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—— Abstract

For S C {0,1}" a Boolean function f: S — {—1,1} is a polynomial threshold function (PTF) of
degree d and weight W if there is a polynomial p with integer coefficients of degree d and with sum
of absolute coefficients W such that f(z) = signp(z) for all x € S. We study a representation of
decision lists as PTFs over Boolean cubes {0,1}" and over Hamming balls {0, 1}Z.

As our first result, we show that for all d = O (( o )1/3) any decision list over {0,1}" can

logn

be represented by a PTF of degree d and weight 20(n/d*) g improves the result by Klivans
and Servedio [22] by a log®d factor in the exponent of the weight. Our bound is tight for all

d=0 (( n )1/3) due to the matching lower bound by Beigel [3].

logn

For decision lists over a Hamming ball {0,1}Z; we show that the upper bound on weight above

can be drastically improved to n®® for d = O(vk). We also show that similar improvement is
2
not possible for smaller degrees by proving the lower bound W = 24*/47) for all d = O(Vk).
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1 Introduction

The main object of studies in this paper are polynomial threshold functions.

» Definition 1. For S C {0,1}" a Boolean function f: S — {—1,1} is called a polynomial
threshold function (PTF) of degree d if there is an integer polynomial p of degree d such that
f(x) = signp(zx) for all x € S. If p has integer coefficients, then the weight of a PTF is
defined as a sum of absolute values of coefficients in p.

Polynomial threshold functions have been studied intensively for decades. Much of
this work was motivated by questions in computer science [28], and PTFs are now an
important object of study in areas such as Boolean circuit complexity [7, 17, 2, 23], learning
theory [20, 21, 16, 4, 15], and communication complexity [30].

In this paper, we study PTFs for the class of decision lists.

» Definition 2. A decision list L on variables x1,...,x, is a sequence of h pairs and a bit

(€1,b1), (b2, b2), - ., (b, br), bhy1,

where for all i {; is a literal (either a Boolean variable x; or its negation) and b; € {—1,1}.
On the input © € {0,1}" the value of L(x) is equal to b; if i is the minimal index for which
; is true and if all £; are false, the value of L(x) is equal to bpy1.
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Polynomial Threshold Functions for Decision Lists

Decision lists have been widely studied in computational complexity [1, 5, 12, 22]. Partially,
their importance stems from computational learning theory where attribute efficient learning
of decision lists is an important research direction. One of the approaches to learning decision
lists is through their representation as PTFs, to which several known learning algorithms can
be applied [18, 21, 22, 27]. This constitutes one of the reasons to study PTF representations
of decision lists. Decision lists turned out to be important in other areas of theoretical
computer science as well. They provide a good source of lower bounds in the studies of
threshold functions, threshold circuits, oracle computations and in other fields [3, 8, 13, 34].

A lot of effort has been put into the studies of effective PTF representations of Boolean
functions, and for decision lists in particular. Klivans and Servedio [22] have shown that for
every h < n any decision list can be computed by a PTED of degree O(y/nlogn) and weight

20(G+Vhlog”n). in terms of degree d it results in 20 G Hdlogd) weight bound. They used

it to create the first online learning algorithm for decision lists that is subexponential in both
O(n'/? log!/? n)

running time and sample complexity; namely, their algorithm runs in time n
and mistake bound 20"/ *1og™*n), Servedio, Tan and Thaler proved in [29, Theorem 6]
that for any n'/* < d < n any decision list L: {—1,1}" — {—1,1}' on n variables has a
degree-d PTF of weight 20 ((n/ d)2/3), where O,, suppresses the polylog factor of n. This
bound is weaker for small d, but gives an upper bound for d > Q(y/n). As for the lower
bounds, Beigel [3] provided a decision list that requires weight of 2%n/d*) ¢6 he computed
by a degree-d PTF (we provide the details in Section 3). Servedio, Tan and Thaler [29] also

proved a lower bound of 22V1/d) for 4 = o (1ogL2n)’ which is stronger than the bound of
Beigel for d = Q(n'/3).

Above we have discussed PTF representations of decision lists over the Boolean cube
{0,1}". However, representations over its subsets are also relevant. The case of the Hamming
ball {0,1}%, consisting of all vectors with at most k 1s received some attention. Long and
Servedio [25] gave bounds for the weights of PTFs for degree d = 1. Their main motivation
to study this setting comes from learning theory: in scenarios involving learning categorical
data the common representation for examples is the one-hot encoded vector, which might
have an extremely large amount of features, but only a small fraction of them can be active at
the same time. The Winnow algorithm used in [22] can be applied to learn functions not only
on the Boolean cube but also on its subsets, including {0,1}%,, so it makes sense to study
not only linear representations but also polynomial ones. Boolean functions on Hamming
balls are also important outside of learning theory. For example, approximation of such
functions by polynomials of low weight arises in the problem of indistinguishability [6, 19],
and recently the approximation on Hamming Balls in general received a lot of attention as a
stepping stone for the approximation of some important Boolean functions [9, 31], including
constant-depth circuits (AC?) [10, 11, 32, 33].

Our results

First, we address the PTF representations of decision lists over {0,1}". In our first result,
we show that for every h < n any decision list can be computed by a PTF of degree O(y/n)
and weight 20(f+Vhlogn) Thig improves the result of [22] by a logarithmic factor both in
degree and exponent of weight. As a corollary, we slightly improve upon the upper bound
for the attribute efficient learning of decision lists: we prove that there is an algorithm that
learns decision lists in time n®"""*) and mistake bound 20("/*logn),

1 In this result, input Boolean variables range over {-1,1}.
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1/3
In terms of degree vs. weight tradeoff, our results imply that for all d = O ((10’;”) >

any decision list over {0,1}" can be computed by a PTF of degree d and weight 20(n/d*)
The analogous result that follows the construction in [22] gave the weight upper bound of

1/3
20((nlog” d)/d%)  Our bound is tight for all d = O (( n ) ) due to the matching upper

logn
bound by Beigel [3] mentioned above.

Clearly, our upper bound for the Boolean cube works also for decision lists over the
Hamming ball {0,1}%, as they are just restrictions to a smaller domain. However, the
tightness of this bound for the case of Hamming balls has to be investigated. We actually
show that the upper bound can be improved to a polynomial in n for d roughly equal to

Vk. More precisely, we show that for d = ©(v/k) any decision list over {0, 1}2; can be

represented with weight nOWk), However, we show that such an improvement is impossible
for smaller degrees. In order to do so, we extend Beigel’s lower bound to this setting, showing
that there is a decision list that requires weight 22/ ) when computed by a PTF of degree

d=O(Vk).

Our techniques

To prove our upper bounds we adopt the same strategy as in [22]. We first represent a
decision list as a sum of sublists, then we pointwise approximate each of the sublists. The
improvement comes from the better approximation technique originated by Sherstov [31],
which we adapt for decision lists.

For the lower bound, we extend the proof of Beigel [3] to the setting of low-weight inputs.
We use the same proof strategy of inductively constructing a sequence of inputs on which
the value of the polynomial in PTF grows exponentially. The new ingredient in the proof is
to keep the number of 1’s in the input low by reusing them from the previous blocks.

Organization

In Section 2 we provide the necessary definitions and theorems. In Section 3 we give our
PTF construction for decision lists on {0,1}", and in Section 4 we prove the upper and the
lower bounds for representing decision lists as a PTF on {0,1}7%,.

2 Preliminaries

We use the following notation for the arithmetization of a literal ¢:

i {;1:, ¢ is an unnegated variable z,

1—x, [(is a negated variable T,

We also use the notations [n] = {1,2,...,n} and [||p||| for the sum of absolute values of
coefficients in p (therefore, the weight of a PTF p is equals to |||p]|| if p has integer coefficients).
For technical reasons, we need a modified definition of a decision list, where the last b; is
always equal to 0 instead of £1. We call those decision lists modified.
As mentioned in the introduction, one of the technical steps involves the pointwise
approximation of Boolean functions.

» Definition 3. Given a Boolean function f: X — {0,1}, we say that a polynomial p is e-
approzimates the function f iff maxzex |f(x) —p(x)| <e. The e-approzimate degree deg,(f)
is the minimum degree such that there exists a polynomial of degree d that e-approzimates
for the function f.

52:3
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Polynomial threshold functions may be viewed as a generalization of e-approximators: if
p e-approximates the function f on X C {0,1}", then p(z) — % is a PTF that computes f
on X.

One of the commonly used families of polynomials for the Boolean function approximation
is the Chebyshev polynomials of the first kind.

» Definition 4. The Chebyshev polynomials of the first kind are defined by the recurrence
relation Ty(x) = 22Tg-1(x) — Ty—o(x) with To(xz) =1 and T1(x) = z.

The solution of the recurrence above gives the following equation.

Td(x)=1<(x—\/ﬁ)d+(x+\/ﬁ)d). (1)

2

It is obvious from the definition that deg(Ty) = d and Ty has integer coefficients. We also
need the following claims about the Chebyshev polynomials.

> Claim 5 ([31, Proposition 2.6]). For every 6 > 0, Ty(1 + &) > 1 + d?6.

> Claim 6. For every ¢ € [0;2], Ty(1 +6) < (1 + /)"

Proof. Note that \/(1 +4)2—-1= \/5((5 +2)< 2v/6 for 0 < § < 2. By substituting = 1+6
into (1), we get

Td(1+5)=1((1+6— (1+5)2—1>d+(1+5+\/m)d) <

2

< (1+6+\/(1+6)2—1)d§(1+5+2\/5)d=(1+\/5)2d.

> Claim 7 ([6, Section 2.2, Property 5]). |||T4]|| < 224

Klivans and Servedio used the Expanded-Winnow algorithm [22, Theorem 2| to derive
the bounds on learning the decision lists class in the attribute-efficient learning model. Tt
essentially runs the Winnow algorithm [24, Algorithm 4] on a set of all possible monomials
of degree up to d. We note that the Winnow algorithm can learn Boolean functions on
any domain X C {0,1}", and therefore we can apply the same bounds from the Expanded-
Winnow to learn the decision lists on {0,1}%,. Thus, the next theorem implicitly follows
from the Expanded-Winnow algorithm. -

» Theorem 8. Let C be a class of Boolean functions over S C {0,1}™ with the property
that each f € C has a PTF of degree at most d and weight at most W. Then there is an
online learning algorithm for C which runs in n® time per example and has mistake bound
O(W -d? -logn).

3 Decision lists on the Boolean cube

In this section, we prove the upper bound for representing decision lists as a PTF over the
Boolean cube. Our proof can be viewed as an improvement of the proof of the following
theorem by Klivans and Servedio.

» Theorem 9 ([22, Theorem 7]). Let L be a decision list of length n on {0,1}™. Then for
any h < n, L is computed by a PTF of degree O(v/hlogh) and weight 20(n/h+vhlog® h)
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We start with the outline of their construction and then proceed to prove the missing
pieces to tighten up the upper bound. This construction consists of two parts. The “outer”
part is the decomposition of the original decision list into the sum of modified sublists, i.e.
we represent the L(x) as the L(x) = Zﬂ/h

K3
independent block of size roughly h. The “inner” part is the pointwise approximation of the

sublist. To achieve a close enough approximation, Klivans and Servedio represent each of the

a; L;(z), where each sublist is responsible for the

sublists as a sum of conjunctions and approximate each of the conjunctions separately. The
degree-weight traidoff is adjusted by the parameter h.

The problem with this approach is that in order to approximate the sublist, one has to
very closely approximate the inner conjunctions, i.e. with a precision of at least O(%) But it
was proved in [14] that such an approximation requires the degree of ©(y/hlogh), and while
we can improve on the logarithmic factor, we can not get rid of it completely. However, we
can notice that the set of conjunctions we are dealing with is not entirely random; in fact,
every two successive conjunctions share most of their literals. That means we can adjust
our approximator so it would increase it’s precision as more terms in conjunction are set to
zero. Luckily for us, it was proved in [31] that such an adjustment can be done with the
same degree as in the regular approximator. In the next theorem, we adapt it for our needs
and also prove the weight bound for it.

» Theorem 10. For every d = ©(1) and every e = O(1) there exists an univariate polynomial
Pr,ae(x) such that deg(Pp q.c) = O(v/n), ||| Paacll] = 2°0V™ and

Vt e [0;1] |Pnac(t) —1] <e,
€
Ve @n] [Pt < 5.

Moreover, there exists a constant C = n°V™ such that C - P, q.(x) has integer coeffi-
cients.

Proof. We can get such a polynomial from [31, Theorem 3.7] (in fact, our statement is much
more limited than the original one) with a proven degree bound but with no weight estimate.
So it suffices for us to prove that the claimed weight bound holds as well.

The polynomial P, g4.(x) from [31, Theorem 3.7] is given as P,q4.(z) =
p1(2)pa(p1())p3(z), where

Tuy (1-2554)
+1

pi(t) = oo (2_15
pa(t) = i (TN
ps(t) = Ba, < LT (1 + 2nt>) . Ba(t) dz <di3>ti(1 _ gy

i=[2.5¢="ds]

with dy = [\/2(n—1)], D=0 (d+1log 1) and d3 = O (log 1).
To start with,

) 5 24/2(n—1)
n—+

T, < |1 =
d1+1<n—1>_< * n—l)
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where the first inequality is Claim 5 and the last one is (1 + 2)* < e® for a > 0 and = > 1.
On the other hand, by Claim 6

n+1 2
T >14+2(n—-1)- =
it (n—l) +2n—1) n—1 >
so the scaling factor in p;(t) is bounded by constants, and by Claim 7 |||p1||| = 20(Vn),
By multiplying p; by (n — 1)%%1 we clear the denominators from 1 — 2 7, and thus it

would have integer coefficients. The same holds for T' 5 (1 + %) and n\f. As for the
T, +1 ("'H) in p1, we know that it is a rational number § with b < (n — 1)%1+1 which is

bounded by constants. Therefore, a = O((n — 1)%+1), and to clear all the denominators
from P, 4.(z) it suffices to multiply it by C' = n@™).

Next, both pa(t) and By, (t) have integer and independent of n coefficients, as well as
independent of n degrees, so their degrees and weights are constant. Finally, the product of
a constant number of terms of degree O(y/n) and weight n©(V?) has the same degree and
weight bounds, and the overall weight bound holds. The bound for the constant C' holds for
the same reasons. |

With the new approximator, we are ready to proceed to the main proof of this section.

» Theorem 11. Let L be a modified decision list of length h on {0,1}™. Then for every
e = O(1) L can be e-approzimated by a polynomial of degree O(V'h) and weight nOWh,
Moreover, p(0™) = 0.

Proof. Consider the decision list L = (¢1,b1),...(¢n,bp),0. It is straightforward to check
that L can be expressed as L(z) = Zz 1 bl \j= 1y 1 £;, where the term corresponding to b; is
non-zero iff ¢; is the first condition satisfied in L

For every ¢ put T;(z) = /\;L 116 (z) and A;(z) = 3(i — 1) — 30, — ... — 30;_1. Notice
that A;(z) = 0 & T;(z) = 1 and A;(x) > 3 otherwise. Moreover, for every j < i such
that ¢; = 1 the value of A;(x) increases by 3. By corollary, for every ¢ < j we have
¢;=1= A;(x) +3 < Aj(z) because A; consists of every zero literal of T} and ¢; = 0.

Now consider p;(z) = Psp,2.c/2(Ai(x)) where Py, 5./ is from Theorem 10. We will
prove that p(z) = 2?21 bil;ipi(x) is the desired polynomial. To start with, if £; = 0
then the corresponding term is also equals to zero; in particular, p(0™) = 0. Next, let
J1 < ... < jm be the set of all indexes such that ¢;, = 1. For j; we have A; (z) =0, and so
sign(b 0, p;, (x)) = bj, and |bj1€;1pj1( )] > 1 —¢/2. Finally, for the remaining indexes we

have 3 < A;,(z) < Aj,(x) < ... < Aj, () < 3h, and so
“ el ({1 5 e (7% 5 €
<7 _—= - _ = = <7 _—— = <7,
J”lpﬁ Zzz‘p” *221_:3@'2 2(21,_11'2 4)2(6 4)2

Therefore, for every z € {0,1}" we have |L(z) — p(x)| < ¢ and p(0™) = 0. The

bounds on degree and weight follows from the Theorem 10 and the following observation: if
p:ad:vd—i—...—l—alml + ag then

lIp(a@)II = lllaag(@)? + ... + a1g(2) + aoll| < [llaag(@)? + ... + a1g(2)? + aol|| =

= llla(2)(aq + - ..+ ar +ao)ll| < [llalll* - [llpl

By composing A; of weight O(n) and degree 1 with P, 5 . /o of weight 20Vh) and degree
V'h, we get a polynomial of degree v/h and weight at most nOWh, <
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» Corollary 12. Let L be a modified decision list of length h on {0,1}". Then L is computed
by a PTF p of degree O(v/h) and weight ROWHR) Moreover, the p(0™) = 0.

Proof. Multiply the polynomial from the previous theorem by a constant C' = n@Vm),

By Theorem 10, every p; from the proof of Theorem 11 now has integer coefficients. The
resulting polynomial does not pointwise approximate the decision list anymore, but for every
x € {0,1}"™ we have |CL(z) — p(x)| < C/e and p(0™) = 0. Therefore, for any sufficiently
large constant e, say ﬁ, Cp is the desired PTF for L. <

Using Corollary 12 as the inner approximator, we can use the outer construction by
Klivans and Servedio to achieve the final PTF for the decision lists.

» Theorem 13. Let L be a decision list of length n on {0,1}™. Then for any h < n, L is
computed by a PTF of degree O(v/h) and weight 20(n/h+Vhlogh)

The proof goes exactly the same as in [22, Theorem 7], except the inner approximator has a
constant precision, which does not affect the overall correctness. For the sake of completeness,
we provide the proof in Appendix A.

» Corollary 14. Let L be a decision list of length n on {0,1}™. Then for any d < y/n, L is
computed by a PTF of degree d and weight 20(n/d*+dlogd)

In [3], Beigel proved the lower bound for the weight of PTF for the specific decision list
called ODD-MAX-BIT.

» Definition 15. The ODD-MAX-BIT, function on input z € {0,1}" is equal to (—1)°
where 1 is the position of the rightmost 1 in x. If x = 0" then ODD-MAX-BIT, (z) = 1.

» Theorem 16 ([3]). Let p be a degree d PTF with integer coefficients which computes
ODD-MAX-BIT,, on {0,1}". Then ||[p||| = 2%*/%).

Note that Corollary 14 gives a PTF of weight 20(*/ &) for any decision list and d =

1/3
O ((bgn) ) Thus, in this range our bound is asymptotically optimal.
Using Theorem 13, we can also provide a slightly more efficient online learning algorithm

for decision lists.

» Corollary 17. Let L be a decision list of length n on {0,1}". Then L is computed by a
PTF of degree O(n'/3) and weight 20(n'/?logn)

Proof. Apply Theorem 13 with h = n!/3. <

» Corollary 18. There is an algorithm that learns decision lists on {0,1}™ in time nO™'’?

and mistake bound 20(m"/*logn)

Proof. Follow immediately from the previous corollary and Theorem 8. <

4 Decision lists on Hamming balls

In this section, we shift our focus from {0,1}™ to {0,1}%,. We show that both upper and
lower bounds can be generalized on the new domain, and the degree-weight dependency is
much more significant than it is on the Boolean cube. To be more precise, we show that if
the degree parameter is low, then the Hamming ball scenario is not much different from the
Boolean cube one, and we still need an exponential in terms of n weight for a PTF. However,
after a certain threshold it can be drastically improved.

52:7
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4.1 Upper bound

We first start with the upper bound; to achieve it, we can straightforwardly modify the proof
of Theorem 11 for the {0,1}%, domain.

» Theorem 19. Let L be a modified decision list of length h on {0, 1}%,C Then for every
e = O(1) L can be e-approzimated by a polynomial of degree O(V'k) and weight nOWVk),

Moreover, p(0™) = 0.

Proof. Recall the following definitions from the proof of Theorem 11
h h 3 3

We need to reexamine A;(z). If for every = € {0,1}%, we have A;(z) > 0, then T;(x) =0
on {0,1}%, and we can safely remove the corresponding term from the sum without affecting
it’s value on any input. Otherwise, let ' € {0,1}%, be such an input that A;(z') = 0.
Flipping the value of one bit in 2’ can affect at most one literal in T}, so if | @ 2’| = 1 then
Ai(z) <3+ Ai(x).

Notice that because we are only interested in z € {0,1}%,, for any = we have |z & 2’| <
|z V 2| < 2k and A;(z) < 3-2k + Ai(2') = 6k. Thus, we can approximate A;(z) with
pi(z) = Per,2,2:(Ai(x)) instead of Ps,, 5 /9 (Where both polynomials are from Theorem 10),
and this results in the desired bounds on degree and weight. <

» Corollary 20. Let L be a decision list of length n on {0, 1}%k Then L is computed by a
PTF p of degree O(vV'k) and weight n®V®.

Proof. The proof is absolutely the same as in Theorem 13. |

We note that the same ideas can be applied to [22, Theorem 6], but it would result in a
bound of deg(p) = O(Vklogn) and |[|p||| = 20(V*1°e" ) which is much worse if k < n.
As a side result, we also get an online-learning algorithm for decision lists on {0, 1}2.

» Corollary 21. There is an algorithm that learns decision lists on {0,1}2, in time nOk)

and with mistake bound nOVF) .

4.2 Lower bound

While the previous proof is straightforward, it requires d = ©(v/k). It turns out that it is
not a coincidence: if we want to lower the degree even further, we would need to drastically
increase the weight parameter. In fact, Corollary 14 is tight in the case of Hamming Balls as
well as in the case of the Boolean Cube.

» Theorem 22. Let p be a degree d PTF with integer coefficients which computes ODD-
MAX-BIT,, on {0,1}2, and d = O(E). Then |||p||| = 9Q(n/d?)

The new proof is heavily based on the proof of Theorem 16; the main difference is the
way we construct a polynomial that achieves a contradiction on its approximate degree.

Proof. The proof goes as follows. We first partition [n] into blocks of even size about
t = O(d?). Note that we got r = Q(n/d?) blocks in total. Then we prove that for every block
i we can find an input y; such that it may have 1’s only in the first i blocks and |p(y;)| > 2.
If we succeed, then we get an input g, such that |[p(y,)| > 27 = 22("/4) and, as a corollary,
lllpll| = 29(n/4*) We will prove this claim by induction.
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We adjust the hidden constant in d = O(Vk) so we can assume k > t. With that in
mind, let yo = 1Y0"~?, i.e. the first ¢ bits are 1s and the remaining bits are 0s. Because p has
integer coefficients, we have |p(y9)| > 1 and we are done with the base case. Now suppose
without loss of generality that we have p(y;) > 2¢ (the case of negative p(y;) is completely
analogous), we will prove that we can fill the (i + 1)’s block in y; and get y;4+1 such that
p(yis1) < —274L

Let P(z): {0,1}*/?2 — R be constructed by the following constraints on the input of p.
1. Every block up to ¢’s is filled as in y;.

N

3. Let x1,...,7; be the positive bits in the current input and let z = (z1, ..., z;/2) be the
new set of variables. We change the value of every z; to 1 — z;.
4. All the remaining bits are also set to 0.

We first prove that for any z the achieved input is indeed in {0,1}2,. Note that because

we started with ¢ 1s in yg, every time we set z; to 1 we change the corresponding z; to 0.

Thus, we never increase the number of 1s in the input, and because k > ¢ it is in {0,1}%,.
Now suppose by contradiction that the desired y;11 does not exist, i.e. for every x achieved
by filling the (i + 1)’s block of y;, we have |p(x)| < 2!, By definition, P(0%/2) = p(y;) > 2°
but for every z # 02 we have —2+1 < p(z) < 0 where the first inequality follows from
|P(z)| < 271 and the second one follows from the definition of the ODD-MAX-BIT,,.

We claim that the polynomial P(z) = —5; P(z) %—approximates the OR;/, function.

Indeed, P(0) = % and for every z € {0, 1342\ j:)02‘5/2} we have 2 < P(2) < 3. It is well known
(see [26]) that deg; /5(OR,) = Q(y/n). For a suitable choice of the hidden constant in ¢ we
get that deg(P) > v/t = d, but at the same time deg(P) = deg(P) < deg(p) = d, which
contradicts the non-existence of the desired y;41. <

5 Discussion

Despite having optimal bounds on decision lists for almost all d = O(nl/ 3), the situation is less
clear for other values of d. As we mentioned in the introduction, Servedio, Tan and Thaler [29,
Theorem 6] proved that for any n'/4 < d < n any decision list L: {—1,1}" — {~1,1} on
n variables has a degree-d PTF of weight 90n((n/d)**) " Thjs gives an upper bound for
d = Q(n'/?), but it uses {—1,1}" domain rather than {0,1}". They also proved a lower

bound of 2%(V"/9 for both domains and d = o (L), which is stronger than Theorem 16

logZ n
for d = Q(nl/ 3). It uses the same approach, but a different technique for bounding the
degree on a block, which suggests that a matching upper bound (if there is one) should have
different construction than the one achieved by Corollary 12. We also note that because of
the block approach this lower bound can be also adapted for Hamming Balls.

As for the approximation on {0, 1}%,, an obvious open question is to generalize Theorem 22
for k = o(d?). Another open question is to find optimal degree-weight tradeoffs for pointwise
approximation of Boolean functions on both {0,1}" and {0,1}7%,, as suggested in [19]. We
suspect that by including € into analysis of Theorem 10 it can be_generalized for any ¢ = o(1)
as well to achieve a similar to Theorem 11 result. After that, the similar ideas used in [6]
and [19] can be applied to get degree-weight traidoff results for a class of decision lists.
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A  Omitted proofs

Proof of Theorem 13. We can represent L as follows:

n/h
L(z) =signC [ Y 3" fi(2) + by

i=1

with C from Theorem 10, where each f; is a sublist responsible for the bits on the inter-
val Z(;_1)h+1,---,Tin, Which returns zero if no literals on this interval is satisfied. It is
straightforward to check the correctness of the above decomposition: if f; contains the first
satisfied literal, then it determines the sign of the sum because 3"/7—+1 > qu gn/h=i+1
and f;(z) = 0 for every j < i.

Every sublist f; is a modified decision list, so we can apply Corollary 12 and replace every
Cfi(z) with p;(z), resulting in

n/h
H(x)= ZS"/hﬂ'Hpi(x) + Cbpy.

i=1

Our goal is to show that H(z) is the desired PTF. First of all, if x = 0™ then every

pi(z) = 0 and sign H(z) = b,41. Otherwise, let 7 = (i — 1)h + ¢ be the first bit such that £,
is satisfied. We have several cases:

1. If j <4 then 3"/h=i+1p,(z) = 0;
2. 3n/h=itlp(z) differs from 3™/"~F1Cb, by at most C3™/ "~ L
3. The magnitude of each of the remaining values is at most C'3"/h—i+1 (1 + ﬁ).

Combining these bounds, the value of H(x) differs from 3*/"~“+1Cb, by at most

3n/h7i+1 1 n/h—i )
1+ (14— j
Cl 00 +( * 100> ]; 3

The value of the sum is less than 3n/h'27i+1 , so the overall value is less than C37/h—i+1

and sign H(x) = b,. The bounds on degree and weight follows from Corollary 12. |
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