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Abstract
Given an undirected graph, the task in Cluster Editing is to insert and delete a minimum number
of edges to obtain a cluster graph, that is, a disjoint union of cliques. In the weighted variant each
vertex pair comes with a weight and the edge modifications have to be of minimum overall weight.
In this work, we provide the first polynomial-time algorithm to apply the following data reduction
rule of Böcker et al. [Algorithmica, 2011] for Weighted Cluster Editing: For a graph G = (V, E),
merge a vertex set S ⊆ V into a single vertex if the minimum cut of G[S] is at least the combined
cost of inserting all missing edges within G[S] plus the cost of cutting all edges from S to the rest of
the graph. Complementing our theoretical findings, we experimentally demonstrate the effectiveness
of the data reduction rule, shrinking real-world test instances from the PACE Challenge 2021 by
around 24 % while previous heuristic implementations of the data reduction rule only achieve 8 %.
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1 Introduction

The NP-hard Cluster Editing problem [4, 26], also known as Correlation Cluster-
ing [3], is one of the most popular graphs clustering approaches in algorithmics. Given an
undirected graph, the task is to transform it into a disjoint union of cliques (also known
as a cluster graph) by applying a minimum number of edge modifications (deletions or
insertions). In the weighted variant Weighted Cluster Editing each pair of vertices
comes with a weight and to goal is a find edge modifications of minimum summed weight
to create a cluster graph. (Weighted) Cluster Editing has applications in fields such
as bioinformatics [4], data mining [3], and psychology [27]. It gained high popularity in
studies concerning parameterized algorithmics [1, 2, 9, 11, 14, 15, 22, 5, 7, 6] and algorithm
engineering [15, 8, 17, 5]. The unweighted Cluster Editing was the problem selected for
the PACE implementation challenge 2021 [21]. An important aspect of solving (Weighted)
Cluster Editing, both in theory and practice, is kernelization. From a theoretical side,
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Figure 1 Left: Input graph with two “obvious” clusters, one being highlighted in green. Middle:
Optimal Cluster Editing-solution for the input graph: the thick red edge in the green cluster
is inserted and the red dotted edge between the clusters is deleted. Right: The graph obtained by
merging the vertices in the green vertex set in the input (weights are not shown for visibility). If all
weights are 1 in the input graph, then the vertex subset highlighted in green satisfies the condition
of the data reduction rule: the minimum cut has weight 2 (cutting two edges), which is at least the
cost of 2 to make the green vertex set an isolated clique (see middle for the two modified edges).

both the weighted and unweighted version of Cluster Editing admit polynomial-size
problem kernels. Studies in this direction were initialized by Gramm et al. [15] for Cluster
Editing, who provided a kernel with O(k2) vertices and sparked follow up work [13, 16].
The smallest known kernels have 2k vertices [9, 10]. The 2k-vertex kernel of Cao and Chen [9]
also holds for Weighted Cluster Editing.

As to the practical side, state-of-the-art solvers for Cluster Editing and Weighted
Cluster Editing rely on polynomial-time computable data reduction rules and the pre-
processing routines are heavily optimized over time [8, 17, 5]. In fact, the winning solver
of the PACE challenge 2021 solves about half of the instances by data reduction alone [5].
We contribute to this line of work by providing a divide & conquer-based, polynomial-time
algorithm to apply a data reduction rule by Böcker et al. [8, Rule 4] for Weighted Cluster
Editing. This data reduction rule works intuitively as follows: Let S ⊆ V be a vertex
subset. If the cost of splitting S into at least two parts is at least as high as the cost of
cutting S from the rest of the graph and making S a clique, then merge all vertices in S; see
Figure 1 for an illustration and Section 2 for the exact formulation of the data reduction rule.
Given a vertex subset S, it is easy to check in polynomial time whether the data reduction
rule is applicable on S (call such vertex subsets applicable). However, there was no efficient
algorithm to find applicable vertex subsets; thus only heuristics were applied [8]. We provide
experiments demonstrating that these heuristics miss many applicable vertex subsets in real
world data sets: The heuristics merge on average only 8.1 % of the vertices in the input.
However, the exhaustive application of the data reduction rule with our polynomial-time
algorithm reveals that on average 24.2 % of the vertices in the input could be merged.

Our polynomial-time algorithm runs in O(n · (Tmincut(n, m) + Ts-t-maxflow(n, m) + n2))) ⊆
O(nm1+o(1)+n3) time, where Tmincut(n, m) and Ts-t-maxflow(n, m) denote the time to compute
in an edge-weighted graph with n vertices and m edges a minimum cut and a maximum
s-t-flow, respectively.

2 Preliminaries

We set N := {0, 1, 2, . . .} and set
(

S
2
)

to be the set of all two-element subsets of a set S.
Let ∆ denote the symmetric difference. All graphs considered in this work are simple and
undirected. Moreover, we assume that the input graph is always connected as connected
components can be solved independently. A graph is a cluster graph if each connected
component is a clique. For a weighted graph G = (V, E, ω), the weight function ω :

(
V
2
)
→ Z

implicitly defines the edges E := {uv | ω(uv) > 0}. That is, a positive value of the weight
function indicates an edge and a negative value (or zero) a non-edge. The cost of modifying
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an edge uv is then the absolute value |ω(uv)| of its weight. For a vertex set S ⊆ V , we
denote with G[S] the graph induced by S. The decision variant of Weighted Cluster
Editing is defined as follows:

Weighted Cluster Editing
Input: An undirected edge-weighted graph G = (V, E, ω) and k ∈ N.
Question: Is there a set P ⊆

(
V
2
)

with
∑

uv∈P |ω(uv)| ≤ k, such that G′ = (V, E∆P )
is a cluster graph?

Cuts and the Picard-Queyranne DAG. Let G = (V, E, ω) be a weighted graph. Let U, W ⊂
V with U ∩W = ∅. We denote with E(U, W ) the edges between U and W ; with V (U, W )
the vertices incident to E(U, W ); and with cost(U, W ) the summed cost of removing the
edges E(U, W ). A cut cV of G is a partitioning of the vertex set V into two non-empty
partitions U ⊂ V and V \ U , each being called a side of the cut. The minimum cut
(mincut) of G is the cut of G with minimum cost; we denote its cost with mincut(G) :=
minU⊂V {cost(U, V \U)}. Note that, the cuts consider just the edges of the graph and ignore
the non-edges.

Let s, t ∈ V . All minimum s-t-cuts can be represented by a structure called a Picard-
Queyranne DAG (PQ-DAG for short) [25]. It is constructed by considering the reachability
relation in the residual network of any maximum s-t-flow and contracting strongly connected
components. Contracting two vertices u and v means to consider them as one, new vertex x

with neighborhood N(u)∪N(v). More precisely, for w ∈ N(u)∪N(v) \ {u, v}, the weight of
the edge to x becomes ω(xw) = max(0, ω(uw)) + max(0, ω(vw)). Therefore, each node of
the PQ-DAG represents a set of vertices of the original graph. For better distinction we say
the PQ-DAG has nodes which represent subsets of vertices of the input graph. If the graph is
undirected, then the DAG has only one sink (the strongly connected component containing
s) and only one source (the strongly connected component containing t). A closure of a
DAG is a set of nodes without outgoing arcs. Each closure of the PQ-DAG represents a
minimum s-t-cut [25], that is, one side of a minimum s-t-cut. Thus, any postfix and any
prefix in any topological ordering of the PQ-DAG represents a minimum s-t-cut. Moreover,
for any minimum s-t-cut, there exists some topological ordering of the PQ-DAG with a prefix
representing this cut. In this case, we say that the ordering respects the cut.

Merging Vertices & Data Reduction Rule. We will contract vertices when working with
cuts. For Weighted Cluster Editing we need to merge vertices (these two notions
coincide if each non-edge has weight 0). Merging two vertices u and v means to consider them
as one, new vertex x. For each w ∈ V \ {u, v}, the weight of the (non-)edge to x becomes
ω(xw) = ω(uw) + ω(vw). If w was adjacent to exactly one of u and v, then the solution
size k is reduced by min(|ω(uw)|, |ω(vw)|). Intuitively, if a vertex w is (non-)adjacent to
both u and v, then w is also (non-)adjacent to the new vertex. However, if w is adjacent to
exactly one of u and v, then the new vertex is adjacent to w iff, of the pairs uw and vw, the
pair representing an edge has higher weight than the one representing a non-edge. Merging a

and b in the graph on the left side of Figure 2 results in the graph on the right side.
For a vertex set S ⊆ V , we call the summed cost of all non-edges in G[S] the deficiency

of S and define defG(S) :=
∑

u,v∈S |min(0, ω(uv))|. We can now formally state the condition
triggering the data reduction rule.

▶ Definition 2.1. A vertex subset S ⊆ V with |S| ≥ 2 is applicable if

mincut(G[S]) ≥ defG(S) + cost(S, V \ S). (1)

IPEC 2022
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Figure 2 Left: A graph where the only applicable vertex set is S = {a, b, c, d}. Middle: Result of
merging a and b. Right: Result of contracting a and b.

Algorithm 1 Applying Reduction Rule 2.2.

Input: A connected weighted graph G = (V, E, ω) and a vertex subset A ⊆ V .
Output: A largest applicable set S ⊆ A if it exists, ∅ otherwise.

1 Function FindMergeSet(G, A)
2 if |A| < 2 then return ∅
3 cA = (A1, A2)← arbitrary mincut in G[A]
4 S ⊆ A← largest applicable set that is cut by cA

// here max returns the largest set
5 return max(S, FindMergeSet(G, A1), FindMergeSet(G, A2))

▶ Reduction Rule 2.2 (Almost clique; Böcker et al. [8, Rule 4]). Let S ⊆ V be an applicable
vertex set. Then merge the vertices within S and reduce the solution size accordingly.

3 A Polynomial-Time Algorithm to Apply Reduction Rule 2.2

In this section, we present a polynomial-time algorithm for applying Reduction Rule 2.2.
More precisely, for a graph G = (V, E, ω) and set A ⊆ V , our algorithm finds the largest
applicable set S ⊆ A if such a set exists. Our algorithm follows a simple divide & conquer
approach (see Algorithm 1) and starts with A = V . First, compute a mincut in the graph.
Then, finding an applicable vertex set that is within a side of the cut is simply a recursive
call. The interesting part is the conquer-step to find the largest applicable vertex set that has
vertices on both sides of the cut. Such a set is either A itself or a proper subset of A. To find
the latter in polynomial time, we need some structural insights presented in the following
lemma. It provides some restrictive conditions on such sets (see left side of Figure 3 for an
illustration of the setting).

▶ Lemma 3.1. Let G = (V, E, ω) be a graph, A ⊆ V , and let cA = (A1, A2) be a mincut
of G[A]. If there is an applicable set S ⊂ A that is cut by cA, that is, S∩A1 ̸= ∅ and S∩A2 ≠ ∅,
then
(a) defG(S) = 0 and
(b) mincut(G[S]) = mincut(G[A]) = cost(S, A \ S) = cost(S, V \ S).

Proof. By assumption, cA is a mincut in G[A] that also cuts S, thus mincut(G[S]) ≤
mincut(G[A]). Since S is a proper subset of A we have mincut(G[A]) ≤ cost(S, A \ S) ≤
cost(S, V \ S). Since defG(S) ≥ 0 and S is applicable, we conclude that

mincut(G[S]) ≤ mincut(G[A]) ≤ cost(S, A \ S) ≤ cost(S, V \ S)

≤ cost(S, V \ S) + defG(S)
(1)
≤ mincut(G[S]).

Hence all inequalities are equalities and defG(S) = 0. ◀
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A ⊆ V

S ∩ A2

S ∩ A1

cA = (A1, A2)

A2

A ⊆ V

cA = (A1, A2)

S

(S, A \ S)

V \ A

Figure 3 Left: Illustration of the setting of Lemmas 3.1 and 3.2 with a mincut (A1, A2) for G[A]
(black ellipse) and S (dotted area) overlapping with both sides of the cut (one side with blue
background). Right: An example where a vertex set S (dotted area) with A1 ⊆ S and S ∩ A2 ̸= ∅
exists. For simplicity, all edges have weight 1 and all non-edges have weight 0. The set A1 (highlighted
by blue background) contains two connected vertices. The mincut of G[S] is 2, the same as both the
cost of cA = (A1, A2) and of (S, V \ S) = (S, A \ S) (two edges cut).

Lemma 3.1 already provides enough information to perform the conquer step in polynomial
time: The set S induces another mincut (S, A \ S) of G[A]. As all mincuts in a graph can be
computed in polynomial time [24, 20], we can simply iterate over those and check if another
mincut of G[A] has an applicable set S as one side. We can, however, improve this and avoid
computing all mincuts. To this end, we use the following observations.

▶ Lemma 3.2. Let G = (V, E, ω) be a graph, A ⊆ V , and let cA = (A1, A2) be a mincut
of G[A]. If there is an applicable set S ⊂ A that is cut by cA, that is, S∩A1 ̸= ∅ and S∩A2 ̸= ∅,
then
(a) (S, A \ S) is a mincut of G[A],
(b) the endpoints of edges crossing cA are part of S, i. e. V (A1, A2) ⊆ S,
(c) S includes either A1 or A2,
(d) S is not connected to vertices outside A, i. e. cost(S, V \A) = 0, and
(e) defG(Ai ∪ V (A1, A2)) = 0 = cost(Ai ∪ V (A1, A2), V \A) for i = 1 or i = 2.

Proof.
(a) This follows from mincut(G[A]) = cost(S, A \ S) from Lemma 3.1.
(b) If a vertex v ∈ V (A1, A2) were not in S, then cS = (A1 ∩S, A2 ∩S) would be cut of G[S]

with E(cS) ⊂ E(cA) and cost(cS) < cost(cA) = mincut(G[A]), contradicting Lemma 3.1.
(c) If S includes neither A1 nor A2, then we have cost(S, A\S) = cost(S, A1\S)+cost(S, A2\

S) > cost(S, A1 \S) = cost(S∪A2, A\ (S∪A2)) contradicting that (S, A\S) is a mincut
of G[A].

(d) This follows from cost(S, A \ S) = cost(S, V \ S).
(e) This directly follows from (b), (c), (d), and defG(S) = 0 (by Lemma 3.1). ◀

In practice, Lemma 3.2 (e) almost always rules out the existence of a set S going over
the cut (A1, A2). In theory, however, such a set S fulfilling all the restrictions of Lemmas 3.1
and 3.2 can exist, see Figure 3 (right) for an example.

We already know that isolating S is a mincut of G[A]. In the following we identify vertices
that must be on opposite sides of this cut. This reduces the mincut problem to a more
managable s-t-cut problem. Those s-t-cuts can be represented by a PQ-DAG.

Since we assume the graph to be connected, only one side of cA can be isolated from V \A.
Let A1 be this side, hence A1 ⊂ S by Lemma 3.2 (c). By Lemma 3.2 (b, d), the sought-after
set S contains also all vertices incident to edges crossing cA and cannot contain vertices of A

that are connected to the rest of the graph. Thus, if we contract all vertices in A1∪V (A1, A2)
into one source s and all vertices in A with neighbors in V \A into one sink t, then S must
be a minimum s-t-cut. See Figure 4 for an overview. Unfortunately, in the case that V = A,

IPEC 2022
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(A1, A2)

G

A

Figure 4 Layout of S, A, G and the PQ-DAG. Vertices that must be in S are colored blue.
Vertices that must not be in S are colored orange. Those two colored sets are contained in the
sink/source component, respectively, of the PQ DAG representing all minimum s-t-cuts between
them.

there is no V \ A and we need another approach. Recall that defG(S) = 0. Thus, if both
sides of cA have deficit, there is no applicable S. If both sides have no deficit, then the
instance is trivial because the solution that transforms V to a clique has cost zero. Only if
one side has deficit and the other has not, there may exist an applicable set. In this case the
side without deficit must be included in S and at least one endpoint of an edge with negative
weight cannot be in S. Therefore we can solve the A = V case with two computations similar
to the A ⊂ V case by trying both endpoinds of an arbitrary deficit edge as the sink.

▶ Lemma 3.3. Let G = (V, E, ω) be a weighted graph, s, t ∈ V , and cS = (S, V \ S) a
minimum s-t-cut with s ∈ S, t ∈ V \ S and mincut(G[S]) = cost(cS). Then, there exists a
cut node Q ⊆ S of the PQ-DAG that separates S \Q from V \ S.

Proof. Let Q0, Q1, . . . , Qp be a reverse topological ordering of the PQ-DAG of the residual
graph of G that respects cS . Let Q≤i :=

⋃
j≤i Qj and Q>i :=

⋃
j>i Qj . The minimum

s-t-cuts respected by this ordering have the form ci = (Q≤i, Q>i) (by definition they all have
the same cost). Thus, s ∈ Q0, t ∈ Qp, cS = cℓ, and S = Q≤ℓ, for some ℓ < p.

cost(cS) = cost(cℓ) = cost(cℓ−1) = cost(Q≤ℓ−1, Q>ℓ−1)
= cost(Q≤ℓ−1, Qℓ) + cost(Q≤ℓ−1, Q>ℓ) ≥ cost(Q≤ℓ−1, Qℓ) ≥ mincut(G[S]).

Since mincut(G[S]) = cost(cS), the inequalities become equalities and cost(Q≤ℓ−1, Q>ℓ)=0.
Therefore, Qℓ is the desired cut node. ◀

The ordering of cut-nodes in a DAG with one sink and one source is the same in all
possible topological orderings. Hence, Lemma 3.3 gives potential candidate sets S1 ⊆ . . . ⊆ Sℓ

with ℓ < n. For each set we need to verify inequality (1), that is, compute the mincut of G[S]
and check that the deficiency of G[S] is zero (recall that cost(S, V \ S) = mincut(G[A]) by
construction of the PQ-DAG). The deficiency can be easily verified in O(n2) time in total
for all candidate sets due to them being subsets of each other. The computation of the
mincuts is not as easy. While we are not aware of a way to circumvent ℓ separate mincut
computations, we can reduce the size of the involved graphs such that all these graphs have
in total size O(n + m). To this end, we require another lemma with structural insights; see
Figure 5 (left) for an illustration of the setting.
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K2 Z
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Q
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Figure 5 Left: The figure shows a example where mincut(G[S]) < cost(cS) given the setting of
Lemma 3.4. Two mincuts of G[S] are highlighted; one with a side contained in Q (green) and one
with no side contained in Q (red). Right: Layout of the sets used during the proof of Lemma 3.4.

▶ Lemma 3.4. Let G = (V, E, ω) be a weighted graph and s, t ∈ V . Further, let cS = (S, V \S)
be a minimum s-t-cut such that s ∈ S, t ∈ V \ S, mincut(G[S]) < cost(cS) = mincut(G),
and there exists a cut node Q ⊆ S of the PQ-DAG that separates S \Q from V \ S. Then
there exists a cut (Z, S \ Z) in G[S] with cost(Z, S \ Z) < mincut(G) and Z ⊆ Q.

Proof. Let cK = (K1, K2) be a mincut of G[S] with cost less than mincut(G). First, we
argue that cK must split Q. Assume that cK does not split Q and w.l.o.g. Q ⊆ K2. Then, Q

(and therefore also K2) separates K1 from V \ S. But this means that (K1, V \K1) is a cut
of G with cost(K1, V \K1) = cost(K1, K2) < mincut(G). Hence, cK must split Q.

Let W = K1 \Q, X = K1 ∩Q, Y = K2 \Q, and Z = K2 ∩Q. In the following, we will
show that the cut of G[S] that isolates Z is not larger than cK which would prove the claim.
The layout of the sets is visualized in Figure 5 (right).

Assume towards a contradiction that cost(cK) < cost(Z, S \Z), i.e., cost(Y ∪Z, W ∪X) <

cost(Z, Y ∪W ∪X). Splitting the costs into their parts results in

cost(Y, W ) + cost(Y, X) + cost(Z, W ) + cost(Z, X) = cost(Y ∪ Z, W ∪X)
< cost(Z, Y ∪W ∪X) = cost(Z, Y ) + cost(Z, W ) + cost(Z, X)

and hence cost(Y, W ) + cost(Y, X) < cost(Z, Y ).
With this we will get that the cut in G[S] isolating Y ∪W is strictly more expensive than

the cut that isolates just W . In detail,

cost(X ∪ Z, Y ∪W ) = cost(X, W ) + cost(Z, W ) + cost(Z, Y ) + cost(X, Y )
> cost(X, W ) + cost(Z, W ) + cost(Z, Y )
> cost(X, W ) + cost(Z, W ) + cost(Y, W ) + cost(Y, X)
> cost(X, W ) + cost(Z, W ) + cost(Y, W )
= cost(W, X ∪ Y ∪ Z)

Since Q separates W and Y from V \S, the cuts that isolate Y ∪W or just W , respectively,
have the same cost in G as they have in G[S]. Furthermore, the cut that isolates Y ∪W in
G[S] is a mincut of G, because it is the cut in the PQ-DAG just before the cut node Q and
thus has a cost of cost(cS) = mincut(G). But this means that isolating W in G is cheaper
than the mincut. Refuting our assumption we prove the claim. ◀

IPEC 2022
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Algorithm 2 Details to Line 4 in Algorithm 1.

Input: A connected weighted graph G = (V, E, ω), a vertex subset A ⊆ V , and a
mincut cA = (A1, A2) for G[A].

Output: A largest applicable set S ⊆ A with S ∩A1 ̸= ∅ and S ∩A2 ≠ ∅ if existing,
∅ otherwise.

1 Function LargestApplicableSetOverCut(G, A, cA)
2 if A is applicable then return A

3 if Lemma 3.2 (e) excludes existence of S then return ∅
4 if V = A then
5 uv ← arbitrary non-edge in Ai, i ∈ {1, 2}, with ω(uv) < 0
6 Aj ← side of cA not containing uv

7 return max(ApplicableSet(G, Aj , {u}), ApplicableSet(G, Aj , {v}))
8 else
9 Aj ← side of cA with defG(Aj) = 0 and cost(Aj , V \A) = 0

10 U ← vertices in A with neighbors in V \A // thus U ∩Aj = ∅
11 return ApplicableSet(G[A], Aj , U)

12 Function ApplicableSet(G, X, Y )
13 contract X into node s and Y into node t and construct PQ-DAG D

14 Q0, Q1, . . . , Qp ← a reverse topological ordering of D // s ∈ Q0 and t ∈ Qp

15 S ← ∅
16 for i← 0 to q − 1 do
17 Ci ← vertices in G represented by

⋃
j≤i Qj

18 if Qi is cut node in D and Ci is applicable then S ← Ci

19 return S

Using Lemma 3.4, we can contract all vertices except Qi before each mincut computation
of Si. Hence, we can efficiently compute the mincut for each candidate set S, resulting in the
following overall theorem (see Algorithm 2 for pseudocode). We denote with Tmincut(n, m)
and Ts-t-maxflow(n, m) the time to compute in an edge-weighted graph with n vertices and m

edges a mincut and a maximum s-t-flow, respectively.

▶ Theorem 3.5. Reduction Rule 2.2 can be applied in O(n(Tmincut(n, m)+Ts-t-maxflow(n, m)+
n2)) time.

Proof. We use Algorithm 1 with Line 4 being implemented with Algorithm 2.
All we need to show for the correctness of Algorithm 1 is that Algorithm 2 is correct.

To this end, we need to show that if there is an applicable set S over the cut cA, then
Algorithm 2 will return such a set. (Note that Algorithm 2 never returns a non-applicable set
as applicability is checked before returning a set.) By Lemma 3.3, the set S is characterized
by a cut node in the PQ-DAG with s representing the side of cA with deficit zero and t

representing the vertices with neighbors in V \A (or t representing an endpoint of a non-edge
with non-zero weight if V = A). Hence, all sets that could possibly be applicable are
considered in Line 18. Thus, if an applicable set S exists, then an applicable set is returned.

It remains to show the claimed running time. To this end, start with Algorithm 1: If
Lines 2 to 4 can be done in O(Tmincut(n, m) + Ts-t-maxflow(n, m) + n2) time, then the claimed
running time follows as there are at most O(n) recursive calls. The only nontrivial work in
Lines 2 and 3 is the computation of a mincut. This can be done in O(Tmincut(n, m)) time.
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It remains to argue why Line 4 (that is, Algorithm 2) runs in O(Tmincut(n, m) +
Ts-t-maxflow(n, m) + n2) time: First, observe that the cost of the edges from A to V \A and
of the edges from A1 to A2 can be simply transmitted in a recursive call of Algorithm 1.
Hence, with simple bookkeeping, we can access cost(A, V \A) in constant time during the
whole algorithm. Moreover, since to Algorithm 2 a mincut cA of A is given, it follows that
Lines 2 and 3 of Algorithm 2 can be done in O(n2) time by simply iterating over all vertex
pairs. The time to perform Lines 4 to 11 is dominated by the time required to execute
the function in Line 12. Thus, it remains to show that this function can be computed
in O(Tmincut(n, m) + Ts-t-maxflow(n, m) + n2) time: Line 13 requires contraction of two vertex
sets, the computation of one maximum s-t-flow, and the construction of the PQ-DAG from
said flow. The maximum s-t-flow can be computed in O(Ts-t-maxflow(n, m)) time (note that
the contraction of X and Y results in a graph of size O(n + m)). The contraction of the
vertices, the construction of the PQ-DAG [25], and the computation of a reverse topological
order can all be done in linear time. Thus, Lines 13 and 14 require O(Ts-t-maxflow(n, m))
time.

It remains to argue that the for-loop in Lines 16 to 18 can be done in O(Tmincut(n, m)+n2)
time. The bottleneck here is the check whether the candidate set Ci is applicable in Line 18.
By inequality (1) and Lemma 3.1, this involves checking for each Ci: (a) cost(Ci, V \ Ci) =
cost(Ci, A \ Ci), (b) defG(Ci) = 0, (c) mincut(G[Ci]) = cost(Ci, A \ Ci). By construction of
the PQ-DAG we have cost(Ci, V \ Ci) = cost(Ci, A \ Ci) (only vertices in Y ⊆ Qp can have
neighbors outside A). For (b) we only need to check vertex pairs within Ci that were not
checked in the previous iteration Ci−1 as Ci−1 ⊆ Ci. Thus, for all sets C0, . . . , Cq−1 this can
be done in O(n2). (In fact, if the first set Ci has deficiency larger than zero, then this holds
for all subsequent sets and the loop can be aborted.) It remains to show that (c) can be done
in O(Tmincut(n, m)) time: To this end, we only check if mincut(G[Ci]) < cost(Ci, A \ Ci)
as mincut(G[Ci]) > cost(Ci, A \ Ci) would contradict (Ci, A \ Ci) being a mincut of A.
Exploiting Lemma 3.4, we contract all vertices in Ci \ Qi into one vertex x and compute
a mincut cx in the resulting graph G[{x} ∪ Qi]. If cost(cx) < cost(Ci, A \ Ci), then we
know that Ci is not applicable as mincut(G[Ci]) ≤ cost(cx). Otherwise, if cost(cx) ≥
cost(Ci, A \Ci), then, by Lemma 3.4, we know that mincut(G[Ci]) = cost(Ci, A \Ci) and Ci

is applicable. Thus, the running time is
p−1∑
i=1

Tmincut(|Qi + 1|, |E(Qi)|+ |Qi|) ∈ O(Tmincut(n, n + m)) = O(Tmincut(n, m))

as we assume the input graph to be connected. Thus, Reduction Rule 2.2 can be applied
in O(n · (Tmincut(n, m) + Ts-t-maxflow(n, m) + n2))) time. ◀

Since Tmincut(n, m) ∈ O(m1+o(1)) [20, 23] and Ts-t-maxflow(n, m) ∈ m1+o(1) for polynomi-
ally bounded capacities [12], it follows that Reduction Rule 2.2 can be applied in O(nm1+o(1)+
n3) time for polynomially bounded weights.

▶ Corollary 3.6. If all weights are polynomially bounded, then Reduction Rule 2.2 can be
applied in O(nm1+o(1) + n3) time

4 Experimental Evaluation

In this section, we discuss the effectiveness and the recursion behavior of Algorithm 1. To
this end, we provide a basic implementation as proof of concept to demonstrate by how much
several graphs can be reduced when Reduction Rule 2.2 is applied exhaustively. Moreover,
we briefly analyze the recursion depth of Algorithm 1.

IPEC 2022
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Implementation. We implemented Algorithm 1 in the programming language Julia. The
implementation and the test setup can be found on Github1.

Our implementation of Algorithm 1 resolves the conquer step of finding a candidate set
over the mincut cA = (A1, A2) in Line 4 as follows: First A and the restrictions in Lemma 3.2
(e) are tested (exactly as in Lines 2 and 3 in Algorithm 2). Note that in all test instances
one of the two if statements were triggered, that is, either the current set A was applicable
or Lemma 3.2 (e) certifies that there is no applicable set over the cut cA. Hence we did not
implement the sophisticated approach presented in Algorithm 2. Instead, as a fallback, our
implementation would find such an applicable set S by simply iterating over all mincuts (see
discussion after Lemma 3.1).

If an applicable vertex set S is found in the conquer step (Line 4 of Algorithm 1), then we
do not recurse (Line 5). Instead, we merge the vertices in S and run the algorithm again on
the newly created graph. Thus, our implementation exhaustively applies Reduction Rule 2.2.

To compute one (and all) mincut(s) of a graph, we use the implementation by Henzinger
et al. [19], which uses integer weighted graphs. Therefore our implementation also requires
integer weighted input graphs.

Setup. To test the implementation, we used the weighted instances that were converted
into unweighted instances for the PACE Challenge 2021 2. This dataset includes primarily
biologically motivated graphs and additionally randomly generated graphs. For a more
detailed description of the dataset we refer to the PACE report [21].

We treat each connected component of the test graphs as a single graph. We only tested
the algorithms on graphs with 100 or more vertices and only graphs which are not cluster
graphs already, as such instances are easy to solve. This resulted in 204 different graphs
from the PACE challenge dataset, with 150 real-world instances and 54 randomly generated
instances. The largest graphs have around 3, 000 vertices. The edge weights are floating-point
values. As our implementation uses integer weights, we multiplied the edge weights by a
factor of 1000 and rounded afterwards.

We also implemented two other approaches for finding applicable sets to compare the
results of our algorithm. The first one is the Large Neighborhood (LN) approach, similar to
the data reduction rule used by Cao and Chen [9] in their 2k-vertex kernel for Weighted
Cluster Editing. They essentially test for every vertex u ∈ V whether the closed neigh-
borhood N [u] is applicable. The second one, simply called Heuristic, is the implementation
of the heuristic presented by Böcker et al. [8] for applying Reduction Rule 2.2, which we
embedded in our implementation. Both of these approaches are run exhaustively. Note that
both these approaches can fail to find applicable sets although the graph contains such a set,
see Figure 2 for an example where the Large Neighborhood approach fails.

4.1 Results
Effectiveness. We were first interested in how much the graph size shrank after applying
the data reduction rule with the various algorithms. As one can see in Figure 6 (left side),
Algorithm 1 merges 24.2% of the vertices of the real-world instances, roughly three times
the amount of vertices, compared to the LN approach, which merges 8.1% of the vertices.
The algorithms perform very poorly on the random instances, with nearly the same amount

1 https://github.com/venondev/AlmostCliquePoly
2 The scripts for collecting and converting the graphs can be found at https://github.com/

PACE-challenge/Cluster-Editing-PACE-2021-instances.

https://github.com/venondev/AlmostCliquePoly
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
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Figure 6 Left: Comparison of the average merge ratio (number of vertices merged / n) of the
three algorithmic approaches Algorithm 1, “Large Neighborhood” (LN) by Cao and Chen [9], and
“Heuristic” by Böcker et al. [8] on the two instance categories real world and random. Right:
Two histograms (blue behind green) showing the number of instances with respect to the merge
ratio (number of vertices merged / n) for Algorithm 1. Note that the input graphs were not cluster
graphs.

of merged vertices, 1.4% using the LN approach and 2% using Algorithm 1. The heuristic
implementation by Böcker et al. [8] does not perform well on the dataset, with 0.7% for
real-world instances and 0% for random instances.

When looking at the histogram of merge ratios for Algorithm 1 in Figure 6 (right side), it
shows that for most graphs of the test set the rule reduces the graph size only slightly or not
at all. But there are also 23 graphs which got solved almost entirely, that is, the resulting
instance contained at most 5% of the initial number of vertices. When using Algorithm 1,
11.3 % of the instances got solved completely, around 1.5 % when using the LN approach,
and 0.5% when using the heuristic by Böcker et al. [8].

Recursive calls of Algorithm 1. The depth of the recursion of Algorithm 1 is between log(n)
(splitting the graph in half in each recursive call) and n (cutting exactly one vertex off in
each recursive call). In our implementation the depth can be smaller than log(n): If we find
an applicable set, then we merge it and run the algorithm again. The reported recursion
depth is then the maximum over all runs on the instance.

Unfortunately, we observe that for most instances the recursion depth is close to n, see
Figure 7 for an overview. This means that in most recursion steps, the mincut only cuts out
a single vertex. Consequently, the size of the set A ⊆ V that the algorithm looks at within
each recursion step only decreases slowly. As a result, on most on the instances Algorithm 1
computes many mincuts on large graphs, resulting in high running times.

A preliminary test underlined the issue with the running time: For most of the instances,
our basic implementation of Algorithm 1 is more than ten times slower than the LN approach.
For some instances, our basic implementation is up to 1000 times slower.

IPEC 2022
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Figure 7 Comparing the recursion depth of the instances. If Algorithm 1 was run multiple time
on an instance (due to merging some an applicable vertex set), then the maximum recursion depth
over all runs is plotted. The red line denotes the upper bound of the recursion depth, which is the
number of vertices n. If the algorithm does not find a set of vertices to merge, then the green line
denotes the lower bound log(n) of the recursion depth. The instances are colored according to their
respective merge ratio (number of vertices merged / n). The only instances below (or close) to the
green line are instances with merge ratio close to one.

4.2 Summary

Our experiments show that Reduction Rule 2.2 can work well on the test dataset, reducing
the real-world graphs by 24% on average if applied exhaustively. In this regard Algorithm 1
outperforms the other approaches. Notably, Algorithm 1 solves 11% of the graphs completely,
including some larger graphs with up to 3, 000 vertices. Unfortunately, Algorithm 1 still comes
at the cost of a high running time. Hence, we suggest that (an improved implementation
of) Algorithm 1 could be used as preprocessing before running a branch&bound solver but
probably not during branching itself.

One avenue for improving the implementation is the computation of a mincut. Currently,
if a mincut separates one vertex from the graph, then in the next recursive call the algorithm
of Henzinger et al. [19] is cold-started to compute a new mincut on the slightly altered graph.
Here the use of, for example, the dynamic algorithm of Henzinger et al. [18] seems promising.

5 Conclusion

In this work we provided the first polynomial-time algorithm to apply Reduction Rule 2.2.
As the current running time is still quite high, an immediate open question is about better
theoretical guarantees. Dealing with the bad recursive behavior would be a first step in
this direction. Another question is whether our algorithm could be made working with
approximate cuts instead of (optimum) mincuts. On the practical side, our experiments
demonstrate the potential effectiveness of Reduction Rule 2.2 in real world instances, if
applied exhaustively. Thus, the question is whether there are better tradeoffs between
effectiveness and efficiency and whether state-of-the-art solvers [5] would benefit.
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