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Abstract
In this paper we consider the parameterized complexity of two versions of a parallel machine
scheduling problem with precedence delays, unit processing times and time windows. In the first
version – with exact delays – we assume that the delay between two jobs must be exactly respected,
whereas in the second version – with minimum delays – the delay between two jobs is a lower bound
on the time between them. Two parameters are considered for this analysis: the pathwidth of
the interval graph induced by the time windows and the maximum precedence delay value. We
prove that our problems are para-NP-complete with respect to any of the two parameters and
fixed-parameter tractable parameterized by the pair of parameters.
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1 Introduction

While scheduling jobs with resources and precedence constraints has a wide range of industrial
applications, these problems have been proven to be NP-hard in the strong sense even for very
simple settings. For example minimizing the makespan of a schedule of jobs on two parallel
processors assuming chain-like precedence constraints is already NP-hard [8]. Scheduling
problems are usually denoted by the three field denotation α|β|γ of Graham [11]. Field α

describes the machine setting, field β describes the job relations and properties, and field γ

defines the optimization criterion - or is a star ⋆ for a decision problem. For example the
NP-hard problem described above is denoted by P2|chains|Cmax.

In this paper we tackle two decision scheduling problems on M parallel processors. We
consider a set of n jobs T . Each job i has a unit processing time and a time interval [ri, di)
given for its computation. ri is the release date of job i, and di its deadline. Jobs are
linked by precedence constraints defined by an acyclic precedence graph G with non-negative
precedence delays ℓi,j on each arc (i, j) of G. Two variants of the precedence delays are
considered: exact precedence delays and minimum precedence delays, which will be denoted
by ℓex

i,j and ℓmin
i,j in the standard notations.

A feasible schedule σ defines for each job i ∈ T a starting time σ(i) ∈ [ri, di) so that no
more than M jobs are scheduled at the same time, and so that for each arc (i, j) of G:

in case of exact delays: σ(i) + 1 + ℓex
i,j = σ(j),

in case of minimum delays: σ(i) + 1 + ℓmin
i,j ≤ σ(j).
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21:2 Parameterized Complexity of a Parallel Machine Scheduling Problem

In particular we will explore the parameterized complexity of these problems
with chain-like precedence constraints, denoted by P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ and
P |chains(ℓmin

i,j ), pj = 1, rj , dj |⋆.
When restricting all processing times to be equal to one, NP-hardness results typically

depend on the precedence relations used in the problem. Ullman [19] first showed that
P |prec, pj = 1|Cmax is strongly NP-hard. This was later improved by Lenstra et al [14] with
a precedence graph of bounded height, then by Garey et al [10] in the case of an opposing
forest. When we have release dates Brucker et al [5] showed that P |intree, pj = 1, rj |Cmax

is strongly NP-hard with an intree as the precedence graph.
When further restricting the problem to chains with precedence delays, Yu et al [22]

showed that 1|chains(ℓmin
i,j ), pj = 1|Cmax and 1|chains(ℓex

i,j), pj = 1|Cmax are strongly NP-
hard, even when all chains are of length two (i.e. if we only have coupled tasks). The
problem 1|chains(ℓex

i,j), pj = 1|⋆ was also proven NP-hard earlier by Orman in [17]. Note that
apart from the delays themselves, there is nothing more to restrict in order to go around
NP-hardness. Thus within the scope of classical complexity theory it becomes difficult to find
the frontier between polynomial-time solvability and NP-hardness when delays are considered.

Parameterized complexity theory gives numerous tools for a refined analysis of such hard
scheduling problems. Given a parameter k and denoting n the input size, a problem is called
fixed − parameter tractable (FPT) with respect to parameter k if it can be solved in time
poly(n) × f(k) with f an arbitrary function [6]. Not only it tells us more about a problem
than if we only showed NP-hardness, it allows us to further classify the NP-hard problems
depending on whether they are FPT parameterized by k or not.

When the studied problem is believed to not be FPT, the para-NP class is used as a
parameterized version of NP: a problem is in para-NP with respect to parameter k if there
is a non-deterministic algorithm that solves it in time poly(n) × f(k) with f an arbitrary
function. In order to prove that a problem is para-NP-hard with respect to k, it is enough to
prove that the un-parameterized problem is NP-hard for some fixed value of the parameter [9].
The W-hierarchy defined in [7] is an additional widely used tool in parameterized complexity.
It is a sequence of intermediate complexity classes between FPT and para-NP, which allows
us to further investigate the time complexity of a parameterized problem.

Until now quite few parameterized complexity results have been be proved for scheduling
problems. Among the first ones related to our problems, Bodlaender proved in [3] that
minimizing the makespan of unit processing times jobs on parallel machines is W[2]-Hard
considering the number of machines as parameter. When precedence constraints are involved,
several authors studied the parameter defined by the width w of the precedence graph. Van
Bevern et al. [20] proved that the problem P2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard with
respect to the width. In the same paper they also proved that if we add the maximum allowed
lag of a job with respect to its earliest start time (ignoring resource constraints) to the width
as parameter then the problem becomes FPT, even for more complex resource constraints
(RCPSP). In [15] it is noted that the parameterized complexity of the problem with three
processors, precedence constraints and unit execution times with respect to width w is still
open.

Now considering precedence delays, we can first mention the work of Bessy et al [2]
on coupled tasks with due dates, a compatibility graph and a common deadline on a
single machine. They consider the number of jobs that end before the due date as their
parameter. They establish W[1]-hardness for this problem and propose a FPT algorithm
when the maximum duration of a job (i.e. the processing time of the two tasks plus their
delay) is bounded. Bodlaender et al in [4] studied the two problems we address in this
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paper but assuming that each chain C has a time window [rC , dC) instead of time windows
for individual jobs like in our case. They considered two parameters: the first one is
the number of chains and the second one is the thickness, i.e. the maximum number of
overlapping chain time windows. On one hand they proved that for exact or minimum
delays 1|chains(ℓi,j), pj = 1, rC , dC |⋆ is W[1]-hard with any of the two parameters, while the
parallel machine variant P |chains(ℓi,j), pj = 1, rC , dC |⋆ is W[2]-hard. On the other hand
they proved that these problems are in XP (i.e. deterministic nf(k) time) if the delays are
unary encoded.

Considering scheduling problems with job time windows, the pathwidth µ has been
considered recently as a parameter by several authors [1, 16, 21]. Parameter µ is the
pathwidth of the graph induced by jobs time intervals. It can be easily computed since µ + 1
is the maximum number of overlapping job time windows at any given time. In particular
Munier proved in [16] that scheduling unit processing times jobs with time windows and
precedence constraints is FPT with parameter µ. Note that van Bevern et al. [20] showed
that P 2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard parameterized by w, while this problem is likely
to be FPT parameterized by µ according to Hanen and Munier [12]. With µ allowing such
problems to be FPT when other parameters do not, it makes it all the more difficult to find
hardness results relative to µ.

The two studied parameters in our paper are pathwidth µ and the maximum precedence
delay ℓmax = max(i,j) arc of G ℓi,j . We first show in Section 2 that both decision problems
P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ and P |chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ are para-NP-complete

parameterized by either one alone. In the case of pathwidth µ as the parameter we even
prove that the single machine variant of both problems are para-NP-complete. Then in
section 3 we prove that these problems are FPT parameterized by the couple (µ, ℓmax).

2 Hardness reductions

In this section we prove para-NP-completeness of our two parallel machine scheduling
problems parameterized by pathwidth µ or maximum delay ℓmax alone. We even establish
para-NP-completeness of the single-machine variant in the case of parameter µ.

We use the following result from Flum and Grohe’s book [9]:

▶ Lemma 1 (Flum, Grohe 1998). If a (nontrivial) problem P is NP-complete with a fixed
value of some parameter k, then the parameterized problem (P, k) is para-NP-complete.

Thus the following scheduling problems will be shown to be NP-complete:
1. 1|chains(ℓex

i,j), pj = 1, rj , dj |⋆ with µ = 1,
2. 1|chains(ℓmin

i,j ), pj = 1, rj , dj |⋆ with µ = 2,
3. P |chains(ℓex

i,j), pj = 1, rj , dj |⋆ with ℓmax = 1,
4. P |chains(ℓmin

i,j ), pj = 1, rj , dj |⋆ with ℓmax = 1.

These problems are all trivially in NP by guessing the starting time of each job then
checking if this leads to a feasible schedule. For the hardness proofs all reductions will start
from the (strongly) NP-hard 3-COLORING graph problem [13]. Let G = (V, E) be the input
graph. Let v0, . . . , vn−1 be the vertices in V and e0, . . . , em−1 be the edges in E. Let n = |V |
and m = |E|. The colors will be named 0, 1 and 2.

2.1 NP-hardness of 1|chains(ℓex
i,j), pj = 1, rj, dj|⋆ with µ = 1

We build an instance of 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ with µ = 1. An example is given in

Figure 1. We have n vertex chains Ci with deg(vi) + 1 jobs in chain Ci, 0 ≤ i ≤ n − 1 with
deg(vi) the degree of node vi in G. We define vertex chain Ci the following way:

IPEC 2022
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Figure 1 An instance of 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). This schedule corresponds to the
coloring (0, 2, 1).

▶ Definition 2 (Vertex chain Ci). We segment time into m + 1 segments: a color choice
segment [0, 3n) and m edge check selection segments of length 3 along [3n, 3(n + m)). We
describe the chain from left to right:
(1) Color choice segment [0, 3n)

The first job of chain Ci has time window [3i, 3(i + 1)).
a. If vi appears in no edge of G: end the chain.
b. Else: set 3(n − i) − 1 as the current exact delay after this job.

(2) Edge check segment [3(n + j), 3(n + j + 1)), 0 ≤ j ≤ m − 1
For j in [0, m − 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.
a. Vertex chain Ci with i /∈ {i1, i2}

Add 3 to the current exact delay after the currently latest job of chain Ci.
b. Vertex chain Ci with i = i1 or i = i2

Set a job with time window [3(n + j), 3(n + j + 1))
i. If ej is the last edge where vi appears: end the chain.
ii. Else: set 2 as the current exact delay after this job.

▶ Remark 3. The created instance has pathwidth 1. In the color choice segment: for
i ∈ [0, n − 1] there is exactly one job to be scheduled in time window [3i, 3(i + 1)): the first
job of vertex chain Ci. In the edge check segments: for j ∈ [0, m − 1] if edge ej = {vi1 , vi2}
then there are exactly two jobs to be scheduled in time window [3(n + j), 3(n + j + 1)): one
from vertex chain Ci1 and one from vertex chain Ci2 . Thus there are indeed at most two
overlapping time windows at any given time.

Let i ∈ [0, n − 1]. Vertex chain Ci has three possible starting times in [3i, 3(i + 1)) which
corresponds to the three color choices of node vi. Then this color choice is propagated
to every edge check segment [3(n + j), 3(n + j + 1)) where node vi is a part of edge ej ,
j ∈ [0, m − 1]. The following lemma ensures that the color choices are faithfully propagated.

▶ Lemma 4. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if vertex chain Ci starts at time
3i + k with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k, where
r(J) is the release date of job J .
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Proof. Suppose we have a feasible schedule where vertex chain Ci starts at time 3i + k with
k ∈ {0, 1, 2}.

If vertex vi is part of no edge in the graph:
Then by Definition 2 vertex chain Ci only has one job. It is scheduled at time 3i + k,
which is indeed the release date of this job plus k.
If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that vi ∈ ej . We prove
by induction on l ∈ [0, deg(vi) − 1] that the job of vertex chain Ci which has time window
[3(n + jl), 3(n + jl + 1)) is scheduled at time 3(n + jl) + k.

Consider the job of vertex chain Ci which has time window [3(n + j0), 3(n + j0 + 1)).
By Definition 2 this job is the successor of the first job in the chain and the exact delay
between them is 3(n− i)−1+3j0. Thus if the first job of the chain is scheduled at time
3i + k, then this following job is scheduled at time (3i + k) + 1 + (3(n − i) − 1 + 3j0) =
3(n + j0) + k, which is indeed the release date of this job plus k.
Let l ∈ [1, deg(vi) − 1]. Suppose the job of vertex chain Ci which has time window
[3(n + jl−1), 3(n + jl−1 + 1)) is scheduled at time 3(n + jl−1) + k. Then by Definition 2
there is an exact delay 2 + 3(jl − jl−1 − 1) before the next job of the chain. Thus the
next job of the chain is scheduled at time (3(n + jl−1) + k) + 1 + (2 + 3(jl − jl−1 − 1)) =
3(n + jl) + k, which is indeed the release date of this job plus k.

This proves the lemma for all the jobs of vertex chain Ci in an edge check segment. ◀

Then for each edge ej = {vi1 , vi2}, i1 < i2, the color choices of vi1 and vi2 are confronted
in edge check segment [3(n + j), 3(n + j + 1)). If both nodes chose the same color then both
jobs in this edge check segment would be scheduled at the same time, which would invalidate
our schedule in this single-machine instance. Conversely if we start from a valid coloring,
then there will never be two jobs scheduled at the same time in an edge check segment. This
is the key ingredient behind the reduction.

▶ Proposition 5. G is 3-colorable if and only if there exists a feasible schedule for this
instance of EXACT DELAYS.

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose the schedule where for all 0 ≤ i ≤ n − 1, chain Ci starts at time
3i + ci. Then in every edge ej ∈ E where vertex vi appears, we schedule the job of chain Ci

which is in edge check segment [3(n + j), 3(n + j + 1)) at time 3(n + j) + ci.
We show that the jobs in different chains do not interfere with each other. Since the time

windows do not overlap in the color choice segment, only the edge check segments remain
to be checked. Let ej = {vi1 , vi2} be an edge in E. By definition of the vertex chains, only
chains Ci1 and Ci2 have a job to be scheduled in time window [3(n + j), 3(n + j + 1)). In
our schedule the job of chain Ci1 is scheduled at time 3(n + j) + ci1 and the job of chain
Ci2 at time 3(n + j) + ci2 . Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have
ci1 ̸= ci2 . Thus both jobs are scheduled at different times and the jobs in edge check segment
[3(n + j), 3(n + j + 1)) do not interfere with each other. Thus the proposed schedule is
feasible.

( ⇐= ) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 3i + si is the starting time of chain Ci. We show that (s0, . . . , sn−1) is a 3-coloring
of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 .
Then by Lemma 4 the jobs of chains i1 and i2 that must be scheduled in edge check segment
[3(n + j), 3(n + j + 1)) are scheduled at the same time 3(n + j) + si1 . Thus the schedule is not
feasible, which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a 3-coloring of G. ◀

IPEC 2022



21:6 Parameterized Complexity of a Parallel Machine Scheduling Problem

This proves that 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ with µ = 1 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 6. 1|chains(ℓex
i,j), pj = 1, rj , dj |⋆ is para-NP-complete parameterized by path-

width µ.

2.2 NP-hardness of 1|chains(ℓmin
i,j ), pj = 1, rj, dj|⋆ with µ = 2

We build an instance of 1|chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ with µ = 1. We begin in a similar way:

for each node we have a vertex chain C′
i with three possible starting times, each corresponding

to a color choice, then we want to propagate this color choice. However now that the delays
are not exact anymore, the color choice cannot be propagated properly as previously. More
constraints are needed in order to deal with the extra flexibility coming from the minimum
delays.

One way is to add a closing segment [3(n + m), 3(2n + m)) at the end and two gadget
chains C′

i,1, C′
i,2 per node, each composed of two jobs. As shown in Figure 2 the gadget chains

will fill the two gaps at the start and at the end of each vertex chain.

▶ Definition 7 (Vertex chain C′
i). We segment time into m + 2 segments: a color selection

segment [0, 3n), m edge check selection segments along [3n, 3(n + m)) and a closing segment
[3(n + m), 3(2n + m)). We describe the chain from left to right:
(1) Color selection segment [0, 3n)

The first job of chain C′
i has time window [3i, 3(i + 1)).

Set 3(n − i) − 1 as the current minimum delay after this job.
(2) Edge check segment [3(n + j), 3(n + j + 1)), 0 ≤ j ≤ m − 1

For j in [0, m − 1]:
Let edge ej = {vi1 , vi2}, i1 < i2.
a. Vertex chain C′

i with i /∈ {i1, i2}
Add 3 to the current minimum delay after the currently latest job of chain C′

i

b. Vertex chain C′
i with i = i1 or i = i2

Set a job with time window [3(n + j), 3(n + j + 1))
Set 2 as the current minimum delay after this job

(3) Closing segment [3(n + m), 3(2n + m))
Add 3i to the current minimum delay of the currently latest job of chain C′

i.
Set a job with time window [3(n + i + m), 3(n + i + 1 + m)) as the last job of vertex
chain C′

i.

▶ Definition 8 (Gadget chains C′
i,1, C′

i,2). For both gadget chains C′
i,1, C′

i,2 relative to vertex vi,
the first job must be scheduled in time window [3i, 3(i + 1)), the second one in time window
[3(n + m + i), 3(n + m + i + 1)), and there is a minimum delay 3(n + m) − 1 between them.

▶ Remark 9. The created instance has indeed pathwidth 2: gadget chains add two more time
windows at the beginning and the end of each vertex chain, so there are at most three time
windows overlapping at any time.

A full example is given in Figure 2. For our proof the goal is to show that adding these
gadget chains is enough to get an analogue result to Lemma 4. Note that if we only use the
definition of the chains like in the reduction of Section 2.1, we only get this weaker result:

▶ Lemma 10. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 3i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k or later, where
r(J) is the release date of job J .
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Figure 2 An instance of 1|chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). This schedule corresponds to the
coloring (0, 2, 1).

Proof. For gadget chains C′
i,1, C′

i,2 this comes from the minimum delay 3(n + m) − 1 between
their two jobs. For vertex chain C′

i: suppose we have a feasible schedule where vertex chain
C′

i starts at time 3i + k with k ∈ {0, 1, 2}.
If vertex vi is part of no edge in the graph:
Then by Definition 7 vertex chain Ci only has two jobs and there is a minimum delay
3(n−i)−1+3m+3i = 3(n+m)−1 between them. Thus if the first job is scheduled at time
3i+k, then the job in the closing segment is scheduled at time (3i+k)+1+(3(n+m)−1) =
3(n + m + i) + k, which is indeed the release date of this job plus k.
If vertex vi is part of at least one edge in the graph:
Let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that vi ∈ ej . We prove
the lemma for all the jobs of vertex chain Ci in an edge check segment by induction on
l ∈ [0, deg(vi) − 1] the same way as in Lemma 4. Then only the job of the chain in the
closing segment is left. By Definition 7 there is a minimum delay 2+3(m−1−jdeg(vi)−1)+3i

between this job and the one in edge check segment [3(n+jdeg(vi)−1), 3(n+jdeg(vi)−1 +1)).
Since we know from the induction that the latter job is scheduled at time 3(n+jdeg(vi)−1)+
k or later, this means that the job of vertex chain Ci in the closing segment is scheduled
at time (3(n + jdeg(vi)−1) + k) + 1 + (2 + 3(m − 1 − jdeg(vi)−1) + 3i) = 3(n + m + i) + k

or later, which is indeed the release date of this job plus k. ◀

By taking into account the constraints added by the gadget chains at the beginning and
at the end of each vertex chain, we are able to prove the needed key property.

▶ Lemma 11. In any feasible schedule, if a vertex chain Ci starts at time 3i + k with
k ∈ {0, 1, 2}, then all jobs J in vertex chain Ci which are in an edge check segment have to
be scheduled at time r(J) + k, where r(J) is the release date of job J .

IPEC 2022



21:8 Parameterized Complexity of a Parallel Machine Scheduling Problem

Proof. Consider a feasible schedule. Let 0 ≤ i ≤ n − 1. Three jobs are scheduled in time
window [3i, 3(i + 1)): the first job of vertex chain Ci and the first job of the two gadget chains
relative to it. Let 3i + k (resp. 3i + k′

1, 3i + k′
2) be the starting time of the first job of vertex

chain Ci (resp. gadget chains C′
i,1, C′

i,2). We have k, k′
1 and k′

2 in {0, 1, 2} and since we have
a feasible schedule the three values are different from each other. Thus one chain starts at
time 3i + 2. By Lemma 10 and the time window [3(n + m + i), 3(n + m + i + 1)) of the last
job, this means that this last job must be exactly scheduled at time 3(n + m + i) + 2. Now
consider the chain which starts at time 3i + 1. By Lemma 10 its last job must be scheduled
at time 3(n + m + i) + 1 or 3(n + m + i) + 2. However the later time position is already
taken by the chain starting at time 3i + 2, which means that this last job must be exactly
scheduled at time 3(n + m + i) + 1. Finally by the same reasoning we get that the chain
starting at time 3i must have its last job scheduled at time 3(n + m + i).

This means that whatever the starting time 3i + k is for vertex chain Ci, its last job must
be scheduled at time 3(n + m + i) + k. So all the delays in the chain must be equal to their
minimum and thus by Lemma 10 all the jobs J in the vertex chain must be scheduled at
time r(J) + k. ◀

Now in any feasible schedule we proved that we have the same guarantee on the position
of the edge check jobs as we had with Lemma 4 in the exact delay case. Thus we are able to
propagate the color choices accurately and complete the reduction the same way.

▶ Proposition 12. G is 3-colorable if and only if there exists a feasible schedule for this
instance of MIN DELAYS.

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose a schedule where for all 0 ≤ i ≤ n − 1, vertex chain C′
i starts at time

3i + ci and gadget chains C′
i,1, C′

i,2 start in the two remaining time positions 3i + k1, 3i + k2
in [3i, 3(i + 1)) (with k1 ̸= k2). Plus we require all delays to match their minimum value.

Then, according to Definition 7 and going from left to right as we did in the proof of
Lemma 10, we know that in every edge ej ∈ E where node vi appears, the job of vertex chain
C′

i which is in edge check segment [3(n + j), 3(n + j + 1)) is scheduled at time 3(n + j) + ci,
and the last job of C′

i is scheduled at time 3(n + m + i) + ci. Plus from Definition 8 we
know that the last job of gadget chain C′

i,1 (resp. C′
i,2) is scheduled 3(n + mi) + k1 (resp.

3(n + m + i) + k2).
We show that the jobs in different chains do not interfere with each other. For the color

choice segment we know that vertex chain C′
i and gadget chains C′

i,1, C′
i,2 start respectively at

times 3i + ci, 3i + k1, and 3i + k2 with ci, k1 and k2 in {0, 1, 2} and different from each other.
For the closing segment we determined that vertex chain C′

i and gadget chains C′
i,1, C′

i,2 end
respectively at times 3(n+m+i)+ci, 3(n+m+i)+k1, and 3(n+m+i)+k2, again with ci, k1
and k2 in {0, 1, 2} and different from each other. Thus only the edge check segments remain
to be checked. Let ej = {vi1 , vi2} be an edge in E. By definition of the vertex chains, only
vertex chains C′

i1
and C′

i2
have a job to be scheduled in time window [3(n + j), 3(n + j + 1)).

In our schedule the job of chain Ci1 is scheduled at time 3(n + j) + ci1 and the job of chain
Ci2 at time 3(n + j) + ci2 . Since (c0, . . . , cn−1) is a 3-coloring and {vi1 , vi2} ∈ E, we have
ci1 ̸= ci2 . Thus both jobs are scheduled at different times and the jobs in edge check segment
[3(n + j), 3(n + j + 1)) do not interfere with each other. Thus the proposed schedule is
feasible.

( ⇐= ) Suppose we have a feasible schedule. We reuse the same coloring as in the proof
of Proposition 5: for all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be such that 3i + si is the starting
time of chain C′

i. We show that (s0, . . . , sn−1) is a 3-coloring of G. Considering any edge
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ej = {vi1 , vi2} ∈ E, Lemma 11 ensures that the job of vertex chain Ci1 (resp. Ci2) in edge
check segment [3(n + j), 3(n + j + 1)) is scheduled at time 3(n + j) + si1 (resp. 3(n + j) + si2),
with si1 (resp. si2) the starting time of vertex chain Ci1 (resp. Ci2). Since this is a feasible
schedule we have: 3(n + j) + si1 ̸= 3(n + j) + si2 , which means: si1 ̸= si2 . Thus the two
nodes of edge ej have indeed different colors. ◀

This proves that 1|chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ with µ = 2 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 13. 1|chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ is para-NP-complete parameterized by path-

width µ.

2.3 NP-hardness of P |chains(ℓex
i,j), pj = 1, rj, dj|⋆ with ℓmax = 1

We build an instance of P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ with ℓmax = 1. We still have n vertex

chains, one per node vi in graph G, and we want to represent and check a coloring of G in
a similar way to Section 2.1: choose the color of the nodes with the starting time of the
vertex chains, then propagate these choices and check that two nodes of an edge do not have
the same color. However with the change of parameter we must worry about the maximum
delay value instead of the overlapping of time windows. Here we want to propagate the color
choices while keeping the delays small.

We propose to add extra intermediate jobs that we call propagators at every other time
position. This way the color choices can be propagated along the odd time positions with
exact delays of length 1 while the even time positions are kept for edge checking. We set
M = n as the number of machines in order to make room for these propagators. We define
vertex chain Ci the following way:

▶ Definition 14 (Vertex chain Ci with ℓmax = 1). We define Ci as a chain of 3(n + m − i) +
deg(vi) jobs. These jobs will fulfill two roles:

Propagators Oi
j,k: Oi

i,0 will give the color choice of node vi. The other 3(n + m − i) − 1
jobs Oi

j,k (i ≤ j ≤ n + m − 1, 0 ≤ k ≤ 2) will propagate this color choice along the
whole chain while keeping the maximum delay value at 1. Job Oi

j,k will have time window
[6j + 2k, 6(j + 1) + 2k).
Edge jobs J i

j : the deg(vi) jobs J i
n+j will represent the color choice of node vi in every

edge ej where node vi is in (0 ≤ j ≤ m − 1). Job J i
n+j will have time window [6(n +

j), 6(n + j + 1)).
We segment time into m + 1 segments: a color choice segment [0, 6n) and m edge check
segments along [6n, 6(n + m)). We describe the chain from left to right:
(1) Color choice segment [0, 6n)

Set the first job Oi
i,0 of Ci in time window [6i, 6(i + 1)).

Add a unit-time exact delay then a job, and do this 3(n − i) − 1 times in a row. These
jobs are named Oi

i,1, Oi
i,2, Oi

i+1,0, . . ., Oi
n,2.

(2) Edge check segment [6(n + j), 6(n + j + 1)), 0 ≤ j ≤ m − 1
Let edge ej = {vi1 , vi2}, i1 < i2. This segment will check if the vertices vi1 and vi2 have
different colors.
a. Vertex chain Ci with i /∈ {i1, i2}: add a unit-time exact delay then job Oi

n+j,0 then a
unit-time exact delay then job Oi

n+j,1 then a unit-time exact delay then job Oi
n+j,2.

b. Vertex chain Ci with i = i1 or i = i2: add job J i
n+j then an exact delay of length zero

then job Oi
n+j,0 then a unit-time exact delay then job Oi

n+j,1 then a unit-time exact
delay then job Oi

n+j,2.
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Figure 3 An instance of P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ representing a graph coloring. We have

G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}). There are M = n = 3 machines and
this schedule corresponds to the coloring (0, 2, 1).

Note that time intervals of length 6 are used instead of length 3. This way three odd
starting times are available for each vertex chain. However fill jobs must be added at every
even time position of the color choice segment: M of them so that only these odd starting
times are actually allowed. Plus now that we are in a parallel-machine framework instead of
a single-machine one, more fill jobs are needed at the even time positions of the edge check
segments: M − 1 of them so that one edge job at any of these positions is allowed but two
would invalidate the schedule.

▶ Definition 15 (Fill jobs). Fill jobs are chains of one job with a time window of length 1.
M fill jobs are set at every even time position in color choice segment [0, 6n) and M − 1 fill
jobs are set at every even time position in time segment [6n, 6(n + m)).

An example is given in Figure 3. With the addition of fill jobs the reduction can now
be proved correct in a similar way to Section 2.1: determine the exact positions of all jobs
in a vertex chain given its starting time, then show that a schedule is feasible if and only
if whenever two vertex chains have an edge job in the same edge check segment they must
start at different times.

▶ Proposition 16. G is 3-colorable if and only if there exists a feasible schedule for this
instance of P |chains(ℓex

i,j), pj = 1, rj , dj |⋆.

First we determine the positions of all jobs in a vertex chain given its starting time. In
particular we confirm that in any feasible schedule propagators are always scheduled at odd
time positions and edge jobs at even time positions:

▶ Lemma 17. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if vertex chain Ci starts at time
6i + 2l + 1 with l ∈ {0, 1, 2}, then all the jobs Oi

j,k (resp. J i
j) in this chain are scheduled at

time r(Oi
j,k) + 2l + 1 (resp. r(J i

j) + 2l), where r(J) is the release date of job J .
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Proof. Suppose we have a feasible schedule where vertex chain Ci starts at time 6i + 2l + 1
with l ∈ {0, 1, 2}.

Propagators Oi
j,k: by Definition 14 there is always either a unit-time exact delay or a

job J i
j between two consecutive jobs Oi

j,k in vertex chain Ci. Thus if the first job Oi
i,0 is

scheduled at time 6i+2l+1 = r(Oi
i,0)+2l+1, then we know that the next propagator Oi

i,1
is scheduled at time (6i+2l+1)+2 = r(Oi

i,1)+2l+1, and so on. By induction on the couple
(j, k) with i ≤ j ≤ n + m − 1 and 0 ≤ k ≤ 2, we get that all the jobs Oi

j,k in vertex chain
Ci are scheduled at time [6i+2l+1]+2× (3(j − i)+k) = 6j +2k +2l+1 = r(Oi

j,k)+2l+1.
Edge jobs J i

j : let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej (if there are any). Let p ∈ [0..deg(vi) − 1]. According to Definition 14 job Oi

jp,0
has the same time window [6(n + jp), 6(n + jp + 1)) as job J i

jp
and it is scheduled right

before it. Therefore according to our previous point about propagators Oi
j,k, job J i

jp
is

scheduled at time [r(Oi
jp,0) + 2l + 1] − 1 = r(J i

jp
) + 2l. ◀

Now we are able to prove Proposition 16:

Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose the schedule σ where for all 0 ≤ i ≤ n − 1, chain Ci starts at time
6i + 2ci + 1. Then by Definition 14 and abiding by exact delays, in every edge ej ∈ E where
vertex vi is in, job J i

j is scheduled at time r(J i
j) + 2ci = 6(n + j) + 2ci.

We show that there are never more than M = n jobs scheduled at any time position.
Since there is no fill job at an odd time position and two jobs of the same chain cannot
be scheduled at the time, there are at most n jobs scheduled at every odd time. Thus
only the even time positions remain to be checked. All the chains Ci start at an odd time
6i + 2ci + 1, so by Definition 14 and abiding by exact delays every job Oi

j,k is scheduled
at time r(Oi

j,k) + 2ci + 1, which is odd since all the release dates are even according to
Definition 14. Plus it means that only fill jobs are scheduled at the even time positions of
color choice segment [0, 6n). Thus only the even time positions of the edge check segments in
[6n, 6(n + m)) remain to be checked. There are M − 1 fill jobs scheduled at all of them. Let
j ∈ [0..m − 1] and ej = {vi1 , vi2}, i1 < i2. In edge check segment [6(n + j), 6(n + j + 1)) there
are exactly two non-fill jobs to be scheduled: J i1

n+j and J i2
n+j . As mentioned in the previous

paragraph they are respectively scheduled at time 6(n + j) + 2ci1 and 6(n + j) + 2ci2 . Since
(c0, . . . , cn−1) ∈ {0, 1, 2}n is a 3-coloring and {vi1 , vi2} = ej ∈ E, we have cii

̸= ci2 and thus
σ(J i1

n+j) ̸= σ(J i1
n+j). Therefore at most M jobs are scheduled at any time position.

( ⇐= ) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 6i + 2si + 1 is the starting time of chain Ci (recall that it can only be an odd time
because of the fill jobs defined in Definition 15). We show that (s0, . . . , sn−1) is a 3-coloring
of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then
according to Lemma 17 jobs J i1

n+j and J i2
n+j are scheduled at the same time 6(n + j) + 2si1 .

Thus taking into account the M − 1 fill jobs at this time position, there are M + 1 jobs
scheduled at the same time position, which is greater than the number of machines M . Thus
the schedule is not feasible, which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a
3-coloring of G. ◀

This proves that P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ with ℓmax = 1 is NP-hard, which concludes

the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 18. P |chains(ℓex
i,j), pj = 1, rj , dj |⋆ is para-NP-complete when parameterized by

maximum delay ℓmax.
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2.4 NP-hardness of P |chains(ℓmin
i,j ), pj = 1, rj, dj|⋆ with ℓmax = 1

We build an instance of P |chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ with with ℓmax = 1. The general

idea is to combine the two previously proposed extensions of the basic reduction from
Section 2.1: gadget chains from Section 2.2 that dealt with the extra flexibility coming from
using minimum delays instead of exact ones, and propagators from Section 2.3 that helped
to keep the maximum delay value equal to one. However getting the final product proved to
be significantly more technical than with the previous reductions, as propagators and gadget
chains could interfere with each other. The reduction will not be detailed in this section: the
full description and proof is available in Appendix A.1, as well as an example in Figure 7.
Instead we give insight into the major roadblock that we faced and eventually managed to
overcome: interference between propagators and gadget chains.

Again the goal was to prove that in any feasible schedule the edge jobs accurately represent
the color choice. As we have minimum delays we thought about using gadget chains like
the reduction in Section 2.2. This required to replicate a situation equivalent to the one
displayed in Figure 2 while propagators from other chains were around and could potentially
trade places. As we needed propagators at every other time position to keep the maximum
delay value at 1, it was not possible to completely isolate each triplet of chains as we did in
Section 2.2 when pathwidth µ was the parameter. So when a triplet of chains was considered
by the lemma it had to be guaranteed that the propagators from other chains were fixed and
thus could not trade places.

This was made possible by setting the closing time windows of the chain triplets in the
reverse order of the color choice time windows. Then, as shown in Figure 7, chains C′

0, C′
0,1,

and C′
0,2 start at the first part of the color choice segment and end at the last part of the

closing segment. Then chains C′
1, C′

1,1, and C′
1,2 start at the second part of the color choice

segment and end at the second to last part of the closing segment, and so on. This way only
propagators of chains C′

j , C′
j,1, C′

j,2 with j < i might interfere. These jobs would be fixed by
induction hypothesis and as such could not trade places.

Now that such a property was proved, the correspondence between valid graph 3-colorings
and feasible schedules could be established the same way as in our previous reductions.

▶ Proposition 19. G is 3-colorable if and only if there exists a feasible schedule for this
instance of P |chains(ℓmin

i,j ), pj = 1, rj , dj |⋆.

This proves that P |chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ with ℓmax = 1 is NP-hard, which

concludes the para-NP-completeness proof of the corresponding parameterized problem.

▶ Theorem 20. 1|chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ is para-NP-complete when parameterized by

maximum delay ℓmax.

3 A FPT algorithm with two parameters

In this section we prove that the problem with precedence delays (exact or minimum)
P |prec(ℓi,j), pi = 1, ri, di|⋆ is fixed-parameter tractable with the couple of parameters
(ℓmax, µ). For the sake of readability we detail the minimum delays case.

Let us consider the sorted list xk, k ∈ {0, . . . , K} of the release times and deadlines in non
decreasing order. We define a sub-sequence uα, α ∈ {0, . . . , κ−1} of this sequence so that two
consecutive terms - except the last one - are separated by at least ℓmax. So we set u0 = x0,
then uα+1 = xk with k the minimum value in {1, . . . , K} such that uα+1 −uα ≥ ℓmax. Lastly
we set uκ = xK .
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Figure 4 A precedence graph with minimum delays. Each precedence arc e = (i, j) is labeled by
the minimum delay ℓij . Each node i is labelled by its time window [ridi).

Let us consider the instance with minimum delays described in Figure 4.
For this instance we get the sequence x0 = 0, x1 = 2, x2 = 4, x3 = 6, x5 = 9 and x6 = 11

with K = 6. The associated pathwidth µ = 3 is reached in the interval [4, 6) crossed by
intervals of jobs 3, 6, 7, 8. We also have ℓmax = 3, so we get: u0 = x0 = 0, u1 = x2 = 4,
u2 = x5 = 9 and u3 = x6 = 11.

We set X0 = ∅ and for any α ∈ {1, . . . κ} we define Xα = {i ∈ T , [ri, di) ∩ [uα−1, uα) ̸= ∅}
the set of jobs that could be scheduled in interval [uα−1, uα). The idea of sequence (u0, . . . , uκ)
is that the number of jobs in each Xα is bounded by (µ + 1) × ℓmax (see Lemma 22). We
also define Zα, α ∈ {0, . . . , κ} the set of jobs with a deadline not greater than uα, i.e. Zα =
{i ∈ T , di ≤ uα}. In our example we have: Z0 = ∅, Z1 = {1, 2, 4, 5}, Z2 = Z1 ∪ {3, 6, 7, 8, 9}
and Z3 = T .

We define a dynamic programming scheme for our problem. The stages of the scheme are
{0, . . . , κ}. For each stage α ∈ {0, . . . , κ} we denote Nα the set of states of stage α. A state
s ∈ Nα represents the minimum information from a feasible schedule spanning in [0, uα) that
is necessary to extend this schedule in interval [uα, uκ).

Hence a state s ∈ Nα with α ∈ {1, . . . , κ − 1} is a tuple s = (β, Y ), where:
Y ⊆ Xα − Zα is a subset of jobs such that Y ∪ Zα represents the set of jobs scheduled in
[0, uα).
β is a complete schedule (i.e a set of jobs with their starting time) of the last ℓmax time
units before time uα- i.e in interval [uα − ℓmax, uα). We denote J(β) the set of jobs
scheduled in β. β is called a border schedule. Only such a schedule can influence the
earliest starting times of the jobs not scheduled yet.

For α = κ we set Nκ = {sκ} with sκ = (•, ∅) where • is an empty schedule. Moreover
Xκ − Zκ = ∅ and so Nκ can be reduced to only one element. Similarly, we set N0 = {s0}
with s0 = (•, ∅) since X0 = ∅ and no job may be executed in interval [u0, u0) = ∅.

As an example let us consider a feasible schedule σ pictured by Figure 5 for m = 2
identical machines associated to the instance given by Figure 4. The associates states are:
s0 = (•, ∅), s1 = (β1, {3}), s2 = (β2, ∅) and s3 = (•, ∅).

Now assume that s = (β, Y ) ∈ Nα with α ∈ {0, . . . , κ}. The boolean function
ExistSched(s) is set to true if and only if there exists a (partial) feasible schedule of jobs
from Y ∪ Zα in time interval [u0, uα) that ends with schedule β.

We can now establish the recurrence equation for this function:
1. ExistSched(s0) = true; indeed, s0 = (•, ∅) and Z0 = ∅, thus no job has to be scheduled.
2. Let us now consider α ∈ {1, . . . κ}. If ExistSched(s) = true then there exists a feasible

schedule in [0, uα) which can be decomposed into a feasible schedule in [0, uα−1) associated
with a state s′ ∈ Nα−1 and a schedule in the interval [uα−1, uα) consistent with s and s′.
The existence of such a schedule is denoted by the function Sched(s, s′).
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Figure 5 A feasible schedule σ associated with the example given in Figure 4 for m = 2 machines.

We now bound the complexity of computing Sched(s, s′) from a tuple of states (s′, s) ∈
Nα−1 × Nα.

Let s = (β, Y ) and s′ = (β′, Y ′). Then boolean Sched(s′, s) is true if and only if there
exists a schedule of Y ∪ Zα − Y ′ − Zα−1 in the interval [uα−1, uα) that is consistent with the
border schedule β′ and ends with the border schedule β.

▶ Lemma 21. For any α ∈ {1, . . . , κ} and (s′, s) ∈ Nα−1 × Nα, the time complexity of
Sched(s′, s) is O(µ2 × ℓ2

max × ((µ + 1) × ℓmax)!).

To prove this lemma, two more technical lemmas are needed. These lemmas bound the
total number of schedulable jobs in time interval [uα−1, uα) for α ∈ {1, . . . κ}:

▶ Lemma 22. ∀α ∈ {0, . . . , κ}, |Xα| ≤ (µ + 1) × ℓmax.

Proof. We simply observe that if uα−1 = xk and uα = xk′ then by construction k′ −k ≤ ℓmax.
Thus the inequality holds by the definition of µ. ◀

▶ Lemma 23. For any α ∈ {1, . . . , κ − 1}, |Nα| ≤ 2(µ+1)×ℓmax × (ℓmax + 1)(µ+1)×ℓmax .

Proof. The total number of schedules from a set V = J(β) is bounded by (ℓmax + 1)|V |.
Thus, by Lemma 22, it is bounded by (ℓmax + 1)(µ+1)×ℓmax . And because the number of sets
V ⊆ Xα is bounded by 2|Xα| ≤ 2(µ+1)×ℓmax , the lemma holds. ◀

Now we are able to prove Lemma 21:

Proof. The problem is to schedule jobs from S = Y ∪ Zα − (Y ′ ∪ Zα−1) in the interval
[uα−1, uα) so that the schedule is consistent with the two border schedules β′ and β This
can be done in several steps:
1. adjusting the release times of jobs of S with respect to the border schedule β′: if j is a

successor of i ∈ J(β′) then rj = max(rj , β′(i) + 1 + ℓi,j), and propagate to precedence
constraints in S.

2. adjusting the deadlines of jobs of S with respect to the border schedule β: if i is a
predecessor of j ∈ J(β) then di = min(di, β(j) − ℓi,j), and propagate to precedence
constraints in S

3. if a contradiction is detected at this step (a job j for which rj ≥ dj), Sched(s′, s) = false.
4. Otherwise we can enumerate all active schedules (i.e. schedules in which no job can be

scheduled earlier provided the other jobs are not delayed) of S − J(β) and verify that
one of them spans in [uα−1, uα − ℓmax)

The time complexity of the two first steps is O(|S|2). For the last step it is known that
any active schedule can be generated by list scheduling using a permutation of jobs [18]. Thus
the enumeration of active schedules can be done by a brute force algorithm that enumerates
all permutations of jobs and then performs a list scheduling algorithm to check whether the
schedule spans in the interval [uα−1, uα − ℓmax).
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At most m jobs are executed at each instant, and the number of iterations is bounded
by |S|. For each iteration, we must check that all the precedence constraints (with exact or
minimum delays) are fulfilled, and thus one execution of this priority list has a complexity
bounded by O(|S|2).

The total number of permutations is |S − J(β)|!. Thus the overall complexity is bounded
by O(|S|2 × |S − J(β)|!). And since S ⊆ Xα, by Lemma 22 we get that |S| ≤ (µ + 1) × ℓmax

and the lemma holds. ◀

Finally we formalize the recurrence equation that yields a FPT algorithm when we have
minimum delays: if s ∈ Nα,

ExistSched(s) =
∨

s′∈Nα−1

Sched(s′, s) ∧ ExistSched(s′) (1)

▶ Theorem 24. The answer to an instance I of P |prec(ℓij), pj = 1, rj , dj |⋆ (with minimum or
exact delays) is “yes” if and only if ExistSched(sκ) is true. Moreover the time complexity of the
computation of ExistSched(sκ) is O(n×(2ℓmax +2)2(µ+1)×ℓmax ×µ2 ×ℓ2

max ×((µ+1)×ℓmax)!).

Proof. If ExistSched(sκ) = true, then a sequence of states s0, s1, . . . sκ with sα ∈ Nα for
α ∈ {0, . . . , κ} and Sched(sα−1, sα) = true for all α ∈ {1, . . . , κ} can be built. And conversely
such a sequence induces a feasible schedule.

Now, the number of calls of the function Sched necessary to compute the recurrence
equation (1) is proportional to

∑κ
α=1 |Nα−1| × |Nα|. By Lemma 23, this value is bounded by

κ × 22(µ+1)×ℓmax × (ℓmax + 1)2(µ+1)×ℓmax . Since κ ≤ 2n, by Lemma 21 we get the theorem.
Notice that for exact delays, the computation of Sched(sα−1, sα) is slightly different since

the border schedule of sα−1 induces the schedule of all successors of these jobs. Similarly
the border of sα induces starting times for predecessors of these jobs, so the first step is to
verify the consistency of the job starting times induced by the two border schedules. This
can be done in O((µ × ℓmax)2). The remaining enumeration concerns the schedule of jobs
without predecessors that start after uα−1. In the worst case the number of these jobs is still
O(µ × ℓmax) so that the complexity is the same as in the min delays case. ◀

4 Conclusion

In this paper we analyzed the parameterized complexity of two scheduling problems with
precedence delays, unit processing times and job time windows with respect to two parameters:
the pathwidth µ and the maximum precedence delay ℓmax. To the best of our knowledge this
is the first hardness result with pathwidth µ as a parameter and unit processing times, and
also the first time that ℓmax is considered as a parameter. Our work raises an open problem
with parameter ℓmax, namely the single-machine problem 1|chains(ℓi,j), pj = 1, ri, di|⋆ for
which the hardness reductions we developed do not apply. Further work is also underway to
extend our FPT algorithm to more general problems, for instance with any processing times
jobs or more complex resource constraints.
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A Appendix

A.1 Description of the reduction in Section 2.4 and proof of
Proposition 19

▶ Definition 25 (Vertex chain C′
i with with ℓmax = 1). We define C′

i as a chain of 3(2n + m −
2i − 1) + deg(vi) + 1 jobs. These jobs will fulfill two roles:

Propagators Oi
j,k: job Oi

i,0 will give the color choice of node vi. The other 3(2n + m − 2i)
jobs Oi

j,k (i ≤ j ≤ 2n + m − i − 1, 0 ≤ k ≤ 2) and Oi
2n+m−i−1,0 will propagate this color

choice along the whole chain while keeping the maximum delay value at 1. Job Oi
j,k will

have time window [6j + 2k, 6j + 2k + 3).
Edge jobs J i

j : The deg(vi) jobs J i
n+j will represent the color choice of node vi in every

edge ej where node vi is in (0 ≤ j ≤ m − 1). Job J i
n+j will have time window [6(n + j) +

1, 6(n + j) + 4).

In order to define vertex chain C′
i we segment time into m + 2 segments: a color choice

segment [0, 6n), m edge check segments along [6n, 6(n + m)) and a closing segment [6(n +
m), 6(n + 2m)). We describe the chain from left to right:
(1) Color choice segment [0, 6n)

Set the first job Oi
i,0 of C′

i in time window [6i, 6(i+1)). Then add a unit-time minimum
delay.
Add a job then a unit-time minimum delay, and do this 3(n − i) − 1 times in a row.
These jobs are named Oi

i,1, Oi
i,2, Oi

i+1,0, . . ., Oi
n,2.

(2) Edge check segment [6(n + j), 6(n + j + 1)), 0 ≤ j ≤ m − 1
Let edge ej = {vi1 , vi2}, i1 < i2. This segment will check if the vertices vi1 and vi2 have
different colors.
a. Vertex chain C′

i with i /∈ {i1, i2}
Add job Oi

n+j,0 then a unit-time minimum delay then job Oi
n+j,1 then a unit-time

minimum delay then job Oi
n+j,2 then a unit-time minimum delay.

b. Vertex chain C′
i with i = i1 or i = i2

Add job Oi
n+j,0 then a minimum delay of length zero then job J i

n+j then a minimum
delay of length zero then job Oi

n+j,1 then a unit-time minimum delay then job
Oi

n+j,2 then a unit-time minimum delay.
(3) Closing segment [6(n + m), 6(n + 2m))

Add a job then a unit-time minimum delay, and do this 3(n − i − 1) times in a row.
These jobs are named Oi

n+m,0, Oi
n+m,1, Oi

n+m,2, Oi
n+m+1,0, . . ., Oi

2n+m−(i+2),2.
Add the last job Oi

2n+m−(i+1),0 of Ci with time window [6(2n + m − (i + 1)), 6(2n +
m − (i + 1)) + 3).

▶ Definition 26 (Gadget chain C′
i,1 (resp. C′

i,2)).
Set the first job Oi,1

i,0 (resp. Oi,2
i,0) in time window [6i, 6i + 3).

Add a unit-time minimum delay then a job, and do this 3(2n + m − 2i − 1) − 1 times
in a row. These jobs are named Oi,1

i,1, Oi,1
i,2, Oi,1

i+1,0, . . ., Oi,1
2n+m−(i+1),0 (resp. Oi,2

i,1, Oi,2
i,2,

Oi,2
i+1,0, . . ., Oi,2

2n+m−(i+1),0).

▶ Definition 27 (Fill jobs).
(1) Color choice segment [0, 6n)

Let i ∈ [0, n − 1]. In time segment [6i, 6(i + 1)):
At time 6i: set M − 1 − 2i fill jobs.
At time 6i + 1: set M − 1 − i fill jobs.
At time 6i + 2: set M − 2 − 2i fill jobs.
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(2) Edge check segments [6n, 6(n + m))
Let j ∈ [0, m − 1]. In time segment [6(n + j), 6(n + j + 1)):

At time 6(n + j) + 1: set M − n − 1 fill jobs.
At time 6(n + j) + 3: set M − n − 1 fill jobs.

(3) Closing segment [6(n + m), 6(2n + m))
Let i ∈ [0, n − 1]. In time segment [6(n + 2m − (i + 1)), 6(n + 2m − i)):

At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs.

▶ Lemma 28. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 6i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain are scheduled at time r(J) + k or later, where
r(J) is the release date of job J .

Proof. First the result is proved for vertex chains C′
i. Suppose we have a feasible schedule

where vertex chain C′
i starts at time 6i + l with l ∈ {0, 1, 2}.

Propagators Oi
j,k: by Definition 25 there is always either a unit-time minimum delay or a

job J i
j between two consecutive jobs Oi

j,k in vertex chain Ci. Thus if the first job Oi
i,0 is

scheduled at time 6i + l = r(Oi
i,0) + l (or later), then we know that the next propagator

Oi
i,1 is scheduled at time (6i + l) + 2 = r(Oi

i,1) + l or later, and so on. By induction on the
couple (j, k) with i ≤ j ≤ n + m − 1 and 0 ≤ k ≤ 2, we get that all the jobs Oi

j,k in vertex
chain Ci are scheduled at time (6i + l) + 2 × (3(j − i) + k) = 6j + 2k + l = r(Oi

j,k) + l or
later.
Edge jobs J i

j : let j0 < j1 < . . . < jdeg(vi)−1 be the indices of the edges ej such that
vi ∈ ej (if there are any). Let p ∈ [0, deg(vi) − 1]. According to Definition 25 job J i

jp

is scheduled right before job Oi
jp,0 with a minimum delay of length zero between them.

Therefore according to our previous point about jobs Oi
j,k, job J i

jp
is scheduled at time

(r(Oi
jp,0) + l) + 1 = r(J i

jp
) + l or later.

Gadget chain C′
i,1 (resp. C′

i,2) only features propagators. By Definition 26 there is always
a unit-time minimum delay between two consecutive jobs Oi,1

j,k (resp. Oi,2
j,k), so the result can

be proven the same way as in the first item of the proof for vertex chains. ◀

▶ Lemma 29. Let 0 ≤ i ≤ n − 1. In any feasible schedule, if a chain starts at time 6i + k

with k ∈ {0, 1, 2}, then all jobs J in this chain have to be scheduled at time r(J) + k, where
r(J) is the release date of job J .

Proof. We prove by induction on i ∈ [0, n − 1) that for all 0 ≤ j ≤ i exactly one chain starts
at each time 6j, 6j + 1, 6j + 2 and all jobs J in a chain C′

j , C′
j,1, C′

j,2 that starts at time
6j + k have to be scheduled at time r(J) + k.

According to Definition 27 on time windows [0, 6) and [6(2n + m − 1), 6(2n + m)), the
chain triplet C′

0, C′
0,1, C′

0,2 is in the situation described in Figure 6. Thus at least one
chain must start at time 2 which means by Lemma 28 that this chain has to end at
time 6(2n + m − 1) + 2. Then time 6(2n + m − 1) + 2 is blocked, so by the same lemma
another chain cannot start at time 2. Thus the two other chains have to start at the two
remaining time positions 0 and 1, one per chain. By Lemma 28 the chain that starts at
time 1 ends at time 6(2n + m − 1) + 1 (or later but the only other time position possible
6(2n + m − 1) + 2 is already blocked). So time position 6(2n + m − 1) + 1 is now blocked,
which forces the chain that starts at time 0 to end at time 6(2n + m − 1).
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Figure 6 A toy situation with three machines and the three chains related to a node in the
P |chains(ℓmin

i,j ), pj = 1, rj , dj |⋆ reduction. In any feasible schedule featuring these chains, for
k ∈ {0, 1, 2} exactly one chain starts at time 6i + k, and then this chain has to end at time
6(n + 2m − (i + 1)) + k.

Let i ∈ [0, n − 1). Assume the induction hypothesis to be true for chain triplets of index
j with 0 ≤ j ≤ i − 1. By Definition 25 we know that only these chain triplets have
propagators that might interfere in time windows [6i, 6(i + 1)) and [6(2n + m − (i +
1)), 6(2n + m − i)). By induction hypothesis we know that these propagators are fixed,
and we deduce that the number of fixed jobs (propagators from other chains plus fill jobs)
at the relevant time positions is the following:

(1) Color choice segment, part [6i, 6(i + 1)):
At time 6i: M − 1 − 2i fill jobs and 2i propagators from other chains which add up
to M − 1 jobs.
At time 6i + 1: set M − 1 − i fill jobs and i propagators from other chains which
add up to M − 1 jobs.
At time 6i + 2: set M − 2 − 2i fill jobs and 2i propagators from other chains which
add up to M − 2 jobs.

(2) Closing segment, part [6(n + 2m − (i + 1)), 6(n + 2m − i)):
At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs and 2i propagators from other
chains which add up to M − 2 jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs and i propagators from other
chains which add up to M − 1 jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs and 2i propagators from
other chains which add up to M − 1 jobs.

Thus we are again in the situation described in Figure 6 and we can prove the result for
the triplet C′

i, C′
i,1, C′

i,2 the same way as in the initialization.
This concludes the proof of the lemma for all chains. ◀

Now we are able to prove Proposition 19:
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Proof. ( =⇒ ) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G where vertex vi

has color ci. We propose a schedule σ where for all 0 ≤ i ≤ n − 1, chain C′
i starts at time

6i + ci and gadget chains C′
i,1, C′

i,2 start in the two remaining time positions 6i + l1, 6i + l2 in
[3i, 3(i + 1)) (with l1 ̸= l2). Plus we require all delays to match their minimum value.

Then, according to Definition 25, Definition 26 and going from left to right as we did
in the proof of Lemma 28, we know that propagators Oi

j,k, Oi,1
j,k and Oi,2

j,k are respectively
scheduled at times 6j + 2k + ci, 6j + 2k + l1 and 6j + 2k + l2. In the same way we know that
in every edge ej ∈ E where node vi appears, edge job J i

n+j of vertex chain C′
i is scheduled at

time 6(n + j) + 1 + ci. Thus for all jobs J in our proposed schedule, if its chain starts at
time 6i + l with l ∈ {0, 1, 2} then it is scheduled at time r(J) + l.

We show that there are never more than M = 2n + 1 jobs scheduled at any time position.
According to the previous paragraph we can infer that for every chain triplet two propagators
are scheduled at every even time position and one propagator at every odd time position in
time segment [6i, 6(2n + m − (i + 1)) + 3). Recall that only the chain triplets of index j ≤ i

are present in the two time segments [0, 6n), 6(n + 2m − (i + 1)) related to node vi. With
Definition 27 we count the number of propagators plus the number of fill jobs at every time
position and show that it is always no more than M − 1:
(1) Color choice segment [0, 6n)

Let i ∈ [0, n − 1]. In time segment [6i, 6(i + 1)):
At time 6i: M − 1 − 2i fill jobs and 2i propagators which add up to M − 1 jobs.
At time 6i + 1: set M − 1 − i fill jobs and i propagators which add up to M − 1 jobs.
At time 6i + 2: set M − 2 − 2i fill jobs and 2i propagators which add up to M − 2 jobs.
At times 6i + 3, 6i + 4, 6i + 5: respectively i, 2i, i propagators.

(2) Edge check segments [6n, 6(n + m))
Let j ∈ [0, m − 1]. In time segment [6(n + j), 6(n + j + 1)):

At time 6(n + j) + 1: M − n − 1 fill jobs and n propagators which add up to M − 1
jobs.
At time 6(n + j) + 3: M − n − 1 fill jobs and n propagators which add up to M − 1
jobs.
At times 6(n + j), 6(n + j) + 2, 6(n + j) + 4, 6(n + j) + 5: respectively 2n, 2n, 2n, i

propagators.
(3) Closing segment [6(n + m), 6(2n + m))

Let i ∈ [0, n − 1]. In time segment [6(n + 2m − (i + 1)), 6(n + 2m − i)):
At time 6(n + 2m − (i + 1)): set M − 2 − 2i fill jobs and 2i propagators which add up
to M − 2 jobs.
At time 6(n + 2m − (i + 1)) + 1: set M − 1 − i fill jobs and i propagators which add
up to M − 1 jobs.
At time 6(n + 2m − (i + 1)) + 2: set M − 1 − 2i fill jobs and 2i propagators which
add up to M − 1 jobs.
At times 6(n + 2m − (i + 1)) + 3, 6(n + 2m − (i + 1)) + 4, 6(n + 2m − (i + 1)) + 5:
respectively i, 2i, i, propagators.

Thus only the two edge jobs J i1
n+j , J i2

n+j from an edge ej = {vi1 , vi2} could invalidate the
schedule if both jobs were scheduled at the same time. This would mean that 6(n+j)+1+ci1 =
6(n + j) + 1 + ci2 and thus ci1 = ci2 , which is impossible since we started from a valid
3-coloring. Therefore at most 2n + 1 = M jobs are scheduled at any time position.

( ⇐= ) Suppose we have a feasible schedule. For all 0 ≤ i ≤ n − 1, let si ∈ {0, 1, 2} be
such that 6i + si is the starting time of chain C′

i (recall that it can only be an odd time
because of the fill jobs defined in Definition 15). We show that (s0, . . . , sn−1) is a 3-coloring
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of G. By contradiction suppose there is an edge ej = {vi1 , vi2} ∈ E such that si1 = si2 . Then
according to Lemma 29 jobs J i1

n+j and J i2
n+j are scheduled at the same time 6(n + j) + si1 .

However according to Definition 27 and Lemma 29 fill jobs and propagators add up to M − 1
in all three positions 6(n + j) + 1, 6(n + j) + 2, 6(n + j) + 3.

Thus adding both edge jobs there are M + 1 jobs scheduled at one of these three time
positions, which would make the schedule not feasible. This leads to a contradiction. Thus
(s0, . . . , sn−1) is indeed a 3-coloring of G. ◀

Figure 7 An instance of P |chains(ℓmin
i,j ), pj = 1, rj , dj |⋆ with M = 2n + 1 = 7 machines

representing a graph coloring. We have G = (V, E) with V = {v0, v1, v2} and E = ({v0, v1}, {v0, v2}).
This schedule corresponds to the coloring (0, 2, 1).
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