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Abstract
We consider the family of Correlation Clustering optimization problems under fairness constraints.
In Correlation Clustering we are given a graph whose every edge is labeled either with a + or a −,
and the goal is to find a clustering that agrees the most with the labels: + edges within clusters and
− edges across clusters. The notion of fairness implies that there is no over, or under, representation
of vertices in the clustering: every vertex has a color and the distribution of colors within each cluster
is required to be the same as the distribution of colors in the input graph. Previously, approximation
algorithms were known only for fair disagreement minimization in complete unweighted graphs.
We prove the following: (1) there is no finite approximation for fair disagreement minimization
in general graphs unless P = NP (this hardness holds also for bicriteria algorithms); and (2)
fair agreement maximization in general graphs admits a bicriteria approximation of ≈ 0.591 (an
improved ≈ 0.609 true approximation is given for the special case of two uniformly distributed
colors). Our algorithm is based on proving that the sticky Brownian motion rounding of [Abbasi
Zadeh-Bansal-Guruganesh-Nikolov-Schwartz-Singh SODA’20] copes well with uncut edges.
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1 Introduction

Correlation-Clustering is a family of clustering optimization problems in which the goal
is to cluster objects given pairwise similarity/dissimilarity information over the objects. In
Correlation-Clustering we are given a graph G = (V, E) equipped with edge weights
w : E → R+, whose vertices are the objects, and each edge e = (u, v) ∈ E is labeled either
with a + or a −. A + indicates similarity of u and v and a − indicates dissimilarity of u

and v. We denote by E+ the collection of edges labeled with a + and by E− the collection
of edges labeled with a −. The goal is to find a clustering C, i.e., C = {C1, . . . , Cl} is a
partition of V with no restriction on l, that agrees as much as possible with the labeling of
the edges. A + edge is in agreement if its endpoints are in the same cluster and a − edge is
in agreement if its endpoints are in different clusters. Two natural objectives have attracted
much attention since the introduction of Correlation-Clustering close to two decades ago
by Bansal, Blum and Chawla [12]. The first, denoted as Max-Agreement, is to maximize the
total weight of edges that are in agreement:

max
C

 ∑
e=(u,v)∈E+:C(u)=C(v)

w(e) +
∑

e=(u,v)∈E−:C(u) ̸=C(v)

w(e)

 ,
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37:2 Fair Correlation Clustering in General Graphs

where C(u) denotes the cluster in C that vertex u belongs to. The second, denoted as
Min-Disagreement, is to minimize the total weight of edges that are in disagreement:

min
C

 ∑
e=(u,v)∈E+:C(u)̸=C(v)

w(e) +
∑

e=(u,v)∈E−:C(u)=C(v)

w(e)

 .

Correlation-Clustering has attracted much attention [7, 9, 19, 23, 39, 5, 24, 25, 6, 18,
28], both from the theoretical and practical perspectives. From a theoretical perspective
Correlation-Clustering captures some fundamental graph cut problems such as Multicut
and Multiway-Cut. From a practical perspective, it has found numerous practical applications
in a wide range of settings, e.g., image segmentation [41], cross lingual link detection [40],
coreference resolution [35], to name a few (refer to the survey of Wirth [41] for additional
details).

Chierichetti, Kumar, Lattanzi and Vassilvitskii [21] introduced the notion of fairness
in clustering where they considered the k-Center and k-Median problems. Informally, in
fair clustering problems, each vertex has a type and each cluster needs to contain not
too many and not too few vertices from each type. In general, fairness in clustering has
received much attention in recent years that goes beyond k-Center and k-Median, e.g.,
[2, 11, 14, 33, 38, 15, 1, 4] (refer to surveys [16, 20] for additional details). One of the main
reasons for considering fairness in algorithms in general, and clustering in particular, arises
from human-centric applications. The goal is to ensure that the solutions are not biased with
respect to a sensitive feature such as gender or race. For example, clustering and learning
algorithms used for college admissions, bank loans, job applications etc. might be biased
[16, 20]. Thus, there is a lot of effort to develop fair clustering algorithms as seen in the
literature referenced above.

In this work we consider fairness in Correlation-Clustering. Formally, each vertex v is
associated with one of k given colors {1, . . . , k} and we denote v’s color by c(v). Additionally,
we denote by Vi all vertices of color i, i.e., Vi ≜ {u : c(u) = i} for every i = 1, . . . , k. We are
also given the ratios of these colors in V , i.e., there exists h ∈ N such that V contains h · pi

vertices of the ith color (where p1, . . . , pk ∈ N≥1).1 We denote these ratios by p1 : . . . : pk.2
The fairness constraint on the clustering C is that for every cluster in C and for every two
colors i and j the ratio of the number of vertices in the cluster of color i to the number of
vertices in the cluster of color j equals pi/pj . Hence, every cluster in C preserves the color
ratios of the vertices in the input graph G. We denote the problem of Min-Disagreement
with a fairness constraint as Fair-Min-Disagreement and the problem of Max-Agreement
with a fairness constraint as Fair-Max-Agreement. Typically, all the above mentioned
applications of fairness in clustering satisfy that

∑k
i=1 pi = o(n).

Fair-Min-Disagreement in complete unweighted graphs was considered by Ahmadi,
Galhotra, Saha and Schwartz [1] and by Ahmadian, Epasto, Kumar and Mahdian [4]. For
two colors and a ratio of 1 : 1 [1] present an approximation of (3α + 4) where α is the best
known approximation for Min-Disagreement in complete unweighted graphs (α = 2.06 [19]).
For two colors and a ratio of 1 : p [4, 1] present an approximation of O(p2). For a general
number of colors k and ratios 1 : p2 : . . . : pk an approximation of k2 ·maxi=2,...,k{p2

i } was
also given by [4, 1], as well as relaxed bi-criteria guarantees. All the above results reduce the
problem to Min-Disagreement (without any fairness requirements) by matching nodes of
different colors and merging them.

1 It is assumed without loss of generality that there does not exist a number s > 1 such that pi/s ∈ N for
all i = 1, . . . , k.

2 Note that pi/pj = |Vi|/|Vj | for every i, j = 1, . . . , k.
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To the best of our knowledge, no approximation algorithms are known for general instances
of Fair-Min-Disagreement as the above results of [1, 4] apply only to complete unweighted
graphs. Additionally, to the best of our knowledge, no approximation algorithms are known
for Fair-Max-Agreement.

1.1 Our Results and Techniques
We show that Fair-Min-Disagreement is hard to approximate within any finite approxima-
tion factor. Moreover, we prove that this hardness holds even for the special case of only two
colors and a ratio of 1 : 1. This is summarized in the following theorem.

▶ Theorem 1. If Fair-Min-Disagreement with 2 colors and a ratio of 1 : 1 admits a
polynomial time approximation algorithm with a finite approximation guarantee, then P =
NP .

This hardness result is extended to bi-criteria algorithms, and it holds even for the
special case of only three colors and ratios of 1 : 1 : 1. We say that an algorithm for
Fair-Min-Disagreement is a bi-criteria (α, 1 + ε)-approximation if it outputs a clustering
C = {C1, . . . , Cl} that satisfies: (1) the cost of C is at most α times the cost of an optimal
solution; and (2) for each 1 ≤ r ≤ l it holds that |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε)pi/pj for every
(ordered) pair of colors i and j. This is summarized in the following theorem.

▶ Theorem 2. For every α ≥ 1 and ε > 0, if Fair-Min-Disagreement with 3 colors and
ratios of 1 : 1 : 1 admits a bi-criteria (α, 1 + ε) polynomial time approximation algorithm,
then P = NP .

Let us focus now on Fair-Max-Agreement. Obtaining an approximation of (roughly) 1/2

is easy (see Section 2), and thus the challenge is improving it. In order to achieve such an
improvement, we first notice that one can restrict attention to solutions that contain only
two clusters. We prove that if one returns the best of: (1) an α-approximate fair two-cluster
solution; and (2) a suitably chosen solution that is comprised of the smallest possible fair
clusters (note that each such cluster contains exactly pi vertices of color i), then we can
obtain an approximation better than 1/2 for Fair-Max-Agreement assuming α is sufficiently
large. The resulting approximation for Fair-Max-Agreement depends on α, thus the bulk of
the effort is focused on obtaining a good approximation for the problem where the output is
restricted to having only two clusters.

First, we consider a case study with two colors and a ratio of 1 : 1. For this case study
problem, we prove that one can reduce the two-cluster problem to a cut maximization
problem that captures both Max-Bisection and Max- n

2 -Uncut (see Section 1.3 for the
exact definitions) with no fairness constraints. Thus, we use machinery developed for
Max-Bisection and Max- n

2 -Uncut, that is based on rounding a Lassere SDP hierarchy
relaxation (see [37, 10, 42]), to obtain the following theorem.

▶ Theorem 3. Fair-Max-Agreement with two colors and a ratio of 1 : 1 admits a polynomial
time 0.609-approximation algorithm.

When considering general instances, it is not clear if (or how) one can reduce the two-cluster
problem to a problem that has no fairness constraints. Hence, a different approach is needed.
We adopt the sticky Brownian motion approach of Abbasi-Zadeh, Bansal, Guruganesh,
Nikolov, Schwartz and Singh [43], which was successfully used for approximating Max-Cut
with side constraints (see Section 2.2 for the definition). In order to apply this approach to

APPROX/RANDOM 2022



37:4 Fair Correlation Clustering in General Graphs

our problem, we prove that it can simultaneously handle both edges that cross between the
two clusters and edges that do not cross between the two clusters (it is important to note
that the work of [43] deals only with edges that cross the cut when considering Max-Cut with
side constraints). However, this comes at a price of a slightly worse bi-criteria approximation
when compared to the case study which has two colors and a ratio of 1 : 1.

We say that an algorithm for Fair-Max-Agreement is a bi-criteria (α, ε)-approximation
if it outputs a clustering C = {C1, . . . , Cl} that satisfies: (1) the value of C is at least
α times the value of an optimal clustering; and (2) for every 1 ≤ j ≤ l there exists a
hj ∈ {1, . . . , n/

∑k
i=1 pi} such that

∣∣|Cj ∩ Vi| − hj · pi

∣∣ ≤ εn for all 1 ≤ i ≤ k.

▶ Theorem 4. Fair-Max-Agreement with k ≥ 2 colors and ratios of p1 : . . . : pk admits
for every 0 < ε < 1−

∑k
i=1 pi/n a bicriteria ((0.591− ε)(1−

∑k
i=1 pi/n), ε)-approximation

whose running time is O(npoly(log (k)/ε)).

Recalling that
∑k

i=1 pi = o(n) is the typical case, the approximation in the above theorem is
in fact 0.591 − ε − o(1). Moreover, if k = O(1) then the running time of the algorithm is
polynomial.

1.2 Related Work
Correlation-Clustering has received a lot of attention since its introduction by Bansal,
Blum, and Chawla [12] close to two decades ago. The best known approximation al-
gorithm Min-Disagreement in general graphs obtains a O(log n) approximation [24, 18]. For
Max-Agreement the best known approximations are obtained by rounding the natural SDP
relaxation and achieve a guarantee of 0.7666 [39] and 0.7664 [18]. For complete unweighted
graphs Max-Agreement admits a PTAS [12] while Min-Disagreement has a long sequence of
works [12, 19, 18, 6] where the current best known achieves an approximation of 2.06 [19].

Fairness in clustering has attracted much attention since the work of Chierichetti, Kumar,
Lattanzi and Vassilvitskii [21] for k-Center and k-Median. It was followed by works on
the same two problems [14, 15, 11], as well as k-Means [38, 27]. Moreover, [33] considered
fairness in the context of spectral clustering. Related notions of fairness were also studied
[3, 14]. Fairness in Correlation-Clustering was considered by [1, 4] and also extended to
hierarchical clustering [2].

In this work we use Lasserre SDP hierarchy to formulate relaxations. The Lasserre
hierarchy [34] has been used to develop approximation algorithms for numerous combinatorial
optimization problems. Here we mention only few of the related works that directly relate
to our problem. Focusing on Max-Bisection, Raghavendra and Tan [37] obtained a 0.85
approximation ratio using the Lasserre SDP hierarchy. Following their work, Austrin,
Benabbas and Georgiou [10] improved this ratio to 0.8776 which almost matches the Goemans-
Williamson approximation ratio for Max-Cut [29]. Wu, Du and Xu [42] considered other
graph bisection maximization problems and generalized the algorithm of [10] and showed
that Max- n

2 -Uncut admits an approximation ratio of 0.8776.

1.3 Preliminaries
We denote a cut as S = {S, V \S} where δ(S) = {(u, v) ∈ E|(u ∈ S∧v /∈ S)∨(u /∈ S∧v ∈ S)}
is the collection of edges crossing S, and E(S) = {(u, v) ∈ E|u, v ∈ S} is the collection of
edges that have both endpoints in S. For every X ⊆ E we denote w(X) =

∑
e∈X w(e) the

sum of weights of edges in X. We similarly use the notations above for E+ and E−, i.e.,
w−(X) = w(X ∩ E−) and w+(X) = w(X ∩ E+). For the Max-Agreement objective and a
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clustering C we denote the weight of edges in agreement in C as v(C) (alternatively, v(C) is
the value of the clustering C). Additionally, we denote an optimal clustering by C∗ and its
value by OPT = v(C∗). Moreover, we denote by v+(C) and v−(C) the contribution of the +
and − edges to v(C), respectively. Let us now define the variant of the problem where the
number of clusters is bounded.

▶ Definition 5. Fair-Max-Agreement where the numbers of clusters in a solution is required
to be at most r is denoted as Fair-Max-Agreement[r].

Note that Fair-Max-Agreement[n] is essentially Fair-Max-Agreement with no restriction on
the number of clusters in the output. Fair-Max-Agreement[2] is related to Max-Bisection
and Max- n

2 -Uncut problems which are defined as follows. Given a graph G = (V, E) the goal
is to find a cut S ⊆ V where |S| = n/2 such that w(δ(S)) is maximized for Max-Bisection
and w(E(S)) + w(E(V \ S)) is maximized for Max- n

2 -Uncut.
In this work we use Lasserre SDP hierarchy relaxations, which contain vectors vS for

subsets S ⊆ V . We use the following abbreviated notations: vi = v{i} for the singleton set
{i}, v0 = v∅ for the empty set, µi = vi · v0 denotes the “marginal probability” of vertex i,
and ρij = vi · vj is the covariance between vertices i and j. Additionally, w̃i = vi − µiv0 is
the component of vi in the linear subspace that is orthogonal to v0, and wi = w̃i/∥w̃i∥2 is
its normalized vector.

2 Algorithms for Fair-Max-Agreement

We split this section into two parts. In the first part we consider the case study with two
colors and a uniform ratio of 1 : 1. In the second part we consider general instances with
k ≥ 2 colors and ratios p1 : . . . : pk.

2.1 Case Study – Two Colors with Ratio 1:1

2.1.1 A Simple (1/2)-Approximation
▶ Observation 6. Let G = (V1 ∪ V2, E+ ∪ E−) be an instance with two colors and a ratio
of 1 : 1. Let f : V1 → V2 be a bijection such that M− ≜ {(u, f(u)) : u ∈ V1} minimizes
w(M− ∩ E−). Then every clustering C satisfies v−(C) ≤ w(E−)− w(M− ∩ E−). 3

The proof of the following theorem, which is based on Observation 6, appears in Ap-
pendix A.

▶ Theorem 7. There is a polynomial time (1/2)-approximation algorithm for Fair-Max-
-Agreement in general weighted graphs with two colors and a ratio of 1 : 1.

2.1.2 Beating the (1/2)-Approximation Ratio
The following lemma shows that there is a solution with only two clusters whose value is
sufficiently large (a similar idea was used in, .e.g., Charikar and Wirth [17]). Its proof
appears in Appendix B.

3 Intuitively, for every clustering C we create a matching M between V1 and V2 such that every matched
pair of nodes appears in the same cluster in C (note that there can be more than one such matching).
Thus, every clustering C must incur a loss due to the − edges whose value is at least the total weight of
− edges in M , i.e., w(M ∩ E−).

APPROX/RANDOM 2022



37:6 Fair Correlation Clustering in General Graphs

▶ Lemma 8. For every clustering C there is a clustering S = {S, S} satisfying: v(S) ≥
v+(C) + 1

2 v−(C).

The following lemma reduces Fair-Max-Agreement to Fair-Max-Agreement[2] with
bounded loss in the approximation factor (its proof appears in Appendix C).

▶ Lemma 9. If there is an α-approximation algorithm for Fair-Max-Agreement[2] with
two colors and a ratio of 1 : 1, then there is a (2α)/(2 + α)-approximation algorithm for
Fair-Max-Agreement with two colors and a ratio of 1 : 1.

We note that if α > 2/3 then Lemma 9 implies an approximation better than 1/2 for
Fair-Max-Agreement. Therefore, we focus our attention now on presenting an approximation
that is strictly better than 2/3 for Fair-Max-Agreement[2] assuming two colors and a ratio
of 1 : 1. To achieve this goal we define the following optimization problem.

▶ Definition 10. The Max-Agreement-Bisection problem is defined as follows. Given an
edge weighted graph G = (V, E) equipped with non-negative edge weights w : E → R+, where
each edge is labeled either + or −, the task is to partition the nodes into two clusters of equal
size so as to maximize the overall agreement, i.e.,

max
S⊆V :|S|=n/2

{
w−(δ(S)) + w+(E(S)) + w+(E(S))

}
.

It is important to note that in Max-Agreement-Bisection there are no colors, therefore
no fairness constraints. Nonetheless, relying on the fact that the number of colors is only
two and the ratio is 1 : 1, we present an approximation preserving reduction from Fair-
-Max-Agreement[2] to Max-Agreement-Bisection. This is summarized in the following
lemma.

▶ Lemma 11. Fair-Max-Agreement[2] with two colors and a ratio of 1 : 1 has an approx-
imation preserving reduction to Max-Agreement-Bisection.

Proof. We are given an instance of Fair-Max-Agreement[2] with two colors and a ratio of
1 : 1. I.e., a graph G = (V1 ∪ V2, E+ ∪ E−) where |V1| = |V2|. We construct an instance for
Max-Agreement-Bisection as follows. Consider the graph G̃ = (V1 ∪ V2, Ẽ+ ∪ Ẽ−) where

Ẽ+ ≜ {(u, v) ∈ E+ | c(u) = c(v)} ∪ {(u, v) ∈ E− | c(u) ̸= c(v)}
Ẽ− ≜ {(u, v) ∈ E− | c(u) = c(v)} ∪ {(u, v) ∈ E+ | c(u) ̸= c(v)}.

For every solution S = {S, S} for Max-Agreement-Bisection we efficiently construct a
solution S ′ = {S′, S′} for Fair-Max-Agreement[2]. Let S = {S, S} be a solution to the
former problem, we construct a clustering S ′ = {S′, S′} as follows: S′ = {u ∈ S | c(u) =
1} ∪ {u ∈ S | c(u) = 2}. One can note that S′ is obtained from S by swapping the side of
the cut all vertices of color 2 reside in.

Note that every edge e ∈ E which was in agreement in the solution {S, S} for Max-
-Agreement-Bisection, has a corresponding edge ẽ ∈ Ẽ which is in agreement in the
solution {S′, S′} for Fair-Max-Agreement[2], and vice versa. Thus, v(S) = v(S ′), i.e. the
value of the solution remains the same. All that remains to prove is that S ′ satisfies the
fairness constraints. First, one can note that |V1 ∩ S| = n/2 − |V2 ∩ S| since |S| = n/2.
Moreover, n/2− |V2 ∩S| = |V2 ∩S| since |V2| = n/2 (recall that the ratio is 1 : 1 and there are
n vertices on total). From the definition of S′ we can infer that: |V2 ∩ S′| = |V2 ∩ S|. This
proves |V2 ∩ S′| = |V1 ∩ S′|, i.e., S′ satisfies the fairness constraints (and therefore S′ also
satisfies the fairness constraints). This concludes the proof. ◀
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We emphasize that the above approach of reducing Fair-Max-Agreement[2] to a graph
bisection problem, heavily relies on the fact that there are only two colors with a ratio of
1 : 1 and it fails for a general instance. Thus, for general instances a different approach is
required.

In order to cope with Max-Agreement-Bisection we apply the approach of Raghavendra
and Tan [37], and the subsequent works of [10, 42], which is based on rounding a Lasserre
SDP hierarchy relaxation.

Following Halperin and Zwick [31] and Han, Ye and Zhang [32], we present a general
graph bisection problem. This problem is parametrized by four coefficients c0, c1, c2, c3 and
is defined as follows (via a quadratic formulation):

max
∑

e=(i,j)∈E w(e)(c0 + c1x0xi + c2x0xj + c3xixj)
s.t.

∑
i∈V x0xi = 0

x2
i = 1 0 ≤ i ≤ n

Note that in this problem, xi ∈ {±1} for every i ∈ V , since the last constraint is x2
i = 1.

Therefore, the first constraint,
∑

i∈V x0xi = 0 is equivalent to the fact that exactly half the
variables equal 1 and the other half equal −1.

The coefficients c0, c1, c2, c3 depend on the exact graph bisection problem which we aim
to solve. For example, when considering Max-Bisection the coefficients are c0 = 1/2, c1 =
0, c2 = 0, c3 = −1/2. Additionally, when considering Max- n

2 -Uncut the coefficients are
c0 = 1/2, c1 = 0, c2 = 0, c3 = 1/2.

We note that Max-Agreement-Bisection resembles both Max-Bisection and Max- n
2 -

-Uncut since: (1) in all three problems we aim to find a cut that contains exactly half of the
vertices; and (2) the objective of Max-Agreement-Bisection can be seen as the sum of the
objectives of Max-Bisection and Max- n

2 -Uncut on two graphs over the same set of vertices V

(the graph (V, E−) corresponds to the Max-Bisection objective whereas (V, E+) corresponds
to the Max- n

2 -Uncut objective). Therefore, the objective for Max-Agreement-Bisection can
be formally written as follows:

∑
e=(i,j)∈E+

w(e)
(

1
2 + 1

2xixj

)
+

∑
e=(i,j)∈E−

w(e)
(

1
2 −

1
2xixj

)
.

Equivalently, Max-Agreement-Bisection can be seen as an extension of the general graph
bisection problem in which the c0, . . . , c3 coefficients are not uniform over the edges of the
graph. Specifically, for + edges the coefficients are c0 = 1/2, c1 = 0, c2 = 0, c3 = 1/2 and for −
edges the coefficients are c0 = 1/2, c1 = 0, c2 = 0, c3 = −1/2.

Our main observation is that the algorithm and analysis of [10] for Max-Bisection, and
the followup work of [42] for the general graph bisection problem described above, can
be extended to Max-Agreement-Bisection with virtually no change in the analysis. We
refer to Appendix D to the high level details as to why Max-Agreement-Bisection admits
an approximation of 0.8776 (an approximation of 0.8776 is the guarantee [10] proved for
Max-Bisection and [42] for Max- n

2 -Uncut). This enables us to obtain the following Corollary.

▶ Corollary 12. Fair-Max-Agreement[2] with two colors and a ratio of 1 : 1 is approximable
in polynomial time to within a factor 0.8776.

Proof of Theorem 3. Follows from Corollary 12 and Lemma 9. ◀

APPROX/RANDOM 2022
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2.2 Approximating General Instances
For general instances (either k > 2 or non-uniform ratios) the approximation guarantees we
provide are slightly worse than for instances with two colors and a ratio of 1 : 1. The main
use of Lemma 8 is that there is a good solution that has only two clusters. It is important to
note that this lemma holds for any number of colors and any ratios, hence it also applies to
general instances. However, Lemma 9, which reduces the problem to the two cluster variant,
does not hold for a general instance with the exact same guarantee. The reason is that even
for the case of uniform ratios 1 : . . . : 1 and k colors we are required to find a min cost
perfect matching in a k-partite graph (where the cost of a hyperedge is the total weight of −
edges between nodes in the hyperedge). Hence, we no longer can find in polynomial time a
clustering C which satisfies the condition v−(C) ≥ v−(C∗). To overcome the above difficulty
we use a different approach in which we randomly choose a clustering that is based on a
random k-partite matching between the colors. This approach incurs only a small loss in
the approximation guarantee. Let us first describe the simple randomized approximation
algorithm which obtains an approximation ratio of 1/2 − o(1) and then describe how to
improve upon this ratio.

2.2.1 Simple (1/2 − o(1))-Approximation
Our random clustering algorithm is summarized in Algorithm 1.

Algorithm 1 Random k-Partite Matching.

Input: G = (V1 ∪ . . . ∪ Vk, E), {pi}k
i=1;

C ← ∅;
while V ̸= ∅ do

C ← ∅;
for i← 1 to k do

Let Si be a uniform random set of pi nodes from Vi;
C ← C ∪ Si;
Vi ← Vi \ Si;

end
C ← C ∪ {C};

end
return C;

▶ Observation 13. Let G = (V, E) be a graph with k ≥ 2 colors and ratios of p1 : p2 : . . . : pk.
Let C be the output of Algorithm 1. Then E[v−(C)] ≥ (1− (

∑k
i=1 pi)/n) · w(E−).

The following extends Theorem 7, which provided an approximation of 1/2 for the case
there are two colors and a ratio of 1 : 1, to a general number of colors k and ratios p1 : . . . : pk

while suffering a small loss of (
∑k

i=1 pi)/(2n) in the approximation guarantee. Note that if∑k
i=1 pi = o(n) then this loss is at most o(1). This is achieved by replacing the clustering

that corresponds to the matching M− of Observation 6 with the clustering C generated by
Algorithm 1.

▶ Theorem 14. There is a randomized polynomial time (1/2−(
∑k

i=1 pi)/(2n))-approximation
algorithm for Fair-Max-Agreement in general weighted graphs with k ≥ 2 colors and ratios
of p1 : p2 : . . . : pk.
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Proof. The algorithm chooses the best from the following two solutions: a single cluster
containing all the nodes or the output of Algorithm 1. The value of the former clustering
is the total weight of + edges, i.e., w(E+). On the other hand, the expected value of the
latter clustering is at least (1− (

∑k
i=1 pi)/n) · w(E−) (see Observation 13). Let us denote

by CALG the chosen clustering, i.e., CALG = arg max{v(C), v({V })}. One can note that
E[v(CALG)] ≥ 1/2 · (w(E+) + (1− (

∑k
i=1 pi)/n) · w(E−)) ≥ (1/2− (

∑k
i=1 pi)/(2n)) · w(E) ≥

(1/2− (
∑k

i=1 pi)/(2n)) ·OPT . ◀

2.2.2 Beating the (1/2 − o(1))-Approximation Ratio

The following lemma shows that one can reduce Fair-Max-Agreement to Fair-Max-Agreeme-
nt[2], for general instances, with a small loss in the approximation guarantee (similarly
to Lemma 9). If

∑k
i=1 pi = o(n) then the approximation guarantee of the following lemma

equals (2α)/(2 + α)− o(1).

▶ Lemma 15. If there is an α-approximation algorithm for Fair-Max-Agreement[2] with

k ≥ 2 colors and ratios of p1 : . . . : pk, then there is a (1−
∑k

i=1
pi

n )( 1
α ( 2+α

2 −
∑k

i=1
pi

n ))−1-
approximation algorithm for Fair-Max-Agreement with k ≥ 2 colors and ratios of p1 : . . . : pk.

Proof. The proof is similar to the proof of Lemma 9 except that instead of choosing the best
of two solutions when one of them has a value of at least v−(C∗) for some optimal clustering
C∗, we need to settle for a solution with value (1 − (

∑k
i=1 pi)/n) · v−(C∗) (swapping the

clustering Observation 6 guarantees with the clustering Observation 13 guarantees). The
rest of the calculations are similar. ◀

All that remains is to find a good approximation for Fair-Max-Agreement[2]. When
considering an approximation better than 1/2, we note that the approach taken for two colors
and a ratio of 1 : 1, which reduces Fair-Max-Agreement[2] to Max-Agreement-Bisection,
does not work for general instances. Instead we take the approach of Abbasi-Zadeh, Bansal,
Guruganesh, Nikolov, Schwartz and Singh [43] which presented the problem of Max-Cut
with side constraints (denoted by Max-Cut-Sc) and an algorithm for it. In the Max-Cut-Sc
problem we are given an n-vertex graph G = (V, E), a collection F = {F1, . . . , Fk} of k

subsets of V , and cardinality bounds b1, ..., bk ∈ N. The goal is to find a subset S ⊆ V

that maximizes the total weight of edges that cross S, subject to satisfying |S ∩ Fi| = bi

for all 1 ≤ i ≤ k. Their algorithm uses a sticky Brownian motion for the rounding process
of a suitable semi-definite relaxation for Max-Cut-Sc. In order to utilize this approach we:
(1) present a generalization of Max-Cut-Sc which also handles uncut edges (this problem
is denoted by Max-Agreement-Sc); and (2) prove that the rounding approach of [43] can
handle uncut edges, i.e., + edges, with the same approximation guarantee of the cut edges.4
Formally, the input for the Max-Agreement-Sc problem is the same as Max-Cut-Sc, with
the addition that every edge is labeled either with a + or a −. The goal is to find a subset
S ⊆ V that maximizes w−(δ(S)) + w+(E(S)) + w+(E(S)) subject to the same constraints
as in Max-Cut-Sc.

4 The algorithm of [43] for Max-Cut-Sc in fact takes the best out of two solutions: the Brownian motion
rounding and randomized rounding. The latter algorithm is needed for the case that the value of
the optimal solution is small. In our case we prove that the instance for which we need to solve
Max-Agreement-Sc cannot have an optimal solution of small value (see Lemma 17), thus our algorithm
just utilizes the Brownian motion approach.
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Following the above discussion, we show how one can handle Fair-Max-Agreement[2] by
solving a sequence of Max-Agreement-Sc instances with an appropriate choice of cardinality
bounds. Specifically, given an instance of Fair-Max-Agreement[2] with k colors, we choose
F = {V1, . . . , Vk} and all the cardinality bounds bi = h · pi for all i = 1, . . . , k. The
sequence of Max-Agreement-Sc is defined by enumerating over all values of h in the range
h = 1, . . . , n/

∑k
i=1 pi. Finding a solution to this problem for all possible h values captures

the fairness constraints. This is true since an optimal clustering of Fair-Max-Agreement[2]
corresponds to some specific (unknown) value of h in the above range. Note that an instance
as above to the Max-Agreement-Sc is always feasible for every value of h in the range between
1 and n/

∑k
i=1 pi. This is summarized in Algorithm 2.

Algorithm 2 Fair-Max-Agreement[2] via Max-Agreement-Sc.

Input:G = (V1 ∪ . . . ∪ Vk, E+ ∪ E−), {pi}k
i=1;

F ← {V1, . . . , Vk};
for h← 1 to n/

∑k
i=1 pi do

bi ← h · pi ∀1 ≤ i ≤ k;
Let Ch be the sticky Brownian motion solution for Max-Agreement-Sc with
bounds {bi}k

i=1;
end
return argmax{v(Ch) : h = 1, . . . , n/

∑k
i=1 pi};

The bulk of the effort is in solving Max-Agreement-Sc via the Brownian motion approach
of [43]. Theorem 3 in [43] provides, for every ε > 0, an algorithm for Max-Cut-Sc whose
running time is O(npoly(log(k)/ε)) which finds a solution S ⊆ V with the following properties
(in what follows S∗ is an optimal solution for Max-Cut-Sc): (1) E[w−(δ(S))] ≥ (0.843− ε) ·
w−(δ(S∗)); and (2) for every color i = 1, . . . k ||S∩Vi|−bi| ≤ εn. We prove that the rounding
algorithm of [43] can also handle, in addition to the above two properties, the contribution of
the + edges. Specifically, we show how one can easily change the SDP relaxation and then
apply the rounding algorithm of [43] to also guarantee that

E[w+(E(S)) + w+(E(S))] ≥ (0.843− ε) · (w+(E(S∗)) + w+(E(S∗))),

where S∗ here denotes an optimal solution to Max-Agreement-Sc for the correct choice of h.
First, let us start by formulating Max-Agreement-Sc as a quadratic optimization problem:

max
∑

e=(i,j)∈E− w(e) · (xi − xj)2 +
∑

e=(i,j)∈E+ w(e) · (1− (xi − xj)2)
s.t.

∑
j∈Fi

xj = bi i = 1, . . . , k

xj · (1− xj) = 0 j = 1, . . . , n

Recall that in the above bi equals pi · h (for some value of h).
We denote the above quadratic problem by Q and the solutions to the ℓ-level Lasserre

strengthening of the standard SDP relaxation of Q by SoS(Q). A solution in SoS(Q) can
be represented by a collection of unit vectors vS for all subsets S ⊆ V (|S| ≤ ℓ). For
completeness we write the ℓ-round SDP relaxation for the problem:

max
∑

e=(i,j)∈E− w(e) · ∥vi − vj∥2 +
∑

e=(i,j)∈E+ w(e) · (1− ∥vi − vj∥2)
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s.t.
∑

j∈Fi
v0 · vj = bi i = 1, . . . , k

v0 · v0 = 1
vS1 · vS2 = vS3 · vS4 ∀S1, S2, S3, S4 ⊆ V,

S1 ∪ S2 = S3 ∪ S4
and |S1 ∪ S2| ≤ ℓ

v0 · vi + vj · v0 − vivj ≤ 1 1 ≤ i, j ≤ n

vi · v0 ≥ vi · vj 1 ≤ i, j ≤ n

vi · vj ≥ 0 1 ≤ i, j ≤ n

For completeness of presentation, let us now focus on defining the rounding algorithm
of [43], as we require some of the notations in order to present the analysis of the uncut
+ edges. Recall that w̃i ≜ vi − µiv0 and wi ≜ w̃i/∥w̃i∥2. Let W and W̃ be the PSD
correlation matrices defined by the above vectors, that is Wij = wi ·wj and W̃ij = w̃i · w̃j,
for every 1 ≤ i, j ≤ n. The following lemma is used to obtain the input vectors to the
rounding algorithm, this lemma is based on [13] and [30] and appears as Lemma 10 in [43].
We refer the reader to [13, 30, 43] for its proof.

▶ Lemma 16. Let ε0 ≤ 1, ℓ ≥ 1/ε4
0 +2, for any solution in SoSℓ(Q) where ℓ ≥ 1/ε4

0 +2, there
exists an efficiently computable solution in SoSℓ−1/ε4

0
(Q) such that

∑n
i=1

∑n
j=1 W̃2

ij ≤ ε4
0n2.

Second, let us focus on the rounding algorithm. The input to the rounding algorithm is
the vectors obtained by Lemma 16. To round the vectors, the algorithm performs a sticky
Brownian motion inside the hypercube [0, 1]n, that is the random process {Xt}t≥0 which is
defined as follows. The starting point of the random walk is X0 such that (X0)i = µi for
every 1 ≤ i ≤ n. Denote {Bt}t≥0 as the standard Brownian motion in Rn. Let τ1 = inf{t :
X0 +W1/2Bt /∈ [0, 1]n}, then for all 0 ≤ t ≤ τ1: Xt = X0 +W1/2Bt. Let At = {i|(Xt)i ≠ 0, 1}
be the collection of active nodes at time t, and Ft = {x ∈ [0, 1]n|xi = (Xt)i,∀i /∈ At}. The
covariance matrix Wt used for the random walk at time t is based on W and an entry in
this matrix is not 0 only for the indices in At, i.e., (Wt)ij = Wij if i, j ∈ At (otherwise
(Wt)ij = 0). After time τ1 the random process is changed to Xt = Xτ1 + W1/2

τ1 (Bt −Bτ1),
it is defined for τ1 ≤ t ≤ τ2 where τ2 = inf{t : Xτ1 + W1/2

τ1 (Bt −Bτ1) /∈ Fτ1}. In general,
τi = inf{t : Xτi−1 + W1/2

τi−1(Bt − Bτi−1) /∈ Fτi−1} and when τi−1 ≤ t ≤ τi the process is
defined as follows: Xt = Xτi−1 + W1/2

τi−1(Bt −Bτi−1). The algorithm does not terminate at
time τn but it is stopped at a fixed pre-specified time τ (which is chosen to be Θ(log(1/ε)))
and rounds to 1 the remaining nodes i ∈ Aτ with probability (Xτ )i. The output cut S ⊆ V

contains all the nodes i for which (Xτ )i = 1.
As previously mentioned, the algorithm for Max-Cut-Sc in [43] distinguishes between

two cases. For instances with small optimal value a different approach was taken instead
of the Brownian motion approach described above. However, since we use a sequence of
Max-Agreement-Sc instances to solve Fair-Max-Agreement[2], this case is not possible due
to the following lemma. It states that the optimal value of Fair-Max-Agreement[2] is not
small, hence for the correct choice of h the optimal value of Max-Agreement-Sc is also not
small. Thus, we can focus solely on instances whose optimal value is not small.

▶ Lemma 17. The optimal value of an instance G = (V1 ∪ . . .∪ Vk, E+ ∪E−) to Fair-Max-
-Agreement[2] is at least (1/2−

∑k
i=1 pi/(2n))w(E).

Proof. Let C be the output of Algorithm 1. The simple algorithm which outputs S = {S, S}
by placing all the nodes of each cluster C ∈ C together in S or S with probability 1/2 (and
independently over the different clusters in C) results in a solution to Fair-Max-Agreement[2]
with an expected value of (1/2−

∑k
i=1 pi/(2n))w(E). This is true since E[v+(S)] = 1/2 ·w(E+)

and E[v−(S)] = 1/2 · (1−
∑k

i=1 pi/n)w(E−) (the latter follows from Observation 13) ◀
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The analysis of the Brownian motion based algorithm relies heavily on the following
theorem which appears in [36]. Intuitively, this theorem captures the connection between
diffusion processes and partial differential equations (see chapter 9 in [36]). We present it
here since we require it for the analysis of the + edges.

▶ Theorem 18 (Theorem 9 in [43] and Theorem 9.14 in [36]). Given a domain D = (0, 1)2 ⊆ R2,
suppose L is uniformly elliptic in D of the form

L =
2∑

i,j=1
aij(x) ∂2

∂xi∂xj

where 1
2 σσT = [aij ] for σ ∈ R2×2. For x ∈ D consider the process Xt = X0 + σBt. Denote

τD = inf{t > 0; Xt /∈ D} (the stopping time of Xt). Let ϕ be a bounded continuous function
on ∂D. Put u(x) = Ex[ϕ(XτD

)] where Ex denotes the expected value when X0 = x. Then u

solves the Dirichlet problem
1. Lu = 0 in D.
2. limx→y u(x) = ϕ(y) for all regular y ∈ ∂D.

Let us fix two nodes i and j and denote Xt as the projection of the random process Xt

to the coordinates i, j and let

W =
(

1 ρij

ρij 1

)
.

In our analysis σ = W
1/2, i.e., the entries aij in the above theorem are the entries of W.

When performing an edge-wise analysis we can consider the projection of Xt we described
above. We note that the first guarantee in the following lemma is identical to [43], but is
included for completeness. The novelty of the following theorem lies in the second guarantee.5

▶ Lemma 19. Let i, j ∈ V and vi, vj the corresponding vectors in the SDP solution. It holds
that
1. Pr[Xτn i ̸= Xτn j ] ≥ 0.843 · ∥vi − vj∥2.
2. Pr[Xτn i = Xτn j ] ≥ 0.843 · (1− ∥vi − vj∥2).

Proof. Guarantee 1 of the lemma is identical to Lemma 11 in [43], and thus its proof is
omitted.

Let us focus on guarantee 2 above. Let us denote θij = arccos(wi · wj). Recall that
∥vi∥2 = µi and vi = µi · v0 +

√
µi − µ2

i ·wi. Therefore, the contribution of the + edges to
the objective of the relaxation can be re-written as follows:

1− ∥vi − vj∥2 = 1− (µi + µj − 2 · µi · µj + 2 cos(θij) ·
√

(µi − µ2
i ) · (µj − µ2

j )).

For simplicity we denote x = µi, y = µj , θ = θij and the expression above as SDP (x, y, θ).
Observe that the probability that the edge (i, j) is uncut equals the probability that the
Brownian motion Xt is absorbed in (0, 0) or (1, 1). Denote uθ(x, y) as the probability of
ending in (0, 0) or (1, 1) conditioned on starting the walk at point (x, y):

uθ(x, y) = Pr[(Xτn i = Xτn j)|(X0)i = x, (X0)j = y].

5 We mention that one can derive Lemma 19 via rotational symmetry of the boundary conditions of
∂[0, 1]2 for both cut and uncut edges, and similar rotational symmetry of the contribution to the SDP
relaxation of both cut and uncut edges.
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Observe that the boundary condition on uθ(x, y) is the following: uθ(x, y) = 1− (x + y −
2xy) ∀(x, y) ∈ ∂[0, 1]2. Following Theorem 18 uθ is the unique solution to the Dirichlet
problem:

∂2uθ

∂2x
+ ∂2uθ

∂2y
+ 2 cos(θ) ∂2uθ

∂x∂y
= 0 ∀(x, y) ∈ Int[0, 1]2

uθ(x, y) = 1− (x + y − 2xy) ∀(x, y) ∈ ∂[0, 1]2

The problem above can be numerically solved for any configuration (x, y, θ). Therefore, the
approximation ratio for uncut edges is min(x,y,θ)∈F

uθ(x,y)
SDP (x,y,θ) where F is the collection of

all feasible configurations. Specifically, (x, y, θ) ∈ F if it satisfies the triangle inequalities
which are derived from the ℓ-round SDP relaxation (see Appendix D Lemma 11 [43]). The
numerical calculation via adaptation of the code used in [43] results in an approximation
ratio of 0.843 for the uncut edges. ◀

Lemmas 19 and 17 are sufficient to extend the proof of Theorem 3 of [43] to Fair-Max-
-Agreement[2], this is summarized in the following theorem.

▶ Theorem 20. There exists a O(npoly(log(k)/ε))-time algorithm for Fair-Max-Agreeme-
nt[2], which for an instance G = (V1 ∪ . . . ∪ Vk, E) outputs a (0.843− ε, ε)-approximation
with high probability.

Proof of Theorem 4. Follows from Theorem 20 and Lemma 15. ◀

3 Hardness of Fair-Min-Disagreement

In this section we present the hardness results for Fair-Min-Disagreement. First we prove
Theorem 1.

Proof of Theorem 1. We present a reduction from the 3-Partition problem, as defined in
[8, 26]. In 3-Partition we are given n = 3ℓ integer numbers a1, a2, ..., an and a threshold
A such that A

4 < ai < A
2 and

∑n
i=1 ai = ℓA (where a1, . . . , an and A are polynomial in n).

The goal is to decide if the numbers can be partitioned into triplets such that each triplet
sums up to exactly A. This problem is known to be strongly NP-complete [26].

Given an instance of the 3-Partition problem we construct a graph for the Fair-Min-
-Disagreement problem as follows (we denote the two colors by red and blue). For each
number ai construct a clique with ai red nodes, the edges in this clique are all labeled with
+. Additionally, construct ℓ cliques where each of them contains A blue nodes and the edges
within such a clique are all labeled with +. For every pair of blue nodes which are not in the
same clique, place an edge between them which is labeled with −. This finishes the definition
of our instance for Fair-Min-Disagreement.

We claim that there is a solution to the given 3-Partition instance if and only if there
is a clustering of the Fair-Min-Disagreement instance whose cost is zero. Given a solution
to the 3-Partition instance we can construct a clustering of zero cost as follows. For each
triplet ai1 , ai2 , ai3 in the solution for 3-Partition (recall that ai1 + ai2 + ai3 = A), define a
cluster which contains the three red cliques corresponding to the numbers ai1 , ai2 , ai3 and a
single blue clique of size A. One can note that this is a valid, i.e., fair, clustering since the
number of red and blue nodes is equal in all clusters. Furthermore, there are no unclustered
nodes since

∑n
i=1 ai = ℓA. The cost of this clustering is zero since: (1) all cliques, either red

or blue, are contained as a whole in a single cluster, and thus all + edges are in agreement;
and (2) every cluster contains exactly a single blue clique, and thus all − edges are also in
agreement.
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Given a clustering of cost zero we prove that one can partition the numbers to triplets
such that the sum of each triplet is exactly A. Note that each clique, either red or blue, in
the graph is contained as a whole in a single cluster, otherwise there is a + edges that is
in disagreement which stands in contradiction to the fact that the clustering has zero cost.
Moreover, each cluster contains exactly a single blue clique as a whole. The reason is that
there cannot be no blue cliques in the cluster (if this occurs then the cluster has no blue nodes
at all and this contradicts the fact the clustering is fair) and there cannot be two or more
blue cliques in the cluster (if this occurs the cluster contains a − edge and this contradicts
the fact the clustering has zero cost). Thus, the number of blue nodes in the cluster is A.
Since the clustering is fair the number of red nodes in the cluster is also A. Recall that every
number ai satisfies that A

4 < ai < A
2 . Hence, the cluster must contain exactly three red

cliques that correspond to three numbers that sum up exactly to A. Therefore, the triplets
we define as a solution to 3-Partition are those that correspond to the three red cliques in
each cluster. ◀

Let us now prove that a bi-criteria approximation is also not possible unless P = NP .

Proof of Theorem 2. We present a reduction from Triangle-Partition, which is known to
be NP-hard [22]. In this problem the goal is to decide whether there is a set of node-disjoint
triangles in a tripartite graph which covers all the nodes of the given tripartite graph. Note
that without loss of generality one can assume that each of the three parts of the tripartite
graph contains the same number of nodes. Otherwise, it is clear that the input graph cannot
have all its nodes covered by node-disjoint triangles.

Given an instance G = (A ∪ B ∪ C, E) to Triangle-Partition we construct a graph
G′ = (A ∪B ∪ C, E′) for Fair-Min-Disagreement as follows. Each part of the three parts
of G is given a unique color, i.e., V1 = A, V2 = B, and V3 = C. Define the edges in G′ as
follows: E′− ≜ {(u, v)|(u, v) /∈ E} and E′+ ≜ ∅. This finishes the definition of our instance
for Fair-Min-Disagreement.

We claim that there is a solution to Triangle-Partition if and only if there is a solution
C = {C1, . . . , Cl} to Fair-Min-Disagreement whose cost is zero and it satisfies that for
every 1 ≤ r ≤ l: |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε) for every (ordered) pair of colors i and j.

Given a solution to Triangle-Partition we can construct a solution to Fair-Min-
-Disagreement by setting every triangle to be a different cluster. The nodes in each triangle
are connected by edges in E. Therefore, there are no − edges between these nodes in
E′. Since there are no + edges in E′, we can conclude that the cost of this solution for
Fair-Min-Disagreement equals zero. Moreover, each cluster in the solution for Fair-Min-
-Disagreement contains exactly one node from each of the three colors. Hence, we proved
the existence of the desired solution for Fair-Min-Disagreement.

Let C = {C1, C2, ..., Cl} be a solution to Fair-Min-Disagreement that has zero cost and
satisfies that for every 1 ≤ r ≤ l: |Cr ∩ Vi|/|Cr ∩ Vj | ≤ (1 + ε) for every (ordered) pair of
colors i and j. Note that for every 1 ≤ r ≤ l and i = 1, 2, 3: |Cr ∩ Vi| ≤ 1. The reason for
that is that two nodes of the same color are connected with a − edge in E′. Since C has
zero cost, any nodes of the same color cannot be in the same cluster. Moreover, for every
1 ≤ r ≤ l and i = 1, 2, 3: |Cr ∩ Vi| > 0. The reason for that is that if there is a (non-empty)
cluster Cr and a color i for which |Cr ∩ Vi| = 0, then Cr contains at least one node of color
j, j ̸= i. For this ordered pair of colors (j and i) the condition on C is violated. Therefore,
every cluster Cr contains exactly one node from every color, i.e., one node from every part
of G. Because the cost of the clustering is zero, there are no − edges from E′ inside each
cluster which means that it forms a triangle in G. Clearly, these triangles are node-disjoint
and contain all nodes in A ∪ B ∪ C since C is a partition of A ∪ B ∪ C. This finishes the
proof. ◀
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A Proof of Theorem 7

Proof. The algorithm chooses the best from the following two solutions: a single cluster
containing all nodes and a solution with all clusters of size two that correspond to M− from
Observation 6 (we note M− can be computed efficiently by finding a minimum cost perfect
matching in a bipartite graph). The former solution has value of at least w(E+), whereas
the latter solution has value of at least w(E−) − w(M− ∩ E−). Following observation 6,
OPT ≤ w(E+) + w(E−) − w(M− ∩ E−). If w(E+) > w(E−) − w(M ∩ E−) we note that
the single cluster solution has value of at least 1/2 · OPT . Otherwise the solution with all
clusters of size two, that correspond to M−, has value of at least 1/2 ·OPT . Hence, the above
algorithm achieves an approximation of 1/2. ◀

B Proof of Lemma 8

Proof. Given a clustering C = {C1, . . . , Cl} we can construct a clustering that has only two
clusters S = {S, S} as follows. For every Ci, with a uniform probability (and independently
over the clusters) we place all the nodes of Ci either in S or in S. Note that all + edges that
are in agreement in C always remain in agreement in S, thus v+(S) ≥ v+(C). Moreover, the
probability of every − edge that is in agreement in C to still be in agreement in S is exactly
1/2. Therefore, E[v−(S)] ≥ 1

2 v−(C). Hence, we can conclude that E[v(S)] ≥ v+(C) + 1
2 v−(C)

(so there exists a cluster S with a value of at least v+(C) + 1
2 v−(C)). This finishes the

proof. ◀
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C Proof of Lemma 9

Proof. We are given an instance of Fair-Max-Agreement with two colors and a ratio of 1 : 1.
Let C∗ = {C∗

1 , . . . , C∗
l } be an optimal clustering for this instance. Following observation 6

we can output the clustering M− induces, and we note that the value of this clustering is at
least v−(C∗). Following Lemma 8 when applied for C∗ the given α-approximation algorithm
can be used to obtain a clustering S = {S, S} with value v(S) ≥ α · (v+(C∗) + 1

2 v−(C∗)).
Therefore, choosing the best of the above two clusterings, we can output a solution whose
value is at least max{α · (v+(C∗) + 1

2 v−(C∗)), v−(C∗)} (we denote this value by y). Now we
show that for 0 < α < 1 it holds that y ≥ 2α

2+α · v(C∗).
The first case is when y = v−(C∗) and the second case is when y = α ·v+(C∗)+ 1

2 α ·v−(C∗).
Let us focus on the first case, and note that assuming y = v−(C∗), the definition of y implies
v+(C∗) ≤ (1/α− 1/2)v−(C∗). This in turn implies that:

v(C∗) = v+(C∗) + v−(C∗) ≤ v−(C∗) (1 + (1/α− 1/2)) = (2+α)/(2α) · y.

This concludes the proof for the first case. Let us now focus on the second case, and note that
assuming y = α ·v+(C∗)+ 1

2 α ·v−(C∗), the definition of y implies v−(C∗) ≤ (2α)/(2−α) ·v+(C∗).
This in turn implies that:

v(C∗) = v+(C∗) + v−(C∗) = v+(C∗) + (2+α)/4 · v−(C∗) + (2−α)/4 · v−(C∗)
≤ v+(C∗) + (2+α)/4 · v−(C∗) + (2−α)/4 · (2α)/(2−α) · v+(C∗)

= 2 + α

2α

(
α · v+(C∗) + α

2 · v
−(C∗)

)
= 2 + α

2α
· y.

This concludes the proof for the second case. ◀

D Approximating Max-Agreement-Bisection

We claim that one can use the algorithm of Wu, Du and Xu [42], who built upon the work of
Austrin, Benabbas and Georgiou [10] for Max-Bisection, to obtain a good approximation
for Max-Agreement-Bisection. The algorithms of [10, 42] both perform the following three
phases ([10] for the Max-Bisection problem and [42] for the general graph bisection problem).
In the first phase the following ℓ-round Lasserre SDP relaxation is solved:

max
∑

e=(i,j)∈E+ w(e)(1/2 + 1/2⟨vi, vj⟩)) +
∑

e=(i,j)∈E− w(e)(1/2− 1/2⟨vi, vj⟩))

s.t. ⟨v∅,
∑

i∈V vS△{i}⟩ = 0 ∀S ⊆ V, |S| < ℓ

⟨vS1 , vS2⟩ = ⟨vS3 , vS4⟩ ∀S1, S2, S3, S4 ⊆ V,

|S1|, |S2|, |S3|, |S4| ≤ ℓ,

S1△S2 = S3△S4
⟨v∅, v∅⟩ = 1

Let us denote by {vS
∗}S⊆V,|S|<ℓ an optimal solution to the above relaxation. The following

theorem shows how one can extract vectors {vi}n
i=0, from {vS

∗}S⊆V,|S|<ℓ, such that the
value of the objective does not deteriorate much and the vectors {vi}n

i=0 have low correlation.
Before formally stating the above, we introduce the following notation:

SDPV al({vi}) ≜
∑

e=(i,j)∈E+

w(e)(1/2 + 1/2⟨vi, vj⟩)) +
∑

e=(i,j)∈E−

w(e)(1/2− 1/2⟨vi, vj⟩)).

When reading the following theorem, the reader should recall the definitions of µi, ρi,j , and
wi, given in Section 1.3.
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▶ Theorem 21 (Theorem 3.1 in [10], Theorem 2 in [42]). There is an algorithm which given
a graph G = (V, E) and t ∈ N≥1 outputs a set of vectors {vi}n

i=0 in time nO(t) such that:
1. SDPV al({vi}) ≥ SDPV al({vi

∗})− 10t− 1
2 .

2.
∑n

i=1⟨v0, vi⟩ = 0.
3. The following triangle inequalities are satisfied for every 1 ≤ i, j ≤ n:

µi + µj + ρij ≥ −1, µi − µj − ρij ≥ −1

−µi + µj − ρij ≥ −1,−µi − µj + ρij ≥ −1

4. Ei,j∈V [|⟨wi, wj⟩|] ≤ t− 1
4 .

We note that the above theorem was proved in [10] for the objective of Max-Bisection
and in [42] for the objective of Max- n

2 -Uncut (both heavily rely on Raghavendra and Tan [37]).
However, one can note that the same proof holds for our definition of SDPV al({vi}) for
Max-Agreement-Bisection.

In the second phase the rounding algorithm of [10] uses {vi}n
i=0 to extract a cut S̃ =

{S̃, V \ S̃}. This rounding algorithm has the following properties: (1) the rounding does
not depend on the coefficients c0, c1, c2, c3; and (2) the analysis is performed edge-wise, i.e.,
the ratio of the probability of an edge being satisfied by the rounding algorithm to the
contribution of the same edge to the value of the relaxation is lower bounded. We note that
this cut might not be a bisection, i.e., |S̃| might not equal n/2, thus corrections must be
made. The following lemma is immediate from Lemma 4 in [42] and Lemma 3.2 in [10],
where the former is for the Max- n

2 -Uncut objective and the latter for the Max-Bisection
objective.

▶ Lemma 22. (following Lemma 4 in [42] and Lemma 3.2 in [10])
E[v(S̃)] ≥ α0 · SDPV al({vi}n

i=0), where α0 ≥ 0.8776.

The last phase is a size adjusting phase in which a subset of vertices from the larger side
of the cut S̃ is moved to the smaller side of the cut in order to create a bisection. This is
performed either by choosing a random subset (as is done in [10]), or equivalently, greedily (as
is done [42]). This phase incurs an additive loss of o(1) in the approximation guarantee. We
can choose any of the above two options. The following lemma summarizes the approximation
guarantee for Max-Agreement-Bisection, its proof follows from Theorem 21 and Lemma 22
similarly to [10, 42].

▶ Lemma 23. Max-Agreement-Bisection is approximable in polynomial time to within a
factor 0.8776.
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