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Abstract
We consider subsequences with gap constraints, i. e., length-k subsequences p that can be embedded
into a string w such that the induced gaps (i. e., the factors of w between the positions to which
p is mapped to) satisfy given gap constraints gc = (C1, C2, . . . , Ck−1); we call p a gc-subsequence
of w. In the case where the gap constraints gc are defined by lower and upper length bounds
Ci = (L−

i , L+
i ) ∈ N2 and/or regular languages Ci ∈ REG, we prove tight (conditional on the

orthogonal vectors (OV) hypothesis) complexity bounds for checking whether a given p is a gc-
subsequence of a string w. We also consider the whole set of all gc-subsequences of a string, and
investigate the complexity of the universality, equivalence and containment problems for these sets
of gc-subsequences.
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1 Introduction

For a string v = v1v2 . . . vn, where each vi is a single symbol from some alphabet Σ,
any string u = vi1vi2 . . . vik

with k ≤ n and 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n is called a
subsequence (or scattered factor or subword) of v (denoted by u ⪯ v). This is formalised by
the embedding from the positions of u to the positions of v, i. e., the increasing mapping
e : {1, 2, . . . , k} → {1, 2, . . . , n} with j 7→ ij (we use the notation u ⪯e v to denote that u

is a subsequence of v via embedding e). For example, the string a b a c b b a has among its
subsequences a a a, a b c a, c b a, and a b a b b a. With respect to a a a, there exists just one
embedding, namely 1 7→ 1, 2 7→ 3, and 3 7→ 7, but there are two embeddings for c b a.

In this paper, we are interested in subsequences with gap constraints that can be embedded
in such a way that the gaps of the embedding, i. e., the factors ve(i)+1ve(i)+2 . . . ve(i+1)−1
between the images of the mapping, satisfy certain properties. We begin by discussing
why the concept of classical subsequences (i. e., without gap constraints) is a central one in
computer science, and then we will motivate and describe in detail our approach.
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64:2 Subsequences with Gap Constraints

The concept of subsequences is employed in many different areas of computer science:
in formal languages and logics (e. g., piecewise testable languages [59, 60, 41, 42, 43], or
subword order and downward closures [35, 46, 45, 66]), in combinatorics on words [55, 25, 48,
47, 57, 53, 56], for modelling concurrency [54, 58, 16], in database theory (especially event
stream processing [5, 34, 67]). Moreover, many classical algorithmic problems are based on
subsequences, e. g., longest common subsequence [8] or shortest common supersequence [52].
Note that the longest common subsequence problem, in particular, has recently regained
substantial interest in the context of fine-grained complexity (see [14, 15, 1, 2]).

There are two main types of algorithmic problems for subsequences investigated in the
literature. Firstly, matching: the problem to decide whether a string u is a subsequence of
a string v, i. e., whether u ⪯ v (the term matching is motivated by the point of view that
u is a pattern that is to be matched with the string v). Secondly, the analysis problems
are concerned with the sets SubSeq(k, v) of all length-k subsequences of a given string v.
More precisely, for given string v ∈ Σ+ and integer k ∈ N, we want to decide whether
SubSeq(k, v) = Σk (universality), or, for an additional string v′, whether SubSeq(k, v) ⊆
SubSeq(k, v′) (containment) or SubSeq(k, v) = SubSeq(k, v′) (equivalence). For classical
subsequences (as defined above), the matching problem is trivial, while the analysis problems
are well-investigated and relatively well-understood. For instance, the equivalence problem
was introduced by Imre Simon in his PhD thesis [59], and was intensely studied in the
combinatorial pattern matching community (see [36, 32, 61, 63, 19, 24] and the references
therein), before being optimally solved in 2021 [33]. In this work, we consider these problems
with respect to an extended setting of subsequences, which we shall explain and motivate
next.

Motivation for Our Setting. In the theoretical literature, problems on subsequences are
usually considered in the setting where the embeddings (as witnesses for subsequences) can
be arbitrary. This means that any subsequence u of string v is witnessed by a canonical
embedding e that greedily maps each position i of u to the leftmost occurrence of symbol ui in
the suffix ve(i−1)ve(i−1)+1 . . . vn. For example, u = a b a can be embedded into v = a b a c b b a
in six different ways, but the canonical embedding maps u to the prefix v[1..3]. This makes
it often rather simple to deal with subsequences algorithmically: matching can be decided
greedily in linear time; the set of all subsequences of a string v can be represented by a
deterministic automaton of size O(|v||Σ|) (which means that the analysis problems can be
solved in polynomial time, although much more efficient methods exist in certain cases [33]).

For practical scenarios, on the other hand, it seems reasonable to also postulate some
properties with respect to the gaps that are induced by the embedding. For example, if we
model the scheduling of several threads on a single processor by shuffling several sequences
into one string, then a-priori knowledge about the scheduling strategy may tell us that the
subsequences describing the single threads will not have huge gaps (any kind of fairness
property of the scheduling strategy implies this). Another example is finding alignments of
bio-sequences by computing longest common subsequences. While any common subsequence
of two strings can be interpreted as an alignment, it is questionable if this interpretation is
still useful if roughly half of the positions of the common subsequence are mapped to the
beginning of the strings, while the other half is mapped to the end of the strings, with a
huge gap (say thousands of symbols) in between. This situation should rather be seen as
two individual alignments. In fact, in this scenario the optimisation goal of finding a longest
common subsequence, without further constraints, even seems counterproductive, since it
may favour alignments that are to a large extent disconnected and are therefore less likely
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to describe relevant properties. In the context of complex event processing, it might be
desirable to describe the situation that between the events of a job A only events associated
to a job B appear (e. g., due to unknown side-effects this leads to a failure of job A). In
this case, we are interested in embedding a string as a subsequence such that the gaps only
contain symbols from a certain subset of the alphabet (i. e., the events associated to job B).
So, in practice, it makes sense to reason both about the length and the actual content of
gaps induced by embeddings.

The large algorithmic tool box for problems based on subsequences is not always capable
of handling the practically relevant scenarios, where we are interested in subsequences that
can be embedded not just in any way, but in some specific way that is reasonable for the
application scenario. We therefore investigate basic problems on subsequences in the setting
where the gaps of the subsequences (or rather of the embeddings) have certain constraints.

Related Work. Subsequences with various types of gap constraints are considered in
different contexts. Not unexpectedly, one of the main areas in which such subsequences
were investigated is combinatorial pattern matching with biological motivations, see [10]
and the references therein. In [49, 50], mining such subsequences is presented as a typical
data-mining problem with applications in classification and clustering algorithms. In [44], a
query class for event streams is introduced, which is based on subsequences with upper and
lower length bounds as gap constraints. The longest common subsequence problem has also
been extended to the case where the gaps have length constraints (see, e. g., [38] and the
references therein).

Coming back to [10], a rather well-researched problem that is related to our setting is
that of matching variable length gap patterns. In this setting, a pattern, defined as the string
u1(p1, q1)u2(p2, q2) . . . um−1(pm−1, qm−1)um with ui ∈ Σ+, (pi, qi) ∈ N2 and 0 ≤ pi ≤ qi,
matches a string w if w = w0u1w1 . . . um−1wm−1umwm with pi ≤ |wi| ≤ qi. For this special
pattern matching problem many algorithmic results exist (see [10] and the references therein);
moreover, it has also been investigated in more practical papers that provide experimental
evaluations of algorithms solving it, see, e. g., [7, 17]. The above can be seen as special
variants of the matching problem for subsequences with gap-length constraints.

While the works above address mostly patterns with length constraints, the area of string
constraint solving (with applications in formal verification, and a strong algorithm engineering
component, see [3]) addresses the problem of aligning two strings containing constants (or
contiguous sequences of one or more letters) and variables (or gaps). In general (see the
aforementioned survey [3] and the references therein), the variables/gaps are subject to
conjunctions of pairwise string-equality, length, or regular constraints (see also the discussion
in this paper’s full version [20]). Moreover, the problem of checking whether factors of
words are part of a given regular language were addressed in the context of sliding window
algorithms [27, 28, 29, 30, 31] or in the streaming model [9, 22].

On the other hand, we are not aware of any works that are concerned with (non-trivial)
gap-constrained variants of the analysis problems (i. e., universality, containment, and
equivalence). Let us now formally define the setting considered in this paper.

Subsequences With Gap Constraints. Since the gaps induced by an embedding are
essentially strings (or words), it seems natural to formalise gap constraints for length-k
subsequences by (k − 1)-tuples of sets of strings (i. e., languages) gc = (C1, . . . , Ck−1), where
Ci ⊆ Σ∗ for every i ∈ {1, . . . , k − 1}; we denote |gc| = k − 1. A length-k subsequence u =
u1u2 . . . uk of v = v1v2 . . . vn satisfies gc (i. e., it is a gc-subsequence) if u ⪯e v for an embedding
e that satisfies gc in the sense that, for every i ∈ {1, . . . , k − 1}, ve(i)+1 . . . ve(i+1)−1 ∈ Ci. By
SubSeq(gc, v) we denote the set of all gc-subsequences of v. In this setting, we consider:
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64:4 Subsequences with Gap Constraints

the matching problem Match: decide, for given strings w, w′, and gap constraints gc with
|gc| = |w| − 1, whether w is a gc-subsequence of w′ (i. e., whether w ∈ SubSeq(gc, w′));
the universality problem Uni: decide, for given string w and gap constraints gc with
|gc| = k − 1 , whether SubSeq(gc, w) = Σk;
the equivalence problem Equ (respectively, the containment problem Con): decide, for
given strings w, w′, and gap constraints gc, whether SubSeq(gc, w) = SubSeq(gc, w′)
(respectively, SubSeq(gc, w) ⊆ SubSeq(gc, w′)).

Our formalisation of gap constraints is as general as possible. In order to obtain meaningful
results we focus on regular constraints, where each Ci is a regular language, represented
by a finite automaton accepting it, and on length constraints, where each Ci has the form
{v ∈ Σ∗ | L−(i) ≤ |v| ≤ L+(i)} with L−(i), L+(i) ∈ N ∪ {0, +∞} and is represented as the
pair (L−(i), L+(i)). We also consider conjunctions ((L−(i), L+(i)), Ri) of length and regular
constraints, i. e., the gap must be of length between L−(i) and L+(i) and from the regular
language Ri (note that simply “pushing” the length constraint into the regular language
Ri would increase the size of Ri’s representation as automaton by a factor L+(i), which is
exponential in L+(i)’s binary representation). These constraints cover the existing cases in
the literature.

Our Contribution. We provide a comprehensive picture of the computational complexity
of both the matching and the analysis problems, proving tight upper and lower bounds for
them, with a focus on the latter.

With respect to matching, we show that we can check whether u is a gc-subsequence of v

in rectangular time O(|v||gc|), where, if each Ci is the conjunction of a regular constraint
and a length constraint, |gc| is the number of states of the DFAs that represent the regular
constraints. In the absence of regular constraints (so, for length constraints only), such
rectangular upper bounds are already reported in the literature (see [38]). Moreover, the
case when length constraints are absent (so, we have regular constraints only) is rather
straightforward. Our algorithm dealing with the case of conjunctions of regular and length
constraints requires, however, a non-trivial extension of the existing approaches. Nevertheless,
our main contribution in this area is that we can also prove a conditional lower bound that
essentially states that these running times of those algorithms cannot be improved unless
the orthogonal vectors hypothesis fails. More precisely, adding length or regular constraints
to subsequences changes the matching problem from a trivial problem to a problem with
provably rectangular complexity. Additionally, this proves also a conditional lower bound for
matching variable length gap patterns (mentioned above), for which many upper bounds,
but no matching lower bound were known before. It is also worth noting that the lower
bound holds for the case of a constant alphabet and constant length constraints.

With respect to the problems of universality, equivalence, and containment, we show
strong intractability results for both the cases of length constraints and of regular constraints.
More precisely, these problems are NP-complete even for a fixed binary alphabet and for
small, constant length (or regular) constraints (note that the problems are trivial for a unary
alphabet). Moreover, for any fixed constant alphabet, the problems can be solved by brute-
force algorithms in exponential time 2O(k)|gc|ℓ (recall that k is the length of subsequences;
ℓ is the maximum length of the input strings), and we can show that for alphabets of
size at least 3, the exponent can neither be lowered to any o(k) (unless the exponential
time hypothesis fails), nor to k(1 − ϵ) for any ϵ ≥ 1 (unless the strong exponential time
hypothesis fails), and these lower bounds even hold for small constant length constraints. If
we parameterise by both |Σ| and k, then the brute-force algorithm is a trivial fpt-algorithm
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(i.e., an algorithm whose running time is f(k, |Σ|)nO(1), for some computable function f ,
so an algorithm which is fixed parameter tractable, or fpt-algorithm for short). However,
we can exclude fpt-running times for the cases where we parameterise by only |Σ|, or by
only k (based on the assumptions P ≠ NP and FPT ̸= W[1], respectively). Note that for
classical subsequences all these problems can be easily solved in polynomial time, so our
results emphasise the fundamentally different nature of constrained subsequences.

As a last remark, for space reasons, missing proofs and additional comments are only
presented in the full version of this paper [20].

2 Preliminaries

Let N = {1, 2, . . .} and [n] = {1, . . . , n} for n ∈ N. By P(S), we denote the power set of a
set S.

For a finite alphabet Σ, Σ+ denotes the set of non-empty words over Σ and Σ∗ = Σ+ ∪{ε}
(where ε is the empty word). For a word w ∈ Σ∗, |w| denotes its length (in particular,
| ε | = 0); for every b ∈ Σ, |w|b denotes the number of occurrences of b in w; we set w1 = w

and wk = wwk−1 for every k ≥ 2. For a string w = w1w2 . . . wn with wi ∈ Σ for every i ∈ [n],
and for every i, j ∈ [|w|] with i ≤ j, we define w[i..j] = wiwi+1 . . . wj ; moreover, we use w[i]
as shorthand for w[i..i]. For any string w ∈ Σ∗, we define alph(w) = {b ∈ Σ | |w|b ≥ 1}. A
factor of a string w ∈ Σ∗ is a string v ∈ Σ∗ such that w = uvu′ for u, u′ ∈ Σ∗; if u = ε, then
v is called a prefix of w, and if u′ = ε, then v is called a suffix of w.

By REG, we denote the class of regular languages (see [37] for more details). For the
considered algorithmic problems we use as computational model the standard unit-cost
RAM with logarithmic word size, with inputs over integer alphabets (see this paper’s full
version [20]).

Hypotheses. We now recall some basic computational problems and respective algorithmic
hypotheses. We shall use these hypotheses to obtain our conditional lower bounds.

The problem CNF-Sat gets as input a Boolean formula F in conjunctive normal form
as a set of clauses F = {c1, c2, . . . , cm} over a set of variables V = {v1, v2, . . . , vn}, i. e., for
every i ∈ [m], we have ci ⊆ {v1, ¬v1, . . . , vn, ¬vn}. The question is whether F is satisfiable.
By k-CNF-Sat, we denote the variant where |ci| ≤ k for every i ∈ [m].

The Orthogonal Vectors problem (OV for short) is defined as follows: Given sets A, B

each containing n Boolean-vectors of dimension d, check whether there are vectors a⃗ ∈ A

and b⃗ ∈ B that are orthogonal, i. e., a⃗[i] · b⃗[i] = 0 for every i ∈ [d].
We shall use the following algorithmic hypotheses based on CNF-Sat and OV that are

common for obtaining conditional lower bounds in fine-grained complexity (see the literature
mentioned below for further details). In the following, poly is any fixed polynomial function.

Exponential Time Hypothesis (ETH) [40, 51]: 3-CNF-Sat cannot be solved in time
2o(n) poly(n + m).
Strong Exponential Time Hypothesis (SETH) [39, 65]: For every ϵ > 0 there exists a k

such that k-CNF-Sat cannot be decided in O(2n(1−ϵ) poly(n)).
Orthogonal Vectors Hypothesis (OVH) [12, 13, 65]: For every ϵ > 0 there is no algorithm
solving OV in time O(n2−ϵ poly(d)).

Subsequences With Gap Constraints. We now define subsequences with gap constraints
(see also the introduction). In the following, let Σ be a finite alphabet. Recall that for a
string w, an embedding is a function e : [k] → [|w|] such that i < j implies e(i) < e(j) for all
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64:6 Subsequences with Gap Constraints

i, j ∈ [k], and it induces the subsequence subseqe(w) = w[e(1)]w[e(2)] . . . w[e(k)] of w. For
every j ∈ [k−1], the jth gap of w induced by e is the string gape(w, j) = w[e(j)+1..e(j+1)−1].
We say that e is the embedding of subseqe(w) in w.

An ℓ-tuple of gap constraints is a tuple gc = (C1, C2, . . . , Cℓ) with Ci ⊆ Σ∗ for every i ∈ [ℓ].
For convenience, we set gc[i] = Ci for every i ∈ [ℓ]. We say that an embedding e satisfies a
(k − 1)-tuple of gap constraints gc with respect to a string w if it has the form e : [k] → [|w|],
and, for every i ∈ [k − 1], gape(w, i) ∈ Ci. Moreover, for a (k − 1)-tuple gc of gap constraints,
the set SubSeq(gc, w) contains all subsequences of w induced by embeddings that satisfy
gc, i. e., SubSeq(gc, w) = {subseqe(w) | e is an embedding that satisfies gc w. r. t. w}. The
elements of SubSeq(gc, w) are also called the gc-subsequences of w. Note that tuples of gap
constraints do not have constraints for the prefix w[1..e(1)] or suffix w[e(k)..|w|]. However,
our formalism can model this case too (for details, see this paper’s full version [20]). For
a (|u| − 1)-tuple gc of gap constraints, we write u ⪯gc v to denote that u ⪯e v for some
embedding e : [|u|] → [|v|] that satisfies gc with respect to v, i. e., u ⪯gc v means that u is
a gc-subsequence of v. We note that for tuples of gap constraints gc = (C1, C2, . . . , Ck−1)
with Ci = Σ∗ for every i ∈ [k − 1], the set SubSeq(gc, w) is just the set of all length-k
subsequences of w.

Special Types of Gap Constraints. We now define the types of gap constraints that are
relevant for our work. We say that the gap constraints gc = (C1, . . . , Ck−1) are

regular constraints if Ci ∈ REG for every i ∈ [k−1]. For every i ∈ [k−1], we represent the
regular constraint Ci by a deterministic finite automaton (for short, DFA) Ai accepting
it. See this paper’s full version [20] for a discussion on the choice of DFAs to represent
regular constraints.
length constraints if, for every i ∈ [k − 1], there are L−(i), L+(i) ∈ N ∪ {0, +∞} with
L−(i) ≤ L+(i), such that Ci = {v ∈ Σ∗ | L−(i) ≤ |v| ≤ L+(i)}. We represent length
constraints succinctly by pairs of numbers (L−(i), L+(i)), i ∈ [k − 1], in binary encoding.
reg-len constraints if, for every i ∈ [k − 1], Ci is the conjunction of a regular constraint
C ′

i and a length constraint (L−(i), L+(i)), i. e., Ci = C ′
i ∩ {v ∈ Σ∗ | L−(i) ≤ |v| ≤ L+(i)}.

We represent such constraints by ((L−(i), L+(i)), A′
i), where A′

i is a DFA accepting C ′
i.

A gap constraint Ci is a zero-gap if and only if Ci = {ε}. Let nz(gc) be the number of
non-zero-gaps of gc (that is, the number of positions i such that Ci ≠ {ε}). For a tuple of
regular or reg-len gap constraints gc, let size(gc) be the size of the overall representation
of the respective constraints (total size of the automata defining the constraints) and let
states(gc) be the total number of states of the DFAs Ai, for i ∈ [k − 1], corresponding to the
non-zero gaps of gc.

Clearly, length constraints are the simplest type of gap constraints considered above.
In particular, length constraints, and therefore reg-len constraints, can also be seen as a
particular case of regular constraints. However, transforming length or reg-len constraints
into a single automaton may cause an exponential size increase.

Problems for Subsequences With Gap Constraints. In this paper, we investigate the
matching problem Match and the analysis problems Uni, Con, and Equ (see definitions
in the introduction). For simplicity, the pairs (p, gc), which play the role of the patterns in
Match, will be called gap-constrained sequences, or simply gapped sequences for short. By
MatchΣ, we denote the problem variant where all instances are over the fixed alphabet Σ;
for some class C of gap constraints, we use “Match with C-constraints” to refer to the variant
where the constraints are from C. We use analogous notations for the analysis problems.
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If gc = (Σ∗, Σ∗, . . . , Σ∗), then Match boils down to the simple task of checking whether a
given string is a subsequence of another string. The equivalence problem for such trivial gap
constraints, on the other hand, boils down to the well-known problem of deciding the Simon
congruence for two strings (see the discussion in the introduction). Our setting naturally
models many other classical problems; some are discussed in Section 5. Finally, even though
our framework allows arbitrary gap constraints, we will stick to the specific natural and
relevant types of constraints defined above (i. e., length, regular, reg-len constraints).

3 Matching Gapped Subsequences

This section contains two main results. Firstly, we show that Match with reg-len constraints
can be solved in O(|w| states(gc)+size(gc)) time, which implies also rectangular upper bounds
for Match with either length or regular constraints. Secondly, we show that, assuming OVH
holds, there are no algorithms solving any of these problems polynomially faster.

Note that, when dealing with length constraints, a constraint (L−(i), L+(i)) is equivalent
to the regular language Ci = {x ∈ Σ∗ | L−(i) ≤ |x| ≤ L+(i)}, which is accepted by a DFA
with Θ(L+(i)) states. So, we could also interpret a tuple gc of reg-len constraints as a tuple
of regular constraints only, by considering in each component of gc the intersection of the
regular constraint with the regular language defined by the length constraints. However,
this would lead to a growth in the number of states needed to model gc, and, as we will see
in the following, to a less efficient algorithm for Match. In this setting, we state our first
main result. The full proof is given in the full version of this paper [20]. To emphasise the
merits of our approach, we overview in the full version of this paper [20] also several simpler
approaches and their complexity (and shortcomings).

▶ Theorem 1. Match with reg-len constraints can be solved in O(|w|(states(gc) + 1) +
size(gc)) time.

Proof Sketch. Assume |w| = n, |p| = m, and gc = ((L−(1), L+(1)), A1), . . . , (L−(m − 1),
L+(m − 1)), Am−1)), where Ai = (Qi, q0,i, Fi, δi) are DFAs for the regular constraints and
(L−(i), L+(i)) are the length constraints. Let i1, . . . , ik−1 ∈ [m − 1] be such that Ci ̸= {ε}
(i. e., Ci is a non-zero constraint of gc), for all i ∈ {i1, . . . , ik−1}, and Ci = {ε}, for all
i /∈ {i1, . . . , ik−1}. Clearly, states(gc) =

∑k−1
j=1 |Qij | ≥ nz(gc). With i0 = 0 and ik = m, we

compute the words pj = p[(ij−1 + 1)..ij ], for j ∈ [k], and we construct in linear time longest
common extension data structures (see [21]) for the word x = wp, allowing us to check in
constant time whether w[i + 1..i + |pj |] = pj , for i ≤ n.

The main part of our algorithm consists in a dynamic programming approach. We
compute a two-dimensional n × k array D[·][·] (initialised with 0), where D[i][ℓ] = 1 iff
p[1..|p1 · · · pℓ|] can be embedded in w[1..i] such that the first ℓ − 1 non-zero constraints
are satisfied, and pℓ is mapped to w[1..i]’s length-|pℓ| suffix. Otherwise, D[i][ℓ] = 0. We
first set D[i][1] = 1 iff w[i − |p1| + 1..i] = p1. Further, assume that, for some t ∈ [k − 1],
we have computed D[·][ℓ], for all ℓ ≤ t, and we want to compute D[·][t + 1]. The main
component of this most involved part is computing an array ft+1[·], with n elements, such
that ft+1[i] = 1 iff there exists a position j for which D[j][t] = 1, w[j + 1..i] ∈ L(At), and
L−(t) ≤ |w[j + 1..i]| ≤ L+(t). We now sketch this step (a full description is given in the full
version of this paper [20]).

We first collect in a list Lt+1 = j1 < . . . < jr (increasingly sorted) all the positions j

of w with D[j][t] = 1. We then compute a graph Gt+1 with nodes (i, q), with i ∈ [n] and
q ∈ Qt, that consists of the union, over j ∈ Lt+1, of the (not necessarily disjoint) paths
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64:8 Subsequences with Gap Constraints

[(j, q0,t), (j + 1, qj
1), . . . , (n, qj

n−j)], where δt(q0,t, w[j + 1]) = qj
1 and δt(qj

r , w[j + r + 1]) = qj
r+1,

for all r ∈ [n − j − 1]. Intuitively, such a path records the trace of the computation of At on
the input w[j + 1..n]. These paths (and, therefore, the graph Gt+1) can be simultaneously
constructed to avoid redundant computations. At is deterministic, thus, if two such paths
intersect, then they are identical after their first common node. Consequently, Gt+1 is a
collection of disjoint trees T1, T2, . . . , Tz. As there are no edges between any pair of nodes
(n, q) and (n, q′), with q, q′ ∈ Qt, each such tree Ti can be seen as a rooted tree, whose root
is its single node of the form (n, q) and whose leaves are some of the nodes (j, q0,t), with
j ∈ Lt+1.

For each tree Ti and for each leaf (j, q0,t) of Ti, we mark all the ancestors (d, q) of (j, q0,t)
such that L−(t) ≤ |w[j + 1..d]| = d − j ≤ L+(t). After this, a node (j, q) of Ti is marked iff
there exists a length-ℓ path P, with L−(t) ≤ ℓ ≤ L+(t), which connects a leaf (j′, q0,t) of
Ti to (j, q), i. e., δt(q0,t, w[j′ + 1..j]) = q. By using efficient data structures, computing and
marking the trees takes time O(n|Qt|) and O(

∑p
i=1 |Ti|), resp.

Finally, for i = 1, . . . , n, we set ft+1[i] = 1 iff there is a state q ∈ Ft such that node
(i, q) is marked. This means that ft+1[i] = 1 iff there is a word w[j + 1..i] of length ℓ,
with L−(t) ≤ ℓ ≤ L+(t), such that j ∈ Lt+1 and δt(q0,t, w[j + 1..i]) is a final state (i. e.,
w[j + 1..i] ∈ L(At)).

For computing the elements of D, we set D[i][t + 1] = 1 iff w[i − |pt+1| + 1..i] = pt+1 and
ft+1[i − |pt+1|] = 1. Then, we decide that p ⪯gc w iff there exists j with D[j][k] = 1.

The whole process can be implemented in O(|w| states(gc) + size(gc)) time. ◀

The next results are now immediate. Note that for these particular cases (but, to the best
of our knowledge, not for their conjunction, covered in Theorem 1) simpler algorithms exist.

▶ Corollary 2.
(1) Match with length constraints can be solved in O(|w|(nz(gc) + 1)) time.
(2) Match with regular constraints can be solved in O(|w|(states(gc) + 1) + size(gc)) time.

It is worth noting that the matching problem can be solved in O(|w|) time when gc only
defines constraints that are {ε} or Σ∗, which covers, e. g., the cases of subsequence matching
or string matching. In particular, the greedy strategy used for matching regular patterns
with variables (see, e. g., [23]) can be easily adapted to solve Match with length constraints
in linear time, when the upper bounds on each gap are trivial (i. e., they are all greater
or equal to the length of the input word). So, as far as length constraints are concerned,
it seems that non-trivial upper bounds lead to an increase in the difficulty of the Match
problem; a particularly efficient approach for subsequences with general length constraints
is given in [10], but, in the worst case, it still has rectangular complexity. However, even
when non-trivial length upper bounds are used, there are still some simpler particular cases.
For instance, when working with strings with don’t cares (or partial words), where each gap
has a fixed length (i. e., the lower and upper bounds are the same), Match can be solved in
time O(|w| log |p|) [18].

A gapped sequence (p, gc) with reg-len constraints can be represented as a classical regular
expression r(p,gc), so Match can be solved by a textbook algorithm in O(|w||r(p,gc)|) [62],
which is optimal w. r. t. polynomial speed-ups, conditional on OVH [6]. However, including
the string p and the length constraints in the regular expression might, once more, lead to
a slower algorithm compared to our direct approach, as |rp,gc| may be much larger than
states(gc).
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To summarise, at an intuitive level, we could say that as long as we have non-trivial
length or regular constraints, Match seems to become more difficult than its counterpart
for classical subsequences. This intuitive remark is confirmed by our second main result.

▶ Theorem 3. Match with length constraints cannot be solved in O(|w|h nz(gc)g) time with
h + g = 2 − ϵ for some ϵ > 0, unless OVH fails. This holds even if |Σ| = 4 and all length
constraints are (0, ℓ) with ℓ ≤ 6.

Proof Sketch. Let A = {a⃗1, . . . , a⃗n} and B = {⃗b1, . . . , b⃗n}, with A, B ⊂ {0, 1}d be an OV-
instance. We transform A into a string w ∈ Σ∗ = {0, 1, #, @}∗ and B into a string p ∈ Σ∗ and
a (|p| − 1)-tuple gc of length constraints. For convenience, we represent the gapped sequence
(p, gc) with p = p[1] · · · p[m] by writing the length constraints in between the symbols, i. e.,
p[1] gc[1]↔ p[2] gc[2]↔ · · · gc[m−1]↔ p[m], and we omit gc[i]↔ if gc[i] = (0, 0). For example, if p = abab

and gc[1] = (0, 0), gc[2] = (1, 5), and gc[3] = (0, 6), we use the notation ab
(1,5)↔ a

≤6↔ b.
Let a⃗i = (a1

i , . . . , ad
i ) and b⃗i = (b1

i , . . . , bd
i ), for all i ∈ [n]. We shall represent the vectors

from A and B by different encodings Ca(·) and Cb(·), respectively. The 0 and 1 entries in
the A-vectors are encoded by Ca(0) = 010 and Ca(1) = 100, and the 0 and 1 entries in the
B-vectors are encoded by Cb(0) = 10 and Cb(1) = 01. We note that for every x, y ∈ {0, 1},
Cb(x) is a factor of Ca(y) if and only if x · y = 0. This means that the orthogonality of a⃗i

and b⃗i′ is characterised by the situation that, for every j ∈ [d], Cb(bj
i′) is a factor of Ca(aj

i ).
We represent each bit aj

i of a⃗i ∈ A as the string # Ca(0)## Ca(aj
i )## Ca(0)#, and the

vector a⃗i as the concatenation Ca(⃗ai) =
∏d

j=1([1# Ca(0)#]1[2# Ca(aj
i )#]2[3# Ca(0)#]3) ,

where the brackets [1. . .]1, [2. . .]2, [3. . .]3 are not actual symbols of the gadget, but serve
the only purpose to illustrate that Ca(⃗ai) has three individual tracks, where track 1 and
3 correspond to d occurrences of # Ca(0)# (representing the all-0 vector), while track 2
represents the actual vector a⃗i. These three tracks play a central role in the correctness of
the reduction.

For i ∈ [n], every vector b⃗i ∈ B is also represented by listing all bit encodings Cb(bj
i ), but

in a slightly different way and, most importantly, as a gapped sequence (in the notation
defined above): (Cb(⃗bi), gci) =

(∏d−1
j=1(# ≤1↔ Cb(bj

i ) ≤1↔ ## ≤3↔ ## ≤3↔ #)
)

# ≤1↔ Cb(bd
i ) ≤1↔ #.

It can be shown (see the full version of this paper [20]) that if Cb(⃗bi) ⪯e Ca(⃗aℓ) and e

satisfies gci, then the embedding e maps each Cb(bj
i ) to the Ca(0) of Ca(⃗aℓ)’s first track, or

each Cb(bj
i ) to the Ca(aj

ℓ) of Ca(⃗aℓ)’s second track, or each Cb(bj
i ) to the Ca(0) of Ca(⃗aℓ)’s

third track. More precisely, due to how we use the symbols #, the factor Cb(b1
i ) must be

mapped to [1# Ca(0)#]1 or to [2# Ca(a1
i )#]2 or to [3# Ca(0)#]3. Since we have 4 occurrences

of # between each Cb(bj
i ) and Cb(bj+1

i ), and between two consecutive parts of the same
track in Ca(⃗ai), all the following factors Cb(b2

i ), Cb(b3
i ), . . . must be mapped to the same track

Cb(b1
i ) is mapped to. This is illustrated in Figure 1. Based on these considerations, it is clear

that Cb(⃗bi) ⪯e Ca(⃗aℓ) with e mapping Cb(⃗bi) to Ca(⃗aℓ)’s second track is possible if and only
if a⃗ℓ and b⃗i are orthogonal.

Cb(̨bi) = # Æ1¡ Cb(b1i )
Æ1¡ # # Æ3¡ # # Æ3¡ # # Æ1¡ Cb(b2i )

Æ1¡ # # Æ3¡ # . . .

Cb(̨bi) = # Æ1¡ Cb(b1i )
Æ1¡ # # Æ3¡ # # Æ3¡ # # Æ1¡ Cb(b2i )

Æ1¡ # . . .

Cb(̨bi) = # Æ1¡ Cb(b1i )
Æ1¡ # # Æ3¡ # # Æ3¡ # . . .

Ca(̨a¸) = # Ca(0) # # Ca(aji ) # # Ca(0) # # Ca(0) # # Ca(aji ) # . . .

462

Figure 1 Possible embeddings of Cb(⃗bi) in Ca(⃗aℓ), selecting its first, second, or third track.

The remaining challenge is to combine the gadgets Ca(⃗ai) into a string w, and the gadgets
(Cb(⃗bi), gci) into a gapped sequence (p, gc), such that p ⪯e w for an embedding e satisfying
gc if and only if e is such that every (Cb(⃗bi), gci) is mapped to some Ca(⃗aℓ), and there is
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necessarily at least one pair i, ℓ ∈ [n] such that (Cb(⃗bi), gci) is embedded into Ca(⃗aℓ)’s second
track. We next define w and (p, gc), and then discuss why they satisfy the property from
above:

w =
(∏n−1

i=1 @ Ca(⃗ai)
)

@ Ca(⃗an)
(∏n−1

i=1 @ Ca(⃗ai)
)

@ ,

(p, gc) = @ ≤5↔
(∏n−1

j=1 Cb(⃗bj) ≤1↔ # ≤3↔ # ≤1↔ # ≤3↔ # ≤6↔
)

Cb(⃗bn) ≤5↔ @.

If p ⪯e w for an embedding e satisfying gc, then the first @-symbol of p is mapped to the
@-symbol of w occurring before an occurrence of Ca(⃗aℓ1) for some ℓ1, and this occurrence is
in the prefix

(∏n−1
i=1 @ Ca(⃗ai)

)
of w. By reasoning about the occurrences of symbols # and

the length constraints (see the full version of this paper [20]), we can show that Cb(⃗b1) must
be embedded in Ca(⃗aℓ1) in the way discussed above (i. e., gc1 is satisfied and Cb(⃗b1) is entirely
mapped to some track q ∈ {1, 2, 3} of Ca(⃗aℓ1)). For simplicity, assume that ℓ1 ≤ n − 1.
The factor ≤1↔ # ≤3↔ # ≤1↔ # ≤3↔ # ≤6↔ between (Cb(⃗b1), gc1) and the next part (Cb(⃗b2), gc2)
will enforce that Cb(⃗b2) is embedded in Ca(⃗aℓ1+1), and, moreover, it will be mapped to
Ca(⃗aℓ1+1)’s track q or q + 1 (as there can be at most 18 symbols between Cb(⃗b1) and Cb(⃗b2),
track 3 cannot be reached in the case q = 1).

By repeating this argument, we can show that if (Cb(⃗bj), gcj) is embedded in track s

of Ca(⃗aℓj
) (with ℓj ≤ n − 1), then (Cb(⃗bj+1), gcj+1) is embedded in track s or s + 1 of

Ca(⃗aℓj+1) in case that s ∈ {1, 2}, and it is necessarily embedded in track s of Ca(⃗aℓj+1) in
case that s = 3. If ℓj = n, then analogously (Cb(⃗bj+1), gcj+1) is mapped to Ca(⃗a1) of w’s
suffix (

∏n−1
i=1 @ Ca(⃗ai))@. Consequently, each Cb(⃗bj) is mapped to a track of Ca(⃗aℓj ), and

the tracks to which these Cb(⃗bj) are mapped may start with track 1 or 2, and then can only
increase until we possibly map some Cb(⃗bj) to track 3. However, after having mapped the
last occurrence of # in Cb(⃗bn) to an occurrence of # in Ca(⃗aℓn), we can afford a gap of length
at most 5 before mapping the last symbol @ of (p, gc) to an occurence of @ in w. By the
structure of (p, gc) and w, this is only possible if Cb(⃗bn) is mapped to track 2 or 3 of Ca(⃗aℓn).

We conclude that if p ⪯gc w, then, for some j, ℓj ∈ [n], (Cb(⃗bj), gcj) is mapped to track
2 of Ca(⃗aℓj

); thus, a⃗ℓj
and b⃗j are orthogonal. On the other hand, the explanations from

above show that if a⃗ℓj and b⃗j are orthogonal vectors, then p can be embedded into w by an
embedding that satisfies gc, i. e., an embedding that maps (Cb(⃗bj), gcj) to track 2 of Ca(⃗aℓj ),
all (Cb(⃗bj′), gcj′) with 1 ≤ j′ < j to the first tracks of some Ca(⃗aℓj′ ), and all (Cb(⃗bj′), gcj′)
with j < j′ ≤ n to the third tracks of some Ca(⃗aℓj′ ).

In this reduction, we have |Σ| = 4, all constraints are (0, ℓ) with ℓ ≤ 6, and |w|, |p| ∈ Θ(nd).
If Match can be solved in O(|w|g|p|h) with g + h = 2 − ϵ for some ϵ > 0, then OV can be
solved in O(nd + (nd)2−ϵ). Since nz(gc) ∈ Θ(nd), solving Match in O(|w|g nz(gc)h) with
g + h = 2 − ϵ for some ϵ < 0 also contradicts OVH. ◀

We emphasise that, according to our proof, these lower bounds hold for Match with
length constraints even if we only have constant upper bounds on the length of the gaps.

▶ Corollary 4. Match with regular constraints cannot be solved in O(|w|h states(gcp)g) time
with h + g = 2 − ϵ for some ϵ > 0, unless OVH fails. This holds even if |Σ| = 4 and all
regular constraints are expressed by constant size DFAs.

From Theorem 3 and Corollary 4, we also get that Match with length, regular, or reg-len
constraints cannot be solved in O(|w|h|p|g) time, with h + g = 2 − ϵ, nor in O(|w|2−ϵ) time.
Moreover (see the full version of this paper [20]) we can show similar lower bounds for |Σ| = 2
as well.
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Compared to the OVH-bound for regular expression matching of [6], we provide a lower
bound for a much more restricted problem (i. e., matching gapped sequences with length
constraints, a subclass of regular expressions that still seems to have a significant practical
relevance); thus, a stronger lower bound (this is also why our OV-reduction has a significantly
different structure and is technically more involved than that of [6]). In particular, our
lower bound applies (unlike those from [6]) to the case of matching variable length gap
patterns, and settles the complexity of that problem. We wrap up this section by noting that
Theorem 3 and Corollary 4 show that (if OVH holds) the algorithm of Theorem 1, also when
used for regular constraints or length constraints only, is optimal in the sense that there are
no algorithms which can solve Match in the respective settings polynomially faster.

4 Analysis Problems for Gapped Subsequences

Let us recall that the universality, containment and equivalence problem (denoted by Uni, Con
and Equ for short) consist in deciding SubSeq(gc, w) = Σk, SubSeq(gc, w) ⊆ SubSeq(gc, w′),
and SubSeq(gc, w) = SubSeq(gc, w′), respectively, for a given (k − 1)-tuple gc of gap
constraints and strings w, w′ ∈ Σ∗. As mentioned before, these problems can be solved in
polynomial time for classical subsequences (see the full version of this paper [20] for further
details). We show next that these problems become much harder for non-trivial length or
regular constraints.

From Corollary 2 and Theorem 1, we can directly conclude the following brute-force
upper bounds.

▶ Theorem 5.
(1) The problems Uni, Con and Equ with length (or reg-len) constraints can be solved in

time O(|Σ|k nz(gc)ℓ) (respectively, O(|Σ|k states(gc)ℓ)), where ℓ = max{|w|, |w′|}.
(2) The problems UniΣ, ConΣ and EquΣ with length (or reg-len) constraints can be solved

in time 2O(k) nz(gc)ℓ (respectively, 2O(k) states(gc)ℓ), where ℓ = max{|w|, |w′|}.

We shall next complement these brute-force upper bounds by suitable lower bounds,
which demonstrate that significantly faster algorithms are unlikely to exist. For convenience,
we state our complexity results for the complement problems, i. e., non-universality problem
(NUni), non-containment problem (NCon), and non-equivalence problem (NEqu). Moreover,
we state the lower bounds for the case of length constraints only. By simply interpreting
the length constraints as regular constraints, all the lower bounds also apply to the case of
regular constraints (this does not cause an exponential size increase of the instances, see the
full version of this paper [20].

Our first result establishes the general NP-completeness (even for small constant alphabets
and length constraints), and that the exponent O(k) of Theorem 5(2) cannot be significantly
improved, unless ETH or SETH fail. We will discuss some proof ideas later on.

▶ Theorem 6. For every fixed alphabet Σ with |Σ| ≥ 3, NUniΣ, NConΣ and NEquΣ with
length constraints are NP-complete, even if all length constraints are (1, 5). Moreover,

they cannot be solved in subexponential time 2o(k) poly(|w|, k)) (unless ETH fails),
they cannot be solved in time O(2k(1−ϵ) poly(|w|, k)) (unless SETH fails).

This directly leads to the question whether these problems are tractable if |Σ| ≤ 2. This is
obviously true for unary alphabet Σ = {a} (note that in this case, SubSeq(gc, w) = Σk = {ak}
if (

∑
i∈[k] L−(i)) + k ≤ |w|, and SubSeq(gc, w) = ∅ otherwise), but NP-complete for |Σ| = 2:
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{a} {b} {a, c, d}

{c, d} {b} {a}
{a} {b, c, d, e} {d}
{e} {b} {c, e}


 {0} {1} {0} {0, 1} {0, 1} {0, 1}

{1} {1} {0, 1} {0, 1} {0, 1} {0}
{0, 1} {0, 1} {0} {0} {0} {0, 1}



Figure 2 Left side: example instance of MetaNUni for Γ = {a, b, c, d, e}, q = 4, and k = 3.
Note that, e. g., W3,2 = {b, c, d, e} and W4,1 = {e}; moreover, L(W1) = {a} · {b} · {a, c, d} =
{a b a, a b c, a b d}. Since ∪i∈[4]L(Wi) ̸= Γ3, this is a negative instance. Right side: the CNF-Sat-
instance c1 = {v1, ¬v2, v3}, c2 = {¬v1, ¬v2, v5}, c3 = {v3, v4, v5} over the variables {v1, v2, . . . , v6} as
an instance of MetaNUni . Note that 100010 /∈ ∪i∈[3]L(Wi); thus, 100010 is a satisfying assignment.

▶ Theorem 7. For every fixed alphabet Σ with |Σ| = 2, NUniΣ, NConΣ and NEquΣ with
length constraints are NP-complete even if each length constraint is (0, 0) or (3, 9).

Let us now consider the case where Σ is not treated as a constant. Theorem 5 means
that NUni, NCon and NEqu with length constraints are trivially fixed parameter tractable
if parameterised by both |Σ| and k. Moreover, since ℓ = max{|w|, |w′|} bounds both |Σ| and
k, we also have fixed parameter tractability with respect to ℓ for trivial reasons. Are the
problems fixed-parameter tractable with respect to the single parameter |Σ| or the single
parameter k? With respect to |Σ|, this is answered in the negative by Theorem 7 (unless
P = NP). With respect to parameter k, the following result gives a negative answer as well.

▶ Theorem 8. Problems NUni, NCon and NEqu with length constraints cannot be solved
in running time O(f(k) poly(|w|, k)) for any computable function f (unless FPT = W[1]).

This result only holds for unbounded alphabets and length constraints. Indeed, for
constant Σ the brute-force algorithm is an fpt-algorithm with respect to k. Moreover, if the
upper length constraints are bounded by some constant ℓ, then we only have to enumerate at
most ℓk−1 candidate tuples of gap sizes and check whether one of them induces an embedding
satisfying gc with respect to w, which again would yield an fpt-algorithm with respect to k.

Proof Ideas for the Lower Bounds. We only consider the non-universality problem here.
Full proof details can be found in the full version of this paper [20]. Theorem 6 can be
proven by a reduction from CNF-Sat. In order to get the ETH and SETH lower bounds,
this reduction must yield instances with a (k − 1)-tuple of gap constraints, where k is the
number of Boolean variables. Theorem 8 can be shown by a similar reduction that starts
from the standard parameterisation of the independent set problem. Both reductions can be
defined by using a meta non-universality problem (MetaNUni for short) as an intermediate
step, which we define next.

Let Γ = {b1, b2, . . . , bm} be some alphabet, and let q, k ∈ N. An instance of the problem is
a (q × k)-matrix with the entries Wi,j , which are subsets of Γ. For every i ∈ [q], we associate
with row i of the matrix the language L(Wi) = Wi,1 · Wi,2 · · · Wi,k, i. e., we simply represent
the elements of Wi,1 × Wi,2 × . . . × Wi,k as length-k strings over Γ in the natural way. The
question is then to decide whether ∪i∈[q]L(Wi) ̸= Γk (see Figure 2 for an example).

We next discuss, how we can reduce CNF-Sat to MetaNUni. Let F = {c1, c2, . . . , cq}
be a Boolean formula in CNF on variables {v1, . . . , vk} (i. e., ci ⊆ {v1, ¬v1, . . . , vk, ¬vk}).
We define alphabet Γ = {0, 1} and the (q × k)-matrix with the entries Wi,j as follows. For
every i ∈ [q] and j ∈ [k], we define Wi,j = {0}, if vj ∈ ci, Wi,j = {1}, if ¬vj ∈ ci, and
Wi,j = {0, 1}, if {vj , ¬vj} ∩ ci = ∅. It can be verified with moderate effort, that for every
i ∈ [q], L(Wi) contains exactly the Boolean assignments that do not satisfy clause ci. Hence,
∪i∈[q]L(Wi) ̸= {0, 1}k if and only if F is satisfiable (see Figure 2 for an example).
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In a rather similar way, we can also phrase the independent set problem in terms of
MetaNUni. For the independent set problem, we get an undirected graph G = (V, E) with
|V | = n and E = {e1, e2, . . . , em}, and a k ∈ [|V |], and the question is whether G has a k-
independent set, i. e., a set A ⊆ V with |A| = k and {u, u′} /∈ E for every u, u′ ∈ A with u ̸= u′.
This can be expressed in terms of MetaNUni as follows. We interpret the set V of vertices as
the alphabet Γ. We fix some bijection ν : {(i, r, s) ∈ [m]× [k]× [k] | r ̸= s} → [mk(k−1)]. For
every i ∈ [m] with ei = (u, v), and every r, s, j ∈ [k] with r ̸= s, we define Wν(i,r,s),j = {u},
if j = r, Wν(i,r,s),j = {v}, if j = s, and Wν(i,r,s),j = V , else. For example, if e9 = (v3, v7)
and k = 4, then row ν(9, 2, 4) of the matrix would be V {v3} V {v7}.

It is a bit more difficult to see why this reduction works. The idea is that we rep-
resent sets of vertices of cardinality at most k by length-k strings over V (note that sets
of cardinality strictly less than k can be represented by strings with repeated symbols).
For every edge (u, v) and for all pairs of positions r, s ∈ [k], the language L(Wν(i,r,s)) =
Wν(i,r,s),1Wν(i,r,s),2 . . . Wν(i,r,s),k represented by row ν(i, r, s) of the matrix contains exactly
the strings w ∈ Γk with (w[r], w[s]) = (u, v), i. e., strings that represent non-independent sets
with edge (u, v). For the example e9 = (v3, v7) and k = 4, we have L(Wν(9,2,4)) = {v1v3v1v7,

v2v3v1v7, . . . , vnv3v1v7, . . . , v1v3v2v7, v2v3v2v7, . . .}.
This whole idea works only because, in our setting, we assume that every vertex has a

loop since then strings w of V k contain an edge (w[r], w[s]) ∈ E for some r, s ∈ [k] if and
only if the corresponding set of vertices is not independent or of cardinality strictly less than
k (the latter is represented by a loop, i. e., w[r] = w[s]). In summary, G has a k-independent
set if and only if not all length-k strings are in

⋃
i∈[m],r,s∈[k],r ̸=s L(Wν(i,r,s)).

The main technical challenge is to show a reduction from MetaNUni to NUni with
length constraints. We next give a sketch of this reduction. Let Γ = {b1, b2, . . . , bm}, q, k ∈ N,
and, for every i ∈ [q], j ∈ [k], let Wi,j ⊆ Γ. We transform this MetaNUni instance into an
instance of NUni with length constraints as follows. We first define the alphabet Σ = Γ∪{#}
(with # /∈ Γ). Then we define a (k − 1)-tuple gc = (C1, C2, . . . , Ck−1) of gap constraints with
Ci = (L−(i), L+(i)) = (m − 1, 3m − 1) for every i ∈ [k − 1] (recall that m is Γ’s cardinality).
To conclude the reduction, we have to construct a string K(W1, . . . , Wq) over Σ, such that
SubSeq(gc, K(W1, . . . , Wq)) = Σk if and only if ∪i∈[q]L(Wi) = Γk. We do this in several
steps.

For every i ∈ [q] and j ∈ [k], let wi,j ∈ Γ∗ be some string representation of Wi,j , i. e.,
alph(wi,j) = Wi,j and |wi,j | = |Wi,j | ≤ m. For every i ∈ [q], we define the string

S(Wi) = wi,1(#)m−1wi,2(#)m−1 . . . (#)m−1wi,k .

We can show that those gc-subsequences of S(Wi) that do not contain occurrences of
symbol # must be mapped to S(Wi) in such a way that each j ∈ [k] is mapped to wi,j . More
precisely, for every i ∈ [q], we have that (SubSeq(gc, S(Wi)) ∩ Γ∗) = L(Wi). (†)

Next, we define a string T whose purpose it is to contain all gc-subsequences that contain at
least one occurrence of #. For every i ∈ [k], let Ti = Ti,1Ti,2 . . . Ti,k, where, for every j ∈ [k]\
{i}, Ti,j = b1b2 . . . bm#m, and Ti,i = #m. We define T by T = T1(#3m)T2(#3m) . . . (#3m)Tk.
The idea here is that any gc-subsequence of T must be mapped entirely into some Ti, which,
due to the length constraints, forces position i to be mapped to Ti,i = #m, i. e., to an
occurrence of #. More precisely, we have SubSeq(gc, T ) = {w ∈ Σk | |w|# ≥ 1}. (⋄)

Finally, we set K(W1, . . . , Wq) = T (#3m)S(W1)(#3m)S(W2)(#3m) . . . (#3m)S(Wq). By
using (†) and (⋄) from above, we can now prove SubSeq(gc, K(W1, . . . , Wq)) = Σk if and
only if ∪i∈[q]L(Wi) = Γk, which concludes the proof of correctness.

For proving Theorem 7, using MetaNUni as an intermediate step seems not possible,
since it introduces another symbol # to the alphabet. However, we can devise a similar
reduction. The main difference is that we represent each Boolean variable by two consecutive
symbols of the subsequence, i. e., we need a (2k − 1) tuple of length constraints (therefore,
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the reduction does not yield a SETH bound as mentioned in Theorem 6). Since we cannot
conveniently use a separator # that is not used for expressing Boolean assignments, the
constructed string is more complicated in this reduction (see the full version of this paper [20]
for full details).

5 Special Variants

In the last section of this paper, we consider two natural variants of our setting, and show
how the particularities of these variants have a substantial impact on the complexity of the
problems investigated above.

Gap Length Equalities. We investigate whether the polynomiality of the matching problem
(see Section 3) is preserved under adding gap length equalities to the gap constraints, i. e.,
constraints of the form |gapi| = |gapj | which are satisfied by an embedding e with respect to
w if |gape(w, i)| = |gape(w, j)|. Our main motivation is that such length equality constraints
(and more complex ones, e. g., described by linear inequalities like 2|gap7| + |gap3| ≤ |gap2|)
are of interest in the theory of string solving [3]. Unfortunately, the matching problem
becomes immediately NP-hard (the following result can be shown by adapting the NP-
completeness proof for matching patterns with variables from [4]; see the the full version of
this paper [20] for details).

▶ Theorem 9. Match with length constraints and gap length equalities is NP-complete,
even for binary alphabets and length constraints (0, +∞).

Gap Constrained Subsequences With Multiplicities. With respect to the equivalence
problem, we can show a positive result for the following modified setting. Let us consider the
gc-subsequences of the sets SubSeq(gc, w) with multiplicities. For example, for w1 = a b b a
and w2 = a b a b, we have SubSeq(gc2, w1) = SubSeq(gc2, w2) = {a a, a b, b a, b b} with
gc2 = (Σ∗). There is exactly one way of embedding a a and b b into both w1 and w2. On
the other hand, a b can be embedded into w1 in two different ways and into w2 in three
different ways. More precisely, the sets of gc2-subsequences of w1 and w2 with multiplicities
are {(a a, 1), (a b, 2), (b a, 2), (b b), 1} and {(a a, 1), (a b, 3), (b a, 1), (b b), 1}, respectively.

Let us now formalise this setting. For strings u and v, and a (|u| − 1)-tuple gc of gap
constraints, we denote by |u|v,gc the number of distinct embeddings e : |u| → |v| that satisfy gc

and v ⪯e u. For example, |b b a a|b a,gc2 = 4, as u[1]u[3] = u[2]u[3] = u[1]u[4] = u[2]u[4] = b a.
For any (k − 1)-tuple gc of gap constraints, we define the function Ψgc(·) : Σ∗ → N(Σk)

by Ψgc(w)[p] = |w|p,gc for every p ∈ Σk. The equivalence problem with multiplicities is to
decide, for a given (k − 1)-tuple gc of gap constraints, and strings w, w′ ∈ Σ∗, whether
Ψgc(w) = Ψgc(w′). Note that for the case gc = (Σ∗, . . . , Σ∗) this is called the k-binomial
equivalence, and was studied in the area of combinatorics on words (see, e. g., [55, 47, 48, 26]).

We show that equivalence with multiplicities can be decided in polynomial time (in
contrast to the NP-completeness of the case without multiplicities).

▶ Theorem 10. If gc = (C1, . . . , Ck−1) and Ci can be decided in polynomial time then the
equivalence problem with multiplicities can be solved in polynomial time.

Proof Sketch. We adapt the main idea from [26]. For a given string w and tuple gc of
gap constraints, we can construct in polynomial time an NFA Aw,gc with L(Aw,gc) =
SubSeq(gc, w). Moreover, for every p ∈ SubSeq(gc, w), there is a one-to-one correspondence
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between distinct embeddings e with p ⪯e w satisfying gc and accepting paths of Aw,gc on
input p. Consequently, we can decide Ψgc(w) = Ψgc(w′) by deciding the path equivalence of
Aw,gc and Aw′,gc, which can be done in polynomial time by the algorithm from [64]. ◀

In the case of length, regular or reg-len constraints, the equivalence problem with
multiplicities can be solved in O(max{|w|, |w′|}4k4 +size(gc)) time. The containment problem
with multiplicities (i. e., deciding Ψgc(w)[p] ≤ Ψgc(w′)[p] for all p ∈ Σk) seems to be more
difficult. To our knowledge, whether the case of classical subsequences (i. e., length constraints
(0, ∞)) can be solved in polynomial time is open. On the other hand, for the case of length
constraints (0, 0) only (i. e., consecutive factors), or of length constraints (ℓ, ℓ) only (i. e., the
case of the so called partial words [11, 18], where each gap has fixed length ℓ, and can be
seen as a factor of length ℓ of wild cards, or don’t care positions), showing polynomial time
solvability is relatively simple.
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