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Abstract
A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate
f : {−1, 1}k → {0, 1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each
of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev,
and Velusamy [8] obtained explicit ratios characterizing the

√
n-space streaming approximability of

every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [7] proved a general dichotomy
theorem for

√
n-space sketching algorithms: For every f , there exists α(f) ∈ (0, 1] such that for

every ϵ > 0, Max-CSP(f) is (α(f) − ϵ)-approximable by an O(log n)-space linear sketching algorithm,
but (α(f) + ϵ)-approximation sketching algorithms require Ω(

√
n) space.

In this work, we give closed-form expressions for the sketching approximation ratios of multiple
families of symmetric Boolean functions. Letting α′

k = 2−(k−1)(1 − k−2)(k−1)/2, we show that for
odd k ≥ 3, α(kAND) = α′

k, and for even k ≥ 2, α(kAND) = 2α′
k+1. Thus, for every k, kAND

can be (2 − o(1))2−k-approximated by O(log n)-space sketching algorithms; we contrast this with
a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [5] implying that streaming
(2 + ϵ) · 2−k-approximations require Ω(n) space! We also resolve the ratio for the “at-least-(k − 1)-1’s”
function for all even k; the “exactly- k+1

2 -1’s” function for odd k ∈ {3, . . . , 51}; and fifteen other
functions. We stress here that for general f , the dichotomy theorem in [7] only implies that α(f)
can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have
existed a priori. Our analyses involve identifying and exploiting structural “saddle-point” properties
of this dichotomy.

Separately, for all threshold functions, we give optimal “bias-based” approximation algorithms
generalizing [8] while simplifying [7]. Finally, we investigate the

√
n-space streaming lower bounds

in [7], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND) − ϵ)-
approximations in o(

√
n) space.
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1 Introduction

In this work, we consider the streaming approximability of various Boolean constraint satis-
faction problems, and we begin by defining these terms. See [7, §1.1-2] for more details on
the definitions.

1.1 Setup: The streaming approximability of Boolean CSPs
1.1.1 Boolean CSPs
Let f : {−1, 1}k → {0, 1} be a Boolean function. In an n-variable instance of the problem
Max-CSP(f), a constraint is a pair C = (b, j), where j = (j1, . . . , jk) ∈ [n]k is a k-tuple of
distinct indices, and b = (b1, . . . , bk) ∈ {−1, 1}k is a negation pattern.

For Boolean vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ {−1, 1}n, let a ⊙ b denote
their coordinate-wise product (a1b1, . . . , anbn). An assignment σ = (σ1, . . . , σn) ∈ {−1, 1}n

satisfies C iff f(b ⊙ σ|j) = 1, where σ|j is the k-tuple (σj1 , . . . , σjk
) (i.e., σ satisfies C iff

f(b1σj1 , . . . , bkσjk
) = 1). An instance Ψ of Max-CSP(f) consists of constraints C1, . . . , Cm

with non-negative weights w1, . . . , wm where Ci = (j(i), b(i)) and wi ∈ R for each i ∈ [m];
the value valΨ(σ) of an assignment σ to Ψ is the (weighted) fraction of constraints in Ψ
satisfied by σ, i.e., valΨ(σ) def= 1

W

∑
i∈[m] wi · f(b(i) ⊙ σ|j(i)), where W =

∑m
i=1 wi. The

value valΨ of an instance Ψ is the maximum value of any assignment σ ∈ {−1, 1}n, i.e.,
valΨ

def= maxσ∈{−1,1}n valΨ(σ).

1.1.2 Approximations to CSPs
For α ∈ [0, 1], we consider the problem of α-approximating Max-CSP(f). In this problem,
the goal of an algorithm A is to, on input an instance Ψ, output an estimate A(Ψ) such
that with probability at least 2

3 , α · valΨ ≤ A(Ψ) ≤ valΨ. For β < γ ∈ [0, 1], we also consider
the closely related (β, γ)-Max-CSP(f). In this problem, the input instance Ψ is promised
to either satisfy valΨ ≤ β or valΨ ≥ γ, and the goal is to decide which is the case with
probability at least 2

3 .

1.1.3 Streaming and sketching algorithms for CSPs
For various Boolean functions f , we consider algorithms which attempt to approximate
Max-CSP(f) instances in the (single-pass, insertion-only) space-s streaming setting. Such
algorithms can only use space s (which is ideally small, such as O(log n), where n is the
number of variables in an input instance), and, when given as input a CSP instance Ψ, can
only read the list of constraints in a single, left-to-right pass.

https://notebookarchive.org/2022-03-a5vpzhg/
https://notebookarchive.org/2022-03-a5vpzhg/
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We also consider a (seemingly) weak class of streaming algorithms called sketching
algorithms, where the algorithm’s output is determined by an length-s string called a “sketch”
produced from the input stream, and the sketch itself has the property that the sketch of
the concatenation of two streams can be computed from the sketches of the two component
streams. (See [7, §3.3] for a formal definition.) A special case of sketching algorithms are
linear sketches, where each sketch (i.e., element of {0, 1}s) encodes an element of a vector
space and we perform vector addition to combine two sketches.

1.2 Prior work and motivations

1.2.1 Prior results on streaming and sketching Max-CSP(f)

We first give a brief review of what is already known about the streaming and sketching approx-
imability of Max-CSP(f). For f : {−1, 1}k → {0, 1}, let ρ(f) def= Prb∼Unif({−1,1}k)[f(b) = 1],
where Unif({−1, 1}k) denotes the uniform distribution on {−1, 1}k. For every f , the
Max-CSP(f) problem has a trivial ρ(f)-approximation algorithm given by simply outputting
ρ(f) since Ea∼Unif({−1,1}n)[valΨ(a)] = Prb∼Unif({−1,1}k)[f(b) = 1] = ρ(f). We refer to a func-
tion f as approximation-resistant for some class of algorithms (e.g., streaming or sketching
algorithms with some space bound) if it cannot be (ρ(f) + ϵ)-approximated for any constant
ϵ > 0. Otherwise, we refer to f as approximable for the class of algorithms.

The first two CSPs whose o(
√

n)-space streaming approximabilities were resolved were
Max-2XOR and Max-2AND. Kapralov, Khanna, and Sudan [18] showed that Max-2XOR is
approximation-resistant to o(

√
n)-space streaming algorithms. Later, Chou, Golovnev, and

Velusamy [8], building on earlier work of Guruswami, Velusamy, and Velingker [12], gave an
O(log n)-space linear sketching algorithm which ( 4

9 − ϵ)-approximates Max-2AND for every
ϵ > 0 and showed that ( 4

9 + ϵ)-approximations require Ω(
√

n) space, even for streaming
algorithms.

In two recent works [7, 6], Chou, Golovnev, Sudan, and Velusamy proved so-called
dichotomy theorems for sketching CSPs. In [7], they prove the dichotomy for CSPs over the
Boolean alphabet with negations of variables (i.e., the setup we described in Section 1.1.1).
In [6], they extend it to the more general case of CSPs over finite alphabets.1 See [6, §1] and
[21] for more general background on CSPs in the streaming setting.

[7] is most relevant for our purposes, as it concerns Boolean CSPs. For a fixed constraint
function f : {−1, 1}k → {0, 1}, the main result in [7] is the following dichotomy theorem: For
any 0 ≤ γ < β ≤ 1, either
1. (β, γ)-Max-CSP(f) has an O(log n)-space linear sketching algorithm, or
2. For all ϵ > 0, sketching algorithms for (β + ϵ, γ − ϵ)-Max-CSP(f) require Ω(

√
n) space.

Distinguishing whether (1) or (2) applies is equivalent to deciding whether two convex
polytopes (which depend on f, γ, β) intersect. We omit a technical statement of this
criterion, and instead focus on the following corollary: there exists an α(f) ∈ [0, 1] such
that Max-CSP(f) can be (α(f) − ϵ)-approximated by O(log n)-space linear sketches, but not
(α(f) + ϵ)-approximated by o(

√
n)-space sketches, for all ϵ > 0; furthermore, α(f) equals

the solution to an explicit minimization problem, which we describe in Section 2.1 (in the
special case where f is symmetric).

1 More precisely, [7] and [6] both consider the more general case of CSPs defined by families of functions
of a specific arity. We do not need this generality for the purposes of our paper, and therefore omit it.

APPROX/RANDOM 2022



38:4 On Sketching Approximations for Symmetric Boolean CSPs

A priori, it may be possible to achieve an (α(f) + ϵ)-approximation with a o(
√

n)-space
streaming algorithm. But [7] also extends the lower bound (case 2 of the dichotomy) to
cover streaming algorithms when special objects called padded one-wise pairs exist. See
Section 2.4 below for a definition (again, specialized for symmetric functions). The padded
one-wise pair criterion is sufficient to recover all previous streaming approximability results
for Boolean functions (i.e., [18, 8]), and prove several new ones. In particular, [7] proves
that if f : {−1, 1}k → {0, 1} has the property that there exists D ∈ ∆(f−1(1)) such
that Eb∼D[bi] = 0 for all i ∈ [k] (where [k] def= {1, . . . , k}), then Max-CSP(f) is streaming
approximation-resistant. For symmetric Boolean CSPs, they also prove the converse, and
thus give a complete characterization for approximation resistance [7, Lemma 2.14]. However,
besides Max-2AND, [7] does not explicitly analyze the approximation ratio of any CSP that
is “approximable”, i.e., not approximation resistant.

1.2.2 Questions from previous work

In this work, we address several major questions about streaming approximations for Boolean
CSPs which Chou, Golovnev, Sudan, and Velusamy [7] leave unanswered:
1. Can the framework in [7] be used to find closed-form sketching approximability ratios

α(f) for approximable problems Max-CSP(f) beyond Max-2AND?
2. As observed in [5, §1.3], [7] implies the following “trivial upper bound” on streaming

approximability: for all f , α(f) ≤ 2ρ(f). How tight is this upper bound?
3. Does the streaming lower bound (the “padded one-wise pair” criterion) in [7] suffice to

resolve the streaming approximability of every function?
4. The optimal (α(f) − ϵ)-approximation algorithm for Max-CSP(f) in [7] requires running a

“grid” of O(1/ϵ2) distinguishers for (β, γ)-Max-CSP(f) distinguishing problems in parallel.
Can we obtain simpler optimal sketching approximations?

1.3 Our results

We study the questions in Section 1.2.2 for symmetric Boolean CSPs. Symmetric Boolean
functions are those functions that depend only on the Hamming weight of the input, i.e.,
number of 1’s in the input.2 For a set S ⊆ [k], we define fS,k : {−1, 1}k → {0, 1} as the
indicator function for the set {b ∈ {−1, 1}k : wt(b) ∈ S} (where wt(b) denotes the Hamming
weight of b). That is, fS,k(x) = 1 if and only if wt(x) ∈ S. Some well-studied examples of
functions in this class include kAND = f{k},k, the threshold functions Thi

k = f{i,i+1,...,k},k,
and “exact weight” functions Exi

k = f{i},k.3

2 Note that the inputs are in {−1, 1}k; we define the Hamming weight as the number of 1’s, and not −1’s
(which is arguably more “natural” under the mapping b ∈ {0, 1} 7→ (−1)b ∈ {−1, 1}), for consistency
with [7].

3 By [7, Lemma 2.14], if S contains elements s ≤ k
2 and t ≥ k

2 , not necessarily distinct, then fS,k supports
one-wise independence and is therefore approximation-resistant (even to streaming algorithms). Thus,
we focus on the case where all elements of S are either larger than or smaller than k

2 . Moreover,
note that if S′ = {k − s : s ∈ S}, every instance of Max-CSP(fS,k) can be viewed as an instance of
Max-CSP(fS′,k) with the same value, since for any constraint C = (b, j) and assignment σ ∈ {−1, 1}n,
we have fS,k(b ⊙ σ|j) = fS′,k(b ⊙ (−σ)|j). Thus, we further narrow our focus to the case where every
element of S is larger than k

2 .
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1.3.1 The sketching approximability of Max-kAND
Chou, Golovnev, and Velusamy [8] showed that α(2AND) = 4

9 (and ( 4
9 +ϵ)-approximation can

be ruled out even for o(
√

n)-space streaming algorithms). For k ≥ 3, while Chou, Golovnev,
Velusamy, and Sudan [7] give optimal sketching approximation algorithms for Max-kAND,
they do not explicitly analyze the approximation ratio α(kAND), and show only that it lies
between 2−k and 2−(k−1).

In this paper, we analyze the dichotomy theorem in [7], and obtain a closed-form expression
for the sketching approximability of Max-kAND for every k. For odd k ≥ 3, define the constant

α′
k

def=
(

(k − 1)(k + 1)
4k2

)(k−1)/2
= 2−(k−1) ·

(
1 − 1

k2

)(k−1)/2
. (1)

In Section 4, we prove the following:

▶ Theorem 1. For odd k ≥ 3, α(kAND) = α′
k, and for even k ≥ 2, α(kAND) = 2α′

k+1.

Since ρ(kAND) = 2−k, Theorem 1 also has the following important corollary:

▶ Corollary 2. limk→∞
α(kAND)
2ρ(kAND) = 1.

Recall that [7] implies that α(f) ≤ 2ρ(f) for all functions f . Indeed, Chou, Golovnev, Su-
dan, Velusamy, and Velingker [5] show that any function f cannot be (2ρ(f)+ϵ)-approximated
even by o(n)-space streaming algorithms. On the other hand, in Section 1.3.3 below, we de-
scribe simple O(log n)-space sketching algorithms for Max-kAND achieving the optimal ratio
from [7]. Thus, as k → ∞, these algorithms achieve an asymptotically optimal approximation
ratio even among o(n)-space streaming algorithms!

1.3.2 The sketching approximability of other symmetric functions
We also analyze the sketching approximability of a number of other symmetric Boolean
functions. Specifically, for the threshold functions Thk−1

k for even k, we show that:

▶ Theorem 3. For even k ≥ 2, α(Thk−1
k ) = k

2 α′
k−1.

We prove Theorem 3 in Section 5.1 using techniques similar to our proof of Theorem 1.
We also provide partial results for Ex(k+1)/2

k , including closed forms for small k and an
asymptotic analysis of α(Ex(k+1)/2

k ):

▶ Theorem 4 (Informal version of Theorem 25). For odd k ∈ {3, . . . , 51}, there is an explicit
expression for α(Ex(k+1)/2

k ) as a function of k.

▶ Theorem 5. limodd k→∞
α
(

Ex(k+1)/2
k

)
ρ
(

Ex(k+1)/2
k

) = 1.

We prove Theorems 4 and 5 in Section 5.2. Finally, in Section 5.3, we explicitly resolve
fifteen other cases (e.g., f{2,3},3 and f{4},5) not covered by Theorems 1, 3, and 4.

1.3.3 Simple approximation algorithms for threshold functions
Chou, Golovnev, and Velusamy’s optimal ( 4

9 −ϵ)-approximation for 2AND [8], like Guruswami,
Velingker, and Velusamy’s earlier ( 2

5 −ϵ)-approximation [12], is based on measuring a quantity
called the bias of an instance Ψ, denoted bias(Ψ), which is defined as follows: For each i ∈ [n],

APPROX/RANDOM 2022



38:6 On Sketching Approximations for Symmetric Boolean CSPs

diffi(Ψ) is the difference in total weight between constraints where xi occurs positively and
negatively, and bias(Ψ) def= 1

km

∑n
i=1 |diffi(Ψ)| ∈ [0, 1].4 In the sketching setting, bias(Ψ) can

be estimated using standard ℓ1-norm sketching algorithms [16, 17].
In Section 7, we give simple optimal bias-based approximation algorithms for threshold

functions:

▶ Theorem 6. Let fS,k = Thi
k be a threshold function. Then for every ϵ > 0, there exists a

piecewise linear function γ : [−1, 1] → [0, 1] and a constant ϵ′ > 0 such that the following is a
sketching (α(fS,k) − ϵ)-approximation for Max-CSP(fS,k): On input Ψ, compute an estimate
b̂ for bias(Ψ) up to a multiplicative (1 ± ϵ′) error and output γ(̂b).

Our construction generalizes the algorithm in [8] for 2AND to all threshold functions, and
is also a simplification, since the [8] algorithm computes a more complicated function of b̂.

For all CSPs whose approximability we resolve in this paper, we apply an analytical
technique which we term the “max-min method;” see the discussion in Section 2.3 below.
For such CSPs, our algorithm can be extended to solve the problem of outputting an
approximately optimal assignment (instead of just the value of such an assignment). Indeed,
for this problem, we give a simple randomized streaming algorithm using O(n) space and
time:

▶ Theorem 7 (Informal version of Theorem 34). Let fS,k be a function for which the max-min
method applies, such as kAND, or Thk−1

k (for even k). Then there exists a constant p∗ ∈ [0, 1]
such that following algorithm, on input Ψ, outputs an assignment with expected value at
least α(fS,k)valΨ: Assign variable i to 1 if diffi(Ψ) ≥ 0 and −1 otherwise, and then flip each
variable’s assignment independently with probability p∗.

Our algorithm can potentially be derandomized using universal hash families, as in Biswas
and Raman’s recent derandomization [1] of the Max-2AND algorithm in [8].

1.3.4 Sketching vs. streaming approximability
Theorem 1 implies that α(3AND) = 2

9 . We prove that the padded one-wise pair criterion of
Chou, Golovnev, Sudan, and Velusamy [7] is not sufficient to completely resolve the streaming
approximability of Max-3AND:

▶ Theorem 8 (Informal version of Theorem 12 + Observation 13). The padded one-wise pair
criterion in [7] does not rule out a o(

√
n)-space streaming ( 2

9 + ϵ)-approximation for 3AND
for every ϵ > 0; however, it does rule out such an algorithm for ϵ ⪆ 0.0141.

We state these results formally in Section 2.4 and prove them in Section 6. Separately,
Theorem 3 implies that α(Th3

4) = 4
9 , and the padded one-wise pair criterion can be used

to show that ( 4
9 + ϵ)-approximating Max-CSP(Th3

4) requires Ω(
√

n) space in the streaming
setting (see Observation 22 below).

1.4 Related work
The classical approximability of Max-kAND has been the subject of intense study, both in
terms of algorithms [11, 10, 26, 23, 25, 13, 14, 4] and hardness-of-approximation [15, 24,
22, 19, 9, 20], given its intimate connections to k-bit PCPs. Charikar, Makarychev, and

4 [12, 8] did not normalize by 1
kW .
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Makarychev [4] constructed an Ω(k2−k)-approximation to Max-kAND, while Samorodnitsky
and Trevisan [20] showed that k2−(k−1)-approximations and (k + 1)2−k-approximations are
NP- and UG-hard, respectively.

Interestingly, recalling that α(kAND) → 2ρ(kAND) = 2−(k−1) as k → ∞, in the large-k
limit our simple randomized algorithm (given in Theorem 7) matches the performance
of Trevisan’s [23] parallelizable LP-based algorithm for kAND, which (to the best of our
knowledge) was the first work on the general kAND problem! The subsequent works [13, 14, 4]
superseding [23] use more complex techniques involving semidefinite programming, but are
structurally similar to our algorithm in Theorem 7: They all involve “guessing” an assignment
x ∈ Zn

2 and then perturbing each bit with constant probability.

2 Our techniques

In this section, we give a more detailed background on the technical aspects of the dichotomy
theorem in [7], and explain the novel aspects of our analysis.

2.1 The Chou, Golovnev, Sudan, and Velusamy [7] framework for
symmetric functions

In this section, we describe the Chou, Golovnev, Sudan, and Velusamy [7] framework for
finding the optimal sketching approximation ratio of a symmetric Boolean function fS,k.

Let ∆({−1, 1}k) denote the space of all distributions on {−1, 1}k. For a distribution
D ∈ ∆({−1, 1}k) and x ∈ {−1, 1}k, we use D(x) to denote the probability of sampling x in D.
To a distribution D ∈ ∆({−1, 1}k) we associate a canonical instance ΨD of Max-CSP(fS,k)
on k variables as follows. Let j = (1, . . . , k). For every negation pattern b ∈ {−1, 1}k, ΨD
contains the constraint (b, j) with weight D(b).

We say a distribution D ∈ ∆({−1, 1}k) is symmetric if all vectors of equal Hamming
weight are equiprobable, i.e., for every x, y ∈ {−1, 1}k such that wt(x) = wt(y), D(x) = D(y).
Let ∆k ⊆ ∆({−1, 1}k) denote the set of all symmetric distributions on {−1, 1}k. Given
D ∈ ∆k, let D⟨i⟩ def=

∑
x∈{−1,1}k:wt(x)=i D(x) denote the total probability mass on vectors of

Hamming weight i. Note that any vector (D⟨0⟩, . . . , D⟨k⟩) of nonnegative values summing to
1 uniquely determines a distribution D ∈ ∆k; we write D = (D⟨0⟩, . . . , D⟨k⟩) for notational
convenience.

Let Bern(p) represent a random variable which is 1 with probability p and −1 with
probability 1 − p. For D ∈ ∆({−1, 1})k and p ∈ [0, 1], let

λS(D, p) def= E
a∼D,b∼Bern(p)k

[fS,k(a ⊙ b)] = E
b∼Bern(p)k

[valΨD (b)] (2)

denote the expected value of a “p-biased symmetric assignment” on D’s canonical instance.
Also, for a symmetric distribution D ∈ ∆k, we define its (scalar) marginal

µ(D) def= E
b∼D

[b1] = · · · = E
b∼D

[bk]. (3)

In general, λS is linear in D and degree-k in p, and µ is linear in D. For D ∈ ∆k, we
provide explicit formulas for λS and µ in Section 3.

Roughly, [7] states that Max-CSP(fS,k) is hard to approximate in the sketching setting if
there exist distributions DN , DY ∈ ∆k such that (1) µ(DN ) = µ(DY ) and (2) DY ’s canonical
instance is highly satisfied by the trivial (all-ones) assignment but (3) DN ’s canonical
instance is not well-satisfied by any “biased symmetric assignment”. To be precise, for
D ∈ ∆({−1, 1}k), let

APPROX/RANDOM 2022



38:8 On Sketching Approximations for Symmetric Boolean CSPs

βS(D) def= sup
p∈[0,1]

λS(D, p) and γS(D) def= λS(D, 1), (4)

and define

α(fS,k) def= inf
DN ,DY ∈∆k: µ(DN )=µ(DY )

(
βS(DN )
γS(DY )

)
. (5)

For every symmetric function fS,k, [7] proves that α(fS,k) is the optimal sketching
approximation ratio for Max-CSP(fS,k):

▶ Theorem 9 (Combines [7, Theorem 2.10 and Lemma 2.14]). Let fS,k : {−1, 1}k → {0, 1}
be a symmetric function. Then for every ϵ > 0, there is an linear sketching (α(fS,k) −
ϵ)-approximation to Max-CSP(fS,k) in O(log n) space, but any sketching (α(fS,k) + ϵ)-
approximation to Max-CSP(fS,k) requires Ω(

√
n) space.

▶ Remark. In the general case where f : {−1, 1}k → {0, 1} is not symmetric, the approx-
imability of f is no longer characterized by Equation (5). Instead, [7] requires taking an
infimum over all (not necessarily symmetric) distributions DN , DY ∈ ∆({−1, 1})k. Moreover,
a general distribution D ∈ ∆({−1, 1})k no longer has a single scalar marginal (as in Equa-
tion (3)). Instead, we must consider a vector marginal µ(D) = (µ1, . . . , µk) with i-th
component µi = Eb∼D[bi]; correspondingly, DN and DY are required to satisfy the constraint
µ(DN ) = µ(DY ). These issues motivate our focus on symmetric functions in this paper.
Since we need to consider only symmetric distributions in Equation (5), DY and DN are
each parameterized by k + 1 variables (as opposed to 2k variables), and there is a single
linear equality constraint (as opposed to k constraints).

2.2 Formulations of the optimization problem
In order to show that α(2AND) = 4

9 , Chou, Golovnev, Sudan, and Velusamy [7, Example
1] use the following reformulation of the optimization problem on the right hand side of
Equation (5). For a symmetric function fS,k and µ ∈ [−1, 1], let

βS,k(µ) = inf
DN ∈∆k: µ(DN )=µ

βS(DN ) and γS,k(µ) = sup
DY ∈∆k: µ(DY )=µ

γS(DY ); (6)

then

α(fS,k) = inf
µ∈[−1,1]

(
βS,k(µ)
γS,k(µ)

)
. (7)

The optimization problem on the right-hand side of Equation (7) appears simpler than
that of Equation (5) because it is univariate, but there is a hidden difficulty: Finding an
explicit solution requires giving explicit formulas for βS,k(µ) and γS,k(µ). In the case of
2AND = f{2},2, Chou, Golovnev, Sudan, and Velusamy [7] show that γ{2},2(µ) is an explicit
linear function of µ; maximize the quadratic λ{2}(DN , p) over p ∈ [0, 1] to find β{2}(DN );
and then minimize β{2}(DN ) given µ(DN ) = µ to find β{2},2(µ). However, while for general
symmetric functions fS,k we can describe γS,k(µ) as an explicit piecewise linear function of µ

(see Lemma 16 below), we do not know how to find closed forms for βS,k(µ) even for 3AND.
Thus, in this work we introduce a different formulation of the optimization problem:

α(fS,k) = inf
DN ∈∆k

(
βS(DN )

γS,k(µ(DN ))

)
. (8)



J. Boyland, M. Hwang, T. Prasad, N. Singer, and S. Velusamy 38:9

This reformulation is valid because

α(fS,k) = inf
µ∈[−1,1],DN ∈∆k: µ(DN )=µ

(
βS(DN )
γS,k(µ)

)
= inf

DN ∈∆k

(
βS(DN )

γS,k(µ(DN ))

)
.

We view optimizing directly over DN ∈ ∆k as an important conceptual switch. In
particular, our formulation emphasizes the calculation of βS(DN ) as the centrally difficult
feature, yet we can still take advantage of the relative simplicity of calculating γS,k(µ).

2.3 Our contribution: The max-min method
A priori, solving the optimization problem on the right-hand side of Equation (8) still requires
calculating βS(DN ), which involves maximizing a degree-k polynomial. To get around this
difficulty, we have made a key discovery, which was not noticed by Chou, Golovnev, Sudan,
and Velusamy [7] even in the 2AND case. Let D∗

N minimize the right-hand side of Equation (8),
and p∗ maximize λS(D∗

N , ·). After substituting βS(D) = supp∈[0,1] λS(D, p) in Equation (8),
and applying the max-min inequality, we get

α(fS,k) = inf
DN ∈∆k

sup
p∈[0,1]

(
λS(DN , p)

γS,k(µ(DN ))

)
≥ sup

p∈[0,1]
inf

DN ∈∆k

(
λS(DN , p)

γS,k(µ(DN ))

)
≥ inf

DN ∈∆k

(
λS(DN , p∗)
γS,k(µ(DN ))

)
.

(9)

Given p∗, the right-hand side of Equation (9) is relatively easy to calculate, being a ratio
of a linear and piecewise linear function of DN . Our discovery is that, in a wide variety of
cases, the quantity on the right-hand side of Equation (9) equals α(fS,k); that is, (D∗

N , p∗) is
a saddle point of λS(DN ,p)

γS,k(µ(DN )) .5
This yields a novel technique, which we call the “max-min method”, for finding a closed

form for α(fS,k). First, we guess D∗
N and p∗, and then, we show analytically that λS(DN ,p)

γS,k(µ(DN ))
has a saddle point at (D∗

N , p∗) and that λS(DN , p) is maximized at p∗. These imply that
λS(D∗

N ,p∗)
γS,k(µ(D∗

N
)) is a lower and upper bound on α(fS,k), respectively. For instance, in Section 4,

in order to give a closed form for α(kAND) for odd k (i.e., the odd case of Theorem 1), we
guess D∗

N ⟨ k+1
2 ⟩ = 1 and p∗ = k+1

2k (by using Mathematica for small cases), and then check
the saddle-point and maximization conditions in two separate lemmas (Lemmas 17 and 18,
respectively). Then, we show that α(kAND) = α′

k by analyzing the right hand side of the
appropriate instantiation of Equation (9). We use similar techniques for kAND for even k

(also Theorem 1) and for various other cases in Sections 5.1–5.3.
In all of these cases, the D∗

N we construct is supported on at most two distinct Hamming
weights, which is the property which makes finding D∗

N tractable (using computer assistance).
However, this technique is not a “silver bullet”: it is not the case that the sketching
approximability of every symmetric Boolean CSP can be exactly calculated by finding
the optimal D∗

N supported on two elements and using the max-min method. Indeed, (as
mentioned in Section 5.3) we verify using computer assistance that this is not the case for
f{3},4.

5 This term comes from the optimization literature; such points are also said to satisfy the “strong
max-min property” (see, e.g., [2, pp. 115, 238]). The saddle-point property is guaranteed by von
Neumann’s minimax theorem for functions which are concave and convex in the first and second
arguments, respectively, but this theorem and the generalizations we are aware of do not apply even to
3AND.
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Finally, we remark that the saddle-point property is precisely what defines the value p∗

required for our simple classical algorithm for outputting approximately optimal assignments
for Max-CSP(fS,k) where fS,k = Thi

k is a threshold function (see Theorem 34).

2.4 Streaming lower bounds

Chou, Golovnev, Sudan, and Velusamy [7] also define the following condition on pairs
(DN , DY ), stronger than µ(DN ) = µ(DY ), which implies hardness of (γ, β)-Max-CSP(f) for
streaming algorithms:

▶ Definition 10 (Padded one-wise pairs, [7, §2.3] (symmetric case)). A pair of distributions
(DY , DN ) ∈ ∆k forms a padded one-wise pair if there exists τ ∈ [0, 1] and distributions
D0, D′

Y , D′
N ∈ ∆k such that (1) µ(D′

Y ) = µ(D′
N ) = 0 and (2) DY = τD0 + (1 − τ)D′

Y and
DN = τD0 + (1 − τ)D′

N .

▶ Theorem 11 (Streaming lower bound for padded one-wise pairs, [7, Theorem 2.11] (symmetric
case)). Let (DY , DN ) be a padded one-wise pair. Then for every ϵ > 0, (βS(DY )+ϵ, γS(DN )−
ϵ)-Max-CSP(f) requires Ω(

√
n) space in the streaming setting.

We prove that Theorem 11 fails to rule out streaming ( 2
9 +ϵ)-approximations to Max-3AND

in the following sense:

▶ Theorem 12. There is no infinite sequence (D(1)
Y , D(1)

N ), (D(2)
Y , D(2)

N ), . . . of padded one-wise
pairs on ∆3 such that

lim
t→∞

β{3}(D(t)
N )

γ{3}(D(t)
Y )

= 2
9 .

Theorem 12 is proven formally in Section 6; we give a proof outline in Appendix A.
Yet we still can achieve decent bounds using padded one-wise pairs:

▶ Observation 13. The padded one-wise pair DN = (0, 0.45, 0.45, 0.1), DY = (0.45, 0, 0, 0.55)
(discovered by numerical search) does prove a streaming approximability upper bound of
≈ .2362 for 3AND, which is still quite close to α(3AND) = 2

9 .

3 Formulas for µ, λS, and γS,k

In this section, we give explicit formulas for the quantities µ(D), λS(D, p), and γS,k(µ)
(defined in Equations (2), (3), and (6), respectively) which will be used throughout the rest
of the paper. For i ∈ [k], let ϵi,k

def= −1 + 2i
k .

▶ Lemma 14. For any D ∈ ∆k,

µ(D) =
k∑

i=0
ϵi,k D⟨i⟩.

Proof of Lemma 14. By definition (Equation (3)), µ(D) = Eb∼D[b1]. We use linearity of
expectation; the contribution of weight-i vectors to µ(D) is D⟨i⟩ · 1

k (i · 1 + (k − i) · (−1)) =
ϵi,k D⟨i⟩. ◀
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▶ Lemma 15. For any D ∈ ∆k and p ∈ [0, 1], we have

λS(D, p) =
∑
s∈S

k∑
i=0

 min{i,s}∑
j=max{0,s−(k−i)}

(
i

j

)(
k − i

s − j

)
qs+i−2jpk−s−i+2j

D⟨i⟩

where q
def= 1 − p.

The proof of Lemma 15 is given in the full version [3].

▶ Lemma 16. Let S ⊆ [k], and let s be its smallest element and t its largest element (they
need not be distinct). Then for µ ∈ [−1, 1],

γS,k(µ) =


1+µ

1+ϵs,k
µ ∈ [−1, ϵs,k)

1 µ ∈ [ϵs,k, ϵt,k]
1−µ

1−ϵt,k
µ ∈ (ϵt,k, 1]

(which also equals min
{

1+µ
1+ϵs,k

, 1, 1−µ
1−ϵt,k

}
).

The proof of Lemma 16 is given in the full version [3].

4 Analysis of α(kAND)

In this section, we prove Theorem 1 (on the sketching approximability of Max-kAND). Recall
that in Equation (1), we defined

α′
k =

(
(k − 1)(k + 1)

4k2

)(k−1)/2
.

Theorem 1 follows immediately from the following two lemmas:

▶ Lemma 17. For all odd k ≥ 3, α(kAND) ≤ α′
k. For all even k ≥ 2, α(kAND) ≤ 2α′

k+1.

▶ Lemma 18. For all odd k ≥ 3, α(kAND) ≥ α′
k. For all even k ≥ 2, α(kAND) ≥ 2α′

k+1.

To begin, we give explicit formulas for γ{k},k(µ(D)) and λ{k}(D, p). Note that the smallest
element of {k} is k, and ϵk,k = 1. Thus, for D ∈ ∆k, we have by Lemmas 14 and 16 that

γ{k},k(µ(D)) =
1 +

∑k
i=0(−1 + 2i

k ) D⟨i⟩
2 =

k∑
i=0

i

k
D⟨i⟩. (10)

Similarly, we can apply Lemma 15 with s = k; for each i ∈ {0} ∪ [k], max{0, s − (k − i)} =
min{i, k} = i, so we need only consider j = i, and then

(
i
j

)
=
(

k−i
s−j

)
= 1. Thus, for q = 1 − p,

we have

λ{k}(D, p) =
k∑

i=0
qk−ipi D⟨i⟩ (11)

The proof of Lemma 17 is given in Appendix A. We also prove Lemma 18 in Appendix A
using the max-min method. We rely on the following proposition which is a simple inequality
for optimizing ratios of linear functions, which we prove in the full version [3]:

▶ Proposition 19. Let f : Rn → R be defined by the equation f(x) = a·x
b·x for some

a, b ∈ Rn
≥0. For every y(1), . . . , y(r) ∈ Rn

≥0, and every x =
∑r

i=1 αiy(i) with each xi ≥ 0,
we have f(x) ≥ mini f(y(i)). In particular, taking r = n and y(1), . . . , y(n) as the standard
basis for Rn, for every x ∈ Rn

≥0, we have f(x) ≥ mini
ai

bi
.
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5 Further analyses of α(f) for symmetric Boolean functions f

5.1 Thk−1
k for even k

In this subsection, we prove Theorem 3 (on the sketching approximability of Thk−1
k for even

k ≥ 2). It is necessary and sufficient to prove the following two lemmas:

▶ Lemma 20. For all even k ≥ 2, α(Thk−1
k ) ≤ k

2 α′
k−1.

▶ Lemma 21. For all even k ≥ 2, α(Thk−1
k ) ≥ k

2 α′
k−1.

Firstly, we give explicit formulas for γ{k−1,k},k and λ{k−1,k}. We have Thk−1
k = f{k−1,k},k,

and ϵk−1,k = −1 + 2(k−1)
k = 1 − 2

k . Thus, Lemmas 14 and 16 give

γ{k−1,k},k(µ(D)) = min
{

1 +
∑k

i=0(−1 + 2i
k ) D⟨i⟩

2 − 2
k

, 1
}

= min
{

k∑
i=0

i

k − 1 D⟨i⟩, 1
}

. (12)

Next, we calculate λ{k−1,k}(D, p) with Lemma 15. Let q = 1 − p, and let us examine the
coefficient on D⟨i⟩. s = k contributes qk−ipk. In the case i ≤ k − 1, s = k − 1 contributes
(k − i)qk−i−1pi+1 for j = i, and in the case i ≥ 1, s = k − 1 contributes iqk−i+1pi−1 for
j = i − 1. Thus, altogether we can write

λ{k−1,k}(D, p) =
k∑

i=0
qk−i−1pi−1 ((k − i)p2 + pq + iq2) D⟨i⟩. (13)

The proofs of Lemmas 20 and 21 are given in Appendix A.

▶ Observation 22. For Th3
4 the optimal D∗

N = (0, 0, 4
5 , 1

5 , 0) does participate in a pad-
ded one-wise pair with D∗

Y = ( 4
15 , 0, 0, 11

15 , 0) (given by D0 = (0, 0, 0, 1, 0), τ = 1
5 , D′

N =
(0, 0, 1, 0, 0), and D′

Y = ( 4
15 , 0, 0, 8

15 , 0)) so we can rule out streaming ( 4
9 + ϵ)-approximations

to Max-CSP(Th3
4) in o(

√
n) space.

5.2 Ex(k+1)/2
k for (small) odd k

In this section, we prove bounds on the sketching approximability of Ex(k+1)/2
k for odd

k ∈ {3, . . . , 51}. Define D0,k ∈ ∆k by D0,k⟨0⟩ = k−1
2k and D0,k⟨k⟩ = k+1

2k . We prove the
following two lemmas:

▶ Lemma 23. For all odd k ≥ 3, α(Ex(k+1)/2
k ) ≤ λ{ k+1

2 }(D0,k, p′
k), where p′

k
def=

3k−k2+
√

4k+k2−2k3+k4

4k .

▶ Lemma 24. The following holds for all odd k ∈ {3, . . . , 51}. For all p ∈ [0, 1], the

expression
λ

{ k+1
2 }

(·,p)

γ
{ k+1

2 },k
(µ(·)) is minimized at D0,k.

We begin by writing an explicit formula for λ{ k+1
2 }. Lemma 15 gives

λ{ k+1
2 }(D, p) =

k∑
i=0

 min{i, k+1
2 }∑

j=max{0,i− k−1
2 }

(
i

j

)(
k

k+1
2 − j

)
(1 − p)(k+1)/2+i−2jp(k−1)/2−i+2j

 D⟨i⟩.

For i ≤ k−1
2 , the sum over j goes from 0 to i, and for i ≥ k+1

2 , it goes from i − k−1
2 to k+1

2 .
Thus, plugging in D0,k, we get:

λ{ k+1
2 }(D0,k, p) =

(
k

k+1
2

)(
k − 1

2k
(1 − p)(k+1)/2p(k−1)/2 + k + 1

2k
(1 − p)(k−1)/2p(k+1)/2

)
. (14)

By Lemmas 14 and 16, γ{ k+1
2 },k(µ(D0,k)) = γ{ k+1

2 },k( 1
k ) = 1. Thus, Lemmas 23 and 24

together imply the following theorem:
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▶ Theorem 25. For odd k ∈ {3, . . . , 51},

α(Ex(k+1)/2
k ) =

(
k

k+1
2

)(
k − 1

2k
(1 − p′

k)(k+1)/2(p′
k)(k−1)/2 + k + 1

2k
(1 − p′

k)(k−1)/2(p′
k)(k+1)/2

)
,

where p′
k = 3k−k2+

√
4k+k2−2k3+k4

4k as in Lemma 23.

Recall that ρ(f(k+1)/2,k) =
(

k
k+1

2

)
2−k. Although we currently lack a lower bound on

α(Ex(k+1)/2
k ) for large odd k, the upper bound from Lemma 23 suffices to prove Theorem 5,

i.e., it can be verified that

lim
k odd→∞

(
k

k+1
2

) (
k−1
2k (1 − p′

k)(k+1)/2(p′
k)(k−1)/2 + k+1

2k (1 − p′
k)(k−1)/2(p′

k)(k+1)/2)
ρ(Ex(k+1)/2

k )
= 1.

We remark that for Ex(k+1)/2
k , our lower bound (Lemma 24) is stronger than what we

were able to prove for kAND (Lemma 18) and Thk−1
k (Lemma 21) because the inequality

holds regardless of p. This is fortunate for us, as the optimal p∗ from Lemma 23 is rather
messy.6 The proofs of Lemmas 23 and 24 are given in the full version [3].

5.3 More symmetric functions
In Table 1 below, we list four more symmetric Boolean functions (beyond kAND, Thk−1

k ,
and Ex(k+1)/2

k ) whose sketching approximability we have analytically resolved using the
“max-min method”. These values were calculated using two functions in the Mathematica
code, estimateAlpha – which numerically or symbolically estimates the DN , with a given
support, which minimizes α – and testMinMax – which, given a particular DN , calculates p∗

for that DN and checks analytically whether lower-bounding by evaluating λS at p∗ proves
that DN is minimal.

Table 1 Symmetric functions for which we have analytically calculated exact α values using
the “max-min method”. For a polynomial P : R → R with a unique positive real root, let rootR(p)
denote that root, and define the polynomials P1(z) = −72 + 4890z − 108999z2 + 800000z3, P2(z) =
−908 + 5021z − 9001z2 + 5158z3, P3(z) = −60 + 5745z − 183426z2 + 1953125z3, P4(z) = −344 +
1770z − 3102z2 + 1811z3. (We note that in the f{4},5 and f{4,5},5 calculations, we were required to
check equality of roots numerically (to high precision) instead of analytically).

S k α D∗
N

{2, 3} 3 1
2 +

√
3

18 ≈ 0.5962 (0, 1
2 , 0, 1

2 )
{4, 5} 5 8 rootR(P1) ≈ 0.2831 (0, 0, 1 − rootR(P2), rootR(P2), 0, 0)
{4} 5 8 rootR(P3) ≈ 0.2394 (0, 0, 1 − rootR(P4), rootR(P4), 0, 0)

{3, 4, 5} 5 1
2 + 3

√
5

125 ≈ 0.5537 (0, 1
2 , 0, 0, 0, 1

2 )

We remark that two of the cases in Table 1 (as well as kAND), the optimal DN is rational
and supported on two coordinates. However, in the other two cases in Table 1, the optimal
DN involves roots of a cubic.

6 The analogous statement is false for e.g. 3AND, where we had D∗
N = (0, 0, 1, 0), but at p = 3

4 ,

λ{3}((0, 1
2 , 1

2 , 0), 3
4 )

γ{3},3(µ(0, 1
2 , 1

2 , 0))
= 3

16 ≤ 27
128 =

λ{3}((0, 0, 1, 0), 3
4 )

γ{3},3(µ(0, 0, 1, 0)) .
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In Section 5.2, we showed that D∗
N defined by D∗

N ⟨0⟩ = k−1
2k and D∗

N ⟨k⟩ = k+1
2k is optimal

for Ex(k+1)/2
k for odd k ∈ {3, . . . , 51}. Using the same D∗

N , we are also able to resolve 11 other
cases in which S is “close to” { k+1

2 }; for instance, S = {5, 6}, {5, 6, 7}, {5, 7} for k = 9. (We
have omitted the values of α and DN because they are defined using the roots of polynomials
of degree up to 8.)

In all previously-mentioned cases, the condition “D∗
N has support size 2” was helpful, as it

makes the optimization problem over D∗
N essentially univariate; however, we have confirmed

analytically in two other cases (S = {3}, k = 4 and S = {3, 5}, k = 5) that “max-min
method on distributions with support size two” does not suffice for tight bounds on α

(see testDistsWithSupportSize2 in the Mathematica code). However, using the max-min
method with DN supported on two levels still achieves decent (but not tight) bounds on α.
For S = {3}, k = 4, using DN = ( 1

4 , 0, 0, 0, 3
4 ), we get the bounds α(f{3},4) ∈ [0.3209, 0.3295]

(the difference being 2.67%). For S = {3, 5}, k = 5, using DN = (1
4 , 0, 0, 0, 3

4 , 0), we get
α(f{3,5},5) ∈ [0.3416, 0.3635] (the difference being 6.42%).

Finally, we have also analyzed cases where we get numerical solutions which are
very close to tight, but we lack analytical solutions because they likely involve roots
of high-degree polynomials. For instance, in the case S = {4, 5, 6}, k = 6, setting
DN = (0, 0, 0, 0.930013, 0, 0, 0.069987) gives α(f{4,5,6},6) ∈ [0.44409972, 0.44409973], dif-
fering only by 0.000003%. (We conjecture here that α = 4

9 .) For S = {6, 7, 8}, k = 8, using
DN = (0, 0, 0, 0, 0.699501, 0.300499), we get the bounds α(f{6,7,8},8) ∈ [0.20848, 0.20854] (the
difference being 0.02%).7

6 Incompleteness of streaming lower bounds: Proving Theorem 12

In this section, we prove Theorem 12, showing that the streaming lower bounds from [7]
(Theorem 11) cannot characterize the streaming approximability of 3AND.

▶ Lemma 26. For D ∈ ∆3, the expression

λ{3}(D, 1
3 D⟨1⟩ + 2

3 D⟨2⟩ + D⟨3⟩)
γ{3},3(µ(D))

is minimized uniquely at D = (0, 0, 1, 0), with value 2
9 .

Proof. Letting p = 1
3 D⟨1⟩ + 2

3 D⟨2⟩ + D⟨3⟩ and q = 1 − p, by Lemmas 14–16 the expression
expands to

D⟨0⟩ p3 + D⟨1⟩ p2(1 − p) + D⟨2⟩ p(1 − p)2 + D⟨3⟩ (1 − p)3

1
2 (1 − D⟨0⟩ − 1

3 D⟨1⟩ + 1
3 D⟨2⟩ + D⟨3⟩)

.

The expression’s minimum, and its uniqueness, are confirmed analytically in the Mathematica
code. ◀

▶ Lemma 27. Let X be a compact topological space, Y ⊆ X a closed subspace, Z a topological
space, and f : X → Z a continuous map. Let x∗ ∈ X, z∗ ∈ Z be such that f−1(z∗) = {x∗}.
Let {xi}i∈N be a sequence of points in Y such that {f(xi)}i∈N converges to z∗. Then x∗ ∈ Y .

7 Interestingly, in this latter case, we get bounds differing by 2.12% using DN = (0, 0, 0, 0, 9
13 , 4

13 , 0, 0, 0) in
an attempt to continue the pattern from f{7,8},8 and f{8},8 (where we set D∗

N = (0, 0, 0, 0, 16
25 , 9

25 , 0, 0, 0)
and (0, 0, 0, 0, 25

41 , 16
41 , 0, 0, 0) in Section 5.1 and Section 4, respectively).
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Proof. By compactness of X, there is a subsequence {xji
}i∈N which converges to a limit x̃.

By closure, x̃ ∈ Y . By continuity, f(x̃) = z∗, so x̃ = x∗. ◀

Finally, the proof of Theorem 12 is given in Appendix A.

7 Simple sketching algorithms for threshold functions

The main goal of this section is to prove Theorem 6, giving a simple “bias-based” sketch-
ing algorithm for threshold functions Thi

k. Given an instance Ψ of Max-CSP(Thi
k), for

i ∈ [n], let diffi(Ψ) denote the total weight of clauses in which xi appears positively
minus the weight of those in which it appears negatively; that is, if Ψ consists of clauses
(b(1), j(1)), . . . , (b(m), j(m)) with weights w1, . . . , wm, then

diffi(Ψ) def=
∑

ℓ∈[m] s.t. j(ℓ)t=i for some t∈[k]

b(ℓ)twℓ.

Let bias(Ψ) def= 1
kW

∑n
i=1 |diffi(Ψ)|, where W =

∑m
ℓ=1 wℓ is the total weight in Ψ.

Let S = {i, . . . , k} so that Thi
k = fS,k. Recall the definitions of βS,k(µ) and γS,k(µ) from

Equation (7). Our simple algorithm for Max-CSP(Thi
k) relies on the following two lemmas,

which we prove below:

▶ Lemma 28. valΨ ≤ γS,k(bias(Ψ)).

▶ Lemma 29. valΨ ≥ βS,k(bias(Ψ)).

Together, these two lemmas imply that outputting α(Thi
k) ·γS,k(bias(Ψ)) gives an α(Thi

k)-
approximation to Max-CSP(Thi

k), since α(Thi
k) = infµ∈[−1,1]

βS,k(µ)
γS,k(µ) (Equation (7)). We can

implement this as a small-space sketching algorithm (up to an arbitrarily small constant ϵ > 0
in the approximation ratio) because bias(Ψ) is measurable using ℓ1-sketching algorithms (as
used also in [12, 8, 7]) and γS,k(·) is piecewise linear:

▶ Theorem 30 ([16, 17]). For every ϵ > 0, there exists an O(log n/ϵ2)-space randomized
sketching algorithm for the following problem: The input is a stream S of updates of the form
(i, v) ∈ [n] × {−poly(n), . . . , poly(n)}, and the goal is to estimate the ℓ1-norm of the vector
x ∈ [n]n defined by xi =

∑
(i,v)∈S v, up to a multiplicative factor of 1 ± ϵ.

▶ Corollary 31. For f : {−1, 1}k → {0, 1} and every ϵ > 0, there exists an O(log n/ϵ2)-space
randomized sketching algorithm for the following problem: The input is an instance Ψ of
Max-CSP(Thi

k) (given as a stream of constraints), and the goal is to estimate bias(Ψ) up to
a multiplicative factor of 1 ± ϵ.

Proof. Invoke the ℓ1-norm sketching algorithm from Theorem 30 as follows: On each
input constraint (b = (b1, . . . , bk), j = (j1, . . . , jk)) with weight w, insert the updates
(j1, wb1), . . . , (jk, wbk) into the stream (and normalize appropriately). ◀

Theorem 6 then follows from Lemmas 16, 28, and 29 and Corollary 31; we include a
formal proof in Appendix A for completeness.

To prove Lemmas 28 and 29, we require a bit more setup. Adapting notation from [7, §4.2],
given an instance Ψ of Max-CSP(Thi

k) and a “negation pattern” a = (a1, . . . , an) ∈ {−1, 1}n

for the variables, let Ψa be the instance which results from Ψ by “flipping” the variables
according to a (formally, each constraint (b, j) is replaced with (b ⊙ a|j, j)). We summarize
the useful properties of this operation in the following claim:

APPROX/RANDOM 2022
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▶ Proposition 32. Let Ψ be an instance of Max-CSP(Thi
k) and a = (a1, . . . , an) ∈ {−1, 1}n.

Then:
i For each i ∈ [n], diffi(Ψa) = aidiffi(Ψ).
ii bias(Ψ) = bias(Ψa).
iii For any σ ∈ {−1, 1}n, valΨa(σ) = valΨ(a ⊙ σ).
iv valΨa = valΨ.

The proof of Proposition 32 is given in the full version [3].
Also, given an instance Ψ, we define its “symmetrized canonical distribution” Dsym

Ψ ∈ ∆k

to be the distribution obtained by sampling a constraint at random from Ψ and outputting
its “randomly permuted negation pattern”. Formally, let Sk denote the set of permutations
[k] → [k]. For a vector b = (b1, . . . , bk) ∈ {−1, 1}k and a permutation π ∈ Sk, let
π(b) = (bπ(1), . . . , bπ(k)). Let C(i) = (b(i), j(i)) denote the i-th constraint of Ψ, with
weight wi, and let W =

∑m
i=1 wi be the total weight. To sample a random vector from Dsym

Ψ ,
we sample i ∈ [m] with probability wi/W , sample a permutation π ∼ Unif(Sk), and output
π(b(i)). The useful properties of Dsym

Ψ are summarized in the following claim:

▶ Proposition 33. Let Ψ be an instance of Max-CSP(Thi
k). Then:

i For any p ∈ [0, 1], Ea∼Bern(p)n [valΨ(a)] = λS(Dsym
Ψ , p).

ii µ(Dsym
Ψ ) = 1

kW

∑n
i=1 diffi(Ψ) ≤ bias(Ψ).

iii If diffi(Ψ) ≥ 0 for all i ∈ [n], then µ(Dsym
Ψ ) = bias(Ψ).

The proof of Proposition 33 is given in the full version [3]. The proofs of Lemmas 28
and 29 are given in Appendix A.

Finally, we state another consequence of Lemma 28 – a simple randomized, O(n)-time-
and-space streaming algorithm for outputting approximately-optimal assignments when the
max-min method applies.

▶ Theorem 34. Let Thi
k be a threshold function and p∗ ∈ [0, 1] be such that the max-min

method applies, i.e.,

α(Thi
k) = inf

DN ∈∆k

(
λS(DN , p∗)
γS,k(µ(DN ))

)
.

Then the following algorithm, on input Ψ, outputs an assignment with expected value at least
α(Thi

k) · valΨ: Assign every variable to 1 if diffi(Ψ) ≥ 0, and −1 otherwise, and then flip
each variable’s assignment independently with probability p∗.

The proof of Theorem 34 is given in the full version [3].

Discussion

In this paper, we introduce the max-min method and use it to resolve the streaming
approximability of a wide variety of symmetric Boolean CSPs (including infinite families
such as Max-kAND for all k, and Thk−1

k for all even k). However, these techniques are in
a sense “ad hoc” since we use computer assistance to guess the optimal solution for our
optimization problem. We leave the question of whether the max-min method can be applied
to determine the sketching approximability for all symmetric Boolean CSPs as an interesting
open problem.

Separately, we also establish that the techniques developed in [7] are not sufficient to
characterize the streaming approximability of all CSPs. Indeed, we show that their streaming
lower bound based on “padded one-wise pairs” cannot match the approximation ratio of their
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optimal sketching algorithm for Max-3AND. While we believe that no o(
√

n)-space streaming
algorithm can beat their sketching algorithm for Max-3AND, proving this will require new
techniques.
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We can show that the minimizer of γ{3} for a particular µ is in general unique. Hence, it suf-
fices to furthermore show that D∗

N is the unique minimizer of β{3}(·)
γ{3},3(µ(·)) . For this purpose, the

max-min method is not sufficient because λ{3}(·,p∗)
γ{3},3(µ(·)) is not uniquely minimized at D∗

N (where
we chose p∗ = 2

3 ). Intuitively, this is because p∗ is not a good enough estimate for the max-
imizer of λ{3}(DN , ·). To remedy this, we observe that λ{3}((1, 0, 0, 0), ·), λ{3}((0, 1, 0, 0), ·),
λ{3}((0, 0, 1, 0), ·) and λ{3}((0, 0, 0, 1), ·) are minimized at 0, 1

3 , 2
3 , and 1, respectively. Hence,

we instead lower-bound λ{3}(DN , ·) by evaluating at 1
3 DN ⟨1⟩ + 2

3 DN ⟨2⟩ + DN ⟨3⟩, which
does suffice to prove the uniqueness of D∗

N . The theorem then follows from continuity
arguments. ◀

Proof of Lemma 17. Consider the case where k is odd. Define D∗
N by D∗

N ⟨ k+1
2 ⟩ = 1 and

let p∗ = 1
2 + 1

2k . Since

α(kAND) ≤
β{k}(D∗

N )
γ{k},k(µ(D∗

N )) and β{k}(DN ) = sup
p∈[0,1]

λ{k}(D∗
N , p),

by Equations (4) and (8), respectively, it suffices to check that p∗ maximizes λ{k}(D∗
N , ·) and

λ{k}(D∗
N , p∗)

γ{k},k(µ(D∗
N )) = α′

k.

Indeed, by Equation (11),

λ{k}(D∗
N , p) = (1 − p)(k−1)/2p(k+1)/2.

To show p∗ maximizes λ{k}(D∗
N , ·), we calculate its derivative:

d

dp

[
(1 − p)(k−1)/2p(k+1)/2

]
= −(1 − p)(k−3)/2p(k−1)/2

(
kp − k + 1

2

)
,

which has zeros only at 0, 1, and p∗. Thus, λ{k}(D∗
N , ·) has critical points only at 0, 1, and p∗,

and it is maximized at p∗ since it vanishes at 0 and 1. Finally, by Equations (10) and (11)
and the definition of α′

k,

λ{k}(D∗
N , p∗)

γ{k},k(µ(D∗
N )) =

( 1
2 − 1

2k

)(k−1)/2 ( 1
2 + 1

2k

)(k+1)/2

1
2
(
1 + 1

k

) = α′
k,

as desired.
Similarly, consider the case where k is even; here, we define D∗

N by D∗
N ⟨ k

2 ⟩ = ( k
2 +1)2

( k
2 )2+( k

2 +1)2

and D∗
N ⟨ k

2 + 1⟩ = ( k
2 )2

( k
2 )2+( k

2 +1)2 , and set p∗ = 1
2 + 1

2(k+1) . Using Equation (11) to calculate

the derivative of λ{k}(D∗
N , ·) yields

d

dp

[ (
k
2 + 1

)2(
k
2
)2 +

(
k
2 + 1

)2 (1 − p)k/2pk/2 +
(

k
2
)2(

k
2
)2 +

(
k
2 + 1

)2 (1 − p)k/2−1pk/2+1

]

= − k

2 + 2k + 2k2 (1 − p)k/2−2pk/2−1
(

k

2 + 1 − 2p

)(
(k + 1)p −

(
k

2 + 1
))

,

so λ{k}(D∗
N , ·) has critical points at 0, 1, 1

2 + k
4 . and p∗; p∗ is the only critical point in

the interval [0, 1] for which λ{k}(D∗
N , ·) is positive, and hence is its maximum. Finally, it

can be verified algebraically using Equations (10) and (11) that λ{k}(D∗
N ,p∗)

γ{k},k(µ(D∗
N

)) = 2α′
k+1, as

desired. ◀
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Proof of Lemma 18. First, suppose k ≥ 3 is odd. Set p∗ = 1
2 + 1

2k = k+1
2k . We want to show

that

α′
k ≤ inf

DN ∈∆k

λ{k}(DN , p∗)
γ{k},k(µ(DN )) (max-min inequality, i.e., Equation (9))

= inf
DN ∈∆k

∑k
i=0(1 − p∗)k−i(p∗)i DN ⟨i⟩∑k

i=0
i
k DN ⟨i⟩

. (Equations (10) and (11))

By Proposition 19, it suffices to check that

∀i ∈ {0} ∪ [k], (1 − p∗)k−i(p∗)i ≥ α′
k · i

k
.

By definition of α′
k, we have that α′

k = (1 − p∗)(k−1)/2(p∗)(k−1)/2. Defining r = p∗

1−p∗ = k+1
k−1

(so that p∗ = r(1 − p∗)), factoring out (1 − p∗)k, and simplifying, we can rewrite our desired
inequality as

∀i ∈ {0} ∪ [k], 1
2(k − 1)ri− k−1

2 ≥ i. (15)

When i = k+1
2 or k−1

2 , we have equality in Equation (15). We extend to the other values of i

by induction. Indeed, when i ≥ k+1
2 , then “i satisfies Equation (15)” implies “i + 1 satisfies

Equation (15)” because ri ≥ i + 1, and when i ≤ k−1
2 , then “i satisfies Equation (15)” implies

“i − 1 satisfies Equation (15)” because 1
r i ≥ i − 1.

Similarly, in the case where k ≥ 2 is even, we set p∗ = 1
2 + 1

2(k+1) and r = p∗

1−p∗ = k+2
k .

In this case, for i ∈ {0} ∪ [k] the following analogue of Equation (15) can be derived:

∀i ∈ {0} ∪ [k], 1
2kri− k

2 ≥ i,

and these inequalities follow from the same inductive argument. ◀

Proof of Lemma 20. As in the proof of Lemma 17, it suffices to construct D∗
N and p∗ such

that p∗ maximizes λ{k−1,k}(D∗
N , ·) and λ{k−1,k}(D∗

N ,p∗)
γ{k−1,k},k(µ(D∗

N
)) = k

2 α′
k−1.

We again let p∗ = 1
2 + 1

2(k−1) , but define D∗
N by D∗

N ⟨ k
2 ⟩ = ( k

2 )2

( k
2 )2+( k

2 −1)2 and D∗
N ⟨ k

2 + 1⟩ =

( k
2 −1)2

( k
2 )2+( k

2 −1)2 . By Equation (13), the derivative of λ{k−1,k}(D∗
N , ·) is now

d

dp

[ (
k
2
)2(

k
2
)2 +

(
k
2 − 1

)2 (1 − p)k/2−1pk/2−1
(

k

2 p2 + pq + k

2 q2
)

+

(
k
2 − 1

)2(
k
2
)2 +

(
k
2 − 1

)2 (1 − p)k/2−2pk/2
((

k

2 − 1
)

p2 + pq +
(

k

2 + 1
)

q2
)]

= − 1
8(k2 − 2k + 2)(1 − p)k/2−3pk/2−2(−k + (2(k − 1)p)ξ(p),

where ξ(p) is the cubic

ξ(p) = −8k(k − 1)p3 + 2(k3 + k2 + 6k − 12)p2 − 2(k3 − 4)p + k2(k − 2).

Thus, λ{k−1,k}’s critical points on the interval [0, 1] are 0, 1, p∗ and any roots of ξ in this
interval. We claim that ξ has no additional roots in the interval (0, 1). This can be verified
directly by calculating roots for k = 2, 4, so assume WLOG k ≥ 6.



J. Boyland, M. Hwang, T. Prasad, N. Singer, and S. Velusamy 38:21

Suppose ξ(p) = 0 for some p ∈ (0, 1), and let x = 1
p − 1 ∈ (0, ∞). Then p = 1

1+x ; plugging
this in for p and multiplying through by (x + 1)3 gives the new cubic

(k3 − 2k2)x3 + (k3 − 6k2 + 8)x2 + (k3 − 4k2 + 12k − 8)x + (k3 − 8k2 + 20k − 16) = 0 (16)

whose coefficients are cubic in k. It can be verified by calculating the roots of each coefficient
of x in Equation (16) that all coefficients are positive for k ≥ 6. Thus, Equation (16) cannot
have roots for positive x, a contradiction. Hence λ{k−1,k}(D∗

N , ·) is maximized at p∗. Finally,
it can be verified that λ{k−1,k}(D∗

N ,p∗)
γ{k−1,k},k(µ(D∗

N
)) = k

2 α′
k−1, as desired. ◀

Proof of Lemma 21. Define p∗ = 1
2 + 1

2(k−1) . Following the proof of Lemma 18 and using
the lower bound γ{k−1,k},k(µ(DN )) ≤

∑k
i=0

i
k−1 DN ⟨i⟩, it suffices to show that

k

2 α′
k−1 ≤ inf

DN ∈∆k

∑k
i=0(1 − p∗)k−i−1(p∗)i−1((k − i)(p∗)2 + p∗(1 − p∗) + i(1 − p∗)2) DN ⟨i⟩∑k

i=0
i

k−1 DN ⟨i⟩

for which by Proposition 19, it in turn suffices to prove that for each i ∈ {0} ∪ [k],
k

2 α′
k−1

i

k − 1 ≤ (1 − p∗)k−i−1(p∗)i−1((k − i)(p∗)2 + p∗(1 − p∗) + i(1 − p∗)2).

We again observe that α′
k−1 = (1 − p∗)k/2−1(p∗)k/2−1, define r = p∗

1−p∗ = k
k−2 , and factor

out (1 − p∗)k−1, which simplifies our desired inequality to
1
2ri− k

2 −1 · k − 2
k − 1

(
i + r + (k − i)r2) ≥ i. (17)

for each i ∈ {0} ∪ [k]. Again, we assume k ≥ 6 WLOG; the bases cases i = k
2 − 1, k

2 can be
verified directly, and we proceed by induction. If Equation (17) holds for i, and we seek to
prove it for i + 1, it suffices to cross-multiply and instead prove the inequality

r(i + 1 + r + (k − (i + 1))r2)i ≥ (i + 1)(i + r + (k − i)r2),

which simplifies to

(k − 2i)(k − 1)(k2 − 4i − 4) ≤ 0,

which holds whenever k
2 ≤ i ≤ k2−4

4 (and k2−4
4 ≥ k for all k ≥ 6). The other direction (where

i ≤ k
2 − 1 and we induct downwards) is similar. ◀

Proof of Theorem 6. To get an (α − ϵ)-approximation to valΨ, let δ > 0 be small enough
such that 1−δ

1+δ α(Thi
k) ≥ α(Thi

k) − ϵ. We claim that calculating an estimate b̂ for bias(Ψ)
(using Corollary 31) up to a multiplicative δ factor and outputting v̂ = α(Thi

k)γS,k( b̂
1+δ ) is

sufficient.
Indeed, suppose b̂ ∈ [(1 − δ)bias(Ψ), (1 + δ)bias(Ψ)]; then b̂

1+δ ∈ [ 1−δ
1+δ bias(Ψ), bias(Ψ)].

Now we observe

γS,k

(
b̂

1 + δ

)
≥ γS,k

(
1 − δ

1 + δ
bias(Ψ)

)
(monotonicity of γS,k)

= min
{

1 + 1−δ
1+δ bias(Ψ)
1 + ϵs,k

, 1
}

(Lemma 16)

≥ 1 − δ

1 + δ
min

{
1 + bias(Ψ)

1 + ϵs,k
, 1
}

(δ > 0)

= 1 − δ

1 + δ
γS,k(bias(Ψ)). (Lemma 16)
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Then we conclude

(α(Thi
k) − ϵ)valΨ ≤ (α(Thi

k) − ϵ)γS,k(bias(Ψ)) (Lemma 28)

≤ α(Thi
k) · 1 − δ

1 + δ
γS,k(bias(Ψ)) (assumption on δ)

≤ v̂ (our observation)
≤ α(Thi

k)γS,k(bias(Ψ)) (monotonicity of γS,k)
≤ βS,k(bias(Ψ)) (Equation (7))
≤ valΨ, (Lemma 29)

as desired. ◀

Proof of Theorem 12. By Lemma 26, β{3}(DN )
γ{3},3(µ(DN )) is minimized uniquely at D∗

N = (0, 0, 1, 0).
By Lemma 14 we have µ(D∗

N ) = 1
3 , and by inspection from the proof of Lemma 16 below,

γ{3}(DY ) with µ(DY ) = 1
3 is uniquely minimized by D∗

Y = ( 1
3 , 0, 0, 2

3 ).
Finally, we rule out the possibility of an infinite sequence of padded one-wise pairs which

achieve ratios arbitrarily close to 2
9 using topological properties. View a distribution D ∈ ∆3

as the vector (D⟨0⟩, D⟨1⟩, D⟨2⟩, D⟨3⟩) ∈ R4. Let D ⊂ R4 denote the set of such distributions.
Let M ⊂ D × D ⊂ R8 denote the subset of pairs of distributions with matching marginals,
and let M ′ ⊂ M denote the subset of pairs with uniform marginals and P ⊂ M the subset
of padded one-wise pairs. D, M , M ′, and P are compact (under the Euclidean topology);
indeed, D, M , and M ′ are bounded and defined by a finite collection of linear equalities
and strict inequalities, and letting M ′ ⊂ M denote the subset of pairs of distributions with
matching uniform marginals, P is the image of the compact set [0, 1] × D × M ′ ⊂ R13 under
the continuous map τ × D0 × (D′

Y , D′
N ) 7→ (τD0 + (1 − τ)D′

Y , τD0 + (1 − τ)D′
N ). Hence, P

is closed.
Now the function

α : M → R ∪ {∞} : (DN , DY ) 7→
β{3}(DN )
γ{3}(DY )

is continuous, since a ratio of continuous functions is continuous, and β{3} is a single-variable
supremum of a continuous function (i.e., λS) over a compact interval, which is in general
continuous in the remaining variables. Thus, if there were a sequence of padded one-wise
pairs {(D(i)

N , D(i)
Y ) ∈ P}i∈N such that α(D(i)

N , D(i)
Y ) converges to 2

9 as i → ∞, since M is
compact and P is closed, Lemmas 26 and 27 imply that (D∗

N , D∗
Y ) ∈ P , a contradiction. ◀

Proof of Lemma 28. Let opt ∈ {−1, 1}n denote the optimal assignment for Ψ. Then

valΨ = valΨ(opt) (definition of opt)
= valΨopt(1n) (Item iii of Proposition 32)
= λS(Dsym

Ψopt , 1) (Item i of Proposition 33 with p = 1)
= γS(Dsym

Ψopt) (definition of γS , Equation (4))
≤ γS,k(µ(Dsym

Ψopt)) (definition of γS,k, Equation (6))
≤ γS,k(bias(Ψopt)) (Item ii of Proposition 33 and monotonicity of γS,k)
= γS,k(bias(Ψ)), (Item ii of Proposition 32)

as desired. ◀



J. Boyland, M. Hwang, T. Prasad, N. Singer, and S. Velusamy 38:23

Proof of Lemma 29. Let maj ∈ {−1, 1}n denote the assignment assigning xi to 1 if
diffi(Ψ) ≥ 0 and −1 otherwise. Now

valΨ = valΨmaj (Item iv of Proposition 32)

≥ sup
p∈[0,1]

(
E

a∼Bern(p)n
[valΨmaj(a)]

)
(probabilistic method)

= sup
p∈[0,1]

(λS(Dsym
Ψmaj , p)) (Item i of Proposition 33)

≥ βS(Dsym
Ψmaj) (definition of βS , Equation (4))

≥ βS,k(µ(Dsym
Ψmaj)) (definition of βS,k, Equation (6))

= βS,k(bias(Ψmaj)) (Item iii of Proposition 33)
= βS,k(bias(Ψ)), (Item ii of Proposition 32)

as desired. ◀
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