
Budgeted Out-Tree Maximization with Submodular
Prizes
Gianlorenzo D’Angelo !

Gran Sasso Science Institute, L’Aquila, Italy

Esmaeil Delfaraz !

Gran Sasso Science Institute, L’Aquila, Italy

Hugo Gilbert !

Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016 Paris, France

Abstract
We consider a variant of the prize collecting Steiner tree problem in which we are given a directed
graph 𝐷 = (𝑉 ,𝐴), a monotone submodular prize function 𝑝 : 2𝑉 → R+∪{0}, a cost function 𝑐 : 𝑉 → Z+,
a root vertex 𝑟 ∈ 𝑉 , and a budget 𝐵. The aim is to find an out-subtree 𝑇 of 𝐷 rooted at 𝑟 that costs
at most 𝐵 and maximizes the prize function. We call this problem Directed Rooted Submodular Tree
(DRST).

For the case of undirected graphs and additive prize functions, Moss and Rabani [SIAM J.
Comput. 2007] gave an algorithm that guarantees an 𝑂 (log |𝑉 |)-approximation factor if a violation
by a factor 2 of the budget constraint is allowed. Bateni et al. [SIAM J. Comput. 2018] improved the
budget violation factor to 1 + 𝜀 at the cost of an additional approximation factor of 𝑂 (1/𝜀2), for any
𝜀 ∈ (0, 1]. For directed graphs, Ghuge and Nagarajan [SODA 2020] gave an optimal quasi-polynomial
time 𝑂

(
log𝑛′

log log𝑛′

)
-approximation algorithm, where 𝑛′ is the number of vertices in an optimal solution,

for the case in which the costs are associated to the edges.
In this paper, we give a polynomial time algorithm for DRST that guarantees an approximation

factor of 𝑂 (
√
𝐵/𝜀3) at the cost of a budget violation of a factor 1 + 𝜀, for any 𝜀 ∈ (0, 1]. The same

result holds for the edge-cost case, to the best of our knowledge this is the first polynomial time
approximation algorithm for this case. We further show that the unrooted version of DRST can be
approximated to a factor of 𝑂 (

√
𝐵) without budget violation, which is an improvement over the factor

𝑂 (Δ
√
𝐵) given in [Kuo et al. IEEE/ACM Trans. Netw. 2015] for the undirected and unrooted case,

where Δ is the maximum degree of the graph. Finally, we provide some new/improved approximation
bounds for several related problems, including the additive-prize version of DRST, the maximum
budgeted connected set cover problem, and the budgeted sensor cover problem.
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1 Introduction

Prize collecting Steiner tree problems (PCSTP) have been extensively studied due to
their applications in designing computer and telecommunication networks, VLSI design,
computational geometry, wireless mesh networks, and cancer genome studies [5, 8, 15, 23, 32].
Very interesting polynomial-time constant/poly-logarithmic approximation algorithms have
been proposed for many variants of PCSTP when the graph is undirected [1, 2, 10, 12, 18,
21, 29]. However, these problems are usually much harder on directed graphs. For instance,
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there is a simple polynomial-time 2-approximation algorithm for the undirected Steiner
tree problem, but no quasi-polynomial-time algorithm for the directed Steiner tree problem
achieving an approximation ratio of 𝑜

(
log2 𝑘

log log𝑘

)
exists, unless 𝑁𝑃 ⊆ ⋂

0<𝜀<1 ZPTIME(2𝑛𝜀 ) or
the Projection Game Conjecture is false [13], where 𝑘 is the number of terminal nodes.

Some of the most relevant variants of PCSTP are represented by prize collecting problems
with budget constraints. In such problems, we are usually given a graph with prizes and
costs on the nodes and the goal is to find a tree that maximizes the sum of the prize of its
nodes, while keeping the total cost bounded by a given budget. Guha et al. [14] introduced
the case in which the graph is undirected and the goal is to find a tree that contains a
distinguished vertex, called root, respects the budget constraint, and maximizes the prize, we
call this problem Undirected Rooted Additive Tree (URAT). They gave an algorithm that
achieves an 𝑂 (log2 𝑛)-approximation factor, where 𝑛 is the number of nodes in the graph,
but the computed solution requires a factor-2 violation of the budget constraint. Moss and
Rabani [27] and Bateni et al. [2] further investigated URAT and improved the results from
the approximability point of view. The former paper improved the approximation factor to
𝑂 (log𝑛), with the same budget violation, and the latter one improved the budget violation
factor to 1 + 𝜀 to obtain an approximation factor of 𝑂

(
1
𝜀2 log𝑛

)
, for any 𝜀 ∈ (0, 1]. Kortsarz

and Nutov [22] showed that the unrooted version of URAT, so does URAT, admits no
𝑜 (log log𝑛)-approximation algorithm, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (𝑛polylog(𝑛) ), even if the algorithm
is allowed to violate the budget constraint by a factor equal to a universal constant.

In this paper, we consider a generalization of URAT on directed graphs. We are given
a directed graph, where each node is associated with a cost, and the prize is defined by a
monotone submodular function on the subsets of nodes, and the goal is to find an out-tree
(a.k.a. out-arborescence) rooted at a specific vertex 𝑟 with the maximum prize such that the
total cost of all vertices in the out-tree is no more than a given budget. We term this problem
Directed Rooted Submodular Tree (DRST). A closely related problem, called Submodular Tree
Orienteering (STO), has been recently introduced by Ghuge and Nagarajan [11]. STO is the
same problem as DRST except that edges and not nodes have costs. They provided a tight
quasi-polynomial-time 𝑂 ( log𝑛′

log log𝑛′ )-approximation algorithm that requires (𝑛 log 𝐵)𝑂 (log1+𝜀 𝑛′ )

time, where 𝑛′ is the number of vertices in an optimal solution and 𝐵 is the budget constraint.

Contribution. By extending some ideas of Kuo et al. [23] and Bateni et al. [2], we design
a polynomial-time 𝑂 (

√
𝐵/𝜀3)-approximation algorithm for DRST, violating the budget

constraint 𝐵 by a factor of at most 1 + 𝜀, for any 𝜀 ∈ (0, 1] (Section 4). Our technique can
be used to obtain the same result for STO (Section 6). To our knowledge, this is the first
polynomial-time approximation algorithm for STO. We also show that, for any 1 + 𝜀 budget
violation, with 𝜀 ∈ (0, 1], our approach provides an 𝑂 (

√
𝐵/𝜀2)-approximation algorithm for

the special cases of DRST and STO where the prize function is additive (Section 7). We
also consider the unrooted version of DRST and give an 𝑂 (

√
𝐵)-approximation algorithm

without budget violation (Section 5), which is an improvement over the factor 𝑂 (Δ
√
𝐵) [23]

for the undirected and unrooted version of DRST, where Δ is the maximum node-degree.
Finally, we study some variants of DRST on undirected graphs. We show that, for any

1 + 𝜀 budget violation, URAT admits an 𝑂 (Δ/𝜀2)-approximation algorithm, while its quota
version admits a 2Δ-approximation algorithm. Next, we present some approximation results
for some variants of the connected maximum coverage problem, which improve over the bounds
given by Ran et al. [30]. Finally, we provide two approximation algorithms for the Budgeted
Sensor Cover problem, which result in an improvement to the literature [23, 30, 33, 34]. We
discuss these results in Section 7.
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Related Work. Many variants of Prize collecting Steiner Tree problems have been investig-
ated. Here we list those that are more closely related to our study. Further related work is
reported in the Appendix.

Kuo et al. [23] studied the unrooted version of DRST on undirected graphs called
Maximum Connected Submodular function with Budget constraint (MCSB). They provided
an 𝑂 (Δ

√
𝐵)-approximation algorithm for MCSB, where Δ is the maximum degree of the

graph. Vandin et al. [32] provided a ( 2𝑒−1
𝑒−1 𝑟 )-approximation algorithm for a special case of

the same problem, where 𝑟 is the radius of an optimal solution. This problem coincides with
the connected maximum coverage problem in which each set has cost one. Ran et al. [30]
presented an 𝑂 (Δ log𝑛)-approximation algorithm for a special case of the connected maximum
coverage problem. Hochbaum and Rao [15] investigated MCSB in which each vertex costs
1 and provided an approximation algorithm with factor min{1/((1 − 1/𝑒) (1/𝑅 − 1/𝐵)), 𝐵},
where 𝑅 is the radius of the graph. Chen et al. [4] investigated the edge-cost version of
MCSB. One of the applications of MCSB is a problem in wireless sensor networks called
Budgeted Sensor Cover Problem (BSCP), where the goal is to find a set of 𝐵 connected
sensors to maximize the number of covered users, for a given 𝐵. Kuo et al. [23] provided a
5(
√
𝐵+1)/(1−1/𝑒)-approximation algorithm for BSCP, which was improved by Xu et al. [33]

to ⌊
√
𝐵⌋/(1 − 1/𝑒). Huang et al. [17] proposed a 8(⌈2

√
2𝐶⌉ + 1)2/(1 − 1/𝑒)-approximation

algorithm for BSCP, where 𝐶 = 𝑂 (1).
Johnson et al. [18] introduced an edge-cost variant of DRST on undirected graphs, where

the prize function is additive, called E-URAT. They showed that there exists a (5 + 𝜀)-
approximation algorithm for the unrooted version of E-URAT using Garg’s 3-approximation
algorithm [9] for the 𝑘-MST problem, and observed that a 2-approximation for 𝑘-MST
would lead to a 3-approximation for E-URAT. This observation along with the Garg’s
2-approximation algorithm [10] for 𝑘-MST yield a 3-approximation algorithm for the unrooted
version of E-URAT. Recently, Paul et al. [29] provided a polynomial-time 2-approximation
algorithm for E-URAT.

2 Notation and problem statement

For an integer 𝑘, let [𝑘] := {1, . . . , 𝑘}. A directed path is a directed graph made of a sequence
of distinct vertices (𝑣1, . . . , 𝑣𝑘 ) and a sequence of directed edges (𝑣𝑖 , 𝑣𝑖+1), 𝑖 ∈ [𝑘 − 1]. An
out-tree (a.k.a. out-arborescence) is a directed graph in which there is exactly one directed
path from a specific vertex 𝑟 , called root, to each other vertex. If a subgraph 𝑇 of a directed
graph 𝐷 is an out-tree, then we say that 𝑇 is an out-tree of 𝐷.

Let 𝐷 = (𝑉 ,𝐴) be a directed graph with 𝑛 nodes, 𝑐 : 𝑉 → Z+ be a cost function on nodes,
𝑝 : 2𝑉 → R+ ∪ {0} be a monotone submodular prize function on the subsets of nodes, 𝑟 ∈ 𝑉
be a root vertex, and 𝐵 be an integer budget. For any subgraph 𝐷 ′ of 𝐷, we denote by 𝑉 (𝐷 ′)
and 𝐴(𝐷 ′) the set of nodes and edges in 𝐷 ′, respectively. Given 𝑆 ⊆ 𝑉 , we denote the cost
of 𝑆 by 𝑐 (𝑆) = ∑

𝑣∈𝑆 𝑐 (𝑣) and we use shortcuts 𝑐 (𝐷 ′) = 𝑐 (𝑉 (𝐷 ′)) and 𝑝 (𝐷 ′) = 𝑝 (𝑉 (𝐷 ′)) for a
subgraph 𝐷 ′ of 𝐷. In the Directed Rooted Submodular Tree problem (DRST), the goal is
to find an out-tree 𝑇 of 𝐷 rooted at 𝑟 such that 𝑐 (𝑇 ) ≤ 𝐵 and 𝑝 (𝑇 ) is maximum. Throughout
the paper, we denote an optimal solution to DRST by 𝑇 ∗.

Given two nodes 𝑢 and 𝑣 in 𝑉 , a path in 𝐷 from 𝑢 to 𝑣 with the minimum cost is called a
shortest path and its cost, denoted by 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), is called the distance from 𝑢 to 𝑣 in 𝐷.

An algorithm is a bicriteria (𝛽, 𝛼)-approximation algorithm for DRST if, for any instance
𝐼 of the problem, it returns a solution 𝑆𝑜𝑙𝐼 such that 𝑝 (𝑆𝑜𝑙𝐼 ) ≥ 𝑂𝑃𝑇𝐼

𝛼
and 𝑐 (𝑆𝑜𝑙𝐼 ) ≤ 𝛽𝐵, where

𝑂𝑃𝑇𝐼 is the optimum for 𝐼 .

ISAAC 2022
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3 Results and Techniques

Our main result is given in the next theorem.

▶ Theorem 1. DRST admits a polynomial-time bicriteria
(
1 + 𝜀,𝑂

(√
𝐵

𝜀3

))
-approximation

algorithm, for any 𝜀 ∈ (0, 1].

Our approach combines and extends techniques given by Kuo et al. [23] and Bateni et
al. [2]. To illustrate our techniques, we now consider the case in which costs are unitary, i.e.
𝑐 (𝑣) = 1, for each 𝑣 ∈ 𝑉 , and the prize function is additive, i.e. 𝑝 (𝑆) = ∑

𝑣∈𝑆 𝑝 ({𝑣}), for any
𝑆 ⊆ 𝑉 . In this case, the distance from a node 𝑢 to a node 𝑣 is equal to the minimum number
of nodes in a path from 𝑢 to 𝑣 and the cost of a tree 𝑇 is equal to its size, 𝑐 (𝑇 ) = |𝑉 (𝑇 ) |.
W.lo.g. we also assume that the distance from 𝑟 to any node is at most 𝐵. We will give the
proof for the general case in Section 4.

The algorithm works as follows. For any vertex 𝑢, we denote as 𝑉𝑢 the set of all nodes
that are at a distance no more than ⌊

√
𝐵⌋ from 𝑢, 𝑉𝑢 := {𝑣 | 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ ⌊

√
𝐵⌋}. We first select

a subset 𝑆𝑢 of 𝑉𝑢 of at most ⌊
√
𝐵⌋ nodes with the maximum prize, 𝑆𝑢 := arg max{𝑝 (𝑆) : 𝑆 ⊆

𝑉𝑢, |𝑆 | ≤ ⌊
√
𝐵⌋}.1 We then compute a minimal inclusion-wise out-tree 𝑇𝑢 rooted at 𝑢 that

spans all nodes in 𝑆𝑢 . Note that |𝑉 (𝑇𝑢) | ≤ 𝐵 since the distance from 𝑢 to any node in 𝑆𝑢 is
at most ⌊

√
𝐵⌋. Let 𝑧 be a node such that 𝑝 (𝑇𝑧) is maximum. If 𝑧 = 𝑟 , then we take 𝑇𝑧 as

our solution, otherwise we compute a solution by adding to 𝑇𝑧 a shortest path 𝑃 from 𝑟 to 𝑧
and removing the edges in 𝐴(𝑇𝑧) \𝐴(𝑃) incoming the nodes in 𝑉 (𝑇𝑧) ∩𝑉 (𝑃). Let 𝑇 be our
solution and 𝑇 ∗ be an optimal solution.

We will prove (Lemma 6) that any out-tree 𝑇 can be covered by at most 𝑁 = 𝑂 ( |𝑇 |/𝑚)
out-subtrees {𝑇𝑖 }𝑁𝑖=1 with at most 𝑚 nodes each, where 𝑚 is any positive integer less than |𝑇 |.
By applying this claim to an optimal solution 𝑇 ∗ and by setting 𝑚 = ⌊

√
𝐵⌋, we obtain

𝑝 (𝑇 ∗) = 𝑝
(
𝑁⋃
𝑖=1

𝑉 (𝑇 ∗
𝑖 )

)
≤ 𝑁𝑝 (𝑇 ′),

where 𝑝 (𝑇 ′) = max{𝑝 (𝑇 ∗
𝑖 ) | 𝑖 ∈ [𝑁 ]}, |𝑇 ′ | ≤ ⌊

√
𝐵⌋, and 𝑁 = 𝑂 ( |𝑇 ∗ |/𝑚) = 𝑂 (

√
𝐵). Let 𝑤 be the

root of 𝑇 ′. Recall that 𝑆𝑤 is a set of at most ⌊
√
𝐵⌋ nodes that are at a distance no more

than ⌊
√
𝐵⌋ from 𝑤 and have the maximum prize and 𝑇𝑤 contains all the nodes in 𝑆𝑤 . Since

|𝑇 ′ | ≤ ⌊
√
𝐵⌋, we have

𝑝 (𝑇 ′) ≤ 𝑝 (𝑆𝑤) ≤ 𝑝 (𝑇𝑤) ≤ 𝑝 (𝑇𝑧) ≤ 𝑝 (𝑇 ).

Since 𝑁 = 𝑂 (
√
𝐵), we conclude that 𝑝 (𝑇 ∗) = 𝑂 (

√
𝐵)𝑝 (𝑇 ).

Note that the cost of 𝑇 is upper-bounded by 2𝐵, as both the cost of 𝑇𝑧 and that of a
shortest path from 𝑟 to 𝑧 are at most 𝐵. We can use the trimming procedure introduced
by Bateni et al. [2] to obtain an out-subtree of 𝑇 with cost at most (1 + 𝜀)𝐵 by loosing an
approximation factor of 𝑂 (1/𝜀2), for any 𝜀 ∈ (0, 1] (see Lemma 2). This shows Theorem 1
for the unit-cost, additive-prize case. In the case in which the prize is a general monotone
submodular function, the trimming procedure by Bateni et al. cannot be applied. We show
how to generalize this procedure to the case of any monotone submodular prize function by
loosing an extra approximation factor of 𝑂 (1/𝜀).

1 This step can be done in polynomial time since function 𝑝 is additive. If 𝑝 is monotone and submodular,
this step consists in solving the submodular maximization problem. See Section 4 for more details.
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We can use the same approach to obtain a polynomial-time bicriteria
(
1 + 𝜀,𝑂

(√
𝐵

𝜀2

))
-

approximation algorithm for the case of additive prize function and edge-cost. More import-
antly, we can obtain a polynomial-time bicriteria

(
1 + 𝜀,𝑂

(√
𝐵

𝜀3

))
-approximation algorithm for

STO, i.e. for the edge-cost case where the prize function is monotone submodular. To the
best of our knowledge, this is the first polynomial-time approximation algorithm for STO.

Finally, for the unrooted version the same approach with some minor changes achieves
an 𝑂 (

√
𝐵)-approximation with no budget violation.

4 Approximation Algorithm for DRST

We now introduce our polynomial-time approximation algorithm for DRST. We start by
defining a procedure that takes as input an out-tree of a directed graph 𝐷 and returns another
out-tree of 𝐷 which has a smaller cost but preserves the same prize-to-cost ratio (up to a
bounded multiplicative factor).

Bateni et al. [2] introduced a similar procedure for the case of undirected graphs and
additive prize function. In their case, we are given an undirected graph 𝐺 = (𝑉 , 𝐸), a
distinguished vertex 𝑟 ∈ 𝑉 and a budget 𝐵, where each vertex 𝑣 ∈ 𝑉 is assigned with a prize
𝑝′ (𝑣) and a cost 𝑐′ (𝑣). For a tree 𝑇 , the prize and cost of 𝑇 are the sum of the prizes and
costs of the nodes of 𝑇 and are denoted by 𝑝′ (𝑇 ) and 𝑐′ (𝑇 ), respectively. A graph 𝐺 is called
𝐵-proper for the vertex 𝑟 if the cost of reaching any vertex from 𝑟 is at most 𝐵. Bateni et al.
proposed a trimming process that leads to the following lemma.

▶ Lemma 2 (Lemma 3 in [2]). Let 𝑇 be a tree rooted at 𝑟 with the prize-to-cost ratio 𝛾 =
𝑝′ (𝑇 )
𝑐′ (𝑇 ) .

Suppose the underlying graph is 𝐵-proper for 𝑟 and for 𝜀 ∈ (0, 1] the cost of the tree is at
least 𝜀𝐵

2 . One can find a tree 𝑇 ′ containing 𝑟 with the prize-to-cost ratio at least 𝜀𝛾

4 such that
𝜀𝐵/2 ≤ 𝑐′ (𝑇 ′) ≤ (1 + 𝜀)𝐵.

We now generalize this trimming process to the case in which the underlying graph is directed
and the prize function is monotone and submodular by borrowing ideas from [2].

We introduce some additional definitions. Let 𝑇 be an out-tree rooted at 𝑟 . A full
out-subtree of 𝑇 rooted at some node 𝑣 is an out-subtree of 𝑇 containing all the vertices
that are reachable from 𝑟 through 𝑣 in 𝑇 . The set of strict out-subtrees of 𝑇 is the set of
all full out-subtrees of 𝑇 other than 𝑇 itself. The set of immediate out-subtrees of 𝑇 is the
set of all full out-subtrees rooted at the children of 𝑟 in 𝑇 . A directed graph 𝐷 = (𝑉 ,𝐴) is
𝐵-appropriate for a node 𝑟 if 𝑑𝑖𝑠𝑡 (𝑟, 𝑣) ≤ 𝐵 for any node 𝑣 ∈ 𝑉 .

▶ Lemma 3. Let 𝐷 = (𝑉 ,𝐴) be a 𝐵-appropriate graph for a node 𝑟 . Let 𝑇 be an out-tree of 𝐷
rooted at 𝑟 with the prize-to-cost ratio 𝛾 =

𝑝 (𝑇 )
𝑐 (𝑇 ) , where 𝑝 is a monotone submodular function.

Suppose that 𝜀𝐵
2 ≤ 𝑐 (𝑇 ) ≤ ℎ𝐵, where ℎ ∈ (1, 𝑛] and 𝜀 ∈ (0, 1]. One can find an out-subtree 𝑇

rooted at 𝑟 with the prize-to-cost ratio at least 𝜀2𝛾
32ℎ such that 𝜀𝐵/2 ≤ 𝑐 (𝑇 ) ≤ (1 + 𝜀)𝐵.

Proof. We run the following initial trimming procedure. We iteratively remove a strict
out-subtree 𝑇 ′ from 𝑇 that satisfies two conditions: (i) the prize-to-cost ratio of 𝑇 \𝑇 ′ is at
least 𝛾 , and (ii) 𝑐 (𝑇 \𝑇 ′) ≥ 𝜀

2𝐵. We repeat this process until no such strict out-subtree exists.
Let 𝑇− be the remaining out-tree after applying this process on 𝑇 .

Now if 𝑐 (𝑇−) ≤ (1 + 𝜀)𝐵, the desired out-subtree is obtained. Suppose it is not the case.
A full out-subtree 𝑇 ′ is called rich if 𝑐 (𝑇 ′) ≥ 𝜀

2𝐵 and the prize-to-cost ratio of 𝑇 ′ and all its
strict out-subtrees are at least 𝛾 . We claim that if there exists a rich out-subtree, then we
can find the desired out-subtree 𝑇 .

ISAAC 2022
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▷ Claim 4. Given a rich out-subtree 𝑇 ′, the desired out-subtree 𝑇 can be found.

Proof. We first find a rich out-subtree 𝑇 ′′ of 𝑇 ′ such that the strict out-subtrees of 𝑇 ′′ are not
rich, i.e., 𝑐 (𝑇 ′′) ≥ 𝜀

2𝐵 while the cost of any strict out-subtree of 𝑇 ′′ (if any exist) is less than
𝜀
2𝐵. Let 𝐶 be the total cost of the immediate out-subtrees of 𝑇 ′′. We distinguish between
two cases:
1. If 𝐶 < 𝜀

2𝐵, then let 𝑇 be the union of 𝑇 ′′ and a shortest path 𝑃 from 𝑟 to the root 𝑟 ′′ of
𝑇 ′′. 𝑇 has cost at most 𝐶 + 𝐵 ≤ (1 + 𝜀)𝐵 and prize at least 𝛾 ( 𝜀2𝐵). This implies that 𝑇 has
ratio at least 𝛾𝜀

2(1+𝜀 ) ≥ 𝛾𝜀

4 ≥ 𝛾𝜀2

32ℎ .
2. If 𝐶 ≥ 𝜀

2𝐵, we proceed as follows. Since each immediate out-subtree of 𝑇 ′′ has a cost
strictly smaller than 𝜀

2𝐵, we can partition all the immediate out-subtrees of 𝑇 ′′ into 𝑀
groups 𝑆1, . . . , 𝑆𝑀 in such a way that for each 𝑖 ∈ [𝑀 − 1] the total cost of immediate
out-subtrees in 𝑆𝑖 is at least 𝜀

2𝐵, and for each 𝑖 ∈ [𝑀] it is at most 𝜀𝐵. We can always
group in this way since the cost of each immediate out-subtree of 𝑇 ′′ is less than 𝜀

2𝐵 while
𝐶 ≥ 𝜀

2𝐵. Since the total cost of all the immediate out-subtrees of 𝑇 ′′ is upper bounded by
ℎ𝐵, then the number of selected groups 𝑀 is at most

𝑀 ≤
⌈
ℎ𝐵
𝜀
2𝐵

⌉
=

⌈
2ℎ
𝜀

⌉
≤

⌊
2ℎ
𝜀

⌋
+ 1 ≤

⌊
4ℎ
𝜀

⌋
≤ 4ℎ

𝜀
.

We now add the root 𝑟 ′′ of 𝑇 ′′ to each group 𝑆𝑖 and denote the new group by 𝑆 ′𝑖 , i.e.,
𝑆 ′𝑖 = 𝑆𝑖 ∪ {𝑟 ′′}, for any 𝑖 ∈ [𝑀]. By the monotonicity and submodularity of 𝑝, we have∑𝑀

𝑖=1 𝑝 (𝑆 ′𝑖 ) ≥ 𝑝 (𝑆 ′1) +
∑𝑀

𝑖=2 𝑝 (𝑆𝑖 ) ≥ 𝑝 (𝑆 ′1 ∪
⋃𝑀

𝑖=2 𝑆𝑖 ) = 𝑝 (𝑇 ′′). Now among 𝑆 ′1, . . . , 𝑆
′
𝑀

, we select
the group 𝑆 ′𝑧 that maximizes the prize, i.e., 𝑧 = arg max𝑖∈[𝑀 ] 𝑝 (𝑆 ′𝑖 ). We know that

𝑝 (𝑆 ′𝑧) ≥
1
𝑀

𝑀∑︁
𝑖=1

𝑝 (𝑆 ′𝑖 ) ≥
𝑝 (𝑇 ′′)
𝑀

≥ 𝜀

4ℎ𝑝 (𝑇
′′) ≥ 𝜀

4ℎ · 𝛾𝜀2 𝐵 =
𝛾𝜀2

8ℎ 𝐵.

In case 𝑧 = 𝑀 and 𝑐 (𝑆 ′
𝑀
) < 𝜀

2𝐵, we select a subset of immediate out-subtrees from
⋃𝑀−1

𝑖=1 𝑆𝑖

with the total cost of at least 𝜀
2𝐵 and at most 𝜀𝐵 − 𝑐 (𝑆 ′

𝑀
), and add it to 𝑆 ′𝑧 .

Finally, let 𝑇 be the union of a shortest path 𝑃 from 𝑟 to 𝑟 ′′, 𝑆 ′𝑧 , and the edges from 𝑟 ′′ to
the roots of the out-subtrees in 𝑆𝑧 (see Figure 1). By monotonicity, 𝑇 has the total prize
at least 𝑝 (𝑇 ) ≥ 𝑝 (𝑆 ′𝑧) ≥

𝛾𝜀2

8ℎ 𝐵. Note that 𝑐 (𝑇 ) ≤ (1 + 𝜀)𝐵 as 𝑐 (𝑆 ′𝑧 \ {𝑟 ′′}) = 𝑐 (𝑆𝑧) ≤ 𝜀𝐵 and
the shortest path from 𝑟 to 𝑟 ′′ costs at most 𝐵 (since the graph is 𝐵-appropriate). This
implies that the prize-to-cost ratio of 𝑇 is at least 𝛾𝜀2

8ℎ (1+𝜀 ) ≥ 𝛾𝜀2

16ℎ ≥ 𝛾𝜀2

32ℎ . ◁

It only remains to consider the case when there is no rich out-subtree. Since 𝑇− is not
rich and 𝑐 (𝑇−) ≥ 𝜀

2𝐵, the ratio of at least one strict out-subtree of 𝑇− is less than 𝛾 . Now
we find a strict out-subtree 𝑇 ′ with ratio less than 𝛾 such that the ratio of all of its strict
out-subtrees (if any exist) is at least 𝛾 . We first need to show that 𝑐 (𝑇− \𝑇 ′) < 𝜀

2𝐵.

▷ Claim 5. 𝑐 (𝑇− \𝑇 ′) < 𝜀
2𝐵.

Proof. By the submodularity of 𝑝, we know that 𝑝 (𝑇− \𝑇 ′) +𝑝 (𝑇 ′) ≥ 𝑝 (𝑇−). This implies that

𝑝 (𝑇− \𝑇 ′)
𝑐 (𝑇− \𝑇 ′) ≥ 𝑝 (𝑇−) − 𝑝 (𝑇 ′)

𝑐 (𝑇−) − 𝑐 (𝑇 ′) . (1)

Let 𝛾 ′ = 𝑝 (𝑇 ′ )
𝑐 (𝑇 ′ ) be the prize-to-cost ratio of 𝑇 ′. We know that

𝑝 (𝑇−) − 𝑝 (𝑇 ′) = 𝑐 (𝑇−)𝛾 − 𝑐 (𝑇 ′)𝛾 ′ > 𝑐 (𝑇−)𝛾 − 𝑐 (𝑇 ′)𝛾, (2)
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𝑟

𝑟 ′′

. . . . . .

. . . . . . . . .

𝑆𝑧

𝑇 ′′

𝑇 ′

Figure 1 𝑇− is rooted at 𝑟 , which is the whole out-tree. The green dashed closed curve represents
the rich out-subtree 𝑇 ′. The orange circle represents 𝑇 ′′ rooted at 𝑟 ′′, where its strict out-subtrees
are not rich, i.e., the cost of any strict out-subtree of 𝑇 ′′ is less than 𝜀

2𝐵. The blue dashed circle
represents the partition 𝑆𝑧 , which maximizes the prize and costs at most 𝜀𝐵. The red out-subtree
represents 𝑇 , which is the union of a shortest path from 𝑟 to 𝑟 ′′, 𝑆𝑧 and the edges from 𝑟 ′′ to the
immediate out-subtrees of 𝑇 ′′ in 𝑆𝑧 . Note that for the sake of simplicity, in this figure we suppose
that the shortest path from 𝑟 to 𝑟 ′′ is included in 𝑇− .

where the inequality holds because 𝛾 ′ < 𝛾 . By Equations (1) and (2), we have 𝑝 (𝑇−\𝑇 ′ )
𝑐 (𝑇−\𝑇 ′ ) > 𝛾 .

As the prize-to-cost ratio of 𝑇− \ 𝑇 ′ is more than 𝛾 but 𝑇 ′ has not been removed from 𝑇

during the initial phase, then 𝑐 (𝑇− \𝑇 ′) < 𝜀
2𝐵. This concludes the proof of the claim. ◁

We know that 𝑐 (𝑇−) > (1 + 𝜀)𝐵 and the cost from 𝑟 to the root of 𝑇 ′ is at most 𝐵. Then
by Claim 5, the total cost of immediate out-subtrees of 𝑇 ′ is at least 𝜀

2𝐵. Also, the cost
of an immediate out-subtree of 𝑇 ′ is less than 𝜀

2𝐵, otherwise, we have a rich out-subtree.
As the ratio and cost of 𝑇− are at least 𝛾 and 𝜀

2𝐵, respectively, then 𝑝 (𝑇−) ≥ 𝛾𝜀

2 𝐵. Now we
distinguish between two cases:
1. If 𝑝 (𝑇 ′) ≥ 𝛾𝜀

4 𝐵, by similar reasoning as above, we group the immediate out-subtrees of
𝑇 ′ into 𝑀 groups 𝑆1, . . . , 𝑆𝑀 in such a way that for each 𝑖 ∈ [𝑀 − 1] the total cost of
immediate out-subtrees in 𝑆𝑖 is at least 𝜀

2𝐵, and for each 𝑖 ∈ [𝑀] it is at most 𝜀𝐵. Now
define a new group 𝑆 ′𝑖 = 𝑆𝑖 ∪ {𝑟 ′}, for any 𝑖 ∈ [𝑀]. Let 𝑧 = arg max𝑖∈[𝑀 ] 𝑝 (𝑆 ′𝑖 ). Then
the group 𝑆 ′𝑧 , which maximizes the prize is selected. We know that 𝑀 ≤ 4ℎ

𝜀
. Hence,

𝑝 (𝑆 ′𝑧) ≥ 𝜀
4ℎ𝑝 (𝑇

′) ≥ 𝜀
4ℎ · 𝛾𝜀4 𝐵 =

𝛾𝜀2

16ℎ𝐵.

Note that in case 𝑧 = 𝑀 and 𝑐 (𝑆 ′
𝑀
) < 𝜀

2𝐵, we select a subset of immediate out-subtrees
from

⋃𝑀−1
𝑖=1 𝑆𝑖 with the total cost of at least 𝜀

2𝐵 and at most 𝜀𝐵 − 𝑐 (𝑆 ′
𝑀
), and add it to 𝑆 ′𝑧 .

Let 𝑇 be the union of a shortest path 𝑃 from 𝑟 to 𝑟 ′, 𝑆 ′𝑧 , and the edges from 𝑟 ′ to the
roots of the out-subtrees in 𝑆𝑧 . The cost of 𝑇 is at most (1 + 𝜀)𝐵 and the prize-to-cost
ratio is at least 𝛾𝜀2

16ℎ (1+𝜀 ) ≥ 𝛾𝜀2

32ℎ .
2. If 𝑝 (𝑇 ′) <

𝛾𝜀

4 𝐵, we proceed as follows. Consider the out-subtree 𝑇 ′′ = 𝑇− \ 𝑇 ′, which
is rooted at 𝑟 . Recall that by Claim 5, we have 𝑐 (𝑇 ′′) < 𝜀

2𝐵. We connect a subset of
immediate out-subtrees 𝑇 ′

1, . . . ,𝑇
′
𝑞 of 𝑇 ′ with cost 𝜀

2𝐵 − 𝑐 (𝑇 ′′) ≤ 𝑐 (⋃𝑞

𝑖=1𝑇
′
𝑖 ) ≤ 𝜀𝐵 − 𝑐 (𝑇 ′′) to

the root of 𝑇 ′′ through the root of 𝑇 ′. Since the cost of each immediate out-subtree of
𝑇 ′ is less than 𝜀

2𝐵 (otherwise, we have a rich out-subtree) and 𝑐 (𝑇 ′) > (1 + 𝜀
2 )𝐵, a subset

of immediate out-subtrees 𝑇 ′
1, . . . ,𝑇

′
𝑞 of 𝑇 ′ with such a cost can be found. We call the

resulting out-subtree 𝑇 and observe that 𝑐 (𝑇 ) ≥ 𝜀
2𝐵 (see Figure 2). We now bound the

prize-to-cost ratio of 𝑇 . First note that by the submodularity of 𝑝, 𝑝 (𝑇 ′′) + 𝑝 (𝑇 ′) ≥ 𝑝 (𝑇−).
Thus by the subcase assumption and the monotonicity of 𝑝, we have 𝑝 (𝑇 ) ≥ 𝑝 (𝑇 ′′) ≥ 𝛾𝜀

4 𝐵.
Since 𝜀

2𝐵−𝑐 (𝑇
′′) ≤ 𝑐 (⋃𝑞

𝑖=1𝑇
′
𝑖 ) ≤ 𝜀𝐵−𝑐 (𝑇 ′′) and the graph is 𝐵-appropriate, 𝑐 (𝑇 ) ≤ (1+𝜀)𝐵.
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𝑟

𝑟 ′

. . . . . .

. . .. . . . . .

⋃𝑞

𝑖=1𝑇
′
𝑖

𝑇 ′

𝑇 ′′

Figure 2 𝑇− is rooted at 𝑟 , which is the whole out-tree. The green dashed circle represents 𝑇 ′′

rooted at 𝑟 . The orange circle represents 𝑇 ′ rooted at 𝑟 ′, where its cost is more than (1 + 𝜀
2 )𝐵.

The blue dashed circle represents a subset of immediate out-subtrees 𝑇 ′
1, . . . ,𝑇

′
𝑞 of 𝑇 ′ with cost

𝜀
2𝐵 − 𝑐 (𝑇 ′′) ≤ 𝑐 (⋃𝑞

𝑖=1𝑇
′
𝑖
) ≤ 𝜀𝐵 − 𝑐 (𝑇 ′′). The red out-subtree represents 𝑇 , which is the union of 𝑇 ′′,

the edge from 𝑇 ′′ to 𝑟 ′,
⋃𝑞

𝑖=1𝑇
′
𝑖

and the edges from 𝑟 ′ to 𝑇 ′
1, . . . ,𝑇

′
𝑞 .

Therefore, the prize-to-cost ratio of the resulting out-subtree 𝑇 is 𝛾𝜀

4(1+𝜀 ) ≥ 𝛾𝜀

8 ≥ 𝛾𝜀2

32ℎ .
The proof is complete. ◀

To propose our algorithm, we need a last element. Let 𝑈 = {𝑥1, . . . , 𝑥𝑛} be a ground set,
𝑐 : 𝑈 → 𝑍+ be a cost function, 𝑓 : 2𝑈 → R+ ∪ {0} be a monotone submodular function, and
𝐾 be an integer budget. In the Submodular Maximization problem (SM), we are looking for
a subset 𝑆 ⊆ 𝑈 such that |𝑆 | ≤ 𝐾 and 𝑓 (𝑆) is maximum. Nemhauser et al. [28] provided a
greedy algorithm that starts from 𝑆 := ∅ and runs 𝐾 iterations in which, at each iteration, it
adds to 𝑆 the element 𝑥 which maximizes 𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆). This algorithm guarantees a
(1 − 𝑒−1)-approximation for SM. We denote by RSM the rooted variant of SM in which,
additionally, a specific element 𝑣 ∈ 𝑈 is required to be included in the solution, that is we
are looking for a subset 𝑆 ⊆ 𝑈 such that |𝑆 | ≤ 𝐾 , 𝑣 ∈ 𝑆 and 𝑓 (𝑆) is maximum. We can run
Nemhauser et al. [28]’s approach for RSM with a minor change: we initialize 𝑆 := {𝑣} and
run 𝐾 − 1 greedy iterations. We call this approach Greedy. It can be shown that Greedy
guarantees a (1 − 𝑒−1)-approximation algorithm for RSM (see e.g. [23]).

Now we can propose our approximation algorithm for DRST, which is reported in
Algorithm 1. In words, Algorithm 1 first computes the maximal inclusion-wise 𝐵-appropriate
subgraph for 𝑟 of a given graph 𝐷 by removing all the nodes at a distance larger than 𝐵

from 𝑟 . Let 𝐷 = (𝑉 ,𝐴) be the resulting directed graph. For each node 𝑢, it computes the
set 𝑉𝑢 of all nodes that are at a distance no more than 𝑐 (𝑢) + ⌊

√
𝐵⌋ from 𝑢. Let 𝑆∗𝑢 be a

subset of 𝑉𝑢 such that |𝑆∗𝑢 | ≤ ⌊
√
𝐵⌋ + 1, 𝑢 ∈ 𝑆∗𝑢 , and 𝑝 (𝑆∗𝑢) is maximum. Finding 𝑆∗𝑢 requires

to solve an instance 𝐼𝑅𝑆𝑀𝑢 of RSM where the elements are 𝑉𝑢 , the budget is ⌊
√
𝐵⌋ + 1, the

specific element is 𝑢, and profits are defined by function 𝑝 (·). Using Greedy, Algorithm 1
computes in polynomial time an approximate solution 𝑆𝑢 to 𝐼𝑅𝑆𝑀𝑢 with 𝑢 ∈ 𝑆𝑢 , |𝑆𝑢 | ≤ ⌊

√
𝐵⌋ + 1

and 𝑝 (𝑆𝑢) ≥ (1 − 𝑒−1)𝑝 (𝑆∗𝑢). Finally, for each 𝑢 ∈ 𝑉 , Algorithm 1 computes a spanning
out-tree 𝑇𝑢 rooted in 𝑢 that spans all the nodes in 𝑆𝑢 . Let 𝑧 be a node such that 𝑝 (𝑇𝑧) is
maximum, i.e., 𝑧 = arg max𝑢∈𝑉 𝑝 (𝑇𝑢). Then, we have 𝑐 (𝑇𝑧 \ {𝑧}) ≤ 𝐵 as |𝑆𝑧 \ {𝑧}| ≤ ⌊

√
𝐵⌋ and

𝑑𝑖𝑠𝑡 (𝑧, 𝑣) ≤ 𝑐 (𝑧) + ⌊
√
𝐵⌋ for any 𝑣 ∈ 𝑆𝑧 . If 𝑧 = 𝑟 , then Algorithm 1 defines 𝑇 = 𝑇𝑧 . Otherwise, it

computes a shortest path 𝑃 from 𝑟 to 𝑧 and defines 𝑇 as the union of 𝑇𝑧 and 𝑃 . Since the
obtained graph might not be an out-tree, Algorithm 1 removes the possible edges incoming
the nodes in 𝑉 (𝑇𝑧) ∩𝑉 (𝑃) that belong only to 𝑇𝑧 . The obtained out-tree 𝑇 has a cost of at
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Algorithm 1 DRST-Algo.

Input: Directed graph 𝐷 = (𝑉 ,𝐴); monotone submodular prize function
𝑝 : 2𝑉 → R+ ∪ {0}; cost function 𝑐 : 𝑉 → Z+; root 𝑟 ∈ 𝑉 ; budget 𝐵; and 𝜀′ ∈ (0, 1].

Output: Out-tree 𝑇 of 𝐷 rooted at 𝑟 such that 𝑐 (𝑇 ) ≤ (1 + 𝜀′)𝐵.
1: Remove from 𝐷 all the nodes at a distance more than 𝐵 from 𝑟 ;
2: for 𝑢 ∈ 𝑉 do
3: 𝑉𝑢 := {𝑣 | 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝑐 (𝑢) + ⌊

√
𝐵⌋};

4: Define an instance 𝐼𝑅𝑆𝑀𝑢 of RSM with elements 𝑉𝑢 , specific element 𝑢, budget
⌊
√
𝐵⌋ + 1, profits 𝑝 (𝑆), for each 𝑆 ⊆ 𝑉𝑢 ;

5: Let 𝑆𝑢 be a (1 − 𝑒−1)-approximate solution to 𝐼𝑅𝑆𝑀𝑢 , computed by using Greedy;
6: Let 𝑇𝑢 be a minimal inclusion-wise out-tree rooted at 𝑢 spanning all nodes in 𝑆𝑢 ;
7: end for
8: 𝑧 := arg max𝑢∈𝑉 𝑝 (𝑇𝑢);
9: Let 𝑃 be a shortest path from 𝑟 to 𝑧;

10: 𝑇 := 𝑃 ∪𝑇𝑧 ;
11: 𝐴(𝑇 ) := 𝐴(𝑇 ) \ {(𝑣,𝑤) ∈ 𝐴(𝑇𝑧) \𝐴(𝑃) : 𝑤 ∈ 𝑉 (𝑇𝑧) ∩𝑉 (𝑃)};
12: Apply the trimming process in Lemma 3 with 𝜀 = 𝜀′ to 𝑇 ;
13: return 𝑇 .

most 2𝐵 as 𝑑𝑖𝑠𝑡 (𝑟, 𝑧) ≤ 𝐵 and 𝑐 (𝑇𝑧 \ {𝑧}) ≤ 𝐵. Therefore, Algorithm 1 applies the trimming
process in Lemma 3 to 𝑇 to reduce the cost to (1 + 𝜀)𝐵, where 𝜀 ∈ (0, 1] and outputs the
resulting out-tree.

In the next theorem, we show that Algorithm 1 guarantees a bicriteria approximation.

▶ Theorem 1. DRST admits a polynomial-time bicriteria
(
1 + 𝜀,𝑂

(√
𝐵

𝜀3

))
-approximation

algorithm, for any 𝜀 ∈ (0, 1].

For our analysis, we need to decompose an optimal out-tree into a bounded number of
out-subtrees of bounded cost as in the following lemma, which is similar to Claim 3 in Kuo
et al. [23] on the unrooted problem and undirected graphs.

▶ Lemma 6. For any out-tree 𝑇 = (𝑉 ,𝐴) rooted at 𝑟 with cost 𝑐 (𝑇 ) and any 𝑚 ≤ 𝑐 (𝑇 ), there
exist 𝑁 ≤ 5⌊ 𝑐 (𝑇 )

𝑚
⌋ out-subtrees 𝑇 𝑖 = (𝑉 𝑖 , 𝐴𝑖 ) of 𝑇 , for 𝑖 ∈ [𝑁 ], where 𝑉 𝑖 ⊆ 𝑉 , 𝐴𝑖 = (𝑉 𝑖 ×𝑉 𝑖 ) ∩𝐴,

𝑐 (𝑉 𝑖 ) ≤ 𝑚 + 𝑐 (𝑟𝑖 ), 𝑟𝑖 is the root of 𝑇 𝑖 , and
⋃𝑁

𝑖=1𝑉
𝑖 = 𝑉 .

Proof. An out-subtree 𝑇 ′ of 𝑇 rooted at 𝑟 ′ is called feasible if 𝑐 (𝑉 (𝑇 ′) \ {𝑟 ′}) ≤ 𝑚; it is called
infeasible otherwise.

Let us consider the following procedure called Proc. Proc takes as input an out-tree
𝑇 ′, Proc(𝑇 ′), and visits the vertices on 𝑇 ′ from the leaves to the root. In this visiting
process when Proc encounters a vertex 𝑣 such that 𝑇 ′

𝑣 is the first infeasible full out-subtree,
it removes 𝑇 ′

𝑣 from 𝑇 ′, i.e., 𝑇 ′ = 𝑇 ′ \𝑇 ′
𝑣 . Proc iteratively repeats this process for the new tree

𝑇 ′. Finally, Proc returns all infeasible full out-subtrees that have been found in the visit.
Let 𝐼1, . . . , 𝐼𝑠 be the set of all infeasible full out-subtrees that have been returned after

running Proc(𝑇 ) and let 𝐼𝑠+1 be the possible feasible out-subtree rooted at 𝑟 that remains
after the visit of Proc(𝑇 ). We have ∪𝑖∈[𝑠+1]𝑉 (𝐼𝑖 ) = 𝑉 (𝑇 ) and 𝑉 (𝐼𝑖 ) ∩𝑉 (𝐼 𝑗 ) = ∅, for 𝑖 ≠ 𝑗 .

For each 𝑖 ∈ [𝑠], let us consider the infeasible out-subtree 𝐼𝑖 , let 𝑣𝑖 be the root of 𝐼𝑖 , and
let 𝐼𝑢 be the full out-subtree of 𝐼𝑖 rooted at 𝑢, for each child 𝑢 of 𝑣𝑖 . Each out-subtree 𝐼𝑖 is
further divided into out-subtrees as follows:
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9:10 Budgeted Out-Tree Maximization with Submodular Prizes

for all children 𝑢 of 𝑣𝑖 such that 𝑐 (𝐼𝑢) ≥ 𝑚/2, we generate an out-subtree 𝐼𝑢 , observe that
𝑐 (𝐼𝑢) ≤ 𝑚 + 𝑐 (𝑢) because 𝐼𝑢 is feasible. If all the children of 𝑣𝑖 are in this category, we
generate a further out-subtree made of only node 𝑣𝑖 .
All children 𝑢 of 𝑣𝑖 such that 𝑐 (𝐼𝑢) < 𝑚/2 are partitioned into groups of cost between 𝑚/2
and 𝑚, plus a possible group of cost smaller than 𝑚/2. It is always possible to partition
the nodes in this way since 𝑐 (𝐼𝑢) < 𝑚/2 for all such nodes. Then, for each of these groups,
we generate an out-subtree by connecting 𝑣𝑖 to the roots of the out-subtrees in the group.
All the generated out-subtrees have the same root 𝑣𝑖 and cost at most 𝑚 + 𝑐 (𝑣𝑖 ).

The generated out-subtrees cover all the nodes in 𝐼𝑖 . We add 𝐼𝑠+1 to the set of generated
out-subtrees, if it exists. Let 𝑇 1, . . . ,𝑇𝑁 be the set of generated out-subtrees. Since 𝐼1, . . . , 𝐼𝑠+1
cover all the nodes of 𝑇 , then so do 𝑇 1, . . . ,𝑇𝑁 . Moreover, each generated out-subtree 𝑇 𝑗

costs at most 𝑚 + 𝑐 (𝑟 𝑗 ), where 𝑟 𝑗 is the root of 𝑇 𝑗 .
We now bound the number 𝑁 of generated out-subtrees. Given an infeasible out-subtree

𝐼𝑖 , for some 𝑖 ∈ [𝑠], each out-subtree generated from 𝐼𝑖 costs at least 𝑚/2, except for the
possible out-subtree made of only the root node of 𝐼𝑖 and a possible out-subtree of cost smaller
than 𝑚/2. Note that, by construction, at most one of these two additional out-subtrees can
be generated. Hence, for each 𝑖 ∈ [𝑠], the number 𝑠𝑖 of out-subtrees generated from 𝐼𝑖 is

𝑠𝑖 ≤
⌊
𝑐 (𝐼𝑖 )
𝑚/2

⌋
+ 1 ≤ 2

⌊
𝑐 (𝐼𝑖 )
𝑚

⌋
+ 2 ≤ 4

⌊
𝑐 (𝐼𝑖 )
𝑚

⌋
.

Since 𝐼1, . . . , 𝐼𝑠+1 are disjoint, then the overall number of generated out-subtrees is at most
𝑁 ≤ 1 + ∑

𝑖∈[𝑠 ] 𝑠𝑖 ≤ 1 + ∑
𝑖∈[𝑠 ] 4

⌊
𝑐 (𝐼𝑖 )
𝑚

⌋
≤ 5

⌊
𝑐 (𝑇 )
𝑚

⌋
. ◀

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By applying Lemma 6 to an optimal solution 𝑇 ∗ and by setting
𝑚 = ⌊

√
𝐵⌋, we obtain 𝑁 ≤ 5⌊

√
𝐵⌋ out-subtrees 𝑇 𝑖 = (𝑉 𝑖 , 𝐴𝑖 ) of 𝑇 ∗, for 𝑖 ∈ [𝑁 ], where

𝑉 𝑖 ⊆ 𝑉 (𝑇 ∗), 𝐴𝑖 = (𝑉 𝑖 ×𝑉 𝑖 ) ∩𝐴(𝑇 ∗), 𝑐 (𝑉 𝑖 ) ≤ 𝑐 (𝑟𝑖 ) + ⌊
√
𝐵⌋, 𝑟𝑖 is the root of 𝑇 𝑖 , and

⋃𝑁
𝑖=1𝑉

𝑖 = 𝑇 ∗.
Let 𝑝 (𝑇 ′) = max{𝑝 (𝑇 𝑖 ) : 𝑖 ∈ [𝑁 ]} and 𝑤 be the root of 𝑇 ′. The submodularity of 𝑝 implies
𝑝 (𝑇 ∗) = 𝑝

(⋃𝑁
𝑖=1𝑉 (𝑇 𝑖 )

)
≤ 𝑁𝑝 (𝑇 ′), which implies

𝑝 (𝑇 ) ≥ 𝑝 (𝑇𝑧) ≥ 𝑝 (𝑆𝑤) ≥ (1 − 𝑒−1)𝑝 (𝑆∗𝑤) ≥ (1 − 𝑒−1)𝑝 (𝑇 ′) ≥ 1 − 𝑒−1

𝑁
𝑝 (𝑇 ∗) ≥ 1 − 𝑒−1

5⌊
√
𝐵⌋

𝑝 (𝑇 ∗), (3)

where the first two inequalities hold by the definitions of 𝑧 and 𝑆𝑤 and by the monotonicity
of function 𝑝; The Third inequality holds because 𝑆𝑤 is a (1 − 𝑒−1)-approximate solution for
instance 𝐼𝑅𝑆𝑀𝑤 ; The fourth inequality holds as (i) 𝑇 ′ contains nodes at a distance no more than
𝑐 (𝑤)+⌊

√
𝐵⌋ from𝑤 and contains at most 1+⌊

√
𝐵⌋ nodes (since the minimum cost of a node is at

least 1) and (ii) 𝑝 (𝑆∗𝑤) = max{𝑝 (𝑆) : |𝑆 | ≤ 1+ ⌊
√
𝐵⌋ and 𝑑𝑖𝑠𝑡 (𝑤, 𝑣) ≤ 𝑐 (𝑤) + ⌊

√
𝐵⌋, for all 𝑣 ∈ 𝑆}.

Before the trimming process in Lemma 3, the ratio between the prize and the cost of 𝑇
is at least 𝛾 = 1−𝑒−1

10
√
𝐵𝐵
𝑝 (𝑇 ∗) as 𝑐 (𝑇 ) ≤ 2𝐵. After applying the trimming process in Lemma 3

(with ℎ = 2) to 𝑇 , the cost of 𝑇 is at most (1 + 𝜀)𝐵 and its prize-to-cost ratio is:

𝑝 (𝑇 )
𝑐 (𝑇 ) ≥ 𝜀2𝛾

64 = 𝛼
𝜀2
√
𝐵𝐵

𝑝 (𝑇 ∗),

where 𝛼 = 1−𝑒−1

640 . As 𝑐 (𝑇 ) ≥ 𝜀𝐵/2, we have 𝑝 (𝑇 ) ≥ 𝛼𝜀3

2
√
𝐵
𝑝 (𝑇 ∗), which concludes the proof. ◀
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5 The unrooted version of DRST

Here we consider the unrooted version of DRST, denoted by DUST, in which the goal is to
find an out-tree 𝑇 of 𝐷 such that 𝑐 (𝑇 ) ≤ 𝐵 and 𝑝 (𝑇 ) is maximum. Note that 𝑇 can be rooted
at any vertex. By guessing the root of an optimal solution, we can apply the algorithm
in the previous section to obtain a bicriteria (1 + 𝜀,𝑂 (

√
𝐵

𝜀3 )) approximation. We now show
that DUST admits an 𝑂 (

√
𝐵)-approximation algorithm with no budget violations. To do

this, we first provide an unrooted version of Lemma 3 in which it is not necessary to violate
the budget constraint when each vertex costs at most half of the budget. This trimming
process follows the same procedure as that of Lemma 3, but we include it for the sake of
completeness.

▶ Lemma 7. Let 𝑇 be an out-tree with the prize-to-cost ratio 𝛾 =
𝑝 (𝑇 )
𝑐 (𝑇 ) , where 𝑝 is a monotone

submodular function. Suppose 𝐵
2 ≤ 𝑐 (𝑇 ) ≤ ℎ𝐵, where ℎ ∈ (1, 𝑛] and the cost of each vertex is

at most 𝐵
2 . One can find an out-subtree 𝑇 ⊆ 𝑇 with the prize-to-cost ratio at least 𝛾

32ℎ+8 such
that 𝐵/4 ≤ 𝑐 (𝑇 ) ≤ 𝐵.

Proof. In the initial step, we remove a strict out-subtree 𝑇 ′ of 𝑇 if (i) the prize-to-cost ratio
of 𝑇 \𝑇 ′ is at least 𝛾 , and (ii) 𝑐 (𝑇 \𝑇 ′) ≥ 𝐵

4 . This process is performed iteratively, until no
such out-subtree exists. Let 𝑇− be the remaining out-subtree after applying this iterative
process on 𝑇 .

If 𝑐 (𝑇−) ≤ 𝐵, the desired out-subtree is obtained and we are done. Suppose it is not the
case. A full out-subtree 𝑇 ′ is called rich if 𝑐 (𝑇 ′) ≥ 𝐵

4 and the prize-to-cost ratio of 𝑇 ′ and all
its strict out-subtrees are at least 𝛾 . As in Lemma 3, we claim that the lemma follows from
the existence of a rich out-subtree.

▷ Claim 8. Given a rich out-subtree 𝑇 ′, the desired out-subtree 𝑇 can be found.

Proof. Let 𝑇 ′′ be the lowest rich out-subtree of 𝑇 ′ such that the strict out-subtrees of 𝑇 ′′ are
not rich, i.e., 𝑐 (𝑇 ′′) ≥ 𝐵

4 while the cost of strict out-subtrees of 𝑇 ′′ (if any exist) is less than
𝐵
4 . Let 𝐶 be the total cost of the immediate out-subtrees of 𝑇 ′′. We distinguish between two
cases:

1. If 𝐶 < 𝐵
4 , then 𝑐 (𝑇 ′′) ≤ 3𝐵

4 as the root of 𝑇 ′′ costs at most 𝐵
2 . Since 𝑇 ′′ has the prize-to-cost

ratio at least 𝛾 and cost at least 𝐵
4 (as it is rich), 𝑇 = 𝑇 ′′ is the desired out-subtree.

2. If 𝐶 ≥ 𝐵
4 , we first group the immediate out-subtrees of 𝑇 ′′ into 𝑀 groups 𝑆1, . . . , 𝑆𝑀 in

such a way that for each 𝑖 ∈ [𝑀 − 1] the total cost of immediate out-subtrees in 𝑆𝑖 is at
least 𝐵

4 , and for each 𝑖 ∈ [𝑀] it is at most 𝐵
2 . As 𝑐 (𝑇−) ≤ ℎ𝐵, we have

𝑀 ≤
⌈
ℎ𝐵

𝐵/4

⌉
= ⌈4ℎ⌉ ≤ 4ℎ + 1.

For each 𝑖 ∈ [𝑀], let 𝑆 ′𝑖 = 𝑆𝑖 ∪ {𝑟 ′′}, where 𝑟 ′′ is the root of 𝑇 ′′. Let 𝑧 = arg max𝑖∈[𝑀 ] 𝑝 (𝑆 ′𝑖 ).
Hence by the submodularity and monotonicity of 𝑝, we have

𝑝 (𝑆 ′𝑧) ≥
∑𝑀

𝑖=1 𝑝 (𝑆 ′𝑖 )
4ℎ + 1 ≥

𝑝 (𝑆 ′1) +
∑𝑀

𝑖=2 𝑝 (𝑆𝑖 )
4ℎ + 1 ≥

𝑝 (𝑆 ′1 ∪ ⋃𝑀
𝑖=2 𝑆𝑖 )

4ℎ + 1 =
𝑝 (𝑇 ′′)
4ℎ + 1 ≥ 𝛾

16ℎ + 4𝐵,

where the last inequality holds as 𝑝 (𝑇 ′′) ≥ 𝛾 𝐵
4 (since 𝑇 ′′ is rich).

In case 𝑧 = 𝑀 and 𝑐 (𝑆 ′
𝑀
) < 𝐵

4 , we select a subset of immediate out-subtrees from
⋃𝑀−1

𝑖=1 𝑆𝑖

with the total cost of at least 𝐵
4 and at most 𝐵

2 − 𝑐 (𝑆𝑀 ), and add it to 𝑆𝑧 .
Let 𝑇 be the union of 𝑟 ′′, the edges from 𝑟 ′′ to the roots of the out-subtrees in 𝑆𝑧 , and 𝑆𝑧 .
The cost of 𝑇 is at most 𝐵. Hence the prize-to-cost ratio of 𝑇 is at least 𝛾

16ℎ+4 ≥ 𝛾

32ℎ+8 . ◀
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It only remains to consider the case when there is no rich out-subtree. Since 𝑇− is not
rich and 𝑐 (𝑇−) ≥ 𝐵

4 , the ratio of at least one of the strict out-subtrees of 𝑇− is less than 𝛾 .
Now we find an out-subtree 𝑇 ′ with ratio less than 𝛾 such that the ratio of all of its strict
out-subtrees (if any exist) is at least 𝛾 . Since the ratio of 𝑇 ′ is less than 𝛾 and 𝑇 ′ is not
removed in the initial process, 𝑐 (𝑇− \𝑇 ′) < 𝐵

4 (this can be shown by the same argument as
that of Claim 5). As 𝑐 (𝑇−) > 𝐵 and the cost of the root of 𝑇 ′ is at most 𝐵

2 , the total cost of
the immediate out-subtrees of 𝑇 ′ is at least 𝐵

4 . Also, the cost of an immediate out-subtree of
𝑇 ′ is less than 𝐵

4 , otherwise we have a rich out-subtree. As the ratio and cost of 𝑇− are at
least 𝛾 and 𝐵

4 , respectively, then 𝑝 (𝑇−) ≥ 𝛾

4𝐵. We distinguish between two cases.

1. If 𝑝 (𝑇 ′) ≥ 𝛾

8𝐵, by the similar reasoning as above, we partition the immediate out-subtrees
of 𝑇 ′ into 𝑀 groups 𝑆1, . . . , 𝑆𝑀 in such a way that for each 𝑖 ∈ [𝑀 − 1] the total cost of
immediate out-subtrees in 𝑆𝑖 is at least 𝐵

4 , and for each 𝑖 ∈ [𝑀] it is at most 𝐵
2 . For

each 𝑖 ∈ [𝑀], let 𝑆 ′𝑖 = 𝑆𝑖 ∪ {𝑟 ′} where 𝑟 ′ is the root of 𝑇 ′. Let 𝑧 = arg max𝑖∈[𝑀 ] 𝑝 (𝑆 ′𝑖 ). As
𝑀 ≤ 4ℎ + 1, by the submodularity and monotonicity of 𝑝 we have:

𝑝 (𝑆 ′𝑧) ≥
∑𝑀

𝑖=1 𝑝 (𝑆 ′𝑖 )
4ℎ + 1 ≥

𝑝 (𝑆 ′1) +
∑𝑀

𝑖=2 𝑝 (𝑆𝑖 )
4ℎ + 1 ≥

𝑝 (𝑆 ′1 ∪ ⋃𝑀
𝑖=2 𝑆𝑖 )

4ℎ + 1 =
𝑝 (𝑇 ′)
4ℎ + 1 ≥ 𝛾

32ℎ + 8𝐵,

where the last inequality holds as 𝑝 (𝑇 ′) ≥ 𝛾

8𝐵.
Note that in case 𝑧 = 𝑀 and 𝑐 (𝑆 ′

𝑀
) < 𝐵

4 , we select a subset of immediate out-subtrees
from

⋃𝑀−1
𝑖=1 𝑆𝑖 with the total cost of at least 𝐵

4 and at most 𝐵
2 − 𝑐 (𝑆𝑀 ), and add it to 𝑆𝑧 .

Let 𝑇 be the union of 𝑟 ′, the edges from 𝑟 ′ to the roots of the out-subtrees in 𝑆𝑧 and 𝑆𝑧 .
The cost of 𝑇 is at most 𝐵 and its prize-to-cost ratio is at least 𝛾

32ℎ+8 .
2. If 𝑝 (𝑇 ′) < 𝛾

8𝐵, we proceed as follows. Consider the out-subtree 𝑇 ′′ = 𝑇− \𝑇 ′. Recall that
by the above discussion we have 𝑐 (𝑇 ′′) < 𝐵

4 . Thus we find a subset 𝑆 of the immediate
out-subtrees of 𝑇 ′ with cost between 𝐵

4 − 𝑐 (𝑇 ′′) ≤ 𝑐 (𝑆) ≤ 𝐵
2 − 𝑐 (𝑇 ′′). Note that such set 𝑆

can be found as each immediate out-subtree of 𝑇 ′ costs less than 𝐵
4 (otherwise we have a

rich subtree) and 𝑐 (𝑇 ′′) > 3𝐵
4 (as 𝑐 (𝑇−) > 𝐵 and 𝑐 (𝑇 ′′) < 𝐵

4 ). Then let 𝑇 be the union of
𝑇 ′′, the edge from 𝑇 ′′ to 𝑟 ′ in 𝑇−, 𝑆, and the edges from 𝑟 ′ to the roots of the out-subtrees
in 𝑆, where 𝑟 ′ is the root of 𝑇 ′. We now bound the prize-to-cost ratio of 𝑇 . Recall that
𝑇 ′′ = 𝑇− \ 𝑇 ′. First note that by the submodularity’ properties 𝑝 (𝑇 ′′) + 𝑝 (𝑇 ′) ≥ 𝑓 (𝑇−).
Thus by the case assumption and monotonicity, we have 𝑓 (𝑇 ) ≥ 𝑝 (𝑇 ′′) ≥ 𝛾

8𝐵. Since
𝐵
4𝐵 − 𝑐 (𝑇 ′′) ≤ 𝑐 (𝑆) ≤ 𝐵

2 − 𝑐 (𝑇 ′′) and 𝑐 (𝑟 ′) ≤ 𝐵
2 , 𝑐 (𝑇 ) ≤ 𝐵. Therefore, the prize-to-cost ratio

of 𝑇 is at least 𝛾

8 ≥ 𝛾

32ℎ+8 .
The proof is complete. ◀

▶ Theorem 9. DUST admits a polynomial-time 𝑂 (
√
𝐵)-approximation algorithm.

Proof. We follow arguments similar to those in Theorem 4 from Bateni et al. [2], but for the
sake of completeness the proof is provided here.

An out-tree is called flat if each vertex of the out-tree costs no more than 𝐵
2 . Let 𝑥 be a

vertex of an out-tree with the largest cost. An out-tree is called saddled if 𝑐 (𝑥) > 𝐵
2 and the

cost of every other vertex of the out-tree is no more than 𝐵−𝑐 (𝑥 )
2 . Let 𝑇 ∗

𝑓
(resp. 𝑇 ∗

𝑠 ) be the
optimal flat (resp. saddled) out-tree, i.e, a flat (resp. saddled) out-tree with cost at most
𝐵 maximizing the prize. We first show that given an optimal solution 𝑇 ∗ to DUST, then
either 𝑝 (𝑇 ∗

𝑓
) ≥ 𝑝 (𝑇 ∗ )

2 or 𝑝 (𝑇 ∗
𝑠 ) ≥

𝑝 (𝑇 ∗ )
2 .

▷ Claim 10. Either 𝑝 (𝑇 ∗
𝑓
) ≥ 𝑝 (𝑇 ∗ )

2 or 𝑝 (𝑇 ∗
𝑠 ) ≥ 𝑝 (𝑇 ∗ )

2 , where 𝑇 ∗ is an optimal solution to
DUST.
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Proof. If 𝑇 ∗ has only one vertex, then it is either flat or saddled and we are done. If 𝑇 ∗ has
more than one vertex and it is neither flat nor saddled, then we proceed as follows. Let 𝑥 and
𝑦 be two vertices in 𝑇 ∗ with the maximum cost and the second maximum cost, respectively.
Since 𝑇 ∗ is not flat then 𝑐 (𝑥) > 𝐵

2 and 𝑐 (𝑦) ≤ 𝐵
2 . Also as 𝑇 ∗ is not saddled, 𝑐 (𝑦) > 𝐵−𝑐 (𝑥 )

2 ,
and, since the cost of 𝑇 ∗ is at most 𝐵, 𝑦 is the only node with a cost higher than 𝐵−𝑐 (𝑥 )

2 . By
removing the edge 𝑒 adjacent to 𝑦 on the path between 𝑥 and 𝑦, we can partition 𝑇 ∗ into two
out-subtrees 𝑇 ∗

𝑥 and 𝑇 ∗
𝑦 that contain 𝑥 and 𝑦, respectively. Clearly, each vertex in 𝑇 ∗

𝑦 costs no
more than 𝐵

2 , then 𝑇 ∗
𝑦 is flat. Also, each vertex in 𝑇 ∗

𝑥 except 𝑥 costs at most 𝐵−𝑐 (𝑥 )
2 , implying

that 𝑇 ∗
𝑥 is saddled. By the submodularity of 𝑝, 𝑝 (𝑇 ∗

𝑥 ) + 𝑝 (𝑇 ∗
𝑦 ) ≥ 𝑝 (𝑇 ∗), meaning that one of

𝑇 ∗
𝑥 and 𝑇 ∗

𝑦 has at least half of the optimum prize 𝑝 (𝑇 ∗), which concludes the claim. ◁

Now we restrict Algorithm 1 to only flat and saddled out-trees. Indeed, we can reduce
the case of saddled out-trees to flat out-trees as follows. We first find a vertex 𝑥 with the
maximum cost. We then set the cost of 𝑥 to zero and define a new budget 𝐵′ = 𝐵 − 𝑐 (𝑥).
Note that the cost of any other vertex in the optimal saddled out-tree 𝑇 ∗

𝑠 is at most half
of the remaining budget. This means that we only need to find an approximation solution
when restricted to flat out-trees.

Since for the new instance no other vertex except 𝑥 with cost more than 𝐵
2 can be

contained in the final solution, we remove all vertices with cost more than 𝐵
2 and run Lines

1-8 of Algorithm 1 on the new resulting graph to achieve an out-tree 𝑇 with cost 𝑐 (𝑇 ) ≤ 2𝐵 (as
𝑐 (𝑇 \ {𝑧}) = 𝐵 and 𝑐 (𝑧) ≤ 𝐵) and prize 𝑝 (𝑇 ) ≥ 1−𝑒−1

5
√
𝐵
𝑝 (𝑇 ∗

𝑓
) ≥ 1−𝑒−1

10
√
𝐵
𝑝 (𝑇 ∗). So, the prize-to-cost

ratio of 𝑇 is 𝛾 ≥ 𝑝 (𝑇 )
2𝐵 . As 𝑇 is flat, we can apply Lemma 7 to achieve an out-subtree 𝑇 of 𝑇

with the cost 𝐵/4 ≤ 𝑐 (𝑇 ) ≤ 𝐵 and the prize-to-cost ratio 𝑝 (𝑇 )
𝑐 (𝑇 ) ≥ 𝛾

32ℎ+8 =
𝛾

72 as ℎ ≤ 2. This
implies that

𝑝 (𝑇 ) ≥ 𝛾

72 · 𝐵4 =
𝛾

288𝐵 ≥ 𝑝 (𝑇 )
576 ≥ 1 − 𝑒−1

5760
√
𝐵
𝑝 (𝑇 ∗). ◀

6 Submodular Tree Orienteering

Recently, Ghuge and Nagarajan [11] studied the Submodular Tree Orienteering problem
(STO), which is similar to DRST with the only difference that the costs are associated
to the edges of a directed graph instead of the nodes. In particular, in STO, we are given
a directed graph 𝐷 = (𝑉 ,𝐴), a vertex 𝑟 ∈ 𝑉 , a budget 𝐵, a monotone submodular function
𝑝 : 2𝑉 → R+, and a cost 𝑐 : 𝐴 → Z+, and the goal is to find an out-subtree 𝑇 of 𝐷 rooted at
𝑟 such that

∑
𝑒∈𝐴(𝑇 ) 𝑐 (𝑒) ≤ 𝐵 and 𝑝 (𝑇 ) = 𝑝 (𝑉 (𝑇 )) is maximum. Ghuge and Nagarajan [11]

proposed an 𝑂

(
log𝑘

log log𝑘

)
-approximation algorithm for STO that runs in (𝑛 log 𝐵)𝑂 (log1+𝜀 𝑘 )

time for any constant 𝜀 > 0, where 𝑘 ≤ |𝑉 | is the number of vertices in an optimal solution.
Here we first show that DRST can be reduced to STO, preserving the approximation

factor, by assigning the cost of each node 𝑣 to all edges entering 𝑣 .

▶ Theorem 11. There is an 𝑂 ( log𝑘

log log𝑘
)-approximation algorithm for DRST that runs in

(𝑛 log 𝐵)𝑂 (log1+𝜀 𝑘 ) time for any constant 𝜀 > 0, where 𝑘 ≤ 𝑛 = |𝑉 | is the number of vertices in
an optimal solution.

Proof. To prove the theorem, we show that one can transform an instance 𝐽 = ⟨𝐷 ′ =

(𝑉 ′, 𝐴′), 𝑝′, 𝑐′, 𝑟 ′, 𝐵′⟩ of DRST to an instance 𝐼 = ⟨𝐷 = (𝑉 ,𝐴), 𝑝, 𝑐, 𝑟, 𝐵⟩ of STO as follows.
We set 𝑉 = 𝑉 ′, 𝑟 = 𝑟 ′, 𝐴 = 𝐴′ \ {(𝑣, 𝑟 ′) | (𝑣, 𝑟 ′) ∈ 𝐴′}, 𝐵 = 𝐵′ − 𝑐′ (𝑟 ′) and for any subset
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𝑆 ⊆ 𝑉 , 𝑝 (𝑆) = 𝑝′ (𝑆). For any 𝑒 = (𝑖, 𝑗) ∈ 𝐴 in 𝐼 , we set 𝑐 (𝑒) = 𝑐′ ( 𝑗). The theorem follows
by observing that any out-subtree 𝑇 of 𝐷 is an out-subtree for 𝐷 ′, 𝑐′ (𝑇 ) = ∑

𝑣∈𝑉 (𝑇 ) 𝑐
′ (𝑣) =∑

𝑒=(𝑢,𝑣) ∈𝐴(𝑇 ) 𝑐 (𝑒) + 𝑐′ (𝑟 ′) = 𝑐 (𝑇 ) + 𝑐′ (𝑟 ′), and 𝑝′ (𝑇 ) = 𝑝 (𝑇 ). ◀

Moreover, we show that Algorithm 1 can be used to approximate STO. To our knowledge,
this is the first polynomial-time bicriteria approximation algorithm for STO.

▶ Theorem 12. There exists a polynomial-time bicriteria (1 + 𝜀,𝑂 (
√
𝐵

𝜀3 ))-approximation
algorithm for STO, for any 𝜀 ∈ (0, 1].

Proof. We first transform an instance 𝐼𝑆 = ⟨𝐷𝑆 = (𝑉𝑆 , 𝐴𝑆 ), 𝑝𝑆 , 𝑐𝑆 , 𝑟 , 𝐵⟩ of STO to an instance
𝐼𝐷 = ⟨𝐷𝐷 = (𝑉𝐷 , 𝐴𝐷 ), 𝑝𝐷 , 𝑐𝐷 , 𝑟 , 𝐵⟩ of DRST, where 𝑉𝐷 = 𝑉𝑆 ∪ 𝑉𝐴, 𝑉𝐴 = {𝑣𝑒 : 𝑒 ∈ 𝐴𝑆 },
𝐴𝐷 = {(𝑖, 𝑣𝑒 ), (𝑣𝑒 , 𝑗) : 𝑒 = (𝑖, 𝑗) ∈ 𝐴𝑆 }, 𝑝𝐷 (𝑆) = 𝑝𝑆 (𝑆 ∩𝑉𝑆 ), for each 𝑆 ⊆ 𝑉𝐷 , 𝑐𝐷 (𝑣) = 0 for each
𝑣 ∈ 𝑉𝑆 , and 𝑐𝐷 (𝑣𝑒 ) = 𝑐𝑆 (𝑒) for each 𝑣𝑒 ∈ 𝑉𝐴.

Let 𝑇 ∗
𝑆

be an optimal solution for 𝐼𝑆 and let 𝑇 ∗
𝐷

be the out-subtree of 𝐷 ′ corresponding
to 𝑇 ∗

𝑆
(i.e. 𝑉 (𝑇 ∗

𝐷
) = 𝑉 (𝑇 ∗

𝑆
) ∪ {𝑣𝑒 : 𝑒 ∈ 𝐴(𝑇 ∗

𝑆
)}, 𝐴(𝑇 ∗

𝐷
) = {(𝑖, 𝑣𝑒 ), (𝑣𝑒 , 𝑗) : 𝑒 = (𝑖, 𝑗) ∈ 𝐴(𝑇 ∗

𝑆
)}). We

observe that 𝑝𝐷 (𝑇 ∗
𝐷
) = 𝑝𝑆 (𝑇 ∗

𝑆
), 𝑐𝐷 (𝑇 ∗

𝐷
) = 𝑐𝑆 (𝑇 ∗

𝑆
), and 𝑇 ∗

𝐷
is an optimal solution for 𝐼𝐷 , since

if there exists an out-subtree 𝑇𝐷 of 𝐷𝐷 with 𝑝𝐷 (𝑇𝐷 ) > 𝑝𝐷 (𝑇 ∗
𝐷
), then we can construct an

out-subtree 𝑇𝑆 = (𝑉 (𝑇𝐷 ) ∩𝑉𝑆 , {𝑒 ∈ 𝐴𝑆 : 𝑣𝑒 ∈ 𝑉 (𝑇𝐷 ) ∩𝑉𝐴}) of 𝐷𝑆 such that 𝑝𝑆 (𝑇𝑆 ) > 𝑝𝑆 (𝑇 ∗
𝑆
).

We decompose 𝑇 ∗
𝐷

as in Lemma 6,2 with 𝑚 = ⌊
√
𝐵⌋; let 𝑇 ′

𝐷
be the out-subtree that

maximizes the prize among those returned by the lemma, and let 𝑤 be the root of 𝑇 ′
𝐷

. We
have that 𝑝𝐷 (𝑇 ′

𝐷
) ≥ 1

5⌊
√
𝐵⌋𝑝𝐷 (𝑇

∗
𝐷
) and 𝑐 (𝑇 ′

𝐷
) ≤ 𝑐 (𝑤) + ⌊

√
𝐵⌋. It follows that the distance from

𝑤 to any other node in 𝑇 ′
𝐷

is at most 𝑐 (𝑤) + ⌊
√
𝐵⌋.

We now show that |𝑉 (𝑇 ′
𝐷
) ∩𝑉𝑆 | ≤ ⌊

√
𝐵⌋ + 1. Since the cost of nodes in 𝑉𝑆 is equal to 0,

then 𝑐 ((𝑉 (𝑇 ′
𝐷
) ∩𝑉𝐴) \ {𝑤}) = 𝑐 (𝑉 (𝑇 ′

𝐷
) \ {𝑤}) ≤ ⌊

√
𝐵⌋. Therefore, as the cost of each edge in 𝐴𝑆

is at least 1, | (𝑉 (𝑇 ′
𝐷
) ∩𝑉𝐴) \ {𝑤}| ≤ ⌊

√
𝐵⌋. For every node in (𝑉 (𝑇 ′

𝐷
) ∩𝑉𝑆 ) \ {𝑤}, there exists a

distinct node in 𝑉 (𝑇 ′
𝐷
) ∩𝑉𝐴, which means that | (𝑉 (𝑇 ′

𝐷
) ∩𝑉𝑆 ) \ {𝑤}| = |𝑉 (𝑇 ′

𝐷
) ∩𝑉𝐴 |. If 𝑤 ∈ 𝑉𝑆 ,

then |𝑉 (𝑇 ′
𝐷
) ∩𝑉𝐴 | = | (𝑉 (𝑇 ′

𝐷
) ∩𝑉𝐴) \ {𝑤}| ≤ ⌊

√
𝐵⌋. If 𝑤 ∈ 𝑉𝐴, then | (𝑉 (𝑇 ′

𝐷
) ∩𝑉𝐴) | ≤ ⌊

√
𝐵⌋ + 1.

In both cases |𝑉 (𝑇 ′
𝐷
) ∩𝑉𝑆 | ≤ ⌊

√
𝐵⌋ + 1.

Let 𝑇𝐷 be the output of lines 1-11 of Algorithm 1 for instance 𝐼𝐷 . We have that

𝑝𝐷 (𝑇𝐷 ) ≥ (1 − 𝑒−1)𝑝𝐷 (𝑆∗𝑤) ≥ (1 − 𝑒−1)𝑝𝐷 (𝑇 ′
𝐷 ) ≥

1 − 𝑒−1

5⌊
√
𝐵⌋

𝑝𝐷 (𝑇 ∗
𝐷 ) =

1 − 𝑒−1

5⌊
√
𝐵⌋

𝑝𝑆 (𝑇 ∗
𝑆 ),

where the second inequality is due to the fact that (i) 𝑇 ′
𝐷

contains nodes at a distance no more
than 𝑐 (𝑤)+ ⌊

√
𝐵⌋ from 𝑤 and contains at most ⌊

√
𝐵⌋+1 nodes in 𝑉𝑆 , and (ii) 𝑝𝐷 (𝑆) = 𝑝𝐷 (𝑆∩𝑉𝑆 ),

for each 𝑆 ⊆ 𝑉𝐷 , and therefore 𝑝𝐷 (𝑆∗𝑤) = max{𝑝𝐷 (𝑆) : |𝑆 ∩ 𝑉𝑆 | ≤ ⌊
√
𝐵⌋ + 1 and 𝑑𝑖𝑠𝑡 (𝑤, 𝑣) ≤

𝑐 (𝑤) + ⌊
√
𝐵⌋, for all 𝑣 ∈ 𝑆}. The other inequalities are analogous to those in (3).

The cost of 𝑇𝐷 is at most 2𝐵, as in Theorem 1 we can trim 𝑇𝐷 to reduce its cost to (1+ 𝜀)𝐵
and maintaining a prize of 𝑝𝐷 (𝑇𝐷 ) = 𝛼𝜀2

√
𝐵
𝑝 (𝑇 ∗

𝑆
), for some constant 𝛼 and any arbitrary 𝜀 > 0.

Let us consider the out-subtree 𝑇𝑆 of 𝐷𝑆 corresponding to 𝑇𝐷 , 𝑇𝑆 = (𝑉 (𝑇𝐷 ) ∩𝑉𝑆 , {𝑒 ∈ 𝐴𝑆 :
𝑣𝑒 ∈ 𝑉 (𝑇𝐷 ) ∩𝑉𝐴}), then 𝑝𝑆 (𝑇𝑆 ) = 𝑝𝐷 (𝑇𝐷 ) and 𝑐𝑆 (𝑇𝑆 ) = 𝑐𝐷 (𝑇𝐷 ), which concludes the proof. ◀

7 Further Results on Some Variants of DRST

In this section, we provide approximation results on some variants of DRST. Due to space
constraints, here we only state our results, all the details are given in a long version of the
paper [6].

2 Note that the Lemma 3 and 6 hold even if node costs are allowed to be equal to 0.
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Additive prize function and Directed Tree Orienteering (DTO). We consider the special
case of DRST in which the prize function is additive, i.e., for any 𝑆 ⊆ 𝑉 , 𝑝 (𝑆) = ∑

𝑣∈𝑆 𝑝 ({𝑣}),
called DRAT. We show that there exists a polynomial-time bicriteria (1 + 𝜀,𝑂 (

√
𝐵/𝜀2))-

approximation algorithm for DRAT (Theorem B.1 in [6]). By using the reduction in
Theorem 12, it follows that this result also holds for DTO, which is the special case of STO
in which the prize function is additive [11].

Undirected graphs. All our results hold also in the case in which the input graph is
undirected and the output graph is a tree. In particular, our 𝑂 (

√
𝐵)-approximation algorithm

for the unrooted case improves over the factors 𝑂 ((Δ+ 1)
√
𝐵) [23] and min{1/((1− 1/𝑒) (1/𝑅 −

1/𝐵)), 𝐵} [15], where 𝑅 is the radius of the input graph 𝐺 . For the case in which the prize
function is additive, we show that there exists a polynomial-time bicriteria approximation
algorithm whose approximation factor only depends on the the maximum degree Δ of the
given graph. In particular, it guarantees a bicriteria (1 + 𝜀, 16Δ/𝜀2)-approximation (Theorem
B.2 in [6]).

Quota problem. We consider the problem in which we are given an undirected graph
𝐺 = (𝑉 , 𝐸), a cost function 𝑐 : 𝑉 → R+, a prize function 𝑝 : 𝑉 → R+, a quota 𝑄 ∈ R+, and a
vertex 𝑟 , and the goal is to find a tree 𝑇 such that 𝑝 (𝑇 ) ≥ 𝑄, 𝑟 ∈ 𝑉 (𝑇 ) and 𝑐 (𝑇 ) is minimum.
We prove that this problem admits a 2Δ-approximation algorithm (Theorem B.3 in [6]).

Maximum Weighted Budgeted Connected Set Cover (MWBCSC). Let 𝑋 be a set of
elements, S ⊆ 2𝑋 be a collection of sets, 𝑝 : 𝑋 → R+ be a prize function, 𝑐 : S → R+ be a
cost function, 𝐺S be a graph on vertex set S, and 𝐵 be a budget. In MWBCSC, the goal
is to find a subcollection S′ ⊆ S such that 𝑐 (S′) = ∑

𝑆∈S′ 𝑐 (𝑆) ≤ 𝐵, the subgraph induced
by S′ is connected and 𝑝 (S′) = ∑

𝑥∈𝑋S′ 𝑝 (𝑥) is maximum, where 𝑋S′ =
⋃

𝑆∈S′ 𝑆. We show
that MWBCSC admits a polynomial-time 𝛼 𝑓 -approximation algorithm, where 𝑓 is the
maximum frequency of an element and 𝛼 is the performance ratio of an algorithm for the
unrooted version of MCSB with additive prize function (Theorem B.4 in [6]). Moreover,
one can have a polynomial-time 𝑂 (log𝑛)-approximation algorithm for MWBCSC under
the assumption that if two sets have an element in common, then they are adjacent in 𝐺S
(Corollary B.2 in [6]). This last result is an improvement over the factor 2(Δ + 1)𝛼/(1 − 𝑒−1)
by Ran et al. [30].

Budgeted Sensor Cover Problem (BSCP). In BSCP, we are given a set S of sensors, a
set P of target points in a metric space, a sensing range 𝑅𝑠 , a communication range 𝑅𝑐 , and a
budget 𝐵. A target point is covered by a sensor if it is within distance 𝑅𝑠 from it. Two sensors
are connected if they are at a distance at most 𝑅𝑐 . The goal is to find a subset S′ ⊆ S such that
|S′ | ≤ 𝐵, the number of covered target points by S′ is maximized and S′ induces a connected
subgraph. We give a 2𝑓 -approximation algorithm for BSCP (Theorem B.5 in [6]), where
𝑓 is the maximum number of sensors that cover a target point. We also show that, under
the assumption that 𝑅𝑠 ≤ 𝑅𝑐/2, BSCP admits a polynomial-time 8/(1 − 𝑒−1)-approximation
algorithm (Theorem B.8 in [6]), which improves the factors 8(⌈2

√
2𝐶⌉ + 1)2/(1− 1/𝑒) [17] and

8(⌈4𝐶/
√

3⌉ + 1)2/(1 − 1/𝑒) [34], where 𝐶 = 𝑅𝑠/𝑅𝑐 . Note that Huang et al. [17] do not assume
that 𝑅𝑠/𝑅𝑐 ≤ 𝑅𝑐/2, however, our technique improves over their result if 𝑅𝑠 ≤ 𝑅𝑐/2.
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A Further Related Work

Zelikovsky [35] provided the first approximation algorithm for Directed Steiner Tree Problem
(DSTP) with factor 𝑂 (𝑘𝜀 (log1/𝜀 𝑘)) that runs in 𝑂 (𝑛1/𝜀), where |𝑈 | = 𝑘. Charikar et al. [3]
proposed a better approximation algorithm for DSTP with a factor 𝑂 (log3 𝑘) in quasi-
polynomial time. Grandoni et al. [13] improved this factor and provided a randomized
𝑂 ( log2 𝑘

log log𝑘
)-approximation algorithm 𝑛𝑂 (log5 𝑘 ) time. Also, they showed that, unless 𝑁𝑃 ⊆⋂

0<𝜀<1 ZPTIME(2𝑛𝜀 ) or the Projection Game Conjecture is false, there is no quasi-polynomial
time algorithm for DSTP that achieves an approximation ratio of 𝑜 ( log2 𝑘

log log𝑘
). Ghuge

and Nagarajan [11] showed that their approximation algorithm results in a deterministic
𝑂 ( log2 𝑘

log log𝑘
)-approximation algorithm for DSTP in 𝑛𝑂 (log1+𝜀 𝑘 ) time. Very recently, Li and

Laekhanukit [26] showed that the lower bound on the integrality gap of the flow LP is
polynomial in the number of vertices.

Danilchenko et al. [7] investigated a closely related problem to BSCP, where the goal is
to place a set of connected disks (or squares) such that the total weight of target points in
the plane is maximized. They provided a polynomial-time 𝑂 (1)-approximation algorithm
for this problem. MCSB is also closely related to the budgeted connected dominating set
problem, where the goal is to select at most 𝐵 connected vertices in a given undirected graph
to maximize the profit function on the set of selected vertices. Khuller et al. [19] investigated
this problem in which the profit function is a special submodular function. Khuller et al. [19]
designed a 12

1−1/𝑒 -approximation algorithm. By generalizing the analysis of Khuller et al. [19],
Lamprou et al. [24] showed that there is a 11

1−𝑒−7/8 -approximation algorithm for the budgeted
connected dominating set problem. They also showed that for this problem we cannot achieve
in polynomial time an approximation factor better than

(
1

1−1/𝑒

)
, unless 𝑃 = 𝑁𝑃 .

Lee and Dooly [25] provided a (𝐵 − 2)-approximation algorithm for URAT, where each
vertex costs 1. Zhou et al. [36] studied a variant of E-URAT in the wireless sensor networks
and provided a 10-approximation algorithm. Seufert et al. [31] investigated a special case
of the unrooted version of URAT, where each vertex has cost 1 and we aim to find a tree
with at most 𝐵 nodes maximizing the accumulated prize. This coincides with the unrooted
version of E-URAT when the cost of each edge is 1 and we are looking for a tree containing
at most 𝐵 − 1 edges to maximize the accumulated prize. Seufert et al. [31] provided a
(5+𝜀)-approximation algorithm for this problem. Similarly, Huang et al. [16] investigated this
variant of E-URAT (or URAT) in the plane and proposed a 2-approximation algorithm.

The quota variant of URAT also has been studied, which is called Q-URAT. Here we
wish to find a tree including a vertex 𝑟 in a way that the total cost of the tree is minimized
and its prize is no less than some quota. By using Moss and Rabbani [27]’black box and
the ideas of Könemann et al. [21], and Bateni et al. [2], we have an 𝑂 (log𝑛)-approximation
algorithm for Q-URAT. This bound is tight [27]. The edge cost variant of Q-URAT, called
EQ-URAT, has been investigated by Johnson et al. [18]. They showed that by adapting
an 𝛼-approximation algorithm for the 𝑘-MST problem, one can have an 𝛼-approximation
algorithm for EQ-URAT. Hence, the 2-approximation algorithm of Garg [10] for the 𝑘-MST
problem results in a 2-approximation algorithm for EQ-URAT.

The prize collecting variants of URAT have also been studied. Könemann et al. [21]
provided a Lagrangian multiplier preserving𝑂 (ln𝑛)-approximation algorithm for NW-PCST,
where the goal is to minimize the cost of the nodes in the resulting tree plus the penalties
of vertices not in the tree. Bateni et al. [2] considered a more general case of NW-PCST
and provided an 𝑂 (log𝑛)-approximation algorithm. There exists no 𝑜 (ln𝑛)-approximation
algorithm for NW-PCST, unless 𝑁𝑃 ⊆ DTIME(𝑛Polylog(𝑛) ) [20]. The edge cost variant
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of NW-PCST has been investigated by Goemans and Williamson [12]. They provided
a 2-approximation algorithm for EW-PCST. Later, Archer et al. [1] proposed a (2 − 𝜀)-
approximation algorithm for EW-PCST which was an improvement upon the long standing
bound of 2.

Table 1 A summary of the best bounds on some variants of prize collecting problems.

Problem Best Bound
STO 𝑂 ( log𝑛

log log𝑛
) [11] (tight)

DTO 𝑂 ( log𝑛

log log𝑛
) [11] (tight)

DSTP 𝑂 ( log2 𝑘
log log𝑘

) [11, 13] (tight)
NW-PCST 𝑂 (log𝑛) [2, 21] (tight)
EW-PCST 2 − 𝜀 [1]

URAT (1 + 𝜀,𝑂 ( log𝑛

𝜀2 )) [2, 21, 27]
E-URAT 2 [29]
Q-URAT 𝑂 (log𝑛) [2, 21, 27] (tight)

EQ-URAT 2 [10, 18]
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