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—— Abstract

Let P be a simple polygon with n vertices, and let A be a set of m points or line segments inside P.
We develop data structures that can efficiently count the objects from A that are visible to a query
point or a query segment. Our main aim is to obtain fast, O(polylognm), query times, while using
as little space as possible.

In case the query is a single point, a simple visibility-polygon-based solution achieves O(lognm)
query time using O(nm2) space. In case A also contains only points, we present a smaller, O(n +

m?T¢ log n)-space, data structure based on a hierarchical decomposition of the polygon.

Building on these results, we tackle the case where the query is a line segment and A contains
only points. The main complication here is that the segment may intersect multiple regions of the
polygon decomposition, and that a point may see multiple such pieces. Despite these issues, we
show how to achieve O(logn lognm) query time using only O(nm?**¢ 4+ n?) space. Finally, we show
that we can even handle the case where the objects in A are segments with the same bounds.
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Segment Visibility Counting Queries in Polygons

1 Introduction

Let P be a simple polygon with n vertices, and let A be a set of m points or line segments
inside P. We develop efficient data structures for wvisibility counting queries in which we
wish to report the number of objects from A visible to some (constant-complexity) query
object Q. An object X in A is wvisible from @ if there is a line segment connecting X and
contained in P; other objects in A do not block visibility. We focus on the case when @ is a
point or a line segment. We aim to obtain fast, O(polylognm), query times, using as little
space as possible. Our work is motivated by problems in movement analysis where we have
sets of moving entities, for example, an animal species and their predators, and we wish to
determine if there is mutual visibility between the entities of different sets. We also want
to quantify “how much” the sets can see each other. Given measurements at certain points
in time, solving the mutual visibility problem between two such times reduces to counting
visibility between line segments (for moving entities) and points (for static objects). This
visibility counting problem is also of general interest.

Related work. Computing visibility in polygons is a classical problem in computational
geometry [19, 30]. Algorithms for efficiently testing visibility between a pair of points, for
computing visibility polygons [18, 27, 29], and for constructing visibility graphs [31] have
been a topic of study for over thirty years. There is even a host of work on computing
visibility on terrains and in other three-dimensional environments [20, Chapter 33.8]. For
many of these problems, the data structure version of the problem has also been considered.
In these versions, the polygon is given up front, and the task is to store it so that we can
efficiently query whether a pair of points p, ¢ is mutually visible [13, 23, 26], or report the
visibility polygon V(q) of g [4]. In particular, when P is a simple polygon with n vertices, the
former type of queries can be answered optimally — in O(logn) time using linear space [26].
The latter type of queries can be answered in O(log®n + |V (¢)|) time using O(n?) space [4].
The visibility polygon itself has complexity O(n) [18]. Visibility polygons inherit structure
from the boundaries of P, so the approaches that use it do not transfer to our setting.

Computing the visibility polygon of a line segment has been considered, as well. When the
polygon modelling the environment is simple, the visibility polygon, called a weak visibility
polygon, denoted V (pq) for a line segment pg, still has linear complexity, and can be computed
in O(n) time [23]. Chen and Wang [15] consider the data structure version of the problem:
they describe a linear-space data structure that can be queried in O(|V(pq)|logn) time, and
an O(n3)-space data structure that can be queried in O(logn + |V (pg)|) time.

Computing the visibility polygon of a line segment pg allows us to answer whether an
entity moving along pg can see a particular fixed point 7, i.e. there is a time at which the
moving entity can see r if and only if r lies inside V(pg). If the point r may also move, it is
not necessarily true that the entity can see r if the trajectory of r intersects V(pg). Eades et
al. [17] present data structures that can answer such queries efficiently. In particular, they
present data structures of size O(nlog® n) that can answer such a query in time O(n*/*log® n).
They present results even in case the polygon has holes. Aronov et al. [4] show that we can
also efficiently maintain the visibility polygon of an entity as it is moving.

Visibility counting queries have been studied before, as well. Bose et al. [6] studied the
case where, for a simple polygon and a query point, the number of visible polygon edges is
reported. The same problem has been considered for weak visibility from a query segment [8].
For the case of a set of disjoint line segments and a query point, approximation algorithms
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Table 1 Results in this paper. ® and / denote points and line segments, respectively.

Data structure

A Q . Section
Space Preprocessing Query

e o O(nm? O(nmlogn + nm?) O(log nm) 3.1

e o Onm+m?>logn) O(n+mlog?n+m?T=logn) O(log nlognm) 3.2

/ O(nm?) O(nmlogn + nm?) O(log nm) 3.1

e /  OMm?4nm>) O(n?logm + nm?*e) O(log nlognm)

/] Om?4nm?>Te) O(n?logm + nm?Te) O(lognlognm) 5

exist [3, 21, 32]. In contrast to these settings, we wish to count visible line segments with
visibility obstructed by a simple polygon (other than the line segments). Closer to our setting
is the problem of reporting all pairs of visible points in a simple polygon [5].

Results and organisation. Our goal is to efficiently count the objects, in particular, line
segments or points, in a set A that are visible to a query object ). We denote this count by
C(Q,A). Given P, A, and @, we can easily compute C(Q, A) in optimal O(n+mlogn) time
(see Lemma 1). We are mostly interested in the data structure version of the problem, in
which we are given the polygon P and the set A in advance, and we wish to compute C(Q, A)
efficiently once we are given the query object (). We show that we can indeed answer such
queries efficiently, that is, in polylogarithmic time in n and m. The exact query times and
the space usage and preprocessing times depend on the type of the query object and the
type of objects in A. See Table 1 for an overview. Here and in the rest of the paper, ¢ > 0
denotes an arbitrarily small constant.

In Section 3, we consider the case where the query object is a point. We show how to
answer queries efficiently using the arrangement of all (weak) visibility polygons. As Bose
et al. [6, Section 6.2] argued, such an arrangement has complexity ©(nm?) in the worst
case. We then show that if the objects in A are points, we can do significantly better. We
argue that we do not need to construct the visibility polygons of all points in A, avoiding an
O(nm) term in the space and preprocessing time. We use a hierarchical decomposition of
the polygon and the fact that the visibility of a point @ € A in a subpolygon into another
subpolygon is described by a single constant-complexity cone. Aronov et al. [4] also use
hierarchical decomposition, but the rest of their approach cannot be efficiently used in our
setting, since it uses the cyclic ordering of the vertices of a visibility polygon.

In Section 4, we turn our attention to the case where the query object is a line segment
pq and the objects in A are points. One possible solution in this scenario would be to store
the visibility polygons for the points in A so that we can count such polygons stabbed by the
query segment. However, since these visibility polygons have total complexity O(nm) and the
query may have an arbitrary orientation, a solution achieving polylogarithmic query time will
likely use at least Q(n?m?) space [1, 2, 24]. So, we again use an approach that hierarchically
decomposes the polygon to limit the space usage. Unfortunately, testing visibility between the
points in A and the query segment is more complicated in this case. Moreover, the segment
can intersect multiple regions of the decomposition, so we have to avoid double counting. All
of this makes the problem significantly harder. We manage to overcome these difficulties
using careful geometric arguments and an inclusion—exclusion-style counting scheme. Our
result in Table 1 saves at least a linear factor compared to an approach based on stabbing
visibility polygons. We then show that we can extend these arguments even further and solve
the scenario where the objects in A are also line segments. Surprisingly, this does not impact
the space or time complexity of the data structure.
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Finally, in Section 5, we discuss some extensions of our results. In particular, we show
that just testing if the count C(Q, A) is non-zero (i.e. if @ is visible from any of the objects)
is easier, and that we can compute the pairwise visibility of two sets of objects — that is,
solve the problem that motivated this work — in time subquadratic in the number of objects.

2 Preliminaries

In this section, we briefly review some basic tools we use to build our data structures. We
omit some common material and proofs; we refer the reader to the full version for those.

Visibility in a simple polygon. Denote the (weak) visibility polygon in a simple polygon P
of a point p (resp. line segment pg) by V(p) (resp. V(pg)). A cone is a subset of the plane
that is enclosed by two rays starting at some point p, called the apez of the cone; the angle
between any two rays in the cone is acute. We refer to the two bounding rays as the left
and the right ray, so that moving clockwise from the left to the right ray traverses the cone.
A subcone of some cone C' is a cone with the same apex as C that is a subset of C. For a
segment 7s C P, define the visibility cone of a point p € P through 735, denoted V (p,7s), as
a region consisting of the rays from p that intersect 7s before properly crossing the boundary
of P.} Define a visibility cone C(p) into a subpolygon U for p € P\ U as the visibility cone
through the diagonal of P that separates U from the subpolygon containing p.

» Lemma 1. Let P be a simple polygon with n vertices, and let A be a set of m points or line
segments in P. For a point or a line segment @, we can find C(Q, A) in time O(n+mlogn).

Proof. If A is a set of points, it suffices to compute the visibility polygon of @) and preprocess
it for O(log n)-time point location queries. Both preprocessing steps take linear time [23, 28],
and querying takes O(mlogn) time in total. In case A consists of line segments, we can
similarly test if one of the endpoints of each segment of A is visible, thus making the segment
visible. We also need to count the number of visible segments whose endpoints lie outside
V(Q). This can be done in O(n + mlogn) time by computing a sufficiently large bounding
box B of V(Q), and constructing an O(logn)-time ray shooting data structure on B\ V(Q).
This allows us to test if a segment intersects V(Q) in O(logn) time. The polygon B\ V(Q)
has only a single hole, so we can connect the boundary of V(Q) to the boundary of B with a
line segment 75 and cut B\ V(Q) along 73 to obtain a simple polygon. We can then build a
ray shooting structure [26] on this simple polygon, and answer a query by O(1) ray shooting
queries. In particular, for any segment in A that does not cross 7s, we get the result directly;
and for any segment that crosses 7s, we detect that the ray hits 7s and do a second query on
the other side of the cut. Either way, we use O(1) ray shooting queries. <

» Lemma 2. Given a visibility polygon V(p) C P for some point p € P and a line segment
7S C P, either 7s and V (p) do not intersect, or their intersection is a line segment.

» Corollary 3. The intersection between the line segment 7s C P and the visibility cone
V(p,T35) for some p € P is either empty, or a line segment.

! In case p € 75 holds, this definition yields R?>. We handle such cases separately.
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Cutting trees. A cutting tree [11, 14, 16] is a data structure commonly used for efficient
half-plane range queries. Nesting multiple cutting trees in levels allows to efficiently perform
simplex range searching and solve other related queries; we make extensive use of this. See
Figure 1 for an illustration. We now discuss this data structure in more detail.

Suppose we want to preprocess a set £ of m lines in the plane so that given a query point
g, we can count the number of lines below the query point. Let r € [1,m] be a parameter;
then a (1/r)-cutting of £ is a subdivision of the plane with the property that each cell is
intersected by at most ™/r lines [11]. If ¢ lies in a certain cell of the cutting, we know, for
all lines that do not cross the cell, whether they are above or below ¢, and so we can store
the count with the cell, or report the lines in a precomputed canonical subset; for the lines
that cross the cell, we can recurse. The data structure that performs such a query is called
a cutting tree; it can be constructed in O(m?*¢) time, uses O(m?*¢) space, and supports
answering the queries in time O(logm), for any constant € > 0. Intuitively, the parameter r
here determines the trade-off between the height of the recursion tree and the number of
nodes for which a certain line in £ is relevant. If we pick r = m, the (1/r)-cutting of L is
just the arrangement of £. The bounds above are based on picking r € O(1), so the height
of the recursion tree is O(logm). This approach follows the work of Clarkson [16], with
Chazelle [11] obtaining the bounds above by improving the cutting construction.

An obvious benefit of this approach over just constructing the arrangement on £ and doing
point location in that arrangement is that using cuttings, we can obtain O(logm) canonical
subsets and perform nested queries on them without an explosion in storage required; the
resulting data structure is called a multilevel cutting tree. Specifically, we can query with &
points and a direction associated with each point (above or below) and return the lines of £
that pass on the correct side (above or below) of all k query points. If we pick » € O(1) and
nest k levels in a k-level cutting tree, we get the same construction time and storage bounds
as for a regular cutting tree; but the query time is now O(log” m). Chazelle et al. [14] show
that if we set r = n“/?, each level of a multilevel cutting tree is a constant-height tree, so
the answer to the query can be represented using only O(1) canonical subsets and the query
time is reduced to O(logm). The space used and the preprocessing time remains O(m?+¢).

» Lemma 4 ([14]). Let L be a set of m lines and let k be a constant. Suppose we want to
answer the following query: given k points and associated directions (above or below), find

the lines in L that lie on the correct side of all k points. In time O(m?**¢)

, we can construct
a data structure using O(m?2*¢) storage that supports such queries. The lines are returned as

O(1) canonical subsets, and the query time is O(logm).

Dualising the problem in the usual way, we can alternatively report or count points from
the set A that lie in a query half-plane; or in the intersection of several half-planes, using a
multilevel cutting tree.

» Lemma 5 ([14]). Let A be a set of m points and let k be a constant. In time O(m?*¢),
we can construct a data structure using O(m?*¢) storage that returns O(1) canonical subsets
with the points in A that lie in the intersection of the k query half-planes in time O(logm).

» Lemma 6. Let A be a set of m arbitrary points in P, with each a € A an apex of some
cone C,. At query time, we get the point q, an apex of a cone Cy. In time O(m**¢), we can
construct a data structure using O(m?2T¢) space that returns a representation of the points in
A" C A, so that for any p € A’, we have g € Cp, and p € C,. The points are returned as O(1)
canonical subsets, and the query time is O(logm); they can be counted in the same time.
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Figure 1 A query in a multilevel cutting tree, top left to bottom right. The query point is red;
the selected points of A are blue. Black outline shows the relevant part of the polygon. (a, b) We
select points in A above (resp. below) the right (resp. left) cone boundary of ¢. (¢, d) We refine by
taking points whose left (resp. right) cone boundary is below (resp. above) q.

» Lemma 7. Let L be a vertical line and let A be a set of m cones starting left of L and
whose left and right rays intersect L. In time O(m?*t¢), we can construct two two-level
cutting trees for A of total size O(m?1¢), so that for a query segment pq that is fully to the
right of L, we can count the cones that contain or intersect pq in O(logm) time.

» Lemma 8. Let L be a set of m lines and pq a query line segment. We can store L in a
multilevel cutting tree, using O(m?*¢) space and preprocessing time, so that we can count
the lines in L intersected by pq in time O(logm).

Polygon decomposition. For a simple polygon P on n vertices, Chazelle [9] shows that we
can construct a balanced hierarchical decomposition of P by recursively splitting the polygon
into two subpolygons of roughly equal size, using only diagonals (segments between two
vertices of the polygon). The recursion stops when reaching triangles. The decomposition can
be computed in O(n) time and stored using O(n) space in a balanced binary tree [9, 10, 22].

Hourglasses and the shortest path data structure. An hourglass for two diagonals pg and
7S in a simple polygon P is the union of geodesic shortest paths in P from points on pg to
points on 75 [22]. Such an hourglass is bounded by two diagonals and two inward convex
chains. Call one of the diagonals the left diagonal and the other the right diagonal. By
following the hourglass boundary in a clockwise manner, starting from the left diagonal, we
visit the upper convexr chain, the right diagonal, and the lower convexr chain. If the upper
chain and lower chain of an hourglass share vertices, it is closed, otherwise it is open. We
only explicitly use open hourglasses in our constructions.? A wvisibility glass is a subset of the
hourglass, restricted to the line segments between points on pg and points on 75 [17].
Guibas and Hershberger [22, 25] describe a data structure to compute shortest paths in
a simple polygon P. They use the polygon decomposition by Chazelle [9] and also store
hourglasses between the splitting diagonals of the decomposition. The data structure uses
O(n) storage and preprocessing time and can answer the following queries in O(logn) time:

2 If an hourglass is closed, the two chains are only inward convex from the endpoints of a diagonal until
they meet.
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Segment location query. Given a segment pg, return the two leaf triangles containing p and
g in the decomposition and the O(logn) pairwise disjoint open hourglasses so that the
triangles and hourglasses fully cover pg. We call this structure the polygon cover of pq.

Shortest path query. Given points p, ¢ € P, return the geodesic shortest path between p and
g in P as a set of O(logn) nodes of the decomposition. The shortest path between p and
q is a concatenation of subcurves of the polygonal chains of the appropriate boundaries of
the (open or closed) hourglasses in these O(logn) nodes together with at most O(logn)
segments connecting two consecutive subcurves.

Cone query. Given a point s and a line segment pg in P, return V(s,pq). This can be done
by computing the shortest paths from s to p and to ¢ and taking the first segments of
each path starting at s to extend them into the bounding rays of a cone.

3 Point Queries

In this section, given a set A of m points in a simple polygon P on n vertices, we count
the points of A that are in the visibility polygon of a query point ¢ € P. We present two
solutions: (i) an arrangement-based approach that also applies in the case where A contains
line segments, which achieves low query time at the cost of large storage and preprocessing
time; and (ii) a cutting-tree-based approach with query times slower by a factor of O(logn),
but with much better storage requirements and preprocessing time.

3.1 Point Location in an Arrangement

The approach relies on the fact that the number of objects in A visible to a query point ¢
is equal to the number of (weak) visibility polygons of the objects in A stabbed by ¢q. We
construct all (weak) visibility polygons of the objects in A and compute the arrangement A
of the edges of these polygons. For each cell C' in the arrangement, we store the number of
visibility polygons that contain C. Then a point location query for ¢ yields the number of
visible objects in A. Computing the visibility polygons takes O(nm) time, and construct-
ing the arrangement using an output-sensitive line segment intersection algorithm takes
O(nmlognm + |A|) time [12], where |A]| is the number of vertices of 4. Building a point
location structure on A for O(log|.A|)-time point location queries takes O(|.A]) time [28]; the
space used is O(]A]). As Bose et al. [6] show, the worst-case complexity of A is ©(nm?).

» Theorem 9. Let P be a simple polygon with n vertices, and let A be a set of m points
or line segments in P. In O(nm? +nmlognm) time, we can build a data structure of size
O(nm?) that can report the number of points or segments in A wvisible from a query point q
in O(lognm) time.

3.2 Hierarchical Decomposition

To design a data structure that uses less storage than that of Section 3.1, we observe that if we
subdivide the polygon, we can count the visible objects by summing up the number of visible
objects in the cells of the subdivision. To efficiently compute these counts, we use the polygon
decomposition approach (see Section 2). With each split in our decomposition, we store data
structures that can efficiently count the visible objects in the associated subpolygon.

Cone containment. Let us solve the following problem first. We are given a simple polygon
P and a (w.l.o.g.) vertical diagonal D that splits it into two simple polygons P;, and Pg.
Furthermore, we are given a set A of m points in Pr. Given a query point ¢ in Pgr, we want
to count the points in A that see q. We base our approach on the following observation.
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Figure 2 Visibility cones (coloured regions) of (coloured) points w.r.t. some diagonal D. (a) Blue
and red are mutually visible. (b) Green and blue cannot see each other, nor can orange and blue.

Figure 3 Augmented polygon decomposition following the approach by Chazelle [9]. Each node
corresponds to the splitting diagonal (blue dashed line). Along the tree edges (blue lines), we store
the multilevel cutting tree (red box) for the polygon in the child using the diagonal of the parent.

» Lemma 10. Given a simple polygon P, split into two simple polygons Pr, and Pr by a
diagonal D between two vertices; and given two points p € Py, and q € Pgr, consider the
visibility cones V(p, D) and V(q, D), i.e. the cones from p and q through D into the other
subpolygons. Point p sees q in P if and only if ¢ € V(p, D) and p € V(q, D).

Lemma 10 shows that to count the points in A that see ¢, it suffices to construct the cones
from all points in A through D and the cone from ¢ through D and count the points in A
satisfying the condition of Lemma 10 (see Figure 2). The cones V (p, D) from all p € A can be
precomputed (we shall handle this later), so only the cone V (g, D) needs to be computed at
query time. The query of this type can be realised using a multilevel cutting tree (Lemma 6).

Decomposition. Let us return to the original problem. To solve it, we can use the balanced
polygon decomposition [9] (see Section 2). Following Guibas and Hershberger [22, 25|, we
represent it as a binary tree (see Figure 3). Observe that as long as there is some diagonal
D separating our query point from a subset of points of A, we can use the approach above.

Every node of the tree is associated with a diagonal, and the two children correspond to
the left and the right subpolygons. With each node, we store two data structures described
above: one for the query point to the left of the diagonal and one for the query to the right.

The query then proceeds as follows. Suppose the polygon P is triangulated, and the
triangles correspond to the leaves in the decomposition. Given a query point ¢, find the
triangle it belongs to; then traverse the tree bottom up. In the leaf, ¢ can see all the points
of A that are in the same triangle, so we start with that count. As we proceed up the tree,
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Figure 4 (a) For the cone that describes visibility of pg through D, Lemma 10 does not hold — there
can be visibility without visibility between the apices of the cones. (b) The segment pq intersects the
cone of s, and s is in the cone of pg, but they cannot see each other, so testing intersection between
the objects and the cones also does not work directly.

we query the correct associated data structure — if ¢ is to the right of the diagonal, we want
to count the points to the left of the diagonal in the current subpolygon that see q. It is easy
to see that this way we end up with the total number of points in A that see ¢, since the
subsets of A that we count are disjoint as we move up the tree and cover the entire set A.

» Theorem 11. Let P be a simple polygon with n vertices, and let A be a set of m points
inside P. In O(n + m2*€logn + mlog? n) time, we can build a data structure of size
O(n +m?*+<logn) that can report the number of points from A wisible from a query point q
in O(lognlogm + log?n) time.

Proof. The correctness follows from the considerations above; it remains to analyse the time
and storage requirements. For the query time, we do point location of the query point ¢ in
the triangulation of P and make a single pass up the decomposition tree, making queries
in the associated multilevel cutting trees. Clearly, the height of the tree is O(logn). At
every level of the decomposition tree, we need to construct the visibility cone from the
query point to the current diagonal; this can be done in O(logn) time with a cone query
(see Section 2). Then we need to query the associated data structure, except at the leaf,
where we simply fetch the count. The query then takes time O(lognlogm + log®n). For the
storage requirements, we need to store the associated data structures on in total m points at
every level of the tree, as well as a single copy of the shortest path data structure, yielding
overall O(n 4+ m?2*¢logn) storage. Finally, we analyse the preprocessing time. Triangulating
a simple polygon takes O(n) time [10]. Constructing the decomposition can be done in
additional O(n) time [22]. Constructing the associated data structures takes time O(m?*¢)
per level, so O(m?*¢logn) overall, after determining the visibility cones for the points of
A to all the relevant diagonals, which can be done in time O(m log2 n), as each point of A
occurs a constant number of times per level of the decomposition, and constructing the cone
takes O(logn) time. Overall we need O(n + m2*¢logn + mlog®n) time. <

» Remark 12. While this approach uses many of the ideas needed to tackle the setting with
segment queries, Lemma 10 does not apply — see Figure 4.

4 Segment Queries

In this section, we are given a simple polygon P and a set A of stationary entities (points)
in P. We construct a data structure to count the points in A that see a query segment
pq. We cannot reuse the approach of Section 3.1, as the query pg may intersect multiple
arrangement cells. Thus, we construct a new data structure using the insights of the
hierarchical decomposition of Section 3.2. For the complete argument we refer to the full
version.
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Figure 5 Partitioning of the polygon based on the polygon cover of pg. The hourglasses and
triangles are shown in orange; the side polygons in green; and the end polygons in red.

High-level overview. We use the data structure by Guibas and Hershberger [22] (abbreviated
GHDS) on P as the basis and augment the elements of GHDS with data structures that
allow us to perform the queries. Recall from Section 2 that we can obtain the polygon cover
for a query segment pg using the GHDS, consisting of O(logn) hourglasses and two triangles
T,, Ty containing p and ¢. For a given query pg, the polygon cover partitions P into regions
of three types (see Figure 5):

1. Hourglasses and triangles T, T, intersecting pg and containing p or g, respectively.

2. Side polygons, each incident to the upper or lower chain of an hourglass.

3. End polygons that are adjacent to T, and Tj,.

For each type, we now count the points in A in a region of that type that see pq.

4.1 Counting Points from A in Triangles and Hourglasses

We count the points in A contained in a region of Type 1 that see pg. Triangles are convex,
so any point in a triangle can see pg. Similarly, each hourglass is completely traversed by
Dq, so every point inside an hourglass can see pg. During preprocessing, for every region
in the GHDS (a triangle T or an hourglass H), we count the points from A in the region.
Specifically, we construct a half-plane range query data structure in O(m?*¢) time and,
for a triangle T, count the points in A N'T with three consecutive half-plane range queries.
The total complexity of the hourglasses in the GHDS is O(nlog®n) [17, Lemma 7]. We
triangulate each hourglass H to compute |A N H| in O(nlog® nlogm) total time. Given g,
we compute the sum over all O(logn) Type 1 regions in O(logn) time.

» Theorem 13. We can construct an O(n)-size data structure in O(m>*te + nlog® nlogm)
time, so that we can count all points in Type 1 regions that see pg in O(logn) time.

4.2 Counting Points from A in Side Polygons

The points in a Type 2 region (side polygon) do not always see pg. Let H be an hourglass
with two diagonals Dy, Dg and two chains 7y, mp. Let Sy be the side polygon bounded by
the upper chain 7y; the analysis for S, bounded by the lower chain 7y, is symmetrical. A
point a € AN Sy can see pq if its visibility cone C(a) into P\ Sy is not empty. Furthermore,
we discern three mutually exclusive types of cones (Figure 6):

Figure 6 The three cases (a), (b), and (c) for cones originating from a side polygon Sy .
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Figure 7 (a) We partition Cz7 based on vertex w into sets C1(uv) that pass above w or contain
it and C|(uv) that pass below w. (b—d) We partition C1(uv) based on s = pg N vw into sets that
pass above s (U), below s (D), or contain it (.5).

(a) C(a) intersects the lower chain 7y, of H;

(b) C(a) intersects only the left diagonal Dy, of H; and

(c) C(a) intersects only the right diagonal Dg of H.

Cones of Type (a) see pg, since pq separates the upper and the lower chain (we count them
during preprocessing). Types (b) and (c) are symmetrical; we discuss Type (b) for a fixed side
polygon Sy and, without loss of generality, we assume that the directed segment pg crosses
Dy, before Dg. At preprocessing, we store A;, C AN Sy where for all a € Ay, visibility cone
C'(a) intersects only Dyp,; and we store |Ar|. To count the visible cones of Type (b) at query
time, we subtract from |Az| the number of elements in Ay, that do not see pq.

» Lemma 14. A point a € Ay, is not visible to pq if and only if the left ray of C(a) intersects
the shortest path from p to the top of Dy,.

On a high level, we count the points a € Ay, for which the left ray of C'(a) intersects the
shortest path from p to the top vertex v of Dy, as follows. For each hourglass in GHDS, we
store the shortest path map SPM(v) rooted at v [23], and for each edge e in SPM(v), we
store the number of points a € Ay, for which the left ray of C'(a) intersects e. We construct
the SPMs and the cutting trees for the O(n) hourglasses in the GHDS using O(nm?*¢ + n?)
space and O(nm?*€ + n?logm) time. At query time, we obtain the shortest path 7(p,v)
from p to v as a single segment pu, followed by a path 7(u,v) in SPM(v) for some vertex
u. We count the points a € Ay, where the left ray of C'(a) intersects pu in O(logm) time,
and those where the left ray of C'(a) intersects 7(u,v) in O(logn) time, thus avoiding double
counting. Thus, we count the elements in Ay, that do not see pg in O(lognm) time per side
polygon. Given pg, we apply this strategy for all O(logn) hourglasses.

» Theorem 15. We can construct an O(nm?*¢ +n?)-size data structure in time O(nm?>*+¢ +
n?logm), so we can count all points in Type 2 regions that see pq in O(lognlognm) time.

4.3 Counting Points from A in End Polygons

Type 3 regions (end polygons) are bounded by triangles in the decomposition T}, or Ty,
containing p or g, respectively. Let T}, = uvw; it is incident to at most three end polygons.
We describe the data structure for the end polygon E(wv) incident to T, through the edge wo
(see Figure 7). All other data structures are symmetrical. We count the points in A N E(uv)
that see pg. Denote the set of all visibility cones V' (a,@v) by Cqzz over all a € AN E(uv).
Consider the special case where pq is fully contained in a triangle (T, = ;). A triangle
is convex, so we can immediately apply Lemma 8. Now assume T}, # T,. The query segment
pq intersects some boundary of T,,. We construct a data structure under the assumption that
pq intersects edge vw of T}; for pg intersecting uw, we construct a symmetrical structure. So,
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given a triangle T),, where pq intersects vw, we want to count the cones C(a) € Cgzz whose
apex a sees pg. Our argument is a multilevel case distinction on Czz. We first partition Cgm
during preprocessing (Figure 7a) into two sets:

1. C|(uw) are the cones in Czz that pass entirely below the vertex w; and

2. Cf(uw) are the cones in Czz that pass entirely above or contain the vertex w.

Counting cones in C|(uv) whose apex sees pg. For any cone C(a) € Cl(uv), its apex a
sees pq if and only if p lies below the supporting line of the left ray of C(a). We construct a
cutting tree on these lines to count such cones in O(log m) time.

Counting cones in C1(uv) whose apex sees pg. We partition C1(uv) with an elaborate
double case distinction. Observe that this conceptual case distinction can only be made at
query time when we have access to s = pg N vw and ¢ (Figures 7 and 8).

(b) U C C1(uv) are the cones where both boundary rays intersect vs (but not s):
U* C U are the cones whose apices lie above the supporting line of 5g;
U C U is the set U\ U*.

(c) S C Cf(uv) are the cones which contain s = pg N vw:
S() C S are the cones whose right ray intersects 3g;
S C S is the set S\ SO.

(d) D C C1(uw) are the cones where both boundary rays intersect sw (but not s):
D® C D are the cones whose right ray intersects 3g;
D) C D is the set D\ D@,

Counting cones in U whose apex sees pg. Both U* and U™ may contain cones whose
apex sees pg. We show how to count these for both sets using a data structure only on
C1(uv). We show that cones in U U are visible if and only if they intersect the segment ps;
we can test this in O(logm) time. We count the cones in U* whose apices see pg via an
inclusion—exclusion argument. Specifically, we observe that all cones in C1(wv) \ U* have one
of two mutually exclusive properties:

(i) For all cones in S, D® and UV, their right ray intersects (v, q) and lies above s.

(i) For all cones in S(*) and D) their right ray lies below s and does not intersect (v, q).
Cones in U* never have property (ii). Moreover, they are not visible if and only if their right
ray intersects 7 (v, ¢), i.e. invisible cones have property (i). Thus, the number of cones in U*
whose apices see pg is equal to |C1(@v)| minus all cones with property (i) or (ii). We count
cones with property (i) using a shortest path map in O(logn) time, identically to Section 4.2.
We count cones with property (ii) using half-plane range queries in O(logm) time.

Counting cones in S and D whose apex sees pg. The apices of all cones in S see pg. We
identify these in O(logm) time using a stabbing query on C1(uv). For cones in D, we can
make a symmetrical case distinction, creating the sets D* and DY, and we can handle them
through an identical data structure.

» Theorem 16. We can construct an O(nm?T¢ +n?)-size data structure in time O(nm?*¢ +
n?logm), so we can count all points in Type 3 regions that see pq in O(lognlognm) time.
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Figure 8 We partition C1(uv) into six sets: U™, Ub, 8@ g0 D& and DD,

Finalising the argument. In the full version, we show a lemma that allows us to efficiently
construct all visibility cones from points of A in Type 2 and Type 3 regions. We store all
points and visibility cones in the data structures of Theorems 13, 15, and 16 to show the
main result of this section.

» Theorem 17. Let P be a simple polygon with n vertices, and let A be a set of m points
inside P. In time O(nm?T¢ 4+ n?logm), we can build a data structure of size O(nm?*¢ +n?)
to count the points from A wvisible from a query segment pq in O(lognlognm) time.

5 Extensions and Future Work

We consider further variants of the problem. In particular, we extend the approach of
Section 4 to the cases where A contains line segments, or even constant-complexity simple
polygons, with the same bounds. Furthermore, we consider a version of the problem where
we only want to test if at least one object in A sees the query. Finally, we tackle the question
of subquadratic counting, where given two sets A and B with m points each, we wish to
count the pairs from A x B that see each other in the simple polygon in time subquadratic
in m. We briefly describe these results here and further refer the reader to the full version.

Extending to a set of segments or polygons. A natural extension to our GHDS would be
to consider the case where A is a set of segments. As it turns out, there is a straightforward
way to reuse our GHDS. Observe that any line segment that is not entirely contained in a
single end polygon or side polygon intersects a triangle or an hourglass and thus is visible to
pq. Hence, it suffices to count the invisible line segments inside the individual side and end
polygons and subtract that count from the total. Instead of the visibility cones, we use the

visibility glasses, i.e. the collections of all visibility lines between two line segments (Figure 9).

By intersecting the bitangents of the visibility glass, we get a new cone that describes the
potentially visible region on the other side of the diagonal. The preprocessing time for GHDS
construction dominates, and we do not add extra query time or storage. To use the same
approach with constant-complexity simple polygons, we simply show that we can construct
visibility glasses for them, as well. See the full version for details.
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Figure 9 (a) The visibility glass (dark region) inside the hourglass (orange region) from segment
ac to diagonal D = ww. (b) The intersection point ¢ and the two rays from ¢ through w and x form
a new visibility region in the subpolygon to the right of D.

Testing for visibility. If all we need to compute is if any of the objects from A can see @ we
can avoid computing C(Q, A), and answer queries more efficiently. We explicitly compute
the union U of all (weak) visibility polygons of all m objects in A, and build point location
and ray shooting data structures on it. Irrespective of the type of objects in A (points or
segments) and the type of @), we argue that U has complexity O(m(m + n)), and that we
can store using O(m(m + n)) space so that we can answer queries in O(log(m + n))-time.

Subquadratic counting. Given two sets of points or line segments A and B, each of size
m, in a simple polygon P with n vertices, we want to count the pairs in A x B that see
each other. Using the work by Eades et al. [17], we can solve this problem by checking the
visibility for all pairs, which is optimal for n > m. If at least one set consists of points, it
runs in time O(n +m?logn). When m > n, we want to avoid the m? factor, using our data
structures. Suppose we have a data structure for visibility counting queries with query time
Q(m,n) and preprocessing time P(m,n). Pick k = m® with 0 < s < 1. We split the set
A into sets Ay, ..., A, with m/k objects each; then we construct a data structure for each
set. Finally, with each point in B, we query these k data structures and sum up the counts.
The time that this approach takes is O(m* - P(m*~%,n) + m'** . Q(m!'~*,n)). Picking s to
minimise it, we obtain algorithms subquadratic in m in all settings.

Moving points and query variations. We can interpret a line segment as a trajectory traced
by a point moving with constant velocity. The results from Sections 3 and 4 directly apply
in this setting, too. When A consists of line segments as above, we solve a different problem.
Solving the visibility counting problem for moving points seems non-trivial. Alternatively,
one could report the visible points, or ask to quantify the visible portions of segments. All of
these would be highly exciting directions for future work.
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