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Abstract
Two mobile agents have to meet at the same node of a connected graph with unlabeled nodes. This
intensely researched task is known as rendezvous. The adversary assigns the agents different starting
nodes in the graph and different integer labels from a set {1, . . . , L}. Time is slotted in synchronous
rounds. The adversary wakes up the agents in possibly different rounds. After wakeup, the agents
move as follows. In each round, an agent can either stay idle or move to an adjacent node. Each
agent knows its label but not the label of the other agent, and agents have no a priori information
about the graph. They do not know L. They execute the same deterministic algorithm whose
parameter is the agent’s label. The time of a rendezvous algorithm is the worst-case number of
rounds since the wakeup of the earlier agent till the meeting.

In most of the results concerning rendezvous in graphs, the graph is finite and rendezvous relies
on the exploration of the entire graph. Thus the time of rendezvous depends on the size of the graph.
This approach is inefficient for very large graphs, and cannot be used for infinite graphs. For such
graphs it is natural to seek rendezvous algorithms whose time depends on the initial distance D

between the agents. In this paper we adopt this approach and consider rendezvous in arbitrary
connected graphs with nodes of finite degrees, and whose set of nodes is finite or countably infinite.
Our main result is the first deterministic rendezvous algorithm working under this general scenario.

For any node v and any positive integer r, let P (v, r) be the number of paths of length r in
the graph, starting at node v. For any instance of the rendezvous problem where agents start at
nodes v1 and v2 at distance D, let P (v1, v2, D) = max(P (v1, D), P (v2, D)). It is well known that,
for example in trees, Ω(D + P (v1, v2, D) + log L) is a lower bound on rendezvous time for such an
instance. The time of our algorithm, working for arbitrary connected graphs of finite degrees, is
polynomial in this lower bound.

As an application we solve the problem of approach for synchronous agents in terrains in the
plane, in time polynomial in log L and in the initial distance between the agents in the terrain.
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1 Introduction

Two mobile agents have to meet at the same node of a connected graph. This intensely
researched task is known as rendezvous and has numerous applications. In computer networks,
such as the internet, software agents navigate in the network and the purpose of meeting
may be to share data collected from distributed databases and to plan further actions based
on these data. If the network models a labyrinth, or corridors in a contaminated mine,
mobile robots circulating in the network may have to meet to coordinate maintenance or
decontamination tasks. Finally, people may want to meet in an unknown mall or park whose
alleys are links of a network and crossings are its nodes.
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11:2 How to Meet at a Node of Any Connected Graph

In most of the results concerning rendezvous in graphs, the graph is finite and rendezvous
relies on the exploration of the entire graph. Thus the time of rendezvous depends on the
size of the graph. This approach is inefficient for very large graphs, and cannot be used
for infinite graphs. For such graphs it is natural to seek rendezvous algorithms whose time
depends on the initial distance D between the agents. In this paper we adopt this approach
and consider deterministic rendezvous in arbitrary connected graphs with nodes of finite
degrees, and whose set of nodes is finite or countably infinite.

We also consider the problem of approach for synchronous1 agents in terrains in the plane.
This is the task of getting two agents with vision radius 1 navigating in a terrain (see the
definition below) to see each other, i.e., to reach positions w1 and w2 in the terrain, such
that the segment [w1, w2] is of length at most 1 and is included in the terrain.

1.1 The model
Graphs. We consider arbitrary simple connected graphs with nodes of finite degrees, and
whose set of nodes is finite or countably infinite. Nodes of the graph are unlabeled and ports
at each node of degree d are arbitrarily labeled 0, 1, . . . , d − 1. There is no coherence between
port numbering at different nodes. There are two agents to which the adversary assigns
different starting nodes in the graph and different integer labels from a set {1, . . . , L}. Time
is slotted in synchronous rounds. The adversary wakes up the agents in possibly different
rounds. After wakeup, the agents move as follows. In each round, an agent can either stay
idle or move to an adjacent node. An agent makes a move by choosing a port number at its
current node. When entering the adjacent node corresponding to the chosen edge the agent
learns the port of entry and the degree of this node. When agents cross each other in an
edge, traversing it simultaneously in opposite directions, they do not even notice this fact.
Agents cannot mark the visited nodes in any way. We assume that the memory of the agents
is unbounded: from the computational point of view they are modeled as Turing machines.
Each agent knows its label but not the label of the other agent, and agents have no a priori
information about the graph. They do not know L. They execute the same deterministic
algorithm whose parameter is the agent’s label. The time of a rendezvous algorithm is the
worst-case number of rounds since the wakeup of the earlier agent till the meeting. The
meeting can occur before the wake-up of the later agent.

We will use the following terminology. A walk in a graph is any sequence (v0, v1, . . . , vk),
such that {vi, vi+1} is an edge, for any i < k. A path in a graph is any walk (v0, v1, . . . , vk)
such that vi+2 ̸= vi for any i < k − 1. In other words, paths are walks with no immediate
backtrack. Since an agent learns the entry port number upon visiting a node, it can avoid
backtracking and thus it can travel only using paths.

Terrains. We consider mobile agents modeled by points moving in subsets of the Euclidean
plane E2 and equipped with compasses showing cardinal directions N, E, S, W , with a
common unit of length, with clocks ticking at the same rate, and with vision of radius 1.
This means that at any point u in the terrain, the agent sees all points v, such that the
segment [u, v] has length at most 1 and is included in the terrain.

Consider a finite or countably infinite family {O1, O2, . . . } of pairwise disjoint closed
convex subsets of the Euclidean plane E2, called obstacles. For any real ϵ > 0, such a family
is called ϵ-scattered if all distances between obstacles are at least ϵ. A terrain is a subset of

1 By this we mean that clocks of the agents tick at the same rate, and when they move, they travel at the
fixed speed 1; see section 1.1.
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the Euclidean plane which is the complement of the union of a ϵ-scattered family of obstacles,
for some ϵ > 0.2 Hence any terrain is an open connected subset of the Euclidean plane. A
terrain that is the complement of the union of a ϵ-scattered family of obstacles is itself called
an ϵ-scattered terrain.

Agents wake up at distinct points p1 and p2 of the terrain at possibly different times,
chosen by the adversary. The distance D in the terrain between points p1 and p2 is defined
as the infimum of lengths of all polygonal lines between points p1 and p2, included in the
terrain. The adversary also assigns different integer labels from a set {1, . . . , L} to the agents.
The clock of every agent starts at its wake-up time. Each agent knows its own label but not
the label of the other agent, and both of them know a common positive real ϵ ≤ D, such
that the terrain is ϵ-scattered. As before, the memory of the agents is unlimited. Each agent
executes a sequence of actions. An action can be either waiting at the current point for a
chosen time t, or moving along a segment I of length x ≤ 1 in a chosen direction dir, so that
I is included in the terrain. Notice that, since the vision radius of the agents is 1, an agent
can check the latter condition before the move. Whenever agents move, they move at the
same fixed speed 1. Recall that they may start at different times and that one agent may
move while the other waits. The approach is defined as the moment when the agents see
each other for the first time. The time of an approach algorithm is the worst-case time since
the wakeup of the earlier agent till the approach.

1.2 The lower bounds
We mention two well-known lower bounds on time, one for rendezvous in graphs and one for
approach in the terrain.

Graphs. For any node v and any positive integer r, let P (v, r) be the number of paths of
length r in the graph, starting at node v. For any instance of the rendezvous problem where
agents start at nodes v1 and v2 at distance D, let P (v1, v2, D) = max(P (v1, D), P (v2, D)).
It is well known that, for example in trees, Ω(D + P (v1, v2, D) + log L) is a lower bound on
rendezvous time for such an instance. Indeed, the lower bound Ω(D) is obvious, the lower
bound Ω(log L) follows from [14] (even in the two-node tree and even for simultaneous start)
and the lower bound Ω(P (v1, v2, D)) follows from the fact that the adversary can delay one
of the agents and place it at the last node at distance D visited by the other agent.

Terrains. For any instance of the approach problem in a terrain T , with agents starting
at points p1, p2, let D be the distance between p1 and p2 in T . Clearly, Ω(D) is a lower
bound on the time of approach, as agents have speed 1. On the other hand, the lower bound
Ω(log L) holds even in the empty plane and follows from [14]. Hence we get the lower bound
Ω(D + log L).

1.3 Our results
Our main result is the solution of the feasibility problem of rendezvous in connected graphs
under the above described general scenario. We design a rendezvous algorithm working for
arbitrary connected graphs with nodes of finite degrees, and whose set of nodes is finite or
countably infinite. Its execution time is polynomial in the above mentioned lower bound
Ω(D + P (v1, v2, D) + log L) for the rendezvous problem.

2 Notice that obstacles do not need to be bounded. In general, disjoint closed unbounded sets in the plane
may have distance 0 (such as a curve and its asymptote) but this possibility is precluded in terrains by
the fact that the family of obstacles is ϵ-scattered.

DISC 2022



11:4 How to Meet at a Node of Any Connected Graph

This result should be compared to four sets of previous results about rendezvous in graphs,
known in the literature. In [14, 19, 25], the authors considered rendezvous under the same
scenario but only for finite graphs. The method adopted in these papers crucially relies on
the finiteness of the graph, as it requires the exploration of the entire graph. Hence it cannot
be applied to infinite graphs, and even in very large finite graphs it is inefficient. In [11],
the authors considered some infinite graphs, such as the line and infinite multidimensional
grids. They designed almost optimal rendezvous algorithms but they used two very strong
assumptions: first, they assumed that the agents know their position in the graph, and
second, they assumed simultaneous start. Hence, their results are far from our generality. In
[7], the authors considered only trees (finite or infinite), and, in the unoriented case, only
regular trees. The regularity assumption was important, as they relied on knowing the size
of any ball of a given radius in the tree. (As explained in [7], the regularity assumption
could be weakened to assuming that the size of any ball of given radius is bounded and
that both agent know a common bound on this size). Hence again, while the complexity of
algorithms in [7] is better than ours, their results are far from our generality. Finally, in [13],
the authors designed a rendezvous algorithm working in arbitrary connected graphs (finite
or infinite), but worked under the asynchronous scenario. In this scenario, meeting at a node
cannot be guaranteed, and hence rendezvous conditions are relaxed to allow meeting inside
an edge. Moreover, the algorithm from [13] is very inefficient, in particular, its worst-case
cost is exponential in L.

To the best of our knowledge, we propose the first algorithm guaranteeing a meeting at a
node in arbitrary connected graphs with nodes of finite degrees when each agent knows only
its own label. This general result is possible by applying a new way of organizing activity and
waiting periods of the agents. These periods are decided according to bits of (transformed)
labels of agents. However, while in previous papers, activity meant either exploring the entire
finite graph [25] or exploring a ball in infinite trees [7], in the present paper activity means
traversing a single path. The second change consists in allocating rapidly increasing periods
of time devoted to processing consecutive paths. The agent uses the time allocated to a
given path π first traversing it, then waiting at the other end of it, and then traversing back
the path π. So even in its activity period the agent spends a long time staying idle. These
crucial changes (the “path-by-path” approach and long waiting periods at the end of each
path) made it possible to get rid of the assumption of finiteness of the graph in [25] and of
the regularity of the tree in [7].

As an application of this new method we solve the problem of approach for synchronous
agents in terrains in the plane, in time polynomial in log L and in the initial distance D in
the terrain between the agents. Hence in this scenario, the execution time of our algorithm
is polynomial in the lower bound Ω(D + log L) for the approach problem.

This result should be compared to five previous results about approach, known in the
literature. In [11], the authors designed an almost optimal algorithm for approach but their
algorithm had rather limited scope. First, it worked only for the obstacle-free plane, and
second, it used two strong assumptions: that the agents know their position in the plane,
and that they start simultaneously. In [13], the authors designed an algorithm for approach
working for even more general subsets of the Euclidean plane than we do, and working for
the asynchronous scenario but the worst-case cost of their algorithm was exponential in L.
In [4], the authors designed an almost optimal algorithm for asynchronous approach in the
obstacle-free plane, under a strong assumption that each agent knows its position in the
plane. In [15], the authors designed a polynomial algorithm for approach of agents with
possibly different steady speeds, but their algorithm worked only for the obstacle-free plane,
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hence had significantly more limited scope. Finally, in [8], the authors strengthened the result
from [15] by designing an algorithm for approach working for the asynchronous scenario at
cost polynomial in D + log L but, again, their algorithm worked only for the obstacle-free
plane.

1.4 Related Work
Results closest to the present paper were discussed in Section 1.3. In the present section
we mention other related work. Rendezvous was studied both in the randomized and
deterministic settings. An excellent survey of randomized rendezvous can be found in [2], cf.
also [1, 5]. Deterministic rendezvous in networks is overviewed in [23, 24]. Rendezvous was
also studied in geometric settings, such as the interval of the real line, e.g., [5, 6], and the
plane, e.g., [3, 9, 12]. The task of meeting for more than two agents, called gathering, was
investigated, e.g., in [16, 18, 20].

In the deterministic setting, investigations were mostly focused on the feasibility and
time complexity of synchronous rendezvous in networks. In most of the literature concerning
rendezvous in networks, nodes of the network are assumed to be unlabeled and marking nodes
by agents is not allowed. In this case, anonymous agents cannot meet in many symmetric
networks, e.g., in oriented rings, if they start simultaneously. The reason for this is the
symmetry of the initial configuration. In order to make the task feasible, symmetry is usually
broken by assigning the agents distinct labels and assuming that each agent knows only its
own label. This is the same scenario as in the present paper and in the previously mentioned
papers [7, 14, 19, 25]. Some authors studied a weaker scenario in which agents, as well as
nodes, are anonymous. Gathering many anonymous agents in unlabeled networks was the
subject of [16]. In this weak scenario, not all initial configurations of agents are possible to
gather, and the authors of [16] characterized all such configurations. Stronger scenarios were
also investigated. The authors of [22] studied the time of rendezvous in labeled networks, in
the context of algorithms with advice.

In the asynchronous model, an adversary controls the speed of agents. Asynchronous
rendezvous and approach in the plane was studied in [8, 10, 18], and asynchronous rendezvous
in graphs was introduced in [21] and later investigated in [4, 17].

2 Rendezvous in connected graphs

2.1 The algorithm
We first introduce some notation and terminology.

For any label ℓ ∈ {1, . . . , L} we define the transformed label Trans(ℓ) as follows. Let
(c1, . . . , cs) be the binary representation of ℓ (with c1 = 1). First we define the binary
sequence Trans1(ℓ) as follows. We replace each bit 1 by 10, each bit 0 by 01 and add bits
11 at the end. The obtained sequence is of length 2s + 2 and has the property that if we
start with two different labels then none of the obtained sequences can be a prefix of the
other (cf. [14]). In order to get Trans2(ℓ) we replace in Trans1(ℓ) each bit 1 by 10 and
each bit 0 by 01. The resulting sequence Trans2(ℓ) has length 4s + 4. Notice that since
binary representations of labels may have different lengths, the same is true for the resulting
sequences Trans2(ℓ). However, they have the property that if ℓ1 ̸= ℓ2 then there exists an
index j, such that the jth bit of Trans2(ℓ1) is 1 and the jth bit of Trans2(ℓ2) is 0. (Hence,
not only Trans2(ℓ1) and Trans2(ℓ2) differ in some bit but we can guarantee that in some
position the bits are 1 and 0 and in some other position the bits are 0 and 1). Finally, we
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11:6 How to Meet at a Node of Any Connected Graph

obtain Trans(ℓ) from Trans2(ℓ) by adding to it the prefix 011. The resulting sequence of
length 4s + 7 still has the previous two properties (being prefix-free and guaranteeing that if
ℓ1 ≠ ℓ2 then there exists an index j, such that the jth bit of Trans2(ℓ1) is 1 and the jth bit
of Trans2(ℓ2) is 0) and moreover it has the third property that the segment consisting of
bits with indices 2,3,4 is the only segment of three consecutive bits 1 in Trans(ℓ).

As an example consider label ℓ = 9. Then the binary representation of ℓ is 1001. We
have Trans1(ℓ) = (1001011011), Trans2(ℓ) = (10010110011010011010), and Trans(ℓ) =
(01110010110011010011010).

We define the infinite binary sequence Tape(ℓ) as the concatenation of infinitely many
copies of Trans(ℓ). We will call Tape(ℓ) the tape of the agent with label ℓ. The i-th copy of
Trans(ℓ) is called the i-th segment of Tape(ℓ).

Any path π = (v0, v1, . . . , vk) of length k starting at node v0 is coded as the sequence of
port numbers (p0, . . . , pk−1) such that port pi at node vi leads to node vi+1. We will often
identify a path with its code. The length k of path π is denoted by |π|. We denote by rev(π)
the reverse path (vk, vk−1, . . . , v0) coded by the sequence of port numbers (qk, qk−1, . . . , q1),
such that port qj at node vj leads to node vj−1. Since an agent learns the entry port upon
entering a node, an agent that has traversed the path π learns (the code of) the path rev(π).

For any node v, we define the infinite sequence of all finite paths (π1, π2, . . . ) starting at
node v and ordered as follows: every path of smaller length precedes every path of larger
length, and paths of a given length are ordered lexicographically by their codes. Since in our
algorithm all paths of smaller lengths are traversed by the agents before all paths of larger
length, when an agent has finished processing all paths of length i, it knows (the codes of)
all paths of length i + 1 because when an agent is at the end of a path of length i, it sees the
degree of the final node.

The high-level idea of the Algorithm RV, guaranteeing rendezvous in any connected graph
with nodes of finite degrees, is the following. The algorithm is executed by an agent with
label ℓ starting at a node v. We assign rapidly increasing time periods ai (in our solution, the
integers ai increase quadratically) to process consecutive bits bi of Tape(ℓ) of the agent. If
the bit bi is in the j-th segment of Tape(ℓ), then its processing concerns the path πj starting
at v, in the following way:

if bi = 1 then the agent traverses path πj , waits ai − 2|πj | rounds at the end of it, and
traverses path rev(πj);
if bi = 0 then the agent waits ai rounds.

Note that the agent starts and ends processing each bit of Tape(ℓ) at its starting node v.
We will show that rendezvous must occur by the time when one of the agents processes all
bits of its Tape(ℓ) corresponding to the lexicographically smallest among shortest paths from
its initial position to the initial position of the other agent.

Below we give the pseudo-code of the algorithm. For any positive integer i we define
ai = 3i2. The algorithm is interrupted as soon as the agents meet.

▶ Remark. To show that the formulation of the algorithm is correct, we need to prove that if
bi is the i-th bit of Tape(ℓ) located in the j-th segment of Tape(ℓ) then ai ≥ 2|πj |. Indeed,
we have ai = 3i2 ≥ 2i ≥ 2j ≥ 2|πj |.

2.2 Correctness and complexity
In this section we prove the correctness of Algorithm RV and establish its complexity. For
an instance of the rendezvous problem, where agents A1 and A2 start at nodes v1 and v2
respectively, we define the critical segment of A1 as follows. Let π be the lexicographically
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Algorithm 1 Algorithm RV.
for i = 1, 2, . . . do

if bi is the i-th bit of Tape(ℓ) located in the j-th segment of Tape(ℓ) then
if bi = 1 then

traverse path πj ;
wait ai − 2|πj | rounds;
traverse path rev(πj);

else
wait ai rounds;

smallest among shortest paths from v1 to v2. We call path π the critical path of the agent.
The critical segment of the tape of agent A1 is the segment of its tape assigned to path π.
The critical segment of the tape of agent A2 is defined similarly.

The correctness of Algorithm RV follows from the two following lemmas.

▶ Lemma 1. Suppose that the agents start executing Algorithm RV simultaneously. Then
they meet by the end of the execution of the critical segment of the agent that starts its critical
segment first.

Proof. Let A1 be the agent that starts its critical segment earlier and let A2 be the other
agent. If both agents start their critical segments simultaneously, we call A1 and A2 arbitrarily.
Let T be the round in which A1 starts its critical segment. Consider two cases.
Case 1. Agent A2 starts some segment in round T . For i = 1, 2, let σi be the segment

that agent Ai starts in round T . There exists an index j such that the j-th bit of agent A1
is 1, the j-th bit of agent A2 is 0, and these bits are in segments σ1 and σ2, respectively.
Hence, in the first part of the execution of its j-th bit, agent A1 traverses its critical path,
while agent A2 waits at its other end. Thus the agents meet at the starting node of A2.

Case 2. Agent A2 does not start any segment in round T . Let σ2 be the segment which
agent A2 is processing in round T . Let (d1, d2, d3, d4) be the four bits that agent A2
executes starting in round T , i.e., while agent A1 executes the first four bits of its critical
segment. (d1, d2, d3, d4) are not the first four bits of the segment σ2 of agent A2. If all
bits d2, d3, d4 are within segment σ2 then at least one of them must be 0, as there cannot
be three consecutive bits 1 (apart from positions 2,3,4 in a segment). If some of these bits
are within the segment τ following σ2, then one of them must be 0, since every segment
starts with a 0. Hence, in any case, there exists an index j such that the j-th bit of agent
A1 is 1 and the j-th bit of agent A2 is 0. Hence, in the first part of the execution of its
j-th bit, agent A1 traverses its critical path, while agent A2 waits at its other end. Thus
the agents meet at the starting node of A2. ◀

▶ Lemma 2. Suppose that the agents do not start executing Algorithm RV simultaneously.
Then they meet by the end of the execution of the critical segment of the agent that starts
executing Algorithm RV earlier.

Proof. Let A1 be the agent that starts the execution of Algorithm RV earlier, and let A2 be
the other agent. Let T be the round in which A1 starts its critical segment and let k − 1 be
the index of the first bit in this segment. Hence agent A1 starts the execution of the second
bit of its critical segment (which is equal to 1) in round T ′ = T + ak−1. Let δ be the delay in
the start of execution of agent A2 w.r.t. the start of agent A1. We have following two cases.
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11:8 How to Meet at a Node of Any Connected Graph

Figure 1 An illustration for the proof of Lemma 2: when δ ≤ D, agent A1 meets agent A2 during
the execution of the k-th bit of agent A1.

δ ≤ D : Let us consider the time interval [T ′, T ′ + D − 1] (cf. Fig. 1). During this
time interval agent A1 traverses its critical path π (of length D) by processing its k-th
bit. Since δ ≤ D, the execution of the k − th bit of agent A2 starts in the time interval
[T ′, T ′ +D −1]. If the k-th bit of A2 is 0, then we are done, because agent A1 meets agent
A2 at the starting node of A2 during the execution of this bit of agent A2. Otherwise,
the k-th bit of A2 is 1 and we have the following two possibilities. If the k-th bit of A2
is not the first bit 1 of some segment σ2, then at least one among the (k + 1)-th and
(k + 2)-th bits of A2 is 0. Since the k-th, the (k + 1)-th and the (k + 2)-th bits of A1 are
1, the agents meet at the starting node of A2 during the execution of the first bit 0 of A2
following its k-th bit. Now consider the case when the k-th bit of A2 is the first bit 1 of
some segment σ2. The start of the execution of segment σ2 by agent A2 is delayed by at
most D with respect to the start of the execution of the critical segment by agent A1.
Hence, for some index m, the m-th bit of agent A1 is 1, the m-th bit of agent A2 is 0
and the delay between the executions of these bits is most D. Hence the agents meet at
the starting node of A2, during the executions of their m-th bits.

Figure 2 An illustration for the proof of Lemma 2: when δ > D and δ ≤ T ′′ − T ′ , agent A1

meets agent A2 during the execution of the k-th bit of agent A1.
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δ > D : Let j be the index of the bit which agent A2 is processing in round T ′ + D.
Since δ > D, we have j < k.
Consider the processing of the k-th bit of agent A1. Since this bit is 1, agent A1 first
traverses its critical path π (of length D), then waits ak − 2D rounds at the other end of
π (which is the starting node of A2), and finally traverses the reverse path rev(π). We
will use the following claim.

▷ Claim. ak − 2D > aj .

To prove the claim notice that aj ≤ ak−1, since j < k. Since 1 ≤ D ≤ k, we have

ak − aj ≥ ak − ak−1 = 3k2 − 3(k − 1)2 = 6k − 3 ≥ 6D − 3 > 2D,

which proves the claim.
Let T ′′ = T ′ + ak − D − 1. Consider the time interval I = [T ′ + D, T ′′] which is the time
interval during which agent A1 waits at the starting node of A2. If δ ≤ T ′′ − T ′ then the
start of the execution of the k-th bit of A2 happens during the time interval I, hence the
agents meet at the starting node of A2 (cf. Fig. 2). If δ > T ′′ − T ′ then during the last
round of interval I agent A2 executes some j-th bit, for j < k. By the claim, the start of
the execution of the j-th bit of agent A2 happens during the waiting period of agent A1
(cf. Fig. 3). Hence the agents meet at the starting node of A2 during time interval I.

Figure 3 An illustration for the proof of Lemma 2: when δ > D and δ > T ′′ − T ′, agent A1

meets agent A2 during the execution of the k-th bit of agent A1. ◀

We are now ready to prove the main result of this section.

▶ Theorem 3. Algorithm RV guarantees rendezvous of agents starting at nodes v1 and v2
at distance D in an arbitrary connected graph (finite or infinite) in time polynomial in
D + P (v1, v2, D) + log L.

Proof. Let A be the agent that started the execution of the algorithm first, and in the case
of simultaneous start, let it be the agent that started its critical segment first. Let v be the
starting node of A. By Lemmas 1 and 2 we know that the agents will meet by the end of
the execution of the critical segment of agent A. Let P be the number of paths of length at
most D starting at v. We have
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P =
D∑

i=1
P (v, i) ≤ D · P (v, D).

The number of segments till the critical segment of A is at most P . Each segment contains
at most c log L bits, for some constant c. Hence the number B of all bits until the end of the
critical segment is at most cP log L. The execution time of the algorithm is at most

B∑
j=1

aj =
B∑

j=1
3j2 = B(B + 1)(2B + 1)

2 ∈ O(B3).

On the other hand we have

O(B3) ⊆ O((P log L)3) ⊆ O((D · P (v, D) · log L)3) ⊆ O((D · P (v1, v2, D) · log L)3),

which is polynomial in D + P (v1, v2, D) + log L. ◀

3 Approach in terrains

In this section we use the path-by-path method from Algorithm RV to solve the problem of
approach for synchronous agents in terrains, in time polynomial in log L and in the initial
distance D between the agents in the terrain. We do it in two steps. First, we modify
Algorithm RV to obtain an efficient rendezvous algorithm for arbitrary connected subgraphs
of the infinite oriented grid, and then we derive an algorithm for approach from this modified
algorithm.

We consider the infinite oriented grid Z × Z. Every node is adjacent to the four nodes
at distance 1 from it in directions North, East, South, West. Ports at nodes of the grid
are denoted N, E, S, W , according to the orientation. We define a shape as any connected
subgraph of this grid. Mobile agents navigate in a fixed shape along its edges. An agent
located at a current node of the shape knows which of the ports correspond to edges in
the shape. The agents have the same characteristics as described for general connected
graphs. Our first aim is to design a rendezvous algorithm working in arbitrary shapes in
time polynomial in log L and in the initial distance D between the agents in the shape.

If we were not concerned with the efficiency, we could directly use Algorithm RV, as shapes
are connected graphs. However, this would not give us the desired complexity polynomial in
log L and in D. Indeed, recall that Algorithm RV guarantees rendezvous of agents starting at
nodes v1 and v2 at distance D in time polynomial in P (v1, v2, D) + log L. For shapes (in fact
even for the empty grid) the number of paths of length D between two nodes at distance D

may be exponential in D. (For example, the number of paths of length 2a between nodes
(x, y) and (x + a, y + a) which are at distance 2a in the grid is

(2a
a

)
).

Luckily, we can significantly reduce the number of processed paths using the orientation of
the grid. As in Algorithm RV, paths in shapes are ordered so that every path of smaller length
precedes every path of larger length, and paths of a given length are ordered lexicographically
by their codes which are sequences of ports N, E, S, W ordered N < E < S < W . The key
change is to avoid processing all paths in the shape. We do it by associating to each node
w in the shape at distance i from the starting node v of the agent, a single specific path of
length i called canonical. This is the lexicographically smallest of all paths of length i from v

to w in the shape. Since all paths of smaller lengths are traversed by the agents before all
paths of larger length, when an agent has finished processing all canonical paths of length
i, it knows (the codes of) all canonical paths of length i + 1. Indeed, the canonical path
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of length i + 1 from v to w has a prefix of length i which is the canonical path from v to
a neighbor w′ of w at distance i from v in the shape. Thus the agent can determine this
canonical path to w before starting its traversal.

This is the only change we make in Algorithm RV: the sequence (π1, π2, . . . ) is now the
sequence of all canonical paths in the shape, starting at v, ordered as above, and the rest
of the algorithm is as before.3 The resulting rendezvous algorithm, working for arbitrary
shapes, is called Algorithm Shape-RV. Let C(v, i) be the number of canonical paths of length
i in the shape, starting at node v. By definition, C(v, i) is equal to the number of nodes in
the shape at distance i from v, and since shapes are subgraphs of the grid, we have that
C(v, i) is in O(i2). The same analysis as for Algorithm RV proves the following lemma.

▶ Lemma 4. Algorithm RV-Shape guarantees rendezvous of agents starting at nodes v1 and
v2 at distance D in an arbitrary shape in time polynomial in D + log L. Rendezvous occurs
at the starting node of one of the agents.

We are now ready to make the second step in our design of the algorithm for approach in
terrains. Let us first consider agents operating in the same shape, as above, but in a slightly
changed model. Instead of operating in synchronous rounds (as is usually the case for the
graph setting) we allow the agents to start with any positive delay δ, not necessarily integer.
This means that the later agent may start while the earlier agent is traversing an edge. We
use the same algorithm as above, i.e, Algorithm RV-Shape. It is easy to see that Lemma 4
still holds in this slightly more general situation. Indeed, the proof of Lemma 1 does not
need any change (since it deals with the case δ = 0) and the proof of Lemma 2 requires
only minimal changes, replacing rounds by points in time. (For example, the time interval
[T ′, T ′ + D − 1] which meant a segment of D rounds in the proof of Lemma 2 would have to
be replaced by the time interval [T ′, T ′ + D] meant as a time segment of length D between
two points in time).

It is well known [13, 15] that the problem of approach in the empty plane (without
obstacles) can be reduced to that of rendezvous in an infinite oriented grid. For completeness
we sketch this reduction below. For any point v in the plane, consider the infinite oriented
grid Gv defined as the following graph embedded in the plane. One of the nodes of Gv

is v and every node u is adjacent to 4 nodes at Euclidean distance 1 from it, and located
North, East, South and West from node u. Ports at every node are labeled N, E, S, W, in
the obvious way.

Any rendezvous algorithm in the grid Gv (whose aim is to bring two agents starting
at arbitrary nodes of the grid with arbitrary delay to the same node at the same time)
can be transformed in an approach algorithm in the empty plane as follows. Let A be any
rendezvous algorithm for Gv. Algorithm A can be executed in the grid Gw, for any point w

in the plane. Consider two agents in the plane starting respectively from point v and from
another point w in the plane, with some delay δ. Let v′ be the node of Gv closest to point
w. We will say that v and v′ are companions. If there are more than one closest nodes, we
pick one of them arbitrarily. Notice that v′ is at distance at most

√
2/2 < 1 from w. Let

α be the vector v′w. Execute algorithm A on the grid Gv with agents starting at nodes
v and v′ with delay δ. Let u be the node of Gv in which these agents meet at some time
t. The transformed algorithm A∗ for approach in the plane works as follows: execute the

3 Notice that we could not apply this method for arbitrary connected graphs. In an anonymous graph
it is impossible to tell if two paths with given codes end up at the same node or not. This shows the
power of the grid orientation.

DISC 2022



11:12 How to Meet at a Node of Any Connected Graph

same algorithm A but with one agent starting at v and traveling in Gv and the other agent
starting at w and traveling in Gw, so that the starting time of the agent starting at w is
the same as the starting time of the agent starting at v′ in the execution of A in Gv; the
starting time of the agent starting at v does not change. In time t the agent starting at v

and traveling in Gv will be at point p, as previously. The agent starting at w and traveling
in Gw will get to some point q at time t. Clearly, p is a node of Gv, q is a node of Gw, points
p and q are companions and q = p + α. Hence both agents will be at distance less than 1 at
time t, which means that they accomplish approach in the (empty) plane. Notice that the
transformed algorithm A∗ has the same time as algorithm A.

Unfortunately, the above transformation does not guarantee approach even if there is one
closed convex obstacle in the plane. Indeed, this obstacle could be positioned in such a way
that the segment [p, q] intersects it, and hence although agents get close to each other, they
cannot see each other. This is why we need a preprocessing for the approach algorithm and
we need to carefully choose the length of edges of the grids depending on the given parameter
ϵ, such that the terrain is ϵ-scattered.

We will use the following geometric observation.

▶ Lemma 5. Let v be any point in an ϵ-scattered terrain. Let ξ = min(1, ϵ). Then there
exists a point v′ in the terrain at distance ξ/3 from v, such that the distance between v′ and
any obstacle is at least ξ/3.

Figure 4 An illustration for the proof of Lemma 5.

Proof. If the distance between v and any obstacle is at least ξ/3 then we can take v′ = v.
Hence suppose that the distance between v and the closest obstacle O is x < ξ/3. Let w be
the point in O such that the distance between v and w is x (cf. Fig. 4).

Let v′ be the (unique) point in the terrain in the line vw at distance ξ/3 from v. (The
existence of such a point follows from the fact that the terrain is ϵ-scattered, and the unicity
follows from the definition of x.) Clearly, v′ is at distance larger than ξ/3 from O. Consider
any other obstacle O′. It is enough to show that v′ is at distance at least ξ/3 from O′. Let u

be the point of O′ closest to v′ and let y be the distance between u and v′. Let the distance
between w and u be z. Consider the triangle wv′u. We have x + ξ/3 + y ≥ z ≥ ϵ ≥ ξ. Hence
y ≥ ξ/3. ◀

The preprocessing part of our algorithm for approach executed by agent A is the following
Procedure Away(ϵ) which takes as parameter a positive real ϵ such that the terrain is ϵ-
scattered. Recall that both agents get the same ϵ as input. Procedure Away(ϵ) works as
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follows. Let ξ = min(1, ϵ) and let λ = ξ/3. Let v be the starting point of agent A. If the
agent does not see any obstacles at distance less than λ then it defines v′ = v and terminates
the procedure. Otherwise, the agent defines w to be the closest point in the closest obstacle.
Then it goes along the line vw away from the point w to the point v′ at distance λ from v.
Since the terrain is ϵ-scattered, the point v′ is in the terrain. This concludes the procedure.
By Lemma 5, point v′ is at distance at least λ from any obstacle.

Consider the grid Hv′ which is defined similarly as the above grid Gv′ , with the only
exception that adjacent nodes are at distance λ instead of distance 1. Define the shape Sv′

as the subgraph of Hv′ induced by nodes that are points of the terrain. Now the Algorithm
Approach executed by agent A can be succinctly described as follows. Execute Procedure
Away(ϵ) to get to point v′ and then execute Algorithm RV-Shape in the shape Sv′ .

The following theorem proves the correctness and establishes the complexity of Algorithm
Approach.

▶ Theorem 6. Algorithm Approach accomplishes approach of arbitrary agents in any ϵ-
scattered terrain in time polynomial in D +log L, where D is the distance between the starting
points of the agents in the terrain.

Proof. Consider two agents A and B, starting from points v and w respectively. Let v′

and w′ be the points which the agents A and B reach after executing the Procedure Away.
Algorithm RV-Shape is now executed by agent A in shape Sv′ and by agent B in shape
Sw′ . First suppose that Sv′ = Sw′ . In this case Lemma 4 guarantees that agents will meet
either at v′ or at w′. Without loss of generality, suppose that they meet at w′. Now suppose
that Sv′ ̸= Sw′ . Hence the agents operate in different shapes. Let w∗ be the companion
node of w′. The point w∗ is a node in the shape Sv′ . Lemmas 1 and 2 can still be used to
guarantee that when agent A gets to node w∗ during the execution of its critical segment
(where the critical path is now from w′ to w∗) then agent B is at point w′. This is because
the considerations in the proofs of Lemmas 1 and 2 do not depend on which paths agent B is
traversing in the execution of Algorithm RV-Shape (these paths may depend on the shape in
which it operates) but only on the waiting times at its starting node which are independent
of the shape.

In view of Lemma 5, there is no obstacle at distance less than λ from point w′. The
companion w∗ of w′ is at distance smaller than λ from w′. Hence the segment w∗w′ is
contained in the terrain and has length smaller than 1, and thus the agents can see each
other. This proves the correctness of Algorithm Approach.

As for complexity, first observe that the duration of Procedure Away is at most λ ≤ D

(because agents were given a common ϵ ≤ D such that the terrain is ϵ-scattered, and λ ≤ ϵ).
Notice that since the shape Sv′ is the subgraph of Hv′ induced by nodes that are points of
the terrain, the distance between any two nodes of the shape (defined as the distance in
the graph) is at most twice the distance D between these points in the terrain. In view of
Lemma 4, we conclude that the execution time of Algorithm RV-Shape (which is the second
part of Algorithm Approach) is polynomial in D + log L. Hence the execution time of the
entire Algorithm Approach is also polynomial in D + log L. ◀

4 Conclusion

We presented two deterministic algorithms: one for rendezvous in arbitrary connected graphs
with nodes of finite degrees (whose set of nodes is finite or infinite) and the other for approach
in terrains in the plane. For the rendezvous algorithm the scope is the most general possible.
Indeed, rendezvous is obviously impossible in disconnected graphs, and if a graph has a
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node of infinite degree then there is no rendezvous algorithm guaranteed to always finish in
any finite time T , even if agents start from adjacent nodes. The remaining open problem
concerns complexity. Our algorithm works in time polynomial in D + P (v1, v2, D) + log L

and we did not try to optimize the degree of this polynomial. The problem of designing a
rendezvous algorithm working for arbitrary connected graphs in optimal time remains open.
This is a challenging problem: it remains unsolved even for finite graphs, despite two decades
of intense research.

It is important to note that techniques used in the literature for rendezvous in finite
graphs do not seem to have an easy extension to the case of infinite graphs. For example, the
idea of trying increasing guesses on the size n of the graph and running known algorithms for
finite graphs does not seem to work in infinite graphs for the following reason. Rendezvous
algorithms for graphs with size bounded by n rely on exploration of the entire graph using
sequences UXS(n) (i.e., Universal Exploration Sequences of port numbers for graphs of size
at most n), cf. [25]. Such a sequence guarantees visiting all nodes of a graph of size at most
n but does not give any guarantee of visiting some ball in an infinite graph. This is due to
the anonymity of the graphs: an agent cannot detect if it enters a loop instead of visiting
all nodes at distance r. Existing rendezvous algorithms for finite graphs rely on one agent
waiting at its starting node and the other catching it by visiting this node, which could not
be guaranteed for any guess. Another possibility would be to exhaustively explore a ball
of a given radius r (for increasing values of r) by traversing all paths of length r (coded as
sequences of port numbers) starting at the starting node of the agent. However, in arbitrary
infinite graphs, there is no upper bound on the number of such paths, and thus it would be
impossible to determine a sufficiently long waiting period for agent A at its starting node to
guarantee that the other agent B certainly catches it. These difficulties forced us to invent
the “path-by-path” technique used in this paper.

For approach, three problems remain open: the first concerns the scope, the second
concerns information available to the agents, and the third concerns complexity. Our
algorithm works for ϵ-scattered terrains and its time is polynomial in D + log L, while
Ω(D + log L) is the lower bound on the complexity of approach. This invites three questions.
The first concerns the generality of the environment. While our class of terrains is fairly
large, it is natural to ask if there exists an algorithm for approach working in arbitrary
open connected subsets of the plane, with similar complexity. An algorithm for approach
working in all such subsets could be easily obtained by a modification of the result from
[13] but its complexity is prohibitive: it is exponential in L. The second problem concerns
the information available to the agents. We assumed that each agent knows its own label,
and both of them know a common real ϵ ≤ D, such that the terrain is ϵ-scattered. The first
assumption is necessary to break symmetry: anonymous agents walking at the same speed
cannot meet deterministically even in the empty plane, if they start simultaneously. However,
we may ask if agents can meet in ϵ-scattered terrains without any other knowledge, with
complexity similar to that of our algorithm. The third problem concerns optimal complexity
of approach. What is the optimal time of approach even only in our setting of ϵ-scattered
terrains? This is not known even for the plane without any obstacles. In this case, the
best known algorithm has time O(D2 log L) (folklore) and the best known lower bound is
Ω(D2 + D log L) and follows from [14].
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