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Abstract
Events are structured entities involving different components (e.g, the participants, their roles etc.)
and their relations. Structured events are typically defined in terms of (a subset of) simpler, atomic
events and a set of temporal relation between them. Temporal Event Detection (TED) is the task of
detecting structured and atomic events within data streams, most often text or video sequences,
and has numerous applications, from video surveillance to sports analytics. Existing deep learning
approaches solve TED task by implicitly learning the temporal correlations among events from
data. As consequence, these approaches often fail in ensuring a consistent prediction in terms of the
relationship between structured and atomic events. On the other hand, neuro-symbolic approaches
have shown their capability to constrain the output of the neural networks to be consistent with
respect to the background knowledge of the domain. In this paper, we propose a neuro-symbolic
approach for TED in a real world scenario involving sports activities. We show how by incorporating
simple knowledge involving the relative order of atomic events and constraints on their duration, the
approach substantially outperforms a fully neural solution in terms of recognition accuracy, when
little or even no supervision is available on the atomic events.
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1 Introduction

Events are structured entities that involve multiple components, like the participants, their
role, the type and the atomic events composing it. For example, in athletics, the event high
jump involves one person (the athlete), performing the atomic events run, jump and fall
in sequence. One of the main challenging tasks is temporal event detection (TED) that
consists in detecting events within data stream, like text and video. Continuing the example,
it consists in identifying the class of the atomic events and the interval of time where they
occurred. Many sub-symbolic approaches, mostly based on neural networks, have been
proposed for event recognition [1, 25]. One of the main drawbacks of these kind of approaches
is the amount of training data. Indeed, having a large training set is fundamental for an
appropriate and effective training of the model. Furthermore, “rich” annotations at different
levels are required in order to solve the task (e.g., frame-by-frame annotation of atomic
events). Large amounts of deeply annotated data are hard to collect. Additionally, errors
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in the annotations (e.g. in case of crowdsourced ones) may introduce noise in the model
and compromise its accuracy. More importantly, purely neural approaches cannot guarantee
consistency of the predictions with the domain knowledge, in terms of the relationship between
the structured event and the atomic events that compose it. Neuro-symbolic approaches [11]
have recently gained increasing popularity as a means to make the best of both worlds,
by combining the effectiveness in low-level processing of deep learning technology with the
ability of symbolic approaches to express complex domain knowledge. Popular frameworks
including DeepProbLog [16], DeepStochLog [24], Logic Tensor Networks [6], LYRICS [17]
and NeurASP [28] have been proposed and applied to solve different structured tasks, like
Semantic Image Interpretation [8]. In the context of event recognition, the DeepProbLog
framework has proved effective in recognizing both structured and simple events as well
as generalizing to unseen outcomes [3, 23]. However, these results have been obtained on
artificial scenarios, and the framework has serious issues of scalability when the complexity
of the setting increases [9].

In this paper, we present a neuro-symbolic approach for structured event recognition in
sport videos. The task is out of reach of popular neuro-symbolic frameworks like DeepProbLog,
because of the computational complexity given by number of frames in a video combined with
the temporal constraints of the background knowledge. We tackle the problem by combining
neural predictions on individual frames with a mixed integer linear programming formulation
enforcing satisfaction of (soft) temporal constraints from the background knowledge and
similarity with the neural outputs. The approach is fully differentiable and end-to-end
trainable.

Our experimental evaluation shows how the neuro-symbolic approach provides substan-
tially more accurate predictions with respect to a fully neural solution, with the additional
feature of guaranteeing that predictions satisfy existing hard constraints. Quite remarkably,
the approach is capable of predicting the sequence of atomic events that constitute a struc-
tured event even without having any supervision on them, by simply leveraging background
knowledge in terms of duration constraints to guide the learning of the underlying neural
network.

The rest of the paper is structured as follows: Section 2 briefly reviews the state of the
art approaches that have been proposed for event recognition; Section 3 formally defines the
problem; Section 4 describes our proposed approach; Section 5 presents the experimental
setting; Section 6 reports the experimental results. Finally, Section 7 draws some concluding
remarks and discusses directions for future work.

2 State of the art

Event recognition has always attracted researchers coming from different fields, like Computer
Vision and NLP. The particular attention towards event recognition may be motivated by its
multiple data stream nature and by its impact in people’s daily life. Looking at the literature,
approaches to event recognition can be classified into three categories: sub-symbolic, symbolic
and neuro-symbolic. Sub-symbolic approaches (mostly based on neural networks) moved
from manually crafted features to automatic features learning (see [1] and [25] for a survey).
These approaches require a huge amount of training data with a rich annotation at different
levels (e.g, the type and temporal location of the event). These data are hard to collect and it
is difficult to ensure high-quality annotations for large amounts of example, so that high levels
of annotation errors can affect the accuracy of the networks being trained. Furthermore, the
trained model is a black box model that cannot explain its decisions and is not guaranteed
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to be consistent with existing background knowledge. An attempt to make sub-symbolic
approaches more interpretable is represented by Concept Bottleneck Models [15] where the
activation of (a subset of) human-specified concepts is used to explain the model’s final
decision. However, works like [15] focus on atemporal domains (e.g. image). In [12], authors
propose a novel approach that addresses concepts explanation in videos, but they are not
able to capture spatial and temporal relationships between concepts. On the other hand,
symbolic approaches like [5], are explainable and knowledge-consistent, but are not robust
in the presence of noise. Therefore, symbolic approaches dealing with uncertainty have
been proposed [2]. In [20, 4], authors recognize higher events by combining evidence of
simple events with domain knowledge using the probabilistic logic programming framework
ProbLog [18] . In this case, knowledge on low level events is assumed to be given. Recently,
neuro-symbolic approaches have started to be applied in the context of event recognition.
In works like [13, 14, 27, 22, 10], pre-trained neural networks are used to extract lower
events and then passed to a symbolic layer that encodes the knowledge of the domain
in the form of logic rules. In [26], authors propose an end-to-end model where a neural
network is also used to learn to simulate the symbolic layer. One of the drawbacks is that
the neural network has to be re-trained in case of even minimal changes/updates of the
existing knowledge. The DeepProbLog neuro-symbolic framework [16] has been employed
in a couple of recent studies [3, 23] to perform structured event recognition in videos and
audio streams respectively. By using DeepProbLog, any change/update to knowledge can be
easily integrated. Both [3] and [23] perform event recognition in artificial scenarios. This
may be motivated by the scalability issue of DeepProbLog, that is particularly acute when
considering tasks involving time. Indeed, the authors of the NESTER framework [9] showed
how an optimization modulo theory [19] reasoning layer refining neural network predictions
is substantially more efficient than a solution based on DeepProbLog on a toy handwritten
equation recognition task. The approach however assumes complete supervision on the
neural network outputs at training time, and does not address temporal event detection. Our
solution adapts this idea to address structured and atomic event recognition on real-world
video streams. In this case, the reasoning layer is also used to provide supervision when
limited/no labels for the events are available.

3 Problem Definition

Our problem can be summarized as follows: Given a data sequence X = {xi}l
i=1 of real-value

tensors xi and some background knowledge K about the relationship between structured
and atomic events, we are interested in providing a description of the atomic and structured
events that are happening during the sequence. Let us now specify all the details of the
problem. To represent background knowledge about structured and atomic events we use a
variation of the event calculus based on First Order Logic. Let L be a first order language
that contains a set of constants E for event types, which is partitioned in two disjoint sets of
constants A and S for atomic and structured events, respectively. L contains also the set of
constants N of natural numbers which are used to denote time points. The set of predicates
of L includes the equality predicate, the order relation defined as usual on time points, and
the ternary predicate happens(e, t1, t2), where e is a term for an event type and t1, and t2
are terms for time points. The atom happens(e, t1, t2) represents the proposition that an
event of type e starts at time t1 and terminates at time t2 (not included). In addition to the
usual axioms for the equality and order relation we have the axiom

∀xyz(happens(x, y, z) → y < z)

TIME 2022
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As far as the semantics of L, we consider the set of Herbrand Interpretations of L, i.e., all
the subsets of the Herbrand Base H defined as

H = {happens(e, t1, t2) | e ∈ E , t1 < t2 ∈ N}

Now we are ready to provide a more precise formulation of our problem: Given a knowledge
base K in the language L that expresses general knowledge about the event types in E , and a
data sequence X = {xi}l

i=1, we have to find an herbrand interpretation I, such that I |= K,
and such that happens(e, t1, t2) ∈ I if and only if the data sub-sequence Xt1:t2 = {xi}t2−1

i=t1

shows that an event of type e is happening. Intuitively, I describes the type and the class of
the events happening in X and when they happened.

▶ Example 1. Let X be a video where a person is doing a high jump (structured event)
in the interval [1, 31]. The background knowledge contains the fact that a high jump can
be decomposed into a sequence of three atomic events: run, jump and fall, which can be
expressed by the following formula:

∀bhjeij(happens(highjump, bhj , ehj) ↔ ∃ br, er, bj , ej , bf , ef (
happens(run, br, er) ∧ happens(jump, bj , ej) ∧ happens(fall, bf , ef ) ∧
br = bhj ∧ er = bj ∧ ej = bf ∧ ef = ehj))

Two examples of interpretations that satisfy the above constraints are:

I1 = {happens(highjump, 1, 31), happens(run, 1, 21), happens(jump, 21, 25),
happens(fall, 25, 31)}

I2 = {happens(highjump, 1, 31), happens(run, 1, 23), happens(jump, 23, 28),
happens(fall, 28, 31)}
...

Since we may have more than one interpretation that satisfy K, we define a cost function
c : I → R and select the interpretation I∗

c with the minimum cost:

I∗
c = argmin

Ic|=K
c(Ic)

In order to find I∗
c , we define a neuro-symbolic approach that combines low-level neural

processing with high level reasoning in terms of background knowledge on the events.
The kind of supervision we provide to train a neuro-symbolic model in order to find I∗

c is:{
X(i), G(i)

a

}n

i=1

where G
(i)
a is a set of ground atoms which are true in X(i). Supervision is always assumed to

be partial, including the case in which supervision is limited to structured events, and atomic
events need to be learned in a fully unsupervised way. See experiments for the details.

4 Proposed Approach

Our objective consists in finding an interpretation I that has to explain what happened
in X both in terms of structured and atomic events. In order to achieve it, we have to
recognize the classes of structured and atomic events happening in X and the (interval of)
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Figure 1 Inference steps of our neuro-symbolic approach on a data sequence of length 4, with 3
structured events and 4 atomic events. The structured event of class 1, which is the one predicted
by the NN, is defined in terms of the sequence of atomic events 1 and 2, respectively.

time where they occurred. To achieve this objective, we use an end-to-end differentiable
neuro-symbolic approach that combines low level processing of a neural network with a logic
layer that leverages knowledge about structured and atomic events. An overall overview of
our neuro-symbolic approach is depicted in Figure 1. As can be seen by looking at the figure,
the first step consists in passing X to a neural network NN. NN may be any kind of network
(e.g., Convolutional, RNN and LSTM) and has two different heads, one for structured and
one for atomic events. The head for the structured events returns as output a vector o

where oi ∈ [0, 1], with i = 1, . . . , k (assuming k is the number of structured events), is the
probability of the i − th structured event. On the other hand, the head for the atomic
events returns a matrix O ∈ [0, 1]l×n where entry O[i, j], with i = 1, . . . , l and j = 1, . . . , n

(assuming l and n are the length of X and the number of atomic events, respectively),
represents the probability that event j happens at timestamp i. The predicted structured
event for a video X is the one maximizing the probability of the corresponding output head
of NN, i.e.:

ŷS = argmax
i=1,...,k

oi

In principle, the sequence of atomic events could be predicted in a similar fashion by
maximizing for each frame the probability of the atomic event head of NN at that frame, i.e.:

ŷA
i = argmax

1≤j≤l
O[i, j] (1)

Indeed, this is how our fully-neural baseline works. However, the vector ŷA of atomic event
predictions for the frames of a video X may contain inconsistencies (e.g., predicting the
atomic event jump as part of a javelinthrow structured event, predicting fall before jump
within a highjump, or even predicting a jump that is much longer than the run that precedes
it). Our neuro-symbolic architecture prevents these inconsistencies by combining neural
network predictions with hard and soft constraints provided by the domain knowledge. The
domain knowledge we exploit is quite simple, and provides hard constraints determining
the sequence of atomic events that constitute a structured event, and soft constraints about
minimal and maximal duration of each atomic event and relative duration between atomic
events making up a structured event. Table 1 reports an example of the hard constraints that
we consider for the javelinthrow structured event. Similar constraints are generated for the
other structured events. Given the structured event ŷS predicted by NN, the corresponding
sequence of atomic events is computed by solving a MILP problem encoding the (hard

TIME 2022
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Table 1 Example of hard constraints for the javelinthrow structured event, divided into generic
constraints that hold for any structured event, and those specific of the javelinthrow event.

Hard Constraints
Generic Constraints (assuming k atomic events)

ei > bi ∀ i Events should end after they began

b1 = 1 ∧ ek = l Sequence of atomic events should span the whole clip

ei = bi+1 − 1 ∀ i ∈ 0 . . . l − 1 No gap among consecutive events

Specific Constraints (for the javelinthrow structured event)

a1 = run ∧ a2 = throw javelinthrow is a run followed by a throw

d1 > d2 run should take longer than throw

and soft) constraints combined with a scoring function measuring the compatibility of the
sequence of atomic events with the NN outputs O. The MILP problem for a structured event
(we have a separate problem for each possible structured event) is defined as follows:

minimize
V

− f(V, O) +
ms∑
j=1

ξtcj(V )

subject to hi(V ) ∀ i = 1, . . . , mh (2)

Here V is a sequence of triplets (a, b, e), where a ∈ A is an atomic event, b, e ∈ IN are
the starting and ending frames of the event respectively. The number of atomic events is
determined by the structured event being modelled. The scoring function f(V, O) computes
the compatibility of V with O as follows:

f(V, O) =
∑

(a,b,e)∈V

 e∑
i=b

O[i, a] −
b−1∑
j=1

O[j, a] −
l∑

j=e+1
O[j, a]


It basically computes the sum of the probabilities of each atomic event in the range in which
it is predicted, and subtracts its probability outside of this range (l is the overall length of
the video clip).

The soft constraints cj(V ) encode duration ranges for atomic events or combination of
atomic events. For instance, the constraint that the sum of the durations of run and jump
should be within the sum of the maximal and minimal durations respectively is formalized
as follows:

min(|d1 + d2 − maxrun − maxjump|, |d1 + d2 − minrun − minjump|)
where:

d1 = e1 − b1 + 1, d2 = e2 − b2 + 1
a1 = run, a2 = jump

The hard constraints hi(V ) encode temporal relations between atomic events and with
respect to the structured event. See Table 1 for examples. Intuitively, the solutions of the
MILP problem for the predicted structured event ŷS where only hard contraints hi(V ) are
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Figure 2 Training of our neuro-symbolic approach.

considered, provide a set of candidate interpretations for X. By including the objective
f(V, O) and the soft constraints cj(V ) we obtain the interpretation with the minimum cost
for X (i.e, Y ∗

c ). The label vector ŷA
sol in Figure 1, which is the neuro-symbolic counterpart

of ŷA in Eq. 1, is obtained by “unrolling” the optimal V into an atomic label for each frame
in its predicted range.

▶ Example 2. Let X a video of length 20 where a person is performing a structured event,
but we do not know which kind of structured event. Now, suppose we have, in addition to
the structured event highjump of example 1, the structured event javelin throw and that
the background knowledge contains the fact that a javelin throw can be decomposed into
a sequence of two atomic events: run and jump, which can be expressed by the following
formula:

∀bjtejt(happens(javelinthrow, bjt, ejt) ↔ ∃ br, er, bt, et, (
happens(run, br, er) ∧ happens(throw, bt, et)∧
br = bjt ∧ er = bt ∧ et = ehj))

Also, suppose that the head of NN for structure events predicted ŷS = javelinthrow for X.
If we solve the MILP for the javelin throw where only hard constraints are considered (for
example the ones in table 1), we have that some of the candidate interpretations will be:

I1 = {happens(javelinthrow, 1, 21), happens(run, 1, 13), happens(throw, 13, 21)}
I2 = {happens(javelinthrow, 1, 21), happens(run, 1, 17), happens(throw, 17, 21)}

...

By considering and solving the whole MILP, we obtain I∗
c . Continuing the example, if we

have a soft constraint which penalizes interpretations having short duration for run, we have
that I∗

c = I2, that corresponds to the solution V = [(run, 1, 17), (jump, 17, 21)] of Problem 2.

Figure 2 shows the training process of the architecture. As we assume that the ground-
truth yS of X is available at training time, the head for the structured events is not used
anymore to predict ŷS , but the ground-truth itself is used instead. Furthermore, if the
ground-truth for the atomic events (Y A ∈ Rl×n) is also available, we use it to train the head
of the atomic events. If this information is not available, we use pseudo-labels generated
from the architecture. The generation of such pseudo-labels consists of an inference step

TIME 2022
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Figure 3 Extraction of clips of structured events from an untrimmed video.

in the currently trained architecture as per Figure 1, with the only difference that the
structured event is given by the ground-truth yS rather than the NN output. The atomic
event prediction vector ŷA

sol is turned into a binary label matrix Ŷ A
sol ∈ {0, 1}l×n by one-hot

encoding atomic labels (i.e., Ŷ A
sol[i, j] is set to 1 if j = ŷA

sol[i] and 0 otherwise). Then, we
define two losses:

Lgt(o, O, yS , Y A) = L(o, yS) + L(O, Y A) (3)

Lsol(o, O, yS , Ŷ A
sol) = L(o, yS) + L(O, Ŷ A

sol) (4)

Where Loss 3 refers to the case where both ground-truth (structured and atomic) are available,
while Loss 4 refers to the case where the ground-truth for structured events is available and
the ground-truth for the atomic events is not, and, then, we use the pseudo labels. In order
to train NN to recognize both kind of the events, we minimize, depending on the case, one
of the aforementioned loss and use gradient descent to update its weights.

5 Experimental setting

Our experimental setting has the aim to show if our proposed neuro-symbolic approach leads
to an advantage in the recognition of both structured and atomic events with respect to
a fully neural approach, when both approaches are trained with weak and limited amount
of supervision in terms of events. In details, we want to see how the knowledge is able to
compensate in the case when no or few and potentially noisy labels for events are available.
To achieve this objective, we first need a dataset of structured and atomic events. We
build such dataset from the Multi-THUMOS untrimmed video dataset [29]. Since in [29],
there is no explicit distinction between structured and atomic events, we define it and splits
the events according. In particular, we consider as structured events those events that
can be decomposed as a sequence of other (atomic) events, and cut each video into clips
corresponding to structured events (Figure 3).

For each structured event, we do not consider all the clips, but we remove those clips
where some of the atomic events defining the structured event are not present (e.g, replay).
The structured and atomic events we consider are shown in appendix B. Then, after building
the dataset, we define the scenario. The scenario consists of clips of different length where,
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in each clip, a person is performing one (and only one) structured event among the ones
reported in appendix B. The learning setting we consider to evaluate the fully neural approach
and our proposed neuro-symbolic approach consists in having full supervision at level of
structured events and limited and potentially noisy (e.g., overlapping between atomic events)
supervision in terms of atomic events. The kind of supervision we provide is as follows:

{happens(highjump, 1, 50), happens(run, 1, 31), happens(jump, 31, 45),
happens(fall, 45, 50)}

{happens(hammerthrow, 1, 30), happens(windup, 1, 15), happens(spin, 10, 25),
happens(release, 25, 30)}

{happens(javelinthrow, 1, 30)}

The first video is an example of noiseless labeling with full supervision on both structured
and atomic events. The second video is fully supervised too, but atomic supervision is noisy,
as there is an overlap between the windup and spin atomic events (this type of overlapping
labeling is not rare in the dataset). The third video is a case where supervision is only
provided at the structured event level, and there is no supervision on atomic events.

In this setting, we are interested in observing how the prediction in terms of atomic
and structured events change when increasing the availability of data for atomic events.
Furthermore, in the case of the neuro-symbolic approach, we are interested in seeing how
complementing the supervision coming from the dataset with the supervision coming from
the knowledge affects the predictions of the overall model. A noteworthy case is the one
where no direct supervision at level of atomic events is provided at all, and then the model is
completely trained with the supervision coming from the knowledge. The underlying model
we use for both approaches is the one described in [21] where features extracted from a
pre-trained two-stream I3D [7] are given as input in order to predict a matrix of events (more
details about the model can be found in Appendix C). Differently from [21], we distinguish
between structured and atomic events and consider two separate heads, as discussed in the
previous section. About the training, we train the model for 20 epochs with learning rate of
1e−3 and weight decay of 1e−6, using Adam as optimizer. We also created a validation set
of 10% of the training data in order to select the best model.

6 Results

In this section, we show and compare the results of the fully neural approach with respect to
our proposed neuro-symbolic approach on the task described in Section 5. Figure 4 reports
average F1 scores of structured event prediction over 5 runs, for an increasing amount of
supervision in terms of atomic events (from 0 to 100%). Note that in all cases supervision in
terms of structured events is always provided. The green curve indicates the fully neural
baseline, while the red curve indicates our neuro-symbolic approach. Results indicate that
unsurprisingly, when there is full supervision on the structured event the addition of knowledge
does not help in its identification.

Figure 5 reports average F1 scores for the prediction of atomic events, again for a growing
amount of supervision at the atomic level. The difference between the fully neural and
the neuro-symbolic approach is striking. Substantial improvements of the neuro-symbolic
approach can be observed for almost all atomic events. Only for the atomic events run and
jump, we can see that the fully neural approach is really close to our approach. This is
probably due to the temporal duration of these events, that is substantially higher than that

TIME 2022
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Figure 4 F1 scores on structured events averaged over 5 runs for the fully neural (green) and the
neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.
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neuro-symbolic (red) approaches, for increasing amount of supervision on atomic events.
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of the others. This implies that a reasonable number of frames labelled as run and jump
will be available for the neural network even with a small fraction of labelled videos. On the
other hand, atomic events like release and throw have a performance improvement that goes
up as 60% and 50% respectively.

As stated in Section 5, a particularly significant case is the one where no direct supervision
at all is provided at the level of atomic events. This corresponds to the leftmost point in the
figures. The F1 score of the fully neural approach is close to zero for almost all atomic events,
corresponding to random guessing. On the other hand, the F1 scores of the neuro-symbolic
approach are often comparable to those of a fully supervised setting, showing how knowledge
can be exploited to completely bypass the need for human supervision at the frame level,
with major implications in terms of applicability and training costs.

Figure 6 shows some representative examples of the labeling provided by the two ap-
proaches highlighting the differences in prediction consistency between the two, both in
terms of atomic events being detected and relative duration. Note that results are achieved
with 100% supervision on atomic events, and highlight the importance of knowledge in
guaranteeing the consistency of predictions. The Figure shows prediction for all frames in a
video for three videos, a highjump, a hammerthrow and a longjump respectively. For each
video, we compare ground truth atomic labels (yellow) with fully neural predictions (green)
and neuro-symbolic ones (green). In the highjump case (top), the fully neural approach
completely misses the last event and mispredicts it as part of the jump event. On the other
hand, the neuro-symbolic approach correctly detects the last event a fall, and has a better
estimate of the duration of each event. In the hammerthrow case (middle), the fully neural
approach detects a run event, that cannot be part of a hammerthrow, and misses the release
event. Again, the neuro-symbolic approach provides quite accurate estimates of the duration
of each event, despite the short duration of release with respect to windup and spin. Finally,
in the longjump case (bottom), the neural approach correctly identifies the initial run, but
breaks the rest of the video into a sequence of short jump, fall, sit and even run events which
is completely inconsistent, while the neuro-symbolic approach again accurately recovers both
sequence and duration of the atomic events.

7 Conclusion and Future Work

In this work, we have proposed a neuro-symbolic approach for (structured and atomic) event
recognition where knowledge about the events and their temporal relations is exploited
both at training and inference time. We have instantiated our approach on a real-world
scenario consisting of clips of sports events. Our experimental evaluation showed how our
neuro-symbolic solution achieves substantial improvements over a fully neural baseline in
terms of recognition of the atomic events that constitute a structured event. The approach
is capable of learning to detect atomic events even with no supervision at all on them during
training, by simply combining supervision on structured events, low-level neural processing
and knowledge. While these results are promising, there are several directions which are
left open for future research. A major direction consists in increasing the complexity of the
scenarios being considered, by dealing with structured events involving multiple actors and
complex relationships between the events, without making the underlying reasoning problem
prohibitively expensive, something other neuro-symbolic frameworks currently struggle with.
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Figure 6 Prediction of the sequence of atomic events for three clips representing a highjump
(top), a hammerthrow (middle) and a longjump (bottom) respectively. Ground truth is in yellow,
while the neural and neuro-symbolic predictions are in green and red respectively. Both models
were trained with 100 % supervision on the atomic events. Clips were selected to show examples of
inconsistencies in neural predictions.
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A MILP for high jump

Listing 1 Encoding high jump as a MILP using MiniZinc

1 % HJ = High Jump
2 % R = Run
3 % J = Jump
4 % F = Fall
5

6 int: bHJ;
7 int: eHJ;
8

9 int: minSum_R_J = 3;
10 int: maxSum_R_J = 48;
11 int: minSum_R_F = 4;
12 int: maxSum_R_F = 57;
13 int: minSum_J_F = 3;
14 int: maxSum_J_F = 33;
15

16 int: target_R_J = maxSum_R_J - minSum_R_J + 1;
17 int: target_R_F = maxSum_R_F - minSum_R_F + 1;
18 int: target_J_F = maxSum_J_F - minSum_J_F + 1;
19

20 var bHJ .. eHJ: bR;
21 var bHJ .. eHJ: eR;
22 var bHJ .. eHJ: bJ;
23 var bHJ .. eHJ: eJ;
24 var bHJ .. eHJ: bF;
25 var bHJ .. eHJ: eF;
26

27 var int: lenR = eR - bR + 1;
28 var int: lenJ = eJ - bJ + 1;
29 var int: lenF = eF - bF + 1;
30

31

32 constraint eR > bR /\ eJ > bJ /\ eF > bF;
33 constraint bR == bHJ /\ eR == (bJ -1) /\ eJ == (bF -1) /\ eF == eHJ;
34 constraint lenR >= (lenJ + lenF) /\ lenJ < (lenR + lenF) /\ lenF < (lenR + lenJ);
35

36

37 var int: cost_comp_run_pos = - sum (t in bR .. eR) ( ae_predictions [1,t]);
38 var int: cost_comp_run_neg = sum (t in (eR +1) .. eHJ) ( ae_predictions [1,t]);
39 var int: cost_comp_jump_pos = - sum (t in bJ .. eJ) ( ae_predictions [2,t]);
40 var int: cost_comp_jump_neg_1 = sum (t in bHJ ..(bJ -1)) ( ae_predictions [2,t]);
41 var int: cost_comp_jump_neg_2 = sum (t in (eJ +1) .. eHJ) ( ae_predictions [2,t]);
42 var int: cost_comp_fall_pos = - sum (t in bF .. eF) ( ae_predictions [3,t]);
43 var int: cost_comp_fall_neg = sum (t in bHJ ..(bF -1)) ( ae_predictions [3,t]);
44

45 var int: cost = (
46 cost_comp_run_pos + cost_comp_run_neg
47 + cost_comp_jump_pos + cost_comp_jump_neg_1 + cost_comp_jump_neg_2
48 + cost_comp_fall_pos + cost_comp_fall_neg
49 + 1000 * abs( target_R_J - (lenR + lenJ))
50 + 1000 * abs( target_R_F - (lenR + lenF))
51 + 1000 * abs( target_J_F - (lenJ + lenF))
52 );
53

54 solve minimize cost;
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In lines 6-7, the constants representing the begin and the end of the clip are declared. These
are going to be filled at running time and will change depending on the length of the clip
processed. The blocks of lines 9-14 and 16-18 contains, the minimum/maximum sum of the
length of the intervals of two atomic events and the target length in which the sum of the
two intervals has to lie in. The declaration of the optimizer decision variables is contained in
line 20-25. These variables are going to be set by Gurobi at the end of the optimization. In
lines 27-29, the variables representing the length of the interval of each atomic events are
defined. Lines 32-34 represent hard constraints that Gurobi has to satisfy. In details, line 32
states that the end of each atomic event has to be greater than their corresponding begin,
while lines 33 and 34 defines respectively temporal relations among events and algebraic
constraints among the length of the intervals of atomic events. In addition to the satisfaction
of those constraints, Gurobi has to minimize a cost function (lines 45-62). The cost function
can be split in two parts. The former (lines 46-48) is composed by the sum of components
defined in lines 37-43 where we want to maximize (i.e. minimize) the sum of probability
where the solver states the atomic events are happening (pos), and minimize (i.e. maximize)
the sum of probability where the atomic events are not happening (neg). The latter (lines
49-51) refers to soft constraints where the solver has to set the the sum of the length of two
atomic events’ intervals to be as closed as possible to their target length.

B Subset of structured and atomic events considered
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C Temporal action localization model

The input of the model consists in a series of feature vectors f extracted by a pre-trained
two-stream I3D [7], where each fi ∈ f corresponds to 8 frames (or 0.33 seconds) and contains
global information at both frame and video-clip level. A non linear transformation is applied
on these features in order to obtain class level features (C × T × H) with C representing
the number of classes, T the number of timestamps and H the dimension of embedding
space. Then, the class-level features are refined using L attention-based Multi-Label Action
Dependency (MLAD) layers. These layers are composed by two disjoint branches which adopt
a self-attention operation to model the relationships between actions that happened within
the same timestamp (referred as Co-occurence Dependency branch) and actions happening
at different timestamps (referred as Temporal Dependency branch). As a result, a refined set
of features is returned by each branch, respectively. At the end, a linear combination of the
two branches’ features is applied (through a learnt value α ∈ [0, 1]) and the result is passed
to C individual classification layers which outputs class probabilities for each timestamp
(T × C).
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