
A Finite Algorithm for the Realizabilty of a
Delaunay Triangulation
Akanksha Agrawal #

Indian Institute of Technology Madras, Chennai, India

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Meirav Zehavi #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
The Delaunay graph of a point set P ⊆ R2 is the plane graph with the vertex-set P and the
edge-set that contains {p, p′} if there exists a disc whose intersection with P is exactly {p, p′}.
Accordingly, a triangulated graph G is Delaunay realizable if there exists a triangulation of the
Delaunay graph of some P ⊆ R2, called a Delaunay triangulation of P , that is isomorphic to G.
The objective of Delaunay Realization is to compute a point set P ⊆ R2 that realizes a given
graph G (if such a P exists). Known algorithms do not solve Delaunay Realization as they are
non-constructive. Obtaining a constructive algorithm for Delaunay Realization was mentioned
as an open problem by Hiroshima et al. [19]. We design an nO(n)-time constructive algorithm for
Delaunay Realization. In fact, our algorithm outputs sets of points with integer coordinates.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Delaunay Triangulation, Delaunay Realization, Finite Algorithm, Integer
Coordinate Realization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.1

Related Version Full Version: https://arxiv.org/abs/2210.03932

Funding Akanksha Agrawal: Supported by New Faculty Initiation Grant no. NFIG008972.
Saket Saurabh: Supported by European Research Council (ERC) under the European Union’s

 Horizon 2020 research and innovation programme (no. 819416), and Swarnajayanti Fellowship (no.

DST/SJF/MSA01/2017-18).
Meirav Zehavi: Supported by Israel Science Foundation grant no. 1176/18, and United States –
Israel Binational Science Foundation grant no. 2018302.

1 Introduction

We study Delaunay graphs – through the lens of the well-known Delaunay Realization
problem – which are defined as follows. Given a point set P ⊆ R2, the Delaunay graph,
DG(P), of P is the graph with vertex-set P and edge-set that consists of every pair (p, p′)
of points in P that satisfies the following condition: there exists a disc whose boundary
intersects P only at p and p′, and whose interior does not contain any point in P . The point
set P ⊆ R2 is in general position if it contains no four points from P on the boundary of a
disc. If P is in general position, DG(P) is a triangulation, called a Delaunay triangulation,
denoted by DT(P).1 Otherwise, Delaunay triangulation and the notation DT(P), may refer

1 We assume that |P | ≥ 4, as otherwise, the problem that we consider, is solvable in polynomial time.

© Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akanksha@cse.iitm.ac.in
https://orcid.org/0000-0002-0656-7572
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2022.1
https://arxiv.org/abs/2210.03932
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

to any triangulation obtained by adding edges to DG(P). Thus, Delaunay triangulation of a
point set P is unique if and only if DG(P) is a triangulation. An alternate characterization
of Delaunay triangulations is that in such a triangulation, for any three points of a triangle
of an interior face, the unique disc whose boundary contains these three points does not
contain any other point in P .

The Delaunay graph of a point set is a planar graph [7], and triangulations of such graphs
form an important subclass of the class of triangulations of a point set, also known as the
class of maximal planar sub-divisions of the plane. Accordingly, efficient algorithms for
computing a Delaunay triangulation for a given point set have been developed (see [7, 9, 18]).
One of the main reasons underlying the interest in Delaunay triangulations is that any
angle-optimal triangulation of a point set is actually a Delaunay triangulation of the point
set. Here, optimality refers to the maximization of the smallest angle [7, 12]. This property
is particularly useful when it is desirable to avoid “slim” triangles – this is the case, for
example, when approximating a geographic terrain. Another main reason underlying the
interest in Delaunay triangulations is that these triangulations are the duals of “Voronoi
diagrams” (see [27]).

We are interested in a well-known problem which, in a sense, is the “opposite” of computing
a Delaunay triangulation for a given point set. Here, rather than a point set, we are given
a triangulated graph G. The graph G is Delaunay realizable if there exists P ⊆ R2 such
that DT(P) is isomorphic to G. Specifically, a point set P ⊆ R2 is said to realize G (as
a Delaunay triangulation) if DT(P) is isomorphic to G.2 The problem of finding a point
set that realizes G is called Delaunay Realization. This problem is important not only
theoretically, but also practically (see, e.g., [26, 32, 33]). Formally, it is defined as follows.

Delaunay Realization
Input: A triangulation G on n vertices.
Output: If G is realizable as a Delaunay triangulation, then output P ⊆ R2 that realizes
G (as a Delaunay triangulation). Otherwise, output NO.

Dillencourt [14] established necessary conditions for a triangulation to be realizable as a
Delaunay triangulation. On the other hand, Dillencourt and Smith [16] established sufficient
conditions for a triangulation to be realizable as a Delaunay triangulation. Dillencourt [15]
gave a constructive proof showing that any triangulation where all vertices lie on the outer face
is realizable as a Delaunay triangulation. Their approach, which results in an algorithm that
runs in time O(n2), uses a criterion concerning angles of triangles in a hypothetical Delaunay
triangulation. In 1994, Sugihara [31] gave a simpler proof that all outerplanar triangulations
are realizable as Delaunay triangulations. Later, in 1997, Lambert [22] gave a linear-time
algorithm for realizing an outerplanar triangulation as a Delaunay triangulation. More
recently, Alam et al. [3] gave yet another constructive proof for outerplanar triangulations.

Hodgson et al. [20] gave a polynomial-time algorithm for checking if a graph is realizable
as a convex polyhedron with all vertices on a common sphere. Using this, Rivin [30] designed
a polynomial-time algorithm for testing if a graph is realizable as a Delaunay triangulation.
Independently, Hiroshima et al. [19] found a simpler polynomial-time algorithm, which relies
on the proof of a combinatorial characterization of Delaunay realizable graphs. Both these
results are non-constructive, i.e., they cannot output a point set P that realizes the input as
a Delaunay triangulation, but only answer YES or NO. It is a long standing open problem
to design a finite time algorithm for Delaunay Realization.

2 As G is triangulation, if DT(P) is isomorphic to G, then DT(P) is unique.

A. Agrawal, S. Saurabh, and M. Zehavi 1:3

Obtaining a constructive algorithm for Delaunay Realization was mentioned as an
open problem by Hiroshima et al. [19]. We give the first exponential-time algorithm for the
Delaunay Realization problem. Our algorithm is based on the computation of two sets
of polynomial constraints, defined by the input graph G. In both sets of constraints, the
degrees of the polynomials are bounded by 2 and the coefficients are integers. The first set
of constraints forces the points on the outer face to form a convex hull,3 and the second set
of constraints ensures that for each edge in G, there is a disc containing only the endpoints
of the edge. Roughly speaking, we prove that a triangulation is realizable as a Delaunay
triangulation if and only if a point set realizing it as a Delaunay triangulation satisfies every
constraint in our two sets of constraints. We proceed by proving that if a triangulation is
realizable as a Delaunay triangulation, then there is P ⊆ Z2 such that DT(P) is isomorphic
to G. This result is crucial to the design of our algorithm, not only for the sake of obtaining
an integer solution, but for the sake of obtaining any solution. In particular, it involves a
careful manipulation of a (hypothetical) point set in R2, which allows to argue that it is
“safe” to add new polynomials to our two sets of polynomials. Having these new polynomials,
we are able to ensure that certain approximate solutions, which we can find in finite time, are
actually exact solutions. We show that the special approximate solutions can be computed
in polynomial time, and hence we actually solve the problem precisely. To find a solution
satisfying our sets of polynomial constraints, our algorithm runs in time nO(n). All other
steps of the algorithm can be executed in polynomial time.

We believe that our contribution is a valuable step forward in the study of algorithms for
geometric problems where one is interested in finding a solution rather than only determining
whether one exists. Such studies have been carried out for various geometric problems (or
their restricted versions) like Unit-Disc Graph Realization [23], Line-Segment Graph
Realization [21], Planar Graph Realization (which is the same as Coin Graph
Realization) [11], Convex Polygon Intersection Graph Realization [24], and
Delaunay Realization. (The above list is not comprehensive; for more details we refer
the readers to given citations and references therein.) We note that the higher dimension
analogue of Delaunay Realization, called Delaunay Subdivisions Realization, is
∃R-complete; for details on this generalization, see [1].

2 Preliminaries

In this section, we present basic concepts related to Geometry, Graph Theory and Algorithm
Design, and establish some of the notation used throughout.

We refer the reader to the books [7, 28] for geometry-related terms that are not explicitly
defined here. We denote the set of natural numbers by N, the set of rational numbers by Q
and the set of real numbers by R. By R+ we denote the set {x ∈ R | x > 0}. For n ∈ N, we
use [n] as a shorthand for {1, 2, · · · , n}. A point is an element in R2. We work on Euclidean
plane and the Cartesian coordinate system with the underlying bijective mapping of points
in the Euclidean plane to vectors in the Cartesian coordinate system. For p, q ∈ R2, by
dist(p, q) we denote the distance between p and q in R2.

Graphs. We use standard terminology from the book of Diestel [13] for graph-related terms
not explicitly defined here. For a graph G, V (G) and E(G) denote the vertex and edge sets of
G, respectively. For a vertex v ∈ V (G), dG(v) denotes the degree of v, i.e the number of edges

3 The convex hull of a point set realizing G forms the outer face of its Delaunay triangulation.

IPEC 2022

1:4 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

incident on v, in the graph G. For an edge (u, v) ∈ E(G), u and v are called the endpoints of
the edge (u, v). For S ⊆ V (G), G[S], and G − S are the subgraphs of G induced on S and
V (G) \ S, respectively. For S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed
neighbourhoods of S in G, respectively. That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and
NG[S] = NG(S) ∪ S. We drop the sub-script G from dG(v), NG(S), and NG[S] whenever
the context is clear. A path in a graph is a sequence of distinct vertices v0, v1, . . . , vℓ such
that (vi, vi+1) is an edge for all 0 ≤ i < ℓ. Furthermore, such a path is called a v0 to vℓ path.
A graph is connected if for all distinct u, v ∈ V (G), there is a u to v path in G. A graph
which is not connected is said to be disconnected. A graph G is called k-connected if for
all X ⊆ V (G) such that |X| < k, G − X is connected. A cycle in a graph is a sequence of
distinct vertices v0, v1, . . . , vℓ such that (vi, v(i+1) mod (ℓ+1)) is an edge for all 0 ≤ i ≤ ℓ. A
cycle C in G is said to be a non-separating cycle in G if G − V (C) is connected.

Planar Graphs and Plane Graphs. A graph G is called planar if it can be drawn on the
plane such that no two edges cross each other except possibly at their endpoints. Formally,
an embedding of a graph G is an injective function φ : V (G) → R2 together with a set C
containing a continuous curve C(u,v) in the plane corresponding to each (u, v) ∈ E(G) such
that φ(u) and φ(v) are the endpoints of C(u,v). An embedding of a graph G is planar if
distinct C, C ′ ∈ C intersect only at the endpoints – that is, any point in the intersection of
C, C ′ is an endpoint of both C, C ′. A graph that admits a planar embedding is a planar
graph. Hereafter, whenever we say an embedding of a graph, we mean a planar embedding of
it, unless stated otherwise. We often refer to a graph with a fixed embedding on the plane
as a plane graph. For a plane graph G, the regions in R2 \ G are called the faces of G. We
denote the set of faces in G by F (G). Note that since G is bounded and can be assumed to
be drawn inside a sufficiently large disc, there is exactly one face in F (G) that is unbounded,
which is called the outer face of G. A face of G that is not the outer face is called an inner
face of G. An embedding of a planar graph with the property that the boundary of every
face (including the outer face) is a convex polygon is called a convex drawing. Below we state
propositions related to planar and plane graphs that will be useful later.

▶ Proposition 1 (Proposition 4.2.5 [13]). For a 2-connected plane graph G, every face of G

is bounded by a cycle.

For a graph G and a face f ∈ F (G), we let V (f) denote the set of vertices in the cycle by
which f is bounded. We often refer to V (f) as the face boundary of f .

▶ Proposition 2 (Proposition 4.2.10 [13]). For a 3-connected planar graph, its face boundaries
are precisely its non-separating induced cycles.

Note that from Proposition 2, for a 3-connected planar graph and its planar embeddings
GP and GP′ , it follows that F (GP) = F (GP′). (In the above we slightly abused the notation,
and think of the sets F (GP) and F (GP′) in terms of their bounding cycles, rather than the
regions of the plane.) Hence, it is valid to talk about F (G) for a 3-connected planar graph
G, even without knowing its embedding on the plane.

▶ Proposition 3 (Tutte’s Theorem [34], also see [8, 25]). A 3-connected planar graph admits a
convex embedding on the plane with any face as the outer face. Moreover, such an embedding
can be found in polynomial time.

For a plane graph G and a face f ∈ F (G), by stellating f we mean addition of a new
vertex v∗

f inside f and making it adjacent to all v ∈ V (f). We note that stellating a face of
a planar graph results in another planar graph [16].

A. Agrawal, S. Saurabh, and M. Zehavi 1:5

Triangulations and Delaunay Triangulations. A triangulation is a plane graph where
each inner face is bounded by a cycle on three vertices. A graph which is isomorphic to a
triangulation is called a triangulated graph. We state the following simple but useful property
of triangulations that will be exploited later.

▶ Proposition 4. Let G be a triangulation with f∗ being the outer face. Then, all the degree-2
vertices in G must belong to V (f∗).

▶ Proposition 5 (Theorem 9.6 [7]). For a point set P ⊆ R2 on n points, three points
p1, p2, p3 ∈ P are vertices of the same face of the Delaunay graph of P if and only if the
circle through p1, p2, p3 contains no point of P in its interior.

A Delaunay triangulation is any triangulation that is obtained by adding edges to the
Delaunay graph. A Delaunay triangulation of a point set P is unique if and only if DG(P) is
a triangulation, which is the case if P is in general position [7]. We refer to the Delaunay
triangulation of a point set P by DT(P) (assuming it is unique, which is the case in our
paper). A triangulated graph is Delaunay realizable if there exists a point set P ⊆ R2 such
that DT(P) is isomorphic to G. If G has at most three points, then testing if it is Delaunay
realizable is solvable in constant time. Also, we can compute an integer representation for it
in constant time, if it exists. (Recall that while defining the general position assumption, we
assumed that the point set has at least four points. This assumption does not cause any
issues because we look for a realization of a graph which has at least four vertices.)

Polynomial Constraints. Let us now give some definitions and notation related to polyno-
mials and sets of polynomial constraints (equalities and inequalities). We refer the reader to
the books [5, 6] for algebra-related terms that are not explicitly defined here. For t, n ∈ N
and a set C, a polynomial P = Σi∈[t]ai · (Πj∈[n]X

di
j

j) on n variables and t terms is said to
be a polynomial over C if for all i ∈ [t], j ∈ [n] we have ai ∈ C and di

j ∈ N. Furthermore,
the degree of the polynomial P is defined to be maxi∈[t](Σj∈[n]d

i
j). We denote the set of

polynomials on n variables X1, X2, · · · Xn with coefficients in C by C[X1, X2, · · · Xn].
A polynomial constraint C on n variables with coefficients from C ⊆ R is a sequence P∆0,

where P ∈ C[X1, X2, · · · , Xn] and ∆ ∈ {=, ≥, >, ≤, <}. The degree of such a constraint is
the degree of P, and it is said to be an equality constraint if ∆ is ‘=’. We say that the
constraint is satisfied by an element (x̄1, x̄2, · · · x̄n) ∈ Rn if P(x̄1, x̄2, · · · x̄n)∆0.4 Given a
set C of polynomial constraints on n variables, X1, X2, · · · , Xn, and with coefficients from
C ⊆ R, we say that an element (x̄1, x̄2, · · · x̄n) ∈ Rn satisfies C if for all C ∈ C, we have
that (x̄1, x̄2, · · · x̄n) satisfies C. In this case, (x̄1, x̄2, · · · x̄n) is also called a solution of C.
Furthermore, C is said to be satisfiable (in R) if there exists (x̄1, x̄2, · · · x̄n) ∈ Rn satisfying C.

Below we state a result regarding a method for solving a finite set of polynomial constraints,
which will be used by our algorithm. This result is a direct implication of Propositions 3.8.1
and 4.1 in [29] (see also [6]).

▶ Proposition 6 (Propositions 3.8.1 and 4.1 in [29]). Let C be a set of m polynomial constraints
of degree 2 on n variables with coefficients in Z whose bitsizes are bounded by O(1). Then,
in time mO(n) we can decide if C is satisfiable in R. Moreover, if C is satisfiable in R,
then in time mO(n) we can also compute a (satisfiable) set Ĉ of n polynomial constraints,
C1,C2, . . . ,Cn, with coefficients in Z, where for all i ∈ [n], we have that Ci is an equality
constraint on Xi (only), and a solution of Ĉ is also a solution of C.

4 Here, P(x̄1, x̄2, · · · x̄n) is the evaluation of P, where the variable Xi is assigned the value x̄i, for i ∈ [n].

IPEC 2022

1:6 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

3 Restricted-Delaunay Realization: Generating Polynomials

In this section, we generate a set of polynomials that encodes the realizability of a triangulation
as a Delaunay triangulation in the case where the outer face of the Delaunay triangulation is
known. More precisely, we suppose that the outer faces of G and the Delaunay triangulation
are the same. For the general case where we might not know a priori which is the face in G

that is supposed to be the outer face of the Delaunay triangulation (this is the case when
G is a maximal planar graph), we will “guess” the outer face and then use our restricted
version to solve the problem. Formally, we solve the following problem.

Restricted-Delaunay Realization (Res-DR)
Input: A triangulation G with outer face f∗.
Output: A set of polynomial constraints Const(G) such that Const(G) is satisfiable if
and only if G is realizable as a Delaunay triangulation with f∗ as the outer face.

Let (G, f∗) be an instance of Res-DR, and let n denote |V (G)|. We denote V (G) by
the set {v1, v2, · · · vn}. Note that except possibly f∗, each of the faces of G is bounded by a
cycle on three vertices. With each vi ∈ V (G) we associate two variables, Xi and Yi, which
correspond to the values of the x and y coordinates of vi in the plane. Furthermore, we let
Pi denote the vector (Xi, Yi). We let X̄ denote the value that some solution of Const(G)
assigns to the variable X. Accordingly, we denote P̄i = (X̄i, Ȳi). For the sake of clarity,
we sometimes abuse the notation P̄i by letting it denote both P̄i and Pi (this is done in
situations where both interpretations are valid).

Our algorithm is based on the computation of two sets of polynomial constraints of
bounded degree and integer coefficients. Informally, we have one set of inequalities which
ensures that the points to which vertices of f∗ are mapped are in convex position, and
another set of inequalities which ensures that for each (vi, vj) ∈ E(G), there exists a disc
containing (X̄i, Ȳi) and (X̄j , Ȳj) on its boundary and excluding all other points (X̄k, Ȳk).
(While other sets of inequalities may be devised to ensure these properties, we subjectively
found the two sets presented here the easiest to employ.)

3.1 Inequalities Ensuring that the Outer Face Forms the Convex Hull
We first generate the set of polynomial constraints ensuring that the points associated with
the vertices in f∗ form the convex hull of the output point set. Here, we also ensure that
the vertices in f∗ have the same cyclic ordering (given by the cycle bounding f∗) as the
points corresponding to them have in the convex hull. Note that the edges of the convex
hull are present in any Delaunay triangulation [7]. Moreover, the convex hull of a point set
forms the outer face of its Delaunay triangulation. To formulate our equations, we rely on
the notions of left and right turns. Their definitions are the same as those in the book [10],
which uses cross product to determine whether a turn is a left turn or a right turn. For the
sake of clarity, we also explain these notions below.

Left and Right Turns. Consider two vectors (or points) P̄1 and P̄2, denoting some (x1, y1)
and (x2, y2), respectively. The cross product P̄1 × P̄2 of P̄1 and P̄2 is defined as follows.

P̄1 × P̄2 =
∣∣∣∣x1 x2
y1 y2

∣∣∣∣ = x1y2 − x2y1.

If P̄1 × P̄2 > 0, then P̄1 is said to be clockwise from P̄2 (with respect to the origin
(0, 0)). Else, if P̄1 × P̄2 < 0, then P̄1 is said to be counterclockwise from P̄2. Otherwise (if
P̄1 × P̄2 = 0), P̄1 and P̄2 are said to be collinear. Given line segments P0P1 and P1P2, we

A. Agrawal, S. Saurabh, and M. Zehavi 1:7

would like to determine the type of turn taken by the angle ∠P0P1P2. To this end, we check
whether the directed segment P0P2 is clockwise or counterclockwise from P0P1. Towards
this, we first compute the cross product (P̄2 − P̄0) × (P̄1 − P̄0). If (P̄2 − P̄0) × (P̄1 − P̄0) > 0,
then P0P2 is clockwise from P0P1, and we say that we take a right turn at P̄1. Else, if
(P̄2 − P̄0) × (P̄1 − P̄0) < 0, then P0P2 is counterclockwise from P0P1, and we say that we
take a left turn at P̄1. Otherwise, we make no turn at P̄1. Note that the computation of
(P̄2 − P̄0) × (P̄1 − P̄0) can be done as follows.

(P̄2 − P̄0) × (P̄1 − P̄0) =
∣∣∣∣x2 − x0 x1 − x0
y2 − y0 y1 − y0

∣∣∣∣ = x2y1 − x2y0 − x0y1 − x1y2 + x1y0 + x0y2.

The Polynomials. For three vectors (or points) P̄0 = (x0, y0), P̄1 = (x1, y1) and P̄2 =
(x2, y2), by Con(P̄0, P̄1, P̄2) we denote the polynomial x2y1 −x2y0 −x0y1 −x1y2 +x1y0 +x0y2.
Note that Con(P̄0, P̄1, P̄2) determines whether we have a right, left or no turn at P̄1.

Before stating the constraints based on these polynomials, let us recall the well-known
fact stating that a non-intersecting polygon is convex if and only if every interior angle of
the polygon is less than 180◦. While we ensure the non-intersecting constraint later, the
characterization of each angle being less than 180◦ is the same as taking a right (or left)
turn at Pj for every three consecutive points Pi, Pj and Pk of the polygon. We will use this
characterization to enforce convexity on the points corresponding to the vertices in V (f∗).
Let us also recall that f∗ is a cycle C∗ in G. Next, whenever we talk about consecutive
vertices in C∗, we always follow clockwise direction.

For every three consecutive vertices vi, vj and vk in C∗, we add the following inequality:

Con(Pi, Pj , Pk) > 0.

These inequalities ensure that in any output point set, the points corresponding to vertices
in V (f∗) are in convex position (together with the non-intersecting condition to be ensured
later).

Next, we further need to ensure that all the points which correspond to vertices in
V (G) \ V (f∗) belong to the interior of the convex hull formed by the points corresponding to
vertices in V (f∗) and the polygon formed by the points corresponding to V (f∗) is non-self
intersecting. For this purpose, we crucially rely on the following property of convex hulls (or
convex polygons): For any edge of the convex hull, it holds that all the points, except for
the endpoints of the edge, are located in one of the sides of the edge. Using this property,
we know that for any two consecutive vertices vi and vj in C∗, all points are on one side
of the line associated with vi and vj . Since at each vi ∈ C∗ we ensure that we turn right,
we must have all the points located on the right of the line defined by the edge (vi, vj).
This, in turn, implies that for every pair of consecutive vertices vi and vj in C∗, for any
vertex vk ∈ V (G) \ V (f∗), we must be turning left at vk (according to the ordered triplet
(vi, vk, vj)). Hence, we add the following inequalities:

Con(Pi, Pk, Pj) < 0.

where vi and vj are consecutive vertices of C∗ and vk ∈ V (G) \ {vi, vj}.
We denote the set of inequalities generated above by Con(G).

3.2 Inequalities Guaranteeing Existence of Edges
For each edge (vi, vj) ∈ E(G), we add two new variables, Xij and Yij , to indicate the
coordinates of the centre of a disc that realizes the edge (vi, vj). There might exist many
discs that realize the edge (vi, vj), but we are interested in only one such disc, say Cij .

IPEC 2022

1:8 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

Note that Cij should contain (X̄i, Ȳi) and (X̄j , Ȳj) on its boundary, and it should not
contain any (X̄k, Ȳk) such that k /∈ {i, j}. Towards this, for each edge (vi, vj) ∈ E(G),
we add a set of inequalities that we denote by Dis(vi, vj). Note that the radius rij of
Cij is given by r2

ij = (Xi − Xij)2 + (Yi − Yij)2 (if (Xi, Yi) lies on the boundary) and by
r2

ij = (Xj − Xij)2 + (Yj − Yij)2 (if (Xj , Yj) lies on the boundary). Therefore, we want to
ensure the following.

(Xj − Xij)2 + (Yj − Yij)2 = (Xi − Xij)2 + (Yi − Yij)2

⇒ X2
i − X2

j + Y 2
i − Y 2

j − 2XijXi − 2YijYi + 2XijXj + 2YijYj = 0.

Hence, we add the above constraint to Dis(vi, vj). Further, we want to ensure that for
each k ∈ [n] \ {i, j}, (Xk, Yk) does not belong to Cij . Therefore, for each k ∈ [n] \ {i, j}, the
following must hold.

(Xk − Xij)2 + (Yk − Yij)2 − (Xi − Xij)2 − (Yi − Yij)2 > 0

⇒ X2
k − X2

i + Y 2
k − Y 2

i − 2XijXk − 2YijYk + 2XijXi + 2YijYi > 0

Hence, we also add the above constraint to Dis(vi, vj) for k ∈ [n] \ {i, j}. Overall, we
denote Dis(G) =

⋃
(vi,vj)∈E(G)

Dis(vi, vj). This completes the description of all inequalities

relevant to this section.

3.3 Correctness
Let us denote Const(G) = Con(G) ∪ Dis(G). We begin with the following observation. Here,
to bound the number of variables, we rely on the fact that G is a planar graph, its number
of edges is upper bounded by 3n, and hence in total we introduced less than 8n variables.

▶ Observation 7. The number of constraints in Const(G) is bounded by O(n2) and the total
number of variables is bounded by O(n). Moreover, each constraint in Const(G) is of degree
2, and its coefficients belong to {−2, −1, 0, 1, 2}.

Now, we state the central lemma establishing the correctness of our algorithm for Res-DR.

▶ Lemma 8. A triangulation G with outer face f∗ is realizable as a Delaunay triangulation
with f∗ as its outer face if and only if Const(G) is satisfiable.

Proof. Let G be a triangulation realizable as a Delaunay triangulation with f∗ as the outer
face of the Delaunay triangulation. Then, there exists P ⊆ R2 such that DT(P) is isomorphic
to G and f∗ is the outer face of DT(P). Furthermore, for each (P̄i, P̄j) ∈ E(DT(P)), there
exists a disc Cij which contains P̄i and P̄j on its boundary, and which contains no point P̄k,
k ∈ [n] \ {i, j}, on neither its boundary nor its interior. We let P̄ij denote the centre of Cij .
Let P be the vector assigning P̄i to the vertex vi ∈ V (G) and P̄ij to the centre of the disc
Cij . We note that the vertices of f∗ are in convex position in DT(P). Clearly, we then have
that P satisfies Const(G). This concludes the proof of the forward direction.

In the reverse direction, consider some P that satisfies Const(G). By our polynomial
constraints, P assigns some P̄i to each vertex vi ∈ V (G), such that for each edge (vi, vj) ∈
E(G), it lets P̄ij be the centre of a disc Cij containing P̄i and P̄j (on its boundary) and
no point P̄k where k /∈ {i, j}. Further, we let P = {P̄i | i ∈ [n]}. By the construction
of Const(G), it follows that if (vi, vj) ∈ E(G), then (P̄i, P̄j) ∈ DT(P) and the points in P

corresponding to vertices in V (f∗) form the convex hull of P . This implies that the points

A. Agrawal, S. Saurabh, and M. Zehavi 1:9

corresponding to the vertices in V (f∗) are on the outer face of DT(P). From Theorem 9.1
in [7], it follows that |E(G)| ≤ |E(DT(P))|. Thus, E(G) = E(DT(P)). This concludes the
proof of the reverse direction. ◀

The next theorem follows from the construction of Const(G), Observation 7 and Lemma 8.

▶ Theorem 9. Let G be a triangulation on n vertices with f∗ as the outer face. Then, in
time O(n2), we can output a set of polynomial constraints Const(G) such that G is realizable
as a Delaunay triangulation with f∗ as its outer face if and only if Const(G) is satisfiable.
Moreover, Const(G) consists of O(n2) constraints and O(n) variables, where each constraint
is of degree 2 and with coefficients only from {−2, −1, 0, 1, 2}.

4 Restricted-Delaunay Realization: Replacing Points by Discs

Let G be a triangulation on n vertices with f∗ as its outer face. Suppose that G is realizable
as a Delaunay triangulation where the points corresponding to vertices in V (f∗) belong to the
outer face. By Theorem 9, it follows that Const(G) is satisfiable. Let n∗ denote the number
of variables of Const(G). Since Const(G) is satisfiable, there exists Q satisfying Const(G).
Let Q̄i be the value assigned to the vertex vi ∈ V (G) for i ∈ [n]. Let Q = {Q̄i | vi ∈ V (G)}.
Recall that apart from assigning points in the plane to vertices in V (G), Q assigns to each
(vi, vj) ∈ E(G), a point Q̄ij corresponding to the centre of some disc, say C ′

ij , containing
Q̄i, Q̄j on its boundary and excluding all other points in Q.

In this section, we prove that for any given β ∈ R+, there exists a set of discs of radius
β, one for each vertex in V (G), with the following property. If for every vi ∈ V (G), we
choose some point P̄Ci

inside or on the boundary of its disc Ci, we get that DT(Q) and the
Delaunay triangulation of our set of chosen points are isomorphic.

We start with two simple observations, where the second directly follows from the
definition of the constraints in Const(G).

▶ Observation 10. Let (a, b), (x, y) ∈ R2 be two points and α ∈ R+. Then, dist((αa, αb),
(αx, αy)) = α · dist((a, b), (x, y)).

▶ Observation 11. Let G be a triangulation on n vertices with f∗ as its outer face. If Q is
a solution of Const(G), then for any α ∈ R+, it holds that αQ also satisfies Const(G).

In what follows, we create a point set P such that DT(P) is isomorphic to G, where the
points corresponding to vertices in V (f∗) form the outer face of DT(P). We then show that
this point set defines a set of discs with the desired property – for each vi ∈ V (G), it defines
one disc Ci with P̄i as centre and with radius r∗ ≥ β > 0 (to be determined), such that,
roughly speaking, each point of Ci is a valid choice for vi. For this purpose, we first define
the real numbers, dN , dC , and dA, which are necessary to determine r∗ and P . Informally,
dN ensures that the discs we create around vertices do not intersect, dC will be used to
ensure existence of specific edges, dA will be used to ensure that “convex hull property” is
satisfied. These (positive) real numbers are defined as follows.

Let dN = min
i,j∈[n],i̸=j

{dist(Q̄i, Q̄j)}, i.e., dN is the minimum distance between any pair of

distinct points in Q.
Let dC = min

i,j,k∈[n],i̸=j,i ̸=k,j ̸=k
{dist(C ′

ij , Q̄k)}, i.e., dC denotes the minimum distance

between a point corresponding to a vertex in V (G) and a disc realizing an edge non-
incident to it. (Recall that C ′

ij is defined at the beginning of this section.) Note that
dC > 0 because in the above definition of dC , we have only considered those disc and
point pairs where the point lies outside the disc.

IPEC 2022

1:10 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

rij

rij

Cij

P̄i

P̄j

2 E(G
)

C⇤
ij

r⇤

P̄ 0
i

P̄ 0
j

 r⇤+ rij

P̄ij
r⇤

 r
⇤ +

r ij

Figure 1 Proving that the points P̄ ′
i and P̄ ′

j lie inside the disc C∗
ij (Lemma 12).

For each edge (vi, vj) of the cycle corresponding to the outer face f∗, let Ls
ij be the line

containing Q̄i and Q̄j . Moreover, let sij = min
k∈[n]\{i,j}

{dist(Ls
ij , Q̄k)}, i.e., the minimum dis-

tance between a line of the convex hull and another point. Finally, dA = min
(vi,vj)∈E(f∗)

{sij}.

We note that dA > 0. This follows from the definition of Con(G) in Section 3.1.

Define r = 1
3 min{dN , dC , dA}. Notice that r, β > 0. Now, we compute r∗ and P according

to three cases:

1. If r ≥ β, then r∗ = r and P = Q (thus, P = Q).
2. Else if 1 ≤ r < β, then P = βQ, where βQ = {(βX̄, βȲ) | (X̄, Ȳ) ∈ Q} and r∗ = βr.
3. Otherwise (r < 1 and r < β), P = β

r Q and r∗ = β
r r = β.

By Observation 11, in each of the cases described above, we have that P satisfies Const(G).
Hereafter, we will be working only with P and r∗ as defined above. We let P̄i be the point
assigned to the vertex vi, and P = {P̄i | i ∈ [n]}. Moreover, we let P̄ij be the centre of the
disc Cij for the edge (vi, vj) ∈ E(G) that is assigned by P.

Next, we define d∗
N , d∗

C , and d∗
A in a manner similar to the one used to define dN , dC

and dA. Let d∗
N = min

i,j∈[n],i̸=j
{dist(P̄i, P̄j)} ≥ 3r∗, and d∗

C = min
i,j,k∈[n],i̸=j,i ̸=k,j ̸=k

{dist(Cij , P̄k)}

≥ 3r∗. For each edge (vi, vj) of the cycle corresponding to the outer face f∗, let Ls
ij be

the line containing P̄i and P̄j . Further, let sij = min
k∈[n]\{i,j}

{dist(Ls
ij , P̄k)}. Finally, let

d∗
A = min

(vi,vj)∈E(F)
{sij}. Note that by Observation 10, we have that d∗

N ≥ 3r∗, d∗
C ≥ 3r∗, and

d∗
A ≥ 3r∗.

For each vi ∈ V (G), let Ci be the disc of radius r∗ and centre P̄i. We now prove that if
for each vertex vi ∈ V (G), we choose a point P̄ ′

i inside or on the boundary of Ci, then we
obtain a point set P ′ such that DT(P) and DT(P ′) are isomorphic. Furthermore, the points
on the outer face of DT(P), and also DT(P ′), correspond to the vertices in V (f∗).

▶ Lemma 12 (♠). 5 DT(P) is isomorphic to DT(P ′) and the outer face of DT(P ′) consists
of all the points corresponding to vertices in V (f∗).

5 Proofs of results marked with ♠ is relegated to the full version of the paper [2].

A. Agrawal, S. Saurabh, and M. Zehavi 1:11

▶ Theorem 13. Let G be a triangulation on n vertices with f∗ as its outer face, realizable
as a Delaunay triangulation where the points corresponding to vertices of f∗ lie on the outer
face. Moreover, let Q be a solution of Const(G) and β ∈ R+. Then, there is a solution P of
Const(G), assigning a set of points P ⊆ R2 to vertices of G, such that for each vi ∈ V (G),
there exists a disc Ci with centre P̄i and radius at least β for which the following condition
holds. For any P ′ = {P̄ ′

i | P̄ ′
i ∈ Ci, i ∈ [n]}, it holds that DT(P ′) is isomorphic to DT(P),

and the points corresponding to vertices of f∗ lie on the outer face of DT(P ′).

Proof. The proof of theorem follows directly from the construction of r∗, the discs Ci for
i ∈ [n], and Lemma 12. ◀

5 Delaunay Realization: Integer Coordinates

In this section, we prove our main theorem:

▶ Theorem 14. Given a triangulation G on n vertices, in time nO(n) we can either output
a point set P ⊆ Z2 such that G is isomorphic to DT(P), or correctly conclude that G is not
Delaunay realizable.

The Outer Face of the Output. First, we explain how to identify the outer face f∗ of
the output (in case the output should not be NO). For this purpose, let fout denote the
outer face of G (according to the embedding of the triangulation G, given as the input).
Recall our assumption that n ≥ 4. Let us first consider the case where G is not a maximal
planar graph, i.e., fout consists of at least four vertices. Suppose that the output is not NO.
Then, for any point set P ⊆ R2 that realizes G as a Delaunay triangulation, it holds that
the points corresponding to the vertices of fout form the outer face of DT(P). Thus, in this
case, we simply set f∗ = fout. Next, consider the case where G is a maximal planar graph.
Again, suppose that the output is not NO. Then, for a point set P ⊆ R2 that realizes G as a
Delaunay triangulation, the outer face of DT(P) need not be the same as fout. To handle this
case, we “guess” the outer face of the output (if it is not NO). More precisely, we examine
each face f of G separately, and attempt to solve the “integral version” of Res-DR with f∗

set to f , and where G is embedded with f∗, rather than fout, as its outer face. Here, note
that a maximal planar graph is 3-connected [35], and therefore, by Proposition 3, we can
indeed compute an embedding of G with f∗ as the outer face.

The number of iterations is bounded by O(n) (since the number of faces of G is bounded
by O(n)). Thus, from now on, we may assume that we seek only Delaunay realizations of G

where the outer face is the same as the outer face of G (that we denote by f∗).

Sieving NO-Instances. We compute the set Const(G) as described in Section 3. From
Theorem 9, we know that G is realizable as a Delaunay triangulation with the points
corresponding to f∗ on the outer face if and only if Const(G) is satisfiable. Using Proposition 6,
we check whether Const(G) is satisfiable, and if the answer is negative, then we return NO.
Thus, we next focus on the following problem.

Integral Delaunay Realization (Int-DR)
Input: A triangulation G with outer face f∗ that is realizable as a Delaunay triangulation
with outer face f∗.
Output: A point set P ⊆ Z2 realizing G as a Delaunay triangulation with outer face f∗.

Similarly, we define the intermediate Rational Delaunay Realization (Rational-
DR) problem – here, however, P ⊆ Q2 rather than Z2. To prove Theorem 14, it is sufficient
to prove the following result, which is the objective of the rest of this paper.

IPEC 2022

1:12 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

▶ Lemma 15. Int-DR is solvable in time nO(n).
In what follows, we crucially rely on the fact that by Theorem 13, for all β ∈ R+, there

is a solution P of Const(G) that assigns a set of points P ⊆ R2 to the vertices of G, such
that for each vi ∈ V (G), there exists a disc Ci with radius at least β, satisfying the following
condition: For any P ′ = {P̄ ′

i | P ′
i ∈ Ci, i ∈ [n]}, it holds that DT(P ′) is isomorphic to G with

points corresponding to the vertices in f∗ on the outer face (in the same order as in f∗).
As it would be cleaner to proceed while working with squares, we need the next observation.

▶ Observation 16. Every disc C with radius at least 2 contains a square of side length at
least 2 and with the same centre.

We next extend Const(G) to a set ConstSqu(G), which explicitly ensures that there exists
a square around each point in the solution such that the point can be replaced by any point in
the square. Thus, rather than discs of radius 2 (whose existence, in some solution, is proven
by choosing β = 2), we consider squares with side length 2 given by Observation 16, and force
our constraints to be satisfied at the corner points of the squares. For this purpose, for each
vi ∈ V (G), apart from adding constraints for the point Pi = (Xi, Yi) (which can be regarded
as a disc of radius 0 in the previous setting), we also have constraints for the corner points of
the square of side length 2 whose centre is Pi. For technical reasons, we also add constraints
for the intersection points of perpendicular bisectors. For any constraint where Pi appears,
we make copies for the points Pi = (Xi, Yi), P 1

i = (Xi − 1, Yi − 1), P 2
i = (Xi − 1, Yi + 1),

P 3
i = (Xi + 1, Yi − 1), P 4

i = (Xi + 1, Yi + 1), P 5
i = (Xi − 1, Yi), P 6

i = (Xi, Yi + 1), P 7
i =

(Xi + 1, Yi), P 8
i = (Xi, Yi − 1).6

Inequalities that ensure the outer face forms the convex hull. We generate the set
of constraints that ensure the points corresponding to vertices in V (f∗) form a convex
hull of the output point set. Let C∗ be the cycle of the outer face f∗. Whenever we say
consecutive vertices in C∗, we always follow clockwise direction. For three consecutive vertex
vi, vj and vk in C∗, for every Zi ∈ {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}, Zj ∈ {Pj} ∪ {P ℓ
j | ℓ ∈ [8]} and

Zk ∈ {Pk} ∪ {P ℓ
k | ℓ ∈ [8]}, we add the inequality Con(Zi, Zj , Zk) > 0. This ensures that

the points corresponding to vertices in V (f∗) are in convex position in any output point set.
Further, we want all the points which correspond to the vertices in V (G) \ V (f∗) to be in the
interior of the convex hull formed by the points corresponding to vertices in V (f∗). To achieve
this, for each pair of vertices vi, vj that are consecutive vertices of C∗, vk ∈ V (G) \ {vi, vj},
Zi ∈ {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}, Zj ∈ {Pj} ∪ {P ℓ
j | ℓ ∈ [8]} and Zk ∈ {Pk} ∪ {P ℓ

k | ℓ ∈ [8]}, we add
Con(Zi, Zk, Zj) < 0. We call the above set of polynomial constraints ConSqu(G).

Inequalities that guarantee existence of edges. For each edge (vi, vj) ∈ E(G), we add three
new variables, namely Xij , Yij and rij . These newly added variables will correspond to the
centre and radius of a disc that realizes the edge (vi, vj). There might exist many such discs,
but we are interested in only one such disc. In particular, (Xij , Yij) corresponds to centre
of one such discs, say Cij , with radius rij , containing all the points in {Pi} ∪ {P ℓ

i | ℓ ∈ [8]}
and {Pj} ∪ {P ℓ

j | ℓ ∈ [8]} but none of the points in {Pk | k ∈ [n] \ {i, j}} ∪ {P ℓ
k | ℓ ∈ [8], k ∈

[n] \ {i, j}}. Towards this, we add a set of inequalities for each edge (vi, vj) ∈ E(G), which
we will denote by DisSqu(vi, vj). For each Z ∈ {Pi, Pj} ∪ {P ℓ

i , P ℓ
j | ℓ ∈ [8]}, we add the

following inequalities to DisSqu(vi, vj), ensuring that Cij contains Z = (ZX , ZY).

Z2
X + X2

ij − 2ZXXij + Z2
Y + Y 2

ij − 2ZY Yij − r2
ij ≤ 0.

6 We remark that we do not create new variables for the corresponding x- and y-coordinates for points
P ℓ

i , for i ∈ [n].

A. Agrawal, S. Saurabh, and M. Zehavi 1:13

Further, we want to ensure that for each k ∈ [n] \ {i, j}, Z ∈ {Pk} ∪ {P ℓ
k | ℓ ∈ [8]} does

not belong to Cij . Hence, for each such Z = (ZX , ZY), the following must hold.

Z2
X + X2

ij − 2ZXXij + Z2
Y + Y 2

ij − 2ZY Yij − r2
ij > 0.

Hence, we add the above constraint to DisSqu(vi, vj) for k ∈ [n] \ {i, j}. We denote
DisSqu(G) =

⋃
(vi,vi)∈E(G)

DisSqu(vi, vj).

This completes the description of all the constraints we need. We let ConstSqu(G) =
ConSqu(G)∪DisSqu(G). We let n∗ denote the number of variables appearing in ConstSqu(G).
Note that n∗ = O(n) and the number of constraints in ConstSqu(G) is bounded by O(n2).

▶ Theorem 17. Let G be a triangulation on n vertices with f∗ as the outer face. Then,
in time O(n2) we can find a set of polynomial constraints ConstSqu(G) such that G is
realizable as a Delaunay triangulation with f∗ as its outer face if and only if ConstSqu(G) is
satisfiable. Moreover, ConstSqu(G) consists of O(n2) constraints and O(n) variables, where
each constraint is of degree 2 and with coefficients only from {−10, −9, . . . , 10}.

Proof. Follows from the construction of ConstSqu(G), Lemma 8, and Theorems 13. ◀

Having proved Theorem 17, we use Proposition 6 to decide in time nO(n) if ConstSqu(G)
is satisfiable. Recall that if the answer is negative, then we returned NO. We compute a
“good” approximate solution as we describe next. First, by Proposition 6, in time nO(n) we
compute a (satisfiable) set C of n∗ polynomial constraints, C1,C2, . . . ,Cn∗ , with coefficients
in Z, where for all i ∈ [n], we have that Ci is an equality constraint on the variable indexed
i (only), and a solution of C is also a solution of ConstSqu(G). Next, we would like to find
a “good” rational approximation to the solution of C. Later we will prove that such an
approximate solution is actually an exact solution to our problem.

For δ > 0, a δ rational approximate solution S for a set of polynomial equality constraints
is an assignment to the variables, for which there exists a solution S∗, such that for any
variable X, the (absolute) difference between the assignment to X by S and the assignment
to X by S∗ is at most δ.7 We follow the approach of Arora et al. [4] to find a δ rational
approximation to a solution for a set of polynomial equality constraints with δ = 1/2. This
approach states that using Renegar’s algorithm [29] together with binary search, with search
range bound given by Grigor’ev and Vorobjov [17], we can find a rational approximation
to a solution of a set of polynomial equality constraints with accuracy up to δ in time
(τ + n′ + m′n′ + log(1/δ))O(1) where τ is the maximum bitsize of a coefficient, n′ is the
number of variables and m′ is the number of constraints. In this manner, we obtain in time
nO(n) a rational approximation S to the solution of C with accuracy 1/2. By Theorem 17,
S is also a rational approximation to a solution of ConstSqu(G) with accuracy 1/2. We let
P̄Si

= (X̄Si
, ȲSi

) denote the value that S assigns to (Xi, Yi) (corresponding to the vertex
vi ∈ V (G)). Further we let PS = {P̄Si | i ∈ [n]}. In the following lemma, we analyze DT(PS).

▶ Lemma 18 (♠). The triangulation G is isomorphic to DT(PS) where points corresponding
to vertices in f∗ form the outer face (in that order). Here, PS is the point set described
above.

Towards the proof of Lemma 15, we first consider our intermediate problem.

7 We note that S may not be a solution in the sense that it may not satisfy all constraints (but it is close
to some solution that satisfies all of them).

IPEC 2022

1:14 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

▶ Lemma 19. Rational-DR is solvable in time nO(n).

Proof. Our algorithm first computes the set of polynomial constraints ConstSqu(G) in time
O(n2). Then, it computes a 1/2 accurate approximate solution for ConstSqu(G) by using
the approach of Arora et al. [4] in time nO(n). In Lemma 18, we have shown that such an
approximate solution is an exact solution. This concludes the proof. ◀

Finally, we are ready to prove Lemma 15, and thus conclude the correctness of Theorem 14.

Proof of Lemma 15. We use the algorithm given by Lemma 19 to output a point set P ⊆ Q2

in time nO(n) such that G is isomorphic to DT(P) and the points corresponding to vertices
in V (f∗) lie on the outer face of DT(P) in the order in which they appear in the cycle
of f∗. We denote by P̄i = (X̄i, Ȳi) the value P assigns to the vertex vi ∈ V (G). For
i ∈ [n], since X̄i, Ȳi ∈ Q, we let the representation be X̄i = X̄a

i /X̄b
i and Ȳi = Ȳ a

i /Ȳ b
i , where

X̄a
i , X̄b

i , Ȳ a
i , Ȳ b

i ∈ Z. For each edge (P̄i, P̄j) ∈ E(DT(P)), there exists a disc Cij with a
centre, say P̄ij , containing only P̄i and P̄j from P . These assignments satisfy the constraints
Con(G) and Dis(G) presented in Section 3. It thus follows that P satisfies Const(G). From
Observation 11 it follows that for any α ∈ R+, we have that αP satisfies Const(G). We let
β = Πi∈[n]X̄

b
i Ȳ b

i . But then βP satisfies Const(G), and hence βP = {(βX̄i, βȲi | i ∈ [n]} is a
point set such that G is isomorphic to DT(βP) where the points corresponding to vertices in
V (f∗) lie on the outer face of DT(βP). Therefore, we output a correct point set, βP , with
only integer coordinates. This concludes the proof. ◀

6 Conclusion

In this paper, we gave an nO(n)-time algorithm for the Delaunay Realization problem.
We have thus obtained the first exact exponential-time algorithm for this problem. Still,
the existence of a practical (faster) exact algorithm for Delaunay Realization is left for
further research. In this context, it is not even clear whether a significantly faster algorithm,
say a polynomial-time algorithm, exists. Perhaps one of the first questions to ask in this
regard is whether there exist instances of graphs that are realizable but for which the integers
in any integral solution need to be exponential in the input size? If yes, does even the
representation of these integers need to be exponential in the input size?

References
1 Karim A. Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed

polytopes and delaunay triangulations. Discrete & Computational Geometry, 54(2):412–431,
2015.

2 Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A finite algorithm for the realizabilty
of a delaunay triangulation. arXiv, 2022. doi:10.48550/ARXIV.2210.03932.

3 Md. Ashraful Alam, Igor Rivin, and Ileana Streinu. Outerplanar graphs and Delaunay
triangulations. In Proceedings of the 23rd Annual Canadian Conference on Computational
(CCCG), 2011.

4 Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative
matrix factorization – provably. In Proceedings of the 44th Annual ACM Symposium on Theory
of Computing, STOC, pages 145–162, 2012.

5 M. Artin. Algebra. Pearson Prentice Hall, 2011.
6 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

https://doi.org/10.48550/ARXIV.2210.03932

A. Agrawal, S. Saurabh, and M. Zehavi 1:15

7 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed. edition, 2008.

8 Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki. Drawing plane graphs nicely. Acta
Inf., 22(2):187–201, 1985.

9 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
II. Discrete Computational Geometry, 4:387–421, 1989.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

11 Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting fáry embeddings
of planar graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 426–433, 1988.

12 Giuseppe Di Battista and Luca Vismara. Angles of planar triangular graphs. SIAM Journal
on Discrete Mathematics, 9(3):349–359, 1996.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 M. Dillencourt. Toughness and Delaunay triangulations. In Proceedings of the Third Annual
Symposium on Computational Geometry, SoCG, pages 186–194, 1987.

15 Michael. B. Dillencourt. Realizability of Delaunay triangulations. Information Processing
Letters, 33:283–287, 1990.

16 Michael B. Dillencourt and Warren D. Smith. Graph-theoretical conditions for inscribability
and Delaunay realizability. Discrete Mathematics, 161(1-3):63–77, 1996.

17 D. Yu. Grigor’ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequalities in
subexponential time. Journal of Symbolic Computation, 5:37–64, 1988.

18 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7(1):381–413, 1992.

19 Tetsuya Hiroshima, Yuichiro Miyamoto, and Kokichi Sugihara. Another proof of polynomial-
time recognizability of Delaunay graphs. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 83:627–638, 2000.

20 Craig D Hodgson, Igor Rivin, and Warren D Smith. A characterization of convex hyper-
bolic polyhedra and of convex polyhedra inscribed in the sphere. Bulletin of the American
Mathematical Society, 27:246–251, 1992.

21 Jan Kratochvíl and Jivr’i Matouvsek. Intersection graphs of segments. J. Comb. Theory, Ser.
B, 62(2):289–315, 1994.

22 Timothy Lambert. An optimal algorithm for realizing a Delaunay triangulation. Information
Processing Letters, 62(5):245–250, 1997.

23 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal
of Combinatorial Theory, Series B, 103(1):114–143, 2013.

24 Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex
polygon intersection graphs. SIAM J. Discrete Math., 27(1):205–231, 2013.

25 Takao Nishizeki, Kazuyuki Miura, and Md. Saidur Rahman. Algorithms for drawing plane
graphs. IEICE Transactions, 87-D(2):281–289, 2004.

26 Yasuaki Oishi and Kokichi Sugihara. Topology-oriented divide-and-conquer algorithm for
Voronoi diagrams. Graphical Models and Image Processing, 57:303–314, 1995.

27 Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Inc., 1992.

28 János Pach and Pankaj K. Agarwal. Combinatorial Geometry. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, New York, 1995.

29 James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. Journal of Symbolic Computation, 13:255–352, 1992.

30 Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of
Mathematics, 139:553–580, 1994.

IPEC 2022

1:16 A Finite Algorithm for the Realizabilty of a Delaunay Triangulation

31 Kokichi Sugihara. Simpler proof of a realizability theorem on Delaunay triangulations.
Information Processing Letters, 50:173–176, 1994.

32 Kokichi Sugihara and Masao Iri. Construction of the Voronoi diagram for one million generators
in single-precision arithmetic. Proceedings of the IEEE, 80:1471–1484, 1992.

33 Kokichi Sugihara and Masao Iri. A robust topology-oriented incremental algorithm for Voronoi
diagrams. International Journal of Computational Geometry & Applications, 4(02):179–228,
1994.

34 William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
3(1):743–767, 1963.

35 Hassler Whitney. Congruent Graphs and the Connectivity of Graphs, pages 61–79. Birkhäuser
Boston, Boston, MA, 1992.

	1 Introduction
	2 Preliminaries
	3 Restricted-Delaunay Realization: Generating Polynomials
	3.1 Inequalities Ensuring that the Outer Face Forms the Convex Hull
	3.2 Inequalities Guaranteeing Existence of Edges
	3.3 Correctness

	4 Restricted-Delaunay Realization: Replacing Points by Discs
	5 Delaunay Realization: Integer Coordinates
	6 Conclusion

