z) = (17070)
Vk((xayaz)a (avba C)) =4a. =0, if (xayaz) = (Oa 1,0) :
Vi S [k]vai + bz Z 1a Z.f (xayaz) = (03071)

In other words, two randomly chosen players receive 0 as input and the third player gets a 1
as input. The predicate only depends on the two players who get 0 as input, and only those
two players play the game. If Charlie and Alice (or Bob) are playing, Charlie must point to
an index where Alice (or Bob) outputs 0. On the other hand, if Alice and Bob are playing,
they must each output k-bit strings such that the bit-wise-OR of the two strings is the all 1s
string.

Our main result is a polynomial decay bound on the parallel repetition for all games in
the above subclass:

» Theorem 2. There exists an absolute constant ¢ > 0 such that the following holds: For
every k € N, and for every sufficiently large n € N, it holds that val(Q,?") < n~¢, where the
game Gy is as defined in Definition 1.

Based on the previous discussion, combined with the works [30, 9, 21, 16, 17], our theorem
implies the following:

» Theorem 3. Let G be any 3-player game over binary questions, and arbitrary finite length
answers, such that val(G) < 1. Then, there exists a constant ¢ = ¢(G) > 0, such that for
every n € N, it holds that val(GZ™) < n¢.

We remark that Hazla, Holenstein and Rao [19] consider games over the same question
set S ={(1,0,0),(0,1,0),(0,0,1)}, and show barriers for proving parallel repetition bounds
for such games using the forbidden subgraph method [13]. Our result builds new techniques
that do not fit into the above framework, and are able to bypass these barriers.

Next, in Section 1.1, we give an overview of the proof of Theorem 2. We note that our
proof introduces several new ideas, which we believe are very general and can possibly extend
to much larger classes of games. For example, in one of the steps, we use Fourier Analysis
over the boolean hypercube, and in particular the Level-k inequalities; to the best of our
knowledge, such use in the context of parallel repetition is new.
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1.1 Proof Overview

Fix some k € N and consider the n-fold repeated game G2 (see Definition 1). We'll use the
term coordinate to mean a tuple (i,7) with ¢ € [n] and j € [k], that indexes an answer for
Alice or Bob. Recall that in each copy of the game G, only the two players who receive
input 0 affect the winning predicate, and we say that they are the ones who play.

The high-level intuition is as follows: In order to win, Alice and Bob cannot both answer
0 at the same coordinate. On the other hand, suppose that they indeed only answer 0 in two
fixed disjoint subsets of coordinates each of their own, then Charlie’s answer in each copy of
the game G actually reveals which player he is playing with, which is too much information
for Charlie to have.

We note, however, that this intuition is too simplistic and the actual proof is much more
complicated, because in each coordinate only two out of the 3 players play. Nevertheless,
our proof can be viewed as a rigorous execution of the intuition, by finding a large enough
product event F7 x Fs on Alice’s and Bob’s inputs in which the above presumption holds
true. More specifically, to prove by contradiction we assume that the winning probability is
at least n=¢ (where ¢ > 0 is a small constant), and the proof is carried out in three steps:

Remove coordinates that Alice and Bob lose (Section 4)

We remove the coordinates where Alice and Bob both play and simultaneously output 0
with non-negligible (at least n*O(C)) probability, by fixing their inputs and outputs in these
coordinates. The fixing of outputs gives rise to the product event F7 x E5 on the remaining
coordinates. We need to ensure that the probability of both Fy and the winning event W
remain n~ ()| while the rounds of removal are few so that E; is also not extremely small.
This is done by a potential function argument that tracks both P(Es|E;) and P(W|Ey, Es),
while the latter has higher weight than the former in the potential function. The potential
function is non-decreasing, and increases by a non-negligible amount every time we exclude the
losing part by fixing, thus guaranteeing the above-mentioned requirements as the probabilities
cannot exceed 1.

We remark that proving a similar bound with only P(W|Ej, E5) being n=°(¢), and
P(Es, E5) being 27" is not too hard. However for the latter part of our proof, we need
that P(F,|E}) is also at least n~°(¢). Hence, when removing coordinates, we fix the inputs
and outputs in a very delicate manner, and analyze the evolution of potential function
accordingly.

Establish independence of Alice’s and Bob’s answers (Section 5)

Now that in each coordinate, Alice and Bob rarely both simultaneously output 0, we would
like to strengthen the claim so that in each coordinate either Alice or Bob answers 0 with
negligible probability. In other words, in each coordinate their answers are close to being
independent. For a fixed coordinate, we consider Alice’s output as a boolean function of
her input, and the average of her output given Bob’s input is exactly the sum of Fourier
coefficients in the subcube where Bob receives 1. If we take average over any large event
for Bob, then every Fourier coefficient, except the first one, will contribute negligibly to the
result, meaning Bob answering 0 is close to being independent of Alice’s answer.

This is not true, of course, unless Bob receives 1 with small enough probability. Fortunately
the first step does not depend on the query distribution, and therefore we can change the query
distribution at the very beginning, from uniform to the one where (0, 1,0) has probability
close to (but still polynomially larger than) 1/n. It turns out that the change of distribution
does not affect the parallel repetition property. With the right distribution, we bound the
contributions of the Fourier coefficients as claimed above using Level-k inequalities.
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Bound winning probability for Charlie (Section 6)

The previous steps indicate that Alice and Bob each owns a fixed set of coordinates where
they output 0 with non-negligible probabilities, and the two sets are disjoint. Now consider
an input (z,y, z). Among the copies of games where Charlie needs to answer (Charlie receives
0), let G; (and G3) be the copies where Charlie’s answer points at a coordinate that Alice
(and Bob) owns. On the other hand, in each coordinate they do not own, Alice and Bob
output 0 with only negligible probability, so let By (and Bs) be the copies where Alice’s (and
Bob’s) answer string contains 0 outside the coordinates they own. Note that By depends
only on x, By depends only on y, while G; and G5 depend only on z.

In order to win, G; U B; have to cover all the copies that Alice plays with Charlie, which
is the 1’s in y, and G2 U By have to cover all the copies that Bob plays with Charlie, which
is the 1’s in 2. But for a typical input (x,y, z), where both |z| and |z| are close to n/2, Gy
and Bj intersect with the 1’s in y in proportion to their sizes. That means GG; has to cover
almost all the copies that Charlie plays, and thus G2 U B; is not large enough to cover the
I’s in x, as G; and G» are disjoint while B; and Bs are negligibly small. This contradicts
the fact that the winning probability is high, even conditioned on E; X Fs.

2 Preliminaries

We use log to denote the logarithm under base 2, with the convention that log0 = —oco. Let
N ={1,2,...} be the set of natural numbers. For every n € N, let [n] be the set {1,2,...,n}.

For every = € {0,1}", i € [n] and S C [n], we use z; € {0,1} to denote the bit on index 1,
and zg € {0,1}!%! to denote the substring of x on S. Let 1(z) C [n] be the set of indices
i where x; = 1, and let || = |1(z)| be the Hamming weight of z. We also define a partial
order on {0, 1}"™ such that « > y if and only if 2; = 1 whenever y; = 1.

For a random variable X, we use supp(X) to denote its support. We define a fizing of
the random variable X to be an event that assigns X to be some fixed value in supp(X). We
equate every subset E C supp(X) to an event on X. We use P(E) to denote the probability
of an event E under the distribution P.

» Lemma 4 (Chernoff Bounds, see [25]). Let Xi,...,X, € {0,1} be independent random
variables each with mean w, and let X = > | X;. Then, for all § € (0,1), it holds that

Pr[X < (1—-d)un] < 67@, Pr[X > (1 +d)un] < o
» Lemma 5. Let P be a distribution and A, B be two events such that P(AAB) > 0. Let X
be a random variable with finite support, and let X = {x : P(X = z|B) > 0}, and let xg € X
be a fized element such that P(X = xg) > 6.

For each x € X, we define ®(z) =log P(A|B,X =x) + 3log P(B|X = x), and let ® =
log P(A|B) + 3log P(B) < 0. Then, for every 0 < & < 1, it holds that either ®(zq) > ® — ¢,
or P(X €eX N ®(X) >+ 36e) > 227 . 145%.

Proof. The proof is deferred to the appendix. |

2.1 Fourier Analysis

For every x,y € {0,1}", let -y be their inner product in Z. Given a function f : {0,1}" — R,
let f:{0,1}" — R be its Fourier coefficients, defined as

fu)= 0 3 1" (@)

ze{0,1}™
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We will use the following equation on the sum of the Fourier coefficients in a subcube, which
follows from Plancherel’s theorem: For every y € {0,1}", we have

S Fw) = gy 3 fG@).

u<ly z-y=0
We will also use the following version of the Level-k inequality, proved in the appendix:

» Lemma 6. Let f: {0,1}" — {—1,0,1} be a function with 3= > |f(x)| = a. Then for
every k € N,

Z |F(u)] < (2en - max{1,In(1/a)})*? - a.

|u|=k

2.2 Multi-player Games

The notations we use here follows mostly from [17].

» Definition 7 (Multiplayer Game). A k-player game G is a tuple G = (X, A, Q, V), where
the question set X = X1 x --- x X*, and the answer set A = A" x --- x A* are finite sets, Q
is a probability distribution over X, and V : X x A — {0,1} is a predicate.

» Definition 8 (Game Value). Let G = (X, A,Q,V) be a k-player game. The value val(G) of
the game G is defined as

vl(G) = max - Pr (VO XD, AR = 1),

where the mazximum is over all sequence of functions (fj c X ‘Aj)je[k]’ which we call

player strategies.

We note that the value of the game is unchanged even if we allow the player strategies to
be randomized, that is, we allow the strategies to depend on some additional shared and
private randomness.

» Definition 9 (Parallel Repetition of a game). Let G = (X, A,Q,V) be a k-player game. We
define its n-fold repetition as G = (X", A®" P, V™). The sets X" and A®™ are defined
to be the n-fold product of the sets X and A with themselves respectively. The distribution P
is the n-fold product of the distribution Q with itself, that is, P(X = z) = [[1—; Q(X; = x;).
The predicate V" is defined as VO™ (z,a) = Ny V (24, a;).

In this paper we mostly deal with 3-player games, and we use the notation G = (X x
VxZ,AxBxC,Q,V). That is, we use X,), Z in places of X', X2, X% and use A, B,C in
places of A', A%, A3. We also refer to the three players as Alice, Bob and Charlie.

The proof of the following useful lemma is essentially the same as Lemma 3.14 in [17],
and is deferred to the appendix.

» Lemma 10. Let G = (X, A,Q1,V) and Gy = (X, A,Q2, V) be two multi-player games
where only the distributions are different. Let A € [0,1] be such that for every z € X,
Q1(X =2) > A\Q2(X = x). Then for every n € N, it holds that

val(GE™) < e/ 4 val(ggw”m ).

6:7

APPROX/RANDOM 2022



6:8

Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

3 Main Results

» Definition 11. Let U be the uniform distribution over S = {(1,0,0),(0,1,0),(0,0,1)}.
For every k € N and every distribution Q over S, we define a 3-player game G(Q) =
(X x Y X Z, A X B, x Cr, Q, Vi) with X =Y = Z ={0,1} as follows:

(a) Ax = B = {0,1}* and Cy, = [k].

(b) For all (x,y,z) € S and (a,b,c) € A x By x Cy,

bc = 0; Zf (a?,y,z) = (170’0)
Vk((xvyaz)v (a7b7 C)) = Qe = 0) Zf (x7y7z) = (07 170)
Vi€ [k],a; +b; > 1, if (z,y,2) = (0,0,1)

» Theorem 12. For every k € N, there exists N, € N such that for everyn € N;n > Ny, it
holds that val(Gy,(U)®™) < n~1/2000,

Based on the results in [17, Section 8.2] and our discussions in the introduction, Theorem 12
implies the following bound on the parallel repetitions of 3-player games with binary inputs:

» Theorem 13. Let G = (X x Y x Z, Ax B xC,Q,V) be any 3-player game with X =) =
Z ={0,1}, and such that val(G) < 1. Then there exists a constant ¢ = ¢(G) > 0 such that
for every n € N, it holds that val(G®™) < n~¢.

The rest of our paper is devoted to proving Theorem 12.

3.1 Change the distribution

In order to prove Theorem 12, from now on we assume val(Gy(U)®"t) > n1—1/2000 for some
large enough n; € N, and eventually derive a contradiction. The first thing to do is changing
the distribution so that Bob gets input 1 with small probability.

» Definition 14. Let n = [n1/3]| and ¢ = 1/1000. Let Q be the distribution over S such that
(0,1,0) has probability n=171%0¢ while (1,0,0) and (0,0, 1) both have probability 3 — sn~'T100¢
each.

> Claim 15. val(Gx(Q)®") > n=¢.

Proof. Let A = 2/3, and thus we have 1/3 > A\Q((X,Y,Z) = (z,y, 2)) for all (z,y,2) € S.
Applying Lemma 10 on G, (U) and G;(Q) gives

val(G(Q)®1"/3)) > val(Gy,(U)#™) — e A/

> nl_c/2 —e M4 > e, <

Let P be the distribution Q®", and let (X,Y,Z) € 8" be the random variables that
represent the inputs to the three players under distribution P. Let f, g : {0,1}" — {0, 1}**
and h : {0,1}" — [k]™ be strategies that achieve the value val(Gr(Q)®™), and let W be the
event that (f, g, h) wins on the inputs (X,Y, Z), so that we have P(W) > n™°.
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4 Remove Coordinates with (0,0) Answers

» Lemma 16. There exist S C [n], a fizing F of (Xs,Ys,Zs), and two events Fy C
X®n Ey C Y% for Alice and Bob respectively, such that the following holds:

(a) |S] < n2¢ and P(Ey|F) > e

(b) P(E2|E17F) > n"2%¢ and P(W|E1,E2,F) >n"°.

(c) For everyi ¢ S and j € [k], it holds that

P((X,Yi, Zi) = (0,0, 1) A f; 5(X) =0 A g; j(Y) = 0| By, B, F) < n” ™

Proof. Initially let S = @ and E; = X®" Ey = Y®", We iterate the process described below
to update S, F, E7 and E5 until requirement (c) is met. During the process, we examine the
potential function

1

(Ey, B, F) = log P(W|E, Ep, F) + §logP(E2|E1,F)
1

= log P(W, E2|E4, F) — §IOgP(E2|E1aF),

and ensure that the potential function ®(FE;, Es, F') strictly increases for each iteration.
Notice that initially we have

®(Eq, By, F) =log P(W) > —clogn.

And as long as ®(E4, E2, F') > —clogn, requirement (b) is always satisfied.
1. Let ¢ ¢ S,j € [k] be a coordinate such that requirement (c) is violated, that is

P((Xu)/la Zl) = (0?07 1) A fl,](X) =0A gl,](Y) = O‘E17E27F) > n77ca

which, with the help of requirement (b), implies that

P((X;,Y:,Z;) = (0,0,1)| By, F) > n~%, (1)
P(fl,](X) = 0|E17F7 (Xiinv Zi) = (0,0, 1)) > n—9c, (2)
P(gl,j(y) = 0‘E17E27F7 (Xi7}/;a Zl) = (0a07 1)7f7,,j(X) = 0) > n_7c. (3)

Add i to the set S. The process stops if no such coordinate (i, j) exists.

2. Apply Lemma 5 on (X;,Y;, Z;) over the distribution P conditioned on F; A F, with
e =n"18and § = n=%. Since P((X;,Y:, Z;) = (0,0,1)|Ey, B2, F) > 0, by (1) we have
either

(b(ElaE27F A (Xi7}/i7Zi) = (0707 1)) 2 (I)(ElaE27F) - n71867

in which case we update F to F' A (X;,Y;, Z;) = (0,0,1) and proceed to step 3; Or there
exists (z,y,2) € {(1,0,0),(0,1,0)} such that P((X;,Y;,Z;) = (x,y,2)|E1, Es, F) > 0,
and

1
O(EBy, Bo, F AN (X3, Y5, Z;) = (2,y,2)) > ®(Ey, Eo, F) + g”_wcv

1 .
P((Xi,Yi, Z;) = (z,y, 2)| By, F) > 22 F0E2.F) gn—%a

in which case we update F to F'A (X,;,Y;, Z;) = (x,y, z) and iterate back from step 1.
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3. Apply Lemma 5 on f; ;j(X) over the distribution P conditioned on Ey A F, with & = n=8¢
and & = n~%. Since P(f;;(X) =0|E1, E2, F) > 0, by (2) we have either

O(B1 A fij(X) =0, Bz, F) > ®(Ey, Bp, F) — ™™,
in which case we update E; to Eq A f; j(X) = 0 and proceed to step 4; Or we have
P(ft,j(X) = 1|E13E27F) > 07 and

1
OB A fij(X)=1,E2, F) > ®(Ey, Es, F) + gn_”c,

)

1
P(fi;(X) = 1|Ey, F) > 22*(F0.B2.0) an%c

in which case we update E; to Eq A f; j(X) =1 and iterate back from step 1.

4. Update E3 to Ea A g;;(Y) = 1 and iterate back from step 1. Now that F' implies
(Xi,Y:,Z;) = (0,0,1) and E; implies f; ;(X) = 0, by the definition of the game (Defin-
ition 11) we know that W implies g; ;(Y) = 1. Therefore, by (3), the increment of
potential function in this step is

q)(El,EQ /\gi,j(Y) = 17F) — (I)(El,EQ,F)

1 1
EIOgP(E2|E1,F) — §IOgP(E2 /\gz,j(Y) = ].‘El,F)

1
— 5 IOgP(gZ,](Y) = 1|E17E2,F)

vV
— DN =

P(g:;(Y) =0|Ey, Ea, F)

> 7,”—70.
-2

Depending on the choices, in each iteration the potential function increases by at least

either %n‘”c, or %n‘"e —n~ 18 or %n_h’ —n~8 — n718¢ which are all lower bounded by
%n‘”c. This means that the potential function is indeed strictly increasing in each iteration,

and thus requirement (b) is met. Since it always holds ®(E1, Es, F') < 0, this also means that
the process will eventually stop, and the total number of iterations is at most 8n27¢
In other words, |S| < 8n27¢ - clogn < n28¢,

Finally, in order to bound P(E4|F), we prove in below that P(F;|F) gets multiplied by
—T70c

- clogn.

at least a factor of n in each iteration. Since initially P(E;|F) = 1, this implies that

eventually after at most n28 iterations, we have P(E{|F) > (n=70%)""*" > ¢=»"" 1In each
iteration, when F' gets updated to F' A (X;,Y;, Z;) = (z,vy, z) for some (z,y,z) € S, P(E1|F)

changes by a factor of

P(E1|F7 (Xu}/uZz) = (x,y,z))
P(E\|F)

> P((X4,Ys, Zi) = (z,y,2)| B, F)
: —9¢ o2®(E;,Es,F) I _s6c LI 35
>minqn "2 152 gn 2§n .

The last line is because ®(E1, Fy, F') > —clogn. Furthermore, if step 3 is executed and E;

gets updated to Ey A f; j(X) = b for some b € {0,1}, P(E1|F) further changes by a factor of

P(E1 A fij(X) =0b|F)
P(E1|F)

= P(fi;(X) = b|E1, F)

1
> min {n_gc’22¢(E1,E2,F) ) 4n—260} > Zp 30,

ool —
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The last line is because at step 3, ®(E1, Eo, F) > —clogn — n~18¢ > —2clogn. Note that
in step 4 only Fy changes and P(F1|F) does not change. So overall, P(E1|F) changes by a
factor of at least 1 n—38c. %n_mc > pn~70c, <

Notice that the fixing F is independent of the remaining inputs in [n] \ S. For the rest of
the paper, we change W to the event that (f, g, h) wins the copies of Gx(Q) in [n] \ S, and
change E1, FEs, f, g, h to their relevant restrictions to the copies in [n]\ S, under the fixing F.
Since |S| < n?%¢ = o(n), by also changing ¢ from 1555 t0 To55 lwga% < 555
assume that S = @ and remove F' from the probability conditions, while the distribution
@ remains the same and Lemma 16 still holds. This significantly simplifies the discussions

later on.

we can safely

5 Almost Independence of Answers in each Coordinate
Let E,, E5 be specified as in the previous section. In this section, we prove the following
lemma;
» Lemma 17. For every i € [n] and j € [k], at least one of the following holds:
P(Xz = O A fle(X) = O‘El,EQ) S TL73C, or P(Y; = 0 /\gz,j(Y) = 0|E1,E2) S 77,736.

We prove the above lemma using Fourier analysis. Fix some ¢ € [n] and j € [k]. Define
a:{0,1}" — {—1,0,1} over the inputs of Alice as follows: For every x € {0,1}",

0 if ¢ E17
a(z)=< —1 ifzeFEand 2; =0and f; ;(z) =0,
1 otherwise,

and let b(z) = |a(z)|. Let a = 5= > b(z) = b(0™). In the appendix we show the following
lower bound on «, due to the specific distribution @ in Definition 14:

» Proposition 18. o > e~ e
» Lemma 19. For every event E C Y®" on 'Y with P(E) > 0, we have

|E[a(X)|E] —a(0™)] < -1/3

n .

1
P(E)
Proof. Since P(X; =1|Y; =0) = 1/2, we have

ZE X)Y =y|]-P(Y =y|E) = ZQn o D al Y =y|E)

yek z-y=0
=Y Y a(u)-PY =y|lE)= > a(u)-P(Y >ulE).
yeE u<y ue{0,1}™

Using Lemma 6 on a, with the fact that In(1/a) < n'3%, we get

|Ela(X )\E—a0"|<2|a P(Y > u|E)

IN

(2en - max{1, ln(l/o[)})f/2 - (n~ 11000y

IN

1 .
B .34,

APPROX/RANDOM 2022
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With the exact same proof on b, we can also get

» Lemma 20. For every event E C Y®" on'Y with P(E) > 0, we have

< ~1/3

IP(EA|E) - ol = [ED(X)|E] - 5(0") 1,

P(E)
In particular, when E = Y®" we get P(E1) > (1 —n~Y3)a.
» Corollary 21. For every event E C Y®" onY with P(E|E;) > 0, we have

a(0™)

1 —1/4
-n .
— P(E|E;)

\E[a(XﬂEl, B -

Proof. Since a(z) # 0 only when z € Fy, we have

a(0™)

Ela(X)|E] _a(0")

P(EL|E) a

\E[a(XﬂEl,E] -

< |Ela(X)[E] a0 ‘+’ a(0") a(0")
~ | P(E\|E)  P(E\|E) P(E7|E) a

Elo(X)|E] ~ a(0") a ~oqn
<[t pem | rem | oo
< ﬁ Y3 (Lemmas 19 and 20)
s 20

P(E|Ey) P(Ey)

1 —1/4

< PEIED -n Y4, (Lemma 20) <«

Proof for Lemma 17. Suppose that
P(Y; =0Agi;(Y) = 0|Er, B2) > n™".

Let E be the event Es AY; =0A g; j(Y) = 0. By argument (c) in Lemma 16, we have
P(X;=0A f; j(X)=0|E,E) <n™*.

Therefore E[a(X)|E1, E] > 1—2n7%. Since P(E3|E1) > n=2¢ and P(E|E;) = P(E|E1, E»)-
P(E3|Ey) > n~5¢, by two applications of Corollary 21 (one on the event E and one on the
event Fs) we have

1 1
Ela(X)|E1, Eo] > Ela(X)|E,E] — ——— n V4 — — .7 1/4
[a(X)|Er, E2] > E[a(X)|E4, E] P(E5|E:) n P(EE)) n
>1-— 2n—4c _ (n2c + n5c) . n—1/4
>1-—2n73,
This implies that P(X; =0A f; ;(X) = 0|Ey, Ey) < n=3¢. <

6 Independence Implies Low Winning Probability

For every i € [n], let

)

Gri= {j e [K] ‘ P(X; =0A f;;(X) = 0|Ey, Ez) > n—30},

Gai={J € K] | P(Yi = 0A gi; (V) = 0|y, E3) > n=%}.

)
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Then Lemma 17 implies that Gy ; N Ga,; = @. For each x,y € {0,1}", let
Bi(z)={i€n]|z;=0A3j ¢ G, fij(x) =0},
By(y) ={i€n]|yi=0A3j ¢ Gai,gi;(y) =0}.

And for each z € {0,1}", let

Gl(Z) = {Z S [n} ’ Z; = 0OA hl(z) c Glﬂ'},

Ga(2) = {i € [n] ] 2 =0 Ahi(2) € Ga).

» Lemma 22. Suppose (f, g, h) wins on the inputs (x,y, z). Then at least one of the following
holds:

(a) [z] < Zn or |2| < In,

(b) [Bi(z)| > n'=¢ or [Ba(y)| > n'~¢,

(c) |Bi(x)| <n'~¢ and |Bi(z) N 1(y)| = 4n=° - Jy],

(d) [G1(2)] < gn —n'~¢ and |G1(2) N 1(y)| = (1 - 4n=°) - [yl

Proof. Since G1; N Gy; = @ for every i, we know that G1(z) N G2(z) = @ for every z. On
the other hand, by the definition of the game (Definition 11), in order to win it must hold

1(y) € G1(2) U B1(2) (since x; p, () = 0 when z; = z; = 0)
1(x) C G2(z) U Ba(y) (since y; p,(z) = 0 when y; = 2; = 0)

Now suppose none of the items (a) to (d) holds. Since
[yl < 1G1(2) N 1(y)| + |Bi(z) N1(y)].

it implies that |G1(z)| > 4n — n'~¢. Therefore we have

7
|z < [Ga2(2)| + |Ba(y)| <m0 — 2] = [GL(2)] + | Ba(y)| < %nJr?nlfcv

which contradicts the fact that |z| > Zn. <

» Proposition 23. P (||X|—n/2| > n/10) < e~"/290 " The same holds when replacing X
with Z.

Proof. This is a direct application of the Chernoff Bound (Lemma 4). <

Another careful application of the Chernoff Bound shows the following, and we defer the
proof to the appendix:

» Lemma 24. Let m > n'~¢, and M : {0,1}" — 2["] satisfies M(2) N 1(x) = & for all
x € {0,1}". Then we have

0Oc

P (|M(X)| <mA|M(X)N1(Y)| > %m : Y|) <e

And the same holds when replacing X with Z.

Now we can bound the probability for each item in Lemma 22, conditioned on E; A Fs.
Recall that P(Ey A Es) > e~ “n=2¢ by Lemma 16.

APPROX/RANDOM 2022
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(a) By Proposition 23 we have

1
P(IX| <2 5| E+. E < - - . —n /200 < —TL/300'
(IX| < 2n/5|Ex, 2)—P(E1/\E2)e <e

Similarly we have P(|Z| < 2n/5|E1,E2) < e~n/300
(b) For each i € [n], by the definitions of G4 ;, G2 ; and By (x), B2(z), using the union bound
over j € [k] we get

P(i € By(X)|E1, E2) < kn™3¢,  P(i € Bo(Y)|Ey, Ez) < kn ™3¢
Therefore we can bound the expectations of | By (X)| and |By(Y)]:

E [|By(X)||Ey, E2] < kn'73¢,  E[|B2(Y)||E1, Eo] < kn'—2°
Thus by Markov’s inequality we have

P(|Bi(X)| = n'~¢|E1, E2) < kn™>¢,  P(|B2(Y)| = n'~°|Ey, E2) < kn™>".

(c) Applying Lemma 24 on B;(X) with m = n'=¢, we have

P<|B1(X)\ <n'"C A B(X)N1(Y)| > 40~ |Y] ’ El,Eg)
e 1 _ p90¢ < o
S PENE) € =¢

80c

(d) Same as (c), but applying Lemma 24 on G1(Z) with m = in —n'=¢ > nl=¢, we get

Oc

1 8
P(|G1(Z)| < qn=n'TAIGHZ) N 1Y) = (L= 4079 - |V ‘ o EQ) <em

Putting everything together by a union bound, we get

c

P(W|Ey, Ey) < 2~ /300 4 op=2¢ 4 9e—n™" < e,

as k is a constant and n is sufficiently large. This leads to a contradiction to the result (b)
in Lemma 16, which refutes the assumption in Claim 15, and thus proves Theorem 12.
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A  Deferred Proofs

Proof for Lemma 5

Proof. By Jensen’s inequality, we have

P(A|B)? (Z P(X = x|B)- P(A|B, X = x)) - P(B)
zeX
<Y P(X =z|B):- P(A|B,X =x)*- P(B)
zeX
=> P(X P(A|B,X =2)* . P(B|X =z).
zeX

Suppose that ®(xg) < & — &, which implies that

P(A|B, X = x0)* - P(B|X = x9) < P(A|B)*- P(B)-2"%*
< P(A|B)?>-P(B) - (1 —¢/4).

On the other hand, since §,¢ < 1 we have log(1 4+ de/4) > de/4, and thus in order to satisfy
®(z) > ® + £oe it suffices to have

P(A|B,X =2)*- P(B|X =) > P(A|B)*- P(B) - (1+ 6¢/4). 4)

Let X1 C X be the set of z € X, = # z that satisfies (4). Since P(A|B,X = x)?- P(B|X =
z) <1, we have

P(XeX A @(X)ztb—&-;éa)

> Z P(X P(A|B,X =) P(B|X = z)
=) P(X P(A|B,X =z)*- P(B|X = z)
zeX

— P(X =) - P(A|B, X = x0)* - P(B|X = )

- Y P(X=u1) PABX=u1)? PB|X =)
¢ X1, x#£T0
> P(A|B)* - P(B)[1 — P(X =) - (1 —¢g/4) = P(X # x0) - (1 + de/4)]

P(A|B)*- P(B) - 2525. <

Proof for Lemma 6

Proof. Since there are at most n* many u with |u| = k, we have

ST @ < a2 [T Flu.
|ul=Fk |u|=Fk

Therefore it suffices to prove that

> F(w)? < (2¢ - max{1,In(1/a)})F - o?.

|u|=Fk
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When k < 2In(1/«), it follows from the original Level-k inequality (see [26, Section 9.5]).
When %k > 21n(1/«), we also have

Z Flu)? = 2% Z f(@)? = a <efa® < (2¢-max{1,In(1/a)})* - o <

u€e{0,1}n ze{0,1}m

Proof for Lemma 10

Proof. Notice that we can write @1 = AQ2 + (1 — \)Q’ for some distribution @’ over X. Let
Z = (Zy,...,Zy,) € {0,1}" be i.i.d. Bernoulli random variables such that for each i € [n],
independently, Z; is 1 with probability A and 0 with probability 1 — A. For each i € [n],
we think of the i-th copy of @1 as depending on Z;: if Z; = 1 then @ is drawn from Qs,
otherwise @)1 is drawn from Q.

In order to bound the value of the game GP", we can assume that each of the players is
also given Z as input, since this can only increase the game’s value. Observe that conditioned
on the event Z = z for any fixed value z € {0,1}", the value of the game is at most the value
of g®'z'. Thus we have

val(G®") < ZPI |Z| = m] - val(GE™)

An n

< 67>‘”/8+V&l(g§®p‘”/2j), <

Proof for Proposition 18

Proof. Recalling the distribution @ in Definition 14, we have

|| n—|z|
_ L1 iti00c L1 14100
P(E,) = E (2 5" 5 T 5n b(z)

ze{0,1}"

1
< (Lm0 2 Y b(a)

z€{0,1}n
100c¢
<e

c 130c¢

Since P(E7) > e ,wegeta>e ™, <

Proof for Lemma 24

Proof. Fix an x € {0,1}" with |z| < 2n and |M(z)| < m. By Proposition 23, this makes
for a probability of P(|X| > £n) < e=/2%,

Since p = P(Y; = 11X, = 0) > n~1H100¢ hy applying Chernoff Bound on the sets [n]\ 1(z)
and M (x) respectlvely, we have

(|Y| < ‘ X — x) < e~np/180 1006/180’

1 .
P<|M(x) 1Y) > mp‘X—:r)<emp/27<e n®e/21,

Therefore by union bound,

4 100¢ c
P <|M(X)| <mAMX)NLY)] > 2. Y|> < /200 | —ni™/180 | —n®c/27
n
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—— Abstract

We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all
k-vertex subgraphs of an n-vertex graph. When k is not too large, we give nearly tight bounds
for this local treewidth parameter; we also derive nearly tight bounds for the local treewidth of
noisy trees, trees where every non-edge is added independently with small probability. We apply our
upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random
graphs and noisy trees) for edge-removal problems centered around containing a contagious process
evolving over a network. In these problems, our main parameter of study is k, the number of initially
“infected” vertices in the network. For the random graph models we consider and a certain range of
parameters the running time of our algorithms on n-vertex graphs is 20(k) poly(n), improving upon
the 29(F) poly(n) performance of the best-known algorithms designed for worst-case instances of
these edge deletion problems.
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1 Introduction

Treewidth is a graph-theoretic parameter that measures the resemblance of a graph to a tree.
We begin by recalling the definition of treewidth.

» Definition 1 (Tree Decomposition). A tree decomposition of a graph G = (V, E) is a pair
(T,X), where X is a collection of subsets of V', called bags, and T a tree on vertices X
satisfying the properties below:
1. The union of all sets X; € X is V.
2. For all edges (u,v) € E, there exists some bag X; which contains both u and v.
3. If both X; and X; contain some vertexu € V, then all bags X, on the unique path between
X; and X; in T also contain u.
? Hermish Mehta anfi Daniel Reichn'lan;
5v icensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 7; pp. 7:1-7:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:hermish@berkeley.edu
mailto:daniel.reichman@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.7
https://arxiv.org/abs/2204.07827
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Local Treewidth & Stopping Contagion in Networks

» Definition 2 (Treewidth). The width of a tree decomposition (T,X) is one less than
cardinality of the largest bag. More formally, we can express this as

max | X;| — 1.
7

The treewidth of a graph G = (V, E) is the minimum width among all tree decompositions

of G.

Many graph-theoretic problems that are NP-hard admit polynomial-time algorithms on
graph families whose treewidth is sufficiently slowly growing as a function of the number of
vertices [32]. There is vast literature concerned with finding methods to relate the treewidth
of graphs to other well-studied combinatorial parameters and leveraging this to devise efficient
algorithms for algorithmic problems in graphs with constant or logarithmic treewidth. An
excellent introduction to the concept of treewidth as well as brief survey of the work of
Robertson and Seymour in establishing this concept can be found in Chapter 12 of [16].

These treewidth-based algorithmic methods, however, have historically found limited
applicability in random graphs. Sparse random graphs G(n,d/n) where every edge occurs
independently with probability d/n, for some d > 1, exhibit striking contrast between their
local and global properties — and this contrast is apparent when looking at treewidth. Locally,
these graphs appear tree-like with high probability® (w.h.p.): the ball of radius O(log,n)
around every vertex looks like a tree plus a constant number of additional edges. Globally,
however, these graphs have w.h.p. treewidth Q(n). For example, the super-critical random
graph G(n, 17%5) has w.h.p. treewidth Q(n) [17, 46, 38]. As a result of this global property,
conventional techniques used to exploit low treewidth to derive efficient algorithms do not
apply directly for random graphs.

In this paper, we take advantage of the local tree-like structure of random graphs by
analyzing the local behavior of treewidth in random graphs. Central to our approach is the
following definition.

» Definition 3 (Local Treewidth). Let G be an undirected n-vertex graph. Given k <n we
denote by ti(G) the largest treewidth of a subgraph of cardinality k of G.

In words, the local treewidth of an n-vertex graph, with locality parameter k, is the
maximum possible treewidth across all subgraphs of size k. We study two models of random
graphs, starting with the familiar binomial random graph G(n,p). While the binomial
random graph G(n,p) lacks many of the characteristics of empirically observed networks
such as skewed degree distributions, studying algorithmic problems on random graphs can
nevertheless lead to interesting algorithms.

» Definition 4 (Noisy Trees). Let T be an n vertex tree. The noisy tree T' obtained from
T is a random graph model where every non edge of T is added to T independently, with
probability 1/n.

Here we assume p = 1/n for convenience; all our results regarding noisy trees also hold
when the perturbation probability p satisfies p = €/n for ¢ < 1. Noisy trees are related to
small world models of random networks [45, 44], where adding a few random edges to a graph
of high diameter such as a path results with a graph of logarithmic diameter w.h.p. [36].

! Given a random graph model, we say an event happens with high probability if it occurs with probability
tending to 1 as n tends to infinity.
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Below, we give an informal description of the concepts we study and sketch our main
results; we defer discussion of formal results until Section 2 and later in the paper. Our
main result is a nearly tight bound holding w.h.p. for the maximum treewidth of a k-
vertex subgraph of G(n,p) assuming k < n'=¢ for ¢ € (0,1) and p = d/n where d > 1. In
the notation introduced earlier, this provides a bound for ¢;(G). Assuming k < n¢ for a
sufficiently small € we obtain nearly tight bounds for the local treewidth of noisy trees as
well.

Our upper bounds on the local treewidth are motivated by algorithmic problems related
to containing the spread of a contagious process over undirected graphs by deleting edges.
We focus on the bootstrap percolation contagious process (Definition 8) where there is a set
of initially infected vertices and noninfected vertices are infected if they have at least r > 2
neighbors and consider two edge-removal problems: Stopping Contagion and Minimizing
Contagion. Informally, in stopping contagion we are given a subset of infected nodes A and
seek to remove a minimal number of edges to ensure a “protected” subset of vertices B
(disjoint from A) are not infected from A. In minimizing contagion we wish to ensure at
most m additional vertices are infected from A for a target value m by deleting a minimal
number of edges. Such edge removal problems might arise, among other applications [20, 21],
in railways and air routes, where the goal might be to prevent spread while also minimizing
interference to transportation. In this context, edge deletion may correspond to removing a
transportation link altogether or introducing special requirements (such as costly checks) to
people between the the endpoints. Edge removal can be also viewed as a social distancing
measure to control an epidemic outbreak [5]. One can also study the problem of removing
vertices to control the spread of an epidemic which is related to vaccinations: making nodes
immune to infection and removing them from the network [49].

We design algorithms for stopping and minimizing contagion for random graphs and
noisy trees. Note that our algorithms do not achieve polynomial time, even for k that is poly-
logarithmic in n; whether there exists a polynomial time algorithm for minimizing contagion
and stopping contagion in G(n,p) for every value of k is an open question. Nonetheless, the
dependency of our algorithm on k is better (assuming k < n€ for an appropriate constant
€ > 0) than the dependency of k in the running time of the best known algorithms for
minimizing contagion? in the worst case [14]. Please see Subsection 2.3 for details.

Our algorithms are based on the following three observations:

1. The local treewidth of binomial random graphs and noisy trees is sublinear in k.

2. There exist fast algorithms for minimizing and stopping contagion in graphs of bounded
treewidth.

3. The set of seeds A has what we call the bounded spread property: w.h.p. at most c|A]
additional vertices are infected from A for some constant® ¢. Bounded spread allows
us to solve minimizing contagion and stopping contagion on subgraphs that have small
(sublinear in k) treewidth.

For the sake of brevity and readability we focus on edge deletion problems. We note that
our algorithms can be easily adapted for the analogous problems of minimizing and stopping
contagion by deleting wvertices rather than edges. The reason is that our algorithms for
minimizing/stopping contagion on bounded treewidth graphs work (with the same asymptotic
running time guarantees) for vertex deletion problems. Combining algorithms for bounded
treewidth with the bounded spread property as well the upper bound on the local treewidth
yields algorithms for the vertex deletion versions of minimizing and stopping contagion.

2 'We are not aware of previous algorithms for the stopping contagion problem.
3 For G(n,d/n), our constant ¢ := c(d) is a function of d. When d is a constant independent of n so is c.
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Our main contribution is studying the concept of local treewdith for random graphs
and connecting it to algorithmic problems involving stopping contagion in networks. Our
calculations are standard and the contribution is conceptual rather than introducing a new
technique.

2  QOur results

2.1 Local Treewidth Bounds

Recall we define the local treewidth of a graph G, denoted tx(G), to be the greatest treewidth
among along subgraphs of size k. Trivially, for any graph with at least one edge and k < n,
1 <t(G) <k.

Cousider as an illustrative example the random graph G = G(n,1/2): with high proba-
bility, tx(G) = Q(k) for all values of k. For k < 1.9logn this follows as there is a clique of
size k in G w.h.p. For k > 1.9logn this follows as a randomly chosen subset of size k has,
with high probability, minimum degree Q(k), and a graph with treewidth r has a vertex of
degree at most r.

We can now state our bounds for ¢; in the random graph models we consider. From here
onward, € > 0 is taken to be a positive constant in (0,1). We give somewhat compressed
statements; reference to the full Theorems are provided throughout this section.

» Theorem 5. Let G = G(n,p) with p =d/n and k < n'=¢. Then, with high probability:
klogd)

logn

m«n§3+o(

Since we always know ¢4 (G) < k, the upper bound in the Theorem above becomes trivial
if d > n®1) . Also observe that the Theorem does not hold for arbitrary k£ < n, as for
k =n,tp(G) = Q(n) w.h.p. In terms of lower bounds, we have the following:

» Theorem 6. Suppose p =d/n and d > 1+ § where § > 0 is a constant (not depending on
n). Suppose k < O(n/logn); then, w.h.p.

tk(G)zQ( i )

logn

More details can be found in Section 3. Our upper and lower bounds for the local
treewidth of G(n,d/n) also extend to the random d-regular graph G(n,d)—details can be
found in Subsection 3.3.

For noisy trees, we have the following results.

» Theorem 7. Let T be an n-vertex tree with maximum degree A. Let T' be a noisy tree
obtained from T'. Then w.h.p.

k(log k +1log A) >

N <
tk(T)3+O( Tog

Observe that the upper bound in the Theorem is trivial if k, A are n*(V). As a result, in
our proofs we will assume k, A < n¢, for sufficiently small € > 0. Our results can be extended
to the case where each non-edge is added with probability ¢/n for ¢ > 1. Similar ideas (which
are omitted) yield the upper bound:

k(log k + log A + logc)
logn '

t(T') < 3+O<



H. Mehta and D. Reichman

We also provide a lower bound, showing that up to the logk,log A terms, the upper

bound above is tight. Namely, the noisy path has w.h.p. local treewidth of order Q(k/logn).

For more details on the lower and upper bounds please see Section 4.

2.2 Contagious Process and Edge Deletion problems

The local treewidth results outlined above prove useful in the context of two edge deletion
problems we study. These problems arise when considering the evolution of a contagious
processes over an undirected graph.

We focus on the r-neighbor bootstrap percolation model [11].

» Definition 8. In r-neighbor bootstrap percolation we are given an undirected graph G =
(V,E) and an integer threshold r > 1. Every vertex is either active (we also use the term
infected) or inactive; a set of vertices composed entirely of active vertices is called active.
Initially, a set of vertices called seeds, Ay, is activated. A contagious process evolves in
discrete steps, where for integral i > 0,

Ai:Aiflu{’Ué‘/Z|N(U)QA7;,1|Z7“}.

Here, N(v) is the set of neighbors of v. In words, a vertex becomes active in a given step
if it has at least v active neighbors. An active vertex remains active throughout the process
and cannot become inactive. Set

(Ao) = UA,

The set (Ao) is the set of nodes that eventually get infected from Ag in G. Clearly, {(Ap)
depends on the graph G, so we sometimes write (Ag)g to call attention to the underlying
graph. We say a vertex v € V gets activated or infected from a set of seeds Ag if v € (Ag).

It is straightforward to extend this definition to the case where every vertex v has its
own threshold ¢(v) and a vertex is infected only if it has at least t(v) active neighbors at
some point. As is customary in bootstrap percolation models, we usually assume that all
thresholds are larger than 1. Now, given a network with an evolving contagious process, we
introduce the stopping contagion problem:

» Definition 9 (Stopping Contagion). In the stopping contagion problem, we are given as input
a graph G = (V, E) along with two disjoints sets of vertices, A, B C V. Given that the seed set
is A, the goal is to compute the minimum number of edge deletions necessary to ensure that
no vertices from B are infected. In other words, we want to make sure (A)q' N B = ¢, where
G’ is the graph obtained from G after edge deletions. Given an additional target parameter,
£, the corresponding decision problem asks whether it is possible to ensure no vertices from B
are infected by deleting at most £ edges.

Next we consider the setting where given a set of infected nodes we want to remove the
minimal number of edges to ensure no more than k additional vertices are infected.

» Definition 10. In the minimizing contagion problem, we are given a graph G = (V, E),
a subset of vertices A C V and a parameter s. Given that the seed set is A, we want to
compute the minimum number of edge deletions required to ensure at most s vertices in V '\ A
are infected. If G' is the graph obtained from G by edge deletions, then this condition is
equivalent to requiring |(A)er| < |Al + s. In the decision problem, we want to decide if it is
possible to ensure [(A)g/| < |A| 4+ s with at most £ edge deletions.
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Both stopping contagion and minimizing contagion are NP-complete, and stopping
contagion remains NP-hard even if |A| = 2 and |B| = 1. For complete proofs, please refer to
the Full version of this paper [39).

2.3 Algorithmic Results

For minimizing contagion, current algorithmic ideas [14] can be used to prove that if |A|
and the optimal solution are of size O(k) the problem can be solved in time 2°%*) poly(n)
on n-vertex graphs. No such algorithm, parameterized by |A| and the size of the optimal
solution, is known for stopping contagion. Using our upper bounds for local treewidth,
however, we can prove:

» Theorem 11. Let € be a constant in (0,1). Suppose that k < n'~¢ and that every vertex
has threshold greater than 1. Let G := G(n,p) where p = d/n. Assuming d is a constant, we
have that w.h.p. both minimizing contagion and stopping contagion can be solved in G in
time 2°%) poly(n).

» Theorem 12. Suppose that k < n¢ for sufficiently small € € (0,1) and that every vertex
has a threshold greater than 1. Let T’ be a noisy tree where the base tree T has mazimum
degree A = O(1). Then w.h.p. both minimizing contagion and stopping contagion can be
solved in T’ in time 2°F) poly(n).

We stress that set A of seeds can be chosen in arbitrary way. In particular, an adversary
can pick A after the random edges in our graph models have been chosen.

The dependence of the running time on n, k,d and A can be made explicit: for precise
statements, please see Section 6. Algorithms for grids and planar graphs are presented in
Section 6 as well.

For our purpose, to translate local treewidth bounds to algorithmic results, we need
an algorithm for solving stopping contagion and minimizing contagion on graphs of low
treewidth. We provide such an algorithm that runs in exponential time in the treewidth,
assuming the maximum degree is constant, using ideas from [14]. More details can be found
in Section 5.

2.4 Our Techniques

Our upper bounds for the local treewidth build on a simple “edge excess principle”: A
k-vertex connected graph with k + r edges has treewidth at most r 4+ 1. As the treewidth
of a set of connected components is the maximum treewidth of a component, it suffices to
analyze the number of edges in connected subgraphs of the random graphs we study. For
G(n,p) this is straightforward, but for noisy trees it is somewhat more involved. We find it
easier to first analyze the edge excess of connected subgraphs, before considering connecting
edges that allow us bound the excess of arbitrary subgraphs.

A key component in our lower bound is the simple fact that if H is a minor of G then
tw(G) > tw(H). Therefore it suffices to prove the existence of large treewidth subgraphs that
are minors w.h.p. of random graphs and noisy trees. Recall that an n-vertex graph is called
an a-expander if there exists € (0,1) such that every subset S of vertices with at most n/2
vertices has at least «|S| neighbors not in S. We use the fact [35] that for any graph H with
k vertices and edges, assuming k = O(n/logn) an n-vertex expander has an embedding? of

1 See Subsection 2.7 for further details on minor-theoretic concepts we use.
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H as a minor in G. Furthermore, every connected subgraph of G corresponding to a vertex
in H is of size O(logn). The lower bound then follows as it is known [34, 35] that G(n, 19)
contains with high probability a subgraph with (n) vertices that is an a-expander for an
appropriate choice a. Similar ideas are used to prove the existence of large minors with
linear treewidth in the noisy trees (e.g., the noisy path).

Our algorithms for minimizing contagion and stopping contagion in graphs of bounded
treewidth build on techniques designed to exploit the tree-like nature of low treewidth
graphs, sharing similarities to algorithms for target set selection in [8], where target set
selection is the problem of finding a minimal set that infects an entire graph under the
bootstrap percolation model. More directly, our problem resembles the Influence Diffusion
Minimization (IDM) studied in [14], where the goal is to minimize the spread of the r-neighbor
bootstrap percolation process by preventing spread through vertices. After subdividing edges,
minimizing contagion essentially reduces to IDM, albeit with additional restrictions on the
vertices we can immunize (only vertices that belong to the “middle” of a subdivided edge can
be deleted); we therefore solve a generalization of the IDM problem and use this to provide
efficient algorithms for the minimizing and stopping contagion.

At a high-level, our algorithm works by solving the stopping contagion recursively on
subgraphs and then combining these solutions via dynamic-programming until we have
a solution for the whole graph. To combine subproblems successfully, at each step we
explicitly compute solutions for all possible states of vertices in a bag. While this could take
exponential time in general, this approach provides an efficient algorithm in graphs with
bounded treewidth.

Our proof of bounded spread in noisy trees builds works by proving that small subsets of
such trees contain few edges [13, 25]. Since every non seed vertex needs at least two vertices
to get infected, small contagious sets require small subsets that contain too many edges.
Therefore, one can prove that small sets of seeds cannot infect too many vertices; the proof
of small trees’ local sparsity is similar to the proof that w.h.p. such noisy trees have small
local treewidth.

2.5 Related Work

While the idea to remove edges or vertices to contain an epidemic has been studied before [47,
10, 3], most of these works focus using edge or vertex deletions that break the graph to
connected components of sublinear (or even constant) size [20, 47, 10]. Recently approximation
algorithms for edge deletion problems that arise in controlling epidemics has been studied
in [5] for the SIR epidemic model. In particular, [5] studies the problem of deleting a set of
edges of weight at most B that minimizes the set of infected nodes after edges deletions. All
these works consider a different contagion model from the r > 2 bootstrap percolation model
studied here.

Bootstrap percolation was first introduced by statistical physicists [11] and has been
studied on a variety of graphs [6, 41, 25, 2, 50, 19, 48].

The fixed parameter tractability of minimizing contagion with respect to vertex deletions,
as opposed to edge deletions, has been thoroughly investigated with respect to various

parameters such as the maximum degree, treewidth, and the size of the seed set k in [14].

The authors of [14] present efficient algorithms for minimizing contagion for graphs of bounded
maximum degree and treewidth. With respect to k, using ideas from FPT algorithms for cut
problems [26], they give a 28+¢
size k and there is a solution of size ¢ to the problem. Their algorithm can be easily adapted
to the case of edge deletions: see Theorem 24. We are not aware of the stopping contagion

poly(n) algorithm for the case where the set of seeds is of
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problem studied before, nor are we aware of previous studies of the minimizing contagion
problem in random graphs. In order to deal with both stopping contagion and minimizing
contagion for graphs of bounded treewidth, we build on algorithmic ideas from [8]. The
NP-hardness of minimizing contagion with respect to vertex deletion is proved in [14] — our
proof for the NP-hardness of the edge deletion version of minimizing contagion was found
concurrently and independently; the proof is different from the proof appearing in [14].

There are two regimes of interest for the study of treewidth in sparse random graphs.
For the subcritical regime p < d/n with d < 1, G(n,p) has w.h.p. unicyclic connected
components of size O(logn) [23] and hence has treewidth at most 2. For the supercritical
regime with p > d/n and d > 1, G(n,p) has w.h.p. a giant component of size Q(n) [23]
and determining the treewidth is more complicated. Kloks [32] proved that the treewidth
of G(n,d/n) is Q(n) w.h.p. for d > 2.36. His result was improved by Gao [28] who showed
that for d > 2.16, the treewidth of G(n,d/n) is Q(n) with high probability. Gao asked if his
result can be strengthened to prove that G(n,d/n) has treewidth linear in n w.h.p. for any
d > 1; this was later shown in in [38]. A different and somewhat simplified proof establishing
that the treewidth of G(n,d/n) is Q(n) w.h.p. was given in [46]. Finally, the fine-grained
behavior of treewidth of G(n, (1 + €)/n) was studied in [17] where it was shown that for
sufficiently small €, the treewidth of G(n, (1 + €)/n) is w.h.p.

63
Qf—— ) n
<log1/€>

The first lower bound for the treewidth of random regular graphs appears to be from [46]:
the authors prove that for every constant d > dy where dj is a sufficiently large constant,
the treewidth of the random regular graph G(n,d) is Q(n) w.h.p. In [24] it was also shown
that random graphs with a given degree sequence (with bounded maximum degree) that
ensure the existence of a giant component w.h.p. (namely a degree sequence satisfying the
Molloy-Reed criterion [40]) have linear treewidth as well, which implies, using a different
argument than in [46], that G(n,d) for d > 2 has linear treewidth w.h.p. A different proof
for the linear lower bound of the treewidth of G(n,d) for d > 2 is given in [17].

Several papers have examined notions of local treewidth in devising algorithms for
algorithmic problems such as subgraph isomorphism [22, 30, 29, 27]. For example, Grohe [29]
defines a graph family C of having bounded local treewidth if there exists a function f : N — N
such that for every graph G = (V, E) in C and every integer r, for every vertex v € V the
treewidth of the subgraph of G induced on all vertices of distance at most r from v is at
most f(r). These works primarily focus on planar graphs and graphs avoiding a fixed minor.
The only work we are aware of that has examined the local treewidth of random graphs is
that of [18]. Their main goal is to demonstrate that the treewidth of balls of radius r around
a given vertex depends only on r, as opposed to analyzing the local treewidth as function
of n,d and k as we do here. We employ a similar edge excess argument to the one in [18§]
although there are some differences in the analysis and the results: please see Section 3
for more details. We are not aware of previous work lower bounding the local treewidth of
random graphs.

Embedding minors in expanders has received attention in combinatorics [37] and the-
oretical computer science, finding applications in proof complexity [4]. Kleinberg and
Rubinfeld [31] proved that if G = (V, E) is a a-vertex expander with maximum degree A,
then every graph with n/log"™ n vertices and edges is a minor of G for a constant £ > 1
depending on A and . Later it was stated [12] that x(A,a) = Q(log?(d)/log*(1/a)).
Krivelevich [35] together with Nandov proved that if G is an a-vertex expander then it
contains every graph with ¢n/logn edges and vertices for some universal constant ¢ > 0.
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The sparsity of random graphs as well as randomly perturbed trees was used in showing
that these families have w.h.p. bounded expansion® [43, 15]. These results are incomparable
with our treewidth results: it is known that graphs with bounded maximum degree have
bounded expansion and that G(n,d/n) has bounded expansion w.h.p. [43, 42] In contrast,
there exist 3-regular graphs with linear treewidth and as previously mentioned the treewidth
of G(n,d/n) is Q(n).

2.6 Future Directions

Our work raises several questions. We consider undirected unweighted graphs. However
directed edges can be more accurate in modeling epidemic spread [1] and some edges might
be more costly to move than others. Extending our algorithms to directed weighted graphs
is an interesting direction for future research.

Our upper and lower bounds for the local treewidth of G(n,p) (with p = d/n) currently
differ by a multiplicative factor of order logd. We believe that for k¥ < n'~¢ the local
treewdith of G(n,p) is w.h.p. Q(klogd/logn). Whether this is indeed the case remains for
future work. Our upper bounds on the local treewidth of noisy trees can be made independent
of the maximum degree of the tree; namely, for arbitrary trees, the local treewidth should be
upper bounded w.h.p. by O(k/logn) assuming k is not too large. Proving or disproving this
however remains open. Understanding how well one can approximate minimizing contagion
and stopping contagion in general graphs, as well as graphs with certain structural properties
(e.g. planar graphs) is a potential direction for future research as well. Finally, it could be of
interest to study if our bounds for local treewidth coupled with sophisticated algorithms for
graphs with bounded local treewidth [27, 29, 22] could lead to improved running time for
additional algorithmic problems in random graphs.

2.7 Preliminaries

Throughout the paper log denotes the logarithm function with base 2; we omit floor and
ceiling signs to improve readability. All graphs considered are undirected and have no parallel
edges. Given a graph G = (V, E) and two disjoint sets of vertices A, B we denote by E(A, B)
the set of edges connecting a vertex in A to a vertex in B. For A, B as above we denote by
Ng(A, B) the set of vertices in B with a neighbor in A. For a subset of vertices A C V and
an edge e we say that A touches e if at least one of the endpoints of e belongs to A. If both
endpoints of e belong to A then we say that A spans e.

A graph H is a minor of G if H can be obtained from G by repeatedly doing one of
three operations: deleting an edge, contracting an edge or deleting a vertex. We keep our
graphs simple and remove any parallel edges that may form during contractions. It can be
verified [42] that a graph H with k vertices is a minor of G if and only if there are k vertex
disjoint connected subgraphs of G, C1 ... Cy such that for every edge (v;,v;) of H, there is an
edge connecting a vertex in C; to a vertex of C;. We refer to the map mapping every vertex
of H,v; to C; as an embedding of H in G; the maximum vertex cardinality of C;,1 <i <k
is called the width of the embedding. We shall be relying on the well-known fact [42, 16]
that if H is a minor of G than the treewidth of G is lower bounded by the treewidth of H.

We will also need the following definition of an edge expander:

5 Bounded expansion should not be confused with the edge expansion of a graph. For a precise definition
please see [43, 42].
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» Definition 13. Let a € (0,1). A graph G is an a-expander if every subset of vertices S
with | S| < n/2 satisfies

[N (S, V\ 5)| = afS].

3 Local Treewidth of Random Graphs

In this section we prove both an upper and lower bound for t;(G(n,p)) that with high
probability. We assume k < n!~¢ for a constant € > 0.

3.1 Upper Bound

Our main idea in upper bounding t;(G) is to leverage the fact that G(n,p) is locally sparse
and that if a few edges are added on top of a tree, the treewidth of the resulting graph
cannot grow too much.

» Lemma 14. Let G be a connected graph with n vertices and n — 2 + { edges. Then
tw(G) < 4.

Proof. Since G is connected, it must have a spanning tree 1" with n vertices and n — 1 edges.
The graph G has exactly ¢ — 1 additional edges; since adding an edge can increase a graph’s
treewidth by at most 1, we immediately get the desired bound.

tw(G) <tw(T)+{—-1=1¢ <
We can now prove:

» Theorem 15. Suppose that k < n'=¢. Then for G = G(n,p) we have that w.h.p. for every
m<k:

tm(G) <3+ 0 (mlogd> .

logn

Q1) €/2

Proof. Since the Theorem is obvious for d = n we assume that d < n“. We first prove
the statement for m = k. Given a graph G with treewidth ¢, it is always possible to find a
connected subgraph of G with identical treewidth to G. In that spirit, rather than bounding
the probability there exists some k-vertex subgraph of G with treewidth exceeding some 7,
we bound the probability some subgraph on s < k vertices is connected and has treewidth
greater than r in G.

Fix some S C V with exactly s vertices. Note there are s°~2 possible spanning trees which
could connect the vertices in S, each requiring s — 1 edges. While the resulting subgraph
would be connected, its treewidth is only 1. Therefore, r additional edges would also be
required to produce a subgraph with treewidth at least r + 1. Accounting for the ways to
choose these edges, the probability the subgraph induced on §' is connected and has treewidth
greater than r is at most

)

This follows since each edge occurs independently with probability p = d/n. Now, we
bound the probability that any such subset S with at most k vertices exists. To that end,
we take a union bound over all (Z) possible subsets of s vertices, letting s range from 1 to k.

Putting this together and using the inequality (}) < (ea/b)" yields
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To complete the proof, notice this probability can be made to be at most n~! (using
kE<nl=¢and d < nE/Q) when 7 is taken to be

klogd
2+O< o8 )
logn
The Theorem now follows for m = k from Lemma 14. Using the above proof along with a
1—e

simple union bound over all m < k <n implies the statement for all m < k. |

Notice the approach above yields a sharper bound than if we solely attempted to bound
the treewidth by counting the number of excess edges above k — 1. To explain, notice a
k-vertex subgraph can have treewidth r only if it has at least r + k — 1 edges. A simple union
bound over all possible subsets of k vertices, upper bounds the probability we are interested
in.

n ) N o e
- < -
k)\r+k—-1) \n N
This is implicitly used in [18] to bound the treewidth of balls of radius r in G(n,p); as
mentioned above, our method improves on this result. More concretely, since the upper
bound now has a additional k* factor in the numerator, using this in our application would
yield the weaker upper bound

k(log k + logd)
logn '

tk(G)3+O<

3.2 Lower Bound

Throughout this section we assume that d > 1+ ¢ where § > 0.
First we need the following result from [35]:

» Proposition 16. Consider the random graph G := G(n, 17%6) Then there is a constant
¢ > 0 depending on § such that for every graph H with at most k vertices and edges, G
contains an embedding H' of H. Furthermore the width of the embedding is O(logn).

» Proposition 17. There exist graphs with m vertices and m edges of treewidth Q(m).

Proof. As random 3-regular graphs have with high probability linear treewidth [17, 24] there
are m-vertex graphs with m vertices and 3m/2 edges and treewidth Q(m). Adding to such a
graph m/2 isolated vertices results with a graph with the desired property. <

Using our results we can lower bound the local treewidth of a random graph:

» Theorem 18. Let G := G(n,d/n) be a random graph with d > 1+ 0. Assume k <
O(n/logn). Then w.h.p. G contains a subgraph with O(k) vertices whose treewidth is
k

Q(logn)'
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Proof. We may assume that k = Q(logn), otherwise the lower bound in the Theorem is
immediate. Let H be a graph with s vertices and edges of treewidth Q(s). Let s < ( o )

logn
By Proposition 16 G contains an embedding of H, H' of width O(logn). It follows that H’
has at most O(slogn) vertices and treewidth at least 2(s) (as H is a minor of H') which is

what we wanted to prove. <

3.3 Local Treewidth of Random Regular Graphs

Similar bounds on the local treewidth of random regular graphs G(n, d) can be established
via similar arguments to those used for G(n,d/n). For the upper bound, one can use the
fact [13] that for every k < nd/4 distinct unordered pairs of vertices, the probability they all
occur simultaneously in G(n, d) is at most (2d/n)* and then nearly identical arguments to
those in Theorem 15. The lower bound follows easily from embedding results for expanders:

» Theorem 19. Let d > 2 be a constant. Then with high probability a random d-regular
graph G is minor universal: any graph H with at most O(n/logn) vertices and edges can
embedded into G. Furthermore, the width of the embedding is O(logn).

Proof. By a result of [35] if G is an a-expander with « > 0 bounded away from zero then
the claim in the Proposition hold. The result now follows as it is well known [9, 33] that
with high probability the random d-regular graph is an a-expander for o > 0. |

We summarize this with the following Theorem:

» Theorem 20. Suppose that 2 < d is a constant and k < n'~¢ for some constant ¢ € (0,1).
Then for G = G(n,d) we have that w.h.p.:

k klogd
Q <t(G)<3+0 (82
logn logn

4 Local treewidth of Noisy Graphs

We study the local treewidth of noisy graphs: Recall that in this model there is a base
n-vertex graph G with maximum degree A. On top of this base graph every non edge of G
is added independently with probability 1/n. All proofs missing from this section can be
found in [39]. Our main result is:

» Theorem 21. Let G be an n-vertex connected graph of maximum degree A. Suppose that
we add every non-edge of G to G with probability 1/n independently of all other random
edges. Call the resulting graph G'. With high probability, then, tx(G') < O(tx(G) + ), where

T3+O<k(logk+logA))'

logn

For a proof please see the full version [39].
The upper bound in Theorem 21 is nearly tight for certain noisy trees.

» Theorem 22. Consider the n vertex path, P,. Suppose we add every nonedge to P, with
probability €/n where € > 0 is an arbitrary constant. Call the perturbed graph P’. Then with
high probability for any Q(logn) < k < O(n/logn), there exists a subgraph of P' with O(k)
vertices with treewidth Q(k/logn).
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Proof. Fix B to be a large enough constant. Chop P, to n/B disjoint paths® A ... A
each of length B. Consider now the graph G' whose vertex set is Ay ... A,,p and two vertices
A; and A;j are connected if there is an edge (in P’) connecting A; to A;. The probability
two vertices in G are connected is at least

1-(1- e/n)B2 > eB?/2n.

For a fixed graph H with s vertices and edges, it is known [35] that the supercritical
random graph G(m, 1€
Furthermore the width of the embedding is O(logm). The probability that two vertices in G
are connected is larger than %. Therefore we can embed H into a subgraph H’ of G whose
size is at most slogn such that H is a minor of H’'. Furthermore as the vertices of G are
paths of length B (in P,), the embedding of H into G directly translates to an embedding
of H into P’ whose width is O(Blogn) = O(logn). Choosing H with s vertices and edges
and treewidth Q(s) concludes the proof. <

5 Algorithms for Graphs of Bounded Treewidth

In this section, we build on the results of [14] to provide polynomial time algorithms for
bounded treewidth instances of minimizing contagion and stopping contagion. As we sketched
in our introduction, we generalize the influence diffusion minimization problem introduced
by the authors and use a similar dynamic-programming algorithm. Our main result is the
following algorithm for graphs of bounded treewidth 7:

» Theorem 23. Let G be an n vertex graph with maximum degree A, mazimum threshold
r and treewidth 7. Then both minimizing and stopping contagion can be solved in time
O (71296™ min{r, max{A, 2} }*" poly(n)).

For a proof, including a description of our algorithm and runtime analysis, please see
the full version [39]. Note that to combine subproblems, we must effectively account for the
effect of infected vertices elsewhere on each subgraph we consider. We therefore essentially
solve minimizing contagion and stopping contagion in a more flexible infection model, where
thresholds are allowed to differ between vertices but remain at most r; as a result, our
theorem cleanly translates to this setting as well.

6 Algorithms for Minimizing and Stopping Contagion in Grids,
Random Graphs and Noisy Trees

In this section we study how to solve minimizing contagion and stopping contagion when the
set of seeds A is not too large and does not spread by too much. We use this along with
local treewidth upper bounds to devise algorithms for minimizing and stopping contagion
in random graphs. We also consider algorithms for grids and planar graphs. As usual all
missing proofs appear in [39]..

Using similar ideas to [14] (who consider vertex deletions problems) we have the following
result for the minimizing contagion problem whose proof can be found in [39].

» Theorem 24. Let G = (V,E) be an n-vertex graph. Suppose there are t edges whose
removal ensures no more than r vertices are infected in G from the seed set A CV. Then
minimizing contagion can be solved optimally in (randomized) 2"t poly(n) time where n is
the number of vertices.

6 To simplify the presentation we assume B divides n. Similar ideas work otherwise.

-£¢) contains an embedding of H into G as long as s = O(m/logm).
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The algorithm above can become slow if r or ¢ are very large. Additionally, we do not
know how to get similar results (e.g., algorithms of running time 2!/ poly(n)) for stopping
contagion. Below we show that we can improve upon this algorithm for graphs that have
some local sparsity conditions. A key property we use is that for both minimizing contagion
and stopping contagion with a seed set A, we restrict our attention to the subgraph of G
induced on (A).

6.1 Grids and Planar Graphs

Consider the n x n grid where all vertices have threshold at least 2 we have the following
“bounded spread” result:

» Lemma 25. In the n x n grid every set of size k infects no more than O(k?) vertices.

Proof. Embed the nxn grid G = {1,...,n}x{l,...,n}in H ={0,...,n+1}x{0,...,n+1}
in the natural way. Given a subset A of G, the perimeter of A is the set of all vertices
not belonging to A having a neighbor in A. The crucial observation is that if A is a set of
infected seeds, the perimeter of A can never increase during the contagion process [7]. As the
perimeter of A is at most 4k the infected set has perimeter at most 4k as well. The result
follows as every set A C {1,...,n} x {1,...,n} of size m has perimeter Q(y/m). <

Using Theorem 24 we have that minimizing contagion on the n by n grid with k = |A|
can be solved in time 20(+*) poly(n). We simply apply the algorithm in Theorem 24 to (A).
Alternatively we can use exhaustive search over all subsets of edges in the graph induced on
(A) to solve” both minimizing or stopping contagion. We can do better using the following
fact:

» Lemma 26. Let G be a subgraph of an n by n grid with r vertices. Then G has treewidth

O(Vr).
Proof. Every m-vertex planar graph has treewidth O(y/m). <

» Corollary 27. Let G = (V, E) be the n by n grid. Suppose H = (V,E') where E' C E and
every vertex has a threshold of at least 2. Let A be the seed set with k = |A|. Then stopping
contagion and minimizing contagion can be solved in time 20 poly(n).

Proof. For solving either problems we only need to consider the subgraph of G, (A). The
result now follows from Theorem 23. |

Similarly, for a planar graph where every vertex has threshold at least 2 and at most b
and every subset A of size k infects at most f(k) vertices, stopping contagion can be solved
in time b9/ ) poly(n).

6.2 Sparse Random Graphs

Consider the random graph G(n,d/n) assuming all vertices have threshold larger than 1.
Assuming d < n'/?7% for § € (0,1/2), it is known [25] that with high probability every
set of size O(zriiry) does not infect more than O(]Allogd) vertices. Furthermore, it is
known [25] that any set of size O(n/d?) has with high probability constant average degree. It
follows that assuming |A| = O(#{;gd) the optimal solution to minimizing contagion is of size

7 For minimizing contagion using the FPT algorithm may be preferable as it may run significantly faster
if the optimal solution has cardinality o(k?).
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O(|A[log d). Therefore in random graphs with [A| < O(z5), minimizing contagion can
be solved using Theorem 24 in time O(2/411°8 4 poly(n)). As before, exhaustive search over
all edges on the graph induced on (A) can solve both minimizing and stopping contagion in
time O (21411984 poly(n)) as well.

Using our local treewidth estimates, Theorem 23, the bounded spread property and
the fact that w.h.p the maximum degree of G is O(logn/loglogn) we have the following

improvement for the running time:

» Theorem 28. Let G := G(n,d/n),e € (0,1) and § € (0,1/2). Denote by k to be the size of
the seed set A. Suppose that k < O(min(n'~¢, #f)gd)) and d < n'/?7% and that every vertex
has threshold larger than 1. Then w.h.p both minimizing contagion and stopping contagion
can be solved in time

klog? dlogl
exp (O (Ogogogn» poly(n).
logn

Proof. As before we can solve either problem on (A) using the upper bound on the treewidth
from Theorem 15, the fact that with high probability |(A)| < O(logd|A|) and the algorithm
for graphs of bounded treewidth for stopping or minimizing contagion. <

6.3 Noisy trees

We now devise an algorithm for stopping contagion and minimizing contagion for noisy trees.
To achieve this we first prove that for forests every sets of seeds does not spread by much
and furthermore this property is maintained after adding a “small” number of edges on top
of the edges belonging to the forest. Then we use similar ideas to Theorem 21 and prove
that noisy trees are locally sparse in the sense that every subsets of vertices of cardinality &
spans w.h.p k + o(k) edges assuming k is not too large. We use this property to prove that
any subset A of k seeds infects w.h.p O(k) vertices. Thereafter we can use the algorithms

for bounded treewidth to solve either minimizing contagion or stopping contagion on (A).

We assume throughout this section that € € (0,1) is a sufficiently small constant (¢ < 1/100
would suffice for our proofs to go through). Using these ideas we can prove the following
Theorem whose complete proof can be found in [39].

» Theorem 29. Let T be a tree and let T be the noisy tree obtained from T. Assume |A| =
k,A < n€ and that every vertex has threshold larger than 1. Let m := max(loglogn,log A).
Then both minimizing contagion and stopping contagion can be solved in T' in time

exp (O (k(logk + log A)m)) poly(n).
logn
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We consider the problem of designing low-redundancy codes in settings where one must correct
deletions in conjunction with substitutions or adjacent transpositions; a combination of errors that
is usually observed in DNA-based data storage. One of the most basic versions of this problem
was settled more than 50 years ago by Levenshtein, who proved that binary Varshamov-Tenengolts
codes correct one arbitrary edit error, i.e., one deletion or one substitution, with nearly optimal
redundancy. However, this approach fails to extend to many simple and natural variations of the
binary single-edit error setting. In this work, we make progress on the code design problem above in
three such variations:
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edit error with nearly optimal redundancy logn + O(loglogn), providing an alternative simpler
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This is achieved by employing what we call weighted VT sketches, a new notion that may be of
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We show the existence of a binary code correcting one deletion or one adjacent transposition
with nearly optimal redundancy logn + O(loglogn).
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Beyond Single-Deletion Correcting Codes

1 Introduction

Deletions, substitutions, and transpositions are some of the most common types of errors
jointly affecting information encoded in DNA-based data storage systems [27, 14]. Therefore,
it is natural to consider models capturing the interplay between these types of errors, along
with the best possible codes for these settings. More concretely, one usually seeks to pin down
the optimal redundancy required to correct such errors, and also to design fast encoding
and decoding procedures for low-redundancy codes. It is well-known that deletions are
challenging to handle even in isolation, since they cause a loss of synchronization between
sender and receiver. The situation where one aims to correct deletions in conjunction with
other reasonable types of errors is even more difficult. Our understanding of this interplay
remains scarce even in basic settings where only one or two such worst-case errors may occur.

One of the most fundamental settings where deletions interact with the other types of
errors mentioned above is that of correcting a single edit error (i.e., a deletion, insertion,
or substitution) over a binary alphabet. In this case, linear-time encodable and decodable
binary codes correcting a single edit error with nearly optimal redundancy have been known
for more than 50 years. Levenshtein [13] showed that the binary Varshamov-Tenengolts (VT)
code [24] defined as

n
Cz{xE{O,l}":Zi~aji:a mod(2n+1)} (1)
i=1
corrects one arbitrary edit error. For an appropriate choice of a, this code has redundancy
at most logn + 2, and it is not hard to see that at least logn bits of redundancy are required
to correct one edit error. Remarkably, a greedy Gilbert-Varshamov-type argument only
guarantees the existence of single-edit correcting codes with redundancy 2 logn — much higher
than what can be achieved with the VT code. We recommend Sloane’s excellent survey [18]
for a more in-depth overview of binary VT codes and their connections to combinatorics.
Although the questions of determining the optimal redundancy and giving nearly-optimal
explicit constructions of codes in the binary single-edit setting have been settled long ago,
the underlying approach fails to extend to many simple, natural variations of this setting
combining deletions with substitutions and transpositions. In this work, we make progress
on these questions in three such fundamental variations, which we proceed to describe next.

1.1 Non-binary single-edit correcting codes

We begin by considering the problem of correcting a single arbitrary edit error over a non-
binary alphabet. This setting is especially relevant due to its connection to DNA-based data
storage, which requires coding over a 4-ary alphabet. In this case, the standard VT sketch

n
f(a:):z:zxZ mod N, (2)
i=1
which allows us to correct one binary edit error in (1) with an appropriate choice of N, is no
longer enough. Instead, we present a natural extension of the binary VT code to a non-binary
alphabet via a new notion of weighted VT sketches, which yields an order-optimal result.

» Theorem 1. There erists a 4-ary' single-edit correcting code C C {0,1,2,3}" with logn +
loglogn + 7+ o(1) bits of redundancy, where o(1) — 0 when n — oo. Moreover, there exists
a single edit-correcting code C C {0,1,2,3}" with logn 4+ O(loglogn) redundant bits that
supports linear-time encoding and decoding.

L A 4-ary alphabet is relevant for DNA-based data storage.
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This problem was previously considered by Cai, Chee, Gabrys, Kiah, and Nguyen [2], who
proved an analogous result. Our existential result requires 6 fewer bits of redundancy than
the corresponding result from [2], and our explicit code supports linear time encoding and
decoding procedures, while the explicit code from [2] requires ©(nlogn) time encoding [22].
However, we believe that our more significant contribution in this setting is the simpler
approach we employ to prove Theorem 1 via weighted VT sketches. The technique of weighted
VT sketches seems quite natural and powerful and may be of independent interest.

We note that the existential result in Theorem 1 extends to arbitrary alphabet size ¢ with
log n 4+ O,4(loglog n) redundant bits, but we focus on ¢ = 4 since it is the most interesting
setting and provides the clearest exposition of our techniques. More details can be found
in Section 3, where we also present a more in-depth discussion on why the standard VT
sketch (2) does not suffice in the non-binary case.

1.2 Binary codes correcting one deletion or one adjacent transposition

As our second contribution, we consider the interplay between deletions and adjacent
transpositions, which map 01 to 10 and vice-versa. An adjacent transposition may be
seen as a special case of a burst of two substitutions. Besides its relevance to DNA-based
storage, the interplay between deletions and transpositions is an interesting follow-up to
the single-edit setting discussed above because the VT sketch is highly ineffective when
dealing with transpositions, while it is the staple technique for correcting deletions and
substitutions. The issue is that, if y,y’ € {0,1}"™ are obtained from x € {0,1}" via any two
adjacent transpositions of the form 01 — 10, then f(y) = f(y’) = f(x) — 1, where we recall
f(z)=>" iz mod N is the VT sketch. This implies that knowing the VT sketch f(z)
reveals almost no information about the adjacent transposition, since correcting an adjacent
transposition is equivalent to finding its location.

In this setting, the best known redundancy lower bound is logn (the same as for single-
deletion correcting codes), while the best known existential upper bound is 2logn, obtained
by naively intersecting a single-deletion correcting code and a single-transposition correcting
code. A code with redundancy logn + O(1) was claimed in [7, Section III], but the argument
there is flawed. In this work, we determine the optimal redundancy of codes in this setting
up to an O(loglogn) additive term via a novel marker-based approach. More precisely, we
prove the following result, more details of which can be found in Section 4.

» Theorem 2. There exists a binary code C C {0,1}" correcting one deletion or one
transposition with redundancy logn + O(loglogn).

Since we know that every code that corrects one deletion also corrects one insertion [13],
we also conclude from Theorem 2 that there exists a binary code correcting one deletion, one
insertion, or one transposition with nearly optimal redundancy logn + O(loglogn).

1.3 Binary codes for one deletion and one substitution

To conclude, we make progress on the study of single-deletion single-substitution correcting
codes. Recent work by Smagloy, Welter, Wachter-Zeh, and Yaakobi [19] constructed efficiently
encodable and decodable binary single-deletion single-substitution correcting codes with
redundancy close to 6logn. On the other hand, it is known that 2logn redundant bits are
required, and a greedy approach shows the existence of a single-deletion single-substitution
correcting code with redundancy 4logn + O(1).

8:3
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In this setting, we ask what improvements are possible if we relax the unique decoding
requirement slightly and instead require that the code be list-decodable with list-size 2. There,
our goal is to design a low-redundancy code C C {0,1}" such that for any corrupted string
y € {0,1}"~1 U {0,1}" there are at most two codewords z, 2’ € C that can be transformed
into y via some combination of at most one deletion and one substitution. This is the
strongest possible requirement after unique decoding, which corresponds to lists of size 1.

The best known existential upper bound on the optimal redundancy in the list-decoding
setting is still 4logn + O(1) via the Gilbert-Varshamov-type greedy algorithm. We give
an explicit list-decodable code with list-size 2 correcting one deletion and one substitution
with redundancy matching the existential bound up to an O(loglogn) additive term. At a
high level, this code is obtained by combining the standard VT sketch (2) with run-based
sketches, which have been recently used in the design of two-deletion correcting codes [9].
More precisely, we have the following result, details of which can be found in Section 5.

» Theorem 3. There exists a linear-time encodable and decodable binary list-size 2 single-
deletion single-substitution correcting code C C {0,1}" with 4logn + O(loglogn) bits of
redundancy.

Subsequently to the appearance of our work online, Song, Cai, and Nguyen [20] constructed
a list-decodable code with list-size 2 for one deletion and one substitution with redundancy
3logn + O(loglogn).

1.4 Related work

Recently, there has been a flurry of works making progress in coding-theoretic questions
analogous to the ones we consider here in other extensions of the binary single-edit error
setting. A line of work culminating in [1, 9, 17] has succeeded in constructing explicit
low-redundancy codes correcting a constant number of worst-case deletions. Constructions
focused on the two-deletion case have also been given, e.g., in [17, 6, 9]. Explicit binary codes
correcting a sublinear number of edit errors with redundancy optimal up to a constant factor
have also been constructed recently [3, 10]. Other works have considered the related setting
where one wishes to correct a burst of deletions or insertions [15, 12, 26], or a combination of
duplications and edit errors [23]. Following up on [19], codes correcting a combination of more
than one deletion and one substitution were given in [21] with sub-optimal redundancy. List-
decodable codes in settings with indel errors have also been considered before. For example,
Wachter-Zeh [25] and Guruswami, Haeupler, and Shahrasbi [8] study list-decodability from a
linear fraction of deletions and insertions.

Most relevant to our result in Section 1.3, Guruswami and Héastad [9] constructed an
explicit list-size two code correcting two deletions with redundancy 3logn + O(loglogn),
thus beating the greedy existential bound in this setting.

With respect to the interplay between deletions and transpositions, Gabrys, Yaakobi, and
Milenkovic [7] constructed codes correcting a single deletion and many adjacent transpositions.
In an incomparable regime, Schulman and Zuckerman [16], Cheng, Jin, Li, and Wu [4], and
Haeupler and Shahrasbi [11] constructed explicit codes with good redundancy correcting a
linear fraction of deletions and insertions and a nearly-linear fraction of transpositions.

2 Preliminaries

2.1 Notation and conventions

We denote sets by uppercase letters such as S and T' or uppercase calligraphic letters such as
C, and define [n] = {0,1,...,n — 1}, S=F = ULO S, and S* = J;2, 5" for any set S. The
symmetric difference between two sets S and T is denoted by SAT. We use the notation
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{{a,a,b}} for multisets, which may contain several copies of each element. Given two
strings = and y over a common alphabet ¥, we denote their concatenation by z||y and write
zi : j] = (xi,Tig1,. .., 25). Wesay y € X is a k-subsequence of z € ¥™ if there are k indices
1 <4y <ig <--- <ig < nsuch that z;;, = y; for j =1,...,k, in which case we also call z
an n-supersequence of y. Moreover, we say x[i : j] is an a-run of x if z[i : j] = a? =" for a
symbol a € ¥. We denote the base-2 logarithm by log. A length-n code C is a subset of ™
for some alphabet 3 which will be clear from context. In this work, we are interested in the
redundancy of certain codes (measured in bits), which we define as nlog|X| — log[C|.

2.2 Error models and codes

Since we will be dealing with three distinct but related models of worst-case errors, we begin
by defining the relevant standard concepts in a more general way. We may define a worst-case

error model over some alphabet ¥ by specifying a family of error balls B = {B(y) C X* :

y € ¥*}, where the B(y) can be arbitrary sets. Usually, B(y) contains all strings that can
be corrupted into y by applying an allowed error pattern. We proceed to define unique
decodability of a code C C X" with respect to an error model.

» Definition 4 (Uniquely decodable code). We say a code C C X" is uniquely decodable
(with respect to B) if |[B(y) NC| <1 for all y € ¥*.

Throughout this work the underlying error model will always be clear from context, so we
do not mention it explicitly. We will also consider list-decodable codes with small list size in
Section 5, and so we require the following more general definition.

» Definition 5 (List-size ¢ decodable code). We say a code C C X" is list-size t decodable
(with respect to B) if |[B(y) NC| <t for all y € &*.

Note that uniquely decodable codes correspond exactly to list-size 1 codes. Moreover, we
remark that for the error models considered in this work and constant ¢, the best existential
bound for list-size ¢ codes coincides with the best existential bound for uniquely decodable
codes up to a constant additive term.

We proceed to describe the type of errors we consider. A deletion transforms a string
x € X" into one of its (n — 1)-subsequences. An insertion transforms a string € X" into
one of its (n + 1)-supersequences. A substitution transforms z € X" into a string 2’ € X"
that differs from z in exactly one coordinate. An adjacent transposition transforms strings
of the form ab into ba. More formally, a string x € X" is tranformed into a string 2’ € X"
with the property that zj = x4 and x}, = x}, for some k, and 2} = x; for i # k, k + 1.

We can now instantiate the above general definitions under the specific error models
considered in this paper. In the case of a single edit, B(y) contains all strings which can
be transformed into y via at most one deletion, one insertion, or one substitution. In the
case of one deletion and one substitution, B(y) contains all strings that can be transformed
into y by applying at most one deletion and at most one substitution. Finally, in the case of
one deletion or one adjacent transposition, B(y) contains all strings that can be transformed
into y by applying either at most one deletion or at most one transposition.

3 Non-binary single-edit correcting codes

In this section, we describe and analyze the code construction used to prove Theorem 1.

Before we do so, we provide some intuition behind our approach.
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3.1 The binary alphabet case as a motivating example

It is instructive to start off with the binary alphabet case and the VT code described in (1),
which motivates our approach for non-binary alphabets. More concretely, we may wonder
whether a direct generalization of C to larger alphabets also corrects a single edit error, say

¢ = {rﬂ € [qg"

n
Ziﬂ%‘ =s mod (14+2¢n), VYeelq:|{i:z;=c} =5 mod 2} ,
i=1
where [¢g] = {0,1,...,¢ — 1} and s, so,...,S4—1 are appropriately chosen integers. However,
this approach fails already over a ternary alphabet {0,1,2}. In fact, C’ cannot correct
worst-case deletions of 1’s because it does not allow us to distinguish between ...102...
and ...021..., which can be obtained one from the other by deleting and inserting a 1
in the underlined positions. More generally, there exist codewords z € C’ with substrings
(¢j =1,2j41,...,2,) not consisting solely of 1’s satisfying
k
> (mi—-1)=0. (3)
i=j+1

This is problematic since the string x’ obtained by deleting z; = 1 from z and inserting a
1 between xp and x4 is also in C’. In order to avoid the problem encountered by C’, we
instead consider a weighted VT sketch of the form

fw(w)=>i-w(z;) mod N (4)
=1

for some weight function w : [¢] = Z and an appropriate modulus N. Using f;, instead of the
standard VT sketch f(z) = .7, iz; mod N in the argument above causes the condition (3)
for an uncorrectable 1-deletion to be replaced by Zf:jﬂ(w(xi) —w(1)) = 0. Then, choosing
0 <w(0) <w(l) <w(2) <--- <w(qg— 1) appropriately allows us to correct the deletion of
a 1 in 2 given knowledge of f,,(x) provided that x satisfies a simple runlength constraint.
In turn, encoding an arbitrary message z into a string = satisfying this constraint can be
done very efficiently via a direct application of the simple runlength replacement technique
from [15] using few redundant bits. Theorem 1 is then obtained by instantiating the weighted

VT sketch (4) with an appropriate weight function and modulus.

3.2 Code construction

In this section, we present our construction of a 4-ary single-edit correcting code which leads
to Theorem 1. As discussed in Section 3.1, given an arbitrary string z € {0,1,2,3}" we
consider a weighted VT sketch
f(z) = Zz cw(z;) mod [1+2n-(2logn + 12)],
i=1

where w(0) = 0, w(1) =1, w(2) = 2logn + 11, and w(3) = 2logn + 12, along with the count
sketches h.(z) = |{i : ; = ¢}| mod 2 for ¢ € {0,1,2}. Intuitively, the count sketches allow
us to cheaply narrow down exactly what type of deletion or substitution occurred (but not
its position). As we shall prove later on, successfully correcting the deletion of an a boils
down to ensuring that

k

> (w(a;) —w(a)) #0 (5)

=]
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for all 1 < j < k < n such that there is i € [j, k] with z; # a. We call strings z that satisfy
this property for every a regular, and proceed to show that enforcing a simple runlength
constraint on x is sufficient to guarantee that it is regular.

» Lemma 6. Suppose z € {0,1,2,3}" satisfies the following property: If 2’ denotes the
subsequence of z obtained by deleting all 1’s and 3’s and z”” denotes the subsequence obtained
by deleting all 0’s and 2’s, it holds that all O-runs of 2’ and all 3-runs of z’/ have length at
most logn + 3. Then, x is regular.

Proof. See the full version [5]. <

Let G C {0,1,2,3}™ denote the set of regular strings. Given the above definitions, we set
our code to be

C=6Nn{zxe{0,1,2,3}": f(x) = s, he(x) = s.,c € {0,1,2}} (6)
for appropriate choices of s € {0,...,1+2n-(2logn +12)} and s, € {0,1} for ¢ =0,1,2. A
straightforward application of the probabilistic method shows that most strings are regular.

» Lemma 7. Let X be sampled uniformly at random from {0,1,2,3}". Then, we have
Pr[X is regular] > 7/8.
As a result, by the pigeonhole principle there exist choices of s, sg, $1, s such that
7-4"
C|l > .
cl= 8-23.(1+2n-(2logn + 12))

This implies that we can make it so that C has logn + loglogn + 6 4 o(1) bits of redundancy,
where o(1) — 0 when n — oo, as desired. If n is not a power of two, then taking ceilings
yields at most one extra bit of redundancy for a total of logn + loglogn + 7+ o(1) bits, as
claimed.

It remains to show that C corrects a single edit in linear time and that a standard
modification of C admits a linear time encoder. Observe that if a codeword = € C is corrupted
into a string y by a single edit error, we can tell whether it was a deletion, insertion, or
substitution by computing |y|. Therefore, we treat each such case separately. Since correcting
one substitution in our code is analogous to correcting one substitution in the original binary
VT code, and since correcting one insertion is similar to correcting one deletion, we consider
only the case of one deletion here and leave the remaining cases to the full version [5].

3.3 Correcting one deletion

Suppose that y is obtained from z € C by deleting an a at position 4. First, note that we can
find a by computing h.(y) — he(x) for ¢ = 0,1,2. Now, let yU) denote the string obtained by
inserting an a to the left of y; (when j = n this means we insert an a at the end of y). We
have x = y(i) and our goal is to find 4. Consider n > j > i and observe that
J
f@) = F9) = f") = F9) = Y (wlze) — w(a)),

l=i+1

because yp_1 = x¢ for £ > i. Since x is regular, it follows that Ez:i+1(w(xg) —w(a)) #0
unless ;41 = --- = x; = a. This suggests the following decoding algorithm: Successively
compute f(z) — f(yP) for j =n,n—1,...,1 until f(z) — f(y9)) = 0, in which case the
above argument ensures that y/) = z since we must be inserting a into the same a-run of
2 from which an a was deleted. This procedure runs in overall time O(n), since we can
compute f(z) — f(yU=b) given f(z) — f(y9)) with O(1) operations.
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3.4 A linear-time encoder

We have described a linear-time decoder that corrects a single edit error in regular strings x
assuming knowledge of the weighted VT sketch f(x) and the count sketches h.(z) for ¢ = 0,1, 2.
It remains to describe a low-redundancy linear-time encoding procedure for a slightly modified
version of our code C defined in (6). Fix an arbitrary message z € {0, 1,2,3}"™. We proceed
in two steps:

1. We encode z into a regular string = € {0,1,2,3}™*4 in linear time by exploiting the
runlength replacement technique from [15];

2. We append an appropriate encoding of the sketches (which we now see as binary strings)
to x that can be recovered even if the final string is corrupted by an edit error. This adds
only O(loglogn) bits of redundancy, and allows z (and thus z) to be recovered in linear
time.

The complete analysis can be found in the full version [5].

4 Binary codes correcting one deletion or one transposition

In this section, we describe and analyze the code construction used to prove Theorem 2. As
discussed in Section 1.2, the adjacent transposition precludes the use of the standard VT
sketch. Therefore, we undertake a radically different approach.

4.1 Code construction and high-level overview of our approach

Our starting point is a marker-based segmentation approach considered by Lenz and Poly-
anskii [12] to correct bursts of deletions. We then introduce several new ideas. Roughly
speaking, our idea is to partition a string x € {0,1}" into consecutive short substrings
z{, ..., 2§ for some £ according to the occurrences of a special marker string in x. Then, by
carefully embedding hashes of each segment 2 into a VT-type sketch, adding information
about the multiset of hashes, and exploiting specific structural properties of deletions and
adjacent transpositions, we are able to determine a short interval containing the position
where the error occurred. Once this is done, a standard technique allows us to recover the
true position of the error by slightly increasing the redundancy.

We now describe the code construction in detail. For a given integer n > 0, let A =
50 4+ 10001log n and m = 1000A2 = O(log2 n). For the sake of readability, we have made no
efforts to optimize constants, and assume n is a power of two to avoid using ceilings and
floors. Given a string « € {0,1}", we divide it into substrings split according to occurrences
of the marker 0011. To avoid edge cases, assume that z ends in 0011 — this will only add
4 bits to the overall redundancy. Then, this marker-based segmentation induces a vector
2% = (27, ..., zZ), where 1 < ¢, < n, and each string z7 has length at least 4, ends with
0011, and 0011 only occurs once in each such string. We may assume that |2F] < A for all
i. This will only add 1 bit to the overall redundancy, as captured in the following simple
lemma.

» Lemma 8. Suppose X is uniformly random over {0,1}". Then, Pr[|2X| < A,i =
1., tx] > 1.

Our goal now will be to impose constraints on 2% so that (i) We only introduce logn +
O(loglogn) bits of redundancy, and (ii) If z is corrupted by a deletion or transposition in
2%, we can then locate a window W C [n] of size |W| = O(log* n) such that 2 C W. This
will then allow us to correct the error later on by adding O(loglogn) bits of redundancy.
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Since each z¥ has length at most A = O(logn), we will exploit the fact that there exists
a hash function h with short output that allows us to correct a deletion, substitution, or
transposition in all strings of length at most 3A. This is guaranteed by the following lemma.

» Lemma 9. There exists a hash function h : {0,1}=34 — [m] with the following property: 1f
z' is obtained from z by at most two transpositions, two substitutions, or at most a deletion
and an insertion, then h(z) # h(z').

Proof. We can construct such a hash function h greedily. Let A(z) denote the set of such
strings obtained from z € {0,1}=%2. Since |A(z)| < m, we can set h(z) so that h(z) # h(2')
for all 2/ € A(2) \ {#}. <

With the intuition above and the hash function h guaranteed by Lemma 9 in mind, we
consider the VT-type sketch

L
F@)=> "5z m+h(zf)) mod (L=10n A-m+1)

j=1

along with the count sketches g (z) = ¢, mod 5 and ga(x) = >\, Z; mod 3, where T; =
Zj’:l x; mod 2. At a high level, the sketch f(z) is the main tool we use to approximately
locate the error in . The count sketches g1 (z) and go(z) are added to allow us to detect
how many markers are created or destroyed by the error, and to distinguish between the
cases where there is no error or a transposition occurs. Thus, we define the preliminary code

z[n —3,n] =(0,0,1,1), f(x) = so,91(z) = s1,92(x) = 52, }

r_ n
¢ _{“{0’1} Vie (6] 2] < A

for appropriate choices of sg, s1,s2. Taking into account all constraints, the choice of A
and m, and Lemma 8, the pigeonhole principle implies that we can choose sg, s1, S2 so that
this code has at most 4 +log(10n-A-m+1)+1+2+ 2+ 1 =logn + O(loglogn) bits of
redundancy.

However, it turns out that the constraints imposed in C’ are not enough to handle a
deletion or a transposition. Intuitively, the reason for this is that, in order to make use of
the sketch f(z) when decoding, we will need additional information both about the hashes
of the segments of z that were affected by the error and the hashes of the corresponding
corrupted segments in the corrupted string y. Therefore, given a vector z* and the hash
function h guaranteed by Lemma 9, we will be interested in the associated hash multiset
Hy = {{h(z]), ..., h(2{ )} } over [m]. As we shall see, a deletion or transposition will change
this multiset by at most 4 elements. Therefore, we will expurgate C’ so that any pair of
remaining codewords x and «’ satisfy either H, = H,s or |H,/AH,:| > 10. This will allow us
to recover the true hash multiset of z from the hash multiset of the corrupted string. The
following lemma shows that this expurgation adds only an extra O(logm) = O(loglogn) bits
of redundancy.

Ic’]
mio

» Lemma 10. There exists a code C C C' of size |C| > such that for any x,z’ € C we

either have H, = Hyr or |H,AH,/| > 10.

We will take our error-locating code to be the expurgated code C guaranteed by Lemma 10.

By the redundancy of C’ above and the choice of m, it follows that there exists a choice of
so and s; such that C has logn 4+ O(loglogn) bits of redundancy. We prove the following
result, which states that, given a corrupted version of z € C, we can identify a small interval
containing the position where the error occurred.
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» Theorem 11. If x € C is corrupted into y via one deletion or transposition, we can recover
from y a window W C [n] of size |W| < 10'°log* n that contains the position where the error
occurred (in the case of a transposition, we take the error location to be the smallest of the
two affected indices).

We can use Theorem 11 to prove our main Theorem 2 via standard methods (see the full
version [5]).

Fix x € C and suppose y is obtained from z via one deletion or one transposition. To
prove Theorem 11, we consider several independent cases based on the fact that a marker
cannot overlap with itself, that we can identify whether a deletion occurred by computing
ly|, and that we can identify whether a transposition occurred by comparing go(z) and ga(y).
Since the arguments are similar, we show how to locate one deletion and leave the case of
one adjacent transposition to the full version [5].

4.2 Locating one deletion

In this section, we show how we can locate one deletion appropriately. Fix = € C and suppose
that a deletion is applied to 2. The following lemma holds due to the marker structure.

» Lemma 12. A deletion either (i) Creates a new marker and does not delete any existing
markers, in which case {y, =l + 1, (it) Deletes an existing marker and does not create any
new markers, in which case £, = £, — 1, or (iii) Neither deletes existing markers nor creates
new markers, in which case £, = {,.

Note that we can distinguish between the cases detailed in Lemma 12 by comparing ¢ (z)
and g1 (y). Thus, we analyze each case separately:

1. £, = {;: In this case, we have 2¥ = (2f,...,2{ 1,2}, 20 1,...,2} ), where z] is obtained
from z¥ by a deletion (in particular, |z| = |27| — 1). Therefore, it holds that
‘. ¢y
f@) = fly) = dz1-m+h(z5) =Y i1z -m+h(z})) mod L
Jj=1 j=1

il27 |- m A+ h(27) = |zi] - m = h(z}))
i(m+ h(z7) = h()),

where the second equality uses ¢, = ¢,. Let H, denote the hash multiset of y. Then,
we know that |Hy;AH,| < 2. Therefore, we can recover H, from H,, which means that
we can recover h(z¥) — h(z;). Indeed, if h(z¥) — h(2]) = 0 then H, = H,. On the
other hand, if h(z¥) — h(2]) # 0 then |[H,AH,| = 2 and we recover both h(z}) (the
element in H, but not in Hy,) and h(z]) (the element in H, but not in H,). As a result,
we know m + h(zF) — h(z}). Since it also holds that m + h(z¥) — h(z}) # 0 (because
|h(zF) — h(z])| < m), we can recover ¢ from f(z)— f(y). This gives a window W of length
at most A = O(logn).

2. {y, = £, — 1: In this case, the marker at the end of 2 is destroyed, merging zf
and 2, ;. Observe that if ¢ = ¢, then we can simply detect that the last marker
in x was destroyed. Therefore, we assume that ¢ < ¢,, in which case we have 2z¥ =
(2%, s 281,20 280y -5 20 ), where |2]| = [2f] + |2§, ;| — 1. Consequently, it holds that
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Ly 2,
f@) = f) =il -m+hz5)) = > il -m+h(z¥)) mod L

j=1 J

= i(|Zf - m+ h(27)) + (@ + D) (|25 - m+ h(z50)) —illzi] - m + h(z)

‘,
Z (5] - m + h(z5))
¢

(IZf\'erh(Zf))H(erh( )+ h(zf) = h(z)

+

(\Zml m+ h(zf1))-

Note that, since |[H,AH (y)| < 3, we can recover H, from H,. In particular, this means
that we know h(zf) + h(z{, ;) — h(z;). Therefore, for i’ = £, —1,{, —2,...,i we can
compute the potential function

Ly
(i) = (2] - m+h(2})) +i'(m + h(z]) + h(2{11) — h(}))
j=i/+1
Ly
= (1271 - m + h(27)) + 4" (m + h(z7) + h(2) — h(27))-
G=i+2
Note that
[9G) — (f(@) = F)] = 12501 - m+ h(=E0)] < A - m+m < 107 log? . ™)

Moreover, we also have

@i —1) = (') = [z |- m 4~z ) — (m+ h(z) + h(2iy0) — h(z)
> 4m —3m =m. (8)

This suggests the following procedure for recovering the window W. Sequentially compute
®(i') for i’ starting at £, —1 until we find i* > i such that |®(i")—(f(x)—f(y))| < 106 log® n.
This is guaranteed to exist since i’ = ¢ satisfies this property. We claim that i* — i <
107 log n. In fact, if this is not the case then the monotonicity property in (8) implies that
|®(i) — (f(z) — f(y))| > m-107logn > 107 log® n, contradicting (7). Since |z < A for
every j, recovering i* also yields a window W C [n] of size |[W| = 10%logn-A = 10° log®n
containing the error position, as desired.
3. ¢y, = {, + 1: This case is very similar to the previous one (see the full version [5]).

5 Binary list-size two code for one deletion and one substitution

In this section, we describe and analyze a binary list-size two decodable code for one deletion
and one substitution, which yields Theorem 3. Departing from the approach of [19], our
construction makes use of run-based sketches combined with the standard VT sketch. Run-
based sketches have thus far been exploited in the construction of multiple-deletion correcting
codes, including list-decodable codes with small list size [9].
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5.1 Code construction

We begin by describing some required concepts: Given a string = = (z1,...,2,) € {0,1}",
we define its run string r* by first setting r§ = 0 along with o = 0 and x,+1 = 1, and then
iteratively computing 7 = r¥ | if x; = ;1 and rf =7 | +1 otherwisefori =1,...,n,n+1.
Note that every string x is uniquely determined by its run string * and vice-versa. Moreover,
it holds that r* defines a non-decreasing sequence and 0 < ry <iforeveryi=1,...,n,n+1.
As an example, the run string corresponding to = 011101000 is 7* = 0111234445. We call
r¥ the rank of index ¢ in x. We will denote the total number of runs in = by r(z).

The main component of our code is a combination of the standard VT sketch

f(z) = sz mod (3n + 1) 9)

=1

with the run-based sketches

filz) = Zr;‘ mod (12n + 1), (10)
fo(x) = er(rf —1) mod (16n* + 1) (11)
i=1

originally considered in [9]. Additionally, we also consider the count sketches

h(z) = Zn:xi mod 5 and h.(x) =r(x) mod 13. (12)

i=1

Intuitively, the count sketches are used to distinguish different error patterns. The sketch
h(z) is used to determine the value of the bit deleted and the value of the bit flipped, while
hr(z) is used to identify how the number of runs was affected by the errors. For each possible
error pattern, we use the standard VT-sketch and the run-based sketches to decode. Given
the above, our code is defined to be

C=A{ze{0,1}": f(z) = s, fi(z) = 51, f3(x) = 55, h(x)

U, hr(w) = ur}a (13>

for an appropriate choice of s € [3n + 1], s] € [12n + 1], s§ € [16n? + 1], u € [5], and
u, € [13]. By the pigeonhole principle, there is such a choice which ensures C has redundancy
4logn + O(1).

In the remainder of this section, we first provide a high-level overview of our approach
towards showing that C admits linear-time list-decoding from one deletion and one substitution
with list-size 2. Then, we analyze a special case which exemplifies our more general approach.
The remainder of our argument appears in the full version [5]. We remark that linear-
time decoding and encoding of a slightly modified version of C (which has redundancy
4logn+0(loglogn) instead) follow without difficulty from this analysis via standard methods.
These algorithms are presented and analyzed in the full version [5].

5.2 High-level overview of our approach

Fix z € C, and let y be the string obtained from z after one deletion at index d and one
substitution at index e. We use z. to denote the bit flipped, and x4 to denote the bit deleted
in . When d = e, we have one deletion and no substitution. Our goal is to recover z from y.
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We begin with some simple but useful remarks. First, we observe that one deletion and
no substitution can be equivalently transformed to one deletion and one substitution. Thus,

we will only consider the case in which we have one deletion and one substitution, i.e., d # e.

We present a proof of this fact in the full version [5]. Second, the following structural lemma
about the number of runs in a corrupted string will prove useful in our case analysis.

» Lemma 13. If 2’ is obtained from x via one deletion, then either r(z') = r(z) or
r(z') = r(x) — 2. On the other hand, if 2’ is obtained from x via one substitution, then either
r(z') =r(x), r(z') =r(x) — 2, or r(z’) =r(z) + 2.

Combining Lemma 13 with the count sketches h(x) and h,(z) and knowledge of y ensures
that we can identify not only the values of x4 and x., but also r(z). As a result, this allows
us to split our analysis into several independent cases.

The process of decoding can be thought of as inserting a bit x4 before the d-th bit in
y and flipping the (e — §)-th bit in y, where § € {0,1} is the indicator variable of whether
e > d. Our goal is to find d and e. We will begin with a candidate position pair (zilv €) with
d is as small as possible with the property that, if £ denotes the string obtained from y
by inserting x4 before the d-th bit in y and flipping the bit at position e — §in y, where 5
indicates whether d < €, then f(Z) = f(z), ho(Z) = hy(z), and h.(z') = h,(Z'), where 2’
(resp. 7') denotes the string obtained from x (resp. Z) by deleting 4 (resp. 7). We call such
pairs valid. Intuitively, valid pairs are indistinguishable from the true error pattern (d,e)
from the perspective of the VT sketch and the count sketches, and there may be several of
them. However, crucially, many are ruled out via the run-based sketches. Note that the true
error pattern (d, e) is a valid pair, so such pairs always exist.

Roughly speaking, our strategy is to start with some valid pair (cz €) and sequentially
move to the next valid pair. This is done by moving d one index to the right and checking
whether the unique index € that ensures f(Z) = f(z) forms a valid pair (d,€). If this does
not hold, then we move d one more index to the right, and repeat the process. We call this
an elementary move. Note that since inserting a bit b into a b-run at any position gives
the same output, we may always move d to the end of the next Zg-run in y (which may be
empty). Figure 1 shows an example of an elementary move.

J————— AN

d e d e

Figure 1 Example of an elementary move. Suppose that the error pattern indicates that x4 = 1,
z. = 1, and the deletion does not reduce the number of runs while the substitution increases the
number of runs by two. The process starts with the left figure in which a bit 1 is inserted at position
d the end of a 1-run and the bit 1 at position e — 1 is flipped. After an elementary move, d moves
to the end of the next 1-run, and e moves to the next position that matches the error pattern

Yos41 = Yo—5-1 = 0.

Considering this step-by-step process with elementary moves proves useful because it
turns out to be feasible to track how the different sketches change in each such move. In
particular, the following equations will be useful to determine how d and € change in each
elementary move. Recall that we regard y as a string obtained via one substitution at index
e— 6 from 2’ € {0,1}"~1, where 2’ is obtained via one deletion from x at index d. Note that

8:13
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n—1
fl@)— @) =dvg+ > af and f(a') = f(y) = (e — O)[ze — (1 — ).
d

Moreover, we have 2271 x = Zil yi + 6(2z, — 1). Combining these three observations
yields
n—1
Fl@) = f(y) = dza+ Y i+ e(2we — 1). (14)
i=d

We prove that, during this sequential process, either f{ is monotonic and hence rules out all
but one valid pair (c?, €), or a convexity-type property of fJ, which implies that it takes on
each value at most twice, rules out all but at most two valid pairs. The convexity of fJ(z) is
a consequence of the following lemma.

» Lemma 14 ([9, Lemma 4.1]). Let a; and a; be two sequences of non-negative integers such
that 31 a; = >, a} and there is a value t such that for all i satisfying a; < a} it holds
that a} < t, and for all i satisfying a; > a), it holds that o} > t. Then, either a; = a for all i,
or Y i jai(a; —1) > 3" aj(al —1).

Finally, we note that, in the high level overview above, we ignored the fact that we do
not have access to the intermediate string 2/, but we need to know h,.(z'). For example, if
r(y) = r(z), then there is uncertainty about h,(z’). In fact, it could be that both errors do
not change the number of runs, or that both errors do change the number of runs but these
cancel each other out. Since we are aiming for list-size 2 decoding, this is not problematic,
and we handle it in the final decoding procedure.

Below, we consider one special case which exemplifies how our high level approach above
can be realized. The remaining cases are analyzed in the full version [5].

5.3 Special case — Unique decoding when the number of runs increases
by two

If r(y) = r(z) + 2, then it must be that r(x) = r(z’) and r(y) = r(2’) + 2. This means that
the deletion does not change the number of runs (and thus occurred in a run of length at
least 2 in z), while the substitution affects a bit in the middle of a run of length at least 3.
In particular, we have ye—s—1 = Ye—s5+1 = 1 — ye—s. In this case, it follows that

fi(@) = fi(=") =g, @) = fily) = —(1+2(n—e+9)).
Therefore, for the run-based sketch f7(z) it holds that
fi@) = fily) =ri — (1 +2(n—e+9)). (15)

We now proceed by case analysis on the value of x4 and z..

531 fx,=x4=0

In this case, when d makes an elementary move to the right, it must pass across a (1 — b)-run
of some length £ > 1. According to (14), position € has to move to the left by ¢ so that
f(%) = f(x). If we have d < € before one elementary move but d > ¢ after that move, we
call it a take over step. For each elementary move:
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If the move is not a take over step: Then, rgv increases by 2 while 2(n — d+ 0) +1 increases
by 2¢. Therefore, (15) implies that f](Z) strictly decreases after such a move whenever
> 1. If £ =1, then € moves by 1 to the left and f](Z) remains unchanged. However,
since we need 1 —b =y~ ~=1—y> ~it follows that ¢ cannot move only 1 position to
the left, and so ¢ > 1 necessarily.

If the move is a take over step: Before the move, d is on the left of a (1 — b)-run of length
¢ > 1 while ¢ > d satisfies Yy, =1—band y- , =y>=b. After the move, d moves to

€
the right of the (1 — b)-run of length ¢, while € is to the left of d. Moreover, it must be
that yy=1-band y> | = Yoo, = b. To match the error pattern, the onlz possible case is
that £ = 1. To see why this is the case, note that when ¢ > 2 the index € has to move to
the left by at least £+2 to match the error pattern y~ 5 | =y~ 5, =1—y- 5 However,

this move leads to f(Z) # f(z), and thus does not yield a valid pair (d,€). When ¢ =1,
let (d1,€1) and (da, €2) denote the position pair before and after the move, respectively.
Then, these two pairs yield the same candidate solution z; = Z5. See Figure 2 for an

example.
\ —
) @ %2

d 1 51 gz dz

Figure 2 An example of a take over step. If the take over happens, it must be that £ = 1. The
resulting 71 and T are the same.

Taking into account both cases above, we see that f](Z) decreases during each elementary
move, and decreases by at most 2n during the whole process. Since the value of f7(z) is
taken modulo 12n + 1, there is only a unique pair ((zE) that yields a solution such that
(@) = f{(z). Hence, f(z) and f](x) together with y uniquely determine one valid pair
(c?7 €), which in turn yields a unique candidate solution z = x.

532 Ifxy=1—2x.=0»

In this case, when d makes an elementary move to the right, it must pass across a (1 — b)-run
of some length ¢ > 1. Then, € has to move to the right by ¢ so that f(Z) = f(z). During
each such move f](Z) strictly increases. For the whole process, f7(Z) increases by at most
2n. By a similar argument as above, we have that f(z) and f7(x) together with y uniquely
determine one valid pair ((i7 ¢€) which yields the correct solution = = x.

6 Open problems

Our work leaves open several natural avenues for future research. We highlight a few of them
here:
Given the effectiveness of weighted VT sketches in the construction of nearly optimal
non-binary single-edit correcting codes in Section 3 with fast encoding and decoding, it
would be interesting to find further applications of this notion.
We believe that the code we introduce and analyze in Section 5 is actually uniquely decod-
able under one deletion and one substitution. Proving this would be quite interesting, since
then we would also have explicit uniquely decodable single-deletion single-substitution
correcting codes with redundancy matching the existential bound, analogous to what is
known for two-deletion correcting codes [9].

8:15
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—— Abstract
We study a simple and general template for constructing affine extractors by composing a linear
transformation with resilient functions. Using this we show that good affine extractors can be
computed by non-explicit circuits of various types, including ACO-Xor circuits: ACO circuits with
a layer of parity gates at the input. We also show that one-sided extractors can be computed by
small DNF-Xor circuits, and separate these circuits from other well-studied classes. As a further
motivation for studying DNF-Xor circuits we show that if they can approximate inner product then
small ACO-Xor circuits can compute it exactly — a long-standing open problem.
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ACO with parity gates is a frontier class in circuit complexity, essentially the strongest
class for which we can prove strong lower bounds for explicit functions. These lower bounds
however have been stuck since the classic results from the 80’s [32, 36]. In particular, unlike
the case of ACO, we do not have (1) strong average-case lower bounds, (2) pseudorandom
generators, or (3) hierarchy results for this class.

Remarkably, (1), (2), and (3) are not known even for the subclass ACO-Xor of ACO
circuits with a layer of parity gates (or their negations) next to the input level. (On the other
hand, (1) and (2) are known for Xor-ACO [39].) In fact, (1) and (2) are not known even for
Or-And-Xor circuits, a.k.a. DNF-Xor circuits. Hence these classes (AC0-Xor and DNF-Xor)
have gained importance as prominent special cases of ACO with parity gates which require
new proof techniques.

A natural candidate for providing (1) is the inner product function, and the following
question has been highlighted and studied in several works, including [35, 14, 5, 13, 18].

» Problem 1. Is the Inner Product function IP(z,y) := ) . z;y; mod 2 computable by
polynomial-size AC0-Xor circuits?

A number of works have solved special cases of the problem, proving lower bounds for
computing IP when the circuit class is further restricted: [27, 14] proved exponential lower
bounds for Or-And-Xor. [5] proved a lower bound for small ACO-Xor circuits when the parity
layer is “typical” [13] (cf. [28]) proved an n2~°() lower bound for And-Or-And-Xor circuits.
For depth-d ACO-Xor circuits they proved an n!*+%(1/ 4") Jower bound. The latter result was
improved on in [10] which obtained an ©(n*™/2) lower bound that holds even if the circuit
computes IP on a 1/2 +n~ 198" fraction of inputs.

© Xuangui Huang, Peter Ivanov, and Emanuele Viola;

licensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No.9; pp.9:1-9:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:huang.xua@northeastern.edu
mailto:ivanov.p@northeastern.edu
mailto:viola@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Affine Extractors and ACO-Parity

To summarize, to compute IP there are quadratic lower bounds for And-Or-And-Xor.
These lower bounds hold in the worst case while average-case lower bounds are not known.
Average-case lower bounds are not even known for polynomial-size DNF-Xor. For higher
depth we have lower bounds for size which approaches linear exponentially fast with the
depth, and these lower bounds hold even in the average case.

Extractors. An extractor for a class of distributions (a.k.a. source) is a function that is
nearly unbiased when the input is chosen according to any distribution in the class. For
various classes of distributions, extractors have been studied with remarkable intensity in
the theoretical computer science literature for decades. A class of distributions which is
important in many works including the present one is that of distributions which are uniform
over linear or affine vector subspaces of {0,1}", which we simply call affine.

» Definition 2 (Affine extractors). A function f:{0,1}" — {0,1} is an affine extractor for
dimension (a.k.a. entropy) k with error (a.k.a. bias) € if for every k-dimensional affine space
A C{0,1}" and for Uy the uniform distribution over A we have |P[f(Ua) = 1] —P[f(Ua) =
0]] <e.

We say that the extractor is one-sided if the conclusion is relaxed to P[f(Ua) = 1] > 1/2—¢,
and f is nearly balanced: |P[f(U) = 1] —1/2| <€, where U := Ugg,1yn.

Many papers have been devoted to constructing affine extractors. The latest [11] works
for nearly logarithmic dimension.

One motivation for studying affine extractors is that they arise naturally in the study of
circuit lower bounds. For example, the method of restrictions partitions the input in affine
spaces, and so any function that becomes constant via a suitable restriction cannot be a good
affine extractor. In particular, switching lemmas [20, 1, 23, 26, 24, 25] imply that small ACO
circuits cannot compute affine extractors. The same holds for models which shrink under
restrictions, such as De Morgan formulas, see [37] for the latest shrinkage bound and history.
And the first numerical progress in more than 30 years on lower bounds for general circuits
— [19] — holds for computing affine extractors. Finally, affine extractors also give sampling
lower bounds [41, 42, 44].

This also means that showing that a circuit class can compute good affine extractors
indicates some of the difficulties that may arise when trying to prove lower bounds against
that class. This direction has been pursued in a number of works, in fact going back to [31]
(cf. [34]). More recently, the paper [15] (Theorem A.6) shows that affine extractors for
dimension k£ = O(logn) can be computed by
1. polynomials mod 2 of degree O(logn),

2. Xor-And-Xor circuits of size n2to()
3. De Morgan’s formulas of size n®+o(1),
Their results also give good dependence on €, which we omit for simplicity.

It is a folklore result that IP is an affine extractor for dimension larger than n/2 (a proof
can be found in [42]). Moreover, some of the previous lower bounds hold for computing affine
extractors. The worst-case n'+¢ * lower bound for depth d in [5] holds for computing affine
extractors, even with very weak parameters. The quadratic lower bound for And-Or-And-
Xor [13] and the average-case lower bound for depth d [10] hold for computing extractors
if the error is exponentially small. We do not know if they can be generalized to affine
extractors with constant error, but jumping ahead we give a simple proof of an n!>=°(1) lower
bound for computing constant-error extractors by And-Or-And-Xor circuits (Section 4).
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Our first main result is that small (non-explicit) AC0-Xor circuits can compute very good
affine extractors. In fact, And-Or-And-Xor circuits of size n? logo(l) n suffice, matching the
depth and — up to logarithmic factors — the size lower bounds in [13].

» Theorem 3. There exists an And-Or-And-Xor circuit C of size n® logo(l) n that computes

an affine extractor for dimension k > log®n with error 1/Q(logn), were ¢ > 0 is an absolute
constant.

The proof is in Section 1. We actually give a general template for constructing affine
extractors, and obtain constructions in other models as well. In particular, we show that De
Morgan formulas of size n*t°(1) can compute affine extractors (see Theorem 15), improving
the n°+°(1) bound from [15] (Ttem 3 above).

It is natural to ask if the depth of the circuit in Theorem 3 is tight, that is if Or-And-Xor
(a.k.a. DNF-Xor) circuits can compute good affine extractors. We note that an And-Xor
circuit computes (the characteristic function of) an affine space, and so a DNF-Xor circuit
of size s computes an union of s affine spaces. Understanding the power of unions of affine
spaces seems interesting from a mathematical perspective as well, and it is a natural next
step towards more general models after affine spaces.

It is easy to show that DNF-Xor circuits require exponential size to compute good affine
extractors, and a proof can be found in [14]. However, we show next that they can compute
one-sided extractors. (Note that the DNF-Xor sub-circuits in the construction in Theorem 3
are not balanced and so do not compute one-sided affine extractors.)

» Theorem 4. There exists an O(nlog®n) size DNF-Xor circuit that computes a one-sided
affine extractor for dimension k > clog®n with error 1/log1'9 n, were ¢ > 0 is an absolute
constant.

We apply this theorem to separate DNF-Xor circuits from other classes such as parity
decision trees (PDTs) and AC0-Xor circuits with n parity gates. The separation from PDTs

is obtained by showing the more general separation from disjoint unions of affine subspaces.

These separations hold in the average case too, and we show tightness with respect to several
parameters. These results point to the strength of the model and to the techniques we can
(not) use for lower bounds.

Let us elaborate on the separation from PDTs. For comparison, recall that any polynomial-
size DNF on n bits can be approximated by a decision tree (DT) of depth n — Q(n/logn).
(Proof sketch: We can ignore terms of size w(logn). Then a switching lemma shows that
we can fix all but Q(n/logn) variables and the DNF collapses to a decision tree of depth
O(logn).) It is natural to ask if a corresponding switching lemma or simulation exists for
DNF-Xor in terms of PDT. We show that the answer is negative:

» Corollary 5. There exists a DNF-Xor circuit f : {0,1}" — {0,1} of size n - polylogn
such that for any depth n —1log> °W n PDT T : {0,1}" — {0,1} we have P[f(U) = T(U)] <
1/2+1/9(logn).

Note that the “depth deficiency” (i.e., n minus the depth of the tree) decreases exponen-

tially from the Q(n/logn) in the simulation of DNFs by DTs to log?t°™M 1 in the simulation
of DNF-Xors by PDTs. We summarize this finding informally as follows:

— PDTs are not to DNF-Xor what DTs are to DNFs —

This finding stands in contrast with our extensions of other simulations of ACO circuits
by DTs to the setting of ACO-Xor circuits and PDTs. This includes simulations given by the
switching lemma, and simulations that exploit various restrictions on fan-in, see Section 2.
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The study of DNF-Xor circuits is also motivated by our next result, which shows that if
IP can be approximated by small such circuits, then in fact IP can be computed (exactly) by
small AC0-Xor circuits.

» Theorem 6. Suppose there is ¢ > 0 and an ACO-Xor circuit of size n® that computes
IP correctly on a 1/2 + 1/log®n fraction of the inputs. Then there are polynomial-size,
constant-depth ACO-Xor circuits that compute IP.

The proof is in Section 3.

A concurrent work [18] shows that if small DNF-Xor circuits compute IP on a 5/6 + ¢
fraction of the inputs, then there are efficient data-streaming and communication protocols
for low-degree polynomials. The conclusions in [18] and the present work thus concern
different models. The hypotheses are also different. Whereas [18] requires a DNF-Xor circuit
to compute IP on a 5/6 + ¢ fraction of the inputs, in our application an AC0-Xor circuit
computing it on a 1/2 + 1/poly log fraction suffices. Also, a partial converse to Theorem 6 is
given by the so-called discriminator lemma [22]: if a size-s And-Or-And-Xor circuit computes
IP, then a size-s DNF-Xor circuit computes IP on 1/2 4 1/s fraction of the inputs.

We note that the hypothesis in Theorem 6 is related to extractors. Indeed, let C be a
DNF-Xor circuit of size s. Let S := {z: C(z) = 1} and let |S|/2™ =: p. Suppose that IP is
biased on S, that is |P[IP(Ug) = 1] — P[IP(Us) = 0]| > €. Then either C or the negation of
C' computes IP correctly on a 1/2 + pe fraction of inputs. In other words, if IP is not an
extractor for Ug, then we can approximate IP, and by Theorem 6 we can compute it with
small ACO-Xor circuits. To avoid the latter, IP should have bias < 1/log®n on any set S as
above of size > 1/log‘n, for any c.

» Problem 7. Does IP extract randomness from unions of polynomially many affine spaces?

This work raises several other questions. Besides the question of explicitness, an obvious
question is matching lower bounds and affine-extractor constructions. In particular, it would
be interesting to know if one can compute affine extractors by depth-d ACO-Xor circuits
of size !¢ ", This would follow if one can show a size-depth tradeoff for r-wise resilient
functions (defined later), which we also raise as a question. In general, we raise the question
of understanding the complexity of computing r-wise resilient functions in various models of
computation. For example, can they be computed by linear-size circuits? From the side of
lower bounds, it would be interesting to strengthen our n'->=°() lower bound for computing
affine extractors (in Section 4) to quadratic.

1  Constructing affine extractors

The proof of Theorem 3 builds on ideas developed in the literature on extractors. At the high
level, we use an approach from [21], Section 5.3, of combining a suitable linear transformation
with a resilient function (defined below). [21] aims to construct extractors for bit-fixing
sources (a special case of affine sources) of large entropy (n/polylog) and computable in ACO.
They pick a sparse linear transformation, which guarantees that the extractor is computable
in ACO, and which is sufficient because the entropy is close to n. By contrast, we aim to
extract from the more general affine sources, and even with polylogarithmic entropy. On
the other hand, we can pick a non-sparse linear transformation thanks to the layer of parity
gates. [21] shows that the output of the linear transformation is uniform except for few bits;
instead we can only guarantee that it is r-wise independent except for few bits.
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» Definition 8 ([41]). A distribution D over {0,1}" is r-wise uniform but for b bits if there
is a set S C [m] of size m — b such that for any r elements in S the projection of D onto the
corresponding bits is uniform over {0,1}". If b= 0 we simply say r-wise uniform.

A main and simple result in this paper is that applying a suitable linear transformation
one can turn an affine source into a distribution of the type above. The corresponding linear
transformations seem interesting to study, so we give a definition.

» Definition 9. An m x n matriz T is k-affine to r-wise uniform but for b-bits if for any
distribution Ua uniform over an affine space A C {0, 1}" of dimension > k the distribution
TU, is r-wise uniform but for b bits.

We raise the question of understanding the complexity of computing such matrices
efficiently. For example, in particular we ask if these transformations (with good parameters
as below) can be computed by linear-size circuits, local maps, etc. For starters, we prove
that such matrices exist via the probabilistic method.

» Lemma 10. A matriz T as in Definition 9 exists for any b > 3n and k > 2rlogm.

Proof. It suffices to prove the lemma for any linear space (rather than affine). To verify
this, write the uniform distribution over an affine space A as SX + s where S is a full-
rank n x k matrix, X € {0,1}" is uniform, and s € {0,1}" is a fixed shift. Consider
T(SX +s)=TSX + Ts. Since SX is a linear space, T'SX is r-wise uniform but for b bits.
This property is unaffected by adding the fixed shift T's.

Let U be uniform over {0,1}". Recall that for an 7 x k matrix M the distribution MU is
uniform if and only if the rows of M are linearly independent. Hence, for our goal it suffices
to construct matrices such that if we exclude b rows, any r of the remaining rows are linearly
independent. Pick 7" uniformly at random. Fix a full-rank n x k matrix S and note that T'S
is a uniform m x k matrix M. We say a set B C [m] of size b is bad if each row (with index)
in B is a linear combination of < r rows not in B. If such bad sets of size b do not exist then
the proof is completed as follows. Greedily pick rows of T'S that are not linear combinations
of < r rows already picked. One can pick > m — b rows, otherwise a bad set of size b exists.

Now we want to bound the probability that there exists a bad set B of size b. Fix B,
and fix arbitrarily the rows of M not in B. Let H be the set of vectors that can be obtained
as a linear combination of < r rows not in B. We have

H| < <7g) + (T) doet <T> < griogm,

The probability that each row in B falls in H is then

b
(Pg) — 2b(r logm—k) )
2

When k > 2rlogm this probability is
< 27kb/2,

Hence the probability that there exists a bad set of size b is
< <m>2kb/2 < 9b(logm—k/2) ~ 9—bk/3
=1, < <

Finally, there are at most 2¢" linear spaces of dimension k. Therefore the probability
that there exists such a space with a bad set as above is < 28("=¥/3) " Setting b > 3n this
probability is less than one and the desired matrix 7" exists. <
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Given this lemma, it remains to extract from distributions over {0,1}" which are r-wise
uniform but for b bits.

» Definition 11. A function f:{0,1}" — {0,1} is r-wise (b, €)-resilient if for any r-wise
uniform distribution X we have |P[f(X) =1] —1/2| <€, and for any set B of size < b the
probability over X that changing the bits in B changes the value of f is < € (and in particular
the bias that one can obtain changing those bits is < 1/2 4 2¢). Note that this is equivalent
to saying that f is an extractor with error 2e for distributions which are r-wise uniform but
for b bits.

The paper [41] showed that the majority function is resilient over r-wise uniform distri-
butions, relying on the Central Limit Theorem for r-wise uniform distributions from [16].

» Lemma 12 ([41]). The Majority function is r-wise (m®49% 1/100)-resilient for all suffi-
ciently large r.

Using this, we can show that Maj-Xor circuits can compute affine extractors with optimal
dependence on dimension, up to constant factors.

» Theorem 13. There is a non-explicit Maj-Xor circuit of polynomial size that computes an
affine extractor for dimension O(logn) with error 1/100.

Proof. Apply Lemma 10 with m = n?! and b = 4n. Let V be an affine space of dimension
k > 2rlogm = O(logn). Let Uy be the uniform distribution over V. By Lemma 10, TUy is
r-wise independent except for b bits. We conclude by Lemma 12. |

For Theorem 3 we need extractors computable in ACO however. The seminal work [3] (cf. [46]
for a streamlined exposition of a slightly weaker result) showed through the probabilistic
method the existence of functions on m bits that are m-wise (Q(aim/ log? m), O(a))-resilient
for any «. Moreover, their functions are computable by polynomial-size ACO circuits. We
observe that their construction is also resilient over poly log m-wise distributions. This can
be shown using the fact that polylog-wise uniformity fools ACO circuits [6, 33, 9], and for
completeness we include a proof in Section A.

» Lemma 14. There exist ¢ > 0 and a function f : {0,1}" — {0,1} that is log® m-wise
(Q(am/log? m), O(a))-resilient, for any a > 1/m. Moreover, f is computable by depth-3
circuits of size O(m?/logm).

We note that explicit constructions of polylog-wise resilient functions appear in [12]
and [29]. Ome can use either [12] or [29] to obtain affine extractors with our approach.
However, some of the parameters would be a little worse than what we claimed. For
example, the circuit size would be n¢ for ¢ > 2. Using these constructions we see that the
only bottleneck to an explicit construction is the layer of parity gates. Should an explicit
construction for that be found, the affine extractor would be simpler than previous explicit
constructions for comparable entropy (see [11] and references therein).

Proof of Theorem 3. The parity gates compute the linear transformation 7" in Lemma 10
with the parameters m = O(nlog®n) and b = m/log® m > 3n. By the assumption on k we
have r = logcl m for a constant ¢’ as large as desired. The distribution TU is r-wise uniform
but for b bits. We feed its output to the function f in Lemma 14 for & = ©(1/logm). Then
f is (m/log®m,O(1/logm))-resilient, and the result follows. <



X. Huang, P. lvanov, and E. Viola

Finally, we obtain a construction for De Morgan formulas.

» Theorem 15. The affine extractor in Theorem 3 can be computed by De Morgan formulas
of size n* logo(l) n, or by formulas over the full binary base By of size n3 logo(l) n.

Proof. From the proof of Theorem 3 we know that the fan-ins of the And-Or-And-Xor
circuit, starting from the output And, are nlogo(l) n, nlogo(l)
And or Or on ¢ bits can be computed by De Morgan formulas of size O(t), while Parity on
t bits can be computed by such formulas of size O(t?) and By formulas of size O(t). The
result follows. |

n, logo(l) n,n. Note that an

2 DNF-Xor

Our construction proving Theorem 4 is similar to our affine-extractor construction. We show
that the so-called Tribes function is “one-sided resilient,” so composing it with the layer of
Xor gates from Lemma 10 yields a one-sided extractor.

» Definition 16 ([7]; cf. [30], Proposition 4.12). Tribes,, : {0,1}" — {0, 1} is the read-once
DNF where every term has size w and |P[Tribes(U) = 1] — 1/2| = O(logm)/m. This makes
w = logm — loglogm + O(1).

We need the following lemma.

» Lemma 17. Let D be a wlog(1/e)-wise uniform distribution on n bits. Let f:{0,1}" —
{0,1} be a read-once DNF with terms of size < w. Let U be the uniform distribution over
{0,1}". Then [P[f(D)=1] —P[f(U) =1]| <e.

This claim follows by noting that the input distribution to the Or in the DNF is log(1/e)-
wise independent (and not necessarily uniform). We can then apply the corresponding
fundamental result in pseudorandomness [17]; see [43], Lecture 1, for an exposition. The
latter result states that the Or of log(1/e)-wise independent random variables has the same
probability of being one as the Or of independent random variables with the same marginals.

Proof of Theorem 4. We need a slight extension of Lemma 10. We claim that the matrix 7'
constructed there has the additional property (%) that any linear combination of < r rows of
T is nonzero. This can be established with essentially the same proof, because the probability
that a uniform m x k matrix does not satisfy this is < 20(rlogm)=k wwhich is less than 1/2
by our choice of parameter (and the proof of the lemma shows that a uniformly selected T’
satisfies the lemma with probability > 1/2).

Hence, consider the matrix 7' from Lemma 10 with m = O(nlogn) and b = 4n, and
further take it to satisfy (x). Feed this distribution into the Tribes function on m bits.
First, note that by (x) we have that TU is r-wise uniform where r = k/2log m. Hence, the
output distribution of the And gates is r/log m-wise independent. By our assumption that
k > clog® n, it will be clog m-wise independent for a ¢ large enough so that by Lemma 17
the probability that Tribes outputs 1 on TU is within 1/m of the probability it outputs 1
over the uniform distribution, and so still within O(logm)/m of 1/2.

This proves that our function is indeed nearly balanced. There remains to prove that it
is 1 with high probability over any large affine space S. We have that T.SU is k/4 log m-wise
uniform but for b = 4n bits. Now we basically show that the good bits suffice to make the
function 1 with probability about 1/2. The bad bits touch < b terms. Hence there are
m/w — b good terms, defined as those terms that do not take any bad bit as input. By
Lemma 17 as above, the probability that the Or of the good terms is 0 over T'SU is within
1/m of the probability that it is 0 over U. The latter probability is
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(1—27")"/"=" < (1/2+ O(logm) /m)(1 —27*) ",

where the first factor in the right-hand side is from the definition of Tribes. For the second
term note that

(1 _ 2—w)—b S eb/Qw.

We have 2¢ = O(m/logm) = O(nlog?n/loglogn) and so b/2¥ < 1/log™*n and
e??" <14 0(1)/1log"? n, and the result follows. <

We now use the above result to give separations.

» Definition 18. We say g : {0,1}" — {0,1} is a k-affine-partition if g can be expressed as
g(z) = 22:1 a;ly, where Vi, Va, ..., Vi are disjoint affine subspaces of dimension > k that
form a partition of FY and for each i, c; € {0,1}.

We next show one-sided extractors for dimension k£ cannot even be approximated by
k-affine partitions.

> Claim 19. Let f:{0,1}" — {0,1} be a one-sided extractor for dimension k with error e,
and let g : {0,1}" — {0,1} be a k-affine partition. Then

PL(U) = 9(U)) < 5 + 3e.
Proof. Let Gy := {x : g(x) = 0}, p := |Go|/2" and G; = {x : g(x) = 1}. Let a :=
Prec,[f(z) = 0] and 8 := Pyeq, [f(x) = 0]. We have

Plf(U) # g(U)] = p(1 —a) + (1 —p)B.

Because f is nearly balanced, we have pa+(1—p)8 > 1/2—¢, and so (1—p)5 > 1/2—e—pa.
Plugging this above we get

PIf(U) # g(U)] >1/2 —e—pa+p(l—a)=1/2—ec+p(l - 2a).

Also by the extractor property we have o < 1/2 + €. (Since Gy is the disjoint union
of spaces on which f outputs 0 on at most a 1/2 + € fraction of the elements.) Hence
1 —2a > —2e. Combining with above yields

PIF(U) # g(U)] = 1/2 — € — 2pe > 1/2 - 3c. <

We showed in Theorem 4 that small DNF-Xor circuits can compute such extractors. In fact,

the circuits are of the type Or,,,,00) ,~Ando(1og n)-Xor; subscripts indicate fan-ins. Again,
this is equivalent to a nearly-linear collection of spaces of very large dimension (n — O(logn))
that cannot be approximated by disjoint spaces, even if the dimensions of the latter spaces
are as small as polylogarithmic. Note that a parity decision tree (PDT) on n bits with depth
n — k gives a k-affine partition, and this proves Corollary 5.

Tt is natural to ask if this separation (between DNF-Xor and PDT) is tight. We show

that indeed it is, in three different settings.
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2.1 Setting 1: The number of parity gates

We consider ACO-Xor circuits where the Xor gates correspond to a basis.

» Definition 20. ACO-Xor-B circuits on n bits are AC0-Xor circuits where the number of
Xor gates is n and the corresponding vectors form a basis.

We show that small ACO-Xor-B circuits can be approximated by moderate-depth PDTs,
showing that in Corollary 5 it is essential that the number of Xor gates is larger than n, even
if we allow general ACO post-process (instead of DNF).

The proof amounts to observing that switching lemmas for ACO apply as stated to ACO-
Xor-B, except that they yield PDTs rather than DTs. Specifically, it follows for example from
the switching lemma in [24] (see Corollary 11 in [45] for an explicit statement about ACO)
that for h 1= 20(n/2"1log""" n) apy ACO circuit of size < h and depth d can be approximated
by a DT of depth n — Q(n/log? ' n) except with error 1/h. The corresponding statement
applies to ACO-Xor-B.

> Claim 21. For h := 20(n/2%1og" " ") an ACO-Xor-B circuit of size < h and depth d can be
approximated by a PDT of depth n — Q(n/ logd—! n) except with error 1/h.

To prove this, apply the result for ACO mentioned above to the ACO part of the circuit.
Querying one input bit to the ACO part can be simulated by querying a parity of the input
bits to the ACO-Xor-B circuit, resulting into a PDT. A straightforward combination of the
above results also yields a separation between small DNF-Xor and AC0-Xor-B circuits.

2.2 Setting 2: The fan-in of the And gates

Next we show that the fan-in of the And gates in the separation (between DNF-Xor and
PDT) is tight up to an O(loglogn) factor: We show that any Or-And-Xor circuit where the
And fan-in is at most logn — 2loglogn can be approximated by a depth O(n/logn) PDT
with at most constant error. This follows from the following lemma, which is a “PDT version”
of the corresponding result for DNF and DT, see [4, 38]. We follow the exposition in [45].

» Lemma 22. For every Or-And,,-Xor circuit C : {0,1}" — {0,1}, there exists a PDT T
of depth < 2w2™ log(1/€) with range {0,1,7} such that:

1. PrzE{O,l}" [T(.’L') :?] <e.

2. Forall x € {0,1}", T(z) #? = T(z) = C(x).

Proof. We are going to define T': {0,1}" — {0, 1,7} recursively. If C is a constant then T is
a constant. Otherwise, let C = Vi~ C; where each subcircuit C; is an And of a set of at most
w parities, denoted by P;. We can assume w.l.o.g. that for each i, P; is linearly independent.
We greedily construct an index set I C [m] as follows: we look at each P; one-by-one, and
add 7 into [ if P, U el P; is linearly independent. There are two cases:
1. If |I| > 2% 1og(1/e€), we let T query all the parities in P; for the first 2 log(1/e) indices in
I, which decide the values for the corresponding subcircuits C;. If any of the subcircuits
is True, then T outputs 1, otherwise it outputs 7.
2. Otherwise || < 2" log(1/e), then the size of | J,.;
for any P; with j ¢ I, there must exists a parity p; € P; such that p; € span(|J;c; P U
(P;\ {pj}))- The tree T first queries every parity in (J;.; P;. After that, we know that
for eachj & I, p; € span(P; \ {p;}). As the subcircuit C; is an And of the parities in
P;, if setting all the parities in P; \ {p,;} to be 1 forces p; to be 0, we can just ignore
this subcircuit. If it forces p; to be 1, we can safely remove p; to get an And of < w —1

P; is at most w2" log(1/¢€). Moreover,
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parities. Therefore what we get is an Or-And-Xor circuit C’ where the fan-in of each
And is < w — 1 (which might depend on the results of the queries), and we recurse on C’
to get a parity decision tree T".
The depth of to is < w2%log(l/e) + (w — 1)2¥ tlog(1/e) + -+ < 2w2%log(1/e). Item
2 is evident by definition. For Item 1, note that T outputs ? only if none of the first
2" log(1/€) subcircuits in I is True. Each P; is linearly independent, and by construction of
I the outputs of these subcircuits are independent, so the probability can be bounded by
(1 _ 2—w)2w log(1/€) <e. <

2.3 Setting 3: The fan-in of the Or gate
We show that Org(,,/ 105 n)-And-Xor circuits can be approximated by moderate-depth PDTs.

> Claim 23.  Let C': {0,1}" — {0,1} be an Ory(,,/10g n)-And-Xor circuit. There exists a
PDT T of depth (1 — (1))n such that P[C(U) = T(U)] > 1/2 + Q(1) .

Proof. Let C’ denote the circuit obtained from C by deleting all the And gates with fan-in
greater than logn — loglogn — O(1). By Lemma 22 a PDT with depth (1 — ©(1))n can
approximate C’ with constant error. Now we argue that the removal of And gates does not
introduce too much error. Any removed And gate evaluates to True under uniform inputs
with probability < 2~ (egn—loglogn—0(1)) — O(logn/n). Since the number of removed And
gates is o(n/logn), by a union bound the total error introduced by the removal is o(1). <

3 Proof of Theorem 6

We begin by observing that IP can be “randomly self-reduced” very efficiently: the overhead
is just computing a parity. More formally:

IP(x+a)=1P(x)+ Ly(x)

for any x,a € {0,1}", and where L, : {0,1}" — {0,1} is an affine transformation that
depends on a only. To verify this just consider a monomial and note that (z1 +a1)(z2+a2) =
T1Zo+a1x2+asr1+ajaz = 122+ La(x). The same fact is used for example in pseudorandom
generators for low-degree polynomials [8], and in [18]. In general the proof is also similar to
the simplified average-case lower bounds for parity [40].

Let C: {0,1}" — {0,1} be a circuit that computes IP on 1/2 + ¢ fraction of the inputs.
Consider the random circuit C'y4 for uniform A which on input x outputs

Ca(z) =C(z+ A) + La(x).

Note that for every z, P4[Ca(z) = IP(z)] > Pa[C(z + A) = IP(z + A)] > 1/2 + €.
Moreover, for any fixed A the circuit Cy4 is an AC0-Xor circuit of polynomial size. To verify
this, note that we can compute L 4(z) using parities at the input level, and the output Xor is
on two bits and can be computed in AC0. Also, adding the “shift” A to x can be absorbed
in the parity gates at the input level.

There remains to boost the probability. Consider the random circuit D which computes
t = O(n/e?) copies of C'4 with independent A, and then computes approximate majority.
Specifically, it outputs 1 if at least (1/2 + €/2)t copies output 1, and it outputs 0 if at least
(1/2 4+ €/2)t copies output 0. By a Chernoff bound, on any input this circuit has error
probability < 27". Hence we can fix the randomness so that it computes correctly every
input. Moreover, the approximate majority computation can be done by polynomial-size
ACO circuits for e = 1/1og®M n [1, 2.
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4 A lower bound for computing affine extractors

In this section we prove the following almost n!-® lower bound for computing affine extractors,
even if the error is constant (when the error is exponentially small, a quadratic lower bound
can be inferred from the techniques in [13]). While the bound is weaker, the proof appears
more elementary than the one in [13].

» Theorem 24. Let C: {0,1}" — {0,1} be an And-Or-And-Xor circuit that computes an
affine extractor for dimension n/2 with error 1/4. Then C has size  (n'5/logn).

» Lemma 25. Lett < n and C be as in Theorem 24 but with the additional restriction that
the fan-in of the middle And gates is t. Then C has size () (n2/(t log n))

Proof of Lemma 25. We assume that a circuit of size o(n?/tlogn) exists, and reach a
contradiction. Let R denote the set of Or gates in C, and let A denote the set of And gates
in C, excluding the output And gate. Draw a bipartite graph G = (RU A, F) between R
and A. Each Or gate must have at least n/16 edges, otherwise we can set C' to 0 using n/16
linear restrictions (corresponding to a vector space of dimension n — n/16).

Hence there exists some And gate that is connected to at least a ﬁ fraction of Or
gates in R. We set it to 1 using at most ¢ restrictions, eliminate the adjacent Or gates, and

consider G on the resulting affine subspace. We repeat this process k times for k = n/16t.

Note that we can always find an Or gate with fan-in > n/16, for else we can set the circuit
to 0 by setting kt + n/16 < n/8 parities.
At the end of the process, the number of Or gates is

k n/16t
n 100t logn

This means that the circuit is fixed, which is a contradiction. |

» Lemma 26. Let t < n and C : {0,1}" — {0,1} be an And-Or-And-Xor circuit that
computes an affine-extractor for dimension n/2 with error 1/4. FEither the size of C is
Q (nt/logn) or there exists an affine subspace H of dimension > Tn/8 such that C|g is an
And-Or-And;-Xor circuit.

Proof of Lemma 26. Let A; denote the set of And gates of fan-in greater than ¢, excluding
the output, and let X; denote the set of Xor gates connected toA;. Draw the bipartite graph
G = (A; U Xy, E) connecting A, X;. There is some gate € X; connected to at least a ﬁ
fraction of nodes in A; as long as |A:| > 1. After kK = n/16 iterations of setting the XOR
gate with the highest degree in G to 0, if |A;| > 1 we have at most

t k nt
o) s
t

And gates left in G. If | X;| > nt/16logn we are done, since obviously C has size > |X¢|.

Similarly, if |A¢| > n?/16 we are also done. Otherwise,

__nt 1 n
|Ale” To1%T < \At|ﬁ < 6"
So after making n/16 restrictions, we are left with at most n/16 And gates in A;. We can
make at most n/16 additional restrictions setting them to 0, so that there are no more And
gates in A; (we might set some to 1 during this process, but that only helps us). We have
made at most n/16 +n/16 = n/8 restrictions to reach a subspace H where C|gy has no And
gates of fan-in > t¢. <

9:11
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Proof of Theorem 24. We combine Lemmas 25 and 26 with the threshold ¢ = /n. By
Lemma 26, either C'= 2 (n3/2/ logn) or there is some affine subspace H of dimension 7n/8
on which C|g has middle And gates of fan-in < /n. In the first case we are done. In the
second case, let n’ = 7n/8. Then we can think of C|y as a (4n'/7,1/4) affine extractor on
n/ variables and apply Lemma 25. <
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A Proof of Lemma 14

Let f:{0,1}" — {0,1} be the function in [3, Theorem 5.1] which is m-wise

(Q(am/log® m),O(a))-resilient. f is the And of m read-once DNFs, so it is a depth-3 circuit

of size O(m?/logm). We need to show that over any r-wise distribution D:

1. The bias of f is < O(«).

2. The probability of changing the value of f by changing at most am/ log® m bits of D is
O(a).

[3, Theorem 5.1] proves 1. and 2. for » = m. The fact that 1. holds for r = polylog m
then follows by [9], using that av > 1/m. For the second point we reason as follows. Fix some

set Q of am/log? m bad bits. Let e(y) : {0, 1}‘Q‘ — {0, 1} denote the indicator function of
f not being fixed after assigning y to the good bits Q. Now we show that e(y) is computable
by an ACO circuit so we can again apply [9] and reduce to the known resilience under the
uniform distribution from [3, Theorem 5.1]. For some partial assignment y to Q,f is not
fixed if and only if at least one DNF function is not fixed, and no DNF outputs 0. What
remains to show is that for each DNF function, the corresponding indicator e’(y) can be
expressed as an ACO function. To verify this, note that the DNF is not fixed by y if every
And term that does not intersect with @) has a bit set to 0, and there is at least one And
term intersecting with @ such that all possible bits set by y are 1. This computation can be
written as a polynomial-size ACO circuit.
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—— Abstract

Chernoff bound is a fundamental tool in theoretical computer science. It has been extensively used
in randomized algorithm design and stochastic type analysis. Discrepancy theory, which deals with
finding a bi-coloring of a set system such that the coloring of each set is balanced, has a huge
number of applications in approximation algorithms design. Chernoff bound [Che52] implies that a
random bi-coloring of any set system with n sets and n elements will have discrepancy O(v/nlogn)
with high probability, while the famous result by Spencer [Spe85] shows that there exists an O(y/n)
discrepancy solution.

The study of hyperbolic polynomials dates back to the early 20th century when used to solve PDEs
by Garding [Gar59]. In recent years, more applications are found in control theory, optimization,
real algebraic geometry, and so on. In particular, the breakthrough result by Marcus, Spielman, and
Srivastava [MSS15] uses the theory of hyperbolic polynomials to prove the Kadison-Singer conjecture
[KS59], which is closely related to discrepancy theory.

In this paper, we present a list of new results for hyperbolic polynomials:

We show two nearly optimal hyperbolic Chernoff bounds: one for Rademacher sum of arbitrary

vectors and another for random vectors in the hyperbolic cone.

We show a hyperbolic anti-concentration bound.

We generalize the hyperbolic Kadison-Singer theorem [Bril8] for vectors in sub-isotropic position,
and prove a hyperbolic Spencer theorem for any constant hyperbolic rank vectors.

The classical matrix Chernoff and discrepancy results are based on determinant polynomial
which is a special case of hyperbolic polynomials. To the best of our knowledge, this paper is the
first work that shows either concentration or anti-concentration results for hyperbolic polynomials.
We hope our findings provide more insights into hyperbolic and discrepancy theories.
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1 Introduction

The study of concentration of sums of independent random variables dates back to Central
Limit Theorems, and hence to de Moivre and Laplace, while modern concentration bounds
for sums of random variables were probably first established by Bernstein [15] in 1924. An
extremely popular variant now known as Chernoff bounds was introduced by Rubin and
published by Chernoff [20] in 1952.

Hyperbolic polynomials are real, multivariate homogeneous polynomials p(z) €
Rlz1,...,2,], and we say that p(x) is hyperbolic in direction e € R™ if the univariate
polynomial p(te — z) = 0 for any x has only real roots as a function of ¢ (counting multipli-
cities). The study of hyperbolic polynomials was first proposed by Garding in [27] and has
been extensively studied in the mathematics community [28, 32, 14, 71]. Some examples of
hyperbolic polynomials are as follows:
= Let h(z) = x129 - - x,. It is easy to see that h(x) is hyperbolic with respect to any vector

e € R%.
= Let X = (z;;){;_; be a symmetric matrix where z; ; = x;; for all 1 <i,j < n. The

determinant polynomial h(x) = det(X) is hyperbolic with respect to T, the identity matrix

I packed into a vector. Indeed, h(tf —x) = det(tI — X), the characteristic polynomial of

the symmetric matrix X, has only real roots by the spectral theorem.

= Let h(z) = 22 — 23 — .-~ — 22. Then, h(z) is hyperbolic with respect to e =
T
1o - 0.

Figure 1 The function on the left is h(x,y, z) = 22 — 2> — 2, which is hyperbolic with respect to
e= [0 0 1] T, since any line in this direction always has two intersections, corresponding to the
two real roots of h(—xz, —y,t — z) = 0. The function on the right is g(z,y, z) = 2*
is not hyperbolic with respect to e, since it only has 2 intersections but the degree is 4.

—az* —y*, which

Inspired by the eigenvalues of matrix, we can define the hyperbolic eigenvalues of a vector x
as the real roots of t — h(te — x), that is, Apc(z) = (A1 (), ..., Aa(x)) such that h(te —x) =
h(e) Hle(t — Xi(x)) (see Fact 12). In other words, the hyperbolic eigenvalues of x are the
zero points of the hyperbolic polynomial restricted to a real line through x. In this paper, we
assume that i and e are fixed and we just write A(z) omitting the subscript. Furthermore,
similar to the spectral norm of matrix, the hyperbolic spectral norm of a vector x can be
defined as

[l = max [A;(z)]. (1)

1€[d]

In this work, we study the concentration phenomenon of the roots of hyperbolic polyno-
mials. More specifically, we consider the hyperbolic spectral norm of the sum of randomly
signed vectors, i.e., || Y i, rx;||p, where r € {—1,1}" are uniformly random signs and
{z1, 29, -+ ,x,} are any fixed vectors in R™. This kind of summation has been studied in
the following cases:
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1. Scalar case: x; € {—1,1} and the norm is just the absolute value, i.e., | Y ;| riz;|, the
scalar version Chernoff bound [20] shows that

Pr [
r~{—1,1}"

corresponding to the case when h(xz) = z for € R and the hyperbolic direction e = 1.
2. Matrix case: x; are d-by-d symmetric matrices and the norm is the spectral norm, i.e.,
| >0, 7|, the matrix Chernoff bound [86] shows that

2
Pr >t| <2d-exp (n)?
re{—1,1}7 l 1 2[5 27l

corresponding to h(z) = det(X) and e = I.

n

E Ty

i=1

> t] <2exp (—t?/(2n)),

n

E TiT;

i=1

We try to generalize these results to the hyperbolic spectral norm for any hyperbolic
polynomial h, which is recognized as an interesting problem in this field by James Renegar [74].

1.1 Our results

In this paper, we can prove the following “Chernoff-type” concentration for hyperbolic spectral
norm. We show that, when adding uniformly random signs to n vectors, the hyperbolic
spectral norm of their summation will concentrate with an exponential tail.

» Theorem 1 (Nearly optimal hyperbolic Chernoff bound for Rademacher sum). Let h be an
m-variate, degree-d hyperbolic polynomial with respect to a direction e € R™. Let 1 < s < d,
0> 0. Gvenxy,x2,- - , T, € R™ such that rank(x;) < s for alli € [n] and 37", ||zi]|7 < o2,
where rank(x) is the number of nonzero hyperbolic eigenvalues of x. Then, we have

E TiT; < 24/log(s) - o
||| | < 2viw

Furthermore, for every t > 0, and for some fixed constant ¢ > 0,

n 2
ct
P il >t <2 - .
{1 anz} ]_ eXp( 0210g(s+1)>
13

We discuss the optimality of Theorem 1 in different cases:

Degree-1 case: When the hyperbolic polynomial’s degree d = s = 1, the hyperbolic
polynomial is h(z) = z. Then, we have ||z||, = |z| and we get the the Hoeffding’s
inequality [37]:

el z% > t] <exp (- 02 /é ).

It implies that our result is optimal in this case.

A special degree-2 case: h(z) = 27 — 23 —--- — 22,. Let v1,...,v, be any (d — 1)-
dimensional vectors. Then, we define z; := [0 vi} € R? for i € [n]. We know that
llz:|ln = ||vill2, and Theorem 1 gives the following result:
wil, >t < Q(t?/0?)),
al Zr v exp(~ Q£ /0?)

where o2 := >, ||v;]|?, which recovers the dimension-free vector-valued Bernstein
inequality [63].
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Constant degree case: When d > 1 is a constant, consider h being the de-
terminant polynomial of d-by-d matrix. Since s < d = O(1), we can show that
o= (0 zlH)Y? = o X, #2||'/?), and Theorem 1 exactly recovers the mat-
rix Chernoff bound [86], which implies that our result is also optimal in this case.
Constant rank case: When all the vectors have constant hyperbolic rank, we still
take h = det(X), but Xy,..., X, are constant rank matrices with arbitrary dimension.
In this case, we can obtain a dimension-free matrix concentration inequality:

n

ZriXi

i=1

P >t <2 —Q(t?/c?)) .

It will beat the general matrix Chernoff bound [86] when o is not essentially larger than
|20, X2||Y/2. Thus, Theorem 1 is nearly optimal in this case. However, Theorem 1 is
also sub-optimal in this case if we consider the high degree polynomial h(z) =[]}, z;,
and z; = ¢; € R". Then, we have ||z;||, = 1, and || >, rizill, = 1 for any r €
{£1}". Therefore, the probability density function of the hyperbolic spectral norm of the
Rademacher sum is a delta function! in this case. But our concentration result cannot
characterize such a sharp transition.

Theorem 1 works for arbitrary vectors in R™. We also consider the maximum and
minimum hyperbolic eigenvalues of the sum of random vectors in the hyperbolic cone,
which is a generalization of the positive semi-definite (PSD) cone for matrices. Recall
that for independent random PSD matrices X4, ..., X,, with spectral norm at most R, let
Pmax = Amax(Y_; E[X;]). Then, matrix Chernoff bound for PSD matrices [86] shows that
Pr[Amax(3"; Xi) > (14 6)pimax] < de™?OHmax) for any § > 0. The following theorem gives a

hyperbolic version of this result:

» Theorem 2 (Hyperbolic Chernoff bound for random vectors in hyperbolic cone). Let h be an

m-variate, degree-d hyperbolic polynomial with hyperbolic direction e € R™. Let A, denote the

hyperbolic cone'' of h with respect to e. Suppose x1,...,%, are n independent random vectors

with supports in Ay such that Amax(x;) < R for all i € [n]. Define the mean of minimum

and mazimum eigenvalues as pmin == Yo g E[Amin(Xi)] and pmax == Y11 E[Amax ()]
Then, we have

n 1446 —Hmax/R
Pr | Ao (fo) > (1+5>umax] < d. (“”)) >0,
=1

65
n (1_6)1_5 —Hmin/R

Pr | Amin [ D xi | < (1= 0)ptmin | < d-(e_&) Vo € [0,1].
i=1

1.2 Hyperbolic anti-concentration

Anti-concentration is an interesting phenomenon in probability theory, which studies the
opposite perspective of concentration inequalities. A simple example is the standard Gaussian
random variable, which has probability at most O(A) for being in any interval of length A.

! The delta function is defined as S(z) = {é lft}al: = 1.7
otherwise.

i The hyperbolic cone is a set containing all vectors with non-negative hyperbolic eigenvalues. See
Definition 13 for the formal definition.
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For Rademacher random variables o ~ {£1}9, the celebrated Littlewood-Offord theorem [53]
states that for any degree-1 polynomial p(x) = Zle a;x; with |a;| > 1, the probability of
p(x) in any length-1 interval is at most O('2% dd). Later, the theorem was improved to O(ﬁ)
by Erdés [26], and generalized to higher degree polynomials by [22, 79, 61]. From a geometric
prospective, the Littlewood-Offord theorem says that the maximum fraction of hypercube
points that lay in the boundary of a halfspace 14 4y<¢ With |a;| > 1 for i € [d] is at most
O(id). [67] extended this result from half-space to polytope and [11] further extended to

Vd
positive spectrahedron.

Following this line of research, we prove the following hyperbolic anti-concentration
theorem, which shows that the hyperbolic spectral norm of Rademacher sum of vectors in
the hyperbolic cone cannot concentrate within a small interval.

» Theorem 3 (Hyperbolic anti-concentration theorem, informal). Let h be an m-variate degree-

d hyperbolic polynomial with hyperbolic direction e € R™. Let {x;}ic[n) C Ay be a sequence of

vectors in the hyperbolic cone such that Amax(x;) < 7 for all i € [n] and Z?:l Amin(7:)% > 1.
Then, for any y € R™ and any A > 207 logd, we have

eN{—Plr,l}” [Amax <Z €Ty — y) S [_A7 A]

i=1

<0(A).

From the geometric viewpoint, we can define a “positive hyperbolic-spectrahedron” as the
space {a € R™ : Apax(aqx1 + -+ + apzy — y) < 0}, where x4, ..., x, are in the hyperbolic
cone. Then, Theorem 3 states that the hyperbolic spectral norm of a positive hyperbolic-
spectrahedron cannot be concentrated in a small region.

1.3 Hyperbolic discrepancy theory

Hyperbolic polynomial is an important tool in the discrepancy theory, which is an important
subfield of combinatorics, with many applications in theoretical computer science. Following
Meka’s blog post [60], by combining scalar version Chernoff bound and union bound, we can
easily prove that, for any n vectors z1,...,z, € {—1,1}", there exists r € {—1,1}" such
that |(r,z;)| < O(yv/nlogn) for every i € [n]. In a celebrated result “Six Standard Deviations
Suffice”, Spencer showed that it can be improved to |(r, z;)| < 6+4/n [83].

For the matrix case, by the matrix Chernoff bound, it follows that for any symmetric
matrix Xy, ..., X, € R¥? with || X;|| < 1, for uniformly random signs r € {—1,1}", with
high probability, ||>7_, 7:X;|| < O(y/log(d)n).

An important open question is, can we shave the log(d) factor for some choice of the
signs?

» Conjecture 4 (Matrix Spencer Conjecture). For any symmetric matrices X1, ..., X, € R4*4
with || X;|| < 1, there exist signs r € {—1,1}" such that | Y1 7:X;|| = O(v/n).

The breakthrough paper by Marcus, Spielman and Srivastava [56] proved the famous Kadison-
Singer conjecture [41], which was open for more than half of a century.

» Theorem 5 (Kadison-Singer, [41, 56]). Let k > 2 be an integer and € a positive real number.
Let z1,...,2, € C™ such that ||x;z}|| < e Vi€ [n]|, and Y1, x;xf = I. Then, there exists
a partition Sy U Sy U+ U Sk = [n] such that || }2;cq wiwy|| < (ﬁ +e€)? Vj e [k].

10:5
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The Kadison-Singer theorem implies that for rank-1 matrices X1, ..., X, with || X;|| < ein
isotropic position!l, there exists a choice of r € {—1,1}" such that || >, r; X;| < O(Ve).»Y

Theorem 5 can be generalized for higher rank matrices by Cohen [21] and Brandén [18]
independently. However, their results still need the isotropic condition. On the other hand,
Kyng, Luh, and Song [44] proved a stronger version of rank-1 matrix Spencer theorem
(Conjecture 4) by showing that when the spectral norm of the sum of the squared matrices
(the variance of the random matrices) is bounded, the matrix discrepancy upper bound is at
most four deviations. Formal theorem statements will be presented in the full version of this
paper [82].

Similar to the scalar and matrix cases, the discrepancy theory can be further generalized
to the hyperbolic spectral norm. Brandén [18] proved a hyperbolic Kadison-Singer theorem,
which generalizes Theorem 5 to the hyperbolic spectral norm and vectors with arbitrary rank
and in isotropic condition. Our first result relaxes the isotropic condition to sub-isotropic:

» Theorem 6 (Hyperbolic Kadison-Singer with sub-isotropic condition, informal). Let k > 2 be
an integer and €,0 > 0. Suppose h is hyperbolic with respect to e € R™, and let x1,...,x, be
n vectors in the hyperbolic cone such that

trp[x;] < e Vi€ [n], and H Zzz . <o. (2)
i=1

where trp[x] := Zle Xi(z). Then, there exists a partition Sy U Sy U---U Sy = [n] such that
for all j € [K],

S

i€S;

< (Ve+ Valk) .

h

Theorem 6 implies the high rank case of [56] result (Theorem 5) without the isotropic
condition. We note that there is a naive approach to relax the isotropic condition in [56, 18]’s
results by adding several small dummy vectors to make the whole set in isotropic position.
(See [30] for more details.) However, Theorem 6 is slightly better than this approach, since
the naive approach will increase the number of vectors which results in a worse bound.

Theorem 6 also implies the following hyperbolic discrepancy result:

» Corollary 7 (Hyperbolic discrepancy for sub-isotropic vectors). Let 0 < e < % Suppose
h € Rlz1,...,2m] is hyperbolic with respect to e € R™, and let x1,...,x, € Ay(h,e) that
satisfy Eq. (2). Then, there exist signs r € {—1,1}" such that

n
Zrimi < 2v/e(20 —e).
i=1

h

We note that this result is incomparable with [44] due to the following reasons: 1) [44] only
works for rank-1 matrices while our result holds for arbitrary rank vectors in the hyperbolic
cone; 2) the upper bound of [44] depends on || -7, X?||*/2 while our result depends on the
hyperbolic trace and spectral norm of the sum of vectors.

To obtain a hyperbolic discrepancy upper bound for arbitrary vectors (as in the case of
Conjecture 4), we can apply hyperbolic Chernoff bound (Theorem 1) and get the following
discrepancy result which holds with high probability:

fii Isotropic means X1 +---+ X,, = 1.
'V For more details and consequences of the Kadison-Singer theorem, we refer the readers to [19, 58].
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» Corollary 8. Let h be a degree-d hyperbolic polynomial with respect to e € R™. We are
given vectors T1,Ta, - , &y € R™ such that ||z;||n < 1 and rank(z;) < s for all i € [n] and
some s € Ny. Then for uniformly random signs r ~ {—1,1}",

n
E TiTq
i=1

holds with probability at least 0.99.

< O(y/nlog(s+1))
h

This result may not be tight when the ranks of the input vectors are large. It is
thus interesting to study whether we can do better to improve the /logd factor in the
non-constructive case. We thus conjecture the following hyperbolic discrepancy bound:

» Conjecture 9 (Hyperbolic Spencer Conjecture). We are given vectors x1,2a,- -+ , 2, € R™
and a degree d hyperbolic polynomial h € Rlz1,...,zm] with respect to e € R™, where
lzilln <1 for alli € [n]. Then, there exist signs r € {—1,1}", such that

n
E TiT;
i=1

Note that Conjecture 9 is more general than the matrix Spencer conjecture (Conjecture 4).
And for constant degree d or constant maximum rank s, this conjecture is true by Corollary 8.

< O(Vn).

h

1.4 Related work
Chernoff-type bounds

There is a long line of work generalizing the classical scalar Chernoff-type bounds to the
matrix Chernoff-type bound [77, 5, 78, 85, 55, 29, 45, 66, 10, 40]. [77, 78] showed a Chernofi-
type concentration of spectral norm of matrices which are the outer product of two random
vectors. [5] first used Laplace transform and Golden-Thompson inequality [31, 84] to prove a
Chernoff bound for general random matrices. It was improved by [85] and [68] independently.
[55] proved a series of matrix concentration results via Stein’s method of exchangeable pairs.
Our work further extends this line of research from matrix to hyperbolic polynomials and can
fully recover the result of [5]. On the other hand, [29] showed an expander matrix Chernoff
bound. [45] prove a new matrix Chernoff bound for Strongly Rayleigh distributions.

Hyperbolic polynomials

The concept of hyperbolic polynomials was originally studied in the field of partial differential
equations [27, 39, 42]. Giiler [32] first studied the hyperbolic optimization (hyperbolic
programming), which is a generalization of LP and SDP. Later, a few algorithms [71, 64, 75, 72,
65, 73] were designed for hyperbolic programming. On the other hand, a lot of recent research
focused on the equivalence between hyperbolic programming and SDP, which is closely related
to the “Generalized Lax Conjecture” and its variants [36, 52, 17, 43, 80, 7, 69]. In addition
to the hyperbolic programming, hyperbolic polynomial is a key component in resolving
Kadison-Singer problem [56, 18] and constructing bipartite Ramanujan graphs [57]. Gurvits
[34, 35] proved some Van der Waerden/Schrijver-Valiant like conjectures for hyperbolic
polynomials, giving sharp bounds for the capacity of polynomials. [81] gave an approach
to certify the non-negativity of polynomials via hyperbolic programming, generalizing the
Sum-of-Squares method.

10:7
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Discrepancy theory

For discrepancy theory, we give a few literature in Section 1.3 and we provide more related
work here. For Kadison-Singer problem, after the breakthrough result [56], Anari and Oveis
Gharan [8] generalized it for Strongly Rayleigh distributions. Alishahi and Barzegar [6]
extended the “paving conjecture” to real stable polynomials’. Zhang and Zhang [89] further
relaxed the determinant polynomial in [8] and [44] to homogeneous real-stable polynomials.
More recently, [38, 23] proved some special cases of the matrix Spencer conjecture. For
algorithmic results, Bansal [12] proposed the first constructive version of partial coloring
for discrepancy minimization. Based on this work, more approaches [54, 76, 51, 25, 13, 24]
were discovered in recent years. For applications of the discrepancy theory, [8, 9] used the
Strongly Rayleigh version of Kadison-Singer theorem to improve the integrality gap of the
Asymmetric Traveling Salesman Problem. [47] used the rank-1 matrix Spencer theorem
in [44] to obtain a two-sided spectral rounding result. For more applications, we refer to the
excellent book by Matousek [59].

1.5 Technique overview

In this section, we provide a proof overview of our results. We first show how prove hyperbolic
Chernoff bounds by upper bounding each polynomial moment. After that, we show how
to apply our new concentration inequality to prove hyperbolic anti-concentration. Finally,
we show how to relax the isotropic condition in [18], and also how to get a more general
discrepancy result via hyperbolic concentration.

1.5.1 Our technique for hyperbolic Chernoff bound for Rademacher sum

The main idea of our proof of hyperbolic Chernoff bound is to upper bound the polynomial
moments.

By definition, the hyperbolic spectral norm of X is the £, norm of the eigenvalues \(X).
Inspired by the proof of the matrix Chernoff bound by Tropp [87], we can consider the £y,
norm of A(X), for ¢ > 1. When the hyperbolic polynomial A is the determinant polynomial,
this norm is just the Schatten-2¢ norm of matrices. For general hyperbolic polynomials, we
h,2q = ||A(x)]|2q- By the result of [14], hyperbolic-2¢ norm
is actually a norm in R™. And the following inequality shows the connection between a
hyperbolic spectral norm and hyperbolic-2¢q norm:

define hyperbolic-2¢ norm as |||

1/(2q)
2q
TN{El}”[”X”h] = (TN{]jEil}n “|X||h,2q]> .

In order to compute \|X||i?2q = k(%) ), (X)24, we use a deep result about hyperbolic
polynomials: the Helton-Vinnikov Theorem [36], which proved a famous conjecture by
Lax [48], to translate between hyperbolic polynomials and matrices. The theorem is stated
as follows.

» Theorem 10 ([36]). Let f € R[z,y, z] be hyperbolic with respect to e = (e1, e2,e3) € R3.
Then there exist symmetric real matrices A, B,C € R4 such that f = det(zA + yB + zC)
and et A+ e B + e3C = 0.

¥ A polynomial is real stable if it is hyperbolic with respect to every e € R20.
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Gurvits [33] proved a corollary (Corollary 22) that for any m-variate hyperbolic polynomial
h, and z,y € R™, there exist two symmetric matrices 4, B € R%*¢ such that for any a,b € R,
Aazx + by) = MaA + bB), where the left-hand side means the hyperbolic eigenvalues of the
vector ax + by and the right-hand side means the eigenvalues of the matrix aA + bB.

Therefore, we try to separate and consider one random variable r; at a time. We first
consider the expectation over r;. By conditional expectation, let X5 := Z?:z r;x; and we
have

X2 } ,
re{E1}n [Hrer 2ll1 2

E { E
72, Tn~{E1} | ri~{£1}

By Corollary 22, there exist two matrices Ay, By such that A(riz; + X3) = A(r14; + By)
holds for any r;. And it follows that

E { X
ri~{£1} ||’f'1$1+ 2|

2 2
) = By [+ By

It becomes much easier to compute the expected Schatten-2¢ norm of matrices. We can
prove that

q
2q 2q—2k
E X3, ] < 2k1-E{Xq1},
ooy T = 2 (%)uxlnh B [l v

Now, we can iterate this process for the remaining expectation E,, .. |:HX2 ||iq27q2_k21k1 . After

n — 1 iterations, we get that

1/(2q)
<TN{IE1}n [llX ||i?zq]> < V215090, (3)

where 02 = Y | ||z;]|7 and s is the maximum rank of zi,...,z,. Then, by taking

q := log(s) and || X]||;, < \\X||iq2q, we get the desired upper bound for the expectation
Erqe1ye (|| 2oiy misl|n] in Theorem 1.

To obtain the concentration probability inequality, We can apply the result of Ledoux and
Talagrand [49] for the concentration of Rademacher sums in a normed linear space, which

will imply:
Pro X > <2exp(—¢2/(32 E [IXI3)). 4
B (X > 4 < 2ex LB IXIE) (@
However, we need to verify that the hyperbolic spectral norm || - ||, is indeed a norm, which

follows from the result of Garding [28]. Since by Khinchin-Kahane inequality ([82, Theorem
A.16]) the second moment of || X ||, can be upper-bounded via the first moment. Hence, we
can put our expectation upper bound into Eq. (4) and have

Cot?
P X t|<C -
r~{ir1}” Xl > 1] < Crexp ( o?log(s + 1)) ’

for constants Cq,Cy > 0, and hence Theorem 1 is proved. We defer the formal proof in the
full version [82, Section B].
1.5.2 Our technique for hyperbolic Chernoff bound for positive vectors

We can use similar techniques in the previous section to prove Theorem 2.

10:9
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For any random vectors xi,...,%, € At, we may assume ||x;||, < 1. Using the Taylor
expansion of the mgf, we can show that:

Amax (Zn: xi) > t] < jnf e™" pa aC

i=1 q>0

Pr (5)

S,

h,q
Then, for the ¢-th moment, we separate x; and 2?22 x; and have

n q

>

=1

E>q

= ExoEy [tr[(Ay + By)7],
h,q

where A; and B are two PSD matrices obtained via Gurvits’s result (Corollary 22) such
that A; depends on x; and By depends on xs,...,X,. The next step is different from the
case of Rademacher sum, since we cannot drop half of the terms by the distribution of x;.
Instead, we can fully expand the matrix products in the trace and use Horn’s inequality to
upper bound the eigenvalue products. We have

q—Fk1

IEZ2El [tI‘ [(A(Il) + B)q]] < El Z <Ijl>/\max(xl

k1=0

|

hq kl

By repeating this process, we finally have

n q n q
in <dE[<ZXz||h> ] .
=1 h,q =1

Then, we put the above upper bound into Eq. (5), which gives:

Pr [)\max (é xi) > t] < gr;% e 0. d.if[lE [JHXHM} )

Now, we use some similar calculations in the matrix case [85] to prove that

- 1 . —_— 9 J—
Pr | Anax (Z xz> > t] < ér>1% d-exp (=0t + (€’ — 1) ftmax) -

i=1

By taking 6 := log(t/ptmax) and ¢t := (1 + ) timax, we get that

Pr ] Ama (ZX> (1+9) umax] <d- ((11(;)1%) S o

For the minimum eigenvalue case, we can define x} := e — x; for ¢ € [n]. Then, by the
property of hyperbolic eigenvalues (Fact 19) and the assumption that ||x;||;, < 1, we know
that x] are also in the hyperbolic cone and Apax(x;) = 1 — Apin(x}). Therefore, we can obtain
the Chernoff bound for the minimum eigenvalue of x by applying Eq. (6) with x;. We defer
the formal proof in the full version [82, Section C].

1.5.3 Our technique for hyperbolic anti-concentration

In this part, we will show how to prove the hyperbolic anti-concentration result (Theorem 3)
via the hyperbolic Chernoff bound for vectors in the hyperbolic cone (Theorem 2).
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In [67], they studied the unate functions on hypercube {—1,1}", which is defined as the
function being increasing or decreasing with respect to any one of the coordinates. Then, they
showed that the Rademacher measure of a unate function is determined by the expansion
of its indicator set in hypercube. In particular, for the maximum hyperbolic eigenvalue, it
is easy to see that the indicator function {)\max (Z?Zl ezwf — yj) € [-A4, A]} is unate when
x; € A;. Hence, we can show the anti-concentration inequality by studying the expansion in
the hypercube, which by [11], is equivalent to lower-bound the minimum eigenvalue of each
vector. However, for the initial input z;, we only assume that Z?:l Amin(z:)? > 1, but we

need a Q( \/117) lower bound for each x; to prove the theorem. To amplify the minimum
og

eigenvalue, we follow the proof in [11] that uses a random hash function to randomly assign
the input vectors into some buckets and considers the sum of the vectors in each bucket as
the new input. They proved that the “bucketing” will not change the distribution. Then, we
can use Theorem 2 to lower bound the minimum hyperbolic eigenvalue of each bucket, which
is a sum of independent random vectors in the hyperbolic cone. Hence, we get that

- 1 1
Pr [ Amin T | LQU—=)| < —,
rl (;ij> (\/logd)] 10

which z; ; € {0,1} is a random variable indicating that z; is hashed to the j-th bucket. Then,
by the standard Chernoff bound for negatively associated random variables, we can prove
that most of the buckets have large minimum eigenvalues, which concludes the proof of the
hyperbolic anti-concentration theorem. We defer the formal proof in the full version [82,
Section DJ.

1.5.4 Our technique for hyperbolic discrepancy

To relax the isotropic condition in [18], we basically follow their proof. The high-level
idea is to construct a compatible family of polynomials¥' such that the probability in the
hyperbolic Kadison-Singer problem (Theorem 6) can be upper-bounded by the largest root
of the expected polynomial of the family, which can be further upper-bounded by the largest
root of the mixed hyperbolic polynomial h[vy,...,v,] € R[z1,...,Zm, Y1, .., YUn], defined as
hlvi,...,v,] == T2, (1 — y; Dy, )h(z), where D, is the directional derivative with respect to

v;. In particular, we can consider the roots of the linear restriction hfvy, ..., v,](te+1) € R[¢].

Then, using Garding’s result [28] on hyperbolic cone, we know that the largest root equals
the minimum p > 0 such that the vector pe + 1 is in the hyperbolic cone 'y of hfvy, ..., v,],
which can be upper-bounded via similar techniques in [56, 44] to iteratively add each vector
v; while keeping the sum in the hyperbolic cone. Our key observation is that the proof in [18]
essentially proved that

epe+ (1— )30 v
1_~_L*1

+1ely,

holds for any vectors v; € A;. Hence, once we assume that || Y7 v;||, < o, then by the

L —L1)é0
convexity of the hyperbolic cone, we get that p < (el—iﬁTf’l)), which will imply the upper

bound in Theorem 6. We defer the formal proof in the full version [82, Section E.

vi The compatible family of polynomials is closely related to the interlacing family in [56, 57]. See [82,
Definition E.16].
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To obtain the discrepancy result for arbitrary vectors (Corollary 8), we can use the
hyperbolic Chernoff bound for Rademacher sum (Theorem 1) to derive the discrepancy upper
bound. For any vectors z1,...,x, with maximum rank s, by setting ¢ = O(o+/logs) in
Theorem 1, we get that |3, rz4]|, < O(0+/logs) holds with high probability for uniformly
random signs r ~ {£1}".

1.6 Discussion and Open problems

In this paper, we initiate the study of concentration with respect to the hyperbolic spectral
norm, and we generalize several classical concentration and anti-concentration results to the
hyperbolic polynomial setting. Our results are closely related to the discrepancy theory and
pseudorandomness. We provide some open problems in below.

Tighter hyperbolic Chernoff bound?

Our current result has a worse dependence on the variance 2 than the matrix Chernoff
bound [86]. Can we match the results when h = det(X)? We note that there is a limitation
for using the techniques like Golden-Thompson inequality and Lieb’s theorem, which were
used in [68, 85] to improve the original matrix Chernoff bound [5], to tighten our result.
Because for any symmetric matrix X, we can define a mapping such that ¢(X)’s eigenvalues
are the p-th power of X’s eigenvalues for any p > 0, where the mapping is just X?. However,
we cannot find such a mapping for vectors with respect to the hyperbolic eigenvalues. Some
new techniques may be required to get a hyperbolic Chernoff bound matching the matrix
results.

Resolving the hyperbolic Spencer conjecture?

Inspired by the matrix Spencer conjecture (due to Meka [60]), we came up with a more general
conjecture for hyperbolic discrepancy. Can we prove or disprove this conjecture? It is also
interesting to study the connection between hyperbolic Spencer conjecture and the generalized
Lax conjecture [36, 52, 17, 43, 80, 7, 69]. If we assume the matrix Spencer conjecture and the
generalized Lax conjecture, can we prove the hyperbolic Spencer conjecture? On the other
hand, in a very recent work by Reis and Rothvoss [70], they conjectured a weaker matrix
Spencer by considering the Schatten-p norm of matrices. We can also define such an £, version
of the hyperbolic Spencer conjecture by looking at the £,-norm of hyperbolic eigenvalues
(the hyperbolic-p norm). Any progress towards the £,-hyperbolic Spencer conjecture will
provide more insights in matrix and hyperbolic discrepancy theory.

Fooling hyperbolic cone?

One of the results in this paper is showing an anti-concentration inequality with respect to the
hyperbolic spectral norm, which generalizes the results in [67, 11]. They actually combined
the anti-concentration results with the Meka-Zuckerman [62] framework to construct PRGs
fooling polytopes/positive spectrahedrons. Hence, an open question in complexity theory and
pseudorandomness is: can we apply the hyperbolic anti-concentration inequality to construct
a PRG fooling positive hyperbolic-spectrahedrons, or even hyperbolic cones?
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Concentration of random tensors?

Tensor concentration is another natural generalization of matrix concentration. Although
there have been a large number of works on this problem [46, 50, 4, 3, 88, 2], it is still unclear
what is the optimal concentration bound for the Euclidean norm of random tensor X &€ R”d,
even in the simple case when X = 21 ® - - ® x4 for random vectors x1,...,z4 € R". On
the other hand, people also care about whether random tensors are well-conditioned, which
is more related to TCS problems including tensor decompositions and learning Gaussian
mixtures. The current results [88, 1, 16] have a large gap between the matrix case. For these
tensor concentration problems, is it possible to study them via hyperbolic polynomials and
obtain tighter bounds?
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A Basics of Hyperbolic Polynomial
A.1 Basic definitions of hyperbolic polynomials
We provide the definition of hyperbolic polynomial.

» Definition 11 (Hyperbolic polynomial). A homogeneous polynomial h : R — R is hyperbolic
with respect to a vector e € R™ if h(e) # 0, and for all x € R™, the univariate polynomial
t — h(te — x) has only real zeros.

The following fact shows how to factorize a hyperbolic polynomial, which easily follows
from the homogeneity of the polynomial:

» Fact 12 (Hyperbolic polynomial factorization). For a degree-d polynomial h € R|z1,. .., zm]
hyperbolic with respect to e € R™, we have

h(te —x) = h(e) | | (t — N\i(x))

=

Il
-

K2

vV

where A\ (z) > Aa(x) > -+ > Ag(x) are real roots of h(te — x).

All the vectors with nonnegative hyperbolic eigenvalues form a cone, which is proved by
Géarding [28]. Tt is a very important object related to the geometry of hyperbolic polynomials.
The formal definition is as follows:

» Definition 13 (Hyperbolic cone). For a degree d hyperbolic polynomial h with respect to
e € R™, its hyperbolic cone is

Ai(e) :={x: Ag(z) > 0}.
The interior of AT is

Asii(e) :=={x: Mg(z) > 0}.
Garding [28] showed the following fundamental properties of the hyperbolic cone:

Theorem 14 ([28]). Suppose h € Rz1, ..., zm] is hyperbolic with respect to e € R™. Then,
. Ay(e), A1 (e) are convex cones.

. Ay + (e) is the connected component of {x € R™ : h(x) # 0} which contains e.

Amin : R™ — R is a concave function, and Apax : R™ — R is convex.

. Ife’ € Api(e), then h is also hyperbolic with respect to e’ and A (e') = A (e).

O NORY

For simplicity, we may use Ay and A4y to denote A4 (e), Ay (e), when e is clear from
context. In this paper, we always assume that e is any fixed vector in the hyperbolic cone of
h.

We define the trace, rank and spectral norm respect to hyperbolic polynomial h.

» Definition 15 (Hyperbolic trace, rank, spectral norm). Let h be a degree d hyperbolic
polynomial with respect to e € R™. For any x € R™,

d
trp[z] := Z)\i(ac), rank(z) := #{i : \i(z) #0}, |z = Eré?;]( [Xi(2)] = max{Ai(z), —Aa(x)}.

=1

We define the p norm with respect to hyperbolic polynomial h.
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» Definition 16 (| - |5, norm). For any p > 1, we define the hyperbolic p-norm || - ||np
defined as:

/
Izl = 1Al = (ZIA W) veern

It has been shown that || - || and || - ||, are indeed norms:
» Theorem 17 ([28, 18, 73]). || - ||n is a semi-norm.

Furthermore, if Ay is reqular, i.e., (Ay N —Ay) = {0}, then || - ||n is a norm on R™.
» Theorem 18 ([14]). For anyp > 1, || - ||np s a semi-norm. Moreover, if the hyperbolic
cone Ay is regular, then || - ||np s a norm.

A.2 Basic properties of hyperbolic polynomials

We state a fact for the eigenvalues A(-) of degree-d hyperbolic polynomial h.

» Fact 19 ([14]). For alli € [d],

s Ai(x) + ¢, if s >0;

Ai(s-x+t-e)=
s Ag—i(z)+t, if s<O.

Then, we show that the elementary symmetric sum-products of eigenvalues can be computed
from the directional derivatives of the polynomial.

» Observation 20 ([14]). For a degree-d hyperbolic polynomial h with respect to e, we have

d d
h(te +z) =p(e) - [[(t+ Xi(x)) =D si(A@)) - 147,

=0
where A\(z) = (A1 (x),--- ,\a(x)) are the hyperbolic eigenvalues of x and s; : R — R is the

i-th elementary symmetric polynomial:

ZSG(['Z]) Hjes Yy, Vi€ l[d];

W) = 1 ifi = 0.

Furthermore, for each i € {0,1,--- ,d},

h(e) - s;(A(z)) = (d%z)' VI h(z) [eye, ... €]
(d—1) terms

If i € [d], then s; o X\ is hyperbolic with respect to e of degree i.
» Corollary 21. tr[z] is a linear function.

Proof. By Observation 20, we have

trfa] = s1(\@) = L Y@, ...

() - (d—1)!

Since h is of degree d, V4=1h is a degree-1 polynomial. Hence, try,[z] is a linear function. <«
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A.3 Helton-Vinnikov Theorem
We state a corollary of Helton-Vinnikov Theorem (Theorem 10), proved by Gurvits [33]:

» Corollary 22 (Proposition 1.2 in [33]). Let h(x) be a m-variable degree-d hyperbolic polyno-
mial. Then, for x,y € R™, there exists two symmetric real matrices A, B € R*™*? such that
for any a,b € R, the ordered eigenvalues M(ax + by) = AM(aA + bB).

This Corollary relates the hyperbolic eigenvalues of a vector ax 4 by to the eigenvalues of
matrix aA + bB, which allows us to study some properties of hyperbolic eigenvalues using

results in matrix theory.
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—— Abstract

Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the

values of low degree polynomials, evaluated in every point in F)". Similarly to Reed-Muller codes,
multiplicity codes have a local nature that allows for local correction and local testing. Recently,
[6] showed that the plane test, which tests the degree of the codeword on a random plane, is a
good local tester for small enough degrees. In this work we simplify and extend the analysis of
local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show
that multiplicity codes MRM(m, d, s) over prime fields with arbitrary d are locally testable by an
appropriate k-flat test, which tests the degree of the codeword on a random k-dimensional affine
subspace. The relationship between the degree parameter d and the required dimension k is shown
to be nearly optimal, and improves on [6] in the case of planes.

Our analysis relies on a generalization of the technique of canonincal monomials introduced in
[5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs
which exploit the algebraic structure of multiplicity codes.
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1 Introduction

The Reed-Muller code RM,(m,d) is the set of evaluation tables of m-variate degree-d
polynomials. That is, a function f : F;* — T, is in RM,(m, d) if there exists a polynomial
P of degree at most d such that f(a) = P(a) for any a € F}'. The RM code is a popular
building block in CS constructions, due, to a large extent, to its strong local properties.
We say a code C' C X" is locally-testable if given a word w € X", the tester distinguishes
between the case w € C' and the case that w is e-far from C while reading few characters of
w. More precisely, for a code C' and a word w, we define 6(w, C') to be the relative Hamming
distance of w to the closest codeword in C, i.e., d(w,C) = min.ec(Prigpn) (w; # 2;)). Then,

» Definition 1. A local tester A for C C X" is a distribution on subsets of [n].
We say A is q-query if any subset in its support is of size < q.
We say A has soundness function s if for any w € X",

REJ4(w) = Pr (wls & Cl) = s(6(w,C)).

A typical soundness function s is of the form s(6) = min («d, ¢) for some constants o and c.
We say A is a good local test for C if it has a nonzero soundness function independent of n.
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We also work with a weaker notion called local characterization. We say A is a local
characterization for C' if REJ(w) = 0 implies w € C.

Local testing Reed-Muller codes has been studied extensively and in several parameter
regimes [14, 3, 1, 8, 2, 5, 7]. A natural local tester for RM,,(m, d) is the line test, where we
pick a random line and check if its restriction is consistent with a low-degree polynomial.
More generally, the k-flat test is uniformly distributed over k-dimensional affine subspaces of
F7'. We denote the rejection probability of the k flat test by REJ 4.

Any polynomial in k variables is equal everywhere to one whose degree in every variable
is at most p — 1, and therefore of total degree at most dj def k(p — 1). Therefore, the k-flat
test is not a local characterization for RM,(m, d) when d > d.

Quite surprisingly, it was shown in [8] that for any d < k(p — 1) the k-flat test is a
local characterization for RMy(m, d), and that it has soundness independent of m. That is,
whenever the line test is not trivially bad, it is a good local test. More concretely, suppose a
word w : Fj" — T, has distance ¢ from RM,,(m, d). The k-flat test selects p* points in Fy,
and so the probability that a “bad” character is read is < dp¥. Therefore, the best soundness
one could hope for in the k-flat test is §p*. Remarkably, later analysis of the k-flat [5, 7] test
shows it is essentially optimal given the number of queries in a wide range of parameters *:

» Theorem 2 (Soundness of the RM k-flat test, [7]). There exists a constant ¢ > 0 (independent
of p) such that the k-flat test rejects with probability at least p~¢min(p¥é, 1)

1.1 The k-flat test for Multiplicity codes

Multiplicity codes were defined in [13, 12, 4, 11]. MRM,(m,d, s) is the set of evaluation
tables of m-variate, degree d polynomials, where we also record the evaluations of all its
derivatives up to order s. More precisely, we define a “multiplicity table” as a function
T:Fpt — Y s, where Xy, o & ]Fp(m:fl_ Y is indexed by m-tuples of weight less than s. Given
a polynomial P € Fp[z1,z2,. .., %] we define its evaluation table TP asa multiplicity table
satisfying, for any = € )" and any m-tuple I with wt(I) < s,

77 (2)1 =PV (x)

where P (z) denotes the direction-T Hasse derivative of P at the point = (see Section 2).
Then, the multiplicity code MRM,,(m,d, s) is defined as the set of evaluation tables of
polynomials of degree at most d. Notice that this definition makes sense even for d > p.

With some care, the k-flat test may be adapted to multiplicity codes. When restricting
MRM,(m, d, s) to a k-flat we want to reduce the alphabet from %,, ; to ¥y ;. Given a k-flat
(@@ with a chosen basis for its linear part hy,...,hg, one may define the chain rule map
¢ X s — g s given in [6](following the k =1 case from [10]) by:

I k
D DETIED DI (N | [ M

IcN™ I+ 4Ix=I =1
w(IT):jr
For a polynomial P, this is the map that calculates the derivative in direction J of P)| 0
from the directional derivatives of P. Accordingly, if w : F)' — 3, s is in MRM(m, d, s)
then ¢ o wly is in MRM,(k, d, s).

1 We note the above discussion can be generalized to prime power fields where the following is known: if
IFq is of characteristic p then [8] show the k-flat test is a local characterization for d < k(g — ) and
that this bound is tight. Additionally, in this case the k-flat test also gives a good local test.
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1.2  For which degree can the k-flat test be effective?
Given a function f : F;" — F), any function equivalent to it mod
Ly = (2 —x1, 25 — 2o, ..., 20, — 2p,)
takes the same values on all of F}', and a polynomial P has the same evaluation table as @)
if and only if P = mod Z,,.

It is established in [6] that analogously to the Reed-Muller case, two polynomials P, Q
have the same multiplicity tables if and only if their difference P — @ is in the ideal

I, - <H<xﬁ; — i) | (inye i) € [m1s>

k=1
This fact establishes a degree bound on any multiplicity table given m, s. If a monomial
[Tz has > {%J > s then we may subtract a multiple of one of the generators of Z%, to
lower its degree. It follows that any polynomial is equivalent (in the sense of having the same
def

multiplicity table) to one with > {%J < s, which implies d < d s = k(p—1) + (s — 1)p.

1.3 Previous work: The plane test is effective for degree d < ps

The previous discussion means that the k-flat test does not characterize MRM,,(m, d, s) for
d > dys. As dj s is larger than dj, - and significantly so for large s - one may hope that the
k-flat test is a local test for larger d in the case of multiplicity codes than for Reed-Muller

codes. For example, one could hope that the line test is useful even for degrees up to sp.

However, a simple example in [6] shows the line test fails for s = 2 even for d = p + 1.

Local testing for multiplicity codes is studied in [6], with an emphasis on the 2-flat (“plane”)
test. Two main results are obtained: one for characterization and one for robustness. For
characterization, [6] show that the plane test is a local characterization in degrees nearly
reaching dj s. Concretely,

» Theorem 3 (The plane test is a local characterization). Let F, be a field of size q of
characteristic p and assume s < min{d,q—1}. Let d < q(s — %) Then the plane test is a
local characterization for MRM,(m, d, s).

In this paper we focus on the prime field case, in which case the condition becomes

d < ps—1. The bound d < ps—1 should be compared to dz s = 2(p—1)+(s—1)p = ps+p—2.

While not tight, this result comes close to the trivial limit dg ;.

The second result in [6] concerns robustness. It shows that if the k-flat test is a good local
test for RM,(m, d) then it is also a local characterization and local test for MRM,,(m, d, s),
albeit with worse soundness. This is intuitive because multiplicity tables contain function
evaluations, and the derivatives only add more information, and what is left to be shown is
that when we pass the test the derivatives are also consistent with the function evaluations.

» Theorem 4 (Local testing is preserved from RM to MRM, [6]). Let F,, be a field of size q of
characteristic p, and assume s < min{d,q — 1}. Suppose for RM(q,m,d) there exists a > 0
and co < 1 such that for every f the rejection probability of the k-flat test satisfies

REJII{?%(f) > min {CY : 6(f7 RM(Qa m, d))7 CO} .
Then, for every T we have

REJZM(T) > min {o/ - 6(T, MRM(q,m,d, s)), co}
for

a/:aq—(s_l) 1
q a+qd/(P_1)
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Combining Theorems 3 and 4 one gets that under the same conditions as in Theorem 3,
the plane test is a good local test.

1.4 OQur new results

The main result of this paper is a new analysis of the plane test, which is based on the
canonical monomials of [5], and that we explain in detail in Section 1.5.1. This new analysis
is simpler, applies to general k-flat test (k > 2) rather then just the plane test, and, more
importantly, is tighter. Concretely, we prove:

» Theorem 5. Let p be prime, m > 1, k > 2 and s < p. Then the k-flat test is a local
characterization for MRM,(m, d, s) for any d < dis — (s — 1).

Thus, the theorem generalize the plane test result of [6] to general k. Moreover, let us
compare the k = 2 case, we see that the trivial argument shows the k-flat test must fail for
d>dos=2(p—1)+(s—1)p=(s+ 1)p — 2, [6] show the test is a local characterization
for d < ps — 2, and, our results show the test is a local characterization for d < dy s — s =
(s+1)p—s—2.

We remark, that as before, under the same conditions the k-flat test is also a good local
test. The technique used in [6] does not give good enough soundness in the general case, so
we use a different technique based on the soundness analysis in [5]

» Theorem 6. There exist constants cy,co such that for any prime p, integers m > 1,
k>2,s<pandd<ds— (s—1) the k-flat test is a local tester with soundness function

,pTieTe).

min(fp~4s—
Result-wise our works raises several intriguing questions:

The question of what is the true degree threshold is intriguing and we suspect that the
true answer is indeed the bound dj s — (s — 1) that we obtained, i.e., that there is an
example of a polynomial of degree di s — (s — 1) + 1 where the k-flat test fails to be
a local characterization. In Appendix C we give an example showing tightness for the
case k = 2,5 = 2 in as well as an example that shows that the degree bound cannot be
improved within our technique.

Another intriguing question is the appearance of the condition s < p in our results (and
also in [6]). Is there an inherent obstacle that appears when we try to take the (Hasse)
multiplicity above the field size?

The state of the art RM results give nearly-optimal soundness for the k-flat test as long
as it is a local characterization. Can this be done for multiplicity codes as well? For
instance, is it possible to show soundness on the order of ~ p*§ for small §?

This work deals with prime fields, while previous works [5, 6] handle general finite fields
for Reed Muller codes and multiplicity codes respectively. Can the improvements in this
work be applied to the general finite field case?

We now explain the canonical monomial method of [5] and its use for multiplicity codes.

1.5 The technique

We continue the discussion in Section 1.2. Multiplicity tables of multiplicity s are equivalent
to elements of

Ros F 21,20, . 2] mod I, (2)
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That is, any multiplicity table has a unique representative in R,, s, and any two polynomials
have the same evaluation table if and only if their difference is in Z;,. We choose

B :{f{ SR } Q

i=1

as a basis for R, (this basis is different than the one chosen in [6]). A table is in
MRM,(m, d, s) if and only if its representative polynomial in R,, s when written in the basis
Byn,s has no monomials of degree larger than d.

We may view the k flat test for multiplicity codes algebraicly. Given a linear map
L: IFI; — F}*, any polynomial P € Z; has Po L € I}. Therefore, L reduces to a map
L: R, s = Ry s. Phrased this way, the k-flat test takes a polynomial P € R,, s, applies a
random full-rank affine map L : R,,,s = Ry s and asks whether L(P) is of degree larger than
d (when written using By ;). This view of the k-flat test will be crucial for the soundness
analysis appearing in Section 5.

1.5.1 Canonical monomials for Reed-Muller codes

An important observation is that both the code RM,(m,d) and the k-flat test are affine
invariant. In fact, many of the results regarding Reed-Muller codes generalize to general
affine-invariant codes, see e.g. [9)].

In [5], this fact is used to analyze the soundness of the k-flat test. The idea is, given a
polynomial P, to first find an affine transformation L that puts P into a form convenient for
analyzing, and then prove the soundness for the polynomial P o L.

To this end they introduce the notion of a canonical monomial.

» Definition 7 ([5, Definition 4.1]). A canonical monomial of degree d in n < m variables in
Fplz1,. .., Tm] is a monomial []}_, i" such that (1) Y ;" e; =d (2) For every 1 <i<n
ei=p—1(3) e, <p—12

Intuitively, this is a monomial which is supported on as few variables as possible.

Further, in [5] it is shown that any polynomial can be composed with a linear map L so
that P o L contains a canonical monomial of degree deg P. Given that a polynomial contains
a canonical monomial, local characterization and testing proofs become much easier.
A map L for which P o L contains a canonical monomial is given by the linear transformation
maximizing (in the graded lexicographic order) the maximal monomial of P o L. The proof
contains two stages:

First, the result is shown for the special case m = 2.

An inductive argument generalizes this to any number of variables.
We recount the m = 2 case here.

» Lemma 8 ([5, Lemma 4.2]). Let f(x1,x2) be a degree d < 2(p— 1) polynomial in F,x1, z2].
Then there exists a € F), such that f(x1,z2 + ax1) contains a canonical monomial of degree

d.

The proof is given in Appendix A for completeness.

2 The definition for prime power fields is more complicated.
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1.5.2 Canonical monomials for multiplicity codes

When composed with the correct chain rule map defined in Equation (1), multiplicity codes
are also affine invariant. Similarly to [5] we want to establish a canonical monomial result
for multiplicity codes. This is made more complicated by the fact that individual degrees
may be larger than p.

Let s = 2. The polynomial Dy = xbxq — xo2f is the minimal representative of its class in
Ry 5. For a linear map L : IFIZ, — IFIQ, we have Dy o L = det(L)Ds. Therefore, despite the fact
that the degree of x; is not at the maximum possible value, we cannot shift the monomial
2Py, into 8T

Where does the proof of Lemma 8 fail? Looking at the coefficient of xf“ in f(x1,z2+221),
we see it is equal to g(z) def P, While this polynomial is nonzero, it still evaluates to 0
everywhere on IF),. This is possible because its degree is larger than p.

Let P be a reduced polynomial in Ry 5 of degree d < 2p. As in the proof of Lemma 8, the
coefficient of ¢ in P(x1,x2 + 221) 18 ca(2) = Y, <4 Qa—r2". As seen above, this polynomial
may be 0 everywhere, in which case we may not be able to achieve the monomial x¢. This
happens precisely when g(z) = 2 — z | ¢q.

Compromising, we next look at the coefficient of 3:‘11_1332.

ci-1(z) = Z Qg—1—r (rl_l)f

r<d—1

It is readily observed that c4_1 is in fact the Hasse derivative of cq. If both ¢4 and cq_1 are
zero eve