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—— Abstract

In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless condenser based
on Parvaresh-Vardy codes. This lossless condenser is a basic building block in many constructions,
and, in particular, is behind the state of the art extractor constructions.

We give an alternative construction that is based on Multiplicity codes. While the bottom-line
result is similar to the GUV result, the analysis is very different. In GUV (and Parvaresh-Vardy
codes) the polynomial ring is closed to a finite field, and every polynomial is associated with related
elements in the finite field. In our construction a polynomial from the polynomial ring is associated
with its iterated derivatives. Our analysis boils down to solving a differential equation over a finite
field, and uses previous techniques, introduced by Kopparty (in [9]) for the list-decoding setting. We
also observe that these (and more general) questions were studied in differential algebra, and we use
the terminology and result developed there.

We believe these techniques have the potential of getting better constructions and solving the
current bottlenecks in the area.
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1 Introduction

A condenser is a probabilistic mapping from a large universe {0,1}" to a smaller universe
{0,1}"™ that preserves the entropy of not too large sets. More formally, C : {0,1}" x [D] —
{0,1}™ is a (k1, k2, €) condenser, if for every distribution X on {0,1}" with k; min-entropy,
the output distribution C(X,Up) is e-close to having ko min-entropy (see Definition 6 for a
formal definition).

Ideally, we would like to explicitly build a condenser for any n, k; < n, and € = ¢(n) > 0
and have D as small as possible, ko as close as possible to k1 + log(D), and have ks as close
as possible to m. Let us call d = log(D) the seed length of C, it measures the amount of
randomness the probabilistic construction uses, and clearly the smaller the better. Similarly,
let us call k1 +d — ko the entropy loss of C'. The entropy loss measures the difference between
the amount of entropy in the system (k1 + d) and the amount of entropy we preserve (ks),
and we want it small. Finally, let us call m — ko the entropy gap of C. The entropy gap
measures how dense the output distribution C(X,Up) is in its ambient space {0,1}", and
the smaller the better. Thus, in this terminology, given n, k; and € we would like to find an
explicit construction simultaneously minimizing the seed length, entropy loss and entropy
gap of the condenser.

? Itay Kalev and Arr}non Ta-Shma; )
37 icensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 12; pp. 12:1-12:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:itaykalev@mail.tau.ac.il
mailto:amnon@tauex.tau.ac.il
http://www.cs.tau.ac.il/~amnon/
https://orcid.org/0000-0001-8186-3622
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Unbalanced Expanders from Multiplicity Codes

An important special case is when the entropy gap m — ko is 0, and then C' is called
a (k1,€) extractor. Non-explicitly, there are extractors (and so the entropy gap zero) with
entropy loss 2log(L) + O(1) and seed length log(n — k1) + 2log(%) + O(1), and each one of
these bounds is tight (even individually) [13].

Dodis et al. [3] observe that if we allow some entropy gap (and in particular even if it is
only a constant) then non-explicitly the entropy loss dramatically drops to O(log log(%)) and
the seed length to log(n — k) + 1 -log(£) + O(1). With larger entropy gaps, the entropy loss
continues to drop until it basically turns into zero, and then we get a lossless condenser. For
the dependence of the entropy loss on the entropy gap see [3] (and also [1]).

The GUYV lossless condenser [7] has logarithmic seed length and constant fraction entropy
gap. Specifically,

» Theorem 1 (The GUV condenser, [7, Theorem 1.7]). For everyn € N, ke < n,e >0, and
0 < a <1, there exists an m < 2d + (1 + @)kmax and an explicit function

C:{0,1}" x {0,1}* = {0,1}™

with d = (14 1/a) - (logn + log kmax +log1/€) + O(1) such that for all k < kpmas, C is an
(n, k) —¢ (m,k+d) (lossless) condenser.

The GUV condenser has found numerous applications (as can be easily seen by looking
at the hundreds of papers that cite it). In particular, GUV present an extractor construction
by first applying the GUV lossless condenser, and then an extractor construction specifically
designed for high min-entropy sources (see [7, Section 4]). Roughly speaking, this extractor
construction inherits its entropy loss from the entropy gap of the lossless condenser. As a
result, the extractor construction presented in [7] has linear entropy loss.

The problem of constructing explicit extractors with short seed length and small entropy
loss is widely open and there has been only modest improvement over the extractor of [7]
that has linear entropy loss. Specifically, [4] construct explicit extractors with the slightly

sub-linear entropy loss Their construction uses improved mergers that are obtained

using the polynomial method with multiplicities. In another work, [15] modify the GUV
condenser construction and using again the multiplicity method of [4] together with other
ideas, give a condenser with small entropy loss and the slightly sub-linear entropy gap
Wo!}(n). This condenser implies an explicit extractor with a short seed and the same
slightly sub-linear entropy loss. Constructing an extractor with a short seed and a better
entropy loss is still a major open problem.

In this paper we give another explicit construction of a GUV like lossless condenser.
While we do not improve the parameters, our construction uses a different analysis that we
believe has the potential to substantially improve current state of the art results. Specifically,

we prove:

16 log &
< < a <1, there
VEmaz — -

» Theorem 2 (Our condenser). For every n € N, kpar < n,e >0, and
is an m < d+ (1 + &)kmaz and an explicit function

C:{0,1}" x {0,1}* = {0,1}™

with d = (14 1/a) - (logn + log kpas + log1/€) + O(1) such that for all k < kpas, C is an
(n,k) —¢ (m,k +d) (lossless) condenser.

In a similar fashion to [7], our condenser follows from a new construction of an unbalanced
bipartite expander graph.
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» Theorem 3. For every field Fy,n,s € N such that 15 < s +2 < n < char(F,), there exists
an explicit graph T': Fg x Fy — IFZ”, which is a (K, A) expander for every K > 0 with
n(s + 2) L

a=q- "0 gy (1)

In [7] there is a similar expression with A =¢— (n —1)(s + 1)(K¢1 —1).

While the bound on m in Theorem 2 is slightly better than the one in Theorem 1, the
former has more restrictions on « then the latter. In any case, those two differences are
minor, and as stated before, the main contribution of Theorem 2 is the method used to prove
it, which is very different then the one used in [7], as we next explain.

1.1 Our construction and the GUV construction

Both our construction and the GUV construction have the following structure. The input
that we want to condense is interpreted as a degree n — 1 uni-variate polynomial over I,
i.e., as an element f from Fy"[X]. Given the output length s +2 € N (with s +2 < n) both
constructions associate f with s + 1 different polynomials fy, ..., fs where f; € F;”[X ]. In
GUYV the association is done as follows: _
1. First, put a field structure on F5"[X] and fix h € N, that way f" (where multiplication
and powering is in the field) can also be interpreted as a degree less than n polynomial.
2. Define f; = f'.

For example, one may choose a degree n irreducible polynomial E € F,[X] and define
the field F = F,[X] mod E. Then, the condenser construction is as follows:

The condenser C

Parameters: Fix a field Fy, n,s € N, n,s > 1. Identify the elements of Fj with
univariate polynomials of degree less than n.

Construction: Define C': F} x Fy — IF‘SISH) by:

C(f.y) = (. fo(y), fr(y)- -, fs(y)) (2)
Our construction has the same structure, but our choice of the associated functions
fo, ..., [s is different. Instead of choosing fy,..., fs as in GUV, we choose
fi :f(i)7

i.e., f@) is the i’th iterated derivative of f in F,[X].

To see why our construction is natural, let us look at it from a coding theory perspective.

We can associate a function C': V' x [D] — ¥ with a linear code of length D and alphabet X,
where for every v € V' we have the codeword

(c(v)1,...,c(v)p) € »P

where ¢(v); = C(v, ). Using this translation, the GUV construction exactly corresponds to
the PV code [12] and our construction exactly corresponds to Multiplicity codes [10, 8§].
PV codes and Multiplicity codes are among the few explicit constructions of ECC with
close to optimal list-decoding capacity. In the list-decoding problem our goal is to find a
construction such that for every given word (wy,...,wp) € XP there are few v € V such
that ¢(v) is close to w. In the condenser construction problem we wish to solve a problem
similar to the list-recoverability problem, our input is a large subset W C X, and the output
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should be the (hopefully few) v € V such that c¢(v); € W for every i € [D] (or the variant
where ¢(v); € W for most i € [D]). Indeed, GUV write that the known connection between
codes and extractors (pointed out, e.g., in [17]) and the fact that PV codes have list-decoding
close to capacity motivated them to explore whether PV codes give condensers with good
list-recoverability.

Looking at it from this perspective, in this paper we ask whether Multiplicity codes,
which are known to have list-decoding close to capacity, also have good list-recoverability
and hence give good condensers. In Theorems 2 and 3 we show that this is indeed the case.

Another code which has close to optimal list-decoding capacity is the Folded Reed-
Solomon code defined in [6]. Consequently, the condenser it produces has been analyzed in
[7, Section 6], and achieved worse parameters than the PV based condenser. Interestingly,
the parameters are also worse than the ones achieved by our Multiplicity condenser, making
this the first time, to the best of our knowledge, that a construction based on Multiplicity
codes achieves better results than one based on FRS codes.

While our construction and the GUV construction are similar in structure, they are very
different in implementation. In GUV the ring of polynomials F5"[X] is “lifted” to a finite
field, and the associated functions f; are chosen so that they lie on a curve, specifically, over
the extension field F, all the functions f; are just polynomials in one common variable. The
challenge is proving that if Q(y, fo,- .-, fm) iS a non-zero polynomial in the polynomial ring,
then @ composed with the curve is a non-zero, univariate polynomial over the extension
field F. In general, proving that a non-zero polynomial composed with a given curve remains
non-zero is a non-trivial challenge, and GUV solve it with a specific trick, that works, but
gives constant entropy gap.

In contrast, our construction does not lift to an extension field. Instead the associated
functions are just the derivatives of the given input. Thus, we completely avoid the question
of proving that a non-zero polynomial composed with a curve remains non-zero, and, instead,
we are left with a question similar to interpolation from derivatives. This leads to a widely
different analysis as we explain next. We hope that further extensions of it might lead to
constructions better than the current state of the art.

1.2 The proof technique

We give a proof sketch of Theorem 3 (the expanding graph). It is enough to prove that for
every W C Fi+? of size at most AK — 1 we have [LIST(W)| < K. Fix a set W C F5*2 of
size AK — 1. Our goal is to bound the number of degree n — 1 polynomials f such that
T(f)CW.

Our starting point is to find a non-zero, low-degree, multi-variate polynomial
Q(X,Yo,...,Ys) such that Q(w) = 0 for every w € W. This step is identical to the first step
in the proof of GUV. The total degree of Q is O(|[W|*/(572)s). Tt is a standard observation
that for every f with I'(f) C W it must be that

Q OE = Q(xvf(x)v f/(SC), .- 7f(5)(x))

is the zero polynomial, i.e., f solves the differential equation ). The challenge now is to
bound that number of functions f such that T'(f) C W.

To bound the number of degree n — 1 polynomials such that I'(f) C W we adapt the
list-decoding algorithm of [9] to the list-recovery setting (much the same as GUV adapt the
[12] list-decoding algorithm to the list-recovery setting). The main lemma Kopparty uses is
that given (y,wo, ..., ws) € Fy X ]FZH, there is usually at most one degree n — 1 polynomial
f such that:
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The first s derivatives of f at y agree with wo, ..., ws, i.e., f( (y) =w;, fori=1,...,s,
and,
Q o df is the zero polynomial.

Formally, this is true whenever the Separant of the equation, %, is non-singular at w, i.e.,

oQ

v Wi wo, -

Y. ,wg) # 0.

Kopparty proves this lemma using Hensel lifting. We rephrase the proof using differential
algebra terminology and intuition from [14]. We believe our proof is simpler, and also more
amenable to generalizations. Furthermore, this theory was generalized in [11, 5], where
generalized Separants were introduced, and we believe these generalization might be useful
for future improvements of the analysis.

Going back to the list-recovery problem, and following the list-decoding algorithm from [9],
let us denote by Wj the set of all w € W such that g—g(w) # 0. We see that for every f such
that T'(f) € W and I'(f) N W3 # 0, we can recover f by going over all w € Wy, and for each

such w output the unique suitable degree n — 1 polynomial, given by the above main lemma.

We are then left with the task of outputting all the degree n — 1 polynomials such that
I'(f) € Wy = W\ W;. We notice that each of these polynomials solve the lower degree
differential equation g—%(x, f(z),..., f®)) = 0. Reiterating the process we get a new list of
solution. As each time we get a lower degree differential equation, we can iterate the process
at most deg(Q) times. Doing the calculation more carefully (as is done in [9]) saves even
this loss, and, furthermore, shows expansion by a factor of about g — sn ”W . We explain
the thin details in Section 4.

2 Preliminaries

We use the following notation:

(ni=n-n=-1)-...-(n—t+1)= eIk

where for t =0, (n)o = 1. Thus, (n), = t!(7).
Also, for J = (j1,..-,Jm) and I = (iy,..., iy, ) we define

m

@ =G,

{=1

D-11()
= .|, and,
<I —1 ¢
m
1!:]‘[@!.
=1

Thus, (J); =I!(}). Finally, J — I = (j1 — i1, ., jm — im)-

2.1 Multi-variate derivatives

Let R =F[Xy,...,X;n] be the ring of polynomials in m variables over F. For I = (i1, ..., in)

with i1,...,4,, € N we define the partial derivative in direction I as the linear operator on R
J

defined by ZX= = (J)1 - XI~1. We denote

12:5
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1 oQ
QW (x) =74(x).
The order of I is w(I) =4y + ...+ ip,. Notice that for uni-variate polynomials Q(X), Q¥ (X)
coincides with the i’th iterated derivative.

Let w = (wy,...,w,,) where w; € N. The w-weighted degree of a monomial X7 =
X{l oo XPmois ST w; - ;. The w-weighted degree of @, denoted deg,, (Q), is the largest
w-weighted degree of a monomial in Q. We let |w| denote ) w;, II(w) = Hw;, and M,y ; the
number of monomials X7 with w-weighted degree at most t. Beged-Dov gave upper and

lower bounds on M,y ;:
» Lemma 4 ([2]).

¢ (t+[w)™
< My, < T
m!-I(w) — L T (w)

2.2 Condensers
In this subsection let C': {0,1}" x {0,1}¢ — {0,1}™.

» Definition 5. We say C is a (K, A) expander if for every S C {0,1}" of cardinality K
the set

res)=  J  Cly)

seS,ye{0,1}*
has cardinality at least K - A.
We next define a condenser:

» Definition 6. We say C is an (n,k) —. (m, k") condenser if for all distributions X with
min-entropy at least k, the distribution C(X,Uy) is e-close to a distribution with min-entropy
at least k'. The condenser is explicit if C' can be computed in time poly(n, L).

To prove that a function is a condenser or an expander, we use the “list-decoding”
approach described in [7]. For O : {0,1}" x {0,1}¢ — {0,1}™ and T C {0,1}™ define:

LIST(T) ={xz : T(z) C T}

LIST(T,¢) = {x Pr{Cla,y) €T e}

» Lemma 7 ([7, Lemma 3.2]). C is a (K, A) expander iff for every set T C {0,1}" of
cardinality at most AK — 1, LIST(T) has cardinality at most K — 1.

And for condensers:

» Lemma 8 ([16, Theorem 8.1],[7, Lemma 5.4]). Let C : {0,1}" x {0,1}¢ — {0,1}™ be a
function.
If Cis a (K, (1 — €)2%) expander, then C is a (n,k) — (m,k +d) condenser, i.e., it is a
lossless condenser with error e,
If for all T C {0,1}™ of size at most L the set LIST (T, €) has cardinality at most H, then
C is a (n,log(£)) =2 (m,log(£) — 1) condenser.
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3 The Separant

Let Q € Fy[X,Y),...,Y,]. When we think of @ as a differential equation, we look for all
(low-degree) polynomials f € F,[X] such that

QX, f(X), fV(X),..., (X)) =0 € F[X].
Let us define

@:(X,f(X%f(l)(X)’7f(5)(X)’7f(n)(X),)

Notice that if f € F5"[X], then f@(X) is identically zero for all i > n. Let us also think of
@ as a polynomial Q € F,[X,Yy,...,Y;,...,Y, .. .] that depends only on X and Yp,...,Y.
In this notation f solves the differential equation @ iff Q o df =0 € F,[X].

A differential equation @ can be itself derived. While formally @) depends on X and
Yo,...,Y,, ..., we think of Yj as a function depending on X, Yy = f(X) and of Y;;1 as g?.
This motivates the following definition:

» Definition 9. Let Q € F,[X,Y),...,Y], define the infinite sequence of polynomials
QY. QW, ... where QW) € F[X,Yy,...,Yiys| is defined by:

QV=Qq
(e _ 0Q® R QW

ox Loy,

Q

The motivation behind this definition is apparent given:
» Lemma 10. For every f € Fy[X] and £ >0
(Qodf)” =Q" o df.

Proof. By induction. The case £ = 0 is immediate. Assume for ¢ and let us prove for £ + 1.
Using the chain rule:

(Qodf)™ ) =((Qodf)) = (Q o dfy

oY oW o af®

“ox YLy oY ax

L0002 4000 o

=22 odf+i:0 Pk
aQ® T oW _

=( Y1) odf
oxX <oy,

Qo T,

where the first equality is because we use iterated derivations, the second is induction, the
third is the chain rule (and notice that Q) depends on X, Yy, ..., Ysyy). <

We call Q) the ¢-th derivative of Q. This operation comes from differential algebra [14].
As its name suggests, this operator has some properties similar to regular derivative

APPROX/RANDOM 2022
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> Claim 11 ([14]).
1. (linearity) For every Q,P € Fy[X,Yy,...[,\,u € Fy, £ >0

(AQ + uP) = 2Q' + P

2. (Leibniz product rule) For every @, P € F,[X,Yy,...]
P-Q)M =pPW.Q4+pP.-QW

3. (repeated derivation) For every Q € Fy[X,Yp,...],¢1,42 >0

(Q(fl))(b) — Q(51+62)

> Claim 12. Let Q € F,[X,Y),...,Y,] and £ € N.
degg11,...) QY = deg,1,1,...) @, and,
deg(pst2,1,2.3,..) QW < 1. Le., if we give X, Y, ..., Y, weight 0, and Y,4; weight j, then
the £'th derivative degree is at most ¢.

. . (O .
Proof. For the first item notice that ang is either zero or does not change the degree in

Yo, . ... Also, the effect of % - Y;+1 is to reduce the degree in Y; by one and increase the
degree in Y; 11 by one.
For the second item, we prove by induction. The case £ = 0 is immediate. For the

BQ(Z) aQ(f) . . .
ax and 55— Yy for i < s, are either zero or do not change the weighted

. 0 . . .
degree, while BBQY‘ - Y;41 for ¢ > s increase the weighted degree by one. <

induction step,

One consequence of Claim 12 is that Y, appears with degree at most 1 in Q(©) and that
the coefficient of Yy, in Q¥ is a function of X, Yy, ...,Y; alone. Indeed, we next prove the

coefficient of Y1, in QWY is gy .

» Definition 13 (Separant). Let Q € F[X,Yp,...,Y;]. The Separant of Q, denoted Sq, is

Q
SQ =7
Q dY,
A classical lemma from differential algebra (see [14, Page 30]) states that:

» Lemma 14. For every £ > 1,
QY =Sq - Yo+ Ry
where Ry € F[X,Yo,...,Ys1¢-1] does not depend on Ysi4.
Proof. By induction. For £ = 1, the only way to get Y4, in Q) is in the term g—% - Yeyg.

Assume for ¢ and let us prove for £ + 1. The only way to get Yy, o1 in QU*Y is by taking

g}% tl By induction, Y51, only appears in QY in the linear term Sq * Yst¢. Thus, the only

: : . . 8(Sq Vs
term involving Yi e in QU+ is %ﬁu) Yoror1 =8¢ - Yooy <

» Lemma 15. Fiz Q € F [X,Yp,..., Y], (a,b) = (o, bo,...,bs) € Fit? and Sg(a, b) # 0.
Suppose f € Fy[X] such that:

fO(a) =b;, fori=0,...,s, and

Qodf =0.

Then there are unique values byy1, ... b, such that f@(a) = b;.
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Proof. We prove by induction on n. The base case n = s is clear. Assume for n and let

us prove for n 4+ 1. By assumption we know there are unique values bs;1, ..., b, such that
bi = f(a) for i = s +1,...,n. Our goal is to show there is a unique value possible for
f(n—i—l) (Oé) )

We will use Q=51 and the fact that Y, appears linearly in it with coefficient Sa,
and that at (o, b), Sg(a, b) # 0. First we notice that

QU (@, b, .., by, f () =QU TV (a, f(a), ..., fUTD (@)
=QU = o f(a)
=(Qodf)" " (a) = 0,
where the first equality is by induction, the second by definition, the third using Lemma 10,

and the last equality because we know @ o df is the zero polynomial in Fq[X].
Next we recall that by Lemma 14

QU (X, Yy, ...y, Yoy1) =So(X, Yo, ..., Ya) - Yoyt + R(X, Y, ..., Yy),
and therefore
0=Q""(a,bo, ..., by, f" (@)
=So(a,b) - V() + R(a, by, . . ., by).

Thus, "tV (a) = —W is uniquely determined. <

In words, this means the following. f solves the differential equation if Q o df = 0. We
can think of the conditions f(*)(a) = b;, for i = 0,...,s, as s + 1 initial conditions on the
Taylor expansion of f at a. In this terminology, Lemma 15 says that that if the separant
Sg is non-zero at the point (a, b) then there can be at most one solution to the differential
equation @ with degree smaller than the characteristic, satisfying the initial conditions (a, b).

4 Reconstruction with the Polynomial Method

In this section we present a “de-condensing” procedure that given I' : Fjj X Fy — IFZ‘|r2 and
a set W C F5*2 outputs LIST(W). Throughout this section we assume that n < char(F,).
The de-condensing algorithm works as follows. Given W we first find a low-degree polynomial
Q@ that vanishes over W, namely,

>> Claim 16. There exists a non-zero polynomial @ € F,[X,Yy,..., Y] with

that vanishes on W.

Proof. By Lemma 4 the number of monomials in F,[X, Yy, ..., Y] with (1,n,n—1,...,n—s)-
weighted degree at most D is some value F' such that

Ds+2
F> e -
(s+2)!-Il;—0(n—J)
To find a polynomial ) that vanishes on W, we write a homogeneous linear system over F,
where the variables are the coefficients of the above monomials, and for every w € W we

have a linear equation forcing that the polynomial vanishes on w. As the number of variables
is larger than the number of constraints, there is a non-zero solution. <

> |W|.

12:9
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It then follows that every f € Fo"[T] with I'(f) C W satisfies the differential equation
Q(x, f(x),..., f*)(x)) = 0. Formally,

> Claim 17. If f € LIST(W), and ¢ > D, than
Ry(T) = Q(T, f(T),.... f*)(T)) € Fy[T]
is the zero polynomial.

Proof. As deg(y ,, .. n—s)(Q) < D and deg(f@) < n —1i, R; has degree at most D. Also, for
every a € [Fy,

Ri(a) = Q(a, f(),..., [ (a)) = 0.
As ¢ > D we must have Ry = 0 in F,[T7]. <

The main challenge is proving the number of low-degree solutions to the differential
equation ) with starting conditions W is small, and designing an algorithm finding all such
solutions. For that we define algorithm Solve. The input to the algorithm is a polynomial
Qe F,[X, YO,.. . ,YS].and W C IF'(SI+2. The output contains all polynomials f € F5"[X] such
that I(f) € W and @ o df = 0. The algorithm works as follows:

Algorithm 1 Solve(Q, W).

If Q does not depend on Yy, ..., Y, return 0.

[y

2 Let s* be the largest j € {0,...,s} for which Q depends on Y;.
3 Set £y « () and
. . 2Q
Wi+ ew | — 0p.
e {wer gw o)

4 for w = (o, wy,...,ws) € W, do
5 Assuming there exits some polynomial g € F,[X] such that Q odg = 0 € F,[X]

and g(i) (o) = w; for all 0 < < s, find the unique values wsy1,...,w,—1 such

that g(V(a)) = w; for all 0 < i < n. Such a unique solution exits by Lemma 15.
6 Define

7 | ID(f) CW add f to L;.
8 Set

Wo<—{wEW| ;YQ*('LU):O}.

Loy Solve(‘,;r)‘y—%7 Wo)

10 return Ly U £y

©
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With that the de-condensing algorithm is:

Algorithm 2 Decondensing.

Input: Parameters ¢, s,n, the condenser I' : Fj x F, — ng+2)’ and a set W C F3+2
Output: All f € F5"[X] such that I'(f) €W

1 Set D <+ [n [|W| (s + 2)']”—‘
2 Construct a non-zero polynomial Q € F,[X,Yp,...,Y;] with

deg(l,n,...,n—s) Q <D

that vanishes on W.
3 return Solve(Q, W)

4.1 Analysis of Solve

» Lemma 18 (Correctness of Solve). Fiz a non-zero polynomial Q € Fq[X,Yy,..., Y] such
that deg(y ,, Q) < ¢, and W C Fi*2. Every f € Fg"[T)] for which T(f) € W and
Q(z, f(x),..., fO)(x)) = 0 appears in the output of Solve(Q,W).

Proof. The proof is by induction on the degree of ) as a polynomial in Yp,...,Ys, ie.,

deg(g,1,...1)(@). In the base case @ depends only on X, thus @ = Q(X). As @ # 0, there

are no solutions to Q(T, f(T),..., f®)(T)) = Q(T) = 0 and L = ) is the correct output.
Now let f(T') € F5"[T] such that T'(f) € W and Q(T, f(T),..., f*)(T)) = 0. We have

two cases:

L 2 (T, f(T),..., f(T)) # 0. Note that

0 0
dog (G (T AT fNTN) ) < oy (G (KT )

< deg(l,n,...,n—s) (Q(X7 Yo, ... 7Y9)) <gq.

Therefore there must be some a € F, for which

Q
Y-

(a, fla),..., f¥)(a)) #0.

As (a, f(@),..., f®)(a)) € T(f) € W, in the for loop we iterate over this vector and
therefore in line 5 we find the unique solution of the ODE with these initial conditions,
and because of the uniqueness this solution must be f. As I'(f) C W we add it to the
list £ in line 7.

2. %(T,f(T), ..., f®)(T)) = 0. We notice that in this case T'(f) C Wy, as for every

a € F, we have aay%(a, fla),..., f (a)) =0. Also deg(o’lw’l)(a—Q) < deg(o,1,,..,1)(@)a

OY
hence by induction f € Ly. <
» Lemma 19 (List size of Solve). For every non-zero Q € Fy[X,Yy, ..., Y] with
deg(1nn-1,..n—s(Q) <D <q and every W C IF;”, the size of the output of Solve(Q, W)

; (W]
18 at most D"
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Proof. We prove by induction on the (0,1,...,1)-degree of Q. If deg(y;  1)(Q) is zero, the
list is empty, the list size is zero and the claim holds. We next prove the induction step.

For every w = (a, wo, ..., ws) € Wi, there exists a unique f that may be joined to the
list. Furthermore, since w € W; we have that:

0 0

8}/?* (O[, f(a)a ERE f(G)(Oé)) = 8YC§* (a7w07 ) ws) 7é 0;

thus —(T f(T),..., f)(T)) # 0, and its degree is at most D, meaning that it equals 0
for at most D values of T, hence it is non-zero for at least ¢ — D values of T' € F,. Also,
if f appears in the list then I'(f) € W. Hence, each of those ¢ — D values lies in W (and
therefore in W7) and reconstructs f. We conclude that f is reconstructed from at least ¢ — D
different points in Wy, thus |£;]| < WA |

q—D"
We remain with the list size of £y which is obtained from Solve( WO) Since
degg,1,.. 71)(83, ) < deg,1,..1)(Q), and the (1, ,n — s)-weighted degree of zp% is at
most D, we know by 1nduct10n that |Lo] < |W”| Altogether |£] < |W1‘ + |W°| qIEVj%_ <

4.2 Putting it together

Proof of Theorem 3. By Lemma 7 it is enough to prove that for every W C IE";';Jr2 of size at
most AK — 1 we have |LIST(W)| < K. Fix a set W C F5*2 of size AK —1 < gK. Let Q be
as in Claim 16, with

D= {n |k - (s +2)!] *W <n-(gK)™ - (s +2))72 +1)

Sw.(q[()s}rz —qg—A

Where the second to last inequality is due to the fact that (k!)l/ kr1< % for every k > 15.
Let £ be the output list of Solve(Q,W). Then,

AK —1
Wil _ <K

LIST < <
STW) <€)< Zp < T

where the first inequality is by Lemma 18, the second by Lemma 19 and the last inequality
by using the fact that A < g — D. <

By choosing the parameters of in the same way as done in [7, Theorem 3.5] we get the
following expander

16 log (loiN)

Viog Kmax
1, there is an M < D-Kte and an explicit (< Kpaz, (1—€)D) expander T : [N] x [D] — [M]

max

with degree D = O(((log N (log K pmaz))/€)*1/®).

IN

» Theorem 20. For every positive integers N, K ae < N, all € >0, and a <

For completeness we repeat the proof from [7].

Proof. Let n = log N and k = log Kyas. Let ho = (2nk/e)Y/* h = [ho], and let ¢ be a
prime in the interval (h'*® /2 pite].

Set s +2 = [k/logh], so that h*t? < K ue < 12 As 15 < s5+2<n<gq=
char(F,), by Theorem 3, the graph I' : FI' x F, — Fi*2 is a (< h**?, A) expander for
A=gq-— @ . (qK)ﬁ, because Kqp < h*T2, it is also a (< Kz, A) expander.
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Note that the number of left-vertices in I" is ¢™ > N, and the number of right-vertices is

M = qs+2 S q- h(1+a)(s+1) S q- K1+a

max

The degree is

D =q<h'™ < (ho+ 1)

= O(h™) = O((nk/e)"+1/)

1
Lastly, we consider the expansion factor, A = q — w - (¢K) 2 > g — BERITE Cof the

2

graph, first notice

nkh < e

h1+oz

<eq

where the first equality is due to the fact that nk/e < h®/2. Secondly, we can convert our
lower bound on « to a lower bound on k

€

and by using it we get

Boiog? (1) | Slog’ (%)  18log? (2%)

2> > >
s+ ~ logh — logh - log h - logh
161log® hy _ 4logh
= 20 fo, 208 =4logh > (1+ a)logh > loggq
log h log h

by combining the two inequalities

nkhql/(s+2) _ ql/(s+2)

L <o
5 nkh 5 < eq

By substituting back to A we get A > (1 —€)q = (1 — €)D, which concludes the proof. <
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