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—— Abstract
In several real-world scenarios, decision making involves advanced reasoning under uncertainty,
i.e. the ability to answer probabilistic queries. Typically, it is necessary to compute these answers
in a limited amount of time. Moreover, in many domains, such as healthcare and economical
decision making, it is crucial that the result of these queries is reliable, i.e. either exact or comes
with approximation guarantees. In all these scenarios, tractable probabilistic inference and
learning are becoming increasingly important.

Research on representations and learning algorithms for tractable inference embraces very
different fields, each one contributing its own perspective. These include automated reasoning,
probabilistic modeling, statistical and Bayesian inference and deep learning.

Among the many recent emerging venues in these fields there are: tractable neural density
estimators such as autoregressive models and normalizing flows; deep tractable probabilistic
circuits such as sum-product networks and sentential decision diagrams; approximate inference
routines with guarantees on the quality of the approximation.

Each of these model classes occupies a particular spot in the continuum between tractability
and expressiveness. That is, different model classes might offer appealing advantages in terms of
efficiency or representation capabilities while trading-off other of these aspects.

So far, clear connections and a deeper understanding of the key differences among them have
been hindered by the different languages and perspectives adopted by the different “souls” that
comprise the tractable probabilistic modeling community.

This Dagstuhl Seminar brought together experts from these sub-communities and provided
the perfect venue to exchange perspectives, deeply discuss the recent advancements and build
strong bridges that can greatly propel interdisciplinary research.
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1 Executive Summary

Priyank Jaini (Google — Toronto, CA)
Kristian Kersting (TU Darmstadt, DE)
Antonio Vergari (University of Edinburgh, GB)
Max Welling (University of Amsterdam, NL)

License ) Creative Commons BY 4.0 International license
© Priyank Jaini, Kristian Kersting, Antonio Vergari, and Max Welling

ML models and systems to enable and support decision making in real-world scenarios need
to robustly and effectively reason in the presence of uncertainty over the configurations of
the world that can be observed. Probabilistic inference provides a principled framework to
carry on this reasoning process, and enables probabilistic modeling: a collection of principles
to design and learn from data models that are capable of dealing with uncertainty. The
main purpose for these models, once learned or built, is to answer queries — posed by
humans or other autonomous systems — concerning some aspects of the represented world
and quantifying some form of uncertainty over it. That is, that is computing some quantity
of interest of the probability distribution that generated the observed data. For instance, the
mean or the modes of such a distribution, the marginal or conditional probabilities of events,
expected utilities of our policies, or decoding most likely assignments to variables (also known
as MAP inference, cf. the Viterbi algorithm). Answering these queries reliably and efficiently
is more important than ever: we need ML models and systems to perform inference based
on well-calibrated uncertainty estimates throughout all reasoning steps, especially when
informing and supporting humans in decision making processes in the real world.

For instance, consider a ML system learned from clinical data to support physicians and
policy makers. Such a system would need to support arbitrary queries posed by physicians,
that is, questions that are not known a priori. Moreover, these queries might involve complex
probabilistic reasoning over possible states of the world, for instance involving maximization
of some probabilities and the ability to marginalize over unseen or not available (missing)
attributes like “At what age is a patient with this X-ray but no previous health record most
likely to show any symptom of COVID-19?7”, or counting and comparing sub-populations
“What is the probability of there being more cases with fever given a BMI of 25 in this county
than in the neighboring one?”. At the same time, it should guarantee that the uncertainty
in its answers, modeled as probabilities, should be faithful to the real-world distribution as
uncalibrated estimates might greatly mislead the decision maker.

Recent successes in machine learning (ML) and particularly deep learning have delivered
very expressive probabilistic models and learning algorithms. These have proven to be able
to induce exceedingly richer models from larger datasets but, unfortunately, at an incredible
cost: these models are vastly intractable for all but the most trivial of probabilistic reasoning
tasks, and they have been demonstrated to provide unreliable uncertainty estimations. In
summary, their applicability to real-world scenarios, like the one just described, is very
limited.

Nevertheless all these required “ingredients” are within the grasp of several models
which we group together under the umbrella name of tractable probabilistic models, the
core interest of this seminar. Tractability here guarantees answering queries efficiently and
ezactly. Tractable probabilistic models (TPMs) have a long history rooted in several research
fields such as classical probabilistic graphical models (low-treewidth and latent variable
models), automated reasoning via knowledge compilation (logical and arithmetic circuits)
and statistics (mixture models, Kalman filters). While these classical TPMs are known to
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be limited in expressiveness, several recent advancements in deep tractable models (sum-
product networks, probabilistic sentential decision diagrams, normalizing flows and neural
autoregressive models) are inverting the trend and promising tractable probabilistic inference
with little or no compromise when compared to the deep generative models discussed above.
It becames then more and more important to have a seminar on these recent successes of
TPMs bringing together the different communities of tractable probabilistic modeling at the
same table to propel collaborations by defining the goals and the agenda for future research.

These are the major topics around which the seminar brought up the aforementioned
discussion:

Advanced probabilistic query classes

Deep tractable probabilistic modeling

Robust and verifiable probabilistic inference

Exploiting symmetries for probabilistic modelling and applications in science.

Advanced probabilistic query classes

Probabilistic inference can be reduced as computing probabilistic queries, i.e., functions
whose output are certain properties of a probability distribution (e.g., its mass, density,
mean, mode, etc.) as encoded by a probabilistic model. Probabilistic queries can be grouped
into classes when they compute the same distributional properties and hence share the
same computational effort to be answered. Among the most commonly used query classes
there are complete evidence (EVI), marginals (MAR), conditionals (CON) and maximum a
posteriori (MAP) inference. While these classes have been extensively investigated in theory
and practice, they constitute a small portion of the probabilistic inference that might be
required to support complex decision making in the real-world.

In fact, one might want to compute the probabilities of logical and arithmetic constraints,
of structured objects such as rankings, comparing the likelihood and counts of groups of
events or computing the expected predictions of discriminative model such as a classifier
or regression w.r.t. some feature distribution. Tracing the exact boundaries of tractable
probabilistic inference for these advanced probabilistic query classes and devising probabilistic
models delivering efficient and reliable inference for them is an open challenge.

Deep tractable probabilistic modeling

A probabilistic model falls under the umbrella name of tractable probabilistic models (TPMs)
if it guarantees exact and polytime inference for certain query classes. As different model
classes can be tractable representations for different query classes, a spectrum of tractable
inference emerges. Typically, this create a tension with the extent of a model class supporting
a larger set of tractable query classes, and its expressive efficiency, i.e., the set of functions it
can represent compactly.

Recent deep generative models such as generative adversarial networks (GANSs), regu-
larized and variational autoencoders (VAEs) fall out of the TPM umbrella because they
either have no explicit likelihood model or computing even the simplest class of queries, EVI,
is hard in general. In fact, despite their successes, their inference capabilities are severely
limited and one has to recur to approximations. However, the approximate inference routines
available so far (such as the evidence lower bound and its variants) do not provide sufficiently
strong guarantees on the quality of the approximation delivered to be safely deployed in
real-world scenarios.
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On the other hand, classical TPMs from the probabilistic graphical model community
support larger classes of tractable queries comprising MAR, CON and MAP (to different
extents based on the model class). Among these there are: i) low or bounded-treewidth
probabilistic graphical models that exchange expressiveness for efficiency; ii) determinantal
point processes which allow tractable inference for distributions over sets; iii) graphical models
with high girth or weak potentials, that provide bounds on the performance of approximate
inference methods; and iv) exchangeable probabilistic models that exploit symmetries to
reduce inference complexity.

A different prospective on tractability is brought by models compiling inference routines
into efficient computational graphs such as arithmetic circuits, sum-product networks, cutset
networks and probabilistic sentential decision diagrams have advanced the state-of-the-
art inference performance by exploiting context-specific independence, determinism or by
exploiting latent variables. These TPMs, as well as many classical tractable PGMs as listed
above, can be cast under a unifying framework of probabilistic circuits (PCs), abstracting
from the different graphical formalisms of each model. PCs with certain structural properties
support tractable MAR, CON, MAP as well as some of the advanced query classes touched
in the previous topic item. Guy Van den Broeck gave a long talk on the first day of the
seminar to set the stage for participants for viewing tractable probabilistic models from the
lens of probabilistic circuits.

More recently, the field of neural density estimators has gained momentum in the tractable
probabilistic modeling community. This is due to model classes such as normalizing flows and
autoregressive models. Autoregressive models and flows retain the expressiveness of GANs
and VAESs, by levering powerful neural representations for probability factors or invertible
transformations, while overcoming their limitations and delivering tractable EVI queries.
As such, they position themselves in the spectrum of tractability in an antithetic position
w.r.t. PCs: while the latter support more tractable query classes, the former are generally
more expressive. On the first day of the seminar, Marcus Brubaker introduced these models
to the seminar participants in a long talk. It is an interesting open challenge to combine
TPM models from different regions of such a spectrum to leverage the “best of different
worlds”, i.e., increase a model class expressive efficiency while retaining the largest set of
supported tractable query classes as possible. The first day subsequently ended with a lively
open discussion on the differences between TPMs and Neural Generative Models and what
advantages and lessons they can provide the other models.

Robust and verifiable probabilistic inference

Along exactness and efficiency, one generally requires inference routines to be robust to
adversarial conditions (noise, malicious attacks, etc.) and to be allow exactness and efficiency
to be formally provable. This is crucial to deploy reliable probabilistic models in real-world
scenarios (cf. other topic). Recent advancements in learning tractable and intractable
probabilistic models from data have raised the question if the learned models are just
exploiting spurious correlations in input space, thus ultimately delivering an unfaithful image
of the probability distribution they try to encode. This raises several issues, as in tasks like
anomaly detection and model comparison, which rely on correctly calibrated probabilities, one
can be highly mislead by such unfaithful probabilistic models. Furthermore, one might want
to verify a priori or ex-post (e.g., in presence of adversarial interventions) if one probabilistic
inference algorithm truly guarantees exact inference. Questions like this have just very
recently been tackled in a formal verification setting, where proofs of the correctness of
inference can be verified with less resources than it takes to execute inference.



Priyank Jaini, Kristian Kersting, Antonio Vergari, and Max Welling 17

Over the course of the seminar, through informal discussions and formal talks by the
participants discussed the above mentioned issues in tractable probabilistic inference through
topics such as Bayesian Deep Learning, Incorporating symmetries in probabilistic modelling
using equivariance with applications in sciences, explainable AT etc.

Overall, the seminar produced numerous insights into how efficient, expressive, flexible,
and robust tractable probabilistic models can be built. Specially, the discussions and talks
at the seminar spurred a renewed interest in the community to:

develop techniques and approaches that bring together key ideas from several different

fields that include deep generative models, probabilistic circuits, knowledge compilation,

and approximate inference.

create bridges between researchers in these different fields and identify ways in which

enhanced interaction between the communities can continue.

generate a set of goals, research directions, and challenges for researchers in these field to

develop robust and principled probabilistic models.

provide a unified view of the current undertakings in these different fields towards

probabilistic modelling and identifying ways to incorporate ideas from several fields

together.

develop a new systematic and unified set of development tools encompassing these different

areas of probabilistic modelling.

22161
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3 Overview of Talks

3.1 Causality and Tractable Probabilistic Models
Alessandro Antonucci (IDSIA — Manno, CH)

License @ Creative Commons BY 4.0 International license
© Alessandro Antonucci

Probabilistic sentential decision diagrams (PSDDs) are a popular class of probabilistic circuits
intended to implement generative models consistent with a propositional knowledge base. We
discuss a number of results related to these models. This includes: the sensitivity analysis of
the inferences with respect to perturbations in the local probabilistic parameters of the circuit;
a structural learning algorithm for these models based on a relaxation of the closed-world
assumption for the training data; and a discussion on the benefits and the challenges related
to the embedding of knowledge bases in ML tasks.

3.2 A tutorial on Normalizing Flows
Marcus A. Brubaker (York University — Toronto, CA)

License @@ Creative Commons BY 4.0 International license
© Marcus A. Brubaker

Normalizing flows (NFs) offer an answer to a long-standing question in computer vision: How
can one define faithful probabilistic models for complex high-dimensional data like natural
images? NFs solve this problem by means of non-linear bijective mappings from simple
distributions (e.g. multivariate normal) to the desired target distributions. These mappings
are implemented with invertible neural networks and thus have high expressive power and can
be trained by gradient descent in the usual way. Thanks to bijectivity, NFs can work forward
and backward, serving as both discriminative and generative models alike, and are especially
suitable for inverse problems. This tutorial will explain the theoretical underpinnings of NFs,
show various practical implementation options, clarify their relationships with GANs, VAEs,
and non-linear ICA. Particular emphasis will be given to successful applications in the field
of computer vision.

3.3 Solving Marginal MAP Exactly by Probabilistic Circuit
Transformations

YooJung Choi (UCLA, US)

License @@ Creative Commons BY 4.0 International license
© YooJung Choi
Joint work of YooJung Choi, Antonio Vergari, Guy Van den Broeck

Probabilistic circuits (PCs) are a class of tractable probabilistic models that allow efficient,
often linear-time, inference of queries such as marginals and most probable explanations
(MPE). However, marginal MAP, which is central to many decision-making problems, remains
a hard query for PCs unless they satisfy highly restrictive structural constraints. In this
paper, we develop a pruning algorithm that removes parts of the PC that are irrelevant to a
marginal MAP query, shrinking the PC while maintaining the correct solution. This pruning
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technique is so effective that we are able to build a marginal MAP solver based solely on
iteratively transforming the circuit—no search is required. We empirically demonstrate the
efficacy of our approach on real-world datasets.

3.4 Towards Robust Classification with Deep Generative Forests
Cassio de Campos (TU Eindhoven, NL)

License @ Creative Commons BY 4.0 International license
© Cassio de Campos
Joint work of Alvaro H. C. Correia, Robert Peharz, Cassio de Campos
Main reference Alvaro H. C. Correia, Robert Peharz, Cassio P. de Campos: “Towards Robust Classification with
Deep Generative Forests”, CoRR, Vol. abs/2007.05721, 2020.
URL https://arxiv.org/abs/2007.05721

Decision Trees (DTs) and Random Forests (RFs) are powerful discriminative learners and tools
of central importance to the everyday machine learning practitioner and data scientist. Due
to their discriminative nature, however, they lack principled methods to process inputs with
missing features or to detect outliers, which requires pairing them with imputation techniques
or a separate generative model. In this paper, we demonstrate that DTs and RFs can naturally
be interpreted as generative models, by drawing a connection to Probabilistic Circuits, a
prominent class of tractable probabilistic models. This reinterpretation equips them with a
full joint distribution over the feature space and leads to Generative Decision Trees (GeDTs)
and Generative Forests (GeFs), a family of novel hybrid generative-discriminative models.
This family of models retains the overall characteristics of DTs and RFs while additionally
being able to handle missing features by means of marginalisation. Under certain assumptions,
frequently made for Bayes consistency results, we show that consistency in GeDTs and GeFs
extend to any pattern of missing input features, if missing at random. Empirically, we
show that our models often outperform common routines to treat missing data, such as
K-nearest neighbour imputation, and moreover, that our models can naturally detect outliers
by monitoring the marginal probability of input features.

3.5 Exploiting Symmetries for Probabilistic Generative Modelling
Priyank Jaini (Google — Toronto, CA)

License ) Creative Commons BY 4.0 International license
© Priyank Jaini
Joint work of Priyank Jaini, Lars Holdijk, Max Welling
Main reference Priyank Jaini, Lars Holdijk, Max Welling: “Learning Equivariant Energy Based Models with
Equivariant Stein Variational Gradient Descent”, CoRR, Vol. abs/2106.07832, 2021.
URL https://arxiv.org/abs/2106.07832

Symmetries play a crucial role in Physics and Mathematics. In this talk, I will explore
generative models for efficient sampling and inference by incorporating inductive biases in
the form of symmetries. I will begin by introducing Equivariant Stein Variational Gradient
Descent (SVGD) algorithm — an equivariant sampling method based on Stein’s identity
for sampling from symmetric distributions. Subsequently, I will discuss training equivariant
energy based models using Equivariant-SVGD to model invariant probability distributions
with applications in many-body particle systems and molecular structure generation.
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3.6 Equivariant Probabilistic Models for Physics
Danilo Jimenez Rezende (Google DeepMind — London, GB)

License @ Creative Commons BY 4.0 International license
© Danilo Jimenez Rezende

The study of symmetries in physics has revolutionized our understanding of the world.
Inspired by this, the development of methods to incorporate internal (Gauge) and external
(space-time) symmetries into machine learning models is a very active field of research. We
will present our work on invariant generative models and its applications to lattice-QCD
and molecular dynamics simulations. In the molecular dynamics front, we’ll talk about
how we constructed permutation and translation-invariant normalizing flows on a torus for
free-energy estimation. In lattice-QCD, we’ll present our work that introduced the first
U(N) and SU(N) Gauge-equivariant normalizing flows for pure Gauge simulations and its
extensions to incorporate fermions.

3.7 Predictive Complexity Priors
Eric Nalisnick (University of Amsterdam, NL)

License ) Creative Commons BY 4.0 International license
© Eric Nalisnick

Specifying a Bayesian prior is notoriously difficult for complex models such as neural
networks. Reasoning about parameters is made challenging by the high-dimensionality
and over-parameterization of the space. Priors that seem benign and uninformative can
have unintuitive and detrimental effects on a model’s predictions. To help cope with these
problems, I will describe our work on predictive complexity priors: a prior that is defined by
comparing the model’s predictions to those of a reference model.

3.8 Extracting context specific independencies from sum product
networks

Sriraam Natarajan (University of Texas — Dallas, US)

License @ Creative Commons BY 4.0 International license
© Sriraam Natarajan
Joint work of Sriraam Natarajan, Athresh Karanam, Saurabh Sanjay Mathur, Predrag Radivojac, Kristian
Kersting

I present the problem of explaining a class of tractable deep probabilistic model, the Sum-
Product Networks (SPNs). First, I motivate how knowledge as qualitative constraints could
be extracted from SPNs and then present an algorithm EXSPN to generate explanations.
To this effect, I define the notion of a context-specific independence tree(CSI-tree) and
present an iterative algorithm that converts an SPN to a CSI-tree. The resulting CSI-tree
is both interpretable and explainable to the domain expert. We achieve this by extracting
the conditional independencies encoded by the SPN and approximating the local context
specified by the structure of the SPN. Our extensive empirical evaluations on synthetic,
standard, and real-world clinical data sets demonstrate that the resulting models exhibit
superior explainability.
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3.9 Implicit MLE: Backpropagating Through Discrete Exponential
Family Distributions

Mathias Niepert (Universitit Stuttgart, DE)

License @ Creative Commons BY 4.0 International license
© Mathias Niepert
Joint work of Mathias Niepert, Pasquale Minervini, Luca Franceschi
Main reference Mathias Niepert, Pasquale Minervini, Luca Franceschi: “Implicit MLE: Backpropagating Through
Discrete Exponential Family Distributions”, CoRR, Vol. abs/2106.01798, 2021.
URL https://arxiv.org/abs/2106.01798

Combining discrete probability distributions and combinatorial optimization problems with
neural network components has numerous applications in learning and reasoning but poses sev-
eral challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework
for end-to-end learning of models combining discrete exponential family distributions and
differentiable neural components. I-MLE is widely applicable as it only requires the ability to
compute the most probable states and does not rely on smooth relaxations. The framework
encompasses several approaches such as perturbation-based implicit differentiation and recent
methods to differentiate through black-box combinatorial solvers. We introduce a novel class
of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show
that I-MLE simplifies to maximum likelihood estimation when used in some recently studied
learning settings that involve combinatorial solvers. Experiments on several datasets suggest
that I-MLE is competitive with and often outperforms existing approaches which rely on
problem-specific relaxations. Lastly we discuss potential connections with more sophisticated
reasoning scenarios with tractable models.

3.10 Rapid Adaptation in Robot Learning
Deepak Pathak (Carnegie Mellon University — Pittsburgh, US)

License ) Creative Commons BY 4.0 International license
© Deepak Pathak

Generalization, i.e., the ability to adapt to novel scenarios, is the hallmark of human
intelligence. While we have systems that excel at cleaning floors, playing complex games,
and occasionally beating humans, they are incredibly specific in that they only perform
the tasks they are trained for and are miserable at generalization. One of the fundamental
reasons is that, unlike humans, most of these artificial agents start tabula-rasa without any
prior knowledge and learn only towards a fixed goal. Could actually optimizing towards
fixed external goals be hindering the generalization instead of aiding it? In this talk, I will
present our initial efforts toward endowing artificial agents with an ability to generalize in
diverse scenarios. The main insight is to first allow the agent to learn general-purpose skills
in a completely self-directed manner, without optimizing for any external goal. These skills
are then later repurposed to perform complex tasks. I will discuss how this framework can
be instantiated to develop curiosity-driven agents (virtual as well as real) that can learn to
play games, learn to walk, and learn to perform real-world object manipulation without any
rewards or supervision. These curious robotic agents, after exploring the environment, can
generalize to find their way in office environments, tie knots using rope and rearrange object
configuration.
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3.11 Exact and Efficient Adversarial Robustness with Decomposable
Neural Networks

Robert Peharz (TU Graz, AT)

License @@ Creative Commons BY 4.0 International license
© Robert Peharz
Joint work of Robert Peharz, Pranav Shankar Subramani, Antonio Vergari, Gautam Kamath
Main reference Pranav Shankar Subramani, Antonio Vergari, Gautam Kamath, Robert Peharz: “Exact and Efficient
Adversarial Robustness with Decomposable Neural Networks”, in Proc. of the The 4th Workshop on
Tractable Probabilistic Modeling, 2021.
URL https://openreview.net/forum?id=5E7V1tCwLq

As deep neural networks are notoriously vulnerable to adversarial attacks, there has been
significant interest in defenses with provable guarantees. Recent solutions advocate for
a randomized smoothing approach to provide probabilistic guarantees, by estimating the
expectation of a network’s output when the input is randomly perturbed. As the convergence
of the estimated expectations depends on the number of Monte Carlo samples, and hence
network evaluations, these techniques come at the price of considerable additional computation
at inference time. We take a different route and introduce a novel class of deep models —
decomposable neural networks (DecoNets) — which are hierarchical multi-linear functions
over non-linear input features. DecoNets can compute the expectation over the outputs in
closed form in a single network evaluation, thus providing exact smoothing guarantees. Our
empirical analysis shows the promising nature of DecoNets: they achieve the same or better
certified accuracy in comparison to models of equivalent size on benchmark datasets, while
providing exact guarantees one or two orders of magnitude faster.

3.12 Probabilistic Circuits: Representations, Inference, Learning and
Applications

Guy Van den Broeck (UCLA, US)

License @ Creative Commons BY 4.0 International license
© Guy Van den Broeck
Joint work of Antonio Vergari, Guy Van den Broeck
URL https://web.cs.ucla.edu/ guyvdb/talks/IJCAI20-tutorial/

Exact and efficient probabilistic inference and learning are becoming more and more mandat-
ory when we want to quickly take complex decisions in presence of uncertainty in real-world
scenarios where approximations are not a viable option. In this tutorial, we will introduce
probabilistic circuits (PCs) as a unified computational framework to represent and learn deep
probabilistic models guaranteeing tractable inference. Differently from other deep neural
estimators such as variational autoencoders and normalizing flows, PCs enable large classes of
tractable inference with little or no compromise in terms of model expressiveness. Moreover,
after showing a unified view to learn PCs from data and several real-world applications,
we will cast many popular tractable models in the framework of PCs while leveraging it to
theoretically trace the boundaries of tractable probabilistic inference.
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3.13 Conditional Generative Models and Where to Apply Them
Mazx Welling (University of Amsterdam, NL)
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I talked about how we can use flow and diffusion models to generate data from the equilibrium
distribution, but that it seems much harder to generate from conditional generative models
of the form F : (z,z) — y with z ~ p(z) and x some conditioning statement. These
models are important for searching through chemical space, for proposing moves in a MCMC
algorithm, for modeling domain shifts, etc. This talk will be mostly asking questions: why is
this problem hard (harder than sampling from the unconditional distribution F' : z — y?

3.14 Bayesian Deep Learning and a Probabilistic Perspective of Model
Construction

Andrew G. Wilson (New York University, US)
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Main reference Andrew Gordon Wilson, Pavel Izmailov: “Bayesian Deep Learning and a Probabilistic Perspective of
Generalization”, CoRR, Vol. abs/2002.08791, 2020.
URL https://arxiv.org/abs/2002.08791

The key distinguishing property of a Bayesian approach is marginalization, rather than
using a single setting of weights. Bayesian marginalization can particularly improve the
accuracy and calibration of modern deep neural networks, which are typically underspecified
by the data, and can represent many compelling but different solutions. We show that deep
ensembles provide an effective mechanism for approximate Bayesian marginalization, and
propose a related approach that further improves the predictive distribution by marginalizing
within basins of attraction, without significant overhead. We also investigate the prior
over functions implied by a vague distribution over neural network weights, explaining
the generalization properties of such models from a probabilistic perspective. From this
perspective, we explain results that have been presented as mysterious and distinct to neural
network generalization, such as the ability to fit images with random labels, and show that
these results can be reproduced with Gaussian processes. We also show that Bayesian model
averaging alleviates double descent, resulting in monotonic performance improvements with
increased flexibility. Finally, we provide a Bayesian perspective on tempering for calibrating
predictive distributions.
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