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—— Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22101 “Tensor
Computations: Applications and Optimization”. Tensors are higher dimensional analogs of

matrices, and represent a key data abstraction for many applications in computational science and

data science. Widely used shared infrastructure exists for linear algebra, while, in contrast, for

tensor computations, there is no consensus on standard building blocks. This Dagstuhl Seminar

aimed to bring together users, and performance optimization specialists, to build such foundations.
We present the abstracts of the 5 tutorials and 14 talks given. The working groups and their

outcomes so far are then presented.
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1 Executive Summary

Paolo Bientinesi (University of Umed, SE, pauldj@cs.umu.se)

David Ham (Imperial College London, GB, david.ham@imperial.ac.uk)
Furong Huang (University of Maryland, College Park, US, furongh@umd.edu)
Paul H. J. Kelly (Imperial College London, GB, p.kelly@imperial.ac.uk)
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Linear relationships between quantities are one of the most fundamental and pervasive phe-
nomena in mathematics, science and computing. While matrices encode linear relationships
between exactly two quantities, tensors are an abstraction representing linear relationships
between multiple variables. Tensor computations therefore provide an abstract language for
computations that span an enormous range of application domains, including machine learn-
ing, quantum information systems, simulations based on solving partial differential equations,
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22101 — Tensor Computations

computational chemistry and beyond. The tensor abstraction enriches our understanding of
the structure of computations, and exposes common challenges and solutions that cut across
different research communities.

While the mathematics of tensors is well-developed and extensively applied across all of
these applications and beyond, there is far less commonality in the software abstractions
and tools deployed to execute tensor computations. This is in stark contrast to matrix
computations, where common abstractions and stable interfaces have led to widely used tools
that bring high performance to across diverse application domains.

This Seminar explored this challenge, and made significant progress towards establishing
foundations for common implementations — embodying the substantial body of knowledge on
high-performance tensor computation strategies in common software libraries and domain-
specific program generation tools.

The Seminar began with five tutorial lectures, offered by the organisers in partnership
with selected leading figures in some of the relevant communities. We began by mapping
some of the diverse terminology. We then provided tutorials exposing the quantitative and
qualitative diversity in how different communities use tensor computations — aiming to build
a common understanding of key concepts, notations, and building blocks. We focused on the
following application areas:

Quantum physics and chemistry

Mesh-based discretisations for solution of partial differential equations

Machine learning.

The final tutorial reviewed the challenge of establishing unifying software tools, highlighting
the enormous body of work that has been done within application areas.

The second phase of the Seminar consisted of more detailed presentations from the
participants. These included motivating applications, but focusing on the fundamental
computational workloads, methods, and performance challenges. Building on this, we
also had contributions focused on implementation — low-level performance considerations,
algorithmic proposals, compiler algorithms and compiler infrastructure.

In the third phase of the Seminar, we separated into three teams. One explored bench-
marking and datasets, another made substantial progress on proof-of-concept implementation
work to connecting the high-level Tensorly library for tensor decompositions in machine
learning to a lower-level tensor-vector products — achieving considerable performance advant-
age. Finally there was also a major and continuing effort to define a common domain-specific
language and compiler representation for tensor contractions that supports both high-level
optimisations and the use of high-performance low-level libraries.

This 2021 seminar built on progress made at an earlier seminar with the same title, in
March 2020 — which was very heavily impacted by the coronavirus pandemic. This seminar
was also affected, to a lesser extent — with a reduced number of on-site participants, partly
compensated by very useful engagement with researchers joining online, albeit from distant
timezones.

This seminar benefited from broader engagement with application domains — partly as a
result of the work that was done on tutorials — which we hope to publish in due course. It
also benefited from deeper engagement with developers of high-performance building blocks.
Finally, we initiated a new and continuing effort to define a common language and a common
intermediate language for code generation tools.
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3 Overview of Tutorials

3.1 What is a tensor? What might a tensor abstraction look like?
David Ham (Imperial College London, GB, david.ham@imperial.ac.uk)

License @ Creative Commons BY 4.0 International license
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The 2020 Dagstuhl Seminar[l] spent a long time developing a common understanding of
what tensors are. It also resulted in some ideas about multiple levels of abstraction for
tensor computations. This presentation introduces these ideas and considers how different
communities’ expectations about tensors map onto them.

References

1 Paolo Bientinesi, David Ham, Furong Huang, Paul H. J. Kelly, Christian Lengauer, and
Saday Sadayappan. Tensor computations: Applications and optimization (dagstuhl seminar
20111), 2020.

3.2 Computing with tensors in mesh-based PDE discretisations
Lawrence Mitchell (NVIDIA Corporation, Santa Clara, US, Imitchell@nvidia.com)
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At the core of residual assembly in finite element computations is a combination of tensor
contractions and ‘pointwise’ non-linear operations. For efficient implementation, one often
wishes to exploit structure in the tensors. I showed some structure that we use in the TSFC
compiler [1, 2] to do this, and discussed some places where we might imagine using more
generic technology.

References

1 Miklés Homolya, Robert C. Kirby, and David A. Ham. Exposing and exploiting structure:
optimal code generation for high-order finite element methods, 2017.

2 Miklés Homolya, Lawrence Mitchell, Fabio Luporini, and David A. Ham. TSFC: a structure-
preserving form compiler. SIAM Journal on Scientific Computing, 40(3):C401-C428, 2018.

3.3 Tensors in Machine Learning

Jeremy Cohen (CREATIS, CNRS, Villeurbanne, FR, jeremy.cohen@cnrs.fr)
Furong Huang (University of Maryland, College Park, US, furongh@umd.edu)
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Machine Learning is relying more and more on tensor computations. Tensors may represent
extremely diverse data stemming from fluorescence spectroscopy, remote sensing, music
information retrieval, image and video processing, but also parameters in high order statistics
and deep learning. In this tutorial, after introducing several widely used tensor notations
and low-rank approximation models, we detail how tensors and tensor models are used in
several of these applications. In particular, we review the use of tensors in recommendation
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systems, blind source separation, dictionary learning, compression of neural networks (notably
transformers) and classification. We finish this tutorial by pointing out a few important
required tensor computations building blocks in the machine learning community.

3.4 Software for tensor computations: What is happening?
Paolo Bientinesi (University of Umed, SE, pauldj@cs.umu.se)

License @ Creative Commons BY 4.0 International license
© Paolo Bientinesi
Main reference Christos Psarras, Lars Karlsson, Paolo Bientinesi: “The landscape of software for tensor
computations”, CoRR, Vol. abs/2103.13756, 2021.
URL https://arxiv.org/abs/2103.13756

In stark contrast to the world of matrix computations, that of tensor computations still lacks
a well defined set of building blocks. From an ongoing survey of the existing software for
tensor computations, it emerged that many similar libraries are developed independently
in different application domains. This inevitably leads to redundant effort and sub-optimal
results (in terms of efficiency). In this talk we present and discuss possible building blocks to
support high-performance tensor operations across different application domains.

4 Overview of Talks
4.1 Infrastructure for Tensor Compilers: Lessons and Ongoing
Developments from the MLIR Project
Albert Cohen (Google — Paris, FR, albertcohen@google.com)
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Peeking into MLIR for code generation and domain-specific compilation, with a focus on
tensor algebra. Covering both graph-level and loop/vector-level optimization.

4.2 Tensorly toolbox, and the tensoptly project
Jeremy Cohen (CREATIS, CNRS, Villeurbanne, FR, jeremy.cohen@cnrs.fr)

License ) Creative Commons BY 4.0 International license
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The Tensorly toolbox is a high level library that provides tensor manipulations and decompos-
itions in python[1]. After presenting the high level API and some recent additions from the
Tensoptly project, we explore how bottleneck operations such as MTTKRP are implemented.

References
1 Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python. Journal of Machine Learning Research (JMLR), 20(26), 2019.
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4.3 Overview of the Boost.uBlas Tensor Extension
Cem Bassoy (Fraunhofer IOSB, DE, cem.bassoy@iosb.fraunhofer.de)
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Boost.uBLAS has been recently extended with dense tensor types and basic tensor operations.
In this talk interfaces and implementations of the extension are presented. Runtime results
of tensor-time-vector and tensor-times-matrix operations are presented and discussed as well.

4.4 Sequences of tensor contractions: A design space exploration
Carsten Uphoff (Intel Deutschland GmbH, Feldkirchen, DE, carsten.uphoff@intel.com)

License @@ Creative Commons BY 4.0 International license
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Kernels in finite element methods can be abstracted as sequences of tensor contractions.
The number of implementation variants typically grows exponentially with the number of
tensors. Sources of exponential growth are in particular the order of operations and the
data structures of intermediate tensors. I discuss the design space of sequences of tensor
contractions and algorithms to automatically select a fast implementation variant.

4.5 Hashing for the zeros/nonzeros of a sparse tensor
Bora Ucar (CNRS and ENS Lyon, FR, bora.ucar@ens-lyon.fr)

License @@ Creative Commons BY 4.0 International license
© Bora Ucar
Main reference Jules Bertrand, Fanny Dufossé, Somesh Singh, Bora Ugar: “Algorithms and data structures for
hyperedge queries”, p. 28, 2022.
URL https://hal.inria.fr/hal-03127673

We consider the problem of querying the existence of hyperedges in hypergraphs. More
formally, we are given a hypergraph, and we need to answer queries of the form “does the
following set of vertices form a hyperedge in the given hypergraph?”. Our aim is to set up
data structures based on hashing to answer these queries as fast as possible. We discuss an
adaptation of a well-known perfect hashing approach for the problem at hand. This is joint
work with Jules Bertrand, Fanny Dufossé, and Somesh Singh and available as a technical
report. There is also an efficient shared-memory parallel implementation [1].

References

1 Somesh Singh and Bora Ucar. An Efficient Parallel Implementation of a Perfect Hash-
ing Method for Hypergraphs. In GrAPL 2022 — Workshop on Graphs, Architectures,
Programming, and Learning, pages 1-10, Lyon, France, May 2022. IEEE. to appear.
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4.6 Portable and efficient array redistribution

Norman A. Rink (DeepMind, London, GB, nrink@deepmind.com)
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Main reference Norman A. Rink, Adam Paszke, Dimitrios Vytiniotis, Georg Stefan Schmid: “Memory-efficient array
redistribution through portable collective communication”, CoRR, Vol. abs/2112.01075, 2021.
URL https://arxiv.org/abs/2112.01075

Computing on partitioned arrays in a distributed fashion has become commonplace, especially
in the context of large-scale machine learning, where the size of large models necessitates
working on partitioned arrays in order to fit into device memory. Computing on partitioned
arrays typically requires communication in the form of redistributing chunks of arrays,
which can easily become a performance bottleneck. I present a type-directed approach that
synthesizes efficient communication sequences for array redistribution.

4.7 How will End-of-Moore impact high-performance tensor-centric
applications?

P. Sadayappan (University of Utah, Salt Lake City, US, saday@cs.utah.edu)
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The high-performance computing world has seen two “sea changes” so far. The first was
the “attack of the killer micros” — change from vector supercomputers to highly parallel
clusters of commodity processors. The next disruptive change was the emergence of GPUs
with roughly an order-of-magnitude performance edge over CPUs for tensor computations.
While tensor-centric applications in ML have largely adapted to this change, other domains
are yet to benefit from the power of GPUs. It appears that the next disruptive change is
looming with the end of Moore’s Law scaling of VLSI. The latest breed of accelerators for
ML all appear to be fully distributed-memory systems with thousands of processors on a
chip without any shared-memory. The challenges in developing efficient tensor applications
for these systems is even more daunting than GPUs. Compilers will need to play a significant
role moving forward.

4.8 Successes and Challenges for continuous matrix product states
Jutho Haegerman (University of Ghent, BE, Jutho.Haegeman@UGent.be)

License ) Creative Commons BY 4.0 International license
© Jutho Haegeman
Main reference Benoit Tuybens, Jacopo De Nardis, Jutho Haegeman, Frank Verstraete: “Variational Optimization
of Continuous Matrix Product States”, Phys. Rev. Lett., Vol. 128, p. 020501, American Physical
Society, 2022.
URL https://doi.org/10.1103/PhysRevLett.128.020501

A particular limit of the tensor train / matrix product state construction gives rise to a class
of quantum states known as continuous matrix product states. The energy minimisation
or dynamical evolution thereof gives rise to coupled set of non-linear matrix-valued partial
differential equations. I discuss our successes in dealing with them so far, and the remaining
challenges that we face for further applications.
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4.9 Simulation of the Sycamore quantum circuits with tensor networks
Pan Zhang (Chinese Academy of Science, Beijing, CN, panzhang@itp.ac.cn)

License @ Creative Commons BY 4.0 International license
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The sampling problem of the Sycamore circuits has been used by Google to demonstrate
the quantum advantage. I will introduce tensor network methods based on the sparse-state
representation to generate one million uncorrelated samples from the final state of the
Sycamore circuits with fidelity greater than Google’s experiments.

4.10 Implicit Regularization in Deep Learning: Lessons Learned from
Tensor Factorizations

Nadav Cohen (Tel Aviv University, IL, cohennadav@cs.tau.ac.il)

License @@ Creative Commons BY 4.0 International license
© Nadav Cohen
Main reference Noam Razin, Asaf Maman, Nadav Cohen: “Implicit Regularization in Tensor Factorization”, in Proc.
of the 38th International Conference on Machine Learning, Proceedings of Machine Learning
Research, Vol. 139, pp. 8913-8924, PMLR, 2021.
URL https://proceedings.mlr.press/v139/razin21la.html

The mysterious ability of deep neural networks to generalize is believed to stem from an
implicit regularization, a tendency of gradient-based optimization to fit training data with
predictors of low “complexity” [1, 2]. A major challenge in formalizing this intuition is that
we lack measures of complexity that are both quantitative and capture the essence of data
which admits generalization (images, audio, text, etc.). With an eye towards this challenge,
I will present recent analyses of implicit regularization in tensor factorizations, equivalent to
certain non-linear neural networks. Through dynamical characterizations, I will establish
implicit regularization towards low rank, different from any type of norm minimization, in
contrast to prior beliefs. Then, motivated by tensor rank capturing implicit regularization
of non-linear neural networks, I will suggest it as a measure of complexity, and show that
it stays extremely low when fitting standard datasets. This gives rise to the possibility of
tensor rank explaining both implicit regularization of neural networks, and the properties of
real-world data translating it to generalization.

References
1 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.

Curran Associates, Inc., 2019.

2 Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be
explainable by norms. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc.
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4.11 The Tensor Brain: Semantic Decoding for Perception and Memory

Volker Tresp (Ludwig-Mazimilians- Universitit Minchen & Siemens, Minchen, DE,
volker.tresp@siemens.com,)

License @ Creative Commons BY 4.0 International license
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I start with an introduction to PyKEEN [1], the main talk is on the tensor brain. It is
a unified computational theory of an agent’s perception and memory. In our model [2],
perception, episodic and semantic memory are refined by different functional and operational
modes of the oscillating interaction between index layer and a representation layer (global
workspace) in a bi-layer tensor network (BTN).

References

1 Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh,
Volker Tresp, and Jens Lehmann. Pykeen 1.0: a python library for training and evaluating
knowledge graph embeddings. Journal of Machine Learning Research, 22(82):1-6, 2021.

2 Volker Tresp, Sahand Sharifzadeh, and Dario Konopatzki. A model for perception and
memory. In Conference on Cognitive Computational Neuroscience, 2019.

4.12 Matricized Tensor Times Khatri-Rao Product (MTTKRP)
Christos Psarras (RWTH Aachen, DE, psarras@aices.rwth-aachen.de)
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Given the apparent interest at the start of the week on the MTTKRP operation, especially
among the machine learning audiences, I decided to present the challengers and my insights
on providing a generic black-box implementation of MTTKRP for 3D dense tensors and
beyond. I presented a graph which listed the different ways of computing MTTKRP for
3D tensors, without explicitly transposing the underlying tensor, and emphasized on their
(often significant) differences in performance. My findings pointed to the difficulty of creating
a mechanism that can accurately predict which method for computing MTTKRP is most
efficient depending on the target platform (CPU or GPU), the sizes of the dimensions of the
underlying tensor, and the number of components (columns) of the factor matrices.

4.13 Domain-Extensible Compilers and Controllable Automation of
Optimizations

Thomas Koehler (University of Glasgow, GB, t.koehler.1@research.gla.ac.uk)

License @ Creative Commons BY 4.0 International license
© Thomas Koehler

I presented my work on a rewrite-based domain-extensible compiler with controllable auto-
mation of optimisations [1, 2, 3]. To encourage discussion, I presented two opinions on how
future tensor compilers should be designed. “Will you agree, or have a different opinion?”
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References

1 Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and
Michel Steuwer. Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies. Proc. ACM Program. Lang.,
4(ICFP), aug 2020.

2 Thomas Koehler and Michel Steuwer. Towards a domain-extensible compiler: Optimizing
an image processing pipeline on mobile cpus. In 2021 IEFE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 27-38, 2021.

3 Thomas Koehler, Phil Trinder, and Michel Steuwer. Sketch-guided equality saturation:
Scaling equality saturation to complex optimizations in languages with bindings, 2021.

5 Working Groups

5.1 TTV in Tensorly

Jeremy Cohen (CREATIS, CNRS, Villeurbanne, FR, jeremy.cohen@cnrs.fr)
Cem Bassoy (Fraunhofer IOSB, Ettlingen, DE)
Lawrence Mitchell (NVIDIA Corporation, Santa Clara, US, Imitchell@nuvidia.com)

License ) Creative Commons BY 4.0 International license
© Jeremy Cohen, Cem Bassoy

Tensorly is a python library that provides high-level APT for tensor decompositions [3]. It con-
tains highly-efficient implementations of state-of-the-art algorithms for tensor decompositions.
One key operation for the tensor decomposition is the so-called TTV (tensor-times-vector)
operation. Tensorly’s TTV implementation unfolds tensors in order to use efficiently imple-
mented matrix-vector operations with unfolded tensors. The unfolding operation however
consumes more memory than a naive implementation and introduces additional runtime
overhead compared to high-performance tensor multiplication algorithms.

The goal of this breakout group was to investigate the usability of an high-performance
open-source C++ implementation of TTV [1] and to estimate potential performance gains for
Tensorly. One major benefit of Cem’s C++ library is it’s ability to provide fast tensor-vector
multiplication for tensors that are stored according to last-order storage format which is
(if not otherwise specified) the common format used in NumPy. We were able to integrate
Cem’s TTV library into Tensorly without modifying the original C++ code. We observed
considerable speedups for certain tensor shapes. With promising results, we intend to
continue our collaboration and to continuously report our latest findings in [2].

References
1 Cem Bassoy. Design of a high-performance tensor-vector multiplication with blas. In

Joao M. F. Rodrigues, Pedro J. S. Cardoso, Janio Monteiro, Roberto Lam, Valeria V.

Krzhizhanovskaya, Michael H. Lees, Jack J. Dongarra, and Peter M.A. Sloot, editors,
Computational Science — ICCS 2019, pages 32—45, Cham, 2019. Springer International

Publishing.

2 https://github.com/cohenjer/tensorly/tree/tensordot_and_ttv/ttv_and_
tensordot.

3 Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor

learning in python. Journal of Machine Learning Research (JMLR), 20(26), 2019.
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5.2 A unified domain specific language for tensor contractions:
Dagstuhl Tensor Language

Albert Cohen (Google — Paris, FR, albertcohen@google.com,)
Teodoro F. Collin (MIT CSAIL, US, teoc@mit.edu)
David Ham (Imperial College London, GB, david.ham@imperial.ac.uk)
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Norman A. Rink (DeepMind, London, GB, nrink@deepmind.com,)
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Connor Ward (Imperial College London, GB, c.ward20@imperial.ac.uk)
License ) Creative Commons BY 4.0 International license

© Teodoro F. Collin, Albert Cohen, David Ham, Paul H. J. Kelly, Thomas Koehler, Norman A.
Rink, Edward Stow, Carsten Uphof, Sophia Vorderwuelbecke, and Connor Ward

Dagstuhl Tensor Language (DTL) is the continuation of work done in the previous Dagstuhl
Seminar, the aim being to bring together a common language at a highly abstract level that
sufficiently describes the mathematics of tensor computations. The language is designed
to be minimal and general in that it makes no attempt to specialise towards any hardware
or algorithmic feature beyond tensor contractions; but with a view that is must become
extensible and through directives or annotations a policy for decision making and optimisation
for specific use cases could be produced.

5.2.1 Design

Our primary goal in the design of DTL was to build a minimal and unambiguous tensor
language that targeted a minimal set of optimizations that could be done with just formulas
for the sizes of the tensors. Strength reduction was the primary motivator. We were able to
eventually sketch out a design by using an insight from several other languages for tensor
computations: the need for an explicit unbind operator (an operator that builds a tensor by
iterating over a given set of indexes) to avoid ambiguities in index notation. Several other
projects, targeted at different problems (e.g Chiw’s EIN for Diderot, GEM from Firedrake,
Dex for ML, ATL for optimization problems) have postulated and to various extents used
such an operation. We have incorporated it as a primary and fundamental feature for our
minimal set of operations.

5.2.2 Open Problems

There are disagreements on the precise way we would like others to use this language. For
some, we would hope this to basically be an IR and to be used in other people’s stack after a
point of lowering. For others, we want this to be a base language that is easily extended to
other languages (i.e to be functorial in the sense of standard ML modules). In either case,
we did not figure out how this language could easily modified or extended by users towards
other means. In particular, although the base language works, we left several design issues
unsolved that could be rephrased as areas where we need to enable extensibility via some
means:

Meta data associated to tensors and how it could be use by general strength reduction

algorithms or passed down a compiler stack or used to call special math operations
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Special constant tensors with special algebraic relations (e.g. €ijk... and 0;;) or even
languages for constant tensors built in some other expression language
Arithmetic operations on indices, affine, modular, or maybe non-linear
Special operations on tensor indices to transform them so that operations such as Az
recreate convolution. For example, circular indexing and the topelitz transform employed
in ML to do convolution with GEMM
Non-linear mathematical operations on tensors as opposed to scalars (e.g inverse of a
matrix)

Even if there should be linear operations on tensors
Support for non-rectangular iteration spaces.
Support for non-affine or even sparse iteration spaces.
General support for iteration spaces
Use of index expressions to make constant tensors (the algebraic use of indexes, allowing
i to be promoted to a tensor [0,1,2,3,...,n])
Support for algebraic sparsity via conditionals in constant tensors and/or via more
complex indexing operations
Support for sequence spaces or semi-rings or other basic algebraic operations

We could probably generate a longer list, but the critical point is that the basic objects
of the language (tensors, constants, operations, indexes, iteration spaces?) could be plausible
extended in a variety of potentially overlapping ways (e.g. two of these extensions enable
convolution support) or at least users might want to pass information about this stuff through

a compilation pipeline that uses DTL (e.g. tagging where a tensor or operation comes from).

We did not resolve these issues, but we recognize them and hope to solve them.

5.2.3 Future Work

One potential avenue we want to investigate is building this system within MLIR and seeing to
what extent MLIR helps us. But even there, we must return to a central set of optimizations
that we want to share, and we must also do the algorithmic work of how those optimizations
could be extended if we allow the language to be extended along some of these axises. This
was one of the core arguments against enabling too much extensionality as it makes the core
rationale less reasonable.

5.2.4 Ongoing Work

Since the seminar, work has continued in rounding out a python-embedded implementation
of the language with a project architecture that focuses on keeping the language minimal

while allowing different back-ends to produce implementations or eagerly compute results.

We have produced a work-in-progress reference implementation that uses python with Numpy
for un-optimised but semantically correct outputs. In parallel, we have begun mapping the
python-embedded implementation into an xDSL dialect with the intention to make use of
existing work to enable lower levels of optimisations through xDSL’s own linear algebra
dialects and also further mapping into the MLIR compiler infrastructure.
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