
Dynamic Probabilistic Input Output Automata
Pierre Civit #

Sorbonne Université, CNRS, LIP6, Paris, France

Maria Potop-Butucaru #

Sorbonne Université, CNRS, LIP6, Paris, France

Abstract
We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems.
Our work extends dynamic I/O Automata formalism of Attie & Lynch [2] to the probabilistic setting.
The original dynamic I/O Automata formalism included operators for parallel composition, action
hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.
They can model mobility by using signature modification. They are also hierarchical: a dynamically
changing system of interacting automata is itself modeled as a single automaton. Our work extends all
these features to the probabilistic setting. Furthermore, we prove necessary and sufficient conditions
to obtain the monotonicity of automata creation/destruction with implementation preorder. Our
construction uses a novel proof technique based on homomorphism that can be of independent
interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et
al. [5] to dynamic settings, an important tool towards the formal verification of protocols combining
probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure
distributed computation, cybersecure distributed protocols, etc).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Automata, Distributed Computing, Formal Verification, Dynamic systems

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.15

Related Version Full Version: https://eprint.iacr.org/2021/798

1 Introduction

Distributed computing area faces today important challenges coming from modern applica-
tions such as peer-to-peer networks, cooperative robotics, dynamic sensor networks, adhoc
networks and more recently, cryptocurrencies and blockchains which have a tremendous
impact in our society. These newly emerging fields of distributed systems are characterized
by an extreme dynamism in terms of structure, content and load. Moreover, they have to
offer strong guaranties over large scale networks which is usually impossible in deterministic
settings. Therefore, most of these systems use probabilistic algorithms and randomized
techniques in order to offer scalability features. However, the vulnerabilities of these systems
may be exploited with the aim to provoke an unforeseen execution that diverges from the
understanding or intuition of the developers. Therefore, formal validation and verification of
these systems has to be realized before their industrial deployment.

It is difficult to attribute the pioneering of formalization of concurrent systems to
some particular authors [16, 10, 1, 15, 11, 13, 9]. Lynch and Tuttle [12] proposed the
formalism of Input/Output Automata to model deterministic asynchronous distributed systems.
Relationship between process algebra and I/O automata are discussed in [20, 14]. Later,
this formalism is extended by Segala in [19] with Markov decision processes [17]. In order to
model randomized distributed systems Segala proposes Probabilistic Input/Output Automata.
In this model each process in the system is an automaton with probabilistic transitions. The
probabilistic protocol is the parallel composition of the automata modeling each participant.

© Pierre Civit and Maria Potop-Butucaru;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.civit@lip6.fr
mailto:maria.potop-butucaru@lip6.fr
https://doi.org/10.4230/LIPIcs.DISC.2022.15
https://eprint.iacr.org/2021/798
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Dynamic Probabilistic Input Output Automata

The modelisation of dynamic behavior in distributed systems has been addressed by
Attie & Lynch in [2] where they propose Dynamic Input Output Automata formalism. This
formalism extends the Input/Output Automata with the ability to change their signature
dynamically (i.e. the set of actions in which the automaton can participate) and to create
other I/O automata or destroy existing I/O automata. The formalism introduced in [2] does
not cover the case of probabilistic distributed systems and therefore cannot be used in the
verification of recent blockchains such as Algorand [6].

In order to respond to the need of formalisation in secure distributed systems, Canetti
& al. proposed in [3] task-structured probabilistic Input/Output automata (TPIOA) spe-
cifically designed for the analysis of cryptographic protocols. Task-structured probabilistic
Input/Output automata are Probabilistic Input/Output automata extended with tasks that
are equivalence classes on the set of actions. The task-structure allows a generalisation of
“off-line scheduling” where the non-determinism of the system is resolved in advance by a
task-scheduler, i.e. a sequence of tasks chosen in advance that trigger the actions among the
enabled ones. They define the parallel composition for this type of automata, as well as the
notion of implementation for TPIOA. Informally, the implementation of a Task-structured
probabilistic Input/Output automata should look “similar” to the specification whatever will
be the external environment of execution. Furthermore, they provide compositional results
for the implementation relation. Even thought the formalism proposed in [5] (built on top of
the one of [3]) has been already used in the formal proof of various cryptographic protocols
[4, 21], this formalism does not capture the dynamicity of probabilistic dynamic systems such
as peer-to-peer networks or blockchains systems where the set of participants dynamically
changes or where subchains can be created or destroyed at run time [18].

Our contribution. In order to cope with dynamicity and probabilistic nature of modern
distributed systems we propose an extension of the two formalisms introduced in [2] and [3].
Our extension uses a refined definition of probabilistic configuration automata in order to cope
with dynamic actions. The main result of our formalism is as follows: the implementation of
probabilistic configuration automata is monotonic to automata creation and destruction. That
is, if systems XA and XB differ only in that XA dynamically creates and destroys automaton
A instead of creating and destroying automaton B as XB does, and if A implements B (in the
sense they cannot be distinguished by any external observer), then XA implements XB. This
result enables a design and refinement methodology based solely on the notion of externally
visible behavior and permits the refinement of components and subsystems in isolation
from the rest of the system. In our construction, we exhibit the need of considering only
creation-oblivious schedulers in the implementation relation, i.e. a scheduler that, upon the
(dynamic) creation of a sub-automaton A, does not take into account the previous internal
actions of A to output (randomly) a transition. Surprisingly, the task-schedulers introduced
by Canetti & al. [3] are not creation-oblivious. Interestingly, an important contribution
of the paper of independent interest is the proof technique we used in order to obtain our
results. Differently from [2] and [3] which build their constructions mainly on induction
techniques, we developed an elegant homomorphism based technique which aim to render
the proofs modular. This proof technique can be easily adapted in order to further extend
our framework with cryptography and time.

It should be noted that our work is an intermediate step before extending composable
secure-emulation [5, 8] to dynamic settings. This extension is necessary for formal verification
of secure dynamic distributed systems (e.g. blockchain systems).

P. Civit and M. Potop-Butucaru 15:3

Paper organization. The paper is organized as follows. Section 2 is dedicated to a brief
introduction of the notion of probabilistic measure and recalls notations used in defining
Signature I/O automata of [2]. Section 3 builds on the frameworks proposed in [2] and [3]
in order to lay down the preliminaries of our formalism. More specifically, we introduce
the definitions of probabilistic signed I/O automata and define their composition and
implementation. In Section 4 we extend the definition of configuration automata proposed
in [2] to probabilistic configuration automata then we define the composition of probabilistic
configuration automata. Section 5 contains definitions related to the behavioural semantic
of automata, e.g. executions, traces, etc. Section 6 introduces implementation relationship,
which allows to formalise the idea that a concrete system is meeting the specification
of an abstract object. The key result of our formalisation, the monotonicity of PSIOA
implementations with respect to creation and destruction, is presented in Section 7 and
demonstrated in the extended version. For a big picture, we recommend the reading of the
warm up section of the extended version [7].

2 Preliminaries on probability and measure

We assume our reader is comfortable with basic notions of probability theory, such as σ-
algebra and (discrete) probability measures. A measurable space is denoted by (S, FS), where
S is a set and FS is a σ-algebra over S that is, FS ⊆ P(S), is closed under countable union
and complementation and its members are called measurable sets (P(S) denotes the power
set of S). The union of a collection {Si}i∈I of pairwise disjoint sets indexed by a set I is
written as

⊎
i∈I Si. A measure over (S, FS) is a function η : Fs → R≥0, such that η(∅) = 0

and for every countable collection of disjoint sets {Si}i∈I in FS , η(
⊎

i∈I Si) = Σi∈Iη(Si). A
probability measure (resp. sub-probability measure) over (S, FS) is a measure η such that
η(S) = 1 (resp. η(S) ≤ 1). A measure space is denoted by (S, FS , η) where η is a measure
on (S, FS).

The product measure space (S1, Fs1 , η1) ⊗ (S2, Fs2 , η2) is the measure space (S1 ×
S2, Fs1 ⊗ Fs2 , η1 ⊗ η2), where Fs1 ⊗ Fs2 is the smallest σ-algebra generated by sets of
the form {A × B|A ∈ Fs1 , B ∈ Fs2} and η1 ⊗ η2 is the unique measure s.t. for every
C1 ∈ Fs1 , C2 ∈ Fs2 , η1 ⊗η2(C1 ×C2) = η1(C1) ·η2(C2). If S is countable, we note P(S) = 2S .
If S1 and S2 are countable, we have 2S1 ⊗ 2S2 = 2S1×S2 .

A discrete probability measure on a set S is a probability measure η on (S, 2S), such that,
for each C ⊂ S, η(C) =

∑
c∈C η({c}). We define Disc(S) and SubDisc(S) to be respectively,

the set of discrete probability and sub-probability measures on S. In the sequel, we often omit
the set notation when we denote the measure of a singleton set. For a discrete probability
measure η on a set S, supp(η) denotes the support of η, that is, the set of elements s ∈ S

such that η(s) ̸= 0. Given set S and a subset C ⊂ S, the Dirac measure δC is the discrete
probability measure on S that assigns probability 1 to C. For each element s ∈ S, we note
δs for δ{s}.

If {mi}i∈I is a countable family of measures on (S, FS), and {pi}i∈I is a family of non-
negative values, then the expression

∑
i∈I pimi denotes a measure m on (S, FS) such that,

for each C ∈ FS , m(C) =
∑

i∈I mifi(C). A function f : X → Y is said to be measurable
from (X, FX) → (Y, FY) if the inverse image of each element of FY is an element of FX ,
that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case, given a measure η on (X, FX),
the function f(η) defined on FY by f(η)(C) = η(f−1(C)) for each C ∈ Y is a measure on
(Y, FY) and is called the image measure of η under f .

Let (Q1, 2Q1) and (Q2, 2Q2) be two measurable sets. Let (η2, η2) ∈ Disc(Q1) × Disc(Q2).
Let f : Q1 → Q2. We note η1

f↔ η2 if the following is verified: (1) the restriction f̃ of f to
supp(η1) is a bijection from supp(η1) to supp(η2) and (2) ∀q ∈ supp(η), η(q1) = η2(f(q1)).

DISC 2022

15:4 Dynamic Probabilistic Input Output Automata

3 Probabilistic Signature Input/Output Automata (PSIOA)

This section aims to introduce the first brick of our formalism: the probabilistic signature
input/output automata (PSIOA). A PSIOA A is an automaton that can move from one state
to another through actions. At each state q some actions can be triggered in its signature
sig(A)(q). Such an action leads to a new state with a certain probability. The fact that the
signature can evolve throughout an execution is particularly convenient to model dynamicity.

3.1 PSIOA

We combine the SIOA of [2] with the PIOA of [19]. We use the signature approach from [2]. We
assume the existence of a countable set Autids of unique probabilistic signature input/output
automata (PSIOA) identifiers, an underlying universal set Auts of PSIOA, and a mapping
aut : Autids → Auts. aut(A) is the PSIOA with identifier A. We use “the automaton A”
to mean “the PSIOA with identifier A”. We use the letters A, B, possibly subscripted or
primed, for PSIOA identifiers.

▶ Definition 1 (PSIOA). A PSIOA A = (QA, q̄A, sig(A), DA), where:
QA is a countable set of states, (QA, 2QA) is the state space,
q̄A is the unique start state.
sig(A) : q ∈ QA 7→ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function
that maps each state to a triplet of mutually disjoint countable set of actions, respectively
called input, output and internal actions.
DA ⊂ QA × acts(A) × Disc(QA) is the set of probabilistic discrete transitions where
∀(q, a, η) ∈ DA : a ∈ ŝig(A)(q). If (q, a, η) is an element of DA, we write q

a→ η and
action a is said to be enabled at q. We note enabled(A) : q ∈ QA 7→ enabled(A)(q) where
enabled(A)(q) denotes the set of enabled actions at state q. We also note steps(A) ≜
{(q, a, q′) ∈ QA × acts(A) × QA|∃(q, a, η) ∈ DA, q′ ∈ supp(η)}.

In addition A must satisfy the following conditions:
E1 (input enabling) ∀q ∈ QA, in(A)(q) ⊆ enabled(A)(q).1

T1 (Transition determinism): For every q ∈ QA and a ∈ ŝig(A)(q) there is at most one
η(A,q,a) ∈ Disc(QA), such that (q, a, η(A,q,a)) ∈ DA.

We define ext(A)(q), the external signature of A in state q, to be ext(A)(q) =
(in(A)(q), out(A)(q)). We define loc(A)(q), the local signature of A in state q, to be
loc(A)(q) = (out(A)(q), int(A)(q)). For any signature component, generally, the .̂ operator
yields the union of sets of actions within the signature, e.g., ŝig(A) : q ∈ Q 7→ ŝig(A)(q) =
in(A)(q) ∪ out(A)(q) ∪ int(A)(q). Also we define acts(A) =

⋃
q∈Q ŝig(A)(q), that is acts(A)

is the “universal” set of all actions that A could possibly trigger, in any state.
Later, we will define execution fragments as alternating sequences of states and actions

with classic and natural consistency rules. But a subtlety will appear with the composability
of set of automata at reachable states. Hence, we will define execution fragments after “local
composability” and “probabilistic configuration automata”.

1 Since the signature is dynamic, we can require ŝig(A) = enabled(A)

P. Civit and M. Potop-Butucaru 15:5

3.2 Local composition
The main aim of a formalism of concurrent systems is to compose several automata A =
{A1, ..., An} to capture the idea of an interaction between them and provide guarantees by
composing the guarantees of the different elements of the system. Some syntactical rules
have to be satisfied before defining the composition operation.

▶ Definition 2 (Compatible signatures). Let S = {sigi}i∈I be a set of signatures. Then S is
compatible iff, ∀i, j ∈ I, i ̸= j, where sigi = (ini, outi, inti), sigj = (inj , outj , intj), we have:
1. (ini ∪ outi ∪ inti) ∩ intj = ∅, and 2. outi ∩ outj = ∅.

▶ Definition 3 (Composition of Signatures). Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be
compatible signatures. Then we define their composition Σ×Σ = (in∪ in′ − (out∪out′), out∪
out′, int ∪ int′)2.

Signature composition is clearly commutative and associative. Now we can define the
compatibility of several automata at a state with the compatibility of their attached signatures.
First we define compatibility at a state, and discrete transition for a set of automata for a
particular compatible state.

▶ Definition 4 (Compatibility at a state). Let A = {A1 , ..., An} be a set of PSIOA. A state
of A is an element q = (q1, ..., qn) ∈ QA ≜ QA1 × ... × QAn

. We note q ↾ Ai ≜ qi. We say
A1, ..., An are (or A is) compatible at state q if {sig(A1)(q1), ..., sig(An)(qn)} is a set of
compatible signatures. In this case we note sig(A)(q) ≜ sig(A1)(q1) × ... × sig(An)(qn) as
per definition 3 and we note η(A,q,a) ∈ Disc(QA), s.t. ∀a ∈ ŝig(A)(q), η(A,q,a) = η1 ⊗ ... ⊗ ηn

where ∀j ∈ [1 , n], ηj = η(Aj ,qj ,a) if a ∈ sig(Aj)(qj) and ηj = δqj otherwise. Moreover, we
note steps(A) = {(q, a, q′)|q, q′ ∈ QA, a ∈ sig(A)(q), q′ ∈ supp(η(A,q,a))}. Finally, we note
q̄A = (q̄A1 , ..., q̄An

).

Let us note that an action a shared by two automata becomes an output action and not an
internal action after composition. First, it permits the possibility of further communication
using a. Second, it allows associativity. If this property is counter-intuitive, it is always
possible to use the classic hiding operator that “hides” the output actions transforming them
into internal actions.

▶ Definition 5 (Hiding operator). Let sig = (in, out, int) be a signature and H a set of actions.
We note hide(sig, H) ≜ (in, out \ H, int ∪ (out ∩ H)).

Let A = (QA, q̄A, sig(A), DA) be a PSIOA. Let h : q ∈ QA 7→ h(q) ⊆ out(A)(q). We
note hide(A, h) ≜ (QA, q̄A, sig′(A), DA), where sig′(A) : q ∈ QA 7→ hide(sig(A)(q), h(q)).
Clearly, hide(A, h) is a PSIOA.

4 Probabilistic Configuration Automata

We combine the notion of configuration of [2] with the probabilistic setting of [19]. A
configuration is a set of automata attached with their current states. This will be a very
useful tool to define dynamicity by mapping the state of an automaton of a certain “layer”
to a configuration of automata of lower layer, where the set of automata in the configuration
can dynamically change from on state of the automaton of the upper level to another one.

2 not to be confused with Cartesian product. We keep this notation to stay as close as possible to the
literature.

DISC 2022

15:6 Dynamic Probabilistic Input Output Automata

4.1 Configuration
▶ Definition 6 (Configuration). A configuration is a pair (A, S) where

A = {A1, ..., An} is a finite set of PSIOA identifiers and
S maps each Ak ∈ A to a state of Ak.

In distributed computing, configuration usually refers to the union of states of all the
automata of the “system”. Here, there is a subtlety, since it captures a set of some automata
(A) in their current state (S), but the set of automata of the systems will not be fixed in the
time.

Since, (1) {A ∈ P(Autids)|A is finite} is countable, (2) ∀A ∈ Autids, QA is countable
by definition 1 of PSIOA and (3) the cartesian product of countable sets is a countable set,
we can deduce that the set Qconf of configurations is countable.

▶ Definition 7 (Compatible configuration). A configuration (A, S), with A = {A1, ..., An}, is
compatible iff the set A is compatible at state (S(A1), ..., S(An)) as per definition 4.

▶ Definition 8 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible
configuration. Then we define

auts(C) = A represents the automata of the configuration,
map(C) = S maps each automaton of the configuration with its current state,
TS(C) = (S(A1), ..., S(An)) yields the tuple of states of the automata of the configuration.
sig(C) = (in(C), out(C), int(C)) = sig(auts(C), TS(C)) in the sense of definition 4, is
called the intrinsic signature of the configuration

Here we define a reduced configuration as a configuration deprived of the automata
that are in the very particular state where their current signatures are the empty set. This
mechanism will be used later to capture the idea of destruction of an automaton.

▶ Definition 9 (Reduced configuration). reduce(C) = (A′, S′), where A′ = {A|A ∈
A and sig(A)(S(A)) ̸= ∅} and S′ is the restriction of S to A′, noted S ↾ A′ in the re-
maining.

A configuration C is a reduced configuration iff C = reduce(C).

We will define some probabilistic transition from configurations to others where some
automata can be destroyed or created. To define it properly, we start by defining “preserving
transition” where no automaton is neither created nor destroyed and then we define above
this definition the notion of configuration transition.

▶ Definition 10 (From preserving distribution to intrinsic transition).
(preserving distribution) Let ηp ∈ Disc(Qconf). We say ηp is a preserving distribution
if it exists a finite set of automata A, called family support of ηp, s.t. ∀(A′, S′) ∈
supp(ηp), A = A′.
(preserving configuration transition C

a
⇀ ηp) Let C = (A, S) be a compatible configuration,

a ∈ ŝig(C). Let ηp be the unique preserving distribution of Disc(Qconf) such that (1)
the family support of ηp is A and (2) ηp

T S↔ η(A,T S(C),a). We say that (C, a, ηp) is a
preserving configuration transition, noted C

a
⇀ ηp.

(ηp ↑ φ) Let ηp ∈ Disc(Qconf) be a preserving distribution with A as family support. Let
φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. Let Cφ = (φ, Sφ) ∈ Qconf with
∀Aj ∈ φ, Sφ(Aj) = q̄Aj

. We note ηp ↑ φ the unique element of Disc(Qconf) verifying
ηp

u↔ (ηp ↑ φ) with u : C ∈ supp(ηp) 7→ (C ∪ Cφ).

P. Civit and M. Potop-Butucaru 15:7

(distribution reduction) Let η ∈ Disc(Qconf). We note reduce(η) the element of
Disc(Qconf) verifying ∀c ∈ Qconf , (reduce(η))(c) = Σ(c′∈supp(η),c=reduce(c′))η(c′)
(intrinsic transition C

a=⇒φ η) Let C = (A, S) be a compatible configuration, let a ∈
ŝig(C), let φ be a finite set of of PSIOA identifiers with A ∩ φ = ∅. We note C

a=⇒φ η,
if η = reduce(ηp ↑ φ) with C

a
⇀ ηp. In this case, we say that η is generated by ηp and φ.

Preserving configuration transition (C, a, ηp) is the intuitive transition for configurations,
corresponding to the transition (TS(C), a, η(auts(C),T S(C),a)). The operator ↑ φ describes the
deterministic creation of automata in φ, who will be appear at their respective start states.
The reduce operator enables to remove “destroyed” automata from the possibly returned
configurations (see Figure 1).

Figure 1 An intrinsic transition where A1 is destroyed deterministically and automata in
φ = {A4, A5} are created deterministically. First, we have the preserving disribution ηp s.t. C

a
⇀ ηp

with ηp
T S↔ η(A,T S(C),a). Second, we take into account the created automata in φ, captured by the

distribution ηp ↑ φ. Third, we remove the automata in a particular state with associated empty
signature (A1 in our example). This is captured by distribution reduce(ηp ↑ φ).

4.2 Probabilistic configuration automata (PCA)
Now we are ready to define our probabilistic configuration automata (see figure 2). Such an
automaton define a strong link with a dynamic configuration.

▶ Definition 11 (Probabilistic Configuration Automaton). A probabilistic configuration auto-
maton (PCA) X consists of the following components:
1. A probabilistic signature I/O automaton psioa(X). For brevity, we define QX =

Qpsioa(X), q̄X = q̄psioa(X), sig(X) = sig(psioa(X)), steps(X) = steps(psioa(X)), and
likewise for all other (sub)components and attributes of psioa(X).

2. A configuration mapping config(X) with domain QX and such that, for all q ∈ QX ,
config(X)(q) is a reduced compatible configuration.

3. For each q ∈ QX , a mapping created(X)(q) with domain sig(X)(q) and such that ∀a ∈
sig(X)(q), created(X)(q)(a) ⊆ Autids with created(X)(q)(a) finite.

4. A hidden-actions mapping hidden-actions(X) with domain QX and such that hidden-
actions(X)(q) ⊆ out(config(X)(q)).

and satisfies the following constraints, for every q ∈ QX , C = config(X)(q), H = hidden-
actions(q).

DISC 2022

15:8 Dynamic Probabilistic Input Output Automata

1. (start states preservation) If config(X)(q̄X) = (A, S), then ∀Ai ∈ A, S(Ai) = q̄Ai
.

2. (top/down transition preservation) If (q, a, η(X,q,a)) ∈ DX , then ∃η′ ∈ Disc(Qconf) s.t.
η(X,q,a)

c↔ η′ with C
a=⇒φ η′, where φ = created(X)(q)(a) and c = config(X).

3. (bottom/up transition preservation) If q ∈ QX and C
a=⇒φ η′ for some action a, φ =

created(X)(q)(a), and reduced compatible probabilistic measure η′ ∈ Disc(Qconf), then
(q, a, η(X,q,a)) ∈ DX , and η(X,q,a)

c↔ η′ where c = config(X).
4. (signature preservation modulo hiding) ∀q ∈ QX , sig(X)(q) = hide(sig(C), H).

This definition, proposed in a deterministic fashion in [2], captures dynamicity of the
system. Each state is linked with a configuration. The set of automata of the configuration
can change during an execution. A sub-automaton A is created from state q by the action
a if A ∈ created(X)(q)(a). A sub-automaton A is destroyed if the non-reduced attached
configuration distribution leads to a configuration where A is in a state qϕ

A s.t. ŝig(A)(qϕ
A) = ∅.

Then the corresponding reduced configuration will not hold A. The last constraint states
that the signature of a state q of X must be the same as the signature of its corresponding
configuration config(X)(q), except for the possible effects of hiding operators, so that some
outputs of config(X)(q) may be internal actions of X in state q.

Figure 2 A PCA life cycle. V is destroyed at step (q2, h, q3), while W is created at step (q3, b, q4).

As for PSIOA, we can define hiding operator applied to PCA.

▶ Definition 12 (Hiding on PCA). Let X be a PCA. Let h : q ∈ QX 7→ h(q) ⊆ out(X)(q).
We note hide(X, h) the PCA X ′ that differs from X only on

psioa(X ′) = hide(psioa(X), h)
sig(X ′) = hide(sig(X), h) and
∀q ∈ QX = QX′ , hidden-actions(X ′)(q) = hidden-actions(X)(q) ∪ h(q).

The notion of local compatibility can be naturally extended to set of PCA.

P. Civit and M. Potop-Butucaru 15:9

▶ Definition 13 (PCA compatible at a state). Let X = {X1, ..., Xn} be a set of PCA. Let
q = (q1, ..., qn) ∈ QX1 × ... × QXn

. Let us note Ci = (Ai, Si) = config(Xi)(qi), ∀i ∈ [1, n].
The PCA in X are compatible at state q iff3:
1. PSIOA compatibility: psioa(X1), ..., psioa(Xn) are compatible at qX.
2. Sub-automaton exclusivity: ∀i, j ∈ [1 : n], i ̸= j : Ai ∩ Aj = ∅.
3. Creation exclusivity: ∀i, j ∈ [1 : n], i ̸= j, ∀a ∈ ŝig(Xi)(qi) ∩ ŝig(Xj)(qj) :

created(Xi)(qi)(a) ∩ created(Xj)(qj)(a) = ∅.

If X is compatible at state q, for every action a ∈ ŝig(psioa(X))(q), we note η(X,q,a) =
η(psioa(X),q,a) and we extend this notation with η(X,q,a) = δq if a /∈ ŝig(psioa(X))(q).

5 Executions, reachable states, partially-compatible automata

In previous sections, we have described how to model probabilistic transitions that might
lead to the creation and destruction of some components of the system. In this section, we
will define pseudo execution fragments of a set of automata to model the run of a set A
of several dynamic systems interacting with each others. With such a definition, we will
kill two birds with one stone, since it will allow to define reachable states of A and then
compatibility of A as compatibility of A at each reachable state.

5.1 Executions, reachable states, traces
▶ Definition 14 (Pseudo execution, reachable states, partial-compatibility). Let A =
{A1, ..., An} be a finite set of PSIOA (resp. PCA). A pseudo execution fragment of A
is a finite or infinite sequence α = q0a1q1a2... of alternating states and actions, such that:
1. If α is finite, it ends with a state. In that case, we note lstate(α) the last state of α.
2. A is compatible at each state of α, with the potential exception of lstate(α) if α is finite.
3. for ever action ai, (qi−1, ai, qi) ∈ steps(A).

The first state of a pseudo execution fragment α is noted fstate(α). A pseudo execution
fragment α of A is a pseudo execution of A if fstate(α) = q̄A. The length |α| of a finite
pseudo execution fragment α is the number of actions in α. A state q of A is said reachable
if there is a pseudo execution α s.t. lstate(α) = q. We note Reachable(A) the set of reachable
states of A. If A is compatible at every reachable state q, A is said partially-compatible.

▶ Definition 15 (Executions, concatenations). Let A be an automaton. An execution fragment
(resp. execution) of A is a pseudo execution fragment (resp. pseudo execution) of {A}. We
use Frags(A) (resp., Frags∗(A)) to denote the set of all (resp., all finite) execution fragments
of A. Execs(A) (resp. Execs∗(A)) denotes the set of all (resp., all finite) executions of A.

We define a concatenation operator ⌢ for execution fragments as follows:
If α = q0 a1 q1 ...anqn ∈ Frags∗(A) and α′ = q0 ′a1 ′q1 ′... ∈ Frags∗(A), we define α⌢α′ ≜
q0a1q1...anqn a1′q1′... only if s0 = qn, otherwise α⌢α′ is undefined. Hence the notation
α⌢α′ implicitly means fstate(α′) = lstate(α). Let α, α′ ∈ Frags(A), then α is a prefix of α′,
noted α ≤ α′, iff ∃α′′ ∈ Frags(A) such that α′ = α⌢α′′.

The trace of an execution α represents its externally visible part, i.e. the external actions.

3 We can remark that the conjunction of PSIOA compatibility and sub-automata exclusivity implies the
compatibility of respective configurations as defined later in definition 19

DISC 2022

15:10 Dynamic Probabilistic Input Output Automata

▶ Definition 16 (Traces). Let A be a PSIOA (resp. PCA). Let q0 ∈ QA, (q, a, q′) ∈ steps(A),
α, α′ ∈ Execs∗(A) × Execs(A) with fstate(α′) = lstate(α).

traceA(q0) is the empty sequence, noted λ,

traceA(qaq′)
{

a if a ∈ êxt(A)(q)
λ otherwise. ,

traceA(α⌢α′) = traceA(α)⌢traceA(α′)
We say that β is a trace of A if ∃α ∈ Execs(A) with β = traceA(α). We note Traces(A)

(resp. Traces∗(A), resp. Tracesω(A)) the set of traces (resp. finite traces, resp. infinite
traces) of A. When the automaton A is understood from context, we write simply trace(α).

The projection of a pseudo-execution α on an automaton Ai, noted α ↾ Ai, represents
the contribution of Ai to this execution.

▶ Definition 17 (Projection). Let A be a set of PSIOA (resp. PCA), let Ai ∈ A. We define
projection operator ↾ recursively as follows: For every (q, a, q′) ∈ steps(A), for every α, α′

being two pseudo executions of A with fstate(α′) = lstate(α).

(q, a, q′) ↾ Ai =
{

(q ↾ Ai), a, (q′ ↾ Ai) if a ∈ ŝig(Ai)(q ↾ Ai)
(q ↾ Ai) = (q′ ↾ Ai) otherwise.

,

(α⌢α′) ↾ Ai = (α ↾ Ai)⌢(α′ ↾ Ai)

5.2 PSIOA and PCA composition
We are ready to define composition operator, the most important operator for concurrent
systems.

▶ Definition 18 (PSIOA partial-composition). If A = {A1, ..., An} is a partially-compatible
set of PSIOA, with Ai = (QAi

, q̄Ai
, sig(Ai), DAi

), then their partial-composition A1||...||An,
is defined to be A = (QA, q̄A, sig(A), DA), where:

QA = Reachable(A)
q̄A = (q̄A1 , ..., q̄An

)
sig(A) : q ∈ QA 7→ sig(A)(q) = sig(A)(q)
DA = {(q, a, η(A,q,a))|q ∈ QA, a ∈ ŝig(A)(q)}

▶ Definition 19 (Union of configurations). Let C1 = (A1, S1) and C2 = (A2, S2) be con-
figurations such that A1 ∩ A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2,
is the configuration C = (A, S) where A = A1 ∪ A2 and S agrees with S1 on A1, and
with S2 on A2. Moreover, if C1 ∪ C2 is a compatible configuration, we say that C1 and
C2 are compatible configurations. It is clear that configuration union is commutative
and associative. Hence, we will freely use the n-ary notation C1 ∪ ... ∪ Cn, whenever
∀i, j ∈ [1 : n], i ̸= j, auts(Ci) ∩ auts(Cj) = ∅.

▶ Definition 20 (PCA partial-composition). If X = {X1, ..., Xn} is a partially-compatible set
of PCA, then their partial-composition X1||...||Xn, is defined to be the automaton X, with
the same components than a PCA, s.t. psioa(X) = psioa(X1)||...||psioa(Xn) and ∀q ∈ QX :

config(X)(q) =
⋃

i∈[1,n] config(Xi)(q ↾ Xi)
∀a ∈ ŝig(X)(q), created(X)(q)(a) =

⋃
i∈[1,n] created(Xi)(q ↾ Xi)(a), with the convention

created(Xi)(qi)(a) = ∅ if a /∈ ŝig(Xi)(qi)
hidden-actions(q) =

⋃
i∈[1,n] hidden-actions(Xi)(q ↾ Xi)

▶ Theorem 21 (PCA closeness under composition). Let X1, ..., Xn, be partially-compatible
PCA. Then X = X1||...||Xn is a PCA.

P. Civit and M. Potop-Butucaru 15:11

6 Scheduler, measure on executions, implementation

An inherent non-determinism appears for concurrent systems. Indeed, after composition (or
even before), it is natural to obtain a state with several enabled actions. The most common
case is the reception of two concurrent messages in flight from two different processes.
This non-determinism must be solved if we want to define a probability measure on the
automata executions and be able to say that a situation is likely to occur or not. To solve
the non-determinism, we use a scheduler that chooses an enabled action from a signature.

6.1 General definition and probabilistic space on execution fragments
A scheduler is hence a function that takes an execution fragment as input and outputs
the probability distribution on the set of transitions that will be triggered. We reuse the
formalism from [19] with the syntax from [3].

▶ Definition 22 (Scheduler). A scheduler of a PSIOA (resp. PCA) A is a function
σ : Frags∗(A) → SubDisc(DA) such that (q, a, η) ∈ supp(σ(α)) implies q = lstate(α).

Here SubDisc(DA) is the set of discrete sub-probability distributions on DA. Loosely speaking,
σ decides (probabilistically) which transition to take after each finite execution fragment α.
Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to
halt after α with non-zero probability: 1 − σ(α)(DA) > 0. We note schedulers(A) the set of
schedulers of A.

▶ Definition 23 (Measure ϵσ,α generated by a scheduler and a fragment). A scheduler σ and a
finite execution fragment α generate a measure ϵσ,α on the sigma-algebra FFrags(A) generated
by cones of execution fragments, where each cone Cα′ is the set of execution fragments that
have α′ as a prefix, i.e. Cα′ = {α ∈ Frags(A)|α′ ≤ α} . The measure of a cone Cα′ is defined
recursively as follows:

ϵσ,α(Cα′) = :

0 if both α′ ≰ α and α ≰ α′

1 if α′ ≤ α

ϵσ,α(Cα′′) · σ(α′′)(η(A,q′,a)) · η(A,q′,a)(q) if α ≤ α′′ and α′ = α′′⌢q′aq

In the remaining part of the paper, we will mainly focus on probabilistic executions of
A of the form ϵσ ≜ ϵσ,δq̄A

= ϵσ,q̄A . Hence, we will deal with probablistic space of the form
(Execs(A), FExecs(A), ϵσ).

Scheduler Schema

Without restriction, a scheduler could become a too powerful adversary for practical ap-
plications. Hence, it is common to only consider a subset of schedulers, called a scheduler
schema. Typically, a classic limitation is often described by a scheduler with “partial online
information”. Some formalism has already been proposed in [19] (section 5.6) to impose the
scheduler that its choices are correlated for executions fragments in the same equivalence
class where both the equivalence relation and the correlation must to be defined. This idea
has been reused and simplified in [4] that defines equivalence classes on actions, called tasks.
Then, a task-scheduler (a.k.a. “off-line” scheduler) selects a sequence of tasks T1, T2, ... in
advance that it cannot modify during the execution of the automaton. After each transition,
the next task Ti triggers an enabled action if there is no ambiguity and is ignored otherwise.
One of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA
creation, is ensured only for a certain scheduler schema, so-called creation-oblivious. However,
we will see that the practical set of task-schedulers are not creation-oblivious.

DISC 2022

15:12 Dynamic Probabilistic Input Output Automata

▶ Definition 24 (Scheduler schema). A scheduler schema is a function that maps every
PSIOA (resp. PCA) A to a subset of schedulers(A).

6.2 Implementation
In last subsection, we defined a measure of probability on executions with the help of a
scheduler to solve non-determinism. Now we can define the notion of implementation. The
intuition behind this notion is the fact that any environment E that would interact with
both A and B, would not be able to distinguish A from B. The classic use-case is to formally
show that a (potentially very sophisticated) algorithm implements a specification.

For us, an environment is simply a partially-compatible automaton, but in practice, he
will play the role of a “distinguisher”.

▶ Definition 25 (Environment). A probabilistic environment for PSIOA A is a PSIOA E
such that A and E are partially-compatible. We note env(A) the set of environments of A.

Now we define perception function which is a function that captures the pieces of
information that could be obtained by an external observer to attempt a distinction.

▶ Definition 26 (Perception function). A perception-function is a function f(.,.) parametrized
by a pair (E , A) of PSIOA (resp. PCA) where E ∈ env(A) s.t.

(Measurability) For every pair (E , A) of PSIOA (resp. PCA) where E ∈ env(A), f(E,A)
is a measurable function from (Execs(E||A), FExecs(E||A)) to some measurable space
(G(E,A), FG(E,A)) that has to be made explicit.
(Stability by composition) For every quadruplet of PSIOA (A1, A2, B, E), s.t. B is partially
compatible with A1 and A2, E ∈ env(B||A1) ∩ env(B||A2), ∀(C1, C2) ∈ FExecs(E||B||A1) ×
FExecs(E||B||A2), f(E||B,A1)(C1) = f(E||B,A2)(C2) =⇒ f(E,B||A1)(C1) = f(E,B||A2)(C2).

The first property is a standard measurability requirement, while the second captures the
fact that an environment E does not have a greater power of distinction than E composed with
another system B. Any reasonable function that captures the perception of an automaton A
by an environment E ∈ env(A) should be a perception function.

▶ Lemma 27. The function trace(.,.) and proj(.,.) s.t. for every PSIOA (resp. PCA)
A, ∀E ∈ env(A), trace(E,A) : α ∈ Execs(E||A) 7→ trace(E||A)(α) and proj(E,A) : α ∈
Execs(E||A) 7→ α ↾ E are perception functions.

Since a perception-function f(.,.) is measurable, we can define the image measure of ϵσ,µ

under f(E,A), i.e. the probability to obtain a certain external perception under a certain
scheduler σ and a certain probability distribution µ on the starting executions.

▶ Definition 28 (f -dist). Let f(.,.) be a perception-function. Let (E , A) be a pair of PSIOA
where E ∈ env(A). Let µ be a probability measure on (Execs(E||A), FExecs(E||A)), and
σ ∈ schedulers(E||A). We define f-dist(E,A)(σ, µ), to be the image measure of ϵσ,µ under
f(E,A) (i.e. the function that maps any C ∈ FG(E,A) to ϵσ,µ(f−1

(E,A)(C))) . We note f-
dist(E,A)(σ) for f -dist(E,A)(σ, δq̄(E||A)).

We can see next definition of f -implementation as the incapacity of an environment to
distinguish two automata if it uses only information filtered by the perception function f .

▶ Definition 29 (f -implementation). Let f(.,.) be an insight-function. Let S be a scheduler
schema. We say that A f -implements B according to S, noted A ≤S,f

0 B, if ∀E ∈ env(A) ∩
env(B), ∀σ ∈ S(E||A), ∃σ′ ∈ S(E||B), f-dist(E,A)(σ) ≡ f-dist(E,B)(σ′), i.e. ∀C ∈ supp(f-
dist(E,A)(σ)) ∪ supp(f -dist(E,B)(σ′)), f -dist(E,A)(σ)(C) = f -dist(E,B)(σ′)(C).

P. Civit and M. Potop-Butucaru 15:13

Figure 3 We say that A implements B if no environment E is able to distinguish A from B, i.e.
∀σA ∈ schedulers(E||A), ∃σB ∈ schedulers(E||B) (linked by pink arrow) s.t. every pair of corres-
ponding classes of equivalence of executions, related to the same perception by the environment (e.g.
(Cζ

A, Cζ
B) in blue for perception ζ) are equiprobable, i.e. f -dist(E,A)(σA)(ζ) = f -dist(E,B)(σB)(ζ).

We can restate classic theorem of (horizontal) substitutability of implementation in a
quite general form.

▶ Theorem 30 (Implementation substitutability). Let f(.,.) be a perception-function. Let S be
a scheduler schema. Let A1, A2, A3, B, B1, B2 be some PSIOA (resp. PCA).

(Composability) If A1 ≤S,f
0 A2 and B is partially compatible with A1 and A2, then

B||A1 ≤S,f
0 B||A2.

(Transitivity) If A1 ≤S,f
0 A2 and A2 ≤S,f

0 A3, then A1 ≤S,f
0 A3.

(Substitutability) If A1 ≤S,f
0 A2, B1 ≤S,f

0 B2, and both B1 and B2 are partially compatible
with both A1 and A2, then A1||B1 ≤S,f

0 A2||B2.

Substitutability constitutes one of the most important properties that an implementation
relation should satisfy, since it allows to reason in a modular way and avoid overwhelming
monolithic proof of correctness.

7 Dynamic vertical substitutability

In previous section, we have stated the classic horizontal substitutability of implementation
relation, which allows us to replace an idealized abstract object by its concrete implementation
without losing hyper-properties. In this section, we informally describe the main result of
this paper: the dynamic vertical substitutability of p-implementation.

Informally, if (1) XA and XB are PCA that differ only on the fact that B supplants
A in XB and (2) ARB for some preorder R implies (3) XARXB, then we say that R is
monotonic w.r.t. PSIOA creation/destruction. Monotonicity of implementation w.r.t. PSIOA
creation/destruction is the main contribution of the paper.

▶ Definition 31 ((Informal) corresponding w.r.t. A, B). Intuitively, XA and XB are cor-
responding w.r.t. A, B if they differ only in that XA dynamically creates and destroys
automaton A instead of creating and destroying automaton B as XB does. Some technical
minor assumptions have to be verified:

DISC 2022

15:14 Dynamic Probabilistic Input Output Automata

XA is A-conservative and XB is B-conservative: Each state of XA (resp. XB) is perfectly
defined by its configuration deprived of sub-automaton A (resp. B) and external actions
of A (resp. B) are not hidden.
XA is A-creation explicit and XB is B-creation explicit: the creation of A and B respect-
ively, are equivalent to the triggering of an action in a dedicated set.
config(XA)(q̄XA)◁AB config(XB)(q̄XB): The associated configuration of respective start
states are identical except that the automaton B supplants A but with the same external
signature.
XA, XB are creation&hiding-corresponding w.r.t. A, B: the two PCA hide some output
actions and create some PSIOA in the same manner, excepting for the creation of B that
supplants the creation of A.
∀K ∈ {A, B}, ∀q ∈ QXK , for every K-exclusive action a at state q, created(XK)(q)(a) =
∅, where a K-exclusive action is an action which is in the signature of sub-automaton K
only.

We would like to state the monotonicy of p-implementation, but it holds only for a certain
class of schedulers, so-called creation-oblivious that does not take past internal behaviours of
sub-automata into account to outputs the next action.

▶ Definition 32 ((Informal) creation-oblivious scheduler). Let Ã be a PSIOA, W̃ be a PCA,
σ̃ ∈ schedulers(W̃). We say that σ̃ is A-creation oblivious if for every triplet (α̃1, α̃2, α̃3)
s.t. (1) lstate(α̃1) = lstate(α̃2) = fstate(α̃3) and (2) α̃1 and α̃2 differ only on A-exclusive
actions and internal states of sub-automaton A, then (3) σ̃(α̃⌢

1 α̃3) = σ̃(α̃⌢
2 α̃3).

Formal definitions of two last concepts are available in the extended version. It is crucial
to limit the power of the scheduler to reduce the measure of a class of comportment as a
function of measures of classes of shorter comportment where no creation of A or B occurs
excepting potentially at very last action. This reduction is more or less necessary to obtain
monotonicity of implementation relation:

▶ Theorem 33 (p-implementation monotonicity). Let A, B ∈ Autids, XA and XB be PCA
corresponding w.r.t. A, B. Let S the schema of creation-oblivious scheduler and p = proj(.,.).
If A ≤S,p

0 B, then XA ≤S,p
0 XB

Proof Sketch. First, we defined the notion of executions-matching to capture the idea that
two automata have the same “comportment” along some corresponding executions. Basically
an executions-matching from a PSIOA A to a PSIOA B is a morphism fex : Execs′

A →
Execs(B) where Execs′

A ⊆ Execs(A) . This morphism preserves some properties along
the pair of matched executions: signature, transition, ... in such a way that for every
pair (α, α′) ∈ Execs(A) × Execs(B) s.t. α′ = fex(α), ϵσ(α) = ϵσ′(α′) for every pair of
schedulers (σ, σ′) (so-called alter ego) that are “very similar” in the sense they take into
account only the “structure” of the argument to return a sub-probability distribution, i.e.
α′ = fex(α) implies σ(α) = σ′(α′). When the executions-matching is a bijection function
from Execs(A) to Execs(B), we say A and B are semantically-equivalent (they differ only
syntactically). Second, we defined the notion of a PCA XA deprived of a PSIOA A, noted
(XA \ {A}). Such an automaton corresponds to the intuition of a similar automaton where A
is systematically removed from the configuration of the original PCA. Thereafter we shew that
under technical minor assumptions XA \ {A} and Ãsw are partially-compatible where Ãsw

and A are semantically equivalent. In fact Ãsw is the simpleton wrapper of A, that is a PCA

P. Civit and M. Potop-Butucaru 15:15

that only owns A in its attached configuration. Then we shew that there is an (incomplete)
execution-matching from XA to (XA \ {A})||Ãsw. The domain of this executions-matching
is the set of executions where A is not (re-)created before very last action. After this, we
always try to reduce any reasoning on XA (resp. XB) on a reasoning on (XA \ {A})||Ãsw

(resp. (XB \ {B})||B̃sw). We shew that, under certain reasonable technical assumptions
(captured in the definition of corresponding PCA w.r.t. A, B), (XA \ {A}) and (XB \ {B})
are semantically-equivalent. We can note Y an arbitrary PCA semantically-equivalent to
(XA \ {A}) and (XB \ {B}) . Finally, a reasoning on E||XA (resp. E||XB) can be reduced
to a reasoning on E ′||Ãsw (resp. E ′||B̃sw) with E ′ = E||Y . Since Ãsw implements B̃sw, we
have already some results on E ′||Ãsw and E ′||B̃sw and so on E||XA and E||XB. However, this
reduction, represented in figure 4, is valid only for the subset of executions without creation of
neither A nor B before very last action. Ideally, we would like to decompose an “aggregated”
class of perception, with arbitrary number of creations/destructions of A (resp. B)), into
“atomic” classes of perception without creation/destruction of A (resp. B)) before last action.
Some technical precautions have to be taken to be allowed to paste these fragments together
to finally say that A implements B implies XA implements XB. In fact, such a pasting is
generally not possible for a fully information online scheduler. This observation motivated
us to introduce the creation-oblivious scheduler, to manipulate independent atomic classes of
perception. We proved monotonicity of external behaviour inclusion for schema of creation
oblivious scheduler. Surprisingly, the fully-offline task-scheduler introduced in [3] (slightly
modified to be adapted to dynamic setting) is not creation-oblivious and so does not allow
monotonicity of implementation. ◀

8 Conclusion

We have extended dynamic I/O Automata formalism of Attie & Lynch [2] to probabilistic
setting in order to cope with emergent distributed systems such as peer-to-peer networks,
robot networks, adhoc networks or blockchains. Our formalism includes operators for parallel
composition, action hiding, action renaming, automaton creation and use a refined definition
of probabilistic configuration automata in order to cope with dynamic actions. The key result
of our framework is as follows: the implementation of probabilistic configuration automata is
monotonic to automata creation and destruction. That is, if systems XA and XB differ only
in that XA dynamically creates and destroys automaton A instead of creating and destroying
automaton B as XB does, and if A implements B (in the sense they cannot be distinguished
by any external observer), then XA implements XB. This results is particularly interesting
in the design and refinement of components and subsystems in isolation. In our construction
we exhibit the need of considering only creation-oblivious schedulers in the implementation
relation, i.e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not
take into account the previous internal behaviour of A to output (randomly) a transition.

As future work we plan to extend the composable secure-emulation of Canetti et al. [5] to
dynamic settings. This extension is necessary for formal verification of protocols combining
probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains,
secure distributed computation, cybersecure distributed protocols etc).

DISC 2022

15:16 Dynamic Probabilistic Input Output Automata

(a) The figure represents successive steps to reduce the problem of an environment E that tries to
distinguish two PCA XA and XB (represented at first column) to a problem of an environment ED that
tries to distinguish the automata A and B (represented at last column).

(b) The figure represents the homomorphism enabling the reduction reasoning, for set of executions that
do not create neither A nor B before last action. For every environment E , For every scheduler σA,
there exists a corresponding scheduler σB (mapped with pink arrow) s.t. for every possible perception
ζ (represented in light blue), the probability to observe ζ is the same for E in each world. There is an
homomorphism µA,+

e (orange arrow) between Ẽ ||XA and E||Ãsw (and similarly for XB and B̃sw) s.t. for
every scheduler σ̃A, alter-ego of σA, the measure of each corresponding perception is preserved. Hence,
for every environment Ẽ , for every scheduler σ̃A, there exists a corresponding scheduler σ̃B s.t. for every
possible perception ζ̃ (represented in dark blue), the probability to observe ζ̃ is the same for Ẽ in each
world.

Figure 4 homomorphism-based-proof.

P. Civit and M. Potop-Butucaru 15:17

References
1 Edward A. Ashcroft. Proving assertions about parallel programs. J. Comput. Syst. Sci.,

10(1):110–135, 1975. doi:10.1016/S0022-0000(75)80018-3.
2 Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal and composi-

tional model for dynamic systems. Inf. Comput., 249:28–75, 2016. doi:10.1016/j.ic.2016.
03.008.

3 Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and
Roberto Segala. Task-Structured Probabilistic {I/O} Automata. Journal of Computer and
System Sciences, 94:63—-97, 2018. doi:10.1016/j.jcss.2017.09.007.

4 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov, Nancy A. Lynch, Olivier
Pereira, and Roberto Segala. Using probabilistic I/O automata to analyze an oblivious transfer
protocol. IACR Cryptol. ePrint Arch., page 452, 2005. URL: http://eprint.iacr.org/2005/
452.

5 Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira.
Compositional security for task-pioas. In 20th IEEE Computer Security Foundations Sym-
posium, CSF 2007, 6-8 July 2007, Venice, Italy, pages 125–139. IEEE Computer Society, 2007.
doi:10.1109/CSF.2007.15.

6 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 777:155–183, 2019. doi:10.1016/j.tcs.2019.02.001.

7 Pierre Civit and Maria Potop-Butucaru. Probabilistic dynamic input output automata
(extended version). Cryptology ePrint Archive, Paper 2021/798, 2021. doi:10.4230/LIPIcs.
DISC.2022.20.

8 Pierre Civit and Maria Potop-Butucaru. Brief announcement: Composable dynamic secure
emulation. In Kunal Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM
Symposium on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA, July 11 -
14, 2022, pages 103–105. ACM, 2022. doi:10.1145/3490148.3538562.

9 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,

3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.
11 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng., 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.
12 Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. A theory of atomic

transactions. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 326 LNCS:41–71, 1988. doi:
10.1007/3-540-50171-1_3.

13 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

14 Rocco De Nicola and Roberto Segala. A process algebraic view of input/output automata.
Theor. Comput. Sci., 138(2):391–423, 1995. doi:10.1016/0304-3975(95)92307-J.

15 Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319–340, 1976. doi:10.1007/BF00268134.

16 C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathem-
atik, Bonn, 1962.

17 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
Wiley series in probability and mathematical statistics. John Wiley & Sons, 1 edition, 1994.

18 Alejandro Ranchal-Pedrosa and Vincent Gramoli. Platypus: Offchain protocol without
synchrony. In Aris Gkoulalas-Divanis, Mirco Marchetti, and Dimiter R. Avresky, editors,
18th IEEE International Symposium on Network Computing and Applications, NCA 2019,
Cambridge, MA, USA, September 26-28, 2019, pages 1–8. IEEE, 2019. doi:10.1109/NCA.
2019.8935037.

19 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusettes Institute of technology, 1995.

DISC 2022

https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.jcss.2017.09.007
http://eprint.iacr.org/2005/452
http://eprint.iacr.org/2005/452
https://doi.org/10.1109/CSF.2007.15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.4230/LIPIcs.DISC.2022.20
https://doi.org/10.4230/LIPIcs.DISC.2022.20
https://doi.org/10.1145/3490148.3538562
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-50171-1_3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(95)92307-J
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/NCA.2019.8935037
https://doi.org/10.1109/NCA.2019.8935037

15:18 Dynamic Probabilistic Input Output Automata

20 Frits W. Vaandrager. On the relationship between process algebra and input/output automata.
In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),
Amsterdam, The Netherlands, July 15-18, 1991, pages 387–398. IEEE Computer Society, 1991.
doi:10.1109/LICS.1991.151662.

21 Kazuki Yoneyama. Formal modeling of random oracle programmability and verification of
signature unforgeability using task-pioas. Int. J. Inf. Sec., 17(1):43–66, 2018. doi:10.1007/
s10207-016-0352-y.

https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1007/s10207-016-0352-y
https://doi.org/10.1007/s10207-016-0352-y

	1 Introduction
	2 Preliminaries on probability and measure
	3 Probabilistic Signature Input/Output Automata (PSIOA)
	3.1 PSIOA
	3.2 Local composition

	4 Probabilistic Configuration Automata
	4.1 Configuration
	4.2 Probabilistic configuration automata (PCA)

	5 Executions, reachable states, partially-compatible automata
	5.1 Executions, reachable states, traces
	5.2 PSIOA and PCA composition

	6 Scheduler, measure on executions, implementation
	6.1 General definition and probabilistic space on execution fragments
	6.2 Implementation

	7 Dynamic vertical substitutability
	8 Conclusion

