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—— Abstract

For an undirected graph G and distinct vertices s1,t1, ..., sk, tr called terminals, the shortest k-
disjoint paths problem asks for k pairwise vertex-disjoint paths Pi,..., Px such that P; connects
si and t; for ¢ = 1,...,k and the sum of their lengths is minimized. This problem is a natural

optimization version of the well-known k-disjoint paths problem, and its polynomial solvability is
widely open. One of the best results on the shortest k-disjoint paths problem is due to Datta et al. [9],
who present a polynomial-time algorithm for the case when G is planar and all the terminals are on
one face. In this paper, we extend this result by giving a polynomial-time randomized algorithm for
the case when all the terminals except one are on some face of GG. In our algorithm, we combine the
arguments of Datta et al. with some results on the shortest disjoint (A + B)-paths problem shown
by Hirai and Namba [15]. To this end, we present a non-trivial bijection between k disjoint paths
and disjoint (A + B)-paths, which is a key technical contribution of this paper.
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1 Introduction

1.1 Shortest Disjoint Paths Problem

The k-disjoint paths problem is a well-studied and important problem in algorithmic graph
theory and combinatorial optimization. In the problem, we are given an undirected graph
G = (V,E) and 2k distinct vertices si,t1,..., Sk, tr, called terminals, and the objective
is to find k pairwise vertex-disjoint paths Pj,..., Py such that P; connects s; and t; for
i=1,...,k, if they exist. This problem has attracted attention since 1980s because of its
applications to practical problems such as network routing [24, 34] and VLSI-design [13, 19].

The main focus in this topic is the polynomial solvability of the problem. When k is a
part of the input, the k-disjoint paths problem is shown to be NP-hard by Karp [16], and
it remains NP-hard even if the input graph is restricted to be planar [22]. When k = 2,
elementary polynomial-time algorithms are presented in [32, 33, 36], whereas the directed
variant is NP-hard [12]. For the case when the graph is undirected and k is a fixed constant,
Robertson and Seymour’s graph minor theory gives a polynomial-time algorithm [29], which
is one of the biggest achievements in this area.

An interesting special case of the disjoint paths problem is when the input graph is
planar or embedded on a fixed surface. For example, when G is planar and all the terminals
are on one face or two faces, a structural characterization and a polynomial algorithm are
given in [27]. The k-disjoint paths problem on a fixed surface is solved in [28]. In the graph
minor series, these special cases play important roles to obtain the algorithm for general
? Yusuke Kobayashi .and Tatsuya Te.rao;

37 icensed under Creative Commons License CC-BY 4.0
33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No.47; pp.47:1-47:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:yusuke@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:ttatsuya@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0002-3530-2194
https://doi.org/10.4230/LIPIcs.ISAAC.2022.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2

One-Face Shortest Disjoint Paths with a Deviation Terminal

graphs [29]. A faster algorithm for the planar case is presented in [1]. The directed variant
of the problem can be solved in polynomial time if the input digraph is planar and k is a
fixed constant [8, 30].

The shortest k-disjoint paths problem is a natural optimization version of the k-disjoint
paths problem. In the problem, we are given an undirected graph G = (V, E) and terminals
S1,t1,--., Sk, tg, and the objective is to find k pairwise vertex-disjoint paths Py, ..., P, such
that P; connects s; and ¢; for i = 1,..., &k and the sum of their lengths is minimized. Here,
the length of a path is defined as the number of edges in it. When k is a part of the input,
since the search problem is NP-hard, so is the optimization problem. Although the problem
setting is natural and easy to understand, surprisingly, the polynomial solvability of the
shortest k-disjoint paths problem is widely open when k is a fixed constant. For the shortest
2-disjoint paths problem, Bjoérklund and Husfeldt [5] present a randomized polynomial-time
algorithm based on an algebraic approach, while a deterministic polynomial-time algorithm
is still unknown. They also give a deterministic polynomial-time algorithm for counting
optimal solutions of the shortest 2-disjoint paths problem if the input graph is cubic and
planar [4].

Several positive results are obtained if G is planar and the configuration of the terminals
satisfies certain conditions. Colin de Verdiére and Schrijver [7] devise an O(knlogn) time
algorithm for the shortest k-disjoint paths problem when all sources sq, ..., S; are on one face
and all sinks ¢, ..., ¢ are on another face, where n = |V|. Kobayashi and Sommer [18] give
a polynomial-time algorithm for the case when k = 2 and the terminals are on two faces in
an arbitrary way. The problem is not easy even when all the terminals are on one face, which
we call ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM. Polynomial-time algorithms
are presented for the cases when k& = 3 [18] and k = 4 [11]. Borradaile et al. [6] give an
O(kn®) time algorithm for the case when sy,t1,s2,%2, ..., Sk, tx are on the boundary of some
face counter-clockwise in this order. Datta et al. [9] generalize these results by presenting a
polynomial-time algorithm for ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM when k is
a fixed constant. Their idea is to compute a polynomial associated with k& disjoint paths by
using determinants of several polynomial matrices, and a similar argument will be used in
this paper.

1.2 QOur Contribution

As described in the previous subsection, for the shortest k-disjoint paths problem, polynomial-
time algorithms are devised only for very restricted cases. Among them, one of the strongest
results is a polynomial-time algorithm for ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM
due to Datta et al. [9]. In this paper, we extend this result by dealing with the case when
all the terminals except one are on some face of GG, which we call ONE-FACE SHORTEST
k-D1SJOINT PATHS PROBLEM WITH A DEVIATION TERMINAL.

One-Face Shortest k-Disjoint Paths Problem with a Deviation Terminal

Input: A planar graph G = (V, E) and distinct vertices s1,t1, ..., Sk, tx called terminals such
that 2k — 1 of them are on the boundary of some face of G.

Output: Pairwise vertex-disjoint paths Py, ..., P, such that P; connects s; and t; for i =
1,...,k and the sum of their lengths is minimized (if they exist).

The main contribution of this paper is to present a randomized polynomial-time algorithm
for this problem.

» Theorem 1. For a fized positive integer k, ONE-FACE SHORTEST k-DISJOINT PATHS
PROBLEM WITH A DEVIATION TERMINAL can be solved in randomized polynomial time.
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Although our problem looks similar to ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM,
there is a big gap between these two problems in the following sense. In ONE-FACE SHORTEST
k-DISJOINT PATHS PROBLEM, if s1, S9,..., Sk, tk,- .-, t2, and t1 are on the boundary of a face
in this order, then the problem can be solved easily (e.g., by a minimum cost flow algorithm
or by a determinant computation). This special case acts as a “base case” in the algorithm
of Datta et al. [9]. In contrast, in ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM WITH
A DEVIATION TERMINAL, such an easy “base case” does not exist. This difference makes the
problem quite difficult and interesting, and reinforces the importance of Theorem 1.

We overcome the above difficulty by giving a non-trivial bijection between k disjoint
paths and disjoint (A + B)-paths introduced by Hirai and Namba [15] (see Section 2.2 for
disjoint (A + B)-paths), which is a key ingredient in our algorithm. By combining several
polynomials associated with disjoint (A 4+ B)-paths, we compute a polynomial associated
with the desired k disjoint paths in a similar way to [9], which enables us to compute an
optimal solution.

1.3 Related Work

The k-disjoint shortest paths problem is another variant of the k-disjoint paths problem that
is actively studied recently. In the problem, an instance consists of a graph and terminals
S1,t1,-.., Sk, tr in the same way as the k-disjoint paths problem. The objective is to find
pairwise vertex-disjoint paths Pi,..., Py such that P; is a shortest path between s; and t;
for e =1,...,k. It is obvious that if each P; is a shortest path, then the total length is
minimized. Therefore, algorithms for the shortest k-disjoint paths problem can solve the
k-disjoint shortest paths problem. Eilam-Tzoreff [10] introduces the k-disjoint shortest paths
problem and devises a polynomial-time algorithm for the case of k = 2. For the case when
k is a fixed constant, polynomial-time algorithms are recently given by Lochet [21] and
Bentert et al. [2]. When each edge has a non-negative length, Gottschau et al. [14] and
Kobayashi and Sako [17] independently give polynomial-time algorithms for the 2-disjoint
shortest paths problem. The polynomial solvability of the k-disjoint shortest paths problem
with non-negative edge-length is still open for fixed k. For the directed variant with positive
edge-length, Bérczi and Kobayashi [3] present a polynomial-time algorithm when k = 2.

A special case when (almost) all the terminals are on the boundary of some face has
attracted attention also in the context of the edge-disjoint paths problem and the multicom-
modity flow problem. The most famous example will be Okamura-Seymour Theorem [26].
Suppose that all the terminals are on the boundary of some face of a planar graph and
assume that the Euler condition holds. Then, Okamura-Seymour Theorem states that the
existence of edge-disjoint paths connecting the terminal pairs can be characterized by the
cut condition. This theorem is generalized by Okamura [25] to the case when the terminals
are on two faces. A node-capacitated variant of Okamura-Seymour Theorem is studied by
Lee et al. [20]. See [31, Chapter 74] for more related results.

1.4 Organization

The remaining of this paper is organized as follows. In Section 2, we give notation and describe
some results on the shortest disjoint (A + B)-paths problem by Hirai and Namba [15]. In
Sections 3.1 and 3.2, we show a bijection between k disjoint paths and disjoint (A + B)-paths
without giving a proof of a key lemma (Lemma 7). By using this bijection, in Section 3.3,
we present a randomized algorithm for ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM
WITH A DEVIATION TERMINAL and prove Theorem 1. The proof of Lemma 7 is given in
Section 4.
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2 Preliminaries

2.1 Basic Notation

For a positive integer p, we denote [p] = {1,...,p}. For a finite set X, let #X and |X]|
denote the cardinality of X, which is also called the size of X. In this paper, all graphs and
paths are undirected unless stated otherwise. The length of a path in a graph is defined as
the number of edges in it. For a collection P of paths, let w(P) denote the total length of
the paths in P.

Let k& be a fixed positive integer. Suppose we are given an instance of ONE-FACE
SHORTEST k-DI1SJOINT PATHS PROBLEM WITH A DEVIATION TERMINAL, which consists of
a planar graph G = (V, F) and terminals s1,t1,..., Sk, tx. Let T denote the set of all the
terminals. Suppose that all the terminals except one terminal, say s;, are on the boundary
of some face F' of G. Without loss of generality, we may assume that G is 2-connected, since
otherwise we can easily reduce to the 2-connected case. Then, the boundary of F' forms a
cycle.

For a finite set X of size 2p, a partition of X into p disjoint sets of size two is called a
pairing of X. That is, a pairing M of X is of the form M = {{z1,v1},...,{2p,yp}}, where
X ={z1,v1,...,%p, yp}. Although each element in M is an unordered pair, by following the
convention, each pair {x;,y;} is denoted by (x;,y;) in this paper. Thus, (x;,y;) is identified
with (y;, ;). A pairing of T is simply called a pairing if T is clear from the context. The
pairing M* = {(s;,t;) | i € [k]} of T is referred to as the input pairing.

In our argument, the ordering of the terminals along the boundary of F' is more important
than the input pairing. Hence, we rename the terminals so that T = {u*, ug,u1, ... usk—2},
uw* = s1, ug = t1, and ug, U1, ..., uUsk_2 lie on the boundary of F' counter-clockwise in this
order (Figure 1). Let I = {0,1,...,2k — 2} be the set of the indices of the vertices incident
to F.

Figure 1 Renaming the terminals.

2.2 The Shortest Disjoint (A 4+ B)-Paths Problem

Hirai and Namba [15] introduce the shortest disjoint (A+ B)-paths problem as a generalization
of the shortest 2-disjoint paths problem. In the shortest disjoint (A + B)-paths problem, we
are given a graph G = (V, E) and two disjoint terminal sets A, B C V of even size, and the
task is to find |A|/2 + |B|/2 pairwise vertex-disjoint paths with endpoints both in A or both
in B such that the sum of their lengths is minimized. Note that each feasible solution is
called disjoint (A + B)-paths. For this problem, Hirai and Namba [15] design a randomized
algorithm running in |V/|?UAI+IBD time, which is polynomial if |A| + |B| is fixed. For the case
when the input graph is cubic and planar, Bjorklund and Husfeldt [4] give a deterministic
polynomial-time algorithm.
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We now describe the outline of the algorithm in [15], because some of their results will
be used in our argument later. In their algorithm, they construct a univariate polynomial
matrix from the instance, and compute its hafnian. Although computing the hafnian of a
matrix is hard in general, they establish a technique to compute the hafnian modulo 27 for
a fixed positive integer 7 based on a similar argument to [5]. Note that the hafnian of a
2n x 2n symmetric matrix S = (s;;) is defined as

haf S = Z H Sigs

MeM (i,j)eM

where M is the set of all pairings of {1,2,3,...,2n}. The key theorems in [15] are formally
stated as follows.

» Theorem 2 (Hirai and Namba [15, Lemma 2.4]). For any instance of the shortest disjoint
(A + B)-paths problem, in polynomial time, we can construct a matriz S such that each
element is a polynomial in x with integer coefficients and

haf S = Zi2@+@xw(77)(l + zfp(2)),
P

where P ranges over all disjoint (A + B)-paths, fp(x) is some polynomial with integer
coefficients, and the sign is determined by A, B, and P.

Note that fp(x) depends only on P, and it does not depend on how the end vertices of
P are partitioned into A and B. Recall that w(P) is the number of edges in the paths in P.

» Theorem 3 (Hirai and Namba [15, Theorem 2.1]). Let 7 be a fized positive integer. For a
given univariate matriz with integer coefficients, we can compute its hafnian modulo 27 in
polynomial time.

Note that “hafnian modulo 27” means that the integer coefficients of the hafnian are
modulo 27. In their algorithm, after perturbing the length of edges to obtain an instance
with a unique optimal solution, we construct a matrix S as in Theorem 2. Then, we compute
the hafnian of S modulo 27 +3+1 by Theorem 3. We can see that the lowest degree term
of the hafnian corresponds to the shortest disjoint (A + B)-paths under the assumption that
the instance has a unique optimal solution. Note that the randomization is required only in
the perturbation step, and the algorithms in Theorems 2 and 3 are deterministic.

3  One-Face Shortest k-Disjoint Paths with a Deviation Terminal

In this section, we present our algorithm for ONE-FACE SHORTEST k-DISJOINT PATHS
PROBLEM WITH A DEVIATION TERMINAL. In our algorithm, we consider several partitions
(A, B) of the terminals T" and compute polynomials associated with disjoint (A + B)-paths
by using Theorems 2 and 3. By using these polynomials, we compute a polynomial whose
lowest degree term corresponds to the shortest k disjoint paths. A key ingredient in our
argument is to make a correspondence between a partition (A, B) and a pairing of T. More
precisely, we show that there is a bijection between a good partition and a feasible pairing
including (u*, ug), which will be defined in Section 3.1.

3.1 Good Partition

Let M be a pairing of T. We say that M is infeasible if there exist distinct pairs
(ui,uj), (u,uj) € M such that ¢ < i’ < j < j', that is, u;,uy,uj, and u; are on the
boundary of F' counter-clockwise in this order. Otherwise, M is called feasible. Observe that,
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for a pairing M of T, if G contains k disjoint paths connecting the pairs in M, then M is
feasible. For a partition (A4, B) of T, a pairing M of T is called (A, B)-compatible if, for any
(s,t) € M, both s and ¢ belong to the same set, either A or B.

In our algorithm, for several partitions (A, B) of T, we compute polynomials associated
with disjoint (A + B)-paths by using Theorems 2 and 3. We focus on disjoint (A + B)-
paths that contain a u*-ug path, and so we consider partitions (A, B) of T such that every
(A, B)-compatible pairing contains (u*,ug). Such a partition is called good, which is formally
defined as follows.

» Definition 4. A partition (A, B) of T is said to be good if
u*,ug € A,
there exists a feasible (A, B)-compatible pairing M with (u*,ug) € M, and
there exists no feasible (A, B)-compatible pairing M with (u*,u;) € M fori € [2k — 2].

3.2 Bijection Between Good Partitions and Feasible Pairings

In this subsection, we give a bijection between good partitions of T" and feasible pairings
including (u*, ug). For this purpose, we show that both good partitions and feasible pairings
are related to ballot sequences. A sequence (f(1),..., f(2k)) of integers is called a k-ballot
sequence if f(i) € {+1,—1} for i € [2k], Y0, f(i) > 0 for £ € [2k — 1], and 3 7%, f(i) = 0.
It is well-known that the number of k-ballot sequences is equal to the k-th Catalan number
cp = %_H(Qkk) (see [35]).

First, we give a bijection between (k — 1)-ballot sequences and feasible pairings includ-
ing (u*,up). For a (k — 1)-ballot sequence (f(1), f(2),..., f(2k — 2)), we construct the

corresponding pairing g1 (f(1), f(2),..., f(2k — 2)) as follows.

» Definition 5. Let (f(1), f(2),..., f(2k —2)) be a (k — 1)-ballot sequence. We initialize M
as M = {(u*,ug)}. For every i € [2k — 2] with f(i) = +1, let i’ € [2k — 2] be the minimum
index such that Z;;ll f() = 22/:1 f(G) and i < ¥, and add (u;,uy) to M. Then, define
91(f(1), £(2),.... [(2k = 2)) = M.

This construction is the same as a well-known bijection between ballot sequences and legal
sequences of parentheses (see [35]). Since a legal sequence of parentheses can be identified
with a feasible pairing including (u*, ug), we obtain the following lemma.

» Lemma 6 (see [35]). Mapping g1 in Definition 5 is a bijection from (k —1)-ballot sequences
to feasible pairings including (u*, ugp).

We next construct a bijection from good partitions of T' to (k — 1)-ballot sequences. For
a partition (A, B) of T, define

—1 ifu; € A and 7 is odd,
+1 if u; € A and 7 is even,
+1 if u; € B and 7 is odd,
—1 ifu; € B and i is even

f(A,B) (i) =

for i € [2k — 2]. We show the following lemma, whose proof is given in Section 4.

» Lemma 7. Let (A, B) be a partition of T with u*,ug € A. Then, (A, B) is good if and
only if (fa,B)(1),..., fra,m)(2k — 2)) is a (k — 1)-ballot sequence.
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good partiton of T’ <::(> ballot sequence <):'\> feasible pairing

u*e A u

Figure 2 Correspondence among good partitions, ballot sequences, and feasible pairings.

By this lemma, the construction of f(4 p) defines a bijection g» from good partitions of
T to (k — 1)-ballot sequences. Therefore, by composing g; and gs, we obtain a bijection g
from good partitions to feasible pairings including (u*, ug); see Figure 2.

Since the number of ballot sequences is equal to the Catalan number, Lemma 7 implies
the following result, which is of independent interest.

» Corollary 8. The number of good partitions of 2k terminals T is equal to the Catalan

number c,_1 = %(Qkk__f).

We next show a property of bijection g, which plays an important role in our algorithm.

For a pairing M of T with (u*,ug) € M, let d(M) =3, . yern\{(uuo)} 1T — Jl-

» Lemma 9. For any good partition (A, B) of T, g(A, B) is a feasible (A, B)-compatible
pairing. Furthermore, among all feasible (A, B)-compatible pairings M, g(A, B) is a unique
minimizer of d(M).

Proof. By Lemmas 6 and 7, g(A, B) is a feasible pairing with (u*,ug) € g(A, B). We first
show that g(A, B) is (A, B)-compatible. Suppose that (u;,u;) € g(A, B) with i < i’. By the
construction of bijection g; in Definition 5, we see that i € [2k — 3] satisfies fa ) (i) = +1,
and i’ € [2k — 2] is the minimum index such that '~} fia,p) () = Yi_; f(a,5)(j) and
i < 4'. Then, fap)(i') = —1 by the minimality of 7, and i — 1 = i’ (mod 2). Since
fa.B)(@) # fla,p) (i) and i #Z 4’ (mod 2), the definition of f(4 p) shows that both u; and u
belong to the same set, either A or B. Therefore, g(A, B) is (A4, B)-compatible.

To show the latter half of the lemma, let M be a feasible (A, B)-compatible pairing. Since
(A, B) is a good partition of T', we obtain (u*,ug) € M. If (u;,u;) € M for i,i € [2k — 2],
then ¢ and i’ have different parities by the feasibility of M. Since both u; and u; belong to
the same set, either A or B, the definition of f 4 p) shows that

fea,p) (@) + fa,m (i) = 0. (1)

Define It = {i € [2k — 2] | f(a,p)(i) = +1} and I~ = {i € [2k — 2] | f(a,)(i) = —1}. Then,

(1) means that each pair in M \ {(u*,uo)} consists of u; with ¢ € I'™ and u; with ¢' € I~.

Furthermore, for any (u;,u;r) € g(A, B) with ¢ < i, the definition of g; shows that i € It
and i’ € I~. Therefore, we obtain

dMy="> |i'=il= Y @-i=) i'- i=dg(ADB)). (2)

(ui,ui/)EM (u,;,ui/)GM el ielt
ielt, i'el™

This shows that g(A, B) is a minimizer of d(M).
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To show the uniqueness of the minimizer, suppose that M # g(A, B). It suffices to show
that the inequality in (2) is strict, that is, there exists (u;, u) € M such that s € I, ¢/ € I,
and ¢ > 4'. For (u;,uy) € M, since the vertices between u; and u; are partitioned into pairs
in M and (1) holds for any pair in M \ {(u*,ug)}, we obtain

i1 i
> fas() = fam (). 3)
j=1 j=1

Since M # g(A, B), there exist ig € I'" and i € I~ with (us,, uy) € M\ g(A, B). If ig > ig,
then we immediately conclude that the inequality in (2) is strict. In what follows, suppose
that ig < i,. Let 4§ € I~ be the minimum index such that E?;l fam () = 23‘1:1 fam) ()
and ig < ¢}, that is, (i0,4}]) € g(A, B). By (3) and by the minimality of ¢}, we obtain ) < .
We now consider the pair (u;,,u;; ) € M containing u;, , where i; € I'*. Since M is feasible

and 49 < i} < i, we obtain ig < i;. Furthermore, since 231:711 foam () = 231:1 foam ()
by (3), the minimality of i} shows that 41 is not contained in the interval between iy and
i1. Therefore, we obtain i} < i1, and hence the inequality in (2) is strict. This shows that
g(A, B) is a unique minimizer of d(M). <

3.3 Algorithm

We are now ready to describe our algorithm, which is based on an idea similar to [9]. In
this subsection, since all computations of polynomials are done modulo 2¥*!, we regard
polynomials with integer coefficients as elements in Zyr+1[x]. For a set P of paths, define
fp(z) as in Theorem 2. For a feasible pairing M of T, define a polynomial ®(M) by

B(M) = 3 252" P) (1 4 2 fp(a)),
P

where P ranges over all sets of £ disjoint paths connecting the pairs in M.

Let M be the set of all feasible pairings including (u*,ug). For a good partition (A, B)
of T', let M4, p) be the set of all feasible (A, B)-compatible pairings. Since (4, B) is a good
partition, we see that M4 gy € M. With these notations, Theorem 2 shows that we can
obtain a polynomial matrix S(4, ) such that

haf Sapy= Y. (M),
MeMa,p)

where we note that the computation is done modulo 281, Since g(A, B) is a unique minimizer
of d(M) in M4 gy by Lemma 9, this shows that

®(g(A, B)) = haf Sa,p) — > (M) (4)
MeMa, )
d(M)>d(g(A,B))

for a good partition (A4, B) of T. By using this equation, for every M € M, we can compute
® (M) in the decreasing order of d(M) as follows. Note that the number of pairing is bounded
by a fixed constant as k is fixed, and hence M4 p) can be enumerated in a brute-force way.

First, suppose that M € M is a maximizer of d(M). Since g is a bijection, there exists a
good partition (A, B) of T with g(A, B) = M. Then, (4) implies ®(g(A, B)) = haf S(4 p),
and hence this value can be computed by Theorem 3. Recall again that the computation is
done modulo 2~F+1,
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Figure 4 Partition (A2, B2) and Mo.

Figure 5 Partition (As, B3) and Ms.

Next, let M € M be a feasible pairing and suppose that ®(M’) is computed for every
M’ e M with d(M") > d(M). Let (A, B) be the good parition of T with g(A,B) = M.
Since haf S(4 py can be computed by Theorem 3, we obtain ®(M) by using (4).

By applying this procedure repeatedly, we obtain ®(M) for every M € M. In particular,
we obtain ®(M*), where M* is the input pairing. Since | M| = ci_1 is a constant for fixed
k and each step runs in polynomial time by Theorems 2 and 3, this algorithm runs in
polynomial time.

» Example 10. Let T = {u*, ug,u1,...,us}, and suppose that

My = {(u",up), (u1,us), (u2,u3), (ua, ur), (us, us) },

My = (U*vuo), (ul,u8)7 (UQ,U7), (U3,U4), (U5,’U,6)},

For ¢« = 1,2,3, the partition (A4, B) corresponding to M;, which we denote (4;, B;), is as
shown in Figures 3-5, respectively. Since

hafS’(AhBl) (I)(Ml) + (I)(Mg),
haf S(a,,5,) = ®(M2) + ®(Ms),
haf S(Ag.,Bg) :(I)(Mg),

we can compute ®(Ms), (M), and ®(M;) in this order.

By using this procedure, we can obtain a polynomial-time algorithm if the given instance
has at most one unique optimal solution.
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» Lemma 11. ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM WITH A DEVIATION
TERMINAL can be solved in polynomial time under the assumption that a given instance has
a unique optimal solution or has no feasible solution.

Proof. If the given instance has a unique optimal solution, then the lowest degree term of
®(M*) is 2F2°Pt) where opt is the optimal value. If the instance has no feasible solution,
then ®(M*) = 0, i.e., the optimal value is opt = +o00. Since ®(M*) can be computed in
polynomial time by the above argument, we obtain opt.

We now describe how to obtain an optimal solution P* when opt < +o00. For e € E, we
remove e and compute the optimal value opt, in the obtained instance by using the same
algorithm as above. Then, e is contained in P* if and only if opt, # opt. This shows that
we can determine whether e is contained in P* or not in polynomial time. By applying this
procedure for every e € E, we obtain P*. <

When we do not assume the uniqueness of the optimal solutions, we perturb the length
of edges so that the instance has a unique solution. The following lemma is derived from the
Isolation Lemma [23], and the same argument is used in [5, 15].

» Lemma 12 (See [5, 15, 23].). Let F be a non-empty family of subsets of E with |E| = m such
that |F| < n for every F € F. If we assign for each e € E, w(e) € {2mn,2mn+1,...,2mn+
2m — 1} uniformly at random, then with probability greater than 1/2, there exists a unique
set F* € F with the minimum weight ) p. w(e). Furthermore, |F*| = minpe 7 |F|.

Proof of Theorem 1. Let G = (V, E) be the input graph, where |V| = n and |E| = m. For
each edge e € E, choose w(e) € {2mn,2mn + 1,...,2mn + 2m — 1} uniformly at random,
and replace e with a path of length w(e). By applying Lemma 12 in which F consists of all
edge sets of feasible solutions of the problem, we see that the obtained instance has a unique
optimal solution with probability greater than 1/2 (unless the original instance is infeasible).
Therefore, by applying Lemma 11 to the obtained instance, we can solve the problem in
polynomial time. <

4 Proof of Lemma 7
In this section, we give a proof of Lemma 7. To this end, we characterize when a feasible
(A, B)-compatible pairing including (u*,ug) exists.
» Lemma 13. Let (A, B) be a partition of T with u*,ug € A. There is a feasible (A, B)-
compatible pairing M with (u*,ug) € M if and only if

#A -2
2

=#{j€2k—-2]|j is odd, u; € A} =#{j € 2k —2] | j is even, u; € A}. (5)

Proof. We observe that if one equality in (5) holds, then the other equality also holds,
because #A —2=#{j € [2k — 2] | jis odd, u; € A} +#{j € 2k — 2] | j is even, u; € A}.

We first show the necessity (“only if” part). Suppose that there is a feasible (A, B)-
compatible pairing M with (u*, ug) € M. For any pair (u;, u;) € M\ {(u*,up)}, the parities
of i and ¢’ are different as M is feasible. Thus, we obtain #{j € [2k — 2] | j is odd,u; €
A} =#{j € [2k —2] | j is even,u; € A}, and hence (5) holds.

We next show the sufficiency (“if” part) by induction on |T'|. Suppose that (5) holds. A
desired pairing obviously exists when k& = 1, and so suppose that k > 2. Then, there exists
an index j € [2k — 3] such that both u; and u;+1 belong to the same set, either A or B,
since otherwise terminals in A and B appear alternately along the boundary of F'; which
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contradicts (5). Since removing u; and u; 41 does not affect the parities of the indices of
the other terminals, (5) holds after removing u; and u;41. By the induction hypothesis, we
obtain a feasible pairing M’ of T'\ {u;,uj41}. Then, M = M’ U {(u;,u;j11)} is a desired
pairing, which shows the sufficiency. |

Even when (u*,ug) € M, we can obtain a similar characterization by shifting the indices
in Lemma 13 as follows. Recall that I = {0,1,...,2k — 2} = [2k — 2] U {0}.

» Lemma 14. Leti € I and let (A, B) be a partition of T with u*,u; € A. There is a feasible
(A, B)-compatible pairing M with (u*,u;) € M if and only if

H4A 2
2

=#{jellj<i,jiseven, u; € A} +#{jel|j>1,jisodd u; €A}. (6)
Proof. Let vg = u; and define

Vs — Uit 5 ifj S 2k——2<—i,
’ Uj4j—2k+1 lfj Z 2k—1—14

for j € [2k — 2]. That is, we relabel the terminals in T\ {u*} so that vy, v1,ve, ..., Vak_2
appear counter-clockwise in this order and vy = w;. Since the right-hand side of (6) is equal
to either #{j € [2k — 2] | j is odd,v; € A} or #{j € [2k — 2] | j is even,v; € A}, we obtain
the lemma by Lemma 13. <

We are now ready to prove Lemma 7, which we restate here.

» Lemma 7. Let (A, B) be a partition of T with u*,ug € A. Then, (A, B) is good if and
only if (fa,B)(1),-.., fra,)(2k — 2)) is a (k — 1)-ballot sequence.

Proof. We first show the necessity (“only if” part). Suppose that (A, B) is a good partition
of T. Since there exists a feasible (A, B)-compatible pairing M with (u*,ug) € M, by Lemma
13, we obtain (5). By the definition of f(4 g), we obtain

2k—2

> fas ()
j=1

=#{je[2k—2]|jiseven, u; € A} —#{j € 2k —2] | jis odd, u; € A}

—#{j €2k —2]|jiseven, u; € B} +#{j € 2k — 2] | j is odd, u; € B} (7)
=2(#{je2k—2]|jiseven, uj € A} —#{j € [2k — 2] | j is odd, u; € A})
=0,

where the last equality follows from (5).

To derive a contradiction, assume that (f(a,5)(1),..., f(a,5)(2k—2)) is not a (k—1)-ballot
sequence. Then, there exists ¢ € [2k — 2] such that 22:1 fa,By(J) < 0. Among such i,
we choose the minimum one. By the minimality of ¢, we obtain 23;11 fia,B)(j) = 0 and
fa,B)(i) = —1. Since i — 1 = 23;11 fia,B)(j) =0 (mod 2), we see that i is odd, and hence
u; € A. By a similar calculation as (7), we obtain

1—1
0= fam() =2#{j €[i—1]|j is even, u; € A} —#{j € [i—1] | j is odd, u; € A}),
j=1

47:11
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which shows that #{j € [i — 1] | j is even, u; € A} =#{j € [i —1] | j is odd, u; € A}. This
together with (5) shows that

#A -2
2

=#{j €2k —2] | j is odd, u; € A}

=#{jeli—1]|jisodd, uj € A} +1+#{jel]|j>1i, jisodd, u; € A}
=#{jeli—1]|jiseven,u; € A} +1+#{jel]|j>1i, jisodd, uj € A}
=#{jel|j<i jiseven, u; € A +#{jel|j>i, jisodd, u; € A},

where we note that ug,u; € Aand {j € I | j <i} = [i —1]U{0}. By Lemma 14, this shows
that there exists a feasible (A, B)-compatible pairing M with (u*,u;) € M, which contradicts
that (A, B) is a good partition.

We next show the sufficiency (“if” part). Suppose that (fa,5y(1),..., fa,B)(2k —2)) is a
(k — 1)-ballot sequence. Since Z?iﬁ fca,B)(j) = 0, by the same calculation as (7), we obtain
#{j€2k—2]|jiseven, u; € A} = #{j € [2k—2] | j is odd, u; € A}, and hence (5) holds.
Then, there exists a feasible (A, B)-compatible pairing M with (u*,ug) € M by Lemma 13.

To derive a contradiction, assume that (A, B) is not a good partition of T". Then, there
exists a feasible (A, B)-compatible pairing M with (u*,u;) € M for some i € [2k — 2]. By
Lemma 14, this means that

A—2
i 5 =#{jel|j<i,jiseven,uj € A} +#{jel|j>i jisodd, u; € A}. (8)
Since
A-2
#2 — 4 e [2k—2 | jis odd, u € A}

=#{jel|j<i jisodd,u; € A} +#{jel|j>1, jisodd, u; € A}
by (5), this together with (8) shows that
#{jel|j<i jiseven, u; € A} =#{jel|j<i, jisodd, u;j € A}. (9)

If 7 is odd, then

> fam )
j=1

=#{jeli|jiseven, uj € A} —#{j €[i]|jis odd, u; € A}
—#{jeli]|jiseven, u; € B} +#{j €i]|jisodd, u; € B}
=#{jeli]|jiseven, uj € A} — #{j € [i] | j is odd, u; € A}

i—1 AT i+1 C ot e
—( 5 —#{je[z]|jlseven,uj€A})+( 5 —#{je[z]\jlsodd,ujeA})
=2(#{jeli]|jiseven, u; € A} —#{j€i]|jisodd, u; € A})+1
=2#{jel|j<i,jiseven,u; € A} —1—#{jel|j<i, jisodd, u; € A})+1

-1

)

where the fourth equality follows from uy € A and the last equality is by (9). This contradicts
that f(a,p)(j) is a ballot sequence.
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Similarly, if 7 is even, then

i1
> fam ()
j=1
=#{jeli—1]|jiseven, u; € A} —#{j e[t —1]|jis odd, u; € A}
—#{jeli—1]|jiseven, u; € B} +#{je[i—1]|jis odd, u; € B}
=2#{jeli—1]|jiseven, uj € A} —#{jei—1]|jisodd, u; € A}) +1
=2#{jell|lj<i,jiseven,u; € A} —1—#{jel|j<i, jisodd, u; € A})+1
=1,

which is a contradiction. <

5 Conclusion

We introduced ONE-FACE SHORTEST k-DISJOINT PATHS PROBLEM WITH A DEVIATION
TERMINAL and gave a first randomized polynomial-time algorithm. In our algorithm, we
combined the arguments by Datta et al. [9] and Hirai and Namba [15] with new insights on
combinatorial properties of the problem.

It is natural to ask whether our results can be extended to the case when all the terminals
except two or more are on the same face, which is still open. Another interesting unsolved
case is when the terminals are on two faces in an arbitrary way.

Note that our algorithm can be derandomized if the input planar graph is cubic, because
we can adopt a deterministic algorithm of Bjérklund and Husfeldt [4] for disjoint (A + B)-
paths problem instead of the randomized one of Hirai and Namba [15]. It is open whether
there exists a deterministic algorithm for non-cubic graphs.
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