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Abstract
We study a variant of the geometric multicut problem, where we are given a set P of colored and
pairwise interior-disjoint polygons in the plane. The objective is to compute a set of simple closed
polygon boundaries (fences) that separate the polygons in such a way that any two polygons that
are enclosed by the same fence have the same color, and the total number of links of all fences is
minimized. We call this the minimum link fencing (MLF) problem and consider the natural case of
bounded minimum link fencing (BMLF), where P contains a polygon Q that is unbounded in all
directions and can be seen as an outer polygon. We show that BMLF is NP-hard in general and that
it is XP-time solvable when each fence contains at most two polygons and the number of segments
per fence is the parameter. Finally, we present an O(n log n)-time algorithm for the case that the
convex hull of P \ {Q} does not intersect Q.
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1 Introduction

In the geometric multicut problem [2], we are given κ disjoint sets of polygons in the plane,
each with a different color, and are asked for a subdivision of the plane such that no cell
of the subdivision contains multiple colors. The goal is to minimize the total length of the
subdivision edges.

A different kind of separation is achieved in the polygon nesting problem [3], where for two
polygons P and Q with P ⊂ Q one asks for a polygon P ′ with the smallest number of links,
s.t. P ⊂ P ′ ⊂ Q. There exists a series of work that addressed the algorithmic complexity of
nesting problems for various polygon families [3, 5, 9, 12,13]. See Section 1.2 for more detail.
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34:2 Minimum Link Fencing

Figure 1 Two sets of polygons in the plane (left) with different colors (green and yellow). The
yellow set effectively acts as an outer polygon with holes. Separating the two sets with, possibly
intersecting, individual fences (middle) can lead to significantly more links in the fences (here 16)
than grouping same-colored polygons (right), which achieves this with just seven links.

In this paper, we consider a variant of geometric multicut inspired by polygon nesting,
where we separate the sets from each other with a set of closed polygon boundaries called
fences, which enclose only polygons of one color and have the smallest possible number of
links. If one or more sets are not connected, we need to solve the combinatorial problem of
choosing which polygons should be grouped in each fence. Figure 1 illustrates the problem.
Some variants of the fencing problem already become NP-hard for point objects with two
colors, e.g., if we require the fence to be a single closed curve [6].

In this paper, we assume the input sets are collections of polygons, one color covers
the plane minus a single polygonal hole (the outer polygon, a parallel to polygon nesting),
and we will focus on the case κ = 2 of two colors. We use n to denote the total number
of corners of the input polygons. Even in this simple setting the problem turns out to be
non-trivial. If both sets are connected, then the problem is equivalent to finding a minimal
nested polygon, which can be solved in O(n log n) time [3]. If both sets are not connected we
show this problem to be NP-hard in Section 2. Note the contrast to the geometric multicut
problem, which is polynomially solvable for κ = 2 [1] but becomes NP-hard when κ = 3 [2].
In Section 3 we show that, when restricting every fence to contain at most two polygons, the
problem admits an XP-algorithm when parameterized by the maximal number of segments
per fence, a result which holds for any κ. Finally, in Section 4, we show that the problem
is polynomial-time solvable if the convex hull of the second color (the inner polygons) is
contained in the outer polygon and the first color is connected.

1.1 Problem Definition
Throughout this paper we consider polygons in R2 without self-intersections but potentially
with holes. Moreover, we consider a polygon as the boundary together with its interior,
unless stated otherwise. We consider the following problem.

▶ Definition 1 (Minimum Link Fencing (MLF)). We are given n pairwise interior-disjoint
polygons P = {P1, . . . , P|P|} in the plane, with a coloring function f : P → {1, . . . , κ}, which
assigns a color to every input polygon. We write Pi = {P | f(P ) = i}. We want to find a set
of simple closed polygon boundaries F = {F1, . . . , Fm} such that the total number of links |F |
on the boundary of F =

⋃k
i=1 Fi is minimized and if two polygons Pa and Pb are enclosed

by the same fence or are both in R2 \
⋃k

i=1 Fi, where Fi is the polygon bounded by Fi, then
f(Pa) = f(Pb). We call Fi a fence and F a minimum link fencing of P.

Note the important difference in Definition 1 between F , which is the set of all fences of a
solution, and F , which is the union over all fences, i.e., one (possibly disconnected) polygon.
Thus |F| is the number of fences and |F | is the number of all segments in these fences.
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(a) BMLF (b) SMLF (c) CMLF

Figure 2 Different problem inputs corresponding to (a) BMLF, (b) SMLF and (c) CMLF. In (b)
and (c) the convex hull of all input polygons indicated in gray.

Throughout the paper we refer to R2 \
⋃|P|

i=1 Pi as the free space (between polygons). We
refer to P, which contains polygons of κ different colors, as κ-colored and to the problem
setting as the κ-colored problem. We consider several problem variations.

If there exists a polygon Q ∈ P which is unbounded in every direction, i.e. R2 \ Q is
finite, this polygon Q effectively acts as an outer boundary. In this case we call the problem
Bounded Minimum Link Fencing (BMLF). We denote the polygon Q as the outer polygon.
As a consequence, the size of the outer polygon automatically bounds the length of any link
in a fence. Else, in general, one fence could conain a very long link, while retaining small
complexity when counting the number of links only. Note that Q can be emulated in an
instance of Minimum Link Fencing, by adding a large rectangular polygon Pc \ (R2 \ Q),
i.e., a large rectangle, of which the area, which did not belong to Q is cut out (light blue
channel in Figure 2a). If Q is the only polygon of its color f(Q) we call this setting Simply
Bounded Minimum Link Fencing (SMLF). Moreover, if in an instance of SMLF we have
CH(

⋃κ
i=1 Pi \ Q) ⊂ R2 \ Q, i.e., the convex hull of all input polygons except Q does not

intersect Q, we speak of Convex Bounded Minimum Link Fencing (CMLF). The differences
are illustrated in Figure 2.

1.2 Related Work
Despite the fact that the problem is natural and fundamental, little previous work exists.
The problem of enclosing a set of objects by a shortest system of fences has recently been
considered with a single set B1 [1]. The task is to “enclose” the components of B1 by a
shortest system of fences. This can be formulated as a special case of our problem with κ = 2
colors: We add an additional set B2, far away from B1 and large enough so that it is never
optimal to surround B2. Thus, we have to enclose all components of B1 and separate them
from the unbounded region. In this setting, there will be no nested fences. Abrahamsen et
al. [1] gave an O(n polylog n)-time algorithm for inputs that consist of n unit disks.

Some variations with additional constraints on the fence become NP-hard already for
point objects with two colors. For example, if we require the fence to be a single closed curve,
it has been observed by Eades and Rappaport [6] already in 1993 that one can model the
Euclidean Traveling Salesman Problem of computing the shortest tour through a given set of
sites by placing two tiny objects of opposite color next to each site. If we require the fence to
be connected, the same construction will lead to the Euclidean Steiner Tree Problem, which
was shown to be NP-hard by Garey et al. in 1977 [8].

Polygon Nesting & Separation. Polygon nesting is considered to be a fundamental problem
in computational geometry, and has been extensively studied since its inception. Aggarwal et
al. [3] considered the problem of finding a polygon nested between two given convex polygons
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that has a minimal number of vertices. They gave an O(n log k) time algorithm for solving
the problem, where n is the total number of vertices of the given polygons, and k is the
number of vertices of a minimal nested polygon. Das [5] considered a variant of MLF in
his thesis, which restricts every fence to enclose exactly one polygon, and showed that the
problem is NP-hard. Given a polygon Q of m vertices inside another polygon P of n vertices,
Ghosh [9] gave an O((n + m) log k) time algorithm for constructing a minimum nested convex
polygon, where k is the number of vertices of the output polygon, improving upon the
O((n + m) log(n + m)) time algorithm of Wang and Chan [14]. However, on the other hand,
given a family of disjoint polygons P1, P2, . . . , Pk in the plane, and an integer parameter m,
it is NP-complete to decide if the Pi’s can be pairwise separated by a polygonal family with
at most m edges. Mitchell and Suri [12] presented efficient approximation algorithms for
constructing separating families of near-optimal size.

Full proofs of statements marked by (⋆) are found in the full paper [4].

2 Two-colored BMLF is NP-hard

In this section we will call polygons of color 1 boundary polygons and polygons of color
2 inner polygons. An instance of planar 3, 4-SATconsists of a Boolean CNF-formula ϕ

with a set of variables V = {v1, . . . , vn} and a set of clauses C ⊂ 2V , s.t. every clause is a
disjunction of three literals and every variable occurs at most four times as a literal in a
clause. Additionally, we are given the embedded plane incidence graph Gϕ = (V ∪ C, E),
where E = {vc | v ∈ V, c ∈ C, v occurs as a literal in c}. It is known that deciding if a
3, 4-SAT-formula has a satisfying assignment is NP-complete [11].

Given an instance of planar 3, 4-SAT we create an instance of 2-colored BMLF P , emulating
the shape of Gϕ with one unbounded outer polygon Q and multiple boundary polygons of
the same color f(Q) = 1 (Figure 3), s.t. ϕ is satisfiable if and only if there exists a minimum
link fencing for P with at most a certain fixed number of total segments.

Note that each gadget is described as a basic construction of gray polygons, in which
inner polygons are placed. This is possible, because we will invert all gray polygons at the
end of the reduction, s.t. the area of their union makes up exactly the actual free space of our
entire construction, see Figure 3. Stating that fences are computed inside the gray polygons
should be understood as fences being placed in the free space between polygons. Throughout
this reduction we distinguish fences based on the inner polygons they include. We call two
fences F and F ′ congruent, if and only if they enclose the same set of inner polygons. We
call two fencings F and F ′ congruent if there is a bijective mapping f : F → F ′, s.t., every
F ∈ F is congruent to f(F ) ∈ F ′.

Let P be an instance of BMLF and S1, S2, and S3 disjoint connected subsets of R2\∪P ∈PP .
We call the ordered set S = {S1, S2, S3} a non-collinear triple if there are no three points
p1 ∈ S1, p2 ∈ S2, and p3 ∈ S3 such that the straight-line segment s from p1 to p3 contains
p2 and s lies completely inside R2 \ ∪P ∈PP . The choice of S2 only matters if there exists
a straight-line segment in R2 \ ∪P ∈PP connecting points in S1 and S3. Therefore we can
often omit S2 from the description of the triple or assume it as arbitrarily chosen. We call
S2 the bend-set of S. Let F be a fencing of P , and S1, S2, and S3 a non-collinear triple. We
say a fence F ∈ F crosses the triple {S1, S2, S3} if the boundary of F contains at least one
point pi from each set Si for i = 1, 2, 3 and there is a cyclic traversal of the boundary of F

in which we see first p1, then p2 and finally p3. We write ]S1, S3[ to denote the part of the
boundary of F that lies in between p1 and p3 and contains p2.
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v1 v2 v3 v4

c2
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v1 v2 v3 v4
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Q

Figure 3 A (schematized) complete construction for a small instance (v1 ∨v2 ∨¬v3)∧(v1 ∨v3 ∨v4).
The incidence graph is shown in the top right. Fences are highlighted in green. Also note that the
boundary polygons make up most of the available area including an unbounded outer polygon Q as
shown in the bottom right corner. For better readability, we will invert these colors in all subsequent
figures.

▶ Observation 2. Any fence in a fencing for an instance of BMLF crossing a non-collinear
triple {S1, S2, S3} contains at least one bend in the interval ]S1, S3[.

For t > 0 let S1, . . . , St be non-collinear triples that are crossed by a fence F of a fencing
F for some instance of BMLF. Let Si = {Sj , Sj+1, Sj+2} for i = 1, . . . , t and j = 3(i − 1) + 1.
We say that the triples are crossed by F in-order if there exist points pi on F such that pi is
in the bend-set of Si and there exists a cyclic traversal of F in which we see the points pi in
order of their indices. Without loss of generality we will assume throughout that when F

crosses S1, . . . , St in-order it always crosses for some Si first the set Si, then the bend-set
Si+1, and finally Si+2. We write ]Sa, Sb[ with a < b and a = 1, . . . , 3t − 1 for the part of the
boundary of F that lies between a point pa ∈ Sa and pb ∈ Sb such that there exist points
pa, . . . , pb with pi ∈ Si that we see in this order in a cyclic traversal of F . For a segment s of
F we say it is completely contained in ]Sa, Sb[ if the start- and endpoint of s are contained
in ]Sa, Sb[ for any choice of points pa and pb.

We say two non-collinear triples S = {S1, S2, S3} and S ′ = {S′
1, S′

2, S′
3} are non-

overlapping if there exist no two segments that intersect all six elements of S ∪ S ′ in
order S1, S2, S3, S′

1, S′
2, S′

3. In other words we require at least three different straight-line
segments to connect a point p1 ∈ S1 with a point p6 ∈ S′

3 and containing points p2 ∈ S2,
p3 ∈ S3, p4 ∈ S′

1, and p5 ∈ S′
2 in order of their indices. Observe that by this definition

the non-collinear triples {S1, S2, S3} and its reverse {S3, S2, S1} are non-overlapping. For a
sequence of non-collinear triples S1, . . . , St we say that the triples are non-overlapping if Si

is non-overlapping with Si+1 for i = 1, . . . , t + 1 mod t.
Observation 2 together with the definition of non-overlapping gives the following.

▶ Observation 3. Any fence in a fencing for an instance of BMLF crossing t > 0 non-
overlapping non-collinear triples Si = {Sj , Sj+1, Sj+2} for i = 1, . . . , t and j = 3(i − 1) + 1
in-order contains at least t bends and therefore at least t − 1 complete straight-line segments.
in the interval ]S1, S3t[.

We can now show a lower bound for the number of links a minimum-link fence uses in
any solution of a BMLF instance. The lower bound essentially follows from Observation 3
after observing that the segment closing the fence can never reuse one of the t − 1 segments
that lie completely inside the sequence of non-collinear triples.

ISAAC 2022
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ε ε

ε

(a) Variable gadget construction with ε-gaps. (b) Fencing for true-state. (c) Fencing for false-state.

Figure 4 The variable gadget and its two possible fencings.

▶ Lemma 4 (⋆). Let P be an instance of BMLF and F a minimum-link fencing for P, then
any fence F ∈ F that crosses t > 0 non-overlapping non-collinear triples in-order consists of
at least t straight-line segments.

2.1 Variable gadget
Every variable gadget consists of eight T-polygons (two per clause in which the variable
can occur). Figure 4a illustrates the construction; T-polygons are marked in gray. Every
T-polygon has an isosceles triangle as the arm of the T (the horizontal part of the T shape)
and a spike (alternatively called a true spike and a false spike) protruding from the arm and
two consecutive polygons overlap at the end of their arms. For every variable v ∈ V, we
construct a variable gadget G(v) as a circular arrangement of eight overlapping T-polygons.

For every pair of overlapping T-polygons A and B, we place an inner polygon P , s.t.
P ⊂ A ∩ B. Let us fix some A, B, and P as above, then we place P such that its three
corner points have only a very small distance ε > 0 to some corner point of A ∩ B. All three
ε-length segments between a corner point of P and the closest corner point of A ∩ B have to
be crossed by every fence enclosing P .

Crucially, the variable gadget has only two minimum link fencings. These two states are
shown in Figure 4. We associate the one shown in Figure 4b to the variable gadget encoding
the value true and the one shown in Figure 4c to encoding false.

▶ Lemma 5 (⋆). There are exactly two minimum link fencings Ft and Ff of the variable
gadget, both of which will enclose only triangles in the same T-polygon with each fence,
resulting in a fencing with 12 links for the whole variable gadget, s.t. every other minimum
link fencing is congruent to either Ft or Ff .

2.2 Clause gadget
For every clause c ∈ C in which three variables v1, v2, v3 occur either as a positive or a
negative literal, we create a clause gadget G(c). A clause gadget consists of three chains of
an even number of gray triangles. These triangles are placed s.t. their hypotenuses intersect
at an angle of at most π as shown in Figure 5a. The triangles are sufficiently long and thin,
s.t., we can define two sets in every gray triangle (one to either side of the central line),
s.t., the second set a′ of the i-th triangle and the first set b of the (i + 1)-th triangle form a
non-collinear triple. By construction the non-collinear triple between the (i − 1)-th and the
i-th triangle and the one between the i-th and the (i + 1)-th triangle are non-overlapping.

We place the three chains such that the three first triangles of the chains have a common
intersection. Moreover, they intersect in such a way that their hypotenuses pairwise form 2π

3
angles (Figure 5b). The last gray triangle of the first, second and third chain intersect a spike
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aaaaaaaaaaaaaaaaa
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<π

(a) (b)

Figure 5 Wires are constructed from consecutive gray triangles places such that two consecutive
triangles always contain a non-collinear triple, which are pairwise non-overlapping.

of G(v1), G(v2) and G(v3), respectively. They intersect a true or false spike if the variable
occurs as a positive or negative literal, respectively. We refer to each chain of gray polygons
as a wire. The length of a wire is the number of gray triangles in its corresponding chain.

Let W1, W2, and W3 be the wires of a clause gadget G(c) for clause c, where Wi intersects
the spike of G(vi) for i ∈ {1, 2, 3}. We place an inner triangle, denoted the clause triangle
Bc of G(c), in the overlap of W1, W2, and W3. Moreover, for wire Wi with gray triangles
T i

j we place inner triangles Bi
j in the overlap of the j-th and (j + 1)-th gray triangle of the

respective wire and a final triangle in the intersection with the spike of G(vi). In the following
we write T1, . . . , Tk for the gray triangles and B1, . . . , Bk for the inner polygons of one wire
Wi, if i is clear from the context. Hence, inner triangle Bi is contained in the gray triangles
Ti and Ti+1 and gray triangle Ti for i > 1 contains the inner triangles Bi and Bi+1.

Let B1, . . . , Bk be the inner polygons of a wire and F a fence containing Bi and Bj for
some i < j − 1 and i = 1, . . . , k − 2 but not Bz for i < z < j, then we say F bypasses Bz. For
indices 1 ≤ i1 < i2 < j1 < j2 ≤ k, we say two fences F1 and F2 containing some polygons of
the wire interleave if Bi1 and Bj1 are in F1 and F1 bypasses Bi2 as well as Bi2 and Bj2 are
in F2 and F1 bypasses Bj1 .

Let F be a fence of a minimum link fencing F for a clause gadget G(c). Let s be a
segment contained in the union of the gray triangles that form G(c) such that F crosses s

in two points p and q. Then splitting F at s means the following. Delete F in an ε-region
around p and q this creates two polygonal-chains, say F ′ and F ′′ with endpoints p′ and q′

on one side of s and p′′ and q′′ on the other. Connect p′ with q′ and p′′ with q′′ to form the
two new fences F ′ and F ′′. Clearly, |F ′| + |F ′′| = |F | + 2.

One isolated wire

For the following we fix an arbitrary clause c. Let G(c) be the clause gadget of c and W one
of the wires of G(c) with inner polygons B1, . . . , Bk. We denote as isolated wire the gray
triangles of the chain of W that do not contain the clause triangle.

We are interested in how a minimum link fencing of an isolated wire looks like. Crucially,
we first show that a fence of a minimum link fencing of an isolated wire cannot bypass any
inner polygon of an inner polygon.

▶ Lemma 6 (⋆). A minimum link fence F of an isolated wire W of G(c) does not contain a
fence F ∈ F such that F bypasses an inner polygon Bi with i ∈ {2, . . . , k − 1} of W .

In the following we are going to bound the number of consecutive polygons that are
contained in one minimum link fence of an isolated wire. We compare this then to a fence
containing all inner polygons of an isolated wire. Such a fence, by construction, contains

ISAAC 2022



34:8 Minimum Link Fencing

Figure 6 Non-colinear triples in a fence including a series of consecutive inner polygons.

2z non-collinear triples and hence requires 2z segments by Lemma 4. Figure 6 shows these
triples. Constructing such a fence is straight-forward by following these non-collinear triples.
The following lemma summarizes this statement.

▶ Lemma 7. Let F be a minimum link fencing of an isolated wire W of G(c), any fence
F ∈ F that contains z > 2 consecutive inner polygons of W has at least 2z segments and
such a fence exists.

▶ Lemma 8. Let F be a minimum link fencing of an isolated wire W of G(c), then every
fence of F contains at most three consecutive inner polygons.

Proof. Let B1, . . . , Bk be the inner polygons of W . By Lemma 6 we can assume that the
inner polygons of W contained in F are consecutive in the sequence of inner polygons. Let
F ∈ F be a fence containing z > 3 inner polygons of W .

By Lemma 7 we know that F consists of 2z segments. We replace F with a fence F1
including the two first polygons included in F and a fence F2 including all z − 2 following
inner polygons. Again by Lemma 7 it follows that |F2| = 2z − 4 and it holds that |F1| = 3.
In sum, we get that |F1| + |F2| = 2z − 4 + 3 = 2z − 1 ≤ |F |, a contradiction. ◀

Lemmas 7 and 8 now lead to a characterization of minimum link fences of isolated wires.

▶ Lemma 9 (⋆). Let F be a minimum link fencing of an isolated wire W of G(c) with k inner
polygons, then F has in total 3k/2 segments and F ∈ F contains exactly two consecutive
inner polygons Bi and Bi+1 for i odd.

Integrating the clause triangle

So far we only considered one arbitrary isolated wire of G(c). To put things together we need
to consider the interaction of the three wires of G(c). Specifically, we need to show that no
fence in a minimum link fencing of G(c) contains inner polygons from two different wires.

We extend the definition of bypassing an inner polygon of a wire to a whole clause gadget.
Let F be a fence for G(c), then F bypasses an inner polygon Bi

j of wire Wi of G(c) if F

contains the clause triangle Bc or some inner polygon of a wire Wi′ with i′ ≠ i and F contains
Bi

l for wire Wi with l > j. We say F bypasses the clause triangle of G(c) if F contains inner
polygons of at least two different wires of G(c) but not the clause triangle Bc of G(c).

As for an isolated wire we can show that no inner polygon for a whole clause gadget can
be bypassed. This can be seen after observing that no fence can bypass the inner polygons
of an isolated wire without violating Lemma 6. The remainder of the proof is then a careful
case enumeration, which can be found in the full paper [4].

▶ Lemma 10 (⋆). Let F be a minimum link fencing of G(c) and B1, . . . , Bk the inner
polygons of one of the wires of G(c). Then there is no fence F ∈ F that bypasses an inner
polygon Bi with i ∈ {1, . . . , k − 1}.
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(a) G(v) in correct state. (b) G(v) in incorrect state.

Figure 7 If G(v) is in the correct truth state (a) inclusion of the first inner polygon of G(v, c)
induces an additional cost of two links, otherwise (b) the additional cost is at least three.

Finally, we show that no minimum link fence of a clause gadget can ever fence two
polygons that are in different wires. Again, this is shown essentially via a case enumeration
that considers how a minimum link fence includes the first two to three polygons of each
wire together with the clause triangle. In each case we can conclude that there exists a fence
with fewer segments that in fact does not use the inner polygons of two distinct wires.

▶ Lemma 11 (⋆). Let F be an optimal fencing of a clause gadget, then there exists no fence
F ∈ F , which includes inner polygons belonging to two different wires.

We can now use Lemma 11 to argue that the clause triangle is only included in a fence
together with inner polygons of at most one wire. We say that such a wire is in a satisfying
state. The other two wires should therefore, by Lemma 9, only use fences including two inner
polygons; leading to 3(ka+kb+kc)

2 + 3 segments in total (ka, kb and kc being the number of
inner polygons in the wires). If we include the clause triangle in a fence of a wire, we get the
same amount of segments, however, we can choose fences, s.t., the last inner polygon of the
wire which fences the clause triangle, is fenced alone. This will be crucial in the argument of
how the wires and therefore the clause gadget interacts with the variable gadget.

Interaction with the variable gadgets

It remains to describe the interaction between the variable and clause gadgets. Depending
on the state of the variable gadget we can fence the last inner polygon of a wire in the fence
of a variable gadget. We provide a fence with 5 segments (i.e., two additional ones) for the
case, where the variable gadget is in the correct state and the existence of six non-collinear
triples for the other case, see Figure 7.

▶ Lemma 12. The last inner polygon of a wire can be included in a fence of the variable
gadget, whose spike it is connected to for the cost of two additional segments if the variable
gadget is in the correct state and at least three additional segments otherwise.

Concluding the interaction between clause and variable gadget we show that given a
variable gadget is in the correct state w.r.t. a clause gadget we can fence the inner polygons
of the wires of a clause gadget using 3/2 segments per polygon and adding only two segments
to the fence of the variable gadget.

▶ Lemma 13 (⋆). If and only if at least one of the connected variable gadgets is in the
correct state, the clause gadget can be fenced with a total of 3(ka+kb+kc)

2 segments plus two
additional segments to a fence of the variable gadget, which is connected to the wire in the
satisfying state.
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Correctness

It remains to argue the correctness of our reduction which then implies our main theorem.

▶ Theorem 14 (⋆). Two-colored BMLF is NP-hard even when restricting all fences to include
at most three polygons.

Proof sketch. For an instance ϕ of planar 3, 4-SAT, we construct a variable gadget for
every variable and connect the clause gadgets accordingly. By construction any fencing
with |V| · 12 +

∑
c∈C( 3(kc)

2 + 2) segments, requires one wire of every clause gadget to be
in a satisfying state. The connected variable gadget is forced into the true or false state,
depending on the connected spike. This implies a satisfying variable assignment for ϕ.

Conversely, since every variable is either true or false and for every clause there is a true
literal, we can set all variable gadgets into the true or false state according to the assignment
and are guaranteed to be able to put exactly one wire per clause gadget into a satisfying
state for an additional cost of exactly two. ◀

3 An XP-algorithm for BMLF with at most two polygons in each fence

In Section 2 we showed that BMLF is NP-hard when there are only two colors, each fence
contains at most three polygons, and each fence consists of at most five links. In contrast, we
are going to show in this section that BMLF can be solved in XP-time when parameterizing
the problem by the maximum number of links in any fence and allowing at most two polygons
per fence, i.e., the problem can be solved in polynomial-time when fixing the maximum
number of links in any fence and restricting each fence to contain at most two polygons.

For our algorithm we make use of the following result derived from the work of Hershberger
and Snoeyink [10]. It allows us to compute for a given loop, i.e., a closed polygonal curve,
inside a polygon with holes, a minimum-link loop of the same homotopy in time O(nk),
where n is the complexity of the polygon and k is the size of the resulting fence.

▶ Theorem 15 (Derived from Section 5.2 [10]). Given a polygon P without self-intersections
but potentially with holes of complexity n, an integer k, and a loop α lying in the interior
of P with O(nk) corners, we can decide in time O(nk) if there exists a loop α′ of the same
homotopy-class as α with at most k links.

▶ Remark 16. It is worth noting that in the paper by Hershberger and Snoeyink [10]
Theorem 15 is only stated in text. The runtime is given as O(Cα + ∆α + ∆α′), where Cα is
the complexity of α, the free space between polygons is assumed to be triangulated and ∆α

and ∆α′ are the number of triangulation edges intersected by α and the fence α′, respectively.
However an example of an instance with multiple obstacles is given, in which ∆α′ ∈ Ω(nk),
where n is the number of corners over all polygons. Since in our scenario we can find a path
α s.t. Cα ∈ O(nk) and ∆α ∈ O(nk), we can make the assumption that α′’s complexity is in
O(nk).

Let P be a polygon without self-intersections. We denote with TP = {T1, . . . , Tz} a
triangulation of P with triangles T1, . . . , Tz. Note that we do not require any further
properties of TP . If P is clear from the context we omit it and set T = TP . Let T1, T2 ∈ T be
two triangles and let l be a line segment with endpoints p and q such that p ∈ T1 and q ∈ T2.
We call l a splitting segment. Consider Figure 8a for an example for T1 and T2 if l contains
no points of R2 \ P . Intuitively, a splitting segment separates the holes that intersect the
convex hull of T1 ∪ T2 into two sets. Let H be all the holes of P that intersect or are fully
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T1

T2

l

lc

C

(a) A splitting segment lc equivalent to l and bitangent to two holes. (b) Bitangents.

Figure 8 (a) We can obtain the splitting segment lc from a splitting segment l by rotating l

clockwise until it is a bitangent to two holes. (b) Any pair of two polygons admits at most four
bitangents, only one of which can not be rotated clockwise without intersecting one of the polygons.

contained in the interior of the convex hull of T1 ∪ T2. We say that a hole H ∈ H is to the
left (right) of l if the from p to q oriented supporting line of l leaves H in the left (right)
half-plane. We call two splitting segments of T1 and T2 equivalent if the same holes of H are
to their respective left and right. Segments which intersect holes are not splitting segments.

▶ Lemma 17 (⋆). Let P be a polygon without self-intersection, H a set of holes and T a
triangulation of P . Then for every pair of triangles T1, T2 ∈ T with T1 ≠ T2 there are at
most 4|H|2 different equivalence classes of splitting segments.

▶ Theorem 18 (⋆). Given an instance P of BMLF with outer polygon Q ∈ P, we can decide
in time O(kn2k+4) if a minimum link fencing F of P exists, in which every fence contains
at most two polygons, each fence in the fencing has at most k segments, and n is the number
of corners in P.

Proof sketch. For each polygon and for each pair of polygons we compute a minimum-link
fence. Let λuv be the number of links for a minimum link fence containing Pu, Pv ∈ P and λu

the number of links for a minimum link fence containing only Pu ∈ P. Consider a complete
graph G containing one vertex u for each polygon Pu ∈ P and one more vertex x if |P| is
odd. Set the edge-weights w(u, v) = min{λuv, λu + λv} and w(x, u) = λu for Pu, Pv ∈ P. If
for some Pu ∈ P or pair Pu, Pv ∈ P no fence with ≤ k segments exists we remove that edge.
Computing a minimum weight perfect matching in this graph yields a minimum link fencing.

It remains to compute the minimum-link fences for each polygon and for each pair of
polygons of P . We consider a triangulation T of the free space of P . For one single polygon we
construct a plane loop around it by just traversing the incident triangles in the triangulation.
To compute the minimum link fence for a pair of polygons in P we need to do more work.
Since T contains only O(n) triangles we can branch over the O(nk) ordered k-tuples of
triangles. Moreover, by Lemma 17 we can branch over the O(n2k) different splitting segments.
If for our choice of triangles all splitting segments between consecutive triangles exist we
construct a plane loop α if possible or otherwise reject the branch.

Let T1, . . . , Tk be the chosen k-tuple of triangles and l1, . . . , lk the splitting segments.
If none of the splitting segments intersect the same triangles in between two consecutive
triangles Ti and Ti+1 this is straight forward. If there are triangles that are intersected
multiple times we have to evaluate 2O(k) choices of how to resolve the self-crossings such a
repetition induces for the loop α. For each valid choice we apply Theorem 15.

These are only O(kn2k+4) choices in total and computing a minimum weight perfect
matching can be done in O(V 2E) time (with V being the number of vertices and E the
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Figure 9 Computing a new fence (orange) from the old fences (purple) and the convex hull (blue).

number of edges) via finding a maximum weight perfect matching (e.g. [7]) on the same graph
with edge weights set to maximum edge-weight plus one minus the original edge-weight. ◀

4 An algorithm for two-colored CMLF

In this section we present an algorithm for solving two-colored CMLF. Computing a minimum-
link fence in this setting can be done by computing a fence for the convex hull of the contained
polygons with the algorithm by Wang [13] which runs in time O(n log n) with n being the
number of corners of the contained polygons. Throughout this section an instance of CMLF
is given as (P, Q) where Q is the outer polygon and P is the set of polygons contained in Q.

▶ Lemma 19. Given an instance (P, Q) of two-colored CMLF, let F be a solution for (P, Q).
There exists a solution F ′ for the two-colored CMLF instance (CH(P), Q) with |F | = |F ′|.

Proof. As F is a minimum-link fencing of (P, Q), it suffices to consider the case where a
minimal link fencing of (CH(P), Q) has strictly more segments than |F |. We will construct
a new fence F ◦ from this instance. Let (p1, . . . , pz) be the intersection points between F

and CH(P) ordered as they appear in a clockwise traversal of the convex hull, and observe
that z is even. Let pi, pi+1 be pairs of intersection points between F and CH(P) such that
the straight-line segment si connecting pi and pi+1 lies on CH(P) and completely outside
of F (see Figure 9). Consider the supporting line ℓi of si. If the fence lies completely in
one of the closed half-planes bounded by ℓi we add si to F ◦. Assume this is not the case.
As si is on CH(P) we get that ℓi does not intersect any polygon in P. Moreover, as F
consists of closed simple polygons we find two intersection points p′

i and p′
i+1 that lie on ℓi,

s.t., the parts of F appearing in a clockwise traversal from p′
i to pi, as well as the ones in a

clockwise traversal from pi+1 to p′
i+1 lie outside of CH(P). We add the segment s′

i between
p′

i and p′
i+1 to F ◦. Doing this for every pair of intersections we obtain a set of segments F ◦,

where all segments are on the convex-hull of P . Note that it is possible for these segments to
intersect; if that is the case we only keep the parts until their intersection point. Finally, the
start and end-points of connected chains of segments in F ◦ lie on segments of fences in F .
We can convert F ◦ into a fence of CH(P) by connecting these endpoints along the fences in
F and that fence will be disjoint from P (except possibly touching P in corner points).

It remains to argue that indeed |F ◦| ≤ |F |. We partition F ◦ into two categories, segments
that coincide with segments in F and segments that do not. Each of them is either a full
segment of F or originates from the intersection of at most two different s′

i’s and a segment
of F . Furthermore, we add z/2 segments s′

i that are not sub-segments of segments in F . For
each such s′

i we find at least one segment of F for which we did not add any sub-segment to
F ◦. These are the segments of F on which pi and pi+1 lie or that are fully outside of F ◦. ◀
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▶ Theorem 20. Two-colored CMLF can be solved in time O(n log n) where n is the number
of corners of polygons in P.

5 Conclusion

We have shown BMLF to be NP-hard even if every fence contains at most three polygons,
each fence has at most five links, and only two different colors of polygons are present. Our
reduction holds regardless of requiring disjoint fences or not. Note, that our reduction can
be adapted to not require the outer bounding polygon Q. Instead, we can replace Q by one
polygon with a narrow and very complex channel, connecting the “inside” with the “outside”.
On the algorithmic side, we gave an XP-algorithm for BMLF parameterized by the maximum
number of links in a fence and allowing at most two polygons per fence. We also showed
that two-colored CMLF can be solved in polynomial time.

It is open if one can eliminate the exponential dependency on the number of links in
our algorithm for BMLF. Furthermore, while our reduction holds when replacing the outer
bounding polygon, our algorithm does not since we cannot immediately apply Theorem 15.
Similarly, requiring the fences to be disjoint for BMLF is an interesting open direction.
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