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—— Abstract

In this brief announcement, we define operation asymmetry, which captures how processes may
interact with an object differently, and discuss its implications in the context of a popular network
communication technology, remote direct memory access (RDMA). Then, we present a novel approach
to mutual exclusion for RDMA-based distributed synchronization under operation asymmetry. Our
approach avoids RDMA loopback for local processes and guarantees starvation-freedom and fairness.
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1 Introduction

In contrast to traditional message-passing, remote direct memory access (RDMA) is a popular
network communication technology that directly implements the shared-memory abstraction
in the distributed setting by allowing a process to access memory on a remote machine
without interacting with another process. These operations are known as one-sided, since
they only involve one process. In addition to reads and writes, RDMA also provides atomic
read-modify-write (RMW) operations on remote memory, like compare-and-swap (CAS) and
fetch-and-add (FAA). Hence, the APT closely resembles that of modern shared-memory.

Also similar to modern architectures, the memory semantics of RDMA is not sequentially
consistent. Since remote operations complete asynchronously, local and remote access to a
given memory location may be reordered. Furthermore, while remote reads and writes are
atomic with their local counterparts due to cache coherent I/O (e.g., Intel’s DDIO), atomicity
between local and remote RMW operations is not guaranteed. Without global atomicity
support (i.e., atomicity among all local and remote operations), all processes must rely on
the RDMA-capable network interface controller (RNIC) for consistency. More precisely, local
processes should use the loopback mechanism, which allows a process to access memory on
its own machine by passing through the RNIC.

In practice, both one-sidled RDMA RMW and message-passing (e.g., RPCs) have their
drawbacks. For the one-sided approach, RDMA loopback is still an order of magnitude slower
than local accesses and introduces internal congestion [2]. While RPCs are prevalent in
RDMA-based systems, in part due to the many challenges associated with synchronizing local
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and remote processes, message-passing can nullify the performance benefits that one-sided
RDMA provides. Thus, a primary motivation for our work is how to balance the needs of
both local and remote processes in the context of one-sided RDMA.

To that end, this brief announcement introduces the concept of operation asymmetry, a
property that captures how processes interact with memory differently, and describes a new
mutual exclusion algorithm designed to capture the nuanced requirements of synchronizing
local and remote processes in RDMA-enabled systems. To the best of our knowledge, we are
the first to solve mutual exclusion specifically for RDMA in a manner that does not require
RDMA loopback or message-passing. Our solution is starvation-free (i.e., a calling process
eventually executes its critical section) and fair (i.e., first-come-first-served).

2  Mutual Exclusion Under Operation Asymmetry

In our system model, processes communicate by accessing local or remote shared memory,
consisting of registers. For each class of access (local/remote), the registers in our system
support three operations: read (Read/rRead), write (Write/rWrite) and compare-and-swap
(CAS/rCAS). Local operations access memory natively while remote operations pass through
the RNIC. An operation on a register is enabled for a process if the process is able to access
the register using the given operation. Intuitively, local accesses are only enabled for local
processes (i.e., on the same machine as the register).

We define an object as operation asymmetric if, given two processes, the intersection of
their respective enabled operations on the object is not equal to their union. Under one-sided
RDMA, registers are operation asymmetric since remote processes cannot perform local
accesses. To demonstrate the consequences of operation asymmetry, recall that the atomicity
of local and remote operations is not guaranteed. Due to this behavior, an RDMA RMW
operation (e.g., TCAS) appears to a local process as if it were a Read then Write. Hence,
local processes must utilize RDMA loopback to ensure atomicity of RMW operations with
remote processes.

When designing a mutual exclusion primitive for RDMA-based systems (without global
atomicity), remote RMW operations provide the necessary atomicity but RDMA loopback
introduces overhead for local processes and network congestion. Therefore in our model, to
avoid local processes using RDMA loopback, we restrict the set of enabled operations for
local processes to only include local operations. However, due to operation asymmetry, any
solution satisfying these constraints can only be built from the greatest common denominator:
atomic read-write registers. Thus, approaches like Peterson’s lock [5] are appropriate.

2.1 Algorithm Description

To implement multi-process synchronization using operation asymmetric registers, we modify
the original (two-process) Peterson’s lock algorithm to embed an orthogonal mutual exclusion
primitive whereby local and remote processes compete amongst themselves for the right to
participate in the Peterson’s lock protocol. To limit the number of remote operations required
for remote processes, we embed the widely used MCS queue lock [3], allowing processes to
spin locally while waiting to acquire the lock. Our combination of locks is an extension
of lock cohorting [1] to an RDMA-enabled distributed system, and we adopt the naming
conventions by calling Peterson’s lock the global lock and the MCS queue locks cohort locks.
In our approach, processes with the same set of enabled operations (local or remote) compete
amongst themselves using their cohort lock to determine a leader that then participates in
the global protocol, relying only on process-wide atomic operations (i.e., read and write).
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The original Peterson’s lock algorithm has two global variables: £lag[2], which is a two
element array of boolean values indicating interest in the critical section, and victim, which
is an integer deciding which process yields execution. We modify the algorithm by replacing
flag with our MCS queue cohort locks.

A process first announces interest in executing its critical section by locking the corre-
sponding (local or remote) cohort lock, effectively raising its flag. If the calling process
acquires the cohort lock from another member of its cohort, it may enter the critical section
without additional steps. Otherwise, the process must engage in the (global) Peterson’s lock
protocol, by setting victim to its own process identifier then waiting while the other cohort
lock is held and victim is not changed. Since Peterson’s lock is constructed from atomic
read-write registers, and local and remote reads and writes are atomic, local operations need
only use local accesses, remote operations use one-sided RDMA, and no RDMA loopback is
necessary. To unlock, a process simply releases its cohort lock, effectively lowering the flag
variable of the original algorithm.

Each cohort lock is specifically designed for the class of processes in the cohort. That is,
there is one for local processes and another for remote processes. Note that MCS queue locks
are particularly well-suited for RDMA since they perform local-spinning, meaning that a
process need not repeatedly access remote memory while waiting for the lock. To implement
fairness, we alter our MCS queue algorithms to support a budget, similar to the technique
used by Dice et al. [1]. Once the budget is exhausted, the detecting process is required to
reacquire the global lock. If there is a waiting process of the opposite cohort, it will be
allowed to proceed. Otherwise, the calling process reacquires the global lock then resets the
budget. Since the global lock is released after a bounded number of cohort lock acquisitions,
and the global lock is itself fair (i.e., a waiting process cannot be overtaken), our approach is
fair [1]. Our technical report [4] includes more details, the pseudo-code, and a model-checked
TLA+ specification of our mutual exclusion primitive.

3 Conclusion

Motivated by our definition of operation asymmetry, we propose a starvation-free and fair
mutual exclusion mechanism for RDMA, enabling local and remote processes to synchronize
while optimizing for their individual behavioral constraints. To the best of our knowledge,
we present the first mutual exclusion solution that synchronizes local and remote processes
while avoiding both RDMA loopback and message-passing.
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