
17th International Symposium on
Parameterized and Exact
Computation

IPEC 2022, September 7–9, 2022, Potsdam, Germany

Edited by

Holger Dell
Jesper Nederlof

LIPIcs – Vo l . 249 – IPEC 2022 www.dagstuh l .de/ l ip i c s

Editors

Holger Dell
Goethe University Frankfurt, Germany
dell@uni-frankfurt.de

Jesper Nederlof
Utrecht University, The Netherlands
j.nederlof@uu.nl

ACM Classification 2012
Theory of computation → Parameterized complexity and exact algorithms

ISBN 978-3-95977-260-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-260-0.

Publication date
December, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.IPEC.2022.0

ISBN 978-3-95977-260-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-8955-0786
mailto:dell@uni-frankfurt.de
https://orcid.org/0000-0003-1848-0076
mailto:j.nederlof@uu.nl
https://www.dagstuhl.de/dagpub/978-3-95977-260-0
https://www.dagstuhl.de/dagpub/978-3-95977-260-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.IPEC.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-260-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

IPEC 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Holger Dell and Jesper Nederlof . 0:ix

Program Committees
. 0:xi

List of External Reviewers
. 0:xiii

List of Authors
. 0:xv

Regular Papers

A Finite Algorithm for the Realizabilty of a Delaunay Triangulation
Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi . 1:1–1:16

Parameterized Complexity of Perfectly Matched Sets
Akanksha Agrawal, Sutanay Bhattacharjee, Satyabrata Jana,
and Abhishek Sahu . 2:1–2:13

On the Hardness of Generalized Domination Problems Parameterized by
Mim-Width

Brage I. K. Bakkane and Lars Jaffke . 3:1–3:19

FPT Approximation for Fair Minimum-Load Clustering
Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit,
and Kirill Simonov . 4:1–4:14

On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension
Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta,
and Anna Zych-Pawlewicz . 5:1–5:23

On the Complexity of Problems on Tree-Structured Graphs
Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk,
and Michał Pilipczuk . 6:1–6:17

On the Parameterized Complexity of Computing Tree-Partitions
Hans L. Bodlaender, Carla Groenland, and Hugo Jacob . 7:1–7:20

XNLP-Completeness for Parameterized Problems on Graphs with a Linear
Structure

Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke,
and Paloma T. Lima . 8:1–8:18

Twin-Width VIII: Delineation and Win-Wins
Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler,
Raul Lopes, and Stéphan Thomassé . 9:1–9:18

Obstructions to Faster Diameter Computation: Asteroidal Sets
Guillaume Ducoffe . 10:1–10:24

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On the Parameterized Complexity of Symmetric Directed Multicut
Eduard Eiben, Clément Rambaud, and Magnus Wahlström . 11:1–11:17

Computing Generalized Convolutions Faster Than Brute Force
Barış Can Esmer, Ariel Kulik, Dániel Marx, Philipp Schepper,
and Karol Węgrzycki . 12:1–12:22

Exact Exponential Algorithms for Clustering Problems
Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit,
and Saket Saurabh . 13:1–13:14

Domination and Cut Problems on Chordal Graphs with Bounded Leafage
Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma,
and Prafullkumar Tale . 14:1–14:24

Slim Tree-Cut Width
Robert Ganian and Viktoriia Korchemna . 15:1–15:18

A Fixed-Parameter Algorithm for the Schrijver Problem
Ishay Haviv . 16:1–16:16

Towards Exact Structural Thresholds for Parameterized Complexity
Falko Hegerfeld and Stefan Kratsch . 17:1–17:20

Hardness of Interval Scheduling on Unrelated Machines
Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Dvir Shabtay 18:1–18:16

Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees
Leon Kellerhals, Tomohiro Koana, and Pascal Kunz . 19:1–19:14

Parameterized Local Search for Vertex Cover: When Only the Search Radius Is
Crucial

Christian Komusiewicz and Nils Morawietz . 20:1–20:18

Parameterized Complexity of a Parallel Machine Scheduling Problem
Maher Mallem, Claire Hanen, and Alix Munier-Kordon . 21:1–21:21

Anti-Factor Is FPT Parameterized by Treewidth and List Size (But Counting Is
Hard)

Dániel Marx, Govind S. Sankar, and Philipp Schepper . 22:1–22:23

Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph
Yosuke Mizutani and Blair D. Sullivan . 23:1–23:18

Parameterized Complexity of Streaming Diameter and Connectivity Problems
Jelle J. Oostveen and Erik Jan van Leeuwen . 24:1–24:16

Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing in
Polynomial Time

Hjalmar Schulz, André Nichterlein, Rolf Niedermeier,
and Christopher Weyand . 25:1–25:14

Contents 0:vii

PACE Solver Descriptions

The PACE 2022 Parameterized Algorithms and Computational Experiments
Challenge: Directed Feedback Vertex Set

Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash 26:1–26:18

PACE Solver Description: DiVerSeS – A Heuristic Solver for the Directed
Feedback Vertex Set Problem

Sylwester Swat . 27:1–27:3

PACE Solver Description: Mount Doom – An Exact Solver for Directed Feedback
Vertex Set

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich,
Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt,
and Leo Wendt . 28:1–28:4

PACE Solver Description: Hust-Solver – A Heuristic Algorithm of Directed
Feedback Vertex Set Problem

YuMing Du, QingYun Zhang, JunZhou Xu, ShunGen Zhang, Chao Liao,
ZhiHuai Chen, ZhiBo Sun, ZhouXing Su, JunWen Ding, Chen Wu, PinYan Lu,
and ZhiPeng Lv . 29:1–29:3

PACE Solver Description: GraPA-JAVA
Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard,
Mario Grobler, and Sebastian Siebertz . 30:1–30:4

PACE Solver Description: DreyFVS
Gabriel Bathie, Gaétan Berthe, Yoann Coudert–Osmont, David Desobry,
Amadeus Reinald, and Mathis Rocton . 31:1–31:4

PACE Solver Description: DAGer – Cutting out Cycles with MaxSAT
Rafael Kiesel and André Schidler . 32:1–32:4

IPEC 2022

Preface

The International Symposium on Parameterized and Exact Computation (IPEC, formerly
IWPEC) is a series of international symposia covering research in all aspects of parameterized
and exact algorithms and complexity. Started in 2004 as a biennial workshop, it became an
annual event in 2009. Previous iterations of the symposium were:

2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Lubljana, Slovenia
2013 Sophia Antipolis, France

2014 Wrocław, Poland
2015 Patras, Greece
2016 Aarhus, Denmark
2017 Vienna, Austria
2018 Helsinki, Finland
2019 Munich, Germany
2020 Hong Kong, China
2021 virtual / Lisbon, Portugal

This volume contains the papers presented at IPEC 2022: the 17th International Sympo-
sium on Parameterized and Exact Computation. IPEC 2022 was held on September 7–9. It
was a part of the ALGO 2022 congress, and took place in Potsdam, Germany. In response to
the call for papers, 47 extended abstracts were submitted and 25 of them were ultimately
selected for presentation at the conference and inclusion in these proceeding. Each considered
submission received at least 3 reviews. The reviews were performed in a double-blind fashion
by the 16 regular members of the program committee and by 19 external reviewers, together
contributing 141 full reviews.

The Best Paper Award was given to Hans L. Bodlaender (Utrecht University), Carla
Groenland (Utrecht University), Hugo Jacob (ENS Paris-Saclay), Lars Jaffke (University
of Bergen) and Paloma de Lima (IT University of Copenhagen) for their paper “XNLP-
completeness for Parameterized Problems on Graphs with a Linear Structure”.

The Best Student Paper Award was given to Jelle Oostveen (Utrecht University) and
Erik Jan van Leeuwen (Utrecht University) for their paper “Parameterized Complexity of
Streaming Diameter and Connectivity Problems”.

The EATCS-IPEC Nerode Prize was given to Bruno Courcelle for his papers “The
Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs” and “The
Monadic Second-Order Logic of Graphs III: Tree-Decompositions, Minors and Complexity
Issues”. IPEC 2022 hosted an award ceremony with a plenary talk given by Bruno Courcelle.
The Nerode Prize committee consisted of Anuj Dawar (University of Cambridge), Fedor
Fomin (University of Bergen), and Thore Husfeldt (IT University of Copenhagen).

Eun Jung Kim (Université Paris-Dauphine, PSL Research University, CNRS) presented
an invited tutorial on “Directed Flow-augmentation”. Finally, IPEC 2022 hosted the award
ceremony of the seventh Parameterized Algorithms and Computational Experiments (PACE)
challenge. These proceedings contain a report on the PACE 2022 challenge and brief
communications of the winners about their solvers.

We thank the program committee and the external reviewers for their commitment in
the paper selection process. We also thank all the authors who submitted their work. We
are grateful to the local organizers of ALGO 2022 for the local arrangements.

Holger Dell and Jesper Nederlof
Frankfurt and Utrecht, October 2022

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committees

IPEC 2022 Program Committee

Christian Komusiewicz (Marburg University)
Christophe Paul (Laboratoire d’Informatique Robotique et Microélectronique de Mont-
pellier)
Cornelius Brand (Technische Universität Wien)
Édouard Bonnet (ENS Lyon)
Holger Dell (Goethe University Frankfurt, ITU Copenhagen, and BARC, co-chair)
Jesper Nederlof (Utrecht University, co-chair)
Karol Węgrzycki (Saarland University and Max Planck Institute for Informatics)
M.S. Ramanujan (University of Warwick)
Marvin Künnemann (TU Kaiserslautern)
Michael Lampis (Paris Dauphine University)
Neeldhara Misra (IIT Gandhinagar)
Paweł Rzążewski (Warsaw University of Technology and University of Warsaw)
Radu Curticapean (ITU Copenhagen and BARC)
René van Bevern (Huawei Cloud Technologies Co., Ltd.)
Robert Ganian (Technische Universität Wien)
Roohani Sharma (Max Planck Institute for Informatics)
Sándor Kisfaludi-Bak (Aalto University)
Valia Mitsou (Research Institute on the Foundations of Computer Science (IRIF) and
Paris Diderot University)

IPEC 2022 Steering Committee

Dániel Marx (2020 – 2023)
Eun Jung Kim (2019 – 2022)
Fedor Fomin (2021 – 2024)
Holger Dell (2021 – 2024)
Jesper Nederlof (2021 – 2024)
Marcin Pilipczuk (2019 – 2022, chair)
Meirav Zehavi (2020 – 2023)
Petr Golovach (2020 – 2023)
Yixin Cao (2019 – 2022)

PACE 2022 Program Committee

Christian Schulz (chair) (Universität Heidelberg)
Ernestine Großmann (Universität Heidelberg)
Tobias Heuer (Karlsruher Institut für Technologie)
Darren Strash (Hamilton College)

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers

Ararat Harutyunyan
Archontia Giannopoulou
Evangelos Protopapas
Frank Sommer
Giannos Stamoulis
Kirill Simonov
Laure Morelle
Liana Khazaliya
Mamadou Moustapha Kanté
Manuel Lafond
Mathias Weller
Mathis Rocton
Peter Rossmanith
Philipp Schepper
Rémy Belmonte
Sebastian Ordyniak
Stefan Mengel
Thekla Hamm
Viktoriia Korchemna

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Akanksha Agrawal (1, 2)
Indian Institute of Technology Madras,
Chennai, India

Sebastian Angrick (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Brage I. K. Bakkane (3)
University of Bergen, Norway

Ben Bals (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Sayan Bandyapadhyay (4)
Department of Informatics,
University of Bergen, Norway

Gabriel Bathie (31)
École Normale Supérieure de Lyon, France

Moritz Bergenthal (30)
Universität Bremen, Germany

Gaétan Berthe (31)
École Normale Supérieure de Lyon, France

Sutanay Bhattacharjee (2)
Indian Institute of Technology Madras,
Chennai, India

Johannes Blum (5)
Universität Konstanz, Germany

Hans L. Bodlaender (6, 7, 8)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Édouard Bonnet (9)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

Katrin Casel (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Dibyayan Chakraborty (9)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

ZhiHuai Chen (29)
Huawei TCS Lab Shanghai, China

Sarel Cohen (28)
The Academic College of Tel Aviv-Yaffo, Israel

Yoann Coudert-Osmont (31)
Université de Lorraine, CNRS, Inria, LORIA,
Nancy, France

David Desobry (31)
Université de Lorraine, CNRS, Inria, LORIA,
Nancy, France

JunWen Ding (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Jona Dirks (30)
Universität Bremen, Germany

Yann Disser (5)
Technische Universität Darmstadt, Germany

YuMing Du (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Guillaume Ducoffe (10)
National Institute of Research and Development
in Informatics, Bucharest, Romania;
University of Bucharest, Romania

Eduard Eiben (11)
Department of Computer Science, Royal
Holloway, University of London, Egham, UK

Barış Can Esmer (12)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Andreas Emil Feldmann (5)
Charles University, Prague, Czechia

Fedor V. Fomin (4, 13)
Department of Informatics,
University of Bergen, Norway

Thorben Freese (30)
Universität Bremen, Germany

Tobias Friedrich (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Jakob Gahde (30)
Universität Bremen, Germany

Esther Galby (14)
TU Hamburg, Germany

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0656-7572
https://doi.org/10.4230/LIPIcs.IPEC.2022.1
https://doi.org/10.4230/LIPIcs.IPEC.2022.2
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.3
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.4
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://orcid.org/0000-0002-0785-4725
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://doi.org/10.4230/LIPIcs.IPEC.2022.2
https://orcid.org/0000-0003-1102-3649
https://doi.org/10.4230/LIPIcs.IPEC.2022.5
https://orcid.org/0000-0002-9297-3330
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://orcid.org/0000-0002-1653-5822
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://orcid.org/0000-0001-6146-8684
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0003-4578-1245
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://orcid.org/0000-0002-2085-0454
https://doi.org/10.4230/LIPIcs.IPEC.2022.5
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0003-2127-5989
https://doi.org/10.4230/LIPIcs.IPEC.2022.10
https://orcid.org/0000-0003-2628-3435
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://orcid.org/0000-0001-5694-1465
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://orcid.org/0000-0001-6229-5332
https://doi.org/10.4230/LIPIcs.IPEC.2022.5
https://orcid.org/0000-0003-1955-4612
https://doi.org/10.4230/LIPIcs.IPEC.2022.4
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://orcid.org/0000-0003-0076-6308
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Robert Ganian (15)
Algorithms and Complexity Group,
TU Wien, Austria

Enna Gerhard (30)
Universität Bremen, Germany

Petr A. Golovach (4, 13)
Department of Informatics,
University of Bergen, Norway

Mario Grobler (30)
Universität Bremen, Germany

Carla Groenland (6, 7, 8)
Department of Information and Computing
Sciences,
Utrecht University, The Netherlands

Ernestine Großmann (26)
Universität Heidelberg, Germany

Siddharth Gupta (5)
University of Warwick, Coventry, UK

Claire Hanen (21)
Sorbonne Université, CNRS, LIP6,
F-75005 Paris, France;
Université Paris Nanterre, UPL,
92000 Nanterre, France

Niko Hastrich (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Ishay Haviv (16)
School of Computer Science, The Academic
College of Tel Aviv-Yaffo, Israel

Falko Hegerfeld (17)
Humboldt-Universität zu Berlin, Germany

Danny Hermelin (18)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Tobias Heuer (26)
Karlsruhe Institute of Technology, Germany

Theresa Hradilak (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Tanmay Inamdar (13)
Department of Informatics,
University of Bergen, Norway

Davis Issac (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Yuval Itzhaki (18)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Hugo Jacob (6, 7, 8)
ENS Paris-Saclay, France

Lars Jaffke (3, 8)
University of Bergen, Norway

Satyabrata Jana (2)
The Institute of Mathematical Sciences, HBNI,
Chennai, India

Leon Kellerhals (19)
Faculty IV, Institute of Software Engineering
and Theoretical Computer Science, Algorithmics
and Computational Complexity,
Technische Universität Berlin, Germany

Rafael Kiesel (32)
TU Wien, Austria

Eun Jung Kim (9)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

Otto Kißig (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Tomohiro Koana (19)
Faculty IV, Institute of Software Engineering
and Theoretical Computer Science, Algorithmics
and Computational Complexity,
Technische Universität Berlin, Germany

Christian Komusiewicz (20)
Fachbereich Mathematik und Informatik,
Philipps-Universität Marburg, Germany

Viktoriia Korchemna (15)
Algorithms and Complexity Group,
TU Wien, Austria

Stefan Kratsch (17)
Humboldt-Universität zu Berlin, Germany

Ariel Kulik (12)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Pascal Kunz (19)
Faculty IV, Institute of Software Engineering
and Theoretical Computer Science, Algorithmics
and Computational Complexity,
Technische Universität Berlin, Germany

https://orcid.org/0000-0002-7762-8045
https://doi.org/10.4230/LIPIcs.IPEC.2022.15
https://orcid.org/0000-0002-7767-6637
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.IPEC.2022.4
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://orcid.org/0000-0001-8103-6440
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://orcid.org/0000-0002-9878-8750
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://orcid.org/0000-0002-9678-0253
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://orcid.org/0000-0003-4671-9822
https://doi.org/10.4230/LIPIcs.IPEC.2022.5
https://orcid.org/0000-0003-2482-5042
https://doi.org/10.4230/LIPIcs.IPEC.2022.21
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.16
https://orcid.org/0000-0003-2125-5048
https://doi.org/10.4230/LIPIcs.IPEC.2022.17
https://doi.org/10.4230/LIPIcs.IPEC.2022.18
https://orcid.org/0000-0002-5399-0496
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://orcid.org/0000-0002-0184-5932
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://orcid.org/0000-0001-5559-7471
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.18
https://orcid.org/0000-0003-1350-3240
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://doi.org/10.4230/LIPIcs.IPEC.2022.3
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://orcid.org/0000-0002-7046-0091
https://doi.org/10.4230/LIPIcs.IPEC.2022.2
https://orcid.org/0000-0001-6565-3983
https://doi.org/10.4230/LIPIcs.IPEC.2022.19
https://orcid.org/0000-0002-8866-3452
https://doi.org/10.4230/LIPIcs.IPEC.2022.32
https://orcid.org/0000-0002-6824-0516
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://orcid.org/0000-0002-9414-9206
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://orcid.org/0000-0002-8684-0611
https://doi.org/10.4230/LIPIcs.IPEC.2022.19
https://orcid.org/0000-0003-0829-7032
https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://orcid.org/0000-0001-8038-905X
https://doi.org/10.4230/LIPIcs.IPEC.2022.15
https://orcid.org/0000-0002-0193-7239
https://doi.org/10.4230/LIPIcs.IPEC.2022.17
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.IPEC.2022.19

Authors 0:xvii

Noleen Köhler (9)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

Chao Liao (29)
Huawei TCS Lab Shanghai, China

Paloma T. Lima (8)
IT University of Copenhagen, Denmark

Raul Lopes (9)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

PinYan Lu (29)
Huawei TCS Lab Shanghai, China

ZhiPeng Lv (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Maher Mallem (21)
Sorbonne Université, CNRS, LIP6,
F-75005 Paris, France

Dániel Marx (12, 14, 22)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Yosuke Mizutani (23)
School of Computing, University of Utah,
Salt Lake City, UT, USA

Hendrik Molter (18)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Nils Morawietz (20)
Fachbereich Mathematik und Informatik,
Philipps-Universität Marburg, Germany

Alix Munier-Kordon (21)
Sorbonne Université, CNRS, LIP6,
F-75005 Paris, France

André Nichterlein (25)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Rolf Niedermeier (25)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Jelle J. Oostveen (24)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Marcin Pilipczuk (6)
University of Warsaw, Poland

Michał Pilipczuk (6)
University of Warsaw, Poland

Nidhi Purohit (4, 13)
Department of Informatics,
University of Bergen, Norway

Clément Rambaud (11)
DIENS, École Normale Supérieure, CNRS,
PSL University, Paris, France

Amadeus Reinald (31)
École Normale Supérieure de Lyon, France

Mathis Rocton (31)
École Normale Supérieure de Lyon, France

Abhishek Sahu (2)
Indian Institute of Technology Madras,
Chennai, India

Govind S. Sankar (22)
Duke University, Durham, NC, USA

Saket Saurabh (1, 13)
The Institute of Mathematical Sciences, HBNI,
Chennai, India;
University of Bergen, Norway

Philipp Schepper (12, 14, 22)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

André Schidler (32)
TU Wien, Austria

Jonas Schmidt (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Christian Schulz (26)
Universität Heidelberg, Germany

Hjalmar Schulz (25)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Dvir Shabtay (18)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Roohani Sharma (14)
Max Planck Institute for Informatics, SIC,
Saarbrücken, Germany

Sebastian Siebertz (30)
Universität Bremen, Germany

Kirill Simonov (4)
Algorithms and Complexity Group,
TU Wien, Austria

IPEC 2022

https://orcid.org/0000-0002-1023-6530
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0001-9304-4536
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://orcid.org/0000-0002-7487-3475
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0001-5654-1090
https://doi.org/10.4230/LIPIcs.IPEC.2022.21
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://orcid.org/0000-0002-9847-4890
https://doi.org/10.4230/LIPIcs.IPEC.2022.23
https://doi.org/10.4230/LIPIcs.IPEC.2022.18
https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://orcid.org/0000-0002-2170-6366
https://doi.org/10.4230/LIPIcs.IPEC.2022.21
https://orcid.org/0000-0001-7451-9401
https://doi.org/10.4230/LIPIcs.IPEC.2022.25
https://orcid.org/0000-0003-1703-1236
https://doi.org/10.4230/LIPIcs.IPEC.2022.25
https://doi.org/10.4230/LIPIcs.IPEC.2022.24
https://orcid.org/0000-0001-5680-7397
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.4230/LIPIcs.IPEC.2022.4
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://orcid.org/0000-0002-8108-4036
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://doi.org/10.4230/LIPIcs.IPEC.2022.2
https://orcid.org/0000-0002-7443-9599
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.IPEC.2022.1
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://orcid.org/0000-0002-5810-7949
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://orcid.org/0000-0001-6790-7158
https://doi.org/10.4230/LIPIcs.IPEC.2022.32
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://doi.org/10.4230/LIPIcs.IPEC.2022.25
https://doi.org/10.4230/LIPIcs.IPEC.2022.18
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://doi.org/10.4230/LIPIcs.IPEC.2022.4

0:xviii Authors

Darren Strash (26)
Hamilton College, Clinton, NY, USA

ZhouXing Su (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Blair D. Sullivan (23)
School of Computing, University of Utah,
Salt Lake City, UT, USA

ZhiBo Sun (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Sylwester Swat (27)
Institute of Computing Science,
Poznań University of Technology, Poland

Prafullkumar Tale (14)
Indian Institute of Science Education and
Research, Pune, India

Stéphan Thomassé (9)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

Erik Jan van Leeuwen (24)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Magnus Wahlström (11)
Department of Computer Science, Royal
Holloway, University of London, Egham, UK

Leo Wendt (28)
Hasso Plattner Institut,
Universität Potsdam, Germany

Christopher Weyand (25)
Karlsruhe Institute of Technology, Germany

Chen Wu (29)
Huawei TCS Lab Shanghai, China

Karol Węgrzycki (12)
Saarland University, Saarbrücken, Germany;
Max Planck Institute for Informatics,
Saarbrücken, Germany

JunZhou Xu (29)
Huawei TCS Lab Shanghai, China

Meirav Zehavi (1)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

QingYun Zhang (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

ShunGen Zhang (29)
School of Computer Science and Technology,
Huazhong University of Science & Technology,
China

Anna Zych-Pawlewicz (5)
University of Warsaw, Poland

https://orcid.org/0000-0001-7095-8749
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.IPEC.2022.23
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0001-8763-0045
https://doi.org/10.4230/LIPIcs.IPEC.2022.27
https://orcid.org/0000-0001-9753-0523
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://doi.org/10.4230/LIPIcs.IPEC.2022.24
https://orcid.org/0000-0002-0933-4504
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.IPEC.2022.25
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2022.1
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://orcid.org/0000-0002-5361-8969
https://doi.org/10.4230/LIPIcs.IPEC.2022.5

A Finite Algorithm for the Realizabilty of a
Delaunay Triangulation
Akanksha Agrawal #

Indian Institute of Technology Madras, Chennai, India

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Meirav Zehavi #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
The Delaunay graph of a point set P ⊆ R2 is the plane graph with the vertex-set P and the
edge-set that contains {p, p′} if there exists a disc whose intersection with P is exactly {p, p′}.
Accordingly, a triangulated graph G is Delaunay realizable if there exists a triangulation of the
Delaunay graph of some P ⊆ R2, called a Delaunay triangulation of P , that is isomorphic to G.
The objective of Delaunay Realization is to compute a point set P ⊆ R2 that realizes a given
graph G (if such a P exists). Known algorithms do not solve Delaunay Realization as they are
non-constructive. Obtaining a constructive algorithm for Delaunay Realization was mentioned
as an open problem by Hiroshima et al. [19]. We design an nO(n)-time constructive algorithm for
Delaunay Realization. In fact, our algorithm outputs sets of points with integer coordinates.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Delaunay Triangulation, Delaunay Realization, Finite Algorithm, Integer
Coordinate Realization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.1

Related Version Full Version: https://arxiv.org/abs/2210.03932

Funding Akanksha Agrawal: Supported by New Faculty Initiation Grant no. NFIG008972.
Saket Saurabh: Supported by European Research Council (ERC) under the European Union’s

 Horizon 2020 research and innovation programme (no. 819416), and Swarnajayanti Fellowship (no.

DST/SJF/MSA01/2017-18).
Meirav Zehavi: Supported by Israel Science Foundation grant no. 1176/18, and United States –
Israel Binational Science Foundation grant no. 2018302.

1 Introduction

We study Delaunay graphs – through the lens of the well-known Delaunay Realization
problem – which are defined as follows. Given a point set P ⊆ R2, the Delaunay graph,
DG(P), of P is the graph with vertex-set P and edge-set that consists of every pair (p, p′)
of points in P that satisfies the following condition: there exists a disc whose boundary
intersects P only at p and p′, and whose interior does not contain any point in P . The point
set P ⊆ R2 is in general position if it contains no four points from P on the boundary of a
disc. If P is in general position, DG(P) is a triangulation, called a Delaunay triangulation,
denoted by DT(P).1 Otherwise, Delaunay triangulation and the notation DT(P), may refer

1 We assume that |P | ≥ 4, as otherwise, the problem that we consider, is solvable in polynomial time.

© Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akanksha@cse.iitm.ac.in
https://orcid.org/0000-0002-0656-7572
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2022.1
https://arxiv.org/abs/2210.03932
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

to any triangulation obtained by adding edges to DG(P). Thus, Delaunay triangulation of a
point set P is unique if and only if DG(P) is a triangulation. An alternate characterization
of Delaunay triangulations is that in such a triangulation, for any three points of a triangle
of an interior face, the unique disc whose boundary contains these three points does not
contain any other point in P .

The Delaunay graph of a point set is a planar graph [7], and triangulations of such graphs
form an important subclass of the class of triangulations of a point set, also known as the
class of maximal planar sub-divisions of the plane. Accordingly, efficient algorithms for
computing a Delaunay triangulation for a given point set have been developed (see [7, 9, 18]).
One of the main reasons underlying the interest in Delaunay triangulations is that any
angle-optimal triangulation of a point set is actually a Delaunay triangulation of the point
set. Here, optimality refers to the maximization of the smallest angle [7, 12]. This property
is particularly useful when it is desirable to avoid “slim” triangles – this is the case, for
example, when approximating a geographic terrain. Another main reason underlying the
interest in Delaunay triangulations is that these triangulations are the duals of “Voronoi
diagrams” (see [27]).

We are interested in a well-known problem which, in a sense, is the “opposite” of computing
a Delaunay triangulation for a given point set. Here, rather than a point set, we are given
a triangulated graph G. The graph G is Delaunay realizable if there exists P ⊆ R2 such
that DT(P) is isomorphic to G. Specifically, a point set P ⊆ R2 is said to realize G (as
a Delaunay triangulation) if DT(P) is isomorphic to G.2 The problem of finding a point
set that realizes G is called Delaunay Realization. This problem is important not only
theoretically, but also practically (see, e.g., [26, 32, 33]). Formally, it is defined as follows.

Delaunay Realization
Input: A triangulation G on n vertices.
Output: If G is realizable as a Delaunay triangulation, then output P ⊆ R2 that realizes
G (as a Delaunay triangulation). Otherwise, output NO.

Dillencourt [14] established necessary conditions for a triangulation to be realizable as a
Delaunay triangulation. On the other hand, Dillencourt and Smith [16] established sufficient
conditions for a triangulation to be realizable as a Delaunay triangulation. Dillencourt [15]
gave a constructive proof showing that any triangulation where all vertices lie on the outer face
is realizable as a Delaunay triangulation. Their approach, which results in an algorithm that
runs in time O(n2), uses a criterion concerning angles of triangles in a hypothetical Delaunay
triangulation. In 1994, Sugihara [31] gave a simpler proof that all outerplanar triangulations
are realizable as Delaunay triangulations. Later, in 1997, Lambert [22] gave a linear-time
algorithm for realizing an outerplanar triangulation as a Delaunay triangulation. More
recently, Alam et al. [3] gave yet another constructive proof for outerplanar triangulations.

Hodgson et al. [20] gave a polynomial-time algorithm for checking if a graph is realizable
as a convex polyhedron with all vertices on a common sphere. Using this, Rivin [30] designed
a polynomial-time algorithm for testing if a graph is realizable as a Delaunay triangulation.
Independently, Hiroshima et al. [19] found a simpler polynomial-time algorithm, which relies
on the proof of a combinatorial characterization of Delaunay realizable graphs. Both these
results are non-constructive, i.e., they cannot output a point set P that realizes the input as
a Delaunay triangulation, but only answer YES or NO. It is a long standing open problem
to design a finite time algorithm for Delaunay Realization.

2 As G is triangulation, if DT(P) is isomorphic to G, then DT(P) is unique.

A. Agrawal, S. Saurabh, and M. Zehavi 1:3

Obtaining a constructive algorithm for Delaunay Realization was mentioned as an
open problem by Hiroshima et al. [19]. We give the first exponential-time algorithm for the
Delaunay Realization problem. Our algorithm is based on the computation of two sets
of polynomial constraints, defined by the input graph G. In both sets of constraints, the
degrees of the polynomials are bounded by 2 and the coefficients are integers. The first set
of constraints forces the points on the outer face to form a convex hull,3 and the second set
of constraints ensures that for each edge in G, there is a disc containing only the endpoints
of the edge. Roughly speaking, we prove that a triangulation is realizable as a Delaunay
triangulation if and only if a point set realizing it as a Delaunay triangulation satisfies every
constraint in our two sets of constraints. We proceed by proving that if a triangulation is
realizable as a Delaunay triangulation, then there is P ⊆ Z2 such that DT(P) is isomorphic
to G. This result is crucial to the design of our algorithm, not only for the sake of obtaining
an integer solution, but for the sake of obtaining any solution. In particular, it involves a
careful manipulation of a (hypothetical) point set in R2, which allows to argue that it is
“safe” to add new polynomials to our two sets of polynomials. Having these new polynomials,
we are able to ensure that certain approximate solutions, which we can find in finite time, are
actually exact solutions. We show that the special approximate solutions can be computed
in polynomial time, and hence we actually solve the problem precisely. To find a solution
satisfying our sets of polynomial constraints, our algorithm runs in time nO(n). All other
steps of the algorithm can be executed in polynomial time.

We believe that our contribution is a valuable step forward in the study of algorithms for
geometric problems where one is interested in finding a solution rather than only determining
whether one exists. Such studies have been carried out for various geometric problems (or
their restricted versions) like Unit-Disc Graph Realization [23], Line-Segment Graph
Realization [21], Planar Graph Realization (which is the same as Coin Graph
Realization) [11], Convex Polygon Intersection Graph Realization [24], and
Delaunay Realization. (The above list is not comprehensive; for more details we refer
the readers to given citations and references therein.) We note that the higher dimension
analogue of Delaunay Realization, called Delaunay Subdivisions Realization, is
∃R-complete; for details on this generalization, see [1].

2 Preliminaries

In this section, we present basic concepts related to Geometry, Graph Theory and Algorithm
Design, and establish some of the notation used throughout.

We refer the reader to the books [7, 28] for geometry-related terms that are not explicitly
defined here. We denote the set of natural numbers by N, the set of rational numbers by Q
and the set of real numbers by R. By R+ we denote the set {x ∈ R | x > 0}. For n ∈ N, we
use [n] as a shorthand for {1, 2, · · · , n}. A point is an element in R2. We work on Euclidean
plane and the Cartesian coordinate system with the underlying bijective mapping of points
in the Euclidean plane to vectors in the Cartesian coordinate system. For p, q ∈ R2, by
dist(p, q) we denote the distance between p and q in R2.

Graphs. We use standard terminology from the book of Diestel [13] for graph-related terms
not explicitly defined here. For a graph G, V (G) and E(G) denote the vertex and edge sets of
G, respectively. For a vertex v ∈ V (G), dG(v) denotes the degree of v, i.e the number of edges

3 The convex hull of a point set realizing G forms the outer face of its Delaunay triangulation.

IPEC 2022

1:4 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

incident on v, in the graph G. For an edge (u, v) ∈ E(G), u and v are called the endpoints of
the edge (u, v). For S ⊆ V (G), G[S], and G − S are the subgraphs of G induced on S and
V (G) \ S, respectively. For S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed
neighbourhoods of S in G, respectively. That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and
NG[S] = NG(S) ∪ S. We drop the sub-script G from dG(v), NG(S), and NG[S] whenever
the context is clear. A path in a graph is a sequence of distinct vertices v0, v1, . . . , vℓ such
that (vi, vi+1) is an edge for all 0 ≤ i < ℓ. Furthermore, such a path is called a v0 to vℓ path.
A graph is connected if for all distinct u, v ∈ V (G), there is a u to v path in G. A graph
which is not connected is said to be disconnected. A graph G is called k-connected if for
all X ⊆ V (G) such that |X| < k, G − X is connected. A cycle in a graph is a sequence of
distinct vertices v0, v1, . . . , vℓ such that (vi, v(i+1) mod (ℓ+1)) is an edge for all 0 ≤ i ≤ ℓ. A
cycle C in G is said to be a non-separating cycle in G if G − V (C) is connected.

Planar Graphs and Plane Graphs. A graph G is called planar if it can be drawn on the
plane such that no two edges cross each other except possibly at their endpoints. Formally,
an embedding of a graph G is an injective function φ : V (G) → R2 together with a set C
containing a continuous curve C(u,v) in the plane corresponding to each (u, v) ∈ E(G) such
that φ(u) and φ(v) are the endpoints of C(u,v). An embedding of a graph G is planar if
distinct C, C ′ ∈ C intersect only at the endpoints – that is, any point in the intersection of
C, C ′ is an endpoint of both C, C ′. A graph that admits a planar embedding is a planar
graph. Hereafter, whenever we say an embedding of a graph, we mean a planar embedding of
it, unless stated otherwise. We often refer to a graph with a fixed embedding on the plane
as a plane graph. For a plane graph G, the regions in R2 \ G are called the faces of G. We
denote the set of faces in G by F (G). Note that since G is bounded and can be assumed to
be drawn inside a sufficiently large disc, there is exactly one face in F (G) that is unbounded,
which is called the outer face of G. A face of G that is not the outer face is called an inner
face of G. An embedding of a planar graph with the property that the boundary of every
face (including the outer face) is a convex polygon is called a convex drawing. Below we state
propositions related to planar and plane graphs that will be useful later.

▶ Proposition 1 (Proposition 4.2.5 [13]). For a 2-connected plane graph G, every face of G

is bounded by a cycle.

For a graph G and a face f ∈ F (G), we let V (f) denote the set of vertices in the cycle by
which f is bounded. We often refer to V (f) as the face boundary of f .

▶ Proposition 2 (Proposition 4.2.10 [13]). For a 3-connected planar graph, its face boundaries
are precisely its non-separating induced cycles.

Note that from Proposition 2, for a 3-connected planar graph and its planar embeddings
GP and GP′ , it follows that F (GP) = F (GP′). (In the above we slightly abused the notation,
and think of the sets F (GP) and F (GP′) in terms of their bounding cycles, rather than the
regions of the plane.) Hence, it is valid to talk about F (G) for a 3-connected planar graph
G, even without knowing its embedding on the plane.

▶ Proposition 3 (Tutte’s Theorem [34], also see [8, 25]). A 3-connected planar graph admits a
convex embedding on the plane with any face as the outer face. Moreover, such an embedding
can be found in polynomial time.

For a plane graph G and a face f ∈ F (G), by stellating f we mean addition of a new
vertex v∗

f inside f and making it adjacent to all v ∈ V (f). We note that stellating a face of
a planar graph results in another planar graph [16].

A. Agrawal, S. Saurabh, and M. Zehavi 1:5

Triangulations and Delaunay Triangulations. A triangulation is a plane graph where
each inner face is bounded by a cycle on three vertices. A graph which is isomorphic to a
triangulation is called a triangulated graph. We state the following simple but useful property
of triangulations that will be exploited later.

▶ Proposition 4. Let G be a triangulation with f∗ being the outer face. Then, all the degree-2
vertices in G must belong to V (f∗).

▶ Proposition 5 (Theorem 9.6 [7]). For a point set P ⊆ R2 on n points, three points
p1, p2, p3 ∈ P are vertices of the same face of the Delaunay graph of P if and only if the
circle through p1, p2, p3 contains no point of P in its interior.

A Delaunay triangulation is any triangulation that is obtained by adding edges to the
Delaunay graph. A Delaunay triangulation of a point set P is unique if and only if DG(P) is
a triangulation, which is the case if P is in general position [7]. We refer to the Delaunay
triangulation of a point set P by DT(P) (assuming it is unique, which is the case in our
paper). A triangulated graph is Delaunay realizable if there exists a point set P ⊆ R2 such
that DT(P) is isomorphic to G. If G has at most three points, then testing if it is Delaunay
realizable is solvable in constant time. Also, we can compute an integer representation for it
in constant time, if it exists. (Recall that while defining the general position assumption, we
assumed that the point set has at least four points. This assumption does not cause any
issues because we look for a realization of a graph which has at least four vertices.)

Polynomial Constraints. Let us now give some definitions and notation related to polyno-
mials and sets of polynomial constraints (equalities and inequalities). We refer the reader to
the books [5, 6] for algebra-related terms that are not explicitly defined here. For t, n ∈ N
and a set C, a polynomial P = Σi∈[t]ai · (Πj∈[n]X

di
j

j) on n variables and t terms is said to
be a polynomial over C if for all i ∈ [t], j ∈ [n] we have ai ∈ C and di

j ∈ N. Furthermore,
the degree of the polynomial P is defined to be maxi∈[t](Σj∈[n]d

i
j). We denote the set of

polynomials on n variables X1, X2, · · · Xn with coefficients in C by C[X1, X2, · · · Xn].
A polynomial constraint C on n variables with coefficients from C ⊆ R is a sequence P∆0,

where P ∈ C[X1, X2, · · · , Xn] and ∆ ∈ {=, ≥, >, ≤, <}. The degree of such a constraint is
the degree of P, and it is said to be an equality constraint if ∆ is ‘=’. We say that the
constraint is satisfied by an element (x̄1, x̄2, · · · x̄n) ∈ Rn if P(x̄1, x̄2, · · · x̄n)∆0.4 Given a
set C of polynomial constraints on n variables, X1, X2, · · · , Xn, and with coefficients from
C ⊆ R, we say that an element (x̄1, x̄2, · · · x̄n) ∈ Rn satisfies C if for all C ∈ C, we have
that (x̄1, x̄2, · · · x̄n) satisfies C. In this case, (x̄1, x̄2, · · · x̄n) is also called a solution of C.
Furthermore, C is said to be satisfiable (in R) if there exists (x̄1, x̄2, · · · x̄n) ∈ Rn satisfying C.

Below we state a result regarding a method for solving a finite set of polynomial constraints,
which will be used by our algorithm. This result is a direct implication of Propositions 3.8.1
and 4.1 in [29] (see also [6]).

▶ Proposition 6 (Propositions 3.8.1 and 4.1 in [29]). Let C be a set of m polynomial constraints
of degree 2 on n variables with coefficients in Z whose bitsizes are bounded by O(1). Then,
in time mO(n) we can decide if C is satisfiable in R. Moreover, if C is satisfiable in R,
then in time mO(n) we can also compute a (satisfiable) set Ĉ of n polynomial constraints,
C1,C2, . . . ,Cn, with coefficients in Z, where for all i ∈ [n], we have that Ci is an equality
constraint on Xi (only), and a solution of Ĉ is also a solution of C.

4 Here, P(x̄1, x̄2, · · · x̄n) is the evaluation of P, where the variable Xi is assigned the value x̄i, for i ∈ [n].

IPEC 2022

1:6 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

3 Restricted-Delaunay Realization: Generating Polynomials

In this section, we generate a set of polynomials that encodes the realizability of a triangulation
as a Delaunay triangulation in the case where the outer face of the Delaunay triangulation is
known. More precisely, we suppose that the outer faces of G and the Delaunay triangulation
are the same. For the general case where we might not know a priori which is the face in G

that is supposed to be the outer face of the Delaunay triangulation (this is the case when
G is a maximal planar graph), we will “guess” the outer face and then use our restricted
version to solve the problem. Formally, we solve the following problem.

Restricted-Delaunay Realization (Res-DR)
Input: A triangulation G with outer face f∗.
Output: A set of polynomial constraints Const(G) such that Const(G) is satisfiable if
and only if G is realizable as a Delaunay triangulation with f∗ as the outer face.

Let (G, f∗) be an instance of Res-DR, and let n denote |V (G)|. We denote V (G) by
the set {v1, v2, · · · vn}. Note that except possibly f∗, each of the faces of G is bounded by a
cycle on three vertices. With each vi ∈ V (G) we associate two variables, Xi and Yi, which
correspond to the values of the x and y coordinates of vi in the plane. Furthermore, we let
Pi denote the vector (Xi, Yi). We let X̄ denote the value that some solution of Const(G)
assigns to the variable X. Accordingly, we denote P̄i = (X̄i, Ȳi). For the sake of clarity,
we sometimes abuse the notation P̄i by letting it denote both P̄i and Pi (this is done in
situations where both interpretations are valid).

Our algorithm is based on the computation of two sets of polynomial constraints of
bounded degree and integer coefficients. Informally, we have one set of inequalities which
ensures that the points to which vertices of f∗ are mapped are in convex position, and
another set of inequalities which ensures that for each (vi, vj) ∈ E(G), there exists a disc
containing (X̄i, Ȳi) and (X̄j , Ȳj) on its boundary and excluding all other points (X̄k, Ȳk).
(While other sets of inequalities may be devised to ensure these properties, we subjectively
found the two sets presented here the easiest to employ.)

3.1 Inequalities Ensuring that the Outer Face Forms the Convex Hull
We first generate the set of polynomial constraints ensuring that the points associated with
the vertices in f∗ form the convex hull of the output point set. Here, we also ensure that
the vertices in f∗ have the same cyclic ordering (given by the cycle bounding f∗) as the
points corresponding to them have in the convex hull. Note that the edges of the convex
hull are present in any Delaunay triangulation [7]. Moreover, the convex hull of a point set
forms the outer face of its Delaunay triangulation. To formulate our equations, we rely on
the notions of left and right turns. Their definitions are the same as those in the book [10],
which uses cross product to determine whether a turn is a left turn or a right turn. For the
sake of clarity, we also explain these notions below.

Left and Right Turns. Consider two vectors (or points) P̄1 and P̄2, denoting some (x1, y1)
and (x2, y2), respectively. The cross product P̄1 × P̄2 of P̄1 and P̄2 is defined as follows.

P̄1 × P̄2 =
∣∣∣∣x1 x2
y1 y2

∣∣∣∣ = x1y2 − x2y1.

If P̄1 × P̄2 > 0, then P̄1 is said to be clockwise from P̄2 (with respect to the origin
(0, 0)). Else, if P̄1 × P̄2 < 0, then P̄1 is said to be counterclockwise from P̄2. Otherwise (if
P̄1 × P̄2 = 0), P̄1 and P̄2 are said to be collinear. Given line segments P0P1 and P1P2, we

A. Agrawal, S. Saurabh, and M. Zehavi 1:7

would like to determine the type of turn taken by the angle ∠P0P1P2. To this end, we check
whether the directed segment P0P2 is clockwise or counterclockwise from P0P1. Towards
this, we first compute the cross product (P̄2 − P̄0) × (P̄1 − P̄0). If (P̄2 − P̄0) × (P̄1 − P̄0) > 0,
then P0P2 is clockwise from P0P1, and we say that we take a right turn at P̄1. Else, if
(P̄2 − P̄0) × (P̄1 − P̄0) < 0, then P0P2 is counterclockwise from P0P1, and we say that we
take a left turn at P̄1. Otherwise, we make no turn at P̄1. Note that the computation of
(P̄2 − P̄0) × (P̄1 − P̄0) can be done as follows.

(P̄2 − P̄0) × (P̄1 − P̄0) =
∣∣∣∣x2 − x0 x1 − x0
y2 − y0 y1 − y0

∣∣∣∣ = x2y1 − x2y0 − x0y1 − x1y2 + x1y0 + x0y2.

The Polynomials. For three vectors (or points) P̄0 = (x0, y0), P̄1 = (x1, y1) and P̄2 =
(x2, y2), by Con(P̄0, P̄1, P̄2) we denote the polynomial x2y1 −x2y0 −x0y1 −x1y2 +x1y0 +x0y2.
Note that Con(P̄0, P̄1, P̄2) determines whether we have a right, left or no turn at P̄1.

Before stating the constraints based on these polynomials, let us recall the well-known
fact stating that a non-intersecting polygon is convex if and only if every interior angle of
the polygon is less than 180◦. While we ensure the non-intersecting constraint later, the
characterization of each angle being less than 180◦ is the same as taking a right (or left)
turn at Pj for every three consecutive points Pi, Pj and Pk of the polygon. We will use this
characterization to enforce convexity on the points corresponding to the vertices in V (f∗).
Let us also recall that f∗ is a cycle C∗ in G. Next, whenever we talk about consecutive
vertices in C∗, we always follow clockwise direction.

For every three consecutive vertices vi, vj and vk in C∗, we add the following inequality:

Con(Pi, Pj , Pk) > 0.

These inequalities ensure that in any output point set, the points corresponding to vertices
in V (f∗) are in convex position (together with the non-intersecting condition to be ensured
later).

Next, we further need to ensure that all the points which correspond to vertices in
V (G) \ V (f∗) belong to the interior of the convex hull formed by the points corresponding to
vertices in V (f∗) and the polygon formed by the points corresponding to V (f∗) is non-self
intersecting. For this purpose, we crucially rely on the following property of convex hulls (or
convex polygons): For any edge of the convex hull, it holds that all the points, except for
the endpoints of the edge, are located in one of the sides of the edge. Using this property,
we know that for any two consecutive vertices vi and vj in C∗, all points are on one side
of the line associated with vi and vj . Since at each vi ∈ C∗ we ensure that we turn right,
we must have all the points located on the right of the line defined by the edge (vi, vj).
This, in turn, implies that for every pair of consecutive vertices vi and vj in C∗, for any
vertex vk ∈ V (G) \ V (f∗), we must be turning left at vk (according to the ordered triplet
(vi, vk, vj)). Hence, we add the following inequalities:

Con(Pi, Pk, Pj) < 0.

where vi and vj are consecutive vertices of C∗ and vk ∈ V (G) \ {vi, vj}.
We denote the set of inequalities generated above by Con(G).

3.2 Inequalities Guaranteeing Existence of Edges
For each edge (vi, vj) ∈ E(G), we add two new variables, Xij and Yij , to indicate the
coordinates of the centre of a disc that realizes the edge (vi, vj). There might exist many
discs that realize the edge (vi, vj), but we are interested in only one such disc, say Cij .

IPEC 2022

1:8 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

Note that Cij should contain (X̄i, Ȳi) and (X̄j , Ȳj) on its boundary, and it should not
contain any (X̄k, Ȳk) such that k /∈ {i, j}. Towards this, for each edge (vi, vj) ∈ E(G),
we add a set of inequalities that we denote by Dis(vi, vj). Note that the radius rij of
Cij is given by r2

ij = (Xi − Xij)2 + (Yi − Yij)2 (if (Xi, Yi) lies on the boundary) and by
r2

ij = (Xj − Xij)2 + (Yj − Yij)2 (if (Xj , Yj) lies on the boundary). Therefore, we want to
ensure the following.

(Xj − Xij)2 + (Yj − Yij)2 = (Xi − Xij)2 + (Yi − Yij)2

⇒ X2
i − X2

j + Y 2
i − Y 2

j − 2XijXi − 2YijYi + 2XijXj + 2YijYj = 0.

Hence, we add the above constraint to Dis(vi, vj). Further, we want to ensure that for
each k ∈ [n] \ {i, j}, (Xk, Yk) does not belong to Cij . Therefore, for each k ∈ [n] \ {i, j}, the
following must hold.

(Xk − Xij)2 + (Yk − Yij)2 − (Xi − Xij)2 − (Yi − Yij)2 > 0

⇒ X2
k − X2

i + Y 2
k − Y 2

i − 2XijXk − 2YijYk + 2XijXi + 2YijYi > 0

Hence, we also add the above constraint to Dis(vi, vj) for k ∈ [n] \ {i, j}. Overall, we
denote Dis(G) =

⋃
(vi,vj)∈E(G)

Dis(vi, vj). This completes the description of all inequalities

relevant to this section.

3.3 Correctness
Let us denote Const(G) = Con(G) ∪ Dis(G). We begin with the following observation. Here,
to bound the number of variables, we rely on the fact that G is a planar graph, its number
of edges is upper bounded by 3n, and hence in total we introduced less than 8n variables.

▶ Observation 7. The number of constraints in Const(G) is bounded by O(n2) and the total
number of variables is bounded by O(n). Moreover, each constraint in Const(G) is of degree
2, and its coefficients belong to {−2, −1, 0, 1, 2}.

Now, we state the central lemma establishing the correctness of our algorithm for Res-DR.

▶ Lemma 8. A triangulation G with outer face f∗ is realizable as a Delaunay triangulation
with f∗ as its outer face if and only if Const(G) is satisfiable.

Proof. Let G be a triangulation realizable as a Delaunay triangulation with f∗ as the outer
face of the Delaunay triangulation. Then, there exists P ⊆ R2 such that DT(P) is isomorphic
to G and f∗ is the outer face of DT(P). Furthermore, for each (P̄i, P̄j) ∈ E(DT(P)), there
exists a disc Cij which contains P̄i and P̄j on its boundary, and which contains no point P̄k,
k ∈ [n] \ {i, j}, on neither its boundary nor its interior. We let P̄ij denote the centre of Cij .
Let P be the vector assigning P̄i to the vertex vi ∈ V (G) and P̄ij to the centre of the disc
Cij . We note that the vertices of f∗ are in convex position in DT(P). Clearly, we then have
that P satisfies Const(G). This concludes the proof of the forward direction.

In the reverse direction, consider some P that satisfies Const(G). By our polynomial
constraints, P assigns some P̄i to each vertex vi ∈ V (G), such that for each edge (vi, vj) ∈
E(G), it lets P̄ij be the centre of a disc Cij containing P̄i and P̄j (on its boundary) and
no point P̄k where k /∈ {i, j}. Further, we let P = {P̄i | i ∈ [n]}. By the construction
of Const(G), it follows that if (vi, vj) ∈ E(G), then (P̄i, P̄j) ∈ DT(P) and the points in P

corresponding to vertices in V (f∗) form the convex hull of P . This implies that the points

A. Agrawal, S. Saurabh, and M. Zehavi 1:9

corresponding to the vertices in V (f∗) are on the outer face of DT(P). From Theorem 9.1
in [7], it follows that |E(G)| ≤ |E(DT(P))|. Thus, E(G) = E(DT(P)). This concludes the
proof of the reverse direction. ◀

The next theorem follows from the construction of Const(G), Observation 7 and Lemma 8.

▶ Theorem 9. Let G be a triangulation on n vertices with f∗ as the outer face. Then, in
time O(n2), we can output a set of polynomial constraints Const(G) such that G is realizable
as a Delaunay triangulation with f∗ as its outer face if and only if Const(G) is satisfiable.
Moreover, Const(G) consists of O(n2) constraints and O(n) variables, where each constraint
is of degree 2 and with coefficients only from {−2, −1, 0, 1, 2}.

4 Restricted-Delaunay Realization: Replacing Points by Discs

Let G be a triangulation on n vertices with f∗ as its outer face. Suppose that G is realizable
as a Delaunay triangulation where the points corresponding to vertices in V (f∗) belong to the
outer face. By Theorem 9, it follows that Const(G) is satisfiable. Let n∗ denote the number
of variables of Const(G). Since Const(G) is satisfiable, there exists Q satisfying Const(G).
Let Q̄i be the value assigned to the vertex vi ∈ V (G) for i ∈ [n]. Let Q = {Q̄i | vi ∈ V (G)}.
Recall that apart from assigning points in the plane to vertices in V (G), Q assigns to each
(vi, vj) ∈ E(G), a point Q̄ij corresponding to the centre of some disc, say C ′

ij , containing
Q̄i, Q̄j on its boundary and excluding all other points in Q.

In this section, we prove that for any given β ∈ R+, there exists a set of discs of radius
β, one for each vertex in V (G), with the following property. If for every vi ∈ V (G), we
choose some point P̄Ci

inside or on the boundary of its disc Ci, we get that DT(Q) and the
Delaunay triangulation of our set of chosen points are isomorphic.

We start with two simple observations, where the second directly follows from the
definition of the constraints in Const(G).

▶ Observation 10. Let (a, b), (x, y) ∈ R2 be two points and α ∈ R+. Then, dist((αa, αb),
(αx, αy)) = α · dist((a, b), (x, y)).

▶ Observation 11. Let G be a triangulation on n vertices with f∗ as its outer face. If Q is
a solution of Const(G), then for any α ∈ R+, it holds that αQ also satisfies Const(G).

In what follows, we create a point set P such that DT(P) is isomorphic to G, where the
points corresponding to vertices in V (f∗) form the outer face of DT(P). We then show that
this point set defines a set of discs with the desired property – for each vi ∈ V (G), it defines
one disc Ci with P̄i as centre and with radius r∗ ≥ β > 0 (to be determined), such that,
roughly speaking, each point of Ci is a valid choice for vi. For this purpose, we first define
the real numbers, dN , dC , and dA, which are necessary to determine r∗ and P . Informally,
dN ensures that the discs we create around vertices do not intersect, dC will be used to
ensure existence of specific edges, dA will be used to ensure that “convex hull property” is
satisfied. These (positive) real numbers are defined as follows.

Let dN = min
i,j∈[n],i̸=j

{dist(Q̄i, Q̄j)}, i.e., dN is the minimum distance between any pair of

distinct points in Q.
Let dC = min

i,j,k∈[n],i̸=j,i ̸=k,j ̸=k
{dist(C ′

ij , Q̄k)}, i.e., dC denotes the minimum distance

between a point corresponding to a vertex in V (G) and a disc realizing an edge non-
incident to it. (Recall that C ′

ij is defined at the beginning of this section.) Note that
dC > 0 because in the above definition of dC , we have only considered those disc and
point pairs where the point lies outside the disc.

IPEC 2022

1:10 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

rij

rij

Cij

P̄i

P̄j

2 E(G
)

C⇤
ij

r⇤

P̄ 0
i

P̄ 0
j

 r⇤+ rij

P̄ij
r⇤

 r
⇤ +

r ij

Figure 1 Proving that the points P̄ ′
i and P̄ ′

j lie inside the disc C∗
ij (Lemma 12).

For each edge (vi, vj) of the cycle corresponding to the outer face f∗, let Ls
ij be the line

containing Q̄i and Q̄j . Moreover, let sij = min
k∈[n]\{i,j}

{dist(Ls
ij , Q̄k)}, i.e., the minimum dis-

tance between a line of the convex hull and another point. Finally, dA = min
(vi,vj)∈E(f∗)

{sij}.

We note that dA > 0. This follows from the definition of Con(G) in Section 3.1.

Define r = 1
3 min{dN , dC , dA}. Notice that r, β > 0. Now, we compute r∗ and P according

to three cases:

1. If r ≥ β, then r∗ = r and P = Q (thus, P = Q).
2. Else if 1 ≤ r < β, then P = βQ, where βQ = {(βX̄, βȲ) | (X̄, Ȳ) ∈ Q} and r∗ = βr.
3. Otherwise (r < 1 and r < β), P = β

r Q and r∗ = β
r r = β.

By Observation 11, in each of the cases described above, we have that P satisfies Const(G).
Hereafter, we will be working only with P and r∗ as defined above. We let P̄i be the point
assigned to the vertex vi, and P = {P̄i | i ∈ [n]}. Moreover, we let P̄ij be the centre of the
disc Cij for the edge (vi, vj) ∈ E(G) that is assigned by P.

Next, we define d∗
N , d∗

C , and d∗
A in a manner similar to the one used to define dN , dC

and dA. Let d∗
N = min

i,j∈[n],i̸=j
{dist(P̄i, P̄j)} ≥ 3r∗, and d∗

C = min
i,j,k∈[n],i̸=j,i ̸=k,j ̸=k

{dist(Cij , P̄k)}

≥ 3r∗. For each edge (vi, vj) of the cycle corresponding to the outer face f∗, let Ls
ij be

the line containing P̄i and P̄j . Further, let sij = min
k∈[n]\{i,j}

{dist(Ls
ij , P̄k)}. Finally, let

d∗
A = min

(vi,vj)∈E(F)
{sij}. Note that by Observation 10, we have that d∗

N ≥ 3r∗, d∗
C ≥ 3r∗, and

d∗
A ≥ 3r∗.

For each vi ∈ V (G), let Ci be the disc of radius r∗ and centre P̄i. We now prove that if
for each vertex vi ∈ V (G), we choose a point P̄ ′

i inside or on the boundary of Ci, then we
obtain a point set P ′ such that DT(P) and DT(P ′) are isomorphic. Furthermore, the points
on the outer face of DT(P), and also DT(P ′), correspond to the vertices in V (f∗).

▶ Lemma 12 (♠). 5 DT(P) is isomorphic to DT(P ′) and the outer face of DT(P ′) consists
of all the points corresponding to vertices in V (f∗).

5 Proofs of results marked with ♠ is relegated to the full version of the paper [2].

A. Agrawal, S. Saurabh, and M. Zehavi 1:11

▶ Theorem 13. Let G be a triangulation on n vertices with f∗ as its outer face, realizable
as a Delaunay triangulation where the points corresponding to vertices of f∗ lie on the outer
face. Moreover, let Q be a solution of Const(G) and β ∈ R+. Then, there is a solution P of
Const(G), assigning a set of points P ⊆ R2 to vertices of G, such that for each vi ∈ V (G),
there exists a disc Ci with centre P̄i and radius at least β for which the following condition
holds. For any P ′ = {P̄ ′

i | P̄ ′
i ∈ Ci, i ∈ [n]}, it holds that DT(P ′) is isomorphic to DT(P),

and the points corresponding to vertices of f∗ lie on the outer face of DT(P ′).

Proof. The proof of theorem follows directly from the construction of r∗, the discs Ci for
i ∈ [n], and Lemma 12. ◀

5 Delaunay Realization: Integer Coordinates

In this section, we prove our main theorem:

▶ Theorem 14. Given a triangulation G on n vertices, in time nO(n) we can either output
a point set P ⊆ Z2 such that G is isomorphic to DT(P), or correctly conclude that G is not
Delaunay realizable.

The Outer Face of the Output. First, we explain how to identify the outer face f∗ of
the output (in case the output should not be NO). For this purpose, let fout denote the
outer face of G (according to the embedding of the triangulation G, given as the input).
Recall our assumption that n ≥ 4. Let us first consider the case where G is not a maximal
planar graph, i.e., fout consists of at least four vertices. Suppose that the output is not NO.
Then, for any point set P ⊆ R2 that realizes G as a Delaunay triangulation, it holds that
the points corresponding to the vertices of fout form the outer face of DT(P). Thus, in this
case, we simply set f∗ = fout. Next, consider the case where G is a maximal planar graph.
Again, suppose that the output is not NO. Then, for a point set P ⊆ R2 that realizes G as a
Delaunay triangulation, the outer face of DT(P) need not be the same as fout. To handle this
case, we “guess” the outer face of the output (if it is not NO). More precisely, we examine
each face f of G separately, and attempt to solve the “integral version” of Res-DR with f∗

set to f , and where G is embedded with f∗, rather than fout, as its outer face. Here, note
that a maximal planar graph is 3-connected [35], and therefore, by Proposition 3, we can
indeed compute an embedding of G with f∗ as the outer face.

The number of iterations is bounded by O(n) (since the number of faces of G is bounded
by O(n)). Thus, from now on, we may assume that we seek only Delaunay realizations of G

where the outer face is the same as the outer face of G (that we denote by f∗).

Sieving NO-Instances. We compute the set Const(G) as described in Section 3. From
Theorem 9, we know that G is realizable as a Delaunay triangulation with the points
corresponding to f∗ on the outer face if and only if Const(G) is satisfiable. Using Proposition 6,
we check whether Const(G) is satisfiable, and if the answer is negative, then we return NO.
Thus, we next focus on the following problem.

Integral Delaunay Realization (Int-DR)
Input: A triangulation G with outer face f∗ that is realizable as a Delaunay triangulation
with outer face f∗.
Output: A point set P ⊆ Z2 realizing G as a Delaunay triangulation with outer face f∗.

Similarly, we define the intermediate Rational Delaunay Realization (Rational-
DR) problem – here, however, P ⊆ Q2 rather than Z2. To prove Theorem 14, it is sufficient
to prove the following result, which is the objective of the rest of this paper.

IPEC 2022

1:12 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

▶ Lemma 15. Int-DR is solvable in time nO(n).
In what follows, we crucially rely on the fact that by Theorem 13, for all β ∈ R+, there

is a solution P of Const(G) that assigns a set of points P ⊆ R2 to the vertices of G, such
that for each vi ∈ V (G), there exists a disc Ci with radius at least β, satisfying the following
condition: For any P ′ = {P̄ ′

i | P ′
i ∈ Ci, i ∈ [n]}, it holds that DT(P ′) is isomorphic to G with

points corresponding to the vertices in f∗ on the outer face (in the same order as in f∗).
As it would be cleaner to proceed while working with squares, we need the next observation.

▶ Observation 16. Every disc C with radius at least 2 contains a square of side length at
least 2 and with the same centre.

We next extend Const(G) to a set ConstSqu(G), which explicitly ensures that there exists
a square around each point in the solution such that the point can be replaced by any point in
the square. Thus, rather than discs of radius 2 (whose existence, in some solution, is proven
by choosing β = 2), we consider squares with side length 2 given by Observation 16, and force
our constraints to be satisfied at the corner points of the squares. For this purpose, for each
vi ∈ V (G), apart from adding constraints for the point Pi = (Xi, Yi) (which can be regarded
as a disc of radius 0 in the previous setting), we also have constraints for the corner points of
the square of side length 2 whose centre is Pi. For technical reasons, we also add constraints
for the intersection points of perpendicular bisectors. For any constraint where Pi appears,
we make copies for the points Pi = (Xi, Yi), P 1

i = (Xi − 1, Yi − 1), P 2
i = (Xi − 1, Yi + 1),

P 3
i = (Xi + 1, Yi − 1), P 4

i = (Xi + 1, Yi + 1), P 5
i = (Xi − 1, Yi), P 6

i = (Xi, Yi + 1), P 7
i =

(Xi + 1, Yi), P 8
i = (Xi, Yi − 1).6

Inequalities that ensure the outer face forms the convex hull. We generate the set
of constraints that ensure the points corresponding to vertices in V (f∗) form a convex
hull of the output point set. Let C∗ be the cycle of the outer face f∗. Whenever we say
consecutive vertices in C∗, we always follow clockwise direction. For three consecutive vertex
vi, vj and vk in C∗, for every Zi ∈ {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}, Zj ∈ {Pj} ∪ {P ℓ
j | ℓ ∈ [8]} and

Zk ∈ {Pk} ∪ {P ℓ
k | ℓ ∈ [8]}, we add the inequality Con(Zi, Zj , Zk) > 0. This ensures that

the points corresponding to vertices in V (f∗) are in convex position in any output point set.
Further, we want all the points which correspond to the vertices in V (G) \ V (f∗) to be in the
interior of the convex hull formed by the points corresponding to vertices in V (f∗). To achieve
this, for each pair of vertices vi, vj that are consecutive vertices of C∗, vk ∈ V (G) \ {vi, vj},
Zi ∈ {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}, Zj ∈ {Pj} ∪ {P ℓ
j | ℓ ∈ [8]} and Zk ∈ {Pk} ∪ {P ℓ

k | ℓ ∈ [8]}, we add
Con(Zi, Zk, Zj) < 0. We call the above set of polynomial constraints ConSqu(G).

Inequalities that guarantee existence of edges. For each edge (vi, vj) ∈ E(G), we add three
new variables, namely Xij , Yij and rij . These newly added variables will correspond to the
centre and radius of a disc that realizes the edge (vi, vj). There might exist many such discs,
but we are interested in only one such disc. In particular, (Xij , Yij) corresponds to centre
of one such discs, say Cij , with radius rij , containing all the points in {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}
and {Pj} ∪ {P ℓ

j | ℓ ∈ [8]} but none of the points in {Pk | k ∈ [n] \ {i, j}} ∪ {P ℓ
k | ℓ ∈ [8], k ∈

[n] \ {i, j}}. Towards this, we add a set of inequalities for each edge (vi, vj) ∈ E(G), which
we will denote by DisSqu(vi, vj). For each Z ∈ {Pi, Pj} ∪ {P ℓ

i , P ℓ
j | ℓ ∈ [8]}, we add the

following inequalities to DisSqu(vi, vj), ensuring that Cij contains Z = (ZX , ZY).

Z2
X + X2

ij − 2ZXXij + Z2
Y + Y 2

ij − 2ZY Yij − r2
ij ≤ 0.

6 We remark that we do not create new variables for the corresponding x- and y-coordinates for points
P ℓ

i , for i ∈ [n].

A. Agrawal, S. Saurabh, and M. Zehavi 1:13

Further, we want to ensure that for each k ∈ [n] \ {i, j}, Z ∈ {Pk} ∪ {P ℓ
k | ℓ ∈ [8]} does

not belong to Cij . Hence, for each such Z = (ZX , ZY), the following must hold.

Z2
X + X2

ij − 2ZXXij + Z2
Y + Y 2

ij − 2ZY Yij − r2
ij > 0.

Hence, we add the above constraint to DisSqu(vi, vj) for k ∈ [n] \ {i, j}. We denote
DisSqu(G) =

⋃
(vi,vi)∈E(G)

DisSqu(vi, vj).

This completes the description of all the constraints we need. We let ConstSqu(G) =
ConSqu(G)∪DisSqu(G). We let n∗ denote the number of variables appearing in ConstSqu(G).
Note that n∗ = O(n) and the number of constraints in ConstSqu(G) is bounded by O(n2).

▶ Theorem 17. Let G be a triangulation on n vertices with f∗ as the outer face. Then,
in time O(n2) we can find a set of polynomial constraints ConstSqu(G) such that G is
realizable as a Delaunay triangulation with f∗ as its outer face if and only if ConstSqu(G) is
satisfiable. Moreover, ConstSqu(G) consists of O(n2) constraints and O(n) variables, where
each constraint is of degree 2 and with coefficients only from {−10, −9, . . . , 10}.

Proof. Follows from the construction of ConstSqu(G), Lemma 8, and Theorems 13. ◀

Having proved Theorem 17, we use Proposition 6 to decide in time nO(n) if ConstSqu(G)
is satisfiable. Recall that if the answer is negative, then we returned NO. We compute a
“good” approximate solution as we describe next. First, by Proposition 6, in time nO(n) we
compute a (satisfiable) set C of n∗ polynomial constraints, C1,C2, . . . ,Cn∗ , with coefficients
in Z, where for all i ∈ [n], we have that Ci is an equality constraint on the variable indexed
i (only), and a solution of C is also a solution of ConstSqu(G). Next, we would like to find
a “good” rational approximation to the solution of C. Later we will prove that such an
approximate solution is actually an exact solution to our problem.

For δ > 0, a δ rational approximate solution S for a set of polynomial equality constraints
is an assignment to the variables, for which there exists a solution S∗, such that for any
variable X, the (absolute) difference between the assignment to X by S and the assignment
to X by S∗ is at most δ.7 We follow the approach of Arora et al. [4] to find a δ rational
approximation to a solution for a set of polynomial equality constraints with δ = 1/2. This
approach states that using Renegar’s algorithm [29] together with binary search, with search
range bound given by Grigor’ev and Vorobjov [17], we can find a rational approximation
to a solution of a set of polynomial equality constraints with accuracy up to δ in time
(τ + n′ + m′n′ + log(1/δ))O(1) where τ is the maximum bitsize of a coefficient, n′ is the
number of variables and m′ is the number of constraints. In this manner, we obtain in time
nO(n) a rational approximation S to the solution of C with accuracy 1/2. By Theorem 17,
S is also a rational approximation to a solution of ConstSqu(G) with accuracy 1/2. We let
P̄Si

= (X̄Si
, ȲSi

) denote the value that S assigns to (Xi, Yi) (corresponding to the vertex
vi ∈ V (G)). Further we let PS = {P̄Si | i ∈ [n]}. In the following lemma, we analyze DT(PS).

▶ Lemma 18 (♠). The triangulation G is isomorphic to DT(PS) where points corresponding
to vertices in f∗ form the outer face (in that order). Here, PS is the point set described
above.

Towards the proof of Lemma 15, we first consider our intermediate problem.

7 We note that S may not be a solution in the sense that it may not satisfy all constraints (but it is close
to some solution that satisfies all of them).

IPEC 2022

1:14 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

▶ Lemma 19. Rational-DR is solvable in time nO(n).

Proof. Our algorithm first computes the set of polynomial constraints ConstSqu(G) in time
O(n2). Then, it computes a 1/2 accurate approximate solution for ConstSqu(G) by using
the approach of Arora et al. [4] in time nO(n). In Lemma 18, we have shown that such an
approximate solution is an exact solution. This concludes the proof. ◀

Finally, we are ready to prove Lemma 15, and thus conclude the correctness of Theorem 14.

Proof of Lemma 15. We use the algorithm given by Lemma 19 to output a point set P ⊆ Q2

in time nO(n) such that G is isomorphic to DT(P) and the points corresponding to vertices
in V (f∗) lie on the outer face of DT(P) in the order in which they appear in the cycle
of f∗. We denote by P̄i = (X̄i, Ȳi) the value P assigns to the vertex vi ∈ V (G). For
i ∈ [n], since X̄i, Ȳi ∈ Q, we let the representation be X̄i = X̄a

i /X̄b
i and Ȳi = Ȳ a

i /Ȳ b
i , where

X̄a
i , X̄b

i , Ȳ a
i , Ȳ b

i ∈ Z. For each edge (P̄i, P̄j) ∈ E(DT(P)), there exists a disc Cij with a
centre, say P̄ij , containing only P̄i and P̄j from P . These assignments satisfy the constraints
Con(G) and Dis(G) presented in Section 3. It thus follows that P satisfies Const(G). From
Observation 11 it follows that for any α ∈ R+, we have that αP satisfies Const(G). We let
β = Πi∈[n]X̄

b
i Ȳ b

i . But then βP satisfies Const(G), and hence βP = {(βX̄i, βȲi | i ∈ [n]} is a
point set such that G is isomorphic to DT(βP) where the points corresponding to vertices in
V (f∗) lie on the outer face of DT(βP). Therefore, we output a correct point set, βP , with
only integer coordinates. This concludes the proof. ◀

6 Conclusion

In this paper, we gave an nO(n)-time algorithm for the Delaunay Realization problem.
We have thus obtained the first exact exponential-time algorithm for this problem. Still,
the existence of a practical (faster) exact algorithm for Delaunay Realization is left for
further research. In this context, it is not even clear whether a significantly faster algorithm,
say a polynomial-time algorithm, exists. Perhaps one of the first questions to ask in this
regard is whether there exist instances of graphs that are realizable but for which the integers
in any integral solution need to be exponential in the input size? If yes, does even the
representation of these integers need to be exponential in the input size?

References
1 Karim A. Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed

polytopes and delaunay triangulations. Discrete & Computational Geometry, 54(2):412–431,
2015.

2 Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A finite algorithm for the realizabilty
of a delaunay triangulation. arXiv, 2022. doi:10.48550/ARXIV.2210.03932.

3 Md. Ashraful Alam, Igor Rivin, and Ileana Streinu. Outerplanar graphs and Delaunay
triangulations. In Proceedings of the 23rd Annual Canadian Conference on Computational
(CCCG), 2011.

4 Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative
matrix factorization – provably. In Proceedings of the 44th Annual ACM Symposium on Theory
of Computing, STOC, pages 145–162, 2012.

5 M. Artin. Algebra. Pearson Prentice Hall, 2011.
6 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

https://doi.org/10.48550/ARXIV.2210.03932

A. Agrawal, S. Saurabh, and M. Zehavi 1:15

7 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed. edition, 2008.

8 Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki. Drawing plane graphs nicely. Acta
Inf., 22(2):187–201, 1985.

9 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
II. Discrete Computational Geometry, 4:387–421, 1989.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

11 Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting fáry embeddings
of planar graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 426–433, 1988.

12 Giuseppe Di Battista and Luca Vismara. Angles of planar triangular graphs. SIAM Journal
on Discrete Mathematics, 9(3):349–359, 1996.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 M. Dillencourt. Toughness and Delaunay triangulations. In Proceedings of the Third Annual
Symposium on Computational Geometry, SoCG, pages 186–194, 1987.

15 Michael. B. Dillencourt. Realizability of Delaunay triangulations. Information Processing
Letters, 33:283–287, 1990.

16 Michael B. Dillencourt and Warren D. Smith. Graph-theoretical conditions for inscribability
and Delaunay realizability. Discrete Mathematics, 161(1-3):63–77, 1996.

17 D. Yu. Grigor’ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequalities in
subexponential time. Journal of Symbolic Computation, 5:37–64, 1988.

18 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7(1):381–413, 1992.

19 Tetsuya Hiroshima, Yuichiro Miyamoto, and Kokichi Sugihara. Another proof of polynomial-
time recognizability of Delaunay graphs. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 83:627–638, 2000.

20 Craig D Hodgson, Igor Rivin, and Warren D Smith. A characterization of convex hyper-
bolic polyhedra and of convex polyhedra inscribed in the sphere. Bulletin of the American
Mathematical Society, 27:246–251, 1992.

21 Jan Kratochvíl and Jivr’i Matouvsek. Intersection graphs of segments. J. Comb. Theory, Ser.
B, 62(2):289–315, 1994.

22 Timothy Lambert. An optimal algorithm for realizing a Delaunay triangulation. Information
Processing Letters, 62(5):245–250, 1997.

23 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal
of Combinatorial Theory, Series B, 103(1):114–143, 2013.

24 Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex
polygon intersection graphs. SIAM J. Discrete Math., 27(1):205–231, 2013.

25 Takao Nishizeki, Kazuyuki Miura, and Md. Saidur Rahman. Algorithms for drawing plane
graphs. IEICE Transactions, 87-D(2):281–289, 2004.

26 Yasuaki Oishi and Kokichi Sugihara. Topology-oriented divide-and-conquer algorithm for
Voronoi diagrams. Graphical Models and Image Processing, 57:303–314, 1995.

27 Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Inc., 1992.

28 János Pach and Pankaj K. Agarwal. Combinatorial Geometry. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, New York, 1995.

29 James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. Journal of Symbolic Computation, 13:255–352, 1992.

30 Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of
Mathematics, 139:553–580, 1994.

IPEC 2022

1:16 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

31 Kokichi Sugihara. Simpler proof of a realizability theorem on Delaunay triangulations.
Information Processing Letters, 50:173–176, 1994.

32 Kokichi Sugihara and Masao Iri. Construction of the Voronoi diagram for one million generators
in single-precision arithmetic. Proceedings of the IEEE, 80:1471–1484, 1992.

33 Kokichi Sugihara and Masao Iri. A robust topology-oriented incremental algorithm for Voronoi
diagrams. International Journal of Computational Geometry & Applications, 4(02):179–228,
1994.

34 William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
3(1):743–767, 1963.

35 Hassler Whitney. Congruent Graphs and the Connectivity of Graphs, pages 61–79. Birkhäuser
Boston, Boston, MA, 1992.

Parameterized Complexity of Perfectly Matched
Sets
Akanksha Agrawal #

Indian Institute of Technology Madras, Chennai, India

Sutanay Bhattacharjee #

Indian Institute of Technology Madras, Chennai, India

Satyabrata Jana #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Abhishek Sahu #

Indian Institute of Technology Madras, Chennai, India

Abstract
For an undirected graph G, a pair of vertex disjoint subsets pA, Bq is a pair of perfectly matched
sets if each vertex in A (resp. B) has exactly one neighbor in B (resp. A). In the above, the size
of the pair is |A| (“ |B|). Given a graph G and a positive integer k, the Perfectly Matched
Sets problem asks whether there exists a pair of perfectly matched sets of size at least k in G.
This problem is known to be NP-hard on planar graphs and W[1]-hard on general graphs, when
parameterized by k. However, little is known about the parameterized complexity of the problem in
restricted graph classes. In this work, we study the problem parameterized by k, and design FPT
algorithms for: i) apex-minor-free graphs running in time 2Op

?
kq

¨ nOp1q, and ii) Kb,b-free graphs.
We obtain a linear kernel for planar graphs and kOpdq-sized kernel for d-degenerate graphs. It is
known that the problem is W[1]-hard on chordal graphs, in fact on split graphs, parameterized by k.
We complement this hardness result by designing a polynomial-time algorithm for interval graphs.

2012 ACM Subject Classification Theory of computation Ñ Fixed parameter tractability

Keywords and phrases Perfectly Matched Sets, Parameterized Complexity, Apex-minor-free graphs,
d-degenerate graphs, Planar graphs, Interval Graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.2

Funding Akanksha Agrawal: Supported by New Faculty Initiation Grant no. NFIG008972.

1 Introduction

Matching is one of the very classical polynomial-time solvable problems in Computer
Science with varied applications. Finding a matching with additional structure, such as an
induced matching has been well studied both in classical complexity as well as parameterized
complexity, see, for instance, [4, 9, 18, 20, 24, 24, 27, 28] (list is only illustrative, and not
comprehensive). In this article, we are interested in a matching that is slightly weaker than
the structure of an induced matching but still more structured than a matching.

For a graph G, a pair of vertex disjoint subsets, pA, Bq is a pair of perfectly matched sets
in G if each vertex in A has exactly one neighbor in B and each vertex in B has exactly
one neighbor in A; the size of the pair is |A| (“ |B|). Note that there can be edges between
vertices of A (resp. B), which is forbidden in the case of induced matching. We study the
problem called Perfectly Matched Sets, which is defined below.

Perfectly Matched Sets Parameter: k

Input: An undirected graph G and an integer k.
Question: Does there exist a pair of perfectly matched sets of size at least k in G?

© Akanksha Agrawal, Sutanay Bhattacharjee, Satyabrata Jana, and Abhishek Sahu;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 2; pp. 2:1–2:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akanksha@cse.iitm.ac.in
https://orcid.org/0000-0002-0656-7572
mailto:cs21d005@cse.iitm.ac.in
mailto:satyamtma@gmail.com
https://orcid.org/0000-0002-7046-0091
mailto:asahuiitkgp@gmail.com
https://doi.org/10.4230/LIPIcs.IPEC.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Parameterized Complexity of Perfectly Matched Sets

This problem was first introduced in [27] where it was named as Maximum TR-matching
problem (Transmitter- Receiver problem). The paper showed that this problem is NP-
complete when restricted to graphs having degree 3. Evan, Goldreich, and Tong in [13]
showed that TR-matching is NP-complete on bipartite graphs. This problem was revisited
by Aravind and Saxena in 2021, [1] where they called the problem as Perfectly Matched
Sets. They designed FPT algorithms for this problem parameterized by the structural
parameters such as distance to cluster, distance to co-cluster, and treewidth. They also prove
that the problem is NP-hard on planar graphs and W[1]-hard parameterized by the solution
size k, when restricted to bipartite graphs and split graphs.

The Perfectly Matched Sets problem is also closely related to the problem Perfect
Matching Cut where we want edge cuts of size k, such that the vertices participating
in these edges induce a matching and a perfect matching, respectively. We remark that in
Perfectly Matched Sets, we do not insist that the edges between the pair of perfectly
matched sets pA, Bq is a cut in the graph. The Matching Cut and Perfect Matching
Cut problems have been investigated in the literature even when restricted to well-studied
graph classes, see, for instance, [2, 6, 7, 21, 22, 25].

Our Results. In this paper, we investigate the parameterized complexity of the Perfectly
Matched Sets problem when the input graph is from a structured graph family, for several
choices of well-studied graph families. The starting point of our work is the result by Aravind
and Saxena [1]. The paper showed that the problem is W[1]-hard even on split graphs, which
is an important subclass of chordal graphs. Inspired by this negative result, we turn to
interval graphs, which is arguably the most well-studied subclass of chordal graphs. We
obtain the following result by using a dynamic programming based algorithm.

▶ Theorem 1. Perfectly Matched Sets on interval graphs admits an algorithm running
in time Opn5q.

Aravind and Saxena [1] showed that Perfectly Matched Sets is NP-complete even
when the input graph is planar. Inspired by this we design an FPTalgorithm for a strictly
more general class of apex-minor-free graphs. A graph H is an apex graph if there is v P V pHq,
such that H ´ tvu is planar. Consider any finite set H of graphs that contains at least one
apex graph, and let FH be the family of graphs that do not contain any graph from H as a
minor. The H-Minor Free PMS problem is the Perfectly Matched Sets problem with
an additional guarantee that the input graph belongs to FH. Note that for H “ tK5, K3,3u,
FH is the family of planar graphs. We obtain the following result:

▶ Theorem 2. For any (fixed) finite set H of graphs that contains at least one apex graph,
H-Minor Free PMS has an FPT algorithm running in time 2Op

?
kq ¨ nOp1q.

We remark that the same approach used in obtaining the above result can be used to
obtain an FPT algorithm on bounded genus graphs, due to bidimensionality [10]. We remark
that having a pair of perfectly matched sets of size at least k is expressible in MSO (actually,
even in FO). So, there is an FPT algorithm on the much more general nowhere dense classes
(admittedly with a worse running time)[16].

For b P N, a graph is Kb,b-free if it does not contain a bi-clique with b vertices on each
side as a subgraph. We obtain the following result by using an approach similar to random
separation [3], in combination with a result of Dabrowski et al. [9].

▶ Theorem 3. For any fixed b P N, Perfectly Matched Sets on Kb,b-free graphs admits
an FPT algorithm, when parameterized by k.

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:3

Kanj et al. [18] and Erman et al. [20] independently designed Opkcq kernels for the
Induced Matching problem for graphs of arboricity bounded by c . The authors [18]
also showed that any twinless graph of average degree d and bounded chromatic number
contains an induced matching of size Ωpn1{dq. The core of their proof is the system of
strong representatives of a set family. This combinatorial tool also forms the backbone of our
following result.

▶ Theorem 4. Perfectly Matched Sets admits a kOpdq-sized kernel on d-degenerate
graphs.

As planar graphs are 5-degenerate, the theorem above directly gives us a polynomial
kernel for Perfectly Matched Sets on these graphs. Following an approach by Kanj et
al. [18] for obtaining a linear kernel for Induced Matching on planar graphs, we obtain
a linear kernel (improving upon the already obtained polynomial kernel) for Perfectly
Matched Sets on this graph class.

2 Preliminaries

Sets and graph notations. We use N “ t1, 2, . . .u to denote the set of natural numbers.
We use rks as a shorthand for t1, 2, . . . , ku and use rks0 for rks Y t0u, where k P N. In this
article, we only consider simple undirected graphs. Given a graph G, we denote the vertex
set and edge set of G by V pGq and EpGq respectively. Unless specified, n and m denote the
number of vertices and edges of the graph G. Two vertices u, v are said to be adjacent if
there is an edge (denoted by tu, vu) between u and v in G. For X Ď V pGq, GrXs denotes the
induced subgraph of G with vertex set X and edge set ttu, vu | u, v P X and tu, vu P EpGqu,
G ´ X denotes the subgraph GrV pGqzXs. For an edge set E1 Ď E, V pE1q denotes the set of
all the vertices of G having at least one edge in E1 incident on it. EpA, Bq denotes the set
of edges with one endpoint in A and the other in B. The open neighborhood of a vertex
v, denoted by NGpvq, is the set of vertices adjacent to v. The closed neighborhood of v is
defined as NGrvs “ NGpvq Y tvu. The subscript in the notation for neighborhood is omitted
if the graph under consideration is clear. For X Ď V pGq, N rXs denotes the set of vertices
Ť

vPX N rvs. Two distinct vertices u, v is said to be a pair of false twins if NGpuq “ NGpvq

and true twins if NGrus “ NGrvs. A clique in graph G is a set of vertices such that there
is an edge between every pair of vertices in the set. An independent set in the graph G is
a set of vertices such that there is no edge between any pair of vertices in the set. Kn,m

is the complete bipartite graph, also known as a biclique, with partitions of size n and m.
A k-biclique is a 2k-vertex complete bipartite graph. A subset D Ď V pGq is said to be a
dominating set of G if N rDs “ V pGq. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. The cardinality of the smallest
size dominating set is called as domination number of G. D is said to be a 2-dominating set
if N rN rDss “ V pGq. Gze denotes the graph obtained by contracting the edge e in G. The
contraction of an edge tu, vu in the graph involves the deletion of vertices u and v from G

and the addition of a new vertex w, which is adjacent to all the vertices of Npuq YNpvq. For
two graphs G1 and G2, we denote G1 Ď G2 if G1 is an induced subgraph of G2.

Graph classes. A graph is planar if it can be drawn in the plane without edge intersections
except at the endpoint). A graph G is a d-degenerate graph if every induced subgraph of G

contains a vertex of degree at most d. A Kb,b-free graph is a graph that does not contain
biclique Kb,b as a subgraph (not necessarily induced). An apex graph is a graph that can

IPEC 2022

2:4 Parameterized Complexity of Perfectly Matched Sets

be made planar by removing one of its vertices. Apex-minor-free graphs are basically those
graphs that exclude a fixed apex graph as a minor. More precisely, C is apex-minor-free
graph class if there exists some apex graph H such that no graph from C admits H as a
minor. An interval graph is an undirected graph formed from a set of intervals on the real
line, with a vertex for each interval and an edge between vertices whose intervals intersect. It
is the intersection graph of the intervals. [5]. For standard graph definition and notations, we
refer to the graph theory book by R. Diestel [11]. For parameterized complexity terminology,
we refer to the parameterized algorithms book by Cygan et al. [8].

Treewidth. A tree decomposition of a graph G “ pV, Eq is a pair pT, Xq where T is a tree
on vertex set V pT q. The vertices of V pT q are called nodes. Also, X “ ptXi| i P V pT quq is a
collection of subsets of V such that -
1. Every vertex of G is contained in at least one bag. YiPV pT qXi “ V ,
2. For every edge tu, vu P E, there exists a node i P V pT q such that bag Xi contains both u

and v.
3. For each u P V , the set of nodes whose bags contain u, Tu “ ti P V pT q : i P Xiu forms a

connected subtree of T .
The width of a tree decomposition pT, ptXi| i P V pT quq is equal to the maximum size of its
bag minus 1, maxi PV pT qt|Xi|´ 1u. The treewidth of a graph G, twpGq is the minimum width
of a tree decomposition over all tree decompositions of G.

Perfectly matched sets. A matching in a graph G is a set of edges M such that no two
edges in M share the same endpoint. A matching M is maximal if G´ V pMq is edge less. A
matching M is said to be an induced matching if the subgraph induced by the vertices in M

contains only the edges of M . If M is maximal then V pMq is a vertex cover of G, and it
is easy to verify that twpGq ď |V pMq|. For a pair pA, Bq of disjoint subsets of vertices of
V pGq, we say pA, Bq is a pair of perfectly matched sets if every vertex in A (resp. B) has
exactly one neighbor in B (resp. A). The size of the pair is |A| “ |B|.

Parameterized problems and kernels. A parameterized problem Π is a subset of Γ˚ ˆ N
for some finite alphabet Γ. An instance of a parameterized problem consists of pX, kq, where
k is called the parameter. The notion of kernelization is formally defined as follows. A
kernelization algorithm, or in short, a kernelization, for a parameterized problem Π Ď Γ˚ ˆN
is an algorithm that, given pX, kq P Γ˚ ˆ N, outputs in time polynomial in |X| ` k a pair
pX 1, k1q P Γ˚ ˆ N such that (a) pX, kq P Π if and only if pX 1, k1q P Π and (b) |x1|, |k| ď gpkq,
where g is some computable function depending only on k. The output of kernelization
pX 1, k1q is referred to as the kernel and the function g is referred to as the size of the kernel.
If gpkq P kOp1q , then we say that Π admits a polynomial kernel. We refer to the monographs
[12, 14, 26] for a detailed study of the area of kernelization.

3 Polynomial-time Algorithm for Interval Graphs

Recall that Perfectly Matched Sets is W[1]-hard when parameterized by the solution
size k even when restricted to split graphs (and thus, chordal graphs). Interval graphs
belong to the class of chordal graphs. In this section, we present a polynomial-time dynamic
programming algorithm that computes a maximum-sized pair of perfectly matched sets for
any given interval graph.

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:5

Let G be an interval graph with vertex set V pGq “ tv1, v2, . . . , vnu. Since G is an interval
graph, there exists a corresponding geometric intersection representation of G, where each
vertex vi P V pGq is associated with an interval Ii “ rℓpIiq, rpIiqs in the real line, where
ℓpIiq and rpIiq denote left and right endpoints, respectively in Ii. Two vertices vi and vj

are adjacent in G if and only if their corresponding intervals Ii and Ij intersect with each
other. We can also assume that along with the graph, we are also given the corresponding
underlying intervals on the real line, as there are well-known linear-time algorithms that
compute such a representation [19]. We use I to denote the set tIi : vi P V u of intervals
and P to denote the set of all endpoints of these intervals, i.e., P “ YIPItℓpIq, rpIqu. In the
remaining section, we will use vi and Ii interchangeably. Note that we can assume that the
endpoints of all the intervals in the interval representation are distinct ´ otherwise, we can
slightly perturb the endpoints of the intervals to obtain a new interval representation of the
graph in which this is true.

▶ Proposition 5. Let G be a connected interval graph. There exists an ordering, ă, of V pGq

such that for u, v, w P V pGq if u ă v ă w and tu, wu P EpGq then tv, wu P EpGq.

We remark that such an ordering in Proposition 5 can be obtained based on the right
endpoints of intervals, more specifically the set trpIiqu and the ordering is as follows: for any
two vertices vi and vj , we have vi ă vj if and only if rpIiq ă rpIjq. We call such an ordering,
the right-end ordering of V pGq.

▶ Lemma 6. Let G be an interval graph with a right-end ordering, ă, of V pGq. Consider
any distinct pair of edges tu, vu and tu1, v1u in a pair of perfectly matched sets pA, Bq where
u ă v and u1 ă v1. If u ă u1, then v ă u1.

Proof. Towards a contradiction suppose there are edges tu, vu, tu1, v1u in the pair of perfectly
matched sets pA, Bq, where u ă v, u1 ă v1, u ă u1 and u1 ă v. Then, either u ă u1 ă v1 ă v,
or u ă u1 ă v ă v1. In either of these cases, by Proposition 5, v is adjacent to both u1 and v1

which is a contradiction to the fact that pA, Bq is perfectly matched sets in G. ◀

Lemma 6 directly implies the following remark.
▶ Remark 7. Let ttui, viu : 1 ď i ď ku be a set of k edges in a pair pA, Bq of perfectly matched
sets in G with u1 ă u2 ă . . . ă uk and ui ă vi, for each i P rks. Then, u1 ă v1 ă u2 ă v2 ă

. . . ă uk ă vk.

Algorithm and its Correctness. We define a table for our dynamic-programming algorithm.
Let v1 ă v2 ă . . . ă vn be the right-end ordering of the vertex set of G. For every tuple
pvi, vj , tq, where tvi, vju P EpGq, i, j P rns, i ă j and t P rtn{2us, we define two Boolean values:
(i) PM

“

pvi, Aq, pvj , Bq; t
‰

and (ii) PM
“

pvi, Bq, pvj , Aq; t
‰

.1 The entry PM
“

pvi, Aq, pvj , Bq; t
‰

is
true if there exists a pair pA, Bq of perfectly matched sets of size t such that vi P A,
vj P B and for all the vertices v P pA Y Bqztvi, vju, we have v ă vi. Similarly the entry
PM

“

pvi, Bq, pvj , Aq; t
‰

is true if there exists a pair pA, Bq of perfectly matched sets of size t

such that vi P B, vj P A and for all the vertices u P pA Y Bqztvi, vju, we have u ă vi.
In the base case, both PM

“

pvi, Aq, pvj , Bq; 1
‰

and PM
“

pvi, Bq, pvj , Aq; 1
‰

are true for every
possible pair vi and vj (note because of the way the entry is defined, tvi, vju must be an
edge in G). We will use the convention that empty OR is 0. In the lemma below, we give a
recursive formula for computing the values PM

“

pvi, Aq, pvj , Bq; t
‰

for t ą 1.

1 A and B in these entries are just symbols, added for extra clarity.

IPEC 2022

2:6 Parameterized Complexity of Perfectly Matched Sets

▶ Lemma 8. For every integer t P rtn{2uszt1u, and every pair of adjacent vertices vi, vj in
G where i ă j, the following recurrence holds:

PM
“

pvi, Aq, pvj , Bq; t
‰

“
Ž

tx,yuPEpGq
xăyăvi

´´

PM
“

px, Aq, py, Bq; t ´ 1
‰

^ rtx, vju R EpGqs ^ rty, viu R

EpGqs

¯

Ž

´

PM
“

px, Bq, py, Aq; t ´ 1
‰

^ rtx, viu R EpGqs ^ rty, vju R EpGqs

¯¯

Proof. In the forward direction let us assume that PM
“

pvi, Aq, pvj , Bq; t
‰

“ true. So according
to the definition of our dynamic-programming table, tvi, vju P EpGq and there exists a pair
pA, Bq of perfectly matched sets of size t such that vi P A, vj P B and for all the vertices
v P pA Y Bqztvi, vju, we have v ă vi. Now consider the pair pA1 “ Aztviu, B1 “ Bztvjuq.
It is easy to see that this pair is a perfectly matched sets of size t ´ 1 and all the vertices
v in the pair having the property that v ă vi. Consider the last vertex in the right-end
ordering of V pGq which occures in the vertex set A1 Y B1. Let this vertex be y and x be its
(only) neighbour in B1. Note that x ă y and for any vertex v P pA1 Y B1qztx, yu, it must
hold that v ă x (see Remark 7). If y P B1, then clearly, tx, vju R EpGq, ty, viu R EpGq, and
PM

“

px, Aq, py, Bq; pt´1q
‰

“ true. Otherwise, y P A1, and then tx, viu R EpGq, ty, vju R EpGq,
and PM

“

px, Bq, py, Aq; pt ´ 1q
‰

“ true.
In the reverse direction, assume that there exists a pair of vertices x ă y, tx, yu P EpGq

such that PM
“

px, Aq, py, Bq; pt ´ 1q
‰

“ true and tx, vju R EpGq, ty, viu R EpGq. (The case
when PM

“

px, Bq, py, Aq; t ´ 1
‰

“ true and tx, viu R EpGq, ty, vju R EpGq can be argued
symmetrically.) The above means that there is a pair of perfectly matched sets pA1, B1q with
t´1 edges such that: tx, yu P EpGq, x P A1, y P B1, and for each v P pA1YB1qztx, yu, we have
v ă x. Let A “ A1Ytviu and B “ B1Ytvju. Note that we have x ă y ă vi ă vj , and thus, for
each v P A1YB1, we have v ă vi ă vj . For a contradiction suppose that we have v P B1, such
that tv, viu P EpGq. Note that v ă x ă y ă vi, as ty, vju R EpGq (see Remark 7). But then
from Lemma 6, we can obtain that tv, xu P EpGq, which contradicts that pA1, B1q is a pair of
perfectly matched sets. Similarly, towards a contradiction suppose that we have v P A1, such
that tv, vju P EpGq. Then, v ă x ă y ă vj , and thus, ty, vu P EpGq, which is a contradiction.
From the above discussions, we can conclude that PM

“

pvi, Aq, pvj , Bq; t
‰

“ true. ◀

Similarly, we have a recursive formula for computing the values PM
“

pvi, Bq, pvj , Aq; t
‰

for
t ą 1. The correctness proof is similar to that of Lemma 8.

▶ Lemma 9. For every integer t P rtn{2uszt1u, and every pair of adjacent vertices vi, vj in
G where i ă j, the following recurrence holds:

PM
“

pvi, Bq, pvj , Aq; t
‰

“
Ž

tx,yuPEpGq
xăyăvi

´´

PM
“

px, Aq, py, Bq; t ´ 1
‰

^ rty, vju R EpGqs ^ rtx, viu R

EpGqs

¯

Ž

´

PM
“

px, Bq, py, Aq; t ´ 1
‰

^ rtx, vju R EpGqs ^ rty, viu R EpGqs

¯¯

We can compute all the entries of our dynamic programming table using the recurrence
relations given by Lemma 8 and Lemma 9.

Time Complexity. For a pair of adjacent vertices vi, vj , where i ă j, the time required to
compute PM

“

pvi, Aq, pvj , Bq; t
‰

and PM
“

pvi, Bq, pvj , Aq; t
‰

, once we have computed the entries
till the values at most t ´ 1, is bounded by Opn2q. As t ă n, the number of entries we have
to compute is bounded by Opn3q, thus bounding the total running time of our algorithm by
Opn5q. This proves Theorem 1.

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:7

4 FPT Algorithm for Apex-Minor-Free Graphs

Consider any (fixed) finite set H of graphs that contains at least one apex graph; we will
work with this fixed family throughout this section. Recall that FH is the family of graphs
that do not contain any graph from H as a minor, and the H-Minor Free PMS problem is
the same as the Perfectly Matched Sets problem with an additional guarantee that the
input graph belongs to FH. In this section, we prove Theorem 2 by designing a simple FPT
algorithm with the desired running time. Let pG, kq be an instance of H-Minor Free PMS.
Our algorithm will begin by greedily trying to construct a solution, if we succeed then the
algorithm halts. Otherwise, we will be able to bound the size of a 2-dominating in G by Opkq.
This together with a result of Fomin [15]) will imply that the treewidth of G is bounded by
Op

?
kq. Now we can use the algorithm of Aravind and Saxena [1] for Perfectly Matched

Sets parameterized by treewidth to obtain the proof of the theorem. We begin by stating
the two useful results.

▶ Proposition 10 (Lemma 2, [15]). For an H-minor free graph G, if ℓ is the size of a
minimum 2-dominating set of G, then the treewidth of G is bounded by cH ¨

?
ℓ, where cH is

a constant depending on H.

▶ Proposition 11 (Theorem 7, [1]). There exists an algorithm that calculate maximum perfectly
matched sets for an n vertex graph with treewidth at most w in time Op12w ¨ polypnqq.

The next lemma gives the procedure that either resolves the instance or obtains a small
2-dominating set in G.

▶ Lemma 12. There is a polynomial time algorithm that either correctly concludes that
pG, kq is a yes-instance of H-Minor Free PMS, or outputs a 2-dominating set Q of G

where |Q| ď 2 ¨ pk ´ 1q.

Proof. Let pG, kq be an instance of the problem. If G has an isolated vertex, then such a
vertex is not part of any perfectly matched set, and thus we remove it. We will next create
a sequence of perfectly matched sets S0 Ă S1 Ă ¨ ¨ ¨ Ă Sq and graphs G0 Ě G1 Ě ¨ ¨ ¨ Ě Gq,
which, intuitively speaking, will be constructed by greedily adding an edge (one at a time)
to form a perfectly matched set.

Initialize S0 “ H and G0 “ G. Iteratively do the following: if there is an edge ei “

tui, viu P EpGiq, then set Si`1 “ Si Y teu and Gi`1 “ Gi ´ pNGrus Y NGrvsq. The q be an
integer where the above procedure stops, which is the case when Gq has no edges. Notice that
for any i P rqs0, each S P tSjzSi | j P ti ` 1, i ` 2, ¨ ¨ ¨ , quu is a pair of perfectly matched sets
in Gi. The above in particular implies that Sq is a pair of perfectly matched sets in G “ G0.
Also, for each i P rqs0, |Si| “ i. If q ě k, then we have obtained a pair of perfectly matched
sets in G of size at least k, and thus we can conclude that the instance is a yes-instance.
Otherwise q ď k ´ 1, and we let Q “ tui, vi | i P rqsu. Consider any vertex u P V pGqzNGrQs.
Since G has no isolated vertices, u must have a neighbor v in G. Note that v R Q, as
u P V pGqzNGrQs. Also, if v R NGpQq, then tu, vu is an edge in Gq, which contradicts that
Gq has no edges. The above discussions imply that Q is a 2-dominating set in G of size at
most |Q| ď 2 ¨ pk ´ 1q. ◀

We are now ready to prove Theorem 2.

Proof of Theorem 2. Consider an instance pG, kq of H-Minor Free PMS. If Lemma 12
returns that the instance is a yes-instance, then we are done. Otherwise, it returns a 2-
dominating set in G of size at most 2 ¨ pk ´ 1q. From Proposition 10, the treewidth of G is

IPEC 2022

2:8 Parameterized Complexity of Perfectly Matched Sets

bounded by cH ¨
a

2 ¨ pk ´ 1q, where cH is a constant depending on the family H. Now using
Lemma 7.4 of [8], we compute a nice tree decomposition of width at most cH ¨

a

2 ¨ pk ´ 1q
in time bounded by Opnkq . Now we can use Proposition 11 to resolve the instance. ◀

5 FPT Algorithm for Kb,b-free Graphs

The goal of this section is to prove Theorem 3. Consider any fixed number b P N. Recall that
a graph is Kb,b-free if it does not contain a subgraph isomorphic to Kb,b. We obtain an FPT
algorithm for Perfectly Matched Sets on Kb,b-free graphs by using an approach similar
to random separation [3], in combination with the below-stated result of Dabrowski et al. [9].

▶ Proposition 13 (Lemma 2, [9]). For any natural numbers s, t and p, there is a number
N 1ps, t, pq such that every graph with a matching of size at least N 1ps, t, pq contains either
a clique Ks, an induced bi-clique Kt,t or an induced matching of size p. Here, N 1ps, t, pq “

R ps, R ps, N pt, pqqq where R ps, tq is the non-symmetric Ramsey number.

Let pG, kq be an instance of Perfectly Matched Sets, where G is a Kb,b-free graph
with n vertices. We color the vertices of V pGq independently and randomly using two colors,
red and blue (with equal probability). This forms a random partition VR Z VB of the vertices
of G, where VR and VB are the set of vertices colored with red and blue color, respectively.
We call these two partitions as color classes. Next, we obtain the graph G1 from G by
removing all the edges between the vertices of the same color class. Thus, the edges in G1

have endpoints of differing colors, and thus it is bipartite. We compute (in polynomial time)
a maximum sized matching M in G1 [23]. We will next argue that either M has at most
N 1p3, b, kq edges, or we can conclude that pG, kq is a yes-instance.

Case 1. Firstly suppose that M has at least N 1p3, b, kq edges. Recall that G is bipartite, so
it does not have any K3. Moreover, as G is Kb,b-free, we can obtain that G1 has no induced
Kb,b. As the size of a maximum matching in G1 is at least N 1p3, b, kq, using Proposition 13
we can obtain that G1 has an induced matching MI of size at least k. Now using the next
observation we can conclude that pG, kq is a yes-instance of the problem.

▶ Observation 14. pVR X V pMIq, VB X V pMIqq is a pair of perfectly matched sets in G of
size at least k.

Proof. Consider x P VR X V pMIq, where x has a neighbor y P VB X V pMIq and tx, yu is an
edge in MI . Let z ‰ y be another neighbor of x in VB X V pMIq. Then since x is colored
with red and z is colored with blue, the edge px, zq P EpG1q. But this is a contradiction to
the fact that MI is an induced matching. From the above discussions, we can obtain that
each vertex in VR X V pMIq has exactly one neighbor in VB X V pMIq and vice-versa. ◀

Case 2. Now suppose that in G1 the matching M has less than N 1p3, b, kq edges, and thus,
twpG1q ď 2 ¨N 1p3, b, kq. Now in G1, we look for a pair of perfectly matched sets pX, Y q where
X Ď VR and Y Ď VB. Let us denote this version of Perfectly Matched Sets as the
colored-Perfectly Matched Sets problem. Aravind et al. [1] designed an FPT algorithm
for Perfectly Matched Sets parameterized by the treewidth of the given graph. They
use a nice tree decomposition of the graph, where in each bag βptq, X X βptq and Y X βptq

play a crucial role in the construction of their algorithm. To adapt their algorithm for
colored-Perfectly Matched Sets, we only need to enforce that X Xβptq and Y Xβptq are
selected from VR and VB , respectively. Precisely in Section 5.3 of their draft [1], AXβptq “ At

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:9

and B X βptq “ Bt can be replaced by A X pβptq X VRq “ At and B X pβptq X VBq “ Bt),
respectively, to obtain an algorithm for the colored version. Notice that they denote the
desired perfectly matched sets by pA, Bq while we do it by pX, Y q. Hence we have an
FPT algorithm running in time 2OptwpG1

qq ¨ nOp1q to obtain a pair of perfectly matched sets
pX, Y q of G1 of size k where X Ď VR, Y Ď VB. We remark that the algorithm given by [1]
can actually compute such a set by the standard backtracking technique, and thus even for
our colored case, we can compute a pair of perfectly matched sets in G1. Now we claim the
following.

▶ Observation 15. pX, Y q is also a pair of perfectly matched sets of G.

Proof. Suppose pX, Y q is not a pair of perfectly matched sets of G. Notice that EpG1q Ď EpGq

and hence there is a vertex v in X with more than one neighbor in Y or there is a vertex u

in Y with more than one neighbor in X. Without loss of generality let such a vertex v be in
X. Let two of its neighbors in Y be y1 and y2. But the edges tv, y1u and tv, y2u are also in
G1 as they have endpoints with differing colors. But this contradicts the fact that pX, Y q is
a pair of perfectly matched sets of G1. ◀

In the construction of G1 from G, we delete edges with endpoints in the same color classes.
Hence a pair of perfectly matched sets of G may not remain a pair of perfectly matched sets
of G1. But in the claim below, we show that for a fixed size of perfectly matched sets, the
chances of such an event happening stays low.

▶ Observation 16. Any k-sized perfectly matched sets pX, Y q of G is also a perfectly matched
sets of G1 with probability at least 2´2k.

Proof. The probability that all vertices of X are colored red and all vertices of Y are colored
blue is at least 2´2k. Thus we can obtain that with probability at least 2´2k pX, Y q is also a
perfectly matched sets of G1. ◀

The proof of the following lemma follows from Observations 14, 15 and 16 with the
standard trick of making independent runs of the discussed algorithm.

▶ Lemma 17. There exists a randomized FPT algorithm running in time 2OpN 1
p3,b,kq`kq ¨nOp1q

that, given a Perfectly Matched Sets instance pG, kq on Kb,b-free graphs, either reports
a failure or finds a pair of perfectly matched sets in G of size at least k. Moreover, if the
algorithm is given a yes-instance, it returns a solution with constant probability.

We now explain the derandomization procedure for the above algorithm. It involves
deterministically constructing a family F of coloring functions f : rns Ñ r2s rather than
selecting a random coloring χ : rns Ñ r2s such that it is assured that one of the functions from
F colors one set from a pair of perfectly matched sets of size k (when pG, kq is a yes-instance)
with color 1 and the other set with color 2. To this end, we will use the following.

▶ Definition 18 (Definition 5.19, [8]). An pn, kq-universal set is a family U of subsets of rns
such that for each S Ď rns of size k, the family tA X S : A P Uu contains all 2k subsets of S.

▶ Proposition 19 (Theorem 5.20, [8]). For any n, k ě 1, we can construct an pn, kq-universal
set of size 2kkOplog kq log n in time 2kkOplog kqn log n.

We assume that V pGq “ rns (otherwise we can relabel the vertices). We first construct an
pn, 2kq-universal set, U , using the above proposition. Now we construct a family of function
F from rns to t1, 2u as follows, where F is initialized to H. For each U P U , add the function

IPEC 2022

2:10 Parameterized Complexity of Perfectly Matched Sets

fU : rns Ñ r2s, where f´1p1q “ U . Note that if G has a pair of perfectly matched sets pA, Bq

of size k, then there is U P U , such that pA Y Bq X U “ A. Thus at least one function in F
is the correct coloring for us. We can iterate over each of the colorings given by F , and this
leads us to the following result.

▶ Theorem 20. Perfectly Matched Sets on Kb,b-free graphs admits a deterministic
FPT algorithm running in time kOplog kq ¨ 2OpN 1

p3,b,kq`kq ¨ nOp1q.

6 Kernelization for Perfectly Matched Sets on d-degenerate
graphs

In this section, we design a polynomial kernel for d-degenerate graphs, and thus prove The-
orem 4. We design our kernel using the strong systems of distinct representatives [17] (to
be defined shortly). Recall that a graph G is d-degenerate if every induced subgraph of it
contains a vertex of degree at most d. We start by stating the definition of strong systems of
distinct representatives and a useful result regarding it.

▶ Definition 21 (Strong systems of distinct representatives, [18]). A k-tuple px1, x2, . . . , xkq

is a system of distinct representatives for sets S1, S2, . . . , Sk, if for each i P rks, xi P Si.
Moreover, it is strong if additionally, for each i P rks and j P rksztiu, xi R Sj .

▶ Proposition 22 (Theorem 8.12 [17]). Consider any family F with more than
`

r`k
k

˘

distinct
sets of sizes at most r. Then, at least k`2 sets in this family have a strong system of distinct
representatives.

The following property of a d-degenerate graph follows directly from the definition.

▶ Proposition 23. A d-degenerate graph on n vertices has at most dn edges.

Next, we give a lower bound on the number of low-degree vertices in a d-degenerate
graph.

▶ Lemma 24. Let G be d-degenerate graph with n ě 6 vertices. Then G has strictly more
than 5n{6 vertices of degree at most 12d.

Proof. Let G be d-degenerate graph with n vertices. By Proposition 23, the number of
edges in G is at most dn. So the sum of the degrees of the vertices in G is bounded by 2dn.
Assume that, there are at most 5n{6 vertices of degree at most 12d in G. Then we have a
set U Ď V pGq of at least n{6 ě 1 vertices of degree strictly more than 12d. Now the sum
of the degrees of the vertices in U is strictly more than pn{6q ¨ 12d “ 2dn, a contradiction.
Hence there are strictly more than 5n{6 vertices of degree at most 12d in G. ◀

▶ Observation 25. In a pair of perfectly matched sets pA, Bq of a graph G, there are at most
two non-adjacent vertices x, y P A Y B such that Npxq “ Npyq.

Proof. Let x, y, z P AYB be three pairwise non-adjacent vertices such that Npxq “ Npyq “

Npzq. At least two of these vertices are either in A or B. Without loss of generality let
x, y P A. But then x and y, both have the exactly same neighbors in B, which contradicts
that A Y B is a pair of perfectly matched sets of G. ◀

With Observation 25, we obtain the following reduction rule.

▶ Reduction Rule 1. Let u, v, w be three distinct vertices in V pGq such that Npuq “ Npvq “

Npwq, then reduce pG, kq to pG ´ w, kq.

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:11

▶ Lemma 26. Reduction Rule 1 is safe.

Proof. Consider an application of Reduction Rule 1 in which a vertex, say w P V pGq was
deleted because there are two distinct vertices u and v other than w such that Npuq “

Npvq “ Npwq. We will prove that pG, kq is a yes-instance of Perfectly Matched Sets if
and only if pG ´ w, kq is a yes-instance of Perfectly Matched Sets.

If pG ´ w, kq is a yes-instance, any pair of perfectly matched sets in G ´ w is also a
pair of perfectly matched sets in G, thus pG, kq must also be a yes-instance. For the other
direction suppose that (G, k) is a yes-instance of the problem, and we have two disjoint sets
A, B Ď V pGq such that every vertex in A has exactly one neighbor in B and vice-versa. If
w R A Y B, then pA, Bq is a pair of perfectly matched sets in G ´ w of size k, and we are
done. Else, exactly one of A and B must contain w. Without loss of generality we assume
that w P A. From Observation 25, we know that |pA Y Bq X tu, v, wu| ď 2. Now neither v

nor u belongs to A. If B X tu, vu “ H, then pAztwu Y tuu, Bq is a pair of perfectly matched
sets in G ´ w of size k. Else, exactly one of v or u belongs to B, say u P B (the other case is
symmetric). Then, pAztwuYtvu, Bq is a pair of perfectly matched sets in G´w of size k. ◀

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let pG, kq be an instance of Perfectly Matched Sets where G

is a d-degenerate graph. If Reduction Rule 1 on pG, kq is applicable, then we apply it
in polynomial time and reduced the number of vertices. When the reduction rule is no
longer applicable, we do the following. Let X be the set of vertices of with degree at
most 12d, and let t “ |X|. Consider the family F “ tNpuq | u P Xu (with repetitions
removed). By the non-applicability of Reduction Rule 1 and Lemma 24, we can obtain that
|F | ě t{2 ě p5n{6q{2 “ 5n{12. Also note that each set in F has size at most 12d.

If |F | ď
`12d`k

k

˘

, then 5n{12 ă F ď
`12d`k

k

˘

. Therefore n, i.e., the number of vertices in
G is bounded by kOpdq. Otherwise, |F | ą

`12d`k
k

˘

, and we argue that pG, kq is a yes-instance.
From Proposition 22, at least k ` 2 of these sets form F have a strong system of distinct rep-
resentatives, say these sets are Npv1q, Npv2q, ¨ ¨ ¨ , Npvk`2q and pu1, u2, ¨ ¨ ¨ , uk`2q is its strong
system of distinct representatives. Let A “ tv1, v2, ¨ ¨ ¨ , vk`2u and B “ tu1, u2, ¨ ¨ ¨ , vu`2u.
Note that for each i P rk ` 2s, we have tvi, uiu P EpGq. For any i P rk ` 2s and j P rksztiu,
tvi, uju R EpGq, as uj R Npviq by the definition of a strong system of distinct representatives.
Thus, pA, Bq is a pair of perfectly matched sets of size at least pk ` 2q in G. ◀

As planar graphs are 5-degenerate, the above result directly gives us a polynomial kernel
(which is not linear!) for planar graphs. We next obtain a linear kernel for planar graphs.

Linear Kernel on Planar Graphs. We describe a procedure to obtain a linear-sized vertex
kernel for planar graphs. To this end, we state the following useful result.

▶ Proposition 27 (Theorem 4.11, [18]). A twinless planar graph with n ě 2 vertices contains
an induced matching of size at least n{40.

From Proposition 27, we have the following observation.

▶ Observation 28. Let G be a planar graph on n ě 4 vertices such that there are no three
vertices that are pairwise false twins. Then G contains a pair of perfectly matched sets of
size at least n{80.

IPEC 2022

2:12 Parameterized Complexity of Perfectly Matched Sets

Proof. From G, we can construct a twinless planar graph G1 by keeping exactly one of the
false twins i.e. for any two false twins u and v, we delete exactly one of them. Hence G1 is a
twinless planar graph with size at least n{2 ě 2 vertices. From Proposition 27, G1 has an
induced matching of size at least n{80, which is also an induced matching in G. But such an
induced matching gives us a pair of perfectly matched sets of size n{80. ◀

▶ Theorem 29. Perfectly Matched Sets on planar graphs admits an Opkq-sized kernel.

Proof. Consider an instance pG, kq of the problem, where G is a planar graph with n vertices.
Apply Reduction Rule 1 as long as it is applicable. If |V pGq| ă 2, then we are done.
Otherwise, from Observation 28, G has a pair of perfectly matched sets with size at least
n{80. If k ď n{80, then the given instance is a yes-instance, and otherwise |V pGq| ă 80k. ◀

References
1 N. R. Aravind and Roopam Saxena. Perfectly Matched Sets in Graphs: Hardness, Kernelization

Lower Bound, and FPT and Exact Algorithms. CoRR, abs/2107.08584, 2021. arXiv:2107.
08584.

2 Paul S. Bonsma. The complexity of the matching-cut problem for planar graphs and other
graph classes. J. Graph Theory, 62(2):109–126, 2009.

3 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random Separation: A New Method for
Solving Fixed-Cardinality Optimization Problems. In Hans L. Bodlaender and Michael A.
Langston, editors, Parameterized and Exact Computation, Second International Workshop,
IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169 of Lecture
Notes in Computer Science, pages 239–250. Springer, 2006.

4 Kathie Cameron. Induced matchings in intersection graphs. Discret. Math., 278(1-3):1–9,
2004.

5 Yixin Cao and Dániel Marx. Interval Deletion Is Fixed-Parameter Tractable. ACM Trans.
Algorithms, 11(3):21:1–21:35, 2015.

6 Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng.
Matching Cut in Graphs with Large Minimum Degree. Algorithmica, 83(5):1238–1255, 2021.

7 Vasek Chvátal. Recognizing decomposable graphs. J. Graph Theory, 8(1):51–53, 1984.
8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
9 Konrad K. Dabrowski, Marc Demange, and Vadim V. Lozin. New results on maximum induced

matchings in bipartite graphs and beyond. Theor. Comput. Sci., 478:33–40, 2013.
10 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The Bidimensional

Theory of Bounded-Genus Graphs. SIAM J. Discret. Math., 20(2):357–371, 2006.
11 Reinhard Diestel. Graph theory. Graduate texts in mathematics, 173, 2017.
12 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999.
13 Shimon Even, Oded Goldreich, Shlomo Moran, and Po Tong. On the NP-completeness of

certain network testing problems. Networks, 14(1):1–24, 1984.
14 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006.
15 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexponential

algorithms for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.
16 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of

nowhere dense graphs. CoRR, abs/1311.3899, 2013. arXiv:1311.3899.
17 Stasys Jukna. Extremal Combinatorics – With Applications in Computer Science. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 2011.
18 Iyad A. Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced matching

problem. J. Comput. Syst. Sci., 77(6):1058–1070, 2011.

http://arxiv.org/abs/2107.08584
http://arxiv.org/abs/2107.08584
http://arxiv.org/abs/1311.3899

A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:13

19 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe. Interval graph representation
with given interval and intersection lengths. Journal of Discrete Algorithms, 34:108–117, 2015.

20 Łukasz Kowalik, Matjaž Krnc, Tomasz Waleń, et al. Improved induced matchings in sparse
graphs. Discrete Applied Mathematics, 158(18):1994–2003, 2010.

21 Hoàng-Oanh Le and Van Bang Le. On the Complexity of Matching Cut in Graphs of Fixed
Diameter. In 27th International Symposium on Algorithms and Computation, ISAAC 2016,
December 12-14, 2016, Sydney, Australia, volume 64 of LIPIcs, pages 50:1–50:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

22 Van Bang Le and Jan Arne Telle. The Perfect Matching Cut Problem Revisited. In Graph-
Theoretic Concepts in Computer Science – 47th International Workshop, WG 2021, Warsaw,
Poland, June 23-25, 2021, Revised Selected Papers, volume 12911 of Lecture Notes in Computer
Science, pages 182–194. Springer, 2021.

23 Silvio Micali and Vijay V. Vazirani. An O(sqrtp|v|q |E|) Algorithm for Finding Maximum
Matching in General Graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.

24 Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced matching
problem. Discret. Appl. Math., 157(4):715–727, 2009.

25 Augustine M. Moshi. Matching cutsets in graphs. J. Graph Theory, 13(5):527–536, 1989.
26 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
27 Larry J. Stockmeyer and Vijay V. Vazirani. NP-Completeness of Some Generalizations of the

Maximum Matching Problem. Inf. Process. Lett., 15(1):14–19, 1982.
28 Michele Zito. Induced matchings in regular graphs and trees. In Graph-Theoretic Concepts in

Computer Science, pages 89–101, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

IPEC 2022

On the Hardness of Generalized Domination
Problems Parameterized by Mim-Width
Brage I. K. Bakkane #

University of Bergen, Norway

Lars Jaffke #

University of Bergen, Norway

Abstract
For nonempty σ, ρ ⊆ N, a vertex set S in a graph G is a (σ, ρ)-dominating set if for all v ∈ S,
|N(v) ∩ S| ∈ σ, and for all v ∈ V (G) \ S, |N(v) ∩ S| ∈ ρ. The Min/Max (σ, ρ)-Dominating Set
problems ask, given a graph G and an integer k, whether G contains a (σ, ρ)-dominating set of size
at most k and at least k, respectively. This framework captures many well-studied graph problems
related to independence and domination. Bui-Xuan, Telle, and Vatshelle [TCS 2013] showed that
for finite or co-finite σ and ρ, the Min/Max (σ, ρ)-Dominating Set problems are solvable in XP
time parameterized by the mim-width of a given branch decomposition of the input graph. In this
work we consider the parameterized complexity of these problems and obtain the following: For
minimization problems, we complete several scattered W[1]-hardness results in the literature to a
full dichotomoy into polynomial-time solvable and W[1]-hard cases, and for maximization problems
we obtain the same result under the additional restriction that σ and ρ are finite sets. All W[1]-hard
cases hold assuming that a linear branch decomposition of bounded mim-width is given, and with
the solution size being an additional part of the parameter. Furthermore, for all W[1]-hard cases we
also rule out f(w)no(w/ log w)-time algorithms assuming the Exponential Time Hypothesis, where f

is any computable function, n is the number of vertices and w the mim-width of the given linear
branch decomposition of the input graph.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases generalized domination, linear mim-width, W[1]-hardness, Exponential Time
Hypothesis

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.3

Related Version First author’s Master’s thesis: https://bora.uib.no/bora-xmlui/handle/11250/
3001140 [2]

Funding Lars Jaffke: Supported by the Norwegian Research Council (project number 274526).

1 Introduction

Maximum induced matching width [35], or mim-width for short, is a width measure of graphs
based on branch decompositions over the vertex set. On the one hand, mim-width has
high expressive power, while on the other hand, it allows for efficient algorithms for many
fundamental NP-hard problems when the input graph is given together with a decomposition
of small width. Mim-width strictly generalizes tree-width and clique-width, in the sense that
a bound on each of the latter measures implies a bound on the mim-width, while there are
n-vertex graphs that have clique-width Ω(

√
n) and mim-width 1 [3, 24]. Mim-width and

twin-width [9] are incomparable. Moreover, the mim-width remains bounded by a constant
on several deeply studied graph classes such as interval graphs, permutation graphs, and
some of their generalizations, see e.g. [3, 10, 27, 35], as well as several graph classes excluding

© Brage I. K. Bakkane and Lars Jaffke;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brage.bakkane@student.uib.no
mailto:lars.jaffke@uib.no
https://doi.org/10.4230/LIPIcs.IPEC.2022.3
https://bora.uib.no/bora-xmlui/handle/11250/3001140
https://bora.uib.no/bora-xmlui/handle/11250/3001140
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Hardness of Domination Problems Parameterized by Mim-Width

Table 1 Some examples of Min/Max (σ, ρ)-Dominating Set problems and their complexity
when parameterized by the mim-width of a given (linear) branch decomposition of the input graph
plus solution size. In all occurrences, the value of d is a fixed constant.

Standard name σ ρ Min Max

Independent set {0} N P W[1]-h [19]
Dominating Set N N \ {0} W[1]-h [19] P

Independent Dominating Set {0} N \ {0} W[1]-h [19] W[1]-h [19]
Total Dominating Set N \ {0} N \ {0} W[1]-h [28] P

Strong Stable Set/2-Packing {0} {0, 1} P W[1]-h [This]
Perfect Code {0} {1} W[1]-h [This] W[1]-h [This]

Total Nearly Perfect Set {0, 1} {0, 1} P W[1]-h [This]
Weakly Perfect Dominating Set {0, 1} {1} W[1]-h [This] W[1]-h [This]

Total Perfect Dominating set {1} {1} W[1]-h [This] W[1]-h [This]
Induced Matching {1} N P W[1]-h [28]

Dominating Induced Matching {1} N \ {0} W[1]-h [28] W[1]-h [28]
Perfect Dominating Set N {1} W[1]-h [This] ?

d-Dominating Set N {d, d + 1, . . .} W[1]-h [28] ?
Induced d-Regular Subgraph {d} N P W[1]-h [28]
Subgraph of Min Degree ≥ d {d, d + 1, . . .} N P ?

Induced Subg. of Max Degree ≤ d {0, 1, . . . , d} N P W[1]-h [28]

small graphs as induced subgraphs [11]. This implies that algorithms for graphs of bounded
mim-width often unify and extend several algorithmic results on graph classes from the
literature.

In recent years, an increasing number of problems has been shown to admit such al-
gorithms [4, 5, 6, 13, 20, 25, 28, 29, 30]. However, all of these algorithms run in XP time
when parameterized by the mim-width of the given branch decomposition of the input
graph, and the parameterized complexity of these problem is much less understood. In this
work, we contribute to the systematic study of the parameterized complexity of problems
parameterized by the mim-width of a given (linear) branch decomposition of the input
graph, by showing dichotomies into polynomial-time solvable and W[1]-hard cases for locally
checkable minimization and maximization problems.

The locally checkable vertex subset problems, or (σ, ρ)-domination problems [34], capture
many problems related to independence and domination in graphs in a unified framework.
Here, a problem is formulated by prescribing for its solutions, which are vertex sets, for each
vertex v in the graph, how many neighbors it has to have in the set, depending on whether v

is in the set or not. Concretely, for two nonempty sets σ, ρ ⊆ N, a (σ, ρ)-dominating set in a
graph G is a set of vertices S such that for each vertex in S, the number of neighbors it has
in S is an element of σ, and for each vertex outside of S, the number of neighbors it has in S

is an element of ρ. The Min/Max (σ, ρ)-Dominating Set problems ask, given a graph G

and an integer k, whether G contains a (σ, ρ)-dominating set of size at most k and at least k,
respectively. Observe for instance that the Min (N,N\{0})-Dominating Set problem is the
Minimum Dominating Set problem, and that the Max ({0},N)-Dominating Set problem
is the Maximum Independent Set problem. Many more problems can be expressed in
this way, see Table 1 for examples. While such problems are often NP-complete, several
(σ, ρ)-domination problems are trivial to solve – for instance all Min (σ, ρ0)-Dominating
Set problems, where 0 ∈ ρ0. This is simply because the empty set is a solution to any such
Min (σ, ρ0)-Dominating Set problem.

B. I. K. Bakkane and L. Jaffke 3:3

The (σ, ρ)-domination problems play a central role in the algorithmic study of mim-
width. They are among the first problems that have been shown to be solvable in XP
time parameterized by the mim-width of a given branch decomposition of the input graph
by Bui-Xuan et al. [13] (whenever σ and ρ are finite or co-finite), and contain the first
problems for which W[1]-hardness in this parameterization was shown. Fomin et al. [19]
proved that Maximum Independent Set and Minimum Dominating Set are W[1]-hard
parameterized by the mim-width of a given linear branch decomposition of the input graph.
The W[1]-hardness of several other (σ, ρ)-domination problems was shown by Jaffke et al. [28].
However, these results are far from complete dichotomies. For minimization problems, we
achieve such a dichotomy in this work, and for maximization problems, whenever σ and ρ

are finite. In both cases, hardness already holds for the more restrictive parameterization by
linear mim-width.

▶ Theorem 1. Let σ, ρ ⊆ N be nonempty. If 0 ∈ ρ, then Min (σ, ρ)-Dominating Set is
polynomial-time solvable, otherwise it W[1]-hard parameterized by the mim-width of a given
linear branch decomposition of the input graph plus solution size.

▶ Theorem 2. Let σ, ρ ⊆ N be nonempty and finite. If ρ = {0}, then Max (σ, ρ)-Dominating
Set is polynomial-time solvable, otherwise it is W[1]-hard parameterized by the mim-width
of a given linear branch decomposition of the input graph plus solution size.

Note that since the solution size can be a part of the parameter in the previous theor-
ems, they extend several hardness results for Min/Max (σ, ρ)-Dominating Set problems
parameterized by solution size due to Golovach et al. [23]. They obtained a dichotomy into
polynomial-time solvable and W[1]-complete for Min (σ, ρ)-Dominating Set when σ and ρ

are finite.

Mim-width and the Exponential Time Hypothesis. All known XP-algorithms for problems
parameterized by mim-width, except for the ones in [6], run in nO(w) time, where n is the
number of vertices of the input graph, and w the mim-width of the given branch decomposition.
A natural follow-up question to Theorems 1 and 2 is whether the dependence on w can be
improved, in particular if one of these problems admits an no(w) time algorithm. Several of the
reductions given in [19, 28] start from the Multicolored Clique problem parameterized
by the number of color classes k, and the mim-width of the instance constructed in the
reduction is quadratic in k. This is due to the fact that the gadgeteering depends on the
number of edges in the (complete) quotient graph associated with the color partition of the
input graph. Therefore these reductions only rule out f(w)no(

√
w) time algorithms under

the Exponential Time Hypothesis (ETH). We can observe that the same reduction works if
we start from the Partitioned Subgraph Isomorphism problem parameterized by the
number of edges h in the pattern graph, and the mim-width of the reduced instance remains
O(h);1 this gives a strengthened lower bound of f(w)no(w/ log w) time by a theorem due to
Marx [31]. All reductions presented in this work start from the Partitioned Subgraph
Isomorphism problem and give the improved lower bounds under the ETH. It remains an
open problem to close the gap between the f(w)no(w/ log w) time lower bounds and the nO(w)

time algorithms.

1 For a worked out example, see [2].

IPEC 2022

3:4 Hardness of Domination Problems Parameterized by Mim-Width

▶ Corollary 3. Let σ, ρ ⊆ N be nonempty. If 0 /∈ ρ, then Min (σ, ρ)-Dominating Set
does not admit f(w)no(w/ log w) time algorithms, for any computable function f , on n-vertex
graphs given with a linear branch decomposition of mim-width w, unless the ETH is false. If
σ and ρ are finite and ρ ̸= {0}, then the same holds for Max (σ, ρ)-Dominating Set.

Related work. Bui-Xuan et al. [13] showed that the Min/Max (σ, ρ)-Dominating Set
problems are XP-time solvable parameterized by the mim-width of a given branch decomposi-
tion of the input graph, whenever σ and ρ are either finite or co-finite. The first W[1]-hardness
proofs for several Min/Max (σ, ρ)-Dominating Set problems were given in [19, 28]. How-
ever, several other problems have been shown to be even harder on graphs of bounded
mim-width, which often follows from the NP-completeness of problems on graph classes
that have constant mim-width [3]. For instance, the following problems are para-NP-hard
parameterized by the mim-width of a given linear branch decomposition of the input graph:
Clique and Co-Dominating Set [22, 35], Graph Coloring [21], Maximum Cut [1],
and Hamiltonian Path [29]. The NP-completeness of Min/Max (σ, ρ)-Dominating Set
problems has been systematically studied by Telle [33], and Golovach et al. [23] considered
their complexity parameterized by solution size.

Methods. As mentioned above, all reductions we give start from the Partitioned Sub-
graph Isomorphism (PSI) problem. Here, we are given two graphs G and K, and a
partition of V (G) where each part is associated with a vertex from K, and the question is
whether G contains K as a subgraph witnessed by an isomorphism that respects the partition
of V (G). This problems is known to be W[1]-hard parameterized by h = |E(K)| and not
to have f(h)no(h/ log h)-time algorithms, where n = |V (G)|, unless the Exponential Time
Hypothesis fails [18, 31, 32].

We give a high level outline of how we reduce the PSI problem to any (σ, ρ)-Dominating
Set problem. As the overall strategy is the same for all choices of σ and ρ, and whether
we are concerned with minimization or maximization, we do not specify which case we
are in for now. Let (G, K) be an instance of PSI and for ease of reference, suppose that
V (K) = {1, . . . , k}, and let Vi be the part of the partition of V (G) corresponding to vertex
i. The graph H of the (σ, ρ)-Dominating Set instance contains, for each Vi, a set Ŝi

of selection vertices that encodes which vertex of Vi is chosen in a potential solution to
(G, K). For each edge ij ∈ E(K), we add a subgraph to H that preserves information
about adjacencies between the vertices in Vi and Vj , but induces cuts that have no induced
matchings of size larger than two. This construction is adapted from the work of Fomin et
al. [19]. It ensures that once a (σ, ρ)-dominating set D contains precisely one vertex from
each Ŝi, then the remainder of the vertices in D witness the existence of a K-subgraph in G.

To ensure that each solution to the (σ, ρ)-Dominating Set instance picks precisely
one vertex from each Ŝi, we add gadgets to H that depend on the choice of σ and ρ and
whether we are concerned with a minimization or a maximization problem. These gadgets are
constructed carefully enough so that the linear mim-width of H does not increase prohibitively.
In the end, we have a partition of H such that each subgraph induced by a part has linear
mim-width that only depends on the some fixed constants contained in σ and ρ, and such
that the cuts between the parts do not contain large induced matchings either. By adapting
a lemma of Brettell et al. [12] to linear mim-width, and with a slightly more careful analysis,
we conclude that we can construct in polynomial time a linear branch decomposition of H

that has mim-width O(h).

B. I. K. Bakkane and L. Jaffke 3:5

The high degree of generality in our reductions is achieved by the following: the construc-
tion combined with the budget are tight enough so that, roughly speaking, in minimization
problems, each vertex can only be minimially dominated and in maximization problems, each
vertex has to be maximally dominated. This means that in either case, σ and ρ only contain
one relevant value for feasible solutions: for minimization that is ς = min σ and ϱ = min ρ,
and for maximization ς becomes max σ and ϱ becomes max ρ. The linear mim-width of H

depends on ς and ϱ, and in the case of minimization problems, these are always constants.
In the case of maximization, however, ς and ϱ are only constant when σ and ρ are finite.

Throughout the paper, proofs of statements marked with “♣” and full proofs of sketches
are deferred to the full version.

2 Preliminaries

For basic background in graph theory, we refer to [15], and for basics in parameterized
complexity, we refer the reader to [14, 16]. We use the following notation: N = {0, 1, 2, 3, ...},
[n] = {1, 2, ..., n}, [n]0 = {0, 1, 2, ..., n}. For a graph G, we denote by V (G) its vertex set and
by E(G) its edge set. For A, B ⊆ V (G) with A ∩ B = ∅, we let G[A, B] be the biparite graph
with vertex set A ∪ B and edge set {ab | ab ∈ E(G), a ∈ A, b ∈ B}. A matching in a graph
G is a set M ⊆ E(G) of pairwise disjoint edges. We say that M is induced if there are no
additional edges between the endpoints of the edges in M ; that is, if u is an endpoint of some
edge in M and v is some endpoint of some edge in M , then either uv ∈ M or uv /∈ E(G).
For a graph G, we denote by cc(G) the set of its connected components. For additional
clarification of basic graph theoretic concepts and notation we refer to the full version.

Mim-Width. For a graph G and A, B ⊆ V (G) with A ∩ B = ∅ we define cutmimG(A, B)
to be the largest size of any induced matching in G[A, B]. For a set A ⊆ V (G), we let
mimG(A) = cutmimG(A, V (G) \ A).

A branch decomposition of a graph G is a pair (T, L), where T is a tree where all of whose
vertices have degree at most 3, and L a bijection mapping the vertices of the graph V (G) to the
leaves of the tree T . For a subtree T ′ of T , we denote by VT ′ the vertices of G that are mapped
to leaves of T ′. The mim-width of (T, L) is mimwG(T, L) = maxe∈E(G),T ′∈cc(T −e) mimG(VT ′).
The mim-width of G, denoted by mimw(G), is the minimum mim-width over all its branch
decompositions.

A branch decomposition (T, L) is called linear if T is a caterpillar graph, i.e., a tree
containing an induced path P such that each vertex in V (T) \ V (P) has precisely one
neighbor on P . The linear mim-width of a graph G, denoted by linmimw(G), is the minimum
mim-width over all its linear branch decompositions. Linear branch decompositions can
be equated with linear orderings of the vertex set of a graph. For a linear order Λ of the
vertices of G, we will therefore write mimwG(Λ) for the mim-width of the linear branch
decomposition corresponding to Λ. In all definitions given in these last paragraphs, we may
drop G as a subscript if it is clear from the context.

Exponential-Time Hypothesis. The Exponential-Time Hypothesis (ETH) is a conjecture
about the complexity of the 3-Sat problem, which given a boolean formula in conjunctive
normal form and clauses of size at most three, asks whether it has a satisfying assignment.

▶ Conjecture 4 (ETH [26], informal). The 3-Sat problem cannot be solved in 2o(n) time,
where n is the number of variables of the input formula.

IPEC 2022

3:6 Hardness of Domination Problems Parameterized by Mim-Width

2.1 Generalized dominating set problems
Let σ, ρ ⊆ N, and let G be a graph. A vertex set S ⊆ V (G) is a (σ, ρ)-dominating set, if
for all v ∈ V (G): If v ∈ S, then |N(v) ∩ S| ∈ σ, and if v /∈ S ,then |N(v) ∩ S| ∈ ρ. The
computational problems associated with (σ, ρ)-dominating sets we consider in this work
are:

Input: Graph G, integer k

Question: Does G contain a (σ, ρ)-dominating set of size at most/at least k?

Min/Max (σ, ρ)-Dominating Set

Many maximization and minimization problems formulated in this manner are compu-
tationally hard, in the sense that they are NP-hard and W[1]-hard with solution size as a
parameter. We now discuss the exceptions that are relevant for this work, i.e. some cases
when the Min/Max (σ, ρ)-Dominating Set problems are polynomial-time solvable.

Trivial minimization problems. Whenever 0 ∈ ρ, the empty set is a solution of the Min
(σ, ρ)-Dominating Set problem. This case is then trivial as any algorithm can always return
the empty set as a valid optimal solution. These are the only trivial cases for minimization.

Trivial maximization problems. We focus here on trivial cases where σ and ρ are finite,
since these are the cases for which we show hardness in this work. Note however that there
are more trivial cases when σ and ρ need not be finite, for instance when σ = N: in this case,
the entire vertex set of the input graph is a valid optimal solution.

If ρ = {0}, then any solution has to consist of connected components of the input graph.
Suppose S is a (σ, {0})-dominating set of a graph G and let C1, C2 ∈ cc(G). Then, whether
or not C1 ⊆ S is independent of whether or not C2 ⊆ S. Furthermore, for any connected
component C ∈ cc(G), we can verify in polynomial time whether or not C can be contained in
a (σ, {0})-dominating set: we only have to check for all v ∈ C that deg(v) ∈ σ. Therefore we
can use a greedy algorithm to solve the problem, by first identifying all connected components
of the input graph followed by greedily including each connected component C in the solution
if it passes the aforementioned check.

▶ Observation 5. Let σ, ρ ⊆ N. If 0 ∈ ρ, then Min (σ, ρ)-Dominating Set is polynomial-
time solvable, and if ρ = {0}, then Max (σ, ρ)-Dominating Set is polynomial-time solvable.

2.2 Problem Definitions
We collect here the definitions of the problems that are relevant to this work. The following
parameterized variant of the Min/Max (σ, ρ)-Dominating Set problems is the main object
of study.

Input: Graph G, integer k, linear order Λ of V (G).
Parameter: mimw(Λ) + k.
Question: Does G contain a (σ, ρ)-dominating set of size at most/at least k?

Min/Max (σ, ρ)-Dominating Set[LMim + Sol]

The starting point of our reductions will be the Partitioned Subgraph Isomorphism
problem, which is known to be W[1]-hard and not to have f(h)no(h/ log h)-time algorithms,
unless the ETH is false [31].

B. I. K. Bakkane and L. Jaffke 3:7

x1 x2 x3

N(x1) N(x2) N(x3) N(x1) N(x2) N(x3)

x11

x12

x13

x21

x22

x23

x31

x32

x33

→

Figure 1 2-Blowups of the vertices x1, x2, and x3. In vertex x1, a clique blowup was performed
and in x2 and x3 and independent blowup.

Input: (G, K, ϕ), where G and K are graphs, and ϕ : V (G) → V (K).
Parameter: h = |E(K)|.
Question: Is there an injective function f : V (K) → V (G) such that ab ∈ E(K) ⇒

f(a)f(b) ∈ E(G) for all a, b ∈ V (K), and ϕ(f(a)) = a for all a ∈ V (K)?

Partitioned Subgraph Isomorphism

We introduce some notation that will be useful when talking about instances of Partitioned
Subgraph Isomorphism. We say a function f : V (K) → V (G) preserves neighbors if
ab ∈ E(K) ⇒ f(a)f(b) ∈ E(G) for all a, b ∈ V (K), and f preserves colors (relative to
ϕ : V (G) → V (K)) if ϕ(f(a)) = a for all a ∈ V (K). As these above mentioned hardness
result from [31] also holds when the pattern graph K is connected, we we will commonly
make this assumption throughout the paper.

3 Graph operations and bounds on the linear mim-width

The following lemma can be seen as an analogue of a lemma due to Brettel et al. [12] for
linear mim-width.

▶ Lemma 6 (♣, Cf. Lemma 7 in [12]). Let G be a graph, let X = (X1, ..., Xp) be a partition
of V (G) such that cutmimG(Xi, Xj) ≤ c for all distinct i, j ∈ [p], and let G/X be the quotient
graph of X. Then,

linmimw(G) ≤ |E(G/X)| · c + maxi∈[p] linmimw(G[Xi]).

Moreover, if for all i ∈ [p], Λi is a linear order of Xi, then one can in polynomial time
construct a linear order Λ of G with

mimw(Λ) ≤ |E(G/X)| · c + maxi∈[p] mimw(Λi).

The following operation is illustrated in Figure 1.

▶ Definition 7 (Blowup). Let G be a graph, v ∈ V (G), and k ∈ N. A clique/independent
k-blowup of v is the operation of adding k twins of v which form a clique/independent set.
We call an operation simply a blowup if it is either a clique k-blowup or an independent
k-blowup for some k ∈ N.

We show that performing blowups cannot increase the mim-width by more than 1. Note
in the following lemma that we consider a series of blowups performed at once instead of a
single blowup.

IPEC 2022

3:8 Hardness of Domination Problems Parameterized by Mim-Width

1

2

3

4

5

1
1

2
1

3
1

4
1

5
1

1
0

X0X0

Y1

Y2

Y3

X1 X2 X3 X4 X5

2
0

3
0

4
0

5
0

1
2

2
2

3
2

4
2

5
2

1
3

2
3

3
3

4
3

5
3

1
4

2
4

3
4

4
4

5
5

1
5

2
5

3
5

4
5

5
5

Y4

Y5

Figure 2 A depth-5 grid of cliques implant at {x1, . . . , x5}. Shaded regions indicate cliques.

▶ Lemma 8 (♣). Let G be a graph, and let Λ be a linear ordering of G. Let G′ be obtained
from G by a series of blowups. Then, there is a linear order Λ′ of V (G′) computable in
polynomial time from Λ such that mimw(Λ′) ≤ mimw(Λ) + 1.

We define another operation that will find a similar use in the later sections.

▶ Definition 9 (Depth-ℓ grid of cliques implant). Let G be a graph, let X = {x1, . . . , xk} ⊆
V (G) be a clique in G, and let ℓ ∈ N. For all i ∈ [k], let xi = x0

i . The operation of
adding, for all i ∈ [ℓ], vertices xi

1, . . . , xi
k,

for each i ∈ [ℓ], making {xi
1, . . . , xi

k} = Xi a clique (called the i-th column), and
for each j ∈ [k], making {x0

j , . . . , xℓ
j} = Yj a clique (called the j-th row),

is called a depth-ℓ grid of cliques implant (at X in G).

For an illustration of the previous operation see Figure 2.

▶ Lemma 10 (♣). Let G be a graph, let Λ be a linear ordering of G. Let G′ be obtained from
G by a depth-ℓ grid of cliques implant. There exists a linear ordering Λ′ of G′ computable in
polynomial time from Λ, such that mimw(Λ′) ≤ mimw(Λ) + ℓ.

4 Hardness of (σ, ρ)-Dominating Set problems

In this section we discuss the main results of this work, which are the hardness results for
non-trivial Min/Max (σ, ρ)-Dominating Set problems. Note that the cases that are not
covered by the following theorem (0 ∈ ρ for minimization and ρ = {0} for maximization)
have been observed to be trivial in Observation 5.

▶ Theorem 11. Let σ, ρ ⊆ N be nonempty where 0 ̸∈ ρ. Then, the Min (σ, ρ)-Dominating
Set[LMim + Sol] problem is W[1]-hard. Moreover, unless the ETH is false, it cannot be
solved in f(w)no(w/ log w) time, where f is any computable function, on n-vertex graphs given
with a linear ordering of mim-width w.

Furthermore, if σ and ρ are nonempty, finite, and ρ ≠ {0}, then the Max
(σ, ρ)-Dominating Set[LMim + Sol] problem is W[1]-hard, and cannot be solved in
f(w)no(w/ log w) time, where f , n, and w are as above, unless the ETH is false.

B. I. K. Bakkane and L. Jaffke 3:9

Figure 3 Example of H for p = 3, and k = 3, and K is the complete graph with three vertices.
Colored regions indicate cliques.

The proof is by a reduction from the W[1]-hard problem Partitioned Subgraph
Isomorphism, where first a core graph H is constructed. Afterwards the graph is modified
to obtain either H0, H1, H2, or H3 depending on σ and ρ in such a manner that all of the
above mentioned cases are captured. These modifications use, among other things, the two
operations described in Section 3.

4.1 The core graph H
Let (K, G, ϕ) be an instance of the Partitioned Subgraph Isomorphism problem. Recall
that for the sake of our reduction, we can assume that K is connected. Throughout, we
assume that V (K) = {1, . . . , k}, and that (V1, . . . Vk) is the partition of V (G) according to
ϕ, that is, for all i ∈ [k], Vi = {v ∈ V (G) | ϕ(v) = i}.

We describe how to construct from it the above mentioned core graph H. We can assume
that |Vi| = p, for all i ∈ [k], where p = max{|Vi| | i ∈ [k]}. If this is not the case then we can
simply add isolated vertices to the sets whose cardinality is less than p. Isolated vertices
clearly do not affect the Partitioned Subgraph Isomorphism instance, as K has no
isolated vertices as we assumed it was connected. For all i ∈ [k], we let Vi = {vi

1, ..., vi
p}. The

core graph H is constructed as follows:

1. For all i, j ∈ [k] such that ij ∈ E(K), and for all a ∈ [p], we add the vertex xij
a to V (H).

We let Xij = {xij
a | a ∈ [p]}.

2. For all i, j ∈ [k] such that ij ∈ E(K) and for all a, b ∈ [p] such that vi
avj

b ∈ E(G), we add
the vertex rij

ab = rji
ba to V (H). We connect rij

ab to all the vertices in {xij
a′ | a′ ̸= a, a′ ∈ [p]},

and all the vertices in {xji
b′ | b′ ̸= b, b′ ∈ [p]}. We let Rij = {rij

ab | vi
avj

b ∈ E(G)} = Rji.
3. For all i ∈ [k] and for all a ∈ [p] we add the vertex si

a to V (H). Furthermore for all j ∈ [k]
such that ij ∈ E(K), and all a ∈ [p] we connect si

a to xij
a . We let Si = {si

a | a ∈ [p]}.
4. For all i ∈ [k], we make Si a clique. For all ij ∈ E(K), we make Rij a clique. We let

X =
⋃

ij∈E(K) Xij and make X a clique.

See Figure 3 for an illustration. Notice that Rij = Rji but Xij ̸= Xji for all ij ∈ E(K).

IPEC 2022

3:10 Hardness of Domination Problems Parameterized by Mim-Width

The notation I, J , Zα, and zα
β . As Si and Rij have many similar properties in our

reduction, we use the following slight abuse of notation. We let I = [k] ∪ {ij | ij ∈ E(K)},
and for α ∈ I, we let Zα be Si if α = i for some i ∈ [k], and we let Zα be Rij if α = ij for
some ij ∈ E(K). We let J = [p] ∪ [p] × [p]. For a pair α ∈ I, β ∈ J , the vertex zα

β is si
a if

α ∈ [k] and β ∈ [p] and rij
ab if α ∈ E(K) and β ∈ [p] × [p]. Note that for the case α ∈ [k] and

β ∈ [p] × [p] (or α ∈ E(K) and β ∈ [p]), the vertex zα
β is not defined.

As outlined above, it is essential that the core graph has bounded linear mim-width. We
sketch how to obtain a linear order whose mim-width is linear in the number of edges in K.

▷ Claim 12. There is a linear order Λ of V (H) computable in polynomial time such that
mimw(Λ) ≤ 4|E(K)| + 4.

Proof (sketch). Consider the following partition of V (H): Let Γ = {Γα | α ∈ I}, where
for all i ∈ [k], Γi = Si ∪

⋃
ij∈E(K) Xij and

for all ij ∈ E(K), Γij = Rij .

We give the vertices in Γi the ordering

Λi : si
1 < xi1

1 < xi2
1 < · · · < xik

1 < si
2 < xi1

2 < · · · < xik
2 < · · · < si

p < xi1
p < · · · < xik

p ,

and we give the vertices in Γij any linear ordering Λij . As Γij = Rij is a clique, any linear
ordering of Γij has mim-width 1. Furthermore, one can show that the mim-width of Λi, for
each i ∈ [k], is at most 3. Considering the subgraph H′ of H obtained by removing all edges
between Xij and Xi′j′ for distinct ij, i′j′ ∈ E(K), we can prove that cutmimH′ [Γα, Γα′] ≤ 2
for any distinct α, α′ ∈ I. The number of edges in H′/Γ is equal to 2|E(K)|, so by Lemma 6
we can obtain a linear order of the vertices of H′ whose mim-width is at most 4|E(K)| + 3.
(Take any linear order of V (H′) that respects each Λα, α ∈ I.) To get the bound for H,
note that turning a set of vertices into a clique can increase the mim-width of any cut by at
most 1. ◁

4.2 Minimization problems
We now turn to the case when we want to show hardness for a Min (σ, ρ)-Dominating
Set problem, and describe how the core graph H will be enhanced/transformed to give the
graph of the resulting instance. This construction crucially depends on the minimum values
of σ and ρ. Therefore, we let ς = min(σ) and ϱ = min(ρ). Note that ς + ϱ = O(1). In each
of the cases, we show how the graph of the resulting instance is constructed, and give the
budget. We state three claims, one regarding the linear mim-width of the constructed graph,
and two claims that assert the correctness of the reduction. We exemplify these proofs in
Section 4.2.2, where all arguments for the case treated there are given. The remaining proofs
are deferred to the full version.

4.2.1 When ϱ = ς + 1 and ς ≥ 1
We transform H into the graph solution size pair (H0, k0), where

k0 = (2ς + 2)(k + |E(K)|) + (ς + 1)

and H0 is constructed as follows. Recall that Zα is either Si when α = i ∈ [k], or Rij when
α = ij ∈ E(K).

B. I. K. Bakkane and L. Jaffke 3:11

B

b a

Figure 4 Example of how S1 ∪ X12 is transformed for minimization problems when p = 3, ς = 3,
ϱ = 4. Circles indicate vertices, and grey colored regions indicate cliques.

1. For all α ∈ I, we create two cliques Aα and Bα which both have size ς, where Aα is
adjacent to all of Zα.

2. We add two adjacent vertices aα and bα. The vertex aα is adjacent to all vertices in Aα,
and bα is adjacent to all vertices in Bα.

3. We add a clique X of size ς + 1 which is partitioned in two parts: X1 and X2, where
|X2| = 1. Every vertex in X1 is adjacent to all the vertices in X, and every vertex in X2
is only adjacent to the vertices in X .

For an illustration see Figure 4.

▷ Claim 13 (♣). There is a linear order Λ0 of V (H0) computable in polynomial time such
that mimw(Λ0) = O(|E(K)|).

▷ Claim 14 (♣). If (K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism
problem, then there exists a ({ς}, {ϱ})-dominating set of size k0 in H0.

▷ Claim 15 (♣). If there exists a (σ, ρ)-dominating set of size at most k0 in H0, then
(K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism problem.

4.2.2 When ϱ > ς + 1 and ς ≥ 1
Let ϱ′ = ϱ − ς. In this case, we create the graph solution size pair (H1, k1), where

k1 = (ϱ′ς + ϱ′)(k + |E(K)|) + (ς + 1),

and H1 is obtained from H as follows. Recall the operation of a blowup, Definition 7, and
see Figure 5 for an illustration of the following.

1. For each α ∈ I and β ∈ J such that zα
β ∈ V (H), we perform an independent (ϱ′ − 1)-

blowup of zα
β . We call the twins of zα

β : zα
β2, ..., zα

βϱ′ , and we let zα
β = zα

β1.
2. For each α ∈ I and ℓ ∈ [ϱ′], we add a clique Aα

ℓ of size ς, where every vertex in Aα
ℓ is

adjacent to every vertex in Zα
∗ℓ = {zα

βℓ | β ∈ J s.t. zα
β ∈ V (H)}. We let Aα =

⋃
ℓ∈[ϱ′] Aα

ℓ .
3. We add a clique X of size ς + 1 to H1; this clique is partitioned into two parts X1 and

X2, where |X2| = 1. Every vertex in X1 is adjacent to all vertices in X, and the vertex in
X2 is only adjacent to X .

We use the following notation. We call the set containing zα
β with its ϱ′ − 1 twins

Zα
β∗ = {zα

βℓ | ℓ ∈ [ϱ′]}, and we let Zα
∗∗ =

⋃
ℓ∈[ϱ′] Zα

∗ℓ. Note that the vertices in Zα
β∗ are not

adjacent to any other vertex in Zα
β∗, however they are all adjacent to Zα

β′∗ for all β′ ̸= β.

▷ Claim 16. There is a linear order Λ1 of V (H1) computable in polynomial time such that
mimw(Λ1) = O(|E(K)|).

IPEC 2022

3:12 Hardness of Domination Problems Parameterized by Mim-Width

Figure 5 Example of the modification of S1 ∪ X12 for p = 3, ς = 2, ϱ = 5. Circles indicate
vertices, and grey colored regions indicate cliques. The blue regions indicate independent sets.

Proof. Let Λ be a linear order of H of mim-width O(|E(K)|) obtained from Claim 12 in
polynomial time. H1 is constructed from H by blowing up all vertices zα

β ∈ V (H), where
α ∈ I and β ∈ J , and adding |E(K)| + k + 1 = O(|E(K)|) vertex sets of constant size. We
can place the latter vertices anywhere in the ordering Λ without increasing the mim-width by
more than O(|E(K)|), call the resulting ordering Λ′. From Λ′ we can obtain a linear order
of H1 in polynomial time whose mim-width is at most one larger using Lemma 8. ◁

We now show the correctness of the reduction in the following two claims.

▷ Claim 17. If (K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism
problem, then there exists a ({ς}, {ϱ})-dominating set of size k1 in H1.

Proof. Let f : V (K) → V (G) be the injective function preserving neighbors and colors. Let
f(i) = vi

ci
for all i ∈ [k] and for some c1, ..., ck ∈ [p]. Note that ij ∈ E(K) implies that

vi
ci

vj
cj

∈ E(G) further implying that rij
cicj

∈ V (H) ⊆ V (H1). We argue that

D = X ∪
⋃

i∈[k]
Si

ci∗ ∪
⋃

ij∈E(K)
Rij

cicj∗ ∪
⋃

α∈I
Aα

is a ({ς}, {ϱ})-dominating set of size k1 in H1. First, we observe that

|D| = ς + 1 + k · ϱ′ + |E(K)| · ϱ′ + (k + |E(K)|)ςϱ′ = k1.

The sets X ,
⋃

α∈I Zα
∗∗,

⋃
α∈I Aα,

⋃
ij∈E(K) Xij form a partition of V (H1). First consider

any vertex x in X ⊆ D, and recall that X is a clique of size ς + 1. If x is the unique vertex in
X2, then N(x) = X1 ⊆ D, so x has ς neighbors in D. If x ∈ X1, then N(x) = X ∪ X \ {x},
and since X ∩ D = ∅, we have that x has ς neighbors in D as well.

Next, consider a vertex z in
⋃

α∈I Zα
∗∗. There are two cases. In the first case, α = i ∈ [k],

and z = si
jℓ for some j ∈ [p] and ℓ ∈ [ϱ′]. If j = ci, then z = si

ciℓ ∈ D, and N(si
ciℓ) ∩ D = Ai

ℓ,
and therefore |N(z) ∩ D| = ς. (Note that si

ciℓ is not adjacent to any vertex in Si
ci∗ ⊆ D.)

If j ̸= ci, then N(z) ∩ D = Ai
ℓ ∪ Si

ci
, so |N(z) ∩ D| = ς + ϱ′ = ϱ. The second case, when

α = ij ∈ E(K), can be argued in the same way.
Now let a be a vertex in Aα ⊆ D, for some α ∈ I, and assume that α = i ∈ [k]. Then we

have that a ∈ Ai
ℓ for some ℓ ∈ [ϱ′], and the intersection of N(a) with D consists of Ai

ℓ \ {a},
and the vertex si

ciℓ. We conclude that |N(a) ∩ D| = ς; the case when α = ij ∈ E(K) is the
same.

B. I. K. Bakkane and L. Jaffke 3:13

Finally, consider some vertex in Xij , where ij ∈ E(K), in particular such a vertex is xij
a

for some a ∈ [p]. Since D ∩ X = ∅, we have that xij
a /∈ D. Furthermore, N(xij

a) contains
X1 ⊆ D. Now, suppose that a = ci. Then, Si

ci∗ is also in N(xij
a) ∩ D. The only other

neighbors of vertices in Xij that are not in X ∪ Si
∗∗ ∪ X are in Rij

∗∗. However, the only
vertices in D ∩ Rij

∗∗ are in Rij
cicj∗, and by construction, xij

ci
is not adjacent to any of them.

Therefore, xij
ci

has ς + ϱ′ = ϱ neighbors in D. If a ̸= ci, the argument is similar, but with the
roles of Si

a and Rij
cicj∗ exchanged. ◁

▷ Claim 18. If there exists a (σ, ρ)-dominating set of size at most k1 in H1, then (K, G, ϕ)
is a Yes-instance of the Partitioned Subgraph Isomorphism problem.

Proof. Let D ⊆ V (H1) be the (σ, ρ)-dominating set of size at most k1 in H1. We show that
for all α ∈ I there is some β ∈ J such that Zα

β∗ ⊆ D. From these pairs (α, β), we will then
derive a solution to (K, G, ϕ). Recall that |Zα

β∗| = ϱ′ for all such α, β, so as a first step we
show that

for all α ∈ I, |Zα
∗∗ ∩ D| = ϱ′. (1)

Let α ∈ I. We first show that |(Zα
∗∗ ∪ Aα) ∩ D| = ϱ′(ς + 1), and narrow down to prove (1)

afterwards. Towards this, we argue that |(Zα
∗∗ ∪ Aα) ∩ D| ≥ ϱ′(ς + 1). Observe that

for all ℓ ∈ [ϱ′], Aα
ℓ ⊆ D or |N [Aα

ℓ] ∩ D| ≥ ϱ. (2)

Indeed, for all v ∈ Aα
ℓ , either v ∈ D, or |N(v) ∩ D| ≥ ϱ. This in turn means that either

Aα ⊆ D or that there is some ℓ ∈ [ϱ′], such that |N [Aα
ℓ] ∩ D| ≥ ϱ. Let a be the number of

ℓ ∈ [ϱ′] such that Aα
ℓ ̸⊆ D. Since |Aα

ℓ | = ς and for distinct ℓ, ℓ′ ∈ [ϱ′], N [Aα
ℓ] ∩ N [Aα

ℓ′] = ∅,
this implies together with (2) that

|(Zα
∗∗ ∪ Aα) ∩ D| ≥ (ϱ′ − a)ς + aϱ = ϱ′(ς + a). (3)

Now, if a ≥ 1, then we can conclude immediately that |(Zα
∗∗ ∪ Aα) ∩ D| ≥ ϱ′(ς + 1), so

suppose a = 0. Then, by (2), Aα
ℓ ⊆ D for all ℓ ∈ [ϱ′]. However, |Aα

ℓ | = ς, so there has to
be at least one more vertex in N(Aα

ℓ) ∩ D. Since N(Aα
ℓ) ⊆ Zα

∗∗, and for distinct ℓ, ℓ′ ∈ [ϱ′]
N(Aα

ℓ) ∩ N(Aα
ℓ′) = ∅, it follows that D has to contain at least another ϱ′ vertices from Zα

∗∗;
therefore, also when a = 0, we have that |(Zα

∗∗ ∪ Aα) ∩ D| ≥ ϱ′(ς + 1).
We show that by the choice of k1, the inequality we just argued is an equality. To do so,

consider X . Since there is a vertex in X whose degree is ς, and since ς < ϱ, we conclude that
X ⊆ D. We have argued that

|D| ≥ ς + 1 + |I| · ϱ′ · (ς + 1) = ς + 1 + (k + |E(K)|)(ϱ′ς + ϱ′) = k1,

and since |D| ≤ k1 by assumption, we have that |D| = k1 and

for all α ∈ I, |(Zα
∗∗ ∪ Aα) ∩ D| = ϱ′(ς + 1). (4)

Note that since the vertices considered so far already use up all the budget, we also have
X ∩ D = ∅.

As a last step, we argue that Aα ⊆ D, which together with (4) implies (1). (Recall that
|Aα| = ϱ′ς.) In other words, we want to show that a = 0. If a > 1, then by (3) we get
a contradiction with (4). So suppose that a = 1, and let ℓ ∈ [ϱ′] be such that Aα

ℓ ̸⊆ D.
For each ℓ′ ∈ [ϱ′] \ {ℓ}, Aα

ℓ′ ⊆ D; and since |Aα
ℓ′ | = ς, there is at least one more vertex in

IPEC 2022

3:14 Hardness of Domination Problems Parameterized by Mim-Width

N(Aα
ℓ′) ∩ D. Similar to above, this allows us to conclude that |D′| ≥ (ϱ′ − 1)(ς + 1), where

D′ = D ∩
⋃

ℓ′∈[ϱ′]\{ℓ} N [Aα
ℓ′]. By (2), we have that |N [Aα

ℓ] ∩ D| ≥ ϱ, and by construction
N [Aα

ℓ] ∩ D′ = ∅. Together with (4) this means that

ϱ′(ς + 1) = |(Zα
∗∗ ∪ Aα) ∩ D| ≥ (ϱ′ − 1)(ς + 1) + ϱ = ϱ′(ς + 1) + ϱ′ − 1,

which only holds if ϱ′ ≤ 1. However, ϱ > ς + 1, so ϱ′ = ϱ − ς > 1, a contradiction. We have
argued that a = 0, and therefore Aα ⊆ D, proving (1) due to (4).

Now that we know that |Zα
∗∗ ∩ D| = ϱ′, it remains to show that there is some β ∈ J such

that Zα
β∗ ⊆ D. Suppose not, then there exists some γ ∈ J such that 1 ≤ |Zα

γ∗ ∩ D| < ϱ′. Let
zα

γℓ /∈ D where ℓ ∈ [ϱ′]. The neighborhood of zα
γℓ is contained in Aα

ℓ , Zα
∗∗, and X. So, zα

γℓ has
ς neighbors in D ∩ Aα

ℓ , no neighbors in D ∩ X (recall that X ∩ D = ∅), and at most ϱ′ − 1
neighbors in D ∩ Zα

∗∗. The latter is due to the fact that Zα
γ∗ contains at least one vertex

from D, and the fact that Zα
γ∗ is an independent set. So |N(zα

γℓ) ∩ D| ≤ ς + ϱ′ − 1 = ϱ − 1, a
contradiction with D being a (σ, ρ)-dominating set.

Then for all i ∈ [k] there exists a ci ∈ [p] such that Si
ci∗ ⊆ D, and for all ij ∈ E(K) there

exists di, dj ∈ [p] such that Rij
didj∗ ⊆ D. Suppose that ci ≠ di then notice the vertex xij

di
is

only being dominated by the ς < ϱ vertices in X ∩ D, but ς ̸∈ ρ. Therefore ci = di, and by
a similar argument cj = dj . We can conclude that the edges {vi

ci
vj

cj
| i, j ∈ [k]} exist in G.

Then the function f : V (K) → V (G) where f(i) = vi
ci

, is a function preserving neighbors
and colors. ◁

4.2.3 When ϱ < ς + 1
Let ς ′ = ς − ϱ + 1. In this case, we construct the graph solution size pair: (H2, k2), where

k2 = (ς + 1) · (|E(K)| + k) + ς + 1.

The graph H2 is obtained from H by the modifications given below. Recall the operation of
a depth-ℓ grid of cliques implant, see Definition 9; and for convenience, for all α ∈ I and
β ∈ J such that zα

β ∈ V (H), let zα
β = zα

β0.

1. For each α ∈ I, we perform a depth-ς ′ grid of cliques implant at Zα. We call the ℓ-th
column Zα

∗ℓ, for all ℓ ∈ [ς ′]0, and the β-th row Zα
β∗, for all β such that zα

β ∈ Zα. Let
Zα

∗∗ =
⋃

ℓ∈[ς′]0
Zα

∗ℓ.
2. For each α ∈ I: If ϱ > 1, then we add a clique Aα of size ϱ − 1, where the vertices in Aα

are adjacent to all vertices in Zα
∗∗. If ϱ = 1 then Aα = ∅.

3. We add a clique X of size ς + 1 to H2. This clique is partitioned into two parts X1 and
X2, where X1 has size ϱ − 1 and all its vertices are adjacent to all vertices in X. The
vertices in X2 are only adjacent to all all vertices in X and X2 has size ς ′ + 1.2

▷ Claim 19 (♣). There is a linear order Λ2 of V (H2) computable in polynomial time such
that mimw(Λ2) = O(|E(K)|).

▷ Claim 20 (♣). If (K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism
problem, then there exists a ({ς}, {ϱ})-dominating set of size k2 in H2.

▷ Claim 21 (♣). If there exists a (σ, ρ)-dominating set of size at most k2 in H2, then
(K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism problem.

2 The set X is not needed for correctness when ς = 0, but for simplicity we include it anyway.

B. I. K. Bakkane and L. Jaffke 3:15

Figure 6 Example of the modifications to S1 ∪ X12 for p = 3, ς = 6, ϱ = 4.

4.2.4 When ϱ ≥ 1 and ς = 0

In this case, we construct the graph solution size pair (H3, k3), where k3 = ϱ(k + |E(K)|),
and H3 is constructed from H follows.

1. For each α ∈ I, β ∈ J such that zα
β ∈ V (H), we perform an independent (ϱ − 1)-

blowup of zα
β .3 We call the twins of zα

β : zα
β2, ..., zα

βϱ, and we let zα
β = zα

β1. We let
Zα

β∗ = {zα
βℓ | ℓ ∈ [ϱ]}, Zα

∗ℓ = {zα
βℓ | β ∈ J s.t. zα

β ∈ V (H)}, and Zα
∗∗ = Zα ∪

⋃
ℓ∈[ϱ] Zα

∗ℓ.
2. For all α ∈ I, we add a clique Aα of size ϱ, and we connect all of its vertices to to all the

vertices in Zα
∗∗.

▷ Claim 22 (♣). There is a linear order Λ3 of V (H3) computable in polynomial time such
that mimw(Λ3) = O(|E(K)|).

▷ Claim 23 (♣). If (K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism
problem, then there exists a ({ς}, {ϱ})-dominating set of size k3 in H3.

▷ Claim 24 (♣). If there exists a (σ, ρ)-dominating set of size at most k3 in H3, then
(K, G, ϕ) is a Yes-instance of the Partitioned Subgraph Isomorphism problem.

4.3 Maximization problems

For maximization problems, we can reuse the constructions as in the previous section; however
we let ς = max(σ) and ϱ = max(ρ) (instead of taking the minima of σ and ρ). This is why
we require σ and ρ to be finite.

When ς < ϱ, we construct (H1, k1) as in Section 4.2.2. Therefore the mim-width bound
follows by the same arguments, and one direction of the correctness proof is already shown
in Claim 17. A bit of attention is necessary in case ϱ′ = 0, but the arguments still work
after some minor tweaks. In case ς ≥ ϱ, we construct (H2, k2) as in Section 4.2.3. Again, the
mim-width bound and one direction of the correctness proof (Claim 20) are already taken
care of. The remaining proofs and other details are given in the full version.

3 If ϱ = 1 then this step is skipped.

IPEC 2022

3:16 Hardness of Domination Problems Parameterized by Mim-Width

5 Conclusion

In this work, we proved that each Min (σ, ρ)-Dominating Set problem is either polynomial-
time solvable or W[1]-hard parameterized by the mim-width of a given linear branch de-
composition of the input graph plus solution size, and that the same holds for Max (σ, ρ)-
Dominating Set problems whenever σ and ρ are finite. An immediate open question is
whether we can complete the dichotomy for maximization problems to the cases when σ

and/or ρ are infinite.

▶ Open Problem 1. Is it true that for all σ, ρ ⊆ N, including infinite sets, Max (σ, ρ)-
Dominating Set is either polynomial-time solvable or W[1]-hard when parameterized by the
mim-width of a given linear branch decomposition of the input graph?

For all the W[1]-hard cases, our reductions also ruled out f(w)no(w/ log w)-time algorithms
under the ETH, for any computable f , where n is the number of vertices of the input graph
and w the mim-width of the given linear branch decomposition. Since the algorithms for
finite and co-finite Min/Max (σ, ρ)-Dominating Set problems run in nO(w) time [13], it is
a natural question to close this gap.

▶ Open Problem 2. Are there finite or co-finite sets σ, ρ ⊆ N such that an algorithm
for the Min/Max (σ, ρ)-Dominating Set problem that is W[1]-hard parameterized by the
mim-width w of a given (linear) branch decomposition of the input n-vertex graph, running
in no(w) time, would refute the ETH?

In this work, we only considered minimization and maximization variants of (σ, ρ)-
Dominating Set problems. A third variant, say the Exact (σ, ρ)-Dominating Set
problem, asks for a (σ, ρ)-dominating set of size exactly k. While all hardness proofs given in
this work also work for Exact (σ, ρ)-Dominating Set problems, these problems are not
trivial to solve when 0 ∈ ρ, as the empty set is not a solution in this case (unless, of course,
k = 0). We therefore ask the following question, and remark that the analogous question
parameterized by solution size was asked by Golovach et al. [23].

▶ Open Problem 3. Are there some (finite or co-finite) σ, ρ ⊆ N with 0 ∈ ρ such that
Exact (σ, ρ)-Dominating Set parameterized by the mim-width of a given (linear) branch
decomposition is W[1]-hard?

In a recent work [17], Eiben et al. introduced a framework of width measures based on
branch decompositions over the vertex set. There, given a family F of biparite graphs, the
value of a cut is determined as the largest graph in F that appears as a semi-induced subgraph
across the cut. Mim-width is an instantiation of this framework where F is the family of
matchings. Our hardness proofs greatly rely on the fact that mim-width is not closed under
taking the complement of the graph. It would be interesting to see what happens to the
complexity of the problems in this work when one considers the width measure obtained
by letting F be the union of the family of matchings and anti-matchings as the parameter,
which results in a parameter related to mim-width that is closed under the complement.

Lastly, we want to point out that we cannot expect to prove W[1]-completeness for the
W[1]-hard cases of Min/Max (σ, ρ)-Dominating Set parameterized by linear mim-width
considered in this work. In a recent work, Bodlaender et al. [7] showed that the Minimum
Dominating Set and Maximum Independent Set problems parameterized by the mim-
width of a given linear branch decomposition of the input graph are XNLP-complete [8].
This in turn implies that these problems are W[t]-hard for all t, which makes containment in

B. I. K. Bakkane and L. Jaffke 3:17

W[1] unlikely. Furthermore, we believe that the ideas used in our work and those from [7]
can be combined to show that all W[1]-hard cases from our work are indeed XNLP-hard.
Membership in XNLP can be derived for all finite or co-finite σ and ρ, in a similar way as it
is done for Maximum Independent Set and Minimum Dominating Set in [7].

References
1 Ranendu Adhikary, Kaustav Bose, Satwik Mukherjee, and Bodhayan Roy. Complexity of

maximum cut on interval graphs. In Kevin Buchin and Éric Colin de Verdière, editors,
Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021),
volume 189 of LIPIcs, pages 7:1–7:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.SoCG.2021.7.

2 Brage I. K. Bakkane. Hardness of non-trivial generalized domination problems parameterized
by linear mim-width. Master’s thesis, University of Bergen, Norway, 2022.

3 Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science, 511:54–65, 2013. doi:10.1016/j.tcs.
2013.01.011.

4 Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem
for mim-width. CoRR, abs/2022.13335, 2022.

5 Benjamin Bergougnoux and Mamadou Moustapha Kanté. More applications of the d-
neighbourhood equivalence: Acyclicity and connectivity constraints. SIAM Journal on Discrete
Mathematics, 35(3):1881–1926, 2021. doi:10.1137/20M1350571.

6 Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway cut and
subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84(5):1385–1417,
2022. doi:10.1007/s00453-022-00936-w.

7 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima.
XNLP-completeness for parameterized problems on graphs with a linear structure. CoRR,
abs/2201.13119, 2022. To appear in the proceedings of IPEC 2022. arXiv:2201.13119.

8 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, (FOCS
2021), pages 193–204. IEEE, 2021. doi:10.1109/FOCS52979.2021.00027.

9 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
Tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/
3486655.

10 Flavia Bonomo-Braberman, Nick Brettell, Andrea Munaro, and Daniël Paulusma. Solving
problems on generalized convex graphs via mim-width. In Anna Lubiw and Mohammad R.
Salavatipour, editors, Proceedings of the 17th International Symposium on Algorithms and
Data Structures (WADS 2021), volume 12808 of Lecture Notes in Computer Science, pages
200–214. Springer, 2021. doi:10.1007/978-3-030-83508-8_15.

11 Nick Brettell, Jake Horsfield, Andrea Munaro, Giacomo Paesani, and Daniël Paulusma.
Bounding the mim-width of hereditary graph classes. Journal of Graph Theory, 99:117–151,
2022.

12 Nick Brettell, Jake Horsfield, Andrea Munaro, and Daniël Paulusma. List k-colouring Pt-
free graphs: A mim-width perspective. Information Processing Letters, 173:106168, 2022.
doi:10.1016/j.ipl.2021.106168.

13 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer
Science, 511:66–76, 2013.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

IPEC 2022

https://doi.org/10.4230/LIPIcs.SoCG.2021.7
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1137/20M1350571
https://doi.org/10.1007/s00453-022-00936-w
http://arxiv.org/abs/2201.13119
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1007/978-3-030-83508-8_15
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1007/978-3-319-21275-3

3:18 Hardness of Domination Problems Parameterized by Mim-Width

15 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 5th
edition, 2016.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Eduard Eiben, Robert Ganian, Thekla Hamm, Lars Jaffke, and O-joung Kwon. A unifying
framework for characterizing and computing width measures. In Mark Braverman, editor,
Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS
2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 63:1–
63:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ITCS.2022.63.

18 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

19 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/
s00453-020-00692-9.

20 Esther Galby, Andrea Munaro, and Bernard Ries. Semitotal domination: New hardness results
and a polynomial-time algorithm for graphs of bounded mim-width. Theoretical Computer
Science, 814:28–48, 2020.

21 M. R. Garey, David S. Johnson, G. L. Miller, and Christos H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods,
1(2):216–227, 1980. doi:10.1137/0601025.

22 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

23 Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. Parameterized complexity of generalized
domination problems. Discrete Applied Mathematics, 160(6):780–792, 2012. doi:10.1016/j.
dam.2010.11.012.

24 Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science, 11(3):423–443, 2000. doi:10.1142/
S0129054100000260.

25 Carolina Lucía Gonzalez and Felix Mann. On d-stable locally checkable problems on bounded
mim-width graphs. CoRR, abs/2203.15724, 2022. doi:10.48550/arXiv.2203.15724.

26 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

27 Lars Jaffke. Bounded Width Graph Classes in Parameterized Algorithms. PhD thesis, University
of Bergen, Norway, 2020.

28 Lars Jaffke, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. Mim-width III.
Graph powers and generalized distance domination problems. Theoretical Computer Science,
796:216–236, 2019. doi:10.1016/j.tcs.2019.09.012.

29 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width I. Induced path problems. Discrete
Applied Mathematics, 278:153–168, 2020. doi:10.1016/j.dam.2019.06.026.

30 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. The feedback vertex set
problem. Algorithmica, 82:118–145, 2020. doi:10.1007/s00453-019-00607-3.

31 Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

32 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.

33 Jan Arne Telle. Complexity of domination-type problems in graphs. Nordic Journal on
Computing, 1(1):157–171, 1994.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1137/0601025
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/j.dam.2010.11.012
https://doi.org/10.1016/j.dam.2010.11.012
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.48550/arXiv.2203.15724
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1016/S0022-0000(03)00078-3

B. I. K. Bakkane and L. Jaffke 3:19

34 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems
on partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997. doi:
10.1137/S0895480194275825.

35 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway,
2012.

IPEC 2022

https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1137/S0895480194275825

FPT Approximation for Fair Minimum-Load
Clustering
Sayan Bandyapadhyay #

Department of Informatics, University of Bergen, Norway

Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Nidhi Purohit #

Department of Informatics, University of Bergen, Norway

Kirill Simonov #

Algorithms and Complexity Group, TU Wien, Austria

Abstract

In this paper, we consider the Minimum-Load k-Clustering/Facility Location (MLkC) problem where
we are given a set P of n points in a metric space that we have to cluster and an integer k > 0 that
denotes the number of clusters. Additionally, we are given a set F of cluster centers in the same
metric space. The goal is to select a set C ⊆ F of k centers and assign each point in P to a center
in C, such that the maximum load over all centers is minimized. Here the load of a center is the
sum of the distances between it and the points assigned to it.

Although clustering/facility location problems have rich literature, the minimum-load objective
has not been studied substantially, and hence MLkC has remained a poorly understood problem.
More interestingly, the problem is notoriously hard even in some special cases including the one in
line metrics as shown by Ahmadian et al. [APPROX 2014, ACM Trans. Algorithms 2018]. They also
show APX-hardness of the problem in the plane. On the other hand, the best-known approximation
factor for MLkC is O(k), even in the plane.

In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al.
[NeurIPS, 2017]. Here the input points are partitioned into ℓ protected groups, and only clusters
that proportionally represent each group are allowed. MLkC is the special case with ℓ = 1. For the
fair version, we are able to obtain a randomized 3-approximation algorithm in f(k, ℓ) · nO(1) time.
Also, our scheme leads to an improved (1 + ϵ)-approximation in the case of Euclidean norm with
the same running time (depending also linearly on the dimension d). Our results imply the same
approximations for MLkC with running time f(k) · nO(1), achieving the first constant-factor FPT
approximations for this problem in general and Euclidean metric spaces.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases fair clustering, load balancing, parameterized approximation

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.4

Funding The research leading to these results have been supported by the Research Council of
Norway via the project BWCA (grant no. 314528), European Research Council (ERC) via grant
LOPPRE, reference 819416, and Austrian Science Fund (FWF) via project P31336 (New Frontiers
for Parameterized Complexity).

© Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Sayan.Bandyapadhyay@uib.no
mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Nidhi.Purohit@uib.no
mailto:kirillsimonov@gmail.com
https://doi.org/10.4230/LIPIcs.IPEC.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 FPT Approximation for Fair Minimum-Load Clustering

1 Introduction

Clustering is the task of partitioning a set of data items into a number of groups (or clusters)
such that each group contains similar items. Typically, the similarity in the clusters is
modeled by a proxy objective function, which one needs to optimize. Being a fundamental
computational problem in nature, clustering has a host of diverse applications in computer
science and other disciplines. Consequently, the problem has been studied with several
different and possibly independent objectives. Some of these became notably popular, for
example, k-means, k-median, and k-center [22, 19, 5, 26]. In this paper, we consider an
objective which has not been studied substantially in the literature. In particular, we consider
minimum-load clustering. Here we are given a set P of points in a metric space that we have
to cluster and an integer k > 0 that denotes the number of clusters. Additionally, we are
given a set F of cluster centers in the same metric space. The goal is to select a set C ⊆ F

of k centers and assign each point in P to a center in C, such that the maximum load over
all centers is minimized. Here the load of a center is the sum of the distances between it
and the points assigned to it. That is, if P ′ is the set of points assigned to a center c, then
its load is

∑
p∈P ′ d(c, p), where d is the given metric. We formally refer to this problem as

Minimum-Load k-Clustering (MLkC). MLkC can be used to model applications where the
cost of serving the clients (or points) assigned to a facility (or center) is incurred by the
facility, e.g., assigning jobs to the k best servers from a pool of servers balancing their loads.

Surprisingly, MLkC is NP-hard even if the solution set of centers C is given, via a reduction
from makespan-minimization [2]. In fact, this assignment version of the problem can be
shown to be NP-hard even in line metrics and for k = 2, via a simple reduction from the
Partition problem [29]. (In Partition, given a set of integers, the goal is to partition it into two
subsets such that the difference between the sums of the integers in two subsets is minimized.)
Moreover, [2] proved that the problem is strongly NP-hard in line metrics (points on a line)
and APX-hard in the plane. On the positive side, an O(k)-approximation follows for this
problem from any existing O(1)-approximation for k-median [12, 5, 24, 31, 11]. This is true,
as k-median minimizes the sum of the loads of the centers. Also, constant-approximations
are known for MLkC in some special cases, e.g., in star metrics and line metrics. Beyond
these special cases, obtaining better than O(k)-approximation in polynomial time remained a
notoriously hard question, even in the plane. Indeed, as explicitly pointed out by [2], MLkC
is resilient to attack by the standard approximation techniques including LP rounding and
local search, which has been fairly successful in obtaining good approximation algorithms for
other clustering problems. Given these difficulties, we investigate whether it is possible to
obtain O(1)-approximation for MLkC if we allow time f(k) · nO(1) instead of only nO(1), for
some function f(.) independent of the input size n. Indeed, we study a much more general
fair version of the problem.

Fair clustering was introduced by [14] with the goal of removing inherent biases from the
regular clustering models. In this setting, we also have a sensitive or protected feature of
the data points, e.g., gender or race. The goal is to obtain a clustering where the fraction
of points from a traditionally underrepresented group (w.r.t. the protected feature) in
every cluster is approximately equal to the fraction of points from this group in the whole
dataset. For simplicity, they assumed that the protected feature can take only two values and
designed fair k-center and k-median clustering algorithms in this setting. In particular, here
one is given two sets of points R and B of color red and blue, respectively, and a balance
parameter t ∈ [0, 1]. The objective is to find a clustering such that in every cluster O, the
ratio between the number of red points and the number of blue points is at least t and at

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:3

most 1/t, i.e., t ≤ |O∩R|
|O∩B| ≤ 1/t. Subsequently, [33] considered a general model where the

protected feature can take any number of values and designed fair clustering algorithms for
the k-center objective. Later, [9] and [8] independently considered a fair clustering model
that generalizes the models in both [14] and [33]. In this model, we are given a partition
{P1, P2, . . . , Pℓ} of the input point set P and balance parameters 0 ≤ βi ≤ αi ≤ 1 for each
group 1 ≤ i ≤ ℓ. Then a clustering is called (α, β)-fair if the fraction of points from each
group i in every cluster is at least βi and at most αi. In this paper, we study the (α, β)-Fair
Minimum-Load k-Clustering (FMLkC) problem, where the goal is to compute an (α, β)-fair
clustering that minimizes the maximum load. (For a formal definition, please see Section
2.) We note that the only clustering objectives considered in all the above mentioned works
on fair clustering are k-means, k-median and k-center. To the best of our knowledge, fair
clustering was not studied with the minimum-load objective before our work.

1.1 Our Results and Techniques
Considering the FMLkC problem in general and Euclidean metric spaces we obtain the
following results.

▶ Theorem 1 (Informal). There is a 3-approximation algorithm for (α, β)-Fair Minimum-
Load k-Clustering in general metric spaces that runs in time 2Õ(kℓ2)nO(1). For d-dimensional
Euclidean spaces, there is a (1 + ϵ)-approximation algorithm for (α, β)-Fair Minimum-Load
k-Clustering with running time 2Õ(kℓ2/ϵO(1))nO(1)d.

In the above theorem, the Õ(·) notation hides logarithmic factors. Note that all the
running times are fixed-parameter tractable (FPT) [16] in k, ℓ and ϵ. Moreover, our results
imply the same approximations for Minimum-Load k-Clustering with running times FPT
in only k and ϵ, achieving the first constant-factor FPT approximations for this problem
in general and Euclidean metric spaces. Note that in the Euclidean case, the running
time depends only polynomially on the dimension d. Recall that no better than O(k)-
approximation was known before even in the plane, and this version is known to be APX-hard.
Also, the reduction mentioned before from Partition eliminates the existence of an exact
algorithm in time f(k) · nO(1), unless P ̸= NP, as MLkC in line metrics is already NP-hard
when k = 2. In this sense, our FPT (1 + ϵ)-approximation for Euclidean spaces is tight and
the best possible.

Our results are motivated by the recent FPT approximation results for constrained
clustering with popular k-median and k-means objectives [15, 7]. However, these results
are based on coreset construction. A coreset is a summary of the original dataset from
which it is possible to retrieve a near-optimal clustering. Their main contribution is to show
that it is possible to obtain coresets of size polynomial in k, log n and d. Alternatively, the
input can be compressed to an almost equivalent instance of size poly(kd log n). Then one
can enumerate all possible k-tuples of centers in FPT time using the coreset and output
the k-tuple having the minimum clustering cost. This yields a (1 + ϵ)-approximation for
Euclidean spaces and a slightly larger 3-approximation for general metric spaces due to some
technical reasons. However, such a small-sized coreset is not known for our problems. Instead,
we adapt approaches from [17, 23, 10] used for directly obtaining FPT approximations for
constrained k-median and k-means clustering. We note that these schemes were known only
in the special Euclidean case until recently [23]. All these schemes produce in FPT (in k)
time a list of k-tuples of centers, such that at least one such k-tuple is a near-optimal set of
centers. Using the similarity of the k-median and the minimum-load objectives, we show
these approaches can be adapted for our problems as well. However, given such a k-tuple of

IPEC 2022

4:4 FPT Approximation for Fair Minimum-Load Clustering

centers, assigning the points to the best centers or finding the optimal clustering, in our case
is still NP-hard. Nevertheless, we give a Mixed-Integer Linear Programming (MILP) based
(1 + ϵ)-approximation for this assignment problem that runs in time FPT in k and ℓ (in k

only for MLkC). Our MILP is partly motivated by the fair k-median MILP [7]. However, our
MILP and its rounding are more involved compared to that for fair k-median, especially due
to the difference in the objectives. For example, if we forget about the fairness constraints,
in that case the assignment algorithm for k-median is trivial: assign each point to its closest
center. However, even in this case the assignment problem for MLkC is NP-hard. Also, no
near-optimal assignment scheme was known in the literature (a 2-approximate assignment
scheme follows from the generalized assignment problem (GAP) [34]). Thus, in this case we
give a novel (1 + ϵ)-approximate assignment scheme. In this case, we do not need MILP –
rounding of an LP is sufficient to obtain the desired assignment. All these schemes applied
together help us achieve the desired FPT approximations.

1.2 Related Work
[18] and [4] studied the MLkC problem under the name min-max star cover, where F = P .
In this setting, MLkC can be viewed as a weighted covering problem where the task is to
cover the nodes of a graph by stars. Both works obtain bicriteria approximation for this
problem where the solution returned has near-optimal load, but uses more than k centers.
[2] studied several special cases of the MLkC problem (under the name Minimum-Load
k-Facility Location1). They fully resolved the status of the MLkC problem in line metrics.
On the one hand, they designed a PTAS based on dynamic programming. On the other
hand, they proved that this version is strongly NP-hard. They also designed a quasi-PTAS
in tree metrics. Moreover, they studied a variant of the problem with client demands in star
metrics.

The notion of fair clustering introduced by [14] has been studied extensively in the literat-
ure. For k-center objective, there are several polynomial-time true O(1)-approximations [33, 9].
For k-median and k-means objectives, polynomial-time O(1)-approximations are designed by
violating the fairness constraints by an additive factor [9, 8] and true O(d log n)-approximation
is known in Rd for two groups [6]. On the other hand, it is possible to obtain true O(1)-
approximations for these two objectives if one is allowed to use f(k, ℓ) · nO(1) time [7].
Clustering problems have been studied under several other notions of fairness, e.g., see
[3, 13, 27, 28, 21, 32, 1].

Organization. We define some useful notations and our problem formally in Section 2.
Then we describe the assignment algorithm for the FMLkC problem in Section 3. Finally, in
Section 4, we describe the full algorithms for FMLkC in details.

2 Preliminaries

We are given a set P of points in a metric space (X , d(·, ·)), that we have to cluster. We
are also given a set F of cluster centers in the same metric space. We note that P and F

are not-necessarily disjoint, and in fact, P may be equal to F . In the Euclidean version of
a clustering problem, P ⊆ Rd, F = Rd and d(·, ·) is the Euclidean distance.2 In the metric

1 MLkC can also be viewed as a facility location problem with zero facility opening costs where we can
still open only k facilities.

2 Due to the lack of better notations, we denote the dimension by d and distance function by d(·, ·).

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:5

version, we assume that F is finite. Thus, strictly speaking, the Euclidean version is not a
special case of the metric version. In the metric version, we denote |P ∪ F | by n and in the
Euclidean version, |P | by n. For any integer t ≥ 1, we denote the set {1, 2, . . . , t} by [t].

For a partition O = {O1, . . . , Ok} of P and a set of k cluster centers C = {c1, . . . , ck} ⊂ F ,
we say that O is a clustering of P with the centers c1, . . . , ck. We say that the load cost of this
clustering (also, simply cost of clustering) is maxi∈[k] costci(Oi). Here costci(Oi) denotes the
sum-of-distances cost of the cluster Oi with the center ci, which is costci

(Oi) =
∑

x∈Oi
d(x, ci).

We use the following notation to denote the cost of clustering w.r.t. the set of centers C up
to a permutation of the clusters,

costC(O) = min
i1,...,ik

max
j∈[k]

costcj
(Oij

),

where i1, . . . , ik is a permutation of [k]. We also denote by cost(Oi) the cost of a cluster Oi

with the optimal choice of a center, that is, cost(Oi) = minc∈F costc(Oi), and by cost(O) the
optimal cost of clustering O,

cost(O) = min
C⊂F
|C|=k

costC(O).

Alternatively, a clustering with centers in C ⊂ F can be defined as an assignment φ : P → C.
The assignment φ then corresponds to a clustering {φ−1(c)}c∈C , and we say that the cost of
the assignment φ is cost(φ) = maxc∈C

∑
x∈P :φ(x)=c d(x, c).

Now we formally define the main problem of our interest, where the goal is to find the
minimum-cost clustering that satisfies the fairness constraints.

▶ Definition 2. In the (α, β)-Fair Minimum-Load k-Clustering (FMLkC) problem, we are
given a partition {P1, P2, . . . , Pℓ} of P . We are also given an integer k > 0 and two fairness
vectors α, β ∈ [0, 1]ℓ, α = (α1, . . . , αℓ), β = (β1, . . . , βℓ). The objective is to select a set of
at most k centers C ⊂ F and an assignment φ : P → C such that φ satisfies the following
fairness constraints:

|{x ∈ Pi : φ(x) = c}| ≤ αi · |{x ∈ P : φ(x) = c}| , ∀c ∈ C, ∀i ∈ [ℓ],
|{x ∈ Pi : φ(x) = c}| ≥ βi · |{x ∈ P : φ(x) = c}| , ∀c ∈ C, ∀i ∈ [ℓ],

and cost(φ) is minimized among all such assignments.

Minimum-Load k-Clustering (MLkC) is a restricted case of FMLkC with ℓ = 1, and
hence there is no fairness constraints involved in this case. The (α, β)-Fair k-median problem
is defined identically except there the cost is cost(φ) =

∑
c∈C

∑
x∈P :φ(x)=c d(x, c).

3 Assignment Problem for FMLkC

In the (α, β)-fair assignment problem, we are additionally given a set of centers C ⊂ F and
the goal is to find an assignment φ : P → C such that φ satisfies the fairness constraints and
cost(φ) = maxc∈C

∑
x∈P :φ(x)=c d(x, c) is minimized.

We refer to an assignment as a fair assignment if it satisfies the fairness constraints. Also,
we denote the optimal cost of an (α, β)-fair assignment by OPT. In this section, for any
ϵ > 0, we give a (1 + ϵ)-approximation for this problem in f(k, ℓ, ϵ) · nO(1) time for some
computable function f . In particular, we solve a budgeted version of the problem where we
are also given a budget B and the goal is to decide whether there is a fair assignment of cost
at most B.

IPEC 2022

4:6 FPT Approximation for Fair Minimum-Load Clustering

▶ Lemma 3. Suppose there is an algorithm A that given an instance of budgeted (α, β)-fair
assignment and any ϵ > 0, in T (n, k, ℓ, ϵ) time, either returns a feasible assignment of cost
at most (1 + ϵ)B, or correctly detects that there is no feasible assignment with budget B.
Then for any ϵ > 0, one can obtain a (1 + ϵ)-approximation for (α, β)-fair assignment in
(kℓ)O(kℓ)nO(1) +Oϵ(log k) · T (n, k, ℓ, ϵ/3) time3.

Proof. The idea is to first find a range where OPT belongs and then apply A with budget
within this range to find a feasible assignment. Given an instance I of (α, β)-fair assignment,
first we use an algorithm (Theorem 8.2, [7]) to compute a fair assignment of the points to
the centers of C that minimizes the (α, β)-fair k-median cost. This algorithm runs in time
(kℓ)O(kℓ)nO(1). Let D be the computed (α, β)-fair k-median cost returned by the algorithm.
Then D ≤ k·OPT, as the optimal cost of (α, β)-fair assignment is at least 1/k fraction of the
optimal (α, β)-fair k-median cost. Also, OPT ≤ D, as optimal (α, β)-fair assignment cost is
at most the optimal (α, β)-fair k-median cost. Hence D/k ≤ OPT ≤ D.

Let ϵ′ = ϵ/3 and m be the maximum t such that (1 + ϵ′)t ≤ D/k. Also, let M be the
minimum t such that D ≤ (1 + ϵ′)t. Thus (1 + ϵ′)m ≤ OPT ≤ (1 + ϵ′)M . We run the
algorithm A setting ϵ to be ϵ′ for budget B = (1 + ϵ′)i where m ≤ i ≤ M , and use the binary
search to find minimum i such that it returns a feasible assignment for some budget B. Let
B′ be the budget for which this algorithm returns a feasible assignment. Then B′ ≤ (1 + ϵ′)
OPT, as any instance with budget B ≥ OPT is a yes-instance, and for such a B, A returns a
feasible assignment of cost at most (1 + ϵ)B. Hence, the cost of the assignment returned by
A with budget B′ is at most (1 + ϵ′)2 OPT ≤ (1 + ϵ) OPT. As the algorithm A can be used
at most Oϵ(log(M −m+ 1)) = Oϵ(log(D/(D/k))) = Oϵ(log k) times, the whole algorithm
runs in time (kℓ)O(kℓ)nO(1) +Oϵ(log k) · T (n, k, ℓ, ϵ/3). ◀

In the following, we design an LP rounding based algorithm for budgeted (α, β)-fair
assignment with the properties required in the above lemma. Moreover, this algorithm runs
in time kO(kℓ)ℓO((kℓ2/ϵ) log(ℓ/ϵ))nO(1). Hence, we obtain the following theorem.

▶ Theorem 4. For any ϵ > 0, a (1 + ϵ)-approximation for (α, β)-fair assignment can be
obtained in time kO(kℓ)ℓO((kℓ2/ϵ) log(ℓ/ϵ))nO(1).

Next, we design the algorithm for the budgeted version of (α, β)-fair assignment. Recall
that in the budgeted version, we are given an instance I containing ℓ disjoint groups
{Pi} of P = {p1, . . . , pn}, a set of k centers C = {c1, . . . , ck} and the budget B. Our
algorithm first rounds each distance to a power of (1 + ϵ). Fix any center ci ∈ C. We
partition the points in P into a number of classes based on their distances from ci. For all
p ∈ P , let d̂(p, ci) = (1 + ϵ)tϵ2B where t = ⌈log1+ϵ(d(p, ci)/(ϵ2B))⌉. For each distinct t, let
dt = (1 + ϵ)tϵ2B. We refer to the points p with distance d̂(p, ci) = dt from ci as the distance
class t with respect to (w.r.t.) ci, which is denoted by Sit.

▶ Observation 5. For all p ∈ P, c ∈ C, d(p, c) ≤ d̂(p, c) ≤ (1 + ϵ) · d(p, c).

Let I ′ be the new instance of budgeted (α, β)-fair assignment with the modified distance
d̂. Note that d̂ does not necessarily satisfy the triangle inequality. As d̂ is obtained by scaling
d by at most a factor of (1 + ϵ), we have the following observation.

▶ Observation 6. If there is a feasible assignment for I with budget B, then there is a
feasible assignment for I ′ with budget (1 + ϵ)B. Also, if there is a feasible assignment for I ′

with budget (1 + ϵ)B, then there is a feasible assignment for I with budget (1 + ϵ)B.

3 Oϵ(·) notation hides a factor of O(1/ϵ).

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:7

By the above observation, it is sufficient to consider d̂ instead of d for the purpose of
computing an assignment of cost at most (1 + ϵ)B. Henceforth, by distance we mean d̂.

Denote by φ∗ a feasible assignment for I ′ of cost at most (1 + ϵ)B (if any). We define
a point p ∈ P to be costly w.r.t. a center c ∈ C if d̂(p, c) ≥ ϵ2B. Otherwise, we define the
point to be cheap w.r.t. c. Note that the number of costly points that can be assigned to
each center in φ∗ is at most (1 + ϵ)/ϵ2 ≤ 2/ϵ2. The next observation follows from the fact
that dt = (1 + ϵ)tϵ2B.

▶ Observation 7. For any point p and center c ∈ C with d̂(p, c) = dt, t < 0 if p is cheap
w.r.t. c, and t ≥ 0 if p is costly w.r.t. c.

Now, as we are shooting for an assignment of cost at most (1 + ϵ)B, we can discard
all the distances d̂(p, c) larger than (1 + ϵ)B, i.e., we can assume that such a p will never
be assigned to c. Without loss of generality, we assume that all the distances we have are
bounded by (1 + ϵ)B. Let ∆ be the maximum t such that there are p ∈ P and c ∈ C with
d̂(p, c) = dt for a costly point p w.r.t. c. By our previous assumption, d̂(p, c) ≤ (1 + ϵ)B.
Thus ∆ ≤ ⌈log1+ϵ((1 + ϵ)B/(ϵ2B))⌉ = O((1/ϵ) log(1/ϵ)). For 1 ≤ i ≤ k, 0 ≤ t ≤ ∆ and
1 ≤ g ≤ ℓ, let zi,t,g be the number of costly points p ∈ Pg assigned to ci in φ∗ such that
d̂(p, ci) = dt. Note that each zi,t,g ≤ 2/ϵ2, as the total number of costly points assigned to
a center is at most 2/ϵ2. Thus the total number of distinct choices for these variables is
(2/ϵ2)kℓ∆ = (1/ϵ)O((kℓ/ϵ) log(1/ϵ)).

▶ Observation 8. There are (1/ϵ)O((kℓ/ϵ) log(1/ϵ)) distinct choices for the variables {zi,t,g :
1 ≤ i ≤ k, 0 ≤ t ≤ ∆, 1 ≤ g ≤ ℓ}.

As we can probe all such possible choices, we assume that we know the exact values of
these variables in φ∗. Next, we describe a Mixed-Integer Linear Program (MILP) for the
budgeted version of the problem, which is partly motivated by the (α, β)-fair k-median MILP
[7]. For every point pj and center ci, we have a fractional variable xij denoting the extent
up to which pj is assigned to ci. For every center ci and group g ∈ {1, . . . , ℓ}, we have an
integral variable ygi denoting the “weight” of the points assigned to ci from group g. The
constraints of the MILP are described as follows. Constraint 1 ensures that each point is
assigned to the centers up to an extent of 1. Constraint 2 ensures that the weight assigned
from each group g to each center ci is exactly ygi. Constraints 3 and 4 are fairness constraints.
Constraint 5 ensures that the weight of costly points from each class t and group g assigned
to each ci is exactly the same as the guessed value zi,t,g. Constraint 6 ensures that the total
load assigned to each ci is bounded by (1 + ϵ)B. The first and the second expressions on the
left hand side of this constraint are corresponding to costly and cheap points, respectively.∑

1≤i≤k

xij = 1 ∀j ∈ [n] (1)

∑
j∈[n]:pj∈Pg

xij = ygi ∀i ∈ [k], ∀g ∈ [ℓ], (2)

ygi ≥ βg

∑
j∈[n]

xij ∀i ∈ [k], ∀g ∈ [ℓ] (3)

ygi ≤ αg

∑
j∈[n]

xij ∀i ∈ [k], ∀g ∈ [ℓ] (4)

∑
pj∈Pg∩Sit

xij = zi,t,g ∀i ∈ [k], ∀t ∈ {0, . . . ,∆}, ∀g ∈ [ℓ] (5)

IPEC 2022

4:8 FPT Approximation for Fair Minimum-Load Clustering

ℓ∑
g=1

∑
0≤t≤∆

dtzi,t,g +
∑
t<0

dt

∑
pj∈Sit

xij ≤ (1 + ϵ)B ∀i ∈ [k] (6)

xij ≥ 0 ∀j ∈ [n], ∀i ∈ [k], (7)
ygi ∈ Z≥0 ∀i ∈ [k], ∀g ∈ [ℓ]. (8)

Let us denote the above MILP by Fair-LP. A solution to Fair-LP is denoted by (x, y).
We note that the assignment φ∗ induces a feasible solution to Fair-LP. We use the following
popular and celebrated result to solve this MILP.

▶ Proposition 9 ([30, 25, 20]). An MILP with K integral variables and encoding size L, can
be solved in time KO(K)LO(1).

As Fair-LP has kℓ integral variables {ygi} and polynomial encoding size, it can be solved
in (kℓ)O(kℓ)nO(1) time. If this algorithm outputs that there is no feasible solution to Fair-LP,
we conclude that I is a no-instance. Otherwise, let (x∗, y∗) denote the feasible solution
returned by this algorithm. Note that although the y∗ values are integral, x∗ values can very
well be fractional. Next, we show how to round these variables to obtain an integral solution
to Fair-LP such that the load of every center is increased by an additive amount of O(ϵℓB)
compared to its load in (x∗, y∗).

Fix any group g. First, we show how to round the variables corresponding to the points
of Pg. For this purpose, we construct a network GN = (VN , EN) with source S and sink T
(see Figure 1). For each point pj ∈ Pg, there is a node vj in VN . For each distance class t of
every center ci, there is a node wit. Also, for each center ci, there is a node ui. For each
vj ∈ VN , there is an arc (S, vj) of capacity 1. For each pj ∈ Pg and center ci, there is an arc
(vj , wit) of capacity 1 where t is the index such that pj ∈ Sit, i.e, d̂(pj , ci) = dt. For center ci

and distance class t, let λg
it =

∑
pj∈Pg∩Sit

x∗
ij , i.e, the weight assigned from Pg ∩ Sit to ci.

For each node wit, there is an arc (wit, ui) of capacity ⌈λg
it⌉. Lastly, for each center ci, there

is an arc (ui, T) of capacity y∗
gi.

Note that for each center ci, the number of non-empty distance classes is at most the
number of points n. Hence, the size of VN is a polynomial in n. Also, note that the solution
(x∗, y∗) projected on the points of Pg induces a feasible fractional solution for the problem of
computing a flow of value |Pg| in GN .

▶ Observation 10. The network GN has a fractional flow of value |Pg|.

As all the capacities of the arcs are integral, by integrality of flow, there exists an integral
feasible flow in GN of value |Pg|. We compute such a flow f by using any polynomial time
flow computation algorithm. This flow solution f naturally gives us an integral assignment
φf of the points in Pg to the centers in C.

▶ Observation 11. The number of points assigned to each center ci ∈ C via φf is y∗
gi.

Proof. Due to the capacity constraints of the arcs {(ui, T)}, the number of points assigned
to ci must be at most y∗

gi. Also, by definition,
∑k

i=1 y
∗
gi = |Pg|. As f has value |Pg|, the

capacity of the arcs {(ui, T)} must be saturated, which completes the proof. ◀

Next, we analyze the load of Pg assigned to each center via φf .

▶ Lemma 12. For each center ci ∈ C,
∑

pj∈Pg :φf (pj)=ci
d̂(pj , ci) ≤

∑
t dtλ

g
it +O(ϵ)B.

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:9

S T

vi1

vi2

viq

w1t1

w1t2

w2t1

w3t1

w2t2

w3t2

u1

u2

uk

1

1

λgit

y∗g1

y∗g2

y∗gk

Figure 1 Figure showing the network GN constructed using the solution (x∗, y∗).

Proof. Consider the arcs {(wit, ui)}. The maximum flow corresponding to these arcs is
bounded by the sum of the capacities

∑
t⌈λ

g
it⌉. Note that for every 0 ≤ t ≤ ∆, λg

it = zi,t,g,
which is an integer. Now,∑

t<0
dt =

∑
t<0

(1 + ϵ)tϵ2B < ϵ2B((1 + ϵ)/ϵ) = O(ϵ)B (9)

Hence,∑
t<0

dt⌈λg
it⌉ ≤

∑
t<0

dt(λg
it + 1) ≤

∑
t<0

dtλ
g
it +

∑
t<0

dt=(9)
∑
t<0

dtλ
g
it +O(ϵ)B

It follows that,∑
pj∈Pg :φf (pj)=ci

d̂(pj , ci) ≤
∑

t

dt⌈λg
it⌉ =

∑
t≥0

dtλ
g
it +

∑
t<0

dt⌈λg
it⌉

=
∑
t≥0

dtλ
g
it +

∑
t<0

dtλ
g
it +O(ϵ)B =

∑
t

dtλ
g
it +O(ϵ)B ◀

We repeat the above rounding process for all groups g. We combine the assignment
functions φf corresponding to the ℓ disjoint groups to obtain a single assignment for the
points in P . For simplicity, we also refer to this combined assignment as φf . By Observation
11, φf is feasible, as for each center ci and each group g, the weight of the points in Pg

assigned to ci is exactly y∗
gi as in (x∗, y∗). Next, we analyze the total load of each center.

▶ Lemma 13. For each center ci ∈ C,
∑

pj :φf (pj)=ci
d̂(pj , ci) ≤ (1 +O(ϵℓ))B

Proof. ∑
pj :φf (pj)=ci

d̂(pj , ci) =
ℓ∑

g=1

∑
pj∈Pg :φf (pj)=ci

d̂(pj , ci)

=
ℓ∑

g=1

(∑
t

dtλ
g
it +O(ϵ)B

)
(By Lemma 12)

=
ℓ∑

g=1

(∑
t≥0

dtλ
g
it +

∑
t<0

dtλ
g
it

)
+O(ϵℓ)B

IPEC 2022

4:10 FPT Approximation for Fair Minimum-Load Clustering

=
ℓ∑

g=1

(∑
t≥0

dtzi,t,g +
∑
t<0

dt(
∑

pj∈Pg∩Sit

x∗
ij)

)
+O(ϵℓ)B

=
(ℓ∑

g=1

∑
t≥0

dtzi,t,g +
∑
t<0

dt

∑
pj∈Sit

x∗
ij

)
+O(ϵℓ)B

≤ (1 + ϵ)B +O(ϵℓ)B (By Constraint 6 of Fair-LP)
= (1 +O(ϵℓ))B ◀

By scaling ϵ down by a factor of Ω(ℓ), we obtain the desired approximate bound. Thus,
by Observation 8, it follows that the number of distinct possible choices of the zi,t,g val-
ues is (ℓ/ϵ)O((kℓ2/ϵ) log(ℓ/ϵ)). For each such choice, solving the MILP and rounding takes
(kℓ)O(kℓ)nO(1) time. Thus, the algorithm for solving the budgeted version runs in time
kO(kℓ)2O((kℓ2/ϵ) log2(ℓ/ϵ))nO(1). The following lemma completes the proof of Theorem 4.

▶ Lemma 14. The above MILP based algorithm for budgeted (α, β)-fair assignment, in
time kO(kℓ) 2O((kℓ2/ϵ) log2(ℓ/ϵ))nO(1), either returns a feasible assignment of budget at most
(1 + ϵ)B, or correctly detects that there is no feasible assignment of budget B.

4 Approximation Algorithms for FMLkC

In this section, we describe the FPT approximation algorithms for the FMLkC problem,
both in the general metric case and in the Euclidean case. In the general metric case, we
aim for a (3 + ϵ)-approximation, and in the Euclidean case for a (1 + ϵ) approximation, for a
given 0 < ϵ < 1. Essentially, we obtain these algorithms as a combination of our assignment
algorithm presented before, and known generic results for constrained clustering problems
that follow the framework of [17]. Our general metric algorithm employs the result of [23],
and in the Euclidean case we use the result of [10]. Both of these provide algorithms that
in FPT time produce a reasonably short list of candidate sets of k centers, such that for
each possible clustering of the input points one of the sets in the list provides the desired
approximation, with good probability. Note that the results mentioned above are stated in
fact for the k-median objective, and not the minimum-load clustering that we study in this
work. However, by tweaking the error guarantees in the respective proofs we can show that
these results hold in the minimum-load setting as well. Next, we present these in detail.

We start with the Euclidean case and show the following analogue of Theorem 1 in [10]
for the minimum-load objective.

▶ Theorem 15. Given a set of n points P ⊂ Rd, parameters k and 0 < ϵ < 1, there is a
randomized algorithm that in time 2Õ(k/ϵO(1))nd outputs a list L of 2Õ(k/ϵO(1)) k-sized sets of
centers such that for any partition P∗ = {P ∗

1 , . . . , P ∗
k } of P the following event occurs with

probability at least 1/2: there is a set C in L such that

costC(P∗) ≤ (1 + ϵ) max
i∈[k]

cost(P ∗
i).

Proof. The algorithm proceeds exactly as Algorithm 5.1 in [10]. For the analysis, we observe
that Bhattacharya et al. prove the following statement (follows immediately from invariant
P (i) in [10]): With constant probability, there is a set of centers C = {c1, . . . , ck} in the
output of the algorithm and the permutation i1, . . . , ik of the clusters in P∗ such that for
each j ∈ [k],

costcj (P ∗
ij

) ≤ (1 + ϵ

2) · cost(P ∗
ij

) + ϵ

2k ·
k∑

i=1
cost(P ∗

i).

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:11

From here it easily follows that the set of centers C achieves (1 + ϵ)-approximation of the
cost of P∗ with respect to the minimum-load objective:

costC(P∗) ≤ max
j∈[k]

costcj (P ∗
ij

) ≤ (1+ ϵ

2) ·max
j∈[k]

cost(P ∗
ij

)+ ϵ

2k ·
k∑

i=1

cost(P ∗
i) ≤ (1+ϵ) ·max

j∈[k]
cost(P ∗

ij
),

since
∑k

i=1 cost(P ∗
i) ≤ kmaxj∈[k] cost(P ∗

ij
). ◀

In the general metric case, a similar result can be shown, however with the approximation
factor of (3+ ϵ). Specifically, we show an analogue of Theorem 5 in [23] for the minimum-load
objective. Similarly to Theorem 15, the algorithm and the analysis is identical to what is
presented in [23], up to a different view on the cost upper bound.

▶ Theorem 16. Given a set of n points P in a metric space, parameters k and 0 < ϵ < 1,
there is a randomized algorithm that in time (k/ϵ)O(k)n outputs a list L of (k/ϵ)O(k) k-sized
sets of centers such that for any partition P∗ = {P ∗

1 , . . . , P ∗
k } of P the following event occurs

with probability at least 1/2: there is a set C in L such that

costC(P∗) ≤ (3 + ϵ) max
i∈[k]

cost(P ∗
i).

Proof. The algorithm proceeds exactly as Algorithm 1 in [23]. For the analysis, we observe
that Goyal et al. prove the following statement (encapsulated by Property-I in [23]): With
constant probability, there is a set of centers C = {c1, . . . , ck} in the output of the algorithm
and the permutation i1, . . . , ik of the clusters in P∗ such that for each j ∈ [k],

costcj
(P ∗

ij
) ≤ (3 + ϵ

2) · cost(P ∗
ij

) + ϵ

2k ·
k∑

i=1
cost(P ∗

i).

Now, analogously to the proof of Theorem 15, it follows that the set of centers C achieves
(3 + ϵ)-approximation of the cost of P∗ with respect to the minimum-load objective:

costC(P∗) ≤ max
j∈[k]

costcj (P ∗
ij

) ≤ (3+ ϵ

2) ·max
j∈[k]

cost(P ∗
ij

)+ ϵ

2k ·
k∑

i=1

cost(P ∗
i) ≤ (3+ϵ) ·max

j∈[k]
cost(P ∗

ij
),

since
∑k

i=1 cost(P ∗
i) ≤ kmaxj∈[k] cost(P ∗

ij
). ◀

Now, Theorem 15 and Theorem 16 imply that for the Minimum-Load k-Clustering
problem with any given set of constraints on the desired clustering, there exists a (1 + ϵ)-
approximation algorithm in the Euclidean case, and a (3 + ϵ)-approximation algorithm in
the general metric case. The running time is 2Õ(k/ϵO(1))(nd+ T) for both algorithms, where
T is the running time of an algorithm solving the respective assignment problem, either
exact or (1 + ϵ)-approximate. In particular, combining the theorems with our approximation
algorithm for (α, β)-fair assignment (Theorem 4), for the FMLkC problem we obtain a
(1 + ϵ)-approximation in Rd and a (3 + ϵ)-approximation in general metric in FPT time when
parameterized by the number of clusters k and the number of protected groups ℓ.

▶ Theorem 17. For any 0 < ϵ < 1, there exists a randomized (1+ϵ)-approximation algorithm
for (α, β)-Fair Minimum-Load k-Clustering in Rd with running time 2Õ(kℓ2/ϵO(1))nO(1)d. The
same holds in general metric with the approximation factor of (3 + ϵ), where the running
time becomes 2Õ(kℓ2/ϵ)nO(1).

IPEC 2022

4:12 FPT Approximation for Fair Minimum-Load Clustering

Proof. First, we deal with the Euclidean case. Fix an optimal fair min-load k-clustering
P∗ = {P ∗

1 , . . . , P ∗
k } of P . Run the algorithm of Theorem 15 on P with error parameter ϵ0

to obtain the list L of candidate sets of centers, here ϵ0 is such that (1 + ϵ0)2 ≤ (1 + ϵ). In
the following, assume that the event described in the statement of Theorem 15 occurs for
the clustering P∗, by constant number of repetitions the probability of this can be lifted
arbitrarily close to one. That is, there exists a set of k centers C ′ in L such that

costC′(P∗) ≤ (1 + ϵ0) max
i∈[k]

cost(P ∗
i). (10)

Now, for each set of centers C in L, run the (1 + ϵ0)-approximate assignment algorithm given
by Theorem 4 on (P,C), and choose the set of centers C ′′ that gives the best assignment
cost among the considered sets, denote the computed assignment from P to C ′′ by φ. In
what follows, we show that the set of centers C ′′ and the assignment φ : P → C ′′ provide
(1 + ϵ)-approximate solution to the given FMLkC instance. Denote by ψ the assignment
from P to C ′ that the algorithm outputs,

cost(φ) ≤ cost(ψ) ≤ (1 + ϵ0)costC′(P∗) ≤ (1 + ϵ0)2 max
i∈[k]

cost(P ∗
i) ≤ (1 + ϵ) max

i∈[k]
cost(P ∗

i),

where the first inequality is by the choice of C ′′ and φ, the second is by Theorem 4, and the
third inequality is by (10).

Finally, we show that the running time bound holds. Invoking Theorem 15 takes time
2Õ(k/ϵ

O(1)
0)nd, and produces a list of 2Õ(k/ϵ

O(1)
0) sets of centers. On each of them, running

the algorithm of Theorem 4 takes time kO(kℓ)ℓO((kℓ2/ϵ0) log(ℓ/ϵ0))nO(1)d. Since ϵ0 = O(ϵ), the
total running time can be bounded as

2Õ(k/ϵO(1))
(
nd+ kO(kℓ)ℓO((kℓ2/ϵ) log(ℓ/ϵ))nO(1)d

)
= 2Õ(kℓ2/ϵO(1))nO(1)d.

The general metric case is identical, but to obtain the list of candidate sets of centers we
use Theorem 16 instead of Theorem 15. The final cost bound changes to

cost(φ) ≤ cost(ψ) ≤ (1 + ϵ0)costC′ (P∗) ≤ (3 + ϵ0) · (1 + ϵ0) max
i∈[k]

cost(P ∗
i) ≤ (3 + ϵ) max

i∈[k]
cost(P ∗

i),

where ϵ0 is chosen so that (3 + ϵ0) · (1 + ϵ0) ≤ (3 + ϵ). ◀

References
1 Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via

equitable group representations. In Madeleine Clare Elish, William Isaac, and Richard S. Zemel,
editors, FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency,
Virtual Event / Toronto, Canada, March 3-10, 2021, pages 504–514. ACM, 2021.

2 Sara Ahmadian, Babak Behsaz, Zachary Friggstad, Amin Jorati, Mohammad R. Salavatipour,
and Chaitanya Swamy. Approximation algorithms for minimum-load k-facility location. ACM
Trans. Algorithms, 14(2):16:1–16:29, 2018.

3 Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Clustering
without over-representation. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 267–275, 2019.

4 Esther M. Arkin, Refael Hassin, and Asaf Levin. Approximations for minimum and min-max
vehicle routing problems. J. Algorithms, 59(1):1–18, 2006.

S. Bandyapadhyay, F. V. Fomin, P. A. Golovach, N. Purohit, and K. Simonov 4:13

5 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

6 Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner.
Scalable fair clustering. In International Conference on Machine Learning, pages 405–413,
2019.

7 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering
in metric and euclidean spaces and their applications. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.23.

8 Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In Advances in Neural Information Processing Systems, pages 4954–4965, 2019.

9 Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

10 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster Algorithms for the Constrained
k-means Problem. Theory of Computing Systems, 62(1):93–115, 2018.

11 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.

12 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem (extended abstract). In Proceedings of the
31st Annual ACM Symposium on Theory of Computing, pages 1–10, 1999.

13 Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering.
In International Conference on Machine Learning, pages 1032–1041, 2019.

14 Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Advances in Neural Information Processing Systems, pages 5029–5037,
2017.

15 Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated
clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality
property. Algorithmica, 82(4):808–852, 2020.

18 Guy Even, Naveen Garg, Jochen Könemann, R. Ravi, and Amitabh Sinha. Covering graphs
using trees and stars. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai,
editors, Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques, 6th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization
and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ, USA,
August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in Computer Science, pages
24–35. Springer, 2003.

19 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 434–444, 1988.

IPEC 2022

https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://doi.org/10.1007/978-3-319-21275-3

4:14 FPT Approximation for Fair Minimum-Load Clustering

20 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, March 1987.

21 Mehrdad Ghadiri, Samira Samadi, and Santosh S. Vempala. Socially fair k-means clustering.
In Madeleine Clare Elish, William Isaac, and Richard S. Zemel, editors, FAccT ’21: 2021
ACM Conference on Fairness, Accountability, and Transparency, Virtual Event / Toronto,
Canada, March 3-10, 2021, pages 438–448. ACM, 2021.

22 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

23 Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. FPT Approximation for Constrained Metric
k-Median/Means. In 15th International Symposium on Parameterized and Exact Computation
(IPEC 2020), volume 180 of Leibniz International Proceedings in Informatics (LIPIcs), pages
14:1–14:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

24 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001.

25 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12(3):415–440, August 1987.

26 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004.

27 Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering
for data summarization. In 36th International Conference on Machine Learning, ICML 2019,
pages 5984–6003. International Machine Learning Society (IMLS), 2019.

28 Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern. Guarantees
for spectral clustering with fairness constraints. arXiv preprint, 2019. arXiv:1901.08668.

29 Richard E. Korf. A complete anytime algorithm for number partitioning. Artificial Intelligence,
106(2):181–203, 1998.

30 H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, November 1983.

31 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.
Comput., 45(2):530–547, 2016.

32 Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering.
In Mikhail Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT
2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine
Learning Research, pages 3246–3264. PMLR, 2021. URL: http://proceedings.mlr.press/
v134/makarychev21a.html.

33 Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with constraints. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

34 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Math. Program., 62:461–474, 1993. doi:10.1007/BF01585178.

http://arxiv.org/abs/1901.08668
http://proceedings.mlr.press/v134/makarychev21a.html
http://proceedings.mlr.press/v134/makarychev21a.html
https://doi.org/10.1007/BF01585178

On Sparse Hitting Sets:
From Fair Vertex Cover to Highway Dimension
Johannes Blum # Ñ

Universität Konstanz, Germany

Yann Disser #

Technische Universität Darmstadt, Germany

Andreas Emil Feldmann # Ñ

Charles University, Prague, Czechia

Siddharth Gupta # Ñ

University of Warwick, Coventry, UK

Anna Zych-Pawlewicz #

University of Warsaw, Poland

Abstract
We consider the Sparse Hitting Set (Sparse-HS) problem, where we are given a set sys-
tem (V, F , B) with two families F , B of subsets of the universe V . The task is to find a hitting set
for F that minimizes the maximum number of elements in any of the sets of B. This generalizes
several problems that have been studied in the literature. Our focus is on determining the complexity
of some of these special cases of Sparse-HS with respect to the sparseness k, which is the optimum
number of hitting set elements in any set of B (i.e., the value of the objective function).

For the Sparse Vertex Cover (Sparse-VC) problem, the universe is given by the vertex
set V of a graph, and F is its edge set. We prove NP-hardness for sparseness k ≥ 2 and polynomial
time solvability for k = 1. We also provide a polynomial-time 2-approximation algorithm for any k.
A special case of Sparse-VC is Fair Vertex Cover (Fair-VC), where the family B is given by
vertex neighbourhoods. For this problem it was open whether it is FPT (or even XP) parameterized
by the sparseness k. We answer this question in the negative, by proving NP-hardness for constant k.
We also provide a polynomial-time (2 − 1

k
)-approximation algorithm for Fair-VC, which is better

than any approximation algorithm possible for Sparse-VC or the Vertex Cover problem (under
the Unique Games Conjecture).

We then switch to a different set of problems derived from Sparse-HS related to the highway
dimension, which is a graph parameter modelling transportation networks. In recent years a growing
literature has shown interesting algorithms for graphs of low highway dimension. To exploit the
structure of such graphs, most of them compute solutions to the r-Shortest Path Cover (r-SPC)
problem, where r > 0, F contains all shortest paths of length between r and 2r, and B contains all
balls of radius 2r. It is known that there is an XP algorithm that computes solutions to r-SPC of
sparseness at most h if the input graph has highway dimension h. However it was not known whether
a corresponding FPT algorithm exists as well. We prove that r-SPC and also the related r-Highway
Dimension (r-HD) problem, which can be used to formally define the highway dimension of a
graph, are both W[1]-hard. Furthermore, by the result of Abraham et al. [ICALP 2011] there is a
polynomial-time O(log k)-approximation algorithm for r-HD, but for r-SPC such an algorithm is
not known. We prove that r-SPC admits a polynomial-time O(log n)-approximation algorithm.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Approximation algorithms analysis

Keywords and phrases sparse hitting set, fair vertex cover, highway dimension

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.5

Related Version Full Version: https://arxiv.org/abs/2208.14132

© Johannes Blum, Yann Disser, Andreas Emil Feldmann, Siddharth Gupta, and Anna Zych-Pawlewicz;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johannes.blum@uni-konstanz.de
https://algo.uni-konstanz.de/team/blum
https://orcid.org/0000-0003-1102-3649
mailto:disser@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-2085-0454
mailto:feldmann.a.e@gmail.com
https://sites.google.com/site/aefeldmann/home
https://orcid.org/0000-0001-6229-5332
mailto:siddharth.gupta.1@warwick.ac.uk
https://guptasid.bitbucket.io/
https://orcid.org/0000-0003-4671-9822
mailto:anka@mimuw.edu.pl
https://orcid.org/0000-0002-5361-8969
https://doi.org/10.4230/LIPIcs.IPEC.2022.5
https://arxiv.org/abs/2208.14132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Funding Andreas Emil Feldmann: Supported by the Czech Science Foundation GAČR (grant
#19-27871X).
Siddharth Gupta: Supported by the Engineering and Physical Sciences Research Council (EPSRC)
grant no: EP/V007793/1.
Anna Zych-Pawlewicz : This work is part of the project CUTACOMBS that has received funding
from the European Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 714704).

1 Introduction

In this paper, we study the problem of finding a sparse hitting set. That is, we are given a
set system (V,F ,B) on universe V with two set families F ,B ⊆ 2V , and a feasible solution
is a set H ⊆ V that hits (i.e., intersects) every set of F . Instead of minimizing the overall
size of the solution however, we think of the sets of B as being small and we would like
to distribute the solution H among the sets in B as evenly as possible. Intuitively and
depending on the context, the sets in B are balls in some metric and the hitting set should be
sparse within them. That is, we want to find a hitting set for F that minimizes the largest
intersection with the sets of B. Formally, the Sparse Hitting Set (Sparse-HS) problem
with input (V,F ,B) is defined by the following integer linear program (ILP) with indicator
variables xv for each v ∈ V encoding membership in the solution H ⊆ V .

min k such that:
∑
v∈F

xv ≥ 1 ∀F ∈ F (Sparse-HS-ILP)∑
v∈B

xv ≤ k ∀B ∈ B

xv ∈ {0, 1} ∀v ∈ V

The Sparse-HS problem generalizes several problems studied in the literature, with
applications in for instance cellular [24], communication [25], and transportation [2, 22]
networks. Our aim in this paper is to determine the complexity of some basic variants of
Sparse-HS, and we are specifically interested in the complexity depending on the sparseness,
which is the solution value k of (Sparse-HS-ILP). In general, Sparse-HS contains the
Hitting Set problem by setting B = {V }, and thus does not admit any g(k)-approximation
in f(k) · nO(1) time [21], for any computable functions f and g, where n = |V |, under ETH.

Sparse Vertex Cover. A much easier special case of Hitting Set is the well-known
Vertex Cover problem: for the Sparse Vertex Cover (Sparse-VC) problem the set
system is given by a graph G = (V,E) so that F = E and B ⊆ 2V . We show that this
problem is NP-hard for any k ≥ 2, even on very simple input graphs.

▶ Theorem 1. Sparse-VC is NP-hard for any k ≥ 2, even if the input graph is a matching.

Note that this hardness result implies that, unless P=NP, Sparse-VC does not admit
an XP algorithm with runtime nf(k) for any function f (the problem is paraNP-hard
parameterized by the sparseness k). This is in contrast to the Vertex Cover problem,
which is known to be fixed-parameter tractable (FPT) parameterized by the solution size s,
which means that it can be solved much more efficiently in f(s)·nO(1) time for some function f
(which can be shown [10] to be 1.2738s). On the other hand, we will show that for k = 1 the
Sparse-VC problem is polynomial-time solvable, which together with the previous hardness
result settles the complexity of the Sparse-VC problem for every sparseness value k.

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:3

▶ Theorem 2. Sparse-VC is polynomial time solvable for k = 1.

As we will see, Theorem 1 also implies that Sparse-VC does not admit a polynomial-time
(3/2−ε)-approximation algorithm for any ε > 0, unless P=NP. Moreover, As Vertex Cover
is a special case of Sparse-VC with B = {V }, any polynomial time (2 − ε)-approximation
algorithm for Sparse-VC would refute the Unique Games Conjecture (UGC) [28]. On the
positive side, we show that we can match this conditional approximation lower bound with a
2-approximation algorithm. This means that Sparse-VC can be approximated as well as
the Vertex Cover problem, which also admits a 2-approximation [28] in polynomial time.

▶ Theorem 3. Sparse-VC admits a polynomial time 2-approximation algorithm.

Fair Vertex Cover. A special case of Sparse-VC is the Fair Vertex Cover (Fair-VC)
problem where the family of sets B is given by closed neighbourhoods, i.e., if N [v] is the set
containing vertex v and all neighbours of v in G then B = {N [v] | v ∈ V } (alternatively, B
contains all balls of radius 1). The fairness constraint was introduced by Lin and Sahni [25]
in the context of communication networks, and has since then been studied for several
types of problems (cf. Section 1.1), including Vertex Cover [22, 18, 26]. In contrast
to this paper, in [22, 18] the problem is defined slightly differently by considering open
neighbourhoods, i.e., B = {N [v] \ {v} | v ∈ V }, and we call this version Open-Fair-VC.
Notably, the parameterized complexity of Open-Fair-VC has been studied for a plethora of
parameters, including treedepth, treewidth, feedback vertex set, modular width [22], and
the total solution size |H| [18], and most of these results also apply to Fair-VC with closed
neighbourhoods.

Jacob et al. [18] observe that it is NP-hard to decide if a vertex cover of size s exists,
if every neighbourhood is allowed to only contain at most k vertices of the solution H, for
a given constant k ≥ 3: this follows from the fact that Vertex Cover is NP-hard on
sub-cubic graphs [17]. While the authors of [18] call this problem Fair Vertex Cover
as well, note that this is significantly different from the Fair-VC problem studied in this
paper as well as the Open-Fair-VC problem studied in [22]. In particular, on sub-cubic
graphs both of these problems as defined here always trivially have a solution for k ≥ 3,1
and thus the NP-hardness of Vertex Cover on sub-cubic graphs does not immediately
imply NP-hardness of Fair-VC or Open-Fair-VC. In fact, for the natural parameterization
by the sparseness k the complexity of Open-Fair-VC (and also Fair-VC) has so far been
unknown.2 We answer this open problem by showing NP-hardness of Fair-VC for k ≥ 3 and
of Open-Fair-VC for k ≥ 4 on more complex input graphs when compared to Sparse-VC.

▶ Theorem 4. Fair-VC is NP-hard for any k ≥ 3 and Open-Fair-VC is NP-hard for
any k ≥ 4, even on planar input graphs.

Thus, as for Sparse-VC, we can conclude that Fair-VC and Open-Fair-VC do not
admit XP algorithms parameterized by k. For the cases when k ≤ 2, Jacob et al. [18]
provide a polynomial time algorithm that solves their version of Fair Vertex Cover,
which however also works for the Fair-VC and Open-Fair-VC problems as defined in this
paper. Hence this settles the complexity of Fair-VC for every value of k, and only leaves
the value k = 3 open for Open-Fair-VC.

1 Observe that it is never necessary to pick a vertex v and all its neighbours.
2 Tomáš Masařík, personal communication.

IPEC 2022

5:4 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

In terms of approximation, interestingly we are able to obtain a slightly better algorithm
for Fair-VC than for Sparse-VC, namely a (2 − 1

k)-approximation. This beats the best
possible approximation for Sparse-VC and Vertex Cover under UGC [28]. In particular,
the following theorem implies that for the smallest value k = 3 for which Fair-VC is NP-hard,
we can obtain a solution of sparseness 5. We leave open whether a solution of sparseness 4 can
be computed in polynomial time for Fair-VC if k = 3, and whether better approximation
algorithms are possible for Open-Fair-VC.

▶ Theorem 5. Fair-VC admits a polynomial time (2 − 1
k)-approximation algorithm.

Shortest Path Cover and Highway Dimension. We now turn to a different set of problems
derived from Sparse-HS, which as we shall see generalize Fair-VC. Given a value r > 0
and an edge-weighted graph G, for the r-Shortest Path Cover (r-SPC) problem the
family F is given by shortest paths of length between r and 2r and the family B is given
by balls of radius 2r. That is, let Pr contain S ⊆ V if and only if S is the vertex set of a
path in G, which is a shortest path (according to the edge weights) and whose length is in
the range (r, 2r]. Furthermore, let dist(u, v) be the length of a shortest u-v-path and let
Br(v) = {u ∈ V | dist(u, v) ≤ r} denote the ball of radius r centered at v. Then for the
r-SPC problem, F = Pr and B = {B2r(v) | v ∈ V }.

The r-SPC problem finds applications in the context of the highway dimension, which
is a graph parameter introduced by Abraham et al. [2] to model transportation networks.
To define the highway dimension, we define a problem related to r-SPC called r-Highway
Dimension (r-HD), where for each vertex v ∈ V the task is to find a hitting set for all
shortest paths of length in (r, 2r] intersecting the ball B2r(v), and we need to minimize the
largest such hitting set. Note that compared to r-SPC the quantification is reversed, i.e., for
r-SPC there is a hitting set that is small in every ball, while for r-HD for every ball there is
a small hitting set (thus r-HD is not a special case of Sparse-HS). The highway dimension
of an edge-weighted graph G is the smallest integer h such that there is a solution to r-HD
of value at most h in G for every r > 0.

There is empirical evidence [4] that road networks have small highway dimension, and it
has been conjectured [13] that public transportation networks (especially those stemming
from airplane networks) have small highway dimension as well.3 Therefore, there has been
some effort to devise algorithms [13, 2, 12, 14, 11, 11, 5, 19, 8, 7] for problems on low highway
dimension graphs that naturally arise in transportation networks. It is known [1] that if
the highway dimension of a graph G is h, then the r-SPC problem on G has sparseness at
most h for every r > 0, but not vice versa, as the sparseness of r-SPC can be much smaller
than h. However, since a solution to r-SPC consists of one hitting set H ⊆ V for the whole
graph, it is more convenient to work with algorithmically than the n hitting sets for all balls
of radius 2r that form a solution to r-HD. Therefore, algorithms exploiting the structure of
graphs of low highway dimension typically compute a solution to the r-SPC problem for
each of the O(n2) relevant values of r given by the pairwise distances between vertices.

For graphs of low highway dimension, Abraham et al. [1] give an algorithm that for
each relevant value of r computes a solution to the r-HD problem, in order to obtain a
solution to r-SPC with sparseness at most the value of the r-HD solution. While Abraham
et al. [1] propose to use an approximation algorithm for r-HD (see below), note that the

3 In fact there are several definitions of the highway dimension, with the one presented here being
well-suited for public transportation networks, cf. [13, 6]

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:5

r-HD problem admits an XP algorithm with runtime nO(k), since for any ball B2r(v) it can
construct the set system given by all shortest paths of length in (r, 2r] intersecting B2r(v),
for which it can then try every possible k-tuple of vertices as a solution. This algorithm can
thus be used to compute solutions to r-SPC of sparseness at most h in nO(h) time if the
input graph has highway dimension h. Interestingly, it is not possible to compute solutions of
optimum sparseness for r-SPC using an XP algorithm due to the NP-hardness of Fair-VC:
consider an r-SPC instance with unit edge weights and value r = 1/2. Since every edge is a
shortest path between its endpoints, the r-SPC problem on this instance is equivalent to
Fair-VC. As argued above however, no XP algorithm exists for Fair-VC, unless P=NP.

In light of the growing amount of work on problems on low highway dimension graphs, it
would be very useful to have a faster algorithm to solve r-HD in order to compute a hitting
set for r-SPC of corresponding sparseness. While it is known that computing the highway
dimension is NP-hard [13] and this also implies that r-HD is NP-hard, r-HD might still be
FPT and allow algorithms with runtime f(k) · nO(1) for some function f . However, we will
show that it is unlikely that such algorithms exist. In particular, we prove that r-HD is
W[1]-hard parameterized by the solution value k. We also prove that r-SPC does not admit
FPT algorithms (in particular, k here denotes the optimum sparseness and not just an upper
bound that we would obtain by solving r-HD, as suggested above). While already the above
reduction from Fair-VC to r-SPC excludes FPT algorithms for r-SPC, this only excludes
such algorithms for very small values of r, in fact the smallest relevant value for r (as the
problem becomes trivial for even smaller values). A priori it is not clear whether r-SPC
admits FPT (or XP) algorithms for large values of r. In our reduction however, the value
of r takes the largest relevant value, so that there exists a ball of radius 2r containing the
whole graph.

▶ Theorem 6. Both r-HD and r-SPC are W[1]-hard parameterized by their solution values k,
where 2r is the radius of the input graph.

One caveat of this hardness result is that it does not answer the question of whether
computing the highway dimension is FPT or not. This is because the presented reduction
only shows hardness of r-HD for a large value r. However, for smaller values of r the solution
value to r-HD is unbounded in the constructed graph, and thus the graph does not have
bounded highway dimension. This means that it might still be possible to compute the
highway dimension in FPT time, but not using the existing tools provided by Abraham et
al. [1], where each value r is considered separately. Instead, if such an algorithm exists it
must consider the structure of the whole graph. We leave open whether there is such an
algorithm.

As mentioned above, Abraham et al. [1] propose an approximation algorithm for r-HD:
under the assumption that all shortest paths are unique (which can always be achieved by
slightly perturbing the edge lengths), r-HD admits a polynomial time O(log k)-approximation
algorithm. Due to the fact that the sparseness of r-SPC can be a lot smaller than the solution
value to r-HD,4 it is not known how to obtain such an algorithm for r-SPC. However, we
prove the existence of a weaker O(log n)-approximation algorithm.

▶ Theorem 7. r-SPC admits a polynomial time O(log n)-approximation algorithm.

4 as for instance witnessed by the graphs constructed in the reduction for Theorem 4 and value r = 1/2.

IPEC 2022

5:6 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Dense Matching. Finally, in light of the above results for Sparse-VC, we also consider
the dual Dense Matching problem, where we are given a graph G = (V,E) and the
task is to find a matching M ⊆ E maximizing the smallest number of matching edges
induced by a set in the family B, i.e., the minimum |M ∩ E(B)| over all B ∈ B, where
E(B) = {{u, v} ∈ E | u, v ∈ B}. Despite the Maximum Matching problem being
polynomial-time solvable, we show that Dense Matching does not admit a polynomial time
(2−ε)-approximation, even if B is restricted to balls of radius two, unless P=NP. Interestingly,
a matching 2-approximation seems a lot harder to come by compared to Sparse-VC, and
we leave open whether a constant approximation is possible for Dense Matching.

▶ Theorem 8. It is NP-hard to approximate Dense Matching within 2 − ε for any ε > 0,
even if B = {B2(v) | v ∈ V } where all edges have weight 1.

Due to space restrictions, the proof of Theorem 8 can be found in the appendix.

1.1 Related Work
Apart from the work cited above, we here list some additional related work. Kanesh et
al. [20] study the Fair Feedback Vertex Set problem, where the family F contains
all vertex sets of cycles of the input graph (in this case F is not part of the input). They
prove results on the parameterized complexity of several versions of this problem, where
the considered parameters include treewidth, treedepth, neighbourhood diversity, the total
solution size, and the maximum vertex degree. Jacob et al. [18] consider the parameterized
complexity of the Fair Set and Fair Independent Set problems, but also Π-Fair Vertex
Deletion, where Π is any property expressible in first order (FO) logic. Knop et al. [22] study
Π-Fair Vertex Deletion for properties Π expressible in monadic second order (MSO1)
logic parameterized by the twin cover number. They also consider Fair-VC parameterized
by treedepth, feedback vertex number, and modular width. Agrawal et al. [3] study the
parameterized complexity of the Minimum Membership Dominating Set problem, where
F = B = {N [v] | v ∈ V }, and consider parameterizations by pathwidth, sparseness, and
vertex cover number.

While in this paper we study Sparse-HS problems on graphs where the universe is the
set of vertices, another line of work studies variants of Sparse-HS when the universe is the
edge set. For instance, the work of Lin and Sahni [25] that introduced the fairness constraint,
studies the Fair Feedback Edge Set problem, where the family F contains the edge
sets of all cycles of the input graph. Masařík and Toufar [26] consider the parameterized
complexity of the Π-Fair Edge Deletion problem, where Π is a property expressible
in FO logic or in MSO logic. For each of these problems they study parameterizations by
the treewidth, pathwidth, treedepth, feedback vertex set number, neighbourhood diversity,
and vertex cover number. Kolman et al. [23] study the Π-Fair Edge Deletion problem
on graphs of bounded treewidth, where Π is any property expressible in MSO logic. They
also give tight polynomial-time O(

√
n)-approximation algorithms for Fair Odd Cycle

Transversal and Fair Min Cut, where the family F contains all edge sets of odd cycles
and (s, t)-paths for given vertices s and t, respectively. Another notable problem is Min
Degree Spanning Tree, where the family F consists of every edge cut under the fairness
constraint. Fürer and Raghavachari [15] prove that the problem is NP-hard but a solution of
sparseness k + 1 can be computed in polynomial-time.

Regarding the complexity of computing the highway dimension, it is interesting to note
that Abraham et al. [1] show that any set system given by unique shortest paths has
VC-dimension 2 (this observation also leads to the above mentioned O(log k)-approximation

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:7

algorithm for r-HD). At the same time, Bringmann et al. [9] prove that the Hitting Set
problem is W[1]-hard for set systems of VC-dimension 2. Hence it is intriguing to think that
the latter reduction could possibly be modified to also prove W[1]-hardness for r-HD or
r-SPC. However, it seems that shortest paths exhibit a lot more structure than general set
systems of VC-dimension 2, and thus it is unclear how to obtain a hardness result for r-HD
or r-SPC based on [9]. Instead, a more careful reduction as provided in Theorem 6 seems
necessary.

2 Sparse Vertex Cover

In this section we consider the Sparse-VC problem and start by proving NP-hardness for
any k ≥ 2.

▶ Theorem 1. Sparse-VC is NP-hard for any k ≥ 2, even if the input graph is a matching.

Proof. We reduce from a variant of the satisfiability problem called exactly-3-Sat, meaning
that all clauses contain exactly three literals. This problem was shown to be NP-complete
in [16]. For a set of variables X = {xi}i, we use the notation X̄ := {x̄i}i.

Let an instance of exactly-3-Sat be given by a set of variables X = {xi}i=1,...,n

and a set of clauses C = {Cj}j=1,...,m with Cj ⊂ X ∪ X̄, |Cj | = 3. We define the graph
G = (V,E) by V = X ∪ X̄ ∪ {yi, ȳi | i ∈ {1, . . . , k− 1}} and E = {{xi, x̄i} | i ∈ {1, . . . , n}} ∪
{{yi, ȳi} | i ∈ {1, . . . , k − 1}}. We further let C̃ = C ∪ {y1, ȳ1, . . . , yk−2, ȳk−2} and choose
B = {{xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1} | i ∈ {1, . . . , n}} ∪ {C̃ | C ∈ C}. This construction can
be carried out in linear time and G is a matching. For NP-hardness, it remains to show that
G has a vertex cover H ⊆ V satisfying |H ∩B| ≤ k for every B ∈ B if and only if the given
exactly-3-Sat instance has a satisfying assignment.

To see this, first assume that the given exactly-3-Sat instance has a satisfying assign-
ment α : X → {0, 1} and extend α to X̄ by letting α(x̄) := 1 −α(x). We construct the vertex
cover H = {x ∈ X ∪ X̄ | α(x) = 0} ∪ {y1, . . . , yk−1}. Indeed, H is a vertex cover, since
every edge of G is covered by exactly one of its endpoints. It also follows that, for every
i ∈ {1, . . . , n}, we have |{xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1} ∩H| = k. By definition of α, for every
C ∈ C, we have

∑
x∈C α(x) ≥ 1, hence

∣∣H ∩ C̃
∣∣ = |H ∩ C| + k − 2 =

∑
x∈C α(x̄) + k − 2 =

3 −
∑

x∈C α(x) + k − 2 ≤ k.
Conversely, suppose that there exists a vertex cover H ⊆ V with |H ∩B| ≤ k for

all B ∈ B. We claim that α(x) = |{x̄} ∩H| defines a satisfying assignment for the given
exactly-3-Sat instance. Observe that we must have |{xi, x̄i} ∩H| ≥ 1 for all i ∈ {1, . . . , n}
and |{yi, ȳi} ∩H| ≥ 1 for all i ∈ {1, . . . , k − 1}, since H needs to cover all edges. Since
{xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1} ∈ B, it follows that |{xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1} ∩H| ≤ k

for all i ∈ {1, . . . , n}. Together, we obtain |{xi, x̄i} ∩H| = 1 for all i ∈ {1, . . . , n}. We
can therefore extend α to X̄ by setting α(x̄) = 1 − α(x) = |{x} ∩H|. Finally, for C ∈ C,
we have C̃ ∈ B and thus

∣∣H ∩ C̃
∣∣ ≤ k and moreover

∣∣H ∩ C̃
∣∣ ≥ |H ∩ C| + k − 2, which

implies |H ∩ C| ≤ 2. It follows that
∑

x∈C α(x) = 3 −
∑

x∈C α(x̄) = 3 −
∑

x∈C |{x} ∩ U | =
3 − |H ∩ C| ≥ 1, thus α is a satisfying assignment. ◀

We can observe that Theorem 1 also shows that Sparse-VC does not admit a (3/2 − ε)-
approximation algorithm for any ε > 0, unless P=NP. This follows from the fact that for k = 2,
such an algorithm would be able to determine whether a given instance of Sparse-VC
admits a solution of sparseness 2 · (3/2 − ε) < 3, i.e., of optimal sparseness 2.

IPEC 2022

5:8 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Let us now consider the Sparse-VC problem for sparseness k = 1. We show that in
this case, Sparse-VC can be reduced to the 2-SAT problem, which is commonly known to
admit a linear time algorithm. This yields the following theorem.

▶ Theorem 2. Sparse-VC is polynomial time solvable for k = 1.

Proof. The instance of the Sparse-VC problem is given by a graph G = (V,E) and a set of
balls B ⊆ 2V . Given this instance, we construct a 2-Sat formula ϕ, which is solvable if and
only if the Sparse-VC instance has a solution. Moreover, we can reconstruct the fair vertex
cover for (V,E,B) given a satisfying assignment to ϕ.

To construct ϕ, we first assign a variable xv to each vertex v ∈ V . Next, for every edge
{u, v} ∈ E we create a clause (xu ∨ xv) and add it to ϕ, so that we are guaranteed that any
satisfying assignment will correspond to a valid vertex cover. Now we have to enforce, that
for each ball B ∈ B, at most one variable in the set {xv}v∈B is set to true. This is done
by adding

(|B|
2
)

clauses: for each pair v, u ∈ B, u ̸= v we add a clause (x̄v ∨ x̄u) to enforce
that xv and xu cannot be both true. In this way, we ensure that only one variable of the set
{xv}v∈B is set to true. Thus, the final formula ϕ takes the following form:

ϕ =
∧

{u,v}∈E

(xu ∨ xv) ∧
∧

B∈B,u,v∈B:u ̸=v

(x̄v ∨ x̄u)

Given a satisfying assignment for ϕ, we reconstruct the solution to (V,E,B) by taking
the vertices whose variable was set to true. We already argued that such a solution is feasible
for Sparse-VC with k = 1. In the opposite direction, given a solution to Sparse-VC
with k = 1, we find an assignment by setting the variables corresponding to the vertices of
the solution to true: the clauses corresponding to edges are then satisfied due to the solution
being a vertex cover, and the remaining clauses corresponding to B are satisfied because the
solution picks at most one vertex from each B ∈ B. ◀

Finally, we show how to obtain a 2-approximation algorithm for Sparse-VC. This
approximation factor is optimal unless the Unique Games Conjecture fails, as Vertex
Cover is a special case of Sparse-VC with B = {V }.

▶ Theorem 3. Sparse-VC admits a polynomial time 2-approximation algorithm.

Proof. We consider the relaxation of (Sparse-HS-ILP) for a given graph G = (V,E):

min k such that: xu + xv ≥ 1 ∀uv ∈ E (1)∑
v∈B

xv ≤ k ∀B ∈ B (2)

xv ≥ 0 ∀v ∈ V (3)

Note that in any feasible solution to this LP, for any edge {u, v} at least one of the two
variables xu and xv has value at least 1/2, due to constraints (1) and (3). Thus the set
W = {v ∈ V | xv ≥ 1/2} of all vertices with value at least 1/2, is a vertex cover for the input
graph. The sparseness of this solution can be bounded using (2) for any set B ∈ B:

|W ∩B| ≤ 2
∑
v∈B

xv ≤ 2k

Thus solving the above LP relaxation optimally in polynomial time and then outputting the
set W , gives a 2-approximation algorithm for Sparse-VC. ◀

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:9

x1

x̄1

x2

x̄2

x3

x̄3

x4

x̄4

Y 1
1Y 2

1 Y 1
2Y 2

2 Y 1
3Y 2

3 Y 1
4Y 2

4

Z1
Q1

1

Z2
Q1

2

Z3

Q1
3 Q2

3
Z4

Q1
4 Q2

4
Z5

Q1
5 Q2

5

ysi,0

ysi,4

ysi,1

...

Y s
i

Figure 1 Left: The graph G for the formula (x1∨x2∨x3)∧(x1∨x3∨x4)∧(x̄1∨x2)∧(x̄2∨x̄4)∧(x̄3∨x4)
and k = 4. Right: A star Y s

i with center ys
i,0 and leaves ys

i,1, . . . , ys
i,4. Similarly, Zj and Qs

j denote
stars with centers zj,0 and qs

j,0, and leaves zj,1 . . . , zj,4 and qs
j,1, . . . , qs

j,4, respectively.

3 Fair Vertex Cover

Let us now consider the (Open-)Fair-VC problem, where the balls B are given by (open)
vertex neighborhoods. We first show NP-hardness of Fair-VC and Open-Fair-VC for k ≥ 3
and k ≥ 4, respectively.

▶ Theorem 4. Fair-VC is NP-hard for any k ≥ 3 and Open-Fair-VC is NP-hard for
any k ≥ 4, even on planar input graphs.

Proof. We reduce from the planar 2P1N-3-Sat problem. In this variant of satisfiability,
all clauses contain two or three literals, and we may assume that every variable appears
exactly twice as a positive literal and exactly once as a negative literal over all clauses. In
addition, we may assume that the bipartite graph connecting clauses to the variables they
contain is planar. This variant of satisfiability was shown to be NP-complete in [27].

We first consider the Fair-VC problem and later show how to modify our reduction for
Open-Fair-VC. Let an instance of planar 2P1N-3-Sat be given by a set of variables
X = {xi}i=1,...,n and a set of clauses C = {Cj}j=1,...,m with Cj ⊂ X ∪ X̄, |Cj | ∈ {2, 3}. We
define the graph G = (V,E) by

V =
n⋃

i=1

(
{xi, x̄i} ∪

k−2⋃
s=1

k⋃
r=0

{ys
i,r}

)
∪

m⋃
j=1

 k⋃
r=0

{zj,r} ∪
k−|Cj |⋃

s=1

k⋃
r=0

{qs
j,r}

and

E =
n⋃

i=1

(
{{xi, x̄i}} ∪

k−3⋃
s=1

{{xi, y
s
i,0}} ∪

k−2⋃
s=1

{{x̄i, y
s
i,0}} ∪

k−2⋃
s=1

k⋃
r=1

{{ys
i,0, y

s
i,r}}

)

∪
m⋃

j=1

 ⋃
x∈Cj

{{x, zj,0}} ∪
k⋃

r=1
{{zj,0, zj,r}} ∪

k−|Cj |⋃
s=1

(
{zj,0, q

s
j,0} ∪

k⋃
r=1

{qs
j,0, q

s
j,r}

) .

This construction (illustrated in Figure 1) can be carried out in linear time and G is planar.
For NP-hardness of Fair-VC, it remains to show that G has a vertex cover H ⊂ V

satisfying |H ∩N [v]| ≤ k for every v ∈ V if and only if the given planar 2P1N-3-Sat
instance has a satisfying assignment.

IPEC 2022

5:10 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

To see this, first assume that the given planar 2P1N-3-Sat instance has a satisfying
assignment α : X → {0, 1} and extend α to X̄ by letting α(x̄) := 1 − α(x). We construct the
vertex cover H = {x ∈ X∪X̄ | α(x) = 0}∪

⋃n
i=1
⋃k−2

s=1 {ys
i,0}∪

⋃m
j=1

(
{zj,0} ∪

⋃k−|Cj|
s=1 {qs

j,0}
)

.
Indeed, H is a vertex cover, since all edges are of the form {x, x̄} or incident to some
ys

i,0, zj,0, or qs
j,0. Also, |H ∩N [v]| = 1 for v ∈

⋃n
i=1
⋃k−2

s=1
⋃k

r=1{ys
i,r} ∪

⋃m
j=1

⋃k
r=1{zj,r} ∪⋃m

j=1
⋃k−|Cj |

s=1
⋃k

r=1{qs
j,r}, |H ∩N [v]| = 2 for v ∈

⋃n
i=1
⋃k−2

s=1 {ys
i,0} ∪

⋃m
j=1

⋃k−|Cj |
s=1 {qs

j,0}, and
|H ∩N [v]| = k for v ∈ X ∪ X̄. It remains to consider v = zj,0 for some j ∈ {1, . . . ,m}.
Observe that

∑
x∈Cj

α(x) ≥ 1 since α is a satisfying assignment. It holds that |H ∩N [zj,0]| =
1+k−|Cj |+

∑
x∈Cj

|{x} ∩H| = 1+k−|Cj |+
∑

x∈Cj
(1−α(x)) ≤ 1+k−|Cj |+ |Cj |−1 = k.

In either case, we conclude that |H ∩N [v]| ≤ k.
Conversely, suppose that there exists a vertex cover H ⊆ V with |H ∩N [v]| ≤ k for

all v ∈ V . Let i ∈ {1, . . . , n} and s ∈ {1, . . . , k − 2}. Since H is a vertex cover with∣∣H ∩N [ys
i,0]
∣∣ ≤ k and deg(ys

i,0) > k, we must have ys
i,0 ∈ H. Similarly, we must have

zj,0 ∈ H for all j ∈ {1, . . . ,m} and qs
j,0 ∈ H for all j ∈ {1, . . . ,m}, s ∈ {1, . . . , k − |Cj |}.

We claim that α(x) = |{x̄} ∩H| defines a satisfying assignment for the given planar
2P1N-3-Sat instance. To see this, first observe that |{x, x̄} ∩H| = 1 for all x ∈ X since
H is a vertex cover and |H ∩N [x]| ≤ k. We can therefore extend α to X̄ by setting
α(x̄) = 1−α(x) = |{x} ∩H|. Recall that for for all j ∈ {1, . . . ,m} we have |H ∩N [zj,0]| ≤ k

and
{
zj,0, q

1
j,0, . . . , q

k−|Cj |
j,0

}
⊆ H, which implies

∣∣∣H ∩
(
N [zj,0 \

{
zj,0, q

1
j,0, . . . , q

k−|Cj |
j,0

})∣∣∣ ≤
k − (1 + k − |Cj |) = |Cj | − 1. With this, for j ∈ {1, . . . ,m}, we have

∑
x∈Cj

α(x) = |Cj | −∑
x∈Cj

α(x̄) = |Cj | −
∑

x∈Cj
|{x} ∩H| ≥ |Cj | −

∣∣∣(N [zj,0] \
{
zj,0, q

1
j,0, . . . , q

k−|Cj |
j,0

})
∩H

∣∣∣ ≥
|Cj | − (|Cj | − 1) = 1. We conclude that α is a satisfying assignment.

We now turn to Open-Fair-VC and modify the above reduction as follows. The first
difference is that there is now only one Y s

i gadget for each variable xi, so we call it Yi. The
second difference is that Yi is different from Y s

i from the previous reduction, because now
Yi is responsible for picking only one vertex among {xi, x̄i} to the solution. To be more
precise Yi is now a star with a center yi,0 connected to yi,1, . . . yi,k−1, but now also each
yi,j , j ∈ {1 . . . , k − 1} is a center of a star, connected to yj

i,1, . . . , y
j
i,k. In other words, Yi is a

tree of depth two rooted at yi,0, where the root has k − 1 children and each child of the root
has k children. In the constructed graph, for each variable xi both literals xi and x̄i are now
connected to yi,0 instead of ys

i,0 vertices from the previous reduction. The remaining part of
the graph is precisely the same as in the reduction for Theorem 1.

Assume we have an Open-Fair-VC solution for the constructed graph and the given
parameter k ≥ 4. Observe, that for each i the vertices yi,0 and yi,1 . . . yi,k−1 must be taken
to the solution since their degree is k + 1. Therefore, since vertex yi,0 has k − 1 neighbors
other than xi and x̄i, only one vertex among xi and x̄i can be taken to the solution. The
remaining part of the argument is the same as in the proof for Fair-VC: we construct a
satisfying assignment by setting this literal to false, whose corresponding vertex was taken to
the solution. Similarly as before, each clause has at most two negated literals. The opposite
direction is analogous. ◀

The previous reduction actually also shows that for any ε > 0, it is NP-hard to compute
a (4/3 − ε)-approximation for Fair-VC, as for k = 3, a (4/3 − ε)-approximate solution
actually has sparseness 3. Still, we are able to compute a (2− 1

k)-approximation for Fair-VC,
which is slightly better than our result for Sparse-VC and also better then the best possible
approximation ratio for Vertex Cover (and thus Sparse-VC) under UGC. In particular,
our algorithm implies that for the smallest value k = 3 for which Fair-VC is NP-hard, we

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:11

can obtain a solution of sparseness 5. We leave open whether a solution of sparseness 4 can
be computed in polynomial time for Fair-VC if k = 3, and whether better approximation
algorithms are possible for Open-Fair-VC.

▶ Theorem 5. Fair-VC admits a polynomial time (2 − 1
k)-approximation algorithm.

Proof. As for the 2-approximation algorithm for Sparse-VC (cf. Theorem 3), we consider
the relaxation of (Sparse-HS-ILP). However, in order to improve the approximation ratio,
observe that in any solution of cost k to Fair-VC, every vertex of degree more than k

must be contained in the solution (otherwise some edge incident to such a vertex is not
covered). Thus we may guess the optimum sparseness k⋆, define the set of high degree
vertices D = {v ∈ V | deg(v) > k⋆} and add the constraint xv = 1 for every v ∈ D to the
above LP relaxation. We again let W be the set of vertices with value at least 1/2, which is
a feasible vertex cover. If for any closed neighbourhood N [v] ∈ B we have N [v] ⊆ W then
all neighbours of v are contained in W , and thus we may remove v from W and still obtain
a vertex cover. We repeat this iteratively for each vertex until we obtain a vertex cover W
for which no closed neighbourhood is entirely contained in W . In particular, for any v /∈ D

we have |W ∩N [v]| ≤ k⋆. For v ∈ D on the other hand, since xv = 1 we get

|W ∩N [v]| ≤ |D ∩N [v]| + 2
∑

u∈N [v]\D

xu ≤ (2xv − 1) + 2
∑

u∈N [v]\{v}

xu ≤ 2k − 1.

This means that the set W yields a (2 − 1
k)-approximation. ◀

4 Hardness of Highway Dimension and Shortest Path Cover

In this section, we study the parameterized complexity of r-HD and r-SPC, and show the
following theorem.

▶ Theorem 6. Both r-HD and r-SPC are W[1]-hard parameterized by their solution values k,
where 2r is the radius of the input graph.

To prove this, we present a parameterized reduction from Clique to r-HD. This reduction
also shows W[1]-hardness for r-SPC, as the constructed graph G has radius at most 2r, i.e.,
any solution for r-HD is also a solution for r-SPC of the same cost and vice versa.

Let H = (V,E) be a graph and let k ∈ N. Denote the number of vertices and edges of H
by n and m, respectively. For convenience we treat H as a bidirected graph, i.e. we replace
every edge {u, v} ∈ E with directed edges (u, v) and (v, u). Let C be a constant whose value
will be determined later on. We construct a graph G such that r-HD has a solution of value
k′ = 4Ck(k− 1) +

(
k
2
)

+ k+ 3 on G for r = 2m if and only if H contains a clique if size k. In
the following, we call the individual elements of a solution for r-HD also hubs.

The graph G contains k(k − 1) gadgets: For all 1 ≤ i, j ≤ k satisfying i ̸= j there is
a gadget Gi,j . Choosing a certain set of hubs from Gi,j means that Gi,j represents a pair
(wi, wj) of adjacent vertices of H. The idea of the reduction is to have a pair (wi, wj) from
every Gi,j such that

(i) if Gi,j represents (x, y), then Gj,i represents (y, x), and
(ii) if Gi,j represents (x, y) and Gi,j′ represents (x′, y′), then x = x′.

If these two conditions are fulfilled, it follows that there are k distinct vertices w1, . . . , wk

which are pairwise adjacent, i.e. {w1, . . . , wk} is a clique of size k.

IPEC 2022

5:12 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

umi,ju1i,j

v1i,jvmi,j

a1i,j

ami,jb1i,j

bmi,j

ψα

ψ′
α

ψ′′
α

ψ′
β

ψβ

ψ′′
β

ψ ψ′ψ′′

Figure 2 A gadget Gi,j and the global vertices. Solid black edges have length 1, dashed blue
edges have length r − m + 1, thick blue edges have length r − 2m + 2, dotted gray edges have length
m − 1, dashed gray edges have length r/2 and red edges have length r.

Every gadget Gi,j contains a path u1
i,j , . . . , u

m
i,j , a path v1

i,j , . . . , v
m
i,j , a path a1

i,j , . . . , a
m
i,j ,

and a path b1
i,j , . . . , b

m
i,j , each consisting of m−1 edges of length 1. We identify every vertex of

these paths with a pair (x, y) of adjacent vertices in H as follows: Fix any ordering ≺ on V and
denote the resulting lexicographic ordering on V ×V also by ≺. Define τ : E → {1, . . . ,m} as

τ(x, y) = |{(u, v) ∈ E | (u, v) ≺ (x, y)}| + 1,

i.e. (x, y) is the τ(x, y)-th edge according to ≺. This allows us for instance to associate the
vertex uτ(x,y)

i,j of Gi,j with the edge (x, y) of H.
The four paths are connected as follows. For z ∈ {a, v, b} we connect um

i,j with z1
i,j and

zm
i,j with u1

i,j , each through a path of length r − m + 3. To that end we introduce ver-
tices u0,z

i,j , u
m+1,z
i,j , z0,u

i,j and zm+1,u
i,j , and add the edges {u1

i,j , u
0,z
i,j }, {um

i,j , u
m+1,z
i,j }, {z1

i,j , z
0,u
i,j },

{zm
i,j , z

m+1,u
i,j } of length 1 and the edges {um+1,z

i,j , z0,u
i,j }, {zm+1,u

i,j , u0,z
i,j } of length r −m+ 1.

Moreover, we add vertices am+1,v
i,j , v0,a

i,j , v
m+1,b
i,j , b0,v

i,j and add edges
{am

i,j , a
m+1,v
i,j }, {v1

i,j , v
0,a
i,j }, {vm

i,j , v
m+1,b
i,j }, {b1

i,j , b
0,v
i,j } of length 1 and edges

{am+1
i,j , v0,a}, {vm+1,b

i,j , b0,v
i,j } of length r − 2m+ 2. This is illustrated in Figure 2.

The idea is that the shortest path from u1
j,j to any of a0,u

i,j , v
0,u
i,j , and b0,u

i,j has length r + 1
and that we will have to choose some pair (x, y) in order to hit these shortest paths through
the hub u

τ(x,y)
i,j . Still, the shortest paths between a0,u

i,j and b0,u
i,j and between am+1,u

i,j and
bm+1,u

i,j both have length 2r − 2m+ 4 > r, but are not hit, if we choose, e.g., the hub u2
i,j .

Hence, we introduce a shorter path between a0,u
i,j and b0,u

i,j and between am+1,u
i,j and bm+1,u

i,j ,
which will be hit by a global dummy hub: We add vertices ψ,ψ′, ψ′′ and the edges {ψ′, ψ}
and {ψ′′, ψ}, both of length r. Moreover, we add edges between ψ and a0,u

i,j , a
m+1,u
i,j , b0,u

i,j ,
and bm+1,u

i,j , each of length r/2. The shortest a0,u
i,j -b0,u

i,j - and am+1,u
i,j -bm+1,u

i,j -paths now have
length r and pass through ψ. Furthermore, the shortest ψ′-ψ′′-path has length 2r and we
may assume w.l.o.g. that it is hit through the hub ψ.

We will show that if the final graph G admits a solution of value k′, then there is a hitting
set for Pr containing four vertices from every gadget Gi,j , which represent a pair (x, y) of
adjacent vertices of H . Our construction needs to ensure that for these pairs (x, y) conditions
i and ii are fulfilled. First we create C copies G1

i,j , . . . , G
C
i,j of the graph Gi,j . For simplicity,

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:13

we confuse the graphs Gi,j and Gλ
i,j for λ ∈ {1, . . . , C} when the context is clear. Our final

construction will yield that if Gλ
i,j represents (x, y) and Gλ′

i,j represents (x′, y′), then we have
(x, y) = (x′, y′). Note that the vertices ψ,ψ′, and ψ′′ are not part of any gadget Gi,j and
hence, we do not create copies of them.

For condition i we have to synchronise the gadgets Gi,j and Gj,i. To that end, for all
1 ≤ i < j ≤ k and all (x, y) ∈ E we add a vertex α(x,y)

i,j . Moreover, we add edges of weight
m from (all C copies of) aτ(x,y)+1

i,j and from (all C copies of) aτ(y,x)+1
j,i to α

(x,y)
i,j . This is

illustrated in the appendix (Figure 3). The idea is that all shortest paths between Gi,j and
Gj,i contained in Pr can be hit with one additional hub α

(x,y)
i,j if both gadgets agree on the

pairs (x, y) and (y, x).
Still, the newly added edges of length m add new shortest paths to Pr. For instance, in

any Gi,j , the shortest path between um+1,a
i,j and α

τ−1(1)
i,j has length r + 2. To ensure that it

suffices to choose only uτ(x,y)
i,j , v

τ(x,y)
ij

, and α(x,y)
i,j as hubs, we remove these paths from Pr by

creating a new shortest path between um+1,a
i,j and ατ−1(1)

i,j , which passes through the dummy
hub ψ. To that end, for all 1 ≤ i, j ≤ k satisfying i ̸= j we add an edge between ψ and
u0,a

i,j , u
m+1,a
i,j and all α(x,y)

i,j , each of length r/2.
Similarly, we avoid ”undesired“ hubs covering shortest paths across different gadgets Gi,j

and Gj,i by introducing new vertices ψα, ψ
′
α and ψ′′

α and adding the edges {ψ′
α, ψα} and

{ψ′′
α, ψα} of length r and an edge of length m− 1 between ψα and all aτ(x,y)+1

i,j .
To fulfill condition ii we have to synchronise the gadget Gi,j with every other gadget

Gi,j′ . To that end, for all 1 ≤ i ≤ k and all x ∈ V we add a vertex βx
i . Let y0, . . . , yd be the

neighbors of x such that y0 ≺ · · · ≺ yd. For 1 ≤ i, j ≤ k, i ̸= j we add an edge of weight
m+ d between βx

i and every (copy of) bτ(x,y0)−1
i,j . Here the idea is that if two gadgets Gi,j

and Gi,j′ represent pairs (x, y) and (x′, y′) such that x = x′, then choosing βx
i as a hub

suffices to hit all relevant shortest paths between the two gadgets.
Again, we have to take care of newly created shortest paths. Therefore we add an edge of

length r/2 between ψ and u0,b
i,j , u

m+1,b
i,j and all βx

i . Moreover we handle shortest paths across
different gadgets Gi,j and Gi,j′ by introducing new vertices ψβ , ψ

′
β and ψ′′

β and adding the
edges {ψ′

β , ψβ} and {ψ′′
β , ψβ} of length r and an edge of length m+ d− 1 between ψβ and

every bτ(x,yd)−1
i,j where yd is the maximum neighbor of x according to ≺. This concludes the

construction of the graph G, which is also illustrated in the appendix (Figure 4).
We now show several properties of the graph G which allow us to prove Theorem 6.

The following Lemma states that choosing four hubs from some gadget Gi,j means that the
gadget represents a unique pair (x, y). A proof can be found in the appendix.

▶ Lemma 9. Let 1 ≤ i, j ≤ k where i ̸= j and let Hi,j be a hitting set for all shortest paths
from Pr that are contained in Gi,j . It holds that |Hi,j | ≥ 4 and moreover, if |Hi,j | = 4, then
Gi,j represents some (x, y), that is Hi,j =

{
u

τ(x,y)
i,j , a

τ(x,y)
i,j , v

τ(x,y)
i,j , b

τ(x,y)
i,j

}
.

Moreover, we show that if a gadget Gi,j represents some pair (x, y), then two certain
shortest paths are not hit by the hubs of Gi,j . To that end, for any (x, y) ∈ E and all
1 ≤ i < j ≤ k and λ ∈ {1, . . . , C}, let A(x,y),λ

i,j be the shortest path between α
(x,y)
i,j and the

λ-th copy of vτ(x,y)−1
i,j . The length of A(x,y),λ

i,j is

dist(α(x,y)
i,j , a

τ(x,y)+1
i,j)+dist(aτ(x,y)+1

i,j , am+1,v
i,j)+dist(am+1,v

i,j , v0,a
i,j)+dist(v0,a

i,j , v
τ(x,y)−1
i,j) =

m + m − τ(x, y) + r − 2m + 2 + τ(x, y) − 1 = r + 1.

IPEC 2022

5:14 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Similarly, we define Bx,λ
i,j as the shortest path between βx

i and the λ-th copy of vτ(x,yd)+1
i,j ,

where yd is the maximum neighbor of x. The path Bx,λ
i,j consists of a vτ(x,yd)+1

i,j -vm+1,b
i,j -path

of length m − τ(x, yd), the edge {vm+1,b
i,j , b0,v

i,j } of length r − 2m + 2, a b0,v
i,j -bτ(x,y0)−1

i,j -path
of length τ(x, yd) − d− 1 and the edge {bτ(x,y0)−1

i,j , βx
i } of length m+ d. The path Bx,λ

i,j has
length

dist(βx
i , b

τ(x,y0)−1
i,j) + dist(bτ(x,y0)−1

i,j , b0,v
i,j) + dist(b0,v

i,j , v
m+1,b
i,j) + dist(vm+1,b

i,j , v
τ(x,yd)+1
i,j) =

m + d + τ(x, yd) − d − 1 + r − 2m + 2 + m − τ(x, yd) = r + 1.

Moreover the following Lemma holds. An illustration (Figure 5) and a proof can be found in
the appendix.

▶ Lemma 10. If the gadget Gλ
i,j represents the pair (x, y), then the hubs of Gλ

i,j hit the
shortest path A(x′,y′),λ

i,j if and only if (x, y) ̸= (x′, y′), and the shortest path Bx′,λ
i,j if and only

if x ̸= x′.

Let us now prove Theorem 6. We show that on G, r-HD has a solution of value
k′ = 4Ck(k − 1) +

(
k
2
)

+ k + 3 for r = 2m if and only if H contains a clique if size k.

Proof of Theorem 6. Let r = 2m. Suppose that on the constructed graph G, there is a
solution of value k′ for r-HD. We observe that every vertex has distance less than 2r from
the vertex ψ. This means that B2r(ψ) contains the entire graph, and therefore there is a
hitting set H of size |H| ≤ k′ for Pr.

We will prove that for any 1 ≤ i, j ≤ k there is some (x, y) such that the hitting set H
contains four hubs uτ(x,y)

i,j , v
τ(x,y)
i,j , a

τ(x,y)
i,j , b

τ(x,y)
i,j from every (copy of the) gadget Gi,j , and

that H contains one hub αx,y
i,j for every 1 ≤ i < j ≤ k and one hub βx

i for every 1 ≤ i ≤ k,
such that conditions i and ii are satisfied. This implies that H contains a clique of size k.

Fix now i, j such that 1 ≤ i < j ≤ k. We prove that the hitting set H contains some
hub α

(x,y)
i,j . Let λ ∈ {1, . . . , C} and denote the vertices of H that are contained in Gλ

i,j by
Hλ

i,j . For the sake of contradiction suppose that there is no (x, y) such that α(x,y)
i,j ∈ H.

Lemma 9 states that if
∣∣Hλ

i,j

∣∣ ≤ 4, then Hλ
i,j =

{
u

τ(x,y)
i,j , v

τ(x,y)
i,j , a

τ(x,y)
i,j , b

τ(x,y)
i,j

}
for some

(x, y) and therefore H does not hit the path A
(x,y),λ
i,j according to Lemma 10. Hence, we

obtain that for all λ ∈ {1, . . . , C} we have
∣∣Hλ

i,j

∣∣ ≥ 5. Moreover, Lemma 9 states that from
any gadget Gi′,j′ , (i′, j′) ̸= (i, j) we have to choose at least four hubs. This means however
that |H| ≥ 4Ck(k − 1) + C. If we choose C = k2 we obtain that 4Ck(k − 1) + C > k′, so it
cannot be that there is no hub α

(x,y)
i,j ∈ H. Analogously we can show that H contains some

hub βx
i for every 1 ≤ i ≤ k, if C = k2. To that end, fix 1 ≤ i ≤ k and suppose that there is

no x such that βx
i ∈ H. Again, it follows from Lemmas 9 and 10 that for all λ ∈ {1, . . . , C}

we have
∣∣Hλ

i,j

∣∣ ≥ 5, where Hλ
i,j denotes the vertices of H that are contained in Gλ

i,j . As we
showed previously, for C = k2 this means that |H| > k′, and it follows that there must be
some x such that βx

i ∈ H.
This means that H contains at least one hub α

(x,y)
i,j for every 1 ≤ i < j ≤ k, at least one

hub βx
i for every 1 ≤ i ≤ k and at least four hubs from every Gλ

i,j . None of these hubs hits
the shortest paths ψ′′ −ψ−ψ′′, ψ′

α −ψα −ψ′′
α, or ψ′

β −ψβ −ψ′′
β . To hit these three paths, we

need three additional hubs. As H has size at most k′ = 4Ck(k − 1) +
(

k
2
)

+ k + 3, it follows
that H contains precisely four hubs from every Gλ

i,j , so every gadget represents indeed a
unique pair (x, y). Moreover, for every 1 ≤ i < j ≤ k there is a unique hub α

(x,y)
i,j and for

every 1 ≤ i ≤ k there is a unique hub βx
i .

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:15

It remains to show that the pairs represented by the individual gadgets fulfill properties
i and ii. Consider i, j such that 1 ≤ i < j ≤ k and let λ, λ′ ∈ {1, . . . , C}. Let (x, y) and
(x′, y′) be the pairs represented by Gλ

i,j and Gλ′

j,i, respectively. Lemma 10 states that the
hubs contained in Gλ

i,j and Gλ′

j,i do not hit the shortest paths A(x,y),λ
i,j and A

(x′,y′),λ′

j,i . This
means that the two paths must be hit through the hubs α(x,y)

i,j and α
(x′,y′)
i,j . Moreover, both

hubs must coincide as H has size k′, i.e. we have (x, y) = (x′, y′), which implies condition i.
For condition ii, let 1 ≤ i ≤ k, let 1 ≤ j, j′ ≤ k, and let λ, λ′ ∈ {1, . . . , C}. Denote

the pairs represented by Gλ
i,j and Gλ′

i,j′ by (x, y) and (x′, y′), respectively. It follows from
Lemma 10 that the shortest paths Bx,λ

i,j and Bx′,λ′

i,j′ are not hit through the hubs contained in
Gλ

i,j and Gλ′

i,j′ . This means that the paths must be covered through hubs βx
i and βx′

i , and as
|H| = k′, this is only possible if x = x′, i.e. condition ii is satisfied.

This implies that the graph H indeed contains a clique of size k. To prove the other
direction, we refer to the appendix. ◀

5 Approximating Shortest Path Covers

In this section, we show how to approximate r-SPC.

▶ Theorem 7. r-SPC admits a polynomial time O(log n)-approximation algorithm.

We present an algorithm based on the following ideas. It is well-known that the Set
Cover problem is equivalent to Hitting Set by swapping the roles of the elements of
the universe and the sets in the given set family. Kuhn et al. [24] study the Minimum
Membership Set Cover (MMSC) problem, where the aim is to minimize the maximum
membership of any element of the given universe of the Set Cover instance. Here the
membership of an element is the number of sets of the solution it is contained in. The
MMSC problem finds applications in interference minimization in cellular networks, and
Kuhn et al. [24] prove that it admits a polynomial-time O(log |U |)-approximation, where U
is the given universe, and they show that this is best possible, unless P=NP. Translated to
Sparse-HS, this means that for an instance where F = B, an O(log |F|)-approximation can
be computed in polynomial time, and this is also best possible, unless P=NP. We show that
r-SPC can be reduced to this version of Sparse-HS.

We first give a simple observation about the Sparse-HS problem which will be useful later
in our proof. Let (V,F ,B) be a set system and let B,B′ ∈ B be two sets such that B ⊊ B′.
If B′ contains at most k elements of the hitting set, then B also contains at most k such
elements. Hence we obtain the following.

▶ Observation 11. Let B be a family containing two sets B,B′ such that B ⊊ B′. If there
exists a solution to Sparse-HS for (V,F ,B\{B}) of sparseness k, then there exists a solution
to Sparse-HS for (V,F ,B) of sparseness k.

We reduce the r-SPC problem to the Minimum Membership Set Cover (MMSC)
problem. Formally, an instance of MMSC consists of a universe U and a family S of subsets
of U , and the goal is to choose a set S ′ ⊆ S such that every element in U belongs to at least
one set in S ′ and that the maximum membership of any element u with respect to S ′ is
minimal, where the membership of u is defined as the number of sets in S ′ containing u.

Recall that, given a weighted graph G = (V,E) and a radius r > 0, the r-SPC problem
for G is equivalent to the Sparse-HS problem on universe V with F = Pr and B = {B2r(v) |
v ∈ V }. Based on Observation 11, we first show that if there exists a ball B ∈ B which does
not contain any shortest path in Pr completely, we can safely remove it without affecting
the solution.

IPEC 2022

5:16 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

▶ Lemma 12. Let B ∈ B which does not contain any shortest path in Pr completely,
i.e., S ⊈ B for every S ∈ Pr. If there exists a solution to r-SPC for (V,Pr,B \ {B}) of
sparseness k, then there exists a solution to r-SPC for (V,Pr,B) of sparseness k.

Proof. First, if S ∩ B = ∅ for every S ∈ Pr, then there exists a solution for (V,Pr,B) not
containing any vertices of B, and the claim follows. Now assume there is some path SB ∈ Pr

intersecting B in some vertex w. We show that there exists a ball B′ ∈ B such that B ⊊ B′,
and thus the lemma follows from Observation 11.

Let v be the center of the ball B = B2r(v). As S ⊈ B for every S ∈ Pr, dist(u, v) ≤ r for
every u ∈ B, as otherwise the shortest u-v-path would be contained in the ball B of radius 2r
with a length in (r, 2r], which would then be in Pr. Hence for any two vertices u, u′ ∈ B,
dist(u, u′) ≤ dist(u, v) + dist(v, u′) ≤ 2r, so we have B ⊆ B2r(w). Moreover, it holds that
SB ⊆ B2r(w) as SB is the vertex set of a path containing w of length in (r, 2r], and it holds
that SB ̸⊆ B, which implies B ⊊ B2r(w). By definition of B we have B2r(w) ∈ B, and thus
by Observation 11 the lemma follows. ◀

Lemma 12 means that we may assume w.l.o.g. that for any B ∈ B there is some SB ∈ Pr

such that SB ⊆ B. We now give the following observations about the relationship among Pr,
B, and a hitting set H of Pr.

▶ Observation 13. Let S ∈ Pr. As S is the set of vertices of a shortest path π of length
ℓ(π) ∈ (r, 2r], there exists a ball BS ∈ B of radius 2r, which completely contains S. This, in
turn, implies that H ∩BS ̸= ∅ and |H ∩ S| ≤ |H ∩BS |.

▶ Observation 14. Let B ∈ B. If B contains some shortest path set SB ∈ Pr, then we have
H ∩B ̸= ∅ and |H ∩ SB | ≤ |H ∩B|.

By Observations 13 and 14, we get the following.

▶ Lemma 15. There exists a solution to Sparse-HS for (V,Pr,B) of sparseness k if and
only if there exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) of sparseness k.

Proof. Observe that any solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) is also a solution
to Sparse-HS for (V,Pr,B), as Pr ⊆ Pr ∪ B and B ⊆ B ∪ Pr. We now prove that any
solution H to Sparse-HS for (V,Pr,B) of sparseness k is also a solution to Sparse-HS for
(V,Pr ∪B,B∪Pr) of sparseness k. For this, we need to show that for every S ∈ Pr, |H∩S| ≤ k

and for every B ∈ B, H ∩B ̸= ∅. The former statement follows from Observation 13, while
the latter follows from Observation 14 where we assume that B contains some SB ∈ Pr due
to Lemma 12. ◀

We now define an instance of the Minimum Membership Set Cover with U = Pr ∪ B
and S = {Su | u ∈ V }, where Su = {S ∈ U | u ∈ S}, and prove the following.

▶ Lemma 16. There exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) of sparseness k
if and only if there exists a solution to MMSC for (U,S) of value k.

Proof. We will prove that if there exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr)
of sparseness k, then there exists a solution to MMSC for (U,S) of value k. The proof for
the other direction is symmetric. Let H be a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr)
of sparseness k. We claim that the set W = {Su ∈ S | u ∈ H} is a solution to MMSC
for (U,S) of value k. Let E ∈ U . Then, H ∩E ̸= ∅. Let u ∈ H ∩E. By the definition of Su,
this implies that E ∈ Su. Moreover, for any B ∈ Pr ∪ B, we have that |H ∩ B| ≤ k. This
implies that B belongs to at most k sets in W . Hence, W is a solution to MMSC for (U,S)
of value k. ◀

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:17

Since there exists a O(log |U |)-approximation algorithm for MMSC by Kuhn et al. [24]
and |U | = |Pr ∪B| = O(n2), by the above lemma we get an O(log n)-approximation algorithm
for r-SPC. This concludes the proof of Theorem 7.

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Vc-

dimension and shortest path algorithms. In International Colloquium on Automata, Languages,
and Programming, pages 690–699. Springer, 2011.

2 Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimension,
shortest paths, and provably efficient algorithms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 782–793. SIAM, 2010.

3 Akanksha Agrawal, Pratibha Choudhary, NS Narayanaswamy, KK Nisha, and Vijayara-
gunathan Ramamoorthi. Parameterized complexity of minimum membership dominating set.
In International Conference and Workshops on Algorithms and Computation, pages 288–299.
Springer, 2022.

4 Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In
transit to constant time shortest-path queries in road networks. In 2007 Proceedings of the
Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 46–59. SIAM,
2007.

5 Amariah Becker, Philip N Klein, and David Saulpic. Polynomial-time approximation schemes
for k-center, k-median, and capacitated vehicle routing in bounded highway dimension. In 26th
Annual European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

6 Johannes Blum. Hierarchy of transportation network parameters and hardness results. In
14th International Symposium on Parameterized and Exact Computation (IPEC 2019), 2019.

7 Martin Böhm, Ruben Hoeksma, Nicole Megow, Lukas Nölke, and Bertrand Simon. On
hop-constrained steiner trees in tree-like metrics. SIAM Journal on Discrete Mathematics,
36(2):1249–1273, 2022.

8 Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets
for clustering in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2679–2696. SIAM, 2021.

9 Karl Bringmann, László Kozma, Shay Moran, and NS Narayanaswamy. Hitting set for
hypergraphs of low vc-dimension. In 24th Annual European Symposium on Algorithms (ESA
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

10 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex
cover. In Rastislav Kralovic and Pawel Urzyczyn, editors, Mathematical Foundations of
Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia,
August 28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes in Computer Science,
pages 238–249. Springer, 2006. doi:10.1007/11821069_21.

11 Yann Disser, Andreas Emil Feldmann, Max Klimm, and Jochen Könemann. Travelling on
graphs with small highway dimension. Algorithmica, 83(5):1352–1370, 2021. doi:10.1007/
s00453-020-00785-5.

12 Andreas Emil Feldmann. Fixed-parameter approximations for k-center problems in low highway
dimension graphs. Algorithmica, 81(3):1031–1052, 2019. doi:10.1007/s00453-018-0455-0.

13 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1+ε)-
embedding of low highway dimension graphs into bounded treewidth graphs. SIAM Journal
on Computing, 47(4):1667–1704, 2018.

14 Andreas Emil Feldmann and David Saulpic. Polynomial time approximation schemes for
clustering in low highway dimension graphs. J. Comput. Syst. Sci., 122:72–93, 2021. doi:
10.1016/j.jcss.2021.06.002.

IPEC 2022

https://doi.org/10.1007/11821069_21
https://doi.org/10.1007/s00453-020-00785-5
https://doi.org/10.1007/s00453-020-00785-5
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1016/j.jcss.2021.06.002
https://doi.org/10.1016/j.jcss.2021.06.002

5:18 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

15 Martin Fürer and Balaji Raghavachari. Approximating the minimum degree spanning tree to
within one from the optimal degree. In Proceedings of the third annual ACM-SIAM symposium
on Discrete algorithms, pages 317–324, 1992.

16 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman, 1979.

17 Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified np-complete
problems. In Proceedings of the sixth annual ACM symposium on Theory of computing, pages
47–63, 1974.

18 Ashwin Jacob, Venkatesh Raman, and Vibha Sahlot. Deconstructing parameterized hardness
of fair vertex deletion problems. In International Computing and Combinatorics Conference,
pages 325–337. Springer, 2019.

19 Aditya Jayaprakash and Mohammad R Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
arXiv preprint, 2021. arXiv:2106.15034.

20 Lawqueen Kanesh, Soumen Maity, Komal Muluk, and Saket Saurabh. Parameterized complex-
ity of fair feedback vertex set problem. Theoretical Computer Science, 867:1–12, 2021.

21 CS Karthik, Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of
approximating dominating set. Journal of the ACM, 66(5), 2019.

22 Dusan Knop, Tomás Masarík, and Tomás Toufar. Parameterized complexity of fair vertex
evaluation problems. In 44th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

23 Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. Fair edge deletion problems on
tree-decomposable graphs and improper colorings, 2010. Technical report.

24 Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo Welzl, and Aaron Zollinger.
Interference in cellular networks: The minimum membership set cover problem. In Lusheng
Wang, editor, Computing and Combinatorics, 11th Annual International Conference, COCOON
2005, Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of Lecture Notes in
Computer Science, pages 188–198. Springer, 2005.

25 Lishin Lin and Sartaj Sahni. Fair edge deletion problems. IEEE transactions on computers,
38(5):756–761, 1989.

26 Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair deletion problems.
Discrete Applied Mathematics, 278:51–61, 2020.

27 J. Maňuch and D. R. Gaur. Fitting protein chains to cubic lattice is NP-complete. Journal of
Bioinformatics and Computational Biology, 06.01:93–106, 2008.

28 David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

http://arxiv.org/abs/2106.15034

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:19

A Supplementary figures from Section 4

ψαψ′
α ψ′′

α

ψ′
β ψβ ψ′′

β

ψ

ψ′

ψ′′

Figure 3 Two gadgets Gi,j and Gj,i and the connections between them. The marked vertices
indicate that Gi,j and Gj,i represent the pairs (x, y) and (y, x), respectively. Moreover, the vertex
α

(x,y)
i,j is marked.

G1,2 G1,3 G2,1 G2,3 G3,1 G3,2

Figure 4 A (simplified) illustration of the whole construction. Note that only one copy Gλ
i,j of

every Gi,j is shown.

IPEC 2022

5:20 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

A
(x,y)
i,j

u
τ(x,y)
i,j

v
τ(x,y)
i,j

b
τ(x,y)
i,j A

(x′,y′)
i,j

a
τ(x,y)
i,j

Figure 5 An illustration of Lemma 10. The gadget Gi,j represents (x, y), which means that the
shortest path A

(x,y)
i,j is not hit by the hubs of Gi,j , whereas any other shortest path A

(x′,y′)
i,j is hit.

B Omitted proofs from Section 4

Proof of Lemma 9. Let 1 ≤ ι ≤ m+ 1. For z ∈ {a, v, b} we define the path Puz(ι) as the
shortest s-t-path path for

s =
{
uι

i,j if ι ≤ m

um+1,z
i,j else

and t =
{
zι−1

i,j if ι > 1
z0,u

i,j else
.

Similarly we define the path P zu(ι) as the shortest s-t-path for

s =
{
zι

i,j if ι ≤ m

zm+1,u
i,j else

and t =
{
uι−1

i,j if ι > 1
u0,z

i,j else
.

We observe that Puz(ι) passes through the vertices um+1,z
i,j and z0,u

i,j , and that its length
is (m+ 1 − ι) + (r −m+ 1) + (ι− 1) = r + 1. Similarly, P zu(ι) passes through zm+1,u

i,j and
u0,z

i,j , and has also length r + 1. This means that both Puz(ι) and P zu(ι) need to be hit
by Hi,j . Consider the eight shortest paths Pua(1), Pua(m+ 1), P au(1), Puv(m+ 1), P vu(1),
P bu(1), Pub(m+ 1), and P bu(m+ 1). It holds that every vertex of Gi,j covers at most two
of these paths, which implies |Hi,j | ≥ 4. To hit the shortest path Puv(m + 1) we have to
choose one of the vertices um+1,v

i,j , v0,u
i,j , v

1
i,j , . . . , v

m
i,j . However, the vertices um+1,v

i,j and v0,u
i,j

do not hit any of the other seven shortest paths. Hence, if we have |Hi,j | = 4, then one of
the four hubs must be the vertex vτ(x,y)

i,j for some (x, y) ∈ E. Repeating the same argument
for the paths P au(1), Pub(m + 1), and Pua(1), one can show that if |Hi,j | = 4, then Hi,j

consists of four vertices vτ(x,y)
i,j , a

τ(x′,y′)
i,j , v

τ(x′′,y′′)
i,j , b

τ(x′′′,y′′′)
i,j .

We now show that for these four vertices it holds that (x, y) = (x′, y′) = (x′′, y′′) =
(x′′′, y′′′). Suppose that for some (x, y) we have vτ(x,y)

i,j ∈ Hi,j . Consider the two shortest
paths Puv(τ(x, y)) and P vu(τ(x, y)). Our previous observations imply that both paths must
be hit through some vertex u

τ(x′,y′)
i,j . As Hij contains precisely one vertex u

τ(x′,y′)
i,j and as

both paths intersect only in u
τ(x,y)
i,j , it follows that uτ(x,y)

i,j ∈ Hi,j . Similarly, it follows that
Hi,j needs to contain the vertices aτ(x,y)

i,j and b
τ(x,y)
i,j . Hence, if |Hi,j | = 4, it follows that

there is a unique (x, y) such that Hi,j =
{
u

τ(x,y)
i,j , a

τ(x,y)
i,j , v

τ(x,y)
i,j , b

τ(x,y)
i,j

}
. ◀

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:21

Proof of Lemma 10. If the gadget Gλ
i,j represents the pair (x, y), then the hubs of Gλ

i,j

are u
τ(x,y)
i,j , v

τ(x,y)
i,j , a

τ(x,y)
i,j , and b

τ(x,y)
i,j . The shortest path A

(x′,y′),λ
i,j contains the vertices

v
τ(x′,y′)−1
i,j , . . . , v1

i,j and the vertices am
i,j , . . . , a

τ(x′,y′)+1
i,j . This means that A(x′,y′),λ

i,j is hit if
and only if (x, y) ̸= (x′, y′). The shortest path Bx′

i,j contains the vertices vτ(x′,yd)+1
i,j , . . . , vm

i,j

and the vertices b1
i,j , . . . , a

τ(x′,y0)−1
i,j , which means that Bx′

i,j is hit if and only if x ̸= x′. ◀

Proof of Theorem 6 (continued). For the other direction suppose that the graph H contains
a clique {w1, . . . , wk} of size k. Consider the following set H: For 1 ≤ i, j ≤ k, i ≠ j it
contains all C copies of the vertices uτ(wi,wj)

i,j , v
τ(wi,wj)
i,j , a

τ(wi,wj)
i,j , b

τ(wi,wj)
i,j , for 1 ≤ i < j ≤ k

it contains α(wi,wj)
i,j , for 1 ≤ i ≤ k it contains βwi

i,j , and moreover it contains the three vertices
ψ,ψα, ψβ . It holds that H has size k′.

We can observe that all shortest paths between different gadgets Gi,j and Gi′,j′ are hit
by ψα or ψβ . We now show that all shortest paths from Pr that intersect only one gadget
Gi,j are hit by H. Let 1 ≤ i, j ≤ k such that i ̸= j. Suppose that i < j, the case i > j can
be shown similarly. Consider some vertex t contained in Gi,j and denote the shortest path
between α(x,y)

i,j and t by P . Suppose that P is not hit by ψ. We can observe that the shortest
path between α

(x,y)
i,j and um+1,a

i,j or b0,u
i,j contains ψ. As P is not hit by ψ, it follows that

(a) t = aι
i,j for some ι or t ∈ {a0,u

i,j , a
m+1,u
i,j , am+1,v

i,j },
(b) t = v

τ(x′,y′)
i,j for some (x′, y′), or

(c) t ∈ {v0,a
i,j , v

0,u
i,j , v

m+1,u
i,j , vm+1,b

i,j }.
In case a it holds that P has length

dist(α(x,y)
i,j , a

τ(x,y)+1
i,j) + dist(aτ(x,y)+1

i,j , t) ≤ m+m+ 1 = 2m+ 1 < r,

so it does not need to be hit by H. In case b, the length of P is

dist(α(x,y)
i,j , a

τ(x,y)+1
i,j) + dist(aτ(x,y)+1

i,j , v0,a
i,j) + dist(v0,a

i,j , v
τ(x′,y′)
i,j) =

m+m− τ(x, y) + r − 2m+ 2 + τ(x′, y′) = r + 2 + τ(x′, y′) − τ(x, y).

It follows that the length of P exceeds r if and only if τ(x′, y′) ≥ τ(x, y) − 1, i.e. the path P

contains A(x,y)
i,j as a subpath. Lemma 10 states that this subpath is hit by the hubs within

Gi,j if (x, y) ̸= (wi, wj), otherwise it is hit by α
(x,y)
i,j . Finally, in case c it holds that P is

shorter than r or that P contains A(x,y)
i,j as a subpath, which is hit by H, as we just observed.

Analogously, consider some vertex t contained in Gi,j , denote the shortest path between
βx

i and t by P ′ and suppose that P ′ is not hit by ψ. As the shortest path between βx
i and

u0,b
i,j or am+1,u

i,j contains ψ, it follows that
(a) t = bι

i,j for some ι or t ∈ {b0,u
i,j , b

0,v
i,j , b

m+1,u
i,j },

(b) t = v
τ(x′,y′)
i,j for some (x′, y′), or

(c) t ∈ {v0,a
i,j , v

0,u
i,j , v

m+1,u
i,j , vm+1,b

i,j }.
In case a it holds that P ′ is shorter than r. In case b, the length of P ′ is

dist(βx
i , b

τ(x,y0)−1
i,j) + dist(bτ(x,y0)−1

i,j , vm+1,b
i,j) + dist(vm+1,b

i,j , v
τ(x′,y′)
i,j) =

m+ d+ τ(x, y0) − 1 + r − 2m+ 2 +m+ 1 − τ(x′, y′) =
r + 2 + τ(x, y0) + d− τ(x′, y′) = r + 2 + τ(x, yd) − τ(x′, y′).

IPEC 2022

5:22 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

It holds that the length of P ′ exceeds r if and only if τ(x′, y′) ≤ τ(x, yd) + 1, which is the
case if and only if P ′ contains Bx

i,j as a subpath, which is hit by the hubs within Gi,j or by
β

(wi,wj)
i . In case c it holds that the length of P ′ is at most r or that P ′ contains Bx

i,j as a
subpath, which is hit by H.

Consider now the shortest path between u
τ(x,y)
i,j and some vertex t of Gi,j and denote it

by P ′′. Define the shortest paths Puz(ι) and P zu(ι) as in the proof of Lemma 9. If the length
of P ′ exceeds r then for some z ∈ {a, v, b}, the path P ′′ contains the path Puz(τ(x, y)) to
z

τ(x,y)−1
i,j or the path P zu(τ(x, y) + 1) to zτ(x,y)+1

i,j as a subpath. Suppose that P ′′ contains
Puz(τ(x, y)), the other case is analogous. To show that Puz(τ(x, y)) (and hence also P ′′)
is hit by H, we distinguish two cases: If (wi, wj) ≺ (x, y), then Puz(τ(x, y)) is hit through
z

τ(wi,wj)−1
i,j , otherwise it is hit through u

τ(wi,wj)−1
i,j . Similarly it can be shown that any

shortest path between two vertices of Gi,j whose length exceeds r is hit by H, which means
that H is a solution for r-HD on G of value k′. ◀

C Dense Matching

▶ Theorem 8. It is NP-hard to approximate Dense Matching within 2 − ε for any ε > 0,
even if B = {B2(v) | v ∈ V } where all edges have weight 1.

Proof. Consider the following reduction from 3-Sat. Let an instance of this problem be
given by a set of variables X = {xi}i=1,...,n and a set of clauses C = {Cj}j=1,...,m with
Cj ⊂ X ∪ X̄, |Cj | ≤ 3. Let ¯̄x = x. We construct the graph G = (V,E) given by

V =
n⋃

i=1

(
{xi, x̄i, x

0} ∪ {xℓ
i , x̄

ℓ
i | 1 ≤ ℓ ≤ 7}

)
∪

m⋃
j=1

{zj} ∪
⋃

x∈Cj

{xj,ℓ | 1 ≤ ℓ ≤ 4}

and

E =
n⋃

i=1

(
{{xi, x

0
i }, {xi, x

1
i }, {x1

i , x
0
i }, {x̄i, x

0
i }, {x̄i, x̄

1
i }, {x̄1

i , x
0
i }}
)

∪

n⋃
i=1

(6⋃
ℓ=1

{{xℓ
i , x

ℓ+1
i }, {x̄ℓ

i , x̄
ℓ+1
i }} ∪ {{x7

i , x
4
i }, {x̄7

i , x̄
4
i }}

)
∪

m⋃
j=1

⋃
x∈Cj

{{zj , x
j,1}, {xj,1, xj,2}, {xj,2, xj,3}, {xj,3, xj,4}, {xj,4, x}, {xj,4, x0}}

The construction is illustrated in Figure 6.
We now show that the given 3-Sat formula is satisfiable if and only if there is a matching M

such that |M ∩ E(B2(v))| ≥ 2 for every ball B2(v) of radius 2, where we assume that edges
have unit length. This means that if the given formula is not satisfiable, then there is a
ball B2(v) such that |M ∩ E(B2(v))| ≤ 1, which implies that it is NP-hard to obtain an
approximation factor less than two.

Suppose that the given formula has a satisfying assignment α : X → {0, 1} and extend α

to X̄ by choosing α(x̄) = 1 − α(x). For j = 1 . . .m let yj ∈ Cj be some literal satisfying Cj ,
i.e. α(yj) = 1. We construct the matching

M =
n⋃

i=1

{{x2
i , x3

i }, {x4
i , x5

i }, {x6
i , x7

i }, {x̄2
i , x̄3

i }, {x̄4
i , x̄5

i }, {x̄6
i , x̄7

i }, } ∪
⋃

x : α(x)=1

{{x, x0}}

∪
⋃

x : α(x)=0

{{x, x1}} ∪
m⋃

j=1

{{zj , yj,1
j }, {yj,2

j , yj,3
j }} ∪

⋃
x∈Cj \{yj }

{{xj,1, xj,2}, {xj,3, xj,4}}

J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:23

x0
2x2 x̄2

x1
2

x7
2

x̄1
2

x̄7
2

x0
1x1 x̄1

x1
1

x7
1

x̄1
1

x̄7
1

x0
3x3 x̄3

x1
3

x7
3

x̄1
3

x̄7
3

x0
4x4 x̄4

x1
4

x7
4

x̄1
4

x̄7
4

x1,1
1

x1,4
1

x2,1
1

x2,4
1

x1,1
2

x1,4
2

x2,1
2

x2,4
2

x2,1
4

x2,4
4

x1,1
3

x1,4
3

x2
1

z2z1

x1,3
1

Figure 6 The graph G for the formula (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x4). The bold edges yield a
matching that corresponds to the assignment x1 7→ 0, x2 7→ 1, x3 7→ 0, x4 7→ 1.

It is easy to verify that M is indeed a matching and that |M ∩ E(B2(v))| ≥ 2 for every
ball B2(v).

Suppose now that there is some matching M such that |M ∩ E(B2(v))| ≥ 2 for every
ball B2(v). Consider the assignment α : X → {0, 1}, α(x) = 1 if and only if there is some j
such that {zj , x

j,1} ∈ M . To show that α is a satisfying assignment, consider some clause Cj

and let Cj = {xi1 , xi2 , xi3}. Consider the ball B2(xj,1
i1

) = {zj , x
j,1
i1
, xj,2

i1
, xj,3

i1
, xj,1

i2
, xj,1

i3
}. We

show that M contains one of the edges {zj , x
j,1
i1

}, {zj , x
j,1
i2

}, and {zj , x
j,1
i3

}. To prove this,
suppose that M contains none of these three edges. This means that M has to contain
the two remaining edges {xj,1

i1
, xj,2

i1
} and {xj,2

i1
, xj,3

i1
} contained in E(B2(xj,1

i1
)), which is not

possible as both edges are incident to xj,2
i1

.
Let now {zj , x

j,1
ι } be the edge contained in M . If xι ∈ X, i.e. xι is a positive literal,

it immediately follows that α satisfies the clause Cj . Suppose now that xι ∈ X̄. We
show that in this case we have α(xι) = 0, i.e. there is no j′ such that {zj′ , x̄j′,1

ι } ∈ M .
For the sake of contradiction, suppose that {zj′ , x̄j′,1

ι } ∈ M for some j′ ∈ {1, . . . ,m}. It
follows from |M ∩ E(B2(xj,1

ι))| ≥ 2 that {xj,2
ι , xj,3

ι } ∈ M . Consider the ball B2(xj,3
ι) =

{xj,1
ι , xj,2

ι , xj,3
ι , xj,4

ι , xι, x̄
0
ι }. As M contains two edges from this ball and one of these edges

is {xj,2
ι , xj,3

ι }, the other edge needs to be contained in the triangle {xj,4
ι , xι, x̄

0
ι }. Consider

now the ball B2(x7
ι) = {x4

ι , x
5
ι , x

6
ι , x

7
ι }. It holds that {x4

ι , x
5
ι } ∈ M or {x4

ι , x
6
ι } ∈ M , which

implies {x3
ι , x

4
ι } ̸∈ M . If we now consider the ball B2(x2

ι) = {x, x̄0
ι , x

1
ι , x

2
ι , x

3
ι , x

4
ι }, it follows

that M needs to contain one edge from the triangle {x, x̄0
ι , x

1
ι }. As M also contains one edge

from the triangle {xj,4
ι , xι, x̄

0
ι }, we obtain that M contains {x̄0

ι , x
4
ι }, {x̄0

ι , x}, or {x̄0
ι , x

1
ι }.

However, as we also have {zj′ , x̄j′,1
ι } ∈ M , it follows analogously that M contains

{x̄0
ι , x̄

4
ι }, {x̄0

ι , x̄}, or {x̄0
ι , x̄

1
ι }, which is not possible. This means that α is indeed a satisfying

assignment, which concludes the proof. ◀

IPEC 2022

On the Complexity of Problems on Tree-Structured
Graphs
Hans L. Bodlaender !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Carla Groenland !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Hugo Jacob !

ENS Paris-Saclay, France

Marcin Pilipczuk !

University of Warsaw, Poland

Michał Pilipczuk !

University of Warsaw, Poland

Abstract
In this paper, we introduce a new class of parameterized problems, which we call XALP: the
class of all parameterized problems that can be solved in f(k)nO(1) time and f(k) log n space on a
non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup
allowed). Various natural problems on “tree-structured graphs” are complete for this class: we show
that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete.
Moreover, Independent Set and Dominating Set parameterized by treewidth divided by log n,
and Max Cut parameterized by cliquewidth are also XALP-complete.

Besides finding a “natural home” for these problems, we also pave the road for future reductions.
We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of
problems solvable by an Alternating Turing Machine whose runs have tree size at most f(k)nO(1)

and use f(k) log n space. Moreover, we introduce “tree-shaped” variants of Weighted CNF-
Satisfiability and Multicolor Clique that are XALP-complete.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Parameterized Complexity, Treewidth, XALP, XNLP

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.6

Related Version Full Version: https://arxiv.org/abs/2206.11828 [8]

Funding Carla Groenland: Supported by the European Union’s Horizon 2020 research and innovation
programme under the ERC grant CRACKNP (number 853234) and the Marie Skłodowska-Curie
grant GRAPHCOSY (number 101063180).
Marcin Pilipczuk: This research is a part of a project that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme Grant Agreement 714704.
Michał Pilipczuk: This research is a part of a project that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme Grant Agreement 948057.

Acknowledgements We would like to thank the organizers of the workshop on Parameterized
complexity and discrete optimization, organized at HIM in Bonn, for providing a productive research
environment. We would also like to thank our referees for useful suggestions.

© Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:c.e.groenland@uu.nl
https://orcid.org/0000-0002-9878-8750
mailto:hugo.jacob@ens-paris-saclay.fr
https://orcid.org/0000-0003-1350-3240
mailto:malcin@mimuw.edu.pl
https://orcid.org/0000-0001-5680-7397
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://arxiv.org/abs/2206.11828
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On the Complexity of Problems on Tree-Structured Graphs

1 Introduction

A central concept in complexity theory is completeness for a class of problems. Establishing
completeness of a problem for a class pinpoints its difficulty, and gives implications on resources
(time, memory or otherwise) to solve the problem (often, conditionally on complexity theoretic
assumptions). The introduction of the W-hierarchy by Downey and Fellows in the 1990s
played an essential role in the analysis of the complexity of parameterized problems [13, 14, 15].
Still, several problems are suspected not to be complete for a class in the W-hierarchy, and
other classes of parameterized problems with complete problems were introduced, e.g., the
A-, AW-, and M-hierarchies. (See e.g., [1, 15, 19].) In this paper, we introduce a new class of
parameterized complexity, which appears to be the natural home of several “tree structured”
parameterized problems. This class, which we call XALP, can be seen as the parameterized
version of a class known in classic complexity theory as NAuxPDA[poly, log] (see [3]), or
ASPSZ(log n, nO(1)) [24].

It can also be seen as the “tree variant” of the class XNLP, which is the class of
parameterized problems that can be solved by a non-deterministic Turing machine using
f(k) log n space in f(k)nO(1) time for some computable function f , where k denotes the
parameter and n the input size. It was introduced in 2015 by Elberfeld et al. [17]. Recently,
several parameterized problems were shown to be complete for XNLP [4, 9, 7]; in this
collection, we find many problems for “path-structured graphs”, including well known
problems that are in XP with pathwidth or other linear width measures as parameter, and
linear ordering graph problems like Bandwidth.

Thus, we can view XALP as the “tree” variant of XNLP and as such, we expect that
many problems known to be in XP (and expected not to be in FPT) when parameterized
by treewidth will be complete for this class. We will prove the following problems to be
XALP-complete in this paper:

List Coloring and All-or-Nothing Flow parameterized by treewidth;
Independent Set and Dominating Set parameterized by treewidth divided by log n,
where n is the number of vertices of the input graph;
Max Cut parameterized by cliquewidth.

The problems listed in this paper should be regarded as examples of a general technique,
and we expect that many other problems parameterized by treewidth, cliquewidth and
similar parameters will be XALP-complete. In many cases, a simple modification of an
XNLP-hardness proof with pathwidth as parameter shows XALP-hardness for the same
problem with treewidth as parameter.

In addition to pinpointing the exact complexity class for these problems, such results have
further consequences. First, XALP-completeness implies XNLP-hardness, and thus hardness
for all classes W[t], t ∈ N. Second, a conjecture by Pilipczuk and Wrochna [23], if true,
implies that every algorithm for an XALP-complete problem that works in XP time (that is,
nf(k) time) cannot simultaneously use FPT space (that is, f(k)nO(1) space). Indeed, typical
XP algorithms for problems on graphs of bounded treewidth use dynamic programming, with
tables that are of size nf(k).

Satisfiability on graphs of small treewidth. Real-world SAT instances tend to have a
special structure to them. One of the measures capturing the structure is the treewidth
T W(ϕ) of the given formula ϕ. This is defined by taking the treewidth of an associated
graph, usually a bipartite graph on the variables on one side and the clauses on the other,
where there is an edge if the variable appears in the clause. Alekhnovitch and Razborov [2]

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:3

raised the question of whether satisfiability of formulas of small treewidth can be checked in
polynomial space, which was positively answered by Allender et al. [3]. However, the running
time of the algorithm is 3T W(ϕ) log |ϕ| rather than 2O(T W(ϕ))|ϕ|O(1), where |ϕ| = n + m for
n the number of variables and m the number of clauses. They also conjectured that the
log |ϕ| factor in the exponent for the running time cannot be improved upon without using
exponential space.

To support this conjecture, Allender et al. [3] show that Satisfiability where the
treewidth of the associated graph is O(log n) is complete for a class of problems called
SAC1: these are the problems that can be recognized by “uniform” circuits with semi-
unbounded fan-in of depth O(log n) and polynomial size. This class has also been shown
to be equivalent to classes of problems that are defined using Alternating Turing Machines
and non-deterministic Turing machines with access to an auxiliary stack [24, 26]. We
define parameterized analogues of the classes defined using Alternating Turning Machines or
non-deterministic Turing machines with access to an auxiliary stack, and show these to be
equivalent. This is how we define our class XALP.

Allender et al. [3] considers Satisfiability where the treewidth of the associated graph
is O(logk n) for all k ≥ 1. We restrict ourselves to the case k = 1 since this is where we could
find interesting complete problems, but we expect that a similar generalisation is possible in
our setting.

The main contribution of our paper is to transfer definitions and results from the classical
world to the parameterized setting, by which we provide a natural framework to establish the
complexity of many well-known parameterized problems. We provide a number of natural
XALP-complete problems, but we expect that in the future it will be shown that XALP is
the “right box” for many more problems of interest.

Paper overview. In Section 2, we give a number of definitions, discuss the classical analogues
of XALP, and formulate a number of key parameterized problems. Several equivalent
characterizations of the class XALP are given in Section 3. In Section 4, we introduce
a “tree variant” of the wellknown Multicolor Clique problem. We call this problem
Tree-Chained Multicolor Clique, and show it to be XALP-hard with a direct proof
from an acceptance problem of a suitable type of Turing Machine, inspired by Cook’s proof
of the NP-completeness of Satisfiability [11]. In Section 5, we build on this and give a
number of other examples of XALP-complete problems, including tree variants of Weighted
Satisfiability and several problems parameterized by treewidth or another tree-structured
graph parameter.

2 Definitions

We assume that the reader is familiar with a number of well-known notions from graph
theory and parameterized complexity, e.g., FPT, the W-hierarchy, clique, independent set,
etc. (See e.g., [12].)

A tree decomposition of a graph G = (V, E) is a pair (T = (I, F), {Xi | i ∈ T}) with
T = (I, F) a tree and {Xi | i ∈ I}) a family of (not necessarily disjoint) subsets of V

(called bags) such that
⋃

i∈I Xi = V , for all edges vw ∈ E, there is an i with v, w ∈ Xi,
and for all v, the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T . The width of a
tree decomposition (T, {Xi | i ∈ T}) is maxi∈I |Xi| − 1, and the treewidth of a graph G

is the maximum width over all tree decompositions of G. A path decomposition is a tree
decomposition (T = (I, F), {Xi | i ∈ T}) with T a path, and the pathwidth is the minimum
width over all path decompositions of G.

IPEC 2022

6:4 On the Complexity of Problems on Tree-Structured Graphs

2.1 Turing Machines and Classes

We assume the reader to be familiar with the basic concept of a Turing Machine. Here, we
consider TMs that have access to both a fixed input tape (where the machine can only read),
and a work tape of specified size (where the machine can both read and write). We consider
Non-deterministic Turing Machines (NTM), where the machine can choose between different
transitions, and accepts, if at least one choice of transitions leads to an accepting state, and
Alternating Turing Machines (ATM), where the machine can both make non-deterministic
steps (accepting when at least one choice leads to acceptance), and co-non-deterministic
steps (accepting when both choices lead to acceptance). We assume a co-non-deterministic
step always makes a binary choice, i.e, there are exactly two transitions that can be done.

Acceptance of an ATM A can be modelled by a rooted binary tree T , sometimes called a
run or a computation tree of the machine. Each node of T is labelled with a configuration
of A: the 4-tuple consisting of the machine state, work tape contents, location of work tape
pointer, and location of input tape pointer. Each edge of T is labelled with a transition.
The starting configuration is represented by the root of T . A node with one child makes a
non-deterministic step, and the arc is labelled with a transition that leads to acceptance; a
node with two children makes a co-non-deterministic step, with the children the configurations
after the co-non-deterministic choice. Each leaf is a configuration with an accepting state.
The time of the computation is the depth of the tree; the treesize is the total number of
nodes in this computation tree. For more information, see e.g., [24, 23]. A computation path
is a path from root to leaf in the tree.

We also consider NTMs which additionally have access to an auxiliary stack. For those,
a transition can also move the top element of the stack to the current location of the work
tape (“pop”), or put a symbol at the top of the stack (“push”). We stress that only the top
element can be accessed or modified, the machine cannot freely read other elements on the
stack.

We use the notation N[t(n, k), s(n, k)] to denote languages recognizable by a NTM
running in time t(n, k) with s(n, k) working space and A[t(n, k), s(n, k)] to denote languages
recognizable by an ATM running in treesize t(n, k) with s(n, k) working space. We note that
we are free to put the constraint that all runs have treesize at most t(n, k), since we can add
a counter that keeps track of the number of remaining steps, and reject when this runs out
(similar to what is done in the proof of Theorem 1). We write NAuxPDA[t(n, k), s(n, k)] to
denote languages recognizable by a NTM with a stack (AUXiliary Push-Down Automaton)
running in time t(n, k) with s(n, k) working space.

Ruzzo [24] showed that for any function s(n), NAuxPDA[nO(1) time,s(n) space] =
A[nO(1) treesize, s(n) space]. Allender et al. [3] provided natural complete problems when
s(n) = logk(n) for all k ≥ 1 (via a circuit model called SAC, which we will not use in our
paper). Our interest lies in the case k = 1, where it turns out the parameterized analogue is
the natural home of “tree-like” problems.

Another related work by Pilipczuk and Wrochna [23] shows that there is a tight relationship
between the complexity of 3-Coloring on graphs of treedepth, pathwidth, or treewidth
s(n) and problems that can be solved by TMs with adequate resources depending on s(n).

2.2 From classical to parameterized

In this paper we introduce the class XALP =NAuxPDA[fpoly, f log]. Following [9], we use
the name XNLP for the class N[fpoly, f log]; fpoly is shorthand notation for f(k)nO(1) for

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:5

some computable function f , and f log shorthand notation for f(k) log n.
The crucial difference between the existing classical results and our results is that we

consider parameterized complexity classes. These classes are closed under parameterized
reductions, i.e. reductions where the parameter of the reduced instance must be bounded
by the parameter of the initial instance. In our context, we have an additional technicality
due to the relationship between time and space constraints. While a logspace reduction is
also a polynomial time reduction, a reduction using f(k) log n space (XL) could use up to
nf(k) time (XP). XNLP and XALP are closed under pl-reductions where the space bound is
f(k) + O(log n) (which implies FPT time), and under ptl-reductions running in f(k)nO(1)

time and f(k) log n space.
We now give formal definitions.
A parameterized reduction from a parameterized problem Q1 ⊆ Σ∗

1 ×N to a parameterized
problem Q2 ⊆ Σ∗

2 × N is a function f : Σ∗
1 × N → Σ∗

2 × N such that the following holds.
1. For all (x, k) ∈ Σ∗

1 × N, (x, k) ∈ Q1 if and only if f((x, k)) ∈ Q2.
2. There is a computable function g such that for all (x, k) ∈ Σ∗

1 × N, if f((x, k)) = (y, k′),
then k′ ≤ g(k).

If there is an algorithm that computes f((x, k)) in space O(g(k)+log n), with g a computable
function and n = |x| the number of bits to denote x, then the reduction is a parameterized
logspace reduction or pl-reduction.

If there is an algorithm that computes f((x, k)) in time g(k)nO(1) and space O(h(k) log n),
with g, h computable functions and n = |x| the number of bits to denote x, then the reduction
is a parameterized tractable logspace reduction or ptl-reduction.

3 Equivalent characterisations of XALP

In this section, we give a number of equivalent characterisations of XALP.

▶ Theorem 1. The following parameterized complexity classes are all equal.
1. NAuxPDA[f poly, f log], the class of parameterized decision problems for which instances

of size n with parameter k can be solved by a non-deterministic Turing machine with
f(k) log n memory in f(k)nO(1) time when given a stack, for some computable function f .

2. The class of parameterized decision problems for which instances of size n with parameter k

can be solved by an alternating Turing machine with f(k) log n memory whose computation
tree is a binary tree on f(k)nO(1) nodes, for some computable function f .

3. The class of parameterized decision problems for which instances of size n with parameter k

can be solved by an alternating Turing machine with f(k) log n memory whose computation
tree is obtained from a binary tree of depth O(log n) + f(k) by subdividing each edge
f(k)nO(1) times, for some computable function f .

4. The class of parameterized decision problems for which instances of size n with parameter
k can be solved by an alternating Turing machine with f(k) log n memory, for which the
computation tree has size f(k)nO(1) and uses O(log n) + f(k) co-non-deterministic steps
per computation path, for some computable function f .

Proof. The proof is similar to the equivalence proofs for the classical analogues, and added
for convenience of the reader. We prove the theorem by proving the series of inclusions 1 ⊆
2 ⊆ 3 ⊆ 4 ⊆ 1.

IPEC 2022

6:6 On the Complexity of Problems on Tree-Structured Graphs

1 ⊆ 2. Consider a problem that can be solved by a non-deterministic Turing Machine
T with a stack and f(k) log n memory in f(k)nO(1) time. We will simulate T using an
alternating Turing machine T ′.

We place three further assumptions on T , which can be implemented by changing the
function f slightly if needed.

The Turing machine T has two counters. One keeps track of the height of the stack, and
the other keeps track of the number of computation steps. A single computation step may
involve several operations; we just need that the running time is polynomially bounded
in the number of steps.
We assume that T only halts with acceptance when the stack is empty. (Otherwise, do
not yet accept, but pop the stack using the counter that tells the height of the stack,
until the stack is empty.)
Each pop operation performed by T is a deterministic step. This can be done by adding
an extra state to T and splitting a non-deterministic step into a non-deterministic step
and a deterministic step if needed.

We define a configuration as a tuple which includes the state of T , the value of the two
pointers and the content of the memory. In particular, this does not contain the contents of
the stack and so a configuration can be stored using O(f(k) log n) bits. (Note that the value
of both pointers is bounded by f(k)nO(1).)

We will build a subroutine A(c1, c2) which works as follows.
The input c1, c2 consists of two configurations with the same stack height.
The output is whether T has an accepting run from c1 to c2 without popping the top
element from the stack in c1; the run may pop elements that have yet to get pushed.

We write Apply(c, POP(s)) for the configuration that is obtained when we perform a pop
operation in configuration c and obtain s from the stack. This is only defined if T can do a
pop operation in configuration c (e.g. it needs to contain something on the stack). We define
the configuration Apply(c, PUSH(s)) in a similar manner, where this time s gets pushed
onto the stack.

We let T ′ simulate T starting from configuration cs as follows. Our alternating Turing
machine T ′ will start with the following non-deterministic step: guess the ca configuration
that accepts at the end of the run. It then performs the subroutine A(cs, ca).

We implement A(cs, ca) as follows. A deterministic or non-deterministic step of T is
carried out as usual.

If T is in some configuration c and wants to push s to the stack, then let c′ = Apply(c,
PUSH(s)) and let T ′ perform a non-deterministic step that guesses a configuration c′

2
with the same stack height as c′ for which the next step is to pop (and the number of
remaining computation steps is plausible). Let c2 = Apply(c′

2, POP(s)). We make T ′ do a
co-non-deterministic step consisting of two branches:

T ′ performs the subroutine A(c′, c′
2).

T ′ performs the subroutine A(c′
2, ca).

We ensure that in configuration c′
2, the number of steps taken is larger than in configuration c′.

This ensures that T ′ will terminate.
Since a configuration can be stored using O(f(k) log n) and T ′ always stores at most

a bounded number of configurations, T ′ requires only O(f(k) log n) bits of memory. The
computation tree for T ′ is binary. The total number of nodes of the computation tree of T ′ is
f(k)nO(1) since each computation step of T appears at most once in the tree (informally: our
co-non-deterministic steps split up the computation path of T into two disjoint parts), and we
have added at most a constant number of steps per step of T . To see this, the computation

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:7

tree of T ′ may split a computation path c →push c′ → · · · → c′
2 →pop c2 → · · · → ca of T

into two parts: one branch will simulate c′ → · · · → c′
2 and the other branch will simulate

c2 → · · · → ca. At most a constant number of additional nodes (e.g. the node which takes
the co-non-deterministic step) are added to facilitate this. Importantly, the configurations
implicitly stored a number of remaining computation steps, and so T ′ can calculate from
c′, c′

2 how many steps T is supposed to take to move between c′ and c′
2.

2 ⊆ 3. The intuition behind this proof is to use that any n-vertex tree has a tree
decomposition of bounded treewidth of depth O(log n).

Let A be an alternating Turing machine for some parameterized problem with a
computation tree of size f(k)nO(1) and f(k) log n bits of memory.

We build an alternating Turing machine B that simulates A for which the computation
tree is a binary tree which uses O(f(k) + log n) co-non-deterministic steps per computation
branch and O(f(k) log n) memory. We can after that ensure that there are f(k)nO(1) steps
between any two co-non-deterministic steps by adding “idle” steps if needed.

We ensure that B always has advice in memory: 1 configuration for which A accepts.
In particular, if c′ is the configuration stored as advice when A is in configuration c with a
bound of n steps, then B checks if A can get from c to c′ within n steps.

We also maintain a counter for the number of remaining steps: the number of nodes
that are left in the computation tree of A, when rooted at the current configuration c not
counting the node of c itself. In particular, the counter is 0 if c is supposed to be a leaf.

We let B simulate A as follows. Firstly, if no advice is in memory, it makes a non-
deterministic step to guess a configuration as advice.

Suppose that A is in configuration c with n0 steps left. We check the following in order.
If c equals the advice, then we accept. If n0 ≤ 0, then we reject. If the next step of A is
non-deterministic or deterministic step, then we perform the same step. The interesting
things happen when A is about to perform a co-non-deterministic step starting from c with
n0 steps left. If n0 ≤ 1, then we reject: there is no space for such a step. Otherwise, we
guess n1, n2 ≥ 0 such that n1 + n2 = n0 − 2, and children c1, c2 of c in the computation tree
of A. Renumbering if needed, we may assume that the advice c′ is supposed to appear in
the subtree of c1. We also guess an advice c′

2 for c2 We create a co-non-deterministic step
with two branches, one for the computation starting from c1 with n1 steps and the other
from c2 with n2. We describe how we continue the computation starting from c1; the case in
which c2 is analogous.

Recall that some configuration c′ has been stored as advice. We want to ensure that the
advice is limited to one configuration. First, we non-deterministically guess a configuration c′′.
We non-deterministically guess whether c′′ is an ancestor of c′. We perform different
computation depending on the outcome.

Suppose that we guessed that c′′ is an ancestor of c′. We guess integers 1
3 n1 ≤ a, b ≤ 2

3 n1
with a + b = n1. We do a co-non-deterministic step: one branch starts in c1 with c′ as
advice and a steps, the other branch starts in c′ with c′′ as advice and b steps.
Suppose that c′′ is not an ancestor of c′. We guess a configuration ℓ, corresponding
to the least common ancestor of c′ and c′′ in the computation tree. We guess integers
0 ≤ a, b, a′, b′ ≤ 2

3 n1 with a + b + a′ + b′ = n1. We perform a co-non-deterministic branch
to obtain four subbranches: starting in c with ℓ as advice and a steps, ℓ with c′ as advice
and b steps, starting in ℓ with c′′ as advice and a′ steps and starting in c′′ with no advice
and b′ steps.

IPEC 2022

6:8 On the Complexity of Problems on Tree-Structured Graphs

In order to turn our computation tree into a binary tree, we may choose to split the single
co-non-deterministic step into two steps.

Since at any point, we store at most a constant number of configurations, this can be
performed using O(f(k) log n) bits in memory.

It remains to show that B performs O(log n + f(k)) co-non-deterministic steps per
computation path. The computation of B starts with a counter for the number of steps which
is at most f(k)nO(1); every time B performs a co-non-deterministic step, this counter is
multiplied by a factor of at most 2

3 . The claim now follows from the fact that log(f(k)nO(1)) =
O(log n + log f(k)).

3 ⊆ 4. Let T be an alternating Turing machine using f(k) log n memory whose computation
fits in a tree obtained from a binary tree of depth d by subdividing each edge f(k)nO(1)

times. Then T uses f(k)nO(1) time (with possibly a different constant in the O(1)-term) and
performs at most d co-non-deterministic steps per computation path. Hence this inclusion is
immediate.

4 ⊆ 1. We may simulate the alternating Turing machine using a non-deterministic Turing
machine stack as follows. Each time we wish to do a co-non-deterministic branch, we put
the current configuration c onto our stack and continue to the left-child of c. Once we have
reached an accepting state, we pop an element c of the stack and next continue to the right
child of c. The total computation time is bounded by the number of nodes in the computation
tree and the memory requirement does not increase by more than a constant factor. (Note
that in particular, our stack will never contain more than log n + f(k) elements.) ◀

Already in the classical setting, it is expected that NL ⊊ A[poly treesize, log space].
We stress the fact that this would imply XNLP ⊊ XALP, since we can always ignore the
parameter. It was indeed noted in [3, Corollary 3.13] that the assumption NL ⊊ A[poly
treesize, log space] separates the complexity of SAT instances of logarithmic pathwidth from
SAT instances of logarithmic treewidth. Allender et al. [3] formulates this result in terms of
SAC1 instead of the equivalent A[poly treesize, log space]. We expect that a parameterized
analogue of SAC can be added to the equivalent characterization above, but decided to not
pursue this here. The definition of such a circuit class requires a notion of “uniformity” that
ensures that the circuits have a “small description”, which makes it more technical.

4 XALP-completeness for a tree-chained variant of Multicolor Clique

Our first XALP-complete problem is a “tree” variant of the well-known Multicolor Clique
problem.

Tree-Chained Multicolor Clique
Input: A binary tree T = (I, F), an integer k, and for each i ∈ I, a collection of k pairwise
disjoint sets of vertices Vi,1, . . . , Vi,k, and a graph G with vertex set V =

⋃
i∈I,j∈[1,k] Vi,j .

Parameter: k.
Question: Is there a set of vertices W ⊆ V such that W contains exactly one vertex from
each Vi,j (i ∈ I, j ∈ [1, k]), and for each pair Vi,j , Vi′,j′ with i = i′ or ii′ ∈ F , j, j′ ∈ [1, k],
(i, j) ̸= (i′, j′), the vertex in W ∩ Vi,j is adjacent to the vertex in W ∩ Vi′,j′?

This problem is the XALP analogue of the XNLP-complete problem Chained
Multicolor Clique, in which the input tree T is a path instead. This change of “path-like”
computations to “tree-like” computations is typical when going from XNLP to XALP.

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:9

For the Tree-Chained Multicolor Independent Set problem, we have a similar
input and question except that we ask for the vertex in W ∩ Vi,j and the vertex in W ∩ Vi′,j′

not to be adjacent. In both cases, we may assume that edges of the graphs are only between
vertices of Vi,j and Vi′,j′ with i = i′ or ii′ ∈ F , j, j′ ∈ [1, k], (i, j) ̸= (i′, j′). We call tree-
chained multicolor clique (resp. independent set) a set of vertices satisfying the respective
previous conditions.

The problems above can be seen as binary CSPs by replacing vertex choice by assignment
choice.

Membership of these problems in XNLP seems unlikely, since it is difficult to handle the
“branching” of the tree. However, in XALP this is easy to do using the co-non-deterministic
steps and indeed the membership follows quickly.

▶ Lemma 2. Tree-chained Multicolor Clique is in XALP.

Proof. We simply traverse the tree T with an alternating Turing machine that uses a co-
non-deterministic step when it has to check two subtrees. When at i ∈ I, the machine first
guesses a vertex for each Vi,j , j ∈ [k]. It then checks that these vertices form a multicolor
clique with the vertices chosen for the parent of i. The vertices chosen for the parent can
now be forgotten and the machine moves to checking children of i. The machine works in
polynomial treesize, and uses only O(k log n) space to keep the indices of chosen vertices for
up to two nodes of T , the current position on T . ◀

We next show that Tree-Chained Multicolor Clique is XALP-hard. We will use the
characterization of XALP where the computation tree of the alternating Turing machine is a
specific tree (3), which allows us to control when co-non-deterministic steps can take place.

Let M be an alternating Turing machine with computation tree T = (I, F), let x be its
input of size n, and k be the parameter. The plan is to encode the configuration of M at
the step corresponding to node i ∈ V (T) by the choice of the vertices in Vi,1, . . . , Vi,k′ (for
some k′ = f(k)). The possible transitions of the Turing Machine are then encoded by edges
between Vi and Vi′ for ii′ ∈ F , where Vj =

⋃
ℓ∈[1,k′] Vj,ℓ.

A configuration of M contains the same elements as in the proof of Theorem 1:
the current state of M,
the position of the head on the input tape,
the working space which is f(k) log n bits long, and
the position of the head on the work tape.

We partition the working space in k′ = f(k) pieces of log n consecutive bits, and have
a set of vertices Vi,j for each. Formally, we have a vertex vq,p,b,w in Vi,j for each tuple
(q, p, b, w) where q is the state of the machine, p is the position of the head on the input tape,
b ∈ {after, before} ⊎ [log n] indicates if the block of the work tape is before or after the
head, or its position in the block, and w is the current content of the jth block of the work
tape.

The edges between vertices of Vi enforce that possible choices of vertices correspond to valid
configurations. There is an edge between v ∈ Vi,j and w ∈ Vi,j+1 with corresponding tuples
(q, p, b, w) and (q′, p′, b′, w′), if and only if q = q′, p = p′, and either b′ = b ∈ {after, before},
or b ∈ [log n] and b′ = after, or b = before and b′ ∈ [log n].

▶ Observation 3. If v1, . . . , vk′ is path with vj ∈ Vi,j , then at most one of the vj can encode
a block with the work tape head, blocks before the head have b = before, blocks after the head
have b = after, and all blocks encode the same state and position of the input tape head.

IPEC 2022

6:10 On the Complexity of Problems on Tree-Structured Graphs

The edges between vertices of Vi and Vi′ for ii′ ∈ F enforce that the configurations chosen
in Vi and Vi′ encode configurations with a transition from one to the other. There is an
edge between v ∈ Vi,j and w ∈ Vi′,j with corresponding tuples (q, p, b, w) and (q′, p′, b′, w′),
such that (b, b′) ∈ {(after, after), (before, before), (after, 1), (before, log n)} if and only
if w = w′. There is an edge between v ∈ Vi,j and w ∈ Vi′,j with corresponding tuples
(q, p, b, w) and (q′, p′, b′, w′), such that b ∈ [log n], if and only if, there is a transition of M
from state q to state q′ that would write w′[b] when reading x[p] on the input tape and w[b]
on the work tape, move the input tape head by p′ − p and the work tape by b′ − b (where
after = 0 and before = 1 + log n), and for ℓ ∈ [log n] \ {b} w[ℓ] = w′[ℓ].

▷ Claim 4. If v1, . . . , vk′ , v′
1, . . . , v′

k′ induce a 2×k′ “multicolor grid” (i.e. v1, . . . , vk′ is a path
with vj ∈ Vi,j , v′

1, . . . , v′
k′ is a path with v′

j ∈ Vi′,j , there are edges vjv′
j for j ∈ [k′], ii′ ∈ F ,

and v′
1, . . . , v′

k′ encodes a valid configuration), then v1, . . . , vk′ encodes a valid configuration
that can reach the configuration encoded by v′

1, . . . , v′
k′ using one transition of M.

Proof. This follows easily from the construction but we still detail why this is sufficient when
the work tape head moves to a different block.

We consider the case when the head moves to the block before it. That is we consider
the case where v′

j encodes b′ = log n and vj encodes b = before. First, note that there is
an edge from vjv′

j allowing this. We use Observation 3 and conclude that v′
j+1 (if it exists)

must encode head position after for its block. The edge vj+1v′
j+1 then enforces that vj+1

encodes head position 1 but it can also exist only if there is a transition of M that moves the
work tape head to the previous block and the written character at the beginning of the block
encoded by v′

j+1 corresponds to such transition. Moving to the next block is a symmetric
case. ◁

We have further constraints on the vertices placed in each Vi,j based on what i is in T .
If i is in a leaf of T , then we only have vertices with a corresponding tuple (q, p, b, w)
with q an accepting state.
If i is in a “branching” vertex of T (i.e. i has two children), then we only have vertices
with a corresponding tuple (q, p, b, w) with q a universal state.
If i is the root, then only vertices corresponding to the initial configuration are allowed.
Otherwise, we only have vertices with tuples encoding an existential state.

Furthermore, we have to make sure that when branching we take care of the two distinct
transitions. We actually assume that T has an order on children for vertices with two children.
Then for the edge of T to the first (resp. second) child, we only allow the first (resp. second)
transition from the configuration of the parent (which must have a universal state).

We now complete the graph with edges that do not enforce constraints so that we may find
a multicolor clique instead of only a 2 × k′ multicolor grid. For every i ∈ I, and j, j′ ∈ [k′]
such that |j − j′| > 1, we add all edges between Vi,j and Vi,j′ . For every ii′ ∈ F , and
j, j′ ∈ [k′] such that j ̸= j′, we add all edges between Vi,j and Vi′,j′ . It should be clear that
to find a multicolor clique for some edge ii′ after adding these edges is equivalent to finding
a “multicolor grid” before they were added1.

▷ Claim 5. The constructed graph admits a tree-chained multicolor clique, if and only if,
there is an accepting run for M with input x and computation tree T .

1 Asking for these multicolor grids for each edge of the tree instead of multicolor cliques also leads to an
XALP-complete problem but we do not use this problem for further reductions. It could however be
used as a starting point for new reductions.

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:11

Proof. The statement follows from a straight-forward induction on T showing that for each
configuration C of M that can be encoded by the construction at i ∈ I, its encoding can be
extended to a tree-chained multicolor clique of the subtree of T rooted at i, if and only if
there is an accepting run of M from C with as computation tree the subtree of T rooted
at i. ◁

Each Vi,j has O(|Q|n2 log n) vertices (for Q the set of states). Edges are only between Vi,j

and Vi′,j′ such that ii′ ∈ F or i = i′. We conclude that there are g(k)nO(1) vertices and edges
in the constructed graph per vertex of T , which is itself of size h(k)nO(1) so the constructed
instance has size g(k)h(k)nO(1), for g, h computable functions. The construction can even be
performed using only g′(k) + O(log(n)) space for some computable function g′. Note also
that k′ = f(k): the new parameter is bounded by a function of the initial parameter. This
shows that our reduction is a parameterized pl-reduction, and we conclude XALP-hardness.
Combined with Lemma 2, we proved the following result.

▶ Theorem 6. Tree-chained Multicolor Clique is XALP-complete.

One may easily modify this to the case where each color class has the same size, by adding
isolated vertices.

By taking the complement of the graph, we directly obtain the following result.

▶ Corollary 7. Tree-Chained Multicolor Independent Set is XALP-complete.

5 More XALP-complete problems

In this section, we prove a collection of problems on graphs, given with a tree-structure, to
be complete for the class XALP. The proofs are of different types: in some cases, the proofs
are new, in some cases, reformulations of existing proofs from the literature, and in some
cases, it suffices to observe that an existing transformation from the literature keeps the
width-parameter at hand bounded.

5.1 List coloring
The problems List Coloring and Pre-coloring Extension with pathwidth as parameter
are XNLP-complete [9]. A simple proof shows XALP-completeness with treewidth as
parameter. Jansen and Scheffler [21] showed that these problem are in XP, and Fellows et
al. [18] showed W [1]-hardness.

▶ Theorem 8. List Coloring and Pre-coloring Extension are XALP-complete with
treewidth as parameter.

Proof. Membership follows as usual. The color of (uncolored) vertices is non-deterministically
chosen when they are introduced. We maintain the color of vertices of the current bag in the
working space. We use co-non-deterministic steps when the tree decomposition branches. We
check that introduced edges do not contradict the coloring being proper. This uses O(k log n)
space, and runs in polynomial total time.

We first show XALP-hardness of List Coloring. We reduce from Tree-Chained
Multicolor Independent Set. Suppose we have an instance of this problem. The set of
colors equals the set of vertices V . For each class Vij , i ∈ I, j ∈ [1, k], we take a vertex vij

with set of colors Vij .
For each pair of “incident classes” Vij , Vi′j′ with i = i′ or ii′ an edge in F , ij ̸= i′j′,

and each edge vw ∈ E ∩ Vij × Vi′j′ , we add a new vertex with set of colors {v, w}, which is
incident to vij and vi′j′ . Let H be the resulting graph.

IPEC 2022

6:12 On the Complexity of Problems on Tree-Structured Graphs

Now, H has a list coloring, if and only if there is a tree-chained multicolor independent
set in G. The transformation of solutions is straightforward: the chosen colors for vij are
equal to the chosen vertices from Vij . If we choose two adjacent vertices in incident classes,
then we do not have a color available for a new vertex; if we have a tree-chained independent
set, then each new vertex has at least one available color.

H has treewidth at most 2k − 1: take a root of T , for each i ∈ I, let Xi consist of all vij

and vi′j , i′ the parent of i, j ∈ [1, k]. Now, for each new vertex, we add a bag containing this
vertex and its two neighbors, making it incident to a bag that contains its neighbors.

The standard reduction from Pre-coloring Extension to List Coloring that adds
for each forbidden color c of a vertex v a new neighbor to v precolored with c does not
increase the treewidth, which shows XALP-hardness for Pre-coloring Extension with
treewidth as parameter. ◀

5.2 Tree variants of Weighted Satisfiability
From Tree-Chained Multicolor Independent Set, we can show XALP-completeness
of tree variants of what in [9] was called Chained Weighted CNF-Satisfiability and its
variants (which in turn are analogues of Weighted CNF-Satisfiability, see e.g. [15, 16]).

Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses C1, . . . , Cm, each with
either only variables of Xi for some i ∈ I, or only variables of Xi and Xj for some ij ∈ F .
Parameter: k.
Question: Is there an assignment of at most k variables in each Xi that satisfies all
clauses?

Positive Partitioned Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses of positive literals
C1, . . . , Cm, each with either only variables of Xi for some i ∈ I, or only variables of Xi

and Xj for some ij ∈ F . Each Xi is partitioned into Xi,1, . . . , Xi,k.
Parameter: k.
Question: Is there an assignment of exactly one variable in each Xi,j that satisfies all
clauses?

Negative Partitioned Tree-Chained Weighted CNF-Satisfiability
Input: A tree T = (I, F), sets of variables (Xi)i∈I , and clauses of negative literals
C1, . . . , Cm, each with either only variables of Xi for some i ∈ I, or only variables of Xi

and Xj for some ij ∈ F . Each Xi is partitioned into Xi,1, . . . , Xi,k.
Parameter: k.
Question: Is there an assignment of exactly one variable in each Xi,j that satisfies all
clauses?

▶ Theorem 9. Positive Partitioned Tree-Chained Weighted CNF-Satisfiability,
Negative Partitioned Tree-Chained Weighted CNF-Satisfiability, and Tree-
Chained Weighted CNF-Satisfiability are XALP-complete.

Proof. We first show membership for Tree-Chained Weighted CNF-Satisfiability,
which implies membership for the more structured versions. We simply follow the tree shape
of our instance by branching co-non-deterministically when the tree branches. We keep the

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:13

indices of the 2k variables chosen non-deterministically for the “local” clauses in the working
space. We then check that said clauses are satisfied.

We first show hardness for Negative Partitioned Tree-Chained Weighted CNF-
Satisfiability by reducing from Tree-Chained Multicolor Independent Set. For
each vertex v, we have a Boolean variable xv. We denote by Xi,j the set of variables
{xv : v ∈ Vi,j}, and by Xi the set of variables {xv : v ∈ Vi}. This preserves the partition
properties. For each edge uv, we add the clause ¬xu ∨ ¬xv.

▶ Observation 10. U is multicolor independent set if and only if {xu : u ∈ U} is a satisfying
assignment.

To reduce to Positive Partitioned Tree-Chained Weighted CNF-Satisfiability,
we simply replace negative literals ¬xv for xv ∈ Xi,j by a disjunction of positive literals
∨y∈Xi,j\{xv}y. This works because, due to the partition constraint, a variable x ∈ Xi,j is
assigned ⊥ if and only if another variable y ∈ Xi,j \ {x} is assigned ⊤.

To reduce to Tree-Chained Weighted CNF-Satisfiability, we simply express the
partition constraints using clauses. For each Xi,j , we add the clauses ∨y∈Xi,j y, and for each
pair {x, y} ⊆ Xi,j the clause ¬x ∨ ¬y. This enforces that we pick at least one variable, and
at most one variable, for each Xi,j . ◀

5.3 Logarithmic Treewidth
Although XALP-complete problems are in XP and not in FPT, there is a link between
XALP and single exponential FPT algorithms on tree decompositions. Indeed, by considering
instances with treewidth k log n, where k is the parameter, the single exponential FPT
algorithm becomes an XP algorithm. We call this parameter logarithmic treewidth.

Independent Set parameterized by logarithmic treewidth
Input: A graph G = (V, E), with a given tree decomposition of width at most k log |V |,
and an integer W .
Parameter: k.
Question: Is there an independent set of G of size at least W?

▶ Theorem 11. Independent Set with logarithmic treewidth as parameter is XALP-
complete.

Proof. We start with membership which follows from the usual dynamic programming on
the tree decomposition. We maintain for each vertex v in the current bag whether v is in the
independent set or not. When introducing a vertex v, we non-deterministically decide if v is
put in the independent set or not. We reject if an edge is introduced between two vertices of
the independent set. We make a co-non-deterministic step whenever the tree decomposition
is branching. Since we only need one bit of information per vertex in the bag, this requires
only O(k log n) working space, as for the running time we simply do a traversal of the tree
decomposition which is only polynomial treesize.

We show hardness by reducing from Positive Partitioned Tree-Chained Weighted
CNF-Satisfiability. We can simply reuse the construction from [9] and note that the
constructed graph has bounded logarithmic treewidth instead of logarithmic pathwidth
because we reduced from the tree-chained SAT variant instead of the chained SAT variant.
We describe the gadgets for completeness. First, the SAT instance is slightly adjusted for
technical reasons. For each Xi,j , we add a clause containing exactly its initial variables. This
makes sure that the encoding of the chosen variable is valid. We assume the variables in
each Xi,j to be indexed starting from 0.

IPEC 2022

6:14 On the Complexity of Problems on Tree-Structured Graphs

Variable gadget. For each Xi,j , let ti,j = ⌈log2 |Xi,j |⌉. We add edges 0̂α1̂α, α ∈ [1, ti,j].

Clause gadget. For each clause with ℓ literals, we assume ℓ to be even by adding a dummy
literal if necessary. We add paths p0, . . . , pℓ+1, and p′

1, . . . , p′
ℓ. For i ∈ [1, ℓ], we add the edge

pip
′
i. We then add vertex vi for i ∈ [1, ℓ], which represents the ith literal of the clause. Let

b1 . . . bti′,j′ be the binary representation of the index of the corresponding variable of Xi′,j′ .
Then vi is adjacent to pi, p′

i and the vertices 1̂ − bα for α ∈ [1, ti,j]. For the dummy literal,
there is no vertex vi.

The clause gadget has an independent set of size ℓ + 2 if and only if it contains a vertex
vi. When the variable gadgets have one vertex in the independent set on each edge, a vertex
vi of a clause can be added to the independent set only if the independent set contains
exactly the vertices of the variable gadget that give the binary representation of the variable
corresponding to vi.

Hence, the SAT instance is satisfiable if and only if there is an independent set of size∑
i,j ti,j +

∑
i 2 + ℓi in our construction. ◀

▶ Corollary 12. The following problems are XALP-complete with logarithmic treewidth as
parameter: Vertex Cover, Red-Blue Dominating Set, Dominating Set.

Proof. The result for Vertex Cover follows directly from Theorem 11 and the well
known fact that a graph with n vertices has a vertex cover of size at most L, iff it has
an independent set of size at least n − L. Viewing Vertex Cover as a special case of
Red-Blue Dominating Set gives the following graph: subdivide all edges of G, and ask
if a set of K original (blue) vertices dominates all new (red) subdivision vertices; as the
subdivision step does not increase the treewidth, XALP-hardness of Red-Blue Dominating
Set with treewidth as parameter follows. To obtain XALP-hardness of Dominating Set,
add to the instance G′ of Red-Blue Dominating Set, two new vertices x0 and x1 and
edges from x1 to x0 and all blue vertices; the treewidth increases by at most one, and the
minimum size of a dominating set in the new graph is exactly one larger than the minimum
size of a red-blue dominating set in G′. Membership in XALP is shown similar as in the
proof of Theorem 11. ◀

5.4 Other problems
Several XALP-hardness proofs follow from known reductions. Membership is usually easy to
prove, by observing that the known XP-algorithms can be turned into XALP-membership
by guessing table entries, and using the stack to store the information for a left child when
processing a right subtree.

▶ Corollary 13. The following problems are XALP-complete:
1. Chosen Maximum Outdegree, Circulating Orientation, Minimum Maximum

Outdegree, Outdegree Restricted Orientation, and Undirected Flow with
Lower Bounds, with the treewidth as parameter.

2. Max Cut and Maximum Regular Induced Subgraph with cliquewidth as parameter.

Proof.
1. The reductions given in [4] and [25] can be used; one easily observes that these reductions

keep the treewidth of the constructed instance bounded by a function of the treewidth of
the original instance (often, a small additive constant is added.)

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:15

2. The reductions given in [7] can be reused with minimal changes, only the bound on linear
clique-width becomes a bound on clique-width because of the “tree-shape” of the instance
to reduce. ◀

Chosen Maximum Outdegree, Circulating Orientation, Minimum Maximum
Outdegree, Outdegree Restricted Orientation, and Undirected Flow with
Lower Bounds, together with All-or-Nothing Flow were shown to be XNLP-complete
with pathwidth as parameter in [4]. Gima et al. [20] showed that Minimum Maximum
Outdegree with vertex cover as parameter is W [1]-hard. For related results, see also [25].

In [6], it is shown that Tree-Partition-Width and Domino Treewidth are XALP-
complete, which can be seen as an analog to Bandwidth being XNLP-complete.

6 Conclusions

We expect many (but not all) problems that are (W[1]-)hard and in XP for treewidth as
parameter to be XALP-complete; our paper gives good starting points for such proofs. Let
us give an explicit example. The Pebble Game Problem [16, 22] parameterized by the
number of pebbles is complete for XP, which is equal to XAL=A[∞, f log]. The problem
corresponds to deciding whether there is a winning strategy in an adversarial two-player
game with k pebbles on a graph where the possible moves depend on the positions of all
pebbles. We can expect variants with at most f(k) + O(log n) moves to be complete for
XALP.

Completeness proofs give a relatively precise complexity classification of problems. In
particular, XALP-hardness proofs indicate that we do not expect a deterministic algorithm
to use less than XP space if it runs in XP time. Indeed the inclusion of XNLP in XALP is
believed to be strict, and already for XNLP-hard problems we have the following conjecture.

▶ Conjecture 14 (Slice-wise Polynomial Space Conjecture [23]). No XNLP-hard problem has
an algorithm that runs in nf(k) time and f(k)nc space, with f a computable function, k the
parameter, n the input size, and c a constant.

While XNLP and XALP give a relatively simple framework to classify problems in terms
of simultaneous bound on space and time, the parameter is allowed to blow up along the
reduction chain. One may want to mimic the fine grained time complexity results based
on the (Strong) Exponential Time Hypothesis. In this direction, one could assume that
Savitch’s theorem is optimal as was done in [10].

Since XNLP is above the W-hierarchy, it could be interesting to study the relationship
of XALP with some other hierarchies like the A-hierarchy and the AW-hierarchy. It is also
unclear where to place List-Coloring parameterized by tree-partition-width2. It was shown
to be in XL and W[1]-hard [5] but neither look like good candidates for completeness.

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability

and completeness IV: On completeness for W [P] and PSPACE analogues. Ann. Pure Appl.
Log., 73:235–276, 1995. doi:10.1016/0168-0072(94)00034-Z.

2 A tree-partition of a graph G is a decomposition of V (G) into bags (Bi)i∈V (T), where T is a tree, such
that uv ∈ V (G) implies that the bags of u and v are the same or adjacent in T . The width is the size
of the largest bag, and the tree-partition-width of G is found by taking the minimum width over all
tree-partitions of G.

IPEC 2022

https://doi.org/10.1016/0168-0072(94)00034-Z

6:16 On the Complexity of Problems on Tree-Structured Graphs

2 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and tseitin
tautologies. In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS
’02, pages 593–603, USA, 2002. IEEE Computer Society.

3 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: time–space tradeoffs. Theory of Computing, 10:297–339,
2014. doi:10.4086/toc.2014.v010a012.

4 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. arXiv, abs/2202.06838, 2022. Extended abstract to
appear in Proceedings WG 2022. arXiv:2202.06838.

5 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List colouring trees in logarithmic
space. arXiv, abs/2206.09750, 2022. arXiv:2206.09750.

6 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. On the parameterized complexity of
computing tree-partitions. arXiv, abs/2206.11832, 2022. arXiv:2206.11832.

7 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. XNLP-completeness for parameterized
problems on graphs with a linear structure. arXiv, abs/2201.13119, 2022. arXiv:2201.13119.

8 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk.
On the complexity of problems on tree-structured graphs. CoRR, 2022. doi:10.48550/arXiv.
2206.11828.

9 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204, 2021. doi:10.1109/FOCS52979.2021.00027.

10 Yijia Chen, Michael Elberfeld, and Moritz Müller. The parameterized space complexity of
model-checking bounded variable first-order logic. Log. Methods Comput. Sci., 15(3), 2019.
doi:10.23638/LMCS-15(3:31)2019.

11 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, STOC 1971, pages 151–158. ACM, 1971. doi:10.1145/
800157.805047.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

14 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1&2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

15 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
doi:10.1007/978-1-4612-0515-9.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

18 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011. doi:10.1016/j.ic.2010.
11.026.

19 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

https://doi.org/10.4086/toc.2014.v010a012
http://arxiv.org/abs/2202.06838
http://arxiv.org/abs/2206.09750
http://arxiv.org/abs/2206.11832
http://arxiv.org/abs/2201.13119
https://doi.org/10.48550/arXiv.2206.11828
https://doi.org/10.48550/arXiv.2206.11828
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.23638/LMCS-15(3:31)2019
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X

H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk 6:17

20 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi.
Exploring the gap between treedepth and vertex cover through vertex integrity. Theoretical
Computer Science, 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

21 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997. doi:10.1016/S0166-218X(96)00085-6.

22 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574–586, 1979. doi:10.1137/0208046.

23 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Transactions on Computation Theory, 9(4):18:1–18:36, 2018.
doi:10.1145/3154856.

24 Walter L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences,
21(2):218–235, 1980. doi:10.1016/0022-0000(80)90036-7.

25 Stefan Szeider. Not so easy problems for tree decomposable graphs. In Advances in Discrete
Mathematics and Applications: Mysore, 2008, volume 13 of Ramanujan Math. Soc. Lect. Notes
Ser., pages 179–190. Ramanujan Math. Soc., Mysore, 2010. arXiv:1107.1177.

26 H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System
Sciences, 43(2):380–404, 1991. doi:10.1016/0022-0000(91)90020-6.

IPEC 2022

https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.1016/S0166-218X(96)00085-6
https://doi.org/10.1137/0208046
https://doi.org/10.1145/3154856
https://doi.org/10.1016/0022-0000(80)90036-7
http://arxiv.org/abs/1107.1177
https://doi.org/10.1016/0022-0000(91)90020-6

On the Parameterized Complexity of Computing
Tree-Partitions
Hans L. Bodlaender #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Carla Groenland #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Hugo Jacob #

ENS Paris-Saclay, France

Abstract
We study the parameterized complexity of computing the tree-partition-width, a graph parameter
equivalent to treewidth on graphs of bounded maximum degree.

On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that
there is an algorithm that, given an n-vertex graph G and an integer k, constructs a tree-partition
of width O(k7) for G or reports that G has tree-partition width more than k, in time kO(1)n2. We
can improve slightly on the approximation factor by sacrificing the dependence on k, or on n.

On the other hand, we show the problem of computing tree-partition-width exactly is XALP-
complete, which implies that it is W [t]-hard for all t. We deduce XALP-completeness of the problem
of computing the domino treewidth. Finally, we adapt some known results on the parameter tree-
partition-width and the topological minor relation, and use them to compare tree-partition-width to
tree-cut width.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis; Theory of computation →
Approximation algorithms analysis

Keywords and phrases Parameterized algorithms, Tree partitions, tree-partition-width, Treewidth,
Domino Treewidth, Approximation Algorithms, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.7

Related Version Full Version: https://arxiv.org/abs/2206.11832 [8]

Funding Carla Groenland: Supported by the European Union’s Horizon 2020 research and innovation
programme under the ERC grant CRACKNP (number 853234) and the Marie Skłodowska-Curie
grant GRAPHCOSY (number 101063180).

1 Introduction

Graph decompositions have been a very useful tool to draw the line between tractibility and
intractability of computational problems. There are many meta-theorems showing that a
collection of problems can be solved efficiently if a decomposition of some form is given. By
finding efficient algorithms to compute a decomposition if it exists, we deduce the existence
of efficient algorithms even if the decomposition is not given. In particular, this proves
useful when designing win-win arguments: for some problems, the existence of a solution
and the existence of a decomposition are not independent, so that we can either use the
decomposition for an efficient computation of the solution, or conclude that a solution must
(or cannot) exist when there is no decomposition of small enough width.

© Hans L. Bodlaender, Carla Groenland, and Hugo Jacob;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:c.e.groenland@uu.nl
https://orcid.org/0000-0002-9878-8750
mailto:hugo.jacob@ens-paris-saclay.fr
https://orcid.org/0000-0003-1350-3240
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://arxiv.org/abs/2206.11832
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Parameterized Complexity of Computing Tree-Partitions

The most successful notion of graph decomposition to date is certainly tree decompositions,
and its corresponding parameter treewidth. Any problem expressible in MSO2

1 can be solved
in linear time in graphs of bounded treewidth due to a meta-theorem of Courcelle [13] and
the algorithm of Bodlaender for computing an optimal tree decomposition [3]. Treewidth is
a central tool in the study of minor-closed graph classes. A minor-closed graph class has
bounded treewidth if and only if it contains no large grid minor.

In this paper, we focus on the parameter tree-partition-width (also called strong treewidth)
which was independently introduced by Seese [27] and Halin [23]. It is known to have simple
relations to treewidth [14, 29]: tw = O(tpw), and tpw = O(∆ tw), where tw, tpw, ∆ denote
the treewidth, the tree-partition-width, and the maximum degree respectively. Applications
of tree-partition-width include graph drawing and graph colouring [11, 22, 16, 17, 30, 2, 1].
Recently, Bodlaender, Cornelissen and Van der Wegen [5] showed for a number of problems
(in particular, problems related to network flow) that these are intractable (XNLP-complete)
when the pathwidth is used as parameter, but become fixed parameter tractable when
parameterized by the width of a given tree-partition. This raises the question of the
complexity of finding tree-partitions. We show that computing tree-partitions of approximate
width is tractable.

▶ Theorem 1. There is an algorithm that given an n-vertex graph G and an integer k,
constructs a tree-partition of width O(k7) for G or reports that G has tree-partition width
more than k, in time kO(1)n2.

Thus, this removes the requirement from the results from [5] that a tree partition of small width
is part of the input. Our technique is modular and allows us to also give alternatives running
in FPT time or polynomial time with an improved approximation factor (see Theorem 10).
Although not formulated as an algorithm, a construction of Ding and Oporowski [15] implies
an FPT algorithm to compute tree-partitions of width f(k) for graphs of tree-partition-width
k, for some fixed computable function f . We adapt their construction and give some new
arguments designed for our purposes. This significantly improves on the upper bounds to
the width, and the running time.

The results from [5] are stated in terms of the notions of stable gonality, stable tree-
partition-width and treebreadth. The notion of stability comes from the origin of the
notion of gonality (from algebraic geometry); in graph terms, this implies that we look
here at the minimum over all possible subdivision of edges. Tree-partition-width and stable
tree-partition-width are bounded by polynomial functions of each other (see the appendix).

Related to tree-partition-width is the notion of domino treewidth, first studied by
Bodlaender and Engelfriet [7]. A domino tree decomposition is a tree decomposition where
each vertex is in at most two bags. Where graphs of small tree partition-width can have large
degree, a graph of domino treewidth k has maximum degree at most 2k. Bodlaender and
Engelfriet show that Domino Treewidth is hard for each class W [t], t ∈ N; we improve
this result and show XALP-completeness.

▶ Theorem 2. Domino Treewidth and Tree Partition Width are XALP-complete.

In [4], Bodlaender gave an algorithm to compute a domino tree decomposition of width
O(tw ∆2) in f(tw)n2 time for n-vertex graphs of treewidth tw and maximum degree ∆,
where f is a fixed computable function. This implies an approximation algorithm for domino
treewidth.

1 Formulae with quantification over sets of edges or vertices, quantification over vertices and edges, and
with the incidence predicate.

H. L. Bodlaender, C. Groenland, and H. Jacob 7:3

We also consider the parameter tree-cut width introduced by Wollan in [28]. As the
tractability results of Bodlaender et al. [5] use techniques similar to a previous work on
algorithmic applications of tree-cut width [21], one may wonder whether there is a relationship
between tree-cut width and tree-partition-width. We answer this question in two steps. We
obtain a parameter that is polynomially tied to tree-partition-width and is topological minor
monotone. In particular, this shows that tree-partition-width is relatively stable with respect
to subdivisions. Then, we show how to relate tree-cut width to the tree-partition-width of
a subdivision. We show that a bound on tree-partition-width does not imply a bound on
tree-cut width and that tree-partition-width is polynomially bounded by tree-cut width.

Paper overview

In Section 3, we provide our results on approximating the tree-partition-width. In Section 4,
we show that computing the tree-partition-width is XALP-complete. We then derive XALP-
completeness of computing the domino treewidth. Our results relating tree-cut width to
tree-partition-width are in the appendix.

2 Preliminaries

Figure 1 An example of tree-partition.

A tree-partition of a graph G = (V, E) is a tuple (T, (Bi)i∈V (T)), where Bi ⊆ V (G), with
the following properties.

T is a tree.
For each v ∈ V there is a unique i(v) ∈ V (T) such that v ∈ Bi(v).
For any edge uv ∈ E, either i(v) = i(u) or i(u)i(v) is an edge of T .

The size of a bag Bi is |Bi|, the number of vertices it contains. The width of the decomposition
is given by maxi∈V (T) |Bi|. The tree-partition-width (tpw) of a graph G is the minimum
width of a tree-partition of G.

A tree decomposition of a graph G = (V, E) is a pair (T = (I, F), {Xi | i ∈ T}) with
T = (I, F) a tree and {Xi | i ∈ I} a family of (not necessarily disjoint) subsets of V (called
bags) such that

⋃
i∈I Xi = V , for all edges vw ∈ E, there is an i with v, w ∈ Xi, and for all v,

the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T . The width of a tree decomposition
(T, {Xi | i ∈ T}) is maxi∈I |Xi| − 1, and the treewidth (tw) of a graph G is the minimum
width over all tree decompositions of G. The domino treewidth is the minimum width over
all tree decompositions of G such that each vertex appears in at most two bags.

We say that two parameters α, β are (polynomially) tied if there exist (polynomial)
functions f, g such that α ≤ f(β) and β ≤ g(α).

IPEC 2022

7:4 On the Parameterized Complexity of Computing Tree-Partitions

3 Approximation algorithm for tree-partition-width

We first describe our algorithm, then prove correctness and finally discuss the trade-offs
between running time and solution quality.

3.1 Description of the algorithm
Let G be a graph, and k any positive integer. We describe a scheme that produces a
tree-partition of G of width O(wbk3) = kO(1), or reports that tpw(G) > k. We will use
various different functions of k for b and w, depending on the quality/time trade-offs of the
black-box algorithms inserted into our algorithm (e.g. for approximating treewidth).

Step 1. Compute a tree decomposition for G of width w(k) or conclude that tpw(G) > k.
As mentioned above, we do not directly specify the function w = w(k), since different
algorithms for step 1 give different solution qualities (bounds for w(k)) and running times.
Since tw +1 ≤ 2 · tpw, if tw(G) > 2k − 1 it follows that tpw(G) > k. If we obtained a
decomposition of width w, we also know that tw(G) ≤ 2k − 1, and hence there are at most
(2k − 1)n edges in G.

We set a threshold b ≥ max{2k − 1, w + 1}. We define an auxiliary graph Gb as follows.
The vertex set of Gb is V (G). The edges of Gb are given by the pairs of vertices u, v ∈ V (G)
with minimum u-v separator of size at least b.

Step 2. Construct the auxiliary graph Gb with connected components of size at most k or
report that tpw(G) > k.
We later describe several ways of computing the edges of Gb. We will show in Claim 3 that
vertices in the same connected component of Gb must be in the same bag for any tree-partition
of width at most k. For this reason, we conclude that tpw(G) > k if a component of Gb has
more than k vertices.

We define H, the b-reduction of G, which is the graph obtained from G by identifying
the connected components of Gb.

Step 3. We compute a tree decomposition of width w for each 2-connected component of H.
Given the components of Gb, we can compute H, and its 2-connected components in time
O(kO(1)n). Using Claim 4, we obtain a tree decomposition of H by replacing vertices of G,
in the tree decomposition of G, by their component in Gb.

By Claim 5, the maximum degree ∆H within the 2-connected components of H is at
most Cbk2 for some constant C when tpw(G) ≤ k.

Step 4. If ∆H > Cbk2, report tpw(G) > k. Else, compute a tree partition of width
O(w∆H) = O(wbk2) for H.
By rooting the decomposition of H in 2-connected components, we can define a parent
cutvertex for each 2-connected component except the root. We separately compute tree
partitions for each 2-connected component of H with the constraint that their parent cutvertex
should be the single vertex of its bag. A construction of Wood [29] enables us to compute a
tree-partition of width O(∆w) for any graph of maximum degree ∆ and treewidth w; this
can be adjusted to allow for this isolation constraint without increasing the upper bound on
the width. We give the details of this in Corollary 7. After doing this, the partitions of each
component can be combined without increasing the width. Indeed, although cutvertices are
shared, only one 2-connected component will consider putting other vertices in its bag. We
obtain a tree-partition of H of width O(wbk2).

H. L. Bodlaender, C. Groenland, and H. Jacob 7:5

Step 5. Deduce a tree partition of width O(wbk3) for G.
We “expand” the vertices of H. In the tree-partition of H, each vertex of H is replaced by
the vertices of the corresponding connected component of Gb. This gives a tree-partition of
G of width O(wbk3).

3.2 Correctness
For s, t ∈ V (G) we denote by µ(s, t) the size of a minimum s-t separator in G − st.

▷ Claim 3. Let G be a graph and s, t ∈ V (G).
If µ(s, t) ≥ k + 1, then in any tree-partition of width at most k, s and t must be in
adjacent bags or the same bag;
If µ(s, t) ≥ 2k − 1, then in any tree-partition of width at most k, s and t must be in the
same bag.

Proof. Assume that s and t are not in adjacent bags nor in the same bag of a tree-partition
of width at most k, then any internal bag on the path between their respective bags is an s-t
separator. In particular, µ(s, t) ≤ k. This proves the first point by contraposition.

Assume that s and t are in adjacent bags but not in the same bag for some tree-partition
of width at most k. We denote their respective bags by Bs and Bt. Then, (Bs ∪ Bt) \ {s, t}
is an s-t separator of G − st. Consequently, µ(s, t) ≤ 2k − 2. This proves the second point.

◁

▷ Claim 4. Consider (T, (Xi)i∈V (T)) a tree decomposition of width w of G, b ≥ w + 1, and
let Yi be the set of connected components of Gb that intersect with Xi. Then (T, (Yi)i∈V (T))
is a tree decomposition of the b-reduction H of G.

Proof. Every component of Gb appears in at least one Yi, because it contains a vertex which
must appear in at least one Xi. Furthermore, for each edge UV of H , there must be vertices
u ∈ U, v ∈ V such that uv is an edge of G. Hence, there is a bag Xi containing u and v so
Yi contains A and B. Finally, suppose that there is a bag Yi not containing a component C

of Gb, and several components of T − i have bags containing C. There must be an edge of
Gb connecting vertices u and v of C such that u is in bags of X and v is in X ′, where X

and X ′ are in different components of T − i. By definition of Gb there are at least b vertex
disjoint u, v-paths in G, so the minimal size of a separator of u and v is at least b ≥ w + 1.
However, since the tree decomposition (T, (Xi)) has width w and the bags containing u are
disjoint from the bags containing v (in particular Xi separates them), there is a separator of
u and v of size at most w, a contradiction. This concludes the proof that (T, (Yi)) is a tree
decomposition of H. ◁

▷ Claim 5. If H is the b-reduction of G, tpw(G) ≤ k, and B is one of its 2-connected
components, then the maximum degree in B is O(bk2).

Proof. Consider u a vertex achieving maximum degree in B. By definition of B, B − u is
connected. We denote by N the neighbourhood of u in B. Let T be a spanning tree of
B − u. We iteratively remove leaves that are not in N , and contract edges with an endpoint
of degree 2 that is not in N . This produces the reduced tree T ′. The maximum degree in
this tree is b − 1 as the set of edges incident to a given vertex can be extended to disjoint
paths leading to vertices in N .

We call the number of vertices in the component of Gb associated to a vertex v of H the
weight of v and denote it |v|.

IPEC 2022

7:6 On the Parameterized Complexity of Computing Tree-Partitions

Clearly the neighbours of u must be either in the same bag as u or in a neighbouring bag.
Since the bag of u will be a separator of vertices that are in distinct neighbouring bags, in
particular, it splits the graph into several components each containing neighbours of u of
total weight at most k.

There must exist a subset of vertices of T ′ of size at most k − |u| whose removal splits T ′

in components containing vertices of N of total weight at most k. Since the degree of a vertex
of T ′ is at most b− 1, removing one of its vertices adds at most b− 2 new components. Hence,
after removing k − |U | ≤ k − 1 vertices, there are at most 1 + (k − 1)(b − 2) components. We
conclude that |N | ≤ k(1 + (k − 1)(b − 2)). Since u had maximum degree in B, we conclude.

◁

In [29], Wood shows the following lemma.

▶ Lemma 6. Let α = 1 + 1/
√

2 and γ = 1 +
√

2. Let G be a graph with treewidth
at most k ≥ 1 and maximum degree at most ∆ ≥ 1. Then G has tree-partition-width
tpw(G) ≤ γ(k + 1)(3γ∆ − 1).

Moreover, for each set S ⊆ V (G) such that (γ + 1)(k + 1) ≤ |S| ≤ 3(γ + 1)(k + 1)∆, there
is a tree-partition of G with width at most γ(k + 1)(3γ∆ − 1) such that S is contained in a
single bag containing at most α|S| − γ(k + 1) vertices.

We deduce this slightly stronger version of [29, Theorem 1]

▶ Corollary 7. From a tree decomposition of width w in a graph G of maximum degree ∆,
for any vertex v of G, we can produce a tree-partition of G of width O(∆w) in which v is
the only vertex of its bag.

Proof. We wish to apply Lemma 6 to S ⊇ N(v). Let γ = 1 +
√

2. We have |N(v)| ≤ ∆,
so in particular, |N(v)| ≤ 3(γ + 1)(w + 1)∆. In case |N(v)| < (γ + 1)(w + 1), we can add
arbitrary vertices to N(v) to form S satisfying |S| ≥ (γ + 1)(w + 1). Otherwise, we simply
set S = N(v). We then apply the lemma to S in G − v. There is a single bag that contains
N(v), and so we may add the bag {v} adjacent to this in order to deduce a tree partition of
G of width O(∆w) in which v is the only vertex of its bag. ◀

3.3 Time/quality trade-offs
For Step 1, we consider the following algorithms to compute tree decompositions:

An algorithm of Korhonen [25] computes a tree decomposition of width at most 2k + 1 or
reports that tw(G) > k in time 2O(k)n.
An algorithm of Fomin et al. [19] computes a tree decomposition of width O(k2) or
reports that tw(G) > k in time O(k7n log n).
An algorithm of Feige et al. [18] computes a tree decomposition of width O(k

√
log k) or

reports that tw(G) > k in time O(nO(1)).

Recall that we denote by w the width of the computed tree decomposition of G.
We give two methods to compute Gb in step 2 of the algorithm.
We can use a maximum-flow algorithm (e.g. Ford-Fulkerson [20]) to compute for each
pair {s, t} of vertices of G whether there are at least b vertex disjoint paths from s to t,
in time O(bkn). To compute a minimum vertex cut, replace each vertex v by two vertices
vin, vout with an arc from vin to vout. All arcs going to v should go to vin, and all arcs
leaving v should leave vout. All arcs are given capacity 1. We may stop the maximum
flow algorithm as soon as a flow of at least b was found. Furthermore, we can reduce the
number of pairs {s, t} of vertices to check to O(wn), as each pair must be contained in a
bag due to b ≥ w + 1. This results in a total time of O(wbkn2).

H. L. Bodlaender, C. Groenland, and H. Jacob 7:7

We can also use dynamic programming to enumerate all possible ways of connecting pairs
of vertices that are in the same bag in time 2O(w2)n, which is sufficient to compute Gb.
A state of the dynamic programming consists of the subset of vertices of the bag that are
used by the partial solution, a matching on some of these vertices, up to two vertices that
were decided as endpoints of the constructed paths, the number of already constructed
paths between the endpoints, and two disjoint subsets of the used vertices that are not
endpoints, nor in the matching such that we found a disjoint path from the first or second
endpoint to them. We first tabulate answers for each subtree of the decomposition by
starting from the leaves, and then tabulate answers for each complement of a subtree by
starting from the root and, when branching to some child, combining with the partial
solutions of the subtree of the other child.

The b-reduction H of G and its 2-connected components can be computed in O(kO(1)n)
time (see e.g. [24]), since the size of the graph is O(kO(1)n) here.

We will now make use of the following result due to Bodlaender and Hagerup [10]:

▶ Lemma 8. There is an algorithm that given a tree decomposition of width k with O(n)
nodes of a graph G, finds a rooted binary tree of G of width at most 3k +2 with depth O(log n)
in O(kn) time.

When implementing the construction of Wood for 2-connected components of H, the
running time is dominated by O(n) queries to find a balanced separator with respect to a set
W of size kO(1). After a preprocessing in time O(kn), we can do this in time kO(1)d where d

is the diameter of our tree decomposition. We first obtain a binary balanced decomposition
using Lemma 8, then reindex the vertices in such a way that we can check if a vertex is in
some bag of a given subtree of tree decomposition in constant time. Using this, we can in
time kO(1) determine whether a bag is a balanced separator of W , and if not move to the
subtree containing the most vertices of W . This procedure will consider at most d bags, hence
the total running time of kO(1)d. Since the decomposition has depth O(log n) it also has
diameter d = O(log n). Hence the construction of Wood can be executed in time kO(1)n log n.

▶ Lemma 9. We can compute a tree partition of width O(∆ tw) in time O(kO(1)n log n)
when given a tree decomposition of width kO(1).

By combining the previous algorithms we obtain the following theorem.

▶ Theorem 10. There is a polynomial time algorithm that constructs a tree-partition of
width O(k5 log k) or reports that the tree-partition-width is more than k.

There is an algorithm running in time 2O(k2)n+kO(1)n log n that computes a tree-partition
of width O(k5) or reports that the tree-partition-width is more than k.

There is an algorithm running in time kO(1)n2 that computes a tree-partition of width
O(k7) or reports that the tree-partition-width is more than k.

Proof. The first algorithm uses the algorithm of Feige et al. to compute the tree
decomposition, then naively computes Gb, and then finds balanced separators for Wood’s
construction using the tree decomposition in polynomial time (no need to balance the
decomposition).

The second algorithm uses Korhonen’s algorithm to compute the tree decomposition, then
computes Gb using the dynamic programming approach, and then finds balanced separators
for Wood’s construction as described.

The third algorithm uses the algorithm of Fomin et al. to compute the tree decomposition,
then computes Gb via a maximum-flow algorithm in time O(wbkn2) = O(k5n2), and then
finds balanced separators for Wood’s construction as described.

The guarantees on the width follow from the analysis of our scheme. ◀

IPEC 2022

7:8 On the Parameterized Complexity of Computing Tree-Partitions

4 XALP-completeness of Tree Partition Width

In this section, we show that the Tree Partition Width problem is XALP-complete, even
when we use the width target and the degree as combined parameter. As a relatively simple
consequence, we obtain that Domino Treewidth is XALP-complete.

XALP is the class of all parameterized problems that can be solved in f(k)nO(1) time
and f(k) log n space on a nondeterministic Turing Machine with access to a push-down
automaton, or equivalently way of the class of problems that can be solved by an alternating
Turing Machine in f(k)nO(1) treesize and f(k) log(n) space. An alternating Turing Machine
(ATM) is nondeterministic Turing Machine with some extra states where we ask for all of
the transitions to lead to acceptance. This creates independent configurations that must all
lead to acceptance, and we call “co-nondeterministic step” the process of obtaining these
independent configurations.

XALP is closed by reductions using at most f(k) log n space and running in FPT time.
These two conditions are implied by using at most f(k) + log n space. We call reductions
respecting the latter condition parameterized logspace reductions (or pl-reductions).

This class is relevant here because the problems we consider are complete for it.
Completeness for XALP has the following consequences: W[t]-hardness for all positive
integers t, membership in XP, and there is a conjecture that XP space is required for
algorithms running in XP time. If the conjecture holds, this roughly means that the dynamic
programming algorithm used for membership is optimal.

The following problem is shown to be XALP-complete in [9] and starts as the starting
point of our reduction.

Tree-Chained Multicolor Independent Set
Input: A tree T = (VT , ET), an integer k, and for each i ∈ VT , a collection of k pairwise
disjoint sets of vertices Vi,1, . . . , Vi,k and a graph G with vertex set V =

⋃
i∈VT ,j∈[1,k] Vi,j

Parameter: k

Question: Is there a set of vertices W ⊂ V , such that W contains exactly one vertex
from each Vi,j (i ∈ VT , j ∈ [1, k]), and for each pair Vi,j , Vi′,j′ with i = i′ or ii′ ∈ ET ,
j, j′ ∈ [1, k], (i, j) ̸= (i′, j′), the vertex in W ∩ Vi,j is non-adjacent to the vertex in
W ∩ Vi′,j′?

We further use that we can assume the tree T to be binary without loss of generality
(see [9] for more details).

▶ Lemma 11. Tree Partition Width is in XALP.

Proof. To keep things simple, we will use as a black box the fact that reachability in
undirected graphs can be decided in logspace [26]. We assume that the vertices have some
arbitrary ordering σ.

For now, assume that the given graph is connected.
We begin by guessing at most k vertices to form an initial bag B0, and have an empty

parent bag P0 . We will recursively extend a partial tree-partition in the following manner.
Suppose that we have a bag B with parent bag P , we must find a child bag for B in
each connected component of G − B that does not contain a vertex of P . We use the fact
that a connected component can be identified by its vertex appearing first in σ, that the
restriction of σ to these representatives gives an ordering on σ, and that we can compute
such representatives in logspace. Let us denote by c the current vertex representative of
a connected component of G − B. c is initially the first vertex in σ that is not in B and

H. L. Bodlaender, C. Groenland, and H. Jacob 7:9

cannot reach P in G − B. We do a co-nondeterministic step so that in one branch of the
computation we find a tree-partition for the connected component with representative c,
and in the other branch we find the representative of the next connected component. The
representative c′ of the next component is the first vertex in σ such that it cannot reach a
vertex appearing before c (inclusive) in σ, nor a vertex of P in G − B. When found, c is
replaced by c′ and we repeat this computation. If we don’t find such a vertex c′, then c must
have represented the last connected component, so we simply accept.

Let us now describe what happens in the computation branch where we compute a new
bag. We can iterate on vertices in the component of c, by iterating on vertices of G − B and
then skipping if they are not reachable from c in G − B. In particular, we can guess a subset
B′ of size at most k of vertices from this component. We then check that the neighbourhood
of B in this component is contained in B′. If it is the case, we can set P := B and B := B′

and recurse. If not, we reject.
If the graph is not connected, we can iterate on its connected components by using the

same technique of remembering a vertex representative. For each of these components, we
apply the above algorithm, with the modification that in each enumeration of the vertices
we skip the vertex if it is not contained in the current component.

During these computations, we store at most 3k + O(1) vertices and use logspace
subroutines. Furthermore, the described computation tree is of polynomial size. ◀

We first give a brief sketch of the structure of the hardness proof. We have a trunk gadget
to enforce the shape of the tree from the Tree-Chained Multicolor Independent Set.
On the trunk are attached clique chains which are longer than the part of trunk between
their endpoints, and have some wider parts at some specific positions. The length of the
chain gives us some slack which will be used to encode the choice of a vertex for some subset
Vi,j . Based on the edges of G, we adjust the width along the trunk so that only one clique
chain may place its wider part on each position of the trunk. In other words, part of the
trunk is a collection of gadgets representing edges of G that allow for only one incident vertex
to be chosen.

▶ Lemma 12. Tree Partition Width with target width and maximum degree as combined
parameter is XALP-hard.

Proof. We reduce from Tree-chained Multicolor Independent Set.
Suppose that we are given a binary tree T = (VT , ET), and for each node i ∈ VT , a

k-colored vertex set Vi. We denote the colors by integers in [1, k], and write Vi,j for the set
of vertices in Vi with color j. We are also given a set of edges E of size m. Each edge in E is
a pair of vertices in Vi × Vi′ with i = i′ or ii′ an edge in ET . We can assume the edges are
numbered: E = {e1, . . . , em}.

In the Tree-chained Multicolor Independent Set problem, we want to choose
one vertex from each set Vi,j , i ∈ VT , j ∈ [1, k], such that for each edge ii′ ∈ ET , the chosen
vertices in Vi ∪ Vi′ form an independent set (which thus will be of size 2k).

We assume that each set Vi,j is of size r. (If not, we can add vertices adjacent to all other
vertices in Vi,j′ , j ∈ [1, k].) Write Vi,j = {vi,j,1, vi,j,2, . . . , vi,j,r}.

Let N = (m + 1)r. Let L = 36k + 5.

Cluster Gadgets. In the construction, we use a cluster gadget. Suppose Z is a clique.
Adding a cluster gadget for Z is the following operation on the graph that is constructed.
Add a clique with vertex set CZ = {cZ,1, cZ,2, . . . , cZ,2L} of size 2L to the graph, and add
an edge between each vertex in Z and each vertex cZ,j , 1 ≤ j ≤ L, i.e, Z with the first L

vertices in CZ forms a clique.

IPEC 2022

7:10 On the Parameterized Complexity of Computing Tree-Partitions

In a tree partition of a graph, the vertices of a clique can belong to at most two different
bags. The cluster gadget ensures that the vertices of clique Z belong to exactly one bag.
This cluster gadget will be used in two different steps in the construction of the reduction.

▶ Lemma 13. Suppose a graph H contains a clique Z with the cluster gadget for Z. In each
tree partition of H of width at most L, there is a bag that contains all vertices from Z.

Proof. There must be two adjacent bags that contain the vertices of CZ and no other vertices.
Similarly, there must be two adjacent bags containing all vertices in Z ∪ {cZ,1, . . . , cZ,L}.
This forces all vertices in {cZ,1, . . . , cZ,L} to be in a single bag, and all vertices in Z to be in
a single adjacent bag. ◀

A subdivision of T . The first step in the construction is to build a tree T ′ = (VT ′ , ET ′),
as follows. Choose an arbitrary node i from VT . Add a new neighbor i′ to i, Add a new
neighbor r0 to i′. Now subdivide each edge N times. The resulting tree is T ′ = (VT ′ , ET ′).
We view T ′ as a rooted tree, with root r0. We will use the word grandparent to refer to the
parent of the parent of a vertex. The nodes that do not result from the subdivisions are
referred to as original nodes. Nodes i ∈ VT and their copies in T ′ will be denoted with the
same name.

The graph H consists of two main parts: the trunk and the clique chains. To several
cliques in these parts, we add cluster gadgets.

The trunk. The trunk is obtained by taking for each node i ∈ VT ′ a clique Ai. We specify
below the size of these cliques. For each edge ii′ in T ′, we add an edge between each vertex
in Ai to each vertex in Ai′ . We add for each Ai a cluster gadget.

To specify the sizes of sets Ai, we first need to give some definitions:
For each node i′ ∈ VT ′ , we let p(i′) be the number of nodes i ∈ VT (i.e., “original nodes”),
such that i′ is on the path (including endpoints) in T ′ from i to the vertex that is the
grandparent of i in T . I.e., for each original node i, we look to the grandparent of i (if it
exists), and then add 1 to the count of each node i′ on the path between them in T ′.
For each edge ej ∈ E, let g(ej) = 2jr.
For each edge ej = {vi,c,s, vi′,c′,s′}, we have that i = i′ or i′ is a child of i. Let iej

be the
node in T ′, obtained by making g(ej) steps up in T ′ from i: i.e., iej

is the ancestor of i

with distance g(ej) in T ′.

Now, for all nodes i ∈ VT ′ ,
|Ai| equals L − 6k · p(i) − 1, if i = iej for some ej ∈ E. At this node, we will verify that
a choice (encoded by the clique chains, explained below), indeed gives an independent
set: we check that we did not choose both endpoints of ej .
|Ai| equals L − 6k · p(i) − 2, otherwise.

The clique chains. For each i ∈ VT , and each color class c ∈ [1, k], we have a clique chain
with 2N + r + 5 cliques, denoted CCi,c,j , j ∈ [1, 2N + r + 5]. All vertices in the first clique
CCi,c,1 are made incident to all vertices in Ai. All vertices in the last clique CCi,c,2N+r+5
are made incident to all vertices in Ai′ with i′ the parent of the parent (i.e., the grandparent)
of i in T . (Notice that the distance from i to i′ in T ′ equals 2(N + 1).) All vertices in CCi,c,j

are made incident to all vertices in CCi,c,j+1, i.e., all vertices in a clique are adjacent to all
vertices in the next clique in the chain.

To each clique CCi,c,j we add a cluster gadget.

H. L. Bodlaender, C. Groenland, and H. Jacob 7:11

The cliques have different sizes, which we now specify. Consider i ∈ VT , c ∈ [1, k],
γ ∈ [1, 2N + r + 5]. The size of CCi,c,γ equals:

L − 7, if γ = 1 or γ = 2N + r + 5 (i.e., for the first and last clique in the chain.)
7, if there is an edge ej with one endpoint in Vi,c for which one of the following cases
holds:

ej = {vi,c,α, vi,c′,α′}, c ̸= c′, i.e., one endpoint is in Vi,c, and the other endpoint is in
another color class in Vi, and γ = g(ej) + 1 + α.
ej = {vi,c,α, vi′,c′,α′}, i′ is a child of i, and γ = g(ej) + 1 + α.
ej = {vi,c,α, vi′,c′,α′}, i is a child of i′, and γ = g(ej) + N + 2 + α.

6, otherwise

Let H be the resulting graph.

▶ Lemma 14. H has tree partition width at most L, if and only if the given instance of
Tree-chained Multicolor Independent Set has a solution.

Proof. Suppose we have a solution of the Tree-chained Multicolor Independent
Set. Suppose for each class Vi,c, we choose the vertex vi,c,h(i,c). Now, we can construct the
tree partition as follows. First, we take the tree T ′, and for each node i in T ′, we take a
bag initially containing the vertices in Ai; we later add more vertices to these bags in the
construction.

Now, we add the chains, one by one. For a chain for Vi,c, take a new bag that contains
CCi,j,1, and make this bag incident to the bag of i. We add the vertices of CCi,c,h(i,c)+1
to the bag of i. If h(i, c) > 1, then we place the vertices of cliques CCi,c,α+1 with 1 <

α < h(i, c) in bags outside the trunk: CCi,c,h(i,c) goes to the bag with CCi,c,1; to this bag,
we add an adjacent bag with CCi,c,2 ∪ CCi,j,h(i,c)−1; to this, we add an adjacent bag with
CCi,j,3 ∪ CCi,j,h(i,c)−2, etc.

Now, add the vertices of CCi,c,h(i,c)+2 to the bag of the parent of i, and continue this:
each next clique is added to the next parent bag, until we add a clique to the bag of the
parent of the parent of i in T ; name this node here i′′. Add a new bag incident to i′′ and
put CCi,c,2N+r+5 in this bag (i.e., the last clique of the chain). Similar as at the start of the
chain, fold the end of the chain (with possibly some additional new bags) such that a bag
containing CCi,c,2N+r+4 is adjacent to the bag with CCi,c,2N+r+5.

Finally, for each cluster gadget, add two new bags, with the first incident to the bag
containing the respective clique.

One easily verifies that this gives a tree partition of H. For bags outside the trunk, one
easily observes that the size is at most L. Bags i in the trunk contain a set Ai, and precisely
p(i) · k cliques of the clique chains: for each path that counts for the bag, and each color
class in [1, k], we have one chain with one clique. Each of these cliques has size six or seven.
Now, we can notice that a clique of size 7 corresponds to an edge ej′ with endpoint in the
class. This clique will be mapped to a node in the trunk that equals iej′ , if and only if this
endpoint is chosen; otherwise, the clique will be mapped to a trunk node with distance less
than r to iej′ . Thus, there are two cases for a trunk node i:

There is no edge ej with i = iej . Then, a close observation of the clique chains shows that
there are at most two clique chains with size 7 mapped to i. Indeed, the construction is
such that each edge has its private interval, and affects the trunk both between i and its
parent i′, and between i′ and its parent i′′.
i = iej

. Now, at most one endpoint of ej is in the solution. The clique chain of the color
class of that endpoint can have a clique of size 7 mapped to i. The “offset” of the clique
chain for the color class of the other endpoint is such that there is a clique of size 6 for
that chain at i.

IPEC 2022

7:12 On the Parameterized Complexity of Computing Tree-Partitions

In both cases, the total size of the bag at i is at most L. Thus, the width of the tree partition
is at most L.

Suppose we have a tree partition of H of width L. First, by the use of the cluster gadgets,
each clique Ai is in one bag. A bag cannot contain two cliques Ai as each has size larger than
L/2. Now, the bags containing Ai form a subtree of the partition tree that is isomorphic
to T ′. For each clique chain of a class Vi,c, we have that the first clique CCi,c,1 is in a bag
incident to i, and the last clique CCi,c,2N+r+5 is in a bag incident to the trunk bag that
corresponds to the grandparent of i in T , say i′′. Each trunk bag from i to i′′ thus must
contain a clique (of size 6 or 7) from the clique chain of Vi,c. It follows that each trunk
bag i′ contains at least p(i) · k cliques of size at least 6 each of the clique chains. Now,
|Ai′ | + 6p(i) · k ∈ {L − 1, L − 2}, and thus we cannot add another clique of a clique chain to
a trunk bag.

For a clique chain of Vi,c, there is a clique mapped to the trunk bag of i. Suppose
CCi,c,h(i,c) is mapped to i. We claim that choosing from each Vi,c the vertex vi,c,h(i,c) gives
an independent set, and thus, we have a solution of the Tree Chained Multicolor
Independent Set problem.

The vertices of CCi,c,h(i,c)+2 must be mapped to the bag of the parent of i, as otherwise,
i will contain an additional clique of size at least 6, and the size of the bag of i will become
larger than L. By induction, we have that the αth parent of i, α ∈ [1, 2N + 2] contains the
vertices of CCi,c,h(i,c)+α+1. (Note that the (2N + 2)nd parent equals the node corresponding
the grandparent of i in T .)

We now consider the node iej
for edge ej ∈ E. Suppose ej = vi,c,αvi′,c′,α′ . Without loss

of generality, suppose i = i′ or i′ is a child of i; otherwise, switch roles of i and i′. For each
endpoint of this edge, if the endpoint is chosen (i.e., α = h(i, c) or α′ = h(i′, c′)), then the
corresponding clique chain has a clique of size 7 in the bag iej

. This can be seen by the
following case analysis:

By assumption, CCi,c,h(i,c)+1 is placed in the bag of i. As each successive clique in the
chain is placed in one higher bag along the path from i to the grandparent of i (in T),
we have that CCi,c,h(i,c)+g(ej)+1 is placed in the bag of iej , as this node is the g(ej)th
parent of i in T ′. This clique has size 7.
If i′ = i, the same argument shows that CCi′,c′,h(i′,c′)+1 is a clique of size 7 placed in the
bag of iej

.
If i′ is a child of i in T , then CCi′,c′,h(i′,c′)+1 is placed in the bag of i′. Again, each
successive clique in the chain of Vi′,c′ is placed in the next parent bag, for all nodes on the
path from i′ to the grandparent of i′ in T (which is the parent of i in T .) This implies
that CCi′,c′,h(i′,c′)+N+2 is placed in the bag of i and CCi′,c′,h(i′,c′)+N+2+g(ej) is placed
in the bag of iej ; this bag has size 7.

Now, if both endpoints would be chosen, then the size of the bag of iej
is larger than L: it

contains Aiej
(which has size L − 6kp(iej) − 1), 6p(iej) bags of clique chains, of which all

have size at least 6 and two have size 7; contradiction. So, at most one endpoint is chosen,
so choosing vertices vi,c,h(i,c) gives an independent set. ◀

The maximum degree of a vertex in H is less than 5kL + 5L = O(k2):
Vertices in cluster gadgets have maximum degree less than 2L.
A vertex in a trunk clique Ai of a node i that resulted from a subdivision have maximum
degree less than 4L as i has two incident nodes, each with a trunk clique of size less than
L, and there is a cluster gadget attached to Ai.

H. L. Bodlaender, C. Groenland, and H. Jacob 7:13

A vertex in a trunk clique Ai of a node i that is an original node (i.e., also in T) have
less than L neighbors in Ai, less than 3L neighbors in Ai′ with i′ incident to i in T ′, less
than kL neighbors of cliques CCi,c,1 (one clique of size L − 7 for each class c ∈ [1, k]),
less than 4kL neighbors of cliques CCi′,c,2N+r+5 (one clique of size L − 7 for each node
of which i is the grandparent in T for each class c ∈ [1, k]), and less than L neighbors in
the cluster gadget attached to Ai.

Finally, we conclude that the transformation can be carried out in f(k) log n space, thus
the result follows. ◀

From Lemmas 11 and Lemma 12, the following result directly follows.

▶ Theorem 15. Tree Partition Width is XALP-complete, both when the target value,
and when the target value plus the maximum degree is used as parameter.

▶ Theorem 16. Domino Treewidth is XALP-complete.

Proof. Membership: We use the fact that the maximum degree of the graph is bounded by
2k where k is the domino treewidth. We can discard an instance where this condition on
the maximum degree is not satisfied in logspace. We first assume that the given graph is
connected.

The “certificate” used for this computation will be of size O(k2 + k log(n)) and consists of:
The current bag and for each of its vertices whether it was contained in a previous bag or
not. This requires at most k + k log(n) bits.
For each neighbour of the bag, whether it was already covered by a bag. This requires
O(k2) bits.

The algorithm works as follows. Given the current certificate, if all neighbours have been
covered we accept. Otherwise, we guess a new child bag by picking a non-empty subset of
k + 1 vertices among the vertices of the current bag that were contained only in this bag,
and the neighbours that were not already covered. We then check that each vertex that is
in both the current bag and child bag has all of its neighbours in these two bags. We then
guess for each not already covered neighbour of the current bag if it should be covered by
the subtree of this child. These vertices are then considered as covered in the current bag
certificate. In the child bag certificate, the non covered neighbours are these vertices and the
neighbours of the child bag that are not neighbours of the parent bag. We then recurse with
both certificates, and accept if both recursions accept.

This computation uses O(k2 + k log n) space and the computation tree has polynomial
size.

We can handle disconnected graphs by iterating on component representatives and
discarding vertices that are not reachable using the fact that reachability in undirected
graphs can be computed in logspace (see membership for Tree Partition Width for more
details).

Hardness follows from a reduction from Tree Partition Width when we use the target
value and maximum degree as parameter.

Suppose we are given a graph G = (V, E) of maximum degree d and an integer k.
Let L = kd + 1, and M = (k + 1)L − 1. Now, build a graph H as follows. For each vertex

v ∈ V , we take a clique Cv with L vertices. For each vertex w ∈ Cv, we add a set Sw with
2M − 2 vertices, and make one of the vertices in Sw incident to w and to all other vertices
in Sw; call this vertex yw.

For each edge e = vw ∈ E, we add a vertex ze, and make ze incident to all vertices in Cv

and all vertices in Cw. Let H be the resulting graph.

IPEC 2022

7:14 On the Parameterized Complexity of Computing Tree-Partitions

▶ Lemma 17. G has tree partition width at most k, if and only if H has domino treewidth
at most M − 1.

Proof. Suppose H has domino treewidth at most M − 1. Suppose ({Xi|i ∈ I}, T = (I, F)) is
a domino tree decomposition of H of width at most M − 1, i.e., each bag has size at most M .

First, consider a vertex w in some Cv. The vertex yw has degree 2M − 2, which implies
that there are two adjacent bags that each contain yw, and M − 1 neighbors of yw. One of
these bags contains w.

For each v ∈ V , there must be at least one bag that contains all vertices of Cv, by a well
known property of tree decompositions. There can be also at most one such bag, because
each vertex w ∈ Cv is in another bag that is filled by w, yw, and M − 2 other neighbors
of yw.

Let for i ∈ I, Yi ⊆ V be the set of vertices v ∈ V with Cv ⊆ Xi. We claim that
({Yi|i ∈ I}, T = (I, F)) is a tree partition of G of width at most k (some bags are empty).
First, by the discussion above, each vertex v ∈ V belongs to exactly one bag Yi. Second, as
M < (k + 1)L, each Yi has size at most k. Third, if we have an edge e = vw ∈ E, then ze

is in the bag that contains Cv, and ze is in the bag that contains Cw. As ze is in at most
two bags, these two bags must be the same, or adjacent, so in ({Yi|i ∈ I}, T = (I, F)), v and
w are in the same set Yi or in sets Yi and Yi′ with i and i′ adjacent in the decomposition
tree T .

Now, suppose G has tree partition width at most k, say with tree partition ({Yi|i ∈
I}, T = (I, F)). For each i ∈ I, let Xi =

⋃
v∈Yi

Cv ∪ {ze | ∃v ∈ Yi, w ∈ V : e = vw}. For
each v ∈ V , w ∈ Cv, add two bags, one containing w, yw, and M − 2 other neighbors of yw,
and the other containing yw and the remaining M − 1 neighbors of yw, and make these bags
adjacent, and the first adjacent to the bag in T that also contains w. One easily verifies that
this results in a domino tree decomposition of H with maximum bags size at most M , hence
H has domino treewidth at most M − 1. ◀

It is easy to see that H can be constructed from G with f(k) log |V | memory. So, the
hardness of Domino Treewidth follows from the previous lemma. ◀

5 Conclusion

We settle the question of the exact computation of tree-partition-width, and show that
its approximation is tractable. However, many questions remain regarding approximation
algorithms:

Is a constant factor approximation tractable?
Can we improve the approximation ratios with similar running times?
Can we improve the dependence on n to something linear in n?

Regarding the running time of the approximation algorithm, the following results could
improve the final running times. Firstly, although the techniques of [6] are nontrivial, it
seems reasonable to hope that they can be adapted to implement Wood’s construction in
time f(k)n. This would give an algorithm running in time f(k)n to compute a tree-partition
of width kO(1). Secondly, is there some value of b polynomial in w and k such that we can
compute Gb in time kO(1)n log n or in time 2o(k2)n ? This would directly give faster running
times for the approximation algorithm, possibly at the cost of a worse approximation ratio.

The parameter treebreadth studied in [5] is polynomially tied to tree-partition-width, but
might be easier to approximate.

Another interesting direction is to study the complexity of computing (approximate) tree
decompositions on graphs of bounded tree-partition-width.

H. L. Bodlaender, C. Groenland, and H. Jacob 7:15

References
1 Noga Alon, Guoli Ding, Bogdan Oporowski, and Dirk Vertigan. Partitioning into graphs

with only small components. J. Comb. Theory, Ser. B, 87(2):231–243, 2003. doi:10.1016/
S0095-8956(02)00006-0.

2 János Barát and David R. Wood. Notes on nonrepetitive graph colouring. Electron. J. Comb.,
15(1), 2008. URL: http://www.combinatorics.org/Volume_15/Abstracts/v15i1r99.html.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

4 Hans L. Bodlaender. A note on domino treewidth. Discret. Math. Theor. Comput. Sci.,
3(4):141–150, 1999. URL: http://dmtcs.episciences.org/256.

5 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. arXiv, abs/2202.06838, 2022. Extended abstract to
appear in Proceedings WG 2022. arXiv:2202.06838.

6 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

7 Hans L. Bodlaender and Joost Engelfriet. Domino treewidth. J. Algorithms, 24(1):94–123,
1997. doi:10.1006/jagm.1996.0854.

8 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. On the parameterized complexity
of computing tree-partitions. arXiv, abs/2206.11832, 2022. URL: https://arxiv.org/abs/
2206.11832.

9 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk.
On the complexity of problems on tree-structured graphs. CoRR, 2022. doi:10.48550/ARXIV.
2206.11828.

10 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.

11 Paz Carmi, Vida Dujmovic, Pat Morin, and David R. Wood. Distinct distances in graph
drawings. Electron. J. Comb., 15(1), 2008. URL: http://www.combinatorics.org/Volume_
15/Abstracts/v15i1r107.html.

12 Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the excluded grid theorem. J.
Comb. Theory, Ser. B, 146:219–265, 2021. doi:10.1016/j.jctb.2020.09.010.

13 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

14 Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of graphs. J. Graph
Theory, 20(4):481–499, 1995. doi:10.1002/jgt.3190200412.

15 Guoli Ding and Bogdan Oporowski. On tree-partitions of graphs. Discret. Math., 149(1-3):45–
58, 1996. doi:10.1016/0012-365X(94)00337-I.

16 Vida Dujmovic, Pat Morin, and David R. Wood. Layout of graphs with bounded tree-width.
SIAM J. Comput., 34(3):553–579, 2005. doi:10.1137/S0097539702416141.

17 Vida Dujmovic, Matthew Suderman, and David R. Wood. Graph drawings with few slopes.
Comput. Geom., 38(3):181–193, 2007. doi:10.1016/j.comgeo.2006.08.002.

18 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

19 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Trans. Algorithms, 14(3):34:1–34:45, 2018. doi:10.1145/3186898.

20 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

IPEC 2022

https://doi.org/10.1016/S0095-8956(02)00006-0
https://doi.org/10.1016/S0095-8956(02)00006-0
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r99.html
https://doi.org/10.1137/S0097539793251219
http://dmtcs.episciences.org/256
http://arxiv.org/abs/2202.06838
https://doi.org/10.1137/130947374
https://doi.org/10.1006/jagm.1996.0854
https://arxiv.org/abs/2206.11832
https://arxiv.org/abs/2206.11832
https://doi.org/10.48550/ARXIV.2206.11828
https://doi.org/10.48550/ARXIV.2206.11828
https://doi.org/10.1137/S0097539795289859
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r107.html
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r107.html
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1002/jgt.3190200412
https://doi.org/10.1016/0012-365X(94)00337-I
https://doi.org/10.1137/S0097539702416141
https://doi.org/10.1016/j.comgeo.2006.08.002
https://doi.org/10.1137/05064299X
https://doi.org/10.1145/3186898
https://doi.org/10.4153/CJM-1956-045-5

7:16 On the Parameterized Complexity of Computing Tree-Partitions

21 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width.
In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan,
Italy, August 24-28, 2015, Proceedings, Part II, volume 9235 of Lecture Notes in Computer
Science, pages 348–360. Springer, 2015. doi:10.1007/978-3-662-48054-0_29.

22 Emilio Di Giacomo, Giuseppe Liotta, and Henk Meijer. Computing straight-line 3d grid
drawings of graphs in linear volume. Comput. Geom., 32(1):26–58, 2005. doi:10.1016/j.
comgeo.2004.11.003.

23 Rudolf Halin. Tree-partitions of infinite graphs. Discret. Math., 97(1-3):203–217, 1991.
doi:10.1016/0012-365X(91)90436-6.

24 John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, June 1973. doi:10.1145/362248.362272.

25 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.

26 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008. doi:10.1145/
1391289.1391291.

27 Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach,
editor, 5th International Conference on Fundamentals of Computation Theory, FCT 1985,
volume 199 of Lecture Notes in Computer Science, pages 412–421. Springer, 1985. doi:
10.1007/BFb0028825.

28 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory, Ser.
B, 110:47–66, 2015. doi:10.1016/j.jctb.2014.07.003.

29 David R. Wood. On tree-partition-width. Eur. J. Comb., 30(5):1245–1253, 2009. doi:
10.1016/j.ejc.2008.11.010.

30 David R. Wood and Jan Arne Telle. Planar decompositions and the crossing number of
graphs with an excluded minor. In Michael Kaufmann and Dorothea Wagner, editors, Graph
Drawing, 14th International Symposium, GD 2006, Karlsruhe, Germany, September 18-20,
2006. Revised Papers, volume 4372 of Lecture Notes in Computer Science, pages 150–161.
Springer, 2006. doi:10.1007/978-3-540-70904-6_16.

A Tree-cut width and the stability of tree-partition-width

In this section, we consider the relation of the notion of tree-cut width with (stable) tree-
partition-width. Tree-cut width was introduced by Wollan [28] . Ganian et al. [21] showed
that several problems that are W [1]-hard with treewidth as parameter are fixed parameter
tractable with tree-cut width as parameter.

We begin by defining the tree-cut width of a graph G = (V, E). A tree-cut decomposition
(T, X) consists of a rooted tree T and a family X of bags (Xi)i∈V (T) which form a near
partition of V (G) (i.e. some bags may be empty, but nonempty bags form a partition of
V (G)). For t ∈ V (T), we denote by e(t) the edge of T incident to t and its parent. For
e ∈ E(T), let T1, T2 denote the two connected components of T − e. We denote by cut(e)
the set of edges with an endpoint in both of

⋃
i∈V (T1) Xi and

⋃
i∈V (T2) Xi. The adhesion of

t ∈ V (T) is adh(t) = | cut(e(t))|, and its torso-size is tor(t) = |Xt|+ bt where bt is the number
of edges e ∈ E(T) incident to t such that | cut(e)| ≥ 3. The width of the decomposition
is then maxt∈V (T){adh(t), tor(t)}. Note that edges are allowed to go between vertices that
are not in the same bag. The tree-cut width of a graph is the minimal width of tree-cut
decomposition. When | cut(e)| ≥ 3, the edge e is called bold, and otherwise, e is called thin.
When adh(t) ≤ 2, node t is called thin, otherwise it is called bold. In [21], it is shown that a
tree-cut decomposition can be assumed to be nice, meaning that if t ∈ V (T) is thin then
N(Yt) ∩

(⋃
b sibling of t Yb

)
= ∅, where Yi is the union of Xj for j in the subtree of i.

https://doi.org/10.1007/978-3-662-48054-0_29
https://doi.org/10.1016/j.comgeo.2004.11.003
https://doi.org/10.1016/j.comgeo.2004.11.003
https://doi.org/10.1016/0012-365X(91)90436-6
https://doi.org/10.1145/362248.362272
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1016/j.jctb.2014.07.003
https://doi.org/10.1016/j.ejc.2008.11.010
https://doi.org/10.1016/j.ejc.2008.11.010
https://doi.org/10.1007/978-3-540-70904-6_16

H. L. Bodlaender, C. Groenland, and H. Jacob 7:17

Wollan shows that having bounded tree-cut width is equivalent to only having wall
immersions of bounded size.

▶ Observation 18. K3,n−3 has tree-partition-width at most 3 but unbounded tree-cut width.

Indeed, note that any graph on n − 3 vertices with maximum degree 3 can be immersed
in K3,n−3. In particular, this works for any wall. The lower bound given by Wollan shows
that the tree-cut width of K3,n−3 is Ω(n 1

4).
We denote by tpw(G) the minimum tree-partition-width over subdivisions of G, and by

tpw(G) the maximum tree-partition-width of subdivisions of G. We will show that both
are polynomially tied to the tree-partition-width of G, which proves useful in polynomially
bounding tree-partition-width by tree-cut width due to the following lemma.

▶ Lemma 19. tpw = O(tcw2).

Proof. Consider a nice tree-cut decomposition (T, X) of a graph G of width k. We will
construct a tree-partition for a subdivision of G. Note that the bags are already disjoint, but
some edges are not between neighbouring bags of T .

Each edge uv of G is subdivided dT (u, v) times, which is the distance between the nodes
containing u and v respectively in their bag (recall that the bags form a near partition). We
then add the vertices of the subdivided edge in the bags on the path in the decomposition
between the bags containing their endpoints. This is sufficient to make the decomposition a
tree-partition T ′ of a subdivision of G.

We now argue that T ′ has a width of O(k2). A bag Yt of T ′ contains at most:
k initial vertices
max(2, k) vertices from subdivisions of edges in cut(e(t)) accounting for edges going from
a child of t to an ancestor of t

k2/2 vertices from edges that are between bold children of t. For u, v children of T ,
there are only edges between Tu and Tv if both are bold. There are also at most k such
edges incident to Tu for any child u of T , and we may divide by 2 since each edge will
be counted twice this way. We stress that thin children do not contribute because the
tree-cut decomposition is nice.

Hence, tpw(G) ≤ 2 + k(k + 2)/2 + k = O(tcw(G)2) ◀

Next, we consider the parameters tpw and tpw.

▶ Lemma 20. tpw ≤ tpw ≤ tpw(tpw +1)

Proof. The lower bound is immediate. We prove the upper bound.
Consider a graph G with a tree-partition (T, X) of width k, and a subdivision G′ of G.

We construct a tree-partition (T ′, X ′) of G′ of width at most k(k + 1).
We root the decomposition T arbitrarily.
Suppose that u, v are in the same bag of T and the edge uv was subdivided to form the

path u, a1, . . . , aℓ, v. We add the vertices ai in new bags containing, {a1, aℓ}, {a2, aℓ−1, . . .

which corresponds to a new branch of the decomposition of width at most 2.
Consider next the vertices obtained by subdividing an edge uv for u in the child bag of

the bag of v. If a subdivided edge was between two vertices of adjacent bags, we order the
vertices of the path obtained by subdividing the edge from the vertex in the child bag to
the vertex in the parent bag. We add the penultimate vertex to the child bag, and fold the
remaining vertices of the path in a fresh branch of the decomposition of width at most 2
similarly to the previous case.

IPEC 2022

7:18 On the Parameterized Complexity of Computing Tree-Partitions

This gives a tree partition T ′. Bags of T ′ that are not in T have size at most 2, and, to
bags of T ′ that are also in T , we added at most k2 vertices (at most one per edge between
the bag and its parent). We conclude that T ′ has width at most k(k + 1). ◀

A result of Ding and Oporowski [15] shows that tree-partition-width is tied to a parameter
γ that is (by design) monotonic with respect to the topological minor relation. We adapt
their proof to derive the following stronger result.

▶ Theorem 21. There exists a parameter γ which is polynomially tied to the tree-partition-
width, and is monotonic with respect to the topological minor relation. More precisely,
tpw = Ω(γ) and tpw = O(γ24).

We deduce the following statement.

▶ Corollary 22. tpw, tpw, and tpw are polynomially tied.

Proof. Lemma 20 shows that tpw and tpw are polynomially tied. Note that, by definition,
tpw ≤ tpw. Then, for a fixed graph G, consider H a subdivision of G achieving tpw(H) =
tpw(G). tpw(G)O(1) ≤ γ(G) ≤ γ(H) ≤ tpw(H)O(1) = tpw(G)O(1). The first and last
inequalities come from the fact that γ and tpw are polynomially tied. The middle inequality
is because γ is monotonic with respect to the topological minor relation. ◀

From Lemma 19 and Corollary 22, we deduce the following theorem.

▶ Theorem 23. The parameter tree-partition-width is polynomially bounded by the parameter
tree-cut width. In other words, we show that there exist constants C, c > 0 such that for any
graph G, tpw(G) ≤ C tcw(G)c.

We now turn our focus to the technical proof of Theorem 21. We define the m-grid as the
graph on the vertex set [m] × [m] with edges (i, j)(i′, j′) when |i − i′| + |j − j′| ≤ 1. We then
define the m-wall as the graph obtained from the m-grid by removing edges (i, j)(i + 1, j)
for i + j even. The wall number of a graph G is then defined as the largest m such that G

contains the m-wall as a (topological)2 minor, and the grid number of G is the largest m such
that G contains the m-grid as a minor. We denote them by wn(G) and gn(G) respectively.

▶ Observation 24. The wall number and the grid number are linearly tied: wn(G) =
Θ(gn(G)).

We use the following result of Chuzhoy and Tan [12] (the bound is weakened to have a
lighter formula).

▶ Lemma 25 (Chuzhoy and Tan [12]). The treewidth is polynomially tied to the grid number:
tw = Ω(gn) and tw = O(gn10).

Hence, the treewidth is polynomially tied to the wall number: tw = Ω(wn) and tw =
O(wn10).

We call m-fan the graph that consists of a path of order m with an additional vertex
adjacent to all of the vertices of the path. We call m-branching-fans the graphs that consist
of a tree T and a vertex v adjacent to a subset N of the vertices of T containing at least
the leaves, such that m is the minimum size of a subset of vertices X of T such that each
component of T − X contains at most m vertices of N . In particular, the (m + 1)2-fan is an

2 The notions of minor and topological minor coincide for graphs of maximum degree at most 3.

H. L. Bodlaender, C. Groenland, and H. Jacob 7:19

(m + 1)-branching-fan. We call m-multiple of a tree of order m a graph obtained from a tree
of order m after replacing its edges by m parallel edges and then subdividing each edge once
to keep the graph simple.

Let γ1(G) be the largest m such that G contains an m-branching-fan as a topological
minor. Let γ2(G) be the largest m such that G contains an m-multiple of a tree of order m

as a topological minor.
Let γ(G) be the maximum of wn(G), γ1(G), and γ2(G).

▷ Claim 26. The parameter γ is monotonic with respect to the topological minor relation.

Proof. Let G be a graph and H be a topological minor of G. Any topological minor of H is
also a topological minor of G, hence wn(G) ≥ wn(H), γ1(G) ≥ γ1(H), γ2(G) ≥ γ2(H). We
conclude that γ(G) ≥ γ(H). ◁

▶ Observation 27. The m-branching-fans, the m-multiples of trees of order m and the
m-wall have tree-partition-width Ω(m). Hence, we have tpw(G) = Ω(γ(G)).

We fix a graph G and let m = γ(G). Note that m ≥ γ2(G) > 0.
We denote by Gb the graph on the vertex set of G, where xy is an edge if and only if

there are at least b vertex disjoint paths from x to y. We now consider Gb for b = Ω(m10).

▷ Claim 28. The connected components of Gb have size at most m.

Proof. We proceed by contradiction, and assume there is a connected component C of size
at least m + 1.

Since C is connected, it contains a spanning tree T . We number its edges e1, . . . , eℓ such
that every prefix induces a connected subtree of T . We construct a subgraph H of G that
should be an (m + 1)-multiple of a tree of order m + 1, contradicting the definition of m.
For each edge uv, in order, we try to add to H m + 1 vertex disjoint paths from u to v that
avoid vertices of C and the vertices already in H. If we manage to do this for at most m

edges, then we have placed at most m(m + 1) paths. Let uv be the first edge for which we
could not find m + 1 vertex disjoint paths that do not intersect previous vertices (except for
u or v). By definition of Gb, there are b vertex disjoint u, v-paths in G, we denote the set of
such paths by π. At most m of the paths of π hit vertices of C already in H . Then, since at
least b − m are hit by previous paths and there are at most m(m + 1) previous paths. By
the pigeon hole principle, one of the previous paths P0 must hit b−m

m(m+1) ≥ (m + 1)2 paths
in π. By considering P0 and the paths it hits in π, we easily obtain a subdivision of an
(m + 1)2-fan. This is a contradiction with the definition of m. Hence, we must have been
able to process m edges. Which means we obtained a subdivision of an (m + 1)-multiple of a
tree of order m + 1. This is a contradiction to the definition of m. We conclude that the
connected component must have size at most m. ◁

Let H be the quotient of G by the connected components of Gb. We call it the b-reduction
of G.

▷ Claim 29. The blocks of H have maximum degree at most bm3.

Proof. Assume by contradiction that the maximum degree is more than bm3. Let B be a
block of H, and X be one if its vertices of maximum degree. X contains at most m vertices
of G by Claim 28. The vertices of G in B − X must be in the same connected component
C of G since b > m. There are at least bm3 + 1 edges between X and C. By the pigeon
hole principle, one vertex v of X must have at least bm2 + 1 neighbours in C. Consider a

IPEC 2022

7:20 On the Parameterized Complexity of Computing Tree-Partitions

spanning tree T of C. We iteratively remove leaves that are not neighbours of v, and then
replace any vertex of degree 2 that is not a neighbour of v by an edge between its neighbours.
We denote this reduced tree by T ′.

First, note that the degree in T ′ is bounded by b − 1 because incident edges can be
extended to vertex disjoint paths to leaves of T ′ which are neighbours of v by construction.
We now use the fact that G contains no (m + 1)-branching-fans as topological minors. In
particular, there must be a set U of vertices of T ′ of size at most m such that components of
T ′ − U contain at most m neighbours of v. By removing at most m vertices of degree at
most (b − 1), we have at most 1 + (b − 2)m components in T ′ − U meaning v has degree
bounded by (b − 1)m2. We found our contradiction. ◁

▷ Claim 30. The treewidth of H is at most O(b).

Proof. We first apply Lemma 25 to bound the treewidth of G by O(b). Consider a tree
decomposition of G of adequate width Θ(b), and replace each bag by the components of Gb

that intersect it. By Claim 4, this is a decomposition of H. ◁

Using Claim 29 and Claim 30 and the construction of Wood as we did in the approximation
algorithm, we obtain a tree-partition of H of width O(b2m3). We then replace components
of Gb by their vertices, obtaining a tree-partition of G of width O(b2m4) due to Claim 28.

We have obtained a tree-partition of width O(b2m4) = O(m24). This concludes the proof
of Theorem 21.

XNLP-Completeness for Parameterized Problems
on Graphs with a Linear Structure
Hans L. Bodlaender #

Utrecht University, The Netherlands

Carla Groenland #

Utrecht University, The Netherlands

Hugo Jacob #

ENS Paris-Saclay, France

Lars Jaffke #

University of Bergen, Norway

Paloma T. Lima #

IT University of Copenhagen, Denmark

Abstract
In this paper, we showcase the class XNLP as a natural place for many hard problems parameterized
by linear width measures. This strengthens existing W [1]-hardness proofs for these problems, since
XNLP-hardness implies W [t]-hardness for all t. It also indicates, via a conjecture by Pilipczuk and
Wrochna [ToCT 2018], that any XP algorithm for such problems is likely to require XP space.

In particular, we show XNLP-completeness for natural problems parameterized by pathwidth,
linear clique-width, and linear mim-width. The problems we consider are Independent Set,
Dominating Set, Odd Cycle Transversal, (q-)Coloring, Max Cut, Maximum Regular
Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, and
Bipartite Bandwidth.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases parameterized complexity, XNLP, linear clique-width, W-hierarchy, path-
width, linear mim-width, bandwidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.8

Related Version Full Version: https://arxiv.org/abs/2201.13119

Funding Carla Groenland: Supported by the European Union’s Horizon 2020 research and innovation
programme under the ERC grant CRACKNP (number 853234) and the Marie Skłodowska-Curie
grant GRAPHCOSY (number 101063180).
Lars Jaffke: Supported by the Norwegian Research Council (project number 274526) and the Meltzer
Research Fund.

1 Introduction

Since the inception of parameterized complexity in the late 1980s and early 1990s, much
research has been done on establishing the complexity of parameterized problems. Typically
one is particularly interested in either designing FPT-algorithms for these problems, or to
prove them W [t]-hard, for some t, which provides evidence that such a problem is not likely
to be fixed-parameter tractable. As opposed to the classical P versus NP-complete setting,
the question of membership in some class of the W -hierarchy is often much less clear. While
some natural problems such as Independent Set and Dominating Set are known to
be W [1]-complete and W [2]-complete, respectively, many other problems are unknown to

© Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:c.e.groenland@uu.nl
https://orcid.org/0000-0002-9878-8750
mailto:hugo.jacob@ens-paris-saclay.fr
https://orcid.org/0000-0003-1350-3240
mailto:lars.jaffke@uib.no
https://orcid.org/0000-0003-4856-5863
mailto:palt@itu.dk
https://orcid.org/0000-0001-9304-4536
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://arxiv.org/abs/2201.13119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

be complete for a class of parameterized problems, and even conjectured not to be in the
W -hierarchy. Recently, building upon work by Elberfeld et al. [12], Bodlaender et al. [4]
introduced a complexity class called XNLP, which gives a way of addressing this question.

The class XNLP consists of the parameterized problems that can be solved with a non-
deterministic algorithm that uses f(k) log n space and f(k)nc time, where f is a computable
function, n is the input size, k is the parameter and c is a constant. In particular, XNLP-
hardness implies W [t]-hardness for all t. Therefore it is unlikely that any XNLP-hard problem
is complete for some W [t].

One success story within parameterized algorithms and complexity is the use of width
measures of graphs as parameters (see, e.g., [9]). Typically, such width measures are defined
in terms of a tree-like decomposition of a graph, and the width describes the complexity
of the decomposition, and therefore, in turn, of the graph. Such width measures also have
linear variants, where the decomposition resembles a path instead of a tree. In this work, we
provide evidence that the class XNLP is the “natural home” for hard problems parameterized
by linear width measures.

Let us give some intuitive explanation why this is the case. A typical dynamic pro-
gramming algorithm that uses such a linear decomposition stores, at each node of the path,
some partial solutions associated with it. The table entries associated with the nodes are
then filled in the order in which they appear on the path. If one turns such an algorithm
into a nondeterministic algorithm, it often suffices at the i-th node to nondeterministically
determine the table index corresponding to the correct partial solution (if it exists) from
the table entry that was previously determined for the (i − 1)-th node. In such a case,
membership in XNLP follows if each single table entry of such a DP algorithm can be
represented by f(k) log n bits (where k is the width) and if the nondeterministic step does
not require a computation that uses significantly more space. This is often the case. Now,
such an approach fails for tree-like decompositions, since even a nondeterministic algorithm
might have to keep too many table entries at some point during the computation. One
common situation in which this occurs is when the algorithm needs to store one table entry
for each level of the decomposition. This incurs a multiplicative factor in the memory usage
that depends on the height of the tree, which can be prohibitively large.

In this direction, Bodlaender et al. [4] showed that List Colouring parameterized by
the pathwidth of the input graph, and Bandwidth are XNLP-complete. In this paper, we
show XNLP-completeness of fundamental graph problems parameterized by linear variants of
well-established width measures, such as pathwidth, linear clique-width and linear mim-width,
as well as some of their logarithmic analogues.

Besides showing W [t]-hardness for all t, XNLP-hardness also provides insight into the
space complexity of parameterized problems. Pilipczuk and Wrochna [23] proposed the
following conjecture.1

▶ Conjecture 1 (Slice-wise Polynomial Space Conjecture [23]). XNLP-hard problems do not
have an algorithm, that runs in nf(k) time and f(k)nc space, with f a computable function,
k the parameter, n the input size, and c a constant.

Typically, membership in XP for the problems studied in our paper follows from a dynamic
programming approach that uses a significant amount of memory. XNLP-hardness indicates
(via Conjecture 1) that dynamic programming is in some sense “optimal” (no XP algorithm
can use “significantly less” memory).

1 The statement of the conjecture here is equivalent to the conjecture on time and memory use for the
Longest Common Subsequence problem from [23]; the name of the conjecture is taken as analogue
to the naming of XP as problems that use slice-wise polynomial time (see [9, Section 1.1]).

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:3

Linear width measures and logarithmic analogues. The width measures we consider in
this work include linear variants of arguably the most prominent measures, and some of
their generalizations. Pathwidth is a linear variant of the classic treewidth parameter, which,
informally speaking, measures how close a connected graph is to being a tree. In this vein,
pathwidth measures how close a connected graph is to being a path. Clique-width (or,
equivalently, rank-width) generalizes treewidth to several simply structured dense graphs,
and its linear counterpart is called linear clique-width (linear rank-width). Maximum induced
matching width [24], or mim-width for short, in turn generalizes clique-width and remains
bounded even on well-studied graph classes such as interval and permutation graphs, where
the clique-width is known to be unbounded. In fact, for most of these classes the linear
mim-width is bounded.

We also introduce a new parameter that we call logarithmic linear clique-width, analogous
to the parameter logarithmic pathwidth that was introduced by Bodlaender et al. [4]. For
an n-vertex graph of linear clique-width k, logarithmic linear clique-width takes the value
⌈k/ log n⌉. We stress the fact that XNLP-hardness parameterized by a logarithmic parameter
implies that there is no algorithm solving the problem in time 2O(k)nO(1) and space kO(1)nO(1),
where k is the original parameter2, under Conjecture 1. Such results can complement existing
(S)ETH lower bounds for single exponential FPT algorithms with lower bounds on the space
requirements of such algorithms.

Bipartite bandwidth. Finally, we consider a bipartite variant of the notoriously difficult [2]
problem of computing the bandwidth of a graph. Here, for a bipartite graph with vertex
bipartition (A, B) and bandwidth target value w, we seek an ordering α of A and an ordering
β of B, such that for each edge ab, |α(a)−β(b)| ≤ w. We consider this problem parameterized
by w, and show that it is XNLP-complete, even when the input graph is a tree.

Our results. We summarize our results in the following theorem.

▶ Theorem 2. The following problems are XNLP-complete.
(i) Capacitated Red-Blue Dominating Set and Capacitated Dominating Set

parameterized by pathwidth.
(ii) Coloring, Maximum Regular Induced Subgraph, and Max Cut parameterized

by linear clique-width.
(iii) q-Coloring and Odd Cycle Transversal parameterized by logarithmic pathwidth

or logarithmic linear clique-width.
(iv) Independent Set, Dominating Set, Feedback Vertex Set, and q-Coloring

for fixed q ≥ 5 parameterized by linear mim-width.
(v) Bipartite Bandwidth, even if the input graph is a tree.

Furthermore, Feedback Vertex Set parameterized by logarithmic pathwidth or logarithmic
linear clique-width is XNLP-hard.

Note that Theorem 2(ii) and (iv) include the first XNLP-completeness results for graph
problems with the linear clique-width and linear mim-width as parameter.

2 Indeed, replacing k with k′ log n, this gives running time 2O(k′ log n) = nO(k′) and space k′O(1)nO(1),
which is excluded by the conjecture.

IPEC 2022

8:4 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

Related Work. Guillemot [17] introduced the class WNL (which equals XNLP closed under
fpt-reductions), and showed some problems to be complete for WNL, including a version of
Longest Common Subsequence. The class XNLP (under a different name) was introduced
by Elberfeld et al. [12], who also showed a number of problems, including Linear Cellular
Automaton Acceptance, to be complete for the class. A large number of parameterized
problems was shown to be XNLP-complete recently by Bodlaender et al. [4]. Very recently,
in work that aims at separating the complexity of treewidth and pathwidth at one side, and
stable gonality at another side, Bodlaender et al. [3] showed a number of flow problems
parameterized by pathwidth to be complete for XNLP.

2 Overview of the results

In this section, we give a bird’s-eye view of the results proved in this paper, and discuss
related work for the specific problems we consider. Due to space limitations, statements
marked with ♣ had their proofs deferred to the full version of this work.

Parameterized by linear clique-width. We consider the Max Cut, the Coloring, and the
Maximum Regular Induced Subgraph problems parameterized by linear clique-width.
Let E(V1, V2) denote the set of edges with one endpoint in V1 and one endpoint in V2.

Max Cut
Input: A graph G = (V, E) described by a given linear k-expression describing G and
an integer W .
Parameter: k.
Question: Is there a bipartition of V into (V1, V2) such that |E(V1, V2)| ≥ W?

In 1994, Wanke [25] showed that Max Cut is in XP for graphs of bounded NLC-width,
which directly implies XP-membership with clique-width as parameter, as NLC-width and
clique-width are linearly related. In 2014, Fomin et al. [14] consider the fine grained complexity
for Max Cut for graphs of small clique-width, giving an algorithm with improved running
time and showing asymptotic optimality (assuming the Exponential Time Hypothesis). From
their results, it follows that Max Cut is W [1]-hard with clique-width as parameter. In
Section 4.1, we prove the following theorem.

▶ Theorem 3. Max Cut with linear clique-width as parameter is XNLP-complete.

Next, we consider the classical Coloring problem, which given a graph G and an integer
k asks if G has a proper coloring with k colors. Similarly to the story of the Max Cut
problem, Coloring parameterized by clique-width was shown to be in XP by Wanke in
1994 [25], and a W[1]-hardness proof only followed in 2010 by Fomin et al. [13]. The XP
algorithm for coloring runs in time nO(2k), where k is the clique-width, and Fomin et al. [15]
even showed that this run time can probably not be substantially improved: an algorithm
running in time n2o(k) would refute the ETH. We prove the following.

▶ Theorem 4 (♣). Coloring parameterized by linear clique-width is XNLP-complete.

Lastly, we consider the Maximum Regular Induced Subgraph problem. The problem
was studied by several authors, including Asahiro et al. [1], who show among others an
algorithm that uses linear time for graphs of bounded treewidth, where the time depends
single exponentially on the treewidth. Moser and Thilikos [22], and independently Mathieson
and Szeider [21] show (amongst other results) that the problem is W [1]-hard when the size

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:5

of the subgraph (parameter W in our description below) is used as parameter. Broersma et
al. [7] give XP algorithms for several problems, including Maximum Regular Induced
Subgraph for graphs of bounded clique-width.

Maximum Regular Induced Subgraph
Input: A graph G described by a given linear k-expression and two integers W and D.
Parameter: k.
Question: Is there a D-regular induced subgraph of G on at least W vertices?

We show the following.

▶ Theorem 5 (♣). Maximum Regular Induced Subgraph parameterized by linear
clique-width is XNLP-complete.

Parameterized by pathwidth. We consider the Capacitated Red-Blue Dominating
Set and Capacitated Dominating Set problems. Below, we give the formal statement
of the problems, where we have the width of the path decomposition as parameter. One of
the reasons of interest in these problems is that they model facility location problems: the
red vertices model possible facilities that can serve a bounded number of clients which are
modelled by the blue vertices.

Capacitated Red-Blue Dominating Set
Input: A bipartite graph G = (R, B, E), a path decomposition of G of width ℓ, a
capacity function c : R → N, and an integer k.
Parameter: ℓ.
Question: Is there a subset S of R, and an assignment of blue vertices f : B → S such
that {w, f(w)} ∈ E for all w ∈ R and |f−1(v)| ≤ c(v) for all v in S?

Capacitated Dominating Set
Input: A graph G = (V, E), a path decomposition of G of width ℓ, a capacity function
c : V → N, and an integer k.
Parameter: ℓ.
Question: Is there a subset S of V , and an assignment of the vertices f : V → S such
that {w, f(w)} ∈ E or w = f(w) for all w ∈ V and |f−1(v)| ≤ c(v) for all v in S?

In 2008, Dom et al. [10] showed that Capacitated Dominating Set is W [1]-hard,
with the treewidth and solution size k as combined parameter. Capacitated Dominating
Set was shown to be W [1]-hard for planar graphs, with the solution size as parameter
by Bodlaender et al. [5]. Fomin et al. [14] give bounds for the fine grained complexity of
Capacitated Red-Blue Dominating Set, for graphs with a small feedback vertex set;
their results imply that the problem is W [1]-hard with feedback vertex set as parameter.
The proof of the following theorem can be found in Section 4.2.

▶ Theorem 6. Capacitated Red-Blue Dominating Set and Capacitated Dominating
Set parameterized by pathwidth are XNLP-complete.

Parameterized by logarithmic linear clique-width. Bodlaender et al. [4] introduced the
parameter logarithmic pathwidth as pw / log n for an n-vertex graph of pathwidth pw. This
allows the pathwidth to be linear in the logarithm of the number of vertices of the graph.
Here we introduce the logarithmic linear clique-width as lcw / log n for graphs on n vertices
with linear clique-width lcw.

IPEC 2022

8:6 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

We provide new XNLP-complete problems for the parameter logarithmic pathwidth,
and show that these problems and the previously known XNLP-complete problems for this
parameter [4] are also complete for the parameter logarithmic linear clique-width. Our results
are summarised below.

The motivation to study the logarithmic linear clique-width or logarithmic pathwidth
comes from the observation that many FPT algorithms with linear cliquewidth or pathwidth
as parameter have a single exponential time dependency on the parameter. Thus, if linear
cliquewidth or pathwidth is logarithmic in the size of the graph, these algorithms turn into
XP algorithms.

▶ Theorem 7 (♣). When parameterized by logarithmic pathwidth or logarithmic linear
clique-width, Independent Set, Dominating Set, q-List-Coloring for q > 2, and Odd
Cycle Transversal are XNLP-complete, and Feedback Vertex Set is XNLP-hard.

Lokshtanov et al. [20] established (tight) lower bounds for these problems for the parameter
pathwidth under the Strong Exponential Time Hypothesis. Several of our gadgets are based
on those used for these lower bounds by [20].

Parameterized by linear mim-width. We prove that several fundamental graph problems
are XNLP-complete when parameterized by the mim-width of a given linear order of the input
graph. W[1]-hardness for Independent Set and Dominating Set in this parameterization
was shown by Fomin et al. [16], and for Feedback Vertex Set by Jaffke et al. [19]. For
q-Coloring, W [1]-hardness was not known before our work. We would like to point out
that our XNLP-hardness proof uses a gadget that requires five colors to construct, and it
would be interesting to see if this can be improved to three colors. In section Section 4.3 we
prove the result below for q-Coloring. The proofs for the remaining problems are deferred
to the full version.

▶ Theorem 8 (♣). When parameterized by linear mim-width, Independent Set, Dominat-
ing Set, q-Coloring for any fixed q ≥ 5 and Feedback Vertex Set are XNLP-complete.

Bipartite bandwidth. We consider the following bipartite variant of the Bandwidth
problem.

Bipartite Bandwidth
Input: A bipartite graph G = (X, Y, E) and an integer k.
Parameter: k.
Question: Are there orderings α : X → [n] and β : Y → [m] such that for each uv ∈ E,
|α(u) − β(v)| ≤ k ?

A possible application of this problem is as follows. Let a matrix M be given. Create a
vertex xi ∈ X for each row i and a vertex yj ∈ Y for each column j, and let xi be adjacent
to yj if and only if Mi,j ̸= 0. This graph has bipartite bandwidth at most k if and only if
the rows and columns of M can be permuted (individually) in such a way that all non-zero
entries are within k distance from the main diagonal. We show the following.

▶ Theorem 9 (♣). Bipartite Bandwidth is XNLP-complete for trees.

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:7

3 Preliminaries

The required background on the computational problems studied in this paper are given in
their respective sections. The notions relevant to the entire paper are defined below.

We write [n] = {1, . . . , n} and [a, b] for the set of integers x with a ≤ x ≤ b. All
logarithms in this paper have base 2. We use N for the set of the natural numbers {0, 1, 2, . . .},
and Z+ denotes the set of the positive natural numbers {1, 2, . . .}. We write N(S) and
N [S] = N(S) ∪ S for the open and closed neighborhood of S.

3.1 Definition of the class XNLP
In this paper, we study parameterized decision problems, which are subsets of Σ∗ × N, for
a finite alphabet Σ. We assume the reader to be familiar with notions from parameterized
complexity, such as XP, W [1], W [2], . . . , W [P] (see e.g. [11]). The class XNLP (denoted
N [f poly, f log] by [12]) consists of the parameterized decision problems that can be solved
by a non-deterministic algorithm that simultaneously uses at most f(k)nc time and at most
f(k) log n space, on an input (x, k), where x can be denoted with n bits, f a computable
function, and c a constant. We assume that functions f of the parameter in time and resource
bounds are computable – this is called strongly uniform by Downey and Fellows [11]. More
information about the complexity class XNLP can be found in [4].

3.2 Reductions
In the remainder of the paper, unless stated otherwise, completeness for XNLP is with respect
to pl-reductions, which are defined below. The definitions are based upon the formulations
in [12].

A parameterized reduction from a parameterized problem Q1 ⊆ Σ∗
1 ×N to a parameterized

problem Q2 ⊆ Σ∗
2 × N is a function f : Σ∗

1 × N → Σ∗
2 × N, such that the following holds.

1. For all (x, k) ∈ Σ∗
1 × N, (x, k) ∈ Q1 if and only if f((x, k)) ∈ Q2.

2. There is a computable function g, such that for all (x, k) ∈ Σ∗
1 ×N, if f((x, k)) = (y, k′),

then k′ ≤ g(k).
A parameterized logspace reduction or pl-reduction is a parameterized reduction for which
there is an algorithm that computes f((x, k)) in space O(g(k)+log n), with g a computable
function and n = |x| the number of bits to denote x.

3.3 Pathwidth, linear clique-width, and linear mim-width
A path decomposition of a graph G = (V, E) is a sequence (X1, X2, . . . , Xr) of subsets of V

with the following properties.
1.

⋃
1≤i≤r Xi = V .

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For all 1 ≤ i0 < i1 < i2 ≤ r, Xi0 ∩ Xi2 ⊆ Xi1 .
The width of a path decomposition (X1, X2, . . . , Xr) equals max1≤i≤r |Xi| − 1, and the
pathwidth pw of a graph G is the minimum width of a path decomposition of G.

A k-labeled graph is a graph G = (V, E) together with a labeling function Γ : V → [k]. A
k-expression constructs a k-labeled graph by the means of the following operations:
1. Vertex creation: i(v) is the k-labeled graph consisting of a single vertex v which is assigned

label i.
2. Disjoint union: H ⊕ G is the disjoint union of k-labeled graphs H and G.

IPEC 2022

8:8 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

3. Join: ηi×j(G) is the k-labeled graph obtained by adding all possible edges between
vertices with label i and vertices with label j to G.

4. Renaming label: ρi→j(G) is the k-labeled graph obtained by assigning label j to all
vertices labelled i in G.

A linear k-expression is a k-expression with the additional condition that one of the arguments
of the disjoint union operation needs to be a graph consisting of a single vertex. The clique-
width cw(G)(resp. linear clique-width lcw(G)) of a graph G is the minimal k such that G

can be constructed by a k-expression (resp. linear k-expression) with any labeling.
For a graph G = (V, E) and A, B ⊆ V with A ∩ B = ∅, we let G[A, B] be the bipartite

subgraph of G with vertices A ∪ B and edges {ab | ab ∈ E, a ∈ A, b ∈ B}. We let
cutmimG(A, B) be the size of a maximum induced matching in G[A, B] and mimG(A) =
cutmimG(A, V \ A). Here, an induced matching M ⊆ E is a matching such that there are
no additional edges between the endpoints of M in the graph in question. The mim-width of
a linear order v1, . . . , vn of V is the maximum, over all i, of mimG({v1, . . . , vi}). The linear
mim-width of G is the minimum mim-width over all linear orders of V .

3.4 Chained variants of Satisfiability and Multicolored Clique

In [4], the following problems were introduced, and shown to be XNLP-complete.

Chained Positive CNF-SAT
Input: r sets of Boolean variables X1, X2, . . . Xr, each of size q; an integer k ∈ N;
Boolean formula ϕ, which is in conjunctive normal form and an expression on 2q variables,
using only positive literals; for each i, a partition of Xi into Xi,1, . . . , Xi,k such that
∀j, j′ ∈ [k], |Xi,j | = |Xi,j′ |.
Parameter: k.
Question: Is it possible to satisfy the formula∧

1≤i≤r−1
ϕ(Xi, Xi+1)

by setting from each set Xi,j exactly 1 variable to true and all others to false?

Chained Multicolored Clique
Input: Graph G = (V, E), partition of V into V1, . . . , Vr, such that for each edge uv ∈ E

with u ∈ Vi and v ∈ Vj , |i − j| ≤ 1, function f : V → [k].
Parameter: k.
Question: Is there a set W ⊆ V such that for all i ∈ [r − 1], W ∩ (Vi ∪ Vi+1) is a clique,
and for each i ∈ [r] and j ∈ [k], there is a vertex v ∈ W ∩ Vi with f(v) = j?

The Chained Multicolored Independent Set problem is defined analogously, with
the only difference that the solution W is required to be an independent set.

▶ Theorem 10 (Bodlaender et al. [4]). Chained Positive CNF-SAT, Chained Multi-
colored Clique and Chained Multicolored Independent Set are XNLP-complete.

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:9

4 Problems parameterized by linear width measures

In this section we prove XNLP-completeness for three of the problems mentioned in Section 2
parameterized by linear width measures. The full version of this work contains all the proofs
of the results stated in Section 2.

4.1 Max Cut parameterized by linear clique-width
In this section, we consider the Max Cut problem, with the linear clique-width as parameter,
and show it to be XNLP-complete. Our result is based upon the XNLP-hardness result for
a problem, called Circulating Orientation, with pathwidth as parameter. Borrowing
from terminology from flows in graphs, we say that a directed graph G = (V, A) with for
each arc a ∈ A a weight w(a) ∈ N, is a circulation, if for each vertex v, the total weight of
all incoming arcs at v equals the total weight of all arcs outgoing from v. We reduce from
the following problem.

Circulating Orientation
Input: An undirected graph G = (V, E) with a path decomposition of G of width ℓ, an
edge weight function w : E → N, given in unary notation.
Parameter: ℓ.
Question: Is there an orientation of G that is a circulation?

▶ Theorem 11 (Bodlaender et al. [3]). Circulating Orientation is XNLP-complete.

▶ Theorem 3. Max Cut with linear clique-width as parameter is XNLP-complete.

Proof. We first show membership in XNLP. The main idea is to turn the existing dynamic
programming that solves the problem given a k-expression of an n-vertex graph of linear
clique-width k into a non-deterministic algorithm, by guessing an element from a table instead
of building full tables. For each vertex creation, we guess on which side of the partition the
vertex is. We maintain the following certificate: for each label, the number of vertices on
each side of the bipartition, and the number of edges of the current expression that were in
the cut. Since there are at most k labels and the size of the cut is bounded by the number of
edges, this certificate uses only O(k log n) bits.

To show hardness for XNLP, we reduce from Circulating Orientation with pathwidth
as parameter. Suppose we have an instance for Circulating Orientation: an undirected
graph G with edge weight function w. For each vertex v, write D(v) as the total weight of
all edges incident to v.

We build a new, undirected graph H = (VH , EH) as follows. For each vertex v ∈ V , each
edge e with v as one of its endpoints, and each integer i ∈ [1, w(e)], we create a vertex xv,e,i.
Two distinct vertices xv,e,i and xw,e′,j are adjacent if and only if v = w or e = e′. In other
words: for each vertex v ∈ V , we have a clique with D(v) vertices, which consists of all
vertices of the form xv,·,·, that we call the clique of v. For each edge e = {v, w} ∈ E, we have
a clique with 2w(e) vertices, namely all vertices of the form xv,e,· and xw,e,·. See Figure 1
for a partial example.

▷ Claim 12. G has a circulating orientation if and only if H has a bipartition that cuts∑
e∈E w(e)2 +

∑
v∈V D(v)2/4 edges.

Proof. Suppose G has a circulating orientation. For each edge e = {v, w}, if the orientation
directs v to w, then add all vertices of the form xv,e,i to Z1 and all vertices of the form xw,e,i

to Z2 (i ∈ [1, w(e)]); otherwise, add all vertices of the form xv,e,i to Z2 and all vertices of
the form xw,e,i to Z1 (i ∈ [1, w(e)]).

IPEC 2022

8:10 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

2

2

4 4

Figure 1 Example for the construction of the hardness proof of Max Cut (fragment).

Since we started from a circulating orientation, for each vertex v there are D(v)/2×D(v)/2
edges of the form {xv,·,·, xv,·,·} crossing the bipartition. Moreover, there are w(e)×w(e) edges
of the form {xv,e,·, xw,e,·} crossing the bipartition for each edge e = {v, w}. We conclude
that the bipartition cuts the required number of edges.

Now, suppose we have a partition Z1, Z2 of VH with
∑

e∈E w(e)2 +
∑

v∈V D(v)2/4 edges
between Z1 and Z2. We distinguish two types of edges in EH ∩ (Z1 × Z2). A Type 1 edge is
an edge between two vertices xv,e,i and xv,e′,j (i.e., it is in the clique of a vertex v). A Type
2 edge is an edge between two vertices xv,e,i and ew,e,j for some edge e = {v, w}. Note that
each edge in H is of Type 1 or Type 2 and that H has precisely

∑
e∈E w(e)2 Type 2 edges.

For each vertex v ∈ V , we consider how many Type 1 edges (those in the clique of v) are
in Z1 × Z2. If we have α vertices in the clique of v that belong to Z1, then D(v) − α vertices
in the clique of v belong to Z2, and thus, in this clique, we cut α · (D(v) − α) ≤ D(v)2/4
edges; the maximum possible is reached when α = D(v)/2.

It follows that the number of Type 1 edges that are cut is at most
∑

v∈V D(v)2/4. So, we
must cut all Type 2 edges, i.e., for each edge e = {v, w}, all edges of the form {xv,e,i, xw,e,j}
are between a vertex in Z1 and a vertex in Z2. It follows that we either have that all vertices
of the form xv,e,i are in Z1 and all vertices of the form xw,e,i are in Z2 – in which case we
direct the edge e from v to w; or all vertices of the form xv,e,i are in Z2 and all vertices of
the form xw,e,i are in Z1, and now we direct the edge from w to v.

For each vertex v ∈ V , we must have exactly D(v)/2 vertices from the clique of v in
Z1 and equally many vertices in Z2; otherwise, we cannot reach the required number of
cut edges. Now, the total weight of all edges that we directed out of v precisely equals the
number of vertices in the clique of v in Z1, and similarly, the total weight of all edges that
we directed towards of v precisely equals the number of vertices in the clique of v in Z2.
Both numbers equal D(v)/2. As this holds for each v ∈ V , the orientation defined above is a
circulation. ◁

Finally, we show that we can construct a linear clique expression for H given a path
decomposition of G; the number of colors we use for the clique width construction equals the
width of the path decomposition plus 4. The construction uses ideas for constructing clique
width constructions for line graphs of graphs of bounded treewidth; see [18].

Suppose we have a nice path decomposition, which uses introduce vertex, introduce edge,
and forget nodes. We use k + 1 active colors – each active color will correspond to one vertex
in the current bag. We also have an inactive color, which we will denote by the letter o. We
also use two temporary colors, which we call α and β.

We sequentially visit the bags of the path decomposition. Bags correspond to a number
of steps of the construction of H, as described next. If we introduce a vertex, we select a
currently unused active color, and say this is the color of that vertex, and assume it to be
used. If we introduce an edge e = {v, w}, we add the vertices xv,e,i one by one, each with
the color α. Then, we add the vertices xw,e,i one by one, each with the color β. Now, we add
all edges between vertices of color α and β. Now, recolor all vertices of color α by the color

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:11

v x

ye,1

ye,α

y′e,1

y′e,α

ze
z′e

z′′e

Figure 2 Edge gadget from the proof of Theorem 6.

of v. Then, recolor the vertices of color β by the color of w. If we forget a vertex v, we first
add edges between all vertices of the color of v – at this point, these are all vertices in the
clique of v, thus effectively ensuring that this set of vertices indeed is a clique. Then, recolor
the vertices with the color of v with the inactive color o. Consider the color of v now unused.

One can verify that this indeed constructs precisely H, and that the construction can be
done with f(k) log n additional space. ◀

4.2 Variants of Dominating Set parameterized by pathwidth

In this section we prove the following theorem.

▶ Theorem 6. Capacitated Red-Blue Dominating Set and Capacitated Dominating
Set parameterized by pathwidth are XNLP-complete.

Proof. We first show membership in XNLP for Capacitated Red-Blue Dominating Set.
For each red vertex, we guess if it is in the dominating set, and for each edge from a chosen
red vertex to a blue neighbor, we guess if it is used for dominating. We do this while going
through the path decomposition from left to right. We need to keep track which blue vertices
are already dominated, which red vertices are in the dominating set plus their remaining
capacity, and the total number of vertices in the dominating set so far. We may assume that
the remaining capacities are never larger than the number of blue vertices; therefore, we only
need to store O(log n) bits per vertex in the current bag. Membership in XNLP follows in a
similarly for Capacitated Dominating Set.

Hardness follows by a reduction from Circulating Orientation (defined in Section 4.1).
Suppose that we are given an input of Circulating Orientation, say a graph G = (V, E)
with weight function w : E → N. We assume that these weights are given in unary. Note
that in a solution, the total weight of edges directed towards a vertex v and the total weight
of the edges directed out of v should both equal

∑
{v,x}∈E w({v, x})/2.

We build a graph as follows. For each vertex v ∈ V , we create a vertex v, colored red, in H .
We give v a private blue neighbor v′. The capacity of v equals 1 +

∑
{v,x}∈E w({v, x})/2.

We can assume this capacity is integral, otherwise there is no solution to the instance (G, w).
Each edge e = {v, x} ∈ E is replaced by the following gadget. Suppose w({v, x}) = α ∈ N.
We create 2α + 3 vertices, called ye,1, ye,2, . . . , ye,α, ze, z′

e, z′′
e , y′

e,1, . . . , y′
e,α. The edge e is

replaced by the subgraph shown in Figure 2. The vertices ze and z′′
e are red, and all other new

vertices are blue. We give the new red vertices ze and z′′′
e a capacity that equals their degree.

Let H = (VH , EH) be the resulting red-blue colored graph, with c(v) the capacity of a
red vertex v ∈ VH . We claim that H has a dominating set of size size |V | + |E| for which
each chosen red vertex dominates at most its capacity many blue vertices, if and only if G

has a circulating orientation.

IPEC 2022

8:12 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

Suppose first that we have a set S of red vertices with |S| ≤ |V | + |E|, and an assignment
of blue vertices to neighbors in S, such that no red vertex has more than its capacity number
of vertices assigned to it.

Each vertex that is a copy of a vertex from V must belong to S, as they have a private
blue neighbor. For each edge e, either ze or z′′

e must be in S, to dominate z′
e. This gives

in total already |V | + |E| vertices, so no edge can have both ze and z′′
e in S. For each edge

e = {v, x}, if ze ∈ S, then orient the edge from v to x in G; if z′′′
e ∈ S, then orient the edge

from x to v. Now, for each v ∈ V , the total weight of incoming edges of the orientation
can be at most c(v) − 1, since v must also dominate its private neighbor. By definition,
c(v) − 1 =

∑
{v,x}∈E w({v, x})/2. This means that for each vertex, the total weight of

incoming edges is at most half the total weight of incident edges; it follows that this total
weight must be equal, because when there is a vertex for which this weight is smaller, then
there must be another vertex for which it is larger. So, we have an orientation that is a
circulation.

Suppose now that we have a circulation that is an orientation. Add each original vertex
v ∈ V to S, and for each edge e = {v, x}, place ze in S when the edge is oriented from v to x

and otherwise place z′′
e in S. Red vertices on edge gadgets dominate all their neighbors; red

original vertices dominate their private neighbor and all not yet dominated blue neighbors.
This gives a dominating set where each red vertex in S dominates precisely its capacity many
neighbors, as desired.

Finally, we show that we can build a log-space transducer that transforms a path
decomposition of G of width ℓ to one of H with width at most ℓ + 2. We first ensure that
the path decomposition of G is nice (which can be done via a log-space transducer). We
pass through the bags from left to right. For a forget bag in the path decomposition of G,
we take the same bag for H. For an introduce bag Xi = Xi−1 ∪ {v}, we loop through the
vertices in Xi−1 one-by-one, say these are x1, . . . , xr. For each j ∈ [r], if {v, xj} ∈ E, then
we add the following bags (in order):

Xi ∪ {ze, ye,1}, Xi ∪ {ze, ye,2}, . . . , Xi ∪ {ze, ye,w(e)}, Xi ∪ {ze, z′
e}, Xi ∪ {z′

e, z′′
e },

Xi ∪ {z′′
e , y′

e,1}, Xi ∪ {z′′
e , y′

e,2}, . . . , Xi ∪ {z′′
e , y′

e,w(e)}.

One can verify that this gives a path decomposition of H. The width has increased by at
most 2.

A standard transformation now shows that Capacitated Dominating Set is also
XNLP-hard with pathwidth as parameter. Given an instance (G, w) of Capacitated Red-
Blue Dominating Set, we build an equivalent instance of Capacitated Dominating
Set. We give each blue vertex capacity zero. We add two new vertices x and x′, with x′ of
degree one and x adjacent to all red vertices and to x′. The capacity of x is equal to the
number of red vertices plus 2. We increase the target size of the solution by one (and remove
all colors). The pathwidth has gone up by at most one. ◀

We remark that a similar reduction can be used to show XNLP-hardness of Capacitated
Vertex Cover (by removing the vertex z′

e, having parallel paths of length 3 instead of 2 in
the gadget of Figure 2 and giving each original vertex a new neighbor of degree one).

4.3 q-Coloring parameterized by linear mim-width
In this section we show that for each fixed q ≥ 5, q-Coloring is XNLP-complete when
parameterized by the linear mim-width of the input graph.

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:13

q-Coloring
Input: A graph G = (V, E) and a linear order of V of mim-width w.
Parameter: w.
Question: Does G have a proper vertex-coloring with q colors?

XNLP-membership for this problem will be shown via the corresponding known dynamic
programming XP-algorithm [8] which is based on the following.

▶ Definition 13 (Neighborhood Equivalence). Let G = (V, E) be a graph and A ⊆ V . For all
X, Y ⊆ A: X ≡A Y ⇔ N(X) ∩ (V \ A) = N(Y) ∩ (V \ A).

▶ Lemma 14. q-Coloring parameterized by the mim-width of a linear order of the vertices
of the input graph is in XNLP.

Proof. Let n be the number of vertices of the input graph G = (V, E) and w the mim-width
of the given linear order v1, . . . , vn of V . Membership in XNLP is shown by adapting the
XP-algorithm [8] to a nondeterministic polynomial-time algorithm that also uses at most
O(w log n) space.

With i going from 1 to n, at step i we store partial solutions associated with the subgraph
of G induced by the vertices Vi = {v1, . . . , vi}. (For convenience, we let Vi = V \ Vi.) In
the XP algorithm of [8], partial solutions are proper colorings of G[Vi] and a table index
consists of representatives of equivalence classes Q1, . . . , Qq of ≡Vi

such that for all i ∈ [q],
color class i in the coloring is contained in Qi.

To prove that each such coloring can be represented using O(w log n) bits, we use the
following claim shown in [8]. We reprove it here to clarify that it leads to an algorithm
satisfying the time and space requirements.

▷ Claim 15. For each i ∈ [n − 1], and each Si ⊆ Vi, there is a set Ri ⊆ Vi with Ri ≡Vi Si

and |Ri| ≤ w. Furthermore, there is a polynomial-time algorithm using at most O(w log n)
space that determines Ri from Ri−1, where Ri−1 ≡Vi−1 Si ∩ Vi−1 and |Ri−1| ≤ w.

Proof. For i ≤ w, we can simply let Ri = Si, so suppose that i > w ≥ 1, and that
|Si| > w. By induction, we can assume that we have Ri−1 ⊆ Vi−1 of size at most w

such that Ri−1 ≡Vi−1 Si ∩ Vi−1. Let R′
i = Ri−1 ∪ {v}. If |R′

i| ≤ w, then we let Ri = R′
i

and we are done. We may assume that |R′
i| = w + 1. If there is some x ∈ R′

i such that
N(R′

i \ {x}) ∩ Vi = N(R′
i) ∩ Vi, then we let Ri = R′

i \ {x} and we are done. Otherwise, we
know that each vertex x in R′

i has a neighbor y in Vi such that y is non-adjacent to all
vertices in R′

i \ {x}. This means that these xy-edges form an induced matching in G[Vi, Vi],
a contradiction. ◁

The previous claim immediately shows that each table index can be encoded using
O(qw log n) bits, which is O(w log n) since q is a constant. The algorithm works as follows.
Upon arrival of the next vertex vi+1, we nondeterministically guess which of the q colors vi+1
receives. We then nondeterministically guess the table index corresponding to the updated
solution. By Claim 15 we can conclude that the nondeterministic step can be implemented
in polynomial time, and using only O(w log n) space. ◀

For two disjoint sets A, B ⊆ V , the bipartite complement replaces each edge with one
endpoint in A and the other in B with a non-edge and vice versa. The following construction
is due to Fomin et al. [16].

IPEC 2022

8:14 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

▶ Definition 16 (Subdivision-complement, Fomin et al. [16]). Let G = (V, E) be a graph, and
A, B ⊆ V with A ∩ B = ∅. The subdivision-complement between A and B is the following
operation:
1. Subdivide each edge uv with u ∈ A and v ∈ B; call the resulting set of vertices R.
2. Take the bipartite complement between A and R and the bipartite complement between B

and R.

The reason why this operation is useful for reductions for problems parameterized by
mim-width are the following bounds on the maximum induced matching size of cuts resulting
from this construction. This can also be derived from [16], but we include a simple direct
proof here for completeness.

▶ Lemma 17. Let G = (V, E) be a graph, and A, B ⊆ V with A ∩ B = ∅. Let G′ be the graph
obtained from G by applying the subdivision-complement between A and B; let R denote the
set of vertices created in the construction. Then, for all C ∈ {A, B}, cutmimG′(C, R) ≤ 2.

Proof. Suppose for a contradiction that there is an induced matching of size three in G′[A, R],
say M = {airi | i ∈ [3], ai ∈ A, ri ∈ R}. For all i ∈ [3], let ei denote the edge in G whose
subdivision created vertex ri. Since M is an induced matching and by construction, a1 is
the endpoint of e2 and e3. But this implies that a2 is not the endpoint of e3, and therefore
that the edge a2r3 exists in G′[A, R]. ◀

To prove the bound on the mim-width of linear orders constructed in the hardness proofs
in this section, we need the following additional lemma which can be seen as a variation of a
lemma in [6], but for linear mim-width. Recall that for a graph G = (V, E) and a partition
P of V , the quotient graph G/P is the graph obtained from G by contracting each part of P
into a single vertex. The cutwidth of a linear order Λ = v1, . . . , vn of V , denoted by cutw(Λ)
is the maximum, over all i, of the number of edges with one endpoint in {v1, . . . , vi} and the
other in {vi+1, . . . , vn}.

▶ Lemma 18 (♣). Let G = (V, E) be a graph, let P = (P1, . . . , Pr) be a partition of V , and
let G′ = G/P. For all i ∈ [r] let Λi be a linear order of Pi such that mimwG[Pi](Λi) ≤ c, and
suppose that for all distinct i, j ∈ [r], cutmimG(Pi, Pj) ≤ d. Let Λ = Λ1, Λ2, . . . , Λr, and let
Λ′ = P1, . . . , Pr be the corresponding linear order of G/P. Then, mimw(Λ) ≤ 2d·cutw(Λ′)+c.

▶ Definition 19 (Frame graph). Let (G = (V, E), V1, . . . , Vr, f) be an instance of Chained
Multicolored Clique; for each i ∈ [r], let V (i, 1), . . . , V (i, k) denote the partition of Vi

according to f .
The frame graph G′ = (V ′, E′) is obtained from G by applying, for each h ∈ [r−1] and each

pair (i1, j1), (i2, j2) ∈ {h, h+1}×[k], where (i1, j1) <LEX (i2, j2), the subdivision-complement
between V (i1, j1) and V (i2, j2).3 We denote the set of new vertices by R(i1, j1, i2, j2).

For convenience, we let P denote the partition of V ′ into V (1, 1), . . ., V (r, k), R(1, 1, 1, 1),
. . ., R(r, k, r, k), and we define the following auxiliary partial function ϕ : E → V ′: For all
(i1, j1) and (i2, j2) as above, for each v1 ∈ V (i1, j1) and v2 ∈ V (i2, j2) with v1v2 ∈ E, we let
ϕ(v1v2) ∈ R(i1, j1, i2, j2) be the vertex created when subdividing v1v2.

3 Here, <LEX denotes the lexicographic ordering. We have (i1, j1) <LEX (i2, j2) if either i1 < i2 or if
i1 = i2 and j1 < j2.

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:15

▶ Lemma 20. Let (G = (V, E), V1, . . . , Vr, f) be an instance of Chained Multicolored
Clique, and let G′ = (V ′, E′) be its frame graph; adapt the notation from Definition 19.
Then, G′ has an independent set S with |S ∩ P | = 1 for all P ∈ P if and only if G has a
chained multicolored clique.

Proof. Suppose G′ has an independent set S with |S ∩ P | = 1 for all P ∈ P. Let vi,j ∈
S ∩ V (i, j) for all i ∈ [r], j ∈ [k]. We claim that this implies that for all h ∈ [r − 1], and
all (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] with (i1, j1) <LEX (i2, j2), we have that ϕ(vi1,j1vi2,j2) ∈
S ∩ R(i1, j1, i2, j2), which implies that vi1,j1vi2,j2 ∈ E and in particular that S ∩ V is a
chained multicolored clique in G. Let r ∈ S ∩ R(i1, j1, i2, j2) and suppose r ̸= ϕ(vi1,j1vi2,j2).
We may assume that r = ϕ(v, w) where v ∈ V (i1, j1) \ {vi1,j1}. But then, vi1,j1r is an edge
in G′, a contradiction.

For the other direction, let W ⊆ V be the chained multicolored clique in G. Let S = ∅.
For each i ∈ [r] and j ∈ [k], we add the vertex vi,j ∈ W ∩ V (i, j) to S. Next, for each
h ∈ [r − 1], and each pair (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] where (i1, j1) <LEX (i2, j2),
we add ϕ(vi1,j1vi2,j2) to S. Note that since W is a chained multicolored clique, the edge
vi1,j1vi1,j2 always exists in G. It follows immediately from the construction that S is an
independent set in G′, and that for all P ∈ P , |S ∩ P | = 1. ◀

▶ Lemma 21. For fixed q ≥ 5, q-Coloring parameterized by the mim-width of a given
linear order of the vertices of the input graph is XNLP-hard.

Proof. We give a parameterized logspace reduction from Chained Multicolored Clique
to 5-List-Coloring. Let I = (G = (V, E), V1, . . . , Vr, f) be the instance of Chained
Multicolored Clique. We create the graph G′′ = (V ′′, E′′) of the 5-List-Coloring
instance as follows: Let G′ = (V ′, E′) be the frame graph of I and adapt the notation of
Definition 19. We obtain G′′ and the lists L′′ = {L(v) | v ∈ V ′′} as follows:

For each P ∈ P , we add two vertices a(P) and b(P), and make P ′′ = P ∪ {a(P), b(P)} a
path from a(P) to b(P). We let P ′′ = {P ′′ | P ∈ P}.
For each (i, j) ∈ [r] × [k], each list of a vertex in P = V (i, j) is [3]. If |P | is even, the lists
of both a(P) and b(P) are {1}; and if |P | is odd, the list of a(P) is {1}, and the list of
b(P) is {2}.
For each h ∈ [r − 1] and (i1, j1), (i2, j2) ∈ {h, h + 1} × [k] with (i1, j1) <LEX (i2, j2), each
list of a vertex in R = R(i1, j1, i2, j2) is {3, 4, 5}. If |R| is even, the lists of both a(R) and
b(R) are {5}; and if |R| is odd, the list of a(R) is {5}, and the list of b(R) is {4}.

The following observation is immediate from the above construction.

▶ Observation 22. In each proper list coloring of (G′′, L′′) and each P ∈ P, there is a vertex
in P that received color 3. Conversely, if some vertex v ∈ P received color 3 in a proper list
coloring of (G′′, L′′), then the vertices in P ′′ \ {v} can be properly list-colored with colors
{1, 2}, if P = V (i, j) for some i, j or with colors {4, 5}, if P = R(i1, j1, i2, j2), for some
i1, i2, j1, j2.

Now suppose that G has a chained multicolored clique W . Then by Lemma 20, there
is an independent set S in G′ such that |S ∩ P | = 1 for all P ∈ P. Note that S is also an
independent set in G′′. We can therefore let S be color class 3, and by Observation 22, the
remaining vertices of each path P can be properly list colored without using color 3. It suffices
to check the the edges between V (i1, j1) and R(i1, j1, i2, j2), for any valid choice of i1, i2, j1, j2.
Since S is an independent set, the vertices v ∈ S ∩ V (i1, j1) and w ∈ S ∩ R(i1, j1, i2, j2) are
non-adjacent. Furthermore, v has a different color from all vertices in R(i1, j1, i2, j2) \ S.
Finally, the sets of colors appearing on V (i1, j1) \ S and R(i1, j1, i2, j2) \ S are disjoint.

IPEC 2022

8:16 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

Conversely, suppose that (G′′, L′′) has a proper list-coloring. Then we can combine
Observation 22 and Lemma 20 to conclude that G has a chained multicolored clique (with
color class 3 being the independent set required by Lemma 20).

We conclude with the following claim.

▷ Claim 23. One can in polynomial time and logarithmic space construct a linear order Λ
of V ′′ such that mimw(Λ) = O(k2).

Proof. Each part P ∈ P, together with a(P) and b(P) forms a path. Therefore we can
trivially obtain a linear order of P ∪ {a(P), b(P)} by following the path from a(P) to b(P)
whose mim-width is 1. For all i ∈ [r] and j ∈ [k], we let Λ(i, j) be such a linear order
where P corresponds to V (i, j). For all h ∈ [r − 1], and all (i1, j1), (i2, j2) ∈ {h, h + 1} × [k]
with (i1, j1) <LEX (i2, j2), we let Γ(i1, j1, i2, j2) be such a linear where P corresponds to
R(i1, j1, i2, j2). The desired linear order Λ traverses V ′′ as follows: Consider (i, j) ∈ [r] × [k]
in lexicographically increasing order. First, we follow Λ(i, j), and then Γ(i, j, i, j + 1), . . .,
Γ(i, j, i, k), and if i < r, then Γ(i, j, i + 1, 1), . . ., Γ(i, j, i + 1, k). This linear order of G′′ can
be created using O(log n) bits of memory, where n = |V |.

As pointed out above, each Λ(i, j) and each Γ(i1, j1, i2, j2) has mim-width at most 1.
The only edges in G′ between different parts of P are between V (i1, j1) and R(i1, j1, i2, j2),
and between V (i2, j2) and R(i1, j1, i2, j2), where (i1, j1) <LEX (i2, j2). By construction
it therefore follows from Lemma 17 that for each pair of distinct parts P1, P2 ∈ P,
cutmimG′(P1, P2) ≤ 2. Let Λ′ be the linear order of the vertices of G′′/P such Λ can
be obtained by traversing the parts of P in the order of Λ′, and then following the above
described order on each part of P . We can observe that cutw(Λ′) = O(k2), and therefore the
claim follows from Lemma 18. ◁

We have shown that 5-List-Coloring parameterized by the mim-width of a given linear
order of the input graph is XNLP-hard. To derive XNLP-hardness of 5-Coloring in the
same parameterization, observe that we can use the standard trick of adding a clique on
vertices {1, . . . , 5}, and for each i ∈ [5], connecting i and v if i /∈ L(v). Since adding c vertices
can only increase the mim-width of a given linear order by at most c, no matter where the
new vertices are placed, this does not prohibitively increase the linear mim-width either.

To obtain hardness for any q > 5, we simply add q − 5 universal vertices to the 5-
Coloring instance obtained in the previous paragraph. Adding universal vertices cannot
increase the mim-width w of any linear order, regardless of where they are placed, unless
w = 0. ◀

Combining Lemmas 14 and 21, we obtain that q-Coloring is XNLP-complete paramet-
erized by linear mim-width, for each fixed q ≥ 5.

5 Conclusion

In this paper, we gave a number of XNLP-completeness proofs for graph problems paramet-
erized by linear width measures. Such results are interesting for a number of reasons: they
pinpoint the “right” complexity class for parameterized problems, they imply hardness for all
classes W [t], and they tell that it is unlikely that there is an algorithm that uses ‘XP time
and FPT space’ by Conjecture 1.

This paper gives among others the first examples of XNLP-complete problems when the
linear clique-width or linear mim-width is taken as parameter. Our hardness results give new
starting points for future hardness and completeness proofs, in particular for problems with
width measures like pathwidth, (linear) clique-width, or (linear) mim-width as parameter.

H. L. Bodlaender, C. Groenland, H. Jacob, L. Jaffke, and P. T. Lima 8:17

Other interesting directions for future research in this line are, for instance, to consider the
parameterization by cutwidth; a promising candidate problem to show XNLP-completeness
parametized by cutwidth is List Edge Coloring. Another interesting parameter to consider
in this context is the degeneracy of a graph. It is also interesting to explore the concept of
XNLP-completeness for width measures of other objects than graphs. One could for instance
consider (linear) width measures of digraphs or hypergraphs.

We also leave open what the correct parameterized complexity class is for Feedback
Vertex Set parameterized by logarithmic pathwidth or logaritmic linear cliquewidth – we
showed XNLP-hardness, but did not prove containment in XNLP.

References
1 Yuichi Asahiro, Hiroshi Eto, Takehiro Ito, and Eiji Miyano. Complexity of finding maximum

regular induced subgraphs with prescribed degree. Theor. Comput. Sci., 550:21–35, 2014.
doi:10.1016/j.tcs.2014.07.008.

2 Hans L. Bodlaender. Parameterized complexity of bandwidth of caterpillars and weighted path
emulation. In Lukasz Kowalik, Michal Pilipczuk, and Pawel Rzazewski, editors, Proceedings
of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2021), volume 12911 of Lecture Notes in Computer Science, pages 15–27. Springer, 2021.
doi:10.1007/978-3-030-86838-3_2.

3 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard
for treewidth but easy for stable gonality. In Michael A. Bekos and Michael Kaufmann,
editors, Proceedings 48th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2022), volume 13453 of Lecture Notes in Computer Science, pages 84–97, 2022.
doi:10.1007/978-3-031-15914-5_7.

4 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204, 2021. doi:10.1109/FOCS52979.2021.00027.

5 Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. Planar capacitated dominating
set is W [1]-hard. In Jianer Chen and Fedor V. Fomin, editors, Proceedings 4th International
Workshop on Parameterized and Exact Computation, IWPEC 2009, volume 5917 of Lecture
Notes in Computer Science, pages 50–60. Springer, 2009. doi:10.1007/978-3-642-11269-0_4.

6 Nick Brettell, Jake Horsfield, Andrea Munaro, and Daniël Paulusma. List k-colouring Pt-free
graphs: A mim-width perspective. Inf. Process. Lett., 173:106168, 2022. doi:10.1016/j.ipl.
2021.106168.

7 Hajo Broersma, Petr A. Golovach, and Viresh Patel. Tight complexity bounds for FPT
subgraph problems parameterized by the clique-width. Theor. Comput. Sci., 485:69–84, 2013.
doi:10.1016/j.tcs.2013.03.008.

8 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.,
511:66–76, 2013. doi:10.1016/j.tcs.2013.01.009.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated dom-
ination and covering: A parameterized perspective. In Martin Grohe and Rolf Niedermeier,
editors, Proceedings 3rd International Workshop on Parameterized and Exact Computation,
IWPEC 2008, volume 5018 of Lecture Notes in Computer Science, pages 78–90. Springer, 2008.
doi:10.1007/978-3-540-79723-4_9.

11 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.

IPEC 2022

https://doi.org/10.1016/j.tcs.2014.07.008
https://doi.org/10.1007/978-3-030-86838-3_2
https://doi.org/10.1007/978-3-031-15914-5_7
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.tcs.2013.03.008
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-79723-4_9

8:18 XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure

12 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

13 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

14 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

15 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: Hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019. doi:10.1145/3280824.

16 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/
s00453-020-00692-9.

17 Sylvain Guillemot. Parameterized complexity and approximability of the Longest Compatible
Sequence problem. Discret. Optim., 8(1):50–60, 2011. doi:10.1016/j.disopt.2010.08.003.

18 Frank Gurski and Egon Wanke. Line graphs of bounded clique-width. Discret. Math.,
307(22):2734–2754, 2007. doi:10.1016/j.disc.2007.01.020.

19 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. The feedback vertex set
problem. Algorithmica, 82:118–145, 2020.

20 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

21 Luke Mathieson and Stefan Szeider. The parameterized complexity of regular subgraph
problems and generalizations. In James Harland and Prabhu Manyem, editors, Proceedings
14th Computing: The Australasian Theory Symposium, CATS 2008, volume 77 of CRPIT,
pages 79–86. Australian Computer Society, 2008. URL: http://crpit.scem.westernsydney.
edu.au/abstracts/CRPITV77Mathieson.html.

22 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms, 7(2):181–190, 2009. doi:10.1016/j.jda.2008.09.005.

23 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

24 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway,
2012.

25 Egon Wanke. k-NLC graphs and polynomial algorithms. Discret. Appl. Math., 54(2-3):251–266,
1994. doi:10.1016/0166-218X(94)90026-4.

https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1137/080742270
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.1145/3280824
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1016/j.disopt.2010.08.003
https://doi.org/10.1016/j.disc.2007.01.020
https://doi.org/10.1145/3170442
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV77Mathieson.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV77Mathieson.html
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856
https://doi.org/10.1016/0166-218X(94)90026-4

Twin-Width VIII: Delineation and Win-Wins
Édouard Bonnet ! Ï

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Dibyayan Chakraborty !

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Eun Jung Kim !

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Noleen Köhler !

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Raul Lopes !

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Stéphan Thomassé !

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply,
delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width
if and only if D is monadically dependent. An effective strengthening of delineation for a class C
implies that tractable FO model checking on C is perfectly understood: On hereditary closures of
subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has
bounded twin-width. Ordered graphs [BGOdMSTT, STOC ’22] and permutation graphs [BKTW,
JACM ’22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove
that interval graphs, and even, rooted directed path graphs are delineated. On the other hand,
we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and
visibility graphs of simple polygons are not delineated.

In an effort to draw the delineation frontier between interval graphs (that are delineated) and
axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted
segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs
have unbounded twin-width [BGKTW, SODA ’21]. We show that Kt,t-free segment graphs, and
axis-parallel Ht-free unit segment graphs have bounded twin-width, where Ht is the half-graph or
ladder of height t. In contrast, axis-parallel H4-free two-lengthed segment graphs have unbounded
twin-width. We leave as an open question whether unit segment graphs are delineated.

More broadly, we explore which structures (large bicliques, half-graphs, or independent sets)
are responsible for making the twin-width large on the main classes of intersection and visibility
graphs. Our new results, combined with the FPT algorithm for first-order model checking on
graphs given with O(1)-sequences [BKTW, JACM ’22], give rise to a variety of algorithmic win-win
arguments. They all fall in the same framework: If p is an FO definable graph parameter that
effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT
time f(k) · |V (G)|O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility
graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This
showcases that the theory of twin-width can serve outside of classes of bounded twin-width.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Twin-width, intersection graphs, visibility graphs, monadic dependence and
stability, first-order model checking

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.9

Related Version Full Version: https://arxiv.org/abs/2204.00722

© Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:dibyayan.chakraborty@ens-lyon.fr
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-6824-0516
mailto:noleen.kohler@dauphine.psl.eu
https://orcid.org/0000-0002-1023-6530
mailto:raul-wayne.teixeira-lopes@dauphine.psl.eu
https://orcid.org/0000-0002-7487-3475
mailto:stephan.thomasse@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.IPEC.2022.9
https://arxiv.org/abs/2204.00722
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Twin-Width VIII: Delineation and Win-Wins

1 Introduction

A trigraph G has a vertex set V (G), and two disjoint edge sets, the black edge set E(G)
and the red edge set R(G). A (vertex) contraction consists of merging two (non-necessarily
adjacent) vertices, say, u, v into a vertex w, and keeping every existing edge wz black if
and only if uz and vz were previously black edges. The other edges incident to w turn red
(if not already), while the rest of the trigraph remains the same. A contraction sequence
of an n-vertex (tri)graph G is a sequence of trigraphs G = Gn, . . . , G1 = K1 such that
Gi is obtained from Gi+1 by performing one contraction. A d-sequence is a contraction
sequence wherein all trigraphs have red degree at most d. The twin-width of G, denoted
by tww(G), is the minimum integer d such that G admits a d-sequence. A graph class C
has then bounded twin-width if there is a constant t such that every graph G ∈ C satisfies
tww(G) ⩽ t. See Figure 1 for an illustration of a 2-sequence of a graph.

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence witnesses that the initial 7-vertex graph has twin-width at most 2.

The main algorithmic application of twin-width is that first-order (FO) model checking,
that is, deciding if a first-order sentence φ holds in a graph G, can be decided in fixed-
parameter time (FPT) f(|φ|, d) · |V (G)| for some computable function f , when given a
d-sequence of G [6]. We recall that there is an ample list of graph classes (or more generally
of binary structures, since the definition of twin-width extends to them) of bounded twin-
width, including bounded clique-width graphs, H-minor free graphs, posets with antichains
of bounded size, strict subclasses of permutation graphs, map graphs, bounded-degree string
graphs [6], as well as Ω(log n)-subdivisions of n-vertex graphs, and some particular classes
of cubic expanders [4]. In contrast, (sub)cubic graphs, interval graphs, triangle-free unit
segment graphs, unit disk graphs have unbounded twin-width [4].

The missing element for an FPT FO model-checking algorithm on any class of bounded
twin-width is a polynomial-time algorithm and a computable function f , that given a constant
integer bound c and a graph G, either finds an f(c)-sequence for G, or correctly reports that
tww(G) > c. The runtime of the algorithm could be ng(c), for some function g. However
to get an FPT algorithm in the combined parameter size of the sentence + bound on the
twin-width, one would further require that the approximation algorithm takes FPT time
in c (now thought of as a parameter), i.e., g(c)nO(1). Such an algorithm exists on ordered
graphs (more generally, ordered binary structures) [5], graphs of bounded clique-width,
proper minor-closed classes [6], but not on general graphs. Let us observe that exactly
computing the twin-width, and even distinguishing between tww(G) = 4 and tww(G) = 5, is
NP-complete [3].

Motivation. We aim to get around the two main caveats of using twin-width for algorithm
design. Namely:

an FPT (or XP) approximation of twin-width is still missing, and
a priori only classes of bounded twin-width are concerned.

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:3

The central theme of this paper is to showcase how to bypass the above caveats using
twin-width and to provide a necessary toolbox. First we show that on certain graph classes,
bounded twin-width is precisely what renders FO model-checking FPT, and the notion of
delineation is introduced to this end. Second, we demonstrate how to summon a win-win
strategy on important graph classes by means of twin-width, which is reminiscent of the
well-known win-win argument based on treewidth.

The main obstacle for computing the twin-width is to get a good vertex ordering.
Geometric graph classes of unbounded twin-width constitute a diverse and intriguing pool for
testing these two avenues: interval graphs, (rooted) directed path graphs, segment graphs,
visibility graphs of polygons and terrains. For all these classes, a vertex-ordering procedure
either comes naturally or can be worked out and efficiently computed.

Global strategy. For our purpose, the following characterization of bounded twin-width
will be pivotal.

▶ Theorem 1 ([5]). A class C has bounded twin-width if and only if there is an integer k such
that every graph of C admits an adjacency matrix without rank-k division, i.e., k-division
such that every cell has combinatorial rank at least k.

Here, a k-division of a matrix is a partition of its column (resp. row) set into k intervals,
called column (resp. row) parts, of consecutive columns (resp. rows). A k-division naturally
defines k2 cells (contiguous submatrices) made by the entries at the intersection of a column
part with a row part. A rank-k division of M is a k-division D such that each of the k2 cells
has at least k distinct rows or at least k distinct columns (that is, combinatorial rank at
least k). The maximum integer k such that M admits a rank-k division is called grid rank,
and is denoted by gr(M). Theorem 1 is effective: There is a computable function f , such
that, given a vertex ordering along which the adjacency matrix of a graph G has no rank-k
division, one can efficiently find an f(k)-sequence for G, witnessing that tww(G) ⩽ f(k).

Suppose that for a graph class C, a canonical vertex ordering can be obtained. Either the
consequential adjacency matrix has no rank-k division – and we get a favorable contraction
sequence by Theorem 1 – or it does have such a division. In the latter case, a large structured
object of variable complexity may be found, such as a biclique, a half-graph (or ladder), or
even an obstacle to an FPT FO model checking in the form of a transversal pair of half-graphs
(or transversal pair, for short) or some variant of it; see the middle figure in Figure 2, Section 3
for a formal definition, and for why transversal pairs indeed are such obstacles.

Delineation. For monotone (i.e., closed under removing vertices and edges) classes, the
FPT algorithm of Grohe, Kreutzer, and Siebertz [20] for FO model checking on nowhere
dense classes, is complemented by W[1]-hardness on classes that are somewhere dense (i.e.,
not nowhere dense) [13], and even AW[∗]-hardness on classes that are effectively somewhere
dense [23]. The latter two results imply that, for monotone classes, FO model checking
is unlikely to be FPT beyond nowhere dense classes. Thus the classification of monotone
classes admitting an FPT FO model checking is complete. However such a classification
remains an active line of work for the more general hereditary classes of graphs and binary
structures [15,18,19]. It is conjectured (see for instance [18, Conjecture 8.2]) that:

▶ Conjecture 2. For every hereditary class C of structures, FO model checking is FPT on C
if and only if C is monadically dependent.1

1 A model-theoretic notion which roughly says that not every graph G can be built from a nondeterministic
O(1)-coloring of some S ∈ C by means of a first-order formula φ(x, y), in the relations of S and the
added colors, imposing the edge set of G; see Section 2 for a definition.

IPEC 2022

9:4 Twin-Width VIII: Delineation and Win-Wins

1
2
3
4
5
6
7
8
9

biclique half-graph matching anti-matchingtransversal pair
1
4
7
2
5
8
3
6
9

Figure 2 Biclique, half-graph (or ladder), transversal pair of half-graphs, matching, anti-matching,
all of height 9. Bicliques and half-graphs are semi-induced by default. The number next to each
leftmost vertex v of the transversal pair indicates the height of the neighbor of v in the central
column which is not also a neighbor of the vertex just below v.

If for every hereditary closure D of a subclass2 of C, D has bounded twin-width if and
only if D is monadically dependent, we say that C is delineated by twin-width (or simply,
delineated). Although not stated in those terms, permutation graphs were already proven to
be delineated [6], as well as ordered graphs [5]. We add interval graphs and rooted directed
path graphs (see Section 3 for a definition) to the list of delineated classes. Therefore,
for every hereditary subclass of these classes the classification of FPT FO model checking,
Conjecture 2, is now provably settled.3 In contrast, we rule out delineation for directed path
graphs (with multiple roots), intersection graphs of pure axis-parallel segments with two
distinct lengths, and visibility graphs of simple polygons.

▶ Theorem 3. Interval graphs, and more generally rooted directed path graphs, are delineated.

A (variant of a) transversal pair plays the key role to establish Theorem 3. We show that
on a class C, if a (variant of a) transversal pair can systematically be found as a result of
unbounded twin-width, then the classification of FPT FO model checking for hereditary
subclasses of C is entirely settled by the algorithm on graphs of bounded twin-width [6].

Twin-width win-wins. If segment graphs and visibility graphs of simple polygons do not yield
in their subfamilies of unbounded twin-width complex enough structures to settle Conjecture 2,
unbounded twin-width still imply in those classes that some other graph parameters are
unbounded. This gives rise to a win-win approach to compute these parameters. To give a
context, we draw a parallel with what happens with treewidth.

The algorithmic use of a parameter like treewidth extends beyond classes wherein treewidth
is bounded. Any problem admitting an FPT algorithm parameterized by treewidth (like
MSO definable problems [9]), and a trivial answer (such as a systematic YES or a systematic
NO) when the treewidth is large, subjects itself to a straightforward win-win argument. This
is at the basis of the so-called bidimensionality theory [17]. Since a problem like k-Vertex
Cover admits a 2tw(G)nO(1)-time algorithm [10] and a systematic NO answer in presence of
a, say, (2

√
k + 1)× (2

√
k + 1) grid minor, one then derives for this problem an FPT algorithm

running in time 2O(
√

k)nO(1) in planar graphs.

2 The reason we do not simply quantify over hereditary subclasses of C is to have a notion that is also
meaningful when C is not hereditary.

3 We actually need an effective strengthening of delineation that also holds for these classes and will be
defined in Section 2.

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:5

Let us forget one moment the intermediary role of the grid minor. Efficiently computing
a parameter p(G) – like the vertex cover number τ(G) – can boil down to establishing an
upperbound of the form tw(G) ⩽ f(p(G)).

We explore such upper bounds, and resultant win-wins, with twin-width in place of
treewidth. Given two graph parameters p, q, and a graph class C, we will write p ⊑ q on C
to signify that there is a computable function f such that ∀G ∈ C, p(G) ⩽ f(q(G)). By a
similar argument to what was presented in the previous paragraphs, one gets the following.

▶ Theorem 4 (informal). Let C be a graph class and p be a graph invariant such that
1. computing p is FPT in the combined parameter p + tww on C, and
2. tww ⊑ p on C.

Then, computing p is FPT on C.

First-order logic yields a natural pool of invariants p that are fixed-parameter tractable
with respect to p + tww [6]. As a first example of Item 2, we show the following.

▶ Theorem 5. Biclique-free segment graphs have bounded twin-width. Furthermore, if a
geometric representation is given, an O(1)-sequence of the graph is found in polynomial time.

A reformulation is that, in segment graphs, twin-width is upperbounded by a function
of the largest biclique; or, denoting by β(G) the largest integer t such that G admits a
biclique Kt,t as a a subgraph, it holds that tww ⊑ β on segment graphs. The corresponding
problem k-Biclique was famously shown W[1]-hard by Lin [25], after its parameterized
complexity has been open for over a decade [11]. From Theorems 5 and 19 one rederives4

that k-Biclique is FPT on segment graphs given with a geometric representation.

The counterpart of the large grid minor (in treewidth win-wins) is a large rank division
in every adjacency matrix of the graph (recall Theorem 1). Large twin-width in a class C in
particular implies a large rank division in the adjacency matrix along a vertex ordering that,
at least partially, respects the structure of C. In turn, this complex structure – despite being
along a canonical order – may help lowerbounding other parameters (like the grid minor was
lowerbounding the vertex cover number in our example). We give two such examples, both
on classes of visibility graphs.

A simple polygon is a polygon without holes. Two vertices (more generally, points)
of a polygon see each other if the line segment defined by these vertices (or points) is
entirely contained in the polygon. The following problem is sometimes advertised as hiding
(people) in polygons, and its solution is called a hidden set. It is NP-complete [27], even
APX-hard [16], and can be equivalently defined as k-Independent Set in visibility graphs
of simple polygons given with a representation.

▶ Theorem 6. Given a simple polygon P and an integer k, finding k vertices of P pairwise
not seeing each other is FPT.

A key step for proving Theorem 6 is to turn a large rank division in the adjacency matrix
along a Hamiltonian path describing the boundary of the polygon into a large independent set.
In conclusion: we establish tww ⊑ α in visibility graphs of simple polygons (where α(G) is
the independence number of G), which immediately implies Theorem 6 thanks to Theorem 4.

4 This fact can alternatively be obtained via the algorithmic theory of Sparsity [13, 14], and the existence
of truly sublinear balanced separators in Kt,t-free segment graphs [24].

IPEC 2022

9:6 Twin-Width VIII: Delineation and Win-Wins

In contrast, k-Dominating Set remains W[1]-hard on visibility graphs of simple poly-
gons [7], thus likely does not admit an FPT algorithm. We remark that Hliněný et al. [22]
conjectured that FO model checking is FPT on weak visibility graphs of simple polygons
additionally parameterized by the independence number. Our proof that tww ⊑ α on
visibility graphs of simple polygons confirms this conjecture, even for the more general
(non-weak) visibility graphs. We observe that the approach would not work with a classic
width measure, since none of the three items hold replacing twin-width by clique-width;
this mainly because grids and long paths of consistently ordered half-graphs have bounded
twin-width but unbounded clique-width.

A 1.5D terrain (or here, terrain for short) is an x-monotone polygonal chain in the
plane. Two vertices of a terrain see each other if the line segment they define entirely lies
above the terrain. Let λ(G), the ladder index of G, be the greatest height of a semi-induced
half-graph in G. A folklore structural property of terrains, often called Order Claim, imposes
the existence of large half-graphs in a large rank division along the left-right ordering. Thus
tww ⊑ λ in visibility graphs of 1.5D terrains. We conclude:

▶ Theorem 7. k-Ladder and k-Biclique are FPT on visibility graphs of 1.5D terrains
given with a geometric representation.

The full version of this paper is available on arXiv, where all missing proofs can be found.

2 Preliminaries

We may denote the set of integers between i and j by [i, j], and [k] may be used as a short-hand
for [1, k].

2.1 Graph theory
We use the standard graph-theoretic definitions and notations. We denote by V (G), and
E(G), the vertex set, and the edge set, of a graph G, and by G[S] the subgraph of G induced
by S ⊆ V (G). When A, B ⊆ V (G) are two disjoint sets, we denote by G[A, B] the bipartite
graph (A, B, {ab : a ∈ A, b ∈ B, ab ∈ E(G)}). We denote by Adj≺(G) the adjacency
matrix of G along the total order ≺ of V (G).

A biclique and half-graph (or ladder) of height t play a central role in this paper. The
formal definition can be found in the long version, and See Figure 2 for illustrations. A
bipartite graph H is semi-induced in G if there are two disjoint A, B ⊆ V (G) such that
H is isomorphic to G[A, B]. A graph is Kt,t-free (resp. Ht-free) if it does not contain Kt,t

(resp. Ht) as a semi-induced subgraph.

2.2 Model checking, interpretations, transductions, and dependence
A relational signature σ is a finite set of relation symbols R, each having a specified arity
r ∈ N. A σ-structure A is defined by a set A (the domain of A) and a relation RA ⊆ Ar for
each relation symbol R ∈ σ with arity r.

A binary structure is a relational structure with symbols of arity at most 2. The syntax
and semantics of first-order formulas over σ (or σ-formulas for short), are defined as usual.
We recall that a sentence is a formula without free variable. Most of the time we will consider
σ-structures with σ consisting of a single binary relation symbol E, and identify them to
graphs. But we will also deal with binary structures that are graphs augmented with a total
order (called totally ordered graphs, or ordered graphs for short) and/or some unary relations.

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:7

Interpretations, transductions, and monadic dependence. Let σ, τ be relational signatures.
A simple FO interpretation (here, FO interpretation for short) I of τ -structures in σ-structures
consists of the following σ-formulas: a domain formula ν(x), and for each relation symbol
R ∈ τ of arity r, a formula φR(x1, . . . , xr). If A is a σ-structure, the τ -structure I(A) has
domain ν(A) = {v ∈ A : A |= ν(v)} and the interpretation of a relation symbol R ∈ σ of
arity r is RI(A) = {(v1, . . . , vr) ∈ ν(A)r : A |= φR(v1, . . . , vr)}. If C is a class of σ-structures,
we set I(C) = {I(A) : A ∈ C}.

Let σ ⊆ σ+ be relational signatures. The σ-reduct of a σ+-structure A, denoted by
reductσ+→σ(A), is the structure obtained from A by deleting all the relations not in σ.
A monadic h-lift of a σ-structure A is a σ+-structure A+, where σ+ is the union of σ and
a set of h unary relation symbols, and reductσ+→σ(A+) = A.

A simple non-copying FO transduction (here, FO transduction for short) T of τ -structures
in σ-structures is an interpretation of τ -structures in σ+-structures, where the σ+-structures
are monadic h-lifts of σ-structures for some fixed integer h. As there are many ways of
interpreting the extra unary relations, a transduction (contrary to an interpretation) builds
on a given input structure several output structures. If C is a class of σ-structures, T(C)
denotes the class of all the τ -structures output on any σ-structure A ∈ C.

We say that a class C interprets a class D (or that D interprets in C) if there is an
interpretation I such that D ⊆ I(C). Further, a class C efficiently interprets D if additionally
a polytime algorithm inputs A ∈ D, and outputs a structure B ∈ C such that I(B) is
isomorphic to A. Similarly, we say that a class C transduces a class D (or that D transduces
in C) if there is a transduction T such that D ⊆ T(C). Two classes C and D are transduction
equivalent if C transduces D, and D transduces C. We will frequently use the fact that one
can compose transductions: If C transduces D, and D transduces E , then C transduces E .

The following is a particularly useful fact to bound the twin-width of a class.

▶ Theorem 8 ([6]). Every FO transduction of a class with bounded twin-width has bounded
twin-width.

Furthermore, given an FO transduction T and a class C on which 0(1)-sequences can be
computed in polynomial time, one can also compute O(1)-sequences for graphs of T(C) in
polynomial time.

We will not need the original definition of monadic dependence; solely the following
characterization:

▶ Theorem 9 (Baldwin and Shelah [1]). C is monadically dependent if and only if C does not
transduce the class G of all finite graphs.

Since FO model checking on the class of all graphs is AW[∗]-hard [12], one notices that if C
efficiently interprets the class of all graphs then FO model checking on C is AW[∗]-hard[1,12].
Conjecture 2 anticipates that every hereditary class of structures not transducing the class
of all graphs admits an FPT FO model checking, and no other hereditary class does.

2.3 Rank divisions, universal patterns and twin-width
A division D of a matrix M is a pair (DR,DC), where DR (resp. DC) is a partition of
the rows (resp. columns) of M into intervals of consecutive rows (resp. columns). Each
element of DR (resp. DC) is called a row part (resp. column part). A k-division is a division
satisfying |DR| = |DC | = k. We often list the row (resp. column) parts of DR (resp. DC)
R1, R2, . . . , Rk (resp. C1, C2, . . . , Ck) when Ri is just below Ri+1 (resp. Cj is just to the left
of Cj+1). For every pair Ri ∈ DR, Cj ∈ DC , the (contiguous) submatrix Ri∩Cj is called cell

IPEC 2022

9:8 Twin-Width VIII: Delineation and Win-Wins

or zone of D, or more precisely, the (i, j)-cell of D. Note that a k-division defines k2 zones.
We say that a cell, or more generally a matrix, is empty or full 0 if all its entries are 0.
The dividing lines of DR = R1, R2, . . . (resp. DC = C1, C2, . . .) are the strips (of width 2)
made by the last row of Ri and the first row of Ri+1 (resp. last column of Cj and the first
column of Cj+1. A dividing line of DR (resp. DC) stabs a set of rows (resp. of columns) if it
intersects it. We may call regular k-division a k-division where every row part and column
part have the same size.

A rank-k division of M is a k-division D such that for every Ri ∈ DR and Cj ∈ DC the
cell Ri ∩Cj has at least k distinct rows or at least k distinct columns (that is, combinatorial
rank at least k). By large rank division, we informally mean a rank-k division for arbitrarily
large values of k. The maximum integer k such that M admits a rank-k division is called
grid rank, and is denoted by gr(M).

An adjacency matrix M of a binary structure encodes in any bijective fashion the atomic
type of every pair of vertices (u, v) (i.e., the set of atomic propositions the pair (u, v) satisfies)
at position (u, v) in M . We denote by Adj≺(A) the adjacency matrix of A along ≺, a total
order on A. The grid rank of a binary structure A, denoted by gr(A), is the least integer k

such that there is a total order ≺ of A satisfying gr(Adj≺(A)) = k.
We will not need the original definition of twin-width (presented in the introduction)

generalized to binary structures.5 So we do not reproduce it here. Instead we recall that
the twin-width and the grid rank of a binary structure are functionally equivalent, and we
encourage the reader to think of the twin-width of A, tww(A), simply as its grid rank gr(A).

Instead we give the following useful characterization of bounded twin-width, readily
generalizable to classes of other binary structures than graphs. The twin-width of the binary
structure is then defined as the twin-width of the unordered matrix M , denoted by tww(M).
The precise value of tww(M) is also defined by contration

▶ Theorem 10 ([5]). There is a computable function f : N→ N such that for every binary
structure A, the following two implications hold:

If tww(A) ⩽ k, then there is a total order ≺ of A such that gr(Adj≺(A)) ⩽ f(k), and
If there is a total order ≺ of A such that gr(Adj≺(A)) ⩽ k, then tww(A) ⩽ f(k).

Furthermore there are computable functions g, h : N→ N and an algorithm running in time
h(k) · |A|O(1) which inputs an adjacency matrix Adj≺(A) without rank-k division and outputs
a g(k)-sequence of A.

▶ Theorem 11 (informal version, see [5]). Twin-width and grid rank are effectively tied.

It was shown in a previous paper of the series [5] that highly-structured rank divisions
can always be found in large rank divisions. We now make that statement precise. Let
Mk(0) be the k2 × k2 permutation matrix such that if Mk(0) is divided in k row parts and
k column parts, each of size k, there is exactly one 1 entry in each cell of the division, and
this 1 entry is at position (i, j) of the (j, i)-cell; see leftmost matrix in Figure 3. For every
positive integer k and s ∈ {1, ↑, ↓,←,→}, let Mk(s) be the k2 × k2 0, 1-matrix defined from
Mk(0) by doing one of the following operations:

switching 1 entries and 0 entries, if s = 1,
turning 0 entries into 1 entries if there is a 1 entry somewhere below them, if s = ↑,
turning 0 entries into 1 entries if there is a 1 entry somewhere above them, if s = ↓,
turning 0 entries into 1 entries if there is a 1 entry somewhere to their right, if s =←,
turning 0 entries into 1 entries if there is a 1 entry somewhere to their left, if s =→.

5 The definition is similar with red edges appearing between the contraction of u and v, and vertex z
whenever (u, z) and (v, z) have different atomic types. We refer the curious reader to [6].

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:9

We call Mk(s) a universal pattern and {Mk(s) : k ∈ N} a permutation-universal family;
see Figure 3.

Figure 3 The six universal patterns with k = 3. The black cells always represent 1 entries, and
white cells, 0 entries. From left to right, M3(0), M3(1), M3(↑), M3(↓), M3(←), and M3(→). We
always adopt the convention that the matrix entry at position (1, 1) is the bottom-left one.

It was shown that, taking the adjacency matrix of a graph G along some order, either yields
a matrix with bounded grid rank, and Theorem 1 effectively gives a favorable contraction
sequence of G, or yields a matrix with huge grid rank, wherein a large universal pattern can
be extracted:

▶ Theorem 12 ([5]). Given M an adjacency matrix of an n-vertex graph G, and an integer k,
there is an f(k)nO(1)-time algorithm which either returns
Mk(s) as an off-diagonal submatrix of M , for some s ∈ {0, 1, ↑, ↓,←,→},
or a contraction sequence certifying that tww(G) ⩽ g(k).

where f and g are computable functions.

Here, an off-diagonal submatrix of a square matrix is entirely contained strictly above
the diagonal, or entirely contained strictly below it. In particular, its row indices and column
indices are disjoint.

3 Delineation: intersection graphs of trees and paths

In this section we present a tool for showing that a class D is delineated, and explore the
delineation of intersection graphs of trees and paths, i.e., certain (subclasses of) chordal graphs.
Our proofs of (effective) delineation will follow the same path. Either an O(1)-sequence of
the graph is found (bounded twin-width) or an arbitrarily large semi-induced generalized
transversal pair is detected. We shall see that the latter implies monadic independence
(hence, in particular, unbounded twin-width).

A generalized transversal pair of half-graphs consists of 3 + ℓ sets A = {ai,j : i, j ∈ [t]},
B0 = {b0

i,j : i, j ∈ [t]}, . . . , Bℓ = {bℓ
i,j : i, j ∈ [t]}, and C = {ci,j : i, j ∈ [t]} such that

there is an edge between ai,j and b0
i′,j′ if and only if (i, j) ⩽lex (i′, j′), for k ∈ [ℓ] there is

an edge between bk−1
i,j and bk

i′,j′ if and only if (i, j) = (i′, j′) and there is an edge between
bℓ

i,j and ci′,j′ if and only if (j, i) ⩽lex (j′, i′), where ⩽lex denotes the lexicographic (left-right)
order. We denote this graph by Tt,ℓ, and a semi-induced Tt,ℓ is such a graph with possibly
some extra edges between two sets X, Y ∈ {A, B0, . . . , Bℓ, C} with no predefined edges. Note
that A ∪B0 and Bℓ ∪C both induce a half-graph, but the “order” these two half-graphs put
on the endpoints of the paths (b0

i,j , . . . , bℓ
i,j) is different. We define Tk := Tk,0 and we call Tk

a transversal pair (of half-graphs); see middle of Figure 2.

▶ Lemma 13. Let ℓ be a fixed non-negative integer. Let C be a hereditary class containing
a semi-induced generalized transversal pair of half-graphs Tn,ℓ, for every positive integer n.
Then C is monadically independent.

IPEC 2022

9:10 Twin-Width VIII: Delineation and Win-Wins

Proof. It is folklore that the classMb of all totally ordered bipartite matchings is monadically
independent (see for instance [5, 8]). By totally ordered bipartite matching, we mean two
sets X, Y of same cardinality, with a total order over X ∪ Y such that X and Y are each an
interval along that order, and a matching between X and Y . We shall just argue that Mb

transduces in C. We first show the lemma when ℓ = 0, that is, C contains a semi-induced
Tn,0 = Tn for every n.

Let (G = (X, Y, E(G)),≺) be any member of Mb. Let x1 ≺ x2 ≺ . . . ≺ xn be the
elements of X, and y1 ≺ y2 ≺ . . . ≺ yn, the elements of Y . Finally let π be the permutation
such that, for every i ∈ [n], xiyj ∈ E(G) if and only if j = π(i).

Let (A, B, C) be the tripartition of a semi-induced Tn in C. The transduction T guesses
the tripartition (A, B, C) with 3 corresponding unary relations. Eventually (X, Y) will be a
subset of (A, B). We interpret a total order on A ∪B by

x ≺ y ≡ (A(x) ∧ B(y)) ∨
(
x ̸= y ∧ A(x) ∧ A(y) ∧ ∀z(B(z) ∧ E(x, z))→ E(y, z)

)
∨

(
x ̸= y ∧ B(x) ∧ B(y) ∧ ∀z(C(z) ∧ E(x, z))→ E(y, z)

)
.

We then interpret a matching between A and B by φ(x, y) ≡ A(x) ∧ B(y) ∧ E(x, y) ∧ ∀z(z ≺
x→ ¬E(z, y)). Observe that φ and ≺ define a universal structure for totally ordered bipartite
matchings on 2n vertices.

In particular, a fourth unary relation can guess the domain (X ⊆ A, Y ⊆ B), by
picking the rows and columns of the biadjacency matrix Adj≺(A, B, {ab : Tn |= φ(a, b)})
corresponding to the 1 entries, which, in the regular n-division falls in the (i, π(i))-cells with
i ∈ [n]. Thus T(Tn) outputs (G,≺).

We now deal with the general case by reducing it to ℓ = 0. For that, we transduce
a semi-induced Tn in a semi-induced Tn,ℓ. The transduction is imply based on the definition
of generalized transversal pairs. It uses 3 + ℓ unary relations A, B0, . . . , Bℓ, C, redefines the
domain as A∪B0 ∪C, keeps the edges between A and B0, and adds an edge between x ∈ B0
and y ∈ C if and only if there is a path from x to y going through B1, B2, . . . , Bℓ, in this
order. All of this is easily expressible in first-order logic. ◀

From Lemma 13, one can easily deduce the following.

▶ Lemma 14. Let ℓ be a fixed non-negative integer. Let f : N → N be any computable
function, and C be a graph class. If for every natural k and G ∈ C, either G admits an
f(k)-sequence or G has a semi-induced generalized transversal pair Tk,ℓ, then C is delineated.

Furthermore, if the contraction sequence can be found in time g(k) · |V (G)|O(1) for some
computable function g, then C is effectively delineated.

By Theorem 1, the f(k)-sequence of G in Lemma 14 can be replaced by an adjacency matrix
of G of grid rank at most f(k).

Showing that a class D is effectively delineated establishes that, as far as efficient (that is,
FPT) FO model checking is concerned, twin-width gives a complete picture of what happens
on D. Indeed it is unlikely that a monadically independent class admits an FPT algorithm
for FO model checking (see Section 2.2). Trivially, every class with bounded twin-width is
delineated, and every class where O(1)-sequences can be found in polynomial time (see [4])
is effectively delineated. We now list some non-trivial examples of (effectively) delineated
classes.

▶ Theorem 15 ([5, 6, 21] + this paper). The following classes of binary structures are
effectively delineated: permutation graphs [6], and even, circle graphs [21], ordered graphs [5],
interval graphs, and even, rooted directed path graphs.

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:11

The proof of Theorem 15 relies on finding a good vertex ordering ≺ for interval graphs or
rooted directed path graphs so that for any graph G which is an interval or a rooted directed
path graph, Adj≺(G) already has small grid rank or G contains a semi-induced generalized
transversal pair Tk,ℓ. Then Lemma 14 is applicable, especially for the last two classes, thus
implies Theorem 15.

On the contrary, the class of subcubic graphs is not delineated. Indeed the whole class is
monadically dependent (see for instance [26]), even monadically stable, but has unbounded
twin-width [4]. We will see that the classes of segment graphs (even with some further
restrictions) and visibility graphs of simple polygons are also not delineated. In some sense,
what we do is to reduce to the easy case of subcubic graphs.

It is known [4, 8] that classes of bounded twin-width have exponential growth. Thus
by the contrapositive, classes of super-exponential growth, like the following ones, have
unbounded twin-width.

▶ Theorem 16 ([4]). The following classes have unbounded twin-width:
the class G⩽3 of every subcubic graph;
the class B⩽3 of every bipartite subcubic graph;
the 2-subdivision of every biclique Kn,n.

▶ Lemma 17. If C admits a subclass which is transduction equivalent to G⩽3 or to B⩽3, then
C is not delineated.

In what follows, we sketch the key ideas for settling the last piece toward Theorem 15,
stated below.

▶ Proposition 18. There exist a computable function f : N → N such that the following
holds. For any interval graph, or rooted directed path graph G, there exists a vertex ordering
≺ on V (G) such that for every natural k, either Adj≺(G) had grid rank at most f(k) or G

has a semi-induced generalized transversal pair Tk,ℓ for some ℓ.

The class of interval graphs is delineated, proof idea. Let G be an interval graph and
IG = {Iv : v ∈ V (G)} be an interval representation of G, where the interval Iv is of the
form [ℓv, rv] for some integers 1 ⩽ ℓv ⩽ rv. We further assume some minimality on the
representation I, i.e., if ℓu < ℓw for vertices u, w ∈ V (G), there exists a vertex v ∈ V (G)
such that ℓu ⩽ rv < ℓw.

Let C be a hereditary class of interval graphs of unbounded twin-width. For each graph
G ∈ C with an interval representation I, we associate a total order ≺, following a lexicographic
order on I. For any integer t, and any interval graph G ∈ C of sufficiently large twin-width we
use a large rank division of the adjacency matrix Adj≺(G) to find a semi-induced transversal
pair Tt and obtain delineation of interval graphs by Lemma 13. To find Tt using the rank
division we extract two groups {A1, . . . , Af(t)} and {B1, . . . , Bf(t)} of vertex disjoint blocks
from the rank division of A≺(G) such that A1 ≺ · · · ≺ Af(t) ≺ B1 ≺ · · · ≺ Bf(t). We can
now assign an interval Ii to each block Ai and an interval Ji to each block Bj containing all
respective start points. After some cleaning we can assume that these intervals are disjoint.
By picking out appropriate selections a1, . . . , at2 , ai ∈ Ai and b1, . . . , bt2 , bi ∈ Bi we can
force the ai’s and bi’s to form a half-graph which induce any order we wish on the ai’s using
the large rank of each cell. Furthermore, using the minimality assumption, and the order and
disjointness of intervals Ii we can find c1, . . . , cℓ forming a half-graph with the ai’s inducing
the natural order on the ai’s. Appropriate selections of ai, bi and ci will therefore yield a
transversal pair.

IPEC 2022

9:12 Twin-Width VIII: Delineation and Win-Wins

The class of rooted directed paths is delineated, proof idea. Directed path graphs are the
intersection graphs of directed paths of an oriented tree. In other words, there is a collection
{Pv : v ∈ V (G)} consisting directed paths of an oriented tree T such that (u, w) ∈ E(G) if
and only if V (Pu) ∩ V (Pw) ̸= ∅. If T in a tree model of G is an out-tree, we say that G is
a rooted directed path graph. For v ∈ V (G) we denote by high(v) and low(v) the nodes of
Pv that are closest and furthest from the root, respectively. Notice they are not necessarily
distinct. We extend this notation to sets of vertices by defining high(X) = {high(v) : v ∈ X}
and low(X) = {low(v) : v ∈ X} for X ⊆ V (G).

Since interval graphs can be visualized as the intersection graph of subpath of a directed
path, they form a subclass of rooted directed path graphs.

In general, directed path graphs are not delineated. This can be observed by subdividing
the edges of a subcubic bipartite graph G and making a clique of the newly added vertices
to generate a directed path graph G′ that encodes G, and then applying Lemma 17 to the
family of all directed path graphs constructed this way. Since this class is chordal, this also
implies that chordal graphs, and even split graphs, are not delineated. On the positive side,
we show that rooted directed path graphs are delineated.

We start by extracting the vertices of a rooted directed path graph G which consist of
two collections associated with row and column parts of a rank-f(t) division of Adj≺(G) as
an off-diagonal submatrix: we may assume A = {Ai : i ∈ [f(t)/2]} be the first f(t)/2 parts of
the row division and B = {Bi : i ∈ [f(t)/2]} to be the last f(t)/2 parts of the column division.
Then, for each Ai and Bi we take vertices ai, bi to represent the sets, respectively, define
Ao to contain all ai and Bo to contain all bi. The goal is to use Ao and Bo to distinguish
between two cases in the proof.

We first observe that there is a directed path P of T containing all high(u) where u is a
vertex defining some adjacency between sets of A and B and that P defines an order <P on
both Ao and Bo. We denote by p(u) the node in V (Pu) ∩ V (P) that is closer to low(u) and
say that u ⩽P v if and only if p(u) ⩽T p(v). From this point, we prove a series of claims to
show that, to organize large parts of A and B in a desirable way, we can focus on organizing
large parts of Ao and Bo.

The easier case is when both Ao and Bo contain sufficiently large strictly increasing
chains with respect to <P . Since <P may not agree with ≺, we apply the Erdős-Szekeres
theorem to extract a large monotone sequence of both chains, and keep only the vertices
appearing in those sequences in Ao and Bo. We then use those sequences to define, for each
Ai associated with a vertex in the new Ao, an exclusive subpath Ii of P that contains p(a)
for every a ∈ Ai, and do the same for each Bi. This is done by observing that no p(a) can
be “very far away” from p(ai) with respect to the monotone sequence. With these subpaths,
we construct an interval graph and then solve this case as in the proof of delineation for this
class.

If only Ao, for instance, contains a large strictly increasing chain with respect to <P then
there must be a node p ∈ P on which a large subset of {p(bi) : bi ∈ Bo} is concentrated.
Although we can, to some extent, predict the behavior of the paths associated with vertices
in Bo after they leave P through p, we cannot use a minimality assumption on the tree
model to find in G vertices distinguishing each of the parts of B associated with vertices of
Bo. This is the crucial difference that makes finding a semi-induced Tt,2 in this configuration
much harder than in the first one.

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:13

4 Win-wins via twin-width: segment graphs and visibility graphs

A graph parameter p is said FO definable if there is a function that inputs a positive integer k

and outputs a first-order sentence φk such that for every graph G, p(G) = k if and only if
G |= φk. It is further effectively FO definable if an algorithm realizes that function and takes
time f(k) for some computable function f .

We say that a parameter q is p-bounded on class C, denoted by q ⊑ p on C or q ⊑C p, if
there is a non-decreasing function f such that for every graph G ∈ C, q(G) ⩽ f(p(G)). We
say that twin-width is effectively p-bounded on C, denoted by tww ⊑eff p on C or tww ⊑C

eff p,
if further there is an algorithm that outputs a g(p(G))-sequence for every graph G ∈ C in
time h(p(G)) · |V (G)|O(1) for some computable functions g, h.

The following reduces the task of showing that an FO definable parameter p is FPT on C
to showing that tww ⊑C

eff p holds.

▶ Theorem 19. Let p be an effectively FO definable parameter, and C a class such that
tww ⊑C

eff p. Then p(G) ⩾ k for G ∈ C can be decided in FPT time f(p(G)) · |V (G)|O(1) for
some computable function f .

4.1 Segment graphs
Pure (hence triangle-free) axis-parallel unit segment graphs were shown to have unbounded
twin-width [4], by constructing a family of such graphs with super-exponential growth. This
family contains arbitrarily large bicliques (see [4, Figure 4]). We will show that bicliques
are necessary to make the twin-width large, even when we lift the requirements that the
segments are axis-parallel and unit.

Techniques to show Theorem 5. We first FO transduce Kt,t-free segment graphs from a
class F of 2-edge-colored graphs that, we next show, has bounded twin-width. Once this is
done, it follows from Theorem 8 that Kt,t-free segment graphs have twin-width at most h(t)
and h(t)-sequence can be obtained from Theorem 8.

To capture a suitable graph class F , imagine a representation of Kt,t-free segment graph
G which uses thin rectangles in place of segments. Using bounded degeneracy of Kt,t-free
segment graphs [24], each rectangle can fragment into at most d + 1 sub-rectangles at
places stabbed by a rectangle preceding it in the d-degeneracy ordering. This fragmented
representation preserves the adjacency of G in the form of local adjacency between sub-
rectangles, and the former can be restored by FO transduction from the latter. It can be
naturally translated to a superposition of two graphs over the same vertex set, namely a
plane graph P = (V, E) and a matching graph H = (V, M) which is nicely aligned with
respect to a packing C of facial cycles partitioning V (P), see Figure 4.

Our task then boils down to showing that a plane graph P admits a vertex ordering ≺
which circularly orders each the facial cycle of C so that (P,≺) has bounded twin-width. It
turns out that a variant of BFS discovery order works, with two important features: The
edges are considered in the cyclic order during the exploration phase of a vertex v, and the
vertices of a facial cycle C ∈ C are processed in batch, when ordered in the cyclic order
around the face.

In the previous theorem, one cannot relax the Kt,t-freeness assumption to Ht-freeness.
Let Bn be the graph obtained from the 2-subdivision of a biclique Kn,n by adding back the
edges of the original biclique. The left part of Figure 5 shows that, for every n ∈ N, the
graph Bn is realizable with axis-parallel segments of two different lengths. Note however
that Bn has no semi-induced H4, and that limn→∞ tww(Bn) =∞.

IPEC 2022

9:14 Twin-Width VIII: Delineation and Win-Wins

<
<

Figure 4 Left: Original segment representation. Center: Thin rectangle stabbed by its predecessor
in the degeneracy ordering. Right: Plane graph with a nicely aligned matching, preserving the
information of the original segment graph.

To establish the latter claim, one can for instance “remove” the edges of the biclique by
means of an FO transduction, and invoke Theorem 8 and the third item of Theorem 16. The
transduction first marks the long horizontal segments by unary relation U1 (color 1), and
the long vertical segments, by unary relation U2 (color 2), and interpret the new edges as
φ(x, y) ≡ E(x, y) ∧ ¬(U1(x) ∧ U2(y)) ∧ ¬(U1(y) ∧ U2(x)).

Figure 5 Left: An axis-parallel H4-free two-lengthed segment graph realizing Bn (here drawn
with n = 8), whose twin-width grows with n. Right: Axis-parallel segment graphs are transduction
equivalent to B⩽3, thus not delineated.

Similarly the 2-subdivision of any subcubic bipartite graph, augmented with the biclique
between its two partite sets, is realizable with axis-parallel segments of two different lengths
(see right-hand side of Figure 5). Indeed those graphs – let us denote by C the class they
form – are induced subgraphs of some Bn. We claim (see right of Figure 5 and long version,
for a proof) that C and B⩽3 are transduction equivalent, and by Lemma 17, two-lengthed
axis-parallel segments are not delineated.

In the construction of Figure 5, we use two different lengths for the segments. We
show that with a unique length (unit segments), axis-parallel Ht-freeness implies bounded
twin-width.

▶ Theorem 20. Axis-parallel Ht-free unit segment graphs have bounded twin-width.

Actually we prove a stronger statement than the previous theorem, where segments are
not necessarily unit, but the ratio between the largest and the smallest lengths is bounded.
Again it shows that the fact that this ratio is unbounded in Figure 5 (left) is unavoidable.

Techniques to show Theorem 20. We face again the challenging task of finding a “good”
linear order on objects from a two-dimensional space. We place a virtual grid whose cells are
of size 1× 1, and cut the segments along this grid, adding some junction vertices in between
the cut pieces corresponding to the same segment. We first prove by FO transduction that
if this new graph has bounded twin-width, then the original segment graph has bounded
twin-width. For the newly built graph, a natural order consists of locally enumerating the

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:15

segments counter-clockwise according to where they cross the grid, and globally enumerating
the cells of the grid row by row. Note that the dimension of the grid cells imposes that every
segment crosses the grid.

The crux is then to argue that the circular order along the boundary of a cell yields
adjacency matrices with bounded grid rank. Somewhat surprisingly this part leverages the
same argument as we will later use for Ht-free visibility graphs of terrains; a forbidden
pattern like the Order Claim.

4.2 Visibility graphs
We first show that visibility graphs of terrains without arbitrarily large ladders have bounded
twin-width.

▶ Theorem 21. Ht-free visibility graphs of 1.5D terrains have bounded twin-width.

Rather naturally, we choose the order ≺ along the boundary of the terrain. Due to the Order
Claim (see Lemma 22 and Figure 6) the obtained adjacency matrices exclude a pattern (right
of Figure 6) that, combined with Ht-freeness, prevents large universal patterns. Hence we
conclude by Theorem 12.

▶ Lemma 22 (Order Claim [2]). If a ≺ b ≺ c ≺ d, a see c, and b see d, then a and d also see
each other.

a

b
cc

d

a b

c

d

Figure 6 Left: The Order Claim. The dashed black edges imply the dashed blue edge. Right: In
the thus ordered adjacency matrix, the 1 entries at (a, c) and (b, d) implies the 1 entry at (a, d).

In stark contrast, we can exhibit a subclass of visibility graphs of simple polygons
whose hereditary closure has unbounded twin-width but is monadically dependent, and even
monadically stable. This transduction is more involved than the previous ones, so we give
full details (in the long version). Finally, we show that the twin-width of simple polygons is
bounded by a function of their independence number α.

▶ Theorem 23. Twin-width is α-bounded in visibility graphs of simple polygons, and effectively
α-bounded if a geometric representation is given.

Proof (Sketch). Let P be a simple polygon, and G its visibility graph. We identify a vertex
of G with its corresponding geometric vertex of P . Let ≺ be the total order whose successor
relation is a Hamiltonian path of the boundary of P. Visibility graphs of simple polygons
satisfy the double-X property: If b′ ≺ a ≺ b ≺ c ≺ d ≺ c′, and ac, bd, ac′, db′ are all in E(G),
then ad is also an edge of G (see Figure 7).

This excludes that the complement of a(n arbitrary) permutation is realized by the
adjacency matrix of G ordered along ≺. That is, the second universal pattern in Figure 3
would not appear in Adj≺(G).

We now upperbound the size of a universal pattern in Adj≺(G) (among the other five
patterns) in terms of α(G), and conclude by Theorem 12. We will actually not need the
universal pattern in its whole, but simply a decreasing subsequence of it. (This is made

IPEC 2022

9:16 Twin-Width VIII: Delineation and Win-Wins

a

b c

d

c′b′

b′ a b

c
d
c′

Figure 7 Left: The double-X property. Right: What it implies in the adjacency matrix ordered
along the boundary of the polygon; the four 1 entries in black force the central one in blue.

formal in the next paragraph, where we extract a large anti-diagonal induced matching or
half-graph.) This is convenient since we can thus apply Ramsey’s theorem while keeping the
“complexity” of the initial structure.

Let p = Ram(Ram(4, α(G)), α(G)), where Ram(s, t) is the function of Ramsey’s theorem
which enforces a monochromatic clique on s or t vertices in a 2-edge-colored complete
graph on Ram(s, t) vertices. Note that if the twin-width of G is larger than a certain
function of p, we can find in each of the five allowed universal patterns 2p vertices of G:
a1 ≺ a2 ≺ . . . ≺ ap−1 ≺ ap ≺ bp ≺ bp−1 ≺ . . . ≺ b2 ≺ b1 such that aibj ∈ E(G) if and only if
i = j (resp. i ⩽ j, resp. i ⩾ j). We denote {a1, . . . , ap} (resp. {b1, . . . , bp}) by A (resp. B).
We now work toward finding a contradiction.

Let A′ ⊆ A induce a clique in G with |A′| = Ram(α(G), 4). Let B′ be the vertices of B

with the same index as a vertex of A′, and let B′′ ⊆ B′ induce a clique in G of size 4. Finally
let A′′ be the vertices in A′ (or A for that matter) with same index as a vertex in B′′. We
relabel the eight vertices of A′′ ∪B′′ by α1 ≺ α2 ≺ α3 ≺ α4 ≺ β4 ≺ β3 ≺ β2 ≺ β1.

First observe that, since they form a clique, α1, α2, α3, α4 are in convex position. For
α2β2 and α3β3 to be in E(G), the vertices β2 and β3 have to be in the convex (possibly
infinite) region delimited by the line segment α2α3, the ray starting at α2 and passing
through α1, and the ray starting at α3 and passing through α4. Since β2 comes after β3
in the boundary order, the quadrangle α2α3β3β2 has to be non self-intersecting (otherwise
α2β2 and α3β3 cannot both be edges, see left of Figure 8). We now claim that α2α3β3β2
is a convex quadrangle. Assume for the sake of contradiction that β2 is in the interior of
the triangle α2α3β3 (this is without loss of generality). As α2β2 is an edge of G, the line
segment α2β2 cuts P into two simple polygons: P− containing α1, and P+ containing α3.
Observe that no line segment starting at β3 and fully contained in P can intersect P− \ {β2}.
Indeed, since β2 is in the interior of α2α3β3, the ray starting at β3 and passing through β2
remains entirely within P+. However α1 is in P−. Therefore β3 and β1 cannot see each
other; a contradiction (see middle of Figure 8).

α1

α2

α3 α4

β2

β3

α1

α2

α3 α4

β2 β3
P−

P+

α1

α2

α3 α4

β2

β3

Figure 8 Left: If α2α3β3β2 is self-intersecting, at least one edge of α2β2, α3β3 (here α3β3) is
missing from G. Center: If β2 lies in the interior of α2α3β3, vertices β1 (in P+) and β3 cannot see
each other without blocking the edge α2β2. Right: If α2α3β3β2 is in convex position (in this order),
then both α2β3 and α2β3 are edges; another contradiction.

Since the four sides of the convex, non self-intersecting quadrangle α2α3β3β2 are edges
of G, the two diagonals α2β3 and α3β2 are also edges (since P cannot intersect the interior
of α2α3β3β2, see right of Figure 8); a contradiction to the induced matching or half-graph in
between A and B. ◀

É. Bonnet, D. Chakraborty, E. J. Kim, N. Köhler, R. Lopes, and S. Thomassé 9:17

Combined with the FO model checking algorithm in [6], generalizes a conjecture of Hliněný,
Pokrývka, and Roy [22], and shows in particular that k-Independent Set is FPT on
visibility graphs of simple polygons.

References
1 John T. Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories.

Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.
2 Boaz Ben-Moshe, Matthew J. Katz, and Joseph S. B. Mitchell. A constant-factor approximation

algorithm for optimal 1.5D terrain guarding. SIAM J. Comput., 36(6):1631–1647, 2007.
doi:10.1137/S0097539704446384.

3 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-
complete. CoRR, abs/2112.08953, 2021. arXiv:2112.08953.

4 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996, 2021. doi:10.1137/1.9781611976465.118.

5 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117,
Accepted at STOC 2022. arXiv:2102.03117.

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
Tractable FO Model Checking. J. ACM, 69(1):1–46, November 2022. doi:10.1145/3486655.

7 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. ACM
Trans. Algorithms, 16(4):42:1–42:23, 2020. doi:10.1145/3398684.

8 Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan
Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021. arXiv:2102.06880.

9 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

10 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The parameterized complexity of
relational database queries and an improved characterization of W[1]. In Douglas S. Bridges,
Cristian S. Calude, Jeremy Gibbons, Steve Reeves, and Ian H. Witten, editors, First Conference
of the Centre for Discrete Mathematics and Theoretical Computer Science, DMTCS 1996,
Auckland, New Zealand, December, 9-13, 1996, pages 194–213. Springer-Verlag, Singapore,
1996.

13 Zdenek Dvorák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.

14 Zdenek Dvorák and Sergey Norin. Strongly sublinear separators and polynomial expansion.
SIAM J. Discrete Math., 30(2):1095–1101, 2016. doi:10.1137/15M1017569.

15 Kord Eickmeyer, Jan van den Heuvel, Ken-ichi Kawarabayashi, Stephan Kreutzer, Patrice Os-
sona de Mendez, Michal Pilipczuk, Daniel A. Quiroz, Roman Rabinovich, and Sebastian
Siebertz. Model-checking on ordered structures. ACM Trans. Comput. Log., 21(2):11:1–11:28,
2020. doi:10.1145/3360011.

16 Stephan J. Eidenbenz. Inapproximability of finding maximum hidden sets on polygons and
terrains. Comput. Geom., 21(3):139–153, 2002. doi:10.1016/S0925-7721(01)00029-3.

17 Fedor V. Fomin, Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensionality. In Encyclopedia of Algorithms, pages 203–207. Springer, 2016. doi:10.1007/
978-1-4939-2864-4_47.

IPEC 2022

https://doi.org/10.1137/S0097539704446384
http://arxiv.org/abs/2112.08953
https://doi.org/10.1137/1.9781611976465.118
http://arxiv.org/abs/2102.03117
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3398684
http://arxiv.org/abs/2102.06880
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/2499483
https://doi.org/10.1137/15M1017569
https://doi.org/10.1145/3360011
https://doi.org/10.1016/S0925-7721(01)00029-3
https://doi.org/10.1007/978-1-4939-2864-4_47
https://doi.org/10.1007/978-1-4939-2864-4_47

9:18 Twin-Width VIII: Delineation and Win-Wins

18 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ramanujan. A
new perspective on FO model checking of dense graph classes. ACM Trans. Comput. Log.,
21(4):28:1–28:23, 2020. doi:10.1145/3383206.

19 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal
Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-order interpretations of bounded
expansion classes. ACM Trans. Comput. Log., 21(4):29:1–29:41, 2020. doi:10.1145/3382093.

20 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

21 Petr Hlinený and Filip Pokrývka, 2022. Personal communication.
22 Petr Hliněnỳ, Filip Pokrỳvka, and Bodhayan Roy. FO model checking on geometric graphs.

Computational Geometry, 78:1–19, 2019.
23 Stephan Kreutzer and Anuj Dawar. Parameterized complexity of first-order logic. Electronic

Colloquium on Computational Complexity (ECCC), 16:131, 2009. URL: http://eccc.hpi-web.
de/report/2009/131, arXiv:TR09-131.

24 James R. Lee. Separators in region intersection graphs. In Christos H. Papadimitriou, editor,
8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017,
Berkeley, CA, USA, volume 67 of LIPIcs, pages 1:1–1:8. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.1.

25 Bingkai Lin. The parameterized complexity of the k-biclique problem. J. ACM, 65(5):34:1–
34:23, 2018. doi:10.1145/3212622.

26 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978.

27 Thomas C. Shermer. Hiding people in polygons. Computing, 42(2-3):109–131, 1989. doi:
10.1007/BF02239742.

https://doi.org/10.1145/3383206
https://doi.org/10.1145/3382093
https://doi.org/10.1145/3051095
http://eccc.hpi-web.de/report/2009/131
http://eccc.hpi-web.de/report/2009/131
http://arxiv.org/abs/TR09-131
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.1145/3212622
https://doi.org/10.1007/BF02239742
https://doi.org/10.1007/BF02239742

Obstructions to Faster Diameter Computation:
Asteroidal Sets
Guillaume Ducoffe !

National Institute of Research and Development in Informatics, Bucharest, Romania
University of Bucharest, Romania

Abstract
An extremity is a vertex such that the removal of its closed neighbourhood does not increase the

number of connected components. Let Extα be the class of all connected graphs whose quotient graph
obtained from modular decomposition contains no more than α pairwise nonadjacent extremities.
Our main contributions are as follows. First, we prove that the diameter of every m-edge graph in
Extα can be computed in deterministic O(α3m3/2) time. We then improve the runtime to O(α3m)
for bipartite graphs, to O(α5m) for triangle-free graphs, O(α3∆m) for graphs with maximum degree
∆, and more generally to linear for all graphs with bounded clique-number. Furthermore, we can
compute an additive +1-approximation of all vertex eccentricities in deterministic O(α2m) time.
This is in sharp contrast with general m-edge graphs for which, under the Strong Exponential Time
Hypothesis (SETH), one cannot compute the diameter in O(m2−ϵ) time for any ϵ > 0.

As important special cases of our main result, we derive an O(m3/2)-time algorithm for exact
diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2)-time
algorithm for this problem on graphs of asteroidal number at most k. Both results extend prior
works on exact and approximate diameter computation within AT-free graphs. To the best of
our knowledge, this is also the first deterministic subquadratic-time algorithm for computing the
diameter within the subclasses of: chordal graphs of bounded leafage (generalizing the interval
graphs), k-moplex graphs and k-polygon graphs (generalizing the permutation graphs) for any fixed
k. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number,
and a partial extension of our results to the larger class of all graphs with a dominating target of
bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under
plausible complexity assumptions.

Our approach is purely combinatorial, that differs from most prior recent works in this area
which have relied on geometric primitives such as Voronoi diagrams or range queries. On our way,
we uncover interesting connections between the diameter problem, Lexicographic Breadth-First
Search, graph extremities and the asteroidal number.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Diameter computation, Asteroidal number, LexBFS

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.10

Related Version Full Version: https://arxiv.org/abs/2209.12438

Funding This work was supported by project PN-19-37-04-01 “New solutions for complex problems
in current ICT research fields based on modelling and optimization”, funded by the Romanian Core
Program of the Ministry of Research and Innovation (MCI) 2019-2022. This work was also supported
by a grant of the Ministry of Research, Innovation and Digitalization, CCCDI - UEFISCDI, project
number PN-III-P2-2.1-PED-2021-2142, within PNCDI III.

1 Introduction

For any undefined graph terminology, see [9]. All graphs considered in this paper are
undirected, simple (i.e., without loops nor multiple edges) and connected, unless stated
otherwise. Given a graph G = (V, E), let n = |V | and m = |E|. For every vertices

© Guillaume Ducoffe;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
https://orcid.org/0000-0003-2127-5989
https://doi.org/10.4230/LIPIcs.IPEC.2022.10
https://arxiv.org/abs/2209.12438
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Obstructions to Faster Diameter Computation: Asteroidal Sets

u and v, let dG(u, v) be their distance (minimum number of edges on a uv-path) in G.
Let eG(u) denote the eccentricity of vertex u (maximum distance to any other vertex).
We sometimes omit the subscript if the graph G is clear from the context. Finally, let
diam(G) = maxu,v∈V d(u, v) = maxu∈V e(u) be the diameter of G.

Computing the diameter is important in a variety of network applications such as in
order to estimate the maximum latency in communication systems [32] or to identify the
peripheral nodes in some complex networks with a core/periphery structure [60]. On n-vertex
m-edge graphs, this can be done in O(nm) time by running a BFS from every vertex. This
runtime is quadratic in the number m of edges, even for sparse graphs (with m ≤ c · n edges
for some c), and therefore it is too prohibitive for large graphs with millions of vertices and
sometimes billions of edges. Using Seidel’s algorithm [71], the diameter of any n-vertex graph
can be also computed in O(nω+o(1)) time, with ω the square matrix multiplication exponent.
If ω = 2, then this is almost linear-time for dense graphs, with m ≥ c · n2 edges for some
constant c (currently, it is only known that ω < 2.37286 [2]). However, for sparse graphs, this
is still in Ω(m2). In [69], Roditty and Vassilevska Williams proved that assuming the Strong
Exponential-Time Hypothesis of Impagliazzo, Paturi and Zane [57], the diameter of n-vertex
graphs with n1+o(1) edges cannot be computed in O(n2−ϵ) time, for any ϵ > 0. Therefore,
breaking the quadratic barrier for diameter computation is likely to require additional graph
structure, even for sparse graphs. In this paper, we make progress in this direction.

Let us call an algorithm truly subquadratic if it runs in O(m2−ϵ) time on m-edge graphs,
for some fixed positive ϵ. Over the last decades, the existence of a truly subquadratic (often
linear-time) algorithm for the diameter problem was proved for many important graph
classes [1, 12, 14, 16, 18, 23, 29, 33, 34, 36, 37, 42, 38, 39, 40, 41, 44, 45, 49, 66]. This has
culminated in some interesting connections between faster diameter computation algorithms
and Computational Geometry, e.g., see the use of Voronoi diagrams for computing the
diameter of planar graphs [16, 49], and of data structures for range queries in order to
compute all eccentricities within bounded treewidth graphs [1, 14, 17], bounded clique-width
graphs [41], or even proper minor-closed graph classes [44]. However, this type of geometric
approach usually works only if certain Helly-type properties hold for the graph classes
considered [3, 4, 11, 22, 39, 43, 44]. Beyond that, the finer-grained complexity of the diameter
problem is much less understood, with only a few graph classes for which truly subquadratic
algorithms are known [10]. The premise of this paper is that the asteroidal number could
help in finding several new positive cases for diameter computation.

Related work

Recall that an independent set in a graph G is a set of pairwise non-adjacent vertices.
An asteroidal set in a graph G is an independent set A with the additional property
that, for every vertex a ∈ A, there exists a path between any two remaining vertices
of A \ {a} that does not contain a nor any of its neighbours in G. Let the asteroidal
number of G be the largest cardinality of its asteroidal sets. The graphs of asteroidal
number at most two are sometimes called AT-free graphs, and they generalize interval
graphs, permutation graphs and co-comparability graphs amongst other subclasses [27]. It
is worth mentioning here that all the aforementioned subclasses have unbounded treewidth
and clique-width. The properties of AT-free graphs have been thoroughly studied in the
literature [5, 8, 13, 15, 24, 26, 27, 46, 50, 51, 53, 56, 61, 62, 72], and some of these properties
were generalized to the graphs of bounded asteroidal number [28, 58, 59]. In particular, as
far as we are concerned here, there is a simple linear-time algorithm for computing a vertex
in any AT-free graph whose eccentricity is within one of the diameter [23]. However, it

G. Ducoffe 10:3

has been only recently that a truly subquadratic algorithm for exact diameter computation
within this class was presented [42]. This algorithm runs in deterministic O(m3/2) time on
m-edge AT-free graphs, and it is combinatorial – that means, roughly, it does not rely on
fast matrix multiplication algorithms or other algebraic techniques. In fact both algorithms
from [23] and [42] are based on specific properties of LexBFS orderings for the AT-free
graphs1. Roughly, the algorithm from [42] starts computing a dominating shortest path. In
doing so, the search for a diametral vertex can be restricted to the closed neighbourhood
of any one end of this path. However, in general this neighbourhood might be very large.
The key procedure of the algorithm consists in further pruning out the neighbourhood so
that it reduces to a clique. Then, we are done executing a BFS from every vertex in this
clique. Both the computation of a dominating shortest path and the pruning procedure of
the algorithm are taking advantage of the existence of a linear structure for AT-free graphs,
that can be efficiently uncovered by using a double-sweep LexBFS [24]. Unfortunately, this
linear structure no more exists for graphs of asteroidal number ≥ 3.

Contributions

The structure of graphs of bounded asteroidal number, and its relation to LexBFS, is much
less understood than for AT-free graphs. Therefore, extending the known results for the
diameter problem on AT-free graphs to the more general case of graphs of bounded asteroidal
number is quite challenging. Doing just that is our main contribution in the paper. In fact,
we prove even more strongly that only some types of large asteroidal sets need to be excluded
in order to obtain a faster diameter computation algorithm.

More specifically, an extremity is a vertex such that the removal of its closed neighbourhood
leaves the graph connected, see [59, 63]. Note that every subset of pairwise nonadjacent
extremities forms an asteroidal set. A module in a graph G = (V, E) is a subset of vertices
X such that every vertex of V \ X is either adjacent to every of X or nonadjacent to every of
X. It is a strong module if it does not overlap any other module of G. Finally, the quotient
graph of G is the induced subgraph obtained by keeping one vertex in every inclusionwise
maximal strict subset of V which is a strong module of G (see also Sec. 2 for a more detailed
discussion about the modular decomposition of a graph). It is known that except in a few
degenerate cases, the diameter of G always equals the diameter of its quotient graph [29]. We
are interested in the maximum number of pairwise nonadjacent extremities in
the quotient graph, that according to the above is always a lower bound for the asteroidal
number. See [59, Fig. 1] for an example where it is smaller than the asteroidal number.

Throughout the paper, let Extα denote the class of all graphs whose quotient graph
contains no more than α pairwise nonadjacent extremities.

▶ Theorem 1. For every graph G = (V, E) ∈ Extα, we can compute estimates ē(u), u ∈ V ,
in deterministic O(α2m) time so that e(u) ≥ ē(u) ≥ e(u)−1 for every vertex u. In particular,
we can compute a vertex whose eccentricity is within one of the diameter. Moreover, the
exact diameter of G can be computed in deterministic O(α3m3/2) time.

Let us now sketch the main lines of our approach toward proving Theorem 1. First, we
replace the input graph by its quotient graph, that can be done in linear time [74]. Then,
we compute O(α) shortest paths with one common end-vertex c, the union of which is a

1 It was also shown in [23] that there exist AT-free graphs such that a multi-sweep LexBFS fails in
computing their diameter. Therefore, we need to further process the LexBFS orderings of AT-free
graphs, resp. of graphs of bounded asteroidal number, to output their diameter.

IPEC 2022

10:4 Obstructions to Faster Diameter Computation: Asteroidal Sets

dominating set (to be compared with the dominating shortest path computed in [42] for the
AT-free graphs). For that, we prove interesting new relations between graph extremities and
LexBFS, but only for graphs that are prime for modular decomposition (this is why we need
to consider the quotient graph). Roughly, our algorithm computes O(α) pairwise nonadjacent
extremities, i.e., the other end-vertices of the shortest-paths than c, by repeatedly executing
a modified LexBFS. We stress that our procedure is more complicated than a multi-sweep
LexBFS due to the need to avoid getting stuck between two mutually distant extremities. In
doing so, the search for a diametral vertex can be now restricted to the closed neighbourhoods
of only O(α2) vertices (namely, to the O(α) furthest vertices from c on every shortest path).
However, unlike what has been done in [42] for AT-free graphs, we failed in further pruning
out each neighbourhood to a clique. Instead, we present a new procedure which given a
vertex u outputs a vertex in its closed neighbourhood of maximum eccentricity. This is done
by iterating on some extremities at maximum distance from vertex u. Therefore, a key to our
analyses in this paper is the number of extremities in a graph. We provide several bounds
on this number. In doing so, our runtime for exact diameter computation can be improved
to O(α3m) time for the bipartite graphs, and more generally to linear time for every graph
in Extα of constant clique number. We present some more alternative time bounds for our
Theorem 1 in Sec. 5.2.

Matching (Conditional) Lower bounds

The algorithm of Theorem 1 is combinatorial. In [42], the classic problem of detecting a
simplicial vertex within an n-vertex graph is reduced in O(n2) time to the diameter problem
on O(n)-vertex AT-free graphs. The best known combinatorial algorithm for detecting a
simplicial vertex in an n-vertex graph runs in O(n3) time. In the same way, in [23], Corneil
et al. proved an equivalence between the problem of deciding whether an AT-free graph has
diameter at most two and a disjoint sets problem which has been recently studied under the
name of high-dimensional OV [30]. The high-dimensional OV problem can be reduced to
Boolean Matrix Multiplication, which is conjectured not to be solvable in O(n3−ϵ) time, for
any ϵ > 0, using a combinatorial algorithm [75]. It is open whether high-dimensional OV
can be solved faster than Boolean Matrix Multiplication. Therefore, due to both reductions
from [42] and [22], the existence of an O(f(α)m3/2−ϵ)-time combinatorial algorithm for
diameter computation within Extα, for some function f and for some ϵ > 0, would be a
significant algorithmic breakthrough.

Applications to some graph classes

Let us review some interesting subclasses of graphs of Extα, for some constant α, for which to
the best of our knowledge the best-known deterministic algorithm for diameter computation
until this paper has been the brute-force O(nm)-time algorithm.

A circle graph is the intersection graph of chords in a cycle. For every k ≥ 2, a k-
polygon graph is the intersection graph of chords in a convex k-polygon where the ends of
each chord lie on two different sides. Note that the k-polygon graphs form an increasing
hierarchy of all the circle graphs, and that the 2-polygon graphs are exactly the permutation
graphs. Recently [40], an almost linear-time algorithm was proposed which computes a
+2-approximation of the diameter of any k-polygon graph, for any fixed k. By [73], every
k-polygon graph has asteroidal number at most k. Therefore, for the k-polygon graphs,
we obtain an improved +1-approximation in linear time, and the first truly subquadratic
algorithm for exact diameter computation.

G. Ducoffe 10:5

A chordal graph is a graph with no induced cycle of length more than three. Chordal
graphs are exactly the intersection graphs of a collection of subtrees of a host tree [48]. We
call such a representation a tree model. The leafage of a chordal graph is the smallest number
of leaves amongst its tree models. In particular, the chordal graphs of leafage at most two
are exactly the interval graphs, which are exactly the AT-free chordal graphs. More generally,
every chordal graph of leafage at most k also has asteroidal number at most k [65]. In [42], a
randomized O(km log2 n)-time algorithm was presented in order to compute the diameter
of chordal graphs of asteroidal number at most k. Our Theorem 1 provides a deterministic
alternative, but at the price of a higher runtime. Even more strongly, by combining the
ideas of Theorem 1 with some special properties of chordal graphs, we were able to improve
the runtime to O(km) – see our Theorem 34. Previously, such as result was only known for
interval graphs [66].

A moplex in a graph is a module inducing a clique and whose neighbourhood is a minimal
separator (the notions of module and minimal separator are recalled in Sec. 2). Moplexes
are strongly related to LexBFS; indeed, every vertex last visited during a LexBFS is in a
moplex [6]. This has motivated some recent studies on k-moplex graphs, a.k.a., the graphs
with at most k moplexes. In particular, every k-moplex graph has asteroidal number at most
k [8, 31]. Hence, our results in this paper can be applied to the k-moplex graphs.

Finally, a dominating pair consists of two vertices x and y such that every xy-path is a
dominating set. Note that every AT-free graph contains a dominating pair [27]. A dominating
pair graph (for short, DP graph) is one such that every connected induced subgraph contains
a dominating pair. The family (K+

n)n≥4 of DP graphs in [68, Sec. 4.1] shows that for every
α ≥ 2, there exists a DP graph which is not in Extα. However, we here prove that every DP
graph with diameter at least six is in Ext2 – see our Lemma 16. In doing so, we obtain a
deterministic O(m3/2)-time algorithm which, given an m-edge DP graph, either computes
its diameter or asserts that its diameter is ≤ 5. We left open whether the diameter of DP
graphs can be computed in truly subquadratic time.

Organization of the paper

We give the necessary graph terminology for this paper in Sec. 2. Then, in Sec. 3 we present
some properties of graph extremities which, to our knowledge, have not been noticed before
our work. In particular if a graph is prime for modular decomposition, then there always
exists a diametral path whose both ends are extremities of the graph. We think these results
could be helpful in future studies on the diameter problem (for other graph classes), and in
order to better understand the relevant graph structure to be considered for fast diameter
computation. We complete Sec. 3 with additional properties of extremities for graphs of
bounded asteroidal number and for DP graphs. In Sec. 4, we relate extremities to the
properties of Lexicographic Breadth-First Search. Doing so, we design a general framework
in order to compute extremities under various constraints. We prove Theorem 1 in Sec. 5,
then we discuss some of its extensions in Sec. 6. We conclude this paper and propose some
open questions in Sec. 7.

Due to lack of space, most proofs are either omitted or postponed to the appendix.

2 Preliminaries

We introduce in this section the necessary graph terminology for our proofs. Let G = (V, E)
be a graph. For any vertex v ∈ V , let NG(v) = {u ∈ V | uv ∈ E} be its (open) neighbourhood
and let NG[v] = NG(v) ∪ {v} be its closed neighbourhood. Similarly, for any vertex-subset

IPEC 2022

10:6 Obstructions to Faster Diameter Computation: Asteroidal Sets

S ⊆ V , let NG[S] =
⋃

v∈S NG[v] and let NG(S) = NG[S] \ S. For any vertices u and v, we
call a subset S ⊆ V a uv-separator if u and v are in separate connected components of G \ S.
A minimal uv-separator is an inclusion-wise minimal uv-separator. We call a subset S a
(minimal) separator if it is a (minimal) uv-separator for some vertices u and v. Alternatively,
a full component for S is a connected component C of G \ S such that NG(C) = S. It is
known [52] that S is a minimal separator if there exist at least two full components for S.

Distances

Recall that the distance dG(u, v) between two vertices u and v equals the minimum number
of edges on a uv-path. Let the interval IG(u, v) = {w ∈ V | dG(u, v) = dG(u, w) + dG(w, v)}
contain all vertices on a shortest uv-path. Furthermore, for every ℓ ≥ 0, let N ℓ

G[u] = {v ∈
V | dG(u, v) ≤ ℓ} be the ball of center u and radius ℓ in G. We recall that the eccentricity
of a vertex v ∈ V is defined as eG(v) = maxu∈V dG(u, v). We sometimes omit the subscript
if the graph G is clear from the context. Let F (v) = {u ∈ V | d(u, v) = e(v)} be the
set of vertices most distant to vertex v. The diameter and the radius of G are defined as
diam(G) = maxv∈V e(v) and rad(G) = minv∈V e(v), respectively. We call (x, y) a diametral
pair if d(x, y) = diam(G).

Modular decomposition

Two vertices u, v ∈ V are twins if we have N(u)\{v} = N(v)\{u}. A twin class is a maximal
vertex-subset of pairwise twins. More generally, a module is a vertex-subset M ⊆ V such
that N(x) \ M = N(y) \ M for any x, y ∈ M . Note that any twin class is also a module.
We call G prime if its only modules are: ∅, V and {v} for every v ∈ V (trivial modules). A
module M is strong if it does not overlap any other module, i.e., for any module M ′ of G,
either one of M or M ′ is contained in the other or M and M ′ do not intersect. We denote
by M(G) the family of all inclusion wise maximal strong modules of G that do not contain
all the vertices of G. Finally, the quotient graph of G is the graph G′ with vertex-set M(G)
and an edge between every two M, M ′ ∈ M(G) such that every vertex of M is adjacent to
every vertex of M ′. The following well-known result is due to Gallai:

▶ Theorem 2 ([47]). For an arbitrary graph G exactly one of the following conditions is
satisfied.
1. G is disconnected;
2. its complement G is disconnected;
3. or its quotient graph G′ is prime for modular decomposition.

For general graphs, there is a tree representation of all the modules in a graph, sometimes
called the modular decomposition, that can be computed in linear time [74]. Note that since
we only consider connected graphs, only the two last items of Theorem 2 are relevant to our
study. Moreover, it is easy to prove that if the complement of a graph G is disconnected,
then we have diam(G) ≤ 2. Therefore, the following result is an easy byproduct of Gallai’s
theorem for modular decomposition [47]:

▶ Lemma 3 (cf. Theorem 14 in [29]). Computing the diameter (resp., all eccentricities) of
any graph G can be reduced in linear time to computing the diameter (resp., all eccentricities)
of its quotient graph G′.

An important observation for what follows is that, if a graph G belongs to Extα for
some α, then so does its quotient graph G′. Hence, we may only consider prime graphs in
Extα.

G. Ducoffe 10:7

Hyperbolicity

The hyperbolicity of a graph G [54] is the smallest half-integer δ ≥ 0 such that, for any four
vertices u, v, w, x, the two largest of the three distance sums d(u, v)+d(w, x), d(u, w)+d(v, x),
d(u, x)+d(v, w) differ by at most 2δ. In this case we say that G is δ-hyperbolic. To quote [34]:
“As the tree-width of a graph measures its combinatorial tree-likeness, so does the hyperbolicity
of a graph measure its metric tree-likeness. In other words, the smaller the hyperbolicity
δ of G is, the closer G is to a tree metrically.” We will use in what follows the following
“tree-likeness” properties of hyperbolic graphs:

▶ Lemma 4 ([20]). If G is δ-hyperbolic, then diam(G) ≥ 2rad(G) − 4δ − 1.

▶ Lemma 5 (Proposition 3(c) in [21]). Let G be a δ-hyperbolic graph and let u, v be a pair of
vertices of G such that v ∈ F (u). We have e(v) ≥ diam(G) − 8δ ≥ 2rad(G) − 12δ − 1.

▶ Lemma 6 ([20]). Let u be an arbitrary vertex of a δ-hyperbolic graph G. If v ∈ F (u) and
w ∈ F (v), then let c ∈ I(v, w) be satisfying d(c, v) = ⌊d(v, w)/2⌋. We have e(c) ≤ rad(G)+5δ.

3 Properties of graph extremities

We present several simple properties of graph extremities in what follows. In Sec. 3.1, we
give bounds on the number of extremities in a graph. Then, we show in Sec. 3.2 that, for
computing the vertex eccentricities of a prime graph (and so, its diameter), it is sufficient to
only consider its so-called extremities. In Sec. 3.3, we relate the location of the extremities
in a graph to the one of an arbitrary dominating target. We state in Sec. 3.4 a relationship
between extremities and the hyperbolicity of a graph (this result easily follows from [59]). In
Sec. 3.5, additional properties of extremities in some graph classes are discussed.

3.1 Bounds on the Number of Graph extremities
Every non-complete prime graph has at least two extremities [59]. The remainder of this
section is devoted to proving an upper bound on the number of extremities in a prime graph.
Unfortunately, there may be up to Θ(n) extremities in an n-vertex graph, even if it is AT-free.
See the construction of [23, Fig. 2] for an example. It is worth mentioning this example also
has clique-number equal to Θ(n). Our general upper bounds in what follows show that only
dense prime graphs may have Ω(n) extremities.

▶ Lemma 7. If G ∈ Extα is prime, then the number of its extremities is at most:
α · χ(G), where χ(G) denotes the chromatic number of G;
R(α + 1, ω(G) + 1) − 1, where ω(G) is the clique number of G, and R(·, ·) is a Ramsey
number.

In particular, it is in O(α
√

m).

Proof. Let us denote by q the number of extremities of G, and let H be induced by all the
extremities. Note that H is not necessarily connected. Since we assume that G ∈ Extα, the
independence number of H is at most α. In this situation, q < R(α + 1, ω(G) + 1) (otherwise,
either H would contain an independent set of size α + 1, or H and so, G, would contain a
clique of size ω(G) + 1). Since the chromatic number of H is at most χ(G), we also have that
H can be partitioned in at most χ(G) independent sets, and so, q ≤ α · χ(G). In particular,
q = O(α

√
m) because χ(G) = O(

√
m) for any graph G. ◀

IPEC 2022

10:8 Obstructions to Faster Diameter Computation: Asteroidal Sets

Let G ∈ Extα be prime, with q extremities. Note that, using R(s, t) = O(ts−1) for any
fixed s, we get that q = O(αω(G)+1). That is in O(α3) for triangle-free graphs. For graphs of
constant chromatic number, the bound of Lemma 7 is linear in α. In particular, q = O(α∆)
for the graphs of maximum degree ∆, and q = O(α) for bipartite graphs.

3.2 Relationships with the diameter
To the best of our knowledge, the following relation between extremities and vertex eccentri-
cities has not been noticed before:

▶ Lemma 8. If x is a vertex of a prime graph G = (V, E) with |V | ≥ 3, then there exists an
extremity y of G such that d(x, y) = e(x).

In particular, for every y′ ∈ F (x), there is an extremity y ∈ F (x) so that d(y, y′) ≤ 2.

The proof of Lemma 8 is postponed to Appendix A. We observe that a slightly weaker
version of Lemma 8 could be also deduced from Lemma 19 (proved in the next section).

▶ Corollary 9. If G = (V, E) is prime and diam(G) ≥ 2, then there exist extremities x, y

such that d(x, y) = diam(G).

Overall if we were given the q extremities of a prime graph G, then by Lemma 8, we
could compute all eccentricities (and so, the diameter) in O(qm) time. By Lemma 7, this
runtime is in O(αm3/2) for the graphs within Extα, which is subquadratic for any fixed
α. This bound can be improved to linear time for any graph of Extα with constant clique
number. However, the best-known algorithms for computing the extremities run in O(nm)
time and in O(n2.79) time [63], respectively. Furthermore, computing the extremities is at
least as hard as triangle detection, even for AT-free graphs [63]. We leave as an open problem
whether there exists a truly subquadratic algorithm for computing all extremities in a graph.

3.3 Relationships with Dominating targets
A dominating target in a graph G is a vertex-subset D with the property that any connected
subgraph of G containing all of D must be a dominating set. Dominating targets of cardinality
two have been studied under the different name of dominating pairs. In particular, every
AT-free graph contains a dominating pair [27].

▶ Lemma 10 (special case of Theorems 6 and 7 in [59]). If G is prime, then every inclusion-wise
maximal subset of pairwise nonadjacent extremities in G is a dominating target.

We have the following relation between extremities and dominating targets:

▶ Lemma 11. If D is a dominating target of a graph G (not necessarily prime), then every
extremity of G is contained in N [D]. In particular, there are at most (∆ + 1) · |D| extremities,
where ∆ denotes the maximum degree of G.

Proof. Suppose by contradiction the existence of some extremity v /∈ N [D]. Then, H =
G\N [v] is a connected subgraph of G that contains all of D but such that v has no neighbour
in V (H). The latter contradicts that D is a dominating target of G. ◀

It follows from both Lemma 8 and Lemma 11 that, for any dominating target D in a
prime graph, there is a diametral vertex in N [D]. We slightly strengthen this result, as
follows. The following simple lemmas also generalize prior results on AT-free graphs [23] and
graphs with a dominating pair [42].

G. Ducoffe 10:9

▶ Lemma 12. If D is a dominating target, then F (x) ∩ N [D] ̸= ∅ for any vertex x.
In particular if F (x) ∩ D = ∅, then F (x) ⊆ N(D).

Proof. We may assume that F (x) ∩ D = ∅ (else, we are done). In this situation, let
y ∈ F (x) be arbitrary. Then, let H be the union of shortest xu-paths, for every u ∈ D.
Since H is a connected subgraph, we have y ∈ N [H]. In particular, there is a shortest
ux-path P , for some fixed u ∈ D, such that y ∈ N [P]. Observe that y /∈ V (P) (otherwise,
d(x, y) ≤ d(x, u), and therefore u ∈ F (x)). So, let y∗ ∈ V (P) ∩ N(y). If y∗ ̸= u, then
d(x, y) ≤ d(x, y∗) + 1 ≤ (d(x, u) − 1) + 1 = d(x, u), and therefore, u ∈ F (x). A contradiction.
As a result, y ∈ N(u) \ D ⊆ N(D). ◀

▶ Corollary 13. If D is a dominating target of a graph G, and no vertex of D is in a
diametral pair, then x, y ∈ N(D) for every diametral pair (x, y).

This above Corollary 13 suggests the following strategy in order to compute the diameter
of a prime graph G. First, we compute a small dominating target D. Then, we search for a
diametral vertex within the neighbourhood of each of its |D| vertices. If G ∈ Extα, then
according to Lemma 10 there always exists such a D with O(α) vertices. However, we are
not aware of any truly subquadratic algorithm for computing this dominating target. By
Lemma 10, it is sufficient to compute a maximal independent set of extremities, but then
we circle back to the aforementioned problem of computing all extremities in a graph. In
Sec. 5 in the paper, we prove that we needn’t compute a dominating target in full in order to
determine what the diameter is. Specifically, we may only compute a strict subset D′ ⊂ D of
a dominating target (for that, we use the techniques presented in Sec. 4). However, the price
to pay is that while doing so, we also need to consider a bounded number of vertices outside
of N [D′] and their respective neighbourhoods. Hence, the number of neighbourhoods to be
considered grows to O(α2). This will be our starting approach for proving Theorem 1.

3.4 Relationships with Hyperbolicity
Recall the definition of δ-hyperbolic graphs in Sec. 2. In a δ-hyperbolic graph G, an “almost
central” vertex of eccentricity ≤ rad(G) + cδ, for some c > 0, can be computed in linear
time, using a double-sweep BFS (see Lemma 6). Then, according to Lemma 4, any diametral
vertex must at a distance ≥ rad(G) − c′δ, for some c′ > 0, to this almost central vertex.
Roughly, we wish to combine these properties with the computation of some subset D′ of
a small dominating target (see Sec. 3.3) in order to properly locate some neighbourhood
that contains a diametral vertex. For that, we need to prove here that graphs in Extα are
δ-hyperbolic for some δ depending on α. Namely:

▶ Lemma 14. Every graph G ∈ Extα is (3α − 1)-hyperbolic.

3.5 Extremities in some Graph classes
We complete this section with the following inclusions between graph classes.

▶ Lemma 15. Every graph G of asteroidal number k belongs to Extk.

While this above Lemma 15 trivially follows from the respective definitions of Extk and
the asteroidal number, the following result is less immediate:

▶ Lemma 16. Every DP graph G = (V, E) of diameter at least six belongs to Ext2.

IPEC 2022

10:10 Obstructions to Faster Diameter Computation: Asteroidal Sets

The proof of Lemma 16 is postponed to Appendix B. Lemma 16 does not hold for
diameter-five DP graphs, as it can be shown from the example in [68, Fig. 6], that has three
pairwise nonadjacent extremities. Moreover, for every n ≥ 4, there exists a diameter-two
DP graph K+

n with n pairwise nonadjacent extremities [68]. We left open whether, for any
d ∈ {3, 4, 5}, there exists some constant α(d) ≥ 3 such that all diameter-d DP graphs belong
to Extα(d).

4 A framework for computing extremities

We identify sufficient conditions for computing an independent set of extremities (not
necessarily a maximal one). To the best of our knowledge, before this work there was no
faster known algorithm for computing one extremity than for computing all such vertices.
We present a simple linear-time algorithm for this problem on prime graphs – see Sec. 4.2.
Then, we refine our strategy in Sec. 4.3 so as to compute one extremity avoided by some
fixed connected subset. This procedure is key to our proof of Theorem 1, for which we
need to iteratively compute extremities, and connect those to some pre-defined vertex c

using shortest paths, until we obtain a connected dominating set. In fact, our approach in
Sec. 4.3 works under more general conditions which we properly state in Def. 21. Our main
algorithmic tool here is LexBFS, of which we first recall basic properties in Sec. 4.1.

4.1 LexBFS
The Lexicographic Breadth-First Search (LexBFS) is a standard algorithmic procedure, that
runs in linear time [70]. We give a pseudo-code in Algorithm 1. Note that we can always
enforce a start vertex u by assigning to it an initial non empty label. Then, for a given
graph G = (V, E) and a start vertex u, LexBFS(u) denotes the corresponding execution of
LexBFS. Its output is a numbering σ over the vertex-set (namely, the reverse of the ordering
in which vertices are visited during the search). In particular, if σ(i) = x, then σ−1(x) = i.

Algorithm 1 LexBFS [70].

Require: A graph G = (V, E).
1: assign the label ∅ to each vertex;
2: for i = n to 1 do
3: pick an unnumbered vertex x with the largest label in the lexicographic order;
4: for all unnumbered neighbours y of x do
5: add i to label(y);
6: σ(i)← x /* number x by i */;

We use some notations from [24]. Fix some LexBFS ordering σ. Then, for any vertices u

and v, u ≺ v if and only if σ−1(u) < σ−1(v). Similarly, u ⪯ v if either u = v or u ≺ v. Let us
define N≺(v) = {u ∈ N(v) | u ≺ v} and N≻(v) = {u ∈ N(v) | v ≺ u}. Let also ◁ denote the
lexicographic total order over the sets of LexBFS labels. For every vertices u and v, u ⪯ v,
let λ(u, v) be the label of vertex u when vertex v was about to be numbered. We stress that
λ(u, v) ⊴ λ(v, v) (i.e., the vertex selected to be numbered at any step has maximum label for
the lexicographic order). Furthermore, a useful observation is that λ(u, v) is just the list of
all neighbours of u which got numbered before v, ordered by decreasing LexBFS number. In
particular, for any u ⪯ v we have λ(u, v) = λ(v, v) if and only if N≻(v) ⊆ N(u). We often
use this latter property in our proofs.

▶ Lemma 17 (monotonicity property [24]). Let a, b, c and d be vertices of a graph G such
that: a ⪯ c, b ⪯ c and c ≺ d. If λ(a, d) ◁ λ(b, d), then λ(a, c) ◁ λ(b, c).

G. Ducoffe 10:11

▶ Corollary 18. Let x, y, z be vertices of a graph G such that: x ⪯ y ⪯ z, and λ(x, z) = λ(z, z).
Then, λ(y, z) = λ(z, z).

4.2 Finding one extremity
It turns out that finding one extremity is simple, namely:

▶ Lemma 19. If G = (V, E) is a prime graph with |V | ≥ 3, and σ is any LexBFS order,
then v = σ(1) is an extremity of G.

Proof. Suppose by contradiction G \ N [v] to be disconnected. Let u = σ(n) be the start
vertex of the LexBFS ordering, and let C be any component of G \ N [v] which does not
contain vertex u. We denote by z = σ(i), n > i > 1 the vertex of C with maximum LexBFS
number. By maximality of z, we obtain that N≻(z) ⊆ N(v). In particular, λ(v, z) = λ(z, z).
Then, let M = {w ∈ V | v ⪯ w ⪯ z}. Since we have λ(v, z) = λ(z, z), by Corollary 18 we
also get λ(w, z) = λ(z, z) for every w ∈ M . But this implies N(w) \ M = N≻(z) for each
w ∈ M , therefore M is a nontrivial module of G. A contradiction. ◀

An alternative proof of Lemma 19 could be deduced from the work of Berry and Bordat
on the relations between moplexes and LexBFS [7]. However, to the best of our knowledge,
Lemma 19 has not been proved before.

4.3 Generalization
Before generalizing Lemma 19, we need to introduce a few more notions and terminology.

▶ Definition 20. Let G = (V, E) be a graph and let u, v, w ∈ V be pairwise independent. We
write u ⊥w v if and only if u, v are in separate connected components of G \ N [w].

A vertex w intercepts a path P if N [w] ∩ V (P) ̸= ∅, and it misses P otherwise. We
can check that if u ⊥w v, then w intercepts all uv-paths, and conversely if u ̸⊥w v and
uw, vw /∈ E, then w misses a uv-path.

▶ Definition 21. Let u and S be, respectively, a vertex and a vertex-subset of some graph
G = (V, E). We call S a u-transitive set if, for every x ∈ S and y ∈ V nonadjacent,
x ⊥y u =⇒ y ∈ S.

Next, we give examples of u-transitive sets.

▶ Lemma 22. If H is a connected subgraph of a graph G, then its closed neighbourhood N [H]
is u-transitive for every u ∈ V (H). In particular, every ball centered at u and of arbitrary
radius is u-transitive.

Proof. Let x ∈ N [H] and y satisfy x ⊥y u. Since x ∈ N [H] and u ∈ V (H), there exists a
xu-path P of which all vertices except maybe x are in H. Furthermore, since we assume
that x ⊥y u, and so x and y are nonadjacent, we obtain y ∈ N [P \ {x}] ⊆ N [H]. ◀

For an example of non-connected u-transitive set, we may simply consider three pairwise
nonadjacent vertices u, v, w in a cycle. Then, S = {v, w} is u-transitive.

We are now ready to state the following key lemma:

▶ Lemma 23. Let G = (V, E) be a prime graph with |V | ≥ 3, let u ∈ V be arbitrary and let
S ⊆ V be u-transitive. If V ̸= S ∪ N [u], then we can compute in linear time an extremity
v /∈ S ∪ N [u] such that d(u, v) is maximized.

The proof of Lemma 23 is postponed to Appendix C.

IPEC 2022

10:12 Obstructions to Faster Diameter Computation: Asteroidal Sets

5 Proof of Theorem 1

In Sec. 5.1, we present a linear-time algorithm for computing a vertex whose eccentricity is
within one of the true diameter. This part of the proof is simpler, and it gives some intuition
for our exact diameter computation algorithm, which we next present in Sec. 5.2.

5.1 Approximation algorithm
▶ Theorem 24. For every graph G = (V, E) ∈ Extα, we can compute in deterministic
O(α2m) time estimates e(v) ≥ ē(v) ≥ e(v) − 1 for every vertex v.

Proof. We may assume G to be prime by Lemma 3. Furthermore, let us assume that |V | ≥ 3.
We subdivide the algorithm in three main phases.

First, we compute some shortest path by using a double-sweep LexBFS. More specifically,
let x1 be the last vertex numbered in a LexBFS. Let x2 be the last vertex numbered
in a LexBFS(x1). We compute a vertex c ∈ I(x1, x2) so that d(c, x1) = ⌊d(x1, x2)/2⌋.
Then, let P1 (resp., P2) be an arbitrary shortest cx1-path (resp., cx2-path). – Note that
for AT-free graphs (but not necessarily in our case), the shortest x1x2-path P1 ∪ P2 is
dominating [24]. –
Second, we set H := P1 ∪ P2. While H is not a dominating set of G, we compute an
extremity xi /∈ N [H] and we add an arbitrary shortest cxi-path to H. – We stress
that such an extremity xi always exists due to H being connected and therefore N [H]
being c-transitive (see Lemma 22) and by Lemma 23.– Let x3, x4, . . . , xt denote all the
extremities computed. By construction, H is the union of t shortest paths P1, P2, . . . , Pt

with one common end-vertex c.
Finally, for every 1 ≤ i ≤ t, let the subset Ui be composed of the min{d(xi, c)+1, 66α−19}
closest vertices to xi in Pi (including xi itself). Let U =

⋃t
i=1 Ui. For every vertex v ∈ V ,

we set ē(v) := max{d(u, v) | u ∈ U}.

Correctness. Let v ∈ V be arbitrary. Since H is a dominating set of G, some vertex u ∈ H ,
in the closed neighbourhood of any vertex of F (v), must satisfy d(u, v) ≥ e(v) − 1. In order
to prove correctness of our algorithm, it suffices to prove the existence of one such vertex in
U . For that, let δ be chosen such that G is δ-hyperbolic. By Lemma 6, e(c) ≤ rad(G) + 5δ.
Furthermore if u ∈ H satisfies N [u] ∩ F (v) ̸= ∅, then by Lemma 5, e(u) ≥ 2rad(G) − 12δ − 2.
In particular, d(u, c) ≥ rad(G) − 17δ − 2 (else, e(u) ≤ d(u, c) + e(c) ≤ 2rad(G) − 12δ − 3).
For 1 ≤ i ≤ t such that u ∈ V (Pi), since Pi is a shortest xic-path of length at most e(c) ≤
rad(G)+5δ, we get that u must be one of the (rad(G)+5δ)−(rad(G)−17δ −2)+1 = 22δ +3
closest vertices to xi. By Lemma 14, δ ≤ 3α − 1, therefore 22δ + 3 ≤ 66α − 19.

Complexity. Recall that the first phase of the algorithm consists in a double-sweep LexBFS.
Hence, it can be done in linear time. Then, at every step of the second phase we must
decide whether H is a dominating set of G, that can be done in linear time. If H is not a
dominating set, then we compute an extremity xi /∈ N [H], that can also be done in linear
time by Lemma 23. We further compute an arbitrary shortest xic-path Pi, that can be done
in linear time using BFS. Overall, the second phase takes O(tm) time, with t the number of
extremities computed. Finally, in the third phase, we need to execute O(α) BFS for every
shortest path P1, P2, . . . Pt, that takes O(αtm) time.

G. Ducoffe 10:13

By Lemma 19, both x1 and x2 are also extremities. We observe that x1x2 /∈ E (else, since
x2 ∈ F (x1), x1 would be universal, thus contradicting either that G is prime or |V | ≥ 3).
By construction, x3, x4, . . . , xt are pairwise nonadjacent, and they are also nonadjacent to
both x1 and x2. Altogether combined, we obtain that x1, x2, . . . , xt are pairwise nonadjacent
extremities. As a result, t ≤ α. It implies that the total runtime is in O(α2m). ◀

5.2 Exact computation
The following general result, of independent interest, is the cornerstone of Theorem 26:

▶ Lemma 25. Let u be a vertex in a prime graph G = (V, E). If G has q extremities, then
we can compute in O(qm) time the value ℓ(u) = max{e(x) | x ∈ N [u]}, and a x ∈ N [u] of
eccentricity ℓ(u). This is O(αm3/2) time if G ∈ Extα.

The proof of Lemma 25 involves several cumbersome intermediate lemmas. We postpone
the proof of Lemma 25 to the end of this section, proving first our main result:

▶ Theorem 26. For every graph G = (V, E) ∈ Extα, we can compute its diameter in
deterministic O(α3m3/2) time.

Proof (Assuming Lemma 25). By Lemma 3, we may assume G to be prime. Let us further
assume that |V | ≥ 3, and so that G cannot have a universal vertex.

Algorithm. We subdivide the procedure in three main phases, the two first of which being
common to both Theorems 24 and 26.

Let x1 be the last vertex numbered in a LexBFS. We execute a LexBFS with start vertex
x1. Let x2 be the last vertex numbered in a LexBFS(x1). We compute a c ∈ I(x1, x2) so
that d(c, x1) = ⌊d(x1, x2)/2⌋. Let P1, P2 be shortest x1c-path and x2c-path, respectively.
We set H := P1 ∪ P2. While H is not a dominating set of G, we compute a new extremity
xi /∈ N [H], an arbitrary shortest xic-path Pi, then we set H := H∪Pi. In what follows, we
denote by x1, x2, . . . , xt the extremities computed in the two first phases of the algorithm.
Let P1, P2, . . . , Pt be the corresponding shortest paths, whose union equals H.
Finally, for every 1 ≤ i ≤ t, let Ui ⊆ V (Pi) contain the min{d(xi, c) + 1, 42α − 11} closest
vertices to xi. Let Li := max{ℓ(ui) | ui ∈ Ui}. We output L := max1≤i≤t Li as the
diameter value.

Complexity. The first phase of the algorithm can be done in O(m) time, and its second
phase in O(tm) time, with t the number of extremities computed. During the third and final
phase, we need to apply Lemma 25 O(α) times for every shortest path P1, P2, . . . , Pt. Hence,
the above algorithm runs in O(tαqm) time, with q the total number of extremities of G. By
Lemma 7, we have that q = O(α

√
m). See Theorem 24 for a proof that t ≤ α. As a result,

the above algorithm runs in O(α3m3/2) time.

Correctness. Let us consider an arbitrary diametral pair (u, v). Since H is a dominating set
of G, we have N [u]∩H ̸= ∅. Let u∗ ∈ N [u]∩H , and observe that e(u∗) ≥ diam(G)−1. Then
we claim that if u∗ ∈ V (Pi) for some 1 ≤ i ≤ t, we must have u∗ ∈ Ui. The proof is similar
to what we did for Theorem 24. Specifically, let us choose δ such that G is δ-hyperbolic.
By Lemma 6, e(c) ≤ rad(G) + 5δ. Furthermore, if u∗ ∈ H satisfies e(u∗) ≥ diam(G) − 1,
then by Lemma 4, e(u∗) ≥ 2rad(G) − 4δ − 2. In particular, d(u∗, c) ≥ rad(G) − 9δ − 2
(else, e(u∗) ≤ d(u∗, c) + e(c) ≤ 2rad(G) − 4δ − 3 < diam(G) − 1). For 1 ≤ i ≤ t such

IPEC 2022

10:14 Obstructions to Faster Diameter Computation: Asteroidal Sets

that u∗ ∈ V (Pi), since Pi is a shortest xic-path of length at most e(c) ≤ rad(G) + 5δ, we
get that u∗ must be one of the (rad(G) + 5δ) − (rad(G) − 9δ − 2) + 1 = 14δ + 3 closest
vertices to xi. By Lemma 14, δ ≤ 3α − 1, therefore 14δ + 3 ≤ 42α − 11. In this situation,
L ≥ Li ≥ ℓ(u∗) = e(u) = diam(G). Combined with the trivial inequality L ≤ diam(G), it
implies that L = diam(G). ◀

The actual runtime of Theorem 26 is O(α2qm), where q denotes the number of extremities.
By Lemma 7, this is in O(α3m) for bipartite graphs, O(α3∆m) for graphs with maximum
degree ∆ and in O(α5m) for triangle-free graphs. More generally, this is linear time for all
graphs of Extα with bounded clique number.

The remainder of this section is devoted to the proof of Lemma 25. The key idea here is that
for every vertex u, there is an extremity v ∈ F (u) such that max{d(v, x) | x ∈ N [u]} = ℓ(u).
Therefore, in order to achieve the desired runtime for Lemma 25, it would be sufficient to
iterate over all extremities of G that are contained in F (u). However, due to our inability
to compute all extremities in subquadratic time, we are bound to use Lemma 23 for only
computing some of these extremities. Therefore, throughout the algorithm, we further need
to grow some u-transitive set whose vertices must be carefully selected so that they can be
discarded from the search space. The next Lemmas 27 and 28 are about the construction of
this u-transitive set.

▶ Lemma 27. Let u and v be vertices of a graph G such that v ∈ F (u), and let X = {x ∈
N [u] | d(x, v) = e(u)}. In O(m) time we can construct a set Y where:

v ∈ Y ; Y is u-transitive;
d(y, x) ≤ d(v, x) for every y ∈ Y and x ∈ X.

We now complete Lemma 27, as follows:

▶ Lemma 28. Let u and v be vertices of a graph G such that v ∈ F (u), and d(x, v) ≤ e(u)
for every x ∈ N [u]. In O(m) time we can construct a set S′ where:

v ∈ S′; S′ is u-transitive;
d(s, x) ≤ e(u) for every s ∈ S′ and x ∈ N [u].

Using Lemma 28 we end up the section proving Lemma 25:

Proof of Lemma 25. We may assume that |V | ≥ 3 and therefore (since G is prime) that
u is not a universal vertex. We search for a v ∈ V at a distance ℓ(u) from some vertex of
N [u]. Note that we have e(u) ≤ ℓ(u) ≤ e(u) + 1. In particular we only need to consider
the vertices v ∈ F (u). We next describe an algorithm that iteratively computes some pairs
(v0, S0), (v1, S1), . . . such that, for any i ≥ 0: (i) vi ∈ F (u) is an extremity; and (ii) Si is
u-transitive. We continue until either d(vi, x) = e(u) + 1 for some x ∈ N(u) or F (u) ⊆ Si.

If i = 0 then, let v0 be the last vertex numbered in a LexBFS(u), that is an extremity by
Lemma 19. Otherwise (i > 0), let vi be the output of Lemma 23 applied to u and S = Si−1.
Furthermore, being given the extremity vi, let S′

i be computed as in Lemma 27 applied
to u and vi. Let Si = S′

i ∪ Si−1 (with the convention that S−1 = ∅). We stress that Si is
u-transitive since it is the union of two u-transitive sets.

By Lemma 28, all vertices in Si can be safely discarded since they cannot be at distance
e(u) + 1 from any vertex of N [u]. Furthermore, since for every i we have vi ∈ Si \ Si−1, the
sequence (F (u) \ Si−1)i≥0 is strictly decreasing with respect to set inclusion. Each step i

takes linear time, and the total number of steps is bounded by the number of extremities in
F (u). For a graph within Extα, this is in O(α

√
m) according to Lemma 7. ◀

G. Ducoffe 10:15

6 Extensions

Our algorithmic framework in Sec. 5.2 can be refined in several ways. We present such
refinements for the larger class of all graphs having a dominating target of bounded cardinality.
Some general results are first discussed in Sec. 6.1 before we address the special case of
chordal graphs in Sec. 6.2.

6.1 More results on dominating targets
We start with the following observation:

▶ Lemma 29. If a graph G contains a dominating target of cardinality at most k, then so
does its quotient graph G′.

By Lemma 29, we may only consider in what follows prime graphs with a dominating
target of bounded cardinality.

By K1,t, we mean the star with t leaves. A graph is K1,t-free if it has no induced subgraph
isomorphic to K1,t.

▶ Lemma 30. Every K1,t-free graph G with a dominating target of cardinality at most k

belongs to Extk(t−1).

▶ Corollary 31. We can compute the diameter of K1,t-free graphs with a dominating target
of cardinality at most k in deterministic O((kt)3m3/2) time.

Let us now consider graphs with a dominating target of cardinality at most k and bounded
maximum degree ∆. These graphs are K1,∆+1-free and therefore, according to Corollary 31,
we can compute their diameter in deterministic O((k∆)3m3/2) time. We improve this runtime
to quasi linear, while also decreasing the dependency on ∆, namely:

▶ Theorem 32. For every G = (V, E) with a dominating target of cardinality at most k and
maximum degree ∆, we can compute its diameter in deterministic O(k3∆m log n) time.

Since under SETH we cannot compute the diameter of graphs with a dominating edge in
subquadratic time [42], the dependency on ∆ in Theorem 32 is conditionally optimal.

The proof of Theorem 32 is postponed to Appendix D. Being given a vertex c of small
eccentricity, our main difficulty here is to compute efficiently a small number of shortest-paths
starting from c whose union is a dominating set of G. This could be done by computing
a dominating target of small cardinality. However, our framework in the prior Sec. 4 only
allows us to compute extremities, and not directly a dominating target. Our strategy consists
in including in some candidate subset all the neighbours of the extremities that are computed
by our algorithm. By using Lemma 11, we can bound the size of this candidate subset by
an O(k∆). Then, by using a greedy set cover algorithm, we manage to compute from this
candidate subset a set of O(k log n) shortest-paths that cover all but O(k∆ log n) vertices.
We apply the prior techniques of Sec. 5 to all these shortest-paths (calling upon Lemma 25),
while for the O(k∆ log n) vertices that they miss we compute their eccentricities directly.

6.2 Chordal graphs
By [42, Theorems 6 & 9], we can decide in linear time the diameter of chordal graphs with a
dominating pair (resp., with a dominating triple) if the former value is at least 4 (resp., at
least 10). It was also asked in [42] whether for every k ≥ 4, there exists a threshold dk such

IPEC 2022

10:16 Obstructions to Faster Diameter Computation: Asteroidal Sets

that the diameter of chordal graphs with a dominating target of cardinality at most k can
be decided in truly subquadratic time if the former value is at least dk. We first answer to
this question in the affirmative:

▶ Theorem 33. If G = (V, E) is chordal, with a dominating target of cardinality at most k,
and such that diam(G) ≥ 4, then we can compute its diameter in deterministic O(km) time.

Roughly, we lower the runtime of Theorem 33 to linear by avoiding calling upon Lemma 25.
Specifically, we prove that whenever diam(G) ≥ 4 there is always one of the ≤ k extremities
which we compute whose eccentricity equals the diameter. The analysis of Theorem 33 is
involved, as it is based on several nontrivial properties of chordal graphs [19, 23, 25, 64, 70].

We complete the above Theorem 33 with an improved algorithm for computing the
diameter of chordal graphs with bounded asteroidal number. For that, we combine the
algorithmic scheme of Theorem 33 with a previous approach from [42]. More specifically, for
the special case rad(G) = 2, we considerably revisit a prior technique from [42, Proposition 2],
for split graphs, so that is also works on diameter-three chordal graphs.

▶ Theorem 34. For every chordal graph G = (V, E) of asteroidal number at most k, we can
compute its diameter in deterministic O(km) time.

7 Conclusion

We generalized most known algorithmic results for diameter computation within AT-free
graphs to the graphs within the much larger class Extα, for any α ≥ 2. The AT-free graphs,
but also every DP graph with diameter at least six, belong to Ext2. Furthermore, for every
α ≥ 3, every graph of asteroidal number α (and so, every α-polygon graph, every α-moplex
graph and every chordal graph of leafage equal to α) belong to Extα.

We left open whether our results could be extended to the problem of computing exactly
all eccentricities. The algorithm in [42] for the AT-free graphs can also be applied to this
more general setting. Specifically, in every AT-free graph, there exist three vertices u, v, w

such that every vertex x is at distance e(x) from a vertex in N [u]∪N [v]∪N [w]. An algorithm
is proposed in [42] in order to prune out each of the three neighbourhoods to a clique while
keeping the latter property. Now, being given a graph from Extα, using our techniques we
could also compute a union of O(α2) neighbourhoods such that every vertex x is at maximum
distance from some vertex in it. However, insofar our approach only allows us to extract
from each neighbourhood a vertex of maximum eccentricity, that is less powerful than the
pruning method in [42].

It could be also interesting to give bounds on the number of extremities (resp., of pairwise
nonadjacent extremities) in other graph classes. Finally, we left as an open problem what
the complexity of computing the diameter is within the graphs which can be made AT-free
by removing at most k vertices. For stars and their subdivisions it suffices to remove one
vertex, and therefore this class of graphs has unbounded asteroidal number even for k = 1.

References

1 A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation and fixed parameter
subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the
Twenty-seventh Annual ACM-SIAM symposium on Discrete Algorithms (SODA), pages 377–
391. SIAM, 2016.

G. Ducoffe 10:17

2 J. Alman and V. Vassilevska Williams. A refined laser method and faster matrix multiplication.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539. SIAM, 2021.

3 H.-J. Bandelt, A. Dählmann, and H. Schütte. Absolute retracts of bipartite graphs. Discrete
Applied Mathematics, 16(3):191–215, 1987.

4 H.-J. Bandelt and E. Pesch. Efficient characterizations of n-chromatic absolute retracts.
Journal of Combinatorial Theory, Series B, 53(1):5–31, 1991.

5 J. Beisegel. Characterising AT-free graphs with BFS. In International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), pages 15–26. Springer, 2018.

6 A. Berry and J.-P. Bordat. Separability generalizes Dirac’s theorem. Discrete Applied
Mathematics, 84(1-3):43–53, 1998.

7 A. Berry and J.-P. Bordat. Local LexBFS properties in an arbitrary graph. In Proceedings of
Journéees Informatiques Messines (JIM 2000), 2000.

8 A. Berry and J.-P. Bordat. Asteroidal triples of moplexes. Discrete Applied Mathematics,
111(3):219–229, 2001.

9 J. A. Bondy and U. S. R. Murty. Graph theory. Springer London, 2008.
10 M. Borassi, P. Crescenzi, and L. Trevisan. An axiomatic and an average-case analysis of

algorithms and heuristics for metric properties of graphs. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 920–939. SIAM, 2017.

11 N. Bousquet and S. Thomassé. VC-dimension and Erdős–Pósa property. Discrete Mathematics,
338(12):2302–2317, 2015.

12 A. Brandstädt, V. Chepoi, and F.F. Dragan. The algorithmic use of hypertree structure and
maximum neighbourhood orderings. Discrete Applied Mathematics, 82(1-3):43–77, 1998.

13 A. Brandstädt, P. Fičur, A. Leitert, and M. Milanič. Polynomial-time algorithms for weighted
efficient domination problems in AT-free graphs and dually chordal graphs. Information
Processing Letters, 115(2):256–262, 2015.

14 K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate Analysis of Orthogonal Range
Searching and Graph Distances. Algorithmica, pages 1–24, 2020.

15 H. Broersma, T. Kloks, D. Kratsch, and H. Müller. Independent sets in asteroidal triple-free
graphs. SIAM Journal on Discrete Mathematics, 12(2):276–287, 1999.

16 S. Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in
planar graphs. ACM Transactions on Algorithms (TALG), 15(2):1–38, 2018.

17 S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal range
searching. Computational Geometry, 42(9):815–824, 2009.

18 V. Chepoi, F. Dragan, and Y. Vaxès. Center and diameter problems in plane triangulations
and quadrangulations. In Symposium on Discrete Algorithms (SODA’02), pages 346–355,
2002.

19 V. Chepoi and F.F. Dragan. A linear-time algorithm for finding a central vertex of a chordal
graph. In European Symposium on Algorithms, pages 159–170. Springer, 1994.

20 V. Chepoi, F.F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and
approximating trees of δ-hyperbolic geodesic spaces and graphs. In Monique Teillaud, editor,
Proceedings of the 24th ACM Symposium on Computational Geometry (SoCG), pages 59–68.
ACM, 2008.

21 V. Chepoi, F.F. Dragan, M. Habib, Y. Vaxès, and H. Alrasheed. Fast approximation of
eccentricities and distances in hyperbolic graphs. Journal of Graph Algorithms and Applications,
23(2):393–433, 2019.

22 V. Chepoi, B. Estellon, and Y. Vaxès. Covering planar graphs with a fixed number of balls.
Discrete & Computational Geometry, 37(2):237–244, 2007.

23 D. Corneil, F. Dragan, M. Habib, and C. Paul. Diameter determination on restricted graph
families. Discrete Applied Mathematics, 113(2-3):143–166, 2001.

24 D. Corneil, S. Olariu, and L. Stewart. Linear time algorithms for dominating pairs in asteroidal
triple-free graphs. SIAM Journal on Computing, 28(4):1284–1297, 1999.

IPEC 2022

10:18 Obstructions to Faster Diameter Computation: Asteroidal Sets

25 D.G. Corneil, F.F. Dragan, and E. Köhler. On the power of BFS to determine a graph’s
diameter. Networks: An International Journal, 42(4):209–222, 2003.

26 D.G. Corneil, S. Olariu, and L. Stewart. A linear time algorithm to compute a dominating
path in an AT-free graph. Information Processing Letters, 54(5):253–257, 1995.

27 D.G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free graphs. SIAM Journal on
Discrete Mathematics, 10(3):399–430, 1997.

28 D.G. Corneil and J. Stacho. Vertex ordering characterizations of graphs of bounded asteroidal
number. Journal of Graph Theory, 78(1):61–79, 2015.

29 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of
bounded clique-width graphs. ACM Transactions on Algorithms (TALG), 15(3):1–57, 2019.

30 M. Dalirrooyfard and J. Kaufmann. Approximation Algorithms for Min-Distance Problems in
DAGs. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 60:1–60:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

31 C. Dallard, R. Ganian, M. Hatzel, M. Krnc, and M. Milanič. Graphs with two moplexes. In
Proceedings of LAGOS’21, volume 195 of Procedia Computer Science, pages 248–256. Elsevier,
2021.

32 J. De Rumeur. Communications dans les réseaux de processeurs. Masson Paris, 1994.
33 F.F. Dragan. HT-graphs: centers, connected r-domination and Steiner trees. The Computer

Science Journal of Moldova, 1(2):64–83, 1993.
34 F.F. Dragan, G. Ducoffe, and H. Guarnera. Fast Deterministic Algorithms for Computing All

Eccentricities in (Hyperbolic) Helly Graphs. In Anna Lubiw and Mohammad R. Salavatipour,
editors, Algorithms and Data Structures (WADS), volume 12808 of Lecture Notes in Computer
Science, pages 300–314. Springer, 2021.

35 F.F. Dragan and E. Köhler. An approximation algorithm for the tree t-spanner problem on
unweighted graphs via generalized chordal graphs. Algorithmica, 69(4):884–905, 2014.

36 F.F. Dragan and F. Nicolai. LexBFS-orderings of distance-hereditary graphs with application
to the diametral pair problem. Discrete Applied Mathematics, 98(3):191–207, 2000.

37 F.F. Dragan, F. Nicolai, and A. Brandstädt. LexBFS-orderings and power of graphs. In
Fabrizio d’Amore, Paolo Giulio Franciosa, and Alberto Marchetti-Spaccamela, editors, Graph-
Theoretic Concepts in Computer Science (WG), volume 1197 of Lecture Notes in Computer
Science, pages 166–180. Springer, 1996.

38 G. Ducoffe. A New Application of Orthogonal Range Searching for Computing Giant Graph
Diameters. In SOSA, 2019.

39 G. Ducoffe. Beyond Helly Graphs: The Diameter Problem on Absolute Retracts. In Łukasz
Kowalik, Michał Pilipczuk, and Paweł Rzażewski, editors, Graph-Theoretic Concepts in
Computer Science (WG), pages 321–335. Springer International Publishing, 2021.

40 G. Ducoffe. Isometric Embeddings in Trees and Their Use in Distance Problems. In Filippo
Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 43:1–43:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021.

41 G. Ducoffe. Optimal centrality computations within bounded clique-width graphs. In 16th
International Symposium on Parameterized and Exact Computation (IPEC), volume 214 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:16. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021.

42 G. Ducoffe. The diameter of AT-free graphs. Journal of Graph Theory, 99(4):594–614, 2022.
43 G. Ducoffe and F.F. Dragan. A story of diameter, radius, and (almost) Helly property.

Networks, 77(3):435–453, 2021.

G. Ducoffe 10:19

44 G. Ducoffe, M. Habib, and L. Viennot. Diameter computation on H-minor free graphs
and graphs of bounded (distance) VC-dimension. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1905–1922. SIAM, 2020.

45 A. Farley and A. Proskurowski. Computation of the center and diameter of outerplanar graphs.
Discrete Applied Mathematics, 2(3):185–191, 1980.

46 F.V. Fomin, M. Matamala, E. Prisner, and I. Rapaport. AT-free graphs: linear bounds for
the oriented diameter. Discrete Applied Mathematics, 141(1-3):135–148, 2004.

47 T. Gallai. Transitiv orientierbare graphen. Acta Math. Hungarica, 18(1):25–66, 1967.
48 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal

of Combinatorial Theory, Series B, 16(1):47–56, 1974.
49 P. Gawrychowski, H. Kaplan, S. Mozes, M. Sharir, and O. Weimann. Voronoi diagrams on

planar graphs, and computing the diameter in deterministic Õ(n5/3) time. In Symposium on
Discrete Algorithms (SODA), pages 495–514. SIAM, 2018.

50 P. Golovach, P. Heggernes, D. Kratsch, D. Lokshtanov, D. Meister, and S. Saurabh. Bandwidth
on AT-free graphs. In International Symposium on Algorithms and Computation (ISAAC),
pages 573–582. Springer, 2009.

51 P.A. Golovach, D. Paulusma, and E.J. van Leeuwen. Induced disjoint paths in AT-free graphs.
In Scandinavian Workshop on Algorithm Theory (SWAT), pages 153–164. Springer, 2012.

52 M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004.
53 J. Gorzny and J. Huang. End-vertices of LBFS of (AT-free) bigraphs. Discrete Applied

Mathematics, 225:87–94, 2017.
54 M. Gromov. Hyperbolic Groups, pages 75–263. Springer, New York, NY, 1987.
55 M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refinement, with

applications to transitive orientation, interval graph recognition and consecutive ones testing.
Theoretical Computer Science, 234(1-2):59–84, 2000.

56 H. Hempel and D. Kratsch. On claw-free asteroidal triple-free graphs. Discrete Applied
Mathematics, 121(1-3):155–180, 2002.

57 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and System
Sciences, 62(2):367–375, 2001.

58 T. Kloks, D. Kratsch, and H. Müller. Asteroidal sets in graphs. In International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), pages 229–241. Springer, 1997.

59 T. Kloks, D. Kratsch, and H. Müller. On the structure of graphs with bounded asteroidal
number. Graphs and Combinatorics, 17(2):295–306, 2001.

60 Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar Tenfelde-
Podehl, and Oliver Zlotowski. Centrality indices. In Network Analysis, pages 16–61. Springer,
2005.

61 D. Kratsch and H. Müller. Colouring AT-free graphs. In European Symposium on Algorithms
(ESA), pages 707–718. Springer, 2012.

62 D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on AT-free graphs. Discrete
Applied Mathematics, 156(10):1936–1947, 2008.

63 D. Kratsch and J. Spinrad. Between O(nm) and O(nα). SIAM Journal on Computing,
36(2):310–325, 2006.

64 R. Laskar and D. Shier. On powers and centers of chordal graphs. Discrete Applied Mathematics,
6(2):139–147, 1983.

65 I.-J. Lin, T.A. McKee, and D.B. West. The leafage of a chordal graph. Discussiones
Mathematicae Graph Theory, 18(1):23–48, 1998.

66 S. Olariu. A simple linear-time algorithm for computing the center of an interval graph.
International Journal of Computer Mathematics, 34(3-4):121–128, 1990.

67 R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

68 N. Pržulj, D.G. Corneil, and E. Köhler. Hereditary dominating pair graphs. Discrete Applied
Mathematics, 134(1-3):239–261, 2004.

IPEC 2022

10:20 Obstructions to Faster Diameter Computation: Asteroidal Sets

69 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing (STOC), pages 515–524, 2013.

70 D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs.
SIAM Journal on Computing, 5(2):266–283, 1976.

71 R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput.
Syst. Sci., 51(3):400–403, 1995.

72 J. Stacho. 3-colouring AT-free graphs in polynomial time. In International Symposium on
Algorithms and Computation (ISAAC), pages 144–155. Springer, 2010.

73 L. Stewart and R. Valenzano. On polygon numbers of circle graphs and distance hereditary
graphs. Discrete Applied Mathematics, 248:3–17, 2018.

74 M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposition
via recursive factorizing permutations. In ICALP, pages 634–645. Springer, 2008.

75 V. Vassilevska Williams and R.R. Williams. Subcubic equivalences between path, matrix, and
triangle problems. Journal of the ACM (JACM), 65(5):1–38, 2018.

A Proof of Lemma 8

The following lemma shall be used in our proofs:

▶ Lemma 35 ([59]). Let S be a minimal separator for a prime graph G = (V, E). For any
component C of G \ S, if C does not contain an extremity of G, then N(c) ∩ S is a separator
of G \ C for every c ∈ C.

Recall for what follows that a vertex is called universal if and only if all other vertices
are adjacent to it.

Proof of Lemma 8. Since we assume that |V | ≥ 3, we have that x cannot be a universal
vertex (otherwise, V \ {x} would be a nontrivial module, thus contradicting that G is prime).
Let y ∈ F (x) be arbitrary and we assume that y is not an extremity. We shall replace y by
some extremity y∗ so that d(x, y) = d(x, y∗) = e(x). First we observe that x /∈ N [y] because
we assume that x is not a universal vertex. Let w be disconnected from x in G \ N [y], and
let S ⊆ N [y] be a minimal wx-separator of G (obtained by iteratively removing vertices from
N [y] while w and x stay disconnected) – possibly, y /∈ S. –

We continue with a useful property of the connected components of G \ S. Specifically, let
C be any connected component of G\S not containing vertex x. We claim that d(x, c) = e(x)
for each c ∈ C. Indeed, every shortest xc-path contains a vertex s ∈ S and therefore,
d(x, y) ≤ 1 + d(s, x) ≤ d(c, s) + d(s, x) = d(c, x). In particular, C ⊆ N(S) (otherwise,
d(x, y) < 2 + d(s, x) ≤ d(x, c) for any c ∈ C \ N(S) and any s ∈ S that is on a shortest
cx-path). It implies that, if c ∈ C is an extremity, then d(c, y) ≤ 2.

In what follows, let X the connected component of x in G \ S. Then, amongst all vertices
of G \ S in another connected component than x, let a be minimizing |N(a) ∩ S| and let A

be its connected component in G \ S. Let us assume that A does not contain an extremity of
G (else, we are done). By Lemma 35, N(a) ∩ S is a separator of G \ A. Let b be separated
from vertex x in G \ (A ∪ N(a)). We claim that b /∈ S. In order to see that, we first need to
observe that X is a full component for S (otherwise, S could not be a minimal wx-separator).
Therefore if b ∈ S, then the subset X ∪ {b} would be connected, thus contradicting that
x and b are disconnected in G \ (A ∪ N(a)). This proves our claim, and from now on we
denote B the connected component of b in G \ S. Observe that B ≠ X (otherwise, N(a) ∩ S

could not be a bx-separator in G \ A). We further claim that N(B) ⊆ N(a). Indeed, recall

G. Ducoffe 10:21

that X is a full component for S. Hence, if it were not the case that N(B) ⊆ N(a) then
the subset X ∪ B ∪ (N(B) \ N(a)) would be connected, thus contradicting that x and b are
disconnected in G \ (A ∪ N(a)).

By the above claim, we get N(b′) ∩ S ⊆ N(B) ⊆ N(a) ∩ S, for every b′ ∈ B. Thus, by
minimality of |N(a) ∩ S|, we obtain N(b′) ∩ S = N(a) ∩ S = N(B) for every b′ ∈ B. But
then, B is a module of G, and therefore B = {b} because G is prime. Finally, suppose by
contradiction b is not an extremity. By repeating the exact same arguments for b instead of
a, we find another connected component C = {c} of G \ S so that: c is separated from x

in G \ (B ∪ N(b)) = G \ N [b], and N(c) = N(b) = N(a) ∩ S (possibly, C = A and a = c).
However, it implies that b and c are twins, a contradiction. Overall, we may choose for our
vertex y∗ either an extremity of A (if there exists one) or vertex b. ◀

B Proof of Lemma 16

Proof of Lemma 16. Since the property of being a DP graph is hereditary, the quotient
graph of any DP graph is also a DP graph. In particular, it suffices to prove even more strongly
that an arbitrary DP graph G of diameter at least six (not necessarily prime) cannot contain
three pairwise nonadjacent extremities. Suppose by contradiction the existence of three such
extremities u, v, w. Let (x, y) be a dominating pair. By Lemma 11, u, v, w ∈ N [x] ∪ N [y].
Without loss of generality, let u, v ∈ N(x).

We claim that S = N(u) ∩ N(v) is not a separator of G. Suppose by contradiction that it
is the case. Let A = N [u]\N(v), B = N [v]\N(u) and X = V \(A ∪ B ∪ S). Since S ⊆ N(u)
and u is an extremity of G, B ∪ X must be contained in some connected component of G \ S.
But similarly, since S ⊆ N(v) and v is an extremity of G, A ∪ X must be also contained
in some connected component of G \ S. As a result, X = ∅, and the only two components
of G \ S are A and B. In particular, w ∈ A ∪ B ⊆ N [u] ∪ N [v], that is a contradiction.
Therefore, we proved as claimed that S is not a separator of G.

We now claim that u, v are still extremities in the subgraph G \ S. By symmetry, it
suffices to prove the result for vertex u. Observing that removing all of N [u] \ S leaves us
with G \ N [u], we are done because u is an extremity of G. – However, please note that
vertex w may not be an extremity of G \ S. –

Since G\S is a DP graph, there exists a dominating pair (x′, y′) in this subgraph. Again by
Lemma 11 we have u, v ∈ N [x′] ∪ N [y′]. Without loss of generality, let u ∈ N [x′], v ∈ N [y′]
(possibly, u = x′, resp. v = y′). Now, let P = (z0 = x′, z1, . . . , zℓ = y′) be a shortest
x′y′-path of G \ S. By construction, P is a dominating path of G \ S. In order to derive
a contradiction, we shall prove, using P , that e(x) ≤ 4. Indeed, doing so, since (x, y) is a
dominating pair, we obtain that diam(G) ≤ e(x) + 1 ≤ 5, a contradiction. For that, let
t ∈ V be arbitrary. We may further assume t /∈ N [x]. If t ∈ S, then u, v ∈ N(t) ∩ N(x),
therefore d(x, t) ≤ 2. From now on, let us assume that t /∈ S. Consider some index i such
that t ∈ N [zi]. Let Qu be an induced xzi-path such that V (Qu) ⊆ {x, u, z0, z1, . . . , zi}. In
the same way, let Qv be an induced xzi-path such that V (Qv) ⊆ {x, v, zℓ, zℓ−1, . . . , zi}. Let
us first assume that V (Qu) ∪ V (Qv) induces a cycle C. Then, the length of C must be
≤ 6 because C is a DP graph and no cycle of length ≥ 7 contains a dominating pair. As a
result, d(x, zi) ≤ 3, and so d(x, t) ≤ 4. For the remainder of the proof, we assume that there
exists a chord in the cycle C induced by V (Qu) ∪ V (Qv). Since the three of P, Qu, Qv are
induced paths, the only possible chords are: uzj , for some i + 1 ≤ j ≤ ℓ; or vzj , for some
0 ≤ j ≤ i − 1. By symmetry, let uzj be a chord of C. Since P is a shortest x′y′-path of
G \ S, and u ∈ N [x′], we obtain that j ∈ {0, 1, 2}. In particular, we obtain that i ≤ 1, and
so, d(x, t) ≤ 1 + d(x, zi) ≤ 2 + d(u, zi) ≤ 4. ◀

IPEC 2022

10:22 Obstructions to Faster Diameter Computation: Asteroidal Sets

C Proof of Lemma 23

Proof of Lemma 23. We describe the algorithm before proving its correctness and analysing
its runtime.

Algorithm. Let σ be any LexBFS(u) order of G, and let w /∈ S be minimizing σ−1(w). First
we compute the maximum index i, n > i ≥ σ−1(w), so that λ(w, σ(i)) = λ(σ(i), σ(i)) = λi.
We set j := 0, Sj := S and Mj := {v /∈ S | w ⪯ v ⪯ σ(i)}. Then, while |Mj | > 1, we apply
the following procedure:

We partition Mj into groups A1
j , A2

j , . . . , A
pj

j so that two vertices are in the same group
if and only if they have the same neighbours in Sj .
Without loss of generality let A1

j be minimizing |N(A1
j) ∩ Sj |. We set Mj+1 = A1

j ,
Sj+1 = Mj \ Mj+1.
We set j := j + 1.

If |Mj | = 1 (end of the while loop), then we output the unique vertex v ∈ Mj .

Correctness. We prove by induction that the following three properties hold, for any j ≥ 0:
(i) Mj is a module of G \ Sj ; (ii) every v ∈ Mj is a vertex of V \ S such that d(u, v) is
maximized; and (iii) for every v ∈ Mj , either v is an extremity of G or every connected
component C of G \ N [v] that does not contain vertex u satisfies C ⊆ Mj .

First, we consider the base case j = 0. Recall that M0 = {v /∈ S | w ⪯ v ⪯ σ(i)},
where i is the maximum index such that λ(w, σ(i)) = λ(σ(i), σ(i)) = λi. By Corollary 18
we have λ(v, σ(i)) = λi for each v ∈ M0, and so, N≻(σ(i)) ⊆ N(v). The latter implies that
d(u, v) = d(u, σ(i)) because σ is a (Lex)BFS order. Equivalently, d(u, v) = d(u, w), and by
the minimality of σ−1(w) we have that w is a vertex of V \ S maximizing d(u, w) (Property
(ii)). Moreover, N(v) \ (S ∪ M0) = N≻(σ(i)) \ S for each v ∈ M0, therefore M0 is a module
of G \ S (Property (i)). Now, let v ∈ M0 be arbitrary. If v is not an extremity of G, then let
C be any connected component of G \ N [v] not containing vertex u. We claim that C ⊆ M0.
Indeed, suppose by contradiction C ∩ S ̸= ∅. By maximality of d(u, v), we have v /∈ N [u]
(for else, V \ S ⊆ N [u]). But then, we would get s ⊥v u for any s ∈ C ∩ S, and therefore by
the definition of S we should have v ∈ S. A contradiction. As a result we have C ∩ S = ∅.
Furthermore, we have w ⪯ c for each c ∈ C, that follows from the minimality of σ−1(w). Let
z ∈ C be maximizing σ−1(z). In order to prove that C ⊆ M0, it now suffices to prove that
σ−1(z) ≤ i. Suppose by contradiction that it is not the case. We first observe N≻(z) ⊆ N(v)
by maximality of σ−1(z). Therefore (since in addition, v ⪯ σ(i) ≺ z), λ(v, z) = λ(z, z).
Since we suppose v ⪯ σ(i) ≺ z, we also get by Corollary 18 that λ(σ(i), z) = λ(z, z). Then,
N≻(z) ⊆ N≻(σ(i)) ⊆ N(w). However, it implies λ(w, z) = λ(z, z), thus contradicting the
maximality of i (< σ−1(z)) for this property.

Then, let us assume that Mj , Sj satisfy all of properties (i), (ii) and (iii), and
that |Mj | > 1. By construction, all vertices in Mj+1 have the same neighbours in Sj .
Since Mj+1 ⊂ Mj and Mj is a module of G \ Sj , we obtain that Mj+1 is a module of
G \ (Mj \ Mj+1) = G \ Sj+1 (Property (i)). Property (ii) also holds because it holds for
Mj and Mj+1 ⊂ Mj . Now, let v ∈ Mj+1 be arbitrary, and let us assume it is not an extremity
of G. Let C be any component of G \ N [v] not containing vertex u. By Property (iii),
C ⊆ Mj . Suppose by contradiction C ̸⊂ Mj+1. Let z ∈ C \ Mj+1. Since we have C ∩ Sj = ∅,
we obtain N(z) ∩ Sj ⊆ N(v) ∩ Sj . By minimality of |N(v) ∩ Sj | = |N(Mj+1) ∩ Sj |, we get
N(z) ∩ Sj = N(v) ∩ Sj , which contradicts that z /∈ Mj+1.

G. Ducoffe 10:23

The above Property (iii) implies that, if |Mj | = 1, then the unique vertex v ∈ Mj is
indeed an extremity. Furthermore, by Property (ii), v is a vertex of V \ S that maximizes
d(u, v). Hence, in order to prove correctness of the algorithm, all that remains to prove is
that this algorithm eventually halts. For that, we claim that if |Mj | > 1 then |Mj+1| < |Mj |.
Indeed, Property (i) asserts that Mj is a module of G \ Sj . Let A1

j , A2
j , . . . , A

pj

j be the
partition of Mj such that two vertices are in the same group if and only if they have the same
neighbours in Sj . Since G is prime, Mj cannot be a nontrivial module of G, and therefore
pj ≥ 2. Hence, |Mj+1| = |A1

j | < |Mj |, as claimed. This above claim implies that eventually
we reach the case when |Mj | = 1, and so, the algorithm eventually halts.

Complexity. Computing the LexBFS ordering σ can be done in linear time [70]. Then once
we computed vertex w in additional O(n) time, we can compute the largest index i such that
λ(w, σ(i)) = λ(σ(i), σ(i)) as follows. We mark all the neighbours of vertex w, then we scan
the vertices by decreasing LexBFS number, and we stop at the first encountered vertex x ̸= u

such that all vertices in N≻(x) are marked. Since all the neighbour-sets need to be scanned
at most once, the total runtime for this step is linear. Finally, we dynamically maintain
some partition such that, at the beginning of any step j ≥ 0, this partition equals (Mj). If
|Mj | > 1, then we consider each vertex s ∈ Sj sequentially, and we replace every group X in
the partition by the nonempty groups amongst X \N(s), X ∩N(s). In doing so, we obtain the
partition (A1

j , A2
j , . . . , A

pj

j). We remove all groups but Mj+1, computing Sj+1 = Mj \ Mj+1
along the way. By using standard partition refinement techniques [55, 67], after an initial
processing in O(|M0|) time each step j can be done in O

(∑
s∈Sj

|N(s)| + |Mj \ Mj+1|
)

time. Because all the sets Sj are pairwise disjoint the total runtime is linear. ◀

D Proof of Theorem 32

Proof of Theorem 32. By Lemma 29, we may assume G to be prime. We proceed as follows:
We compute a vertex c of eccentricity at most rad(G) + 15k − 5.
Then, we set H = {c}, X = ∅. While H is not a dominating set of G, we compute an
extremity xi /∈ N [H], we add in X all vertices of N [xi] and, for every y ∈ N [xi], we add
to H some arbitrary shortest yc-path Py.
Let S = {N [Px] | x ∈ X}∪{N [v] | v ∈ V }. We apply a greedy set cover algorithm in order
to extract from S a sub-family S ′ so that

⋃
S ′ = V . Specifically, we set S ′ := ∅, U := V ,

where U represents the uncovered vertices. While U ̸= ∅, we add to S ′ any subset S ∈ S
such that |S ∩ U | is maximized, and then we set U := U \ S.
Let A = {x ∈ X | N [Px] ∈ S ′} and let B = {v ∈ V \ A | N [v] ∈ S ′}.

For every x ∈ A, let Wx contain the min{d(x, c) + 1, 42k − 11} closest vertices to x in
Px. For each w ∈ Wx, we compute ℓ(w) = max{e(w′) | w′ ∈ N [w]}.
For every v ∈ B, we directly compute the eccentricities of all vertices in N [v].

We output the maximum eccentricity computed as the diameter value.

Correctness. In order to prove correctness of this above algorithm, let u ∈ V be such that
e(u) = diam(G). By construction, S ′ covers V , and therefore, either there exists a x ∈ A

such that u ∈ N [Px], or there exists a v ∈ B such that u ∈ N [v]. In the latter case, we
computed the eccentricities of all vertices in N [v], including e(u) = diam(G). Therefore,
we only need to consider the former case. Specifically, let u∗ ∈ V (Px) ∩ N [u]. To prove

IPEC 2022

10:24 Obstructions to Faster Diameter Computation: Asteroidal Sets

correctness of the algorithm, it suffices to prove that u∗ ∈ Wx. The proof that it is indeed
the case is identifical to that of Theorem 26. Indeed, since G has a dominating target of
cardinality at most k, it contains an additive tree (3k − 1)-spanner [59] and so – the same as
graphs in Extk –, it is (3k − 1)-hyperbolic [20, 35].

Complexity. By Lemma 6, we can compute a vertex c of eccentricity at most rad(G)+15k−5
in linear time. Then, during the second phase of the algorithm, we claim that each step can
be done in O(∆m) time. Indeed, while H is not a dominating set of G, a new extremity
xi /∈ N [H] can be computed by applying Lemma 23. Furthermore, we can compute the
shortest paths Py, for y ∈ N [xi], by executing at most ∆ + 1 BFS. Overall, the runtime
of this second phase is in O(t∆m), with t the number of extremities computed. We claim
that t ≤ k. Indeed, let D be a fixed (but unknown) dominating target of cardinality at
most k. Let x1, x2, . . . , xt denote all the extremities computed during this second phase.
By Lemma 11, each extremity xi computed is in N [D]. In order to prove that there are
at most k extremities computed, it suffices to prove that N [xi] ∩ N [xj] ∩ D = ∅ for every
i < j. Suppose by contradiction that there exists a vertex v ∈ D such that v ∈ N [xi] ∩ N [xj].
At step i, we add v in X, and therefore from this point on xj ∈ N [H]. It implies that we
cannot select xj at step j, a contradiction. Hence, the total runtime of this second phase is
in O(k∆m).

In order to bound the runtime of the third phase of the algorithm, we first need to
bound the minimum number of subsets of S needed in order to cover V . We claim that it
is no more than 2k. Indeed, as before let D be a fixed (but unknown) dominating target
of cardinality at most k. For each x ∈ D ∩ X, we select the set Px. For each v ∈ D \ X,
we select the sets N [v] and Px′ , for some arbitrary x′ ∈ X such that v ∈ N(Px′). The
claim follows since we assume D to be a dominating target. It implies that the greedily
computed sub-family S ′ has its cardinality in O(k log n). The cumulative size of all subsets
in S is at most |X|n + 2m ≤ k(∆ + 1)n + 2m. Furthermore, the greedy set cover algorithm
runs in |S ′| = O(k log n) steps. As a result, the total runtime for this third phase is in
O(k log n · (k∆n + m)) = O(k2∆m log n).

Lastly, during the fourth and final phase, we need to apply Lemma 25
∑

x∈A |Wx| =
O(k|A|) times, and we need to execute

∑
v∈B |N [v]| = O(∆|B|) BFS. Each call to Lemma 25

takes O(qm) time, with q the number of extremities. By Lemma 11, q = O(k∆). Furthermore,
we recall that |A| + |B| ≤ |S ′| = O(k log n). Therefore, the total runtime for this phase –
and also for the whole algorithm – is in O(k3∆m log n). ◀

On the Parameterized Complexity of Symmetric
Directed Multicut
Eduard Eiben !

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Clément Rambaud !

DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

Magnus Wahlström !

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Abstract
We study the problem Symmetric Directed Multicut from a parameterized complexity per-
spective. In this problem, the input is a digraph D, a set of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)}
and an integer k, and the task is to find a set X ⊆ V (D) of size at most k such that for every
1 ≤ i ≤ ℓ, X intersects either all (si, ti)-paths or all (ti, si)-paths. Equivalently, every strongly
connected component of D − X contains at most one vertex out of si and ti for every i. This
problem is previously known from research in approximation algorithms, where it is known to have an
O(log k log log k)-approximation. We note that the problem, parameterized by k, directly generalizes
multiple interesting FPT problems such as (Undirected) Vertex Multicut and Directed
Subset Feedback Vertex Set. We are not able to settle the existence of an FPT algorithm
parameterized purely by k, but we give three partial results: An FPT algorithm parameterized by
k + ℓ; an FPT-time 2-approximation parameterized by k; and an FPT algorithm parameterized by
k for the special case that the cut requests form a clique, Symmetric Directed Multiway Cut.
The existence of an FPT algorithm parameterized purely by k remains an intriguing open possibility.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Parameterized complexity, directed graphs, graph separation problems

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.11

1 Introduction

Graph separation problems have been studied in parameterized complexity for a long time,
and with significant success. In particular for undirected graphs, a wide range of powerful
FPT algorithms have been constructed, from the early results on Odd Cycle Transversal
by Reed et al. [21] and Multiway Cut by Marx [16], to quite generic problems such as
Vertex Multicut [2, 17]. In the latter problem, the input is an undirected graph G, a set
of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)}, and an integer k, and the goal is to find, if it exists,
a set of at most k vertices whose removal disconnects si from ti, for every 1 ≤ i ≤ ℓ. Marx
showed an FPT algorithm for this problem parameterized by k + ℓ [16], but the question
of an FPT algorithm parameterized by k alone remained open for a long time, until finally
settled simultaneously by Bousquet et al. [2] and Marx and Razgon [15].

For directed graphs, by comparison, the success is more limited, and the line between
FPT and W[1]-hard cut problems is much less clear. On the one hand, some high profile
FPT algorithms do exist for directed graph problems. One of the earliest was Directed
Feedback Vertex Set, where the goal is to find a set of at most k vertices in a directed
graph which intersects all directed cycles. This problem was shown to be FPT in 2007 by
Chen et al. [3] by reduction to an auxiliary directed graph separation problem later dubbed
Skew Multicut. Later FPT results, following the FPT algorithms for Multicut on

© Eduard Eiben, Clément Rambaud, and Magnus Wahlström;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Eduard.Eiben@rhul.ac.uk
https://orcid.org/0000-0003-2628-3435
mailto:clement.rambaud@ens.psl.eu
mailto:Magnus.Wahlstrom@rhul.ac.uk
https://orcid.org/0000-0002-0933-4504
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On the Parameterized Complexity of Symmetric Directed Multicut

undirected graphs, include the problems Directed Multiway Cut [6] and Directed
Subset Feedback Vertex Set [5]. However, other problems which are FPT on undirected
graphs are intractable on digraphs. Directed Odd Cycle Transversal was shown
to be W[1]-hard by Lokshtanov et al. [14], although it admits an FPT 2-approximation.
For another example, Directed Multicut is the natural generalization of Multicut to
digraphs. Here, the input is a digraph D, a set of cut requests C = {(s1, t1), . . . , (sℓ, tℓ)} and
an integer k, and the goal is to find, if it exists, a set of at most k vertices whose removal
cuts every path from si to ti, for every 1 ≤ i ≤ ℓ. This problem is W[1]-hard parameterized
by k alone [17], even on directed acyclic graphs (DAGs) [13] or for just four cut requests [19].

With this background, it may be considered highly unlikely to find a natural cut problem
on digraphs that directly generalizes Vertex Multicut and which is FPT parameterized
by the solution size alone. Yet, we consider a problem for which this appears intriguingly
plausible.

For a first attempt at a modified problem definition, consider the variant where for every
cut request (si, ti) we require both directions (si, ti) and (ti, si) to be cut. However, this
problem remains W[1]-hard; indeed, it is equivalent to the original problem if the input graph
is a DAG. Furthermore, it captures Directed Vertex Multicut on general digraphs: if
I = (D, T, k) is a Directed Vertex Multicut instance, construct D′ by adding a new
vertex s′

i and an arc s′
isi for every (si, ti) ∈ T . Then, there is no (ti, s′

i)-path in D′, and
cutting every (s′

i, ti)-paths and (ti, s′
i)-paths is equivalent to cut every (si, ti)-path. This

shows that this first symmetric version of Directed Vertex Multicut is W [1]-hard too,
even for ℓ = 4.

However, another directed generalization of Vertex Multicut has still unknown
parameterized complexity.

Symmetric Directed Vertex Multicut
Input: a digraph D, a set of pairs of vertices C = {(s1, t1), . . . , (sℓ, tℓ)}, and an integer
k.
Parameter: k

Output: find, if there exists, a set X of at most k vertices whose removal cuts, for
every i = 1, . . . , ℓ, either all (si, ti)-paths or all (ti, si)-paths.

As with many directed cut problems, there are simple reductions between the edge- and
the vertex deletion variants. We focus on the vertex deletion variant since it is easier to work
with (cf. shadow removal, discussed below).

Let us make a few observations to get a feeling for the problem. Let I = (D, C, k) be an
instance of Symmetric Directed Vertex Multicut (Symmetric Multicut for short),
and note that a set X ⊆ V (D) is a solution if and only if si and ti are in distinct strongly
connected components in D −X for every cut request (si, ti). This observation is important
for understanding the structure of the problem.

We also note that Symmetric Multicut generalizes several of the above-mentioned
landmark FPT problems. Indeed, first consider Vertex Multicut. Let I = (G, C, k) be an
instance of this problem. We can then produce an instance I ′ = (D, C, k) of Symmetric
Multicut simply by replacing every edge uv ∈ E(G) by the arcs uv and vu. Indeed, for
every set X ⊆ V (D), the strong and weak components of D −X coincide. Hence X is a
symmetric multicut in D if and only it is a vertex multicut in G.

Next, let D be a digraph, and let C =
(

V (D)
2

)
be the set containing all pairs of vertices

over D. Then I = (D, C, k) captures Directed Feedback Vertex Set. More generally,
consider Directed Subset Feedback Vertex Set. In this problem, the input is a

E. Eiben, C. Rambaud, and M. Wahlström 11:3

digraph D, a set of arcs S ⊆ E(D), and an integer k, and the goal is to find a set of at most
k vertices which intersects every cycle containing an arc of S. By the above observation,
I = (D, S, k) can be interpreted as-is as an equivalent instance of Symmetric Multicut.
Thus, if Symmetric Multicut is indeed FPT parameterized by k, it would make a
significant generalization over the previous state of the art.

Our results. We are not able to settle the status of Symmetric Multicut parameterized
by k, but we give three partial results. First, we give an FPT algorithm for the combined
parameter of k + ℓ. Second, we show an FPT 2-approximation for Symmetric Multicut
with parameter k. Finally, we consider the problem Symmetric Directed Multiway
Cut, where the cut requests are a set C =

(
T
2
)

containing all pairs over a set of terminals T ;
i.e., every strongly connected component of D −X is allowed to contain at most one vertex
of T . We show that this restricted variant is FPT parameterized by k.

Technical overview. The first of these results is relatively straight-forward. We consider
the solution structure of the problem, and show a simple FPT reduction to Skew Multicut.
Since Skew Multicut is FPT parameterized by k, this finishes the result. This is analogous
to the FPT algorithm for Vertex Multicut parameterized by k + ℓ via reduction to
Multiway Cut, noted by Marx [16].

The FPT 2-approximation is more interesting. First, by iterative compression we can
assume that we have a solution Y , say |Y | ≤ 2k + 1, and want to determine the existence of
a solution X with |X| < |Y | (or otherwise prove that there is no solution of cardinality at
most k). By branching on the intersection X ∩ Y we can assume that no vertex of Y is to
be deleted. Furthermore, recall from above that a solution X to an instance I = (D, C, k)
is characterized by the strongly connected component structure of D −X. Hence, we may
also guess a partition of Y into strongly connected components and a topological order
on these components. After all these steps, we have an instance I = (D′, C, k′) and a set
Y = {y1, . . . , yr} ⊆ V (D), such that Y is a symmetric multicut for (D, C) and with the
assumption that we are looking for a symmetric multicut X such that X ∩ Y = ∅ and in
D′ −X, yi reaches yj only if i ≤ j. Thus, there are two remaining tasks to coordinate. X

cuts all paths from yj to yi for i < j, and simultaneously, for every terminal yi and cut
pair (sj , tj), X cuts at least one of sj and tj from the strongly connected component of yi.
We achieve a 2-approximation by treating these steps separately. The first property can be
ensured by a reduction to Skew Multicut; we note that Skew Multicut is still FPT
(using the algorithm of Chen et al. [3]) even if the underlying graph is not a DAG. The
key observation is now that after deleting such a skew multicut for Y , the remaining task
separates into |Y | disjoint instances, one for each terminal y ∈ Y . Hence, it remains to solve
the problem for an instance where there is a central vertex y such that for every cut request
(si, ti), every closed walk on si and ti passes through y. Solving this problem in FPT time
finally yields and FPT-time 2-approximation for Symmetric Multicut.

The FPT algorithm for Symmetric Directed Multiway Cut is more technical. It
works by adapting the algorithm for Directed Subset Feedback Vertex Set of Chitnis
et al. [5], but there are some technical complications. First, as a more robust formulation we
consider the following setting. The input is a digraph D, a list A1, . . . , Aℓ of sets of arcs of
D, and an integer k, with the restriction that each Ai is a “near-biclique”, Ai = Si × Ti for
some possibly overlapping vertex sets Si and Ti. The task is to find a set X ⊆ V (D) of at
most k vertices such that no closed walk in D −X contains arcs from two distinct sets Ai

and Aj . Note that this version allows us to capture both the setting where terminals are

IPEC 2022

11:4 On the Parameterized Complexity of Symmetric Directed Multicut

deletable and where terminals are non-deletable, e.g., by replacing a non-deletable terminal
by k + 1 false twins, and for each terminal ti ∈ T letting Si contain the twin copies of ti

and Ti their out-neighbours. More importantly, arc sets of the form Ai = Si × Ti are closed
under the vertex bypassing operation used in shadow removal, which the original problem
formulation is not. (See Section 5.)

By the same setup as the FPT 2-approximation (and as Chitnis et al. [5]), we reduce
to the iterative compression version where we additionally have a solution set Y and an
ordering y1 < . . . < yr over Y , with the assumption that yi reaches yj in D −X if and only
if i < j. We can now apply the shadow removal technique and consider the set of vertices
R reachable from yr in D −X. By shadow removal, this set is strongly connected to yr in
D −X. But here is the second complication. In Directed Subset Feedback Vertex
Set, R cannot contain any “terminal arc” at all, which allows the algorithm to proceed via
an intricate branching step over graph separations in an auxiliary graph (using the so-called
anti-isolation lemma and important separators branching). In our setting there can be an
index i0 such that R contains arcs of i0 (and Ai0 can be unboundedly big). However, via an
extra color-coding step, we are able to modify the method of Chitnis et al. [5], to allow us to
guess i0 and find R. We can then find a solution by repeating the process. In total, we show
that Symmetric Directed Multiway Cut has an algorithm in time O∗(2O(k3)).

Related work. The problem Symmetric Multicut was first studied by Klein et al. [12] in
the context of approximation algorithms. The results were improved upon by Even et al. [9],
who showed that Symmetric Multicut admits an O(log k log log k)-approximation, where
k is the size of the optimal solution. By contrast, the best approximation ratio we are aware
of for Directed Multicut is just slightly better than O(

√
n) (Agarwal et al. [1], improving

on previous work [4, 10]). Chuzhoy and Khanna [7] showed that achieving a subpolynomial
approximation ratio for Directed Multicut is hard.

We will make use of much of the toolbox developed for FPT algorithms for graph
separation problems. In particular, the method of iterative compression, first used for
Odd Cycle Transversal by Reed et al. [21]; the notion of important separators, which
underpins Marx’ results on Multiway Cut and related problems [16]; and the notion of
shadow removal, developed by Marx and Razgon for Vertex Multicut [17]. These notions
are explained in Section 2. The work that is closest to our results is the FPT algorithm for
Directed Subset Feedback Vertex Set of Chitnis et al. [5].

Kim et al. [11] recently further extended the toolbox for directed graph separation
problems by a method of flow augmentation for directed graph cuts. This settled several
long-standing problems, among other results developing an FPT algorithm for the notorious
ℓ-Chain SAT problem. Unfortunately, this method is not directly applicable to Symmetric
Multicut as the cut structure in the latter problem is more complex than simple (s, t)-cuts.

Ramanujan and Saurabh [20] considered Skew-Symmetric Multicuts, a problem family
of multicuts on skew-symmetric digraphs (which is effectively a generalization of Almost
2-SAT). However, except for the problem name, this bears no relation to Symmetric
Multicut, as studied in this paper, or to Skew Multicut, the auxiliary problem in the
classic FPT algorithm for Directed Feedback Vertex Set [3].

Structure of the paper. After introducing some useful tools in Section 2, we show in
Section 3 that Symmetric Directed Vertex Multicut is FPT when parameterized
by both k and ℓ. Then, in Section 4, we give a 2-approximation algorithm with running
time f(k)nO(1). Finally, in Section 5, we show that a particular case, called Symmetric
Directed Multiway Vertex Cut, is FPT.

E. Eiben, C. Rambaud, and M. Wahlström 11:5

2 Preliminaries

2.1 Important cuts
In a digraph D, if X, Y are disjoint sets of vertices, an (X, Y)-cut S is a set of vertices in
V (D) \ (X ∪ Y) such that there is no (X, Y)-path in D− S. A classical tool in the design of
FPT algorithms for problems of cut in a graph is the notion of important cut. An (X, Y)-cut
is said to be important if there is no (X, Y)-cut further from X with smaller or equal size.

▶ Definition 1. Let D be a digraph and X, Y be two disjoint sets of vertices. An (X, Y)-cut
S with set R of vertices reachable from X in D − S is said to be important if
1. S is an inclusion-wise minimal (X, Y)-cut, and
2. there is no (X, Y)-cut S′ ̸= S of size at most |S| such that the set of vertices reachable

from X in D − S′ is a superset of R.
Symmetrically, S is said to be anti-important if it is an important (Y, X)-cut in Dop, the
digraph obtained from D by reversing every arc.

All fundamental results on important cuts are summarised in the following property. We
refer the reader to [8, Part 8.5] for proofs.

▶ Proposition 2. Let D be a digraph, X, Y be disjoint sets of vertices and k be an integer.
1. One can test in polynomial time whether an (X, Y)-cut S is important.
2. If S is an (X, Y)-cut with set R of vertices reachable from X in D− S, one can compute

in polynomial time an important (X, Y)-cut S′ such that |S′| ≤ |S| and the set of vertices
reachable from X in D − S′ contains R.

3. If S is the set of important (X, Y)-cuts, then
∑

S∈S 4−|S| ≤ 1.
4. If Sk is the set of important (X, Y)-cuts of size at most k, then |Sk| ≤ 4k and Sk can be

enumerated in time 4knO(1).

2.2 Iterative compression
Iterative compression is a standard method in the design of FPT algorithms.

To avoid repetition, we give here a general property to deal with iterative compression.
Let L be a parameterized algorithmic problem such that an instance of L has the form
I = (D, T, k) where D is a digraph, T depends on the problem and k is an integer. We
suppose a few properties on L:

an instance I = (D, T, k) is a yes-instance if and only if there exists a set X of at most
k vertices satisfying a given property P (D, T, X), which is supposed to be checkable in
polynomial time,
if D is empty, then ∅ is a solution, and
for every vertex v ∈ V (D), if X satisfies P (D−v, T, X), then X∪{v} satisfies P (D, T, X∪
{v}).

These three properties will clearly hold for every problems considered in this paper.
We say that an algorithm A is an α-approximation for some α ≥ 1 if for every input

instance (D, T, k), either it concludes that there is no solution of size at most k, or it returns
a solution of size at most αk. For α = 1, this is an exact algorithm.

We now define the compression problem L′ by: given I ′ = (D, T, Y, k) where (D, T, Y)
satisfies P , find a solution of the L instance (D, T, k). The parameters are now (k, |Y |). The
compression problem is equivalent to the original one in the following sense:

IPEC 2022

11:6 On the Parameterized Complexity of Symmetric Directed Multicut

▶ Proposition 3. Let α ≥ 1, and t(k, |Y |) be a real function which is increasing for each
parameter if the other one is fixed, and c ≥ 0 a constant. If there exists an algorithm A′

finding an α-approximation for L′ in time t(k, |Y |)nc then there exists an algorithm A finding
an α-approximation for L in time t(k, αk + 1)nc+1. In particular, if L′ is FPT, then L is
FPT too.

The proof is in the appendix. For further information on iterative compression we refer
to [8, Chapter 4].

2.3 A general framework for shadow removal
The concept of shadow was first introduced by Marx and Razgon [17]. The idea is to
make the problem easier by assuming that there exists a solution X such that every vertex
v ∈ V (D) \X is reachable from a given set of vertices T , and can also reach T in D −X.
Here, we give a general framework that was designed by Chitnis et al. [5].

Let D be a digraph and T a set of vertices. For every set of vertices X disjoint from T ,
we define the shadow of X to be the set of vertices in V (D) \ (T ∪X) that either can not
reach T in D−X, or are not reachable from T in D−X. Chitnis et al. [5] provided a set of
sufficient conditions under which we can comupte an over-approximation of the shadow of a
solution to a problem; in other words, we can compute a set W , disjoint from T , such that
there exists a solution X, disjoint from W , where the shadow of X is contained in W .

To state the result we need a few definitions from Chitnis et al. [5].

▶ Definition 4. Let F = {F1, . . . , Fq} be a set of subgraphs of D. We say that F is T -
connected if for every i = 1, . . . , q, every vertex in Fi can reach T by a walk completely in
Fi, and is reachable from T by a walk completely in Fi. A set of vertices X ⊆ V (D) is said
to be an F -transversal if for every i ∈ {1, . . . , q}, Fi ∩X ̸= ∅.

For example, if F is a set of walks, as is the case in our application, then X is an
F-transversal if and only if X cuts every walk in F . We can now give the main theorem
that gives a superset of the shadow.

▶ Theorem 5 ([5]). Let T ⊆ V (D) and k ∈ N. One can construct in time 2O(k2)nO(1) a
family Z1, . . . , Zt of t = 2O(k2) log2 n sets of vertices such that for any set F of T -connected
subgraphs of D, if there exists an F-transversal of size at most k, then there exists an
F-transversal X and i ∈ {1, . . . , t} such that:
1. |X| ≤ k,
2. X ∩ Zi = ∅,
3. the shadow of X is included in Zi.

2.4 Skew Vertex Multicut is FPT
In this section, we present a problem which is known to be FPT. This problem was first
introduced by [3] in the first proof that Directed Feedback Vertex Set is FPT.

Skew Vertex Multicut
Input: a digraph D, an ordered list of pair of vertices (s1, t1), . . . , (sr, tr) and an
integer k.
Parameter: k

Output: find, if there exists, a set X of at most k vertices such that there is no
(sj , ti)-path in D −X if j ≥ i.

▶ Theorem 6 ([3]). The problem Skew Vertex Multicut is FPT and can be solved in
time O(4kk3n2).

E. Eiben, C. Rambaud, and M. Wahlström 11:7

3 An FPT algorithm when parameterized by k + ℓ

This section aims to prove the following theorem (remember that in Symmetric Directed
Vertex Multicut, k is the size of the desired solution, and ℓ is the number of cut requests).

▶ Theorem 7. There is an algorithm that solves Symmetric Directed Vertex Multicut
in time O

(
(2ℓ + 1)2ℓ4kk3n2)

.

Proof. Let I = (D, C, k) be a Symmetric Directed Vertex Multicut instance. We
suppose that I is a yes-instance and let XOP T be a solution for I. Let T =

⋃
(s,t)∈C{s, t}.

Let T0, T1, . . . , Tr with r ≤ 2ℓ be a partition of T such that:
T0 = XOP T ∩ T ,
for every i ∈ {1, . . . , r} and every t, t′ ∈ Ti, t and t′ are strongly connected in D−XOP T ,
there is no (Tj , Ti)-path in D −XOP T if j > i.

Such a partition exists: consider the strongly connected components of D−XOP T and order
them into a topological order C1, C2, . . . , Cr, that is an ordering such that for every arc
uv in D −XOP T with u ∈ Ci and v ∈ Cj , we have i ≤ j. Then set Ti = Ci ∩ T for every
i ∈ {1, . . . , r}.

The first step of our algorithm guesses that partition, thereby multiplying the running
time by at most (2ℓ + 1)2ℓ. Reject any partition where s, t ∈ Ti for any (s, t) ∈ C and any i.
Now, we consider the digraph D′ obtained by removing T0 from D and merging each Ti into
a single vertex ti, for every i = 1, . . . , r.

Let I ′ = (D′, {(t1, t2), . . . , (tr−1, tr)}, k − |T0|), a Skew Vertex Multicut instance.
Clearly, XOP T \ T0 is a solution for I ′, by definition of T0, . . . , Tr. Reciprocally, if I ′ has a
solution X ′, then consider X = T0 ∪X ′, which has size at most (k − |T0|) + |T0| = k. If X

is not a solution for I, then there exists (s, t) ∈ C strongly connected in D −X. Then, s

and t are in the same Ti for some i, and thus s and t are strongly connected in D −XOP T ,
contradicting the fact that XOP T is a solution for I.

Thus, one can solve Symmetric Directed Vertex Multicut by first guessing
T0, . . . , Tr and then solving that Skew Vertex Multicut instance using Theorem 6.
This algorithm has running time at most O

(
(2ℓ + 1)2ℓ4kk3n2)

. ◀

4 A 2-approximation algorithm

In this part, we give an FPT algorithm that finds a solution of size at most 2k for Symmetric
Directed Vertex Multicut if it is known that there exists a solution of size at most k.

4.1 Iterative compression and first guesses
This section aims to prove that it is enough to find a 2-approximation algorithm for the
following problem:

Symmetric Directed Vertex Multicut Compression
Input: A digraph D, a set of pair of vertices C = {(s1, t1), . . . , (sℓ, tℓ)}, an integer k,
and a solution Y of the Symmetric Vertex Multicut instance (D, C, k), of size at
most 2k + 1, with an ordering y1, . . . , yr of Y .
Parameter: (k, |Y |)
Output: Find, if there exists, a set X of at most k vertices disjoint from Y such that:
1. for every pair of terminals (s, t) ∈ C with s, t ̸∈ X, s and t are not strongly connected

in D −X, and
2. there is no (yj , yi)-path in D −X if j > i.

IPEC 2022

11:8 On the Parameterized Complexity of Symmetric Directed Multicut

▶ Proposition 8. Let t(k, |Y |) be a positive function that is non decreasing if one parameter
is fixed, and c ≥ 2 a constant.

If Symmetric Directed Vertex Multicut Compression has a 2-approximation al-
gorithm A′ with time complexity t(k, |Y |)nc, then Symmetric Directed Vertex Multicut
has a 2-approximation algorithm A with time complexity at most (2k +2)2k+1t(k, 2k +1)nc+1.

Proof. First, we directly apply Property 3 with α = 2 and thus it is enough to reduce
the compression problem of Symmetric Directed Vertex Multicut to Symmetric
Directed Vertex Multicut Compression.

Consider an instance I = (D, C, k, Y) of that compression problem which is supposed to be
a yes-instance, with an optimal solution XOP T . It is enough to show that a 2-approximation
for I can be found with at most (|Y |+ 1)|Y | calls to A′. To do that, we guess the structure
of Y in D −XOP T . More precisely, we guess a partition of Y into Y0, Y1, . . . Yr such that:
1. Y0 = XOP T ∩ Y , and
2. if y, y′ ∈ Yi then y and y′ are strongly connected in D −XOP T , and
3. there is no (Yj , Yi)-path in D −XOP T if j > i.
Such a partition exists by taking the intersection of the strongly connected components
of D − XOP T with Y . This guess multiplies the running time by at most (|Y | + 1)|Y | ≤
(2k + 2)2k+1.

We now claim that the instance of the compression problem I ′ obtained by
1. removing Y0 from D and decreasing k by |Y0|, and
2. merging each Yi into a single vertex yi,
is equivalent to I. More precisely, if I is a yes-instance, then I ′ too by taking XOP T \ Y as a
solution. Reciprocally, if I ′ has a solution X ′ of size at most 2(k − |Y0|) then X ′ ∪ Y0 is a
solution for I of size at most 2(k − |Y0|) + |Y0| ≤ 2k. This proves the property. ◀

The remaining of this section shows that Symmetric Directed Vertex Multicut
Compression has a 2-approximation algorithm.

4.2 Finding a skew multicut of Y

The first step of our algorithm computes a set X0 ⊆ V (D) \ Y of at most k vertices such
that there is no (yj , yi)-path in D −X0 if j > i.

To do that, we use the problem Skew Vertex Multicut that is known to be FPT. We
directly apply Theorem 6 to the instance (D, ((y1, y2), (y2, y3), . . . , (yr−1, yr)), k) to compute
a set X0 of at most k vertices as wanted. Indeed, by definition of Skew Vertex Multicut,
for every j > i, there is no (yj , yi)-path in D −X0. This strong property will allow us to
find in the next subsection a solution of size at most k in D −X0.

4.3 Finding a solution in the simplified instance
This section shows how to compute a solution for I = (D−X0, C, k, Y). This will result in a
set X1 of size at most k such that there is no pair si, ti strongly connected in D −X0 −X1,
that is, X0 ∪X1 is a solution of size at most 2k.

To do that, first note that any vertex v ∈ V (D) \ Y can be strongly connected with at
most one vertex in Y in D −X0. Our first claim shows that we can assume that exactly one
vertex in Y is strongly connected with v.

▷ Claim 9. If v ∈ V (D) \ (X0 ∪ Y) is strongly connected to no vertex in Y in D−X0, then
I ′ = (D −X0 − v, C \ {ab ∈ C | a = v or b = v}, k, Y) and I have the same set of solutions.

E. Eiben, C. Rambaud, and M. Wahlström 11:9

Proof. Clearly, if I has a solution X ′, then X ′ is a solution for I ′ as every closed walk in
D − X0 − v is also in D − X0. Reciprocally, if X ′ is a solution for I ′, then adding v to
D −X0 − v −X ′ does not create any closed walk passing through at least one vertex in Y .
But any closed walk passing through a cut request (s, t) ∈ C must pass through at least one
vertex in Y . It follows that no pair of terminals is strongly connected in D −X0 −X ′ and
X ′ is a solution for I. ◁

Thus, we can remove every vertex strongly connected to no vertex in Y . We now denote
by ℓ(v) the unique integer such that v is strongly connected with yℓ(v).

▷ Claim 10. Let (s, t) ∈ C be a terminal arc. If ℓ(s) ̸= ℓ(t), then I ′′ = (D, C \ {(s, t)}, k, Y)
and I ′ have the same set of solutions.

Proof. Clearly, if I ′ has a solution, then I ′′ too. Reciprocally, if I ′′ has a solution X ′′, then
every terminal arc different from s, t is not strongly connected in D −X0 −X ′′. But s and t

can not be strongly connected as s and t are not strongly connected in D−X0. Thus, X ′′ is
a solution for I ′′ too. ◁

We now assume that for every pair of terminal s, t, ℓ(s) = ℓ(t). The next claim shows
that we can process each strongly connected component in D −X0 independently.

▷ Claim 11. If there is an arc uv with u and v not strongly connected in D −X0, then
I ′′ = (D − uv, C, k, Y) and I ′ have the same set of solutions.

Proof. If I ′ has a solution X ′, then X ′ is clearly a solution for I ′′. Reciprocally, if X ′′ is a
solution for I ′′, then adding uv to D −X0 − uv does not create any closed walk, and thus
X ′′ is a solution for I ′ too. ◁

Now, we assume that D − X0 has |Y | weakly connected components Y1, . . . , Yr such
that for every i, V (Yi) ∩ Y = {yi}. Observe that now the weakly connected components
are strongly connected. Let XOP T be an optimal solution for I ′. Then we guess the
values ki = |XOP T ∩ Yi|, which multiplies the complexity of our algorithm by at most
(k + 1)|Y | = kO(k). Now, we solve each instance Ii = (Yi, C, ki, {yi}) independently.

The key result is the following “pushing” claim, that shows how to construct X1 as a
union of important cuts. We denote by Xi,OP T = XOP T ∩Yi a solution of Ii, that we suppose
to exist.

▷ Claim 12. Let (s, t) ∈ C be a terminal arc strongly connected in Yi. Let (a, b) ∈
{(s, yi), (yi, s), (t, yi), (yi, t)} be such that Xi,OP T includes an (a, b)-cut.

if a = yi, let S be the set of vertices in Xi,OP T with an in-neighbour reachable from
yi in Yi − Xi,OP T and S′ be the anti-important (a, b)-cut given by Property 2. Then
X ′ = (XOP T \ S) ∪ S′ is a solution for Ii too,
symmetrically, if b = yi, let S be the set of vertices in Xi,OP T with an out-neighbour that
reaches yi in Yi −Xi,OP T and S′ be the important (a, b)-cut given by Property 2. Then
X ′ = (XOP T \ S) ∪ S′ is a solution for Ii too.

Proof. As s and t are not strongly connected in Yi − Xi,OP T , Xi,OP T must contain an
(a, b)-cut for at least one (a, b) ∈ {(s, yi), (yi, s), (t, yi), (yi, t)}. It is enough to show the first
point, as the second one is the first one applied to Dop the digraph obtained from D by
reversing every arc.

First, as |S′| ≤ |S|, we have |X ′| ≤ |Xi,OP T | ≤ ki. It remains to show that there is no
pair (s′, t′) ∈ C strongly connected in Yi −X ′. Suppose that such a counterexample (s′, t′)
exists. Then there exists a closed walk P passing through yi, s′ and t′. This walk must pass

IPEC 2022

11:10 On the Parameterized Complexity of Symmetric Directed Multicut

through S′ \S as it does not exist in Yi−Xi,OP T . But then there exists v ∈ S \S′ reachable
from yi in Yi − S′, contradicting the fact that the set of vertices reachable from yi in Yi − S

includes the set of vertices reachable from yi in Yi − S′. ◁

We can now give the algorithm that solves Ii = (Yi, C, ki, {yi}) as Algorithm 1.

Algorithm 1 Algorithm for single-terminal case Ii = (Yi, C, ki, {yi}).

Xi ← ∅;
while there exists (s, t) ∈ C ∩ V (Yi)2 strongly connected in Yi −Xi do

guess a direction (a, b) ∈ {(s, yi), (yi, s), (t, yi), (yi, t)};
if a = yi then

guess an anti-important (a, b)-cut S′ of size at most ki − |Xi|;
else

guess an important (a, b)-cut S′ of size at most ki − |Xi|;
end
add S′ to Xi;

end
return Xi;

If the algorithm returns a value, then it is clearly a solution. We now show that there
exists a sequence of guesses that leads to a solution if it exists. More precisely, we show
that the following invariant holds: At every iteration of the loop, there is a possible value
of Xi such that Xi can be extended to a solution for Ii if it exists. This invariant initially
holds. If the results holds at some iteration for a set Xi, let Xi,OP T be a solution that
contains Xi, and for the first guess take (a, b) such that Xi,OP T contains an (a, b)-cut S. By
Claim 12 there exists an important or anti-important (a, b)-cut S′ of size at most |S| such
that (Xi,OP T \ S) ∪ S′ is still a solution. Thus, there exists a solution that contains S′ and
we can safely add it to Xi.

To see that the algorithm works in time 8knO(1), consider the recursion tree formed by
recursively branching over all possible values of a guess, for each guess made in the algorithm.
We denote by t(k) the number of leaves of this recursion tree in the worst case. We show by
induction on k that t(k)4−k ≤ 4k. If k = 0, the result is clear. Otherwise, if we assume the
result for smaller values of k, then we have

t(k)4−k ≤ 4
∑

S∈Sk

t(k − |S|)4−k ≤
∑

S∈Sk

t(k − |S|)4−(k−|S|) ≤
∑

S∈Sk

4k−|S| ≤ 4k
∑

S∈Sk

4−|S|

where Sk is the set of important (or anti-important) (a, b)-cuts that is enumerated in the
algorithm. It follows by Property 4 that t(k) ≤ 8k. We note that the algorithm can easily be
made deterministic by replacing each guessing step by an exhaustive branching; we omit the
details.

These two steps give us a 2-approximation algorithm.

▶ Theorem 13. The exists an algorithm with running time kO(k)nO(1) such that given an
instance of Symmetric Directed Vertex Multicut and an integer k, either it concludes
that there is no solution of size at most k, or it returns a solution of size at most 2k.

Proof. Let I = (D, C, k, Y) be a Symmetric Directed Vertex Multicut Compression
instance. First, compute a skew multicut of Y using Section 4.2. This gives a set X0 of at
most k vertices, if I has a solution. Then we apply Section 4.3 to find a set X1 of at most
k vertices that is a solution for (D −X0, C, k, Y). We can now conclude that X0 ∪X1 is a
2-approximation as |X0 ∪X1| ≤ 2k. ◀

E. Eiben, C. Rambaud, and M. Wahlström 11:11

5 An exact algorithm for Symmetric Directed Multiway Cut

In this section, we give an exact (i.e., non-approximate) FPT algorithm for a particular case
of Symmetric Directed Vertex Multicut.

Symmetric Directed Multiway Vertex Cut
Input: A digraph D, a set of terminals T ⊆ V (D), k ∈ N.
Parameter: k

Output: find, if there exists, X ⊆ V (D) with |X| ≤ k such there is no pair of distinct
terminals t, t′ ∈ T \X strongly connected in D −X.

▶ Theorem 14. Symmetric Directed Multiway Vertex Cut can be solved in time
2O(k3)nO(1).

Actually, we will prove that a more general problem very closely related to Directed
Subset Feedback Arc Set is FPT. Chitnis et al. [5] proved that the problem Directed
Subset Feedback Arc Set is FPT. We adapt here their method to the following problem.

Arc Terminal Symmetric Multiway Cut
Input: A digraph D having possibly loops, a list A1, . . . , Aℓ of arcs in D, such that
for every i, Ai = Si × Ti for some (not necessarily disjoint) sets Si and Ti of vertices.
Parameter: k

Output: find, if there exists, a set X of at most k vertices such that any closed walk
in D −X intersects at most one Ai.

Note that we allow repetition in the list A1, . . . Aℓ. In this case, if Ai = Aj for some i ̸= j,
then every closed walk intersecting Ai = Aj has to be cut. We will call the arcs in

⋃
i Ai the

terminal arcs.
First we show that Symmetric Directed Multiway Vertex Cut reduces to Arc

Terminal Symmetric Multiway Cut in FPT time. Indeed, given an instance I =
(D, T = {t1, . . . tℓ}, k) of Symmetric Directed Multiway Vertex Cut, we consider
the Arc Terminal Symmetric Multiway Cut instance I ′ = (D, (A1, . . . Aℓ), k) where
Ai = {ti} ×N+

D (ti). Now one can easily see that X is a solution for I if and only if it is a
solution for I ′. Hence it is enough to find an FPT algorithm for Arc Terminal Symmetric
Multiway Cut.

5.1 Iterative compression and first guesses
By Property 3, it is enough to find an FPT algorithm for the compression problem associated
to Arc Terminal Symmetric Multiway Cut. Thus suppose that a first solution Y of
size k + 1 is given, and we want to find a solution XOP T of size at most k. First, we guess
the intersection Y ∩XOP T , and we remove it. Now we assume that XOP T is disjoint from
Y . If two vertices y, y′ ∈ Y are strongly connected in D −XOP T , then we can merge them
without breaking the solution XOP T , and without making the instance easier. Now we can
suppose that no two vertices in Y are strongly connected in D −XOP T . Hence there is a
topological ordering y1, . . . y|Y | of Y such that there is no (yj , yi)-path in D−XOP T if j > i.
Given this ordering, we can add the arc yiyj for every i < j without breaking the solution
XOP T , and without making the instance easier. To summarise, by multiplying the running
time of the algorithm by at most (k + 2)k+1nO(1), it is enough to find an FPT algorithm for
the following problem.

IPEC 2022

11:12 On the Parameterized Complexity of Symmetric Directed Multicut

Arc Terminal Symmetric Multiway Cut Compression
Input: A digraph D (having possibly loops), a list A1, . . . , Aℓ of arcs in D, such that
for every i, Ai = Si × Ti for some (not necessarily disjoint) sets Si and Ti of vertices,
and an ordered set Y = (y1, . . . , yr) of vertices such that:
1. for every i ̸= j, no closed walk in D − Y intersects both Ai and Aj , and
2. for every 1 ≤ i < j ≤ r, yiyj is an arc in D.

Parameter: k + r

Output: find, if there exists, a set X of at most k vertices such that
1. X is disjoint from Y ,
2. any closed walk in D −X intersects at most one Ai, and
3. there is no (yj , yi)-path in D −X if j > i.

5.2 Shadow removal
Let I = (D, (A1, . . . Aℓ), k, Y) be an Arc Terminal Symmetric Multiway Cut Com-
pression instance. To show that we can assume the solution to be shadowless, let F be
the family containing all closed walks intersecting at least two distinct sets Ai, Aj and all
(yj , yi)-walks for j > i. Note that F is Y -connected and that the problem is precisely to find
an F-transversal X disjoint from Y . We apply Theorem 5 with F , giving us a family of
t = 2O(k2) log2 n sets disjoint from Y , and we guess one of them, say Z, to be such that if I

has a solution, then there exists a solution X disjoint from Z and with shadow contained in
Z. As we consider the shadow from Y , vertices in Y can not be in the shadow of a solution,
so we can assume Z and Y disjoint by replacing Z by Z \ Y .

We now define another instance I/Z = (D′, (A′
1, . . . , A′

ℓ), k, Y) equivalent to I in the
following sense:
1. if I has a solution that is disjoint from Z and with shadow contained in Z, then I/Z has

a shadowless solution, and
2. if I/Z has a solution, then I does too.
The construction is the following. If D[Z] contains a closed walk W such that at least two
Ai, Aj intersects W , reject Z. Otherwise construct the following. Let a Z-walk be a walk in
D with endpoints in V (D′) and internal vertices, if any, in Z.

V (D′) = V (D) \ Z;
E(D′) is the set of all arcs uv such that there is a Z-walk from u to v in D;
for every i = 1, . . . , ℓ, A′

i is the set of arcs uv such that there is a Z-walk from u to v

intersecting Ai. In particular, Ai ∩E(D′) ⊆ A′
i as a Z-walk can have no internal vertices.

First, we need to check that I/Z is indeed an instance of Arc Terminal Symmetric
Multiway Cut Compression

▷ Claim 15. For every i = 1, . . . , ℓ, A′
i = S′

i × T ′
i for some sets S′

i and T ′
i of vertices.

Proof. It is enough to show that if uv, u′v′ ∈ A′
i, then uv′ ∈ A′

i. By definition, there exists a
Z-walk W (resp. W ′) from u to v (resp. u′ to v′), with possibly no internal vertices, which
goes through a terminal arc ab ∈ Ai (resp. a′b′ ∈ Ai), where the terminal arc may be a loop.
As Ai = Si × Ti, we have ab′ ∈ Ai, and so by combining a prefix of W with a suffix of W ′,
there is a Z-walk from u to v′ containing an arc in Ai. This shows that uv′ ∈ A′

i. ◁

▷ Claim 16. I/Z is an instance of Arc Terminal Symmetric Multiway Cut Com-
pression.

E. Eiben, C. Rambaud, and M. Wahlström 11:13

Proof. By Claim 15, A′
i = S′

i × T ′
i for every i, and the arcs yiyj , i < j remain in D′. It

remains to check that Y is a solution for D′. Assume to the contrary, and let W be a closed
walk in D′ − Y intersecting two sets Ai and Aj , i ̸= j. But then W expands into a closed
walk W ′ in D by replacing every arc of W with a corresponding Z-walk. Since Y ∩ Z = ∅,
this is a closed walk in D intersecting Ai and Aj , disjoint from Y . This is a contradiction.

◁

▷ Claim 17. If I has a solution disjoint from Z and with shadow contained in Z, then I/Z

has a shadowless solution.

Proof. Let X be a solution of I disjoint from Z and with shadow contained in Z. We claim
that X is a shadowless solution of I/Z.

First, let’s see why X is a solution of I/Z. Suppose for contradiction that D′−X contains
a closed walk W ′ containing two terminal arcs uv ∈ A′

i and u′v′ ∈ A′
j for some distinct

indices i and j. Then we construct a closed walk W in D −X intersecting both Ai and Aj :
replace in W ′ the arc uv (resp. u′v′) by a Z-walk from u to v (resp. u′ to v′) intersecting Ai

(resp. Aj), and for every other arc xy ∈W ′ which is not in D, replace xy by a Z-walk from
x to y. This gives a closed walk W in D −X intersecting both Ai and Aj , contradicting the
fact that X is a solution of I. Similarly, if there is a (yj , yi)-path P ′ in D′ −X for some
j > i, then we can expand P ′ into a (yj , yi)-walk W in D −X, which can be shortcut into a
(yj , yi)-path P in D −X.

Now we show that X is shadowless in I ′. For every vertex u ∈ V (D) \ Z, we know that
there is a (u, Y)-path P + (resp. (Y, u)-path P −) in D −X, as the shadow of X is included
in Z. Then we replace every Z-walk in P + (resp. P −) by the arc linking its endpoints. This
gives a (u, Y)-path (resp. (Y, u)-path) in D′ −X, and so v is not in the shadow. This proves
that X is shadowless in D′. ◁

▷ Claim 18. If I/Z has a solution then I too.

Proof. Suppose that I/Z has a solution X. We claim that X is a solution for I too.
Suppose for contradiction that D −X has a closed walk W intersecting both Ai and Aj

for some distinct indices i and j. Then construct the closed walk W ′ in D′ −X as follows:
replace every Z-walk in W by the arc linking its endpoints. This creates a closed walk W ′ in
D′ −X intersecting both A′

i and A′
j , contradicting the fact that X is a solution for I ′. A

similar step applies if D −X contains a (yj , yi)-path for some j > i. ◁

As a consequence, we are able to transform the original instance I into an equivalent
instance I/Z which has a shadowless solution. Guessing Z multiplies the running time by at
most 2O(k2) log2 n, and then computing I/Z is performed in polynomial time.

5.3 Finding a shadowless solution
We now suppose that I = (D, (A1, . . . Aℓ), k, Y) has a shadowless solution XOP T . Remember
that y1, . . . , yr is an ordering of Y such that there is no (yj , yi)-path in D −XOP T if j > i,
and for every j > i, yiyj is an arc in D. As the solution XOP T we are searching for is
shadowless, every vertex in D −XOP T reaches Y , and so yr (because yr is dominated by
Y \ {yr}).

Another observation is that for at most one index i0, Ai0 contains a terminal arc strongly
connected with yr in D − XOP T . In what follows, we implicitly suppose that i0 exists,
otherwise we can set by convention Ai0 = ∅. As XOP T is shadowless, an arc uv is strongly
connected with yr in D −XOP T if and only if
1. yr reaches u in D −XOP T and
2. v ̸∈ XOP T .

IPEC 2022

11:14 On the Parameterized Complexity of Symmetric Directed Multicut

The next claim allows us to find the set of vertices v which violates the second condition.
Let R denote the set of vertices reachable from yr in D −XOP T and note by shadowlessness
that R precisely describes the strongly connected component of yr in D −XOP T . Say that
Ai is active in XOP T if i ̸= i0 and Si ∩R ̸= ∅ (and note that this implies Ti ⊆ XOP T).

▷ Claim 19 (Derived from Theorem 5.4 [5]). One can find in time 2O(k)nO(1) a collection of
pairs (I, Tc) where I ⊆ [ℓ] and Tc ⊆ V (D), such that the following hold:
1. the number of pairs (I, Tc) produced is kO(1) log n

2. for every pair, |I|+ |Tc| ≤ (2k + 1)42k+1

3. for at least one pair (I, Tc) we have i0 ∈ I if Ai0 ̸= ∅, and for every i ∈ [ℓ] such that Ai is
active in XOP T we have Ti ⊆ Tc

Proof. Assume that Ai0 ≠ ∅ as otherwise the result is easier, and let uv ∈ Ai0 with u, v ∈ R.
We begin by computing a subset U ⊆ V (D) such that v ∈ U and U ∩XOP T = ∅. This can be
done randomly with success probability Θ(1/k) by sampling every vertex independently with
probability 1/k, but the process can also be derandomized by a (n, k, k2)-splitter ; see Naor et
al. [18]. In particular, in polynomial time we can compute a family of subsets Ui ⊆ V (D) such
that the family contains kO(1) log n members and at least one member meets the conditions
for U . We repeat the steps below for every member Ui in the family.

From now on, let us assume that we have such a set U . Create a graph D′ as follows.
For every v ∈ V (D), create two vertices v−, v+. For every i ∈ [ℓ], create a vertex zi and add
the arcs {u+zi | u ∈ Si} and {ziv

− | v ∈ Ti}. For every arc uv ∈ E(D), add the arc u+v+.
Finally, add vertices s and t, the arc sy+

r , and the arc v−t for every v ∈ V (D). Finally, for
every vertex v ∈ U give v− capacity 2k + 2 by replacing v− by a set of 2k + 2 false twins. Let
T ′

c be the union of all important (s, t)-cuts in D′ of size at most 2k +1. By Property 4, T ′
c can

be computed in time 2O(k)nO(1) and |T ′
c| ≤ (2k + 1)42k+1. Finally we set I = {i | zi ∈ T ′

c}
and Tc = {v ∈ V (D) | v− ∈ T ′

c}. Clearly |I|+ |Tc| ≤ |T ′
c| ≤ (2k + 1)42k+1.

We claim that I contains i0, and that for every Ai that is active in XOP T we have Ti ⊆ Tc.
Indeed, define the set X ′ = {v−, v+ | v ∈ XOP T } ∪ {zi0} and recall by assumption that
XOP T ∩ U = ∅. Note that X ′ is an (s, t)-cut. Indeed, assume to the contrary that there is
an (s, t)-path P in D′ −X ′. Then the last arcs of P must be u+zi, ziv

− and v−t for some
i ∈ [ℓ], uv ∈ Ai. We may also assume that the entire prefix of P before zi visits only s and
vertices w+, w ∈ V (D). But then that prefix proves u ∈ R; zi /∈ X ′ implies i ̸= i0; and
v− /∈ X ′ implies v /∈ XOP T . This contradicts that only Ai0 is strongly connected to yr in
D −XOP T . Also note |X ′| ≤ 2k + 1. Now by Property 2 we can push X ′ to an important
(s, t)-cut X ′′ of size at most 2k + 1, hence X ′′ ⊆ T ′

c.
We claim that zi0 ∈ X ′′ and for every Ai active in XOP T we have {v− | v ∈ Ti} ⊆ X ′′.

For the former, by assumption u ∈ R, hence either zi0 ∈ X ′′ or the cut has been pushed
closer to t. But since v ∈ U and v has been given high capacity, pushing the cut past zi0

would contradict the size bound of 2k + 1. Hence zi0 ∈ X ′′. For the latter, assume that Ai is
active in XOP T . Then there is a vertex u′ ∈ Si ∩R, hence zi ∈ R, and the cut cannot push
past the vertices v−, v ∈ Ti since v−t ∈ E(D′). ◁

Now we can guess the correct pair (I, Tc). Therefore, we can guess i0 ∈ I (or the case
that Ai0 = ∅) and XOP T ∩Tc, and remove these vertices from D. This multiplies the running
time by at most (2k + 1)42k+1((2k+1)42k+1

k

)
log n = 2O(k2) log n, and now we can assume that

for every i ∈ [ℓ] except i0, Ai is not active. Furthermore, if Ai0 ̸= ∅ then we add all arcs
{yr} × Ti0 to the graph. Next claim shows how to start the construction of a solution using
these assumptions.

E. Eiben, C. Rambaud, and M. Wahlström 11:15

▷ Claim 20. Adding the arcs {yr} × Ti0 does not affect the solution. Furthermore, let S

be the set of vertices in XOP T which have an in-neighbour reachable from yr in D −XOP T .
There exists an important ({yr}, Y \ {yr} ∪

⋃
i̸=i0

Si)-cut S′ of size at most |S| such that
(XOP T \ S) ∪ S′ is a solution to I.

Proof. We first note that since R∩ Si0 ̸= ∅, then for every v ∈ Ti0 either v ∈ R or v ∈ XOP T

(for example due to blocking paths from yr to some yi, i < r). Hence adding the arcs
{yr} × Ti0 has no effect on the solution. However, it does simplify the important separator
step below.

Now observe that S is a ({yr}, Y \ {yr} ∪
⋃

i̸=i0
Si)-cut. By Property 2, there exists an

important ({yr}, Y \ {yr} ∪
⋃

i̸=i0
Si)-cut S′ with |S′| ≤ |S| such that every vertex reachable

from yr in D − S is still reachable from yr in D − S′. We prove that X ′ := (XOP T \ S) ∪ S′

is a solution for I. Clearly |X| ≤ k, so we only need to show that X ′ cuts all the closed
walks intersecting several of the sets A1, . . . , Aℓ and all (yj , yi)-paths, j > i.

Suppose for contradiction that there exists two distinct indices i ̸= j and a closed walk
W such that W intersects both Ai and Aj . First, i ̸= i0 and j ̸= i0: since the arc yrv is
added for every v ∈ Ti0 , either v ∈ XOP T or v ∈ R. Thus there is no path from Ti0 to Si for
any i ̸= i0 in D−X ′ by the choice of the cut S′. Moreover, W must intersect S, as otherwise
W is a closed walk in D −XOP T , contradicting the fact that XOP T is a solution. Let s be
a vertex in S ∩W , then either s ∈ S′, and so S′ intersects W ; or s is reachable from yr in
D − S′. But then Si is reachable from yr in D − S′, contradicting the fact that S′ is an
(yr,

⋃
i̸=i0

Si)-cut. This contradiction proves that X ′ is a solution. By a similar argument,
X ′ also cuts all (yj , yi)-paths for j > i. ◁

Note that (XOP T \ S)∪ S′ might have a non empty shadow. This is not a problem as we
will apply the shadow removal procedure at each step.

We can now give the algorithm A′ on the instance (D, (Ai), k, Y) of Arc Terminal
Symmetric Directed Multiway Cut Compression:
1. reduce to the shadowless case by applying Subsection 5.2;
2. compute (and guess) (I, Tc) with Claim 19, guess i0 ∈ I ∪{0} and Xc := XOP T ∩Tc ⊆ Tc;
3. let D′ = D −Xc, and if i0 ̸= 0, add all arcs {yr} × Ti0 ;
4. guess an important ({yr}, Y \ {yr} ∪

⋃
i̸=i0

Si)-cut S of size at most k − |Xc| in D′;
5. if A′(D−S−Xc, (Ai), k− |S| − |Xc|, Y \ {yr}) returns a solution X ′, return S ∪Xc ∪X ′;

otherwise proceed with the next guess or return “no solution”.

First, it is easy to see that if this algorithm returns a set X, then X is a solution of the
input instance. Moreover, by all the previous claims, if there exists a solution, then there
exists a sequence of guesses which will find it. This algorithms explores a tree of depth at
most k with maximum degree 2O(k2) log3 n, and each node is processed in time 2O(k2)nO(1).
Hence the total running time is at most(

2O(k2) log3 n
)k

2O(k2)nO(1) = 2O(k3)nO(1)

using in particular Lemma 21 from the appendix. This completes the proof of Theorem 14.

References
1 Amit Agarwal, Noga Alon, and Moses Charikar. Improved approximation for directed cut

problems. In STOC, pages 671–680. ACM, 2007.
2 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,

47(1):166–207, 2018.

IPEC 2022

11:16 On the Parameterized Complexity of Symmetric Directed Multicut

3 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008. doi:10.1145/
1411509.1411511.

4 Joseph Cheriyan, Howard J. Karloff, and Yuval Rabani. Approximating directed multicuts.
Comb., 25(3):251–269, 2005.

5 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015.

6 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM J. Comput.,
42(4):1674–1696, 2013.

7 Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed cut
problems. J. ACM, 56(2):6:1–6:28, 2009.

8 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

9 Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation
algorithms via spreading metrics. J. ACM, 47(4):585–616, 2000.

10 Anupam Gupta. Improved results for directed multicut. In SODA, pages 454–455. ACM/SIAM,
2003.

11 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In STOC, pages 938–947. ACM, 2022.

12 Philip N. Klein, Serge A. Plotkin, Satish Rao, and Éva Tardos. Approximation algorithms for
steiner and directed multicuts. J. Algorithms, 22(2):241–269, 1997.

13 Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM J. Discret. Math., 29(1):122–144,
2015.

14 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In SODA, pages 2181–2200.
SIAM, 2020.

15 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014.

16 Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006. Parameterized and Exact Computation. doi:10.1016/j.tcs.2005.10.
007.

17 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset, 2013. arXiv:1010.3633.

18 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In FOCS, pages 182–191. IEEE Computer Society, 1995.

19 Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

20 M. S. Ramanujan and Saket Saurabh. Linear-time parameterized algorithms via skew-
symmetric multicuts. ACM Trans. Algorithms, 13(4):46:1–46:25, 2017.

21 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

A Missing proofs

Proof of Proposition 3. Let A′(D, T, k) be an algorithm solving the problem L′ in time
t(k, |Y |)nc. We now solve the original problem L as follows. Consider an arbitrary ordering
v1, . . . , vn of V (D). We will compute iteratively a set Xi ⊆ {v1, . . . vi} of size at most αk

which is a solution of the partial instance Ii induces by {v1, . . . vi}.

https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1016/j.tcs.2005.10.007
http://arxiv.org/abs/1010.3633
https://doi.org/10.1145/3201775
https://doi.org/10.1016/j.orl.2003.10.009

E. Eiben, C. Rambaud, and M. Wahlström 11:17

We start with X0 = ∅, which is a solution of I0 by assumption. Then, if Vi is already
computed, we apply A′ to (D[{v1, . . . , vi+1}], T, Xi∪{vi+1}, k), which returns by assumption
a solution of size at most αk, or says that there is no solution of size at most k, and in this
latter case we return ”no” directly. This call is valid because Xi ∪ {vi+1} is a solution of
(D[{v1, . . . , vi+1}], T, Xi ∪ {vi+1}) of size at most αk + 1.

This algorithm consists in n calls to A′ with the solution to compress of size at most
αk + 1. Hence its running time is at most t(k, αk + 1)nc+1. ◀

▶ Lemma 21. If n ≥ 216 and p ≥ 0, then (log n)p ≤ n + p2p.

Proof. If p ≥
√

log n then n ≤ 2p2 and (log n)p ≤ p2p.
Otherwise, p <

√
log n. First, we show the following property:

n ≥ 216 ⇒
√

log n ≤ log n

log log n

To prove that, note that this property is equivalent to 2 log N ≤ N with N =
√

log n. Then
N ≥ 4 is a sufficient condition, and n ≥ 216 too. Now we apply this result and we get
p ≤
√

log n ≤ log n
log log n . It follows that (log n)p ≤ n. ◀

IPEC 2022

Computing Generalized Convolutions
Faster Than Brute Force
Barış Can Esmer #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Philipp Schepper #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Karol Węgrzycki #

Saarland University, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract
In this paper, we consider a general notion of convolution. Let D be a finite domain and let Dn

be the set of n-length vectors (tuples) of D. Let f : D × D → D be a function and let ⊕f be a
coordinate-wise application of f . The f -Convolution of two functions g, h : Dn → {−M, . . . , M} is

(g ⊛f h)(v) :=
∑

vg ,vh∈Dn

s.t. v=vg⊕f vh

g(vg) · h(vh)

for every v ∈ Dn. This problem generalizes many fundamental convolutions such as Subset
Convolution, XOR Product, Covering Product or Packing Product, etc. For arbitrary function f and
domain D we can compute f -Convolution via brute-force enumeration in Õ(|D|2n · polylog(M))
time.

Our main result is an improvement over this naive algorithm. We show that f -Convolution
can be computed exactly in Õ((c · |D|2)n · polylog(M)) for constant c := 5/6 when D has even
cardinality. Our main observation is that a cyclic partition of a function f : D × D → D can be used
to speed up the computation of f -Convolution, and we show that an appropriate cyclic partition
exists for every f .

Furthermore, we demonstrate that a single entry of the f -Convolution can be computed more
efficiently. In this variant, we are given two functions g, h : Dn → {−M, . . . , M} alongside with a
vector v ∈ Dn and the task of the f -Query problem is to compute integer (g ⊛f h)(v). This is
a generalization of the well-known Orthogonal Vectors problem. We show that f -Query can be
computed in Õ(|D|

ω
2 n · polylog(M)) time, where ω ∈ [2, 2.373) is the exponent of currently fastest

matrix multiplication algorithm.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Algorithm design techniques

Keywords and phrases Generalized Convolution, Fast Fourier Transform, Fast Subset Convolution

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.12

Related Version Full Version: https://arxiv.org/abs/2209.01623 [22]

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH and the project TIPEA (grant No. 850979).

Acknowledgements We would like to thank Karl Bringmann and Jesper Nederlof for useful discus-
sions. Barış Can Esmer and Philipp Schepper are part of Saarbrücken Graduate School of Computer
Science, Germany.

© Barış Can Esmer, Ariel Kulik, Dániel Marx, Philipp Schepper, and Karol Węgrzycki;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baric-can.esmer@cispa.de
https://orcid.org/0000-0001-5694-1465
mailto:ariel.kulik@cispa.de
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:philipp.schepper@cispa.de
https://orcid.org/0000-0002-5810-7949
mailto:wegrzycki@cs.uni-saarland.de
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.IPEC.2022.12
https://arxiv.org/abs/2209.01623
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Computing Generalized Convolutions Faster Than Brute Force

1 Introduction

Convolutions occur naturally in many algorithmic applications, especially in the exact and
parameterized algorithms. The most prominent example is a subset convolution procedure [23,
37], for which an efficient Õ(2n ·polylog(M)) time algorithm for subset convolution dates back
to Yates [40] but in the context of exact algorithms it was first used by Björklund et al. [6].1
Researchers considered a plethora of other variants of convolutions, such as: Cover Product,
XOR Product, Packing Product, Generalized Subset Convolution, or Discriminantal Subset
Convolution [6, 8, 7, 10, 35, 21, 11]. These subroutines are crucial ingredients in the design of
efficient algorithms for many exact and parameterized algorithms such as Hamiltonian Cycle,
Feedback Vertex Set, Steiner Tree, Connected Vertex Cover, Chromatic Number, Max k-Cut
or Bin Packing [20, 10, 41, 28, 5, 39]. These convolutions are especially useful for dynamic
programming algorithms on tree decompositions and occur naturally during join operations
(e.g., [35, 20, 34]). Usually, in the process of algorithm design, the researcher needs to design
a different type of convolution from scratch to solve each of these problems. Often this is a
highly technical and laborious task. Ideally, we would like to have a single tool that can be
used as a blackbox in all of these cases. This motivates the following ambitious goal in this
paper:

Goal: Unify convolution procedures under one general umbrella.

Towards this goal, we consider the problem of computing f -Generalized Convolution (f -
Convolution) introduced by van Rooij [34]. Let D be a finite domain and let Dn be the
n length vectors (tuples) of D. Let f : D × D → D be an arbitrary function and let ⊕f

be a coordinate-wise application of the function f .2 For two functions g, h : Dn → Z the
f -Convolution, denoted by (g ⊛f h) : Dn → Z, is defined for all v ∈ Dn as

(g ⊛f h)(v) :=
∑

vg,vh∈Dn

s.t. v=vg⊕f vh

g(vg) · h(vh).

Here we consider a standard Z(+, ·) ring. Through the paper we assume that M is the
absolute value of the maximum integer given on the input.

In the f -Convolution problem the functions g, h : Dn → {−M, . . . , M} are given as
an input and the output is the function (g ⊛f h). Note, that the input and output of
the f -Convolution problem consist of 3 · |D|n integers. Hence it is conceivable that
f -Convolution could be solved in Õ(|D|n · polylog(M)). Such a result for arbitrary f

would be a real breakthrough in how we design parameterized algorithms. So far, however,
researchers have focused on characterizing functions f for which f -Convolution can be
solved in Õ(|D|n · polylog(M)) time. In [34] van Rooij considered specific instances of this
setting, where for some constant r ∈ N the function f is defined as either (i) standard addition:
f(x, y) := x+y, or (ii) addition with a maximum: f(x, y) := min(x+y, r−1), or (iii) addition
modulo r, or (iv) maximum: f(x, y) := max(x, y). Van Rooij [34] showed that for these
special cases the f -Convolution can be solved in Õ(|D|n · polylog(M)) time. His results
allow the function f to differ between coordinates. A recent result regarding generalized

1 We use Õ(·) notation to hide polylogarithmic factors. We assume that M is the maximum absolute
value of the integers on the input.

2 We provide a formal definition of ⊕f in Section 2.

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:3

Discrete Fourier Transform [32] can be used in conjunction with Yates algorithm [40] to
compute f -Convolution in Õ(|D|ω·n/2 ·polylog(M)) time when f is a finite-group operation
and ω is the exponent of the currently fastest matrix-multiplication algorithms.3 To the best
of our knowledge these are the most general settings where convolution has been considered
so far.

Nevertheless, for an arbitrary function f , to the best of our knowledge the state-of-the-art
for f -Convolution is a straightforward quadratic time enumeration.

Question 1: Is the naive Õ(|D|2n · polylog(M)) algorithm for f -Convolution
optimal?

Similar questions were studied from the point of view of the Fine-Grained Complexity. In
that setting the focus is on convolutions with sparse representations, where the input size is
only the size of the support of the functions g and h. It is conjectured that even subquadratic
algorithms are highly unlikely for these representations [19, 25]. However, these lower bounds
do not answer Question 1, because they are highly dependent on the sparsity of the input.

1.1 Our Results
We provide a positive answer to Question 1 and show an exponential improvement (in n)
over a naive Õ(|D|2n · polylog(M)) algorithm for every function f .

▶ Theorem 1.1 (Generalized Convolution). Let D be a finite set and f : D × D →
D. There is an algorithm for f -Convolution with the following running time
Õ
((5

6 · |D|2
)n · polylog(M)

)
when |D| is even, or Õ

((5
6 · |D|2 + 1

6 · |D|
)n · polylog(M)

)
when |D| is odd.

Observe that the running time obtained by Theorem 1.1 improves upon the brute-force
for every |D| ≥ 2. Our technique works in a more general setting when g : Ln → Z and
h : Rn → Z and f : L × R → T for arbitrary domains L, R and T (see Section 2 for the exact
running time dependence).

Our Technique: Cyclic Partition. Now, we briefly sketch the idea behind the proof of
Theorem 1.1. We say that a function is k-cyclic if it can be represented as an addition modulo
k (after relabeling the entries of the domain and image). These functions are somehow simple,
because as observed in [34, 33] f -Convolution can be computed in Õ(kn · polylog(M))
time if f is k-cyclic. In a nutshell, our idea is to partition the function f : D × D → D into
cyclic functions and compute the convolution on these parts independently.

More formally, a cyclic minor of the function f : D×D → D is a (combinatorial) rectangle
A × B with A, B ⊆ D and a number k ∈ N such that f restricted to A, B is a k-cyclic
function. The cost of the cyclic minor (A, B, k) is cost(A, B) := k. A cyclic partition is
a set {(A1, B1, k1), . . . , (Am, Bm, km)} of cyclic minors such that for every (a, b) ∈ D × D

there exists a unique i ∈ [m] with (a, b) ∈ Ai × Bi. The cost of the cyclic partition
P = {(A1, B1, k1), . . . , (Am, Bm, km)} is cost(P) :=

∑m
i=1 ki. See Figure 1.1 for an example

of a cyclic partition.
Our first technical contribution is an algorithm to compute f -Convolution when the

cost of a cyclic partition is small.

3 This observation was brought to our attention by Jesper Nederlof [27].

IPEC 2022

12:4 Computing Generalized Convolutions Faster Than Brute Force

Figure 1.1 Left figure illustrates exemplar function f : D × D → D over domain D := {a, b, c, d}.
We highlighted a cyclic partition with red, blue, yellow and blue colors. Each color represents a
different minor of f . On the right figure we demonstrate that the red-highlighted minor can be
represented as addition modulo 3 (after relabeling a 7→ 0, b 7→ 1 and c 7→ 2). Hence the red minor
has cost 3. The reader can further verify that green and blue minors have cost 2 and yellow minor
has cost 1, hence the cost of that particular partition is 3 + 2 + 2 + 1 = 8.

▶ Lemma 1.2 (Algorithm for f -Convolution). Let D be an arbitrary finite set, f : D×D →
D and let P be the cyclic partition of f . Then there exists an algorithm which given
g, h : Dn → Z computes (g ⊛f h) in Õ((cost(P)n + |D|n) · polylog(M)) time.

The idea behind the proof of Lemma 1.2 is as follows. Based on the partition P, for any
pair of vectors u, w ∈ Dn, we can define a type p ∈ [m]n such that (ui, wi) ∈ Api

× Bpi
for

every i ∈ [n]. Our main idea is to go over each type p and compute the sum in the definition
of f -Convolution only for pairs (vg, vh) that have type p. In order to do this, first we
select the vectors vg and vh that are compatible with this type p. For instance, consider the
example in Figure 1.1. Whenever pi refers to, say, the red-colored minor, then we consider vg

only if its i-th coordinate is in {b, c, d} and consider vh only if its i-th coordinate is in {b, d}.
After computing all these vectors vg and vh, we can transform them according to the cyclic
minor at each coordinate. Continuing our example, as the red-colored minor is 3-cyclic, we
can represent the i-th coordinate of vg and vh as {0, 1, 2} and then the problem reduces to
addition modulo 3 at that coordinate. Therefore, using the algorithm of van Rooij [34] for
cyclic convolution we can handle all pairs of type p in Õ((

∏n
i=1 kpi

) · polylog(M)) time. As
we go over all mn types p the sum of mn terms is

∑
p∈[m]n

(
n∏

i=1
kpi

)
=
(

m∑
i=1

ki

)n

= cost(P)n.

Hence, the overall running time is Õ(cost(P)n ·polylog(M)). This running time evaluation
ignores the generation of the vectors given as input for the cyclic convolution algorithm. The
efficient computation of these vectors is nontrivial and requires further techniques that we
explain in Section 3.

It remains to provide the low-cost cyclic partition of an arbitrary function f .

▶ Lemma 1.3. For any finite set D and any function f : D × D → D there is a cyclic
partition P of f such that cost(P) ≤ 5

6 |D|2 when |D| is even, or cost(P) ≤ 5
6 |D|2 + 1

6 |D|
when |D| is odd.

For the sake of presentation let us assume that |D| is even. In order to show Lemma 1.3,
we partition D into pairs A1, . . . , Ak where k := |D|/2 and consider the restrictions of f to
Aj × D one by one. This allows us to encode f on Aj × D as a directed graph G with |D|

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:5

edges and |D| vertices. We observe that for certain classes of subgraphs (i.e., paths, out-stars,
in-stars, and cycles) there is a corresponding cyclic minor. Our goal is to partition this graph
G into such subgraphs in a way that the total cost of the resulting cyclic partition is small.
Following this argument, the proof of Lemma 1.3 becomes a graph theoretic analysis. The
proof of Lemma 1.3 is included in Section 4. Our method applies for more general functions
f : L × R → T , where domains L, R, T can be different and have arbitrary cardinality. We
note that a weaker variant of Lemma 1.3 in which the guarantee is cost(Pf) ≤ 7

8 |D|2 is easier
to attain.

Efficient Algorithm for Convolution Query. Our next contribution is an efficient algorithm
to query a single value of f -Convolution. In the f -Query problem, the input is g, h : Dn →
Z and a single vector v ∈ Dn. The task is to compute a value (g ⊛f h)(v). Observe that this
task generalizes4 the fundamental problem of Orthogonal Vectors. We show that computing
f -Query is much faster than computing the full output of f -Convolution.

▶ Theorem 1.4 (Convolution Query). For any finite set D and function f : D × D → D there
is a Õ(|D|ω·n/2 · polylog(M)) time algorithm for the f -Query problem.

Here Õ(nω ·polylog(M)) is the time needed to multiply two n×n integer matrices with values
in {−M, . . . , M} and currently ω ∈ [2, 2.373) [2]. Note, that under the assumption that two
matrices can be multiplied in the linear in the input time (i.e., ω = 2) then Theorem 1.4
runs in the nearly-optimal Õ(|D|n · polylog(M)) time. Theorem 1.4 is significantly faster
than Theorem 1.1 even when we plug-in the naive algorithm for matrix multiplication (i.e.,
ω = 3). The proof of Theorem 1.4 is inspired by an interpretation of the f -Query problem
as counting length-4 cycles in a graph.

1.2 Related Work
Arguably, the problem of computing the Discrete Fourier Transform (DFT) is the prime
example of convolution-type problems in computer science. Cooley and Tukey [18] proposed
the fast algorithm to compute DFT. Later, Beth [4] and Clausen [17] initiated the study
of generalized DFTs whose goal has been to obtain a fast algorithm for DFT where the
underlying group is arbitrary. After a long line of works (see [31] for the survey), the currently
best algorithm for generalized DFT concerning group G runs in O(|G|ω/2+ϵ) operations for
every ϵ > 0 [32].

A similar technique to ours was introduced by Björklund et al. [9]. The paper gave a
characterization of lattices that admit a fast zeta transform and a fast Möbius transform.
Their paper used the notion of covering pairs, which is similar to cyclic partitions used in
this paper but with a completely different goal.

From the lower-bounds perspective to the best of our knowledge only a naive Ω(|D|n)
lower bound is known for f -Convolution (as this is the output size). We note that known
lower bounds for different convolution-type problems, such as (min, +)-convolution [19, 25],
(min, max)-convolution [13], min-witness convolution [26], convolution-3SUM [14] or even
skew-convolution [12] cannot be easily adapted to f -Convolution as the hardness of these
problems comes primarily from the ring operations.

The Orthogonal Vector problem is related to the f -Query problem. In the Orthogonal
Vector problem we are given two sets of n vectors A, B ⊆ {0, 1}d and the task is to decide
if there is a pair a ∈ A, b ∈ B such that a · b = 0. In [38] it was shown that no n2−ϵ · 2o(d)

4 It is a special case with D = {0, 1}, v = 0n and f(x, y) = x · y

IPEC 2022

12:6 Computing Generalized Convolutions Faster Than Brute Force

algorithm for Orthogonal Vectors is possible for any ϵ > 0 assuming SETH [36]. The currently
best algorithm for Orthogonal Vectors run in n2−1/O(log(d)/ log(n)) time [1, 15], O(n · 2cd) for
some constant c < 0.5 [30], or O(|↓A| + |↓B|) [7] (where |↓F | is the total number of vectors
whose support is a subset of the support of input vectors).

1.3 Organization
In Section 2 we provide the formal definitions of the problems alongside the general statements
of our results. In Section 3 we give an algorithm for f -Convolution that uses a given cyclic
partition. In Section 4 we show that for every function f : D × D → D there exists a cyclic
partition of low cost. In Section 5 we conclude the paper and discuss future work.

In Appendix A we give an algorithm for f -Query and prove Theorem 1.4. In Appendix C
and Appendix B we include the missing proofs.

2 Preliminaries

Throughout the paper, we use Iverson bracket notation, where for the logic expression P ,
the value of JP K is 1 when P is true and 0 otherwise. For n ∈ N we use [n] to denote
{1, . . . , n}. Through the paper we denote vectors in bold, for example, q ∈ Zk denotes a
k-dimensional vector of integers. We use subscripts to denote the entries of the vectors, e.g.,
q := (q1, . . . , qk).

Let L, R and T be arbitrary sets and let f : L × R → T be an arbitrary function. We
extend the definition of such an arbitrary function f to vectors as follows. For two vectors
u ∈ Ln and w ∈ Rn we define

u ⊕f w := (f(u1, w1), . . . , f(un, wn)).

In this paper, we consider the f -Convolution problem with a more general domain
and image. We define it formally as follows:

▶ Definition 2.1 (f -Convolution). Let L, R and T be arbitrary sets and let f : L × R → T be
an arbitrary function. The f -Convolution of two functions g : Ln → Z and h : Rn → Z,
where n ∈ N, is the function (g ⊛f h) : T n → Z defined by

(g ⊛f h)(v) :=
∑

u∈Ln, w∈Rn

Jv = u ⊕f wK · g(u) · h(w)

for every v ∈ T n.

As before the operations are taken in the standard Z(+, ·) ring and M is the maximum
absolute value of the integers given on the input.

Now, we formally define the input and output to the f -Convolution problem.

▶ Definition 2.2 (f-Convolution Problem (f -Convolution)). Let L, R and T be
arbitrary finite sets and let f : L × R → T be an arbitrary function. The f-Convolution
Problem is the following.
Input: Two functions g : Rn → {−M, . . . , M} and h : Ln → {−M, . . . , M}.
Task: Compute g ⊛f h.

Our main result stated in the most general form is the following.

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:7

▶ Theorem 2.3. Let f : L × R → T such that L, R and T are finite. There is an algorithm
for the f -Convolution problem with Õ(cn · polylog(M)) time, where

c :=
{

|L|
2 · 4·|R|+|T |

3 if |L| is even
|L|−1

2 · 4·|R|+|T |
3 + |R| otherwise.

Theorem 1.1 is a corollary of Theorem 2.3 by setting L = R = T = D.
The proof of Theorem 2.3 utilizes the notion of cyclic partition. For any k ∈ N, let

Zk = {0, 1, . . . , k − 1}. We say a function f : A × B → C is k-cyclic if, up to a relabeling
of the sets A, B and C, it is an addition modulo k. Formally, f : A × B → C is k-cyclic if
there are σA : A → Zk, σB : B → Zk, and σC : Zk → C such that

∀a ∈ A, b ∈ B : f(a, b) = σC (σA(a) + σB(b) mod k) .

We refer to the functions σA, σB and σC as the relabeling functions of f .
The restriction of f : L × R → T to A ⊆ L and B ⊆ R is the function g : A × B → T

defined by g(a, b) = f(a, b) for all a ∈ A and b ∈ B. We say (A, B, k) is a cyclic minor of
f : L × R → T if the restriction of f to A and B is a k-cyclic function.

A cyclic partition of f : L×R → T is a set of minors P = {(A1, B1, k1), . . . , (Am, Bm, km)}
such that (Ai, Bi, ki) is a cyclic minor of f and for every (a, b) ∈ L × R there is a unique
1 ≤ i ≤ m such that (a, b) ∈ Ai × Bi. The cost of the cyclic partition is cost(P) =

∑m
i=1 ki.

Theorem 2.3 follows from the following lemmas.

▶ Lemma 3.1 (Algorithm for Generalized Convolution). Let L, R and T be finite sets. Also,
let f : L × R → T be a function and let P be a cyclic partition of f . Then there is an
Õ((cost(P)n + |L|n + |R|n + |T |n) · polylog(M)) time algorithm for f -Convolution.

▶ Lemma 4.1. Let f : L × R → T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) ≤ |L|

2 · 4·|R|+|T |
3 when |L| is even, and cost(P) ≤

|R| + |L|−1
2 · 4·|R|+|T |

3 when |L| is odd.

The proof of Lemma 3.1 is included in Section 3 and proof of Lemma 4.1 is included in
Section 4. The proof of Lemma 3.1 uses an algorithm for Cyclic Convolution.

▶ Definition 2.4 (Cyclic Convolution). The Cyclic Convolution problem is the
following.
Input: Vector r ∈ Nk and functions g, h : Z → {−M, . . . , M} where Z = Zr1 × . . . × Zrk

.
Task: Compute the function g ⊙ h : Z → Z defined by

(g ⊙ h)(v) =
∑

u,w∈Z

(
k∏

i=1
Jui + wi = vi mod riK

)
· g(u) · h(w).

Van Rooij [33] showed that Cyclic Convolution can be solved in
Õ
((∏k

i=1 ri

)
· polylog(M)

)
time. However, his algorithm relies on finding an ap-

propriate large prime p. In order to circumvent the discussion on how such a prime can be
found efficiently and deterministically, we can use multiple smaller primes and the Chinese
Reminder Theorem. We include the details in Appendix B.

▶ Theorem 2.5 (Cyclic Convolution). There is an Õ
(

(
∏k

i=1 ri) · polylog(M)
)

algorithm
for the Cyclic Convolution problem.

IPEC 2022

12:8 Computing Generalized Convolutions Faster Than Brute Force

3 Generalized Convolution

In this section we prove Lemma 3.1.

▶ Lemma 3.1 (Algorithm for Generalized Convolution). Let L, R and T be finite sets. Also,
let f : L × R → T be a function and let P be a cyclic partition of f . Then there is an
Õ((cost(P)n + |L|n + |R|n + |T |n) · polylog(M)) time algorithm for f -Convolution.

Throughout the section we fix L, R and T , and f : L × R → T to be as in the statement
of Lemma 3.1. Additionally, fix a cyclic partition P = {(A1, B1, k1), . . . , (Am, Bm, km)}.
Furthermore, let σA,i, σB,i and σC,i be the relabeling functions of the cyclic minor (Ai, Bi, ki)
for every i ∈ [m]. We assume the labeling functions are also fixed throughout this section.

In order to describe our algorithm for Lemma 3.1, we first need to establish several
technical definitions.

▶ Definition 3.2 (Type). The type of two vectors u ∈ Ln and w ∈ Rn is the unique vector
p ∈ [m]n for which ui ∈ Api

and wi ∈ Bpi
for all i ∈ [n].

Observe that the type of two vectors is well defined as P is a cyclic partition. For any type
p ∈ {1, . . . , m}n we define

Lp := Ap1 × · · · × Apn
, Rp := Bp1 × · · · × Bpn

, Zp := Zkp1
× · · · × Zkpn

to be vector domains restricted to type p. For any type p we introduce relabeling functions
on its restricted domains. The relabeling functions of p are the functions σL

p : Lp → Zp,
σR

p : Rp → Zp, and σT
p : Zp → T n defined as follows:

σL
p (v) :=

(
σA,p1(v1), . . . , σA,pn

(vn)
)

∀v ∈ Lp,

σR
p (v) :=

(
σB,p1(v1), . . . , σB,pn

(vn)
)

∀v ∈ Rp,

σT
p (q) :=

(
σC,p1(q1), . . . , σC,pn

(qn)
)

∀q ∈ Zp.

Our algorithm heavily depends on constructing the following projections.

▶ Definition 3.3 (Projection of a Function). The projection of a function g : Ln → Z with
respect to the type p ∈ [m]n, is the function gp : Zp → Z defined as

gp(q) :=
∑

u∈Lp

JσL
p (u) = qK · g(u) for every q ∈ Zp.

Similarly, the projection hp : Zp → Z of a function h : Rn → Z with respect to the type
p ∈ [m]n is defined as

hp(q) :=
∑

w∈Rp

JσR
p (w) = qK · h(w) for every q ∈ Zp.

The projections are useful due to the following connection with g ⊛f h.

▶ Lemma 3.4. Let g : Ln → Z and h : Rn → Z, then for every v ∈ T n it holds that:

(g ⊛f h) (v) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q),

where gp ⊙ hp is the cyclic convolution of gp and hp.

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:9

We give the proof of Lemma 3.4 in Section 3.1. It should be noted that the naive computation
of the projection functions of g and h with respect to all types p is significantly slower than
the running time stated in Lemma 3.1. To adhere to the stated running time we use a
dynamic programming procedure for the computations, as stated in the following lemma.

▶ Lemma 3.5. There exists an algorithm which given a function g : Ln → {−M, . . . , M}
returns the set of its projections, {gp | p ∈ [m]n}, in time Õ ((cost(P)n + |L|n) · polylog(M)).

▶ Remark 3.6. Analogously, we can also construct every projection of a function h : Rn →
{−M, . . . , M} in Õ ((cost(P)n + |R|n) · polylog(M)) time.
The proof of Lemma 3.5 in given in Appendix C.

Our algorithm for f -Convolution (see Algorithm 1 for the pseudocode) is a direct
implication of Lemma 3.4 and Lemma 3.5. First, the algorithm computes the projections
of g and h with respect to every type p. Subsequently, the cyclic convolution of gp and
hp is computed efficiently as described in Theorem 2.5. Finally, the values of (g ⊛f h) are
reconstructed by the formula in Lemma 3.4.

Algorithm 1 Cyclic Partition Algorithm for the f -Convolution problem.

Setting : Finite sets L, R and T , f : L × R → T and a cyclic partition P of f , of
size m.

Input: g : Ln → {−M, . . . , M}, h : Rn → {−M, . . . , M}
1 Construct the projections of g and h w.r.t p, for all p ∈ [m]n ▷ Lemma 3.5
2 For every p ∈ [m]n compute cp = gp ⊙ hp ▷ Cyclic convolutions (Definition 2.4)
3 Define r : T n → Z by

r(v) =
∑

p∈[m]n

∑
q∈Zp s.t. σT

p
(q)=v

cp(q) for all v ∈ T n.

4 return r

Proof of Lemma 3.1. Observe that Algorithm 1 returns r : T n → Z such that for every
v ∈ T n it holds that

r(v) =
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

cp(q) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q) = (g ⊛f h) (v),

where the last equality is by Lemma 3.4. Thus, the algorithm returns (g ⊛f h) as required.
It therefore remains to bound the running time of the algorithm.

By Lemma 3.5, Line 1 of Algorithm 1 runs in time Õ((cost(P)n + |L|n + |R|n) ·
polylog(M)). By Theorem 2.5, for any type p ∈ [m]n the computation of gp ⊙ hp in
Line 2 runs in time Õ((

∏n
i=1 kpi

) · polylog(M)). Thus the overall running time of Line 2 is
Õ
(

(
∑

p∈[m]n

∏n
i=1 kpi

) · polylog(M)
)

.
Finally, observe that the construction of r in Line 3 can be implemented by initializing

r to be zeros and iteratively adding the value of cp(q) to r(σT
p (q)) for every p ∈ [m]n and

q ∈ Zp. The required running time is thus Õ(|T |n · polylog(M)) for the initialization and
Õ
(

(
∑

p∈[m]n |Zp|) · polylog(M)
)

= Õ
(

(
∑

p∈[m]n

∏n
i=1 kpi

) · polylog(M)
)

for the addition
operations. Thus, the overall running time of Line 3 is

Õ

|T |n +
∑

p∈[m]n

n∏
i=1

kpi

 · polylog(M)

 .

IPEC 2022

12:10 Computing Generalized Convolutions Faster Than Brute Force

Combining the above, with
∑

p∈[m]n

∏n
i=1 kpi

= (
∑m

i=1 ki)
n = (cost(P))n means that the

running time of Algorithm 1 is

Õ ((|T |n + |R|n + |L|n + cost(P)n) · polylog(M))

This concludes the proof of Lemma 3.1. ◀

3.1 Properties of Projections
In this section we provide the proof for Lemma 3.4. The proof of Lemma 3.4 uses the
following definitions of coordinate-wise addition with respect to a type p.

▶ Definition 3.7 (Coordinate-wise Addition Modulo for Type). For any p ∈ [m]n we define a
coordinate-wise addition modulo as

q +p r :=
(
(q1 + r1 mod kp1), . . . , (qn + rn mod kpn

)
)

for every q, r ∈ Zp.

Proof of Lemma 3.4. By Definition 2.1 it holds that:

(g ⊛f h) (v) =
∑

u∈Ln,w∈Rn

Jv = u ⊕f wK · g(u) · h(w). (3.1)

Recall that the type of every two vectors (u, w) ∈ Ln × Rn is unique and [m]n contains all
possible types and hence, we can rewrite (3.1) as

(g ⊛f h)(v) =
∑

p∈[m]n

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = u ⊕f wK (3.2)

By the properties of the relabeling functions, we get

=
∑

p∈[m]n

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = σT
p

(
σL

p (u) +p σR
p (w)

)
K

=
∑

p∈[m]n

∑
q∈Zp

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = σT
p (q)K · Jq = σL

p (u) +p σR
p (w)K

=
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jq = σL
p (u) +p σR

p (w)K.

Observe that we can partition Lp (respectively Rp) by considering the inverse images of
r ∈ Zp under σL

p (respectively σR
p), i.e. Lp =

⊎
r∈Zp

{u ∈ Lp | σL
p (u) = r}. Hence, for every

p ∈ [m]n and q ∈ Zp it holds that∑
u∈Lp,v∈Rp

g(u) · h(w) · Jq = σL
p (u) +p σR

p (w)K

=
∑

r,s∈Zp

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jq = r +p sK · Jr = σL
p (u)K · Js = σR

p (w)K

=
∑

r,s∈Zp

Jq = r +p sK

∑
u∈Lp

Jr = σL
p (u)K · g(u)

 ·

 ∑
w∈Rp

Js = σR
p (w)K · h(w)

=
∑

r,s∈Zp

Jq = r +p sK · gp(r) · hp(s)

= (gp ⊙ hp)(q). (3.3)

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:11

By plugging (3.3) into (3.2) we get

(g ⊛f h) (v) =
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

(gp ⊙ hp)(q) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q),

as required. ◀

4 Existence of Low-Cost Cyclic Partition

In this section we prove Lemma 4.1.

▶ Lemma 4.1. Let f : L × R → T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) ≤ |L|

2 · 4·|R|+|T |
3 when |L| is even, and cost(P) ≤

|R| + |L|−1
2 · 4·|R|+|T |

3 when |L| is odd.

We first consider the special case when |L| = 2. Later we reduce the general case to this
scenario and use the result as a black-box.

As a warm-up we construct a cyclic partition of cost at most 7
8 |D|2 assuming that

L = R = T = D and that |D| is even. For this, we first partition D into pairs d
(i)
1 , d

(i)
2 where

i ∈ [|D|/2] and show for each such pair that f restricted to {d
(i)
1 , d

(i)
2 } and D has a cyclic

partition of cost at most 7
4 |D|. The union of these cyclic partitions forms a cyclic partition

of f with cost at most |D|
2 · 7

4 |D|.
To construct the cyclic partition for a fixed i ∈ [|D|/2], we find a maximal number r

of pairwise disjoint pairs e
(j)
1 , e

(j)
2 ∈ D such that |{f(d(i)

a , e
(j)
b) | a, b = 1, 2}| ≤ 3 for each

j ∈ [r], i.e. for each j at least one of the four values repeats. With this assumption, f

restricted to {d
(i)
1 , d

(i)
2 } and {e

(j)
1 , e

(j)
2 } is either a cyclic minor of cost at most 3 or can be

decomposed into 3 trivial cyclic minors of the total cost at most 3. We claim that r ≥ |D|/4.
Indeed, assume that there are fewer than |D|/4 such pairs, i.e. r < |D|/4. Let D denote the
|D| − 2 · r > |D|/2 remaining values in D. As the set {f(d(i)

a , d) | d ∈ D, a = 1, 2} can only
contain at most |D| values, we can find another pair e

(r+1)
1 , e

(r+1)
2 with the above constraints.

Note that f restricted to {d
(i)
1 , d

(i)
2 } and D can be decomposed into at most 2|D| trivial

minors. Hence, the cyclic partition for f restricted to {d
(i)
1 , d

(i)
2 } and D has cost at most

3r + 2 · |D| ≤ 3 · |D|
4 + 2 · |D|

2 ≤ 7
4 |D|.

4.1 Special Case
In this section, we prove the following lemma that is a special case of Lemma 4.1.

▶ Lemma 4.2. If f : L × R → T with |L| = 2, then there is a cyclic partition P of f such
that cost(P) ≤ (4|R| + |T |)/3.

To construct the cyclic partition we proceed as follows. First we define, for a function f ,
the representation graph Gf . Next we show that if this graph has a special structure, which
we later call nice, then we can easily find a cyclic partition for the function f . Afterwards we
decompose (the edges of) an arbitrary representation graph Gf into nice structures and then
combine the cyclic partitions coming from these parts to a cyclic partition for the original
function f .

IPEC 2022

12:12 Computing Generalized Convolutions Faster Than Brute Force

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

ℓ0 a b c a e f g h i j k l

ℓ1 b c a d d d d d d k l m

Figure 4.1 Example of the construction of a representation graph from the function f to obtain
a cyclic partition. We put an edge between vertices u and v if there is an ri with u = f(ℓ0, ri)
and v = f(ℓ1, ri). We highlight the partition of the graph into cycle (red), in-star (blue) and path
(green). The cost of this cyclic partition is 3 + 7 + 4 = 14.

▶ Definition 4.3. Let f : L × R → T be a such that |L| = 2 with L = {ℓ0, ℓ1}.
We define a function λf : R → T ×T with λf : r 7→ (f(ℓ0, r), f(ℓ1, r)) as the edge mapping

of f .
We define a directed graph Gf (which might have loops) with vertex set V (Gf) := T and

edge set E(Gf) := {λf (r) | r ∈ R}. We say that Gf is the representation graph of f .
We say that a representation graph Gf is nice if it is a cycle, a path (potentially with

only one edge), an in-star, or an out-star.5

Let E′ ⊆ E(Gf) be a subset of edges inducing the subgraph G′ of Gf . With T ′ := V (G′)
and R′ := {r ∈ R | λf (r) ∈ E′}, we define f ′ : L × R′ → T ′ as the restriction of f such that
the representation graph of f ′ is G′. Formally, f ′(ℓ, r) = f(ℓ, r) for all ℓ ∈ L and r ∈ R′.
We say that f ′ is the function represented by G′ or E′, respectively.

A decomposition of a directed graph G is a set C of edge-disjoint subgraphs of G, such
that each edge belongs to exactly one set in C. For ease of notation, we identify the set of
edges E′ with the induced graph G′. For a graph G, the line graph L(G) is a graph where
the set of edges E(G) is the vertex set of L(G) and e1, e2 ∈ V (L(G)) are adjacent in L(G) if
edges e1, e2 share an endpoint in graph G.

The following observation follows directly from the previous definition.

▶ Observation 4.4. Let G1, . . . , Gp be decomposition of the graph Gf into p subgraphs, let fi

be the function represented by Gi, and let Pi be a cyclic partition of fi. Then P =
⋃

i∈[p] Pi

is a cyclic partition of f with cost cost(P) =
∑

i∈[p] cost(Pi).

Cyclic Partitions Given Nice Representation Graphs. As a next step, we show that
functions admit cyclic partitions if the representation graph is nice. Afterwards we show
how to decompose (the representation) graphs into nice (representation) graphs. Finally, we
combine these results to obtain a cyclic partition for the original function f . See Figure 4.1
for an example.

▶ Lemma 4.5. Let f : L × R → T be a function such that Gf is nice. Then f has a cyclic
partition of cost at most |T |.

5 A star graph where either all edges are directed to the central vertex or all edges are directed away
from it, respectively.

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:13

Proof. By definition, a nice graph is either a path, a cycle or an in-star or out-star. We
handle each case separately in the following. Let L = {ℓ0, ℓ1}.
Gf is a cycle. We first define the relabeling functions of f to show that f is |T |-cyclic.

For the elements in L, let σL : L → Z2 with σL(ℓi) = i. To define σR and σT , fix an
arbitrary t0 ∈ T . Let t1, . . . , t|T | be the elements in T with t|T | = t0 such that, for all
i ∈ Z|T |, there is some ri ∈ R with λf (ri) = (ti, ti+1).6 Note that these ri exist since Gf

is a cycle. Using this notation, we define σT : Z|T | → T with σT (i) = ti, for all i ∈ Z|T |.
For the elements in R we define σR : R → Z|R| with σR(r) = i whenever λf (r) = (ti, ti+1)
for some i.
It is easy to check that f can be seen as addition modulo |T |. Indeed, let j ∈ {0, 1} and
r ∈ R with λf (r) = (ti, ti+1). Then we get

σT (σL(ℓj)+σR(r) mod |T |) = σT (j+i mod |T |) = tj+i mod |T | = f(ℓj , ri) = f(ℓj , r).

Thus, f is |T |-cyclic and {(L, R, |T |)} is a cyclic partition of f .
Gf is a path. Similarly to the previous case, f can be represented as addition modulo |T |.

As the proof is essentially identical to the cyclic case, we omit the details here.
Gf is a star. We only consider the out-star as the in-star follows symmetrically by swapping

the roles of ℓ0 and ℓ1. We define the following cyclic partition P as

P := {({ℓ0}, R, 1)} ∪ {({ℓ1}, {r}, 1) | r ∈ R}.

Note that every (ℓ, r) ∈ L × R appears in exactly one minor of P. Hence, P is indeed
a cyclic partition. Next, we observe that each minor contains exactly one element of T .
Thus, no addition is needed and hence f is 1-cyclic for each minor of P . Thus the cost of
each minor of P is 1.
By the structure of Gf , the cost of cyclic partition P is |R| + 1 = |T |. ◀

Decomposition into Nice Graphs. We first decompose the graph into cycles and acyclic
components. The later parts are then decomposed further using the next two results.

▷ Claim 4.6. Every directed graph G can be decomposed into cycles and acyclic graphs.

Proof. We remove an arbitrary cycle from the graph and add it as a new component to the
decomposition. We repeat this procedure until the graph is acyclic. ◁

Next, we decompose the acyclic graph further. First, we decompose it into pairs of edges
that share at least one endpoint.

▷ Claim 4.7. Every directed graph G = (V, E) whose undirected version is connected can
be decomposed into ⌊|E|/2⌋ pairs of edges which share (at least) one endpoint and, if and
only if |E| is odd, one additional single edge.

Proof. If the graph has an odd number of edges, then we find one edge e, such that the
removal of e does not disconnect the graph (except for maybe one isolated vertex). Next,
we include this edge into the decomposition and apply the procedure for the case when the
number of edges is even.

Chartrand et al. [16, Theorem 1] showed that if a graph G has an even number of edges,
then there is a perfect matching in the line graph L(G) of G. This perfect matching directly
gives us a partition of the edges of G into ⌊|E|/2⌋ pairs which share at least one endpoint.

◁

6 Note that there might be multiple r ∈ R with λf (r) = (ti, ti+1).

IPEC 2022

12:14 Computing Generalized Convolutions Faster Than Brute Force

Next, we present a different way to decompose the graph into nice structures.

▷ Claim 4.8. Every directed acyclic graph G = (V, E) can be decomposed into at most
|V | − 1 out-stars.

Proof. The sets of out-going edges from each vertex form a partition of all edges of the graph
G. Moreover, each such non-empty set of edges describes an out-star. As in every directed
acyclic graph, there is at least one sink vertex, there are at most |V | − 1 such out-stars. ◁

Combining the Results. Finally, we are ready to combine the above results and prove
Lemma 4.2.

Proof of Lemma 4.2. We first use Claim 4.6 to decompose Gf into c cycles C1, . . . , Cc and
d connected, acyclic graphs G1, . . . , Gd.

For each Ci, Lemma 4.5 gives us a cyclic partition P ′
i for the associated function with

cost at most |E(Ci)| = |V (Ci)|. For the remaining components, we use the following claim.

▷ Claim 4.9. For each Gi, there is a cyclic partition Pi for the function represented by Gi

with the cost at most

cost(Pi) ≤ 4|E(Gi)| + |V (Gi)|
3 . (4.1)

Proof. Fix some i ∈ [d] in the following. We show the claim by considering two cases. For
ease of notation, let Ei = E(Gi) and Vi = V (Gi).

In the case when 2|Vi| ≥ |Ei| + 3, we decompose the graph Gi via Claim 4.7. This
decomposes Gi into ⌊|Ei|/2⌋ pairs of edges that share an endpoint (plus an extra edge when
|Ei| is odd). Observe that a pair of edges that share an endpoint is either a directed path,
an in-star, or an out-star. Hence, by Lemma 4.5 each pair contributes a cost of 3 to the
cyclic partition. Therefore, by Observation 4.4, the function represented by Gi has a cyclic
partition with a cost at most 3|Ei|/2 if |Ei| is even and with cost at most 3(|Ei| − 1)/2 + 2 if
|Ei| is odd. As the latter bound is the larger one, it can be easily checked that the claimed
bound for the cyclic partition follows.

It remains to analyze case 2|Vi| < |Ei| + 3. Here, we use Claim 4.8 to decompose the
graph Gi into out-stars. By Observation 4.4 and as there is at least one sink vertex, there is
a cyclic partition of the function represented by Gi with cost at most |Ei| + |Vi| − 1. By the
assumption that 2|Vi| ≤ |Ei|+3, the cost of the cyclic partition is bounded by (4|Ei|+ |Vi|)/3
which settles (4.1). ◁

With the notation from the claim and by Observation 4.4, we define the cyclic partition
P for f as

P :=
⋃

i∈[c]

P ′
i ∪

⋃
i∈[d]

Pi.

Because the Gis are connected components of Gf after the removal of C1 . . . Cc, they are
vertex-disjoint and it holds that

∑
i∈[d] |V (Gi)| ≤ |V (Gf)|. Moreover, by Lemma 4.5 the cost

of each cycle Ci is |E(Ci)|. Hence, we get

cost(P) ≤
∑
i∈[c]

|E(Ci)| +
∑
i∈[d]

4|E(Gi)| + |V (Gi)|
3 ≤ 4|E(Gf)| + |V (Gf)|

3 .

Because |E(Gf)| ≤ |R| and |V (Gf)| = |T | the cost of this cyclic partition is bounded which
finishes the proof. ◀

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:15

4.2 General Case
Now we have everything ready to prove the main result of this section.

Proof of Lemma 4.1. We first handle the case when |L| is even. We partition L into
λ = |L|/2 sets L1, . . . , Lλ consisting of exactly two elements. We use Lemma 4.2 to find a
cyclic partition Pi for each fi : Li×R → T . By definition of the cyclic partition, P =

⋃
i∈[λ] Pi

is a cyclic partition for f , hence it remains to analyze the cost of P.
Observe that for each Gi we have that |Vi| ≤ |T | and |Ei| ≤ |R|. By the definition of the

cost of the cyclic partition, we immediately get that

cost(P) ≤
λ∑

i=1
cost(Pi) ≤ λ · 4 · |R| + |T |

3 .

If |L| is odd, then we remove one element ℓ from L and let L0 = {ℓ}. There is a trivial cyclic
partition P0 for f0 : L0 × R → T of cost at most |R|. Then we use the above procedure to
find a cyclic partition P ′ for the restriction of f to L \ {ℓ} and R. Hence, setting P = P0 ∪ P ′

gives a cyclic partition for f with cost

cost(P) ≤ cost(P0) + cost(P ′) ≤ |R| +
⌊

|L|
2

⌋(
4 · |R| + |T |

3

)
. ◀

▶ Remark 4.10. If |L| and |R| are both even, one can easily achieve the following cost

min
(

L

2 · 4 · |R| + |T |
3 ,

R

2 · 4 · |L| + |T |
3

)
by swapping the role of L and R and considering the function f ′ : R × L → T with f ′(r, ℓ) =
f(ℓ, r) for all ℓ ∈ L and r ∈ R.

5 Conclusion and Future Work

In this paper, we studied the f -Convolution problem and demonstrated that the naive
brute-force algorithm can be improved for every f : D × D → D. We achieve that by
introducing a cyclic partition of a function and showing that there always exists a cyclic
partition of bounded cost. We give an Õ((c|D|2)n ·polylog(M)) time algorithm that computes
f -Convolution for c := 5/6 when |D| is even.

The cyclic partition is a very general tool and potentially it can be used to achieve greater
improvements for certain functions f . For example, in multiple applications (e.g., [20, 34,
24, 29]) the function f has a cyclic partition with a single cyclic minor. Nevertheless, in our
proof we only use cyclic minors where one dimension is at most 2. We suspect that better
results can be obtained by considering larger minors.

We leave several open problems. Our algorithm offers an exponential (in n) improvement
over a naive algorithm for domains D of constant size. Can we hope for an Õ(|D|(2−ϵ)n ·
polylog(M)) time algorithm for f -Convolution for some ϵ > 0? We are not aware of any
lower bounds, so in principle even an Õ(|D|n · polylog(M)) time algorithm is plausible.

Ideally, we would expect that the f -Convolution problem can be solved in Õ((|L|n +
|R|n + |T |n) · polylog(M)) for any function f : L × R → T . In Figure 5.1 we include three
examples of functions that are especially difficult for our methods.

Finally, we gave an Õ(|D|ω·n/2 · polylog(M)) time algorithm for f -Query problem.
For ω = 2 this algorithm runs in almost linear-time, however for the current bound ω <

2.373 our algorithm runs in time Õ(|D|1.19n · polylog(M)). Can f -Query be solved in
Õ(|D|n · polylog(M)) time without assuming ω = 2?

IPEC 2022

12:16 Computing Generalized Convolutions Faster Than Brute Force

Figure 5.1 Here are three concrete examples of functions f for which we expect that the running
times for f -Convolution should be Õ(3n ·polylog(M)), Õ(3n ·polylog(M)) and Õ(4n ·polylog(M)).
However, the best cyclic partitions for this functions have costs 4, 4 and 5 (the partitions are
highlighted appropriately). This implies that the best running time, which may be attained using
our techniques are Õ(4n · polylog(M)), Õ(4n · polylog(M)) and Õ(5n · polylog(M)).

References

1 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More Applications of the Polynomial
Method to Algorithm Design. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 218–230. SIAM, 2015. doi:10.1137/1.9781611973730.17.

2 Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and Faster Matrix
Multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

3 Michael A. Bennett, Greg Martin, Kevin O’Bryant, and Andrew Rechnitzer. Explicit bounds
for primes in arithmetic progressions. Illinois J. Math., 62(1-4):427–532, 2018. doi:10.1215/
ijm/1552442669.

4 Thomas Beth. Verfahren der schnellen Fourier-Transformation: die allgemeine diskrete
Fourier-Transformation–ihre algebraische Beschreibung, Komplexität und Implementierung,
volume 61. Teubner, 1984.

5 Andreas Björklund and Thore Husfeldt. The Parity of Directed Hamiltonian Cycles. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 727–735. IEEE Computer Society, 2013. doi:
10.1109/FOCS.2013.83.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier Meets Möbius:
Fast Subset Convolution. In David S. Johnson and Uriel Feige, editors, Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 67–74. ACM, 2007. doi:10.1145/1250790.1250801.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths
and Packings in Halves. In Amos Fiat and Peter Sanders, editors, Algorithms – ESA 2009,
17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings,
volume 5757 of Lecture Notes in Computer Science, pages 578–586. Springer, 2009. doi:
10.1007/978-3-642-04128-0_52.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Covering and packing
in linear space. Inf. Process. Lett., 111(21-22):1033–1036, 2011. doi:10.1016/j.ipl.2011.08.
002.

9 Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Jesper Nederlof, and
Pekka Parviainen. Fast Zeta Transforms for Lattices with Few Irreducibles. ACM Trans.
Algorithms, 12(1):4:1–4:19, 2016. doi:10.1145/2629429.

10 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via Inclusion-
Exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1215/ijm/1552442669
https://doi.org/10.1215/ijm/1552442669
https://doi.org/10.1109/FOCS.2013.83
https://doi.org/10.1109/FOCS.2013.83
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1016/j.ipl.2011.08.002
https://doi.org/10.1016/j.ipl.2011.08.002
https://doi.org/10.1145/2629429
https://doi.org/10.1137/070683933

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:17

11 Cornelius Brand. Discriminantal subset convolution: Refining exterior-algebraic methods
for parameterized algorithms. Journal of Computer and System Sciences, 129:62–71, 2022.
doi:10.1016/j.jcss.2022.05.004.

12 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
Minimization of Tardy Processing Time on a Single Machine. Algorithmica, 84(5):1341–1356,
2022. doi:10.1007/s00453-022-00928-w.

13 Karl Bringmann, Marvin Künnemann, and Karol Węgrzycki. Approximating APSP without
scaling: equivalence of approximate min-plus and exact min-max. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 943–954, 2019.

14 Timothy M. Chan and Qizheng He. Reducing 3SUM to Convolution-3SUM. In Martin
Farach-Colton and Inge Li Gørtz, editors, 3rd Symposium on Simplicity in Algorithms, SOSA
2020, Salt Lake City, UT, USA, January 6-7, 2020, pages 1–7. SIAM, 2020. doi:10.1137/1.
9781611976014.1.

15 Timothy M. Chan and R. Ryan Williams. Deterministic APSP, Orthogonal Vectors, and
More: Quickly Derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14,
2021. doi:10.1145/3402926.

16 Gary Chartrand, Albert D Polimeni, and M James Stewart. The existence of 1-factors in line
graphs, squares, and total graphs. In Indagationes Mathematicae (Proceedings), volume 76,
pages 228–232. Elsevier, 1973.

17 Michael Clausen. Fast generalized Fourier transforms. Theoretical Computer Science, 67(1):55–
63, 1989.

18 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19(90):297–301, 1965.

19 Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michal Włodarczyk. On Problems
Equivalent to (min, +)-Convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:
10.1145/3293465.

20 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth
in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/
3506707.

21 Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor. Comput. Sci.,
411(40-42):3701–3713, 2010. doi:10.1016/j.tcs.2010.06.018.

22 Barış Can Esmer, Ariel Kulik, Dániel Marx, Philipp Schepper, and Karol Węgrzycki. Com-
puting Generalized Convolutions Faster Than Brute Force, 2022. doi:10.48550/ARXIV.2209.
01623.

23 Philip Hall. A contribution to the theory of groups of prime-power order. Proceedings of the
London Mathematical Society, 2(1):29–95, 1934.

24 Falko Hegerfeld and Stefan Kratsch. Solving Connectivity Problems Parameterized by
Treedepth in Single-Exponential Time and Polynomial Space. In Christophe Paul and
Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of
LIPIcs, pages 29:1–29:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.STACS.2020.29.

25 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained
Complexity of One-Dimensional Dynamic Programming. In Ioannis Chatzigiannakis, Pi-
otr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.21.

26 Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic Triangles,
Intermediate Matrix Products, and Convolutions. In Thomas Vidick, editor, 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, volume 151 of LIPIcs, pages 53:1–53:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.53.

IPEC 2022

https://doi.org/10.1016/j.jcss.2022.05.004
https://doi.org/10.1007/s00453-022-00928-w
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1145/3402926
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707
https://doi.org/10.1016/j.tcs.2010.06.018
https://doi.org/10.48550/ARXIV.2209.01623
https://doi.org/10.48550/ARXIV.2209.01623
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ITCS.2020.53

12:18 Computing Generalized Convolutions Faster Than Brute Force

27 Jesper Nederlof. personal communication, 2022.
28 Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, and Karol Węgrzycki. A Faster

Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive
Combinatorics. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021, pages 1682–1701.
SIAM, 2021. doi:10.1137/1.9781611976465.102.

29 Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki. Hamilto-
nian Cycle Parameterized by Treedepth in Single Exponential Time and Polynomial Space.
In Isolde Adler and Haiko Müller, editors, Graph-Theoretic Concepts in Computer Science
– 46th International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected
Papers, volume 12301 of Lecture Notes in Computer Science, pages 27–39. Springer, 2020.
doi:10.1007/978-3-030-60440-0_3.

30 Jesper Nederlof and Karol Węgrzycki. Improving Schroeppel and Shamir’s Algorithm for
Subset Sum via Orthogonal Vectors. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 1670–1683. ACM, 2021. doi:10.1145/3406325.3451024.

31 Daniel N Rockmore. Recent progress and applications in group FFTs. In Computational
noncommutative algebra and applications, pages 227–254. Springer, 2004.

32 Chris Umans. Fast Generalized DFTs for all Finite Groups. In David Zuckerman, editor,
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 793–805. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00052.

33 Johan M. M. van Rooij. Fast Algorithms for Join Operations on Tree Decompositions. In
Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms – Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

34 Johan M. M. van Rooij. A Generic Convolution Algorithm for Join Operations on Tree
Decompositions. In Rahul Santhanam and Daniil Musatov, editors, Computer Science –
Theory and Applications – 16th International Computer Science Symposium in Russia, CSR
2021, Sochi, Russia, June 28 – July 2, 2021, Proceedings, volume 12730 of Lecture Notes in
Computer Science, pages 435–459. Springer, 2021. doi:10.1007/978-3-030-79416-3_27.

35 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic Programming
on Tree Decompositions Using Generalised Fast Subset Convolution. In Amos Fiat and Peter
Sanders, editors, Algorithms – ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer
Science, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

36 Virginia Vassilevska-Williams. On Some Fine-Grained Questions in Algorithms and Complexity.
In Proceedings of the International Congress of Mathematicians (ICM 2018), pages 3447–34,
2018.

37 Louis Weisner. Abstract theory of inversion of finite series. Transactions of the American
Mathematical Society, 38(3):474–484, 1935.

38 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

39 Michał Włodarczyk. Clifford Algebras Meet Tree Decompositions. Algorithmica, 81(2):497–518,
2019. doi:10.1007/s00453-018-0489-3.

40 Frank Yates. The design and analysis of factorial experiments. Technical Communication No.
35., 1937.

41 Or Zamir. Breaking the 2n Barrier for 5-Coloring and 6-Coloring. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 113:1–113:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.113.

https://doi.org/10.1137/1.9781611976465.102
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1145/3406325.3451024
https://doi.org/10.1109/FOCS.2019.00052
https://doi.org/10.1109/FOCS.2019.00052
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-030-79416-3_27
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1007/s00453-018-0489-3
https://doi.org/10.4230/LIPIcs.ICALP.2021.113

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:19

A Querying a Generalized Convolution

In this section, we prove Theorem 1.4. The main idea is to represent the f -Query problem
as a matrix multiplication problem, inspired by a graph interpretation of f -Query.

Let D be an arbitrary set and f : D × D → D. We assume D and f are fixed throughout
this section. Let g, h : Dn → {−M, . . . , M} and v ∈ Dn be a f -Query instance. We use a∥b
to denote the concatenation of a ∈ Dm and b ∈ Dk. That is (a1, . . . , am)∥(b1, . . . , bk) =
(a1, . . . , am, b1, . . . , bk). If we assume that n is even, then, for a vector v ∈ Dn, let
v(high), v(low) ∈ Dn/2 be the unique vectors such that v(high)∥v(low) = v. Indeed, to achieve
this assumption let n be odd, fix an arbitrary d ∈ D, and define g̃, h̃ : Dn+1 → {−M, . . . , M}
as g̃(u1, . . . un+1) = Jun+1 = dK ·g(u1, . . . un) and h̃(u1, . . . un+1) = Jun+1 = dK ·h(u1, . . . un)
for all u ∈ Dn+1. It can be easily verified that (g ⊛f h)(v) = (g̃ ⊛f h̃)(v∥(f(d, d))). Thus,
we can solve the f -Query instance g̃, h̃ and v∥(f(d, d)) and obtain the correct result.

We first provide the intuition behind the algorithm and then formally show the existence.

Intuition. We define a directed multigraph G where the vertices are partitioned into four
layers L(high), L(low), R(low), and R(high). Each of these sets consists of |D|n/2 vertices
representing every vector in Dn/2. For ease of notation, we use the vectors to denote the
associated vertices; furthermore, the intuition assumes g and h are non-negative. The
multigraph G contains the following edges:

g(w∥x) parallel edges from w ∈ Dn/2 in L(high) to x ∈ Dn/2 in L(low).
One edge from x ∈ Dn/2 in L(low) to y ∈ Dn/2 in R(low) if and only if x ⊕f y = v(low).
h(z∥y) parallel edges from y ∈ Dn/2 in R(low) to z ∈ Dn/2 in R(high).
One edge from z ∈ Dn/2 in R(high) to w ∈ Dn/2 in L(high) if and only if w ⊕f z = v(high).

In the formal proof, we denote the adjacency matrix between L(high) and L(low) by W ,
between L(low) and R(low) by X, between R(low) and R(high) by Y , and between R(high) and
L(high) by Z. See Figure A.1 for an example of this construction.

Let w, x, y, z ∈ Dn/2 be vertices in L(high), L(low), R(low), and R(high). It can be observed
that if (w∥x) ⊕f (y∥z) ̸= v, then G does not contain any cycle of the form w → x →
y → z → w as one of the edges (x, y) or (z, w) is not present in the graph. Conversely, if
(w∥x) ⊕f (y∥z) = v, then one can verify that there are g(w∥x) · h(z∥y) cycles of the form
w → x → y → z → w. We therefore expect that (g ⊛f h)(v) is the number of cycles in G

that start at some w ∈ Dn/2 in L(high), have length four, and end at the same vertex w in
L(high) again.

Formal Proof. We use the notation MatZ(Dn/2 × Dn/2) to refer to a |D|n/2 × |D|n/2 matrix
of integers where we use the values in Dn/2 as indices. The transition matrices of g, h and v
are the matrices W, X, Y, Z ∈ MatZ(Dn/2 × Dn/2) defined by

Ww,x := g(w∥x) ∀w, x ∈ Dn/2

Xx,y := Jx ⊕f y = v(low)K ∀x, y ∈ Dn/2

Yy,z := h(z∥y) ∀y, z ∈ Dn/2

Zz,w := Jw ⊕f z = v(high)K ∀z, w ∈ Dn/2

Recall that the trace tr(A) of a matrix A ∈ MatZ(m × m) is defined as tr(A) :=
∑m

i=1 Ai,i.
The next lemma formalizes the correctness of this construction.

IPEC 2022

12:20 Computing Generalized Convolutions Faster Than Brute Force

Figure A.1 Construction of the directed multigraph G. Each vertex in a layer corresponds to the
vector in Dn/2. We highlighted 4 vectors w, x, y, z ∈ Dn/2 each in a different layer. Note that the
number of 4 cycles that go through all four w, x, y, z is equal to g(w∥x) · h(z∥y). The total number
of directed 4-cycles in this graph corresponds to the value (g ⊛f h)(v) and tr(W · X · Y · Z).

▶ Lemma A.1. Let n ∈ N be an even number, g, h : Dn → Z and v ∈ Dn. Also, let
W, X, Y, Z ∈ MatZ(Dn/2 × Dn/2) be the transition matrices of g, h and v. Then,

(g ⊛f h)(v) = tr(W · X · Y · Z).

Proof. For any w, y ∈ Dn/2 it holds that,

(W · X)w,y =
∑

x∈Dn/2

Ww,x · Xx,y =
∑

x∈Dn/2

Jx ⊕f y = v(low)K · g(w∥x). (A.1)

Similarly, for any y, w ∈ Dn/2 it holds that,

(Y · Z)y,w =
∑

z∈Dn/2

Yy,z · Zz,w =
∑

z∈Dn/2

Jw ⊕f z = v(high)K · h(z∥y). (A.2)

Therefore, for any w ∈ Dn/2,

(W · X · Y · Z)w,w =
∑

y∈Dn/2

(W · X)w,y · (Y · Z)y,w

=
∑

y∈Dn/2

 ∑
x∈Dn/2

Jx ⊕f y = v(low)K · g(w∥x)

 ∑
z∈Dn/2

Jw ⊕f z = v(high)K · h(z∥y)

=

∑
x,y,z∈Dn/2

Jx ⊕f y = v(low)K · Jw ⊕f z = v(high) K · g(w∥x) · h(z∥y)

=
∑

x,y,z∈Dn/2

J(w∥x) ⊕f (z∥y) = v(high)∥v(low)K · g(w∥x) · h(z∥y),

B. C. Esmer, A. Kulik, D. Marx, P. Schepper, and K. Węgrzycki 12:21

where the second equality follows by (A.1) and (A.2). Thus,

tr(W · X · Y · Z) =
∑

w∈Dn/2

(W · X · Y · Z)w,w

=
∑

w∈Dn/2

∑
x,y,z∈Dn/2

J(w∥x) ⊕f (z∥y) = vK · g(w∥x) · h(z∥y)

=
∑

u,t∈Dn

Ju ⊕f t = vK · g(u) · h(t)

= (g ⊛f h)(v). ◀

Now we have everything ready to give the algorithm for f -Query.

Proof of Theorem 1.4. The algorithm for solving f -Query works in two steps:
1. Compute the transition matrices W , X, Y , and Z of g, h and v as described above.
2. Compute and return tr(W · X · Y · Z).
By Lemma A.1 this algorithm returns (g ⊛f h)(v). Computing the transition matrices in
Step 1 requires Õ(|D|n ·polylog(M)) time. Observe the maximal absolute values of an entry in
the transition matrices is M . The computation of W ·X ·Y ·Z in Step 2 requires three matrix
multiplications of |D|n/2 × |D|n/2 matrices, which can be done in Õ((|D|n/2)ω · polylog(M))
time. Thus, the overall running time of the algorithm is Õ(|D|ω·n/2 · polylog(M)). ◀

B Proof of Theorem 2.5

In this section we prove Theorem 2.5. We let M be the absolute value of largest integer on
the output of functions g : Ln → Z and h : Rn → Z. We let K :=

∏n
i=1 ri. We crucially rely

on the following result by van Rooij [33].

▶ Theorem B.1 ([33, Lemma 3]). Let p denote a prime such that in the field Fp, the ri-th
root of unity exists for each i ∈ [n]. For two given functions g, h : Zr1 × · · · × Zrn

→ Z,
we can compute their cyclic convolution modulo p (that is, return a function ϕ such that
ϕ(q) = (g ⊙ h)(v) mod p for every q ∈ Zr1 × · · · × Zrn

) in time O(K log(Kp)) (assuming a
ri-th primitive root of unity ωi in the field Fp is given for all i ∈ [n]).

The basic idea behind the proof is to compute g ⊙ h modulo pi for a sufficiently large
number of distinct small primes pi. If

∏
i pi > 2n, then the values of g ⊙ h can be uniquely

recovered using the Chinese Remainder Theorem.

▶ Theorem B.2 (Chinese Remainder Theorem). Let m1, . . . , mℓ denote a sequence of integers
that are pairwise coprime and define M :=

∏
i∈[ℓ] mi. Also let 0 ≤ ai < mi for all i ∈ [ℓ].

Then there is a unique number 0 ≤ s < M such that

s ≡ ai (mod mi)

for all i ∈ [ℓ]. Moreover, there is an algorithm that, given m1, . . . , mℓ and a1, . . . , aℓ, computes
the number s in time O((log M)2).

Let m := ⌈log(3·|L|n ·|R|n ·M2)⌉ . We compute the list of the first m primes p1 < · · · < pm

such that pi ≡ 1 (mod K) for all i ∈ [m]. By the Prime Number Theorem for Arithmetic
Progressions (see, e.g., [3]) we get that pm = O(φ(K) · m · log m) where φ denotes Euler’s
totient function. In particular, pm = O(K ·m · log m) because φ(K) ≤ K. Since prime testing
can be done in polynomial time, we can find the sequence p1, . . . , pm in time O(K ·m·(log m)c)
for some constant c.

IPEC 2022

12:22 Computing Generalized Convolutions Faster Than Brute Force

Next, for every i ∈ [m] and j ∈ [n], we compute a rj-th root of unity in Fpi as follows.
First observe that such a root of unity exists since rj divides pi − 1. For every i ∈ [m] we
first find the prime factors qi,1, . . . , qi,ℓi

of pi − 1 by iterating over every number in Zpi
and

checking if it is both prime and divides pi − 1. This can be done in time O(pi · polylog pi).
Next, we simply iterate over all elements x ∈ Fpi

and test whether a given element x is a
rj-th root of unity in time (log pi)O(1). So overall, computing all roots of unity for every pi

(i ∈ [m]) can be done in time
m∑

i=1

(
O(pi · polylog pi) +

n∑
j=1

pi · (log pi)O(1)

)
= m ·n ·pm ·(log pm)O(1) = K ·(n+m+log K)O(1).

Now, for every i ∈ [m] and q ∈ Zr1 × · · · × Zrn
, we compute

(g ⊙ h)(q)(i) := (g ⊙ h)(q) (mod pi)

using Theorem B.1 in time O(m · K · log(K · pm)) = K · (m + log K)O(1).
Finally, we can recover (g ⊙ h)(q) for every q by the Chinese Remainder Theorem in

time O(K · m2). Note that
∏

i∈[m] pi > 2m ≥ M which implies that all numbers are indeed
uniquely recovered. In total, this achieves the desired running time. ◀

C Proof of Lemma 3.5

The idea is to use a dynamic programming algorithm loosely inspired by Yates algorithm [40].
Define X(ℓ) =

{
(p, q)

∣∣ p ∈ [m]ℓ, q ∈ Zp1 × · · · × Zpℓ

}
for every ℓ ∈ {0, . . . , n}. We use

X(ℓ) to define a dynamic programming table DP(ℓ) : X(ℓ) × Ln−ℓ → Z for every ℓ ∈ {0, . . . n}
by:

DP(ℓ)[(p1, . . . , pℓ), (q1, . . . , qℓ)][tℓ+1, . . . , tn] :=
∑

t1∈Ap1...
tℓ∈Apℓ

(
ℓ∏

i=1

Jσpi
(ti) = qiK

)
· g(t1, . . . , tn).

The tables DP(0), DP(1), . . . , DP(n) are computed consecutively where the computa-
tion of DP(ℓ) relies on the values of DP(ℓ−1) for any ℓ ∈ [n]. Observe that gp(q) =
DP(n)[(p1, . . . , pn), (q1, . . . , qn)][ε] for every p and q, which means that computing DP(n) is
equivalent to computing the projection functions gp of g for every type p.7

It holds that DP(0)[ε, ε][t] = g(t). Hence, DP(0) can be trivially computed in |L|n time.
We use the following straightforward recurrence to compute DP(ℓ):

DP(ℓ)[(p1, . . . , pℓ), (q1, . . . , qℓ)][tℓ+1, . . . , tn] =∑
tℓ∈Apℓ

Jσpℓ
(tℓ) = qℓK · DP(ℓ−1)[(p1, . . . , pℓ−1), (q1, . . . , qℓ−1)][tℓ, . . . , tn]. (C.1)

A dynamic programming algorithm which computes DP(n) can be easily derived from (C.1)
and the formula for DP(0). The total number of states in the dynamic programming table
DP(ℓ) is ∑

p∈[m]ℓ

(
kp1 · . . . · kpℓ

) · |L|n−ℓ = (k1 + · · · + km)ℓ · |L|n−ℓ = cost(P)ℓ · |L|n−ℓ.

This is bounded by cost(P)n + |L|n for every ℓ ∈ [n]. To transition between states we spend
polynomial time per entry because we assume that |L| = O(1). Hence, we can compute gp

for every p in Õ((cost(P)n + |L|n) · polylog(M)) time. ◀

7 We use ε to denote the vector of length 0.

Exact Exponential Algorithms for Clustering
Problems
Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Tanmay Inamdar1 #

Department of Informatics, University of Bergen, Norway

Nidhi Purohit1 #

Department of Informatics, University of Bergen, Norway

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
Department of Informatics, University of Bergen, Norway

Abstract
In this paper we initiate a systematic study of exact algorithms for some of the well known clustering
problems, namely k-median and k-means. In k-median, the input consists of a set X of n points
belonging to a metric space, and the task is to select a subset C ⊆ X of k points as centers, such
that the sum of the distances of every point to its nearest center is minimized. In k-means, the
objective is to minimize the sum of squares of the distances instead. It is easy to design an algorithm
running in time maxk≤n

(
n
k

)
nO(1) = O∗(2n) (here, O∗(·) notation hides polynomial factors in n). In

this paper we design first non-trivial exact algorithms for these problems. In particular, we obtain
an O∗((1.89)n) time exact algorithm for k-median that works for any value of k. Our algorithm is
quite general in that it does not use any properties of the underlying (metric) space – it does not
even require the distances to satisfy the triangle inequality. In particular, the same algorithm also
works for k-Means. We complement this result by showing that the running time of our algorithm
is asymptotically optimal, up to the base of the exponent. That is, unless the Exponential Time
Hypothesis fails, there is no algorithm for these problems running in time 2o(n) · nO(1).

Finally, we consider the “facility location” or “supplier” versions of these clustering problems,
where, in addition to the set X we are additionally given a set of m candidate centers (or facilities)
F , and objective is to find a subset of k centers from F . The goal is still to minimize the k-
Median/k-Means/k-Center objective. For these versions we give a O(2n(mn)O(1)) time algorithms
using subset convolution. We complement this result by showing that, under the Set Cover
Conjecture, the “supplier” versions of these problems do not admit an exact algorithm running in
time 2(1−ϵ)n(mn)O(1).

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases clustering, k-median, k-means, exact algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.13

Funding The research leading to these results has received funding from the Research Council of
Norway via the project BWCA (grant no. 314528) and the European Research Council (ERC) via
grant LOPPRE, reference 819416.

1 Part of this work was done when the two authors were visiting IMSc, Chennai.

© Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Tanmay.Inamdar@uib.no
https://orcid.org/0000-0002-0184-5932
mailto:Nidhi.Purohit@uib.no
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.IPEC.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Exact Exponential Algorithms for Clustering Problems

1 Introduction

Clustering is a fundamental area in the domain of optimization problems with numerous
applications. In this paper, we focus on some of the most fundamental problems in the
clustering literature, namely k-median, k-means, and k-center. We formally define the
optimization version k-median.

Input: Given a metric space (X, d), where X = {x1, . . . , xn} is a collection
of n points, with distance function d on X and a positive integer k.

Task: Find a pair (C, P), where C = {c1, . . . , ck} ⊆ X is a set of centers
and P is a partition of X into k subsets {X1, . . . , Xk} (clusters).
Here, Xi is the cluster corresponding to the center ci ∈ C. The goal
is to minimize the following cost, over all pairs (C, P).

cost(C, P) =
k∑

i=1

∑
x∈Xi

d(ci, x)

k-median

k-means is a variant of k-median, where the only difference is that we want to minimize

the sum of squares of the distances, i.e.,
k∑

i=1

∑
x∈Xi

(d(ci, x))2. In k-center, the objective is to

minimize the maximum distance of a point and its nearest center, i.e., kmax
i=1

max
x∈Xi

d(ci, x).
The special cases of k-median have a long history, and they are known in the literature

as Fermat-Weber problem [23, 24]. A recent formulation of k-means can be traced back
to Steinhaus [20] and MacQueen [19]. Lloyd proposed a heuristic algorithm [17] for k-
means that is extremely simple to implement for euclidean spaces, and it remains popular
even today. k-center was proved to be NP-complete by Hsu and Nemhauser [10]. All
three problems have been studied from the perspective of approximation algorithms for
last several decades. These three problems – as well as several of their generalizations –
are known to admit constant factor approximations in polynomial time. More recently,
these problems have also been studied from the perspective of Fixed-Parameter Tractable
(FPT) algorithms, where one allows the running times of the form f(k) · nO(1) for some
computable function f . k-median and k-means are known to admit improved approximation
guarantees using FPT algorithms [4], and these approximation guarantees are tight up to
certain complexity-theoretic assumptions.

A result that initiated this study is an exact algorithm for k-center1 by Agarwal and
Procopiuc [1], who give an nO(k

1− 1
d) time algorithm in Rd. In particular, in two dimensional

space, their algorithm runs in 2O(
√

n log n) time for any value of k, i.e., in sub-exponential
time. This led us towards a natural question, namely, studying the complexity of k-median,
k-means, k-center in general metrics.

Note that it is easy to design an exact algorithm that runs in time
(

n
k

)
· nO(1) – it simply

enumerates all sets of centers of size k, and the corresponding partition of X into clusters is
obtained by assigning each point to its nearest center. Then, we simply return the solution
with the minimum cost. However, note that when k belongs to the range n/2±o(n),

(
n
k

)
≃ 2n.

Thus, the naïve algorithm has running time O∗(2n) in the worst case.

1 We note that the result of [1] holds for a slightly different variant, where the centers can be placed
anywhere in Rd. This formulation is more natural and standard in euclidean spaces.

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:3

For many problems, the running time of O∗(2n) is often achievable by a brute-force
enumeration of all the solutions. However, for many NP-hard problems, it is often possible to
obtain improved running times. The field of exact algorithms for NP-hard problems is several
decades old. In 2003, Woeginger wrote a survey [25] on this topic, which revived the field.
This eventually led to a plethora of new results and techniques, such as subset convolution [2],
measure and conquer [8], and monotone local search [7]. A detailed survey on this topic can
be found in a textbook by Kratsch and Fomin [16]. We study the aforementioned classical
clustering problems from this perspective. In other words, we ask whether the classical
clustering problems such as k-median and k-means admit moderately exponential-time
algorithms, i.e., algorithms with running time cn · nO(1) for a constant c < 2 that is as small
as possible. We indeed answer this question in the affirmative, leading to the following
theorem.

▶ Theorem 1. There is an exact algorithm for k-median (k-means) in time (1.89)nnO(1),
where n is the number of points in X.

To explain the idea behind this result, consider the following fortuitous scenario. Suppose that
the optimal solution only contains clusters of size exactly 2. In this case, it is easy to solve
the problem optimally by reducing the problem to finding a minimum-weight matching in
the complete graph defining the metric 2. Note that the problem of finding Minimum-Weight
Perfect Matching is known to be polynomial-time solvable by the classical result of Edmonds
[13]. This idea can also be extended if the optimal solution only contains clusters of size 1
and 2, by finding matching in an auxiliary graph. However, the idea does not generalize to
clusters of size 3 and more, since we need to solve a problem that has a flavor similar to the
3-dimensional matching problem or the “star partition” problem, which are known to be
NP-hard [9, 3, 15]. Nevertheless, if the number of points belonging to the clusters of size at
least 3 is small, one can “guess” these points, and solve the remaining points using matching.
However, the number of points belonging to the clusters of size at least 3 can be quite large
– it can be as high as n. But note that the number of centers corresponding to clusters of
size at least 3 can be at most n/3. We show that “guessing” the subset of centers of such
clusters is sufficient (as opposed to guessing all the points in such clusters), in the sense
that an optimal clustering of the “residual” instance can be found – again – by finding a
minimum-weight matching in an appropriately constructed auxiliary graph.

We briefly explain the idea behind the construction of this auxiliary graph. Note that
in order to find an optimal clustering in the “residual” instance, we need to figure out the
following things: (1) the set of points that are involved in clusters of size 1, i.e., singleton
clusters, (2) the pairs of points that become clusters of size 2, and (3) for each center ci of
a cluster of size at least 3, the set of at least two additional points that are connected to
ci. We find the set of points of type (1) by matching them to a set of dummy points with
zero-weight edges. The pairs of points involved in clusters of size 2 naturally correspond
to a matching, such that the weight of each edge corresponds to the distance between the
corresponding pair of points. Finally, to find points of type (3), we make an appropriate
number of copies of each guessed center ci that will be matched to the corresponding points.
Although the high-level idea behind the construction of the graph is very natural, it is
non-trivial to construct the graph such that a minimum-weight perfect matching in the
auxiliary graph exactly corresponds to an optimal clustering (assuming we guess the centers

2 Note that the cluster-center always belongs to its own cluster, which implies that a cluster of size 2
contains one additional point. This immediately suggests the connection to minimum-weight matching.

IPEC 2022

13:4 Exact Exponential Algorithms for Clustering Problems

correctly). Thus, this construction pushes the boundary of applicability of matching in order
to find an optimal clustering. Since the minimum-weight perfect matching problem can be
solved in polynomial time, the running time of our algorithm is dominated by guessing the
set of centers of clusters of size at least 3. As mentioned previously, the number of such
centers is at most n/3, which implies that the number of guesses is at most

(
n

n/3
)

≤ (1.89)n,
which dominates the running time of our algorithm. We describe this result in Section 3. We
complement these moderately exponential algorithms by showing that these running times
are asymptotically optimal. Formally, assuming the Exponential Time Hypothesis (ETH), as
formulated by Impagliazzo and Paturi [11], we show that these problems do not admit an
algorithms running in time 2o(n) · nO(1). A formal definition of ETH is given in Section 2,
and we prove the ETH-hardness result in Section 4.

We note that our algorithm as well as the hardness result also holds for k-center.
However, it is folklore that the exact versions of k-center and Dominating set are
equivalent. Thus, using the currently best known algorithm for Dominating set by
Iwata [12], it is possible to obtain an O∗((1.4689)n) time algorithm for k-center.

We also consider a “facility location” or “supplier” version, which is a generalization of
the clustering problems defined above. In this setting, we are given a set of clients (or points)
X, and a set of facilities (or centers) F . In general the sets X and F may be different, or
even disjoint. In these versions, the set of k centers C must be chosen from F , i.e., C ⊆ F .
We formally state the “supplier” version of k-median, which we call k-median Facility
Location3.

Input: Given a metric space (X ∪ F, d), where X = {x1, . . . , xn} of n points,
called clients, F is a set of m centers, and a positive integer k.

Task: Find a pair (C, P), where C = {c1, . . . , ck} ⊆ F of size at most k and
P is a partition of X into k subsets {X1, . . . , Xk} (clusters) such that
each client in cluster Xi is assigned to center ci so as to minimize the
k-median cost of clustering, defined as follows:

cost(C, P) =
k∑

i=1

∑
x∈Xi

d(ci, x)

k-median Facility Location

It is also possible to define the analogous versions of k-means and k-center– the latter
has been studied in the approximation literature under the name of k-supplier. In this
paper, we show that these “facility location” versions of k-median/k-means/k-center are
computationally harder, as compared to the normal versions, in the following sense. Consider
the concrete example of k-median and k-median Facility Location. As mentioned earlier,
we beat the “trivial” bound of O(2n), by giving a O((1.89)n) time algorithm for k-median.
On the other hand, we show that for k-median Facility Location, it is not possible to
obtain a 2(1−ϵ)n · (mn)O(1) time algorithm for any fixed ϵ > 0 (note that m = |F | is the
number of facilities and n = |X| is the number of clients). For showing this result, we use the
Set Cover Conjecture, which is a complexity theoretic hypothesis proposed by Cygan et
al. [5]. We match this lower bound by designing an algorithm with running time 2n · (mn)O(1)

3 We note that a slight generalization of this problem has been considered by Jain and Vazirani [14],
who called it “a common generalization of k-median and Facility Location”, and gave a constant
approximation in polynomial time.

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:5

under some mild assumptions. The details are in Section 6. While this algorithm is not
obvious, it is a relatively straightforward application of the subset convolution technique.
This algorithm also works for the supplier versions of k-means and k-center; however,
again there is a much simpler algorithm for k-supplier with a similar running time.

Finally, note that designing an algorithm for the supplier versions with running time
2m · (mn)O(1) is trivial by simple enumeration. It is not known whether the base of the
exponent can be improved by showing an algorithm with running time (2 − ϵ)m(mn)O(1) for
some fixed ϵ > 0, or whether this is not possible assuming a similar complexity-theoretic
hypothesis, such as Set Cover Conjecture, or Strong Exponential Time Hypothesis
(SETH). We leave this open for a future work.

2 Preliminaries

We denote by G = (V (G), E(G)) a graph with vertex set V (G) and edge set E(G). Cardinality
of a set S denoted by |S| is the number of elements of the set. We denote an (undirected)
edge between vertices u and v as uv. We denote by N(v) = {u ∈ V (G) | (u, v) ∈ E(G)} be
the open neighbourhood (or simply neighbourhood) of v, and let N [v] = N(v) ∪ {v} be the
closed neighbourhood of v.

A matching M of a graph G is a set of edges such that no two edges have common
vertices. A vertex v ∈ V (G) is said to be saturated by M if there is an edge in M incident
to v, otherwise it is said to be unsaturated. We also say that M saturates v. We say that a
vertex u is matched to a vertex v in M if there is an edge e ∈ M such that e = (u, v). A
perfect matching in a graph G is a matching which saturates every vertex in G. Given a
weight function w : E(G) → R≥0, the minimum weight perfect matching problem is to find a
perfect matching M (if it exists) of minimum weight w(M) =

∑
e∈M w(e). It is well known

to be solvable in polynomial time by the Blossom algorithm of Edmonds [13].
A q-CNF formula ϕ = C1 ∧ . . . ∧ Cm is a boolean formula over n variables X =

{x1, x2, . . . , xn}, such that each clause Ci is a disjunction of at most q literals of the form xi

or ¬xi, for some 1 ≤ i ≤ n. In a q-SAT instance we are given a q-CNF formula ϕ, and the
question is to decide whether ϕ is satisfiable. Impagliazzo and Paturi [11] formulated the
following hypothesis, called Exponential Time Hypothesis. Note that this ETH is a stronger
assumption than P ̸= NP.

Exponential Time Hypothesis (ETH) states that q-SAT, q ≥ 3 cannot be solved within a
running time of 2o(n) or 2o(m), where n is the number of variables and m is the number of
clauses in the input q-CNF formula.

3 Proof of Theorem 1

Before delving into the proof of Theorem 1, we discuss the approach at a high level. We
begin by “guessing” a subset of centers from an (unknown) optimal solution. For each guess,
the problem of finding the best (i.e., minimum-cost) clustering that is “compatible” with
the guess is reduced to finding a minimum weight perfect matching in an auxiliary graph G.
The graph G is constructed in such a way that this clustering can be extracted by essentially
looking at the minimum-weight perfect matching. Note that Minimum Weight Perfect
Matching problem is well known to be solvable in polynomial time by the Blossom algorithm
of Edmonds [13]. Finally, we simply return a minimum-cost clustering found over all guesses.

Let us fix some optimal k-median solution and let k∗
1 , k∗

2 and k∗
3 be a partition of k,

where k∗
1 : the number of clusters of size exactly 1, call Type1 ; k∗

2 : the number of clusters of
size exactly 2, call Type2 ; and k∗

3 : the number of clusters of size at least 3, call Type3. Let

IPEC 2022

13:6 Exact Exponential Algorithms for Clustering Problems

C∗
3 ⊆ X be Type3 centers, and say C∗

3 = {c1, . . . , ck∗
3
}. Observe that number of clusters with

Type3 centers is at most n
3 . Suppose not, then the number of clusters with Type3 centers is

greater than n
3 . Each Type3 cluster contains at least three points. This contradicts that the

number of input points is n.

Algorithm. First, we guess the partition of k into k1, k2, k3 as well as a subset C3 ⊆ X of
size at most n/3. For each such guess (k1, k2, k3, C3), we construct the auxiliary graph G (as
defined subsequently) corresponding to this guess, and compute a minimum weight perfect
matching M in G. Let M∗ be a minimum weight perfect matching over all the guesses. We
extract the corresponding clustering (C∗, P ∗) from M∗ (also explained subsequently), and
return as an optimal solution of the given instance.

Running time. Note that there are at most O(k2) tuples (k1, k2, k3) such that k1+k2+k3 ≤ k

(note that ki’s are non-negative integers). Furthermore, there are at most
∑n/3

i=0
(

n
i

)
≤ (1.89)n

subsets of X of size at most n/3. Finally, constructing the auxiliary graph, and finding
a minimum-weight perfect matching takes polynomial time. Thus, the running time is
dominated by the number of guesses for C3, which implies that we can bound the running
time of our algorithm by O∗((1.89)n).

Construction of Auxiliary Graph. From now on assume that our algorithm made the right
guesses, i.e., suppose that (k1, k2, k3) = (k∗

1 , k∗
2 , k∗

3) and C∗
3 = C ′. Then, we initialize the

Type3 centers by placing each center from C ′ into a separate cluster. At this point, to achieve
this, we reduce the problem to the classical Minimum Weight Perfect Matching on
an auxiliary graph G, which we define as follows. (See Figure 1 for an illustration of the
construction).

For each i ∈ {1, . . . , k3}, construct a set of s = n−k3 −2k2 −k1 vertices Ci = {ci
1, . . . , ci

s}.
Denote W = ∪k

i=1Ci; the block of vertices Ci corresponds to center ci.
Let Y = X \ C ′, that is, a set consisting of unclustered points in X. Observe |Y | = n − k3.
Denote Y = {y1, . . . , y(n−k3)}. For simplicity, we slightly abuse the notation by keeping
the vertices in G same as points in Y . That is, for each i ∈ {1, . . . , (n − k3)}, place a
vertex yi in the set Y . Make each yi adjacent to all vertices of W .
For each i ∈ {1, . . . , k1}, construct an auxiliary vertex ui. Denote Uiso = {u1, . . . , uk1}.
Make each ui adjacent to every vertex of Y .
Construct a set of s(k3 − 1) vertices, Zfill = {z1, . . . , zs(k3−1)}, that we call fillers and
make vertices of Zfill adjacent to the vertices of W .

We define edge weights. For an edge (u, v) ∈ E(G), we will use w(u, v) to denote w((u, v))
to avoid clutter.

For every i ∈ {1, . . . , (n − k3)} and every j ∈ {1, . . . , k3} set w(yi, cj
h) = d(yi, cj) for

h ∈ {1, . . . , s}, i.e, weight of all edges joining yi in Y with the vertices of Ci corresponding
to center cj .
For every i, j ∈ {1, . . . , n − k3}, i ≠ j, set w(yi, yj) = d(yi, yj), i.e, the weight of edges
between vertices of Y .
For every i ∈ {1, . . . , k1} and j ∈ {1, . . . , (n − k3)}, set w(ui, yj) = 0, i.e., the edges
incident to the vertices of Uiso have zero weights.
For every i ∈ {1, . . . , s(k3 − 1)} and j ∈ {1, . . . , k3}, w(zic

j
h) = 0, for h ∈ {1, . . . , s}, i.e.,

the edges incident to the fillers have zero weights.

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:7

u1 u2 uk1

y1 y2 yi yj y(n−k3)

c11 c12
c1s c21 c22 c2s ck31 ck3sck32

z1 z2 zs(k3−1)

d(y1, c1)

0
0

0
0

C1 C2
Ck3

Uiso

W

d(yj, c2)

d(yi, yj)
Y = X \ C ′

Zfill

d(y(n−k3), ck3)

Figure 1 Illustration of the graph G produced in the reduction from k-median to Minimum
Weight Perfect Matching. To avoid clutter, we only show some representative edges. Recall
that we guess the set of k3 centers of type 3, and corresponding to each such center ci, we add a
set Ci consisting of s copies corresponding to that center. Next, we have the set Y corresponding
to n − k3 unclustered points. Finally, Uiso and Zfill consist of auxiliary vertices in order to ensure
a perfect matching. The weights of vertices among Y correspond to the corresponding original
distance; whereas the weight of an edge between yℓ ∈ Y , and a copy cj

i corresponding to a type 3
center ci is defined to be d(yℓ, ci). The weights of all other edges are equal to zero.

▶ Lemma 2. The graph G has a perfect matching.

Proof. We construct a set M ⊆ E(G) that saturates every vertex in G.
Note that |Uiso| < |Y | and every vertex of Uiso is adjacent to every vertex of Y . Therefore,

we can construct M1 ⊆ E(G) by arbitrarily mapping each vertex of Uiso to a distinct vertex
of Y . Clearly, M1 is matching saturating vertices of Uiso . Since |Uiso| = k1, M1 saturates k1
vertices of Y . Denote by Y ′ the set of vertices of Y that are not saturated by M1. Observe
|Y ′| = s + 2k2.

Every vertex of Zfill is adjacent to every vertex of W and |Zfill| < |W |. Construct
M2 ⊆ E(G) by arbitrarily mapping each vertex of Zfill to a distinct vertex of W . Thus, M2 is
a matching which saturates every vertex of Zfill and since |Zfill| = s(k3 − 1), it also saturates
s(k3 − 1) vertices of W . Denote by W ′ the set of vertices of W that is not saturated by M2.
Observe |W ′| = s. Recall, every vertex of W ′ is adjacent to every vertex of Y ′ and note that
|W ′| < |Y ′|. Therefore, construct M3 ⊆ E(G) by arbitrarily matching each vertex of W ′

with a distinct vertex of Y ′.
Thus, the matching M3 saturates s vertices in both the sets W ′ and Y ′. Denote M ′ =

M1 ∪ M2 ∪ M3. Clearly, the vertices of Uiso, W and Zfill are saturated by M ′.
Denote by Y ′′ = Y \ Y ′ the set of vertices of Y that are not saturated by M ′. Note

that |Y ′′| = 2k2. Consider M4 ⊆ E(G) which maps these 2k2 vertices to each other. We set
M = M ′ ∪ M4. It is easy to see that M is a perfect matching. ◀

We next show one-to-one correspondence between perfect matchings of G and k-median
clusterings of X.

IPEC 2022

13:8 Exact Exponential Algorithms for Clustering Problems

▶ Lemma 3. Let OPTmm(G) =weight of minimum weight perfect matching, and
OPTkmed(X) = optimal clustering cost of k-median clustering of X. Then, OPTmm(G) =
OPTkmed(X).

Proof. In the forward direction, let M denote a minimum weight perfect matching M ⊆ E(G).
We construct a k-median clustering of X of same cost.

Observe that each vertex of Zfill is only adjacent to the vertices of W and |Zfill| < |W |.
Let W1 ⊆ W be a set of vertices matched to vertices of Zfill. Since G has a perfect matching,
it saturates Zfill, where |Zfill| = s(k3 − 1). Then, |W1| = s(k3 − 1). Let W2 = W \ W1 be set
of vertices matched to vertices of Y . Clearly, |W2| = s.

For every i ∈ {1, . . . , (n − k3)}, vertex yi ∈ Y is saturated by M . Therefore, we construct
the k-median clustering {X1, . . . , Xk} of X, where each Xi ∈ {Type1, Type2, Type3}, for
i ∈ {1, . . . , k} as follows.

Let Y ′ ⊆ Y be the set of vertices that are matched to vertices of Uiso in M , where
|Uiso| = k1 < |Y |. Corresponding to each such vertex in Y ′, select a center in the solution
C, call CType1 = {c1

Type1, . . . , ck1
Type1}. Correspondingly, also construct a singleton cluster

Xi = {ci
Type1}, for i ∈ {1, . . . , k1}. Let XType1 denote set of all Type1 clusters.

We now construct Type3 clusters: Let Y ′
i ⊆ Y be the set of vertices matched to set Ci, for

i ∈ {1, . . . , k3} in M . Consider Xi = Y ′
i ∪ {ci}. Clearly, Xi, for i ∈ {1, . . . , k3} corresponds

to Type3 clusters in X. Let XType3 denote set of all Type3 clusters. Recall, we already guess
set C ′ = {c1, . . . , ck3}, that is, Type3 centers correctly.

Lastly, we construct clusters of Type2. Denote by Y ′′ set of unclustered points in Y .
Observe these points form a set of k2 disjoint edges in M . Arbitrarily, select one of the
endpoint of each edge as a center in the solution C, call CType2 = {c1

Type2, . . . , ck2
Type2}. That

is, for an edge (y1, y2) ∈ M , where y1, y2 ∈ Y ′′, select center as y1 or y2. Then construct a
cluster Xi, for i ∈ {1, . . . , k2} by placing both the endpoints of the edge in the same cluster.
Denote by XType2 the set of all Type2 clusters.

Clearly, Xi ∈ {Type1, T ype2, Type3}, for i ∈ {1, . . . , k} is a partition of X. Note, since
Type1 clusters are isolated points, therefore, they contribute zero to the total cost of clustering.
Now we upper bound the cost of the obtained k-median clustering:

k∑
i=1

∑
x∈Xi

d(ci, x) =
k2∑

i=1

∑
y∈XType2

d(ci
Type2, y) +

k3∑
i=1

∑
y∈XType3

d(ci, y) = OPTmm(G).

For the reverse direction, consider a k-median clustering {X1, . . . , Xk} of X into
{Type1, Type2, Type3} clusters of X such that |Type1| = k1, |Type2| = k2 and |Type3| = k3
and C ′ = {c1, . . . , ck3}, that is, centers of Type3 clusters with OPTkmed(X). We construct a
perfect matching M ⊆ E(G) of G as follows.

Observe that each Type1 cluster is a singleton cluster. Construct M1 ⊆ E(G) by iterating
over each singleton vertex in Y correspond to each cluster and matched it to a distinct vertex
in Uiso. Since |Type1| = |Uiso| = k1, M1 is a matching saturating set Uiso. Also, M1 saturates
k1 vertices in Y .

Corresponding to each Type2 cluster, construct M2 ⊆ E(G) by adding an edge between
both the end vertices in Y . Clearly, M2 is a disjoint set of k2 edges in G and saturates 2k2
vertices in Y .

Denote Y ′ ⊆ Y be the set of vertices matched by M1 ∪ M2. Clearly, |Y ′| = k1 + 2k2. Let
Y ′′ = Y \ Y ′ be the set of remaining unmatched vertices in Y . Then, |Y ′′| = |Y | − |Y ′| =
n − k3 − 2k2 − k1 = s.

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:9

Note, we already guessed C ′ = {c1, . . . , ck3} and we have a cluster Xi corresponding to
each Ci, for i ∈ {1, . . . , k3}. Construct M3 ⊆ E(G) by matching each vertex of Xi \ {ci} in
Y ′′ to a distinct copy of ci in W . Since |Y ′′| < |W |, M3 saturates Y ′′. Let W1 ⊆ W be the
set of vertices saturated by M3. Note that |Y ′′| = s, then |W1| = s. Let W2 = W \ W1 be the
set of vertices not saturated by M3, where |W | = sk3. Then, |W2| = s(k3 − 1). Every vertex
of Zfill is only adjacent to every vertex of W (in particular of W2). We construct M4 ⊆ E(G)
by matching each vertex of Zfill to a distinct vertex of W2. Since |Zfill| = |W2| = s(k3 − 1),
M4 saturates Zfill and W2.

To evaluate the weight of M , recall that the edges of G incident to set Uiso and filler
vertices Zfill have zero weights, that is, w(M1) = w(M4) = 0. Then

w(M) = w(M2) + w(M3) =
∑

e∈M2

w(e) +
∑

e∈M3

w(e)

=
∑

ci:Xi∈XType2

∑
y∈Ci

d(y, ci) +
∑

ci:Xi∈XType3

∑
y∈Ci

d(y, ci)

= OPTkmed(X).

It is straightforward to see that the construction of the graph G from an instance (X, d)
of k-median can be done in polynomial time. Then, because a perfect matching of minimum
weight of the graph G can be found in polynomial time [13] and the total number of guesses is
at most (1.89)nnO(1), k-median can be solved exactly in (1.89)nnO(1) time. This completes
the proof of the theorem. ◀

▶ Remark 4. Note that even if the distances satisfy the triangle inequality, the sum of squares
of distances do not. Nevertheless, our algorithm also works for k-means, where we want to
minimize the sum of squares of distances; or even more generally, if we want to minimize
the sum of z-th powers of distances, for some fixed z ≥ 1. In fact, our algorithm works for
non-metric distance functions – it is easy to modify construction of graph G so that it works
with asymmetric distance functions, which are quite popular in the context of asymmetric
traveling salesman problem [21, 22]. Finally, we note that it may be possible to improve the
running time (i.e., the base of the exponent) using the metric properties of distances, and we
leave this open for a future work. However, in the next section, we show the running time of
an exact algorithm cannot be substantially improved, i.e., to O∗(2o(n)).

4 ETH Hardness

In this section, we establish result around the (im)possibility of solving k-median problem
in subexponential time in the number of points. For this, we use the result of Lokshtanov et
al. [18] which states that, assuming ETH, Dominating set problem cannot be solved in
time 2o(n) time, where n is the number of vertices of graph.

Given an unweighted, undirected graph G = (V, E), a dominating set S is a subset of V

such that each v ∈ V is dominated by S, that is, we either have v ∈ S or there exists an edge
(uv) ∈ E(G) such that u ∈ S. The decision version of Dominating set is defined as follows.

Input: Given an unweighted, undirected graph G(V, E), positive integer k.
Task: Determine whether G has a dominating set of size at most k.

Dominating set

Lokshtanov et. al [18] proved the following result.

IPEC 2022

13:10 Exact Exponential Algorithms for Clustering Problems

▶ Proposition 5 ([18]). Assuming ETH, there is no 2o(n) time algorithm for Dominating
set problem, where n is the number of vertices of G .

We use this known fact about Dominating set to prove the following.

▶ Theorem 6. k-median cannot be solved in time 2o(n) time unless the exponential-time
hypothesis fails, where n is the number of points in X.

Proof. We give a reduction from Dominating set problem to k-median problem. Let
(G = (V, E), k) be the given instance of Dominating set. We assume that there is no
dominating set in G of size at most k − 1. This assumption is without loss of generality,
since we can use the following reduction iteratively for k′ = 1, 2, . . . , k, which only incurs a
polynomial overhead.

Now we construct an instance (X, d) of k-median as follows. First, let X = V (G), i.e.,
we treat each vertex of the graph as a point in the metric space, and we use the terms vertex
and point interchangeably. Recall that the graph G = (V, E) is unweighted, but we suppose
that the weight of every edge in E(G) is 1. Then, we let d be the shortest path metric in G.
The following observations are immediate.

▶ Observation 7.
For all u ∈ V (G), d(u, u) = 0.
For all distinct u, v ∈ V (G), d(u, v) = 1 ⇐⇒ (u, v) ∈ E(G), and d(u, v) ≥ 2 ⇐⇒
(u, v) ̸∈ E(G).

We now show that there is a dominating set of size k iff there is a k-median clustering of
cost exactly n − k.

In the forward direction, let S ⊆ V (G) be a dominating set of size k. We obtain the
corresponding k-median clustering as follows. We let S = {c1, c2, . . . , ck} to be the set of
centers. For a center ci ∈ S, we define X ′

i = N [ci]. Since S is a dominating set, every vertex
in V (G) \ S has a neighbor in S. Therefore,

⋃
1≤i≤k X ′

i = V (G). Now, we remove all other
centers except for ci from the set X ′

i. Furthermore, if a vertex belongs to multiple X ′
i’s,

we arbitrarily keep it only a single X ′
i. Let {X1, X2, . . . , Xk} be the resulting partition of

V (G). Observe that in the resulting clustering, centers pay a cost of zero, whereas every
other vertex has a center at distance 1. Therefore, the cost of the clustering is exactly n − k.

In the other direction, let (S, {X1, X2, . . . , Xk}) be a given k-median clustering of cost
n − k. We claim that S is a dominating set of size k. Consider any vertex u ∈ V (G) \ S,
and suppose u ∈ Xi corresponding to the center ci. Since u ̸∈ S, d(u, S) ≥ d(u, ci) ≥ 1. This
holds for all n − k points of V (G) \ S. Now, if u ∈ Ci, and d(u, ci) > 1 for some vertex
u ∈ V (G) \ S, then this contradicts the assumption that the given clustering has cost n − k.
This implies that every u ∈ V (G) \ S has a center in S at distance exactly 1, i.e., u has a
neighbor in S. This concludes the proof.

This reduction takes polynomial time. Observe that the number of points in the resulting
instance is equal to n, the number of vertices in G. Therefore, if there is an algorithm for
k-median with running time subexponential in the number of points n then it would give a
2o(n) time algorithm for Dominating set, which would refute ETH, via Proposition 5. ◀

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:11

5 SeCoCo Hardness

In this section, we consider the variant of k-median, which we call k-median Facility
Location. Recall that in this problem, we are given a metric space (X ∪ F, d), where X

is a set of n clients, F is a set of m centers and integer k > 0. The goal is to select a set
C ⊆ F of k centers and assign each client in X to a center in C, such that the k-median cost
of clustering is minimized.

We show that there is no algorithm solves k-median Facility Location problem in
time O(2(1−ϵ)npoly(m)), for every fixed ϵ > 0. For this, we use the Set Cover Conjecture
by Cygan et al. [5].

The decision version of Set Cover problem is defined as follows.

Input: Given a universe U = {u1, . . . , un} of n elements and a family S =
{S1, . . . , Sm} of m subsets of U and an integer k

Task: Determine whether there is a set cover of size at most k.

Set Cover

To state Set Cover Conjecture [5] more formally, let ∆-Set Cover denote the Set
Cover problem where all the sets have size at most ∆ > 0.

▶ Conjecture 8. Set Cover Conjecture (SeCoCo)[5]. For every fixed ϵ > 0 there
is ∆(ϵ) > 0, such that no algorithm (even randomized) solves ∆-Set Cover in time
O(2(1−ϵ)n · poly(m)).

Using this result, we show the following.

▶ Theorem 9. Assuming Set Cover Conjecture, for any fixed ϵ > 0, there is no
O(2(1−ϵ)n · poly(m)) time algorithm for k-median Facility Location, where n is the
number of clients.

Proof. We give a reduction from Set Cover to k-median Facility Location problem.
Given an instance (U , S) of Set Cover problem, where U = {u1, . . . , un} and S =

{S1, . . . , Sm}, such that Si ⊆ U , we create an instance of k-median Facility Location by
building a bipartite graph G = ((X ∪ F), E) as follows.

For each element ui ∈ U , we create a client, say xi, for i ∈ {1, . . . , n}. Denote X =
{x1, . . . , xn}.
For each set Si ∈ S, we create a center, say ci, for i ∈ {1, . . . , m}. Denote F =
{c1, . . . , cm}.
For every i ∈ {1, . . . , n} and every j ∈ {1, . . . , m}, if ui ∈ Sj , then connect corresponding
xi and cj with an edge of weight 1, i.e., client xi pays cost 1 when assigned to facility cj .

This finishes the construction of G. Now, let d be the shortest path metric in graph G.
We show that there is set cover of size at most k if and only if there is k-median clustering

of cost n.
In the forward direction, assume there is a set cover S ′ ⊆ S of size at most k. Assume

S ′ = {S1, . . . , Sk}. For a set Si, we make the corresponding vertex ci ∈ F a center. Then, we
create its corresponding cluster Xi as follows. We add all the points xj such that (cixj) ∈ E.
Finally, we make the clusters Xi pairwise disjoint, by arbitrarily choosing exactly one cluster
for every client, if the client is present in multiple clusters. Clearly, {X1, . . . , Xk} is a
partition of X. We now calculate the cost of the obtained k-median clustering.

k∑
i=1

∑
x∈Xi

d(ci, x) =
k∑

i=1
|Xi| = n.

IPEC 2022

13:12 Exact Exponential Algorithms for Clustering Problems

In the reverse direction, suppose there is a k-median clustering {X1, . . . , Xk} of X of cost
n. Let C = {c1, . . . , ck} ⊆ F be a set of centers. Every client must be at distance at least 1
from its corresponding center. We claim that each client in a cluster is at distance exactly 1
from its corresponding center. Suppose not, then there exists a client with distance strictly
greater than 1 from its center. The total number of clients is n. This contradicts that the
cost of k-median clustering is n. Thus, every element is chosen in some set corresponding
to set C. Therefore, a subfamily S ′ ⊆ S corresponding to set C forms a cover of U . Since
|C| = k, S ′ is a cover of U of size at most k.

Clearly, this reduction takes polynomial time. Furthermore, observe that the number
of clients in the resulting instance is same as the number of elements in U . Therefore, if
there is an O(2(1−ϵ)n · poly(m)) time algorithm for k-median Facility Location then it
would give a O(2(1−ϵ)n · poly(m)) time algorithm for Set Cover, which, in turn, refutes
Set Cover Conjecture. ◀

We briefly note that the same hardness construction also shows a similar hardness result for
the “supplier” versions of k-means and k-center.

6 A 2n · poly(m, n) time Algorithm for k-Median Facility Location

Let (X ∪ F, d) be a given instance of k-median Facility Location, where n = |X| denotes
the number of clients, and m = |F | denotes the number of centers. In this section, we give a
2n · poly(m, n)-time exact algorithm, under a mild assumption that any distance in the input
is a non-negative integer that is bounded by a polynomial in the input size. 4 Let M := n · D,
where D denotes the maximum inter-point distance in the input. Note that M = poly(m, n).

We define k functions cost1, cost2, . . . , costk : 2X → M , where costi(Y) denotes the
minimum cost of clustering the clients of Y into at most i clusters. In other words, costi(Y)
is the optimal i-Median Facility Location cost, restricted to the instance (Y ∪ F, d).
First, notice that cost1(Y) is simply the minimum cost of clustering all points of Y into a
single cluster. This value can be computed in O(mn) time by iterating over all centers in F ,
and selecting the center c that minimizes the cost

∑
p∈Y d(p, c). Thus, the values cost1(Y)

for all subsets Y ⊆ X can be computed in O(2nmn) time. Next, we have the following
observation.

▶ Observation 10. For any Y ⊆ X and for any 1 ≤ i ≤ k,

costi(Y) = min
A∪B=Y
A∩B=∅

costi−1(A) + cost1(B).

Note that since we are interested in clustering of Y into at most i clusters, we do not need to
“remember” the set of facilities realizing costi−1(A) and cost1(B) in Observation 10. Next,
we discuss the notion of subset convolution that will be used to compute costi(·) values that
is faster than the naïve computation.

Subset Convolutions. Given two functions f, g : 2X → Z, the subset convolution of f and
g is the function (f ∗ g) : 2X → Z, defined as follows.

∀Y ⊆ X : (f ∗ g)(Y) =
∑

A∪B=Y
A∩B=∅

f(A) · g(B) (1)

4 Since the integers are encoded in binary, this implies that the length of the encoding of any distance is
O(log(m) + log(n)).

F. V. Fomin, P. A. Golovach, T. Inamdar, N. Purohit, and S. Saurabh 13:13

It is known that, given all the 2n values of f and g in the input, all the 2n values of
f ∗ g can be computed in O(2n · n3) arithmetic operations, see e.g., Theorem 10.15 in the
Parameterized Algorithms book [6]. This is known as fast subset convolution. Now, let
(f ⊕g)(Y) = minA∪B=Y

A∩B=∅
f(A)+g(B). We observe that f ⊕g is equal to the subset convolution

f ∗ g in the integer min-sum semiring (Z ∪ {∞}, min, +), i.e., in Equation (1), we use the
mapping + 7→ min, and · 7→ +. This, combined with a simple “embedding trick” enables one
to compute all values of f ⊕ g : 2X → {−N, . . . , N} in time 2nnO(1) · O(N log N log log N)
using fast subset convolution – see Theorem 10.17 of [6]. Finally, Observation 10 implies that
costi is exactly costi−1 ⊕ cost1, and we observe that the function values are upper bounded
by n · D = M . We summarize this discussion in the following proposition.

▶ Proposition 11. Given all the 2n values of costi−1 and cost1 in the input, all the 2n values
of costi can be computed in time 2nnO(1) · O(M log M log log M).

Using Proposition 11, we can compute all the 2n values of cost2(·), using the pre-computed
values cost1(·). Then, we can use the values of cost2(·) and cost1(·) to compute the values of
cost3(·). By iterating in this manner k −1 ≤ n times, we compute the values of costk(·) for all
2n subsets of k, and the overall time is upper bounded by 2nmnO(1) · O(M log M log log M),
which is 2n · poly(m, n), if M = poly(m, n). Note that costk(X) corresponds to the optimal
cost of k-median Facility Location. Finally, the computed values of the functions costi(·)
can be used to also compute a clustering {X1, X2, . . . , Xk} of X, and the corresponding
centers {c1, c2, . . . , ck}. We omit the straightforward details.

▶ Theorem 12. k-median Facility Location can be solved optimally in 2n · poly(m, n)
time, assuming the distances are integers that are bounded by polynomial in the input size.

Note that the algorithm does not require the underlying distance function to satisfy the
triangle inequality. In particular, we obtain an analogous result the “facility location” version
of the k-means objective. Finally, the algorithm works for k-supplier, which is a similar
variant of k-center. However, in this case there is a much simpler reduction to Set Cover
which gives an 2n · poly(m, n) time algorithm. For this, we first “guess” the optimal radius r,
and define a set system that consists of balls of radius r around the given centers. We omit
the details.

References
1 Pankaj K Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms

for clustering. Algorithmica, 33(2):201–226, 2002.
2 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-

exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.
3 Jérémie Chalopin and Daniël Paulusma. Packing bipartite graphs with covers of complete

bipartite graphs. Discret. Appl. Math., 168:40–50, 2014. doi:10.1016/j.dam.2012.08.026.
4 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight fpt

approximations for k-median and k-means. arXiv preprint, 2019. arXiv:1904.12334.
5 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,

Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat.
ACM Trans. Algorithms, 12, 2016.

6 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5(4).
Springer, 2015.

7 Fedor V Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. Journal of the ACM (JACM), 66(2):1–23, 2019.

IPEC 2022

https://doi.org/10.1016/j.dam.2012.08.026
http://arxiv.org/abs/1904.12334

13:14 Exact Exponential Algorithms for Clustering Problems

8 Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for
the analysis of exact algorithms. Journal of the ACM (JACM), 56(5):1–32, 2009.

9 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

10 Wen-Lian Hsu and George L Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics, 1(3):209–215, 1979.

11 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 9:367–375, 2001.

12 Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential method. In
International Symposium on Parameterized and Exact Computation, pages 41–54. Springer,
2011.

13 Edmonds Jack. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
14 Kamal Jain and Vijay V Vazirani. Approximation algorithms for metric facility location and

k-median problems using the primal-dual schema and lagrangian relaxation. Journal of the
ACM (JACM), 48(2):274–296, 2001.

15 David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems.
SIAM J. Comput., 12(3):601–609, 1983. doi:10.1137/0212040.

16 Dieter Kratsch and FV Fomin. Exact exponential algorithms. Springer-Verlag Berlin Heidelberg,
2010.

17 Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

18 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011.

19 James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1(14), pages 281–297. Oakland, CA, USA, 1967.

20 Hugo Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci,
1(804):801, 1956.

21 Ola Svensson, Jakub Tarnawski, and László A Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. Journal of the ACM (JACM),
67(6):1–53, 2020.

22 Vera Traub and Jens Vygen. An improved approximation algorithm for atsp. In Proceedings
of the 52nd annual ACM SIGACT symposium on theory of computing, pages 1–13, 2020.

23 Wikipedia. Geometric median – Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Geometric%20median&oldid=1061179886, 2022. [Online; accessed
21-April-2022].

24 Wikipedia. Weber problem – Wikipedia, the free encyclopedia. http://en.wikipedia.org/
w/index.php?title=Weber%20problem&oldid=916663348, 2022. [Online; accessed 21-April-
2022].

25 Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial
optimization – eureka, you shrink!, pages 185–207. Springer, 2003.

https://doi.org/10.1137/0212040
http://en.wikipedia.org/w/index.php?title=Geometric%20median&oldid=1061179886
http://en.wikipedia.org/w/index.php?title=Geometric%20median&oldid=1061179886
http://en.wikipedia.org/w/index.php?title=Weber%20problem&oldid=916663348
http://en.wikipedia.org/w/index.php?title=Weber%20problem&oldid=916663348

Domination and Cut Problems on Chordal Graphs
with Bounded Leafage
Esther Galby #

TU Hamburg, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Philipp Schepper #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Roohani Sharma #

Max Planck Institute for Informatics, SIC, Saarbrücken, Germany

Prafullkumar Tale #

Indian Institute of Science Education and Research, Pune, India

Abstract
The leafage of a chordal graph G is the minimum integer ℓ such that G can be realized as an
intersection graph of subtrees of a tree with ℓ leaves. We consider structural parameterization by
the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and
Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on
chordal graphs admits an algorithm running in time 2O(ℓ2) · nO(1). We present a conceptually much
simpler algorithm that runs in time 2O(ℓ) ·nO(1). We extend our approach to obtain similar results for
Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems
MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals.
We prove that the former is W[1]-hard when parameterized by the leafage and complement this
result by presenting a simple nO(ℓ)-time algorithm. To our surprise, we find that Multiway Cut
with Undeletable Terminals on chordal graphs can be solved, in contrast, in nO(1)-time.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Chordal Graphs, Leafage, FPT Algorithms, Dominating Set, MultiCut with
Undeletable Terminals, Multiway Cut with Undeletable Terminals

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.14

Related Version Full Version: https://arxiv.org/abs/2208.02850 [23]

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.
Esther Galby and Prafullkumar Tale: Part of the work was carried out when the authors were
Post-Doctoral Researchers at CISPA Helmholtz Center for Information Security, Germany.
Philipp Schepper : Part of Saarbrücken Graduate School of Computer Science, Germany.

1 Introduction

The intersection graph of a family F of nonempty sets is the graph whose vertices are the
elements of F with two vertices being adjacent if and only if their corresponding sets intersect.
The most natural and famous example of such intersection graphs are interval graphs where F
is a collection of subpaths of a path. Due to their applicability in scheduling, interval graphs
have received a considerable attention in the realm of algorithmic graph theory. One useful
characterization of an interval graph is that its maximal cliques can be linearly ordered such

© Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esther.galby@tuhh.de
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:philipp.schepper@cispa.de
https://orcid.org/0000-0002-5810-7949
mailto:rsharma@mpi-inf.mpg.de
https://orcid.org/0000-0003-2212-1359
mailto:prafullkumar@iiserpune.ac.in
https://orcid.org/0000-0001-9753-0523
https://doi.org/10.4230/LIPIcs.IPEC.2022.14
https://arxiv.org/abs/2208.02850
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

that for every vertex, the maximal cliques containing that vertex occur consecutively [25].
This property proves very useful for the design of polynomial-time dynamic programming
based or greedy algorithms on interval graphs.

Consider the generalization where F is a collection of subtrees of a tree instead of subpaths
of a path. In this case, the corresponding class of intersection graphs is exactly that of
chordal graphs [47, 24, 11]. Recall that a graph is chordal if every cycle of length at least
4 has a chord. Often, the algorithms of the types mentioned in the previous paragraph
fail to generalize to this superclass as witnessed by the following problems that admit
polynomial-time algorithms on interval graphs but are NP-complete on chordal graphs:
Dominating Set [13, 8], Connected Dominating Set [3, 48], Steiner Tree [3, 48],
Multicut with Undeletable Terminals [28, 44], Subset Feedback Vertex Set
(Subset FVS) [45, 21], Longest Cycle [34, 27]1, Longest Path [32], Component Order
Connectivity [19], s-Club Contraction [26], Independent Set Reconfiguration [5],
Bandwidth [36], Cluster Vertex Deletion [35]. Also, Graph Isomorphism on chordal
graphs is polynomial-time equivalent to the problem on general graphs whereas it admits a
linear-time algorithm on interval graphs [40].

The problems above remain hard even on split graphs, another well-studied subclass of
chordal graphs. A graph is a split graph if its vertex set can be partitioned into a clique
and an independent set. The collection of split graphs is a (proper) subset of the class of
intersection graphs where F is a collection of substars of a star. As interval graphs are
intersection graphs of subpaths of a path (a tree with two leaves) and split graphs are
intersection graphs of substars of a star (a tree with arbitrary number of leaves), a natural
question to consider is what happens to these problems on subclasses of chordal graphs that
are intersection graphs of subtrees of a tree with a bounded number of leaves. Motivated by
such questions, we consider the notion of leafage introduced by Lin et al. [39]: the leafage of
a chordal graph G is the minimum integer ℓ such that G can be realized as an intersection
graph of a collection F of subtrees of a tree that has ℓ leaves. Note that the leafage of
interval graphs is at most 2 while split graphs have unbounded leafage. Thus the leafage
measures, in some sense, how close a chordal graph is to an interval graph. Alternately, an
FPT or XP algorithm parameterized by the leafage can be seen as a generalization of the
algorithm on interval graphs.

Related Work. Habib and Stacho [29] showed that we can compute the leafage of a
connected chordal graph in polynomial time. Their algorithm also constructs a corresponding
representation tree2 T with the minimum number of leaves. In recent years, researchers
have studied the structural parameterization of various graph problems on chordal graphs
parameterized by the leafage. Fomin et al. [20] and Arvind et al. [2] proved, respectively,
that the Dominating Set and Graph Isomorphism problems on chordal graphs are
FPT parameterized by the leafage. Barnetson et al. [4] and Papadopoulos and Tzimas
[46] presented XP-algorithms running in time nO(ℓ) for Fire Break and Subset FVS on
chordal graphs, respectively. Papadopoulos and Tzimas [46] also proved that Subset FVS
is W[1]-hard when parameterized by the leafage. Hochstättler et al [31] showed that we can
compute the neighborhood polynomial of a chordal graph in nO(ℓ)-time.

It is known that the size of asteroidal set in a chordal graph is upper bounded by its
leafage [39]. See [30, 1] for the relationship between leafage and other structural properties
of chordal graphs. Kratsch and Stewart [37] proved that we can effectively 2ℓ-approximate

1 See Exercise 2 in Chapter 6 in [27].
2 We present formal definitions of the terms used in this section in Section 2.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:3

bandwidth of chordal graphs of leafage ℓ. Chaplick and Stacho [14] generalized the notion of
leafage to vertex leafage and proved that, unlike leafage, it is hard to determine the optimal
vertex leafage of a given chordal graph. Figueiredo et al. [18] proved that Dominating
Set, Connected Dominating Set and Steiner Tree are FPT on chordal graphs when
parameterized by the size of the solution plus the vertex leafage, provided that a tree
representation with optimal vertex leafage is given as part of the input.

Our Results. We consider well-studied domination and cut problems on chordal graphs.
As our first result, we prove that Dominating Set on chordal graphs of leafage at most ℓ

admits an algorithm running in time 2O(ℓ) · nO(1). This improves upon the existing algorithm
by Fomin et al. [20, Theorem 9] which runs in time 2O(ℓ2) · nO(1). Despite being significantly
simpler than the algorithm in [20], our algorithm in fact solves the Red-Blue Dominating
Set problem, a well-known generalization of Dominating Set. In this generalized version,
an input is a graph G with a partition (R, B) of its vertex set and an integer k, and the
objective is to find a subset D of R that dominates every vertex in B, i.e., B ⊆ N(D). We
further use this algorithm to solve other related domination problems.

▶ Theorem 1. Dominating Set, Connected Dominating Set, and Steiner Tree can
be solved in 2O(ℓ) · nO(1) on chordal graphs of leafage at most ℓ.

The reductions in [8] and [48] used to prove that these problems are NP-complete
on chordal graphs imply that these problems do not admit 2o(n), and hence 2o(ℓ) · nO(1),
algorithms unless the ETH fails.

Arguably, the two most studied cut problems are MultiCut and Multiway Cut. In
the MultiCut problem, an input is graph G, a set of terminal pairs P ⊆ V (G) × V (G)
and an integer k, and the objective is to find a subset S ⊆ V (G) of size at most k such
that no pair of vertices in P is connected in G − S. In the Multiway Cut problem,
instead of terminal pairs, we are given a terminal set P and the objective is to find a subset
S ⊆ V (G) of size at most k such that no two vertices in P are connected in G − S. These
problems and variations of them have received a considerable attention which lead to the
development of new techniques [41, 42, 9, 16, 15]. Misra et al. [43] studied the parameterized
complexity of these problems on chordal graphs. Guo et al. [28] proved that MultiCut
with Deletable Terminals is NP-complete on interval graphs, thereby implying that this
problem is paraNP-hard when parameterized by the leafage. We consider the MultiCut
with Undeletable Terminals problem and prove the following result.

▶ Theorem 2. MultiCut with Undeletable Terminals on chordal graphs is W[1]-hard
when parameterized by the leafage ℓ and assuming the ETH, does not admit an algorithm
running in time f(ℓ)·no(ℓ) for any computable function f . However, it admits an XP-algorithm
running in time nO(ℓ).

Next, we focus on the Multiway Cut with Undeletable Terminals problem. We
find it somewhat surprising that the classical complexity of this problem on chordal graphs
was not known. Bergougnoux et al. [7], using the result in [20], proved that the problem
admits an XP-algorithm when parameterized by the leafage3. Our next result significantly
improves upon this and [43, Theorem 2] which states that the problem admits a polynomial
kernel when parameterized by the solution size.

3 See the discussion after Corollary 2 on page 1388 in [7].

IPEC 2022

14:4 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

▶ Theorem 3. Multiway Cut with Undeletable Terminals can be solved in nO(1)-time
on chordal graphs.

A well-known trick to convert an instance of Multiway Cut with Deletable Ter-
minals into an instance of Multiway Cut with Undeletable Terminals is to add a
pendant vertex to each terminal, remove that vertex from the set of terminals, and make
the newly added vertex a terminal. As this reduction converts a chordal graph into another
chordal graph, Theorem 3 implies that Multiway Cut with Deletable Terminals is
also polynomial-time solvable on chordal graphs. Another closely related problem is Subset
FVS which is NP-complete on split graphs [45]. To the best of our knowledge, this is the
first graph class on which the classical complexity of these two problems differ.

Next, we revisit the problems on chordal graphs with bounded leafage and examine how
far we can generalize this class. An asteroidal triple of a graph G is a set of three vertices
such that each pair is connected by some path that avoids the closed neighborhood of the
third vertex. Lekkerkerker and Boland [38] showed that a graph is an interval graph if and
only if it is chordal and does not contain an asteroidal triple. They also listed all minimal
chordal graphs that contain an asteroidal triple (see, for instance, [12, Figure 1]). Among
this list, we found the net graph to be the most natural to generalize. For a positive integer
ℓ ≥ 3, we define Hℓ as a split graph on 2ℓ vertices with split partition (C, I) such that the
only edges across C, I are a perfect matching. Note that H3 is the net graph. As interval
graphs are a proper subset of the collection of chordal graphs that do not contain a net
graph as an induced subgraph, the collection of the chordal graph of leafage ℓ is a proper
subset of the collection of chordal graphs that do not contain Hℓ+1 as an induced subgraph
(see the full version [23]). We show that, although the considered domination problems are
polynomial-time solvable for constant ℓ, the fixed-parameter tractability results are unlikely
to extend to this larger class. Let us mention that the core reason these problems admit
XP-algorithms parameterized by ℓ lies in the fact that Hℓ-induced-subgraph-free chordal
graphs have mim-width at most ℓ−1 [33] (all three problems are indeed known to be solvable
in nO(m) on graphs of mim-width at most m [6, 10]). Nonetheless, we present alternative
algorithms which we believe to be simpler and more insightful. In fact, we give a nO(ℓ)

algorithm for the more general Red-Blue Dominating Set problem and obtain the other
results by simple reductions.

▶ Theorem 4. Dominating Set, Connected Dominating Set and Steiner Tree on
Hℓ-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by ℓ and assuming
the ETH, do not admit an algorithm running in time f(ℓ) · no(ℓ) for any computable function
f . However, they all admit XP-algorithms running in time nO(ℓ).

We observe a similar trend with respect to MultiCut with Undeletable Terminals
as its parameterized complexity jumps from W[1]-hard on chordal graph of leafage ℓ to
paraNP-hard on Hℓ-induced-subgraph-free chordal graphs when parameterized by ℓ.

▶ Theorem 5. MultiCut with Undeletable Terminals is NP-hard even when restricted
to H3-induced-subgraph-free chordal graphs.

Table 1 summarizes our results.

Our Methods. We briefly discuss the methods used in our two main algorithms, namely
the algorithm for Dominating Set and the one for Multiway Cut.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:5

Table 1 Overview of the known results and our contributions. Every graph class mentioned in
the first column is a proper subset of the graph class mentioned below.

Input graph Dom Set, ConnDom
Set, Steiner Tree

MultiCut with UnDel
Term

MultiwayCut

Interval Graphs Poly-time [13, 3] Poly-time [28] Poly-time [7]

Chordal graphs of
leafage ℓ

2O(ℓ2) · nO(1) algo [20]
2O(ℓ) ·nO(1) algo (Thm 1)

W[1]-hard
nO(ℓ) algo (Thm 2)

nO(ℓ) algo [7]
Poly-time (Thm 3)

Hℓ-induced
subgraph-free
chordal

W[1]-hard (Thm 4);
nO(ℓ) algo
(Thm 4, [33] + [6, 10])

NP-hard for ℓ ≥ 3
(Thm 5)

Poly-time (Thm 3)

Chordal graphs NP-complete [8] NP-complete [48] Poly-time (Thm 3)

Red-Blue Dominating Set in Chordal Graphs. As mentioned earlier, the linear ordering of
cliques in interval graphs is particularly useful for the design of polynomial-time algorithms.
Such an ordering is not possible even if G is a chordal graph whose representation tree T is
a star. Consider the case where the model of every red vertex in G includes the center of the
star T (and possibly some leaves) and the model of every blue vertex is (only) a leaf. We
can solve this instance by converting it to an instance of Set Cover and solving it using
the FPT algorithm parameterized by the size of the universe. In this case, the size of the
universe is at most the number of leaves which is upper bounded by the leafage. In the other
case where the properties of red vertices and blue vertices are reversed, we obtain a similar
result by creating an equivalent instance of Hitting Set.

These ideas can be used in a more general setting as long as the following two properties
are satisfied: (1) the model of each vertex is local, that is, it contains at most one branching
node, and (2) each branching node is contained only in models of either red vertices or blue
vertices. Based on this observation, we introduce a restricted version of the problem in
which the input graph is required to satisfy these two conditions. We then show that the
general case reduces to this restricted version: indeed, we prove that there is a branching
algorithm that constructs 2O(ℓ) many instances (where ℓ is the leafage of the input graph)
of the restricted version of the problem such that the input instance is a Yes-instance if
and only if one of these newly created instances is a Yes-instance. These two properties
ensure that the graph induced by the red and blue vertices whose model intersect the subtree
rooted at a farthest branching node (from some fixed root) satisfies the premise of at least
one of the cases mentioned in the previous paragraph. We then present a greedy procedure,
based on solving the Set Cover and Hitting Set problems, that identifies some part
of an optimum solution. Apart from this greedy selection procedure, all other steps of the
algorithm run in polynomial time.

Multiway Cut in Chordal Graphs. We give a polynomial-time algorithm for Multiway
Cut on chordal graphs by solving several instances of the (s, t)-Cut problem (not necessarily
with unit capacities). Our strategy is based on a bottom-up dynamic programming (DP) on
a tree representation of a chordal graph. An interesting aspect of our DP is that we need to
look-up all DP table values that are already computed to compute a new entry. This is in
contrast to typical DP-based algorithms that do computations only based on local entries.

IPEC 2022

14:6 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

We remark that we do not expect to design an algorithm for Multiway Cut on chordal
graphs using much simpler arguments (like a simple dynamic programming procedure etc.)
as the problem generalizes some well-studied cut-flow based problems. As an example, recall
the Vertex Cover problem on bipartite graphs where given a bipartite graph G with
bipartition (A, B), the goal is to find A′ ⊆ A and B′ ⊆ B such that |A′ ∪ B′| is minimum
and N(A \ A′) ⊆ B′. The set A′ ∪ B′ is called a vertex cover of G. The Vertex Cover
problem on bipartite graphs reduces to the Multiway Cut problem on chordal graphs:
indeed, let G′ be the graph obtained from G by making B a clique, adding new pendant
vertex ta to each vertex a ∈ A, and further adding another new vertex t that is adjacent to
all vertices of B. Then G′ is a chordal graph and letting T = t ∪ {ta | a ∈ A}, it is easy
to see that S ⊆ V (G) is a vertex cover of G if and only if S is a T -multiway-cut in G′. As
mentioned earlier, our algorithm solves several instances of the (s, t)-Cut problem, which
also sits at the heart of some algorithms for Vertex Cover on bipartite graphs. The above
reduction suggests that an algorithm for Multiway Cut on chordal graphs using much
simpler techniques, would imply an algorithm for Vertex Cover on bipartite graphs that
uses much simpler techniques as well.

Note that a similar reduction would work from the weighted variant of the Vertex
Cover problem on bipartite graphs. This can be achieved by further replacing each vertex
of the graph G by a clique of size proportional to the weight of this vertex and making each
vertex of the clique adjacent to all the neighbors of this vertex. This reduction still preserves
the chordality of the resulting graph.

2 Preliminaries

For a directed graph H , we denote, for all v ∈ V (H), by N+
H (v) the out-neighbors of v and by

N−
H (v) the in-neighbors of v. If H is clear from the context, we omit the subscript H. Given

a (directed) path P and two vertices u, v ∈ V (P), we denote by P [u, v] the subpath of P from
u to v. For a tree T rooted at r, we define the function parent(t, T) : V (T) \ {r} 7→ V (T)
to specify the unique parent of the nodes in T . For any node t ∈ T , we denote by Tt the
subtree rooted at t.

It is well-known that a chordal graph G can be represented as intersection graphs of
subtrees in a tree T . The pair (T, M) is called a tree representation of G where for every
v ∈ V (G), we denote by M(v) the subtree corresponding to v and refer to M(v) as the
model of v in T . The leafage of G, denoted by lf(G), is defined as the minimum number of
leaves in the tree of a tree representation of G.

For every node α ∈ V (T), we let ver(α) = {v ∈ V (G) | α ∈ M(v)} be the set of vertices
in G that contain the node α is their model. A vertex v ∈ V (G) whose model contains
α may also be referred to as an α-vertex. Similarly, for every edge e ∈ E(T), we define
ver(e) = {v ∈ V (G) | e ⊆ M(v)}. Given a subtree T ′ of T , we denote by G|T ′ the subgraph
of G induced by those vertices x ∈ V (G) such that V (M(x)) ⊆ V (T ′).

3 Dominating Set

For a graph G, a set X ⊆ V (G) is a dominating set if every vertex in V (G) \ X has at least
one neighbor in X, that is, V (G) = N [X]. In the Dominating Set problem (DomSet for
short), the input is a graph G and an integer k, and the objective is to decide whether G

has a dominating set of size at most k. We assume that the leafage of the input graph is
given as part of the input. If not, recall that it can be computed in polynomial time [29].
We consider a generalized version of this problem as defined below.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:7

Red-Blue Dominating Set (Red-Blue-DomSet)
Input: A graph G, a partition (R, B) of V (G), and an integer k.
Question: Does there exist a set X ⊆ R of size at most k such that B ⊆ N(X)?

To solve DomSet, it is sufficient to solve Red-Blue-DomSet even when the input
is restricted to chordal graphs of leafage ℓ. A simple reduction, which is given in the full
version [23], suffices to prove the following result.

▶ Lemma 6. There is a polynomial-time algorithm that given an instance (G, k) of DomSet
constructs an equivalent instance (G′, (R′, B′), k) of Red-Blue-DomSet such that if G has
leafage at most ℓ, then so does G′.

In the remainder of this section, we present an FPT algorithm for Red-Blue-DomSet
when parameterized by the leafage ℓ of the input graph. The algorithm consists of two parts.
In the first part, the algorithm constructs 2O(ℓ) many instances of a “restricted version” of
the problem such that the input instance is a Yes-instance if and only if one of these newly
created instances is a Yes-instance. Moreover, the graphs in the newly created instances
satisfy certain properties that allow us to design a fast algorithm. See Lemma 7 for the
formal statement. In the second part (cf. Lemma 8), the algorithm solves the restricted
version of Red-Blue-DomSet which is defined as follows.

Restricted-Red-Blue Dominating Set (Rest-Red-Blue-DomSet)
Input: A chordal graph G, a partition (R, B) of V (G), an integer k and tree representation
(T, M) of G such that

for every vertex in G, its model contains at most one branching node of T , and
for all branching nodes γ ∈ V (T), there are either only red γ-vertices or only blue
γ-vertices.

Question: Does there exist a set D ⊆ R of size at most k such that B ⊆ N(D)?

The first step of the algorithm is summarized in the following lemma which is proven in
Appendix A.

▶ Lemma 7. Let I = (G, (R, B), k) be an instance of Red-Blue-DomSet where G is a
chordal graph of leafage at most ℓ. We can construct, in time 2O(ℓ) · nO(1), a collection
{Ii = (Gi, (Ri, Bi), k) | i ∈ [2O(ℓ)]} of Rest-Red-Blue-DomSet instances such that

for every i ∈ [2O(ℓ)], Gi is a chordal graph of leafage at most 2ℓ, and
I is a Yes-instance of Red-Blue-DomSet if and only if at least one of the instances in
the collection is a Yes-instance of Rest-Red-Blue-DomSet.

The second step of the algorithm solves Rest-Red-Blue-DomSet. Formally, we prove
the following lemma.

▶ Lemma 8. Rest-Red-Blue-DomSet admits an algorithm running in time 2O(ℓ) · nO(1).

We first state some easy reduction rules before we handle two cases based on whether
the farthest branching node4 is contained only in the models of red vertices or blue vertices.
We present Greedy Select 14 and Greedy Select 16 to handle these cases. The proof of the
lemma follows from the correctness of the Greedy Select 14 and 16 and the fact that each
application of the greedy selection procedure deletes some vertices in the graph.

4 We assume that the tree in the tree representation is rooted and thus, by farthest branching node, we
mean farthest from the root.

IPEC 2022

14:8 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

We first introduce some notations. Recall that an instance of Rest-Red-Blue-DomSet
contains a chordal graph G, a partition (R, B) of V (G), an integer k and tree representation
(T, M) of G such that for every vertex in G, its model contains at most one branching node
of T , and for all branching nodes γ ∈ V (T), there are either only red γ-vertices or only blue
γ-vertices. We assume, without loss of generality, that the tree T is rooted at node r. Unless
mentioned otherwise, α denotes the farthest branching node in T from the root, that is, each
proper subtree of Tα is a path. If there are more than one branching node that satisfy the
property, we arbitrarily select one of them. Let β be the closest branching ancestor of α,
that is, no internal node in the unique path from α to β is a branching node in T .5 Recall
that for a vertex v ∈ V (G), we define topM(v) as the node η ∈ M(v) that is closest to the
root. Likewise if a leaf λ is fixed, we define botλ

M(v) as the node η ∈ M(v) that is closest to
λ. For ease of notation, we omit λ as it is always clear from the context.

▶ Definition 9. Let γ be a node of the tree T . We define the following sets of vertices in G.
B∩

γ , R∩
γ , V ∩

γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models
intersect the tree rooted at γ, i.e., M(v) ∩ V (Tγ) ̸= ∅.
B⊆

γ , R⊆
γ , V ⊆

γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models
are completely contained inside the tree rooted at γ, i.e., M(v) ⊆ V (Tγ).
B⊆†

γ , R⊆†
γ , V ⊆†

γ are the sets of blue, red, all vertices v ∈ V (G) where the model is completely
contained inside the tree rooted at γ but does not contain γ, respectively, i.e. M(v) ⊆
V (T †

γ) = V (Tγ) \ {γ}.
B∈

γ , R∈
γ , V ∈

γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models
contains γ, i.e., γ ∈ M(v).

Simplifications. We first apply the following easy reduction rules whose correctness readily
follows from the definition of the problem. It is also easy to see that the reduction rules
can be applied in polynomial time and the reduced instance is also a valid instance of
Rest-Red-Blue-DomSet.

▶ Reduction Rule 10. If there is a blue vertex, which is not adjacent to a red vertex, or if
k < 0, then return a trivial No-instance.

▶ Reduction Rule 11.
If there are two blue vertices u, v such that M(u) ⊆ M(v), then delete v.
If there are two red vertices u, v such that M(u) ⊆ M(v), then delete u.

Consider a blue vertex v in G whose model is contained in the subtree rooted at α.
Moreover, let v be such a vertex for which topM(v) is farthest from the root and v is not
adjacent to a red vertex whose model contains α. Hence, there is a natural ordering amongst
the red neighbors of v. Note that such an ordering is not possible if some of its neighbors
contain α in their models. As any solution contains a red neighbor of v, it is safe to include
its neighbor vr for which topM(vr) is closest to α.

▶ Reduction Rule 12. Suppose that there is a blue vertex v ∈ B⊆†
α such that topM(v) is

farthest from the root and v is not adjacent to any red α-vertices. Moreover, amongst all the
red neighbors of v, let vr be the node such that topM(vr) is closest to α. Then, remove vr

and all of its blue neighbors and decrease k by 1.

5 If α is the root of the tree, then we can add an artificial new root β which is not contained in the model
of any vertex.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:9

We remark that the above reduction rule is applicable irrespective of the fact whether
either all α-vertices are red or all α-vertices are blue.

Case-1: All the vertices that contain α in their models are red vertices. Let β be
the closest branching ancestor of α. Consider the blue vertices whose model intersect the
path from α to β. Note that there may not be any such blue vertex; however, we find it
convenient to present an uniform argument. With a slight abuse of notation, let b1, . . . , bd

be these blue vertices ordered according to their endpoint in the direction of α, that is, for
i < j we have either botM(bi) = botM(bj) or botM(bi) is closer to α than botM(bj). For
each i ∈ [d], we compute an optimal solution for dominating the vertices whose model is
in the tree rooted at α (i.e., the vertices of B⊆†

α) and the vertex bi while only using red
α-vertices. Formally, we want to compute an optimal solution for the following instance:
Ii := G[R∩

α ∪ B⊆
α ∪ {bi}]. We also define instance I0 := G[R∩

α ∪ B⊆
α] to handle the cases

when there are no blue vertices whose model intersects the path from α to β or when b1
(and hence, the other blue vertices mentioned above) are not dominated by red α-vertices
in an optimum solution. To simplify notation we set OPTi := OPT(Ii) in the following.
If Ii is not defined, then we set OPTi = ∞. Note that the solution OPTi also dominates
the blue vertices b1, . . . , bi−1 due to the ordering of the bis. Hence, for any i, j ∈ [0, d] such
that i < j, we have |OPTi| ≤ |OPTj |. We use this monotonicity to prove the following
structural lemma.

▶ Lemma 13. Let q ∈ [0, d] be the largest value such that |OPTq| = |OPT0|. If there is a
solution, then there is an optimum solution containing OPTq.

Proof. Let OPT be an optimum solution of (G, (R, B), k). Let S denote the collection of
vertices in OPT whose model contains nodes in the subtree rooted at α, i.e., S := OPT∩R∩

α.
We claim that we can replace S by a super-set S′ of OPTq of equal size to obtain another
solution.

Let j ∈ [0, d] be the largest integer such that bj is dominated by some vertex in S. If
j ≤ q, then by our choice of q, |S| = |OPTq|. By the definition of the Iis, we get that OPTq

is also a solution for Ii. Hence, we can replace S by OPTq to get another optimal solution.
Suppose therefore that j > q. By our choice of q, we have |S| > |OPTq|. Let rj be the red
α-vertex with topM(rj) closest to β such that bj is a neighbor of rj . Such a vertex exists,
as by assumption, S contains one of these vertices which dominates bj . Then we replace
S by S′ = OPTq ∪ {rj}. As |S| > |OPTq|, we have |S′| ≤ |S|. Moreover, observe that
S′ ∪OPT\S is still a solution as all vertices in B⊆†

α and the vertices b1, . . . , bq are dominated
by some vertex in OPTq, vertex rj dominates the vertices bq+1, . . . , bj and, by the choice of
j, the vertices bj+1, . . . , bd are dominated by some vertex not contained in S. ◀

We devise a greedy selection step based on the above lemma which can be completed in
time 2O(ℓ) · nO(1) (cf. full version in [23]).

▶ Greedy Select 14. Let q ∈ [0, d] be the largest value such that |OPTq| = |OPT0|. Include
the vertices of OPTq in the solution, i.e., delete the red vertices in OPTq, the blue vertices
that are adjacent to vertices in OPTq, and decrease k by |OPTq|.

Case-2: All the vertices that contain α in their models are blue vertices. Let β be the
closest branching ancestor of α. We consider two cases depending on whether there is a red
vertex whose model intersects the path from α to β. If there is no such red vertex, then we

IPEC 2022

14:10 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

consider the graph induced by all the red vertices whose model is (properly) contained in the
subtree rooted at α and the blue vertices whose model intersects the subtree rooted at α.
Formally, we define I0 = G[R⊆

α ∪ B∩
α].

Consider the other case and suppose that there are d ≥ 1 many red vertices whose model
intersects the path from α to β. Let r1, . . . , rd be these vertices ordered according to their
endpoints in the direction of α, that is, for i < j, we have either botM(ri) = botM(rj)
or botM(ri) is closer to α than botM(rj). For each such red vertex vi, we compute the
optimal solution to dominate the vertices in B∩

α by vertices in R⊆
α assuming that vi is already

selected. Note that we only have to focus on the blue vertices in B∩
α which are not adjacent

to vi. Formally we define Ii = G[R⊆
α ∪ (B∩

α \ N [vi])]. It is possible that the optimum
solution does not include any of the vertices in {r1, r2, . . . , rd}. To handle this case, we define
Id+1 = G[R⊆

α ∪ B∩
α]. To simplify notation, we set OPTi := OPT(Ii) in the following. Note

that for the instance defined above, Ri is same for every instance whereas Bi ⊆ Bi+1 because
of the ordering. Hence, for any i, j ∈ [d + 1] such that i < j, we have |OPTi| ≤ |OPTj |. We
use this monotonicity to prove the following structural lemma.

▶ Lemma 15. If there is a red vertex whose model intersects the path from α to β, let q ∈ [d+1]
be the largest value such that |OPTq| = |OPT1|. Otherwise, define OPTq = OPT0. If
there is a solution for the instance, then there is an optimum solution OPT such that
OPT ∩ R⊆

α = OPTq.

Proof. If there is no red vertices whose model intersects the path from α to β, then all the
red vertices in G that are adjacent to blue vertices in I0 are the red vertices in I0. Hence,
the statement of the lemma follows.

We now consider the case where there are red vertices whose model intersects the path
from α to β. Let OPT be an optimum solution of (G, (R, B), k). Let S denote the collection
of vertices in OPT whose model is (properly) contained in the subtree rooted at α, i.e.,
S := OPT ∩ R⊆†

α . We claim that we can replace S by a super-set S′ of OPTq of equal size
to obtain another optimum solution.

Let j ∈ [d] be the smallest index such that vj is contained in OPT. Note that, by
definition, j ̸= d + 1 as there are only d red vertices with the said property. If j ≤ q, then by
our choice of q, |S| ≥ |OPTj |. By the definition of Ij and the fact blue vertices in Ij are
subset of blue vertices in Iq, OPTq is also a solution for Ij . Hence, we can replace S by
OPTq to get another optimal solution. Suppose therefore that j > q. By our choice of q, we
have |OPTj | > |OPTq|. As OPT is a solution, all vertices in B∩

α must be covered by OPT.
Hence, we can replace S by S′ = OPTq ∪ {rq} and get a solution of not larger size which
still dominates all vertices in B∩

α . Indeed, the vertices which are not dominated by OPTq

are dominated by rq. ◀

We devise a greedy selection step based on the above lemma which can be completed in
time 2O(ℓ) · nO(1) (cf. full version in [23]).

▶ Greedy Select 16. If there is a red vertex whose model intersects the path from α to
β, let q ∈ [d + 1] be the largest value such that |OPTq| = |OPT1|. Otherwise, define
OPTq = OPT0. Include OPTq in the solution, i.e., delete the red vertices in OPTq, the
blue vertices that are adjacent to vertices in OPTq, and decrease k by |OPTℓ|.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:11

p1

K1
p2

K2
p3

· · ·
pn

Kn

pn+1

Figure 1 The auxiliary graph B. Rectangles represent cliques and thick edges indicate that the
corresponding vertex is complete to the corresponding cliques.

4 Multicut with Undeletable Terminals

This section considers the MultiCut with Undeletable Terminals problem formally
defined as follows.

MultiCut with Undeletable Terminals (MultiCut with UnDel Term)
Input: An undirected graph G, a set P ⊆ V (G) × V (G), and an integer k.
Question: Is there a set S ⊆ V (G) \ V (P) such that |S| ≤ k and for all (p, p′) ∈ P ,
there is no path between p and p′ in G − S?

In the following, a set S ⊆ V (G) \ V (P) such that for all (p, p′) ∈ P , there is no path
between p and p′ in G − S is called a P -multicut in G. We first prove that when the
input is restricted to chordal graphs, the problem is unlikely to admit an FPT algorithm
when parameterized by the leafage. We then complement this result with an XP-algorithm
parameterized by the leafage. We restate the theorem with the precise statement for the
reader’s convenience.

▶ Theorem 2. MultiCut with Undeletable Terminals on chordal graphs is W[1]-hard
when parameterized by the leafage ℓ and assuming the ETH, does not admit an algorithm
running in time f(ℓ)·no(ℓ) for any computable function f . However, it admits an XP-algorithm
running in time nO(ℓ).

To prove that the problem is W[1]-hard, we present a parameter preserving reduction from
Multicolored Clique. An instance of this problem consists of a simple graph G, an integer
q, and a partition (V1, V2, . . . , Vq) of V (G). The objective is to determine whether there is
a clique in G that contains exactly one vertex from each part Vi. Such a clique is called a
multicolored clique. We assume, without loss of generality, that each Vi is an independent set
and that |V1| = . . . = |Vq| = n.6 This implies, in particular, that |E(G)| < n2 · q2. For every
i ∈ [q], we denote by vi

1, . . . , vi
n the vertex set of Vi and for every i ≠ j ∈ [q], we denote by

Ei,j ⊆ E(G) the set of edges between Vi and Vj . We define M := (n + 1)2 · q2.

Reduction. The reduction takes as input an instance (G, q, (V1, . . . , Vq)) of Multicolored
Clique and outputs an instance (H, P, k) of MultiCut with UnDel Term which is
constructed as follows.

The reduction starts by constructing an auxiliary graph B. The vertex set of B consists of
n+1 vertices p1, . . . , pn+1 and n vertex-disjoint cliques K1, . . . , Kn such that |Ka| = a ·M
for every a ∈ [n]. Then, it adds edges so that p1 is complete to K1, pn+1 complete to Kn,
and pa complete to Ka−1 ∪ Ka for every a ∈ [n] \ {1}. This completes the construction
of B (see Figure 1).

6 Unlike in the rest of the article, we do not use n to denote the total number of vertices in G to keep
notation simple while presenting the reduction.

IPEC 2022

14:12 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

K2,β
1 K2,β

2 K2,β
3 K2,β

4p2,β
1 p2,β

2 p2,β
3 p2,β

4 p2,β
5

K2,α
1 K2,α

2 K2,α
3 K2,α

4p2,α
1 p2,α

2 p2,α
3 p2,α

4 p2,α
5

K1,β
1 K1,β

2 K1,β
3 K1,β

4p1,β
1 p1,β

2 p1,β
3 p1,β

4 p1,β
5

K1,α
1 K1,α

2 K1,α
3 K1,α

4p1,α
1 p1,α

2 p1,α
3 p1,α

4 p1,α
5

K

ve′
ve

Figure 2 A tree representation of the graph H restricted to the gadgets representing V1, V2 and
E1,2 where n = 4 and E1,2 = {e = v1

3v2
1 , e′ = v1

4v2
2}.

For each i ∈ [q], the reduction introduces two vertex-disjoint copies Bi,α and Bi,β of B. For
every i ∈ [q], let pi,α

1 , . . . , pi,α
n+1 denote the copies of p1, . . . , pn+1 in Bi,α and Ki,α

1 , . . . , Ki,α
n

denote the copies of K1, . . . , Kn in Bi,α. Moreover, for every 1 ≤ a1 ≤ a2 ≤ n + 1, we
define, for notational convenience,

pi,α[a1, a2] := {pi,α
a | a1 ≤ a ≤ a2} and Ki,α[a1, a2] :=

⋃
a1≤a≤a2

Ki,α
a .

We define pi,β
a , Ki,β

a , pi,β [a1, a2], and Ki,β [a1, a2] in a similar way.
For i ∈ [q] and a ∈ [n], the reduction uses pi,α

a , pi,β
n+1−a, Ki,α

a , and Ki,β
n+1−a to encode

vertex vi
a.

For every edge e = vi
ai

vj
aj

∈ E(G), the reduction introduces an edge-vertex ve and adds
edges so that ve is complete to the following sets.

pi,α[ai + 1, n + 1] and Ki,α[ai, n + 1] in V (Bi,α).
pj,α[aj + 1, n + 1] and Ki,α[aj , n + 1] in V (Bj,α).
pi,β [n + 1 − ai + 1, n + 1] and Ki,β [n + 1 − ai + 1, n + 1] in V (Bi,β).
pj,β [n + 1 − aj + 1, n + 1] and Ki,β [n + 1 − aj + 1, n + 1] in V (Bj,β).

Note that ve is adjacent to vertices in Ki,α[ai] ∪ Kj,α[aj] but not to any vertex in
Ki,β [n + 1 − ai] ∪ Kj,β [n + 1 − aj].
The reduction introduces a central clique K of size 2M2 and makes it complete to
{pi,α

n+1, pi,β
n+1 | i ∈ [q]} and VE where VE = {ve | e ∈ E(G)} is the set of edge-vertices.

This completes the construction of H.
The reduction further defines

P := {(pi,α
a , pi,β

n+2−a) | a ∈ [n] and i ∈ [q]}, and k := q(n+1)M +|E(G)|−q(q−1)/2.

The reduction returns (H, P, k) as the instance of MultiCut with UnDel Term. This
completes the reduction. It is easy to see that H is chordal and has leafage at most 2q. See
Figure 2 for a tree representation of H.

Intuition. We first provide the intuition behind the reduction. Recall that the reduction
uses pi,α

a , pi,β
n+1−a, Ki,α

a , and Ki,β
n+1−a to encode vertex vi

a where i ∈ [q] and a ∈ [n]. Hence,
for a, b ∈ [n], if a + b = n + 1, then pi,α

a and pi,β
b correspond to the same vertex. Note that the

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:13

pairs in P do not correspond to the vertices associated with vi
a. Rather, pi,α

a+1 is paired with
pi,β

n+1−a. Conversely, for a, b ∈ [n], if a + b = n + 2, then (pi,α
a , pi,β

b) ∈ P . By the construction
of H and P , for a P -multicut S of H, if there is a path from pi,α

a to pi,β
b in H − S, then

a + b ≥ n + 3.
Now, consider the terminal pairs (pi,α

1 , pi,β
n+1) in P for some i ∈ [q]. Because of the

size constraints, S cannot contain all the vertices of the central clique K. Since S cannot
contain a terminal, it needs to include one clique from Bi,α. Let ai ∈ [n] be the largest
index such that Ki,α

ai
⊆ S. Using similar arguments, there must also exist bi ∈ [n] such that

Ki,β
bi

⊆ S and bi is largest such index. By definition of ai, bi and construction of H, there is
a path from pi,α

ai+1 to pi,β
bi+1 in H − S. The discussion in the previous paragraph implies that

ai + 1 + bi + 1 ≥ n + 3, i.e., ai + bi ≥ n + 1. However, by definition of the solution size k

and the size of the cliques, we have ai + bi ≤ n + 1. Hence, the structure of the auxiliary
graphs and the terminal pairs ensure that the selected cliques in S ∩ V (Bi,α) and S ∩ V (Bi,β)
encode selecting a vertex in Vi in G.

Suppose that {v1
a1

, v2
a2

, . . . , vq
aq

} are the vertices in G that are selected by S. Recall that
VE is the collection of edge-vertices in H. Considering the remaining budget, a solution S

can include at most |E(G)| − q(q − 1)/2 many vertices in VE . We argue that q(q − 1)/2 edges
in G corresponding to vertices in VE \ S should have their endpoints in {v1

a1
, v2

a2
, . . . , vq

aq
} as

otherwise some terminal pair is connected in H − S. Hence, a P -multicut S of H corresponds
to a multicolored clique in G. We give the formal proof in the full version [23].

Finally, it is known that, assuming the ETH, there is no algorithm that can solve
Multicolored Clique on instance (G, q, (V1, V2, . . . Vq)) in time f(q) · |V (G)|o(q) for any
computable function f (see, e.g., [17, Corollary 14.23]). Thus, together with the fact that
the reduction takes polynomial time in the size of the input, the proof of correctness, and
arguments that are standard for parameter preserving reductions, we conclude that the
following holds.

▶ Lemma 17. MultiCut with Undeletable Terminals on chordal graphs is W[1]-hard
when parameterized by leafage ℓ and assuming the ETH, does not admit an algorithm running
in time f(ℓ) · no(ℓ) for any computable function f .

We defer the XP-algorithm for MultiCut with UnDel Term on chordal graphs to the
full version of this paper [23]. Together with Lemma 17 this proves Theorem 2.

5 Multiway Cut with Undeletable Terminals on Chordal Graphs

In this section, we consider the Multiway Cut with Undeletable Terminals problem
formally defined below. Given a graph G and a set P ⊆ V (G), a set S ⊆ V (G) \ P is a called
a P -multiway-cut in G if G − S has no (p, p′)-path for any two distinct p, p′ ∈ P .

Multiway Cut with Undeletable Terminals (MWC)
Input: An undirected graph G and a set P ⊆ V (G) of terminals.
Question: Find the size of a minimum P -multiway-cut in G.

The aim of this section is to prove Theorem 3 which states that Multiway Cut with
Undeletable Terminals can be solved in nO(1)-time on chordal graphs. Before turning to
the proof, we first start with a few definitions. Let (T, M) a tree representation of a chordal
graph G where T is rooted at an arbitrary node r ∈ V (T). Given a subtree T ′ of T and a set
Q ⊆ V (G), we let Q|T ′ ⊆ Q be the set of vertices x ∈ Q such that M(x) ⊆ V (T ′). Now let

IPEC 2022

14:14 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

Q ⊆ V (G) be an independent set of G such that for every leaf η of T , ver(η) ∩ Q ≠ ∅. Then
the truncated tree w.r.t. Q is the tree T trunc

Q obtained from T as follows. Let {η1, . . . , ηq} be
the set of leaves of T . For each i ∈ [q], let Qi ⊆ Q\ver(r) be the set of vertices p ∈ Q\ver(r)
such that topM(p) is on the (ηi, r)-path in T , and let pi ∈ Qi be the vertex of Qi such that
topM(pi) is closest to r. Then T trunc

Q is obtained from T by deleting the subtrees rooted at
the children of the nodes in {topM(pi) | i ∈ [q]}. Note that, by construction, the set of leaves
of T trunc

Q is {topM(pi) | i ∈ [q]} and that, apart from the vertices in {pi | i ∈ [q]}, there is at
most one other vertex in Q whose model intersects V (T trunc

Q), namely the potential vertex in
Q ∩ ver(r) (note that if such a vertex exists, its model is in fact fully contained in T trunc

Q).
Finally, given a set P ⊆ V (G), a P -multiway-cut X in G is said to destroy an edge e ∈ E(T)
if ver(e) ⊆ X.

We now turn to the proof of Theorem 3. Throughout the remaining of this section, we let
(G, P) be an instance of MWC, where G is a n-vertex chordal graph, and further let (T, M)
be a tree representation of G. First, we may assume that P is an independent set: indeed, if
there exist p, p′ ∈ P such that pp′ ∈ E(G), then (G, P) is a No-instance. Furthermore, if a
vertex v ∈ V (G) does not belong to any (p, p′)-path in G, where p, p′ ∈ P , then it can be
safely deleted as no minimal P -multiway-cut in G may contain v. Hence, we assume that
every vertex in G participates in some (p, p′)-path where p, p′ ∈ P ; in particular, we may
assume that for every leaf η of T , ver(η) ∩ P ̸= ∅. Note that, consequently, for every internal
node α ∈ V (T), the truncation of Tα w.r.t. P|Tα

exists.
Now let T0 be the tree obtained by adding a new node r0 and connecting it to an arbitrary

node r ∈ V (T). Observe that (T0, M) is also a tree representation of G. In the following,
we root T0 at r0. To prove Theorem 3, we design a dynamic program that computes, in a
bottom-up traversal of T0, the entries of a table A whose content is defined as follows. The
table A is indexed over the edges of E(T0). For each node α ∈ V (T), A[α parentT0

(α)] stores
the size of a minimum P|Tα

-multiway-cut in G|Tα
. The size of a minimum P -multiway-cut in

G may then be found in A[rr0]. We describe below how to compute the entries of A.

Update Procedure. For every leaf η of T , we set A[η parentT0
(η)] = 0. Consider now an

internal node α of T . We show how to compute A[α parentT0
(α)] assuming that for every

edge e ∈ E(Tα), the entry A[e] is correctly filled.
Let T̃ be the truncation of Tα w.r.t. P|Tα

and let G̃ = G|T̃ . Denote by η1, . . . , ηq the
leaves of T̃ . Recall that, by construction, for every i ∈ [q], there exists pi ∈ P|Tα

such that
ηi = topM(pi): we let P̃ = {pi | i ∈ [q]}. Furthermore, it may be that P|Tα

∩ ver(r) is
nonempty: we let P̃r = P|Tα

∩ ver(r). Note that |P̃r| ≤ 1: if P̃r ̸= ∅ then we refer to the
terminal in P̃r as the root terminal. Observe that V (G̃) ∩ P|Tα

= V (G̃) ∩ P = P̃ ∪ P̃r by
construction. To compute A[α parentT0

(α)], we distinguish two cases:
(1) if P̃r ̸= ∅ then we construct a unique instance (H0, s, t, wt0) of (s, t)-Cut;
(2) otherwise, for every i ∈ [0, q], we construct an instance (Hi, s, t, wti) of (s, t)-Cut.
We describe below how such instances are constructed. First, recall that an instance of
the (s, t)-Cut problem consists of a digraph D, vertices s, t ∈ V (D), a weight function
wt : E(D) → N ∪ {∞}, and the goal is to find a set X ⊆ E(D) such that D − X has no
(s, t)-path and wt(X) is minimum with this property, where wt(X) =

∑
u∈X wt(u).

Construction of the (s, t)-Cut Instances. For every i ∈ [q], let us denote by P̃i = P̃ \ {pi}
and let P̃0 = P̃ . Consider i ∈ [0, q]. Before turning to the formal construction of the
instance (Hi, s, t, wti), let us first give an intuitive idea of the construction. The digraph Hi

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:15

is obtained from T̃ by orienting all edges of T̃ towards its root r̃ = α and further adding
vertices and weighted arcs to encode the graph G|Tα

. The arcs in Hi corresponding to the
edges of T̃ are called the tree arcs and the nodes in Hi corresponding to the nodes of T̃

are called the tree nodes. The idea is that we separate, for each terminal p ∈ P̃i, the node
topM(p) from the root r̃. To achieve this, we add a source node s and source arcs from s
to topM(p) (of infinite weight) and look for an (s, r̃)-cut in Hi. Since the edges of T can
presumably not be independently destroyed in a P -multiway-cut, we need some additional
vertices to encode these dependencies. For each vertex v ∈ V (G̃) \ P̃i, we introduce a node
γ(v) in Hi which is reachable via connection arcs (with infinite weight) from all the tree
nodes that are contained in the model of v. This node γ(v) is further connected via a sink
arc (of weight one) to topM(v) which ensures that if we want to cut a tree arc, we also
have to cut all the sink arcs associated to vertices containing the corresponding edge in their
model. The index i is then used to specify which root-to-leaf path of T̃ is uncut: if i = 0
then every such path is cut, otherwise the (ηi, r̃)-path is uncut. To encode the rest of the
solution, we associate with each tree arc (β, δ) a weight wti((β, δ)) corresponding to the size
of a minimum P|β-multiway-cut in G|β .

We proceed with the formal construction of Hi. The vertex set of Hi is V (Hi) =
V (T̃) ⊎ {s} ⊎ {Γ} where Γ = {γ(v) | v ∈ V (G̃) \ P̃}, that is, Γ contains a node of every
non-terminal vertex in G̃. For every z ∈ Γ, we denote by γ−1(z) the corresponding vertex in
V (G̃) \ P̃ . The arc set of Hi is partitioned into four sets:

the set E
T̃

of tree arcs containing all the edges of T̃ oriented towards the root r̃,
the set Ei

source = {(s, topM(p)) | p ∈ P̃i} of source arcs,
the set Econn = {(α, γ(v)) | γ(v) ∈ Γ, α ∈ M(v) ∩ V (T̃)} of connection arcs and
the set Esink = {(γ(v), topM(v)) | v ∈ V (G̃) \ P̃} of sink arcs.

Furthermore, if P̃r ̸= ∅, then we let Erterm ⊆ E
T̃

be the set of tree arcs (β, δ) ∈ E
T̃

such that
the edge βδ is contained in the model of the root terminal; otherwise, we let Erterm = ∅. The
weight function wti : E(Hi) → N ∪ {∞} is defined as follows. For every j ∈ [q], let ρj be the
path in T̃ from ηj to r̃ and let −→ρj be the corresponding directed path in Hi (that is, −→ρj is the
path in Hi from ηj to r̃ consisting only of tree arcs). Then for every arc e of Hi,

wti(e) =

A[e] if i = 0 and e ∈ E

T̃
\ Erterm

A[e] if i ̸= 0, e ∈ E
T̃

and e does not belong to the path −→ρi

1 if e ∈ Esink

∞ otherwise.

Note, in particular, that every arc in Erterm (if any) has infinite weight. Similarly, if i ̸= 0,
then every arc of the path −→ρi has infinite weight. This completes the construction of the
instance (Hi, s, t = r̃, wti) (see Figure 3). It is easy to see that such an instance can be
constructed in O(n2)-time.

Now let X0 be an (s, r̃)-cut in H0 such that wt0(X0) is minimum; and if P̃r = ∅, then for
every i ∈ [q], further let Xi be an (s, r̃)-cut in Hi such that wti(Xi) is minimum. For each
i ∈ [q], let us denote by costi = A[ηi parentT0

(ηi)] and let cost0 = 0. Then we set

A[α parentT0
(α)] =

{
|X0| if P̃r ̸= ∅
mini∈[0,q]{|Xi| + costi} otherwise

In the following, for convenience, we let I = [0, q] if P̃r = ∅, and I = {0} otherwise. We
prove in Appendix B that the entry A[α parentT0

(α)] is updated correctly. To this end, we
show that G|Tα

has a P|Tα
-multiway-cut of size at most k if and only if there exists i ∈ I

such that Hi has an (s, r̃)-cut of weight at most k − costi w.r.t. wti.

IPEC 2022

14:16 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

η1 η2 η3

β1 β2

α = r̃

p1 p2 p3

u
w

v

(a) The tree representation (T̃ , M
|V (G̃)

) of G̃

where V (G̃) = {p1, p2, p3, u, v, w} and P̃r = ∅.

η1 η2 η3

β1

β2

α = r̃

γ(u)
γ(v)

γ(w)

s

1
1

1

A[η1β1]
A[η3β2]

A[β2α]

(b) The instance (H2, s, r̃, wt2) (thick arcs have
infinite weight).

Figure 3 An illustration of the construction of the (s, t)-Cut instances.

From the correctness (cf. Lemmas 18 and 21) we conclude that A[α parentT0
(α)] indeed

stores the size of a minimum P|Tα
-multiway-cut in G|Tα

. Since the construction of each
Hi takes polynomial-time, an (s, t)-cut in Hi can be computed in polynomial time (see,
for instance, [22]) and the number of His is at most n, it takes plynomial-time to update
A[α parentT0

(α)]. Finally, since the number of edges of T is linear in n, the overall running
time is polynomial in n, which proves Theorem 3. We remark that a more careful analysis of
the running time of the algorithm leads to an upper bound of O(n4).

6 Conclusion

In this article, we presented improved and new results regarding domination and cut problems
on chordal graphs with bounded leafage. We presented an FPT algorithm running in time
2O(ℓ) · nO(1) for the Dominating Set problem on chordal graphs. Regarding cut problems,
we proved that MultiCut with Undeletable Terminals on chordal graphs is W[1]-hard
when parameterized by the leafage. We also presented a polynomial-time algorithm for
Multiway Cut with Undeletable Terminals on chordal graphs. We find it surprising
that the complexity of this problem was not known before.

In the case of chordal graphs, we believe the leafage to be a more natural parameter than
other popular parameters such as vertex cover, feedback vertex set or treewidth. It would be
interesting to examine the structural parameterized complexity of problems such as Longest
Cycle, Longest Path, Component Order Connectivity, s-Club Contraction,
Independent Set Reconfiguration, Bandwidth, or Cluster Vertex Deletion.
These problems are known to be NP-complete on split graphs and admit polynomial-time
algorithms on interval graphs. Hence it is plausible that they admit an FPT or XP algorithm
on chordal graphs parameterized by the leafage. We believe it is a representative list, though
not exhaustive, of problems that exhibit this behavior. In fact, it would be fascinating to find
a natural problem that does not exhibit this behavior, i.e., a problem that is NP-complete
on interval graphs but admits a polynomial-time algorithm on split graphs.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:17

References
1 Liliana Alcón. On asteroidal sets in chordal graphs. Discret. Appl. Math., 164:482–491, 2014.

doi:10.1016/j.dam.2013.04.019.
2 Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Zeman. Testing isomorphism

of chordal graphs of bounded leafage is fixed-parameter tractable. CoRR, abs/2107.10689,
2021. arXiv:2107.10689.

3 Hari Balakrishnan, Anand Rajaraman, and C. Pandu Rangan. Connected domination and
steiner set on asteroidal triple-free graphs. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack,
Nicola Santoro, and Sue Whitesides, editors, Algorithms and Data Structures, Third Workshop,
WADS ’93, Montréal, Canada, August 11-13, 1993, Proceedings, volume 709 of Lecture Notes
in Computer Science, pages 131–141. Springer, 1993. doi:10.1007/3-540-57155-8_242.

4 Kathleen D. Barnetson, Andrea C. Burgess, Jessica A. Enright, Jared Howell, David A. Pike,
and Brady Ryan. The firebreak problem. Networks, 77(3):372–382, 2021. doi:10.1002/net.
21975.

5 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian
Sikora. Token sliding on split graphs. Theory Comput. Syst., 65(4):662–686, 2021. doi:
10.1007/s00224-020-09967-8.

6 Benjamin Bergougnoux and Mamadou Moustapha Kanté. More applications of the d-neighbor
equivalence: Acyclicity and connectivity constraints. SIAM J. Discret. Math., 35(3):1881–1926,
2021. doi:10.1137/20M1350571.

7 Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway cut and
subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84(5):1385–1417,
2022. doi:10.1007/s00453-022-00936-w.

8 Alan A. Bertossi. Dominating sets for split and bipartite graphs. Inf. Process. Lett., 19(1):37–40,
1984. doi:10.1016/0020-0190(84)90126-1.

9 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166–207, 2018. doi:10.1137/140961808.

10 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.,
511:66–76, 2013. doi:10.1016/j.tcs.2013.01.009.

11 Peter Buneman. A characterisation of rigid circuit graphs. Discret. Math., 9(3):205–212, 1974.
doi:10.1016/0012-365X(74)90002-8.

12 Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115. SIAM, 2016.
doi:10.1137/1.9781611974331.ch77.

13 Maw-Shang Chang. Efficient algorithms for the domination problems on interval and circular-
arc graphs. SIAM J. Comput., 27(6):1671–1694, 1998. doi:10.1137/S0097539792238431.

14 Steven Chaplick and Juraj Stacho. The vertex leafage of chordal graphs. Discret. Appl. Math.,
168:14–25, 2014. doi:10.1016/j.dam.2012.12.006.

15 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

16 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM J. Comput.,
42(4):1674–1696, 2013. doi:10.1137/12086217X.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

IPEC 2022

https://doi.org/10.1016/j.dam.2013.04.019
http://arxiv.org/abs/2107.10689
https://doi.org/10.1007/3-540-57155-8_242
https://doi.org/10.1002/net.21975
https://doi.org/10.1002/net.21975
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1137/20M1350571
https://doi.org/10.1007/s00453-022-00936-w
https://doi.org/10.1016/0020-0190(84)90126-1
https://doi.org/10.1137/140961808
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1016/0012-365X(74)90002-8
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1137/S0097539792238431
https://doi.org/10.1016/j.dam.2012.12.006
https://doi.org/10.1145/2700209
https://doi.org/10.1137/12086217X
https://doi.org/10.1007/978-3-319-21275-3

14:18 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

18 Celina M. H. de Figueiredo, Raul Lopes, Alexsander Andrade de Melo, and Ana Silva.
Parameterized algorithms for steiner tree and dominating set: Bounding the leafage by the
vertex leafage. In Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, WALCOM:
Algorithms and Computation - 16th International Conference and Workshops, WALCOM
2022, Jember, Indonesia, March 24-26, 2022, Proceedings, volume 13174 of Lecture Notes in
Computer Science, pages 251–262. Springer, 2022. doi:10.1007/978-3-030-96731-4_21.

19 Pål Grønås Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational complexity
of vertex integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.
doi:10.1007/s00453-016-0127-x.

20 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the Tractability of
Optimization Problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020. doi:10.1007/
s00453-020-00692-9.

21 Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger.
Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216–231, 2014. doi:
10.1007/s00453-012-9731-6.

22 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

23 Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale.
Domination and cut problems on chordal graphs with bounded leafage. CoRR, abs/2208.02850,
2022. doi:10.48550/arXiv.2208.02850.

24 Fanica Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs.
Combinatorica, 1974.

25 P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval
graphs. Canadian Journal of Mathematics, 16:539–548, 1964. doi:10.4153/CJM-1964-055-5.

26 Petr A. Golovach, Pinar Heggernes, Pim van ’t Hof, and Christophe Paul. Hadwiger number
of graphs with small chordality. SIAM J. Discret. Math., 29(3):1427–1451, 2015. doi:
10.1137/140975279.

27 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.
28 Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Complexity

and exact algorithms for vertex multicut in interval and bounded treewidth graphs. Eur. J.
Oper. Res., 186(2):542–553, 2008. doi:10.1016/j.ejor.2007.02.014.

29 Michel Habib and Juraj Stacho. Polynomial-time algorithm for the leafage of chordal graphs.
In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European
Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture
Notes in Computer Science, pages 290–300. Springer, 2009. doi:10.1007/978-3-642-04128-0_
27.

30 Michel Habib and Juraj Stacho. Reduced clique graphs of chordal graphs. Eur. J. Comb.,
33(5):712–735, 2012. doi:10.1016/j.ejc.2011.09.031.

31 Winfried Hochstättler, Johann L. Hurink, Bodo Manthey, Daniël Paulusma, Britta Peis,
and Georg Still. In memoriam walter kern. Discret. Appl. Math., 303:2–3, 2021. doi:
10.1016/j.dam.2021.08.034.

32 Kyriaki Ioannidou, George B. Mertzios, and Stavros D. Nikolopoulos. The longest path
problem has a polynomial solution on interval graphs. Algorithmica, 61(2):320–341, 2011.
doi:10.1007/s00453-010-9411-3.

33 Dong Yeap Kang, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. A width
parameter useful for chordal and co-comparability graphs. Theor. Comput. Sci., 704:1–17,
2017. doi:10.1016/j.tcs.2017.09.006.

34 J. Mark Keil. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett., 20(4):201–206,
1985. doi:10.1016/0020-0190(85)90050-X.

35 Athanasios L. Konstantinidis and Charis Papadopoulos. Cluster deletion on interval graphs and
split related graphs. Algorithmica, 83(7):2018–2046, 2021. doi:10.1007/s00453-021-00817-8.

https://doi.org/10.1007/978-3-030-96731-4_21
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-012-9731-6
https://doi.org/10.1007/s00453-012-9731-6
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.48550/arXiv.2208.02850
https://doi.org/10.4153/CJM-1964-055-5
https://doi.org/10.1137/140975279
https://doi.org/10.1137/140975279
https://doi.org/10.1016/j.ejor.2007.02.014
https://doi.org/10.1007/978-3-642-04128-0_27
https://doi.org/10.1007/978-3-642-04128-0_27
https://doi.org/10.1016/j.ejc.2011.09.031
https://doi.org/10.1016/j.dam.2021.08.034
https://doi.org/10.1016/j.dam.2021.08.034
https://doi.org/10.1007/s00453-010-9411-3
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1007/s00453-021-00817-8

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:19

36 Dieter Kratsch. Finding the minimum bandwidth of an interval graphs. Inf. Comput.,
74(2):140–158, 1987. doi:10.1016/0890-5401(87)90028-9.

37 Dieter Kratsch and Lorna Stewart. Approximating bandwidth by mixing layouts of interval
graphs. SIAM J. Discret. Math., 15(4):435–449, 2002. doi:10.1137/S0895480199359624.

38 C. Lekkeikerker and J. Boland. Representation of a finite graph by a set of intervals on the real
line. Fundamenta Mathematicae, 51(1):45–64, 1962. URL: http://eudml.org/doc/213681.

39 In-Jen Lin, Terry A. McKee, and Douglas B. West. The leafage of a chordal graph. Discuss.
Math. Graph Theory, 18(1):23–48, 1998. doi:10.7151/dmgt.1061.

40 George S. Lueker and Kellogg S. Booth. A linear time algorithm for deciding interval graph
isomorphism. J. ACM, 26(2):183–195, 1979. doi:10.1145/322123.322125.

41 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

42 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

43 Pranabendu Misra, Fahad Panolan, Ashutosh Rai, Saket Saurabh, and Roohani Sharma.
Quick separation in chordal and split graphs. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 70:1–70:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.70.

44 Charis Papadopoulos. Restricted vertex multicut on permutation graphs. Discret. Appl. Math.,
160(12):1791–1797, 2012. doi:10.1016/j.dam.2012.03.021.

45 Charis Papadopoulos and Spyridon Tzimas. Polynomial-time algorithms for the subset feedback
vertex set problem on interval graphs and permutation graphs. Discret. Appl. Math., 258:204–
221, 2019. doi:10.1016/j.dam.2018.11.017.

46 Charis Papadopoulos and Spyridon Tzimas. Computing a minimum subset feedback vertex set
on chordal graphs parameterized by leafage. In Cristina Bazgan and Henning Fernau, editors,
Combinatorial Algorithms - 33rd International Workshop, IWOCA 2022, Trier, Germany,
June 7-9, 2022, Proceedings, volume 13270 of Lecture Notes in Computer Science, pages
466–479. Springer, 2022. doi:10.1007/978-3-031-06678-8_34.

47 James Richard Walter. Representations of rigid cycle graphs. Wayne State University, 1972.
48 Kevin White, Martin Farber, and William R. Pulleyblank. Steiner trees, connected domination

and strongly chordal graphs. Networks, 15(1):109–124, 1985. doi:10.1002/net.3230150109.

A Proof of Lemma 7: Constructing Rest-Red-Blue-DomSet Instances

Let G be a chordal graph and let (T, M) be a tree representation of G. We define the
following functions.

Let fT (G) denote the number of branching nodes γ ∈ V (T) such that there exist both a
red vertex and a blue vertex whose models contain γ.
Let fr(G) denote the number of pairs of consecutive branching nodes α, β in T (that is,
no node on the unique path in T from α to β is a branching node) such that there is red
vertex whose model contains both α and β.
Similarly, let fb(G) denote the number of pairs of consecutive branching nodes α, β in T

such that there is blue vertex whose model contains both α and β.
We further define µ(G) := lf(G) + 2 · (fT (G) + fr(G) + fb(G)). Note that, by definition,
µ(G) ≥ lf(G). We design a polynomial-time branching algorithm whose measure µ decreases
in each branch. We first show that if µ(G) = lf(G) then (G, (R, B), k) is in fact an instance
of Rest-Red-Blue-DomSet and then show how the branching algorithm proceeds.

Assume therefore that µ(G) = lf(G). Then fT (G) = fr(G) = fb(G) = 0 by definition.
However, when fT (G) = 0, then, by definition, for every branching node γ ∈ V (T), all the
vertices containing γ in their model are either red or blue; and when fr(G) = fb(G) = 0

IPEC 2022

https://doi.org/10.1016/0890-5401(87)90028-9
https://doi.org/10.1137/S0895480199359624
http://eudml.org/doc/213681
https://doi.org/10.7151/dmgt.1061
https://doi.org/10.1145/322123.322125
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1137/110855247
https://doi.org/10.4230/LIPIcs.MFCS.2020.70
https://doi.org/10.1016/j.dam.2012.03.021
https://doi.org/10.1016/j.dam.2018.11.017
https://doi.org/10.1007/978-3-031-06678-8_34
https://doi.org/10.1002/net.3230150109

14:20 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

then, considering the fact that every model is a subtree in T , for every vertex in G, its model
contains at most one branching node in T . Therefore if µ(G) = lf(G), then (G, (R, B), k) is
also an instance of Rest-Red-Blue-DomSet.

Now assume that µ(G) > lf(G). Then fT (G) + fr(G) + fb(G) > 0. We consider the
following three exhaustive cases.

Case-I. fT (G) > 0. Let γ be a branching node in T such that there is both a red-vertex
and a blue-vertex whose models contain γ. Suppose that I is a Yes-instance of Red-Blue-
DomSet and let D be a solution. Consider first the case where D includes a red vertex
whose model contains γ. In this case, we return the instance I1 = (G1, (R1, B1), k) which is
obtained as follows.

Initialize V (G1) = V (G), R1 = R, B1 = B.
Let T1 be the tree obtained from T by adding a node δ and making it adjacent to γ only.
Note that V (T1) \ {δ} ⊆ V (T).
For every red vertex v ∈ V (G1) such that γ ∈ M(v), add δ to its model, i.e., M1(v) =
M(v) ∪ {δ}.
For every blue vertex v ∈ V (G1) such that γ ∈ M(v), delete v from V (G1).
Add a new blue vertex x to V (G1) and to B1 with M1(x) = {δ}.
For every (red or blue) vertex v ∈ V (G) such that γ ̸∈ M(v), define M1(v1) = M(v).

It is easy to verify that (T1, M1) is a tree representation of G1 and that T1 has exactly one
more leaf than T , i.e., lf(G1) ≤ lf(G) + 1. However, since we have deleted all the blue
vertices whose models contained γ, fT (G1) = fT (G) − 1. As the other parts of the measure
do not change, µ(G1) < µ(G).

In the second case where no vertex in D contains γ in its model, we return the instance
I2 = (G2, (R2, B), k) where G2, R2 are obtained from G, R, respectively, by deleting red
vertices whose model contains γ. It is easy to verify that µ(G2) < µ(G).

If I is a Yes-instance, then at least one of I1 or I2 is a Yes-instance as these two
branches are exhaustive. If I1 is a Yes-instance, then any optimum solution must include a
red γ-vertex because of the newly added vertex x. As R2 ⊆ R, if I2 is a Yes-instance, then
I is a Yes-instance. Hence, this branching step is correct.

Case-II. fT (G) = 0 and fr(G) > 0. Let α, β be two consecutive branching nodes in T

such that there is a red vertex whose model contains both α and β. Suppose that I is a
Yes-instance of Red-Blue-DomSet and let D be a solution. Consider the case where
D includes a red vertex whose model contains both α and β. In this case, we return the
instance I1 = (G1, (R1, B1), k) which is obtained as follows.

Initialize V (G1) = R1 = B1 = ∅.
Let T1 be the tree obtained from T by contracting the unique path Pαβ from α to β in T

and let γαβ be the node resulting from this contraction. Add a node δ to T1 and make it
adjacent to γαβ only. Note that V (T1) \ {γαβ , δ} ⊆ V (T).
For every red vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) ̸= ∅, add a red vertex v1 to
V (G1) (and to R1) with M1(v1) = (M(v) \ V (Pαβ)) ∪ {γαβ , δ}.
Add a new blue vertex x to V (G1) with M1(x) = {δ}.
For every (red or blue) vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) = ∅, add v1 to G1
(and to, respectively, either R1 or B1) with M1(v1) = M(v).

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:21

Note that for every blue vertex v ∈ V (G) such that M(G) ∩ V (Pαβ) ̸= ∅, there is no
corresponding blue vertex in G1. It is easy to verify that (T1, M1) is a tree representation of
G1 and that T1 has one more leaf than T which implies lf(G1) ≤ lf(G) + 1. Since we have
contracted the path Pαβ to obtain the node γαβ , fr(G1) < fr(G). As the other parts of the
measure do not change, µ(G1) < µ(G).

In the second case where no vertex in D contains both α and β in its model, we return an
instance I2 = (G2, (R2, B), k) where G2, R2 are obtained from G, R, respectively, by deleting
red vertices whose model contains both α and β. It is easy to verify that µ(G2) < µ(G). We
argue as in the previous case for the correctness of this branching steps.

Case-III. fT (G) = 0 and fb(G) > 0. Let α, β be two consecutive branching nodes in T such
that there is a blue vertex whose model contains both α and β. Note that since fT (G) = 0,
for every red vertex v ∈ V (G) such that M(v)∩V (Pαβ) ̸= ∅, in fact M(v) ⊆ V (Pαβ)\{α, β}.
Suppose that I is a Yes-instance of Red-Blue-DomSet and let D be a solution. Consider
first the case where D includes a red vertex whose model is in V (Pαβ) \ {α, β}. In this case,
we return the instance I1 = (G1, (R, B1), k) where G1, B1 are obtained from G and B as
follows.

Delete all the blue vertices whose model contains both α and β.
Add a blue vertex x to V (G1) (and to B1) with M(x) = V (Pαβ) \ {α, β}.

It is easy to verify that (T, M) is a tree representation of G1 and fb(G1) < fb(G). As the
other parts of the measure do not change, µ(G1) < µ(G).

In the second case where there is no vertex in D whose model is in V (Pαβ) \ {α, β}, we
consider the following two subcases. If there is a blue vertex v such that M(v) ⊆ V (Pαβ),
then we return a trivial No-instance. Otherwise, we return the instance I2 = (G2, (R2, B2), k)
which is constructed as follows.

Initialize V (G2) = R2 = B2 = ∅.
Let T2 be the tree obtained from T by contracting the path Pαβ from α to β in T and
let γαβ be the node resulting from this contraction. Note that V (T2) \ {γαβ} ⊆ V (T).
For every (red or blue) vertex v ∈ G such that M(v) ∩ V (Pαβ) = ∅, add a vertex v2 to
G2 (and to, respectively, either R2 or B2) with M2(v2) = M(v).
For every blue vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) ̸= ∅, add a blue vertex v2 to
V (G2) (and to B2) with M2(v2) = (M(v2) \ V (Pαβ)) ∪ {γαβ}.

Note that for any red vertex v ∈ V (G) such that M(v) ⊆ V (Pαβ) \ {α, β}, there is no
corresponding red vertex in G2. It is easy to verify that (T2, M2) is a tree representation of
G2. Furthermore, the number of leaves of T2 is the same as T and fb(G2) < fb(G). As the
other parts in the measure do not change, µ(G2) < µ(G).

The correctness of this branching step follows from the same arguments as in the previous
cases and the fact that in the second case, since there is no red vertex whose model intersects
V (Pαβ), it is safe to contract that path.

Finishing the Proof. The correctness of the overall algorithm follows from the correctness
of branching steps in the above three cases. To bound its running time and the number
of instances it outputs, note that fT (G) + fr(G) + fb(G) ≤ 3 · lf(G) as these functions
either count the number of branching nodes or the unique paths containing exactly two
(consecutive) branching nodes. ◀

IPEC 2022

14:22 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

B Correctness of the Algorithm for Multiway-Cut

▶ Lemma 18. For any i ∈ I, if Hi has an (s, r̃)-cut Y such that wti(Y) ≤ k − costi, then
G|Tα

has a P|Tα
-multiway-cut of size at most k.

Proof. Assume that there exists i ∈ I such that Hi has an (s, r̃)-cut Y where wti(Y) ≤
k − costi. For every j ∈ [q] \ {i}, let Aj be the set of tree arcs on the path −→ρj belonging to
Y (recall that −→ρj is the path in Hi from ηj to r̃ consisting only of tree arcs). Note that since
Y is an (s, r̃)-cut, Aj ̸= ∅ for every j ∈ [q] \ {i}.

▷ Claim 19. For every terminal j ∈ [q] \ {i}, there exists an arc (x, y) ∈ Aj such that for
every z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}), the sink arc with tail z belongs to Y .

Proof. Suppose for a contradiction that this does not hold for some index j ∈ [q]\{i}, that is,
for every arc (x, y) ∈ Aj , there exists z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}) such that the sink arc with

tail z does not belong to Y . Let (x1, y1), . . . , (xa, ya) be the arcs of Aj ordered according to
their order of appearance when traversing the path −→ρj . We show that, in this case, there is a
path from s to r̃ in H − Y . For every b ∈ [a], denote by Zb ⊆ N+

Hi
(xb) \ (N−

Hi
(xb) ∪ {yb}) the

set of vertices z such that the sink arc with tail z does not belong to Y . Let b1, . . . , bw ∈ [a]
be the longest sequence defined as follows:

b1 ∈ [a] is the largest index such that Z1 ∩ Zb1 ̸= ∅ and
for every l > 1, bl ∈ [a] is the largest index such that Zbl−1+1 ∩ Zbl

̸= ∅.
For every l ∈ [w], consider a vertex zbl

∈ Zjl
and let hbl

∈ N+
Hi

(zbl
) be the head of the sink

arc with tail zbl
. Then for every l ∈ [w − 1], hbl

lies on the path −→ρj [ybl
, xbl+1]: indeed, since

zbl
/∈ Zbl+1 by the choice of bl, either zbl

/∈ N+
Hi

(xbl+1) or zbl
∈ N+

Hi
(xbl+1) ∩ N−

H (xbl+1); but
zbl

∈ N+
Hi

(xbl
) \ N−

Hi
(xbl

) by construction, and so, hbl
necessarily lies on −→ρj [ybl

, xbl+1].
Now observe that, by maximality of the sequence, bw = a: indeed, if bw < a then the

sequence could be extended as Zbw+1 ̸= ∅ by assumption. Since zbw
/∈ N−

Hi
(xbw

), this implies,
in particular, that hbw lies on the path −→ρj [ybw , r̃]. It follows that

s−→ρj [ηj , x1]zb1
−→ρj [hb1 , xb1+1]zb2 . . . zbl

−→ρj [hbl
, xbl+1]zbl+1 . . . −→ρj [hbw−1 , xbw−1+1]zbw

L[hbw
, r̃]

is a path from s to r̃ in H − Y , a contradiction which proves our claim. ◁

For every j ∈ [q] \ {i}, let ej = (xj , yj) ∈ Aj be the arc closest to r̃ such that for every
z ∈ N+

Hi
(xj) \ (N−

Hi
(xj) ∪ {yj}), the sink arc with tail z belongs to Y (note that we may

have ej = ej′ for two distinct j, j′ ∈ [q] \ {i}). Denote by E = {ej | j ∈ [q] \ {i}} ∪ {e∗}
where e∗ = (ηi, parent(ηi)). For every e = (x, y) ∈ E, let P̃e ⊆ P̃i be the set of terminals in
P̃i which are also terminals in the instance restricted to Tx. Note that {Pe | e ∈ E \ {e∗}}
is a partition of P̃i: indeed, by construction, every p ∈ P̃i belongs to at least one such set
and if there exist e, e′ ∈ E \ {e∗} such that P̃e ∩ P̃e′ ̸= ∅, then for any j ∈ [q] \ {i} such that
pj ∈ Pe ∩ Pe′ , e, e′ ∈ Aj ; in particular, both e and e′ lie on the path −→ρj , a contradiction to
the choice of the arc in Aj .

Now for every e = (x, y) ∈ E, let Se be a minimum P|Tx
-multiway-cut in G|Tx

and denote
by Ne = N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}). We define

S = Se∗ ∪
⋃

e∈E\{e∗}

Se ∪ {γ−1(z) | z ∈ Ne}.

▷ Claim 20. S is a P|Tα
-multiway-cut in G|Tα

.

E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale 14:23

Proof. Since for every e = (x, y) ∈ E, Se is a P|Tx
-multiway-cut in G|Tx

, it is in fact enough
to show that for every e, e′ ∈ E, p ∈ P̃e and p′ ∈ P̃e′ , there is no path from p to p′ in
G|Tα

− S.
Consider therefore j, j′ ∈ [q]\{i} such that pj ∈ P̃e and pj′ ∈ P̃e′ for two distinct e, e′ ∈ E.

Since, as shown above, {P̃f | f ∈ E \ {e∗}} is a partition of P̃i, pj′ /∈ P̃e and pj /∈ P̃e′ ; in
particular, e′ does not lie on the path −→ρj and e does not lie on the path −→ρj′ . It follows that
any path in G|Tα

from pj to pj′ contains at least one vertex x whose model contains the edge
corresponding to e; but then, γ(x) ∈ Ne and so, x ∈ S by construction. Thus, there is no
path from pj to pj′ in G|Tα

− S. ◁

Finally, note that, by construction,

|S| = |Se∗ | +
∑

e∈E\{e∗}

|Se| +

∣∣∣∣∣∣
⋃

e∈E\{e∗}

{γ−1(z) | z ∈ Ne}

∣∣∣∣∣∣
= |Se∗ | +

∑
e∈E\{e∗}

wti(e) +
∑

z∈
⋃

e∈E\{e∗}
Ne

wti((z, topM(γ−1(z))))

≤ costi + wti(Y) ≤ k

which concludes the proof. ◀

▶ Lemma 21. If G|Tα
has a P|Tα

-multiway-cut X of size at most k, then there exists i ∈ I

such that Hi has an (s, r̃)-cut Y where wti(Y) ≤ k − costi.

Proof. Recall that for every j ∈ [q], ρj is the unique (ηj , r̃)-path in T̃ . To prove the lemma,
we first show the following.

▷ Claim 22. If there exists i ∈ [q] such that G|Tα
has a P|Tα

-multiway-cut X of size at most
k where
(1) X does not destroy any edge of ρi and
(2) for every j ∈ [q] \ {i}, X destroys an edge of ρj ,
then Hi has an (s, r̃)-cut Y such that wti(Y) ≤ k − costi.

Proof. Assume that such an index i ∈ [q] exists and let X be a P|Tα
-multiway-cut X of size

at most k satisfying item (1) and (2). Note that since X does not destroy any edge of ρi,
P̃r = ∅ for, otherwise, pi and the root terminal would be in the same connected component of
G|Tα

−X thereby contradicting the fact that X is a P|Tα
-multiway-cut. For every j ∈ [q]\{i},

let ej ∈ E(T̃) be the closest edge to ηj on ρj such that ver(ej) ⊆ X (note that the edges
e1, . . . , eq are not necessarily pairwise distinct). Denote by E = {ej | j ∈ [q] \ {i}}. We
construct an (s, r̃)-cut Y in Hi as follows: Y contains the tree arcs of Hi corresponding to
the edges in E and for each v ∈ X such that M(v) contains at least one edge of E (that
is, v ∈ ver(e) for some edge e ∈ E), we include in Y the sink arc (γ(v), topM(v)) of E(Hi).
Let us show that Y is indeed an (s, r̃)-cut in Hi.

For every j ∈ [q] \ {i}, let V j
− ⊆ V (T̃) (V j

+ ⊆ V (T̃), respectively) be the set of nodes of
the subpath of ρj from ηj to the tail of ej (the head of ej to r̃, respectively). We contend
that for every j ∈ [q] \ {i}, there is no (V j

−, V j
+)-path in Hi − Y . Note that if true, this would

prove that Y is indeed an (s, r̃)-cut in Hi. For the sake of contradiction, suppose that, for
some j ∈ [q] \{i}, there is a path L in Hi −Y from a vertex x ∈ V j

− to a vertex y ∈ V j
+. Since

the tree arc in Hi corresponding ej belongs to Y , there must exist a vertex z ∈ V (L) such
that N−

Hi
(z) ∩ V j

− ∩ V (L) ̸= ∅ and N+
Hi

(z) ∩ V j
+ ∩ V (L) ̸= ∅; in particular, the sink arc e with

IPEC 2022

14:24 Domination and Cut Problems on Chordal Graphs with Bounded Leafage

tail z must belong to L. By construction of Hi, it must then be that M(γ−1(z)) contains
the edge ej , that is, γ−1(z) ∈ ver(ej); but then, γ−1(z) ∈ X and so, e ∈ Y by construction,
a contradiction which proves our claim.

Let us finally show that wti(Y) ≤ k − costi. To this end, for every e ∈ E, let Xe ⊆ X be
the restriction of X to Tte

where te is the endpoint of e the furthest from r̃ (note that for any
two distinct e, e′ ∈ E, Xe ∩ Xe′ = ∅). Then, for every e ∈ E, Xe is a P|Tte

-multiway-cut in
G|Tte

and so, wti(e) ≤ |Xe|. Similarly, the restriction Xi of X to Tηi
is a P|Tηi

-multiway-cut
in G|Tηi

and so, |Xi| ≥ costi (note that, by construction, Xi ∩ Xe = ∅ for every e ∈ E).
Letting X ′ =

⋃
e∈E ver(e), it then follows from the definition of Y that

wti(Y) = |X ′| +
∑
e∈E

wti(e) ≤ |X ′| +
∑
e∈E

|Xe| ≤ |X| − |Xi| ≤ k − costi

as X ′ ∩ Xi = ∅ and for every e ∈ E, X ′ ∩ Xe = ∅. ◁

Using similar arguments, we can also prove the following.

▷ Claim 23. If G|Tα
has a P|Tα

-multiway-cut X of size at most k such that for every i ∈ [q],
X destroys an edge of ρi, then H0 has an (s, r̃)-cut Y such that wti(Y) ≤ k.

To conclude the proof of Lemma 21, let us show that for any P|Tα
-multiway-cut S in

G|Tα
, S destroys an edge of every root-to-leaf path of T̃ , except for at most one when P̃r = ∅.

Note that if the claim is true, the lemma would then follow from Claims 22 and 23.
Let S be a P|Tα

-multiway-cut in G|Tα
. Observe first that if P̃r ̸= ∅ then for every i ∈ [q], S

must destroy an edge of ρi for, otherwise, pi and the root terminal are in the same connected
component of G|Tα

−S, thereby contradicting the fact that S is a P|Tα
-multiway-cut. Assume

therefore that P̃r = ∅ and suppose, for the sake of contradiction, that there exist two distinct
indices i, j ∈ [q] such that S destroys no edge of ρi and no edge of ρj . Then for every
edge e of ρi ∪ ρj , ver(e) \ S ̸= ∅: for each such edge e, let αe ∈ ver(e) \ S. It is now
not difficult to see that there is a path in G|Tα

− S from pi to pj using only vertices from
{αe | e is an edge of ρi ∪ ρj}, a contradiction to the fact that S be a P|Tα

-multiway-cut in
G|Tα

. ◀

Slim Tree-Cut Width
Robert Ganian !

Algorithms and Complexity Group, TU Wien, Austria

Viktoriia Korchemna !

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Tree-cut width is a parameter that has been introduced as an attempt to obtain an analogue of
treewidth for edge cuts. Unfortunately, in spite of its desirable structural properties, it turned out
that tree-cut width falls short as an edge-cut based alternative to treewidth in algorithmic aspects.
This has led to the very recent introduction of a simple edge-based parameter called edge-cut width
[WG 2022], which has precisely the algorithmic applications one would expect from an analogue of
treewidth for edge cuts, but does not have the desired structural properties.

In this paper, we study a variant of tree-cut width obtained by changing the threshold for
so-called thin nodes in tree-cut decompositions from 2 to 1. We show that this “slim tree-cut
width” satisfies all the requirements of an edge-cut based analogue of treewidth, both structural and
algorithmic, while being less restrictive than edge-cut width. Our results also include an alternative
characterization of slim tree-cut width via an easy-to-use spanning-tree decomposition akin to
the one used for edge-cut width, a characterization of slim tree-cut width in terms of forbidden
immersions as well as an approximation algorithm for computing the parameter.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases tree-cut width, structural parameters, graph immersions

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.15

Related Version Predecessor : https://arxiv.org/abs/2206.15091

Funding Robert Ganian and Viktoriia Korchemna acknowledge support by the Austrian Science
Fund (FWF, project Y1329).

1 Introduction

Understanding which structural properties of inputs allow us to overcome the inherent
intractability of problems of interest is a fundamental research area in computer science. In the
context of parameterized complexity, one typically approaches this by asking which structural
parameters of the input (or its graph representation) give rise to a fixed-parameter algorithm
for a targeted problem. Treewidth [35] is the most prominent example of such a structural
parameter, and can be viewed as a guarantee that a graph is iteratively decomposable along
small vertex separators. Many problems are known to be fixed-parameter tractable when
parameterized by treewidth – and for those that are not, there is a well-studied hierarchy of
more restrictive1 parameters based on vertex separators or vertex deletion that can sometimes
be used instead (see, e.g., Figure 1 in [3]). Examples of such parameters include the vertex
cover number [11,14], the feedback vertex number [2, 27] and treedepth [19,26,31,32].

However, such vertex based parameters seem ill suited for handling some problems.
Consider, for instance, the classical Edge Disjoint Paths problem (EDP): unlike Vertex
Disjoint Paths, EDP remains NP-hard not only on graphs of bounded treewidth, but

1 We view parameter α as being more restrictive than parameter β if every graph class where α is bounded
also has bounded β, but the opposite does not hold.

© Robert Ganian and Viktoriia Korchemna;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rganian@ac.tuwien.ac.at
https://orcid.org/0000-0002-7762-8045
mailto:vkorchemna@ac.tuwien.ac.at
https://orcid.org/0000-0001-8038-905X
https://doi.org/10.4230/LIPIcs.IPEC.2022.15
https://arxiv.org/abs/2206.15091
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Slim Tree-Cut Width

even on graphs with a vertex cover number of at most 3 [13]. While this effectively rules
out the use of all parameters based on vertex separators, there is an intuitive expectation
that EDP should be fixed-parameter tractable w.r.t. parameters that can guarantee an
iterative decomposition of the graph along small edge cuts. Indeed, EDP is known to be
fixed-parameter tractable w.r.t. two basic parameterizations which provide such a guarantee:
the feedback edge number [20] and treewidth plus maximum degree [21].

An ideal solution for handling such problems on more general inputs would be to use
an alternative to treewidth that would be designed around edge cuts rather than vertex
separators, one which would provide a unified justification for tractability w.r.t. the two basic
“edge-cut restricting” parameterizations mentioned above. A candidate for such a parameter
was proposed by Wollan, who defined tree-cut width along with tree-cut decompositions and
described these as a variation of tree decompositions based on edge cuts instead of vertex
separators [37]. But while it is true that “tree-cut decompositions share many of the natural
properties of tree decompositions” [30], from the perspective of algorithmic design tree-cut
width seems to behave differently than an edge-cut based alternative to treewidth. Indeed,
not only does it fall short of yielding a fixed-parameter algorithm for EDP [20], it also fails to
provide such algorithms for other problems one would expect to be fixed-parameter tractable
w.r.t. an edge-cut based analogue to treewidth. In fact, out of twelve such problems where
a tree-cut width parameterization has been pursued so far, only four are fixed-parameter
tractable [16,17] while eight turn out to be W[1]-hard [5,16,18,20,24] (see the Related Work
at the end of the Introduction for details).

Very recently, Brand, Ceylan, Ganian, Hatschka and Korchemna [4] introduced a para-
meter called edge-cut width which aimed at filling this gap in our understanding of edge-cut
based graph parameters. On the algorithmic side, edge-cut width has precisely the proper-
ties one could hope to see in an edge-based analogue to treewidth: not only does it yield
fixed-parameter algorithms for all twelve “candidate” problems [4], but it is also based on a
very simple type of decomposition that is much easier to use than tree-cut decompositions.
That being said, already the authors of that paper noted that the structural properties of
edge-cut width are far from ideal – for instance, it is the only algorithmically used parameter
we are aware of that is not closed under vertex deletion. Moreover, while edge-cut width is
less restrictive than the feedback edge number, unlike tree-cut width it is incomparable to
treewidth plus maximum degree (even in an asymptotic sense). Because of this, it cannot act
as a common generalization that would capture both of these basic approaches of enforcing
decomposability along small edge cuts.

Contribution. In this paper, we identify a graph parameter which combines the advant-
ages of tree-cut width and edge-cut width while avoiding all of the shortcomings listed
above. However, before we introduce it, it will be useful to establish at least some intuitive
understanding of tree-cut width2.

A graph G has tree-cut width at most k if it admits a tree-cut decomposition T of width
k, whereas T is a rooted tree and its nodes act as bags that form a partitioning of V (G). A
non-root node t of T defines an edge cut between all vertices in the subtree rooted at t, and
the rest of the graph. The definition of tree-cut width then restricts, for each node t, the
number of its children defining an edge cut of size greater than 2. The constant “2” here
arises from the structural properties Wollan aimed for when defining tree-cut width [37];
however, let us now pose the following question: How would the parameter change if we used
a different constant c here instead?

2 Formal definitions are provided in Section 2.

R. Ganian and V. Korchemna 15:3

Figure 1 Hierarchy of graph parameters based on edge cuts. Here ecw denotes edge-cut width
and degtw denotes treewidth plus maximum degree. tcwi denotes the parameter obtained from
tree-cut width by setting the constant c described above to i. An arrow from p to q represents the
fact that p is more restrictive than q, while asymptotic equivalence is depicted by ≡.

On one hand, it is not difficult to observe that values of c > 2 would immediately lead
to parameters without the properties we are aiming for, since these would be constant for,
e.g., all 3-regular graphs. On the other hand, we show that for c = 0, one obtains an
asymptotically equivalent characterization of one of the previously mentioned basic edge-cut
restricting parameterizations: treewidth plus maximum degree. Our parameter of interest is
then the outcome of setting c = 1; since this can be viewed as a variant of tree-cut width
where all but a few children of each node need to have “even slimmer” edge-cuts, we refer to
it as slim tree-cut width (stcw).

On the structural side, we show that stcw inherits the desirable properties of its “non-slim”
namesake. In particular, unlike edge-cut width [4], stcw is closed under edge sums, vertex
and edge deletion, as well as under the graph immersion operation. Similarly as Wollan
did for tree-cut width [37], we also provide a set of forbidden immersions asymptotically
characterizing stcw. Furthermore, we show that stcw is a common generalization of edge-cut
width (and hence the feedback edge number), and treewidth plus maximum degree (see
Figure 1).

Next, as one of our arguably most surprising results, we show that stcw is asymptotically
equivalent to a slight generalization of edge-cut width: instead of measuring the width over
the input graph G, we ask for the minimum edge-cut width of any supergraph of G. The
transformation between these parameters is constructive and has interesting algorithmic
implications. First of all, when designing algorithms it allows us to avoid the use of often
cumbersome tree-cut decompositions, and instead opt for the simpler decompositions used
for edge-cut width – which are nothing else than spanning trees (in this case of a supergraph).
Second, all of the fixed-parameter algorithms recently designed for edge-cut width [4] rely on
a dynamic programming traversal of the spanning tree, and can be straightforwardly adapted
to work on spanning trees of supergraphs instead. This means that one can essentially
reuse the same proofs to establish fixed-parameter tractability of all considered “candidate”
problems w.r.t. stcw.

Naturally, a crucial prerequisite for algorithmically applying stcw is that we can actually
compute it, or more precisely compute a suitable decomposition for graphs of small stcw.
While the problem of computing an optimal decomposition remains open even for tree-cut
width, a fixed-parameter approximation algorithm was obtained by Kim, Oum, Paul, Sau and
Thilikos [28] and this suffices for the purposes of establishing fixed-parameter tractability. We
obtain a similar outcome here and also provide a fixed-parameter approximation algorithm
for stcw, albeit with a worse approximation factor than for tree-cut width.

IPEC 2022

15:4 Slim Tree-Cut Width

Table 1 The twelve candidate problems and their complexity w.r.t. edge-cut based parameters,
where degtw denotes the maximum degree plus treewidth. Slim tree-cut width provides a unified
explanation for why these problems are FPT w.r.t. both edge-cut width and degtw, and lifts these
results to more general inputs.

Problem tree-cut width edge-cut width degtw stcw
Capacitated Vertex Cover FPT [16] FPT FPT FPT
Capacitated Dominating Set FPT [16] FPT FPT FPT
Imbalance FPT [16] FPT FPT FPT
Bounded Degree Deletion FPT [17] FPT FPT FPT
Edge Disjoint Paths W[1]-hard [20] FPT [4] FPT [21] FPT
List Coloring W[1]-hard [16] FPT [4] FPT [16] FPT
Precoloring Extension W[1]-hard [16] FPT [4] FPT [16] FPT
Boolean Constraint Satisfaction W[1]-hard [16] FPT [4] FPT [36] FPT
Bayesian Network Structure Learning W[1]-hard [18] FPT [4, 18] FPT [33] FPT
Polytree Learning W[1]-hard [18] FPT [4, 18] FPT [18] FPT
Min. Changeover Cost Arborescence W[1]-hard [24] FPT [4] FPT [25] FPT
MSRTIL3 W[1]-hard [5] FPT [4] FPT [1, 5] FPT

Related Work. Tree-cut width parameterizations were typically considered for problems
which are not fixed-parameter tractable (FPT) w.r.t. treewidth, but are FPT w.r.t. feedback
edge number and also FPT w.r.t. treewidth plus maximum degree. The twelve candidate
problems where tree-cut width parameterizations have been considered are shown in Table 1.

The structural properties of tree-cut width have also been studied in a number of recent
papers [22,23]. Last but not least, we note that a preprint exploring a different parameter
that is aimed at providing an edge-based alternative to treewidth was recently authored by
Magne, Paul, Sharma and Thilikos [29]; the parameter is based on different ideas and is
incomparable to both tree-cut width and slim tree-cut width.

2 Preliminaries

We use standard terminology for graph theory [9] and assume basic familiarity with the
parameterized complexity paradigm including, in particular, the notions of fixed-parameter
tractability and W[1]-hardness [8,10]. Let N denote the set of natural numbers including zero.
We use [i] to denote the set {0, 1, . . . , i}.

The (open) neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) | xy ∈ E(G)}
and is denoted by NG(x). For a vertex subset X, the neighborhood of X is defined as⋃
x∈X NG(x) \X and denoted by NG(X); we drop the subscript if the graph is clear from

the context. If H is a subgraph of G, we denote it by H ⊆ G. Contracting an edge
{a, b} is the operation of replacing vertices a, b by a new vertex whose neighborhood is
(N(a) ∪N(b)) \ {a, b}. For a vertex set A (or edge set B), we use G−A (G−B) to denote
the graph obtained from G by deleting all vertices in A (edges in B), and we use G[A] to
denote the subgraph induced on A, i.e., G− (V (G) \A).

3 Maximum Stable Roommates with Ties and Incomplete Lists. For completeness, we note that the
authors who showed W[1]-hardness w.r.t. tree-cut width also identified two additional restrictions which,
when combined with tree-cut width, suffice for fixed-parameter tractability [5].

R. Ganian and V. Korchemna 15:5

Let G be a graph and let x, y and z be three distinct vertices of G such that (x, y), (y, z) ∈
E(G). To lift the pair of edges (x, y), (y, z) means to delete the edges (x, y) and (y, z) from
G and add (if it doesn’t exist yet) a new edge (x, z). We say that G contains H as a weak
immersion (denoted H ≤I G) if and only if H can be obtained from G by a sequence of edge
deletion, vertex deletion, and lifting operations.

For a natural number k, we say that a graph G is a k-edge sum of vertex-disjoint
graphs G1 and G2 if there exist vertices vi ∈ V (Gi) of degree k for i = 1, 2 and a bijection
π : NG1(v1) → NG2(v2) such that G is obtained from (G1 − {v1}) ∪ (G2 − {v2}) by adding
an edge (v, π(v)) for every v ∈ NG1(v1). In this case we write G = G1 ⊕k G2. Observe that
the same pair of graphs may produce different k-edge sums.

Given two graph parameters α, β : G 7→ N, we say that α dominates β if there exists
a function p such that for each graph G, α(G) ≤ p(β(G)). If α dominates β but β does
not dominate α, we often say that β is more restrictive than α; as an example, treewidth
dominates the vertex cover number. Two parameters that dominate each other are called
asymptotically equivalent.

Tree-cut Width. The notion of tree-cut decompositions was introduced by Wollan [37], see
also subsequent work by Marx and Wollan [30]. A family of subsets X1, . . . , Xk of X is a
near-partition of X if they are pairwise disjoint and

⋃k
i=1 Xi = X, allowing the possibility of

Xi = ∅.

▶ Definition 1. A tree-cut decomposition of G is a pair (T,X) which consists of a rooted
tree T and a near-partition X = {Xt ⊆ V (G) | t ∈ V (T)} of V (G). A set in the family X is
called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident to t
on the path to r. Let Tu and Tt be the two connected components in T − e(t) which contain
u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃
q∈Tt

Xq) is a near-partition of V (G), and we
use Et to denote the set of edges with one endpoint in each part. We define the adhesion of
t (adh(t)) as |Et|; we explicitly set adh(r) = 0 and E(r) = ∅. The adhesion of (T,X) is then
adh(T,X) = maxt∈V (T) adh(t).

The torso of a tree-cut decomposition (T,X) at a node t, written as Ht, is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T,X) at t is G.
Otherwise, let T1, . . . , Tℓ be the connected components of T − t. For each i = 1, . . . , ℓ, the
vertex set Zi ⊆ V (G) is defined as the set

⋃
b∈V (Ti) Xb. The torso Ht at t is obtained from

G by consolidating each vertex set Zi into a single vertex zi (this is also called shrinking in
the literature). Here, the operation of consolidating a vertex set Z into z is to substitute Z
by z in G, and for each edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new
graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v of degree
at most 2 consists of deleting v, and when the degree is two, adding an edge between the
neighbors of v. Given a connected graph G and X ⊆ V (G), let the 3-center of (G,X) be the
unique graph obtained from G by exhaustively suppressing vertices in V (G) \X of degree at
most two. Finally, for a node t of T , we denote by H̃t the 3-center of (Ht, Xt), where Ht is
the torso of (T,X) at t. Let the torso-size tor(t) denote |H̃t|.

▶ Definition 2. The width of a tree-cut decomposition (T,X) of G is maxt∈V (T){adh(t),
tor(t)}. The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X) over
all tree-cut decompositions (T,X) of G.

IPEC 2022

15:6 Slim Tree-Cut Width

Figure 2 Example of a graph G with a spanning tree T (thick black) such that ecw(G) =
ecw(G, T) = 3. The feedback edge number of G can be made arbitrarily large in this fashion.

Without loss of generality, we shall assume that Xr = ∅. We conclude this subsection with
some notation related to tree-cut decompositions. Given a tree node t, let Tt be the subtree
of T rooted at t. Let Yt =

⋃
b∈V (Tt) Xb, and let Gt denote the induced subgraph G[Yt]. A

node t ̸= r in a rooted tree-cut decomposition is thin if adh(t) ≤ 2 and bold otherwise.
A tree-cut decomposition (T,X) is nice if it satisfies the following condition for every

thin node t ∈ V (T): N(Yt) ∩ (
⋃
b is a sibling of t Yb) = ∅. The intuition behind nice tree-cut

decompositions is that we restrict the neighborhood of thin nodes in a way which facilitates
dynamic programming. Every tree-cut decomposition of width k can be transformed into a
nice tree-cut decomposition of the same width in cubic time [16]. Moreover, the resulting nice
decomposition has the following property. For a node t, let Bt = {b is a child of t | |N(Yb)| ≤
2 ∧ N(Yb) ⊆ Xt} denote the set of thin children of t whose neighborhood is a subset of
Xt, and let At = {a is a child of t | a ̸∈ Bt} be the set of all other children of t. Then
|At| ≤ 2k + 1 for every node t [16].

We refer to previous work [16,28,30,37] for a detailed comparison of tree-cut width to
other parameters. Here, we mention only that tree-cut width is dominated by treewidth and
dominates treewidth plus maximum degree, which we denote degtw(G). It also dominates
the feedback edge number (the size of a minimum feedback edge set), denoted fen(G).

▶ Lemma 3 ([16, 30, 37]). For every graph G, tw(G) ≤ 2 tcw(G)2 + 3 tcw(G) and tcw(G) ≤
fen(G) + 1 and tcw(G) ≤ 4 degtw(G)2.

Edge-Cut Width. The notion of edge-cut width was introduced by Brand at al. [4]. For a
graph G and a maximal spanning forest T of G, let the local feedback edge set at v ∈ V be

EG,Tloc (v) = {uw ∈ E(G) \ E(T) | the unique path between u and w in T contains v}.

▶ Definition 4. The edge-cut width of the pair (G,T) is ecw(G,T) = 1 + maxv∈V |EG,Tloc (v)|,
and the edge-cut width of G (denoted ecw(G)) is the smallest edge-cut width among all
possible maximal spanning forests T of G.

▶ Proposition 5 ([4]). For every graph G, tcw(G) ≤ ecw(G) ≤ fen(G) + 1.

In fact, it was shown in [4] that the gaps in both inequalities can be arbitrary large, see
Figure 2 for a simple example of the second one.

Edge-cut width is not closed under vertex or edge deletions and is incomparable to
degtw [4]. However, the fact that its decomposition is simply a spanning tree makes it easier
to work with in dynamic programming applications than, e.g., tree-cut decompositions [4].

3 Refined Measures for Tree-Cut Decompositions

3.1 Definitions and Comparison
Let us now define our parameter of interest, obtained by altering the threshold for when
a vertex is suppressed (dissolved) in the definition of tree-cut width. Formally, let (T,X)
be some tree-cut decomposition of G. Given a connected graph Q and X ⊆ V (Q), let the

R. Ganian and V. Korchemna 15:7

2-center of (Q,X) be the unique graph obtained from Q by exhaustively deleting vertices in
V (Q) \X of degree at most one. For a node t of T , we denote by H̄2

t the 2-center of (Ht, Xt),
where Ht is the torso of (T,X) at t. Let us denote |H̄2

t | by tor2(t).

▶ Definition 6. The slim width of a tree-cut decomposition (T,X) of a graph G is
stcw(T,X) = maxt∈V (T){adh(t), tor2(t)}. The slim tree-cut width of G, or stcw(G) in
short, is the minimum slim width of (T,X) over all tree-cut decompositions (T,X) of G.

Observe that the difference in definitions of tcw(G) and stcw(G) is whether we dissolve the
vertices of degree at most two or at most one in the torso in each node. At this point, it
would be reasonable to ask what happens if we dissolve only isolated vertices (i.e., vertices of
degree 0) from the torso. Naturally extending the notions of 2- and 3-center for a connected
graph Q and X ⊆ V (Q), we define the 1-center of (Q,X) as the graph obtained from Q by
deleting isolated vertices in V (Q) \X. For a node t of T , we denote by H̄1

t the 1-center of
(Ht, Xt), where Ht is the torso of (T,X) at t. Let us denote |H̄1

t | by tor1(t).

▶ Definition 7. The 0-width of a tree-cut decomposition (T,X) of G is maxt∈V (T){adh(t),
tor1(t)}. The 0-tree-cut width of G, or tcw0(G) in short, is the minimum 0-width of (T,X)
over all tree-cut decompositions (T,X) of G.

It follows from the definitions that for any tree-cut decomposition (T,X) of G, for each node
t of T , tor(t) ≤ tor2(t) ≤ tor1(t). In particular, the width of (T,X) is upper-bounded by its
slim width, while the latter does not exceed the 0-width of (T,X).

▶ Corollary 8. For any graph G, tcw(G) ≤ stcw(G) ≤ tcw0(G).

The gaps in these inequalites can be arbitrarily large – and, more strongly, tcw0 is a more
restrictive parameter than stcw, which is in turn more restrictive than tcw. Indeed, for the
comparison of tcw0 and stcw consider the class of stars which have slim tree-cut width 1.
Let Sr denote the star with r leaves (i.e., the complete bipartite graph K1,r).

▶ Lemma 9. For every positive integer r ≥ 1, tcw0(Sr2) ≥ r.

Proof. Let (T,X) be a tree-cut decomposition of Sr2 of 0-width k where the bags of leaves
are non-empty. Let t be the node of T such that Xt contains the vertex of degree r2. Observe
that t has at most tor1(t) − |Xt| ≤ k − |Xt| children. For every child t′ of t, Yt′ contains
at most adh(t′) ≤ k vertices of Sr2 . In total, Yt contains at most |Xt| + k · (k − |Xt|) ≤ k2

vertices of Sr2 . Together with at most adh(t) ≤ k vertices outside of Yt, Sr2 has at most
k · (k + 1) vertices and hence k ≥ r. ◀

To show the gap between stcw and tcw, let us denote by Wr the graph on 2r + 1 vertices
consisting of r triangles sharing one vertex; here we call such graphs windmills, and refer to
Figure 3 later for an illustration. The class of windmills has tree-cut width 2 but, as the
following lemma shows, unbounded slim tree-cut width.

▶ Lemma 10. For every positive integer r ≥ 1, stcw(Wr2) ≥ r.

Proof. The case r = 1 is straightforward. For r ≥ 2, assume, to the contrary, that there
exists a tree-cut decomposition (T,X) of Wr2 of slim width at most r − 1. Let t be the node
of T such that Xt contains the vertex of degree 2r2. Without loss of generality, we assume
that all the leaves of T have non-empty bags. Then the adhesion of any child t′ of t is at
least two, as Yt′ contains some vertex v of Wr2 and the two edge-disjoint paths from v to
the high-degree vertex in t each contribute to adh(t′). Hence, t has at most tor2(t) ≤ r − 1

IPEC 2022

15:8 Slim Tree-Cut Width

children. Moreover, for every child t′ of t, Yt′ intersects at most r−1
2 distinct triangles of Wr2 ,

since each such triangle contributes 2 to adh(t′). Hence, for every child t′ of t, Yt′ contains
at most r − 1 vertices of Wr2 . In total, Yt \ Xt contains at most (r − 1)2 vertices of Wr2 .
Since both adh(t) and |Xt| are upper-bounded by r − 1 and the former bounds the number
of vertices outside of Yt by r − 1, this would mean that Wr2 has at most (r − 1)2 + 2r − 2
vertices, a contradiction with the definition of Wr2 . ◀

Given a graph G and its nice tree-cut decomposition (T,X) of width at most k, let us denote
by B(2)

t the set of children of t from Bt with adhesion precisely two; notice that B(2)
t does

not necessarily contain all children of t with adhesion precisely two, since some may lie in
At. Observe that for every fixed vertex t of T , if x is an element of 2-center of the torso at
t and x ̸∈ Xt, then x corresponds either to the parent of t in T or to some child of t from
At ∪B

(2)
t . Hence tor2(t) ≤ 1 + |Xt| + |At| + |B(2)

t | ≤ 3k + 2 + |B(2)
t |.

▶ Corollary 11. Let G be a graph with tree-cut decomposition (T,X) of width at most k.
Then for each node t of T it holds that |B(2)

t | ≥ tor2(t) − 3k − 2.

3.2 Weak Immersions
Naturally extending the result of Wollan for tree-cut width [37], we show that both slim and
0-tree-cut width are closed under weak immersions.

▶ Theorem 12. If G and H are graphs such that H ≤I G then stcw(H) ≤ stcw(G) and
tcw0(H) ≤ tcw0(G).

Proof. It is sufficient to proof the statement when H is obtained from G by precisely one
edge deletion, isolated vertex deletion or lifting a pair of edges. Let (T,X) be a tree-
cut decomposition of G of minimum slim (or 0-) width. Then (T,X) is also a tree-cut
decomposition of G\e for any edge e of G with the same or smaller slim (0-) width. Similarly
for the isolated vertex deletion: we just need to delete the vertex from the corresponding bag.
It remains to consider the case H = G \ {(x, y), (y, z)} ∪ (x, z) for some (x, y), (y, z) ∈ E(G).

Notice that the lifting operation doesn’t increase adhesion of any node t of T : if the edge
(x, z) has endpoints in different connected components of T \ e(t) then so does at least one
of the edges (x, y) or (y, z). To see that tor2(t) and tor1(t) do not increase either, denote by
QG and QH the torsos at t in (T,X) for graphs G and H correspondingly. Every vertex of
QG corresponds to a non-empty subset of the vertices of G. Depending on how the vertices
x, y and z are split among these subsets, it holds that either E(QH) ⊆ E(QG) (which yields
the same or smaller 1-center and 2-center) or QH is obtained from QG by splitting a pair
of edges. For the latter, observe that v ∈ V (QG) \Xt is not in the 2-center of (QG, Xt) if
and only if v belongs to some induced subtree of QG connected to the rest of QG by at most
one edge. It is not hard to see that lifting the pair of edges preserves the property. For the
1-center the situation is even simplier: isolated vertices of QG remain isolated. ◀

Recall that the weak immersion relation ≤I is a transitive, reflexive and antisymmetric
relation on the set of finite graphs, i.e., a partial order. The previous theorem showed that
stcw is monotone with respect to ≤I . Our next goal is to find graphs of simple structure but
large slim (or 0-) tree-cut width, such that forbidding them as weak immersions bounds the
corresponding width of a graph. Wollan in [37] characterized such graphs for tree-cut width.
Namely, he established the following dichotomy:

▶ Theorem 13.
(a) If G is a graph such that H2r2 ≤I G for some r ≥ 3, then tcw(G) ≥ r.
(b) There exists a function f : N → N such that if tcw(G) ≥ f(r), then Hr ≤I G, r ∈ N.

R. Ganian and V. Korchemna 15:9

Here Hr denotes the r-wall, the graph which can be obtained from the r × r grid by
deleting every second vertical edge in each row, see [37] for the definition and Figure 3 for an
illustration. We are going to complete the family of excluded immersions to provide similar
characterizations for 0-tree-cut width and slim tree-cut width. Recall that the families of
stars Sr and windmils Wr have unbounded 0- and slim tree-cut width, respectively (Lemmas
9 and 10). Combining this with Theorem 12, we immediatedly obtain:

▶ Lemma 14. For every positive integer r, if stcw(G) < r (tcw0(G) < r), then G does not
admit Wr2 (Sr2 , respectively) as a weak immersion.

As we will show in the remainder of this subsection, excluding Wr (Sr) as a weak immersion
along with Hr is actually sufficient to bound slim tree-cut width (0-tree-cut width).

▶ Theorem 15. If G is a graph such that H2r2 ≤I G for some r ≥ 3 or Sr2 ≤I G for
some r ≥ 1, then tcw0(G) ≥ r. Moreover, there exists a function h : N → N such that if
tcw0(G) ≥ h(r), then Hr ≤I G or Sr ≤I G.

Proof. If H2r2 ≤I G for some r ≥ 3, we have that tcw(G) ≥ r by Theorem 13 and hence
tcw0(G) ≥ r. In case Sr2 ≤I G, the lower bound follows from Lemma 14.

Let f be the function given by Theorem 13. We define h by setting h(r) = r·f(r)+3·f(r)+2.
Assume that G is a graph such that tcw0(G) ≥ h(r). If tcw(G) ≥ f(r), we immediatedly
conclude that Hr ≤I G by Theorem 13. Otherwise, let (T,X) be a nice tree-cut decomposition
of G of width at most f(r) with leaves having non-empty bags. There exists a node t of T
such that tor1(t) ≥ h(r), in particular, Bt ≥ r · f(r). As the size of Xt is at most f(r), some
vertex of Xt has degree of at least r and hence Sr ≤I G. ◀

Before providing similar characterization for slim tree-cut width, we introduce a simple
technical modification of tree-cut decompositions, which will also be used later for establishing
the connection between slim tree-cut width and edge-cut width. The aim is, roughly speaking,
to avoid the situation where a thin child has adhesion 2, even though it consists of two
completely independent components each of which could be a thin child of adhesion 1.
Formally, let (T,X) be a nice tree-cut decomposition of G. We say that a node t with parent
t′ in T is decomposable if the following conditions hold:

t ∈ Bt′ and there exist two edges e1 and e2 between Gt and G \Gt in G;
the endpoints of e1 and e2 in Gt belong to different connected components of Gt.

▶ Lemma 16. Any nice tree-cut decomposition of G can be transformed into a nice tree-cut
decomposition of the same tree-cut width with no decomposable nodes.

Figure 3 Illustrations of forbidden weak immersions for the graphs with bounded standard, slim
or 0-tree-cut width. Left: 6-wall H6, Middle: windmill W8, Right: star S8.

IPEC 2022

15:10 Slim Tree-Cut Width

Proof. Let (T ′,X ′) be a nice tree-cut decomposition of G with at least one decomposable
node. Let t be a decomposable node of T ′ with minimum distance to the root, and let e1
and e2 be the edges between Gt and G \Gt in G. We create a copy T ′

t∗ of the rooted subtree
T ′
t where the copy of s ∈ T ′

t is s∗ ∈ T ′
t∗ . We then connect t∗ to the parent of t. Let G1 be

the connected component of Gt containing an endpoint of e1. For every s ∈ V (T ′
t) we set

Xs = X ′
s ∩ V (G1) and Xs∗ = X ′

s \Xs. For the rest of nodes s of T ′ we set Xs = X ′
s. Finally,

we exhaustively remove empty bags which are leaves and denote the obtained tree by T .
Observe that the resulting decomposition (T,X) is nice and its width is not greater than
the width of (T ′,X ′). Moreover, our transformation doesn’t create any decomposable nodes
outside of subtrees rooted in t and t∗; both t and t∗ have an adhesion of one and hence
are not decomposable. Therefore, after a finite number of such steps we obtain some nice
tree-cut decomposition of G of the same width but with no decomposable nodes. ◀

Further, as a technical term, we will refer to nice decompositions with no decomposable
nodes as very nice decompositions.

▶ Corollary 17. Every tree-cut decomposition can be transformed into a very nice tree-cut
decomposition in quartic time, without increasing the width.

Proof. Let (T ′′,X ′′) be a tree-cut decomposition of G of width k. We transform (T ′′,X ′′)
into a nice tree-cut decomposition (T ′,X ′) of width at most k (this can be done in cubic time,
see [16] for details). Further, we apply Lemma 16 on (T ′,X ′). This requires at most quartic
time, since every node of T ′ is decomposed at most once and every such decomposition can
be performed in cubic time. Then the resulting decomposition (T,X) is very nice and has
width of at most k. ◀

With this transformation in hand, we are now ready to fully characterize forbidden weak
immersions for graphs of bounded slim tree-cut width.

▶ Theorem 18. If G is a graph such that H2r2 ≤I G for some r ≥ 3 or Wr2 ≤I G for
some r ≥ 1, then stcw(G) ≥ r. Moreover, there exists a function g : N → N such that if
stcw(G) ≥ g(r), then Hr ≤I G or Wr ≤I G.

Proof. If H2r2 ≤I G for some r ≥ 3, we have that tcw2(G) ≥ r by Theorem 13 and hence
stcw(G) ≥ r. In case Wr2 ≤I G, the lower bound follows from Lemma 14.

Let f be the function given by Theorem 13. We define g by setting g(r) = 2r · f2(r) +
3 · f(r) + 2. Assume that G is a graph such that stcw(G) ≥ g(r). If tcw(G) ≥ f(r), we
immediatedly conclude that Hr ≤I G by Theorem 13. Otherwise, by Corollary 17 there exists
a very nice tree-cut decomposition (T,X) of G of width at most f(r). Let us pick a node t of T
such that tor2(t) ≥ g(r). By Corollary 11 we have that |B(2)

t | ≥ g(r)−3 ·f(r)−2 = 2r ·f2(r).
Since (T,X) is very nice, all the children of t in B

(2)
t are non-decomposable. Recall that

for every t′ ∈ B
(2)
t , the neighbourhood of Yt′ in G is a one- or two-element subset of Xt,

and hence Yt′ provides a path between some (possibly equal) vertices of Xt. As the size of
Xt is at most f(r), G contains either 2r cycles intersecting in one vertex of Xt or 2r paths
between two vertices of Xt. Since every such pair of paths can be transformed into a cycle
by lifting the pair of their first edges, in both cases we have Wr ≤I G. ◀

3.3 k-Edge Sums
Another natural property Wollan [37] established for tree-cut width is that the parameter is
closed under the operation of taking k-edge sum for small k. Specifically, he proved:

R. Ganian and V. Korchemna 15:11

▶ Lemma 19 ([37]). Let G, G1, and G2 be graphs such that G = G1 ⊕k G2. If Gj has a
tree-cut decomposition (Tj ,Xj) for j = 1, 2, then G has a tree-cut decomposition (T,X) such
that adh(T,X) = max{k, adh(T1,X1), adh(T2,X2)}. Moreover, for every t ∈ V (T), the torso
Ht of t in (T,X) is isomorphic to the torso of some vertex of (T1,X1) or (T2,X2).

Based on this result for optimal decompositions (T1,X1) and (T2,X2), we immediatedly
obtain the upper bound on 0- and slim tree-cut width for k-edge sums:

▶ Corollary 20. Let G, G1 and G2 be graphs such that G = G1 ⊕k G2. Then it holds that
stcw(G) ≤ max{k, stcw(G1), stcw(G2)} and tcw0(G) ≤ max{k, tcw0(G1), tcw0(G2)}.

In particular, if both G1 and G2 have 0-, slim or standard width of at most ω and k ≤ ω, we
may conclude that the corresponding width of G is at most ω.

4 Alternative Characterizations

In this section, we study alternative characterizations of slim tree-cut width and 0-tree-cut
width. In particular, we observe that the latter is asymptotically equivalent to maximum
degree plus treewidth. This provides an interesting connection between tree decompositions
and tree-cut decompositions, but essentially rules out its study as a means of establishing
novel tractability results. For slim tree-cut width, however, we obtain a characterization that
ties it to the previously studied edge-cut width and has algorithmic implications.

4.1 Characterization of 0-Tree-Cut Width
Wollan [37] showed that a bound on the treewidth and maximum degree implies a bound on
the tree-cut width of a graph:

▶ Proposition 21. Let G be a graph with maximal degree d and treewidth w. Then there
exists a tree-cut decomposition of adhesion at most (2w + 2)d such that every torso has at
most (d+ 1)(w + 1) vertices.

In particular, as tor1(t) ≤ |Ht| ≤ (d+ 1)(w + 1) ≤ (2w + 2)d for every node t of T , we have
tcw0(G) ≤ (2w+ 2)d. In the following proposition, we show that the converse is true as well:
bounded tcw0 implies bounded treewidth and maximum degree of a graph.

▶ Proposition 22. Let G be a graph with tcw0(G) = k. Then every vertex of G has degree
of at most k2 + 2k and tw(G) ≤ 2k2 + 3k.

Proof. By Lemma 3 and Corollary 8 we have that tw(G) ≤ 2 tcw(G)2 + 3 tcw(G) ≤ 2k2 + 3k.
Since tcw0(G) = k, Lemma 9 implies that G does not contain S(k+1)2 as a weak immersion,
in particular, degree of any vertex of G is at most k2 + 2k. ◀

▶ Corollary 23. 0-tree-cut width is asymptotically equivalent to maximum degree plus
treewidth.

4.2 Characterization of Slim Tree-Cut Width
Recall that edge-cut width is a parameter that is defined over spanning trees in the input
graph G, which serve as the corresponding decompositions. Let us now consider a slight
generalization of this where we consider not only spanning trees over G, but of any supergraph

IPEC 2022

15:12 Slim Tree-Cut Width

of G. Such a generalization would – unlike edge-cut width itself – trivially be closed under
both vertex and edge deletion. For our considerations, let us denote this parameter super
edge-cut width (sec(G)):

sec(G) = min{ecw(H,T) | H ⊇ G and T is a spanning forest of H}.

If H ⊇ G is a supergraph of G and T is a spanning forest of H such that ecw(H,T) ≤ k, we
say that T witnesses sec(G) ≤ k. Observe that there always exists a connected witness, i.e.,
a tree. Indeed, if H consists of m > 1 connected components, we can arbitrarily extend it to
a connected graph H∗ by adding m− 1 edges. The addition of these edges to T then results
in the tree T ∗ witnessing sec(G) ≤ k. Moreover, notice that any witness of ecw(G) ≤ k is
also a witness of sec(G) ≤ k.

▶ Corollary 24. For every graph G, sec(G) ≤ ecw(G).

However, graphs of constant super edge-cut width can have arbitrarily large edge-cut width,
as will become clear at the end of the section. A slight modification of the proof of Proposition
5 yields:

▶ Proposition 25. For every graph G, tcw(G) ≤ sec(G).

Proof. Let Q be the supergraph of G and let T be the spanning tree of Q such that
ecw(Q,T) = sec(G). We construct a tree-cut decomposition (T,X) of G where each bag
contains at most one vertex, notably by setting Xt = {t} for each t ∈ V (G) and Xt = ∅ for
each t ∈ V (Q) \ V (G). Fix any node t in T other than the root, let u be the parent of t in T .
All the edges of G \ ut with one endpoint in the rooted subtree Tt and another outside of Tt
belong to EQ,Tloc (t), so adhT (t) ≤ |EQ,Tloc (t)| + 1 ≤ sec(G).

Let Ht be the torso of (T,X) in t, then V (Ht) = Xt ∪ {z1...zl} where zi correspond to
connected components of T \ t, i ∈ [l]. In H̃t, only zi with degree at least 3 are preserved.
But all such zi are the endpoints of at least two edges in |EQ,Tloc (t)|, so tor(t) = |V (H̃t)| ≤
1 + |EQ,Tloc (t)| ≤ sec(G). Thus tcw(G) ≤ sec(G). ◀

To represent a deeper connection between tree-cut decompositions and super edge-cut width,
it will be convenient to work with very nice decompositions introduced in subsection 3.2.

▶ Proposition 26. Let (T,X) be a very nice tree-cut decomposition of G of width at most k.
Then for each node t of T , |B(2)

t | ≤ k · sec(G). In particular, stcw(G) ≤ sec(G)2 + 4 · sec(G).

Proof. Assume that T ∗ is a spanning tree of H ⊇ G such that sec(G) = ecw(H,T ∗). For
any node t of T and b ∈ B

(2)
t , b has one of three types (see Figure 4):

1. N(Yb) = {x} for some x ∈ Xt, x is connected to distinct x1
b and x2

b from Yb;
2. N(Yb) = {x1, x2} for x1 ̸= x2, x1 and x2 are connected to the same xb ∈ Yb;
3. N(Yb) = {x1, x2} for x1 ̸= x2, x1 and x2 are connected to distinct x1

b and x2
b from Yb

correspondingly;
Let us start with the first type. If xibx doesn’t belong to T ∗ for i = 1 or i = 2, then
xibx ∈ EH,T

∗

loc (x). Otherwise, x1
b and x2

b are connected via x in T ∗. Then T ∗[Yb] has precisely
two connected components. As b is not decomposable, there exists a path p between x1

b and
x2
b in Gb containing precisely one edge outside of T ∗. This edge contributes to EH,T

∗

loc (x).
As T ∗ is a tree, there can be at most |Xt| − 1 ≤ k − 1 thin children b of the second type

such that xb is adjacent to two elements of Xt in T ∗. For the rest of b of the second type,
there exists x ∈ Xt such that xxb ∈ G \ T ∗ ⊆ H \ T ∗ and therefore xxb ∈ EH,T

∗

loc (x).

R. Ganian and V. Korchemna 15:13

Let b be a thin node of the third type. If xb1 and xb2 are connected via a path in
T ∗[Yb], we can apply the same argument as for the second type. Otherwise, T ∗[Yb] has
precisely two connected components and, analogously to the first type, there exists an edge
in Gb ∪ {x1x

b
1, x2x

b
2} that belongs to EH,T

∗

loc (x1).
To conclude, any node of B(2)

t either increases EH,T
∗

loc (x) for some x ∈ Xt or creates a path
in T ∗ between two vertices of Xt. Since T ∗ is a tree, |Xt| ≤ k and |EH,T

∗

loc (x)| ≤ sec(G) − 1
for every x ∈ Xt, the size of B(2)

t is at most (k − 1) +
∑
x∈Xt

|EH,T
∗

loc (x)| ≤ k · sec(G) − 1.
Then tor2(t) ≤ |At| + |Xt| + 1 + |B(2)

t | ≤ 3k + 1 + k · sec(G) ≤ k · (sec(G) + 4). Since the
bound holds for every node t of T , we may conclude that the slim width of (T,X) is at
most k · (sec(G) + 4). By Proposition 25 and Corollary 17, there exists a very nice tree-cut
decomposition of G of width k ≤ sec(G), therefore stcw(G) ≤ sec(G)2 + 4 · sec(G). ◀

Hence, slim tree-cut with of any graph is upper-bounded by a quadratic function of its super
edge-cut width. Next, we show that the converse statement holds as well:

▶ Proposition 27. For every graph G, sec(G) ≤ 3 ·(stcw(G)+1)2. Moreover, given a tree-cut
decomposition of G of slim width k, it is possible to compute a supergraph Q ⊇ G and its
spanning tree T witnessing sec(G) ≤ 3(k + 1)2 in cubic time.

Proof. Let (T0,X0) be a tree-cut decomposition of G of slim width k. We start by transform-
ing it into a nice tree-cut decomposition (T,X) in cubic time as in [16]. The transformation
procedure acts on the 2-centers of torsos only by contracting some edges. Recall that
v ∈ V (Ht) \Xt is not in the 2-center of (Ht, Xt) if and only if v belongs to some induced
subtree of Ht connected to the rest of Ht by at most one edge. Since contracting an edge
either preserves the property or merges v with some other vertex, it doesn’t increase tor2(t)
for any node t of T . In particular, the slim width of (T,X) is at most k.

Let Ω ⊆ X be the set of empty bags of (T,X), we construct Q ⊇ G along with its tree-cut
decomposition (T,X ′) as follows. Firstly, we add to G vertices vt for every t ∈ Ω. We define
X ′
t = {vt} if Xt = ∅ and X ′

t = Xt otherwise. For every node t ∈ T , construct an arbitrary
tree T ∗

t over X ′
t and add its edges to Q. Further, we process every edge e = pt ∈ E(T) such

that p is the parent of t in T and either N(Yt) ̸⊆ Xt or adh(t) > 1 as follows. If G doesn’t
contain an edge between X ′

t and X ′
p, we add to E(Q) arbitrary edge with endpoints in X ′

t

and X ′
p. This increases the adhesion of e by at most one.

Now we proceed to the choice of the spanning tree T ∗ in Q. For every t ∈ T other
then the root, let p be the parent of t in T . If adh(t) = 1 and N(Yt) ⊆ Xt, we denote
by et the unique edge between Y ′

t and X ′
p in Q. Otherwise, let et be arbitrary edge of Q

with endpoints in X ′
t and X ′

p. We then construct T ∗ by gluing together all T ∗
t via edges et:

T ∗ = (∪t∈V (T)T
∗
t)

⋃
(∪t∈V (T)\r{et}). Obviously the construction can be performed in cubic

time; we will show that sec(Q,T ∗) ≤ 3(k + 1)2.

Figure 4 Possible configurations of edges between thin child b ∈ B
(2)
t and its parent t.

IPEC 2022

15:14 Slim Tree-Cut Width

To this end, fix any node t of T and x ∈ X ′
t and denote Eloc(x) = EQ,T

∗

loc (x). If T ∗ contains
more than one edge between Y ′

t and rest of T ∗, then all but one of them are the unique edges
connecting Q′

q to the rest of Q for some descendants q of t in T . Hence, they don’t belong to
any path in T ∗ between the endpoints of some feedback edge e ∈ E(Q) \E(T ∗). Therefore,
every edge of Eloc(x) has at least one endpoint in Y ′

t . The number of edges in Eloc(x) with
both endpoints in X ′

t is at most |X ′
t| · (|X ′

t| − 1) ≤ k · (k − 1). Every edge with one endpoint
in X ′

t and another outside of Y ′
t contributes to the adhesion of t in (T,X ′), so their number

is bounded by k + 1.
Finally, if e = yz ∈ Eloc(x) contains an endpoint y in Y ′

t \ X ′
t, then y ∈ Y ′

q for some
child q of t. Then Q contains a cycle intersecting Y ′

q and x ∈ Xt. In particular, by
construction of Q we may conclude q ∈ At ∪ B

(2)
t w.r.t. the decomposition (T,X). By

the same arguments as for the node t, we conclude that at most one edge between Y ′
q

and the rest of T ∗ belongs to any path in T ∗ between the endpoints of some feedback
edge e ∈ E(Q) \ E(T ∗), so z ̸∈ Y ′

q and e contributes to the adhesion of q in (T,X ′). In
particular, Eloc(x) contains at most adh(q)+1 edges with an endpoint in Y ′

q . In total, at most
maxq∈At(adh(q)+1) · |At|+max

q∈B(2)
t

(adh(q)+1) · |B(2)
t | ≤ (k+1)(2k+1)+3k = 2k2 +6k+1

edges in Eloc(x) have an endpoint in Y ′
t \X ′

t, so |Eloc(x)| ≤ k ·(k−1)+(k+1)+2k2 +6k+1 =
3k2 + 6k + 2 and hence sec(Q,T ∗) ≤ 3k2 + 6k + 3 = 3(k + 1)2. ◀

▶ Corollary 28. sec and stcw are asymptotically equivalent.

The results of this section are summarized in Figure 5. In particular, the graph family
provided in [4, Lemma 2] shows that graphs of constant super edge-cut width may have
arbitrarily large edge-cut width.

5 Approximating Slim Tree-Cut Width

In this section we show how to efficiently construct a tree-cut decomposition of a graph G

with slim width bounded by a cubic function of its optimal value stcw(G). As a starting point
for our approximation, we use the following result of Kim, Oum, Paul, Sau and Thilikos:

▶ Theorem 29 ([28]). There exists an algorithm that, given a graph G and ω ∈ N, either
outputs a tree-cut decomposition of G with width at most 2ω or correctly reports that no
tree-cut decomposition of G with width at most ω exists in 2O(ω2·logω) · n2 steps.

As an observant reader might have already noticed, if G has bounded slim tree-cut width, it
imposes some restrictions on the structure of possible decompositions of G of small (standard)
tree-cut width. This fact enables us to construct an efficient approximation for stcw(G).

Figure 5 Position of slim and 0-tree-cut width in the hierarchy of edge-cut based parameters. An
arrow from p to q represents the fact that p is more restrictive than q, while asymptotic equivalence
is depicted by ≡.

R. Ganian and V. Korchemna 15:15

▶ Theorem 30. There exists an algorithm that, given a graph G and ω ∈ N, either outputs
a tree-cut decomposition of G with slim width at most 6(ω + 1)3 or correctly reports that no
tree-cut decomposition of G with slim width at most ω exists in 2O(ω2·logω) · n4 steps.

Proof. Given a graph G and ω ∈ N, let us run the algorithm from Theorem 29. If it
reports that tcw(G) > ω, we may conclude that stcw(G) > ω by Corollary 8. In case
the algorithm returns a tree-cut decomposition (T ′,X ′) of width at most 2ω, we invoke
Corollary 17 to transform this decomposition into a very nice decomposition (T,X) of the
same width in at most quartic time. By Proposition 26, we have that |B(2)

t | ≤ 2ω · sec(G)
for each node t of T . If for some node t the size of B(2)

t exceeds 6ω · (ω + 1)2, then
sec(G) > 3(ω + 1)2 and by Proposition 27 we may correctly report that stcw(G) > ω.
Otherwise, tor2(t) ≤ 1 + |Xt| + |At| + |B(2)

t | ≤ 1 + 2ω + (4ω + 1) + 6ω · (ω + 1)2 ≤ 6(ω + 1)3

for any node t of T . Hence, the slim width of (T,X) is at most 6(ω + 1)3. ◀

6 Discussion of Algorithmic Applications

Having established its structural properties, we now turn to the algorithmic aspects of slim
tree-cut width. Here, Corollary 28 shows that instead of using a tree-cut decomposition
of the input graph G to design fixed-parameter algorithms – as was done in past dynamic
programming algorithms that utilized tree-cut width – we can perform dynamic programming
along a spanning tree T of a supergraph Q of G. Both Q and T can be computed from G

in a pre-processing stage by using Proposition 27, and using a spanning tree instead of a
tree-cut decomposition typically leads to significantly more concise (and conceptually cleaner)
algorithms.

The cost for this simplification is the quadratic gap between the widths of these decom-
positions. We note that this situation is somewhat analogous to how one still typically uses
clique-width [7] as a general and easy-to-use parameterization for various problems (especially
when aiming for instances with higher edge-densities), even though rank-width [34] and
Boolean-width [6] are asymptotically equivalent parameterizations which have been shown
to yield more efficient algorithms [15] – there, the gap is even exponential.

Recall that a number of problems which remain W[1]-hard w.r.t. tree-cut width have
recently been shown to be fixed-parameter tractable when parameterized by edge-cut width [4,
18], via explicit dynamic programming algorithms which proceed along the spanning tree
of the input graph. While the functional gap between edge-cut width and super edge-cut
width (and, analogously, slim tree-cut width) may be arbitrarily large, it is not difficult to
see that each of the algorithms provided in those papers can be straightforwardly lifted to
fixed-parameter algorithms w.r.t. super edge-cut width. Indeed, the only amendment one
needs to make is to deal with the presence of “ghost” edges and vertices which occur in the
spanning tree but not in the graph, and the computation of the records in these algorithms
can easily deal with such vertices and edges.

To provide a concrete illustration of how this can be done, let us revisit the dynamic
programming algorithm for the Edge Disjoint Paths problem parameterized by edge-cut
width [4, Theorem 2]. No change is needed to the records. When the algorithm attempts to
compute the set of “valid records” for a vertex v from the sets of valid records for some of its
children v1, . . . , vψ in the spanning tree, the algorithm performs a branching step in which it
considers all possible ways the paths can be routed between the subtrees rooted at these
children (See the “If v is an internal node” paragraph in the proof). At this branching step,
we simply discard all routings which use edges that are not present in G. The situation is no
more complicated for the other considered problems – in essentially all cases, the change
simply boils down to ignoring the vertices and edges which do not exist in G.

IPEC 2022

15:16 Slim Tree-Cut Width

Hence, we obtain:

▶ Corollary 31 (Theorems 2-6 in [4], Theorems 6 and 14 in [18]). List Coloring, Precolor-
ing Extension, Boolean Constraint Satisfaction, Edge Disjoint Paths, Bayesian
Network Structure Learning, Polytree Learning, Minimum Changeover Cost
Arborescence, and Maximum Stable Roommates with Ties and Incomplete Lists
are fixed-parameter tractable w.r.t. slim tree-cut width.

Last but not least, given the ease with transferring dynamic programming algorithms
from edge-cut width to slim tree-cut width, an inquisitive reader might be wondering whether
it is not possible to formally prove that every problem which is FPT w.r.t. former is also FPT
w.r.t. the latter. That is, however, not true in general: one can construct entirely artificial
problems which do not behave in this way.

To illustrate this on a high level, let us consider an arbitrary graph problem P which
remains NP-hard even on trees (as an example, the Firefighter problem [12]) and can be
solved on general n-vertex graphs in time τ(n). Moreover, let ι(n) denote the time required
to compute the slim tree-cut width of a graph G via an exhaustive brute force search, and
let ψ be a function which dominates both τ and ι. We now define an artificial new problem
P ′ as follows:

every n-vertex graph G such that ψ(ecw(G)) ≤ n is a YES-instance, and otherwise
G is a YES-instance if and only if G is a YES-instance of Firefighter.

Then P ′ is FPT parameterized by edge-cut width. Indeed, given an instance (G, k) of
P ′, one can attempt to run a brute-force search to determine the edge-cut width (which
is promised to be at most k) with a time-out of ψ(ψ(k)). If the algorithm times out, this
implies that ψ(ecw(G)) ≤ n and we correctly output “Yes”. If not, we proceed by calling
a brute-force algorithm to solve Firefighter on G, and this must once again complete
in time at most ψ(ψ(k)). On the other hand, P ′ remains NP-hard even on graph classes
with constant stcw(G) – consider, for instance, the class of all graphs with two connected
components, one of which (C1) is a tree and the other (C2) a graph from the class with
constant slim tree-cut width but unbounded edge-cut width (one such class is depicted in
Figure 2 of [4]). On some inputs from this class, P ′ will ask for a solution to the Firefighter
problem (which is NP-hard on trees) but the parameter stcw(G) will remain constant.

7 Conclusion

The contribution of this work is mainly conceptual: it provides a possible resolution to
the search for an alternative to treewidth for edge cuts which is both structurally sound
and exhibits the expected (and desired) algorithmic properties. Slim tree-cut width can be
viewed as the “missing link” which explains why the problems depicted in Table 1 admit
fixed-parameter algorithms that exploit dynamic programming along small edge cuts w.r.t.
both edge-cut width (as a generalization of the feedback edge number) and treewidth plus
maximum degree. We firmly believe that there are many more problems of interest where
edge-cut based parameters may help push the frontiers of tractability. On this front, the
alternative characterization via the edge-cut width of a supergraph provides decompositions
which are better suited for dynamic programming than tree-cut decompositions.

The problem of computing optimal decompositions for slim tree-cut width remains,
similarly as in the case of tree-cut width [28], as a prominent open question. Moreover, we
believe that the ideas used to obtain a 2-approximation algorithm for tree-cut width could
also be used to obtain an improved constant-factor approximation for slim tree-cut width.

R. Ganian and V. Korchemna 15:17

References
1 Deeksha Adil, Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Paramet-

erized algorithms for stable matching with ties and incomplete lists. Theor. Comput. Sci.,
723:1–10, 2018. doi:10.1016/j.tcs.2018.03.015.

2 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.
Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica,
83(5):1201–1221, 2021. doi:10.1007/s00453-020-00777-5.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth: A
combinatorial analysis through kernelization. SIAM J. Discret. Math., 27(4):2108–2142, 2013.

4 Cornelius Brand, Esra Ceylan, Christian Hatschka, Robert Ganian, and Viktoriia Korchemna.
Edge-cut width: An algorithmically driven analogue of treewidth based on edge cuts. In
Graph-Theoretic Concepts in Computer Science – 48th International Workshop, WG 2022,
Lecture Notes in Computer Science. Springer, 2022. to appear. arXiv:2202.13661.

5 Robert Bredereck, Klaus Heeger, Dusan Knop, and Rolf Niedermeier. Parameterized complexity
of stable roommates with ties and incomplete lists through the lens of graph parameters.
In Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium on Algorithms
and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and
Economics, Shanghai, China, volume 149 of LIPIcs, pages 44:1–44:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

6 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs. Theor.
Comput. Sci., 412(39):5187–5204, 2011. doi:10.1016/j.tcs.2011.05.022.

7 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer Verlag, 2013. doi:10.1007/978-1-4471-5559-1.

11 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In ISAAC, Lecture Notes in
Computer Science, pages 294–305. Springer, 2008.

12 Stephen Finbow, Andrew D. King, Gary MacGillivray, and Romeo Rizzi. The firefighter
problem for graphs of maximum degree three. Discret. Math., 307(16):2094–2105, 2007.
doi:10.1016/j.disc.2005.12.053.

13 Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for maximum
disjoint paths based on tree-likeness. Math. Program., 171(1-2):433–461, 2018.

14 Robert Ganian. Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput.
Sci., 17(2):77–100, 2015. URL: http://dmtcs.episciences.org/2136.

15 Robert Ganian and Petr Hliněný. On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discr. Appl. Math., 158(7):851–867, 2010.

16 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width.
In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 – 40th International Symposium, MFCS 2015, Milan,
Italy, August 24-28, 2015, Proceedings, Part II, volume 9235 of Lecture Notes in Computer
Science, pages 348–360. Springer, 2015. to appear in the Siam Journal on Discrete Mathematics.
arXiv:2206.00752.

17 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of
the bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021.

18 Robert Ganian and Viktoriia Korchemna. The complexity of bayesian network learning:
Revisiting the superstructure. In Proceedings of NeurIPS 2021, the Thirty-fifth Conference on
Neural Information Processing Systems, 2021. to appear.

IPEC 2022

https://doi.org/10.1016/j.tcs.2018.03.015
https://doi.org/10.1007/s00453-020-00777-5
http://arxiv.org/abs/2202.13661
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.disc.2005.12.053
http://dmtcs.episciences.org/2136
http://arxiv.org/abs/2206.00752

15:18 Slim Tree-Cut Width

19 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artif. Intell., 257:61–71, 2018.

20 Robert Ganian and Sebastian Ordyniak. The power of cut-based parameters for computing
edge-disjoint paths. Algorithmica, 83(2):726–752, 2021.

21 Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. On structural parameterizations
of the edge disjoint paths problem. Algorithmica, 83(6):1605–1637, 2021.

22 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
Lean tree-cut decompositions: Obstructions and algorithms. In Rolf Niedermeier and Chris-
tophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 32:1–32:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

23 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
A menger-like property of tree-cut width. J. Comb. Theory, Ser. B, 148:1–22, 2021. doi:
10.1016/j.jctb.2020.12.005.

24 Didem Gözüpek, Sibel Özkan, Christophe Paul, Ignasi Sau, and Mordechai Shalom. Paramet-
erized complexity of the MINCCA problem on graphs of bounded decomposability. Theor.
Comput. Sci., 690:91–103, 2017.

25 Didem Gözüpek, Hadas Shachnai, Mordechai Shalom, and Shmuel Zaks. Constructing
minimum changeover cost arborescenses in bounded treewidth graphs. Theor. Comput. Sci.,
621:22–36, 2016. doi:10.1016/j.tcs.2016.01.022.

26 Gregory Z. Gutin, Mark Jones, and Magnus Wahlström. The mixed chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discret. Math., 30(4):2177–2205, 2016.

27 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited – upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

28 Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-approximation for tree-cut decomposition. Algorithmica, 80(1):116–135, 2018.

29 Loïc Magne, Christophe Paul, Abhijat Sharma, and Dimitrios M. Thilikos. Edge-treewidth:
Algorithmic and combinatorial properties. CoRR, abs/2112.07524, 2021. arXiv:2112.07524.

30 Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM J. Discrete
Math., 28(1):503–520, 2014.

31 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space. In
Isolde Adler and Haiko Müller, editors, Graph-Theoretic Concepts in Computer Science – 46th
International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers,
volume 12301 of Lecture Notes in Computer Science, pages 27–39. Springer, 2020.

32 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer, 2012.

33 Sebastian Ordyniak and Stefan Szeider. Parameterized complexity results for exact bayesian
network structure learning. J. Artif. Intell. Res., 46:263–302, 2013. doi:10.1613/jair.3744.

34 Sang-il Oum. Approximating rank-width and clique-width quickly. In Graph-Theoretic
Concepts in Computer Science, 31st International Workshop, WG 2005, Metz, France, June
23-25, 2005, Revised Selected Papers, volume 3787 of Lecture Notes in Computer Science,
pages 49–58. Springer Verlag, 2005.

35 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

36 Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth revisited. J.
of Computer and System Sciences, 76(2):103–114, 2010.

37 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory, Ser.
B, 110:47–66, 2015.

https://doi.org/10.1016/j.jctb.2020.12.005
https://doi.org/10.1016/j.jctb.2020.12.005
https://doi.org/10.1016/j.tcs.2016.01.022
https://doi.org/10.1007/s00224-012-9393-4
http://arxiv.org/abs/2112.07524
https://doi.org/10.1613/jair.3744

A Fixed-Parameter Algorithm for the Schrijver
Problem
Ishay Haviv
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Abstract
The Schrijver graph S(n, k) is defined for integers n and k with n ≥ 2k as the graph whose vertices
are all the k-subsets of {1, 2, . . . , n} that do not include two consecutive elements modulo n, where
two such sets are adjacent if they are disjoint. A result of Schrijver asserts that the chromatic
number of S(n, k) is n − 2k + 2 (Nieuw Arch. Wiskd., 1978). In the computational Schrijver
problem, we are given an access to a coloring of the vertices of S(n, k) with n − 2k + 1 colors, and
the goal is to find a monochromatic edge. The Schrijver problem is known to be complete in the
complexity class PPA. We prove that it can be solved by a randomized algorithm with running time
nO(1) · kO(k), hence it is fixed-parameter tractable with respect to the parameter k.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Math-
ematics of computing → Graph coloring; Mathematics of computing → Combinatorial algorithms;
Mathematics of computing → Probabilistic algorithms

Keywords and phrases Schrijver graph, Kneser graph, Fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.16

Related Version Full Version: http://arxiv.org/abs/2204.09009

Funding Research supported in part by the Israel Science Foundation (grant No. 1218/20).

Acknowledgements We thank Gabriel Istrate for clarifications on [18] and the anonymous reviewers
for their useful suggestions.

1 Introduction

The Kneser graph K(n, k) is defined for integers n and k with n ≥ 2k as the graph whose
vertices are all the k-subsets of [n] = {1, 2, . . . , n} where two such sets are adjacent if they
are disjoint. In 1955, Kneser [19] observed that the chromatic number of the graph K(n, k)
satisfies χ(K(n, k)) ≤ n− 2k + 2, that is, there exists a proper coloring of its vertices with
n− 2k + 2 colors, and conjectured that this upper bound on the chromatic number is tight.
The conjecture was proved in 1978 by Lovász [20] as an application of the Borsuk-Ulam
theorem from algebraic topology [2]. Following this result, topological methods have become
a powerful tool in combinatorics, discrete geometry, and theoretical computer science (see,
e.g., [22]).

The Schrijver graph S(n, k) is defined as the subgraph of K(n, k) induced by the collection
of all k-subsets of [n] that do not include two consecutive elements modulo n (i.e., the k-
subsets A ⊆ [n] such that if i ∈ A then i + 1 /∈ A, and if n ∈ A then 1 /∈ A). Schrijver proved
in [26], strengthening Lovász’s result, that the chromatic number of S(n, k) is equal to that
of K(n, k). His proof technique relies on a proof of Kneser’s conjecture due to Bárány [1],
which was obtained soon after the one of Lovász and combined the topological Borsuk-Ulam
theorem with a lemma of Gale [12]. It was further proved in [26] that S(n, k) is vertex-critical,
that is, the chromatic number of any proper induced subgraph of S(n, k) is strictly smaller
than that of S(n, k).

© Ishay Haviv;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.IPEC.2022.16
http://arxiv.org/abs/2204.09009
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 A Fixed-Parameter Algorithm for the Schrijver Problem

In the computational Kneser and Schrijver problems, we are given an access to a
coloring with n− 2k + 1 colors of the vertices of K(n, k) and S(n, k) respectively, and the
goal is to find a monochromatic edge, i.e., two vertices with the same color that correspond
to disjoint sets. Since the number of colors used by the input coloring is strictly smaller than
the chromatic number of the graph [20, 26], it follows that every instance of these problems
has a solution. However, the topological argument behind the lower bound on the chromatic
number is not constructive, in the sense that it does not suggest an efficient algorithm for
finding a monochromatic edge. By an efficient algorithm we mean that its running time is
polynomial in n, whereas the number of vertices might be exponentially larger. Hence, it is
natural to assume that the input coloring is given as an access to an oracle that given a vertex
of the graph returns its color. The input can also be given by some succinct representation,
e.g., a Boolean circuit that computes the color of any given vertex.

In recent years, it has been shown that the complexity class PPA perfectly captures the
complexity of several total search problems for which the existence of the solution relies on
the Borsuk-Ulam theorem. This complexity class belongs to a family of classes that were
introduced in 1994 by Papadimitriou [25] in the attempt to characterize the mathematical
arguments that lie behind the existence of solutions to search problems of TFNP. The
complexity class TFNP, introduced in [24], is the class of total search problems in NP,
namely, the search problems in which a solution is guaranteed to exist and can be verified in
polynomial running time. Papadimitriou has introduced in [25] several subclasses of TFNP,
each of which consists of the total search problems that can be efficiently reduced to a
problem that represents some mathematical argument. One of those subclasses was PPA
(Polynomial Parity Argument) that corresponds to the fact that every (undirected) graph
with maximum degree 2 that has a vertex of degree 1 must have another degree 1 vertex.
Hence, PPA is the class of all problems in TFNP that can be efficiently reduced to the Leaf
problem, in which given a succinct representation of a graph with maximum degree 2 and
given a vertex of degree 1 in the graph, the goal is to find another such vertex.

A prominent example of a PPA-complete problem whose totality is related to the Borsuk-
Ulam theorem is the one associated with the Consensus Halving theorem [17, 27]. The
PPA-completeness of the problem was proved for an inverse-polynomial precision parameter by
Filos-Ratsikas and Goldberg [7, 8], and this was improved to a constant precision parameter
in a recent work of Deligkas, Fearnley, Hollender, and Melissourgos [4]. The hardness of
the Consensus Halving problem was used to derive the PPA-completeness of several other
problems. This includes the Splitting Necklace problem with two thieves, the Discrete
Sandwich problem [7, 8], the Fair Independent Set in Cycle problem, and the aforementioned
Schrijver problem (with the input coloring given as a Boolean circuit) [14]. As for the
Kneser problem, the question of whether it is PPA-complete was proposed by Deng, Feng,
and Kulkarni [5]. It is interesting to mention that this question is motivated by connections
of the Kneser problem to a resource allocation problem called Agreeable Set, that was
introduced by Manurangsi and Suksompong [21] and further studied in [13, 15]. It is also
motivated by the extension of the Kneser problem to Kneser hypergraphs, for which the
complexity question was raised by Filos-Ratsikas, Hollender, Sotiraki, and Zampetakis [9].

In the area of parameterized complexity, a problem whose instances involve a parameter
k is said to be fixed-parameter tractable with respect to k if it admits an algorithm whose
running time is bounded by a polynomial in the input size multiplied by an arbitrary function
of k (see, e.g., [3]). Adopting this notion to our setting, where the instance is not given
explicitly but as an oracle access, we say that an algorithm for the Kneser and Schrijver
problems is fixed-parameter with respect to k if its running time on an input coloring of,

I. Haviv 16:3

respectively, K(n, k) and S(n, k) is bounded by nO(1) ·f(k) for some function f . In the recent
work [15], it was shown that the Kneser problem is fixed-parameter tractable with respect
to the parameter k. More specifically, it was shown there that there exists a randomized
algorithm that solves the Kneser problem on an input coloring of a Kneser graph K(n, k)
in running time nO(1) · kO(k).

1.1 Our Contribution

In the current work, we prove that the Schrijver problem on graphs S(n, k) is fixed-
parameter tractable with respect to the parameter k.

▶ Theorem 1. There exists a randomized algorithm that given integers n and k with n ≥ 2k

and an oracle access to a coloring of the vertices of the Schrijver graph S(n, k) with n−2k + 1
colors, runs in time nO(1) · kO(k) and returns a monochromatic edge with high probability.

A few remarks about Theorem 1 are in order here.
The algorithmic task of finding a monochromatic edge in the Schrijver graph S(n, k)
given a coloring of its vertices with n− 2k + 1 colors is at least as hard as that of finding
a monochromatic edge in the Kneser graph K(n, k) given such a coloring. Indeed, S(n, k)
is an induced subgraph of K(n, k) with the same chromatic number. Therefore, the
Kneser problem can be solved by applying an algorithm for the Schrijver problem to
the restriction of a coloring of a Kneser graph to its Schrijver subgraph. This implies that
Theorem 1 strengthens the fixed-parameter tractability result of [15], and yet achieves
the same asymptotic dependence on k in the running time.
In contrast to the current situation of the Kneser problem [5], the Schrijver problem
is known to be PPA-complete [14]. Hence, the study of its fixed-parameter tractability is
motivated in a stronger sense.
As mentioned earlier, the Schrijver graph S(n, k) was shown in [26] to be vertex-critical.
It follows that for every vertex A of the graph S(n, k), there exists a coloring of its vertices
with n− 2k + 1 colors, for which only edges that are incident with A are monochromatic.
An algorithm for the Schrijver problem, while running on such an input coloring, must
be able to find an edge that is incident with this specified vertex A. Nevertheless, the
algorithm given in Theorem 1 manages to do so in running time much smaller than the
number of vertices, provided that n is sufficiently larger than k.
Borrowing the terminology of the area of parameterized complexity, our algorithm for
the Schrijver problem can be viewed as a randomized polynomial Turing kernelization
algorithm for the problem (see, e.g., [10, Chapter 22]). Namely, the problem of finding
a monochromatic edge in a Schrijver graph S(n, k) can essentially be reduced by a
randomized efficient algorithm to finding a monochromatic edge in a Schrijver graph
S(n′, k) for n′ = O(k4). This aspect of the algorithm is common to the algorithm for the
Kneser problem given in [15] (see [15, Section 3.4] for the details).

Our algorithm for the Schrijver problem extends the approach developed in [15] for the
Kneser problem. The adaptation to the Schrijver problem relies on structural properties
of induced subgraphs of Schrijver graphs (see Section 3). Their proofs involve some ideas
that were applied in the context of Frege propositional proof systems by Istrate, Bonchis, and
Craciun [18]. In the remainder of this section, we give an overview of the proof of Theorem 1.

IPEC 2022

16:4 A Fixed-Parameter Algorithm for the Schrijver Problem

1.2 Proof Overview
Our algorithm for the Schrijver problem is based on the strategy developed in [15] for the
Kneser problem. We start by describing the algorithm of [15] for the Kneser problem and
then present the modification in the algorithm and in its analysis needed for the Schrijver
problem.

Suppose that we are given an oracle access to a coloring of the vertices of the Kneser
graph K(n, k) with n− 2k + 1 colors. In order to find a monochromatic edge in the graph,
we use an efficient algorithm, called “element elimination”, that reduces our problem to
that of finding a monochromatic edge in a subgraph of K(n, k) isomorphic to K(n− 1, k)
whose vertices are colored by n − 2k colors. Since the chromatic number of the latter is
n− 2k + 1 [20], such a coloring is guaranteed to have a monochromatic edge in the subgraph.
By repeatedly applying this algorithm, we obtain a coloring with n′ − 2k + 1 colors of a
subgraph of K(n, k) isomorphic to K(n′, k). When the size n′ of the ground set is sufficiently
small and depends only on k, a brute force algorithm that queries the oracle for the colors of
all vertices allows us to find a monochromatic edge in running time that essentially depends
only on k.

We turn to describe now the “element elimination” algorithm. This algorithm picks
uniformly and independently polynomially many vertices of the graph K(n, k) and queries the
oracle for their colors. If the random samples include two vertices that form a monochromatic
edge in the graph, then this edge is returned and we are done. Otherwise, the algorithm
identifies a color i ∈ [n − 2k + 1] that appears on a largest number of vertices among the
random samples and an element j ∈ [n] that is particularly popular on the sampled vertices
colored i (say, that belongs to a constant fraction of them). The “element elimination”
algorithm suggests to remove the element j from the ground set, and to keep looking for a
monochromatic edge in the subgraph induced by the k-subsets of [n] \ {j}.

The correctness of the “element elimination” algorithm for Kneser graphs relies on
structural properties of intersecting families of k-subsets of [n]. A stability result of Hilton
and Milner [16] for the celebrated Erdös-Ko-Rado theorem [6] says that any sufficiently
large intersecting family of k-subsets of [n] satisfies that all of its members share a common
element. This is used in [15], combined with an idea of Frankl and Kupavskii [11], to show
that as long as n ≥ Ω(k4), if a large color class of the input coloring does not have an element
that is quite popular on its members, then the sampled vertices include with high probability
a monochromatic edge. Otherwise, for every color i of a large color class there exists some
element j that is popular on its vertices, and the algorithm finds such a pair (i, j) with high
probability. If this element j belongs to all the vertices colored i, then the restriction of
the input coloring to the k-subsets of [n] \ {j} is a coloring with n − 2k colors of a graph
isomorphic to K(n− 1, k), as required.

However, although the element j belongs to a significant fraction of the vertices colored i,
the coloring might use the color i for vertices that do not include the element j. This might
lead to an elimination of the element j while the restriction of the coloring to the k-subsets
of [n] \ {j} still uses the color i, hence the corresponding subgraph is not guaranteed to have
a monochromatic edge. This situation is handled in [15] by showing that every vertex colored
i that does not include j is disjoint from a non-negligible fraction of the vertices colored i.
Therefore, in case that the brute force algorithm that is applied to the subgraph obtained
after all iterations of the “element elimination” algorithm finds a vertex A colored by a color
i that is associated with an eliminated element j, we pick uniformly at random vertices from
the subgraph of the corresponding iteration and with high probability find a neighbor of A

colored i and thus a monochromatic edge. This completes the high-level description of the
algorithm for the Kneser problem from [15].

I. Haviv 16:5

Our algorithm for finding a monochromatic edge in a Schrijver graph S(n, k) given a
coloring of its vertices with n− 2k + 1 colors also uses an “element elimination” algorithm
as a main ingredient. Observe, however, that whenever an element j ∈ [n] is eliminated,
the subgraph induced by the k-subsets of [n] \ {j} is not isomorphic to a Schrijver graph.
We therefore consider the subgraph of S(n, k) that corresponds to the cyclic ordering of the
elements of [n] \ {j} which is induced by the cyclic ordering of the elements of [n] (where
j − 1 precedes j + 1). This allows the algorithm to proceed by looking for a monochromatic
edge in a graph isomorphic to S(n− 1, k). As before, the eliminated element is chosen as an
element j ∈ [n] that is quite popular on the vertices colored by a color i that corresponds to
a large color class of the input coloring. The pair of the color i and the element j is identified
using polynomially many vertices chosen uniformly at random from the vertex set of S(n, k).

The main contribution of the current work lies in the analysis of the “element elimination”
algorithm for Schrijver graphs. Consider first the case where the input coloring has a large
color class that does not have a popular element in its members. For this case we prove
that the selected random vertices include a monochromatic edge with high probability. In
contrast to the analysis used for Kneser graphs, here we cannot apply the Hilton-Milner
theorem [16] that deals with intersecting families of general k-subsets of [n]. We overcome
this issue using a Hilton-Milner-type result for stable sets, i.e., for vertices of the Schrijver
graph, borrowing ideas that were applied by Istrate, Bonchis, and Craciun [18] in the context
of Frege propositional proof systems (see Lemma 7). Note that this can be interpreted as
an approximate stability result for the analogue of the Erdös-Ko-Rado theorem for stable
sets that was proved in 2003 by Talbot [28]. The Hilton-Milner-type result is combined with
the approach of [15] and with an idea of [11] to prove that if the vertices of a large color
class do not have a popular element, then a pair of vertices chosen uniformly at random
from S(n, k) forms a monochromatic edge with a non-negligible probability (see Lemma 8).
Hence, picking a polynomial number of them suffices to catch such an edge.

Consider next the case where every large color class of the input coloring has a popular
element. Here, the “element elimination” algorithm identifies with high probability a color i

of a large color class and an element j that is popular on its vertices. If all the vertices colored
i include j then we can safely look for a monochromatic edge in the subgraph of S(n, k)
induced by the cyclic ordering of [n] without the element j, as this means that the size of the
ground set and the number of colors are both reduced by 1. However, for the scenario where
the color class of i involves vertices A that do not include j, we prove, as in [15], that such
an A is disjoint from a random set from the color class of i with a non-negligible probability.
Note that the analysis in this case again employs the ideas applied by Istrate et al. [18] (see
Lemma 10). Then, when such a set A is found by the algorithm, we can go back to the
subgraph of the run of the “element elimination” algorithm that identified the color of A

and find a neighbor of A from this color class using random samples.

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we gather several definitions and
results that will be used throughout the paper. In Section 3, we present and prove several
structural results on induced subgraphs of Schrijver graphs needed for the analysis of our
algorithm. Finally, in Section 4, we present and analyze our randomized fixed-parameter
algorithm for the Schrijver problem and prove Theorem 1.

IPEC 2022

16:6 A Fixed-Parameter Algorithm for the Schrijver Problem

2 Preliminaries

2.1 Kneser and Schrijver Graphs
Consider the following definition.

▶ Definition 2. For a family F of non-empty sets, let K(F) denote the graph on the vertex
set F in which two vertices are adjacent if they represent disjoint sets.

For a set X and an integer k, let
(

X
k

)
denote the family of all k-subsets of X. Note that the

Kneser graph K(n, k) can be defined for integers n and k with n ≥ 2k as the graph K(
([n]

k

)
).

A set A ⊆ [n] is said to be stable if it does not include two consecutive elements modulo n,
that is, it forms an independent set in the n-vertex cycle with the numbering from 1 to n

along the cycle. For integers n and k with n ≥ 2k, let
([n]

k

)
stab denote the collection of

all stable k-subsets of [n]. The Schrijver graph S(n, k) is defined as the graph K(
([n]

k

)
stab).

Equivalently, it is the subgraph of K(n, k) induced by the vertex set
([n]

k

)
stab.

For a set X ⊆ [n] consider the natural cyclic ordering of the elements of X induced by
that of [n], and let

(
X
k

)
stab denote the collection of all k-subsets of X that do not include two

consecutive elements according to this ordering. More formally, letting j1 < j2 < · · · < j|X|
denote the elements of X,

(
X
k

)
stab stands for the collection of all independent sets of size

k in the cycle on the vertex set X with the numbering j1, . . . , j|X| along the cycle. Note
that

(
X
k

)
stab ⊆

(
X′

k

)
stab whenever X ⊆ X ′ ⊆ [n]. Note further that the graph K(

(
X
k

)
stab) is

isomorphic to the Schrijver graph S(|X|, k).
The chromatic number of the graph S(n, k) was determined by Schrijver [26], strengthening

a result of Lovász [20].

▶ Theorem 3 ([26]). For all integers n and k with n ≥ 2k, χ(S(n, k)) = n− 2k + 2.

A family F ⊆
([n]

k

)
of k-subsets of [n] is called intersecting if for every two sets F1, F2 ∈ F

it holds that F1 ∩ F2 ≠ ∅. Note that such a family forms an independent set in the graph
K(n, k). If the members of F share a common element, then we say that the intersecting
family F is trivial.

The computational search problem associated with the Schrijver graph is defined as
follows.

▶ Definition 4. In the Schrijver problem, the input is a coloring c :
([n]

k

)
stab → [n− 2k + 1]

of the vertices of the Schrijver graph S(n, k) with n− 2k + 1 colors for integers n and k with
n ≥ 2k, and the goal is to find a monochromatic edge.

The existence of a solution to every instance of the Schrijver problem follows from
Theorem 3. In our algorithm for the Schrijver problem, we consider the black-box input
model, where the input coloring is given as an oracle access that for a vertex A returns its
color c(A). This reflects the fact that the algorithm does not rely on the representation of
the input coloring.

2.2 Chernoff-Hoeffding Bound
We need the following concentration result (see, e.g., [23, Theorem 2.1]).

▶ Theorem 5 (Chernoff-Hoeffding Bound). Let 0 < p < 1, let X1, . . . , Xm be m independent
binary random variables satisfying Pr [Xi = 1] = p and Pr [Xi = 0] = 1− p for all i, and put
X = 1

m ·
∑m

i=1 Xi. Then, for any µ ≥ 0,

Pr
[
|X − p| ≥ µ

]
≤ 2 · e−2mµ2

.

I. Haviv 16:7

3 Induced Subgraphs of Schrijver Graphs

In this section, we provide a couple of lemmas on induced subgraphs of Schrijver graphs that
will play a central role in the analysis of our algorithm for the Schrijver problem. We start
with some preliminary claims related to counting stable sets.

3.1 Counting Stable Sets
The following claim employs an argument of Istrate, Bonchis, and Craciun [18]. Its proof is
omitted and can be found in the full version of the paper.

▷ Claim 6. For integers k ≥ 2 and n ≥ 2k and for every two distinct integers a, b ∈ [n], the
number of stable k-subsets F of [n] satisfying {a, b} ⊆ F is at most

(
n−k−2

k−2
)
.

The following result stems from Claim 6 and can be viewed as an approximate variant of
the Hilton-Milner theorem of [16] for stable sets (see [18]).

▶ Lemma 7. For integers k ≥ 2 and n ≥ 2k, every non-trivial intersecting family F of stable
k-subsets of [n] satisfies |F| ≤ k2 ·

(
n−k−2

k−2
)
.

Proof. Let F be a non-trivial intersecting family of stable k-subsets of [n]. Consider an
arbitrary set A = {a1, . . . , ak} in F . Since F is non-trivial, for every t ∈ [k], there exists
a set Bt ∈ F satisfying at /∈ Bt. Since F is intersecting, every set in F intersects A, and
therefore includes the element at for some t ∈ [k]. Such a set further intersects Bt, hence
it also includes some element b ∈ Bt (which is different from at). By Claim 6, the number
of stable k-subsets of [n] that include both at and b does not exceed

(
n−k−2

k−2
)
. Since there

are at most k2 ways to choose the elements at and b, this implies that |F| ≤ k2 ·
(

n−k−2
k−2

)
, as

required. ◀

3.2 Induced Subgraphs of Schrijver Graphs
We are ready to prove the lemmas that lie at the heart of the analysis of our algorithm
for the Schrijver problem. The first lemma, given below, shows that in a large induced
subgraph of the Schrijver graph S(n, k) whose vertices do not have a popular element, a
random pair of vertices forms an edge with a non-negligible probability.

▶ Lemma 8. For integers k ≥ 2 and n ≥ 2k, let F be a family of stable k-subsets of [n]
whose size satisfies |F| ≥ k2 ·

(
n−k−2

k−2
)

and let γ ∈ (0, 1]. Suppose that every element of [n]
belongs to at most γ fraction of the sets of F . Then, the probability that two random sets
chosen uniformly and independently from F are adjacent in K(F) is at least

1
2 ·
(

1− γ − k2

|F|
·
(

n− k − 2
k − 2

))
·

(
1− k2

|F|
·
(

n− k − 2
k − 2

))
.

Proof. Let F ⊆
([n]

k

)
stab be a family of sets as in the statement of the lemma. We first claim

that every subfamily F ′ ⊆ F whose size satisfies

|F ′| ≥ γ · |F|+ k2 ·
(

n− k − 2
k − 2

)
(1)

spans an edge in K(F). To see this, consider such an F ′, and notice that the assumption
that every element of [n] belongs to at most γ fraction of the sets of F , combined with the
fact that |F ′| > γ · |F|, implies that F ′ is not a trivial family, that is, its sets do not share a

IPEC 2022

16:8 A Fixed-Parameter Algorithm for the Schrijver Problem

common element. In addition, using |F ′| > k2 ·
(

n−k−2
k−2

)
, it follows from Lemma 7 that F ′ is

not a non-trivial intersecting family. We thus conclude that F ′ is not an intersecting family,
hence it spans an edge in K(F).

We next show a lower bound on the size of a maximum matching in K(F). Consider the
process that maintains a subfamily F ′ of F , initiated as F , and that removes from F ′ the
two endpoints of some edge spanned by F ′ as long as its size satisfies the condition given
in (1). The pairs of vertices that are removed during the process form a matching M in
K(F), whose size satisfies

|M| ≥ 1
2 ·
(
|F|−

(
γ · |F|+ k2 ·

(
n− k − 2

k − 2

)))

= 1
2 ·
(

(1− γ) · |F| − k2 ·
(

n− k − 2
k − 2

))
. (2)

We now consider the sum of the degrees of adjacent vertices in the graph K(F). Let
A, B ∈ F be any adjacent vertices in K(F). Since A and B are adjacent, they satisfy
A ∩ B = ∅, hence every vertex of F that is not adjacent to A nor to B must include two
distinct elements a ∈ A and b ∈ B. For every two such elements, it follows from Claim 6 that
the number of stable k-subsets of [n] that include them both is at most

(
n−k−2

k−2
)
. Therefore,

the number of vertices of F that are not adjacent to A nor to B does not exceed k2 ·
(

n−k−2
k−2

)
.

This implies that the degrees of A and B in K(F) satisfy

d(A) + d(B) ≥ |F| − k2 ·
(

n− k − 2
k − 2

)
.

Let E denote the edge set of K(F). We combine the above bound with the lower bound
given in (2) on the size of the matching M, to obtain that

2 · |E| =
∑
F ∈F

d(F) ≥
∑

{A,B}∈M

(d(A) + d(B)) ≥ |M|·
(
|F| − k2 ·

(
n− k − 2

k − 2

))

≥ 1
2 ·
(

(1− γ) · |F| − k2 ·
(

n− k − 2
k − 2

))
·

(
|F| − k2 ·

(
n− k − 2

k − 2

))
.

Finally, consider a pair of random vertices chosen uniformly and independently from F . The
probability that they form an edge in K(F) is twice the number of edges in K(F) divided
by |F|2. Hence, the above bound on 2 · |E| completes the proof. ◀

As a corollary of Lemma 8, we obtain the following. The proof is omitted.

▶ Corollary 9. For integers k ≥ 2 and n ≥ 10k4, let F be a family of stable k-subsets of
[n] of size |F| ≥ 1

2n ·
∣∣([n]

k

)
stab

∣∣ and let γ ∈ (0, 1]. Suppose that every element of [n] belongs
to at most γ fraction of the sets of F . Then, the probability that two random sets chosen
uniformly and independently from F are adjacent in K(F) is at least 3

8 · (
3
4 − γ).

The following lemma shows that if a large collection of vertices of S(n, k) has a quite
popular element, then every k-subset of [n] that does not include this element is disjoint
from many of the vertices in the collection.

I. Haviv 16:9

▶ Lemma 10. For integers k ≥ 2 and n ≥ 2k, let X ⊆ [n] be a set, let F ⊆
(

X
k

)
stab be a

family, and let γ ∈ (0, 1]. Let j ∈ X be an element that belongs to at least γ fraction of the
sets of F , and suppose that A ∈

([n]
k

)
is a set satisfying j /∈ A. Then, the probability that a

random set chosen uniformly from F is disjoint from A is at least

γ − k

|F|
·
(
|X| − k − 2

k − 2

)
.

Proof. Let F ⊆
(

X
k

)
stab be a family as in the lemma, and put F ′ = {F ∈ F | j ∈ F}. By

assumption, it holds that |F ′| ≥ γ · |F|. Suppose that A ∈
([n]

k

)
is a set satisfying j /∈ A. We

claim that for every i ∈ A, the number of sets B ∈
(

X
k

)
stab satisfying {i, j} ⊆ B does not

exceed
(|X|−k−2

k−2
)
. Indeed, if i /∈ X then there are no such sets, so the bound trivially holds,

and if i ∈ X, the bound follows from Claim 6, using the one-to-one correspondence between(
X
k

)
stab and the vertex set of S(|X|, k). This implies that the number of sets B ∈

(
X
k

)
stab

with j ∈ B that intersect A does not exceed k ·
(|X|−k−2

k−2
)
. It thus follows that the number of

sets of F that are disjoint from A is at least

|F ′| − k ·
(
|X| − k − 2

k − 2

)
≥ γ · |F| − k ·

(
|X| − k − 2

k − 2

)
.

Hence, a random set chosen uniformly from F is disjoint from A with the desired probability.
◀

As a corollary of Lemma 10, we obtain the following. The proof is omitted.

▶ Corollary 11. For integers k ≥ 2 and n, let X ⊆ [n] be a set of size |X| ≥ 10k3, let
F ⊆

(
X
k

)
stab be a family of size |F| ≥ 1

2|X| ·
∣∣(X

k

)
stab

∣∣, and let γ ∈ (0, 1]. Let j ∈ X be an
element that belongs to at least γ fraction of the sets of F , and suppose that A ∈

([n]
k

)
is a

set satisfying j /∈ A. Then, the probability that a random set chosen uniformly from F is
disjoint from A is at least γ − 1

4 .

4 A Fixed-Parameter Algorithm for the Schrijver Problem

In this section we provide our randomized fixed-parameter algorithm for the Schrijver
problem. We first describe the “element elimination” algorithm and then use it to present
the final algorithm and to prove Theorem 1.

4.1 The Element Elimination Algorithm
The “element elimination” algorithm, given by the following theorem, will be used to
repeatedly reduce the size of the ground set of a Schrijver graph while looking for a mono-
chromatic edge.

▶ Theorem 12. There exists a randomized algorithm that given integers n and k, a set
X ⊆ [n] of size |X| ≥ 10k4, a parameter ε > 0, a set of colors C ⊆ [n − 2k + 1] of size
|C| = |X|−2k +1, and an oracle access to a coloring c :

(
X
k

)
stab → [n−2k +1] of the vertices

of K(
(

X
k

)
stab), runs in time poly(n, ln(1/ε)) and returns, with probability at least 1− ε,

(a). a monochromatic edge of K(
(

X
k

)
stab), or

(b). a vertex A ∈
(

X
k

)
stab satisfying c(A) /∈ C, or

(c). a color i ∈ C and an element j ∈ X such that for every A ∈
([n]

k

)
stab with j /∈ A, a

random vertex B chosen uniformly from
(

X
k

)
stab satisfies c(B) = i and A ∩B = ∅ with

probability at least 1
9n .

IPEC 2022

16:10 A Fixed-Parameter Algorithm for the Schrijver Problem

Proof. For integers n and k, let X ⊆ [n], C ⊆ [n− 2k + 1], and c :
(

X
k

)
stab → [n− 2k + 1] be

an input satisfying |X| ≥ 10k4 and |C| = |X| − 2k + 1 as in the statement of the theorem. It
can be assumed that k ≥ 2. Indeed, Theorem 3 guarantees that the graph K(

(
X
k

)
stab), which

is isomorphic to S(|X|, k), has either a monochromatic edge or a vertex whose color does
not belong to C. Hence, for k = 1, an output of type (a) or (b) can be found by querying
the oracle for the colors of all the vertices in time polynomial in n. For k ≥ 2, consider the
algorithm that given an input as above acts as follows (see Algorithm 1).

The algorithm first selects uniformly and independently m random sets A1, . . . , Am ∈(
X
k

)
stab for m = b · n2 · ln(n/ε), where b is some fixed constant to be determined later (see

lines 1–2), and queries the oracle for their colors. If the sampled sets include two vertices that
form a monochromatic edge in K(

(
X
k

)
stab), then the algorithm returns such an edge (output

of type (a); see line 5). If they include a vertex whose color does not belong to C, then
the algorithm returns it (output of type (b); see line 10). Otherwise, the algorithm defines
i∗ ∈ C as a color that appears on a largest number of sampled sets At (see lines 13–16). It
further defines j∗ ∈ X as an element that belongs to a largest number of sampled sets At

with c(At) = i∗ (see lines 17–20). Then, the algorithm returns the pair (i∗, j∗) (output of
type (c); see line 21).

The running time of the algorithm is clearly polynomial in n and in ln(1/ε). We turn to
prove that for every input, the algorithm returns a valid output, of type (a), (b), or (c), with
probability at least 1− ε. We start with the following lemma that shows that if the input
coloring has a large color class with no popular element, then the algorithm returns a valid
output of type (a) with the desired probability.

▶ Lemma 13. Suppose that the input coloring c has a color class F ⊆
(

X
k

)
stab of size

|F| ≥ 1
2|X| ·

∣∣(X
k

)
stab

∣∣ such that every element of X belongs to at most half of the sets of F .
Then, Algorithm 1 returns a monochromatic edge with probability at least 1− ε.

Proof. Let F be as in the lemma. Using the assumptions k ≥ 2 and |X| ≥ 10k4 and using
the one-to-one correspondence between

(
X
k

)
stab and the vertex set of S(|X|, k), we can apply

Corollary 9 with γ = 1
2 to obtain that two random sets chosen uniformly and independently

from F are adjacent in K(F) with probability at least 3
8 · (

3
4 − γ) = 3

32 . Further, since the
family F satisfies |F| ≥ 1

2|X| ·
∣∣(X

k

)
stab

∣∣, a random vertex chosen uniformly from
(

X
k

)
stab

belongs to F with probability at least 1
2|X| . Hence, for two random vertices chosen uniformly

and independently from
(

X
k

)
stab, the probability that they both belong to F is at least (1

2|X|)
2,

and conditioned on this event, their probability to form an edge in K(F) is at least 3
32 . This

implies that the probability that two random vertices chosen uniformly and independently
from

(
X
k

)
stab form a monochromatic edge in K(

(
X
k

)
stab) is at least (1

2|X|)
2 · 3

32 = 3
128|X|2 .

Now, by considering ⌊m/2⌋ pairs of the random sets chosen by Algorithm 1 (line 2), it
follows that the probability that no pair forms a monochromatic edge does not exceed(

1− 3
128|X|2

)⌊m/2⌋
≤ e−3·⌊m/2⌋/(128|X|2) ≤ ε,

where the last inequality follows by |X| ≤ n and by the choice of m, assuming that the
constant b is sufficiently large. It thus follows that with probability at least 1 − ε, the
algorithm returns a monochromatic edge, as required. ◀

I. Haviv 16:11

Algorithm 1 Element Elimination Algorithm (Theorem 12).

Input: Integers n and k ≥ 2, a set X ⊆ [n] of size |X| ≥ 10k4, a set of colors C ⊆ [n−2k +1]
of size |C| = |X| − 2k + 1, and an oracle access to a coloring c :

(
X
k

)
stab → [n− 2k + 1] of

K(
(

X
k

)
stab).

Output: (a) A monochromatic edge of K(
(

X
k

)
stab), or (b) a vertex A ∈

(
X
k

)
stab satisfying

c(A) /∈ C, or (c) a color i ∈ C and an element j ∈ X such that for every A ∈
([n]

k

)
stab with

j /∈ A, a random vertex B ∈
(

X
k

)
stab chosen uniformly satisfies c(B) = i and A ∩B = ∅ with

probability at least 1
9n .

1: m← b · n2 · ln(n/ε) for a sufficiently large constant b

2: pick uniformly and independently at random sets A1, . . . , Am ∈
(

X
k

)
stab

3: for all t, t′ ∈ [m] do
4: if c(At) = c(At′) and At ∩At′ = ∅ then
5: return {At, At′} ▷ output of type (a)
6: end if
7: end for
8: for all t ∈ [m] do
9: if c(At) /∈ C then

10: return At ▷ output of type (b)
11: end if
12: end for
13: for all i ∈ C do
14: α̃i ← 1

m · |{t ∈ [m] | c(At) = i}|
15: end for
16: i∗ ← an i ∈ C with largest value of α̃i

17: for all j ∈ X do
18: γ̃i∗,j ← 1

m · |{t ∈ [m] | c(At) = i∗ and j ∈ At}|
19: end for
20: j∗ ← a j ∈ X with largest value of γ̃i∗,j

21: return (i∗, j∗) ▷ output of type (c)

We next handle the case in which every large color class of the input coloring has a
popular element. To do so, we first show that the samples of the algorithm provide a good
estimation for the fraction of vertices in each color class as well as for the fraction of vertices
that share any given element in each color class. For every color i ∈ C, let αi denote the
fraction of vertices of K(

(
X
k

)
stab) colored i, that is,

αi =
|{A ∈

(
X
k

)
stab | c(A) = i}|∣∣(X
k

)
stab

∣∣ ,

and let α̃i denote the fraction of the vertices sampled by the algorithm that are colored i

(see line 14). Similarly, for every i ∈ C and j ∈ X, let γi,j denote the fraction of vertices of
K(
(

X
k

)
stab) colored i that include j, that is,

γi,j =
|{A ∈

(
X
k

)
stab | c(A) = i and j ∈ A}|∣∣(X

k

)
stab

∣∣ ,

and let γ̃i,j denote the fraction of the vertices sampled by the algorithm that are colored i

and include j. Let E denote the event that

|αi − α̃i| ≤
1

2|X| and |γi,j − γ̃i,j | ≤
1

2|X| for all i ∈ C, j ∈ X. (3)

IPEC 2022

16:12 A Fixed-Parameter Algorithm for the Schrijver Problem

By a standard concentration argument, we obtain the following lemma.

▶ Lemma 14. The probability of the event E is at least 1− ε.

Proof. By the Chernoff-Hoeffding bound (Theorem 5) applied with µ = 1
2|X| , the probability

that an inequality from (3) does not hold is at most

2 · e−2m/(4|X|2) ≤ ε

n2 ,

where the inequality follows by |X| ≤ n and by the choice of m, assuming that the constant
b is sufficiently large. By the union bound over all the colors i ∈ C and all the pairs
(i, j) ∈ C ×X, that is, over |C|+ |C| · |X| = |C| · (1 + |X|) ≤ n2 events, we get that all the
inequalities in (3) hold with probability at least 1− n2 · ε

n2 = 1− ε, as required. ◀

We now show that if every large color class of the input coloring has a popular element
and the event E occurs, then the algorithm returns a valid output.

▶ Lemma 15. Suppose that the coloring c satisfies that for every color class F ⊆
(

X
k

)
stab

whose size satisfies |F| ≥ 1
2|X| ·

∣∣(X
k

)
stab

∣∣ there exists an element of X that belongs to more
than half of the sets of F . Then, if the event E occurs, Algorithm 1 returns a valid output.

Proof. Assume that the event E occurs. If Algorithm 1 returns an output of type (a) or (b),
i.e., a monochromatic edge or a vertex whose color does not belong to C, then the output is
verified before it is returned and is thus valid. So suppose that the algorithm returns a pair
(i∗, j∗) ∈ C ×X. Recall that the color i∗ is defined by Algorithm 1 as an i ∈ C with largest
value of α̃i (see line 16). Since the colors of all the sampled sets belong to C, it follows that∑

i∈C α̃i = 1, and thus

α̃i∗ ≥ 1
|C|
≥ 1
|X|

, (4)

where the last inequality follows by |C| = |X| − 2k + 1 ≤ |X|.
Let F be the family of vertices of K(

(
X
k

)
stab) colored i∗, i.e.,

F = {A ∈
(

X

k

)
stab
| c(A) = i∗}.

Since the event E occurs (see (3)), it follows from (4) that

|F| = αi∗ ·
∣∣∣(X

k

)
stab

∣∣∣ ≥ (α̃i∗ − 1
2|X|

)
·
∣∣∣(X

k

)
stab

∣∣∣ ≥ 1
2|X| ·

∣∣∣(X

k

)
stab

∣∣∣.
Hence, by the assumption of the lemma, there exists an element j ∈ X that belongs to more
than half of the sets of F , that is, γi∗,j > 1

2 . Since the event E occurs, it follows that this j

satisfies γ̃i∗,j > 1
2 −

1
2|X| . Recalling that the element j∗ is defined by Algorithm 1 as a j ∈ X

with largest value of γ̃i∗,j (see line 20), it must satisfy γ̃i∗,j∗ > 1
2 −

1
2|X| , and using again the

fact that the event E occurs, we derive that γi∗,j∗ ≥ γ̃i∗,j∗ − 1
2|X| > 1

2 −
1

|X| .
By k ≥ 2 and |X| ≥ 10k4, we can apply Corollary 11 with F , j∗, and γ = 1

2 −
1

|X| to
obtain that for every set A ∈

([n]
k

)
stab with j∗ /∈ A, the probability that a random set chosen

uniformly from F is disjoint from A is at least γ− 1
4 . Since the probability that a random set

I. Haviv 16:13

chosen uniformly from
(

X
k

)
stab belongs to F is at least 1

2|X| , it follows that the probability
that a random set B chosen uniformly from

(
X
k

)
stab satisfies c(B) = i∗ and A ∩B = ∅ is at

least

1
2|X| ·

(
γ − 1

4

)
= 1

2|X| ·
(1

4 −
1
|X|

)
≥ 1

9|X| ≥
1

9n
,

where the first inequality holds because k ≥ 2 and |X| ≥ 10k4. This implies that (i∗, j∗) is a
valid output of type (c). ◀

Equipped with Lemmas 13, 14, and 15, we are ready to derive the correctness of Al-
gorithm 1 and to complete the proof of Theorem 12. If the input coloring c has a color class
F ⊆

(
X
k

)
stab of size |F| ≥ 1

2|X| ·
∣∣(X

k

)
stab

∣∣ such that every element of X belongs to at most
half of the sets of F , then, by Lemma 13, the algorithm returns with probability at least
1− ε a monochromatic edge, i.e., a valid output of type (a). Otherwise, the input coloring c

satisfies that for every color class F ⊆
(

X
k

)
stab of size |F| ≥ 1

2|X| ·
∣∣(X

k

)
stab

∣∣ there exists an
element of X that belongs to more than half of the sets of F . By Lemma 14, the event E

occurs with probability at least 1− ε, implying by Lemma 15 that with such probability, the
algorithm returns a valid output. It thus follows that for every input coloring the algorithm
returns a valid output with probability at least 1− ε, and we are done. ◀

4.2 The Fixed-Parameter Algorithm for the Schrijver Problem
We turn to present our fixed-parameter algorithm for the Schrijver problem and to complete
the proof of Theorem 1.

Proof of Theorem 1. Suppose that we are given, for integers n and k with n ≥ 2k, an oracle
access to a coloring c :

([n]
k

)
stab → [n− 2k + 1] of the vertices of the Schrijver graph S(n, k).

It suffices to present an algorithm with success probability at least 1/2, because the latter
can be easily amplified by repetitions. Our algorithm has two phases, as described below
(see Algorithm 2).

In the first phase, the algorithm repeatedly applies the “element elimination” algorithm
given in Theorem 12 (Algorithm 1). Initially, we define

s = max(n− 10k4, 0), X0 = [n], and C0 = [n− 2k + 1].

In the lth iteration, 0 ≤ l < s, we call Algorithm 1 with n, k, Xl, Cl, ε = 1
4n and with the

restriction of the given coloring c to the vertices of
(

Xl

k

)
stab to obtain with probability at

least 1− ε,
(a). a monochromatic edge {A, B} of K(

(
Xl

k

)
stab), or

(b). a vertex A ∈
(

Xl

k

)
stab satisfying c(A) /∈ Cl, or

(c). a color il ∈ Cl and an element jl ∈ Xl such that for every A ∈
([n]

k

)
stab with jl /∈ A, a

random vertex B chosen uniformly from
(

Xl

k

)
stab satisfies c(B) = il and A ∩B = ∅ with

probability at least 1
9n .

As will be explained shortly, if the output of Algorithm 1 is of type (a) or (b) then we either
return a monochromatic edge or declare “failure”, and if the output is a pair (il, jl) of type (c)
then we define Xl+1 = Xl \ {jl} and Cl+1 = Cl \ {il} and, as long as l < s, proceed to the
next call of Algorithm 1. Note that the sizes of the sets Xl and Cl are reduced by 1 in every
iteration, hence we maintain the equality |Cl| = |Xl| − 2k + 1 for all l. We now describe how
the algorithm acts in the lth iteration for each type of output returned by Algorithm 1.

IPEC 2022

16:14 A Fixed-Parameter Algorithm for the Schrijver Problem

Algorithm 2 The Algorithm for the Schrijver Problem (Theorem 1).

Input: Integers n, k with n ≥ 2k and an oracle access to a coloring c :
([n]

k

)
stab → [n−2k+1].

Output: A monochromatic edge of S(n, k).
1: s← max(n− 10k4, 0), X0 ← [n], C0 ← [n− 2k + 1] ▷ |C0| = |X0| − 2k + 1
2: for all l = 0, 1, . . . , s− 1 do ▷ first phase
3: call Algorithm 1 with n, k, Xl, Cl, ε = 1

4n and with the restriction of c to
(

Xl

k

)
stab

4: if Algorithm 1 returns an edge {A, B} with c(A) = c(B) then ▷ output of type (a)
5: return {A, B}
6: end if
7: if Algorithm 1 returns a vertex A ∈

(
Xl

k

)
stab with c(A) = ir /∈ Cl then ▷ output of

type (b)
8: for all t ∈ [18n] do
9: pick uniformly at random a set Bt ∈

(
Xr

k

)
stab

10: if c(Bt) = ir and A ∩Bt = ∅ then
11: return {A, Bt}
12: end if
13: end for
14: return “failure”
15: end if
16: if Algorithm 1 returns a pair (il, jl) ∈ Cl ×Xl then ▷ output of type (c)
17: Xl+1 ← Xl \ {jl}, Cl+1 ← Cl \ {il} ▷ |Cl+1| = |Xl+1| − 2k + 1
18: end if
19: end for
20: query the oracle for the colors of all the vertices of K(

(
Xs

k

)
stab) ▷ second phase

21: if there exists a vertex A ∈
(

Xs

k

)
stab of color c(A) = ir /∈ Cs then

22: for all t ∈ [18n] do
23: pick uniformly at random a set Bt ∈

(
Xr

k

)
stab

24: if c(Bt) = ir and A ∩Bt = ∅ then
25: return {A, Bt}
26: end if
27: end for
28: return “failure”
29: else
30: find A, B ∈

(
Xs

k

)
stab satisfying c(A) = c(B) and A ∩B = ∅▷ exist by Theorem 3 [20]

31: return {A, B}
32: end if

If the output is of type (a), then the returned monochromatic edge of K(
(

Xl

k

)
stab) is also

a monochromatic edge of S(n, k), so we return it (see lines 4–6).
If the output is of type (b), then we are given a vertex A ∈

(
Xl

k

)
stab satisfying c(A) =

ir /∈ Cl for some r < l. Since ir /∈ Cl, it follows that jr /∈ Xl, and thus jr /∈ A. In this case,
we pick uniformly and independently 18n random sets from

(
Xr

k

)
stab and query the oracle

for their colors. If we find a vertex B that forms together with A a monochromatic edge in
S(n, k), we return the monochromatic edge {A, B}, and otherwise we declare “failure” (see
lines 7–15).

If the output of Algorithm 1 is a pair (il, jl) of type (c), then we define, as mentioned
above, the sets Xl+1 = Xl \ {jl} and Cl+1 = Cl \ {il} (see lines 16–18). Observe that for
0 ≤ l < s, it holds that |Xl| = n − l > n − s = 10k4, allowing us, by Theorem 12, to call
Algorithm 1 in the lth iteration.

I. Haviv 16:15

In case that all the s calls to Algorithm 1 return an output of type (c), we arrive to
the second phase of the algorithm. Here, we are given the sets Xs and Cs that satisfy
|Xs| = n − s ≤ 10k4 and |Cs| = |Xs| − 2k + 1, and we query the oracle for the colors of
each and every vertex of the graph K(

(
Xs

k

)
stab). If we find a vertex A ∈

(
Xs

k

)
stab satisfying

c(A) = ir /∈ Cs for some r < s, then, as before, we pick uniformly and independently 18n

random sets from
(

Xr

k

)
stab and query the oracle for their colors. If we find a vertex B that

forms together with A a monochromatic edge in S(n, k), we return the monochromatic edge
{A, B}, and otherwise we declare “failure” (see lines 21–28). Otherwise, all the vertices of
K(
(

Xs

k

)
stab) are colored by colors from Cs. By Theorem 3, the chromatic number of the

graph K(
(

Xs

k

)
stab), which is isomorphic to S(|Xs|, k), is |Xs| − 2k + 2 > |Cs|. Hence, there

must exist a monochromatic edge in K(
(

Xs

k

)
stab), and by checking all the pairs of its vertices

we find such an edge and return it (see lines 30–31).
We turn to analyze the probability that Algorithm 2 returns a monochromatic edge.

Note that whenever the algorithm returns an edge, it checks that it is monochromatic and
thus ensures that it forms a valid solution. Hence, it suffices to show that the algorithm
declares “failure” with probability at most 1/2. To see this, recall that the algorithm calls
Algorithm 1 at most s < n times, and that by Theorem 12 the probability that its output
is not valid is at most ε = 1

4n . By the union bound, the probability that any of the calls
to Algorithm 1 returns an invalid output does not exceed 1/4. The only situation in which
Algorithm 2 declares “failure” is when it finds, for some r < s, a vertex A ∈

([n]
k

)
stab with

c(A) = ir and jr /∈ A, and none of the 18n sampled sets B ∈
(

Xr

k

)
stab satisfies c(B) = ir and

A∩B = ∅ (see lines 7–15, 21–28). However, assuming that all the calls to Algorithm 1 return
valid outputs, the rth run guarantees, by Theorem 12, that a random vertex B uniformly
chosen from

(
Xr

k

)
stab satisfies c(B) = ir and A ∩ B = ∅ for the given A with probability

at least 1
9n . Hence, the probability that the algorithm declares “failure” does not exceed

(1 − 1
9n)18n ≤ e−2 < 1

4 . Using again the union bound, it follows that the probability that
Algorithm 2 either gets an invalid output from Algorithm 1 or fails to find a vertex that
forms a monochromatic edge with a set A as above is at most 1/2. Therefore, the probability
that Algorithm 2 successfully finds a monochromatic edge is at least 1/2, as desired.

We finally analyze the running time of Algorithm 2. In its first phase, the algorithm
calls Algorithm 1 at most s < n times, where the running time needed for each call is, by
Theorem 12 and by our choice of ε, polynomial in n. It is clear that the other operations made
throughout this phase can also be implemented in time polynomial in n. In its second phase,
the algorithm enumerates all the vertices of K(

(
Xs

k

)
stab). This phase can be implemented

in running time polynomial in n and in the number of vertices of this graph. The latter
is
∣∣(Xs

k

)
stab

∣∣ ≤ |Xs|k ≤ (10k4)k = kO(k). It thus follows that the total running time of
Algorithm 2 is nO(1) · kO(k), completing the proof. ◀

References
1 Imre Bárány. A short proof of Kneser’s conjecture. J. Comb. Theory, Ser. A, 25(3):325–326,

1978.
2 Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathemat-

icae, 20(1):177–190, 1933.
3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
4 Argyrios Deligkas, John Fearnley, Alexandros Hollender, and Themistoklis Melissourgos.

Constant inapproximability for PPA. In Proc. of the 54th Annual ACM SIGACT Symposium
on Theory of Computing (STOC’22), pages 1010–1023, 2022.

5 Xiaotie Deng, Zhe Feng, and Rucha Kulkarni. Octahedral Tucker is PPA-complete. Electronic
Colloquium on Computational Complexity (ECCC), 24:118, 2017.

IPEC 2022

16:16 A Fixed-Parameter Algorithm for the Schrijver Problem

6 Paul Erdös, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets.
Quart. J. Math., 12(1):313–320, 1961.

7 Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Proc. of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18), pages 51–64,
2018.

8 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Proc. of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (STOC’19), pages 638–649, 2019.

9 Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. A
topological characterization of modulo-p arguments and implications for necklace splitting. In
Proc. of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA’21), pages 2615–2634,
2021.

10 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2019.

11 Peter Frankl and Andrey Kupavskii. Maximal degrees in subgraphs of Kneser graphs. arXiv,
abs/2004.08718, 2020. arXiv:2004.08718.

12 David Gale. Neighboring vertices on a convex polyhedron. In H. W. Kuhn and A.W. Tucker,
editors, Linear Inequalities and Related Systems, volume 38 of Annals of Math. Studies, pages
255–263. Princeton University Press, 1956.

13 Paul W. Goldberg, Alexandros Hollender, Ayumi Igarashi, Pasin Manurangsi, and Warut
Suksompong. Consensus halving for sets of items. In Proc. 16th Web and Internet Economics
International Conference (WINE’20), pages 384–397, 2020.

14 Ishay Haviv. The complexity of finding fair independent sets in cycles. In 12th Innovations in
Theoretical Computer Science Conference (ITCS’21), pages 4:1–4:14, 2021.

15 Ishay Haviv. A fixed-parameter algorithm for the Kneser problem. In 49th International
Colloquium on Automata, Languages, and Programming (ICALP’22), pages 72:1–72:18, 2022.

16 Anthony J. W. Hilton and Eric Charles Milner. Some intersection theorems for systems of
finite sets. Quart. J. Math., 18(1):369–384, 1967.

17 Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proc. Amer.
Math. Soc., 16(4):665–670, 1965.

18 Gabriel Istrate, Cosmin Bonchis, and Adrian Craciun. Kernelization, proof complexity and
social choice. In 48th International Colloquium on Automata, Languages, and Programming
(ICALP’21), pages 135:1–135:21, 2021.

19 Martin Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2):27,
1955.

20 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser.
A, 25(3):319–324, 1978.

21 Pasin Manurangsi and Warut Suksompong. Computing a small agreeable set of indivisible
items. Artif. Intell., 268:96–114, 2019. Preliminary versions in IJCAI’16 and IJCAI’17.

22 Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combin-
atorics and Geometry. Springer Publishing Company, Incorporated, 2007.

23 Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics,
volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin, 1998.

24 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

25 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

26 Alexander Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., 26(3):454–
461, 1978.

27 Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam
and Tucker. Math. Soc. Sci., 45(1):15–25, 2003.

28 John Talbot. Intersecting families of separated sets. J. London Math. Soc., 68(1):37–51, 2003.

http://arxiv.org/abs/2004.08718

Towards Exact Structural Thresholds for
Parameterized Complexity
Falko Hegerfeld !

Humboldt-Universität zu Berlin, Germany

Stefan Kratsch !

Humboldt-Universität zu Berlin, Germany

Abstract
Parameterized complexity seeks to optimally use input structure to obtain faster algorithms for NP-
hard problems. This has been most successful for graphs of low treewidth, i.e., graphs decomposable
by small separators: Many problems admit fast algorithms relative to treewidth and many of them
are optimal under the Strong Exponential-Time Hypothesis (SETH). Fewer such results are known
for more general structure such as low clique-width (decomposition by large and dense but structured
separators) and more restrictive structure such as low deletion distance to some sparse graph class.

Despite these successes, such results remain “islands” within the realm of possible structure.
Rather than adding more islands, we seek to determine the transitions between them, that is, we aim
for structural thresholds where the complexity increases as input structure becomes more general.
Going from deletion distance to treewidth, is a single deletion set to a graph with simple components
enough to yield the same lower bound as for treewidth or does it take many disjoint separators?
Going from treewidth to clique-width, how much more density entails the same complexity as
clique-width? Conversely, what is the most restrictive structure that yields the same lower bound?

For treewidth, we obtain both refined and new lower bounds that apply already to graphs with
a single separator X such that G − X has treewidth at most r = O(1), while G has treewidth
|X|+O(1). We rule out algorithms running in time O∗((r +1 −ε)k) for Deletion to r-Colorable
parameterized by k = |X|; this implies the same lower bound relative to treedepth and (hence) also to
treewidth. It specializes to O∗((3 − ε)k) for Odd Cycle Transversal where tw(G − X) ≤ r = 2 is
best possible. For clique-width, an extended version of the above reduction rules out time O∗((4−ε)k),
where X is allowed to be a possibly large separator consisting of k (true) twinclasses, while the
treewidth of G − X remains r; this is proved also for the more general Deletion to r-Colorable
and it implies the same lower bound relative to clique-width. Further results complement what is
known for Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched
by existing and newly designed algorithms.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Parameterized complexity, lower bound, vertex cover, odd cycle transversal,
SETH, modulator, treedepth, cliquewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.17

Related Version Full Version: https://arxiv.org/abs/2107.06111 [27]

Funding Falko Hegerfeld: Partially supported by DFG Emmy Noether-grant (KR 4286/1).

1 Introduction

The goal of parameterized complexity is to leverage input structure to obtain faster algorithms
than in the worst case and to identify algorithmically useful structure. The most prominent
structural graph parameter treewidth measures the size of separators decomposing the graph.
Many problems admit fast algorithms relative to treewidth and we can often certify their
optimality assuming the Strong Exponential-Time Hypothesis (SETH) [7, 11, 12, 13, 43].

© Falko Hegerfeld and Stefan Kratsch;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hegerfeld@informatik.hu-berlin.de
https://orcid.org/0000-0003-2125-5048
mailto:kratsch@informatik.hu-berlin.de
https://orcid.org/0000-0002-0193-7239
https://doi.org/10.4230/LIPIcs.IPEC.2022.17
https://arxiv.org/abs/2107.06111
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Towards Exact Structural Thresholds for Parameterized Complexity

Such (conditional) optimality results allow us to conduct a precise study of the impact of
structure on the running time, whereas otherwise the currently best running time might be
an artifact due to the momentary lack of algorithmic tools and not inherent to the structure.

The structure captured by treewidth can be varied in several ways: In the sparse setting,
we may restrict the interplay of separators and/or allow additional connected components from
some graph class H; this yields notions such as treedepth as well as deletion resp. elimination
distance to H. In the dense setting, we may allow large and dense but structured separators;
this yields e.g. clique-width and rank-width. Conceptually, the difference between parameters
may be quite large: if the complexity of a problem changes between two parameters, then it
is difficult to pinpoint which structural feature has lead to the change in complexity.

We seek to delineate more exact structural thresholds between these parameters. This can
be done by designing algorithms relative to more permissible parameters or by establishing
the same lower bounds relative to more restrictive parameters. We focus on the latter
approach in a fine-grained setting, i.e., all considered problems can be solved in time O∗(ck)1

for some constant c and parameter k and we determine the precise value of the base c.
For parameters other than treewidth far fewer optimality results are known. In particular,

to the best of our knowledge, the only known fine-grained optimality results for NP-hard
problems relative to a deletion distance are for r-Coloring [35, 43], its generalization List
Homomorphism [52], and isolated results on Vertex Cover [33] and Connected Vertex
Cover [9]. The crux is that other lower bound proofs deal with more complex problems
(e.g., deletion of vertices, packing of subgraphs, etc.) by copying the same (type of) partial
solution over many noncrossing separators; this addresses several obstacles but makes the
approach unsuitable for deletion distance parameters (or even for treedepth). We show that
a much broader range of problems may admit such improved lower bounds by giving the new
tight lower bounds for vertex deletion problems such as Vertex Cover and Odd Cycle
Transversal relative to deletion distance parameters, in both sparse and dense settings.

Sparse Setting. Our main problem of study is Deletion to r-Colorable, i.e., delete as
few vertices as possible so that an r-colorable graph remains, which specializes to Vertex
Cover for r = 1 and to Odd Cycle Transversal for r = 2. The first parameterization
which we study is the size |X| of a modulator X ⊆ V (G), or deletion distance, to treewidth
r, i.e., tw(G − X) ≤ r. Our main result in the sparse setting is the following.

▶ Theorem 1.1. If there are r ≥ 2, ε > 0 such that Deletion to r-Colorable can be
solved in time O∗((r +1−ε)|X|), where X is a modulator to treewidth r, then SETH is false.2

The general construction for Deletion to r-Colorable, r ≥ 2, does not work for the case
r = 1, i.e., Vertex Cover, and we fill this gap by providing a simple ad-hoc construction
for Vertex Cover parameterized by a modulator to pathwidth 2.

▶ Theorem 1.2. If there is an ε > 0 such that Vertex Cover can be solved in time
O∗((2 − ε)|X|), where X is a modulator to pathwidth 2, then SETH is false.

These results improve the known lower bounds for Vertex Cover and Odd Cycle
Transversal parameterized by pathwidth and provide new tight lower bounds for r ≥ 3 as
a matching upper bound follows from generalizing the known algorithm for Odd Cycle
Transversal parameterized by treewidth. Note that in Theorem 1.1 the treewidth bound r

1 The O∗-notation suppresses factors that are polynomial in the input size.
2 We assume that an appropriate decomposition is given, thus strengthening the lower bounds.

F. Hegerfeld and S. Kratsch 17:3

is the same as the bound r on the number of colors. This treewidth bound, at least for r = 2,
and the pathwidth bound in Theorem 1.2 cannot be improved due to upper bounds obtained
by Lokshtanov et al. [44] for Vertex Cover and Odd Cycle Transversal parameterized
by an odd cycle transversal or a feedback vertex set. Lokshtanov et al. [43] asked if the
complexity of problems, other than r-Coloring (where a modulator to a single path is
already sufficient [35]), relative to treewidth could already be explained with parameterization
by feedback vertex set. As argued, this cannot be true for Vertex Cover and Odd Cycle
Transversal, so our results are essentially the next best explanation.

Furthermore, the previous two theorems also imply the same lower bound for parameteriz-
ation by treedepth3, thus yielding the first tight lower bounds relative to treedepth for vertex
selection problems and partially resolving a question of Jaffke and Jansen [35] regarding the
complexity relative to treedepth for problems studied by Lokshtanov et al. [43].

▶ Corollary 1.3. If there is an r ≥ 1 and an ε > 0 such that Deletion to r-Colorable
can be solved in time O∗((r + 1 − ε)td(G)), then SETH is false.

Dense Setting. Our results on deletion distances can actually be lifted to the dense setting.
We do so by considering twinclasses, which are arguably the simplest form of dense structure.
A twinclass is an equivalence class of the twin-relation, which says that two vertices u and
v are twins if N(u) \ {v} = N(v) \ {u}, i.e., u and v have the same neighborhood outside
of {u, v}. Given two distinct twinclasses, either all edges between them exist or none of
them do. Contracting each twinclass yields the quotient graph Gq and we obtain twinclass-
variants of the usual graph parameters treedepth, cutwidth, pathwidth, and treewidth by
measuring these parameters on the quotient graph Gq, e.g., the twinclass-pathwidth of G

is tc-pw(G) = pw(Gq). The parameters twinclass-pathwidth and twinclass-treewidth have
been studied before under the name modular pathwidth and modular treewidth [42, 47, 51].
Furthermore, we remark that the previously studied parameter neighborhood diversity satisfies
nd(G) = |V (Gq)| [41]. Relationships between parameters transfer to their twinclass-variants
and twinclass-pathwidth is more restrictive than linear-clique-width. Similarly, we obtain
twinclass-modulators, but we measure the complexity of the remaining components on the
level of the original graph, i.e., a twinclass-modulator (TCM) X to treewidth r is a family X
of twinclasses such that tw(G −

⋃
X∈X X) ≤ r. We can now state our second main result,

which, similarly to the sparse setting, also carries over to twinclass-treedepth.

▶ Theorem 1.4. If there are r ≥ 2, ε > 0 such that Deletion to r-Colorable can be
solved in time O∗((2r − ε)|X |), where X is a TCM to treewidth r, then SETH is false.

Additionally, it follows that if there are r ≥ 2, ε > 0 such that Deletion to r-
Colorable can be solved in time O∗((2r − ε)tc-td(G)), then SETH is false.

Due to the inequalities cw(G) ≤ tc-pw(G) + 3 and pw(G) ≤ td(G), cf. Lampis [42]
and Nešetřil and Ossona de Mendez [48], we see that cw(G) ≤ tc-td(G) + 3. Hence any
O∗(ccw(G))-time algorithm also implies a O∗(ctc-td(G))-time algorithm. Thus, the following
result, relying on standard techniques for dynamic programming on graph decompositions
such as the (min, +)-cover product, yields a tight upper bound complementing the previous
lower bounds.

3 If tw(G − X) ≤ t, then td(G) ≤ |X| + (t + 1) log2 |V |, cf. Nešetřil and Ossona de Mendez [48], and
O∗(ctd(G)) = O∗(c|X||V |(t+1) log2 c) = O∗(c|X|).

IPEC 2022

17:4 Towards Exact Structural Thresholds for Parameterized Complexity

▶ Theorem 1.5. Given a k-clique-expression µ for G, Deletion to r-Colorable on G

can be solved in time O∗((2r)k).4

There is no further lower bound result for Vertex Cover, since r + 1 = 2r for r = 1 and
hence Theorem 1.2 already yields a tight lower bound for the clique-width-parameterization.

Going into more detail, the twinclasses of the modulator in the construction for The-
orem 1.4 are true twinclasses, i.e., each twinclass induces a clique, and moreover they are of
size r (with a small exception). Intuitively, allowing for deletions, there are 2r possible sets of
at most r colors that can be assigned to a clique of size r, e.g., the empty set ∅ corresponds
to deleting the clique completely. Hence, our results essentially show that it is necessary and
optimal to go through all of these color sets for each twinclass in the modulator.

In contrast, consider the situation for r-Coloring where Lampis [42] has obtained tight
running times of O∗

((
r

⌊r/2⌋
)tc-tw(G)

)
when parameterized by twinclass-treewidth and of

time O∗((2r − 2)cw(G)) when parameterized by clique-width. Whereas the complexities for
r-Coloring vary between the twinclass-setting and clique-width, this is not the case for
Deletion to r-Colorable. The base

(
r

⌊r/2⌋
)

is due to the fact that without deletions only
color sets of the same size as the considered (true) twinclass can be attained and the most
sets are possible when the size is ⌊r/2⌋. For clique-width, a label class may induce more
complicated graphs than cliques or independent sets and the interaction between two label
classes may also be more intricate. Lampis [42] shows that the extremal cases of color sets ∅
and [r] = {1, . . . , r} can be handled separately, thus yielding the base 2r − 2 for clique-width.

Additional results. As separate results, we obtain the following four results:

▶ Theorem 1.6. Assuming the SETH, the following lower bounds hold:
Dominating Set cannot be solved in time O∗((4 − ε)tc-ctw(G)) for any ε > 0.
Total Dominating Set cannot be solved in time O∗((4 − ε)ctw(G)) for any ε > 0.
Maximum Cut cannot be solved in time O∗((2 − ε)|X|) for any ε > 0, where X is a
modulator to treewidth at most 2.
Kr-free Deletion cannot be solved in time O∗((2 − ε)|X|) for any ε > 0 and r ≥ 3,
where X is a modulator to treewidth at most r − 1.

The first result improves the parameterization of the tight lower bound for Dominating Set
obtained by Katsikarelis et al. [38] from linear-clique-width to twinclass-cutwidth. We prove
this by reducing Total Dominating Set parameterized by cutwidth to Dominating Set
parameterized by twinclass-cutwidth and providing a lower bound construction for Total
Dominating Set parameterized by cutwidth.

Lastly, the lower bound for Vertex Cover, Theorem 1.2, also implies tight lower bounds
for Maximum Cut and Kr-free Deletion, which again imply the same lower bounds
parameterized by treedepth. The former also partially answers a question of Jaffke and
Jansen [35], by being another problem considered by Lokshtanov et al. [43] whose running
time cannot be improved when parameterizing by treedepth instead of treewidth.

4 Jacob et al. [34] have simultaneously proven this upper and lower bound for the special case of Odd
Cycle Transversal, r = 2, parameterized by clique-width. Their construction also proves the lower
bound for linear-clique-width, but not for the more restrictive twinclass-treedepth or twinclass-modulator
like our construction.

F. Hegerfeld and S. Kratsch 17:5

Technical contribution. We start by recalling the standard approach of Lokshtanov et
al. [43] to proving tight lower bounds for problems parameterized by pathwidth at a high
level. Given a Satisfiability instance σ, the variables are partitioned into t groups of
constant size. For each variable group, a group gadget is constructed that can encode all
assignments of this variable group into partial solutions of the considered target problem.
The group gadget usually consists of a bundle of long path-like gadgets inducing a sequence of
disjoint separators. Further gadgets attached to these separators decode the partial solutions
and check whether the corresponding assignment satisfies some clause. Ideally, the path
gadgets are designed so that a partial solution transitions through a well-defined sequence
of states when viewed at consecutive separators. For most problems, the gadgets do not
behave this nicely though. For example, in Odd Cycle Transversal it is locally always
preferable to delete a vertex instead of not deleting it. Such behavior leads to undesired
state changes called cheats, but for appropriate path gadgets there can only be a constant
number of cheats on each path. By making the path gadgets long enough, one can then find
a region containing no cheats where we can safely decode the partial solutions.

For problems such as r-Coloring, all states are equally constraining and such cheats
do not occur, hence enabling us to prove the same lower bounds under more restrictive
parameters such as feedback vertex set. But for vertex deletion problems, like Odd Cycle
Transversal, these cheats do occur and pose a big issue when trying to compress the
path gadgets into a single separator X, since deletions in X are highly favorable. On a
single separator X such behavior means that one partial solution is dominating another
and if we cannot control this behavior, then we lose the dominated partial solution for the
purpose of encoding group assignments. Concretely, for Odd Cycle Transversal we
obtain dominating partial solutions by deleting further vertices in the single separator X.
The number of deletions is bounded from above by the budget constraint, but if we limit
the number of deletions in X, then we do not have 3|X| partial solutions anymore and the
construction may not be able to attain the desired base in the running time.

To resolve this issue we expand upon a technique of Cygan et al. [9] and construct an
instance with a slightly large parameter value, i.e., a slightly larger single separator X. Thus,
we can limit the number of deletions and are still able to encode sufficiently many group
assignments. More precisely, we consider only partial solutions with the same number of
deletions in X, hence only pairwise non-dominating partial solutions remain. We construct a
structure gadget to enforce a lower bound on the number of deletions in X. A positive side
effect is that the remaining gadgets can also leverage the structure of the partial solutions.

In the dense setting and especially for a higher number r of colors, this issue is amplified.
Here, we consider the states of twinclasses, instead of single vertices, in a partial solution.
For a twinclass, there is a hierarchy of dominating states: any state that does not delete all
vertices in the twinclass is dominated by a state that deletes further vertices in the twinclass.
For Deletion to r-Colorable, the maximum number of states is achieved on a true
twinclass of size r and we can partition the states into levels based on the number of deletions
they induce. Within each level, the states are pairwise non-dominating. Consequently, we
restrict the family of partial solutions so that for every level the number of twinclasses with
that level is fixed. This requires a considerably more involved construction of the structure
gadget which now has to distinguish states based on their level.

Related work. There is a long line of work relative to treewidth [2, 7, 11, 12, 15, 16, 17, 21, 39,
43, 46, 45, 49, 50] and all of these lower bounds, except for the result by Egri et al. [17], already
apply to pathwidth. In the sparse setting, there is further work on the parameterization by

IPEC 2022

17:6 Towards Exact Structural Thresholds for Parameterized Complexity

cutwidth [8, 26, 37, 45, 52, 53] and by feedback vertex set [43, 52]. We remark that the works
of van Geffen et al. [53] and Piecyk and Rzążewski [52] show that previous lower bounds
relative to pathwidth already hold for more restrictive parameterizations. In the dense
setting, there are some results [32, 34, 38, 42] on parameterization by clique-width and these
lower bounds already apply to linear-clique-width, but not to the more restrictive parameters
that we consider. The work by Iwata and Yoshida [32] also provides equivalences between
different lower bounds and works under a weaker assumption than SETH, unfortunately
their techniques blow up the modulator too much and are not applicable in our case. Finally,
the complexity of r-Coloring and the more general homomorphism problems has been
extensively studied [17, 21, 24, 35, 42, 49, 50, 52], only two of these articles [24, 42] consider
the dense setting. Jaffke and Jansen [35] closely study the complexity of r-Coloring
parameterized by the deletion distance to various graph classes F ; in particular, the base for
treewidth can already be explained by deletion distance to a single path.

On the algorithmic side, the study of heterogeneous parameterizations has been gaining
traction [3, 4, 18, 20, 19, 29, 36], yielding the notions of H-treewidth and H-elimination
distance, which is a generalization of treedepth. Currently, only few of these works [18, 36]
contain algorithmic results that are sufficiently optimized to apply to our fine-grained setting.
Jansen et al. [36] show that Vertex Cover can be solved in time O∗(2k) and Odd Cycle
Transversal in time O∗(3k) when parameterized by bipartite-treewidth. Eiben et al. [18]
show that Maximum Cut can be solved in time O∗(2k) when parameterized by Rw-treewidth,
where Rw denotes the graphs of rank-width at most w.

Another line of work is on depth-parameters in the dense setting [5, 14, 22, 23, 25, 28, 40]
such as shrub-depth and sc-depth. The algorithmic results relative to these parameters are
largely concerned with meta-results so far [5, 25] and their relation to clique-width is not
strong enough to preserve the complexity in our fine-grained setting.

Organization. We discuss the preliminaries and basic notation in Section 2. The relation-
ships between the considered parameters are discussed in Section 3. In Section 4, we give
an outline of our two main results: the lower bound for Deletion to r-Colorable in
the sparse setting and the dense setting. The algorithm for Deletion to r-Colorable
parameterized by clique-width is given in Section 5. We conclude in Section 6. Appendix A
contains the formal definitions of the considered problems. The remaining results, including
the missing proofs, can be found in the full version of the paper [27].·

2 Preliminaries

If n is a positive integer, we define [n] = {1, . . . , n}. If S is a set, we define P(S) = {T ⊆ S}
and if 0 ≤ k ≤ |S|, we define

(
S
k

)
= {T ⊆ S : |T | = k} and

(
S

≤k
)

= {T ⊆ S : |T | ≤ k} and(
S

≥k
)

analogously. If 0 ≤ k ≤ n, we define
(
n

≤k
)

= |
([n]

≤k
)
| and similarly

(
n

≥k
)
. If S is a set

family, we define
⋃

(S) =
⋃
S∈S S. If f : A → C is a function and B ⊆ A, then f

∣∣
B

denotes
the restriction of f to B. If f, g : A → B are two functions, we write f ≡ g if f(a) = g(a) for
all a ∈ A. If p is a boolean predicate, we let [p] denote the Iverson bracket of p, which is 1 if
p is true and 0 if p is false.

We use common graph-theoretic notation and assume that the reader knows the essentials
of parameterized complexity. Let G = (V, E) be an undirected graph. For a vertex set X ⊆ V ,
we denote by G[X] the subgraph of G that is induced by X. The open neighborhood of a
vertex v is given by N(v) = {u ∈ V : {u, v} ∈ E}, whereas the closed neighborhood is given by

F. Hegerfeld and S. Kratsch 17:7

N [v] = N(v)∪{v}. For sets X ⊆ V we define N [X] =
⋃
v∈X N [v] and N(X) = N [X]\X. For

two disjoint vertex subsets A, B ⊆ V , adding a join between A and B means adding all edges
between A and B. For a vertex set X ⊆ V , we define δ(X) = {{x, y} ∈ E : x ∈ X, y /∈ X}.

An r-coloring of a graph G = (V, E) is a function φ : V → [r] such that φ(u) ̸= φ(v) for
all {u, v} ∈ E. We say that G is r-colorable if there is an r-coloring of G. The chromatic
number of G, denoted by χ(G), is the minimum r such that G is r-colorable.

Quotients and twins. Let Π be a partition of V (G). The quotient graph G/Π is given by
V (G/Π) = Π and E(G/Π) = {{B1, B2} : ∃u ∈ B1, v ∈ B2 : {u, v} ∈ E(G)}. We say that two
vertices u, v are twins if N(u) \ {v} = N(v) \ {u}. The equivalence classes of this relation
are called twinclasses. More specifically, if N(u) = N(v), then u and v are false twins and
if N [u] = N [v], then u and v are true twins. Every twinclass of size at least 2 consists of
only false twins or only true twins. A false twinclass induces an independent set and a true
twinclass induces a clique. Let Πtc(G) be the partition of V (G) into twinclasses.

2.1 Graph Parameters
Sparse Parameters. The definition of treewidth, pathwidth, treedepth, and cutwidth are
standard and can be found in the full version. We will construct graphs that have small
treewidth except for one central part. This structure is captured by the concept of a modulator.
We say that X ⊆ V (G) is a modulator to treewidth/pathwidth r for G if tw(G − X) ≤ r or
pw(G − X) ≤ r, respectively.

Lifting to Twinclasses

We define the twinclass-treewidth, twinclass-pathwidth, twinclass-treedepth, and twinclass-
cutwidth of G by tc-tw(G) = tw(G/Πtc(G)), tc-pw(G) = pw(G/Πtc(G)), tc-td(G) =
td(G/Πtc(G)), and tc-ctw(G) = ctw(G/Πtc(G)), respectively. The parameters twinclass-
treewidth and twinclass-pathwidth have been considered before under the name modular
treewidth and modular pathwidth [42, 47, 51]. We prefer to use the prefix twinclass instead
of modular to distinguish from the case where one works with the quotient graph arising
from the modular partition of G.

▶ Definition 2.1. Let G = (V, E) be a graph. A twinclass-modulator (TCM) X ⊆ Πtc(G)
of G to treewidth r is a set of twinclasses of G such that tw(G −

⋃
(X)) ≤ r. The size of a

twinclass-modulator X is |X |, i.e., the number of twinclasses X contains.

Clique-Width

A labeled graph is a graph G = (V, E) together with a label function ℓ : V → N = {1, 2, 3, . . .}.
We say that a labeled graph is k-labeled if ℓ(v) ≤ k for all v ∈ V . For a label i, we denote by
Gi the subgraph induced by the vertices with label i, i.e. Gi = G[ℓ−1(i)]. We consider the
following three operations on labeled graphs: the union-operation union(G1, G2) constructs
the disjoint union of two labeled graphs G1 and G2; the relabel-operation labi→j(G) changes
the label of all vertices in G with label i to label j; the join-operation joini,j(G), i ̸= j, adds
all possible edges between vertices in G with label i and vertices in G with label j. As a
base case, we have the introduce-operation ini(v) which constructs a single-vertex graph
whose unique vertex v has label i. A valid expression that only consists of introduce-, union-,
relabel-, and join-operations is called a clique-expression. The labeled graph constructed by
a clique-expression µ is denoted G(µ). To a clique-expression µ we associate a syntax tree Tµ

IPEC 2022

17:8 Towards Exact Structural Thresholds for Parameterized Complexity

in the natural way and to each node t ∈ V (Tµ) the corresponding operation. For any node
t ∈ V (Tµ), the subtree rooted at t induces a subexpression µt and we define Gt = G(µt) as
the labeled graph constructed by µt.

We say that a clique-expression σ is a k-clique-expression or just k-expression if Gt

is k-labeled for all t ∈ V (Tµ). The clique-width of a graph G, denoted by cw(G), is the
minimum k such that there exists a k-expression µ such that G is isomorphic to G(µ) after
forgetting the labels. A clique-expression µ is linear if in every union-operation the second
graph consists only of a single vertex. Accordingly, we also define the linear-clique-width of a
graph G, denoted lin-cw(G), by only considering linear clique-expressions.

2.2 Strong Exponential-Time Hypothesis
For our lower bounds, we assume the Strong Exponential-Time Hypothesis (SETH) [31] which
concerns the complexity of q-Satisfiability, i.e., Satisfiability where all clauses contain
at most q literals. Let cq = inf{δ : q-Satisfiability can be solved in time O(2δn)} for all
q ≥ 3. The weaker Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [30] posits
that c3 > 0, whereas the Strong Exponential-Time Hypothesis states that limq→∞ cq = 1.
When proving lower bounds based on SETH, we make use of the following equivalent
formulations.

▶ Theorem 2.2 ([9]). The following statements are equivalent to SETH:
1. For all δ < 1, there is a clause size q such that q-Satisfiability cannot be solved in

time O(2δn), where n is the number of variables.
2. For all δ < 1, there is a set size q such that q-Hitting Set, i.e., all sets contain at most

q elements, cannot be solved in time O(2δn), where n is the universe size.

3 Relations between Parameters

In this section we discuss the relationships between the parameters considered in this article.

▶ Lemma 3.1 ([1], Chapter 6 of [48]). For any graph G, we have that tw(G) ≤ pw(G) ≤
td(G) − 1, td(G) ≤ (tw(G) + 1) log2 |V (G)|, tw(G) ≤ pw(G) ≤ ctw(G), and td(G) ≤
td(G − v) + 1 for any vertex v ∈ V (G). These inequalities come with algorithms that can
transform the appropriate decomposition in polynomial time.

▶ Corollary 3.2. For any graph G = (V, E) and c, r ∈ N, if there is a modulator X ⊆ V

to treewidth r, i.e., tw(G − X) ≤ r, then we have that td(G) ≤ |X| + (r + 1) log2 |V |. In
particular, we have that O∗(ctd(G)) ≤ O∗(c|X|) for all c ≥ 1. The decompositions can be
transformed in polynomial time.

Proof. Let X be a modulator to treewidth r for G. By Lemma 3.1, we see that td(G − X) ≤
(r + 1) log2 |V | for G − X. By repeatedly invoking the inequality td(G) ≤ td(G − v) + 1 for
v ∈ X, we obtain td(G) ≤ |X| + (r + 1) log2 |V |. To see the claim regarding the O∗-notation,
we compute O∗(ctd(G)) = O∗(c|X||V |(r+1) log2 c) = O∗(c|X|). ◀

▶ Theorem 3.3. Let G = (V, E) be a graph. We have the following two chains of inequalities:

cw(G) ≤ lin-cw(G) ≤ tc-pw(G) + 3 ≤ tc-td(G) + 2 ≤ td(G) + 2,

cw(G) ≤ lin-cw(G) ≤ tc-pw(G) + 3 ≤ tc-ctw(G) + 3 ≤ ctw(G) + 3.

F. Hegerfeld and S. Kratsch 17:9

Proof. Follows from [42, Lemma 2.1], Lemma 3.1 and the last inequalities in both rows
follow from the fact that G/Πtc(G) is a subgraph of G and that treedepth and cutwidth are
subgraph-monotone. ◀

▶ Lemma 3.4. Suppose that G admits a TCM X to treewidth r, then tc-td(G) ≤ |X | + (r +
1) log2 |V (G/Πtc(G))|. In particular, we have for any c ≥ 1 that O∗(ctc-td(G)) ≤ O∗(c|X |).
The decompositions can be transformed in polynomial time.

Proof. Since G/Πtc(G)−X is an induced subgraph of G−
⋃

(X), we see that tw(G/Πtc(G)−
X) ≤ tw(G −

⋃
(X)) ≤ r. The remainder of the proof is analogous to Corollary 3.2 by

working on the quotient graph G/Πtc(G). ◀

4 Outline of Main Result

We outline our two main results, i.e., tight lower bounds for Deletion to r-Colorable
parameterized by a (twinclass-)modulator to treewidth r. Conceptually, the constructions for
the sparse setting and for the dense setting are similar. The most significant change is in the
structure gadget, since we have to enforce a considerably more involved structure in the dense
setting. We give an overview of both settings and go into more detail for the dense case.

We fix the number of colors r ≥ 2. Solutions are functions φ : V (G) → [r] ∪ {⊥} so that
for every edge {u, v} ∈ E(G) either φ(u) = φ(v) = ⊥ or φ(u) ̸= φ(v). Hence, φ−1(⊥) is the
set of deleted vertices, whereas φ

∣∣
V (G)\φ−1(⊥) is an r-coloring of the remaining graph.

In both settings we want to simulate a logical OR constraint. For Odd Cycle Trans-
versal, i.e. r = 2, we can use odd cycles. For r ≥ 3, Theorem 4.1 provides an analogue,
where a graph H is (r + 1)-critical if χ(H) = r + 1 and χ(H − v) = r for all v ∈ V (H).

▶ Theorem 4.1 (proof in full version). There exists a family Hr of (r + 1)-critical graphs with
treewidth r such that for every s ∈ N, there exists a graph H ∈ Hr with s ≤ |V (H)| ≤ s + r.

Setup. Given a q-Satisfiability instance σ with n variables and m clauses, we start with
the following standard step [43]: we partition the variables into t = ⌈n/p0⌉ groups of size p0,
where p0 only depends on the running time base that we want to rule out. Furthermore, we
pick an integer p depending on p0 that represents the size of the groups in the graph.

4.1 Sparse Setting
Central vertices and solution structure. We construct a graph G that has a solution φ for
Deletion to r-Colorable with cost |φ−1(⊥)| ≤ b if and only if σ is satisfiable. Converting
from base r + 1 to base 2 implies that G should admit a modulator X to treewidth r of
size roughly n logr+1(2). Like Cygan et al. [9], we make the modulator slightly larger, thus
picking a larger p. The modulator X consists of t + 1 vertex groups: the first t groups Ui,
i ∈ [t], are independent sets of size p each and correspond to the variable groups; the last
group F is a clique of size r which simulates List Coloring constraints.

On each group Ui, we consider the set of partial solutions Φi = {φ : Ui → [r] ∪ {⊥} :
|φ−1(⊥)| = p/(r + 1)}. By picking p large enough, Φi is sufficiently large to encode all
assignments of the i-th variable group. Defining Φi in this way achieves two things: first,
the solutions in Φi are pairwise non-dominating; secondly, this fixes the budget used on
the modulator. The second point is important, because by also fixing the budget on the
remaining graph via a vertex-disjoint packing P of (r + 1)-critical graphs, no vertex of F can
be deleted, which allows us to simulate List Coloring constraints with the clique F .

IPEC 2022

17:10 Towards Exact Structural Thresholds for Parameterized Complexity

Structure gadgets. The next step is to enforce that only the solutions in Φi can be attained
on group Ui. By choosing the budget b appropriately, we obtain an upper bound on the
number of deletions in Ui. To obtain a lower bound, we construct the structure gadgets.
These are built by combining (r + 1)-critical graphs with the arrow gadget of Lokshtanov et
al. [43]. A (thin) arrow simply propagates a deletion from a vertex u to another vertex v; else
if u is not deleted, then v is not deleted and the arrow does not affect the remaining graph.

The structure gadget works as follows: if φ deletes less than p/(r + 1) vertices in group
Ui, then there is a subset S ⊆ Ui of size |S| = (|Ui| − p/(r + 1)) + 1 that avoids all deletions
in Ui. For every subset of this size, G contains a (r + 1)-critical graph Li,S with an arrow
from every u ∈ S to a private vertex v in Li,S , hence simulating an OR on the vertices in S.
Since S avoids all deletions of φ, no deletion is propagated to Li,S and φ must pay extra to
resolve Li,S . By copying each Li,S sufficiently often, we can ensure that the existence of a
deletion-avoiding S implies that φ must exceed our budget constraint.

Decode and verify. The remaining construction decodes the partial solution on the mod-
ulator X and verifies if the corresponding truth assignment satisfies all clauses of σ. One
could generalize the gadgets of Lokshtanov et al. [43] to higher r, but this leads to an
involved construction with a worse bound on the treewidth of the remainder: for Odd Cycle
Transversal the construction of Lokshtanov et al. has treewidth 4, whereas the simpler
construction we use has only treewidth 2. More details will be presented in the dense case.

4.2 Dense Setting
We now have a twinclass-modulator X to treewidth r instead of a basic modulator and this
changes the possible states as follows. Whereas φ could assume r + 1 different states on a
single vertex u, i.e., one of the r colors or deleting the vertex, there are 2r possible states on
a true twinclass U of size r; each corresponds to a possible value of φ(U) \ {⊥} ⊆ [r]. Since
U is a true twinclass, no color is used multiple times and the exact mapping φ

∣∣
U

is irrelevant.

Central twinclasses and setup. The twinclass-modulator X of the constructed graph G

consists of t + 1 groups and each group is a family of twinclasses. The first t groups Ui,
i ∈ [t], correspond to the variable groups and each consists of p true twinclasses of size r

that are pairwise non-adjacent. The last group contains the clique F .

Solution structure. Our family Φi of considered partial solutions on group Ui should achieve
the same two things as before. First, consider the structure of states of φ on a twinclass
U ∈ Ui precisely: fix a state C = φ(U) \ {⊥} and note that all states C ′ ⊊ C dominate C if
we disregard the budget constraint, i.e., φ remains a solution if we replace C by C ′. After
arranging the states into levels according to the number ℓ of deleted vertices, there is no
domination between states on the same level. This motivates the following definition.

▶ Definition 4.2 (informal). Given rationals 0 < cℓ < 1, ℓ ∈ {0} ∪ [r], with
∑r
ℓ=0 cℓ = 1, the

set Φi consists of solutions φ on the family of twinclasses Ui such that for every ℓ ∈ {0} ∪ [r]
there are exactly cℓ · |Ui| twinclasses U ∈ Ui where φ deletes exactly ℓ vertices in U .

Essentially, we are only restricting how the deletions can be distributed inside the modulator;
there are no restrictions on the used colors. This again fixes the budget used on the modulator,
allowing us to simulate List Coloring constraints with the clique F . By picking cℓ =

(
r
ℓ

)
2−r,

ℓ ∈ {0} ∪ [r], we ensure that Φi contains the solutions on Ui where all 2r states appear the

F. Hegerfeld and S. Kratsch 17:11

same number of times. This enables us to choose p small enough so that the time calculations
work out and simultaneously large enough so that an injective mapping κi : {0, 1}p0 → Φi,
mapping truth assignments of the i-th variable group to solutions in Φi, exists.

Thick arrows and structure gadgets. To enforce the structure of Φi, we need a gadget to
distinguish different number of deletions inside a twinclass. We can construct such a gadget
Aℓ(U, v), ℓ ∈ [r], also called thick ℓ-arrow. See Lemma 4.3 for the gadget’s behavior.

▶ Lemma 4.3 (informal). Let U be a set of r true twins and v be a vertex that is not adjacent
to U and ℓ ∈ [r]. There is a gadget A = Aℓ(U, v) of treewidth r with the following properties:

Any solution φ must delete at least ℓ vertices in A − U .
If a solution φ deletes exactly ℓ vertices in A − U , then φ can only delete v if φ deletes
at least ℓ vertices in U .

We proceed by constructing the structure gadgets which enforce that the partial solution
on Ui belongs to Φi. Let c<ℓ = c0 + · · · + cℓ−1 for all ℓ ∈ {0} ∪ [r]. For every group i ∈ [t],
number of deletions ℓ ∈ [r], set of twinclasses S ⊆ Ui with |S| = c<ℓ · p + 1, we add an
(r + 1)-critical graph Li,ℓ,S ∈ Hr consisting of at least |S| vertices. For every U ∈ S, we pick
a private vertex v in Li,ℓ,S and add the thick ℓ-arrow Aℓ(U, v). We create a large number of
copies of each Li,ℓ,S and the incident thick arrows.

The number of deletions in the central vertices is already bounded from above by the
budget constraint. If too few deletions occur in the twinclasses of Ui, then we can find an ℓ

and an S ⊆ Ui with |S| = c<ℓ · p + 1 such that less than ℓ vertices are deleted in each U ∈ S.
Hence, all thick ℓ-arrows leading to Li,ℓ,S and its copies cannot propagate deletions. To
resolve all these (r + 1)-critical graphs, one extra vertex per copy must be deleted. Due to
the large number of copies, this implies that we must violate our budget constraint.

Hence, for any S ⊆ Ui with |S| = c<ℓ · p + 1 and any solution φ obeying the budget
constraint there is at least one twinclass U ∈ S in which φ deletes at least ℓ vertices.
Therefore, there are at least (1 − c<ℓ)p twinclasses in Ui where φ deletes at least ℓ vertices.
Since this holds for all ℓ ∈ {0} ∪ [r] and the budget b is chosen appropriately, all inequalities
have to be tight and the deletions inside Ui follow the distribution imposed by Φi.

Color-set-gadgets and decoding gadgets. Next, we discuss the decoding part of the
construction. Since gadgets cannot read the color of single vertices but only of a whole
twinclass, we need color-set-gadgets to detect the colors used on a twinclass, cf. Lemma 4.4.

▶ Lemma 4.4 (informal). Let U be a set consisting of r true twins and v be a vertex that is
not adjacent to U and let C ⊊ [r]. There is a gadget B = BC(U, v) of treewidth r such that:

Any solution φ deletes at least (r − |C|) + 1 vertices in B − U .
If φ deletes exactly (r − |C|) + 1 vertices in B − U , then φ(v) = ⊥ only if φ(U) \ {⊥} ⊆ C.

To construct the color-set-gadgets we rely on the List Coloring constraints that are
simulated with the central clique F . Note that the color-set-gadgets only check for set
inclusion and not set equality. Using the structure of solutions in Φi however, the color-set-
gadgets will still be sufficient to distinguish the solutions in Φi from each other.

By using a complete (r + 1)-partite graph with all sets of the partition being singletons
except for one large independent set, we can simulate a logical AND, see Lemma 4.5.

IPEC 2022

17:12 Towards Exact Structural Thresholds for Parameterized Complexity

Ui Ui′

Li,1,Si,1
Li,1,S′

i,1

Li,2,Si,2
Li,2,S′

i,2...
...

Li′,1,Si′,1
Li′,1,S′

i′,1...

Li′,2,Si′,2
Li′,2,S′

i′,2...

A1 A2

Y j
i,φi

Y j
i,ψi

Y j′

i,φi
Y j′

i,ψi
Y j
i′,φi′ Y j

i′,ψi′ Y j′

i′,φi′ Y j′

i′,ψi′

color-set-gadgets BC

thick arrows AℓA1 A2

Zj Zj′
thin arrows

gadgets

gadgets

(attached to clique F)

twinclasses

gadgets

structure

decoding

clause

Figure 1 An overview of the construction for the dense setting in case of r = 2. The arrows point
in the direction that deletions are propagated by the corresponding gadget.

▶ Lemma 4.5 (informal). Let nY be a positive integer. There is a gadget Y of treewidth r

with a set of input vertices V ′ ⊆ V (Y), |V ′| = nY , and a vertex ŷ ∈ V (Y) \ V ′ such that:
Any solution φ has to delete at least one vertex in Y − V ′.
If φ deletes exactly one vertex in Y − V ′, then φ(ŷ) = ⊥ only if φ(V ′) = {⊥}.

For the j-th clause, variable group i ∈ [t], solution φi ∈ Φi, we invoke Lemma 4.5 to create a
gadget Y j

i,φi
for nY = (1 − cr)p = (1 − 2−r)p input vertices and with distinguished vertex

ŷji,φi
. For every twinclass U ∈ Ui with φi(U) ̸= [r], we pick a private input vertex v of Y j

i,φi

and add the color-set-gadget Bφi(U)\{⊥}(U, v). By Lemma 4.5, the vertex ŷji,φi
can only be

deleted if all input vertices of Y j
i,φi

are deleted. Due to Lemma 4.4 and the structure of Φi,
this will only be the case if φi is the partial solution on Ui.

Clause gadgets. For the j-th clause, we add an (r + 1)-critical graph Zj ∈ Hr consisting of
at least q2p0 vertices. For every group i ∈ [t] and solution φi ∈ Φi such that κ−1

i (φi) is a
partial truth assignment satisfying the j-th clause, we pick a private vertex v in Zj and add
a thin arrow from ŷji,φi

to v. The budget constraint will ensure that the only way to delete a
vertex in Zj is by propagating a deletion via a thin arrow from some ŷji,φi

. By construction of
the decoding and clause gadgets this is only possible if the partial solution on Ui corresponds
to a satisfying assignment of the j-th clause. This concludes the construction, cf. Figure 1.

Budget and packing. The budget b = b0 + costP of the constructed instance (G, b) consists
of two parts; b0 = trp/2 is allocated to the central twinclasses and matches the number of
deletions incurred by picking a partial solution φi ∈ Φi on Ui for each group i ∈ [t]; the second
part costP is due to a vertex-disjoint packing P which we describe next. A part of each thin
arrow in G is added to P and for every thick arrow, color-set-gadget, or decoding gadget, we
add the appropriate parts to P given by Lemmas 4.3, 4.4, 4.5, respectively. Summing up the
implied costs yields costP . Hence, we know how the deletions are distributed throughout the
various gadgets. In particular, this ensures that no vertex of the central clique F is deleted.

Theorem 1.4 follows by using these ideas and working out the remaining technical details.

5 Algorithm for Deletion to r-Colorable

In this section we describe how to solve Deletion to r-Colorable in time O∗((2r)k) if
we are given a k-expression µ for G. We perform bottom-up dynamic programming along
the syntax tree Tµ. We again view solutions to Deletion to r-Colorable as functions
φ : V (G) → [r] ∪ {⊥} with the property discussed in the outline, cf. Section 4.

F. Hegerfeld and S. Kratsch 17:13

▶ Theorem 5.1. Given a k-expression µ for G, Deletion to r-Colorable on G can be
solved in time O∗((2r)k).

Proof. Let (G, b) be a Deletion to r-Colorable instance and µ a k-expression for G.
We can without of loss of generality assume that µ consists of O(|V (G)|) union-operations
and O(|V (G)|k2) unary operations [6]. For every node t ∈ V (Tµ) and label i, we store the
set of colors used on Gi

t. After deleting the appropriate vertices, the remaining graph should
be r-colorable, hence the possible color sets are precisely the subsets of [r], where ∅ indicates
that all vertices are deleted. Since we use at most k labels at every node, this yields (2r)k
possible types of partial solutions at each node. If the work for each type is only polynomial,
then the claimed running time immediately follows, since there are only a polynomial number
of nodes in V (Tµ).

For every t ∈ V (Tµ) and f : [k] → P([r]), we consider the set of partial solutions

Qt[f] = {φ : V (Gt) → [r] ∪ {⊥} : φ induces an r-coloring of Gt − φ−1(⊥) and
φ(V (Gi

t)) \ {⊥} = f(i) for all i ∈ [k]}

and we want to compute the quantity At[f] = min{|φ−1(⊥)| : φ ∈ Qt[f]}. Let t0 be the root
node of the k-expression µ. We answer yes if there is an f such that At0 [f] ≤ b; otherwise
we answer no.

Note that f(i) = ∅ implies φ(V (Gi
t)) = {⊥} for all φ ∈ Qt[f], i.e., all vertices with label

i are deleted. Furthermore, the definition of Qt[f] implies that Qt[f] = ∅ and At[f] = ∞
whenever |f(i)| > |V (Gi

t)| for some i ∈ [k], we will not explicitly mention this edge case again
in what follows and assume that the considered f satisfy |f(i)| ≤ |V (Gi

t)| for all i ∈ [k]. We
proceed by presenting the recurrences to compute At[f] for all t and f and afterwards show
the correctness of these recurrences.

Base case. If t = ini(v) for some i ∈ [k], then At[f] = [f(i) = ∅], because the solution cost
is 1 if v is deleted and 0 otherwise.

Relabel case. If t = labi→j(Gt′) for some i ̸= j ∈ [k] and where t′ is the child of t, then

At[f] = min{At′ [f ′] : f ′(a) = f(a) for all a ∈ [k] \ {i, j} and f ′(i) ∪ f ′(j) = f(j)}.

By assumption, f ′ will always satisfy f ′(i) = ∅ here, since there are no vertices with label i

in Gt′ . This recurrence goes over all ways how the colors f ′(j) used for vertices with label j

in Gt′ can be split among the vertices with label i and j in the previous graph Gt. Observe
that we are taking the minimum over at most (2r)2 = O(1) numbers on the right-hand side,
hence this recurrence can be computed in polynomial time.

Join case. If t = joini,j(Gt′) for some i ̸= j ∈ [k], where t′ is the child of t, and assuming
without loss of generality that V (Gi

t′) ̸= ∅ and V (Gj
t′) ̸= ∅, then

At[f] =
{

At′ [f] if f(i) ∩ f(j) = ∅,

∞ else.

This recurrence filters out all partial solutions where the coloring properties are not satisfied
at some newly added edge. This happens precisely when f(i) ∩ f(j) ̸= ∅, because then there
exists an edge in the join between label i and j whose endpoints get the same color.

IPEC 2022

17:14 Towards Exact Structural Thresholds for Parameterized Complexity

Union case. If t = union(Gt1 , Gt2) where t1 and t2 are the children of t, then

At[f] = min{At1 [f1] + At2 [f2] : f1(a) ∪ f2(a) = f(a) for all a ∈ [k]}.

Here, we assume that ∞ + x = x + ∞ = ∞ + ∞ = ∞ for all x ∈ N. This recurrence goes for
each label a ∈ [k] over all ways how the color set f(a) can be split among the vertices with
label a in the first graph Gt1 and in the second graph Gt2 .

This recurrence can be computed for all f simultaneously in time O∗((2r)k) by turning
it into an appropriate cover product in the min-sum semiring as follows. We interpret
the functions of the form f : [k] → P([r]) as subsets of [k] × [r] in the following way:
S(f) = {(i, c) : i ∈ [k], c ∈ f(i)}. Observe that f1(a)∪f2(a) = f(a) for all a ∈ [k] is equivalent
to S(f1) ∪ S(f2) = S(f). Now, At can be considered as a function P([k] × [r]) → [n] and the
recurrence of the union case is the (min, +)-cover product of At1 and At2 . By [10, Theorem
10.17] we can compute all values of At in time 2kr(kr)O(1) · O(n log n log log n) = O∗((2r)k).

Correctness. We prove the correctness by bottom-up induction along the syntax tree Tµ.
In the base case Gt only consists of the single vertex v and we can either delete v or assign
some color to v. Together with the edge case handling, this is implemented by the formula
for the base case.

For the relabel case, notice that Gt = Gt′ , V (Gi
t) = ∅, V (Gj

t) = V (Gi
t′) ∪ V (Gj

t′), and
V (Ga

t) = V (Ga
t′) for all a ∈ [k] \ {i, j}. Let f ′ be a candidate in the recurrence of At[f] and

φ′ ∈ Qt′ [f ′] be a minimizer in the definition of At′ [f ′], then we also have that φ′ ∈ Qt[f]
since φ′(V (Gj

t)) \ {⊥} = (φ′(V (Gi
t′)) \ {⊥}) ∪ (φ′(V (Gj

t′)) \ {⊥}) = f ′(i) ∪ f ′(j) = f(j).
Hence, the recurrence is an upper bound on At[f].

In the other direction, let φ be a minimizer in the definition of At[f] and consider f ′ with
f ′(a) = φ(V (Ga

t′)) \ {⊥} for all a ∈ [k]. Then f ′ satisfies f ′(i) ∪ f ′(j) = f(j) and φ ∈ Qt′ [f ′],
so f ′ is also considered in the recurrence and the recurrence is a lower bound on At[f].

For the join case, notice that for φ′ ∈ Qt′ [f] ⊇ Qt[f] it holds that φ′ ∈ Qt[f] if and only
if φ′(V (Gi

t′)) ∩ φ′(V (Gj
t′)) ⊆ {⊥}.

For the union case, a feasible solution φ of Gt induces feasible solutions φ1 of Gt1 and φ2
of Gt2 such that φ1(V (Ga

t)) ∪ φ2(V (Ga
t)) = φ(V (Ga

t)) for all a ∈ [k] and vice versa. ◀

This algorithm has a straightforward extension that can also handle polynomially large
vertex costs in running time O∗((2r)k). For even larger costs it is not clear how to compute
the table entries for the union nodes quickly enough.

6 Conclusion

Our main results are the two lower bounds for Deletion to r-Colorable, which apply also
to parameterization by treewidth resp. cliquewidth but use much more restrictive structure;
this greatly refines what was known for Odd Cycle Transversal, i.e. r = 2, and gives
new tight bounds for r ≥ 3. In particular, beyond the above-mentioned examples, these
are further natural problems where a small modulator to a simple graph class (of constant
treewidth) is as hard as small treewidth. Surprisingly perhaps, something even stronger
holds for clique-width: To get the tight lower bound, a modulator with few (true) twinclasses
suffices, i.e., we need neither a sequence of disjoint separators nor complex dense structure.
For Dominating Set, only the latter was established: twinclass-cutwidth rather than
cliquewidth suffices to take us from base 3 in the running time to base 4.

F. Hegerfeld and S. Kratsch 17:15

Such results bring several benefits: (1) Rather than e.g. getting only the isolated result
of (conditional) complexity of a problem relative to treewidth, we get a much larger range of
input structure that exhibits the same tight complexity. (2) At the same time, by aiming for
maximally restricted lower bound structure, we get a much better understanding of what
structure makes a given problem hard. This in turn helps to focus efforts at faster algorithms
through (even) stronger structural restrictions on the input.

An immediate follow-up question is whether there are improved algorithms for Deletion
to r-Colorable when G − X has treewidth less than r; so far, this is known only for
Odd Cycle Transversal, but we think such algorithms exist in general. We observe that
any construction relying on (r + 1)-critical graphs must have treewidth at least r, hence
improving upon the treewidth of our construction requires a fundamentally different idea.

Similarly, is there a meaningful restriction of (linear) clique-width, for which Lampis’ [42]
lower bound for r-Coloring already holds? Much more broadly, what other classes of
problems exhibit the same lower bound as for treewidth already relative to deletion distance
to a sparse graph class? Are there problems where this jump in complexity happens later, say,
for treedepth, for some elimination distance, or only for treewidth/pathwidth? E.g., what is
the complexity of Dominating Set relative to deletion distances, and the complexity relative
to treedepth may be an interesting stepping stone? Similarly, to what generality do we get
the same lower bound as for clique-width already relative to, e.g., twinclass-pathwidth?

References
1 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.

Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.
2 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over

tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium
on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.IPEC.2016.8.

3 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3.

4 Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7.

5 Yijia Chen and Jörg Flum. Fo-definability of shrub-depth. In Maribel Fernández and Anca
Muscholl, editors, 28th EACSL Annual Conference on Computer Science Logic, CSL 2020,
January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages 15:1–15:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CSL.2020.15.

6 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret.
Appl. Math., 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

7 Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting
hamiltonian cycles via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1080–1099. SIAM, 2018. doi:10.1137/1.9781611975031.70.

8 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

9 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016. doi:10.1145/2925416.

IPEC 2022

https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.4230/LIPIcs.CSL.2020.15
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1145/2925416

17:16 Towards Exact Structural Thresholds for Parameterized Complexity

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

13 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.

14 Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of
graphs. Eur. J. Comb., 90:103186, 2020. doi:10.1016/j.ejc.2020.103186.

15 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. New algorithms for mixed dominat-
ing set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. URL: http://dmtcs.episciences.
org/7407.

16 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight
algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271–
291, 2022. doi:10.1016/j.tcs.2022.05.013.

17 László Egri, Dániel Marx, and Pawel Rzazewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

18 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. J. Comput. Syst. Sci., 121:57–75,
2021. doi:10.1016/j.jcss.2021.04.005.

19 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. Discret. Appl. Math., 248:153–167, 2018. doi:10.1016/j.dam.2017.09.018.

20 Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving problems on graphs of high
rank-width. Algorithmica, 80(2):742–771, 2018. doi:10.1007/s00453-017-0290-8.

21 Jacob Focke, Dániel Marx, and Pawel Rzazewski. Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder,
editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9–12, 2022, pages 431–458. SIAM, 2022.
doi:10.1137/1.9781611977073.22.

22 Jakub Gajarský and Stephan Kreutzer. Computing shrub-depth decompositions. In Christophe
Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of
Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of
LIPIcs, pages 56:1–56:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.STACS.2020.56.

23 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation – 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September
4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer Science, pages
163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1145/3506707
https://doi.org/10.1016/j.ejc.2020.103186
http://dmtcs.episciences.org/7407
http://dmtcs.episciences.org/7407
https://doi.org/10.1016/j.tcs.2022.05.013
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1016/j.dam.2017.09.018
https://doi.org/10.1007/s00453-017-0290-8
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://doi.org/10.1007/978-3-319-03898-8_15

F. Hegerfeld and S. Kratsch 17:17

24 Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov.
The fine-grained complexity of graph homomorphism parameterized by clique-width. In
Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,
France, volume 229 of LIPIcs, pages 66:1–66:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.66.

25 Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1), 2019.
doi:10.23638/LMCS-15(1:7)2019.

26 Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight bounds for
counting colorings and connected edge sets parameterized by cutwidth. In Petra Berenbrink
and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of
Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference),
volume 219 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.STACS.2022.36.

27 Falko Hegerfeld and Stefan Kratsch. Towards exact structural thresholds for parameterized
complexity. CoRR, abs/2107.06111, 2021. arXiv:2107.06111.

28 Petr Hlinený, O-joung Kwon, Jan Obdrzálek, and Sebastian Ordyniak. Tree-depth and
vertex-minors. Eur. J. Comb., 56:46–56, 2016. doi:10.1016/j.ejc.2016.03.001.

29 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances, blocking
sets, and kernels for vertex cover. In Christophe Paul and Markus Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 36:1–36:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.36.

30 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

32 Yoichi Iwata and Yuichi Yoshida. On the equivalence among problems of bounded width. In
Nikhil Bansal and Irene Finocchi, editors, Algorithms – ESA 2015 – 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes
in Computer Science, pages 754–765. Springer, 2015. doi:10.1007/978-3-662-48350-3_63.

33 Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural paramet-
erizations with modulator oblivion. Algorithmica, 84(8):2335–2357, 2022. doi:10.1007/
s00453-022-00971-7.

34 Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback
vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International
Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021,
Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.21.

35 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors,
Algorithms and Complexity – 10th International Conference, CIAC 2017, Athens, Greece, May
24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 345–356,
2017. doi:10.1007/978-3-319-57586-5_29.

36 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 1757–1769. ACM, 2021. doi:10.1145/3406325.3451068.

IPEC 2022

https://doi.org/10.4230/LIPIcs.ICALP.2022.66
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.4230/LIPIcs.STACS.2022.36
http://arxiv.org/abs/2107.06111
https://doi.org/10.1016/j.ejc.2016.03.001
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-662-48350-3_63
https://doi.org/10.1007/s00453-022-00971-7
https://doi.org/10.1007/s00453-022-00971-7
https://doi.org/10.4230/LIPIcs.IPEC.2021.21
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1145/3406325.3451068

17:18 Towards Exact Structural Thresholds for Parameterized Complexity

37 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph
decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.
tcs.2019.08.006.

38 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight
bounds, and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90–117, 2019.
doi:10.1016/j.dam.2018.11.002.

39 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized
d-scattered set. Discret. Appl. Math., 308:168–186, 2022. doi:10.1016/j.dam.2020.03.052.

40 O-joung Kwon, Rose McCarty, Sang-il Oum, and Paul Wollan. Obstructions for bounded
shrub-depth and rank-depth. J. Comb. Theory, Ser. B, 149:76–91, 2021. doi:10.1016/j.
jctb.2021.01.005.

41 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

42 Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math.,
34(3):1538–1558, 2020. doi:10.1137/19M1280326.

43 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

44 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014. doi:10.1145/2566616.

45 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.95.

46 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by
treewidth and list size (but counting is hard). CoRR, abs/2110.09369, 2022. To appear at
IPEC 2022. arXiv:2110.09369.

47 Stefan Mengel. Parameterized compilation lower bounds for restricted CNF-formulas. In
Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing
– SAT 2016 – 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
volume 9710 of Lecture Notes in Computer Science, pages 3–12. Springer, 2016. doi:10.1007/
978-3-319-40970-2_1.

48 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

49 Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1–74:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

50 Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of the graph homomorphism
problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508, 2021. doi:10.1137/
20M1320146.

51 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF for-
mulas of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016. doi:10.1007/
s00453-015-0030-x.

https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.1016/j.jctb.2021.01.005
https://doi.org/10.1016/j.jctb.2021.01.005
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1137/19M1280326
https://doi.org/10.1145/3170442
https://doi.org/10.1145/2566616
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
http://arxiv.org/abs/2110.09369
https://doi.org/10.1007/978-3-319-40970-2_1
https://doi.org/10.1007/978-3-319-40970-2_1
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.1007/s00453-015-0030-x
https://doi.org/10.1007/s00453-015-0030-x

F. Hegerfeld and S. Kratsch 17:19

52 Marta Piecyk and Pawel Rzazewski. Fine-grained complexity of the list homomorphism
problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin Monmege,
editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs,
pages 56:1–56:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.STACS.2021.56.

53 Bas A. M. van Geffen, Bart M. P. Jansen, Arnoud A. W. M. de Kroon, and Rolf Morel. Lower
bounds for dynamic programming on planar graphs of bounded cutwidth. J. Graph Algorithms
Appl., 24(3):461–482, 2020. doi:10.7155/jgaa.00542.

A Problem Definitions

Vertex Cover
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set Y ⊆ V , |Y | ≤ b, such that G−Y contains no edges, i.e., χ(G−Y) ≤ 1?

Odd Cycle Transversal
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set Y ⊆ V , |Y | ≤ b, such that G − Y is bipartite, i.e., χ(G − Y) ≤ 2?

Deletion to r-Colorable
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set Y ⊆ V , |Y | ≤ b, such that χ(G − Y) ≤ r?

Satisfiability
Input: A boolean formula σ in conjunctive normal form.

Question: Is there a satisfying assignment τ for σ?

q-Satisfiability
Input: A boolean formula σ in conjunctive normal form with clauses of size at most q.

Question: Is there a satisfying assignment τ for σ?

q-Hitting Set
Input: An universe U and a set family F over U of sets of size at most q and an integer t.

Question: Is there a set H ⊆ U , |H| ≤ t, such that H ∩ S ̸= ∅ for all S ∈ F?

IPEC 2022

https://doi.org/10.4230/LIPIcs.STACS.2021.56
https://doi.org/10.4230/LIPIcs.STACS.2021.56
https://doi.org/10.7155/jgaa.00542

17:20 Towards Exact Structural Thresholds for Parameterized Complexity

r-Coloring
Input: An undirected graph G = (V, E).

Question: Is χ(G) ≤ r?

List r-Coloring
Input: An undirected graph G = (V, E), lists Λ(v) ⊆ [r] for all v ∈ V .

Question: Is there an r-Coloring φ : V → [r] of G such that φ(v) ∈ Λ(v) for all v ∈ V ?

Maximum Cut
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set Y ⊆ V , such that |δ(Y)| ≥ b?

H-free Deletion
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set Y ⊆ V , |Y | ≤ b, such that G − Y is H-free?

Dominating Set
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set X ⊆ V , |X| ≤ b, such that N [X] = V ?

Total Dominating Set
Input: An undirected graph G = (V, E) and an integer b.

Question: Is there a set X ⊆ V , |X| ≤ b, such that
⋃

v∈X
N(v) = V ?

(b, r)-center
Input: An undirected graph G = (V, E) and an integers b and r.

Question: Is there a set X ⊆ V , |X| ≤ b, such that every vertex v ∈ V is at most at distance
r to X?

Hardness of Interval Scheduling on Unrelated
Machines
Danny Hermelin !

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Yuval Itzhaki !

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Hendrik Molter !

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Dvir Shabtay !

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
We provide new (parameterized) computational hardness results for Interval Scheduling on
Unrelated Machines. It is a classical scheduling problem motivated from just-in-time or lean
manufacturing, where the goal is to complete jobs exactly at their deadline. We are given n jobs
and m machines. Each job has a deadline, a weight, and a processing time that may be different on
each machine. The goal is find a schedule that maximizes the total weight of jobs completed exactly
at their deadline. Note that this uniquely defines a processing time interval for each job on each
machine.

Interval Scheduling on Unrelated Machines is closely related to coloring interval graphs
and has been thoroughly studied for several decades. However, as pointed out by Mnich and van
Bevern [Computers & Operations Research, 2018], the parameterized complexity for the number m

of machines as a parameter remained open. We resolve this by showing that Interval Scheduling
on Unrelated Machines is W[1]-hard when parameterized by the number m of machines. To this
end, we prove W[1]-hardness with respect to m of the special case where we have parallel machines
with eligible machine sets for jobs. This answers Open Problem 8 of Mnich and van Bevern’s
list of 15 open problems in the parameterized complexity of scheduling [Computers & Operations
Research, 2018].

Furthermore, we resolve the computational complexity status of the unweighted version of
Interval Scheduling on Unrelated Machines by proving that it is NP-complete. This answers
an open question by Sung and Vlach [Journal of Scheduling, 2005].

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → W hierarchy; Theory of computation → Scheduling algorithms

Keywords and phrases Just-in-time scheduling, Parallel machines, Eligible machine sets, W[1]-
hardness, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.18

Funding Supported by the ISF, grant No. 1070/20.

1 Introduction

In scheduling problems, we wish to assign jobs to machines in order to maximize a certain
optimization objective while respecting certain constraints. In many traditional scheduling
settings, jobs can be scheduled to start at any point in time and then need a given processing

© Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Dvir Shabtay;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermelin@bgu.ac.il
mailto:ityuval@bgu.ac.il
mailto:molterh@post.bgu.ac.il
mailto:dvirs@bgu.ac.il
https://doi.org/10.4230/LIPIcs.IPEC.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Hardness of Interval Scheduling on Unrelated Machines

time to be completed. However, in a typical interval scheduling problem, each job can be
processed only in a fixed time interval, or sometimes in a set of time intervals, that may vary
from machine to machine [16, 17]. Many different variations of interval scheduling have been
considered and investigated [1, 2, 4, 5, 6, 7, 27].

In interval scheduling in its most basic form, we are given a set of n jobs and a set of m

identical parallel machines that each can process one job at a time. Each job has a processing
time, a deadline, and a weight, and shall be processed such that it finishes exactly at its
deadline. This uniquely defines an interval for each job in which it can be processed. A
schedule assigns a subset of the jobs to machines. Unassigned jobs are rejected. We call a
schedule feasible if no two jobs with overlapping processing time intervals are assigned to the
same machine. The goal is to find a feasible schedule that maximizes the weighted number
of scheduled jobs.1

This setting corresponds to the concept of just-in-time (JIT) or lean manufacturing that
revolutionized industrial production processes in the 1980s and 1990s [18, 23, 26, 30, 31].
Herein, the main goal is to provide and receive goods precisely when they are needed in order
to reduce storage costs and wastage. The first implementation of this manufacturing paradigm
is attributed to the Japanese automobile company Toyota and is sometimes also called Toyota
Production System (TPS) [23, 26]. Naturally, just-in-time and interval scheduling in many
different variants has received much attention from the research community since the late
1980s until today [1, 3, 4, 5, 6, 7, 9, 13, 19, 20, 25, 27, 28].

The basic form of interval scheduling as described above is known to be solvable in
polynomial time [2, 7, 8, 9, 13]. It is closely related to the classical problems of finding
maximum independent sets in interval graphs and coloring interval graphs [8, 11, 24, 32].
The jobs of an interval scheduling instance naturally define an interval graph with vertex
weights. For example, if there is only one machine, then interval scheduling is equivalent
to finding a maximum weight independent set in an interval graph. Coloring an interval
graph or, more specifically, computing its chromatic number is equivalent to determining the
minimum number of machines necessary to schedule all jobs.

In our work, we investigate several natural generalizations and variants of interval schedul-
ing and answer some longstanding open questions about their (parameterized) computational
complexity.

The first problem we consider in this paper is Interval Scheduling on Eligible
Machines, a natural generalization of the basic interval scheduling problem we introduced
earlier. Here, each job additionally has a set of eligible machines and each job can only be
assigned to a machine in this set in a feasible schedule. Arkin and Silverberg [2] proved in
1987 that Interval Scheduling on Eligible Machines is strongly NP-hard and can be
solved in O(mnm+1) time. In terms of parameterized complexity, Arkin and Silverberg [2]
showed that Interval Scheduling on Eligible Machines is in XP when parameterized
by the number m of machines. However, they left open whether Interval Scheduling
on Eligible Machines also admits an FPT-algorithm for parameter m. Mnich and van
Bevern [22] included this question as Open Problem 8 in their 2018 list of 15 open problems
in the parameterized complexity of scheduling. We answer this question negatively in our
first main contribution of this paper.

1 In the standard three field notation for scheduling problems of Graham [12] this problem is sometimes
denoted by P | pj = dj − rj |

∑
j

wjUj , or P ||
∑

j
wjEj , or P || JIT. We give a more formal definition

in Section 2.

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:3

▶ Theorem 1. Interval Scheduling on Eligible Machines is strongly2 W[1]-hard
when parameterized by the number m of machines.

A natural and well-studied generalization of Interval Scheduling on Eligible Ma-
chines is Interval Scheduling on Unrelated Machines. In the latter, the processing
time of each job can be machine-dependent whereas the deadline stays the same on all
machines. Furthermore, each job is eligible on all machines. This definition stems from the
just-in-time motivation, where each job should be finished exactly at its deadline but on
different machines it may take different times to complete the job. We mention in passing
that if both processing times and deadlines can be machine-dependent, the problem becomes
NP-hard on two machines [17, 27]. Sung and Vlach [28] showed that Interval Scheduling
on Unrelated Machines can also be solved in O(mnm+1) time, generalizing the result of
Arkin and Silverberg [2]. Mnich and van Bevern [22] asked in Open Problem 8 for an FPT-
algorithm for Interval Scheduling on Eligible Machines parameterized by the number
m of machines as a first step towards finding an FPT-algorithm for Interval Scheduling
on Unrelated Machines parameterized by m. However, Theorem 1 naturally implies
that Interval Scheduling on Unrelated Machines presumably also does not admit an
FPT-algorithm for the number m of machines as a parameter.

▶ Corollary 2. Interval Scheduling on Unrelated Machines is strongly W[1]-hard
when parameterized by the number m of machines.

We point out that all known hardness reductions for Interval Scheduling on Un-
related Machines require job weights, raising the question whether the weights play an
integral role in the computational complexity of the problem. Unweighted Interval
Scheduling on Unrelated Machines is the natural special case of Interval Schedul-
ing on Unrelated Machines where all jobs have weight one. Sung and Vlach [28] asked in
2005 to resolve the computational complexity status of Unweighted Interval Scheduling
on Unrelated Machines. We give an answer to this in our second main contribution.

▶ Theorem 3. Unweighted Interval Scheduling on Unrelated Machines is NP-
complete.

We remark that our reduction for Theorem 3 does not imply hardness for the unweighted
version of Interval Scheduling on Eligible Machines. We leave this open for future
research. An additional immediate question that we leave open for future research is whether
Unweighted Interval Scheduling on Unrelated Machines admits an FPT-algorithm
for the number m of machines as a parameter.

With Theorem 1, Corollary 2, and Theorem 3 we answer fundamental longstanding
open questions concerning the (parameterized) computational complexity of natural interval
scheduling problems. For Interval Scheduling on Eligible Machines and Interval
Scheduling on Unrelated Machines, our results together with the XP-containment
results from Arkin and Silverberg [2] and Sung and Vlach [28], respectively, essentially
resolve their parameterized complexity classification for the number m of machines as a
parameter. We point out that all considered problem variants are known to be fixed-parameter
tractable when parameterized by the number n of jobs. This can be shown with a simple
reduction to Multicolored Independent Set on Interval Graphs parameterized

2 A parameterized problem is strongly W[1]-hard if it remains W[1]-hard when all numbers are encoded
unarily.

IPEC 2022

18:4 Hardness of Interval Scheduling on Unrelated Machines

by the number of colors, which is known to be fixed-parameter tractable [4, 5]. Hence, we
make an important further step towards fully understanding the parameterized complexity
of several basic and natural interval scheduling problems. We remark that our results also
imply that Multicolored Independent Set on Interval Graphs is W[1]-hard when
parameterized by the maximum number of vertices of any color.

The rest of the paper is organized as follows: we give formal definitions of all problems in
Section 2. We prove Theorem 1 and Corollary 2 in Section 3 and we prove Theorem 3 in
Section 4. We conclude with future research directions in Section 5.

2 Problem Setting

The first problem we consider is Interval Scheduling on Eligible Machines. Here, we
have a set of n jobs {j1, j2, . . . , jn} and a set of m machines {i1, i2, . . . , im} that each can
process one job at a time. Each job j has a processing time pj , a deadline dj , a weight wj ,
and a set of eligible machines Mj ⊆ {i1, i2, . . . , im}. Job j can be processed in exactly one
fixed time interval (dj − pj , dj], specified by its processing time and deadline, that is the
same on each of its eligible machines. A schedule is a mapping from jobs to machines. More
formally, a schedule is a function σ : {j1, j2, . . . , jn} → {i1, i2, . . . , im, ⊥}. If for job j we have
σ(j) = i (with i ̸= ⊥), then job j is scheduled to be processed on machine i. If for job j we
have σ(j) = ⊥, then job j is not scheduled, that is, it is not assigned to any machine. We say
that two jobs j, j′ are in conflict on a machine i if (dj − pj , dj] ∩ (dj′ − pj′ , dj′] ̸= ∅, that is,
the processing time intervals corresponding to jobs j and j′ on machine i overlap. A schedule
σ is feasible if there is no pair of jobs j, j′ with σ(j) = σ(j′) = i ̸= ⊥ that is in conflict on
machine i and each job is mapped to one of its eligible machines. The goal is to find a feasible
schedule that maximizes the weighted number of scheduled jobs W =

∑
j|σ(j)̸=⊥ wj . In the

standard three field notation for scheduling problems of Graham [12] Interval Scheduling
on Eligible Machines is sometimes denoted by P | Mj , pj = dj − rj |

∑
j wjUj , or

P | Mj |
∑

j wjEj , or P | Mj | JIT.
The second problem we consider is Interval Scheduling on Unrelated Machines.

Here, for each job j the processing time pi,j can depend on machine i whereas the deadline
dj is the same on all machines. Hence, the processing time interval of job j on machine i is
(dj −pi,j , dj]. Moreover, the all jobs are eligible on all machines, that is, Mj = {i1, i2, . . . , im}
for all jobs j. In the standard three field notation for scheduling problems of Graham [12]
Interval Scheduling on Unrelated Machines is sometimes denoted by R | pj =
dj − rj |

∑
j wjUj , or R ||

∑
j wjEj , or R || JIT.

Finally, the third problem we consider is Unweighted Interval Scheduling on
Unrelated Machines, the unweighted version of Interval Scheduling on Unrelated
Machines. Here, we have that wj = 1 for all jobs j. In the standard three field notation for
scheduling problems of Graham [12] Unweighted Interval Scheduling on Unrelated
Machines is sometimes denoted by R | pj = dj − rj |

∑
j Uj , or R ||

∑
j Ej , or R | wj = 1 |

JIT.

3 W[1]-Hardness of Interval Scheduling on Eligible Machines

In this section, we prove Theorem 1 from which Corollary 2 follows directly. To prove
Theorem 1, we present a parameterized polynomial-time reduction from Multicolored
Clique parameterized by the number of colors to Interval Scheduling on Eligible
Machines parameterized by the number m of machines. In Multicolored Clique, we

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:5

j
(ℓ,ℓ′)
v j

(ℓ,ℓ′)
w

j
(ℓ)
v

j
(1)
v
. . .

j
(ℓ′)
v

. . .
j

(k)
v

j
(ℓ′)
w

j
(1)
w
. . .

j
(ℓ)
w
. . .

j
(k)
w

j{u,w}

Figure 1 Illustration of the edge selection machine for color combination ℓ, ℓ′ with ℓ < ℓ′. Depicted
are intervals of jobs relating to v ∈ Vℓ, w ∈ Vℓ′ , and e = {v, w} ∈ E. Gray intervals correspond to
jobs that are not eligible on the machine.

are given a k-partite graph G = (V1 ⊎ V2 ⊎ . . . ⊎ Vk, E), we are asked whether G contains a
clique of size k. The k vertex parts V1, V2, . . . , Vk are called colors. Multicolored Clique
parameterized by k is known to be W[1]-hard [10].

Given an instance of Multicolored Clique, we construct an instance of Interval
Scheduling on Eligible Machines as follows.

▶ Construction 1. Let G = (V1 ⊎ V2 ⊎ . . . ⊎ Vk, E) be a k-partite graph with nG vertices.
Assume we have some total ordering <π over V := V1 ⊎ V2 ⊎ . . . ⊎ Vk such that for all v ∈ Vℓ

and w ∈ Vℓ′ we have that if ℓ < ℓ′ then v <π w. Let π(v) denote the ordinal position of
v ∈ V in the ordering <π.

In the following, we describe the jobs and specify their processing times, deadlines and
weights. Then we describe the machines and the eligible machine sets for the jobs. In order
to describe the weights more easily, we introduce the following three values: c1 = nG + 1,
c2 = (k − 1)nGc1 + nG + 1, and c3 = (knG + k2nG)nGc2 + 1. We create the following jobs:

For each vertex v ∈ V , we create k vertex jobs j
(1)
v , j

(2)
v , . . . , j

(k)
v , where one of the vertex

jobs corresponds to the color of v and the k − 1 other vertex jobs correspond to the other
k − 1 colors.
Let v ∈ Vℓ. The processing time of j

(ℓ)
v (the vertex job corresponding to the same color

as v) is k + 2, the deadline of j
(ℓ)
v is (k + 2)π(v) + 1, and the weight of j

(ℓ)
v is one.

The processing time of j
(ℓ′)
v with ℓ′ ̸= ℓ (vertex jobs corresponding to a different color

than v) is one, the deadline of j
(ℓ′)
v with ℓ′ ≠ ℓ is (k + 2)π(v) − ℓ′, and the weight of j

(ℓ′)
v

with ℓ′ ̸= ℓ is c1.
For each edge e = {v, w} ∈ E with v ∈ Vℓ, w ∈ Vℓ′ , and ℓ < ℓ′, we create one edge job
je with processing time (k + 2)(π(w) − π(v)) − ℓ + ℓ′, deadline (k + 2)π(w) − ℓ − 1, and
weight c2(π(w) − π(v)) + c3.
For each color combination ℓ, ℓ′ with ℓ < ℓ′ we create |Vℓ| + |Vℓ′ | color combination jobs,
one for each v ∈ Vℓ and one for each w ∈ Vℓ′ .
Let v ∈ Vℓ, we create a job j

(ℓ,ℓ′)
v with processing time (k + 2)π(v) − ℓ′ − 2, deadline

(k + 2)π(v) − ℓ′ − 1, and weight c2π(v).
Let w ∈ Vℓ′ , we create a job j

(ℓ,ℓ′)
w with processing time (k + 2)(nG − π(w)) + ℓ + 2,

deadline (k + 2)nG + 2, and weight c2(nG − π(w)).

We create m =
(

k
2
)

+ 1 machines i1, i2, . . . , i(k
2)+1. We call the first

(
k
2
)

machines edge
selection machines (one machine for each color combination) and we call the remaining
machine validation machine.

Consider color combination ℓ, ℓ′ with ℓ < ℓ′ and let i be the corresponding edge selection
machine.

IPEC 2022

18:6 Hardness of Interval Scheduling on Unrelated Machines

.

j
(ℓ)
v

j
(1)
v

. . .
j

(ℓ′)
v

. . .
j

(k)
v

j
(ℓ)
u

j
(1)
u

. . .
j

(ℓ′)
u

. . .
j

(k)
u

j
(ℓ)
w

j
(1)
w

. . .
j

(ℓ′)
w

. . .
j

(k)
w

Figure 2 Illustration of the validation machine. Depicted are intervals of jobs corresponding to
vertices v, u, w ∈ Vℓ with v <π u <π w.

For each vertex v ∈ Vℓ we add machine i to the set of eligible machines of job j
(ℓ′)
v and of

job j
(ℓ,ℓ′)
v .

For each vertex w ∈ Vℓ′ we add machine i to the set of eligible machines of job j
(ℓ)
w and

of job j
(ℓ,ℓ′)
w .

For each edge e = {v, w} ∈ E with v ∈ Vℓ and w ∈ Vℓ′ we add machine i to the set of
eligible machines of job je.

We give an illustration of the edge selection machines in Figure 1. Finally, consider the
validation machine i(k

2)+1. We add the validation machine to the set of eligible machines of
all vertex jobs. We give an illustration of the validation machine in Figure 2.

This finishes our construction of the Interval Scheduling on Eligible Machines
instance. We first show that given a clique of size k in G, we can create a feasible schedule
for the constructed instance such that the total weight of scheduled jobs attains at least a
certain value.

▶ Lemma 4. Let G be an instance of Multicolored Clique. Let I be the Interval
Scheduling on Eligible Machines instance computed from G as specified by Construc-
tion 1. If G contains a clique of size k, then there is a feasible schedule σ for I such that for
the total weight W of scheduled jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k.

Proof. Let G = (V1 ⊎V2 ⊎. . .⊎Vk, E) be an instance of Multicolored Clique and consider
the corresponding Interval Scheduling on Eligible Machines instance specified by
Construction 1. Assume there is a clique X of size k in G. Then we schedule the following
jobs.

For color combination ℓ, ℓ′ with ℓ < ℓ′ let {v} = X ∩ Vℓ and {w} = X ∩ Vℓ′ . Since X is a
clique in G, we know that e = {v, w} ∈ E. On edge selection machine i corresponding to
color combination ℓ, ℓ′ we schedule the following jobs: je, j

(ℓ,ℓ′)
v , j

(ℓ,ℓ′)
w , j

(ℓ′)
v , and j

(ℓ)
w . By

construction of the instance, the intervals of the jobs are non-intersecting on the machine
i, and machines i is in the eligible set of the four jobs. Hence, scheduling these jobs on
machine i yields a feasible schedule. Furthermore, it accounts for weight c3 + nGc2 + 2c1
of scheduled jobs per color combination.
Summing over all color combinations, we obtain weight

(
k
2
)
c3 +

(
k
2
)
nGc2 + k(k − 1)c1.

Note that for each {v} = X ∩ Vℓ we have scheduled all vertex jobs j
(ℓ′)
v with ℓ ̸= ℓ′.

On the validation machine i(k
2)+1 we schedule the following jobs. Let {v} = X ∩ Vℓ,

then we schedule vertex job j
(ℓ)
v . Note that this job is only in conflict with vertex jobs

j
(ℓ′)
v with ℓ ≠ ℓ′, which are scheduled on the edge selection machines. Furthermore, we

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:7

schedule all jobs j
(ℓ′)
w with v ̸= w ∈ Vℓ and ℓ ̸= ℓ′. By construction, all these jobs can be

scheduled on machine i(k
2)+1 without conflicts and all these jobs have machine i(k

2)+1 in
their set of eligible machines.
For all colors, this accounts for weight (nG − k)(k − 1)c1 + k of scheduled jobs.

Clearly, we have that the constructed schedule is feasible. Furthermore, it is straightfor-
ward to check that the total weight of scheduled jobs in this constructed schedule is W . ◀

Before we show a similar statement for the opposite direction, we make an observation
about feasible schedules in Interval Scheduling on Eligible Machines instances from
Construction 1. We show that we can assume that any feasible schedule where the total
weight of scheduled jobs is at least

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k schedules exactly one

edge job on each edge selection machine.

▶ Observation 5. Let I be an instance of Interval Scheduling on Eligible Machines
resulting from applying Construction 1 to some k-partite graph G. Let σ be a feasible schedule
such that for the total weight W of scheduled jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k.

Then exactly
(

k
2
)

edge jobs are scheduled, one on each edge selection machine.

Proof. We first show that no feasible schedule with total weight W ≥
(

k
2
)
c3 +

(
k
2
)
nGc2 + (k −

1)nGc1 + k of scheduled jobs can schedule more than
(

k
2
)

edge jobs. Let ℓ, ℓ′ with ℓ < ℓ′ be a
color combination. On the edge selection machine corresponding to color combination ℓ, ℓ′

we have that all edge jobs corresponding to edges that do not connect vertices of colors ℓ and
ℓ′ are not eligible. Furthermore, all edge jobs corresponding to edges that connect vertices of
colors ℓ and ℓ′ are pairwise in conflict. It follows that on each edge selection machine, at
most one edge job can be scheduled. Hence, any feasible schedule can schedule at most

(
k
2
)

edge jobs, one on each edge selection machine.
We next show that any feasible schedule with W ≥

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k

needs to schedule at least
(

k
2
)

edge jobs. Assume we have a feasible schedule that schedules
(strictly) less than

(
k
2
)

edge jobs. Note that each edge job has weight at least c3. Furthermore,
there are at most knG + k2nG jobs that are not edge jobs and those jobs each have weight
at most nGc2. Let σ be a feasible schedule that does not schedule all edge jobs and let W be
the total weight of all jobs scheduled by σ. Let W ⋆ denote the sum of weights of all jobs
that are not edge jobs. Then we have

W < (
(

k

2

)
− 1)c3 + W ⋆ <

(
k

2

)
c3.

Hence, the observation follows. ◀

Now we are ready to show how to construct a clique of size k from a feasible schedule
where the total weight of scheduled jobs is at least

(
k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k.

▶ Lemma 6. Let G be an instance of Multicolored Clique. Let I be the Interval
Scheduling on Eligible Machines instance computed from G as specified by Construc-
tion 1. If there is a feasible schedule σ for I such that for the total weight W of scheduled
jobs we have

W ≥
(

k

2

)
c3 +

(
k

2

)
nGc2 + (k − 1)nGc1 + k,

then G contains a clique of size k.

IPEC 2022

18:8 Hardness of Interval Scheduling on Unrelated Machines

Proof. Let G = (V1 ⊎V2 ⊎. . .⊎Vk, E) be an instance of Multicolored Clique and consider
the corresponding Interval Scheduling on Eligible Machines instance specified by
Construction 1. Assume we have a feasible schedule σ such that the for the total weight W

of scheduled jobs we have W ≥
(

k
2
)
c3 +

(
k
2
)
nGc2 + (k − 1)nGc1 + k. We construct a clique of

size k in G as follows.
By Observation 5 we know that σ schedules one edge job on each edge selection machine.

We can also observe that on the validation machine, only vertex jobs are eligible and can
be scheduled. Note that the sum of weights of all vertex jobs is (k − 1)nGc1 + nG, which is
strictly smaller than c2.

Assume that edge job je is scheduled on the edge selection machine i corresponding to
color combination ℓ, ℓ′ with ℓ < ℓ′. Then by construction, e = {v, w} ∈ E with v ∈ Vℓ and
w ∈ Vℓ′ . Now by construction of the instance, two color combination jobs can be scheduled
on machine i, one for a vertex of color ℓ and one for a vertex of color ℓ′. In order to obtain a
weight of scheduled jobs of at least c3 + nGc2 it is necessary that jobs j

(ℓ,ℓ′)
v and j

(ℓ,ℓ′)
w are

scheduled (note that the weights of je, j
(ℓ,ℓ′)
v , and j

(ℓ,ℓ′)
w sum up to exactly c3 + nGc2). Any

other selection of color combination jobs to schedule either results in a weight that is lower by
at least c2 or in an infeasible schedule. Now, by construction, the only further jobs that can
be scheduled are j

(ℓ′)
v and j

(ℓ)
w . It follows that the maximum weight achievable on any edge

selection machine is c3 + ngc2 + 2c1. Since
(

k
2
)
2c1 < c2, it follows that for each edge selection

machine corresponding to color combination ℓ, ℓ′ with ℓ < ℓ′ we have the following: one edge
job je for e = {v, w} with v ∈ Vℓ and w ∈ Vℓ′ is scheduled and the two color combination
jobs j

(ℓ,ℓ′)
v and j

(ℓ,ℓ′)
w are scheduled.

We can conclude that the jobs scheduled on all edge selection machines have a total
weight of at least

(
k
2
)
c3 +

(
k
2
)
nGc2. Hence, there are additional jobs scheduled that have a

total weight of (k − 1)nGc1 + k on the validation machine.
Since no additional edge jobs or color combination jobs can be scheduled, we have that

all (k − 1)nG vertex jobs j
(ℓ′)
v with v ∈ Vℓ and ℓ ̸= ℓ′ (having weight c1 > nG) are scheduled.

Furthermore, at least k vertex jobs j
(ℓ)
v with v ∈ Vℓ (having weight one) are scheduled.

Let X be the set of vertices in G such that if v ∈ X and v ∈ Vℓ, the job j
(ℓ)
v is scheduled.

We claim that X is a clique of size at least k in G.
By construction we have that |X| ≥ k, assume for contradiction that X is not a clique

in G. Then there are two vertices v, w ∈ X such that e = {v, w} /∈ E. Let v ∈ Vℓ and
w ∈ Vℓ′ . Then, in particular, vertex jobs j

(ℓ′)
v and j

(ℓ)
w cannot be scheduled on the validation

machine, since they are in conflict with vertex jobs j
(ℓ)
v and j

(ℓ′)
w , respectively. However, as

observed above, vertex jobs j
(ℓ′)
v and j

(ℓ)
w can only be scheduled on the edge selection machine

corresponding to color combination ℓ, ℓ′ if there is edge job je with e = {v, w} scheduled on
that machine, a contradiction to the assumption that e = {v, w} /∈ E. ◀

Finally, we have all ingredients to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we show that Construction 1 is parameterized
polynomial-time reduction from Multicolored Clique parameterized by the number of
colors to Interval Scheduling on Eligible Machines parameterized by the number m

of machines. First, it is easy to observe that given an instance of Multicolored Clique,
the Interval Scheduling on Eligible Machines instance specified by Construction 1
can be computed in polynomial time. Furthermore, if k is the number of colors in the
Multicolored Clique instance, then the number of machines in the constructed Interval

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:9

Scheduling on Eligible Machines instance is m =
(

k
2
)

+ 1. Lastly, observe that all
weights in the constructed Interval Scheduling on Eligible Machines instance are in
n

O(1)
G (where nG is the number of vertices in the Multicolored Clique instance).

The correctness of the reduction follows from Lemmas 4 and 6. Since Multicolored
Clique parameterized by the number of colors is W[1]-hard [10], we have that Theorem 1
follows. ◀

4 NP-Hardness of Unweighted Interval Scheduling on Unrelated
Machines

In this section we prove Theorem 3. The containment of Unweighted Interval Schedul-
ing on Unrelated Machines in NP is easy to see, hence we focus on proving NP-hardness.
To this end, we present a polynomial-time many-one reduction from Exact (3,4)-SAT to
Unweighted Interval Scheduling on Unrelated Machines. In Exact (3,4)-SAT
we are given a Boolean formula ϕ in conjunctive normal form where every clause has exactly
three literals and every variable appears in exactly four clauses, and are asked whether ϕ has
a satisfying assignment. Exact (3,4)-SAT is known to be NP-hard [29].

Given such a formula ϕ, we construct an instance I of Unweighted Interval Schedul-
ing on Unrelated Machines as follows.

▶ Construction 2. Let ϕ be a Boolean formula in conjunctive normal form where every
clause has exactly three literals and every variable appears in exactly four clauses. Let α

be the number of variables in ϕ and let β be the number of clauses in ϕ. We construct an
instance I of Unweighted Interval Scheduling on Unrelated Machines as follows.

We first describe the jobs, then we define an ordering of the jobs and use it to specify
their deadlines. Lastly, we describe the processing times of the jobs on the different machines.
We create the following jobs.

For every variable x, we create two variable jobs: xT and xF .
For every clause c, we create three clause jobs: c1, c2, and c3.
We create 2α + 2β dummy jobs.

We next define an ordering π of the jobs, which we will use to define the deadlines of the
jobs. To this end, we partition the jobs into the following sets.

Let T = {xT | x is a variable in ϕ}.
Let F = {xF | x is a variable in ϕ}.
Let P = {cℓ | the ℓth literal of clause c of ϕ is non-negated}.
Let N = {cℓ | the ℓth literal of clause c of ϕ is negated}.
Let D be the set of dummy jobs.

Now we define π as a total ordering of the jobs such that

D ≺ N ≺ F ≺ P ≺ T,

and the jobs within the sets are ordered in an arbitrary but fixed way. Let π(j) denote the
ordinal position of job j in π. For each job j, we set

dj = π(j).

We next describe the machines, more specifically, the processing times of all jobs on each
of the machines. We first introduce α variable selection machines, one for each variable in ϕ.
Let x be a variable in ϕ, then we introduce a machine where the processing time of variable

IPEC 2022

18:10 Hardness of Interval Scheduling on Unrelated Machines

...
...

D

...
...

N

... xF
j...

F

...
...

P

...
xT

i...

T

Figure 3 Illustration of the job intervals on the variable selection machine for variable x. On this
machine only one of jobs xT and xF (bold) can be scheduled alongside with one dummy job.

job xT is π(xT) − 2α − 2β and the processing time of variable job xF is π(xF) − 2α − 2β. We
set the processing times of all other jobs to their respective deadlines. We give an illustration
of the variable selection machines in Figure 3.

Next, we introduce 2β clause selection machines, two for each clause in ϕ. Let c be a
clause in ϕ, then we introduce two machines where the processing times of c1, c2, and c3 are
π(c1) − 2α − 2β, π(c2) − 2α − 2β, and π(c3) − 2α − 2β, respectively. We set the processing
times of all other jobs to their respective deadlines. We give an illustration of the clause
selection machines in Figure 4.

Furthermore, we have α validation machines, one for each variable in ϕ. Let x be a
variable in ϕ, then we introduce a machine where

the processing time of xT is π(xT) − π(xF) + 1,
the processing time of xF is π(xF) − 2α − 2β,
if x appears in the ℓth literal of clause c, then the processing time of cℓ is one, and
processing times of all other jobs are set to their respective deadlines.

We give an illustration of the validation machines in Figure 5.

This finishes our construction of the Unweighted Interval Scheduling on Unre-
lated Machines instance. We first show that given a satisfying assignment for ϕ, we can
create a feasible schedule for the constructed instance such all jobs are scheduled.

▶ Lemma 7. Let ϕ be an instance of Exact (3,4)-SAT. Let I be the Unweighted
Interval Scheduling on Unrelated Machines instance computed from ϕ as specified
by Construction 2. If ϕ is satisfiable, then there is a feasible schedule σ for I such that all
jobs are scheduled.

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:11

...
...

D

... c3...

N

...
...

F

c1...

...

...
c2

P

...
...

T

Figure 4 Illustration of the job intervals on the clause selection machine for clause c. On this
machine only one of the jobs c1, c2 and c3 (bold) can be scheduled alongside with one dummy job.

Proof. Let ϕ be an instance of Exact (3,4)-SAT and consider the corresponding Un-
weighted Interval Scheduling on Unrelated Machines instance specified by Con-
struction 2. Assume there is a satisfying assignment for ϕ. Then we schedule the jobs as
follows.

We first describe on which machine we schedule each variable job. Let x be a variable in
ϕ. If x is set to true in the satisfying assignment, we schedule variable job xT on the variable
selection machine corresponding to x and we schedule variable job xF on the validation
machine corresponding to x. Otherwise, we schedule variable job xF on the variable selection
machine corresponding to x and we schedule variable job xT on the validation machine
corresponding to x.

Next, we describe on which machine to schedule each clause job. Let c be a clause in
ϕ. Let clause c be satisfied by its ℓth literal (if multiple literals satisfy the clause, pick one
of them arbitrarily). Let x be the variable appearing in the ℓth literal of c. We schedule
clause job cℓ on the validation machine corresponding to x. We schedule clause jobs cℓ′ with
ℓ′ ∈ {1, 2, 3} \ {ℓ} on the two clause selection machines corresponding to c, respectively.

Lastly, notice that the number of dummy jobs equals the number of machines. For each
dummy job we arbitrarily choose a distinct machine and schedule it on this machine.

In the constructed schedule, we clearly schedule each job. We next show that the schedule
is feasible.

Notice that on each variable selection machine and each clause selection machine we
schedule exactly two jobs, one dummy job and one variable job of the variable corresponding
to the variable selection machine or, respectively, one clause job of the clause corresponding
to the clause selection machine. Since the processing time intervals of the variable jobs of

IPEC 2022

18:12 Hardness of Interval Scheduling on Unrelated Machines

...
...

D

c′′
3...

...

...
c′′′

1

N

...
xF

...

F

c1...

...

...
c′

2

P

...
xT

...

T

Figure 5 Illustration of the job intervals on the validation machine for variable x for the case that
x appears in clauses c and c′ non-negated in positions one and two, respectively, and that x appears
in clauses c′′ and c′′′ negated in positions three and one, respectively. Processing time intervals of
jobs that do not conflict with dummy jobs on this machine are depicted in bold.

variables corresponding to the variable selection machines start at 2α + 2β and the deadline
of each dummy job is at most 2α + 2β, the schedules for the variable selection machines are
feasible. Analogously, the schedules for the clause selection machines are feasible.

It remains to show that the schedules for the validation machines are feasible. Notice
that by construction, the variable jobs and clause jobs that are potentially scheduled on a
validation machine cannot conflict with any dummy job. Furthermore, the variable jobs that
are potentially scheduled on a validation machine cannot conflict with each other. We have
the same for the clause jobs.

Hence, the only way to obtain an infeasible schedule is if a variable job and a clause job
are in conflict. Assume the variable xT is scheduled (the case of variable job xF is analogous)
and clause job cℓ is scheduled and the two jobs are in conflict. Note that this implies that
we are dealing with the validation machine for variable x. By construction of the schedule,
this means that variable x is set to false in the satisfying assignment. However, the jobs cℓ

and xT are in conflict on the validation machine for x (and the job of cℓ is not in conflict
with the dummy jobs) if x appears non-negated in the ℓth literal of clause c. Furthermore,
by construction of the schedule, we have that clause c is satisfied by its ℓth literal. This is a
contradiction to x being set to false in the satisfying assignment. ◀

Now we show how to construct a satisfying assignment from a feasible schedule where all
jobs are scheduled.

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:13

▶ Lemma 8. Let ϕ be an instance of Exact (3,4)-SAT. Let I be the Unweighted
Interval Scheduling on Unrelated Machines instance computed from ϕ as specified
by Construction 2. If there is a feasible schedule σ for I such that all jobs are scheduled, then
ϕ is satisfiable.

Proof. Let ϕ be an instance of Exact (3,4)-SAT and consider the corresponding Un-
weighted Interval Scheduling on Unrelated Machines instance specified by Con-
struction 2. Assume we have a feasible schedule for the constructed instance such that all
jobs are scheduled. We construct a satisfying assignment for ϕ as follows.

First, observe that by construction, the at most one dummy job can be scheduled on each
machine. Since the number of dummy jobs equals the number of machines, we have that on
each machine exactly one dummy job is scheduled. This means that on each machine no
non-dummy jobs that conflict with a dummy job (that is, jobs with processing time equal to
their deadline) can be scheduled.

We can further observe that on the variable selection machine of variable x, apart from a
dummy job, only the variable job xT or the variable job xF can be scheduled. Since the two
jobs conflict, they cannot both be scheduled. We assume w.l.o.g. that exactly one of the two
jobs is scheduled. If the variable job xT is scheduled, we set variable x to true, otherwise we
set variable x to false. In the remainder, we show that this yields a satisfying assignment
for ϕ.

Assume for contradiction that ϕ is not satisfied by the constructed assignment. Then there
is a clause c in ϕ such that none of its literals are satisfied. Consider the three clause jobs c1,
c2, and c3 associated with the three literals in clause c. Each of these three jobs can only be
scheduled (without creating a conflict with a dummy job) on the clause selection machines
corresponding to c, and the validation machine corresponding to the variable appearing
in the respective literal of the clause c. Since we only have two clause selection machines,
at least one of the clause jobs c1, c2, and c3 has to be scheduled on a validation machine.
Assume c1 is scheduled on a validation machine (the case of c2 and c3 is symmetric). Let x

be the variable appearing in the first literal of c. Assume the variable job xT is scheduled
on the variable selection machine corresponding to x (the case where the variable job xF is
scheduled is symmetric). Then the variable job xF has to be scheduled on the validation
machine corresponding to x, since on all other machines it is in conflict with all dummy jobs.
However, by construction of the validation machines, the clause job c1 and the variable job
xF can only both be scheduled on the validation machine corresponding to x if setting x to
true satisfies the first literal of c, a contradiction to the assumption that c is not satisfied. ◀

Finally, we have all ingredients to prove Theorem 3.

Proof of Theorem 3. To prove Theorem 3, we show that Construction 2 is polynomial-time
many-one reduction from Exact (3,4)-SAT to Unweighted Interval Scheduling
on Unrelated Machines. First, it is easy to observe that given an instance of Exact
(3,4)-SAT, the Unweighted Interval Scheduling on Unrelated Machines instance
specified by Construction 2 can be computed in polynomial time. The correctness of the
reduction follows from Lemmas 7 and 8. Since Exact (3,4)-SAT is NP-hard [29], we have
that Theorem 3 follows. ◀

IPEC 2022

18:14 Hardness of Interval Scheduling on Unrelated Machines

5 Conclusion

We proved that Interval Scheduling on Eligible Machines and its generalization
Interval Scheduling on Unrelated Machines are W[1]-hard when parameterized by
the number m of machines, and that Unweighted Interval Scheduling on Unrelated
Machines is NP-complete, answering two open questions by Mnich and van Bevern [22]
and Sung and Vlach [28], respectively. With this, we contribute to the understanding of the
(parameterized) computational complexity of basic and natural interval scheduling problems.

Our results leave two main open questions. Our NP-hardness proof for Unweighted
Interval Scheduling on Unrelated Machines does not imply NP-hardness of Un-
weighted Interval Scheduling on Eligible Machines, which leaves the following
question.

▶ Open Question 1. What is the computational complexity of Unweighted Interval
Scheduling on Eligible Machines?

Furthermore, the reduction used in our NP-hardness proof for Unweighted Interval
Scheduling on Unrelated Machines uses an unbounded number of machines, and hence
does not imply W[1]-hardness of Unweighted Interval Scheduling on Unrelated
Machines when parameterized by the number m of machines. Hence, we have the following
question.

▶ Open Question 2. What is the parameterized complexity of Unweighted Interval
Scheduling on Unrelated Machines when parameterized by the number m of machines?

Lastly, we want to point out that the parameterized reduction we use to prove that In-
terval Scheduling on Eligible Machines and Interval Scheduling on Unrelated
Machines are W[1]-hard when parameterized by the number m of machines roughly squares
the parameter. More precisely, we reduce from Multicolored Clique parameterized
by the number k of colors and for the number m of machines in the produced Interval
Scheduling on Eligible Machines / Interval Scheduling on Unrelated Machines
instances we have m ∈ O(k2). This implies that assuming the Exponential Time Hypothesis
(ETH) [14, 15], that there are no f(m)(n + m)o(

√
m) algorithms for Interval Scheduling

on Eligible Machines and Interval Scheduling on Unrelated Machines for any
function f [21]. However, the best known algorithms have running time (n + m)O(m) [2, 28].
Hence, there is still a gap between the upper and lower bound.

References
1 Enrico Angelelli, Nicola Bianchessi, and Carlo Filippi. Optimal interval scheduling with a

resource constraint. Computers & Operations Research, 51:268–281, 2014.
2 Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and end times.

Discrete Applied Mathematics, 18(1):1–8, 1987.
3 Kenneth R Baker and Gary D Scudder. Sequencing with earliness and tardiness penalties: a

review. Operations Research, 38(1):22–36, 1990.
4 Matthias Bentert, René van Bevern, and Rolf Niedermeier. Inductive k-independent graphs

and c-colorable subgraphs in scheduling: a review. Journal of Scheduling, 22(1):3–20, 2019.
5 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval scheduling

and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015.
6 René van Bevern, Rolf Niedermeier, and Ondřej Suchỳ. A parameterized complexity view on

non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and
small slack. Journal of Scheduling, 20(3):255–265, 2017.

D. Hermelin, Y. Itzhaki, H. Molter, and D. Shabtay 18:15

7 Khalid I Bouzina and Hamilton Emmons. Interval scheduling on identical machines. Journal
of Global Optimization, 9(3):379–393, 1996.

8 Martin C Carlisle and Errol L Lloyd. On the k-coloring of intervals. Discrete Applied
Mathematics, 59(3):225–235, 1995.

9 Ondřej Čepek and Shao Chin Sung. A quadratic time algorithm to maximize the number of just-
in-time jobs on identical parallel machines. Computers & operations research, 32(12):3265–3271,
2005.

10 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

11 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

12 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

13 Kunihiko Hiraishi, Eugene Levner, and Milan Vlach. Scheduling of parallel identical machines
to maximize the weighted number of just-in-time jobs. Computers & Operations Research,
29(7):841–848, 2002.

14 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

15 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

16 Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.

17 Mikhail Y. Kovalyov, Chi To Ng, and T.C. Edwin Cheng. Fixed interval scheduling: Models,
applications, computational complexity and algorithms. European Journal of Operational
Research, 178(2):331–342, 2007.

18 John F Krafcik. Triumph of the lean production system. Sloan Management Review, 30(1):41–
52, 1988.

19 Avital Lann and Gur Mosheiov. Single machine scheduling to minimize the number of early
and tardy jobs. Computers & Operations Research, 23(8):769–781, 1996.

20 Yaron Leyvand, Dvir Shabtay, George Steiner, and Liron Yedidsion. Just-in-time scheduling
with controllable processing times on parallel machines. Journal of Combinatorial Optimization,
19(3):347–368, 2010.

21 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 3(105), 2013.

22 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254–261, 2018.

23 Taiichi Ohno and Norman Bodek. Toyota production system: beyond large-scale production.
Productivity Press, 1988.

24 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

25 Dvir Shabtay. The just-in-time scheduling problem in a flow-shop scheduling system. European
Journal of Operational Research, 216(3):521–532, 2012.

26 Shigeo Shingo and Andrew P Dillon. A revolution in manufacturing: the SMED system.
Productivity Press, 1985.

27 Frits C.R. Spieksma. On the approximability of an interval scheduling problem. Journal of
Scheduling, 2(5):215–227, 1999.

28 Shao Chin Sung and Milan Vlach. Maximizing weighted number of just-in-time jobs on
unrelated parallel machines. Journal of Scheduling, 8(5):453–460, 2005.

29 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

IPEC 2022

18:16 Hardness of Interval Scheduling on Unrelated Machines

30 James P Womack and Daniel T Jones. Lean thinking – banish waste and create wealth in
your corporation. Journal of the Operational Research Society, 48(11):1148–1148, 1997.

31 James P Womack, Daniel T Jones, and Daniel Roos. The machine that changed the world:
The story of lean production – Toyota’s secret weapon in the global car wars that is now
revolutionizing world industry. Simon and Schuster, 1990.

32 Mihalis Yannakakis and Fǎnicǎ Gavril. The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters, 24(2):133–137, 1987.

Vertex Cover and Feedback Vertex Set Above and
Below Structural Guarantees
Leon Kellerhals #

Faculty IV, Institute of Software Engineering and Theoretical Computer Science, Algorithmics and
Computational Complexity, Technische Universität Berlin, Germany

Tomohiro Koana #

Faculty IV, Institute of Software Engineering and Theoretical Computer Science, Algorithmics and
Computational Complexity, Technische Universität Berlin, Germany

Pascal Kunz #

Faculty IV, Institute of Software Engineering and Theoretical Computer Science, Algorithmics and
Computational Complexity, Technische Universität Berlin, Germany

Abstract
Vertex Cover parameterized by the solution size k is the quintessential fixed-parameter tractable
problem. FPT algorithms are most interesting when the parameter is small. Several lower bounds
on k are well-known, such as the maximum size of a matching. This has led to a line of research on
parameterizations of Vertex Cover by the difference of the solution size k and a lower bound. The
most prominent cases for such lower bounds for which the problem is FPT are the matching number
or the optimal fractional LP solution. We investigate parameterizations by the difference between k

and other graph parameters including the feedback vertex number, the degeneracy, cluster deletion
number, and treewidth with the goal of finding the border of fixed-parameter tractability for said
difference parameterizations. We also consider similar parameterizations of the Feedback Vertex
Set problem.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases parameterized complexity, vertex cover, feedback vertex set, above guarantee
parameterization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.19

Related Version Full Version: https://arxiv.org/abs/2203.05887

Funding Tomohiro Koana: Supported by the DFG Project DiPa, NI 369/21.
Pascal Kunz : Supported by DFG Research Training Group 2434 “Facets of Complexity”.

Acknowledgements This work was initiated at the research retreat of the Algorithmics and Compu-
tational Complexity group, TU Berlin, in 2021.

1 Introduction

Given an undirected graph G and an integer k, the Vertex Cover problem asks whether
there is a set of at most k vertices that contains at least one endpoint of each edge. Vertex
Cover is arguably the most well-studied problem in parameterized complexity. After
significant efforts, the state-of-the-art FPT algorithm parameterized by the solution size
k runs in time O(1.2738k + kn) [4], where n is the number of vertices. Very recently,
Harris and Narayanaswamy [22] have announced an even faster algorithm with running
time O(1.2540k · nO(1))

The aforementioned FPT algorithm is only useful when the parameter k is small. In
practice, however, the minimum vertex cover size is often large. For this reason, many recent
studies look into Vertex Cover where the parameterization is k minus a lower bound on k.

© Leon Kellerhals, Tomohiro Koana, and Pascal Kunz;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leon.kerllerhals@tu-berlin.de
https://orcid.org/0000-0001-6565-3983
mailto:tomohiro.koana@tu-berlin.de
https://orcid.org/0000-0002-8684-0611
mailto:p.kunz.1@tu-berlin.de
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.IPEC.2022.19
https://arxiv.org/abs/2203.05887
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

For instance, if the maximum matching size m is greater than k, then this would be a trivial
no instance, since a vertex cover must contain at least one endpoint of each edge in any
matching. This naturally gives rise to the “above guarantee” [33] parameter k − m. Vertex
Cover is FPT with respect to k − m [37]. It has also been shown that Vertex Cover is
FPT for even smaller above guarantee parameters such as k − r [8, 31] and k − 2r + m [19],
where r is the optimal LP relaxation value of Vertex Cover. Kernelization with respect
to these parameters has also been studied [28, 29].

This work considers above guarantee parameterizations of Vertex Cover where the
lower bounds are structural parameters not related to the matching number, such as feedback
vertex number, degeneracy, and cluster vertex deletion number. We also study similar above
guarantee parameterizations of the Feedback Vertex Set problem: Given a graph G and
an integer k, it asks whether there is a set of at most k vertices whose deletion from G results
in a forest. In this work, we do not deeply look into the “below guarantee” parameterization
(where the number of vertices n is the most obvious upper bound) because Vertex Cover
and Feedback Vertex Set are known to be W[1]-hard when parameterized by n − k.1

Motivation. We believe that FPT algorithms with above guarantee parameterizations may
help explain the efficiency of some branching algorithms in practice. Consider an instance
I = (G, k) of Vertex Cover for a complete graph G. This instance is trivial to solve:
I has a solution if and only if k ≥ n − 1. This triviality, however, is overlooked by the
worse-case running time bound of FPT algorithms parameterized by the solution size k or
the aforementioned smaller parameters k − m, k − ℓ, or k − 2ℓ + m, all of which amount to
n/2 (for even n). Now consider another above guarantee parameter k − (ω − 1), where ω is
the maximum clique size. (Note that for a clique C, a vertex cover contains at least |C| − 1
vertices of C.) As we will see, Vertex Cover is FPT parameterized by this parameter
(even if a maximum clique is not given). This gives us a theoretical reasoning as to why
Vertex Cover is indeed trivial to solve on complete graphs.

We also believe that above structural guarantee parameterizations are of theoretical
interest, because they are closely related to identifying graphs in which two of its parameters
coincide. Structural characterizations of such graphs have been extensively studied where the
two parameters are maximum matching size and minimum vertex cover size [32], maximum
matching size and minimum edge dominating set size [30], maximum matching size and
induced matching size [3], maximum independent set size and minimum dominating set
[35, 36], and minimum dominating set and minimum independent dominating set [21].
The corresponding computational complexity questions, i.e. whether these graphs can be
recognized in polynomial time, have been studied as well [5, 11, 12, 16, 20, 40].

Finally, our parameterizations can be seen as “dual” of parameters studied in literature.
There has been significant work (especially in the context of kernelization) on Vertex
Cover parameterized by structural parameters smaller than the solution size k such as
feedback vertex set number [2, 7, 23, 26, 34].

Our contribution. In Section 3, we show that Vertex Cover is FPT when parameterized
by k −h for the h-index h. This parameter is greater than or equal to many graph parameters
such as degeneracy d, chromatic number χ, and clique number ω (See Figure 1). Thus,
Vertex Cover is FPT for k − d, k − χ, and k − ω as well. Using a similar approach, we

1 These two parameterized problem are essentially the W[1]-hard problems Independent Set [14] and
Maximum Induced Forest [27], respectively.

L. Kellerhals, T. Koana, and P. Kunz 19:3

vertex cover

h-index

feedback vertex

treewidth

degeneracy

chromatic number

clique

minimum degree

cluster deletion

Figure 1 A Hasse diagram of graph parameters. There is a line between two parameters p (above)
and q (below) if p + 1 ≥ q holds for any graph G.

show in Section 4 that Feedback Vertex Set is FPT for k − d. We also show that on
planar graphs, fixed-parameter tractability of Vertex Cover with respect to k − d can
be strengthened: Vertex Cover is FPT parameterized by k − tw for the treewidth tw
(Section 5). In the remaining sections, we prove hardness results. In Section 6, we show that
Vertex Cover admits no kernel of size polynomial in k − δ (δ is the minimum degree) and
neither Vertex Cover nor Feedback Vertex Set admit a kernel of size polynomial in
k − ω. We also show that Vertex Cover is W[1]-hard for k − fvs (Section 7) and NP-hard
for k − cd = 0 (Section 8), where fvs and cd are the size of a minimum feedback vertex
set and of a minimum cluster deletion set, respectively. Finally, we prove that Feedback
Vertex Set NP-hard for vc −k = 2 in Section 9 where vc is the size of a minimum vertex
cover.

2 Preliminaries

Graphs. For standard graph terminology, we refer to Diestel [13]. All graphs we consider
are finite, undirected, and loopless. We call a function p that maps any graph G to an integer
p(G) a graph parameter. In the following, we will define several graph parameters that are of
interest in this work. Let G be a graph. We denote the vertex set and edge set of G by V (G)
and E(G), respectively. We denote the minimum degree of G by δ(G) and the maximum
degree by ∆(G). The vertex cover number vc(G) of G is the size of a smallest set X ⊆ V (G)
such that G − X is edgeless. The feedback vertex number fvs(G) of G is the size of a smallest
set X ⊆ V (G) such that G−X is acyclic. The h-index h(G) of a graph G is the largest integer
k such that G contains at least k vertices each of degree at least k. The degeneracy of a graph
G is d(G) := maxV ′⊆V (G) δ(G[V ′]). A subset V ′ of V (G) that maximizes δ(G[V ′]) is a core
of G. The clique number ω(G) of G is the size of a largest clique in G. The chromatic number
χ(G) is the minimum integer k such that G can be properly k-colored. The cluster deletion
number cd(G) of G is the size of a smallest set X ⊆ V (G) such that G − X does not contain
a P3 as an induced subgraph. A pair (T = (W, F), β) where T is a tree and β : W → 2V (G)

is a tree decomposition of G if (i)
⋃

w∈W β(w) = V (G), (ii) {w ∈ W | v ∈ β(w)} induces

IPEC 2022

19:4 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

a connected subgraph of T for all v ∈ V (G) and (iii) for all {u, v} ∈ E(G), there exists a
w ∈ W with u, v ∈ β(w). The width of (T = (W, F), β) is maxw∈W |β(w)| − 1. The treewidth
tw(G) of G is the minimum width over all tree decompositions of G.

If p and q are graph parameters, then we will say that p is smaller than q (and write
p ⪯ q), if there is a constant c such that p(G) ≤ q(G) + c for all graphs G. This differs
from the way the boundedness relation between graph parameters is usually defined [25, 42],
but this stricter definition is necessary in the context of difference parameterizations. This
is because with this stricter definition the following is true (and easy to prove): If p, q, r

are graph parameters such that p ⪯ q ⪯ r, then r − q ⪯ r − p. Figure 1 depicts the graph
parameters relevant to this work and the relationships between them.

Parameterized complexity. A parameterized problem is a pair (L, κ) where L ⊆ Σ∗ for a
finite alphabet Σ and κ : Σ∗ → N is the parameter. The problem is fixed-parameter tractable
(FPT) if it can be decided by an algorithm with running time O(f(κ(I)) · |I|c) where I ∈ Σ∗,
f is a computable function and c is a constant. Note that if (L, κ) is FPT and κ ⪯ κ′, then
(L, κ′) is also FPT. A kernel for this problem is a polynomial-time algorithm that takes the
instance I and outputs a second instance I ′ such that (i) I ∈ (L, κ) ⇐⇒ I ′ ∈ (L, κ) and
(ii) |I ′| ≤ f(κ(I)) for a computable function f . The size of the kernel is f . There is a hierarchy
of computational complexity classes for parameterized problems: FPT ⊆ W[1] ⊆ · · · ⊆ XP.
To show that a parameterized problem (L, κ) is (presumably) not FPT one may use a
parameterized reduction from a W[1]-hard problem to L. A parameterized reduction from
a parameterized problem (L, κ) to another parameterized problem (L′, κ′) is a function
that acts as follows: For computable functions f and g, given an instance I of L, it
computes in f(κ(I)) · |I|O(1) time an instance I ′ of L′ so that I ∈ (L, κ) ⇐⇒ I ′ ∈ (L′, κ′)
and κ(I ′) ≤ g(κ(I)). For more details on parameterized algorithms and complexity, we refer
to the standard literature [6, 15, 17].

Problem definitions. We are interested in above guarantee parameterizations of Vertex
Cover of the following form. Let p ⪯ vc be a graph parameter. Then, we define:

Vertex Cover above p

Input: A graph G and an integer k.
Question: Does G contain a vertex cover of order at most k?
Parameter: ℓ := k − p(G).

Similarly, we also consider above (below) guarantee parameterizations of Feedback
Vertex Set. Now, let p be a graph parameter with p ⪯ fvs (fvs ⪯ p). We consider the
following problem:

Feedback Vertex Set above (below) p

Input: A graph G and an integer k.
Question: Does G contain a feedback vertex set of order at most k?
Parameter: ℓ := k − p(G) (ℓ := p(G) − k).

3 Vertex Cover above h-Index

We start by proving that Vertex Cover is FPT when parameterized by the difference
between k and the h-index of the graph. Recall that the state-of-the-art algorithm for
Vertex Cover parameterized by the solution size k has running time O(1.274k + kn) [4].

L. Kellerhals, T. Koana, and P. Kunz 19:5

▶ Theorem 1. Vertex Cover above h-Index is FPT.

Proof. Let (G, k) be an instance of Vertex Cover where G is a graph with an h-index of
h. Let v1, . . . , vh ∈ V (G) with deg(vi) ≥ h. We branch into the following h + 1 cases:
(1) The solution contains all of the vertices v1, . . . , vh. Hence, we test the instance (G −

{v1, . . . , vh}, k − h) in time O(1.274k−h + (k − h)n).
(2) The solution does not contain vi for some i ∈ {1, . . . , h}. Then, the solution must

contain all of vi’s neighbors. Hence, we test the instance (G − N(vi), k − |N(vi)|). Since
|N(vi)| ≥ h, this is possible in time O(1.274k−h + (k − h)n).

In all, we get a running time of O(1.274k−hh + (k − h)hn). ◀

This algorithm can also be used to obtain a Turing kernelization (cf. [18, Ch. 22]) by
simply computing a kernel for each of the h + 1 instances of Vertex Cover parameterized
by the solution size that the algorithm branches into.

4 Feedback Vertex Set above Degeneracy

A similar approach to the one used in the previous section, branching once to lower k and
then applying a known algorithm for the standard parameterization, can also be employed
to show that Feedback Vertex Set above Degeneracy is FPT. The fastest presently
known deterministic algorithm for the standard parameterization of Feedback Vertex
Set runs in time O(3.460k · n) [24].

▶ Theorem 2. Feedback Vertex Set above Degeneracy is FPT.

Proof. Let (G, k) be an instance for Feedback Vertex Set where d is the degeneracy
of G. It is well-known that the degeneracy and the core of a graph can be computed in
polynomial time by iteratively deleting a minimum-degree vertex and storing the largest
degree of a vertex at the time it is deleted. We start by computing a core V ′ of G. We
branch into the following |V ′|2 + 1 cases.
(1) The entire core is contained in the minimum feedback vertex set. The core must

contain at least d + 1 vertices. Hence, we test the instance (G − V ′, k − |V ′|) in time
O(3.460k−|V ′| · n) = O(3.460k−d · n).

(2) The entire core is not contained in the minimum feedback vertex set. Let X denote the
minimum feedback vertex and let F := V (G) \ X be the maximum induced forest.
a. If G[V ′ ∩ F] contains an isolated vertex u, then all neighbors of u in G[V ′], of which

there are at least d, must be in X. Hence, for each u ∈ V ′, we test the instance
(G − NG[V ′](u), k − degG[V ′](u)) in time O(3.460k−degG[V ′](u) · n) = O(3.460k−d · n).

b. If G[V ′ ∩ F] does not contain an isolated vertex, it must still contain a leaf u, since it
is a forest. Then, all but one of the neighbors of u in G[V ′] must be in X. Hence, for
each pair u ∈ V ′ and v ∈ NG[V ′](u), we test the instance (G − (NG[V ′](u) \ {v}), k −
degG[V ′](u) + 1) in time O(3.460k−degG[V ′](u)+1 · n) = O(3.460k−d · n).

In all, this makes for a running time of O(3.460k−d · n3). ◀

Like the algorithm in the previous section, this one can also be easily converted to a
Turing kernelization.

IPEC 2022

19:6 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

5 Vertex Cover above Treewidth

In this section, we show that on planar graphs Vertex Cover is also FPT with respect to
ℓ = k − tw, which is smaller than k − d.

▶ Theorem 3. Vertex Cover above Treewidth on planar graphs is FPT.

Proof. Given a planar graph G, we compute the branchwidth β of G. This is possible in
polynomial time, because G is planar [41]. Moreover, β ≤ tw(G) + 1 ≤ 3

2 β [39, Theorem 5.1].
Any planar graph with treewidth w contains a g × g-grid with g ≥ w+4

6 as a minor [38,
Theorem 6.2]. Hence, having computed β, we know that G must contain a g × g-grid with
g ≥ β+3

6 as a minor. Any vertex cover of the g × g-grid must contain at least ⌊ g
2 ⌋ in each

row, for a total of at least g · ⌊ g
2 ⌋ ≥ g(g−1)

2 vertices. Since vc(H1) ≤ vc(H2), if H1 is a
minor of H2, it follows that vc(G) ≥ β2−9

72 =: r. Hence, if k < r, we may reject the input.
Otherwise, ℓ = k − tw(G) ≥ k − 3

2 β ≥ k − 3
2
√

72k − 9. This means that ℓ is bounded from
below by a function in k and, therefore, fixed-parameter tractability with respect to k implies
fixed-parameter tractability with respect to ℓ. ◀

This algorithm relies on two properties of planar graphs: (i) large treewidth guarantees
the existence of a g × g-grid where g ∈ Ω(tw1/2+ε) for ε > 0 and (ii) branchwidth can be
computed in polynomial time on planar graphs. In any graph class that excludes a minor,
(i) still holds true [9]. Although it is not clear that (ii) can be generalized, we remark that a
constant approximation algorithm is known for graphs excluding single-crossing graphs as
minors [10]. In fact, our result can be extended to any class of graphs that do not contain a
single-crossing graph as a minor.

We leave open whether or not Vertex Cover above Treewidth is FPT on graph
classes that exclude a minor (other than planar graphs) or even on arbitrary graphs.

6 Kernelization Lower Bounds

In this section we show that, while there is a Turing kernel when parameterized above h-index,
Vertex Cover presumably does not admit a polynomial kernel when parameterized above
the minimum degree or the clique number.

▶ Theorem 4. Vertex Cover above Minimum Degree and Vertex Cover above
Clique Number do not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove the statement by giving a linear parametric transformation from Clique
parameterized by maximum degree and parameterized by the vertex cover number. Unless
NP ⊆ coNP/poly, under neither parameterization does Clique admit a polynomial kernel.
This is folklore for maximum degree and was shown by Bodlaender et al. [1] for vertex
cover number. The underlying reduction takes the Clique instance (G, k) and transforms
it into the instance (Ḡ, k̄) of Vertex Cover where Ḡ is the complement graph of G,
that is V (Ḡ) := V (G) and E(Ḡ) :=

(
V (G)

2
)

\ E(G), and k̄ := |V | − k. The reduction is
obviously correct and computable in O(|V |2) time. As for the parameterizations, observe
that k̄ − δ(Ḡ) = (|V | − k) − (|V | − 1 − ∆(G)) ≤ ∆(G). Since ω(Ḡ) ≥ |V (G)| − vc(G),
we also have k̄ − ω(Ḡ) ≤ (|V (G)| − k) − (n − vc(G)) ≤ vc(G). This yields the claimed
transformations. ◀

Using a standard reduction from Vertex Cover to Feedback Vertex Set, we obtain
the following.

L. Kellerhals, T. Koana, and P. Kunz 19:7

▶ Corollary 5. Feedback Vertex Set above Clique Number does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly.

Proof. We provide a linear parametric transformation from Vertex Cover above Clique
Number. Given an instance (G, ℓ) of Vertex Cover, we use the following folklore
construction to obtain an instance (G′, ℓ) of Feedback Vertex Set. After initializing G′

as a copy of G, we add for each edge {u, v} = e ∈ E(G) the vertex wuv and the edges {u, wuv}
and {v, vuv} to G′, so that for each edge e ∈ E(G) there exists a unique triangle in G′. Clearly,
unless ω(G) = 2, we have ω(G′) = ω(G). Hence, the parameter ℓ − ω(G′) is upper-bounded
by the parameter of the input problem, and we are done. ◀

We leave open whether Feedback Vertex Set above Minimum Degree admits a
polynomial kernel.

7 Vertex Cover above Feedback Vertex Number

In this section we prove that, when parameterizing above feedback vertex number, Vertex
Cover is W[1]-hard. First, we prove W[1]-hardness with respect to a related parameter,
namely above the distance to Kr-free for every constant r ≥ 3, that is, the minimum number
of vertices one needs to remove such that the remaining graph does not contain a clique of
order r. Distance to K3-free is a lower bound on the feedback vertex number, so our proof
also implies hardness for Vertex Cover above Feedback Vertex Number.

▶ Theorem 6. Vertex Cover above Distance to Kr-Free is W[1]-hard.

Proof. We provide a parameterized reduction from Independent Set parameterized by
the solution size k. Let I = (G, k) be an instance of Independent Set with V (G) = [n]
and E(G) = {e1, . . . , em}. We create an instance (G′, ℓ) as follows. First, for each i ∈ [k] we
add a clique on the vertex set Vi = {wi

j | j ∈ [n]} to G′. For each i, j ∈ [k], we add the edge
between wi

q and wj
q for each q ∈ [n] and the edge between wi

p and wi
q for each {p, q} ∈ E.

Next, for each i ∈ [k] we add a set Ai of r−2 vertices which form a clique, attach a leaf to each
vertex in Ai, and make each vertex in Ai adjacent to each vertex in Vi. Let A :=

⋃
i∈[k] Ai.

Then we add k + 1 cliques on r − 1 vertices. Call the set of these vertices B, attach a leaf to
each v ∈ B, and make each v ∈ B adjacent to each vertex in

⋃
i∈[k] Vi. Denote by L the set

of leaves in G′. Lastly, set ℓ := (n − 1)k + |A| + |B| = (n − 1)k + |L|.
For the correctness, observe that G′ contains a vertex cover of size k′ if and only if G′

contains an independent set of size

|V ′| − ℓ = nk + |A| + |B| + |L| − ((n − 1)k + |A| + |B|) = |L| + k.

Let Y ⊆ V (G′) be an independent set in G′. As it is always optimal to take leaves into
an independent set, we may assume that Y contains all of L. Hence, we may assume
that Y ∩ (A ∪ B) = ∅. Furthermore, Y contains at most one vertex of each clique on Vi,
i ∈ [k], and, by the construction of the edges in G′, Y can contain only such vertices in the
cliques whose corresponding vertices in G are pairwise nonadjacent. Hence, G′ contains an
independent set of size |L| + k if and only if G contains an independent set of size k, and the
reduction is correct.

Finally, we will show that the distance to Kr-free of G′ is exactly nk. This implies
that the parameter of the output instance, if d is the distance to Kr-free of G′, is k′ =
ℓ − d = (n − 1)k + |A| + |B| − nk = |A| + |B| − k = (r − 2)k + (r − 1)(k + 1) − k. Since
r is a constant, this implies that k′ is bounded in k. Let D ⊆ V ′ be of minimum set such

IPEC 2022

19:8 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

v2,1,1 v2,2,1 v2,3,1

v1,1,1 v1,2,1 v1,3,1

v1,1,2 v1,2,2 v1,3,2

v2,1,2 v2,2,2 v2,3,2

u3,1,1 u3,2,1 u3,3,1 u3,4,1 u3,5,1 u3,6,1 u3,7,1

x1

¬x1

¬x2

x2

Figure 2 An excerpt of the graph G output by Construction 9: At the bottom are the vertex
gadgets for the variables x1 and x2. At the top is a clause gadget representing a clause that contains
both x1 and ¬x2.

that G′ − D is Kr-free. Clearly, D ∩ L = ∅ as L does not intersect any Kr. Furthermore, as
every vertex u ∈ Ai intersects a subset of the cliques that any vertex v ∈ Vi intersects, we
may exchange each vertex in D ∩ Ai with a vertex in Vi. As there are fewer than r vertices
in each Ai we may assume that D ∩ Ai = ∅. But then D must contain n − 1 vertices of
each set Vi, hence, D contains all but k vertices from

⋃
i∈[k] Vi. If however v /∈ D for one

such v ∈
⋃

i∈[k] Vi, then D must contain at least one vertex from each clique in B. As there
are k + 1 such cliques, v /∈ D contradicts D being minimum. Hence, D :=

⋃
i∈[k] Vi is a

Kr-deletion set of size nk. ◀

For r = 3, the deletion set D in the proof above is also a feedback vertex set. Hence, we
obtain the following.

▶ Corollary 7. Vertex Cover above Feedback Vertex Number is W[1]-hard.

Observe that in the proof of Theorem 6 we can specify a minimum deletion set. Hence,
our hardness results also hold if a minimum deletion set is given as part of the input.

8 Vertex Cover above Cluster Deletion Number

Recall that the cluster deletion number is the minimum size of a set X such that G − X is a
cluster graph, i.e., every connected component of G − X is a clique. We show that Vertex
Cover Above Cluster Deletion Number is NP-hard even if the parameter is zero.

▶ Theorem 8. Vertex Cover above Cluster Deletion is NP-hard even if ℓ = 0.

We will prove this theorem by reduction from 3-SAT. In fact, we prove a slightly stronger
claim: Vertex Cover is NP-hard when restricted to graphs G with cd(G) = vc(G). The
following construction is illustrated in Figure 2.

▶ Construction 9. Let φ be a Boolean formula in 3-CNF consisting of the clauses C1, . . . , Cm

over the variables x1, . . . , xn. We may assume that each clause of φ contains exactly three
literals. For each i ∈ {1, . . . , m}, let Ci = (L1

i ∨ L2
i ∨ L3

i) where L1
i , L2

i , and L3
i are literals.

L. Kellerhals, T. Koana, and P. Kunz 19:9

We construct a graph G and an integer k := 14m + 3n such that cd(G) = vc(G) and
vc(G) ≤ k if and only if φ is satisfiable. Each variable xj is represented by a variable gadget
consisting of six vertices (vr,s,j)r∈{1,2},s∈{1,2,3} that induce a complete bipartite graph with
three vertices in each color class. Each clause Ci is represented by a clause gadget consisting
of twenty-one vertices (ur,s,i)r∈{1,2,3},s∈{1,...,7} that induce a complete tripartite graph with
seven vertices in each color class. The two sides of the bipartition of a variable gadget
correspond to its positive and negative literals and the three sides of the tripartition of a
clause gadget correspond to the three literals the clause contains. All vertices in a side of a
clause gadget are connected to all vertices in the side of a variable gadget if these two sides
correspond to the literal of opposite sign. Formally, we let:

V (G) :={ur,s,i | r ∈ {1, 2, 3}, s ∈ {1, . . . , 7}, i ∈ {1, . . . , m}}
∪ {vr,s,j | r ∈ {1, 2}, s ∈ {1, 2, 3}, j ∈ {1, . . . , n}} and

E(G) :={{ur,s,i, ur′,s′,i} | r, r′ ∈ {1, 2, 3}, r ̸= r′, s, s′ ∈ {1, . . . , 7}, i ∈ {1, . . . , m}}
∪ {{v1,s,j , v2,s′,j} | s, s′ ∈ {1, 2, 3}, j ∈ {1, . . . , n}}
∪ {{ur,s,i, v1,s′,j} | s ∈ {1, . . . , 7}, s′ ∈ {1, 2, 3}, Lr

i = xj}
∪ {{ur,s,i, v2,s′,j} | s ∈ {1, . . . , 7}, s′ ∈ {1, 2, 3}, Lr

i = ¬xj}.

▶ Lemma 10. Let G be the graph output by Construction 9 and X ⊆ V (G) be a minimum
cluster deletion set. Then, in each clause gadget of G, X contains all vertices in two of the
sides of the gadget and none of the vertices of the third side.

Proof. For every i ∈ {1, . . . , m}, the deletion set X must contain either (i) all vertices from
two sides of the clause gadget for Ci or (ii) all but one vertex from each side of this clause
gadget, because if X omits two vertices from one side and an additional vertex from a second
side these three vertices induce a P3.

In case (i), it only remains to show that X does not contain any of the vertices in
the third side. Let A := {ur,1,i, . . . , ur,7,i} with r ∈ {1, 2, 3} be the vertices in this side.
Let αr := 1, if Lr

i = xj , and αr := 2, if Lr
i = ¬xj . If X contains all of the vertices in

B := {vαr,1,j , vαr,2,j , vαr,3,j}, then X \ A is a cluster deletion set strictly smaller than X. If
X does not contain all vertices in B, then it must contain all but one of the vertices in A (i.e.,
|X ∩A| ≥ 6). Then (X \A)∪B is a cluster deletion set and |(X \A)∪B| ≤ |X|−6+3 < |X|.

For case (ii), let r, r′, r′′ be the three sides of the clause gadget and let Xr′′′ be the set
of vertices in X that lie in side r′′′. Assume that X does not contain all vertices from two
sides r, r′. Since X must contain all but one vertex from each side, we may assume without
loss of generality that Xr = {ur,1,i, . . . , ur,6,i}, |Xr′ | = {ur′,1,i, . . . , ur′,6,i}, and |Xr′′ | ≥ 6
(note that it may contain all vertices in the third side r′′). Let αr′′ := 1, if Lr′′

i = xj , and
αr′′ := 2, if Lr′′

i = ¬xj and let

X ′ := (X \ Xr′′) ∪ {ur,7,i, ur′,7,i} ∪ {vαr′′ ,s,j | s ∈ {1, 2, 3}}.

Then, |X ′| ≤ |X| − 6 + 2 + 3 = |X| − 1. Moreover, X ′ is a cluster deletion set in G, because
X \ X ′ ⊆ {ur′′,s,i | s ∈ {1, . . . , 7}}, but all of these vertices are isolated and, therefore, not
part of any P3 in G − X ′. Hence, X is not minimum. ◀

A similar statement is also true for vertex gadgets:

▶ Lemma 11. Let G be the graph output by Construction 9 and X ⊆ V (G) be a minimum
cluster deletion set. Then, in each variable gadget of G, X contains all vertices in one of the
two sides of the gadget.

IPEC 2022

19:10 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

Proof. If X does not contain all vertices in either side of a vertex gadget corresponding to the
variable xj , it must contain all but one vertex from each side. Let Ci1 , . . . , Cit

be the clauses
that contain the literal xj and let r1, . . . , rt be the sides of each of the corresponding clause
gadgets whose vertices are adjacent to the side in the vertex gadget of xj . Then, X must
contain all but one vertex in the side rt′ of the clause gadget for Cit′ for each t′ ∈ {1, . . . , t}.
By Lemma 10, it follows that X contains all vertices in each of those sides. Hence, removing
from X all vertices in the r = 1 side of xj ’s vertex gadget and adding the remaining vertex
in the r = 2 side yields a smaller cluster deletion set. ◀

▶ Lemma 12. Let G be the graph output by Construction 9 and C ⊆ V (G) be a minimum
cluster deletion set. Then, C is a vertex cover of G. Hence, cd(G) = vc(G).

Proof. Clearly cd(G) ≤ vc(G). We show that cd(G) ≥ vc(G). By Lemmas 10 and 11, C

covers all edges within each clause and each variable gadget. It remains to show that edges
between these gadgets are covered. The only such edges are between sides of a clause gadget
and sides of a variable gadget when these two sides correspond to the same literal. Then, C

must contain all vertices in one of these two sides, since, otherwise, G − C would contain an
induced P3. Hence, C also covers all edges between those two sides. ◀

▶ Lemma 13. Let φ be a formula in 3-CNF and G the graph output by Construction 9 on
input φ. Then, φ is satisfiable if and only if vc(G) ≤ ℓ.

Proof. First, suppose that φ is satisfiable and that α : {x1, . . . , xn} → {0, 1} is a satisfying
assignment. We extend α to literals on this variable set in the natural way. Since α satisfies
every clause in φ, there is an αi ∈ {1, 2, 3} for every i ∈ {1, . . . , m} such that α(Lαi

i) = 1.
Let

C := {ur,s,i | r ∈ {1, 2, 3} \ {αi}, s ∈ {1, . . . , 7}, i ∈ {1, . . . , m}}
∪ {v1,s,j | s ∈ {1, 2, 3}, j ∈ {1, . . . , n}, α(xj) = 1}
∪ {v2,s,j | s ∈ {1, 2, 3}, j ∈ {1, . . . , n}, α(xj) = 0}.

First, note that |C| = 14m + 3n = k. Secondly, we claim that C is a vertex cover of G.
Clearly, all edges within clause gadgets and all edges within vertex gadgets are covered,
because C contains all but one side in each of those gadgets. Edges between a vertex gadget
and a clause gadget are covered because C contains vertices in sides of vertex gadgets, unless
the literal this side corresponds to is not satisfied by α, but if this is the case, then C contains
all sides of clause gadgets that correspond to this literal.

Now, suppose that C ⊆ V (G), |C| ≤ k, is a vertex cover of G. We may assume
that C is minimum. Hence, by Lemmas 10–12, it contains all vertices in at two sides
of every clause gadget and all vertices in exactly one side of every variable gadget. Let
α : {x1, . . . , xn} → {0, 1} with:

α(xj) :=
{

1, if {v1,s,j | s ∈ {1, 2, 3}} ⊆ C,

0, if {v2,s,j | s ∈ {1, 2, 3}} ⊆ C.

We claim that α satisfies φ. Let Ci be a clause in φ. One of the three sides of the gadget
representing Ci is not contained in C. This side corresponds to the literal Lr

i ∈ {xj , ¬xj}. If
Lr

i = xj , then all vertices in {ur,s,i | s ∈ {1, . . . , 7}} are adjacent to all vertices in {v1,s,j |
s ∈ {1, 2, 3}}. Since {ur,s,i | s ∈ {1, . . . , 7}} ̸⊆ C, it follows that {v1,s,j | s ∈ {1, 2, 3}} ⊆ C

and, therefore, α(xj) = 1. Hence, α satisfies the clause Ci. The case where Lr
i = ¬xj is

analogous. ◀

L. Kellerhals, T. Koana, and P. Kunz 19:11

Theorem 8 follows from the preceding lemmas.

Proof of Theorem 8. Clearly, Construction 9 can be computed in polynomial time. The
claim follows by Lemmas 12 and 13. ◀

We remark that the NP-hardness of Vertex Cover above Cluster Deletion
Number holds even if we are given a minimum cluster deletion set as part of the input. To
show this, we slightly adapt Construction 9. Let (G, k) be an instance given in Construction 9.
We further introduce 7m/3 + n complete graphs on three vertices (we may assume that m is
divisible by 3, otherwise we add dummy clauses). Denote these vertices by T and observe
that |T | = 7m + 3n. We add an edge between each vertex in V (G) and each vertex in T .
Let H denote the resulting graph. Observe that V (G) is a cluster vertex deletion set of
size 21m + 6n of H. Moreover, cd(H) ≥ cd(G) + |T | ≥ 21m + 6n. It is not difficult to
show that any vertex cover of size at most 21m + 6n of G contains every vertex of T . Thus,
H has a vertex cover of size at most 21m + 6n if and only if G has a vertex cover of size
21m + 6n − |T | = k. Lemma 13 establishes the correctness of the reduction.

9 Feedback Vertex Set below Vertex Cover

Feedback Vertex Set below n is generally known as the Maximum Induced Forest
problem and is known to be W[1]-hard with respect to the solution size [27]. In the following,
we consider Feedback Vertex Set below Vertex Cover, essentially the same problem
but with a slightly smaller parameter. We show that this change is sufficient to make the
problem NP-hard even if the parameter is fixed at two.

▶ Theorem 14. Feedback Vertex Set below Vertex Cover is NP-hard even if ℓ =
vc(G) − fvs(G) = 2.

Proof. We reduce from Feedback Vertex Set. Let I = (G, k) be an instance of the
latter problem. We assume without loss of generality that G has at least one edge. Let λ =
|V (G)| − k − 2. We construct a graph H with vc(H) = |V (G)| that contains a feedback
vertex set of size at most k′ = |V (G)| − 2 if and only if G contains a feedback vertex set of
size at most k. Note that then ℓ = vc(H) − k′ = 2.

The construction of H is as follows: Add a copy of G to H. Attach a leaf to every
vertex v ∈ V (G), that is, add a new vertex uv and the edge {v, uv} to H . Add a set V ∗ of λ

vertices to V (H) and make each u ∈ V ∗ adjacent to every vertex in V (G).
Suppose G contains a feedback vertex set S of size at most k. Then the set S ∪ V ∗ is

a feedback vertex set of size at most k + λ = |V (G)| − 2 = k′ for H, as H − (S ∪ V ∗) is
isomorphic to the forest G − S with a leaf attached to every vertex.

Conversely, suppose that H contains a feedback vertex set S′ of size at most k′. We
claim that there exists a feedback vertex set of size at most k′ in H that contains none of the
leaves uv and all vertices in V ∗. Clearly, if S′ contains a leaf uv attached to some v ∈ V (G),
then (S′ \ {uv}) ∪ {v} is also a feedback vertex set of size at most |V (G)| − 2 in H. Hence,
we may assume that V ∗ ⊆ S′ ⊆ V ∗ ∪ V (G).

Next, suppose that V ∗ \ S′ ̸= ∅. If |V ∗ \ S′| ≥ 2, then S′ contains at least |V (G)| − 1
vertices of V (G) since otherwise two vertices in V ∗ \ S′ and two vertices in V (G) form a
cycle of length four. Note, however, that |S′| ≤ k′ = |V (G)| − 2. Thus, we may assume that
|V ∗ \ S′| ≤ 1. Towards showing that V ∗ \ S′ = ∅, suppose that there is a vertex w ∈ V ∗ \ S′.
Then, for every edge {u, v} ∈ E(G), we have u ∈ S′ or v ∈ S′, as otherwise u, v, and w

induce a cycle in H − S′. Thus, S′ \ V ∗ is a vertex cover of G. Let x ∈ S′ ∩ V (G) be

IPEC 2022

19:12 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

arbitrary. Such a vertex exists by the assumption that G has at least one edge. We claim
that S∗ = (S′ \ {x}) ∪ {w} is a feedback vertex set for H of size at most k′. If it is not, then
H −S∗ has a cycle that contains x. Let y and z be two neighbors of x in this cycle. Note that
y, z ∈ V (G) \ S′. Since S′ ∩ V (G) is a vertex cover of G, it follows that the neighborhoods of
y and z in H − S∗ are {x, uy} and {x, uz}, respectively. The vertices uy and uz have degree
one, and thus we have a contradiction to the existence of the aforementioned cycle. Thus,
the claim follows. Lastly, having a solution S′ with V ∗ ⊆ S′ ⊆ V ∗ ∪ V (G) of size at most k′

implies that S = S′ \ V ∗ is a feedback vertex set of size at most k for G.
Finally, to show that ℓ = fvs(H)−vc(H) = 2, we need to show that vc(H) = fvs(H)+2 =

|V (G)|. As V (G) is a vertex cover of H , we have vc(H) ≤ |V (G)|. Since {{v, uv} | v ∈ V (G)}
is a matching of size |V (G)| in H, we have vc(H) ≥ |V (G)|. ◀

10 Conclusion

The goal of this work is to extend the above guarantee paradigm in parameterized complexity
beyond the previously considered lower bounds on vertex cover, namely the maximum
matching size and the optimal LP relaxation solution. We approached this issue by considering
various structural graph parameters that are upper-bounded by the vertex cover number.
This work sketches a rough contour of the parameterized complexity landscape of these kinds
of parameterizations of both Vertex Cover and Feedback Vertex Set. It raises a
number of immediate open questions, of which we highlight four:

(i) Is Vertex Cover above Treewidth also fixed-parameter tractable on arbitrary
graphs? We also leave this question open for Feedback Vertex Set.

(ii) In Section 7, we showed that Vertex Cover above Feedback Vertex Number
is W[1]-hard. A natural question to ask is whether this problem is NP-hard for a
constant parameter value or whether it is in XP, that is, whether it can be decided by
an algorithm with running time O(nf(ℓ)) for an arbitrary computable function f .

(iii) One can naturally generalize graph parameters like feedback vertex number or cluster
deletion number by fixing a graph class F and defining the F -free deletion number of
any graph G as the size of a smallest set X ⊆ V (G) such that G − X does not contain
any H ∈ F as an induced subgraph. If F contains a graph that is not edgeless, then
vertex cover number upper-bounds the F -free deletion number. It would be interesting
to find a graph class F such that Vertex Cover above F-Free Deletion is FPT
or to rule out the existence of such a class. We have only answered this question (always
in the negative) if F is any of the following classes: all cycles, {P3}, all complete graphs.

(iv) Moving beyond parameterized complexity, can graphs in which the difference parameters
we have considered are small be characterized in an elegant way? For instance, one can
easily prove that vc(G) = fvs(G) if and only if G is edgeless. We are not aware of any
simple characterization of graphs where vc(G) − fvs(G) = 1 or vc(G) − fvs(G) ≤ c for a
larger constant c. Such a characterization could be useful for answering (ii).

References
1 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds

by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014. doi:
10.1137/120880240.

2 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which
structural parameterizations of vertex cover admit a polynomial kernel. In Proceedings of the
47th International Colloquium on Automata, Languages, and Programming (ICALP), pages
16:1–16:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.16.

https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.4230/LIPIcs.ICALP.2020.16

L. Kellerhals, T. Koana, and P. Kunz 19:13

3 Kathie Cameron and Tracy Walker. The graphs with maximum induced matching and
maximum matching the same size. Discrete Mathematics, 299(1-3):49–55, 2005. doi:10.1016/
j.disc.2004.07.022.

4 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

5 Václav Chvátal and Peter J. Slater. A note on well-covered graphs. In John Gimbel, John W.
Kennedy, and Louis V. Quintas, editors, Quo Vadis, Graph Theory?, pages 179–181. Elsevier,
1993. doi:10.1016/S0167-5060(08)70387-X.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
On the hardness of losing width. Theory of Computing Systems, 54(1):73–82, 2014. doi:
10.1007/s00224-013-9480-1.

8 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Transactions on Computation Theory,
5(1):3:1–3:11, 2013. doi:10.1145/2462896.2462899.

9 Erik D. Demaine and MohammadTaghi HajiAghayi. Linearity of grid minors in treewidth
with applications through bidimensionality. Combinatorica, 28(1):19–36, 2008. doi:10.1007/
s00493-008-2140-4.

10 Erik D Demaine, MohammadTaghi Hajiaghayi, Naomi Nishimura, Prabhakar Ragde, and
Dimitrios M Thilikos. Approximation algorithms for classes of graphs excluding single-
crossing graphs as minors. Journal of Computer and System Sciences, 69(2):166–195, 2004.
doi:10.1016/j.jcss.2003.12.001.

11 Marc Demange and Tínaz Ekim. Efficient recognition of equimatchable graphs. Information
Processing Letters, 114(1-2):66–71, 2014. doi:10.1016/j.ipl.2013.08.002.

12 Zakir Deniz, Tínaz Ekim, Tatiana Romina Hartinger, Martin Milanic, and Mordechai Shalom.
On two extensions of equimatchable graphs. Discrete Optimization, 26:112–130, 2017. doi:
10.1016/j.disopt.2017.08.002.

13 Reinhard Diestel. Graph Theory. Springer, 5th edition, 2016. doi:10.1007/
978-3-662-53622-3.

14 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

16 Márcio Antônio Duarte, Felix Joos, Lucia Draque Penso, Dieter Rautenbach, and Uéverton S.
Souza. Maximum induced matchings close to maximum matchings. Theoretical Computer
Science, 588:131–137, 2015. doi:10.1016/j.tcs.2015.04.001.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

18 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

19 Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter
tractability above a higher guarantee. In Proceedings of the 2016 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1152–1166, 2016. doi:10.1137/1.9781611974331.
ch80.

20 Fanica Gavril. Testing for equality between maximum matching and minimum node covering.
Information Processing Letters, 6(6):199–202, 1977. doi:10.1016/0020-0190(77)90068-0.

IPEC 2022

https://doi.org/10.1016/j.disc.2004.07.022
https://doi.org/10.1016/j.disc.2004.07.022
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/S0167-5060(08)70387-X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1007/s00493-008-2140-4
https://doi.org/10.1007/s00493-008-2140-4
https://doi.org/10.1016/j.jcss.2003.12.001
https://doi.org/10.1016/j.ipl.2013.08.002
https://doi.org/10.1016/j.disopt.2017.08.002
https://doi.org/10.1016/j.disopt.2017.08.002
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.tcs.2015.04.001
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1016/0020-0190(77)90068-0

19:14 Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

21 Wayne Goddard and Michael A. Henning. Independent domination in graphs: A survey and
recent results. Discrete Mathematics, 313(7):839–854, 2013. doi:10.1016/j.disc.2012.11.
031.

22 David G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized
by solution size, 2022. arXiv:2205.08022.

23 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances, blocking
sets, and kernels for vertex cover. In Proceedings of the 37th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 36:1–36:14, 2020. doi:10.4230/
LIPIcs.STACS.2020.36.

24 Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback
vertex set. Algorithmica, 83(8):2503–2520, 2021. doi:10.1007/s00453-021-00815-w.

25 Bart M. P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, 2013. URL: http://dspace.library.uu.nl/handle/1874/
276438.

26 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. Theory of Computing Systems, 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

27 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

28 Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller
parameter. SIAM Journal on Discrete Mathematics, 32(3):1806–1839, 2018. doi:10.1137/
16M1104585.

29 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. Journal of the ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

30 M. Lesk, M. D. Plummer, and W. R. Pulleyblank. Equi-matchable graphs. Graph theory and
combinatorics, pages 239–254, 1984.

31 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

32 László Lovász and Michael D. Plummer. Matching theory. North-Holland, 1986.
33 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: MaxSat

and MaxCut. Journal of Algorithms, 31(2):335–354, 1999. doi:10.1006/jagm.1998.0996.
34 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Polynomial kernels for vertex

cover parameterized by small degree modulators. Theory of Computing Systems, 62(8):1910–
1951, 2018. doi:10.1007/s00224-018-9858-1.

35 Michael D. Plummer. Some covering concepts in graphs. Journal of Combinatorial Theory,
8(1):91–98, 1970. doi:10.1016/S0021-9800(70)80011-4.

36 Michael D. Plummer. Well-covered graphs: A survey. Quaestiones Mathematicae, 16(3):253–
287, 1993. doi:10.1080/16073606.1993.9631737.

37 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75(8):435–450, 2009. doi:10.1016/j.jcss.2009.04.002.

38 N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal of
Combinatorial Theory Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

39 Neil Robertson and P. D. Seymour. Graph minors X: Obstructions to tree-decomposition.
Journal of Combinatorial Theory Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

40 Ramesh S. Sankaranarayana and Lorna K. Stewart. Complexity results for well-covered graphs.
Networks, 22(3):247–262, 1992. doi:10.1002/net.3230220304.

41 P. D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–
241, 1994. doi:10.1007/BF01215352.

42 Manuel Sorge and Mathias Weller. The graph parameter hierarchy. Unpublished manuscript,
2019. URL: https://manyu.pro/assets/parameter-hierarchy.pdf.

https://doi.org/10.1016/j.disc.2012.11.031
https://doi.org/10.1016/j.disc.2012.11.031
http://arxiv.org/abs/2205.08022
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.1007/s00453-021-00815-w
http://dspace.library.uu.nl/handle/1874/276438
http://dspace.library.uu.nl/handle/1874/276438
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1137/16M1104585
https://doi.org/10.1137/16M1104585
https://doi.org/10.1145/3390887
https://doi.org/10.1145/2566616
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1007/s00224-018-9858-1
https://doi.org/10.1016/S0021-9800(70)80011-4
https://doi.org/10.1080/16073606.1993.9631737
https://doi.org/10.1016/j.jcss.2009.04.002
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1002/net.3230220304
https://doi.org/10.1007/BF01215352
https://manyu.pro/assets/parameter-hierarchy.pdf

Parameterized Local Search for Vertex Cover:
When Only the Search Radius Is Crucial
Christian Komusiewicz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Nils Morawietz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Abstract
A k-swap W for a vertex cover S of a graph G is a vertex set of size at most k such that S′ =
(S \ W) ∪ (W \ S), the symmetric difference of S and W , is a vertex cover of G. If |S′| < |S|, then W

is improving. In LS-Vertex Cover, one is given a vertex cover S of a graph G and wants to
know if there is an improving k-swap for S in G. In applications of LS-Vertex Cover, k is a very
small parameter that can be set by a user to determine the trade-off between running time and
solution quality. Consequently, k can be considered to be a constant. Motivated by this and the
fact that LS-Vertex Cover is W[1]-hard with respect to k, we aim for algorithms with running
time ℓf(k) · nO(1) where ℓ is a structural graph parameter upper-bounded by n. We say that such a
running time grows mildly with respect to ℓ and strongly with respect to k. We obtain algorithms
with such a running time for ℓ being the h-index of G, the treewidth of G, or the modular-width
of G. In addition, we consider a novel parameter, the maximum degree over all quotient graphs in a
modular decomposition of G. Moreover, we adapt these algorithms to the more general problem
where each vertex is assigned a weight and where we want to find a d-improving k-swap, that is,
a k-swap which decreases the weight of the vertex cover by at least d.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Computing methodologies → Discrete space search

Keywords and phrases Local Search, Structural parameterization, Fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.20

Funding Nils Morawietz : Supported by the Deutsche Forschungsgemeinschaft (DFG), project
OPERAH, KO 3669/5-1.

1 Introduction

Local search is one of the most successful heuristic strategies to tackle hard optimization
problems [6, 16, 20]. Consequently, understanding when local search yields good results and
improving local search approaches is of utmost importance. In its easiest form, local search
follows a hill-climbing approach on the space of feasible solutions of the optimization problem
at hand. In this setting, one chooses some initial feasible solution and then iteratively replaces
the current solution by a better one in its local neighborhood until reaching a local optimum,
that is, a solution that has no better solution in its neighborhood. Intuitively, it is clear
that the larger the local search neighborhood, the better the final solution will be. At the
same time, searching a larger neighborhood takes longer. In particular, for hard optimization
problems, the running time will be superpolynomial when the neighborhood is too large.
As a consequence, there is a trade-off between running time and solution quality that is
governed by the size of the local search neighborhood.

Parameterized local search offers a framework that may guide the design process for
algorithms that attempt to search larger local neighborhoods. When applying parameterized
local search to an optimization problem, the first step is to define a measure of distance

© Christian Komusiewicz and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:morawietz@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Parameterized Local Search for Vertex Cover

between solutions. The local search neighborhood of a solution is then the set of solutions
within distance at most k. Here, k is an operational parameter that can be set by the user
and that does not depend on the input data. The hope is now that the superpolynomial
part of the running time for searching the local neighborhood depends mostly on k. More
precisely, the ultimate goal of parameterized local search is to devise an algorithm that
determines in f(k) · nO(1) time whether there exists a better solution within distance at
most k of the current one. Often such a running time is not possible, since most local search
problems turn out to be W[1]-hard with respect to the parameter k [5, 10, 15, 14, 21, 24].

For example, when applying local search to Vertex Cover, the set of feasible solutions
of a graph G = (V, E) is naturally defined as the collection of vertex covers of G, that is,
vertex sets S ⊆ V that cover all edges of the graph. The most obvious choice for a local
search neighborhood is the k-swap neighborhood. Here, two vertex sets S and S′ are k-swap
neighbors if and only if (S \S′)∪ (S′ \S) has size at most k. The problem of deciding whether
a given vertex cover S of a graph G has a smaller vertex cover in its k-swap neighborhood,
called LS-Vertex Cover, is W[1]-hard with respect to k [10]. Thus, at first it may seem
unlikely that parameterized local search can be successfully applied to LS-Vertex Cover.
There are, however, some positive results for LS-Vertex Cover. In particular, LS-Vertex
Cover admits an FPT-algorithm for ∆(G) + k, where ∆(G) is the maximum degree of the
input graph [10]. That is, it can be solved in f(∆(G), k) ·nO(1) time. While this running time
bound is certainly interesting for bounded-degree graphs, it does not necessarily deliver on
the promise of parameterized local search that the superpolynomial part of the running time
depends mostly on k: for example f(∆(G), k) could be 2∆(G)·k. It is also known, however,
that LS-Vertex Cover can be solved in time O(2k · (∆(G) − 1)k/2 · k3 · n) [18]. In this
running time only k appears in the exponent, while ∆(G) appears only in the base of the
exponential function. Consequently, for small values of k the running time guarantee can
still be practically relevant, even when ∆ is not too small. In particular, the running time is
polynomial for every fixed k. The practical usefulness of the algorithm with this worst-case
running time bound was confirmed by experiments which showed that LS-Vertex Cover
can be solved efficiently for k up to 25 [18].

In this work, we aim to find further algorithms for LS-Vertex Cover that achieve such
running times which can be considered practical even though the superpolynomial running
time part depends not only on the operational parameter k. Before describing our results,
let us formalize the class of running time functions that we aim to achieve.

▶ Definition 1.1. Let f : N×N → N be a function. We say that f grows mildly with respect
to ℓ and strongly with respect to k if f(ℓ, k) ∈ O(ℓ g(k)) for some computable function g

depending only on k.

We are interested in obtaining FPT-algorithms whose running time grows strongly only with
respect to k and mildly with respect to some other parameters. In our opinion, the usefulness
of this setting is not limited to local search problems. Instead, it may be useful whenever

two parameters k and ℓ are studied,
k is known to be very small on relevant input instances,
k is known to be much smaller than ℓ on these instances,
and the problem is W[1]-hard with respect to k.

Our Results. We provide FPT-algorithms for LS-Vertex Cover parameterized by k and
several structural parameters of G. Besides k, we consider the treewidth of the input graph G,
denoted by tw(G), the h-index of the input graph G, denoted by h(G), the modular-width

C. Komusiewicz and N. Morawietz 20:3

of G, denoted by mw(G), and a novel parameter, the maximum degree over all quotient
graphs in a minimum-width modular decomposition, denoted by ∆md(G). In all our FPT-
algorithms, the running time grows strongly with respect to k and only mildly with respect
to the particular structural parameter. Moreover, for all these algorithms, the running time
depends only linearly on the size of the input graph.

The most general of our algorithms actually solve Gap LS-Weighted Vertex Cover
where the input graph is vertex-weighted, the cost of a vertex cover is the sum of its vertex
weights, and we search for a swap that improves the current solution by at least d for some
input value d. Local search approaches for Weighted Vertex Cover have been studied
from a more practical perspective which motivates our study of weighted variants of LS-VC.
In addition, for weighted local search problems, there may be exponentially long chains of
local improvements before one finds a local optimum [17] even for swaps of constant size [19].
Here, using a gap-variant of local search could reduce the number of necessary steps by
increasing the improvement per step. We now discuss the results in detail.

The h-index of a graph G is the largest number h such that G has at least h vertices
with degree at least h [9]. For Gap LS-Weighted Vertex Cover, we obtain an algorithm
with running time O(k! · (h(G) − 1)k · n). This can be seen as an improvement over the
FPT-algorithm for ∆(G) and k [18] since h(G) is never larger than ∆(G). In fact, in
many real-world instances the input graphs are scale-free, and on scale-free graphs h(G) is
drastically smaller than ∆(G). Even in such graphs, in order to speak of an improvement, it
is imperative that the running time of the FPT-algorithm grows mildly with respect to h(G)
and strongly with respect to k: a running time of O(2h(G)·k · n) would be less desirable than
the previous one for ∆(G) and k since the exponent would not be confined to the operational
parameter k.

The FPT-algorithm for tw(G) and k has running time O((tw(G)3k +k2) ·n). It is based on
dynamic programming on the tree decomposition. For LS-Vertex Cover, we show that, for
each bag of the tree decomposition, it is sufficient to consider intersections of size at most ⌈ k

2 ⌉
with potential improving swaps. This reduces the running time for LS-Vertex Cover
to O((tw(G)3·⌈ k

2 ⌉ + k2) · n). Hence, compared to the algorithm for Gap LS-Weighted
Vertex Cover, we are able to consider swaps of double the size.

We then consider parameters that are related to modular decompositions. These parame-
ters measure a different structural aspect, the similarity of neighborhoods in the graph, than
treewidth or the degree-related parameterizations. In particular, they can be very small in
dense graphs. For Gap LS-Weighted Vertex Cover we develop an FPT-algorithm with
running time O(mw(G)k · k · (mw(G) + k) · n + m) based on dynamic programming on a
modular decomposition, where mw(G) is the modular-width of G, the size of the largest vertex
set of any quotient graph of the modular decomposition. We then show an improvement
of this algorithm in terms of the structural parameter. More precisely, we show that when
processing a node of the decomposition in the dynamic programming algorithm, one may
apply a branching algorithm to determine how the swap interacts with the current node.
Superficially, this branching algorithm resembles the one for ∆(G) and k but including the
information computed for other nodes of the decomposition requires to combine the branching
with Knapsack DP-algorithms. This gives an FPT-algorithm for the parameters ∆md(G)
and k. Recall that ∆md(G) is the maximum degree over all quotient graphs of a modular
decomposition of minimum width which is upper-bounded by mw(G). We believe that this
novel parameter can be useful in further algorithmic applications of modular decompositions.
We remark that the presented algorithm for ∆md(G) and k only solves the unweighted gap
version of LS-VC; an extension to Gap LS-Weighted Vertex Cover seems possible but
somewhat tedious.

IPEC 2022

20:4 Parameterized Local Search for Vertex Cover

In a second improvement, we show that instead of modular-width one can also obtain
FPT-algorithms when using the smaller splitwidth; the results for this parameter are deferred
to the full version of this article. Another candidate parameterization would be cliquewidth.
We do not consider cliquewidth here, since there is no polynomial-time polynomial-factor
approximation of cliquewidth and thus the desired type of FPT running times can only be
achieved when a clique decomposition is given as input.

We complement these algorithms by conditional lower bounds that are based on the
assumption that matrix-multiplication-based algorithms for the Clique-problem are running-
time-optimal [1]. We show that under this assumption, we may not expect a very large
improvement of the previous known and new algorithms.

The proofs of statements marked with a (*) are deferred to a full version. For further
details regarding parameterized algorithms, refer to the textbook of Cygan et al. [7].

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}. For a set A, we
denote with

(
A
2
)

:= {{a, b} | a ∈ A, b ∈ A, a ̸= b} the collection of all size-two subsets of A.
For two sets A and B, we denote with A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference
of A and B.

Graph Notation. An (undirected) graph G = (V, E) consists of a set of vertices V and
a set of edges E ⊆

(
V
2
)
. For vertex sets S ⊆ V and T ⊆ V , we denote with EG(S, T) :=

{{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T and we use EG(S) := EG(S, S) as a
shorthand. Moreover, we define G[S] := (S, EG(S, S)) as the subgraph of G induced by S.
For a vertex v ∈ V , we denote with NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood
of v in G and with NG[v] := {v} ∪ NG(v) the closed neighborhood of v in G. Analogously,
for a vertex set S ⊆ V , we define NG[S] :=

⋃
v∈S NG[v] and NG(S) :=

⋃
v∈S NG(v) \ S. If G

is clear from the context, we may omit the subscript.

Modular Decompositions. A modular decomposition of a graph G = (V, E) is a pair (T , β)
consisting of a rooted tree T = (V, A, x∗) with root x∗ ∈ V and a function β that maps each
node x ∈ V to a graph β(x). If x is a leaf of T , then β(x) contains a single vertex of V and
for each vertex v ∈ V , there is exactly one leaf ℓ of T such that the graph β(ℓ) consists only
of v. If x is not a leaf node, then the vertex set of β(x) is exactly the set of child nodes of x

in T . Moreover, let Vx denote the set of vertices of V contained in leaf nodes of the subtree
rooted in x. Formally, Vx is recursively defined as V (β(ℓ)) for leaf nodes ℓ and defined
as

⋃
y∈V (β(x)) Vy for each non-leaf node x. Moreover, we define Gx = (Vx, Ex) := G[Vx].

A modular decomposition has the property that for each non-leaf node x and any pair of
distinct nodes y ∈ V (β(x)) and z ∈ V (β(x)), y and z are adjacent in β(x) if there is an edge
in G between each pair of vertices of Vy and Vz and y and z are not adjacent if there is
no edge in G between any pair of vertices of Vy and Vz. Hence, it is impossible that there
are vertex pairs (v1, w1) ∈ Vy × Vz and (v2, w2) ∈ Vy × Vz such that v1 is adjacent with w1
and v2 is not adjacent with w2.

We call β(x) the quotient graph of x. A quotient graph is prime if there is no set A ⊆
V (β(x)) with 2 ≤ |A| < |V (β(x))| such that all vertices of A have the same neighborhood
in V (β(x)) \ A. The width of a modular decomposition is the size of the largest vertex set of
any quotient graph and the modular-width of a graph G is the minimal width of any modular
decomposition of G denoted by mw(G).

The formal definition of treewidth and tree decompositions is deferred to the appendix.

C. Komusiewicz and N. Morawietz 20:5

Vertex Cover Local Search. A vertex set S ⊆ V is a vertex cover of G if at least one
endpoint of each edge in E is contained in S. Let S be a vertex cover of G. A k-swap,
for k ∈ N, is a vertex set W of size at most k and W is said to be valid for S in G if S ⊕ W

is also a vertex cover of G. For each valid swap W for S in G, both W ∩ S and W \ S are
independent sets and N(W) \ S = N(W ∩ S) \ S ⊆ W . A swap W is connected if G[W] is
connected. Let ω : V → N. For some X ⊆ V , we set ω(X) =

∑
x∈X ω(x). The improvement

of W is defined as αS
ω(W) := ω(W ∩ S) − ω(W \ S). Moreover, W is improving if αS

ω(W) > 0
and d-improving for some d ∈ N if αS

ω(W) ≥ d. If S or ω are clear from the context, we may
omit them. In this work, we study the following local search problems for Vertex Cover.

LS-Weighted Vertex Cover (LS-WVC)
Input: A graph G = (V, E), a weight function ω : V → N, a vertex cover S of G,
and k ∈ N.
Question: Is there a valid improving k-swap W ⊆ V for S in G?

Gap LS-Weighted Vertex Cover (GLS-WVC)
Input: A graph G = (V, E), a weight function ω : V → N, a vertex cover S

of G, k ∈ N, and d ∈ N.
Question: Is there a valid d-improving k-swap W ⊆ V for S in G?

Moreover, we define Gap LS-Vertex Cover (GLS-VC) as the special case of GLS-
WVC where ω(v) = 1 for each v ∈ V and d ∈ [1, k] and LS-Vertex Cover (LS-VC) as
the special case of GLS-VC, where d = 1. Let I = (G = (V, E), S, ω, k, d) be an instance
of GLS-WVC. We say that W ⊆ V is a solution for I, if W is a valid d-improving k-swap
for S in G.

3 Basic Observations and Lower Bounds

In this section, we first define swap-instances which are instances obtained from applying
some partial swap. Swap-instances will be useful for describing certain parts of our algorithms
such as branching rules. We then make some observations on certain useful properties of
improving swaps. Finally, we present our running time lower bounds for the considered
parameters.

Swap-Instances. In our algorithms, we may change instances by performing some partial
swaps, for example during branching. We call the instance obtained by such an operation
a swap-instance. Intuitively, the swap-instance swap(I, W) for an instance I of GLS-WVC
and a (partial) swap W is the GLS-WVC-instance obtained as follows: First, swap W .
Then, swap further vertices to make the swap W valid, that is, to maintain that S is a vertex
cover. To simplify the instance, the set W ′ ⊇ W of swapped vertices is then removed from
the instance. Finally, to maintain equivalence, the remaining budget k is decreased by the
number of swapped vertices and the required improvement d is decreased by the improvement
of W ′. Formally, this reads as follows.

▶ Definition 3.1. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and let W ⊆
V be a k-swap. Define W ′ := W ∪ (N(W) \ S). The instance

swap(I, W) := (G′, ω′, S′ := S \ W, k′, d′)

with G′ := G − (N(W ∩ S) ∪ W ′), k′ := k − |W ′|, d′ := d − α(W ′), and ω′(v) := ω(v) for
each v ∈ V (G′) is the swap-instance for I and W .

IPEC 2022

20:6 Parameterized Local Search for Vertex Cover

G G′

W ′

W

v5 v6 v7 v8

v1 v2 v3 v4

⇝

v4

v7 v8

Figure 1 An instance I := (G, S, k, d) (left) and the swap-instance swap(I, W) := (G′, S′, k′, d′)
(right) obtained from the swap W := {v1, v2}. The vertex cover vertices are black, the independent
set vertices are white. The green area contains the vertices of N(W ∩ S) ∪ W ′ which are in G but not
in G′. Since W ′ has size 4 and contains only one vertex of S, k′ := k − 4 and d′ := d + 2. Moreover,
the vertex v3 is not contained in G′ since v1 is adjacent to v3 and leaves the vertex cover, which
implies that v3 cannot leave the vertex cover afterwards.

An example of a swap-instance can be seen in Figure 1. Note that W ′ is a subset of each
valid swap W ∗ for S in G where W ⊆ W ∗.

▶ Lemma 3.2 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and let
W ⊆ V such that W ∩ S is an independent set. There is a solution W ∗ for I with W ⊆ W ∗

if and only if swap(I, W) is a yes-instance of GLS-WVC.

If I is an instance of GLS-VC, then k′ + d′ = k + d − 2 · |W ∩ S|, since α(W ′) =
−|W | + 2 · |W ∩ S|. Let I be an instance of GLS-WVC and let W be the subset of some
valid swap. When we replace the instance I by swap(I, W) we may say that we swap W

in I.

Properties of Improving Swaps. Next, we show that it is sufficient to consider instances
of GLS-VC where k + d is even.

▶ Lemma 3.3 (*). Let I = (G, S, k, d) be an instance of GLS-VC where k + d is odd. If I

is a yes-instance of GLS-VC, then I ′ := (G, S, k − 1, d) is a yes-instance of GLS-VC.

Consider some improving swap W for S in G. Then, each connected component in G[W]
is a valid swap and since W is improving, at least one connected component in G[W] is an
improving swap for S in G. Hence, the following holds.

▶ Observation 3.4. Let I = (G, ω, S, k) be a yes-instance of LS-WVC. There is some valid
improving k-swap W for S in G such that W is connected.

Some of our algorithms branch over all possible intersections of a d-improving k-swap W

with a given vertex set X. The following lemma shows that for GLS-VC, we only have to
consider intersections of size at most k+d

2 of X with potential improving swaps.

▶ Lemma 3.5. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC, let W be a
solution for I, and let SX := W ∩ X ∩ S and CX := W ∩ X \ N [SX] for some X ⊆ V .
If |SX ∪ CX | > k+d

2 , then there is a solution W ′ for I such that W ′ is a proper subset of W .

Proof. First, we show that W ∗ := SX ∪ (N(SX) \ S) is a solution for I. Note that each d-
improving k-swap contains at most k−d

2 vertices of V \ S. Since W is valid, it follows
that W ∗ ⊆ W and, thus, |CX | + |N(SX) \ S| ≤ k−d

2 . Moreover, since |SX ∪ CX | >
k+d

2 , |SX | > d + k−d
2 − |CX | ≥ d + |(N(SX) \ S)|. Hence, W ∗ is a solution for I.

C. Komusiewicz and N. Morawietz 20:7

If W ∗ is a proper subset of W , then the statement already holds. Hence, assume
that W = W ∗. As a consequence, CX = ∅ and SX has size more than k+d

2 . Let S′
X be an

arbitrary subset of SX of size k+d
2 and let ℓ denote the size of the difference SX \ S′

X . We
show that W ′ := S′

X ∪ (N(S′
X) \ S) is a solution for I. Since S′

X is a subset of both SX

and S, and W ∗ is a valid swap, W ′ is a valid swap as well. Moreover, since W ∗ has size at
most k and W ′ is a subset of W ∗, W ′ is a k-swap. Finally, since |SX | = k+d

2 + ℓ and W ∗

is a k-swap, W ∗ \ SX = N(SX) \ S has size at most k−d
2 − ℓ. Hence, W ′ is d-improving

since W ′ \ S′
X = N(S′

X) \ S is a subset of N(SX) \ S and thus has size at most k−d
2 − ℓ. ◀

To obtain linear FPT running times, we handle instances with small values of k separately.

▶ Lemma 3.6 (*). GLS-WVC can be solved in O(n + m) time if k ≤ 2 and GLS-VC can
be solved in O(n + m) time if k + d ≤ 4.

Lower Bounds. Let ω < 2.373 be the matrix multiplication constant [3]. Using a reduction
to matrix multiplication, one can solve the Clique problem, which asks whether an n-vertex
graph has a clique of size k, in O(nω·k/3) time [23]. It is a long-standing question whether
this running time can be improved to O(n(ω/3−ε)k) [1, 25]. Assuming that this is not the
case, we obtain the following lower bounds for our considered problem.

▶ Theorem 3.7. For every ε > 0 and every d ∈ [1, k], GLS-VC cannot be solved in
O(ℓ(ω/3−ε)· k+d

2) time where ℓ = max{n − k−d
2 , ∆(G), vc(G), |S|, mw(G)}, unless Clique can

be solved in O(n(ω/3−ε)k) time.

Proof. Let ε > 0 be a constant. We assume in the following that ε < ω/3, since the statement
follows directly for ε ≥ ω/3. Moreover, let I∗ = (G∗ = (V, E∗), k) be an instance of Clique
with k ≥ 2

(ω/3)−ε and, let n denote the size of V , and let d be an arbitrary value between 1
and k. We show that we can compute in O(n2) time an equivalent instance I ′ = (G′ =
(V ′, E′), S, k′, d) of GLS-VC such that ℓ := max{n′ − k′−d

2 , ∆(G′), vc(G′), |S|, mw(G′)} is
at most n. First, let G = (V, E) be the complement graph of G∗, that is, E :=

(
V
2
)

\ E∗.
Note that a set X ⊆ V is a clique in G∗ if and only if X is an independent set in G and
that one can compute G in O(n2) time. We can assume that the maximum degree of G

is at most |V | − k, since vertices in G of degree at least |V | − k + 1 are contained in no
independent set of size k. We obtain G′ by adding a set V ∗ of k − d new vertices to G such
that NG′(v) = V for all v ∈ V ∗. Finally, we set k′ := 2k − d and S := V , which completes
the construction of I ′. Note that this takes at most O(n2) time, since k ≤ n. Next, we show
that I∗ is a yes-instance of Clique if and only if I ′ is a yes-instance of GLS-VC.

(⇒) Let C ⊆ V be an independent set of size k in G, then S′ := (V \ C) ∪ V ∗ is a vertex
cover for G′ such that |S ⊕ S′| = k′ and |S′| ≤ |S| − d. Consequently, I ′ is a yes-instance
of GLS-VC.

(⇐) Let S′ ⊆ V ′ such that |S ⊕ S′| ≤ k′ and |S′| < |S| − d. Consequently, C := S \ S′ is
non-empty. We show that C is an independent set of size k in G. Since S′ is a vertex cover
for G′ and every vertex of V ∗ is adjacent to every vertex of V , it follows that V ∗ ⊆ S′. By
the fact that |S ⊕ S′| ≤ 2k − d, S′ \ S = V ∗, and V ∗ has size k − d, C has size at most k.
Moreover, since |S′| ≤ |S| − d, C has size at least k′ − |V ∗| = k. As a consequence, C

has size k. Moreover, since S′ is a vertex cover for G′, no two vertices of C are adjacent.
Consequently, C is an independent set of size k in G and, thus, I∗ is a yes-instance of Clique.

Next, we show that ℓ := max{n′ − k′−d
2 , ∆(G′), vc(G′), |S|, mw(G′)} is at most n. By

construction, n′ = n + k − d = n + k′−d
2 . Since the maximum degree of G is at most n − k,

the maximum degree of G′ is at most n. Moreover, since S is a vertex cover of size n

IPEC 2022

20:8 Parameterized Local Search for Vertex Cover

for G′, vc(G′) ≤ n. Next, we show that the modular-width of G′ is at most n. Let (T1, β1) be
a modular decomposition of G and let (T2, β2) be a modular decomposition of G′[V ′\V]. Since
there is an edge between any pair of vertices of V and V ′ \V , a modular decomposition (T , β)
of G′ can be obtained by combining (T1, β1) and (T2, β2) in the following way: We add a new
root x∗ where β(x∗) is a graph consisting of a single edge and the vertices of β(x∗) are the roots
of the two modular decompositions (T1, β1) and (T2, β2). Note that mw(G) ≤ n. Moreover,
since V ′ \ V is an independent set, we have mw(G′[V ′ \ V]) = 2. Hence, mw(G′) ≤ n.

Now, if we have an algorithm A solving GLS-VC in O(ℓ(ω/3−ε)· k+d
2) time for ε > 0,

then Clique can be solved in O(n(ω/3−ε)k) time as well: Since k ≥ 2
(ω/3)−ε , the running

time O(n(ω/3−ε)·k) dominates the time used to construct the instance I ′ of GLS-VC. Now the
running time bound for solving Clique using A follows directly from ℓ ≤ n and k′+d

2 = k. ◀

For the cases LS-VC and GLS-WVC, we obtain the following.

▶ Corollary 3.8 (*). For every ε > 0, LS-VC cannot be solved in O(ℓ(ω/3−ε)·⌈ k
2 ⌉) time

for ℓ := max{n − k + 1, ∆(G), vc(G), |S|, mw(G)} and GLS-WVC cannot be solved in
O(n(ω/3−ε)·k) time, unless Clique can be solved in O(n(ω/3−ε)k) time.

4 Parameterization by Treewidth

In this section, we present FPT-algorithms for k and the treewidth of G.
Intuitively, the algorithms are obtained by a dynamic programming algorithm on a given

tree decomposition of width r where each entry of the dynamic programming table considers
the intersection of the current bag of size r + 1 with an improving swap W of size at most k.

▶ Theorem 4.1. Let G = (V, E) be an undirected graph, let ω : V → N be a weight
function, let S ⊆ V be a vertex cover in G, and let k be a natural number. Given a nice tree
decomposition of width r for G with O(n) bags, one can compute in O((rk + k2) · n) time a
valid k-swap W for S in G such that α(W) is maximal under all valid k-swaps for S in G.

Proof. Due to Lemma 3.6, the statement holds for k ≤ 2. In the following, we show the
running time by describing a dynamic programming algorithm for k ≥ 3.

Let Nx(U) := N(U) ∩ β(x) denote the neighbors of U in the bag of x ∈ V. For a
node x ∈ V, we define with Vx the union of all bags β(y), where y is reachable from x

in T . Moreover, we set Gx := G[Vx] and Ex := EG(Vx). For each node x ∈ V in the
tree decomposition, the dynamic programming table Dx has entries of type Dx[Sx, Cx, k′]
with, Sx ⊆ S ∩ β(x), Cx ⊆ β(x) \ (N(Sx) ∪ S) and k′ ∈ [0, k], such that |Wx| ≤ k′

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S). Hence, |Sx ∪ Cx| ≤ k.
Each entry stores the maximal improvement αS(W) of a valid k′-swap W ⊆ Vx for S ∩ Vx

in Gx such that W ∩ S ∩ β(x) = Sx and W ∩ β(x) \ (N(Sx) ∪ S) = Cx. In other words, W

intersects with the vertices of S of the current bag exactly in Sx and W intersects with the
vertices of V \ S of the current bag (minus the vertices that are contained in each valid swap
containing Sx) exactly in Cx.

To ensure that we do not have to evaluate entries where |Sx ∪ Cx| > k, we define for
all x ∈ V , Sx ⊆ β(x) ∩ S, Cx ⊆ β(x) \ S, and k′ ∈ [0, k], fx(Sx, Cx, k′) := Dx[Sx, Cx, k′]
if |Sx ∪ Cx| ≤ k and fx(Sx, Cx, k′) := −∞, otherwise.

For each leaf node ℓ of T , we fill the table Dℓ by setting Dℓ[∅, ∅, k′] := 0 for each k′ ∈ [0, k].
For all non-leaf nodes x of T , we set Dx[Sx, Cx, k′] := −∞ if
Sx is not an independent set in G,
|Sx ∪ Cx ∪ (Nx(Sx) \ S)| > k′, or
N(Sx) ∩ Cx ̸= ∅.

C. Komusiewicz and N. Morawietz 20:9

Note that this is correct since in all three cases, there is no swap fulfilling the constraints of
the table definition. To compute the remaining entries Dx[Sx, Cx, k′], we distinguish between
the three types of non-leaf nodes. For each type, we give only an informal proof of the
correctness; the formal proof is omitted.

Forget Nodes. Let x be a forget node, let y be the unique child of x in T , and let v be the
unique vertex in β(y) \ β(x). The entries for x can be computed as follows:

Dx[Sx, Cx, k′] :=
{

max(fy(Sx, Cx, k′), fy(Sx ∪ {v}, Cx \ N(v), k′)) v ∈ S and
max(fy(Sx, Cx, k′), fy(Sx, Cx ∪ {v}, k′)) v /∈ S.

Informally, we chose the larger improvement of the best swap containing v and the best
swap not containing v. To consider the best swap containing v, we remove v from the
corresponding set (Sx or Cx). If v is a vertex of S, we also have to remove the vertices
of N(v) \ S from Cx, since these vertices are implicitly stored in the corresponding entry
of Dy and, by definition, N(Sy) ∩ Cy = ∅.

Introduce Nodes. Let x be an introduce node, let y be the unique child of x in T , and
let v be the unique vertex in β(x) \ β(y). The entries for x can be computed as follows:

Dx[Sx, Cx, k′] :=

fy(Sx \ {v}, Cx ∪ C∗, k′ − 1) + ω(v) v ∈ Wx ∩ S,

fy(Sx, Cx \ {v}, k′ − 1) − ω(v) v ∈ Wx \ S,

fy(Sx, Cx, k′) otherwise,

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S) and C∗ := (Nx(v) \ S) \ N(Sx \ {v}).
Informally, if v is a vertex of Wx, we have to consider the entry Dy where v is removed

from the corresponding set (Sx or Cx) and adding the improvement we obtain from having v

in the considered swap (increasing by ω(v) if v ∈ S and decreasing by ω(v) if v /∈ S). If v

is a vertex of S, the vertices of C∗ are not stored implicitly in Dy, so we have to consider
the entry of Dy where we also explicitly swap C∗. Otherwise, if v is not a vertex of Wx, we
consider the entry of Dy with the same subsets Sx and Cx and the same budget k′.

Join Nodes. Let x be a join node, let y and z be the unique children of x in T . The entries
for x can be computed as follows:

D[x, Sx, Cx, k′] := max
0≤k′′≤k′−|Wx|

Dy[Sx, Cx, k′′ + |Wx|] + Dz[Sx, Cx, k′ − k′′] − α(Wx)

where Wx := Sx ∪ Cx ∪ (Nx(Sx) \ S).
Informally, we divide the budget k′ into two parts. One for the subset of vertices of W

contained in the subtree rooted in y and one for the subset of vertices of W contained in
the subtree rooted in z. Note that Wx is contained on both these vertex sets. Hence, we
consider all possible ways to divide k′ into two parts, such that both entries have at least
enough budget to swap all vertices of Wx. Since the improvement of Wx is added twice, we
have to remove α(Wx) from the obtained sum.

The maximal improvement of any valid k-swap for S in G can then be found in Dx∗ [∅, ∅, k].
Moreover, the corresponding swap can be found via traceback.

It remains to show the running time. Recall that (T = (V, A, x∗), β) is a nice tree
decomposition of width r for G with O(n) bags. The number of entries of the table Dx

is upper bounded by k + 1 times the number of subsets of β(x) of size at most k. Since

IPEC 2022

20:10 Parameterized Local Search for Vertex Cover

for each x ∈ V, β(x) ≤ r + 1, we have that all dynamic programming tables together
contain O(

(
r+1
≤k

)
· k · n) entries, where

(
r+1
≤k

)
denotes the number of different subsets of size at

most k of a set of size r + 1. By the following claim, we can compute each of them efficiently.

▷ Claim (*). After a preprocessing running in O((
(

r+1
≤k

)
· k2 +

(
r+1

≤k−1
)

· r · k + r2) · n) time,
one can compute each entry of each table Dx in O(k) time.

Note that there are O((
(

r+1
≤k

)
· k · n) entries in total. Hence, the whole algorithm runs

in O((
(

r+1
≤k

)
· k2 · n) time which is O(rk · n) time if r ≥ 2 (the proof of this fact is deferred

to Appendix B) and in O(2r · k2 · n) = O(k2 · n) time, otherwise. ◀

The dynamic programming algorithm deviates from the simple idea mentioned above in
the following detail: it considers only a) the intersection W S

x of W ∩ S with the vertices of
the current bag and b) the intersection of W with those vertices of V \ S in the current bag
that are not contained in N(W S

x). This is more technical but has the following benefit: The
intersection of W with N(Sx) \ S is stored implicitly which decreases the factor rk to r

k+d
2

for GLS-VC due to Lemma 3.5. In particular, for the case of d = 1, that is, for LS-VC, this
gives a substantial improvement of the exponential part of the running time from rk to r

k+1
2 .

▶ Theorem 4.2 (*). Let I = (G = (V, E), S, k, d) be an instance of GLS-VC. Given a nice
tree decomposition of width r for G with O(n) bags. One can solve I in O((r k+d

2 +k2) ·n) time.

Since computing a tree decomposition of minimal width is NP-hard, we cannot directly
obtain a running time of O((tw(G)k + k2) · n) and O((tw(G) k+d

2 + k2) · n), respectively.
We can, however, compute a nice tree decomposition of width tw(G) in O(n + m) time
if tw(G) ≤ 1800 [4]. Moreover, for each r ≥ 0, one can compute a nice tree decomposition
of G of width 1800 · r2 or correctly output that tw(G) > r in O(r7 · n · log(n)) time [11].
Hence, we can compute in O(tw(G)8 · n · log(n)) time [11] a nice tree decomposition of G of
width at most 1800 · tw(G)2. If tw(G) ≥ 1800, then the width of the latter tree decomposition
is smaller than tw(G)3. Altogether, we obtain the following.

▶ Corollary 4.3. GLS-VC can be solved in O((tw(G)
3·(k+d)

2 + k2) · n · log(n)) time and GLS-
WVC can be solved in O((tw(G)3k + k2) · n · log(n)) time.

Note that even if a tree decomposition of width tw(G) is given, one cannot improve much on
the running time due to the lower bound of Theorem 3.7, since tw(G) ≤ vc(G).

5 Degree-Related Parameterizations

In this section, we present FPT-algorithms for the parameters maximum degree ∆(G) and k

and for the h-index of G and k. In contrast to previous work, these FPT-algorithms solve
the more general problems with weights and gap-improvements; the algorithms for ∆(G) will
be used as subroutines in the algorithm for the h-index of G.

We start by presenting an algorithm for instances with an h-index of at most 1 which
will be used to handle border cases for both parameterizations.

▶ Lemma 5.1 (*). GLS-WVC can be solved in O(k · log(k) + n) time if h(G) ≤ 1.

Hence, from now on, we assume that h(G) and ∆(G) are at least 2.

C. Komusiewicz and N. Morawietz 20:11

5.1 Parameterizing Unweighted Gap Local Search by Maximum Degree
The main result in this section for GLS-VC is the following.

▶ Theorem 5.2 (*). GLS-VC can be solved in O(k! · (∆ − 1) k+d
2 · n) time.

The first idea for an algorithm is to slightly adapt the known O(2k · (∆ − 1) k+1
2 · k2 · n)-time

algorithm for LS-VC [18] to GLS-VC. This algorithm, however, relies on the fact that
for LS-VC, it is sufficient to consider only connected swaps. For d-improving swaps, however,
this is not the case: an improvement of at least 2 may be only achievable by swapping
vertices that may have an arbitrarily large distance in the graph. Thus, the gap version of
the problem becomes considerably harder.

To avoid considering all possible vertex sets of size at most k, we present two branching
rules. The first one applies if there is a vertex v in S where N(v) ⊆ S and branches in all
possible ways to swap either v or two non-adjacent vertices of N(v). If this rule cannot be
applied, then each vertex in S has at least one neighbor in V \ S and, thus, there is no valid
improving swap of size one.

▶ Proposition 5.3 (*). Let I = (G = (V, E), S, k, d) be a yes-instance of GLS-VC and
let v be a vertex of S with N(v) ⊆ S. There is a solution W for I such that either v ∈ W

or |W ∩ N(v)| ≥ 2.

Hence, we obtain the following branching rule. Here, we are interested in swapping two
independent neighbors of v at a time to obtain a better branching vector than the one, we
could obtain by swapping only a single neighbor of v at a time.

▶ Branching Rule 5.1. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC and let v be
a vertex of S with N(v) ⊆ S. For each swap W ∈ (

(
N(v)

2
)

\ E) ∪ {{v}}, branch into the case
of swapping W .

As mentioned above, if the branching rule cannot be applied anymore, then each valid
improving swap contains at least two vertices. Before applying the second branching rule,
we perform the following preprocessing. First, we compute for each j ∈ [2, d] some minimum
valid connected j-improving k-swap Wj for S in G if there is any. Consider some valid
minimum solution W for I and let C be a connected component in G[W] with the minimal
improvement. Let ℓ := α(C) and let W ′ = (W \ C) ∪ Wℓ. Since Wℓ contains at most |C|
vertices, we have |W ′| ≤ k. The resulting swap W ′ is a solution for I if W ∩ N [Wℓ] = ∅.

The idea of the branching rule is now the following: either the d-improving swap con-
tains Wℓ, some neighbor of Wℓ, or no connected component that is exactly ℓ-improving.
First, we present an algorithm to efficiently find the swaps Wj for all j ∈ [1, d] using the
algorithm of Katzmann and Komusiewicz [18] as a subroutine and afterwards, we formally
prove the correctness of this branching.

▶ Proposition 5.4 (*). Let I = (G = (V, E), S, k, d) be an instance of GLS-VC. For
all j ∈ [1, d], one can find some minimum valid connected j-improving k-swap Wj for S

in G with |Wj \ S| ≤ (k − d)/2 or correctly output that no such swap exists in total in
O(2k · (∆ − 1)(k+d)/2 · k3 · n) time.

▶ Proposition 5.5. Let I = (G = (V, E), S, k, d) be a yes-instance of GLS-VC and, for
each j ∈ [1, ⌊ d

2 ⌋], let Wj denote a minimum valid connected j-improving (k−d+j)-swap for I.
There is a solution W for I such that (i) W is connected or (ii) there is some j ∈ [1, ⌊ d

2 ⌋]
such that Wj ⊆ W or W ∩ N(Wj) ̸= ∅.

IPEC 2022

20:12 Parameterized Local Search for Vertex Cover

Proof. Let W be a minimum solution for I. Hence, the improvement of W is exactly d.
Suppose that W is not connected and that for each j ∈ [1, ⌊ d

2 ⌋], Wj ̸⊆ W and W ∩N(Wj) = ∅,
as otherwise the statement already holds. Let C be a connected component in G[W]
that minimizes α(C), that is, the connected swap of W with the smallest improvement.
Let ℓ := α(C). Since W is not connected and has improvement exactly d, ℓ ≤ ⌊ d

2 ⌋. Note
that ℓ ≥ 1 as, otherwise, W is not minimum. Moreover, note that W ′ := W \ C is a
valid (d − ℓ)-improving (k − |C|)-swap for I and |C| < k. Since W has size at most k and
is d-improving, |W \ S| ≤ (k − d)/2, which implies that |C| ≤ k − d + ℓ. Recall that Wℓ

is some minimum valid connected ℓ-improving (k − d + ℓ)-swap for I. Hence, |C| ≥ |Wℓ|.
Recall that by assumption Wℓ ̸⊆ W and N(Wℓ) ∩ W = ∅. Since W is minimum, this
implies that Wℓ ∩ W = ∅, as otherwise Wℓ ∩ W is a connected component in G[W] such
that 0 < α(Wℓ ∩W) < α(C). We set W ∗ := W ′ ∪Wℓ. Note that W ∗ is a d-improving k-swap
for S in G. It remains to show that W ∗ is valid. Since W ′ and Wℓ are both valid, it follows
that W ∗ is valid if W ′ ∩ N(Wℓ ∩ S) ∩ S = ∅. By assumption, this is the case. ◀

Hence, we derive the following branching rule.

▶ Branching Rule 5.2. Let I = (G = (V, E), S, k, d) be an instance of GLS-VC such
that there is no connected solution for I. Moreover, for each j ∈ [1, ⌊ d

2 ⌋], let Wj denote a
minimum valid connected j-improving (k − d + j)-swap for S in G. For each swap W ∈{

{w} | w ∈ N(Wj), j ∈ [1, ⌊ d
2 ⌋]

}
∪

{
Wj | j ∈ [1, ⌊ d

2 ⌋]
}

, branch into the case of swapping W .

With these branching rules, we are now able to prove Theorem 5.2. To obtain the stated
running time of Theorem 5.2, we apply a branching algorithm using three steps in each node
of the branching tree. First, check in O(n + m) time if there is a vertex v ∈ S with N(v) ⊆ S.
If this is the case, apply Branching Rule 5.1. Due to Proposition 5.3, this is correct. If
there is no vertex v ∈ S with N(v) ⊆ S, find some minimum valid connected j-improving k-
swaps Wj for I where |Wj \ S| ≤ (k − d)/2 (if such a swap exists), for each j ∈ [1, d]. Due to
Proposition 5.4, this can be done in O(2k · (∆ − 1)(k+d)/2 · k3 · n) time. If Wd exists, answer
yes. Otherwise, apply Branching Rule 5.2.

Note that this is (besides the change from the 2k factor to a k! factor in the running
time) a direct generalization of the previous best algorithm for LS-VC which runs in O(2k ·
(∆ − 1)k/2 · k · n) time [18] to GLS-VC.

5.2 Parameterizing Weighted Gap Local Search by Maximum Degree

▶ Proposition 5.6 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC. One
can enumerate all valid connected k-swaps for I in O(2k(∆ − 1)k · k3 · n) time.

Due to Observation 3.4 and Proposition 5.6 we obtain the following.

▶ Corollary 5.7. LS-WVC can be solved in O(2k · (∆ − 1)k · k3 · n) time.

To solve GLS-WVC, again, we encounter the problem that the sought solution is not
necessarily connected. Hence, for GLS-WVC we show a related algorithm to the one we
presented for GLS-VC using only one branching rule which is, more or less, an adaptation
of Branching Rule 5.2 to the weighted version. Consider a solution W for I. This time,
we want to find some valid improving j-swap Wj for S in G for each j ∈ [1, k] and branch
into the cases of either swapping Wj or swapping some neighbor of Wj . Unfortunately, a

C. Komusiewicz and N. Morawietz 20:13

result similar to Proposition 5.3 cannot be obtained1. Hence, in the worst case, each of these
branching cases reduces the parameter k only by one which would lead to a running time
factor of (∆ − 1)2·k instead of (∆ − 1)k. Our goal is, thus, to reduce the number of cases in
which the parameter is only reduced by one. To this end, we analyze the swap W1 separately.
Let S1 := {v ∈ S | N(v) ⊆ S} denote the set of vertices of improving 1-swaps for S in G

and let v∗ be the unique vertex of W1. Since v∗ is some vertex in S1 of highest weight,
if W ∩ N [v∗] = W ∩ N [W1] = ∅, then we can replace some distinct vertex w∗ of S1 contained
in W by v∗ and also obtain a solution for I. Hence, we can then reduce our branching cases
for j ≥ 2 to the ones in which we consider either swapping Wj or some neighbor of Wj which
is not contained in S1. Since the remaining considered swaps for j ≥ 2 have size at least 2,
only |N [W1]| ≤ ∆ + 1 cases remain in which the parameter is only reduced by one. Hence,
these ideas lead to the following branching rule.

▶ Branching Rule 5.3. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC
such that I has no connected solution. For each j ∈ [1, ⌊ k

2 ⌋], let Wj denote some valid
connected j-swap for I with maximal improvement. Branch into the case of swapping W for
each swap W ∈ {{w} | w ∈ N(W1)} ∪

{
Wj | j ∈ [1, k

2]
}

∪ {{w} | w ∈ N(Wj) \ S1, j ∈ [2, k
2]}.

With this branching rule, we are now able to show the following.

▶ Theorem 5.8 (*). GLS-WVC can be solved in O(k! · (∆ − 1)k · n) time.

To obtain this running time, we do the following in each node of the branching tree. First,
find for each j ∈ [1, k] some valid connected j-swap Wj for I that maximizes α(Wj). Due
to Proposition 5.6, this can be done in O(2k · (∆ − 1)k · k3 · n) time. Now, if α(Wk) ≥ d,
then I is a yes-instance of GLS-WVC. Otherwise, there is no connected solution for I,
since Wk has the maximal improvement of all valid connected k-swaps. Compute the
set S1 := {v ∈ S | N(v) ⊆ S} of possible improving swaps of size 1 and apply Branching
Rule 5.3.

Finally, we show that we can replace ∆(G) in the above running time by the h-index of G.
The idea behind this algorithm is to branch on all possibilities on how a potential improving
swap may intersect the set of high-degree vertices. For each of these potential intersections,
we compute the corresponding swap instance and solve it with the help of Theorem 5.8 after
removing the remaining high-degree vertices. This is correct due to the following lemma.

Since a valid swap W for S in G that avoids a given set V ′ does not contain any vertex
of S \ V ′ adjacent to some vertex of V ′ \ S, we define an exclusion instance I ′ for V ′ and I as
the instance of GLS-WVC, where all vertices of V ′ ∪N(V ′ \S) are removed from I. Formally,
let I = (G, ω, S, k, d) be an instance of GLS-WVC, then the exclusion instance I ′ of GLS-
WVC for V ′ and I is defined as I ′ := (G′, ω, S′, k, d), where G′ := G − (V ′ ∪ N(V ′ \ S))
and S′ := S ∩ V (G′). Due to the above, we obtain the following.

▶ Lemma 5.9 (*). Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC and
let V ′ ⊆ V . There is a solution W for I with W ∩ V ′ = ∅ if and only if the exclusion
instance I ′ of V ′ and I is a yes-instance of GLS-WVC.

▶ Theorem 5.10 (*). GLS-WVC can be solved in O(k! · (h − 1)k · n) time.

1 Consider the path (u, v, w), with ω(v) = 3, and ω(u) = ω(w) = 1. Let S = {u, v}, k = d = 2. The
only 2-improving 2-swap is {v, w}. Note that this swap avoids the only valid improving 1-swap {u} and
contains only one neighbor of u.

IPEC 2022

20:14 Parameterized Local Search for Vertex Cover

6 Using Modular Decompositions

Next, we provide FPT-algorithms that use modular decompositions which, roughly speaking,
provide a hierarchical view of the different neighborhoods in a graph G.

We now provide a dynamic programming algorithm over the modular decomposition
of G. The nodes of the decomposition are processed in a bottom-up manner. The idea is to
consider for a node x the possibilities of how a swap may interact with the vertex sets that
are represented by the vertices y of β(x). We use the fact that any valid swap of G must
also correspond in the natural way to a valid swap of β(x). More precisely, if some vertex in
the set represented by y goes to the independent set, then the vertex cover must include the
vertex set represented by z for all neighbors z of y in β(x).

▶ Theorem 6.1 (*). GLS-WVC can be solved in O(mw(G)k · k · (mw(G) + k) · n + m) time.

Proof. Let I = (G = (V, E), ω, S, k, d) be an instance of GLS-WVC. First, we compute a
modular decomposition (T = (V, A, x∗), β) of minimal width in O(n + m) time [22]. Note
that T has O(n) quotient graphs. Next, we describe a dynamic program on the modular
decomposition (T , β) to solve GLS-WVC.

For each node x ∈ V in the modular decomposition, we have a dynamic programming
table Dx. The table Dx has entries of type Dx[k′] for k′ ∈ [0, k]. Each entry Dx[k′] stores
the maximal improvement αS(W) of a valid k′-swap W ⊆ Vx for S ∩ Vx in Gx.

Next, we describe how to fill the dynamic programming tables. Let ℓ be a leaf node of T
and let v be the unique vertex of V (β(ℓ)) = Vℓ. We fill the table Dℓ by setting

Dℓ[k′] :=
{

0 v /∈ S ∨ k′ = 0
ω(v) v ∈ S ∧ k′ > 0

for each k′ ∈ [0, k].
To compute the entries for all remaining nodes x of T , we use an auxiliary table QSx

.
Let Sx be an independent set in β(x) and let Sx(i) denote the ith vertex of Sx according to
some arbitrary but fixed ordering with i ∈ [1, |Sx|]. Moreover, let V ≥i

x =
⋃|Sx|

j=i VSx(j). The
dynamic programming table QSx [i, k′] has entries for i ∈ [1, |Sx| + 1] and k′ ∈ [0, k] and
stores the maximal improvement of a valid k′-swap W for S ∩ V ≥i

x in G[V ≥i
x], such that there

is at least one vertex in S ∩ W ∩ VSx(j) for each j ∈ [i, |Sx|]. We set

QSx [i, k′] :=

−∞ |Sx| − i + 1 > k′,

0 i = |Sx| + 1, and
max1≤k′′≤k′ DSx(i)[k′′] + QSx

[i + 1, k′ − k′′] otherwise.

The entries for Dx can then be computed as follows:

Dx[k′] := max
Sx⊆V (β(x))

|W ∗|≤k′

Sx is independent

QSx
[1, k′ − |W ∗|] − ω(W ∗)

where W ∗ :=
⋃

y∈Nx(Sx)(Vy \ S).
The maximal improvement of any valid k-swap for S in G can be found in Dx∗ [k], where x∗

is the root of the modular decomposition.
Next, we analyze the running time. For each non-leaf node x, and each independent

set Sx of size at most k in β(x), there are O(k2) table entries in QSx and each of these entries
can be computed in O(k) time. For a set of size x, let

(
x

≤k

)
denote the number of different

C. Komusiewicz and N. Morawietz 20:15

subsets of size at most k. Since each quotient graph has O(
(mw(G)

≤k

)
) many independent

sets of size at most k, all entries of all tables QSx can be computed in O(
(mw(G)

≤k

)
· k3 ·

n) time, since the modular decomposition has O(n) quotient graphs. For each node x,
there are O(k) table entries in Dx. We will show that we can compute each of them in
O(k2 · (mw(G) + k)) time. To this end, we precompute for each node x the size |Vx \ S| and
the weight ω(Vx \ S) to compute |W ∗| and ω(W ∗) in O(k) time afterwards. Since for all
non-leaf nodes x, Vx \ S =

⋃
y∈V (β(x))(Vy \ S), we can compute |Vx \ S| as

∑
y∈V (β(x)) |Vy \ S|

and ω(Vx \ S) as
∑

y∈V (β(x)) ω(Vy \ S). This can be done in O(mw(G) · n) time since the
modular decomposition has O(n) quotient graphs. Hence, for an independent set Sx of size
at most k, we can compute |W ∗| and ω(W ∗) in O(k) time. Since we can enumerate all
subsets Sx of size at most k of V (β(x)) in O(

(mw(G)
≤k

)
) time and check in O(mw(G) · k) time

if Sx is independent in β(x), we can compute Dx[k′] in O(
(mw(G)

≤k

)
· k2 · (k + mw(G))) time.

Consequently, we can compute all entries of the dynamic programming tables in O(
(mw(G)

≤k

)
·

k3 · (k + mw(G)) · n + m) time, which is O(mw(G)k · k · (mw(G) + k) · n + m) time (the proof
of this fact is deferred to Appendix B).

Since the value of QSx
[1, k′] is only evaluated one time during the whole computation of

this dynamic programming algorithm, we can remove the table QSx after evaluating QSx [1, k′]
for each k′. Consequently, this algorithm also only uses polynomial space. ◀

With a slight modification, we can improve the running time for GLS-VC.

▶ Corollary 6.2. GLS-VC can be solved in O(mw(G) k+d
2 · k · (mw(G) + k) · n + m) time.

We also obtain an FPT-algorithm for GLS-VC for a new parameter that is upper-bounded
by the maximum degree ∆(G) and by the modular-width mw(G). We call this parameter the
maximum modular degree and it is defined by taking the maximum degree over all quotient
graphs of a modular decomposition of minimum width.

▶ Definition 6.3. Let (T = (V, A, x∗), β) be a modular decomposition of a graph G. Then
the maximum modular degree of (T , β) is ∆md(T , β) := maxx∈V ∆(β(x)). Moreover, the
maximum modular degree ∆md(G) of G is the maximum modular degree of a modular
decomposition (T ′, β′) of G that minimizes ∆md(T ′, β′).

Since mw(G) is the largest vertex count of any quotient graph, we have ∆md(G) < mw(G).
Moreover, the graph β(x) is isomorphic to an induced subgraph of G for all x, and thus
∆md(G) ≤ ∆(G).

▶ Proposition 6.4 (*). Let (T = (V, A, x∗), β) be a modular decomposition of a graph G of
minimum width where the quotient graph β(x) is prime for each x ∈ V. Then, ∆md(T , β) =
∆md(G).

▶ Theorem 6.5 (*). GLS-VC can be solved in
(
∆md(G)(k2 + 2)

)k · nO(1) time.

In the algorithm for ∆md(G), to avoid considering all k-swaps of a quotient graph β(x), we
instead adapt the algorithm of Section 5.2 to find suitable swaps of β(x). The main difficulty
is that we need to consider all possibilities of how many vertices have been swapped in the
subtree of β(x).

IPEC 2022

20:16 Parameterized Local Search for Vertex Cover

7 Conclusion

We introduced the notion of FPT running times that grow mildly with respect to some
parameter ℓ and strongly with respect to another parameter k. Such running times are
desirable in the setting where the parameter k is much smaller than ℓ. Parameterized local
search is one scenario in which this assumption is certainly true, when k is the operational
parameter that bounds the size of the local search neighborhood. We showed that such
running times are achievable for one of the most important graph problems in parameterized
local search, LS-Vertex Cover, and different well-known structural parameters taking the
place of ℓ.

There are numerous possibilities for future research. First, it seems interesting to study
further parameterized local search problems with the aim of achieving FPT-algorithms whose
running times grow strongly only with respect to the operational parameter k. This could
also be relevant in other scenarios with operational parameters, for example in turbo-charging
of greedy algorithms [2, 8, 12]. Second, it is open to improve our running time bounds
for LS-Vertex Cover since our conditional lower bounds are not completely tight. For
example, for LS-Vertex Cover parameterized by k and the h-index it is open whether
a running time of O(hk/2 · n) is possible. Third, it would be interesting to explore gap
versions of further local search problems, both from a theoretical and a practical perspective.
Furthermore, in our study, we did not explicitly consider permissive local search, where
one may report better solutions outside of the local neighborhood if they exist [13]. Our
positive and negative results also work in this setting, but it would be interesting to identify
structural parameters ℓ where permissive local search has an FPT-algorithm with running
time ℓg(k) · nO(1) and strict local search does not.

Finally, it is open to explore the concrete practical potential of our results for Vertex
Cover: Can our theoretical results lead to good implementations of parameterized local
search for Weighted Vertex Cover? Moreover, can the performance of the parameterized
local search algorithm for unweighted Vertex Cover with parameter (∆, k) [18] be improved
by some of the techniques presented in this work?

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. SIAM Journal on Computing, 47(6):2527–2555,
2018. doi:10.1137/16M1061771.

2 Faisal N. Abu-Khzam, Shaowei Cai, Judith Egan, Peter Shaw, and Kai Wang. Turbo-charging
dominating set with an FPT subroutine: Further improvements and experimental analysis.
In Proceedings of the 14th Annual Conference on Theory and Applications of Models of
Computation (TAMC ’17), volume 10185 of Lecture Notes in Computer Science, pages 59–70,
2017.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms
(SODA ’21), pages 522–539. SIAM, 2021. doi:10.1137/1.9781611976465.32.

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

5 Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Proceedings of the 27th
Annual European Symposium on Algorithms (ESA ’19), volume 144 of LIPIcs, pages 23:1–23:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

6 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An efficient local search
algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46:687–716,
2013.

https://doi.org/10.1137/16M1061771
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/S0097539793251219

C. Komusiewicz and N. Morawietz 20:17

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Alexander Dobler, Manuel Sorge, and Anaïs Villedieu. Turbocharging heuristics for weak
coloring numbers. In Proceedings of the 30th Annual European Symposium on Algorithms
(ESA ’22), volume 244 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022.

9 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic
subgraph statistics. Journal of Graph Algorithms and Applications, 16(2):543–567, 2012.

10 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? Journal of Computer and System
Sciences, 78(3):707–719, 2012.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):34:1–34:45, 2018. doi:10.1145/3186898.

12 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rüm-
mele. Turbocharging treewidth heuristics. Algorithmica, 81(2):439–475, 2019. doi:
10.1007/s00453-018-0499-1.

13 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’12). AAAI Press, 2012.

14 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.

15 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theoretical Computer Science, 525:30–41, 2014.

16 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

17 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

18 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, (AAAI ’17), pages 846–852. AAAI Press, 2017.

19 Christian Komusiewicz and Nils Morawietz. Finding 3-swap-optimal independent sets and
dominating sets is hard. In Proceedings of the 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’22), volume 241 of LIPIcs, pages 66:1–66:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

20 Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin. NuMWVC: A
novel local search for minimum weighted vertex cover problem. Journal of the Operational
Research Society, 71(9):1498–1509, 2020.

21 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research
Letters, 36(1):31–36, 2008.

22 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’94), pages 536–545. ACM/SIAM, 1994.

23 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

24 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT.
Discrete Optimization, 8(1):139–145, 2011.

25 Gerhard J. Woeginger. Space and time complexity of exact algorithms: Some open problems
(invited talk). In Proceedings of the First International Workshop on Parameterized and Exact
Computation (IWPEC ’04), volume 3162 of Lecture Notes in Computer Science, pages 281–290.
Springer, 2004.

IPEC 2022

https://doi.org/10.1145/3186898
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s00453-018-0499-1

20:18 Parameterized Local Search for Vertex Cover

A Tree Decompositions and Treewidth

A tree decomposition of a graph G = (V, E) is a pair (T , β) consisting of a rooted tree T =
(V, A, x∗) with root x∗ ∈ V and a function β : V → 2V such that
1. for every vertex v ∈ V , there is at least one x ∈ V with v ∈ β(x),
2. for each edge {u, v} ∈ E, there is at least one x ∈ X such that u ∈ β(x) and v ∈ β(x),

and
3. for each vertex v ∈ V , the subgraph T [Vv] is connected, where Vv := {x ∈ V | v ∈ β(x)}.
We call β(x) the bag of x. The width of a tree decomposition is the size of the largest bag
minus one and the treewidth of a graph G, denoted by tw(G), is the minimal width of any
tree decomposition of G.

We consider tree decompositions with specific properties. A node x ∈ V is called:
1. a leaf node if x has no child nodes in T ,
2. a forget node if x has exactly one child node y in T and β(y) = β(x) ∪ {v} for some v ∈

V \ β(x),
3. an introduce node if x has exactly one child node y in T and β(y) = β(x) \ {v} for

some v ∈ V \ β(y), or
4. a join node if x has exactly two child nodes y and z in T and β(x) = β(y) = β(z).
A tree decomposition (T = (V, A, x∗), β) is called nice if the bag of the root and the bags of
all leaf nodes are empty sets and if every node x ∈ V is either a leaf node, a forget node, an
introduce node, or a join node.

For a node x ∈ V, we denote with Vx the union of all bags β(y), where y is reachable
from x in T . Moreover, we set Gx := G[Vx] and Ex := EG(Vx).

B Bounding the Number of Small Subsets

To obtain small polynomial factors in the running times of our algorithms, we show the
following.

▶ Lemma B.1 (*). Let k ≥ 1 be an integer and let X be an arbitrary set of size x ≥ 3.
Moreover, let

(
x

≤k

)
denote the number of different subsets of X of size at most k. Then,

(
x

≤k

)
≤

256 · (x − 1)k/k2.

Proof. Note that
(

x
≤k

)
=

∑k
r=0

(
x
r

)
≤ 2x and

(
x

≤k

)
≤ xk. If k ≤ 4, then xk ≤ 16 · (x−1)k and

since k2 ≤ 16,
(

x
≤k

)
≤ 256·(x−1)k/k2. If k ≥ max{4, x/2}, then 4k ≥ 2x and 2k ≥ k2. Hence,

if x ≥ 9, then by the fact that k ≥ x/2,
(

x
≤k

)
≤ 2x ≤ 4k ≤ 8k/2k ≤ 8k/k2 ≤ (x − 1)k/k2.

If 4 ≤ x ≤ 8, then
(

x
≤k

)
≤ 2x ≤ 256 · (x − 1)k/k2 since (x − 1)k > k2 for all k ≥ 2, and

for x = 3,
(

x
≤k

)
≤ 2x = 8 ≤ 256 · 2k/k2 for all k ≥ 2. If 4 < k < x/2, then 2 ·

(
x
k

)
≥∑k

r=0
(

x
r

)
=

(
x

≤k

)
. Hence

(
x

≤k

)
≤ 2 ·

(
x
k

)
≤ 2 ·x!/(x−k)! ·1/k! ≤ 2 ·x · (x−1)!/(x−k)! ·1/k2 ≤

2 · 2(x − 1) · (x − 1)k−1 · 1/k2 = 4(x − 1)k/k2 < 256 · (x − 1)k/k2. ◀

Parameterized Complexity of a Parallel Machine
Scheduling Problem
Maher Mallem !

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Claire Hanen !

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Université Paris Nanterre, UPL, 92000 Nanterre, France

Alix Munier-Kordon !

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract
In this paper we consider the parameterized complexity of two versions of a parallel machine
scheduling problem with precedence delays, unit processing times and time windows. In the first
version – with exact delays – we assume that the delay between two jobs must be exactly respected,
whereas in the second version – with minimum delays – the delay between two jobs is a lower bound
on the time between them. Two parameters are considered for this analysis: the pathwidth of
the interval graph induced by the time windows and the maximum precedence delay value. We
prove that our problems are para-NP-complete with respect to any of the two parameters and
fixed-parameter tractable parameterized by the pair of parameters.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases parameterized complexity, scheduling, precedence delays, pathwidth, chains,
parallel processors

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.21

1 Introduction

While scheduling jobs with resources and precedence constraints has a wide range of industrial
applications, these problems have been proven to be NP-hard in the strong sense even for very
simple settings. For example minimizing the makespan of a schedule of jobs on two parallel
processors assuming chain-like precedence constraints is already NP-hard [8]. Scheduling
problems are usually denoted by the three field denotation α|β|γ of Graham [11]. Field α

describes the machine setting, field β describes the job relations and properties, and field γ

defines the optimization criterion - or is a star ⋆ for a decision problem. For example the
NP-hard problem described above is denoted by P2|chains|Cmax.

In this paper we tackle two decision scheduling problems on M parallel processors. We
consider a set of n jobs T . Each job i has a unit processing time and a time interval [ri, di)
given for its computation. ri is the release date of job i, and di its deadline. Jobs are
linked by precedence constraints defined by an acyclic precedence graph G with non-negative
precedence delays ℓi,j on each arc (i, j) of G. Two variants of the precedence delays are
considered: exact precedence delays and minimum precedence delays, which will be denoted
by ℓex

i,j and ℓmin
i,j in the standard notations.

A feasible schedule σ defines for each job i ∈ T a starting time σ(i) ∈ [ri, di) so that no
more than M jobs are scheduled at the same time, and so that for each arc (i, j) of G:

in case of exact delays: σ(i) + 1 + ℓex
i,j = σ(j),

in case of minimum delays: σ(i) + 1 + ℓmin
i,j ≤ σ(j).

© Maher Mallem, Claire Hanen, and Alix Munier-Kordon;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Maher.Mallem@lip6.fr
https://orcid.org/0000-0001-5654-1090
mailto:Claire.Hanen@lip6.fr
https://orcid.org/0000-0003-2482-5042
mailto:Alix.Munier@lip6.fr
https://orcid.org/0000-0002-2170-6366
https://doi.org/10.4230/LIPIcs.IPEC.2022.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Parameterized Complexity of a Parallel Machine Scheduling Problem

In particular we will explore the parameterized complexity of these problems
with chain-like precedence constraints, denoted by P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ and
P |chains(ℓmin

i,j), pj = 1, rj , dj |⋆.
When restricting all processing times to be equal to one, NP-hardness results typically

depend on the precedence relations used in the problem. Ullman [19] first showed that
P |prec, pj = 1|Cmax is strongly NP-hard. This was later improved by Lenstra et al [14] with
a precedence graph of bounded height, then by Garey et al [10] in the case of an opposing
forest. When we have release dates Brucker et al [5] showed that P |intree, pj = 1, rj |Cmax

is strongly NP-hard with an intree as the precedence graph.
When further restricting the problem to chains with precedence delays, Yu et al [22]

showed that 1|chains(ℓmin
i,j), pj = 1|Cmax and 1|chains(ℓex

i,j), pj = 1|Cmax are strongly NP-
hard, even when all chains are of length two (i.e. if we only have coupled tasks). The
problem 1|chains(ℓex

i,j), pj = 1|⋆ was also proven NP-hard earlier by Orman in [17]. Note that
apart from the delays themselves, there is nothing more to restrict in order to go around
NP-hardness. Thus within the scope of classical complexity theory it becomes difficult to find
the frontier between polynomial-time solvability and NP-hardness when delays are considered.

Parameterized complexity theory gives numerous tools for a refined analysis of such hard
scheduling problems. Given a parameter k and denoting n the input size, a problem is called
fixed − parameter tractable (FPT) with respect to parameter k if it can be solved in time
poly(n) × f(k) with f an arbitrary function [6]. Not only it tells us more about a problem
than if we only showed NP-hardness, it allows us to further classify the NP-hard problems
depending on whether they are FPT parameterized by k or not.

When the studied problem is believed to not be FPT, the para-NP class is used as a
parameterized version of NP: a problem is in para-NP with respect to parameter k if there
is a non-deterministic algorithm that solves it in time poly(n) × f(k) with f an arbitrary
function. In order to prove that a problem is para-NP-hard with respect to k, it is enough to
prove that the un-parameterized problem is NP-hard for some fixed value of the parameter [9].
The W-hierarchy defined in [7] is an additional widely used tool in parameterized complexity.
It is a sequence of intermediate complexity classes between FPT and para-NP, which allows
us to further investigate the time complexity of a parameterized problem.

Until now quite few parameterized complexity results have been be proved for scheduling
problems. Among the first ones related to our problems, Bodlaender proved in [3] that
minimizing the makespan of unit processing times jobs on parallel machines is W[2]-Hard
considering the number of machines as parameter. When precedence constraints are involved,
several authors studied the parameter defined by the width w of the precedence graph. Van
Bevern et al. [20] proved that the problem P2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard with
respect to the width. In the same paper they also proved that if we add the maximum allowed
lag of a job with respect to its earliest start time (ignoring resource constraints) to the width
as parameter then the problem becomes FPT, even for more complex resource constraints
(RCPSP). In [15] it is noted that the parameterized complexity of the problem with three
processors, precedence constraints and unit execution times with respect to width w is still
open.

Now considering precedence delays, we can first mention the work of Bessy et al [2]
on coupled tasks with due dates, a compatibility graph and a common deadline on a
single machine. They consider the number of jobs that end before the due date as their
parameter. They establish W[1]-hardness for this problem and propose a FPT algorithm
when the maximum duration of a job (i.e. the processing time of the two tasks plus their
delay) is bounded. Bodlaender et al in [4] studied the two problems we address in this

M. Mallem, C. Hanen, and A. Munier-Kordon 21:3

paper but assuming that each chain C has a time window [rC , dC) instead of time windows
for individual jobs like in our case. They considered two parameters: the first one is
the number of chains and the second one is the thickness, i.e. the maximum number of
overlapping chain time windows. On one hand they proved that for exact or minimum
delays 1|chains(ℓi,j), pj = 1, rC , dC |⋆ is W[1]-hard with any of the two parameters, while the
parallel machine variant P |chains(ℓi,j), pj = 1, rC , dC |⋆ is W[2]-hard. On the other hand
they proved that these problems are in XP (i.e. deterministic nf(k) time) if the delays are
unary encoded.

Considering scheduling problems with job time windows, the pathwidth µ has been
considered recently as a parameter by several authors [1, 16, 21]. Parameter µ is the
pathwidth of the graph induced by jobs time intervals. It can be easily computed since µ + 1
is the maximum number of overlapping job time windows at any given time. In particular
Munier proved in [16] that scheduling unit processing times jobs with time windows and
precedence constraints is FPT with parameter µ. Note that van Bevern et al. [20] showed
that P 2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard parameterized by w, while this problem is likely
to be FPT parameterized by µ according to Hanen and Munier [12]. With µ allowing such
problems to be FPT when other parameters do not, it makes it all the more difficult to find
hardness results relative to µ.

The two studied parameters in our paper are pathwidth µ and the maximum precedence
delay ℓmax = max(i,j) arc of G ℓi,j . We first show in Section 2 that both decision problems
P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ and P |chains(ℓmin
i,j), pj = 1, rj , dj |⋆ are para-NP-complete

parameterized by either one alone. In the case of pathwidth µ as the parameter we even
prove that the single machine variant of both problems are para-NP-complete. Then in
section 3 we prove that these problems are FPT parameterized by the couple (µ, ℓmax).

2 Hardness reductions

In this section we prove para-NP-completeness of our two parallel machine scheduling
problems parameterized by pathwidth µ or maximum delay ℓmax alone. We even establish
para-NP-completeness of the single-machine variant in the case of parameter µ.

We use the following result from Flum and Grohe’s book [9]:

▶ Lemma 1 (Flum, Grohe 1998). If a (nontrivial) problem P is NP-complete with a fixed
value of some parameter k, then the parameterized problem (P, k) is para-NP-complete.

Thus the following scheduling problems will be shown to be NP-complete:
1. 1|chains(ℓex

i,j), pj = 1, rj , dj |⋆ with µ = 1,
2. 1|chains(ℓmin

i,j), pj = 1, rj , dj |⋆ with µ = 2,
3. P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ with ℓmax = 1,
4. P |chains(ℓmin

i,j), pj = 1, rj , dj |⋆ with ℓmax = 1.

These problems are all trivially in NP by guessing the starting time of each job then
checking if this leads to a feasible schedule. For the hardness proofs all reductions will start
from the (strongly) NP-hard 3-COLORING graph problem [13]. Let G = (V, E) be the input
graph. Let v0, . . . , vn−1 be the vertices in V and e0, . . . , em−1 be the edges in E. Let n = |V |
and m = |E|. The colors will be named 0, 1 and 2.

2.1 NP-hardness of 1|chains(ℓex
i,j), pj = 1, rj, dj|⋆ with µ = 1

We build an instance of 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ with µ = 1. An example is given in

Figure 1. We have n vertex chains Ci with deg(vi) + 1 jobs in chain Ci, 0 ≤ i ≤ n − 1 with
deg(vi) the degree of node vi in G. We define vertex chain Ci the following way:

IPEC 2022

21:4 Parameterized Complexity of a Parallel Machine Scheduling Problem

Figure 1 An instance of 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). This schedule corresponds to the
coloring (0, 2, 1).

▶ Definition 2 (Vertex chain Ci). We segment time into m + 1 segments: a color choice
segment [0, 3n) and m edge check selection segments of length 3 along [3n, 3(n + m)). We
describe the chain from left to right:
(1) Color choice segment [0, 3n)

The first job of chain Ci has time window [3i, 3(i + 1)).
a. If vi appears in no edge of G: end the chain.
b. Else: set 3(n − i) − 1 as the current exact delay after this job.

(2) Edge check segment [3(n + j), 3(n + j + 1)), 0 ≤ j ≤ m − 1
For j in [0, m − 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.
a. Vertex chain Ci with i /∈ {i1, i2}

Add 3 to the current exact delay after the currently latest job of chain Ci.
b. Vertex chain Ci with i = i1 or i = i2

Set a job with time window [3(n + j), 3(n + j + 1))
i. If ej is the last edge where vi appears: end the chain.
ii. Else: set 2 as the current exact delay after this job.

▶ Remark 3. The created instance has pathwidth 1. In the color choice segment: for
i ∈ [0, n − 1] there is exactly one job to be scheduled in time window [3i, 3(i + 1)): the first
job of vertex chain Ci. In the edge check segments: for j ∈ [0, m − 1] if edge ej = {vi1 , vi2}
then there are exactly two jobs to be scheduled in time window [3(n + j), 3(n + j + 1)): one
from vertex chain Ci1 and one from vertex chain Ci2 . Thus there are indeed at most two
overlapping time windows at any given time.

Let i ∈ [0, n − 1]. Vertex chain Ci has three possible starting times in [3i, 3(i + 1)) which
corresponds to the three color choices of node vi. Then this color choice is propagated
to every edge check segment [3(n + j), 3(n + j + 1)) where node vi is a part of edge ej ,
j ∈ [0, m − 1]. The following lemma ensures that the color choices are faithfully propagated.

▶ Lemma 4. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if vertex chain Ci starts at time
3i + k with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k, where
r(J) is the release date of job J .

M. Mallem, C. Hanen, and A. Munier-Kordon 21:5

Proof. Suppose we have a feasible schedule where vertex chain Ci starts at time 3i + k with
k ∈ {0, 1, 2}.

If vertex vi is part of no edge in the graph:
Then by Definition 2 vertex chain Ci only has one job. It is scheduled at time 3i + k,
which is indeed the release date of this job plus k.
If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that vi ∈ ej . We prove
by induction on l ∈ [0, deg(vi) − 1] that the job of vertex chain Ci which has time window
[3(n + jl), 3(n + jl + 1)) is scheduled at time 3(n + jl) + k.

Consider the job of vertex chain Ci which has time window [3(n + j0), 3(n + j0 + 1)).
By Definition 2 this job is the successor of the first job in the chain and the exact delay
between them is 3(n− i)−1+3j0. Thus if the first job of the chain is scheduled at time
3i + k, then this following job is scheduled at time (3i + k) + 1 + (3(n − i) − 1 + 3j0) =
3(n + j0) + k, which is indeed the release date of this job plus k.
Let l ∈ [1, deg(vi) − 1]. Suppose the job of vertex chain Ci which has time window
[3(n + jl−1), 3(n + jl−1 + 1)) is scheduled at time 3(n + jl−1) + k. Then by Definition 2
there is an exact delay 2 + 3(jl − jl−1 − 1) before the next job of the chain. Thus the
next job of the chain is scheduled at time (3(n + jl−1) + k) + 1 + (2 + 3(jl − jl−1 − 1)) =
3(n + jl) + k, which is indeed the release date of this job plus k.

This proves the lemma for all the jobs of vertex chain Ci in an edge check segment. ◀

Then for each edge ej = {vi1 , vi2}, i1 < i2, the color choices of vi1 and vi2 are confronted
in edge check segment [3(n + j), 3(n + j + 1)). If both nodes chose the same color then both
jobs in this edge check segment would be scheduled at the same time, which would invalidate
our schedule in this single-machine instance. Conversely if we start from a valid coloring,
then there will never be two jobs scheduled at the same time in an edge check segment. This
is the key ingredient behind the reduction.

▶ Proposition 5. G is 3-colorable if and only if there exists a feasible schedule for this
instance of EXACT DELAYS.

Proof. (=⇒) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose the schedule where for all 0 ≤ i ≤ n − 1, chain Ci starts at time
3i + ci. Then in every edge ej ∈ E where vertex vi appears, we schedule the job of chain Ci

which is in edge check segment [3(n + j), 3(n + j + 1)) at time 3(n + j) + ci.
We show that the jobs in different chains do not interfere with each other. Since the time

windows do not overlap in the color choice segment, only the edge check segments remain
to be checked. Let ej = {vi1 , vi2} be an edge in E. By definition of the vertex chains, only
chains Ci1 and Ci2 have a job to be scheduled in time window [3(n + j), 3(n + j + 1)). In
our schedule the job of chain Ci1 is scheduled at time 3(n + j) + ci1 and the job of chain
Ci2 at time 3(n + j) + ci2 . Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have
ci1 ̸= ci2 . Thus both jobs are scheduled at different times and the jobs in edge check segment
[3(n + j), 3(n + j + 1)) do not interfere with each other. Thus the proposed schedule is
feasible.

(⇐=) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 3i + si is the starting time of chain Ci. We show that (s0, . . . , sn−1) is a 3-coloring
of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 .
Then by Lemma 4 the jobs of chains i1 and i2 that must be scheduled in edge check segment
[3(n + j), 3(n + j + 1)) are scheduled at the same time 3(n + j) + si1 . Thus the schedule is not
feasible, which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a 3-coloring of G. ◀

IPEC 2022

21:6 Parameterized Complexity of a Parallel Machine Scheduling Problem

This proves that 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ with µ = 1 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 6. 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ is para-NP-complete parameterized by path-

width µ.

2.2 NP-hardness of 1|chains(ℓmin
i,j), pj = 1, rj, dj|⋆ with µ = 2

We build an instance of 1|chains(ℓmin
i,j), pj = 1, rj , dj |⋆ with µ = 1. We begin in a similar way:

for each node we have a vertex chain C′
i with three possible starting times, each corresponding

to a color choice, then we want to propagate this color choice. However now that the delays
are not exact anymore, the color choice cannot be propagated properly as previously. More
constraints are needed in order to deal with the extra flexibility coming from the minimum
delays.

One way is to add a closing segment [3(n + m), 3(2n + m)) at the end and two gadget
chains C′

i,1, C′
i,2 per node, each composed of two jobs. As shown in Figure 2 the gadget chains

will fill the two gaps at the start and at the end of each vertex chain.

▶ Definition 7 (Vertex chain C′
i). We segment time into m + 2 segments: a color selection

segment [0, 3n), m edge check selection segments along [3n, 3(n + m)) and a closing segment
[3(n + m), 3(2n + m)). We describe the chain from left to right:
(1) Color selection segment [0, 3n)

The first job of chain C′
i has time window [3i, 3(i + 1)).

Set 3(n − i) − 1 as the current minimum delay after this job.
(2) Edge check segment [3(n + j), 3(n + j + 1)), 0 ≤ j ≤ m − 1

For j in [0, m − 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.
a. Vertex chain C′

i with i /∈ {i1, i2}
Add 3 to the current minimum delay after the currently latest job of chain C′

i

b. Vertex chain C′
i with i = i1 or i = i2

Set a job with time window [3(n + j), 3(n + j + 1))
Set 2 as the current minimum delay after this job

(3) Closing segment [3(n + m), 3(2n + m))
Add 3i to the current minimum delay of the currently latest job of chain C′

i.
Set a job with time window [3(n + i + m), 3(n + i + 1 + m)) as the last job of vertex
chain C′

i.

▶ Definition 8 (Gadget chains C′
i,1, C′

i,2). For both gadget chains C′
i,1, C′

i,2 relative to vertex vi,
the first job must be scheduled in time window [3i, 3(i + 1)), the second one in time window
[3(n + m + i), 3(n + m + i + 1)), and there is a minimum delay 3(n + m) − 1 between them.

▶ Remark 9. The created instance has indeed pathwidth 2: gadget chains add two more time
windows at the beginning and the end of each vertex chain, so there are at most three time
windows overlapping at any time.

A full example is given in Figure 2. For our proof the goal is to show that adding these
gadget chains is enough to get an analogue result to Lemma 4. Note that if we only use the
definition of the chains like in the reduction of Section 2.1, we only get this weaker result:

▶ Lemma 10. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 3i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k or later, where
r(J) is the release date of job J .

M. Mallem, C. Hanen, and A. Munier-Kordon 21:7

Figure 2 An instance of 1|chains(ℓmin
i,j), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). This schedule corresponds to the
coloring (0, 2, 1).

Proof. For gadget chains C′
i,1, C′

i,2 this comes from the minimum delay 3(n + m) − 1 between
their two jobs. For vertex chain C′

i: suppose we have a feasible schedule where vertex chain
C′

i starts at time 3i + k with k ∈ {0, 1, 2}.
If vertex vi is part of no edge in the graph:
Then by Definition 7 vertex chain Ci only has two jobs and there is a minimum delay
3(n−i)−1+3m+3i = 3(n+m)−1 between them. Thus if the first job is scheduled at time
3i+k, then the job in the closing segment is scheduled at time (3i+k)+1+(3(n+m)−1) =
3(n + m + i) + k, which is indeed the release date of this job plus k.
If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that vi ∈ ej . We prove
the lemma for all the jobs of vertex chain Ci in an edge check segment by induction on
l ∈ [0, deg(vi) − 1] the same way as in Lemma 4. Then only the job of the chain in the
closing segment is left. By Definition 7 there is a minimum delay 2+3(m−1−jdeg(vi)−1)+3i

between this job and the one in edge check segment [3(n+jdeg(vi)−1), 3(n+jdeg(vi)−1 +1)).
Since we know from the induction that the latter job is scheduled at time 3(n+jdeg(vi)−1)+
k or later, this means that the job of vertex chain Ci in the closing segment is scheduled
at time (3(n + jdeg(vi)−1) + k) + 1 + (2 + 3(m − 1 − jdeg(vi)−1) + 3i) = 3(n + m + i) + k

or later, which is indeed the release date of this job plus k. ◀

By taking into account the constraints added by the gadget chains at the beginning and
at the end of each vertex chain, we are able to prove the needed key property.

▶ Lemma 11. In any feasible schedule, if a vertex chain Ci starts at time 3i + k with
k ∈ {0, 1, 2}, then all jobs J in vertex chain Ci which are in an edge check segment have to
be scheduled at time r(J) + k, where r(J) is the release date of job J .

IPEC 2022

21:8 Parameterized Complexity of a Parallel Machine Scheduling Problem

Proof. Consider a feasible schedule. Let 0 ≤ i ≤ n − 1. Three jobs are scheduled in time
window [3i, 3(i + 1)): the first job of vertex chain Ci and the first job of the two gadget chains
relative to it. Let 3i + k (resp. 3i + k′

1, 3i + k′
2) be the starting time of the first job of vertex

chain Ci (resp. gadget chains C′
i,1, C′

i,2). We have k, k′
1 and k′

2 in {0, 1, 2} and since we have
a feasible schedule the three values are different from each other. Thus one chain starts at
time 3i + 2. By Lemma 10 and the time window [3(n + m + i), 3(n + m + i + 1)) of the last
job, this means that this last job must be exactly scheduled at time 3(n + m + i) + 2. Now
consider the chain which starts at time 3i + 1. By Lemma 10 its last job must be scheduled
at time 3(n + m + i) + 1 or 3(n + m + i) + 2. However the later time position is already
taken by the chain starting at time 3i + 2, which means that this last job must be exactly
scheduled at time 3(n + m + i) + 1. Finally by the same reasoning we get that the chain
starting at time 3i must have its last job scheduled at time 3(n + m + i).

This means that whatever the starting time 3i + k is for vertex chain Ci, its last job must
be scheduled at time 3(n + m + i) + k. So all the delays in the chain must be equal to their
minimum and thus by Lemma 10 all the jobs J in the vertex chain must be scheduled at
time r(J) + k. ◀

Now in any feasible schedule we proved that we have the same guarantee on the position
of the edge check jobs as we had with Lemma 4 in the exact delay case. Thus we are able to
propagate the color choices accurately and complete the reduction the same way.

▶ Proposition 12. G is 3-colorable if and only if there exists a feasible schedule for this
instance of MIN DELAYS.

Proof. (=⇒) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose a schedule where for all 0 ≤ i ≤ n − 1, vertex chain C′
i starts at time

3i + ci and gadget chains C′
i,1, C′

i,2 start in the two remaining time positions 3i + k1, 3i + k2
in [3i, 3(i + 1)) (with k1 ̸= k2). Plus we require all delays to match their minimum value.

Then, according to Definition 7 and going from left to right as we did in the proof of
Lemma 10, we know that in every edge ej ∈ E where node vi appears, the job of vertex chain
C′

i which is in edge check segment [3(n + j), 3(n + j + 1)) is scheduled at time 3(n + j) + ci,
and the last job of C′

i is scheduled at time 3(n + m + i) + ci. Plus from Definition 8 we
know that the last job of gadget chain C′

i,1 (resp. C′
i,2) is scheduled 3(n + mi) + k1 (resp.

3(n + m + i) + k2).
We show that the jobs in different chains do not interfere with each other. For the color

choice segment we know that vertex chain C′
i and gadget chains C′

i,1, C′
i,2 start respectively at

times 3i + ci, 3i + k1, and 3i + k2 with ci, k1 and k2 in {0, 1, 2} and different from each other.
For the closing segment we determined that vertex chain C′

i and gadget chains C′
i,1, C′

i,2 end
respectively at times 3(n+m+i)+ci, 3(n+m+i)+k1, and 3(n+m+i)+k2, again with ci, k1
and k2 in {0, 1, 2} and different from each other. Thus only the edge check segments remain
to be checked. Let ej = {vi1 , vi2} be an edge in E. By definition of the vertex chains, only
vertex chains C′

i1
and C′

i2
have a job to be scheduled in time window [3(n + j), 3(n + j + 1)).

In our schedule the job of chain Ci1 is scheduled at time 3(n + j) + ci1 and the job of chain
Ci2 at time 3(n + j) + ci2 . Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have
ci1 ̸= ci2 . Thus both jobs are scheduled at different times and the jobs in edge check segment
[3(n + j), 3(n + j + 1)) do not interfere with each other. Thus the proposed schedule is
feasible.

(⇐=) Suppose we have a feasible schedule. We reuse the same coloring as in the proof
of Proposition 5: for all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be such that 3i + si is the starting
time of chain C′

i. We show that (s0, . . . , sn−1) is a 3-coloring of G. Considering any edge

M. Mallem, C. Hanen, and A. Munier-Kordon 21:9

ej = {vi1 , vi2} ∈ E, Lemma 11 ensures that the job of vertex chain Ci1 (resp. Ci2) in edge
check segment [3(n + j), 3(n + j + 1)) is scheduled at time 3(n + j) + si1 (resp. 3(n + j) + si2),
with si1 (resp. si2) the starting time of vertex chain Ci1 (resp. Ci2). Since this is a feasible
schedule we have: 3(n + j) + si1 ̸= 3(n + j) + si2 , which means: si1 ̸= si2 . Thus the two
nodes of edge ej have indeed different colors. ◀

This proves that 1|chains(ℓmin
i,j), pj = 1, rj , dj |⋆ with µ = 2 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 13. 1|chains(ℓmin
i,j), pj = 1, rj , dj |⋆ is para-NP-complete parameterized by path-

width µ.

2.3 NP-hardness of P |chains(ℓex
i,j), pj = 1, rj, dj|⋆ with ℓmax = 1

We build an instance of P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ with ℓmax = 1. We still have n vertex

chains, one per node vi in graph G, and we want to represent and check a coloring of G in
a similar way to Section 2.1: choose the color of the nodes with the starting time of the
vertex chains, then propagate these choices and check that two nodes of an edge do not have
the same color. However with the change of parameter we must worry about the maximum
delay value instead of the overlapping of time windows. Here we want to propagate the color
choices while keeping the delays small.

We propose to add extra intermediate jobs that we call propagators at every other time
position. This way the color choices can be propagated along the odd time positions with
exact delays of length 1 while the even time positions are kept for edge checking. We set
M = n as the number of machines in order to make room for these propagators. We define
vertex chain Ci the following way:

▶ Definition 14 (Vertex chain Ci with ℓmax = 1). We define Ci as a chain of 3(n + m − i) +
deg(vi) jobs. These jobs will fulfill two roles:

Propagators Oi
j,k: Oi

i,0 will give the color choice of node vi. The other 3(n + m − i) − 1
jobs Oi

j,k (i ≤ j ≤ n + m − 1, 0 ≤ k ≤ 2) will propagate this color choice along the
whole chain while keeping the maximum delay value at 1. Job Oi

j,k will have time window
[6j + 2k, 6(j + 1) + 2k).
Edge jobs J i

j : the deg(vi) jobs J i
n+j will represent the color choice of node vi in every

edge ej where node vi is in (0 ≤ j ≤ m − 1). Job J i
n+j will have time window [6(n +

j), 6(n + j + 1)).
We segment time into m + 1 segments: a color choice segment [0, 6n) and m edge check
segments along [6n, 6(n + m)). We describe the chain from left to right:
(1) Color choice segment [0, 6n)

Set the first job Oi
i,0 of Ci in time window [6i, 6(i + 1)).

Add a unit-time exact delay then a job, and do this 3(n − i) − 1 times in a row. These
jobs are named Oi

i,1, Oi
i,2, Oi

i+1,0, . . ., Oi
n,2.

(2) Edge check segment [6(n + j), 6(n + j + 1)), 0 ≤ j ≤ m − 1
Let edge ej = {vi1 , vi2}, i1 < i2. This segment will check if the vertices vi1 and vi2 have
different colors.
a. Vertex chain Ci with i /∈ {i1, i2}: add a unit-time exact delay then job Oi

n+j,0 then a
unit-time exact delay then job Oi

n+j,1 then a unit-time exact delay then job Oi
n+j,2.

b. Vertex chain Ci with i = i1 or i = i2: add job J i
n+j then an exact delay of length zero

then job Oi
n+j,0 then a unit-time exact delay then job Oi

n+j,1 then a unit-time exact
delay then job Oi

n+j,2.

IPEC 2022

21:10 Parameterized Complexity of a Parallel Machine Scheduling Problem

Figure 3 An instance of P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). There are M = n = 3 machines and
this schedule corresponds to the coloring (0, 2, 1).

Note that time intervals of length 6 are used instead of length 3. This way three odd
starting times are available for each vertex chain. However fill jobs must be added at every
even time position of the color choice segment: M of them so that only these odd starting
times are actually allowed. Plus now that we are in a parallel-machine framework instead of
a single-machine one, more fill jobs are needed at the even time positions of the edge check
segments: M − 1 of them so that one edge job at any of these positions is allowed but two
would invalidate the schedule.

▶ Definition 15 (Fill jobs). Fill jobs are chains of one job with a time window of length 1.
M fill jobs are set at every even time position in color choice segment [0, 6n) and M − 1 fill
jobs are set at every even time position in time segment [6n, 6(n + m)).

An example is given in Figure 3. With the addition of fill jobs the reduction can now
be proved correct in a similar way to Section 2.1: determine the exact positions of all jobs
in a vertex chain given its starting time, then show that a schedule is feasible if and only
if whenever two vertex chains have an edge job in the same edge check segment they must
start at different times.

▶ Proposition 16. G is 3-colorable if and only if there exists a feasible schedule for this
instance of P |chains(ℓex

i,j), pj = 1, rj , dj |⋆.

First we determine the positions of all jobs in a vertex chain given its starting time. In
particular we confirm that in any feasible schedule propagators are always scheduled at odd
time positions and edge jobs at even time positions:

▶ Lemma 17. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if vertex chain Ci starts at time
6i + 2l + 1 with l ∈ {0, 1, 2}, then all the jobs Oi

j,k (resp. J i
j) in this chain are scheduled at

time r(Oi
j,k) + 2l + 1 (resp. r(J i

j) + 2l), where r(J) is the release date of job J .

M. Mallem, C. Hanen, and A. Munier-Kordon 21:11

Proof. Suppose we have a feasible schedule where vertex chain Ci starts at time 6i + 2l + 1
with l ∈ {0, 1, 2}.

Propagators Oi
j,k: by Definition 14 there is always either a unit-time exact delay or a

job J i
j between two consecutive jobs Oi

j,k in vertex chain Ci. Thus if the first job Oi
i,0 is

scheduled at time 6i+2l+1 = r(Oi
i,0)+2l+1, then we know that the next propagator Oi

i,1
is scheduled at time (6i+2l+1)+2 = r(Oi

i,1)+2l+1, and so on. By induction on the couple
(j, k) with i ≤ j ≤ n + m − 1 and 0 ≤ k ≤ 2, we get that all the jobs Oi

j,k in vertex chain
Ci are scheduled at time [6i+2l+1]+2× (3(j − i)+k) = 6j +2k +2l+1 = r(Oi

j,k)+2l+1.
Edge jobs J i

j : let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej (if there are any). Let p ∈ [0..deg(vi) − 1]. According to Definition 14 job Oi

jp,0
has the same time window [6(n + jp), 6(n + jp + 1)) as job J i

jp
and it is scheduled right

before it. Therefore according to our previous point about propagators Oi
j,k, job J i

jp
is

scheduled at time [r(Oi
jp,0) + 2l + 1] − 1 = r(J i

jp
) + 2l. ◀

Now we are able to prove Proposition 16:

Proof. (=⇒) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose the schedule σ where for all 0 ≤ i ≤ n − 1, chain Ci starts at time
6i + 2ci + 1. Then by Definition 14 and abiding by exact delays, in every edge ej ∈ E where
vertex vi is in, job J i

j is scheduled at time r(J i
j) + 2ci = 6(n + j) + 2ci.

We show that there are never more than M = n jobs scheduled at any time position.
Since there is no fill job at an odd time position and two jobs of the same chain cannot
be scheduled at the time, there are at most n jobs scheduled at every odd time. Thus
only the even time positions remain to be checked. All the chains Ci start at an odd time
6i + 2ci + 1, so by Definition 14 and abiding by exact delays every job Oi

j,k is scheduled
at time r(Oi

j,k) + 2ci + 1, which is odd since all the release dates are even according to
Definition 14. Plus it means that only fill jobs are scheduled at the even time positions of
color choice segment [0, 6n). Thus only the even time positions of the edge check segments in
[6n, 6(n + m)) remain to be checked. There are M − 1 fill jobs scheduled at all of them. Let
j ∈ [0..m − 1] and ej = {vi1 , vi2}, i1 < i2. In edge check segment [6(n + j), 6(n + j + 1)) there
are exactly two non-fill jobs to be scheduled: J i1

n+j and J i2
n+j . As mentioned in the previous

paragraph they are respectively scheduled at time 6(n + j) + 2ci1 and 6(n + j) + 2ci2 . Since
(c0, . . . , cn−1) ∈ {0, 1, 2}n is a 3-coloring and {vi1 , vi2} = ej ∈ E, we have cii

̸= ci2 and thus
σ(J i1

n+j) ̸= σ(J i1
n+j). Therefore at most M jobs are scheduled at any time position.

(⇐=) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 6i + 2si + 1 is the starting time of chain Ci (recall that it can only be an odd time
because of the fill jobs defined in Definition 15). We show that (s0, . . . , sn−1) is a 3-coloring
of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then
according to Lemma 17 jobs J i1

n+j and J i2
n+j are scheduled at the same time 6(n + j) + 2si1 .

Thus taking into account the M − 1 fill jobs at this time position, there are M + 1 jobs
scheduled at the same time position, which is greater than the number of machines M . Thus
the schedule is not feasible, which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a
3-coloring of G. ◀

This proves that P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ with ℓmax = 1 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 18. P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ is para-NP-complete when parameterized by

maximum delay ℓmax.

IPEC 2022

21:12 Parameterized Complexity of a Parallel Machine Scheduling Problem

2.4 NP-hardness of P |chains(ℓmin
i,j), pj = 1, rj, dj|⋆ with ℓmax = 1

We build an instance of P |chains(ℓmin
i,j), pj = 1, rj , dj |⋆ with with ℓmax = 1. The general

idea is to combine the two previously proposed extensions of the basic reduction from
Section 2.1: gadget chains from Section 2.2 that dealt with the extra flexibility coming from
using minimum delays instead of exact ones, and propagators from Section 2.3 that helped
to keep the maximum delay value equal to one. However getting the final product proved to
be significantly more technical than with the previous reductions, as propagators and gadget
chains could interfere with each other. The reduction will not be detailed in this section: the
full description and proof is available in Appendix A.1, as well as an example in Figure 7.
Instead we give insight into the major roadblock that we faced and eventually managed to
overcome: interference between propagators and gadget chains.

Again the goal was to prove that in any feasible schedule the edge jobs accurately represent
the color choice. As we have minimum delays we thought about using gadget chains like
the reduction in Section 2.2. This required to replicate a situation equivalent to the one
displayed in Figure 2 while propagators from other chains were around and could potentially
trade places. As we needed propagators at every other time position to keep the maximum
delay value at 1, it was not possible to completely isolate each triplet of chains as we did in
Section 2.2 when pathwidth µ was the parameter. So when a triplet of chains was considered
by the lemma it had to be guaranteed that the propagators from other chains were fixed and
thus could not trade places.

This was made possible by setting the closing time windows of the chain triplets in the
reverse order of the color choice time windows. Then, as shown in Figure 7, chains C′

0, C′
0,1,

and C′
0,2 start at the first part of the color choice segment and end at the last part of the

closing segment. Then chains C′
1, C′

1,1, and C′
1,2 start at the second part of the color choice

segment and end at the second to last part of the closing segment, and so on. This way only
propagators of chains C′

j , C′
j,1, C′

j,2 with j < i might interfere. These jobs would be fixed by
induction hypothesis and as such could not trade places.

Now that such a property was proved, the correspondence between valid graph 3-colorings
and feasible schedules could be established the same way as in our previous reductions.

▶ Proposition 19. G is 3-colorable if and only if there exists a feasible schedule for this
instance of P |chains(ℓmin

i,j), pj = 1, rj , dj |⋆.

This proves that P |chains(ℓmin
i,j), pj = 1, rj , dj |⋆ with ℓmax = 1 is NP-hard, which

concludes the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 20. 1|chains(ℓmin
i,j), pj = 1, rj , dj |⋆ is para-NP-complete when parameterized by

maximum delay ℓmax.

3 A FPT algorithm with two parameters

In this section we prove that the problem with precedence delays (exact or minimum)
P |prec(ℓi,j), pi = 1, ri, di|⋆ is fixed-parameter tractable with the couple of parameters
(ℓmax, µ). For the sake of readability we detail the minimum delays case.

Let us consider the sorted list xk, k ∈ {0, . . . , K} of the release times and deadlines in non
decreasing order. We define a sub-sequence uα, α ∈ {0, . . . , κ−1} of this sequence so that two
consecutive terms - except the last one - are separated by at least ℓmax. So we set u0 = x0,
then uα+1 = xk with k the minimum value in {1, . . . , K} such that uα+1 −uα ≥ ℓmax. Lastly
we set uκ = xK .

M. Mallem, C. Hanen, and A. Munier-Kordon 21:13

1

[0, 2) 2

[0, 2)

3

[2, 6)

4

[2, 4)

5

[0, 4)

6 [4, 6)

7

[4, 6)

8

[4, 9)

9 [6, 9)

10 [6, 11)

11 [9, 11)

0

1

0

0

3

0

2

1

2

1

3

2

3

Figure 4 A precedence graph with minimum delays. Each precedence arc e = (i, j) is labeled by
the minimum delay ℓij . Each node i is labelled by its time window [ridi).

Let us consider the instance with minimum delays described in Figure 4.
For this instance we get the sequence x0 = 0, x1 = 2, x2 = 4, x3 = 6, x5 = 9 and x6 = 11

with K = 6. The associated pathwidth µ = 3 is reached in the interval [4, 6) crossed by
intervals of jobs 3, 6, 7, 8. We also have ℓmax = 3, so we get: u0 = x0 = 0, u1 = x2 = 4,
u2 = x5 = 9 and u3 = x6 = 11.

We set X0 = ∅ and for any α ∈ {1, . . . κ} we define Xα = {i ∈ T , [ri, di) ∩ [uα−1, uα) ̸= ∅}
the set of jobs that could be scheduled in interval [uα−1, uα). The idea of sequence (u0, . . . , uκ)
is that the number of jobs in each Xα is bounded by (µ + 1) × ℓmax (see Lemma 22). We
also define Zα, α ∈ {0, . . . , κ} the set of jobs with a deadline not greater than uα, i.e. Zα =
{i ∈ T , di ≤ uα}. In our example we have: Z0 = ∅, Z1 = {1, 2, 4, 5}, Z2 = Z1 ∪ {3, 6, 7, 8, 9}
and Z3 = T .

We define a dynamic programming scheme for our problem. The stages of the scheme are
{0, . . . , κ}. For each stage α ∈ {0, . . . , κ} we denote Nα the set of states of stage α. A state
s ∈ Nα represents the minimum information from a feasible schedule spanning in [0, uα) that
is necessary to extend this schedule in interval [uα, uκ).

Hence a state s ∈ Nα with α ∈ {1, . . . , κ − 1} is a tuple s = (β, Y), where:
Y ⊆ Xα − Zα is a subset of jobs such that Y ∪ Zα represents the set of jobs scheduled in
[0, uα).
β is a complete schedule (i.e a set of jobs with their starting time) of the last ℓmax time
units before time uα- i.e in interval [uα − ℓmax, uα). We denote J(β) the set of jobs
scheduled in β. β is called a border schedule. Only such a schedule can influence the
earliest starting times of the jobs not scheduled yet.

For α = κ we set Nκ = {sκ} with sκ = (•, ∅) where • is an empty schedule. Moreover
Xκ − Zκ = ∅ and so Nκ can be reduced to only one element. Similarly, we set N0 = {s0}
with s0 = (•, ∅) since X0 = ∅ and no job may be executed in interval [u0, u0) = ∅.

As an example let us consider a feasible schedule σ pictured by Figure 5 for m = 2
identical machines associated to the instance given by Figure 4. The associates states are:
s0 = (•, ∅), s1 = (β1, {3}), s2 = (β2, ∅) and s3 = (•, ∅).

Now assume that s = (β, Y) ∈ Nα with α ∈ {0, . . . , κ}. The boolean function
ExistSched(s) is set to true if and only if there exists a (partial) feasible schedule of jobs
from Y ∪ Zα in time interval [u0, uα) that ends with schedule β.

We can now establish the recurrence equation for this function:
1. ExistSched(s0) = true; indeed, s0 = (•, ∅) and Z0 = ∅, thus no job has to be scheduled.
2. Let us now consider α ∈ {1, . . . κ}. If ExistSched(s) = true then there exists a feasible

schedule in [0, uα) which can be decomposed into a feasible schedule in [0, uα−1) associated
with a state s′ ∈ Nα−1 and a schedule in the interval [uα−1, uα) consistent with s and s′.
The existence of such a schedule is denoted by the function Sched(s, s′).

IPEC 2022

21:14 Parameterized Complexity of a Parallel Machine Scheduling Problem

β1 β2

s1 s2 s3

1

u0

2 3

4

u1

5 6

7

8

9

u2

10 11

u3

Figure 5 A feasible schedule σ associated with the example given in Figure 4 for m = 2 machines.

We now bound the complexity of computing Sched(s, s′) from a tuple of states (s′, s) ∈
Nα−1 × Nα.

Let s = (β, Y) and s′ = (β′, Y ′). Then boolean Sched(s′, s) is true if and only if there
exists a schedule of Y ∪ Zα − Y ′ − Zα−1 in the interval [uα−1, uα) that is consistent with the
border schedule β′ and ends with the border schedule β.

▶ Lemma 21. For any α ∈ {1, . . . , κ} and (s′, s) ∈ Nα−1 × Nα, the time complexity of
Sched(s′, s) is O(µ2 × ℓ2

max × ((µ + 1) × ℓmax)!).

To prove this lemma, two more technical lemmas are needed. These lemmas bound the
total number of schedulable jobs in time interval [uα−1, uα) for α ∈ {1, . . . κ}:

▶ Lemma 22. ∀α ∈ {0, . . . , κ}, |Xα| ≤ (µ + 1) × ℓmax.

Proof. We simply observe that if uα−1 = xk and uα = xk′ then by construction k′ −k ≤ ℓmax.
Thus the inequality holds by the definition of µ. ◀

▶ Lemma 23. For any α ∈ {1, . . . , κ − 1}, |Nα| ≤ 2(µ+1)×ℓmax × (ℓmax + 1)(µ+1)×ℓmax .

Proof. The total number of schedules from a set V = J(β) is bounded by (ℓmax + 1)|V |.
Thus, by Lemma 22, it is bounded by (ℓmax + 1)(µ+1)×ℓmax . And because the number of sets
V ⊆ Xα is bounded by 2|Xα| ≤ 2(µ+1)×ℓmax , the lemma holds. ◀

Now we are able to prove Lemma 21:

Proof. The problem is to schedule jobs from S = Y ∪ Zα − (Y ′ ∪ Zα−1) in the interval
[uα−1, uα) so that the schedule is consistent with the two border schedules β′ and β This
can be done in several steps:
1. adjusting the release times of jobs of S with respect to the border schedule β′: if j is a

successor of i ∈ J(β′) then rj = max(rj , β′(i) + 1 + ℓi,j), and propagate to precedence
constraints in S.

2. adjusting the deadlines of jobs of S with respect to the border schedule β: if i is a
predecessor of j ∈ J(β) then di = min(di, β(j) − ℓi,j), and propagate to precedence
constraints in S

3. if a contradiction is detected at this step (a job j for which rj ≥ dj), Sched(s′, s) = false.
4. Otherwise we can enumerate all active schedules (i.e. schedules in which no job can be

scheduled earlier provided the other jobs are not delayed) of S − J(β) and verify that
one of them spans in [uα−1, uα − ℓmax)

The time complexity of the two first steps is O(|S|2). For the last step it is known that
any active schedule can be generated by list scheduling using a permutation of jobs [18]. Thus
the enumeration of active schedules can be done by a brute force algorithm that enumerates
all permutations of jobs and then performs a list scheduling algorithm to check whether the
schedule spans in the interval [uα−1, uα − ℓmax).

M. Mallem, C. Hanen, and A. Munier-Kordon 21:15

At most m jobs are executed at each instant, and the number of iterations is bounded
by |S|. For each iteration, we must check that all the precedence constraints (with exact or
minimum delays) are fulfilled, and thus one execution of this priority list has a complexity
bounded by O(|S|2).

The total number of permutations is |S − J(β)|!. Thus the overall complexity is bounded
by O(|S|2 × |S − J(β)|!). And since S ⊆ Xα, by Lemma 22 we get that |S| ≤ (µ + 1) × ℓmax

and the lemma holds. ◀

Finally we formalize the recurrence equation that yields a FPT algorithm when we have
minimum delays: if s ∈ Nα,

ExistSched(s) =
∨

s′∈Nα−1

Sched(s′, s) ∧ ExistSched(s′) (1)

▶ Theorem 24. The answer to an instance I of P |prec(ℓij), pj = 1, rj , dj |⋆ (with minimum or
exact delays) is “yes” if and only if ExistSched(sκ) is true. Moreover the time complexity of the
computation of ExistSched(sκ) is O(n×(2ℓmax +2)2(µ+1)×ℓmax ×µ2 ×ℓ2

max ×((µ+1)×ℓmax)!).

Proof. If ExistSched(sκ) = true, then a sequence of states s0, s1, . . . sκ with sα ∈ Nα for
α ∈ {0, . . . , κ} and Sched(sα−1, sα) = true for all α ∈ {1, . . . , κ} can be built. And conversely
such a sequence induces a feasible schedule.

Now, the number of calls of the function Sched necessary to compute the recurrence
equation (1) is proportional to

∑κ
α=1 |Nα−1| × |Nα|. By Lemma 23, this value is bounded by

κ × 22(µ+1)×ℓmax × (ℓmax + 1)2(µ+1)×ℓmax . Since κ ≤ 2n, by Lemma 21 we get the theorem.
Notice that for exact delays, the computation of Sched(sα−1, sα) is slightly different since

the border schedule of sα−1 induces the schedule of all successors of these jobs. Similarly
the border of sα induces starting times for predecessors of these jobs, so the first step is to
verify the consistency of the job starting times induced by the two border schedules. This
can be done in O((µ × ℓmax)2). The remaining enumeration concerns the schedule of jobs
without predecessors that start after uα−1. In the worst case the number of these jobs is still
O(µ × ℓmax) so that the complexity is the same as in the min delays case. ◀

4 Conclusion

In this paper we analyzed the parameterized complexity of two scheduling problems with
precedence delays, unit processing times and job time windows with respect to two parameters:
the pathwidth µ and the maximum precedence delay ℓmax. To the best of our knowledge this
is the first hardness result with pathwidth µ as a parameter and unit processing times, and
also the first time that ℓmax is considered as a parameter. Our work raises an open problem
with parameter ℓmax, namely the single-machine problem 1|chains(ℓi,j), pj = 1, ri, di|⋆ for
which the hardness reductions we developed do not apply. Further work is also underway to
extend our FPT algorithm to more general problems, for instance with any processing times
jobs or more complex resource constraints.

References
1 Robert Baart, Mathijs de Weerdt, and Lei He. Single-machine scheduling with release times,

deadlines, setup times, and rejection. European Journal of Operational Research, 291(2):629–
639, 2021.

2 S. Bessy and R. Giroudeau. Parameterized complexity of a coupled-task scheduling problem.
Journal of Scheduling, 22(3):305–313, June 2019. doi:10.1007/s10951-018-0581-1.

IPEC 2022

https://doi.org/10.1007/s10951-018-0581-1

21:16 Parameterized Complexity of a Parallel Machine Scheduling Problem

3 Hans L Bodlaender and Michael R Fellows. W[2]-hardness of precedence constrained k-processor
scheduling. Operations Research Letters, 18(2):93–97, 1995.

4 Hans L Bodlaender and Marieke van der Wegen. Parameterized complexity of scheduling
chains of jobs with delays. In 15th International Symposium on Parameterized and Exact
Computation (IPEC), 2020.

5 P. Brucker, M.R. Garey, and D.S. Johnson. Scheduling equal-length tasks under treelike
precedence constraints to minimize maximum lateness. Math. Oper. Res., 2(3):275–284, 1977.

6 R. Downey and M. Fellows. Parameterized complexity. Springer, 1999.
7 Rodney G Downey, Michael R Fellows, and Kenneth W Regan. Descriptive complexity and

the W hierarchy. In Proof Complexity and Feasible Arithmetics, pages 119–134, 1996.
8 Jianzhong Du, Joseph YT Leung, and Gilbert H Young. Scheduling chain-structured tasks to

minimize makespan and mean flow time. Information and Computation, 92(2):219–236, 1991.
9 J. Flum and M. Grohe. Parameterized complexity theory. Springer, 1998.

10 M.R. Garey, D.S. Johnson, R.E. Tarjan, and M. Yannakakis. Scheduling opposing forests.
SIAM Journal on Algebraic Discrete Methods, 4(1):72–93, 1983.

11 Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Annals of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

12 Claire Hanen and Alix Munier-Kordon. Fixed-Parameter tractability of scheduling dependent
typed tasks subject to release times and deadlines. Submitted, 2021.

13 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

14 J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling under precedence constraints.
Oper. Res., 26(1):22–35, 1978.

15 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling:
15 open problems. Computers & Operations Research, 100:254–261, December 2018. doi:
10.1016/j.cor.2018.07.020.

16 Alix Munier Kordon. A fixed-parameter algorithm for scheduling unit dependent tasks on
parallel machines with time windows. Discrete Applied Mathematics, 290:1–6, 2021.

17 Alex J Orman and Chris N Potts. On the complexity of coupled-task scheduling. Discrete
Applied Mathematics, 72(1-2):141–154, 1997.

18 Linus Schrage. Solving resource-constrained network problems by implicit enumeration –
nonpreemptive case. Operations Research, 18(2):263–278, 1970.

19 J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences,
1975. URL: https://core.ac.uk/reader/82723490.

20 René van Bevern, Robert Bredereck, Laurent Bulteau, Christian Komusiewicz, Nimrod Talmon,
and Gerhard J. Woeginger. Precedence-constrained scheduling problems parameterized by
partial order width. In Yury Kochetov, Michael Khachay, Vladimir Beresnev, Evgeni Nurminski,
and Panos Pardalos, editors, Discrete Optimization and Operations Research, pages 105–120,
Cham, 2016. Springer International Publishing.

21 René van Bevern, Andrey Melnikov, Pavel V. Smirnov, and Oxana Yu. Tsidulko. On data
reduction for dynamic vector bin packing. CoRR, abs/2205.08769, 2022. doi:10.48550/arXiv.
2205.08769.

22 Wenci Yu, Han Hoogeveen, and Jan Karel Lenstra. Minimizing Makespan in a Two-Machine
Flow Shop with Delays and Unit-Time Operations is NP-Hard. Journal of Scheduling, 7(5):333–
348, September 2004. doi:10.1023/B:JOSH.0000036858.59787.c2.

https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1016/j.cor.2018.07.020
https://core.ac.uk/reader/82723490
https://doi.org/10.48550/arXiv.2205.08769
https://doi.org/10.48550/arXiv.2205.08769
https://doi.org/10.1023/B:JOSH.0000036858.59787.c2

M. Mallem, C. Hanen, and A. Munier-Kordon 21:17

A Appendix

A.1 Description of the reduction in Section 2.4 and proof of
Proposition 19

▶ Definition 25 (Vertex chain C′
i with with ℓmax = 1). We define C′

i as a chain of 3(2n + m −
2i − 1) + deg(vi) + 1 jobs. These jobs will fulfill two roles:

Propagators Oi
j,k: job Oi

i,0 will give the color choice of node vi. The other 3(2n + m − 2i)
jobs Oi

j,k (i ≤ j ≤ 2n + m − i − 1, 0 ≤ k ≤ 2) and Oi
2n+m−i−1,0 will propagate this color

choice along the whole chain while keeping the maximum delay value at 1. Job Oi
j,k will

have time window [6j + 2k, 6j + 2k + 3).
Edge jobs J i

j : The deg(vi) jobs J i
n+j will represent the color choice of node vi in every

edge ej where node vi is in (0 ≤ j ≤ m − 1). Job J i
n+j will have time window [6(n + j) +

1, 6(n + j) + 4).

In order to define vertex chain C′
i we segment time into m + 2 segments: a color choice

segment [0, 6n), m edge check segments along [6n, 6(n + m)) and a closing segment [6(n +
m), 6(n + 2m)). We describe the chain from left to right:
(1) Color choice segment [0, 6n)

Set the first job Oi
i,0 of C′

i in time window [6i, 6(i+1)). Then add a unit-time minimum
delay.
Add a job then a unit-time minimum delay, and do this 3(n − i) − 1 times in a row.
These jobs are named Oi

i,1, Oi
i,2, Oi

i+1,0, . . ., Oi
n,2.

(2) Edge check segment [6(n + j), 6(n + j + 1)), 0 ≤ j ≤ m − 1
Let edge ej = {vi1 , vi2}, i1 < i2. This segment will check if the vertices vi1 and vi2 have
different colors.
a. Vertex chain C′

i with i /∈ {i1, i2}
Add job Oi

n+j,0 then a unit-time minimum delay then job Oi
n+j,1 then a unit-time

minimum delay then job Oi
n+j,2 then a unit-time minimum delay.

b. Vertex chain C′
i with i = i1 or i = i2

Add job Oi
n+j,0 then a minimum delay of length zero then job J i

n+j then a minimum
delay of length zero then job Oi

n+j,1 then a unit-time minimum delay then job
Oi

n+j,2 then a unit-time minimum delay.
(3) Closing segment [6(n + m), 6(n + 2m))

Add a job then a unit-time minimum delay, and do this 3(n − i − 1) times in a row.
These jobs are named Oi

n+m,0, Oi
n+m,1, Oi

n+m,2, Oi
n+m+1,0, . . ., Oi

2n+m−(i+2),2.
Add the last job Oi

2n+m−(i+1),0 of Ci with time window [6(2n + m − (i + 1)), 6(2n +
m − (i + 1)) + 3).

▶ Definition 26 (Gadget chain C′
i,1 (resp. C′

i,2)).
Set the first job Oi,1

i,0 (resp. Oi,2
i,0) in time window [6i, 6i + 3).

Add a unit-time minimum delay then a job, and do this 3(2n + m − 2i − 1) − 1 times
in a row. These jobs are named Oi,1

i,1, Oi,1
i,2, Oi,1

i+1,0, . . ., Oi,1
2n+m−(i+1),0 (resp. Oi,2

i,1, Oi,2
i,2,

Oi,2
i+1,0, . . ., Oi,2

2n+m−(i+1),0).

▶ Definition 27 (Fill jobs).
(1) Color choice segment [0, 6n)

Let i ∈ [0, n − 1]. In time segment [6i, 6(i + 1)):
At time 6i: set M − 1 − 2i fill jobs.
At time 6i + 1: set M − 1 − i fill jobs.
At time 6i + 2: set M − 2 − 2i fill jobs.

IPEC 2022

21:18 Parameterized Complexity of a Parallel Machine Scheduling Problem

(2) Edge check segments [6n, 6(n + m))
Let j ∈ [0, m − 1]. In time segment [6(n + j), 6(n + j + 1)):

At time 6(n + j) + 1: set M − n − 1 fill jobs.
At time 6(n + j) + 3: set M − n − 1 fill jobs.

(3) Closing segment [6(n + m), 6(2n + m))
Let i ∈ [0, n − 1]. In time segment [6(n + 2m − (i + 1)), 6(n + 2m − i)):

At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs.

▶ Lemma 28. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 6i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k or later, where
r(J) is the release date of job J .

Proof. First the result is proved for vertex chains C′
i. Suppose we have a feasible schedule

where vertex chain C′
i starts at time 6i + l with l ∈ {0, 1, 2}.

Propagators Oi
j,k: by Definition 25 there is always either a unit-time minimum delay or a

job J i
j between two consecutive jobs Oi

j,k in vertex chain Ci. Thus if the first job Oi
i,0 is

scheduled at time 6i + l = r(Oi
i,0) + l (or later), then we know that the next propagator

Oi
i,1 is scheduled at time (6i + l) + 2 = r(Oi

i,1) + l or later, and so on. By induction on the
couple (j, k) with i ≤ j ≤ n + m − 1 and 0 ≤ k ≤ 2, we get that all the jobs Oi

j,k in vertex
chain Ci are scheduled at time (6i + l) + 2 × (3(j − i) + k) = 6j + 2k + l = r(Oi

j,k) + l or
later.
Edge jobs J i

j : let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej (if there are any). Let p ∈ [0, deg(vi) − 1]. According to Definition 25 job J i

jp

is scheduled right before job Oi
jp,0 with a minimum delay of length zero between them.

Therefore according to our previous point about jobs Oi
j,k, job J i

jp
is scheduled at time

(r(Oi
jp,0) + l) + 1 = r(J i

jp
) + l or later.

Gadget chain C′
i,1 (resp. C′

i,2) only features propagators. By Definition 26 there is always
a unit-time minimum delay between two consecutive jobs Oi,1

j,k (resp. Oi,2
j,k), so the result can

be proven the same way as in the first item of the proof for vertex chains. ◀

▶ Lemma 29. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 6i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain have to be scheduled at time r(J) + k, where
r(J) is the release date of job J .

Proof. We prove by induction on i ∈ [0, n − 1) that for all 0 ≤ j ≤ i exactly one chain starts
at each time 6j, 6j + 1, 6j + 2 and all jobs J in a chain C′

j , C′
j,1, C′

j,2 that starts at time
6j + k have to be scheduled at time r(J) + k.

According to Definition 27 on time windows [0, 6) and [6(2n + m − 1), 6(2n + m)), the
chain triplet C′

0, C′
0,1, C′

0,2 is in the situation described in Figure 6. Thus at least one
chain must start at time 2 which means by Lemma 28 that this chain has to end at
time 6(2n + m − 1) + 2. Then time 6(2n + m − 1) + 2 is blocked, so by the same lemma
another chain cannot start at time 2. Thus the two other chains have to start at the two
remaining time positions 0 and 1, one per chain. By Lemma 28 the chain that starts at
time 1 ends at time 6(2n + m − 1) + 1 (or later but the only other time position possible
6(2n + m − 1) + 2 is already blocked). So time position 6(2n + m − 1) + 1 is now blocked,
which forces the chain that starts at time 0 to end at time 6(2n + m − 1).

M. Mallem, C. Hanen, and A. Munier-Kordon 21:19

Figure 6 A toy situation with three machines and the three chains related to a node in the
P |chains(ℓmin

i,j), pj = 1, rj , dj |⋆ reduction. In any feasible schedule featuring these chains, for
k ∈ {0, 1, 2} exactly one chain starts at time 6i + k, and then this chain has to end at time
6(n + 2m − (i + 1)) + k.

Let i ∈ [0, n − 1). Assume the induction hypothesis to be true for chain triplets of index
j with 0 ≤ j ≤ i − 1. By Definition 25 we know that only these chain triplets have
propagators that might interfere in time windows [6i, 6(i + 1)) and [6(2n + m − (i +
1)), 6(2n + m − i)). By induction hypothesis we know that these propagators are fixed,
and we deduce that the number of fixed jobs (propagators from other chains plus fill jobs)
at the relevant time positions is the following:

(1) Color choice segment, part [6i, 6(i + 1)):
At time 6i: M − 1 − 2i fill jobs and 2i propagators from other chains which add up
to M − 1 jobs.
At time 6i + 1: set M − 1 − i fill jobs and i propagators from other chains which
add up to M − 1 jobs.
At time 6i + 2: set M − 2 − 2i fill jobs and 2i propagators from other chains which
add up to M − 2 jobs.

(2) Closing segment, part [6(n + 2m − (i + 1)), 6(n + 2m − i)):
At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs and 2i propagators from other
chains which add up to M − 2 jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs and i propagators from other
chains which add up to M − 1 jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs and 2i propagators from
other chains which add up to M − 1 jobs.

Thus we are again in the situation described in Figure 6 and we can prove the result for
the triplet C′

i, C′
i,1, C′

i,2 the same way as in the initialization.
This concludes the proof of the lemma for all chains. ◀

Now we are able to prove Proposition 19:

IPEC 2022

21:20 Parameterized Complexity of a Parallel Machine Scheduling Problem

Proof. (=⇒) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose a schedule σ where for all 0 ≤ i ≤ n − 1, chain C′
i starts at time

6i + ci and gadget chains C′
i,1, C′

i,2 start in the two remaining time positions 6i + l1, 6i + l2 in
[3i, 3(i + 1)) (with l1 ̸= l2). Plus we require all delays to match their minimum value.

Then, according to Definition 25, Definition 26 and going from left to right as we did
in the proof of Lemma 28, we know that propagators Oi

j,k, Oi,1
j,k and Oi,2

j,k are respectively
scheduled at times 6j + 2k + ci, 6j + 2k + l1 and 6j + 2k + l2. In the same way we know that
in every edge ej ∈ E where node vi appears, edge job J i

n+j of vertex chain C′
i is scheduled at

time 6(n + j) + 1 + ci. Thus for all jobs J in our proposed schedule, if its chain starts at
time 6i + l with l ∈ {0, 1, 2} then it is scheduled at time r(J) + l.

We show that there are never more than M = 2n + 1 jobs scheduled at any time position.
According to the previous paragraph we can infer that for every chain triplet two propagators
are scheduled at every even time position and one propagator at every odd time position in
time segment [6i, 6(2n + m − (i + 1)) + 3). Recall that only the chain triplets of index j ≤ i

are present in the two time segments [0, 6n), 6(n + 2m − (i + 1)) related to node vi. With
Definition 27 we count the number of propagators plus the number of fill jobs at every time
position and show that it is always no more than M − 1:
(1) Color choice segment [0, 6n)

Let i ∈ [0, n − 1]. In time segment [6i, 6(i + 1)):
At time 6i: M − 1 − 2i fill jobs and 2i propagators which add up to M − 1 jobs.
At time 6i + 1: set M − 1 − i fill jobs and i propagators which add up to M − 1 jobs.
At time 6i + 2: set M − 2 − 2i fill jobs and 2i propagators which add up to M − 2 jobs.
At times 6i + 3, 6i + 4, 6i + 5: respectively i, 2i, i propagators.

(2) Edge check segments [6n, 6(n + m))
Let j ∈ [0, m − 1]. In time segment [6(n + j), 6(n + j + 1)):

At time 6(n + j) + 1: M − n − 1 fill jobs and n propagators which add up to M − 1
jobs.
At time 6(n + j) + 3: M − n − 1 fill jobs and n propagators which add up to M − 1
jobs.
At times 6(n + j), 6(n + j) + 2, 6(n + j) + 4, 6(n + j) + 5: respectively 2n, 2n, 2n, i

propagators.
(3) Closing segment [6(n + m), 6(2n + m))

Let i ∈ [0, n − 1]. In time segment [6(n + 2m − (i + 1)), 6(n + 2m − i)):
At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs and 2i propagators which add up
to M − 2 jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs and i propagators which add
up to M − 1 jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs and 2i propagators which
add up to M − 1 jobs.
At times 6(n + 2m − (i + 1)) + 3, 6(n + 2m − (i + 1)) + 4, 6(n + 2m − (i + 1)) + 5:
respectively i, 2i, i, propagators.

Thus only the two edge jobs J i1
n+j , J i2

n+j from an edge ej = {vi1 , vi2} could invalidate the
schedule if both jobs were scheduled at the same time. This would mean that 6(n+j)+1+ci1 =
6(n + j) + 1 + ci2 and thus ci1 = ci2 , which is impossible since we started from a valid
3-coloring. Therefore at most 2n + 1 = M jobs are scheduled at any time position.

(⇐=) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 6i + si is the starting time of chain C′

i (recall that it can only be an odd time
because of the fill jobs defined in Definition 15). We show that (s0, . . . , sn−1) is a 3-coloring

M. Mallem, C. Hanen, and A. Munier-Kordon 21:21

of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then
according to Lemma 29 jobs J i1

n+j and J i2
n+j are scheduled at the same time 6(n + j) + si1 .

However according to Definition 27 and Lemma 29 fill jobs and propagators add up to M − 1
in all three positions 6(n + j) + 1, 6(n + j) + 2, 6(n + j) + 3.

Thus adding both edge jobs there are M + 1 jobs scheduled at one of these three time
positions, which would make the schedule not feasible. This leads to a contradiction. Thus
(s0, . . . , sn−1) is indeed a 3-coloring of G. ◀

Figure 7 An instance of P |chains(ℓmin
i,j), pj = 1, rj , dj |⋆ with M = 2n + 1 = 7 machines

representing a graph coloring. We have G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}).
This schedule corresponds to the coloring (0, 2, 1).

IPEC 2022

Anti-Factor Is FPT Parameterized by Treewidth
and List Size (But Counting Is Hard)
Dániel Marx !

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Govind S. Sankar !

Duke University, Durham, NC, USA

Philipp Schepper !

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
In the general AntiFactor problem, a graph G and, for every vertex v of G, a set Xv ⊆ N of
forbidden degrees is given. The task is to find a set S of edges such that the degree of v in S is not in
the set Xv. Standard techniques (dynamic programming plus fast convolution) can be used to show
that if M is the largest forbidden degree, then the problem can be solved in time (M + 2)tw · nO(1)

if a tree decomposition of width tw is given. However, significantly faster algorithms are possible
if the sets Xv are sparse: our main algorithmic result shows that if every vertex has at most x

forbidden degrees (we call this special case AntiFactorx), then the problem can be solved in time
(x + 1)O(tw) · nO(1). That is, AntiFactorx is fixed-parameter tractable parameterized by treewidth
tw and the maximum number x of excluded degrees.

Our algorithm uses the technique of representative sets, which can be generalized to the
optimization version, but (as expected) not to the counting version of the problem. In fact, we show
that #AntiFactor1 is already #W[1]-hard parameterized by the width of the given decomposition.
Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm
is essentially optimal for the counting version. Formally, for a fixed nonempty set X, we denote
by X-AntiFactor the special case where every vertex v has the same set Xv = X of forbidden
degrees. We show the following lower bound for every fixed set X: if there is an ϵ > 0 such that
#X-AntiFactor can be solved in time (max X + 2 − ϵ)tw · nO(1) given a tree decomposition of
width tw, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Anti-Factor, General Factor, Treewidth, Representative Sets, SETH

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.22

Related Version Full Version: https://arxiv.org/abs/2110.09369 [29]

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.
Philipp Schepper : Part of Saarbrücken Graduate School of Computer Science, Germany.

1 Introduction

Matching problems and their generalizations form a well studied class of problems in
combinatorial optimization and computer science [26]. A perfect matching is a set S of edges
such that every vertex has degree exactly 1 in S; finding a perfect matching is known to be
polynomial-time solvable [16, 21, 32]. In the f -Factor problem, an integer f(v) is given for
each vertex v and the task is to find a set of edges where every vertex v has degree exactly
f(v). A simple transformation reduces f -Factor to finding a perfect matching. Conversely,
in f -AntiFactor the task is to find a set S of edges where the degree of v is not f(v) [34].

© Dániel Marx, Govind S. Sankar, and Philipp Schepper;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:govind.subash.sankar@duke.edu
https://orcid.org/0000-0002-7443-9599
mailto:philipp.schepper@cispa.de
https://orcid.org/0000-0002-5810-7949
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://arxiv.org/abs/2110.09369
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Anti-Factor Is FPT Parameterized by Treewidth and List Size

The problems above can be unified under the General Factor (GenFac) problem
[10, 27, 30], where one is given a graph G and an associated set of integers Bv for every
vertex v of G. The objective is to find a subgraph such that every vertex v has its degree
in Bv. Cornuéjols [10] showed that the complexity of GenFac depends on the maximum
gap of the sets Bv. The maximum gap of a set B (denoted by max-gap(B)) is defined as the
largest contiguous sequence of integers not in B but whose boundaries are in B. Cornuéjols
[10] showed that if max-gap(Bv) ≤ 1, then GenFac is polynomial-time solvable. In a sense,
we can say that this case is the only one that is polynomial-time solvable. Formally, for a
fixed, finite set B of integers, B-Factor is the special case of GenFac where every vertex
has the same set Bv = B of allowed degrees. It follows from a result of Dalmau and Ford
[13] that if B is a fixed finite set such that max-gap(B) > 1, then B-Factor is NP-hard.

Given the hardness of B-Factor in general, Marx et al. [30] studied the complexity of
the problem on bounded treewidth graphs. Recall the long history of study on treewidth,
which is a measure for how “tree-like” a graph is, [3, 4, 6]. For a wide range of hard problems,
algorithms with running time of the form f(k)·nO(1) exist if the input graph comes with a tree
decomposition of width k. In many cases even the best possible form of f(k) in the running
time is known (under suitable complexity assumptions, such as the Strong Exponential
Time Hypothesis (SETH) [23]). Marx et al. [30] use a combination of standard dynamic
programming techniques with fast subset convolution (cf. [36]) to give optimal (under SETH)
(max B + 1)twnO(1) time algorithms for the decision, optimization, and counting versions.

▶ Theorem 1.1 (Theorems 1.3–1.6 in [30]). Fix a finite, non-empty set B ⊆ N.
We can count in time (max B + 1)twnO(1) the solutions of a certain size for a B-Factor
instance if we are given a tree decomposition of width tw.
For any ϵ > 0, there is no (max B + 1 − ϵ)pwnO(1) algorithm for the following problems,
even if we are given a path decomposition of width pw, unless SETH (resp. #SETH) fails:

B-Factor and Min-B-Factor if 0 /∈ B and max-gap(B) > 1,
Max-B-Factor if max-gap(B) > 1,
#B-Factor if B ̸= {0}.

We study the complementary problem of X-AntiFactor for finite sets X of excluded
degrees.

▶ Definition 1.2 (X-AntiFactor). Let x ∈ N be fixed. AntiFactorx is the decision
problem of finding for an undirected graph G where all vertices v are assigned a finite set
Xv ⊆ N with |Xv| ≤ x, a set S ⊆ E(G) such that for all v ∈ V we have degS(v) /∈ Xv.

For a fixed X ⊆ N with |X| = x, we define X-AntiFactor as the restriction of
AntiFactorx to those graphs where all vertices are labeled with the same set X.

▶ Note. X-Factor, the special case of GenFac where every vertex has set X, precisely
corresponds to X-AntiFactor where we set X := N \ X.
The decision and minimization versions are trivially solvable if 0 /∈ X as the empty set is a
valid solution. Further, if X does not contain two consecutive numbers, then X has no gap
of size at least two. In this case, by results from Cornuéjols [10] and Dudycz and Paluch [15],
the decision, maximization and minimization version of X-Factor are poly-time solvable.

Our Results. One could expect that similar results can be obtained for X-AntiFactor as
for B-Factor, but this is very far from the truth and the exact complexity of X-AntiFactor
is much less clear. In the B-Factor problem, a partial solution (a set of edges that we
intend to further extend to a solution) can have degree at most max B at each vertex, which

D. Marx, G. S. Sankar, and P. Schepper 22:3

is the main reason one needs (max B + 1)twnO(1) running time. For X-AntiFactor, a
vertex can also have degree larger than max X in a (partial) solution, but all degrees larger
than max X are equivalent in some sense. Therefore, the natural running time we expect is
(max X + 2)twnO(1). We show that this running time can be achieved, but requires some
modification of the convolution to handle the state “degree more than max X.”

▶ Theorem 1.3. Let X ⊆ N be finite and fixed. Given an X-AntiFactor instance and its
tree decomposition of width tw. Then we can count the number of solutions of size exactly s

in time (max X + 2)twnO(1) for all s simultaneously.

However, there are many cases where algorithms significantly faster than (max X + 2)twnO(1)

are possible. At first, this may seem unlikely: at each node of the tree decomposition,
the partial solutions can have up to (max X + 2)tw+1 different equivalence classes1 and
it may seem necessary to find a partial solution for each of these classes. Nevertheless,
we show that the technique of representative sets can be used to achieve a running time
lower than the number of potential equivalence classes. Representative sets were defined by
Monien [33] for use in an FPT algorithm for k-Path, and subsequently found use in many
different contexts, including faster dynamic programming algorithms on tree decompositions
[1, 5, 7, 17, 18, 19, 25, 31, 35]. The main idea is that we do not need to find a partial
solution for each equivalence class, but it is sufficient to find a representative set of partial
solutions such that if there is a partial solution that is compatible with some extension, then
there is a partial solution in our set that is also compatible with this extension. Our main
algorithmic result shows that if X is sparse, then this representative set can be much smaller
than (max X + 2)tw+1, yielding improved algorithms. In particular, AntiFactorx is FPT
parameterized by tw and x.

▶ Theorem 1.4. One can decide in time (x + 1)O(tw)nO(1) whether there is a solution of a
certain size for AntiFactorx assuming a tree decomposition of width tw is given.

We note that Theorem 1.4 clearly distinguishes X-AntiFactor from B-Factor. By the
known lower bounds from Marx et al. [30] (cf. Theorem 1.1), a similar result for B-Factor
is not possible. In light of Theorem 1.4, it is also far from obvious to determine, the exact
complexity of X-AntiFactor for a fixed set X. The combinatorial properties of the set
X influence the complexity of the problem in a subtle way and new algorithmic techniques
seem to be needed to fully exploit this. Currently, we do not have a tight bound similar
to Theorem 1.1 for every fixed X. Instead we propose a candidate for the combinatorial
property that influences the complexity: We define a bipartite compatibility graph for every
set X and conjecture that the maximum size of a so-called half-induced matching is the key
property to obtain a faster algorithm via representative sets. See Conjecture 4.5 for a formal
statement.

We use such half-induced matchings of large size to show a lower bound for AntiFactorx

that, assuming SETH, complements the algorithm in Theorem 1.4 up to constant factors in
the exponent (see Theorem 5.5). Moreover, if there is a half-induced matching of size h, then,
assuming SETH, we show that there is no (h − ϵ)twnO(1) algorithm for X-AntiFactor for
any ϵ > 0 (Theorem 5.4). Although, in this case the representative set cannot be smaller
than (h − ϵ)tw+1 for any ϵ > 0 (Lemma 4.4) we do not have matching upper bounds at this
point. There are two main reasons why it is difficult to obtain tight upper bounds:

1 Recall that in a graph with treewidth tw, the largest bag has size tw + 1.

IPEC 2022

22:4 Anti-Factor Is FPT Parameterized by Treewidth and List Size

Representative set bounds. In Theorem 1.4, the upper bound on the size of represen-
tative sets are based on earlier algebraic techniques [18, 19, 25, 35]. It is not clear how
they can be extended to the combinatorial notion of half-induced matchings.
Join nodes. Even if we have tight bounds on the size of representative sets there
is an additional issue that can increase the running time. At join nodes of the tree
decomposition, we need to compute from two representative sets a third one. Doing this
operation in a naive way results in a running time that is at least the square of the bound
on the size of the representative set. If we want to have a running time that matches the
size of the representative set, we need a more clever way of handling join nodes.

Representative sets of the form we study here could be relevant for other problems and tight
bounds for such representative sets could be of fundamental importance. In particular, the
notion of half-induced matchings could be a key property in other contexts as well.

Counting Problems. We also investigate the #AntiFactor problem, where we need
to count the total number of solutions satisfying the degree constraints. The idea of
representative sets is fundamentally incompatible with exact counting: if we need to count
every solution, then we cannot ignore certain partial solutions even if they can be always
replaced by others. Therefore, the algorithm of Theorem 1.4 cannot be extended to the
counting version.2 In fact, we show that already #AntiFactor1 is unlikely to be FPT by
showing the following stronger statement for path decompositions.

▶ Theorem 1.5. There is a fixed constant c such that #AntiFactor1 cannot be solved
in time O(npw−c) on graphs with n vertices given a path decomposition of width pw, unless
#SETH is false. Furthermore, #AntiFactor1 is #W[1]-hard parameterized by pathwidth.

Recall that #SETH (cf. [11, 14]) is actually a weaker assumption than SETH. Hence, the first
result is stronger than a version based on SETH. Moreover, the algorithm from Theorem 1.3
is essentially optimal for #X-AntiFactor.

▶ Theorem 1.6. Let X ⊆ N be a non-empty, finite and fixed set. For any constant ϵ > 0,
there is no algorithm that can solve #X-AntiFactor in time (max X + 2 − ϵ)pwnO(1) given
a graph along with a path decomposition of width pw, unless #SETH fails.

Organization. Section 2 presents the algorithm of Theorem 1.4 and Section 3 shows how
to compute representative sets. Section 4 introduces half-induced matchings and discusses
some combinatorial properties related to representative sets. Sections 5 and 6 present the
lower bounds for the decision and counting versions, respectively.

2 Algorithms

In this section, we use without loss of generality “nice” tree decompositions that have
introduce edge nodes (see, e.g., [12] for formal definitions). When given a node t of a tree
decomposition, we denote by Bt the bag of t, by Vt the vertices introduced at the subtree
rooted at t, and by Et the edges introduced in the subtree rooted at t.

We leave the proof of Theorem 1.3 to the full version of this paper, as many of the details
are similar to that in [30].

2 Counting the solutions approximately is a problem of independent interest.

D. Marx, G. S. Sankar, and P. Schepper 22:5

2.1 Parameterizing by the Number of Excluded Degrees

In this section we prove Theorem 1.4 which shows that AntiFactorx is FPT parameterized
by treewidth and the size x of the set. We first show a naive algorithm, i.e. the standard
dynamic programming approach, solving the problem. In a second step we improve this
algorithm by using representative sets. That is, we do not store all solutions but only so
much information such that we can correctly solve the decision and optimization version.

2.1.1 Naive Algorithm

Let Xv ⊆ N be the set assigned to vertex v with |Xv| ≤ x. Let n be the number of vertices of
G and m the number of edges. Let U = [0, n] be the universe of the values in the following.

The idea is to fill a table ParSol[·, ·] with partial solutions. That is, for all nodes t of the
tree decomposition with bag Bt of size k and all s ∈ [0, m], we have ParSol[t, s] ⊆ UBt and
a ∈ ParSol[t, s] if and only if there is a set S ⊆ Et with |S| = s such that degS(v) /∈ Xv for
all v ∈ Vt \ Bt and degS(v) = a[v] for all v ∈ Bt.

Dynamic Program. Initialize the table ParSol with ∅ for every entry. We fill the table
iteratively for all nodes t of the tree decomposition and all s ∈ [0, m] in the following way,
depending on s and the type of t.
Leaf Node. As Bt = ∅, we set ParSol[t, 0] := {∅}.
Introduce Vertex Node. Assume v is introduced at t, i.e. Bt = Bt′ ∪ {v}. We define

ParSol[t, s] := {av 7→0 | a ∈ ParSol[t′, s]}.

Introduce Edge Node. Assume the edge e = uv is introduced at the node t. We combine
the cases where e is not selected for the solution and where e is selected. Thus, we define:

ParSol[t, s] := ParSol[t′, s] ∪ {au7→a(u)+1,v 7→a(v)+1 | a ∈ ParSol[t′, s − 1]}.

Forget Node. Assume vertex v is forgotten at t, i.e. Bt = Bt′ \ {v}. We define

ParSol[t, s] := {a|Bt | a ∈ ParSol[t′, s] : a[v] /∈ Xv}.

Join Node Assume t1 and t2 are the two children of t with Bt = Bt1 = Bt2 . Then we define

ParSol[t, s] := {a1 + a2 | a1 ∈ ParSol[t1, s1], a2 ∈ ParSol[t2, s2], s1 + s2 = s}.

Let r be the root of the tree decomposition with Br = ∅. For a given s ∈ [0, m], the algorithm
finally checks if ParSol[r, s] ̸= ∅, i.e. ParSol[r, s] contains the empty vector. Otherwise no
solution exists. The correctness of this algorithm follows directly from its definition. Note
that the computation might take time Ω(ntw+1) since the largest bag has size tw + 1.

2.1.2 Improving the Naive Algorithm

The final algorithm is based on the naive algorithm but makes use of so-called representative
sets to keep the size of the set stored for each node of the tree decomposition small.

We first define the notion of representative set to state the final algorithm. In Section 3
we show how to actually compute the representative sets.

IPEC 2022

22:6 Anti-Factor Is FPT Parameterized by Treewidth and List Size

▶ Definition 2.1 (H-Compatibility). Let H = (U ∪̇ V, E) be an undirected (potentially
infinite) bipartite graph. We say that a ∈ U is H-compatible with b ∈ V , denoted by a ∼H b,
if (a, b) ∈ E. 3

Based on this compatibility notation, we define the H-representation of a set.

▶ Definition 2.2 (H-Representation). Let H = (U ∪̇ V, E) be an undirected (potentially
infinite) bipartite graph. For any S ⊆ U , we say that S ′ ⊆ S H-represents S, denoted by
S ′ ⊆H-rep S if for every b ∈ V : ∃a ∈ S : a ∼H b ⇐⇒ ∃a′ ∈ S ′ : a′ ∼H b.

For the algorithm we make use of this H-compatibility and H-representation where we use
the following graphs.

▶ Definition 2.3 (Compatibility Graph). For a set B = {v1, . . . , vk} of k vertices with sets
X1, . . . , Xk of excluded degrees, we define the compatibility graph CB as follows:

V (CB) = Uk ∪̇ V k where the elements in U, V are copies of numbers, i.e. U, V = N.
E(CB) = {((i1, . . . , ik), (j1, . . . , jk)) | ∀ ℓ ∈ [k], iℓ + jℓ ̸∈ Xℓ}.

For a node t with bag Bt of the tree decomposition we denote by Ct the graph CBt
.

The intuition is that the vertices in Uk represent the degrees of the constructed partial
solution. The vertices in V k correspond to the degrees of some (disjoint) partial solution one
might see in the future. The edges then “check” whether both solutions can be combined, i.e.
the degree of each vertex is valid with respect to the union of the solutions.

Final Algorithm. The improved algorithm applies the same operations as the naive algorithm
to fill a table c. Then the algorithm computes a Ct-representative set for the table entries
and just stores these values in c. Only these values are used in the next steps to compute
the other table entries. The correctness follows by induction on the tree decomposition.

▷ Claim 2.4. For all t, s: c[t, s] ⊆Ct-rep ParSol[t, s].

▶ Lemma 2.5. Assume there is an algorithm that can, for given B = {v1, . . . , vk} with
|Xv| ≤ x for all v ∈ B, compute for a set S ⊆ [0, n]k a new set S ′ ⊆CB -rep S of size Size(k)
in time Time(k, |S|), where Time and Size are allowed to depend on CB and x.

Then we can decide for a given AntiFactorx instance, whether there is a solution of size
exactly s in time Time(tw+1, (m+1)·Size(tw+1)2)nO(1) and Time(pw+1, 2 Size(pw+1))nO(1)

given a tree and a path decomposition of width tw and pw, respectively.

Proof. We can assume that Time and Size are non-decreasing functions and inductively that
the size of the given table entries is bounded by Size(tw + 1). The running time follows
immediately by bounding the size of c[t, s] and then computing its representative set. The
correctness follows directly from Claim 2.4. ◀

3 Computing Representative Sets

As mentioned in the previous section, one can think of Ct-compatibility as checking whether
the given partial solution of degree a fits together with some partial solution of degree c

arriving in the future. This is done via the bipartition of the compatibility graph and the
(non-)existence of the edges, i.e. checking if a + c is not in X. To compute the representative
set we avoid this two step procedure by defining the more standard k-q-compatibility.

3 Though the graph is undirected, we use tuples to denote the edges. By this the first value denotes the
vertex from U and the second value the vertex from V .

D. Marx, G. S. Sankar, and P. Schepper 22:7

▶ Definition 3.1 (k-q-Compatibility). Let k, q be positive integers. For an a ∈ Nk and a
b ∈

(N
q

)k, we say a is k-q-compatible with b, denoted by a ∼k
q b, if and only if for all i ∈ [k]

it holds that a[i] /∈ b[i].

For our purposes we can relate the two compatibility definitions as follows: In Ct-compatibility
one computes a + c and checks if a + c /∈ X. Instead k-q-compatibility checks if a /∈ X − c.
While both checks are equivalent at this point, the new compatibility version considers all
possible sets of size at most q = |X| and not just X − c for all c. Hence, k-q-compatibility is
independent from the sets Xv which are assigned to the vertices v of the graph.

We extend the notion of compatibility in the standard way to k-q-representation.

▶ Definition 3.2 (k-q-Representation). Let k, q be positive integers. Given a set S ⊆ Nk,
and a set S ′ ⊆ S. We say S ′ k-q-represents S, denoted by S ′ ⊆k

q-rep S, if and only if for all
b ∈

(N
q

)k: ∃a ∈ S : a ∼k
q b ⇐⇒ ∃a′ ∈ S ′ : a′ ∼k

q b.

For both notations we omit the value k from the notation if k = 1. It remains to check
that k-q-compatibility generalizes Ct-compatibility. This follows by folding and unfolding the
definitions of the two types of compatibility.

▶ Lemma 3.3. Let B be a set of k vertices where each v ∈ B is assigned a set Xv such that
|Xv| ≤ x. Then the following holds for all S, S ′ ⊆ Nk: If S ′ ⊆k

x-rep S, then S ′ ⊆CB -rep S.

Matroids. For the computation of the representative sets we make use of uniform matroids.
They allow us to formally state the operations we are using.

▶ Definition 3.4 (Uniform Matroid). Let U be some universe with n elements and r ∈ N.
Then Ur,n = (U,

(
U

≤r

)
) is the uniform matroid of rank r, that is the matroid over the ground

set U and the independent sets are all subsets of U of size at most r.

Later the rank of these uniform matroids corresponds to the number of excluded degrees
(plus one). Since the matroid contains all subset of size at most the rank, we automatically
consider all possibilities for upcoming solutions.

There are results proving the existence of small representative sets for matroids [18, 19, 25].
Since these results are usually for general matroids, they also apply to uniform matroids
which we use here. However, as we are not considering a single matroid but the product of
several matroids, the previous results can only be applied partially to our setting. Moreover,
one can suspect that these results can be improved by exploiting properties of the uniform
matroids. In the following we show one approach to compute the representative sets. A
second method, not using matrix multiplication, is given in the full version of the paper [29].
That algorithm yields a slightly faster algorithm when parameterizing by pathwidth.

The Algorithm. We base our method on a previous result for computing representative sets.
Despite the fact that the following lemma is a special case of Lemma 3.4 in [25], our proof
uses a completely different technique as we exploit that the given matroids are uniform.

Let ω be the matrix multiplication coefficient in the following, i.e. ω < 2.37286 [2].

▶ Lemma 3.5. Let M1, . . . , Mk be k uniform matroids, each of rank r, with integer universes
U1, . . . , Uk. Given a set S ⊆ U1 × · · · × Uk we can find a set S ′ ⊆k

r−1-rep S of size rk in time
O(|S| · rk(ω−1)k).

IPEC 2022

22:8 Anti-Factor Is FPT Parameterized by Treewidth and List Size

Proof Idea. We follow the ideas behind the proof of Theorem 12.15 in [12] where a variant
of this lemma is shown for k = 1 with a general matroid.

Let M1, . . . , Mk be r × |U | matrices representing the matroids M1, . . . , Mk, which are
known to exist. Enumerate all I ∈ [r]k in an arbitrary order I1, . . . , Irk and compute for all
A ∈ S the vector vA, where for all j ∈ rk we set vA[j] =

∏k
i=1 Mi[Ij [i], A[i]]. Construct a

rk × |S| matrix Q with the vectors vA as columns and find a column basis BQ of Q. Output
the set S ′ = {A | vA ∈ BQ} as solution. Since BQ is a basis, it contains at most rk elements.

Computing all vA takes time O(|S| · rk · k) in total. As the computation of the basis takes
time O(|S| · rk(ω−1)), the complete procedure requires time O(|S| · rk(ω−1) · k).

The basic idea of the correctness proof is to characterize the compatibility by a product
of determinants of certain submatrices of each Mi. Then rewrite this by the Laplacian
expansion using the Ij and exploit that BQ is a basis. The formal proof is given in the full
version as it is rather technical and does not give any insight into the problem. ◀

To finish the algorithm for AntiFactorx from Theorem 1.4, it remains, by Lemma 3.3, to
compute a k-x-representative set as |Xv| ≤ x. To achieve this we define k uniform matroids
with universe {0, . . . , n} and rank x + 1. Then, plugging in the values from Lemma 3.5 into
Lemma 2.5, directly gives the following result. Note that we can assume x ≤ n.

▶ Corollary 3.6. Given a tree and a path decomposition, AntiFactorx can be solved in
time (x + 1)(ω+1)·twnO(1) and (x + 1)ω·pwnO(1), respectively.

4 Half-Induced Matchings

In this section we introduce half-induced matchings and show relations to compatibility
graphs and representative sets. We use these properties later in the lower bounds for the
decision and optimization version of X-AntiFactor and AntiFactorx. The proofs of all
results in this section are given in Appendix A.

▶ Definition 4.1 (Half-induced Matching). Let G = (U ∪̇ V, E) be a bipartite graph. G has a
half-induced matching of size ℓ if there are pairwise different a1, . . . , aℓ ∈ U and pairwise
different b1, . . . , bℓ ∈ V such that (1) (ai, bi) ∈ E for all i but (2) (ai, bj) ̸∈ E for all j > i.

By an abuse of notation, CX denotes the compatibility graph for a vertex with set X of
forbidden degrees. We show that arithmetic progressions in the set of excluded degrees are
sufficient to obtain large half-induced matchings in the corresponding compatibility graph.

▶ Lemma 4.2. If X contains an arithmetic progression of length ℓ, but not one of length
ℓ + 1, then CX has a half-induced matching of size ℓ + 1.

Conversely to the previous lemma, we also prove that arithmetic progressions are necessary
to obtain large half-induced matchings.

▶ Lemma 4.3. Let X ⊆ N with |X| = ℓ ≥ 2. Suppose CX contains a half-induced matching
of size ℓ + 1. Then X is an arithmetic progression.

For a graph C and an integer k > 1, we extend ∼C and ⊆C-rep to k dimensions, denoted by
∼k

C and ⊆k
C-rep, such that the C-compatibility must hold for each dimension.

▶ Lemma 4.4. Let X ⊆ N, and ϵ > 0 and ℓ ≥ 2 be constants. Then there exists a constant
k depending only on ϵ and ℓ such that the following holds. Suppose the compatibility graph
CX contains a half-induced matching of size ℓ. Then there is a set S ⊆ Nk such that every
representative set S ′ ⊆k

CX -rep S has size |S ′| ≥ (ℓ − ϵ)k.

D. Marx, G. S. Sankar, and P. Schepper 22:9

The proof is given in Appendix A but we briefly discuss its implications. The running time of
the algorithm for X-AntiFactor from Theorem 1.4 depends on the size of the representative
sets computed. This lemma implies that any such algorithm using representative sets in a
similar way takes time at least (ℓ − ϵ)pw. This can be seen as an unconditional version of the
lower bound for the decision version shown in Theorem 5.4.

We conjecture that the converse of the above lemma is also true. For example, for
X = {10, 100, 1000, . . .} the largest half-induced matching in CX is of size three, a constant,
(even though X itself is infinite). Intuitively, the size of the representative set itself must be
small because knowing any two forbidden degrees of a vertex in the future solution is enough
for us to deduce the degree of the vertex in the partial solution.

▶ Conjecture 4.5. Let X ⊆ N and ℓ ≥ 2 be a constant. Then there exists a constant k

depending only on ℓ such that the following holds. Suppose the largest half-induced matching in
CX has size ℓ. Then every S ⊆ Nk has a representative set S ′ ⊆k

CX -rep S with |S ′| ≤ ℓk+o(k).

Recall, the runtime of the algorithm in Theorem 1.3 depends on max X but the lower bound
in Theorem 5.4 on the size ℓ of the half-induced matching. With the conjecture it seems
reasonable to get algorithms for the decision and optimization version based on representative
sets with a running time depending on ℓ. This would complement the lower bound. Note,
for the counting version the algorithm is essentially optimal (Theorem 6.3).

5 Lower Bounds for the Decision Version

In this section we prove the lower bounds for the decision version of X-AntiFactor and
AntiFactorx. Instead of showing the lower bound directly, we first define the following
intermediate problem and show the hardness of this problem.

▶ Definition 5.1 (X-AntiFactorR). Let X ⊆ N be fixed and finite. Let G = (VS ∪̇ VC , E)
be a vertex labeled graph such that

all vertices in VS, called simple vertices, are labeled with set X,
all vertices v ∈ VC , called complex vertices, are labeled with a relation Rv that is given
as a truth table such that Rv ⊆ 2I(v) where I(v) is the set of edges incident to v in G.

A set Ê ⊆ E is a solution for G if (1) for v ∈ VS: deg
Ê

(v) /∈ X and (2) for v ∈ VC :
I(v) ∩ Ê ∈ Rv.

X-AntiFactor with Relations (X-AntiFactorR) is the problem of deciding if such
an instance G has a solution.

We show our lower bounds based on this problem definition.

▶ Lemma 5.2 (Lower Bound for X-AntiFactorR). Let X ⊆ N be a fixed set which contains
a half-induced matching of size h ≥ 2.

Let fX : N → R+ be an arbitrary function that may depend on the set X.
For every constant ϵ > 0, there is no algorithm that can solve X-AntiFactorR in time

(h − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v), even if we are given a path
decomposition of width pw, unless SETH fails.

In a second step we remove the relations and replace them by appropriate gadgets. To
be able to reuse the reduction later we introduce a slightly more general version of the
problem. For two finite sets X, Y ⊆ N, we define (X, Y)-AntiFactor as the generalization
of X-AntiFactor where we allow the sets X and Y to be assigned to the vertices. We
show hardness when 0 ∈ X and when max-gap(X) > 1. The former is to ensure there are no

IPEC 2022

22:10 Anti-Factor Is FPT Parameterized by Treewidth and List Size

trivial solutions and the latter ensures that the problem is not polynomial-time solvable [10].
Recall that max-gap(X) is the size of the largest contiguous sequence of integers not in X

but whose boundaries are in X.

▶ Lemma 5.3. Fix a finite set X ⊆ N such that 0 ∈ X and max-gap(X) > 1. Let
Y ⊆ N be arbitrary. There is a many-one reduction from Y -AntiFactorR to (X, Y)-
AntiFactor such that pathwidth increases by at most f(∆∗) and size by a factor of f(∆∗),
where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v).

The proof essentially follows a similar approach as the one for the hardness of B-Factor
given in [30]. However, we deal with the cofinite set X, and thus the constructions do
not carry over directly. We do a careful check of their constructions and give necessary
modifications in the full version.

By combining the lower bound for the intermediate problem with this reduction, we can
show the lower bounds for X-AntiFactor and AntiFactorx.

▶ Theorem 5.4 (Lower Bound for Decision Version I). Fix a finite set X ⊆ N such that
0 ∈ X and max-gap(X) > 1,
and X contains a half-induced matching of size h.

For every constant ϵ > 0, there is no algorithm that can solve X-AntiFactor in time
(h − ϵ)pwnO(1) even if we are given a path decomposition of width pw, unless SETH fails.

Proof (Sketch). For a given X-AntiFactorR instance we apply Lemma 5.3 with X = Y

to obtain the X-AntiFactor. When applying the fast algorithm to it, one can easily check
that this would contradict SETH by Lemma 5.2. ◀

The following theorem extends the previous result to the more general AntiFactorx and
shows a more informative lower bound.

▶ Theorem 5.5 (Lower Bound for Decision Version II). For all x ≥ 3, ϵ > 0, AntiFactorx

cannot be solved in time (x + 1 − ϵ)pwnO(1) on graphs given with a path decomposition of
width pw, unless SETH fails.

Proof. We set Y := {2, 4, . . . , 2x} and X := {0, 2, 3}. By Lemma 4.2, Y contains a half-
induced matching of size x + 1. Moreover, X contains a gap of size two.

We use Lemma 5.3 to transform a Y -AntiFactorR instance into an (X, Y)-AntiFactor
instance. From |X|, |Y | ≤ x and by the properties of X and Y , the claim follows directly. ◀

5.1 Replacing Finite Sets by Cofinite Sets
In this section we prove Lemma 5.2, i.e. the lower bound for X-AntiFactorR, based on a
lower bound from [30] for the following intermediate problem.

▶ Definition 5.6 (B-FactorR (Simplified Definition 4.1 in [30])). Let B ⊆ N be fixed of finite
size. B-Factor with Relations (B-FactorR) is the variation of X-AntiFactorR, cf.
Definition 5.1, where the simple vertices are not labeled with set X but with set B.

A set Ê ⊆ E(G) is a solution for G if deg
Ê

(v) ∈ B for all simple vertices v and the
relations of the complex vertices are satisfied.

We use the following lower bound and the restrictions to the graph as a starting point for
our construction.

D. Marx, G. S. Sankar, and P. Schepper 22:11

v

{h− 1}

(a) The simple vertex v before the modifications.

X

v′

vleft vright

RrightRleft

(b) The gadget replacing vertex v.

Figure 1 The transformation in the proof of Lemma 5.2. The red, orange, green, and blue edges
represent the left-external, left-internal, right-internal, and right-external edges, respectively.

▶ Lemma 5.7 (Corollaries 4.7 and 4.8 in the full version of [30]). Let B ⊆ N be a fixed and
finite set. Given a B-FactorR instance

and its path decomposition of width pw with ∆∗ = maxbag B

∑
v∈B∩VC

deg(v),
moreover all simple vertices are only connected to 2 complex nodes by exactly max B

(parallel) edges each,
and we are given the promise that with respect to any solution the degree of the simple
vertices is exactly max B.

Assume B-FactorR can be solved in such a case in (max B + 1 − ϵ)pw+fB(∆∗)nO(1) time for
some ϵ > 0 and some function fB : N → R+ that may depend on the set B. Then SETH
fails. Moreover the result also holds for #B-FactorR and #SETH.

To show a lower bound for X-AntiFactorR, it suffices to replace the simple vertices with set
B by an appropriate gadgets consisting of simple vertices with set X and complex vertices.

Modification of the Graph. Let a0, . . . , ah−1 and b0, . . . , bh−1 be the labels of the half-
induced matching of size h of X and U be the maximum over these labels. Let H be a
B-FactorR instance as stated in Lemma 5.7 with max B = h − 1.4 We replace each simple
vertex by the following gadget and keep the other vertices unchanged (see Figure 1).

By assumption, each simple vertex v is incident to 2(h − 1) edges which we can partition
into two sets of size h − 1 depending on their endpoints. We call these groups of edges the
left-external and right-external edges. We remove v and connect the left-external edges to a
new complex vertex vleft with relation Rleft. The right-external edges are connected similarly
to another new complex vertex vright with relation Rright. As a last step we create a new
simple vertex v′ with set X. We connect v′ by U (parallel) edges to vleft, call these edges the
left-internal edges, and by U parallel edges to vright, call these edges the right-internal edges.

The relation Rleft accepts if and only if, for some i ∈ [0, h − 1], exactly i left-external and
exactly ah−1−i left-internal edges are selected. Similarly, Rright accepts if and only if, for
some j ∈ [0, h − 1], exactly bj right-internal and exactly j right-external edges are selected.

We claim that the above replacement does not change the existence of solutions. For
this we show that the number of selected left-external edges plus the number of selected
right-external edges is at most h − 1 for each such modification. Then, by the properties in
Lemma 5.7, they sum to exactly h − 1 selected edges.

If i left-external edges are selected, then v′ is incident to ah−1−i selected left-internal
edges, by definition of Rleft. As Rright rejects when vright is incident to exactly k selected
right-internal edges where k ̸= bj for all j, vertex v′ must be incident to bj right-internal
edges for some j. By the definition of the half-induced matching we get ah−1−i + bj ∈ X if

4 It actually suffices to set B = {h − 1}.

IPEC 2022

22:12 Anti-Factor Is FPT Parameterized by Treewidth and List Size

j > h − 1 − i. Thus, some bh−1−i−i′ with h − 1 − i ≥ i′ ≥ 0 must be chosen. The relation
Rright maps the bh−1−i−i′ selected right-internal edges to h − 1 − i − i′ selected right-external
edges. Thus, the gadget is incident to i + (h − 1 − i − i′) = h − 1 − i′ ≤ h − 1 edges in total.

As v was only adjacent to complex vertices, we can merge the complex vertices vleft and
vright with the existing complex vertices and thus also the corresponding relations.

We analyze how the size and the pathwidth change. Replacing the simple vertices by
the gadget does not change the pathwidth of the graph but only increases the degree of the
complex vertices (due to the merging of the relations). Hence, ∆∗ increases to ∆∗ · U . As U

only depends on the set X, it can be bounded by f̂(max X) for some function f̂ .

Proof of Lemma 5.2 (Sketch). For a given B-FactorR instance with B = {h − 1}, apply
the above construction to obtain an X-AntiFactorR instance G. The total degree increases
only by a factor depending on X, which is a constant as X is fixed. When running the
claimed algorithm on G we contradict SETH by Lemma 5.7. ◀

6 Lower Bounds for the Counting Version

In this section we prove the two lower bounds for the counting version. While the lower
bound for the decision and maximization version of X-AntiFactor rely on half-induced
matching, we avoid this dependence for #X-AntiFactor by using interpolation techniques.
This allows us to show a tight lower bound compared to the running time of the algorithm
from Theorem 1.3. For the case when X = {0}, that is #EdgeCover, we show a completely
independent but also tight lower bound in the full version of this paper.

We also parameterize by the size of the set, i.e. by x. We design a new construction
to prove the #W[1]-hardness of #AntiFactorx, even if x = 1, when parameterizing by
treewidth. Hence, the problem is most likely not fixed-parameter tractable.

Both bounds use the same two-step approach as for the decision and optimization version;
we first show the hardness of an intermediate problem which uses arbitrary relations and
then remove these relations by a chain of reductions to obtain the actual lower bounds.

Parameterizing by the Maximum of the Set. We first show a lower bound for the
intermediate problem #X-AntiFactorR, which is the counting version of X-AntiFactorR.

▶ Lemma 6.1 (Lower Bound for #X-AntiFactorR). Let X ⊆ N be a fixed, non-empty and
finite set. Let fX : N → R+ be an arbitrary function that may depend on the set X.

For every constant ϵ > 0, there is no algorithm that can solve #X-AntiFactorR in
time (max X + 2 − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v), even if we are
given a path decomposition of width pw, unless #SETH fails.

We make use of the following lemma to remove the relations. We extend the definition of
(X, Y)-AntiFactor in the natural way to the counting version #(X, Y)-AntiFactor.

▶ Lemma 6.2. Let X ⊆ N be a finite set such that X ̸⊆ {0}. Let Y ⊆ N be arbitrary
(possibly be given as input).

There is a Turing reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor increasing
the size from n to n·f(max X), decreasing ∆∗ to zero, and increasing pw to pw+∆∗ ·f(max X).

As for the decision version, the proof of this lemma is based on the reductions in [30] for
the counting version of B-Factor. The reduction makes use of the Holant framework
[8, 9, 20, 22, 24, 28] to formally relate the different steps of the reduction. See Appendix B
for the main ideas behind the proof.

D. Marx, G. S. Sankar, and P. Schepper 22:13

Combining these two lemmas, we can prove the first lower bound for the counting version.

▶ Theorem 6.3 (Lower Bound for Counting Version I). Let X ⊆ N be a finite and fixed
set such that X ̸⊆ {0}. For every constant ϵ > 0, there is no algorithm that can solve
#X-AntiFactor in time (max X + 2 − ϵ)pwnO(1) even if we are given a path decomposition
of width pw, unless #SETH fails.

Proof (Sketch). After applying Lemma 6.2 where we set X = Y , the algorithm directly
contradicts #SETH by Lemma 6.1. ◀

Parameterizing by the Size of the Set. If we do not fix the set X but only the size of the
set, the decision and optimization version of AntiFactorx are still FPT parameterized by
treewidth. For #AntiFactorx the following result conditionally rules out such algorithms.

▶ Lemma 6.4. There exists a constant c such that there is no O(np−c) algorithm for
#AntiFactorR

1 on n-vertex graphs with ∆∗ ∈ O(1), even if only one set is used and we are
given a path decomposition of width p, unless #SETH is false.

Combined with Lemma 6.2 to remove the relations, we get the following hardness result.

▶ Theorem 6.5 (Lower Bound for Counting Version II). There exists a constant c such that
there is no O(np−c) algorithm for #AntiFactor1 on n-vertex graphs, even if we are given
a path decomposition of width p, unless #SETH is false.

Proof. Let G be a given #AntiFactorR
1 instance which uses just one set Y ⊆ N with

|Y | = 1. Use Lemma 6.2 with X = {2} to transform G into a #AntiFactor1 instance H.
The remaining part of the proof follows in a standard manner by using Lemma 6.4. ◀

We prove Lemma 6.4 by a reduction from the #W[1]-hard problem Counting Colorful
Hitting k-Sets. Hence, the following result holds by applying Lemma 6.2 as before.

▶ Theorem 6.6. #AntiFactor1 is #W[1]-hard.

6.1 High-level Construction for SETH Lower Bound
We show the hardness of #X-AntiFactorR by a reduction from #B-FactorR, that is, we
prove Lemma 6.1. As for the decision and optimization version, we mainly have to modify
the simple vertices to take care of the new set. We design this reduction in three steps.

The first step is a lower bound for the relation-weighted version of #X-AntiFactorR

(cf. Lemma 6.7). For this problem we assign each accepted input of a relation a weight.
Then an accepted input contributes by this weight to the solution. The weight of the
solution is the product of the weights of the relations. The unweighted problem can be
seen as assigning weight 1 to all accepted inputs and weight 0 to all rejected inputs.
Then in a second step we reduce this problem to the edge-weighted version where the
edges are assigned weights by which they contribute to the solution if they are selected
(cf. Lemma 6.8). Again, the weight of a solution is the product of the weights of the
selected edges.
The last step then removes these edge-weights by an appropriate Turing-reduction using
the technique of interpolation (cf. Lemma 6.9).

We use the Holant framework (cf. [8, 9, 20, 22, 24, 28]) to contextualize several versions
of #AntiFactor. In the Holant framework, we are given a signature graph Ω = (V, E),
where every edge e ∈ E has a weight we. Every vertex v ∈ V is labeled with a signature

IPEC 2022

22:14 Anti-Factor Is FPT Parameterized by Treewidth and List Size

B

v̂

(a) The simple vertex be-
fore the modification.

X
α β γ

u

Rv

(b) The gadget resulting from
Lemma 6.7.

R′

u1 ur. . .

(c) The modifications of the complex ver-
tices from Lemma 6.8. The vertices ui are
assigned relation HW(1)

∈{1}.

Figure 2 The modifications of the vertices in the different steps of the reductions.

fv : {0, 1}I(v) → Q, where I(v) is the incidence vector of edges incident to v. A solution is a
subset of edges such that the signature for each vertex is non-zero. The weight of a solution
is the product of the weights of all edges in the subset and the signatures of all the vertices.
Then the Holant of Ω is defined as the sum of the weights of all solutions.

Holant(Ω) =
∑

x∈{0,1}E(Ω)

∏
e∈x

we

∏
v∈V (Ω)

fv(x|I(v)).

The Holant problem is easily seen to be a weighted generalization of the counting versions
of GenFac and AntiFactor. For example, the problem #X-AntiFactor is a Holant
problem on unweighted graphs where every vertex has the following symmetric relation.

f(z) =

1 if hw(z) ̸∈ X

0 if hw(z) ∈ X

where hw(·) is the Hamming weight operator. We call vertices with such functions to be
HW∈X nodes.

For relations R1, . . . , Rk, we define Holant(R1, . . . , Rk) to be the set of Holant problems
where every edge is unweighted and every vertex has signature Rj for some j ∈ [k]. By an
abuse of notation also let Rj be a family of relations. For example, we may use Holant(HW=1)
when every vertex has relation HW(k)

=1 for some k.
The relation-weighted version of #X-AntiFactorR corresponds to a variant of the

Holant problem where all edges have weight 1. Likewise the edge-weighted version of the
#X-AntiFactorR problem corresponds to a variant of the Holant problem where we require
that the value of the signatures is either 0 or 1, i.e. they accept or reject.

The Holant framework was extensively used in proving the #SETH lower bounds for
Counting Perfect Matchings [11] and Counting General Factors [30]. We make
use of some of their constructions to prove the following lower bound.

▶ Lemma 6.7. Let X ⊆ N be a fixed, non-empty and finite set. Let fX : N → R+ be an
arbitrary function that may depend on the set X.

For every constant ϵ > 0, there is no algorithm that can, even if we are given a path
decomposition of width pw, solve relation-weighted #X-AntiFactorR with (max X + 2)2

weights in time (max X + 2 − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v),
unless #SETH fails.

We prove the lower bound by a reduction from #B-FactorR where B = {max X + 1}.
When treating the given #B-FactorR instance G as a #X-AntiFactorR instance H, all
solution of G are also a solution for H because of our choice of B. The converse is not true:

D. Marx, G. S. Sankar, and P. Schepper 22:15

As X is finite (and thus the set of allowed degree is cofinite), the degree of the solutions for
H can be different from max X + 1 (possibly larger or even smaller). We construct a gadget
such that the number of selected incident edges is equal to max X + 1 and the solution is
also valid for the B-FactorR instance.

For this we add a weighted relation directly after the simple vertices. We choose the
weights such that the entire gadget behaves as the original vertex with set B. For this we
exploit the fact that the set X does not allow certain combinations of selected incident edges.

Proof of Lemma 6.7. We start with a #B-FactorR instance H as stated in Lemma 5.7
where B = {max X + 1} and apply the following transformation, illustrated in Figures 2a
and 2b, for each simple vertex v̂.

Transformation. By assumption, the incident edges of v̂ can be split into left and right
edges (depending on their endpoints). We remove v̂ and create a simple vertex v and a
complex vertex u. Connect the left edges to v and the right edges to u. We connect v and u

by max X + 1 parallel edges which we call middle edges.5 We assign the set X to v and the
relation R to u, which is defined as follows.

R requires that the selection of middle and right edges is monotone. That is the first
k edges are selected and the last max X + 1 − k edges are not selected. Then for all
β, γ ∈ [0, max X + 1], R accepts β middle and γ right edges with weight wβ,γ .

To define the weights wβ,γ , let g(α, γ) denote the signature of the whole gadget (including
v and u) when α left and γ right edges are selected. 6 Based on our construction we get:

g(α, γ) =
max X+1∑

β=0
β+α/∈X

wβ,γ .

To simulate the original simple vertex v̂ with set B = {max X + 1}, we need g(i, max X +
1 − i) = 1 for all i ∈ [0, max X + 1] and 0 otherwise. These constraints and the definition
of g describe a system of linear equations with (max X + 2)2 variables and equally many
constraints. Assuming that there always exists a solution, we can use Gaussian elimination
to compute the solution in time O(n3). Since the weights are chosen such that the remaining
graph does not see a difference between the vertex v̂ and this new gadget, we can replace all
simple vertices by this procedure to get a relation-weighted #X-AntiFactorR instance.

It remains to prove that such a solution always exists. For a fixed γ the values of
g(0, γ), . . . , g(max X + 1, γ) depend only on the weights w0,γ , . . . , wmax X+1,γ . Moreover,
these weights do not appear in the sum of any g(i, γ′) where γ′ ̸= γ. Hence, we can treat
each possible value of γ separately.

For a fixed γ, the sums for g(α, γ) and g(α + 1, γ) differ by (at least) one summand, i.e.
wmax X−α,γ . When starting with the sums for max X + 1 and max X, we can eliminate w0,γ

from the system of linear equations. Then we can repeat this process to eliminate w1,γ up to
wmax X+1,γ . Hence, there is a solution for a fixed γ.

Lower Bound. Let G be the final #X-AntiFactorR instance. We have nG ≤ 2nH ,
∆∗

G ≤ 2∆∗
H , and pwG ≤ pwH + ∆∗

H . Assume we run a fast algorithm for relation-weighted
#X-AntiFactorR on the new instance. Then, one can easily check that this directly
contradicts #SETH by Lemma 5.7. ◀

5 Though these parallel edges disappear later, one could place EQ2 nodes on them to obtain a simple
graph.

6 Note that a signature is normally defined on subsets of edges. As we require the selection of the edges
to be monotonous, we also use “signature” to refer to g.

IPEC 2022

22:16 Anti-Factor Is FPT Parameterized by Treewidth and List Size

The next step of our reduction removes the weights from the relations by using weighted
edges.

▶ Lemma 6.8. Let X ⊆ N be an arbitrary set (possibly given as input).
We can many-one reduce relation-weighted #X-AntiFactorR with r different weights

to edge-weighted #X-AntiFactorR such that
the r weights do not change,
the size increases by a multiplicative factor of O(r),
∆∗ increases to ∆∗ + r + 1,
and pw increases to pw + 1.

Proof. We apply the following procedure to each complex vertex u. See Figure 2c for the
modification. For this fix some u and let R be its relation. Let w1, . . . , wr′ be the r′ < r

different weights used by R. Assume w.l.o.g. that r′ = r.
For all i ∈ [r], we add a vertex ui with relation HW(1)

∈{0,1} and make it adjacent to v by an
edge of weight wi.

Based on R we design a new relation R′ as follows: Whenever R accepts the input x with
weight wi for some i ∈ [r], then R′ accepts x but additionally requires that the edge to ui is
selected while the edges to the other ui′ remain unselected.

One can easily check that this modification does not change the solution. Moreover, the
pathwidth increases by at most 1 and the degree of the complex nodes by at most r. ◀

In the next step of our reduction we remove the edge weights from the graph. First observe
that we do not have to change edges of weight 1. Furthermore, we can simply remove all
edges with weight 0.

▶ Lemma 6.9. Let X ⊆ N be a finite and non-empty set (possibly given as input). There
is a Turing reduction from edge-weighted #X-AntiFactorR with r different weights to
unweighted #X-AntiFactorR running in time nO(r). The reduction is such that

the size increases by a multiplicative factor of O(log2(n)),
the degree of the simple vertices stays the same,
∆∗ increases to ∆∗ + O(1),
and pw increases to pw + O(1).

The proof of the lemma uses the same interpolation techniques already used in [11] and later
in [30] to remove the edge weights. Now we can combine the previous steps and prove the
lower bound for #X-AntiFactorR.

Proof of Lemma 6.1 (Sketch). For a given relation-weighted #X-AntiFactorR instance
H we apply Lemmas 6.8 and 6.9 to obtain polynomially many #X-AntiFactor instances.
It is easy to check that a faster algorithm for #X-AntiFactorR would contradict #SETH
by Lemma 6.7. ◀

References
1 Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh. Parameterized

complexity of conflict-free matchings and paths. Algorithmica, 82(7):1939–1965, 2020. doi:
10.1007/s00453-020-00681-y.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

https://doi.org/10.1007/s00453-020-00681-y
https://doi.org/10.1007/s00453-020-00681-y
https://doi.org/10.1137/1.9781611976465.32

D. Marx, G. S. Sankar, and P. Schepper 22:17

3 Hans L Bodlaender. Dynamic programming on graphs with bounded treewidth. In International
Colloquium on Automata, Languages, and Programming, pages 105–118. Springer, 1988.

4 Hans L Bodlaender. Treewidth: Algorithmic techniques and results. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 19–36. Springer, 1997.

5 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

6 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

7 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex
set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parame-
terized algorithms. Algorithmica, 81(10):3890–3935, 2019. doi:10.1007/s00453-019-00579-4.

8 Jin-yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Dichotomy
for Holantc problems. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors,
Algorithms and Computation – 21st International Symposium, ISAAC 2010, Jeju Island,
Korea, December 15-17, 2010, Proceedings, Part I, volume 6506 of Lecture Notes in Computer
Science, pages 253–265. Springer, 2010. doi:10.1007/978-3-642-17517-6_24.

9 Jin-yi Cai, Pinyan Lu, and Mingji Xia. A computational proof of complexity of some restricted
counting problems. Theor. Comput. Sci., 412(23):2468–2485, 2011. doi:10.1016/j.tcs.2010.
10.039.

10 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198, 1988.
doi:10.1016/0095-8956(88)90068-8.

11 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences per
variable: A study through delta-matroid parity. In Branislav Rovan and Peter Vojtás, editors,
Mathematical Foundations of Computer Science 2003, 28th International Symposium, MFCS
2003, Bratislava, Slovakia, August 25-29, 2003, Proceedings, volume 2747 of Lecture Notes in
Computer Science, pages 358–367. Springer, 2003. doi:10.1007/978-3-540-45138-9_30.

14 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

15 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. In Andreas Brandstädt,
Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in Computer Science –
44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings,
volume 11159 of Lecture Notes in Computer Science, pages 176–189. Springer, 2018. Full
version: arXiv:1706.07418. doi:10.1007/978-3-030-00256-5_15.

16 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

17 Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM Trans.
Algorithms, 16(4):47:1–47:48, 2020. doi:10.1145/3396573.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

IPEC 2022

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1007/s00453-019-00579-4
https://doi.org/10.1007/978-3-642-17517-6_24
https://doi.org/10.1016/j.tcs.2010.10.039
https://doi.org/10.1016/j.tcs.2010.10.039
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1145/2635812
http://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-030-00256-5_15
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1145/3396573
https://doi.org/10.1145/2886094

22:18 Anti-Factor Is FPT Parameterized by Treewidth and List Size

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
families of product families. ACM Trans. Algorithms, 13(3):36:1–36:29, 2017. doi:10.1145/
3039243.

20 Heng Guo and Pinyan Lu. On the complexity of holant problems. In Andrei A. Krokhin and
Stanislav Zivný, editors, The Constraint Satisfaction Problem: Complexity and Approximability,
volume 7 of Dagstuhl Follow-Ups, pages 159–177. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/DFU.Vol7.15301.6.

21 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

22 Sangxia Huang and Pinyan Lu. A dichotomy for real weighted holant problems. Comput.
Complex., 25(1):255–304, 2016. doi:10.1007/s00037-015-0118-3.

23 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

24 Michael Kowalczyk and Jin-Yi Cai. Holant problems for 3-regular graphs with complex edge
functions. Theory Comput. Syst., 59(1):133–158, 2016. doi:10.1007/s00224-016-9671-7.

25 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

26 L. Lovász and M. D. Plummer. Matching Theory. North-Holland Publishing Co., Amsterdam,
1986. Annals of Discrete Mathematics, 29.

27 László Lovász. The factorization of graphs. II. Acta Mathematica Hungarica, 23(1-2):223–246,
1972.

28 Pinyan Lu. Complexity dichotomies of counting problems. Electron. Colloquium Comput.
Complex., 18:93, 2011. URL: http://eccc.hpi-web.de/report/2011/093.

29 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by
treewidth and list size (but counting is hard). CoRR, abs/2110.09369, 2021. arXiv:2110.09369.

30 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. Full version: arXiv:2105.08980. doi:10.4230/LIPIcs.ICALP.2021.95.

31 Dániel Marx and Paul Wollan. An exact characterization of tractable demand patterns for
maximum disjoint path problems. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 642–661. SIAM, 2015. doi:10.1137/1.9781611973730.44.

32 Silvio Micali and Vijay V. Vazirani. An O(sqrt(|v|) |E|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.12.

33 Burkhard Monien. How to find long paths efficiently. In Analysis and design of algorithms
for combinatorial problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages
239–254. North-Holland, Amsterdam, 1985.

34 András Sebö. General antifactors of graphs. J. Comb. Theory, Ser. B, 58(2):174–184, 1993.
35 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.

J. Comput. Syst. Sci., 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.11.008.
36 Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In

Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms – Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

https://doi.org/10.1145/3039243
https://doi.org/10.1145/3039243
https://doi.org/10.4230/DFU.Vol7.15301.6
https://doi.org/10.1007/s00037-015-0118-3
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s00224-016-9671-7
https://doi.org/10.1145/3390887
http://eccc.hpi-web.de/report/2011/093
http://arxiv.org/abs/2110.09369
http://arxiv.org/abs/2105.08980
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.1137/1.9781611973730.44
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1007/978-3-030-42071-0_18

D. Marx, G. S. Sankar, and P. Schepper 22:19

A Omitted Proofs from Section 4

We first proof that arithmetic progressions in the set of excluded degrees are sufficient to
obtain large half-induced matchings in the corresponding compatibility graph.

Proof of Lemma 4.2. Let a, a + d, a + 2d, . . . , a + (ℓ − 1)d ∈ X be an arithmetic progression
with d ≥ 1 such that a + ℓd ̸∈ X. We construct the following half-induced matching in CX

where, for all i ∈ [ℓ + 1], we set ai := d(i − 1) and bi := a + (ℓ + 1 − i)d.
Then for all i ∈ [ℓ + 1] we have ai + bi = d(i − 1) + a + (ℓ + 1 − i)d = a + ℓd ̸∈ X and hence

(ai, bi) ∈ E(CX). Similarly, for all i ∈ [ℓ] and all i < j ∈ [ℓ + 1], we have (ai, bj) ̸∈ E(CX)
because ai + bj = d(i − 1) + a + (ℓ + 1 − j)d = a + (ℓ + i − j)d ∈ X. ◀

Now we show the converse of the above result. That is, arithmetic progressions are necessary
to obtain large half-induced matchings.

Proof of Lemma 4.3. Let a1, . . . , aℓ+1 and b1, . . . , bℓ+1 be the vertices of the half-induced
matching of size ℓ + 1 in CX . Then we have the following constraints:

a1 + b2 ∈ X, a1 + b3 ∈ X, . . . , a1 + bℓ+1 ∈ X

a2 + b3 ∈ X, . . . , a2 + bℓ+1 ∈ X

Let X = {x1, x2, . . . , xℓ} where xi ≤ xi+1. From a1 + bj ̸= a1 + bj′ for any j ̸= j′, we get

{a1 + b2, a1 + b3, . . . , a1 + bℓ+1} = X.

Now consider the second set of constraints. Assuming a2 − a1 = d > 0, we have

{a2 + b3, a2 + b4, . . . , a2 + bℓ+1} = X \ {xi}

for some i. Since d > 0, we get xℓ + d /∈ X and thus

{x1 + d, x2 + d, x3 + d, . . . , xℓ−1 + d} = X \ {xi}.

Now further observe that x1 cannot belong to the left-hand side because d > 0 and x1 =
min(X). Thus, we have that i = 1. Similarly, when a2 − a1 = d < 0 we can argue that i = ℓ.
Without loss of generality consider the former case. Then we have that xi + d = xi+1 for all
i ∈ [ℓ]. Hence, X is an arithmetic progression of length ℓ. ◀

As the last part of this section, we prove Lemma 4.4 which states that a half-induced matching
implies a lower bound for the size of the representative set.

Proof of Lemma 4.4. We set the value of k later. Let the half-induced matching be between
A, B ⊆ N with A = {a1, . . . , aℓ}, B = {b1, . . . , bℓ}. Define indexing functions indA and
indB such that indA(ai) = indB(bi) = i. For s ∈ Ak, define indA(s) =

∑
i∈[k] indA(s[i]). We

partition Ak into sets Sq with q ∈ [ℓ · k] such that

Sq = {s ∈ Ak | indA(s) = q}.

Hence, there exists some q′ ∈ [ℓ · k] such that

|Sq′ | ≥ ℓk

ℓ · k
.

IPEC 2022

22:20 Anti-Factor Is FPT Parameterized by Treewidth and List Size

#Y -AntiFactorR

Holant(HW∈Y , HW∈X) Holant(HW∈Y , w[1, 1], w[−1, 1], w[0, 1])

Holant(HW∈Y , HW=1)

Holant(HW∈Y , HW∈X , w[−1, 1], w[0, 1])Holant(HW∈Y , HW∈X , w[0, 1])

Lemma B.1

Lemma B.2

Lemma B.3

Lemma B.3

Lemma B.3

Lemma B.5

Lemma 6.2

Figure 3 Steps in the chain of reductions from #Y -AntiFactorR to #(X, Y)-AntiFactor, i.e.
Holant(HW∈Y

, HW∈X
). Dotted lines indicate results obtained by combined reductions.

Let S = Sq′ be the set for which we want to lower bound the size of its representative sets. To
simplify notation, let q = q′. Consider some s ∈ S. We claim that s is the unique compatible
element for t ∈ Bk, where

t[i] = bindA(s[i]).

It is clear that s ∼k
CX

t. Suppose there is some other s′ ∈ S such that s′ ∼k
CX

t. Then
since indA(s) = indA(s′) = q and since s ̸= s′, there is some index j such that indA(s[j]) >

indA(s′[j]). The jth index of s′+t is aindA(s′[j])+bindA(s[j]) because s′[j] = aindA(s′[j]). However,
observe that this sum must be in X from the fact that there is a half-induced matching
between A, B in CX and indA(s[j]) > indA(s′[j]). This is a contradiction, implying that s

is the only compatible partner of t. Thus, s is forced to belong to any representative set
S ′ ⊆k

CX -rep S.
Since the above argument holds for all s ∈ S, we conclude that the only representative set

for S is itself. Now we set k to be large enough such that k log(ℓ − ϵ) ≤ k log(ℓ) − log(ℓ · k).
Then we have

|S| ≥ ℓk

ℓ · k
≥ (ℓ − ϵ)k. ◀

B Proof of Lemma 6.2: Removing Relations

In this section, we prove the reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor,
i.e. Lemma 6.2, by a chain of reductions (cf. Figure 3). We make use of the Holant framework,
which was also used in [30], to formally state the results. The first step uses Lemmas 7.5
and 7.6 from [30]. Observe for this that the lemmas work for #B-Factor even when B

is co-finite, that is #B-AntiFactor because the simple vertices of the instance are not
changed in any way.

▶ Lemma B.1 (Lemma 7.5 and 7.6 in [30]). There is a polynomial-time Turing reduction
from #X-AntiFactorR to Holant(HW∈X , HW=1) such that the maximum degree increases to
at least 6 and the pathwidth increases by at most a constant depending only on ∆∗, i.e. the
maximum total degree of the complex nodes in any bag of the path decomposition.

▶ Note. Observe that Lemma 7.5 in [30] requires that the relation is even, i.e. the Hamming
weight of every accepted input is even. We can easily make every relation even by adding
an additional input that is selected whenever the parity of the original input is odd. This
additional input is then connected to a EQ1 node, which can easily be realized by forcing
max X + 1 edges to a fresh vertex using HW(1)

=1 nodes.

D. Marx, G. S. Sankar, and P. Schepper 22:21

Before proceeding with the next steps, we define, for all x, y ∈ Z, w[x, y] as a new type of
node which has one dangling edge e and the following signature:

f(e) =

x if e is not selected
y if e is selected

.

Observe that HW(1)
=1 is precisely w[0, 1] and HW(1)

∈{0,1} corresponds to w[1, 1]. In the following
constructions we additionally use a w[−1, 1] node. We use the w[x, y] notation in the following
wherever possible.

▶ Lemma B.2. Let X ⊆ N be a finite set such that X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. There is a polynomial-time Turing reduction from

Holant(R1, . . . , Rd, HW∈X , HW=1) to Holant(R1, . . . , Rd, HW∈X , w[1, 1], w[−1, 1], w[0, 1])

such that ∆∗ increases to ∆∗ · f(max X) and pw increases to pw + ∆∗ · f(max X).

The proof of the lemma is given in the full version [29] and uses three different gadgets
depending on X to realize HW=1. Next we show that we can realize w[x, y] nodes. In particular,
we can get the w[1, 1], w[−1, 1], and w[0, 1] nodes introduced by Lemma B.2.

▶ Lemma B.3. Let X ⊆ N be a fixed, finite set with X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. The following holds for arbitrary values x, y. There is a polynomial-
time Turing reduction from Holant(R1, . . . , Rd, HW∈X , w[x, y]) to Holant(R1, . . . , Rd, HW∈X)
such that ∆∗ decreases and pw increases to pw + ∆∗ · f(max X).

Proof. We use Lemma 7.11 from [30] as our prototype. However, some arguments from their
proof do not follow in our case.

Let U be the set of w[x, y] nodes in the given graph G. Let Ai denotes the number of
possible solutions in G where for exactly i of the w[x, y] nodes the dangling edge is not
selected and for the other |U | − i nodes the dangling edge is selected. Then we have

Holant(G) =
|U |∑
i=0

Aix
iy|U |−i. (1)

We construct graphs Gd for a new parameter d from G where we replace each w[x, y] node
by a gadget Hd with exactly one dangling edge. The construction of Hd is given later as it
depends on X. Let h0(d) denote the number of solutions for Hd when the dangling edge is
not selected and h1(d) when the dangling edge is selected. Then we get

Holant(Gd) =
|U |∑
i=0

Aih0(d)ih1(d)|U |−i = h1(d)|U |
|U |∑
i=0

Ai

(
h0(d)
h1(d)

)i

.

Assume we can find at least |U | + 1 values for d such that for all values the ratios h0(d)/h1(d)
are pairwise different. After computing Holant(Gd) for these values of d we can recover the
value of each Ai. By Equation (1) we can finally output the value of Holant(G).

It remains to construct the gadgets Hd and to find the values for d. We later construct
the gadgets in a way such that there are constants F1, F2, and F3 only depending on X with

h0(d) := F0 · h0(d − 1) + F1 · h1(d − 1) h0(1) := F0

h1(d) := F1 · h0(d − 1) + F2 · h1(d − 1) h1(1) := F1.

Given these properties of Hd, we can use the following proposition to find sufficiently many
values for d. The proof is given in the full version [29].

IPEC 2022

22:22 Anti-Factor Is FPT Parameterized by Treewidth and List Size

z︷ ︸︸ ︷ z︷ ︸︸ ︷ z︷ ︸︸ ︷ z︷ ︸︸ ︷

Figure 4 Gadget to realize w[x, y] nodes in Case 1. Red nodes are HW(1)
∈{0,1} nodes.

▶ Proposition B.4 (Special Case of Proposition 7.7 in [30]). Given three constants F0, F1,
and F2 with F0F2 ̸= (F1)2 and F0, F1 ̸= 0. Let {An}n∈N, {Bn}n∈N be two sequences with[

An

Bn

]
= M ·

[
An−1
Bn−1

]
= Mn · U where M =

[
F0 F1
F1 F2

]
and U =

[
A0
B0

]
=
[

F0
F1

]
.

Then {An/Bn}n∈N is a sequence which does not contain any repetitions.

As a last step we construct the Hd gadgets.

Case 1: 0 ∈ X or 1 ̸∈ X. We first show how to get a HW(1)
∈{0,1} node.

If 0, 1 ̸∈ X, then any vertex with a dangling edge acts as a HW(1)
∈{0,1} node.

If 0 ∈ X, 1 ̸∈ X, then attach max X + 1 pendant vertices to any vertex v. Then v acts as
a HW(1)

∈{0,1} node.
If 0 ∈ X, 1 ∈ X, then take a clique of size min(X)+1. Split the edge between two vertices
into two dangling edges. This now acts as a HW(2)

=2 node. Attaching ⌈(max X + 1)/2⌉
many HW(2)

=2 nodes to a new vertex with one dangling edge gives us a HW(1)
∈{0,1} node.

Hd consists of a path of d vertices with a dangling edge on the first vertex. For an integer
z ≥ max X + 1 that we will choose later, attach z pendant HW(1)

∈{0,1} nodes to each vertex in
the path. See Figure 4 for an illustration. By this definition we get:

F0 =
∑

i≥0:i∈X

(
z

i

)
, F1 =

∑
i≥0:i+1∈X

(
z

i

)
, F2 =

∑
i≥0:i+2∈X

(
z

i

)
.

We claim that there is a z such that assumptions from Proposition B.4 hold. If we can
choose z larger than max X + 1, then F0, F1, and F2 are never equal to 0. Now suppose that
F0F2 = (F1)2. We will show a contradiction. We first expand the equations above. Then for
every z, ∑

i∈X

(
z

i

)
 ∑

i+2∈X

(
z

i

) =
(∑

i+1∈X

(
z

i

))2

2z −
∑
i∈X

(
z

i

)2z −
∑

i+2∈X

(
z

i

) =
(

2z −
∑

i+1∈X

(
z

i

))2

which implies 2zQ1(z) = Q2(z), where

Q1(z) =

2
∑

i+1∈X

(
z

i

)
−
∑
i∈X

(
z

i

)
−
∑

i+2∈X

(
z

i

)
Q2(z) =

(∑
i+1∈X

(
z

i

))2

−

∑
i∈X

(
z

i

) ∑
i+2∈X

(
z

i

).

D. Marx, G. S. Sankar, and P. Schepper 22:23

For large enough z, we argue that Q1(z) is not identically zero. Observe that the second
term in Q1(z) gives a non-zero zmax X monomial whereas the other two terms cannot give a
monomial of this degree. Now, since X is a fixed, finite set, Q1, Q2 are polynomials with
constant degree. Thus, Q1(z) is zero only for finitely many z. Hence, there are infinitely
many (positive) z such that Q1(z) is non-zero. For each such z we have

|2zQ1(z)| = |Q2(z)|.

This is immediately a contradiction since 2z = ω(zc) for any constant c if z is large enough.
Thus, there is some positive integral value of z such that F0F2 ≠ (F1)2. We use this value
of z in the construction of the gadget. Note that z only depends on X and can thus be
precomputed.

Case 2: 0 ̸∈ X, 1 ∈ X. In this case we do not use HW(1)
∈{0,1} nodes but EQ2 nodes, i.e.

HW(2)
∈{0,2} nodes, instead. We still attach z of these nodes by 2z edges to the vertices on the

path. Then the proof follows similarly to the previous case. The formal proof is given in the
full version [29]. ◀

▶ Lemma B.5. Let X ⊆ N be a fixed, finite set with X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. There is a polynomial-time Turing reduction from

Holant(R1, . . . , Rd, HW∈X , w[1, 1], w[−1, 1], w[0, 1]) to Holant(R1, . . . , Rd, HW∈X)

such that ∆∗ decreases and pw increases to pw + ∆∗ · f(max X).

Proof. We first use Lemma B.3 to remove the w[1, 1] nodes. Observe that this can alterna-
tively be done by a simple construction using a fresh vertex with max X + 1 forced edges.
Then we apply the lemma two more times to remove the w[−1, 1] nodes and finally the
w[0, 1] nodes. ◀

Now we can prove the reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor.

Proof of Lemma 6.2. By the reduction of Lemma B.1 we can reduce #Y -AntiFactorR

to Holant(HW∈Y , HW=1). This can trivially be reduced to Holant(HW∈Y , HW∈X , HW=1) as we
do not have any vertices with relation HW∈X . Then we invoke Lemmas B.2 and B.5 such
that the vertices with relation HW∈Y are not changed (or used for any construction). By
this we end the reduction with Holant(HW∈Y , HW∈X) which precisely corresponds to #(X, Y)-
AntiFactor. ◀

IPEC 2022

Parameterized Complexity of Maximum Happy Set
and Densest k-Subgraph
Yosuke Mizutani #

School of Computing, University of Utah, Salt Lake City, UT, USA

Blair D. Sullivan #

School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
We present fixed-parameter tractable (FPT) algorithms for two problems, Maximum Happy Set
(MaxHS) and Densest k-Subgraph (DkS) – also known as Maximum Edge Happy Set. Given
a graph G and an integer k, MaxHS asks for a set S of k vertices such that the number of happy
vertices with respect to S is maximized, where a vertex v is happy if v and all its neighbors are in
S. We show that MaxHS can be solved in time O

(
2mw · mw · k2 · |V (G)|

)
and O

(
8cw · k2 · |V (G)|

)
,

where mw and cw denote the modular-width and the clique-width of G, respectively. This answers
the open questions on fixed-parameter tractability posed in [1].

The DkS problem asks for a subgraph with k vertices maximizing the number of edges. If
we define happy edges as the edges whose endpoints are in S, then DkS can be seen as an edge-
variant of MaxHS. In this paper we show that DkS can be solved in time f(nd) · |V (G)|O(1) and
O

(
2cd · k2 · |V (G)|

)
, where nd and cd denote the neighborhood diversity and the cluster deletion

number of G, respectively, and f is some computable function. This result implies that DkS is also
fixed-parameter tractable by twin cover number.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases parameterized algorithms, maximum happy set, densest k-subgraph, modular-
width, clique-width, neighborhood diversity, cluster deletion number, twin cover

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.23

Funding This work was supported in part by the Gordon & Betty Moore Foundation under award
GBMF4560 to Blair D. Sullivan.

Acknowledgements We thank Arnab Banerjee, Oliver Flatt and Thanh Son Nguyen for their
contributions to a course project that led to this research.

1 Introduction

In the study of large-scale networks, communities – cohesive subgraphs in a network – play
an important role in understanding complex systems and appear in sociology, biology and
computer science, etc. [16, 24]. For example, the concept of homophily in sociology explains
the tendency for individuals to associate themselves with similar people [26]. Homophily is a
fundamental law governing the structure of social networks, and finding groups of people
sharing similar interests has many real-world applications [11].

People have attempted to frame this idea as a graph optimization problem, where a vertex
represents a person and an edge corresponds to some relation in the social network. The
notion of happy vertices was first introduced by Zhang and Li in terms of graph coloring [30],
where each color represents an attribute of a person (possibly fixed). A vertex is happy if all
of its neighbors share its color. The goal is to maximize the number of happy vertices by
changing the color of unfixed vertices, thereby achieving the greatest social benefit.

© Yosuke Mizutani and Blair D. Sullivan;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yos@cs.utah.edu
https://orcid.org/0000-0002-9847-4890
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.IPEC.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

Later, Asahiro et al. introduced Maximum Happy Set (MaxHS) which defines that
a vertex v is happy with respect to a happy set S if v and all of its neighbors are in S [1].
The MaxHS problem asks for a vertex set S of size k that maximizes the number of happy
vertices. They also define its edge-variant, Maximum Edge Happy Set (MaxEHS) which
maximizes the number of happy edges, an edge with both endpoints in the happy set. It is
clear to see that MaxEHS is equivalent to choosing a vertex set S such that the number
of edges in the induced subgraph on S is maximized. This problem is known as Densest
k-Subgraph (DkS) in other literature. Both MaxHS and MaxEHS are NP-hard [1, 12],
and we study their parameterized complexity throughout this paper.

1.1 Parameterized Complexity and Related Work
Graph problems are often studied with a variety of structural parameters in addition to natural
parameters (size k of the happy set in our case). Specifically, we investigate the parameterized
complexity with respect to modular-width (mw), clique-width (cw), neighborhood diversity
(nd), cluster deletion number (cd), twin cover number (tc), treewidth (tw), and vertex cover
number (vc), all of which we define in Section 2.3. Figure 1 illustrates the hierarchy of these
parameters by inclusion; hardness results are implied along the arrows, and FPT1 algorithms
are implied in the reverse direction.

Asahiro et al. showed that MaxHS is W[1]-hard with respect to k by a parameterized
reduction from the q-Clique problem [1]. They also presented FPT algorithms for MaxHS
on parameters: clique-width plus k, neighborhood diversity, cluster deletion number (which
implies FPT by twin cover number), and treewidth.

MaxEHS (DkS) has been extensively studied in different names (e.g. the k-Cluster
problem [7], the Heaviest Unweighted Subgraph problem [22], and k-Cardinality
Subgraph problem [5]). As for parameterized complexity, Cai showed the W[1]-hardness
parameterized by k [6]. Bourgeois employed Moser’s technique in [27] to show that MaxEHS
can be solved in time 2tw · nO(1) [3]. Broersma et al. proved that MaxEHS can be solved in
time kO(cw) ·n, but it cannot be solved in time 2o(cw log k) ·nO(1) unless the Exponential Time
Hypothesis (ETH) fails [4]. To the best of our knowledge, the parameterized complexity
by modular-width, neighborhood diversity, cluster deletion number and twin cover number
remained open prior to our work. Figure 2 summarizes the known and established hardness
results for MaxHS and MaxEHS.

1.2 Our Contributions
In this paper, we present four novel parameterized algorithms for MaxHS and MaxEHS.
First, we shall provide a dynamic-programming algorithm that solves MaxHS in time
O

(
2mw ·mw · k2 · |V |

)
, answering the question posed by the authors of [1]. Second, we

show that MaxHS is FPT by clique-width, giving an O
(
8cw · k2 · |V |

)
algorithm, which

removes the exponential term of k from the best known result, O
(
6cw · k2(cw+1) · |V |

)
[1].

While bounded modular-width implies bounded clique-width (Proposition 9), we give both
algorithms because the one for modular-width has asymptotically faster running time.

Turning to MaxEHS, we prove it is FPT by neighborhood diversity, using an integer
quadratic programming formulation. Lastly, we provide an FPT algorithm for MaxEHS
parameterized by cluster deletion number with running time O

(
2cd · k2 · |V |

)
, which also

1 An FPT (fixed-parameter tractable) algorithm solves the problem in time f(k)·nO(1) for some computable
function f .

Y. Mizutani and B. D. Sullivan 23:3

clique-width

modular-width cluster
deletion

neighborhood
diversity twin cover

vertex cover

treewidth

(weak)

(strong)

Figure 1 Hierarchy of relevant struc-
tural graph parameters. Arrows indicate
generalizations.

Parameter MaxHS MaxEHS
Size k of happy set W[1]-hard[1] W[1]-hard[6]
Clique-width + k FPT[1] FPT[4]
Clique-width FPT W[1]-hard[4]
Modular-width FPT Open
Neighborhood diversity FPT[1] FPT
Cluster deletion number FPT[1] FPT
Twin cover number FPT[1] FPT
Treewidth FPT[1] FPT[3]
Vertex cover number FPT[1] FPT[3]

Figure 2 Known and established hardness results
under select parameters for MaxHS and MaxEHS (as
known as Densest k-Subgraph). New results from this
paper in red.

implies the problem is FPT by twin cover number. These new results complete the previously-
open parameterized complexities in Figure 2, except the one of DkS parameterized by
modular-width.

Independent Work
Independently and simultaneously, Hanaka also showed the parameterized complexity of
DkS by neighborhood diversity and cluster deletion number [21]. For neighborhood diversity,
the complexity was implied by [25], as we discuss in sections 3.3 and 5.1. Further, the
parameterized complexity by cluster deletion number was shown by an algorithm solving
DkS in time 2bd (

(k3 + bd) |V |+ |E|
)
, where bd denotes the block deletion number (note

that it holds cd ≤ bd).

2 Preliminaries

We use standard graph theory notation, following [10]. Given a graph G = (V, E), we write
n(G) = |V | for the number of vertices and m(G) = |E| for the number of edges. We use
N(v) and N [v] to denote the open and closed neighborhoods of a vertex v, respectively,
and for a vertex set X ⊆ V , N [X] denotes the union of N [x] for all x ∈ X. We write
degG(v) = deg(v) for the degree of a vertex v. We denote the induced subgraph of G on a
set X ⊆ V by G[X]. We say vertices u and v are twins if they have the same neighbors, i.e.
N(u) \ {v} = N(v) \ {u}. Further, they are called true twins if uv ∈ E.

2.1 Problem Definitions
Asahiro et al. first introduced the Maximum Happy Set problem in [1].

Input: A graph G = (V, E) and a positive integer k.
Problem: Find a subset S ⊆ V of k vertices that maximizes the number of happy

vertices v with N [v] ⊆ S.

Maximum Happy Set (MaxHS)

IPEC 2022

23:4 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

a

b

c

d

e

f

g
h

S a

b

c

d

e

f

g
h

S

Figure 3 Given a graph above, if k = 5, choosing S = {c, d, e, f, g} makes only one vertex (e)
happy (left). On the other hand, S = {a, b, c, d, e} is an optimal solution, making four vertices
(a, b, c, d) happy (right).

Figure 3 illustrates an example instance with k = 5. Let us call a vertex that is not
happy an unhappy vertex, and observe that the set of unhappy vertices is given by N [V \ S],
providing an alternative characterization of happy vertices.

▶ Proposition 1. Given a graph G = (V, E) and a happy set S ⊆ V , the set of happy vertices
is given by V \N [V \ S].

In addition, Asahiro et al. define an edge variant [1]:

Input: A graph G = (V, E) and a positive integer k.
Problem: Find a set S ⊆ V of k vertices that maximizes the number of happy edges.

An edge uv ∈ E is happy if and only if {u, v} ⊆ S.

Maximum Edge Happy Set (MaxEHS)

It is known that MaxEHS is identical to the Densest k-Subgraph problem (DkS), as
the number of happy edges is equal to m(G[S]). Some literature (e.g. [14]) also phrases this
problem as the dual of the Sparsest k-Subgraph problem.

2.2 Structural Parameters
We now define the structural graph parameters considered in this paper.

Treewidth. The most-studied structural parameter is treewidth, introduced by Robertson
& Seymour in [28]. Treewidth measures how a graph resembles a tree and admits FPT
algorithms for a number of NP-hard problems, such as Weighted Independent Set,
Dominating Set, and Steiner Tree [9]. Treewidth is defined by the following notion of
tree decomposition.

▶ Definition 2 (treewidth [9]). A tree decomposition of a graph G is a pair
(T, {Xt}t∈V (T)), where T is a tree and Xt ⊆ V (G) is an assigned vertex set for every node t,
such that the following three conditions hold:⋃

t∈V (T) Xt = V (G).
For every uv ∈ E(G), there exists a node t such that u, v ∈ Xt.
For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt} induces a connected subtree of T .

The width of tree decomposition is defined to be maxt∈V (T) |Xt| − 1, and the treewidth
of a graph G, denoted by tw, is the minimum possible width of a tree decomposition of G.

Clique-width. Clique-width is a generalization of treewidth and can capture dense, but
structured graphs. Intuitively, a graph with bounded clique-width k can be built from single
vertices by joining structured parts, where vertices are associated by at most k labels such
that those with the same label are indistinguishable in later steps.

Y. Mizutani and B. D. Sullivan 23:5

▶ Definition 3 (clique-width [8]). For a positive integer w, a w-labeled graph is a graph whose
vertices are labeled by integers in {1, . . . , w}. The clique-width of a graph G, denoted by cw,
is the minimum w such that G can be constructed by repeated application of the following
operations:

(O1) Introduce i(v): add a new vertex v with label i ∈ {1, . . . , w}.
(O2) Union G1 ⊕G2: take a disjoint union of w-labeled graphs G1 and G2.
(O3) Join η(i, j): take two labels i and j, and then add an edge between every pair of
vertices labeled by i and by j.
(O4) Relabel ρ(i, j): relabel the vertices of label i to label j ∈ {1, . . . , w}.

This construction naturally defines a rooted binary tree, called a cw-expression tree G,
where G is the root and each node corresponds to one of the above operations.

Neighborhood Diversity. Neighborhood diversity is a parameter introduced by Lampis [23],
which measures the number of twin classes.

▶ Definition 4 (neighborhood diversity [23]). The neighborhood diversity of a graph
G = (V, E), denoted by nd, is the minimum number w such that V can be partitioned into w

sets of twin vertices.

By definition, each set of twins, called a module, is either a clique or an independent set.

Cluster Deletion Number. Cluster (vertex) deletion number is the distance to a cluster
graph, which consists of disjoint cliques.

▶ Definition 5 (cluster deletion number). A vertex set X is called a cluster deletion set if
G[V \X] is a cluster graph. The cluster deletion number of G, denoted by cd, is the size
of the minimum cluster deletion set in G.

Twin Cover Number. The notion of twin cover is introduced by Ganian [19] and offers a
generalization of vertex cover number.

▶ Definition 6 (twin cover number [19]). A vertex set X ⊆ V is a twin cover of G = (V, E)
if for every edge uv ∈ E either (1) u ∈ X or v ∈ X, or (2) u and v are true twins. The
twin cover number, denoted by tc, is the size of the minimum twin cover of G.

Modular-width. Modular-width is a parameter introduced by Gajarský et al. [17] to
generalize simpler notions on dense graphs while avoiding the negative results brought by
moving to the full generality of clique-width (e.g. many problems FPT for treewidth becomes
W[1]-hard for clique-width [13, 14, 15]). Modular-width is defined using the standard concept
of modular decomposition.

▶ Definition 7 (modular-width [17]). Any graph can be produced via a sequence of the following
operations:

(O1) Introduce: Create an isolated vertex.
(O2) Union G1 ⊕G2: Create the disjoint union of two graphs G1 and G2.
(O3) Join: Given two graphs G1 and G2, create the complete join G3 of G1 and G2. That
is, a graph G3 with vertices V (G1) ∪ V (G2) and edges E(G1) ∪ E(G2) ∪ {(v, w) : v ∈
G1, w ∈ G2}.
(O4) Substitute: Given a graph G with vertices v1, . . . , vn and given graphs G1, . . . , Gn,
create the substitution of G1, . . . , Gn in G. The substitution is a graph G with vertex set⋃

1≤i≤n V (Gi) and edge set
⋃

1≤i≤n E(Gi) ∪ {(v, w) : v ∈ Gi, w ∈ Gj , (vi, vj) ∈ E(G)}.
Each graph Gi is substituted for a vertex vi, and all edges between graphs corresponding
to adjacent vertices in G are added.

IPEC 2022

23:6 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

a b

c

d

e

f

g

a b c d e f g

(O4)

(O2)(O2)

(O3)

(O1)

Figure 4 An example graph G (left) with modular-width 4. Modular decomposition of the same
graph is shown at right. The parse-tree has G as the root, and its nodes correspond to operations
(O1)-(O4). Notice that each node also represents a module – module members have the same
neighbors outside the module.

These operations, taken together in order to construct a graph, form a parse-tree of the
graph. The width of a graph is the maximum size of the vertex set of G used in operation
(O4) to construct the graph. The modular-width, denoted by mw, is the minimum width
such that G can be obtained from some sequence of operations (O1)-(O4).

Finding a parse-tree of a given graph, called a modular decomposition, can be done in
linear-time [29]. See Figure 4 for an illustration of modular decomposition. Gajarský et
al. also give FPT algorithms parameterized by modular-width for Partition into paths,
Hamiltonian path, Hamiltonian cycle and Coloring, using bottom-up dynamic
programming along the parse-tree.

Vertex Cover Number. The vertex cover number is the solution size of the classic Vertex
Cover problem.

▶ Definition 8. A vertex set X ⊆ V is a vertex cover of G = (V, E) if for every edge uv ∈ E

either u ∈ X or v ∈ X. The vertex cover number of G, denoted by vc, is the size of the
minimum vertex cover of G.

2.2.1 Properties of Structural Parameters

Finally, we note the relationship among the parameters defined above, which establishes the
hierarchy shown in Figure 1.

▶ Proposition 9 ([1, 17]). Let cw, tw, cd, nd, tc, vc, mw be the clique-width, tree-width, cluster
deletion number, neighborhood diversity, twin cover number, vertex cover number, and
modular-width of a graph G, respectively. Then the following inequalities hold2: (i) cw ≤
2tw+1 + 1; (ii) tw ≤ vc; (iii) nd ≤ 2vc + vc; (iv) cw ≤ 2cd+3 − 1; (v) cd ≤ tc ≤ vc; (vi)
mw ≤ nd; (vii) mw ≤ 2tc + tc; and (viii) cw ≤ mw + 2.

2 cw ≤ 2 when mw = 0; otherwise, cw ≤ mw + 1.

Y. Mizutani and B. D. Sullivan 23:7

3 Background

Before describing our algorithms, we introduce some building blocks for our argument.

3.1 Entire Subgraphs
Structural parameters such as modular-width and clique-width entail the join operation in
their underlying construction trees. When joining two subgraphs in MaxHS, it is important
to distinguish whether all the vertices in the subgraph are included in the happy set. Formally,
we introduce the notion of entire subgraphs.

▶ Definition 10. Given a graph G and a happy set S, an entire subgraph with respect to
S is a subgraph G′ of G such that V (G′) ⊆ S.

By definition, the empty subgraph is always entire. The following lemma is directly
derived from the definition of happy vertices.

▶ Lemma 11. Let G be a complete join of subgraphs G1 and G2. For any happy set S ⊆ V (G),
V (G1) contains a happy vertex only if G2 is entire with respect to S.

Proof. If G2 is not entire, there must exist v ∈ V (G2) such that v /∈ S. Recall Proposition 1,
and we have N [V (G) \ S] ⊇ N(v) ⊇ V (G1), which implies that any vertex in V (G1) cannot
be happy. ◀

3.2 Knapsack Variant with Non-linear Values
The classic Knapsack problem has a number of variants, including 0-1 Knapsack [20] and
Quadratic Knapsack [18]. In this paper we consider another variant, where the objective
function is the sum of non-linear functions, but the function range is limited to integers.
Specifically, each item has unit weight, but its value may vary depending on the number of
copies of each type of item. We also require the weight sum to be exact and call this problem
f-Knapsack, where f stands for function.

Input: Given a set of n items numbered from 1 to n, a weight capacity W ∈ Z+
0 and

a value function fi : Di → Z+
0 , defined on a non-negative integral domain

Di for each item i.
Problem: For every 1 ≤ i ≤ n, find the number xi ∈ Di of instances of item i to

include in the knapsack, maximizing
∑n

i=1 fi(xi), subject to
∑n

i=1 xi = W .

f-Knapsack

We show that this problem is solvable in polynomial-time.

▶ Lemma 12. f-Knapsack can be solved in time O
(
nW 2)

.

Proof. First, define the value ϕ[t, w] to be the maximum possible sum
∑t

i=1 fi(xi), subject
to

∑t
i=1 xi = w and xi ∈ Di for every i. Then, perform bottom-up dynamic programming

as follows.

Initialize: ϕ[0, w] =
{

0 if w = 0,

−∞ if w > 0 (meaning Infeasible).
Update: ϕ[t, w] = max

xt∈Dt∧xt≤w
ft(xt) + ϕ[t− 1, w − xt]

Result: ϕ[n, w] for 0 ≤ w ≤W is the optimal value for weight w.

IPEC 2022

23:8 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

The base case (ϕ[0, w]) represents the state where no item is in the knapsack, so both
the objective and weight are 0; otherwise, infeasible. For the inductive step, any optimal
solution ϕ[t, w] can be decomposed into ft(xt) +

∑t−1
i=1 fi(xi) for some xt, and the latter term

(
∑t−1

i=1 fi(xi)) must equal ϕ[t− 1, w − xt] by definition. We consider all possible integers xt,
and thus the algorithm is correct.

Since 0 ≤ t ≤ n, 0 ≤ w ≤W , and the update takes time O (W), the total running time
is O

(
nW 2)

. By using the standard technique of backlinks, one can reconstruct the solution
{xi} within the same asymptotic running time. ◀

The following result is a natural by-product of the algorithm above.

▶ Corollary 13. Given an integer W , f-Knapsack for all weight capacities 0 ≤ w ≤W can
be solved in total time O

(
nW 2)

.

3.3 Integer Quadratic Programming
For MaxEHS, we use the following known result that Integer Quadratic Programming
is FPT by the number of variables and coefficients.

Input: An n×n integer matrix Q, an m×n integer matrix A and an m-dimensional
integer vector b.

Problem: Find a vector x ∈ Zn minimizing xT Qx, subject to Ax ≤ b.

Integer Quadratic Programming (IQP)

▶ Proposition 14 (Lokshtanov [25]). There exists an algorithm that given an instance of
IQP, runs in time f(n, α)LO(1), and outputs a vector x ∈ Zn. If the input IQP has a feasible
solution then x is feasible, and if the input IQP is not unbounded, then x is an optimal
solution. Here α denotes the largest absolute value of an entry of Q and A, and L is the
total number of bits required to encode the input.

It is convenient to have a linear term in the objective function. This can be achieved by
introducing a new variable x̂ = 1 and adding [0, q] as the corresponding row in Q [25].

▶ Corollary 15. Proposition 14 holds if we generalize the objective function from xT Qx to
xT Qx + qT x for some n-dimensional integer vector q. Here α is the largest absolute value of
an entry of Q, q and A.

4 Algorithms for Maximum Happy Set

Now we describe our FPT algorithms for MaxHS with respect to modular-width and clique-
width. At a high level, we employ a bottom-up dynamic programming (DP) approach on
the parse-tree of a given graph, considering each node once. At each node, we use several
techniques on precomputed results to update the DP table. For simplicity, our DP tables store
the maximum number of happy vertices. Like other DP applications, a certificate, i.e. the
actual happy set, can be found by using backlinks within the same asymptotic running time.

4.1 Parameterized by modular-width
We give an algorithm whose running time is singly-exponential in the modular-width,
quadratic in k and linear in the graph size.

Y. Mizutani and B. D. Sullivan 23:9

I

I

III

II

III

III

IV

II

IV I

II

G1

G2

G3

G4

G5

G6

G7

G8

G9 G10

G11

Figure 5 Four types of the subgraphs after applying operation (O4). Entire subgraphs (Type I
and III) are shaded in gray. A subgraph becomes Type III or IV if it has a non-entire neighbor (e.g.
G3, G9). In a Type I subgraph, all vertices are happy. Type II subgraphs may or may not admit
a happy vertex. Type III and IV subgraphs cannot contain a happy vertex, as it is adjacent to a
non-entire subgraph.

▶ Theorem 16. MaxHS can be solved in time O(2mw ·mw · k2 · |V (G)|), where mw is the
modular-width of the input graph G.

Our algorithm follows the common framework seen in [17]. Given a graph G, a parse-tree
with modular-width mw can be computed in linear-time [29]. The number of nodes in the
parse-tree is linear in |V (G)| [17]. Our algorithm traverses the parse-tree from the bottom,
considering only operation (O4), as operations (O2)-(O3) can be replaced with a single
operation (O4) with at most two arguments [17]. Further, we assume 2 ≤ mw < k without
loss of generality.

Each node in the parse-tree corresponds to an induced subgraph of G, which we write G.
We keep track of a table ϕ[G, w], the maximum number of happy vertices for G with regard
to a happy set of size w. We may assume 0 ≤ w ≤ k because we do not have to consider a
happy set larger than size k. The entries of the DP table are initialized with ϕ[G, w] = −∞.
For the base case, a graph G0 with a single vertex introduced by operation (O1), we set
ϕ[G0, 0] = 0 and ϕ[G0, 1] = 1. The solution to the original problem is given by ϕ[G, k].

Our remaining task is to compute, given a graph substitution G = H(G1, . . . , Gn)
(n ≤ mw), the values of ϕ[G, w] provided partial solutions ϕ[G1, ·], . . . , ϕ[Gn, ·]. We first
choose a set of entire subgraphs from G1, . . . , Gn. Then, we identify the subgraph type for
each Gi during a graph substitution.

▶ Definition 17 (subgraph type). Given a graph substitution H(G1, . . . , Gn), where vi ∈ V (H)
is substituted by Gi, and a happy set S, we categorize each substituted subgraph Gi into the
following four types.

Type I: Gi is entire and for every j such that vj ∈ NH(vi), Gj is entire.
Type II: Gi is not entire and for every j such that vj ∈ NH(vi), Gj is entire.
Type III: Gi is entire and not Type I.
Type IV: Gi is not entire and not Type II.

Intuitively, Type I and II subgraphs are surrounded by entire subgraphs in H, the
metagraph to substitute, and Type I and III subgraphs are entire. A pictorial representation
of this partition is presented in Figure 5. Observe that from Lemma 11, the subgraphs
with Type III and IV cannot include any happy vertices. Further, Type II subgraphs are
independent in H because their neighbors must be of Type III. This ensures that the choice
of a happy set in Type II is independent of other subgraphs.

Lastly, we formulate an f-Knapsack instance as described in the following algorithm for
updating the DP table on a single operation (O4).

IPEC 2022

23:10 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

▶ Algorithm 1 (MaxHS-MW). Given a graph substitution G = H(G1, . . . , Gn) and partial
solutions ϕ[G1, ·], . . . , ϕ[Gn, ·], consider all combinations of entire subgraphs from G1, . . . , Gn

and proceed the following steps.
(Step 1) Identify subgraph types for G1, . . . , Gn. (Step 2) Formulate an f-Knapsack

instance with capacity k and value functions fi, based on the subgraph Gi’s type as follows.
Type I : fi(x) = |Gi| , x = |Gi|.
Type II : fi(x) = ϕ[Gi, x], 0 ≤ x < |Gi|.
Type III : fi(x) = 0, x = |Gi|.
Type IV : fi(x) = 0, 0 ≤ x < |Gi|.

Then, update the DP table entries ϕ[G, w] for 0 ≤ w ≤ k with the solution to f-Knapsack,
if its value is greater than the current value.

We now prove that the runtime of this algorithm is FPT with respect to modular-width.

▶ Lemma 18. Algorithm 1 correctly computes ϕ[G, w] for every 0 ≤ w ≤ k in time
O

(
2mw ·mw · k2)

.

Proof. First, the algorithm considers all possible sets of entire substituted subgraphs
(G1, . . . , Gn). The optimal solution must belong to one of them. It remains to prove
the correctness of the f-Knapsack formulation in step 2. From Lemma 11, the subgraphs
of Type III and IV cannot increase the number of happy vertices, so we set fi(x) = 0. For
Type I, the algorithm has no option but to include all of V (Gi) in the happy set, and they
are all happy.

The subgraphs of Type II are the only ones that use previous results, ϕ[Gi, ·]. Since
the new neighbors to Gi are required to be in the happy set, for any choice of the happy
set in Gi, happy vertices remain happy, and unhappy vertices remain unhappy. Thus, we
can directly use ϕ[Gi, ·]; its choice does not affect other substituted subgraphs, as Type II
subgraphs are independent in H. The domain of functions fi is naturally determined by the
definition of entire subgraphs.

Now, consider the running time of Algorithm 1. It considers 2n possible combinations of
entire subgraphs. Step 1 can be done by checking neighbors for each vertex in H, so the
running time is O (|E(H)|) = O

(
n2)

. And step 2 takes time O
(
nk2)

from Corollary 13. The
total running time is O

(
2n(n2 + nk2)

)
= O

(
2mw ·mw · k2)

as we assume n ≤ mw < k. ◀

Proof of Theorem 16. It is trivial to see that the base case of the DP is valid, and the
correctness of inductive steps is given by Lemma 18. We process each node of the parse-tree
once, and it hasO (|V (G)|) nodes [17]. Thus, the overall runtime is O(2mw·mw·k2·|V (G)|). ◀

4.2 Parameterized by clique-width
We provide an algorithm for MaxHS parameterized only by clique-width (cw), which no
longer requires a combined parameter with solution size k as presented in [1].

▶ Theorem 19. Given a cw-expression tree of a graph G with clique-width cw, MaxHS can
be solved in time O(8cw · k2 · |V (G)|).

Here we assume that we are given a cw-expression tree, where each node t represents
a labeled graph Gt. A labeled graph is a graph whose vertices are labeled by integers in
L = {1, . . . , cw}. Every node must be one of the following: introduce node i(v), union node
G1⊕G2, relabel node ρ(i, j), or join node η(i, j). We write Vi for the set of vertices with label i.

Y. Mizutani and B. D. Sullivan 23:11

Our algorithm traverses the cw-expression tree from the leaves and performs dynamic
programming. For every node t, we keep track of the annotated partial solution ϕ[t, w, X, T],
for every integer 0 ≤ w ≤ k and sets of labels X, T ⊆ L. We call X the entire labels and T

the target labels. ϕ[t, w, X, T] is defined to be the maximum number of happy vertices having
target labels T for Gt with respect to a happy set S ⊆ V (Gt) of size w such that Vℓ is entire
to S if and only if ℓ ∈ X. The entries of the DP table are initialized with ϕ[t, w, X, T] = −∞.
The solution to the original graph G is computed by maxX⊆L ϕ[r, k, X, L], where r is the root
of the cw-expression tree. Now we claim the following recursive formula for each node type.

▶ Lemma 20 (Formula for introduce nodes). Suppose t is an introduce node, where a vertex
v with label i is introduced. Then, the following holds.

ϕ[t, w, X, T] =

1 if w = 1, X = L and i ∈ T ;
0 if w = 1, X = L and i /∈ T ;
0 if w = 0 and X = L \ {i};
−∞ otherwise.

Proof. First, notice that all labels but i are empty and thus entire. If we include v in the
happy set, then we get w = 1 and X = L (all labels are entire). The resulting value depends
on the target labels. If i is a target label, i.e. i ∈ T , then v is a happy vertex having a
target label, resulting in ϕ[t, w, X, T] = 1. Otherwise, ϕ[t, w, X, T] = 0. If w = 0, then label
i cannot be entire, and the only feasible solution is ϕ[t, 0, L \ {i}, T] = 0. ◀

▶ Lemma 21 (Formula for union nodes). Suppose t is a union node with child nodes t1 and
t2. Then, the following holds.

ϕ[t, w, X, T] = max
0≤w̃≤w

max
X1,X2⊆L

:X1∩X2=X

ϕ[t1, w̃, X1, T] + ϕ[t2, w − w̃, X2, T]

Proof. At a union node, since Gt1 and Gt2 are disjoint, any maximum happy set in Gt must be
the disjoint union of some maximum happy set in Gt1 and that in Gt2 for the same target labels.
We consider all possible combinations of partial solutions to Gt1 and Gt2 , so the optimality is
preserved. Note that a label in Gt is entire if and only if it is entire in both Gt1 and Gt2 . ◀

▶ Lemma 22 (Formula for relabel nodes). Suppose t is a relabel node with child node t′, where
label i in graph Gt′ is relabeled to j. Then, the following holds.

ϕ[t, w, X, T] =

−∞ if i /∈ X;
ϕ[t′, w, X, T ′] if i ∈ X and j ∈ X;

max
Y ∈{∅,{i},{j}}

ϕ[t′, w, X \ {i} ∪ Y, T ′] if i ∈ X and j /∈ X,

where T ′ = T ∪ {i} if j ∈ T and T \ {i} otherwise.

Proof. At a relabel node ρ(i, j), label i becomes empty, so it must be entire in Gt, leading
to the first case. The variable T ′ converts the target labels in Gt′ to those in Gt. If label j is
a target in Gt, then i and j must be targets in Gt′ . Likewise, if label j is not a target in Gt,
then neither i nor j should be targets in Gt′ .

If label j is entire in Gt, then the maximum happy set must be the same as the one in
Gt′ where both labels i and j are entire. If j is not entire in Gt, then we need to choose the
best solution from the following: i is entire but j is not, j is entire but i is not, neither i nor
j is entire. Because Gt and Gt′ have the same underlying graph, the optimal solution must
be one of these. ◀

IPEC 2022

23:12 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

Gt′

ρ(i, j)

Gt

i j

ϕ[t′, 4, ∅, {i, j}] = 3

i j

ϕ[t′, 4, {i}, {i, j}] = 2

i j

ϕ[t′, 4, {j}, {i, j}] = 1

j

ϕ[t, 4, {i}, {j}] = 3

entire: i

entire: ∅ entire: i entire: j

Figure 6 Visualization of the relabel operation ρ(i, j) in the cw-expression tree of labels i, j.
Figures show happy sets of size 4 (shaded in gray) maximizing the number of happy vertices (shown
with double circles). After relabeling i to j, label i becomes empty and thus entire. Since label j in
Gt corresponds to labels i and j in Gt′ , to compute ϕ[t, 4, {i}, {j}], we need to look up three partial
solutions ϕ[t′, 4, ∅, T ′], ϕ[t′, 4, {i}, T ′], and ϕ[t′, 4, {j}, T ′], where T ′ = {i, j}, and keep the one with
the largest value (the left one in this example).

Figure 6 illustrates the third case of the formula in Lemma 22.

▶ Lemma 23 (Formula for join nodes). Suppose t is a join node with the child node t′, where
labels i and j are joined. Then, the following holds.

ϕ[t, w, X, T] =

ϕ[t′, w, X, T] if i ∈ X and j ∈ X

ϕ[t′, w, X, T \ {i}] if i ∈ X and j /∈ X

ϕ[t′, w, X, T \ {j}] if i /∈ X and j ∈ X

ϕ[t′, w, X, T \ {i, j}] if i /∈ X and j /∈ X

Proof. At a join node η(i, j), first observe that for any happy set, the vertices labeled other
than i, j are unaffected; happy vertices remain happy. Further, if label j is not entire in Gt,
then all vertices in Vi cannot be happy from Lemma 11. Thus, the maximum happy set in
Gt is equivalent to the one in Gt′ such that label i is not a target label. The same argument
applies to the other cases. ◀

Figure 7 illustrates the second case of the formula in Lemma 23. Lastly, we examine the
running time of these computations.

▶ Proposition 24. Given a cw-expression tree and its node t, and partial solutions ϕ[t′, ·, ·, ·]
for every child node t′ of t, we can compute ϕ[t, w, X, T] for every w, X, T in time O

(
8cw · k2)

.

Proof. It is clear to see that for fixed t, w, X, T , the formulae for introduce, relabel, and
join nodes take O (1). If we compute ϕ[t, ·, ·, ·] for every w, X, T , the total running time is
O

(
(2cw)2 · k

)
since w is bounded by k and there are 2cw configurations for X and T .

Y. Mizutani and B. D. Sullivan 23:13

Gt′

η(i, j)

Gt

i j

ϕ[t′, 5, {i}, {i, j}] = 4

i j

ϕ[t′, 5, {i}, {j}] = 2

i j

ϕ[t, 5, {i}, {i, j}] = 2

entire: i, target: i, j

entire: i, target: i, j entire: i, target: j

Figure 7 Visualization of the join operation η(i, j) in the cw-expression tree of labels i, j. Figures
show happy sets of size 5 (shaded in gray) maximizing the number of happy vertices (shown with
double circles) for different target labels. We consider the case where label i is entire and j is not.
The graph Gt′ admits 4 happy vertices if both i and j are target labels. However, this is no longer
true after the join because label j is not entire. Instead, the optimal happy set for Gt can be found
where label i is excluded from the target labels for Gt′ , i.e. ϕ[t′, 5, {i}, {j}], which admits 2 happy
vertices with label j. Notice that we do not count the happy vertices with label i if it is not a target.

For the union node formula, observe that X can be determined by the choice of X1 and
X2, so it is enough to consider all possible values for w, T, w̃, X1, X2, which results in the
running time O

(
(2cw)3 · k2

)
, or O

(
8cw · k2)

. ◀

This completes the proof of Theorem 19, as we process each node of the cw-expression
tree once, and it has O (|V (G)|) nodes.

5 Algorithms for Maximum Edge Happy Set

In addition to MaxHS, we also study its edge-variant MaxEHS. One difference from MaxHS
is that when joining two subgraphs, we may increase the number of edges between those
subgraphs, even if they are not entire. In other words, the number of edges between joining
subgraphs depends on two variables, and quadratic programming naturally takes part in this
setting. Here, we present FPT algorithms for two parameters – neighborhood diversity and
cluster deletion number – to figure out the boundary between parameters that are FPT (e.g.
treewidth) and W[1]-hard (e.g. clique-width) (see Figure 2).

5.1 Parameterized by neighborhood diversity
As shown in Figure 1, neighborhood diversity is a parameter specializing modular-width.
To obtain a finer classification of structural parameters, we now show MaxEHS is FPT
parameterized by neighborhood diversity.

IPEC 2022

23:14 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

M1

M2

M3

M4

M5

12 2

3

8 0

(6)

(3) (0)

(0) (0)

q =

1
1
0
0
1

 , A =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

Figure 8 Example instance of MaxEHS with nd = 5. The figure shows the quotient graph H

of the given graph G on its modules M1, . . . , M5. Every edge in H forms a biclique in G. The
maximum edge happy set for k = 10 are shaded in gray. It also shows the number of internal edges
for each module (e.g. (6) for M1), and that of external edges between modules (e.g. 12 between M1

and M2). Vector q indicates if each module is a clique or an independent set (e.g. q1 = 1 because
M1 is a clique), and A is the adjacency matrix of the quotient graph.

Let nd be the neighborhood diversity of the given graph G. We observe that any instance
(G, k) of MaxEHS can be reduced to the instance of Integer Quadratic Programming
(IQP) as follows.

▶ Lemma 25. MaxEHS can be reduced to IQP with O (nd) variables and bounded coefficients
in time O (|V (G)|+ |E(G)|).

We defer our proof to Appendix. Figure 8 exemplifies a quotient graph of a graph with
nd = 5, along with vector q and matrix A. The following is a direct result from Lemma 25
and Proposition 14.

▶ Theorem 26. MaxEHS can be solved in time f(nd) · |V (G)|O(1), where nd is the neigh-
borhood diversity of the input graph G and f is a computable function.

5.2 Parameterized by cluster deletion number
Finally, we present an FPT algorithm for MaxEHS parameterized by the cluster deletion
number of the given graph.

▶ Theorem 27. Given a graph G = (V, E) and its cluster deletion set X of size cd, MaxEHS
can be solved in time O

(
2cd · k2 · |V |

)
.

Recall that by definition, G[V \ X] is a set of disjoint cliques. Let C1, . . . , Cp be the
clusters appeared in G[V \X]. Our algorithm first guesses part of the happy set S′, defined
as S ∩X, and performs f-Knapsack with p items.

▶ Algorithm 2 (MaxEHS-CD). Given a graph G = (V, E) and its cluster deletion set X,
consider all sets of S′ ⊆ X such that |S′| ≤ k and proceed the following steps.

(Step 1) For each clique Ci, sort its vertices in non-increasing order of the number
of neighbors in S′. Let vi,1, . . . , vi,|Ci| be the ordered vertices in Ci. (Step 2) For each
1 ≤ i ≤ p, construct a function fi as follows: fi(0) = 0 and for every 1 ≤ j ≤ |Ci|,
fi(j) = fi(j − 1) + |N(vi,j) ∩ S′|+ j − 1. (Step 3) Formulate an f-Knapsack instance with
capacity k − |S′| and value functions fi for every 1 ≤ i ≤ p. Then, obtain the solution {xi}
with the exact capacity k − |S′| if feasible. (Step 4) Construct S as follows: Initialize with
S′ and for each clique Ci, pick xi vertices in order and include them in S. That is, update
S ← S ∪ {vi,1, . . . , vi,xi

} for every 1 ≤ i ≤ p. Finally, return S that maximizes |E(G[S])|.

Y. Mizutani and B. D. Sullivan 23:15

v1,1 v1,2 v1,3 v1,4
v2,1 v2,2

X S′

C1 C2

f1(0) = 0
f1(1) = 3
f1(2) = 6
f1(3) = 9
f1(4) = 12

f2(0) = 0
f2(1) = 2
f2(2) = 3

Figure 9 Visualization of MaxEHS-CD, given a graph G = (V, E) with its cluster deletion set X

and a fixed partial solution S′ (|S′| = 3, shaded in gray). The graph after removing X, i.e. G[V \ X],
forms cliques C1 and C2. For each clique, vertices are sorted in decreasing order of the number of
neighbors in S′ (edges to S′ in thicker lines). Functions f1 and f2 are constructed as described in
the algorithm and used for f-Knapsack. For example, f1(3) = f1(2) + 1 + (3 − 1) as vertex v1,3 has
one edge to S′ and two edges to previously-added v1,1 and v1,2. If k = 6, then we pick k − |S′| = 3
vertices from C1 and C2. The optimal solution would be {v1,1, v1,2, v1,3} because f1(3) + f2(0) = 9
gives the maximum objective value in the f-Knapsack formulation.

Intuitively, we construct function fi in a greedy manner. When we add a vertex v in
clique Ci to the happy set S, it will increase the number of happy edges by the number
of v’s neighbors in S′ and the number of the vertices in Ci that are already included in
S. Therefore, it is always advantageous to pick a vertex having the most neighbors in S′.
Figure 9 illustrates the key ideas of Algorithm 2. The following proposition completes the
proof of Theorem 27.

▶ Proposition 28. Given a graph G = (V, E) and its cluster deletion set X of size cd,
Algorithm 2 correctly finds the maximum edge happy set in time O

(
2cd · k2 · |V |

)
.

Proof. The algorithm considers all possible sets of S ∩X, so the optimal solution should
extend one of them. It is clear to see that when the f-Knapsack instance is feasible, S ends
up with k vertices, since the sum of the obtained solution must be k − |S′|. The objective of
the f-Knapsack is equivalent to |E(G[S])| − |E(G[S′])|, that is, the number of happy edges
extended by the vertices in V \X. Since S′ has been fixed at this point, the optimal solution
to f-Knapsack leads to that to MaxEHS. Lastly, the value function fi is correct because
for each clique Ci, the number of extended edges is given by

(|Si|
2

)
+

∑
v∈Si
|N(v) ∩ S′|,

where Si = S ∩ Ci and xi = |Si|. This is maximized by choosing |Si| vertices that have the
most neighbors in S′, if we fix |Si|, represented as xi in f-Knapsack. This is algebraically
consistent with the recursive form in step 2.

For the running time, the choice of S′ adds the complexity of 2cd to the entire algorithm.
Having chosen S′, vertex sorting (step 1) can be accomplished by checking the edges between
S′ and V \X, so it takes only O (k · |V |). The f-Knapsack (step 3) takes time O

(
pk2)

=
O

(
k2 · |V |

)
from Corollary 13, because there are p items and weights are bounded by k. Steps

2 and 4 do not exceed this asymptotic running time. The total runtime is O
(
2cd · k2 · |V |

)
. ◀

6 Conclusions & Future Work

We present four algorithms using a variety of techniques, two for Maximum Happy Set
(MaxHS) and two for Maximum Edge Happy Set (MaxEHS). The first shows that
MaxHS is FPT with respect to the modular-width parameter, which is stronger than
clique-with but generalizes several parameters such as neighborhood diversity and twin cover

IPEC 2022

23:16 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

number. We then give an FPT dynamic-programming algorithm for MaxHS parameterized
by clique-width. This improves the best known complexity result of FPT when parameterized
by clique-width plus k.

For MaxEHS, we prove that it is FPT by neighborhood diversity, using Integer
Quadratic Programming. Lastly, we show an FPT algorithm parameterized by cluster
deletion number, the distance to a cluster graph, which then implies FPT by twin cover
number. These results have answered several open questions of [1] (Figure 2). While it is
FPT, there cannot be a polynomial kernel with respect to nd and cd, due to the lower-bounds
on Clique parameterized by vertex cover number, unless NP ⊆ coNP/poly [2].

There are multiple potential directions for future research. As highlighted in Figure 2, the
parameterized complexity of MaxEHS with respect to modular-width is still open. Another
direction would be to find the lower bounds for known algorithms.

References
1 Yuichi Asahiro, Hiroshi Eto, Tesshu Hanaka, Guohui Lin, Eiji Miyano, and Ippei Terabaru.

Parameterized algorithms for the happy set problem. Discrete Applied Mathematics, 304:32–44,
2021.

2 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014.

3 Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, and Vangelis Th.
Paschos. Exact and approximation algorithms for densest k-subgraph. In 7th International
Workshop on Algorithms and Computation (WALCOM 2013), volume 7748, pages 114–125,
2013.

4 Hajo Broersma, Petr A. Golovach, and Viresh Patel. Tight complexity bounds for fpt subgraph
problems parameterized by the clique-width. Theoretical Computer Science, 485:69–84, 2013.

5 Maurizio Bruglieri, Matthias Ehrgott, Horst W. Hamacher, and Francesco Maffioli. An annot-
ated bibliography of combinatorial optimization problems with fixed cardinality constraints.
Discrete Applied Mathematics, 154(9):1344–1357, 2006.

6 Leizhen Cai. Parameterized Complexity of Cardinality Constrained Optimization Problems.
The Computer Journal, 51(1):102–121, 2007.

7 D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied
Mathematics, 9(1):27–39, 1984.

8 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000.

9 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

10 Reinhard Diestel. Graph theory. fifth. vol. 173. Graduate Texts in Mathematics. Springer,
Berlin, 2018.

11 David Easley, Jon Kleinberg, et al. Networks, crowds, and markets: Reasoning about a highly
connected world. Significance, 9(1):43–44, 2012.

12 Uriel Feige and Michael Seltser. On the Densest K-Subgraph Problem. Algorithmica, 29:2001,
1997.

13 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-width: On
the Price of Generality. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 825–834. Society for Industrial and Applied Mathematics, 2009.

14 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Algorithmic lower
bounds for problems parameterized by clique-width. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete algorithms, SODA ’10, pages 493–502, USA, 2010. Society
for Industrial and Applied Mathematics.

Y. Mizutani and B. D. Sullivan 23:17

15 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
Clique-Width Parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.

16 Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
17 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for

modular-width. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation, pages 163–176. Springer International Publishing, 2013.

18 G. Gallo, P. L. Hammer, and B. Simeone. Quadratic knapsack problems. In M. W. Padberg,
editor, Combinatorial Optimization, Mathematical Programming Studies, pages 132–149.
Springer, Berlin, Heidelberg, 1980.

19 Robert Ganian. Improving Vertex Cover as a Graph Parameter. Discrete Mathematics &
Theoretical Computer Science, Vol. 17 no.2, 2015.

20 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1979.

21 Tesshu Hanaka. Computing Densest k-Subgraph with Structural Parameters, 2022. arXiv:
2207.09803.

22 G. Kortsarz and D. Peleg. On choosing a dense subgraph. Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, 1993.

23 Michael Lampis. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica,
64(1):19–37, 2012.

24 Angsheng Li and Pan Peng. Community Structures in Classical Network Models. Internet
Mathematics, 7(2), 2011.

25 Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and coefficients,
2015. arXiv:1511.00310.

26 Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

27 Hannes Moser. Exact algorithms for generalizations of vertex cover. Institut für Informatik,
Friedrich-Schiller-Universität Jena, 2005.

28 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms. Academic Press Inc., 7(3):309–322, 1986.

29 Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time mod-
ular decomposition via recursive factorizing permutations. In Automata, Languages and
Programming, pages 634–645, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

30 Peng Zhang and Angsheng Li. Algorithmic aspects of homophyly of networks. Theoretical
Computer Science, 593:117–131, 2015.

A Appendix

Here we present a proof of Lemma 25 on a reduction from MaxEHS to IQP.

Proof. First, we compute the set of twins (modules) M = M1, . . . , Mnd of G, and obtain
the quotient graph H on the modules M in time O (|V (G)|+ |E(G)|) [23]. Note that each
module Mi is either a clique or an independent set. Let us define a vector q ∈ Znd such that
qi = 1 if Mi is a clique, and qi = 0 if Mi is an independent set. Further, let A ∈ Znd×nd be
the adjacency matrix of H where Aij = 1 if MiMj ∈ E(H), and Aij = 0 otherwise.

We then formulate an IQP instance as follows:
Variables: x ∈ Znd.
Maximize: f(x) = xT (A + qqT)x− qT x (equivalently, minimize −f(x)).
Subject to:

∑
i xi = k and 0 ≤ xi ≤ |Mi| for every 1 ≤ i ≤ nd.

IPEC 2022

http://arxiv.org/abs/2207.09803
http://arxiv.org/abs/2207.09803
http://arxiv.org/abs/1511.00310

23:18 Parameterized Complexity of Maximum Happy Set and Densest k-Subgraph

This formulation has nd variables, and its coefficients are either 0 or ±1, thus bounded.
After finding the optimal vector x, pick any xi vertices from module Mi and include them in
the happy set S. We claim that S maximizes the number of happy edges.

For any happy set S, the number of happy edges is given by the sum of the number of
happy edges inside each module Mi, which we call internal edges, and the number of edges
between each module pair Mi and Mj , or external edges. Let x ∈ Znd be a vector such that
xi = |S ∩Mi| for every i. Then, the number of internal edges of module Mi is qi ·

(
xi

2
)
, and

the number of external edges between modules Mi and Mj is Aij · xixj . The number of
happy edges, i.e. |E(G[S])|, is given by: h(x) =

[∑nd
i=1 qi ·

(
xi

2
)]

+
[∑

1≤i<j≤nd Aij · xixj

]
.

One can trivially verify f(x) = 2h(x).
If the IQP instance is feasible, then we can find a happy set S of size k maximizing h(x),

which must be the optimal solution to MaxEHS. Otherwise,
∑

i |Mi| = |V (G)| < k, and
MaxEHS is also infeasible. ◀

Parameterized Complexity of Streaming Diameter
and Connectivity Problems
Jelle J. Oostveen !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Erik Jan van Leeuwen !

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in
the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows
for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant
and memory is O(log n) for any fixed k. Underlying these algorithms is a method to execute a
breadth-first search in O(k) passes and O(k log n) bits of memory. On the negative end, we show
that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory
is needed for any p-pass algorithm even for constant parameter values. In particular, this holds
for graphs with a known modulator (deletion set) of constant size to a graph that has no induced
subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass,
Ω(n log n) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for
Diameter on bipartite graphs.

Finally, using the insights we developed into streaming parameterized graph exploration al-
gorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k.
This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and
only O(k log n) bits of memory.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Streaming, sublinear and near linear time algorithms; Theory
of computation → Lower bounds and information complexity

Keywords and phrases Stream, Streaming, Graphs, Parameter, Complexity, Diameter, Connectivity,
Vertex Cover, Disjointness, Permutation

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.24

Related Version Full Version: https://arxiv.org/abs/2207.04872 [47]

Funding Jelle J. Oostveen: This author is partially supported by the NWO grant OCENW.KLEIN.
114 (PACAN).

Acknowledgements We thank the reviewers for their helpful comments and feedback.

1 Introduction

Graph algorithms, such as to compute the diameter of an unweighted graph (Diameter) or
to determine whether it is connected (Connectivity), often rely on keeping the entire graph
in (random access) memory. However, very large networks might not fit in memory. Hence,
graph streaming has been proposed as a paradigm where the graph is inspected through a
so-called stream, in which its edges appear one by one [38]. To compensate for the assumption
of limited memory, multiple passes may be made over the stream and computation time is
assumed to be unlimited. The complexity theory question is which problems remain solvable
and which problems are hard in such a model, taking into account trade-offs between the
amount of memory and passes.

© Jelle J. Oostveen and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.j.oostveen@uu.nl
mailto:e.j.vanleeuwen@uu.nl
https://doi.org/10.4230/LIPIcs.IPEC.2022.24
https://arxiv.org/abs/2207.04872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Parameterized Complexity of Streaming Diameter and Connectivity Problems

Many graph streaming problems require Ω(n) bits of memory [33, 34] for a constant
number of passes on n-vertex graphs. Any p-pass algorithm for Connectivity needs Ω(n/p)
bits of memory [38]. Single pass algorithms for Connectivity or Diameter need Ω(n log n)
bits of memory on sparse graphs [50]. A 2-approximation of Diameter requires Ω(n3/2)
bits of memory on weighted graphs [34]. A naive streaming algorithm for Connectivity or
Diameter stores the entire graph, using O(m log n) = O(n2 log n) bits and a single pass.
For Connectivity, union-find yields a 1-pass, O(n log n) bits of memory, algorithm [43].

An intriguing aspect on Diameter and Connectivity is that some classic algorithms
for them rely on breadth-first search (BFS) or depth-first search (DFS). These seem difficult
to execute efficiently in a streaming setting. It was a longstanding open problem to compute
a DFS tree using o(n) passes and o(m log n) bits of memory. This barrier was recently
broken [42], through an algorithm that uses O(n/k) passes and O(nk log n) bits of memory,
for any k. The situation for computing single-source shortest paths seems similar [30],
although good approximations exist even on weighted graphs (see e.g. [43, 31]). We do
know that DFS algorithms cannot be executed in logarithmic space [48]. In streaming,
any BFS algorithm that explores k layers of the BFS tree must use at least k/2 passes or
Ω(n1+1/k/(log n)1/k) space [34]. Hence, much remains unexplored when it comes to graph
exploration- and graph distance-related streaming problems such as BFS/DFS, Diameter,
and Connectivity. In particular, most lower bounds hold for general graphs. As such, a
more fine-grained view of the complexity of these problems has so far been lacking.

In this paper, we seek to obtain this fine-grained view using parameterized complexity [25].
The idea of using parameterized complexity in the streaming setting was first introduced
by Fafianie and Kratsch [32] and Chitnis et al. [21]. Many problems are hard in streaming
parameterized by their solution size [32, 21, 18]. Crucially, however, deciding whether a graph
has a vertex cover of size k has a one-pass, Õ(k2)-memory kernelization algorithm by Chitnis
et al. [19], and a 2k-passes, Õ(k)-memory direct algorithm by Chitnis and Cormode [18].

Bishnu et al. [10] then showed that knowing a vertex cover of size k is useful in solving
other deletion problems using p(k) passes and f(k) log n memory, notably H-free deletion;
this approach was recently expanded on by Oostveen and van Leeuwen [46]. This leads to
the more general question how knowing a (small) H-free modulator, that is, a set X such
that G − X has no induced subgraph isomorphic to H (note that H = P2 in Vertex Cover
[k]1), would affect the complexity of streaming problems and of BFS/DFS, Diameter, and
Connectivity in particular. We are not aware of any investigations in this direction.

An important consideration is the streaming model (see [38, 36, 41, 44] or the survey by
McGregor [43]). In the Edge Arrival (EA) model, each edge of the graph appears once in the
stream, and the edges appear in some fixed but arbitrary order. Most aforementioned results
use this model. In the Vertex Arrival (VA) model the edges arrive grouped per vertex, and
an edge is revealed at its endpoint that arrives latest. In the Adjacency List (AL) model
the edges also arrive grouped per vertex, but each edge is present for both its endpoints.
This means we see each edge twice and when a vertex arrives we immediately see all its
adjacencies (rather than some subset dependent on the arrival order, as in the VA model).
This model is quite strong, but as we shall see, unavoidable for our positive results. We do
not consider dynamic streaming models in this paper, although they do exist.

Our Contributions. The main takeaway from our work is that the vertex cover number
likely sits right at the frontier of parameters that are helpful in computing Diameter and
Connectivity. As our main positive result, we show the following.

1 See Section 2 for the notation.

J. J. Oostveen and E. J. van Leeuwen 24:3

▶ Theorem 1. Given a vertex cover of size k, Diameter [k] and Connectivity [k] can be
solved using O(2kk) passes and O(k log n) bits of space or using one pass and O(2k + k log n)
bits of space, in the AL model.

The crux to our approach is to perform a BFS in an efficient manner, using O(k) passes
and O(k log n) space. Knowledge of a vertex cover is not a restricting assumption, as one
may be computed using similar memory requirements [19, 18]. An extension allows the
one-pass result to work without a vertex cover being given, at the cost of increasing the
memory use to O(4k + k log n) bits of space.

As a contrasting result, we observe that in the VA model, even a constant-size vertex
cover does not help in computing Diameter and Connectivity. Moreover, the bound on
the vertex cover seems necessary, as we can prove that any p-pass algorithm for Diameter
requires Ω(n2/p) bits of memory even on bipartite graphs and any p-pass algorithm for
Connectivity requires Ω(n/p) bits of memory, both in the AL model. This indicates that
both the permissive AL model and a low vertex cover number are truly needed.

In some cases, we are also able to prove that a single-pass algorithm requires Ω(n log n)
bits of memory (due to lack of space these proofs are fully deferred to the full version of the
paper [47]).

More broadly, knowledge of being H-free (that is, not having a fixed graph H as an
induced subgraph) or having an H-free modulator does not help even in the AL model:

▶ Theorem 2. For any fixed graph H with H ̸⊆i P4 (H is not an induced subgraph of P4)
and H ̸= 3P1, P3 + P1, P2 + 2P1, any streaming algorithm for Diameter in the AL model
that uses p passes over the stream must use Ω(n/p) bits of memory on graphs G even when
G is H-free.

We note that these results hold for H-free graphs (without the need for a modulator).
The case when H ⊆i P4 is straightforward to solve with O(log n) bits of memory, as the
diameter is either 1 or 2 (an induced path of length 3 is a P4). If the graph has diameter 1,
it is a clique. This can be tested in a single pass by counting the number of edges.

▶ Theorem 3. For any fixed graph H with H ̸= P2 + sP1 for s ∈ {0, 1, 2} and H ̸= sP1 for
s ∈ {1, 2, 3}, any streaming algorithm for Diameter in the AL model that uses p passes over
the stream must use Ω(n/p) bits of memory on graphs G even when given a set X ⊆ V (G)
of constant size such that G − X is H-free. If G − X must be connected and H-free, then
additionally H ̸= P3.

We note that the case when H = P2 or H = P1 is covered by Theorem 1. Cobipartite
graphs seem to be a bottleneck class. The cases when H = 2P1 or when H = P3 and G − X

must be connected lead to a surprising second positive result.

▶ Theorem 4. Given a set X of size k such that G − X is a disjoint union of ℓ cliques,
Diameter [k, ℓ] and Connectivity [k, ℓ] can be solved using O(2kkℓ) passes and O((k +
ℓ) log n) bits of space or one pass and O(2kℓ + (k + ℓ) log n) bits of space, in the AL model.

The approach for this result is similar as for Theorem 1. Moreover, we show a comple-
mentary lower bound in the VA model, even for ℓ = 1 and constant k.

Our results for Diameter are summarized in Table 1 and 2. In words, generalizing
Theorem 1 using the perspective of an H-free modulator does not seem to lead to a positive
result (Theorem 4). Instead, connectivity of the remaining graph after removing the modulator
seems crucial. However, this perspective only helps for Theorem 4, while the problem remains

IPEC 2022

24:4 Parameterized Complexity of Streaming Diameter and Connectivity Problems

hard for most other H-free modulators and even for the seemingly simple case of a modulator
to a path. While Theorem 4 would also hint at the possibility of using a modulator to a few
components of small diameter, this also leads to hardness.

We emphasize that all instances of Diameter in our hardness reductions are connected
graphs. Hence, the hardness of computing Diameter is separated from the hardness of
computing Connectivity.

For Connectivity, we also give two broad theorems that knowledge of being H-free or
having an H-free modulator does not help even in the AL model.

▶ Theorem 5. For any fixed graph H that is not a linear forest containing only paths of
length at most 5, any streaming algorithm for Connectivity in the AL model that uses p

passes over the stream must use Ω(n/p) bits of memory on graphs G even when G is H-free.

▶ Theorem 6. For any fixed graph H that is not a linear forest containing only paths of
length at most 1, any streaming algorithm for Connectivity in the AL model that uses p

passes over the stream must use Ω(n/p) bits of memory on graphs G even when given a set
X ⊆ V (G) of constant size such that G − X is H-free.

As a final result, we use our insights into graph exploration on graphs of bounded vertex
cover to show a result on the Vertex Cover problem itself. In particular, a kernel on
2k vertices for Vertex Cover [k] can be obtained as a stream in O(k3) passes in the EA
model using only Õ(k) bits of memory. In the AL model, the number of passes is only O(k2).
This kernel still may have O(k2) edges, which means that saving it in memory would not give
a better result than that of Chitnis et al. [19] (which uses Õ(k2) bits of memory). Indeed, a
better kernel seems unlikely to exist [24]. However, the important point is that storing the
(partial) kernel in memory is not needed during its computation. Hence, it may be viewed
as a possible first step towards a streaming algorithm for Vertex Cover [k] using Õ(k)
bits of memory and poly(k) passes, which is an important open problem in the field, see [18].
Our kernel is constructed through a kernel by Buss and Goldsmith [14], and then finding a
maximum matching in an auxiliary bipartite graph (following Chen et al. [16]) of bounded
size through repeated DFS applications.

Related work. There has been substantial work on the complexity of graph-distance and
reachability problems in the streaming setting. For example, Guruswami and Onak [37]
showed that any p-pass algorithm needs n1+Ω(1/p)/pO(1) memory when given vertices s, t to
test if s, t are at distance at most 2p + 2 in undirected graphs or to test s-t reachability in
directed graphs. Further work on directed s-t reachability [6] recently led to a lower bound
that any o(

√
log n)-pass algorithm needs n2−o(1) bits of memory [17]. Other recent work

considers p-pass algorithms for ϵ-property testing of connectivity [51, 39, 4], including strong
memory lower bounds n1−O(ϵ·p) on bounded-degree planar graphs [5]. Further problems in
graph streaming are extensively discussed and referenced in these works; see also [3].

In the non-streaming setting, the Diameter problem can be solved in O(nm) time by
BFS. There is a lower bound of n2−ϵ for any ϵ > 0 under the Strong Exponential Time
Hypothesis (SETH) [49]. Parameterizations of Diameter have been studied with parameter
vertex cover [13], treewidth [1, 40, 13], and other parameters [23, 8], leading to a 2O(k)n1+ϵ

time algorithm on graphs of treewidth k [13]. Running time 2o(k)n2−ϵ for graphs of treewidth
k is not possible under SETH [1]. Subquadratic algorithms are known for various hereditary
graph classes; see e.g. [15, 22, 26, 27, 28, 29, 35] and references in [22].

J. J. Oostveen and E. J. van Leeuwen 24:5

2 Preliminaries

We work on undirected, unweighted graphs. We denote a computational problem A with
A [k], where [.] denotes the parameterization. The default parameter is solution size, if
not mentioned otherwise. Diameter is to compute maxs,t∈V d(s, t) where d(s, t) denotes
the distance between s and t. Connectivity asks to decide whether or not the graph is
connected. A twin class consists of all vertices with the same open neighbourhood. In a
graph with vertex cover size k, we have O(2k) twin classes. For two graphs G, H, G + H

denotes their disjoint union. We also use 2G to denote G + G; 3G is G + G + G, etc. A linear
forest is a disjoint union of paths. A path on a vertices is denoted Pa and has length a − 1.

We employ the following problem in communication complexity.

Disjn (Disjointness)
Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn. Bob has a string
y ∈ {0, 1}n given by y1y2 . . . yn.
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1. (Formally, the
answer is NO if this is the case.)

The communication complexity necessary between Alice and Bob to solve this problem is
well understood, and can be used to prove lower bounds on the memory use of streaming
algorithms. This was first done by Henzinger et al. [38]. The following formulation by Bishnu
et al. [9] comes in very useful.

▶ Proposition 7 (Rephrasing of item (ii) of [9], Proposition 5.6). If we can show a reduction
from Disjn to problem Π in streaming model M such that in the reduction, Alice and Bob
construct one model-M pass for a streaming algorithm for Π by communicating the memory
state of the algorithm only a constant number of times to each other, then any streaming
algorithm working in the model M for Π that uses p passes requires Ω(n/p) bits of memory,
for any p ∈ N [20, 11, 2].

If we can show a reduction from Disjointness, we call a problem “hard”, as it does not
admit algorithms using only poly-logarithmic memory.

Any upper bound for the EA model holds for all models, and an upper bound for the
VA model also holds for the AL model. On the other hand, a lower bound in the AL model
holds for all models, and a lower bound for the VA model also holds for the EA model.

3 Upper Bounds for Diameter

We give an overview of our upper bound results for Diameter in Table 1. The memory-
efficient results rely on executing a BFS on the graph, which is made possible by both the
parameter and the use of the AL model. The one-pass results rely on the possibility to save
the entire graph in a bounded fashion. Our upper bounds assume the deletion set related to
the parameter is given, that is, it is in memory.

▶ Lemma 8 (♣). In a graph with vertex cover size k, any simple path has length at most 2k.

(Further discussions and proofs for results marked with ♣ appear in the full online version
of the paper [47].)

Lemma 8 is useful in that the diameter of such a graph can be at most 2k if the graph is
connected. Our algorithm will simulate a BFS for 2k rounds, deciding on the distance of a
vertex to all other vertices.

IPEC 2022

24:6 Parameterized Complexity of Streaming Diameter and Connectivity Problems

Table 1 Overview of the algorithms and their complexity for Diameter and Connectivity.
The results for the Vertex Cover parameter are given in Theorems 10,11.

Parameter (k) Passes Memory (bits) Model
Vertex Cover O(2kk) O(k log n) AL

1 O(2k + k log n) AL
Distance to ℓ cliques O(2kℓk) O((k + ℓ) log n) AL

1 O(2kℓ + (k + ℓ) log n) AL

▶ Lemma 9. Given a graph G as an AL stream with a vertex cover X of size k, we can
compute the distance from a vertex v to all others using O(k) passes and O(k log n) bits of
memory.

Proof. We simulate a BFS originating at v for at most 2k rounds on our graph, using a
pass for each round. Contrary to a normal BFS, we only remember whether we visited the
vertices in the vertex cover and their distances, to reduce memory complexity.

For every vertex w ∈ X, we save its tentative distance d(w) from v; if this is not yet
decided, this field has value ∞. Our claim will be that after round i, the value of d(w) for
vertices w within distance i from v is correct. We initialize the distance of v as d(v) = 0 (we
store d(v) regardless of whether v ∈ X).

Say we are in round i ≥ 1. We execute a pass over the stream. Say we view a vertex
w ∈ X ∪ {v} in the stream with its adjacencies. If w has a distance of d(w), we update
the neighbours of w in X to have distance d(u) = min(d(u), d(w) + 1). If instead we view
a vertex w /∈ X ∪ {v} in the stream, we do the following. Locally save all the neighbours
and look at their distances, and let z be the neighbour with minimum d(z) value. For every
u ∈ N(w) we update the distance as d(u) = min(d(z) + 2, d(u)). This simulates the distance
of a path passing through w (note that this may not be the shortest path, but this may be
resolved by other vertices). This completes the procedure for round i.

Notice that we use only O(k log n) bits of memory during the procedure, and that the
total number of passes is indeed O(k) as we execute 2k rounds, using one pass each.

For the correctness, let us first argue the correctness of the claim after round i, the value
of d(w) of vertices w ∈ X within distance i from v is correct. We proceed by induction,
clearly the base case of 0 is correct. Now consider some vertex w at distance i from v.
Consider a shortest path from v to w. Look at the last vertex on the path before visiting w.
If this vertex is in X, then by induction, this vertex has a correct distance after round i − 1,
and so, in round i this vertex will update the distance of w to be i. If this vertex is not in X,
then it has a neighbour with distance i − 2, which is correct after round i − 2 by induction,
and so, the vertex not in X will (have) update(d) the distance of w to be i in round i.

The correctness of the algorithm now follows from the claim, together with Lemma 8,
and the fact that we can now output all distances using a single pass by either outputting
the value of the field d(w) for a vertex w ∈ X, or by looking at all neighbours of a vertex
w /∈ X and outputting the smallest value +1. ◀

Related is a lower bound result by Feigenbaum et al. [34], which says that any BFS
procedure that explores k layers of the BFS tree must use at least k/2 passes or super-linear
memory. This indicates that memory- and pass-efficient implementations of BFS, as in
Lemma 9, are hard to come by.

We can now use Lemma 9 to construct an algorithm for finding the diameter of a graph
parameterized by vertex cover, essentially by executing Lemma 9 for every twin class, which
considers all options for vertices in the graph.

J. J. Oostveen and E. J. van Leeuwen 24:7

▶ Theorem 10 (♣). Given a graph G as an AL stream with vertex cover X of size k, we
can solve Diameter [k] in O(2kk) passes and O(k log n) bits of memory.

We show an alternative one-pass algorithm, by saving the graph as a representation by
its twin classes, thereby completing the proof of Theorem 1.

▶ Theorem 11 (♣). Given a graph G as an AL stream, we can solve Diameter [k] in one
pass and O(4k + k log n) bits of memory, or correctly report that a vertex cover of size k does
not exist. When a vertex cover of size k is given, the memory use is O(2k + k log n).

The ideas of Theorem 10 and Theorem 11 also work for a similar setting with a few
adjustments. This is the setting of Theorem 4, that our problem is parameterized by
Distance to ℓ Cliques, where both the deletion distance k and the number of remaining
cliques ℓ are bounded. The BFS idea works here as well, as shortest paths are of bounded
length, and we can save information for every vertex in the deletion set, as well as some
information for every clique. There is also a concept of twin classes in such an instance,
where we also distinguish which clique a vertex belongs to, and this is useful for the BFS
from “every” vertex, as well as a one-pass algorithm where we save the entire graph in a
compressed representation. The details of the theorems and proofs that make up Theorem 4
are given in the full version (♣). When the number of cliques is not bounded, this setting
admits a lower bound, which we will see in Section 4.

4 Lower Bounds for Diameter

We work with reductions from Disjn, and we construct graphs where Alice controls some of
the edges, and Bob controls some of the edges, depending on their respective input of the
Disjn problem, and some parts of the graph are fixed. The aim is to create a gap in the
diameter of the graph, that is, the answer to Disjn is YES if and only if the diameter is
above or below a certain value. The lower bound then follows from Proposition 7. Here n

may be the number of vertices in the graph construction, but may also be different (possibly
forming a different lower bound). Our lower bounds hold for connected graphs.

We start by proving simple lower bounds for the VA model when our problem is paramet-
erized by the vertex cover number, and when our problem is parameterized by the distance
to ℓ cliques. This shows that we actually need the AL model to achieve the upper bounds in
Section 3. The constructions are illustrated in Figure 1 and Figure 2. Generally, a-vertices
(b-vertices) and their incident edges are controlled by Alice (Bob). To give an idea of the
reduction technique, we describe how a VA stream is constructed by Alice and Bob, in the
construction of Figure 1. First, Alice reveals the middle vertices including the vertex c and
the fixed edges, then reveals the vertex a with the edges dependent on her input. Then the
memory state of the algorithm is given to Bob who can reveal his vertex b with the edges
dependent on his input. Notice that this is a valid VA stream, and Alice and Bob need no
information about the input of the other.

▶ Theorem 12 (♣). Any streaming algorithm for Diameter on graphs of vertex cover
number at least 3 in the VA model that uses p passes over the stream requires Ω(n/p) bits of
memory.

▶ Theorem 13 (♣). Any streaming algorithm for Diameter on graphs of distance 2 to ℓ = 1
clique in the VA model that uses p passes over the stream requires Ω(n/p) bits of memory.

IPEC 2022

24:8 Parameterized Complexity of Streaming Diameter and Connectivity Problems

Table 2 An overview of the lower bounds for Diameter, with the parameter (k) on the left.
These results hold for connected graphs. (M, m, p)-hard means that any algorithm using p passes in
model M (or weaker) requires Ω(m) bits of memory. FVS stand for Feedback Vertex Set number,
FEN for Feedback Edge Set number. Most proofs of the results in this table are deferred to the full
paper (♣).

Parameter (k) / Graph class Size Bound
General and Bipartite Graphs (AL, n2/p, p)-hard
Vertex Cover ≥ 3 (VA, n/p, p)-hard
Distance to ℓ cliques k ≥ 2, ℓ ≥ 1 (VA, n/p, p)-hard
FVS, FES ≥ 0 (AL, n/p, p)-hard

≥ 0 (AL, n log n, 1)-hard
Distance to matching ≥ 3 (AL, n/p, p)-hard
Distance to path ≥ 2 (AL, n/p, p)-hard

≥ 2 (AL, n log n, 1)-hard
Distance to depth ℓ tree k ≥ 3, ℓ ≥ 2 (AL, n/p, p)-hard

k ≥ 0, ℓ ≥ 5 (AL, n/p, p)-hard
k ≥ 0, ℓ ≥ 7 (AL, n log n, 1)-hard

Dist. to ℓ comps. of diam. x k, x ≥ 2 (AL, n/p, p)-hard
Domination Number ≥ 3 (AL, n/p, p)-hard
Maximum Degree ≥ 3 (AL, n/p, p)-hard

≥ 3 (AL, n log n, 1)-hard
Split graphs (AL, n/p, p)-hard

The lower bounds in Figure 1 and Figure 2 do not work for the AL model because there
are vertices that may or may not be adjacent to both a and b, so neither Alice nor Bob can
produce the adjacency list of such a vertex alone. For the “Simple VA” construction, we can
“fix” this by extending these vertices to edges but this is destructive to the small vertex cover
number of the construction. This “fixed” construction is fully deferred to the full version of
the paper (♣). It should be clear that AL reductions require care: no vertex may be incident
to variable edges of both Alice and Bob.

The following theorem is a combination of several constructions, implying AL hardness
on trees, splits graphs, and for many deletion-distance-to-x parameters. An overview of all
hardness results for Diameter is given in Table 2. See Figures 3, 4, 5 for illustrations of the
constructions and an idea of the proof.

▶ Theorem 14 (♣). Any streaming algorithm for Diameter that works on a family of
graphs that includes the “Windmill”, “Diamond”, or “Split” construction in the AL model
using p passes over the stream requires Ω(n/p) bits of memory.

We can now prove Theorem 2 and Theorem 3; full proofs are deferred (♣). Intuitively, if
H contains a cycle or a vertex of degree 3, a modification of “Windmill” is H-free; if H is a
linear forest, a modification of “Split” is (almost) H-free.

We can also prove a quadratic bound for general graphs; see Figure 6 for the construction.

▶ Theorem 15 (♣). Any streaming algorithm for Diameter on general (dense) graphs in
the AL model using p passes over the stream requires Ω(n2/p) bits of memory.

Splitting up uA and uB into two vertices each, and making the tails from t′
i to ti at least

three edges longer for each i makes the lower bound work for bipartite graphs (♣).

J. J. Oostveen and E. J. van Leeuwen 24:9

a b

c

Figure 1 VA lower bound for diameter with
vertex cover size 3, called “Simple VA”. The
vertices in the middle are indexed 1, . . . , n. An
edge incident to a (b) is present when the entry
of Alice (Bob) at the corresponding index is 1.
The vertex c ensures the graph is connected.

a b

v0 vn+1v1 v2 · · ·

Figure 2 VA lower bound for diameter with
distance 2 to 1 clique, called “Clique VA”. A
dashed edge is present when the entry at the
corresponding index is 1. The vertices inside the
grey area form a clique. Hence, deletion distance
to a clique is 2 (remove a and b).

5 Connectivity

In this section, we show results for Connectivity. Connectivity is an easier problem
than Diameter, that is, solving Diameter solves Connectivity as well, but not the other
way around. Hence, lower bounds in this section also imply lower bounds for Diameter (in
non-connected graphs). In general graphs, a single pass, O(n log n) bits of memory algorithm
exists by maintaining connected components in a Disjoint Set data structure [43], which
is optimal in general graphs [50]. The interesting part about Connectivity is that some
graph classes admit fairly trivial algorithms by a counting argument. For example, if the
input is a forest, we can decide on Connectivity by counting the number of edges, which
is a 1-pass, O(log n) bits of memory, algorithm. An overview of the results in this section is
given in Table 3. The following upper bounds follow from applications of the Disjoint Set
data structure.

▶ Observation 16 (♣). Given a graph G as an AL stream with vertex cover number k, we
can solve Connectivity [k] in 1 pass and O(k log n) bits of memory.

A
B

0

1

index i

ai,1

ai,2

ai,3

bi,1

bi,3bi,2

Figure 3 AL lower bound for diameter consisting of a tree, called “Windmill”. The difference in
an entry 1 or 0 is shown on the left. The gadget for index i combines a 0/1-gadget for Alice and a
0/1-gadget for Bob. It makes two 1 entries at this index a path of length 5, and a tree structure of
depth at most 4 otherwise. These n gadgets are then identified at ai,1 and a tail is added.

IPEC 2022

24:10 Parameterized Complexity of Streaming Diameter and Connectivity Problems

a

b

a

b

pi,2

pi,4

pi,6

pi,8

Figure 4 AL lower bound for diameter consisting of a path and 2 vertices, called “Diamond”.
Note that a is connected to b with an edge (indicated with a dashed line here). On the left the
gadget for a single index i is shown, where the dotted edges are present when the entry at index i is
0 (for Alice incident on a, for Bob incident on b). On the right, the construction is sketched in full.

a0 b0a1an a2 b1 b2 bn

a′n a′1a′2 b′1 b′2 b′n· · · · · ·

· · · · · ·

Figure 5 AL lower bound for diameter on split graphs, called “Split”. Depending on the input,
some a′

i either has an edge to a0 or ai when xi = 0 or 1. The same holds for b′
i with yi. The grey

area forms a clique, and each ai is connected to all b′
j where i ̸= j, and the same holds for bi and a′

j .

uA uB

s1

sn

S

Alice Boba1a′1

a′n an

b1 b′1

bn b′n

s2

t1

t2

tn

t′1

t′n

T

A B

Figure 6 AL lower bound for diameter where Alice and Bob have n2 bits but the graph has O(n)
vertices. The bits are seen as an adjacency matrix in the bipartite graphs A and B, identically: the
red edge a′

i to aj in A is the same index as the red edge bj to b′
i in B. Edges are present when the

entry is a 0. Then, each si, tj pair can discern whether or not at least one of the edges ai to a′
j or bi

to b′
j is present, hence deciding whether or not both Alice and Bob have a 1 at that entry.

J. J. Oostveen and E. J. van Leeuwen 24:11

Table 3 Overview of the results for Connectivity. All hardness results listed here are through
reductions from Disjointness. (M, m, p)-hard means that any algorithm using p passes in model
M (or weaker) requires Ω(m) bits of memory. (M, m, p)-str. means that there is an algorithm that
uses p passes in model M (or stronger) using O(m) bits of memory. FVS stand for Feedback Vertex
Set number, FEN for Feedback Edge Set number. We state most upper bounds only as observations,
and most proofs of the results in this table are deferred to the full paper (♣).

Parameter (k) / Graph class Size Bound
General Graphs (EA, n log n, 1)-str. via Disjoint Set [43]

(EA, n log n, 1)-hard by Sun and Woodruff [50]
Vertex Cover Number ≥ 0 (AL, k log n, 1)-str. Disjoint Set on Vertex Cover

≥ 2 (VA, n/p, p)-hard by Henzinger et al. [38]
Distance to ℓ cliques ≥ 0 (AL, (k + ℓ) log n, 1)-str. via Disjoint Set
FVS = 0 (EA, log n, 1)-str. by counting.

≥ 1 (AL, n/p, p)-hard
FES ≥ 0 (EA, log n, 1)-str. by counting.
Distance to matching ≥ 2 (AL, n/p, p)-hard
Distance to path ≥ 0 (EA, k log n, 1)-str. by checking connection to path
Distance to depth ℓ tree ≥ 0 (EA, k log n, 1)-str. by checking connection to tree
Domination Number ≥ 2 (AL, n/p, p)-hard
Distance to Chordal ≥ 1 (AL, n/p, p)-hard
Maximum Degree ≥ 2 (AL, n/p, p)-hard, (AL, n log n, 1)-hard
Bipartite Graphs (AL, n/p, p)-hard, (AL, n log n, 1)-hard
Interval Graphs (VA, n/p, p)-hard
Split graphs (EA, n/p, p)-str. by finding degree 0 vertex

(VA, n/p, p)-hard

▶ Observation 17 (♣). Given a graph G as an AL stream with a deletion set X of size k to
ℓ cliques, we can solve Connectivity [k, ℓ] in 1 pass and O((k + ℓ) log n) bits of memory.

We fully defer a simple lower bound construction for the AL model to the full version (♣).
An interesting lower bound is for a unique case: graphs of maximum degree 2. We

mentioned that for a forest we have a simple counting algorithm for Connectivity, so the
hardness must be for some graph which consists of one or more cycles. Although we show
(♣) that Connectivity is hard for graphs with a Feedback Vertex Set of constant size, we
now show that in the specific case of maximum degree 2-graphs, the problem is still hard,
see Figure 7 for an illustration of the construction. We note that this reduction is similar to
the problem tackled by Verbin and Yu [51] and Assadi et al. [4], but our result is slightly
stronger in this setting, as it concerns a distinction between 1 or 2 disjoint cycles.

▶ Theorem 18 (♣). Any streaming algorithm for Connectivity that works on a family of
graphs that includes graphs of maximum degree 2 in the AL model using p passes over the
stream requires Ω(n/p) bits of memory.

We note that we can make the result of Theorem 18 hold for bipartite graphs of maximum
degree 2 by subdividing every edge, making the graph odd cycle-free, and thus bipartite.
The proofs of Theorems 5 and 6 follow, and are deferred the the full version (♣).

Interval and split graphs are hard in the VA model, see Figures 8 and 9.

▶ Theorem 19 (♣). Any streaming algorithm for Connectivity that works on a family of
graphs that includes interval graphs or split graphs in the VA model using p passes over the
stream requires Ω(n/p) bits of memory.

IPEC 2022

24:12 Parameterized Complexity of Streaming Diameter and Connectivity Problems

i i+ 1

0

0

0

1

i+ 2

1

1

ai,2

ai,1 ai,4

ai,3

bi,2

bi,1

bi,3

bi,4

a0

b0

an+1

bn+1

Figure 7 AL lower bound for connectivity, called “Cycles”. The graph consists of one or multiple
cycles depending on the output of Disjn. The black edges are always present. The red (blue) edges
are controlled by Alice (Bob) and are in a crossing (horizontal) or vertical configuration depending
on whether the i-th entry of Alice (Bob) is 0 or 1.

ai

bi

ui vi

ai

bi

Figure 8 VA lower bound for connectivity on interval
graphs, called “Interval”. We see the gadget for index i,
where the dotted lines are present when the corresponding
value is 0. The black edges are always present, and the
red (blue) edges correspond to the input of Alice (Bob).
The n gadgets are placed consecutively.

v1 vnv2 · · ·

a b

Figure 9 VA lower bound for con-
nectivity on split graphs, called “Split-
Conn”. The dashed edges towards vi

are present when there is a 0 at index
i.

For split graphs, in any model, Connectivity admits a one-pass, O(n) bits of memory
algorithm by counting if there is a vertex of degree 0 (and so also for any p a p-pass algorithm
using O(n/p) bits by splitting up the work in p parts)2. If there can be no isolated vertices,
then a split graph is always connected.

6 Vertex Cover kernelization

We now show how our insights into parameterized, streaming graph exploration can aid in
producing a new kernelization algorithm for Vertex Cover [k]3. The basis for our result
is a well-known kernel for the Vertex Cover [k] problem of Buss and Goldsmith [14],
consisting of O(k2) edges. Constructing this kernel is simple: find all vertices with degree
bigger than k, and remove them from the graph, and decrease the parameter with the number
of vertices removed, say to k′. Then, there is no solution if there are more than k · k′ edges.
Therefore, we have a kernel consisting of O(k2) edges. We are able to achieve this same kernel
in the AL model, as counting the degree of a vertex is possible in this model. Interestingly,
we do not require Õ(k2) bits of memory to produce a stream corresponding to the kernel
of O(k2) edges. This result is also possible in the EA model, by allowing vertices up to
degree 2k.

2 This assumes the vertices are labelled 1 . . . n and do not have arbitrary labels.
3 This section is based on the master thesis “Parameterized Algorithms in a Streaming Setting” by the

first author.

J. J. Oostveen and E. J. van Leeuwen 24:13

▶ Theorem 20 (♣). Given a graph G as an AL stream, we can make an AL stream
corresponding to an O(k2)-edge kernel for the Vertex Cover [k] problem using two passes
and Õ(k) bits of memory. When we work with an EA stream, we can make an EA stream
corresponding to an O(k2)-edge kernel using four passes and Õ(k) bits of memory.

Next, we show how to use Theorem 20 to produce a kernel of even smaller size, using
only Õ(k) bits of memory. This requires Theorem 20 to convert the original graph stream
into the kernel input for the next theorem, which only increases the number of passes by a
factor 2 or 4 (we have to apply Theorem 20 every time the other procedure uses a pass).

Interestingly, Chen et al. [16] show a way to convert the kernel of Buss and Goldsmith into
a 2k-vertex kernel for Vertex Cover [k], using a theorem by Nemhauser and Trotter [45].
We will adapt this method in the streaming setting. The kernel conversion is done by
converting the O(k2) edges kernel into a bipartite graph (two copies of all vertices V, V ′, and
an edge (x, y) translates to the edges (x, y′), (x′, y)), in which we find a minimum vertex cover
using a maximum matching (see for example [12, Page 74, Theorem 5.3]). The minimum
vertex cover we find gives us the sets stated in the theorem by Nemhauser and Trotter [45],
as indicated by the constructive proof of the same theorem by Bar-Yehuda and Even [7].
Lastly, we use these sets to give the 2k kernel in the streaming setting as indicated by Chen
et al. [16]. This also works for the EA model, because we only require the input kernel to
consist of O(k2) edges, not that it specifically is the kernel by Buss and Goldsmith.

▶ Lemma 21 (♣). Given a graph G as a stream in model AL or EA, we can produce a
stream in the same model corresponding to the Phase 1 bipartite graph of [7, Algorithm NT]
using two passes and Õ(1) bits of memory.

By making some observations on the conversions by Chen et al. [16], we can conclude that
the maximum matching we need to find in the bipartite graph consists of at most 4k = O(k)
edges, and otherwise we can return NO. For more details, see ♣. To find the maximum
matching we execute a DFS procedure, which can be done with surprising efficiency in this
restricted bipartite setting.

▶ Theorem 22 (♣). Given a bipartite graph B as an AL stream with O(k) vertices, we can
find a maximum matching of size at most O(k) using O(k2) passes and Õ(k) bits of memory.
For the EA model this can be done in O(k3) passes.

Using this maximum matching, we can find a vertex cover kernel of size 2k. The final
result is as follows, which consists of putting the original stream through each step for every
time we require a pass, i.e. the number of passes of each of the parts of this theorem combine
in a multiplicative fashion.

▶ Theorem 23 (♣). Given a graph G as an AL stream, we can produce a kernel of size 2k

for the Vertex Cover [k] problem using O(k2) passes and Õ(k) bits of memory. In the
EA model, this procedure takes O(k3) passes.

7 Conclusion

We studied the complexity of Diameter and Connectivity in the streaming model, from
a parameterized point of view. In particular, we considered the viewpoint of an H-free
modulator, showing that a vertex cover or a modulator to the disjoint union of ℓ cliques
effectively forms the frontier of memory- and pass-efficient streaming algorithms. Both
problems remain hard for almost all other H-free modulators of constant size (often even of

IPEC 2022

24:14 Parameterized Complexity of Streaming Diameter and Connectivity Problems

size 0). We believe that this forms an interesting starting point for further investigations
into which other graph classes or parameters might be useful when computing Diameter
and Connectivity in the streaming model.

On the basis of our work, we propose four concrete open questions:
What is the streaming complexity of computing Distance to ℓ Cliques? On the
converse of Vertex Cover [k], we are not aware of any algorithms to compute this
parameter, even though it is helpful in computing Diameter and Connectivity.
Are there algorithms or lower bounds for Diameter or Connectivity in the AL model
for interval graphs?
Assuming isolated vertices are allowed in the graph, can we solve Connectivity in the
AL model on split graphs using O(log n) bits of memory?
Is there a streaming algorithm for Vertex Cover [k] using O(poly(k)) passes and
O(poly(k, log n)) bits of memory, or can it be shown that one cannot exist? This result
would be relevant in combination with our kernel.

References
1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed

parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proc. SODA
2016, pages 377–391. SIAM, 2016. doi:10.1137/1.9781611974331.ch28.

2 Deepak Agarwal, Andrew McGregor, Jeff M. Phillips, Suresh Venkatasubramanian, and
Zhengyuan Zhu. Spatial scan statistics: approximations and performance study. In Proc.
SIGKDD 2006, pages 24–33. ACM, 2006. doi:10.1145/1150402.1150410.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. CoRR, abs/1904.04720, 2019. arXiv:1904.04720.

4 Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-pass graph
streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In
Proc. FOCS 2020, pages 354–364. IEEE, 2020. doi:10.1109/FOCS46700.2020.00041.

5 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation and
property testing via a streaming XOR lemma. In Proc. STOC 2021, pages 612–625. ACM,
2021. doi:10.1145/3406325.3451110.

6 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In Proc. FOCS 2020, pages 342–353. IEEE, 2020. doi:10.1109/FOCS46700.2020.
00040.

7 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. In Proc. WG 1983, pages 17–28. Universitätsverlag Rudolf Trauner,
Linz, 1983. URL: http://www.gbv.de/dms/tib-ub-hannover/022054669.pdf.

8 Matthias Bentert and André Nichterlein. Parameterized complexity of diameter. In Proc. CIAC
2019, volume 11485 of LNCS, pages 50–61. Springer, 2019. doi:10.1007/978-3-030-17402-6_
5.

9 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Fixed-
parameter tractability of graph deletion problems over data streams. CoRR, abs/1906.05458,
2019. arXiv:1906.05458.

10 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Fixed
parameter tractability of graph deletion problems over data streams. In Proc. COCOON 2020,
volume 12273 of LNCS, pages 652–663. Springer, 2020. doi:10.1007/978-3-030-58150-3_53.

11 Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Sandeep Sen. On the streaming complexity
of fundamental geometric problems. CoRR, abs/1803.06875, 2018. arXiv:1803.06875.

12 J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory with Applications. Macmillan
Education UK, 1976. doi:10.1007/978-1-349-03521-2.

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1145/1150402.1150410
http://arxiv.org/abs/1904.04720
https://doi.org/10.1109/FOCS46700.2020.00041
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1109/FOCS46700.2020.00040
https://doi.org/10.1109/FOCS46700.2020.00040
http://www.gbv.de/dms/tib-ub-hannover/022054669.pdf
https://doi.org/10.1007/978-3-030-17402-6_5
https://doi.org/10.1007/978-3-030-17402-6_5
http://arxiv.org/abs/1906.05458
https://doi.org/10.1007/978-3-030-58150-3_53
http://arxiv.org/abs/1803.06875
https://doi.org/10.1007/978-1-349-03521-2

J. J. Oostveen and E. J. van Leeuwen 24:15

13 Karl Bringmann, Thore Husfeldt, and Måns Magnusson. Multivariate analysis of orthogonal
range searching and graph distances. Algorithmica, 82(8):2292–2315, 2020. doi:10.1007/
s00453-020-00680-z.

14 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993. doi:10.1137/0222038.

15 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances
in planar graphs. ACM Trans. Algorithms, 15(2):21:1–21:38, 2019. doi:10.1145/3218821.

16 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41(2):280–301, 2001. doi:10.1006/jagm.2001.1186.

17 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng
Yu. Almost optimal super-constant-pass streaming lower bounds for reachability. In Proc.
STOC 2021, pages 570–583. ACM, 2021. doi:10.1145/3406325.3451038.

18 Rajesh Chitnis and Graham Cormode. Towards a theory of parameterized streaming algorithms.
In Proc. IPEC 2019, volume 148 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.7.

19 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proc.
SODA 2016, pages 1326–1344. SIAM, 2016. doi:10.1137/1.9781611974331.ch92.

20 Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
and Morteza Monemizadeh. Brief announcement: New streaming algorithms for parameterized
maximal matching & beyond. In Proc. SPAA 2015, pages 56–58. ACM, 2015. doi:10.1145/
2755573.2755618.

21 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Proc. SODA
2015, pages 1234–1251. SIAM, 2015. doi:10.1137/1.9781611973730.82.

22 Derek G. Corneil, Feodor F. Dragan, Michel Habib, and Christophe Paul. Diameter de-
termination on restricted graph families. Discret. Appl. Math., 113(2-3):143–166, 2001.
doi:10.1016/S0166-218X(00)00281-X.

23 David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. ACM Trans. Algorithms, 15(3):33:1–33:57,
2019. doi:10.1145/3310228.

24 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

25 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

26 Guillaume Ducoffe. Beyond helly graphs: The diameter problem on absolute retracts. In
Proc. WG 2021, volume 12911 of LNCS, pages 321–335. Springer, 2021. doi:10.1007/
978-3-030-86838-3_25.

27 Guillaume Ducoffe and Feodor F. Dragan. A story of diameter, radius, and (almost) helly
property. Networks, 77(3):435–453, 2021. doi:10.1002/net.21998.

28 Guillaume Ducoffe, Michel Habib, and Laurent Viennot. Fast diameter computation within
split graphs. In Proc. COCOA 2019, volume 11949 of LNCS, pages 155–167. Springer, 2019.
doi:10.1007/978-3-030-36412-0_13.

29 Guillaume Ducoffe, Michel Habib, and Laurent Viennot. Diameter computation on H -minor
free graphs and graphs of bounded (distance) vc-dimension. In Proc. SODA 2020, pages
1905–1922. SIAM, 2020. doi:10.1137/1.9781611975994.117.

30 Michael Elkin. Distributed exact shortest paths in sublinear time. J. ACM, 67(3):15:1–15:36,
2020. doi:10.1145/3387161.

31 Michael Elkin and Chhaya Trehan. (1 + ϵ)-approximate shortest paths in dynamic streams.
CoRR, abs/2107.13309, 2021. arXiv:2107.13309.

32 Stefan Fafianie and Stefan Kratsch. Streaming kernelization. In Proc. MFCS 2014, volume
8635 of LNCS, pages 275–286. Springer, 2014.

IPEC 2022

https://doi.org/10.1007/s00453-020-00680-z
https://doi.org/10.1007/s00453-020-00680-z
https://doi.org/10.1137/0222038
https://doi.org/10.1145/3218821
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1145/3406325.3451038
https://doi.org/10.4230/LIPIcs.IPEC.2019.7
https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1137/1.9781611973730.82
https://doi.org/10.1016/S0166-218X(00)00281-X
https://doi.org/10.1145/3310228
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-030-86838-3_25
https://doi.org/10.1007/978-3-030-86838-3_25
https://doi.org/10.1002/net.21998
https://doi.org/10.1007/978-3-030-36412-0_13
https://doi.org/10.1137/1.9781611975994.117
https://doi.org/10.1145/3387161
http://arxiv.org/abs/2107.13309

24:16 Parameterized Complexity of Streaming Diameter and Connectivity Problems

33 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

34 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709–1727, 2008. doi:
10.1137/070683155.

35 Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi
diagrams on planar graphs, and computing the diameter in deterministic õ(n5/3) time. SIAM
J. Comput., 50(2):509–554, 2021. doi:10.1137/18M1193402.

36 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proc. SODA 2012, pages
468–485. SIAM, 2012. doi:10.1137/1.9781611973099.41.

37 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76(3):654–683, 2016. doi:10.1007/s00453-016-0138-7.

38 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In Proc. DIMACS 1998, volume 50 of DIMACS, pages 107–118. DIMACS/AMS,
1998. doi:10.1090/dimacs/050/05.

39 Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o(n) space. Algorithmica,
81(5):1965–1987, 2019. doi:10.1007/s00453-018-0520-8.

40 Thore Husfeldt. Computing graph distances parameterized by treewidth and diameter. In
Proc. IPEC 2016, volume 63 of LIPIcs, pages 16:1–16:11. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.16.

41 Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proc. SODA 2013, pages 1679–1697. SIAM, 2013. doi:10.1137/1.9781611973105.121.

42 Shahbaz Khan and Shashank K. Mehta. Depth first search in the semi-streaming model. In
Rolf Niedermeier and Christophe Paul, editors, Proc. STACS 2019, volume 126 of LIPIcs,
pages 42:1–42:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.STACS.2019.42.

43 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

44 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting triangles
in data streams. In Tova Milo and Wang-Chiew Tan, editors, Proc. PODS 2016, pages 401–411.
ACM, 2016. doi:10.1145/2902251.2902283.

45 George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Math. Program., 8(1):232–248, 1975. doi:10.1007/BF01580444.

46 Jelle J. Oostveen and Erik Jan van Leeuwen. Streaming deletion problems parameterized
by vertex cover. In Proc. FCT 2021, volume 12867 of LNCS, pages 413–426. Springer, 2021.
doi:10.1007/978-3-030-86593-1_29.

47 Jelle J. Oostveen and Erik Jan van Leeuwen. Parameterized complexity of streaming diameter
and connectivity problems. CoRR, abs/2207.04872, 2022. doi:10.48550/arXiv.2207.04872.

48 John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,
1985. doi:10.1016/0020-0190(85)90024-9.

49 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. STOC 2013, pages 515–524. ACM, 2013.
doi:10.1145/2488608.2488673.

50 Xiaoming Sun and David P. Woodruff. Tight bounds for graph problems in insertion streams.
In Proc. APPROX/RANDOM 2015, volume 40 of LIPIcs, pages 435–448. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.435.

51 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals,
and other problems. In Dana Randall, editor, Proc. SODA 2011, pages 11–25. SIAM, 2011.
doi:10.1137/1.9781611973082.2.

https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1137/070683155
https://doi.org/10.1137/070683155
https://doi.org/10.1137/18M1193402
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1007/s00453-016-0138-7
https://doi.org/10.1090/dimacs/050/05
https://doi.org/10.1007/s00453-018-0520-8
https://doi.org/10.4230/LIPIcs.IPEC.2016.16
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.4230/LIPIcs.STACS.2019.42
https://doi.org/10.4230/LIPIcs.STACS.2019.42
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2902251.2902283
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/978-3-030-86593-1_29
https://doi.org/10.48550/arXiv.2207.04872
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.1137/1.9781611973082.2

Applying a Cut-Based Data Reduction Rule for
Weighted Cluster Editing in Polynomial Time
Hjalmar Schulz !

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

André Nichterlein !

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Rolf Niedermeier !

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Christopher Weyand !

Karlsruhe Institute of Technology, Germany

Abstract
Given an undirected graph, the task in Cluster Editing is to insert and delete a minimum number
of edges to obtain a cluster graph, that is, a disjoint union of cliques. In the weighted variant each
vertex pair comes with a weight and the edge modifications have to be of minimum overall weight.
In this work, we provide the first polynomial-time algorithm to apply the following data reduction
rule of Böcker et al. [Algorithmica, 2011] for Weighted Cluster Editing: For a graph G = (V, E),
merge a vertex set S ⊆ V into a single vertex if the minimum cut of G[S] is at least the combined
cost of inserting all missing edges within G[S] plus the cost of cutting all edges from S to the rest of
the graph. Complementing our theoretical findings, we experimentally demonstrate the effectiveness
of the data reduction rule, shrinking real-world test instances from the PACE Challenge 2021 by
around 24 % while previous heuristic implementations of the data reduction rule only achieve 8 %.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Correlation Clustering, Minimum Cut, Maximum s-t-Flow

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.25

Supplementary Material Software (Source Code): https://github.com/venondev/AlmostClique
Poly, archived at swh:1:dir:8aca200ba4c16f1b357d20904271c630e5c4fa5a

Acknowledgements In memory of Rolf Niedermeier, our colleague, friend, and mentor, who sadly
passed away before this paper was published.

1 Introduction

The NP-hard Cluster Editing problem [4, 26], also known as Correlation Cluster-
ing [3], is one of the most popular graphs clustering approaches in algorithmics. Given an
undirected graph, the task is to transform it into a disjoint union of cliques (also known
as a cluster graph) by applying a minimum number of edge modifications (deletions or
insertions). In the weighted variant Weighted Cluster Editing each pair of vertices
comes with a weight and to goal is a find edge modifications of minimum summed weight
to create a cluster graph. (Weighted) Cluster Editing has applications in fields such
as bioinformatics [4], data mining [3], and psychology [27]. It gained high popularity in
studies concerning parameterized algorithmics [1, 2, 9, 11, 14, 15, 22, 5, 7, 6] and algorithm
engineering [15, 8, 17, 5]. The unweighted Cluster Editing was the problem selected for
the PACE implementation challenge 2021 [21]. An important aspect of solving (Weighted)
Cluster Editing, both in theory and practice, is kernelization. From a theoretical side,

© Hjalmar Schulz, André Nichterlein, Rolf Niedermeier, and Christopher Weyand;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjalmar.schulz@campus.tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de
https://orcid.org/0000-0001-7451-9401
mailto:rolf.niedermeier@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
mailto:christopher.weyand@kit.edu
https://doi.org/10.4230/LIPIcs.IPEC.2022.25
https://github.com/venondev/AlmostCliquePoly
https://github.com/venondev/AlmostCliquePoly
https://archive.softwareheritage.org/swh:1:dir:8aca200ba4c16f1b357d20904271c630e5c4fa5a;origin=https://github.com/venondev/AlmostCliquePoly;visit=swh:1:snp:8b366f7837391e774ec03162c9d03e871ffa134b;anchor=swh:1:rev:b6d933957b7e76188507325d237c73f2c6047840
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Applying a Cut-Based Data Reduction Rule in Polynomial Time

Figure 1 Left: Input graph with two “obvious” clusters, one being highlighted in green. Middle:
Optimal Cluster Editing-solution for the input graph: the thick red edge in the green cluster
is inserted and the red dotted edge between the clusters is deleted. Right: The graph obtained by
merging the vertices in the green vertex set in the input (weights are not shown for visibility). If all
weights are 1 in the input graph, then the vertex subset highlighted in green satisfies the condition
of the data reduction rule: the minimum cut has weight 2 (cutting two edges), which is at least the
cost of 2 to make the green vertex set an isolated clique (see middle for the two modified edges).

both the weighted and unweighted version of Cluster Editing admit polynomial-size
problem kernels. Studies in this direction were initialized by Gramm et al. [15] for Cluster
Editing, who provided a kernel with O(k2) vertices and sparked follow up work [13, 16].
The smallest known kernels have 2k vertices [9, 10]. The 2k-vertex kernel of Cao and Chen [9]
also holds for Weighted Cluster Editing.

As to the practical side, state-of-the-art solvers for Cluster Editing and Weighted
Cluster Editing rely on polynomial-time computable data reduction rules and the pre-
processing routines are heavily optimized over time [8, 17, 5]. In fact, the winning solver
of the PACE challenge 2021 solves about half of the instances by data reduction alone [5].
We contribute to this line of work by providing a divide & conquer-based, polynomial-time
algorithm to apply a data reduction rule by Böcker et al. [8, Rule 4] for Weighted Cluster
Editing. This data reduction rule works intuitively as follows: Let S ⊆ V be a vertex
subset. If the cost of splitting S into at least two parts is at least as high as the cost of
cutting S from the rest of the graph and making S a clique, then merge all vertices in S; see
Figure 1 for an illustration and Section 2 for the exact formulation of the data reduction rule.
Given a vertex subset S, it is easy to check in polynomial time whether the data reduction
rule is applicable on S (call such vertex subsets applicable). However, there was no efficient
algorithm to find applicable vertex subsets; thus only heuristics were applied [8]. We provide
experiments demonstrating that these heuristics miss many applicable vertex subsets in real
world data sets: The heuristics merge on average only 8.1 % of the vertices in the input.
However, the exhaustive application of the data reduction rule with our polynomial-time
algorithm reveals that on average 24.2 % of the vertices in the input could be merged.

Our polynomial-time algorithm runs in O(n · (Tmincut(n, m) + Ts-t-maxflow(n, m) + n2))) ⊆
O(nm1+o(1)+n3) time, where Tmincut(n, m) and Ts-t-maxflow(n, m) denote the time to compute
in an edge-weighted graph with n vertices and m edges a minimum cut and a maximum
s-t-flow, respectively.

2 Preliminaries

We set N := {0, 1, 2, . . .} and set
(

S
2
)

to be the set of all two-element subsets of a set S.
Let ∆ denote the symmetric difference. All graphs considered in this work are simple and
undirected. Moreover, we assume that the input graph is always connected as connected
components can be solved independently. A graph is a cluster graph if each connected
component is a clique. For a weighted graph G = (V, E, ω), the weight function ω :

(
V
2
)
→ Z

implicitly defines the edges E := {uv | ω(uv) > 0}. That is, a positive value of the weight
function indicates an edge and a negative value (or zero) a non-edge. The cost of modifying

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:3

an edge uv is then the absolute value |ω(uv)| of its weight. For a vertex set S ⊆ V , we
denote with G[S] the graph induced by S. The decision variant of Weighted Cluster
Editing is defined as follows:

Weighted Cluster Editing
Input: An undirected edge-weighted graph G = (V, E, ω) and k ∈ N.
Question: Is there a set P ⊆

(
V
2
)

with
∑

uv∈P |ω(uv)| ≤ k, such that G′ = (V, E∆P)
is a cluster graph?

Cuts and the Picard-Queyranne DAG. Let G = (V, E, ω) be a weighted graph. Let U, W ⊂
V with U ∩W = ∅. We denote with E(U, W) the edges between U and W ; with V (U, W)
the vertices incident to E(U, W); and with cost(U, W) the summed cost of removing the
edges E(U, W). A cut cV of G is a partitioning of the vertex set V into two non-empty
partitions U ⊂ V and V \ U , each being called a side of the cut. The minimum cut
(mincut) of G is the cut of G with minimum cost; we denote its cost with mincut(G) :=
minU⊂V {cost(U, V \U)}. Note that, the cuts consider just the edges of the graph and ignore
the non-edges.

Let s, t ∈ V . All minimum s-t-cuts can be represented by a structure called a Picard-
Queyranne DAG (PQ-DAG for short) [25]. It is constructed by considering the reachability
relation in the residual network of any maximum s-t-flow and contracting strongly connected
components. Contracting two vertices u and v means to consider them as one, new vertex x

with neighborhood N(u)∪N(v). More precisely, for w ∈ N(u)∪N(v) \ {u, v}, the weight of
the edge to x becomes ω(xw) = max(0, ω(uw)) + max(0, ω(vw)). Therefore, each node of
the PQ-DAG represents a set of vertices of the original graph. For better distinction we say
the PQ-DAG has nodes which represent subsets of vertices of the input graph. If the graph is
undirected, then the DAG has only one sink (the strongly connected component containing
s) and only one source (the strongly connected component containing t). A closure of a
DAG is a set of nodes without outgoing arcs. Each closure of the PQ-DAG represents a
minimum s-t-cut [25], that is, one side of a minimum s-t-cut. Thus, any postfix and any
prefix in any topological ordering of the PQ-DAG represents a minimum s-t-cut. Moreover,
for any minimum s-t-cut, there exists some topological ordering of the PQ-DAG with a prefix
representing this cut. In this case, we say that the ordering respects the cut.

Merging Vertices & Data Reduction Rule. We will contract vertices when working with
cuts. For Weighted Cluster Editing we need to merge vertices (these two notions
coincide if each non-edge has weight 0). Merging two vertices u and v means to consider them
as one, new vertex x. For each w ∈ V \ {u, v}, the weight of the (non-)edge to x becomes
ω(xw) = ω(uw) + ω(vw). If w was adjacent to exactly one of u and v, then the solution
size k is reduced by min(|ω(uw)|, |ω(vw)|). Intuitively, if a vertex w is (non-)adjacent to
both u and v, then w is also (non-)adjacent to the new vertex. However, if w is adjacent to
exactly one of u and v, then the new vertex is adjacent to w iff, of the pairs uw and vw, the
pair representing an edge has higher weight than the one representing a non-edge. Merging a

and b in the graph on the left side of Figure 2 results in the graph on the right side.
For a vertex set S ⊆ V , we call the summed cost of all non-edges in G[S] the deficiency

of S and define defG(S) :=
∑

u,v∈S |min(0, ω(uv))|. We can now formally state the condition
triggering the data reduction rule.

▶ Definition 2.1. A vertex subset S ⊆ V with |S| ≥ 2 is applicable if

mincut(G[S]) ≥ defG(S) + cost(S, V \ S). (1)

IPEC 2022

25:4 Applying a Cut-Based Data Reduction Rule in Polynomial Time

a

b c

d

10

10

10

9

-1-1 ab

c

d

9
10

8
ab

c

d

10
10

9

Figure 2 Left: A graph where the only applicable vertex set is S = {a, b, c, d}. Middle: Result of
merging a and b. Right: Result of contracting a and b.

Algorithm 1 Applying Reduction Rule 2.2.

Input: A connected weighted graph G = (V, E, ω) and a vertex subset A ⊆ V .
Output: A largest applicable set S ⊆ A if it exists, ∅ otherwise.

1 Function FindMergeSet(G, A)
2 if |A| < 2 then return ∅
3 cA = (A1, A2)← arbitrary mincut in G[A]
4 S ⊆ A← largest applicable set that is cut by cA

// here max returns the largest set
5 return max(S, FindMergeSet(G, A1), FindMergeSet(G, A2))

▶ Reduction Rule 2.2 (Almost clique; Böcker et al. [8, Rule 4]). Let S ⊆ V be an applicable
vertex set. Then merge the vertices within S and reduce the solution size accordingly.

3 A Polynomial-Time Algorithm to Apply Reduction Rule 2.2

In this section, we present a polynomial-time algorithm for applying Reduction Rule 2.2.
More precisely, for a graph G = (V, E, ω) and set A ⊆ V , our algorithm finds the largest
applicable set S ⊆ A if such a set exists. Our algorithm follows a simple divide & conquer
approach (see Algorithm 1) and starts with A = V . First, compute a mincut in the graph.
Then, finding an applicable vertex set that is within a side of the cut is simply a recursive
call. The interesting part is the conquer-step to find the largest applicable vertex set that has
vertices on both sides of the cut. Such a set is either A itself or a proper subset of A. To find
the latter in polynomial time, we need some structural insights presented in the following
lemma. It provides some restrictive conditions on such sets (see left side of Figure 3 for an
illustration of the setting).

▶ Lemma 3.1. Let G = (V, E, ω) be a graph, A ⊆ V , and let cA = (A1, A2) be a mincut
of G[A]. If there is an applicable set S ⊂ A that is cut by cA, that is, S∩A1 ̸= ∅ and S∩A2 ≠ ∅,
then
(a) defG(S) = 0 and
(b) mincut(G[S]) = mincut(G[A]) = cost(S, A \ S) = cost(S, V \ S).

Proof. By assumption, cA is a mincut in G[A] that also cuts S, thus mincut(G[S]) ≤
mincut(G[A]). Since S is a proper subset of A we have mincut(G[A]) ≤ cost(S, A \ S) ≤
cost(S, V \ S). Since defG(S) ≥ 0 and S is applicable, we conclude that

mincut(G[S]) ≤ mincut(G[A]) ≤ cost(S, A \ S) ≤ cost(S, V \ S)

≤ cost(S, V \ S) + defG(S)
(1)
≤ mincut(G[S]).

Hence all inequalities are equalities and defG(S) = 0. ◀

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:5

A ⊆ V

S ∩ A2

S ∩ A1

cA = (A1, A2)

A2

A ⊆ V

cA = (A1, A2)

S

(S, A \ S)

V \ A

Figure 3 Left: Illustration of the setting of Lemmas 3.1 and 3.2 with a mincut (A1, A2) for G[A]
(black ellipse) and S (dotted area) overlapping with both sides of the cut (one side with blue
background). Right: An example where a vertex set S (dotted area) with A1 ⊆ S and S ∩ A2 ̸= ∅
exists. For simplicity, all edges have weight 1 and all non-edges have weight 0. The set A1 (highlighted
by blue background) contains two connected vertices. The mincut of G[S] is 2, the same as both the
cost of cA = (A1, A2) and of (S, V \ S) = (S, A \ S) (two edges cut).

Lemma 3.1 already provides enough information to perform the conquer step in polynomial
time: The set S induces another mincut (S, A \ S) of G[A]. As all mincuts in a graph can be
computed in polynomial time [24, 20], we can simply iterate over those and check if another
mincut of G[A] has an applicable set S as one side. We can, however, improve this and avoid
computing all mincuts. To this end, we use the following observations.

▶ Lemma 3.2. Let G = (V, E, ω) be a graph, A ⊆ V , and let cA = (A1, A2) be a mincut
of G[A]. If there is an applicable set S ⊂ A that is cut by cA, that is, S∩A1 ̸= ∅ and S∩A2 ̸= ∅,
then
(a) (S, A \ S) is a mincut of G[A],
(b) the endpoints of edges crossing cA are part of S, i. e. V (A1, A2) ⊆ S,
(c) S includes either A1 or A2,
(d) S is not connected to vertices outside A, i. e. cost(S, V \A) = 0, and
(e) defG(Ai ∪ V (A1, A2)) = 0 = cost(Ai ∪ V (A1, A2), V \A) for i = 1 or i = 2.

Proof.
(a) This follows from mincut(G[A]) = cost(S, A \ S) from Lemma 3.1.
(b) If a vertex v ∈ V (A1, A2) were not in S, then cS = (A1 ∩S, A2 ∩S) would be cut of G[S]

with E(cS) ⊂ E(cA) and cost(cS) < cost(cA) = mincut(G[A]), contradicting Lemma 3.1.
(c) If S includes neither A1 nor A2, then we have cost(S, A\S) = cost(S, A1\S)+cost(S, A2\

S) > cost(S, A1 \S) = cost(S∪A2, A\ (S∪A2)) contradicting that (S, A\S) is a mincut
of G[A].

(d) This follows from cost(S, A \ S) = cost(S, V \ S).
(e) This directly follows from (b), (c), (d), and defG(S) = 0 (by Lemma 3.1). ◀

In practice, Lemma 3.2 (e) almost always rules out the existence of a set S going over
the cut (A1, A2). In theory, however, such a set S fulfilling all the restrictions of Lemmas 3.1
and 3.2 can exist, see Figure 3 (right) for an example.

We already know that isolating S is a mincut of G[A]. In the following we identify vertices
that must be on opposite sides of this cut. This reduces the mincut problem to a more
managable s-t-cut problem. Those s-t-cuts can be represented by a PQ-DAG.

Since we assume the graph to be connected, only one side of cA can be isolated from V \A.
Let A1 be this side, hence A1 ⊂ S by Lemma 3.2 (c). By Lemma 3.2 (b, d), the sought-after
set S contains also all vertices incident to edges crossing cA and cannot contain vertices of A

that are connected to the rest of the graph. Thus, if we contract all vertices in A1∪V (A1, A2)
into one source s and all vertices in A with neighbors in V \A into one sink t, then S must
be a minimum s-t-cut. See Figure 4 for an overview. Unfortunately, in the case that V = A,

IPEC 2022

25:6 Applying a Cut-Based Data Reduction Rule in Polynomial Time

(A1, A2)

G

A

Figure 4 Layout of S, A, G and the PQ-DAG. Vertices that must be in S are colored blue.
Vertices that must not be in S are colored orange. Those two colored sets are contained in the
sink/source component, respectively, of the PQ DAG representing all minimum s-t-cuts between
them.

there is no V \ A and we need another approach. Recall that defG(S) = 0. Thus, if both
sides of cA have deficit, there is no applicable S. If both sides have no deficit, then the
instance is trivial because the solution that transforms V to a clique has cost zero. Only if
one side has deficit and the other has not, there may exist an applicable set. In this case the
side without deficit must be included in S and at least one endpoint of an edge with negative
weight cannot be in S. Therefore we can solve the A = V case with two computations similar
to the A ⊂ V case by trying both endpoinds of an arbitrary deficit edge as the sink.

▶ Lemma 3.3. Let G = (V, E, ω) be a weighted graph, s, t ∈ V , and cS = (S, V \ S) a
minimum s-t-cut with s ∈ S, t ∈ V \ S and mincut(G[S]) = cost(cS). Then, there exists a
cut node Q ⊆ S of the PQ-DAG that separates S \Q from V \ S.

Proof. Let Q0, Q1, . . . , Qp be a reverse topological ordering of the PQ-DAG of the residual
graph of G that respects cS . Let Q≤i :=

⋃
j≤i Qj and Q>i :=

⋃
j>i Qj . The minimum

s-t-cuts respected by this ordering have the form ci = (Q≤i, Q>i) (by definition they all have
the same cost). Thus, s ∈ Q0, t ∈ Qp, cS = cℓ, and S = Q≤ℓ, for some ℓ < p.

cost(cS) = cost(cℓ) = cost(cℓ−1) = cost(Q≤ℓ−1, Q>ℓ−1)
= cost(Q≤ℓ−1, Qℓ) + cost(Q≤ℓ−1, Q>ℓ) ≥ cost(Q≤ℓ−1, Qℓ) ≥ mincut(G[S]).

Since mincut(G[S]) = cost(cS), the inequalities become equalities and cost(Q≤ℓ−1, Q>ℓ)=0.
Therefore, Qℓ is the desired cut node. ◀

The ordering of cut-nodes in a DAG with one sink and one source is the same in all
possible topological orderings. Hence, Lemma 3.3 gives potential candidate sets S1 ⊆ . . . ⊆ Sℓ

with ℓ < n. For each set we need to verify inequality (1), that is, compute the mincut of G[S]
and check that the deficiency of G[S] is zero (recall that cost(S, V \ S) = mincut(G[A]) by
construction of the PQ-DAG). The deficiency can be easily verified in O(n2) time in total
for all candidate sets due to them being subsets of each other. The computation of the
mincuts is not as easy. While we are not aware of a way to circumvent ℓ separate mincut
computations, we can reduce the size of the involved graphs such that all these graphs have
in total size O(n + m). To this end, we require another lemma with structural insights; see
Figure 5 (left) for an illustration of the setting.

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:7

3 3

3

cS

X

K2 Z

W

Y

K1

S V \ S

Q

3

Q

1

3

Figure 5 Left: The figure shows a example where mincut(G[S]) < cost(cS) given the setting of
Lemma 3.4. Two mincuts of G[S] are highlighted; one with a side contained in Q (green) and one
with no side contained in Q (red). Right: Layout of the sets used during the proof of Lemma 3.4.

▶ Lemma 3.4. Let G = (V, E, ω) be a weighted graph and s, t ∈ V . Further, let cS = (S, V \S)
be a minimum s-t-cut such that s ∈ S, t ∈ V \ S, mincut(G[S]) < cost(cS) = mincut(G),
and there exists a cut node Q ⊆ S of the PQ-DAG that separates S \Q from V \ S. Then
there exists a cut (Z, S \ Z) in G[S] with cost(Z, S \ Z) < mincut(G) and Z ⊆ Q.

Proof. Let cK = (K1, K2) be a mincut of G[S] with cost less than mincut(G). First, we
argue that cK must split Q. Assume that cK does not split Q and w.l.o.g. Q ⊆ K2. Then, Q

(and therefore also K2) separates K1 from V \ S. But this means that (K1, V \K1) is a cut
of G with cost(K1, V \K1) = cost(K1, K2) < mincut(G). Hence, cK must split Q.

Let W = K1 \Q, X = K1 ∩Q, Y = K2 \Q, and Z = K2 ∩Q. In the following, we will
show that the cut of G[S] that isolates Z is not larger than cK which would prove the claim.
The layout of the sets is visualized in Figure 5 (right).

Assume towards a contradiction that cost(cK) < cost(Z, S \Z), i.e., cost(Y ∪Z, W ∪X) <

cost(Z, Y ∪W ∪X). Splitting the costs into their parts results in

cost(Y, W) + cost(Y, X) + cost(Z, W) + cost(Z, X) = cost(Y ∪ Z, W ∪X)
< cost(Z, Y ∪W ∪X) = cost(Z, Y) + cost(Z, W) + cost(Z, X)

and hence cost(Y, W) + cost(Y, X) < cost(Z, Y).
With this we will get that the cut in G[S] isolating Y ∪W is strictly more expensive than

the cut that isolates just W . In detail,

cost(X ∪ Z, Y ∪W) = cost(X, W) + cost(Z, W) + cost(Z, Y) + cost(X, Y)
> cost(X, W) + cost(Z, W) + cost(Z, Y)
> cost(X, W) + cost(Z, W) + cost(Y, W) + cost(Y, X)
> cost(X, W) + cost(Z, W) + cost(Y, W)
= cost(W, X ∪ Y ∪ Z)

Since Q separates W and Y from V \S, the cuts that isolate Y ∪W or just W , respectively,
have the same cost in G as they have in G[S]. Furthermore, the cut that isolates Y ∪W in
G[S] is a mincut of G, because it is the cut in the PQ-DAG just before the cut node Q and
thus has a cost of cost(cS) = mincut(G). But this means that isolating W in G is cheaper
than the mincut. Refuting our assumption we prove the claim. ◀

IPEC 2022

25:8 Applying a Cut-Based Data Reduction Rule in Polynomial Time

Algorithm 2 Details to Line 4 in Algorithm 1.

Input: A connected weighted graph G = (V, E, ω), a vertex subset A ⊆ V , and a
mincut cA = (A1, A2) for G[A].

Output: A largest applicable set S ⊆ A with S ∩A1 ̸= ∅ and S ∩A2 ≠ ∅ if existing,
∅ otherwise.

1 Function LargestApplicableSetOverCut(G, A, cA)
2 if A is applicable then return A

3 if Lemma 3.2 (e) excludes existence of S then return ∅
4 if V = A then
5 uv ← arbitrary non-edge in Ai, i ∈ {1, 2}, with ω(uv) < 0
6 Aj ← side of cA not containing uv

7 return max(ApplicableSet(G, Aj , {u}), ApplicableSet(G, Aj , {v}))
8 else
9 Aj ← side of cA with defG(Aj) = 0 and cost(Aj , V \A) = 0

10 U ← vertices in A with neighbors in V \A // thus U ∩Aj = ∅
11 return ApplicableSet(G[A], Aj , U)

12 Function ApplicableSet(G, X, Y)
13 contract X into node s and Y into node t and construct PQ-DAG D

14 Q0, Q1, . . . , Qp ← a reverse topological ordering of D // s ∈ Q0 and t ∈ Qp

15 S ← ∅
16 for i← 0 to q − 1 do
17 Ci ← vertices in G represented by

⋃
j≤i Qj

18 if Qi is cut node in D and Ci is applicable then S ← Ci

19 return S

Using Lemma 3.4, we can contract all vertices except Qi before each mincut computation
of Si. Hence, we can efficiently compute the mincut for each candidate set S, resulting in the
following overall theorem (see Algorithm 2 for pseudocode). We denote with Tmincut(n, m)
and Ts-t-maxflow(n, m) the time to compute in an edge-weighted graph with n vertices and m

edges a mincut and a maximum s-t-flow, respectively.

▶ Theorem 3.5. Reduction Rule 2.2 can be applied in O(n(Tmincut(n, m)+Ts-t-maxflow(n, m)+
n2)) time.

Proof. We use Algorithm 1 with Line 4 being implemented with Algorithm 2.
All we need to show for the correctness of Algorithm 1 is that Algorithm 2 is correct.

To this end, we need to show that if there is an applicable set S over the cut cA, then
Algorithm 2 will return such a set. (Note that Algorithm 2 never returns a non-applicable set
as applicability is checked before returning a set.) By Lemma 3.3, the set S is characterized
by a cut node in the PQ-DAG with s representing the side of cA with deficit zero and t

representing the vertices with neighbors in V \A (or t representing an endpoint of a non-edge
with non-zero weight if V = A). Hence, all sets that could possibly be applicable are
considered in Line 18. Thus, if an applicable set S exists, then an applicable set is returned.

It remains to show the claimed running time. To this end, start with Algorithm 1: If
Lines 2 to 4 can be done in O(Tmincut(n, m) + Ts-t-maxflow(n, m) + n2) time, then the claimed
running time follows as there are at most O(n) recursive calls. The only nontrivial work in
Lines 2 and 3 is the computation of a mincut. This can be done in O(Tmincut(n, m)) time.

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:9

It remains to argue why Line 4 (that is, Algorithm 2) runs in O(Tmincut(n, m) +
Ts-t-maxflow(n, m) + n2) time: First, observe that the cost of the edges from A to V \A and
of the edges from A1 to A2 can be simply transmitted in a recursive call of Algorithm 1.
Hence, with simple bookkeeping, we can access cost(A, V \A) in constant time during the
whole algorithm. Moreover, since to Algorithm 2 a mincut cA of A is given, it follows that
Lines 2 and 3 of Algorithm 2 can be done in O(n2) time by simply iterating over all vertex
pairs. The time to perform Lines 4 to 11 is dominated by the time required to execute
the function in Line 12. Thus, it remains to show that this function can be computed
in O(Tmincut(n, m) + Ts-t-maxflow(n, m) + n2) time: Line 13 requires contraction of two vertex
sets, the computation of one maximum s-t-flow, and the construction of the PQ-DAG from
said flow. The maximum s-t-flow can be computed in O(Ts-t-maxflow(n, m)) time (note that
the contraction of X and Y results in a graph of size O(n + m)). The contraction of the
vertices, the construction of the PQ-DAG [25], and the computation of a reverse topological
order can all be done in linear time. Thus, Lines 13 and 14 require O(Ts-t-maxflow(n, m))
time.

It remains to argue that the for-loop in Lines 16 to 18 can be done in O(Tmincut(n, m)+n2)
time. The bottleneck here is the check whether the candidate set Ci is applicable in Line 18.
By inequality (1) and Lemma 3.1, this involves checking for each Ci: (a) cost(Ci, V \ Ci) =
cost(Ci, A \ Ci), (b) defG(Ci) = 0, (c) mincut(G[Ci]) = cost(Ci, A \ Ci). By construction of
the PQ-DAG we have cost(Ci, V \ Ci) = cost(Ci, A \ Ci) (only vertices in Y ⊆ Qp can have
neighbors outside A). For (b) we only need to check vertex pairs within Ci that were not
checked in the previous iteration Ci−1 as Ci−1 ⊆ Ci. Thus, for all sets C0, . . . , Cq−1 this can
be done in O(n2). (In fact, if the first set Ci has deficiency larger than zero, then this holds
for all subsequent sets and the loop can be aborted.) It remains to show that (c) can be done
in O(Tmincut(n, m)) time: To this end, we only check if mincut(G[Ci]) < cost(Ci, A \ Ci)
as mincut(G[Ci]) > cost(Ci, A \ Ci) would contradict (Ci, A \ Ci) being a mincut of A.
Exploiting Lemma 3.4, we contract all vertices in Ci \ Qi into one vertex x and compute
a mincut cx in the resulting graph G[{x} ∪ Qi]. If cost(cx) < cost(Ci, A \ Ci), then we
know that Ci is not applicable as mincut(G[Ci]) ≤ cost(cx). Otherwise, if cost(cx) ≥
cost(Ci, A \Ci), then, by Lemma 3.4, we know that mincut(G[Ci]) = cost(Ci, A \Ci) and Ci

is applicable. Thus, the running time is
p−1∑
i=1

Tmincut(|Qi + 1|, |E(Qi)|+ |Qi|) ∈ O(Tmincut(n, n + m)) = O(Tmincut(n, m))

as we assume the input graph to be connected. Thus, Reduction Rule 2.2 can be applied
in O(n · (Tmincut(n, m) + Ts-t-maxflow(n, m) + n2))) time. ◀

Since Tmincut(n, m) ∈ O(m1+o(1)) [20, 23] and Ts-t-maxflow(n, m) ∈ m1+o(1) for polynomi-
ally bounded capacities [12], it follows that Reduction Rule 2.2 can be applied in O(nm1+o(1)+
n3) time for polynomially bounded weights.

▶ Corollary 3.6. If all weights are polynomially bounded, then Reduction Rule 2.2 can be
applied in O(nm1+o(1) + n3) time

4 Experimental Evaluation

In this section, we discuss the effectiveness and the recursion behavior of Algorithm 1. To
this end, we provide a basic implementation as proof of concept to demonstrate by how much
several graphs can be reduced when Reduction Rule 2.2 is applied exhaustively. Moreover,
we briefly analyze the recursion depth of Algorithm 1.

IPEC 2022

25:10 Applying a Cut-Based Data Reduction Rule in Polynomial Time

Implementation. We implemented Algorithm 1 in the programming language Julia. The
implementation and the test setup can be found on Github1.

Our implementation of Algorithm 1 resolves the conquer step of finding a candidate set
over the mincut cA = (A1, A2) in Line 4 as follows: First A and the restrictions in Lemma 3.2
(e) are tested (exactly as in Lines 2 and 3 in Algorithm 2). Note that in all test instances
one of the two if statements were triggered, that is, either the current set A was applicable
or Lemma 3.2 (e) certifies that there is no applicable set over the cut cA. Hence we did not
implement the sophisticated approach presented in Algorithm 2. Instead, as a fallback, our
implementation would find such an applicable set S by simply iterating over all mincuts (see
discussion after Lemma 3.1).

If an applicable vertex set S is found in the conquer step (Line 4 of Algorithm 1), then we
do not recurse (Line 5). Instead, we merge the vertices in S and run the algorithm again on
the newly created graph. Thus, our implementation exhaustively applies Reduction Rule 2.2.

To compute one (and all) mincut(s) of a graph, we use the implementation by Henzinger
et al. [19], which uses integer weighted graphs. Therefore our implementation also requires
integer weighted input graphs.

Setup. To test the implementation, we used the weighted instances that were converted
into unweighted instances for the PACE Challenge 2021 2. This dataset includes primarily
biologically motivated graphs and additionally randomly generated graphs. For a more
detailed description of the dataset we refer to the PACE report [21].

We treat each connected component of the test graphs as a single graph. We only tested
the algorithms on graphs with 100 or more vertices and only graphs which are not cluster
graphs already, as such instances are easy to solve. This resulted in 204 different graphs
from the PACE challenge dataset, with 150 real-world instances and 54 randomly generated
instances. The largest graphs have around 3, 000 vertices. The edge weights are floating-point
values. As our implementation uses integer weights, we multiplied the edge weights by a
factor of 1000 and rounded afterwards.

We also implemented two other approaches for finding applicable sets to compare the
results of our algorithm. The first one is the Large Neighborhood (LN) approach, similar to
the data reduction rule used by Cao and Chen [9] in their 2k-vertex kernel for Weighted
Cluster Editing. They essentially test for every vertex u ∈ V whether the closed neigh-
borhood N [u] is applicable. The second one, simply called Heuristic, is the implementation
of the heuristic presented by Böcker et al. [8] for applying Reduction Rule 2.2, which we
embedded in our implementation. Both of these approaches are run exhaustively. Note that
both these approaches can fail to find applicable sets although the graph contains such a set,
see Figure 2 for an example where the Large Neighborhood approach fails.

4.1 Results
Effectiveness. We were first interested in how much the graph size shrank after applying
the data reduction rule with the various algorithms. As one can see in Figure 6 (left side),
Algorithm 1 merges 24.2% of the vertices of the real-world instances, roughly three times
the amount of vertices, compared to the LN approach, which merges 8.1% of the vertices.
The algorithms perform very poorly on the random instances, with nearly the same amount

1 https://github.com/venondev/AlmostCliquePoly
2 The scripts for collecting and converting the graphs can be found at https://github.com/

PACE-challenge/Cluster-Editing-PACE-2021-instances.

https://github.com/venondev/AlmostCliquePoly
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:11

Algorithm 1 LN Heuristic
0

10

20

24.2

8.1

0.7
2 1.4

0

M
er

ge
ra

tio
[%

]
Merge ratio comparison

0 20 40 60 80 100
0

20

40

60

Merge ratio [%]

N
um

be
r

of
in

st
an

ce
s

Histogram of the merge ratios

Real World (150 graphs)
Random (54 graphs)

Figure 6 Left: Comparison of the average merge ratio (number of vertices merged / n) of the
three algorithmic approaches Algorithm 1, “Large Neighborhood” (LN) by Cao and Chen [9], and
“Heuristic” by Böcker et al. [8] on the two instance categories real world and random. Right:
Two histograms (blue behind green) showing the number of instances with respect to the merge
ratio (number of vertices merged / n) for Algorithm 1. Note that the input graphs were not cluster
graphs.

of merged vertices, 1.4% using the LN approach and 2% using Algorithm 1. The heuristic
implementation by Böcker et al. [8] does not perform well on the dataset, with 0.7% for
real-world instances and 0% for random instances.

When looking at the histogram of merge ratios for Algorithm 1 in Figure 6 (right side), it
shows that for most graphs of the test set the rule reduces the graph size only slightly or not
at all. But there are also 23 graphs which got solved almost entirely, that is, the resulting
instance contained at most 5% of the initial number of vertices. When using Algorithm 1,
11.3 % of the instances got solved completely, around 1.5 % when using the LN approach,
and 0.5% when using the heuristic by Böcker et al. [8].

Recursive calls of Algorithm 1. The depth of the recursion of Algorithm 1 is between log(n)
(splitting the graph in half in each recursive call) and n (cutting exactly one vertex off in
each recursive call). In our implementation the depth can be smaller than log(n): If we find
an applicable set, then we merge it and run the algorithm again. The reported recursion
depth is then the maximum over all runs on the instance.

Unfortunately, we observe that for most instances the recursion depth is close to n, see
Figure 7 for an overview. This means that in most recursion steps, the mincut only cuts out
a single vertex. Consequently, the size of the set A ⊆ V that the algorithm looks at within
each recursion step only decreases slowly. As a result, on most on the instances Algorithm 1
computes many mincuts on large graphs, resulting in high running times.

A preliminary test underlined the issue with the running time: For most of the instances,
our basic implementation of Algorithm 1 is more than ten times slower than the LN approach.
For some instances, our basic implementation is up to 1000 times slower.

IPEC 2022

25:12 Applying a Cut-Based Data Reduction Rule in Polynomial Time

6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
100

101

102

103

log(n)

R
ec

ur
sio

n
D

ep
th

Comparing recursion depth to optimal recursion depth

Real World
Random

0

0.2

0.4

0.6

0.8

1

M
er

ge
R

at
io

Figure 7 Comparing the recursion depth of the instances. If Algorithm 1 was run multiple time
on an instance (due to merging some an applicable vertex set), then the maximum recursion depth
over all runs is plotted. The red line denotes the upper bound of the recursion depth, which is the
number of vertices n. If the algorithm does not find a set of vertices to merge, then the green line
denotes the lower bound log(n) of the recursion depth. The instances are colored according to their
respective merge ratio (number of vertices merged / n). The only instances below (or close) to the
green line are instances with merge ratio close to one.

4.2 Summary

Our experiments show that Reduction Rule 2.2 can work well on the test dataset, reducing
the real-world graphs by 24% on average if applied exhaustively. In this regard Algorithm 1
outperforms the other approaches. Notably, Algorithm 1 solves 11% of the graphs completely,
including some larger graphs with up to 3, 000 vertices. Unfortunately, Algorithm 1 still comes
at the cost of a high running time. Hence, we suggest that (an improved implementation
of) Algorithm 1 could be used as preprocessing before running a branch&bound solver but
probably not during branching itself.

One avenue for improving the implementation is the computation of a mincut. Currently,
if a mincut separates one vertex from the graph, then in the next recursive call the algorithm
of Henzinger et al. [19] is cold-started to compute a new mincut on the slightly altered graph.
Here the use of, for example, the dynamic algorithm of Henzinger et al. [18] seems promising.

5 Conclusion

In this work we provided the first polynomial-time algorithm to apply Reduction Rule 2.2.
As the current running time is still quite high, an immediate open question is about better
theoretical guarantees. Dealing with the bad recursive behavior would be a first step in
this direction. Another question is whether our algorithm could be made working with
approximate cuts instead of (optimum) mincuts. On the practical side, our experiments
demonstrate the potential effectiveness of Reduction Rule 2.2 in real world instances, if
applied exhaustively. Thus, the question is whether there are better tradeoffs between
effectiveness and efficiency and whether state-of-the-art solvers [5] would benefit.

H. Schulz, A. Nichterlein, R. Niedermeier, and C. Weyand 25:13

References
1 Faisal N. Abu-Khzam. On the complexity of multi-parameterized cluster editing. Journal of

Discrete Algorithms, 45:26–34, 2017.
2 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster edit-

ing with vertex splitting. In Proceedings of the 5th International Symposium on Combinatorial
Optimization (ISCO ’18), volume 10856 of LNCS, pages 1–13. Springer, 2018.

3 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

4 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3-4):281–297, 1999. doi:10.1089/106652799318274.

5 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. A branch-and-bound algorithm for cluster
editing. In Proceedings of the 20th International Symposium on Experimental Algorithms
(SEA ’22), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

6 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

7 Sebastian Böcker and Jan Baumbach. Cluster Editing. In Proceedings of the 9th Conference
on Computability in Europe, CiE 2013, volume 7921 of LNCS, pages 33–44. Springer, 2013.

8 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. doi:10.1007/
s00453-009-9339-7.

9 Yixin Cao and Jianer Chen. Cluster Editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012.

10 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

11 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondrej Suchý. Cluster editing in multi-layer
and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms
and Computation (ISAAC ’18), volume 123 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022. doi:10.48550/arXiv.2203.00671.

13 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for Cluster Editing. In Proceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of LNCS, pages
312–321. Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

14 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters.
Journal of Computer and System Sciences, 80(7):1430–1447, 2014.

15 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392, 2005.

16 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

17 Sepp Hartung and Holger H. Hoos. Programming by optimisation meets parameterised
algorithmics: a case study for cluster editing. In Proceedings of the 9th International Conference
on Learning and Intelligent Optimization, LION 2015, volume 8994 of LNCS, pages 43–58.
Springer, 2015. doi:10.1007/978-3-319-19084-6_5.

18 Monika Henzinger, Alexander Noe, and Christian Schulz. Practical fully dynamic minimum
cut algorithms. In Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX 2022), pages 13–26. SIAM, 2022. doi:10.1137/1.9781611977042.2.

IPEC 2022

https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1089/106652799318274
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.48550/arXiv.2203.00671
https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-319-19084-6_5
https://doi.org/10.1137/1.9781611977042.2

25:14 Applying a Cut-Based Data Reduction Rule in Polynomial Time

19 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Finding all global
minimum cuts in practice. In Proceedings of the 28th Annual European Symposium on
Algorithms (ESA ’20), volume 173, pages 59:1–59:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

20 David R Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000.
21 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE

2021 Parameterized Algorithms and Computational Experiments Challenge: Cluster Editing.
In Proceedings of the International Symposium on Parameterized and Exact Computation
(IPEC ’21), volume 214, pages 26:1–26:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.IPEC.2021.26.

22 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

23 Jason Li. Deterministic mincut in almost-linear time. CoRR, abs/2106.05513, 2021.
24 Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus

representations of minimum cuts. Japan Journal of Industrial and Applied Mathematics,
17(2):245–264, 2000.

25 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a
network and applications. In Combinatorial Optimization II, pages 8–16. Springer, 1980.

26 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

27 Esther Ulitzsch, Qiwei He, Vincent Ulitzsch, Hendrik Molter, André Nichterlein, Rolf Nie-
dermeier, and Steffi Pohl. Combining clickstream analyses and graph-modeled data clus-
tering for identifying common response processes. Psychometrika, 86(1):190–214, 2021.
doi:10.1007/s11336-020-09743-0.

https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.1007/s11336-020-09743-0

The PACE 2022 Parameterized Algorithms and
Computational Experiments Challenge: Directed
Feedback Vertex Set
Ernestine Großmann #

Universität Heidelberg, Germany

Tobias Heuer #

Karlsruhe Institute of Technology, Germany

Christian Schulz #

Universität Heidelberg, Germany

Darren Strash #

Hamilton College, Clinton, NY, USA

Abstract
The Parameterized Algorithms and Computational Experiments challenge (PACE) 2022 was devoted
to engineer algorithms solving the NP-hard Directed Feedback Vertex Set (DFVS) problem. The
DFVS problem is to find a minimum subset X ⊆ V in a given directed graph G = (V, E) such that,
when all vertices of X and their adjacent edges are deleted from G, the remainder is acyclic.

Overall, the challenge had 90 participants from 26 teams, 12 countries, and 3 continents that
submitted their implementations to this year’s competition. In this report, we briefly describe
the setup of the challenge, the selection of benchmark instances, as well as the ranking of the
participating teams. We also briefly outline the approaches used in the submitted solvers.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Feedback Vertex Set, Algorithm Engineering, FPT, Kernelization, Heuristics

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.26

Funding Partially supported by DFG grant SCHU 2567/3-1.

Acknowledgements The PACE challenge was supported by Networks [1]. The prize money (€4000)
was generously provided by Networks [1], an NWO Gravitation project of the University of Ams-
terdam, Eindhoven University of Technology, Leiden University and the Center for Mathematics
and Computer Science (CWI). We are grateful to the whole optil.io team, led by Szymon Wasik,
and especially to Jan Badura and Artur Laskowski for the fruitful collaboration and for hosting the
competition at the optil.io online judge system.

1 Introduction

Over the last two decades, significant advances have been made in the design and analysis
of fixed-parameter algorithms for a wide variety of graph-theoretic problems. This has
resulted in an algorithmic toolbox that is by now well-established. Recently, these theoretical
algorithmic ideas have received attention from the practical perspective [2, 3, 25, 40, 50].
A large part of this effort is driven by the Parameterized Algorithms and Computational
Experiments Challenge (PACE) which was conceived in Fall 2015 to deepen the relationship
between parameterized algorithms and practice. Topics from multivariate algorithms, exact
algorithms, fine-grained complexity, and related fields are in scope. The mission of PACE is
to bridge the divide between the theory of algorithm design and analysis, and the practice of

© Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.grossmann@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-9678-0253
mailto:tobias.heuer@kit.edu
https://orcid.org/0000-0002-5399-0496
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:dstrash@hamilton.edu
https://orcid.org/0000-0001-7095-8749
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 PACE 2022: Directed Feedback Vertex Set

algorithm engineering, inspire new theoretical developments, investigate in how far theoretical
algorithms from parameterized complexity and related fields are competitive in practice,
produce universally accessible libraries of implementations and repositories of benchmark
instances as well as to encourage the dissemination of these findings in scientific papers. In
each iteration of the challenge [20, 21, 12, 24, 51, 47] participants of the competition have
been asked to provide implementations for one or two specifically chosen problems. Moreover,
there are often two types of tracks: a track in which participants have to provide algorithms
that solve a problem to optimality and a track in which heuristic solvers are allowed (and
solutions are ranked accordingly). The challenge tackled already a wide range of problems.
In previous iterations, the challenge tackled the following problems:

First Iteration: Treewidth and Undirected Feedback Vertex Set [20]
Second Iteration: Treewidth and Minimum Fill-In [21]
Third Iteration: Steiner Tree [12]
Fourth Iteration: Vertex Cover and Hypertree Width [24]
Fifth Iteration: Treedepth [51]
Sixth Iteration: Cluster Editing [47]

Since its inception, PACE challenges have established themselves as highly competitive
with typically around 50 participants submitting their solvers from all over the world.
Moreover, the challenges have already had a significant impact on the community as a whole.
There is a wide range of research articles based on concrete implementations competing
in previous editions of PACE that were published in prestigious conferences on algorithm
engineering such as ACDA, ALENEX, ESA Track B, SEA, and WADS. Moreover, the
challenges already successfully inspired new research, i.e. after the challenge there are also
new results that improve on the previously best implementations from a particular challenge.

In this article, we report on the seventh iteration of the PACE implementation challenge.
The problem chosen for this year’s iteration has been the directed feedback vertex set problem.
The challenge featured two tracks: an exact track and a heuristic track. In the exact track,
the task was to find an optimal solution of each directed feedback vertex set instance within
a time limit of 30 minutes. In the heuristic track, the task was to compute a valid solution
that was as small as possible within a time limit of ten minutes.

The PACE 2022 challenge was announced and tracks were specified in September 2021.
In January 2022, public instances were made available to the challenge participants. In
March 2022, challenge participants were able to submit their solvers into the optil.io platform
in which they could test their solvers on the instances that were publicly available. The
platform also provided a provisional ranking. The final version of the submissions was due 1st
June 2022. Afterwards, the submissions were evaluated on the publicly available as well as the
private (hidden) instances. The results were announced in July 2022. The award ceremony
took place during the International Symposium on Parameterized and Exact Computation
(IPEC 2022).

2 Directed Feedback Vertex Set

The Directed Feedback Vertex Set (DFVS) problem is to find a minimum subset X ⊆ V in a
given directed graph G = (V, E) such that, when all vertices of X and their adjacent edges
are deleted from G, the remainder is acyclic. Thus a feedback vertex set of a graph is a set
of vertices whose deletion leaves a graph acyclic. Figure 1 shows an example.

The DFVS problem has a wide range of applications including deadlock resolution [33],
program verification [57] and VLSI chip design [54]. The decision variant of DFVS (asking if
there exists a feedback vertex set of size at most k) is NP-complete [46] even if restricted to

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:3

Figure 1 An input graph and a feedback vertex set (red) is shown on the left. In this example,
deleting/removing the red vertex and its edges in the left graph results in the graph on the right
hand side and leaves the remaining graph without any cycles.

graphs with maximum in- and out-degree two. The optimization variant of DFVS can be
solved in O∗(1.9977n) time due to an algorithm by Razgon [69]. Chen et al. [17] showed
that the problem is fixed-parameter tractable if parameterized with the solution size k,
giving an algorithm with running time O(4kk!k3n4) = 4kk!nO(1). With improvements to
solving the Skew Edge Multicut problem, this running time is reduced to O(4kk!k4nm) [18,
Corollary 8.47]. Lokshtanov et al. developed an improved algorithm with running time
O(4kk!k5(n+m)) [60], which has only linear dependence on the input size. It is open whether
DFVS has a polynomial kernel in k, however a polynomial kernel exists when parameterized
on the feedback vertex set of the underlying undirected graph [10], and for the compound
parameterization of k plus the size of a treewidth-η modulator for any constant η [61]. Note
that the problem is equivalent to the edge-deletion variant commonly called Feedback Arc
Set: there are reductions in both directions that preserve the value of the optimal solution
and only increase the size of the graph (sum of vertices and edges) by a polynomial factor [27].
Faster algorithms exist for undirected graphs [49, 76, 29], as well as for orientations of
complete graphs (called tournament graphs) [34, 29].

The best approximation algorithm for DFVS is due to Even et al. [27], who gave an
algorithm with approximation factor O(min{log τ∗ log log τ∗, log n log log n}) where τ∗ is
a lower bound, such as the optimal fractional solution in the LP relaxation. By Karp’s
reduction [46], DFVS is APX-hard, meaning that there is no polynomial-time approximation
scheme (PTAS) for DFVS assuming P ̸=NP. Furthermore, assuming the Unique Games
Conjecture, DFVS does not admit a polynomial-time constant factor approximation [37, 38].
However, Lokshtanov et al. give a 2-approximation algorithm for DFVS when the input is a
tournament graph [59].

3 Challenge Setup

There were two tracks in which the participants could compete: an exact and a heuristic
track. For each track the 200 instances were selected by the Program Committee (PC), half
of them publicly available before the submission deadline. The instances were sorted by the
time our internal solvers needed to solve the instance. In the testing phase the instances were
evaluated on the online judging platform optil.io [75]. For the final evaluation, we tested the
instances on a local machine: an AMD EPYC 7702P 64-Core CPU, 200W, 2.00GHz, 256MB
L3 Cache, DDR4-3200, Turbo Core max. 3.35GHz. Both evaluations used the same time
limits: 30 minutes for the exact track and 10 minutes for the heuristic track.

3.1 Track Descriptions
The exact and the heuristic track followed essentially the same rules as in previous iterations
of PACE. We now shortly describe the tracks:

IPEC 2022

https://optil.io

26:4 PACE 2022: Directed Feedback Vertex Set

Exact Track. In this track submissions had to find an optimal (minimum) feedback vertex
set within 30 minutes. We expected each submission to be an exact algorithm, although
we did not ask for proof of it. If we found through code checks or experiments that the
algorithm of a submission is not an exact algorithm, it was excluded from the track. If for
some instance the program returned a solution that has not been optimal within the time
limit, either because it is not minimum or not a feedback vertex set, then the submission has
been disqualified. The ranking has been determined by the number of solved instances. In
case of a tie, the winner has been determined by the time required to solve all instances.

Heuristic Track. In the heuristic track, submissions had to provide a feedback vertex set
within 10 minutes for a given instance. The submissions have been ranked by the geometric
mean over all instances of 100 × best solution size

solution size . Here, solution size is the size of the solution
returned by the submission and best solution size is the size of the smallest solution known
to the PC (which may not be optimal). If the output of the program turned out to be not a
feedback vertex set (or there is no output on SIGKILL) for some instance, solution size for
the instance has been considered as |V |.

3.2 Internal Solver
Our goal was to create instances that are easy to solve, as well as instances that are as
challenging as possible for the submissions. We implemented several data reduction rules
and heuristics which we then used in our ILP solver to compute optimal solutions for the
instances described in Section 3.3. We will now give a brief description of the algorithms.

Reduction Rules. We implemented four data reduction rules which are also summarized in
the work of Lin and Jou [58]. We first compute all strongly connected components (SCC)
using Tarjan’s algorithm [74] and remove all edges connecting two SCCs. We then solve
each SCC separately. Further, we contract each node u with in-degree or out-degree one
onto its unique predecessor or successor v. Intuitively, all cycles containing u also contain
v. The last reduction rule creates an auxiliary graph G′ by removing all undirected edges
from the original graph (an edge {u, v} is undirected if the graph contains the directed edges
(u, v) and (v, u)) and then computes all SCCs of G′. An edge that connects two SCCs in
G′ can be removed from the original graph. For each undirected edge {u, v} either u or v

must be part of a DFVS (each undirected edge induces a cycle of size two) and therefore,
the directed edges (u, v) and (v, u) are not part of the subgraph induced by removing any
DFVS. Edges that connect two SCCs in G′ are not part of a cycle when we remove one node
of each undirected edge, and thus can be removed from the original graph. We apply the
data reductions until none of them are applicable.

Random Walk Heuristic. A random walk on a directed graph G = (V = {v1, . . . , vn}, E)
can be modeled as a Markov chain with transition probabilities pij = 1

d(vi) where d(vi) is
the out-degree of node vi. The stationary distribution π = (π1, . . . , πn) of this Markov chain
describes the probability distribution of visiting a node after a sufficiently long time (π is
the solution of the linear equation Pπ = π). Moreover, π−1

i represents the mean return time
to node vi in random walks. Thus, the stationary distribution π encodes information about
the global structure of all cycles and a node vi with the highest πi value is very likely to be
visited most frequently (and also contained in many cycles). A heuristic based on this idea
was proposed by Lemaic and Speckenmeyer [70, 55]. We implemented a simple version of
this algorithm that performs the random walk explicitly. We select a random start node and

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:5

visit 10|V | nodes. We remove the node that is visited most often. Afterwards, we recompute
the SCC that the corresponding node was part of and remove all edges connecting two SCCs.
The algorithm terminates if the graph is acyclic.

Maximum Acyclic Subgraph Heuristic. The DFVS problem is equivalent to finding a
set V ′ of maximum cardinality such that the subgraph G[V ′] is acyclic. The set V \ V ′ is
then a minimum DFVS. If a graph G = (V, E) is acyclic, then there exists a topological
ordering T = ⟨v1, . . . , vn⟩ of the nodes V such that for all edges (vi, vj) ∈ E holds that i < j.
Galinier et al. [32] propose a local search algorithm that constructs an acyclic subgraph
G[V ′] such that |V ′| is maximized. Consider an acyclic subgraph G[V ′] with V ′ ⊆ V and its
topological ordering T = ⟨v1, . . . , vn′⟩ with n′ = |V ′|. If we insert a node u /∈ V ′ into T after
the position i, we have to remove all nodes in Vin(u, i) := {vj ∈ V ′ | (vj , u) ∈ E ∧ j > i}
and Vout(u, i) := {vj ∈ V ′ | (u, vj) ∈ E ∧ j ≤ i} from T such that T still represents a valid
topological ordering of the subgraph G[V ′′] with V ′′ = (V ′ ∪ {u}) \ (Vin(u) ∪ Vout(u)). Thus,
we can efficiently evaluate if a node u /∈ V ′ increases the cardinality of the acyclic subgraph
G[V ′] by computing the gain g(u, i) := 1 − |Vin(u, i)| − |Vout(u, i)|.

Our local search algorithm uses the well-known label propagation heuristic [68, 79]. The
algorithm works in rounds and in each round it visits the nodes in random order. We initially
start with an empty topological ordering T (V ′ = ∅). If we visit a node u /∈ V ′, we insert u

into T after position i that maximizes g(u, i) and remove all nodes in Vin(u, i) and Vout(u, i)
from T . Note that we only evaluate positions in {i | (vi, u) ∈ E ∨ (u, vi) ∈ E} and add u to
T if g(u, i) ≥ 0. Further, insertions with g(u, i) = 0 naturally perturb the solution and we
observed that this enables frequent improvements also in later iterations of the algorithm.
The algorithm terminates if we reach a predefined number of rounds (= 200). To maintain the
topological ordering, we use a sparse table priority queue implementation [42] that provides
(amortized) constant time operations for access, insertions and removals of nodes.

We additionally made two major improvements to the original algorithm proposed by
Galinier et al. [32]. Both exploit the fact that the topological ordering of the subgraph G[V ′]
is not unique and therefore provide some flexibility in the ordering of the nodes in T . If
we are not able to insert a node u into the topological ordering T (i.e., g(u, i) < 0 for all
possible positions i), we shift all nodes vi ∈ T adjacent to u via an in-arc (vi, u) ∈ E to the
left and all nodes vj ∈ T adjacent to u via an out-arc (u, vj) ∈ E to the right in T (both as
far as possible such that T still represents a valid topological ordering of G[V ′]). If then the
indices of all nodes in T adjacent via an in-arc to u are smaller than the ones adjacent via
an out-arc to u, we can increase the cardinality of the acyclic subgraph by inserting u in
between. We further diversify the search by periodically computing a random topological
ordering of G[V ′] using Kahn’s algorithm [45] (every fifth round).

Both techniques significantly improved the solution quality of the original algorithm (more
than 10% on most instances). In practice, this heuristic was often an order of magnitude
faster than our random walk algorithm. We also see more potential in this method as the
concepts of gains allow the development of more sophisticated local search techniques.

Exact Solver. For the exact track, we solved the instances using a branch-and-cut ILP
formulation and used Gurobi as a solver. Moreover, the we integrate the data reduction
rules described above into the solver. On the obtained irreducible instance, we run acyclic
subgraph heuristics from above to get an initial feasible DFVS and provide the solution as an
upper bound to the ILP solver that solves the following ILP to compute an optimal solution
on the instance:

IPEC 2022

26:6 PACE 2022: Directed Feedback Vertex Set

min
∑
v∈V

xv

s.t.
∑

i

xvi
≥ 1 ∀ cycles C = {v1, v2, ..., vk} in G.

Note that the number of constraints here can be exponential. As this would result in an
intractable ILP, we add constraints lazily as follows. Initially our solver adds all constraints
for cycles of length two. In addition, for each node u ∈ V , we add three cycle constraints
representing cycles in which u is the node with smallest ID (ensures that the cycle constraints
are distinct). We will call such a cycle an elementary cycle of u. We then solve the ILP using
Gurobi and check if the solution is a feasible DFVS, i.e. after removal of the solution vertices
there is no cycle remaining. If this is the case, then the solution is also an optimal solution
to our input instance. If it is not a DFVS then after removing the vertices from the graph
there must be a cycle. We then add for each node u in the remaining graph one additional
elementary cycle and repeat the process.

Surprisingly, our exact solver was able to compute optimal solutions for some of the
real-world instances in the heuristic track with up to 500k edges within a few minutes.
However, the running time increases drastically for denser graphs (even if they contain only
a few thousand edges). Thus, we believe that the density of a graph is a good indicator for
the hardness of an instance.

3.3 Instances

We obtained instances from a wide range of different sources. In particular, as there is a wide
range of random graph models available [66], we generated instances from different graph
classes using KaGen [30], included several real-world instances from public graph repositories,
and lastly generated instances that are hard for typical heuristic solvers such as heuristics
based on random walks.

Generation and Selection Process. Our instance generation and selection process worked
as follows: for both the exact and the heuristic track we generated a very large set of
instances. From the graphs that are bidirected, we removed a random amount of edges
p ∈ {0, 10, 20, 30, 40, 50} to also obtain directed instances from those models. The amount
of instances that we generated internally has been much larger the necessary 200 instances
for the public and private set of instances for each track. The instances that we generated
are described by a wide-range of parameters of different graph families (see below for more
details). From the large set, we filtered instances that had more than 1 000 strongly connected
components, less edges than nodes and excluded instances that had a file size above 50MB.
On the remaining set of instances, we ran our exact and heuristic solvers. For the exact
track, we then further excluded instances that our solver could handle in less than a second.
Afterwards, we sampled instances uniformly at random. In particular, we included easy
instances that could be solved within a couple of seconds as well as instances that were hard
to solve. For the heuristic track, we tried to include instances that are hard for heuristics.
From the instances that our exact solver could solve in this track, we included the ones where
the result of heuristic solver had significantly more vertices than the optimum solution. Here,
we also included real-world instances as well as instances designed to be hard for heuristics.

The instances we used can be categorized as follows:

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:7

Erdős-Rényi Graphs. The first version of the Erdős-Rényi (ER) model was proposed by
Gilbert [35] and is denoted as the G(n, p) model. Here, each of the n(n − 1)/2 possible edges
of an n-node graph is independently sampled with probability 0 < p < 1 (Bernoulli sampling
of the edges).

The second version, proposed by Erdős and Rényi [26], is denoted as the G(n, m) model.
In the G(n, m) model, we choose a graph uniformly at random from the set of all possible
graphs which have n vertices and m edges.

Random Geometric Graphs. Random geometric graphs (RGGs) are bidirected spatial
networks where we place n vertices uniformly at random in a d-dimensional unit cube [0, 1)d.
Two vertices p, q ∈ V are connected by an edge iff their d-dimensional Euclidean distance
dist(p, q) =

√∑d
i=1(pi − qi)2 is within a given threshold radius r. Thus, the RGG model

can be fully described using the two parameters n and r. Note that the expected degree of
any vertex that does not lie on the border, i.e. whose neighborhood sphere is completely
contained within the unit cube, is d̄(v) = π

d
2

Γ(d
2 +1) rd [65]. Here, we used two and three

dimensional random geometric graphs as available in KaGen.

Random Hyperbolic Graphs. Random hyperbolic graphs (RHGs) are bidirected spatial
networks generated in the hyperbolic plane with negative curvature. Analogous to RGGs,
RHGs are parameterized by the number of vertices n and a hyperbolic radius R = 2 log n+C.1
Additionally, this model is given a power-law exponent γ ≥ 2. To generate a RHG graph, n

vertices are placed on a disk of radius R in the hyperbolic plane.
Each vertex has an angular coordinate ϕ and a radial coordinate r. The angular coordinate

is sampled uniformly at random from the interval [0, 2π). The radial coordinate r is chosen
using the probability density function

f(r) = α
sinh(αr)

cosh(αR) − 1 .

The parameter α = γ−1
2 controls the growth of the random graph and determines the vertex

density. Krioukov et al. [52, 36] show that for γ ≥ 2 the degree distribution follows a
power-law distribution with exponent γ. Two vertices p, q are connected iff their hyperbolic
distance

distH(p, q) = cosh rp cosh rq − sinh rp sinh rq cos |ϕp − ϕq|

is less than R. Therefore, the neighborhood of a vertex consists of all the vertices that are
within the hyperbolic circle of radius R around it.

Random Delaunay Graphs. A d-simplex is a generalization of a triangle (d = 2) to d-
dimensional space. A d-simplex s is a d-dimensional polytope, i.e. the convex hull of
d + 1 points. The convex hull of a subset of size m + 1 of these d + 1 points is called an
m-face of s. Specifically, the 0-faces are the vertices of s and the (d − 1)-faces are its facets.
Given a d-dimensional point set V = {v1, v2, . . . , vn} with vi ∈ Rd for all i ∈ {1, . . . , n}, a
triangulation T (V) is a subdivision of the convex hull of V into d-simplices, such that the set
of the vertices of T (V) coincides with V and any two simplices of T intersect in a common

1 The parameter C controls the average degree d̄ of the graph [52].

IPEC 2022

26:8 PACE 2022: Directed Feedback Vertex Set

v1

v2

v4 v5

v3

π1 = 0.28

π5 = 0.17π4 = 0.12

π2 = 0.23 π3 = 0.19

Figure 2 Graph that is hard to solve for heuristics based on random walks. The πi values denote
the stationary distribution if we interpret the graph as a Markov chain with transition probabilities
pij = 1

d(vi) .

d − 1 facet or not at all. The union of all simplices in T (V) is the convex hull of point set V .
A Delaunay triangulation DT (V) is a triangulation of V such that no point of V is inside
the circumhypersphere of any simplex in DT (V).

Barabási-Albert Graph Model. Barabási and Albert [7] define the model that is perhaps
most widely used because of its simplicity and intuitive definition: One starts with an arbitrary
seed network consisting of nodes 0..n0 − 1 (a..b is used as a shorthand for {a, . . . , b} here).
Nodes i ∈ n0..n − 1 are added one at a time. They randomly connect to d neighbors using
preferential attachment, i.e., the probability to connect to node j ≤ i is chosen proportionally
to the degree of j. The seed graph, n0, d, and n are parameters defining the graph family.
Since all edges only point to nodes with a smaller node ID the resulting directed network is
acyclic. Hence, we generated graphs according to the Barabási Albert and modified them to
become cyclic in the following way:
First, we computed a topological ordering of the instance. Then we inserted p · m random
edges, where p ∈ [0.05, 0.2]. More precisely, we picked a random node to be a source, and
afterwards picked a random node with a smaller number in the topological ordering.

Real-World Instances. This category includes instances from the SNAP [56] data set. We
took 15 large directed graphs having between 7 115 and 2 394 385 nodes. In particular,
we used web graphs, social networks, wikipedia graphs as well as purchase networks and
autonomous system graphs. These instances were used in the heuristic track only.

Generated Hard Instances for Heuristic Solvers. In Figure 2, we show a graph where
heuristics based on random walks choose a node that is not in the optimal DFVS with
high probability. The optimal solution is to remove v2 and v3. However, v1 has the highest
probability in the stationary distribution (π1 = 0.28) and, if removed, leads to a DFVS
of size 3. We create larger instances by replicating this five-node graph N times (optimal
DFVS has size 2N). We additionally connect the N copies with directed edges (10 edges per
copy) such that the size of the optimal DFVS does not change and the probabilities in the
stationary distribution of visiting v2 and v3 in each copy do not increase. Furthermore, we
generate a random graph GR = (VR, ER) with |VR| ∈ [2.5N, 5N] nodes (chosen uniformly
and at random) and an average degree of 5. We then connect each node u ∈ VR to a random
node representing v1 in one of the copies and connect the nodes {v2, v3, v4, v5} of each copy
to a random node v ∈ VR. This hides the internal structure of the graph and adds some
noise to the size of the DFVS. We generate 25 instances of this graph with N ∈ [102, 105]. In

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:9

our experiments, the size of the DFVS computed by our random walk algorithm was in most
cases 1.5 times larger than the size of the optimal DFVS. The instances were used in the
heuristic track only.

4 Participants and Results

There were 13 and 17 teams that officially submitted a solution to the exact and heuristic
tracks, respectively. Several teams participated in more than one track; in total there were
26 distinct teams. The participants represented 3 continents and the following 12 countries
(number of authors from the respective country is given in brackets): Germany (12), China
(12), Czechia (10), France (7), Austria (5), India (5), Portugal (5), Norway (3), Romania (2),
United States (2), Netherlands (1), Poland (1). The results are listed below.

4.1 Exact Track

The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 200 overall instances.

Rank 1 goes to solver raki123 having solved a total number of 185 instances; Authors:
Andre Schidler and Rafael Kiesel; Affiliation: TU Wien; URL of solver: https:
//github.com/ASchidler/dfvs. Zenodo: [48]
Rank 2 goes to solver grapa-java having solved a total number of 165 instances; Authors:
Enna Gerhard, Jona Dirks, Moritz Bergenthal, Jakob Gahde, Thorben Freese, Mario
Grobler and Sebastian Siebertz; Affiliation: University of Bremen; URL of solver:
https://gitlab.informatik.uni-bremen.de/grapa/java/. Zenodo: [9]
Rank 3 goes to solver mt-doom having solved a total number of 152 instances; Authors:
Sebastian Angrich, Ben Bals, Niko Hastrich, Theresa Hradilak, Otto Kissig, Jonas
Schmidt, Leo Wendt, Katrin Casel, Sarel Cohen and Davis Issac; Affiliation: Hasso
Plattner Institute; URL of solver: https://github.com/BenBals/mount-doom/tree/
exact. Zenodo: [4]
Rank 4 goes to solver goat_exact having solved a total number of 151 instances; Authors:
Radovan Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková,
Jaroslav Urban, Václav Blažej, Dušan Knop, Šimon Schierreich and Ondrej Suchy; Affili-
ation: Czech Technical University in Prague, Faculty of Information Technology; URL
of solver: https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact. Zen-
odo: [80]
Rank 5 goes to solver THS_exact having solved a total number of 140 instances; Authors:
Henri Froese, Jonathan Guthermuth, Lars Huth, Marius Lotz, Johannes Meintrup, Timo
Mertin, Manuel Penschuck and Hung Tran; Affiliation: Goethe University Frankfurt
and THM, University of Applied Sciences Mittelhessen; URL of solver: https://github.
com/goethe-tcs/breaking-the-cycle. Zenodo: [19]
Rank 6 goes to solver mndmky having solved a total number of 130 instances; Authors:
Timon Behr; Affiliation: University of Konstanz; URL of solver: https://github.
com/mndmnky/duck-and-cover. Zenodo: [8]
Rank 7 goes to solver DUM having solved a total number of 125 instances; Authors:
Henri Dickel, Matija Miskovic and Lennart Uhrmacher; Affiliation: Philipps-Universität
Marburg; URL of solver: https://github.com/HenriDickel/DFVS-Solver/tree/
PACE. Zenodo: [22]

IPEC 2022

https://github.com/ASchidler/dfvs
https://github.com/ASchidler/dfvs
https://gitlab.informatik.uni-bremen.de/grapa/java/
https://github.com/BenBals/mount-doom/tree/exact
https://github.com/BenBals/mount-doom/tree/exact
https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact
https://github.com/goethe-tcs/breaking-the-cycle
https://github.com/goethe-tcs/breaking-the-cycle
https://github.com/mndmnky/duck-and-cover
https://github.com/mndmnky/duck-and-cover
https://github.com/HenriDickel/DFVS-Solver/tree/PACE
https://github.com/HenriDickel/DFVS-Solver/tree/PACE

26:10 PACE 2022: Directed Feedback Vertex Set

Rank 8 goes to solver yos having solved a total number of 120 instances; Authors:
Yosuke Mizutani; Affiliation: University of Utah; URL of solver: https://github.
com/mogproject/dfvs-2022. Zenodo: [64]
Rank 9 goes to solver rubengoetz having solved a total number of 88 instances; Authors:
Ruben Götz; Affiliation: Karlsruher Institut für Technologie; URL of solver: https:
//gitlab.com/rubenGoetz/dfvs-algo. Zenodo: [39]
Rank 10 goes to solver DRIP having solved a total number of 32 instances; Authors:
Aman Jain, Sachin Agarwal, Nimish Agrawal, Soumyajit Karmakar and Srinibas Swain;
Affiliation: IIIT, Guwahati; URL of solver: https://zenodo.org/record/6618812.
Zenodo: [43]

The following teams submitted a solver, but as described in the rules, their submissions were
disqualified because of at least one suboptimal solution. Afterwards the teams sent us an
updated version of their solver which then computed only correct results in the challenge.
The number of solved instances reported below.
1. Solver Timeroot has solved a total number of 175 instances; Authors: Alexander Meiburg;

Affiliation: UC Santa Barbara; URL of solver: https://github.com/Timeroot/DVFS_
PACE2022/tree/pace-2022. Zenodo: [63], ArXiv: [62]

2. Solver swats has solved a total number of 160 instances; Authors: Sylwester Swat;
Affiliation: Poznań University Of Technology; URL of solver: https://github.com/
swacisko/pace-2022. Zenodo: [72]

3. Solver satanja has solved a total number of 144 instances; Authors: Stefan Tanja;
Affiliation: Eindhoven University of Technology; URL of solver: https://github.com/
satanja/Hex. Zenodo: [73]

Strategies Used in the Submissions
Winning Team. The approach by Andre Schidler and Rafael Kiesel [48] from TU Wien,
Austria, applies a wide range of preprocessing techniques. These techniques stem a) from
well-known reduction rules as well as b) non-trivial adaptations of reduction rules originally
designed for the vertex cover problem. On the reduced instance, the team runs a MaxSAT
solver that incrementally adds constraints.

Runner-Up. The approach by Enna Gerhard, Jona Dirks, Moritz Bergenthal, Jakob Gahde,
Thorben Freese, Mario Grobler and Sebastian Siebertz from University of Bremen also applies
a wide range of reduction rules to first decrease the size of the input. The team uses known
as well as new reduction rules. Depending on the number of remaining undirected edges
(forward and backward edges are present), the authors employ different strategies: a hitting
set ILP formulation, an ILP formulation that models the problem as finding a topological
order and if the later does not terminate within a specific time limit, the team runs a vertex
cover solver to tackle the problem. If the solution of the last solver does not return a solution
for the feedback vertex set problem, then no solution is returned.

Third Place. The team that achieved the third place are Sebastian Angrich, Ben Bals, Niko
Hastrich, Theresa Hradilak, Otto Kissig, Jonas Schmidt, Leo Wendt, Katrin Casel, Sarel
Cohen and Davis Issac from the Hasso Plattner Institute. As the first and second place, the
team applies reduction rules first to reduce the input size. The team solves the remaining
instance by repeatedly solving vertex cover instances. These instances are further reduced by
the reductions of the PACE 2019 winning solver [41] and afterwards the instance is solved
using a SAT-and-Reduce solver for the vertex cover problem [67].

https://github.com/mogproject/dfvs-2022
https://github.com/mogproject/dfvs-2022
https://gitlab.com/rubenGoetz/dfvs-algo
https://gitlab.com/rubenGoetz/dfvs-algo
https://zenodo.org/record/6618812
https://github.com/Timeroot/DVFS_PACE2022/tree/pace-2022
https://github.com/Timeroot/DVFS_PACE2022/tree/pace-2022
https://github.com/swacisko/pace-2022
https://github.com/swacisko/pace-2022
https://github.com/satanja/Hex
https://github.com/satanja/Hex

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:11

4.2 Heuristic Track

The ranking for the heuristic track is listed subsequently; We list the score for the 200 overall
instances. The score has been computed as outline in Section 3.1. Larger is better.

1. Rank 1 goes to the solver swats with a score of 99.912; Authors: Sylwester Swat;
Affiliation: Poznań University Of Technology; URL of solver: https://github.com/
swacisko/pace-2022. Zenodo: [72]

2. Rank 2 goes to the solver Nanored with a score of 99.911; Authors: Gabriel Bathie,
Gaétan Berthe, Yoann Coudert-Osmont, David Desobry, Amadeus Reinald and Mathis
Rocton; Affiliation: École normale supérieure de Lyon and Université de Lorraine,
CNRS, Inria, LORIA; URL of solver: https://github.com/Nanored4498/DreyFVS.
Zenodo: [31]

3. Rank 3 goes to the solver hust_huawei with a score of 99.852; Authors: Yuming
Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo
Sun, Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu and Zhipeng Lv; Affiliation:
SMART, School of Computer Science and Technology, Huazhong University of Science
& Technology and Huawei TCS Lab Shanghai; URL of solver: https://github.com/
1774150545/PACE-2022. Zenodo: [77]

4. Rank 4 goes to the solver KennethLangedal with a score of 99.832; Authors: Kenneth
Langedal, Johannes Langguth and Fredrik Manne; Affiliation: University of Bergen and
Simula Research Laboratory; URL of solver: https://github.com/KennethLangedal/
DFVS. Zenodo: [53]

5. Rank 5 goes to the solver fedrer with a score of 99.611; Authors: Aman Jain, Sachin
Agarwal, Nimish Agrawal, Soumyajit Karmakar and Srinibas Swain; Affiliation: IIIT,
Guwahati; URL of solver: https://zenodo.org/record/6618777. Zenodo: [44]

6. Rank 6 goes to the solver Florian with a score of 99.435; Authors: Florian Sikora;
Affiliation: LAMSADE; URL of solver: https://github.com/fsikora/pace22. Zen-
odo: [28]

7. Rank 7 goes to the solver _UAIC_ANDREIARHIRE_ with a score of 99.156; Authors:
Andrei Arhire and Paul Diac; Affiliation: Alexandru Ioan Cuza University of Ias, i; URL
of solver: https://github.com/AndreiiArhire/PACE2022. Zenodo: [6]

8. Rank 8 goes to the solver INESCIDteam with a score of 98.619; Authors: Daniel Castro,
Luis Russo, Aleksandar Ilic, Paolo Romano and Ana Correia; Affiliation: INESC-ID &
IST; URL of solver: https://github.com/Daniel1993/pace-2022. Zenodo: [16]

9. Rank 9 goes to the solver goat_heuristic with a score of 98.278; Authors: Radovan
Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková, Jaroslav
Urban, Václav Blažej, Dušan Knop, Šimon Schierreich and Ondrej Suchy; Affiliation:
Czech Technical University in Prague, Faculty of Information Technology; URL of
solver: https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/heuristic. Zen-
odo: [81]

10. Rank 10 goes to the solver orodruin with a score of 98.245; Authors: Sebastian Angrich,
Ben Bals, Niko Hastrich, Theresa Hradilak, Otto Kißig, Jonas Schmidt, Leo Wendt, Katrin
Casel, Sarel Cohen and Davis Issac; Affiliation: Hasso Plattner Institute, Potsdam, Ger-
many and Digital Engineering Faculty, University of Potsdam, Potsdam, Germany; URL
of solver: https://github.com/BenBals/mount-doom/tree/heuristic. Zenodo: [5]

IPEC 2022

https://github.com/swacisko/pace-2022
https://github.com/swacisko/pace-2022
https://github.com/Nanored4498/DreyFVS
https://github.com/1774150545/PACE-2022
https://github.com/1774150545/PACE-2022
https://github.com/KennethLangedal/DFVS
https://github.com/KennethLangedal/DFVS
https://zenodo.org/record/6618777
https://github.com/fsikora/pace22
https://github.com/AndreiiArhire/PACE2022
https://github.com/Daniel1993/pace-2022
https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/heuristic
https://github.com/BenBals/mount-doom/tree/heuristic

26:12 PACE 2022: Directed Feedback Vertex Set

11. Rank 11 goes to the solver THS_heuristic with a score of 95.357; Authors: Jonathan
Guthermuth, Lars Huth, Marius Lotz, Johannes Meintrup, Timo Mertin, Manuel
Penschuck, Lukas Schwarz and Hung Tran; Affiliation: Goethe University Frank-
furt and THM, University of Applied Sciences Mittelhessen; URL of solver: https:
//github.com/goethe-tcs/breaking-the-cycle. Zenodo: [19]

12. Rank 12 goes to the solver grapa-rust with a score of 94.744; Authors: Ozan Can
Heydt, Leon Stichternath, Kenneth Dietrich and Philipp Haker; Affiliation: Universität
Bremen; URL of solver: https://gitlab.informatik.uni-bremen.de/grapa/rust/
mimung. Zenodo: [71]

13. Rank 13 goes to the solver dfvsp-julia with a score of 92.644; Authors: Maria Bresich,
Günther Raidl and Johannes Varga; Affiliation: TU Wien; URL of solver: https:
//github.com/NunuNoName/dfvsp-solver. Zenodo: [13]

14. Rank 14 goes to the solver grapa-java with a score of 91.369; Authors: Enna Ger-
hard, Jona Dirks, Moritz Bergenthal, Jakob Gahde, Thorben Frese, Mario Grobler
and Sebastian Siebertz; Affiliation: Universität Bremen; URL of solver: https:
//gitlab.informatik.uni-bremen.de/grapa/java/. Zenodo: [9]

15. Rank 15 goes to the solver BreakingCycles with a score of 74.613; Authors: Mert Biyikli;
Affiliation: Heidelberg University; URL of solver: https://github.com/MertBiyikli/
BreakingCycles.git. Zenodo: [11]

There were two more submissions from the team of the hust_huawei solver (Rank 3), however,
only their best solver (hust_huawei) was ranked:

1. Solver xjz_huawei with a score of 99.651; Authors: Yuming Du, Qingyun Zhang,
Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen
Ding, Chen Wu, Pinyan Lu and Zhipeng Lv; Affiliation: SMART, School of Computer
Science and Technology, Huazhong University of Science & Technology and Huawei
TCS Lab Shanghai; URL of solver: https://github.com/xuxu9110/PACE2022.git.
Zenodo: [23]

2. Solver adu with a score of 99.618; Authors: Yuming Du, Qingyun Zhang, Junzhou Xu,
Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen Ding, Chen
Wu, Pinyan Lu and Zhipeng Lv; Affiliation: SMART, School of Computer Science and
Technology, Huazhong University of Science & Technology and Huawei TCS Lab Shanghai;
URL of solver: https://github.com/Zhang-qingyun/pace_2022_HUST_solver.git.
Zenodo: [78]

Strategies Used in the Submissions

Winning Team. The winning solver was due to Sylwester Swat from Poznań University
Of Technology. The solver reduces the input using data reduction rules. It then finds some
initial solution of the reduced graph using fast heuristics. It then tries to improve the found
solution by using a variety of heuristic approaches. In the end the solution is transferred to
the input instance. More specifically, if the input instance is somewhat close to a bidirected
graph, then fast vertex cover solvers NuMVC [15] and FastVC [14] are used to compute an
initial solution. Another heuristic employed is based on agent flows. Specifically, each node
is assigned a fixed number of tokens. Then the algorithm proceeds in rounds. In each round,
each token assigned to a node is moved to a random out-neighbor. When all rounds are
finished, the node having most tokens is added to the feedback vertex set and the process is
repeated until the obtained graph is acyclic.

https://github.com/goethe-tcs/breaking-the-cycle
https://github.com/goethe-tcs/breaking-the-cycle
https://gitlab.informatik.uni-bremen.de/grapa/rust/mimung
https://gitlab.informatik.uni-bremen.de/grapa/rust/mimung
https://github.com/NunuNoName/dfvsp-solver
https://github.com/NunuNoName/dfvsp-solver
https://gitlab.informatik.uni-bremen.de/grapa/java/
https://gitlab.informatik.uni-bremen.de/grapa/java/
https://github.com/MertBiyikli/BreakingCycles.git
https://github.com/MertBiyikli/BreakingCycles.git
https://github.com/xuxu9110/PACE2022.git
https://github.com/Zhang-qingyun/pace_2022_HUST_solver.git

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:13

Runner-Up. The team scoring the second rank consists of Gabriel Bathie, Gaétan Berthe,
Yoann Coudert-Osmont, David Desobry, Amadeus Reinald and Mathis Rocton from École
normale supérieure de Lyon and Université de Lorraine CNRS, Inria, LORIA. After performing
data reductions, their algorithm first performs a guess on the reduced instance by leveraging
the Sinkhorn-Knopp algorithm. The solution is then improved by pipelining two local search
methods. The first local search algorithm is a vertex swapping algorithms, i.e. the algorithms
removes a vertex from the current solution and if this creates a cycle it adds a random vertex
of the current cycle to the solution. If removing the vertex does not create a cycle, then the
solution size has been improved by one. The second local search algorithm uses the fact that
a digraph is acyclic if and only if a topological ordering can be computed. The team then
shows that a unique feedback vertex set can be created from any topological ordering and
thus obtain a local search method by shuffling vertices in the topological ordering.

Third Place. The team Yuming Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao
Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu and
Zhipeng Lv from SMART, School of Computer Science and Technology, Huazhong University
of Science & Technology as well as Huawei TCS Lab Shanghai scored the third place. As
the other solvers, data reduction rules are applied to first reduce the size of the instance.
Afterwards, the authors use a simulated annealing algorithm. To obtain an initial solution
the authors first transform the problem into a vertex cover problem and then solve it using a
heuristic for this problem. This is done using a time constraint. The time constraint depends
on the number of bidirectional edges, i.e. the larger the fraction of bidirectional edges, the
more time is assigned to the vertex cover heuristic. The local search used to improve the
solution is based on topological orderings of the graph [32].

5 PACE Organization

The program committee of PACE 2022 consisted of Ernestine Großmann, Tobias Heuer,
Christian Schulz (chair) and Darren Strash. During the organization of PACE 2022 the
Steering Committee was as follows:

(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2019) Johannes Fichte (Technische Universität Dresden)
(since 2019) Markus Hecher (Technische Universität Wien)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Łukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2020) Marcin Pilipczuk (University of Warsaw)
(since 2020) Manuel Sorge (Technische Universität Wien)

6 Conclusion and Future Editions of PACE

We thank all the participants for their enthusiasm, strong and interesting contributions.
Special thanks go to the participants who also presented at IPEC 2022. We are very happy
that this edition attracted many people as well as strong contributions and hope that this
will continue for future editions by considering popular problems to the community or even
by repeating previously posted problems. As in previous challenges, we provided the public
and private instance set in a public data library2.

2 https://github.com/PACE-challenge/pacechallenge.org/tree/master/files

IPEC 2022

https://github.com/PACE-challenge/pacechallenge.org/tree/master/files

26:14 PACE 2022: Directed Feedback Vertex Set

We welcome anyone who is interested to add their name to the mailing list on the PACE
website to receive updates and join the discussion. We look forward to the next edition.
Detailed information will be posted on the website at pacechallenge.org. Also see the
Twitter account3. In particular, plans for PACE 2023 will be posted there.

References
1 Networks project, 2017. URL: http://www.thenetworkcenter.nl.
2 Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian Schulz,

and Darren Strash. Recent advances in practical data reduction. Special Issue of SPP Big
Data, 2022. arXiv:2012.12594.

3 N. Faisal Abu-Khzam, R. Michael Fellows, A. Michael Langston, and Henry W. Suters.
Crown structures for vertex cover kernelization. Theory Comput. Syst., 41(3):411–430, 2007.
doi:10.1007/s00224-007-1328-0.

4 Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Niko Hastrich, Theresa Hradilak,
Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. Mount Doom – An Exact Solver for
Directed Feedback Vertex Set, June 2022. doi:10.5281/zenodo.6645235.

5 Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Niko Hastrich, Theresa Hradilak,
Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. Orodruin — A Heuristic Solver for
Directed Feedback Vertex Set, June 2022. doi:10.5281/zenodo.6645245.

6 Andrei Arhire and Paul Diac. _UAIC_ANDREIARHIRE_ – A Heuristic Solver for the
Directed Feedback Vertex Set Problem, June 2022. doi:10.5281/zenodo.6646187.

7 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.

8 Timon Behr. Direfever, June 2022. doi:10.5281/zenodo.6651761.
9 Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, and Enna Gerhard. GraPA-

JAVA, June 2022. doi:10.5281/zenodo.6647003.
10 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.

Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica,
83(5):1201–1221, 2021. doi:10.1007/s00453-020-00777-5.

11 Mert Biyikli. MertBiyikli/BreakingCycles: Fourth release, June 2022. doi:10.5281/zenodo.
6674065.

12 Édouard Bonnet and Florian Sikora. The PACE 2018 parameterized algorithms and computa-
tional experiments challenge: The third iteration. In Christophe Paul and Michal Pilipczuk,
editors, 13th International Symposium on Parameterized and Exact Computation, IPEC
2018, August 20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 26:1–26:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.IPEC.2018.26.

13 Maria Bresich, Günther Raidl, and Johannes Varga. HyMeHeu-solver – A Hybrid Metaheuristic
Solver for the Directed Feedback Vertex Set Problem, June 2022. doi:10.5281/zenodo.
6643236.

14 Shaowei Cai, Jinkun Lin, and Chuan Luo. Finding a small vertex cover in massive sparse
graphs: Construct, local search, and preprocess. J. Artif. Intell. Res., 59:463–494, 2017.
doi:10.1613/jair.5443.

15 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An efficient local search
algorithm for minimum vertex cover. J. Artif. Intell. Res., 46:687–716, 2013. doi:10.1613/
jair.3907.

16 Daniel Castro. Daniel1993/pace-2022: pace-2022, June 2022. doi:10.5281/zenodo.6634725.
17 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter

algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

3 https://twitter.com/pace_challenge

pacechallenge.org
http://www.thenetworkcenter.nl
http://arxiv.org/abs/2012.12594
https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.5281/zenodo.6645235
https://doi.org/10.5281/zenodo.6645245
https://doi.org/10.5281/zenodo.6646187
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.5281/zenodo.6651761
https://doi.org/10.5281/zenodo.6647003
https://doi.org/10.1007/s00453-020-00777-5
https://doi.org/10.5281/zenodo.6674065
https://doi.org/10.5281/zenodo.6674065
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.5281/zenodo.6643236
https://doi.org/10.5281/zenodo.6643236
https://doi.org/10.1613/jair.5443
https://doi.org/10.1613/jair.3907
https://doi.org/10.1613/jair.3907
https://doi.org/10.5281/zenodo.6634725
https://doi.org/10.1145/1411509.1411511
https://twitter.com/pace_challenge

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:15

18 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

19 Holger Dell, Henri Froese, Lukas Geis, Jonathan Guthermuth, Anselm Haak, Lars Huth, Frank
Kammer, Marius Lotz, Johannes Meintrup, Timo Mertin, Manuel Penschuck, and Lukas
Schwarz. BreakingTheCycle, June 2022. This work was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grants 379157101, ME
2088/5-1 (FOR 2975 — Algorithms, Dynamics, and Information Flow in Networks). doi:
10.5281/zenodo.6602946.

20 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.IPEC.2016.30.

21 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on
Parameterized and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria,
volume 89 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.IPEC.2017.30.

22 Dickel, Miskovic, and Uhrmacher. pace-2022-dum, May 2022. doi:10.5281/zenodo.6599645.
23 Yuming Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen,

Zhibo Sun, Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu, and Zhipeng Lv. Hua-
wei_tcs_dfvs_solver, June 2022. doi:10.5281/zenodo.6638370.

24 M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. The PACE 2019 parameterized
algorithms and computational experiments challenge: The fourth iteration (invited paper). In
Bart M. P. Jansen and Jan Arne Telle, editors, 14th International Symposium on Parameterized
and Exact Computation, IPEC 2019, September 11-13, 2019, Munich, Germany, volume
148 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.IPEC.2019.25.

25 John D Eblen, Charles A Phillips, Gary L Rogers, and Michael A Langston. The max-
imum clique enumeration problem: algorithms, applications, and implementations. In BMC
Bioinformatics, volume 13, page S5, 2012. doi:10.1186/1471-2105-13-S10-S5.

26 Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae (Debrecen),
6:290–297, 1959 1959.

27 Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998. doi:
10.1007/PL00009191.

28 Florian. fsikora/pace22: First version for pace, June 2022. doi:10.5281/zenodo.6624196.
29 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via

monotone local search. J. ACM, 66(2), March 2019. doi:10.1145/3284176.
30 Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders, Christian

Schulz, Darren Strash, and Moritz von Looz. Communication-free massively distributed graph
generation. J. Parallel Distributed Comput., 131:200–217, 2019. doi:10.1016/j.jpdc.2019.
03.011.

31 Bathie Gabriel, Berthe Gaétan, Coudert-Osmont Yoann, Desobry David, Reinald Amadeus,
and Rocton Mathis. Dreyfvs, June 2022. doi:10.5281/zenodo.6638217.

32 Philippe Galinier, Eunice Adjarath Lemamou, and Mohamed Wassim Bouzidi. Applying
local search to the feedback vertex set problem. J. Heuristics, 19(5):797–818, 2013. doi:
10.1007/s10732-013-9224-z.

IPEC 2022

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.5281/zenodo.6602946
https://doi.org/10.5281/zenodo.6602946
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.5281/zenodo.6599645
https://doi.org/10.5281/zenodo.6638370
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1186/1471-2105-13-S10-S5
https://doi.org/10.1007/PL00009191
https://doi.org/10.1007/PL00009191
https://doi.org/10.5281/zenodo.6624196
https://doi.org/10.1145/3284176
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.5281/zenodo.6638217
https://doi.org/10.1007/s10732-013-9224-z
https://doi.org/10.1007/s10732-013-9224-z

26:16 PACE 2022: Directed Feedback Vertex Set

33 Georges Gardarin and Stefano Spaccapietra. Integrity of data bases: A general lockout al-
gorithm with deadlock avoidance. In G. M. Nijssen, editor, Modelling in Data Base Management
Systems, Proceeding of the IFIP Working Conference on Modelling in Data Base Management
Systems, Freudenstadt, Germany, January 5-8, 1976, pages 395–412. North-Holland, 1976.

34 Serge Gaspers and Matthias Mnich. Feedback vertex sets in tournaments. J. Graph Theory,
72(1):72–89, 2013. doi:10.1002/jgt.21631.

35 E. N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, December 1959.
doi:10.1214/aoms/1177706098.

36 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: Degree
sequence and clustering. In Automata, Languages, and Programming – 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume
7392 of Lecture Notes in Computer Science, pages 573–585. Springer, 2012. doi:10.1007/
978-3-642-31585-5_51.

37 Venkatesan Guruswami, Johan HÅstad, Rajsekar Manokaran, Prasad Raghavendra, and
Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approximation
resistant. SIAM Journal on Computing, 40(3):878–914, 2011. doi:10.1137/090756144.

38 Venkatesan Guruswami and Euiwoong Lee. Simple proof of hardness of feedback vertex set.
Theory Comput., 12(1):1–11, 2016. doi:10.4086/toc.2016.v012a006.

39 Ruben Götz. Ruben Bachelor Thesis, June 2022. doi:10.5281/zenodo.6604728.
40 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Finding all global

minimum cuts in practice. In Proc. ESA 2020, volume 173 of Leibniz Int. Proc. Informatics,
pages 59:1–59:20, 2020. doi:10.4230/LIPIcs.ESA.2020.59.

41 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the PACE 2019 challenge, vertex cover track. In H. Martin Bücker,
Xiaoye Sherry Li, and Sivasankaran Rajamanickam, editors, Proceedings of the SIAM Workshop
on Combinatorial Scientific Computing, CSC 2020, Seattle, USA, February 11-13, 2020, pages
1–11. SIAM, 2020. doi:10.1137/1.9781611976229.1.

42 A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority queues. In
S. Even and O. Kariv, editors, Proceedings of the 8th Colloquium on Automata, Languages
and Programming, volume 115 of LNCS, pages 417–431. Springer, 1981. doi:10.1007/
3-540-10843-2_34.

43 Aman Jain, Sachin Agarwal, Nimish Agrawal, Soumyajit Karmakar, and Srinibas Swain.
DRIP: Directed feedback vertex set computation using Reductions and Integer Programming,
June 2022. doi:10.5281/zenodo.6618812.

44 Aman Jain, Sachin Agarwal, Nimish Agrawal, Soumyajit Karmakar, and Srinibas Swain.
FEDRER: Feedback vertex set using Edge Density and REmove Redundant, June 2022.
doi:10.5281/zenodo.6618777.

45 Arthur B. Kahn. Topological Sorting of Large Networks. Commun. ACM, 5(11):558–562, 1962.
doi:10.1145/368996.369025.

46 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

47 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE
2021 parameterized algorithms and computational experiments challenge: Cluster editing. In
Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized
and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214
of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.IPEC.2021.26.

48 Rafael Kiesel and Andre Schidler. DAGger – An Exact Directed Feedback Vertex Set Solver,
June 2022. doi:10.5281/zenodo.6627405.

https://doi.org/10.1002/jgt.21631
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1137/090756144
https://doi.org/10.4086/toc.2016.v012a006
https://doi.org/10.5281/zenodo.6604728
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1007/3-540-10843-2_34
https://doi.org/10.1007/3-540-10843-2_34
https://doi.org/10.5281/zenodo.6618812
https://doi.org/10.5281/zenodo.6618777
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.5281/zenodo.6627405

E. Großmann, T. Heuer, C. Schulz, and D. Strash 26:17

49 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Information
Processing Letters, 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

50 Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In Proc.
ESA 2018, volume 112 of Leibniz Int. Proc. Informatics, pages 53:1–53:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.53.

51 Lukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and Piotr
Wygocki. The PACE 2020 parameterized algorithms and computational experiments challenge:
Treedepth. In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium on
Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020, Hong Kong, China
(Virtual Conference), volume 180 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.37.

52 Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. CoRR, abs/1006.5169, 2010. arXiv:
1006.5169.

53 Kenneth Langedal. KennethLangedal/DFVS: pace-2022, June 2022. doi:10.5281/zenodo.
6630611.

54 Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorithmica,
6(1):5–35, 1991. doi:10.1007/BF01759032.

55 Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Digraph.
PhD thesis, University of Cologne, 2008. URL: http://kups.ub.uni-koeln.de/id/eprint/
2547.

56 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

57 Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Mary S. Van Deusen, Zvi Galil, and Brian K. Reid, editors,
Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, New Orleans, Louisiana, USA, January 1985, pages 97–107. ACM Press, 1985.
doi:10.1145/318593.318622.

58 Hen-Ming Lin and Jing-Yang Jou. On Computing the Minimum Feedback Vertex Set of a
Directed Graph by Contraction Operations. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 19(3):295–307, 2000. doi:10.1109/43.833199.

59 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-approximating feedback vertex set in tournaments. ACM Trans.
Algorithms, 17(2), April 2021. doi:10.1145/3446969.

60 Daniel Lokshtanov, M. S. Ramanuajn, and Saket Saurabh. When recursion is better than
iteration: A linear-time algorithm for acyclicity with few error vertices. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages
1916–1933, USA, 2018. Society for Industrial and Applied Mathematics. doi:10.1137/1.
9781611975031.125.

61 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Wannabe bounded treewidth graphs admit a polynomial kernel for DFVS. In Zachary Friggstad,
Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures
– 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019,
Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 523–537. Springer,
2019. doi:10.1007/978-3-030-24766-9_38.

62 Alex Meiburg. Reduction Rules and ILP Are All You Need: Minimal Directed Feedback
Vertex Set, 2022. doi:10.48550/ARXIV.2208.01119.

63 Alexander Meiburg. PACE 2022 – DFVS-Via-Flattening Solver (DVFS), June 2022. Derived
from https://github.com/Timeroot/DVFS_PACE 2022/tree/pace-2022. doi:10.5281/zenodo.
6650921.

64 Yosuke Mizutani. PACE 2022 – Exact, June 2022. doi:10.5281/zenodo.6604875.

IPEC 2022

https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.4230/LIPIcs.IPEC.2020.37
http://arxiv.org/abs/1006.5169
http://arxiv.org/abs/1006.5169
https://doi.org/10.5281/zenodo.6630611
https://doi.org/10.5281/zenodo.6630611
https://doi.org/10.1007/BF01759032
http://kups.ub.uni-koeln.de/id/eprint/2547
http://kups.ub.uni-koeln.de/id/eprint/2547
http://snap.stanford.edu/data
https://doi.org/10.1145/318593.318622
https://doi.org/10.1109/43.833199
https://doi.org/10.1145/3446969
https://doi.org/10.1137/1.9781611975031.125
https://doi.org/10.1137/1.9781611975031.125
https://doi.org/10.1007/978-3-030-24766-9_38
https://doi.org/10.48550/ARXIV.2208.01119
https://doi.org/10.5281/zenodo.6650921
https://doi.org/10.5281/zenodo.6650921
https://doi.org/10.5281/zenodo.6604875

26:18 PACE 2022: Directed Feedback Vertex Set

65 Mathew Penrose. Random geometric graphs. Number 5 in Oxford Studies in Probability.
Oxford University Press, 2003.

66 Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya
Safro, Peter Sanders, and Christian Schulz. Recent advances in scalable network generation.
CoRR, abs/2003.00736, 2020. arXiv:2003.00736.

67 Rick Plachetta and Alexander van der Grinten. SAT-and-reduce for vertex cover: Ac-
celerating branch-and-reduce by SAT solving. In Martin Farach-Colton and Sabine Stor-
andt, editors, Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 169–180. SIAM, 2021.
doi:10.1137/1.9781611976472.13.

68 U. N. Raghavan, R. Albert, and S. Kumara. Near Linear Time Algorithm to Detect Community
Structures in Large-Scale Networks. Physical Review E, 76(3), 2007. doi:10.1103/PhysRevE.
76.036106.

69 Igor Razgon. Computing minimum directed feedback vertex set in O∗(1.9977n). In Giuseppe F.
Italiano, Eugenio Moggi, and Luigi Laura, editors, Theoretical Computer Science, 10th Italian
Conference, ICTCS 2007, Rome, Italy, October 3-5, 2007, Proceedings, pages 70–81. World
Scientific, 2007. doi:10.1142/9789812770998_0010.

70 Ewald Speckenmeyer. On Feedback Problems in Digraphs. In Graph-Theoretic Concepts in
Computer Science, 15th International Workshop, WG ’89, Castle Rolduc, The Netherlands,
June 14-16, 1989, Proceedings. Springer, 1989. doi:10.1007/3-540-52292-1_16.

71 Leon Stichternath, Ozan Heydt, Kenneth Dietrich, and Philipp Haker. Grapa-Rust, June 2022.
doi:10.5281/zenodo.6603799.

72 Sylwester Swat. swacisko/pace-2022: First release of DiVerSeS, a solver for the Directed
Feedback Vertex Set problem, June 2022. doi:10.5281/zenodo.6643144.

73 Stefan Tanja. satanja/hex: pace-2022, June 2022. doi:10.5281/zenodo.6609797.
74 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,

1(2):146–160, 1972. doi:10.1137/0201010.
75 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. Optil.io:

Cloud based platform for solving optimization problems using crowdsourcing approach. In
Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social
Computing Companion, CSCW ’16 Companion, pages 433–436, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2818052.2869098.

76 Mingyu Xiao and Hiroshi Nagamochi. An improved exact algorithm for undirected feedback
vertex set. J. Comb. Optim., 30(2):214–241, 2015. doi:10.1007/s10878-014-9737-x.

77 YuMingDu, QingYunZhang, and ShunGenZhang. pace-2022, June 2022. doi:10.5281/zenodo.
6644409.

78 Zhang-qingyun. Zhang-qingyun/pace_2022_HUST_solver: pace_2022_HUST_solver, June
2022. doi:10.5281/zenodo.6643002.

79 Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002. URL:
http://reports-archive.adm.cs.cmu.edu/anon/cald/CMU-CALD-02-107.pdf.

80 Radovan Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková,
Jaroslav Urban, Václav Blažej, Dušan Knop, Šimon Schierreich, and Ondřej Suchý. G2OAT
solver for PACE 2022 (DFVS) exact track, June 2022. doi:10.5281/zenodo.6637464.

81 Radovan Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková,
Jaroslav Urban, Václav Blažej, Dušan Knop, Šimon Schierreich, and Ondřej Suchý. G2OAT
solver for PACE 2022 (DFVS) heuristic track, June 2022. doi:10.5281/zenodo.6637495.

http://arxiv.org/abs/2003.00736
https://doi.org/10.1137/1.9781611976472.13
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1142/9789812770998_0010
https://doi.org/10.1007/3-540-52292-1_16
https://doi.org/10.5281/zenodo.6603799
https://doi.org/10.5281/zenodo.6643144
https://doi.org/10.5281/zenodo.6609797
https://doi.org/10.1137/0201010
https://doi.org/10.1145/2818052.2869098
https://doi.org/10.1007/s10878-014-9737-x
https://doi.org/10.5281/zenodo.6644409
https://doi.org/10.5281/zenodo.6644409
https://doi.org/10.5281/zenodo.6643002
http://reports-archive.adm.cs.cmu.edu/anon/cald/CMU-CALD-02-107.pdf
https://doi.org/10.5281/zenodo.6637464
https://doi.org/10.5281/zenodo.6637495

PACE Solver Description: DiVerSeS – A Heuristic
Solver for the Directed Feedback Vertex Set
Problem∗

Sylwester Swat !

Institute of Computing Science, Poznań University of Technology, Poland

Abstract
This article briefly describes the most important algorithms and techniques used in the directed
feedback vertex set heuristic solver called “DiVerSeS”, submitted to the 7th Parameterized Algorithms
and Computational Experiments Challenge (PACE 2022).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Directed feedback vertex set, heuristic solver, graph algorithms, PACE 2022

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.27

Supplementary Material Software (Source Code):
https://zenodo.org/record/6643144#.YqjL2r9ByV4

Funding Supported by the Foundation for Polish Science (FNP).

1 Problem description

A feedback vertex set of a directed graph G = (V, A) is a set X ⊂ V such that the induced
graph G[V \ X] is acyclic. The solver briefly described here is a heuristic approach to the
Directed Feedback Vertex Set (DFVS) problem, where the goal is to find a smallest possible
feedback vertex set of a given directed graph. The DFVS problem can be also considered
equivalently as a Maximum Directed Acyclic Subgraph problem, where for a given directed
graph G = (V, A) the task is to find a largest possible set Y ⊂ V such that G[Y] is a DAG.

2 Solver description

In this paper we provide a short description of the most important algorithms implemented
in solver DiVerSeS. Due to a large variety of used methods, this description does not contain
full information about used algorithms and their behaviour in many distinct situations. The
workflow of DiVerSeS can be described in the following general steps:
1. Reduce the graph using data reduction rules.
2. Find some initial solution of a reduced graph using fast heuristics.
3. Improve found solution using a variety of heuristic approaches.
4. Lift the solution to create a final DFVS of the original graph.

Before we proceed to further description, let us introduce some notations. By A(G)
we denote the set of arcs of a directed graph G. An arc (a, b) ∈ A is called a pi-arc if
there is also an arc (b, a) ∈ A. A pi-graph of a graph G is a graph pi(G) = (V, Api),
where Api = {(a, b) ∈ A : (a, b) is a pi-arc}. A nonpi-graph of a graph G is a graph

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Sylwester Swat;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 27; pp. 27:1–27:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sylwester.swat@put.poznan.pl
https://orcid.org/0000-0001-8763-0045
https://doi.org/10.4230/LIPIcs.IPEC.2022.27
https://zenodo.org/record/6643144#.YqjL2r9ByV4
https://zenodo.org/record/6643144#.YqjL2r9ByV4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 PACE Solver Description: DiVerSeS

npi(G) = (V, Anpi), where Anpi = {(a, b) ∈ A : (a, b) /∈ A(pi(G))}. A superpi-graph
of a graph G is a graph spi(G) = (V, Aspi), where Aspi = {(a, b) : (a, b) ∈ A or (b, a) ∈ A}.
Node v is called a pi-node if all arcs incident to it are pi-arcs.

3 Preprocessing

We use a large number of different data reduction rules. This includes an implementation of
almost all data reduction rules known to us from the literature, modifications of some existing
methods and a whole collection of new methods used to reduce the graph size or to modify
the graph structure in some specific way (e.g. by adding some arcs, what might be seen as
a little bit contradictory to the intuitive comprehension of a term ’data reduction’), from
which some constitute a generalization of known data-reduction rules for the vertex-cover
problem. To the most well known data reduction rules we can include those from [4] and [5].
These include the following:
1. IN0, OUT0 rules: removing nodes with empty in-neighborhood N−(v) or empty out-

neighborhood N+(v).
2. IN1, OUT1 rules: merging each node v with |N−(v)| = 1 or |N+(v)| = 1 (by merging

node v we mean adding to the graph, unless already present, all possible arcs from the
set N−(v) × N+(v), then removing v from the graph).

3. PIE rule: removing all arcs (a, b) such that a and b belong to different strongly connected
components in graph npi(G).

4. DOME rule: removing from the graph all dominated arcs (see [5] for more details).
5. CORE rule: removing from the graph (and adding to constructed DFVS) all neighbors

of a pi-node v whose neighborhood is a clique in pi(G).

These are the most basic (but still very effective in practice) among rules implemented
in DiVerSeS. Nevertheless, proper implementation (with a guarantee of best worst-case
performance, but also minimizing a constant overhead factor) of some of those rules is not
trivial. For example, authors of [5] claim that the CORE rule can be implemented in time
O(|A| + |V | · log|V |). We believe that arguments presented by the authors are either not
correct or there is no proper explanation, and we were unable to implement the CORE
algorithm with such time complexity (our implementation of the CORE rule works in time
O(|A| 3

2)). On the other hand the DOME rule can be implemented in time O(|A| 3
2) instead

of O(|A| · |V |) proposed by the authors, what is a significant improvement for large sparse
graphs that contain nodes with high degree.

4 Creating initial solution

There are many algorithms used to create an initial solution of a given graph G and are
used depending on the graph characteristics. For example, if the fraction |A(pi(G))|

|A| is high
(specified by a parameter), then as a DFVS of G we simply take the vertex cover of spi(G).
To find a vertex cover we use NuMVC [2] and FastVC [1] algorithms. If the fraction of pi-arcs
is not high, then we use other methods. One of them is the agent-flow algorithm that works
in the following way:
1. Assign a fixed number of tokens to each node.
2. In each of R (some small fixed integer) iterations, for each node and each token assigned

to that node, move the token to some out-neighbor of a given node.
3. Add to constructed DFVS a node that contains most tokens after all R iterations and

remove that node from the graph.
4. Repeat the procedure until the obtained graph is acyclic.

S. Swat 27:3

There are two variations of the agent-flow method: discrete and continuous. In the
discrete version we have an integral number of tokens in each node and in each iteration
we separately move each token to a random out-neighbor. In a continuous version we
have a real-valued number of tokens and in each iteration we distribute the tokens evenly
among all out-neighbors.

After a DFVS X of graph G is found, we remove redundant nodes from X (a node
x ∈ X is redundant if X \ {x} is also a DFVS) using a very efficient algorithm making use of
properties of dynamically changing topological order of an induced graph G[V \ X].

5 Improvement of solution

When an initial solution is found, we try to improve it using various approaches. Which
algorithm is used to improve the solution depends on some characteristics of graph G. For
example, if G is a very sparse graph (but not too sparse), we use an efficient improvement
of a simulated-annealing-based algorithm (description of the basic algorithm can be found
in [3]). If the graph contains a high percentage of pi-arcs, then we use (among others) the
following approach:
1. Find an ordering (v1, . . . , vN) of V with as few backgoing arcs as possible (an arc (a, b) ∈ A

is a backgoing arc if b precedes a in the ordering).
2. Take as a DFVS a vertex cover of a graph H = (V, AH), where AH is the set containing

all backgoing arcs.

There are a few ways implemented in DiVerSeS to create an ordering and they usually take
into account structure of current DFVS. This way we can improve existing solution instead
of just finding another one. It is also worth mentioning here that finding an optimal ordering
(for which the number of backgoing arcs is minimum) is equivalent to finding an optimal
solution of an instance of the Directed Feedback Arc Set Problem, which is NP-complete
(and in certain sense equivalent to the DFVS problem).

6 Availability

The source code of DiVerSeS is freely available and can be found at
https://zenodo.org/record/6643144#.YqjL2r9ByV4.

References
1 Shaowei Cai, Jinkun Lin, and Chuan Luo. Finding a small vertex cover in massive sparse

graphs: Construct, local search, and preprocess. Journal of Artificial Intelligence Research,
59:463–494, July 2017. doi:10.1613/jair.5443.

2 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search
algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46, February
2014. doi:10.1613/jair.3907.

3 Philippe Galinier, Eunice Lemamou, and Mohamed Bouzidi. Applying local search to
the feedback vertex set problem. Journal of Heuristics, 19, October 2013. doi:10.1007/
s10732-013-9224-z.

4 Hanoch Levy and David W Low. A contraction algorithm for finding small cycle cutsets.
Journal of Algorithms, 9(4):470–493, 1988. doi:10.1016/0196-6774(88)90013-2.

5 Hen-Ming Lin and Jing-Yang Jou. On computing the minimum feedback vertex set of a
directed graph by contraction operations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(3):295–307, 2000. doi:10.1109/43.833199.

IPEC 2022

https://zenodo.org/record/6643144#.YqjL2r9ByV4
https://doi.org/10.1613/jair.5443
https://doi.org/10.1613/jair.3907
https://doi.org/10.1007/s10732-013-9224-z
https://doi.org/10.1007/s10732-013-9224-z
https://doi.org/10.1016/0196-6774(88)90013-2
https://doi.org/10.1109/43.833199

PACE Solver Description: Mount Doom – An
Exact Solver for Directed Feedback Vertex Set∗

Sebastian Angrick !

Hasso Plattner Institut,
Universität Potsdam, Germany

Ben Bals !

Hasso Plattner Institut,
Universität Potsdam, Germany

Katrin Casel !

Hasso Plattner Institut,
Universität Potsdam, Germany

Sarel Cohen !

The Academic College of Tel Aviv-Yaffo, Israel

Tobias Friedrich !

Hasso Plattner Institut,
Universität Potsdam, Germany

Niko Hastrich !

Hasso Plattner Institut,
Universität Potsdam, Germany

Theresa Hradilak !

Hasso Plattner Institut,
Universität Potsdam, Germany

Davis Issac !

Hasso Plattner Institut,
Universität Potsdam, Germany

Otto Kißig !

Hasso Plattner Institut,
Universität Potsdam, Germany

Jonas Schmidt !

Hasso Plattner Institut,
Universität Potsdam, Germany

Leo Wendt !

Hasso Plattner Institut,
Universität Potsdam, Germany

Abstract
In this document we describe the techniques we used and implemented for our submission to the
Parameterized Algorithms and Computational Experiments Challenge (PACE) 2022. The given
problem is Directed Feedback Vertex Set (DFVS), where one is given a directed graph G = (V, E)
and wants to find a minimum S ⊆ V such that G − S is acyclic. We approach this problem by first
exhaustively applying a set of reduction rules. In order to find a minimum DFVS on the remaining
instance, we create and solve a series of Vertex Cover instances.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases directed feedback vertex set, vertex cover, reduction rules

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.28

Supplementary Material
Software (Source Code): https://doi.org/10.5281/zenodo.6645235
Software (Source Code): https://github.com/BenBals/mount-doom/tree/exact, archived at swh:
1:dir:a8ce8a824241821bdff98f5380594c74d2d6c327

1 Preliminaries

Let G = (V, E) be a directed graph. The Directed Feedback Vertex Set problem asks us to
find a minimum S ⊆ V , such that G − S is acyclic.

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich,
Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 28; pp. 28:1–28:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastian.angrick@student.hpi.de
mailto:ben.bals@student.hpi.de
mailto:katrin.casel@hpi.de
https://orcid.org/0000-0001-6146-8684
mailto:sarel.cohen@hpi.de
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:niko.hastrich@student.hpi.de
mailto:theresa.hradilak@student.hpi.de
mailto:davis.issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:otto.kissig@student.hpi.de
https://orcid.org/0000-0002-9414-9206
mailto:jonas.schmidt@student.hpi.de
mailto:leo.wendt@student.hpi.de
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.5281/zenodo.6645235
https://github.com/BenBals/mount-doom/tree/exact
https://archive.softwareheritage.org/swh:1:dir:a8ce8a824241821bdff98f5380594c74d2d6c327;origin=https://github.com/BenBals/mount-doom;visit=swh:1:snp:9c9371ceb6042dac4eea8f30787f84b80468d2ed;anchor=swh:1:rev:6cc7474166c92a9968e8ceeafeb6142bd382a50f
https://archive.softwareheritage.org/swh:1:dir:a8ce8a824241821bdff98f5380594c74d2d6c327;origin=https://github.com/BenBals/mount-doom;visit=swh:1:snp:9c9371ceb6042dac4eea8f30787f84b80468d2ed;anchor=swh:1:rev:6cc7474166c92a9968e8ceeafeb6142bd382a50f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 PACE Solver Description: Mount Doom

Let u, v ∈ V . We define N+(v) as the outgoing neighbors of v and N−(v) as the incoming
neighbors. We call an edge uv ∈ E bidirectional if uv ∈ E as well. Let PIE ⊆ E be
the set of all bidirectional edges and let B ⊆ V be the set of all vertices only incident to
bidirectional edges. We define the bidirectional neighbors N(v) as those which are incident
using bidirectional edges. We call D ⊆ V a diclique, if all u ∈ D have D \ {u} ⊆ N(u).

Finally, let v ∈ V be given. Let V ′ = V \{v} and E′ = (E ∩(V ′ ×V ′))∪(N−(v)×N+(v)).
We call G′ = (V ′, E′) the graph obtained from G by shortcutting v. In light of DFVS, this
is equivalent to adding the assumption v /∈ S.

2 Reduction rules

We apply a number of reductions known from the literature and introduce one rule which to
the best of our knowledge is new. The known rules can be found in [5] and we adopt their
nomenclature. Additionally, we adapt some reduction rules, that have already been used for
the Vertex Cover problem. Before running the reduction rules, all nodes with self loops are
collected into the solution and removed from the graph. Isolated nodes are removed as well.

PIE. Consider any edge uv between different strongly connected components in G − PIE.
Any cycle using this edge must therefore use at least one bidirectional edge, which must be
covered itself, so we can safely delete uv.

DOME. We call an edge uv ∈ E − PIE dominated if all outgoing neighbors of v are also
outgoing neighbors of u or if all incoming neighbors of u are also incoming neighbors of v.
It is well known [2] that such a dominated edge can safely be deleted.

Improved CORE. A vertex v is a core of a diclique if the graph induced by v and its
neighbors is a diclique. Traditionally, one now deletes N(v) from G since if S′ is optimal
for G − N(v) then S′ ∪ N(v) is optimal for G [5]. We proceed differently and shortcut the
node v if N+(v) or N−(v) are dicliques. While this extension is easy to prove, it is, to the
best of our knowledge, novel.

SHORTONE. Let v be a node with exactly one incoming edge uv and one outgoing edge
vw in G − PIE such that any bidirectional neighbor of v is also a bidirectional neighbor of
at least one out of u or w. Then, remove the edges uv and vw and add uw. Call the reduced
graph G′. For correctness, take any solution S in G. If v ̸∈ S, then S is also a solution for
G′. If v ∈ S, assume S is not a solution in G′. Then u, w ̸∈ S since any cycle introduced
by the reduction must use uw. Since all bidirectional neighbors of v are also bidirectional
neighbors of u or w, those must all be in S. Thus we can simply replace v by u (or w) and
obtain a solution of the same size. Also, any solution in G′ is always a solution in G.

2.1 Vertex Cover Reductions
Note that if we have a bidirectional edge between u and v, we have to take at least one of u

and v into the DFVS. Therefore we can regard G[PIE] as a Vertex Cover subproblem. Any
DFVS for G must necessarily be a vertex cover for that subgraph. For that reason some
Vertex Cover reduction rules [3] translate well to DFVS.

VC-DOME. Recall, that we denote by B ⊆ V the set of vertices only incident to bidirectional
edges. Consider v ∈ B, with u ∈ N(v) with N(v) \ {u} ⊆ N(u). Then, we add u to the
solution and consider G − u.

S. Angrick et al. 28:3

Degree 2 Fold. Consider v ∈ B with N(v) = {u, w} and u ∈ B. Observe that there is an
optimal DFVS D∗ with either D∗ ∩{u, v, w} = {v} or D∗ ∩{u, v, w} = {v, w}. To reduce the
graph, we add a new vertex t to G and connect t in such a way, that N+(t) = N+(w) ∪ N(u)
and N−(t) = N−(w) ∪ N(u) and we remove u, v and w from the graph. Then we solve the
instance on the reduced graph to obtain the solution S. If t ∈ S, the solution to the original
instance is (S \ {t}) ∪ {u, w}. Otherwise, the solution to the original instance is S ∪ {v}.

Funnel Fold. Consider a vertex v ∈ B with w ∈ N(v) such that N(v) \ w is a diclique.
Observe that there is an optimal DFVS D∗ with either D∗∩{v, w} = {v} or D∗∩{v, w} = {w}.
To reduce the instance, we first add C = N(u) ∩ N(w) to the solution and remove these
vertices from the graph. Now we add edges, such that each x ∈ N(v) \ C is a bidirectional
neighbor of every y ∈ N(w) \ C. Finally, we remove u, w from the graph. Then we solve the
instance on the reduced graph to obtain the solution S. If N(v) \ {w} ⊆ S, the solution to
the original instance is S ∪ {w}. Otherwise, the solution to the original instance is S ∪ {v}.

3 Reduction to Vertex Cover

After applying a set of reduction rules exhaustively we solve the remaining instance by
repeatedly solving Vertex Cover instances. Initially, we choose the reduction rules Improved
CORE and PIE. If this does not solve the instance within five seconds, we proceed by using
all reduction rules listed above.

First note that if the remaining graph contains only bidirectional edges, we can easily
reduce DFVS to Vertex Cover by turning bidirectional edges into undirected edges. Initially,
we find an optimal vertex cover S in G[PIE]. If S is a DFVS, S must be optimal. Otherwise,
we find a set of vertex-disjoint cycles C in G − S − PIE using a DFS. All cycles in C are
not covered by S, so we add a gadget to each cycle to ensure, that in the modified graph,
there is an optimal vertex cover, which includes a v ∈ S. Finally, we iterate on the modified
graph until the vertex cover is also a DFVS. Note, that this can happen multiple times since
our choice of C does not guarantee that all cycles in G are covered.

Let G = (V, E) be an undirected graph and let S ⊆ V . Our goal is to find the minimum
vertex cover in G that also contains a vertex in S. To achieve this, we add a clique of size
|S| to G and connect it one-to-one with S. We call the modified graph G′. Consider any
optimal vertex cover C in G′. Then, C contains at least |S| − 1 vertices in the new clique.
Also, C must cover all edges between V and the clique, so it must contain at least one vertex
in S or all vertices in the clique. If C contains all vertices in the clique, we exchange one of
these vertices for a vertex in S and obtain an optimal vertex cover C ′ in G′ with C ′ ∩ S ̸= ∅.
Thus, C ′ ∩ V is an optimal vertex cover of G that also contains a vertex of S.

Note that the exactness of our solver only relies on the optimality of the final vertex cover.
Therefore, when the exact solver takes more than five seconds, we switch to a heuristic solver
and verify our solution with an exact solver once we have covered all cycles in G. We do this
by solving the final Vertex Cover instance completely using the exact solver. If the heuristic
vertex cover was not optimal, we iterate further. Surprisingly, this did not occur on any
public instance.

To solve a Vertex Cover instance, we initially reduce it using the kernelization procedure,
implemented by the winning solver of the 2019 PACE challenge [4]. When solving this
instance heuristically, we use a local-search solver [1] on this kernel. To solve the kernel
exactly, we use a branch-and-reduce solver [6], which we augment by implementing better
upper bounds using the aforementioned local-search solver.

IPEC 2022

28:4 PACE Solver Description: Mount Doom

References
1 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An Efficient Local Search

Algorithm for Minimum Vertex Cover. Journal of Artificial Intelligence Research, 46:687–716,
2013.

2 Reinhard Diestel. Graph Theory 3rd ed. Graduate Texts in Mathematics, 173, 2005.
3 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure & Conquer Approach for

the Analysis of Exact Algorithms. Journal of the ACM, 56(5):25:1–25:32, 2009.
4 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:

The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track. In Proceedings of
the SIAM Workshop on Combinatorial Scientific Computing (CSC), pages 1–11, 2020.

5 Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Digraphs.
PhD thesis, Universität zu Köln, 2008.

6 Rick Plachetta and Alexander van der Grinten. SAT-and-Reduce for Vertex Cover: Acceler-
ating Branch-and-Reduce by SAT Solving. In Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 169–180, 2021.

PACE Solver Description: Hust-Solver –
A Heuristic Algorithm of Directed Feedback Vertex
Set Problem∗

YuMing Du #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

QingYun Zhang #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

JunZhou Xu #

Huawei TCS Lab Shanghai, China

ShunGen Zhang #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

Chao Liao #

Huawei TCS Lab Shanghai, China

ZhiHuai Chen #

Huawei TCS Lab Shanghai, China

ZhiBo Sun #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

ZhouXing Su #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

JunWen Ding #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

Chen Wu #

Huawei TCS Lab Shanghai, China

PinYan Lu #

Huawei TCS Lab Shanghai, China

ZhiPeng Lv #

School of Computer Science and Technology, Huazhong University of Science & Technology, China

Abstract
A directed graph is formed by vertices and arcs from one vertex to another. The feedback vertex set
problem (FVSP) consists in making a given directed graph acyclic by removing as few vertices as
possible. In this write-up, we outline the core techniques used in the heuristic feedback vertex set
algorithm, submitted to the heuristic track of the 2022 PACE challenge.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases directed feedback vertex set, local search, simulated annealing, set covering

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.29

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6644409

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© YuMing Du, QingYun Zhang, JunZhou Xu, ShunGen Zhang, Chao Liao, ZhiHuai Chen, ZhiBo Sun,
ZhouXing Su, JunWen Ding, Chen Wu, PinYan Lu, and ZhiPeng Lv;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 29; pp. 29:1–29:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuming_du@foxmail.com
mailto:qingyun_zhang@hust.edu.cn
mailto:xujunzhou@huawei.com
mailto:zhangshungen@hust.edu.cn
mailto:liaochao4@huawei.com
mailto:chenzhihuai1@huawei.com
mailto:sun_zb@foxmail.com
mailto:suzhouxing@hust.edu.cn
mailto:junwending@hust.edu.cn
mailto:c.wu@huawei.com
mailto:lupinyan@huawei.com
mailto:zhipeng.lv@hust.edu.cn
https://doi.org/10.4230/LIPIcs.IPEC.2022.29
https://doi.org/10.5281/zenodo.6644409
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 PACE Solver Description: Hust-Solver

1 Problem Description

Let G = (V, E) be a directed graph, where V is the vertex set and E ⊆ V × V is the edge
set. The feedback vertex set problem is to find a minimum subset X ⊆ V such that, when
all vertices of X and their adjacent edges are deleted from G, the remainder subset G′ ⊆ G

is acyclic. The subset X is a feedback vertex set of the graph G. In the challenge of PACE
2022, for heuristic algorithms, the process was limited in 10 miniutes.

2 Reduction Rules

Reduction Rules play an important role in solving FVSP because it improves the efficiency of
algorithm. A contraction (reduction) operation reduces the original graph while it preserves
the information necessary for finding the minimum feedback set. We adopt eight reduction
rules to eliminate some vertices and edges, and deduce that some vertices must be included
in the optimal solution. Five contraction operations have been proposed in Levy and Low
(1988) [4]. More recently, three new contraction operations have been presented in Lin and
Jou (1999) [5]. Our implementation adopted the directed graph reduction method in [5].
The reductions simplifies the graph efficiently and does not take too long.

3 Simulated Annealing

In order to tackle FVSP, we propose a simulated annealing algorithm which is based on the
local search framework. The earliest idea of simulated annealing algorithm (SA) was proposed
by N. Metropolis et al. [1] in 1953. It generates an initial solution, than iteratively improves
the incumbent solution by a local search procedure. At each iteration of the algorithm, it
first evaluates the neighborhood of the current solution and determines whether to perform
the current neighborhood move by ∆T . If the current solution improves the best solution
found so far, then the best solution is updated with the current. Finally, when the specified
termination condition is met, the algorithm terminates and returns the best solution.

3.1 Initialization
This procedure is divided into two stages to generate an initial solution. In the first stage,
the original problem is transformed into a vertex cover problem [2, 6] and then solves the
problem by executing a heuristic algorithm under limited time. The execution time of the
heuristic algorithm is determined according to the ratio rb of bidirectional edges. The greater
the value of rb, the greater the execution time.

rb =
2 ∗

∑
i,j∈V (eij ∗ eji)

|E|
(1)

In the second stage, the descent heuristic algorithm is used to further optimize the
solution. Finally, the initial solution X0 of the problem is obtained.

3.2 Neighborhood Structure and Evaluation
A directed graph with no directed cycles is named a directed acyclic graph (DAG). Every
DAG has a topological ordering, i.e. an ordering of its vertices such that the starting-point
of every arc occurs earlier in the ordering than the endpoint of the arc. Conversely, the
existence of a topological ordering in a graph proves that this graph is acyclic.

Y. Du et al. 29:3

In order to solve FVSP, we adopts a neighborhood move based on add and remove
operations [3]. Specifically, an add operation consists of inserting a new vertex j /∈ X at
some particular position into the sequence and, at the same time, a remove operation used
to remove the vertices that would now violate the precedence constraint. Based on the
incumbent solution X, performing the operations produces a new neighborhood solution X ′.

To obtain the best neighboring solution and improve the incumbent solution X, our solver
uses the insert policies that in-coming and out-coming neighbors. Specifically, a vertex v

can be inserted in the sequence at only two different positions, which are after its numbered
in-coming neighbors, or just before its numbered out-going neighbors.

However, the simulated annealing algorithm used in [3] tends to end prematurely, so after
reaching the local optimum, we increase the temperature of simulated annealing appropriately,
and randomly delete some vertices in the topology sequence in order to jump out of the local
optimum, so that the algorithm can rerun. The algorithm terminates until the limit time is
reached. In addition, in the later period of the simulated annealing run, a cache acceleration
method is also applied.

In particular, we lazily transform the FVSP to the set covering problem when the number
of cycles is not too large, and use the set covering algorithm to further optimize current
solution X.

3.3 Data structure
To efficiently update topological sequences, we used a data structure that can perform insert,
delete and compare the order of two vertices in constant amortized time.

In our implementation, a method of labeling vertices is used. Each vertex in the sequence
has a label that determines their order in the topological sequence. The labels are sparse
enough, which is achieved by continuously dividing sufficiently large intervals, so that there
will be spare labels between every two adjacent vertices in the topological sequence. When a
vertex is inserted, it is assigned a label that is half the sum of the preceding and succeeding
labels in topological order. If the spare label does not exist, the label of related vertices in
the topology sequence needs to be adjusted.

References
1 Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical science, 8(1):10–15,

1993.
2 Yuning Chen and Jin-Kao Hao. Dynamic thresholding search for minimum vertex cover in

massive sparse graphs. Eng. Appl. Artif. Intell., 82:76–84, 2019.
3 Philippe Galinier, Eunice Adjarath Lemamou, and Mohamed Wassim Bouzidi. Applying local

search to the feedback vertex set problem. J. Heuristics, 19(5):797–818, 2013.
4 Hanoch Levy and David W. Low. A contraction algorithm for finding small cycle cutsets. J.

Algorithms, 9(4):470–493, 1988.
5 Hen-Ming Lin and Jing-Yang Jou. Computing minimum feedback vertex sets by contraction

operations and its applications on CAD. In Proceedings of the IEEE International Conference
On Computer Design, VLSI in Computers and Processors, ICCD ’99, Austin, Texas, USA,
October 10-13, 1999, page 364. IEEE Computer Society, 1999.

6 Changsheng Quan and Ping Guo. A local search method based on edge age strategy for
minimum vertex cover problem in massive graphs. Expert Syst. Appl., 182:115185, 2021.

IPEC 2022

PACE Solver Description: GraPA-JAVA∗

Moritz Bergenthal !

Universität Bremen, Germany
Jona Dirks !

Universität Bremen, Germany

Thorben Freese !

Universität Bremen, Germany
Jakob Gahde !

Universität Bremen, Germany

Enna Gerhard !

Universität Bremen, Germany
Mario Grobler !

Universität Bremen, Germany

Sebastian Siebertz !

Universität Bremen, Germany

Abstract
We present an exact solver for the Directed Feedback Vertex Set Problem (DFVS), submitted for
the exact track of the Parameterized Algorithms and Computational Experiments challenge (PACE)
in 2022. The solver heavily relies on data reduction (known from the literature and new reduction
rules). The instances are then further processed by integer linear programming approaches. We
implemented the algorithm in the scope of a student project at the University of Bremen.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases complexity theory, parameterized complexity, linear programming, java,
directed feedback vertex set, PACE 2022

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.30

Supplementary Material
Software (Source Code Release): https://doi.org/10.5281/zenodo.6647003
Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-
library, archived at swh:1:dir:fd00e212eda2d4eab270dadc83923224551db839
Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/max
cliqueenumeration, archived at swh:1:dir:a4cde68f2e0de0e5b873eb5a02dc975c4a37fbb1
Software (Public Git Repository): https://gitlab.informatik.uni-bremen.de/grapa/java/pace-
2022-dfvs-solver, archived at swh:1:dir:a80285858dd46e917d4f0c89fd13948177c6a048

Preliminaries

We use standard notation for directed graphs as in [2], with u, v ∈ V (G) being two vertices,
and (u, v) ∈ E(G) being an edge from vertex u to vertex v. We use the term directed edge
for any edge (u, v) ∈ E(G) if (v, u) ̸∈ E(G) and undirected edge (or 2-cycle) otherwise.

1 Solver overview

On a high level, our algorithm works as follows. It uses three steps to find a minimum DFVS
for an input graph G:
1. Parse the input and apply the most basic data reduction rules.
2. Apply advanced data reduction rules iteratively (details are presented in Section 2).
3. Solve the remaining instance, possibly iteratively (details are presented in Section 3).

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Moritz Bergenthal, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard, Mario Grobler, and
Sebastian Siebertz;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 30; pp. 30:1–30:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbergent@uni-bremen.de
https://orcid.org/0000-0002-0785-4725
mailto:dirks2@uni-bremen.de
mailto:thfr@uni-bremen.de
mailto:jgahde@uni-bremen.de
mailto:gerhard@uni-bremen.de
https://orcid.org/0000-0002-7767-6637
mailto:grobler@uni-bremen.de
https://orcid.org/0000-0001-8103-6440
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.IPEC.2022.30
https://doi.org/10.5281/zenodo.6647003
https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library
https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library
https://archive.softwareheritage.org/swh:1:dir:fd00e212eda2d4eab270dadc83923224551db839;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/fptg-library;visit=swh:1:snp:53ee37d75c40f378a432dac1763f073d2db39b8a;anchor=swh:1:rev:5722a7fd1d3a4e6a066734dc734f9011eaf6c730
https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration
https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration
https://archive.softwareheritage.org/swh:1:dir:a4cde68f2e0de0e5b873eb5a02dc975c4a37fbb1;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/maxcliqueenumeration;visit=swh:1:snp:6df0ef1b3df0a566c5e8d537d76d2542756fe499;anchor=swh:1:rev:e9c1f42707b17b780cb6bfc510d5f6691b074457
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://archive.softwareheritage.org/swh:1:dir:a80285858dd46e917d4f0c89fd13948177c6a048;origin=https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver;visit=swh:1:snp:6cf7e3c398e66cc79db013f69f24e2564518f9e9;anchor=swh:1:rev:f91d1a133a6357cdc93b421f3519822de4847f91
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 PACE Solver Description: GraPA-JAVA

Table 1 Data reduction rules.

Name Note Source

1. Delete Loops Implicitly applied Folklore, rule 1 of [6]
2. Remove connected to n − 1 Special case of rule 5
3. In-/out-degree 0 Included in CRR Rule 3 of [6], rule 5 of [1]
4. In-/out-degree 1 Included in CRR Rule 4 of [6], rule 6 of [1]
5. Dominating 2-cycle Superset of both prede-

cessors and successors
Adapted from rule 6 of [4]

6. Strongly connected compon-
ents

Previous rules inbetween One step of [5] at a time

7. Delete unnecessary edges Partially included in CRR Special case of rule 10
8. Contract isolated paths of

length 3 (lines)
Possible when not creating
new induced cycles

Adapted from rule 7 of [4]

9. Contract degree three Possible when not creating
new induced cycles

Adapted from special case of
rule 8 of [4]

10. Delete non-induced edges New
We only need to consider induced edges. For every edge, we start a BFS and do
not visit a vertex if a cycle is closed. For this, we track disallowed predecessors
that get reduced if an alternative path exists. It is not exhaustive, as there
might be cases where two alternative paths would be closed.

11. Pick dominating vertices on
2-cycles

New

If a vertex dominates all predecessors/successors of the other vertex on an
undirected edge with undirected edges, we can include it in the solution.

12. Crown reduction Special case of connected to
all in foot

Adapted from rule 3 of [4]

13. Three hitting set Only applies in Section 3.3 New
If all cycles running through a vertex are at most 3-cycles, we can replace them
with a hitting set gadget. If all vertices of the internal clique are selected, we
are allowed to push one outwards, hitting the cycle

14. Any hitting set Only applies in Section 3.3 New
Applied to a cycle that is isolated except for at most one edge, in that case
create a gadget as in rule 13

2 Data reduction rules

We apply the data reduction rules presented in Table 1. The rules are applied iteratively.
Each rule is applied exhaustively. After a successful rule application, we return to the first
rule.

We apply commonly known rules for DFVS (Rules 1, 3, 4, 6). The most local rules are
applied recursively in a rule that we call Combined Recursive Reduction (CRR). As DFVS is
a generalization of the Vertex Cover problem, we were able to adapt several rules designed
for Vertex Cover (Rules 2, 5, 8, 9, 12). Additionally, we have found several rules generalazing
known rules from the literature, as well as several completely new rules not known from the
literature. Many of these rules rely on the observation that we only need to hit induced
cycles when solving a DFVS instance, as all other cycles will be hit in that case as well. The
correctness of all new rules will be presented in a companion paper.

M. Bergenthal et al. 30:3

3 Exact solving

After applying the data reduction rules, depending on the relative number of undirected
edges, we employ different solving strategies. If less than half of the edges are undirected
edges, we immediately resort to the iterative addition of cycles as a constraint for a hitting
set ILP formulation, explained in Section 3.1.

In mixed or largely undirected graphs, we resort to an ILP formulation that models the
problem as finding a topological order (Section 3.2) with additional hints to improve the
internal lower bounds of the solver. ILPs are solved with SCIP. If the ILP solver does not
terminate within twelve minutes, the attempt will be terminated. Instead, we compute an
exact solution to the Vertex Cover problem. If this is not a solution to DFVS, we do not
return a solution. Details are presented in Section 3.3.

3.1 Iterative cycle hitting set ILP

Over time, we generate a set K of induced cycles. We initialize K with all induced cycles of
length 2, 3 and 4, and add longer disjoint cycles that are packed greedily until no further
disjoint cycles remain. We then solve the ILP (Algorithm 1) and interpret the chosen variables
as vertices to remove from the graph. If no cycle remains, we have obtained the optimal
solution, otherwise, we greedily compute a new cycle packing on the remainder of the graph
and add all these cycles to K.

Algorithm 1 Hitting set ILP formulation.

foreach vi ∈ V (G) add variable x(vi) = xi ∈ X with constraint xi ∈ [0, 1]
foreach cycle K ∈ K add constraint

∑
vi∈K x(vi) ≥ 1

minimize
∑

xi∈X xi

3.2 Topological order ILP

A graph is acyclic if and only if its vertices can be ordered as v1, . . . , vn such that every edge
(vi, vj) satisfies i < j. We use this observation for the following ILP formulation (Algorithm 2).
For the undirected subcomponents of the graph, we compute a set of maximum cliques C
using [3]. This external solver does not always find all 2-cliques, so we compute all 2-cycles
and remove them if they are somewhere included in a clique. We create a partial order on
all vertices adjacent to directed edges, denoted as E . The constraints can be interpreted as
o(s) < o(t) ∨ x(s) ∨ x(t): edges must be part of a DAG over the order or either vertex chosen
for the solution. We furthermore compute a hint of short cycles K as in Section 3.1. The
vertices chosen can directly be interpreted as a result for DFVS.

3.3 Underlying Vertex Cover

We take the undirected part of the graph and compute a minimum vertex cover using [7]. If
no cycles are remaining, we return the solution. Otherwise, we apply the hitting set gadget
reduction rules (Rules 13 and 14) and solve the resulting instance again. At this point, we
could turn towards iterative solving as in Section 3.1 but did not implement this as the above
approach was already sufficient on all of the test instances.

IPEC 2022

30:4 PACE Solver Description: GraPA-JAVA

Algorithm 2 Linear ordered ILP formulation.

foreach vi ∈ V (G) add
variable x(vi) = xi ∈ X with constraint xi ∈ [0, 1]
variable o(vi) = yi ∈ Y with constraint yi ∈ [0, n]

foreach clique C ∈ C add constraint
∑

vi∈C x(vi) ≥ |C| − 1
foreach edge (s, t) ∈ E add constraint o(t) − o(s) + x(t) · (n + 1) + x(s) · (n + 1) ≥ 1
foreach cycle K ∈ K add constraint

∑
vi∈K x(vi) ≥ 1

minimize
∑

xi∈X xi

References
1 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.

Ramanujan. Towards a Polynomial Kernel for Directed Feedback Vertex Set. In Kim G.
Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1–36:15, Dagstuhl, Germany, 2017.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.MFCS.2017.36.

2 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2016.
doi:10.1007/978-3-319-21275-3.

3 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics, 18, November 2013. doi:10.1145/2543629.

4 Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Adventures Between Lower
Bounds and Higher Altitudes, pages 330–356, 2018. doi:10.1007/978-3-319-98355-4_19.

5 Lisa K. Fleischer, Bruce Hendrickson, and Ali Pınar. On identifying strongly connected
components in parallel. In José Rolim, editor, Parallel and Distributed Processing, pages 505–
511, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. doi:10.1007/3-540-45591-4_68.

6 Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of fpt algorithms for the
directed feedback vertex set problem. In Amos Fiat and Peter Sanders, editors, Algorithms
– ESA 2009, pages 611–622, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-04128-0_55.

7 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the pace 2019 implementation challenge, vertex cover track. ArXiv,
abs/1908.06795, 2019. arXiv:1908.06795.

https://doi.org/10.4230/LIPIcs.MFCS.2017.36
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2543629
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/978-3-642-04128-0_55
https://doi.org/10.1007/978-3-642-04128-0_55
http://arxiv.org/abs/1908.06795

PACE Solver Description: DreyFVS∗

Gabriel Bathie #

École Normale Supérieure de Lyon, France

Gaétan Berthe #

École Normale Supérieure de Lyon, France

Yoann Coudert–Osmont #

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

David Desobry #

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Amadeus Reinald #

École Normale Supérieure de Lyon, France

Mathis Rocton #

École Normale Supérieure de Lyon, France

Abstract
We describe DreyFVS, a heuristic for Directed Feedback Vertex Set submitted to the 2022
edition of Parameterized Algorithms and Computational Experiments Challenge. The Directed
Feedback Vertex Set problem asks to remove a minimal number of vertices from a digraph such
that the resulting digraph is acyclic. Our algorithm first performs a guess on a reduced instance
by leveraging the Sinkhorn-Knopp algorithm, to then improve this solution by pipelining two local
search methods.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Directed Feedback Vertex Set, Heuristic, Sinkhorn algorithm, Local search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.31

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6638217

1 Introduction

In the following, a directed graph, or digraph G = (V, E) is a set of vertices V , and a set
of arcs E, consisting of ordered pairs of vertices. For a vertex v ∈ V (G), we denote its
out-neighbourhood by N+(v) = {u ∈ V (G) : (v, u) ∈ E}, and its in-neighbourhood by
N−(v) = {u ∈ V (G) : (u, v) ∈ E}. A directed cycle is a sequence (u1, ..., uk, u1) such that
(ui, ui+1[k]) ∈ E(G). A directed acyclic graph, DAG for short, is a digraph containing no
cycles. Given X a set of vertices, we let G[X] be the graph induced by X. A strongly
connected component of G is a vertex set X such that there is a path between any pair of
vertices in G[X]. We say that (u, v) is a digon if it is a (directed) cycle of length two. We
say that a set C ⊆ V is a d-clique whenever |C| = d and each pair (c, c′) ∈ C forms a digon.
The Directed Feedback Vertex Set problem takes as input G = (V, E) and asks for
a set X ⊆ V such that G[V \X] contains no directed cycle. We consider the minimization
version of the problem, asking for X to be of minimal size.

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Gabriel Bathie, Gaétan Berthe, Yoann Coudert–Osmont, David Desobry, Amadeus Reinald, and
Mathis Rocton;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 31; pp. 31:1–31:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabriel.bathie@ens-lyon.fr
mailto:gaetan.berthe@ens-lyon.org
mailto:yoann.coudert-osmont@inria.fr
mailto:david.desobry@inria.fr
mailto:amadeus.reinald@lirmm.fr
https://orcid.org/0000-0002-8108-4036
mailto:mrocton@ac.tuwien.ac.at
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.IPEC.2022.31
https://doi.org/10.5281/zenodo.6638217
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 PACE Solver Description: DreyFVS

Our algorithm first applies reduction rules to obtain a smaller instance, guesses a first
solution using a Sinkhorn-Knopp algorithm, then uses two heuristics to improve the solution
in a local manner. A C++ implementation is available on a public git repository [1].

In Section 2, we present the steps needed to guess our first solution. We first describe our
reduction rules 2.1, based on those described by Lin and Jou [4], and provide an extension
to their CORE rule. Then, we give an overview of the Sinkhorn-Knopp method in 2.2. In
Section 3, we describe our two local search heuristics.

2 Guessing a solution

2.1 Reductions
At any step of the reduction, one can deal with each strongly connected component independ-
ently, as solutions to the instance are exactly unions of solutions to each strongly connected
component. The main reductions rules applied in our algorithm are those developed in [4],
namely LOOP, IN0, IN1, OUT0, OUT1, PIE, CORE and DOME. Given a vertex v ∈ V (G),
a bypass of v consists in the deletion of v, followed by the addition of arcs (u, w) for any
u ∈ N−(v), w ∈ N+(v). The goal of the bypass operation is to reduce instances where v can
always be replaced by another vertex in the solution. Towards motivating our extension of
the CORE rule, we first describe rule IN1, note that the OUT1 rule is symmetric when v

admits a single out-neighbour.

▶ Reduction Rule 1 (IN1). If a vertex v ∈ V (G) admits a single in-neighbour, bypass v.

Indeed, the in-neighbour of v is part of any cycle containing v. A solution using v in the
original graph yields a solution of the same size using its in-neighbour in the reduced graph.
Thus, a solution in the reduced graph is also a solution in the original one.

In [4], the CORE rule looks to bypass a vertex v that is a CORE of some d-clique,
meaning that it forms a d-clique with all its (in or out) neighbours. We extend this rule by
applying it whenever its in-neighbours or its out-neighbours form a d-clique.

▶ Reduction Rule 2 (CORE’). If a vertex v ∈ V (G) is such that N−(v) or N+(v) forms a
d-clique, bypass v.

Indeed, considering the case where N−(v) forms a d-clique, any solution to DFVS must
contain at least one vertex per digon in N−(v), thus at least d − 1 vertices of N−(v) in
total. Then, by the same arguments as rule IN1, taking the remaining in-neighbour of v

in a solution is at least as good as taking v. The case is symmetrical when N+(v) forms a
d-clique, using the OUT1 rule.

2.2 The Sinkhorn–Knopp Algorithm
Given a graph G, we construct our first solution X by the heuristic of Shook and Beichl [5].
We call a set of vertex disjoint cycles a disjoint cycle union, or DCU for short. Given an n×n

matrix A, the permanent of A is defined as perm(A) =
∑

σ∈Sn

∏n
i=1 aiσ(i). The idea of the

heuristic is to iteratively add vertices v that are contained in many DCUs to the solution X.
While computing all DCUs is not efficient, a first observation is that the permanent of A

allows us to count the number of spanning DCUs in G, where a spanning DCU is a DCU
covering all vertices of the graph. To lift the spanning constraint and count all DCUs, it is
possible to take the permanent of the matrix M = A + I. If we denote by Mij the matrix M

with row i and column j removed, we define the m-balance matrix m-bal(M) as in [2]:

m-bal(M)ij = mij · perm(Mij)
perm(M) ,

G. Bathie, G. Berthe, Y. Coudert–Osmont, D. Desobry, A. Reinald, and M. Rocton 31:3

Then, m-bal(M)vv is the fraction of DCUs that do not contain v. Thus, small values lead us
to consider the addition of v to the solution. Computing m-bal(M) is still hard, nevertheless
[2] provides a way to approximate m-bal(M). This is done by computing the Sinkhorn balance
matrix s-bal(M) through the Sinkhorn-Knopp algorithm [6] applied on M . Sinkhorn-Knopp
is an iterative algorithm where each iteration has a O(|E|) complexity. We decided to apply
log |V | iterations leading to a O(|E| log |V |) complexity for the computation of s-bal(M). We
can now describe our iterative construction of solution X. As long as graph G is not empty,
we compute s-bal(M) and add the vertex v minimising s-bal(M)vv to X, then, we apply our
reduction rules to the remaining graph G \ {v} and re-iterate.

3 Local search

The solution obtained in the previous section is further improved using two greedy local
search heuristics sequentially. In the following, G refers to a strongly connected component
of the reduced instance, and X to our current solution for DFVS.

3.1 Vertex Swapping
The first local operation consists of a simple vertex swap. Namely, we remove a vertex from
the current solution X, and if a cycle is created we attempt to replace it with another vertex
of the cycle at random. We iterate through every vertex v of X. If G \ X ∪ {v} is acyclic,
we remove v from X such that the solution size decreases by 1. Otherwise, we consider a
cycle C in G \ X ∪ {v}, and choose some other vertex w ∈ C \ {v}, replacing v with w in X

if G \ X ∪ {v} \ {w} is acyclic.

3.2 Vertex Ordering Perturbation
Recall that a digraph is acyclic if and only if its set of vertices admits a topological ordering,
that is, an order π over V such that for every arc (u, v), π(u) < π(v). Our idea, similar to
that of [3], is to define a unique DFVS Xπ from any ordering π of V , and then swap the
positions of random pairs of vertices in π, aiming to reduce the size of the solution Xπ.

We first show how to construct Xπ from π. Start with X0
π = ∅, and then define Xn

π

inductively as follows:

Xn+1
π =

{
Xn

π if N+(vn+1
π) ∩ V n

π ⊆ Xn
π

Xn
π ∪

{
vn+1

π

}
otherwise

Where V n
π = {v ∈ V | π(v) ⩽ n} and vn

π is the vertex such that π(vn
π) = n. We then set

Xπ = X
|V |
π . Notice that Xπ can be computed in linear time using a traversal of G in the

order given by π.
We can use this structure to derive a simple local search algorithm, which repeatedly

chooses a uniformly random pair of vertices (u, v) and swaps their positions to obtain a new
ordering π′ such that π′(u) = π(v), π′(v) = π(u) and π′(w) = π(w) for w ̸∈ {u, v}. We then
compute |Xπ′ |, and if |Xπ′ | ⩽ |Xπ|, we validate the swap and set π to π′, otherwise we cancel
the swap and leave π unchanged. In practice, iterating this process quickly reduces the size
of the solution Xπ on most instances.

Given a solution X obtained after applying the local search of the previous section 3.1,
we can compute the initial value of π using a topological sort of the acyclic digraph G[V \X],
to which we append a random permutation of X.

IPEC 2022

31:4 PACE Solver Description: DreyFVS

References
1 Gabriel Bathie, Gaétan Berthe, Yoann Coudert-Osmont, David Desobry, Amadeus Reinald,

and Mathis Rocton. DreyFVS, June 2022. doi:10.5281/zenodo.6638217.
2 Isabel Beichl and Francis Sullivan. Approximating the permanent via importance sampling with

application to the dimer covering problem. Journal of Computational Physics, 149(1):128–147,
1999. doi:10.1006/jcph.1998.6149.

3 Philippe Galinier, Eunice Lemamou, and Mohamed Wassim Bouzidi. Applying local search
to the feedback vertex set problem. Journal of Heuristics, 19(5):797–818, October 2013.
doi:10.1007/s10732-013-9224-z.

4 Hen-Ming Lin and Jing-Yang Jou. On computing the minimum feedback vertex set of a
directed graph by contraction operations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(3):295–307, 2000. doi:10.1109/43.833199.

5 James Shook and Isabel Beichl. Matrix scaling: A new heuristic for the feedback
vertex set problem, June 2014. URL: https://math.nist.gov/mcsd/Seminars/2014/
2014-06-10-Shook-presentation.pdf.

6 Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

https://doi.org/10.5281/zenodo.6638217
https://doi.org/10.1006/jcph.1998.6149
https://doi.org/10.1007/s10732-013-9224-z
https://doi.org/10.1109/43.833199
https://math.nist.gov/mcsd/Seminars/2014/2014-06-10-Shook-presentation.pdf
https://math.nist.gov/mcsd/Seminars/2014/2014-06-10-Shook-presentation.pdf

PACE Solver Description: DAGer – Cutting out
Cycles with MaxSAT∗

Rafael Kiesel ! Ï

TU Wien, Austria

André Schidler ! Ï

TU Wien, Austria

Abstract
We describe the solver DAGer for the Directed Feedback Vertex Set (DFVS) problem, as it was
submitted to the exact track of the 2022 PACE Challenge. Our approach first applies a wide range of
preprocessing techniques involving both well-known data reductions for DFVS as well as non-trivial
adaptations from the vertex cover problem. For the actual solving, we found that using a MaxSAT
solver with incremental constraints achieves a good performance.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Directed Feeback Vertex Set, Data Reductions, Incremental MaxSAT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.32

Related Version Preprint of Full Version: https://arxiv.org/abs/2211.06109

Supplementary Material Software (Source Code): https://github.com/ASchidler/dfvs
Software (Source Code): https://doi.org/10.5281/zenodo.6627405

Funding This work has been supported by the FWF W1255(-N23).
André Schidler : The author has been supported by the FWF (P32441) and the WWTF (ICT19-065).

1 Introduction

This paper describes the solver DAGer1, which we submitted to the exact track of the 2022
PACE Challenge [9]. This year the challenge was to solve the Directed Feedback Vertex
Set (DFVS) problem. Informally, the DFVS problem is, given a directed graph G = (V, A)
to find a minimum cardinality subset D ⊆ V such that every directed cycle of G uses at
least one vertex from D. The problem is one Karp’s original 21 NP-complete problems [6]
and has a wide range of applications such as for argumentation frameworks [4, 3], deadlock
detection, program verification and VLSI chip design [10]. It is known that the problem is
fixed-parameter tractable [2] in the size of the DFVS.

The runtime of these parameterized algorithms quickly increases with increasing size
of the DFVS, making alternative approaches necessary for solving instances with a large
DFVS, like many of the instances in these year’s PACE Challenge. We use an alternative
approach to developing a dedicated DFVS algorithm: we express the problem in terms of
constraints and use a constraint solver for computing the DFVS. Our implementation uses a
propositional satisfiability (SAT) solver as a constraint solver. Unfortunately, the size of a
direct encoding in propositional logic is, depending on the encoding, cubic or exponential
in the size of the input graph, and therefore prohibitively large. We therefore use a lazy

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

1 Available at https://github.com/ASchidler/dfvs and https://doi.org/10.5281/zenodo.6627405

© Rafael Kiesel and André Schidler;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 32; pp. 32:1–32:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rafael.kiesel@tuwien.ac.at
https://raki123.github.io
https://orcid.org/0000-0002-8866-3452
mailto:andre.schidler@tuwien.ac.at
https://informatics.tuwien.ac.at/people/andre-schidler
https://orcid.org/0000-0001-6790-7158
https://doi.org/10.4230/LIPIcs.IPEC.2022.32
https://arxiv.org/abs/2211.06109
https://github.com/ASchidler/dfvs
https://doi.org/10.5281/zenodo.6627405
https://github.com/ASchidler/dfvs
https://doi.org/10.5281/zenodo.6627405
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 PACE Solver Description: DAGer – Cutting out Cycles with MaxSAT

approach: we use an adapted SAT solver that creates the necessary constraints when they
are violated, keeping the total number of constraints low enough for most of the instances
in the public instance set. We thereby exploit the following observation by [1] in a similar
context. Namely, while there may be exponentially many cycles in a directed graph, in order
to prove that we need at least k vertices to cover every cycle, we may need far fewer.

Data reductions are another crucial component of DAGer, as they transform the given
graph into a smaller one that is easier to solve. Notably, apart from the well-known standard
data reductions for DFVS of [7] and [8], we also managed to non-trivially generalize many
data reductions for the Vertex Cover (VC) problem to DFVS.

2 Preliminaries

We denote an undirected graph as H = (V, E) with vertices V and edges E, and a directed
graph, or digraph, by G = (V, A) with arcs A. Further, we denote an undirected edge between
vertices u and v as {u, v} and the arc, or directed edge, from u to v as (u, v).

We can now introduce the central problem addressed in this paper.

▶ Definition 1 (Cycle, DFVS). Given a digraph G = (V, A) a path is a list of vertices
v1, . . . , vn such that for i = 1, . . . , n − 1 there exists an arc (vi, vi+1) ∈ A. A cycle is a
path v1, . . . , vn such that v1 = vn. Furthermore, a cycle is uncovered, if there is no cycle
v′

1, . . . , v′
m such that {v′

i | i = 1, . . . , m} ⊊ {vi | i = 1, . . . , n}. A Directed Feedback Vertex
Set (DFVS) of G is a set D ⊆ V of minimum cardinality such that every cycle of G contains
at least one vertex in D.

We use the notation C(G) to refer to the set of all uncovered cycles in G. Since any self-loop
(u, u) can be easily preprocessed, by adding u to the DFVS and removing u from the digraph,
we will henceforth assume that the input digraph is self-loop-free.

We can represent the problem of finding a DFVS in terms of another problem.

▶ Definition 2 (Hitting Set). Given a set V called the universe and a set C = {C1, . . . , Cn}
with Ci ⊆ V for 1 ≤ i ≤ n, the minimum hitting set problem asks for a set D ⊆ V of
minimum cardinality such that D ∩ Ci ̸= ∅ for all 1 ≤ i ≤ n.

Given a digraph G, a hitting set for V and C(G) is also a DFVS for G. In the special
case where each uncovered cycle has length 2, we can also express DFVS as follows:

▶ Definition 3 (Vertex Cover). Let H = (V, E) be an undirected graph. A minimum vertex
cover is a set of vertices D ⊆ V , such that D is of minimum cardinality and for each edge
{u, v} ∈ E either u ∈ D or v ∈ D.

3 Algorithm

Our solver DAGer works via reduction of the DFVS problem to the hitting set problem.
Given the set of cycles C(G), we can easily express that each cycle needs to be hit by the
DFVS in propositional logic. This propositional encoding has one variable per vertex and
the corresponding vertex is in the DFVS if and only if the variable is true. We represent each
cycle as a disjunction, as at least one vertex per cycle must be in the DFVS, and connect
all cycles by a conjunction. We ensure the minimality of the DFVS by using a MaxSAT
solver: besides satisfying the clauses representing the cycles, the MaxSAT solver maximizes
the number of satisfied soft clauses. We add for each variable the negation as a soft clause,
causing the MaxSAT solver to minimize the number of variables set to true.

R. Kiesel and A. Schidler 32:3

As the graph might have too many cycles to efficiently enumerate them all, we proceed in
a lazy fashion: while computing a hitting set for a subset of the cycles we dynamically check
for additional cycles that do not intersect the hitting set. More precisely, DAGer works as
follows:
1. Preprocess the graph (See Section 3.1)
2. Identify a set C′(G) ⊆ C(G) of uncovered short cycles, we use a maximum length of 8.
3. If C′(G) = C(G), perform additional preprocessing not performed in Step 1 (Section 3.1).
4. Find a minimum hitting set D for C′(G) using a modified MaxSAT solver (See Section 3.2).
5. If an additional cycle is found while solving, add it.

We will briefly discuss our preprocessing and our changes to the MaxSAT solver.

3.1 Preprocessing
From classic DFVS preprocessing we used the data reductions INDICLIQUE, OUTD-
ICLIQUE, DICLIQUE-2 and DICLIQUE-3 from [7], as well as the data reductions PIE and
DOME from [8]. Apart from that, we adapted preprocessing techniques from the vertex
cover setting to the DFVS problem. Here, we used the data reductions 1,2,3,4,5,6 and
7.2 from [11], as well as data reductions 8 and 10.1 from [5]. Their soundness for DFVS
is based of the following observation: Given a directed graph G that only has uncovered
cycles of length 2, i.e., each cycle has the form u, v, u and let G′ = (V, E′) such that
E′ = {(u, v)| there is a cycle u, v, u in G}. A minimum vertex cover for G′ is a minimum
DFVS for G.

Clearly, in the above case we can apply all vertex cover data reductions on the undirected
graph. Furthermore, if we know all uncovered cycles, we can apply vertex cover preprocessing
locally, whenever all vertices involved in the reduction only take part in uncovered cycles of
length 2. This case constitutes Step 3. of the algorithm, we described above.

However, it is not always the case that we know all cycles. Therefore, we integrated
all the aforementioned vertex cover preprocessing techniques also into the preprocessing in
Step 1. It follows from the above reasoning that if all vertices involved in a reduction only
have bidirectional edges, then we can apply it. There are additional cases in which we can
additionally apply vertex cover preprocessing, however, a detailed analysis of these cases
requires a lot of technical details and is therefore left out due to space reasons. The underlying
intuition is simple though. We can apply a VC reduction if (1) it would be applicable, in the
undirected graph that has an edge {u, v} whenever u and v are bidirectionally connected in the
original graph and (2) the application of the reduction does not lead to new subset-minimal
cycles.

3.2 MaxSAT and Cycle Check
The SAT solver used inside the MaxSAT2 solver tries to find satisfying assignment (equivalent
to a DFVS) by repeating the following steps, until all variable values have been set:
1. Decide on a variable and value, i.e., decide to add a vertex to the DFVS or leave it in the

graph.
2. Propagate values that are implied by the decision, e.g., if all but one vertices in a cycle

have been left in the graph, add the remaining vertex to the DFVS.
3. Check if any clause cannot be satisfied, i.e., a cycle where all vertices are left in the graph.
4. If yes, learn a clause to avoid making the same decisions and undo the corresponding

decisions.

2 We use the solver EvalMaxSAT https://github.com/FlorentAvellaneda/EvalMaxSAT

IPEC 2022

https://github.com/FlorentAvellaneda/EvalMaxSAT

32:4 PACE Solver Description: DAGer – Cutting out Cycles with MaxSAT

We extended the conflict check in Step 3: whenever the SAT solver decides to leave a vertex
in the graph, we check if there is a cycle. If there is a cycle, we add the cycle to our encoding
and notify the solver of the conflict. This way we do not have to find all the cycles initially
and we only add those cycles that are required for finding a DFVS.

References
1 Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. An exact method

for the minimum feedback arc set problem. Journal of Experimental Algorithmics (JEA),
26:1–28, 2021.

2 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Cynthia Dwork, editor, Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 177–186. ACM, 2008.

3 Wolfgang Dvorák, Markus Hecher, Matthias König, André Schidler, Stefan Szeider, and Stefan
Woltran. Tractable abstract argumentation via backdoor-treewidth. In AAAI 2022, 2022.

4 Wolfgang Dvorák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artif. Intell., 186:157–173, 2012. doi:10.1016/j.artint.2012.
03.002.

5 Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Hans-Joachim Böckenhauer,
Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher
Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday,
volume 11011 of Lecture Notes in Computer Science, pages 330–356. Springer, 2018. doi:
10.1007/978-3-319-98355-4_19.

6 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a Symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

7 Mile Lemaic. Markov-chain-based heuristics for the feedback vertex set problem for digraphs.
PhD thesis, Universität zu Köln, 2008.

8 Hen-Ming Lin and Jing-Yang Jou. On computing the minimum feedback vertex set of a
directed graph by contraction operations. IEEE TCAD, 19(3):295–307, 2000.

9 Christian Schulz, Ernestine Großmann, Tobias Heuer, and Darren Strash. Pace 2022. URL:
https://pacechallenge.org/2022/.

10 Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating System Concepts. JW
Wiley, 2018.

11 Ulrike Stege and Michael Ralph Fellows. An improved fixed parameter tractable algorithm for
vertex cover. Technical report/Departement Informatik, ETH Zürich, 318, 1999.

https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-1-4684-2001-2_9
https://pacechallenge.org/2022/

	p000-Frontmatter
	Preface
	Program Committees
	List of External Reviewers

	p001-Agrawal
	1 Introduction
	2 Preliminaries
	3 Restricted-Delaunay Realization: Generating Polynomials
	3.1 Inequalities Ensuring that the Outer Face Forms the Convex Hull
	3.2 Inequalities Guaranteeing Existence of Edges
	3.3 Correctness

	4 Restricted-Delaunay Realization: Replacing Points by Discs
	5 Delaunay Realization: Integer Coordinates
	6 Conclusion

	p002-Agrawal
	1 Introduction
	2 Preliminaries
	3 Polynomial-time Algorithm for Interval Graphs
	4 FPT Algorithm for Apex-Minor-Free Graphs
	5 FPT Algorithm for K_{b,b}-free Graphs
	6 Kernelization for Perfectly Matched Sets on d-degenerate graphs

	p003-Bakkane
	1 Introduction
	2 Preliminaries
	2.1 Generalized dominating set problems
	2.2 Problem Definitions

	3 Graph operations and bounds on the linear mim-width
	4 Hardness of (sigma, rho)-Dominating Set problems
	4.1 The core graph H
	4.2 Minimization problems
	4.2.1 When smallrho = smallsigma+1 and smallsigma > = 1
	4.2.2 When smallrho > smallsigma+1 and smallsigma > = 1
	4.2.3 When smallrho < smallsigma+1
	4.2.4 When smallrho > = 1 and smallsigma = 0

	4.3 Maximization problems

	5 Conclusion

	p004-Bandyapadhyay
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Assignment Problem for FMLkC
	4 Approximation Algorithms for FMLkC

	p005-Blum
	1 Introduction
	1.1 Related Work

	2 Sparse Vertex Cover
	3 Fair Vertex Cover
	4 Hardness of Highway Dimension and Shortest Path Cover
	5 Approximating Shortest Path Covers
	A Supplementary figures from Section 4
	B Omitted proofs from Section 4
	C Dense Matching

	p006-Bodlaender
	1 Introduction
	2 Definitions
	2.1 Turing Machines and Classes
	2.2 From classical to parameterized

	3 Equivalent characterisations of XALP
	4 XALP-completeness for a tree-chained variant of Multicolor Clique
	5 More XALP-complete problems
	5.1 List coloring
	5.2 Tree variants of Weighted Satisfiability
	5.3 Logarithmic Treewidth
	5.4 Other problems

	6 Conclusions

	p007-Bodlaender
	1 Introduction
	2 Preliminaries
	3 Approximation algorithm for tree-partition-width
	3.1 Description of the algorithm
	3.2 Correctness
	3.3 Time/quality trade-offs

	4 XALP-completeness of Tree Partition Width
	5 Conclusion
	A Tree-cut width and the stability of tree-partition-width

	p008-Bodlaender
	1 Introduction
	2 Overview of the results
	3 Preliminaries
	3.1 Definition of the class XNLP
	3.2 Reductions
	3.3 Pathwidth, linear clique-width, and linear mim-width
	3.4 Chained variants of Satisfiability and Multicolored Clique

	4 Problems parameterized by linear width measures
	4.1 Max Cut parameterized by linear clique-width
	4.2 Variants of Dominating Set parameterized by pathwidth
	4.3 q-Coloring parameterized by linear mim-width

	5 Conclusion

	p009-Bonnet
	1 Introduction
	2 Preliminaries
	2.1 Graph theory
	2.2 Model checking, interpretations, transductions, and dependence
	2.3 Rank divisions, universal patterns and twin-width

	3 Delineation: intersection graphs of trees and paths
	4 Win-wins via twin-width: segment graphs and visibility graphs
	4.1 Segment graphs
	4.2 Visibility graphs

	p010-Ducoffe
	1 Introduction
	2 Preliminaries
	3 Properties of graph extremities
	3.1 Bounds on the Number of Graph extremities
	3.2 Relationships with the diameter
	3.3 Relationships with Dominating targets
	3.4 Relationships with Hyperbolicity
	3.5 Extremities in some Graph classes

	4 A framework for computing extremities
	4.1 LexBFS
	4.2 Finding one extremity
	4.3 Generalization

	5 Proof of Theorem 1
	5.1 Approximation algorithm
	5.2 Exact computation

	6 Extensions
	6.1 More results on dominating targets
	6.2 Chordal graphs

	7 Conclusion
	A Proof of Lemma 8
	B Proof of Lemma 16
	C Proof of Lemma 23
	D Proof of Theorem 32

	p011-Eiben
	1 Introduction
	2 Preliminaries
	2.1 Important cuts
	2.2 Iterative compression
	2.3 A general framework for shadow removal
	2.4 Skew Vertex Multicut is FPT

	3 An FPT algorithm when parameterized by k+l
	4 A 2-approximation algorithm
	4.1 Iterative compression and first guesses
	4.2 Finding a skew multicut of Y
	4.3 Finding a solution in the simplified instance

	5 An exact algorithm for Symmetric Directed Multiway Cut
	5.1 Iterative compression and first guesses
	5.2 Shadow removal
	5.3 Finding a shadowless solution

	A Missing proofs

	p012-Esmer
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Generalized Convolution
	3.1 Properties of Projections

	4 Existence of Low-Cost Cyclic Partition
	4.1 Special Case
	4.2 General Case

	5 Conclusion and Future Work
	A Querying a Generalized Convolution
	B Proof of Theorem 2.5
	C Proof of Lemma 3.5

	p013-Fomin
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	4 ETH Hardness
	5 SeCoCo Hardness
	6 A 2n̂ poly(m, n) time Algorithm for k-Median Facility Location

	p014-Galby
	1 Introduction
	2 Preliminaries
	3 Dominating Set
	4 Multicut with Undeletable Terminals
	5 Multiway Cut with Undeletable Terminals on Chordal Graphs
	6 Conclusion
	A Proof of Lemma 7: Constructing Rest-Red-Blue-DomSet Instances
	B Correctness of the Algorithm for Multiway-Cut

	p015-Ganian
	1 Introduction
	2 Preliminaries
	3 Refined Measures for Tree-Cut Decompositions
	3.1 Definitions and Comparison
	3.2 Weak Immersions
	3.3 k-Edge Sums

	4 Alternative Characterizations
	4.1 Characterization of 0-Tree-Cut Width
	4.2 Characterization of Slim Tree-Cut Width

	5 Approximating Slim Tree-Cut Width
	6 Discussion of Algorithmic Applications
	7 Conclusion

	p016-Haviv
	1 Introduction
	1.1 Our Contribution
	1.2 Proof Overview
	1.3 Outline

	2 Preliminaries
	2.1 Kneser and Schrijver Graphs
	2.2 Chernoff-Hoeffding Bound

	3 Induced Subgraphs of Schrijver Graphs
	3.1 Counting Stable Sets
	3.2 Induced Subgraphs of Schrijver Graphs

	4 A Fixed-Parameter Algorithm for the Schrijver Problem
	4.1 The Element Elimination Algorithm
	4.2 The Fixed-Parameter Algorithm for the Schrijver Problem

	p017-Hegerfeld
	1 Introduction
	2 Preliminaries
	2.1 Graph Parameters
	2.2 Strong Exponential-Time Hypothesis

	3 Relations between Parameters
	4 Outline of Main Result
	4.1 Sparse Setting
	4.2 Dense Setting

	5 Algorithm for Deletion to r-Colorable
	6 Conclusion
	A Problem Definitions

	p018-Hermelin
	1 Introduction
	2 Problem Setting
	3 W[1]-Hardness of Interval Scheduling on Eligible Machines
	4 NP-Hardness of Unweighted Interval Scheduling on Unrelated Machines
	5 Conclusion

	p019-Kellerhals
	1 Introduction
	2 Preliminaries
	3 Vertex Cover above h-Index
	4 Feedback Vertex Set above Degeneracy
	5 Vertex Cover above Treewidth
	6 Kernelization Lower Bounds
	7 Vertex Cover above Feedback Vertex Number
	8 Vertex Cover above Cluster Deletion Number
	9 Feedback Vertex Set below Vertex Cover
	10 Conclusion

	p020-Komusiewicz
	1 Introduction
	2 Preliminaries
	3 Basic Observations and Lower Bounds
	4 Parameterization by Treewidth
	5 Degree-Related Parameterizations
	5.1 Parameterizing Unweighted Gap Local Search by Maximum Degree
	5.2 Parameterizing Weighted Gap Local Search by Maximum Degree

	6 Using Modular Decompositions
	7 Conclusion
	A Tree Decompositions and Treewidth
	B Bounding the Number of Small Subsets

	p021-Mallem
	1 Introduction
	2 Hardness reductions
	2.1 NP-hardness of the 1-machine, exact delays problem with mu = 1
	2.2 NP-hardness of the 1-machine, min delays problem with mu = 2
	2.3 NP-hardness of the parallel machine, exact delays problem with lmax = 1
	2.4 NP-hardness of the 1-machine, min delays problem with lmax = 1

	3 A FPT algorithm with two parameters
	4 Conclusion
	A Appendix
	A.1 Description of the reduction in Section 2.4 and proof of Proposition 17

	p022-Marx
	1 Introduction
	2 Algorithms
	2.1 Parameterizing by the Number of Excluded Degrees
	2.1.1 Naive Algorithm
	2.1.2 Improving the Naive Algorithm

	3 Computing Representative Sets
	4 Half-Induced Matchings
	5 Lower Bounds for the Decision Version
	5.1 Replacing Finite Sets by Cofinite Sets

	6 Lower Bounds for the Counting Version
	6.1 High-level Construction for SETH Lower Bound

	A Omitted Proofs from Section 4
	B Proof of Lemma 6.2: Removing Relations

	p023-Mizutani
	1 Introduction
	1.1 Parameterized Complexity and Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Problem Definitions
	2.2 Structural Parameters
	2.2.1 Properties of Structural Parameters

	3 Background
	3.1 Entire Subgraphs
	3.2 Knapsack Variant with Non-linear Values
	3.3 Integer Quadratic Programming

	4 Algorithms for Maximum Happy Set
	4.1 Parameterized by modular-width
	4.2 Parameterized by clique-width

	5 Algorithms for Maximum Edge Happy Set
	5.1 Parameterized by neighborhood diversity
	5.2 Parameterized by cluster deletion number

	6 Conclusions & Future Work
	A Appendix

	p024-Oostveen
	1 Introduction
	2 Preliminaries
	3 Upper Bounds for Diameter
	4 Lower Bounds for Diameter
	5 Connectivity
	6 Vertex Cover kernelization
	7 Conclusion

	p025-Schulz
	1 Introduction
	2 Preliminaries
	3 A Polynomial-Time Algorithm to Apply Reduction Rule 2.2
	4 Experimental Evaluation
	4.1 Results
	4.2 Summary

	5 Conclusion

	p026-Grossmann
	1 Introduction
	2 Directed Feedback Vertex Set
	3 Challenge Setup
	3.1 Track Descriptions
	3.2 Internal Solver
	3.3 Instances

	4 Participants and Results
	4.1 Exact Track
	4.2 Heuristic Track

	5 PACE Organization
	6 Conclusion and Future Editions of PACE

	p027-Swat
	1 Problem description
	2 Solver description
	3 Preprocessing
	4 Creating initial solution
	5 Improvement of solution
	6 Availability

	p028-Angrick
	1 Preliminaries
	2 Reduction rules
	2.1 Vertex Cover Reductions

	3 Reduction to Vertex Cover

	p029-Du
	1 Problem Description
	2 Reduction Rules
	3 Simulated Annealing
	3.1 Initialization
	3.2 Neighborhood Structure and Evaluation
	3.3 Data structure

	p030-Bergenthal
	1 Solver overview
	2 Data reduction rules
	3 Exact solving
	3.1 Iterative cycle hitting set ILP
	3.2 Topological order ILP
	3.3 Underlying Vertex Cover

	p031-Bathie
	1 Introduction
	2 Guessing a solution
	2.1 Reductions
	2.2 The Sinkhorn–Knopp Algorithm

	3 Local search
	3.1 Vertex Swapping
	3.2 Vertex Ordering Perturbation

	p032-Kiesel
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Preprocessing
	3.2 MaxSAT and Cycle Check

