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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22102 “Computational
Models of Human-Automated Vehicle Interaction”. At this Dagstuhl Seminar, we discussed how
computational (cognitive) models can be used to model human-automated vehicle interaction.
The seminar is motivated by developments in the field of semi-automated driving where humans
and vehicles interact as teams to either both contribute to the drive (partnership) or to have safe
transitions of control from vehicle to human and vice-versa. Computational (cognitive) models
can be used in these situations to simulate or model human behavior and thought. Such models
can be used among others to better understand human behavior, to test “what if” scenarios to
guide design, or to even provide input to the vehicle about the human’s potential behavior and
thoughts. The seminar was attended by experts in various fields including computer science,
cognitive science, engineering, automotive UI, human-computer interaction, and human factors.
They represented academia, industry, and government organizations. With the attendees, we
discussed five challenges of the field during panel discussion sessions:

Challenge 1: How can models inform design and governmental policy?
Challenge 2: What phenomena and driving scenarios need to be captured?
Challenge 3: What technical capabilities do computational models possess?
Challenge 4: How can models benefit from advances in AI while avoiding pitfalls?
Challenge 5: What insights are needed for and from empirical research?

The attendees then split off into smaller working groups to discuss aspects of these challenges
in more depth. Based on these discussions and other input from the attendees, this Dagstuhl
report reports the following:

an executive summary of the seminar
position perspectives of all the attendees (section: “Talks”)
summaries of the various working groups (section: “Working Groups”)
summaries of the five panels (section: “Panel Discussions”)
an overview of relevant papers (section: “Open Problems”)
a research agenda with some of the most important developments and needs we identified for
the field (section: “Open Problems”)

All in all, we believe the seminar has shown that this field has lots of potential for development and
an active community to tackle pressing issues. We can’t wait to see what results the participants
of the seminar will bring to the field in the future.
Seminar March 6–11, 2022 – http://www.dagstuhl.de/22102
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1 Executive Summary
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This is the executive summary of Dagstuhl 22102: Computational Models of Human-
Automated Vehicle Interaction, which took place March 6-11th 2022 in Hybrid format. The
executive summary first summarizes the motivation of the seminar, then gives an overview
of the broad challenges that were discussed, it then presents the results of the seminar. As
this is only the summary, there are a lot more details about every item and result in other
parts of this report, these are therefore referred to.

It has been a fruitful meeting, which sparked many research ideas. We want to thank
all the attendees for their attendance and all the input they generate. We hope that it is
of value to the community, and we can’t wait to see what other results follow in the future
based on discussions that started at this seminar!

Christian Janssen, Martin Baumann, Antti Oulasvirta, and Shamsi Iqbal (organizers)

Computational Models of Human-Automated Vehicle Interaction:
Summary of the field
The capabilities of automated vehicles are rapidly increasing, and are changing human
interaction considerably (e.g., [4, 6, 29]). Despite this technological progress, the path to fully
self-driving vehicles without any human intervention is long, and for the foreseeable future
human interaction is still needed with automated vehicles (e.g., [15, 22, 29, 37, 48, 47]). The
principles of human-automation interaction also guide the future outlook of the European
Commission [13, 14]. Human-automated vehicle interaction can take at least two forms. One
form is a partnership, in which the human and the automated vehicle both contribute in
parallel to the control of the vehicle. Another form is in transitions of control, where the
automated system at times takes over full control of the vehicle, but transitions control
back to the human when desired by the human, or when required due to system limitations.
For both the partnership and the transition paradigm it is beneficial when the car and the
human have a good model of each other’s capabilities and limitations. Accurate models
can make clear how tasks are distributed between the human and the machine. This helps
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avoid misunderstandings, or mode confusion [45], and thereby reduces the likelihood of
accidents and incidents. A key tool in this regard is the use of computational (cognitive)
models: computational instantiations that simulate the human thought process and/or their
interaction with an automated vehicle. Computational models build on a long tradition in
cognitive science (e.g., [35, 36, 44]), human factors and human-computer interaction (e.g.,
[10, 39, 27], neuroscience (e.g., [12, 31]), and AI and engineering (e.g., [17, 42]). By now, there
are a wide set of varieties that can be applied to different domains, ranging from constrained
theoretical problems to capturing real-world interaction [38]. Computational models have
many benefits. They enforce a working ethic of “understanding by building” and require
precision in specification ([34], see also [8, 32, 41]). Models can test the impact of changes
in parameters and assumptions, which allows for wider applicability and scalability (e.g.,
[2, 16, 44]). More generally, this allows for testing “what if” scenarios. For human-automated
vehicle interaction in particular, it allows testing of future adaptive systems that are not yet
on the road. Automated driving is a domain where computational models can be applied.
Three approaches have only started to scratch the surface. First, the large majority of
models focus on engineering aspects (e.g., computer vision, sensing the environment, flow
of traffic) that do not consider the human extensively (e.g., [7, 18, 33]). Second, models
that focus on the human mostly capture manual, non-automated driving (e.g., [44, 9, 25]).
Third, models about human interaction in automated vehicles are either conceptual (e.g.
[20, 22]) or qualitative, and do not benefit from the full set of advantages that computational
models offer. In summary, there is a disconnect between the power and capabilities that
computational models offer for the domain of automated driving, and today’s state-of-the-art
research. This is due to a set of broad challenges that the field is facing and that need to be
tackled over the next 3-10 years, which we will discuss next.

Description of the seminar topics and structure of the seminar report
The seminar topics were clustered around five broad challenges, for which we provide a brief
description and example issues that were discussed addressed. Although the challenges are
presented separately, they are interconnected and were discussed in an integrated manner
during the seminar. During the seminar, each challenge was discussed in a panel, with
all attendees taking part in at least one panel. After each panel, the group was split up
in smaller workgroups, and discussed the themes in more lengths. The summary of each
panel discussion can be found later in this report under the section “panel discussions”. The
outcomes of the workgroups can be found later in this report under the section “workgroups”.
In addition, all attendees wrote short abstracts that summarized their individual position.

Challenge 1: How can models inform design and governmental policy?

Models are most useful if they are more than abstract, theoretical vehicles. They should not
live in a vacuum, but be related to problems and issues in the real world. Therefore, we want
to explicitly discuss how models can inform the design of (in-)vehicle technology, and how
they can inform policy. As both of these topics can fill an entire Dagstuhl by themselves,
our primary objective is to identify the most pressing issues and opportunities. For example,
looking at:
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Types of questions: what types of questions exist at a design and policy level about
human-automated vehicle interaction?
How to inform decisions: How can models be used to inform design and policy decisions?
What level of detail is needed here? What are examples of good practices?
Integration: Integration can be considered in multiple ways. First, how can ideas from
different disciplines be integrated (e.g., behavioral sciences, engineering, economics), even
if they have at times opposing views (e.g., monetary gains versus accuracy and rigor)?
Second, how can models become better integrated in the design and development process
as tools to evaluate prototypes (instead of running empirical tests)? And third, how
can models be integrated into the automation (e.g., as a user model) to broaden the
automation functionality (e.g., prediction of possible driver actions, time needed to take
over)?

Challenge 2: What phenomena and driving scenarios need to be captured?

The aim here is to both advance theory on human-automation interaction while also con-
tributing to understanding realistic case studies for human-automation interaction that are
faced for example by industry and governments. The following are example phenomena:

Transitions of control and dynamic attention: When semi-automated vehicles transition
control of the car back to the human, they require accurate estimates of a user’s attention
level and capability to take control (e.g., [22, 49]).
Mental models, machine models, mode confusion, and training and skill: Models can
be used to estimate human’s understanding of the machine and vice-versa (e.g., [20]).
Similarly, they might be used to estimate a human driver’s skill level, and whether training
is desired.
Shared control: In all these scenarios, there is some form of shared control. Shared control
requires a mutual understanding of human and automation. Computational models can
be used to provide such understanding for the automation (e.g., [50]).

Challenge 3: What technical capabilities do computational models possess?

A second challenge has to do with the technical capabilities of the models. Although the
nature of different modeling frameworks and different studies might differ [38], what do we
consider the core functionality? For example, related to:

Compatibility: To what degree do models need to be compatible with simulator software
(e.g., to test a “virtual participant”), hardware (e.g., be able to drive a car on a test
track), and other models of human thinking?
Adaptive nature: Computational models aim to strike a balance between precise pre-
dictions for more static environments and being able to handle open-ended dynamic
environments (like everyday traffic). How can precision be guaranteed in static and
dynamic environments? How can models adapt to changing circumstances?
Speed of development and broader adoption: The development of computational models
requires expertise and time. How can development speed be improved? How can
communities benefit from each other’s expertise?

Challenge 4: How can models benefit from advances in AI while avoiding pitfalls?

At the moment there are many developments in AI that computational models can benefit
from. Three examples are advances in (1) simulator-based inference (e.g., [26]) to reason
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about possible future worlds (e.g., varieties of traffic environments), (2) reinforcement learning
[46] and its application to robotics [30] and human driving [25], and (3) deep learning [17]
and its potential to predict driver state or behavior from sensor data. At the same time,
incorporation of AI techniques also comes with challenges that need to be addressed. For
example:

Explainability: Machine learning techniques are good at classifying data, but do not
always provide insight into why classifications are made. This limits their explainability
and is at odds with the objective of computational models to gain insight into human
behavior. How can algorithms’ explainability be improved?
Scalability and generalization: How can models be made that are scalable to other domains
and that are not overtrained on specific instances? How can they account for future
scenarios where human behavior might be hard to predict [5]?
System training and corrective feedback: if models are trained on a dataset, what is the
right level of feedback to correct an incorrect action to the model? How can important
new instances and examples be given more weight to update the model’s understanding
without biasing the impact?

Challenge 5: What insights are needed for and from empirical research?

Models are only as good to the degree as they can describe and predict phenomena in the real
world. Therefore, empirical tests are an important consideration. Example considerations
are:

Capturing behavioral change and long-term phenomena: Many current computational
models capture the results of a single experiment. However, behavior might change with
more exposure to and experience with automated technology. How can such (long-term)
behavior change be tested?
Capturing unknown future scenarios: Many automated technologies that might benefit
from computational models are not yet commercially available. How can these best be
studied and connected to computational models?
Simulated driving versus real-world encounters: To what degree are simulator tests
representative of real-world scenarios (e.g., [19])?

Results
The seminar has generated the following results.

1. Overview of state-of-the-art technologies, methods, and models. The spectrum of
computational modeling techniques is large [38, 21, 24]. Before and during the conference,
we have discussed various methods and techniques. In particular, this report contains
a dedicated chapter called “Relevant papers for modeling human-automated vehicle
interaction” in which we report a long set of papers that the community identified as
being relevant to the field. We encourage scholars to take a look at it.

2. List of grand challenges with solution paths. We have identified five grand challenges
and discussed those in detail during the panels. Our chapters on “panel discussions”
report the outcomes of these discussions. Moreover, the workgroups further report the
in-depth discussions that smaller groups had about these challenges. See the section
“working group” of this report. The results only start to scratch the surface of some of
the grand challenges for the application of computational cognitive modeling that need to
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be faced within the next 3 to 10 years, and their paths to solutions. Based on discussions,
groups of authors plan to work on more papers and workshops around topics that they
deemed worthy of further discussion. For example, we discussed whether there are specific
driving scenarios that a computational model should be able to capture, and how success
might be quantified (e.g., whether these challenges should take the form of competitions,
akin to DARPA’s Grand Challenge for automated vehicles [11] or “Newell’s test” for
cognitive models [3]).

3. Research agenda to further the field. This report also reports a research agenda
that is intended to further the field. For each specific grand challenge, we have identified
more specific areas of research that need futher exploration. We refer to the dedicated
section in this report called “Research agenda to further the field”. The organizers of the
seminar will also organize a dedicated journal special issue around the topic, in which
further results that arose from the seminar can be reported.
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3 Overview of Talks

3.1 Computational modeling is key for advancing knowledge about
human-AV interaction

Martin Baumann (Universität Ulm, DE)

License Creative Commons BY 4.0 International license
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The recent technological development is bringing the vision of automated driving within
realistic reach. But for really exploiting the potential of this technology in terms of safety,
efficiency and comfort human factors knowledge has to be considered and integrated into the
design of these systems. Designing the interaction of humans both inside and outside with
automated vehicles (AVs) is therefore a key factor for the technology’s success. Unfortunately,
we still lack important knowledge about the psychological mechanisms underlying the
interaction of humans with AVs. At least in some cases, this is not due to the fact that we
miss empirical data, but because we miss precise definitions and theories of the relevant
mechanisms. This is where computational models of human-automated vehicle interaction
come in and might play a key role in advancing the theoretical basis of our discipline in this
field.

I see mainly three relevant phenomena that are essential for understanding human-AV
interaction and that might profit from computational modelling:
i) how do humans construct and maintain an adequate comprehension of the current situation

including system status,
ii) what are the long-term effects of interacting with AVs, and one aspect that is especially

important here is how does trust into AVs evolve over time. Building computational
models of trust and its development will definitely help us move forward regarding this
supposed to be highly relevant but only loosely defined concept.

iii) how do humans interact and cooperate with each other in complex and realistic traffic
scenarios. Current research results are mainly based on simple situations and one to
one interaction scenarios. To tackle the complexity of such situations computational
models allowing to simulate and to understand the processes in deeper level might be
very helpful.

I hope that this Dagstuhl Seminar will bring us a step closer to solutions for these
challenges.

3.2 Automated Driving and Cognitive Architecture Models
Jelmer Borst (University of Groningen, NL)
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Main reference Dario D. Salvucci: “Modeling Driver Behavior in a Cognitive Architecture”, Hum. Factors,
Vol. 48(2), pp. 362–380, 2006.

URL https://doi.org/10.1518/001872006777724417

High-level cognitive architectures such as ACT-R can be used to simulate human driving
under various circumstances [1]. Although they give a faithful characterization of the cognitive
system, due to their rule-based nature they seem to be too brittle to operate an automated
vehicle. Instead, I argue for four use cases:
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1) understanding human cognition in driving;
2) a hybrid cognitive model-machine learning system, where the cognitive model informs

the machine-learning part about expected behavior of other drivers and accompanying
proper behavior;

3) a model-tracing approach, where the cognitive model is used to warn the driver when
deviating from predicted behavior; and

4) a model-tracing approach where the cognitive model increases the automation level of
the car when high workload is predicted for the driver.

References
1 Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors,

48(2), 362–380. https://doi.org/10.1518/001872006777724417.

3.3 Reflections on 15 years of Modelling In-Car Multitasking Behaviour
Duncan Brumby (University College London, GB)
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It was 15 years ago that I first wrote a computational cognitive model of driving. The model
was used to make performance predictions for a range of different dual-task interleaving
strategies that a driver could potentially adopt when entering a number to a mobile phone
while driving. This work was published at CHI 2007 and it provided a great foundation for a
lot of future research, including Chris Janssen’s PhD thesis (who is now one of the organisers
of this meeting).

At this meeting, I’ve been reflecting on three significant advances that have happened
since 2007.

First, many modern cars have advanced driver support systems. This includes cameras
that monitor the road so that the car itself can manage speed and lateral control. These
systems have become quite wide spread, and show that the basic demands of the driving
task are changing.

Second, mobile devices have got better. In 2007, the iPhone had only just been released.
Now many cars have in-car displays to show route directions, and integrated voice user
interfaces that can be used to play music or send messages. The secondary tasks that drivers
can do are also changing.

Third, the basic science of modelling drivers has advanced. In 2007 we were just beginning
to explore ways to use reinforcement learning methods to get our models to adapt strategies
for driving and secondary task interactions. At the time we opted for a simple “black
box” approach. Since this time the great AI Spring has delivered modern machine learning
techniques that can be use by our models. The work being done by Jussi Jokinen and Antti
Oulasvirta is now realising what we only hoped would have been possible 15 years ago. The
models that we can develop are changing.

The aim of this meeting then is to reflect on the advances that we’ve seen in these
three inter-related areas that are relevant for developing Computational Models of Human-
Automated Vehicle Interaction: the driving task, the secondary task, and the basic science
of cognitive modelling. I hope as a result of this meeting we can set out a research agenda
for the next 15 years of change.
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3.4 Modeling for AV-RU interaction
Debargha Dey (TU Eindhoven, NL)
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Modeling an environment or human behavior, in essence, is looking at the world as a
computer. But the world is complex, and within the dynamism we operate, it is often hard
to quantify the specific dimensions of interest that provoke a certain behavior we observe.
A complex world emerges from a complex interaction from an unquantifiable explosion
of parameters, which tend to make any mathematical solution intractable. The job of a
cognitive/ computation model is to simplify this quagmire of parameters and attempt to
make some sense of this complexity with some informed guess, or in other words, illuminate
the black box. Empirical research can help in systematically investigating the hierarchy of
effect of the different parameters.

In the world of interactions within automotive human factors, we can say a lot about
situations and negotiations, but we are not able to draw boundaries on problems and
definitively say how to solve them. Furthermore, when we attempt to answer these questions
through models, the expected reaction of the environment (e.g. driver, pedestrian, vehicle,
etc.) are often not captured. Applying this to the context of my current research domain of
eHMIs (external Human-Machine Interfaces) that facilitate AV-road user communication,
linear models tell us how pedestrians will react and how a car should interact. However,
the interaction from a car can cause further behavioral adaptations in a pedestrian, which
current models are often unable to capture. The concept of interdependence – collaboration,
coordination, and teamwork – is a grand challenge that seems to emerge as a gap in the
state of the art.

Specifically in the context of eHMI research, the biggest potential benefit of a modeling
approach emerges when tackling the problem of scalability. The state of the art has been
mainly confined to a “one-car-one-pedestrian” setup in conducting empirical research. This is
primarily because when investigating scalability of interactions, even at the minimum viable
condition of testing scalability (i.e. just two pedestrians), the complexity introduced leads to
the previously mentioned explosion of parameters, which make systematic empirical studies
untenable. A potential approach is therefore to use a variety of theory- and naturalistic-data
driven models to identify and decode the interactions in multi-agent scenarios, and conduct
empirical studies with a more informed, limited set of parameters.

Another application for models is as a filtering tool. If a set of data does not fit a proven
model derived from data or theory, it can be used as an indication of an outlier, which can
be applied in practice as an alerting system. However, model interpretability is an important
and non-trivial part of the equation if a model is to be used in that way: a machine-learned
black-box model needs to be interrogated by a surrogate interpretable/ cognitive model.
Furthermore, the question “how do we evaluate a model” stays wide open. What is the
metric of a good model? And what is the appropriate thing to model for? The present? The
future? A specific, imagined future? Points to ponder.
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3.5 Data cautions in the use of machine learning tools
Birsen Donmez (University of Toronto, CA)
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For some applications, like real-time driver state detection, the power of black-box Machine
Learning (ML) tools is indisputable over other types of driver models. These ML tools enable
the predictive modeling of complex nonlinear systems and can accommodate the modeling of
a large number of predictor variables and their interactions. However, such complex models
also require large datasets, which may or may not be directly available to researchers.

Caution should be taken when applying ML approaches to small datasets that empirical
researchers traditionally collect. Although data may be collected at high frequency from each
participant, experimental/observational scientific studies are generally limited in sample size
(i.e., number of participants). Traditional statistical modeling techniques (model building and
validation) were developed for small samples, whereas ML techniques assume large amounts
of data. For example, researchers who have data from an experiment may have to split their
training/test datasets within participants rather than across participants. But this approach
can create data leakage resulting in ML models being rewarded for identifying participants
rather than signals associated with the phenomenon of interest.

Caution should also be taken when researchers are lucky enough to obtain large datasets
from other sources (e.g., OEMs). Real world data is messy, especially if there is not much
control on how data is collected/selected for model training – leading up to examples such as
facial recognition algorithms that are inequitable. Empirical researchers who design their
own data collection are in a good position to apply their expertise and not fall into the same
pitfalls that others do, by questioning how the data was collected, whether it is representative,
and whether correlations exist in the data.

3.6 Triangulation of Cognitive Model and ML-based models
Patrick Ebel (Universität Köln, DE)
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Out of the many extremely interesting topics that were discussed, what is of greatest interest
to me is the question of how to combine cognitive models with learned (ML-based) models.
How can we theoretical/mechanistic approaches improve machine learning-based approaches
and vice versa? An effective combination of both could be the key to addressing the accuracy
vs. Interpretability trade-off in HCI. In my opinion, an interesting way to go is to explore how
complex interactions can be broken down into multiple subtasks/modules that only describe
a small part of human behavior (glance allocation, pointing time. . . ). These modules need
to be restricted such that they only operate within certain mechanistic/cognitive boundaries.
By doing so one can understand the different mechanisms of human behavior that in their
combination describe a “complete” human-machine interaction without sacrificing accuracy
due to abstract (but theoretically sound) models that lack prediction accuracy. However,
even though this idea might be tempting, each module would still be trained in a specific
context which leads to the problem of generalizability and raises the question of uncertainty
prediction. I think that the effective usage of large natural data can be a solution to this
problem. Leveraging large amounts of data we can represent different driving situations and
contexts that would lead to an increase in generalizability.
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3.7 Insights from Language Modelling Research
Justin Edwards (ADAPT Centre – Dublin, IE)
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For decades, language models were rule-based and theory-driven. Language data is and has
been plentifully accessible – models were not theory-driven in the 1960s because in-the-wild
language data was not available, but because we didn’t have the compute power to make
use of large amounts of language data. The last decade has been very different for language
models, with very large models like BERT and GPT-3 which, by utilizing tremendous power
to train the models, modelling language in a quite complex, data-driven way. These data
driven models have surpassed theory-driven models in many language tasks. They have
been deeply flawed in other ways however, because of attempts to generalize data-driven
models when the sample of language data is not general or ought not be generalized. This
has resulted in applications, like chatbots that use racist language, or applications said to
be capable of making moral judgments despite much of the training data coming from a
Reddit advice forum. As new types of in-the-wild human behavioural data becomes available
for contexts like human behaviour in SAE Levels 3 and 4 of driving, it is crucial that we
examine the biases inherent to our data sources – the things that either will not or ought
not generalize – and to remember that these biases can be caried through in our models. We
must choose model architectures which are sensitive to biases in are data and we must be
careful in how generally we try to apply models trained on idiosyncratic human behavioural
data.

3.8 Towards a holistic architecture of human driver behavior
Mark Eilers (Humatects – Oldenburg, DE)

License Creative Commons BY 4.0 International license
© Mark Eilers

Intelligent design of human-automated vehicle interaction requires computational models
of the human driving behavior and cognition. Particularly holistic models that can explain
and predict multiple aspects of SAE Level 0 human driving behavior simultaneously seem
equally important as modelling tool during the design of driving automation systems and
their certification, and as a component of the system itself. Unfortunately, there is still a
lack in commonly agreed upon models or architectures that can bear such a title.

As extensively discussed during the seminar, there is a common request for open-access
and agreed-upon datasets, scenarios, benchmarks, and competitions, and first plans emerged
to address this issue in the future. I’d argue that this endeavor should be accompanied
by attempts to define (and provide software support for) an open-access architecture for a
holistic model of human driving behavior that could evolve into a kind of gold-standard of
driver models.

For a recent starting point, [1] provide a framework for a unified visuomotor model of a
driver’s lateral control during simulated driving that couples gaze and steering control in
a three-layered architecture. It would be interesting to see this framework extended and
harmonized with theories for e.g., longitudinal control, intention formation, route planning,
and situational awareness, to name a few.
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Such an architecture could start as a collection of (potentially competing) models that
implement different aspects of human driving behavior (e.g., [2] two-point visual control
model of steering) that could be plugged together and interfaced with the currently envisioned
datasets, scenarios, benchmarks, and challenges in open-access driving simulators.

References
1 Lappi, O. and Mole, C. D. (2018). Visuomotor control, eye movements, and steering: A

unified approach for incorporating feedback, feedforward, and internal models. Psychological
Bulletin,144(10), pp. 981-1001. https://doi.org/10.1037/bul0000150

2 Salvucci, D. D. and Gray, R. (2004). A two-point visual control model of steering. Perception,
33 (10), pp. 1233-1248.

3.9 Reliable Autonomy Based on Imperfect Models
Martin Fränzle (Universität Oldenburg, DE)
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From the perspective of design and safety analysis of highly critical human-cyber-physical
systems, like automated driving at SAE levels 4 and 5, the demands on epistemic validity
and accuracy of human models running as human state predictors in the car might seem
prohibitive and the search for appropriate human models elusive. In my contribution to the
panel, I made the point that this may not actually be true: if the models generate predictions
which permit reliable (yet probably pessimistic) inferences in case of uncertainty then these
models can seamlessly be embedded into safety-oriented system architectures when resorting
to techniques of safe planning and control under uncertainty. Control theory as well as formal
methods in computer science have in the past exposed various fundamental approaches
to rigorous handling of uncertainties, which the human models and their corresponding
execution mechanisms would then, however, need to be able to interface to.

These approaches rely on comprehensive mathematical representation of uncertainties
concerning system state and evolution, building on possible world semantics in that they
represent a system by sets or distributions of possible states at any point of current and
extrapolated future time. This may seem a minor variation from the currently prevalent
state-based models, given that the latter frequently come in stochastic variants which
implicitly define the required distributions. The interfacing problem, however, results from
the execution mechanisms employed for computing state extrapolations over these models:
simulation-oriented mechanisms generating state traces, even if they do so using means of
randomized simulation for stochastic models, are not suitable, as approximating a distribution
via massively iterated randomized simulation is grossly inadequate for embedding in hard
real-time into, as necessary for an online mechanism. What we instead need are mechanisms
directly computing distributions in a time-resolved manner.

We argue that using such mechanisms, quite unreliable or, more precisely, uncertain
human models -in experiments we have used such with just 61% predictive accuracy- could
effectuate significant safety gains in embedded control applications. Technically, the human
model here acts inside the embedded control as an online proxy of the human. This proxy
enables predictive evaluation of the consequences of possible control actions, thus permitting
the technical system to pursue rolling-horizon model-predictive control that is provident to
the human.
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Such an online embedding of human models would, however, require that the models to
be embedded feature rigorous real-time guarantees, that they can incorporate the (uncertain)
state evidence provided by in-situ measurements, that they can exploit the latter for computing
best-possible estimates of current state, and that the provide time-resolved distributional
state predictions over reasonable horizons of the imminent future. All these are prerequisites
for interfacing seamlessly to rolling-horizon model-predictive control. Current models or
rather their execution mechanisms fail to meet these by primarily being targeted to simulation,
i.e., to trace generation rather than to state estimation by distributions.

3.10 How to model situation awareness and predict driver take-over
ability

Luisa Heinrich (Universität Ulm, DE)
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With higher levels of automation, the human’s role shifts from actively steering the vehicle
to passively monitoring the system. However, as long as fully automated driving (SAE
L5) is not available, humans will have to intervene in the driving task at times. Scenarios
in which transitions are likely to occur should therefore receive special attention. For
example, when exiting a highway, or when entering urban traffic. Starting with SAE L3
of automation, the human driver may disengage from the driving task and perform other
non-driving related activities. When a TOR is issued, he or she may be out-of-the-loop
and incapable of understanding the situation and acting appropriately to traffic events,
especially in safety-critical situations with small time-budgets. In order to support the
human during transitions in automated driving, we need to predict the driver state. Does
the human have enough situation awareness to safely take over control of the vehicle? With
situation awareness, I don’t mean being able to consciously reproduce knowledge of the
current situation, but having a well enough understanding to make appropriate driving
decisions – implicit rather than explicit knowledge. Computational models may inform us
about driver state by considering metrics relevant to the build-up of situation awareness,
for example eye-tracking (behavioral) or physiological data (e.g., heart rate). The question
arises as to what data could or should be fed to the model in order to make valid predictions
about the state of the driver and his or her ability to take over the driving task, and how the
model can be validated if the variable of interest, the implicit understanding of the situation,
is not measurable.

3.11 Hybrid models – integrating Machine learning approaches into
cognitive models

Moritz Held (Universität Oldenburg, DE)
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A key step to understanding driving behavior are the underlying cognitive processes while
driving. With the help of computational cognitive models, we aim to not only better
understand points of human failure but also provide theory-driven predictions for different
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driving scenarios. Combining theory-driven white box models like ACT-R models with
data-driven machine learning techniques (“black box models”) is an intriguing approach
towards creating predictive models which are usable in autonomous vehicles. In the Dagstuhl
Seminar we identified key areas in which black box approaches are more useful either from a
computational point of view (e.g., lower computation time in highly time-critical scenarios)
or when it comes to estimating Driver states/traits. On the other end, white box approaches
can be useful when the model needs to be robust to handle unseen scenarios or when the aim
of the model is to understand the cognitive processes responsible for the behavior. Hybrid
models, which integrate machine learning techniques to restrict the behavior of a cognitive
model seem promising.

3.12 The Nomadic Worker: Autonomous Vehicles as Future Worksites
Shamsi Tamara Iqbal (Microsoft – Redmond, US)
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With a rapid transition to a new future of work, the traditional definitions of where, how and
when people can get their best work done is continuously evolving. An important finding of
the years of the pandemic showed that people appreciated not having to commute as they
had to work remotely and found that they could rather use the time previously spent on
commute more productively while working from home. Yet with hybrid work practices, many
workers will be returning to some form of commute at least during some of their work week.
A key research question is how workers can effectively use the commute time – be it for their
productivity or personal wellbeing needs without jeopardizing driving safety. In hybrid work
scenarios, this becomes an even more important question, as efficient use of time for personal
and collaborative productivity and wellbeing will be paramount for workplace performance. I
propose a research agenda looking at the challenges of making the car a temporary worksite,
where people can safely and comfortably get work done or attend to their personal needs
without the worry of “wasting time in commute”. I envision three stages – 1) fully manual
(present day), 2) Level 3 where the driver is still in charge of driving with some autonomy
support from the car, 3) fully autonomous – and the nature of work that people can get done
will be very different from one stage to the next. The value of having three stages is that we
can start experimenting right away and inform vehicles of the future of the general challenges
of working in the car – limited attention span, environmental constraints such as motion
sickness, lack of large workspaces – and extend and adapt to the unique needs of a particular
stage. This work cross cuts both the domain of Future of Work, as well as Autonomous
Vehicles and will facilitate innovations of how to get work done in non-traditional worksites.
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3.13 An exciting time for the field of Cognitive Modeling of
Human-Automated Vehicle Interaction

Christian P. Janssen (Utrecht University, NL)
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It is an exciting time for the field of computational cognitive models of automated driving,
and that excitement is palpable at this Dagstuhl meeting — even when attending it remotely.
The field of cognitive modeling has been around for at least five decades (depending on how
you count, but for example going by this commentary of Allen Newell [1]), and has seen
a lot of progress. The last few years have seen a growth in the types of AI and modeling
techniques that have been developed for and in Human-Computer Interaction [2]. Moreover,
there is excitement to include these techniques in the Automotive domain [3]. A challenge
is though that with the breadth of techniques, and the breadth of application areas it is
easy to get lost in translation. Following a preceding Dagstuhl [4], we had already identified
that it is valuable to distinguish between simulations of the agent, its environment, and
scenarios [5]. Similarly, at this Dagstuhl we had various discussions on how to push the
field forward: refine and integrate techniques for modeling into the automotive domain. My
hope and expectation is that it will be a win-win-win situation. First, through modeling the
automotive field will gain better insights into its users and can better design for it. Second,
the social sciences and related fields will have an area to test their models, to see if they also
work in more practical sessions and to identify where refinement is needed. Third, through
this endeavor a solid scientific community will form. I can’t wait to see what the future
brings!
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3.14 Technical capabilities for computational models
Myounghoon Jeon (Virginia Polytechnic Institute – Blacksburg, US)
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Computational models are used to simulate and predict human behaviors by quantifying
the relationship between research parameters and behavioral outcomes. In this process,
precision of prediction and efficiency of the modeling process might be necessity for modeling,
rather than capabilities. Once these fundamental components are satisfied, we can consider
adaptability or expandability of modeling, which we can call compatibility. The first technical
capability the model should have for compatibility would be sensitivity. It is about whether
the model can be sensitive to changes in resource demand. The next one is selectivity. It is
about whether the model can be sensitive only to differences in specific resource demand.
For example, if task difficulty can be resolved by multiple resources (e.g., secondary task
while driving), but the model has only visual components, it might not be able to describe
the entire human behavior. Then, the research question would be whether the model can be
expanded by having other resources, such as auditory (speech and non-speech) components.
The next capability for compatibility would be diagnosticity. It is about whether the model
can indicate when human behaviors vary and can indicate the cause of variation. For example,
the cognitive architecture framework may not capture other types of human states–e.g.,
emotions, fatigue, trust, mind wandering while driving. So, the research question would
be whether the model can be combined with other constructs to predict and explain other
than cognitive constructs. Finally, in terms of precision of the model, as long as the model
can postulate the same stimulus-response mapping, it should work. This is the original
meaning of ecological validity. Therefore, the simulation does not necessarily have high
fidelity software and hardware compatibility (which is more about external validity), but
the important question would be whether the model can have the psychophysical similarity.
These technical capabilities (sensitivity, selectivity, diagnosticity, and ecological validity) will
be useful to assess the compatibility of computational models in future.

3.15 HMI design for autonomous vehicles: methodologies and
intercultural analyses

Xiaobei Jiang (Beijing Institute of Technology, CN)
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To ensure driving safety, efficiency, and comfort in mixed traffic environment with autonomous
vehicles (AVs), these vehicles must be able to understand the plans and states of partner road
users, and can communicate and coordinate their actions with them. With the increasing
number of AVs being tested and operating on roads, external HMI (eHMIs) are proposed
to facilitate interactions between AVs and other road users. Taking eHMI for crossing
pedestrians as an example, many methods like user interview with images & videos, Wizard
of Oz (WoZ), virtual reality, the Delphi method, on-road experiment, etc have been conducted
in studies focusing on the effect of eHMIs. But different methods are subject to different
biases, even yielding conflicting results. This problem should be carefully considered. As
there are cultural differences in the way how goals and states are expressed by HMI as well
as how HMI is interpreted by others, it is important to understand these differences to allow
the integration of AVs into different cultural contexts.
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3.16 Benefits and Challenges of Computational Cognitive Models
Jussi Jokinen (University of Jyväskylä, FI)

License Creative Commons BY 4.0 International license
© Jussi Jokinen

The benefit of using computational cognitive models is that they force the modeller to make
theoretical and practical assumptions explicit. For instance, in the case of semi-autonomous
vehicles, understanding how the human driver adapts to the presence of different automatic
driving assists helps to design safer and efficient driving. Moreover, models can be used to
generate predictions of how drivers adapt to various design choices. However, modelling
is time-consuming and hard, and involves a learning curve that may be unacceptable. In
order to facilitate proliferation of computational cognitive modelling, the modelling workflow
must be made usable. This involves creating tools for modelling, but also benchmarks for
model testing, and “canonical scenarios” for trying out design and modelling ideas in familiar
environments.

3.17 Much more data is needed
Wendy Ju (Cornell Tech – New York, US)
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To build computational models for human-AV interaction, we need a lot more data. Of
course, we have all heard that “all models are wrong, some models are useful.” To date the
models I have seen in the space of human-AV interaction do not account for the cultural
variation, contextual variation and temporal variation that we know for certain would affect
any predictions for how people will respond to an AV.

Instrumentation

One issue with gathering data to address cultural and contextual variation, at least, is that
is is unlikely that any one research group in one location would be able to gather data across
two sites to even begin to address this issue. For this reason, the question of publishing and
sharing the way that instrumentation occurs in lab and real-world data collection. Sharing
instrumentation set-ups makes it easier to have datasets that are comparable; for this reason,
publications that discuss and benchmark different instrumentation configurations for data
collection of human-vehicle interaction should be considered in and of themselves to be
contributions to the community.

Scale

The scale of the data that would need to be collected to address cultural, contextual and
temporal variation is also an issue. Finding ways to use machine learning to augment and
scale human observation and coding in empirical data analysis is critical. As a community,
we should be discussing computational methods to share scale and validate data analysis.
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Data

I believe that part of what is needed is that we as a community need to treat the gathering
and sharing of data as a real contribution, even before it has been analyzed or yielded any
insights. Empirical data, particularly from real-world studies, is often “dirty”– equipment
failures, participant strangeness, and exceptional events abound. Given the sparsity of of
this much needed data at all, it is more important that any issues with the data be clearly
documented and explained than that we demand great perfect data that fits our models.

3.18 Computational cognitive models for attention monitoring
Tuomo Kujala (University of Jyväskylä, FI)
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Because of the complex and unpredictable nature of traffic with human road users, I argue that
in order to be safe, driver should monitor the behavior of the car and the traffic environment
up to SAE level 3 of automated driving (maybe even at level 4). This requirement is decreased
as the automation level increases and that is actually a big problem as the driver’s attentional
capacity is freed but not fully. SAE levels are also somewhat problematic in this sense as a
real car given a level 3 status may not always function as a level 3 car should (e.g., always
know when the driver should be alerted to take over).

Current driver attention monitoring systems are really impressive in their object and
behavior classification performance but I would argue that it is not enough to monitor the
driver or insides of the cabin to know if the driver is inattentive towards driving. Drowsiness
is probably the only form of inattention that can be reliably detected by monitoring the
driver only. The attentional demands of driving vary based on traffic situation, surroundings,
upcoming situation, etc. and there is often so-called spare attentional capacity in driving.
And even more when the level of automation increases. But how much, that is the question?
Definition of these requirements might also get harder when we go up in the level of
automation. As this task is fairly complex, we would need computational models for this.

For these reasons, and because driving is a safety-critical context, we’ll need also pre-
scriptive computational models, not only descriptive and predictive. For instance, we would
need a normative criterion to define when the driver is inattentive, depending on situational
and driver-specific variables
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3.19 In-vehicle human-automation interaction: Bumper-to-bumper
traffic, and short bursts of activity in non-driving tasks

Andrew Kun (University of New Hampshire – Durham, US)
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A driving scenario that promises to be important for human-automation interaction in vehicles
in the near term is bumper-to-bumper traffic. In this scenario the vehicle is relatively easy
to control by automation, and there is a relatively low risk of injury in case the automation
makes a mistake. At the same time there would be a large positive impact on the driver
if they could use the time that the vehicle is in bumper-to-bumper traffic to engage in
non-driving tasks.

How can drivers use their time if the car can drive itself in bumper-to-bumper traffic?
The answer is: short bursts of non-driving activity with rapid returns to driving. The reason
is that bumper-to-bumper traffic doesn’t last forever – it’s likely to often take only minutes.
And transitions back to driving will need to be very quick, on the order of seconds, not
minutes [1].

It is likely that those short bursts of activity will very often involve manual-visual tasks.
We recently conducted a time-use study with 400 knowledge workers who commute by driving
[2]. We asked them what they would like to do in a future, safe automated vehicle. They
provided us with tasks they are interested in, and we assessed the tasks in terms of the need
for various cognitive resources (using the Wickens multiple resources model). We found that
our participants wanted to do more manual-visual tasks, both for work and for personal
tasks. Thus, we expect more typing and browsing, in contrast to silent reflection or listening
to music.
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3.20 Four challenges to computational models in Human-AV interaction
Dietrich Manstetten (Robert Bosch GmbH – Stuttgart, DE)
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Computational models (including but not limited to cognitive models) are playing an essential
role to enable safe automated driving and to make it a reality on tomorrow’s roads. We are
looking at four challenges in the field.
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1) Modeling driver engagement and driver availabilty. Driver monitoring becomes a must
in the homologation of assisted and automated driving. We need real-time models
estimating whether the driver fulfills his supervision task in Level 2 (engagement) and
whether he will be able to take over if a request occurs in Level 3 (availability).

2) Take-over performance models. Respecting the current status of traffic, vehicle, and
driver we need models to predict the temporary and quality aspects of the take-over
activity and to decide if his/her actions are intentional and supportive for safe driving.

3) Shared control / cooperative driving. As humans are still needed for subtasks in auto-
mated driving (e.g. for deciding on lane changes and other tactical aspects)driver’s
computational models should be used during system development to analyze and validate
the successful cooperation between driver’s actions and automation control.

4) Good driving behavior as a role model for automation. Behavioral models describing
the human driving process in traffic are a good way to serve as a role model and to
be mimicked by future automated and even autonomous driving systems. Separating
“good” and “bad” driving can help that autonomous driving will be able to realize a
chauffeur-like safe and comfortable driving style.

3.21 Computational models of humans as tools for enabling safe and
acceptable vehicle automation

Gustav Markkula (University of Leeds, GB)
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Computational models of human cognition and behaviour have applied uses in, and in some
cases will be indispensable for, development of safe and human-acceptable vehicle automation.
At lower levels of automation (e.g., SAE level 2-3), models of how humans monitor the
automation and take, receive, or share the vehicle control can be used (1) as part of online,
real-time algorithms to infer driver state and predict driver actions, and to adapt vehicle
behaviour accordingly, or (2) in offline computer simulations to evaluate different automation
design alternatives. The same division into use in both online algorithms and offline testing
applies also for higher levels of automation (e.g., SAE level 4-5), but then with respect
to modelling the cognition of behaviour of other road users around the automated vehicle.
One exciting prospect and grand challenge, across all of those application areas, is to find
the balance and combinations between mechanistic/cognitive models on the one hand, and
data-driven/machine-learned models on the other, to enable extensible models that users
(automated vehicle designers/engineers) can generalise to new contexts and data sets, without
direct involvement from the original model developers.

3.22 Data for and models on Trained Operators
Nikolas Martelaro (Carnegie Mellon University – Pittsburgh, US)
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Current thinking around human-machine interaction in autonomous vehicles is often through
the lens of untrained everyday users. We may often think that our models of human behavior
are generalizable. However, after training, people may develop new ways of acting, especially
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with autonomous systems. ,A potential area of work that is underexplored in the space of
autonomous vehicles is how trained operators will act. For example, a bus operator or a
semi-truck driver will have more training in both driving and with the systems they are using.
As such, cognitive models for these people may be different than those of a lay population.
The research community should consider research on trained operators and should capture
data in experimental settings and develop models that are specific for them. Such work
may lead to better predictive models that can be used in real-world autonomous vehicle
sooner than in vehicles with a lay population. This line of research may also identify good
mental models that could then be taught to lay drivers to help improve their interactions
with autonomous vehicles.

3.23 Simulation Intelligence and Computational Models in Autonomous
Vehicles

Roderick Murray-Smith (University of Glasgow, GB)
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“Simulation Intelligence” brings together first principles models, probabilistic programming
and machine learning. It has a lot of potential for supporting a more principled approach to
creation of computational models, which can help support and direct scientific progress in
the field. Moving from correlational fits to data towards causal models which really represent
the actual behaviour will be vital for reliable behaviour in novel contexts. Using forward and
inverse inference mechanisms, as is common in other areas of science, gives a potentially more
reliable way of formulating the problems, and managing models for components of larger
models. Closed-loop aspects are also critical – they affect how we acquire data, and also
provide challenges associated with the interdependence of human behaviour on the dynamics
of the vehicle (e.g. crossover models), but this seems to be underconsidered at the moment.

3.24 Computational Rationality as an Emerging Approach to Inform the
Design of Interactive System

Antti Oulasvirta (Aalto University, FI)
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How do people interact with computers? This fundamental question was asked by [1] with a
proposition to frame it as a question about human cognition, in other words as a question of
how information is processed in the mind. Recently, the question has been reframed as a
question of adaptation: how do people adapt interaction to the limits imposed by cognition,
device design and its environment? The core assumption of computational rationality is
that users act according to what is best for them given the limits imposed by their cognitive
architecture and their experience of the task environment. The theory can be expressed in
computational models which explain and predict interaction and be therefore used for design
and adaptive systems.
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3.25 A common understanding of models...
Andreas Riener (TH Ingolstadt, DE)
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In many discussions I have had over the last years with my students (in the interdisciplinary
program User Experience Design), within my research group but also with colleagues (e.g.
in the context of Dagstuhl Seminar 16262), it has turned out again and again that there
is a different understanding of what a model is and how or for what it can be used. The
main reason was that we have different backgrounds (engineering, computer science, design,
social sciences, psychology). We need to find ways and means to make sure we (“the system
designer”) mean the same thing. . . Predictive models could be a common basis – but of
course they are only a simplification of real behavior [1]. If we focus on human-machine
(or human-AV interaction), it is particularly necessary that both parties (human, machine)
understand each other and can mutually assess how far the partner is trustworthy in a certain
situation [3]... And this is particularly important in the recent research field “Cooperative
Driving” – where automation and human work together as team players [2]. In a team, each
agent must be informed about the other agents’ current activities, their strategies, the status
of their efforts, if they are having problems, and their intentions for planned actions. The
Object, View, and Interaction Design (OVID) model [1] (Roberts, 1998) contains three design
models based on Don Norman’s notion of cognitive engineering [4] and clearly visualizes the
problem: We cannot really design a user’s conceptual model, as this is highly inter-personal
(but also intra-personal), based on experience, and exist only in the brain of a person. . .
Furthermore, user interface and vehicle designers as well as user experience practitioners are
often challenged with the question for which user group they are designing for – each with
different needs, different interests, and very different ways of interacting with technology. In
vehicle production, we do not have the luxury of focusing on only one group (at least not
so far), i. e., designing vehicles for specific age groups or cultures, that’s why interaction
designers and engineers must learn to recognize and reconcile the needs of their main user
demographics. This problem will remain even with fully automated driving when using the
car as a place for relaxation, entertainment or work. Defining characteristics, differences,
and tensions between individual user groups might help to account for different individuals.
An important question in this regard is, whether or not there is a single system suitable
for all (or at least most) customers and stakeholders. Is it axiomatic to target user groups
differently? (HMI and system configuration allow to...). Dagstuhl Seminar 22102 was the
perfect place to discuss with all the participants from different backgrounds (my access
is hypotheses-driven experimental research) the possibilities of combining existing models,
extending/improving them, or developing new models to better represent the wide variety of
variants in human-AV interaction/cooperation and human diversity. I hope that results can
be derived from this week’s collaboration that will help the community....
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3.26 Anticipating the cognitive state of the driver
Nele Rußwinkel (TU Berlin, DE)
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The next big challenge for computational models of human-Automated Vehicle Interaction is,
from my perspective, to integrate more aspects and understanding of the human perspective. I
do not think that one modelling method needs to capture all possible aspects of a scenario and
related entities to be a good model. What is needed are good models that can capture specific
aspects and a good concept that can integrate this information with emerging transparency
– how different aspects have led to a specific understanding of the situations. A modular
approach might be helpful to achieve this in case some module results have a symbolic form.
What is needed is a tighter connection of human and technical system understanding. It
is not sufficient to measure some mental states, it is also (in some situations) necessary
to understand what the cause of the measured state is and how to address it. I claim for
more research on models that anticipate the human driver in the dynamic situation and
include mental representations e.g., for “Situation Awareness” or “Mental models” or specific
“Expectations” about what the human considered relevant now and what is expected to
happen next. This would enable a better mutual understanding and a more natural (less
effortful) shared control of the car or the situation and to avoid misunderstanding.

3.27 Models that Inform Design
Shadan Sadeghian Borojeni (Universität Siegen, DE)
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The advances in automation and machine learning are changing the designs of in-vehicle user
interfaces from static command-response “buttons & displays” to dynamic adaptive interfaces
that adjust themselves to user behavior and preferences. From a modeling perspective,
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however, this can be a challenge to integrate these new “emerging behaviors” into the models.
On one side, having simplistic models allow us to scale them to different scenarios and
interaction forms, on the other side, it restricts our ability to precisely describe/predict the
adaptive and dynamic interactions between the user and the automated vehicle.

Another challenge is answering the question of whom we are designing for and in which
scenario? The first step towards that is defining the sides of the interaction, i.e., the human
and the automated vehicle. Identifying the capabilities and responsibilities of each of these
partners across different levels of automation can help us understand what factors are required
to be considered in the models. For example, for an urgent takeover situation in level 3,
factors that define users’ situational awareness, the urgency of the situation, and contextual
factors might be determinants of the behavior. However, for a level 5 scenario, where the
interaction goal is mostly to assure users’ comfort and wellbeing, the determining factors stem
from users’ psychological needs and affective state rather than her situational awareness. It
is, therefore, necessary to first define users’ tasks at each level of automation and in different
scenarios. And then elicit the factors that are required to fulfill these tasks’ goals. This
allows us to create a modular model of tasks, levels of automation, and required factors
that assist us to identify the important elements that should be addressed in the design of
in-vehicle user interfaces.

3.28 Complexity of computational models
Hatice Sahin (Universität Oldenburg, DE)
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Computational models can help to ease the cost of experimental studies. Discussions have been
developed under the consensus that various individual or external factors affect distribution
of driving responsibility between the human and the automated vehicle. These factors
range from personal preferences, trust, experience, social and legal norms to environmental
conditions. While it is crucial that these factors are recognized, it may not be vital for
computational models to include all possible parameters. It is still a matter of discussion
whether their benefit is limited by their simplistic qualities. While some might consider that
they might have to be complex enough to provide generalizability, they could still be helpful
to investigate individual factors with limited complexity.

3.29 Teamwork and Driver-Vehicle Cooperation
Boris van Waterschoot (Rijkswaterstaat – Utrecht, NL)
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Main reference Sebastianus Martinus Petermeijer, Angelica M. Tinga, Reinier Jansen, Antoine de Reus, Boris van
Waterschoot: “What Makes a Good Team? – Towards the Assessment of Driver-Vehicle
Cooperation”, in Proc. of the AutomotiveUI ’21: 13th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, Virtual Event / Leeds, United Kingdom,
September 9-14, 2021, pp. 99–108, ACM, 2021.
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With the introduction of driving automation systems [1], the subtasks of the DDT are being
performed by the (human) driver, by the driving automation system, or by both. This means
that under certain circumstances, human and automation have become collaborative partners
in executing (parts of) the driving task.
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Although the view of driver and automation acting as collaborative partners has been well
established, means to assess their teamwork are still lacking. Moreover, available evaluations
are usually addressed either from a technical stance or from a human factors viewpoint, which
does not comply with a general acknowledged view of a unified driver-vehicle system. This
stance on teamwork and a description of our aim to evaluate driver and vehicle cooperation
by means of a framework can be found in [2] .

Our work is currently being followed up by a roadmap – which is shared as soon
as possible – aiming to deliver guidelines on the framework’s practical implementation,
potentially supporting monitoring, evaluation and design activities concerning driver-vehicle
cooperation.

This abstract is a call to get involved in our activities regarding the objective evaluation
of driver-automation cooperation.

References
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driving automation systems for on-road motor vehicles. J3016 JUN2018. SAE International:
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3.30 From Trust Studies to Trust Models
Philipp Wintersberger (TU Wien, AT)
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Six years have passed since my first Dagstuhl Seminar. At that time, the first deadly crash
with an automated vehicle happened. It became clear that the trust relationship between
drivers and automated vehicles will become a key issue for guaranteeing safety in the future
since drivers are not necessarily automation experts. Thus, we intensively discussed the topic
of trust in automated vehicles and proposed to research “personalized trust models” so that
in-vehicle HMIs can adapt to drivers’ states, strengths, and weaknesses. A great variety of
trust studies have been conducted and published since that seminar, revealing many relevant
factors influencing this multidimensional psychological construct. However, a sophisticated
trust model has still not been developed. Thus, I am very happy for the invitation to this
modeling seminar, as I got the chance to (1) talk to modeling experts from my domain and
(2) discuss with colleagues concrete, actionable steps to move towards the goal outlined above.
I am confident that it will not take another six years to integrate all the past study results
and develop an initial functional version of the proposed model.
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3.31 Understanding and challenges of computional models of
human-automated vehicles interaction

Fei Yan (Universität Ulm, DE)
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In order to better understand the interaction process between humans and automated vehicles
as well as develop adaptive assistance systems to support drivers, computational models that
can precisely predict driver behaviors are needed. However, with the change of automation
levels, there are challenges while developing computational models. With the change of
driver’s role from SAE L2 to SAE L3, the focus of modeling changes from monitoring driver’s
states, to modeling driver’s takeover reactions which are more safety critical compared to
SAE L2. From SAE 4 or SAE L5, the transition of responsibility can be relevant. While
modeling takeover process from SAE L3,indicators like takeover timing as well as takeover
quality such as maximal acceleration and TTC, subjective measurement such as workload
can be taken into account. Facing the complex scenario in the mixed traffic, the combination
of cognitive approach with black-box models is needed, which can maximize the advantages
of different models, but also ecologically save the cost of developing complex cognitive models.
The cognitive theory, evidence or empirical research should be made use of to help to develop
casual black-box models, which can help to interpret the relations between relevant factors.

4 Working groups

4.1 Learning and Adaptation
Jelmer Borst (University of Groningen, NL), Alexandra Bremers (Cornell Tech – New York,
US), Birsen Donmez (University of Toronto, CA), Mark Eilers (Humatects – Oldenburg,
DE), and Roderick Murray-Smith (University of Glasgow, GB)
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Learning was discussed from two points of view: on the one hand users have to adapt to new
(autonomous) systems, and on the other hand models need to be able to learn and adapt.

With respect to users, they have to learn operating (semi-)autonomous vehicles, and also
adapt to such vehicles being present in the environment. One challenge is that different
systems (e.g., Tesla, GM) might behave differently, which makes learning harder. In addition,
it is often not clear whether they operate in autonomous mode or not. Second, people might
“abuse” the new systems, for example crossing the road directly in front of an autonomous
car, as it will stop anyway.

Models will also have to adapt to new situations on the road (i.e. more autonomous
cars) and to adjusted human behavior. We can differentiate between quantitative changes
(new speed limit) and qualitative changes (new traffic rules). While the former is probably
possible, the latter is much more difficult to automatically adapt to. In general, we expect
that adaptation, in particular qualitative, is easier for cognitive and causal models, as these
take content into account.

To adapt machine-learning-based models, one could think of using feedback of the user.
However, some drivers might be more amenable to give feedback than others. We therefore
recommend implicit learning, based on the behavior or physiological responses of the users.
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4.2 How can model use be increased in design?
Alexandra Bremers (Cornell Tech – New York, US), Jussi Jokinen (University of Jyväskylä,
FI), and Gustav Markkula (University of Leeds, GB)
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There are examples of models used by designers and engineers in the industry, such as for
traffic testing. However, a question remains about how accessibility can be improved, and
adaptation of models can be increased.

Potential roadblocks and limitations for using models in design are:
1. Cost-benefit tradeoff. An investigation is needed to clearly map out scenarios where

modelling adds the most value in addition to testing methods.
2. Design space restriction due to specificity of models. For instance, a typing model would

assume touch-based interaction within a specific limited interface size.
3. Language intersection between the designer’s creativity and the model’s formalized way of

using specifications. In machine learning, tools have been developed, such as the OpenAI
gym, which bridges the gap between model and application.

4. Complexity depending on the task. Tasks that seem simple from a design perspective,
such as selecting the best option in a webshop, could involve a very complex cognitive
model.

In AV applications, HMI and UI design seem ripe for model integration. Successful tools
exist, such as Distract-R and OpenAI Gym, online design tools such as the Adobe Mixamo
library, and wireframing tools like Miro and Sigma. Combining these could result in a tool
for both quick model-assisted sketching and a more thorough model-based evaluation. The
behaviour of other road users, such as children playing soccer on the sidewalk, could be a
lot more complex to realize. Discussions with AV industry engineers could further confirm
specific needs and requirements.

4.3 How can empirical research support computational models (and
vice-versa)?

Debargha Dey (TU Eindhoven, NL), Moritz Held (Universität Oldenburg, DE), and Fei Yan
(Universität Ulm, DE)
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In this focus group, we dove deep into the caveat of empirical research and computational
modeling approaches and discussed the situations where each is applicable, and where one
approach can benefit from the other. While a modeling approach is not needed to answer
every research question, it can be critical if we are trying to justify cognitive processes
(white box models), or trying to reduce the complexity of the research space by looking
at causality and/ or relationship between certain parameters of the environment and the
observed behavior (black box models). We recognized that there can be no one strict guideline
to the question of the data points needed to develop a model (as it largely depends on the
research question). In situations when it is difficult to estimate the impact or relevance of
certain parameters for heuristic approaches, modeling approaches can help by highlighting
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them. Thinking through the cognitive architecture of a white-box model can identify the
“independent variables of interest” for empirical studies. Furthermore, data from empirical
research can be helpful in building hypothesis for computational models especially predictive
models using machine learning techniques. However, “absolute” black box models lack the
transparency and explainability in terms of causality explained through cognitive processes,
which calls for inputs from empirical research and cognitive theory towards a combined
approach that leverage the best of each world.

4.4 Modeling Long-term Effects in Human Technology Engagement
Patrick Ebel (Universität Köln, DE), Hatice Sahin (Universität Oldenburg, DE), and Philipp
Wintersberger (TU Wien, AT)
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We discussed how long-term effects (distribution shifts) in human behavior when interacting
with technology can be modeled.

To make the problem more tangible, we have decided on a specific use case: “How
to model the probability for a driver to activate automated driving functions?” Such an
approach could be an interesting element for driver monitoring systems, since usage patterns
can be related to interaction problems (such as trust) [1]. Given a certain set of input
variables (environmental context, individual driver characteristics, trust in the system, effect
of “events”, etc.) the model should predict how likely it is for the driver to activate driving
automation. The goal of such an approach is to (1) model long-term driver behavior and to
(2) develop effective measures to increase the usage of automated driving functions.

To model the probability of human engagement with technology, three main components
are be modeled over time:
1. The general probability of engagement. This probability is dependent on factors like the

benefit of using the technology (How good is the driving automation?), learnability (How
well do drivers adapt?), trust (Do Drivers trust automation?), individual characteristics,
and the probability of being in a situation where the technology is applicable (is it possible
to activate automation in a specific driving situation?). This probability can be modeled
as a continuous function over time and serves as the base probability of engagement.

2. The influence of incidents. We defined incidents as event-based disturbances that influence
the overall probability of engagement at a certain point in time. They can be modeled
using a step function. An example would be the sudden change of the activation probability
after experiencing a critical situation while driving with automation activated. A relevant
question in this regard is, if the underlying cause for a behavior change can be derived
from a changing usage pattern (i.e., do there exist detectable patterns for certain events)?

3. The effect of interventions. An HMI intervention is provided to a human to mitigate the
effect of an incident. Interventions can be modeled by adding an “intervention effect”
function to the general engagement function. The idea is that a positive intervention like
explaining why a critical situation couldn’t be solved by the automated driving function
can change the probability of engagement over time such that it approaches the original
probability before an incident happened more quickly.

Subsequently, we developed a first sketch for a study to investigate the three main
components of the theoretical model. This study needs to be further developed.
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4.5 Focused session “Application in specific scenarios”
Martin Fränzle (Universität Oldenburg, DE), Luisa Heinrich (Universität Ulm, DE), and
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As applications and application scenarios make their way into the research stream mostly
via use cases and benchmark examples, the discussion in the group focused on how to obtain
representative domain coverage via benchmarks and use cases. The lack of a reasonably
broad and generally accepted set of such benchmarks and use cases was identified as an
impediment both to rigorous and comparative assessment of the current state of research
and to the identification and prioritization of open research problems. An informed, problem-
driven advancement of the state of the art would thus require to find, collect, and publicize
benchmarks that collectively obtain representative coverage of the relevant applications and
application scenarios and that facilitate rigorous evaluation of and friendly competition
between modelling approaches.

This quest in turn induces the need for an intelligible characterization of benchmarks
that permits a mapping of individual benchmarks as well as benchmark sets concerning
their particular contributions, thereby supporting demand-driven selection and adoption of
existing benchmarks. For this mapping of the area, we came up with the following dimensions
and explications of dimensions:
1. The dimension of paradigm of use of the human models, distinguishing between human

models as proxies of human behavior in model-based design and the embedding of human
models into an operational system.

2. Means of parametrisation and validation, namely observed in real-life / on real road / by
physical test track driving or through simulator studies.

3. Focus of the embedded human model, ranging over driver only (possibly including in-car
passengers also), other traffic participants (in alter cars, in environment – especially
VRUs), or both, including reflection of mutual reactive behavior.

4. A broad set of quality criteria for the benchmark specification, including among oth-
ers heterogeneity of driver behavior and coverage of driver types as well as societal
groups (e.g., elderly), non-discrimination, explicit identification of observable/measurable
correlates for latent or hidden phenomena of interest, strong correlation of benchmark-
represented/benchmark-measurable features to real-world effects and effect strengths,
accurate coverage of variability, not just of nominal behavior, as well as means for
automated variant generation to avoid overfitting to particular benchmarks, test-retest
reliability, inter-rater reliability, and repeatability and reproducibility.

5. Aim of benchmark, covering a wide range of attributes from incentivizing research through
friendly competition to facilitation of rigorous relative evaluation and ensuring coherency
of methods, quality criteria, etc. between scientific communities. The last dimension
identified was 6. technical prerequisites like executability on common hard- and software
platforms, convenient packaging (e.g., via containers), and issues of open access and open
science.
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The discussion group holds the belief that such a classification would enable consolidated
and collaborative research, stabilize and align the pertinent quality criteria across domain-
relevant disciplines, and thereby advance scientific progress. Necessary first steps to render it
reality would be to, first, generate a questionnaire permitting individuals and research groups
to locate their respective benchmarks in the above multidimensional criteria set, second, to
establish a platform for publication of benchmarks, including video tutorials and supportive
contacts, and, third, to foster industrial contribution.

4.6 Towards common tests for Models
Christian P. Janssen (Utrecht University, NL), Jelmer Borst (University of Groningen,
NL), Benjamin Cowan (University College – Dublin, IE), Justin Edwards (ADAPT Centre –
Dublin, IE), Mark Eilers (Humatects – Oldenburg, DE), and Jussi Jokinen (University of
Jyväskylä, FI)
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We discussed whether there can be a benchmark test, or evaluation method, to better
compare different models. We were inspired by how competitions are done in the language
community. In that community, there are multiple competitions and test frameworks. Not
any of those is the “killer test”, but across tests one can see where a model or framework is
stronger or relatively weaker. This moves the community forward.

In the field of computational modeling for human-automated vehicle interaction there are
perhaps two challenges:
1. What is a good model that can perform well on an evaluation test (or tests)?
2. What is an appropriate (large enough, diverse) dataset to test these models on?

We foresee that this can be approached in three steps, that each require attention:
1. Identify what the possible criteria are to evaluate a model on and define what scenarios

are needed to test these.
2. Collect data in an empirical scenario where the above features emerge
3. Develop models that can then be tested on this dataset / scenario.

In later discussions we delved deeper into question 1. As a constraint we set that the
model should exhibit human-like behavior. We looked at other papers that have defined
model criteria, in particular papers by Anderson and Lebiere [1] and Taatgen and Anderson
[2]. For these papers, we went through the criteria they defined and determined if and how
they apply to the driving domain. We’ve identified that some modifications and specifications
are needed. We also foresee that additional criteria – such as the ability to perform driving
tasks and driving specific tests in a human way – need to be added. We plan to further refine
these ideas in a follow-up project.
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4.7 What are important scenarios?
Dietrich Manstetten (Robert Bosch GmbH – Stuttgart, DE), Moritz Held (Universität Olden-
burg, DE), Nele Rußwinkel (TU Berlin, DE), and Fei Yan (Universität Ulm, DE)

License Creative Commons BY 4.0 International license
© Dietrich Manstetten, Moritz Held, Nele Rußwinkel, and Fei Yan

In the beginning of the discussion, it became quite obvious, that we can’t write down all
important and relevant scenarios. We searched for a framework-like setup, where a scenario
is composed of a multitude of independent factors. Some sort of building blocks to construct
a specific scenario.

Several of these factors are influenced by the environment and the actual situation. They
are relevant, but not directly linked to the automation. We identified

Traffic environment. Freeway (number of lanes, exit section, tunnel, construction site) /
Rural road (curvature) / Urban traffic (crossing, pedestrian, cyclist, parked vehicles)
Criticality of situation (mostly described by dynamic behavior of others)
Vehicle Type (truck, passenger car)
Driver characteristics (stable factors as age / driving experience / knowledge about
automation, dynamic factors as time pressure / fitness level)
Boundary conditions (weather, daylight/night, road surface)

When it comes to human-AV interaction, the main ingredient of the scenario comes from
the automation itself. There is the temporary aspect of the current phase of automation,
which can pose specific questions: activating the automation, during automation, transfer-of-
control. Within these phases, again we see multiple factors, and we partly need to separate
carefully between the levels of automation, as some of the effects are relevant for a specific
level only.

Level 2 asks for continuous driver engagement and anticipatory behavior. The transfer of
control is usually initiated by the driver.
Level 3 needs driver availability during automation. Fast set-up of situational awareness
after a take-over request. Assessment by take-over time & quality (including safeguard,
e.g. mirror glances).
Level 4 changes the time scale more to minutes than seconds. Some requirement of
perceptibility. On system level, there may even be the need for a driver lock-out avoiding
unintentional or undesired actions.
For level 3 and 4 reaching the ODD limit or possible system failures becomes most relevant
situation.
Information design and communication on all levels (dependent of specific situation)
Clear definition of visual behavior requirements (level 2), cognitive requirements (level 2
and level 3)
Mode shift with transfer between levels (e.g., from level 3 to level 2) and corresponding
challenges of mode awareness
Aspects of trust towards the system.

The presentation of the group’s work in the plenum added the question, where models can
be part of the system. This augments the perspective, that knowledge represented in driver
models comes partly as a requirement from legal perspectives and regulations. Consequently,
the constraints from a legal perspective have to be respected carefully.
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4.8 What is needed for different SAE level?
Dietrich Manstetten (Robert Bosch GmbH – Stuttgart, DE), Martin Baumann (Universität
Ulm, DE), and Shadan Sadeghian Borojeni (Universität Siegen, DE)
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In this focused session we discussed, which specific system design possibilities are offered
within the different SAE levels of automation. We came out with a sketch of a framework to
clearly describe the user tasks in the different levels. This description has the potential to
serve as a backbone for the system design.

With respect to the levels, we concentrate on the levels 2, 3 and 4. By this, we are
adapting somewhat the terminology used by the German Federal Highway Research In-
stitute BASt of assisted (level 2 and below), automated (level 3) and autonomous (level
4 and above) driving, see https://www.bast.de/EN/Automotive_Engineering/Subjects/
f4-user-communication.html. The time scale for the user’s tasks varies as well within
these levels, from below seconds (level 2) via few seconds to minute (level 3) to minutes
(level 4).

During the automation phase, the main task is shaped by monitoring. Monitoring means
to monitor the environment, to monitor the system, and to monitor yourself. The monitoring
serves the goal to decide whether I (as the driver) need to intervene, which would end the
monitoring phase, and replace it by an action.

We systematically added the view for the phase transitioning from on to off. The
possible interventions can be differentiated as an adjustment of the automation behavior,
a system-initiated taking back of the control (as a result of a request-to-intervene), and a
driver-initiated taking back of the control (might be necessary for safety reasons or just a
current driver’s preference). As during the automation phase, depending on the level of
automation, the concrete task description varies again. We are explicitly looking at the
“what?”, “why?” and “when?” of the transition.

The two main pictures compiled by the working group are added to this report. The
group had the clear impression to have a solid ground for an overall framework, but being
clearly away from being complete. The focus was so far from the user’s perspective only, the
system’s perspective needs to be added. The group plans to pick it up at a later stage, and
to compile a full view out of it. Replacing detailed settings in scenarios by a comprehensive
task-oriented view. To be continued.

4.9 Multi-agent modelling: Platooning use case
Gustav Markkula (University of Leeds, GB), Lewis Chuang (LMU München, DE), Debargha
Dey (TU Eindhoven, NL), Patrick Ebel (Universität Köln, DE), and Christian P. Janssen
(Utrecht University, NL)
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In this focused session, we discussed a number of different scenarios involving multiple human
road users that could benefit from the application of human behaviour models. Our discussion
converged towards a scenario, centered on platooning – wherein a number of vehicles (cars
and/or trucks) follow each other on a highway, at close distance in automated mode, typically
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with the expectation that drivers are available to resume vehicular control upon demand.
This rich setting gave rise to a number of different control transition scenarios. In particular,
we discussed the requirements for enabling the platoon to temporarily break apart to change
lanes – e.g., due to an upcoming lane closure – and reassemble later. After discussing the
potential contributions of different types of human behaviour models, we agreed on three
main types of uses: First, models of the drivers in the lead and following vehicles can inform
online algorithms in the platooning vehicles. This would guide real-time decisions how to
break up the platoon, by predicting likely human responses to different alternative vehicle
actions, and by choosing the control approach that is predicted to give the best outcome in
terms of safety, efficiency, and comfort. Second, similar (but possibly not identical, since
they would serve slightly different purposes) driver behaviour models could be useful in
offline simulations. These would assist an engineer in designing systems by providing possible
platoon breakup scenarios for automation implementations and testing – for example, to
test lead time requirements for breaking up the platoon. Such tests would optimize safety
and comfort, as a function of platoon speed, traffic density, etc. Third, we discussed that
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models could be useful on a conceptual level. Such models would help system designers and
decision-makers better understand the behaviour and limitations of human drivers across
different situations.
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4.10 What computational models are available for human-automation
interaction?

Gustav Markkula (University of Leeds, GB), Debargha Dey (TU Eindhoven, NL), Moritz Held
(Universität Oldenburg, DE), Nele Rußwinkel (TU Berlin, DE), and Fei Yan (Universität
Ulm, DE)
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In this focused discussion we attempted to provide as broad as possible an overview of
currently existing computational models which have been applied to the study of human
interaction with automated vehicles, or could be applied in such a context. We listed a
large number of references (which will be included in a separate document by the seminar
organisers), and as we did so we structured the existing work in a rough taxonomy including
the following dimensions: (1) Type of traffic scenario addressed, e.g., automation control
transitions, shared control, multi-agent interaction, teleoperation, or driver support systems.
(2) Type of (intended) use of the model, e.g., use of models to conceptually guide automation
design, use in online algorithms for prediction or decision-making as part of the automation
itself, use in offline simulated testing of automation, or as human safety benchmarks for
automation. (3) Aspect(s) of human cognition/behaviour modelled, e.g., vehicle control,
visual behaviour, individual characteristics, or unobservable mental/cognitive states. (4) Type
of model, e.g., machine-learned, cognitive architecture, control-theoretic, and models focused
on decision-making. These dimensions are to a large extent independent, but we also discussed
that especially different model types, not least distinguishing between machine-learned, black-
box models and mechanistic, white box models, might map more or less naturally to different
parts of the other dimensions in this taxonomy. We discussed the strengths of these different
types of models with respect to time critical decisions, understanding, drivers mental states
or cognitive states, subjective and objective complexity, flexibility, driver prototypes and
traits. For example, if conceptual understanding is important for the application at hand,
white box models have a clear advantage, whereas for example when the complexity of the
scenarios that need to be addressed grows, black box models, which can be learned from
large naturalistic datasets, may be more appropriate.

4.11 Modeling workflows
Antti Oulasvirta (Aalto University, FI), Alexandra Bremers (Cornell Tech – New York, US),
and Tuomo Kujala (University of Jyväskylä, FI)
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In this focused session, we discussed the need to develop modeling workflows specific for this
domain. In contrast to empirical sciences (e.g., [1]), models in human-AV interaction need
to be, eventually, deployed in interactive systems or as decision-support systems in design.
Applicability gains emphasis. However, despite the practical aims of modeling efforts, it is
important to retain a level of theoretical and biological plausibility. It was also observed,
that because of the safety-criticality of this domain, simulation studies are preferred prior to
empirical studies in the wild.
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Based on these and other observations, four design principles for a revised modeling
workflow were set out: 1) put iteration to the heart of model development; 2) engage in
both simulated and real-world studies, 3) aim for robust, verified modeling outputs, and 4)
constant contact with theory (in cognitive sciences, biology, neurosciences).

The attached figure shows the revised modeling workflow proposed by the team.

References
1 Gelman, Andrew, et al. Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020.

4.12 What is prediction?
Antti Oulasvirta (Aalto University, FI), Jelmer Borst (University of Groningen, NL),
Patrick Ebel (Universität Köln, DE), Martin Fränzle (Universität Oldenburg, DE), and
Nele Rußwinkel (TU Berlin, DE)
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In this focused session, the topic of how to prioritize possible types of predictions was
discussed. Prediction is the essential feature of computational models, and it is essential to
move beyond merely isolated tests. (Think: Newell’s 1973 paper “You can’t play 20 questions
with nature and win.”).

The group agreed that prediction should not be confused with other uses of models, such
as description, explanation, and counterfactual reasoning. These are linked to each other
but different. The essence of prediction is that it involves some verifiable statement about a
future state or unseen situation, given some observational data. What distinguishes driving
as a domain is the need to predict what happens in previously unseen future situations, for
example when doing verification of an AI’s behavior across different situations, some of which
can be very rare.

It was also noted that predictions of driver behavior are needed in different ways in
different processes, such as user-centered design, safety engineering, and for AI development.
Also, different SAE Levels pose different requirements for prediction; like Level 3 poses a
requirement for predicting driver’s availability. It was noted that an exercise should be
carried out to assess these needs from a cognitive modeling perspective.

It was agreed that there is a multiplicity of predictions needed in this domain. This
reflects the fact that computational models are used in widely different driving contexts, with
different inputs, purposes, and time-ranges. For example, predicting whether a pedestrian is
likely to step on a crosswalk occurs in the timespan of a few seconds, while route prediction
occurs in the timespan of minutes to hours. There are micro-level and macro-level predictions
that are needed, for example arousal states and states related to social interaction with
other traffic users. And these interact. There are predictions of latent states that are not
directly measurable but measurable via indirect physiological reaction (skin conductance
for example). In real applications, we sometimes need to predict behavioral outcomes in
driving, but sometimes we need to estimate a latent factor like the level of workload or stress.
The group discussed what would be the most valuable thing to predict. There was some
consensus that it should be the future state of the driver+vehicle+scene system within some
time horizon. This system includes the driver, the vehicle, and the driving environment
including the pedestrians.
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The need for academic reseach to consider cross-validation practices was discussed. It
was perceived as a harder measure of a model’s predictive capability. In statistics-based
models, parameters are often fit to the same dataset on which fitness metrics are computed.
However, the cross-validation practices that are followed in machine learning may not be
directly useful for this domain. For example, we sometimes need to predict what happens
with a new driver that has not been included in the training dataset (leave-user-out, or
LOU, cross-validation). In many machine learning pipelines, the training dataset might
contain samples from each user, thus ’leaking’ information in a way that is not plausible
from a deployment point-of-view in this domain. It was further remarked that safety-related
incidents are rare, which complicates prediction, the acquisition of training/reference data
for computational models, as well as validation.

Prediction is almost always done under uncertainty, and uncertainty should be factored
in the system’s action. Therefore a prediction might be more valuable if it also contains a
measure of confidence intervals. The need for a probabilistic representation of outcomes is
the greater the further in to the future the prediction tries to reach. However, when it comes
to the idea of showing this to the driver, or an uncertainty visualization, the problem is
non-trivial. Showing uncertainty to a driver can be confusing, as some earlier studies suggest.
On this note, “a prediction is an intervention”: showing a prediction to a driver affects
the driver’s future behavior. In multi-agent systems research, there are some formalisms to
describe such interactions, but they are rarely done with computational models of humans.

We also discussed the need for updating the way we do models, i.e .the modeling workflow,
with methods like sensitivity analysis and what is called parameter recovery.

4.13 Which models should be used and what should be their content?
Shadan Sadeghian Borojeni (Universität Siegen, DE), Martin Baumann (Universität Ulm,
DE), Luisa Heinrich (Universität Ulm, DE), Dietrich Manstetten (Robert Bosch GmbH
– Stuttgart, DE), Roderick Murray-Smith (University of Glasgow, GB), and Hatice Sahin
(Universität Oldenburg, DE)
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In this focused group, we discussed different types of models and their content. Our
understanding of a computational model is an executable, precise model that is defined
through an unambiguous formulation (mathematical, logical, code, etc.) and is replicable.
Computational models can cover different types of models such as cognitive, psychological,
social behaviour. To understand what model to use, we first need to define the purpose
of the model, e.g., predictive or descriptive. In modelling interaction between humans and
automated vehicles, black-box models seem promising. However, the drawback is the lack
of knowledge they provide about causal relationships. Therefore, we require to integrate
machine learning approaches with causal models, predict the uncertainty of models, and test
them in different contexts to understand their validity. This helps us move from black-box
data-based models of behaviour towards causal first-principles models, which can generalise
better, due to capturing key aspects of the system.

Another topic discussed in this focus group was predicting human behaviour while they
adapt to changes in the design of the system. Predicting these emerging behaviours without
currently existing data seems challenging. We proposed applying closed-loop models that
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allow the integration of the adaptive behaviour of humans. Moreover, descriptive models may
help us develop causal models that allow predicting emergent behaviour or future behaviour
that we currently do not have a lot of data about.

4.14 Which scenarios should be taken into account in computational
models of human-automated vehicle interaction?

Hatice Sahin (Universität Oldenburg, DE), Duncan Brumby (University College London, GB),
Jussi Jokinen (University of Jyväskylä, FI), and Shadan Sadeghian Borojeni (Universität
Siegen, DE)
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We have started by thinking possible scenarios for each level of automation, and soon we
realized that we could not possibly list all the scenarios. To have a better structure of
the discussion we have focused on categorizing these scenarios from different angles. This
brought up whether a taxonomy regarding possible scenarios existed in research. Eventually,
we have categorized factors originated by the user and the external world. This way, we
presented 2 x 2 table of factors regarding the user and external world in SAE levels 1-4 and
in level 5. On SAE levels 1-4 User factors included purpose of commute, driving experience,
fatigue and engagement. Trust has been found related to all levels. Level 5 included personal
preferences such as sustainability, costs and favorable routes. External or contextual factors
were mentioned in all levels. These included social norms, environmental factors such as
light and weather conditions and cultural or regional norms and formal rules.

4.15 Modeling Trust in Automation
Philipp Wintersberger (TU Wien, AT), Martin Baumann (Universität Ulm, DE), Justin
Edwards (ADAPT Centre – Dublin, IE), Luisa Heinrich (Universität Ulm, DE), and Tuomo
Kujala (University of Jyväskylä, FI)
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We discussed potential approaches to model the concept of “trust in automation” in the
driving domain. In particular, we discussed an experimental design that could allow us to
model trust as a function of user interventions and monitoring (i.e., “occlusion” of the driving
environment) behavior when a driver cooperates with a lane-keeping system (i.e., an SAE
level 2 driving automation system).

Assuming that both monitoring and intervention behavior are related to a users’ subjective
trust, the experiment could work the following way:

A participant experiences an imperfect lane keeping system, i.e., the automation keeps
the vehicle in the lane center but frequently starts to deviate from the ideal trajectory,
slowly towards the lane boundaries.
We assume that a driver observing this process would at some point start to correct the
maneuvering of the vehicle to maintain a trajectory in the lane center again.
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While observing the situation and frequently correcting the steering, the participant
needs to complete a (comparably short) trust questionnaire multiple times during the
experiment.
The collected data will then be analyzed to determine if the deviation that a driver allows
the vehicle to leave the ideal trajectory is linked to the subjective trust ratings. We
hypothesize, that a driver with low trust would correct the vehicles’ maneuvers earlier
and more frequently, than a driver who trusts the automation more.
Additionally, we could include a secondary task to extend the principle to monitoring
behavior. In other words, a high-trusting driver may monitor the driving automation
system less often than a low-trusting driver.
The data observed in both conditions (i.e., intervening/monitoring) could then be used to
model the subjective trust of a driver. Given that the assumptions described above are
valid, a drivers’ monitoring and intervention behavior can then be used to derive their
trust levels.

5 Panel discussions

5.1 Summary of Panel 1: How can models inform design?
Antti Oulasvirta (Aalto University, FI), Alexandra Bremers (Cornell Tech – New York, US),
Lewis Chuang (LMU München, DE), Debargha Dey (TU Eindhoven, NL), Andreas Riener
(TH Ingolstadt, DE), and Shadan Sadeghian Borojeni (Universität Siegen, DE)
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Models are most useful if they are more than abstract, theoretical vehicles. They should not
live in a vacuum, but be related to problems and issues in the real world. Therefore, the
seminar wanted to discuss how models can inform the design of (in-)vehicle technology, and
how they can inform policy. As both of these topics can fill an entire Dagstuhl by themselves,
the primary objective was to identify the most pressing issues and opportunities.

Andreas Riener raised the question who we are designing for: the driver, the passenger,
or both? The different stakeholders have varying demands for design. He then brought up
the topic of cooperation with the OVID model of Roberts (1998).

Shadan Sadeghian followed up with the question on the blurring of boundaries between
the vehicle and the human driver, which is further confused by the increasing levels of
automation. She then discussed the dfiferent levels and their differing requirements posed to
design.

Dave Dey discsused experimental research on automated vehicles and other road users,
zooming into his own work on short-sighted aspects of interaction, like how pedestrians
respond to a particular event. He raised the issue that research in this domain is complicated
by multiple variables and it is hard to design solid research studies that can tease apart
causes from confounds.

Alexandra Bremers took an interaction design point-of-view, talkign about how wizard
of oz method can be used to study how people respond to automated vehicles, how grounding
happens. However, this is confounded by the fact that automated vehicles are conceptually
changing: they are not just transportation vehicles but becoming something something more:
spaces for coming together, sharing with other people etc.
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Antti Oulasvirta discussed design as counterfactual thinking. Consequently, the goal
is to understand how design affects the adaptation of human behavior. He talked about
emerging theories from ML, especially reinforcement learning, which offers a way to simulate
the emergence of adaptive behavior.

Lewis Chuang raised the issue of what a model is, proposing a definition: “A repres-
entation of what might be going on “out there” based on our biological perception”. This
compares to information transer. Such models are important to avoid heuristic reasoning
when thinking about automated driving. John Senders pioneering work is a great example of
combining theoretical work with modeling and rigorous experimental research.

After the opening statements, the panel and the audience discussed three questions related
to this theme:
(1) Types of questions: what types of questions exist at a design and policy level about

human-automated vehicle interaction?
(2) How to inform decisions: How can models be used to inform design and policy decisions?

What level of detail is needed here? What are examples of good practices?
(3) Integration: Integration can be considered in multiple ways. First, how can ideas from

different disciplines be integrated (e.g., behavioral sciences, engineering, economics), even
if they have at times opposing views (e.g., monetary gains versus accuracy and rigor)?
Second, how can models become better integrated in the design and development process
as tools to evaluate prototypes (instead of running empirical tests)? And third, how
can models be integrated into the automation (e.g., as a user model) to broaden the
automation functionality (e.g., prediction of possible driver actions, time needed to take
over)?

As possible future topics, the participants saw three topics rise above others: 1) defining
better what models do in design, especially what they predict; 2) finding connections between
qualitative and quantitative understandings; and 3) making models more accessible for
designers, i.e easier to use and better integrated to their practices.

5.2 Summary of Panel 2: What phenomena and driving scenarios need
to be captured in computational models of human-automated
vehicle interaction?

Martin Baumann (Universität Ulm, DE), Luisa Heinrich (Universität Ulm, DE), Andrew
Kun (University of New Hampshire – Durham, US), Dietrich Manstetten (Robert Bosch
GmbH – Stuttgart, DE), Nikolas Martelaro (Carnegie Mellon University – Pittsburgh, US),
and Hatice Sahin (Universität Oldenburg, DE)
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The second panel discussed what phenomena and driving scenarios need to be captured
in computational models of human-automated vehicle interaction. The aim of this panel
discussion was, as described by the organizers of the Dagstuhl Seminar, to both advance
theory on human-automation interaction while also contributing to understanding realistic
case studies for human-automation interaction that are faced for example by industry and
governments. The following examples of possible relevant phenomena and driving scenarios
were identified during the preparation of the seminar:
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1. Transitions of control and dynamic attention: When semi-automated vehicles transfer
control of the driving task back to the human, they require accurate estimates of a user’s
attention level and capability to take control (e.g., [14, 16])

2. Mental models, machine models, mode confusion, and training and skill: Models can
be used to estimate human’s understanding of the machine and vice-versa (e.g., [15]).
Similarly, they might be used to estimate a human driver’s skill level, and whether training
is desired.

3. Shared control: In all these scenarios, there is some form of shared control. Shared control
requires a mutual understanding of human and automation. Computational models can
be used to provide such understanding for the automation (e.g., [17]).

These three areas and others were mentioned and discussed during the panel discussion.
It started with short pitches by the panelists that are shortly summarized in the following
section.

The following attendees were speakers on this panel: Luisa Heinrich, Nikolas Martelaro,
Andrew Kun, Dietrich Manstetten, Hatice Sahin, Martin Baumann

Luisa Heinrich emphasized the importance of the take-over scenario as one key area
where computational models of driver-automated vehicle interaction could be helpful. The
main challenge here is how to design transitions strategies that support a safe and efficient
transfer of control from the automation to the human driver, especially in cases when the
human driver is out of the loop.

Nikolas Martelaro pointed out the importance of the complexity of traffic scenarios
in which human drivers are required to take back control from the vehicle automation. A
main target area for computational modelling could be how humans manage their situation
awareness in such complex traffic situations given that there are many types of road users
that have to be taken into account, such as pedestrians, cyclists, buses, passenger cars. He
also emphasized that different kind of drivers need to be considered. Finally he mentioned
as a last highly relevant phenomenon that automation might reduce some types of accidents
but also leads to new kinds of accidents.

The third pitch was given by Andrew Kun and he focussed on the importance of
bumper-to-bumper traffic as one relevant research area where computational models might be
useful. The other topic Andrew brought into the discussion are the small bursts of interaction
that occur during driving with automated vehicles where either the car or the human only
contribute to the driving task for a short period of time. Additionally, the different types
of tasks that are carried out while driving should be considered as relevant topic, such as
non-driving related tasks, visual tasks, etc.

Dietrich Manstetten structured his pitch around for essential questions: What? Where?
What for? In which situation? Regarding “what” Dietrich distinguished status vs. behavior
models. The question here is what is the input and what is the output of a model. So the
behavior could be used as input for status models of driver attention, whereas the current
attention allocation could be an input to a computational model of lane change behavior.
Regarding the “where” question he raised the points of lab vs. series vehicles. Whereas
online restrictions are extremely relevant for series vehicles lab vehicles can work with offline
data analysis tasks and have the freedom for highly sophisticated sensors that are nearly
impossible in series vehicles. With regard to the “what for” question the main question
is what is model used for and the main distinction is between safety and comfort. Which
purpose is addressed determines the requirements on the quality of the computational models.
Regarding the question “in which situation” Dietrich Manstetten opposed the take-over
situation with the automation phase. He made clear that it is highly important to consider
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the environment and the situation any model was designed to work in. More aspects of the
situation that should be considered are the traffic situation, the subtasks of the driving task,
the time horizon or the vehicle type.

Hatice Sahin emphasized the fact that the general traffic ecosystem in which behavior
occurs is generally neglected in studies and she raised the question how to integrate this
complexity into computational models. Additionally, situational aspects such as traffic
density and the presence of especially vulnerable road users need to be integrated in modelling
activities.

The last pitch was presented by Martin Baumann. He focussed on the question of
how humans interact with automated systems in traffic. He pointed out that the problem in
addressing this question is in many cases not a lack of data, but a lack of precise definitions
of the relevant constructs and predictive models. Computational models might be one
promising way therefore to generate significant progress in answering this question. For this
he mentioned three points that need to be addressed with computational models: The first is
how people construct and maintain situational awareness in dynamic traffic situations as this
mental representation is the basis for the decisions humans take. Second, long-term effects of
the interaction with automated vehicles are highly important to consider. And third, more
complex and realistic situations have to be considered in order to really evaluate the effect of
automated systems on human behavior in traffic.

In the subsequent discussion the following topics, among others, where raised:
1. What kind of data can be used as a basis for models and especially how can data from

the real world be integrated in the formation of computational models? There are big
data sets, especially at companies that would be very helpful in building and validating
models if they could be accessed by the scientific community.

2. With regard to the question which phenomena should be addressed with computational
models the distinction was made between a technological perspective – what scenarios
/ environments should be addressed – and a human-centered perspective – what are
the most important cognitive processes determining human behavior in traffic across
different scenarios. Starting from the situation and the environmental context might allow
to identify those cognitive phenomena that are relevant and that should be integrated
into computational models of human behavior in these situations. On the other hand
the point was made that it might be quite difficult to identify those scenarios that are
really relevant in human-automated vehicle interaction as automated vehicles are still
developing and the data we currently collect and use might not be relevant ones in the
future. Additionally, starting from specific situations might lead to a situation where
different theories and models for different situations are developed that are not compatible
and cannot be generalized across different contexts. With regard to this the need for a
unified and integrated modeling approach was formulated.

3. As one important situational factor the complexity of the situation was mentioned, and
here it was stressed that it is not so much the “objective” complexity that is relevant,
but the subjectively experienced complexity.

4. The topic of trust into technology and how it could be modelled computationally was
discussed in depth. The different types of models and theories that the participants of
the discussion use to investigate and measure trust were collected during the discussion.
Relevant phenomena could be overtrust and distrust, uncertainty as a possible mechanism
underlying trust.

5. One of the phenomena that was also mentioned in the context of the trust discussion was
learning as a highly relevant phenomenon for computational models of human-automated
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vehicle interaction. The experience with automated vehicles will shape the future behavior
and currently many models of human-automated vehicle interaction are based on first
time encounters with the technology.

The following papers where mentioned during the discussion and listed in the notes of
the discussion:
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5.3 Summary of Panel 3: What technical capabilities do computational
models need to possess?

Antti Oulasvirta (Aalto University, FI), Jelmer Borst (University of Groningen, NL), Martin
Fränzle (Universität Oldenburg, DE), Myounghoon Jeon (Virginia Polytechnic Institute –
Blacksburg, US), Otto Lappi (University of Helsinki, FI), Gustav Markkula (University of
Leeds, GB), and Nele Rußwinkel (TU Berlin, DE)
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The panel discussed technical capabilities required of computational models in this domain.
Although the nature of different modeling frameworks and different studies might differ,
what do we consider the core functionality? For example, there are capabilities related to:
(1) Compatibility: To what degree do models need to be compatible with simulator software

(e.g., to test a “virtual participant”), hardware (e.g., be able to drive a car on a test
track), and other models of human thinking?

(2) Adaptive nature: Computational models aim to strike a balance between precise pre-
dictions for more static environments and being able to handle open-ended dynamic
environments (like everyday traffic). How can precision be guaranteed in static and
dynamic environments? How can models adapt to changing circumstances?

(3) Speed of development and broader adoption: The development of computational models
requires expertise and time. How can development speed be improved? How can
communities benefit from each other’s expertise?

The panel consisted of the following speakers: Gustav Markkula, Martin Fraenzle,
Myounghoon Jeon (Philart), Jelmer Borst, Otto Lappi, and Nele Russwinkel.

Gustav Markkula discussed the compatibility of software and hardware, which is
critical at the very end of an applied project, but much less considered earlier in the model
developemnt stage. It is therefore critical to study the ultimate application context at least
roughly. Similarly from an applied perspective, the speed of development and the flexibility
of modelling is important. Models should be extensible with new data, new features, new
capabilities etcetera.

Martin Fraenzle followed up and discussed how the idea of running models ”in situ”
might be out of scope at the moment.

Myounghoon Jeon brought up Distract-R as a great example of modeling, which
allows different parameters to be simulated and rapid prototyping while being hardware and
software agnostic and yet have some ecological validity. He echoed the need for adaptability
and extensibiliy. He further brought up the topic of motions, which is presently missing from
cognitive models although clearly important.
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Jelmer Borst discussed the desiredata of modeling, one of which is that they should be
able to drive the car. However, ACT-R is far from that goal according to the panelist. It
is too brittle. There is a need for hybrid models that combine cognitive architectures and
machine learning to overcome this issue. This may allow a cognitive model to operate in the
background while the user is driving and warn users if something out of line is taking place,
such as overloading.

Otto Lappi proposed a more philosophical perspective. He claimed that the first question
to ask is who you are modeling for: the designer, the engineer, the scientist, or someone
else? This has significant implications to the capabilities we want from models, and also our
validation criteria.

Nele Russwinkel followed up on the topic of what is required of a model during driving,
pointing out that ACT-R may be useful if it can anticipate the driver, even if now able
to drive the car. She pointed out that latent variables, such as those related to situation
awareness, are important for a car to understand. However, presentday models mostly do
not afford this in a real-time system, due to computational intensity. She pointed out that a
lot of modeling is still missing when it comes to the different levels of automation in vehicles.
Moreover, some of the events we are interested in are rare and therefore inherently difficult
to predict.

Discussion with the audience followed up on the need for better simulation environments
and hybrid models that use ML. There was disagreement on whether simulation environments
are too simplistic and can or cannot contain the richness of perceptual and other cues that
drivers exploit in driving. The audience gravitated toward the need for developing a roadmap
for cognitive models. Participants agreed that one of the outstanding goals is to understand the
different SAE levels better, especially from the perspective of their psychological consequences
and, therefore, their consequences on cognitive models.

Future topics that were raised included:
1) How to allow drivers update models about themselves?
2) How to trade off predictive accuracy and computational costs in such a way that we can

allow cognitive models to run in real-time systems?
3) How to go from mental models research to scene understanding, which is critical in

driving.

5.4 Summary of Panel 4: How can models benefit from advances in AI
while avoiding its pitfalls?

Christian P. Janssen (Utrecht University, NL), Duncan Brumby (University College London,
GB), Birsen Donmez (University of Toronto, CA), Justin Edwards (ADAPT Centre – Dublin,
IE), Mark Eilers (Humatects – Oldenburg, DE), Moritz Held (Universität Oldenburg, DE),
Jussi Jokinen (University of Jyväskylä, FI), and Roderick Murray-Smith (University of
Glasgow, GB)
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The fourth panel discussed how computational models that are developed for Human-
Automated Vehicle Interaction can benefit from advances in AI while also avoiding some
of its pitfalls. The summary below is made by Chris Janssen, building on crowd-sourced
community notes of the sessions and snippets of panel members’ presentations or text where
possible.

22102

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


66 22102 – Computational Models of Human-Automated Vehicle Interaction

Before the meeting, the organizers had identified that there are many developments
in AI that computational models can benefit from. Three examples are advances in (1)
simulator-based inference (e.g., [1]) to reason about possible future worlds (e.g., varieties
of traffic environments), (2) reinforcement learning [2] and its application to robotics [3]
and human driving [4], and (3) deep learning [5] and its potential to predict driver state or
behavior from sensor data. At the same time, incorporation of AI techniques also comes
with challenges that need to be addressed. Three potential challenges are for example:
1. Explainability: Machine learning techniques are good at classifying data, but do not

always provide insight into why classifications are made. This limits their explainability
and is at odds with the objective of computational models to gain insight into human
behavior. How can algorithms’ explainability be improved?

2. Scalability and generalization: How can models be made that are scalable to other
domains and that are not overtrained on specific instances? How can they account for
future scenarios where human behavior might be hard to predict [6]?

3. System training and corrective feedback: if models are trained on a dataset, what is the
right level of feedback to correct an incorrect action to the model? How can important
new instances and examples be given more weight to update the model’s understanding
without biasing the impact?

During the panel, these and other themes were discussed. We started with short pitches
by the panelists, which are summarized first.

Roderick Murray-Smith discussed among others the following points.
(1) A priori insight can be placed into machine learning models in multiple ways. Forward

and inverse modelling components were discussed as being particularly relevant.
(2) The advent of deep learning models has helped to place more complex models of

perception into control models.
(3) This has knock-on effects of explainability: is trying to explain a complex policy model

a good idea? Or is it better to ensure that the model learns a value function that is
relevant to the human and then optimized?

(4) Engineering approaches often follow a modular approach, where multiple components
are solved from first-principles, before being placed in bigger systems. The question is
whether such an approach is scalable to a more complex context such as driving, where a
closed -loop simulation might not be feasible.

Mark Eilers discussed that the best models for driving an automated vehicle do not
necessarily need to be models that drive in a human way, or based on a human-like model.
Mark saw potentials and possibilities in the following fields and areas.
(1) robotics, for example imitation learning,
(2) reinforcement learning and optimal control,
(3) deep learning, for example the use of new unsupervised learning techniques.
All these techniques can be adapted to fit existing models and contexts. Mark identified
as pitfalls that there might be an identifiability problem: data alone can’t always tell the
researcher which of the many different approaches or models is the correct one. Theory and
experiments together must inform the model and the modeling community.

Duncan Brumby reflected on his own past work in preparation for the meeting. When
he modeled driving 15 years ago, he used a relatively simple model, but it was useful and
valuable (e.g., [7]). At the time, there was talk of how reinforcement learning models can
one day give even more insight, and it is good to see that that potential has come to fruition
(e.g., [4]). Duncan now sees three areas where science of AI has lead to great developmens
and still has potential to grow further.
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(1) Models of the driver: science can help to create better models
(2) Models for the car itself: current semi-automated vehicles have lots of technology and

models in it, for example to go around a corner and break when a car in front of it stops.
However, the models for these tasks are developed by companies, and the question is how
it will reach science.

(3) The technology with which people interact in the car (e.g., secondary devices) have
evolved. The tools that people use are different.

Overall, due to these changes, some of the parameters that underly older models might need
updating. For example, when do we call something distracting or not differs between settings.

Birsen Donmez looked at the topic of this panel from a statistics and experimentation
perspective. Some machine learning approaches such as Deep Learning are very powerful, as
they enable to model complex non-linear systems. Capturing multiple predictors and their
interactions go beyond the model typical traditional statistical or cognitive models. However,
they do require big data sets or samples. More traditional statistical tools do not always
require such larger sets, but can also work on smaller samples. There are challenges for both
the big data set (and machine learning) and small data set (and statistics) approaches. For
the bigger data sets the general challenge is that these are often collected by industry and not
available for researchers. How can this be changed? When we collect our own datasets they
might also not always be big enough, and when using data sets of others, that might also not
always be trivial. For smaller data sets there is a limited sample problem, when applying
machine learning techniques. It requires insight to for example split the dataset appropriately
into training set and test set. Birsen sees potential for situations where researchers do get
hold of bigger data sets. They have the right background to be critical about the data. For
example, to ask questions such as: is the data representative? How was data collected? Do
correlations exist?

Jussi Jokinen discussed a model of how humans can interact with an automated vehicle.
A cooperative AI can for example observe human user behavior, and then try to identify
posterior probabilities of user states (in a Bayesian fashion). There are however potential
pitfalls in that such a Bayesian inference process can be slow and the results of a modeling
framework are sometimes surprising and don’t seem plausible. Given that the model is not
always correct, it is useful to explicitly consider (un-)certainty. In Jussi’s own work (e.g.,
[4]), he benefits from applying the computational rationality framework (e.g., [8, 9]). Such a
model expresses how latent variables impact behavior. A reinforcement learning agent is
developed that works within constraints of a cognitive architecture and task environment to
come up with the optimal policy that if architecture and task are correctly defined should be
similar to user’s behavior. It is cool when it works, but there are lots of moving parts. Jussi
sees opportunities (and challenges) in refinement of the ability to use inference techniques in
these models: how can one be confident that the learned model is indeed the correct model?

Justin Edwards drew parallels with the history of language models and his experience
in the Conversational User Interfaces (CUI) community. Coming up with language generation
and processing models long proved a challenge to the field. Initially there were many rule-
based models. The last decade has seen a wider range of models that use large datasets
and are data-driven. Data-driven models have surpassed the more theory driven models
in quite a lot of tasks. However, they also are occasionally deeply flawed. The samples on
which training takes place are not always general, but are used for generalization purposes.
This showed for example in the Delphi system, which was meant to be capable of moral
judgements, but used data from reddit chatboards for training.So, the big lesson learned for
the automotive community is: as new technology becomes available, be aware of where the
data comes from. What are the biases? Those might carry through in surprising ways.
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Moritz Held focused mostly on two themes. First: explainability. Hybrid models that
combine machine learning with theory-driven models might be fruitful in this regard. For
example, combining ACT-R models with techniques from Bayesian spatial networks. The
second topic was scalability of models. Moritz was surprised by some discussions in previous
days regarding scalability. He would expect that there is always some robustness in a model.
There is no need for (for example) and ACT-R supermodel to handle every driving situation.
But, he would expect it to at least handle different driving scenarios.

Chris Janssen talked about four points. First, it is important to think about function
allocation: how are tasks divided between humans and the automated vehicles. Models can
play a role in this regard (see e.g. [10]). Second, in such discussions, it is tempting to think
of simple heuristics such as “men are better at [some tasks] and machines are better at [other
tasks]” [11]. However, humans and machines are dynamic (they can both learn and adapt),
and they operate in varying contexts. Therefore, static heuristics might be useful at first, but
might not always be appropriate for these dynamic contexts. Cognitive models should take
such dynamics into account. Third, explainability is becoming increasingly important inside
and outside of science. Computational models can tie in with this by combining theory-driven
and data-driven models. In other words: it is important that models are connect to theory
(not just data), but also that theory is connected to practice.

During the discussion that followed, we talked among others about the following aspects:
1. What creates distributional shifts in models? How can models be made more robust

against this?
2. How can the designers and researchers of modelers better communicate what the goals

and limitations of models are? For example, for which level of automation they are
designed.

3. There seems to be a balance between generalization of a model versus having a more
structured / fixed model. Models differ in which aspects they keep fixed (as assumptions,
framework, or architecture) and which aspects they train or learn (for example, based on
data).

4. There was also a discussion about how computational models can be designed such that
designers and developers (of cars) can better benefit from them. There is a potential
discrepancy here in that designers want to test multiple, flexible designs whereas models
are often trained on or designed for more fixed tasks.

5. There is a need to be more systematic about the model selection process.
6. There is an open question about for what types of research questions small or large

datasets are needed.
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5.5 Summary of Panel 5: What insights are needed for or from
empirical research?

Shamsi Tamara Iqbal (Microsoft – Redmond, US), Linda Ng Boyle (University of Washington
– Seattle, US), Benjamin Cowan (University College – Dublin, IE), Patrick Ebel (Universität
Köln, DE), Wendy Ju (Cornell Tech – New York, US), Tuomo Kujala (University of Jyväskylä,
FI), Philipp Wintersberger (TU Wien, AT), and Fei Yan (Universität Ulm, DE)
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Computation models are only as good to the degree that they can describe and predict
phenomena in the real world. In particular, many current computational models capture
the results of a single experiment based on the current context of what is being modeled.
However, behavior might change with more exposure to and experience with automated
technology. To make models most useful over time, empirical testing is of paramount
importance, especially in order to evaluate models that look at current behavior, as well as
models that are based on projections of future behavior. The panel on empirical research
insights focused on the question above, as well as related questions such as how to study
phenomena where computational models are not commercially available, and how to map
findings from simulator tests to real world scenarios.

Patrick Ebel started the conversation with a focus on mapping real world data to input
for computational models. Clearly there is a need for models to be used in industry and
leveraging existing models can save time and money but there seems to be a barrier in
adaptation. A couple of possible causes could be accuracy of models, especially since real
world application needs to consider many confounding factors which cannot be typically
captured in experimental models. Patrick also raised the question of the comparability of
data that come from different simulators and how to reconcile for those differences.

Wendy Ju discussed the generalizability of empirical studies that are done in controlled
settings in the lab – where the studies themselves are challenging to run and have additional
limitations (e.g. cultural, temporal variation). She proposed the alternative of gleaning
results from understanding naturalistic data from real-world driving. However, this will
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require instrumentation of vehicles where there needs to be a common agreement of what
data is collected, when and how. The data itself can be a contribution to the field, and once
we have these datasets, ML can be used to scale up and detect patterns in the diverse data
sets that are collected.

Fei Yan talked about how to extract insights from empirical research and black box
models and posed the core question of determining when a model is really needed to solve a
research question. Empirical research can help understand causal relationships, and black
box models can look at theory (e.g. social psychology on human-human interaction) which
can be then used to form hypotheses that can be tested in empirical research. Fei proposed
using empirical research to understand relevant factors before making the black box model.
An example scenario could be the use of a predictive model in a lane change support system
that can adapt to a driver’s states of uncertainty. But it is difficult to know what models
are most applicable in these scenarios. For some domains, ML or Bayesian models might be
enough, but depending on the level of accuracy needed, those might not be most appropriate
for other domains. Fei also talked about the small sample size in empirical research which
helps with deeper dives into relationships between factors.

Tuomo Kujala shifted gears towards modelling driver attention. Driver attention
monitoring is required for cars in level 3 or even up to level 4 in order for a car to respond
safely and effectively to takeover requests. The challenge is that most attention systems
monitor the inside of the car and how the driver’s attention is impacted by the internal
environment that can be detected. However, a driver’s attention can be impacted by factors
that are not detectable directly – for example, how much ‘free attention’ or cognitive capacity
is available for the driver and whether it is enough to handle an upcoming scenario in driving.
Appropriate attention modelling can decrease the uncertainty. Tuomo proposed that we need
prescriptive or normative computational models, not only descriptive models.

Phillipp Wintersberger focused on the specific scenario of what is needed to make
Level 3 automated driving possible and presented the argument that simulator results may
not be as limited as we assume them to be. The trade off for a data-driven model is that
a huge amount of naturalistic data is needed, connecting back to Wendy’s point – we as a
field do not have established standards on how to get this data. For example, doing a study
in a test track may not yield useful data if the test track is not similar to the real world,
but similar studies can be designed to be more similar to real world scenarios. Phillipp
also talked about how we can get massive data to investigate development of trust in such
systems. Is gamification a possible path? He also questioned the need for really big data sets
and whether smaller datasets can be combined to get bigger sets.

Shamsi Iqbal talked about the target user – who we are designing for, the current user
or the future user who will have different technological capabilities, exposure and experience.
Can we effectively extrapolate from the current user to project what the future user will
look like? Empirical research typically falls into three buckets – lab experiments, model
building approach and naturalistic driving. While naturalistic driving gives the opportunity
to learn more about what challenges people face in real world scenarios, there are also
privacy and security concerns around collecting massive amounts of data from people. For
lab experiments in the other hand, we have the opportunity to test innovative ideas that
push the boundary of what might be possible. The challenge is then to determine how to
generalize the findings to real world scenarios, where we may not even know what the future
scenarios might be.

Linda Boyle brought up the counter point that model-based and empirical research are
not mutually exclusive and naturalistic and simulated data should not be mutually exclusive
either. Research needs data from separate dimensions, not just comparative studies. Even in
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a single lab – different types of data can be collected. The goal should not be just to create
a data repository, but also to use results for scenarios such as Bayesian inferences/priors for
future models and experiments. Linda emphasized that while field studies are great there is
a lot of variation. Lab studies are a must – especially to test rate situations and edge cases
that we may rarely or never see in real world data, but still need to be accounted for in our
models.

Ben Cowan emphasized that the key to empirical research is observation of phenomena.
In his view, the role of empirical research in automated vehicles are: a) to assess how concepts
we deem important to automated driving (e.g. situational awareness, attention) manifest
in and are impacted within the experience of automated driving. We can learn a lot from
conducting qualitative studies on automated driver experience (e.g. observation studies,
interviews) to assess the importance of concepts like trust, potential challenges and barriers
to adoption etc. Quantitative empirical work, particular lab studies can also be used to test
how specific concepts are causally influenced by design or events during the drive to get a
clearer picture of what are the key areas for us to focus on (e.g. the design of communication
strategies for pedestrians- Lanzer et al, AutoUI 2020 on politeness strategies positive effect on
trust and acceptance). They also allow us to experiment with identifying cognitive concepts
of importance.

To support the notion of what to model and to give our initial models a test run: Models
should be related to the real world. But we need to perhaps incubate these first. Empirical
lab based work is important to determine what is and is not important in that real world for
the concepts we deem important to research. That is not to say that we cannot and should
not do lab-based work, devise, test and assess models for concepts on lab based data to
determine how the cognitive concepts may behave within more real world driving contexts.

A key consideration is also in the measurement quality for measuring the concepts we
wish to measure. In particular when using questionnaires to assess concepts like trust, it is
important that we stay true to any base questionnaires used or conduct the design of our own
psychometrics to ensure what we are using are valid, reliable and sensitive to the concepts
we measure. On a wider point as a community of researchers we must also ensure that the
empirical work we are doing is replicable and open. We need to create an infrastructure
and reward system that allows us to embed replication in our empirical research activities
(either through replication when publishing the initial study, or in specific tracks at our key
conferences and journal publication venues).

In the discussion, Patrick talked about triangulating empirical research and model based
research using the following approach: 1) Use model based systems that are built upon
naturalistic data. Can help to see patterns in the data and suggest empirical tests, and
2) Use models as a sandbox and test bed approach. How good does a model need to be?
If model already shows a study is not worth the time, might be useful to test. Another
important topic that emerged from the panel discussion is whether a ‘replicate’ track should
be added to the Auto-UI conference. Key questions that arose included what is the definition
of replication, what is the expected rigor, how to address the differences in the experimental
setup that might impact the replication, how to share data, how to present the results at the
conference and what kind of benchmarks should be setup.

As possible future topics, the following points were extracted from the panel discussion:
How to connect models even better to needs of industry? They want them, but don’t
always use them. Why? (e.g., Patrick)
How to move towards “data is a contribution” and replication (Wendy)
Do we need models even? (e.g., Fei)
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Prescriptive models are needed; not just descriptive (Tuomo)
To understand attention, more is needed than just in-car glances (Tuomo)
Do we need realistic studies? Or is simulator sometimes better (Philipp)
Opportunity of gamification (Philipp)
Need for a place to store online data (Philipp)
Who are we designing tech / experiment / model for? Today’s user or tomorrow’s user?
(Shamsi)
How to make tools accessible to wider community? For models and tools and experiments.
(Linda)
How to motivate and reward replication systems? (Ben)

6 Open problems

6.1 Relevant papers for modeling human-automated vehicle interaction
Christian P. Janssen (Utrecht University, NL)
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Among the attendees we also gathered an overview of papers that they thought were
interesting for researchers in the field.

Before the conference, we sent out a google form and asked attendees to submit papers
that they thought were interesting and either written by themselves or others. The suggested
papers are for example relevant domains for modeling, or examples of modeling papers. The
following papers were suggested: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]

During the conference, we also crowdsourced a collection of relevant papers. The large
majority of these papers contain examples of models or (conceptual) frameworks or datasets
that are used for or inspired by models. These papers were suggested: [3, 13, 15, 16, 37, 45,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76]
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6.2 Research agenda to further the field
Christian P. Janssen (Utrecht University, NL), Martin Baumann (Universität Ulm, DE),
Shamsi Tamara Iqbal (Microsoft – Redmond, US), and Antti Oulasvirta (Aalto University,
FI)
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During the conference all the attendees identified various areas that can be part of a longer-
term research agenda to move the field forward. Below, we list some of these research agenda
items very briefly. They are clustered within each of the broader challenges that were a core
panel discussion. Of course, these challenges are only an incomplete subset of the many
research questions that are out there.

Challenge 1: What phenomena and driving scenarios need to be
captured?

Trust: For example, models could be used to study when is there (too much of) a deviation
from an “appropriate level of trust”? But the deeper question is How to model / predict
this in an online way?
Mental models: How can models be used to aid people to have a good (more realistic,
detailed) mental model of car’s capabilities and feedback? And also vice-versa: how can
the can have an appropriate mental model of the driver (and their knowledge).
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Challenge 2: What technical capabilities do computational models
possess?

In what areas can models be part of the driving system and actually be used on the road?
What are the requirements and constraints from a legal perspective when models are
used on the road?
Different models have different goals. There has been discussion whether we need
computational models to model actual driving (i.e., to be able to take control of a vehicle,
or be a “digital twin” of the driver of a vehicle), or whether models are mostly used for
understanding human behavior and during the design phases?
A related question is then: Where can or should a driving model be a black box or white
box model?

Challenge 3: How can models benefit from advances in AI while avoiding
pitfalls?

All models have some mechanisms that link inputs to outputs. However, the components
come from different places: theory (“white box”), data (“black box”), or a combination?
Each technique has advantages and disadvantages. How can techniques and insights from
white box and black box models be best combined?
This ties in with a more general challenge of how to best balance between generalizability
/variability and fixed structure of a model. What is truly fixed (and well represented
in a model)? What is learned / variable? How can one know they have a properly
generalizable model?
Crafting a model that has both white box and black box items can also be seen as a
scientific process or method in itself. This method can be more standardized.
Researchers make quite some choices during the model selection (and developing) process.
How can this be approached in a more principled manner?

Challenge 4:What insights are needed for and from empirical research?

For what problems are large datasets needed? And for what problems are small datasets
sufficient? (i.e., balancing also more traditional statistical techniques with machine
learning techniques)
What is needed to then make correct inferences on both? Small datasets and big datasets
each have their charms, but require different techniques and insights. Just because a
dataset is larger, does not make its quality better nor does it mean that the inferences
are more reliable (as some form of data quality needs to be ensured).
Some form of standardized data set might be useful for model development and model
competition. A research objective can be to develop and grow such a data set (and let it
grow over time).
The above is tied to a need to have benchmark tests / phenomena to test models on. Is
there perhaps a “golden standard” test?
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Challenge 5: How can models inform design and governmental policy?

How can cognitive models inform (the design of) future interaction best? Design efforts
often explore specific scenarios, but within that look at various alternative designs. By
comparisons, models sometimes are more fixed towards specific methods or outcomes.
How can they also incorporate that flexibility?
And how can the appropriate (modelling / model sketching) tools be made?
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