
Asymptotically Optimal Bounds for Estimating
H-Index in Sublinear Time with Applications to
Subgraph Counting
Sepehr Assadi !Ï

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Hoai-An Nguyen ! Ï

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Abstract
The h-index is a metric used to measure the impact of a user in a publication setting, such as a
member of a social network with many highly liked posts or a researcher in an academic domain
with many highly cited publications. Specifically, the h-index of a user is the largest integer h such
that at least h publications of the user have at least h units of positive feedback.

We design an algorithm that, given query access to the n publications of a user and each
publication’s corresponding positive feedback number, outputs a (1±ε)-approximation of the h-index
of this user with probability at least 1 − δ in time O

(
n·ln (1/δ)

ε2·h

)
, where h is the actual h-index which

is unknown to the algorithm a-priori. We then design a novel lower bound technique that allows us
to prove that this bound is in fact asymptotically optimal for this problem in all parameters
n, h, ε, and δ.

Our work is one of the first in sublinear time algorithms that addresses obtaining asymptotically
optimal bounds, especially in terms of the error and confidence parameters. As such, we focus
on designing novel techniques for this task. In particular, our lower bound technique seems quite
general – to showcase this, we also use our approach to prove an asymptotically optimal lower bound
for the problem of estimating the number of triangles in a graph in sublinear time, which now is
also optimal in the error and confidence parameters. This latter result improves upon prior lower
bounds of Eden, Levi, Ron, and Seshadhri (FOCS’15) for this problem, as well as multiple follow-up
works that extended this lower bound to other subgraph counting problems.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Sublinear time algorithms, h-index, asymptotically optimal bounds, lower
bounds, subgraph counting

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.48

Category APPROX

Funding Sepehr Assadi: Department of Computer Science, Rutgers University. Research supported
in part by a NSF CAREER Grant CCF-2047061, a gift from Google Research, and a Fulcrum award
from Rutgers Research Council.
Hoai-An Nguyen: Research supported in part by a NSF CAREER Grant CCF-2047061.

Acknowledgements We thank Janani Sundaresan for helpful feedback on the presentation of our
paper. We are also grateful to the anonymous reviewers of APPROX 2022 for their helpful feedback
on previous work and the presentation of this paper.

© Sepehr Assadi and Hoai-An Nguyen;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 48; pp. 48:1–48:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
https://sepehr.assadi.info/
mailto:hnn14@scarletmail.rutgers.edu
https://sites.google.com/scarletmail.rutgers.edu/hoaiannguyen
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Estimating H-Index in Sublinear Time

1 Introduction

The Hirsch index, or h-index for short, is a metric used to measure the impact of a researcher’s
publications [20]. It is an integer that considers both the number of publications and citations
a researcher has and is used in a number of contexts including consideration for grants and
job opportunities. We can abstract out this problem by modeling each individual researcher
as an array A[1 : n] where n is the number of papers they have published and A[i] is the
number of citations paper i ∈ [n] has. The h-index of A is then defined as follows.

▶ Definition 1. The h-index of an array A[1 : n], denoted by h(A), is the maximum integer
h such that A[1 : n] has at least h indices, ij, where for each j ∈ [h], A[ij] ⩾ h.

There are simple algorithms that can compute the value of h(A) for any given array A in
O(n) time. For instance, we can change each entry of A[i] to min {A[i], n} without changing
h(A) (since h(A) ⩽ n) and then run counting sort on A in linear time to sort A in decreasing
order. We can then make another pass over A and output the largest index i ∈ [n] such that
A[i] ⩾ i which will be equal to h(A) now that A is sorted. This solves the h-index problem
in Θ(n) time.

The question we focus on in this paper is whether we can solve this problem even faster
than reading the entire input, namely, via a sublinear time algorithm, assuming we can read
each single entry of A in O(1) time. There are easy observations that show that the answer to
this question is No without relaxing the problem: deterministic algorithms cannot solve this
problem in sublinear time even approximately, and randomized algorithms cannot find an
exact answer1. Such observations however are commonplace when it comes to sublinear time
algorithms. Our goal in this paper is thus to solve this problem allowing both randomization
and approximation.

▶ Result 2. There is an algorithm that for any array A and any ε, δ ∈ (0, 1), with
probability at least 1 − δ, outputs an estimate h̃ such that |h̃− h(A)| ⩽ ε · h(A) in
O(n·ln (1/δ)

ε2·h(A)) time. Moreover, we prove that this algorithm is asymptotically optimal in
all parameters involved.

Result 2 gives a randomized sublinear time algorithm for a (1± ε)-approximation of the
h-index problem, where the runtime improves depending on the value of the h-index itself.
This is quite common in sublinear time algorithms; see, e.g. [9, 11, 1] for estimating the
number of subgraphs, [4] for minimum cut, or [14, 15, 10, 31] for sampling small subgraphs,
among others. In all the aforementioned examples, such dependences are necessary, which is
also the case for ours by the lower bound we prove.

Our Result 2, however, is quite novel from a different perspective: the obtained bounds
are asymptotically optimal in all the parameters of the problem, including ε and δ. We are
not aware of any prior work with such strong guarantees as we will discuss in more detail in
the next subsection. Moreover, as a corollary of our techniques in proving the lower bound

1 A deterministic algorithm running in o(n) time cannot distinguish between an array A which is all zeros
and an array B obtained from A by making n/2 entries have value n/2 instead. This is because the
first n/2 queries of the algorithm to indices of A or B can be 0 in both cases. Yet, we have h(A) = 0
and h(B) = n/2. Similarly, a randomized algorithm running in o(n) time cannot distinguish between an
array A with value n as every entry and an array B obtained from A by changing exactly one of the
entries to n − 1 instead. This can be proven for instance by using the Ω(n) lower bound on the query
complexity of the OR problem [6]. In this case h(A) = n and h(B) = n − 1.

S. Assadi and H.-A. Nguyen 48:3

for Result 2 with dependence on both ε and δ, we also obtain an asymptotically optimal
lower bound for the well-studied problem of counting triangles in sublinear time that now
matches the dependence on ε and δ as well, improving upon the prior work in [9, 13, 1].

1.1 Key Motivations
There are two key, yet disjoint, motivations behind our work that we elaborate on below.

Measuring “impact” quickly

Consider any “publication setting” that allows for user feedback. This can range from social
networks with users posting topics and others liking them all the way to the academic domain
with researchers publishing papers and others citing them. A question studied frequently
in social sciences is how to measure the “impact” of a single user in such a setting for
many different contexts, including identifying impactful users for marketing or propagating
information; see, e.g. [28] and the references therein.

One of the well-accepted measures of impact in these publication settings is the h-index
measure we study in this paper [20, 28]. Given the ubiquity of massive publication settings
and their evolving nature, say, social networks, we need algorithms that are able to compute
the h-index of different users efficiently; see, e.g. [18] that design such algorithms in the
closely related streaming model (which focuses on the space usage of algorithms instead
of their time). Thus, a key motivation behind our Result 2 is to provide a time-efficient
algorithm for this purpose. In general, it seems like a fascinating area of research to obtain
efficient algorithms for measuring various notions of impact in these massive publication
settings in parallel to the line of work, e.g., in [28], that searches for the “right” measure
itself.

In particular, the h-index has numerous applications within network science. In [8], it
is shown that when the h-index of a graph is large enough, the algorithm they design to
approximate the degree distribution is sublinear. In [24], the focus is on computing coreness
through iteratively using an operator that can calculate the h-index of any node to identify
influential nodes: an important step in understanding a network’s dynamics and structure.
Both works do not specify how their algorithm computes the h-index, so the use of our
algorithm could help prevent impractical runtimes. Building on [24], [29] generalizes using
an iterative h-index operator for truss and nucleus decomposition to find dense subgraphs.
They use the classical linear algorithm for calculating the h-index, which therefore leaves the
opportunity to use our algorithm to achieve better efficiency.

Asymptotically optimal sublinear time algorithms

Traditionally, the work on sublinear time algorithms have been rather cavalier with the
dependence on the error parameter ε, confidence parameter δ, and logarithmic factors. It
is certainly important to focus on the “high order terms” in the complexity of problems,
say, in numerous works on subgraph counting; see, e.g., [9, 11, 12] and references therein.
However, as already observed in [17]: “the dependence of the complexity on the approximation
parameter is a key issue”. For instance, in any (1± ε)-approximation algorithm, for a typical
value of ε ∼ 1%, one extra factor of 1/ε in the runtime translates to roughly a 100x slower
algorithm, which is almost always a deal breaker for the practical purposes of sublinear time
algorithms! Similar considerations also apply, but perhaps to a lower extent, to having a
large dependence on logarithmic factors instead of asymptotically optimal bounds. In terms
of the confidence parameter, δ, the runtime dependence of sublinear time algorithms almost
always includes the term ln(1/δ). It is important for practical considerations to determine
whether this dependence is necessary.

APPROX/RANDOM 2022

48:4 Estimating H-Index in Sublinear Time

Despite this, such considerations have not been studied in sublinear time algorithms. The
only prior work we are aware of is the very recent work of [31] that improved the O(ε−1/2)-
dependence of the algorithm of [14] for sampling edges ε-point-wise close to uniform to an
O(log (1/ε))-dependence. This is in stark contrast with the large body of work in related
areas such as streaming [21, 23, 5], graph streaming [25, 2], compressed sensing [26, 27],
sampling [22], and dynamic graph algorithms [30, 19, 3] which put emphasis on obtaining
asymptotically optimal algorithms and lower bounds on all parameters.

In light of this discussion, another key motivation of our work has been to use the h-index
problem as a medium for designing general techniques for obtaining asymptotic bounds for
sublinear time algorithms in general. For instance, our algorithm involves careful subroutines
that side-step typical “binary search” approaches in prior work that results in additional
O(ε−1 · log n) terms in the runtimes of algorithms and a more careful analysis of the error that
bypasses a trivial union bound which leads to additional O(log n) factors. More importantly,
we design a new lower bound technique, based on a new query complexity result that we
establish, that allows us to prove lower bounds that depend on both parameters ε and δ. This
approach can now be used to replace prior sublinear time lower bounds both based on ad-hoc
arguments such as the ones in [9] or the ones based on communication complexity [14, 1].
As a result, we also obtain asymptotically optimal lower bounds for the problem of counting
triangles in a graph that now matches the dependence on ε and δ as well, improving upon
the prior work in [9, 13, 1].

1.2 Notation
For any integer t ⩾ 1, we define [t] := {1, 2, . . . , t}. For any p ∈ (0, 1), we use B(p) to denote
the Bernoulli distribution with mean p. For a set S of integers, we write i ∈R S to mean i is
chosen uniformly at random from S.

1.3 Appendix
Due to space limitations, some details and proofs marked by a star are postponed to the
full version of the paper which appears on arXiv. Appendix A includes the concentration
results, other basic probabilistic tools, basic definitions and tools from query complexity, and
measures of distance between distributions that we use in this paper.

2 The Algorithm

We describe our main algorithm for the h-index problem in this section.

▶ Theorem 3. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n], approximation and confidence parameters ε, δ ∈ (0, 1), with probability at least

1− δ outputs an estimate h̃ of h(A) such that |h̃− h(A)| ⩽ ε · h(A) in O(n · ln(1/δ)
ε2 · h(A)) time.

The algorithm in Theorem 3 is a combination of a “weak” and “strong” estimator that
we design. The weak estimator only outputs whether h(A) is at least as large as a given
threshold, but it is efficient and can be used to provide a lower bound on h(A). The strong
estimator, which has a slower runtime, then uses the lower bound to output an estimate of
h(A). In the next two subsections, we present these two estimators and then conclude the
proof of Theorem 3 through a careful combination of them that preserves the asymptotic
runtime of the overall algorithm.

S. Assadi and H.-A. Nguyen 48:5

2.1 A Weak Estimator
We present an algorithm that determines with high probability whether h(A) is at least as
large as a given threshold.

▶ Lemma 4. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n] and an integer T ⩾ 1 in O(n/T) time outputs an answer satisfying the
following:

(i) if h(A) ⩾ T , the answer is Large with probability at least 1− 1/16;
(ii) if h(A) < T/4, the answer is Small with probability at least 1− h(A)/(4T);
(iii) either Small or Large can be outputted in the remaining cases.

Let us point out the asymmetric guarantee of the algorithm: it does not underestimate
h(A) with a certain constant probability while it does not overestimate h(A) with probability
proportional to the “rate” of overestimation. This guarantee will be crucial in our final
algorithm. We also note that the guarantee on the runtime of the algorithm is deterministic.

2.1.1 The Algorithm
At a high level, our algorithm, h-index-weak-estimator, queries random indices from A

and calculates the proportion of those indices that are above a threshold representing the
mid-point between a h-index of T/4 and T . If the proportion is below the threshold, the
algorithm outputs Small; otherwise, it outputs Large.

Algorithm 1 h-index-weak-estimator(A[1 : n], T).

1 Sample k := 64 · n/T indices S independently and uniformly with repetition from [n].
2 Let X denote the number of indices i ∈ S such that A[i] ⩾ T .
3 If X ⩾ kT/(2n), output Large. Otherwise, output Small.

The runtime of h-index-weak-estimator is simply O(n/T) as we are sampling these
many indices in S and then for each i ∈ S, we need to query A[i]; counting the value of X

and outputting the answer can also be done in O(n/T) time, which bounds the runtime as
desired.

2.1.2 The Analysis
We now analyze the correctness of the algorithm. For any j ∈ [k], define an indicator random
variable Xj which is 1 iff the j-th sample in S, namely, ij ∈ [n], satisfies A[ij] ⩾ T . This
way, for the counter X in the algorithm, we have X =

∑k
j=1 Xj . Recall that the output of

the algorithm depends on the value of X. In the following, we will separately consider the
value of X in the case when the output is supposed to be Large versus when it is supposed
to be Small.

Case I: the “Large” case

We first consider the case when the output should be Large, or when h(A) ⩾ T . Thus,

E [X] =
k∑

j=1
E [Xj] =

k∑
j=1

Pr
ij∈R[n]

(A[ij] ⩾ T) ⩾ k · T

n
, (1)

APPROX/RANDOM 2022

48:6 Estimating H-Index in Sublinear Time

since A consists of at least T indices with value ⩾ T when h(A) ⩾ T , and we are sampling
indices ij ∈ [n] for j ∈ [k] uniformly at random. We can similarly bound the variance of X

using Fact 29 since variables Xj for j ∈ [k] are independent, and thus,

Var [X] = Var

 k∑
j=1

Xj

 =
k∑

j=1
Var [Xj] ⩽

k∑
j=1

E
[
X2

j

]
=

k∑
j=1

E [Xj] = E [X] , (2)

where the second to last equality is because for all j ∈ [k], Xj is an indicator random variable.
We use Chebyshev’s inequality (Proposition 30) to finalize the proof of this case.

▷ Claim 5 (⋆). When h(A) ⩾ T , we have Pr (algorithm outputs Small) ⩽ 1/16.

This claim is now enough to establish property (i) in Lemma 4.

Case II: the “Small” case

We now consider the case when the output should be Small, namely, when h(A) < T/4. In
this case, we have,

E [X] =
k∑

j=1
E [Xj] =

k∑
j=1

Pr
ij∈R[n]

(A[ij] ⩾ T) < k · T

4n
, (3)

as there are less than T/4 indices in A with value ⩾ T when h(A) < T/4, and we are sampling
indices ij ∈ [n] for j ∈ [k] uniformly at random. We will also bound the variance of X

similarly to Equation (2) but in a slightly more careful manner. By Fact 29, since variables
Xj for j ∈ [k] are independent, we have,

Var [X] =
k∑

j=1
Var [Xj] ⩽

k∑
j=1

E [Xj] =
k∑

j=1
Pr

ij∈R[n]
(A[ij] ⩾ T) ⩽ k · h(A)

n
, (4)

where in the last inequality, we use the fact that the number of indices in A with value larger
than T is at most h(A) (since we already know that h(A) < T).

To conclude the proof, we again use Chebyshev’s inequality but with a slightly different
analysis.

▷ Claim 6 (⋆). When h(A) < T/4, we have Pr (algorithm outputs Large) ⩽ h(A)/(4T).

Lemma 4 now follows from the previous two claims.

2.2 A Strong Estimator
We now present our second intermediate algorithm which outputs an estimate of h(A) when
given the guarantee that h(A) is at least as large as a given threshold.

▶ Lemma 7. There exists a sublinear time algorithm that given query access to an integer
array A[1 : n], an integer T ⩽ h(A), and approximation parameter ε ∈ (0, 1), in O(n/(ε2T))
time outputs an estimate h̃ of h(A) such that Pr(|h̃− h(A)| ⩽ ε · h(A)) ⩾ 2/3.

The guarantee on the runtime of the algorithm holds deterministically even when T > h(A).

We emphasize that while the guarantee on the runtime of the algorithm in Lemma 7
holds even when T > h(A), we clearly have no guarantee on the correctness in this case.

S. Assadi and H.-A. Nguyen 48:7

Algorithm 2 h-index-strong-estimator(A[1 : n], T , ε).

1 Sample k := 6n/(ε2T) indices S independently and uniformly with repetition from
[n].

2 Let B[1 : k] be an array consisting of integers A[i] for i ∈ S.
3 Return2 the largest integer q ∈ [n] such that k · q/n indices in B are at least q.

2.2.1 The Algorithm
The algorithm, h-index-strong-estimator, queries a set of random indices from A and
finds a scaled estimate of the h-index.

The first two lines of h-index-strong-estimator can be implemented in O(k) =
O(n/(ε2T)) time in a straightforward way. We show that the last step can also be im-
plemented in O(k) time.

▶ Lemma 8 (⋆). h-index-strong-estimator runs in O(n/(ε2T)) time.

2.2.2 The Analysis
We prove the correctness of h-index-strong-estimator in this subsection. We consider
each case in which the algorithm may overestimate or underestimate h(A) separately.

Probability of overestimation

We first bound the probability that h̃ > (1 + ε) · h(A). For this event to happen, we need B

to have more than (k/n) · (1 + ε) · h(A) indices with a value greater than (1 + ε) · h(A). We
bound the probability of this happening in the following.

For any j ∈ [k], define an indicator random variable Xj which is 1 iff the j-th sample
ij ∈ S satisfies A[ij] > (1 + ε) · h(A). Define X =

∑k
j=1 Xj . By the above discussion,

Pr
(
h̃ > (1 + ε) · h(A)

)
= Pr(X > (k/n) · (1 + ε) · h(A)). (5)

We bound the probability of the RHS of this equation.

▷ Claim 9 (⋆). Pr (X > (k/n) · (1 + ε) · h(A)) < 1/6.

Probability of underestimation

We now bound the probability that h̃ < (1− ε) · h(A). This case is essentially symmetric to
the other one and is provided for completeness. For this event to happen, we need B to have
less than (k/n) · (1− ε) · h(A) indices with a value of at least (1− ε) · h(A). We bound the
probability of this happening in the following.

For any j ∈ [k], define an indicator random variable Yj which is 1 iff the j-th sample
ij ∈ S satisfies A[ij] ⩾ (1− ε) · h(A). Define Y =

∑k
j=1 Yj . By the above discussion,

Pr
(
h̃ < (1− ε) · h(A)

)
= Pr (Y < (k/n) · (1− ε) · h(A)) . (6)

We bound the probability of the RHS of this equation.

▷ Claim 10 (⋆). Pr (Y < (k/n) · (1− ε) · h(A)) < 1/6.

Combining Claim 9 and Claim 10 concludes the proof of Lemma 7.

APPROX/RANDOM 2022

48:8 Estimating H-Index in Sublinear Time

2.3 The Sublinear Time h-Index-Estimator Algorithm

We now combine our weak and strong estimators to obtain a sublinear time algorithm for
estimating the h-index and prove Theorem 3. The algorithm runs h-index-weak-estimator
on smaller and smaller thresholds to determine a threshold that tightly lower bounds h(A).
Then, h-index-strong-estimator uses that threshold to output an estimate of h(A). Finally,
to ensure a probability of success of at least 1− δ, we combine the median/majority trick in
a rather non-black-box way using the asymmetric guarantee of h-index-weak-estimator in
part (ii) of Lemma 4.

Algorithm 3 h-index-estimator(A[1 : n], ε, δ).

1 Let r1 := 7 ln(8/δ) and r2 := 108 ln(8/δ) and initialize T to n.
2 While the majority answer of running h-index-weak-estimator(A, T) r1 times

returns Small, update T ← T/4.
3 For the current value of T , run h-index-strong-estimator(A, T/16, ε) r2 times

and return the median answer as the final estimate h̃.

We bound the runtime of the algorithm in the following lemma.

▶ Lemma 11. h-index-estimator runs in O
(n · ln(1/δ)

ε2 · h(A)

)
time with probability 1− δ/2.

Proof. The runtime depends on both running h-index-weak-estimator on (potentially)
multiple thresholds and running h-index-strong-estimator.

We define T ∗ as the “optimal” threshold: the first threshold given to
h-index-weak-estimator that is not larger than h(A), namely, T ∗ ⩽ h(A) < 4 · T ∗. The
following claim bounds the probability that the while-loop in step two of h-index-estimator
does not stop even after iteration T ∗.

▷ Claim 12 (⋆). Pr (h-index-estimator continues its while-loop beyond T ∗) ⩽ δ/2.

In the following, we condition on the complement of the event in Claim 12 which happens
with probability at least 1 − δ/2, which means we have only run the while-loop until at
most iteration T ∗. Let T0 = n, T1 = n/4, . . . , Tt = n/4t = T ∗ denote the thresholds in these
iterations. By Lemma 4 on the runtime of h-index-weak-estimator we have,

runtime of while-loop =
t∑

j=0
O(n

Tj
) ·O(ln (1/δ)) = O

(n

T ∗ · ln (1/δ)
)
·

t∑
j=0

1
4j

= O

(
n

h(A) · ln (1/δ)
)

,

since T ∗ is a 4-approximation to h(A) by definition and the given geometric series converges.
Moreover, by Lemma 7 on the runtime of h-index-strong-estimator, in this case,

we have that the last line of the algorithm takes O(n·ln (1/δ)
ε2·T ∗) = O(n·ln (1/δ)

ε2·h(A)) time as well,
again since T ∗ is a 4-approximation to h(A) (computing the medians can be done with the
Median-of-Medians algorithm in O(r2) time which is negligible in the above bounds).

All in all, we have that with probability 1 − δ/2, the algorithm runs in O(n·ln (1/δ)
ε2·h(A))

time. ◀

S. Assadi and H.-A. Nguyen 48:9

2.3.1 The Analysis
We prove the correctness of our algorithm in this subsection. Consider the parameter T ∗

defined earlier as the “optimal” threshold in the while-loop, meaning that T ∗ ⩽ h(A) < 4 ·T ∗.
There are two potential sources for error:
1. Event Eweak: In the while-loop, h-index-weak-estimator outputs Large for an iteration

T > 16T ∗; assuming this happens, the threshold passed to h-index-strong-estimator
is not necessarily valid, meaning that it may not be a lower bound on h(A).

2. Event Estrong: The threshold T obtained by the runs of h-index-weak-estimator in
the while-loop satisfies T ⩽ 16T ∗ and thus is valid, but h-index-strong-estimator
nevertheless fails to output an accurate estimate of h(A).

Among these, the probability of the second event is quite easy to bound using Lemma 7.
Thus, in the following, we focus primarily on proving the first part.

▷ Claim 13 (⋆). In h-index-estimator, for any T = 4ℓ · T ∗ for an integer ℓ ⩾ 2,
Pr (the while-loop terminates at iteration T) ⩽ (δ/8)ℓ−1.

We can now bound the error probability due to event Eweak. We have,

Pr (Eweak) ⩽
∑
ℓ⩾2

Pr
(
the while-loop terminates at T = 4ℓ · T ∗)

⩽
∑
ℓ⩾2

(
δ

8

)ℓ−1
(by Claim 13)

= (δ/8)
1− (δ/8) <

δ

4 . (as
∑∞

j=1 xj = x
1−x for x ∈ (0, 1))

We now bound the other source of error. Assuming Eweak does not happen, for the
parameter T that the while-loop terminates on, we have T ⩽ 16T ∗ ⩽ 16h(A) by the definition
of T ∗. This implies that the parameter T/16 passed to h-index-strong-estimator is a
lower bound on h(A). Thus, by Lemma 7, each of the r2 runs of h-index-strong-estimator
outputs a (1± ε)-approximation to h(A) with probability at least 2/3.

▷ Claim 14 (⋆). Pr
(
Estrong | Eweak

)
⩽ δ/4.

Therefore, by the union bound, the total probability of error is at most δ/4 + δ/4 = δ/2.
This concludes the analysis of h-index-estimator.

3 The Lower Bound

We now prove the asymptotic optimality of the bounds obtained by our algorithm in The-
orem 3.

▶ Theorem 15. Any algorithm that, given query access to an array A[1 : n], approximation
parameter ε ∈ (0, 1/4), and confidence parameter δ ∈ (0, 1/100), with probability 1− δ uses
at most q queries and outputs an estimate h̃ such that |h̃− h(A)| ⩽ ε · h(A) needs to satisfy
q = Ω(min(n, n·ln(1/δ)

ε2·h(A))).

To prove Theorem 15, we define a new problem which we call the Popcount Thresholding
Problem (PTP) and prove a lower bound on its randomized query complexity. We will then
perform a reduction from this problem to establish our theorem.

APPROX/RANDOM 2022

48:10 Estimating H-Index in Sublinear Time

▶ Remark 16. Let us suppose that 100 < h(A) < ln(1/δ) · 12/ε2. There exists some ε′ > ε

and δ′ > δ such that h(A) = ln(1/δ′) · 12/ε′2, and therefore, (n · ln(1/δ′))/(ε′2 · h(A)) = Ω(n).
So, the lower bound in Theorem 15 of Ω(n) given the above promises on the value of h(A) is
arbitrarily proven. In the following, we focus on proving that when h(A) ⩾ ln(1/δ) · 12/ε2,
the randomized query complexity is Ω((n · ln(1/δ))/(ε2 · h(A))).
In passing, we note that PTP seems quite a natural and general problem of its own independ-
ent interest; we will also use this problem in the subsequent section to prove asymptotically
optimal lower bounds for the well-studied problem of estimating the number of triangles in a
graph in sublinear time.

3.1 Popcount Thresholding Problem (PTP)
We define the Popcount Thresholding Problem as follows.

▶ Problem 17. In PTPm,k,γ , for integers m, k,⩾ 1 and parameter γ ∈ (0, 1), we are given a
string x ∈ {0, 1}m sampled with equal probability from either D0 where for each index i ∈ [m],
xi is independently set to 1 with probability p0 := (1− 2γ) · k/m or D1 where for each index
i ∈ [m], xi is independently set to 1 with probability p1 := (1 + 2γ) · k/m. The answer is Yes
if x was drawn from D1, and it is No if x was drawn from D0.

We prove the following lemma on the query complexity of PTP.

▶ Lemma 18. For any γ ∈ (0, 1/4), δ ∈ (0, 1/100), and integers m ⩾ 1, ln (1/δ) · 12/γ2 ⩽
k ⩽ m/6, Rδ(PTPm,k,γ) ⩾ m·ln (1/(4δ))

24 γ2·k where Rδ(·) denotes the randomized query complexity
with error probability δ.

To prove Lemma 18, we use the easy direction of Yao’s minimax principle (Proposition 28)
which allows us to focus on deterministic algorithms for PTP on the input distribution. As
per Problem 17, the input distribution is D = (1/2) ·D0 + (1/2) ·D1.

▶ Lemma 19 (⋆). In the distribution D,

Pr (|x|1 > (1− γ) · k | D0) ⩽ δ and Pr (|x|1 < (1 + γ) · k | D1) ⩽ δ.

Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k or
|x|1 ⩽ (1− γ) · k with probability 1− δ can also solve PTP with probability 1− 2δ. This is
simply because when x ∼ Dθ for θ ∈ {0, 1}, with probability at most δ, |x|1 is not within the
“right” range for such an algorithm to detect, and with another probability δ, the algorithm
may fail to output the correct answer. A union bound then implies the bound of 1− 2δ on
the probability of correctly solving PTP. We will use this later to prove Theorem 15 and in
our extension to triangle counting.

For the rest of the proof, let A be any deterministic query algorithm on D with the
worst-case number of queries q(A) := q < m·ln (1/(4δ))

24 γ2·k . Without loss of generality, we assume
that A always makes q queries on any input (by potentially making “dummy” queries to
reach q if needed). For an input x ∼ D, we use QA(x) ∈ {0, 1}q to denote the string of
answers returned to the query algorithm based on x.

Distribution of QA(x)

A key observation is that given only QA(x) = (b1, . . . , bq), since A is a deterministic algorithm,
we will learn the value of exactly q specific entries in x: b1 is the value of the index of x queried
first by A, then, b2 is the value of the second index queried by A where the query is uniquely

S. Assadi and H.-A. Nguyen 48:11

determined after seeing the answer b1 to the first query, and so on and so forth. Thus, for any
choice of θ ∈ {0, 1}, conditioned on x being sampled from Dθ, for any i ∈ [m], independent
of the value of (b1, . . . , bi−1), the value of bi is sampled from a Bernoulli distribution with
mean pθ. This means that:

distribution (QA(x) | D0) is B(p0)q and distribution (QA(x) | D1) is B(p1)q.

The following claim bounds the KL-divergence (Equation (8)) between these two distributions.

▷ Claim 20. For any q ⩾ 1 and 0 < p0, p1 < 1/3, we have, D(B(p0)q || B(p1)q) < ln (1/(4δ)).

Proof. By the chain rule of KL-divergence and using the fact that both arguments are product
distributions (Fact 32), we have

D(B(p0)q || B(p1)q) = q · D(B(p0) || B(p1)).

Moreover, for each term, using Proposition 33, we have

D(B(p0) || B(p1)) ⩽ (p0 − p1)2

p1 · (1− p1) ⩽
(4γ · k/m)2

(1 + 2γ) · k/m · 2/3 ⩽ 24γ2 · k

m
,

concluding the proof. ◁

Let us now use Claim 20 to conclude the proof. As argued earlier, all the information
that is revealed to the algorithm A is the string QA(x) on an input x ∼ D, and its task is to
distinguish whether x is sampled from D0 or D1. By Fact 31, the best probability of success
of A is then:

1
2 + 1

2 · ∥(QA(x) | D0) − (QA(x) | D1)∥tvd ⩽ 1 − 1
4 · exp (−D(QA(x) | D0 || QA(x) | D1))

(by the extension of Pinsker’s inequality in Proposition 34)

= 1 − 1
4 · exp (−D(B(p0)q || B(p1)q))
(by the distribution of QA(x) argued earlier)

< 1 − 1
4 · exp (ln (4δ)) = 1 − δ.

(by Claim 20 as k ⩽ m/6, γ < 1/4, and thus p0, p1 < 1/3)

This means that A can succeed with probability < 1− δ in distinguishing between D0 and
D1. Combined with the easy direction of Yao’s minimax principle (namely, an averaging
principle, Proposition 28), this concludes the proof of Lemma 18.

3.2 Reducing PTP to the H-Index Problem
We now prove Theorem 15 via a reduction from PTP and our lower bound for the latter
problem in Lemma 18. Suppose towards a contradiction that there is an algorithm Ah for
h-index that with probability 1− δ/2 uses o(n ln (1/δ)/(ε2h(A))) queries on input array A

and estimates h(A) to within a (1± ε)-factor. Given an instance of PTPm,k,γ , we use Ah to
solve PTP with probability 1− δ in PTP-estimator.

It is clear that the worst-case query complexity of PTP-estimator is < τ(n, k, ε, δ) by
the condition on the second line of the algorithm. In terms of parameters for PTPm,k,γ , this
translates to the bound of m·ln (1/(4δ))

24 γ2·k on the worst-case query complexity of PTP-estimator.
In the following, we will prove that if Ah truly exists, then PTP-estimator solves PTPm,k,γ

with probability of success at least 1− δ. But, then PTP-estimator contradicts the lower
bound of Lemma 18 – this implies that Ah cannot exist, and we get our desired lower bound
in Theorem 15.

APPROX/RANDOM 2022

48:12 Estimating H-Index in Sublinear Time

Algorithm 4 PTP-estimator(x, k, γ, δ).

1 Run Ah with parameters n = m, ε = γ and error δ/2 on an array A defined as
follows: for any query of Ah to A[i] for i ∈ [n], return A[i] = (1 + ε) · k if xi = 1 and
return 0 otherwise.

2 If at any point, the number of queries of Ah reaches

τ(n, k, ε, δ) = n · ln(1/(4δ))
24ε2 · k

,

stop Ah and return No as the answer.
3 If we never stopped Ah, return Yes if Ah returns h̃ ⩾ k − ε2 · k; otherwise return No.

▶ Lemma 21. PTP-estimator outputs the correct answer to any instance of PTPm,k,γ with
probability at least 1− δ.

Proof. Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k
or |x|1 ⩽ (1 − γ) · k with probability 1 − δ/2 can also solve PTP with probability 1 − δ.
Therefore, it is sufficient to prove that PTP-estimator outputs Yes when |x|1 ⩾ (1 + γ) · k
and No when |x|1 ⩽ (1− γ) · k with probability at least 1− δ/2. We consider each case of
the right answer to PTP separately.

Case I. Suppose first that the input x to PTP is a Yes-instance, meaning that |x|1 ⩾ (1+γ)·k.
Consider the array A implicitly constructed by PTP-estimator. Given that ε = γ, A contains
at least (1 + ε) · k entries each with a value of at least (1 + ε) · k. Moreover, it does not
contain any entry with a value larger than (1 + ε) · k. Thus, we have h(A) = (1 + ε) · k. By
the guarantee of Ah on its correctness and since h(A) > k, the probability that Ah outputs
a value

h̃ < h(A)− ε · h(A) = (1 + ε) · k − ε · k − ε2 · k = k − ε2 · k

or makes more than τ(n, k, ε, δ) queries on A and thus we stop it is at most δ/2.

Case II. Suppose now that the input x to PTP is a No-instance, meaning that |x|1 ⩽ (1−γ)·k.
Consider the array A implicitly constructed by PTP-estimator. Given that ε = γ, A contains
at most (1− ε) · k non-zero entries, so h(A) ⩽ (1− ε) · k. Thus, by the guarantee of Ah on
its correctness, the probability that Ah outputs a value

h̃ ⩾ k − ε2 · k = (1− ε) · k + ε · k − ε2 · k ⩾ h(A) + ε · h(A)

is at most δ/2. This means that if we do not stop Ah (because it has made too many
queries), the output will only be wrong with probability at most δ/2. But now note that we
do not have any particular guarantee on the probability that we stop Ah as it is possible that
h(A) is much less than k and thus the bound of o(n ln (1/δ)/(ε2h(A))) on the queries of Ah

will still be way less than τ(n, k, ε, δ). Nevertheless, even if we stop the algorithm, we output
No as the answer and thus make no error here. Thus, in this case also, the probability of
outputting a wrong answer is δ/2 at most as desired.

This concludes the proof of Lemma 21. ◀

Theorem 15 now follows immediately from Lemma 18 and Lemma 21 as argued earlier.

S. Assadi and H.-A. Nguyen 48:13

4 Triangle Counting Problem

In this section, we switch from the main theme of our paper which was on the h-index problem
and instead show an application of our lower bound techniques to the well-studied problem
of subgraph counting using local queries, in particular, the triangle counting problem.

▶ Problem 22. In TCPn,m,ε, for integers n, m ⩾ 1 and parameter ε ∈ (0, 1), we are given
an undirected graph G = (V, E) with n vertices and m edges, and the goal is to estimate the
number of triangles, namely, cliques on three vertices, in G to within a (1 ± ε)-factor. In
order to do this, we can make the following queries to the graph:
1. Degree queries: Given a vertex v ∈ V , return the degree of v (deg(v)).
2. Neighbor queries: Given a vertex v ∈ V and i ∈ [n], return the ith neighbor of v if

i ⩽ deg(v) and “None” otherwise.
3. Pair queries: Given two vertices u, v ∈ V , return 1 if (u, v) ∈ E and 0 otherwise.
4. Edge-sample queries: Return an edge e ∈ E independently and uniformly at random.

We refer the reader to [9, 11, 13, 1] and references therein for more on the background of
this problem. Here, we only note that [9] designed an algorithm for this problem with time
complexity O∗(n

t1/3 + m3/2

t), where t is the number of triangles and O∗ hides the dependence
on ε, error probability δ, and logarithmic factors in n. The algorithm of [9] only requires the
first three types of queries mentioned above, which is generally considered the baseline for
sublinear time algorithms and is referred to as the general query model. Later, by using the
fourth type of query also, [1] obtained an algorithm for this problem with time complexity
O(m3/2·ln (1/δ)

ε2·t) (the algorithm of [1] extends to counting all subgraphs, not just triangles,
with a runtime depending on the fractional edge cover of the subgraph we are counting;
see [1]).

On the lower bound front, [13], building on [9], proved a lower bound of Ω(m3/2

t) for the
triangle counting problem under the four queries mentioned. This lower bound, however,
only holds for some constant ε and δ and does not incorporate the dependence on them.

In this section, using our lower bound for the PTP problem in Lemma 18, we will improve
the lower bound of [13] and obtain a lower bound that matches the algorithmic bounds
of [1], settling the asymptotic complexity of the triangle counting problem in all parameters
involved.

▶ Theorem 23. Any algorithm that given access to an undirected graph G = (V, E) through
degree, neighbor, pair, and edge-sample queries, approximation parameter ε ∈ (0, 1/4), and
confidence parameter δ ∈ (0, 1/100), outputs an estimate t̃ of the number of triangles, t, in G

such that Pr(|t̃− t| ⩽ ε · t) ⩾ 1− δ requires Ω(min(m,
m3/2 · ln(1/δ)

ε2 · t
)) queries to the graph

provided that t = o(ε ·m).

Similarly to the h-index problem, we prove Theorem 23 via a reduction from PTP and our
lower bound for that problem in Lemma 18.
▶ Remark 24. For concreteness, we focused on proving a lower bound only for the triangle
counting problem as a representative of the wider family of subgraph counting problems.
However, by using our PTP in place of the lower bound arguments in [11] and [1], one can
also extend their lower bounds to asymptotically optimal bounds (matching the algorithm
of [1]) for larger cliques as well as odd-cycles.
▶ Remark 25. To avoid confusion, in the rest of this proof, we use m to denote the number
of edges in the triangle counting problem and instead use M (in place of the original m) for
the dimension of the PTP problem.

APPROX/RANDOM 2022

48:14 Estimating H-Index in Sublinear Time

Suppose towards a contradiction that there is an algorithm At for triangle counting that
queries input undirected graph, G, and estimates t to within a (1± ε)-factor with probability
at least 1− δ/2 using o(m3/2 ln(1/δ)/(ε2t)) queries. Given an instance of PTPM,k,γ , we use
At to solve PTP with probability 1− δ.

Define M = (
√

m/2)2 = m/4. We define a mapping from inputs of PTP, x ∈ {0, 1}M , to
Gx(V, E) on n = 2

√
m vertices and m edges.

Let the vertices of Gx consist of two sets, U ∪ V , such that U = {u1, ..., u√
m} and

V = {v1, ..., v√
m}. There is no overlap between the two sets, so U ∩ V = ∅. Let U

consist of two sets, U1∪U2, such that U1 = {u1, ..., u√
m/2} and U2 = {u√

m/2+1, ..., u√
m}.

Similarly, let V consist of two sets, V1 ∪ V2, such that V1 = {v1, ..., v√
m/2} and V2 =

{v√
m/2+1, ..., v√

m}.
We view x as being indexed by pairs i ∈ [

√
m/2], j ∈ [

√
m/2+1,

√
m] such that i < j. Now,

we add edges in the following way. If xij = 1, Gx contains edges (ui, uj) ∈ U1 × U2 and
(vi, vj) ∈ V1 × V2. If xij = 0, Gx contains edges (ui, vj) ∈ U1 × V2 and (vi, uj) ∈ V1 × U2.
Additionally, for each vertex u1 ∈ U1 and v1 ∈ V1, Gx contains edge (u1, v1). For each
vertex u2 ∈ U2 and v2 ∈ V2, Gx contains edge (u2, v2). There are no other edges that are
added.

See Figure 1 for an illustration.

Figure 1 The graph Gx for x = 0001. The bits are indexed by the vertex pairs (13, 14, 23, 24).

We call the reduction algorithm PTP-estimator-two.
It is clear that the worst-case query complexity of PTP-estimator-two is < τ(m, k, ε, δ).

In terms of parameters for PTPM,k,γ , this translates to the bound of M · ln(1/(4δ))
24γ2 · k

on the
worst-case query complexity of PTP-estimator-two. In the following, we will prove that
if At exists, then PTP-estimator-two solves PTPM,k,γ with probability of success at least
1−δ. But then, PTP-estimator-two contradicts the lower bound of Lemma 18 which implies
that At cannot exist, and we get our desired lower bound in Theorem 23.

We note that in the following lemma, the lower bound on k and upper bound on ε is
benign as otherwise the Ω(m) part of our lower bound in Theorem 23 should instead kick in.

▶ Lemma 26. PTP-estimator-two outputs the correct answer to any instance of PTPM,k,γ

with probability at least 1− δ as long as k = ω(ln (1/δ)/ε2), k = o(ε ·m), and ε = ω(1/
√

m).

Proof. Lemma 19 implies that any algorithm that can differentiate whether |x|1 ⩾ (1 + γ) · k
or |x|1 ⩽ (1 − γ) · k with probability 1 − δ/2 can also solve PTP with probability 1 − δ.
Therefore, it is sufficient to prove that PTP-estimator-two outputs Yes when |x|1 ⩾ (1+γ)·k
and No when |x|1 ⩽ (1− γ) · k with probability at least 1− δ/2.

S. Assadi and H.-A. Nguyen 48:15

Algorithm 5 PTP-estimator-two(x ∈ {0, 1}M , k, γ, δ).

1 Run At with parameters n = 2
√

m, m = 4M , ε = γ, and error δ/2 on an undirected
graph G defined as follows:

2 Degree queries. For any degree query of At, return
√

m.
3 Neighbor queries. For any neighbor query of At, do the following. Assume w.l.o.g.

that we get a vertex ui ∈ U1 and want to find the kth neighbor. If k ⩽
√

m/2,
return vi. Otherwise, set j ← k. Then, if xij is 1, return uj ; else, vj .

4 Pair queries. For any pair query of At, if an edge between a vertex u ∈ U1 and a
vertex v ∈ V1 or between u ∈ U2 and v ∈ V2 is queried, return 1. If an edge between
any two vertices in U1, U2, V1, or V2 is queried, return 0. Else, for some query
(ui, vj) such that i < j, return ¬xij . For some query (ui, uj) such that i < j, return
xij .

5 Edge-sample queries. For any random edge-sample query made by At, uniformly at
random pick a vertex v ∈ V and then uniformly at random pick one of its neighbors
u. Return the edge (u, v).

6 If at any point, the number of queries of At reaches

τ(m, k, ε, δ) = m · ln(1/(4δ))
9600ε2 · k

,

stop At and return No as the answer.
7 If we never stopped At, return Yes if At returns t̃ ⩾ 2k(

√
m− 2)(1− ε2); otherwise,

return No.

Within Gx, we will define red edges. Let the red edges include any edges between any
two vertices ∈ U1. The set of red edges will also include any edges between any two vertices
∈ V1. For every vertex v, we define reddeg(v) as the number of red edges incident on v.

We consider each case of the right answer to PTP separately.

Case I. Suppose first that the input x to PTP is a Yes-instance, meaning that for each
index i ∈ [M], xi was set to 1 independently with probability (1 + 2γ) · k/M . Consider the
graph G implicitly constructed by PTP-estimator-two. For every bit set to 1 in x, there
are two red edges in Gx. Each red edge (u, v) creates (

√
m − 2) − reddeg(u) − reddeg(v)

triangles.
We want to ensure that in the Yes-instance, there are enough triangles. We first lower

bound the total number of red edges. Since the number of red edges corresponds to |x|1, we
can use Lemma 19. By the choice of k = ω(ln (1/δ)/ε2), we can see that the probability that
|x|1 < (1+γ)·k is bounded by δ/2. Now, we bound for each edge, (u, v), reddeg(u)+reddeg(v).
Let us first bound the number of red edges incident on each vertex.

▷ Claim 27. When x is a Yes-instance, for each vertex v, Pr(reddeg(v) > ε/3 ·
√

m) ⩽ δ/
√

m.

Proof. For each vertex v, the probability of an edge incident on it being red is (1+2ε)·k/(m/4)
and there are potentially

√
m/2 red edges. Therefore, E[reddeg(v)] = (1+2ε)·k/(m/4)·

√
m/2.

By the lower bound on k, E[reddeg(v)] ⩽ ε/4 ·
√

m. We now use the Chernoff bound
(Proposition 30) to bound the probability that reddeg(v) is too large and have

Pr(reddeg(v) > ε/3 ·
√

m) ⩽ exp(− (1/3)2 · E[reddeg(v)]
3) ⩽ δ/

√
m

where the last inequality is because of the lower bound on ε. ◁

APPROX/RANDOM 2022

48:16 Estimating H-Index in Sublinear Time

Claim 27 implies that any edge (u, v), reddeg(u) + reddeg(v) is at most 2/3 · ε/
√

m.
Thus, by the guarantee of At on its correctness, the probability that At outputs a value

t̃ < t− ε · t ⩽ 2(
√

m− 2)(1 + ε) · k − ε · 2(
√

m− 2)(1 + ε) · k = 2k(
√

m− 2)(1− ε2)

is at most δ/2. This means that if we do not stop At (because it has made too many queries),
the output will only be wrong with probability at most δ/2. Additionally, since t/(2(

√
m−

2)) > k and the number of queries made by At is supposed to be o(m3/2 ln(1/δ)/(ε2t)), At

will never make more than τ(m, k, ε, δ) queries on G. Therefore, in this case, the probability
of outputting a wrong answer is at most δ/2 as desired.

Case II. Suppose instead that the input x to PTP is a No-instance, meaning that for each
index i ∈ [M], xi was set to 1 independently with probability (1− 2γ) · k/M . Consider the
graph G implicitly constructed by PTP-estimator-two. Every red edge can create at most
(
√

m− 2) triangles with vertices on the other side of the bipartition.
We first bound the total number of red edges. Since the number of red edges corresponds

to |x|1, we can use Lemma 19. By the choice of k = ω(ln (1/δ)/ε2), we can see that the
probability that |x|1 > (1− γ) · k is bounded by δ/2. Therefore, by the guarantee of At on
its correctness, the probability that At outputs a value

t̃ ⩾ 2k(
√

m− 2)(1− ε2) = 2(
√

m− 2)(1− ε) · k + ε · 2(
√

m− 2)(1− ε) · k ⩾ t + ε · t

is at most δ/2. This means that if we do not stop At (because it has made too many queries),
the output will only be wrong with probability at most δ/2. But now note that we do not
have any particular guarantee on the probability that we stop At since it is possible that
t/(2(

√
m−2)) is much less than k and thus the bound of o(m3/2 ln(1/δ)/(ε2t)) on the queries

of At will still be much less than τ(m, k, ε, δ). Nevertheless, even if we stop the algorithm, we
output No as the answer and thus make no error here. Thus, in this case also, the probability
of outputting a wrong answer is δ/2 at most as desired.

This concludes the proof of Lemma 26. ◀

References
1 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm

for counting arbitrary subgraphs via edge sampling. In Avrim Blum, editor, 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, volume 124 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

2 Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching
in dynamic streams. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

3 Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay
Solomon. Fully dynamic (∆ +1)-coloring in O(1) update time. ACM Trans. Algorithms,
18(2):10:1–10:25, 2022.

4 Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Query complexity of
global minimum cut. In Mary Wootters and Laura Sanità, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference),
volume 207 of LIPIcs, pages 6:1–6:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

S. Assadi and H.-A. Nguyen 48:17

5 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An optimal
algorithm for large frequency moments using o(nˆ(1-2/k)) bits. In Klaus Jansen, José D. P.
Rolim, Nikhil R. Devanur, and Cristopher Moore, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014,
September 4-6, 2014, Barcelona, Spain, volume 28 of LIPIcs, pages 531–544. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2014.

6 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

7 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

8 Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C. Seshadhri. Provable and practical ap-
proximations for the degree distribution using sublinear graph samples. CoRR, abs/1710.08607,
2017. arXiv:1710.08607.

9 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles
in sublinear time. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 614–633. IEEE Computer Society, 2015.

10 Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. Sampling multiple edges efficiently. In
Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021,
University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of
LIPIcs, pages 51:1–51:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

11 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in
sublinear time. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 722–734. ACM, 2018.

12 Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number of
k-cliques in low-arboricity graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1467–1478. SIAM, 2020.

13 Talya Eden and Will Rosenbaum. Lower bounds for approximating graph parameters via
communication complexity. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume
116 of LIPIcs, pages 11:1–11:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

14 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In Raimund Seidel,
editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New
Orleans, LA, USA, volume 61 of OASIcs, pages 7:1–7:9. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

15 Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly
uniformly in sublinear time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
45:1–45:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

16 Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics.
International statistical review, 70(3):419–435, 2002.

17 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
18 Priya Govindan, Morteza Monemizadeh, and S. Muthukrishnan. Streaming algorithms for

measuring h-impact. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’17, pages 337–346, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3034786.3056118.

APPROX/RANDOM 2022

http://arxiv.org/abs/1710.08607
https://doi.org/10.1145/3034786.3056118

48:18 Estimating H-Index in Sublinear Time

19 Monika Henzinger and Pan Peng. Constant-time dynamic (∆+1)-coloring. In Christophe Paul
and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages
53:1–53:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

20 Jorge E. Hirsch. An index to quantify an individual’s scientific research output. Proc. Natl.
Acad. Sci. USA, 102(46):16569–16572, 2005.

21 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 41–52. ACM, 2010.

22 Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff, and
Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers and finding
duplicates in streams. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 475–486.
IEEE Computer Society, 2017.

23 Yi Li and David P. Woodruff. A tight lower bound for high frequency moment estimation with
small error. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques - 16th International Workshop, APPROX 2013, and 17th International Workshop,
RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, volume 8096 of Lecture
Notes in Computer Science, pages 623–638. Springer, 2013.

24 Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H. Eugene Stanley. The H-index of a network
node and its relation to degree and coreness. Nature Communications, 7(1):1–7, April 2016.
doi:10.1038/ncomms10168.

25 Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1844–1860,
2019.

26 Eric Price and David P. Woodruff. (1 + eps)-approximate sparse recovery. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 295–304. IEEE Computer Society, 2011.

27 Eric Price and David P. Woodruff. Lower bounds for adaptive sparse recovery. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 652–663.
SIAM, 2013.

28 Fabián Riquelme and Pablo Gonzalez Cantergiani. Measuring user influence on twitter: A
survey. Inf. Process. Manag., 52(5):949–975, 2016.

29 Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. Local algorithms for hierarchical dense
subgraph discovery. Proc. VLDB Endow., 12(1):43–56, 2018. doi:10.14778/3275536.3275540.

30 Shay Solomon. Fully dynamic maximal matching in constant update time. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334. IEEE
Computer Society, 2016.

31 Jakub Tětek and Mikkel Thorup. Sampling and counting edges via vertex accesses. arXiv
preprint arXiv:2107.03821. To appear in STOC 2022, 2021.

32 Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer series in statistics.
Springer, 2009. doi:10.1007/b13794.

33 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science, Provid-
ence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227. IEEE Computer
Society, 1977.

https://doi.org/10.1038/ncomms10168
https://doi.org/10.14778/3275536.3275540
https://doi.org/10.1007/b13794

S. Assadi and H.-A. Nguyen 48:19

A Detailed Preliminaries

A.1 Basics of Query Complexity
We use the basics of query complexity to establish our lower bounds on the runtime of
sublinear algorithms (as the number of queries made to the input is always a lower bound on
the runtime).

Let f : {0, 1}n 7→ {0, 1} be any Boolean function. A query algorithm for f on any input
x can query the values of xi for i ∈ [n] and determine the value of f(x) with a minimal
number of queries. We will work with the following definitions:

Randomized query complexity: For any δ ∈ (0, 1), Rδ(f) denotes the worst-case
number of queries made by the best randomized algorithm that computes f on any input
with probability of success at least 1− δ.
Distributional query complexity: For any δ ∈ (0, 1) and any distribution µ on
{0, 1}n, Dµ,δ(f) denotes the worst-case number of queries made by the best deterministic
algorithm that computes f on inputs sampled from µ with probability of success at least
1− δ.

Yao’s minimax principle [33] relates these two measures.

▶ Proposition 28 (Yao’s minimax principle [33]). For any f : {0, 1}n 7→ {0, 1} and δ ∈ (0, 1):
(i) Easy direction (averaging argument): For any distribution µ on {0, 1}n, Dµ,δ(f) ⩽

Rδ(f).
(ii) Hard direction (duality): There is some distribution µ∗ on {0, 1}n such that Dµ∗,δ(f) =

Rδ(f).

A.2 Basic Probabilistic Tools
We use the linearity of variance of independent random variables.

▶ Fact 29. For any two independent random variables X and Y , Var [X + Y] = Var [X] +
Var [Y].

The following proposition lists the standard concentration inequalities we use in this paper.

▶ Proposition 30 (Concentration Inequalities; cf. [7]).
(i) Chebyshev’s inequality: For any random variable X and t > 0,

Pr (|X − E [X]| ⩾ t) ⩽ Var [X]
t2 .

(ii) Chernoff bound: Suppose X1, . . . , Xn are n independent random variables in [0, 1] and
define X :=

∑n
i=1 Xi. Then, for any ε ∈ (0, 1) and µ ⩾ E [X],

Pr (X > (1 + ε) · µ) ⩽ exp
(
−ε2 · µ

3

)
and Pr (X < (1− ε) · µ) ⩽ exp

(
−ε2 · µ

3

)
.

Moreover, for any t ⩾ 1 and µ ⩾ E [X], Pr (|X − E [X]| ⩾ t · µ) ⩽ 2 · exp
(
− t·µ

3
)
.

A.3 Measures of Distance Between Distributions
We use two main measures of distance (or divergence) between distributions, namely the
total variation distance and the Kullback-Leibler divergence (KL-divergence).

APPROX/RANDOM 2022

48:20 Estimating H-Index in Sublinear Time

Total variation distance

We denote the total variation distance between two distributions µ and ν on the same support
Ω by ∥µ− ν∥tvd, defined as:

∥µ− ν∥tvd := max
Ω′⊆Ω

(µ(Ω′)− ν(Ω′)) = 1
2 ·

∑
x∈Ω
|µ(x)− ν(x)| . (7)

We use the following basic property of total variation distance.

▶ Fact 31. Suppose µ and ν are two distributions with same support Ω; then, given a single
sample from either µ or ν, the best probability of successfully deciding whether s came from
µ or ν is 1

2 + 1
2 · ∥µ− ν∥tvd.

KL-divergence

For two distributions µ and ν over the same probability space, the Kullback-Leibler divergence
between µ and ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log Prµ(a)

Prν(a)

]
. (8)

A key property of KL-divergence is that it satisfies a chain rule.

▶ Fact 32 (Chain rule for KL-divergence). Given two distributions p(x1, . . . , xt) and
q(x1, . . . , xt) on t-tuples, we have,

D(p || q) =
t∑

i=1
E

p(x<i)
D(p(xi | x<i) || q(xi | x<i)).

In particular, if p and q are product distributions, then,

D(p || q) =
t∑

i=1
D(p(xi) || q(xi)).

The following result gives a simple upper bound for the KL-divergence of two Bernoulli
distributions that we shall use in our proofs.

▶ Proposition 33 (KL-divergence on Bernoulli distributions; c.f. [16, Theorem 5]). For any
0 < p, q < 1, the following is true:

D(B(p) || B(q)) ⩽ (p− q)2

q · (1− q) .

We shall also use the following extension of Pinsker’s inequality to relate total variation
distance and Kullback-Leibler divergence.

▶ Proposition 34 (c.f. [32], p. 88-89). Given two distributions µ and ν over the same discrete
support, ∥µ− ν∥tvd ⩽ 1− 1

2 exp (−D(µ || ν)).

	1 Introduction
	1.1 Key Motivations
	1.2 Notation
	1.3 Appendix

	2 The Algorithm
	2.1 A Weak Estimator
	2.1.1 The Algorithm
	2.1.2 The Analysis

	2.2 A Strong Estimator
	2.2.1 The Algorithm
	2.2.2 The Analysis

	2.3 The Sublinear Time h-Index-Estimator Algorithm
	2.3.1 The Analysis

	3 The Lower Bound
	3.1 Popcount Thresholding Problem (PTP)
	3.2 Reducing PTP to the H-Index Problem

	4 Triangle Counting Problem
	A Detailed Preliminaries
	A.1 Basics of Query Complexity
	A.2 Basic Probabilistic Tools
	A.3 Measures of Distance Between Distributions

