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Preface

Like TIME 2021, the 29th edition of the International Symposium on Temporal Representation
and Reasoning (TIME 2022) will take place online, due to the insecurities caused by the
pandemic. Since its first edition in 1994, the TIME Symposium is quite unique in the
panorama of the scientific conferences as its main goal is to bring together researchers from
distinct research areas involving the management and representation of temporal data as well
as reasoning about temporal aspects of information. Moreover, the TIME Symposium aims
to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for
exchange among researchers from the areas of artificial intelligence, database management,
logic and verification and beyond.

The three traditional tracks of TIME concern:
Time in Artificial Intelligence,
Temporal Databases,
Temporal Logic and Reasoning.

This year the authors of the top-ranked papers will be invited to submit an extended
version of their contribution to a special issue in Information Systems or Information and
Computation.

We received a total of 29 paper submissions representing a wide range of research topics
in the areas of artificial intelligence, databases and theoretical computer science. Submissions
came from Africa, Asia, Australia, Europe and North America. We would like to thank all
the authors of the submitted papers, as they have helped to build a successful TIME 2022
Symposium.

As a result of the review process coordinated by the Program Committee chairs, 12 papers
were selected for full presentation at the symposium. The range of the considered topics
is wide, including, among others, neuro-symbolic reasoning, complex event recognition and
run-time verification. To reach a decision, we discussed the reviews with all three reviewers
assigned to a paper. The accepted papers are very interesting and we are confident that we
will have lively discussions during the symposium.

We are very pleased to include invited talks by leading scholars in our scientific com-
munities: Moshe Y. Vardi (Rice University, USA), Silvia Miksch (TU Vienna, Austria) and
Stijn Vansummeren (University of Hasselt, Belgium). We believe that the invited talks, the
selected papers and their presentations will help to stimulate and improve several research
efforts in the area of temporal representation and reasoning, and motivate members of
under-represented research communities to participate in the TIME Symposia.

We would like to thank all the members of the Program Committee and the additional
reviewers, who spent their time and volunteered their expertise to set up the final program.
We want also to thank Periklis Mantenoglou for his efforts in maintaining the web page of the
symposium. Finally, we would like to acknowledge the generous support of the Department
of Computer Science of the University of Verona, Italy, which supported, among others, the
open access publication of these proceedings.

Alexander Artikis, University of Piraeus & NCSR Demokritos, Greece
Roberto Posenato, University of Verona, Italy
Stefano Tonetta, FBK, Italy

TIME 2022 Program Committee Co-chairs
September 6, 2022
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Linear Temporal Logic: From Infinite to Finite
Horizon
Moshe Y. Vardi Ñ

Rice University, Houston, TX, USA

Abstract
Linear Temporal Logic (LTL), proposed in 1977 by Amir Pnueli for reasoning about ongoing
programs, was defined over infinite traces. The motivation for this was the desire to model arbitrarily
long computations. While this approach has been highly successful in the context of model checking,
it has been less successful in the context of reactive synthesis, due to the chalenging algorithmics of
infinite-horizon temporal synthesis. In this talk we show that focusing on finite-horizon temporal
synthesis offers enough algorithmic advantages to compensate for the loss in expressiveness. In fact,
finite-horizon reasonings is useful even in the context of infinite-horizon applications.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics
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Visual Analytics Meets Temporal Reasoning:
Challenges and Opportunities
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Abstract
Visual Analytics as the science of analytical reasoning facilitated by interactive visual interfaces aims
to enable the exploration and the understanding of large, heterogeneous, and complex data sets.

Time is an important data dimension with distinct characteristics.
Intertwining Visual Analytics with time and temporal reasoning introduces outstanding challenges

and opportunities, which I will illustrate in this talk.
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1 Extended Abstract

Visual Analytics integrates the outstanding capabilities of humans in terms of visual in-
formation exploration with the enormous processing power of computers to form powerful
information and knowledge discovery environments. In other words, Visual Analytics is
the science of analytical reasoning facilitated by interactive interfaces and captures the
information discovery process keeping the human in the loop as well as gaining deeper
insights into huge heterogeneous and complex data sources.

Time is an important data dimension with distinct characteristics. Time is common
across many application domains (e.g., medical records, planning, or project management).
In contrast to other quantitative data dimensions, which are usually “flat”, time has an
inherent semantic structure, which increases time’s complexity substantially. The hierarchical
structure of granularities in time (e.g., minutes, hours, days, weeks, or months), is unlike
that of most other quantitative dimensions. Specifically, time comprises different forms
of divisions (e.g., 60 minutes correspond to one hour, while 24 hours make up one day),
and granularities are combined to form calendar systems (e.g., Gregorian, Julian, business,
or academic calendars). Moreover, time contains natural cycles and re-occurrences, as for
example seasons, but also social (often irregular) cycles, like holidays or school breaks.
Therefore, time-oriented data, i.e., data that are inherently linked to time, need to be treated
differently than other kinds of data and require appropriate visual, interactive, and analytical
methods to explore and analyze them.

In this talk, I will illustrate the concepts of Visualization and Visual Analytics. I will
characterize the dimension of time as well as time-oriented data as well as describe tasks that
users seek to accomplish using temporal Visual Analytics methods. I will address three key
questions: “what” is visualized, “why” is it visualized, and “how” it is visualized. Various
examples will illustrate what has been achieved so far and show possible future directions
and challenges.
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Abstract
In this talk, I will give an overview of our recent work on complex event recognition.
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1 Extended Abstract

Complex Event Recognition (CER for short) refers to the activity of processing high-velocity
streams of primitive events by evaluating queries that detect complex events: collections
of primitive events that satisfy some pattern. In particular, CER queries match incoming
events on the basis of their content; where they occur in the input stream; and how this order
relates to other events in the stream. CER has been successfully applied in diverse domains
such as maritime monitoring, network intrusion detection, industrial control systems and
real-time analytics, among others.

In this talk, I will survey our recent work on developing a formal framework for specifying
and evaluating CER queries. This framework consist of a formal, core query language called
Complex Event Logic (CEL) for specifying CER queries [4]. In contrast to previous proposals,
CEL has a compositional and denotational semantics, and encompasses all operators that
are considered “common base operators” in the literature. Using CEL, we have been able to
get a better understanding of the relative expressiveness of these operators as well as the
impact of common evaluation heuristics such as selection policies [3, 4].

The framework also consists of an automaton-based formal computational model for CEL,
called Complex Event Automata (CEA). Using CEA, we have developed a novel evaluation
algorithm for CEL that exhibits strong performance guarantees: under data complexity, the
algorithm takes only constant time to process each input event [1]. This is in contrast to
existing algorithms that take time proportional to the number of previously processed events,
or the size of a time window. As I will explain, our algorithm processes each event in constant
time by adopting the framework of enumeration-based query evaluation that is receiving
increased attention in the database community [5]. Specifically, it maintains a data structure
from which at any point in time all found complex events may be enumerated with so-called
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output-linear delay. This means that the time required to output a new recognized complex
event C is linear in the size of C, but independent of the number of already processed events
or size of time window, and independent of the number of found complex events.

Our framework is implemented in the CORE complex event recognition engine [2].
CORE’s firm formal foundation allows it to exhibit stable query performance, even for long
sequence queries and large time windows, and outperform existing systems by up to five
orders of magnitude on different workloads [1].

I will discuss the essential ideas behind CORE’s query language and evaluation algorithm,
as well as their limitations, and from these limitations discuss open questions relevant for
the TIME community.
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Abstract
Software systems rely on events for logging, system coordination, handling unexpected situations,
and more. Monitoring events at runtime can ensure that a business service system complies with
policies, regulations, and business rules. Notably, detecting violations of rules as early as possible
is much desired as it allows the system to reclaim resources from erring service enactments. We
formalize a model for events and a logic-based rule language to specify temporal and data constraints.
The primary goal of this paper is to develop techniques for detecting each rule violation as soon as
it becomes inevitable. We further develop optimization techniques to reduce monitoring overhead.
Finally, we implement a monitoring algorithm and experimentally evaluate it to demonstrate our
approach to early violation detection is beneficial and effective for processing service enactments.
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1 Introduction

Events are unorchestrated, asynchronous messages about the states of processes and situations
like action and change. Events are a fundamental component in software systems including
workflow systems, cyber-physical systems, IOT devices, decision support systems, etc., and a
focus of research communities (e.g., [20]). These systems use events to i) identify time-critical
exceptional situations that need attention, and ii) choreograph/orchestrate collaborative
systems [5]. This paper studies a technical problem concerning i).

In runtime monitoring [2,12], system policies for exceptional situations, i.e., violations
of constraints, are specified in a formal language and algorithms monitor events from the
system as they occur to detect and report violations. Violations of system policies can be
divided into two categories depending on when the violation is detected: a violation can
be detected once the system is finished executing or it can be reported when the system’s
execution is not yet finished but as soon as the violation becomes inevitable; we call the
latter early (violation) detection.

We investigate the early detection problem in the context of workflow systems, where
events report execution of activities in a workflow. In this setting, constraints are set
by business rules, organization policies, regulations, and service-level agreements (SLAs)
and specify temporal relationships between events in a workflow enactment, with “gap
constraints” [24] to restrict time gaps between events. Constraints can also reference and
compare data values in events. We call the growing set of events in an enactment a “log”. A
naive monitoring approach would (re)evaluate constraints over the entire log with each arrival
of new events, but this is intractable for large logs, so we evaluate constraints incrementally.

This paper makes the following technical contributions:
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4:2 Early Detection of Temporal Constraint Violations

A technique for calculating the earliest time a violation is inevitable (the “deadline”),
Algorithms and data structures for incrementally maintaining and detecting violations,
along with batch algorithms for processing incoming events,
Optimization techniques for those algorithms, including expiring useless data and improv-
ing batch processing, and
Experimental findings illustrating the benefits and costs of early violation detection.

This paper is organized as follows. Subsection 1.1 discusses related work. Section 2
motivates the early violation detection problem with an example. Section 3 defines the
technical framework. Section 4 presents the key techniques for computing “deadlines”,
maintaining assignments and relationships between them, and detecting violations. Section 5
presents two optimization techniques. Section 6 presents the findings of an experimental
evaluation. Finally, Section 7 concludes the paper.

1.1 Related Work
To identify when a violation is first inevitable, we distinguish between potential violations,
which may or may not remain a violation in the future, and permanent violations, which are
violations in all possible futures. This distinction is formalized for monitoring LTL formulas
in [4], which notes that knowing if a trace satisfies or violates a constraint can be refined
by knowing if the satisfaction or violation is permanent. [18] shows that this distinction
can be monitored for propositional constraints in the Declare language using an encoding
of violation status, i.e., potential or permanent, in states of automata derived from the
constraint language. [22] uses a similar classification of violations (potential violations are
called pending violations). The status of a violation is represented by a fluent in event
calculus (EC) and changes to violations’ status are encoded as EC axioms that initialize and
change fluents. We distinguish potential and permanent violations based on satisfiability
checking for partial initializations of constraint variables. Partial initialization is not a new
technique (e.g., [3, 9]), though [9] does not monitor events with data and neither attempts
early violation detection. Our work is more similar to that of [17], where satisfiability checking
determines if constraints in MP-Declare (a variant of Declare that supports conditions on
data and time) are permanently violated, however we provide an algorithm that calculates
deadlines, rather than offloading the calculation to a solver.

Specifying conditions on data carried by events, such as matching the user opening an order
to the user charged payment, is an important functionality of monitoring constraints [14].
[21] adds data conditions to Declare and the conditions are incorporated into the EC
formalization [22]. Another approach to include data is found in [7, 8], which monitor
FO-LTL and Declare constraints, resp., using automata whose states are augmented with
data stores, and potential and permanent violations are distinguished in the same manner
as [18], but these works assume a fixed, finite domain for data values. Incremental view
maintenance for Datalog offers relevant incremental algorithms. [11] maintains non-recursive
views but does not have any time or inequality constraints; our language allows timestamps
and gap constraints. [23] maintains recursive views; our language assumes a fixed set of
atomic events, which does not allow recursion.

[14] also argues that quantitative time constraints are important for compliance specific-
ation. LTL, Declare, and their metric extensions [3, 17,21,22] can require the gap between
a pair of event timestamps to fall in an interval. Our language gives each event atom
in a constraint a time variable, thus allowing an unbounded number of gap (in)equalities
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and constant offsets between any and all pairs of event timestamps. It is unknown if our
constraints can be translated into LTL, though for a subset of our language, specifically
dataless, “singly-linked” rules, [15, 16] provide a translation.

Controllability is another approach to manage temporal constraints in workflow enact-
ments. [6] and [13] feature propagation of upper and lower bound constraints similar to our
deadline calculation approach, but does not allow comparison of data values in events. [10]
applies explicit time variables to the controllability problem for modular process models.
Enforcing controllability is a design-time solution, however; we make no assumptions about
the control structure of a service in order to afford managers and users maximum flexibility.

2 An Opportunity for Early Violation Detection

We illustrate the problem of detecting violations of business rules for workflows and motivate
an approach based on reasoning about constraints. We sketch an example workflow from
an Infrastructure-as-a-Service (IaaS) provider. Then, we explain how the constraints on the
workflow are evaluated to determine the earliest time violations are permanent.

Consider an IaaS provider that offers high-performance cloud computing rentals. The
service is managed by a workflow with the following activities: the user Requests a machine
through an account and the provider grants Approval to the user. Then, the user Reserves a
machine for their account, makes a Payment with their account and Launches the machine.
The completion of each activity generates an event; events for the same rental instance form
an enactment. Each event has a timestamp, an enactment identifier, and may have additional
data, e.g., a user. We view a set of events as a relational database. Fig. 1 shows a database
S9 at time 9, with eight events from two enactments with ids π1 and π2 . For example, the
first row of the Request table indicates a Request event with enactment id π1 from user Alice
with account a3 at time 1.

Request
ID user account ts

π1 Alice a3 1
π1 Alice a4 3
π2 Bob b6 7

Approval
ID user ts

π1 Alice 6

Reserve
ID user account ts

π1 Alice a4 8
π1 Alice a3 9

Payment
ID user account ts

π1 Alice a3 8
π1 Alice a4 9

Launch
ID user account ts

Figure 1 Database S9 with events from two enactments π1 and π2.

The provider checks each enactment against specified business rules; these may measure
service availability, quality, etc. For example, we use a few rules, including: when a user’s
Request is approved within 7 days and the machine is Reserved within 7 days of Approval by
the same account as the request, the user should make a Payment for the machine through
that account within 3 days of Approval and Launch it within 7 days of Reserve and 4 days of
Payment. In this rule, events generated by either the provider or the user may lead to rule
violation. We write this rule as φ → ψ where φ is the rule body and ψ is the rule head:

Request(u, a)@x,Approval(u)@y, x⩽y⩽x+7,Reserve(u, a)@z, y⩽z⩽ y+7
→ Payment(u, a)@w, Launch(u, a)@v, y⩽w⩽y+3, z⩽v⩽z+7, v⩽w + 4

The core idea of detecting a violation is checking whether each body assignment for the
body variables u, a, x, y, z satisfying φ has a matching head assignment for the head variables
u, a, w, v satisfying ψ. In order to detect violations incrementally, we build assignments that
satisfy the rule’s subformulas. Fig. 2(a) lists the partial and complete assignments for φ

TIME 2022
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Aid ID u a x y z

µ1 π1 Alice a3 1 - -
µ2 π1 Alice a4 3 - -
µ3 π1 Alice - - 6 -
µ4 π1 Alice a3 1 6 - µ1 + µ3
µ5 π1 Alice a4 3 6 - µ2 + µ3
µ6 π2 Bob b6 7 - -
µ7 π1 Alice a4 - - 8
µ8 π1 Alice a4 3 - 8 µ2 + µ7
µ9 π1 Alice a4 - 6 8 µ3 + µ7
µ10 π1 Alice a4 3 6 8 µ2 + µ9
µ11 π1 Alice a3 - - 9
µ12 π1 Alice a3 1 - 9 µ1 + µ11
µ13 π1 Alice a3 - 6 9 µ3 + µ11
µ14 π1 Alice a3 1 6 9 µ4 + µ12

Aid ID u a x y z

µ15 π1 Alice - - 10 -
µ16 π1 Alice a4 3 10 - µ2 + µ15

µ17 π2 Bob - - 10 -
µ18 π2 Bob b6 7 10 - µ6 + µ17

(b) New body assignments added at time 10.

(a) All body assignments at time 9.

Figure 2 Assignments for the rule body φ and events S9 , events S9 ∪{e1, e2}.

and S9 . For example, assignment µ1 is generated by the first row (event) of the Request table.
Assignment µ3 is generated by the first row of the Approval table, and is combined with µ1 to
form µ4. Then, µ10 and µ14 makes φ true.

Suppose two events happen at time 10, e1:Approval(π1, [Alice], 10), e2:Approval(π2, [Bob], 10).
Event e1 generates a partial assignment µ15 , which combines with µ2 into µ16 . Event e2
yields new assignments µ17 and µ18 . Fig. 2(b) lists four assignments generated by e1 and e2.

ψ has six variables u, a, y, z, w, v, but Payment and Launch events only supply values for
the four “event variables” u, a, w, v. We consider assignments for ψ in the same manner as for
φ but ignoring y and z. The Payment events at times 8, 9 (Fig. 1) create partial assignments
β1: [π1 ,Alice, a3, 8, -] and β2: [π1 ,Alice, a4, 9, -].

One interesting problem is to determine when to report rule violations. In Fig. 3, three
events create a potential violation µ10 . It is natural to report this violation when the END of
enactment π1 arrives, after which no more events for π1 will arrive; if µ10 is not extended
by a head assignment by that time, it represents a permanent violation. We aim to detect
violations as soon as they become permanent, which may be well before the END event. Given
the rule’s constraints y⩽w⩽y+3 and z⩽v⩽z+7, and µ10(y) = 6 and µ10(z) = 8, the violation
is known to be permanent at time 9 because no Payment event arrives with a timestamp for
w to extend µ10 . Note also that 9 is the earliest time we can be certain this is a violation.

9 15x=3 y=6 z=8

ID u a x y z
µ10 π1 Alice a4 3 6 8

y⩽w⩽9 (=y + 3)

z⩽v⩽15 (=z + 7)

min(9,15)=9 is the latest time
to extend µ10, the earliest time
µ10 can be permanent

Request(Alice, a4)@3 Approval(Alice)@6 Reserve(Alice, a4)@8

Figure 3 Deadline for extending potential violation µ10.

Fig. 4 shows a Payment event at time 9 that creates the partial assignment β2.
The main focus of this paper is to calculate these earliest times, which we call “deadlines”,

and use them in a monitoring algorithm.
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13 15z=8 w=9

ID u a w z

β2 π1 Alice a4 9 −
v⩽13 (=w + 4)

z⩽v⩽15 (=z + 7)

min(13,15)=13 is the latest
time to extend µ10 ▷◁ β2,
β2 updates the earliest time
µ10 can be permanent

Payment(Alice, a4)@9

Figure 4 Deadline for extending β2 as match for µ10.

3 Rules and the Detection Problem

In this section, we present key notions needed for technical development, including “activities”
in workflows, “events” of activities, “enactments”, “batches”, and “rules”.

Activities are atomic units of work in a workflow. Each activity has a name and a set of
data attributes. An activity’s execution yields an event, which carries values for the data
attributes and a timestamp. We use identifiers I (or simply id’s), for (workflow) enactments;
each event has an identifier from the workflow instance that generated it. We assume a
countably infinite set of timestamps T with a discrete total order and addition of constants.
For technical development, we use natural numbers for timestamps. We also assume a
countably infinite set of (data) values D = {a, b, c, ..., a1, ...} with equality.

▶ Definition. An event of an activity A(c1, ...,cn) is a named tuple A(ξ, ν, τ ) where ξ is an
id from I, ν : {c1, ...,cn} → D is a mapping from A’s attributes to data values, and τ is a
timestamp from T.

An instance of a workflow is a finite set η of events called an enactment, such that (i) each
event has the same enactment id, (ii) η has exactly one special START event that marks its
beginning and of workflow enactments and at most one END event that marks its completion,
(iii) the timestamp of the START event is less than that of all other events in η, and (iv) the
timestamp of the END event, if it occurs, is greater than that of all other events in η. The
rows in Fig. 1 with the same id form an enactment (the START/END events are not shown).

This paper focuses on monitoring enactments as they are updated by new events. Con-
straints to be monitored are specified as “rules”. In the following, we define and illustrate
the notions of a “batch” (new events arriving) and a rule.

▶ Definition. A batch for an enactment η is a finite set ∆ of events such that (i) all events
in ∆ have the same timestamp, denoted as ts∆, greater than the timestamps of all events in
η, (ii) for each event e in ∆, the id of e is the id of η, (iii) ∆ has a START event or η has a
START event, but not both, and (vi) if an END event is in η, no events are in ∆.

Fig. 1 shows events from two enactments of the workflow in the IaaS example. Suppose
that at time 10 exactly two events happened, e1:Approval(π1, [Alice], 10) and e2:Approval(π2,

[Bob], 10). Then {e1} is a batch for π1, {e2} a batch for π2.
We describe a language for specifying rules, starting with atomic formulas. An event

atom is an expression “A(v1, ..., vn)@x” where A(c1, ...,cn) is an activity, v1, ..., vn, x are
variables, where x is a time variable. A gap atom is an expression “x±ϵ θ y” where x, y are
time variables, ϵ (the gap) is a timestamp in T, and θ∈ {<,⩽,⩾, >,=} is an equality or
inequality predicate. We denote the variables in a set of gap atoms φ as var(φ).

▶ Definition. A rule is an expression “φ→ψ” where the body φ and the head ψ are finite
sets of event and gap atoms such that each variable in a gap atom in φ occurs in an event
atom in φ and each variable in a gap atom in ψ occurs in an event atom in φ∪ψ.
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4:6 Early Detection of Temporal Constraint Violations

Rule satisfaction is defined as follows: An assignment is a mapping from variables to values
in D∪T. Time variables take values from T; we use N as timestamps for technical development.
All other variables take values from D. An assignment is complete if it is a total mapping
for the variables in a given set of atoms, partial otherwise. An assignment β extends an
assignment α if α ⊆ β. An enactment η satisfies an event atom A(v1, ..., vn)@x for the activity
A(c1, ...,cn) with a complete assignment µ if A(η.id, {c1 7→ µ(v1), . . . ,cn 7→ µ(vn)}, µ(x))
is an event in η. An assignment satisfies a gap atom with the obvious interpretation.

An enactment η satisfies a set of atoms ϕ with a complete assignment µ if η satisfies every
atom in ϕ with µ. An enactment η satisfies a rule r:φ→ψ if for every complete assignment
µ such that η satisfies φ with µ, there is a complete assignment β that extends µ such that
η satisfies ψ with β.

▶ Example 1. As shown in Fig. 3, the assignment µ10 satisfies φ. Then, to satisfy the
rule w.r.t. µ10, there must be an assignment extending µ that satisfies ψ; i.e., two events
Payment(π1, [Alice, a4], t1) and Launch(π1, [Alice, a4], t2) with 6⩽t1⩽6+3=9, 8⩽t2⩽8+7=15, and
t2⩽t1+4 must happen.

An assignment µ is a potential violation of a rule r:φ→ψ in an enactment η if η satisfies
φ with µ and there is no assignment β that extends µ such that η satisfies ψ with β. A
(permanent) violation µ of a rule r:φ→ψ is a potential violation where for every sequence of
batches of future events ∆1, ...,∆n (where ∆i is a batch for η ∪ (∪j<i∆j) for each 1⩽i⩽n),
µ is a violation of r in η ∪ (∪n

i=1∆i). In the next section, we develop algorithms to identify
when violations become permanent.

4 Techniques for Early Violation Detection

In this section, we develop key techniques for early violation detection. First, we define the
concept of a “deadline” and present an algorithm to calculate deadlines. Next, we define
data structures to store variable assignments and algorithms to create new assignments from
arriving events. Finally, we detail how violations are detected. A monitoring algorithm using
these techniques was implemented and experimentally evaluated in Sec. 6.

We aim to detect permanent violations as early as possible. Since an enactment is
an accumulation of events with increasing timestamps, it may be that a complete body
assignment derived from the current enactment can only be extended at or before a specific
future time called a deadline. We now formulate the notion of a deadline.

▶ Definition. Let Θ be a set of gap atoms over variables x1, ..., xn and µ a (partial) assignment
for variables xi’s. We use defµ for the variables µ assigns a value; µ(Θ) the gap atoms
obtained by replacing each variable x∈ defµ with µ(x), and max(µ) = max{µ(x) |x ∈ defµ}.
A timestamp τ ∈N is the deadline for Θ, x1, ..., xn, µ if (1) τ⩾max(µ), and (2) either µ(Θ)
is unsatisfiable and τ= max(µ) or conditions (i) and (ii) both hold: (i) for each complete
extension µ′ of µ such that µ′(x)>τ for each x /∈ defµ, µ′(Θ) is false, and (ii) there is a
complete extension µ′′ of µ such that µ′′(Θ) is true.

▶ Example 2. In the running example in Section 2, µ10 is created at time 8, where µ10(x)=3,
µ10(y)=6, and µ10(z)=8. As shown in Fig. 3, applying µ10 to the head atoms yields upper
bounds w⩽ 9 (=y+3) and v⩽ 15 (=z+7). From these bounds, it is clear that extensions of
µ10 must have a Payment event whose time variable w is no later than time 9. Thus, the time
9 is a “deadline” for µ10 : the latest time µ10 can be extended w.r.t. w, and the earliest time
µ10 could be recognized as a permanent violation. Fortunately, a Payment event happened
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Algorithm 1 Deadline(Θ, x1, ..., xn, µ).

Input: A set of gap atoms Θ over time variables x1, ..., xn and an assignment µ
Output: A timestamp τ

1: if If µ(Θ) is unsatisfiable then return τ := max(µ);
/∗ max(µ) is the largest timestamp µ assigns to x1, ..., xn∗/

2: Rewrite each atom in µ(Θ) in the form u± k⩽ v;
/∗ u, v either a time variable or in N, k∈Z ∗/

3: Let UpperBd be a map from x1, ..., xn to {∞};
4: for each u± k⩽ v in µ(Θ) with v ∈N and u∈ {x1, ..., xn} do
5: UpperBd(u) := v∓ k ;
6: for |Θ| iterations do
7: for each gap atom u± k⩽ v in µ(Θ) do
8: if UpperBd(v) is finite and UpperBd(u) ± k >UpperBd(v)⩾ 0 then
9: UpperBd(u) := UpperBd(v) ∓ k ;

10: return τ := min{UpperBd(xi) | 1⩽i⩽n}

at time 9, which satisfies w⩽ 9. However, v remains unresolved and thus the subsequent
deadline to extend µ10 is the latest time to observe a value for v: v⩽ 13 (=w+4) and v⩽ 15
(=z+7), so the deadline to extend µ10 is changed to 13.

We compute deadlines with function Deadline (Alg. 1). Deadline determines for each xi

the least τi such that µ(Θ) →xi⩽τi, and the deadline τ is the least of τi’s. First, if µ(Θ)
is unsatisfiable, µ is a violation at the time of its creation, i.e., at its largest timestamp.
Otherwise, an array UpperBd is initialized with constants (Lines 3-5), then tightened with
the initial bounds and the gap atoms in Θ: a gap atom u± k⩽ v indicates UpperBd(v) ∓ k

is an upper bound for u. For each gap atom u± k⩽ v for which UpperBd(v) is defined, we
update UpperBd(u) as max(UpperBd(v) ∓ k,UpperBd(u)) (Lines 7-9).

The Deadline function (Alg. 1) can compute deadlines for complete body assignments and
for complete body assignments with matching partial head assignments. For a complete
body assignment µ and a partial head assignment β, we compute the latest time µ∪β can
be extended. This time is, in fact, the earliest time µ becomes a permanent violation. In
the following lemma, we state a property of deadlines for a complete body assignment and
partial head assignment.

▶ Lemma 3. Let r:φ→ψ be a rule, φg, ψg the gap atoms in φ,ψ (resp.), µ a com-
plete body assignment such that µ(φg) is true, β an incomplete head assignment extend-
ing µ such that β(µ(ψg)) is satisfiable, and U the variables in ψg undefined by β. Let
τ = Deadline(ψg, var(φg∪ψg), µ∪β). The following hold:
1. If τ ∈N, then there is a complete head assignment β′ extending µ∪β such that

min(β′(U))⩽ τ and β′(ψg) is true,
2. If τ ∈N, then for all complete head assignments β′ extending µ∪β such that min(β′(U))>τ ,

β′(ψg) is false, and
3. If τ = ∞, then for all timestamps n in N, there is a complete head assignment β′ extending

µ∪β such that max(β′(U))>n and β′(ψg) is true.

A sketch of the proof is given in Appendix A. The key idea is that for the combined
assignment µ∪β and atoms ψ, either for some time variable z and timestamp τ , µ(β(ψ))∧(z ⩾
τ ′) is unsatisfiable (so τ is a deadline) or no such time variable z and timestamp τ exists (there
is no deadline). Lemma 3 is applied in the following way: for a complete body assignment µ,
we try to extend µ with each partial head assignment β when it is created. For each pair µ
and β, we calculate a deadline using µ, β, and the rule head. According to Lemma 3, the
output of Deadline is the time after which β cannot extend µ.
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The discussions in Section 2 also suggest maintaining partial and complete assignments
for variables. We define three tables bar for body assignments, har for head assignments,
and extr (extensions) to track pairings of body and head assignments. bar and har consist
of the following columns: (i) one column for the assignment identifier (Aid) from I, (ii) one
column for the enactment identifier (id) from I, (iii) one column in bar for each variable in
φ and one column in har for each event variable in ψ (resp.) (a variable in the head ψ is
an event variable if it occurs in an event atom in ψ.) to hold a value from D or T, and (iv)
one column for gap atoms in φ and ψ (resp.) simplified with the assigned values as possible.
Additionally, bar has one more column (v) match? indicating with yes or no the presence or
absence, resp., of a complete head assignment extending the complete body assignment. For
convenience, we refer to rows in these two tables as assignments. extr has three columns: (i)
one column for a body Aid from bar, (ii) one column for a head Aid from har that extends
the row’s body assignment, and (iii) one column for the deadline, calculated using the row’s
assignments and the head gap atoms as inputs for Deadline.

For each enactment η, bar(η) and har(η) store all assignments that can be generated
from η and satisfy φ and ψ (resp.). Specifically, for a rule r:φ→ψ and an enactment η,
bar(η) contains every assignment µ such that for a non-empty subset P of the event atoms
in φ, µ is defined for all variables in P , µ(P ) ⊆ η, and η satisfies all atoms in φ having only
variables in P with µ. har(η) is similar, using ψ instead of φ. Fig. 5(a) shows the assignments
inserted into bar table at time 10 (those from Fig. 2(b)) with columns for gap atoms and the
possibility of matching. extr(η) stores each pair of assignments from bar(η) and har(η),
resp., such that the body assignment can be extended by the head assignment only at or
before the row’s deadline.

Aid u a x y z gap atoms match?

µ10 Alice a4 3 6 8 - No

µ11 Alice a3 - - 9 x⩽y⩽x+7, No
y⩽9⩽y+7

µ12 Alice a3 1 - 9 1⩽y⩽8, No
y⩽9⩽y+7

µ13 Alice a3 - 6 9 x⩽6⩽x+7 No

µ14 Alice a3 1 6 9 - No

(a) Some assignments in bar(π1) (Fig.2(a)) at ts = 9.

Aid u a w v gap atoms

β1 Alice a3 8 - v⩽12

β2 Alice a4 9 - v⩽13

β3 Alice a3 - 12 8⩽w

β4 Alice a3 8 10 -
(b) Some assignments in har(π1) (Fig.2(b)) at ts = 10.

Figure 5 Body and Head Table Examples.

body Aid head Aid deadline
µ10 - 9
µ10 β2 13
µ14 - 9
µ14 β1 12
µ14 β3 12
µ14 β4 -

Figure 6 Extensions of µ10 and µ14 in extr(π1) at ts = 13.

We next present an algorithm called Update to create and combine assignments as batches
of events arrive. This algorithm maintains ba and ha incrementally without accessing
enactments directly; Update (Alg. 2) does not take an enactment as input. This is important
since enactments may be very large.

We now outline the behavior of Update. Given atoms Θ (here, the head of a rule), a
batch ∆, and either bar or har for an enactment η, Lines 2-6 generate assignments from
the events in ∆ and Θ, adding them to the table if they are satisfiable (extendible to
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Algorithm 2 Update(Θ,∆, T (η)).

Input: A set of atoms Θ, a batch ∆, a table T (η) (T is bar or har for enactment η)
Output: Updated table T (η ∪ ∆) for the new enactment η ∪ ∆
1: Γ := T (η) ;
2: for each event e ∈ ∆ do
3: for each event atom γ in Θ with the same activity as e do
4: Create a (partial) assignment µ from e, γ such that µ(γ) = e ;
5: if µ(Θ) is satisfiable then
6: Add to Γ the row s = ⟨a, e.id, µ(v1), ..., µ(vn),b, (no)⟩,

where a is a fresh assignment identifier, v1, ..., vn are the event variables
in Θ, and b the gap atoms in Θ, evaluated and simplified under µ;

7: while Γ changes do
8: for each pair of unique and consistent rows µ1 and µ2 in T do
9: µ := merge(µ1, µ2) ; /∗ consistent, merge explained in the text ∗/

10: Add to Γ the row: s = ⟨a, µ1.id,max(t1, t2), µ(v1), ..., µ(vn),b, (no)⟩
where a is a fresh assignment identifier and
b is the union of gap atoms in µ1, µ2, evaluated with µ ;

11: output Γ

complete assignments). The while loop in Lines 7-10 searches for pairs of consistent partial
assignments, Two assignments are consistent if they agree on the variables for which they
are both defined, e.g., in Fig. 2 µ1 and µ2 agree on u but not on a. If two assignments are
consistent and satisfy the necessary gap atoms, a new assignment is created with merge,
which combines their variable mappings and gap atoms and recomputes their deadline. For
example, assignment µ5 in Fig. 2 is the merge of µ2 and µ3. The loop only creates assignments
whose data values are pre-existing in Γ or the batch ∆, i.e., it doesn’t introduce new data
values, so the while loop terminates.

▶ Example 4. For the enactment and rule in Section 2, consider the enactment’s event
Request(π1, [Alice, a3], 1) and the rule’s atom Request(useru, account a)@x. The mapping
[id 7→π1, u 7→ Alice, v 7→ a3, x 7→ 1] maps the atom to this event; the assignment corres-
ponding to this mapping is added to bar as µ1 in Fig. 2(a). For the same example
in Section 2 and Fig. 2(a), assignments µ2 : [π1,Alice, a4, 3, -, -, {3⩽y⩽10, y⩽z⩽y+7}] and
µ3 : [π1,Alice, -, -, 6, -, {x⩽6⩽x+7, 6⩽z⩽13}] are in bar(π1) at ts = 9 and agree on u. Their
combination merge(µ2, µ3) satisfies x⩽ 6⩽x+7 and 3⩽y⩽10, so a row corresponding to
merge(µ2, µ3) is added to bar as µ5.

The following lemma states that Update refreshes the body and head tables by adding
the partial and complete assignments with values from ∆ as expected.

▶ Lemma 5. Let r:φ→ψ be a rule, η an enactment, and ∆ a batch for η.
Update(φ,∆,bar(η)) (or Update(ψ,∆,har(η))) computes bar(η ∪ ∆) (resp. har(η ∪ ∆)).

A sketch of the proof is given in Appendix A. The key idea is that for an assignment
in bar(η ∪ ∆), some data values may come from events in η so they will be in bar(η) and
some may come from events in ∆, in which case they will be introduced in Line 4 of Alg. 2
and merged with other assignments in the loop of Line 7 of Alg. 2. The proof is similar for
har(η ∪ ∆).

The ext table pairs complete body assignments with partial and complete head assign-
ments along with a deadline. When a batch arrives, Update-E (Alg. 3) adds new complete
body assignments to ext (Lines 2-3), and then adds pairs using head assignments (Lines
4-8), computing a deadline for each pair (Line 8). Line 9 checks if there is a match between
complete body and head assignments, and updates ba if so.
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Algorithm 3 Update-E(∆, extr(η),bar(η∪∆),har(η∪∆)).

Input: A batch ∆, un-updated table extr(η),
updated tables bar(η∪∆) and har(η∪∆) for an enactment η

Output: Updated table extr(η ∪ ∆)
1: Γ := extr(η) ;
2: for each complete body assignment µ in bar(η∪∆) do
3: if max(µ) = ts∆ then Add ⟨µ, -,Deadline(ψ, var(ψ), µ)⟩ to Γ ;
4: for each assignment γ in har(η∪∆) do
5: if max(γ) = ts∆ then
6: for each row ⟨µ, β, d⟩ in Γ do
7: if γ extends µ∪β and γ(µ(ψ)) is satisfiable then
8: Add ⟨µ, γ,Deadline(ψ, var(ψ), µ ∪ γ)⟩ to Γ ;
9: if γ is complete then Update bar(η∪∆) to indicate µ has a match ;

10: output Γ ; /∗ = extr(η ∪ ∆) ∗/

For all complete body assignments, ext stores each head assignment that extends it and
indicates the latest time the pair can be further extended. The following lemma characterizes
the conditions and time whereby a violation can be detected using ext.

▶ Lemma 6. Let η be an enactment with no END event, r a rule, τ a timestamp, and µ a
complete body assignment for r. Then, µ is a permanent violation of r in η at τ iff µ occurs
in extr(η) but no rows in extr(η) pairs µ with a complete head assignment, and each row
in extr(η) with µ has a deadline no greater than τ .

A sketch of the proof is given in Appendix A. The key idea is that by Lemma 3, the largest
deadline τ for µ and a partial match β in extr(η) represent the time beyond which any
assignment extending β derived from a future event will have a timestamp that is inconsistent
with ψ. Thus, µ must be extended on or before time τ in order to be matched with β.

▶ Example 7. In Section 2, µ10 satisfies φ and must be extended no later than 9. Then, the
deadline for matching the unpaired µ10 in extr(η⩽9) is 9. At time 9, a Payment event creates
β2 (Fig. 5), and µ10 and β2 are inserted into extr(η⩽9) with deadline 13 because β2(w) = 9
and ψ contains v ⩽ w + 4. Assuming no matching Launch event arrives, µ10 can be reported
as a violation at time 13.

We now present the algorithm Detect (Algorithm 4) that detects permanent violations.
These are unmatched body assignments in ext (1) whose largest deadline is less than or
equal to the current time or (2) whose enactments have ended.

Algorithm 4 Detect(∆, extr(η∪∆)).

Input: A batch ∆, updated extr(η∪∆)
Output: A set of assignments indicating rule violations
1: Violations := {};
2: for each complete body assignment µ in extr(η∪∆) do
3: if µ is not extended by any complete head assignment then
4: if ∆ contains an END event e with e.id = µ.id then
5: Add µ to Violations ;
6: Let τ be the maximum deadline for the rows in extr(η∪∆) with µ;
7: if ts∆ ⩾ τ > max(η) then
8: Add µ to Violations ;
9: output Violations ;

In the following theorem, we assert that applying Algorithm 4 reports rule violations at
the earliest possible time.
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▶ Theorem 8. Let r be a rule, η an enactment, and ∆ a batch for η. Then, µ is a violation
in η∪∆ but not in η iff Detect(∆, extr(η∪∆)) reports µ.

A sketch of the proof is given in Appendix A. The key idea is that for a given body
assignment µ in extr(η∪∆), by Lemma 6, if µ is a violation, it will be in exclusively
unmatched rows in extr(η∪∆) with a deadline of at most ts∆. Then, when ∆ is processed,
µ can be recognized and reported.

From Theorem 8, we see that our monitoring algorithm reports exactly the set of violations
in the enactment as soon as they are permanent. This concludes the presentation of the data
structures and sub-routines used in our monitoring algorithm.

5 Optimizations

While the algorithms presented in Section 4 handle the monitoring task, their time and space
complexities can be improved. We present one optimization to remove useless assignments
using a similar reasoning to deadline calculation, another to avoid repeated computation by
tracking which data is new. We report their improvement of relevant algorithms as a factor
of the log size |L|, the batch size |∆|, the number of active enactments as approximated by
|∆|, and the number of event atoms in the rule body or head e.

Expiring partial assignments. Early violation detection motivates a similar technique for
discarding useless assignments. Partial assignments in ba and ha are expired (i.e., useless) if
(1) they can no longer be extended because their timestamps and unresolved gap atoms are
inconsistent with all possible future assignments, or (2) they are derived from an enactment
that has ended. It is much desired to remove expired assignments, and thus reduce the
sizes of ba and ha. Calculating expiration times resembles deadline calculation; in fact, the
Deadline function is reused. To incorporate expiration time, we augment ba and ha (resp.)
with an expiration column as new tables bae and hae, requiring that incomplete assignments
in bae and hae be extendable by future events to complete assignments. To maintain this
property, Deadline calculates its expiration time for each incomplete assignment with respect
to its unresolved gap atoms. Removing expired assignments reduces the size of the bae and
hae tables from O(|L|e) to O(|∆|e), which benefits the algorithms in § 4 by reducing the
number of computations in Update from O(|L|2e) to O(|∆|2e), and that in Update-E from
O(|L|e) to O(|∆|e). It also improves Update-E by decreasing the number of assignments
checked for insertion into ext (Lines 2 and 4), from O(|L|e) to O(|∆|e).

Semi-naive merge of assignments. We can also decrease the number of computations
in the Update algorithm by tracking which data generated by the most recent batch. The
while loop (Lines 7-10) in Update tests pairs of assignments to merge. For each batch ∆, we
only need to try pairs that have at least one assignment added from events in ∆, because all
other pairs of assignments were considered before ∆ arrived. To make Update to reflect this,
we use a queue Γnew to hold new assignments generated at Line 6. We exchange the for loop
in Update (Lines 8-10) to a doubly nested for-loop that iterates through each assignment
µn in Γnew (outer loop) and each row µo in Γ (inner loop), adding the new assignment to
the queue Γnew, moving µn from Γnew to Γ after processing µn. This resembles “semi-naive”
evaluation of Datalog programs [1] and reduces the search for matching assignments from
considering O(|L|2e|) pairs to only pairs involving some new data: O(|L|e|∆|e) pairs.
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6 Experimental Evaluation

We implemented (Python 3.8.2) a monitoring algorithm using the data structures and
algorithms in Section 4 and optimizations in Section 5. Moreover, our implementation handles
multiple enactments simultaneously. Using this implementation, we experimentally evaluated
the benefits and costs of early violation detection (EVD) and the overall batch processing
times. We used logs created by simulating workflow models of the IaaS application in
Section 2 with a simulator [25], varying the size of enactments from normal enactments
(10 events per enactment) to large enactments (100 events per enactment) and using batch
sizes of 100, 1,000, and 10,000 events. We used logs with an average of 100 concurrent
enactments and monitored both simple rules (1-2 body atoms, 1-2 head atoms) and complex
rules (2-4 body atoms, 2-4 head atoms). Our test data is motivated by discovering the
feasible ranges for monitoring for enactment and batch size in five target applications areas:
(1) healthcare information systems that manage medical services for compliance with patients’
medical history, (2) drone management services that enforce geographic fencing and limits on
flight time, (3) college admissions portals that manage application due dates and admission
decisions, (4) IaaS providers, as illustrated above, and (5) retail websites where customers’
orders must be paid for, filled, and delivered in a timely manner. For all experiments, we
used a Mac laptop (MacOS Big Sur 12.2.1) with a 3.2 GHz, 8-core Apple M1 processor with
8GB memory.

Our experimental results indicate that early violation detection yields a significant resource
savings (Finding 1) with a negligible overhead (Finding 2), and is feasible for enactments
with up to 100 events and batches up to 10,000 events (Finding 3). Additionally, we can
conclude that our algorithms are appropriate for some application areas of business services.

Finding 1. 16% of events in normal-length violating enactments and 66% of events in large
violating enactments may be ignored.

First, we examine how soon violations could be detected with respect to each enactment’s
events. We report the average percentage of events observed in violating enactments before
and after their first reported violation. This number represents the percentage of events that
could be ignored, or even prevented, in the case that detecting a violation early halts the
enactment’s execution. This finding is partially dependent on the percentage of enactments
that are violating and the size of gaps in rules as a proportion of enactment duration; future
work could analyze these dimensions as factors of the potential savings. Fig. 7 shows the
percentage of events observed in violating enactments before and after their first detected
violation.

normal-length enactments large enactments
rules % events before first violation % after % events before first violation % after

simple 74.9 25.1 33.5 66.5
complex 83.7 16.3 69.4 30.6

Figure 7 Percentages of events observed before and after the first detected violation.

Finding 2. The overhead of detecting violations early is ⩽15% compared with the overall
processing time, even for large enactments and rules with up to 8 atoms.

The benefits of early violation detection could be nullified if the time to calculate deadlines
and find matches is a significant percentage of the overall processing time. As a baseline,
we used an algorithm that does not calculate deadlines, and instead, detects and reports
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violations only once the enactment’s END event arrives. Fig. 8 compares our monitoring
algorithm with EVD to the baseline algorithm (without EVD). The increase in processing
time with EVD for normal enactments (⩽2%) is less than the increase with EVD for large
enactments (⩽15%). This is attributed to the higher number of events with matching data
values in large enactments, which increases the number of assignment pairs, thus more
deadlines are calculated in Lines 3 and 8 of Algorithm 3.

normal-length enactments large enactments
rules without EVD with EVD without EVD with EVD

simple 4.27×10−2 4.73×10−2 (+0.2%) 6.65×10−2 7.60×10−2 (+14.3%)
complex 9.19×10−2 9.31×10−2 (+1.3%) 1.840×10−1 2.084×10−1 (+13.3%)

Figure 8 Batch processing times (seconds) with and without early violation detection.

Finding 3. Monitoring is feasible for enactments with up to 100 events, and batches of up
to 10,000 events, with an arrival rate of 1 second.

We report the average batch processing time for normal and large enactments, simple
and complex rules, and batches of 100, 1,000, and 10,000 events. Logs with larger batches
were not obtained due to limitations of the simulator. We assume a batch arrival interval of 1
second, thus an average processing time ⩽1 second indicates monitoring is feasible for some
application areas, because each batch can (on average) be processed before the following
batch arrives, thus no backlog of events accumulates over time. Fig. 9 shows that the average
processing time is ⩽1 second for all trials.

As the batch size grows, the number of events processed by Algorithm 2 grows propor-
tionally. Given that most events in a batch are from different enactments, larger batches do
not have proportionally more pairs of assignments to compare in Line 8 of Algorithm 2, so
these times grow linearly with the batch size as expected. As the enactment length grows,
the number of compatible events, and thus partial assignment pairs, grows, increasing the
number of matches in Line 8 of Algorithm 2 and the number of updates to the ext table in
Line 4 of Algorithm 3. Then, enactment length accounts for the increase in processing time.

Lastly, we place the results in context for the five application areas. Given that the batch
processing times in Finding 3 for enactments with 100 events, batches of 10,000 events, and
rules with 8 atoms are below our assumed batch interval of 1 second, applying our algorithms
to applications in areas (1) and (2), which feature similar dimensions for enactments and
constraints, is feasible. It is also feasible for small applications in areas (3), (4), and (5),
though monitoring larger applications with hundreds of thousands of concurrent users or
enactments with thousands of events may not be possible. Additionally, Finding 2 suggests
whenever monitoring is feasible, early violation detection is also feasible, as it has negligible
computational overhead.

enactment length
normal large normal large

batch size simple rules complex rules
100 4.55×10−4 6.19×10−4 7.74×10−4 1.363×10−3

1,000 4.330×10−3 6.177×10−3 7.534×10−3 1.3509×10−2

10,000 4.2414×10−2 6.0769×10−2 7.4925×10−2 1.35218×10−1

Figure 9 Batch processing times (seconds) for different enactments and rules.
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7 Conclusions

Techniques for event monitoring are increasing in demand as more software systems generate
and/or rely on events. This paper contributes monitoring and violation detection techniques
for temporal constraints in workflow systems. More study is needed of the trade-offs of
expressiveness of temporal constraints, specifically a comparison of our language’s gap atoms
with LTL and MTL, as well with extensions of our language with negation for modeling the
absence of events. Additionally, it remains to be seen if early violation detection is possible,
and then more effective and efficient, with respect to sets of rules, where deadlines may
appear earlier due to interactions of “conflicting” constraints, as in [19]. Also, our techniques
only consider whether or not a violation is certain; it may be useful to reason about violations
probabilistically, which could allow them to be anticipated farther in advance and thus better
mitigated.
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A Proof Sketches of Lemmas 3, 5, 6 and Theorem 8

▶ Lemma 3. Let r:φ→ψ be a rule, φg, ψg the gap atoms in φ,ψ (resp.), µ a com-
plete body assignment such that µ(φg) is true, β an incomplete head assignment extend-
ing µ such that β(µ(ψg)) is satisfiable, and U the variables in ψg undefined by β. Let
τ = Deadline(ψg, var(φg∪ψg), µ∪β). The following hold:

1. If τ ∈N, then there is a complete head assignment β′ extending µ∪β such that
min(β′(U))⩽ τ and β′(ψg) is true,

2. If τ ∈N, then for all complete head assignments β′ extending µ∪β such that min(β′(U))>τ ,
β′(ψg) is false.

3. If τ = ∞, then for all timestamps n in N, there is a complete head assignment β′ extending
µ∪β such that max(β′(U))>n and β′(ψg) is true.

Proof Sketch for Lemma 3. To show (1), assume there is no complete head assignment β′

extending µ∪β such that min(β′(U))⩽ τ and β′(ψg) is true. Then, (µ ∪ β)(ψ) ∧ (z = τ) is
not satisfiable. Then, there is a gap atom in µ ∪ β(ψ) that provides an upper bound for z
below τ . Then, τ is not the minimum of the upper bounds in UpperBd. Thus Algorithm 1
on µ ∪ β and ψ should not output τ . This is a contradiction. To show (2), assume some
complete head assignment β′ extends µ∪β such that min(β′(U))>τ and β′(ψg) is true.
Then, (µ ∪ β)(ψ) ∧ (z = τ ′) is satisfiable for some z in var(ψ). Then, µ(ψ) does not imply
zi ⩽ τ for all variables zi. Thus Algorithm 1 on µ ∪ β and ψ should not output τ . This
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is a contradiction. To show (3), assume τ = ∞. Algorithm 1 only produces ∞ when µ(ψ)
is satisfiable and for some variable zi and for all n ∈ N, µ(ψ) ̸→ (zi ⩽ n) Then, for all
timestamps n in N, there is some complete assignment that extends µ, satisfies ψ, and uses
some n′ larger than n. Then, µ can be extended arbitrary far in the future. ◀

▶ Lemma 5. Let r:φ→ψ be a rule, η an enactment, and ∆ a batch for η.
Update(φ,∆,bar(η)) (or Update(ψ,∆,har(η))) computes bar(η ∪ ∆) (resp. har(η ∪ ∆)).

Proof Sketch for Lemma 5. We argue this for bar(η); adapting this argument for har(η) is
trivial. For an assignment µ in bar(η∪∆) created by Update(φ,∆,bar(η)), some events C in
η and some D in ∆ provide values for µ. Then an assignment µC for C is present in bar(η)
and Lines 2–5 of Alg. 2 generates |D| assignments for each event in D. Next, these |D| + 1
assignments will merge with each other in the loop of Line 7 of Alg. 2 until µ is created
and added to Γ. Alternatively, consider any assignment µ that is not in bar(η∪∆) after
Algorithm 2. Then, no subset of events in η∪∆ can create µ on Line 4 or µ is inconsistent
with the rule body or head and will not proceed past Lines 5 or 8 of Alg. 2. ◀

▶ Lemma 6. Let η be an enactment with no END event, r a rule, τ a timestamp, and µ a
complete body assignment for r. Then, µ is a violation of r in η iff µ occurs in extr(η) but
no rows in extr(η) pairs µ with a complete head assignment, and each row in extr(η) with
µ has a deadline no greater than τ .

Proof Sketch for Lemma 6. Let τ be the largest timestamp in η. extr(η) contains all
possible pairs for µ and head assignments from har(η), so if µ is unmatched in bar(η), there
is no assignment with min(β) ⩽ τ that extends µ and satisfies ψ. Alternatively, let τ be
the largest deadline for µ in extr(η), by Lemma 3, for all rows with µ and β in extr(η),
for all complete head assignments β′ that extend µ ∪ β, such that min(β′(U)) > τ , β′(ψ) is
inconsistent. Thus, no future (i.e., with a value greater than τ) complete head assignment
can extend µ and satisfy ψ. Then, µ will never be extended by a complete head assignment
that satisfies ψ, so µ is a violation for η. ◀

▶ Theorem 8. Let r be a rule, η be an enactment, and ∆ a batch for η. Then, µ is a
violation in η∪∆ but not in η iff Detect(∆, extr(η∪∆)) reports µ.

Proof Sketch for Theorem 8. Let µ be a violation in η∪∆. η∪∆ may contain an END event
and will have no later events, in which case, η.END is in ∆ and µ will be added to Violations on
Line 5 of Algorithm 4. Otherwise, by Lemma 6, µ is complete and in exclusively unmatched
rows in extr(η∪∆) with a deadline of, at most, ts∆. Then, µ will be added to Violations on
Line 8 of Algorithm 4.

Conversely, if Detect(∆, extr(η∪∆)) reports µ, then µ is added to Violations on Line 5
or Line 8 of Algorithm 4. Given Line 2 of the algorithm, µ must be a complete assignment in
extr(η∪∆) that is not extended by any complete head assignment. Then, either (1) η.END

in ∆ or (2) ts∆ is greater than or equal to the deadline for µ in all rows in extr(η∪∆). If
(1), then µ is a violation because η∪∆ will have no later events. If (2), µ is a violation in
η∪∆ by Lemma 6. ◀
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Abstract
Timed Recursive CTL (TRCTL) was recently proposed as a merger of two extensions of the well-
known branching-time logic CTL: Timed CTL on one hand is interpreted over real-time systems
like timed automata, and Recursive CTL (RecCTL) on the other hand obtains high expressiveness
through the introduction of a recursion operator. Model checking for the resulting logic is known to
be 2-EXPTIME-complete.

The aim of this paper is to investigate the possibility to obtain a fragment of lower complexity
without losing too much expressive power. It is obtained by a syntactic property called “tail-
recursiveness” that restricts the way that recursive formulas can be built. This restriction is known
to decrease the complexity of model checking by half an exponential in the untimed setting. We
show that this also works in the real-time world: model checking for the tail-recursive fragment of
TRCTL is EXPSPACE-complete. The upper bound is obtained by a standard untiming construction
via region graphs, and rests on the known complexity of tail-recursive fragments of higher-order
modal logics. The lower bound is established by a reduction from a suitable tiling problem.
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1 Introduction

Models of systems that incorporate real-time aspects play an important role in the specification
and verification of the behaviour of embedded systems. Correct functioning of such systems
often depends on the satisfaction of constraints that involve concrete times like “the wing flaps
are adjusted within 5msec of a change in vertical angle reported by the gyrometer sensor.”

Timed automata [3] are a standard model for the abstraction of the behaviour of real-time
systems which has been studied well, including ways to extend their expressiveness, cf. [4, 7].
The desired behaviour of such dynamic systems is typically specified using temporal logics
that formalise statements about the evolution of such a system’s behaviour in time. For
example, the above property in a formal syntax yields a formula like AG(chng → AF≤5adj).

This formula belongs to the real-time temporal logic known as Timed Computation
Tree Logic (TCTL) [2]. It extends the well-known simple branching-time temporal logic
CTL – essentially a language to formalise nested reachability queries – with the ability to
make assertions about the duration of time that passes along the runs of the system. The
model checking problem for TCTL (over systems specified as timed automata) is PSPACE-
complete [2], i.e. more difficult than the polynomial-time model checking for CTL (over finite
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transition systems) [15]. Its expressive power in terms of structural properties is limited:
similar to CTL, properties specifiable in TCTL are nested reachability queries expressed by a
combination of a universal or existential quantification over an execution path and a simple
temporal property of the form “something happens eventually / always / until something
else happens”.

For many verification tasks, such limited expressiveness far below regularity (i.e. definable
in MSO) is sufficient. Yet in practice, for example when systems are composed of parallel and
interacting components, additional expressiveness raised to full regularity may be needed [23].
In other situations, even full regularity is not enough as there is no formula of a temporal logic
of regular expressiveness that e.g. describes the lack of underflows in FIFO or LIFO buffers
of unbounded size [21]. One may argue that in practice, a buffer is always bounded but
this makes the correctness property depend on the implementation. It should be clear that
correctness properties should be formalisable independently of the system that is supposed
to satisfy them, for otherwise formal verification could easily be achieved in general.

In order to extend the applicability of formal verification for real-time systems in situations
where correctness is a structurally more complex property than what fits into TCTL, we
have recently proposed Timed Recursive CTL (TRCTL) [12] which merges two extensions
of CTL: the aforementioned one by real-time aspects that lifts CTL to TCTL is combined
by an extension to properties that are specifiable using recursive property transformers
(in the form of first-order functions1). This is taken from the untimed world where logics
of high expressiveness have been studied for the same reasons as laid out here [18]. The
high expressiveness comes at a price, both in terms of computational complexity as well
as pragmatics. The syntax of logics like HFL [24] is based on the modal µ-calculus and a
typed λ-calculus, and is therefore fairly inaccessible to non-experts and thus not usable at
the forefront in system design and verification. Recursive CTL (RecCTL) has therefore been
proposed to allow for a reasonable extension of expressive power beyond regularity whilst
retaining as much intuitive syntax from CTL as possible.

The model checking problem for TRCTL over timed automata is 2EXPTIME-complete [12].
This may seem odd because that of TCTL is “only” PSPACE-complete, and the extension
facilitated by recursive predicates (as least fixpoints of first-order functions) should raise the
complexity intuitively by one exponential and result in EXPSPACE-completeness. However,
the recursion operator lifts the restriction to a fixed system of nested reachability queries
built into CTL’s syntax. Hence, said recursion operator not only introduces predicates with
unbounded recursion in the world of first-order functions, but also for ordinary predicates
in temporal formulas. Thus, adding the recursion operator implicitly turns the base logic
from TCTL into a timed variant of the modal µ-calculus. Such temporal logics which can
express unbounded recursion – here in the form of least and greatest fixpoints of predicates –
typically have model checking complexities that are complete for time classes.

The timed µ-calculus does not feature as prominently in the literature as its untimed
counterpart, the modal µ-calculus [17], probably due to the combination of real-time operators
and explicit fixpoint operators which may be unsellable to an ordinary user in formal
verification. There are also syntactic variants in the literature that could be covered by the
generic term timed µ-calculus [2, 16]. Going further into this is beyond the scope of this
paper; we simply note that “the” timed µ-calculus (obtained from TRCTL as the restriction
without first-order elements) has an EXPTIME-complete model checking problem [1] and
can therefore be seen as a fragment of TRCTL of lower complexity, yet a regular one.

1 See the formal definition of the syntax in Sect. 2.2 for an explanation of what “first-order” means here.
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In this paper we investigate the question after the existence of a fragment of TRCTL whose
expressiveness remains reasonably beyond regularity and whose model checking complexity
is genuinely lower than that of full TRCTL (up to the current knowledge in complexity
theory). We employ a syntactic restriction called tail-recursiveness which limits the ways
that recursive properties can be defined. In untimed logics, tail-recursiveness leads to lower
complexity [13], and it is characteristic of space rather than time complexity. The result
in this paper therefore fits into what can be expected from previous work on timed and
non-regular specification languages: the model checking problem for tail-recursive TRCTL
is “only” EXPSPACE-complete, i.e. exactly one exponential worse than that of its untimed
counterpart. The upper bound is established making use of the well-known region-graph
abstraction [3]. The lower bound is established by a reduction from a suitable tiling problem.

The paper is organised as follows. In Sect. 2 we recall preliminaries on timed automata and
TRCTL. In Sect. 3 we introduce tail-recursiveness, define the fragment under consideration
here and argue why it can be model checked in exponential space. In Sect 4 we present the
more elaborate lower bound construction. Sect. 5 contains some remarks on further work.

2 Preliminaries

2.1 Timed Automata
Timed Transition Systems. A timed labelled transition system (TLTS) over a finite set
Prop of atomic propositions (and a single, anonymous2 action) is a T = (S,−→, s0, λ) s.t.

S is a set of states containing a designated starting state s0,
−→ ⊆ S × S ∪ S × R≥0 × S is the transition relation, consisting of two kinds:

discrete transitions of the form s−→ t for s, t ∈ S, and
delay transitions of the form s

d−→ t for s, t ∈ S and d ∈ R≥0, satisfying s 0−→ t iff s = t

for any s, t ∈ S, and

∀d, d1, d2 ∈ R≥0, ∀s, t ∈ S : d = d1+d2 and s d−→ t ⇔ ∃u ∈ S s.t. s d1−−→u and u
d2−−→ t ,

λ : S → 2Prop labels each state with the set of atomic propositions that hold true in it.

The extended transition relations d=⇒, d ∈ R≥0, are obtained by padding discrete transitions
with delays:

s
d=⇒ t iff ∃d1, d2 ∈ R≥0, s′, t′ ∈ S s.t. s d1−−→ s′, s′ −→ t′, t′

d2−−→ t and d = d1 + d2

A trace is a sequence π = s0
d0=⇒ s1

d1=⇒ . . .

An (untimed) labeled transition system (LTS) is a TLTS over an empty delay transition
relation. It is finite if the set of its states is finite.

Clock Constraints. Let X = {x, y, . . .} be a set of R≥0-valued variables called clocks. By
CC (X ) we denote the set of clock constraints over X which are conjunctive formulas of
the form ⊤ or x ⊕ c for x ∈ X , c ∈ N and ⊕ ∈ {≤, <,≥, >,=}. We write x ∈ [c, c′] for
x ≥ c ∧ x ≤ c′, and similarly for open interval bounds.

A clock evaluation is an η : X → R≥0. A clock constraint φ is interpreted in a clock
evaluation η in the obvious way:

2 CTL-based logics are usually oblivious to action labels, whence we restrict ourselves to a single action.
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η |= ⊤ holds for any η,
η |= φ1 ∧ φ2 if η |= φ1 and η |= φ2,
η |= x ⊕ c if η(x) ⊕ c for ⊕ ∈ {≤, <,≥, >,=}.

Given a clock evaluation η, d ∈ R≥0 and a set R ⊆ X , we write η+d for the clock evaluation
that is defined by (η+d)(x) = η(x) + d for any x ∈ X , and η|R for the clock evaluation that
is defined by η|R(x) = 0 for x ∈ R and η|R(x) = η(x) otherwise.

Timed Automata. Again, since the CTL-based logics considered here are oblivious of action
names, we introduce timed automata (TA) over a single anonymous action. Such a TA over
Prop is an A = (L,X , ℓ0, ι, δ, λ) where

L is a finite set of so-called locations containing a designated initial location ℓ0 ∈ L,
X is a finite set of clocks,
ι : L → CC (X ) assigns a clock constraint, called invariant, to each location,
δ ⊆ L × CC (X ) × 2X × L is a finite set of transitions. We write ℓ g,R−−−→ ℓ′ instead of
(ℓ, g, R, ℓ′) ∈ δ. In such a transition, g is called the guard, and R ⊆ X are the reset clocks
of this transition,
λ : L → 2Prop labels each location with the set of atomic propositions that hold true in it.

The index m(A) of A is the largest constant occurring in its invariants or guards. Its size is

|A| = |δ| · (2 · (logL) + |X | + logm(A)) + |L| · 2 · (log |X | + logm(A)) + |L| · |Prop|.

Note that the size is only logarithmic in the value of constants used in clock constraints as
they can be represented in binary notation for instance.

TA are models of state-based real-time systems. The semantics, resp. behaviour of a TA
A = (L,X , ℓ0, ι, δ, λ) is given by a TLTS TA over the time domain R≥0 as follows.

The state set is S = {(ℓ, η) | ℓ ∈ L, η ∈ (X → R≥0) such that η |= ι(ℓ)}, consisting of
pairs of locations and clock evaluations that satisfy the location’s invariant.
The initial state is s0 = (ℓ0, η0) where η0(x) = 0 for all x ∈ X .
Delay transitions retain the location and (possibly) advance the value of clocks in a state:
for any (ℓ, η) ∈ S and d ∈ R≥0 we have (ℓ, η) d−→(ℓ, η+d) if η+d′ |= ι(ℓ) for all d′ ≤ d.
Discrete transitions possibly change the location and reset clocks: for any (ℓ, η) ∈ S,
ℓ′ ∈ L and R ⊆ X we have (ℓ, η) −→(ℓ′, η|R) if there is g ∈ CC (X ) such that (ℓ, g, R, ℓ′) ∈ δ

and η |= g as well as η|R |= ι(ℓ′).
The propositional label of a state is that of its underlying location: λ(ℓ, η) = λ(ℓ).
Clock constraints hold in a state if they hold for its clocks: (ℓ, η) |= χ iff η |= χ.

In other words, a TA finitely represents a TLTS. However, not every TLTS is finitely
representable. For a detailed introduction to timed automata we refer to the literature [3, 6].
Henceforth, we will only consider TLTS that arise from a TA. Consequently, we can always
assume that the interpretation of clock constraints like x ≤ 4 in a TLTS is well-defined.

The Region Abstraction. There is a well-known abstraction of a TLTS TA into a finite LTS
known as the region graph RA [3], used in decidability proofs for decision problems on TA.

In the following we only consider TLTS TA that arise from some TA A = (L,X , ℓ0, ι, δ, λ).
The region abstraction is a mapping of such R≥0-TLTS into finite LTS. It is based on an
equivalence relation ≃m, for m ∈ N, on clock evaluations defined as follows.
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η ≃m η′ iff for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y))

Here, frac(r) denotes the fractional part of a real number. It is easy to see that ≃m is
indeed an equivalence relation for any m. It is lifted to states of the TLTS TA in the most
straight-forward way: (ℓ, η) ≃m (ℓ′, η′) iff ℓ = ℓ′ and η ≃m η′.

We write [η]m for the equivalence class of η under ≃m and likewise for [(ℓ, η)]m. When
m is clear from the context we may also drop it and simply write [η], resp. [(ℓ, η)].

Note that ≃m is a bisimulation on the state space of TA w.r.t. the labelling and discrete
and delay transitions: if (ℓ, η) ≃m (ℓ′, η′) then we have λ([(ℓ, η)]) = λ([(ℓ′, η′)]) and for
every ℓ′′, η′′: [(ℓ, η)] −→[(ℓ′′, η′′)] iff [(ℓ′, η′)] −→[(ℓ′′, η′′)]. This is what makes it usable for an
abstraction of the uncountable state space of TA into a finite discrete state space as follows.

The region graph RA of the TA A is the LTS (S,−→, s0, λ) obtained as the quotient of
TA under ≃m with m := m(A), together with an additional collapse of delay transitions for
different delays into a single “some-delay” value τ . Its components are as follows.

S = {[(ℓ, η)]m | ℓ ∈ L, η ∈ (X → R≥0), η |= ι(ℓ)}, and s0 = [(ℓ0, η0)]m.
Discrete transitions from one state to another are obtained by possibly delaying, then
performing a discrete transition, then possibly delaying again afterwards. We have

[(ℓ, η)]m −→[(ℓ′, η′)]m if there are d, d′ ∈ R≥0, η̂, η̂′ s.t. (ℓ, η) d1−−→(ℓ, η̂) −→(ℓ′, η̂′) d2−−→(ℓ′, η′)

for any ℓ, ℓ′ ∈ L, η, η′ ∈ X → R≥0.
The propositional labelling is given as λ([(ℓ, η)]m) = λ(ℓ, η) = λ(ℓ).

▶ Proposition 1 ([3]). Let A be a TA over n clocks with ℓ locations and of index m. Then
RA is an (untimed) LTS of size ℓ · 2O(n(log n+log m)), i.e. exponential in |A|, and there is a
path s0

d0=⇒ s1
d1=⇒ . . . in TA iff there is a path [s0] −→[s1] −→ . . . in RA.

2.2 Timed Recursive Computation-Tree Logic
TRCTL incorporates the two extensions from CTL to TCTL introducing real-time and to
RecCTL introducing recursive predicates.

Syntax. Let Prop be a set of atomic propositions. Let V1 = {x, y, . . .} be a set of propos-
itional variables and V2 = {F , . . .} be a set of so-called recursion variables. Formulas of
TRCTL are given by the following grammar.

φ ::= q | x | χ | ¬φ | φ ∨ φ | φ ∧ φ | E(φ UJ φ) | A(φ UJ φ) | Φ(φ, . . . , φ)
Φ ::= F | rec F(x1, . . . , xk). φ

where q ∈ Prop, J denotes an interval in R≥0 with rational bounds, χ is a clock constraint,
and x, xi, yi ∈ V1, F ∈ V2.

The (sub-)formulas derived from φ are called propositional, those derived from Φ are called
first-order. We allow further Boolean operators like tt, ff, →, etc. and temporal operators like
EF, EG, AF, AG, etc. through their standard abbreviations. We also avoid parentheses through
the standard precedence rules and remove empty tuples, i.e. we write rec F .φ instead of
(rec F().φ)(). We also consider rec F .φ as a propositional rather than a first-order formula,
because it results from the application of a first-order formula to zero arguments.
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The grammar above allows non-well-formed formulas to be constructed, too. These need
to be excluded using a stronger mechanism than context-free grammars. We refer to [12] for
a formal definition of a (simple but tedious) typing system for well-formedness and introduce
this notion intuitively instead: a well-formed formula obeys the following two restrictions.

The numbers of formal parameters and arguments coincide, i.e. in a formula of the form
(rec F(x1, . . . , xn).φ)(ψ1, . . . , ψm) we must have n = m. However, arguments can also
be passed to a first-order formula of the form F where the parameters are not visible.
We assume that each recursion variable is bound by the recursion operator at most once,
whence, we can associate with each (bound) F an arity given by the number of parameters
in its definition. This must then also match the number of arguments passed to it.
The recursion operator is explained semantically via least fixpoints in function lattices.
For this to be well-defined, each recursive call must occur positively in its defining body.
Violations occur, e.g., in F().¬F or in rec F .(rec G(x).¬x)(F) where both recursion
variables F and G appear to be used positively only, resp. not at all. Hence, a simple
criterion like occurrence under an even number of negation symbols does not capture
well-definedness as negative occurrences can be hidden in function applications.

Semantics. Formulas of TRCTL are interpreted over timed transition systems T =
(S,−→, s0, λ) (as arising from TA for example). A propositional formula φ denotes a set of
states JφKT ⊆ S, while a first-order formula with k formal parameters denotes a function
JΦKT : (2S)k → 2S that maps k sets of such states to a set of states. The semantics is given
inductively, which is why environments α are needed in order to explain the meaning of
free variables. Formally, α maps propositional variables x to sets of states and first-order
variables F to functions as stated above. The semantics is then defined via

JqKT
α := {s | q ∈ λ(s)} JxKT

α := α(x) JχKT
α = {s | s |= χ}

J¬φKT
α := S \ JφKT

α Jφ ∨ φKT
α := JφKT

α ∪ JψKT
α Jφ ∧ φKT

α := JφKT
α ∩ JψKT

α

and

JE(φ UJ φ)KT
α := {s | there is a path π = s, . . . s.t. T , π |=α φ UJ ψ}

JA(φ UJ φ)KT
α := {s | for all paths π = s, . . . we have T , π |=α φ UJ ψ}

JΦ(φ1, . . . , φn)KT
α := JΦKT

α (Jφ1KT
α , . . . , JφnKT

α )
JFKT

α := α(F)

Jrec F(x1, . . . , xn). φKT
α :=

l
{f : (2S)n → 2S | for all T1, . . . , Tn ⊆ S we have

JφKT
α[F7→f,x1 7→T1,...xn 7→Tn] ⊆ f(T1, . . . , Tn)}

where (
d

i∈I fi)(T1, . . . , Tn) :=
⋂

i∈I fi(T1, . . . , Tn) and the satisfaction of a U-property by
a non-Zeno path π = s0

d0=⇒ s1
d1=⇒ s2

d2=⇒ . . . in the TLTS is given as follows. We have
π |=α φ UJ ψ iff

∃i ≥ 0, ∃d ∈ [0, di], ∃s′ s.t. si
d=⇒ s′ and (

i∑
h=0

di) + d ∈ J and s′ ∈ JψKT
α and

∀j < i, ∀d′ ∈ [0, dj ], ∀s′ s.t. sj
d′

=⇒ s′ we have s′ ∈ Jφ ∨ ψKT
α and

∀d′ ∈ [0, d), ∀s′ s.t. si
d′

=⇒ s′ we have s′ ∈ Jφ ∨ ψKT
α .
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This may seem odd at first glance but it is in fact standard to interpret an Until operator in
this way in the real-time setting, cf. [16, 6]. The sum on the right-hand side is simply used
to express the reaching of some state in the future by delay steps along multiple transitions,
hence the time that passes up to this step is being added up. The other possibly unintuitive
feature is the seemingly weak assertion on s′ (under the universal quantification) to satisfy φ
or ψ, where one may assume it to have to satisfy φ. First note that allowing such “earlier”
moments to also satisfy ψ instead of φ is not harmful to the intuitive meaning of φ U ψ:
if ψ holds at some point but also earlier as well, then it still holds at some point. In a
discrete-time setting there is always a first moment at which ψ holds, and it suffices when all
moments before that satisfy φ. However, in the real-time setting there may not be a first
moment for ψ to hold. So it is in fact necessary to allow these earlier moments to also satisfy
the Until’s right argument. This ensures, for example, that a formula like E(x=0 U x>0) is
satisfiable. Note that, after a moment satisfying x = 0, there is no first moment satisfying
x > 0, but intuitively the formula should be satisfiable.

For a closed formula φ and arbitrary s ∈ S we write T , s |= φ if s ∈ JφKT for arbitrary
s ∈ S, and also T |= φ if T , s0 |= φ.

Examples. TRCTL is able to express structurally complex properties of real-time systems.
We give two examples which show how the recursion operator can be used to create combin-
ations of temporal formulas that could not be expressed in logics of regular expressiveness
only.

▶ Example 2. Consider a TLTS over propositions including {r, g} which signal the request
of a resource respectively the granting of such a request. The TRCTL formula(

rec F(x, y).(x → y) ∧ F(EF≤2x, EF≤3y)
)
(r, g)

then states “whenever a request is issued after at most 2n time units, then a grant is issued
after at most 3n time units (for the same n)”. To see that this is indeed expressed by
the formula one only needs three principles: (i) unfolding of recursive definitions and (ii)
replacement of parameter variables by arguments, and (iii) the temporal simplification rule
EF≤cEF≤dψ ≡ EF≤c+dψ. To keep the calculation short we identify F with rec F(x, y).(x →
y) ∧ F(EF≤2x, EF≤3y). Then we have

F(r, g) ≡ (r → g) ∧ F(EF≤2r, EF≤3g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ F(EF≤2EF≤2r, EF≤3EF≤3g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ F(EF≤4r, EF≤6g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ (EF≤4r → EF≤6g) ∧ F(EF≤6r, EF≤9g)

≡ · · · ≡
∧

n≥0
EF≤2nr → EF≤3ng.

▶ Example 3. Take a timed system in which a scheduler governs the execution of two
different processes. We assume that proposition pi, i ∈ {1, 2} holds whenever process i is
active, that at any moment exactly one of them holds, and that the execution of a process
takes between 1 and 2 time units. A possible trace of such a system w.r.t. only the two
propositions p1 and p2 in real time is represented by the bottom line in this picture:

TIME 2022
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
observation:

p1 p2 p1 p2 p1 p2

schedule 2:
schedule 1:

The trace divides the real line into intervals during which either of the two propositions
in question holds. Clearly, from this trace we can derive that the scheduler finished an
execution of process 1 and started an execution of process 2 at time point 3.5 for example.
Only the switches from one process to another are visible. The finishing of process i and
subsequent rescheduling of it cannot be inferred from these propositions alone. All that
is known, for example, is that between time moments 0 and 3.5, there must have been at
least 2 and at most 3 executions of process 1. Thus, such a trace can result from several
different schedulings; two of these are depicted here on top. In schedule 1, three instances of
process 1 have been completed before time point 3.5, in schedule 2 only two of them have
been run, etc.

Now suppose that there is an additional constraint stating that at any moment, process 2
may never have been scheduled more often than process 1. Note that schedule 1 satisfies this
property but schedule 2 does not since, at time point 9.9, only three instances of process 1
have been completed but already four instances of process 2 are done.

The TRCTL formula

¬
((

rec F(x).E(p2 U≥1 x) ∨ E(p1 U≤2 F(F(x)))
)
(tt)

)
guarantees the absence of such faulty schedulings. It states that it is not possible to find
a path and its division into intervals of length at least 1, resp. at most 2, depending on
whether p1 or p2 holds at the moment, such that at some point the number of p2-intervals
has exceeded the number of p1-intervals seen so far.

To understand how this is expressed it is probably best to remember that the context-free
grammar F → b | aFF generates all (minimal) words w s.t. |w|b > |w|a but |v|b ≤ |v|a for
any prefix v of w. Note how the formula above follows exactly this structure. By unfolding
the recursion and replacing arguments successively, F(tt) can be seen to be equivalent to a
disjunction of nested EU-formulas like

E(p1 U≤2 E(p1 U≤2 E(p2 U≥1 E(p1 U≤2 E(p2 U≥1 E(p2 U≥1 E(p2 U≥1 tt)))))))

which is satisfied by the trace presented above as schedule 2 shows. Each such disjunct
demands one more occurrence of p2- than p1-intervals.

3 The Tail-Recursive Fragment of Timed Recursive CTL

3.1 The Syntactical Restriction
In functional programming, a definition of a recursive function is tail recursive if the return
value of a function is the return value of a recursive call without alterations. Tail-recursive
functions are often more efficient to evaluate since one does not need to remember intermediate
variable bindings. This concept also yields improved efficiency in the evaluation of formulas
defined via fixpoints, cf. e.g. [13, 9]. For this, it is crucial that the interplay between the
fixpoints and the recursive definitions is not too complex.
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∅ ⊢tr p ∅ ⊢tr x ∅ ⊢tr χ {F} ⊢tr F
∅ ⊢tr φ

∅ ⊢tr ¬φ
V ⊢tr φ1 V ′ ⊢tr φ2

V ∪ V ′ ⊢tr φ1 ∨ φ2

∅ ⊢tr φ1 V ⊢tr φ2

V ⊢tr φ1 ∧ φ2

∅ ⊢tr φ1 V ⊢tr φ2

V ⊢tr E(φ1 UJ φ2)
∅ ⊢tr φ1 ∅ ⊢tr φ2

∅ ⊢tr A(φ1 UJ φ2)

V ⊢tr Φ ∅ ⊢tr φ1 · · · ∅ ⊢tr φn

V ⊢tr Φ(φ1, . . . , φn)
V ⊢tr φ

V \ {F} ⊢tr rec F(x1, . . . , xm).φ

Figure 1 Derivation rules for establishing tail-recursiveness. The sets V and V ′ denote the set of
free fixpoint variables of the formula in question.

In our setting this means that recursion variables cannot appear in an operand setting,
which is the equivalent to the above stipulation that the return value of a function is the return
value of the recursive call, emphwithout alterations. Moreover, we also can have (almost) no
branching introduced by boolean alternation, so at most one subformula of a formula of the
form φ1 ∧ φ2 can have free recursion variables. If this is satisfied, the formula without free
variables can be evaluated first in a suitable model-checking procedure (cf. [13]) until the
recursion resumes in the other subformula. Note that U-formulas introduce hidden branching
through their definition. The reason for this stipulation is that nondeterminism and universal
nondeterminism introduce branching in the flow of a program if both branches contain
recursive calls. However, it is well-known that space complexity classes from PSPACE
and upwards admit free nondeterminism via Savitch’s Theorem [20], hence one kind of
nondeterminism can be mixed with recursive calls. Boolean alternation, however, can not be
mixed with recursion without breaking this property. Since we make use of Savitch’s Theorem
to relax the requirements on disjunctions, we restrict boolean alternation. Also, this means
that we have to restrict the use of negation, which would turn nondeterministic branching
into universal branching. The above considerations are condensed into the derivation system
in Fig. 1, giving the following definition:

▶ Definition 4. A TRCTL formula φ is called tail recursive if the statement V ⊢tr φ for
some, potentially empty, set of recursion variables V can be derived in the derivation system
given in Fig. 1. We write trTRCTL for the fragment of all tail-recursive formulas.

The derivation system in Fig. 1 is to be understood as follows: The set V in front of the
⊢ simply collects the set of free recursion variables of the subformula in question. For
example, the subformula p has no free recursion variables, since it is a proposition, and
neither does the subformula x, since x is not a recursion variable. The system also enforces
the above stipulations: a formula directly under a negation can have no free recursion
variables, but note that something like ¬F . p ∨ E(q UJ F) is permitted. Disjunctions can
contain free recursion variables on both sides, while conjunctions, including those introduced
by U formulas, may contain free variables only on one side of the conjunction. The reason
for this is that the subformula that is closed w.r.t. recursion can be evaluated first in a
non-recursive fashion, and then recursion can proceed in a tail-recursive fashion on the other
side. Hence, rec F .E(z < 3 U F) is tail-recursive, but rec F(x).F(p) ∧ F(x ∨ z ≤ 2) is not
since it contains the recursion variable F on both sides of the conjunction.
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Finally, applications may not contain subformulas with free recursion variables on the
operand side. Hence, rec F(x).x ∧ F(F(E(z ≤ 3) U x)) is not tail recursive, and neither is
the formula constructed in Ex. 3. However, the one from Ex. 2 is tail recursive.

3.2 Model Checking in Exponential Space

Tail recursiveness can be applied to the untimed logic RecCTL resulting in the fragment
trRecCTL. Using the untiming construction we can then reduce the model checking problem
for trTRCTL over TA to that of trRecCTL (over an exponentially larger LTS) whose
complexity is not difficult to estimate.

▶ Theorem 5. Model checking trRecCTL is in PSPACE.

Proof. The model checking problem for (untimed, non-tail-recursive) RecCTL is known to
be EXPTIME-complete [11]. The argument for the upper bound uses a conceptually simple
polynomial translation into HFL1, the first-order fragment of Higher-Order Fixpoint Logic
whose model checking problem is known to be EXPTIME-complete [5]. The translation
from RecCTL to HFL1, when applied to a tail-recursive formula, also produces a formula of
tail-recursive HFL1. The model checking problem for this is known to be easier, namely only
PSPACE-complete [13], which establishes the claim. ◀

We now lift this to an upper bound for trTRCTL via standard constructions.

▶ Theorem 6. The trTRCTL model checking problem over TA is decidable in EXPSPACE.

Proof. Let φ ∈ trTRCTL and A be a TA not using the clock z. We construct an LTS Rφ
Az

by extending the original region graph RA for A to make clock values visible to the formula.
For each state [(ℓ, η)] and each c ≤ m(φ), add the proposition pz⊕c to λ([(ℓ, η)]) if
η |= z ⊕ c for ⊕ ∈ {≤, <,≥, >,=}.
For each state [(ℓ, η)] introduce a new state s[(ℓ,η)] with the sole label {rz}, and add
transitions [(ℓ, η)] −→ s[(ℓ,η)] −→[(ℓ, η|{z})].

The formula φz results from φ by replacing each subformula of the form
χ by pχ,
E(ψ1 U[c,d] ψ2) by EX(rz ∧ EXE((¬rz ∧ ψ1) U (¬rz ∧ pz∈[c,d] ∧ ψ2))),
A(ψ1 U[c,d] ψ2) by EX(rz ∧ EXA((¬rz → ψ1) U (¬rz → pz∈[c,d] ∧ ψ2))).

For open intervals on one side, the p-propositions are amended accordingly to pz>c etc.
We observe that φz is a formula of (untimed) tail-recursive RecCTL that is constructible

in time O(|φ|), and Rφ
Az is an (untimed) LTS of size at most (singly) exponential in |A| and

m(φ) and also constructible in such time. It is then standard to show, by induction on the
structure of φ, that TA |= φ iff Rφ

Az |= φz. This establishes an exponential reduction from
trTRCTL model checking to trRecCTL model checking and, thus, an EXPSPACE bound on
the former due to Thm. 5. ◀

4 An Exponential Space Lower Bound for Model Checking

The aim of this section is to provide a lower bound on model checking trTRCTL, matching
the exponential-space upper bound in Thm. 6. For this, we first introduce the exponential
corridor tiling problem ExpTiling, known to be EXPSPACE-complete.
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4.1 Exponential Space Complexity
A tiling system is a W = (T,H, V, tI , tF ) s.t. T is a finite set of tile types, H,V ⊆ T × T are
two binary relations on T called horizontal, resp. vertical matching relation, and t0 and tfin
are two designated so-called initial and final tiles.

A C ⊆ N × N is called closed, if for all (i, j) ∈ C we have:
if i > 0 then (i− 1, j) ∈ C, and
if j > 0 then (i, j − 1) ∈ C.

A (valid) W-tiling of such a closed subspace (for the tiling system W above) is a τ : C → T

that satisfies the following properties.
τ(0, 0) = tI ,
for all (i+ 1, j) ∈ C we have (τ(i, j), τ(i+ 1, j)) ∈ H,
for all (i, j + 1) ∈ C we have (τ(i, j), τ(i, j + 1)) ∈ V , and
there are i, j s.t. τ(i, j) = tF .

The exponential corridor tiling problem (ExpTiling) is the following.

given: a tiling system system W = (T, H, V, tI , tF ) and a number n encoded unarily
decide: is there an m and a valid W-tiling τ of the space [2n] × [m]?

In this case, we simply also say that there is a valid W-tiling on the 2n-corridor.
Note that |T |2n is an upper bound on the minimal m witnessing the existence of a

W-tiling. Also, we can always assume that tfin is placed in the final row m− 1, as any closed
subspace of a correctly tiled space which includes tfin can also be given a valid W-tiling.

Intuitively, the problem ExpTiling asks for the existence of a run of a nondeterministic,
exponential-space bounded Turing Machine such that the configurations are abstractly
represented as rows of tiles of width 2n. The vertical matching relation in the tiling assures
that each following configuration, resp. row, matches the one below according to a finite set
of rules (which can be used to model the local rewriting behaviour of a Turing Machine).
The horizontal matching relation is needed in order to assure that local transformations in a
Turing Machine configuration only happen in a single place, namely where the tape head
is located. A more detailed exposition and explanation of the connection between Turing
Machine runs and tilings can be found in [14, Sect. 11.1].

▶ Proposition 7 ([22]). The problem ExpTiling is EXPSPACE-complete.

We remark that ExpTiling is also EXPSPACE-hard when n is given in binary coding
but the upper bound would not hold anymore. Moreover, the reduction to model checking
trTRCTL presented below relies on the ability to write down clock constraints like x ≤ 2n − 1
in polynomial time using binary encoding. This would be rather difficult for n encoded
binarily.

4.2 The Reduction
Given a tiling system W = (T,H, V, tI , tF ) with designated initial and final tiles tI , tF ∈ T ,
and a number n ∈ N encoded unarily, we construct – in time polynomial in |W| and n – a
timed automaton AW with some location t0, and a trTRCTL formula φW,n s.t.

TW , [(t0, x 7→ 0)] |= φW,n iff there is a valid W-tiling on the 2n-corridor

where TW is the TLTS associated with the timed automaton AW . The single clock x involved
in this construction is never used in the TA’s transitions or locations. Instead it only occurs
in φW,n in order to state that something happens along runs during the first 2n − 1 units.
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In order to keep φW,n tail-recursive, we cannot mimic the reduction from a similar problem
showing 2-EXPTIME-hardness of model checking the full logic TRCTL. In that reduction,
the constructed formula employs a recursion subformula rec F(s, t). . . . with two parameters
s and t that encode, respectively, the indices of the coordinates of a tile. But then we would
have to state that the tile located at (s, t) matches its right neighbour horizontally and its
neighbour above vertically which leads to a body of the recursion formula, roughly containing
something like F(s′, t) ∧ F(s, t′) which renders the entire formula non-tail-recursive.

Instead, the trick is to construct φW,n such that it uses unary recursion formulas of the
form rec F(r) with a single propositional variable r only, interpreted as a set of states of
TW , encoding an entire row of a possible W-tiling. For this we simply let AW consist of |T |
many locations, arranged in a full clique such that, at any moment in time, a transition from
any t to any t′ (including t itself) is possible. We assume that T = {t0, . . . , tk−1} for some
k ∈ N, as we will need a total order on T later on. We also use T as atomic propositions and
let each location t satisfy the proposition t uniquely. Invariants or guards are not needed.
Hence, a run through TW can freely traverse through the locations in T and change between
them at any moment in time.

The crucial intuition for this reduction is the following: a valid W-tiling of the [2n] × [m]-
corridor exists for some m ≥ 1, iff there is a sequence R0, . . . , Rm−1 of rows, i.e. W-tilings of
the [2n] × [1]-corridor each, such that vertical matching is guaranteed between them. I.e. if
Ri = ti,0, . . . , ti,2n−1 and Ri+1 = ti+1,0, . . . , ti+1,2n−1 then (ti,j , ti+1,j) ∈ V for all j ∈ [2n].
Within each row, the horizontal matching relation needs to be obeyed of course.

The existence of such a sequence can be expressed by a recursion formula that, intuitively,
takes an initial row and, for as long as the current row is not final, generates vertically
matching successor rows and continues the search with one of them. For this we need to
encode such rows as formulas. Propositional formulas are interpreted as sets of states in TW ,
i.e. objects of the form [(t, x 7→ v)], since the locations are just the tiles from T and the only
clock that is used here is x. This gives rise to a canonical representation of such a row ri

as the set containing exactly the pairs (tij
, j) for j = 0, . . . , 2n − 1. For simplicity we write

(t, x) instead of [(t, x 7→ x)]. In the following, x will implicitly be understood as a value of
clock x. Moreover, we will write J·Kα for J·Kα

TW
.

▶ Definition 8. A propositional formula ψ is said to be a (representation of) a row candidate
(under α) if there are ti0 , . . . , ti2n−1 ∈ T s.t. JψKα = {(ti0 , 0), (ti1 , 1), . . . , (ti2n−1 , 2n − 1)}.

A row is such a row candidate that additionally satisfies: (tij
, tij+1) ∈ H for all j ∈ [2n−1].

Let first := t0 ∧ EF∗
=1(x = 2n−1) where EF∗

=1ψ := rec G.ψ ∨ EF=1G expresses that some
state satisfying ψ can be reached in an integer interval of time. It is satisfied by a state (t, x) iff
t = t0 and x ∈ [2n]. The second conjunct ensures that x must be an integer value. Hence, any
state in the set defined by first must combine these two properties. Since exactly the states
(t0, 0), . . . , (t0, 2n− − 1), satisfy both properties, first defines the set {(t0, 0), . . . , (t0, 2n − 1)}
or, likewise, it represents the row candidate t0, . . . , t0.

A row is a row candidate in which adjacent tiles match w.r.t. H. This is also easy to
express:

row(r) := AG≤2n−1
(
r →

∧
(t,t′)̸∈H

t → AG=1(r → ¬t′)
)

Here we use that AW forms a clique and uses no clocks. Hence, any state (t′, x′) of TW is
reachable from any state (t, x) for as long as x ≤ x′.
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▶ Lemma 9. Let α be an interpretation mapping the propositional variable r to a row
candidate α(r). Then (t0, 0) ∈ Jrow(r)Kα iff α(r) is in fact a row.

There is no reason other than notational canonicity to choose t0 as the location in which
row(r) is being evaluated. The statement also holds for any other location. What is important
for the following arguments is that it is evaluated in a state with clock value 0. In a state
(t, x) with x > 0 one simply cannot access all the tiles contained in a row candidate because
time only moves forward and states (t′, x′) with x′ < x are not reachable from (t, x).

The next construction is more involved. Ultimately, we want to enumerate all possible
row candidates in order to choose a next row in the iterative process described above. There
is a standard way of getting from one row candidate to a canonical next one. Starting with
the row candidate represented by first, we obtain the next one by incrementing a number
represented in base-|T | coding, making use of the total order on T given by the indices which
makes a row candidate ti0 , . . . , ti2n−1 as a base-|T | number with 2n many digits. However,
here we assume that the least significant digit is on the right, i.e. it is the one indexed 2n − 1.
The reason for this is that the value of a digit in an incremented number depends on the
values of the digits of lesser significance. In trTRCTL and a TA with no clock resets we can
only access the future, yet not the past. Letting earlier time moments represent digits of
higher significance allows for a simpler encoding of a base-|T | increment operation. Given
any row candidate Ri = ti,0, . . . , ti,2n−1, the next one Ri+1 is obtained using the well-known
mechanism of incrementing a number represented in base |T |:

ti+1,j =


t0 , if ti,h = tk−1 for all h = j, . . . , 2n − 1,
tm+1 , if ti,j = tm,m < k − 1 and ti,h = tk−1 for all h = j + 1, . . . , 2n − 1,
ti,j , if there is h > j s.t. ti,h ̸= tk−1.

This can straightforwardly be formalised as follows.

next(r) :=
(
t0 ∧ AG∗

=1(r → tk−1)
)

∨
( k−2∨

m=0
tm+1 ∧ EF=0(r ∧ tm)

)
∨

( k−1∨
m=0

tm ∧ EF=0(r ∧ tm)
)

∧ EF+
=1(r ∧ ¬tk−1)

where EF+
=1ψ := EF=1EF∗

=1ψ and AG∗
=1ψ := ¬EF∗

=1¬ψ.

▶ Lemma 10. Define a sequence of sets of states in TW as follows: R0 := JfirstK, Ri+1 :=
Jnext(r)K[r 7→Ri].
a) Ri is a row candidate for all i ≥ 0.
b) Let m := |T |2n . The sets R0, . . . , Rm−1 are pairwise different. Consequently, the sequence

R0, R1, . . . constitutes an enumeration of all possible row candidates for the given W.

Using this we can facilitate a search for a row (satisfying some formula ψ(r)) by enu-
merating all row candidates in a recursive iteration and terminating it when a proper row r

satisfying ψ(r) has been found.

∃rowr.ψ(r) :=
(

rec G(r).row(r) ∧ (ψ(r) ∨ G(next(r)))
)

(first)

▶ Lemma 11. Let ψ(r) be a formula. We have (t0, 0) ∈ J∃rowr.ψ(r)K iff there is a (represent-
ation of a) row R such that (t0, 0) ∈ Jψ(r)K[r 7→R], i.e. that satisfies ψ. Moreover, ∃rowr.ψ(r)
is tail-recursive if ψ(r) is so.
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A valid W-tiling is comprised of a sequence of rows, starting with an initial one and
ending in a final one. The initial one is such that its first tile, i.e. in position 0, is tI ; a final
row is one that contains the final tile tF . Both are easily specified as follows.

init(r) := AG=0(r → tI) final(r) := EF∗
=1(r ∧ tF )

▶ Lemma 12. Let R be a (representation of a) row.
a) (t0, 0) ∈ Jinit(r)K[r 7→R] iff (tI , 0) ∈ R, i.e. R starts with the initial tile.
b) (t0, 0) ∈ Jfinal(r)K[r 7→R] iff there is i ∈ [2n − 1] s.t. (tF , i) ∈ R, i.e. R contains the final

tile.

We now construct the overall formula φW,n such that, procedurally thinking, it facilitates
a search through the space of rows in order to decide the existence of a valid W-tiling. It
starts with some initial row, generates successors (which need to match vertically in all
positions of these rows), until a final row has been found. All that is needed at this point is
a formula that takes two rows r, r′ and decides whether r′ can be placed above r in a valid
W-tiling, i.e. in any position the tile in t vertically matches the one in t′ in this position.

match(r, r′) := AG∗
=1

( ∧
(t,t′)̸∈V

r ∧ t → AG=0(r′ → ¬t′)
)

Note that the right part of the implication in this formula asserts that, if a state (ℓ, η) is
contained in r, then any state (ℓ′, η), i.e. one with the same clock value, is such that the
locations ℓ and ℓ′ are tiles matching vertically.

▶ Lemma 13. Let R = tR0 , . . . , t
R
2n−1 and R′ = tR

′

0 , . . . , tR
′

2n−1 be two rows. We have
(t0, 0) ∈ Jmatch(r, r′)K[r 7→R,r′ 7→R′] iff (tRi , tR

′

i ) ∈ V for all i ∈ [2n], i.e. R′ matches vertically
onto R.

We can then put this all together as follows.

φW,n := ∃rowr0.init(r0) ∧
((

rec F(r).final(r) ∨ ∃rowr′.match(r, r′) ∧ F(r′)
)
(r0)

)
(1)

▶ Theorem 14. The model checking problem for trTRCTL over TA is EXPSPACE-hard.

Proof. By reduction from ExpTiling. From given W = (T,H, V, tI , tF ) and unary n ∈ N we
construct AW and φW,n as described above. It is not hard to see that this can be done in
time polynomial in |W | and n, as the clock constraints of the form x = 2n − 1 etc. can be
written in binary. This is where unary encoding of the parameter n in ExpTiling is needed.

Moreover, φW,n is easily seen to be tail recursive as each first-order fixpoint variable –
the F that is visible in (1) and the two G’s that are implicitly present in the definition of
the operator ∃row – only occurs once in its corresponding body. Note that other variables,
like those occurring in the macros EF∗

=1 etc., are propositional only. They also occur tail
recursively only but this is indeed not required for falling into the fragment trTRCTL.

At last, it remains to argue that the reduction is correct. Indeed, by Lemmas 9–13 we
have TW , (t0, 0) |= φW,n iff there is some m ≥ 1 and a sequence of rows R0, . . . , Rm−1 s.t.
R0 is initial, Rm−1 is final, and Ri+1 matches vertically onto Ri for all i = 0, . . . ,m− 2. In
other words, there is a valid W tiling for the [2n] × [m]-corridor. ◀
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5 Conclusion & Further Work

We have introduced trTRCTL, the tail-recursive fragment of TRCTL, and shown that its
model-checking problem is EXPSPACE-complete. This reinforces the observation made
in [10] that the complexity of TRCTL is dominated by the higher-order effects, since the
lower bounds are achieved using one clock only. Hence, adding real time to RecCTL simply
adds one exponential. Restricting the way recursion works reduces the complexity, while the
number of clocks has no impact beyond the first one. This is notably different for TCTL [19].

We have extablished EXPSPACE hardness for the combined complexity of the trTRCTL
model checking problem. However, we conjecture that the hardness result already holds for
the data complexity.

Given that we now have a sound understanding of the theoretical constraints w.r.t.
TRCTL and its derivatives, further research should be focused on practical applications or
adding expressive power. The first aspect concerns trTRCTL in particular, as the restriction
to tail recursive definitions opens up techniques like local model checking, cf. [9]. The second
aspect may include making even more aspects of clock values visible to the logic, for example
via so-called diagonal constraints. cf. [8].
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Abstract
Ensuring the correctness of distributed cyber-physical systems can be done at runtime by monitoring
properties over their behaviour. In a decentralised setting, such behaviour consists of multiple local
traces, each offering an incomplete view of the system events to the local monitors, as opposed
to the standard centralised setting with a unique global trace. We introduce the first monitoring
framework for timed properties described by timed regular expressions over a distributed network of
monitors. First, we define functions to rewrite expressions according to partial knowledge for both
the centralised and decentralised cases. Then, we define decentralised algorithms for monitors to
evaluate properties using these functions, as well as proofs of soundness and eventual completeness
of said algorithms. Finally, we implement and evaluate our framework on synthetic timed regular
expressions, giving insights on the cost of the centralised and decentralised settings and when to
best use each of them.
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Introduction

Modern systems tend to be more distributed and interconnected. Automated verification
methods are required to ensure those systems behave as they should. Moreover, their
interactions with their environment are getting increasingly unpredictable, which tends to
hinder static verification methods such as model checking, as they require a model of the
verified system and do not scale well. On the other hand, runtime verification [12, 4, 13]
requires no model. In this area, several monitoring methods detect if a system violates its
given specification based on events observed at runtime. In order to express finer properties
over more complex behaviour, several algorithms for monitoring properties based on real
continuous time have been proposed in [16] and [15]. However, these algorithms assume a
central observation point in the system, which might be less robust to an architecture change,
more vulnerable to outside attacks, or less compatible with the system’s architecture. For this
purpose, decentralised monitoring algorithms account for the absence of a central observation

© Victor Roussanaly and Yliès Falcone;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.roussanaly@inria.fr
mailto:ylies.falcone@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-0114-0641
https://doi.org/10.4230/LIPIcs.TIME.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Decentralised Runtime Verification of Timed Regular Expressions

point, e.g., [6] and [10]. Existing decentralised monitoring algorithms consider linear discrete
time and synchronous communication between the system components. In contrast, we
address the verification of timed properties of continuous time in an asynchronous setting.

We introduce a decentralised monitoring algorithm that uses local knowledge of the global
behaviour to express a verdict about a verified global timed property. In a synchronous
setting, while a component lacks information on what events happened in other components,
it can use a round-based approach to consider only a finite number of possibilities about
global behaviour. In contrast, in an asynchronous setting, for a given time interval, there are
no bounds on the number of events that can happen on another component, meaning that a
local monitor should take into account an infinite number of scenarios for the events that it
has not seen. Another challenge is that a monitor can be notified of past events from another
component and has to update its local knowledge accordingly. Indeed, a method is proposed
in [8] to account for a partial view of a global behaviour in a timed context, but it assumes
that events that have not been seen cannot be seen afterwards. In our case, we assume that
events that are not seen yet can still be seen in the future, and the local knowledge should
be updated accordingly.

In this paper, we introduce several algorithms for monitoring timed properties in a
decentralised setting, as well as an implementation to simulate and evaluate these algorithms.
In Sec. 1, we present timed regular expressions, which we use to specify timed properties, and
we explain how we evaluate them on a timed trace. After formally defining the decentralised
monitoring problem (Sec. 2), we define a progression function that updates timed regular
expression based on the local knowledge, first for the centralised setting and then for the
decentralised one (Sec. 3). Afterwards (Sec. 4), we define two algorithms for decentralised
monitoring of timed regular expressions, using the progression function mentioned above.
Finally (Sec. 5), we present our implementation and experimental results. We compare with
related work in Sec. 6 and conclude in Sec. 7.

1 Timed Words and Timed Regular Expressions

We recall the basic notions related to timed words, timed regular expressions, and regular
languages in Sec. 1.1, using the same formalism as in [3]. In Sec. 1.2, we introduce reduced
timed regular expressions and how to transform timed regular expressions into reduced ones,
as they will serve in our monitoring framework. In Sec. 1.3, we transpose the semantics of
timed regular expressions, from timed words to timed traces. We also propose new operators
for timed traces.

We start by defining some basic notation: I denotes the set of intervals in R+ and for
S a set, P(S) denotes the set of subsets of S. We also use · to denote the concatenation
between two words.

1.1 Timed Regular Expressions and Timed Regular Languages [3]
We recall the syntax and semantics of timed words and timed regular expressions. Let Σ be
an alphabet. A timed word (called time-event sequence in [3]) over the alphabet Σ is a word
of R+ ∪ Σ, composed of events in Σ and numerical values that represent delays, that is, the
time between two consecutive events. As such, two consecutive delays can be added, which
means that for two timed words u and v and for two delays x and y, u · x · y · v = u · (x + y) · v.
For example, 0.4 · 1.1 · b · a · 0.1 · 0.2 · c · 2.1 and 1.5 · b · a · 0.3 · c · 2.1 represent the same timed
word. We denote by T (Σ) the set of timed words over Σ and by ϵ the empty word. A subset
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of T (Σ) is called timed language. A function θ : Σ1 → Σ2 ∪ {ϵ} is called a renaming. We
consider its natural extensions Σ∗

1 → Σ∗
2 and T (Σ1) → T (Σ2), and we use the same symbol

θ to denote them.
We use the classical word concatenation denoted by ·, but we also need an absorbing

concatenation denoted by the operator ◦. Let us denote by δ : T (Σ) → R+ the function that
returns the sum of delays in a timed word. For two timed words u and v, if there exists a
word w such that δ(u) · w = v, then we can define u ◦ v = u · w. This means that u ◦ v is
defined if and only if v starts with a delay greater than the sum of delays in u, and if that is
the case, then we remove this delay from the front of v before concatenating it to u. For
example, (a · 2 · b) ◦ (3 · c) = a · 2 · b · 1 · c while (a · 2 · b) ◦ (1 · c) is not defined. Concatenation
operators are extended to timed languages in the classical way. Moreover, for n ∈ N and
n ≥ 2, Ln and L◦n respectively denote the language obtained by concatenating L with itself
using operators · and ◦, respectively; while L0 = L◦0 = {ϵ}.

▶ Definition 1 (Syntax of timed regular expressions). Timed regular expressions over Σ
are defined inductively by the following grammar where I ⊆ I, a ∈ Σ, L′ a timed regular
expression over Σ′ and θ : Σ′ → Σ ∪ {ϵ} a renaming:

L := ϵ | a | ⟨L⟩I | L ∧ L | L ∨ L | L · L | L ◦ L | θ(L′) | L⋆ | L⃝⋆

Intuitively, a timed regular expression can be, respectively, the empty word, the letter a

at any time, a language limited to time interval I, the conjunction (∧), disjunction (∨),
concatenation (·), and absorbing concatenation (◦) of two timed regular expressions, the
renaming obtained through function θ, as well as the Kleene star (⋆) and the Kleene star
using the absorbing concatenation (⃝⋆ ) applied to a timed regular expression. The set of
timed regular expressions obtained as above is denoted by E(Σ).

▶ Definition 2 (Semantics of timed regular expressions). The semantics of a timed regular
expression is the timed language defined inductively by function J·K : E(Σ) → P(T (Σ)):

JϵK = {ϵ},
JaK = {r · a | r ∈ R+},
JL1 ∧ L2K = JL1K ∩ JL2K,
JL1 ∨ L2K = JL1K ∪ JL2K,
JL1 · L2K = JL1K · JL2K,
JL1 ◦ L2K = JL1K ◦ JL2K,

J⟨L⟩IK = {u ∈ JL1K | δ(u) ∈ I},

JL⋆K =
∞⋃

i=0
JLiK,

JL⃝⋆ K =
∞⋃

i=0
JL◦iK,

Jθ(L)K = {θ(u) | u ∈ JLK}.

We call timed regular languages the languages defined by timed regular expressions.

▶ Example 3 (Timed regular expressions). Let us consider some alphabet {a, b}:
(a ∨ b)⋆ · (a ◦ ⟨b⟩[0;1]) · (a ∨ b)⋆ denotes the language of timed words where at some point b

occurs within one time unit after some a;
⟨a⟩⋆

[0;1] denotes the language of timed words composed of a’s where each event occurs
within one time unit from the previous one;
⟨a⟩⃝⋆

[0;1] denotes the language of timed words where all events occur within the first time
unit. Note that this is semantically equivalent to ⟨a⃝⋆ ⟩[0;1] and ⟨a⋆⟩[0;1].

Two timed regular expressions L and L′ are equivalent if their language is the same, that is,
JLK = JL′K.

1.2 Reduced Timed Regular Expressions
First, let us introduce reduced timed regular expressions.

TIME 2022
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▶ Definition 4 (Reduced timed regular expression). A reduced timed regular expression is a
timed regular expression where the time constraining operator ⟨·⟩I is applied only to singular
events.

Any timed regular expression can be rewritten into an equivalent reduced timed regular
expression that defines the same language.

▶ Proposition 5. Let L, L1, L2 be some timed regular expressions over Σ. We have:
J⟨L1 ∨ L2⟩IK = J⟨L1⟩I ∨ ⟨L2⟩IK,
J⟨L1 ◦ L2⟩IK = JL1 ◦ ⟨L2⟩IK,
Jθ(L)⟩IK = Jθ(⟨L⟩I)K,

J⟨L1 ∧ L2⟩IK = J⟨L1⟩I ∧ ⟨L2⟩IK,
J⟨L1 · L2⟩IK = JL1 · L2 ∧ ⟨Σ⃝⋆ ⟩IK,
J⟨ϵ⟩IK = {ϵ}, if 0 ∈ I, ∅ otherwise,

J⟨L⃝⋆ ⟩IK = J⟨ϵ⟩I ∨ ⟨L⃝⋆ ◦ L⟩IK = J⟨ϵ⟩I ∨ L⃝⋆ ◦ ⟨L⟩IK,
J⟨L⋆⟩IK = J⟨ϵ⟩I ∨ (⟨L⋆ · L⟩IK = J⟨ϵ⟩I ∨ (L⋆ · L ∧ ⟨Σ⃝⋆ ⟩I)K.

In the remainder, we only consider reduced timed regular expressions.

1.3 Semantics of Timed Regular Expressions over Timed Traces
In the context of decentralised monitoring, the monitor uses a trace as a sequence of time-
stamped events. Formally, a timed trace over the alphabet Σ is a finite word over Σ × R+

such that for two consecutive letters (α1, t1) and (α2, t2), we have t1 ≤ t2. A timed trace is
a sequence of events from Σ where each event is paired with the time at which it occurs. For
example, (a, 1.5) · (b, 3.1) · (a, 3.1) · (c, 3.4) is a timed trace. Additionally, we also consider
(ϵ, t) where ϵ is the empty word. Although this does not represent an observed event, it can
be used to represent the absence of such an event. It can be simplified if there is an element
following it with (ϵ, t) · (α, t′) = (α, t′) for α ∈ Σ. We denote by R(Σ) the set of timed traces
over Σ.

For π = (α1, t1) · · · (αn, tn) a timed trace, let us denote by τfirst(π) = t1 (resp. τlast(π) =
tn) the time at which the first (resp. last) event of π occurs. We denote by L↓t the language
represented by θϵ(⟨x⟩[t,t]) where θϵ is the renaming that maps everything to ϵ. Intuitively,
L↓t is the language of timed words {t · u | u ∈ JLK}. Similarly, we define L↑t by shifting all
the time constraints that appear before the first concatenation (·) in L by subtracting t. It
can be defined inductively as such:

a↑t = a,
(L1 ∧ L2)↑t = L1↑t ∧ L2↑t,
(L1 ∨ L2)↑t = L1↑t ∨ L2↑t,
(L1 · L2)↑t = L1↑t · L2,
(L1 ◦ L2)↑t = L1↑t ◦ L2↑t,

(⟨L⟩I)↑t = ⟨L↑t⟩I−t

L⋆↑t = L↑t ∨ L⋆,

L⃝⋆ ↑t = (L↑t)⃝⋆ ,

θ(L)↑t = θ(L↑t).

▶ Definition 6 (Semantics of timed regular expressions over timed traces). The semantics of a
timed regular expression is the set of timed traces defined inductively by function J·Ktr:

JϵKtr = {ϵ}
JaKtr = {(a, t) | t ∈ R+}
JL1 ∧ L2Ktr = JL1Ktr ∩ JL2Ktr
JL1 ∨ L2Ktr = JL1Ktr ∪ JL2Ktr
Jθ(L)Ktr = {θ(u) | u ∈ J(L)Ktr}

J⟨L⟩IKtr = {π ∈ JL1Ktr | τlast(u) ∈ I}

JL⋆Ktr =
∞⋃

i=0
JLiKtr

JL⃝⋆ Ktr =
∞⋃

i=0
JL◦iKtr

JL1 ◦ L2Ktr = {u · v | u ∈ JL1Ktr, v ∈ JL2Ktr}
JL1 · L2Ktr = {u · v | u ∈ JL1Ktr, v ∈ JL2↓τlast(u)Ktr}
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Let us denote by ω : R(Σ)T (Σ) the function that takes a timed trace (α1, t1) ·
(α2, t2) · · · (αn, tn) and returns the time word t1 · α1 · (t2 − t1) · α2 · (t3 − t2) · · · (tn − tn−1) · αn.
This function converts a timed trace into a timed word that represents the same sequence of
events over physical time.

▶ Proposition 7. For u ∈ R(Σ) and L ∈ E(Σ), u ∈ JLKtr if and only if ω(u) ∈ JLK.

Note that the timed words produced by function ω do not have a delay at the end. That
is why we denote by ∼ the relation defined by u ∼ v if and only if there exists x ∈ R such
that v = u · x or u = v · x. We can show that every equivalence class in T (Σ)/∼ has only
one representative that is an image of a timed trace by ω and this equivalence class has one
unique reverse image by ω−1.

▶ Corollary 8. For u ∈ T (Σ) and L ∈ E(Σ), u ∈ JLK if and only if there exists v ∈ T (Σ)
such that v ∼ u and ω−1(v) ∈ JLKtr.

This means that the language obtained by applying ω−1 to the language of timed words
of an expression is exactly the language of timed traces of that expression.

1.4 Global operators
Using the timed traces semantics, we introduce two new operators ⌊.⌋I and ⌈·⌉I . ⌈·⌉I is similar
to the ⟨·⟩I operators, except that it refers to global time. In this case, global does not refer to
the distributed nature of the systems we study, it means that it is based on the absolute time
of the events, and not the relative time between two events. Of course, this operator would
make no sense in the timed words definition of the semantics, as the concatenation of two
words change the value of this global time for the word on the right side of the concatenation.
This is why we express the semantics of these operators by extending J·Ktr.

J⌈L⌉IK = {u ∈ JLKtr | τlast(u) ∈ I} J⌊L⌋IK = {u ∈ JLKtr | τfirst(u) ∈ I}

We call global timed regular expressions an expression that contains these operators and
denote the set of expressions over Σ by GE(Σ).

▶ Proposition 9. For all L ∈ GE(Σ), there exists L′ ∈ E(Σ) such that JLKtr = JL′Ktr.

This can be proven through direct construction or by using the fact that timed regular
expressions are semantically equivalent to timed automata, and as such adding global
constraints does not add to the expressiveness of timed automata.

▶ Example 10. The expression ⟨a⟩[0;3] · (⟨b⟩[0;2])⃝⋆ · ⌊(a · b)+⌋[4;5] is semantically equivalent
to ⟨⟨a⟩[0;3] · (⟨b⟩[0;2])⃝⋆ · a⟩[4;5] · b · (a · b)⋆.

2 The Decentralised Timed Monitoring Problem

We formally state the decentralised timed monitoring problem as well as its objectives.

Context and notations. Let us suppose that the system at hand consists of n independent
components denoted by Ci, for 0 < i ≤ n. Each component Ci emits local events over a
local alphabet Σi. Let Σ =

⋃
i∈[1,n] Σi be the global alphabet of events. We assume that the

local alphabets form a partition of Σ, which means that if i ̸= j then Σi ∩ Σj = ∅. Let pi be
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the projection of a timed trace of R(Σ) onto R(Σi) and denote by p the function defined
by p(σ) = (p1(σ), p2(σ), ..., pn(σ)). As such, after observing our local traces σ1, σ2, ..., σn,
we can apply p−1 to obtain the possible global traces. We also note σ|t as the prefix of
σ, which contains all events that occur before t. To each component Ci is attached a
monitor Mi, which can observe a trace over Σi. We denote the verdict of a monitor by
Verdicti : R → {bad, inconclusive}. Monitors are purposed to detect violations.

Assumptions. Our assumptions on the system are as follows.
Messages can be exchanged between any pair of monitors.
The monitors only observe their local trace and the messages they receive.
If a message is sent, it is eventually received, which means that there is no loss of messages.
The communication is done through FIFO channels, meaning that the messages sent from
one monitor to another are received in the order they were sent.
All monitors share the same global clock, meaning that there are no clock drifts.

Objectives. Given some timed regular expression L, and a global trace σ, our goal is to
find an algorithm for the monitors such that the following properties hold.

▶ Definition 11 (Definitive Verdict). If there is a time t for which there is a verdict
Verdicti(t) = bad, then for all t′ ≥ t, Verdicti(t′) = bad.

▶ Definition 12 (Soundness). If there is a time t for which there is a verdict Verdicti(t) = bad
then σ|t is a bad prefix of L, i.e. for all σ′ ∈ R(Σ), if σ|t is a prefix of σ′ then σ′ /∈ JLKtr.

▶ Definition 13 (Eventual completeness). If there is a time t for which σ|t is a bad prefix of
L, then there is a delay t′ ≥ 0 such that Verdicti(t + t′) = bad.

The goal is for one monitor, using its partial knowledge, to deduce whether or not
its partial vision of the trace can be completed to be JLKtr.1 Moreover, we also aim to
minimise the time it takes to detect such a violation of the expression. Finally, to limit the
communication overhead, we also aim to limit the number of messages sent, as well as the
total size of the messages exchanged.

3 Progression for Timed Regular Expressions

We consider decentralised monitors that observe only their local events, indexed with the
time at which they happen. For a monitor of index i, we define a decentralised progression
function Pri : GE(Σ) → (Σ × R+) → GE(Σ), meaning a function that takes an event locally
observed (α, t) and a specification as a timed regular expression L, and returns an expression
that represents the new specification now that the monitor knows that (α, t) happened. In a
centralised case, where there is only one monitor observing the events in the same order they
occur, we denote such function Pr0 and it should satisfy the following property:

▶ Definition 14 (Centralised progression function). Pr0 : GE(Σ) → (Σ × R+) → GE(Σ) is a
centralised progression function iff for any expression L ∈ GE(Σ) and any trace event (α, t),
Pr0(L)(α, t) = {u | (t · α) ◦ u ∈ L}.

1 Note that we do not consider the alternative problem of determining that the trace will always be
in JLKtr for any possible future completion. This problem is, however, harder, as it requires testing
whether or not an expression denotes the universal language, which is undecidable.
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In other words, it is a left derivative. If a centralised monitor applies this function successively
as it observes the events, and the resulting expression represents the empty language, then the
monitor can produce a verdict. Whereas in the decentralised case where a monitor observes
a local event (α, t), there might have been other events happening in another component at
a time before t. In other words, for the decentralised case, Pri must satisfy the following
property:

▶ Definition 15 (Decentralised progression function). Pri : GE(Σ) → (Σ × R+) → GE(Σ) is
a decentralised progression function iff for any expression L ∈ GE(Σ) and any trace event
(α, t), we have: JPri(L)(α, t)Ktr = {u · v ∈ R(Σ) | u · (α, t) · v ∈ JLKtr ∧ u ∈ R(Σ \ Σi)}.

The above function is not a left derivative, as it allows events that are not from Σi

to occur before the observed event. We now propose a decentralised progression function
and detail its inductive definition. To define such a function, we define a filter function
Φ : GE(Σ) → P(Σ) → GE(Σ). The proper definition is given in the appendix. This function
is defined such that it removes events of a given alphabet from an expression.

▶ Proposition 16. For L ∈ GE(Σ) and Σ′ ⊆ Σ, JΦ(L)(Σ′)K = JL ∧ (Σ \ Σ′)⋆K.

In other words, function Φ takes an expression L ∈ GE(Σ) and an alphabet Σ′ ⊆ Σ and
returns an expression that represents the restriction of L to Σ\Σ′. Let us define a progression
function Pri for component Ci by looking at each case. First, let us look at the base cases:

Pri(a)(α, t) = ϵt, if α = a

Pri(⟨a⟩I)(α, t) = ∅, if t ̸∈ I

Pri(a)(α, t) = ∅, if α ̸= a

Pri(⟨a⟩I)(α, t) = Pri(a)(α, t), if t ∈ I
Pri(L1 ∨ L2)(α, t) = Pri(L1)(α, t) ∨ Pri(L2)(α, t)
Pri(L1 ∧ L2)(α, t) = Pri(L1)(α, t) ∧ Pri(L2)(α, t)

For those cases, the decentralised progression is straightforward, and if the event has been
observed, it is removed from the formula. Then, let us look at the absorbing concatenation:

Pri(L1 ◦ L2)(α, t) = (Pri(L1)(α, t) ◦ ⌊L2⌋[t;∞[) ∨ ⌈Φ(L1)(Σi)⌉[0;t] ◦ Pri(L2)(α, t)
Pri(L⃝⋆ )(α, t) = ⌈Φ(L)(Σi)⃝⋆ ⌉[0;t] ◦ Pri(L)(α, t) ◦ ⌊L⃝⋆ ⌋[t;∞[

For the absorbing concatenation ◦, we examine whether (α, t) corresponds to an event on
each side of the concatenation. If (α, t) is an event on the left side, then events on the right
side must have occurred later. Otherwise, if (α, t) is an event on the right side, then the
events on the left side must have happened earlier. Since they happened before the current
time, it means that the current monitor can not have seen them, so they cannot be events
from the monitor of index i.

Let us consider the progression for the global operators. For these cases, we use additional
notation. First, for I an interval and t ∈ R, we write t < I (resp. t > I) if and only if for all
t′ ∈ I, t < t′ (resp. t > t′). We also denote by I↓ the interval obtained by changing the lower
bound of I to 0 inclusive, and by I↑ the interval obtained by changing the upper bound of I

to ∞. Hence, we have:
Pri(⌈L⌉I)(α, t) = ⌈Pri(L)(α, t)⌉I↓, if t ∈ I

Pri(⌈L⌉I)(α, t) = ⌈Pri(L)(α, t)⌉I , if t < I

Pri(⌈L⌉I)(α, t) = ∅, otherwise

Pri(⌊L⌋I)(α, t) = ⌊Pri(L)(α, t)⌋I↑, if t ∈ I

Pri(⌊L⌋I)(α, t) = ⌊Pri(L)(α, t)⌋I , if t > I

Pri(⌊L⌋I)(α, t) = ∅, otherwise

For ⌈L⌉I , we note that if (α, t) happened and t ∈ I, then it means that we can apply the
progression to L provided that all other events occur before t or between t and the upper
bound of I, which means that they occur in I↓. On the other hand, if t < I, then it cannot
be the last event seen, and we are still waiting for an event in I. We have a similar approach
to ⌊L⌋I .
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Finally, let us consider the non-absorbing concatenation. We want something similar to ◦
for · where we consider whether the event occurred on the right or left side. The problem
here is that if the event happened on the right-hand side, then the result of our progression
function depends on the time of the last event on the left-hand side since the concatenation
“resets” the time at which we interpret the expression. Here we use the fact that the function
t′ → Pri(L↓t′)(α, t) is a piece-wise constant function. This means that we can look at a
finite number of possible intervals at which the last element of the left-hand side occurs. By
building those intervals and computing the expression associated with each one, we can build
a function ∆i : (GE(Σ) × I) → (Σ × R+) → P(I × GE(Σ)). A more detailed definition of
such a function is provided in the appendix.

Pri(L1 · L2)(α, t) =
∨

(I,L′)∈∆i(L2,R+)(α,t)

⌈Φ(L1)(Σi)⌉I · L′ ∨ Pri(L1)(α, t) · ⌊L2⌋[t;∞[

Pri(L⋆)(α, t) =
∨

(I,L′)∈∆i(L,R+)(α,t)
⌈Φ(L)(Σi)⋆⌉I · L′ · ⌊L⋆⌋[t;∞[

Pri(θ(L))(α, t) =
∨

α′∈u−1(α)
θ(Pri(L)(α′, t))

▶ Example 17. Let us consider the language L = (a ∨ b)⃝⋆ · ⟨a⟩[0;1] with Σ1 = {a}, Σ2 = {b}.
Then Pr1(L)(a, 2) = (⌈b⃝⋆ ⌉[0;2] ◦ ⌊(a ∨ b)⃝⋆ · ⟨a⟩[0;1]⌋[2;∞[) ∨ ⌈b⃝⋆ ⌉[1;2].
This means that, either the a observed was on the left of the concatenation, and in that case
we have the language defined by L where before the global time t = 2, there can only be b

events. Or the a observed was the one on the right side, so we can only observe events b that
preceded it, with the last b between the global time t = 1 and t = 2.

We prove in appendix that this is a decentralised progression function Pri following
Definition 15. As a consequence, we can prove the following theorem.

▶ Theorem 18. For all i, j, i ̸= j, for all a ∈ Σi and b ∈ Σj, for all ta, tb ∈ R+ for all
L ∈ GE(Σ), JPrj((Pri(L)(a, ta))(b, tb)Ktr = JPri((Prj(L)(b, tb))(a, ta)Ktr.

This means that the order at which we observe two events from two different monitors does
not matter, and we always obtain an equivalent expression. Note that in the case Σi = Σ,
then Pri also satisfies Definition 14 and we denote it Pr0, which means that we also have a
centralised progression function, defined as a specific case of our decentralised progression
function.

Let us inductively define function Pr∗ such that for (α, t) a trace event of Σi and π a
sequence of timed trace events, Pr∗(L)((α, t) · π) = Pr∗(Pri(L)(α, t))(π) and Pr∗(L)(ϵ) = L.
Note that we do not require π to be a timed trace, meaning that the events are not necessarily
ordered by ascending time.

▶ Corollary 19. For all L ∈ GE(Σ), for all π, π′ such that for all i, pi(π) = pi(π′),
JPr∗(L)(π)Ktr = JPr∗(L)(π′)Ktr

Corollary 19 implies that the order at which the events are observed does not change the
language we obtain, provided that the local order on each component is preserved.

4 Decentralised Monitoring

We define two algorithms to achieve decentralised monitoring for timed regular expressions.
Both algorithms allow detecting a violation of the specification at runtime. The first algorithm
simulates centralised monitoring, while the second algorithm leverages the decentralised
progression function.
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1 Li := specification for the system
2 when an internal event (t, α) is observed do
3 Send (Ci, α, t) to Ci+1

4 when a message (C, α, t) is received do
5 if k ̸= i then
6 add (α, t) to the memory
7 Send (C, α, t) to Ci+1

8 else
9 foreach (α′, t′) in the memory s.t.

t′ ≤ t (ordered by ascending t′) do
10 Li := Pr0(L)(α′, t′)
11 Remove (α′, t′) from memory
12 Li := Pr0(L)(α, t)
13 if JLiKtr = ∅ then
14 return bad verdict

(a) Centralised progression algorithm for Ci.

C0

C1

C2

C3

C4

0.8, b

0.8, b

(b) C3 sends its message when it observes b
at t = 0.8. When it receives it later (green
message), then it knows for sure that it has
seen all events up to t = 0.8.

Figure 1 Algorithm for decentralised monitoring using centralised progression.

4.1 Simulating Centralised Monitoring
We place ourselves under the assumptions we described in Sec. 2. That is to say that when a
message is sent, it is eventually received with no loss, and we assume sequential consistency,
meaning that when one component sends multiple messages to another component, then
they are received in the same order as they were sent. We also discard the possibility of two
events happening at the exact same time in two different components. Since we consider real
time, this is not something that would likely occur, but if it happened, we would not know in
which order to consider them. But it can also be said that if the order of two simultaneous
events on two different components mattered, then the specification would not be adapted to
the system either. Finally, we also consider that the components are connected in a ring, as
depicted in Figure 1b.

With these assumptions, let us consider that all components apply the algorithm shown
in Figure 1a. It means that a component sends events that it sees to its successor. When it
receives a message that it did not originate, it saves it into its memory and forwards it to its
successor. Using sequential consistency, the following property holds:

▶ Proposition 20. If Ci observes (α, t) and Ci′ observes (α′, t′) with t < t′, then Ci′ receives
the message (Ci, α, t) before (Ci′ , α′, t′).

From this, we can deduce that when a monitor receives a message it originated, then it
saw all the events that happened in the system up to the time when this message was first
created. So it can simulate centralised monitoring on its memory up to that point. Using
Proposition 20 and Definition 14 we can show the following.

▶ Theorem 21. Let σ ∈ R(Σ) be the global timed trace, L the initial expression, and let
(α, t) be the last event of this trace, with α ∈ Σi. After Ci receives its last message (Ci, α, t),
we have JLiKtr = {σ′ ∈ R(Σ) | σ · σ′ ∈ L}.
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Algorithm 1 Algorithm for Ci.

1 if i = 1 then
2 Li := specification
3 else
4 Li := waiting

5 when an internal event (α, t) is observed do
6 if Li = waiting then
7 add (α, t) to the memory
8 else
9 Li := Pri(L)(e, t)

10 if JLiKtr = ∅ then
11 return bad verdict

12 when an expression L is received do
13 Li = L foreach (α, t) in the memory do
14 Li := Pri(L)(α, t)
15 Remove (α, t) from the memory
16 if JLiKtr = ∅ then
17 return bad verdict

18 when urgent(Li) do
19 send Li to target(Li)
20 Li := waiting

Emptiness checking

We know that, if at some point JLiKtr = ∅ for some i, then the specification is violated.
This entails testing the emptiness of an expression. One way to do so is to build a timed
automaton that recognise the same language, using the construction shown in [3], as we know
that the problem of knowing whether or not the language of a timed automaton is empty is
PSPACE [1] and there are several tools that solve that problem. While this construction
ensures an emptiness check, it is costly, and it is desirable to avoid it at runtime. Instead,
we simplify the expression between each progression to detect when the denoted language is
empty. The simplification used in this work is very simple. First we simplify every ϵ, ϵt or ∅
that appear in the expression. Then we find nested time constraints in order to merge them
and simplify them as much as possible. This could be improved by simplifying conjunctions
and disjunctions, but simplification of timed regular expressions is not well documented, and
that is why we limit ourselves to these naive simplifications.

One could also notice that if JLiKtr = JΣ⋆Ktr then it means that from this point onward
the specification will always be satisfied. This means that we could possibly detect whether
or not the specification is sure to be satisfied if we can test whether or not the language
associated with the expression is universal. Unfortunately, this problem is not decidable in
the general case [2], and that is why we only propose verdict bad.

4.2 Using Decentralised Progression
We now consider another approach where monitors do not exchange observed events, but
instead there is one running expression passed along the monitors and that is updated with
their progression function. In that case, at any given time, there is at most one monitor
holding the expression and being marked as active. Monitors that are not active are only
observing local events and recording them in their local memory. The active monitor updates
a running expression using decentralised progression, based on its local observations. At
some point, it passes this expression to another monitor and becomes not active. The
monitor that receives that expression updates it with its own memory of observed events and
becomes active. This is shown in Algorithm 1. Hence, in that case, we do not need sequential
consistency, nor do we need the assumption of the components communicating in a ring.
This algorithm uses two functions, urgent(Li) and target(Li). These functions decide when
we want to pass the expression and to whom we want to pass it. There are several possible
ways to implement them, as long as the expression is eventually passed to every component.
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In that case, the verdict reached by this algorithm is eventually the same as the centralised
monitoring as a direct consequence of Corollary 19. We propose the following implementation
of these functions. Function urgent(L) replaces every occurrence of ⌈L′⌉I by ∅ and checks
whether the resulting expression represents the empty language. If it is not empty, then
it means that the specification can still be satisfied, even if nothing has been seen by the
other monitors, and the active monitor returns false. Otherwise it means that we want to
know what the other monitors observed and it returns true. The function target(Li) can be
implemented in multiple ways. First, we consider choosing target(Li) = i + 1 mod n, which
gives us something similar to the centralised approach, where the messages are sent to the
successor along the ring. We also propose another implementation where we try to detect
which monitor is the most relevant for the past constraints ⌈L⌉I present in the formula and
choose it as the target.

Note that this approach has several advantages. The main one being that a monitor can
decide that the specification has been violated even if it has only a partial view and has
not communicated with all the other monitors. This also means that less messages can be
exchanged, so the impact of communication delays is reduced. The next section describes
experiments with these approaches.

5 Simulation and Benchmarks

In this section, we validate the effectiveness of our decentralised monitoring approaches by
showing the benefits over an approach that simulates centralised monitoring. For this, we
first briefly describe the implementation of our monitoring algorithms (Sec. 5.1). Then,
we detail our experimental setup (Sec. 5.2) and obtained results, as well as some of the
conclusions drawn (Sec. 5.3).

5.1 Implementation as an OCaml Benchmark
We implemented a simulation environment for the methods described in the previous sections.
For this, we extended DecentMon [6, 7], an OCaml benchmark for decentralised monitoring
in the discrete-time setting. We extended it to our timed setting and added support for
regular timed expressions and timed traces. We implemented progression-based monitoring
for the two methods. The extension for the timed setting consists of 1,400 LLOC. For the
approach based on decentralised progression, we consider the following two alternatives for
the target component chosen by a monitor when sending a message: (i) a dynamic approach
where the target component is chosen based on the current expression, and (ii) a static
approach where the target is chosen as the successor in a directed ring, as explained in the
previous section.

5.2 Experimental Setup
We test and compare the three approaches for decentralised monitoring of timed regular
expressions: (i) simulating centralised, (ii) decentralised with a dynamic target, and (iii)
decentralised with a static ring target. We consider a network of 10 monitors, each of them
capable of observing a different event. We consider the communication delay when a message
is sent as a random value between 0 and 40 units of time. Timed regular expressions are
not commonly used, since people prefer timed automata that are as expressive as timed
regular expressions. This means that one approach could have been to take a benchmark
of timed automata, compute a set of equivalent expressions and use them as a benchmark.
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Table 1 Summary of the experimental results.

Algorithm Target messages # progressions decision time
# sent total size

Centralised – 278.50 10305 278.50 257.99
dynamic 5.91 539426 10.46 142.71Decentralised

static 6.70 376944 11.78 143.78

But this poses a problem as the performance would be affected by our choice of equivalent
expression. Another difficulty is the absence of reference benchmark for timed decentralised
monitoring. That is why in this context, we choose to generate random timed regular
expressions. We generate 100 expressions of a fixed size, for each size between 2 and 8. For
the time constraints that may appear, we randomly chose the lower bound between 0 and
30, and the upper bound is ∞ or a sum between the lower bound and an integer chosen
randomly between 0 and 30. For each of these expressions, we generate 100 timed traces of
length 200, with a delay between two consecutive events chosen randomly between 0 and 10.
Note that a randomly generated trace will most likely not respect a random specification,
and the progression will find an empty language after a couple of steps. In order to avoid
those cases, we ensure that for an expression of size k, the progressed expression is not empty
after observing the first 5 × k events. To do so, we discard expressions where we cannot find
such a trace in a reasonable time. For each trace, we perform monitoring according to the
three aforementioned approaches.

During each experiment, we record the number of messages sent, the total size of the
messages sent, the number of progressions performed, and the time taken to reach a verdict.
This results in 2,900,000 tests for each of the three algorithms.

We evaluate the algorithms along three dimensions that are relevant for decentralised
monitoring.

Communication (messages). We measure the total number and size of the messages
exchanged by the monitor. Since there are between 8 and 16 operators, they are encoded
over 4 bits. The time values in timed constraints are encoded over 32 bits. There are 10
possible events encoded over 4 bits
Computation (progressions). We measure the total number of calls to the progression
functions defined in the previous sections, including the recursive calls.
Delay (decision time). We measure the time it takes for one of the monitors to detect
that the current global trace violates the monitored timed regular expression.

Note that here we do not consider the computation time associated with each progression
computation. We consider that this time should be negligible compared to the communication
delays.

5.3 Results and Discussion
Tab. 1 reports the results of our experiments, reporting the average values for each of the
metrics. In the following, we discuss the results and conclude.

First, let us compare the two decentralised approaches. Choosing a dynamic target gives
us slightly better results on all metrics, except for the size of the messages. The difference
remains marginal, and it seems that in our experiments, dynamically choosing the target
does not give a significantly shorter decision time. Of course, this stems from the choice
function, which can be improved, as it showed poor results in some specific cases. Although
these are seldom, their impact on the average values is noticeable. We believe that a more
in-depth analysis of these cases can give us a better choice of target.
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However, the performance of the decentralised approach is significantly better than that
of the centralised approach, where the number of messages and progressions is higher. Indeed,
in the centralised approach, every monitor records each event and sends a message for each
one, meaning that each monitor applies many progressions. This is not the case in the
decentralised approach, where only a few messages are seen by each monitor. It is also shown
that the time required to pass observations along all monitors in the centralised approach
is much longer. Indeed, in order to apply the progression function on a local event it has
observed, a monitor has to wait for it to circulate along all the other monitors; with 10
monitors and an average communication delay of 20 time units, it means that the monitor
has to wait on average for 200 time units.

Of course, the trade-off can be seen in the size of the sent messages. This is because
the centralised approach sends timed events, while the decentralised approach sends timed
expressions. Those expressions are written with timed constraints, that tend to pile up
after several progressions, and that increase the size of the expression. However, we can
imagine two ways to alleviate this issue. The first would be to improve the simplification
of expressions to reduce the size of expressions, possibly by simplifying some global time
constraints or some conjunctions.

Another idea would be to send either a history of the timed events or an expression
depending on which one is smaller. Indeed, each monitor could compute the expression if it
received some history of the timed events. This approach is hard to implement, as it would
mean that monitors should remember what other monitors have seen so far.

Another data that we did not show in the table is the impact of the communication delay
relative to the delay between consecutive events. In fact, with higher communication delays,
the simulated centralised approach has a decision time that increases much more than the
decentralised approach. This is because the centralised method requires the message to travel
along the entirety of the ring before taking any decision, which slows down the decision
time proportionality to both the number of monitors and the delay of communication. This
is less of a problem for the decentralised approach, which can decide by exchanging fewer
messages between a few monitors. In our tests, we have even seen that in many cases, the
decentralised approach decided with fewer messages as we increased the communication
delay. This happens because when a message is received after being in transit for a long time,
the receiving monitor has had enough time to build a long history that would violate the
property. So we can deduce that when the communication delay is high, the decentralised
approach should be the main option.

6 Related Work

As this paper introduces decentralised runtime verification for timed properties described by
timed regular expressions [3], the related approaches consist of those for monitoring timed
properties and those decentralising the monitoring process. In monitoring timed specifications,
research efforts have mainly focused on synthesising decision procedures (monitors) for timed
properties. Bauer et al. [5] introduce a variant of Timed Linear-time Temporal Logic (TLTL),
a timed extension of Linear-time Temporal Logic, with a semantics tailored for runtime
verification defined on finite traces. They additionally synthesise finite-trace monitors from
TLTL formulas. Metric Temporal Logic (MTL) is another extension of LTL, with dense time.
Nickovic et al. [16] translate MTL formulas into timed automata and Thati et al. [18] use a
tailored progression function to evaluate formulas at runtime. More recently, Grez et al. [15]
consider the monitoring problem for timed automata by introducing a data structure that
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allows the monitoring of a non-deterministic 1-clock automaton. Pinisetty et al. [17] introduce
a predictive setting for runtime verification of timed properties leveraging reachability analysis
to anticipate the detection of verdicts. Specific to timed regular expressions [3], Montre [21]
is a tool monitoring using timed pattern matching. The mentioned approaches consider that
the monitored system is centralised, and the decision procedure is fed with a unique trace
containing complete observations.

Decentralised runtime verification has been introduced in [6], see [10] for a recent overview.
Approaches in decentralised runtime verification take as input Linear-time Temporal Logic
formulas such as [6, 7, 14] or finite-state automata such as in [11, 9]. All these approaches
monitor specifications of discrete time, which is much simpler and does not account for the
physical time that impacts the evaluation of the specification as well as the moment at which
monitors perform their evaluation.

Finally, we note that decentralised runtime verification resembles diagnosis [22, 23], which
tries to detect the occurrence of a fault after a finite number of discrete steps and the
component responsible for the fault. Our approach differs from diagnosis, as we assume that
monitors’ (combined) local information suffices to detect violations. However, in diagnosis,
the model of the system is taken as input, and a central decision-making point is assumed.
Similar to diagnosis, there is decentralised observability [19, 20] that combines the state of
local observers with locally or globally bounded or unbounded memory to get a truthful
verdict. While [19] requires a central decision-making point, the recent approach in [20]
introduces the “at least one can tell” condition, which characterises when local agents can
evaluate the global behaviour. While this approach, like ours, does not require a central
observation point, it does not allow monitoring of the membership to an arbitrary timed
regular expression.

7 Conclusion and Perspectives

We have introduced centralised and decentralised progression for timed regular expressions
and have shown how it can be used to implement several algorithms to achieve decentralised
monitoring of timed properties described by timed regular expressions. While several
approaches exist for decentralised monitoring of untimed properties and centralised monitoring
of timed properties, this is the first realisation of decentralised monitoring of timed properties.
We have implemented the decentralised monitoring algorithms and evaluated their runtime
behaviour costs in metrics relevant to decentralised monitoring.

These results give insights and research directions to improve these methods, such as using
better simplification rules or having a better choice of targets when the expression is passed
between monitors. Alternatively, decentralised monitoring approaches can be designed for
properties described by timed automata, as they are well adopted in the community. Since
there is an equivalence between timed regular expressions and timed automata, one could
simply implement the transformation from automata to expressions. However, we believe
that finding an analogue of progression for timed automata seems promising, as it could
outperform the methods shown in this paper using knowledge of the states and transitions,
as in [11] with finite-state automata. Finally, another perspective is to define progression
for Metric Temporal Logic (MTL). Indeed, if we find a progression that satisfies the same
properties as those shown in this paper, the same algorithms can be applied.
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A Definition of Φ

Φ(a)(Σ′) = a if a ̸∈ Σ′

Φ(⟨a⟩I)(Σ′) = ⟨a⟩I if a ̸∈ Σ′

Φ(L⃝⋆ )(Σ′) = Φ(L)(Σ′)⃝⋆

Φ(⌈L⌉I)(Σ′) = ⌈Φ(L)(Σ′)⌉I

Φ(θ(L))(Σ′) = θ(Φ(L)(θ−1(Σ′)))

Φ(a)(Σ′) = ∅ if a ∈ Σ′

Φ(⟨a⟩I)(Σ′) = ∅ if a ∈ Σ′

Φ(L⋆)(Σ′) = Φ(L)(Σ′)⋆

Φ(⌊L⌋I)(Σ′) = ⌊Φ(L)(Σ′)⌋I

Φ(L1 ∨ L2)(Σ′) = Φ(L1)(Σ′) ∨ Φ(L2)(Σ′)
Φ(L1 ∧ L2)(Σ′) = Φ(L1)(Σ′) ∧ Φ(L2)(Σ′)
Φ(L1 ◦ L2)(Σ′) = Φ(L1)(Σ′) ◦ Φ(L2)(Σ′)
Φ(L1 · L2)(Σ′) = Φ(L1)(Σ′) · Φ(L2)(Σ′)

B Definition of ∆i

For I, I ′ two intervals, we denote I ◁ I ′ = {x ∈ I | ∀t ∈ I ′, x < t}.
And I ▷ I ′ = {x ∈ I | ∀t ∈ I ′, x > t} such that I ◁ I ′, I ▷ I ′ and I ∩ I ′ are always a
partition of I. We define ∆i as follows:
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∆i(a, I)(α, t) = {(I, ϵ)} if α = a.
∆i(a, I)(α, t) = {(I, ∅)} otherwise.
∆i(⟨a⟩I′ , I)(α, t) = {(I ▷ I ′, ∅); (I ◁ I ′, ∅); (t − I ′ ∩ I, ϵ)} if α = a.
∆i(⟨a⟩I′ , I)(α, t) = {(∅, I)} otherwise.
∆i(L1 ∨ L2, I)(α, t) =
{(I1 ∩ I2, L′

1 ∨ L′
2) | (I1, L′

1) ∈ ∆i(L1, I)(α, t), (I2, L′
2) ∈ ∆i(L2, I)(α, t)}

∆i(L1 ∧ L2, I)(α, t) =
{(I1 ∩ I2, L′

1 ∧ L′
2) | (I1, L′

1) ∈ ∆i(L1, I)(α, t), (I2, L′
2) ∈ ∆i(L2, I)(α, t)}

∆i(L1 ◦ L2, I)(α, t) = {(I1 ∩ I2, L′
1 ◦ ⌊L2⌋[t;∞[ ∨ ⌈Φ(L1)(Σi)⌉[0;t] ◦ L′2) | (I1, L′

1) ∈
∆i(L1, I)(α, t), (I2, L′

2) ∈ ∆i(L2, I)(α, t)}
∆i(L⃝⋆

1 , I)(α, t) =
{(I1, ⌈Past(L1)(Σi)⃝⋆ ⌉[0;t] ◦ L′1 ◦ ⌊L⃝⋆

1 ⌋[t;∞[) | (I1, L′
1) ∈ ∆i(L1, I)(α, t)}

∆i(L1 · L2, I)(α, t) =
{(I1, (

∨
(I2,L′

2)∈∆i(L2,I)(α,t)
⌈Φ(L1)(Σi)) · L′

2⌉I2 ∨ L′
1 ◦ ⌊L2⌋[t;∞[) | (I1, L′

1) ∈ ∆i(L1, I)(α, t)}

∆i(L⋆
1, I)(α, t) = {(I1,

∨
(I1,L′

1)∈∆i(L1,I)(α,t)
⌈Φ(L1)(Σi)⋆⌉I1 · L′

1 · ⌊L⋆
1⌋[t;∞[)}

This function satisfies the following properties.

∀t, I, L, ∀(I ′, L′) ∈ ∆i(L, I)(α, t), ∀t′ ∈ I ′, L′ = Pri(L ↓t′)(α, t)
∀t, I, L, ∀(I1, L1), (I2, L2) ∈ ∆i(L, I)(α, t), (I1, L1) ̸= (I2, L2) ⇔ I1 ∩ I2 = ∅

∀t, I, L,
⋃

(I′,L′)∈∆i(L,I)(α,t)

I ′ = I

C Proof that Pri is a decentralised progression function

Proof. Let us prove this by induction. We will consider the cases that are not immediately
apparent :

Let L = L1 ◦ L2. Let us prove the double inclusion.
1. Assume u ∈ JPri(L)(α, t)Ktr. There are then two possible cases.

First case: u ∈ JPri(L1)(α, t) ◦ ⌊L2⌋[t;∞[Ktr which means that u = u1 · u2 with
u1 ∈ JPri(L1)(α, t)Ktr and u2 ∈ JL2Ktr and τfirst(u2) ≥ t. Using our induction
hypothesis u1 = v1 · v2 with v1 · (α, t) · v2 ∈ L1 and v1 ∈ R(Σ \ Σi). Therefore, we
proved v1 · (α, t) · v2 · u2 ∈ JLKtr.
Second case u ∈ J⌈Φ(L1)(Σi)⌉[0;t] ◦ Pri(L2)(α, t)Ktr, then it means that u = u1 · u2
with u1 ∈ JΦ(L1)(Σi)Ktr and u2 ∈ JPri(L2)(α, t)Ktr. This means that u1 ∈ JL1Ktr ∩
R(Σ \ Σi). Using our induction hypothesis, we have u2 = v1 · v2 with v1 · (α, t) · v2 ∈
JL2Ktr and v1 ∈ R(Σ \ Σi). We can then deduce u1 · v1 · (α, t) · v2 ∈ JLKtr and
(u1 · v1) ∈ R(Σ \ Σi)

This means that in both cases u ∈ {u′ · v′ | u′ · (α, t) · v′ ∈ JLKtr and u′ ∈ R(Σ \ Σi)}
2. Let us prove the other side of the inclusion. Let us assume u and v such that

u · (α, ) · v ∈ JLKtr ∧ u ∈ R(Σ \ Σi)}. This means that u · (α, t) · v = u′ · v′ with
u′ ∈ JL1Ktr and v′ ∈ JL2Ktr. We can then deduce that we either have u′ = u · (α, t) · v1
or have v′ = u1 · (α, t) · v. In other words, we have either u · v1 ∈ JPri(L1)(α, t)Ktr
with v′ ∈ J⌊L2⌋[t,∞[Ktr or u1 · v ∈ JPri(L2)(α, t)Ktr with u′ ∈ L1 and in the last
case, every element before (α, t) cannot contain elements of Σi, therefore it must be
true for u′ which means u′ ∈ J⌈Φi(L1)(Σi)⌉[0;t]Ktr. This means that in both cases
u · v ∈ JPri(L)(α, t)Ktr
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If L = L⃝⋆
1 .

1. Let us assume u ∈ JPri(L)(α, t)Ktr. This means that u = u1 · u2 · u3 with u1 ∈
J⌈Φ(L1)(Σi)⃝⋆ ⌉[0;t]Ktr, u3 ∈ J⌊L⃝⋆

1 ⌋[t;∞[Ktr and u2 ∈ JPr1(L1)(α, t)Ktr. Therefore, we
know that u1 ∈ JL⃝⋆

1 Ktr, u1 ∈ R(Σ \ Σi), and u2 = v1 · v2 with v1 · (α, t) · v2 ∈ JL1Ktr.
Hence u1 · v1 · (α, t) · v2 · v3 ∈ JL⃝⋆

1 Ktr with u1 · v1 ∈ R(Σ \ Σi)
2. Now to prove the other inclusion. Let us assume u · v such that w = u · (α, t) · v ∈ JLKtr.

Since w is not empty, it is equal to w1 · w2 · .... · wn, with wi ∈ JL1Ktr. Because
we know that w contains (α, t), we can denote by k the index of the wi containing
this event. In other words, we have wk = u′ · (α, t) · v′ ∈ JL1Ktr, which means that
u′ · v′ ∈ JProgi(L1)(α, t)Ktr. This proves that u · v = w0 · ... · wk−1 · u′ · v′ · wk+1 · ...wn ∈
J⌈Φ(L1)(Σi)⃝⋆ ⌉[0;t] ◦ Pri(L1)(α, t) ◦ ⌊L⃝⋆

1 ⌋[t;∞[Ktr
Let L = L1 · L2. Let us prove the double inclusion.

1. Assume u ∈ JPri(L)(α, t)Ktr. There are then two possible cases.
First case: u ∈ JPri(L1)(α, t) ◦ ⌊L2⌋[t;∞[Ktr then means that u = u1 · u2 with
u1 ∈ JPri(L1)(α, t)Ktr and u2 ∈ JL2 ↓τlast(u1)Ktr and τfirst(u2) ≥ t. Using our
induction hypothesis u1 = v1 · v2 with v1 · (α, t) · v2 ∈ L1 and v1 ∈ R(Σ \ Σi). This
allows us to conclude that v1 · (α, t) · v2 · u2 ∈ JLKtr.
Second case: There is (I, L′) ∈ ∆i(L2,R+)(α, t) such that u ∈ J⌈Φ(L1)(Σi)⌉I ·
L′(α, t)Ktr. It means that u = u1 · u2 with u1 ∈ JΦ(L1)(Σi)Ktr and u2 ∈ JL′(α, t)Ktr.
This means that u1 ∈ JL1Ktr∩R(Σ\Σi). Taking into account the first property of ∆i,
we can also see that u2 ∈ JPri(L2 ↓τlast(u1))(α, t)Ktr. Using our induction hypothesis,
we have u2 = v1 · v2 with v1 · (α, t) · v2 ∈ JL2 ↓τlast(u1)Ktr and v1 ∈ R(Σ \ Σi).
Therefore, we have u1 · v1 · (α, t) · v2 ∈ JLKtr and (u1 · v1) ∈ R(Σ \ Σi)

2. Let us prove the other side of the inclusion. Assume u and v such that u · (α, ) · v ∈
JLKtr ∧ u ∈ R(Σ \ Σi)}. This means that u · (α, t) · v = u′ · v′ with u′ ∈ JL1Ktr and
v′ ∈ JL2 ↓τlast(u′)Ktr. We can deduce that we have u′ = u · (α, t) · v1 or we have
v′ = u1 · (α, t) · v.
In other words, we have u · v1 ∈ JPri(L1)(α, t)Ktr with v′ ∈ J⌊L2⌋[t,∞[Ktr or we have
u1 · v ∈ JPri(L2 ↓τlast(u′))(α, t)Ktr with u′ ∈ L1. In the first case, we have u · v ∈
JPri(L)(α, t)Ktr.
Let us look at the other case. Every element before (α, t) cannot contain elements
of Σi, therefore it must be true of u′, which means u′ ∈ JΦi(L1)(Σi)Ktr. Using the
second and third properties of ∆i, we can see that there is one and only one (I, L′) ∈
∆i(L2,R+)(α, t) such that τlast(u′) ∈ I. That means we have u′ ∈ J⌈Φi(L1)(Σi)⌉IKtr
and u1 · v ∈ JL′Ktr. We then proved in both cases that u · v ∈ JPri(L)(α, t)Ktr.

If L = L⋆
1.

1. Assume u ∈ JPri(L)(α, t)Ktr. This means that there is (I, L′) ∈ ∆i(L1,R+)(α, t) such
that u = u1 ·u2 ·u3 with u1 ∈ J⌈Φ(L1)(Σi)⋆⌉IKtr and u3 ∈ J⌊L⋆

1⌋[t;∞[ ↓τlast(u2)Ktr as well
as u2 ∈ JL′Ktr. Using the first property of ∆i, this means u2 ∈ JPri(L1 ↓τlast(u1))(α, t)Ktr.
In other words, we know that u1 ∈ JL⋆

1Ktr, u1 ∈ R(Σ \ Σi) and u2 = v1 · v2 with
v1 · (α, t) · v2 ∈ JL1 ↓τlast(u1)Ktr. We can then deduce that u1 · v1 · (α, t) · v2 · v3 ∈ JL⋆

1Ktr
with u1 · v1 ∈ R(Σ \ Σi)

2. Now to prove the other inclusion. Assume u · v such that w = u · (α, t) · v ∈ JLKtr.
Since w is not empty, w = w1 · w2 · .... · wn, with wi ∈ JL1 ↓τlast(wi−1)Ktr. Because
we know that w contains (α, t), we can denote by k the index of wi that contains
this event. In other words, we have wk = u′ · (α, t) · v′ ∈ JL1 ↓τlast(wk−1)Ktr, which
means that u′ · v′ ∈ JProgi(L1 ↓τlast(wi−1))(α, t)Ktr. Using the second and third
properties of ∆i we deduce that there is one and only one (I, L′) ∈ ∆i(L1,R+)(α, t)
such that τlast(wk−1) ∈ I and in that case we have wk ∈ JL′Ktr. This shows that
u · v = w0 · ... · wk−1 · u′ · v′ · wk+1 · ...wn ∈ J⌈Φ(L1)(Σi)⋆⌉I · L′ · ⌊L⋆

1⌋[t;∞[Ktr. ◀
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Abstract
A chronicle is a temporal model introduced by Dousson et al. for situation recognition. In short,
a chronicle consists of a set of events and a set of real-valued temporal constraints on the delays
between pairs of events. This work investigates the relationship between chronicles and classical
temporal-model formalisms, namely TPTL and MTL. More specifically, we answer the following ques-
tion: is it possible to find an equivalent formula in such formalisms for any chronicle? This question
arises from the observation that a single chronicle captures complex temporal behaviours, without
imposing a particular order of the events in time.

For our purpose, we introduce the subclass of linear chronicles, which set the order of occurrence
of the events to be recognized in a temporal sequence. Our first result is that any chronicle can
be expressed as a disjunction of linear chronicles. Our second result is that any linear chronicle
has an equivalent TPTL formula. Using existing expressiveness results between TPTL and MTL,
we show that some chronicles have no equivalent in MTL. This confirms that the model of chronicle
has interesting properties for situation recognition.
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1 Introduction

The problem of representing complex behaviours has a lot of applications to monitor dynamic
systems based on their functioning traces. Detecting complex behaviours in these traces is
useful to identify a faulty state of a system or to label traces with higher-level events.

One possible application of this problem is the improvement of health-care systems.
A major issue is to evaluate the incidence of a disease or a treatment in a real-world population.
This can be done through the analysis of Electronic Health Records (EHR). EHR are health-
administrative databases that gather all delivered cares at hospital. This gives a longitudinal
view – or a temporal trace – of patients’ treatments and their responses. The difficulty with
EHR data is that they do not necessarily hold the desired medical information (such as
the patient’s medical status). This requires to infer the medical status of a patient from
observable information.

A practical solution is to define a proxy of a status by a complex situation to match with
patient’s care pathways. Such proxy is called a computable-phenotype or a phenotype [8].
The more expressive the phenotype language, the more accurate the evaluation of incidence.

Then, we advocate for the primary importance of the temporal dimension to accurately
represent phenotypes. Indeed, systems such as GLARE [25] emphasize management of
temporal knowledge to formalize clinical guidelines, including comprehensive treatment of
temporal constraints. But, contrary to clinical guidelines that uses complex reasoning on
few care pathways (e.g., guideline compliance [5]), our objective is to find the occurrences
of a specified complex situation in a large set of patients (i.e., millions of patients). This
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7:2 Logical Forms of Chronicles

requires computational efficiency. To sum up, we need a temporal query language to specify
phenotypes, i.e. complex situations, and that can efficiently be matched in large collections
of temporal sequences.

Behind this problem lies the classical tradeoff of computer science: the expressiveness
of temporal queries vs. their computational efficiency. Researchers aim to find compu-
tational models that achieve the best compromise between these two opposite objectives.
This compromise also depends on the context of usage, and it is not unique. Thus it has
been addressed in a wide range of research fields: knowledge reasoning, temporal logic, model
checking, temporal databases, complex-event processing, ... Representing complex situations
is studied from the origin of logic-based artificial intelligence to represent and reason about
temporal facts. Indeed, the representation of actions and formalisms/logics to reason with
them are very central to AI. Many knowledge-reasoning formalisms have been proposed:
temporal logic of action [19], situation calculus [20], event calculus [21], ... They are very
expressive but knowledge-reasoning tools are not efficient enough for being practically applied
on massive data.

As the problem of specifying situations is of particular interested for monitoring dynamic
or reactive systems, dedicated formalisms attracted a lot of interest at the crossroad of model
checking and temporal logic. We can mention Linear Temporal Logic (LTL) [23] when dealing
with discrete time, or Metric Temporal Logic (MTL) [18] for real-valued time. Their success
comes from their expressiveness and their clear semantics. Many temporal systems are based
on these logics. This is especially the case of temporal databases, which extend the principles
of relational databases to timed records. A query language such as TSQL2 [4] combines
relational operators and LTL operators. DatalogMTL [27] combines datalog language and
MTL operators and has been used to query log data [7]. Finally, temporal models have also
been developed in the field of complex-event processing and stream reasoning to address
the specific questions of recognition efficiency. Kervac and Piel [17] survey such techniques
including ETALIS language [2] or chronicles [13]. These tools provide expressive temporal
models suitable to efficiently recognize temporal patterns in real-valued timed sequences.

In the present article, we focus on the notion of chronicle. A chronicle is a temporal model
introduced by Dousson et al. [13] for situation recognition. In short, a chronicle consists of a
set of events and a set of real-valued temporal constraints on the delays between pairs of events.
It describes situations that can be recognized within a temporal sequence, i.e., a sequence
of timestamped events (with no durations). Chronicles are close to, but not equivalent to,
temporal constraint networks [12]. They have the following interesting characteristics:

they are user-friendly. Their graphical representation makes them attractive for a wide
range of applications where temporal patterns have to be analyzed by domain experts;
they are used with computational efficiency in a wide range of tasks: planning, diagnosis,
system modelling, and also data mining. In 1999, Dousson et al. [14] proposed an
algorithm to discover chronicles from a set of temporal sequences. In this latter context,
chronicles form a very expressive class of models, and many works have been proposed
in the field of pattern mining to extract frequent or discriminant chronicles [10, 11].
Chronicle recognition algorithms are also computationally efficient [13].
they are a priori expressive. Despite their apparent simplicity, a single chronicle model
captures a wide range of practical temporal situations. For instance, they do not imposes
a strict order of appearance on the events. A chronicle involving a and b event types can
match sequence that contains a and b whatever their order of appearance.

These characteristics make chronicles a first-class citizen to represent complex situations
to match in temporal sequences.
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A natural question then arises from the remark about the expressiveness of chronicles: what
is the relationship between chronicles and classical temporal-model formalisms? The intuition
that chronicles are expressive is based on practical uses but, to the best of our knowledge, their
expressiveness has not been compared to that of alternative temporal models. A situation
can also be seen as a property of a reactive system. Recognizing a situation is similar to
matching the property of a reactive system on a single trace [26]. Temporal logics such as
Linear Temporal Logic (LTL) [23], Metric Temporal Logic (MTL) [18] or Timed Propositional
Temporal Logic (TPTL) [1], have been widely studied to specify temporal properties of
reactive systems, and more specifically for the pattern-recognition task. Contrary to LTL
or CTL (Computational Tree Logic [9]), which deal with sequences of events in time, MTL and
TPTL deal with events having real-valued timestamps. Surprisingly, there is no existing
result stating the relationship between temporal logics and chronicles. It is worth noting that
chronicles are already equipped with efficient recognition algorithms and that the purpose of
the comparisons is to evaluate the expressive power of chronicles but not to gain efficiency
with the use TPTL or MTL tools.

This article compares the expressiveness of chronicles with two temporal logics, TPTL♢ [1,
6] and MTL. The main results are that chronicles can be expressed with TPTL♢ formulas
(in the pointwise semantics [6]), but in general they cannot be expressed with MTL formulas.
To obtain this result, we first introduce a notion of linear chronicles, and show that any
chronicle is equivalent to a finite conjunction of linear chronicles. We then propose a
transformation of linear chronicles into TPTL♢. The impossibility to express chronicles
in MTL is then obtained by adapting a result from Bouyer et al. [6].

2 Chronicles

In this section, we introduce the basic notions and notations of chronicles. We start by
introducing the definitions of temporal sequences and chronicles, and give their semantics
through the definition of an occurrence of a chronicle in a temporal sequence. Then, we
introduce the subclass of linear chronicles. This subclass highlights the specificity of the
chronicle model, which allows to leave the order of occurrence of some events unspecified.
A first result is that any chronicle has an equivalent disjunctive set of linear chronicle. This
result is our first step further toward a translation into TPTL♢.

2.1 Syntax and semantics
Given a finite alphabet Σ of event types, we first introduce the notion of timed sequence
over Σ, and then we define chronicles. We let ≤Σ denote a total order on the elements of Σ.
In the following, event types are capital letters and ≤Σ is the alphabetic order. For m ∈ N,
we write [m] for the set {i ∈ N | 1 ≤ i ≤ m}.

▶ Definition 1 (Timed sequence). A timed sequence of length n over a finite alphabet Σ is
a finite sequence ρ = ⟨(σ1, τ1), . . . , (σn, τn)⟩ in (Σ × R≥0)n where for all 1 ≤ i < n, it holds
τi ≤ τi+1.

Using the notations of e.g. Ouaknine et al. [22] or Bouyer et al [6], a timed sequence
⟨(σ1, τ1), . . . , (σn, τn)⟩ corresponds to the timed word ⟨σ = σ1 · · ·σn, τ = τ1 · · · τn⟩. We may
identify timed sequences and their corresponding timed words in the sequel, as long as no
ambiguity arises.

Let us now define the notion of chronicle introduced by Ghallab [15]. Our definition of
chronicle is borrowed from Besnard and Guyet [3].

TIME 2022
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▶ Definition 2 (Chronicle). A chronicle is a pair (E , T ) where
E is a multiset over Σ, i.e. E is of the form {{c1, . . . , cm}} (in which repetitions are
allowed) such that ci ∈ Σ for i = 1, . . . ,m and c1 ≤Σ · · · ≤Σ cm. We impose the latter
condition for technical reasons explained at Remark 6;
T is a set of temporal constraints, i.e. expressions of the form (c, oc)[t−, t+](c′, oc′)
such that

1. c, c′ ∈ E and
2. t−, t+ ∈ Q ∪ {−∞,+∞} and
3. oc, oc′ ∈ [m] and oc < oc′ and
4. coc

= c and coc′ = c′.
The size of a chronicle (E , T ) is the size m of its multiset E.

▶ Example 3. Let Σ = {A,B,C}; The pair{{A,B,B,C}},


(A, 1)[−3.5, 2](B, 2), (A, 1)[−2, 2.3](C, 4),
(B, 2)[−1, 5](C, 4), (B, 2)[0.1, 2](B, 3),
(B, 3)[−1, 5](C, 4)




is a chronicle. It involves two occurrences of event type B, and one occurrence of event
types A and C. It has no direct temporal constraints between (A, 1) and (B, 3).

Such a chronicle can be represented as a directed graph, with one vertex per event in the
multiset, and edges labelled with the temporal constraints. Figure 1 represents the chronicle
above.

A,1

B,2
[-3.5,2]

C,4

[-2,2.3] [-1
,5

]

B,3

[0.1,2]

[1,2]

Figure 1 Graphical representation of the chronicle in Example 3.

We now define the semantics of chronicles, via the notion of occurrence of a chronicle in
a timed sequence:

▶ Definition 4 (Occurrence of a chronicle). Let s = ⟨(σ1, τ1), (σ2, τ2), . . . , (σn, τn)⟩ be a timed
sequence of length n, and C = (E = {{c1, . . . , cm}}, T ) be a chronicle of size m. Chronicle C is
said to occur in s if, and only if, there exists an injective function ε : [m] → [n], hereafter
called embedding, such that:
1. for all 1 ≤ i < m, τε(i) < τε(i+1) whenever ci = ci+1,1
2. for all 1 ≤ i ≤ m, σε(i) = ci,
3. for all 1 ≤ i, j ≤ m, τε(j) − τε(i) ∈ [t−, t+] whenever (ci, i)[t−, t+](cj , j) ∈ T .

Then, s̃ = {(σε(1), τε(1)), . . . , (σε(m), τε(m))} is an occurrence of C in s.
Chronicle C is said to match the sequence s, denoted C A s, if, and only if, there is at

least one occurrence of C in s.

1 This condition is not always required for occurrences of chronicles, but it appears for instance in [3].
As we explain later, our results also holds when this condition is lifted. Similarly, in some settings
it might be convenient to remove the injectiveness condition of the embedding functions, and again this
would be easy to deal with in our translations.
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The temporal constraints of a chronicle are conjunctive: an embedding of a chronicle
has to satisfy all of them. As a consequence, a chronicle with two temporal constraints
(c, oc)[t−, t+](c′, oc′) and (c, oc)[u−, u+](c′, oc′) relating the same pair of events is equivalent
(w.r.t. occurrences) to a single temporal constraint with the interval [t−, t+] ∩ [u−, u+].
It follows that in any chronicle, T can be assumed to contain at most one temporal constraint
per pair of events. For any two indices i and j in [m] with i < j, we write t−i,j and t+i,j
for the rational values such that (ci, i)[t−i,j , t

+
i,j ](cj , j) is the (unique) temporal constraint

between (ci, i) and (cj , j).
On a similar note, chronicles do not allow temporal constraints on pairs of events (ci, i)

and (cj , j) when i ≥ j; such constraints are trivial when i = j, while when i > j, the constraint
(ci, i)[t−, t+](cj , j) is equivalent (w.r.t. occurrences) to the constraint (cj , j)[−t+,−t−](ci, i),
which in turn can be intersected with the other constraints relating (ci, i) and (cj , j).

A chronicle that occurs in no sequences in said inconsistent. This is in particular the case
of chronicles with unsatisfiable temporal constraints. For instance, the chronicle ({{A,B,C}},
{(A, 1)[1, 2](B, 2), (B, 2)[3, 4](C, 3), (A, 1)[−2,−1](C, 3)}) is inconsistent. Indeed, because of
the first two temporal constraints, C must occur after A (B after A and C after B), but the
third constraint enforces A to occur before C.

In this article, we do not bother about the minimality or the satisfiability of the temporal
constraints. Dechter et al. [12] proposed reasoning techniques about temporal constraints to
narrow the intervals of temporal constraints (w.r.t. some equivalence) or identify insatisfiable
temporal constraints. Such techniques may apply for chronicles also, but they are not required
for the results presented in this article.

The problem we address in this paper is whether chronicles can be represented by
equivalent temporal logic formulas. In such a case, theoretical results and algorithms could
be used to better understand chronicles, and possibly improve existing chronicle-matching
algorithms [16].

▶ Example 5. Consider again the chronicle depicted at Fig. 1. This chronicle can be seen to
occur in the following timed sequences:

⟨(A, 1.8), (A, 3.5), (B, 3.9), (B, 4.1), (C, 4.2), (C, 5.7)⟩
⟨(B, 0.2), (B, 0.9), (C, 2.5), (B, 3.2), (A, 3.7), (A, 4.7)⟩

Events in bold are the events that form the embedding of the chronicle. The second
temporal sequence illustrates that the chronicle can have occurrences with different orders of
event types. This is possible thanks temporal constraints allowing negative delays.

▶ Remark 6. Notice that in a timed sequence, several events may occur at the same time,
and such “simultaneous” events can appear in an occurrence of a chronicle. However, because
the embeddings ε are required to be injective, a single event in a timed sequence cannot
be used to match different copies of the same event in a chronicle. For instance, chronicle
({{A,A}}, (A, 1)[−2, 2](A, 2)) cannot occur in a timed sequence containing a single event A.

3 Disjunction of linear chronicles

We have seen that a chronicle expresses only conjunctive temporal constraints. This is
obviously limiting to represent complex temporal behaviours for which there are possible
alternative situations to represent. A natural solution is to use several chronicles, one for each
situation and to define the situation recognition as a disjunctive matching of the chronicles.

TIME 2022
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▶ Definition 7 (Occurrence of (disjunctive) collection of chronicles). Let C = {(E1, T1), . . . ,
(Eh, Th)} be a collection of h chronicles and s be a timed sequence. A subsequence s̃ of s

is an occurrence of C if, and only if, there exists a chronicle (E , T ) ∈ C such that s̃ is
an occurrence of (E , T ). A collection C of chronicles matches a sequence s, denoted C A s,
whenever there is at least one occurrence of C in s.

We now consider a variation of chronicles called linear chronicles (LC for short). A linear
chronicle is a chronicle equipped with a permutation of the events in its multiset, prescribing
the order of occurrence of those events. This is detailed more formally in the following
definition.

▶ Definition 8 (Linear chronicle). A linear chronicle is a triple L = ({{c1, . . . , cm}}, T , π),
where ({{c1, . . . , cm}}, T ) is a chronicle and π is a permutation of [m].

A linear chronicle L = ({{c1, . . . , cm}}, T , π) occurs in a timed sequence s = ⟨(σ1, τ1),
(σ2, τ2), . . . , (σn, τn)⟩ whenever there exists an embedding ε : [m] → [n] witnessing that the
chronicle ({{c1, . . . , cm}}, T ) occurs in s, and such that ε ◦ π is increasing.

Intuitively, a linear chronicle is a chronicle for which the order of the events is fixed (via π):
in any occurrence, event cπ(i) always occurs before event cπ(j) when i < j.
▶ Remark 9. Condition 1 in Def. 4 states that for any two identical events ci and cj in a
chronicle with i < j, the time at which ci is matched must be strictly earlier than the time at
which cj is matched. In particular, for any embedding ε, we must have ε(i) < ε(j). Assume
that π−1(j) < π−1(i); since ε ◦ π is increasing, we would have ε(π(π−1(j))) < ε(π(π−1(i))),
i.e., ε(j) < ε(i). Then no embeddings would exist, and the linear chronicle is inconsistent.
As a consequence, for a linear chronicle to be consistent, if two identical events ci and cj are
such that i < j, we must have π−1(i) < π−1(j); in other terms, π has to preserve the order
of identical events.

The occurrence of a disjunctive collection of linear chronicles is defined in the very same
way as for disjunctive collections of plain chronicles. Two collections of (possibly linear)
chronicles are said equivalent if any occurrence of one of them is also an occurrence of the
other one. As a special case, this defines an equivalence relation between single chronicles
and collections of linear chronicles. We use this notion in the following proposition:

▶ Proposition 10. For any chronicle C = (E , T ), there exists an equivalent disjunctive
collection of linear chronicles.

Proof. Write E = {{c1, . . . , cm}}. For any occurrence s of C , with embedding ε, there is a
permutation π of [m] such that ε(π(j)) < ε(π(j+1)). We can thus write C as the disjunction,
over all permutations π of [m], of the linear chronicles obtained from C by adding the
ordering π.

That the resulting disjunction of linear chronicles is equivalent to the original chronicle is
straightforward: on the one hand, all linear chronicles are obtained from the original one
by imposing an order of the events, so that any occurrence of any of the linear chronicles
is an occurrence of the original chronicle; on the other hand, as already argued above, any
occurrence of the original chronicle satisfies a specific order defined by some permutation π,
so that it is an occurrence of one of the linear chronicles. ◀

▶ Remark 11. The number of linear chronicles in the disjunction obtained in our proof can be
bounded by m! (the factorial of m). Chronicles without any temporal constraints are easily
seen to achieve this bound. By Remark 9, when several copies of the same event appear
in the multiset, their order has to be preserved by π, which would reduce the number of
permutations to consider.
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As can be expected, linear chronicles can be turned in a special form where the timing
constraints reflect the order of events:

▶ Proposition 12. For any linear chronicle L = (E , T , π), there exists an equivalent linear
chronicle L ′ = (E , T ′, π) such that each interval occurring in T ′ is either a subset of R− or
a subset of R+.

Proof. Consider a temporal constraint (cπ(i), π(i))[t−, t+](cπ(j), π(j)) in T . First assume
that i < j (the other case is symmetric). For any sequence s = ⟨(σ1, τ1), . . . , (σn, τn)⟩
matched by L , for any embedding ε : [m] → [n], we must have ε(π(i)) < ε(π(j)) (by defin-
ition of a matching for a linear chronicle), i.e., ε(π(j)) − ε(π(i)) ∈ [0,+∞). Under this
requirement, the temporal constraint which imposes that τε(π(j)) − τε(π(i)) ∈ [t−, t+] is
then equivalent to the temporal constraint τε(π(j)) − τε(π(i)) ∈ [0, t+], so that the temporal
constraint (cπ(i), π(i))[t−, t+](cπ(j), π(j)) in T can be replaced by the temporal constraint
(cπ(i), π(i))[0, t+](cπ(j), π(j)), while preserving the same set of occurrences. ◀

▶ Example 13 (Equivalent collection of linear chronicles). Figure 2 represents chronicle
C = ({{A,B,C}}, {(A, 1)[−2, 1](C, 3), (B, 2)[3, 4](C, 3)}) and an equivalent collection of three
linear chronicles.

The timing constraint (B, 2)[3, 4](C, 3) imposes that B must occur before C, but A can
occur either before B, or between B and C, or after C.

We can verify that the temporal constraints of C forbids the other orders. Then, we can
derive one linear from each order and from the temporal constraints of C . This leads to the
three linear chronicles depicted in Figure 2.

A,1

B,2

C,3

[−2, 1]

[3, 4]

A,1

B,2

C,3

[−2, 0]

[3, 4]

B ≺ C ≺ A

A,1

B,2

C,3

[0, 1]

[3, 4]

B ≺ A ≺ C

A,1

B,2

C,3

[0, 1]

[3, 4]

A ≺ B ≺ C

Figure 2 On the left: a chronicle C . On the right: collection of three linear chronicles equivalent
to C . The order of event at the bottom of each linear chronicle illustrates their π; Thus, the two
rightmost linear chronicles are distinct.

▶ Remark 14. As claimed above, Prop. 10 extends to the setting where we remove Condition 1
in Def. 4. Indeed, this condition imposes the order of occurrence of identical events in a
matching; our translation into a disjunction of linear chronicles can thus easily be adapted
by dropping all permutations that do not satisfy this condition.

Similarly, Prop. 10 extends to the setting where embeddings are allowed not to be injective:
for this it suffices to transform chronicles into disjunctions of (still exponentially many) linear
chronicles in which some of the identical events are merged.

TIME 2022
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4 Chronicles and TPTL♢

The objective of this section is to establish a first result between chronicle and a temporal
logic, namely the TPTL♢. We start by recalling the syntax and the semantics of TPTL and
TPTL♢, then we propose the construction of a TPTL♢ formula equivalent to any given linear
chronicle. With the result of the previous section, the main result is that an equivalent
TPTL♢ formula can be constructed for any chronicle.

4.1 Timed Propositional Temporal Logic (TPTL)
The Timed Propositional Temporal Logic (TPTL) is a timed extension of LTL. It uses clock
variables to explicitly represent timing constraints in formulae. Below, we define the syntax
and semantics of TPTL borrowed from Bouyer et al. [6]. Formulae of TPTL are built from
letters in Σ, Boolean connectives, Until operators (U), clock resets and clock constraints:

TPTL ∋ φ ::= σ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | x.φ | x ∼ c

where σ is a letter in Σ, x is a clock variable drawn from a finite set X, c ∈ Q is a rational
number, and ∼ ∈ {≤, <,=, >,≥}.

We are interested in the pointwise semantics, which interprets TPTL over timed sequences.
More precisely, models are (finite) sequences ρ = (σi, τi)i∈[n]. The satisfaction of a formula at
a position i of such a sequence depends on the values of the clock variables that appear in the
formula. Writing v : X ⇀ R+ for a partial valuation of the clock variables, the satisfaction
relation can then be inductively defined as follows:

(ρ, i, v) |= σ if, and only if, σ = σi

(ρ, i, v) |= φ1 ∧ φ2 if, and only if, (ρ, i, v) |= φ1 and (ρ, i, v) |= φ2
(ρ, i, v) |= ¬φ if, and only if, it is not the case that (ρ, i, v) |= φ

(ρ, i, v) |= φ1Uφ2 if, and only if, there exists j > i such that (ρ, j, v) |= φ2 and
for all i < k < j, (ρ, k, v) |= φ1

(ρ, i, v) |= x.φ if, and only if, (ρ, i, v[x 7→ τi]) |= φ

(ρ, i, v) |= x ∼ c if, and only if, v(x) is defined, and τi − v(x) ∼ c

As can be observed in this definition, formulas of the form x.φ (called clock resets) have
the effect of storing the current time τi in clock x; at any later time τj , the value τj − v(x)
corresponds to the amount of time that elapsed since the last reset of clock x: this justifies
the semantics of formulas of the form x ∼ c (clock constraints).

▶ Example 15. Formula x.[αU(β ∧ x ≤ 10)] states that event β has to occur within 10 time
units, and that only event α is allowed to occur in the meantime. Similarly, x.[(α∧x ≤ 10) U β]
also states that eventually β must occur and that only events of type α can occur in the
meantime, but additionally all of these events α must occur within the first 10 time units.

TPTL comes with several classical shorthands: conjunctions φ1 ∨ φ2 are obtained as
¬(¬φ1 ∧ ¬φ2); ⊤ stands for σ ∨ ¬σ (for some fixed σ ∈ Σ); ♢φ stands for ⊤ U φ (and means
that φ eventually holds in a strict future), and □φ stands for ¬♢¬φ (and means that φ
always holds in the strict future).

TPTL♢ denotes the fragment of TPTL that uses only the ♢ modality (and limitations on
the use of negation):

TPTL♢ ∋ φ ::= σ | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | ♢φ | x.φ | x ∼ c.
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▶ Example 16. The TPTL♢ formula x.♢(α ∧ ♢(β ∧ x ≤ 10)) states that (at least) one
occurrence of α and one occurrence of β have to occur in that order within the next 10 time
units.

4.2 TPTL♢ formulae for linear chronicles
Contrary to TPTL operators, temporal constraints in chronicles do not impose an order on
the occurrence of events. But linear chronicles do impose such an order; relying on Prop. 10,
we present an encoding of chronicles in TPTL♢.

Let L = (E = {{c1, . . . , cm}}, T , π) be a linear chronicle of size m. We characterize L by
a TPTL♢ formula φL over E (seen as a finite set) and using a set X = {xi | 1 ≤ i ≤ m− 1}
of m− 1 clocks; formula φL is obtained through the inductive definition of a collection of
TPTL♢ formulae (φi

L )1≤i≤m, such that φL = ♢̄φ1
L , where ♢̄ϕ stands for ♢ϕ∨ϕ (and means

that ϕ holds now or at some point in the future).
The collection of formulae (φi

L )i=1...m is defined as follows: if m = 1, then φ1
L = cπ(1);

otherwise,

φ1
L =

(
cπ(1) ∧ xπ(1).♢φ

2
L

)
(1)

and for all 2 ≤ i ≤ m− 1,

φi
L = cπ(i) ∧ Ti(L ) ∧ xπ(i).♢φ

i+1
L (2)

and finally

φm
L = cπ(m) ∧ Tm(L ) (3)

where

Ti(L ) =
∧

(cπ(k),π(k))[l,u](cπ(i),π(i))∈T
π(k)<π(i)

(
l ≤ xπ(k) ≤ u

)
∧

((π(i) > 1 ∧ cπ(i) = cπ(i)−1) → xπ(i)−1 > 0) (4)

Formula φm
L has size linear in m. Notice that, in the last conjunct of Eq. (4), the condition

to the left of the implication is static (it only depends on the chronicle L ), and its role is
simply to decide whether the condition on xπ(i)−1 has to be imposed.

We prove that this construction correctly encodes chronicles:

▶ Proposition 17. For any linear chronicle L and any sequence ρ, it holds L A ρ if, and
only if, ρ |= φL .

Proof. Let L = ({{c1, . . . , cm}}, T , π) be a linear chronicle of size m, and ρ = ⟨(σ1, τ1),
(σ2, τ2), . . . , (σn, τn)⟩ be a sequence. If m = 1, the chronicle has no timing constraints, and
the result is straightforward. We now assume that m > 1.

We begin with the direct implication, assuming that L A ρ. By Def. 8, this means that
there exists ε : [m] → [n] such that:
1. τε(i) < τε(i+1) whenever ci = ci+1 for all 1 ≤ i < m,
2. σε(i) = ci for all 1 ≤ i ≤ m,
3. τε(j) − τε(i) ∈ [l, u], whenever (ci, i)[l, u](cj , j) ∈ T for all i < j.

For all 1 ≤ i ≤ m, we define vi : {xπ(j) | 1 ≤ j < i} → R+ by vi(xπ(j)) = τε(j).
By Property 2 of ε, we have that ρ, ε(π(i)), vi |= cπ(i) for all i ∈ [m]. By Property 3, we have
that τε(π(i)) − vi(xπ(k)) = τε(π(i)) − τε(π(k)) ∈ [l, u] for any (cπ(k), π(k))[l, u](cπ(i), π(i)) ∈ T
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7:10 Logical Forms of Chronicles

with i, k ∈ [m] such that π(k) < π(i). Moreover, by Property 1, if cπ(i)−1 = cπ(i) (and
π(i) > 1), then τε(π(i)−1) < τε(π(i)). It follows that τ(ε(π(i))) − vi(xπ(i)−1) > 0, which means
that ρ, ε(π(i)), vi |= xπ(i)−1 > 0. In the end, we have shown that ρ, ε(π(i)), vi |= Ti(L ) for
all i ∈ [m].

We now prove by downward induction that ρ, ε(π(i)), vi |= φi
L . By the two properties

above, we have ρ, ε(π(m)), vm |= cπ(m) ∧ Tm(C ), which proves our base case. Assuming
that ρ, ε(π(i + 1)), vi+1 |= φi+1

L for some i ∈ [m − 1], we prove that ρ, ε(π(i)), vi |= φi
L .

Again, from the above two remarks, we have ρ, ε(π(i)), vi |= cπ(i) ∧ Ti(L ). It remains
to prove that ρ, ε(π(i)), vi |= xπ(i). ♢φ

i+1
L . This directly follows from the following facts:

ρ, ε(π(i+ 1)), vi+1 |= φi+1
L , and ε(π(i)) < ε(π(i+ 1)) (since ε ◦ π is increasing). By induction,

we get ρ, ε(π(1)), v1 |= φ1
L , which entails ρ |= φL .

We now assume that ρ |= φL . We construct an embedding ε of L in ρ inductively:
formally, at each step j, we define ε(π(j)) so that
1. ε(π(j)) satisfies the conditions of Def. 4;
2. letting wj(xπ(k)) = τε(π(k)) for all k ∈ [j], we have ρ, ε(π(j)), wj |= ♢φj+1

L .

We initialize the induction as follows: since ρ |= ♢̄φ1
L , there exists ε(π(1)) such that

ρ, ε(π(1)), ∅ |= φ1
L . By definition of φ1

L , this entails that
1. ρ, ε(π(1)), ∅ |= cπ(1), hence σε(π(1)) = cπ(1); the other two conditions for being an

embedding hold vacuously;
2. ρ, ε(π(1)), ∅ |= xπ(1).♢φ2

L , which entails ρ, ε(π(1)), w1 |= ♢φ2
L , where w1 is the partial

embedding defined only for xπ(1) with w1(xπ(1)) = τε(π(1)).

Now, assume that the result holds up to some step π(j) for some j < m; we extend
it to π(j + 1). Since ρ, ε(π(j)), wj |= ♢φj+1

L , there exists ε(π(j + 1)) > ε(π(j)) for which
ρ, ε(π(j + 1)), wj |= φj+1

L . By definition of φj+1
L , we get:

1. ρ, ε(π(j+1)), wj |= cπ(j+1), so that σε(π(j+1)) = cπ(j+1). Additionally, ρ, ε(π(j+1)), wj |=
Tj+1(L ), so that for each (cπ(k), π(k))[l, u](cπ(j+1), π(j+1)) ∈ T , we have l ≤ τε(π(j+1))−
τε(π(k)) ≤ u. Finally, if π(j + 1) > 1 and cπ(j+1) = cπ(j+1)−1, then ρ, ε(π(j + 1)), wj |=
xπ(j+1)−1 > 0, which means τε(π(j+1)) − τε(π(j+1)−1) > 0, i.e., τε(π(j+1)−1) < τε(π(j+1)).

2. ρ, ε(π(j + 1)), wj |= xπj+1♢φ
j+2
L (unless j + 1 = m), which entails ρ, ε(π(j + 1)), wj+1 |=

♢φj+2
L .

In the end, we have built an embedding ε witnessing the fact that L A ρ. ◀

Our main result follows:

▶ Theorem 18. Any chronicle C admits an equivalent TPTL♢ formula φC .

▶ Remark 19. Again, notice that our construction easily extends to the case where Condition 1
in Def. 4 is removed: it suffices to drop the last part of the definition of Ti(L ) (Eq. (4)).
▶ Remark 20. In our definition of timed words and TPTL, we have taken the approach of
seeing events as letters: if several events can take place at the same date, they are encoded
as several consecutive letters in the timed word, all having the same timestamp; for instance,
w = (A, 3.2)(B, 3.2)(C, 4.1) corresponds to two events A and B occurring at the same date,
and C occurring later.

Another approach would consist in seeing events as atomic propositions: in that setting,
each timestamp would be unique, and would be associated with a (non-empty) set of events.
The timed word w above would then correspond to w′ = ({A,B}, 3.2)({C}, 4.1). Notice that
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this would not allow to have two occurrences of the same event at the same time; because of
Condition 1 in Def. 4, removing multiple simultaneous copies of the same event preserves
occurrences of chronicles.

Conceptually, our translation would still work, but we would have to allow the operator ♢
to also consider the present position; in other terms, we would have to replace each occurrence
of ♢ in φm

L with ♢̄. Strictly speaking, this would involve an exponential blow-up of the
TPTL♢ formula, since ♢̄ϕ rewrites as ϕ ∨ ♢ϕ, which requires duplicating formula ϕ.

▶ Example 21 (TPTL♢ formula for linear chronicles). This example illustrates the construction
of a TPTL♢ formula for the linear chronicle depicted at Fig. 3; the order B ≺ A ≺ C3 ≺ C4
for the events corresponds to the permutation π defined by π(1) = 2, π(2) = 1, π(3) = 3,
π(4) = 4. We denote this linear chronicle by L .

L :

A,1

B,2

C,3
[0, 1]

[3, 4]

C,4
[0, 5]

B ≺ A ≺ C3 ≺ C4

Figure 3 An example of a chronicle.

To construct a TPTL♢ formula corresponding to L , each event except the last one
(according to π) is associated to a clock (x1 for event (A, 1), x2 for event (B, 2), x3 for
event (C, 3)).

Let us then define the temporal constraints according to Eq. (4):

T1 = ∅
T2 = ∅
T3 = x1 ≤ 1 ∧ x1 ≥ 0 ∧ x2 ≤ 4 ∧ x2 ≥ 3

= x1 ≤ 1 ∧ x2 ≤ 4 ∧ x2 ≥ 3
T4 = x2 ≤ 5 ∧ x2 ≥ 0 ∧ x3 > 0

= x2 ≤ 5 ∧ x3 > 0

The colors in formula match the color in Fig. 3. Formula T2 is empty because A is the
first event in the chronicle multiset. Formula T1 is also empty, but for a different reason:
there are no temporal constraints between A and B. It is also worth noticing that the
constraints x3 > 0 has been added to the temporal constraints of T4 because the implicit
order between chronicle events having the same event type. The inequality is strict because
of the injectiveness condition (see Remark 6).

Then, we construct the formula by induction following the order defined by π. It adds
temporal constraints on the clocks marking the occurrence of previous events (relatively to
time instants of the current event occurrence).

Thus, we obtain the following TPTL♢ formula equivalent to chronicle L :

φL = ♢̄(B ∧ x2.♢(A ∧ T2 ∧ x1.♢(C ∧ T3 ∧ x3.♢(C ∧ T4)))

The brown part of the formula is φ4, which is the final case in the inductive construction
of the formula. The black part is the initial case of the formula, which starts by the B event
(the first event, according to π). The ♢̄ operator catches the case of a sequence starting with
a B. The remaing parts (orange for φ3 and purple for φ2) are the regular induction cases.
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7:12 Logical Forms of Chronicles

This formula can be rewritten after simplification and use of classical operators as follows:

φL = ♢(B ∧ x2.♢(A ∧ x1.♢(C ∧ x1 ≤ 1 ∧ x2 ≤ 4 ∧ x2 ≥ 3 ∧ x3.♢(C ∧ x2 ≤ 5 ∧ x3 > 0))))
∨ (B ∧ x2.♢(A ∧ x1.♢(C ∧ x1 ≤ 1 ∧ x2 ≤ 4 ∧ x2 ≥ 3 ∧ x3.♢(C ∧ x2 ≤ 5 ∧ x3 > 0))))

▶ Remark 22. Notice that while each single linear chronicle is translated into a linear-size
TPTL♢ formula, the translation of a plain (non-linear) chronicle into a TPTL♢ formula
generally involves an exponential blow-up. This is not a concern for this paper, but proving
that this blow-up cannot be avoided is an interesting direction for future work.

5 Metric temporal logic and chronicles

Metric Temporal Logic (MTL) is another timed extension of LTL that could be suited to
encode chronicles. We first define its syntax and semantics, before dealing with the problem
of encoding chronicles.

Given a finite alphabet Σ of atomic events, formulae of MTL are built up from Σ by
Boolean connectives and time-constrained versions of the temporal operator Until as follows:

MTL ∋ φ ::= σ | ¬φ | φ1 ∨ φ2 | φ1UIφ2

where σ ranges over Σ, and I = [l, u] is a temporal interval with l and u in Q.
As for TPTL, in the pointwise semantics, MTL is evaluated at a position i ∈ N along a

timed word ρ = (σi, τi)i∈[n] as follows:

(ρ, i) |= σ if, and only if, σ = σi

(ρ, i) |= φ1 ∧ φ2 if, and only if, (ρ, i) |= φ1 and (ρ, i) |= φ2
(ρ, i) |= ¬φ if, and only if, it is not the case that (ρ, i) |= φ

(ρ, i) |= φ1UIφ2 if, and only if, ∃j ≥ i s.t. (ρ, j) |= φ2 and τj − τi ∈ I

and ∀i < k < j, (ρ, k) |= φ1

As previously, we use the classical shorthands such has ♢Iφ, which stands for ⊤UIφ, and
□Iφ, which stands for ¬♢I¬φ.

It is not hard to observe that any MTL formula can be expressed in TPTL: formula ϕUI ψ

can be expressed as x.(ϕU(ψ ∧ x ∈ I)). It was shown in Bouyer et al. [6] that TPTL is
strictly more expressive than MTL in the general case. An example of a TPTL formula that
has no equivalent MTL formula in the pointwise semantics is:

ϕ = x.♢(b ∧ ♢(c ∧ x ≤ 2)) (5)

Base on this counterexample of the equivalence between MTL and TPTL, we exhibit a
chronicle that has no equivalent in MTL. Consider the following chronicle:

C = ({{A,B,C}}, {(A, 1)[0,+∞](B, 2), (B, 2)[0,+∞](C, 3), (A, 1)[0, 2](C, 3)}) .

The first two constraints impose that A, B and C must appear in that order (or possibly
with the same timestamp). The last temporal constraint states that C must occur within
two time units after A.

Using our transformation, the TPTL formula representing chronicle C is a disjunction of

φ0
C = ♢̄(a ∧ x.♢(b ∧ x ≥ 0 ∧ y.♢(c ∧ x ≤ 2 ∧ y ≥ 0))),
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and of formulas of the form

♢̄(b ∧ y.♢(a ∧ y ≤ 0 ∧ x.♢(c ∧ x ≤ 2))

(one for each non-trivial permutation). Formula φ0
C simplifies as

♢̄(a ∧ x.♢(b ∧ ♢(c ∧ x ≤ 2))),

which contains formula ϕ of Eq. (5) as a subformula.
Of course, the fact that ϕ occurs as a subformula of φ0

C does not imply that C cannot be
characterized in MTL. In order to formally prove this fact, we rely on the proof of [6] that
some TPTL formulas have no MTL equivalent: consider the timed sequences depicted on
Fig. 4: first notice that, for any integer p, chronicle C occurs in Ap, while it does not occur
in Bp. On the other hand, Lemma 8 in [6] states that no MTL formula involving constants
that are integer multiple of 1

p can distinguish between Ap and Bp.

Ap

2 − 1
p

2A C B C B C B

1
8p

1
4p

Bp

A C B C B

Figure 4 Two timed sequences not distinguishable by MTL with constants that are multiple
of 1/p.

Now, if there were an MTL formula ψC characterizing exactly chronicle C , then for some
integer p0, this formula would involve constants that are integer multiple of p0, and this
formula would take the same value on Ap0 and Bp0 , contradicting the fact that it exactly
corresponds to C .

It follows:

▶ Theorem 23. There exist chronicles (with only three events) that admit no equivalent MTL
formula.

It is interesting to notice that the counterexample is a very simple chronicle: it only has
three events and one useful temporal constraint. In addition, the temporal constraints do
not straddle zero. They are all included in R+. Our initial intuition was that such temporal
constraints would be a problem for translating chronicle in MTL. But the problem does not
come from them. Intuitively, MTL formula does not need memory to be recognized but the
recognition of a chronicle requires to store the position of all the occurrences of multiset
events to check the temporal constraints. If chronicles of size 2 have equivalent formulae
in MTL, the counterexample above illustrates a chronicle of size 3 – requiring to store the
position of two events – a non-equivalent formula in MTL.

6 Conclusion

This work started from our need to specify complex situations to recognize disease or treatment
from patient care pathways. In this medical context, specifying temporal arrangements of
events is of particular interest to have accurate specifications. Then, our problem is to find
a formalism that is both expressive and efficient to recognize complex situations in large
datasets of patients.
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In this article we investigated the temporal model of chronicle and compared its express-
iveness to two temporal logics TPTL and MTL. Chronicle is a temporal model that emerged
in the field of complex event processing. It can be used to efficiently monitor a stream of
events. Despite its seeming simplicity, the temporal constraints of a chronicle allows to
specify situations without presupposition on the events order. Then, such temporal models
were intuitively qualified as highly expressive but, to the best of our knowledge, no formal
comparison with other temporal formalisms were made. Then, our objective was to better
qualify the expressiveness of chronicles through their comparison against MTL.

In this article we have shown that any chronicle as an equivalent formula in TPTL♢, but
some chronicles have no equivalent formula in MTL. This confirms that chronicles have an
interesting expressiveness.

This first result opens interesting perspectives: the formulation of TPTL equivalent
to chronicle can be a cornerstone for new results with other temporal models, and more
especially other models from the field of event processing. It also raises the question of the
equivalence with TPTL: would it be possible to find an equivalent collection of chronicles for
a TPTL formula? If it is possible, chronicles may be a new approach for recognition of TPTL
formulae.

The negative result we had with MTL also opens new questions. We identify a plausible
reason for non-equivalence that guides us toward other logics that would be also interesting
to compare chronicles. Our first target is MTL with past operators [24]. We conjecture there
is no equivalence with chronicles.

References
1 Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the ACM,

41(1):181–203, 1994.
2 Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Stream reasoning and

complex event processing in ETALIS. Semantic web, 3(4):397–407, 2012.
3 Philippe Besnard and Thomas Guyet. Chronicles. under submission, 2022.
4 Michael H Böhlen, Jan Chomicki, Richard T Snodgrass, and David Toman. Querying TSQL2

databases with temporal logic. In Proceedings of the International Conference on Extending
Database Technology, pages 325–341, 1996.

5 Alessio Bottrighi, Laura Giordano, Gianpaolo Molino, Stefania Montani, Paolo Terenziani,
and Mauro Torchio. Adopting model checking techniques for clinical guidelines verification.
Artificial Intelligence in Medicine, 48(1):1–19, 2010.

6 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and
MTL. Information and Computation, 208(2):97–116, 2010.

7 Sebastian Brandt, Elem Güzel Kalaycı, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Querying log data with metric temporal logic. Journal of Artificial Intelligence
Research, 62:829–877, 2018.

8 Martin Chapman, Luke V Rasmussen, Jennifer A Pacheco, and Vasa Curcin. Phenoflow: A
microservice architecture for portable workflow-based phenotype definitions. Procedings of the
Summits on Translational Science, 2021:142, 2021.

9 Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logic of Programs, pages 52–71, 1981.

10 Damien Cram, Benoît Mathern, and Alain Mille. A complete chronicle discovery approach:
application to activity analysis. Expert Systems, 29(4):321–346, 2012.

11 Yann Dauxais, Thomas Guyet, David Gross-Amblard, and André Happe. Discriminant
chronicles mining. In Proceedings of the Conference on Artificial Intelligence in Medicine in
Europe (AIME), pages 234–244, 2017.



T. Guyet and N. Markey 7:15

12 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial intelligence,
49(1–3):61–95, 1991.

13 Christophe Dousson, Paul Gaborit, and Malik Ghallab. Situation recognition: representation
and algorithms. In Proceedings of the international joint conference on Artifical intelligence
(IJCAI), pages 166–172, 1993.

14 Christophe Dousson and Thang Vu Duong. Discovering chronicles with numerical time
constraints from alarm logs for monitoring dynamic systems. In Proceedings of the international
joint conference on Artifical intelligence (IJCAI), pages 620–629, 1999.

15 Malik Ghallab. On chronicles: Representation, on-line recognition and learning. In
Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro, editors, Proceedings of the In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR), pages
597–606, 1996.

16 Thomas Guyet, Philippe Besnard, Ahmed Samet, Nasreddine Ben Salha, and Nicolas Lachiche.
Énumération des occurrences d’une chronique. In Extraction et Gestion des Connaissances,
pages 253–260, 2020.

17 Romain Kervac and Ariane Piel. A survey on chronicles and other behavior detection techniques.
Journal of Aerospace Lab, 15, 2020.

18 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time systems,
2(4):255–299, 1990.

19 Leslie Lamport. The temporal logic of actions. Transactions on Programming Languages and
Systems (TOPLAS), 16(3):872–923, 1994.

20 Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation calculus. Linköping
Electronic Articles in Computed and Information Science, 3(18), 1998.

21 Erik T Mueller. Event calculus. Foundations of Artificial Intelligence, 3:671–708, 2008.
22 Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing machines.

In Proceedings of the International Conference on Foundations of Software Science and
Computation Structures, pages 217–230, 2006.

23 Amir Pnueli. The temporal logic of programs. In Proceedings of the Annual Symposium on
Foundations of Computer Science (SFCS), pages 46–57, 1977.

24 Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past operators.
In Proceedings of Formal Modeling and Analysis of Timed Systems, pages 322–336, 2006.

25 Paolo Terenziani, Gianpaolo Molino, and Mauro Torchio. A modular approach for representing
and executing clinical guidelines. Artificial intelligence in medicine, 23(3):249–276, 2001.

26 Dogan Ulus. Pattern Matching with Time: Theory and Applications. PhD thesis, Université
Grenoble Alpes, 2018.

27 Przemyslaw A. Walęga, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev. Data-
logMTL: Computational complexity and expressive power. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 1886–1892, 2019.

TIME 2022





Realizability Problem for Constraint LTL
Ashwin Bhaskar
Chennai Mathematical Institute, India

M. Praveen
Chennai Mathematical Institute, India
CNRS IRL ReLaX, Chennai, India

Abstract
Constraint linear-time temporal logic (CLTL) is an extension of LTL that is interpreted on sequences
of valuations of variables over an infinite domain. The atomic formulas are interpreted as constraints
on the valuations. The atomic formulas can constrain valuations over a range of positions along a
sequence, with the range being bounded by a parameter depending on the formula. The satisfiability
and model checking problems for CLTL have been studied by Demri and D’Souza. We consider
the realizability problem for CLTL. The set of variables is partitioned into two parts, with each
part controlled by a player. Players take turns to choose valuations for their variables, generating a
sequence of valuations. The winning condition is specified by a CLTL formula – the first player wins
if the sequence of valuations satisfies the specified formula. We study the decidability of checking
whether the first player has a winning strategy in the realizability game for a given CLTL formula.
We prove that it is decidable in the case where the domain satisfies the completion property, a
property introduced by Balbiani and Condotta in the context of satisfiability. We prove that it
is undecidable over (Z, <, =), the domain of integers with order and equality. We prove that over
(Z, <, =), it is decidable if the atomic constraints in the formula can only constrain the current
valuations of variables belonging to the second player, but there are no such restrictions for the
variables belonging to the first player. We call this single-sided games.
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1 Introduction

Propositional linear temporal logic (LTL) and related automata theoretic models have been
extended in various ways to make it more expressive. Prompt-LTL [18], Constraint LTL [13],
LTL with freeze operators [12], temporal logic of repeating values [11, 24], finite memory
automata [16], data automata [8] are all examples of this. Prompt-LTL is concerned with
bounding wait times for formulas that are intended to become true eventually, while other
extensions are concerned with using variables that range over infinite domains in place of
Boolean propositions used in propositional LTL. Variables ranging over infinite domains are
a natural choice for writing specifications for systems that deal with infinite domains. For
example, constraint LTL has been used for specifications of cloud based elastic systems [6],
where the domain of natural numbers is used to reason about the number of resources that
are being used by cloud based systems.
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8:2 Realizability Problem for Constraint LTL

An orthogonal development in formal verification is synthesis, that is concerned with
automatically synthesizing programs from logical specifications. The problem was identified
by Church [10] and one way to solve it is by viewing it as the solution of a two person game.
For specifications written in propositional LTL, the worst case complexity of the realizability
problem is doubly exponential [23]. However, efficient algorithms exist for fragments of LTL.
The algorithms are efficient enough and the fragments are expressive enough to be used in
practice, for example to synthesize robot controllers [17], data buffers and data buses [22].

This paper is in an area that combines both developments mentioned in the above
paragraphs. We consider constraint LTL (CLTL) and partition the set of variables into
two parts, each being owned by a player in a two player game. The players take turns to
choose a valuation for their variables over an infinite domain. The game is played forever
and results in a sequence of valuations. The first player tries to ensure that the resulting
sequence satisfies a specified CLTL formula (which is the winning condition) and the second
player tries to foil this. We study the decidability of checking whether the first player has a
winning strategy, called the realizability problem in the sequel. CLTL is parameterized by
a constraint system, that can have various relations over the infinite domain. The atomic
formulas of CLTL can compare values of variables in different positions along a range of
positions, using the relations present in the constraint system. The range of positions is
bounded and depends on the formula. E.g., an atomic formula can say that the value of x at
a position is less than the value of y in the next position, in the domain of integers or real
numbers with linear order. Decidability of the CLTL realizability problem depends on the
constraint system. It also depends on whether the atomic formulas can compare values at
different positions of the input, as opposed to comparing values of different variables at the
same position of the input. If the former is allowed only for variables belonging to one of the
players, they are called single-sided games. This is illustrated next.

For instance in cloud based elastic systems [6], the number of resources allocated and the
number of virtual machines running are tracked. One desirable property is that if the number
of virtual machines increases, the number of resources allocated also increase. Typically the
number of resources allocated is controlled by the system and the number of virtual machines
is controlled by the environment. Let x be a variable that keeps track of the number of
resources allocated and let y denote the number of virtual machines. Specifying this property
will require comparing the value of x at the current position with the value of x at the next
position. We may also compare the current value of y with its value at the next position, but
this will need both the system and the environment to be able to compare the values of their
variables at different positions. Instead, if we restrict the environment to only decide whether
a new virtual machine request is raised at the current position, the environment need not
compare the value of y with its value at the next position. Hence only system compares the
values of its variables across different positions and thus, the game will be single-sided.

Contributions. We prove that the realizability problem for CLTL is

1. 2EXPTIME-complete for constraint systems that satisfy a so-called completion property,

2. undecidable for integers with linear order and equality and

3. 2EXPTIME-complete for single-sided games on integers with linear order and equality.
The third result above is the main one and is inspired by concepts used in satisfiability [13].
In satisfiability, this technique is based on patterns that repeat in ultimately periodic words.
It requires new insights to make it work in trees that we use to represent strategies here.
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Related works. Two player games on automata models and logics dealing with infinite
domains have been studied before [28, 14]. The techniques involved are similar to those
used here in the sense that instead of reasoning about sequences of values from an infinite
domain, sequences of elements from a finite abstraction are considered. Single-sided games
are considered in [14], like we do here, but for register automata specifications. Their result
subsumes ours, since register automata are more expressive than CLTL. In register automata,
values can be compared even if they occur far apart in the input sequence, but in CLTL,
values can only be compared if they occur within a bounded distance. For this reason, CLTL
can be handled with simpler arguments, resulting in some differences in technical details,
which we will highlight later in this paper. This can potentially speed up procedures in case
the specifications only need CLTL and not the full power of register automata1. Similar
single-sided games are also considered in [25], for an extension of LTL incomparable with
CLTL. There, single-sided games are reduced to energy games [2] to get decidability.

Church Synthesis problem for a restriction of First Order Logic over parametrized
alphabets has been studied in [5]. The parametrized alphabet reflects the number of
processes. Similar to the results in our paper, the synthesis problem in [5] is undecidable
in the general case but turns decidable when the number of processes that are controllable
by the environment is bounded, while the number of system processes remains unbounded.
In [26], a parametrized extension of the Church Synthesis Problem of MSO Logic over (N, <)
is considered. The decidability result in this paper extensively uses the idea of patterns
repeating in ultimately periodic words [26, Proposition 3.4] as is the case in our work too.

2 Preliminaries

Let Z be the set of integers and N be the set of non-negative integers. We denote by ⌈i⌉k the
number i ceiled at k: ⌈i⌉k = i if i ≤ k and ⌈i⌉k = k otherwise. If m is any mapping and S is
a subset of the domain of m, we denote by m ↾ S the mapping m restricted to the domain S.
For a sequence of mappings m1 · m2 · · · , we write m1 · m2 · · · ↾ S for m1 ↾ S · m2 ↾ S · · · . For
integers n1, n2, we denote by [n1, n2] the set {n ∈ Z | n1 ≤ n ≤ n2}.

We recall the definitions of constraint systems and constraint LTL (CLTL) from [13]. A
constraint system D is of the form (D, R1, . . . , Rn, I), where D is a non-empty set called the
domain. Each Ri is a predicate symbol of arity ai, with I(Ri) ⊆ Dai being its interpretation.

Let V be a set of variables, partitioned into the sets V a, V b of look-ahead and future-blind
variables. A look-ahead term is of the form Xiy, where y is a look-ahead variable, i ≥ 0
and X is a symbol intended to denote “next”. For k ≥ 0, we denote by T a[k] the set of all
look-ahead terms of the form Xiy, where i ∈ [0, k] and y is a look-ahead variable. A constraint
c is of the form R(t1, . . . , tn), where R is a predicate symbol of arity n and t1, . . . , tn are all
future-blind variables or they are all look-ahead terms. The syntax of CLTL is given by the
following grammar, where c is a constraint as defined above.

ϕ ::= c | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

The semantics of CLTL is defined over sequences σ (also called concrete models in the
following); for every i ≥ 0, σ(i) : V → D is a mapping of the variables. Given, x1, . . . , xn ∈
V a and i1, . . . , in ∈ N, the ith position of a concrete model σ satisfies the constraint

1 This does need a detailed study, which we defer to future work.
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8:4 Realizability Problem for Constraint LTL

R(Xi1x1, . . . , Xinxn) (written as σ, i |= R(Xi1x1, . . . , Xinxn)) if (σ(i + i1)(x1), . . . , σ(i +
in)(xn)) ∈ I(R). If the constraint is of the form R(x1, . . . , xn) where x1, . . . , xn ∈ V b, then
σ, i |= R(x1, . . . , xn) if (σ(i)(x1), . . . , σ(i)(xn)) ∈ I(R). The semantics is extended to the
rest of the syntax similar to the usual propositional LTL. We use the standard abbreviations
Fϕ (resp. Gϕ) to mean that ϕ is true at some position (resp. all positions) in the future. The
X-length of a look-ahead term Xiy is i. We say that a formula is of X-length k if it uses
look-ahead terms of X-length at most k. The constraint system (Z, <, =) (resp. (N, <, =))
has the domain Z (resp. N) and <, = are interpreted as the usual linear order and equality
relations. The formula G(x < Xy) will be true in the first position of a concrete model if
in all positions, the value of x is less than the value of y in the next position. Recall the
example of cloud based elastic systems described in the introduction. Variable x denoted
the number of resources allocated and it was possible to compare its values across different
positions, hence making it a look-ahead variable. Whereas, under the restrictions on the
environment, the value of the variable y was not allowed to be compared with the values of
variables at other positions. This makes y a future-blind variable.

We adapt the concept of realizability games [23] to CLTL. There are two players system
and environment. The set of variables V is partitioned into two parts SV , EV owned
by system, environment, respectively. The environment begins by choosing a mapping
em0 : EV → D, to which system responds by choosing a mapping sm0 : SV → D. This first
round results in the mapping em0 ⊕ sm0. This notation is used to define the function such
that em0 ⊕ sm0(x) = em0(x) if x ∈ EV and em0 ⊕ sm0(x) = sm0(x) if x ∈ SV . In the next
round, the two players chose mappings em1, sm1. Both players continue to play forever and
the play results in a concrete model σ = (em0 ⊕ sm0)(em1 ⊕ sm1) · · · . The winning condition
is specified by a CLTL formula ϕ. System wins this play of the game if σ, 0 |= ϕ.

Let M (resp. EM ,SM ) be the set of all mappings of the form V → D (resp. EV → D,
SV → D). For a concrete model σ and i ≥ 0, let σ ↾ i denote the prefix of σ of length i (for
i = 0, σ ↾ i is the empty sequence ϵ). An environment strategy is a function et : M∗ → EM
and a system strategy is a function st : M∗ · EM → SM . We say that the environment
plays according to the strategy et if the resulting model σ = (em0 ⊕ sm0)(em1 ⊕ sm1) · · ·
is such that emi = et(σ ↾ i) for all i ≥ 0. System plays according to the strategy st if the
resulting model σ = (em0 ⊕ sm0)(em1 ⊕ sm1) · · · is such that smi = st(σ ↾ i · emi) for all
i ≥ 0. We say that st is a winning strategy for system if she wins all plays of the game
played according to st, irrespective of the strategy used by environment. For example, let
us consider a CLTL game with V = V a = {x, y}, EV = {x}, SV = {y}, over the constraint
system (Z, <, =) with winning condition G((y > Xy) ∧ ¬((X2x > y) ∧ (X2x < Xy))). For
system to win, the sequence of valuations for y should form a descending chain, and at any
position, the value of x should be outside the interval defined by the previous two values of y.
System has a winning strategy in this game: it can choose y to be −i in the ith round and
the environment cannot choose its x to be strictly between the previous two values of y in
any round. System does not have a winning strategy in the same game when it is considered
over (N, <, =), as there is no infinite descending sequence of natural numbers. System does
not have a winning strategy over dense domains, since environment can choose the third
value of x to be strictly between the first two values of y, violating the winning condition.
Given a CLTL formula ϕ, the realizability problem is to check whether system has a
winning strategy in the CLTL game whose winning condition is ϕ.

We now state an important result.

▶ Theorem 1. The realizability problem for CLTL over (Z, <, =) and (N, <, =) is undecidable.
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This can be proved by a reduction from the repeated control state reachability problem for
2-counter machines, which is known to be undecidable [3]. The main idea of the reduction is
that one of the players simulates the counter machine and the other player catches mistakes,
like other similar reductions for games [1]. For a detailed proof of this result, please refer to
the arXiv version of this paper [7].

Some proofs and technical details in the subsequent sections are moved to the appendix
due to space constraints.

3 Symbolic Models

The models of CLTL are infinite sequences over infinite alphabets. Frames, introduced
in [13], abstract them to finite alphabets. We adapt frames to constraint systems of the form
(D, <, =). Conceptually, frames and symbolic models as we will define here are almost the
same as introduced in [13], where the authors used these notions to solve the satisfiability
problem for CLTL. For the purpose of CLTL games, we use slightly different definitions and
notations, as this makes it easier to present game-theoretic arguments. For the rest of the
paper, we shall assume that the set of variables V is finite. Also, unless mentioned otherwise,
we shall assume that D is Z, N or a domain that satisfies a so-called completion property.

Suppose that the first player owns the variables x, z. The second player owns y and wants
to ensure that x < y ∧ y < z over the domain of integers. It depends on whether the gap
between the values assigned by the first player to x and to z, is large enough for the second
player to push y in between.

▶ Definition 2 (gap functions). Given a mapping m : V b → D, we associate with it a gap
function gp : V b → N as follows. Arrange V b as x0, x1, . . . such that m(x0) ≤ m(x1) ≤ · · · .
Define the function gp such that gp(x0) = 0 and gp(xl+1) = gp(xl)+⌈m(xl+1) − m(xl)⌉|V b|−1
for all l < |V b| − 1.

The left hand side of the above equation denotes the gap between xl and xl+1 according to
the gp function. The right hand side denotes the gap between the same variables according
to the mapping m, ceiled at |V b| − 1. Since V b is finite, the set of gap functions is also finite.
We use gap functions only for future-blind variables V b, only for the domains Z or N. Hence,
the minus sign ’−’ in the definition of gap functions is interpreted as the usual subtraction
over Z or N.

The following definition formalizes how a frame captures information about orders and
gaps for s successive positions.

▶ Definition 3 (Frames). Given a number s ≥ 1, an s-frame f is a pair (≤f , gpf ), where ≤f

is a total pre-order2 on the set of look-ahead terms T a[s − 1] and gpf : V b × [0, s − 1] → N is
a function such that for all i ∈ [0, s − 1], λx.gpf (x, i)3 is a gap function.

In the notation s-frame, s is intended to denote the size of the frame – the number of
successive positions about which information is captured. The current position and the
following (s − 1) positions are considered, for which the look-ahead terms in T a[s − 1] are
needed. We denote by <f and ≡f the strict order and equivalence relation induced by
≤f : x <f y iff x ≤f y and y ̸≤f x and x ≡f y iff x ≤f y and y ≤f x.

2 a reflexive and transitive relation such that for all x, y, either x ≤f y or y ≤f x
3 Note that we could have used a function hi(x) = gpf (x, i) instead of using the lambda notation. But

this introduces a new notation – the function hi, which will not be used anywhere else.
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8:6 Realizability Problem for Constraint LTL

We will deal with symbolic models that constitute sequences of frames. An s-frame
will capture information about the first s positions of a model. If this is followed by a
(s + 1)-frame, it will capture information about the first (s + 1) positions of the model. Both
frames capture information about the first s positions, so they must be consistent about the
information they have about the shared positions. Similarly, an s-frame meant for positions
i to i + s − 1 may be followed by another s-frame meant for positions i + 1 to i + s. The
two frames must be consistent about the positions i + 1 to i + s − 1 that they share. The
following definition formalizes these requirements.

▶ Definition 4 (One-step compatibility). For s ≥ 1, an s-frame f and an (s + 1)-frame g, the
pair (f, g) is one-step compatible if the following conditions are true.

For all terms t1, t2 ∈ T a[s − 1], t1 ≤f t2 iff t1 ≤g t2.
For all j ∈ [0, s − 1] and all variables x ∈ V b, gpf (x, j) = gpg(x, j).

For s ≥ 2 and s-frames f, g, the pair (f, g) is one-step compatible if:
For all terms t1, t2 ∈ T a[s − 2], Xt1 ≤f Xt2 iff t1 ≤g t2 and
for all j ∈ [0, s − 2] and all variables x ∈ V b, gpf (x, j + 1) = gpg(x, j).

Fix a number k ≥ 0 and consider formulas of X-length k. A symbolic model is a sequence
ρ of frames such that for all i ≥ 0, ρ(i) is an ⌈i + 1⌉k+1-frame and (ρ(i), ρ(i + 1)) is one-step
compatible. CLTL formulas can be interpreted on symbolic models, using symbolic semantics
|=s as explained next. To check if the ith position of ρ symbolically satisfies the atomic
constraint t1 < t2 (where t1, t2 are look-ahead terms), we check whether t1 < t2 according
to the ith frame ρ(i). In formal notation, this is written as ρ, i |=s t1 < t2 if t1 <ρ(i) t2.
For future-blind variables x, y, ρ, i |=s x < y if gpρ(i)(x, 0) < gpρ(i)(y, 0). The symbolic
satisfaction relation |=s is extended to all CLTL formulas of X-length k by induction on the
structure of the formula, as done for propositional LTL. To check whether ρ, i |=s t1 < t2
in this symbolic semantics, we only need to check ρ(i), the ith frame in ρ, unlike the CLTL
semantics, where we may need to check other positions also. In this sense, the symbolic
semantics lets us treat CLTL formulas as if they were formulas in propositional LTL and
employ techniques that have been developed for propositional LTL. But to complete that
task, we need a way to go back and forth between symbolic and concrete models.

Given a concrete model σ, we associate with it a symbolic model µ(σ) as follows. Imagine
we are looking at the concrete model through a narrow aperture that only allows us to view
k + 1 positions of the concrete model, and we can slide the aperture to view different portions.
The ith frame of µ(σ) will capture information about the portion of the concrete model
visible when the right tip of the aperture is at position i of the concrete model (so the left
tip will be at i − ⌈i⌉k). Formally, the total pre-order of the ith frame is the one induced by
the valuations along the positions i − ⌈i⌉k to i of the concrete model. For every j ∈ [0, ⌈i⌉k],
the function λx.gpf (x, j) of the ith frame is the gap function associated with the mapping
σ(i − ⌈i⌉k + j) ↾ V b.

For every concrete model, there is an associated symbolic model, but the converse is not
true. E.g., if every frame in a symbolic model requires Xx < x, the corresponding concrete
model needs to have an infinite descending chain, which is not possible in the constraint
system (N, <, =). We say that a symbolic model ρ admits a concrete model if there exists a
concrete model σ such that ρ = µ(σ).

▶ Lemma 5 ([13, Lemma 3.1]). Let ϕ be a CLTL formula of X-length k. Let σ be a concrete
model and ρ = µ(σ). Then σ, 0 |= ϕ iff ρ, k |=s ϕ.
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4 Decidability Over Domains Satisfying the Completion Property

In this section, we prove that the CLTL realizability problem is decidable if the domain
satisfies a so called completion property. Let C be a set of constraints over a constraint system
D. We call C satisfiable if there is a valuation satisfying all the constraints in C. For a subset
U ⊆ V of variables, C ↾ U is the subset of C consisting of those constraints that only use
terms built with variables in U . A partial valuation v′ is a valuation for the terms occurring
in C ↾ U . We say D has the completion property if for every satisfiable set of constraints
C and every subset U ⊆ V , every partial valuation v′ satisfying C ↾ U can be extended to
a valuation v satisfying C. An example of a constraint system which does not satisfy the
completion property is (Z, <, =), since for the set of constraints C = {x < y, x < z, z < y}
over the set of variables V = {x, y, z}, the partial valuation v : x 7→ 0, y 7→ 1 satisfies the
constraints in C involving x and y, but cannot be extended to a valuation which satisfies the
constraints x < z and z < y in C. The constraint systems (Q, <, =) and (R, <, =) satisfy the
completion property. Also, one can easily see that for every infinite domain D, the constraint
system (D, =) always satisfies the completion property.

It is known that CLTL satisfiability is decidable for constraint systems that satisfy the
completion property [13, 4]. The completion property of a constraint system is closely related
to the denseness of the underlying domain. A constraint system satisfies the completion
property if and only if the underlying domain is dense and open [13, Lemma 5.3].

Consider an example of a controller system that controls the temperature of water in a
water tank. Let x be a variable that denotes the temperature of the water. The controller
may be required to guarantee, for instance, that 20 ≤ x ≤ 100. In principle, the temperature
of water can be any real number. Hence x comes from a dense domain. So the domain over
which properties of such a system are specified satisfies the completion property (refer to [27]
for a detailed explanation of such a controller). In contrast, consider cloud-based elastic
systems [6], which we briefly described in the introduction. It is clear that both–the number
of resources allocated and the number of virtual machines running are natural numbers. As
the domain of natural numbers is not dense, we can conclude that constraint systems used
to model these cloud-based elastic systems do not satisfy the completion property.

Now we prove that for constraint systems of the form (D, <, =) that satisfy the completion
property, the CLTL realizability problem is decidable. This holds even when both players
have look-ahead variables, so we don’t need to treat future-blind variables separately. Hence,
we set V b to be empty and ignore gap functions in frames.

We reduce CLTL games to parity games on finite graphs, which are known to be decidable
(see, e.g., [19]). In a CLTL game, environment chooses a valuation for EV , which we track
in our finite graph by storing the positions of the new values relative to the values chosen in
the previous rounds. We do this with partial frames, which we define next.

▶ Definition 6 (Partial frames and compatibility). For s ≥ 1, a partial s-frame pf is a
total pre-order ≤pf on the set of terms T a[s − 2] ∪ {Xs−1y | y ∈ EV }. For s ≥ 0, an
s-frame f and an (s + 1)-partial frame pf , the pair (f, pf ) is one step compatible if for all
t1, t2 ∈ T a[s − 1], t1 ≤f t2 iff t1 ≤pf t2. For s ≥ 2, an s-frame f and an s-partial frame pf ,
the pair (f, pf ) is one-step compatible if for all t1, t2 ∈ T a[s − 2], Xt1 ≤f Xt2 iff t1 ≤pf t2.
For s ≥ 2, an s-partial frame pf and an s-frame f , (pf , f) is one step compatible if for all
t1, t2 ∈ T a[s − 2] ∪ {Xs−1y | y ∈ EV }, t1 ≤pf t2 iff t1 ≤f t2.

In the set of terms T a[s − 2] ∪ {Xs−1y | y ∈ EV } used in partial frames, the terms in the first
set represent values chosen in the previous rounds and the terms in the second set represent
values chosen by environment for EV in the current round.
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Note that a partial s-frame is a total pre-order on the set of terms T a[s − 2] ∪ {Xs−1y |
y ∈ EV } and an s-frame is a total pre-order on the set of terms T a[s − 1]. Let pf

be an s-partial frame and let f be an s-frame such that (pf, f) is one-step compatible.
Suppose C1 = {t1 = t2 | t1 ≡f t2} ∪ {t1 < t2 | t1 <f t2} and C2 = {t1 = t2 | t1 ≡pf

t2} ∪ {t1 < t2 | t1 <pf t2}. Clearly, C2 is a subset of C1 skipping all those constraints
that contain system variables corresponding to the sth position. If a finite sequence of
mappings (em1 ⊕ sm1)...(ems−1 ⊕ sms−1)ems satisfies the pre-order ≤pf then it satisfies the
constraints in C2. Since the constraint system satisfies the completion property, there must
exist a system mapping sms for the system variables at position s such that the sequence of
mappings (em1 ⊕ sm1)...(ems ⊕ sms) satisfies the constraints in C1 and hence, also satisfies
the pre-order ≤f . Thus, we have the following proposition:

▶ Proposition 7. Given s ≥ 1, suppose (em1 ⊕ sm1)...(emi ⊕ smi)em is a sequence of
mappings, where em1, . . . , emi, em ∈ EM , sm1, . . . , smi ∈ SM , pf is the s-partial frame
induced by em and the previous (s − 1) mappings in the sequence, and f is an s-frame
such that (pf, f) is one-step compatible (where i ≥ s). If the constraint system satisfies the
completion property, then em can be extended to a mapping em ⊕ sm such that f is the
s-frame associated with em ⊕ sm and the previous (s − 1) mappings in the sequence.

We know that any LTL formula ϕ can be converted to an equivalent non-deterministic Büchi
automaton with an exponential number of states in the size of ϕ in EXPTIME [30]. Now,
every non-deterministic Büchi automaton B with n states can be converted to a deterministic
parity automaton [15, Chapter 1] with number of states exponential in n and number of
colours polynomial in n [21, Theorem 3.10]. Using these results, it is easy to see that given a
CLTL formula ϕ, we can construct a deterministic parity automaton Aϕ with set of states Q

and with number of colours d, accepting the set of all sequences of frames that symbolically
satisfy ϕ, such that |Q| is double exponential in the size of ϕ and d is exponential in the size
of ϕ. Now we design parity games to simulate CLTL games.

▶ Definition 8. Let ϕ be the CLTL formula defining the winning condition for a CLTL
game and k be its X-length. Let F denote the set of all s-frames for s ∈ [0, k]. Let
Aϕ be a deterministic parity automaton accepting the set of all sequences of frames that
symbolically satisfy ϕ, with Q being the set of states, qI ∈ Q being the initial state and d being
the number of colours. We define a parity game with environment vertices Ve = {(f, qI) |
f is an s-frame, 0 ≤ s ≤ k}∪{(f, q) | f is a (k+1)-frame, q ∈ Q}. The set of system vertices
is Vs = {(f, qI , pf ) | f is an s-frame, 0 ≤ s ≤ k, pf is an (s + 1)-partial frame} ∪ {(f, q, pf ) |
f is a (k + 1)-frame, pf is a (k + 1)-partial frame}. There is an edge from (f, q) to (f, q, pf )
if (f, pf ) is one-step compatible, f is an s-frame for some s and pf is a partial ⌈s + 1⌉(k+1)-
frame. There is an edge from (f, qI , pf ) to (g, qI) if (pf , g) is one step compatible and g

is an s-frame for s ∈ [1, k]. There is an edge from (f, q, pf ) to (g, q′) if (pf , g) is one-step
compatible, g is a (k + 1)-frame and Aϕ goes from q to q′ on reading g. Vertices (f, q) and
(f, q, pf ) get the same colour as q in the parity automaton Aϕ. The initial vertex is (⊥, qI),
where ⊥ is the trivial 0-frame.

The edges of the parity game above are from Vs to Ve or vice-versa. They are designed such
that qI is the only state used for the first k rounds, where the frames will be of size at most
k (this is because for the system to win in a play of the parity game generating a frame
sequence ρ, we only require that the sequence ρ[k, ∞) symbolically satisfy ϕ, according to
Lemma 5). For the first (k + 1) frame, an edge from a system vertex of the form (f, qI , pf )
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to an environment vertex of the form (g, q′) is taken and from then on, we track the state of
the parity automaton as it reads the sequence of frames contained in the sequence of vertices
that are chosen by the players in the game.

▶ Lemma 9. For a CLTL game over a constraint system satisfying the completion property
with winning condition given by a formula ϕ, system has a winning strategy iff she has a
positional winning strategy in the parity game given in Definition 8.

Proof idea. For every play in the CLTL game, there is a corresponding play in the parity
game, but the converse is not true in general, since only the order of terms are tracked in
the parity game and not the actual values. For constraint systems satisfying the completion
property, Proposition 7 implies that there exist valuations corresponding to all possible
orderings of terms, so the converse is also true. ◀

▶ Theorem 10. The CLTL realizability problem over constraint systems that satisfy the
completion property is 2EXPTIME-complete.

Proof. From Lemma 9, this is effectively equivalent to checking the existence of a winning
strategy for system in a game. Now, checking if system has a winning strategy in the parity
game (constructed using Aϕ) can be achieved in O(nlog d) time where n is the number of
states in the game graph [9]. Now, by our construction, n = |Q| × |F|. We know, |F| is the
number of total pre-orders on V , for which 2(k.|V |)2 is a crude upper bound. This means that
|F| is exponential in the size of ϕ and hence, overall we get a 2EXPTIME upper bound for
our realizability problem. We also know that the realizability problem for LTL is complete for
2EXPTIME [23]. Thus, the CLTL realizability problem over constraint systems satisfying
the completion property is also 2EXPTIME-complete. ◀

We know that a positional winning strategy in the parity game for a player, if it exists, can
be implemented by a deterministic finite state transducer. Since D satisfies the completion
property, consider a resource-bounded Turing machine M , which can, given an environment
mapping em as described in Proposition 7, extend it to a mapping em ⊕ sm such that the
order f imposed by the em ⊕ sm and the previous s − 1 mappings over the set of all terms
extends the order pf imposed by em and the previous s−1 mappings. Now, for implementing
the winning strategy for a player in a CLTL game, we use the deterministic finite state
transducer corresponding to the parity game given in Definition 8. For every input of a
partial frame pf by environment in a round, the transducer returns a frame f for system
that extends pf . The transducer along with the machine M implements the winning strategy
for system in a given CLTL game, if it exists.

Note that as we saw above, the constraint systems (N, =) and (Z, =) (with just equality
and no linear order) also satisfy the completion property. So, it follows that the CLTL
realizability problem over these constraint systems is also decidable.

5 Decidability of single-sided CLTL games over (Z, <, =)

We consider games where environment has only future-blind variables, while the system
has both future-blind and look-ahead variables. We call this single-sided CLTL games.
So, in a single-sided game, EV = EV b and SV = SV b ∪ SV a. Given a CLTL formula
ϕ, the single-sided realizability problem is to check whether system has a winning
strategy in the single-sided CLTL game whose winning condition is ϕ. We only consider the
constraint system (Z, <, =) and show that the single-sided realizability problem is decidable
over (Z, <, =). We do this in two stages. In the first stage, we reduce it to the problem
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of checking the non-emptiness of a set of trees satisfying certain properties. These trees
represent system strategies. In the second stage, we show that non-emptiness can be checked
using tree automata techniques.

Let G be the set of gap functions associated with mappings of the form EV b → Z. For
s ≥ 1, an s-frame g and a function gp ∈ G, the pair (gp, g) is gap compatible if for all
x, y ∈ EV b, gp(x) − gp(y) = gpg(x, s − 1) − gpg(y, s − 1). Intuitively, the gaps that frame g

imposes between EV b variables in its last position are the same as the gaps imposed by gp.
We now have the following proposition (refer to the arXiv version of the paper for the proof).

▶ Proposition 11 (gap compatibility). For s ≥ 1, an s-frame g and a function gp ∈ G,
suppose the pair (gp, g) is gap compatible. If gp is the gap function associated with a mapping
em : EV b → Z, it can be extended to a mapping em ⊕ sm : V b → Z such that λx.gpg(x, s − 1)
is the gap function associated with em ⊕ sm.

Let ϕ be the CLTL formula defining the winning condition of a single-sided CLTL game
and let k be its X-length. Let F be the set of all s-frames for s ∈ [0, k]. For technical
convenience, we let F include the trivial 0-frame ⊥ = (≤⊥, gp⊥), where ≤⊥ is the trivial
total pre-order on the empty set and gp⊥ is the trivial function on the empty domain.

▶ Definition 12 (Winning strategy trees). A strategy tree is a function T : G∗ → F such
that for every node η ∈ G∗, T (η) is a ⌈|η|⌉k+1-frame and for every gp ∈ G, (T (η), T (η · gp))
is one-step compatible and (gp, T (η · gp)) is gap compatible. A function L is said to be a
labeling function if for every node η ∈ G∗, L(η) : V → Z is a mapping of the variables in
V . For an infinite path π in T , let T (π) (resp. L(π)) denote the infinite sequence of frames
(resp. mappings) labeling the nodes in π, except the root node ϵ. A winning strategy tree is a
pair (T, L) such that T is a strategy tree and L is a labelling function satisfying the condition
that for every infinite path π, T (π) = µ(L(π)) and T (π), k |=s ϕ.

The last condition above means that T (π) is the symbolic model associated with the concrete
model L(π) and that it symbolically satisfies the formula ϕ.

Two concrete models may have the same symbolic model associated with them, if they
differ only slightly, as explained next. Two concrete models σ1, σ2 are said to coincide on V a

if σ1(i) ↾ V a = σ2(i) ↾ V a for all i ≥ 0. They are said to coincide on V b up to gap functions
if for every i ≥ 0, the same gap function is associated with σ1(i) ↾ V b and σ2(i) ↾ V b. The
following result follows directly from definitions.

▶ Proposition 13 (similar concrete models have the same symbolic model). If two concrete
models coincide on V a and they coincide on V b up to gap functions, then they have the same
symbolic model associated with them.

The following result accomplishes the first stage of the decidability proof, reducing the
existence of winning strategies to non-emptiness of a set of trees. A detailed proof of this
result can be found on the arXiv version of the paper with the same title.

▶ Lemma 14 (strategy to tree). System has a winning strategy in the single-sided CLTL
game with wining condition ϕ iff there exists a winning strategy tree.

Proof idea. If environment chooses a mapping em : EV b → Z in the CLTL game, the
corresponding choice in the tree T is to go to the child gp, the gap function associated with
em. System responds with the mapping L(gp) ↾ SV a for the look-ahead variables. For the
future-blind variables SV b, system chooses a mapping that ensures compatibility with the
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frame T (gp). This will ensure that system’s response and L coincide on V a and coincide
on V b up to gap functions, so Proposition 13 ensures that both have the same symbolic
model. The symbolic model symbolically satisfies ϕ by definition of wining strategy trees
and Lemma 5 implies that the concrete model satisfies ϕ. ◀

Given a tree G∗ → F , a tree automaton over finite alphabets can check whether it is
a strategy tree or not, by allowing transitions only between one-step and gap compatible
frames. However, to check whether it is a winning strategy tree, we need to check whether
there exists a labeling function L, which is harder. One way to check the existence of such a
labeling function is to start labeling at the root and inductively extend to children. Suppose
there are two variables x, y at some node and we have to label them with integers. There may
be many variables in other nodes whose labels should be strictly between those of x, y in the
current node. So our labels for x, y in the current node should leave a gap large enough to
accommodate others that are supposed to be in between. Next we introduce some orderings
we use to formalize this.

A node variable in a strategy tree T is a pair (η, x) where η is a node and x ∈ V a is a
look-ahead variable. The tree induces an order on node variables as follows. Suppose η is a
node, T (η) is an s-frame for some s and ηa is an ancestor of η such that the difference in
height h = |η| − |ηa| between the descendant and ancestor is at most s − 1. For look-ahead
variables x, y ∈ V a, recall that the term Xs−1x represents the variable x in the last position of
the frame T (η), and Xs−1−hy represents the variable y at h positions before the last one. We
say (η, x) ⊑T (ηa, y) (resp. (ηa, y) ⊑T (η, x)) if Xs−1x ≤T (η) Xs−1−hy (resp. Xs−1−hy ≤T (η)
Xs−1x). In other words, for the variables and positions captured in the frame T (η), ⊑T

is same as the total pre-order ≤T (η). We define (η, x) ⊏T (ηa, y) (resp. (ηa, y) ⊏T (η, x))
if (η, x) ⊑T (ηa, y) and (ηa, y) ̸⊑T (η, x) (resp. (ηa, y) ⊑T (η, x) and (η, x) ̸⊑T (ηa, y)). We
define ⊏∗

T to be the reflexive transitive closure of ⊏T and ⊏+
T to be the transitive closure of ⊏T .

Note that ⊏∗
T and ⊏+

T can compare node variables that are in different branches of the tree
also, though they are not total orders. We write (η1, x) ⊏∗

T (η2, y) (resp, (η1, x) ⊏+
T (η2, y))

equivalently as (η2, y) ⊐∗
T (η1, x) (resp. (η1, x) ⊐+

T (η2, y)). By definition, (η1, x) ⊏+
T (η2, y)

(resp.(η2, y) ⊏+
T (η1, x)) if (η1, x) ⊏∗

T (η2, y) and (η2, y) ̸⊏∗
T (η1, x) (resp. (η2, y) ⊏∗

T (η1, x)
and (η1, x) ̸⊏∗

T (η2, y)). ⊏+ is irreflexive and transitive.

▶ Definition 15 (Bounded chain strategy trees). Suppose T is a strategy tree, η, η′ are two
nodes and x, y ∈ V a are look-ahead variables such that (η, x) ⊏+

T (η′, y). A chain between
(η, x) and (η′, y) is a sequence (η1, x1)(η2, x2) · · · (ηr, xr) such that (η, x) ⊏+

T (η1, x1) ⊏+
T

(η2, x2) ⊏+
T · · · ⊏+

T (ηr, xr) ⊏+
T (η′, y). We say r is the length of the chain. The strategy tree

T is said to have bounded chains if for any two node variables (η, x) and (η′, y), there is a
bound N such that any chain between (η, x) and (η′, y) is of length at most N .

▶ Lemma 16. A strategy tree T has a labeling function L such that (T, L) is a winning
strategy tree iff T has bounded chains.

The above lemma characterizes those strategy trees that are winning strategy trees. This
is the main technical difference between CLTL games and games with register automata
specifications [28, 14]. Since register automata can compare values that are arbitrarily far
apart, the corresponding characterization of symbolic structures that have associated concrete
structures is more involved compared to Lemma 16 above.

Detecting unbounded chains is still difficult for tree automata – to find longer chains,
we may have to examine longer paths. This difficulty can be overcome if we can show that
longer chains can be obtained by repeatedly joining shorter ones. We now introduce some
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notation and results to formalize this. For a node η and an ancestor ηa, T̂ (ηa, η) is the
sequence of frames T (ηa) · · · T (η) labeling the path from ηa to η. A node η1 is said to occur
within the influence of (ηa, η) if η1 occurs between ηa and η or η1 is an ancestor of ηa and
|ηa| − |η1| ≤ s − 1, where s is the size of the frame T (ηa). The following result follows directly
from definitions.

▶ Proposition 17 (Identical paths induce identical orders). Suppose nodes η, η′ and their
ancestors ηa, η′

a respectively are such that T̂ (ηa, η) = T̂ (η′
a, η′). Suppose η1, η2 occur within

the influence of (ηa, η) and η′
1, η′

2 occur within the influence of (η′
a, η′) such that |η| − |η1| =

|η′| − |η′
1| and |η| − |η2| = |η′| − |η′

2|. For any look-ahead variables x, y, (η1, x) ⊏∗
T (η2, y)

(resp. (η1, x) ⊑T (η2, y)) iff (η′
1, x) ⊏∗

T (η′
2, y) (resp. (η′

1, x) ⊑T (η′
2, y)).

For a node η, the subtree Tη rooted at η is such that for all η′, Tη(η′) = T (η · η′). A tree
T is called regular if the set {Tη | η ∈ G∗} is finite, i.e., there are only finitely many subtrees
up to isomorphism. Two nodes η, η′ are said to be isomorphic if Tη = Tη′ .

▶ Lemma 18 (Pumping chains in regular trees). Suppose T is a regular tree. Then T

has unbounded chains iff there exists an infinite path containing two infinite sequences
(η1, x), (η2, x), (η3, x) . . . and (η′

1, y), (η′
2, y), (η′

3, y) . . . such that ηi+1 (resp. η′
i+1) is a

descendant of ηi (resp. η′
i) for all i ≥ 1 and satisfy one of the following conditions.

(η1, x) ⊏+
T (η2, x) ⊏+

T (η3, x) ⊏+
T · · ·⊑

T

⊑
T

⊑
T

(η′
1, y) ⊐∗

T (η′
2, y) ⊐∗

T (η′
3, y) ⊐∗

T · · ·
or

(η1, x) ⊐+
T (η2, x) ⊐+

T (η3, x) ⊐+
T · · ·

⊑
T

⊑
T

⊑
T

(η′
1, y) ⊏∗

T (η′
2, y) ⊏∗

T (η′
3, y) ⊏∗

T · · ·

Proof idea. We can choose a chain that is long enough to contain two isomorphic nodes.
The path between them can be repeated infinitely. Proposition 17 will imply that this infinite
path contains an infinite chain as required. ◀

Lemma 18 says that if a regular tree has unbounded chains, it will have an infinite
path containing an infinite chain. The infinite sequence of the first (resp. second) kind
given in Lemma 18 is called an infinite forward (resp. backward) chain. Now we design
a tree automaton Aϕ whose language L(Aϕ) is an approximation of the set T = {T |
∃L, (T, L) is a winning strategy tree} such that L(Aϕ) is non-empty iff T is. Hence, the
single-sided CLTL realizability problem is equivalent to checking the non-emptiness of L(Aϕ).
The tree automaton Aϕ is the intersection of three automata Astr

ϕ , Asymb
ϕ and Achain

ϕ , all of
which read |G|-ary trees labeled with letters from F . The automaton Astr

ϕ accepts the set of
all strategy trees, Asymb

ϕ accepts the set of all trees each of whose paths symbolically satisfies
the formula ϕ and Achain

ϕ accepts the set of all trees that do not have any infinite forward or
backward chains. Construction of these automata are explained in detail in Appendix B.

▶ Lemma 19. The system player has a winning strategy in the single-sided CLTL(Z, <, =)
game with winning condition ϕ iff L(Aϕ) is non-empty.

Proof. Suppose there is a winning strategy for the system player in single-sided CLTL(Z, <

, =) game with winning condition ϕ. By Lemma 14, there exists a winning strategy tree,
say (T, L). Since, T is a strategy tree, T ∈ L(Astr). We know that every branch of T must
symbolically satisfy ϕ and hence, T ∈ L(Asymb

ϕ ). Further, since T has the labelling function
L, Lemma 16 implies that T has bounded chains and thus, it cannot have any infinite forward
or backward chains. So T ∈ L(Achain). Thus, T ∈ L(Aϕ).

Conversely, suppose Aϕ accepts a tree T . It is known that if the language of a tree
automaton is non-empty, it contains a regular tree [20, Corollary 8.20]. Although this result
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holds for tree automata that read infinite binary trees as inputs, the proofs can be suitably
modified to work for tree automata that read |G|-ary trees. Hence we can conclude that
Aϕ must accept a regular tree T ′. Since, T ′ ∈ L(Aϕ), every branch of T ′ must symbolically
satisfy ϕ, T ′ must be a strategy tree and it cannot have any infinite forward or backward
chains. Thus, by Lemma 18, T ′ must have bounded chains and hence by Lemma 16, T ′ must
have a labelling function L′ such that (T ′, L′) is a winning strategy tree. Hence, by Lemma 14
the system player has a winning strategy in the single-sided CLTL(Z, <, =) game. ◀

Note that L(Aϕ) is not equal to the set T = {T | ∃L, (T, L) is a winning strategy tree}
in general. As seen in the above proof, we can only guarantee that the regular trees in L(Aϕ)
are in T . The non-regular trees in L(Aϕ) need not be in T .

Using the previous lemma, we get the following decidability result.

▶ Theorem 20. The single-sided realizability problem for CLTL over (Z, <, =) is 2EXPTIME
-complete.

Proof. Given a formula ϕ, Lemma 19 implies that it is enough to construct the tree automaton
Aϕ and check it for non-emptiness. From the description of the construction in Appendix B,
we can see that Astr

ϕ , Asymb
ϕ and Achain

ϕ can be constructed in 2EXPTIME in the size of ϕ.
Thus, the automaton Aϕ can be constructed in 2EXPTIME. Now, checking non-emptiness
of a parity tree automaton is decidable and the upper bound stated in [20, Corollary 8.22 (1)]
implies that the single-sided realizability problem for CLTL over (Z, <, =) is in 2EXPTIME.
Now, the realizability problem for LTL is 2EXPTIME-complete [23] and hence, the single-
sided realizability problem for CLTL over (Z, <, =) must also be 2EXPTIME-complete. ◀

6 Discussion and Future Work

We have seen in this paper that the CLTL realizability problem is decidable over domains
satisfying completion property and that the single-sided CLTL realizability problem is
decidable over integers with linear order and equality. But both these problems have a high
complexity (both are 2EXPTIME-complete). It would be interesting to see if there are
expressive fragments of CLTL with lower complexity, like the fragments of LTL studied
in [22], which work on practical examples.

We believe that single-sided CLTL games over the domain of natural numbers (N, <, =) are
also decidable. In [13], the authors extend the automata-characterization for the satisfiability
problem for CLTL over the integer domain to the domain of natural numbers. A similar
extension of the tree-automata characterization for the single-sided games over integers to
one for single-sided games over the naturals seems possible, although the details need to be
worked out.

Despite the decidability result that we have for the single-sided CLTL games over integers,
the language of the tree automaton that we construct in this paper is an approximation of
the set of all winning strategy trees. We do not have a machine-theoretic representation for
winning strategies yet, and this is an interesting direction for future exploration.
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A Details of Section 4

Proof of Lemma 9. (⇒) Suppose system has a winning strategy st in the CLTL game. We
show that system has a winning strategy in the parity game. Plays in the parity game
are of the form (⊥, qI)(⊥, qI , pf 1)(f1, q1)(f1, q1, pf 2)(f2, q2) · · · (fi, qi, pf i+1)(fi+1, qi+1) · · · ,
where (fi, pf i+1) and (pf i+1, fi+i) are one-step compatible for all i. For any such play π,
let π ↾ i be (⊥, qI)(⊥, qI , pf 1)(f1, q1)(f1, q1, pf 2)(f2, q2) · · · (fi, qi, pf i+1). Let Π = {π ↾ i |
π is a play in the parity game, i ≥ 0}. We will show the existence of a function stp : Π →
Ve × EM × SM satisfying some properties. Such a function can be used as a strategy by
system in the parity game: for a play π ↾ i, system’s response (fi+1, qi+1) is given by stp,
i.e., stp(π ↾ i) = ((fi+1, qi+1), emi+1, smi+1). For such plays that system plays according
stp, let frames(π ↾ i) be the symbolic model f1f2 · · · fi+1 and let maps(π ↾ i) be the concrete
model (em1 ⊕ sm1)(em2 ⊕ sm2) · · · (emi+1 ⊕ smi+1).

We will show that there is a function stp such that for all plays π that system
plays according to stp and all i ≥ 0 , maps(π ↾ i) is a concrete model resulting
from system playing the CLTL game according to st and frames(π ↾ i) = µ(maps(π ↾
i)). We will define such a function stp by induction on i. We assume this has
been done for i and show how to extend to i + 1. We have π ↾ (i + 1) =
(⊥, qI)(⊥, qI , pf 1)(f1, q1)(f1, q1, pf 2)(f2, q2) · · · (fi, qi, pf i+1)(fi+1, qi+1)
(fi+1, qi+1, pf i+2). By induction hypothesis, f1f2 · · · fi+1 = µ(maps(π ↾ i)). Since the
constraint system satisfies the completion property and (fi+1, pf i+2) is one-step compatible,
by Proposition 7, there is a mapping em : EV → D such that the symbolic model induced
by maps(π ↾ i) · em is f1f2 · · · fi+1 · pf i+2. Let sm : SV → D = st(maps(π ↾ i) · em)
be system’s response in the CLTL game according to st. Let fi+2 be the frame such that
f1f2 · · · fi+1fi+2 = µ(maps(π ↾ i) ·(em⊕sm)). Set stp(π ↾ (i+1)) to be ((fi+2, qi+2), em, sm),
where qi+2 is the state Aϕ reaches after reading fi+2 in state qi+1. Now, maps(π ↾ (i + 1))
is a concrete model resulting from system playing the CLTL game according to st and
frames(π ↾ (i + 1)) = µ(maps(π ↾ (i + 1))), as required for the inductive construction.

Let π be any infinite play in the parity game that system plays according to stp. Then
maps(π) is a concrete model resulting from system playing the CLTL game according to st
and frames(π) = µ(maps(π)). Since st is a winning strategy for system, maps(π), 0 |= ϕ. We
infer from Lemma 5 that frames(maps(π)), k |=s ϕ. Hence, the sequence of states qI , q1, q2, . . .

contained in the sequence of vertices that are visited in π satisfy the parity condition of
Aϕ. Hence, π itself satisfies the parity condition and hence system wins π. Hence, stp is a
winning strategy for system in the parity game.
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(⇐) Suppose stp is a positional strategy for system in the parity game. We will show
that system has a winning strategy st in the CLTL game. We will define st by induction on
the number of rounds played. For the base case, suppose environment starts by choosing a
mapping em1 : EV → D. In the parity game, let environment go to the vertex (⊥, qI , pf 1)
in the first round, where pf 1 is the 1-partial frame associated with em1. Let (f1, q1) =
stp((⊥, qI , pf 1)) be system’s response according to stp. Since (pf 1, f1) is one-step compatible
and the constraint system satisfies the completion property, by Proposition 7, em1 can
be extended to a mapping em1 ⊕ sm1 : V → D such that f1 is the frame associated with
em1 ⊕ sm1. Set st(em1) to be sm1. After i rounds of the CLTL game, suppose (em1 ⊕
sm1) · · · (emi⊕smi) is the resulting concrete model and let (⊥, qI)(⊥, qI , pf 1)(f1, q1) · · · (fi, qi)
be the corresponding play in the parity game. Suppose environment chooses emi+1 in the
next round. Let pf i+1, fi+1, qi+1, smi+1 be obtained similarly as in the base case. Set
st((em1 ⊕ sm1) · · · (emi ⊕ smi) · emi+1) to be smi+1.

Suppose (em1 ⊕ sm1)(em2 ⊕ sm2) · · · is an infinite play in the CLTL game that system
plays according to st. There is a play (⊥, qI)(⊥, qI , pf 1)(f1, q1)(f1, q1, pf 2)(f2, q2) · · · in
the parity game that is winning for system. This satisfies the parity condition, hence Aϕ

accepts the symbolic model f1f2 · · · . The symbolic model f1f2 · · · is the one associated
with (em1 ⊕ sm1)(em2 ⊕ sm2) · · · by construction of st, so Lemma 5 implies that (em1 ⊕
sm1)(em2 ⊕ sm2) · · · , 0 |= ϕ. Hence, st is a winning strategy for system in the CLTL
game. ◀

B Details of Section 5

Proof of Lemma 16. (⇒) Suppose T has a labeling function L such that (T, L) is a winning
strategy tree. Since for every infinite path π, T (π) = µ(L(π)), L should respect the relation
⊏+

T , i.e., if (η, x) ⊏+
T (η′, y), then L(η)(x) < L(η′)(y). Hence, any chain between (η, x) and

(η′, y) cannot be longer than L(η′)(y) − L(η)(x).
(⇐) Suppose T has bounded chains. We construct a labeling function L such that (T, L)

is a winning strategy tree. At every node η, we choose mappings for future-blind variables
V b such that the gap function associated with L(η) ↾ V b is gpT (η). These choices can be
done independently for every node. For look-ahead variables, we construct L for every node
by induction on depth of the node such that for any node variables (η, x), (η′, y) such that
(η, x) ⊏+

T (η′, y) and L(η), L(η′) have been constructed, L(η′)(y) − L(η)(x) is at least as large
as the length of the longest chain between (η, x) and (η′, y). For the base case η = ϵ, let L(η)
be the trivial mapping on the empty domain.

For the induction step, consider a node η. Let (η, x0), (η, x1), . . . be the node
variables from η and let (η1, y1), (η2, y2), . . . be the node variables from all the ancestors
of η. Arrange them in ascending order according to ⊏∗

T . In this arrangement, suppose
(ηi, yi)(η, xj)(η, xj+1) · · · (η, xl)(ηi+1, yi+1) is a contiguous sequence of node variables from η

surrounded by ancestor node variables (ηi, yi) and (ηi+1, yi+1). Set L(η)(xj) to be the sum
of L(ηi)(yi) and the length of the longest chain between (ηi, yi) and (η, xj). Set L(η)(xj+1)
to be the sum of L(η)(xj) and the length of the longest chain between (η, xj) and (η, xj+1).
Continue this way till (η, xl). The value set for L(η)(xl) will be less than L(ηi+1)(yi+1)
minus the length of the longest chain between L(η)(xl) and (ηi+1, yi+1), since by induction
hypothesis, L(ηi+1)(yi+1) − L(ηi)(yi) is large enough to accommodate the longest chain
between (ηi, yi) and (ηi+1, yi+1) (note that any chain between (η, xj) and (η, xj+1) can be
concatenated with any chain between (η, xj+1) and (η, xj+2) and so on to form a chain
between (ηi, yi) and (ηi+1, yi+1)). This way, all contiguous sequence of node variables from η

can be mapped satisfactorily. This completes the induction step and hence the proof. ◀
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Proof of Lemma 18. (⇐) We consider the first case; the other case is similar. Since
(ηi, x) ⊑T (η′

i, y) ⊏∗
T (η′

i−1, y) ⊏∗
T · · · ⊏∗

T (η′
1, y) for all i ≥ 1, we have (ηi, x) ⊏∗

T (η′
1, y).

Hence, (η1, x) ⊏+
T (η2, x) ⊏+

T · · · ⊏+
T (ηi, x) ⊏∗

T (η′
1, y) for all i ≥ 1, demonstrating that there

are chains of unbounded lengths between (η1, x) and (η′
1, y).

(⇒) We show the existence of a short segment that can be repeated arbitrarily many
times to get the required infinite path. We show that there are node variables along a path
satisfying the following conditions:

1.
(η1, x) ⊏+

T (η2, x)⊑
T

⊑
T

(η′
1, y) ⊐∗

T (η′
2, y)

or
(η1, x) ⊐+

T (η2, x)

⊑
T

⊑
T

(η′
1, y) ⊏∗

T (η′
2, y)

,

2. the nodes are arranged as η′
1, η1, η′

2, η2 in ascending order of depth, |η′
1| > k,

3. η1, η2 are isomorphic, η′
1, η′

2 are isomorphic and |η1| − |η′
1| = |η2| − |η′

2| ≤ k.
The node variables mentioned above are as shown below.

root
(η′

1, y)

(η1, x)

(η′
2, y)

(η2, x)

(η′
3, y)

(η3, x)

pattern pattern repeats

We first prove that the existence of such nodes is sufficient. Since η1, η2 are isomorphic, for
any sequence of frames starting from η1, the same sequence also starts from η2. Hence there
is a descendant η3 of η2 such that η2, η3 are isomorphic and T̂ (η1, η2) = T̂ (η2, η3). The nodes
η′

1, η1, η′
2, η2 occur within the influence of (η1, η2) and the nodes η′

2, η2, η′
3, η3 occur within

the influence of (η2, η3). In the first case in the first condition above, (η1, x) ⊏+
T (η2, x) ⊑T

(η′
2, y) ⊏∗

T (η′
1, y) and Proposition 17 implies that (η2, x) ⊏+

T (η3, x) ⊑T (η′
3, y) ⊏∗

T (η′
2, y).

This pattern can be repeated arbitrarily many times, proving that there are node variables
as stated in the first case of the lemma. The other case is similar.

Now we will show the existence of the short segment as claimed above. Since T is regular,
the number of non-isomorphic subtrees of T is finite, say κ. Let N = κ2|V a|2. We will show
subsequently that there is a chain of the form (η, x1) ⊏+

T (η1, y1) ⊏+
T (η2, y2) ⊏+

T · · · ⊏+
T

(ηN+2, yN+2) ⊏∗
T (η′, x2) or (η, x1) ⊐+

T (η1, y1) ⊐+
T (η2, y2) ⊐+

T · · · ⊐+
T (ηN+2, yN+2) ⊐∗

T

(η′, x2), where η1 is a descendant of both η and η′ of depth at least (k + 1) more than
both η and η′ and ηi+1 is a descendant of ηi of depth at least (k + 1) more than ηi for
all i ∈ [1, N + 1] (we call such chains straight segments). We will only consider the first
case here; the other case is similar. Now (ηN+2, yN+2) ⊏∗

T (η′, x2) and ηN+2 is a deep
descendant of η′ with η1, . . . , ηN+1 (which are themselves at least (k + 1) positions apart
from each other) in between. Recall that ⊏∗

T is the transitive closure of ⊑T and ⊑T holds
only between node variables that are at most k positions apart. Hence, there must be
intermediate node variables between (ηN+2, yN+2), (η′, x2) so that (ηN+2, yN+2) ⊏∗

T (η′, x2).
For every i ∈ [1, N + 1], there must be some intermediate node variable (η′

i, y′
i) such that

η′
i is an ancestor of ηi, |ηi| − |η′

i| ≤ k and (ηN+2, yN+2) ⊏∗
T (η′

i, y′
i) ⊏∗

T (η′, x2). Since
|ηi| − |η′

i| ≤ k, either (ηi, yi) ⊑T (η′
i, y′

i) or (η′
i, y′

i) ⊑T (ηi, yi) (the frame T (ηi) spans
η′

i also; hence the frame imposes an order between the node variables). If (η′
i, y′

i) ⊑T

(ηi, yi), then (ηi, yi) ⊏+
T (ηN+2, yN+2) ⊏∗

T (η′
i, y′

i) ⊑T (ηi, yi) implies that (ηi, yi) ⊏+
T

(ηi, yi), contradicting the fact that ⊏+
T is irreflexive. Hence, (ηi, yi) ⊑T (η′

i, y′
i). Consider

the sequence (η1, y1), (η′
1, y′

1), (η2, y2), (η′
2, y′

2), . . . , (ηN+1, yN+1), (η′
N+1, y′

N+1). Since N =
κ2|V a|2, there are i, j such that ηi (resp. η′

i) is isomorphic to ηj (resp. η′
j), yi = yj and

y′
i = y′

j . The node variables (ηi, yi), (ηj , yi), (η′
i, y′

i), (η′
j , y′

i) satisfy the conditions required for
(η1, x), (η2, x), (η′

1, y), (η′
2, y) respectively in our claim about the existence of a short segment.
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Next we will show that there are chains that go arbitrarily deep in a single branch.
Suppose there are chains of unbounded lengths between (η1, x1) and (η2, x2). All such chains
must pass through the least common ancestor (say ηa) of η1, η2. For some variable xa,
there must be chains of unbounded lengths between either (η1, x1) and (ηa, xa) or between
(ηa, xa) and (η2, x2). Say there are unbounded chains between (η1, x1) and (ηa, xa); the
other case is similar. There is only one path between η1 and ηa, so there must be chains of
unbounded lengths that go beyond this path and come back. There must be node variables
(η1, y1), (η1, y2) or (ηa, y1), (ηa, y2) such that there are chains of unbounded lengths between
them. We will consider (η1, y1), (η1, y2); the other case is similar. For the chains of unbounded
lengths starting from (η1, y1) and ending at (η2, y2), let η be the highest node (nearest to the
root) visited. There must be (η, z1), (η, z2) such that there are chains of unbounded lengths
between them that only visit descendants of η. If there is a bound (say B) on how deep the
chains go below η and come back, the number of nodes that can be visited is bounded by
the number of node variables that occur in the subtree of height B rooted at η (a node can
occur at most once in a chain; otherwise, it will contradict the fact that ⊏+

T is irreflexive).
Hence, for any bound B, there are chains that go deeper than B and come back.

Next we prove that there is no bound on the number of node variables in a single
path that belong to a chain. For this, first suppose that there is a node η and a chain
goes down one child of η starting from (η, x), comes back to η via (η, y) and goes down
another child. Then we have (η, x) ⊏+

T (η, y) or (η, y) ⊏+
T (η, x) (see the illustration below; if

(η, x) ⊏∗
T (ηb, x′) ⊏+

T (ηb, y′) ⊏∗
T (η, y) in the branch, we have (η, x) ⊏+

T (η, y) in the main
path by transitivity). Hence, every such node contributes a node variable in a chain.

root (η, x) (η, y)

(ηb, x′) (ηb, y′)⊏+
T

⊏+
T

⊏+
T

⊏+
T main path

branches

branching nodes

So if there is no bound on the number of such branching nodes along a path, then there is no
bound on the number of node variables in a single path that belong to a chain, as required.
Suppose for the sake of contradiction that the number of such branching nodes along any
path is bounded (by say B1) and the number of node variables in a chain along any one
path is also bounded (say by B2). Then any chain is in a subtree with at most |G|B1 leaves
(and hence at most as many paths) and at most B2 node variables along any path, so the
length of such chains is bounded. Hence, either the number of branching nodes along a path
is unbounded or the number of node variables in a chain along a path is unbounded. Both
of these imply that the number of node variables in a chain along a path is unbounded, as
required.

A chain that goes deep down a path may make u-turns (first descend through descendants
and then go to an ascendant or vice-versa) multiple times within the branch. We would like
to prove that there is no bound on the length of chain segments that don’t have u-turns
(these are the straight segments that we need). Suppose for the sake of contradiction that
there is a bound on the length of straight segments. Then there is no bound on the number of
straight segments in a path, since we have already shown that the number of node variables
in a chain along a path is unbounded. There can be only boundedly many distinct straight
segments in a path of bounded depth, so the straight segments go deeper without any bound.
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If there is a straight segment and another one occurs below the first one, the first straight
segment can be extended by appending node variables of the second one, as can be seen in
the illustration below.

root
first straight segment

second straight segment

first segment extended

This contradicts the hypothesis that length of straight segments is bounded. This shows that
there are unboundedly long straight segments, completing the proof. ◀

B.1 Construction of Aϕ

The automaton Astr
ϕ has set of states F . In state f , it can read the input label f and go

to states f1, . . . , f|G| in its children, provided (f, fi) is one-step compatible and (gpi, fi) is
gap-compatible for all i ∈ [1, |G|]. All states are accepting in this Büchi automaton. This
automaton just checks that every pair of consecutive frames along every branch of the tree
is one-step compatible and gap-compatible and hence verifies that the tree accepted is a
strategy tree. Now, the size of the set of states of Astr

ϕ is |F|, and the size of the transition
set is |F| × |Σ| × |F||G| where the input alphabet Σ = F . Since, G is the set of all gap
functions associated with mappings of the form EV b → Z, by definition of G its range must
be {0, . . . , |EV b|2} implying |G| ≤ |EV b|(|EV b|2). Also, from the definition of F , we get
|F| ≤ 2(k.|V a|)2 × (|V b||V b|2)k where k is the X-length of ϕ. Thus, the size of Astr

ϕ is double
exponential in the size of ϕ.

The automaton Asymb
ϕ checks that every path in the input tree is accepted by a Büchi

automaton B symb
ϕ , which ensures that the input sequence symbolically satisfies the formula ϕ.

Given the Büchi automaton B symb
ϕ , we first convert it to some deterministic parity automaton

C symb
ϕ in exponential time in the size of B symb

ϕ and from that, it is easy to construct the parity
tree automaton Asymb

ϕ with the same size as C symb
ϕ . The Büchi automaton B symb

ϕ needs to
check symbolic satisfiability – whether an atomic formula is satisfied at a position can be
decided by checking just the current frame, just like propositional LTL. Hence the standard
Büchi automaton construction for LTL can be used to construct B symb

ϕ in EXPTIME [30].
Thus, the parity tree automaton Asymb

ϕ can be constructed in 2EXPTIME in the size of ϕ.
Next, we describe the construction of the parity tree automaton Achain

ϕ . It needs to
check that there are no infinite forward or backward chains in any of the paths. For this we
will first construct a Büchi word automaton that accepts all words not having an infinite
forward or backward chain, convert it into a deterministic parity automaton Cchain

ϕ and then
as before, construct Achain

ϕ with the same size as Cchain
ϕ . This Büchi word automaton can

be constructed by complementing the Büchi automaton Bchain which accepts all words that
contain an infinite forward chain or an infinite backward chain in EXPTIME in the size of
Bchain [29]. The construction of such a Büchi automaton Bchain is already described in [13].
The size of Bchain (as described in [13]) is polynomial in the size of the CLTL formula ϕ and
hence, the size of Achain

ϕ is double exponential in the size of ϕ.
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Abstract
Building on previous results concerning the decidability of the satisfiability and entailment problems
for separation logic formulas with inductively defined predicates, we devise a proof procedure to
reason on dynamic transformations of memory heaps. The initial state of the system is described by
a separation logic formula of some particular form, its evolution is modeled by a finite transition
system and the expected property is given as a linear temporal logic formula built over assertions in
separation logic.
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1 Introduction

Separation logic (SL) [14] is a dialect of bunched logic [10], that was introduced in verification
to reason on programs manipulating dynamically allocated memory. The logic uses a
particular connective ∗ to assert that two formulas hold on disjoint parts of the memory,
which allows for more concise specifications. It supports local reasoning, in the sense that
the properties of a program can be asserted and proven by referring only to the part of the
memory that is affected by the program, and not to the global state of the system. The
expressive power of the logic may be enhanced by using inductively defined predicates, which
can be used to define recursive data structures of unbounded sizes, such as lists or trees. For
instance, the following rules define a predicate lseg(x, y) denoting a non empty list segment
from x to y: {lseg(x, y)⇐ x 7→ (y), lseg(x, y)⇐ ∃z.(x 7→ (z) ∗ lseg(z, y))}. Informally,
x, y, z denotes locations (i.e., memory addresses), x 7→ (y) states that location x is allocated
and points to location y and the separating conjunction x 7→ (z) ∗ lseg(z, y) states that
the heap contains a list segment lseg(z, y) together with an additional memory cell x that
points to z (it implicitly entails that x is distinct from all the memory locations allocated in
the list segment from z to y). These predicates may be hard coded, but they may also be
defined by the user, to tackle custom data structures. For the fragment of separation logic
called symbolic heaps (formally defined later), satisfiability is decidable [3], but entailment
is undecidable in general (entailment cannot be reduced to satisfiability since the fragment
does not include negations). However, a general class of decidable entailment problems is
described in [7], based on restrictions on the form of the inductive rules that define the
semantics of the inductive predicates. More recently, it was shown that the entailment
problem is 2-EXPTIME complete [11, 4] for such inductive rules. Building on these results,
we devise in the present work a proof procedure to reason on dynamic transformations of
data structures specified by SL formulas with inductively defined predicates. More precisely,
we consider entailments of the form ϕ |=S

R Φ, where ϕ is an SL formula (more precisely a
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9:2 Reasoning on Dynamic Transformations of Symbolic Heaps

symbolic heap), R is a set of inductive rules, S is a transition system and Φ is a formula
combining symbolic heaps with temporal connectives of linear temporal logic (LTL) [13].
Informally, such an entailment is valid if the formula Φ holds w.r.t. all the runs obtained
by starting from a structure satisfying the formula ϕ and following the transition system S.
The symbolic heap ϕ describes the initial state of the system, R defines the semantics of
the inductively defined predicate symbols, S describes how the system evolves along time
and Φ gives the expected behavior of the system. The system S may affect the considered
structure by changing the value of variables, by allocating or freeing memory locations, or by
redirecting already allocated locations. For instance, we may check whether an entailment
lseg(x, nil) |=S

R FFF lseg(x, x) holds, meaning that an initial list segment from x to nil is
eventually transformed into a circular list, or that lseg(x, nil) |=S

R GGG(q ⇒ lseg(x, nil))
holds, meaning that each time the system reaches state q the heap contains a list from x to
nil. We show that the entailment problem is undecidable in general, but decidable if the
considered transition system satisfies some conditions, which, intuitively, prevent actions
affecting the value of the variables to occur inside loops (the other actions are not restricted).
The proposed decision procedure is modular, and relies on a combination of the algorithm
described in [12, 11] for checking the satisfiability of separation logic formulas with usual
model checking and model construction procedures for LTL.

Related work

Dynamic transformations are usually tackled in SL using Hoare logic, with pre and post-
conditions defined with the help of separating implications (see, e.g., [1]). Separating
implication is not used in our approach due to the difficulty of reasoning automatically with
this connective, especially in connection with inductive definitions (however, the so-called
context predicates introduced in Section 7 can be viewed as a restricted form of separating
implication). The combination of SL with temporal connectives is rather natural and has been
considered in [2]. In [8, 6], temporal extensions of the related bunched logic are considered.
Our approach departs from this work because the fragment of separation logic that we
consider is very different: while the logic in [2] is based on quantifier-free separation logic
formulas (with arbitrary combinations of boolean and separating connectives), we focus on
symbolic heaps, i.e., on separating conjunctions of inductively defined atoms (with existential
quantification). Thus on one hand our basic assertion language is more restricted because we
strongly restricts the nesting of separation connectives, but on the other hand the addition
of inductively defined predicates greatly increases the expressive power of the language
and allows one to tackle richer data structures. In particular we emphasize that – without
temporal connectives – entailment is 2-EXPTIME complete for the fragment that we consider,
whereas satisfiability is PSPACE-complete for that considered in [2].

2 Separation Logic

We define the syntax and semantics of a fragment of separating logic called symbolic heaps
and we recall the conditions on the inductive rules that ensure that the entailment problem is
decidable. Most definitions are standard, see [14, 7] for additional explanations and examples.

▶ Definition 1 (Symbolic Heaps). Let V be a countably infinite set of variables. Let P be a
finite set of predicate symbols. Each symbol p in P is associated with a unique natural number
called the arity of p. Let κ be a fixed natural number, denoting the number of record fields.
An equational atom is an expression of the form x ≃ y or x ̸≃ y, where x, y ∈ V. A points-to
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atom is an expression of the form x 7→ (y1, . . . , yκ) with x, y1, . . . , yκ ∈ V. A predicate atom
is an expression of the form p(x1, . . . , xn) with p ∈ P, n = arity(p) and x1, . . . , xn ∈ V. A
spatial atom is either a points-to atom or a predicate atom. An atom is either an equational
atom or a spatial atom. The set of symbolic heaps is the set of expressions of the form:
∃x1 . . . ∃xn.(α1 ∗ · · · ∗ αm) where x1, . . . , xn are variables and α1, . . . , αm are atoms (with
possibly n = 0 and/or m = 0). The connective ∗ is called separating conjunction. An empty
separating conjunction is denoted by emp. For every symbolic heap ϕ, we denote by fv(ϕ) the
set of variables freely occurring in ϕ.

For all vectors xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) of the same length, we denote by
xxx ≃ yyy the separating conjunction x1 ≃ y1 ∗ · · · ∗ xn ≃ yn. If ϕ is a symbolic heap, then ∃xxx.ϕ
denotes the symbolic heap ∃x1 . . . ∃xn.ϕ. For every symbolic heap ϕ we denote by v7→(ϕ) the
set of free variables x such that ϕ contains a points-to atom of the form x 7→ (yyy).

▶ Definition 2 (Substitutions). A substitution is a function mapping every variable x to a
variable. For every substitution σ and for every symbolic heap ϕ, we denote by ϕσ the symbolic
heap obtained from ϕ by replacing every free occurrence of a variable x by σ(x). If x1, . . . , xn
are pairwise distinct variables, we denote by {x1 ← y1, . . . , xn ← yn} the substitution σ such
that σ(xi) = yi for all i = 1, . . . , n and σ(x) = x if x ̸∈ {x1, . . . , xn}.

Symbolic heaps are interpreted in structures defined as follows.

▶ Definition 3 (SL Structures). Let L be a countably infinite set of so-called locations. An
(SL) structure is a pair (s, h) where:

s is a store, i.e., a function mapping every variable to a location.
h is a heap, i.e., a finite partial function mapping locations to κ-tuples of locations. We
denote by dom(h) the finite domain of h, by |h| the cardinality of dom(h) and by locs(h)
the set: {ℓi | ℓ0 ∈ dom(h), h(ℓ0) = (ℓ1, . . . , ℓκ), 0 ≤ i ≤ κ}.

A location ℓ ∈ dom(h) is allocated in h. A variable x such that s(x) ∈ dom(h) is allocated
in (s, h).

Intuitively, s gives the values of the variables and h denotes the dynamically allocated memory.
A heap will often be denoted as a set of tuples h = {(ℓ0, . . . , ℓκ) | ℓ0 ∈ dom(h), h(ℓ0) =
(ℓ1, . . . , ℓn)}. In particular, ∅ denotes the heap that allocates no location. Two heaps h1 and
h2 are disjoint if dom(h1)∩ dom(h2) = ∅. In this case h1 ⊎ h2 denotes the union of h1 and h2
defined as follows: dom(h1 ⊎ h2) def= dom(h1) ∪ dom(h2), and h(ℓ) = hi(ℓ) for all i = 1, 2 and
ℓ ∈ dom(hi).

The semantics of the predicate symbols is defined by user-provided inductive rules:

▶ Definition 4 (Inductive Rules). A set of inductive definitions (SID) is a set of rules of
the form p(x1, . . . , xn) ⇐ ϕ such that p ∈ P, n = arity(p), x1, . . . , xn are pairwise distinct
variables, and ϕ is a symbolic heap with fv(ϕ) ⊆ {x1, . . . , xn}.

For every symbolic heap ϕ, we write ϕ ⇐R ϕ′ if ϕ is of the form ∃uuu.(p(y1, . . . , yn) ∗
ϕ′), R contains a rule p(x1, . . . , xn) ⇐ ∃vvv.ψ (where ψ contains no quantifier) and ϕ′ =
∃uuu∃vvv.(ψ{xi ← yi | i = 1, . . . , n} ∗ ϕ′). We assume by α-renaming that the vector vvv contains
no variable in uuu, fv(ϕ) or (x1, . . . , xn). As usual ⇐∗

R is the reflexive and transitive closure
of ⇐R.

The satisfiability relation is defined inductively as follows. We emphasize that equational
atoms are valid only if the heap is empty; this convention allows us to simplify notations (it
avoids having to use both the separating conjunction and the standard one).
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9:4 Reasoning on Dynamic Transformations of Symbolic Heaps

▶ Definition 5 (Satisfiability). We write (s, h) |=R ϕ if one of the following conditions holds:
h = ∅ and either (ϕ = (x ≃ y) and s(x) = s(y)), or (ϕ = (x ̸≃ y) and s(x) ̸= s(y)).
ϕ = x 7→ (y1, . . . , yκ) and h = {(s(x), s(y1), . . . , s(yκ))}.
ϕ = ϕ1∗ϕ2 and there exist disjoint heaps h1 and h2 such that h = h1⊎h2 and (s, hi) |=R ϕi,
for all i = 1, 2.
ϕ = p(x1, . . . , xn) with p ∈ P, p(x1, . . . , xn)⇐∗

R ψ, ψ contains no predicate symbols and
(s, h) |=R ψ.
ϕ = ∃x.ψ, and there exists a store s′ coinciding with s on all variables distinct from x

such that (s′, h) |=R ψ.
An R-model of ϕ is a structure (s, h) such that (s, h) |=R ϕ. If ϕ, ϕ′ are symbolic heaps, we
write ϕ |=R ϕ′ if the entailment (s, h) |=R ϕ =⇒ (s, h) |=R ϕ′ for all SL structures (s, h),
and ϕ ≡R ψ if ϕ |=R ψ and ψ |=R ϕ.

Restricting Inductive Definitions
While the entailment problem is undecidable in general for symbolic heaps with inductively
defined predicates, a very general decidable class is identified in [7]. This fragment is defined
by restricting the form of the inductive rules, which must satisfy three conditions, recalled
below (we use the slightly more general version of establishment given in [11]).

▶ Definition 6 (Progress, Connectedness and Establishment (PCE)). A rule p(x1, . . . , xn)←
∃yyy.ϕ (where ϕ contains no quantifier) is:

progressing if ϕ is of the form x1 7→ (z1, . . . , zκ) ∗ϕ′, where ϕ′ contains no points-to atom
(i.e., the rule allocates exactly one location x1);
connected if, moreover, every predicate atom in ϕ′ is of the form q(z,vvv) with z ∈
{z1, . . . , zκ} (i.e., the locations allocated by the called predicates are successors of x1).

A SID R is progressing (resp. connected) if all the rules in R are progressing (resp. connected).
It is is established if for every atom p(x1, . . . , xn) and for every formula ϕ containing no
predicate symbol, if p(x1, . . . , xn)⇐∗

R ϕ and x is existentially quantified in ϕ then ϕ contains
atoms yi ≃ yi+1 (for i = 0, . . . , n, with n ≥ 0) such that x = yn+1 and either ϕ contains a
points-to atom of the form y0 7→ (zzz) or y0 ∈ {x1, . . . , xn} (i.e., every existentially quantified
variable either is equal to a free variable or is eventually allocated).

▶ Example 7. The following set, defining a list segment ending at an arbitrary location, is
progressing and connected, but not established:

{lseg′(x)⇐ ∃y.x 7→ (y), lseg′(x)⇐ ∃z.(x 7→ (z) ∗ lseg′(z))}

In the remainder of the paper we assume that a set of inductive rules R is given, satisfying
the PCE conditions. This is the case for the rules given in the Introduction for the predicate
lseg. We now introduce a notion of heap constraints, which combine positive and negative
assertions denoted by symbolic heaps, with constraints specifying that some variables are
unallocated:

▶ Definition 8 (Heap Constraint). A heap constraint is a triple (S+, S−, X), where S+ and
S− are sets of symbolic heaps, S+ ̸= ∅ and X ⊆ V. We write (s, h) |=R (S+, S−, X) if for
all ϕ ∈ S+: (s, h) |=R ϕ; for all ϕ ∈ S−: (s, h) ̸|=R ϕ; and for all x ∈ X: s(x) ̸∈ dom(h).

The decidability of the satisfiability problem for such constraints follows from [12, 11]:

▶ Lemma 9. There exists an algorithm that, given a heap constraint (S+, S−, X) and a
progressing, connected and established set of rules R, checks whether there exists an SL
structure (s, h) such that (s, h) |=R (S+, S−, X).
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3 Actions Operating on SL Structures

We define the basic actions that can occur in transition systems. The set of actions includes
tests, affectations, redirections of allocated locations, as well as allocations and desallocations.

▶ Definition 10 (Actions). Let V⋆ be a finite set of variables. A term is either an element
of V⋆ or an expression of the form x.i where x ∈ V⋆ and i ∈ {1, . . . , κ}. A condition is a
boolean combination of atomic conditions, that are expressions of the form t ≈ s where t, s
are terms. An action is an expression of one of the following forms: pass (null action);
t := s, where t and s are terms (affectation or redirection); alloc(x) or free(x), where
x ∈ V⋆ (allocation and desallocation); or test(γ), where γ is a condition (test).

The semantics of conditions is defined below.

▶ Definition 11 (Semantics of Conditions). For every structure (s, h) and for every term t

we write t ▷(s,h) ℓ (t evaluates to ℓ) if either t ∈ V⋆ and s(t) = ℓ, or t = x.i with x ∈ V⋆,
s(x) ∈ dom(h), h(s(x)) = (ℓ1, . . . , ℓκ) and ℓ = ℓi. We write (s, h) |= t ≈ s if there exists ℓ ∈ L
such that t ▷(s,h) ℓ and s ▷(s,h) ℓ. The relation |= is extended to every boolean combination of
atomic conditions inductively as usual.

Observe that the semantics of x ≈ y is different from that of x ≃ y, which requires that the
heap be empty. Furthermore, (s, h) |= x.i ≈ x.i (for i = 1, . . . , κ) holds iff x is allocated. We
thus denote by A(x) (for “x is allocated”) the formula x.1 ≈ x.1. The semantics of actions
is rather natural, and formally defined below (to make allocations deterministic we assume
that the variable allocated by alloc(x) points to itself).

▶ Definition 12 (Semantics of Actions). For every SL structure (s, h) and action a, we denote
by (s, h)[a] the result of the application of the action a on (s, h) defined as follows:

If a = pass then (s, h)[a] def= (s, h).
If a = (x := s) with x ∈ V⋆ and s ▷(s,h) ℓ then (s, h)[a] def= (s′, h), where s′(x) = ℓ and s′

coincides with s on all variables distinct from x.
If a = (x.i := s) with x ∈ V⋆, s(x) ∈ dom(h), h(s(x)) = (ℓ1, . . . , ℓn) and s ▷(s,h) ℓ then
(s, h)[a] def= (s, h′), where dom(h′) = dom(h), h′(s(x)) = (ℓ1, . . . , ℓi−1, ℓ, ℓi+1, . . . , ℓκ), and
h′ coincides with h on all locations distinct from s(x).
If a = free(x), s(x) ∈ dom(h) then (s, h)[a] def= (s, h′) where dom(h′) = dom(h) \ {s(x)}
and h′ coincides with h on all locations distinct from s(x).
If a = alloc(x), s(x) ̸∈ dom(h) then (s, h)[a] def= (s, h′) where dom(h′) = dom(h) ∪ {s(x)},
h(s(x)) = (s(x), . . . , s(x)) and h′ coincides with h on all locations distinct from s(x).
If a = test(γ) and (s, h) |=R γ then (s, h)[a] def= (s, h).

Otherwise (s, h)[a] is undefined.

▶ Proposition 13. For all structures (s, h) and actions a, if (s′, h′) = (s, h)[a] then s′(V⋆) ∪
locs(h′) ⊆ s(V⋆) ∪ locs(h).

Proof. By an immediate case analysis on the set of actions. ◀
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9:6 Reasoning on Dynamic Transformations of Symbolic Heaps

4 Transition Systems

Transition systems are finite state automata where the transitions are labeled by actions:

▶ Definition 14 (Transition Systems). Let S be a countably infinite set of states. A transition
system is a triple S = (Q,R, qI) where Q is a finite subset of S, R is a finite set of transition
rules of the form (q, a, q′) where q, q′ ∈ Q and a is an action, and qI ∈ Q is the initial state.
A run in S from a structure (s, h) is an infinite sequence of tuples (qi, si, hi, ai)i∈N such that
q0 = qI , (s0, h0) = (s, h), and for every i ∈ N: (qi, ai, qi+1) ∈ R and (si+1, hi+1) = (si, hi)[ai].
We denote by ⪰S the smallest transitive relation such that (q, a, q′) ∈ R =⇒ q ⪰S q′. We
write q ∼S q′ iff q ⪰S q′ and q′ ⪰S q and q ≻S q′ if q ⪰S q′ and q′ ̸⪰S q.

Note that the above definition entails that (si, hi)[ai] must be defined, for all i ∈ N. For
simplicity we assume that all runs are infinite (finite runs may be encoded if needed by
adding a final state qF with a transition (qF , pass, qF )).

▶ Example 15. The following transition system adds an element x to a list starting at y:

0start 1 2
alloc(x) x.1 := y

pass

▶ Example 16. The following transition system desallocates a list segment from x to y.

0start 1 2 3

4

test(x ̸≈ y)

test(x ≈ y)

z := x x := z.1

free(z)

pass

5 Temporal Formulas

We now define temporal formulas built over a set of assertions containing symbolic heaps,
states, actions and conditions, using the usual set of LTL connectives:

▶ Definition 17 (Syntax of LTL Formulas). The set AS of LTL atoms contains all symbolic
heaps ϕ with fv(ϕ) ⊆ V⋆, all atomic conditions, all actions and all states in S. The set of
LTL formulas is the least set containing AS and such that for all LTL formulas Φ,Ψ: ¬Φ,
Φ ∨Ψ, XXX Φ, ΦUUU Ψ are LTL formulas.

The additional connectives ∧, FFF , RRR etc. are defined as usual. The semantics of LTL formulas
is recalled below. Note that LTL atoms are interpreted arbitrarily at this point.

▶ Definition 18 (Semantics of LTL Formulas). An LTL interpretation I is a mapping from
AS × N to {true, f alse}. For any LTL formula Φ, we write I |= Φ if (I, 0) |= Φ, and
(I, i) |= Φ iff one of the following conditions holds:
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Φ ∈ AS and I(Φ, i) = true, or Φ = ¬Ψ and (I, i) ̸|= Ψ;
Φ = Φ1 ∨ Φ2 and (I, i) |= Φj, for some j = 1, 2; or Φ = XXX Ψ and (I, i+ 1) |= Ψ;
Φ = Φ1UUU Φ2 and there exists j ≥ i such that (I, j) |= Φ2 and (I, k) |= Φ1 for all
k ∈ {i, . . . , j − 1}.

In the following, we will assume that all the considered LTL interpretations are ultimately
periodic (so that they admit a finite representation) i.e., that there exist natural numbers k, l
such that, for every i ≥ k and for every atom α ∈ AS : I(α, i) = I(α, i+ l). It is well-known
that every satisfiable LTL formula admits an ultimately periodic model. Definition 19 relates
the semantics of LTL atoms to SL structures and transition systems.

▶ Definition 19 (Compatibility). Let S = (Q,R, qI) be a transition system. An LTL inter-
pretation I is compatible with a run (qi, si, hi, ai)i∈N in S w.r.t. a formula Φ iff the following
conditions holds, for all i ∈ N:

For every symbolic heap or condition ϕ occurring in Φ, I(ϕ, i) = true ⇐⇒ (si, hi) |=R ϕ.
For all actions a, I(a, i) = true ⇐⇒ a = ai.
For all states q ∈ Q, I(q, i) = true ⇐⇒ qi = q.

An LTL interpretation I is compatible with an SL structure (s, h) and a transition system
S = (Q,R, qI), w.r.t. a formula Φ if it is compatible with some run (qi, si, hi, ai)i∈N in S.

We are now in the position to define the satisfiability relation that relates SL structures
to LTL formulas, w.r.t. a given transition system.

▶ Definition 20 (Entailment). Let S be a transition system. For every structure (s, h)
and LTL formula Φ, we write (s, h) |=S

R Φ iff I |= Φ holds for every LTL interpretation
compatible with (s, h) and S w.r.t. Φ. We write (s, h) |=S/(qi,ai)i∈N

R Φ if there exists a run
(qi, si, hi, ai)i∈N in S with s0 = s and h0 = h, and an LTL interpretation I that is compatible
with (qi, si, hi, ai)i∈N such that I |= Φ.

For every symbolic heap ϕ, we write ϕ |=S
R Φ if the entailment (s, h) |=R ϕ =⇒ (s, h) |=S

R
Φ holds for all structures (s, h).

▶ Example 21. If S is the transition system of Example 15, then the entailments
lseg(y, z) |=S

R FFF lseg(x, z) and lseg(y, z) |=S
R XXXXXXGGG lseg(x, z) are valid. Note that

the structures in which x is initially allocated are not considered for testing the entailment.
If S now denotes the transition system of Example 16, then the entailment lseg(x, y) |=S

R
FFF emp is not valid (because the initial list segment may be cyclic).

It is easy to see that model checking is decidable:

▶ Lemma 22. The problem of checking whether (s, h) |=S/(qi,ai)i∈N
R Φ is decidable (if the

sequence (qi, ai)i∈N is ultimately periodic).

Proof. Since s, h, qi and ai are given, the run (if it exists) (qi, si, hi, ai)i∈N such that s0 = s

and h0 = h, and the compatible LTL interpretation I are easy to compute, using Definition
11. Using Proposition 13, we get si(V⋆)∪ locs(hi) ⊆ s(V⋆)∪ locs(h) for all i ∈ N, thus the set
of structures {(si, hi) | i ∈ N} is necessarily finite. Thus, the interpretation I is ultimately
periodic and the test I |= Φ can be performed using well-known algorithms for LTL. ◀

However, the entailment problem is undecidable in general:

▶ Theorem 23. The problem of checking whether ϕ |=S
R Φ is undecidable (even if R is

progressing, connected and established).
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Proof (Sketch). Turing machines (TM) may be simulated by transition systems: the ele-
ments of the alphabet are denoted by pairwise distinct free variables, a tape (x1, . . . , xn)
is encoded as a heap (denoting a doubly linked list): {(ℓi, ℓ′

i, ℓi−1, ℓi+1) | i = 1, . . . , n}
with ℓ′

i = s(xi), and the position of the head is denoted by a variable x. Moves are en-
coded by actions x := x.2 (left move) or x := x.3 (right move). Tests are performed
by actions of the form test(x.1 ≈ y), where y is the variable associated with the con-
sidered symbol. The action x.1 := y writes y at the current position in the tape. Note
that if the initial heap does not contain enough allocated locations then the transition
system may be “stuck” (because a right move cannot be applied, hence no run will ex-
ist). However, the following rules define a predicate p that allocates a tape of arbitrary
size filled with a symbol u (which may be instantiated by a blank denoted by some free
variable b). The variables y and z denote the start and the end of the tape, respectively:
{p(x, y, z, u)⇐ x 7→ (u, y, z), p(x, y, z, u)⇐ ∃x′.(x 7→ (u, y, x′) ∗ p(x′, x, z, u))}. It is easy
to check that the non termination of the considered TM (on an empty tape) can be checked
by testing whether the entailment p(x, y, z, b) |=S

R GGG(¬
∨
q∈QF

q) holds, where QF is the set
of final states (note however that the entailment p(x, y, z, b) |=S

R FFF (
∨
q∈QF

q) does not encode
termination, as it may have counter models in which p(x, y, z, b) does not allocate enough
memory cells to execute the TM). ◀

To overcome this issue we require that no action of the form x := t occurs inside a loop:

▶ Definition 24 (Oriented Transition System). A transition system S = (Q,R, qI) is oriented
if for every transition (q, a, q′) in R, if a is of the form x := t then q ≻S q′.

The transition system of Example 15 is oriented, but not that of Example 16.

6 Symbolic Execution of Actions

We now show how to execute actions symbolically on SL formulas. We first define an LTL
formula encoding the conditions ensuring that an action can be performed:

▶ Definition 25 (Precondition). For all actions a, pre(a) is defined as follows (with x, y ∈ V⋆):
pre(alloc(x)) def= ¬A(x), pre(free(x)) def= A(x), pre(x.i := y) def= A(x), pre(x := y.i) def= A(y),
pre(x.i := y.j) def= A(x) ∧ A(y), pre(test(γ)) def= γ and pre(a) def= ⊤ otherwise.

▶ Proposition 26. For every action a and for every structure (s, h), (s, h) |=R pre(a) iff
(s, h)[a] is defined.

Proof. Immediate. ◀

Given a symbolic heap ϕ and action a, it is sometimes possible to compute the strongest
postcondition of ϕ w.r.t. to a, which describes the state of the memory after action a is
performed on a structure satisfying ϕ:

▶ Definition 27 (Strongest Postcondition). For every symbolic heap ϕ and for every action
a, we define a formula spc(ϕ, a) (strongest postcondition of α w.r.t. a) as follows (where x′

denotes a fresh variable).
spc(ϕ, pass) def= ϕ.
spc(∃yyy.ϕ, alloc(x)) def= ∃yyy.(x 7→ (x, . . . , x) ∗ ϕ).
spc(∃yyy.(x 7→ (y1, . . . , yκ) ∗ ϕ), free(x)) def= ∃yyy.ϕ.
spc(ϕ, x := y) def= ∃x′.(ϕ{x← x′} ∗ x ≃ y) (if x, y ∈ V⋆).
spc(∃uuu.(ϕ ∗ y 7→ (y1, . . . , yκ)), x := y.i) def= ∃uuu∃x′.((ϕ ∗ y 7→ (y1, . . . , yκ)){x← x′} ∗ x ≃ yi).
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spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ ϕ), x.i := z) def= ∃uuu.(x 7→ (x1, . . . , xi−1, z, xi+1, . . . , xκ) ∗ ϕ) (if
z ∈ V⋆).
spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ ϕ), x.i := x.j) def= ∃uuu.(x 7→ (x1, . . . , xi−1, xj , xi+1, . . . , xκ) ∗ ϕ).
spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ ϕ), x.i := y.j) def= ∃yyy.(x 7→ (x1, . . . , xi−1, yj ,

xi+1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ ϕ) (if x ̸= y).
Otherwise spc(ϕ, a) is undefined.

In all cases, ϕ may be emp.

▶ Example 28. For instance, we have:

spc(x 7→ (y, z), x.1 := x) = x 7→ (x, z)
spc(x 7→ (y, z), x := y) = ∃x′.(x′ 7→ (y, z) ∗ x ≃ y)
spc(x 7→ (y, z), free(x)) = emp

But both spc(x 7→ (y, z), y.1 := x) and spc(lseg(x, y), x.1 := y) are undefined.

▶ Lemma 29. Let ϕ be a symbolic heap and let a be an action. If spc(ϕ, a) is defined then
for every structure (s, h) such that (s, h)[a] is defined, we have (s, h) |=R ϕ =⇒ (s, h)[a] |=R
spc(ϕ, a).

Proof. By inspection of the different actions, using Definition 11. ◀

Similarly, it is possible in some cases to define the weakest precondition of a symbolic
heap w.r.t. an action, asserting conditions that guarantee that the given formula is satisfied
after the action is performed:

▶ Definition 30 (Weakest Precondition). For every symbolic heap ϕ and for every action a,
the formula wpc(ϕ, a) is defined as follows (where x′ denotes a fresh variable).

wpc(ϕ, pass) def= ϕ.
wpc(∃xxx.(ϕ ∗ x 7→ (y1, . . . , yκ)), alloc(x)) def= ∃xxx.(ϕ ∗ y1 ≃ x ∗ · · · ∗ yκ ≃ x).
wpc(∃xxx.ϕ, free(x)) def= ∃xxx∃y1 . . . ∃yκ.(ϕ ∗ x 7→ (y1, . . . , yκ)).
wpc(ϕ, x := y) def= ϕ{x← y} (if x, y ∈ V⋆).
wpc(∃xxx.(ϕ∗x 7→ (x1, . . . , xκ)), x.i := y) def= ∃xxx∃x′.(ϕ∗x 7→ (x1, . . . , xi−1, x

′, xi+1, . . . , xκ)∗
xi ≃ y) (if y ∈ V⋆).
wpc(∃xxx.(ϕ ∗ x 7→ (x1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ)), x.i := y.j) def= ∃xxx∃x′.(ϕ ∗ x 7→ (x1, . . . ,

xi−1, x
′, xi+1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ xi ≃ yj).

wpc(∃xxx.(ϕ∗x 7→ (x1, . . . , xκ)), x.i := x.j) def= ∃xxx∃x′.(ϕ∗x 7→ (x1, . . . , xi−1, x
′, xi+1, . . . , xκ)

∗ xi ≃ xj).
wpc(∃xxx.(ϕ ∗ x 7→ (x1, . . . , xκ)), y := x.i) def= ∃xxx.((ϕ ∗ x 7→ (x1, . . . , xκ)){y ← xi}) if
x ̸= y. The case where x = y is handled by encoding the action x := x.i as the sequence
z := x;x := z.i, where z is a special variable in V⋆ not occurring in the considered
transition system.
Otherwise, wpc(α, a) is undefined.

▶ Example 31. For instance, we have:

wpc(x 7→ (y, z), x.1 := x) = ∃x′.(x 7→ (x′, z) ∗ y ≃ x)
wpc(x 7→ (y, z), x := y) = y 7→ (y, z)
wpc(x 7→ (y, z), alloc(x)) = y ≃ x ∗ z ≃ x

Both wpc(x 7→ (y, z), free(y)) and wpc(lseg(x, y), x.1 := y) are undefined.
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▶ Lemma 32. Let ϕ be a symbolic heap and let a be an action. If wpc(ϕ, a) is defined then
for every structure (s, h) such that (s, h)[a] is defined, we have (s, h) |=R wpc(ϕ, a) ⇐⇒
(s, h)[a] |=R ϕ.

Proof. By inspection of the different cases. ◀

Intuitively, the weakest pre-conditions will be used to propagate towards the initial time
all the constraints occurring along the run, while strongest post-conditions will be used to
ensure that, at any time, the shape of the heap can be described as a symbolic heap, so that
all the conditions that hold along the run can be embedded in a heap constraint.

7 Context Predicates

As shown in the previous section, post and preconditions cannot be defined for all symbolic
heaps. Indeed, in some cases, the conditions can be computed only if the consider formula
contains some specific points-to atom(s) x 7→ (. . . ), where x is some variable involved in
the action (for instance for actions x.i := y). In this section we devise an algorithm that,
given a symbolic heap ϕ and a variable x, returns a disjunction of symbolic heaps equivalent
to ϕ (on structures that allocate x), and such that all symbolic heaps contain a points-to
atom of the form x 7→ (yyy). The latter condition will enable the computation of post and
preconditions. To this aim, we consider so-called context predicates (adapted from [5]). For
every pair of predicates p, q with arity(p) = n and arity(q) = m, we define a predicate
(q −−• p) of arity n + m in such a way that (q −−• p)(x1, . . . , xn, y1, . . . , ym) is satisfied by
all (non empty) structures that will satisfy p(x1, . . . , xn) after a disjoint heap satisfying
q(y1, . . . , ym) is added to the current heap. Intuitively, the rules of (q −−• p) are defined
exactly as those of p, except that exactly one call to q(y1, . . . , ym) is removed. More formally,
for each rule p(u1, . . . , un)⇐ ∃www.(u1 7→ (yyy) ∗ p′(zzz) ∗ ψ) in R we introduce two rules:

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐ ∃www.(u1 7→ (yyy) ∗ (q −−• p′)(zzz, v1, . . . , vm) ∗ ψ)

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐ ∃www.(u1 7→ (yyy) ∗ zzz ≃ (v1, . . . , vm) ∗ ψ) if q = p′

It is easy to check that these rules fulfill the conditions of Definition 6. Note that the −−•
operation may be nested, e.g., one may consider predicates such as (lseg −−• (lseg −−• lseg)).
Thus R is actually infinite, and the rules must be computed on demand.

▶ Example 33. For instance (lseg −−• lseg) is defined by the rules:

(lseg −−• lseg)(x, y, u, v)⇐ ∃z.(x 7→ (z) ∗ z ≃ u ∗ v ≃ y)

and

(lseg −−• lseg)(x, y, u, v)⇐ ∃z.x 7→ (z) ∗ (lseg −−• lseg)(x, z, u, v)

The proposed transformation algorithm relies on the use of these context predicates. The
idea is that, by Definition 6, a variable x is allocated in a structure validating a predicate atom
ϕ iff the corresponding unfolding of ϕ contains a predicate atom of the form q(z1, . . . , zm),
for some q ∈ P , where z1 has the same value as x. Using context predicates it is possible to
transform the formula in a way that this atom occurs explicitly in it, since a predicate atom
p(yyy) calling q(zzz) is equivalent to q(zzz) ∗ (q −−• p)(zzz,yyy). Then, it suffices to unfold this atom
once to get a points-to atom of the form x 7→ (. . . ). More formally:
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▶ Definition 34 (Computation of ⟨ϕ⟩x). Let ϕ be a symbolic heap and let x ∈ V⋆. The set
⟨ϕ⟩x is defined as follows:
1. If x ∈ v 7→(ϕ) then ⟨ϕ⟩x

def= {ϕ}.
2. Otherwise, ⟨ϕ⟩x is the set of formulas that are of one of the following forms:

a. ∃uuu.(x ≃ x′ ∗ x 7→ (yyy) ∗ ψ) where ϕ is of the form ∃uuu.(x′ 7→ (yyy) ∗ ψ).
b. ∃uuu∃vvv.(x ≃ x′ ∗ ψ′ ∗ ψ) where ϕ is of the form ∃uuu.(p(x′, yyy) ∗ ψ) and p(x,yyy)⇐R ∃vvv.ψ′.
c. ∃uuu∃vvv∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm) ∗ z1 ≃ x ∗ ψ′ ∗ ψ) where ϕ is of the form
∃uuu.(p(yyy) ∗ψ), q ∈ P, m = arity(q), z1, . . . , zm are pairwise distinct fresh variables and
q(x, z2, . . . , zm)⇐R ∃vvv.ψ′.

Item 1 corresponds to the trivial case where ϕ already contains an atom x 7→ (. . . ). Item 2a
corresponds to the case where ϕ contains an atom x′ 7→ (. . . ) where x ≃ x′ holds. Item 2b
handles the case where ϕ contains an atom p(x′, yyy) that (immediately) allocates x (by the
progress condition this happens iff x ≃ x′ holds). Finally, Item 2c tackles the general case,
where ϕ contains an atom p(yyy) which (eventually) calls an atom q(z1, z2, . . . , zm) that allocates
x. For instance ⟨lseg(x, y)⟩z contains the symbolic heaps: ∃u.(z 7→ (u) ∗ lseg(u, y) ∗ x ≃ z)
and ∃u, v, w.(lseg −−• lseg)(x, y, u, v) ∗ z 7→ (w) ∗ lseg(w, v) ∗ u ≃ z). Note that both
formulas contain a points-to atom of the form z 7→ (. . . ). The following lemmata state that
⟨ϕ⟩x fulfills all the expected properties.

▶ Lemma 35. Let ϕ be a symbolic heap and let x ∈ V⋆. For every formula ϕ′ ∈ ⟨ϕ⟩x,
x ∈ v 7→(ϕ′). Thus if (s, h) |=R ϕ′ then s(x) ∈ dom(h).

Proof. Let ϕ′ ∈ ⟨ϕ⟩x. If x ∈ v 7→(ϕ) then ⟨ϕ⟩x = {ϕ} thus ϕ′ = ϕ and x ∈ v7→(ϕ′). In all
other cases in Definition 34, either ϕ′ contains a points-to atom x 7→ (yyy), or ϕ′ contains a
formula ψ′ such that there exists an atom α of root x (α is either p(x,yyy) or q(x, z2, . . . , zm))
such that α⇐R ∃vvv.ψ′. By the progress condition necessarily x ∈ v7→(ψ′), so that x ∈ v7→(ϕ′).
The second part of the lemma follows immediately from the definition of the semantics. ◀

▶ Lemma 36. Let ϕ be a symbolic heap and let x ∈ V⋆. For every formula ψ ∈ ⟨ϕ⟩x and for
all SL structures (s, h): (s, h) |=R ψ =⇒ (s, h) |=R ϕ.

▶ Lemma 37. Let ϕ be a symbolic heap and let x ∈ V⋆. For every SL structure (s, h) such
that s(x) ∈ dom(h) and (s, h) |=R ϕ, we have (s, h) |=R ψ, for some ψ ∈ ⟨ϕ⟩x.

8 Axioms

Building on the previous results, we define LTL axioms ensuring that an LTL interpretation is
compatible with some SL structure, for a given transition system S = (Q,R, qI). The axioms
are obtained by embedding all the previous definitions and properties in LTL (a, ϕ, γ and x

range over the set of actions, symbolic heaps, conditions and variables in V⋆, respectively
and t, s are terms).

1. GGG(x.i ≈ s⇒ A(x)) for all i ∈ {1, . . . , κ}.
2. GGG(a⇒ (ψ ⇒XXX spc(ψ, a))) (if spc(ψ, a) is defined).
3. GGG(a⇒ (wpc(ψ, a)⇔XXX ψ)) (if wpc(ψ, a) is defined).
4. GGG(A(x)⇒ (ψ ⇔

∨
ξ∈⟨ψ⟩x

ξ)) ∧GGG(ψ ⇒
∧
y∈v 7→(ψ) A(y)).

5. GGG(∃uuu.(x 7→ (x1, . . . , xκ) ∗ψ)⇒ (x.i ≈ y ⇔ ∃uuu.(x 7→ (x1, . . . , xκ) ∗ψ ∗xi ≃ y))), if y ∈ V⋆.
6. GGG(∃uuu.(x 7→ (x1, . . . , xκ)∗y 7→ (y1, . . . , yκ)∗ψ)⇒ (x.i ≈ y.j ⇔ ∃uuu.(x 7→ (x1, . . . , xκ)∗y 7→

(y1, . . . , yκ) ∗ ψ ∗ xi ≃ yj))).
7. GGG ((∃uuu.ψ)⇒ (x ≈ y ⇔ ∃uuu.(ψ ∗ x ≃ y))).
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8. GGG((pass ∨ t := s ∨ test(γ))⇒ (A(x)⇔XXX A(x))), where t ̸= x.
9. GGG(free(x)⇒

∧
y∈V⋆((x ≈ y ⇒XXX ¬A(y))) ∧ (x ̸≈ y ⇒ (A(y)⇔XXX A(y)))).

10. GGG(alloc(x)⇒
∧
y∈V⋆((x ≈ y ⇒XXX A(y))) ∧ (x ̸≈ y ⇒ (A(y)⇔XXX A(y)))).

11. GGG(¬x ∨ ¬y), if x ̸= y and (either x, y are both actions, or {x, y} ⊆ Q).
12. GGG(q ⇒

∨
(q,a,q′)∈R(a ∧XXX q)).

13. GGG(a⇒ pre(a)).
14.

∧
ψ∈S+ ϕ ∧

∧
x∈V ¬A(x) ⇒

∨
ξ∈S− ϕ, if (S+, S−, X) is a unsatisfiable heap constraint.

This formula is denoted by Γ(S+, S−, X) in the following.

This set of axioms is infinite, as the set of symbolic heaps is infinite. To ensure termination,
we need to further restrict the axioms. To this aim, we define (given a symbolic heap ϕ) two
sets Fw(S, ϕ) and Bw(S, ϕ,Φ), which, informally, contain triples (ψ, q,X), where ψ denotes a
symbolic heap obtained by (forward or backward) propagation along the runs in S (starting
from formulas occurring in the initial entailment), and q is the corresponding state. The set
X contains variables that either occur in v 7→(ϕ) or are known to be non allocated at state q
(this information is essential for finiteness because it allows one to “block” some generation
rules). The sets are defined inductively as follows:

(ϕ, qI , ∅) ∈ Fw(S, ϕ), and if q ∈ Q and ψ occurs in Φ then (ψ, q, ∅) ∈ Bw(S, ϕ,Φ).
If (ψ, q,X) ∈ Fw(S, ϕ), (q, a, q′) ∈ R and ϕ′ = spc(ψ, a) then (ψ′, q′, X ′) ∈ Fw(S, ϕ), where
X ′ = X if a is not of the form x := t with x ∈ V⋆ and otherwise X ′ = ∅.
If (ψ, q′, X) ∈ Bw(S, ϕ,Φ), (q, a, q′) ∈ R and ϕ′ = wpc(ψ, a) then (ϕ′, q,X ′) ∈ Bw(S, ϕ,Φ),
where X ′ = ∅ if a is of the form x := t with x ∈ V⋆, and X ′ = X otherwise.
If (ψ, q,X) ∈ Fw(S, ϕ) (resp. (ψ, q,X) ∈ Bw(S, ϕ,Φ)) and ξ ∈ ⟨ψ⟩x with x ∈ V⋆ \X then
(ξ, q,X ∪ {x}) ∈ Fw(S, ϕ) (resp. (ξ, q,X ∪ {x}) ∈ Bw(S, ϕ,Φ)).
If (∃uuu.ψ, q,X) ∈ Fw(S, ϕ) then (∃uuu.(ψ∧x ≃ y), q,X) ∈ Bw(S, ϕ,Φ), for all x, y ∈ fv(ψ)∪V⋆.

The sets Fw(S, ϕ) and Bw(S, ϕ,Φ) are finite (up to some simplifications) if S is oriented
(see Lemma 41 in Appendix D). We denote by A(R,S, ϕ) the set of axioms satisfying the
following conditions. For Axiom 3 we require that the considered symbolic heap ψ occurs in
some triple in Bw(S, ϕ,Φ). For Axiom 14 all the symbolic heaps in S+ and S− must occur in
Bw(S, ϕ,Φ). For Axiom 4, ψ must occur in either Fw(S, ϕ) or Bw(S, ϕ,Φ). For 5, 6 and 7, the
symbolic heap at the left-hand side of ⇒ must occur in Fw(S, ϕ) (which entails that the one
occurring at the right-hand side occurs in Bw(S, ϕ,Φ)). The following theorems relate the
considered entailment problem with standard LTL satisfiability.

▶ Theorem 38. Every LTL model I that is compatible with (s, h) and S w.r.t. all symbolic
heaps occurring in A(R,S, ϕ) ∪ {ϕ, qI ,Φ} satisfies A(R,S, ϕ) ∪ {ϕ, qI ,Φ}.

Proof (Sketch). The soundness of Axioms 2 and 3 stems from Lemmata 29 and 32, respect-
ively. The soundness of Axiom 13 stems from Proposition 26. Axioms 12 and 11 encode
the semantics of actions and states, according to the transition system S. The soundness
of Axiom 4 is a consequence of Lemmata 36 and 37. The soundness of Axioms 14 follows
from the semantics of heap constraints. The soundness of Axioms 8,9, 10 is a consequence
of Definition 11. Finally, the soundness of Axioms 1, 5, 6 and 7 stems from the semantics
of atomic conditions (Axioms 5, 6 and 7 embed conditions of the form t ≃ s into symbolic
heaps). ◀

▶ Theorem 39. If A(R,S, ϕ)∪{ϕ, qI ,Φ} admits an LTL model I then there exists a structure
(s, h) such that I is compatible with (s, h) and S, w.r.t. ϕ and all symbolic heaps in Φ.
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9 Proof Procedure

Algorithm 1 Entailment Checking Algorithm.

Require: A progressing, connected and established SID R, an oriented transition system S,
Require: a symbolic heap ϕ and an LTL formula Φ
A ← {ϕ, qI ,¬Φ}
while A admits an LTL interpretation I do
S+ ← {ϕ ∈ AS | I(ϕ, 0) = true, ϕ is a symbolic heap}
S− ← {ϕ ∈ AS | I(ϕ, 0) = f alse, ϕ is a symbolic heap}
X ← {x ∈ V⋆ | I(ϕ, 0) ̸|= A(x) }
if (S+, S−, X) is unsatisfiable {This test is decidable by Lemma 9} then
A ← A∪ Γ(S+, S−, X)

else
Let (s, h) be an R-model of (S+, S−, X)
if rI is defined and (s, h) |=S/rI

R ¬Φ {the test is decidable by Lemma 22} then
Return (s, h)

else
Let Ψ be a formula in A(R,S, ϕ) s.t. (s, h) ̸|=S

R Ψ {Ψ exists by Theorem 39}
A ← A∪ {Ψ}

end if
end if

end while
Return ⊤

Even if S is oriented, the set A(R,S, ϕ) is exponential w.r.t. the size of R, ϕ and S, and
only a small part of this set will be relevant, hence computing all axioms explicitly is not
practical. Algorithm 1 computes these axioms on demand, in the spirit of the well-known
DPLL(T ) procedure (see, e.g., [9]) by calling external tools to solve LTL and SL satisfiability
problems. The idea is to construct an LTL interpretation and to refine it incrementally by
adding relevant axioms until we get either a model that is compatible with some SL structure,
or a set of axioms that is unsatisfiable (in LTL). For all LTL interpretations I, rI is the
sequence (qi, ai)i∈N (if it exists) such that qi is the unique state in Q (resp. the only action)
with I(qi, i) = true (resp. I(ai, i) = true).

▶ Theorem 40. If Algorithm 1 returns ⊤ then the entailment ϕ |=S
R Φ holds. If it returns

an SL structure (s, h) then (s, h) |=R ϕ and (s, h) ̸|=S
R Φ. Moreover, if S is oriented then the

algorithm always terminates.

Proof. Termination is immediate (if S is oriented) since at each iteration one new formula
from A(R,S, ϕ) is added in A and the set A(R,S, ϕ) is finite (as Bw(S, ϕ,Φ) and Fw(S, ϕ)
are both finite). If ⊤ is returned then by definition of the algorithm A(R,S, ϕ) ∪ {qI , ϕ,¬Φ}
is unsatisfiable thus the entailment ϕ |=S

R Φ is valid by Theorem 38. If the algorithm returns
a structure (s, h) then by definition (s, h) |=S/(qi,ai)i∈N

R ¬Φ for some sequence (qi, ai)i∈N, thus
there is a run (qi, si, hi, ai)i∈N and a compatible LTL interpretation I such that I ̸|= Φ. ◀
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10 Discussion

A natural issue is to determine whether Algorithm 1 is complete for refutation (when S is not
oriented), i.e., whether it always returns a counter model if the entailment is not valid (by
Theorem 23 it cannot be complete for validity). Another natural continuation is to extend
the expressive power of the logic by considering more complex temporal connectives (to allow
for quantification over paths). It would also be interesting to extend the language in order to
handle more complex (possibly non deterministic) actions. For instance, it should be noticed
that actions in our framework cannot create new locations (as evidenced by Proposition 13).
This is important, because, otherwise, since universal quantification is not allowed, the
corresponding pre/post-conditions could not be expressed in the language. This entails that
C-like allocations for instance are not built-in: they must be performed by handling a stack
of available locations, allocated in the symbolic heap describing the initial state of the system
by an atom such as lseg(x, y) (an instruction such as malloc(z) can be simulated by two
actions z := x and x := x.1). The complexity of the entailment problem for oriented systems
also deserves to be precisely identified (it is 2-EXPTIME hard by [4]).
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A Proof of Lemma 9

We use the algorithm developed in [5] to test the validity of entailments between SL formulas (if
the considered SID is progressing, connected and established), combined with the technique
devised in [12] to cope with conjunctions (see also [11]). Let X = {x1, . . . , xn}, where
the order on the xi is arbitrary. For every i = 1, . . . , n, we denote by Ψi the formula:
(
∨i−1
j=1 xi ≃ xj)∨ xi 7→ (xi, . . . , xi). Let Ψ = Ψ1 ∗ · · · ∗Ψn. By definition, if (s, h′) |=R Ψ then

dom(h′) = {s(x) | x ∈ X}, hence, for every structure (s, h), there is at most one heap h′ ⊆ h

with (s, h′) |=R Ψ. Moreover, for all stores s, we have (s, hs) |=R Ψ, where hs denotes the
heap: {(ℓ, . . . , ℓ) | ∃x ∈ X s.t. ℓ = s(x)}. Let Φ =

∧
ϕ∈S+(Ψ ∗ ϕ) ∧ ¬(

∨
ϕ∈S−(Ψ ∗ ϕ)). Note

that since S+ is not empty, Φ is a guarded formula (as defined in [12, Fig. 1]), except that
it contains existential quantifiers (the fact that S+ is non empty is essential, as otherwise
the negation would not be guarded). The satisfiability of Φ can be tested by combining the
techniques devised in [12] and [5]. The idea is to compute an abstraction of the possible
models of Φ bottom-up. Points-to atoms, inductive predicates, separating conjunctions and
existential quantifications can be handled as explained in [5], whereas conjunctions and
guarded negations are handled as it is done in [12]. We prove that (S+, S−, X) is satisfiable
iff Φ is satisfiable:

Assume that (s, h) |=R (S+, S−, X). Then (s, h) |=R ϕ for all ϕ ∈ S+, (s, h) ̸|=R ϕ for
all ϕ ∈ S−, and s(x) ̸∈ dom(h) for all x ∈ X. Then hs and h are disjoint, thus we get
(s, h⊎ hs) |=R ϕ ∗Ψ for all ϕ ∈ S+. If (s, h⊎ hs) |=R ϕ ∗Ψ for some ϕ ∈ S− then since hs
is the unique heap such that (s, hs) |=R Ψ, we deduce that we must have (s, h) |=R ϕ,
which contradicts our assumption. Thus (s, h ⊎ hs) |=R Φ.
Assume that (s, h) |=R Φ. Then, we get (s, h) |=R ϕ ∗Ψ, for all ϕ ∈ S+. Since hs is the
unique heap such that (s, hs) |=R Ψ, this entails that (s, h′) |=R ϕ, with h′ = h \ hs. Since
dom(hs) = {s(x) | x ∈ X} we get s(x) ̸∈ dom(h′), for all x ∈ X. If (s, h′) |=R ϕ, for some
ϕ ∈ S− then we deduce (s, h′ ⊎ hs) |=R ϕ ∗Ψ, which contradicts our hypothesis. Thus
(s, h′) |=R (S+, S−, X).

B Proof of Lemma 36

Assume that (s, h) |=R ψ. We show, by induction on |h|, that (s, h) |=R ϕ. If x ∈ v7→(ϕ) then
⟨ϕ⟩x = {ϕ} thus ϕ = ψ and the proof is immediate. Otherwise, we distinguish the following
cases, following Definition 34:

ϕ′ = ∃uuu.(x ≃ x′ ∗ x 7→ (yyy) ∗ ψ) and ϕ = ∃uuu.(x′ 7→ (yyy) ∗ ψ). It is clear that ϕ′ |=R ϕ.
ϕ′ = ∃uuu∃vvv.(x ≃ x′ ∗ψ′ ∗ψ), and ϕ = ∃uuu.(p(x′, yyy) ∗ψ) with p(x,yyy)⇐R ∃vvv.ψ′. In this case,
we get ϕ′ |=R ∃uuu.(x ≃ x′ ∗ p(x,yyy) ∗ ψ), thus ϕ′ |=R ∃uuu.(p(x′, yyy) ∗ ψ) = ϕ.
ϕ′ = ∃uuu∃vvv∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm)∗z1 ≃ x∗ψ′ ∗ψ) and ϕ = ∃uuu.(p(yyy)∗ψ), with
q(x, z2, . . . , zm) ⇐R ∃vvv.ψ′. Then we get ϕ′ |=R ∃uuu∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm) ∗
z1 ≃ x ∗ q(x, z2, . . . , zm) ∗ ψ), and by definition of the rules associated with the predicate
(q −−• p), one of the following conditions holds (with yyy = (y1, . . . , yn)):

ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃www∃vvv.(y1 7→ (yyy′) ∗ (q −−• p′)(zzz′, z1, . . . , zm) ∗ ψ′′ ∗ z1 ≃ x ∗ ψ′ ∗ ψ)
with p(yyy) ⇐R y1 7→ (yyy′) ∗ p′(zzz′) ∗ ψ′′. This entails that there exists a store s′

coinciding with s with all the variables not occurring in uuu, z1, . . . , zm,www,vvv and disjoint
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heaps h′, h′′ such that h = h′ ⊎ h′′, (s′, h′) |=R y1 7→ (yyy′) ∗ ψ′′ and (s′, h′′) |=R (q −−•
p′)(zzz′, z1, . . . , zm)∗z1 ≃ x∗ψ′∗ψ. This entails that h′ ̸= ∅ thus |h| > |h′′|. By definition,
(q −−• p′)(zzz′, z1, . . . , zm)∗z1 ≃ x∗ψ′∗ψ ∈ ⟨p′(zzz′)∗ψ⟩x, hence by the induction hypothesis
we get (s′, h′′) |=R p′(zzz′) ∗ ψ, so that (s′, h) |=R y1 7→ (yyy′) ∗ ψ′′ ∗ p′(zzz′) ∗ ψ, hence
(s, h) |=R ∃uuu.(p(yyy) ∗ ψ) = ϕ.
ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃vvv∃www.(y1 7→ (yyy′) ∗ zzz′ ≃ (z1, . . . , zm) ∗ ψ′′ ∗ z1 ≃ x ∗ ψ′ ∗ ψ) with
p(yyy)⇐R ∃www.(y1 7→ (yyy′) ∗ q(zzz′) ∗ ψ′′). Since q(x, z2, . . . , zm)⇐R ∃vvv.ψ′, we deduce that
ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃www.(y1 7→ (yyy′)∗zzz′ ≃ (z1, . . . , zm)∗ψ′′∗z1 ≃ x∗q(x, z2, . . . , zm)∗ψ),
thus ϕ′ |=R ∃uuu∃www.(y1 7→ (yyy′) ∗ ψ′′ ∗ q(zzz′) ∗ ψ), hence ϕ′ |=R ∃uuu.(p(yyy) ∗ ψ) = ϕ.

C Proof of Lemma 37

Assume that (s, h) |=R ϕ and that s(x) ∈ dom(h). We show, by induction on |h|, that
(s, h) |=R ψ, for some ψ ∈ ⟨ϕ⟩x. The symbolic heap ϕ is necessarily of the form ∃uuu.(ϕ1∗· · ·∗ϕk),
where the ϕ1, . . . , ϕk are atoms. We assume by α-renaming that x does not occur in uuu. By
definition of the semantics of SL, there exists a store s′ (coinciding with s on all variables
not occurring in uuu) and disjoint heaps hi such that (s′, hi) |=R ϕi (for all i = 1, . . . , n) and
h = h1 ⊎ . . . ⊎ hk. Since s(x) ∈ dom(h), necessarily s(x) ∈ dom(hi) for some i = 1, . . . , k, say
i = 1. Let ϕ′ = ϕ2 ∗ · · · ∗ ϕk. We distinguish several cases.

Assume that ϕ1 is a points-to atom x′ 7→ (yyy). If x = x′, then x ∈ v7→(ϕ), so that
⟨ϕ⟩x = {ϕ}, hence the proof is immediate. Otherwise, since (by definition of the semantics
of SL) dom(h1) = {s′(x′)} and s(x) ∈ h1 we must have s(x′) = s(x) = s′(x). By
Definition 34 (2a), ⟨ϕ⟩x contains a formula of the form ∃uuu.(x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′). We
have (s′, h) |=R x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′, so that (s, h) |=R ∃uuu.(x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′).
Assume that ϕ1 is a predicate atom p(x′, yyy) and that s′(x′) = s(x). Then we get
(s′, h) |=R p(x,yyy)∗x ≃ x′∗ϕ′, so that (s′, h) |=R ∃vvv.(ψ′∗x ≃ x′∗ϕ′) with p(x,yyy)⇐R ∃vvv.ψ′.
Thus (s, h) |=R ∃uuu∃vvv.(ψ′ ∗ x ≃ x′ ∗ ϕ′), and by Def. 34 (2b), this formula is in ⟨ϕ⟩x.
Finally, assume that ϕ1 is a predicate atom p(x′, yyy) and that s′(y1) ̸= s(x). Necessarily,
p(x′, yyy)⇐R ∃vvv.(x′ 7→ (yyy′)∗ψ) with (s′′, h1) |=R x′ 7→ (yyy′)∗ψ, for some store s′′ coinciding
with s′ on all variables not occurring in vvv. Since s′(y1) ̸= s(x) and s(x) ∈ dom(h1), ψ must
be of the form p′(zzz) ∗ ψ′ (with possibly ψ′ = emp) and there exist disjoint heaps h′, h′′

such that h1 = h′ ⊎ h′′, (s′′, h′) |=R x′ 7→ (yyy′) ∗ψ′ and (s′′, h′′) |=R p′(zzz). This entails that
h′ ̸= ∅, thus |h′′| < |h|, and by the induction hypothesis, we deduce that ⟨p′(zzz)⟩x contains
a formula ψ′′ such that (s′′, h′′) |=R ψ′′. We get (s, h) |=R ∃uuu∃vvv.(x′ 7→ (yyy′) ∗ ψ′′ ∗ ψ′ ∗ ϕ′).
By Definition 34, ψ′′ is of one of the following forms:

2b ψ′′ = ∃www.(ξ ∗ z1 ≃ x), with zzz = (z1, . . . , zm) and p′(x, z2, . . . , zm) ⇐R ∃www.ξ. Then
we get (s, h) |=R ∃uuu∃vvv∃www.(x′ 7→ (yyy′) ∗ ξ ∗ z1 ≃ x ∗ ψ′ ∗ ϕ′). By definition of the rules
defining (p′ −−• p), we have: (p′ −−• p)(x′, yyy,zzz))⇐R ∃vvv.(x′ 7→ (yyy′) ∗ ψ′ ∗ zzz ≃ zzz), so that
(s, h) |=R ∃uuu∃www.((p′ −−• p)(x′, yyy,zzz)) ∗ ξ ∗ z1 ≃ x ∗ ϕ′), hence (s, h) |=R ∃uuu∃www∃zzz′.((p′ −−•
p)(x′, yyy,zzz′)) ∗ ξ ∗ z′

1 ≃ x ∗ ϕ′), where zzz′ = (z′
1, . . . , z

′
m) is a vector of fresh pairwise

distinct variables. By Definition 34 (2c), the latter formula occurs in ⟨ϕ⟩x.
2c ψ′′ = ∃z′

1, . . . , z
′
m.((q −−• p′)(zzz, z′

1, . . . , z
′
m)∗z′

1 ≃ x∗ξ), with q(x, z′
2, . . . , z

′
m)⇐R ξ. We

get (s, h) |=R ∃uuu∃vvv∃z′
1, . . . , z

′
m.(x′ 7→ (yyy′)∗ (q −−• p′)(zzz, z′

1, . . . , z
′
m)∗ z′

1 ≃ x∗ ξ ∗ψ′ ∗ϕ′).
By definition of the rules defining (q −−• p), we have (q −−• p)(x′, yyy, z′

1, . . . , z
′
m) ⇐R

∃vvv.(x′ 7→ (yyy′) ∗ (q −−• p′)(zzz, z′
1, . . . , z

′
m) ∗ ψ′), thus (s, h) |=R ∃uuu∃z′

1, . . . , z
′
m.((q −−•

p)(x′, yyy, z′
1, . . . , z

′
m) ∗ z′

1 ≃ x ∗ ξ ∗ ϕ′). By Definition 34 (2c), this formula is in ⟨ϕ⟩x.
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D Finiteness of Bw(S, ϕ, Φ) and Fw(S, ϕ)

We write ϕ→s ψ if ψ is obtained from ϕ by using one of the above simplification rules.

C≃ : ∃uuu.(x ̸≃ x∗ ξ)→ ⊥ E̸≃ : ∃uuu∃x.(x ̸≃ x1 ∗ . . . x ̸≃ xn ∗ ξ)→ ∃uuu.ξ if x ̸∈ fv(ξ) ∪ {x1, . . . , xn}

C∗ : ∃uuu.(x 7→ (yyy) ∗ x 7→ (zzz) ∗ ξ)→ ⊥ E≃ : ∃uuu∃x.(x ≃ y ∗ ξ)→ ∃uuu.ξ{x← y}

It is easy to verify that →s is well-founded, and that ϕ→s ψ =⇒ ϕ ≡R ψ.

▶ Lemma 41. If S is oriented then the sets Bw(S, ϕ,Φ) and Fw(S, ϕ) are finite (up to
associativity and commutativity of ∗, α-renaming and equivalence w.r.t. →s).

Proof. We assume that all symbolic heaps are in normal form w.r.t. →s. Let S = (Q,R, qI).
We give the proof for Bw(S, ϕ,Φ), the set Fw(S, ϕ) can be handled in a similar way (the only
difference is that one must consider the order ⪯S instead of ⪰S , and that Fw(S, ϕ) does
not depend on Bw(S, ϕ,Φ), while Bw(S, ϕ,Φ) depends on Fw(S, ϕ)). If Bw(S, ϕ,Φ) is infinite
then by definition (assuming that Fw(S, ϕ) is finite) by Köning’s lemma there must exist an
infinite sequence of pairwise distinct triples (ϕi, qi, Xi) (i ∈ N) such that X0 = ∅ and for
every i ∈ N, one of the following conditions holds:

there exists an action ai such that (qi+1, ai, qi) ∈ R and ϕi+1 = wpc(ϕi, ai), where
Xi+1 = Xi \ {xi} if ai is of the form xi := ti with xi ∈ V⋆, and Xi+1 = ∅ otherwise, or;
ϕi+1 = ψi with ψi ∈ ⟨ϕi⟩xi

for some variable x ∈ V⋆ \Xi, qi+1 = qi and Xi+1 = Xi∪{xi}.

In both cases we have qi+1 ⪰S qi, by definition of ⪰S (see Definition 14). Since the set of
states Q is finite, necessarily there exists a natural number k such that, qi+1 ̸≻S qi holds
for all i ≥ k. Since by hypothesis S is oriented, this entails that R contains no transition of
the form (qi+1, xi := ti, qi) with xi ∈ V⋆ and i ≥ k. Consequently, we must have Xi+1 ⊇ Xi,
for all i ≥ k. By definition of Bw(S, ϕ,Φ), Xi ⊆ V⋆ for all i ∈ N, and since V⋆ is finite we
deduce that there exists l ∈ N such that l ≥ k and Xi = Xi+1 for all i ≥ l. By definition of
Bw(S, ϕ,Φ), this entails that ϕi+1 must be of form wpc(ϕi, ai), for all i ≥ l, and ai is not of
the form xi := ti. Note that this implies that all the predicates symbols occurring in ϕi occur
in ϕl (since all the predicates in wpc(ϕi, ai) must occur in ϕi). For all i ≥ l, we denote by ni
the number of atoms in ϕi that are not equational and not of the form x 7→ (yyy) with x ∈ V⋆.
By inspection of the different cases in Definition 30 (taking into account the fact that ai
is not of the form xi := ti), it is easy to check that ni+1 = ni holds for all i ≥ l. Indeed,
the only case in which wpc(ϕi, ai) contains an atom that does not occur in ϕi is when this
atom is either an equation or a points-to atom with a left-hand side in V⋆ (furthermore, the
simplification rules in →s cannot add new atoms in the formula). By irreducibility w.r.t. the
rule C∗, this entails that the number of spatial atoms in ϕi (for i ≥ l) is at most card(V⋆)+nl.
Assume that ϕi contains an existential variable x that does not occur in a spatial atom. By
irreducibility w.r.t. the rule E≃, x cannot occur in an equation. By irreducibility w.r.t. C≃,
it cannot occur in a disequation x ̸≃ x. Thus the only atoms in which x occurs are of the
form x ̸≃ xi, with xi ̸= x, and the rule E̸≃ applies, which contradicts the fact that ϕi is in
normal form w.r.t. →s. Consequently, all the existential variables in ϕi occur in a spatial
atom. Since the number of such atoms is bounded, necessarily the number of existential
variables is bounded. As both the set of free variables V⋆ and the set of predicate symbols in
ϕi is finite, this entails that there exist finitely many symbolic heaps ϕi (with i ≥ l), which
contradicts our assumption. ◀

TIME 2022
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E Proof of Theorem 39

We construct a run (qi, si, hi, ai)i∈N, and a corresponding sequence of triples (ϕ′
i, qi, Xi)i∈N

by induction on i, with (s0, h0) |=R ϕ. We simultaneously establish the following inductive
invariant:
a The equivalence I(ξ, i) = true ⇐⇒ (si, hi) |=R ξ holds for all atomic conditions
ξ, and also for all symbolic heaps ξ such that there exists q ∈ Q and X ⊆ V⋆ with
(ξ, q,X) ∈ Bw(S, ϕ,Φ), for all x ∈ X \ v 7→(ξ).

b For all q ∈ Q and for all actions a, I(q, i) = true iff q = qi and I(a, i) = true iff a = ai.
c (ϕ′

i, qi, Xi) ∈ Fw(S, ϕ) with I(ϕ′
i, i) = true and ∀x ∈ Xi \ v7→(ϕ′

i) : si(x) ̸∈ dom(h) ∧
(si, hi) ̸|= A(x).

Note that the invariant entails in particular that I is compatible with (qi, si, hi, ai)i∈N, w.r.t.
all symbolic heaps occurring in Φ. Indeed, by definition of Bw(S, ϕ,Φ), (ψ, q, ∅) ∈ Bw(S, ϕ,Φ)
for all symbolic heaps occurring in Φ and for all states q.

Base case (i = 0). Let q0
def= qI , ϕ′

0
def= ϕ and X0

def= ∅. Let S+ (resp. S−) be the set
of symbolic heaps ψ occurring in A(R,S, ϕ), {ϕ} or Φ such that I(ψ, 0) = true (resp.
I(ψ, 0) = f alse). By hypothesis, Φ ∈ S+, thus S+ ≠ ∅. Let X be the set of variables
x such that I(A(x), 0) = f alse. By definition, I ̸|= Γ(S+, S−, X), thus, by Axiom
14, (S+, S−, X) cannot be unsatisfiable, and there exists a structure (s0, h0) such that
(s0, h0) |=R (S+, S−, X). By construction, I(ξ, 0) = true ⇐⇒ (s0, h0) |=R ξ holds for all
symbolic heaps ξ occurring in A(R,S, ϕ), {ϕ} or Φ, and in particular, (s0, h0) |=R ϕ. Still
by construction, I(A(x), 0) = f alse =⇒ (s0, h0) ̸|=R A(x). Conversely, if I(A(x), 0) =
true, then by Axiom 4, necessarily (I, 0) |= ξ, for some ξ ∈ ⟨ϕ⟩x, thus (s0, h0) |=R ξ and
by Lemma 35, we get (s0, h0) |=R A(x). Thus Property a holds for all symbolic heaps
and for all conditions of the form A(x).
By hypothesis we have (I, 0) |= qI , and, by Axiom 11, (I, 0) |= ¬q, for all states q ̸= qI .
By Axioms 12 and 11, there exists a unique action a0 such that (I, 0) |= a0. Thus
Property b holds.
By definition of Fw(S, ϕ) we have (ϕ, qI , ∅) ∈ Fw(S, ϕ) thus Property c holds.
It only remains to prove that Property a holds for all atomic conditions (other than those
of the form A(x)). Consider any atomic condition α, and assume that I(α, 0) = true (the
case whether I(α, 0) = f alse is handled in a similar way). We show that (s0, h0) |= α.
Assume that α is of the form x ≈ y, with x, y ∈ V⋆. By definition ϕ′

0 is of the form
∃uuu.ϕ′, for some symbolic heap ϕ′ containing no quantifier. By definition of Bw(S, ϕ,Φ)
we have (∃uuu.(ϕ′ ∗ x ≃ y), q0, X0) ∈ Bw(S, ϕ,Φ). By Axiom 7, since I(ϕ′

0, 0) = true,
we get I(∃uuu.(ϕ′ ∗ x ≃ y), 0) = true, thus (s0, h0) |=R ∃uuu.(ϕ′ ∗ x ≃ y) (by Property
a, which has already been established for symbolic heaps). Thus s0(x) = s0(y) and
therefore (s0, h0) |=R x ≈ y. Assume that α is of the form x.i ≈ y, with x, y ∈
V⋆. By Axiom 1 we must have I(A(x), 0) = true, hence by Axiom 4 we deduce that
I(ψ, 0) = true, for some ψ ∈ ⟨ϕ′

0⟩x (note that, by definition of Fw(S, ϕ), we have
(ψ, q0, X0 ∪ {x}) ∈ Fw(S, ϕ)). By Lemma 35, ψ is of the form ∃vvv.(x 7→ (x1, . . . , xκ) ∗ ψ′).
We have (∃vvv.(x 7→ (x1, . . . , xκ)∗ψ′ ∗xi ≃ y), q0, X0∪{x}) ∈ Bw(S, ϕ,Φ), thus by Axiom 5
we deduce that I(∃vvv.(x 7→ (x1, . . . , xκ)∗ψ′∗xi ≃ y), 0) = true, so that (s0, h0) |=R x.i ≈ y.
The proof is similar if α is of the form x.i ≈ y.j (using Axiom 6).
Inductive case. Assume that (qi, si, hi, ai) has been constructed and that the invariant
above holds for all i ≤ k. As I(ak, k) = true, by Axiom 13, we have (I, k) |= pre(ak),
hence (sk, hk) |=R pre(ak) (by Property a). By Proposition 26, we deduce that (sk, hk)[ak]
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is defined. Let (sk+1, hk+1) = (sk, hk)[ak]. By Axioms 12 and 11, there exist a unique
action ak+1 and state qk+1 such that I(ak+1, k + 1) = I(qk+1, k + 1) = true, with
(qk, ak, qk+1) ∈ R.
We show that Property a is satisfied for k + 1. We first observe that, if ak is not of the
form x := s, then, using Axioms 8, 9 and 10, it is easy to check that I(A(x), k+1) holds iff
sk+1(x) ∈ dom(hk+1), i.e., that Property a holds if ξ = A(x). Indeed, if ak is of the form
free(x) (resp. alloc(x)) then we have by Axiom 9 (resp. Axiom 10), I(A(y), k+1) = f alse
(resp. I(A(y), k+1) = true) if I(x ≃ y, k) = true and I(A(y), k+1) = I(A(y), k) otherwise.
Furthermore, by Axiom 8, I(A(y), k + 1) = I(A(y), k) holds for all y ∈ V⋆ if ak is not of
the above forms.
Consider a triple (ψ, q,X) ∈ Bw(S, ϕ,Φ) such that for all x ∈ X \ v7→(ψ), sk+1(x) ̸∈
dom(hk+1) (†). If ak contains a term x.i where x ̸∈ v 7→(ψ), then (by definition of
(sk, hk)[ak]) sk+1(x) ∈ dom(hk+1), so that x ̸∈ X. Thus, by definition of Bw(S, ϕ,Φ),
(ξ, q,X ∪ {x}) ∈ Bw(S, ϕ,Φ), for all ξ ∈ ⟨ψ⟩x. Note that (since actions of the form
x := x.i are forbidden) we must have I(A(x), k + 1) ⇔ sk+1(x) ∈ dom(hk+1), hence
I(A(x), k+1) = true and by Axiom 4, necessarily (I, k+1) |= ψ ⇔

∨
ξ∈⟨ψ⟩x

ξ. By Lemma
35, x ∈ v7→(ξ), for all ξ ∈ ⟨ψ⟩x. By repeating this process (if needed) on any other variable
y such that that the condition above holds (in case ak contains another occurrence of a term
y.j), we eventually obtain a set of symbolic heaps S such that (I, k + 1) |= ψ ⇔

∨
ξ∈S ξ,

for all ξ ∈ S, wpc(ξ, ak) is defined, and there exists X ′ such that (ξ, qk, X ′) ∈ Bw(S, ϕ,Φ),
with X ′ = X ∪ Y , for some set of variables Y ⊆ v7→(ξ). This entails (by definition of
Bw(S, ϕ,Φ)) that, for all ξ ∈ S, (wpc(ξ, ak), qk+1, X

′′) ∈ Bw(S, ϕ,Φ), for some X ′′ that
is either empty (if ak is of the form x := t with x ∈ V⋆) or identical to X ′ (otherwise).
Furthermore, we have (sk+1, hk+1) |=R ψ ⇐⇒ ∃ξ ∈ S s.t. (sk+1, hk+1) |=R ξ, by
Lemmata 36 and 37. By Property a in the inductive invariant (at rank k) the equivalence
I(wpc(ξ, ak), k) = true ⇐⇒ (sk, hk) |=R wpc(ξ, ak) holds for all ξ ∈ S. Indeed, we have
∀x ∈ X ′′ \ v7→(wpc(ξ, ak)), sk(x) ̸∈ dom(hk): if the condition is not fulfilled, then ak
cannot be of the form x := t (otherwise X ′′ = ∅) and either ak is of the form free(x)
and x must occur in v 7→(wpc(ξ, ak)), by definition of wpc(ξ, ak); or x must be allocated in
(sk+1, hk+1), and then (by †, since X ′′ ⊆ X∪Y ⊆ X∪v7→(ξ)) x ∈ v 7→(ψ) ⊆ v7→(ξ), so that
x ∈ v7→(wpc(ξ, ak)) by definition of wpc(ξ, ak) (as ak ̸= alloc(x), since sk(x) ∈ dom(hk)).
By Lemma 32 we get I(wpc(ξ, ak), k) = true ⇐⇒ (sk+1, hk+1) |=R ξ, and by Axiom 3,
this yields: I(ξ, k + 1) = true ⇐⇒ (sk+1, hk+1) |=R ξ, so that I(ψ, k + 1) = true ⇐⇒
(sk+1, hk+1) |=R ψ.
We now show that Fw(S, ϕ) contains a tuple (ϕ′

k+1, qk+1, Xk+1) such that I(ϕ′
k+1, k+1) =

true. Let Y be the set of variables y such that ak contains a term of the form y.i (for
some i ∈ N) and y ̸∈ v7→(ϕ′

k). By applying the function ⟨⟩x on all variables in Y , we
get a set S of symbolic heaps such that (I, k) |= ϕ′

k ⇔
∨
ξ∈S ξ. Furthermore, for all

variables y ∈ Y , we have s(y) ∈ dom(hk) (since (sk, hk)[a′
k] is defined), thus y ̸∈ Xk. By

definition of Fw(S, ϕ), we deduce that for all ξ ∈ S, (ξ, qk, Xk ∪ Y ) ∈ Fw(S, ϕ). Moreover,
by Lemma 35, we have Y ⊆ v7→(ξ), and spc(ξ, ak) is defined for all ξ ∈ S. Then we
get by Axiom 2, (I, k + 1) |= spc(ξ, ak), for some ξ ∈ S. We define: ϕ′

k+1
def= spc(ξ, ak).

By definition of Fw(S, ϕ), (spc(ξ, ak), qk+1, Xk+1) ∈ Fw(S, ϕ) for some set Xk+1. Let
x ∈ x ∈ Xk+1 \ v7→(ϕ′

k+1). Assume that sk+1(x) ∈ dom(h). By definition of Fw(S, ϕ), ak
cannot be of the form z := t, where z ∈ V⋆ (otherwise Xk+1 would be empty). Thus
Xk+1 = Xk ∪ Y . Since x ∈ dom(sk+1), we have ak ̸= free(x). Since x ̸∈ v 7→(ϕ′

k+1), we
have ak ̸= alloc(x), by definition of spc(ξ, ak). Thus ak is of the form t := s where t is
not a variable, and we must have x ∈ dom(hk), and v 7→(ϕ′

k+1) = v 7→(ξ) ⊇ Y . This entails
that x ∈ Xk, which contradicts Property c at rank k.

TIME 2022
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Finally, using the symbolic heap ϕ′
k+1, the equivalence I(α, k + 1) = true ⇐⇒

(sk+1, hk+1) |=R α can be established for all atomic conditions α exactly as for the
base case. The case where α = A(x) and ak is of the form x := t is handled by noting
that we have both (sk+1, hk+1) |= A(x)⇔

∨
ξ∈⟨ϕ′

k+1⟩x
ξ (since (sk+1, hk+1) |= ϕ′

k+1, using
Lemmata 35, 36 and 37) and (I, k + 1) |= A(x)⇔

∨
ξ∈⟨ϕ′

k+1⟩x
ξ (by Axiom 4).
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Abstract
Gabbay’s separation theorem about linear temporal logic with past has proved to be one of the most
useful theoretical results in temporal logic. In particular it enables a concise proof of Kamp’s seminal
expressive completeness theorem for LTL. In 2000, Alexander Rabinovich established an expressive
completeness result for a subset of the Duration Calculus (DC), a real-time interval temporal logic.
DC is based on the chop binary modality, which restricts access to subintervals of the reference time
interval, and is therefore regarded as introspective. The considered subset of DC is known as the
⌈P ⌉-subset in the literature. Neighbourhood Logic (NL), a system closely related to DC, is based
on the neighbourhood modalities, also written ⟨A⟩ and ⟨Ā⟩ in the notation stemming from Allen’s
system of interval relations. These modalities are expanding as they allow writing future and past
formulas to impose conditions outside the reference interval. This setting makes temporal separation
relevant: is expressive power ultimately affected, if past constructs are not allowed in the scope of
future ones, or vice versa? In this paper we establish an analogue of Gabbay’s separation theorem
for the ⌈P ⌉-subset of the extension of DC by the neighbourhood modalities, and the ⌈P ⌉-subset of
the extension of DC by the neighbourhood modalities and chop-based analogue of Kleene star. We
show that the result applies if the weak chop inverses, a pair binary expanding modalities, are given
the role of the neighbourhood modalities, by virtue of the inter-expressibility between them and the
neighbourhood modalities in the presence of chop.
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Introduction

Separation for Linear Temporal Logic (LTL, cf., e.g., [28]) was established by Dov Gabbay
in [14]. Separation is about expressing temporal properties without making reference to
the past in the scope of future constructs and vice versa. Gabbay proved that such a
restriction does not affect the ultimate expressive power of past LTL, by a syntactically
defined translation from arbitrary formulas to ones that are separated, i.e., satisfy the
restriction. The applications of this theorem are numerous and important on their own right.
They include a concise proof of Kamp’s seminal expressive completeness result for LTL (see,
e.g., [13]), the elimination of the past modalities from LTL, which simplifies the study of
extensions of LTL, c.f., e.g., [10], Fisher’s clausal normal form for past LTL [12], other normal
forms [19, 15], etc. In this paper we establish an analogue of Gabbay’s separation theorem for
the extension of a subset of the Duration Calculus (DC) with a pair of expanding modalities
known as the neighbourhood modalities, with and without the chop-based analogue of Kleene
star, which is also called iteration in DC.

The Duration Calculus (DC, [32, 30]) is an extension of real time Interval Temporal
Logic (ITL), which was first proposed by Moszkowski for discrete time [24, 25, 11]. DC is
a real-time interval-based predicate logic for the modeling of hybrid systems. Unlike time
points, time intervals, the possible worlds in DC, have an internal structure of subintervals.
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This justifies calling modalities like chop introspective for their providing access to these
subintervals only. Modalities for reaching outside the reference interval are called expanding.
Several sets of such modalities have been proposed in the literature.

In this paper we prove a separation theorem for the ⌈P ⌉-subset of DC with the expanding
neighbourhood modalities ✸l and ✸r added to DC’s chop and iteration. The system based
on ✸l and ✸r only, which are also written ⟨A⟩ and ⟨A⟩ after Allen’s interval relations [3], is
called Neighbourhood Logic (NL, [4]), whereas we target DC with ✸l and ✸r. Our theorem
holds with iteration included too. We write DC-NL (DC-NL∗) for DC with ✸l and ✸r (and
iteration). In separated formulas, ✸d cannot appear in the scope of other modalities, except
✸d, d = l, r. ✸r-free formulas are regarded as past, and ✸l-free formulas are future. The
strict forms of past (future) formulas are defined by further restricting chop and iteration to
occur only in the scope of a ✸l (✸r). DC is a predicate logic. We prove that formulas in
each of ⌈P ⌉-subsets of DC-NL and DC-NL∗ have separated equivalents in their respective
subsets. These subsets are compatible with the system of DC from Rabinovich’s expressive
completeness result [29]. We also show that the weak chop inverses, which are binary
expanding modalities, are expressible using ✸l and ✸r in the considered subset. Their use in
the Mean-value Calculus, another system from the DC family, was studied in [26]. ✸l and
✸r are definable using the weak chop inverses. Consequently, our separation theorem applies
to the extensions of DC and DC∗ by the weak chop inverses too.

The technique of our proofs builds on our finds from [16] which led to establishing
separation for discrete time ITL.

Structure of the paper. Section 1 gives preliminaries on DC and DC∗, the neighbourhood
modalities, the weak chop inverses, and a supplementary result on quantification over state
in DC. In Section 2 we state our separation theorem for the ⌈P ⌉-subsets of DC-NL and
DC-NL∗ and give a simple example application. Section 3 is dedicated to the proof. The
transformations for separating DC-NL and DC-NL∗ formulas are given in Sections 3.2 and
3.3, respectively, and use a lemma which is given in the preceding Section 3.1. Section 4 is
about the expressibility of the weak chop inverses in the ⌈P ⌉-subsets of DC-NL and DC-NL∗,
using the lemma from Section 3.1 too. We conclude by pointing to some related work and
making some comments on the relevance of the result.

1 Preliminaries

An in-depth presentation of DC and its extensions can be found in [30]. The syntax of the
⌈P ⌉-subset of DC is built starting from a set V of state variables. It includes state expressions
S and formulas A. Let P stand for a state variable. The BNFs are:

S ::= 0 | P | S ⇒ S A ::= ⊥ | ⌈⌉ | ⌈S⌉ | A ⇒ A | A; A

Semantics. Given a set of state variables V , the type of valuations I is V × R → {0, 1}.
Valuations I are required to have finite variability:

For any P ∈ V and any bounded interval [a, b] ⊂ R there exists a finite sequence
t0 = a < t1 < . . . < tn = b such that λt.I(P, t) is constant in (ti−1, ti), i = 1, . . . , n.

The value It(S) of state expression S at time t ∈ R is defined by the clauses:

It(0) =̂ 0, It(P ) =̂ I(P, t), It(S1 ⇒ S2) =̂ max{It(S2), 1 − It(S1)}.
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Satisfaction has the form I, [a, b] |= A, where [a, b] ⊂ R. The defining clauses are:

I, [a, b] ̸|= ⊥, I, [a, b] |= ⌈⌉ iff a = b,

I, [a, b] |= ⌈S⌉ iff a < b and It(S) = 1 for all but finitely many t ∈ [a, b],
I, [a, b] |= A ⇒ B iff I, [a, b] |= B or I, [a, b] ̸|= A,

I, [a, b] |= A; B iff I, [a, m] |= A and I, [m, b] |= B for some m ∈ [a, b].

The connectives ¬, ∧, ∨ and ⇔ are defined as usual in both state expressions and formulas.
Furthermore 1 =̂ 0 ⇒ 0 and ⊤ =̂ ⊥ ⇒ ⊥. A formula A is valid in DC, written |= A, if
I, [a, b] |= A for all I and all intervals [a, b]. In this paper we consider the extension of the
⌈P ⌉-subset of DC by the neighbourhood modalities ✸d, d ∈ {l, r}. The defining clauses for
their semantics are as follows:

I, [a, b] |= ✸lA iff I, [a′, a] |= A for some a′ ≤ a,

I, [a, b] |= ✸rA iff I, [b, b′] |= A for some b′ ≥ b.

The universal duals ✷d of ✸d are defined by putting ✷dA =̂ ¬✸d¬A, d ∈ {l, r}. Chop A; B is
written A⌢B in much of the literature. We write DC-NL for the extension of DC by ✸l and
✸r. We also consider DC-NL∗, the extension of DC-NL by iteration, the chop-based form of
Kleene star, included. The defining clause for this operator is

I, [a, b] |= A∗ iff a = b or there exist a finite sequence m0 = a < m2 < · · · < mn = b

such that I, [mi−1, mi] |= A for i = 1, . . . , n.

Iteration is interdefinable with positive iteration A+ =̂ A; (A∗), which we assume to be the
derived one of the two: |= A∗ ⇔ ⌈⌉ ∨ A+.

Predicate DC and NL include a (defined) flexible constant ℓ for the length b − a of reference
interval [a, b]. Using ℓ, chop can be defined in NL:

A; B =̂ ∃x∃y(x + y = ℓ ∧ ✸l✸r(A ∧ ℓ = x) ∧ ✸r✸l(B ∧ ℓ = y)).

This definition is not available in NL’s ⌈P ⌉-subset. Therefore we discern the ⌈P ⌉-subsets of
NL and DC-NL.

Quantification over state in DC. Given a state variable P , I, [a, b] |= ∃ P A iff I ′, [a, b] |= A

for some I ′ such that I ′(Q, t) = I(Q, t) and all Q ∈ V \ {P}, t ∈ R. Quantification over state
is expressible in the ⌈P ⌉-subset of DC∗:

▶ Theorem 1. For every ⌈P ⌉-formula A in DC∗ and every state variable P there exists a
(quantifier-free) ⌈P ⌉-formula B in DC∗ such that |= B ⇔ ∃ P A.

Mind that B is not guaranteed to be iteration-free, even in case A is.
This theorem follows from a correspondence between stutter-invariant regular languages

and the ⌈P ⌉-subset that led to the decidability of the ⌈P ⌉-subset in [31]. It is not our
contrubution, but the transformations from its proof supplement those from our other proofs.

Notation. In this paper write ε, possibly with subscripts, to denote optional occurrences of
the negation sign ¬, e.g, εQ below. We write [A/B]C to denote the result of simultaneously
replacing all the occurrences of B by A in C, e.g., [0/P ]S below.

TIME 2022



10:4 Gabbay Separation for the Duration Calculus

Proof of Theorem 1. Following [31], A translates into a regular expression over the alphabet

Σ =̂ {
∧

Q is a state variable in A

εQQ : εQ is either ¬ or nothing} . (1)

The translation clauses are as follows:

t(⊥) =̂ ∅ t(⌈S⌉) =̂ ({σ ∈ Σ :|= σ ⇒ S})+ t(A; B) =̂ t(A); t(B)
t(⌈⌉) =̂ ϵ (the empty string) t(A ⇒ B) =̂ t(B) ∪ Σ∗ \ t(A) t(A∗) =̂ t(A)∗

Up to equivalence, t can be inverted. Regular expressions admit complementation- and ∩-free
equivalents; hence these operations can be omitted in the converse translation t̄:

t̄(∅) =̂ ⊥ t̄(a) =̂ ⌈a⌉ for a ∈ Σ t̄(R1 ∪ R2) =̂ t̄(R1) ∨ t̄(R2) t̄(R∗) =̂ t̄(R)∗

t̄(ε) =̂ ⌈⌉ t̄(Σ∗) =̂ ⌈⌉ ∨ ⌈1⌉ t̄(R1; R2) =̂ t̄(R1); t̄(R2)

Given a regular expression R = t(A), t̄(R′) is equivalent to A for any R′ that defines the
same language as R. Applying t̄ to a complementation- and ∩-free equivalent R′ to t(A)
produces an equivalent to A with ∨ as the only propositional connective, except possibly
inside state expressions. Given this, ∃ P can be eliminated from formulas of the form t̄(R′):

|= ∃ P ⊥ ⇔ ⊥ |= ∃ P ⌈S⌉ ⇔ ⌈[0/P ]S ∨ [1/P ]S⌉+ |= ∃ P (A1; A2) ⇔ ∃ P A1; ∃P A2

|= ∃ P ⌈⌉ ⇔ ⌈⌉ |= ∃ P (A1 ∨ A2) ⇔ ∃ P A1 ∨ ∃ P A2 |= ∃ P A∗ ⇔ (∃ P A)∗.

The equivalence ∃ P ⌈S⌉ above hinges on the finite variability of It(P ). ◀

The weak chop inverses A/B and A\B, cf., e.g., [26], are defined by the clauses:

I, [a, b] |= A/B iff for all r ≥ b, if I, [b, r] |= B then I, [a, r] |= A.

I, [a, b] |= A\B iff for all l ≤ a, if I, [l, a] |= B then I, [l, b] |= A.

✸lA and ✸rA can be defined as ¬(⊥\A) and ¬(⊥/A), respectively. In Section 4 we show
how A/B and A\B can be expressed using ✸l and ✸r too for ⌈P ⌉-formulas A and B, but
with the expressing formulas built in a more complex way.

Separation as Known for LTL. We relate the setting and statement of Gabbay’s separation
theorem about past LTL as our work builds in the example of this theorem. Let p stand for
an atomic proposition. Discrete time LTL formulas with past have the syntax:

A ::= ⊥ | p | A ⇒ A | ⃝ A | A U A | −⃝A | A S A

−⃝ and S are the past mirror operators of ⃝ and U. −⃝- and S-free formulas are called future
formulas, and ⃝- and U-free formulas are called past. Formulas of the form ⃝ F where F

is future are called strictly future. In [14], Dov Gabbay demonstrated that any formula in
LTL with past is equivalent to a Boolean combination of past and strictly future formulas
for flows of time which are either finite or infinite, in either the future or the past, or both.

Modal heights h✸l
(.), h✸r

(.) and h∗(.) of formulas wrt the neighbourhood modalities and
iteration appear in our inductive reasoning below. In general, h(A) denotes the length of the
longest chain of A’s subformulas, including possibly A, with the main connective being the
specified modality wrt the (transitive closure of) the subformula relation.
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2 The Separation Theorem

In this section we formulate the main contribution of the paper, Theorems 2 and 3, which
are separation theorems for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, and use Theorem 2 to
demonstrate the expressibility of an interval-based version of the “past-forgetting” operator
from [18] as a simple example application.

We call DC-NL (DC-NL∗) formula F (non-strictly) future if it has the syntax

F ::= C | ¬F | F ∨ F | ✸rF

where C stands for a DC (DC∗) formula, where chop (and iteration) are the only modalities.
Non-strictly past formulas are defined similarly, with ✸l instead of ✸r. A separated formula
is a Boolean combination of past and future formulas.

Following the example of LTL, we call Boolean combinations of ✸l-, resp. ✸r-formulas
with non-strict past, resp. future operands strictly past, resp. strictly future formulas.
Such formulas can impose no conditions on the reference interval; they only refer to the
adjacent past and future intervals along the timeline. These adjacent intervals still include
the respective endpoints of the reference interval. However the ⌈P ⌉ construct cannot tell
apart interpretations I of the state variables such that λt.I(P, t) varies only at finitely many
time points t. Unlike that, in discrete time an extra step away from the present time using
−⃝, resp., ⃝ is necessary to prevent a formula from imposing conditions on the reference time
point or the reference interval’s respective endpoint. This shared time point causes strictly
past and strictly future formulas to be defined differently in discrete time ITL. Separated
formulas can also be defined as Boolean combinations of strictly past formulas, strictly future
formulas and introspective, i.e., just DC (DC∗), formulas, where the only modalities are chop
(and iteration), that are known as introspective too.

▶ Theorem 2. Let A be a ⌈P ⌉-formula in DC-NL (DC-NL∗). Then there exists a separated
⌈P ⌉-formula A′ in DC-NL (DC-NL∗) such that |= A ⇔ A′.

In Section 4 we demonstrate the inter-expressibility between (./.) and (.\.), and ✸l and ✸r,
respectively. This implies that Theorem 2 holds for the weak chop inverses instead of the
respective ✸d, d ∈ {l, r} wrt a corresponding notion of separated formula too:

▶ Theorem 3. Let A be a ⌈P ⌉-formula in the extension of DC (DC∗) by (./.) and (.\.).
Then there exists a separated ⌈P ⌉-formula A′ in DC (DC∗) with (./.) and (.\.) such that
|= A ⇔ A′.

An Example Application: Expressing the N operator. The temporal operator N (“now”)
was proposed for past LTL in [18], see also [17], as a means for “preventing access” into the
past beyond the time of applying N. Assuming σ =̂ σ0σ1 . . . to be a sequence of states

σ, i |=LTL NA iff σiσi+1 . . . , 0 |=LTL A .

If an arbitrary closed interval D ⊆ R, and not only the whole of R, is allowed to be the time
domain, N can be defined for (real-time) DC-NL too. With such time domains, the endpoints
of “all time” can be identified, because, e.g., D, I, [a, b] |= ✷l⌈⌉ iff a = min D. (Since the
⌈P ⌉-subset of DC-NL is merely topological, as opposed to metric, it cannot distinguish open
time domains from R.) We can define N on intervals by putting:

D, I, [a, b] |= NlA iff {x ∈ D : x ≥ a}, I, [a, b] |= A

D, I, [a, b] |= NrA iff {x ∈ D : x ≤ b}, I, [a, b] |= A

Theorem 2 entails that Nl and Nr are expressible in DC-NL:

TIME 2022
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▶ Proposition 4. DC-NL + Nl, Nr has the same expressive power as DC-NL.

Proof. Let A′ be a separated equivalent of A. Then |= NdA ⇔ [✸d(B ∧ ⌈⌉)/✸dB :
B ∈ Subf(A′)]A′, d ∈ {l, r}, where Subf(F ) stands for the set of the subformulas of F ,
including F . ◀

3 The Proof of Separation for DC-NL and DCNL*

In this section we propose a set of valid equivalences which, if appropriately used as trans-
formation rules starting from some arbitrary given formula from the ⌈P ⌉-subset of DC-NL∗,
lead to a separated formula in DC-NL∗. If the given formula is iteration-free, i.e., in DC-NL,
then so is the separated equivalent. This amounts to proving Theorem 2.

Our key observation is that formulas which are supposed to be evaluated at intervals that
extend some given interval into either the future or the past have equivalents which consist of
subformulas to be evaluated at the given interval and subformulas to be evaluated at intervals
which are adjacent to it, these two subintervals being appropriately referenced using chop as
parts of the enveloping interval. In our proof of separation, this observation is refered to as a
lemma that states the possibility to express any introspective formula as a case distinction of
chop-formulas with the LHS (RHS) operands of chop forming a full system. The lemma can
be seen as a generalization of the guarded normal form, which is ubiquitous in process logics,
with the full systems of guards describing a primitive opening move replaced by full systems
of interval-based temporal conditions to be satisfied at whatever prefixes (suffixes) of the
reference runs necessary. Later on we use the lemma in expressing (./.) ((.\.)) in terms of
✸r (✸l) too.

3.1 The Key Lemma

A finite set of formulas A1, . . . , An is a full system, if |=
n∨

k=1
Ak and, given 1 ≤ k1 < k2 ≤ n,

|= ¬(Ak1 ∧ Ak2).

▶ Lemma 5. Let A be a ⌈P ⌉-formula in DC (DC∗). Then there exists an n < ω and some
DC (DC∗) ⌈P ⌉-formulas Ak, A′

k, k = 1, . . . , n, such that A1, . . . , An form a full system and

|= A ⇔
n∨

k=1
Ak; A′

k and |= A ⇔
n∧

k=1
¬(Ak; ¬A′

k). (2)

Furthermore, h∗(Ak) ≤ h∗(A) and h∗(A′
k) ≤ h∗(A).

Informally, this means that, I, [a, b] |= A iff whenever m ∈ [a, b] and I, [a, m] |= Ak, I, [m, b] |=
A′

k holds. Furthermore, for every m ∈ [a, b] there is a unique k such that I, [a, m] |= Ak.
Interestingly, the construct ¬(F ; ¬G) used in the second equivalence (2) is regarded as a
form of temporal implication, written F Z⇒ G, in ITL [23, 5]. This construct is akin to
suffix implication [2], see also [1]. It requires the suffix of an interval to satisfy B, if the
complementing prefix satisfies A. Much like ⇒’s being the right adjoint of ∧, Z⇒ is the right
adjoint of chop:

|= (A Z⇒ (B Z⇒ C)) ⇔ ((A; B) Z⇒ C) .

In this paper we stick to the notation in terms of chop for both Z⇒ and its mirror ¬(¬G; F ).
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Proof of Lemma 5. Induction on the construction of A. For ⊥, ⌈⌉ and ⌈P ⌉, we have:

|= ⊥ ⇔ (⊤; ⊥) |= ⌈⌉ ⇔ (⌈⌉; ⌈⌉) ∨ (¬⌈⌉; ⊥)
|= ⌈P ⌉ ⇔ (⌈P ⌉; (⌈P ⌉ ∨ ⌈⌉)) ∨ (⌈⌉; ⌈P ⌉) ∨ (¬(⌈⌉ ∨ ⌈P ⌉); ⊥)

Let B1, . . . , Bn, B′
1, . . . , B′

n satisfy (2) for B and C1, . . . , Cm, C ′
1, . . . , C ′

m satisfy (2) for C.
Then:

|= B op C ⇔
n∨

k=1

m∨
l=1

(Bk ∧ Cl); (B′
k op C ′

l), op ∈ {⇒, ∨, ∧, ⇔}

|= B; C ⇔
n∨

k=1

∨
X⊆{1,...,m}

(
Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl)
)

;
(

(B′
k; C) ∨

∨
l∈X

C ′
l

)
For the equivalence about iteration, let C1, . . . , Cm, and C ′

1, . . . , C ′
m satisfy (2) for C =̂ B ∨⌈⌉.

Then B∗ ⇔ C∗, and:

|= B∗ ⇔
∨

X⊆{1,...,m}

( ∧
l∈X

(B∗; Cl) ∧
∧

l ̸∈X

¬(B∗; Cl)
)

;
( ∨

l∈X

(C ′
l ; B∗)

)
(3)

The equivalences on the right in (2) are written similarly. The RHSs of these equivalences
have the form required in the lemma. Using these equivalences as transformation rules
bottom up, an arbitrary A can be given that form.

A direct check is sufficient for establishing (2) about ⊥, ⌈⌉ and ⌈P ⌉. The case of B op C,
esp. op = ⇒, admits the proof that works for the Guarded Normal Form in [6].

For the equivalence on the left in (2) about B; C, (⇒): let I, [a, b] |= B; C, m ∈ [a, b],
and I, [a, m] |= B and I, [m, b] |= C. Let t ∈ [a, b]. If t ∈ [a, m], then I, [a, t] |= Bk for some
unique k. If t ∈ [m, b], then a unique X ⊆ {1, . . . , m} exists such that I, [a, t] |= B; Cl holds
iff l ∈ X. The conjunctions of Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl), k = 1, . . . , n, X ⊆ {1, . . . , m}

form a full system because so do both the Bks, and the conjunctions
∧

l∈X

(B; Cl)∧
∧

l ̸∈X

¬(B; Cl),

X ⊆ {1, . . . , m}. Since I, [a, m] |= B and I, [m, b] |= C, for an [a, t] satisfying the member of
this full system for any given k and X, we can conclude that I, [t, b] |= (B′

k; C) ∨
∨

l∈X

C ′
l from

the assumptions on the B′
ks and the C ′

ls. For the converse implication (⇐), let [a, b] be an
arbitrary interval, t ∈ [a, b], and let I, [a, t] |= Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl), which is bound

to be true for some unique pair k, X. Then, I, [t, b] |= B′
k; C implies I, [a, b] |= Bk; B′

k; C,
and I, [t, b] |= C ′

l implies I, [a, b] |= B; Cl; C ′
l for any l ∈ X. In both cases I, [a, b] |= B; C

follows because |= Bk; B′
k ⇒ B and |= Cl; C ′

l ⇒ C. The LHS equivalence (2) about B∗ is
established similarly, with the use of C facilitating a uniform handling of the case of B∗

holding trivially at 0-length intervals. The RHS equivalences (2) follow from the LHS ones
by the assumption that the Aks form a full system.

Observe that the equivalence (3) about A = B∗ satisfies h∗(Ak) ≤ h∗(A) and h∗(A′
k) ≤

h∗(A). The non-increase of h∗(.) also holds for the rest of the equivalences, which, despite
not featuring iteration explicitly, may become used for transforming formulas with iteration.
Hence, h∗(Ak) ≤ h∗(A) and h∗(A′

k) ≤ h∗(A) for all A. ◀

The time mirror image of Lemma 5 holds too, with the time mirror of (2) reading

|= A ⇔
n∨

k=1
A′

k; Ak and |= A ⇔
n∧

k=1
¬(¬A′

k; Ak).

The proof is no different because all the modalities are symmetrical wrt the direction of time.
For this reason, in the sequel we omit “mirror” statements and their proofs.
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On the complexity of the transformations from Lemma 5. Interestingly, a peak (expo-
nential) blowup in the transformations from Lemma 5’s proof occurs in the clause for chop
and not the clause for ¬, the typical source of such blowups. However, a closer look at the
inductive assumptions shows that the pairwise inconsistency achieved at the cost of using
Ak ∧

∧
l∈X

(A; Bl) ∧
∧

l ̸∈X

¬(A; Bl) for all k ∈ {1, . . . , m} and the 2n different X ⊆ {1, . . . , m} in

the required full system is instrumental for the correctness of the clause about the binary
Boolean connectives, where negation is obtained for op =⇒ and B = ⊥. Hence this blowup
can be linked to the alternation of ¬ and monotone operators such as chop that is common
in proofs of the non-elementariness of the blowup upon reaching normal forms.

Lemma 5 admits an automata-theoretic proof, along the lines of the proof of Theorem 1.
We have sketched such a proof for discrete time ITL in [16]. That proof leads to different
Ak and A′

k satisfying (2) for the same A, and allows a non-elementary upper bound on the
length of these formulas to be established using the size of a deterministic FSM recognizing
A. Unlike the automata-based proof, the equivalences of this proof suggest transformations
that are valuable for their compositionality and their validity in DC in general, and not just
for the ⌈P ⌉-subset. Furthermore, the proof given here facilitates establishing that ∗-height is
not increased upon moving to the RHSs of (2).

3.2 Separating the Neighbourhood Modalities in DC-NL
In this section we prove Theorem 2 by showing how occurrences of ✸d can be taken out of
the scope of chop and ✸d, d ∈ {l, r}, l =̂ r, r =̂ l. The transformations that we propose are
supposed to be applied bottom up, on formulas with chop or ✸d, d ∈ {l, r}, as the main
connective, assuming that the operands of are already separated. If the main connective is
✸d, then we need to target only the ✸d-subformulas in ✸d’s operand, possibly at the cost of
introducing some ✸d-subformulas in the scope of chop, to be subsequently extracted from
there too.

To show that the above transformations combine into a terminating procedure which
produces a separated formula, for DC-NL, we reason by induction on the ✸d-height of the
relevant formulas. In the case of DC-NL∗, which is the topic of Section 3.2, we also keep
track of ∗-height. It is not increased upon applying Lemma 5, nor by the transformations
for separating formulas with ✸l, ✸r or chop as the main connective. The effect on ∗-height
of eliminating some quantification over state which appears at an intermediate stage of the
transformations by an application of Theorem 1 on ∗-height is irrelevant because it involves
only introspective, i.e., DC∗, formulas. In most cases, we give detail only on the extracting
of ✸r-subformulas, because of the time symmetry.

Separating ✸d-formulas. Let d = l; the case of d = r is its mirror. Since

|= ✸l(A1 ∨ A2) ⇔ ✸lA1 ∨ ✸lA2 , (4)

the availability of DNF for A of ✸lA makes it sufficient to consider the case of A of the form
P ∧

n∧
k=1

εk✸rFk where P is (non-strictly) past and F1, . . . , Fn are future. Observe that

|= ✸l

(
P ∧

n∧
k=1

εk✸rFk

)
⇔ ✸lP ∧

n∧
k=1

((⌈⌉ ∧ εk✸rFk); ⊤) . (5)

Using (4) and (5) does not increase ✸l-height and implies that separating ✸lA reduces to
separating ((⌈⌉ ∧ ε✸rFk); ⊤), which are chop-formulas. Here follow the transformations for
doing this.
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Separating chop-formulas. We need to consider only chop applied to conjunctions of
introspective formulas and possibly negated past ✸l-formulas or future ✸r-formulas because

|= (L1 ∨ L2); R ⇔ (L1; R) ∨ (L2; R) and |= L; (R1 ∨ R2) ⇔ (L; R1) ∨ (L; R2)

Past ✸l-formulas (future ✸r-formulas) can be extracted from the left (right) operand of chop
using that

|= (L ∧ ε✸lP ); R ⇔ (L; R) ∧ ε✸lP and |= L; (R ∧ ε✸rF ) ⇔ (L; R) ∧ ε✸rF. (6)

Much like (4), this does not affect ✸d-height. It remains to consider (L ∧
n∧

k=1
εk✸rFk); R,

which, by virtue of the time symmetry, will explain separating L; (R ∧
n∧

k=1
εk✸lPk) too.

The transformations of formulas of the form (L∧ε✸rF ); R below are about the designated
ε✸rF only, and are supposed to be used repeatedly, if L has more conjuncts of this form. By
(4), F can be assumed to be a conjunction C ∧ G where C is introspective and G is strictly
future. Let Ck, C ′

k, k = 1, . . . , n, satisfy Lemma 5 for C. We do the cases of (L ∧ ✸rF ); R

and (L ∧ ¬✸rF ); R separately.
(L ∧ ✸rF ); R: Observe that

|= (L ∧ ✸r(C ∧ G)); R ⇔ (L; (R ∧ ((C ∧ G); ⊤))) ∨
n∨

k=1
(L; (R ∧ Ck)) ∧ ✸r(C ′

k ∧ G)

and further process the RHS of ⇔ in it. The two disjuncts on the RHS above correspond
to F being satisfied at an interval which is shorter, or the same length, or longer than the
one which presumably satisfies R. Since Ck and C ′

k are introspective, the newly introduced
formulas ✸r(C ′

k ∧ G) on the RHS of ⇔ are separated. G can be extracted from the scope of
chop in L; (R ∧ ((C ∧ G); ⊤)) too, because h✸r

(G) < h✸r
((L ∧ ✸rF ); R).

(L ∧ ¬✸rF ); R: Satisfying (L ∧ ¬✸r(C ∧ G)); R requires ¬(C ∧ G) to hold at all the
intervals which start at the right end of the one where L presumably holds. Therefore we
can use that

|= (L ∧ ¬✸r(C ∧ G)); R ⇔
n∨

k=1
(L; (R ∧ Ck ∧ ¬((C ∧ G); ⊤))) ∧ ¬✸r(C ′

k ∧ G).

Again, G must be extracted from the scope of chop in the newly introduced L; (R ∧ Ck ∧
¬((C ∧ G); ⊤)) on the RHS of the equivalence. This can be accomplished because h✸r (G) <

h✸r
((L ∧ ¬✸rF ); R).
The transformations above are sufficient for establishing Theorem 2 about DC-NL. By

Lemma 5, these transformations do not cause ∗-height to increase. This is relevant in
separating formulas in DC-NL∗, which is explained next.

3.3 Separating iteration formulas
To extract ✸l and ✸r from the scope of iteration, we use the inter-expressibility between
iteration and quantification over state, and the expressibility of quantification over state in
the ⌈P ⌉-subset of DC∗ (Theorem 1). Consider B∗ where B is a separated formula. Without

loss of generality, B can be assumed to be
t∨

s=1
Bs where

Bs =̂ Hs ∧
u∧

i=1
εp

s,i✸lPi ∧
v∧

j=1
εf

s,j✸rFj ,
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Hs, s = 1, . . . , t are introspective, Pi, i = 1, . . . , u, are past formulas, and Fj , j = 1, . . . , v,
are future formulas. Furthermore, Pi, i = 1, . . . , u, (Fj , j = 1, . . . , v) can be assumed to be
conjunctions of introspective and strictly past (strictly future) formulas by (4) and its mirror
equivalence.

Let T , Sp
i , i = 1, . . . , u, and Sf

j , j = 1, . . . , v, be fresh state variables. Then

|= B∗ ⇔ ∃T∃Sp
1 . . . Sp

u∃Sf
1 . . . Sf

v

(
(⌈T ⌉; ⌈¬T ⌉) ∧

t∨
s=1

(
Bs ∧

u∧
i=1

⌈εp
s,iS

p
i ⌉ ∧

v∧
j=1

⌈εf
s,jSf

j ⌉
))∗

,

This equivalence states that an interval [a, b] such that I, [a, b] |= B∗ can be partitioned
into subintervals [m0, m1], . . . , [md−1, me] so that each subinterval satisfies Bs for some
s ∈ {1, . . . , t}, and an assignment of T , Sp

1 , . . . , Sp
u and Sf

1 , . . . , Sf
v can be chosen so that, for

d = 1, . . . , e, [md−1, md] is a maximal ⌈T ⌉; ⌈¬T ⌉-interval, and for some s ∈ {1, . . . , t} such
that I, [md−1, md] |= Bs, I, [md−1, md] |= ⌈εp

s,iS
p
i ⌉ iff I, [md−1, md] |= εp

s,i✸lPi, i = 1, . . . , u,
and I, [md−1, md] |= ⌈εf

s,jSf
j ⌉ iff I, [md−1, md] |= εf

s,j✸rFj , j = 1, . . . , v.
Now observe that I, [md−1, md] |= Bs would follow, if I, [md−1, md] |= Hs, and, for some

appropriate a′ ≤ md−1, I, [a′, md−1] |= εp
s,iPi, i = 1, . . . , u, and, for some appropriate b′ ≥ md,

I, [mk, b′] |= εf
s,jFj , i = 1, . . . , v. Here appropriate stands for all b′ ≥ md (a′ ≤ md−1), if

εf
s,j (εp

s,i) is ¬; otherwise it stands for some b′ ≥ md (a′ ≤ md−1). Furthermore, the md

such that I, [md, b′] |= εf
s,jFj is required for all (some) b′ ≥ md can be identified by the

condition that ¬T ∧ εf
s,jSf

j holds in a left neighbourhood of md and T holds in a right
neighbourhood of md, for d = 1, . . . , e − 1. For d = e, md = b, and, unless a = b, ¬T ∧ εf

s,jSf
j

holds in a left neighbourhood of md. The mirror conditions allow identifying the md−1 for
which I, [a′, md−1] |= εp

s,iPi is required, for either some or all a′ ≤ md−1, depending on εp
s,i,

d = 1, . . . , e, with m0 similarly handled separately.
Given the possibility to identify the relevant md as observed, I, [md, b′] |= εf

s,jFj for the
required b′ ≥ md can be expressed as I, [a, b] |= φj where

φj =̂
(

(⊤; ⌈Sf
j ⌉) ⇒ ✸rFj ∧ ¬((⊤; ⌈Sf

j ∧ ¬T ⌉); ((⌈T ⌉; ⊤) ∧ ¬((✸rFj ∧ ⌈⌉); ⊤)))∧
(⊤; ⌈¬Sf

j ⌉) ⇒ ¬✸rFj ∧ ¬((⊤; ⌈¬Sf
j ∧ ¬T ⌉); ((⌈T ⌉; ⊤) ∧ ((✸rFj ∧ ⌈⌉); ⊤)))

)
. (7)

The time mirrors of φj can be used to enforce I, [a′, md−1] |= εp
s,iPi for the required a′ ≤ md−1,

i = 1, . . . , u. Let these formulas be πi, i = 1, . . . , u. Then B∗ is equivalent to

∃T∃Sp
1 . . . ∃Sp

u∃Sf
1 . . . ∃Sf

v


(

(⌈T ⌉; ⌈¬T ⌉) ∧
t∨

s=1
Hs ∧

u∧
i=1

⌈εp
s,iS

p
i ⌉ ∧

v∧
j=1

⌈εf
s,jSf

j ⌉
)∗

∧
u∧

i=1
πi ∧

v∧
j=1

φj

 . (8)

✸rFj occurs in the left operand of chop in φj . As mentioned above, by the mirror equivalence
of (4), Fj can be assumed to be the conjunction of some introspective Cj and some strictly
future Gj . Let Cj,k and C ′

j,k, k = 1, . . . , n, satisfy Lemma 5 for Cj . Then

|= ((✸rFj ∧ ⌈⌉); ⊤) ⇔ ((Cj ∧ Gj); ⊤) ∨
n∧

k=1
Cj,k ⇒ ✸r(C ′

j,k ∧ Gj). (9)

Since h✸r
(Gj) < h✸r

(B) and h∗(Gj) < h∗(B), Gj can be extracted from the left operand of
chop in the RHS of (9). This produces a (non-strictly) future formula which is equivalent
to ((✸rFj ∧ ⌈⌉); ⊤). After replacing ((✸rFj ∧ ⌈⌉); ⊤) by this future formula in (7), the ✸r-
subformulas of this future formula and the formulas ✸r(C ′

j,k ∧ Gj) can be further extracted
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from the right operand of chop in (7) using the right equivalence of (6). This leads to a future
equivalent of φj , by which we replace φj in (8), j = 1, . . . , v. We use the time mirror of (9)
and the left equivalence of (6) to similarly replace πi, i = 1, . . . , u, by some appropriate past
equivalents. This leads to a separated formula as the operand of ∃T∃Sp

1 . . . ∃Sp
u∃Sf

1 . . . ∃Sf
v

in (8).
In order to obtain a separated equivalent to B∗, we need to eliminate this quanti-

fier prefix. To this end, observe that the ✸l- and ✸r-subformulas which appear in the
separated equivalents of πi, i = 1, . . . , u, and φj , j = 1, . . . , v, have no occurrences of
T, Sp

1 , . . . , Sp
u, Sf

1 , . . . , Sf
v , and are linked with the remaining introspective subformulas in the

scope of ∃T∃Sp
1 . . . ∃Sp

u∃Sf
1 . . . ∃Sf

v , which may have such occurrences, by Boolean connectives
only. Hence the ✸l- and ✸r-subformulas can be extracted using the De Morgan laws and

|= ∃ S (X ∨ Y ) ⇔ ∃ S X ∨ ∃ S Y, and, for S-free X, |= ∃ S(X ∧ Y ) ⇔ X ∧ ∃ S Y,

Then the quantifier prefix can be eliminated by Theorem 1, which is about introspective
formulas only. Hence Theorem 2 holds about DC-NL∗ too.

4 Expressing the Weak Chop Inverses by the Neighbourhood
Modalities and Separation for the Weak Chop Inverses

In this section we prove that the weak chop inverses are expressible in DC-NL, which means
that separation applies to DC with these expanding modalities instead of ✸l and ✸r too.

Suppose that A1, A2, B are separated formulas in DC-NL (DC-NL∗). Then the availability
of conjunctive normal forms and the validity of the equivalences

(A1 ∧ A2)/B ⇔ A1/B ∧ A2/B

entails that we need to consider only formulas A/B where A is a disjunction of introspective
formulas, strictly future formulas and strictly past formulas. Strictly past disjuncts P in the
left operand of (./.) can be extracted using the validity of

(A ∨ P )/B ⇔ P ∨ A/B.

The following proposition shows how to express A/B in case A is a disjunction of introspective
and possibly negated ✸r-formulas.

▶ Proposition 6. Let A be a ⌈P ⌉-formula in DC (DC∗) and Ak, A′
k, k = 1, . . . , n satisfy

Lemma 5 for A. Let B be a ⌈P ⌉-formula in DC-NL∗. Let F be a strictly future formula.
Then

|= (A ∨ F )/B ⇔
n∨

k=1
Ak ∧ ✷r(B ⇒ (A′

k ∨ F )) . (10)

Proof. (⇒): Let I, [a, b] satisfy the RHS of (10). Consider an arbitrary r ≥ b such that
I, [b, r] |= B. Then I, [a, r] |= A∨F . There is a (unique) k ∈ {1, . . . , n} such that I, [a, b] |= Ak.
Hence I, [b, r] |= A′

k ∨ F follows from I, [a, r] |= A ∨ F and |= A ⇒ ¬(Ak; ¬A′
k), which follows

from Lemma 5. The (⇐) direction is trivial to check and we omit it. ◀

The formula for A/B in terms of ✸l and ✸r in the RHS of (10) can be further separated
to extract past subformulas of B from the scope of ✷r as in DC-NL (DC-NL∗). The above
argument shows that (./.)-formulas whose operands are in the ⌈P ⌉-subset of DC-NL (DC-NL∗)
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have equivalents in the ⌈P ⌉-subset of DC-NL (DC-NL∗) themselves. Observe that, in the
presence of chop, it takes only ✸r to eliminate (./.). Similarly, (.\.), which is about looking
to the left of reference interval, can be eliminated using only chop and ✸l. As mentioned in
the Preliminaries section, expressing ✸l and ✸r by means of (.\.) and (./.) is straightforward.
This concludes our reduction of the ⌈P ⌉-subset of DC-NL (DC-NL∗) with the weak chop
inverses to the ⌈P ⌉-subset of DC-NL (DC-NL∗), and entails that separation applies to that
system too as stated in Theorem 3.

Concluding Remarks

In this paper we have shown how separation after Gabbay applies to the ⌈P ⌉-subsets of
DC-NL and DC-NL∗, the extensions of DC by the neighbourhood modalities. These subsets
correspond to the subset of DC whose expressive completeness was demonstrated in [29].

The ⌈S⌉-construct, which is definitive for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, has
a considerable similarity with the homogeneity principle which is known from studies on
neighbourhood logics of discrete time. That principle was proposed in [22, 20] and was
adopted in a number of more recent works such as [7, 8, 9]. Unlike the locality principle from
Moszkowski’s (standard) discrete time ITL, where the satisfaction of an atomic proposition
p is determined by the labeling of the initial state of the reference interval, homogeneity
means that atomic proposition p must label all the states in the reference interval for p

to hold at that interval as a formula. The two variants are ultimately interdefinable, but
facilitate applications in a slightly different way. Homogeneity can be compared with DC’s
⌈P ⌉ because ⌈P ⌉ means that P is supposed to hold “almost everywhere” in the reference
interval. The main difference is that varying valuations at zero-length interval is negligible in
real-time NL and DC, whereas the labeling of the only point in such intervals can be referred
to in discrete time. This leads to different notions of strictly past and strictly future formulas.
It is known that past expanding modalities increase the ultimate expressive power of discrete
time ITL [21], and not just its succinctness, the latter being the case in past LTL. This adds
to the relevance of algorithmic methods for interval-based expanding modalities in general.

Providing a separation theorem to the ⌈P ⌉-subset of DC-NL improves our understanding
of the logic and may facilitate further results. One obvious avenue of future study would be
to consider interval-based variants of the applications of separation that are known about
point-based past LTL. In particular, one rather straightforward application would be to
simplify the theoretical considerations that are needed for the study of extensions, especially
branching time ones such as [27], by making it sufficient to consider future-only formulas,
while still enjoying the succinctness contributed by the availability of past operators.
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Abstract
Model checking (MC) for Halpern and Shoham’s interval temporal logic HS has been recently
investigated in a systematic way, and it is known to be decidable under three distinct semantics
(state-based, trace-based and tree-based semantics), all of them assuming homogeneity in the
propositional valuation. Here, we focus on the trace-based semantics, where the main semantic
entities are the infinite execution paths (traces) of the given Kripke structure. We introduce a
quantitative extension of HS over traces, called Difference HS (DHS), allowing one to express timing
constraints on the difference among interval lengths (durations). We show that MC and satisfiability
of full DHS are in general undecidable, so, we investigate the decidability border for these problems
by considering natural syntactical fragments of DHS. In particular, we identify a maximal decidable
fragment DHSsimple of DHS proving in addition that the considered problems for this fragment are
at least 2Expspace-hard. Moreover, by exploiting new results on linear-time hybrid logics, we show
that for an equally expressive fragment of DHSsimple, the problems are Expspace-complete. Finally,
we provide a characterization of HS over traces by means of the one-variable fragment of a novel
hybrid logic.
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11:2 A Quantitative Extension of Interval Temporal Logic over Infinite Words

intervals/paths are “forgetful” of the history leading to their starting state, and time branches
both in the future and in the past. In this setting, MC of full HS is decidable: the problem is
at least Expspace-hard [4], while the only known upper bound is non-elementary [27]. The
known complexity bounds for full HS coincide with those for the linear-time fragment BE of
HS which features modalities ⟨B⟩ and ⟨E⟩ for prefixes and suffixes. Whether or not model
checking for BE can be solved elementarily is a difficult open question. On the other hand,
in the state-based setting, the exact complexity of MC for many meaningful (linear-time or
branching-time) syntactic fragments of HS, which ranges from coNP to PNP, Pspace, and
beyond, has been determined in a series of papers [5, 7, 9, 11, 8].
The expressiveness of HS with the state-based semantics has been studied in [6], together
with other two decidable variants: the computation-tree-based semantics and the traces-based
one. For the first variant, past is linear: each interval may have several possible future,
but only a unique past. Moreover, past is finite and cumulative, and is never forgotten.
The trace-based approach instead relies on a linear-time setting, where the infinite paths
(traces) of the given Kripke structure are the main semantic entities. It is known that the
computation-tree-based variant of HS is expressively equivalent to finitary CTL∗ (the variant
of CTL∗ with quantification over finite paths), while the trace-based variant is equivalent to
LTL [6]. The state-based variant is more expressive than the computation-tree-based variant
and expressively incomparable with both LTL and CTL∗ [6].
In this paper, we introduce a quantitative extension of the interval temporal logic HS under
the trace-based semantics, called Difference HS (DHS). The extension is obtained by means
of equality and inequality constraints on the temporal modalities which allow to specify
integer bounds on the difference between the durations (lengths) of the current interval
and the interval selected by the modality. The logic DHS can also encode in a succinct
way constraints on the duration of the current interval. Thus, the considered framework
non-trivially generalizes well-known discrete-time quantitative extensions of standard LTL,
such as Metric Temporal Logic (MTL) [20], where one can essentially express integer bounds
on the duration of the interval having as endpoints the current position and the one selected
by the temporal modality.
We prove that MC and satisfiability of full DHS are in general undecidable. Thus, we
investigate the decidability border of these problems by considering the syntactical fragments
of DHS obtained by restricting the set of allowed constrained modalities. In particular, we
prove that for the syntactical fragment, namely DHSsimple, whose constrained temporal
modalities are associated with the Allen’s relations subsuming the subset relation or its
inverse, the problems are decidable, though at least 2Expspace-hard. On the other hand, we
show that any constrained modality not supported by DHSsimple is inherently problematic,
since the addition to HS of such a modality leads to undecidability. These results are a little
surprising since it is well-known that under the adopted strict semantics admitting singleton
intervals, all temporal modalities in HS can be expressed in terms of the ones associated with
the Allen’s relations subsuming the subset relation or its inverse. Additionally, we identify an
expressively complete fragment of DHSsimple for which satisfiability and model checking are
shown to be Expspace-complete. The upper bound in Expspace is obtained by an elegant
automaton-theoretic approach which exploits as a preliminary step a linear-time translation
of the fragment of DHSsimple into a quantitative extension of the one-variable fragment of
linear-time hybrid logic HL [16, 32, 2]. Finally, we provide a characterization of HS over
traces in terms of a novel hybrid logic, namely SHL1, which lies between the one-variable
and the two-variable fragment of HL. We prove that there are linear-time translations from
HS formulas into equivalent formulas of SHL1, and vice versa.
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Table 1 Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y

v z
v z

v z
v z
v z

v z

meets ⟨A⟩ [x, y] RA [v, z] ⇐⇒ y = v

before ⟨L⟩ [x, y] RL [v, z] ⇐⇒ y < v

started-by ⟨B⟩ [x, y] RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by ⟨E⟩ [x, y] RE [v, z] ⇐⇒ y = z ∧ x < v

contains ⟨D⟩ [x, y] RD [v, z] ⇐⇒ x < v ∧ z < y

overlaps ⟨O⟩ [x, y] RO [v, z] ⇐⇒ x < v < y < z

2 Preliminaries

We fix the following notation. Let Z be the set of integers, N the set of natural numbers, and
N+

def= N \ {0}. For a finite or infinite word w over some alphabet, |w| denotes the length of
w (|w| = ∞ if w is infinite) and for all 0 ≤ i < |w|, w(i) is the (i+ 1)-th letter of w.

We fix a finite set AP of atomic propositions. A trace is an infinite word over 2AP .
Let F and F′ be two logics interpreted over traces. For a formula φ ∈ F, L(φ) denotes the

set of traces satisfying φ. Given φ ∈ F and φ′ ∈ F′, φ and φ′ are equivalent if L(φ) = L(φ′).
The satisfiability problem for F is checking for a given formula φ ∈ F, whether L(φ) ̸= ∅.

Kripke Structures. A (finite) Kripke structure over AP is a tuple K = (AP , S, E,Lab, s0),
where S is a finite set of states, E ⊆ S × S is a left-total transition relation, Lab : S → 2AP

is a labelling function assigning to each state s the set of propositions that hold over it,
and s0 ∈ S is the initial state. An infinite path π of K is an infinite word over S such that
π(0) = s0 and (π(i), π(i+ 1)) ∈ E for all i ≥ 0. A finite path of K is a non-empty infix of
some infinite path of K. An infinite path π induces the trace given by Lab(π(0))Lab(π(1)) . . ..
We denote by L(K) the set of traces associated with the infinite paths of K. For a logic F

interpreted over traces, the model checking (MC) problem against F is checking for a given
Kripke structure K and a formula φ ∈ F, whether L(K) ⊆ L(φ).

2.1 Allen’s relations and Interval Temporal Logic HS
An interval algebra to reason about intervals and their relative orders was proposed by
Allen [1], while a systematic logical study of interval representation and reasoning was done
a few years later by Halpern and Shoham, who introduced the interval temporal logic HS
featuring one modality for each Allen relation [17].

Let U = (U,<) be a linear order over the nonempty set U ̸= ∅, and ≤ be the reflexive
closure of <. Given two elements x, y ∈ U such that x ≤ y, we denote by [x, y] the (non-empty
closed) interval over U given by the set of elements z ∈ U such that x ≤ z and z ≤ y. We
denote the set of all intervals over U by I(U). Table 1 gives a graphical representation of the
Allen’s relations RA, RL, RB, RE , RD, and RO for the given linear order together with
the corresponding HS (existential) modalities. For each X ∈ {A,L,B,E,D,O}, the Allen’s
relation RX is defined as the inverse of relation RX , i.e. [x, y] RX [v, z] if [v, z]RX [x, y].

HS formulas φ over AP are defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ⟨X⟩φ

where p ∈ AP and ⟨X⟩ is the existential temporal modality for the (non-trivial) Allen’s
relation RX , where X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. The size |φ| of a formula φ is
the number of distinct subformulas of φ. We also exploit the standard logical connectives ∨
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and → as abbreviations, and for any temporal modality ⟨X⟩, the dual universal modality
[X] defined as: [X]ψ def= ¬ ⟨X⟩ ¬ψ. Given any subset of Allen’s relations {RX1 , ..,RXn

}, we
denote by X1 · · · Xn the HS fragment featuring temporal modalities for RX1 , ..,RXn only.

The logic HS is interpreted on interval structures S = (AP ,U,Lab), which are linear
orders U equipped with a labelling function Lab : I(U) → 2AP assigning to each interval
the set of propositions that hold over it. Given an HS formula φ and an interval I ∈ I(U),
the satisfaction relation I |=S φ, meaning that φ holds at the interval I of S, is inductively
defined as follows (we omit the semantics of the Boolean connectives which is standard):

I |=S p ⇔ p ∈ Lab(I)
I |=S ⟨X⟩φ ⇔ there is an interval J ∈ I(U) such that I RX J and J |=S φ

It is worth noting that we assume the non-strict semantics of HS, which admits intervals
consisting of a single point. Under such an assumption, all HS-temporal modalities can be
expressed in terms of ⟨B⟩, ⟨E⟩, ⟨B⟩, and ⟨E⟩ [34]. As an example, ⟨D⟩φ can be expressed in
terms of ⟨B⟩ and ⟨E⟩ as ⟨B⟩ ⟨E⟩φ, while ⟨A⟩φ can be expressed in terms of ⟨E⟩ and ⟨B⟩ as
([E] ¬⊤ ∧ (φ ∨ ⟨B⟩φ)) ∨ ⟨E⟩([E] ¬⊤ ∧ (φ ∨ ⟨B⟩φ)).

Interpretation of HS over traces. In this paper, we focus on interval structures S =
(AP , (N, <),Lab) over the standard linear order on N (N-interval structures for short) satisfy-
ing the homogeneity principle: a proposition holds over an interval if and only if it holds over
all its subintervals. Formally, S is homogeneous if for every interval [i, j] over N and every
p ∈ AP, it holds that p ∈ Lab([i, j]) if and only if p ∈ Lab([h, h]) for every h ∈ [i, j]. Note
that homogeneous N-interval structures over AP correspond to traces where, intuitively, each
interval is mapped to an infix of the trace. Formally, each trace w induces the homogeneous
N-interval structure S(w) whose labeling function Labw is defined as follows: for all i, j ∈ N
with i ≤ j and p ∈ AP, p ∈ Labw([i, j]) if and only if p ∈ w(h) for all h ∈ [i, j]. This
mapping from traces to homogeneous N-interval structures over AP is evidently a bijection.
For a trace w, an interval I over N, and an HS formula φ, we write I |=w φ to mean that
I |=S(w) φ. The trace w satisfies φ, written w |= φ, if [0, 0] |=w φ. For an interval I = [i, j]
over N, we denote by |I| the length of I, given by j − i+ 1.

It is known that HS over traces has the same expressiveness as standard LTL [6], where the
latter is expressively complete for standard first-order logic FO over traces [19]. In particular,
the fragment AB of HS is sufficient for capturing full LTL [6]: given an LTL formula, one
can construct in linear-time an equivalent AB formula [6]. Note that when interpreted on
infinite words w, modality ⟨B⟩ allows to select proper non-empty prefixes of the current infix
subword of w, while modality ⟨A⟩ allows to select subwords whose first position coincides
with the last position of the current interval. For each k ≥ 1, we denote by lenk the B formula
capturing the intervals of length k: lenk

def= (⟨B⟩ . . . ⟨B⟩︸ ︷︷ ︸
k − 1 times

⊤) ∧ ([B] . . . [B]︸ ︷︷ ︸
k times

¬⊤).

3 Difference Interval Temporal Logic

In this section, we introduce a quantitative extension of the logic HS under the trace-based
semantics, we call Difference HS (DHS for short). The extension is obtained by means of
equality and inequality constraints on the temporal modalities of HS which allow to compare
the difference between the length of the interval selected by the temporal modality and the
length of the current interval with an integer constant.
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The set of DHS formulas φ over AP is inductively defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ⟨X⟩φ | ⟨X⟩∆∼c φ

where p ∈ AP , ∼∈ {<,≤,=, >,≥}, c ∈ Z, and ⟨X⟩∆∼c is the existential constrained temporal
modality for the Allen’s relation RX where X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. We
exploit the symbol ∆ in ⟨X⟩∆∼c to emphasize that the constraint ∼ c refer to the difference
between the lengths of two intervals, the one selected by the modality ⟨X⟩ and the current one.
For any constrained modality ⟨X⟩∆∼c, the dual universal modality [X]∆∼c is an abbreviation
for ¬ ⟨X⟩∆∼c ¬φ. We assume that the constants c in the difference constraints are encoded in
binary. Thus, the size |φ| of a DHS formula φ is defined as the number of distinct subformulas
of φ multiplied the number of bits for encoding the maximal constant occurring in φ. The
semantics of the constrained modalities is as follows:

I |=w ⟨X⟩∆∼c φ ⇔ for some interval J such that I RX J and |J | − |I| ∼ c, J |=w φ.

Note that the constrained modalities of the form ⟨X⟩∆≺c where ≺∈ {<,≤} are upward-
monotone in the sense that for all constants c and c′ such that c′ ≥ c, I |=w ⟨X⟩∆≺c φ entails
that I |=w ⟨X⟩∆≺c′ φ. On the other hand, the constrained modalities of the form ⟨X⟩∆≻c

where ≻∈ {>,≥} are downward-monotone, i.e., for all constants c and c′ such that c′ ≤ c,
I |=w ⟨X⟩∆≻c φ entails that I |=w ⟨X⟩∆≻c′ φ. Thus, we say that a formula φ is monotonic if
it does not use equality constraints ∆ = c as subscripts of the temporal modalities.
We consider the following fragments of DHS and their monotonic versions:

The fragment DHSsimple which disallows constrained modalities for the Allen’s relations
RA, RL, RO, and their inverses, and for any Allen’s relation RX , the fragment DHSX

allowing constrained modalities for the Allen’s relation RX only.
For any subset of Allen’s relations {RX1 , ..,RXn}, the fragment D(X1 . . .Xn) featuring
temporal modalities for RX1 , ..,RXn

only, and the common fragment of D(X1 . . .Xn) and
DHSsimple, denoted by Dsimple(X1 . . .Xn).

Expressiveness issues. As mentioned in Section 2, all the temporal modalities of HS can be
expressed in terms of ⟨B⟩, ⟨E⟩, ⟨B⟩, and ⟨E⟩. In the considered quantitative setting, these
interdefinability results cannot be generalized to the constrained versions of the temporal
modalities. In particular, we will show in Section 5 that the fragment DHSsimple of DHS,
featuring constrained modalities only for the Allen’s relations RB, RD, RE , and their
inverses, is not more expressive than HS. On the other hand, we will establish in Section 4
that the fragments DHSX , where X ∈ {A,L,O,A, L,O}, are highly undecidable.

Unlike HS, in DHSsimple we can succinctly express that an arbitrary HS property φ holds
in the maximal proper sub-intervals of the current non-singleton interval by the formula
(⟨E⟩∆≥−1 φ) ∧ (⟨B⟩∆≥−1 φ). Moreover, we can succinctly encode constraints on the length
of the current interval. For an integer n > 0, the DHSsimple formula ⟨B⟩∆≤−n+1 ⊤ (resp.,
¬ ⟨B⟩∆≤−n ⊤) characterizes the intervals of length at least (resp., at most) n.

▶ Example 1. We consider the behaviour of a scheduler serving N processes which con-
tinuously request the use of a common resource. The behaviour of each process Pi, with
1 ≤ i ≤ N , is represented by the Kripke structure KPi

, depicted in Figure 1, whose atomic
propositions pi

I , pi
R, and pi

U label the states where the process is idling, requests the resource,
and uses the resource, respectively. The behaviour of the scheduler H is modeled by the
Kripke structure KH in Figure 1 whose propositions qI , qU1 , . . . qUN

label the states where H
is idling or assigns the resource to the i-th process (proposition qUi). The considered Kripke
structure KSched, depicted in Figure 1 for N = 2, is the Cartesian product of the Kripke
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v0

pi
I

v1

pi
R

v2

pi
U

KPi

w1
qU1

. . .

w0
qI

wN
qUN

KH

v1v0w0 v0v1w0 . . .

v0v0w0

v2v0w1 v0v2w2 . . .

KSched

Figure 1 The Kripke structure KSched for two processes.

structures KP1 , . . . ,KPN
,KH with the additional requirement that the scheduler is in state

wi iff the i-th process is in state v2. The set of atomic propositions labelling each compound
state is the union of the sets of propositions labelling the component states.

As an example of specification, we consider the requirement that the i-th process can
unsuccessfully iterate a request (i.e., without finally having the resource granted) for an
interval of at least m and at most M time units. This can be expressed in DHSsimple as:

[A] [A][(Maxpi
R

∧ ⟨B⟩∆≤1 ⟨E⟩ pi
I) → (⟨B⟩∆≤−m+1 ⊤ ∧ ¬ ⟨B⟩∆≤−M ⊤)]

where for a proposition p, Maxp
def= p ∧ (¬ ⟨B⟩ p) ∧ (¬ ⟨E⟩ p) captures the maximal length

intervals where p homogeneously holds. Note that ⟨B⟩∆≤1 ⟨E⟩ pi
I ensures that the maximal

homogeneous interval where pi
R holds is followed by a pi

I -state.

4 Undecidability of DHS

In this section, we establish that model checking and satisfiability for the novel logic DHS
are highly undecidable even for the fragments DHSX , where X ∈ {A,L,O,A, L,O}.

▶ Theorem 2. Model checking and satisfiability for the fragment DHSX of DHS, where
X ∈ {A,L,O,A, L,O}, are Σ1

1-hard even if the unique constant used in the constraints is 0,
and in case X ∈ {A,O,A,O} even if the unique exploited constraint is ≥ 0 (or, dually, ≤ 0).

We prove Theorem 2 for the part concerning the satisfiability problem for the fragments
DHSA, DHSL, and DHSO (the parts for the model checking problem and for the fragments
DHSA, DHSL, and DHSO being similar). We provide polynomial-time reductions from
the recurrence problem of non-deterministic Minsky 2-counter machines [18]. Fix such a
machine which is a tuple M = (Q,∆, δinit, δrec), where Q is a finite set of (control) locations,
∆ ⊆ Q× L ×Q is a transition relation over the instruction set L = {inc, dec, if_zero} × {1, 2},
and δinit ∈ ∆ and δrec ∈ ∆ are two designated transitions, the initial and the recurrent one.
For each counter c ∈ {1, 2}, let Inc(c), Dec(c), and Zero(c) be the sets of transitions δ ∈ ∆
whose instruction is (inc, c), (dec, c), and (if_zero, c), respectively.

An M -configuration is a pair (δ, ν) consisting of a transition δ ∈ ∆ and a counter
valuation ν : {1, 2} → N. A computation of M is an infinite sequence of configurations
of the form ((q0, (op0, c0), q1), ν0), ((q1, (op1, c1), q2), ν1), . . . such that for each i ≥ 0: (i)
νi+1(3 − ci) = νi(3 − ci); (ii) νi+1(ci) = νi(ci) + 1 if opi = inc; (iii) νi+1(ci) = νi(ci) − 1
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if opi = dec; and (iv) νi+1(ci) = νi(ci) = 0 if opi = if_zero. A recurrent computation
is a computation starting at the initial configuration (δinit, ν0), where ν0(c) = 0 for each
c ∈ {1, 2}, which visits the transition δrec infinitely often. The recurrence problem is to decide
whether for the given machine M , there is a recurrent computation. This problem is known
to be Σ1

1-complete [18].
For each X ∈ {A,L,O}, we construct a DHSX formula φM,X such that M has a recurrent

computation iff φM is satisfiable. The reduction for the fragment DHSL, given in the
following, is quite different from the ones for the fragments DHSA and DHSO, which are given
in [12]. Indeed, while the quantitative versions of modalities ⟨A⟩ and ⟨O⟩ allow to impose
quantitative constraints on adjacent encodings of M -configurations, this is not possible for
the quantitative version of modality ⟨L⟩ whose semantics is not “local”, and for this modality,
a different encoding of the computations of M is required.

We exploit some auxiliary DHS formulas. Let ψ be an arbitrary DHS formula. Formulas
left(ψ) and right(ψ) assert that ψ holds at the singular intervals corresponding to the left
and right endpoints, respectively, of the current interval.

left(ψ) def= (len1 ∧ ψ) ∨ ⟨B⟩(len1 ∧ ψ) right(ψ) def= ⟨A⟩(len1 ∧ ψ)

For the current interval [i, j], right_next(ψ) (resp., left_next(ψ)) asserts that ψ holds at the
singleton interval [j + 1, j + 1] (resp., [i+ 1, i+ 1]), while Int(ψ) requires that there is an
internal position i < h < j such that ψ holds at the singleton interval [h, h].

right_next(ψ) def= ⟨A⟩(len2 ∧ ⟨A⟩(len1 ∧ ψ)) left_next(ψ) def= left(right_next(ψ))

Int(ψ) def= ⟨B⟩(¬len1 ∧ right(ψ))

Reduction from the recurrence problem for DHSL. Some ideas in the proposed reduction
for the logic DHSL are taken from [14], where it is shown that model checking one-counter
automata against LTL with registers in undecidable.

We first provide a characterization of the recurrent computations of M . Let ξ = δ0, δ1, . . .

be an infinite sequence of M -transitions. We say that ξ satisfy the consecution requirement
if (i) δ0 = δinit, (ii) for all i ≥ 0, δi is of the form (qi, opi, qi+1), and (iii) for infinitely many
j ≥ 0, it holds that δj = δrec. In order to characterize the sequences ξ for which there
exists a corresponding computation of M , we associate a positive natural number (called
value) to each transition δi along ξ. For each counter c ∈ {1, 2}, we require that the value
associated to a transition δi of ξ which increments counter c is obtained by incrementing
the natural number associated to the previous incrementation of counter c, if any, along
ξ. A similar requirement is imposed on the transitions along ξ decrementing counter c
except that the values associated to c-decrementations must not exceed the values associated
to previous c-incrementations. Intuitively, this ensures that at each position i ≥ 0 along
ξ, the value of counter c is never negative. In order to simulate the zero-test, we require
that for each transition δi associated to a zero-test for c, the previous values associated to
c-incrementations correspond to previous values associated to c-decrementions.

Formally, a flat configuration is a pair (δ, n) consisting of a transition δ ∈ ∆ and a positive
natural number n > 0 such that n = 1 if δ ∈ Zero(c) for some counter c. We say that n is
the value of (δ, n). A well-formed M -sequence is an infinite sequence ρ = (δ0, n0), (δ1, n1), . . .
of flat configurations satisfying the following requirements:

TIME 2022
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The infinite sequence of transitions δ0, δ1, . . . satisfies the consecution requirement.
Increment progression (resp., Decrement progression): for each counter c ∈ {1, 2}, let
ξ = (δi0 , ni0), (δi1 , ni1), . . . be the (possibly empty) ordered sub-sequence of the flat
configurations in ρ associated with incrementation (resp., decrementation) of counter c.
Then, ni0 = 1 and nih

= nih−1 + 1 for all 0 < h < |ξ|.
Increment domination: for each c ∈ {1, 2} and j ≥ 0 such that δj ∈ Dec(c), there is
0 ≤ h < j such that δh ∈ Inc(c) and nh ≥ nj .
Zero-test checking: let c ∈ {1, 2} and j ≥ 0 such that δj ∈ Zero(c) and there are h < j

such that δh is a c-incrementation or c-decrementation. Then, the greatest hmax of
such h is associated to a c-decrementation and for each h < hmax such that δh is a
c-incrementation, it holds that nh ≤ nhmax .

▶ Lemma 3. There is a recurrent computation of M iff there is a well-formed M -sequence.

Construction of the DHSL formula φL,M . Let AP def= ∆ ∪ {1,#}. A flat configuration
(δ, n) is encoded by the finite word {δ} · {1}n · {#}. A well-formed M -sequence ρ =
(δ0, n0), (δ1, n1), . . . is encoded by the trace obtained by concatenating the codes of the flat
configurations visited by ρ starting from the first one.

We construct a DHSL formula φL,M characterizing the well-formed M -sequences.

φL,M
def= φcon ∧ φinc ∧ φdec ∧ φif_zero ∧ φdom

The conjunct φcon is a formula in the AB-fragment of DHSL capturing the traces which
are concatenations of codes of flat configurations and satisfy the consecution requirement.
The construction of φcon is an easy task and we omit the details here. The conjunct φinc
(resp., φdec) ensures the increment (resp., decrement) progression requirement. We focus
on the formula φinc (the definition of φdec being similar) which requires that (i) the value
associated to the first c-incrementation, if any, is 1, and (ii) if a c-incrementation I with
value n1 is followed by a c-incrementation with value n2, then n2 > n1 and there is also a
c-incrementation following I with value n1 + 1. The first requirement can be easily expressed
by an AB formula. The second requirement is captured by the following DHSL formula.∧

c∈{1,2}

∧
δ∈Inc(c)

[A] [A]
(

(left(δ) ∧ right(#) ∧ ¬Int(#)) →
[
¬

∨
δ′∈Inc(c)

⟨L⟩∆≤0(left(δ′) ∧ right(#))

∧
( ∨

δ′∈Inc(c)

⟨A⟩ right(δ′) →
∨

δ′∈Inc(c)

⟨L⟩∆=0(left(δ′) ∧ ¬Int(#) ∧ right_next(#))
)])

The conjunct φif_zero expresses the zero-test checking requirement. It ensures that for each
counter c, (i) there is no c-incrementation I s.t. the first c-operation following I is a zero-test,
and (ii) there is no c-incrementation followed by a c-decrementation D with a smaller value
such that the first c-operation following D is a zero-test. The first requirement can be easily
expressed by an AB formula. The second requirement is captured in DHSL as follows.

¬
∨

c∈{1,2}

∨
δi∈Inc(c)

∨
δd∈Dec(c)

∨
δ0∈Zero(c)

⟨A⟩ ⟨A⟩
(

(left(δi) ∧ right(#) ∧ ¬Int(#)) ∧

⟨L⟩∆<0[left(δd) ∧ right(#) ∧ ⟨A⟩(right(δ0) ∧
∧

δ∈Inc(c)∪Dec(c)∪Zero(c)

¬Int(δ))]
)

Finally, the conjunct φdom characterizes the increment domination requirement. One can
easily check that the following conditions capture increment domination.
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If there is some c-decrementation, then there is some c-incrementation.
c-incrementations have values greater than previous c-decrementations.
If a c-incrementation I with value n is not followed by other c-incrementations, then each
c-decrementation following I has a value smaller or equal to n.

We focus on the third requirement which can be expressed in DHSL as follows (the specification
of the first and second requirements are simpler):∧

c∈{1,2}

∧
δi∈Inc(c)

[A] [A]
([

left(δi) ∧ right(#) ∧ ¬Int(#) ∧ [A]
∧

δ∈Inc(c)

¬right(δ)
]

−→

¬ ⟨L⟩∆>0

∨
δd∈Dec(c)

[left(δd) ∧ right(#) ∧ ¬Int(#)]
)

Note that the unique constant used in the constraints of φL,M is 0. By construction, the
DHSL formula φL,M captures the traces encoding the well-formed M -sequences. Thus, by
Lemma 3, φL,M is satisfiable iff M has a recurrent computation.

5 Decidable fragments of DHS

In this section, we show that model checking and satisfiability of DHSsimple are decidable
though 2Expspace-hard. Moreover, by exploiting new results on the linear-time hybrid logic
HL [16, 32, 2], we show that for the fragment of DHSsimple given by monotonic Dsimple(ABB),
the considered problems are exactly Expspace-complete. Note that DHSsimple represents
the maximal fragment of DHS which is not covered by the undecidability results of Section 4,
while Dsimple(ABB) corresponds to the extension of ABB with the constrained versions of the
modalities for the Allen’s relations RB and RB . Additionally, we provide a characterization of
HS in terms of a novel hybrid logic which lies between the one-variable and the two-variable
fragment of HL. We establish that there are linear time translations from HS formulas
into equivalent formulas of the novel logic, and vice versa. This result is of independent
interest since while for the one-variable fragment of HL, model checking and satisfiability are
Expspace-complete [32, 2], for the two-variable fragments of HL, these problems are already
non-elementarily decidable [32, 2].

Constrained HL. HL [16, 32, 2] extends standard LTL + past by first-order concepts. Here,
we consider a constrained version of HL (CHL) where the temporal modalities are equipped
with timing constraints. Formally, CHL formulas φ over AP and a set X of (position)
variables are defined by the following syntax:

φ
def= ⊤ | p | x | ¬φ | φ ∧ φ | F∼cφ | P∼cφ | ↓x.φ

where p ∈ AP, x ∈ X, ∼∈ {<,≤,=, >,≥}, c ∈ Z, F∼c is the constrained strict eventually
modality and P∼c is its past counterpart, and ↓x is the downarrow binder operator which
assigns the variable name x to the current position. A formula is monotonic if it does not
use equality constraints = c. We also exploit the constrained modalities G∼c (always) and
H∼c (past always) as abbreviations for ¬F∼c¬φ and ¬P∼c¬φ, respectively. The standard
strict eventually (resp., always) modality F (resp., G) corresponds to F>0 (resp., G>0), and
its past counterpart P (resp., H) corresponds to P>0 (resp., H>0). The logic HL [16, 32, 2]
corresponds to the CHL fragment using only the temporal modalities F and P. We denote by
CHL1 and CHL2 (resp., HL1 and HL2) the one-variable and two-variable fragments of CHL
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(resp., HL). A CHL sentence is a formula where each variable x is not free (i.e., occurs in the
scope of modality ↓x). The size |φ| of a CHL formula φ is the number of distinct subformulas
of φ multiplied the number of bits for encoding the maximal constant occurring in φ.

CHL formulas φ are interpreted over traces w. For a position i ≥ 0 and a valuation g

assigning to each variable a position, the satisfaction relation (w, i, g) |= φ is defined as
follows (we omit the semantics of propositions and Boolean connectives which is standard):

(w, i, g) |= x ⇔ i = g(x)
(w, i, g) |= F∼c φ ⇔ there is j > i such that j − i ∼ c and (w, j, g) |= φ

(w, i, g) |= P∼c φ ⇔ there is j < i such that i− j ∼ c and (w, j, g) |= φ

(w, i, g) |= ↓x.φ ⇔ (w, i, g[x 7→ i]) |= φ

where g[x 7→ i](x) = i and g[x 7→ i](y) = g(y) for y ̸= x. We write (w, i) |= φ to mean
that (w, i, g0) |= φ, where g0 maps each variable to position 0, and w |= φ to mean that
(w, 0) |= φ.

From Dsimple(ABB) to CHL1. We show that (monotonic) Dsimple(ABB) formulas can be
translated in linear time into equivalent (monotonic) CHL1 sentences. For a constraint ∼ c,
we write (∼ c)−1 for ∼′ −c, where ∼′ is the inverse of ∼. For example, < is the inverse of >,
while ≤ is the inverse of ≥.

▶ Proposition 4. Given a (monotonic) Dsimple(ABB) formula φ, one can construct in
linear-time an equivalent (monotonic) CHL1 sentence.

Proof. Fix a variable x. In the translation, x and the current position refer to the left
endpoint and right endpoint of the current interval in N, respectively. We can assume that
the modalities for the Allen’s relations RB and RB occur only in a constrained form (for
example, ⟨B⟩ corresponds to ⟨B⟩<0). Formally, the translation f : Dsimple(ABB) 7→ CHL1 is
homomorphic w.r.t. the Boolean connectives (i.e., preserves the Boolean connectives) and is
inductively defined as follows:

f(p) def= p ∧ ¬P(¬p ∧ (x ∨ Px)) f(⟨A⟩φ) def= ↓x. (f(φ) ∨ Ff(φ))
f(⟨B⟩∼c φ) def= P(∼c)−1(f(φ) ∧ (x ∨ Px)) f(⟨B⟩∼c φ) def= F∼cf(φ)

By a straightforward induction on φ, we obtain that given a trace w, an interval [i, j], a
valuation g such that g(x) = i, it holds that [i, j] |=w φ if and only if (w, j, g) |= f(φ). The
desired CHL1 sentence φ′ equivalent to φ is then defined as follows: φ′ def= ↓x. f(φ). ◀

In Section 5.1, we show that model checking and satisfiability of monotonic CHL1 are
Expspace-complete. By [10], for the logic AB over traces, the considered problems are
already Expspace-hard. Thus, by Proposition 4 we obtain the following result.

▶ Theorem 5. MC and satisfiability of monotonic Dsimple(ABB) are Expspace-complete.

Decidability of DHSsimple. We first introduce a variant of CHL, we call swap CHL (SCHL).
SCHL formulas φ are defined as follows: φ def= ⊤ | p | x | ¬φ | φ ∧ φ | F∼c φ | P∼c φ | swapx.φ.

The novel modality swapx simultaneously assigns to x the value of the current position and
updates the current position to the value previously referenced by x. Formally, its semantics
is defined as follows: (w, i, g) |= swapx.φ ⇔ (w, g(x), g[x 7→ i]) |= φ.

We are interested in the one-variable fragment SCHL1 of SCHL, and in the unconstrained
version SHL1 of SCHL1 where the unique temporal modalities are F and P. From a succinctness
point of view, the fragment SCHL1 lies between CHL1 and CHL2.
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▶ Proposition 6. Given a CHL1 (resp., HL1) sentence, one can construct in linear time an
equivalent SCHL1 (resp., SHL1) sentence. Moreover, given a SCHL1 (resp., SHL1) sentence,
one can construct in linear time an equivalent CHL2 (resp., HL2) sentence.

Proof. The translation function f : CHL1 7→ SCHL1 from CHL1 formulas to SCHL1 formulas
is homomorphic w.r.t. proposition, variables, Boolean connectives and temporal modalities.
Moreover, for a CHL1 formula φ using variable x, f(↓x. φ) is defined as swapx.FP(x ∧ f(φ)).

For the second part of Proposition 6, let φ be a SCHL1 formula using variable x, and
let x1 and x2 be two distinct variables. For each h = 1, 2, we define a CHL2 formula
F (φ, xh) using only variables x1 and x2 and such that only xh can occur free in F (φ, xh).
The mapping F is homomorphic w.r.t. propositions, Boolean connectives and temporal
modalities, and is defined as follows for variable x and the swap modality: F (x, xh) def= xh

and F (swapx. φ, xh) def= ↓x3−h.FP(xh ∧ F (φ, x3−h)). By a straightforward induction on
the structure of the SCHL1 formula φ, given a trace w, h = 1, 2, two positions i, j ≥ 0, a
valuation g s.t. g(x) = j, and a valuation g′ s.t. g′(xh) = j, it holds that (w, i, g) |= φ iff
(w, i, g′) |= F (φ, xh). Hence, if φ is a SCHL1 sentence, then ↓xh. F (φ, xh) is a CHL2 sentence
equivalent to φ. ◀

We show that DHSsimple formulas can be converted in exponential time into equivalent
SCHL1 sentences. Moreover, the logic HS over traces exactly corresponds to SHL1, i.e., there
are linear-time translations from HS formulas into equivalent SHL1 sentences, and vice versa.

▶ Proposition 7.
1. Given a DHSsimple formula φ, one can construct in singly exponential time an equivalent

SCHL1 sentence ψ. Moreover, if φ is a D(BEBE) formula, then ψ can be constructed in
linear time, and ψ ∈ SHL1 if φ ∈ HS.

2. Given a SHL1 sentence φ, one can construct in linear time an equivalent HS formula ψ.

Proof. We focus on the proof of statement 1 in Proposition 7. A proof of statement 2 can be
found in [12]. First note that DHSsimple corresponds to D(BEDBDE) since the unconstrained
modalities for the Allen’s relations RA, RL, and RO and their inverses can be expressed in
linear time into BEBE. Moreover, the constrained versions of the modalities ⟨D⟩ and ⟨D⟩
can be easily expressed in D(BEBE) though with a singly exponential blow-up. For example,
for n > 0, ⟨D⟩≥n φ is equivalent to

∨
n1≥0,n2≥0:n1+n2=n

⟨B⟩≥n1
⟨E⟩≥n2

φ.

Thus, it suffices to show that a D(BEBE) formula can be converted in linear time into an
equivalent SCHL1 sentence. Let x be a position variable. We use the expression x < cur to
indicate that the position referenced by variable x is smaller than the current position. The
meaning of the expression x > cur (resp., x = cur) is similar. Given a D(BEBE) formula
φ and τ ∈ {x < cur, x > cur, x = cur}, we inductively define an SCHL1 formula f(φ, τ)
using variable x. Intuitively, the position referenced by x and the current position represent
the endpoints of the interval on which φ is currently evaluated. We can assume that φ
contains only constrained temporal modalities. Indeed, the modalities in BEBE can be
trivially converted into equivalent constrained versions. The mapping f is homomorphic
w.r.t. the Boolean connectives and is inductively defined as follows:

f(p, x < cur) def= p ∧ ¬P(¬p ∧ (x ∨ Px)).
f(⟨B⟩∆∼c φ, x < cur) def= P(∼c)−1 [(f(φ, x = cur) ∧ x) ∨ (f(φ, x < cur) ∧ Px)].
f(⟨B⟩∆∼c φ, x < cur) def= F∼c f(φ, x < cur).
f(⟨E⟩∆∼c φ, x < cur) def= swapx.F(∼c)−1 [(f(φ, x = cur) ∧ x) ∨ (f(φ, x > cur) ∧ Fx)].
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f(⟨E⟩∆∼c φ, x < cur) def= swapx.P∼c f(φ, x > cur).

f(p, x > cur) def= p ∧ ¬F(¬p ∧ (x ∨ Fx)).

f(⟨B⟩∆∼c φ, x > cur) def= swapx.P(∼c)−1 [(f(φ, x = cur) ∧ x) ∨ (f(φ, x < cur) ∧ Px)].

f(⟨B⟩∆∼c φ, x > cur) def= swapx.F∼c f(φ, x < cur).

f(⟨E⟩∆∼c φ, x > cur) def= F(∼c)−1 [(f(φ, x = cur) ∧ x) ∨ (f(φ, x > cur) ∧ Fx)].

f(⟨E⟩∆∼c φ, x > cur) def= P∼c f(φ, x > cur).

f(p, x = cur) def= p.

f(⟨X⟩∆∼c φ, x = cur) def= ¬⊤ for each X ∈ {B,E}.

f(⟨B⟩∆∼c φ, x = cur) def= F∼c f(φ, x < cur).

f(⟨E⟩∆∼c φ, x = cur) def= P∼c f(φ, x > cur).

By a straightforward induction on the structure of φ, we obtain that given a trace w, a
position j ≥ 0, and a valuation g such that g(x) = j, the following holds:

[j, j] |=w φ iff (w, j, g) |= f(φ, x = cur).
For each i > j, [j, i] |=w φ iff (w, i, g) |= f(φ, x < cur).
For each i < j, [i, j] |=w φ iff (w, i, g) |= f(φ, x > cur).

It follows that the SCHL1 sentence swapx. f(φ, x = cur) is equivalent to φ. Note that the
previous sentence is in SHL1 if φ ∈ HS. ◀

By [32, 2], model checking and satisfiability of CHL2 are decidable though with a non-
elementary complexity. We can show that for the logic DHSsimple, the considered problems
are at least 2Expspace-hard even for the fragment given by monotonic Dsimple(ABE) (for
a proof, see [12]). Moreover, note that CHL formulas can be trivially translated into
equivalent formulas of first-order logic FO over traces. Thus, by the first-order expressiveness
completeness of the fragment AB of HS [6] (under the considered trace-based semantics), and
Propositions 6–7, we obtain the following result.

▶ Theorem 8. Model checking and satisfiability of DHSsimple are decidable and 2Expspace-
hard even for the fragment given by monotonic Dsimple(ABE). Moreover, DHSsimple, mono-
tonic Dsimple(ABB), and HS have the same expressiveness.

5.1 Expspace-completeness of monotonic CHL1

In this section, we describe an asymptotically optimal automata-theoretic approach to solve
satisfiability and model checking of monotonic CHL1 (MCHL1 for short), which is based on a
direct translation of MCHL1 sentences into two-way alternating finite-state word automata
(2AWA) equipped with standard generalized Büchi acceptance conditions.

A MCHL1 formula is in monotonic normal form (MNF) if negation is applied only to
atomic propositions and variables, and the constrained temporal modalities are of the form
O≤c with c ≥ 1 and O ∈ {F,G,P,H}. A MCHL1 formula φ can be easily converted in
linear-time into an equivalent MCHL1 formula in MNF φM , called the MNF of φ (for details,
see [12]). The dual φ̃M of φM is the MNF of ¬φM .



L. Bozzelli and A. Peron 11:13

Characterization of the satisfaction relation. We fix a monotonic CHL1 formula φ with
variable x, where x may occur free. W.l.o.g. we assume that φ is in MNF, and AP is the set
of atomic propositions occurring in φ. First, we give an operational characterization of the
satisfaction relation w |= φ which non-trivially generalizes the classical notion of Hintikka-
sequence of LTL. Essentially, for each trace w and valuation g of variable x, we associate to
w and g infinite sequences ρ = A0, A1, . . . of sets, where for each i ≥ 0, Ai is an atom and
intuitively describes a maximal set of subformulas of φ which can hold at position i along w
w.r.t. the valuation g. As for LTL, the notion of atom syntactically captures the semantics of
Boolean connectives. The fixpoint characterization of the unconstrained temporal modalities
and the semantics of the constrained temporal modalities are locally captured by requiring
that consecutive pairs Ai, Ai+1 along the sequence ρ satisfy certain syntactical constraints.
Finally, the sequence ρ has to satisfy additional non-local conditions reflecting the liveness
requirements ψ in the eventually subformulas Fψ of φ, and the semantics of the binder
modality ↓x. Now, we give the technical details.

A formula ψ is a first-level subformula of φ if there is an occurrence of ψ in φ which is not
in the scope of modality ↓x. The closure cl(φ) of φ is the smallest set containing (i) x, ⊤,
the propositions in AP , formula P≤1⊤, and (ii) all the first-level subformulas ψ of φ together
with F≤1ψ and P≤1ψ, and (iii) the duals of the formulas in the points (i) and (ii). Note that
φ ∈ cl(φ) and |cl(φ)| = O(|φ|). Moreover, the set obl(φ) of φ-obligations is the set of pairs
of the form (O≤cψ, d) such that O ∈ {F,P,G,H}, O≤cψ ∈ cl(φ), c > 1, and 1 ≤ d ≤ c − 1.
Intuitively, the obligations are exploited for capturing in a succinct way the semantics of the
constrained temporal modalities. In particular, an obligation of the form (F≤cψ, d) asserted
at a position i means that there is j > i such that ψ holds at position j, and i + d is the
smallest of such j. Note that two distinct obligations associated to the same formula F≤cψ

cannot hold simultaneously at the same position. Dually, an obligation of the form (G≤cψ, d)
asserted at a position i means that there is j > i such that ψ holds at all positions in [i+ 1, j],
and i+ d is the greatest of such j. The meaning of the obligations associated to the past
constrained modalities is similar. Evidently, |obl(φ)| = 2O(|φ|). A φ-atom A is a subset of
cl(φ) ∪ obl(φ) such that ⊤ ∈ A and the following holds, where c > 1 and O ∈ {F,P,G,H}:

for each ψ ∈ cl(φ), ψ ∈ A iff ψ̃ /∈ A;
for each ψ1 ∧ ψ2 ∈ cl(φ), ψ1 ∧ ψ2 ∈ A iff {ψ1, ψ2} ⊆ A;
for each ψ1 ∨ ψ2 ∈ cl(φ), ψ1 ∨ ψ2 ∈ A iff {ψ1, ψ2} ∩A ̸= ∅;
for each O≤cψ ∈ cl(φ), there is at most one obligation of the form (O≤cψ, d) in A.

It is worth noting that the set Atoms(φ) of φ-atoms has a cardinality which is at most singly
exponential in |φ|, i.e. |Atoms(φ)| = 2O(|φ|). A φ-atom A is initial if A does not contain
formulas of the form Pψ or P≤cψ and obligations of the form (O≤cψ, d) with O ∈ {P,H}.

We now define the function Succφ which maps each atom A ∈ Atoms(φ) to a subset of
Atoms(φ). Intuitively, if A is the atom associated with a position i of the given trace w,
then Succφ(A) contains the set of atoms associable to the next position i+ 1 (w.r.t. a given
valuation of variable x). Formally, A′ ∈ Succφ(A) iff A′ is not initial and the following holds:

F-requirements: for all Fψ ∈ cl(φ), Fψ ∈ A ⇔ {Fψ,ψ} ∩A′ ̸= ∅.
P-requirements: for all Pψ ∈ cl(φ), Pψ ∈ A′ ⇔ {Pψ,ψ} ∩A ̸= ∅.
G-Requirements: for all Gψ ∈ cl(φ), Gψ ∈ A ⇔ {Gψ,ψ} ⊆ A′.
H-requirements: for all Hψ ∈ cl(φ), Hψ ∈ A′ ⇔ {Hψ,ψ} ⊆ A.
F≤c-requirements: for all F≤cψ ∈ cl(φ),

F≤cψ ∈ A ⇔ either ψ ∈ A′ or c > 1 and (F≤cψ, d) ∈ A′ for some 1 ≤ d < c;
for each 1 ≤ d < c, (F≤cψ, d) ∈ A ⇔ either d = 1 and ψ ∈ A′, or d > 1, ψ /∈ A′, and
(F≤cψ, d− 1) ∈ A′.
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P≤c-requirements: for all P≤cψ ∈ cl(φ),
P≤cψ ∈ A′ ⇔ either ψ ∈ A or c > 1 and (P≤cψ, d) ∈ A for some 1 ≤ d < c;
for each 1 ≤ d < c, (P≤cψ, d) ∈ A′ ⇔ either d = 1 and ψ ∈ A, or d > 1, ψ /∈ A, and
(P≤cψ, d− 1) ∈ A.

G≤c-requirements: for all G≤cψ ∈ cl(φ),
G≤cψ ∈ A ⇔ ψ ∈ A′ and, in case c > 1, either G≤cψ ∈ A′ or (G≤cψ, c− 1) ∈ A′;
for each 1 ≤ d < c, (G≤cψ, d) ∈ A ⇔ either d = 1, ψ ∈ A′, and F≤1ψ /∈ A′, or d > 1,
ψ ∈ A′, and (G≤cψ, d− 1) ∈ A′.

H≤c-requirements: for all H≤cψ ∈ cl(φ),
H≤cψ ∈ A′ ⇔ ψ ∈ A and, in case c > 1, either H≤cψ ∈ A or (H≤cψ, c− 1) ∈ A;
for each 1 ≤ d < c, (H≤cψ, d) ∈ A′ ⇔ either d = 1, ψ ∈ A, and P≤1ψ /∈ A, or d > 1,
ψ ∈ A, and (H≤cψ, d− 1) ∈ A.

Note that Succφ captures the semantics of the constrained modalities in accordance to the
intended meaning of the associated obligations. Let w be a trace and ℓ ≥ 0. A φ-sequence
over the pointed trace (w, ℓ) is an infinite sequence ρ = A0, A1, . . . of φ-atoms such that:

A0 is initial, x ∈ Aℓ, and x /∈ Ai for each i ̸= ℓ;
for each i ≥ 0, Ai ∩ AP = w(i) (propositional consistency), and Ai+1 ∈ Succφ(Ai);
Fairness: for each Fψ ∈ cl(φ) and for infinitely many i ≥ 0, either ψ ∈ Ai or Fψ /∈ Ai.

The standard fairness requirement ensures that the requirements ψ in the first-level subfor-
mulas Fψ of φ are eventually satisfied. In order to capture the semantics of the modality
↓x, we now give the notion of fulfilling φ-sequence by induction on the nesting depth of ↓x.
Formally, a φ-sequence ρ = A0, A1, . . . over (w, ℓ) is fulfilling if for all i ≥ 0 and ↓x. ψ ∈ Ai,
there is a fulfilling ψ-sequence ρ′ = A′

0, A
′
1, . . . over the pointed trace (w, i) such that ψ ∈ A′

i.
The notion of fulfilling φ-sequence over a pointed trace (w, ℓ) provides a characterization

of the satisfaction relation (w, i, g) |= φ with g(x) = ℓ (a proof is in [12]).

▶ Theorem 9. Let ϕ be a MCHL1 sentence in MNF. Then, w ∈ L(ϕ) if and only if there
exists a fulfilling ϕ-sequence ρ = A0, A1, . . . over (w, 0) such that ϕ ∈ A0.

Automata-theoretic approach for MCHL1. By Theorem 9, given a MCHL1 sentence φ in
MNF, it is not a difficult task to construct in singly exponential time a generalized Büchi
2AWA Aφ accepting L(φ). Given an input trace w, Aφ guesses a φ-sequence ρ = A0, A1, . . .

over (w, 0) by simulating it in forward mode along the “main” path of the run-tree. At the
ith-node of such a path, Aφ keeps track in its state of the φ-atom Ai. Moreover, in order
to check that ρ is fulfilling, for each binder formula ↓x. ψ ∈ Ai, Aφ recursively checks the
existence of a fulfilling ψ-sequence ρ′ = A′

0, A
′
1, . . . over (w, i) by guessing the ψ-atom A′

i,
with {x, ψ} ⊆ A′

i, and by activating two secondaries copies: the first one moves in backward
mode by guessing the finite sequence A′

i−1, . . . , A
′
0, and the second one moves in forward

mode by guessing the infinite sequence A′
i+1, A

′
i+2, . . .. Details about the construction of

Aφ can be found in [12]. By [33, 21], generalized Büchi 2AWA can be converted on the fly
and in singly exponential time into equivalent Büchi nondeterministic finite-state automata
(Büchi NWA). Recall that non-emptiness of Büchi NWA is NLogspace-complete, and the
standard model checking algorithm consists in checking emptiness of the Büchi NWA given
by the synchronous product of the given Kripke structure with the Büchi NWA associated
with the negation of the given formula. Thus, we obtain algorithms for satisfiability and
model-checking of monotonic CHL1 which run in non-deterministic single exponential space.
Therefore, since Expspace = NExpspace, and for the logic HL1, the considered problems
are already Expspace-hard [32], we obtain the following result.

▶ Corollary 10. Model checking and satisfiability of monotonic CHL1 are Expspace-complete.
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6 Conclusion

We have investigated decidability and complexity issues for satisfiability and model checking
of a quantitative extension of HS, namely DHS, under the trace-based semantics. The novel
logic provides constrained versions of the HS temporal modalities which can express bounds
on the difference between the durations of the current interval and the interval selected by
the modality. A different and natural choice would have been to consider constraints on the
sum of the durations. In this setting, one can show that the logic HS extended with sum
constraints is decidable under the trace-based semantics by means of an exponential-time
translation of formulas into equivalent HL2 sentences.
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Abstract
Events are structured entities involving different components (e.g, the participants, their roles etc.)
and their relations. Structured events are typically defined in terms of (a subset of) simpler, atomic
events and a set of temporal relation between them. Temporal Event Detection (TED) is the task of
detecting structured and atomic events within data streams, most often text or video sequences,
and has numerous applications, from video surveillance to sports analytics. Existing deep learning
approaches solve TED task by implicitly learning the temporal correlations among events from
data. As consequence, these approaches often fail in ensuring a consistent prediction in terms of the
relationship between structured and atomic events. On the other hand, neuro-symbolic approaches
have shown their capability to constrain the output of the neural networks to be consistent with
respect to the background knowledge of the domain. In this paper, we propose a neuro-symbolic
approach for TED in a real world scenario involving sports activities. We show how by incorporating
simple knowledge involving the relative order of atomic events and constraints on their duration, the
approach substantially outperforms a fully neural solution in terms of recognition accuracy, when
little or even no supervision is available on the atomic events.
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1 Introduction

Events are structured entities that involve multiple components, like the participants, their
role, the type and the atomic events composing it. For example, in athletics, the event high
jump involves one person (the athlete), performing the atomic events run, jump and fall
in sequence. One of the main challenging tasks is temporal event detection (TED) that
consists in detecting events within data stream, like text and video. Continuing the example,
it consists in identifying the class of the atomic events and the interval of time where they
occurred. Many sub-symbolic approaches, mostly based on neural networks, have been
proposed for event recognition [1, 25]. One of the main drawbacks of these kind of approaches
is the amount of training data. Indeed, having a large training set is fundamental for an
appropriate and effective training of the model. Furthermore, “rich” annotations at different
levels are required in order to solve the task (e.g., frame-by-frame annotation of atomic
events). Large amounts of deeply annotated data are hard to collect. Additionally, errors
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in the annotations (e.g. in case of crowdsourced ones) may introduce noise in the model
and compromise its accuracy. More importantly, purely neural approaches cannot guarantee
consistency of the predictions with the domain knowledge, in terms of the relationship between
the structured event and the atomic events that compose it. Neuro-symbolic approaches [11]
have recently gained increasing popularity as a means to make the best of both worlds,
by combining the effectiveness in low-level processing of deep learning technology with the
ability of symbolic approaches to express complex domain knowledge. Popular frameworks
including DeepProbLog [16], DeepStochLog [24], Logic Tensor Networks [6], LYRICS [17]
and NeurASP [28] have been proposed and applied to solve different structured tasks, like
Semantic Image Interpretation [8]. In the context of event recognition, the DeepProbLog
framework has proved effective in recognizing both structured and simple events as well
as generalizing to unseen outcomes [3, 23]. However, these results have been obtained on
artificial scenarios, and the framework has serious issues of scalability when the complexity
of the setting increases [9].

In this paper, we present a neuro-symbolic approach for structured event recognition in
sport videos. The task is out of reach of popular neuro-symbolic frameworks like DeepProbLog,
because of the computational complexity given by number of frames in a video combined with
the temporal constraints of the background knowledge. We tackle the problem by combining
neural predictions on individual frames with a mixed integer linear programming formulation
enforcing satisfaction of (soft) temporal constraints from the background knowledge and
similarity with the neural outputs. The approach is fully differentiable and end-to-end
trainable.

Our experimental evaluation shows how the neuro-symbolic approach provides substan-
tially more accurate predictions with respect to a fully neural solution, with the additional
feature of guaranteeing that predictions satisfy existing hard constraints. Quite remarkably,
the approach is capable of predicting the sequence of atomic events that constitute a struc-
tured event even without having any supervision on them, by simply leveraging background
knowledge in terms of duration constraints to guide the learning of the underlying neural
network.

The rest of the paper is structured as follows: Section 2 briefly reviews the state of the
art approaches that have been proposed for event recognition; Section 3 formally defines the
problem; Section 4 describes our proposed approach; Section 5 presents the experimental
setting; Section 6 reports the experimental results. Finally, Section 7 draws some concluding
remarks and discusses directions for future work.

2 State of the art

Event recognition has always attracted researchers coming from different fields, like Computer
Vision and NLP. The particular attention towards event recognition may be motivated by its
multiple data stream nature and by its impact in people’s daily life. Looking at the literature,
approaches to event recognition can be classified into three categories: sub-symbolic, symbolic
and neuro-symbolic. Sub-symbolic approaches (mostly based on neural networks) moved
from manually crafted features to automatic features learning (see [1] and [25] for a survey).
These approaches require a huge amount of training data with a rich annotation at different
levels (e.g, the type and temporal location of the event). These data are hard to collect and it
is difficult to ensure high-quality annotations for large amounts of example, so that high levels
of annotation errors can affect the accuracy of the networks being trained. Furthermore, the
trained model is a black box model that cannot explain its decisions and is not guaranteed
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to be consistent with existing background knowledge. An attempt to make sub-symbolic
approaches more interpretable is represented by Concept Bottleneck Models [15] where the
activation of (a subset of) human-specified concepts is used to explain the model’s final
decision. However, works like [15] focus on atemporal domains (e.g. image). In [12], authors
propose a novel approach that addresses concepts explanation in videos, but they are not
able to capture spatial and temporal relationships between concepts. On the other hand,
symbolic approaches like [5], are explainable and knowledge-consistent, but are not robust
in the presence of noise. Therefore, symbolic approaches dealing with uncertainty have
been proposed [2]. In [20, 4], authors recognize higher events by combining evidence of
simple events with domain knowledge using the probabilistic logic programming framework
ProbLog [18] . In this case, knowledge on low level events is assumed to be given. Recently,
neuro-symbolic approaches have started to be applied in the context of event recognition.
In works like [13, 14, 27, 22, 10], pre-trained neural networks are used to extract lower
events and then passed to a symbolic layer that encodes the knowledge of the domain
in the form of logic rules. In [26], authors propose an end-to-end model where a neural
network is also used to learn to simulate the symbolic layer. One of the drawbacks is that
the neural network has to be re-trained in case of even minimal changes/updates of the
existing knowledge. The DeepProbLog neuro-symbolic framework [16] has been employed
in a couple of recent studies [3, 23] to perform structured event recognition in videos and
audio streams respectively. By using DeepProbLog, any change/update to knowledge can be
easily integrated. Both [3] and [23] perform event recognition in artificial scenarios. This
may be motivated by the scalability issue of DeepProbLog, that is particularly acute when
considering tasks involving time. Indeed, the authors of the NESTER framework [9] showed
how an optimization modulo theory [19] reasoning layer refining neural network predictions
is substantially more efficient than a solution based on DeepProbLog on a toy handwritten
equation recognition task. The approach however assumes complete supervision on the
neural network outputs at training time, and does not address temporal event detection. Our
solution adapts this idea to address structured and atomic event recognition on real-world
video streams. In this case, the reasoning layer is also used to provide supervision when
limited/no labels for the events are available.

3 Problem Definition

Our problem can be summarized as follows: Given a data sequence X = {xi}l
i=1 of real-value

tensors xi and some background knowledge K about the relationship between structured
and atomic events, we are interested in providing a description of the atomic and structured
events that are happening during the sequence. Let us now specify all the details of the
problem. To represent background knowledge about structured and atomic events we use a
variation of the event calculus based on First Order Logic. Let L be a first order language
that contains a set of constants E for event types, which is partitioned in two disjoint sets of
constants A and S for atomic and structured events, respectively. L contains also the set of
constants N of natural numbers which are used to denote time points. The set of predicates
of L includes the equality predicate, the order relation defined as usual on time points, and
the ternary predicate happens(e, t1, t2), where e is a term for an event type and t1, and t2
are terms for time points. The atom happens(e, t1, t2) represents the proposition that an
event of type e starts at time t1 and terminates at time t2 (not included). In addition to the
usual axioms for the equality and order relation we have the axiom

∀xyz(happens(x, y, z) → y < z)

TIME 2022
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As far as the semantics of L, we consider the set of Herbrand Interpretations of L, i.e., all
the subsets of the Herbrand Base H defined as

H = {happens(e, t1, t2) | e ∈ E , t1 < t2 ∈ N}

Now we are ready to provide a more precise formulation of our problem: Given a knowledge
base K in the language L that expresses general knowledge about the event types in E , and a
data sequence X = {xi}l

i=1, we have to find an herbrand interpretation I, such that I |= K,
and such that happens(e, t1, t2) ∈ I if and only if the data sub-sequence Xt1:t2 = {xi}t2−1

i=t1

shows that an event of type e is happening. Intuitively, I describes the type and the class of
the events happening in X and when they happened.

▶ Example 1. Let X be a video where a person is doing a high jump (structured event)
in the interval [1, 31]. The background knowledge contains the fact that a high jump can
be decomposed into a sequence of three atomic events: run, jump and fall, which can be
expressed by the following formula:

∀bhjeij(happens(highjump, bhj , ehj) ↔ ∃ br, er, bj , ej , bf , ef (
happens(run, br, er) ∧ happens(jump, bj , ej) ∧ happens(fall, bf , ef ) ∧
br = bhj ∧ er = bj ∧ ej = bf ∧ ef = ehj))

Two examples of interpretations that satisfy the above constraints are:

I1 = {happens(highjump, 1, 31), happens(run, 1, 21), happens(jump, 21, 25),
happens(fall, 25, 31)}

I2 = {happens(highjump, 1, 31), happens(run, 1, 23), happens(jump, 23, 28),
happens(fall, 28, 31)}
...

Since we may have more than one interpretation that satisfy K, we define a cost function
c : I → R and select the interpretation I∗

c with the minimum cost:

I∗
c = argmin

Ic|=K
c(Ic)

In order to find I∗
c , we define a neuro-symbolic approach that combines low-level neural

processing with high level reasoning in terms of background knowledge on the events.
The kind of supervision we provide to train a neuro-symbolic model in order to find I∗

c is:{
X(i), G(i)

a

}n

i=1

where G
(i)
a is a set of ground atoms which are true in X(i). Supervision is always assumed to

be partial, including the case in which supervision is limited to structured events, and atomic
events need to be learned in a fully unsupervised way. See experiments for the details.

4 Proposed Approach

Our objective consists in finding an interpretation I that has to explain what happened
in X both in terms of structured and atomic events. In order to achieve it, we have to
recognize the classes of structured and atomic events happening in X and the (interval of)
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Figure 1 Inference steps of our neuro-symbolic approach on a data sequence of length 4, with 3
structured events and 4 atomic events. The structured event of class 1, which is the one predicted
by the NN, is defined in terms of the sequence of atomic events 1 and 2, respectively.

time where they occurred. To achieve this objective, we use an end-to-end differentiable
neuro-symbolic approach that combines low level processing of a neural network with a logic
layer that leverages knowledge about structured and atomic events. An overall overview of
our neuro-symbolic approach is depicted in Figure 1. As can be seen by looking at the figure,
the first step consists in passing X to a neural network NN. NN may be any kind of network
(e.g., Convolutional, RNN and LSTM) and has two different heads, one for structured and
one for atomic events. The head for the structured events returns as output a vector o

where oi ∈ [0, 1], with i = 1, . . . , k (assuming k is the number of structured events), is the
probability of the i − th structured event. On the other hand, the head for the atomic
events returns a matrix O ∈ [0, 1]l×n where entry O[i, j], with i = 1, . . . , l and j = 1, . . . , n

(assuming l and n are the length of X and the number of atomic events, respectively),
represents the probability that event j happens at timestamp i. The predicted structured
event for a video X is the one maximizing the probability of the corresponding output head
of NN, i.e.:

ŷS = argmax
i=1,...,k

oi

In principle, the sequence of atomic events could be predicted in a similar fashion by
maximizing for each frame the probability of the atomic event head of NN at that frame, i.e.:

ŷA
i = argmax

1≤j≤l
O[i, j] (1)

Indeed, this is how our fully-neural baseline works. However, the vector ŷA of atomic event
predictions for the frames of a video X may contain inconsistencies (e.g., predicting the
atomic event jump as part of a javelinthrow structured event, predicting fall before jump
within a highjump, or even predicting a jump that is much longer than the run that precedes
it). Our neuro-symbolic architecture prevents these inconsistencies by combining neural
network predictions with hard and soft constraints provided by the domain knowledge. The
domain knowledge we exploit is quite simple, and provides hard constraints determining
the sequence of atomic events that constitute a structured event, and soft constraints about
minimal and maximal duration of each atomic event and relative duration between atomic
events making up a structured event. Table 1 reports an example of the hard constraints that
we consider for the javelinthrow structured event. Similar constraints are generated for the
other structured events. Given the structured event ŷS predicted by NN, the corresponding
sequence of atomic events is computed by solving a MILP problem encoding the (hard

TIME 2022
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Table 1 Example of hard constraints for the javelinthrow structured event, divided into generic
constraints that hold for any structured event, and those specific of the javelinthrow event.

Hard Constraints
Generic Constraints (assuming k atomic events)

ei > bi ∀ i Events should end after they began

b1 = 1 ∧ ek = l Sequence of atomic events should span the whole clip

ei = bi+1 − 1 ∀ i ∈ 0 . . . l − 1 No gap among consecutive events

Specific Constraints (for the javelinthrow structured event)

a1 = run ∧ a2 = throw javelinthrow is a run followed by a throw

d1 > d2 run should take longer than throw

and soft) constraints combined with a scoring function measuring the compatibility of the
sequence of atomic events with the NN outputs O. The MILP problem for a structured event
(we have a separate problem for each possible structured event) is defined as follows:

minimize
V

− f(V, O) +
ms∑
j=1

ξtcj(V )

subject to hi(V ) ∀ i = 1, . . . , mh (2)

Here V is a sequence of triplets (a, b, e), where a ∈ A is an atomic event, b, e ∈ IN are
the starting and ending frames of the event respectively. The number of atomic events is
determined by the structured event being modelled. The scoring function f(V, O) computes
the compatibility of V with O as follows:

f(V, O) =
∑

(a,b,e)∈V

 e∑
i=b

O[i, a] −
b−1∑
j=1

O[j, a] −
l∑

j=e+1
O[j, a]


It basically computes the sum of the probabilities of each atomic event in the range in which
it is predicted, and subtracts its probability outside of this range (l is the overall length of
the video clip).

The soft constraints cj(V ) encode duration ranges for atomic events or combination of
atomic events. For instance, the constraint that the sum of the durations of run and jump
should be within the sum of the maximal and minimal durations respectively is formalized
as follows:

min(|d1 + d2 − maxrun − maxjump|, |d1 + d2 − minrun − minjump|)
where:

d1 = e1 − b1 + 1, d2 = e2 − b2 + 1
a1 = run, a2 = jump

The hard constraints hi(V ) encode temporal relations between atomic events and with
respect to the structured event. See Table 1 for examples. Intuitively, the solutions of the
MILP problem for the predicted structured event ŷS where only hard contraints hi(V ) are
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Figure 2 Training of our neuro-symbolic approach.

considered, provide a set of candidate interpretations for X. By including the objective
f(V, O) and the soft constraints cj(V ) we obtain the interpretation with the minimum cost
for X (i.e, Y ∗

c ). The label vector ŷA
sol in Figure 1, which is the neuro-symbolic counterpart

of ŷA in Eq. 1, is obtained by “unrolling” the optimal V into an atomic label for each frame
in its predicted range.

▶ Example 2. Let X a video of length 20 where a person is performing a structured event,
but we do not know which kind of structured event. Now, suppose we have, in addition to
the structured event highjump of example 1, the structured event javelin throw and that
the background knowledge contains the fact that a javelin throw can be decomposed into
a sequence of two atomic events: run and jump, which can be expressed by the following
formula:

∀bjtejt(happens(javelinthrow, bjt, ejt) ↔ ∃ br, er, bt, et, (
happens(run, br, er) ∧ happens(throw, bt, et)∧
br = bjt ∧ er = bt ∧ et = ehj))

Also, suppose that the head of NN for structure events predicted ŷS = javelinthrow for X.
If we solve the MILP for the javelin throw where only hard constraints are considered (for
example the ones in table 1), we have that some of the candidate interpretations will be:

I1 = {happens(javelinthrow, 1, 21), happens(run, 1, 13), happens(throw, 13, 21)}
I2 = {happens(javelinthrow, 1, 21), happens(run, 1, 17), happens(throw, 17, 21)}

...

By considering and solving the whole MILP, we obtain I∗
c . Continuing the example, if we

have a soft constraint which penalizes interpretations having short duration for run, we have
that I∗

c = I2, that corresponds to the solution V = [(run, 1, 17), (jump, 17, 21)] of Problem 2.

Figure 2 shows the training process of the architecture. As we assume that the ground-
truth yS of X is available at training time, the head for the structured events is not used
anymore to predict ŷS , but the ground-truth itself is used instead. Furthermore, if the
ground-truth for the atomic events (Y A ∈ Rl×n) is also available, we use it to train the head
of the atomic events. If this information is not available, we use pseudo-labels generated
from the architecture. The generation of such pseudo-labels consists of an inference step

TIME 2022
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...
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... ...

...

CI
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Figure 3 Extraction of clips of structured events from an untrimmed video.

in the currently trained architecture as per Figure 1, with the only difference that the
structured event is given by the ground-truth yS rather than the NN output. The atomic
event prediction vector ŷA

sol is turned into a binary label matrix Ŷ A
sol ∈ {0, 1}l×n by one-hot

encoding atomic labels (i.e., Ŷ A
sol[i, j] is set to 1 if j = ŷA

sol[i] and 0 otherwise). Then, we
define two losses:

Lgt(o, O, yS , Y A) = L(o, yS) + L(O, Y A) (3)

Lsol(o, O, yS , Ŷ A
sol) = L(o, yS) + L(O, Ŷ A

sol) (4)

Where Loss 3 refers to the case where both ground-truth (structured and atomic) are available,
while Loss 4 refers to the case where the ground-truth for structured events is available and
the ground-truth for the atomic events is not, and, then, we use the pseudo labels. In order
to train NN to recognize both kind of the events, we minimize, depending on the case, one
of the aforementioned loss and use gradient descent to update its weights.

5 Experimental setting

Our experimental setting has the aim to show if our proposed neuro-symbolic approach leads
to an advantage in the recognition of both structured and atomic events with respect to
a fully neural approach, when both approaches are trained with weak and limited amount
of supervision in terms of events. In details, we want to see how the knowledge is able to
compensate in the case when no or few and potentially noisy labels for events are available.
To achieve this objective, we first need a dataset of structured and atomic events. We
build such dataset from the Multi-THUMOS untrimmed video dataset [29]. Since in [29],
there is no explicit distinction between structured and atomic events, we define it and splits
the events according. In particular, we consider as structured events those events that
can be decomposed as a sequence of other (atomic) events, and cut each video into clips
corresponding to structured events (Figure 3).

For each structured event, we do not consider all the clips, but we remove those clips
where some of the atomic events defining the structured event are not present (e.g, replay).
The structured and atomic events we consider are shown in appendix B. Then, after building
the dataset, we define the scenario. The scenario consists of clips of different length where,
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in each clip, a person is performing one (and only one) structured event among the ones
reported in appendix B. The learning setting we consider to evaluate the fully neural approach
and our proposed neuro-symbolic approach consists in having full supervision at level of
structured events and limited and potentially noisy (e.g., overlapping between atomic events)
supervision in terms of atomic events. The kind of supervision we provide is as follows:

{happens(highjump, 1, 50), happens(run, 1, 31), happens(jump, 31, 45),
happens(fall, 45, 50)}

{happens(hammerthrow, 1, 30), happens(windup, 1, 15), happens(spin, 10, 25),
happens(release, 25, 30)}

{happens(javelinthrow, 1, 30)}

The first video is an example of noiseless labeling with full supervision on both structured
and atomic events. The second video is fully supervised too, but atomic supervision is noisy,
as there is an overlap between the windup and spin atomic events (this type of overlapping
labeling is not rare in the dataset). The third video is a case where supervision is only
provided at the structured event level, and there is no supervision on atomic events.

In this setting, we are interested in observing how the prediction in terms of atomic
and structured events change when increasing the availability of data for atomic events.
Furthermore, in the case of the neuro-symbolic approach, we are interested in seeing how
complementing the supervision coming from the dataset with the supervision coming from
the knowledge affects the predictions of the overall model. A noteworthy case is the one
where no direct supervision at level of atomic events is provided at all, and then the model is
completely trained with the supervision coming from the knowledge. The underlying model
we use for both approaches is the one described in [21] where features extracted from a
pre-trained two-stream I3D [7] are given as input in order to predict a matrix of events (more
details about the model can be found in Appendix C). Differently from [21], we distinguish
between structured and atomic events and consider two separate heads, as discussed in the
previous section. About the training, we train the model for 20 epochs with learning rate of
1e−3 and weight decay of 1e−6, using Adam as optimizer. We also created a validation set
of 10% of the training data in order to select the best model.

6 Results

In this section, we show and compare the results of the fully neural approach with respect to
our proposed neuro-symbolic approach on the task described in Section 5. Figure 4 reports
average F1 scores of structured event prediction over 5 runs, for an increasing amount of
supervision in terms of atomic events (from 0 to 100%). Note that in all cases supervision in
terms of structured events is always provided. The green curve indicates the fully neural
baseline, while the red curve indicates our neuro-symbolic approach. Results indicate that
unsurprisingly, when there is full supervision on the structured event the addition of knowledge
does not help in its identification.

Figure 5 reports average F1 scores for the prediction of atomic events, again for a growing
amount of supervision at the atomic level. The difference between the fully neural and
the neuro-symbolic approach is striking. Substantial improvements of the neuro-symbolic
approach can be observed for almost all atomic events. Only for the atomic events run and
jump, we can see that the fully neural approach is really close to our approach. This is
probably due to the temporal duration of these events, that is substantially higher than that

TIME 2022



12:10 A Neuro-Symbolic Approach for Real-World Event Recognition

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

HighJump

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

LongJump

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

PoleVault

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

HammerThrow

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

ThrowDiscus

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Shotput

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

JavelinThrow

neural

neuro-symbolic

Avg. F1 score -- Structured events

Figure 4 F1 scores on structured events averaged over 5 runs for the fully neural (green) and the
neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.
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Figure 5 F1 scores on atomic events averaged over 5 runs for the fully neural (green) and the
neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.
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of the others. This implies that a reasonable number of frames labelled as run and jump
will be available for the neural network even with a small fraction of labelled videos. On the
other hand, atomic events like release and throw have a performance improvement that goes
up as 60% and 50% respectively.

As stated in Section 5, a particularly significant case is the one where no direct supervision
at all is provided at the level of atomic events. This corresponds to the leftmost point in the
figures. The F1 score of the fully neural approach is close to zero for almost all atomic events,
corresponding to random guessing. On the other hand, the F1 scores of the neuro-symbolic
approach are often comparable to those of a fully supervised setting, showing how knowledge
can be exploited to completely bypass the need for human supervision at the frame level,
with major implications in terms of applicability and training costs.

Figure 6 shows some representative examples of the labeling provided by the two ap-
proaches highlighting the differences in prediction consistency between the two, both in
terms of atomic events being detected and relative duration. Note that results are achieved
with 100% supervision on atomic events, and highlight the importance of knowledge in
guaranteeing the consistency of predictions. The Figure shows prediction for all frames in a
video for three videos, a highjump, a hammerthrow and a longjump respectively. For each
video, we compare ground truth atomic labels (yellow) with fully neural predictions (green)
and neuro-symbolic ones (green). In the highjump case (top), the fully neural approach
completely misses the last event and mispredicts it as part of the jump event. On the other
hand, the neuro-symbolic approach correctly detects the last event a fall, and has a better
estimate of the duration of each event. In the hammerthrow case (middle), the fully neural
approach detects a run event, that cannot be part of a hammerthrow, and misses the release
event. Again, the neuro-symbolic approach provides quite accurate estimates of the duration
of each event, despite the short duration of release with respect to windup and spin. Finally,
in the longjump case (bottom), the neural approach correctly identifies the initial run, but
breaks the rest of the video into a sequence of short jump, fall, sit and even run events which
is completely inconsistent, while the neuro-symbolic approach again accurately recovers both
sequence and duration of the atomic events.

7 Conclusion and Future Work

In this work, we have proposed a neuro-symbolic approach for (structured and atomic) event
recognition where knowledge about the events and their temporal relations is exploited
both at training and inference time. We have instantiated our approach on a real-world
scenario consisting of clips of sports events. Our experimental evaluation showed how our
neuro-symbolic solution achieves substantial improvements over a fully neural baseline in
terms of recognition of the atomic events that constitute a structured event. The approach
is capable of learning to detect atomic events even with no supervision at all on them during
training, by simply combining supervision on structured events, low-level neural processing
and knowledge. While these results are promising, there are several directions which are
left open for future research. A major direction consists in increasing the complexity of the
scenarios being considered, by dealing with structured events involving multiple actors and
complex relationships between the events, without making the underlying reasoning problem
prohibitively expensive, something other neuro-symbolic frameworks currently struggle with.
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Figure 6 Prediction of the sequence of atomic events for three clips representing a highjump
(top), a hammerthrow (middle) and a longjump (bottom) respectively. Ground truth is in yellow,
while the neural and neuro-symbolic predictions are in green and red respectively. Both models
were trained with 100 % supervision on the atomic events. Clips were selected to show examples of
inconsistencies in neural predictions.
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A MILP for high jump

Listing 1 Encoding high jump as a MILP using MiniZinc

1 % HJ = High Jump
2 % R = Run
3 % J = Jump
4 % F = Fall
5

6 int: bHJ;
7 int: eHJ;
8

9 int: minSum_R_J = 3;
10 int: maxSum_R_J = 48;
11 int: minSum_R_F = 4;
12 int: maxSum_R_F = 57;
13 int: minSum_J_F = 3;
14 int: maxSum_J_F = 33;
15

16 int: target_R_J = maxSum_R_J - minSum_R_J + 1;
17 int: target_R_F = maxSum_R_F - minSum_R_F + 1;
18 int: target_J_F = maxSum_J_F - minSum_J_F + 1;
19

20 var bHJ .. eHJ: bR;
21 var bHJ .. eHJ: eR;
22 var bHJ .. eHJ: bJ;
23 var bHJ .. eHJ: eJ;
24 var bHJ .. eHJ: bF;
25 var bHJ .. eHJ: eF;
26

27 var int: lenR = eR - bR + 1;
28 var int: lenJ = eJ - bJ + 1;
29 var int: lenF = eF - bF + 1;
30

31

32 constraint eR > bR /\ eJ > bJ /\ eF > bF;
33 constraint bR == bHJ /\ eR == (bJ -1) /\ eJ == (bF -1) /\ eF == eHJ;
34 constraint lenR >= (lenJ + lenF) /\ lenJ < (lenR + lenF) /\ lenF < (lenR + lenJ);
35

36

37 var int: cost_comp_run_pos = - sum (t in bR .. eR) ( ae_predictions [1,t]);
38 var int: cost_comp_run_neg = sum (t in (eR +1) .. eHJ) ( ae_predictions [1,t]);
39 var int: cost_comp_jump_pos = - sum (t in bJ .. eJ) ( ae_predictions [2,t]);
40 var int: cost_comp_jump_neg_1 = sum (t in bHJ ..(bJ -1)) ( ae_predictions [2,t]);
41 var int: cost_comp_jump_neg_2 = sum (t in (eJ +1) .. eHJ) ( ae_predictions [2,t]);
42 var int: cost_comp_fall_pos = - sum (t in bF .. eF) ( ae_predictions [3,t]);
43 var int: cost_comp_fall_neg = sum (t in bHJ ..(bF -1)) ( ae_predictions [3,t]);
44

45 var int: cost = (
46 cost_comp_run_pos + cost_comp_run_neg
47 + cost_comp_jump_pos + cost_comp_jump_neg_1 + cost_comp_jump_neg_2
48 + cost_comp_fall_pos + cost_comp_fall_neg
49 + 1000 * abs( target_R_J - (lenR + lenJ))
50 + 1000 * abs( target_R_F - (lenR + lenF))
51 + 1000 * abs( target_J_F - (lenJ + lenF))
52 );
53

54 solve minimize cost;

TIME 2022

https://doi.org/10.1109/SMARTCOMP.2019.00034
https://doi.org/10.1109/SMARTCOMP.2019.00034
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.1007/s11263-017-1013-y


12:16 A Neuro-Symbolic Approach for Real-World Event Recognition

In lines 6-7, the constants representing the begin and the end of the clip are declared. These
are going to be filled at running time and will change depending on the length of the clip
processed. The blocks of lines 9-14 and 16-18 contains, the minimum/maximum sum of the
length of the intervals of two atomic events and the target length in which the sum of the
two intervals has to lie in. The declaration of the optimizer decision variables is contained in
line 20-25. These variables are going to be set by Gurobi at the end of the optimization. In
lines 27-29, the variables representing the length of the interval of each atomic events are
defined. Lines 32-34 represent hard constraints that Gurobi has to satisfy. In details, line 32
states that the end of each atomic event has to be greater than their corresponding begin,
while lines 33 and 34 defines respectively temporal relations among events and algebraic
constraints among the length of the intervals of atomic events. In addition to the satisfaction
of those constraints, Gurobi has to minimize a cost function (lines 45-62). The cost function
can be split in two parts. The former (lines 46-48) is composed by the sum of components
defined in lines 37-43 where we want to maximize (i.e. minimize) the sum of probability
where the solver states the atomic events are happening (pos), and minimize (i.e. maximize)
the sum of probability where the atomic events are not happening (neg). The latter (lines
49-51) refers to soft constraints where the solver has to set the the sum of the length of two
atomic events’ intervals to be as closed as possible to their target length.

B Subset of structured and atomic events considered
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C Temporal action localization model

The input of the model consists in a series of feature vectors f extracted by a pre-trained
two-stream I3D [7], where each fi ∈ f corresponds to 8 frames (or 0.33 seconds) and contains
global information at both frame and video-clip level. A non linear transformation is applied
on these features in order to obtain class level features (C × T × H) with C representing
the number of classes, T the number of timestamps and H the dimension of embedding
space. Then, the class-level features are refined using L attention-based Multi-Label Action
Dependency (MLAD) layers. These layers are composed by two disjoint branches which adopt
a self-attention operation to model the relationships between actions that happened within
the same timestamp (referred as Co-occurence Dependency branch) and actions happening
at different timestamps (referred as Temporal Dependency branch). As a result, a refined set
of features is returned by each branch, respectively. At the end, a linear combination of the
two branches’ features is applied (through a learnt value α ∈ [0, 1]) and the result is passed
to C individual classification layers which outputs class probabilities for each timestamp
(T × C).
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Abstract
Multivariate time series classification is a widely known problem, and its applications are ubiquitous.
Due to their strong generalization capability, neural networks have been proven to be very powerful
for the task, but their applicability is often limited by their intrinsic black-box nature. Recently,
temporal decision trees have been shown to be a serious alternative to neural networks for the
same task in terms of classification performances, while attaining higher levels of transparency and
interpretability. In this work, we propose an initial approach to neural-symbolic temporal decision
trees, that is, an hybrid method that leverages on both the ability of neural networks of capturing
temporal patterns and the flexibility of temporal decision trees of taking decisions on intervals
based on (possibly, externally computed) temporal features. While based on a proof-of-concept
implementation, in our experiments on public datasets, neural-symbolic temporal decision trees
show promising results.
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1 Introduction
A multivariate time series is a collection of time-stamped tuples, each composed by the value
of several attributes. Time series describe a variety of situations, and classification of time
series is an active area of research across many scientific disciplines: air quality control and
prediction in climate science, prices and rates of inflation in economics, infectious diseases
trends and spreading patterns in medicine, pronunciation of word signs in linguistics, sensor
recordings of systems in aerospace engineering, among many others [29].

As it is true for any other classification problem, the classification of multivariate time
series too can be approached by means of both symbolic and functional (or parametric)
machine learning, which are two fundamental pillars of modern machine learning; in short,
one may say that functional learning is the process of learning a function that represents
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the theory of the underlying problem (functional methods range from simple regression
techniques to the modern neural network models, in their several variants), while symbolic
learning is the process of learning a logical description that represents that theory (typical
symbolic methods are rule-based classifiers and decision trees). Whether one or the other
approach should be preferred raised a long-standing debate among experts, whose roots lie
in the fact that functional methods tend to be more accurate than symbolic ones, as they are
capable to better generalize the problem at hand, while symbolic methods are able to extract
models that can be explained, interpreted, and integrated with human expert knowledge. The
higher interpretability degree of symbolic approaches over functional ones, both for political
(consider, e.g., the General Data Protection Regulation (GDPR) that highlights the need for
interpretable/explainable automatic decision processes) and technical reasons, are sometimes
used as arguments for preferring a symbolic approach over a functional one. As suggested
in [9, 10, 24] (among others), however, in order to solve the functional/symbolic duality, one
can think of an hybrid approach: hybrid systems combine the strengths of both symbolic
and functional methods, with the aim of guaranteeing highi degrees of interpretability of the
learned models, while retaining high enough statistical performances.

On the one side, we shall consider the native, symbolic time series classification method
proposed by Sciavicco and Stan [31]. The temporal decision tree prediction model, as it is
called, is an extension and generalization the decision tree paradigm. Temporal decision
trees work as the classical ones, but decisions are taken on intervals of time series, instead
of the series as a whole; therefore, there is no need of an initial feature extraction phase,
but, on the contrary, features are extracted dynamically, following the standard greedy
approach. Temporal decision trees have already been shown to be competitive for time series
classification. On the other side, we shall take, as a representative example, a time-preserving
autoencoder neural network model [37, 39], which is characterized by being able to play
both the role of time series classifier and the one of feature extractor, essentially without
any modification. As it turns out, in the pursue of an hybrid decision tree model there
are at least three independent parameters which can be combined, namely, the possibility
of using a network for an initial screening of the dataset, to be later dealt with in a more
precise way by one of several potentially different trees (root hybridization), the possibility
of querying an external network as a feature extractor in order to take split decisions in a
single tree (split hybridization), and the possibility of consulting one of several potentially
different networks at the leaves of a decision tree before deciding the class (leaf hybridization).
These techniques give rise to eight possible hybrid models, the simplest one of which is just
a decision tree. In this paper, we propose to increase the generalization capacity of temporal
decision trees by leveraging the power of a pre-trained autoencoder to partition instances in
a decision node (split hybridization). To assess the value of our proposal, we perform several
experiments on three public datasets. In particular, we consider the problem of establishing
if the neural-symbolic approach is, in fact, beneficial, when compared with the pure neural
network-based one as well as the pure temporal symbolic one. Therefore, our experiments
are not designed to achieve the highest absolute performances (such as in Bagnall et al.’s [3]
work, from which our datasets are taken), which is often the results of a very intensive
hyperparametrization, complex feature extraction, and model stacking/bagging; instead,
they are structured in such a way as to highlight the advantages of the hybrid approach over
its constituents.

The paper is organized as follows: in Section 2 we review the most important contributions
in the area of hybridization decision trees with neural networks; in Section 3 we present
neural-symbolic temporal decision trees; then, in Section 4 we benchmark the proposed
methodology based on a proof-of-concept implementation against public datasets, before
concluding.
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2 Related Work

Decision trees and neural networks are well-known alternatives for pattern recognition,
and their strengths and weaknesses have been studied for more than three decades [2, 35].
Notoriously, decision trees favor the interpretability of their decisions which, due to their
symbolic nature, represent coarse concepts in numeric domains, whereas neural networks are
more difficult to interpret (they are often referred to as black-box models), but have a better
generalization capacity. Let us focus on the recent literature concerning the hybridization of
these two models.

From decision trees to neural networks. First, we mention Sethi [32], Brent [6] and Ivanova
and Kubat [15], who proposed a mapping algorithm of a decision tree into a 2-hidden-layers
neural network, whose topology is inferred by the structure of the decision tree; then the
weights can be retrained by error-backpropagation to increase generalization. Ivanova and
Kubat’s Tree-Based Neural Network has been further investigated by Setiono and Leow [33]
by compressing and removing redundant units and connections in the resulting network,
a method called Pruning-Based Neural Network. Radial-basis function networks can also
be initialized by decision trees, where each region in the instance space discovered by the
decision tree is then turned into a neuron, each of which representing a basis function, in the
resulting network [19].

From neural networks to decision trees. Craven and Shavlik [7] observed that decision tree
induction algorithms are limited by the fact that splits are performed over fewer and fewer
instances recursively. The decision tree inducer algorithm that they have proposed alleviates
such issue by querying the oracle (i.e., the trained neural network) which generates new
instances aiming at performing better statistically solid 𝑚-to-𝑛 Boolean splits [38] (i.e., 𝑚 out
of 𝑛 conditions must be satisfied) that are greedily evaluated using gain ratio [28]. Dancey
et al. [8] proposed a similar method where the splits are univariate. Krishnan et al. [18],
inspired by Craven and Shavlik’s work, extracted a decision tree from inputs generated by the
neural network instead of doing it directly from the data, that is, they also query the oracle.
Unlike Craven and Shavlik’s method, Schmitz et al. [30] proposed an approach that can be
applied to inputs and outputs that are both discrete or continuous with a novel attribute
significance analysis to perform splits. Zhou and Jiang [42], instead, proposed to extract a
C4.5 decision tree from the input instances merged with new randomly generated instances
from an ensemble of neural networks. Such an approach an be seen as a loop that uses a
genetic algorithm to generate prototypes (i.e., representative input instances for which the
neural network give a desired output classification) to train the decision tree; at this stage,
the decision tree is tested on an independent test set and if the performances are acceptable
then the procedure stops; otherwise, other prototypes are generated by the GA and the cycle
continues.

Hybrid neural-symbolic models. Li et al. [21] proposed a top-down adaptive neural tree
for hierarchical classification that can add and delete nodes incrementally while inducing
the tree structure. To increase the generalization of CART-like decision trees [5], Guo and
Gelfand’s [12] method trained a small 1-hidden-layer perceptron with one output at each
node of the decision tree to learn a non-linear, multivariate feature 𝑓 (·) that splits the
subset of the training instances at that node based on the test 𝑓 (·) < 0 (since the output’s
activation function is the 𝑡𝑎𝑛ℎ function) and showed that their method performed better
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Figure 1 Different types of hybridization, partially ordered by the residual level of interpretability.
In this paper, we focus our attention on temporal decision trees hybridized at the split level only.

than CART in terms of accuracy and better than a larger multi-layered neural network
trained with backpropagation in terms of training time. A similar approach can be found
in Setiono and Liu’s [34] work for generating oblique decision trees. Zhou and Chen [41]
proposed a methodology to induce a hybrid decision tree where, first, at the internal nodes
of the decision tree the splits are done over unordered attributes only, if any, to perform
qualitative analysis and, then, at the leaf nodes a virtual feed-forward neural network is
embedded to perform quantitative analysis over the ordered attributes only, if any. More
recently, Micheloni et al. [23] proposed a novel neural tree by using two innovations, namely
perceptron substitution and pattern removal, to produce 𝑘-ary balanced trees (𝑘 ≥ 2). In
the field of computer vision, tree-structured neural networks have been proposed, among
others, by Srivastava and Salakhutdinov [36] and Hinton et al. [14] to transfer knowledge, by
Kontschieder et al. [17] where a decision tree has been introduced after a fully connected
layer as part of the convolutional neural network, by Murthy et al. [26] where each decision
node of the decision tree is a convolutional neural network, by Murdock et al. [25] where
several layers are fused into the decision nodes of the decision tree, by Alaniz et al. [1] where
the structure of the decision tree is encoded in the memory of a recurrent neural network
jointly learned by two models acting as agents through message communication, and by Wan
et al. [40] where the final layer of the network is replaced by a decision tree.

In an attempt at taxonomizing the existing work, one could argue that there are at least
three independent parameters which can be combined, namely the possibility of using a
network for an initial screening of the dataset, to be later dealt with in a more precise way
by one of several potentially different trees (root hybridization), the possibility of querying an
external network as a feature extractor in order to take split decisions in a single tree (split
hybridization), and the possibility of consulting one of several potentially different networks
at the leaves of a decision tree before deciding the class (leaf hybridization). As a result,
there are at least eight types of hybridization (the simplest one of which is just a decision
tree), which can be, in a sense, partially ordered by their residual level of interpretability, as
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Table 1 Allen’s interval relations and their representation.

HS modality Definition w.r.t. the interval structure Example
𝑥 𝑦

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

⟨𝐴⟩ (after) [𝑥, 𝑦]𝑅𝐴[𝑤, 𝑧] ⇔ 𝑦 = 𝑤

⟨𝐿⟩ (later) [𝑥, 𝑦]𝑅𝐿 [𝑤, 𝑧] ⇔ 𝑦 < 𝑤

⟨𝐵⟩ (begins) [𝑥, 𝑦]𝑅𝐵 [𝑤, 𝑧] ⇔ 𝑥 = 𝑤 ∧ 𝑧 < 𝑦

⟨𝐸⟩ (ends) [𝑥, 𝑦]𝑅𝐸 [𝑤, 𝑧] ⇔ 𝑦 = 𝑧 ∧ 𝑥 < 𝑤

⟨𝐷⟩ (during) [𝑥, 𝑦]𝑅𝐷 [𝑤, 𝑧] ⇔ 𝑥 < 𝑤 ∧ 𝑧 < 𝑦

⟨𝑂⟩ (overlaps) [𝑥, 𝑦]𝑅𝑂 [𝑤, 𝑧] ⇔ 𝑥 < 𝑤 < 𝑦 < 𝑧

in Fig. 1. When the architecture of the underlying neural networks are comparable, different
hybridization types become comparable as well. In our initial exploration, we focus on the
hybridization at the split level only.

3 Neural-Symbolic Temporal Decision Trees

A single multivariate time series has 𝑛 (temporal) attributes 𝐴1, . . . , 𝐴𝑛 evolving through a
time axis, whose values are time-stamped by 𝑁 integers (the length of the series), that is,
its underlying domain of interest is ({0, 1, . . . , 𝑁 − 1}, <). A temporal labelled dataset is a
set of 𝑚 multivariate time series, each labelled with a class. The multivariate time series
classification problem is the problem of automatically extract a classifier from a temporal
labelled dataset. Existing multivariate time series classification methods can be divided into
feature-based (see, e.g., [20]), instance-based (see, e.g., [3]) and native ones (see, e.g., [11]).

Designed as a native time series classification method, temporal decision trees have been
recently proposed [22, 31]. Let T = {𝑇1, . . . , 𝑇𝑚} be a temporal dataset of 𝑚 instances, where
each is a multivariate time series described by 𝑛 attributes {𝐴1, . . . , 𝐴𝑛}. Given 𝑇 ∈ T and a
time point 𝑡, we denote by 𝐴(𝑡) the value of 𝐴 at the point 𝑡, and by 𝑑𝑜𝑚(𝐴) the domain
of 𝐴. Now, let 𝑓 a dynamic feature of the variable 𝐴 (e.g., the average value of 𝐴 over an
interval); in its simplest form, 𝑓 is a scalar descriptor for 𝐴 within any non-point interval of
the series.

The key idea of interval temporal decision trees is that decisions are taken over strict
intervals, that is, intervals of the type [𝑥, 𝑦] with 𝑥 < 𝑦, and for time series whose length is
𝑁, there are 𝑁 · (𝑁 − 1)/2 such intervals. A temporal decision tree starts off by looking at
the whole dataset from the point of view of the first temporal value, and searches through
all possible non-point intervals, and, for each one of them, it computes a predetermined set
of dynamic features; then, it searches through all possible interval-interval relations, and it
establishes which other interval, and which other dynamic feature over that interval, is most
informative in the considered sub-dataset. In this way, it applies the same abstract approach
of the classical static decision tree up until a dataset is small enough, or pure enough, so
that a stopping criteria can be applied and a leaf can be created. For each possible feature
𝑓 , let 𝑑𝑜𝑚( 𝑓 (𝐴)) denote the set of possible values that 𝑓 takes over 𝐴 throughout T . The
temporal dataset T entails a propositional alphabet AP defined as follows:

AP = { 𝑓 (𝐴) ⊲⊳ 𝑎 | 𝐴 ∈ A, ⊲⊳ ∈ {<, ≤, =, ≥, >} and 𝑎 ∈ 𝑑𝑜𝑚( 𝑓 (𝐴))}.
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Figure 2 Example of temporal decision tree.

The set AP is the natural generalization of the set of propositional letters that implicitly
emerges in inductive processes from static data; for example, in a static dataset, the
propositional letter fever greater than 38 degrees may emerge. The main difference between
the two cases, propositional and temporal, is that in the latter case propositions in AP
are given an interval semantics, that is, they are evaluated over intervals of time; this is a
natural choice that depends from the fact that time series describe continuous processes,
in which evaluations based on point-wise values have little sense. Intuitively, consider an
interval of time [𝑥, 𝑦] and an attribute 𝐴 that varies on it. We can ask the question 𝐴 ⊲⊳ 𝑎

over the entire interval, which is positively answered if every value of 𝐴 in the interval [𝑥, 𝑦]
respects the given constraint; but, to enhance an interval-based semantics we replace this
question with 𝑓 (𝐴) ⊲⊳ 𝑎, which, in general, allows us to extract more information from the
interval [𝑥, 𝑦]; in the above example, we may have the proposition average fever greater than
38 degrees. As it turns out, many dynamic features have been studied in the literature of
time series to extract features from whole series, and these range from simple functions such
as average, minimum, or maximum to very complex ones such as number of local minima or
number of local maxima; we generalize this concept by applying them to intervals, which are,
themselves, series. Thus, in temporal decision trees the univariate split-decisions (or, simply,
decisions) that partition a set of instances at a specific node are of the type:

S = {⟨𝑋⟩(𝑝) | 𝑋 ∈ X ∪ {=} and 𝑝 ∈ AP},

where X = {𝐴, 𝐿, 𝐵, 𝐸, 𝐷,𝑂, 𝐴, 𝐿, 𝐵, 𝐸, 𝐷,𝑂}, contains the possible interval-interval relations,
whose informal semantics is depicted in Tab. 1 (for a formal definition of the semantics,
see [13]). In conclusion, binary temporal decision trees 𝜏 are formulas of the following
grammar:

𝜏 ::= (𝑆 ∧ 𝜏) ∨ (¬𝑆 ∧ 𝜏) | 𝐶,

where 𝑆 ∈ S is a decision and 𝐶 ∈ C is a class. An example of temporal decision tree is
depicted in Fig. 2. Recall that time series of length 𝑁 have ({0, 1, . . . , 𝑁 −1}, <) as underlying
domain of interest. The learning starts by splitting the dataset at the root, where each
time series is fixed on the dummy interval [−2,−1] so that the only feasible interval-interval
operators are ⟨𝐿⟩ (for the left branch) and [𝐿] (for the right branch); then, recursively, for the
instances that fall into the left branch, the intervals that are witnesses for the decision ⟨𝑋⟩(𝑝)
are the new intervals to which the time series are fixed to find the next interval-interval
relation with a proposition (from A𝑃) as argument; similarly, if the instances fall on the right
branch by some decision [𝑋] (¬𝑝), the witnesses remain the same as before the split. What is
more, just as static decision trees induce propositional formulas on their branches, temporal
decision trees induce interval temporal logic [13] formulas. Continuing the parallelism with
the static case, a static decision tree may give rise to a branch whose associated formula is
fever greater than 38 degrees and cough as a symptom, whereas a formula on a temporal
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Figure 3 Neural-symbolic temporal decision trees pipeline. At the top level, an autoencoder is
trained for each attribute 𝐴𝑖 on each of its non-point interval of a multivariate time series. At the
bottom level, a temporal decision tree queries the encoder of each trained autoencoder to partition
instances in a decision node.

decision tree may be (a period of) average fever greater than 38 degrees overlapping (a
period of) cough as a symptom; to complete the example, following the left-most branch of
the temporal decision tree illustrated in Fig. 2, the corresponding interval temporal logic
formula is:

⟨𝐿⟩(𝑝 ∧ ⟨𝑂⟩(𝑞)),

from which, by interpreting 𝑝 as average fever greater than 38 degrees and 𝑞 as cough as
symptom, we obtain the above sentence in natural language.

An autoencoder is a neural network architecture typically used for extracting significant
feature representations from unlabeled data. The feature extraction is achieved by training
the model to reproduce its input (i.e., to learn the identity function) while introducing an
information bottleneck throughout the model. This generally results in an encoder-decoder
architecture where the encoder (that is, the first part of the network), ends with a layer
with the smallest number of neurons, which is, then, the only input to the remaining part
of the network. Ultimately, the training phase forces the encoder to learn to extract a
succinct representation of the input, performing a non-linear dimensionality reduction, and
the decoder to learn to retrieve the original information from this representation. After the
training phase, the encoder can be used as a feature extractor, that is, a model that provides
a succinct abstract description of its input.

In the case of time series, a fundamental distinction among autoencoders is between
time preserving models, which provide a description that also extends along the time axis,
and non-time preserving ones, which provide a static description, only consisting of a fixed-
size vector of scalar values. The architectures used for time series are typically based on
convolutional neural networks, that are effective for shift-invariant pattern recognition, or
recurrent neural networks, that are specifically designed for temporal data.
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Table 2 Dataset specifications.

Dataset # train+test instances # points # attributes # classes
Libras 180 + 180 = 360 45 2 15

NATOPS 180 + 180 = 360 51 24 6
RacketSports 151 + 152 = 303 30 6 4

In this first attempt at split hybridization of temporal decision trees, autoencoders are
used to derive attribute-specific feature extractors; that is, once an autoencoder is trained,
the encoder part, seen as a function whose input is mapped to a real number, plays the same
role that the average, minimum, and maximum functions play. With respect to these simpler
function, the learned encoder has a black-box nature, and is, therefore, less interpretable;
however, as we shall see, it can yield higher specificity for a given attribute, thus providing
scalar descriptions that are more relevant. For the purpose of this work, we consider a
sequence-to-sequence [37] architecture (referred to as S2S), and a transformer-based [39]
architecture (referred to as transformer autoencoder, TSA); these are two time preserving
autoencoders which found fruitful application in many contexts, and represented a major
breakthrough in the field of natural language processing. Note that, being time preserving
architectures, the descriptions computed by the encoders extend along a time axis, whereas
the framework presented above requires a scalar feature extraction. To solve this issue,
we operate a choice commonly adopted in contexts where a scalar feature extraction is
needed: we only consider a single temporal slice of the description. For both architectures,
we considered the one temporal slice that is used by the decoder to reproduce the input
series but, because of structural differences between the two architectures, different policies
are required: for S2S, the last temporal slice is considered while, for TSA, the first slice is
considered. Fig. 3 depicts an abstraction of the structure of the autoencoders in use, and
the deployment of the trained encoders within the split-decisions of a temporal decision tree.
Recall that the encoder maps its input series (seen as a vector of real numbers) to a single
real number, therefore reducing the original size.

4 Experiments

In order to assess the performances of hybrid temporal decision trees, we carried out
several experiments using three publicly available datasets that are commonly employed for
benchmarking multivariate time series classification models. They are known, respectively,
as Libras, NATOPS, and RacketSports [3], and their specifications are shown in Tab. 2. The
Libras dataset consists of sensor recordings of hand movements in a bidimensional space,
extracted from videos of Brazilian sign language speakers performing different gestures;
NATOPS data consists of 3D recordings of hands, elbows, wrists and thumbs of people
performing different actions; and RacketSports contains 3D recordings for both a gyroscope
and an accelerometer mounted on a smartwatch worn by several subjects while playing
badminton and squash games.

All datasets are provided with pre-existent partitioning into training set and test set.
The expertiments are conducted in a randomized cross-validation setting with 10 repetitions,
where the training and test sets for each repetition are drawn from the union of the original
sets, reproducing the class distributions of the original sets, with the sole exception that
the first of the 10 repetitions uses the exact original training and test sets; this approach is
similar to Ruiz et al. [29]. Six variations of decision trees are compared, which are obtained
by using both a static decision tree model and the temporal decision tree one, each, in turn,
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Table 3 Test results and training time of the decision tree models in comparison. Values for
the performance metrics are shown in percentage points. For each measure, the table reports the
average and standard deviation over 10 repetitions. For each dataset, the most performant model is
highlighted.

𝜅 OA AA F1 time (𝑠)

Li
br

as

D
T

min, max 35.4 ± 3.4 39.7 ± 3.1 39.7 ± 3.1 39.3 ± 3.2 0.1
neural 19.0 ± 4.3 24.4 ± 4.0 24.4 ± 4.0 23.8 ± 4.0 0.1

min, max, neural 40.9 ± 5.9 44.8 ± 5.5 44.8 ± 5.5 44.2 ± 5.6 0.1

T
D

T

min, max 54.6 ± 4.3 57.6 ± 4.0 57.6 ± 4.0 57.2 ± 3.8 6.3 ± 1.6
neural 54.5 ± 3.7 57.5 ± 3.5 57.5 ± 3.5 56.7 ± 4.0 18.0 ± 5.1

min, max, neural 55.2 ± 4.1 58.2 ± 3.8 58.2 ± 3.8 57.6 ± 3.9 30.7 ± 6.5

N
AT

O
P

S D
T

min, max 65.1 ± 3.7 70.9 ± 3.1 70.9 ± 3.1 70.8 ± 3.3 0.7 ± 0.1
neural 42.8 ± 4.3 52.3 ± 3.6 52.3 ± 3.6 52.1 ± 3.8 0.6 ± 0.1

min, max, neural 65.7 ± 2.2 71.5 ± 1.8 71.5 ± 1.8 71.4 ± 1.9 1.0 ± 0.1

T
D

T

min, max 84.0 ± 2.9 86.7 ± 2.4 86.7 ± 2.4 86.7 ± 2.4 37.0 ± 9.0
neural 87.1 ± 3.7 89.2 ± 3.1 89.2 ± 3.1 89.3 ± 3.1 118.3 ± 35.8

min, max, neural 86.7 ± 2.9 88.9 ± 2.4 88.9 ± 2.4 89.0 ± 2.4 252.1 ± 98.3

R
ac

ke
tS

po
rt

s

D
T

min, max 55.4 ± 3.3 66.6 ± 2.4 68.0 ± 2.5 67.4 ± 2.3 0.2
neural 44.2 ± 3.9 58.4 ± 3.0 59.6 ± 2.8 59.2 ± 3.1 0.2 ± 0.1

min, max, neural 57.5 ± 6.9 68.2 ± 5.2 69.7 ± 5.1 69.3 ± 5.3 0.3 ± 0.1

T
D

T

min, max 55.0 ± 5.8 66.3 ± 4.3 67.7 ± 4.2 67.5 ± 4.1 1.1 ± 0.9
neural 56.0 ± 5.6 67.1 ± 4.2 68.2 ± 4.0 68.1 ± 4.3 2.7 ± 1.5

min, max, neural 56.3 ± 5.8 67.3 ± 4.3 68.6 ± 4.2 68.3 ± 4.1 5.5 ± 5.4

in three versions: original (non-hybrid), split hybrid using only neural features, and split
hybrid using both neural and non-neural features. As we have seen in the previous section,
temporal decision trees are characterized by taking decisions on intervals of time, and then
relating such decisions via temporal logic formulas. This is paradigm-shifting with respect
to static ones, which, in the common literature, can only deal with dimensional data (for
us, temporal data) by extracting global features for each attribute and then using them
as decisions. Such a difference has been maintained in the hybrid version; in fact, in the
static case both neural and non-neural features are computed on the whole series. For these
experiments, in both the temporal and the static case, the non-neural feature functions
were fixed to minimum and maximum. Temporal and static trees were trained using the
ModalDecisionTrees.jl open-source Julia package [27], which implements the CART algorithm
and its modal extensions.

After a preliminary study in which different decision tree parametrizations are tested,
two tree-pruning conditions are fixed, namely, a minimum number of instances at the tree
leaves of 2 for RacketSports and Libras, and 4 for NATOPS, and a minimum entropy gain of
0.01, which prevents less informative splits to be performed at any internal node. As neural
feature extractors, we use S2S for Libras and TSA for NATOPS and RacketSports. For the
training of both neural architectures, we use PyTorch and the following hyperparameters:
AdamW optimizer with 10−5 learning rate and 10−8 epsilon factor, batches of size 256 with
accumulation step equal to 4, L1Loss as loss function, 150 epochs, gradient clipping during
training, and weights initialized using the default setting of PyTorch. The architecture of
S2S is the same proposed in [4] with the difference that we used two Gated Recurrent Unit
Networks as encoder and decoder instead of the LSTMs. A simpler architecture is used to
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Table 4 Class-wise accuracies and average accuracy (AA) (shown in percentage points) of the
decision tree models in comparison. For each entry, the table reports the average over 10 repetitions.
The best result of each class is highlighted.

Libras
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AA

D
T

min, max 29 41 26 45 53 38 34 39 88 28 38 38 36 16 48 40
neural 17 12 13 46 38 22 34 8 30 14 28 32 19 22 30 24

min, max, neural 35 57 25 59 53 31 42 50 87 36 41 43 44 28 42 45

T
D

T

min, max 48 77 49 70 70 49 64 55 88 42 55 51 41 58 48 58
neural 59 76 42 68 59 56 62 58 88 35 52 60 50 50 47 58

min, max, neural 56 78 46 72 69 51 62 55 86 39 54 53 53 52 47 58

NATOPS
1 2 3 4 5 6 AA

D
T

min, max 91 77 65 52 51 90 71
neural 48 45 40 60 52 69 52

min, max, neural 91 73 64 57 53 90 72

T
D

T

min, max 93 87 68 90 90 92 87
neural 95 88 70 91 94 92 89

min, max, neural 95 87 67 91 94 94 89

RacketSports
1 2 3 4 AA

D
T

min, max 50 55 83 84 68
neural 54 36 85 64 60

min, max, neural 55 52 88 85 70

T
D

T

min, max 51 54 80 85 68
neural 60 49 77 87 68

min, max, neural 54 53 82 84 69

build TSA, which is composed of a transformer encoder layer with two heads, both for the
encoder and for the decoder. In the encoder, we used Time2Vec [16] to resize each temporal
slice from 1 to 168 adding also information about the position of the slices, as done by
classical transformers with the positional embeddings. Both the output of the encoder and
of the decoder is resized from 168 to 1 with a linear layer. Note that, while static decision
trees feature functions are computed on the whole series, features for temporal decision trees
are evaluated on all the sub-intervals of the series; as such, the autoencoder models are
trained using the raw training instances in the first case, and using all the sub-intervals of
the training instances in the second case.

Tab. 3 gives an overview of the trained models in terms of the training time required
(excluding the prior training of the neural networks), and the performance obtained on
the test data. The results are given in terms of mean and standard deviations over the 10
repetitions. The performance itself is measured in terms of 𝜅 coefficient (which relativizes
the overall accuracy to the probability of a random correct answer), overall accuracy (OA),
average accuracy (AA), and average F1-score (F1). Note that the four metrics measure in
different ways the overall performance of the models, but they all happen to be in agreement;
as such, we focus on the values of the 𝜅 coefficients, which is invariant to the number of
classes, and varies largely across the three datasets.

At a first look, Libras seems to enclose the hardest problem for the models at hand (𝜅
equal to 55.2%), followed by RacketSports (57.5%) and then by NATOPS (87.2%). Libras
and NATOPS reveal a performance gap between static and temporal trees; that is, when
the best models for each group is considered, the second group has an average 𝜅 higher by
∼15 and ∼22 percentage points, respectively. Conversely, RacketSports represents a case
where temporal decision trees are outperformed by classical decision trees; indeed, in both
cases, the best accuracy is achieved using both simple and neural features, but temporal
trees achieve an average 𝜅 of 56.3%, while classical trees achieve 57.5%. When it comes to
neural features, classical DTs only benefit from them when these are used as supplementary
information; in fact, for all datasets, classical decision trees using only neural features are
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Table 5 Confusion matrixes for the tree generated with seed 6, dataset NATOPS; left: static,
non-neural; right: temporal, neural.

static, non-neural
1 2 3 4 5 6

1 24 6 0 0 0 0
2 2 26 2 0 0 0
3 0 14 16 0 0 0
4 1 0 0 19 9 1
5 1 0 0 13 16 0
6 0 0 0 0 3 27

temporal, neural
1 2 3 4 5 6

1 30 0 0 0 0 0
2 0 28 2 0 0 0
3 0 5 25 0 0 0
4 0 0 0 26 1 3
5 0 0 0 0 28 2
6 3 1 0 0 0 26

outperformed by classical DTs based on minimum and maximum, but the latter are in turn
always outperformed by mixed trees that use both simple and neural features, which may
indicate that our approach is promising. If we look separately at DTs and TDTs within
the same experimental settings, we observe, once again, that adding neural features gives
a greater advantage in the temporal case; a possible interpretation of this phenomenon is
that, being able to perform qualitative temporal reasoning among intervals when partitioning
instances, the inductive procedure becomes some kind of symbolic attention mechanism;
however, as it must be acknowledged, TDTs generally require higher training times due to
the interval-interval relations.

A more specific analysis of the trends can be made by inspecting the ability of the models
for correctly classifying each of the classes in the three datasets. Tab. 4 reports the class-wise
accuracies, as well as the average accuracy; although they provide useful insights, class-wise
accuracies are subject to a higher variance than metrics of overall performance, and, as
such, reliable conclusions from them can be drawn only when comparing different groups of
models. We observe that with the Libras dataset the step from static to temporal learning
encompasses a general accuracy improvement over all classes except two (9 and 15), and in
some classes, such as 14, such an improvement is impressive (from 28% to 58%); classes 1,
2, 12, and 13, moreover, show a clear benefit of the hybrid temporal-and-neural approach.
The improvement due to the temporal approach in NATOPS emerges in all classes except
class 1, and in all classes, though in a lesser amount, adding the neural features results
in a further improvement. Finally, as for RacketSports, the improvement of the temporal
approach is less clear, and only visible in class 1 and 4, and the same holds for the further,
slight, improvement given by the addition of the neural features.

In addition to the simple analysis of the numerical performance, we can give a closer
look at the generated trees. In order to do so, we consider the dataset NATOPS and a
representative seed, namely seed 6, and compare the extracted trees in terms of structure,
size, and ability to predict specific classes in two specific cases: the static tree without neural
features and the temporal tree with neural features (Fig. 4 and Fig. 5, in which we used
𝑚 to represent the minimum, 𝑀 the maximum, and 𝑁 the encoding by the encoder neural
network, applied to an attribute 𝐴). As it can be observed, the static one is 40% bigger
than the temporal one, the former having 17 leaves, versus the 11 leaves of the latter. Yet,
the classification abilities of the static tree are clearly lower than those of the temporal one:
on the one side, in average, the static non-neural approach presented 71% accuracy versus
the 89% of the temporal one with neural and non-neural features; on the other side, these
specific trees present 71% accuracy in the static case versus 91% in the temporal case. Even
more interestingly, class 5 labels several leaves in the static tree, and only 1 in the temporal
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Figure 4 Static tree without neural features, seed 6, NATOPS.
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Figure 5 Temporal tree with neural features, seed 6, NATOPS.

one, indicating that the temporal tree was able to extract the essence, in some sense, of this
class, in a single formula. Observe that class 5 is classified correctly only 51% of the times
in the static tree versus 94% of the times in the temporal one, in average, and 53% in the
static case versus 93% in the temporal one for the considered trees. More in particular, as it
can be deduced from the observation of the confusion matrices in both cases (Tab. 5), the
static tree confuses class 5 with class 4 very often, and, in lesser amount, with class 6, while
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0 1 2 3 . . . 𝑝 𝑝 + 1 . . . 𝑁 − 1

𝑁 (𝐴1 ) ≥ 1.12 ∧ 𝑁 (𝐴2 ) ≥ −0.24

}
𝑁 (𝐴13 ) < −0.68

Figure 6 A model for class 5 of the NATOPS dataset.

the temporal neural tree presents similar mistakes a very reduced number of times. In other
words, the temporal neural approach was able to extract a smaller and more precise logical
description of class 5, which can be summarized into a single temporal formula:

⟨𝐿⟩(𝑁 (𝐴2) ≥ −0.24 ∧ 𝑁 (𝐴1) ≥ 1.12 ∧ [𝐸]𝑁 (𝐴13) < 0.68) ⇒ 5,

which, in turn, can be expressed as a temporal model to visualize, in a sense, the class
itself (see Fig. 6 and recall our discussion from the previous section on the witnesses for the
left/right branch). To finalize this discussion, we observe that, in the static case, 7 variables
were involved in the decision tree for class 5, while in the temporal case only 3 variables were
sufficient.

5 Conclusions

In this paper we have presented a method for multivariate time series classification that
combines the high generalization capacity of trained neural networks with the symbolic
nature of temporal decision trees. This method is able to learn the structure of a temporal
decision trees from raw multivariate time series, and, internally (at each decision node)
performs both a qualitative analysis by means of entity-relation reasoning and a quantitative
one by means of neural features extracted from pre-trained neural networks. Although based
on a proof-of-concept implementation, our experiments performed on public datasets showed
promising results, and allowed us to draw some initial conclusions: (i) the hybridization
between temporal decision trees and neural networks seems quite natural; (ii) the obtained
method offers a statistically significant improvement in performances over its constituents;
(iii) such an improvement seems to be higher in more complicated problems.

As future work, we plan to perform a more systematic experimental benchmark, explore
different neural network architectures, which have been successfully applied to the problem of
multivariate time series classification, and investigate higher context sizes. More importantly,
we plan to explore all different hybridization schemata, and compare them against each other
and against the standard approach. Finally, a similar idea can be pursued in the spatial case,
where neural networks have shown even more predictive ability than in the temporal one.
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Strategy Logic (SL for short) is one of the prominent languages for reasoning about the strategic
abilities of agents in a multi-agent setting. This logic extends LTL with first-order quantifiers over the
agent strategies and encompasses other formalisms, such as ATL* and CTL*. The model-checking
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1 Introduction

A number of extensions of temporal logics specifically tailored to open multi-agent systems
and incorporating, implicitly or explicitly, the notion of strategy as a central element, have
been proposed in the literature that can also express interesting game-theoretic notions, such
as various forms of equilibria in games [22, 5, 24, 25, 6, 26]. Alternating-Time Temporal
Logic (ATL*, for short) was originally introduced by Alur, Henzinger, and Kupferman [2]
and allows for reasoning about strategic behaviour of agents with temporal goals. This
logic generalises the branching-time temporal logic CTL* [17, 18] by replacing the path
quantifiers, there exists “E” and for all “A”, with strategic modalities of the form “⟨⟨A⟩⟩” and
“[[A]]”, for a set A of agents. These modalities can express cooperation and competition
among the agents involved towards achieving some required temporal goals. In particular,
they allow for selective quantifications over the paths resulting from an infinite game between
a coalition of agents and its adversary, the complement coalition. Strategy Logic (SL, for
short) [10, 34, 11, 32, 33], instead, extends LTL by means of two strategy quantifiers, the
existential ∃x and the universal ∀x, as well as agent bindings (a, x), where a is an agent and
x a strategy variable. Intuitively, these elements can be respectively read as “there exists a
strategy x”, “for all strategies x”, and “bind agent a to the strategy associated with x”. SL
considers strategies as first-class citizens and can express properties requiring an arbitrary
alternation of the strategic quantifiers, as opposed to, e.g., ATL*, which only allows for
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at most one such alternation. From a semantic viewpoint, this entails that SL can encode
arbitrary functional dependencies among strategies, which may be crucial to express relevant
multi-agent systems and non-trivial game-theoretic notions (see [32, 33]).

The model-checking problem for SL and for many of its fragments has been studied with
some depth and is relatively well-understood [32, 7, 8, 20, 21]. The picture is, however, much
less clear when satisfiability is considered. The full logic SL is known to be undecidable [34].
The one-goal fragment (SL[1g], for short), where only a single binding prefix is allowed
in any sentence, is decidable in 2ExpTime [31]. On the other hand, the Boolean-Goal
fragment, which allows for Boolean combinations of bindings within a sentence but no nesting
of bindings, is already undecidable [33]. Recently, the flat fragment of conjunctive-goal
SL has been studied in [1], which provides a PSpace-complete result for the problem,
witnessing the quite rare phenomenon of a language with a satisfiability problem easier than
the corresponding model-checking one, which remains 2ExpTime-complete. Such fragment
allows for conjunctions of bindings but no nesting of temporal operators within a sentence.

In this work, we widen the picture, by studying larger non-flat fragments of SL[1g].
Specifically, we allow some forms of nesting of temporal operators, but prevent sentences in
the first (resp., second) argument of an until (resp., release) operator. Essentially, temporal
operators cannot reiterate the request of satisfaction of a sentence arbitrarily many times.
The resulting fragment is, thus, called non-recurrent SL[1g] (SL ̸⟳ [1g], for short). We
show that the fragment where the first (resp., second) argument of an until (resp., release)
is restricted to a pure LTL formula can be decided in ExpSpace. If we further restrict
those arguments to Boolean formulae, instead, we obtain a weaker fragment (WSL ̸⟳ [1g],
for short) with a PSpace-complete decision problem. To prove these results, we first
introduce a normal form for the models of satisfiable sentences of these fragments. The
distinctive property of such models is that, along any of their paths, the number of branching
points is linear in the length of the formula. To do that, a sentence is converted into a
“skeleton”, where it is split into layers at the beginning of each block of strategy quantifiers,
and then Skolemized to obtain a set of purely universally-quantified formulas in order to apply
techniques from first-order logic [35, 9]. Then, we introduce a novel class of tree automata,
called bounded-fork automata, accepting trees with bounded-branching. We show that the
emptiness problem for these automata, unlike for classic tree automata, can be decided
in LogSpace. These results are key to obtaining the complexity bounds. Indeed, we can
show that for any sentence φ of the two considered fragments, we can build a bounded-fork
automaton of size doubly-exponential (resp., singly-exponential) in the length of φ, accepting
all and only its normal models. The ExpSpace and PSpace upper bounds for satisfiability,
then, immediately follow from the complexity of the emptiness problem. The results also
trickle down to suitable fragments of sublogics of SL such as ATL, ATL*, CTL, and CTL*.

Restrictions similar in vein to the non-recurrent one we study here have been considered
in the past for LTL, CTL, and CTL*. In [13] the author introduces flatLTL, flatCTL,
and flatCTL*, as fragments of the corresponding temporal logics where the next operator
is not allowed and the first argument of both the until and the release operators can only
accommodate propositional formulae. In their LTL form, these restrictions have been applied
in several contexts, such as temporal logics enriched with constraints over data [12, 14],
analysis of discrete pushdown timed systems [28], and the synthesis of hybrid systems [19].
In particular, the LTL fragment considered in [12, 28] is a sublogic of the linear-time logic
underlying WSL ̸⟳ [1g], while the one originally considered in [13] is not comparable to ours,
as it restricts the first and not the second argument of the release operator, therefore still
allowing for recurrent sentences. While both model-checking and satisfiability problems for
flatLTL have been shown to be PSpace-complete [15, 38], to the best of our knowledge,
only expressiveness properties have been studied for flatCTL and flatCTL*.
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2 Preliminaries

Games. A concurrent game structure (CGS, for short) w.r.t. finite non-empty sets of
atomic propositions AP and agents Ag is a tuple G≜ ⟨Ac,Ps, τ , vI , λ⟩, where Ac and Ps
are countable non-empty sets of actions and positions, vI ∈ Ps is an initial position, and
λ : Ps → 2AP is a labelling function mapping every position v ∈ Ps to the set of atomic
propositions λ(v) ⊆ AP true at that position. A decision d ∈ Dc≜AcAg is a function that
chooses an action for each agent. A move function τ : Ps × Dc → Ps maps every position
v ∈ Ps and decision d ∈ Dc to a position τ(v, d) ∈ Ps. By abuse of notation, τ ⊆ Ps × Ps
also denotes the transition relation between positions such that (v, w) ∈ τ iff τ(v, d) = w,
for some d ∈ Dc. As usual, τ+ (resp., τ∗) is the transitive (resp., reflexive and transitive)
closure of τ . A path π ∈ Pth ⊆ Ps∞≜Ps∗∪ Psω is a finite or infinite sequence of positions
compatible with the move function, i.e., ((π)i, (π)i+1) ∈ τ , for each i ∈ [0, |π| − 1). The set
Pth(v)≜ {π ∈ Pth | |π| > 0 ∧ fst(π) = v} denotes the set of paths starting at a position v. A
history at v is a finite non-empty path ρ ∈ Hst(v)≜Pth(v) ∩ Ps+ starting at that position.
Similarly, a play π ∈ Play(v)≜Pth(v) ∩ Psω at v is an infinite path starting at v. A strategy
rooted at v is a function σ ∈ Str(v)≜Hst(v) → Ac mapping histories to actions. A v-rooted
profile ξ ∈ Prf(v)≜Ag → Str(v) associates agents with strategies. A path π ∈ Pth(v)
is compatible with a v-rooted profile ξ ∈ Prf(v) if, for each i ∈ [0, |π| − 1), it holds that
(π)i+1 = τ((π)i, d), for the unique decision d ∈ Dc such that d(a) = ξ(a)((π)≤i), for all
agents a ∈ Ag. A CGS G is a tree if, for some set X, 1) Ps is a prefix-closed set of words in
X∗, 2) vI = ε is the empty word, and 3) (v, w) ∈ τ iff w = v · x, for all position v, w ∈ Ps,
for some x ∈ X. As usual, τ−1: Ps \ ε → Ps denotes the predecessor function τ−1(v · x)≜ v,
for all v · x ∈ Ps \ ε with x ∈ X. Finally, a tree CGS G is k-fork, for some k ∈ N, if along
every path π ∈ Pth(vI) there are at most k forks, namely, |{i ∈ N | |τ((π)i)| > 1}| ≤ k.

Functions. A function signature is a tuple F ≜ ⟨Fn, ar⟩, where Fn is a set of function symbols
and ar : Fn → N is an arity function mapping each symbol f ∈ Fn to its arity ar(f) ∈ N. An
F -structure F≜

〈
D, ·F

〉
is defined by a domain D together with an interpretation of Fn over

D, i.e., every function symbol f ∈ Fn is interpreted in a function fF : Dar(f) → D. The set of
terms built over the signature F and a set of variables Vr is denoted by Tr. A substitution is
a map µ : Vr → Tr assigning a term to each variable; a valuation w.r.t. F is a map ξ : Vr → D
assigning an element of the domain to each variable. Given a term t ∈ Tr, by tµ we denote
the replacement of all variables in t with the terms prescribed by the substitution µ; by tF,ξ
we denote the interpretation of t in F under the valuation ξ, i.e., the value assumed by t

when each variable x is replaced with the value ξ(x). A set of terms T ⊆ Tr unifies if there
is a substitution µ such that tµ1 = tµ2 , for all t1, t2 ∈ T. Similarly, T equalises over F if there
is a valuation ξ such that tF,ξ1 = tF,ξ2 , for all t1, t2 ∈ T. For more details, we refer to [4, 9].

Automata. A deterministic (resp., nondeterministic) word automaton (DWA (resp., NWA),
for short) is a tuple ⟨Σ,Q, δ, qI ,QF⟩, where Σ and Q are the finite non-empty sets of input
symbols and states, qI ∈ Q is the initial state, QF ⊆ Q is the subset of final states, and
δ : Q × Σ → Q ∪ {⊥,⊤} (resp., δ : Q × Σ → 2Q) is the deterministic (resp., nondeterministic)
transition function mapping each state q ∈ Q and input symbol σ ∈ Σ to the successor
state (resp., set of successor states) δ(q, σ). A deterministic (resp., nondeterministic) tree
automaton (DTA (resp., NTA), for short) is a tuple ⟨Σ,Λ,Q, δ, qI ,QF⟩, where all components
but Λ and δ are defined as for a word automaton, Λ ⊆ N+ is the non-empty set of node
degrees, and δ : Q × Σ × Λ → Q∗∪ {⊥,⊤} (resp., δ : Q × Σ × Λ → 2Q∗) is the deterministic
(resp., nondeterministic) transition function mapping each state q ∈ Q, input symbol σ ∈ Σ,
and node degree d ∈ Λ to the tuple of successor states δ(q, σ, d) ∈ Qd (resp., set of tuples of
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successor states δ(q, σ, d) ⊆ Qd), where ⊥ and ⊤ are two implicit distinguished rejecting and
accepting states used to simplify the constructions of this work (these implicit states are not
needed in the case of nondeterministic automata). We only consider the Büchi acceptance
condition, for both word and tree automata. The notions of (accepting) run and recognised
language are the standard ones. For more details, we refer to [29, 23].

3 Decidable Fragments of Strategy Logic

Strategy Logic [10, 34] extends LTL by allowing to quantify over strategies and to assign a
strategy to each agent, by binding the latter with some quantified variable. A quantifier prefix
is a finite sequence ℘ ∈ Qn ⊆ {∃x, ∀x |x ∈ Vr}∗ of existential and universal quantifiers Qnx,
in which variables x ∈ Vr occur at most once. Similarly, a binding prefix is a finite sequence
♭ ∈ Bn ⊆ (Ag × Vr)|Ag| of bindings (a, x), in which each agent a ∈ Ag occurs exactly once.
By vr(℘) , vr(♭) ⊆ Vr we denote the sets of variables occurring in ℘ and ♭.

One-Goal Strategy Logic. One-Goal Strategy Logic is one of the largest decidable fragments
of SL known to date and is complete for 2ExpTime. Its main constraint w.r.t. full SL is
that bindings are tightly connected to quantifiers and agents cannot change strategies within
the same sentence without quantifying on them again in a nested subsentence.

▶ Definition 1 (SL[1g] Syntax [31]). SL[1g] formulas are generated from the sets of atomic
propositions AP, quantifier prefixes Qn, and binding prefixes Bn via the following grammar,
where p ∈ AP, ℘ ∈ Qn, and ♭ ∈ Bn, with vr(℘) = vr(♭):

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | ℘♭ψ; ψ :=φ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ Uψ | ψ Rψ.

SL[1g] denotes the set of sentences generated by Rule φ, while FSL[1g] ⊂ SL[1g] represents
the flat fragment, i.e., the subset generated by the variant of the grammar where p replaces
the call to Rule φ within Rule ψ, i.e., with ψ pure LTL.

With ap(φ) ⊆ AP, vr(φ) ⊆ Vr, and free(φ) ⊆ Vr ∪ Ag we denote, respectively, the sets
of atomic propositions, variables, and free variables and agents occurring φ. Being a first
order language, the semantics of SL formulae is defined w.r.t. an assignment, interpreting
variables as strategies. This interpretation is extended to agents as well, to take care of
bindings assigning strategies to agents. Let Asg(v)≜ (Vr∪Ag)⇀ Str(v) denote the set of such
assignments. For a set V ⊆ (Vr∪Ag), we also provide, for convenience, the set of assignments
defined only over V, i.e., Asg(v,V)≜ {χ ∈ Asg(v) | dom(χ) = V}, and those defined at least
over V as Asg⊆(v,V)≜ {χ ∈ Asg(v) | V ⊆ dom(χ)}. As usual, given an assignment χ, a
variable or agent x ∈ (Vr ∪ Ag) and a strategy σ ∈ Str, we denote with χ[x 7→ σ], the
assignment χ′ resulting from assigning σ to x in χ. Since the semantics for the Boolean and
temporal operators is practically the classic one (see [32]), we only provide the interpretation
of quantifiers and bindings.

▶ Definition 2 (SL Semantics [32]). Given a CGS G, for all SL formulas φ, positions
v ∈ Ps, and v-rooted assignments χ ∈ Asg⊆(v, free(φ)), the modelling relation G, v, χ |= φ is
inductively defined as follows.
1. Atomic propositions, Boolean connectives and temporal operators are interpreted as usual.
2. For all x ∈ Vr:

a. G, v, χ |= ∃x. ϕ, if G, v, χ[x 7→ σ] |= ϕ, for some strategy σ ∈ Str(v);
b. G, v, χ |= ∀x. ϕ, if G, v, χ[x 7→ σ] |= ϕ, for all strategies σ ∈ Str(v).

3. For all a ∈ Ag and x ∈ Vr: G, v, χ |= (a, x)ϕ, if G, v, χ[a 7→ χ(x)] |= ϕ.
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For a sentence φ, we write G, v |= φ and G |= φ instead of G, v,∅ |= φ and G, vI ,∅ |= φ.
The existence of a normal model for sentences, as defined in the next section, relies on

the notion of skeleton that breaks down their nesting structure. The idea is that a skeleton
decomposes a sentence φ into a set Φ of simpler sentences of the flat fragment. Essentially,
φ is stratified into layers, whose sentences cannot occur within temporal operators. The
connection between the layers is achieved by means of auxiliary atomic propositions, used as
names of subsentences nested within temporal operators in the original formula. The skeleton
is a reminiscent of the technique used in the model-checking algorithms for CTL* [30, 3].

For example, the following sentence φ≜ p∧∀x∃y∀z(a, x)(b, y)(c, z)(X (q∧(X F q) U (ϕ1∧ϕ2)))
with ϕ1 ≜ ∃x∀y(a, x)(b, y)(c, y)(p U q) and ϕ2 ≜ ∀x∃y(a, y)(b, x)(c, y)(G ¬q) can be stratified
into 2 layers, using the fresh atomic propositions {s, s1, s2} as names for the subsentences of
φ: ϕ1 7→ s1, ϕ2 7→ s2 and ∀x∃y∀z(a, x)(b, y)(c, z)(X (q ∧ (X F q) U (s1 ∧ s2))) 7→ s. In the end,
the original formula φ is summarised by the positive Boolean formula ζ ≜ p ∧ s. This idea is
formalised by the following definition, where the relation ≺ encodes the ordering among the
layers and the function ℓ assigns atomic propositions as names of subsentences of φ. We shall
denote with BF (resp., BF+) the set of Boolean (resp., positive Boolean) formulae over AP.

▶ Definition 3 (SL[1g] Skeleton). An SL[1g] skeleton is a tuple ð≜ ⟨ζ,Φ, ℓ⟩, where ζ ∈ BF+

is a positive Boolean formula, Φ ⊆ FSL[1g] is a finite set of FSL[1g] sentences, and
ℓ : Φ → AP is an injective function mapping each sentence ϕ ∈ Φ to an atomic proposition
ℓ(ϕ) ∈ AP, for which there is a strict partial order ≺ ⊆ Φ × Φ such that if ℓ(ϕ) ∈ ap(ϕ′) then
ϕ ≺ ϕ′, for all ϕ′ ∈ Φ. In addition: ð is simple if every atomic proposition p ∈ img(ℓ) occurs
in exactly one sentence ϕ ∈ Φ ∪ {ζ} and at most once in it; ð is principal if it is simple and
all sentences ϕ in Φ have the form ℘♭ψ, for some ℘ ∈ Qn, ♭ ∈ Bn, and ψ ∈ LTL.

For instance, the skeleton of the example above is indeed a principal one. For a skeleton
ð, we denote with φð the sentence derived from ζ by iteratively replacing each atomic
proposition p ∈ img(ℓ) with the corresponding FSL[1g] sentence ℓ−1(p) until no atomic
proposition in img(ℓ) occurs in the sentence. This effectively reverts the stratification process
described above. Note that the strict partial order ≺ on Φ ensures termination of the rewriting
procedure. While, for convenience, we allow for more liberal forms of skeletons, principal
ones suffice, as one such skeleton exists for each sentence, where different occurrences of the
same subsentence are mapped to different names by ℓ.

▶ Proposition 4. Each SL[1g] sentence φ enjoys a principal SL[1g] skeleton ð with φ = φð.

Satisfaction of a skeleton ð by a CGS G over the atomic propositions of ð is defined quite
naturally. Specifically, the initial position of G must satisfy locally the Boolean formula ζ,
and any sentence in Φ, whose “name” labels a given position v of G, must be satisfied at v.

▶ Definition 5 (Skeleton Satisfaction). A CGS G satisfies an SL[1g] skeleton ð, in symbols
G |= ð, if 1) λ(vI) |= ζ and 2) G, v |= ϕ, for all ϕ ∈ Φ and v ∈ Ps with ℓ(ϕ) ∈ λ(v).

The following result establishes the equisatisfiability of SL[1g] skeletons and their corres-
ponding SL[1g] sentences.

▶ Theorem 6. φð is satisfiable iff ð is satisfied by a tree CGS, for every SL[1g] skeleton ð.

Non-Recurrent One-Goal Strategy Logics. The main source of complexity for SL[1g], or
CTL* and ATL* for that matter, resides in its ability to express properties that request
satisfaction of a given sentence an unbounded number of times along a computation, as,
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e.g., in the CTL formula EG (¬p ∧ EX p). Given the branching nature of quantifications in
SL, this may lead to models with an unbounded number of branching points. In general,
such models can be recognised by nondeterministic tree automata with a double exponential
number of states [37, 31]. Emptiness for such tree automata is known to be PTime [42],
which leads to a 2ExpTime procedure for deciding SL[1g]. Since CTL* is contained in
SL[1g], completeness for 2ExpTime follows [16]. To avoid this issue, we restrict the number
of times a given sentence can be requested, by preventing sentences in the left-hand (resp.,
right-hand) argument of the until (resp., release) operator. We call the resulting fragment
non-recurrent, in that it forbids an unbounded number of requests of the same sentence.

▶ Definition 7 (SL[1g] Fragments). Formulas of non-recurrent fragments of SL[1g] are
generated from the sets of atomic propositions AP, quantifier prefixes Qn, and binding prefixes
Bn via the following grammar, with p ∈ AP, ψ ∈ LTL(AP), β ∈ BF(AP), ℘ ∈ Qn, and
♭ ∈ Bn such that vr(℘) = vr(♭):

SL ̸⟳ [1g]: φ := p | ¬p | φ ∧ φ | φ ∨ φ | ℘♭η | ℘♭ψ; η :=φ | η ∧ η | η ∨ η | ψ Uφ | φ Rψ | Xη | Xψ;
WSL ̸⟳ [1g]: φ := p | ¬p | φ ∧ φ | φ ∨ φ | ℘♭η; η :=φ | η ∧ η | η ∨ η | β Uφ | φ Rβ | Xη;

For each fragment, the rule φ takes care of the first-order (branching) structure of the
language, while the rule η handles the temporal portion. The non-recurrence constraint is
embedded in the cases for the until and release operators within the rule η, restricting the
left-hand (resp., right-hand) argument of the until (resp., release) operators to be a pure LTL
formula with no nesting of sentences. The weak fragment further restricts those arguments so
that no temporal operators can occur altogether, i.e., they can only accommodate Boolean
formulae. No restriction is imposed on the next operator, while negation can only be applied
to atomic propositions in AP. By replacing all the occurrences of φ in the two rules η with
a positive Boolean formula γ ∈ BF+(AP ∪ A), for a (possibly empty) distinguished set A
of atomic propositions, such that AP ∩ A = ∅, we obtain the corresponding flat fragments
FSL ̸⟳

A[1g] and FWSL ̸⟳
A[1g]. The idea is that A contains names of sentences possibly used

by the skeletons for the two fragments. In addition, we call Weak LTL (WLTL for short),
the fragment of LTL that agrees with the rule η of FWSL ̸⟳ [1g].

We can obtain skeletons for the new fragments, by suitably restricting their components
to the corresponding flat fragments and requiring that only fresh atomic propositions in A
be used as names for sentences. An SL ̸⟳ [1g] (resp., WSL ̸⟳ [1g]) skeleton ð = ⟨ζ,Φ, ℓ⟩ is
a principal SL[1g] skeleton such that 1) Φ ⊆ FSL ̸⟳

A[1g] (resp., Φ ⊆ FWSL ̸⟳
A[1g]), and 2)

img(ℓ) ∩ A = ∅, for some A ⊆ AP. The analogous of Proposition 4 holds for the two new
fragments SL ̸⟳ [1g] and WSL ̸⟳ [1g] as well.

▶ Proposition 8. Each SL ̸⟳ [1g] (resp., WSL ̸⟳ [1g]) sentence φ enjoys an SL ̸⟳ [1g] (resp.,
WSL ̸⟳ [1g]) skeleton ð with φ = φð.

The constraint on the non-recurrence of sentences allows us to strengthen Theorem 6
and show that a sentence is satisfiable iff its skeleton can be satisfied by a model where
each subsentence is requested at most once. This property is formalised by the definition
of single-time satisfaction and the following theorem. The result is instrumental to the
definition of normal models (see next section) and, ultimately, to the main complexity results.

▶ Definition 9 (Single-Time Skeleton Satisfaction). A CGS G single-time satisfies a skeleton ð
if 1) G |= ð and 2) if ℓ(ϕ) ∈ λ(v) then ℓ(ϕ) ̸∈ λ(w), for all ϕ ∈ Φ, v ∈ Ps, and w ∈ τ+(v).

▶ Theorem 10. φð is satisfiable iff ð is single-time satisfied by a tree CGS, for every
SL ̸⟳ [1g] skeleton ð.
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Assume φð is satisfiable. By Theorem 6, ð is satisfiable as well. Thus, let G be one of
the tree CGSs satisfying ð. The proof proceeds by induction on the depth k of the strict
partial order ≺ underlying the skeleton ð.

The idea is the following: starting from G, we perform a sequence Gk+1,Gk,Gk−1, . . . ,G0
of structure-preserving model transformations, where Gk+1 ≜G. The labelling of the models
is modified in such a way that all sentences in Φ at level i in the ordering ≺ are single-time
satisfied in Gj , for every j ≤ i. More specifically, sentences at level k only need to be verified
at the root, while those at i < k just need to be checked at the first occurrence of a witness
of the until/release operator containing it. Hence, the labelling of Gi is obtained from Gi+1,
by removing, along each path, every occurrence of the name of a sentence at level i except
the one that serves as witness of the corresponding until/release operator. By construction,
the name ℓ(ϕ) of every sentence ϕ in Φ occurs only once along any path of G0. Hence, G0
single-time satisfies ð.

4 Normal Models

The efficient satisfiability of the non-recurrent fragments relies on the fact that any of their
sentences is satisfiable by models of a specific structure, namely, by bounded-fork tree CGS.
This can be proven by first extending SL with function symbols, to allow for bindings
containing strategy terms, instead of simple variables, which enables us to state a Skolem
normal-form theorem for SL[1g]. This result can be used to show that any model for a
sentence φ of SL ̸⟳ [1g] in Skolem form can be transformed into a bounded-fork tree satisfying
φ, where forks only occur as a result of non-unifying strategy terms within the bindings of φ.

Functions in SL. Given a function signature F , by SL[1g,F ] we denote the extension
of SL[1g], where we allow agents to be bound with complex terms instead of simple
variables. This means that the set of bindings Bn in the syntax gets replaced by its extension
Bn(F ) ⊆ (Ag × Tr)|Ag|. A binding prefix is, thus, a finite sequence ♭ ∈ Bn(F ) of bindings
(a, t), with t ∈ Tr, in which each agent a ∈ Ag occurs exactly once. ∀SL[1g,F ] represents
the universal fragment of SL[1g,F ], where existential quantifiers are forbidden. In order to
define the semantics of an SL[1g,F ] sentence, we need to provide a strategy interpretation
for all function symbols in Fn. We do this, via the map ℑ : v∈Ps 7→ Fv assigning to each
position v an F -structure Fv =

〈
Str(v), ·Fv

〉
whose domain is the set of strategies rooted at

v. Given a pair (G,ℑ) of a CGS G and a strategy interpretation ℑ, called interpreted CGS,
we can define the modelling relation (G,ℑ), v, χ |= φ as in Definition 2, where Item 3 gets
replaced by the following one:

for all a ∈ Ag and t ∈ Tr: (G,ℑ), v, χ |= (a, t)ϕ, if (G,ℑ), v, χ[a 7→ tℑ(v),χ] |= ϕ,
where agent a ∈ Ag is bound to strategy tℑ(v),χ, i.e., the interpretation of term t under the
v-rooted assignment χ ∈ Asg(v) in the F -structure ℑ(v) =

〈
Str(v), ·ℑ(v)〉 associated with v.

Intuitively, we assign to agent a a strategy dependent on those associated with the variables
occurring in the term t.

An SL[1g,F ] sentence φ is satisfied by a CGS G, in symbols G |= φ, if there exists a
strategy interpretation ℑ such that (G,ℑ) |= φ, where the latter stands for (G,ℑ), vI ,∅ |= φ.
In the rest of the work, by skm : SL[1g] → ∀SL[1g,F ] we denote the function mapping each
SL[1g] sentence φ to the corresponding Skolem normal-form skm(φ), where each variable
x existentially quantified in a subsentence ϕ of φ is replaced by a fresh function symbol
applied to the variables universally quantified in ϕ before x. As an example, consider the
SL[1g] sentence φ used in the previous section to exemplify the notion of SL[1g] skeleton.
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Then, skm(φ) = p ∧ ∀x∀z(a, x)(b, f1(x))(c, z)(X (q ∧ (X F q) U (skm(ϕ1) ∧ skm(ϕ2)))), where
skm(ϕ1) = ∀y(a, f2)(b, y)(c, y)(p U q) and skm(ϕ2) = ∀x(a, f3(x))(b, x)(c, f3(x))(G ¬q). In φ,
the existential variable y of the outermost sentence is replaced by the term f1(x), since the
strategy chosen by agent b only depends on the strategy used by agent a. A similar reasoning
applies to the subsentence ϕ2. In ϕ1, instead, the existential variable x is replaced by the
constant f2, as the strategy for agent a does not depend on those of b and c.

In [32] (see Theorem 4.5 and Corollary 4.6), it has been proved that SL enjoys a semantic
version of Skolem normal-form theorem, where the interpretation of Skolem functions is given
at the meta-level. Thanks to the introduction of function symbols in the syntax of the logic,
this result can now be stated at the object-level in the classic way.

▶ Theorem 11. Let G be a CGS. An SL[1g] sentence φ is satisfied by G iff the ∀SL[1g,F ]
sentence skm(φ) is satisfied by G.

A fundamental property of SL[1g], which allows both its model-checking and satisfiability
problem to be elementary decidable [32, 31, 33], is that every satisfiable sentence of this logic
is behaviourally satisfiable [32] (see Theorem 4.20 and Corollary 4.21), with the intuitive
meaning that each action chosen by an agent, for some history of a play, only depends on
the actions chosen by the other agents along that history. In other words, an agent does not
need to forecast the future to play optimally. At this point, we can formalise this intuition
and restate the result proved in [32] as follows. We say that two strategies σ1, σ2 ∈ Str(v)
are equal along history ρ ∈ Hst(v) (ρ-equal, for short), if, for every history ρ′ ∈ Hst(v) with
ρ′ ≤ ρ, it holds that σ1(ρ′) = σ2(ρ′), where ≤ is the partial order induced by prefixes. This
notion immediately lifts to vectors of strategies σ⃗1, σ⃗2 ∈ Str(v)k, of some k ∈ N, as usual:
σ⃗1 and σ⃗2 are ρ-equal if all their k components (σ⃗1)i and (σ⃗2)i are ρ-equal, with i ∈ [k]. A
function between strategies f : Str(v)k → Str(v), for some dimension k ∈ N, is behavioural if,
for every history ρ ∈ Hst and pair of ρ-equal k-vectors of strategies σ⃗1, σ⃗2 ∈ Str(v)k, it holds
that f(σ⃗1)(ρ) = f(σ⃗2)(ρ). A strategy interpretation ℑ w.r.t. a given CGS G is behavioural
if the function fℑ(v) is behavioural, for every position v ∈ Ps and symbol f ∈ Fn. An
SL[1g,F ] sentence φ is behaviourally satisfied by a CGS G if there exists a behavioural
strategy interpretation ℑ such that (G,ℑ) |= φ.

▶ Theorem 12. For any CGS G and SL[1g] sentence φ, the sentence skm(φ) is satisfied
by G iff it is behaviourally satisfied by G.

Unifying Bindings & Paths. In [35] it has been observed that the decidability of the
satisfiability problem for SL[1g] can be attributed to the fact that variables are indivisibly
associated with agents by bindings. Here we further exploit that observation to define a normal
form for SL ̸⟳ [1g] models, applying the notions of Herbrand property and quasi-Herbrand
structures devised in [9], so that unifying bindings identify the same paths.

The notion of SL[1g] (resp., SL ̸⟳ [1g]) skeleton, as well as the corresponding concept of
(resp., single-time) skeleton satisfaction, immediately lifts to SL[1g,F ] (resp., SL ̸⟳ [1g,F ]) in
the obvious way. A skeleton is universal if all formulas in Φ are universal, i.e., Φ ⊆ ∀SL[1g,F ].
Given an SL[1g] (resp., SL ̸⟳ [1g], WSL ̸⟳ [1g]) skeleton ð, we denote by skm(ð) the (universal)
∀SL[1g,F ] (resp., ∀SL ̸⟳ [1g,F ], ∀WSL ̸⟳ [1g,F ]) skeleton obtained via Skolemisation of all
the sentences in Φ, where a different set of Skolem symbols is used for each sentence.

The following result is an easy corollary of what we have derived. Indeed, Theorem 10
ensures that, for every SL ̸⟳ [1g] skeleton ð, the sentence φð is satisfiable iff ð is single-time
satisfiable by some tree CGS G. Now, by Theorem 11, G, v |= ϕ iff G, v |= skm(ϕ), for all
ϕ ∈ Φ and v ∈ Ps with ℓ(ϕ) ∈ λ(v). Finally, Theorem 12 allows for a behavioural satisfaction.
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▶ Corollary 13. For every SL ̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time behaviourally satisfiable by a tree CGS.

Bindings ♭ = (a1, t1) · · · (ak, tk) ∈ Bn(F ) are sequences of terms over F , one for each
agent. Hence, the standard notions of term replacement, interpretation, unification, and
equalisation can be lifted to them in the obvious way. Specifically, ♭µ≜(a1, t

µ
1 ) · · · (ak, tµk)

denotes the replacement of all the variables in every ti with the terms prescribed by the
substitution µ, while ♭F,χ denotes the interpretation of ♭ in F under the assignment χ, i.e.,
the profile ♭F,χ ∈ Prf(v) assigning to each agent ai the strategy tF,χi . A set of bindings
B ⊆ Bn(F ) unifies if there is a substitution µ such that ♭µ1 = ♭µ2 , for all ♭1, ♭2 ∈ B, while
B equalises over F if there is an assignment χ such that ♭F,χ1 = ♭F,χ2 , for all ♭1, ♭2 ∈ B.
As an example, consider the bindings ♭1 ≜(a, x)(b, f1(x))(c, z), ♭2 ≜(a, f2)(b, y)(c, y), and
♭3 ≜(a, f3(x))(b, x)(c, f3(x)), previously obtained by Skolemisation. One can see that ♭1 and
♭2 unify in (a, f2)(b, f1(f2))(c, f1(f2)), while neither ♭1 and ♭3 nor ♭2 and ♭3 unify. By a result
in [9] (see Theorem 1) ♭1 and ♭2 also equalise over every structure F, while there exists a
structure F⋆ (quasi-Herbrand w.r.t. {♭1, ♭2, ♭3}, see Theorem 2 of [9]) over which ♭3 does not
equalise with either ♭1 or ♭2.

Every finite set of bindings B ⊂ Bn(F ) is associated with its maximally unifiable coverage
muc(B) ⊆ 2B, i.e., the unique set of the subsets of B such that 1)

⋃
muc(B) = B and 2)

every C ∈ muc(B) is maximally unifiable, i.e., C is unifiable, but C ∪ {♭} is not unifiable,
for all ♭ ∈ B \ C. As an example, consider the set of three bindings B≜{♭4, ♭5, ♭6}, where
♭4 = (α, u)(β, v)(γ, u), ♭5 = (α,w)(β, f(w))(γ, x), and ♭6 = (α, y)(β, z)(γ, g(z)). Then,
muc(B) contains all the subsets of B of size 2. Indeed, the first two bindings unify in
♭45 ≜(α, u)(β, f(u))(γ, u), the first and the last unify in ♭46 ≜(α, g(v))(β, v)(γ, g(v)), and the
last two bindings unify in ♭56 ≜(α,w)(β, f(w))(γ, g(f(w))). In addition, the whole set B is
not unifiable, as w cannot unify with g(f(w)) and, therefore, ♭4 does not unify with ♭56
either. As another example, for the set of bindings {♭1, ♭2, ♭3} of the previous paragraph, we
have that muc({♭1, ♭2, ♭3}) = {{♭1, ♭2}, {♭3}}.

A normal model of a universal skeleton ð is an interpreted tree CGS (G,ℑ), where
the number |τ(v)| of successors of each position v ∈ Ps is dictated solely by the set of
bindings ♭ of some sentence ϕ∈Φ, whose induced play π=play(♭ℑ(w),χ, w), with χ ∈ Asg(w)
and w an ancestor of v satisfying ϕ, passes through v. In other words, each position in a
normal model has just enough successors to separate the sets of non-unifying bindings, which
may require different paths to satisfy the associated sentences. The underlying idea is the
following. Consider a model of a universal skeleton and a position v in the model labelled
with propositions s1 and s2, which name the subsentences ∀♭1ψ1 and ∀♭2ψ2. This witnesses
that both sentences must be satisfied at v. If bindings ♭1 and ♭2 unify, hence equalise, then
the corresponding LTL matrices ψ1 and ψ2 must necessarily be satisfied along the same
paths from v, as the two bindings induce the same paths. If, however, ♭1 and ♭2 do not unify,
then ψ1 and ψ2 can be satisfied independently along different paths, since the bindings can
have different interpretations. Normal models capture this intuition, by keeping track, at
each position, of which bindings are paired with which paths from that position. To this end,
such models are equipped with three functions: a global binding function g that associates
with each position v the set of bindings paired with all the paths through v; a local binding
function l, associating with each position v the set of bindings of the sentences that label v,
i.e. the sentences that must be satisfied starting from v; and a routing map r that, based on
(non)unification of the bindings at v, dispatches them along possibly different paths from v.
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▶ Definition 14 (Normal Model). An interpreted CGS (G,ℑ) satisfying a ∀SL ̸⟳ [1g] skeleton
ð is normal if 1) G is a tree and 2) there exist three maps l, g : Ps → 2Bn and r : v ∈ Ps 7→
(τ(v) → muc(g(v))) enjoying the following properties, for all positions v ∈ Ps:
a) r(v) is a bijective map from τ(v) to muc(g(v));
b) l(v) =

{
♭ ∈ Bn

∣∣∣ ∃ϕ≜ ∀♭ψ ∈ Φ. ℓ(ϕ) ∈ λ(v)
}

;
c) if v = ε then g(v) = l(v) else g(v) = l(v) ∪ r(τ−1(v))(v);
d) ♭ ∈ r((π)i)((π)i+1), for all ♭ ∈ l(v), χ ∈ Asg(v, vr(♭)), and i ∈ N, where π≜ play(♭ℑ(v),χ, v).

For each position v, by Item b, the local binding function l identifies the set of bindings
of those universal sentences ϕ ∈ Φ whose atomic proposition ℓ(ϕ) labels v (note that ϕ holds
at v due to Item 2 of Definition 5); by Item c, the global binding function g extends l with
the bindings of the sentences satisfied at some ancestor of v; finally, by Item a, the routing
map r distributes the bindings collected by g across the successors of v, in such a way that
all bindings forming a maximally unifiable set are routed towards the same successor, while
different unifying sets are routed towards different successors. Observe that, due to Item d,
a path induced by a binding ♭ necessarily passes through one of the successors chosen by r
for ♭ and, vice versa, a successor chosen for ♭ is traversed by at least one path induced by ♭.
Hence, Item d captures the requirement that, at each position, normal models keep track of
which bindings are paired with which paths from that position.

Thanks to Corollary 13 and the notion of behavioural satisfaction, from the strategy
interpretation ℑ(v) =

〈
Str(v), ·ℑ(v)〉 at each position v ∈ Ps of a tree CGS G one can

extract infinitely-many action interpretations Fvρ=
〈

Ac, ·F
v
ρ

〉
, one for each history ρ ∈ Hst(v)

starting at v in G. Specifically, for each function symbol f ∈ Fn of arity k ∈ N, we can set
fF

v
ρ(c⃗)≜ fℑ(v)(σ⃗)(ρ), for all k-tuple of strategies σ⃗ ∈ Str(v)k, where the i-th element (c⃗)i of

c⃗ is equal to the action (σ⃗)i(ρ) chosen by the i-th strategy (σ⃗)i of σ⃗ at ρ. In a sense, the
strategy interpretation ℑ(v) can be viewed as a tree of action interpretations Fvρw, one for
each descendant w of v, where ρw is the history starting in v and leading to w. By exploiting
the connection between strategy and action interpretations and using the fact that, for each
set of bindings B ⊆ Bn(F ), there is always an F -structure F⋆vρ for which every X ⊆ B unifies
iff X equalises over F⋆vρ (see Theorem 2 of [9]), the following result can be obtained.

▶ Theorem 15. For every SL ̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time normally satisfiable.

The main result of this section states that every satisfiable SL ̸⟳ [1g] sentence has a
bounded-fork model. This can be easily derived from the previous theorem by observing
the following: i) due to the single-time satisfaction property, along any path of the model,
there are at most |Φ| sentences of the form skm(℘♭ψ) that need to be satisfied, since every
atomic proposition ℓ(℘♭ψ) occurs at most once; ii) thanks to the normality property, a fork
at any given position v of a path is only caused by non-unifying bindings, which occur if new
sentences in Φ need to be satisfied at v, as the bindings routed toward v from the ancestors
necessarily unify.

▶ Corollary 16. For every SL ̸⟳ [1g] skeleton ð, it holds that φð is satisfiable iff skm(ð) is
single-time normally satisfied by a k-fork CGS, for k≜max{0, |Φ| − 1}.

5 New Classes of Automata

In this section, we introduce the novel class of bounded-fork tree automata that will be
exploited in Section 6 to devise an efficient satisfiability checking algorithm for the non-
recurrent fragments of SL[1g].
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Bounded-Fork Tree Automata. Bounded-fork automata are a restriction of the standard
tree automata tailored to accept only trees having a bounded number of fork nodes along
each path starting from the root (recall that bounded-fork trees are suitable models for
SL ̸⟳ [1g]). If at most k forks in a path are allowed, the ability to count the number of
occurring forks is obtained by partitioning the set of states Q into k + 1 subsets Q0, . . . ,Qk.
Intuitively, a state q ∈ Qi can observe at most i additional forks along a path. Naturally, the
initial states belong to Qk and only states in Q0, from where no more forks are admitted,
can be involved in the Büchi acceptance condition.

▶ Definition 17 (Bounded-Fork Automaton). An NTA A≜ ⟨Σ,Λ,Q, δ, qI ,QF⟩ is k-forking
(k-NTA, for short), for some given k ∈ N, if (i) 1 ∈ Λ and (ii) there is a (k + 1)-partition
(Q0, . . . ,Qk) of Q satisfying the following constraints: (a) qI ∈ Qk; (b) QF ⊆ Q0; (c) for all
indexes i ∈ [0, k], states q ∈ Qi, input symbols σ ∈ Σ, and node degrees d ∈ Λ, if d = 1 then
δ(q, σ, d) ⊆

⋃i
j=0 Qj else δ(q, σ, d) ⊆ (

⋃i−1
j=0 Qj)d.

The motivation for using k-NTAs, instead of standard NTAs, is clearly expressed by
Theorem 18, which establishes a logarithmic space complexity of the emptiness problem w.r.t.
the size of the k-NTA. This contrasts with the PTime hardness bound on the same problem
for classic NTA [42]. To prove the result, we devise a recursive reachability algorithm that
looks for a reachable cycle that includes an accepting state and is completely contained
within the partition Q0 of the k-NTA. The gain in complexity is due to the fact that the
algorithm only needs the space required for backtrack along a path to previous fork states,
whose number is bounded by k. The emptiness problem can also be solved by reduction to
alternating Turing machines, as well as to Büchi games, where the number of turns assigned
to the universal player is limited by k [39].

▶ Theorem 18. The emptiness problem for a k-NTA with n states and transition function
of size m can be solved in Space(k · log n+ log2 n+ logm) and ATime[k-alt](log n+ logm).

Good for Game Automata. One way to solve the satisfiability problem for branching-time
logics is to embed a word automaton W, taking care of the linear constraints on the paths,
within a tree automaton that, at each step, dispatches copies of W, updated according to
the symbol read, along all the possible branching directions [36, 40]. This approach works
pretty nicely for deterministic word automata, but not for general nondeterministic ones, as
the nondeterministic choice at a given instant of time can be solved by exploiting knowledge
about future instants. However, the correctness of the approach can still be recovered
if the requirement on determinism is relaxed slightly, allowing for a “controlled” form of
non-determinism. This leads to the notion of nondeterministic good-for-game automata [27].

Fixed an a priori set of node degrees Λ ⊆ N+, the word-on-tree function wotΛ : NWA →
NTA maps an NWA W = ⟨Σ,Q, δ, qI ,QF⟩ to the NTA wotΛ(W)≜

〈
Σ,Λ,Q, δ̂, qI ,QF

〉
,

whose tree transition function δ̂ is derived from the word transition function δ as follows:
δ̂(q, σ, d)≜

∏d−1
i=0 δ(q, σ), for all states q ∈ Q, input symbols σ ∈ Σ, and node degree d ∈ Λ.

▶ Definition 19 (Good-for-Game Automaton). Let T be a class of Σ-labelled Λ-trees. An
NWA W = ⟨Σ,Q, δ, qI ,QF⟩ is a good-for-game automaton w.r.t. T (T-GFG, for short) if
Trc(T ) ⊆ L(W) implies T ∈ L(wotΛ(W)), where Trc(T ) is the set of Σ-traces of T , for all
trees T ∈ T.
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Intuitively, good-for-game automata only use knowledge of the (non-strict) past to de-
termine the next steps and no information on the future (via forks related to nondeterministic
guesses). This relates to the notion of strategy in the context of games, where strategies are
purely based on histories (i.e., finite traces). In particular, note that the converse direction,
T ∈ L(wotΛ(W)) implies Trc(T ) ⊆ L(W), always holds true.

The next paragraph introduces a class of word automata that are GFG for k-bounded
trees and will allow us to define a satisfiability algorithm for SL ̸⟳ [1g].

Prefix-Deterministic Word Automata. Prefix-deterministic word automata are NWAs
which behave deterministically on arbitrary prefixes of their runs and behave freely, i.e.,
nondeterministically, afterwards. The idea is that such automata can be used to encode
the checks for compliance of all the paths of a tree w.r.t. an LTL property. We shall take
advantage of the prefix-determinism to constrain the nondeterministic choices within the
automaton to occur only after an initial prefix where all the forks already occurred.

▶ Definition 20 (Prefix-Deterministic Automaton). An NWA W = ⟨Σ,Q, δ, qI ,QF⟩ is prefix-
deterministic (PD-NWA, for short) if there is a deterministic transition function δ̃ : Q×Σ →
Q∪{⊥,⊤} with δ̃(q, σ) ∈ δ(q, σ)∪{⊥,⊤}, for all states q ∈ Q and input symbols σ ∈ Σ, such
that, for all infinite words v ·w ∈ Σω, it holds that v ·w ∈ L(W) iff either one of the following
two conditions holds true, where qv ≜ δ̃∗(qI , v): 1) qv = ⊤; 2) qv ̸= ⊥ and w ∈ L(Wv) with
Wv ≜ ⟨Σ,Q, δ, qv,QF⟩.

For every NWA W, we can easily construct a language equivalent PD-NWA, by using
a standard subset construction for the determinisation of the initial behaviours of W and,
then, suitably concatenating it to W itself to complete the behaviours.

▶ Theorem 21. For every NWA W with n states, there exists a PD-NWA D with n+ 2n
states such that L(D) = L(W).

The standard automaton-theoretic construction for LTL [41] can be easily lifted to
PD-NWA as stated by Theorem 22. Notice that, when the WLTL fragment of LTL is
considered, the automaton construction has to deal with a number of formulas which is only
singly-exponential w.r.t. the size of the input formula.

▶ Theorem 22. For every LTL (resp. WLTL) formula ψ, there is a PD-NWA Dψ with
2O(2|ψ|) (resp., O

(
2|ψ|3

)
) states such that L(Dψ) = L(ψ).

The following result ensures that every PD-NWA can be embedded within a bounded-fork
tree automaton, a result that will be leveraged in the next section.

▶ Theorem 23. Every PD-NWA is GFG w.r.t. the class of bounded-fork trees.

6 The Satisfiability Problem

We solve satisfiability for SL ̸⟳ [1g] by reducing it to non-emptiness of a bounded-fork
automaton. Let φ be an arbitrary SL ̸⟳ [1g] sentence and, thanks to Proposition 8, ð≜ ⟨ζ,Φ, ℓ⟩
be its a corresponding Skolem skeleton. Corollary 16 tells us that φ is satisfiable iff ð is
single-time normally satisfied by a k-fork CGS, with k≜max{0, |Φ| − 1}. We construct a
k-NTA Nφ recognising all normal models of ð (which are also models of φ). The automaton
is the product Nφ≜Dζ × Dð × NΦ of the following three components: (1) Dζ is a trivial
single-state safety automaton checking whether the labelling of the root satisfies the Boolean
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formula ζ; (2) Dð is a deterministic safety automaton checking that the structure of the input
tree complies with Definition 14; (2) the nondeterministic Büchi automaton NΦ ensures that
all paths identified by the binding ♭ of some sentence ∀♭ψ in Φ satisfy the LTL formula ψ.
We focus on the definitions of Dð and NΦ only, Dζ being obvious.

Before proceeding, we need to fix some notation. Let A ⊆ AP and B ⊆ Bn(F ) be the
sets of all the atomic propositions and bindings occurring in some sentence of the universal
skeleton ð, respectively. The automaton alphabet Σ ⊆ 2A∪B is then the set of all those
symbols σ ⊆ A ∪ B satisfying the following local coherence condition: if ℓ(ϕ) ∈ σ then ♭ ∈ σ,
for all universal sentences ϕ≜ ∀♭ψ ∈ Φ. The idea is to recognise all normal models whose
labelling is enriched with the bindings of the sentences that are satisfied along some path
through each node, as prescribed by Item b of Definition 14 on the global binding function g.
In particular, the local coherence condition precisely corresponds to the property required on
the local binding function l by Item b of the same definition. Obviously, the branching degree
of the tree is bounded by |muc(B)|, thus, the set of node degrees is Λ≜ [1, |muc(B)|]. Finally,
let us consider an arbitrary function r̂ : X ∈ 2B 7→ ([0, |muc(X)| − 1] → muc(X)) such that,
for each set of bindings X ⊆ B, the associated map f̂ ≜ r̂(X): [0, |muc(X)| − 1] → muc(X) is
bijective. This function is used in the following construction to ensure Item a of Definition 14.

▶ Construction 24 (Structure Automaton). The structure automaton Dð is the safety DTA〈
Σ,Λ, 2B, δ, ∅

〉
whose transition function δ is defined as follows: δ(X, σ, d)≜

∏d−1
i=0 f̂(i), where

f̂ ≜ r̂(σ∩B), if X ⊆ σ and d = |img
(̂

f
)

|, and δ(X, σ, d)≜⊥, otherwise, for any set of bindings
X ⊆ B, input symbol σ ∈ Σ, and node degree d ∈ Λ.

It can be shown that, if we extend any normal model of ð with the binding labelling
dictated by its global binding function, we obtain a tree structure that is accepted by Dð.
Vice versa, every tree accepted by Dð is the backbone of a tree CGS, whose functions l, g,
and r (see Definition 14) can be easily extracted from the labelling. To ensure that this
CGS is actually a normal model, we need to verify that the paths labelled by some binding
♭ satisfy the corresponding sentences in Φ. This is precisely the goal of NΦ.

By Theorem 22, for any SL ̸⟳ [1g] (resp., WSL ̸⟳ [1g]) sentence ϕ≜℘♭ψ ∈ Φ, we can always
construct a PD-NWA Dψ with 2O(2|ψ|) (resp., O

(
2|ψ|3

)
) states such that L(Dψ) = L(ψ). By

using a constant number of additional states, we can turn Dψ into a PD-NWA D
ϕ̃

recognising
all models of the LTL (resp., WLTL) formula ϕ̃≜ G (ℓ(ϕ) → ((X G ¬ℓ(ϕ))∧(ψ∨F ¬♭))). This
formula ensures that ψ is verified starting from the unique point where the corresponding
atomic proposition ℓ(ϕ) occurs, provided that binding ♭ is still active. By turning each
PD-NWA D

ϕ̃
into a tree automaton, we obtain the last component of Nφ.

▶ Construction 25 (Sentence Automaton). The sentence automaton NΦ is obtained as the
product

∏
ϕ∈Φ Nϕ of the NTAs wotΛ(D

ϕ̃
) derived from the PD-NWA D

ϕ̃
, for each ϕ ∈ Φ.

While neither Dð nor NΦ taken in isolation is a bounded-fork automaton, their product
does satisfy the property. Indeed, NΦ ensures that, along a path, the labelling ℓ(ϕ) of a
sentence ϕ ∈ Φ occurs at most once and Dð has a transition with more than one successor
at a given node v only if the set of bindings in the labelling of v does not unify. In the
remaining part of this section, by SL ̸⟳

k [1g] (resp., WSL ̸⟳
k [1g]) we denote the set of those

SL ̸⟳ [1g] (resp., WSL ̸⟳ [1g]) sentences containing at most k subsentences.

▶ Theorem 26. The NTA Nφ is k-forking, for every SL ̸⟳
k [1g] sentence φ.
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At this point, it is clear that every tree accepted by Nφ corresponds to a normal model
for the Skolem skeleton ð of φ. Vice versa, the underlying tree structure of a normal model
is accepted by Nφ thanks to the fact that every D

ϕ̃
is a GFG for the class of bounded-fork

tree, as shown in Theorem 23. This leads to the following result.

▶ Theorem 27. For every SL ̸⟳
k [1g] (resp., WSL ̸⟳

k [1g]) sentence φ, there is a k-NTA Nφ

of size 2O(2|φ|) (resp., 2|φ|Θ(1)) recognising all and only the normal models of φ itself.

By Theorem 18, we obtain that deciding WSL ̸⟳ [1g] is provably easier than deciding
full SL[1g], which is known to be 2ExpTime-complete, while the complexity for SL ̸⟳ [1g]
is lower only if we assume the widely-shared conjecture that ExpSpace ⊂ 2ExpTime.
While PSpace-hardness of WSL ̸⟳ [1g] trivially follows from an obvious encoding of standard
modal-logic satisfiability, it is not even known whether SL ̸⟳ [1g] is ExpTime-hard.

▶ Theorem 28. SL ̸⟳
k [1g] (resp., WSL ̸⟳ [1g]) satisfiability problem is AExpTime[k-alt]

(resp., PSpace-complete).

7 Discussion

We have considered efficiently decidable fragments of one-goal SL, called non-recurrent
fragments, where satisfaction requests for a sentence can only be iterated a bounded number
of times along a computation. This is achieved by restricting the first (resp., second) argument
of the until (resp., release) linear temporal operator. Specifically, when these arguments are
limited to pure LTL formulae, we obtain that satisfiability is decidable in AExpTime[k-alt]
(which is known to be included in ExpSpace), where k is the number of subsentences within
the formulae. If, however, those arguments are further restricted to Boolean formulae, a
PSpace-complete result is given. Both the non-recurrent fragments, which are strictly
included in SL[1g], are still able to express non-trivial game-theoretic problems, such as
the automatic synthesis of multi-agent systems, e.g., communication protocols where active
participants perform a bounded number of decisions during each session.

On the technical side, we obtain the complexity bounds by means of two main techniques.
First, by exploiting a quasi-Herbrand property of a first-order characterisation of the sentences
of those fragments, we identify a normal-form for the models of satisfiable sentences, which
only admit a bounded number of branching points along any computation. Second, we
leverage a novel class of automata, called bounded-fork tree automata, that can recognise
normal models and whose language emptiness problem can be checked in LogSpace.

Since SL[1g] strictly includes both ATL* and CTL*, the results immediately applies also
to the corresponding non-recurrent fragments of those logics, where only LTL (resp., Boolean)
formulae can occur in the first (resp., second) argument of an until (resp., release) operator.
In particular, this observation identifies novel fragments for both logics, namely the weak non-
recurrent ones, with a satisfiability problem whose complexity, which is PSpace-complete,
is strictly lower than the one for the full languages, known to be 2ExpTime-complete.
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Abstract
Our aim is to develop a formal semantics for giving instructions to taskable agents, to investigate
the complexity of decision problems relating to these semantics, and to explore the issues that these
semantics raise. In the setting we consider, agents are given instructions in the form of Linear
Temporal Logic (LTL) formulae; the intuitive interpretation of such an instruction is that the agent
should act in such a way as to ensure the formula is satisfied. At the same time, agents are assumed
to have inviolable and immutable background safety requirements, also specified as LTL formulae.
Finally, the actions performed by an agent are assumed to have costs, and agents must act within a
limited budget. For this setting, we present a range of interpretations of an instruction to achieve
an LTL task Υ, intuitively ranging from “try to do this but only if you can do so with everything
else remaining unchanged” up to “drop everything and get this done.” For each case we present a
formal pre-/post-condition semantics, and investigate the computational issues that they raise.
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1 Introduction

When we consider AI systems that carry out tasks on our behalf (agents), we can distinguish
between different types. At one extreme are agents that are hard-wired to carry out a single
specific function (e.g., vacuum cleaning robots). At the other extreme are autonomous agents,
which have some control over their (mental) state and actions: we can request an autonomous
agent to do something, but whether the agent actually does it is beyond our control. In this
work, we are concerned with taskable agents, which lie between these two extremes. Taskable
agents have a general set of capabilities, which they can draw upon to carry out a wide
range of tasks on our behalf (typically within some constrained environment) – see, e.g., [19].
Unlike autonomous agents, however, taskable agents must try to carry out the instructions
that are presented to them, although we are not in control of how they will try to do so.

In this paper we develop a semantics of instructions for taskable agents: how do we
give them instructions, and how should an agent in receipt of these reconfigure itself in
light of them? Our work lies within the tradition of reactive synthesis [27] and rational

© Julian Gutierrez, Sarit Kraus, Giuseppe Perelli, and Michael Wooldridge;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1091-8232
https://orcid.org/0000-0003-4672-623X
https://orcid.org/0000-0002-8687-6323
https://orcid.org/0000-0002-9329-8410
https://doi.org/10.4230/LIPIcs.TIME.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Giving Instructions in Linear Temporal Logic

verification [11, 15]. We assume agents are given instructions in the form of Linear Temporal
Logic (LTL) formulae. A taskable agent given an LTL instruction Υ must subsequently
act so as to ensure Υ is satisfied, if it can do so. At the same time, however, agents are
assumed to have inviolable and immutable background safety requirements, which are also
specified as LTL formulae. Whatever an agent does, it must attempt to ensure that its safety
requirements are respected: safety takes priority over obedience. Actions performed by an
agent are assumed to have costs, and agents must act within a given limited budget. For this
setting, we present a range of interpretations of an instruction to achieve an LTL task Υ.

A key underlying principle to our work is the principle of least change: when acting on a
new instruction, an agent should try to keep everything else as close to how it was before
as possible. This is a ceteris paribus condition: keep all other things equal. Thus, the most
basic form of instruction we consider intuitively says “try to do this but only if you can do
so with everything else remaining unchanged”. An agent will adopt such an instruction only
if it is able to do so while being able to guarantee its original task is achieved, ensuring that
its safety requirement remains satisfied, and staying within its original budget. At the other
extreme are instructions of the form “get this done whatever it takes” in which case we want
the agent to get the task achieved irrespective of its original task and budget. Between these
two extremes are a range of possibilities, some of which we study here. For each case, we
present a pre-/post-condition semantics, and investigate the issues the semantics raise. We
study the complexity of decision problems relating to our semantics, and find that these
range from polynomial time decidable up to 2ExpTime-complete.

2 The Formal Framework

Where S is a set, we denote the powerset of S by 2S . We use various propositional languages
to express properties of the systems we consider. In these languages, we let Φ be a finite
and non-empty vocabulary of Boolean variables, with elements p, q, . . . Where a and b are
words (either finite or infinite) we denote the word obtained by concatenating a and b by
a · b. Where a is a word, we denote by aω the infinite repetition of a.

2.1 Environments
We consider environments in which a single agent is acting. We model such environments as
nondeterministic finite state machines. We use CALLIGRAPHIC letters for elements of
the environment. Our model assumes that an agent acts in an environment that can be in
any of a set S of possible environment states; the environment is initially in state s0. The
agent has a repertoire A of actions that it can perform: the result of performing an action
α ∈ A when the environment is in a state s ∈ S is to transform the environment into another
state that is nondeterministically taken from T (s, α); we refer to T as the state transformer
function of the environment. Finally, individual actions have real-valued costs associated
with them: the cost of performing α is denoted C(α) – thus, in the interests of simplicity,
costs are fixed, and independent of the state of the system.

Formally an environment is given by a structure E = (S,A, T , C,L, s0), where:

S is a finite and non-empty set of environment states;
A is the finite and non-empty set of actions that may be performed in E ;
T : S × A → 2S is the nondeterministic state transformer function of E ;
C : A → R is a cost function, which indicates the cost C(α) of performing action α ∈ A;
L : S → 2Φ is a labelling function, which associates with each state s ∈ S the set L(s) ⊆ Φ
of Boolean variables true in s; and finally
s0 ∈ S is the initial state of the environment.
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The environment E is said to be deterministic if T (s, α) is a singleton set for each
environment state s ∈ S and action α ∈ A. As we will see later, deterministic environments
greatly simplify many of the decision problems addressed in this paper.

2.2 Strategies

A strategy is a plan that defines how an agent will act in an environment. As is common
practice in the theory of iterated games [6], and in work on synthesis and verification [13],
we model strategies as finite state machines with output (i.e., Moore machines). Formally, a
strategy σ for an environment E is given by a finite state machine σ = (Q, τ, δ, q0) where:

Q is the set of machine states;
τ : Q× S → Q is the state transition function of the strategy;
δ : Q → A is the action selection function of the strategy, which selects an action δ(q) for
every machine state q ∈ Q; and
q0 ∈ Q is the initial state of the strategy.

We let Σ be the set of all such finite state machine strategies (E is assumed to be clear from
context). A strategy is enacted in an environment, starting from some state s ∈ S, as follows:
the environment starts in state s, and the strategy starts in state q0. The strategy then
selects an action α0 = δ(q0), and changes state to q′ = τ(q0, s). The environment responds
to the performance of α0 by moving to a state s1 ∈ T (s, α0); the agent then chooses an
action δ(q′), and so on. In this way, the performance of a strategy σ in the environment E
traces out an infinite interleaved sequence of environment states and actions, called a run:

ρ : s α0−→ s1
α1−→ s2

α2−→ · · ·

The set of runs that may be generated by the enactment of σ in E from state s ∈ S is denoted
by R(E , σ, s). We write R(E , σ) as an abbreviation for R(E , σ, s0). A run ρ ∈ R(E , σ, s) is
sometimes said compatible with σ in E – the definition is straightforward, and so we omit it
here. Where ρ is a run and u ∈ N, we write s(ρ, u) to denote the state indexed by u in ρ –
so s(ρ, 0) is the first state in ρ, s(ρ, 1) is the second, and so on and so forth. In the same
way, we denote the first action in ρ by α(ρ, 0), the second by α(ρ, 1), etc.

Above, we defined the cost function C(·) with respect to individual actions. In what
follows, we find it useful to lift the cost function from individual actions to runs. Since runs
are infinite, simply summing costs is not appropriate: instead, we consider the cost of a run
to be the average cost incurred over the whole run; more precisely, we define the cost C(ρ) as
the inferior limit of means: this is a very standard approach in automated formal verification
as well as in the theory of iterated games (see, e.g., [6, p.366]). Formally, we have:

C(ρ) = lim inf
t→∞

1
t

t∑
i=0

C(α(ρ, i))

Given a run ρ, we define the histories associated with ρ to be the set of finite and
non-empty prefixes of ρ which end in an environment state. We let H(ρ) denote the histories
associated with ρ, and use h, h′, . . . to refer to elements of H. Where h is a history, we denote
the word obtained from h by removing the final environment state from it by h. We denote
the final environment state occurring in h by last(h).
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2.3 Linear Temporal Logic
We use Linear Temporal Logic (LTL) to express properties of runs [25, 9]. LTL extends
propositional logic with tense operators X (“in the next state. . . ”), F (“eventually. . . ”), G
(“always. . . ”), and U (“. . . until . . . ”). Formally, the syntax of LTL is defined with respect
to a set Φ of Boolean variables by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | φUφ

where p ∈ Φ. Other classical connectives (“⊥”, “∧”, “→”, “↔”) are defined in terms of ¬
and ∨ in the conventional way. The LTL operators F and G are defined in terms of U as
follows: Fφ = ⊤ Uφ, and Gφ = ¬F¬φ. Given a set of variables Ψ, let LTL(Ψ) be the set
of LTL formulae over Ψ; where Ψ is clear from the context, we write LTL. We interpret
formulae of LTL with respect to pairs (ρ, t) where ρ is a run and t ∈ N is a temporal index
into ρ. Any given LTL formula may be true at none or multiple time points on a run; for
example, a formula Xp will be true at a time point t ∈ N on a run ρ if p is true on run ρ at
time t+ 1. We will write (ρ, t) |= φ to mean that φ ∈ LTL is true at time t ∈ N on run ρ.
The rules defining when formulae are true (i.e., the semantics of LTL) are defined as follows:

(ρ, t) |= ⊤;
(ρ, t) |= x iff x ∈ L(s(ρ, t)) (where x ∈ Φ);
(ρ, t) |= ¬φ iff it is not the case that (ρ, t) |= φ;
(ρ, t) |= φ ∨ ψ iff (ρ, t) |= φ or (ρ, t) |= ψ;
(ρ, t) |= Xφ iff (ρ, t+ 1) |= φ;
(ρ, t) |= φUψ iff, for some t′ ≥ t, (ρ, t′) |= ψ and (ρ, t′′) |= φ for all t ≤ t′′ < t′.

We write ρ |= φ for (ρ, 0) |= φ, in which case we say that ρ satisfies φ. A formula φ is
satisfiable if there is some run satisfying φ. A strategy σ realizes φ in E , written σ ✄E φ, if ρ
satisfies φ for every ρ ∈ R(E , σ, s0), that is, if every run compatible with σ satisfies the LTL
formula. The formula φ is realizable in E , written ✄Eφ, if there is a strategy σ such that
σ ✄E φ. We write σ ✄E,s φ to indicate that every run consistent with σ starting from state
s ∈ S satisfies φ. While LTL satisfiability is PSpace-complete [31], LTL synthesis/relisability
is 2ExpTime-complete [27]. The following results are useful in what follows:

▶ Lemma 1. Given some E = (S,A, T , C,L, s0), a state s ∈ S, and an LTL formula φ,
checking whether there is a run ρ of E starting in s such that ρ |= φ is PSpace-complete.

Proof. For membership, we can reduce to LTL satisfiability: we can define a new LTL
formula ψE which represents the behaviour of the environment, and check whether ψE ∧ φ is
satisfiable. For hardness, we can reduce LTL model checking [31]. ◀

▶ Lemma 2. Given an environment E = (S,A, T , C,L, s0), a state s ∈ S, and an LTL
formula φ, checking whether there is a strategy σ such that σ ✄E,s φ is 2ExpTime-complete.

Proof. For membership, we can reduce to LTL realizability: we can define a new LTL
formula ψE which represents the behaviour of the environment, and check whether ψE → φ

is realizable. For hardness, we can reduce LTL synthesis [27]. ◀

2.4 Agents
The agents we consider are taskable: an agent is designed to operate in a specific environment
E , but may be assigned different tasks to carry out in the environment. The basic approach
we adopt is to specify a task for an agent via an LTL formula Υ: an agent succeeds with
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the task Υ if it chooses a strategy that realizes Υ. Crucially, tasks for agents are mutable:
we might initially instruct an agent to achieve a task formula Υ1, but later change our
instructions by giving the agent a task Υ2. Much of the remainder of this paper is concerned
with understanding precisely how an agent should interpret a new instruction like this.

We intend our agents to operate safely. To this end, we assume they have a background
safety requirement, specified as an LTL formula ζ1. The absolute priority for an agent is to
ensure that ζ is realized. While tasks Υ are mutable, safety requirements ζ are immutable:
no matter what instructions the agent receives relating to tasks, the agent must ensure that
its safety requirement is fulfilled if it can do so in the first place.

Finally, we assume that agents have a budget, which we denote by β. This is a real
number which indicates how much cost we are willing for our agent to incur, where the cost
of a run is measured using the limit of means approach (see above). Thus, the budget is not
an absolute limit, but indicates maximum average expenditure that we are willing for an
agent to incur. Formally, then, an agent A is defined by a structure A = (Υ, ζ, σ, β) where:

Υ is an LTL formula which specifies the currently assigned task of the agent;
ζ is an LTL formula representing the safety requirements of the agent;
σ ∈ Σ is the agent’s current strategy; and finally,
β ∈ R is the agent’s budget.

We will say an agent (Υ, ζ, σ, β) in an environment E is:
safe if the strategy ensures the agent’s safety requirement is realized: σ ✄E ζ;
sound if the strategy achieves the task: σ ✄E Υ; and
solvent if the agent is within budget: C(ρ) < β, for each ρ ∈ R(E , σ, s0).

An agent that satisfies all of the above conditions is said to be properly configured. A properly
configured agent is one that has thus been assigned a task Υ, and that has chosen a strategy
to achieve Υ that will do so while respecting both the safety requirement ζ and budget β.

▶ Theorem 3. Given an environment E, a safety requirement ζ, a budget β, and a task
Υ, checking whether there is a strategy σ such that A = (Υ, ζ, σ, β) is properly configured is
2ExpTime-complete. Moreover, given an environment E and an agent A = (Υ, ζ, σ, β) for
E, checking whether A is properly configured with respect to E is PSpace-complete.

Proof. First, note that the problem of finding σ such that the agent is properly configured
amounts to solve the synthesis problem for the formula Υ ∧ ζ with the additional condition
of staying within the budget β for every possible generated run in the environment. This
problem corresponds to a special case of an equilibrium synthesis with combined qualitative
and quantitative objectives, as it is introduced and solved in [14], and for which a 2ExpTime
procedure has been shown. For hardness, we can reduce LTL synthesis: the transformer
function T can be used to encode a transition relation in an instance of LTL synthesis [27].
For the second part, an agent together with an environment will trace out a Kripke structure
K such that K |= ζ ∧ Υ if, and only if, the agent is properly configured, thus membership is
in PSpace. For hardness, one can use a reduction from LTL model-checking [31]. ◀

▶ Theorem 4. For a deterministic environment E, a safety requirement ζ, a budget β,
and a task Υ, checking whether there exists a strategy σ such that A = (Υ, ζ, σ, β) is
properly configured is PSpace-complete. In contrast, for an environment E and an agent
A = (Υ, ζ, σ, β) for E, checking whether A is properly configured with respect to E is solvable
in polynomial time.

1 A well-known class of LTL formulae express what are technically called safety properties [32], intuitively
capturing the idea that “nothing bad happens.” We do not require our safety requirements ζ to belong
to this class, although in practice, many safety requirements will.
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Proof. The first part follows from Lemma 1 (note that for deterministic environments,
solvency can be checked in polynomial time). For hardness use LTL model checking: the
transformer function T can encode a transition relation in an instance of LTL model
checking [31]. For the second part, an agent together with an environment will trace out a
path of the form a · bω with a and b finite words. We can compute a and b in polynomial time
by executing the strategy in the environment and watching until we find to have repeated a
configuration; we then check ζ ∧ Υ on this path, which can be done in polynomial time [21],
and then check solvency, which can be done in polynomial time in the deterministic case (by
computing the average cost over the finite path corresponding to b). ◀

2.5 Progressing an LTL Formula
We use the concept of progressing an LTL formula [5]. The idea is as follows. Suppose
that an agent has been operating to achieve a task Υ, and in this process has generated
a (finite) history h. We then give the agent a new instruction Υ′. Now, it may be that
the task Υ has already been discharged in the history h, in which case, when the agent
reconfigures itself in light of the new instruction Υ′, it can disregard the original task Υ.
To make this concrete, consider a (rather contrived) agent with a task Υ = F beer (must
eventually drink beer). The agent configures itself, adopting a strategy to eventually drink
beer, and succeeds to do so. Sometime later, a user issues a new instruction Υ′. At this point,
however, the task Υ has already been achieved (beer has been drunk), and nothing the agent
does subsequently will change that. As the agent adjusts its configuration in light of the
new instruction, it can take account of that. Similar comments apply to the agent’s safety
requirement ζ: it may be that the requirement has already been discharged within the finite
history h. (In general, of course, we do not think of safety requirements operating in this way:
they are typically ongoing properties, which must be maintained infinitely into the future.
For example, suppose the agent’s safety requirement was ζ = G¬crash. Such a requirement
cannot be discharged within a finite history: as the agent adjusts its configuration in light of
the new instructions, it must take into account these ongoing requirements.)

The notion of progressing a temporal formula φ through a history h captures the idea of
transforming φ into a new formula prog(φ, h) so that it captures all those requirements of φ
that have not already been satisfied within h. Formally, we have the following [16, Thm 3.2].

▶ Theorem 5. For every LTL formula φ, finite history h, and run ρ such that s(ρ, 0) = last(h),
there exists an LTL formula prog(φ, h) such that h · ρ |= φ iff ρ |= prog(φ, h).

We refer the reader to the definition of the function prog(· · ·) in [16], and note that the
function can be implemented in time polynomial in the size of the history and given formula2.

We now move on to the main focus of the present article: the issue of giving instructions
to agents. The precise setting we consider is as follows. We have an agent A = (Υ, ζ, σ, β),
operating in an environment E = (S,A, T , C,L, s0), which has traced out a history h. The
agent is then presented with a new instruction Υ′. How then should the agent reconfigure
itself – and in particular, what new strategy σ′ should the agent adopt, taking into account
the safety requirement ζ and the history h to date? As we will see, there are multiple possible
answers to this question: we consider a range of possible instruction types, which differ
primarily in the strength of the new instruction given to the taskable agent.

2 The definition in [16] is defined with respect to states rather than histories: the extension to histories
simply requires progressing the input formula progressively through each state in the given history h.
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As we noted above, a very natural principle when an agent is asked to adopt a new
instruction is the one of least change: when reconfiguring yourself, first try to do so while
keeping everything else as close to how it was before as possible. Thus, on the one hand, we
have instructions of the form “take onboard my new instruction Υ′ only if you can do so
without changing anything else.” On the other hand, we have instructions of the form “drop
everything else you are doing and get this done whatever it takes.” There are several variants
between these two extremes. We emphasise, however, that no new instructions can result in
the agent releasing its safety requirement: this is immutable – but the satisfaction of the
safety requirement needs to be considered in the context of the history h traced out so far.

We define the semantics of each type of instruction using pre- and post-conditions. The
pre-conditions define the circumstances under which the instruction can be accommodated.
If the pre-conditions of an instruction type are not satisfied, then that instruction will fail,
in which case the agent is assumed to be unchanged. The post-conditions specify properties
of the agent configuration after the agent has adjusted its configuration to accommodate
the instruction, under the assumption that the pre-condition was satisfied. We consider four
different types of instructions, which we refer to as Type I instructions through to Type IV
instructions: Type I instructions are the weakest (in the sense that they make the least
demands on an agent); Type IV are the strongest type of instructions.

2.6 Instructions of Type I
The first type of instruction we consider is the weakest form of instruction in our setting. In
a Type I instruction, we ask an agent to take on a new task Υ′ only if it can do so safely,
without affecting its current task, and within the originally specified budget. This type of
instruction thus embodies the notion of “least change” in a very direct way. With this type
of instruction, an agent will retain its previous task, irrespective of whether the instruction
is successful or not. Formally, our Type I semantics are as follows.

Suppose we have an agent (Υ, ζ, σ, β) operating in an environment E , having generated a
history h. The agent is then presented with a Type I instruction Υ′. The preconditions for
this Type I instruction require that there exists a strategy σ′ ∈ Σ such that:
(I.1) h · ρ |= ζ ∧ Υ, for every ρ ∈ R(E , σ′, last(h));
(I.2) σ′ ✄E,last(h) Υ′;
(I.3) C(ρ) ≤ β, for every ρ ∈ R(E , σ′, last(h)).
If these pre-conditions are satisfied, then an agent acting upon a Type I instruction will
change to a configuration (prog(Υ, h) ∧ Υ′, prog(ζ, h), σ′, β) where σ′ ∈ Σ satisfies conditions
(I.1)–(I.3). Several points are in order with respect to this definition. First, note that the only
components modified with the new instruction will be the current task of the agent (extended
to include the new instruction) and the chosen strategy: both the safety requirement and
budget will remain unchanged after updating the agent.

With respect to (I.1), the conditions require that the adopted strategy will ensure that
both the original task Υ and the safety requirement are satisfied by σ′. Note that we could
alternatively have expressed this condition as:

ρ |= prog(ζ, h) ∧ prog(Υ, h) for every ρ ∈ R(E , σ, last(h))

Condition (I.2) requires that σ′ ensures the achievement of the new task Υ′. The main
point to note here is that, unlike condition (I.1), this condition does not take into account
the prior history h. The reason for this is as follows: suppose the original task Υ was Fbeer
(eventually drink beer), and the agent succeeded to do so within the history h. Then if the
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new instruction Υ′ was Fbeer (intuitively, “drink another beer”), then if we took h into
account when considering the new strategy we would regard Υ′ as being already discharged.
Thus, when we consider the satisfaction of the new task Υ′, we need to ignore the history to
date and focus on the run that will be generated subsequently.

Finally, observe that the solvency requirement for an agent adopting the new strategy
(condition (I.3)) is given with respect to future costs only. This may seem counter-intuitive:
should we not take into account costs already incurred? The answer stems from the way we
measure costs, using the inferior limit of means. The agent will have been running for a finite
time when presented with its new instruction, but will run for an infinite time subsequently.
In the limit, costs already incurred in the finite history h are irrelevant: all that matters are
the future costs incurred over the infinite suffix to h.

▶ Example 6. Consider the floor of an elderly home where a number of guest rooms are
arranged around a corridor, and a robot deployed to patrol the surroundings. The robot can
move along the corridor or in one of the guest rooms. Moreover, each room can be either
occupied or empty, and the floor might be dirty or clean. The robot has two tasks. The first
is the safety requirement to eventually tidy up the corridor every time it gets dirty. This
can be represented by the LTL formula ζ = G(dirty → F(tidy U ¬dirty)). The second is the
assigned task to monitor the occupied room and assist a guest in room i in case they send an
assistance request. This can be represented by the formula Υi = G(calli → Fassisti). Note
that requests from the other rooms will be ignored by the agent. This is because they are
marked as empty, and so requests from those rooms would happen for reasons that are not
relevant to the robot, e.g., a contractor team is testing/maintaining the room.

Once a new guest arrives in room j, the agent needs to be reconfigured to include the
task of listening to requests from the corresponding room. This can be done by the Type
I instruction of the form Υj = G(callj → Fassistj). Without giving full details, for brevity,
the setting above could be represented by the following environment E :

S = Pos × 2{1,2,3,4} × {dirty, not-dirty}, where Pos represents the possible positions of the
robot (i.e., locations in the corridor or one of the rooms), the set 2{1,2,3,4} represents
the set of rooms from which an assistance request has been made, whereas the third
component in {dirty, not-dirty} represents the fact that the corridor is dirty in some
location or clean all around.
A = {up, down, left, right, stop} allows the robot to navigate along the floor by either
moving along the four directions or by stopping.
C(up) = C(down) = C(left) = C(right) = 1, while C(stop) = 0, that is, the robot consumes
one unit of power only when it moves along the floor.
T is deterministic on Pos, meaning that the value in Pos depends only on the current
position and the robots action, and not on the environment reaction to this. Whereas T
is nondeterministic on the other components of the states, which depends on whether the
environment calls for assistance in any of the room and whether it activates the signal
that the corridor is somewhere dirty.
L(roomi, C, ι) = {assisti} ∪ C ∪ {ι} meaning that if the robot is in room roomi, then it
is assisting the guest in the same room, while the assistance requests and the cleaning
status of the corridor is copied from the other two components of the state.
L(corridor, C, ι) = C ∪ {not-dirty} meaning that whenever the robot is in any location of
the corridor, it is not assisting any guest but efficiently cleaning the corridor.
s0 = (corridor0, ∅, not-dirty) is an arbitrary taken initial state of the environment.
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▶ Theorem 7. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type I
instruction Υ′ allows for a proper reconfiguration of an agent A after history h is 2ExpTime-
complete.

Proof. Following Theorem 5, the problem can be reduced to checking whether there exists a
strategy σ′ such that the agent A′ = (prog(Υ, h) ∧ Υ′, prog(ζ, h), σ′, β) is properly configured
over the environment E ′ obtained from E by replacing the initial state s0 with h. Following
Theorem 3 it holds that such problem can be solved in 2ExpTime. For hardness, we can
encode LTL synthesis [26]. ◀

2.7 Instructions of Type II
Type II instructions are stronger than Type I: whereas in Type I instructions an agent is
asked to adopt the new instruction within the original budget, with a Type II instruction an
agent is given a new budget – intuitively, more resources to accomplish the task. Otherwise
a Type II instruction is as a Type I.

Suppose we have an agent (Υ, ζ, σ, β) operating in an environment E , having generated a
history h. The agent is then presented with a Type II instruction (Υ′, β′). The pre-conditions
for this Type II instruction require that there is a strategy σ′ ∈ Σ such that:
(II.1) h · ρ |= ζ ∧ Υ, for every ρ ∈ R(E , σ′, last(h));
(II.2) σ′ ✄E,last(h) Υ′;
(II.3) C(ρ) ≤ β′, for every ρ ∈ R(E , σ′, last(h)).
If the pre-conditions are satisfied, then an agent acting upon a Type II instruction will
change to a configuration (prog(Υ, h)∧Υ′), prog(ζ, h), σ′, β′) where σ′ ∈ Σ satisfies conditions
(II.1)–(II.3). Since β′ can be set to any value, using a Type II instruction we can in effect
say “forget about your budget limits”. (We can also use Type II instructions to give reduced
budgets.)

▶ Example 8. Consider again the setting in Example 6. After a given period of time, the
components of the robots might deteriorate, including the battery, which might reduce
its maximum capacity. Therefore, the budget β must be adjusted to accommodate this
requirement. A Type-II instruction is suitable for this purpose. This can be of the form
(⊤, β′) in case we are updating the cost requirement only, or of the form (Υ′, β′) if we are
including a new task requirement to the new configuration.

▶ Theorem 9. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type II
instruction (Υ′, β′) allows for a proper reconfiguration of an agent A after history h is
2ExpTime-complete.

2.8 Instructions of Type III
In a Type III instruction, we ask an agent to take on a task even if that means dropping
its original task; but it should stay within its original budget. Suppose we have an agent
(Υ, ζ, σ, β) operating in an environment E , having generated a history h. The agent is then
presented with a Type III instruction Υ′. The pre-conditions for this Type III instruction
require that there is a strategy σ′ ∈ Σ such that:
(III.1) h · ρ |= ζ, for every ρ ∈ R(E , σ′, last(h));
(III.2) σ′ ✄E,last(h) Υ′;
(III.3) C(ρ) ≤ β, for every ρ ∈ R(E , σ′, last(h)).
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If the pre-conditions are satisfied, then an agent acting upon a Type III instruction will
change to a configuration (Υ′, prog(ζ, h), σ′, β) where σ′ ∈ Σ satisfies conditions (III.1)–(II.3).

▶ Example 10. Consider again the setting described in Example 6. Recall that the task
requirement is of the form Υ =

∧
i∈N ′ Υi, for a given subset N ′ ⊆ N of the rooms and Υi

being the requirement for room i.
After a guest left the elderly home, say from room j, it is no longer necessary for the robot

to monitor such room. We can use a Type III instruction to remove this task requirement.
This can be obtained by using the formula Υ′ =

∧
i∈N ′\{j} prog(Υi, h) that drops room j

from monitoring and reinstates the other rooms at the same time.

▶ Theorem 11. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type III
instruction Υ′ allows for a proper reconfiguration of an agent A after history h is 2ExpTime-
complete.

Proof. The proof is similar to that of Theorem 7, where the synthesis problem is cast by
replacing prog(Υ, h) ∧ Υ′ by just Υ′. ◀

2.9 Instructions of Type IV

In a Type IV instruction, we present an agent with a new task and budget: the agent drops
its original task and budget completely, and completely replaces them with those newly
presented. This represents the strongest type of instruction we consider here: it may result
in all components of an agent other than the safety condition (which is progressed through
the prior history) being reconfigured. Suppose we have an agent (Υ, ζ, σ, β) operating in an
environment E , having generated a history h. The agent is then presented with a Type IV
instruction (Υ′, β′). The pre-conditions for this Type IV instruction require that there is a
strategy σ′ ∈ Σ such that:

(IV.1) h · ρ |= ζ, for every ρ ∈ R(E , σ′, last(h));
(IV.2) σ′ ✄E,last(h) Υ′;
(IV.3) C(ρ) ≤ β′, for every ρ ∈ R(E , σ′, last(h)).

If the pre-conditions are satisfied, then an agent acting upon a Type III instruction will change
to a configuration (Υ′, prog(ζ, h), σ′, β′) where σ′ ∈ Σ satisfies conditions (IV.1)–(IV.3).

▶ Theorem 12. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type IV
instruction (Υ′, β′) allows for a proper reconfiguration of an agent A after history h is
2ExpTime-complete.

We know from the optimisation and planning literature that giving instructions to an agent
as it operates may deliver solutions that are inferior to solutions computed before the agent
executes any plan. For example, consider the taskable agent presented in [17, 1], where an
autonomous agent is required to move in a grid-like world, much like the robot in our running
example, and is requested to find the shortest path between two places in the grid, say X

and Y , but under the restriction that some elements must be collected before going from X

to Y . While the same situation may arise here, our approach ensures that new tasks will be
undertaken safely.
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3 Related Work & Discussion

We hope to have illustrated that the natural and intuitively simple problem of reconfiguring a
taskable agent to accommodate new LTL instructions is actually a rather subtle and complex
problem. Formally, we have also shown that solving this general problem, in most settings
and for most types of instructions we consider, is 2ExpTime-complete, with only a few
exceptions where the decision problems are either PSpace-complete or solvable in polynomial
time in some of the simplest cases.

Our work is somewhat related to (and influenced by) work in the semantics of speech acts
and agent communication. This work traces its origins least as far back to Wittgenstein’s
1953 study of language games, which marked the beginning of the pragmatic tradition of
language understanding [20]. The best-known work in this tradition is the speech acts
paradigm, initiated by [4] and [30]. Within AI, Searle’s work led to [8] showing how the
pre- and post-conditions of speech acts could be formulated using an AI planning formalism,
which paved the way for the development of AI systems that could plan to perform speech
acts as part of a natural language generation process [3], and then the semantics of agent
communication languages [23, 10]. The main difference with our work is that speech act
semantics pre-suppose that agents are autonomous, in the sense that they have complete
control over their own state and actions. For example, the FIPA request communicative
act represents an attempt to get an agent to perform an action: it is not an instruction,
which is conceptually and technically different. Our work differs in that we assume agents
are taskable: we give one of our agents an instruction and they will attempt to accommodate
it as per the various different models we have discussed.

Research on human-robot interactions addresses the problem of robots performing tasks
requested by a human through natural language [33, 28, 22, 24]. In [2], it is suggested that
robots that can understand and perform human instructions will consist of three levels: (i)
language-based semantic reasoning on the instruction (high level); (ii) formulation of goals in
robot symbols and planning to achieve them (mid-level); and (iii) action execution (low level).
We focus on level (ii), and our work can exploit previous works that translate high-level
natural language tasks to LTL [29, 7]. Another interesting line of research is the use of
LTL instructions in Reinforcement Learning [34, 18]. In [34], LTL is used as a language for
specifying multiple tasks to speed up learning by generating the tasks in a way that supports
the composition of learned skills. We assume that no learning is needed by our agents: our
work is closer to the LTL synthesis paradigm (although combining our work with previous
work on LTL-based reinforcement learning [34, 18] would present many interesting research
questions). Our work has focused on the idea of directly instructing agents with regard to
tasks. There are of course other indirect ways to influence the activities of agents such as
sharing information [12] and setting taxation or rewards [35]. The main difference with our
work is that we consider agents that are obligated to follow the instructions that they receive,
given that they are consistent with their safety requirements; in contrast, [12] and [35] both
assume self-interested agents.

So far, we have said nothing about how an agent will operationalise our semantics. In
the single agent case, one very natural possibility, given an instruction Υ, is to start by
attempting to interpret it in the “least intervention” semantics of Type I instructions: try to
accomodate it while continuing with your existing goal. If this is not possible, then move
on to semantics that result in greater changes. We might, for example, imagine an agent
coming back and asking for an increased budget (“if you give me a bigger budget I can get
your original task accomplished and the new task”). The multi-agent case is more complex,
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because the operationalisation will have to take into account how other agents respond to the
adoption of a new strategy: it would thus be useful to consider the dynamics of a system after
an agent reconfigures itself (how agents might respond). Such issues have been investigated
in the game theory literature, but not in the settings we consider here. In this latter case,
we might, e.g., look at “responsible” agents that take into account the social welfare of a
system as they adopt new strategies. The multi-agent case is the most obvious avenue for
future research, wherein ideas from both coopeartive and non-cooperative game theory could
shed some light into how to approach that more challenging problem.

Finally, in our model, we have a single safety requirement ζ. It is natural to extend our
model to support hierarchies of logically-defined safety requirements (ζ1, . . . , ζk), where an
agent is required to first ensure that ζ1 is satisfied, then ζ2, and so on.
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