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Abstract
The concept of programmable matter envisions a very large number of tiny and simple robot particles
forming a smart material that can change its physical properties and shape based on the outcome of
computation and movement performed by the individual particles in a concurrent manner. We use
geometric insights to develop a new type of shortest path tree for programmable matter systems.
Our feather trees utilize geometry to allow particles and information to traverse the programmable
matter structure via shortest paths even in the presence of multiple overlapping trees.
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1 Introduction

The concept of programmable matter envisions a very large number of tiny and simple robot
particles forming a smart material that can change its physical properties and shape based
on the outcome of computation and movement performed by the individual particles in
a concurrent manner. We focus on the amoebot model, which was introduced in [2] and
refined in [1]. This model assumes a very small size of the particles and greatly restricts their
computation, communication, and movement capabilities.

In the amoebot model particles occupy nodes of a triangular grid G embedded in the
plane. A particle can occupy one (contracted particle) or two (expanded particle) adjacent
nodes of the grid. The particles have limited computational power due to constant memory
space, no common notion of orientation (disoriented), and no common notion of clockwise or
counter-clockwise order (no consensus on chirality). They are identical (no IDs and they all
execute the same algorithm), but can locally distinguish between their neighbors using six
(for contracted particles) or ten (for expanded particles) port identifiers. Ports are labeled
in order (either clockwise or counterclockwise) modulo six or ten, respectively. Particles
communicate by sending messages to their neighbors using the ports and we assume a particle
knows which of its neighbors ports is pointing to itself.

We call the set of particles and their internal states a particle configuration P. Let GP
be the subgraph of G induced by the nodes occupied by particles in P. We say that P is
connected if there is a path in GP between any two particles in P . A hole in P is an interior
face of GP with more than three vertices. A particle configuration P is simply connected if
it is connected and has no holes.
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2 Shortest path trees

Among the previously proposed primitives for amoebot coordination is the spanning forest
primitive [3] which organizes all particles into trees to facilitate movement while preserving
connectivity. However, the spanning forest primitive does not impose any additional structure
on the resulting spanning trees. We propose a type of shortest path trees, which we call
feather trees, in which the path from any particle p to the root r of the feather tree is not
longer than any unrestricted path from p to r in GP . Feather trees can be constructed
as fast as spanning forests, namely in time linear in the diameter d of GP . They can be
used for the same purposes, but have additional geometric properties that support efficient
communication and movement of particles even in the presence of multiple overlapping trees.

2.1 Feather trees
We construct a feather tree from a root r in the following way. We distinguish between
particles lying on shafts (emanating from the root r or other specific nodes) and branches
(see Fig. 1 (left)). Each particle stores the direction of its parent and whether it is on a
shaft or a branch. The root r chooses a maximum independent set of neighbors Nind ; the set
contains at most three particles and there are at most two ways to choose it. The particles
in Nind form the bases of shafts emanating from r. All other neighbors of r form the bases of
branches emanating from r. Specifically, let particle p be a neighbor of r across port i. The
parent of p is set to i + 3 (recall that arithmetic on ports is modulo six), translated to the
coordinate system of p. Particle p lies on a shaft if it is in Nind , and on a branch otherwise.

A shaft particle with a parent in direction i propagates the shaft straight to the particle
at i + 3, and branches into the two directions at ports i + 2 and i + 4. A branch particle
with a parent in direction i propagates the branch straight to the particle at i + 3.

We say a bend in a path is formed by three consecutive vertices that form a 120◦ angle. By
growing a feather tree according to the rules described so far, we process only particles that
are reachable from r by a path with a single bend. We hence need to extend our construction
around reflex vertices on the boundary of P that lie on branches. Specifically, if a branch
particle p has a parent at direction i, the direction i + 1 (or i − 1) does not contain a particle,
and the direction i + 2 (or i − 2) does contain a particle, then p initiates a growth of a new
shaft in direction i + 2 (or i − 2) (see Fig. 1 (right)). We hence have the following lemma:

▶ Lemma 1. Given a simply connected particle configuration P with diameter d, and a
particle r ∈ P, we can grow a feather tree from r in O(d) rounds.

Figure 1 Two feather trees growing from the dark blue root. Shafts are red and branches are blue.
Left: every particle is reachable by the initial feathers; Right: additional feathers are necessary.
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Every particle is reached by a feather tree exactly once, from one particular direction. Hence,
the feather tree is unique, independent of the activation sequence of the particles. In the
following we describe how to navigate a set of overlapping feather trees. To do so, we first
identify a useful property of shortest paths in feather trees.

We say that a vertex v of GP is an inner vertex, if v and its six neighbors are part of GP .
All other vertices are boundary vertices. We say that a bend is an inner bend if its middle
vertex is an inner vertex; otherwise the bend is a boundary bend.

▶ Definition 2 (Feather Path). A path in GP is a feather path if it does not contain two
consecutive inner bends.

The next lemma follows from the fact that inner bends can occur only on shafts, and any
path must alternate visiting shafts and branches.

▶ Lemma 3. Every path from the root to a leaf in a feather tree is a feather path.

3 Communicating over shortest path trees

Consider a token t traversing a single feather tree F in a network of overlapping feather trees.
Due to their limited memory, particles cannot store the identity of F . Despite that, due to
Lemma 3, particles can propagate tokens down a feather tree by simply counting the number
of inner bends. Thus, when a token is traversing a feather tree F down from the root, it
always reaches a leaf of F via a shortest path through P. In particular, it is always a valid
choice for p to propagate t straight ahead (if feasible). A left or right 120◦ turn is a valid
choice if it is a boundary bend, or if the last bend the token made was a boundary bend.
We cannot control which leaf of F the token t reaches, but it does so without leaving F and
hence along a shortest path. We can also broadcast token t to all leaves of F .

Consider now a node ℓ, which is a leaf of multiple feather trees. A token t starting out at
node ℓ will always reach the root of one of its feather trees along a shortest path. However,
we cannot control which root t reaches. Alternatively, we can broadcast t to all roots of the
trees containing node ℓ. As before, the token t navigates by keeping track of the number of
inner bends. In particular, if t already made one inner bend since its last boundary bend,
then the only valid choice is to continue straight ahead. Otherwise, all three options (straight
ahead or a 120◦ left or right turn) are valid.
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