
Integrality Gap of Time-Indexed Linear
Programming Relaxation for Coflow Scheduling
Takuro Fukunaga !

Faculty of Science and Engineering, Chuo University, Tokyo, Japan

Abstract
Coflow is a set of related parallel data flows in a network. The goal of the coflow scheduling is
to process all the demands of the given coflows while minimizing the weighted completion time.
It is known that the coflow scheduling problem admits several polynomial-time 5-approximation
algorithms that compute solutions by rounding linear programming (LP) relaxations of the problem.
In this paper, we investigate the time-indexed LP relaxation for coflow scheduling. We show that
the integrality gap of the time-indexed LP relaxation is at most 4. We also show that yet another
polynomial-time 5-approximation algorithm can be obtained by rounding the solutions to the
time-indexed LP relaxation.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases coflow scheduling, hypergraph matching, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.36

Category APPROX

Funding Takuro Fukunaga: JSPS KAKENHI Grant Numbers JP20H05965, JP21K11759, and
JP21H03397, Japan.

1 Introduction

Coflow scheduling was introduced by Chowdhury and Stoica [7]. It is motivated by cluster
computation frameworks such as MapReduce and Hadoop. Because these frameworks involve
a huge amount of communication within a computer cluster, it is crucial to efficiently schedule
this communication to achieve high computation performance. Coflow is an abstraction of
data flow created by the processing of a task within the computer cluster. The goal of coflow
scheduling is to find the most efficient scheduling of coflows.

Among the many variations of the coflow scheduling problem, weighted completion
minimization under a bipartite matching model is the most extensively studied setting. In
this setting, a coflow is represented as a bipartite undirected multigraph. An edge in the
coflow represents the demand of sending one unit of data from one node to another. We are
given a set of coflows F1, . . . , Fk, all of which are on the same bipartition (X, Y) of the node
set. Each coflow Fi is associated with a weight wi ≥ 0 and a release time ri ∈ Z+, where Z+
is the set of non-negative integers. The required task is to schedule all demands of the coflows
under the congestion constraint and the release time constraint. The congestion constraint
requires all nodes to send or receive at most one unit of data at any moment, and the release
time constraint requires the demand of coflow Fi to not be processed before release time ri.
The completion time Ci of coflow Fi is defined as the time at which all demands of Fi have
been processed. The objective of the problem is to minimize the weighted completion time,
defined as

∑k
i=1 wiCi. More information on the problem setting is given in Section 2.

This coflow scheduling problem includes the concurrent open shop scheduling problem,
which corresponds to the special case where X = {x1, . . . , xn}, Y = {y1, . . . , yn} and each
edge of the given coflows joins nodes xi and yi for some i ∈ {1, . . . , n}. For concurrent open
shop scheduling, achieving (2 − ϵ)-approximation for any ϵ > 0 is know to be NP-hard [16].

© Takuro Fukunaga;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fukunaga@ise.chuo-u.ac.jp
https://orcid.org/0000-0003-3285-2876
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Integrality Gap of Time-Indexed LP for Coflow Scheduling

Thus, the same approximation hardness holds for coflow scheduling. The best approximation
factor for coflow scheduling is achieved by the algorithms proposed by Shafiee and Ghaderi [17]
and Ahmadi et al. [2], respectively. The factor is 4 when the release times for all given
coflows are identical and 5 when they are not identical. Narrowing the gap between the
upper and lower bounds of the approximation factor is an interesting open problem.

The above approximation algorithms [2, 17] for coflow scheduling are both based on linear
programming (LP) relaxations of the problem. The algorithm of Shafiee and Ghaderi [17]
uses a relaxation with ordering variables and that of Ahmadi et al. [2] uses a relaxation
with parallel inequalities. These relaxations are commonly used in the machine scheduling
literature. Their algorithms also give upper bounds on the integrality gap of these LP
relaxations.

1.1 Our contribution
Our contribution is to investigate the time-indexed LP relaxation, which is another standard
formulation of LP relaxations for machine scheduling problems. We show that the integrality
gap of the time-indexed LP relaxation is at most 4 even for non-identical release times,
which is better than the known upper bounds on the integrality gap of other LP relaxations.
Our integrality gap analysis relies on Hall’s theorem [1] on existence of perfect matchings
in bipartite hypergraphs. We show that a 4-approximate solution is obtained by finding a
perfect matching in a bipartite hypergraph constructed from an optimal solution solution to
the time-indexed LP relaxation.

Unfortunately, our integrality gap analysis does not provide a polynomial-time algorithm
of approximation factor that matches the integrality gap bound because there are no known
polynomial-time algorithms for computing hypergraph perfect matchings implied by Hall’s
theorem. Nevertheless, we believe that our analysis is useful for obtaining an improved
polynomial-time approximation algorithm in the future.

We would also like to point out that our analysis is a new interesting application of
the Hall’s theorem on hypergraphs. Previously Hall’s theorem on hypergraphs has been
used for developing approximation algorithms for min-max allocation problems in a series of
studies (see e.g., [4, 5]). We note that this line of studies was initiated by Asadpour, Feige,
and Saberi [5], the algorithm given in which is not a polynomial-time algorithm.

In addition to the integrality gap bound, we give a polynomial-time rounding algorithm
for the time-indexed LP relaxation. Although our algorithm does not improve upon the
currently best approximation algorithms [2, 17], we prove that our algorithm achieves the
same approximation factors as them. Namely, its approximation factor is 4 for the identical
release times, and 5 for non-identical release times.

Inspired by our polynomial-time rounding algorithm, we also observe that, if a hypergraph
is constructed from the coflow scheduling with identical release times, then a perfect matching
can be found in polynomial-time time. This gives an alternative 4-approximation algorithm
for the coflow scheduling with identical release times.

Summing up, our contributions can be summarized as follows.
We show that the rounding of a solution to the time-indexed LP relaxation can be reduced
to finding a perfect matching in a hypergraph. This implies that the integrality gap of
the time-indexed LP relaxation is at most 4, which improves on the integrality gap upper
bounds on LP relaxations for non-identical release times.
We propose a polynomial-time rounding algorithm for the time-indexed LP relaxation.
Its approximation factor is 4 for identical release times and 5 for non-identical release
times. These factors match those of the currently known best approximation algorithms
for coflow scheduling.

T. Fukunaga 36:3

We propose a polynomial-time algorithm for computing perfect matchings in hypergraphs
constructed in the reduction of rounding solutions to the time-indexed LP relaxation
with identical release times.

1.2 Organization
The rest of this paper is organized as follows. Section 2 introduces preliminary facts and
related studies on coflow scheduling and hypergraph perfect matching. Section 3 formulates
the time-indexed LP relaxation. Section 4 presents the analysis of the integrality gap of the
time-indexed LP relaxation. Section 5 describes the proposed polynomial-time rounding
algorithm for the time-indexed LP relaxation. Section 6 describes the proposed polynomial-
time algorithm for computing perfect matchings in hypergraphs constructed from the coflow
scheduling with identical release times. Section 7 concludes this work.

2 Preliminary facts and related studies

2.1 Coflow scheduling
Throughout this paper, an edge between two nodes x and y is denoted by xy. The set of
integers 1, . . . , n is denoted by [n]. For an edge set I and a node v, the set of edges in I

incident to v is denoted by δI(v). The subscript is omitted when the edge set is clear from
the context. The maximum degree of a graph G is denoted by ∆(G).

As mentioned in Section 1, the inputs of the bipartite matching model of the coflow
scheduling problem are coflows F1, . . . , Fk with weights w1, . . . , wk ≥ 0 and release times
r1, . . . , rk ∈ Z+, where coflows are bipartite multigraphs on the bipartition (X, Y) of the
node set. We usually identify a graph with the set of edges. Let F denote

⋃k
i=1 Fi.

We denote the time horizon of schedules by T . In this paper, we consider finding a
discrete-time integer schedule, for which the time interval [0, T) is divided into intervals
[0, 1), [1, 2), . . . , [T − 1, T) and the data flow does not vary within an interval. We refer to
interval [t − 1, t) as the t-th round. In contrast to a discrete-time schedule, a continuous-time
schedule can change the data flow at any moment. In an integer schedule, data flow forms
a matching in each round by the congestion constraint. Thus, a schedule is equivalent
to a sequence (M1, . . . , MT) of matchings such that

⋃T
t=1 Mt = F and Mt ∩ Fi = ∅ for

each i ∈ [n] and t ∈ [ri]. The completion time Ci of coflow Fi in the schedule is given by
max{t : Mt ∩ Fi ≠ ∅}. The objective of the problem is to minimize the weighted completion
time

∑k
i=1 wiCi. In addition to integer schedules, we can also consider a fractional schedule,

where data flow within a round forms a fractional matching, i.e., a vector x ∈ [0, 1]E such
that

∑
e∈δ(v) x(e) ≤ 1 for each v ∈ X ∪ Y .

Since its introduction by Chowdhury and Stoica [7], coflow scheduling has been extensively
studied from both practical and theoretical viewpoints [2, 8, 9, 14, 17, 18]. Several extensions
of the problem setting have been presented. For example, Im et al. [13] considered the matroid
coflow scheduling problem, which replaces the congestion constraint with a constraint that
requires the set of elements scheduled in a round to be independent in a given matroid. Note
that the bipartite matching model cannot be modeled by the matroid coflow, and hence the
result of Im et al. cannot be applied to the bipartite matching model. Chowdhury et al. [6]
considered flows in general graphs instead of bipartite matchings in the congestion constraint.
Their model is a generalization of the bipartite matching model. However, the algorithm
of Chowdhury et al. outputs only a fractional schedule, and thus it cannot be used for
computing an integer schedule.

APPROX/RANDOM 2022

36:4 Integrality Gap of Time-Indexed LP for Coflow Scheduling

2.2 Hypergraph perfect matching
Let H = (V, E) be a hypergraph with node set V and hyperedge set E. Here, we regard each
hyperedge as a set of nodes.

A matching M in a hypergraph H = (V, E) is a subset of E such that |δM (v)| ≤ 1 for
all v ∈ V , where we naturally extend the notation δ to hypergraphs. A transversal U of
H = (V, E) is a subset of V such that U ∩ e ̸= ∅ for all e ∈ E. The maximum size of
matchings and the minimum size of transversals of H are called the matching number and the
transversal number of H, denoted by ν(H) and τ(H), respectively. A fractional matching is
a function x : E → [0, 1] such that

∑
e∈δ(v) x(e) ≤ 1 for each v ∈ V . The maximum value of∑

e∈E x(e) among all fractional matchings x in H is called the fractional matching number of
H and is denoted by ν∗(H). Note that ν(H) ≤ ν∗(H) ≤ τ(H) holds for any hypergraph H.

H is said to be r-uniform if |e| = r for each e ∈ E, and is said to be bipartite if its node set
has a bipartition (A, B) such that |A∩e| = 1 for all e ∈ E. Hereafter, we suppose that H is an
r-uniform bipartite hypergraph with bipartition (A, B). We denote the nodes in A by A-nodes
and those in B by B-nodes. A perfect matching in H is a matching whose size is |A| (i.e., all
A-nodes are covered by some hyperedge in the matching). For X ⊆ A, let HX represent the
hypergraph with the node set B and the hyperedge set EX := {e \ A : e ∈ E, e ∩ X ≠ ∅}.
The following sufficient conditions for the existence of perfect matching are known.

▶ Theorem 1 (Haxell [11]). If an r-uniform bipartite hypergraph H with the node set
bipartition (A, B) satisfies

τ(HX) > (2r − 3)(|X| − 1) for any X ⊆ A, (1)

then H has a perfect matching.

▶ Theorem 2 (Aharoni and Haxell [1]). If an r-uniform bipartite hypergraph H with the node
set bipartition (A, B) satisfies

ν(HX) > (r − 1)(|X| − 1) for any X ⊆ A, (2)

then H has a perfect matching.

Note that these two theorems extend the sufficient condition implied by Hall’s theorem
to the existence of perfect matchings in bipartite graphs (although the condition in Hall’s
theorem is necessary and sufficient, the conditions in the above two theorems are not).

The proofs of these theorems are not algorithmic. Nevertheless, Annamalai [3] gave
an algorithmic proof of Haxell’s theorem by introducing a small amount of slack into the
condition. More concretely, Annamalai showed that, if there exists a constant ϵ > 0 such
that the hypergraph H satisfies τ(HX) > (2r − 3 + ϵ)(|X| − 1) for any X ⊆ A, then there
exists a polynomial-time algorithm for finding a perfect matching in H. There is no known
polynomial-time algorithm for finding a perfect matching in a hypergraph that satisfies
condition (2). Note that finding perfect matchings in 3-uniform bipartite hypergraphs is
NP-hard in general because it includes 3-dimensional matching [15].

3 Time-indexed LP relaxation

In this section, we introduce the time-indexed LP relaxation for the coflow scheduling
problem.

We set T to an upper bound on the time horizon of optimal coflow scheduling. For
example, T can be set to |F |. Indeed, we can see that 2∆(F) + maxi∈[k] ri is also an upper
bound because of the observations explained below in Lemma 6.

T. Fukunaga 36:5

In the time-indexed LP, we have a variable xt,e ∈ [0, 1] for each t ∈ [T] and e ∈ F , and a
variable ci for each i ∈ [k]. When the variables take integer values, variable xt,e indicates
whether the demand e is processed in the t-th round (i.e., time interval [t−1, t)), and variable
ci is the completion time of coflow Fi.

The time-indexed LP is formulated as follows.

minimize
∑
i∈[k]

wici

subject to
∑

t∈[T]

txt,e ≤ ci, ∀i ∈ [k], ∀e ∈ Fi, (3)

∑
e∈δF (v)

xt,e ≤ 1, ∀t ∈ [T], ∀v ∈ V, (4)

∑
t∈[T]

xt,e = 1, ∀i ∈ [k], ∀e ∈ Fi, (5)

xt,e = 0, ∀i ∈ [k], ∀e ∈ Fi, ∀t ∈ [ri], (6)
xt,e ≥ 0, ∀e ∈ F, ∀t ∈ [T].

Constraint (3) requires ci to be at least the time of processing e ∈ Fi. Constraint (4) requires
at most one edge incident to a node v to be processed within the t-th round. Constraint (5)
requires each demand e in coflow Fi to be processed in some round. Constraint (6) requires
the demands in coflow Fi to not be processed before the release time ri.

Each solution for the time-indexed LP relaxation represents a discrete-time fractional
schedule that consists of fractional matchings x1, . . . , xT ∈ [0, 1]F . Let Ci be the completion
time of coflow Fi in this schedule, expressed as

Ci = max{t ∈ [T] : xt,e > 0 for some e ∈ Fi}.

Thus, the weighted completion time of this fractional schedule is
∑

i∈[k] wiCi. Note that this
value is possibly larger than the objective value

∑
i∈[k] wici of the relaxation.

In the bipartite matching model, the discrete-time fractional schedule can be transformed
into a continuous-time integer schedule without increasing the completion time of each
coflow as follows. By the integrality of the fractional matching polytope, the fractional
matching xt can be represented as a convex combination of (integer) matchings. Namely,
there exists a set of matchings M1, . . . , Mm and nonnegative numbers λ1, . . . , λm such that
xt =

∑m
j=1 λjχMj and

∑m
j=1 λj = 1 hold, where χMj is the characteristic vector of matching

M . A continuous-time integer schedule is obtained by scheduling the matching Mj for time
λj within the t-th round.

Conversely, a continuous-time integer schedule can be transformed into a discrete-time
fractional schedule. Let λM be the time spent for processing a matching M in the t-th round
of the integer schedule. Then, the convex combination of matchings with coefficients λM

is a fractional matching. A discrete-time fractional schedule is obtained by scheduling this
fractional matching in the t-th round. If the completion time of coflow Fi in the integer
schedule is C ′

i, the completion time of Fi in the constructed fractional schedule is ⌈C ′
i⌉.

▶ Remark. The size of the time-indexed LP linearly depends on T , and hence running time
for solving the LP is at least a polynomial with regards to T . Although this running time is
polynomial in the input size of the instance of the coflow scheduling problem, it may be a
disadvantage compared with other LP relaxations such as those used in [2, 17]. However, the
size of the time-indexed LP can be reduced using a commonly used technique (see e.g., [12])
so that it depends on O(log T) with a loss of 1 + ϵ in the approximation factor for any
constant ϵ > 0.

APPROX/RANDOM 2022

36:6 Integrality Gap of Time-Indexed LP for Coflow Scheduling

4 Integrality gap analysis

This section proves that the integrality gap of the time-indexed LP relaxation is at most 4
for the bipartite matching model. In the proof, we first show that there exists a discrete-time
fractional schedule whose weighted completion time is at most twice the optimal objective
value of the relaxation. Then, this fractional schedule is rounded into an integer schedule that
is subject to the completion time of each coflow being at most twice that in the fractional
schedule. This rounding is done by finding a perfect matching in a hypergraph constructed
from the fractional schedule.

4.1 Random stretching of fractional schedule

As mentioned in Section 3, a solution (x, c) for the time-indexed LP relaxation represents a
discrete-time fractional schedule, but the completion time Ci of coflow Fi in this schedule
is possibly larger than ci. However, as studied in [6, 13], random stretching gives another
fractional schedule wherein the expected completion time of Fi is at most 2ci. The details
are as follows.

For e ∈ F and t ∈ [T], let ve(t) =
∑

t′∈[t] xt′,e. Furthermore, we extend the definition of
ve(t) to any t ∈ [0, T] via linear interpolation. Namely, if t ∈ [t′ − 1, t′) for some t′ ∈ [T],
then ve(t) := ve(t′ − 1) + (t − t′ + 1)(ve(t′) − ve(t′ − 1)).

For i ∈ [k] and θ ∈ [0, 1], we define Ci(θ) as the time at which θ-fraction of coflow Fi

is completed in the discrete-time fractional schedule implied by the solution (x, c) to the
relaxation. That is, Ci(θ) is the minimum value of t ∈ [0, T] such that ve(t) ≥ θ for all
e ∈ Fi.

In the random stretching operation, we randomly sample θ from [0, 1] according to the
probability density function f(θ) := 2θ. Then, we stretch the schedule by the factor 1/θ.
This means that if a demand is processed in a time interval [t′, t′′], then it is processed in
[t′/θ, t′′/θ]. The processing of a demand is truncated when the processing time reaches one
unit of time. This gives a continuous-time fractional schedule such that the completion time
of a coflow Fi is Ci(θ)/θ.

The continuous-time fractional schedule can be transformed into a discrete-time fractional
schedule as follows. For t ∈ [T] and e ∈ F , let x̄t,e be the fraction of e processed in time
[t−1, t) of the continuous-time fractional schedule. Then, it can be verified that {x̄t,e : e ∈ F}
forms a fractional matching for any t ∈ [T], and thus it gives a discrete-time fractional
schedule. In this discrete-time schedule, the process of coflow Fi is within an interval
[ri, ⌈Ci(θ)/θ⌉].

We have thus obtained a discrete-time fractional schedule by stretching the schedule
represented by the LP optimal solution. The following lemma shows that the expected
completion time in this schedule can be bounded by twice the objective value of the time-
indexed LP.

▶ Lemma 3. For each i ∈ [k], E[⌈Ci(θ)/θ⌉] ≤ 2ci.

This lemma is proven in [6, 13] for other variations of the coflow scheduling problem, and
these proofs also apply to our problem. We omit the proof of Lemma 3 in this paper.

In the rest of the paper, we let C̄i denote ⌈Ci(θ)/θ⌉.

T. Fukunaga 36:7

4.2 Reduction to hypergraph perfect matching
By Lemma 3, a schedule of processing coflow Fi within the interval [ri, C̄i] achieves a weighted
completion time that is at most twice the optimal objective value of the relaxation. Moreover,
the discrete-time fractional schedule implied by x̄ does so. What remains is to round this
fractional schedule into a discrete-time integer schedule.

For the matroid coflow scheduling problem, Im et al. [13] showed that this rounding
process can be done without loss of the approximation factor. This is because the fractional
schedule is included in the intersection of a matroid polytope and a base polytope, where the
matroid polytope is defined based on a constraint that requires demands processed in each
round to be independent in the given matroid. Because the intersection forms an integer
polytope, the fractional schedule can be represented as a convex combination of integer
schedules, any of which processes coflow Fi within [ri, C̄i]. This approach is not available for
our problem because bipartite matchings do not form a matroid but a matroid intersection;
thus the set of the fractional schedules is the intersection of two matroid polytopes and a
base polytope, that is not integer in general.

Instead, we reduce the rounding process to hypergraph perfect matching. We first
construct a hypergraph as follows. We prepare T copies of the node set, each of which
corresponds to a round. We let Vt denote the copy corresponding to the t-th round for
each t ∈ [T], and let vt denote the node in Vt corresponding to v ∈ X ∪ Y . In addition,
we introduce a node ae corresponding to each demand e ∈ F . Let A := {ae : e ∈ F} and
B :=

⋃
t∈[T] Vt. A hyperedge in the hypergraph is defined by an edge e = xy ∈ Fi and time

t ∈ [ri + 1, C̄i] as he,t := {xt, yt, ae}. Let H = (VH , EH) denote the hypergraph with the
node set VH = A ∪ B and the hyperedge set EH = {he,t : i ∈ [k], e ∈ Fi, t ∈ [ri + 1, C̄i]}.
Note that H is a 3-uniform bipartite hypergraph with bipartition (A, B).

From a perfect matching in H, we define a discrete-time integer schedule so that a
demand e = uv is processed in the t-th round whenever the hyperedge he,t is included in the
matching. Because each node in B is incident to at most one hyperedge in a matching, the
demands processed in each round of the schedule form a matching. Moreover, because each
node ae ∈ A is covered by exactly one hyperedge in the perfect matching, and because all
hyperedges incident to ae are defined only for the t-th rounds with t ∈ [ri + 1, C̄i] if e ∈ Fi,
the demand e ∈ Fi is processed within an interval [ri, C̄i] in the schedule. Therefore, the
defined integer schedule is feasible.

Based on this discussion, it suffices to find a perfect matching in H. However, we do
not know whether H has a perfect matching. To ensure the existence of a perfect matching,
we modify H so as to satisfy the Aharoni-Haxell condition (2). For this purpose, let us
bound ν(HX) for X ⊆ A. First, observe that HX is a bipartite graph, with the node set
B =

⋃
t∈[T] Vt and the edge set {utvt : auv ∈ X, t ∈ [ri +1, C̄i] for i with uv ∈ Fi}. Therefore,

τ(HX) = ν∗(HX) = ν(HX). Moreover, x̄t,uv can be regarded as a weight assigned to edge
utvt in HX . It forms a fractional matching in HX . Because

∑
t∈[T] x̄t,uv = 1, HX has a

fractional matching of size |X|. These facts indicate that ν(HX) ≥ |X|.
This bound is insufficient to satisfy the Aharoni-Haxell condition, which requires satisfying

ν(HX) > 2(|X| − 1) since r = 3 in our case. Thus, we modify H as follows. In the original
definition, for each round t ∈ [T], we have the corresponding node set Vt, and the node set
of H is defined as A ∪ (

⋃
t∈[T] Vt). For each i ∈ [k], e = uv ∈ Fi, and t ∈ [ri + 1, C̄i], H

has a hyperedge {ae, ut, vt}. In the new definition, for each round t ∈ [T], we define two
node sets V2t−1 and V2t, and define the node set as A ∪ (

⋃
t∈[T] V2t−1 ∪ V2t). Hyperedges

{ae, u2t−1, v2t−1} and {ae, u2t, v2t} are defined for each i ∈ [k], e = uv ∈ Fi, and t ∈ [ri+1, C̄i].
Let H ′ denote the obtained hypergraph.

APPROX/RANDOM 2022

36:8 Integrality Gap of Time-Indexed LP for Coflow Scheduling

▶ Lemma 4. H ′ has a perfect matching.

Proof. H ′ is still a 3-uniform bipartite hypergraph, with the bipartition (A,
⋃2T

t=1 Vt). Let
us show that H ′

X satisfies ν(HX) ≥ 2|X| for any X ∈ A, which indicates the existence of a
perfect matching in H ′ by Lemma 2.

Note that each edge utvt in H ′
X is defined by a hyperedge {ae, ut, vt} incident to an

A-node ae ∈ X. We define x′
utvt

as x̄⌈t/2⌉,e for each edge utvt in H ′
X . Then, x′ is a fractional

matching in H ′
X because x̄t is a fractional matching for each t ∈ [T]. Moreover, because∑

t∈[T] x̄t,e = 1,
∑

t∈[2T] x′
utvt

= 2 holds. Thus, the size of the fractional matching x′ is 2|X|,
and hence ν∗(H ′

X) ≥ 2|X|. Note that H ′
X is a bipartite graph, and hence ν(H ′

X) = ν∗(HX).
Therefore, the claim is proven. ◀

We can define a discrete-time integer schedule from a perfect matching in H ′; if ae is
covered by a hyperedge {ae, ut, vt} in the perfect matching, then demand e is processed in
the t-th round. Because each A-node ae has incident hyperedges corresponding to rounds
in [2(ri + 1) − 1, 2C̄i] if e ∈ Fi, the constructed integer schedule satisfies the release time
constraint and all demands of coflow Fi are completed by time 2C̄i. Therefore, the weighted
completion time of this schedule is at most 2

∑
i∈F wiC̄i. This fact and Lemma 3 prove the

following theorem.

▶ Theorem 5. The integrality gap of the time-indexed LP relaxation is at most 4.

As for a lower bound on the integrality gap of the time-indexed LP, the following simple
instance shows that it is at least 2. Suppose that there is a single coflow that consists of
M parallel edges, and its weight and release time are 1 and 0. The minimum weighted
completion time of integer schedules for this instance is M . On the other hand, the fractional
schedule that processes 1/M unit of all edges in each round achieves the weighted completion
time (M + 1)/2. The ratio of this value to M approaches 2 as M grows. We are aware of no
instance that indicates integrality gap larger than 2.

As mentioned in Section 2.2, the Aharoni-Haxell condition ensures the existence of a
perfect matching but does not provide a polynomial-time algorithm for finding it. The
algorithm of Annamalai [3] finds a perfect matching in a hypergraph that satisfies the Haxell
condition with a constant slack, i.e., τ(H ′

X) > (2r − 3 + ϵ)(|X| − 1) for any X ⊆ A and
any constant ϵ > 0 (again, recall that r = 3 in our case). Using this algorithm gives us a
polynomial-time rounding algorithm, but making the hypergraph satisfy the condition results
in an approximation factor of 6, which is worse than that for existing coflow scheduling
algorithms.

5 Polynomial-time rounding algorithm

In this section, we present a polynomial-time rounding algorithm for the time-indexed LP. It
achieves 4-approximation for identical release times and 5-approximation for non-identical
release times.

The algorithm first sorts the coflows in the non-decreasing order of c. Then, it schedules
the demands greedily, giving higher priority to demands of earlier coflows. The details of
this algorithm are given in Algorithm 1.

▶ Lemma 6. The completion time of coflow Fi in the schedule output by Algorithm 1 is at
most ri + 2∆(

⋃i
j=1 Fj) − 1 for each i ∈ [k].

T. Fukunaga 36:9

Algorithm 1 Rounding Algorithm.

1 solve the time-indexed LP to obtain an optimal solution (x, c);
2 sort the coflows so that c1 ≤ c2 ≤ · · · ≤ ck;
3 Mt := ∅ for each t ∈ [T];
4 for i = 1, . . . , k do
5 for uv ∈ Fi do
6 find the minimum t ∈ [ri + 1, T] such that δMt(u) = δMt(v) = ∅;
7 Mt := Mt ∪ {uv}

8 output (M1, . . . , Mt)

Proof. Let uv be a demand in Fi that is processed last, and let t be the round in which uv

is processed (i.e., t is the completion time of Fi). Then, in each round in [ri + 1, . . . , t − 1],
a demand incident to u or v is processed. This means that t − 1 − ri ≤ |δ⋃i

j=1
Fj

(u)| − 1 +

|δ⋃i

j=1
Fj

(v)| − 1 ≤ 2∆(
⋃i

j=1 Fj) − 2 holds. Therefore, the completion time of Fi is at most

ri + 2∆(
⋃i

j=1 Fj) − 1. ◀

Now, we prove the following.

▶ Lemma 7. For each i ∈ [k], ∆(
⋃i

j=1 Fj) ≤ 2ci.

Proof. Suppose that the indices of coflows indicate those after sorting in line 3 of the
algorithm. Namely, c1 ≤ c2 ≤ · · · ≤ ck. We fix i ∈ [k] and v ∈ X ∪ Y , and we prove that the
degree of v in the graph

⋃i
j=1 Fj is at most 2ci.

Since
∑

t∈[T] xt,e = 1 holds for any e by (5), we have∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[T]

xe,t =
∑
j∈[i]

∑
e∈δFj

(v)

1 =
∑
j∈[i]

|δFj
(v)|.

It suffices to show that this value is at most 2ci. For arriving at a contradiction, suppose
that this is more than 2ci, i.e.,

2ci <
∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[T]

xe,t. (7)

Let e ∈ Fj for some j ≤ i. Then, (3) and the assumption of cj ≤ ci show that∑
t∈[T]

txt,e ≤ cj ≤ ci. (8)

Moreover, since
∑

t∈[T] xt,e = 1 holds by (5), we have

ci −
∑

t∈[T]

txt,e =
∑

t∈[T]

cixt,e −
∑

t∈[T]

txt,e

=
∑

t∈[T]

(ci − t)xt,e

=
∑

1≤t≤ci

(ci − t)xt,e +
∑

ci<t≤T

(ci − t)xt,e.

APPROX/RANDOM 2022

36:10 Integrality Gap of Time-Indexed LP for Coflow Scheduling

Since (8) indicates that this is at least 0, we have∑
ci<t≤T

(t − ci)xt,e ≤
∑

1≤t≤ci

(ci − t)xt,e.

Summing this inequality over all j ∈ [i] and e ∈ δFj
(v) gives∑

j∈[i]

∑
e∈δFj

(v)

∑
ci<t≤T

(t − ci)xt,e ≤
∑
j∈[i]

∑
e∈δFj

(v)

∑
1≤t≤ci

(ci − t)xt,e. (9)

Since
∑

e∈δF (v) xt,e ≤ 1 for each t ∈ [T] by (4), the right-hand side of (9) is bounded as

∑
j∈[i]

∑
e∈δFj

(v)

∑
1≤t≤ci

(ci − t)xt,e ≤
∑

1≤t≤ci

(ci − t)
∑

e∈δF (v)

xt,e ≤
∑

1≤t≤ci

(ci − t) = ci(ci − 1)
2 . (10)

On the other hand, from (7), we have∑
ci<t≤T

∑
j∈[i]

∑
e∈δFj

(v)

xe,t > 2ci −
∑

1≤t≤ci

∑
j∈[i]

∑
e∈δFj

(v)

xe,t ≥ ci.

Thus the left-hand side of (9) is bounded as

∑
j∈[i]

∑
e∈δFj

(v)

∑
ci<t≤T

(t−ci)xt,e =
∑

ci<t≤T

∑
j∈[i]

∑
e∈δFj

(v)

(t−ci)xt,e >
∑

ci<t≤2ci

(t−ci) = ci(ci + 1)
2 .

(11)

(9), (10), and (11) give a contradiction. ◀

Combining Lemmas 6 and 7 proves the following theorem.

▶ Theorem 8. Algorithm 1 is a 4-approximation algorithm for identical release times and a
5-approximation algorithm for non-identical release times.

Proof. By Lemmas 6 and 7, the schedule output by Algorithm 1 processes the coflow Fi

by time ri + 4ci − 1. Note that ri ≤ ci holds for each i ∈ [k]. Therefore, the weighted
completion time of the schedule is at most 5

∑
i∈[k] wici, which means that the algorithm

achieves 5-approximation. In the identical release time case, we can assume that ri = 0
for all i ∈ [k]. Then, the weighted completion time of the schedule is at most 4

∑
i∈[k] wici,

which means that it achieves 4-approximation. ◀

▶ Remark. The above analysis does not depend on the assumption that coflows F1, . . . , Fk

are bipartite. Thus, it applies to the general graph model, where given coflows are not
bipartite graphs and the congestion constraint requires that the demands processed in each
round form a (non-bipartite) matching. Although this is not mentioned in previous works,
similar analysis shows that the approximation algorithms of [2, 17] can also work for the
general graph model. In other words, these approximation algorithms do not make full use
of the assumption that the coflows are bipartite. In contrast, the integrality gap analysis
given in Section 4 uses the bipartiteness.

T. Fukunaga 36:11

6 Finding perfect matchings in hypergraphs

We proved Theorem 5 by showing that the hypergraph H ′ (defined in Section 4.2) has
a perfect matching. Unfortunately, we do not know how to find the perfect matching in
polynomial time even though its existence is implied by Theorem 2. In this section, we
present a polynomial-time algorithm for finding a perfect matching in H ′ when ri = 0 for
all i ∈ [k]. This gives an alternative proof of the statement for identical release times in
Theorem 8.

Algorithm 2 Perfect Matching Algorithm.

1 sort the coflows so that C̄1 ≤ C̄2 ≤ · · · ≤ C̄k;
2 M := ∅;
3 for i = 1, . . . , k do
4 for uv ∈ Fi do
5 find the minimum t ∈ [2C̄i] such that both ut and vt have no incident

hyperedge in M ;
6 add hyperedge {auv, ut, vt} to M

7 output M

The algorithm is given in Algorithm 2. The next theorem shows that it finds a perfect
matching.

▶ Theorem 9. Algorithm 2 outputs a perfect matching in polynomial time.

Proof. On line 5 of Algorithm 2, there always exists t ∈ [2C̄i] such that both ut and vt have
no incident hyperedge in M . If this claim is true, M is a perfect matching in H ′ at the
termination of the algorithm. Because the algorithm runs in polynomial time, this proves
the theorem.

To prove the above claim, we first show that
∑

j∈[i] |δFj
(v)| ≤ C̄i holds for each i ∈ [k]

and v ∈ V . Recall that there exists x̄t,e ∈ [0, 1] (e ∈ Fj , t ∈ C̄j) such that
∑

t∈[C̄j] x̄t,e = 1
for each e ∈ Fj , and

∑
j∈[k]

∑
e∈δFj

(v) x̄t,e ≤ 1 for each t ∈ [T] and v ∈ V . Then,∑
j∈[i]

|δFj
(v)| =

∑
j∈[i]

∑
e∈δFj

(v)

1 =
∑
j∈[i]

∑
e∈δFj

(v)

∑
t∈[C̄j]

x̄t,e

=
∑

t∈[C̄i]

∑
j∈[i]

∑
e∈δFj

(v)

x̄t,e ≤
∑

t∈[C̄i]

1 = |C̄i|.

Here, the third equality uses the fact that C̄j ≤ C̄i for all j ∈ [i].
Then, when uv ∈ Fi is chosen on line 4 of Algorithm 2, the number of hyperedges in M

incident to nodes u1, . . . , u2C̄i
is at most

∑
j∈[i] |δFj

(u)| − 1 ≤ C̄i − 1. Similarly, the number
of hyperedges in M incident to nodes v1, . . . , v2C̄i

is at most
∑

j∈[i] |δFj
(v)| − 1 ≤ C̄i − 1.

Therefore, among 2C̄i pairs of {ut, vt} (t ∈ [2C̄i]), there exist at least 2C̄i − 2(C̄i − 1) = 2
pairs such that no hyperedge in M is incident to nodes in the pairs. ◀

7 Conclusion

We showed that the integrality gap of the time-indexed LP relaxation for the coflow scheduling
problem is at most 4. We also proposed a polynomial-time rounding algorithm that achieves
4-approximation for identical release times and 5-approximation for non-identical release

APPROX/RANDOM 2022

36:12 Integrality Gap of Time-Indexed LP for Coflow Scheduling

times. In addition, we proposed a polynomial-time algorithm for finding a perfect matching
in the bipartite hypergraph constructed from a solution for the time-indexed LP relaxation
with identical release times.

There are many interesting directions of further study. One of them is to improve the
approximation factor, in particular for non-identical release times. Based on our integrality
gap analysis, this can be achieved by developing a polynomial-time algorithm for finding
perfect matchings in 3-uniform bipartite hypergraphs that satisfy the Aharoni-Haxell condi-
tion (2). However, designing such an algorithm is regarded as a difficult problem. Indeed,
it is mentioned in [10] as “Thus algorithmic versions of these results would also be very
interesting and useful, but currently seem out of reach.” We believe that it is interesting
to investigate algorithms for hypergraphs constructed in our rounding of solutions to the
time-indexed LP relaxation with non-identical release times.

References
1 Ron Aharoni and Penny Haxell. Hall’s theorem for hypergraphs. Journal of Graph Theory,

35(2):83–88, 2000.
2 Saba Ahmadi, Samir Khuller, Manish Purohit, and Sheng Yang. On scheduling coflows.

Algorithmica, 82(12):3604–3629, 2020.
3 Chidambaram Annamalai. Finding perfect matchings in bipartite hypergraphs. Combinatorica,

38(6):1285–1307, 2018.
4 Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm for

restricted max-min fair allocation. ACM Transactions on Algorithms, 13(3):37:1–37:28, 2017.
5 Arash Asadpour, Uriel Feige, and Amin Saberi. Santa Claus meets hypergraph matchings.

ACM Transactions on Algorithms, 8(3):24:1–24:9, 2012.
6 Mosharaf Chowdhury, Samir Khuller, Manish Purohit, Sheng Yang, and Jie You. Near optimal

coflow scheduling in networks. In Christian Scheideler and Petra Berenbrink, editors, The 31st
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix,
AZ, USA, June 22-24, 2019, pages 123–134. ACM, 2019.

7 Mosharaf Chowdhury and Ion Stoica. Coflow: a networking abstraction for cluster applications.
In Srikanth Kandula, Jitendra Padhye, Emin Gün Sirer, and Ramesh Govindan, editors, 11th
ACM Workshop on Hot Topics in Networks, HotNets-XI, Redmond, WA, USA – October 29 –
30, 2012, pages 31–36. ACM, 2012.

8 Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling without prior knowledge.
In Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye, editors, Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015,
London, United Kingdom, August 17-21, 2015, pages 393–406. ACM, 2015.

9 Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow scheduling with Varys. In
Fabián E. Bustamante, Y. Charlie Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy, editors,
ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014,
pages 443–454. ACM, 2014.

10 Alessandra Graf and Penny Haxell. Finding independent transversals efficiently. Combinatorics,
Probability & Computing, 29(5):780–806, 2020.

11 Penny E. Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics,
11(3):245–248, 1995.

12 Sungjin Im and Shi Li. Better unrelated machine scheduling for weighted completion time
via random offsets from non-uniform distributions. In Irit Dinur, editor, IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 138–147. IEEE Computer Society, 2016.

T. Fukunaga 36:13

13 Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Manish Purohit. Matroid coflow scheduling.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 145:1–145:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

14 Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman. Asymptotically optimal
approximation algorithms for coflow scheduling. In Christian Scheideler and Mohammad Taghi
Hajiaghayi, editors, Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 45–54. ACM,
2017.

15 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

16 Sushant Sachdeva and Rishi Saket. Optimal inapproximability for scheduling problems via
structural hardness for hypergraph vertex cover. In Proceedings of the 28th Conference on
Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages
219–229. IEEE Computer Society, 2013.

17 Mehrnoosh Shafiee and Javad Ghaderi. An improved bound for minimizing the total weighted
completion time of coflows in datacenters. IEEE/ACM Transactions on Networking, 26(4):1674–
1687, 2018.

18 Yue Zeng, Baoliu Ye, Bin Tang, Songtao Guo, and Zhihao Qu. Scheduling coflows of multi-stage
jobs under network resource constraints. Computer Networks, 184:107686, 2021.

APPROX/RANDOM 2022

	1 Introduction
	1.1 Our contribution
	1.2 Organization

	2 Preliminary facts and related studies
	2.1 Coflow scheduling
	2.2 Hypergraph perfect matching

	3 Time-indexed LP relaxation
	4 Integrality gap analysis
	4.1 Random stretching of fractional schedule
	4.2 Reduction to hypergraph perfect matching

	5 Polynomial-time rounding algorithm
	6 Finding perfect matchings in hypergraphs
	7 Conclusion

