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Abstract
We study the problem of aligning multiple sequences with the goal of finding an alignment that
either maximizes the number of aligned symbols (the longest common subsequence (LCS) problem),
or minimizes the number of unaligned symbols (the alignment distance aka the complement of LCS).
Multiple sequence alignment is a well-studied problem in bioinformatics and is used routinely to
identify regions of similarity among DNA, RNA, or protein sequences to detect functional, structural,
or evolutionary relationships among them. It is known that exact computation of LCS or alignment
distance of m sequences each of length n requires Θ(nm) time unless the Strong Exponential Time
Hypothesis is false. However, unlike the case of two strings, fast algorithms to approximate LCS
and alignment distance of multiple sequences are lacking in the literature. A major challenge in this
area is to break the triangle inequality. Specifically, by splitting m sequences into two (roughly)
equal sized groups, then computing the alignment distance in each group and finally combining
them by using triangle inequality, it is possible to achieve a 2-approximation in Õm(n⌈ m

2 ⌉) time.
But, an approximation factor below 2 which would need breaking the triangle inequality barrier is
not known in O(nαm) time for any α < 1. We make significant progress in this direction.

First, we consider a semi-random model where, we show if just one out of m sequences is
(p, B)-pseudorandom then, we can get a below-two approximation in Õm(nBm−1 + n⌊ m

2 ⌋+3) time.
Such semi-random models are very well-studied for two strings scenario, however directly extending
those works require one but all sequences to be pseudorandom, and would only give an O( 1

p
)

approximation. We overcome these with significant new ideas. Specifically an ingredient to this
proof is a new algorithm that achives below 2 approximations when alignment distance is large in
Õm(n⌊ m

2 ⌋+2) time. This could be of independent interest.
Next, for LCS of m sequences each of length n, we show if the optimum LCS is λn for some

λ ∈ [0, 1], then in Õm(n⌊ m
2 ⌋+1)1 time, we can return a common subsequence of length at least λ2n

2+ϵ

for any arbitrary constant ϵ > 0. In contrast, for two strings, the best known subquadratic algorithm
may return a common subsequence of length Θ(λ4n).
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54:2 Approximating LCS and Alignment Distance over Multiple Sequences

1 Introduction

Given m sequences each of length n, we are interested to find an alignment that either
maximizes the number of aligned characters (the longest common subsequence problem
(LCS)), or minimizes the number of unaligned characters (the minimum alignment distance
problem, aka the complement of LCS) 2. Both these problems are extremely well-studied,
are known to be notoriously hard, and form the cornerstone of multiple sequence align-
ment [29, 26, 16], which according to the survey in Nature is one of the most widely used
modeling methods in biology [31]. Long back in 1978, the multi-sequence LCS problem
(and therefore, the minimum alignment distance problem) was shown to be NP Hard [23].
Moreover, for any constant δ > 0, the multi-sequence LCS and alignment distance cannot
be approximated within n1−δ unless P = NP [18]. These hardness results hold even under
restricted conditions such as for sequences over relatively small alphabet [9], or with certain
structural properties [10]. Various other multi-sequence based problems such as finding
the median or center string are shown “hard” by reduction from the minimum alignment
distance problem [25]. Interested readers may refer to the chapter entitled “Multi String
Comparison-the Holy Grail” of the book [16] for a comprehensive study on this topic.

From a fine-grained complexity viewpoint, an O(nm−ϵ) algorithm to compute alignment
distance of m sequences for any constant ϵ > 0 will refute the Strong Exponential Time
Hypothesis (SETH) [1]. On the other hand, a basic dynamic programming solves these
problems in time O(mnm). This raises the question whether we can solve these problems
faster in O(nαm) time for α < 1 by allowing approximation. The approximation vs running
time trade-off for m = 2 (edit distance problem) has received extensive attention over the
last two decades with many recent breakthroughs [21, 7, 6, 8, 3, 5, 11, 14, 27, 13, 19, 4]. To
bypass the worst-case hardness in the two-strings setting, multiple prior works have studied
semi-random models for sequence comparisons [2, 20, 12]. Semi-random models may capture
real-life scenarios better where adversarial examples are rare. In addition, it may also carry
several inherent difficulties of the worst case model. Thus studying semi-random models can
be a stepping stone towards attacking the worst-case model.

More than a decade back, such a study was initiated by Andoni and Krauthgamer [2],
where the authors studied smoothed complexity of sequence alignment. They proposed a
semi-random model as follows: first, an adversary chooses two binary strings of length n and
a longest common subsequence A of them. Then, every character is perturbed independently
with probability p, except that A is perturbed in exactly the same way inside the two
strings. Kuszmaul further generalized this model and considered one input string to be
pseudorandom (any pair of disjoint substrings are at large edit distance) whereas the other
input string can be adversarial [20] . Both of these works [2, 20] provide O(1) approximation
of the edit distance in almost linear time, and face the triangle inequality barrier. Recently
Boroujeni, Seddighin, and Seddighin [12] improved the approximation guarantee to (1 + ϵ)
thus bypassing the triangle inequality hardness while increasing the running time from
near-linear to subquadratic. Therefore, if we aim to generalize the pseudorandom model
for multiple strings, it is not obvious how to achieve the best of the above two results
simultaneously: (i) a running time of O(nm/2), and (ii) a below 2 approximation. Another
major issue is that any direct generalization of [2, 20, 12] for multiple strings require all but
one string to be pseudorandom.

2 While one may define alignment distance in many different ways among multiple sequences, taking the
complement of LCS is possibly the cleanest way of defining such a distance both because indel distance
between two strings naturally generalizes to it, and due to its close connection to LCS.
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In this work we consider a much stronger model where only one input string is pseudor-
andom and the rest m− 1 input strings can be adversarial. We show how it is possible to
accomplish the best of both the running time and the approximation guarantee by giving an
Õ(nm/2+3) time algorithm that breaks the triangle inequality and computes truly below 2
approximation of alignment distance. Towards this we first design an algorithm that takes as
input m adversarially chosen strings and provides a below 2 approximation of their alignment
distance in time Õ(nm/2+2) provided the distance is large. Note this model considers all
strings to be adversarial and thus can be of independent interest. Moreover we show that
these techniques can be extended to design an algorithm computing constant approximation
of the LCS of m strings in time Õ(nm/2+2) provided the length of the LCS is large.

It is interesting to note that our results on LCS implies a constant approximation of LCS
of three strings is possible in the large distance regime in quadratic time (a reduction from
cubic to quadratic time complexity), whereas a worse constant approximation is currently
known in the large distance regime for the LCS of two strings to go below the quadratic
running time [28].

Contributions. We now describe our results in more details.

Minimizing Alignment Distance of Multiple Sequences with One Pseudorandom String.
Let L(s1, . . . , sm) denote the length of LCS of m strings s1, s2, .., sm (each of length n) and
A(s1, . . . , sm) = n − L(s1, . . . , sm) denote the optimal alignment distance of s1, s2, ..., sm.
We consider the case where one input string is pseudorandom out of m strings, and the
rest of m − 1 strings are chosen adversarially. We provide an algorithm that breaks the
triangle inequality barrier and provides (2− 3p

512 + ϵ) (for any arbitrary small constant ϵ > 0)
approximation of A(s1, . . . , sm) in time Õm(nBm−1 + n⌊m/2⌋+3). Formally we show the
following.

▶ Definition 1 ((p, B)-pseudorandom). Given a string s of length n and parameters p, B ≥ 0
where p is a constant, we call s a (p, B)-pseudorandom string if for any two disjoint B length
substrings x, y of s, A(x, y) ≥ pB.

▶ Theorem 2. Given a (p, B)-pseudorandom string s1, and m − 1 adversarial strings
s2, . . . , sm of length n, there exists an algorithm that for any arbitrary small constant ϵ > 0
computes (2− 3p

512 + ϵ) approximation of A(s1, . . . , sm) in time Õm(nBm−1 + n⌊m/2⌋+3).

The theorem can be extended to get a c(1− 3p
1024 + ϵ) approximation in Õm(nB⌈2m/c⌉−1 +

n⌈m/c⌉+3) time. Assuming c to be even, we divide the input strings into c
2 groups each

containing at most ⌈ 2m
c ⌉ strings. Then for each group we compute a below 2-approximation

of the alignment distance in time Õm(nB⌈2m/c⌉−1 + n⌈m/c⌉+3). Finally, we apply triangle
inequality c

2 times to combine these groups to get a c
2 (2 − 3p

512 + ϵ) = c(1 − 3p
1024 + ϵ

2 )
approximation.

What do we know in the two strings case? Let us contrast this result to what is known
for m = 2 case [2, 20, 12]. When one of the two strings is (p, B)-pseudorandom, Kuszmaul
gave an algorithm that runs in time Õ(nB) time but only computes an O( 1

p ) (can be large
constant) approximation to edit distance [20]. Boroujeni, Seddighin and Seddighin consider
a different random model for string generation under which they give a (1 + ϵ) approximation
but in subquadratic time [12]. While their model captures the case when one string in
generated uniformly at random, it does not extend to pseudorandom strings. In fact, there
is no result in the two strings case that breaks the triangle inequality barrier and provides

APPROX/RANDOM 2022
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below-2 approximation when one of the strings is pseudorandom. Moreover, in order to
apply their technique to multi-string setting, we would need all but one string to be generated
according to their model. Interestingly, our algorithm obtains all the desired results and
provides below-2 approximation of alignment distance with just one pseudorandom string.
We stress that this is one of the important contributions of our work and is technically
involved.

Key Tool: breaking triangle inequality for large alignment distance. To construct the
above mentioned algorithm, we first design an algorithm that takes as input m adversarially
chosen strings and provides truly below 2 approximation of their alignment distance provided
the distance is large. More generally we show if A(s1, . . . , sm) = θn then for any arbitrary
small constant ϵ > 0, it is possible to obtain a c(1 − 3θ

32 + ϵ) approximation3 in time
Õm(n⌈m/c⌉+2) time.

▶ Theorem 3. Given m strings s1, . . . , sm of length n over some alphabet set Σ such that
A(s1, . . . , sm) = θn, where θ ∈ (0, 1), there exists an algorithm that for any arbitrary small
constant ϵ > 0 computes a (2− 3θ

16 +ϵ) approximation of A(s1, . . . , sm) in time Õm(n⌊m/2⌋+2).
Moreover, for any integer c > 0, there exists an algorithm that computes c(1 − 3θ

32 + ϵ)
approximation of A(s1, . . . , sm) in time Õm(n⌈m/c⌉+2).

For constant θ, the above theorem asserts that there exists an algorithm that breaks the
triangle inequality barrier and computes a truly below 2-approximation of A(s1, . . . , sm) in
time Õm(n⌊m/2⌋+2). Note here all the input strings are adversarially chosen and this result
can be of independent interest. Moreover we show these techniques can be extended to
compute LCS of multiple strings.

LCS of Multiple Sequences. We show if L(s1, . . . , sm) = λn for some λ ∈ [0, 1], then we
can return a common subsequence of length λ2n

2+ϵ in time Õm(n⌊m/2⌋+1). To contrast, we
can get a quadratic algorithm for m = 3 with λ

2+ϵ approximation (for any arbitrary small
constant ϵ > 0), whereas the best known bound for m = 2 case may return a subsequence of
length Θ(λ4n) in Õ(n1.95) time [28].

▶ Theorem 4. Given m strings s1, . . . , sm of length n over some alphabet set Σ such that
L(s1, . . . , sm) = λn, where λ ∈ [0, 1], there exists an algorithm that for any arbitrary small
constant ϵ > 0 computes an λ

2+ϵ approximation of L(s1, . . . , sm) in time Õm(n⌊m/2⌋+1).

1.1 Technical Overview
Notation

We use the following notations throughout the paper. Given m strings s1, . . . , sm, each of
length n over some alphabet set Σ, the longest common subsequence (LCS) of s1, . . . , sm,
denoted by LCS(s1, . . . , sm) is one of the longest sequences that is present in each si. Define
L(s1, . . . , sm) = |LCS(s1, . . . , sm)|. The optimal alignment distance (AD) of s1, . . . , sm,
denoted by A(s1, . . . , sm) is n− L(s1, . . . , sm).

For a given string s, s[i] represents the ith character of s and s[i, j] represents the substring
of s starting at index i and ending at index j. Given a LCS σ of s1, . . . , sm define σ(sj) ⊆ [n]
be the set of indices such that for each k ∈ σ(sj), sj [k] is aligned in σ and σ̄(sj) ⊆ [n] be the

3 We will assume c is even for simplicity. But all the algorithms work equally well if c is odd.
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set of indices of the characters in sj that are not aligned in σ. Define the alignment cost of σ

to be |σ̄(s1)| and the cumulative alignment cost of σ to be
∑m

j=1 |σ̄(sj)| = m|σ̄(s1)|. Given a
set T ⊆ [n] and a string s, let sT denote the subsequence of s containing characters with
indices in T .

Given a string s, we define a window w of size d of s to be a substring of s having length
d. Given m strings s1, . . . , sm, we define a m-window tuple to be a set of m windows denoted
by (w1, . . . , wm), where wj is a window of string sj .

Given two characters a, b ∈ Σ, a ◦ b represents the concatenation of b after a. Given two
string x, y, x ◦ y represents the concatenation of string y after x. For notational simplicity
we use Õm to hide factors like cm logm n, where c is a constant. Moreover we use Õ to hide
polylog factors.

1.1.1 Breaking the Triangle Inequality Barrier for Large Alignment
Distance and Approximating LCS

We first give an overview of our algorithms leading to Theorem 5 (Section 2). Let us consider
the problem of minimizing the alignment distance. Given m (say m is even) sequences
s1, s2, ..., sm each of length n, partition them into two groups G1 = {s1, s2, ..., sm/2} and
G2 = {sm/2+1, .., sm}. Suppose the optimum alignment distance of the m sequences is d = θn.
With each alignment, we can associate a set of indices of s1 that are not aligned in that
alignment. Let σ∗ be an optimum alignment and σ̄∗(s1) be that set. We have |σ̄∗(s1)| = d.
Let X1 = {(σi, σ̄i(s1))} denote all possible alignments σi of G1 of cost at most d, |σ̄i(s1)| ≤ d.
Then (σ∗, σ̄∗(s1)) ∈ X1. Therefore, if we can (i) find all possible alignments X1, and (ii) for
each (σi, σ̄i(s1)) ∈ X1 can verify if that is a valid alignment of G2, we can find an optimal
alignment.

Unfortunately, it is possible that |X1| =
∑

l≤d

(
n
l

)
which is prohibitively large. Therefore,

instead of trying to find all possible alignments, we try to find a cover for X1 using a
few alignments (τj , τ̄j(s1)), j = 1, 2, .., k such that for any (σi, σ̄i(s1)) ∈ X1, there exists a
(τj , τ̄j(s1)) with large |σ̄i(s1) ∩ τ̄j(s1)|. In fact, one of the key ingredients of our algorithm is
to show such a covering exists and can be obtained in time (roughly) n|G1|. With just k = 4

θ

alignments, we show it is possible to cover X1 such that for any (σi, σ̄i(s1)) ∈ X1, there exists
a (τj , τ̄j(s1)) having |σ̄i(s1) ∩ τ̄j(s1)| ≥ 3θ2n

16 .
The algorithm to compute the covering starts by finding any optimal alignment (σ1, σ̄1(s1))

of G1. Next it finds another alignment (σ2, σ̄2(s1)) of cost at most d which is farthest from
(σ1, σ̄1(s1)), that is |σ̄1(s1) ∩ σ̄2(s1)| is minimized. We find these alignments using dynamic
programming. If |σ̄1(s1) ∩ σ̄2(s1)| ∼ |σ̄2(s1)|, then it stops. Otherwise, it finds another
alignment (σ3, σ̄3(s1)) such that |(σ̄1(s1) ∪ σ̄2(s1)) ∩ σ̄3(s1)| is minimized. We show the
process terminates after at most 4

θ rounds.
Suppose without loss of generality, |σ̄∗(s1)∩ τ̄1(s1)| ≥ 3θ2n

16 . Given τ̄1(s1), τ̄2(s1), ..., τ̄k(s1),
for each (τi, τ̄i(s1)), we find an alignment (ρi, ρ̄i(s1)) of G2 ∪ s1 of cost at most d such that
ρ̄i(s1) is nearest to τ̄i(s1), that is |ρ̄i(s1) ∩ τ̄i(s1)| is maximized. Then, we must have
|ρ̄i(s1) ∩ τ̄1(s1)| ≥ |σ̄∗(s1) ∩ τ̄1(s1)| ≥ 3θ2n

16 . Our alignment cost is minj (|τ̄j(s1) ∪ ρ̄j(s1)|) ≤
|τ̄1(s1)∪ ρ̄1(s1)| ≤ 2d− 3θ2n

16 = d(2− 3θ
16 ) giving the desired below-2 approximation when θ is

a constant.
Of course, there are two main parts in this algorithm that we have not elaborated; given a

set of indices T of s1, and a group of strings G, we need to find an alignment of cost at most
d of G ∪ s1 that is farthest from (nearest to) T . In general, any application that needs to
compute multiple diverse (or similar) alignments can be benefited by such subroutines. We

APPROX/RANDOM 2022
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can use dynamic programming to solve these problems; however, it is important to keep in
mind – an alignment that has minimum cost may not necessarily be the farthest (or nearest).
Thus, we need to check all possible costs up to the threshold d to find such an alignment.

Our algorithm for obtaining a λ
(2+ϵ) approximation for multi-sequence LCS is nearly

identical to the above, and in fact simpler. This helps us to improve the running time slightly
(contrast Theorem 4 with Theorem 5). Moreover, the result holds irrespective of the size of
LCS. We provide the details in Section 4.

1.1.2 Approximating Alignment Distance with just One Pseudorandom
String

Next we consider the case where the input consists of a single (p, B) pseudorandom string
and m− 1 adversarial strings each of length n. We give an overview of our algorithm that
returns a below 2 approximation of the optimal alignment distance (even for small regime)
proving Theorem 2. The details are provided in Section 3.

In most of the previous literature for computing edit distance of two strings, the widely
used framework first partitions both the input strings into windows (substrings) and finds
distance between all pairs of windows. Then using dynamic program all these subsolutions are
combined to find the edit distance between the input strings. However instead of considering
two arbitrary strings as input if one input is (p, B) pseudorandom, then as we know that
any pair of disjoint windows from the pseudorandom string have large edit distance, if we
consider a window from the adversarial string then by triangle inequality, there exists at most
one window in the pseudorandom string with which it can have small edit distance (≤ pB

4 ).
We call this low cost match between an adversarial string window and a pseudorandom string
window a unique match. Notice if we can identify one such unique match that is part of an
optimal alignment, we can put restriction on the indices where the rest of the substrings can
be matched. This observation still holds for multiple strings but only when we compare a
pair of windows, one from the pseudorandom string and the other from an adversarial string.
Thus it is not obvious how we can extend this restriction on pairwise matching to a matching
of m-window tuples as (m− 1)-window tuples come from (m− 1) different adversarial strings
and their unique matches with the pseudorandom string can be very different from each
other. Another drawback of this approach is that, to optimize the running time, here the
algorithm aims to identify only the matchings with low cost i.e. < pB

4 . Hence the best
approximation ratio we can hope for is O(1/p) which can be a large constant.

Therefore to shed the approximation factor below 2, we also need to find a good ap-
proximation of the cost of pair of windows having distance ≥ pB

4 . We call a matching with
cost ≥ pB

4 a large cost match. However as the unique match property fails here, without
having any prior knowledge about the optimal alignment we need to compute the cost for all
pairs of windows having large cost. However doing it trivially can not provide us the desired
running time. Fortunately, as p is a constant pB/4 = Ω(B) and thus we can use our large
alignment distance approximation algorithm to get a improved running time while ensuring
below 2 approximation of the cost for these large cost match tuples. Though this simple idea
seems promising, if we try to compute an approximation over all large distance m-window
tuples the running time can become as large as Õm(n 11m

16 ). We show this with an example.
Given m input strings, start by partitioning each string into windows of length β = n

5
8 (for

simplicity assume the windows are disjoint). Hence there are n
3
8 windows in each string.

Now there can be as many as n
3m

8 many m-window tuples of large cost. If we evaluate each
of their cost using our large alignment distance algorithm then time taken for each m-tuple
is roughly Õm(n 5m

16 ). Hence total time required is Õm(n 11m
16 ). Note to improve this running
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Figure 1 Construction of windows for the (p, B)-pseudorandom string s1.

time by reducing the number of windows, we can not grow the window size arbitrarily large
as in that case identifying the unique (low cost) match m-window tuples will become more
time consuming. Later we show for window size β this time can be Õm(βm).

Thus to further reduce the running time, instead of evaluating all window tuples having
large cost match, we restrict the computation by estimating the cost of only those tuples
that maybe necessary to compute an optimal alignment. This is challenging as we do not
have any prior information of the optimal alignment. For this purpose we use an adaptive
strategy where depending on the unique matches computed so far, we perform a restricted
search to estimate the cost of window tuples having large alignment distance. Moreover the
length of these windows are also decided adaptively. We remark that this adaptive strategy
differs significantly from the previous windowing strategies where the window lengths are
fixed to start with. Next we give a brief overview of the three main steps of our algorithm.
In Step 1, we provide the construction of windows of the input strings that will be used as
input to Step 2 and 3. In Step 2, we estimate the alignment cost of the m-window tuples
such that the matching is unique i.e. the optimal alignment distance is at most pB/4. In
step 3, we further find an approximation of the cost of m-window tuples that are relevant for
an optimal alignment and have large cost i.e. ≥ pB/4.

1.1.2.1 Step 1

The windows of the input strings are constructed in two stages. In stage one, we follow
a rather straightforward strategy similar to the one used in [15] and partition the (p, B)
pseudorandom string into n

β disjoint windows each of size β (except the right most one).
Here β = max(B,

√
n). For the rest of the strings we generate a set of overlapping variable

sized windows. If the distance threshold parameter is θ and the error tolerance parameter
is ϵ, then for each adversarial strings we generate windows of size {(β − θβ), (1 + ϵ)(β −
θβ), (1 + ϵ)2(β − θβ), . . . , (β + θβ)} and from starting indices in {1, ϵθβ + 1, 2ϵθβ + 1, . . . }.
These windows are fed as an input to Step 2 of our algorithm.

APPROX/RANDOM 2022
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Figure 2 An example of large cost match.

The second stage is much more involved where the strategy significantly differs from the
previous literature. The primary difference here is that instead of just considering a fixed
length partition of the pseudorandom string (e.g. β in stage one), we take variable sizes that
are multiple of β i.e. {β, 2β, . . . , n} and the windows start from indices in {1, β+1, 2β+1, . . . }.
Next for each adversarial string, we adaptively try to guess a set of useful substrings/windows
that can be matched with the large cost windows of the pseudorandom string under the
optimal alignment (we fix one for the analysis purpose). These guesses are guided by the
unique low cost matches found in Step 2. Next for each such useful substring/window
from the adversarial string and each length in {β, 2β, . . . , n}, we create a set of overlapping
windows as described in stage one. Note the windows created in this stage are used as an
input to Step 3 of the algorithm.

We explain the motivation behind the variable sized window partitioning for the pseu-
dorandom string and the restricted window construction for the adversarial strings with an
example(see Figure 2).

Let we are given three strings s1, s2, s3 each of length n as input where s1 is (p, B)-
pseudorandom. We divide all three strings in windows (for simplicity assume these windows
are disjoint) of size β. For the analysis purpose fix an optimal alignment where window w1 is
aligned with window w2, w3 and window w′

1 is aligned with window w′
2, w′

3. Moreover their
costs are ≤ pβ

4 . Hence we get an estimation of the alignment cost of these window tuples at
Step 2. Also assume that all the windows appearing between w1 and w′

1 in s1 has alignment
cost > pβ

4 but ≤ β
2 . Hence, for these windows we can not use a trivial maximum cost of β in

order to get a below two approximation. Here we estimate the cost of these windows using
Algorithm LargeAlign(). Now if we compute this estimation separately for each β size window
between w1 and w′

1 in s1, as there can be as many as
√

n (assume β =
√

n) such windows
and each call to algorithm LargeAlign() takes time O(nm/4), the total running time will be
O(n3m/4). Thus to achieve the promised running time, instead of considering all small β size
windows separately we consider the whole substring between w1 and w′

1 as one single window
W1 and compute its cost estimation. Observe as we do not have the prior information about
the optimal alignment (and therefore w1 and w′

1) we try all possible lengths in β, 2β, . . . , n.
The overall idea here is to use a window length, so that we can represent the whole substring
with large optimal alignment distance lying between two windows having low cost unique
match in the optimal alignment with a single window.
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Figure 3 (a) Each hatch window of s1 is matched with 16
pϵ

windows of one adversarial string.
Deleting all these windows deletes 32β

pϵ
characters from each string. (b) The optimal alignment

deletes < 16β
pϵ

characters from each string.

1.1.2.2 Step 2

In step 2, we start with a set of windows, each of size β, generated from strings s1, . . . , sm

(assume s1 to be the (p, B)-pseudorandom string). Our objective is to identify all m-window
tuples that have optimal alignment distance ≤ pβ

4 . Here we use the fact that for every
adversarial window there exists at most one window in the pseudorandom string at distance
≤ pβ

4 . We start the algorithm by computing for each window w from the pseudorandom
string, and for each adversarial string sj the set Sw

j containing all windows from sj that
are at distance ≤ pβ

4 from w. Notice for two string case, if for a pseudorandom window w,
|Sw

j | ≥ 16
pϵ (i.e. many windows from sj are close to w), then as in the optimal alignment at

most one adversarial window from Sw
j can be matched with w with cost ≤ pβ

4 and the rest
of the windows from Sw

j have cost at least pβ
4 , the optimal cost for all the windows from Sw

j

is ≥ β
ϵ . Thus even if we take a cost estimation β (maximum cost) for the pseudorandom

window w this still gives a (1 + ϵ) approximation of the alignment cost. For multiple strings
we can not use a similar idea as for a pseudorandom window w we can not take a trivial cost
estimation if for only one adversarial string, there are many windows which are close to w.
Thus we need to device a new strategy.

We explain with an example. Consider k windows w1, . . . , wk (where k ≥ 32
pϵ ) from the

pseudorandom string such that for each wj , there are 16
pϵ windows from the adversarial string

sj+1 that are at distance ≤ pβ
4 with wj and for every other string there is exactly one window

with distance ≤ pβ
4 . Here following the above argument if for each of the k pseudorandom

windows, we take a trivial cost estimation of β then the total cost will be kβ ≥ 32β
pϵ . Whereas

the optimal cost can be 16β
pϵ (check Figure 3 (a)).

Therefore for every window wi of the pseudorandom string, we count the total number of
windows in all adversarial strings that are at distance ≤ pβ

4 and if the count is at least 16m
pϵ ,

then we take a trivial cost estimation of |wi| for wi. (Note here for two different windows from
the pseudorandom string, the sets of close windows from the adversarial strings are disjoint.)

APPROX/RANDOM 2022
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Otherwise if the count is small letWj be the set of windows from string sj that are close to wi.
Then we can bound |W2|×· · ·×|Wm| ≤ [(|W2|+ · · ·+ |Wm|)/(m− 1)]m−1 ≤ ( 32

pϵ )m = Õm(1)
and for each choice of m-window tuples in wi ×W2 × · · · ×Wm, we find the exact alignment
cost in time Õm(βm). As there are n/β disjoint windows in the pseudorandom string we can
bound the total running time by Õm(nβm−1).

1.1.2.3 Step 3

In this step, our objective is to find a cost estimation for all the windows of the pseudorandom
string that have large alignment cost in the optimal alignment. Consider Figure 2 (consider
m = 3), and let W1 be such a window form s1. Also assume that it can not be extended to left
or right, i.e. both w1 and w′

1 have small cost match which we have already identified in Step
2. Let the length of W1 is cβ where c ≥ 1 and assume no β length window of W1 has small
cost match. Note, we have the assurance that window W1 is generated in Step 1. Next to
find the match of W1, instead of checking whole s2 and s3, we consider the substring between
w2 and w′

2 in s2 and w3 and w′
3 in s3. Now if the sum of the length of all the substrings is

large (i.e. |s′
2|+ |s′

3| ≥ 5m|W1| = 15|W1|), we can claim that the cost of W1 in the optimal
alignment is very large and we can take a trivial cost estimation of |W1|. Otherwise, we can
ensure that the total choices for m-window tuples that need to be evaluated for W1 is at
most Õm(1) and for each of them, we calculate a below 2 approximation of the cost using
Algorithm LargeAlign(). In the algorithm, as we don’t know the optimal alignment, for
every window of the pseudorandom string generated in Step 1 stage two, we assume it to
be large cost and check whether the β length window appearing just before and after this
window has a small cost unique match (notice this observation is very crucial to decide the
maximal length of any large cost window). If not we discard it and consider a larger window.
Otherwise we use LargeAlign() to find its cost estimation.

Overall in Step 2 and 3, we ensure that for every window of the pseudorandom string, our
algorithm provides < 2 cost approximation. Moreover if the window has small cost match
then in Step 2 we evaluate the cost of at most Õm(1) m-window tuples where each cost
estimation takes time Õm(βm) (as the window size is β) and otherwise if the cost is large we
use algorithm LargeAlgin() that computes an approximation in time Õm(nm/2) (here the
window length can be as large as n). As the number of windows generated for string s1 is
polynomial in n, taking β = max(B,

√
n) we get the required running time bound.

Organization

In Section 2, we give the algorithm for minimizing alignment distance when the distance is
large. Section 3 provides the details of the below-2 approximation algorithm for alignment
distance when one string is (p, B) pseudorandom. In Section 4, we give our λ

2+ϵ approximation
algorithm for multi-sequence LCS.

2 Below-2 Approximation for Multi-sequence Alignment Distance

In this section, we provide an algorithm LargeAlign() that given m strings s1, . . . , sm each
of length n, such that A(s1, . . . , sm) = θn, where θ ∈ (0, 1) computes a (2 − 3θ

16 + ϵ)
approximation of A(s1, . . . , sm) in time Õm(n⌊m/2⌋+2). Notice when θ = Ω(1), this implies a
below 2 approximation of A(s1, . . . , sm).
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▶ Theorem 5. Given m strings s1, . . . , sm of length n over some alphabet set Σ such
that A(s1, . . . , sm) = θn, where θ ∈ (0, 1), there exists an algorithm that for any arbit-
rary small constant ϵ > 0 computes a (2− 3θ

16 + ϵ) approximation of A(s1, . . . , sm) in time
Õm(n⌊m/2⌋+2). Moreover, there exists an algorithm that computes a c(1− 3θ

32 + ϵ) approxim-
ation of A(s1, . . . , sm) in time Õm(n⌈m/c⌉+2).

As we do not have any prior knowledge of θ, instead of proving the theorem directly, we
solve the following gap version for a given fixed threshold θ. We define the gap version as
follows.

GapMultiAlignDist(s1, . . . , sm, θ, c). Given m strings s1, . . . , sm of length n over some
alphabet set Σ, θ ∈ (0, 1) and a constant c > 1, decide whether A(s1, . . . , sm) ≤ θn

or A(s1, . . . , sm) > cθn. More specifically if A(s1, . . . , sm) ≤ θn we output 1, else if
A(s1, . . . , sm) > cθn we output 0, otherwise output any arbitrary answer.

▶ Theorem 6. Given m strings s1, . . . , sm of length n over some alphabet set Σ and a para-
meter θ ∈ (0, 1), there exists an algorithm that computes GapMultiAlignDist(s1, . . . , sm, θ, (2−
3θ
16 )) in time Õm(n⌊m/2⌋+2).

Proof of Theorem 5 from Theorem 6. Let us consider an arbitrary small constant ϵ′ > 0,
and fix a sequence of parameters θ0, θ1, . . . as follows: for i = 0, 1, . . . , log1+ϵ′ n, θi =
1/(1 + ϵ′)i. Find the largest i such that GapMultiAlignDist(s1, . . . , sm, θi, (2− 3θ

16 )) = 1. Let
A(s1, . . . , sm) = θn. Then there exists a θi, such that θin ≥ θn > θi+1n as θi = (1 + ϵ′)θi+1.
In this case the algorithm outputs a value at most (2− 3θ

16 )θin ≤ (2− 3θ
16 + ϵ′(2− 3θ

16 ))θn. As
θ ≥ 1/n, by appropriately scaling ϵ′, we get the desired running time of Theorem 5. ◀

The rest of the section is dedicated towards proving Theorem 6. Before providing the
the algorithm for computing GapMultiAlignDist(s1, . . . , sm, θi, (2− 3θ

16 )), we first outline
another two algorithms that will be used as subroutines in our main algorithm.

2.1 Finding Alignment with Maximum Deletion Similarity

Given m strings s1, . . . , sm of length n, a set S ⊆ [n] and a parameter 0 ≤ d ≤ n, our
objective is to compute an alignment σn of s1, . . . , sm with alignment cost at most d such
that |σ̄n(s1) ∩ S| is maximized.

▶ Theorem 7. Given m strings s1, . . . , sm, each of length n, a set S ⊆ [n] and a parameter
0 ≤ d ≤ n, there exists an algorithm that computes a common alignment σn such that∑

k∈[m] |σ̄n(sk)| ≤ dm and |σ̄n(s1) ∩ S| is maximized in time Õ(2mmnm+1).

We design an algorithm MaxDelSimilarAlignment() that uses dynamic programming to
compute σn. We defer the details to the full version.

If d = θn where θ ∈ (0, 1), then as we know from every string no more than θn characters
will be deleted, using [30] we can claim the following.

▶ Corollary 8. Given m strings s1, . . . , sm, each of length n, a set S ⊆ [n] and a parameter
d = θn, where θ ∈ (0, 1) there exists an algorithm that computes a common alignment σn

such that
∑

k∈[m] |σ̄n(sk)| ≤ dm and |σ̄n(s1) ∩ S| is maximized in time Õ(2mθmmnm+1).
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2.2 Finding Alignment with Minimum Deletion Similarity
Given m strings s1, . . . , sm of length n, q sets S1, . . . , Sq ⊆ [n] and a parameter 0 ≤ d ≤ n,
our objective is to compute an alignment σn of s1, . . . , sm with alignment cost at most d

such that | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized.

▶ Theorem 9. Given m strings s1, . . . , sm, each of length n, q sets S1, . . . , Sq ⊆ [n] and a
parameter 0 ≤ d ≤ n, there exists an algorithm that computes a common alignment σn such
that

∑
k∈[m] |σ̄n(sk)| ≤ dm and | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized in time Õ(2mmnm+1).

We design an algorithm MinDelSimilarAlignment() that uses dynamic programming just
like the one used in finding alignment with maximum deletion similarity to compute σn.
We defer the details to the full version. If d = θn where θ ∈ (0, 1), again using [30] we can
claim the following. Note in this case we only need to compute θmnm entries in the dynamic
program table.

▶ Corollary 10. Given m strings s1, . . . , sm, each of length n, q sets S1, . . . , Sq ⊆ [n] and a
parameter 0 ≤ d ≤ θn, there exists an algorithm that computes a common alignment σn such
that

∑
k∈[m] |σ̄n(sk)| ≤ dm and | ∪j∈[q] (σ̄n(s1) ∩ Sj)| is minimized in time Õ(2mθmmnm+1).

2.3 Algorithm for (2 − 3θ
16 + ϵ)-approximation of A(s1, . . . , sm)

To compute the value of GapMultiAlignDist(s1, . . . , sm, θ, (2− 3θ
16 )) the procedure

GapMultiAlignDist(s1, . . . , sm, θ) calls procedure MultiAlign(s1, . . . , sm, θ) that returns a
string σ. If σ is a null string it outputs 0 and otherwise it outputs 1.

We show if A(s1, . . . , sm) ≤ θn, MultiAlign(s1, . . . , sm, θ) computes a common sub-
sequence σ such that |σ̄(s1)| ≤ (2 − 3θ

16 )θn and otherwise if A(s1, . . . , sm) > (2 − 3θ
16 )θn it

computes a null string. Next we describe Algorithm MultiAlign(s1, . . . , sm, θ). It starts by
partitioning the input strings into two groups G1 and G2 where G1 contains the strings
s1, . . . , s⌈m/2⌉ and G2 contains the strings s1, s⌈m/2⌉+1, . . . , sm.

Assume A(S1, . . . , sm) ≤ θn. Next we state an observation that is used as one of the key
elements to conceptualize our algorithm. Any common subsequence of s1, . . . , sm is indeed
a common subsequence of G1. Therefore, as A(s1, . . . , sm) ≤ θn, if we can enumerate all
common subsequences of G1 of length at least n− θn, we generate the optimal alignment as
well. Notice after generating each common subsequence of G1, it can be checked whether
it is a common subsequence of G2 or not. The main hurdle here is that enumerating all
common subsequences of G1 of length at least n− θn is time consuming.

We overcome this barrier by designing Algorithm EnumerateAlignments(s1, . . . , sm, θ)
that generates k (where k = O(1/θ)) different sets L1, . . . , Lk where Lj ⊆ [n], |Lj | ≤ θn and
each Lj corresponds to a common subsequence σj of G1 such that Lj = σ̄j(s1). Moreover,
we can ensure that either ∃j ∈ [k] where |Lj | ≤ 3θn

4 or for any common subsequence σ of G1

with σ̄(s1) ≤ θn there exists a Li where |σ̄(s1) ∩ Li| ≥ 3θ2n
16 .

Algorithm EnumerateAlignments() starts by computing a LCS σ1 of G1 such that
|σ̄1(s1)| ≤ θn. Let L1 = σ̄1(s1). If |L1| ≤ 3θn

4 return L1. Otherwise it calls the algorithm
MinDelSimilarAlignment() to compute a common subsequence σ2 of G1 of cost at most
θn such that L2 ∩ L1, where L2 = σ̄2(s1) is minimized. At the ith step given i − 1 sets
L1, . . . , Li−1, the algorithm computes an alignment σi of G1 with Li being the set of
indices of unaligned characters of s1 such that the intersection of Li with ∪j∈[i−1]Lj is
minimized. The algorithm continues with this process until it reaches a round k such that
| ∪i∈[k−1] (Lk(s1) ∩ Li(s1))| ≥ θ2n(k−1)

4 . Let L1, . . . , Lk be the sets generated. Output all
these sets.
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Next for each Li returned by Algorithm EnumerateAlignments(), call the algorithm
MaxDelSimilarAlignment() to find an alignment σ′ of G2 of cost at most θn such that
the intersection of Li and L′

i = σ̄′(s1) is maximized. If |Li ∪ L′
i| ≤ (2 − 3θ

16 )θn, define
σ = s1[i1] ◦ · · · ◦ s1[ip] where, [n] \ (Li ∪ L′

i) = {i1, . . . , ip}. Output σ.
We now prove two crucial lemmas to establish the correctness.

▶ Lemma 11. Given strings s1, . . . , s|G1| of length n such that A(s1, . . . , s|G1|) ≤ θn, where
θ ∈ (0, 1), there exists an algorithm that computes k ≤ 4/θ, different sets L1, . . . , Lk ⊆ [n]
each of size at most θn such that ∀j ∈ [k], there exists a common subsequence σj of G1 where,
Lj = σ̄j(s1) and one of the following is true.
1. ∃j ∈ [k] such that |Lj | ≤ 3θn

4 .
2. For any common subsequence σ of G1 with σ̄(s1) ≤ θn there exists a Li, where |σ̄(s1) ∩

Li| ≥ 3θ2n
16 . The running time of the algorithm is Õ(2mmn|G1|+1).

Proof. Let σ′ = LCS(s1, . . . , s|G1|). If |σ′| ≥ n − 3θn
4 , then |σ̄′(s1)| ≤ 3θn

4 and we satisfy
condition 1. Otherwise assume |σ̄′(s1)| > 3θn

4 . Let L1, . . . , Lk be the sets returned by
Algorithm EnumerateAlignments(). By construction, for each Li there exists a common
subsequence σi of G1 where Li = σ̄i(s1). Note every Li has size at least 3θn

4 . Moreover
if the algorithm does not terminate at round i, then |Li(s1) \ {L1(s1) ∪ · · · ∪ Li−1(s1)}| ≥
3θn

4 −
θ2n(i−1)

4 . Hence after k steps we have

| ∪i∈[k] Li(s1)| ≥ 3θn

4 + (3θn

4 − θ2n

4 ) + · · ·+ (3θn

4 − (k − 1)θ2n

4 )

= 3kθn

4 − θ2n

4 (1 + 2 + · · ·+ (k − 1))

= 3kθn

4 − k(k − 1)θ2n

8

>
3kθn

4 − k2θ2n

8

Substituting k = 4/θ, we get | ∪i∈[k] Li(s1)| > n. Now if the algorithm stops at round
i < 4/θ, then we know for each common subsequence σ of G1 of length at least n − θn if
σ /∈ {L1, . . . , Li−1}, | ∪j∈[i−1] (σ(s1) ∩ Lj(s1))| ≥ (i−1)θ2n

4 . Hence there exists at least one
j ∈ [i− 1] such that |Lj(s1) ∩ σ(s1)| ≥ θ2n

4 . Otherwise if the algorithm runs for 4/θ rounds
then ∪i∈[4/θ]Li(s1) = [n]. Hence for each common subsequence σ of cost in [ 3θn

4 , θn], σ̄(s1)
will have intersection at least 3θ2n

16 with at least one Li.
As |k| ≤ 4/θ the algorithm runs for at most 4/θ rounds where at the ith round it

calls MinDelSumilarAlignment() with strings in G1, and sets L1, . . . , Li−1 (where i ≤ 4/θ)
and parameter θn. By Corollary 10 each call to MinDelSumilarAlignment() takes time
Õ(2|G1|θ|G1||G1|n|G1|+1). Hence the total running time taken is Õ(2|G1||G1|n|G1|+1). ◀

We set |G1| = ⌈m
2 ⌉ ≤ ⌊m/2⌋+ 1 to obtain a running time of Õ(2⌊m/2⌋+1mn⌊m/2⌋+2).

▶ Lemma 12. Given A(s1, . . . , sm) ≤ θn, Algorithm MultiAlign(s1, . . . , sm, θ) generates a
string σ, such that σ is a common sequence of s1, . . . , sm and the alignment cost of σ is at
most (2− 3θ

16 )θn. Moreover the running time of the algorithm is Õm(n⌊ m
2 ⌋+2).

Proof. Let η be some LCS of s1, . . . , sm such that |η̄(s1)| ≤ θn. First assume A(G1) ≤ 3θn
4 .

Then Algorithm EnumerateAlignments() computes a LCS σ1 of G1 and returns the set
L1 = |σ̄1(s1)| where |L1| ≤ 3θn

4 to Algorithm MultiAlign(). Next Algorithm MultiAlign()
calls MaxDelSimilarAlignmemnt(G2, L1, θn) which returns a set L′

1 = σ̄′(s1), where σ′
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is a common subsequence of G2 and |L′
1| ≤ θn. Notice σ ← s1[i1] ◦ · · · ◦ s1[ip] (where,

[n] \ (Li ∪ L′
i) = {i1, . . . , ip}) is a common subsequence of s1, . . . , sm and |σ̄(s1)| ≤ (|L1|+

|L′
1|) ≤ ( 3θn

4 + θn) = (2 − 1
4 )θn ≤ (2 − θ

4 )θn as θ ∈ (0, 1). Hence Algorithm MultiAlign()
computes a common subsequence σ of s1, . . . , sm such that the alignment cost of σ is at most
(2− θ

4 )θn.
Next assume A(G1) > 3θn

4 . Then by Lemma 11, Algorithm EnumerateAlignments()
computes a set Li = σ̄i(s1) where σi is a common subsequence of G1, |Li| ≤ θn and
Li ∩ η̄(s1) ≥ 3θ2n

16 . Notice as η is a common subsequence of G2, when Algorithm MultiAlign()
calls MaxDelSimilarAlignmemnt(G2, Li, θn), it returns a set L′

1 = σ̄′(s1), where σ′ is a
common subsequence of G2, |L′

1| ≤ θn and |Li ∩ L′
1| ≥ 3θ2n

16 . Therefore |Li ∪ L′
1| ≤

θn + θn− 3θ2n
16 = (2− 3θn

16 )θn, and Algorithm MultiAlign() computes a common subsequence
σ of s1, . . . , sm such that the alignment cost of σ is at most (2− 3θ

16 )θn.
Next we analyze the running time of Algorithm MultiAlign(). First we compute LCS(G1)

which takes time Õ(2⌊m/2⌋+1n⌊m/2⌋+1) using the classic dynamic program algorithm (note
|G1| = ⌈m

2 ⌉ ≤ ⌊
m
2 ⌋+1). Next we call EnumerateAlignments(s1, . . . , sm/2, θ). By Lemma 11

this takes time Õ(2⌊m/2⌋+1mn⌊m/2⌋+2). Moreover it returns at most O(1/θ) sets and for each
of them Algorithm MultiAlign() calls MaxDelSimilarAlignment() on G2. As |G2| ≤ ⌊m

2 ⌋+1
and each set has size at most θn, each call takes time Õ(2⌊m/2⌋+1θ⌊m/2⌋+1mn⌊m/2⌋+2). Hence
total time taken is Õ(2⌊m/2⌋+1mn⌊m/2⌋+2). Next each union of Li and L′

i and corresponding
σ can be computed in time O(n). Hence the running time of Algorithm MultiAlign() is
Õ(2⌊m/2⌋+1mn⌊m/2⌋+2) = Õm(n⌊ m

2 ⌋+2). ◀

▶ Lemma 13. GapMultiAlignDist(s1, . . . , sm, θ) computes
GapMultiAlignDist(s1, . . . , sm, θ, (2− 3θ

16 )) in time Õm(n⌊ m
2 ⌋+2).

Proof. First assume the case where A(s1, . . . , sm) ≤ θn. from Lemma 12 we have Algorithm
MultiAlign() returns a common subsequence σ of s1, . . . , sm such that the alignment cost of
σ is at most (2− 3θ

16 )θn. Hence, Algorithm GapMultiAlignDist() outputs 1. Next assume
A(s1, . . . , sm) > (2 − 3θ

16 )θn. In this case in Algorithm MultiAlign(), for each set Li ∈ E ,
|Li ∪ L′

i| > (2− 3θ
16 )θn. Hence Algorithm MultiAlign() returns a null string and Algorithm

GapMultiAlignDist() outputs 0. The bound on the running time is directly implied by the
running time bound of Algorithm MultiAlign(). ◀

3 Below-2 Approximation for Multi-sequence Alignment Distance with
One Pseudorandom String

In the last section we present an algorithm that given m strings, computes a truly below 2
approximation of the optimal alignment distance of the input strings provided the distance
is large i.e. Ω(n). In this section we use this algorithm as a black box and show given
a (p, B)-pseudorandom string s1, and m− 1 adversarial strings s2, . . . , sm, there exists an
algorithm that for any arbitrary small constant ϵ > 0 computes (2− 3p

512 +ϵ) approximation of
A(s1, . . . , sm) in time Õm(nβm−1 + n⌊m/2⌋+3). Here β = max(B,

√
n). Notice as the approx-

imation factor is independent of θ = A(s1,...,sm)
n , we can assure truly below-2 approximation

of the alignment cost for any distance regime. Formally we show the following.

▶ Theorem 14 (2). Given a (p, B)-pseudorandom string s1, and m− 1 adversarial strings
s2, . . . , sm each of length n, there exists an algorithm that for any arbitrary small constant
ϵ > 0 computes (2− 3p

512 +89ϵ) approximation of A(s1, . . . , sm) in time Õm(nβm−1+n⌊m/2⌋+3).
Here β = max(B,

√
n).

The details of the algorithm and the analysis are provided in the full version.
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4 λ
2+ϵ

-approximation for Multi-sequence LCS

In this section we provide an algorithm that given m strings s1, . . . , sm each of length n, such
that L(s1, . . . , sm) = λn, where λ ∈ (0, 1) computes an λ

2+ϵ approximation of L(s1, . . . , sm).
The algorithm is nearly identical to the algorithm described in Section 2, and in fact slightly
simpler which helps us to improve the running time further. In particular, we get the
following theorem.

▶ Theorem 15 (4). For any constant ϵ > 0, given m strings s1, . . . , sm of length n over
some alphabet set Σ such that L(s1, . . . , sm) = λn, where λ ∈ (0, 1), there exists an algorithm
that computes an λ

2+ϵ approximation of L(s1, . . . , sm) in time Õm(n⌊m/2⌋+1 + mn2).

Since we do not have any prior knowledge of λ, we solve a gap version: given m strings
s1, . . . , sm of length n over some alphabet set Σ, λ ∈ (0, 1) and a constant c > 1, the
objective is to decide whether L(s1, . . . , sm) ≥ λn or L(s1, . . . , sm) < λ2n

c . More specifically
if L(s1, . . . , sm) ≥ λn we output 1, else if L(s1, . . . , sm) < λ2n

c we output 0 otherwise output
any arbitrary answer. We design an algorithm that decides this gap version for c = 2. This
immediately implies an ( λ

2+ϵ ) approximation of LCS(s1, s2, .., sm) following a similar logic
of going from Theorem 6 to Theorem 5. We now prove Theorem 4.

4.1 Algorithm for λ
2+ϵ

-approximation of LCS(s1, . . . , sm)
We partition the input strings into two groups G1 and G2 where G1 contains the strings
s1, . . . , s⌈m/2⌉ and G2 contains the strings s⌈m/2⌉+1, . . . , sm. Next compute a longest common
subsequence L1 of G1 with |L1| ≥ λn. Remove all aligned characters of s1 in L1. We represent
the modified s1 by s

[n]\L1(s1)
1 : string s1 restricted to the characters with indices in [n]\L1(s1).

Compute an LCS L2 of s
[n]\L1(s1)
1 , s2, . . . , s⌈m/2⌉. At ith step given i−1 common subsequences

L1, . . . , Li−1, we compute an LCS Li of s
[n]\∪j∈[i−1]Lj(s1)
1 , s2, . . . , s⌈m/2⌉. We continue this

process until it reaches a round k such that |Lk| < λn − λ2n(k−1)
2 . Let L1, . . . , Lk be the

sequences generated.
Next for each Li returned, we compute a longest common subsequence L′

i of
Li, s⌈m/2⌉+1, . . . , sm. If there exists an i ∈ [k] such that |L′

i| ≥ λ2n
2 , output L′

i.

▶ Lemma 16. Given strings s1, . . . , s|G1| of length n and a parameter λn as input, where
λ ∈ (0, 1], there exists a set of k ≤ 2/λ different common subsequences L1, . . . , Lk of
s1, . . . , s|G1| each of length at least λn− λ2n(k− 1)/2 such that for any common subsequence
σ of s1, . . . , sm of length at least λn there exists a Li, where |σ(s1)∩Li(s1)| ≥ λ2n

2 . These k

subsequences can be computed in time Õm(n|G1| + mn2).

Proof. Given k subsequences L1, L2, . . . , Lk of s1 such that for each i ∈ [k], |Li| ≥ λn −
nλ2(k−1)

4 , and L1(s1), L2(s1), . . . are disjoint, we have

| ∪i∈[k] Li(s1)| ≥ λn + (λn− λ2n

2 ) + · · ·+ (λn− (k − 1)λ2n

2 )

= kλn− λ2n

2 (1 + 2 + · · ·+ (k − 1))

> kλn− k2λ2n

4

Substituting k = 2/λ we get | ∪i∈[k] Li(s1)| > n. Now if we compute L1, . . . , Lj and
j < 2/λ, then we know for each common subsequence σ of s1, . . . , sm with length at least
λn if σ /∈ {L1, . . . , Lj−1}, then | ∪i∈[j−1] (σ(s1) ∩ Lj(s1))| ≥ (j−1)λ2n

2 . Hence there exists at
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least one i ∈ [j − 1] such that |Li(s1) ∩ σ(s1)| ≥ λ2n
2 . Otherwise if the algorithm runs for

2/λ rounds then ∪j∈[2/λ]Lj(s1) = [n]. Then for any common subsequence σ of s1, . . . , sm

with length at least λn, σ will have an intersection at least λ2n
2 with at least one Li.

As |k| ≤ 2/λ the algorithm runs for at most 2/λ rounds where at each round it computes
the LCS of G1 strings such that

∑
j |Lj | ≤ n where Ljs are pairwise disjoint. This can be

performed using Theorem 17 in Õm(n|G1| + mnλ) = Õm(n|G1| + mn2) time. ◀

By setting |G1| = ⌈m/2⌉ ≤ ⌊m
2 ⌋+ 1, we get a running time of Õm(n⌊m/2⌋+1 + mn2). Now by

Lemma 16 if σ is an LCS of s1, s2, .., sm, then there exists a Li such that |Li(s1)∩σ(s1)| ≥ λ2n
2 .

Thus, when we compute the LCS of Li(s1), s⌈m/2⌉+1, .., sm, we are guaranteed to return a
common subsequence of s1, s2, ..., sm of length at least λ2n

2 . Hence, taking the right choice
of λ following the gap version we get the claimed approximation bound. Using Theorem 17,
the running time to compute a common subsequence of Lj(s1), s⌈m/2⌉+1, .., sm for all j is
Õm(n⌊m/2⌋+1 + mn2). This completes the proof of Theorem 4. ◀
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A An Õ(m2km) algorithm for Alignment Distance of Multiple
Sequences with Õ(mn) Preprocessing

We first recall an algorithm developed in [30, 21, 22, 24] that computes edit distance between
two strings in O(n + k2) time.

Warm-up: An O(n + k2) algorithm for Edit Distance
The well-known dynamic programming algorithm computes an (n + 1)× (n + 1) edit-distance
matrix D[0...n][0...n] where entry D[i, j] is the edit distance, ED(Ai, Bj) between the prefixes
A[1, i] and B[1, j] of A and B, where A[1, i] = a1a2...ai and B[1, j] = b1b2...bj . The following
is well-known and easy to verify coupled with the boundary condition D[i, 0] = D[0, i] = i

for all i ∈ [0, n].
For all i, j ∈ [0, n]

D[i, j] = min


D[i− 1, j] + 1 if i > 0;
D[i, j − 1] + 1 if j > 0;
D[i− 1, j − 1] + 1(ai ̸= bj) if i, j > 0.

The computation cost for this dynamic programming is O(n2). To obtain a significant cost
saving when ED(A, B) ≤ k << n, the O(n+k2) algorithm works as follows. It computes the
entries of D in a greedy order, computing first the entries with value 0, 1, 2, ...k respectively.
Let diagonal d of matrix D, denotes all D[i, j] such that j = i+d. Therefore, the entries with
values in [0, k] are located within diagonals [−k, k]. Now since the entries in each diagonal of
D are non-decreasing, it is enough to identify for every d ∈ [−k, k], and for all h ∈ [0, k], the
last entry of diagonal d with value h. The rest of the entries can be inferred automatically.
Hence, we are overall interested in identifying at most (2k + 1)k such points. The O(n + k2)
algorithm shows how building a suffix tree over a combined string A$B (where $ is a special
symbol not in Σ) helps identify each of these points in O(1) time, thus achieving the desired
time complexity.

Let Lh(d) = max{i : D[i, i + d] = h}. The h-wave is defined by Lh = ⟨Lh(−k), ..., Lh(k)⟩.
Therefore, the algorithm computes Lh for h = 0, ..k in the increasing order of h until a wave
e is computed such that Le(0) = n (in that case ED(A, B) = e), or the wave Lk is computed
in the case the algorithm is thresholded by k. Given Lh−1, we can compute Lh as follows.

Define

Equal(i, d) = max
q≥i

(q | A[i, q] = B[i + d, q])

Then, L0(0) = Equal(0, 0) and

Lh(d) = max


Equal(Lh−1(d) + 1, d) if h− 1 ≥ 0;
Equal(Lh−1(d− 1), d) if d− 1 ≥ −k, h− 1 ≥ 0;
Equal(Lh−1(d + 1) + 1, d) if d + 1, h + 1 ≤ k.

Using a suffix tree of the combined string A$B, any Equal(i, d) query can be answered
in O(1) time, and we get a running time of O(n + k2).

An Õ(m2km) algorithm for Alignment Distance of Multiple Sequences
with Õ(nm) Preprocessing
We now extend the above Õ(n + k2) algorithm to computing alignment distance of m strings.
Recall that we are given m strings s1, s2, ..., sm each of length n. The following is an O(nm)
time-complexity dynamic programming to obtain the edit distance of m strings. We fill up an
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m-dimensional dynamic programming matrix D[[0, n]....[0, n]] where the entry D[i1, i2, .., im]
computes the edit distance among the prefixes s1[1, i1], s2[1, i2], ..., sm[1, im]. As a starting
condition, we have D[0, ..., 0] = 0. Let e⃗i = [0, 0, .., 1︸︷︷︸

ith index

, 0, 0..], and Vj represents an

m-dimensional vector ⟨j, j, j, ..., j⟩. The dynamic programming is given by the following
recursion. For all i1, i2, ..., im ∈ [0, n]

D[i1, i2, ..., im] = min


D[⟨i1, i2, .., im⟩ − e⃗j ] + 1 for all j = 1, 2, .., m

if ⟨i1, i2, .., im⟩ − e⃗j ≥ ⟨0, 0, ..., 0⟩;
D[i1 − 1, i2 − 1, .., im − 1] if s1[i1] = s2[i2] = ... = sm[im] and

i1, i2, ..., im > 0.

In order to compute D[i1, i2, ..., im], we can either delete an element sj [ij ], or align
s1[i1], s2[i2], .., sm[im] if they all match. The time to compute each entry D[i1, i2, ..., im] is
m. The overall running time is O(mnm).

Observation. In order to design an Õ(m2km) algorithm with preprocessing Õ(mn), first
observe that if A(s1, s2, ..., sm) ≤ k then it is not possible that in the final alignment, we
have m indices i1, i2, ..., im aligned to each other such that max |ij − ik|, j, k ∈ [1, 2, .., m] > k.
Since all strings have equal length, this would imply a total number of deletions > mk, or
A(s1, s2, ..., sm) > k.

Algorithm. Let diagonal d⃗ of matrix D denotes an (m−1) dimensional vector, and contains
all D[i1, i2, ..im] such that ⟨i2, i3, .., im⟩ = Vi1 + d⃗. Let Dk = {d⃗ | maxj |d[j]| ≤ k}. Then
|Dk| = (2k + 1)m−1 since each entry ij ∈ ii + {−k,−k + 1, .., 0, 1, ..., k}, for j = 2, 3, .., k. We
want to identify the entries with values in [0, km] located within diagonals Dk.

We similarly define Lh(d) = max{i : D[i,Vi + d⃗] = h}. The h-wave is defined by
Lh = {Lh(d⃗) | d⃗ ∈ Dk}. Therefore, the algorithm computes Lh for h = 0, .., km in
the increasing order of h until a wave e is computed such that Le(⃗0) = n (in that case
A(A, B) = e), or the wave Lkm is computed in the case the algorithm is thresholded by k.
Given Lh−1, we can compute Lh as follows.

Define

Equal(i, d⃗) = max
q≥i

(q | s1[i, q] = s2[i + d[1], q]) = s3[i + d[2], q] = .... = sm[i + d[m− 1], q]).

That is Equal(i, d⃗) computes the longest prefix of the first string starting at index i that can
be matched to all the other strings following diagonal d⃗.

Next, we define the neighboring diagonals N1(d⃗) and N2(d⃗) of d⃗.

N1(d⃗) = {d⃗′ | ||d− d′||1 = 1 & d⃗′ < d⃗}.

N2(d⃗) = {d⃗′ = d⃗ + V+1}.

Then, L0(0) = Equal(0, 0⃗) and

Lh(d⃗) = max
{

Equal(Lh−1(d⃗′ ∈ N1(d⃗)), d⃗) if d⃗′ ∈ Dk , h− 1 ≥ 0;
Equal(Lh−1(d⃗′ ∈ N2(d⃗)) + 1, d⃗) if d⃗′ ∈ Dk, h− 1 ≥ 0.

Next, we show that it is possible to preprocess si, i = 1, 2, ..m separately so that even
then each Equal(i, d⃗) query can be implemented in O(m log n) time.
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Preprocessing Algorithm
The preprocessing algorithm constructs log(n)+1 hash tables for each string s. The ℓ-th hash
table corresponds to window size 2ℓ; we use a rolling hash function (e.g. Rabin fingerprint)
to construct a hash table of all contiguous substrings of s of length 2ℓ in time O(n). Since
there are log n + 1 levels, the overall preprocessing time for s is O(n log n). Let Hsi

[ℓ] store
all the hashes for windows of length 2ℓ of si for i = 1, 2, .., m. Hence the total preprocessing
time is Õ(nm).

Answering Equal(i, d⃗) in O(m log n) time
Equal(i, d⃗) queries can be implemented by doing a simple binary search over the presorted
hashes in O(m log n) time. Suppose Equal(i, d⃗[j]) = qj . We identify the smallest ℓ ≥ 0 such
that qj < 2ℓ, and then do another binary search for qj between i + 2ℓ−1 to i + 2ℓ. Finally,
we set Equal(i, d⃗) = min (q2, ..., qm).

B An Õm(λnm) Algorithm for Multi-sequence LCS

▶ Theorem 17. Given m strings s1, . . . , sm each of length n such that L(s1, . . . , sm) = λn

where λ ∈ (0, 1), there exists an algorithm that computes L(s1, . . . , sm) in time Õm(λnm +
nm).

The algorithm is build over the algorithm of [17], that given two strings x, y of length
n such that L(x, y) = λn, computes L(x, y) in time Õ(λn2). Though the algorithm of [17]
shares a similar flavor with the classical quadratic time dynamic program algorithm, the
main contribution of this work is that it introduces the concept of minimal ℓ-candidates
that ensure that to compute the LCS, instead of enumerating the whole DP, it is enough
to compute some selective entries that are important. Moreover they show if the LCS is
small then the total number of minimal ℓ-candidates can be bounded. Also they can be
constructed efficiently.

An Õ(λn2) Algorithm for LCS

We first provide a sketch of the algorithm of [17]. We start with a few notations. Given two
indices i, j ∈ [n], let L(i, j) denotes the length of the LCS of x[1, i] and y[1, j] and xi denotes
the ith character of string x.

Given indices i, j we call < i, j > an ℓ-candidate if xi = yj and ∃i′, j′ ∈ [n] such that
i′ < i, j′ < j and < i′, j′ > is an (ℓ− 1)-candidate. We say that < i, j > is generated over
< i′, j′ >. Also define < 0, 0 > to be the 0-candidate. (for this purpose add a new symbol α

at the beginning of both x, y. Hence x[0] = y[0] = α) With this definition using induction
we can claim that < i, j > is an ℓ-candidate iff L(i, j) ≥ ℓ and xi = yj . Moreover as
L(x, y) = λn, the maximum value of ℓ for which there exists an ℓ-candidate is λn. Hence to
compute the LCS what we need to do is to construct a sequence of 0-candidate, 1-candidate,
. . . , (λn− 1)-candidate and a λn-candidate such that the ith candidate can be generated
from the (i− 1)th candidate. Note as for each i, there can be many ℓ-candidates enumerating
all of them will be time consuming.

Therefor the authors bring the notion of minimal ℓ-candidate that are generated as follows.
Consider two ℓ-candidates < i1, j1 > and < i2, j2 >. If i1 ≥ i2 and j1 ≥ j2, then it is enough
to keep only < i2, j2 > as any (ℓ + 1)-candidate that is generated from < i1, j1 >, can be
generated from < i2, j2 > as well. Call < i1, j1 > a spurious candidate.
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▶ Lemma 18. Let the set {< iℓ, jℓ >, ℓ ∈ {1, 2, . . . }} denotes the set of ℓ-candidates. After
discarding all spurious ℓ-candidates it can be claimed that i1 < i2 < . . . and j1 > j2 > . . . .

Proof. For any two ℓ-candidates < i1, j1 > and < i2, j2 >, either 1) i1 < i2 and j1 ≤ j2 or 2)
i1 < i2 and j1 > j2 or 3) i1 = i2 and j1 ≤ j2 or 4) i1 = i2 and j1 > j2. In the first and third
case < i2, i2 > is spurious and in the forth case < i1, j1 > is spurious. Hence after removing
all spurious candidates it can be ensured that i1 < i2 < . . . and j1 > j2 > . . . . ◀

The ℓ-candidates which are left after the removal of all spurious candidates are called
minimal ℓ-candidates. Notice as for each i there is at most one minimal ℓ candidate, total
number of minimal ℓ-candidates for all choices of i and ℓ is at most λn2. Using this bound
and Lemma 3 in [17], an algorithm can be designed to compute all the minimal ℓ-candidates
and thus L(x, y) in time Õ(λn2).

Generalization for m strings

Now we provide an upper bound on the number of minimal ℓ-candidates for m strings
given L(s1, . . . , sm) = λn. Given indices i1, . . . , im we call < i1, . . . , im > an ℓ-candidate
if s1[i1] = · · · = sm[im] and ∃i′

1, . . . , i′
m ∈ [n] such that i′

j < ij , and < i′
1, . . . , i′

m > is an
(ℓ− 1)-candidate. We say that < i1, . . . , im > is generated over < i′

1, . . . , i′
m >. Similar to

the two string case using induction we can prove < i1, . . . , im > is an an ℓ-candidate iff
L(s1, . . . , sm) ≥ ℓ and s1[i1] = · · · = sm[im]. Therefore to compute L(s1, . . . , sm) it will be
enough to generate a sequence of 0-candidate, 1-candidate, . . . , (λn− 1)-candidate and a
λn-candidate such that the ith candidate can be generated from the (i − 1)th candidate.
Next we describe the notion of spurious candidates and bound the total number of minimal
ℓ-candidates.

For two ℓ-candidates < i1, . . . , im−2, im−1, im > and < i1, . . . , im−2, i′
m−1, i′

m >, if im−1 ≥
i′
m−1 and im ≥ i′

m then we call the tuple < i1, . . . , im−2, im−1, im > spurious and discard it
as any (ℓ + 1) tuple that is generated from < i1, . . . , im−2, im−1, im > can be generated from
< i1, . . . , im−2, i′

m−1, i′
m > as well. The tuples that survives are called minimal ℓ-candidates.

Hence following a similar argument as given for Lemma 18, we can claim the following.

▶ Lemma 19. Let the set {< i1, . . . , im−2, iℓ
m−1, iℓ

m >, ℓ ∈ {1, 2, . . . }} denotes the set of
ℓ-candidates for fixed values of i1, . . . , im−2. After discarding all spurious ℓ-candidates it can
be claimed that i1

m−1 < i2
m−1 < . . . and i1

m > i2
m > . . . .

Note this implies that for a fixed choice of i1, . . . , im−1, there exists at most one minimal
ℓ-candidate. As ℓ = λn, total number of minimal ℓ-candidates over all choices of i1, . . . , im−1
and ℓ is at most λnm.

Next we state a lemma that is a generalisation of Lemma 3 of [17] for m strings.

▶ Lemma 20. For ℓ ≥ 1 < i1, . . . , im−2, im−1, im > is a minimal ℓ-candidate iff
< i1, . . . , im−2, im−1, im > is a ℓ-candidate with the minimum mth coordinate value such that
low < im < high where high is the minimum mth coordinate value of all ℓ-candidates having
first m− 2 coordinate values i1, . . . , im−2 and the (m− 1)th coordinate value less than im−1
and low is the minimum mth coordinate value of all (ℓ − 1)-candidates having first m − 2
coordinate values i1, . . . , im−2 and the (m− 1)th coordinate value less than im−1.

Together with the above lemma and the bound on the number of minimal ℓ-candidates
following the algorithm of [17], we can design an algorithm that computes L(s1, . . . , sm) in
time Õm(λnm + nm).

APPROX/RANDOM 2022


	1 Introduction
	1.1 Technical Overview
	1.1.1 Breaking the Triangle Inequality Barrier for Large Alignment Distance and Approximating LCS
	1.1.2 Approximating Alignment Distance with just One Pseudorandom String


	2 Below-2 Approximation for Multi-sequence Alignment Distance
	2.1 Finding Alignment with Maximum Deletion Similarity
	2.2 Finding Alignment with Minimum Deletion Similarity
	2.3 Algorithm for (2-frac{3theta}{16}+epsilon)-approximation of A(s_1,...,s_m)

	3 Below-2 Approximation for Multi-sequence Alignment Distance with One Pseudorandom String
	4 frac{lambda}{2+epsilon}-approximation for Multi-sequence LCS
	4.1 Algorithm for frac{lambda}{2+epsilon}-approximation of LCS(s_1,...,s_m)

	A An O~(m^2k^m) algorithm for Alignment Distance of Multiple Sequences with O~(mn) Preprocessing
	B An O~_m(lambda n^m) Algorithm for Multi-sequence LCS

