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Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping
from V (G) to V (H) that is surjective in the neighborhood of each vertex in G. In the list locally
surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance
consists of a graph G whose every vertex is equipped with a subset of V (H), called list. We ask
for the existence of a locally surjective homomorphism from G to H, where every vertex of G is
mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem
in F -free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to
understand for which pairs (H, F ) the problem can be solved in subexponential time.

We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be
solved in subexponential time in F -free graphs for F being a bounded-degree forest, unless the ETH
fails. The initial study reveals that a natural subfamily of bounded-degree forests F , that might
lead to some tractability results, is the family S consisting of forests whose every component has at
most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that
are polynomial-time solvable in general graphs, the graphs H ∈ {P3, C4} are the only connected
ones that allow for a subexponential-time algorithm in F -free graphs for every F ∈ S (unless the
ETH fails).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Homomorphism, Hereditary graphs, Subexponential-time algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.30

Related Version Full Version: https://arxiv.org/abs/2202.12438 [9]

Funding Pavel Dvořák: Partially supported by EPSRC New Investigator Award EP/V010611/1 and
by Czech Science Foundation GAČR grant #22-14872O.

© Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koblich@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-6838-1538
mailto:masarik@mimuw.edu.pl
https://orcid.org/0000-0001-8524-4036
mailto:jnovotna@mimuw.edu.pl
https://orcid.org/0000-0002-7955-4692
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.ISAAC.2022.30
https://arxiv.org/abs/2202.12438
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 List Locally Surjective Homomorphisms in Hereditary Graph Classes

Tomáš Masařík: Received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme Grant Agreement 948057.
Jana Novotná: Supported by SVV-2020–260578 and GAUK 384321 of Charles University.
Paweł Rzążewski: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

1 Introduction

Graph coloring is arguably one of the best-studied problems in algorithmic graph theory. It
is well-known that k-Coloring is polynomial-time solvable for k ≤ 2 and NP-hard for every
k ≥ 3 [27]. Furthermore, assuming the Exponential-Time Hypothesis (ETH) [25, 26], the
hard cases do not even admit algorithms working in subexponential time.

Coloring F -free graphs. A very natural direction of research is to investigate what restric-
tions put on the family of input graphs allow us to solve the problem more efficiently than
in general graphs. In recent years, a very active topic has been to study the complexity
of k-Coloring and related problems in graphs defined by one or more forbidden induced
subgraphs. For a family F of graphs, we say that a graph G is F -free if G does not contain
any graph from F as an induced subgraph. If F consists of a single graph F , then we say
F -free instead of {F}-free. Note that the class of F -free graphs is hereditary i.e., closed under
vertex deletion. On the other hand, every hereditary class of graphs can be equivalently
defined as F-free graphs for some unique minimal (possibly infinite) family F of graphs.

It is well-known that for every k ≥ 3, the k-Coloring problem is NP-hard in F -free
graphs, unless F is a linear forest, i.e., every connected component of F is a path. Indeed,
for every constant g, k-Coloring is NP-hard in graphs of girth (i.e., the length of a shortest
cycle) at least g [10]. Setting g = |V (F )| + 1, we immediately obtain hardness for every F

that is not a forest. On the other hand, k-Coloring is NP-hard in line graphs, which are
claw-free [23, 29]. The only forests that are claw-free are linear forests.

The complexity of k-Coloring in Pt-free graphs, where Pt is the path with t vertices,
has recently attracted a lot of attention. For t = 5, the problem is polynomial-time solvable
for every constant k [22]. If k ≥ 5, then the problem is NP-hard already in P6-free graphs [24].
The case k = 4 is also fully understood: it is polynomial-time solvable for t ≤ 6 [38] and
NP-hard for t ≥ 7 [24]. The case of k = 3 is much more elusive. We know a polynomial-time
algorithm for P7-free graphs [1]. However, for t ≥ 8, we know neither polynomial-time
algorithm nor any hardness result. Some positive results are also known for the case that F

is a disconnected linear forest [28, 6, 18].
Let us point out that almost all mentioned algorithmic results also hold for the more general

list variant of the problem, where each vertex is given a list of admissible colors. The notable
exception is List 4-Coloring, which is NP-hard already in P6-free graphs [19]. Furthermore,
all hardness results also imply the nonexistence of subexponential-time algorithms (assuming
the ETH).

Some more general positive results can be obtained if we relax our notion of tractability.
As observed by Groenland et al. [20], List 3-Coloring can be solved in subexponential
time in Pt-free graphs, for every fixed t. This was recently improved by Pilipczuk, Pilipczuk,
and Rzążewski [37] who showed a quasipolynomial-time algorithm for this problem. Note
that this is strong evidence that the problem is not NP-hard.

Graph homomorphisms. Graph colorings can be seen as a special case of graph homomor-
phisms. A homomorphism from a graph G to a graph H (with possible loops) is a function
h : V (G) → V (H), such that for every uv ∈ E(G) it holds that h(u)h(v) ∈ E(H). Note that
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homomorphisms to Kk are precisely proper k-colorings. By the celebrated result of Hell and
Nešetřil [21], determining whether an input graph G admits a homomorphism to a fixed graph
H is polynomial-time solvable if H is bipartite or has a vertex with a loop, and NP-hard
otherwise. A list variant of the graph homomorphism problem, denoted by LHom(H), has
also been considered. It turns out that the problem can be solved in polynomial time if H is
a so-called bi-arc graph, and otherwise, the problem is NP-hard [12, 13, 14].

The complexity of variants of the graph homomorphism problem in hereditary graph
classes was also studied. For example, Chudnovsky et al. [5] showed that LHom(Ck) for
k ∈ {5, 7} ∪ [9, ∞) is polynomial-time solvable in P9-free graphs. On the negative side, they
showed that for every k ≥ 5 the problem is NP-hard and cannot be solved in subexponential
time (assuming the ETH) in F -free graphs, unless every component of F ∈ S, where S consists
of graphs whose every connected component is a path or a tree with three leaves (called a
subdivided claw). This negative result was later extended by Piecyk and Rzążewski [36] who
showed that if H is not a bi-arc graph (i.e., LHom(H) is NP-hard in general graphs), then
LHom(H) is NP-hard and cannot be solved in subexponential time (assuming the ETH) in
F -free graphs, unless F ∈ S.

The case of forbidden path or subdivided claw was later investigated by Okrasa and
Rzążewski [35]. They defined a class of predacious graphs and showed that if H is not
predacious, then for every H, the LHom(H) problem can be solved in quasipolynomial time
in Pt-free graphs (for every t). Otherwise, for every H, there exists t for which LHom(H)
cannot be solved in subexponential time in Pt-free graphs unless the ETH fails. They also
provided some partial results for the case of forbidden subdivided claws.

The complexity of variants of the graph homomorphism problem in other hereditary
graph classes has also been considered [7, 15, 34].

Locally surjective graph homomorphisms. Graph homomorphisms are a very robust
notion, which can be easily extended by putting some additional restrictions on the solution.
In this paper, we focus on one such variant called locally surjective homomorphisms. A
homomorphism h from G to H is locally surjective if it is surjective in the neighborhood
of each vertex of G. In other words, if h(v) = a ∈ V (H), then for every neighbor b of a

in H (including a, if it has a loop) there is a neighbor v′ of v in G, such that h(v′) = b.
The study of locally surjective homomorphisms originates in social sciences, where they
can be used to model some social roles (the problem is called role assignment [11]). The
problem of determining whether an input graph admits a locally surjective homomorphism
to a fixed graph H is denoted by LSHom(H). Fiala and Paulusma [17] provided the full
complexity dichotomy for LSHom(H). For simplicity, let us consider only connected graphs
H, and let K◦

1 be the one-vertex graph with a loop. We denote Hpoly := {K1, K◦
1 , K2}. Fiala

and Paulusma [17] showed that LSHom(H) is polynomial-time-solvable if H ∈ Hpoly, and
otherwise it is NP-hard. Again, the hardness reduction excluded also subexponential time
algorithms under the ETH.

Let us point out that LSHom(P3) is closely related to the well-known hypergraph 2-
coloring problem [30] (or, equivalently, Positive NAE SAT). In this problem, we ask
whether the input hypergraph admits a 2-coloring of its vertices which makes no edge
monochromatic. Consider a hypergraph H with vertices V and hyperedges E , and let G be
its incidence graph, i.e., the bipartite graph with vertex set V ∪ E , where v ∈ V is adjacent to
e ∈ E if and only if v ∈ e. Note that proper 2-colorings of H are precisely locally surjective
homomorphisms of G to P3 with consecutive vertices 1, 2, 3, where V is mapped to {1, 3},
and E is mapped to {2}. As shown by Camby and Schaudt [3], 2-coloring of hypergraphs
with P7-free incidence graph is polynomial-time solvable.

ISAAC 2022
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The structural and computational aspects of locally surjective homomorphisms were
studied by several authors [4, 16, 2]. However, up to the best of our knowledge, no systematic
study of LSHom(H) in hereditary graph classes has been conducted.

Our contribution. In this paper, we consider the complexity of the list variant of LSHom(H),
called LLSHom(H). First, we observe that if H ∈ Hpoly (recall, these are the easy cases of
LSHom(H)), then also LLSHom(H) can be solved in polynomial time in general graphs.

Then we focus on the complexity of the problem in F -free graphs. In particular, we
are interested in determining the pairs (H, F ), for which the problem can be solved in
subexponential time. Similarly to the case of LHom(H), we split into two cases, depending
whether F ∈ S.

In the first case, we identify two more positive cases: we show that if H ∈ {P3, C4}, then
the problem admits a subexponential-time algorithm for every F ∈ S. The algorithm itself
uses a win-win strategy: we combine branching on a high-degree vertex with a separator
theorem that can be used if the maximum degree is bounded. A similar approach was used
for various other problems [20, 31], however, the specifics of our problem require a slightly
more complicated approach.

We also show that the above cases are the only positive ones for general F ∈ S, which
provides the following dichotomy theorem.

▶ Theorem 1. Let H /∈ Hpoly be a fixed connected graph.
1. If H ∈ {P3, C4}, then for every F ∈ S, the LLSHom(H) problem can be solved in time

2O((n log n)2/3) in n-vertex F -free graphs.
2. Otherwise there is t, such that the LLSHom(H) problem cannot be solved in subexponential

time in Pt-free graphs, unless the ETH fails.

Further, we turn our attention to other forbidden graphs F . We show that whenever the
problem is NP-hard for general graphs, i.e., for every H /∈ Hpoly, then for every g > 0 there
exists d = d(H), such that LSHom(H) is NP-hard in graphs of degree at most d and girth
at least g. This implies the following lower bound.1

▶ Theorem 2 (♠). For every connected H /∈ Hpoly, there exists d ∈ N, such that the following
holds. For every graph F that is not a forest of maximum degree at most d, the LLSHom(H)
problem cannot be solved in time 2o(n) in n-vertex F -free graphs of maximum degree d, unless
the ETH fails.

We conclude the paper by discussing the possibilities of improving our theorems in order
to fully classify the complexity of LSHom(H) in F -free graphs.

2 Preliminaries

For a graph G and v ∈ V (G), by NG(v) we denote the set of neighbors of v in G. For a set
X ⊆ V (G), by NG[X] we denote X ∪

⋃
v∈X NG(v). If G is clear from the context, then we

omit the subscripts. By G[X], where X ⊆ V (G), we denote the subgraph of G induced by
the set X.

1 Proofs of statements marked with (♠) are presented in the full version [9].
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For graphs G and H, by G×H we denote their direct product (sometimes called categorical
product or Kronecker product), i.e., the graph

V (G × H) = V (G) × V (H),
E(G × H) =

{
{(u1, v1), (u2, v2)} | u1u2 ∈ E(G) ∧ v1v2 ∈ E(H)

}
.

For t, a, b, c ≥ 1, by Pt we denote the t-vertex path, and by Sa,b,c we denote the three-leaf
tree with leaves at distance a, b, and c, respectively, from the unique vertex of degree 3, which
we call central. Every such Sa,b,c is called a subdivided claw. Recall that by S, we denote the
family of graphs whose every connected component is either a path or a subdivided claw.

Let h be a homomorphism from G to H. We say that a vertex v ∈ V (G) is happy (in h)
if h(NG(v)) = NH(h(v)). In other words, for every neighbor y of h(v), some neighbor of v is
colored y. We say that a homomorphism h is locally surjective if every vertex is happy in h.
If h is a locally surjective homomorphism from G to H, then we denote it by h : G

s−→ H.
For a fixed graph H (with possible loops) we consider the LLSHom(H) problem, whose

instance is (G, L) where G is a graph and L : V (G) → 2V (H) is a list function. We ask
whether there exists a homomorphism h : G

s−→ H, such that for every v ∈ V (G) it holds
that h(v) ∈ L(v). If h is such a homomorphism, then we denote it by h : (G, L) s−→ H.

Observe that if G or H is disconnected, then each component of G must be mapped to
some component of H. Thus, the problem can be easily reduced to the case that both G

and H are connected. We will assume this from now on.
Recall that the non-list variant of our problem, i.e., LSHom(H), is polynomial time-

solvable if H ∈ Hpoly := {K1, K2, K◦
1 } (where K◦

1 denotes the one-vertex graph with a loop),
and NP-hard otherwise [17]. Let us point out that exactly the same dichotomy holds for
LLSHom(H).

▶ Corollary 3 (♠). If H ∈ Hpoly, then LLSHom(H) is polynomial-time solvable, and
otherwise it is NP-hard.

2.1 Associated Bipartite Graphs and Associated Instances
Now let us show that in order to identify the hard cases of LLSHom(H) it is sufficient to
consider the case that H is bipartite. A similar approach was used to solve LHom(H) [14, 32],
but to the best of our knowledge, we are the first to observe that it also works for LLSHom(H).

Let H be a connected bipartite graph with bipartition classes X, Y , and consider an
instance (G, L) of LLSHom(H), where G is connected. Note that if G is not bipartite,
then (G, L) is clearly a no-instance. Thus, assume that G is bipartite with the bipartition
classes A, B. We observe that in every homomorphism h : G → H, either all vertices of A

are mapped to X, and all vertices of B are mapped to Y , or all vertices of A are mapped to
Y , and all vertices of B are mapped to X. Thus in order to solve (G, L), we can consider
these two cases separately. More specifically, we need to solve two instances (G, L1) and
(G, L2) of LLSHom(H), where

L1(v) =
{

L(v) ∩ X if v ∈ A,

L(v) ∩ Y if v ∈ B,
L2(v) =

{
L(v) ∩ Y if v ∈ A,

L(v) ∩ X if v ∈ B.

This motivates the following definition, see also [32].

▶ Definition 4. Let H be a connected bipartite graph with bipartition classes X, Y . We say
that an instance (G, L) of LLSHom(H) is consistent, if
1. G is connected bipartite with the bipartition classes A, B,
2. L(A) ⊆ X and L(B) ⊆ Y .

ISAAC 2022
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For a graph H = (V, E), by H∗ := H × K2 we denote its associated bipartite graph. In
other words, the vertex set of H∗ is {v′, v′′ : v ∈ V } and the edge set is {u′v′′ : uv ∈ E}.
We also define V ′ := {v′ : v ∈ V } and V ′′ := {v′′ : v ∈ V }, i.e., V ′, V ′′ are the bipartition
classes of H∗.

Note that if H is connected and nonbipartite, then H∗ is connected. If H is bipartite,
then H∗ consists of two disjoint copies of H.

▶ Lemma 5. Let H be a fixed connected nonbipartite graph. Let (G, L′) be a consistent
instance of LLSHom(H∗). For each v ∈ V (G), define L(v) := {x : {x′, x′′} ∩ L′(v) ̸= ∅}.
Then (G, L′) is a yes-instance of LLSHom(H∗) if and only if (G, L) is a yes-instance of
LLSHom(H).

Proof. First consider h∗ : (G, L′) s−→ H∗. Define h : V (G) → V (H) as follows: h(v) = x if
and only if h∗(v) ∈ {x′, x′′}. Clearly, h is a homomorphism from G to H, and it respects
lists L.

Let us show that h is locally surjective. Consider v ∈ V (G) such that h(v) = x and some
y ∈ NH(x). Since h(v) = x, we know that h∗(v) ∈ {x′, x′′} (the actual value depends on the
bipartition class where v belongs). By symmetry, assume that h∗(v) = x′. Since h∗ is locally
surjective and x′y′′ ∈ E(H∗), there is u ∈ NG(v), such that h∗(u) = y′′. Then, h(u) = y.

Now, consider h : (G, L) s−→ H. Let the bipartition classes of G be A, B, such that
L′(A) ⊆ V ′ and L′(B) ⊆ V ′′ (this holds since (G, L′) is consistent). We define h∗ : V (G) →
V (H∗) as follows. Consider v ∈ V (G) and let h(v) = x. If v ∈ A, then h∗(v) = x′ and if
v ∈ B, then h∗(v) = x′′. Again, it is straightforward to verify that h∗ is a homomorphism
from G to H∗, and it respects lists L′, since (G, L′) is consistent.

Now, let us argue that h∗ is locally surjective. By symmetry, consider v ∈ A, such
that h(v) = x. Then, h∗(v) = x′. Let y′′ ∈ NH(x′). Since h is locally surjective, there is
u ∈ NG(v) ⊆ B, such that h(u) = y. Thus, h∗(u) = y′′. ◀

▶ Corollary 6 (♠). Let G be a class of graphs and let H be a fixed connected nonbipartite graph.
Suppose there is an algorithm A that solves every bipartite instance (G, L) of LLSHom(H),
such that G ∈ G, in time f(|V (G)|). Then there is an algorithm that solves every instance
(G, L′) of LLSHom(H∗), where G ∈ G, in time f(|V (G)|) · |V (G)|O(1).

Note that Corollary 6 immediately implies the following.

▶ Corollary 7. Let H be a fixed connected nonbipartite graph and let G be a class of graphs. If
LLSHom(H∗) cannot be solved in time 2o(n) for n-vertex instances in G, then LLSHom(H)
cannot be solved in time 2o(n) for n-vertex instances in G.

3 Algorithm for F -free Graphs for F ∈ S

An important tool used in our algorithm is the following structural result about {St,t,t, K3}-
free graphs (note that it only appears in the full version of [35]).

▶ Theorem 8 (Okrasa, Rzążewski [33]). Let t ≥ 2 be an integer. Given an n-vertex (K3, St,t,t)-
free graph G with maximum degree ∆, in time 2O(t·∆) · n we can find a tree decomposition of
G with width at most 56t∆.

Equipped by this, we are ready to prove the following algorithmic result.

▶ Theorem 9. Let a, b, c ≥ 1 be fixed integers. The LLSHom(P3) in n-vertex Sa,b,c-free
graphs can be solved in time 2O((n log n)2/3).
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Proof. Denote the consecutive vertices of P3 by 1, 2, 3. Let (G, L) be an instance of
LLSHom(P3), where G has n vertices and is Sa,b,c-free. Let t = max(2, a, b, c) and note that
G is St,t,t-free. Furthermore, if G is not bipartite, then (G, L) is clearly a no-instance. Thus,
we can assume that G is bipartite (and, in particular, triangle-free).

Furthermore, recall that we can safely assume that the instance (G, L) is consistent. Let
X and Y denote the bipartition classes of G, such that L(X) ⊆ {1, 3} and L(Y ) = {2}. Note
that if |Y | = 0 or |X| ≤ 1, then we are clearly dealing with a no-instance. Thus from now on,
let us assume otherwise. In particular, it means that every vertex from X is happy in every
list homomorphism from G to P3. Consequently, our task boils down to choosing colors for
vertices of X to make each vertex from Y happy.

Actually, we will design a recursive algorithm that solves a slightly more general problem,
where we are additionally given a function σ : Y → 2{1,3}. We are looking for a list
homomorphism h : (G, L) → P3, such that for every y ∈ Y it holds that σ(y) ⊆ h(NG(y)).
Initially, we have σ(y) = {1, 3} for every y ∈ Y . Thus, the returned homomorphism is indeed
locally surjective. During the course of the algorithm, we will modify the sets σ to keep track
of the colors seen by vertices in Y in the part of the graph that was removed.

Each recursive call starts with a preprocessing phase. First, we exhaustively apply the
following steps. If there is some x ∈ X with L(x) = ∅, then we immediately terminate the
recursive call and report a no-instance. If there is some y ∈ Y with σ(y) = ∅, then we can
safely remove y from the graph. If there is some x ∈ X with |L(x)| = 1, then we remove the
element of L(x) from the sets σ of all neighbors of x, and remove x from the graph.

If none of the above steps can be applied and G has an isolated vertex y ∈ Y (note that
σ(y) ̸= ∅), then we terminate and report a no-instance. The preprocessing phase can clearly
be performed in polynomial time.

Finally, if the graph obtained is disconnected, then we apply the following reasoning to
every connected component independently. Let us still denote the instance by (G, L, σ), and
assume that G is connected.

We consider two cases. First, suppose that there is x ∈ X with deg x > (n log n)1/3. We
branch on choosing the color for x, i.e., we perform two recursive calls of the algorithm,
in one branch setting L(x) = {1}, and in the other L(x) = {3}. Note that at least
deg x/3 ≥ (n log n)1/3/3 neighbors of x have the same set σ. Consequently, in at least one
branch, the sets σ will be reduced for at least (n log n)1/3/3 vertices during the preprocessing
phase. In the other branch, we are guaranteed to have a little progress, too: the vertex
x will be removed from the graph. Let us define the measure µ of the instance as µ :=∑

x∈X |L(x)| +
∑

y∈Y |σ(y)|. Clearly n ≤ µ ≤ 2n. Thus the complexity of this step is given
by the following recursive inequality:

F (µ) ≤ F (µ − 2) + F (µ − (n log n)1/3/3) = µO(µ/(n log n)1/3) = 2O((n log n)2/3).

So now let us assume that for each x ∈ X it holds that deg x < (n log n)1/3. Let Y ′ be the
set of vertices y ∈ Y satisfying deg y ≥ (n log n)2/3. Observe that |E(G)| ≤ |X|·(n log n)1/3 ≤
n4/3 log1/3 n. Consequently, |Y ′| ≤ |E(G)|/(n log n)2/3 ≤ n2/3.

Consider the graph G′ := G − Y ′. As it is an induced subgraph of G, it is (K3, St,t,t)-free.
Furthermore, the maximum degree of G′ is at most (n log n)2/3. Consequently by Theorem 8,
in time 2O((n log n)2/3) we can find a tree decomposition of G′ with width O((n log n)2/3). Let
us modify this tree decomposition by adding the set Y ′ to every bag – this way we obtain a
tree decomposition of G with width O((n log n)2/3 + n2/3) = O((n log n)2/3).

Using fairly standard dynamic programming on a tree decomposition, we can solve our
auxiliary problem on graphs given with a tree decomposition of width w in time 2O(w) · nO(1).
Indeed, the state of the dynamic programming is the coloring of the vertices from X in

ISAAC 2022
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the current bag and the colors seen by the vertices from Y in the subgraph induced by the
subtree rooted at the current bag (these colors are reflected in sets σ). Thus, the total
number of states to consider is at most 3w (two possibilities for a vertex from X and at most
three for a vertex from Y ).

Consequently, in the second case we obtain the running time 2O((n log n)2/3) +
2O((n log n)2/3) = 2O((n log n)2/3).

Summing up, the overall complexity of the algorithm is 2O((n log n)2/3). This completes
the proof. ◀

Note that every Pt-free graph is also, e.g., St,1,1,-free, so Theorem 9 can also be applied
to Pt-free graphs. Now, let us show a slight generalization of Theorem 9 to the case that we
exclude a forest of paths and subdivided claws.

▶ Theorem 10. For every F ∈ S, the LLSHom(P3) problem in n-vertex F -free graphs can
be solved in time 2O((n log n)2/3).

Sketch of proof. Let F = F1 + F2 + . . . + Fp for some p ≥ 1, where each Fi is a subdivided
claw.

We begin similarly to the algorithm from Theorem 9. Again, we are solving an auxiliary
problem with instance (G, L, σ). First, we check if the instance graph is bipartite, and
otherwise, we reject it. Let the bipartition classes of G be X and Y , and let L(X) ⊆ {1, 3}
and L(Y ) = {2}. Then, we perform the preprocessing phase and the branching phase; note
that in these phases, we do not assume anything about the forbidden induced graph. The
recursion tree has 2O((n log n2/3) leaves, each corresponds to an instance which is (K3, F )-free
and every vertex from X has maximum degree at most (n log n)1/3. Consider one such
instance, for simplicity let us call it (G, L).

We continue as in the proof of Theorem 9 by selecting the set Y ′ ⊆ Y of vertices of degree
at least (n log n)2/3. Recall that |Y ′| ≤ n2/3 and the graph G′ − Y ′ is of maximum degree at
most (n log n)2/3.

Now for each i = 1, . . . , p − 1 we perform the following steps. Let (G′, L′) be an instance
corresponding to a leaf of the recursion tree, with the set Y ′ removed. We check if G′

contains Fi as an induced subgraph, this can be done in polynomial time by the exhaustive
enumeration. If not, then G′ is (K3, Fi)-free and we can call the algorithm given by Theorem 8
and continue exactly as in the proof of Theorem 9.

Thus, let us suppose that there is S ⊆ V (G′), such that G′[S] ≃ Fi. We observe that
|N [S]| = O((n log n)2/3). We exhaustively guess the coloring of N [S] ∩ X, this results in
2O((n log n)1/3) branches. In each branch, we update the sets σ for the neighbors of colored
vertices; in particular we reject if some vertex from y ∈ S ∩ Y does not see some color in
σ(y). Note that each instance is (K3, Fi+1 + . . . , +Fp)-free.

After the last iteration, the instances corresponding to the leaves of the recursion tree are
(K3, Fp)-free, and thus we continue as in the proof of Theorem 9, i.e., use Theorem 8, restore
the set Y ′, and solve the problem by dynamic programming.

The total number of leaves of the recursion tree is at most (here c1, c2 are constants)

2c1·(n log n2/3)︸ ︷︷ ︸
branching on

a high-degree vertex in X

·
p−1∏
i=1

2c2·(n log n2/3)︸ ︷︷ ︸
branching on the neighborhood

of an induced copy of Fi

= 2O((n log n2/3),

each of which corresponds to an instance that is (K3, Fi)-free for some i ∈ [p], and thus can
be solved in time 2O((n log n2/3) as in Theorem 9. ◀
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Now, let us show that the algorithm from Theorem 9 can be used to solve LLSHom(C4)
in Pt-free graphs. The proof of the following lemma is based on a similar argument used by
Okrasa and Rzążewski [34] in the non-list case.

▶ Lemma 11. Let (G, L) be a consistent instance of LLSHom(C4). Then the problem can
be reduced in polynomial time to solving two consistent instances of LLSHom(P3).

Proof. Let the consecutive vertices of C4 be 1, 2, 3, 4. Let the bipartition classes of G be
X, Y , and let L(X) ⊆ {1, 3} and L(Y ) ⊆ {2, 4}.

Define L′, L′′ as follows:

L′(v) =
{

L(v) if v ∈ X,

{2} if v ∈ Y,
and L′′(v) =

{
{1} if v ∈ X,

L(v) if v ∈ Y.

We claim that (G, L) is a yes-instance of LLSHom(C4) if and only if (G, L′) is a yes-instance
of LLSHom(C4[1, 2, 3]) and (G, L′′) is a yes-instance of LLSHom(C4[4, 1, 2]). Note that
both graphs C4[1, 2, 3] and C4[4, 1, 2] are induced three-vertex paths.

First, suppose that there is some h : (G, L) s−→ C4. Let us define h′, h′′ : V (G) → {1, 2, 3, 4}
as follows:

h′(v) =
{

h(v) if v ∈ X,

2 if v ∈ Y,
and h′′(v) =

{
1 if v ∈ X,

h(v) if v ∈ Y.

Let us argue that h′ : (G, L′) s−→ C4[1, 2, 3] and h′′ : (G, L′′) s−→ C4[4, 1, 2]. We prove only the
first claim. The proof of the second one is analogous. First, h′ is clearly a homomorphism.
Furthermore, it satisfies the lists, as for x ∈ X we have h′(x) = h(x) ∈ L′(x) = L(x), and
for y ∈ Y we have h′(y) = 2 ∈ {2} = L′(y). Finally, let us argue that h′ is locally surjective.
For each x ∈ X, there are some y, y′ such that h(y) = 2 and h(y′) = 4, as otherwise h is not
locally surjective. Thus, h′(y) = h′(y′) = 2, which makes x happy in h′. Similarly, for each
y ∈ Y , there are some x, x′ such that h(x) = 1 and h(x′) = 3, as otherwise h is not locally
surjective. Thus, h′(x) = 1 and h′(x′) = 3, which makes y happy in h′.

Now, suppose there are h′ : (G, L′) s−→ C4[1, 2, 3] and h′′ : (G, L′′) s−→ C4[4, 1, 2]. We define
h : V (G) → {1, 2, 3, 4} as follows:

h(v) =
{

h′(v) if v ∈ X,

h′′(v) if v ∈ Y.

Let us argue that h : (G, L) s−→ C4.
First, note that h is a homomorphism, as for every edge xy ∈ E(G), where x ∈ X and

y ∈ Y , we have h(x) ∈ {1, 3} and h(y) ∈ {2, 4}.
Now, observe that h respects the lists L. Indeed, for x ∈ X we have h(x) = h′(x) ∈

L′(x) = L(x) and for y ∈ Y we have h(y) = h′′(y) ∈ L′′(y) = L(y).
Finally, let us argue that h is locally surjective. Consider some x ∈ X; the argument for

vertices in Y is symmetric. Note that h′′(x) = 1. Since h′′ is locally surjective, x has two
neighbors y, y′, such that h′′(y) = 2 and h′′(y′) = 4. Consequently, h(y) = 2 and h(y′) = 4,
which makes x happy in h. This completes the proof. ◀

Combining Lemma 11 with Theorem 10, we immediately obtain the following.

▶ Theorem 12. For every F ∈ S, the LLSHom(C4) in n-vertex F -free graphs can be solved
in time 2O((n log n)2/3).

ISAAC 2022
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4 Hardness for F -free Graphs for F ∈ S

In this section, we will prove the hardness part of Theorem 1, i.e., if H is connected and
H ̸∈ Hpoly ∪ {P3, C4} then there is t such that LLSHom(H) cannot be solved in subex-
ponential time in Pt-free graphs. It easily follows that such H contains at least one of
K◦

2 , K◦◦
2 , K3, P4, K1,3 as an induced subgraph, where K◦

2 and K◦◦
2 are graphs consisting of

an edge with a loop at one or both of its endpoint, respectively. First, we will prove the
theorem for several base cases for H ∈ {K1,3, P4, K◦◦

2 }.

▶ Theorem 13 (♠). For H ∈ {K1,3, P4, K◦◦
2 } the LLSHom(H) problem cannot be solved in

time 2o(n) in n-vertex P14-free graphs, unless the ETH fails. Moreover, the problem is hard
even for instances where all the lists are of size at most 2, and each vertex with a list of size
exactly two has a neighbor with a list of size exactly one.

Then, we will generalize the result for H containing an induced subgraph H ′ ∈ {K1,3, P4, K◦◦
2 }.

The last cases when H contains K◦
2 or K3 as an induced subgraph will follow from the base

cases and Corollary 7 as for such H the graph H∗ contains P4 as an induced subgraph.

4.1 Proof of the Hardness Part of Theorem 1
First, we show a lemma that helps us extend the hardness reductions to all graphs in the
second part of Theorem 1.

▶ Lemma 14. Let H be a graph without isolated vertices and let u, v ∈ V (H). There exists
a graph Z := H × H with lists L and z ∈ V (Z) with L(z) = {u, v} such that there are at
least two homomorphism hu, hv : (Z, L) s−→ H such that hu(z) = u and hv(z) = v.

Proof. First, we define z as (u, v) ∈ V (Z) and set L(z) appropriately. We do not restrict
other lists of V (Z). For vertices (a, b) ∈ V (Z) we define hu ((a, b)) := a and hv ((a, b)) := b.
We verify that hu is indeed a locally surjective list homomorphism. Take an edge (a, b)(c, d) ∈
E(Z). We infer that ac ∈ E(H). For (a, b) ∈ V (Z) there exist d ∈ NH(b) as no vertex is
isolated. Vertex (a, b) is happy as for each c ∈ NH(a) we have an edge (a, b)(c, d) ∈ E(Z)
and so vertex (a, b) is happy. The proof for hv is analogous. ◀

Now, we are ready to prove the hardness part of Theorem 1. In particular, we will show the
following theorem.

▶ Theorem 15. Let H ̸∈ Hpoly ∪ {P3, C4} be a connected graph. Let q be the number of
vertices in the longest induced path in H ×H. There exists t ≤ 14+2q such that LLSHom(H)
cannot be solved in time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

Proof. Let H ̸∈ Hpoly ∪ {P3, C4} be connected. As we stated above, the graph H contains
at least one of K◦

2 , K◦◦
2 , K3, P4, K1,3 as an induced subgraph H ′. Theorem 13 proved the

cases when H ∈ {K1,3, P4, K◦◦
2 }.

First, suppose that H ′ ∈ {K1,3, P4, K◦◦
2 }. We show how to adjust the hardness construc-

tion for H ′ to H. Recall that by Theorem 13 we can assume that the list of each vertex is
of size at most two, and moreover, if v has a list of size exactly two, then v has a neighbor
with a list of size one. Now, we describe how to modify an instance (G′, L′) of LLSHom(H ′)
(called original one) into an equivalent instance (G, L) of LLSHom(H).

Let w be a vertex of G′. First, consider the case that |L(w)| = 1 where {cw} = L(w).
Let Xw := (V (H) \ V (H ′)) ∩ NH(cw). In other words, set Xw represents the neighbors of
cw that are only in H but not in H ′. We add |Xw| disjoint copies of graph H into G with
lists L(y) = {y} for y ∈ V (H). For each c ∈ Xw we connect c in the c-th copy of H with w.
We call c the contact vertex of the respective additional gadget.
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Now, consider the case that |L(w)| = 2. Let {a, b} = L(w). As observed there is a vertex
qw ∈ NG′(w) such that |L(q)| = 1 and let {cq} = L(q). Let Xab

w := (V (H) \ V (H ′))∩NH(a)∩
NH(b). Let Xa

w := (V (H) \ V (H ′))∩NH(a)\Xab
w . Let Xb

w := (V (H) \ V (H ′))∩NH(b)\Xab
w .

Finally, let Xw := Xb
w ∪ Xa

w. In other words, set Xab
w represents common neighbors of a and

b that are only in H and not in H ′. Similarly, set Xa
w is composed of the neighbors of a

which are not the neighbors of b, and the symmetrical is true for set Xb
w.

We add |Xab
w | disjoint copies of graph H into G′ with lists L(y) = {y} for y ∈ V (H). We

call those copies of H additional gadgets. For each c ∈ Xab
w , we connect c in the c-th copy

of H with w. We call c the contact vertex. We use Lemma 14 and we add |Xw| copies of
the graph Zw into G′. We connect w with a special vertex z ∈ V (Zw). For each c ∈ Xw,
we define L(z) := {c, cq} in the c-th copy of Zw. Again, we say that c is the contact vertex
and a copy of Zw is a non-trivial additional gadget. Consult Figure 1 for an overview of the
construction.

HH ′ ⊆

an edge of G′

{cw} {a, b}
cw a

b
β γ

α

H

{cw} {a}

{b} {β}
{γ}

{α}

c

{c}

{cw, γ}

{c}

H

{cw} {a}

{b} {β}
{γ}

{α}

{c}{c}

Zw′ = H ×H
{cw, α}

w w′

Xw

Xab
w′ Xa

w′

Xb
w′

Zw′ = H ×H

Figure 1 An example of constuction of (G, L) shown on one edge w, w′ of (G′, L′). The added
gadgets are attached using red dash-dotted edges.

It is easy to verify that the additional gadgets always allow us to make the original
vertices of the construction happy regarding the vertices outside H ′ as we added one copy of
an additional gadget per vertex v of H ′ per each color (c ∈ NH(v) \ V (H ′)) v need to see in
its neighborhood in construction of G. The above is the first property. On the other hand,
the additional gadgets never allow the contact vertices to be mapped to any vertex of H

except for the ones that are already seen in the neighborhood within the original construction
(which happens only in the case of non-trivial additional gadgets), we call it the second
property. By the construction, this exception happens only when the original vertex v had a
list of size two (in G′) L(v) = {c1, c2} and the color c1 ∈ H ′ had a private neighbor q (with
respect to the other color) outside of H ′, i.e. q ∈ NH(c1) \ NH(c1) \ V (H ′). In this case, the
non-trivial additional gadget may allow mapping its contact vertex to the color of u ∈ NG′(v)
which has the list of size exactly one (such a vertex always exists by the assumptions on the
hardness construction of G′). Moreover, observe that regardless of what color is assigned
to a vertex v in the yes-instance of G′, there is always a valid (respecting homomorphism)
color to map vertex u ∈ V (G) \ V (G′). We call it the third property. Note that we do not
need to argue about vertices within the additional gadgets as the mapping for them always
exists, and it makes all their vertices happy regardless of the mapping of G′ by Lemma 14
for non-trivial additional gadgets (and by trivial reasons for the rest).

ISAAC 2022
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Whenever we have a yes-instance (G′, L′) of LLSHom(H ′), we obtain a yes-instance
(G, L) of LLSHom(H) as a conclusion of the first and third properties allowing all vertices
(of G) to be happy and mapped correctly. Conversely, whenever we have a yes-instance
(G, L) of LLSHom(H), we obtain a yes-instance (G′, L′) of LLSHom(H ′). Indeed, if we
restrict to the vertices of G′ only (those are always mapped to H ′), they must be already
happy without any help from vertices in V (G) \ V (G′) by the second property (the restricted
mapping is a homomorphism trivially). Therefore, we conclude that the newly constructed
instance (G, L) is equivalent to the original one, i.e., (G′, L′).

Observe that the length of the longest induced path in G is the length of the longest path
in G′ plus twice the length of the longest path in H × H, which we denoted as q.

It remains to show what to do if H ′ ∈ {K◦
2 , K3} is an induced subgraph of H. As H is

non-bipartite, we create a connected bipartite graph H∗. Now, observe that if H ′ = K◦
2 then

H∗ contains P4. Further, if H ′ = K3 then H∗ contains C6 and so P4. As in the case of H∗

containing a P4, we already proved hardness, the hardness for H follows by Corollary 7. ◀

5 Concluding Remarks

Let us conclude the paper with discussing some potential ways to strengthen our results.
First of all, we believe that the cases covered by the algorithmic statement in Theorem 1
are actually polynomial-time solvable. Furthermore, we think the hardness counterpart of
Theorem 1, as well as Theorem 2, hold even in the non-list setting, i.e., for LSHom(H).

Next, recall that in the hardness part of Theorem 1, the length t of the forbidden induced
path depends on H. One might wonder if it is possible to find t, such that for every
H /∈ Hpoly ∪ {P3, C4}, the LLSHom(H) problem is hard in Pt-free graphs.

Suppose that such a t exists and consider H = Pt with consecutive vertices 1, . . . , t.
Without loss of generality, we may assume that t ≥ 4. Consider a locally surjective
homomorphism h from G to Pt. Note that h is in particular surjective, so there exists a
vertex v1 mapped to 1. By local surjectivity of h, there must be a neighbor v2 of v1 mapped
to 2, a neighbor v3 of v2 mapped to 3, and so on. Note that v1, v2, . . . , vt is a path in G.
Furthermore, this path is induced, as otherwise h is not a homomorphism. Consequently,
every yes-instance of LSHom(Pt) (and thus of LLSHom(Pt)) contains an induced t-vertex
path. This means that LLSHom(Pt) is polynomial-time solvable (and actually trivial) in
Pt-free graphs. On the other hand, Pt /∈ Hpoly ∪ {P3, C4}, so by Theorem 1 (2.) there exists
some t′, for which the problem is hard in Pt′ -free graphs.

Moreover, recall that in Theorem 2 the degree bound on F depends on H. Again, one
might wonder if this is necessary. However, every yes-instance of LSHom(H) must contain a
vertex of degree ∆(H), as some vertex v of G must be mapped to a maximum-degree vertex
a of H, and all vertices from NH(a) must appear on the set NG(v). Consequently, we cannot
hope for a universal upper bound on the degree of G in the proof of Theorem 2.

The above two examples show that obtaining the full characterization of pairs (H, F ), for
which LLSHom(H) admits a subexponential-time algorithm in F -free graphs, would be a
tedious task. One can probably start with some small graphs F . Let us point out that if
F = P4, then LLSHom(H) is polynomial-time solvable for every H. Indeed, P4-free graphs,
also known as cographs, have bounded cliquewidth and the result follows from the celebrated
meta-theorem for bounded-cliquewidth graphs by Courcelle, Makowsky, and Rotics [8].
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