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Abstract
Data availability is one of the most important features in distributed storage systems, made possible
by data replication. Nowadays data are generated rapidly and developing efficient, scalable and
reliable storage systems has become one of the major challenges for high performance computing.
In this work, we develop and prove correct a dynamic, robust and strongly consistent distributed
shared memory suitable for handling large objects (such as files) and utilizing erasure coding. We
do so by integrating an Adaptive, Reconfigurable, Atomic memory framework, called Ares, with
the CoBFS framework, which relies on a block fragmentation technique to handle large objects.
With the addition of Ares, we also enable the use of an erasure-coded algorithm to further split the
data and to potentially improve storage efficiency at the replica servers and operation latency. Our
development is complemented with an in-depth experimental evaluation on the Emulab and AWS
EC2 testbeds, illustrating the benefits of our approach, as well as interesting tradeoffs.
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1 Introduction

Motivation and prior work. Distributed Storage Systems (DSS) have gained momentum
in recent years, following the demand for available, accessible, and survivable data storage
[32, 34]. To preserve those properties in a harsh, asynchronous, fail prone environment (as a
distributed system), data are replicated in multiple, often geographically separated devices,
raising the challenge on how to preserve consistency between the replica copies.

For more than two decades, a series of works [11, 26, 19, 15, 18, 23] suggested solutions
for building distributed shared memory emulations, allowing data to be shared concurrently
offering basic memory elements, i.e. registers, with strict consistency guarantees. Linerazibil-
ity (atomicity) [24] is the most challenging, yet intuitive consistency guarantee that such
solutions provide. The problem of keeping copies consistent becomes even more challenging
when failed replica hosts (or servers) need to be replaced or new servers need to be added
in the system. Since the data of a DSS should be accessible immediately, it is imperative
that the service interruption during a failure or a repair should be as short as possible. The
need to be able to modify the set of servers while ensuring service liveness yielded dynamic
solutions and reconfiguration services. Examples of reconfigurable storage algorithms are
RAMBO [22], DynaStore [7], SM-Store [25], SpSnStore [17] and Ares [28].
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Currently, such reconfigurable emulations are limited to small-size, versionless, primitive
objects (like registers), hindering the practicality of the solutions when dealing with larger,
more common DSS objects (like files). Coverability [27] extends linearizability with the
additional guarantee that object writes succeed when associating the written value with the
“current” version of the object. In a different case, a write operation becomes a read operation
and returns the latest version and the associated value of the object. This is essential, for
example, for files. When updating the content of a file, one expects that the update is on the
previous version of the file; linearizable registers do not impose such restriction, i.e., a write
operation might change the value of the object arbitrarily, independently of the previously
written value. A recent work by Anta et al. [8], introduced a modular solution, called CoBFS,
which combines a suitable data fragmentation strategy, implemented as a Fragmentation
module (FM), with a distributed shared memory module (DSMM), to efficiently handle
and boost concurrency of large objects, while maintaining strong consistency guarantees
(coverability and linearizability), and minimizing operation latencies. The fragmentation
strategy enables two (or more) concurrent write operations on different fragments of the
object to both take effect, without violating the consistency of the object as a whole. These
solutions, as well as the one proposed in [16], were designed for the static environment
(fixed set of servers). In this work we study whether it is plausible to bring coverability and
fragmentation to dynamic environments, and how challenging such adaptation would be.

Contributions. This work is the first to consider dynamic (reconfigurable) Distributed
Shared Memory (DSM) tailored for versioned (coverable) and large (fragmentable) objects.
At the same time, we aim to introduce solutions that maximize the concurrency of operations
on the shared object while trading consistency on the whole object. In particular, we propose
a dynamic DSM that: (i) supports versioned objects, (ii) is suitable for large objects (such as
files), and (iii) is storage-efficient. To achieve this, we integrate the dynamic DSM algorithm
Ares [28] with the DSMM module in CoBFS. Ares is the first algorithm that enables
erasure coded based dynamic DSM yielding benefits on the storage efficiency at the replica
hosts. To support versioning we extend Ares to implement coverable objects, while high
access concurrency is preserved by introducing support for fragmented objects. Ultimately,
we aim to make a leap towards dynamic DSS that will be attractive for practical applications
(like highly concurrent and strongly consistent file sharing).
In summary, our contributions are the following:

We propose and prove the correctness of the coverable version of Ares, CoAres, the
first Fault-tolerant, Reconfigurable, Erasure coded, Atomic Memory, to support versioned
objects (Section 4).
We adopt the idea of fragmentation as presented in CoBFS [8], to obtain CoAresF,
which enables CoAres to handle large shared data objects and increased data access
concurrency (Section 5). The correctness of CoAresF is rigorously proven.
To reduce the operational latency of the read/write operations in the DSMM layer, we
apply and prove correct an optimization in the implementation of the erasure coded
data-access primitives (DAP) used by the Ares framework (which includes CoAres and
CoAresF). This optimization has its own interest, as it could be applicable beyond the
Ares framework, i.e., by other erasure coded algorithms relying on tag-ordered DAPs
(Section 6).
We have performed an in-depth experimental evaluation of our approach over both Emulab
and Amazon Web Services (AWS) EC2 (Section 7). Our experiments compare various
versions of our implementation, i.e., with and without the fragmentation technique or
with and without Erasure Code or with and without reconfiguration, illustrating tradeoffs
and synergies.
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We note that although the extension of Ares and its integration with CoBFS might
appear conceptually simple, handling reconfiguration was quite subtle, and proving the
correctness of the integration was non-trivial. Appendix A provides a table comparing our
work with other distributed storage algorithms and systems.

2 Model and Definitions

In this section we present the system setting and define necessary terms we use in the
rest of the manuscript. As mentioned, our main goal is to implement a reconfigurable
strongly consistent shared memory that supports large shared objects and favors high access
concurrency. We assume read/write (R/W) shared objects that support two operations: (i)
a read operation that returns the value of the object, and (ii) a write operation that modifies
the value of the object.

Executions and histories An execution ξ of a distributed algorithm A is an alternating
sequence of states and actions of A reflecting the evolution in real time of the execution. A
history Hξ is the subsequence of the actions in ξ. A history Hξ is sequential if it starts with
an invocation action and each invocation is immediately followed by its matching response;
otherwise, Hξ is concurrent. Finally, Hξ is complete if every invocation in Hξ has a matching
response in Hξ, i.e., each operation in ξ is complete. An operation π1 precedes an operation
π2 (or π2 succeeds π1), denoted by π1→π2, in Hξ, if the response action of π1 precedes the
invocation action of π2 in Hξ. Two operations are concurrent if none precedes the other.

Clients and servers. We consider a system composed of four distinct sets of crash-prone,
asynchronous processes: a set W of writers, a set R of readers, a set G of reconfiguration
clients, and a set S of servers. Let I = W ∪ R ∪ G be the set of clients. Servers host data
elements (replicas or encoded data fragments). Each writer is allowed to modify the value of
a shared object, and each reader is allowed to obtain the value of that object. Reconfiguration
clients attempt to introduce new configuration of servers to the system in order to mask
transient errors and to ensure the longevity of the service. (In our implementations, a client
can perform any operation.)

Configurations. A configuration, c ∈ C, consists of: (i) c.Servers ⊆ S: a set of server identi-
fiers; (ii) c.Quorums: the set of quorums on c.Servers, s.t. ∀Q1, Q2 ∈ c.Quorums, Q1, Q2 ⊆
c.Servers and Q1 ∩ Q2 ̸= ∅; (iii) DAP (c): the set of data access primitives (operations at
level lower than reads or writes) that clients in I may invoke on c.Servers (cf. Section 3);
(iv) c.Con: a consensus instance with the values from C, implemented as a service on top of
the servers in c.Servers; and (v) the pair (c.tag, c.val): the maximum tag-value pair that
clients in I have. A tag consists of a timestamp ts (sequence number) and a writer id; the
timestamp is used for ordering the operations, and the writer id is used to break symmetry
(when two writers attempt to write concurrently using the same timestamp) [22]. We refer
to a server s ∈ c.Servers as a member of configuration c.

Fragmented objects. As defined in [8], a fragmented object is a totally ordered sequence
of block objects. Let F denote the set of fragmented objects, and B the set of block objects.
A block b ∈ B is a concurrent R/W object with a unique id and is associated with two
structures, val and ver: val(b) is composed of a pointer that points to the next block in the
sequence, and the data contained in the block; ver(b) = ⟨wid, bseq⟩, where wid ∈ I is the id
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of a writer and bseq ∈ N is a sequence number (initially 0). A fragmented object f ∈ F is a
sequence of blocks from B, with a value val(f) = ⟨b0, b1, b2, . . .⟩, where each bi ∈ B. Initially,
a fragmented object contains an empty block, i.e., val(f) = ⟨b0⟩ with val(b0) = ε; we refer
to it as the genesis block.

Coverability and Fragmented Coverability. Our goal is to implement fragmented linearizable
coverable objects. Linearizability [24] provides the illusion that a concurent object is accessed
sequentially when in reality is accessed concurrently by multiple processes. Coverability is
defined over a totally ordered set of versions and introduces the notion of versioned objects.
According to [27], a versioned object is a type of R/W object where each value written is
assigned with a version. A coverable object is a versioned object satisfying the properties
consolidation, continuity and evolution.

Intuitively, consolidation specifies that write operations may revise the object with a
version larger than any version modified by a preceding write operation, and may lead to
a version newer than any version introduced by a preceding write operation. Continuity
requires that a write operation may revise a version that was introduced by a preceding write
operation, according to the given total order. Finally, evolution limits the relative increment
on the version of an object that can be introduced by any operation. Their formal definitions
are given in Section 4.

In [27], the notion of a successful and unsuccessful write was introduced. A success-
ful write is denoted as cvr-ω(ver)[ver′, chg]p, which updates the object from version ver

to ver′ (along with the associated values), whereas an unsuccessful write is denoted as
cvr-ω(ver)[ver′, unchg]p (i.e., it becomes a read). Note that in [27], vers were implemented
as tags.

Fragmented linearizable coverability [8] guarantees that concurrent write operations
on different blocks would all prevail (as long as each write is tagged with the latest version
of each block), whereas only one write operation on the same block eventually prevails (all
other concurrent writes operations on the same block would become read operations).Thus,
a fragmented object implementation satisfying this property may lead to higher access
concurrency [8].

3 ARES: A Framework for Dynamic Storage

Ares [28] is a modular framework, designed to implement dynamic, reconfigurable, fault-
tolerant, read/write distributed linearizable (atomic) shared memory objects.

Similar to traditional implementations, Ares uses ⟨tag, value⟩ pairs to order the opera-
tions on a shared object. In contrast to existing solutions, Ares does not define the exact
methodology to access the object replicas. Rather, it relies on three, so called, data access
primitives (DAPs): (i) the get-tag, which returns the tag of an object, (ii) the get-data,
which returns a ⟨tag, value⟩ pair, and (iii) the put-data(⟨τ,v⟩), which accepts a ⟨tag, value⟩
as an argument.

As seen in [28], these DAPs may be used to express the data access strategy (i.e., how
they retrieve and update the object data) of different shared memory algorithms (e.g., [10]).
Using the DAPs, Ares achieves a modular design, agnostic of the data access strategies, and
enables the use of different DAP implementation per configuration (something impossible for
other solutions). For the DAPs to be useful, they need to satisfy a property, referred in [28]
as Property 1, which involves two conditions: (C1) if a put-data(⟨τ,v⟩ precedes a get-data
(or get-tag) operation, then the latter operation returns a value associated with a tag τ ′ ≥ τ,
and (C2) if a get-data returns ⟨τ ′, v′⟩ then there exists put-data(⟨τ ′, v′⟩ that precedes or is
concurrent to the get-data operation. A formal definition appears in [28].
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DAP Implementations. To demonstrate the flexibility that DAPs provide, the authors
in [28], expressed two different atomic shared R/W algorithms in terms of DAPs. These are
the DAPs for the well celebrated ABD [10] algorithm, and the DAPs for an erasure coded
based approach presented for the first time in [28]. In the rest of the manuscript we refer to
the two DAP implementations as ABD-DAP and EC-DAP. An [n, k]-MDS erasure coding
algorithm (e.g., Reed-Solomon [31]) encodes k object fragments into n coded elements, which
consist of the k encoded data fragments and m encoded parity fragments. The n coded
fragments are distributed among a set of n different servers. Any k of the n coded fragments
can then be used to reconstruct the initial object value. As servers maintain a fragment
instead of the whole object value, EC based approaches claim significant storage benefits. By
utilizing the EC-DAP, Ares became the first erasure coded dynamic algorithm to implement
an atomic R/W object.

We now provide a high-level description of the two main functionalities supported by
Ares: (i) the reconfiguration of the servers, and (ii) the read/write operations on the shared
object.

Reconfiguration. Reconfiguration is the process of changing the set of servers. A configu-
ration sequence cseq in Ares is defined as a sequence of pairs ⟨c, status⟩ where c ∈ C, and
status ∈ {P, F} (P stands for pending and F for finalized). Configuration sequences are
constructed and stored in clients, while each server in a configuration c only maintains the
configuration that follows c in a local variable nextC ∈ C ∪ {⊥} × {P, F}.

To perform a reconfiguration operation recon(c), a client r follows 4 steps. At first, r

executes a sequence traversal to discover the latest configuration sequence cseq. Then it
attempts to add ⟨c, P ⟩ at the end of cseq by proposing c to a consensus mechanism. The
outcome of the consensus may be a configuration c′ (possibly different than c) proposed
by some reconfiguration client. Then the client determines the maximum tag-value pair
of the object, say ⟨τ,v⟩ by executing get-data operation and transfers the pair to c′ by
performing put-data(⟨τ,v⟩) on c′. Once the update of the value is complete, the client
finalizes the proposed configuration by setting nextC = ⟨c′, F ⟩ in a quorum of servers of
the last configuration in cseq (or c0 if no other configuration exists). As shown in [28],
this reconfiguration procedure guarantees that configuration sequences obtained by any two
clients cseqp and cseqq, then either cseqp is a prefix of cseqq, or vice versa.

Read/Write operations. A write (or read) operation π by a client p is executed by performing
the following actions: (i) π invokes a read-config action to obtain the latest configuration
sequence cseq, (ii) π invokes a get-tag (if a write) or get-data (if a read) in each configuration,
starting from the last finalized to the last configuration in cseq, and discovers the maximum
τ or ⟨τ, v⟩ pair respectively, and (iii) repeatedly invokes put-data(⟨τ ′, v′⟩), where ⟨τ ′, v′⟩ =
⟨τ +1, v′⟩ if π is a write and ⟨τ ′, v′⟩ = ⟨τ,v⟩ if π is a read in the last configuration in cseq, and
read-config to discover any new configuration, until no additional configuration is observed.

4 COARES: Coverable ARES

In this section we present and analyze the coverable extension of Ares, which we refer to as
CoAres.

Description. Below we describe the modification that need to occur on Ares in order to
support coverability. The reconfiguration protocol and the DAP implementations remain the
same as they are not affected by the application of coverability. The changes occur in the
specification of read/write operations, which we detail below.

DISC 2022
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Read/Write operations. Algorithm 1 specifies the read and write protocols of CoAres.
The blue text annotates the changes when compared to the original Ares read/write protocols.
The local variable flag ∈ {chg, unchg}, maintained by the write clients, is set to chg when
the write operation is successful and to unchg otherwise; initially it is set to unchg. The state
variable version is used by the client to maintain the tag of the coverable object. At first,
in both cvr-read and cvr-write operations, the read/write client issues a read-config action to
obtain the latest introduced configuration; cf. line Alg. 1:14 (resp. line Alg. 1:43).

In the case of cvr-write, the writer wi finds the last finalized entry in cseq, say µ, and
performs a cseq[j].conf.get-data() action, for µ ≤ j ≤ |cseq| (lines Alg. 1:15–18). Thus, wi

retrieves all the ⟨τ, v⟩ pairs from the last finalized configuration and all the pending ones.
Note that in cvr-write, get-data is used in the first phase instead of a get-tag, as the coverable
version needs both the highest tag and value and not only the tag, as in the original write
protocol. Then, the writer computes the maximum ⟨τ, v⟩ pair among all the returned replies.
Lines Alg. 1:19 - 1:24 depict the main difference between the coverable cvr-write and the
original one: if the maximum τ is equal to the state variable version, meaning that the
writer wi has the latest version of the object, it proceeds to update the state of the object
(⟨τ, v⟩) by increasing τ and assigning ⟨τ, v⟩ to ⟨⟨τ.ts + 1, ωi⟩, val⟩, where val is the value it
wishes to write (lines Alg. 1:20–21). Otherwise, the state of the object does not change and
the writer keeps the maximum ⟨τ, v⟩ pair found in the first phase (i.e., the write has become
a read). No matter whether the state changed or not, the writer updates its version with
the value τ (line Alg. 1:24).

Algorithm 1 Write and Read protocols for CoAres.

CVR-Write Operation:
2: at each writer wi

State Variables:
4: cseq[]s.t.cseq[j] ∈ C × {F, P}

version ∈ N+ ×W ∪ {⊥} initially ⟨0,⊥⟩
6: Local Variables:

µ ∈ N+ initially 0, ν ∈ N+ initially 0
8: τ ∈ N+ ×W initially ⟨0, wi⟩

v ∈ V initially ⊥
10: flag ∈ {chg, unchg} initially unchg

Initialization:
12: cseq[0] = ⟨c0, F ⟩

operation cvr-write(val), val ∈ V
14: cseq ←read-config(cseq)

µ← max({i : cseq[i].status = F})
16: ν ← |cseq|

for i = µ : ν do
18: ⟨τ, v⟩ ← max(cseq[i].cfg.get-data(), ⟨τ, v⟩)

if version = τ then
20: flag ← chg

⟨τ, v⟩ ← ⟨⟨τ.ts + 1, ωi⟩, val⟩
22: else

flag ← unchg

24: version← τ
done← false

26: while not done do
cseq[ν].cfg.put-data(⟨τ, v⟩)

28: cseq ←read-config(cseq)
if |cseq| = ν then

30: done← true
else

32: ν ← |cseq|
end while

34: return ⟨τ, v⟩, f lag
end operation

36: CVR-Read Operation:
at each reader ri

38: State Variables:
cseq[]s.t.cseq[j] ∈ C × {F, P}

40: Initialization:
cseq[0] = ⟨c0, F ⟩

42: operation cvr-read( )
cseq ←read-config(cseq)

44: µ← max({j : cseq[j].status = F})
ν ← |cseq|

46: for i = µ : ν do
⟨τ, v⟩ ← max(cseq[i].cfg.get-data(), ⟨τ, v⟩)

48: done← false
while not done do

50: cseq[ν].cfg.put-data(⟨τ, v⟩)
cseq ←read-config(cseq)

52: if |cseq| = ν then
done← true

54: else
ν ← |cseq|

56: end while
return ⟨τ, v⟩

58: end operation
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In the case of cvr-read, the first phase is the same as the original, that is, it discovers the
maximum tag-value pair among the received replies (lines Alg. 1:46–47). The propagation
of ⟨τ, v⟩ in both cvr-write (lines Alg. 1:26–33) and cvr-read (lines Alg. 1:49–56)) remains
the same. Finally, the cvr-write operation returns ⟨τ, v⟩ and the flag, whereas the cvr-read
operation only returns (⟨τ, v⟩).

Correctness of COARES. CoAres is correct if it satisfies liveness (termination) and safety
(i.e., linearizable coverability). Termination holds since read, update and reconfig operations
on the CoAres always complete given that the DAP completes. As shown in [28], Ares
implements a linearizable object given that the DAP used satisfy Property 1. Given that
CoAres uses the same reconfiguration and read operations, while the write operation might
get converted to a read operation, then linearizability is not affected and can be shown that
it holds in a similar way as in [28].

The validity and coverability properties, defined formally below as Definitions 1 and 2,
remain to be examined. In CoAres, we use tags to denote the version of the register. Given
that the DAP (c) used in any configuration c ∈ C satisfies Property 1, we will show that any
execution ξ of CoAres satisfies the properties of Definitions 1 and 2.
Proof challenges: The main challenge is to show that CoAres satisfies the coverability
properties despite any reconfiguration in the system. In particular, we would like to ensure:
(i) new values are not overwritten, i.e., if a write is successfully completed then no subsequent
write successfully writes a value associated with an older version in any active configuration,
(ii) versions are unique, and (iii) eventually a single version path prevails.
Definitions and proofs: In the lemmas that follow, we refer to a successful write operation
as one that is not converted to a read operation. We say that a write operation revises
a version ver of the versioned object to a version ver′, or produces ver′, in an execution
ξ, if cvr-ω(ver)[ver′]pi

completes in Hξ. Let the set of successful write operations on a
history Hξ be defined as Wξ,succ = {π : π = cvr-ω(ver)[ver′]pi

completes in Hξ}. The
set of the object’s versions produced by writes operations in the history Hξ is defined by
Versionsξ ={veri :cvr-ω(ver)[veri]pi

∈Wξ,succ} ∪ {ver0}, where ver0 is the initial version of
the object. Observe that the elements in Versionsξ are totally ordered. Now we present the
validity property which defines explicitly the set of executions that are considered to be valid
executions.

▶ Definition 1 (Validity [27]). An execution ξ (resp. its history Hξ) is a valid execution
(resp. history) on a versioned object, for any pi, pj ∈ I:
1. ∀cvr-ω(ver)[ver′]pi

∈ Wξ,succ, ver < ver′,
2. for any operations cvr-ω(∗)[ver′]pi and cvr-ω(∗)[ver′′]pj in Wξ,succ, ver′ ̸= ver′′, and
3. for each verk ∈ V ersionsξ there is a sequence of versions ver0, ver1, . . . , verk, such that

cvr-ω(veri)[veri+1] ∈ Wξ,succ, for 0 ≤ i < k.

▶ Definition 2 (Coverability [27]). A valid execution ξ is coverable with respect to a total
order <ξ on operations in Wξ,succ if:
1. (Consolidation) If π1 = cvr-ω(∗)[veri], π2 = cvr-ω(verj)[∗] ∈ Wξ,succ, and π1 →Hξ

π2
in Hξ, then veri ≤ verj and π1 <ξ π2.

2. (Continuity) if π2 = cvr-ω(ver)[veri] ∈ Wξ,succ, then there exists π1 ∈ Wξ,succ s.t.
π1 = cvr-ω(∗)[ver] and π1 <ξ π2, or ver = ver0.

3. (Evolution) let ver, ver′, ver′′ ∈ V ersionsξ. If there are sequences of versions
ver′

1, ver′
2, . . . , ver′

k and ver′′
1 , ver′′

2 , . . . , ver′′
ℓ , where ver = ver′

1 = ver′′
1 , ver′

k = ver′,
and ver′′

ℓ = ver′′ such that cvr-ω(ver′
i)[ver′

i+1] ∈ Wξ,succ, for 1 ≤ i < k, and
cvr-ω(ver′′

i )[ver′′
i+1] ∈ Wξ,succ, for 1 ≤ i < ℓ, and k < ℓ, then ver′ < ver′′.
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We proceed with formal statements and proofs. Lemmas 3 to 5 help us show that CoAres
satisfies Validity.

▶ Lemma 3 (Version Increment). In any execution ξ of CoAres, if ω is a successful write
operation, and ver the maximum version it discovered during the get-data operation, then ω

propagates a version ver′ > ver.

Proof. This lemma follows from the fact that CoAres uses a condition before the propagation
phase in line Alg. 1:19. The writer checks if the maximum tag retrieved from the get-data
action is equal to the local version. If that holds, then the writer generates a new version
larger than its local version by incrementing the tag found. ◀

▶ Lemma 4 (Version Uniqueness). In any execution ξ of CoAres, if two write operations ω1
and ω2, write values associated with versions ver1 and ver2 respectively, then ver1 ̸= ver2.

Proof. A tag is composed of an integer timestamp ts and the id of a process wid. Let w1 be
the id of the writer that invoked ω1 and w2 the id of the writer that invoked ω2. To show
whether the versions generated by the two write operations are not equal we need to examine
two cases: (a) both ω1 and ω2 are invoked by the same writer, i.e. w1 = w2, and (b) ω1 and
ω2 are invoked by two different writers, i.e. w1 ̸= w2.
Case a: In this case, the uniqueness of the versions is achieved due to the well-formedness

assumption and the C1 term in Property 1. By well-formdness, writer w1 can only invoke
one operation at a time. Thus, the last put-data(ver1, ∗) of ω1 completes before the first
get-data of ω2.
If both operations are invoked and completed in the same configuration c then by C1,
the version ver′ returned by c.get-data, is ver′ ≥ ver1. Since the version is incremented
in ω2 then ver2 = ver′ + 1 > ver1, and hence ver1 ̸= ver2 as desired.
It remains to examine the case where the put-data was invoked in a configuration c

and the get-data in a configuration c′. Since by well-formedness ω1 → ω2, then by the
sequence prefix guaranteed by the reconfiguration protocol of Ares (second property)
the cseq1 obtained during the read-config action in ω1 is a prefix of the cseq2 obtained
during the same action in ω2. Notice that c′ is the last finalized configuration in cseq2 as
this is the configuration where the first get-data action of ω2 is invoked. If c′ precedes c

in cseq2 then by CoAres the write operation ω2 will invoke a get-data operation in c as
well and with the same reasoning as before will generate a ver2 ̸= ver1. If now c precedes
c′ in cseq2, then it must be the case that a reconfiguration operation r has been invoked
concurrently or after ω2 and added c′. By Ares [28], r, invoked a put-data(ver′) in c′

before finalizing c′ with ver′ ≥ ver1. So when ω2 invokes get-data in c′ by C1 will obtain
a version ver′′ ≥ ver′ ≥ ver1. Hence ver2 > ver′′ and thus ver2 ̸= ver1 as needed.

Case b: When w1 ̸= w2 then ω1 generates a version ver1 = {ts1, w1} and ω2 generates some
version ver2 = {ts2, w2}. Even if ts1 = ts2 the two version differ on the unique id of the
writers and hence ver1 ̸= ver2. This completes the case and the proof. ◀

▶ Lemma 5. Each version we reach in an execution is derived (through a chain of operations)
from the initial version of the register ver0.

Proof. Every tag is generated by extending the tag retrieved by a get-data operation starting
from the initial tag (lines Alg. 1:20–21). In turn, each get-data operation returns a tag
written by a put-data operation or the initial tag (as per C2 in Property 1). Then, applying
a simple induction, we may show that there is a sequence of tags leading from the initial tag
to the tag used by the write operation. ◀
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From this point onward we fix ξ to be a valid execution and Hξ to be its valid history.
We now show coverability (Definition 2).

▶ Lemma 6. In any execution ξ of CoAres, all properties of Definition 2 are satisfied.

Proof. For consolidation we need to show that for two write operations ω1 = cvr-ω(∗)[τ1, chg]
and ω2 = cvr-ω(τ2)[∗, chg], if ω1 →ξ ω2 then τ1 ≤ τ2. According to C1 of Property 1, since
the get-data of ω2 appears after the put-data of ω1, the get-data of ω2 returns a tag higher
than the one written by ω1.

Continuity is preserved as a write operation first invokes a get-data action for the latest
tag before proceeding to put-data to write a new value. According to C2 of Property 1, the
get-data action returns a tag already written by a put-data or the initial tag of the register.

To show that evolution is preserved, we take into account that the version of a register
is given by its tag, where tags are compared lexicographically. A successful write π1 =
cvr-ω(τ)[τ ′] generates a new tag τ ′ from τ such that τ ′.ts = τ.ts + 1 (line Alg. 1:21).
Consider sequences of tags τ1, τ2, . . . , τk and τ ′

1, τ ′
2, . . . , τ ′

ℓ such that τ1 = τ ′
1. Assume that

cvr-ω(τi)[τi+1], for 1 ≤ i < k, and cvr-ω(τ ′
i)[τ ′

i+1], for 1 ≤ i < ℓ, are successful writes. If
τ1.ts = τ ′

1.ts = z, then τk.ts = z + k and τ ′
ℓ.ts = z + ℓ, and if k < ℓ then τk < τ ′

ℓ. ◀

Lemmas 3 to 6 show that CoAres satisfies validity (Def. 1) and coverability (Def. 2):

▶ Theorem 7. CoAres implements a linearizable coverable object, given that the DAPs
implemented in any configuration c satisfy Property 1.

5 COARESF: Integrate COARES with a Fragmentation approach

The work in [8] developed a distributed storage framework, called CoBFS, which utilizes
coverable fragmented objects. In this section we describe how CoAres can be integrated
with CoBFS to obtain what we call CoAresF, thus yielding a dynamic distributed memory
suitable for large objects. Furthermore, this enables to combine the fragmentation approach
of CoBFS with a second level of striping when EC-DAP is used, making storage efficient at
the servers. A particular challenge of this integration is how the fragmentation approach
should invoke reconfiguration operations, since CoBFS in [8] considered only static (non-
reconfigurable) systems. The main challenge of CoAresF, however, was to prove that
the blocks’ sequence of a fragmented object remains connected, despite the existence of
concurrent read/write and reconfiguration operations.

Overview of COBFS. The architecture of CoBFS is shown in Fig. 1 and it is composed
of two main modules: (i) a Fragmentation Module (FM), and (ii) a Distributed Shared
Memory Module (DSMM). In summary, the FM implements the fragmented object, which is
a totally ordered sequence of blocks (where a block is a R/W object with limited value size;
cf. Section 2), while the DSMM implements an interface to a shared memory service that
allows operations on individual block objects. To this respect, CoBFS is flexible enough to
utilize any underlying distributed shared memory implementation.

CoBFS mainly supports two operations, update and read, described next.

Update Operation. The update operation spans both modules, FM and DSMM. The FM
uses a Block Identification (BI) module, which draws ideas from the RSYNC (Remote
Sync) algorithm [33]. The BI includes three main modules, the Block Division, the Block
Matching and Block Updates.
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Figure 1 Basic architecture of CoBFS [8].

1. Block Division: This module splits a given fragmented object f into blocks. (This can be
done, for example, in files, by using rolling hashing, such as rabin fingerprints [30], as
we’ve done in our implementation.)

2. Block Matching: This module is used to find the differences between the new and the old
blocks, yielding four statuses: (i) equality, (ii) modified, (iii) inserted, (iv) deleted. (As
in our implementation, this can be done by using a string matching algorithm [13].)

3. Block Updates: Based on the retrieved statuses, the blocks of the fragmented object are
then written on the DSM using the DSMM as an external service. In the case of equality,
no operation is performed. In the case of modification, an update operation attempts to
write the modified block. If new blocks are inserted after an existing block b, the update

operation first writes the new blocks and then writes b so that the list of blocks remains
connected. Delete is treated as a modification that sets an empty value to a block.

Read Operation. When the system receives a read request from a client, the FM issues, to
the DSMM, a series of read operations on the fragmented object’s blocks, starting from the
genesis block and proceeding to the last block by following the next block ids. As blocks are
retrieved, they are assembled as a fragmented object.

Integration of COARES in COBFS. Integration with the CoBFS is achieved by using
CoAres as the external DSMM service. To accommodate the dynamic nature of CoAres,
we need to introduce the reconfiguration operation in CoAresF as shown next.

Reconfig Operation. The specification of reconfig on the DSMM is given in Alg. 2, while
the specification of reconfig on a fragmented object is given in Alg. 3.

When the system receives a reconfig request from a client, the FM issues a series of
reconfig operations on the fragmented object’s blocks, starting from the genesis block and
proceeding to the last block by following the next block ids (Alg. 3). The reconfig operation
executes the block reconfig operations on the shared memory (Alg. 2) using dsmm-reconfig
operations.

Algorithm 2 DSMM: Reconfig operation on block b at client p.

1: function dsmm-reconfig(c)b,p

2: b.reconfig(c)
3: end function
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Algorithm 3 FM: Reconfig operation on fragmented object f at client p.

1: State Variables:
2: Lf a sequence of blocks, initially ⟨b0⟩;

3: function fm-reconfig(c)f,p

4: b← val(b0).ptr
5: Lf ← ⟨b0⟩

6: while b not NULL do
7: dsmm-reconfig(c)b,p

8: b← val(b).ptr
9: end while

10: end function

Correctness of COARESF. When a reconfig(c) operation is invoked in CoAres, a recon-
figuration client requests to change the configuration of the servers hosting the single R/W
object. By design, each instance of CoAres handles a single R/W object. In the case of a
fragmented object f , each block composing f is handled as a separate atomic object, and
thus assigned to a different Ares instance. Therefore, the main challenge of CoAresF is
to ensure that the sequence composing f remains connected and composed of the most recent
blocks, despite concurrent read/write and reconfig operations. Note that each individual
block may exist in different configurations and be accessed by different DAPs.

In the remainder we show that fragmented coverability (see Section 2) cannot be violated.
Before we prove any lemmas, we first state a claim that follows directly from the algorithm.

▷ Claim 8. For any block b ≠ b0, where b0 the genesis block, created by an update
operation, it is initialized with a configuration sequence cseqb = cseq0, where cseq0 is the
initial configuration.

Notice that we assume that a single quorum remains correct in cseq0 at any point in the
execution. This may change in practical settings by having an external service to maintain
and distribute the latest cseq that will be used in a created block.

We begin with a lemma that states that for any block in the sequence obtained by a read
operation, there is a successful update operation that wrote this block. Its proof follows the
proof of Lemma 4 presented in [9].

▶ Lemma 9. In any execution ξ of CoAresF, if ρ is a read operation on f that returns a
sequence L, then for any block b ∈ L, there exists a successful update operation on f that
either precedes or is concurrent to ρ.

In the following lemma we show that a reconfiguration moves a version of the object
larger than any version written by a preceding write operation to the installed configuration.

▶ Lemma 10. Suppose that ρ is a dsmm-reconfig(c2)b,∗ operation and ω a successful
cvr-write(v)b,∗ operation that changes the version of b to ver, s.t. ω → ρ in an execution ξ

of CoAresF. Then ρ invokes c2.put-data(⟨ver′, ∗⟩) in c2, s.t. ver′ ≥ ver.

Proof. Let cseqω be the last configuration sequence returned by the read-config action at ω

(Alg. 1:28), and cseqρ the configuration sequence returned by the first read-config action at
ρ (see Alg. 2:8 in [28]). By the prefix property of the reconfiguration protocol, cseqω will be
a prefix of cseqρ.

Let cℓ the last configuration in cseqω, and c1 the last finalized configuration in cseqρ.
There are two cases to examine: (i) c1 precedes cℓ in cseqρ, and (ii) c1 appears after cℓ in
cseqρ. If (i) is the case then during the update-config action, ρ will perform a cℓ.get-data()
action. By C1 in Property 1, the cℓ.get-data() will return a version ver′′ ≥ ver. Since the
ρ function will execute c2.put-data(⟨ver′, ∗⟩), s.t. ver′ is the max discovered version, then
ver′ ≥ ver′′ ≥ ver.
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In case (ii) it follows that the reconfiguration operation that proposed c1 has finalized
the configuration. So either that reconfiguration operation moved a version ver′′ of b s.t.
ver′′ ≥ ver in the same way as described in case (i) in c1, or the write operation would
observe c1 during a read-config action. In the latter case c1 will appear in cseqω and ω will
invoke a cℓ.put-data(⟨ver, ∗⟩) s.t. either cℓ = c1 or cℓ a configuration that appears after c1 in
cseqω. Since c1 is the last finalized configuration in cseqρ, then in any of the cases described
ρ will invoke a cℓ.get-data(). Thus, it will discover and put in c2 a version ver′ ≥ ver

completing our proof. ◀

Next we need to show that any sequence returned by any read operation is connected,
despite any reconfiguration operations that may be executed concurrently. This corresponds
to the most challenging part of the integration.

▶ Lemma 11. In any execution ξ of CoAresF, if ρ is a read operation on f that returns
a sequence of blocks L = {b0, b1, . . . , bn}, then it must be the case that (i) b0.ptr = b1, (ii)
bi.ptr = bi+1, for i ∈ [1, n − 1], and (iii) bn.ptr = ⊥.

Proof. Assume by contradiction that there exist some bi ∈ L, s.t. val(bi).ptr ≠ bi+1 (or
val(b0).prt ≠ b1). By Lemma 9, a block bi may appear in the sequence returned by a
read operation only if it was created by a successful update operation π, on block b. Let
B = ⟨b1, . . . , bk⟩ be the set of k − 1 blocks created in π, with bi ∈ B. Let us assume w.l.o.g.
that all those blocks appear in L as written by π (i.e., without any other blocks between any
pair of them).

By the design of the algorithm, π generates a single linked path from b to bk, by pointing
b to b1 and each bj to bj+1, for 1 ≤ j < k. Block bk points to the block pointed by b at
the invocation of π, say b′. So there exists a path b → b1 → . . . → bi that also leads to bi.
According again to the algorithm, bj+1 ∈ B is created and written before bj , for q ≤ j < k.
So when the bj .cvr-write is invoked, the operation bj+1.cvr-write has already been completed,
and thus when b is written successfully all the blocks in the path are written successfully as
well.

By the prefix property of the reconfiguration protocol it follows that for each bj written
by π, ρ will observe a configuration sequence bj .cseqρ, s.t. bj .cseqπ is a prefix of bj .cseqρ,
and hence cπ appears in bj .cseqρ. If cπ appears after the last finalized configuration cℓ in
bj .cseqρ, then the read operation will invoke cπ.get-data() and by the coverability property
and property C1, will obtain a version ver′ ≥ ver. In case cπ precedes cℓ then a new
configuration was invoked after or concurrently to π and then by Lemma 10 it follows that
the version of b in cℓ is again ver′ ≥ ver. So we need to examine the following three cases
for bi: (i) bi is b, (ii) bi is bk, and (iii) bi is one of the blocks bj , for 1 ≤ j < k.

Case (i): If bi is the block b then we should examine whether bi.ptr ̸= b1. Let ver the
version of b written by π and ver′ the version of b as retrieved by ρ. If ver = ver′ then ρ

retrieved the block written by ω as the versions by Lemma 4 are unique. Thus, bi.ptr = b1 in
this case, contradicting our assumption. In case ver′ > ver then there should be a successful
update operation ω′ that written block b with ver′. There are two cases to consider based
on whether ω′ introduced new blocks or not. If not then the b.ptr = b1 contradicting our
assumption. If it introduced a new sequence of blocks {b′

1, . . . , b′
k}, then it should have

written those blocks before writing b. In that case ρ would observe b.ptr = b′
1 and b′

1 would
have been part of L which is not the case as the next block from b in L is b1, leading to
contradiction.



C. Georgiou, N. Nicolaou, and A. Trigeorgi 25:13

Case (ii): This case can be proven in the same way as case (i) for each block bj , for
1 ≤ j < k.

Case (iii): If now bi = bk, then we should examine whether bi.ptr ̸= b′. Since b was pointing
to b′ at the invocation of π then b′ was either (i) created during the update operation that
also created b, or (ii) was created before b. In both cases b′ was written before b. In case (i),
by Lemma 9, the update operation that created b was successful and thus b′ must be created
as well. In case (ii) it follows that b is the last inserted block of an update and is assigned to
point to b′. Since no block is deleted, then b′ remains in L when bi is created and thus bi

points to an existing block. Furthermore, since π was successful, then it successfully written
b and hence only the blocks in B were inserted between b and b′ at the response of π. In
case the version of bi was ver′ and larger than the version written on bk by π then either bk

was not extended and contains new data, or the new block is impossible as L should have
included the blocks extending bk. So b′ must be the next block after bi in L at the response
of π and there is a path between b and b′. This completes the proof. ◀

We conclude with the main result of this section.

▶ Theorem 12. CoAresF implements a linearizable coverable fragmented object.

Proof. By the correctness proof in Section 4 follows that every block operation in CoAresF
satisfies linearizable coverability and together with Lemma 11, which shows the connectivity
of blocks, it follows that CoAresF implements a linearizable coverable fragmented object
satisfying the properties of fragmented linearizable coverability (cf. Section 2). ◀

6 EC-DAP Optimization

In this section, we present an optimization in the implementation of EC-DAP, to reduce
the operational latency of the read/write operations in DSMM layer. We show that this
optimized EC-DAP, which we refer to as EC-DAPopt, satisfies Property 1, and thus can be
used by any algorithm that utilizes the DAPs, like any variant of Ares (e.g., CoAres and
CoAresF).

Description of EC-DAPopt. The main idea of the optimization is to avoid unnecessary
object transmissions between the clients and the servers. Specifically, we apply the following
optimization: in the get-data primitive, each server sends only the tag-value pairs with a
larger or equal tag than the client’s tag. In the case where the client is a reader, it performs
the put-data action (propagation phase), only if the maximum tag is higher than its local
one. EC-DAPopt is presented in Alg. 4 and 5. Text in blue annotates the changed or newly
added code, whereas struck out blue text annotates code that has been removed from the
original implementation.

Following [28], each server si stores a state variable, List, which is a set of up to (δ + 1)
(tag, coded-element) pairs; δ is the maximum number of concurrent put-data operations. In
EC-DAPopt, we need another two state variables, the tag of the configuration (c.tag) and
its associated value (c.val). We now proceed with the details of the optimization. Note that
the c.get-tag() primitive remains the same as the original.

Primitive c.get-data(). A client, during the execution of a c.get-data() primitive, queries
all the servers in c.Servers for their List, and awaits responses from

⌈
n+k

2
⌉

servers. Each
server generates a new list (List′) where it adds every (tag, coded-element) from the List,
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Algorithm 4 EC-DAPopt implementation.

at each process pi ∈ I

2: procedure c.get-data()
send (query-list,c.tag) to each s ∈ c.Servers

4: until pi receives Lists from each server s ∈ Sg

↪→ s.t. |Sg| =
⌈

n+k
2

⌉
and Sg ⊂ c.Servers

6: T ags≥k
∗ = set of tags that appears in k lists

T ags≥k
dec = set of tags that appears in k lists

8: with values
t∗
max ← max T ags≥k

∗
10: tdec

max ← max T ags≥k
dec

if tdec
max = t∗

max then
12: if c.tag = tdec

max then
t← c.tag

14: v ← c.val
return ⟨t, v⟩

16: else if T ags≥k
dec ̸= ⊥ then

t← tdec
max

18: v ← decode value for tdec
max

return ⟨t, v⟩
20: end procedure

procedure c.put-data(⟨τ, v⟩))
22: if τ > c.tag then

code-elems = [(τ, e1), . . . , (τ, en)], ei

24: = Φi(v)
send (PUT-DATA, ⟨τ, ei⟩) to each si

↪→ ∈ c.Servers
26: until pi receives ack from

⌈
n+k

2

⌉
servers in

↪→ c.Servers
c.tag ← τ

28: c.val← v
end procedure

Algorithm 5 The response protocols at any server si ∈ S in EC-DAPopt for client requests.

at each server si ∈ S in configuration ck

2: State Variables:
List ⊆ T × Cs, initially {(t0, Φi(v0))}
Local Variables:
List′ ⊆ T × Cs, initially ⊥

4: Upon receive (query-list, tgb) si, ck from q
for τ, v in List do

6: if τ > tgb then
List′ ← List′ ∪ {⟨τ, ei⟩}

8: else if τ = tgb then
List′ ← List′ ∪ {⟨τ,⊥⟩}

10: Send List′ to q
end receive

12: Upon receive (put-data, ⟨τ, ei⟩) si, ck from q
List← List ∪ {⟨τ, ei⟩}

14: if |List| > δ + 1 then
τmin ← min{t : ⟨t, ∗⟩ ∈ List}

/* remove the coded value */
16: List← List\ {⟨τ, e⟩ : τ = τmin ∧ ⟨τ, e⟩

∈ List}
18: List← List ∪ {(τmin,⊥)}

Send ack to q
20: end receive

if the tag is higher than the c.tag of the client and the (tag, ⊥) if the tag is equal to c.tag;
otherwise it does not add the pair, as the client already has a newer version. Once the client
receives Lists from

⌈
n+k

2
⌉

servers, it selects the highest tag t, such that: (i) its corresponding
value v is decodable from the coded elements in the lists; and (ii) t is the highest tag seen
from the responses of at least k Lists (see lines Alg. 4:8–10) and returns the pair (t, v). Note
that in the case where any of the above conditions is not satisfied, the corresponding read
operation does not complete. The main difference with the original code is that in the case
where variable c.tag is the same as the highest decodable tag (tdec

max), the client already has
the latest decodable version and does not need to decode it again (see line Alg. 4:12).

Primitive c.put-data(⟨tw, v⟩). This primitive is executed only when the incoming tw is
greater than c.tag (line Alg. 4:22). In this case, the client computes the coded elements and
sends the pair (tw, Φi(v)) to each server si ∈ c.Servers. Also, the client has to update its
state (c.tag and c.val). If the condition does not hold, the client does not perform any of the
above, as it already has the latest version, and so the servers are up-to-date. When a server
si receives a message (put-data, tw, ci), it adds the pair in its local List and trims the pairs
with the smallest tags exceeding the length (δ + 1) (see line Alg. 5:17).

Correctness of EC-DAPopt. We prove the following theorem.
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▶ Theorem 13 (Safety + Liveness). EC-DAPopt satisfies both conditions of Property 1, and
given that no more than δ write operations are concurrent with a read they guarantee that
any operation terminates.

The complete proof is given in Appendix B. The main challenge of the proof is to show
that reducing the values returned by the servers does not violate linearizability, and at the
same time, it does not prevent operations from reconstructing the written values, preserving
liveness. We prove safety by showing that EC-DAPopt satisfies both conditions of Property
1. Particularly, we prove that the tag returned by a get-data() operation is larger than or
equal to the tag written by any preceding put-data() operation, and the value returned by a
get-data() operation is either written by a put-data() operation or it is the initial value of
the object. Liveness is proven by showing that any put-data and get-data operation defined
by EC-DAPopt terminates. In the proof, we assume an [n, k] MDS code, |c.Servers| = n

of which no more than n−k
2 may crash, and that δ is the maximum number of put-data

operations concurrent with any get-data operation. Without this assumption on δ, a get-data
operation may not be able to discover a decodable value, and hence fail.

7 Experimental Evaluation

We now overview the experimental evaluation we conducted for evaluating our approach.
Additional results are given in Appendix C. For a more extensive exposition of our experi-
mental evaluation and obtained results, see [20]. The collected data are available in [3], so
one could validate our analysis.

We have implemented and evaluated the following algorithms: (i) CoABD: the cov-
erable version of the static ABD algorithm [27]; (ii) CoABDF: the fragmented version
of CoABD [8]; (iii) CoAresABD: CoAres that uses ABD-DAP; (iv) CoAresABDF:
fragmented CoAresABD; (v) CoAresEC: CoAres that uses EC-DAPopt; and (vi)
CoAresECF: fragmented CoAresEC.

In our implementations, we consider files, as an example of fragmented objects. In this
respect, we view a file as a linked-list of data blocks. Here, the first block, i.e., the genesis
block b0, is a special type of block that contains specific file information (such as the file path).
For the evaluation we generate a text file with random byte strings whose size increases
as the writers keep updating it. However, our implementations support any file type. The
algorithms were evaluated in terms of operational latency and the percentage of successful
file writes.

The experiments were executed on the emulation testbest Emulab [5], and the overlay
testbed Amazon Web Services (AWS) EC2 [12]. On Emulab we used a LAN using a DropTail
queue without delay or packet loss, consisting of physical nodes with one 2.4 GHz 64-bit
Quad Core Xeon E5530 “Nehalem” processor and 12 GB RAM. While on AWS we used a
cluster with 8 nodes of type t2.medium with 4 GB RAM, 2 vCPUs and 20 GB storage. For
each experiment on Emulab we reported the average over five runs, while AWS experiments
run only once.

Performance VS. Initial File Sizes. We varied the fsize from 1 MB to 512 MB by doubling
the file size in each experimental run. The performance of some experiments is missing
as the non-fragmented algorithms crashed when testing larger file sizes due to an out-of-
memory error. For Emulab we used |W| = 5, |R| = 5, |S| = 11, while for AWS we used
|W| = 1, |R| = 1, |S| = 6. Each client in Emulab performs 20 operations and in AWS 50
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operations. We used a stochastic invocation scheme in which clients pick a random time
between the interval [1...3sec] to invoke their next operations.

(a) (b)

Figure 2 Emulab results for File Size experiments.

(a) (b)

Figure 3 AWS results for File Size experiments.

Results. As shown in Fig. 2(a), the fragmented algorithms on Emulab achieve significantly
smaller write latency, since the FM writes only the new and modified blocks. Also, their
success ratio is higher as the file size increases, since the probability of two writes to collide
on a single block decreases. The corresponding AWS findings show similar trends.

As shown in Fig. 2(b), all the fragmented algorithms on Emulab have smaller read latency
than the non-fragmented ones. This happens since the readers in the shared memory level
transmit only the contents of the blocks that have a newer version. On the contrary, the read
latency of CoAres on AWS (Fig. 3(a)) has not improved with the fragmentation strategy.
The CoAresF operations perform at least two additional rounds (compared to CoABDF),
in order to read the configuration before each of the two phases. Thus, when the FM module
sends multiple read block requests, has a significant stable overhead for each block request in
the real network conditions of AWS (Fig. 3(b)).

We can also observe from the Figs. 2(a)-(b), 3(a) that the further increase of the parity
(m) of CoAresEC and CoAresECF algorithms (and thus higher fault-tolerance) the larger
the latency. In addition, the read and write latency of these algorithms when used with
EC-DAP are double than of the ones when our optimized DAP (EC-DAPopt) is used.
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Trade-offs. During the deployment, the main trade-offs we have identified are the following:
Block size of FM. The performance of data striping highly depends on the block size. There

is a trade-off between splitting the object into smaller blocks, for improving the concurrency
in the system, and paying for the cost of sending these blocks in a distributed fashion.
Therefore, it is crucial to discover the “golden” spot with the minimum communication
delays (while having a large block size) that will ensure a small expected probability of
collision (as a parameter of the block size and the delays in the network).

Parity of EC. There is a trade-off between operation latency and fault-tolerance in the
system: the further increase of the parity (and thus higher fault-tolerance) the larger the
latency.

Parameter δ of EC. The value of δ is equal to the number of writers. As a result, as the
number of writers increases, the latency of the first phase of EC also increases, since each
server sends the list with all the concurrent values. In this point, we can understand the
importance of the optimization (EC-DAPopt) in the DSMM layer.

8 Conclusions

In this paper we have presented and rigorously proved correct CoAresF, the first dynamic
distributed shared memory that utilizes coverable fragmented objects and enables the use of
erasure coding. To achieve this, we developed a coverable version of Ares and integrated it
with CoBFS. When CoAresF is used with an (optimized) Erasure Coded DAP we obtain
a two-level striping dynamic and robust distributed shared memory system providing strong
consistency and high access concurrency to large objects (e.g., files). We have complemented
our development with an extensive experimental evaluation over the Emulab and AWS
testbeds. Compared to the approach that does not use the fragmentation layer of CoBFS
(CoAres), CoAresF is optimized with an efficient access to shared data under heavy
concurrency. For future work, we plan to explore how to reduce the overhead of read
operations. In addition, as our service achieves highly scalable performance, it seems suitable
for a P2P environment; any physical node could serve both as a client and a data host.
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A Our and Prior Work: A Comparative Table

Table 1 presents a comparison of the main characteristics of the distributed algorithms
and storage systems. As we can see, systems that use relaxed or eventual consistency have
serious issues when conflicting writes appear. Others guarantee strong consistency but have
centralized components. To our opinion the most appropriate model able to provide high
consistency, concurrency and availability seems to be the Atomic / Linearizability Consistency
model. Some previous attempts, such as LDR [16], were promising, but they seem to suffer
from communication delays and communication overheads since the whole object is still
transmitted in every message exchanged between the clients and the replica servers. Also,
the table shows well-known algorithms for reconfigurable atomic storage.

B Correctness of EC-DAPopt

To prove the correctness of EC-DAPopt, we need to show that it is safe, i.e., it ensures the
necessary Property 1, and live, i.e., it allows each operation to terminate. In the following
proof, we will not refer to the get-tag access primitive that the EC-DAP algorithm uses [28],
as the optimization has no effect on this operation, so it should preserve safety as shown
in [28].

For the following proofs we fix the configuration to c as it suffices that the DAPs preserve
Property 1 in any single configuration. Also we assume an [n, k] MDS code, |c.Servers| = n

of which no more than n−k
2 may crash, and that δ is the maximum number of put-data

operations concurrent with any get-data operation.
We first prove Property 1-C2 as it is later being used to prove Property 1-C1.

▶ Lemma 14 (C2). Let ξ be an execution of an algorithm A that uses the EC-DAPopt.
If ϕ is a c.get-data() that returns ⟨τπ, vπ⟩ ∈ T × V, then there exists π such that π is a
c.put-data(⟨τπ, vπ⟩) and ϕ did not complete before the invocation of π. If no such π exists in
ξ, then (τπ, vπ) is equal to (t0, v0).

Proof. It is clear that the proof of property C2 of EC-DAPopt is identical with that of
EC-DAP. This happens as the initial value of the List variable in each servers s in S is
still {(t0, Φs(vπ))}, and the new tags are still added to the List only via put-data operations.
Thus, each server during a get-data operation includes only written tag-value pairs from the
List to the List′. ◀

▶ Lemma 15 (C1). Let ξ be an execution of an algorithm A that uses the EC-DAPopt.
If ϕ is c.put-data(⟨τϕ, vϕ⟩), for c ∈ C, ⟨τϕ, vϕ⟩ ∈ T × V, and π is c.get-data() that returns
⟨τπ, vπ⟩ ∈ T × V and ϕ → π in ξ, then τπ ≥ τϕ.

Proof. Let pϕ and pπ denote the processes that invoke ϕ and π in ξ. Let Sϕ ⊂ S denote the
set of

⌈
n+k

2
⌉

servers that responds to pϕ, during ϕ, and by Sπ the set of
⌈

n+k
2

⌉
servers that

responds to pπ, during π.
Per Alg. 5:13, every server s ∈ Sϕ, inserts the tag-value pair received in its local List.

Note that once a tag is added to List, its associated tag-value pair will be removed only when
the List exceeds the length (δ + 1) and the tag is the smallest in the List (Alg. 5:14–17).
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Table 1 Comparative table of distributed algorithms and storage systems.

Algorithm/
System

Data
scalability

Data
access
Concurrency

Consistency
guarantees

Versioning Data
Striping

Non-
blocking
Reconfigu-
ration

GFS [21] YES concurrent
appends

relaxed YES YES YES
(short
downtime)

HDFS [6] YES files re-
strict one
writer at a
time

strong
(centralized)

NO YES YES

Cassandra [1] YES YES tunable
(default=
eventual)

YES NO NO

Dropbox [4] YES creates
conflicting
copies

eventual YES YES N/A

Colossus [2] YES concurrent
appends

relaxed YES YES YES

Blobseer [14] YES YES strong
(centralized)

YES YES YES

Tectonic [29] YES files re-
strict one
writer at a
time

strong YES YES YES

CoABD [27] NO YES strong YES NO NO
CoBFS [8] YES YES strong YES YES NO
RAMBO [22] NO NO strong NO NO YES
DynaStore
[7]

NO NO strong NO NO YES

SM-Store
[25]

NO NO strong NO NO YES

SpSnStore [17] NO NO strong NO NO YES
AresABD [28] NO NO strong NO NO YES
AresEC [28] NO NO strong NO YES YES
CoAresABD
[our work]

NO NO strong YES NO YES

CoAresEC
[our work]

NO NO strong YES YES YES

CoAresABDF
[our work]

YES YES strong YES YES YES

CoAresECF

[our work]

YES YES strong YES YES
(2 striping
methods)

YES
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When replying to π, each server in Sπ includes a tag in List′, only if the tag is larger or
equal to the tag associated to the last value decoded by pπ (lines Alg. 5:6–9). Notice that as
|Sϕ| = |Sπ| =

⌈
n+k

2
⌉
, the servers in |Sϕ ∩ Sπ| ≥ k reply to both π and ϕ. So there are two

cases to examine: (a) the pair ⟨τϕ, vϕ⟩ ∈ Lists′ of at least k servers Sϕ ∩ Sπ replied to π, and
(b) the ⟨τϕ, vϕ⟩ appeared in fewer than k servers in Sπ.
Case a: In the first case, since π discovered τϕ in at least k servers it follows by the algorithm

that the value associated with τϕ will be decodable. Hence tdec
max ≥ τϕ and τπ ≥ τϕ.

Case b: In this case τϕ was discovered in less than k servers in Sπ. Let τℓ denote the last
tag returned by pπ. We can break this case in two subcases: (i) τℓ > τϕ, and (ii) τℓ ≤ τϕ.

In case (i), no s ∈ Sπ included τϕ in List′
s before replying to π. By Lemma 14, the

c.put-data(⟨τℓ, ∗⟩) was invoked before the completion of the ∗.get-data() operation from pπ

that returned τℓ. It is also true that pπ discovered ⟨τℓ, ∗⟩ in more than k servers since it
managed to decode the value. Therefore, in this case tdec

max ≥ τℓ and thus τπ > τϕ.
In case (ii), a server s ∈ Sϕ ∩ Sπ will not include τϕ iff |Lists′

s| = δ + 1, and therefore the
local List of s removed τϕ as the smallest tag in the list. According to our assumption though,
no more than δ put-data operations may be concurrent with a get-data operation. Thus, at
least one of the put-data operations that wrote a tag τ ′ ∈ Lists′

s must have completed before
π. Since τ ′ is also written in |S′| = n+k

2 servers then |Sπ ∩ S′| ≥ k and hence π will be able
to decode the value associated to τ ′, and hence tdec

max ≥ τℓ and τπ > τϕ, completing the proof
of this lemma. ◀

▶ Theorem 16 (Safety). Let ξ be an execution of an algorithm A that contains a set Π of
complete get-data and put-data operations of Algorithm 4. Then every pair of operations
ϕ, π ∈ Π satisfy Property 1.

Proof. Follows directly from Lemmas 14 and 15. ◀

Liveness requires that any put-data and get-data operation defined by EC-DAPopt
terminates. The following theorem captures the main result of this section.

▶ Theorem 17 (Liveness). Let ξ be an execution of an algorithm A that utilises the EC-
DAPopt. Then any put-data or get-data operation π invoked in ξ will eventually terminate.

Proof. Given that no more than n−k
2 servers may fail, then from Algorithm 4 (lines Alg. 4:21–

29), it is easy to see that there are at least n+k
2 servers that remain correct and reply to the

put-data operation. Thus, any put-data operation completes.
Now we prove the liveness property of any get-data operation π. Let pω and pπ be

the processes that invoke the put-data operation ω and get-data operation π. Let Sω be
the set of

⌈
n+k

2
⌉

servers that responds to pω, in the put-data operations, in ω. Let Sπ be
the set of

⌈
n+k

2
⌉

servers that responds to pπ during the get-data step of π. Note that in
ξ at the point execution T1, just before the execution of π, none of the write operations
in Λ is complete. Let T2 denote the earliest point of time when pπ receives all the

⌈
n+k

2
⌉

responses. Also, the set Λ includes all the put-data operations that starts before T2 such that
tag(λ) > tag(ω)}. Observe that, by algorithm design, the coded-elements corresponding to
tω are garbage-collected from the List variable of a server only if more than δ higher tags
are introduced by subsequent writes into the server. Since the number of concurrent writes
|Λ|, s.t. δ > |Λ| the corresponding value of tag tω is not garbage collected in ξ, at least until
execution point T2 in any of the servers in Sω. Therefore, during the execution fragment
between the execution points T1 and T2 of the execution ξ, the tag and coded-element pair
is present in the List variable of every server in Sω that is active. As a result, the tag
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(a) (b) (c)

Figure 4 Emulab results for Scalability experiments.

and coded-element pairs, (tω, Φs(vω)) exists in the List received from any s ∈ Sω ∩ Sπ

during operation π. Note that since |Sω| = |Sπ| =
⌈

n+k
2

⌉
hence |Sω ∩ Sπ| ≥ k and hence

tω ∈ Tags≥k
dec, the set of decode-able tag, i.e., the value vω can be decoded by pπ in π, which

demonstrates that Tags≥k
dec ̸= ∅.

Next we want to argue that tdec
max is the maximum tag that π discovers via a contradiction:

we assume a tag tmax, which is the maximum tag π discovers, but it is not decode-able,
i.e., tmax ̸∈ Tags≥k

dec and tmax > tdec
max. Let Sk

π ⊂ S be any subset of k servers that responds
with tmax in their List′ variables to pπ. Note that since k > n/3 hence |Sω ∩ Sk

π| ≥⌈
n+k

2
⌉

+
⌈

n+1
3

⌉
≥ 1, i.e., Sω ∩ Sk

π ̸= ∅. Then tmax must be in some servers in Sω at T2 and
since tmax > tdec

max ≥ tω. Now since |Λ| < δ hence (tmax, Φs(vmax)) cannot be removed from
any server at T2 because there are not enough concurrent write operations (i.e., writes in Λ)
to garbage-collect the coded-elements corresponding to tag tmax. Also since π cannot have a
local tag larger than tmax, according to the lines Alg. 5:6–9 each server in Sπ includes the
tmax in its replies. In that case, tmax must be in Tag≥k

dec, a contradiction. ◀

C Additional Experimental Results

C.1 Performance VS. Scalability of Nodes Under Concurrency

This scenario is constructed to compare the read, write and recon latency of the algorithms,
as the number of service participants increases.

Without Reconfiguration. In both Emulab and AWS, we varied the number of readers |R|
and the number of writers |W| from 5 to 25, while the number of servers |S| varies from 3 to
11. In AWS, the clients and servers are distributed in a round-robin fashion. We calculate all
possible combinations of readers, writers and servers where the number of readers or writers
is kept to 5. In total, each writer performs 20 writes and each reader 20 reads. The size of
the file used is 4 MB. The maximum, minimum and average block sizes were set to 1 MB,
512 kB and 512 kB respectively. To match the fault-tolerance of ABD-based algorithms, we
used a different parity for EC-based algorithms (except in the case of 3 servers to avoid
replication). With this, the EC client has to wait for responses from a larger quorums. The
parity value of the EC-based algorithms is set to m = 1 for |S| = 3, m = 2 for |S| = 5,
m = 3 for |S| = 7, m = 4 for |S| = 9 and m = 5 for |S| = 11.
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Figure 5 Emulab results when Reconfiguring
to the Same DAPs.

Figure 6 Emulab results when Reconfiguring
DAPs Randomly.

Results. The results obtained in this scenario are presented in Fig. 4. As expected,
CoAresEC has the lowest update latency among non-fragmented algorithms because of the
striping level. Each object is divided into k encoded fragments that reduce the communication
latency (since it transfers less data over the network) and the storage utilization. The
fragmented algorithms perform significantly better update latency than the non-fragmented
ones, even when the number of writers increases (see Fig. 4(a)).This is because the non-
fragmented writer updates the whole file, while each fragmented writer updates only a
subset of blocks. We observe that the update operation latency in algorithms CoABD
and CoAresABD increases as the number of servers increases, while the operation latency
of CoAresEC decreases or stays the same (Figs. 4(c)) That is because when increasing
the number of servers, the quorum size grows but the message size decreases. Therefore,
while both non-fragmented ABD-based algorithms and CoAresEC waits for responses the
decreased message size. When going from 7 to 9 servers, we observe a decrease in latency.
This is due the choice of parity value (parameter of EC-based algorithms) that we select
for 7 servers. Due to the block allocation strategy in fragment algorithms, more data are
successfully written (cf. Fig. 4(a), 4(b)), explaining the slower CoAresF read operation (cf.
Figs. 4(b)). The corresponding AWS findings show similar trends.

With Reconfiguration. We built four extra experiments in Emulab to verify the correctness
of the variants of Ares when reconfigurations coexist with read/write operations. The
experiments differ in the way the reconfigurer works; three experiments use |S| = 11
and are based on the way the reconfigurer chooses the next storage algorithm (i.e., two
reconfiguring to the same DAP and one reconfiguring to a random DAP); one in which the
reconfigurer changes the storage algorithm and the quorum of servers. In the latter scenario
the reconfigurer chooses randomly between [3, 5, 7, 9, 11] servers. All experiments run on
CoAres and CoAresF use one reconfigurer.

Results. Due to space limit, we report only one of the experiments (all results can be found
in [20]). As we mentioned earlier, our choice of k minimizes the coded fragment size but
introduces bigger quorums and thus larger communication overhead. As a result, in smaller
file sizes, Ares (either fragmented or not) may not benefit so much from the coding, bringing
the delays of the CoAresEC and CoAresABD closer to each other (cf. Fig. 5). However,
the read latency of CoAresECF is significant lower than of CoAresABDF. This is because
the CoAresECF takes less time to transfer the blocks to the new configuration.
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(a) (b) (c)

Figure 7 AWS results for Min/Avg/Max Block Sizes’ experiments.

C.2 Performance VS. Block Sizes
This scenario evaluates how the block size impacts the latencies when having a rather large
file size. We varied the minimum and average bsizes from 2 MB to 64 MB and the maximum
bsize from 4 MB to 1 GB. In total, each writer performs 20 writes and each reader 20 reads.
The size of the initial file used was set to 512 MB.

Emulab parameters: |W| = 5, |R| = 5, |S| = 11. For EC-based algorithms, m = 1 and the
quorum size is 11. For ABD-based algorithms we used quorums of size 4.

AWS parameters: |W| = 1, |R| = 1, |S| = 6. For EC-based algorithms, m = 1 and the
quorum size is 6. For ABD-based algorithms we used quorums of size 4.

Results. As all examined block sizes are enough to fit the text additions no new blocks are
created. All the algorithms achieve the maximal update latency as the block size gets larger
(Fig 7(a)). CoAresECF has the lower impact as block size increases mainly due to the extra
level of striping. Similar behaviour has the read latency in Emulab. However, in real time
conditions of AWS, the read latency of a higher number of relatively large blocks (Fig. 7(c))
has a significant impact on overall latency, resulting in a larger read latency (Fig. 7(b)).
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