
42nd IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2022, December 18–20, 2022, IIT Madras, Chennai,
India

Edited by

Anuj Dawar
Venkatesan Guruswami

LIPIcs – Vo l . 250 – FSTTCS 2022 www.dagstuh l .de/ l ip i c s

Editors

Anuj Dawar
University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Venkatesan Guruswami
University of California, Berkeley, USA
venkatg@berkeley.edu

ACM Classification 2012
Theory of computation; Computing methodologies; Software and its engineering

ISBN 978-3-95977-261-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-261-7.

Publication date
December, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2022.0

ISBN 978-3-95977-261-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4014-8248
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0001-7926-3396
mailto:venkatg@berkeley.edu
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Anuj Dawar and Venkatesan Guruswami . 0:ix

Program Committee
. 0:xi

List of External Reviewers: Track A
. 0:xiii

List of External Reviewers: Track B
. 0:xv

Invited Talks

Algorithms for Uncertain Environments: Going Beyond the Worst-Case
Anupam Gupta . 1:1–1:1

Why MCSP Is a More Important Problem Than SAT
Rahul Santhanam . 2:1–2:1

The True Colors of Memory: A Tour of Chromatic-Memory Strategies in
Zero-Sum Games on Graphs

Patricia Bouyer, Mickael Randour, and Pierre Vandenhove . 3:1–3:18

Expanders in Higher Dimensions
Irit Dinur . 4:1–4:1

Regular Papers

Packing Arc-Disjoint 4-Cycles in Oriented Graphs
Jasine Babu, R. Krithika, and Deepak Rajendraprasad . 5:1–5:16

Approximate Representation of Symmetric Submodular Functions via
Hypergraph Cut Functions

Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri,
and Chao Xu . 6:1–6:18

The DAG Visit Approach for Pebbling and I/O Lower Bounds
Gianfranco Bilardi and Lorenzo De Stefani . 7:1–7:23

Counting and Sampling from Substructures Using Linear Algebraic Queries
Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar 8:1–8:20

Derandomization via Symmetric Polytopes: Poly-Time Factorization of Certain
Sparse Polynomials

Pranav Bisht and Nitin Saxena . 9:1–9:19

On Solving Sparse Polynomial Factorization Related Problems
Pranav Bisht and Ilya Volkovich . 10:1–10:22

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Complexity of Spatial Games
Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker,
and Jakub Svoboda . 11:1–11:14

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product
Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay 12:1–12:20

Inscribing or Circumscribing a Histogon to a Convex Polygon
Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duk Yoon,
and Hee-Kap Ahn . 13:1–13:16

More Verifier Efficient Interactive Protocols for Bounded Space
Joshua Cook . 14:1–14:18

Improved Quantum Query Upper Bounds Based on Classical Decision Trees
Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro . 15:1–15:22

On the VNP-Hardness of Some Monomial Symmetric Polynomials
Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan . 16:1–16:14

Online Piercing of Geometric Objects
Minati De, Saksham Jain, Sarat Varma Kallepalli, and Satyam Singh 17:1–17:16

Half-Guarding Weakly-Visible Polygons and Terrains
Nandhana Duraisamy, Hannah Miller Hillberg, Ramesh K. Jallu, Erik Krohn,
Anil Maheshwari, Subhas C. Nandy, and Alex Pahlow . 18:1–18:17

A Structural and Algorithmic Study of Stable Matching Lattices of “Nearby”
Instances, with Applications

Rohith Reddy Gangam, Tung Mai, Nitya Raju, and Vijay V. Vazirani 19:1–19:20

Degree-Restricted Strength Decompositions and Algebraic Branching Programs
Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer,
and Vladimir Lysikov . 20:1–20:15

A Simple Polynomial Time Algorithm for Max Cut on Laminar Geometric
Intersection Graphs

Utkarsh Joshi, Saladi Rahul, and Josson Joe Thoppil . 21:1–21:12

Stable Matchings with One-Sided Ties and Approximate Popularity
Telikepalli Kavitha . 22:1–22:17

Geometry Meets Vectors: Approximation Algorithms for Multidimensional
Packing

Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas . 23:1–23:22

Black Box Absolute Reconstruction for Sums of Powers of Linear Forms
Pascal Koiran and Subhayan Saha . 24:1–24:17

When You Come at the King You Best Not Miss
Oded Lachish, Felix Reidl, and Chhaya Trehan . 25:1–25:12

Complexity of Fault Tolerant Query Complexity
Ramita Maharjan and Thomas Watson . 26:1–26:11

Romeo and Juliet Meeting in Forest like Regions
Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, and Gaurav Viramgami 27:1–27:22

Contents 0:vii

New Characterizations of Core Imputations of Matching and b-Matching Games
Vijay V. Vazirani . 28:1–28:13

Algorithms and Hardness Results for Computing Cores of Markov Chains
Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady,
Tobias Meggendorfer, Roodabeh Safavi, and Ðorđe Žikelić . 29:1–29:20

Computing Threshold Budgets in Discrete-Bidding Games
Guy Avni and Suman Sadhukhan . 30:1–30:18

Dependency Matrices for Multiplayer Strategic Dependencies
Dylan Bellier, Sophie Pinchinat, and François Schwarzentruber 31:1–31:21

Semilinear Representations for Series-Parallel Atomic Congestion Games
Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur 32:1–32:20

Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games
Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux . 33:1–33:18

Ambiguity Through the Lens of Measure Theory
Olivier Carton . 34:1–34:14

Phase Semantics for Linear Logic with Least and Greatest Fixed Points
Abhishek De, Farzad Jafarrahmani, and Alexis Saurin . 35:1–35:23

Natural Colors of Infinite Words
Rüdiger Ehlers and Sven Schewe . 36:1–36:17

Synthesizing Dominant Strategies for Liveness
Bernd Finkbeiner and Noemi Passing . 37:1–37:19

Low-Latency Sliding Window Algorithms for Formal Languages
Moses Ganardi, Louis Jachiet, Markus Lohrey, and Thomas Schwentick 38:1–38:23

The Design and Regulation of Exchanges: A Formal Approach
Mohit Garg and Suneel Sarswat . 39:1–39:21

Parikh Automata over Infinite Words
Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann 40:1–40:20

New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free
Languages

Florent Koechlin . 41:1–41:22

Synthesis of Privacy-Preserving Systems
Orna Kupferman and Ofer Leshkowitz . 42:1–42:23

A Generic Polynomial Time Approach to Separation by First-Order Logic
Without Quantifier Alternation

Thomas Place and Marc Zeitoun . 43:1–43:22

A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games
K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński . 44:1–44:20

FSTTCS 2022

Preface

This volume contains the proceedings of the 42nd IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2022). The conference
was held on December 18–21, 2022 on the campus of IIT Madras in Chennai, India. This
was the first time in three years that it was possible for the conference to be held in person.
Some participants were nonetheless able to participate remotely.

The conference has two tracks. Track A focusing on algorithms, complexity and related
issues, and Track B focusing on logic, automata and other formal method aspects of computer
science. Each track had its own Program Committee (PC) and chair (Venkatesan Guruswami
for Track A and Anuj Dawar for Track B). This volume constitutes the joint proceedings of
the two tracks, published in the LIPIcs series under a Creative Common license, with free
online access for all.

The conference comprised of 5 invited talks, 24 contributed talks in Track A, and 16 in
Track B. This volume contains all the contributed papers from the two tracks, short abstracts
of three of the invited talks as well as a longer paper accompanying one of the invited talks.
We thank all the authors who submitted their papers to FSTTCS 2022. We are especially
grateful to the PC members for their tireless work, and all the external reviewers for their
expert opinion in the form of timely reviews.

We thank all the invited speakers for accepting our invitation: Patricia Bouyer-Decitre
(CNRS and ENS Paris-Saclay), Irit Dinur (Weizmann Institute), Anupam Gupta (Carnegie
Mellon University), Akash Lal (Microsoft Research), and Rahul Santhanam (University of
Oxford).

The main conference was accompanied by three workshops or other colocated events: Al-
gorithms under Uncertainty (organized by Anupam Gupta, Ravishankar Krishnaswamy, Amit
Kumar and Debmalya Panigrahi), Fine-grained Cryptography (organized by Divesh Aggarwal,
Huck Bennett, Alexander Golovnev, Rajendra Kumar and Noah Stephens-Davidowitz), and
SAT+SMT Winter School (organized by Supratik Chakraborty, Ashutosh Gupta, Saurabh
Joshi, Kumar Madhukar, Kuldeep S. Meel and Subodh Sharma).

We are indebted to the organizing committee members: Meghana Nasre (IIT Madras),
Chandrashekhar Sahasrabudhe (ACM India, Member), and Jayalal Sarma (IIT Madras) so
ably supported by members of the Theory Group and CCD group at IIT Madras. They made
all the necessary arrangements for the conference. We thank S.P. Suresh (CMI, Chennai) for
maintaining the conference web page. We thank Michael Wagner and the friendly staff at
Dagstuhl LIPICs for helping us put together the proceedings. Finally, we thank the members
of the Steering Committee, especially Amit Kumar, and the PC Chairs from FSTTCS 2021
(Chandra Chekuri and Mikołaj Bojańczyk), for providing pertinent information and advice
about various aspects of the conference.

Anuj Dawar and Venkatesan Guruswami
October 2022

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Track A

Venkatesan Guruswami (University of California, Berkeley) – Co-chair
V. Arvind (The Institute of Mathematical Sciences)
Divesh Aggarwal (National University of Singapore)
Diptarka Chakraborty (National University of Singapore)
Radu Curticapean (IT University of Copenhagen)
Sumegha Garg (Harvard University)
Badih Ghazi (Google Research)
Tom Gur (University of Warwick)
Euiwoong Lee (University of Michigan)
Debmalya Panigrahi (Duke University)
Pravesh Kothari (Carnegie Mellon University)
Nicole Megow (Universität Bremen)
Prajakta Nimbhorkar (Chennai Mathematical Institute)
Rishi Saket (Google Research, India)
Ramprasad Saptharishi (Tata Institute of Fundamental Research)
Rakesh Venkat (Indian Institute of Technology, Hyderabad)
David Wajc (Stanford University)
Amir Yehudayoff (Technion, Israel)
Meirav Zahavi (Ben-Gurion University, Israel)

Track B

Anuj Dawar (University of Cambridge) – Co-chair
Ashutosh Trivedi (University of Colorado Boulder)
Deepak D’Souza (Indian Institute of Science)
Igor Walukiewicz (Université de Bordeaux, France)
Jonni Virtema (University of Sheffield, UK)
Laura Bozzelli (University of Naples, Italy)
Laure Daviaud (City University of London)
Maribel Fernandez (King’s College London)
Mohamed Faouzi Atig (Uppsala University, Sweden)
Natasha Alechina (Utrecht University, Netherlands)
Nathan Lhote (Aix-Marseille University, France)
Olaf Beyersdorff (Friedrich Schiller University Jena, Germany)
Radha Jagadeesan (DePaul University)
Shaull Almagor (Technion, Israel)
Shibashis Guha (Tata Institute of Fundamental Research)
Supratik Chakraborty (Indian Institute of Technology, Bombay)

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers: Track A

Aditya Anand Akanksha Agrawal
Akshayaram Srinivasan Alex Steiger
Arantxa Zapico Ben Lee Volk
Boaz Patt-Shamir Bodhayan Roy
Chandan Saha Chetan Gupta
Christoph Grunau Christopher Liaw
Csaba Toth Daniel Schmand
Eldon Chung Erin Taylor
Fahad Panolan Fedor Fomin
Geeverghese Philip Girija Limaye
Gregory Rosenthal Gunjan Kumar
Igor Zablotchi Ilan Cohen
Jayalal Sarma Jiong Guo
Jocelyn Thiebaut Kai Jin
Klara Nosan Kushagra Chatterjee
Makrand Sinha Matthias Mnich
Matthieu Perrin Mingyu Xiao
Mrinal Kumar Nai-Hui Chia
Nathaniel Kell Neeldhara Misra
Oded Lachish Omrit Filtser
Parth Mittal Partha Mukhopadhyay
Petr Golovach Piyush Srivastava
Pranjal Dutta Pratik Ghosal
Prerona Chatterjee Pushkar Joglekar
Rajendra Kumar Rob van Stee
Rogers Mathew Ruoxu Cen
Sheikh Shakil Akhtar Siddhartha Jain
Srijita Kundu Srikanth Srinivasan
Srinivasa Rao Satti Suprovat Ghoshal
Suthee Ruangwises Tomas Peitl
Ton Kloks Venkatesh Raman
Vishwas Bhargava Yuri Faenza
Zeyong Li

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers: Track B

Adriano Peron Antonio Casares
Asaf Yeshurun Ashutosh Gupta
B. Srivathsan Benjamin Böhm
Bernd Finkbeiner C. Aiswarya
Cesar Sanchez Corto Mascle
Dario Della Monica Dror Fried
Geraud Senizergues Hoang Nga Nguyen
Hrishikesh Karmarkar Jakub Gajarsky
Jean-Francois Raskin K. S. Thejaswini
Laurent Doyen Luc Dartois
Luc Spachmann M. Praveen
Marc Schroder Markus L. Schmid
Martin Zimmermann Massimo Benerecetti
Michael Cadilhac Mukesh Tiwari
Patrick Totzke Paweł Parys
Pietro Sala Prakash Saivasan
Rémi Morvan S. Akshay
Stanly John Samuel Sumanth Prabhu
Tim Hoffmann Tomas Masopust
Tuomas Hakoniemi Vrunda Dave
Yuta Takahashi

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Algorithms for Uncertain Environments: Going
Beyond the Worst-Case
Anupam Gupta #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Analyzing the performance of algorithms in both the worst case and the average case are cornerstones
of computer science: these are two different ways to understand how well algorithms perform. Over
the past two decades, there has been a concerted effort to understand the performance of algorithms
in models that go beyond these two extremes. In this talk I will discuss some of the proposed models
and approaches, particularly for problems related to online algorithms, where decisions must be
made sequentially without knowing future portions of the input.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Optimization under Uncertainty, Online Algorithms, Beyond Worst Case
Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.1

Category Invited Talk

© Anupam Gupta;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Why MCSP Is a More Important Problem Than
SAT
Rahul Santhanam # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
CNF Satisfiability (SAT) and its variants are generally considered the central problems in complexity
theory, due to their applications in the theory of NP-completeness, logic, verification, probabilistically
checkable proofs and parameterized complexity, among other areas. We challenge this conventional
wisdom and argue that analysing the Minimum Circuit Size Problem (MCSP) and its relatives
is more important from the perspective of fundamental problems in complexity theory, such as
complexity lower bounds, minimal assumptions for cryptography, a robust theory of average-case
complexity, and optimal results in hardness of approximation.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Minimum Circuit Size Problem, Satisfiability, Cryptography, Learning,
Approximation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.2

Category Invited Talk

Funding Partially funded by EPSRC New Horizons Grant EP/V048201/1.

© Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rahul.santhanam@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/rahul.santhanam
https://orcid.org/0000-0002-8716-6091
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The True Colors of Memory: A Tour of
Chromatic-Memory Strategies in Zero-Sum Games
on Graphs
Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Pierre Vandenhove
F.R.S.-FNRS & UMONS – Université de Mons, Belgium
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Abstract
Two-player turn-based zero-sum games on (finite or infinite) graphs are a central framework in
theoretical computer science – notably as a tool for controller synthesis, but also due to their
connection with logic and automata theory. A crucial challenge in the field is to understand how
complex strategies need to be to play optimally, given a type of game and a winning objective. In
this invited contribution, we give a tour of recent advances aiming to characterize games where
finite-memory strategies suffice (i.e., using a limited amount of information about the past). We
mostly focus on so-called chromatic memory, which is limited to using colors – the basic building
blocks of objectives – seen along a play to update itself. Chromatic memory has the advantage of
being usable in different game graphs, and the corresponding class of strategies turns out to be of
great interest to both the practical and the theoretical sides.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases two-player games on graphs, finite-memory strategies, chromatic memory,
parity automata, ω-regularity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.3

Category Invited Talk

Funding This work has been partially supported by the ANR Project MAVeriQ (ANR-20-CE25-
0012), and the F.R.S.-FNRS Grant n° F.4520.18 (ManySynth). Mickael Randour is an F.R.S.-FNRS
Research Associate and a member of the TRAIL Institute. Pierre Vandenhove is an F.R.S.-FNRS
Research Fellow.

Acknowledgements Most of the results presented here [4, 6, 7, 3] are related to the F.R.S.-FNRS
project FrontieRS, led by the authors. Some of these were obtained in collaboration with Antonio
Casares, Stéphane Le Roux, and Youssouf Oualhadj. We express our utmost gratitude to our
delightful co-authors.

1 Introduction

Two-player turn-based zero-sum games on graphs. We consider games between two
players, P1 and P2, that are played on a (finite or infinite) graph, often called arena, whose
set of vertices is partitioned into vertices controlled by P1 and vertices controlled by P2. The
players interact by moving a pebble from vertex to vertex, ad infinitum, following edges of
the graph. The game starts in a given vertex, and the owner of the current vertex decides
where to send the pebble next. The infinite path thereby created is called a play.

© Patricia Bouyer, Mickael Randour, and Pierre Vandenhove;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0001-8777-2385
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 The True Colors of Memory

We assume that the edges of the graph are labeled with colors from a finite or infinite set.
These colors are used to define the objective of the game: an objective is simply a language of
infinite color sequences [24]. This general view of objectives encompasses all classical notions
from the literature, qualitative and quantitative objectives alike.

The goal of P1 is to create a play whose projection to colors belongs to the objective
whereas P2 tries to prevent it; hence our games are zero-sum. They are also turn-based as
the players take turns moving the pebble depending on the owner of the current vertex.
These moves are chosen according to the strategy of the player, which, in general, might use
memory (bounded or not) of the past moves to prescribe the next action.

This type of games has been studied for decades, for a plethora of objectives: see many
examples in [4]. Interestingly, virtually all such games (i.e., for all reasonable objectives)
are known to be determined since Martin’s seminal result on Borel determinacy [36]. This
means that for every vertex v, either P1 has a strategy that guarantees victory when the
game starts in v, or P2 has one. Two natural questions follow: given a game, can we decide
from which vertex each player can win, and what kind of strategy do they need to use?

Reactive synthesis. This survey focuses on the latter question, which is particularly relevant
in the context of controller synthesis for reactive systems [25, 41, 8, 2]. This formal methods
approach aims to automatically synthesize a provably-correct controller for a reactive system
that operates within an uncontrollable environment. Through the game-theoretic metaphor,
one can model the interaction between the system and its (possibly antagonistic) environment
as a two-player zero-sum game on a graph: vertices of the graph model states of the
system-environment pair whereas the specification of the system is encoded as a winning
objective.

The goal of synthesis is to decide if P1 (the system) has a winning strategy, i.e., one that
ensures the objective against all possible strategies of P2 (the environment), and to build
such a strategy if it exists. Winning strategies are essentially formal blueprints for controllers
to implement in practical applications: these will thus be correct by design.

A wide variety of objectives (and combinations thereof – e.g., [14, 33]) have been studied
in the literature, notably to offer appropriate modeling power for applications in reactive
synthesis. All can be expressed through the formalism of colors used in this paper.

Strategy complexity. Keeping in mind that strategies are used as blueprints for real-world
controllers, one easily understands why their complexity is of utmost importance: the simpler
the strategy, the easier and cheaper it will be to synthesize the corresponding controller and
maintain it. On the theoretical level, comprehending which classes of strategies suffice to
play optimally (i.e., win whenever winning is possible) for various classes of games is also a
worthy venture as it may lead to more efficient solving algorithms and the identification of
common grounds between these different classes of games.

Many classical objectives are known to be memoryless-determined : memoryless strategies,
i.e., only using the current vertex as the basis for their decisions, suffice to play optimally.
It is for example the case of mean-payoff (in finite graphs) [19] or parity (in finite and
infinite graphs) [20, 45]. Yet, over the last decade, the need to model increasingly complex
specifications has geared research toward games with more intricate objectives (e.g., [9, 5]) or
objectives arising from the combination of simple ones (e.g., [33, 10]). When considering such
rich objectives, memoryless strategies usually do not suffice, and one has to use strategies
relying on a memory structure, which can be finite or infinite. A natural follow-up question
is thus to quantify the memory that is needed for a given objective.

P. Bouyer, M. Randour, and P. Vandenhove 3:3

Two flavors of memory. Two models of strategies coexist in the recent literature. In both,
a finite-memory strategy can be seen as the association of a memory structure – we will call
this a memory skeleton – taking the form of a finite automaton and of a memoryless strategy
defined, not on the arena, but on the product of the arena and this memory structure – this
memoryless strategy is the next-action function in the classical Mealy machine model. The
only but crucial difference is how the memory structure updates its state when an edge is
taken in the arena.

In chromatic memory (e.g., [4, 7, 11]), the update function only considers the color of the
edge, whereas in chaotic memory (e.g., [18, 31, 13]), the updates consider the actual edge of
the arena. That is, in chaotic memory, two different edges bearing the same color may lead
to different updates whereas this is not possible in chromatic memory. As such, chromatic
memory can be seen as a restricted class of finite-memory strategies. Yet, interestingly,
chromatic memory proves sufficient in most cases, and appears more robust with regard to
general characterizations. An important feature of chromatic memory is that it allows to
define a memory skeleton for an objective independently of an arena, which is impossible
for chaotic memory as it explicitly uses the underlying arena. Indeed, chromatic memory
coincides with the model used for arena-independent strategies in [4]. That being said, given
a particular arena, chaotic memory may lead to smaller memory structures – state-wise, not
necessarily true when counting transitions – as it can use additional knowledge of the graph;
see examples in [11, 13, 32].

General characterizations vs. tight memory bounds. In this invited contribution, we
survey recent advances in the study of chromatic-memory strategies, most stemming from a
series of co-authored papers on the topic. One can identify two orthogonal yet complementary
directions in our work.

Our first line of research aims to establish general characterizations for large classes of
games. A typical example is our characterization of objectives for which arena-independent
(chromatic) finite-memory strategies suffice [4] (in finite arenas), providing a finite-memory
equivalent to Gimbert and Zielonka’s seminal result [24]. The philosophy of this research
direction is to identify the common grounds between various objectives and to pinpoint the
underlying source of complexity, going beyond the use of ad-hoc proofs and techniques. In
addition to its fundamental interest, this endeavor permits to establish amenable criteria
that one can check to establish that finite-memory optimal strategies exist in a wide range of
contexts. Of course, due to its generality, this approach might not lead to perfectly tight
memory bounds in particular contexts.

Our second topic of interest can be seen as an answer to this limitation, as it aims to
provide tight (lower and upper) memory bounds for specific objective classes. We focus on
ω-regular objectives and rely on their representations through different classes of automata
in our approach.

Outline. The structure of our paper follows these two lines of research. In Section 2,
we introduce the main concepts and notations. Section 3 surveys our results on general
characterizations, mainly [4] for finite arenas and [7] for infinite ones. Section 4 focuses on
tight bounds for specific ω-regular objectives – we notably present the results of [3]. Finally,
Section 5 discusses open questions and future work.

We highlight that this paper is meant as an introductory survey to the topic and, as
such, does not give a fully-detailed presentation of all concepts and results. We settled
on a high-level, hopefully intuitive, exposition of the field, trying to highlight the interest
and limits of our current knowledge, along with connections between the different results.
Interested readers may find all details in the corresponding full papers.

FSTTCS 2022

3:4 The True Colors of Memory

Additional related work. This paper only considers deterministic games and the corre-
sponding results. In general, these do not carry over to stochastic (one-player or two-player)
games, and specific techniques are needed, both to establish results on memory, but also to
study the need for randomness – another aspect of the complexity of strategies arising in
this context. We mention some references on the topic: [28, 27, 17, 6, 34].

2 Games on Graphs, Objectives, Chromatic Memory

In the whole article, letter C refers to a (finite or infinite) non-empty set of colors. Given
a set A, we write respectively A∗, A+, and Aω for the set of finite, non-empty finite, and
infinite sequences of elements of A. We denote by ε the empty word.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (V, V1, V2, E)
such that V is a non-empty set of vertices and is the disjoint union of V1 and V2, and
E ⊆ V × C × V is a set of (colored) edges. Intuitively, vertices in V1 are controlled by P1
and vertices in V2 are controlled by P2. We assume arenas to be non-blocking: for all v ∈ V ,
there exists (v, c, v′) ∈ E. For v ∈ V , a play of A from v is an infinite sequence of edges
π = (v0, c1, v1)(v1, c2, v2) . . . ∈ Eω such that v0 = v. A history of A from v is a finite prefix
in E∗ of a play of A from v. For convenience, we assume that there is a distinct empty
history λv for every v ∈ V . If γ = (v0, c1, v1) . . . (vn−1, cn, vn) is a non-empty history of A,
we define last(γ) = vn. For an empty history λv, we define last(λv) = v. For i ∈ {1, 2}, we
denote by Histsi(A) the set of histories γ of A such that last(γ) ∈ Vi. An arena is finite if V

and E are finite. An arena A = (V, V1, V2, E) is a one-player arena of P1 (resp. P2) if V2 = ∅
(resp. V1 = ∅).

Strategies. Let i ∈ {1, 2}. A strategy of Pi on A is a function σi : Histsi(A) → E such
that for all γ ∈ Histsi(A), the first component of σi(γ) coincides with last(γ). Given a
strategy σi of Pi, we say that a play π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . en of π such that last(γ) ∈ Vi, σi(γ) = en+1. A strategy σi is memoryless (also
called positional in the literature) if its outputs only depend on the current vertex and not
on the whole history, i.e., if there exists a function f : Vi → E such that for all γ ∈ Histsi(A),
σi(γ) = f(last(γ)).

Memory skeletons. A (memory) skeleton is a tuple M = (M, minit, αupd) such that M is a
finite set of states, minit ∈ M is an initial state, and αupd : M × C → M is an update function.
Such skeletons are sometimes called chromatic, as their transitions are only based on the
colors seen. We denote by α∗

upd the natural extension of αupd to finite sequences of colors.
We define the trivial skeleton Mtriv as the only skeleton with a single state.

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be two skeletons. Their (direct)
product M1 ⊗ M2 is the skeleton (M, minit, αupd) where M = M1 × M2, minit = (m1

init, m2
init),

and for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)).
For M = (M, minit, αupd) a skeleton, a strategy σi of Pi is based on M if there exists

a function αnxt : V × M → E such that for all vertices v ∈ Vi, σi(λv) = αnxt(v, minit),
and for all non-empty histories γ = (v0, c1, v1) . . . (vn−1, cn, vn) ∈ Histsi(A), σi(γ) =
αnxt(last(γ), α∗

upd(minit, c1 . . . cn)). Such a strategy is said to use chromatic memory. Notice
that a strategy is memoryless if and only if it is based on Mtriv.

P. Bouyer, M. Randour, and P. Vandenhove 3:5

Objectives. An objective is a set W ⊆ Cω of infinite words. When an objective W is clear
in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and losing if
w /∈ W . We write W for the complement Cω \ W of an objective W . An objective W is
prefix-independent if for all w ∈ C∗ and w′ ∈ Cω, w′ ∈ W if and only if ww′ ∈ W . For a
finite word w ∈ C∗, we write w−1W = {w′ ∈ Cω | ww′ ∈ Cω} for the winning continuations
of w. We have in general that ε−1W = W , and if W is prefix-independent, for all w ∈ C∗,
we have w−1W = W .

A game is a tuple (A, W), where A is an arena and W is an objective. In such a game,
P1 wants to achieve an infinite word in W through the infinite interaction with P2 in A,
while P2 wants to achieve an infinite word in W .

ω-regular objectives. A central class of objectives is the one of ω-regular objectives. They
admit multiple equivalent definitions: they are the objectives that can be expressed using an ω-
regular expression, a non-deterministic Büchi automaton, a deterministic parity automaton. . .
In this contribution, we mostly use their representation as a deterministic parity automaton
(DPA). A (transition-based) DPA is a tuple D = (Q, qinit, δ, p) where Q is a finite set of states,
qinit ∈ Q is an initial state, δ : Q × C → Q is a transition function, and p : Q × C → N is a
priority function. A DPA D recognizes an objective containing the words such that, when
read in D, the maximal priority that they see infinitely often is even. Notice that the first
three components of a DPA are syntactically the same as a memory skeleton; for a memory
skeleton M = (M, minit, αupd), if there is p : M × C → N such that D = (M, p), we say that
D is built on top of M.

Optimality. Let A = (V, V1, V2, E) be an arena, (A, W) be a game, and v ∈ V . We say that
a strategy σ1 of P1 is winning from v if for all plays (v0, c1, v1)(v1, c2, v2) . . . from v consistent
with σ1, c1c2 . . . ∈ W . A strategy of P1 is optimal for P1 in (A, W) if it is winning from all
the vertices from which P1 has a winning strategy. We often write optimal for P1 in A if the
objective W is clear from the context. This notion of optimality requires a single strategy to
be winning from all the winning vertices (a property sometimes called uniformity).

Our games are zero-sum, hence the objective of P2 is formally W . For the sake of
readability, we still talk about winning and optimal strategies of P2 for W , taking into
account the symmetric nature of their antagonistic role (i.e., an optimal strategy of P2 for
W is an optimal strategy of P1 for W if the two players are swapped).

Let W be an objective and i ∈ {1, 2}. A memory skeleton M suffices for Pi for W

(resp. in finite, one-player arenas) if Pi has an optimal strategy based on M in game (A, W)
for all (resp. finite, one-player) arenas A. We say that W is M-determined (resp. in finite
arenas) if M suffices for both P1 and P2 for W (resp. in finite arenas), and that W is
finite-memory-determined if it is M-determined for some M. We call Mtriv-determinacy
memoryless determinacy. For consistency with the literature [30], we call the notion “Mtriv
suffices to play optimally for P1 for W” half-positionality of W .

▶ Remark 1. We stress that the notion of finite-memory determinacy used throughout the
paper is strong in several respects: it requires chromatic memory to be sufficient (the memory
can only observe colors, and not actual edges that are taken during a play), and it requires
the same memory skeleton to be sufficient in all arenas (that is, it is arena-independent). ⌟

FSTTCS 2022

3:6 The True Colors of Memory

3 Characterization of finite-memory-determined objectives

Many objectives are known to be memoryless-determined, that is, to require no memory
except the knowledge of the current vertex to be won. For instance, Ehrenfeucht and Mycielski
proved in 1979 that mean-payoff games are memoryless-determined in finite arenas [19], and
Emerson and Jutla proved in 1991 that parity games are memoryless-determined [21].

It has therefore been a natural research direction to try to characterize the winning
objectives that are memoryless-determined. Gimbert and Zielonka gave the first charac-
terization of winning objectives that are memoryless-determined in finite arenas [24]; this
characterization is presented in Section 3.1.1. Trying to extend that result to finite memory
was very natural, but the extension could only be handled fifteen years later, and required to
focus on chromatic arena-independent memory [4]; this is presented in Section 3.1.2.

Some objectives are memoryless-determined in finite arenas, but require infinite memory
in infinite arenas; this is for instance the case of mean-payoff objectives. Hence the above
characterizations do not carry over to infinite arenas. Inspired by a work by Colcombet and
Niwiński [16] who focused on prefix-independent and memoryless-determined objectives, a
full characterization of objectives that are finite-memory-determined in infinite arenas is
given in [7], where it is proved that they actually coincide with ω-regular objectives; this is
discussed in Section 3.2.

3.1 Finite graph games
3.1.1 Memoryless-determined objectives
The first complete characterization of objectives (or more generally preference relations – we
do not define this notion here) admitting memoryless optimal strategies is established in [24].
By complete characterization, we mean sufficient and necessary conditions on the objectives.
This result can be stated as follows.

▶ Theorem 2 ([24, Theorem 2]). An objective W is memoryless-determined if and only if
both W and W are monotone and selective.

Roughly, monotony for an objective says that if an infinite word uwω
1 is winning and

another one uwω
2 is losing, then their “winning status” cannot be swapped by replacing prefix

u, i.e., we cannot have u′wω
1 losing and u′wω

2 winning for any u′ ∈ C∗. This property is
obviously satisfied by prefix-independent objectives, but is more general.

Selectivity is defined with regard to cycle mixing: starting from two sequences of colors, it
is impossible to create a third one by mixing the first two in such a way that the third one is
winning while the first two are not. Similar-looking notions (fairly mixing, concave [23, 30])
had been defined in other attempts in the literature, but they slightly differ and are actually
incomparable to selectivity.

A by-product of the proof of the above theorem is the following so-called one-to-two-player
lift.

▶ Corollary 3. Assume that for an objective W , memoryless strategies suffice for both P1
and P2 in their respective finite one-player arenas. Then W is memoryless-determined in
finite arenas.

Such a lifting corollary provides a neat and easy way to prove that an objective admits
memoryless optimal strategies without proving monotony and selectivity at all: proving it
in the two one-player subcases, which is generally much easier as it boils down to graph
reasoning, and then lifting the result to the general two-player case through the corollary.

P. Bouyer, M. Randour, and P. Vandenhove 3:7

▶ Example 4. Let C = Q. For w = c1c2 . . . ∈ Cω, we define its mean payoff

MP(w) = lim inf
n→∞

1
n

n∑
i=1

ci

as the limit (inferior) of the average of the colors of its finite prefixes. We define the objective
“achieving a non-negative mean payoff” as MP≥0 = {w ∈ Cω | MP(w) ≥ 0}. This objective is
memoryless-determined in finite arenas, which was first proved in [19]. We argue informally
that it is easy to recover this result using Corollary 3.

We take the point of view of P1. Let A be a finite one-player arena of P1. We consider the
cycles of A, and we say that a cycle is non-negative if the average of its colors is non-negative.
Clearly, P1 can win for MP≥0 if a non-negative cycle is reachable: P1 can simply reach the
cycle and loop around it. To win with a memoryless strategy, we simply observe that a
non-negative cycle always contains a non-negative simple cycle (i.e., not going twice through
the same vertex). A simple cycle can be reached and looped around with a memoryless
strategy. This describes a way to win with a memoryless strategy if there is a non-negative
cycle, and this is actually “complete”: if there is no non-negative cycle, then P1 simply cannot
win for MP≥0. We have shown that given a fixed initial vertex of A, if P1 can win, then P1
can win with a memoryless strategy. Formally, we must still argue that we can build a single
memoryless strategy winning “uniformly” from all the vertices from which P1 has a winning
strategy, which we do not do here but is reasonably straightforward. These arguments show
that memoryless strategies suffice for P1 in its one-player arenas, and the same reasoning
works for P2 (using negative cycles instead). By Corollary 3, MP≥0 is memoryless-determined
in finite arenas. ⌟

3.1.2 Finite-memory-determined objectives
Gimbert and Zielonka’s result completely characterizes objectives which can be won with
memoryless strategies in all games played on finite arenas. This paves the way to the quest
for a similar characterization for finite-memory strategies. A first reasonable attempt for
a generalization to finite-memory strategies could be: given an objective, if in all finite
one-player arenas, players have finite-memory optimal strategies, does the same hold in
finite two-player arenas? Unfortunately, this generalization does not actually hold: there are
objectives for which both players have finite-memory optimal strategies in their respective
finite one-player arenas, but for which there exists a finite two-player arena that requires
infinite memory for a player to win – see [4, Figure 1].

However, a result similar to Theorem 2 can be proved for M-determinacy. Note the
subtlety here: M-determinacy requires the memory skeleton M to be uniform with regard
to the arena; the structure of the memory must be arena-independent, as opposed to the
more general version sketched above where the memory may depend on the arena.

▶ Theorem 5 ([4, Theorem 3.6]). Let M be a memory skeleton. An objective W is M-
determined if and only if both W and its complement W are M-monotone and M-selective.

The two concepts of M-monotony and M-selectivity are keys to the approach. Intuitively,
they correspond to Gimbert and Zielonka’s monotony and selectivity, modulo a memory
skeleton. The more general concepts of M-monotony and M-selectivity serve the same
purpose, but they only compare sequences of colors that are deemed equivalent by the
memory skeleton. For the sake of illustration, take selectivity: it implies that one has no
interest in mixing different cycles of the game arena. For its generalization, the memory

FSTTCS 2022

3:8 The True Colors of Memory

skeleton is taken into account: M-selectivity implies that one has no interest in mixing cycles
of the game arena that are read as cycles on the same memory state in the skeleton M. In
particular, Mtriv-monotony and Mtriv-selectivity are respectively equivalent to the original
notions of monotony and selectivity, as Mtriv never distinguishes sequences of colors.

The proof of this theorem mimics the one of [24] via the notion of M-covered arena.
An M-covered arena is an arena which is compatible with M, in the sense that there is a
morphism from the arena to M. Examples of M-covered arenas are products of an arena
with M, but they are more general (notably, removing edges from these products preserves
M-coverability). Strategies based on M on arenas correspond to memoryless strategies on
M-covered arenas. The proof technique for memoryless strategies, relying on an induction
on the size of arenas, can be made on M-covered arenas to obtain the theorem for strategies
based on M.

As for memoryless strategies, a by-product of the proof of the above theorem is a
one-to-two-player lift.

▶ Corollary 6. Let M be a memory skeleton. Assume that for an objective W , strategies
based on M suffice for both P1 and P2 in their respective finite one-player arenas. Then W

is M-determined in finite arenas.

As in general P1 and P2 may need different memory structures, we may instantiate the
result with two different memory structures M1 and M2: if M1 suffices for P1 and M2
suffices for P2 for W in finite one-player arenas, then M1 ⊗ M2 suffices for both P1 and P2
in their finite one-player arenas (remembering more information cannot do harm), so W is
(M1 ⊗ M2)-determined in finite arenas. However, it is unknown whether M1 (resp. M2)
alone could be sufficient for P1 (resp. P2) in finite (two-player) arenas, or if the product is
required.

m1 m2
a

b, c a, b, c

m′
1 m′

2
a, b

c a, b, c

Figure 1 Memory skeletons M (left) and M′ (right) for two-target reachability games. In
figures, diamonds (resp. circles, squares) represent memory or automaton states (resp. arena vertices
controlled by P1, arena vertices controlled by P2).

▶ Example 7. Consider the objective W = (C∗aCω) ∩ (C∗bCω) over alphabet C = {a, b, c}.
The objective W requires that both colors a and b should be seen at least once. Consider
the two skeletons M and M′ in Figure 1.

Let us briefly explain why W is not Mtriv-monotone (i.e., monotone) but is M-monotone.
On the one hand, abω ∈ W is preferred to aaω /∈ W , but baω ∈ W is preferred to bbω /∈ W ;
hence, W is not Mtriv-monotone. On the other hand, skeleton M distinguishes a and b

(in the sense that they reach two different states of skeleton M), hence we do not need to
compare their winning continuations a−1W and b−1W . Also, we can prove that two pairs of
continuations u−1

1 W and u−1
2 W such that u1 and u2 reach the same memory state of M are

comparable (for the inclusion), hence W is M-monotone.
Let us now briefly explain why W is not Mtriv-selective (i.e., selective) but is M′-selective.

Notice that a and b are losing cycles, in the sense that if repeated infinitely often, they
generate a losing word (aω, bω ∈ W). But combining a and b, which are cycles on the state of
Mtriv (as are all finite words), may result in a winning word. For instance, they can be used

P. Bouyer, M. Randour, and P. Vandenhove 3:9

to make (ab)ω ∈ W . Hence, W is not Mtriv-selective. On the other hand, W is M′-selective,
as M′ distinguishes cycles in such a way that two losing cycles on the same memory state
cannot be combined into a winning cycle. For m′

1: all cycles around m′
1 are losing (since

they contain neither a nor b) and cannot be combined into a winning cycle. For m′
2: if one

reaches m′
2, it means that one of a or b was seen, hence only one color remains to be seen.

Any subsequent cycle on m′
2 is either useless (if it sees c or the color among a and b that

was already seen) or immediately winning (if it sees the color among a and b that was not
seen). There is therefore no advantage to combine multiple cycles once m′

2 is reached.
Overall, W is M-monotone and M′-selective, and we can show in a similar fashion that

W is M-monotone and Mtriv-selective. Moreover, monotony and selectivity are “preserved
by product” (intuitively, as having more information to our disposal is never harmful), so
both W and W are (M ⊗ M′)-monotone and (M ⊗ M′)-selective. This allows to conclude
by Theorem 5 that W is (M ⊗ M′)-determined in finite arenas. Skeleton M ⊗ M′ has
formally four states but only three reachable states, so both players can play optimally for
W using three memory states, which is minimal [22]. ⌟

Applicability of these results goes beyond ω-regular objectives. For instance, the intersec-
tion of a reachability condition and a mean-payoff objective requires two memory states, and
it suffices for both players to keep track of whether the reachability objective has already
been satisfied, e.g., using skeleton M of Figure 1.

3.2 Infinite graph games
Unfortunately, memoryless determinacy in finite arenas does not carry over straightforwardly
to infinite arenas. Indeed, there are objectives that are memoryless-determined in finite
arenas but that require infinite memory in some infinite (even one-player) arenas: this is the
case for the mean-payoff objective MP≥0, which we showed to be memoryless-determined in
finite arenas in Example 4.

▶ Example 8. We consider objective MP≥0 and the infinite one-player arena of P1 in
Figure 2 [40]. Despite the fact that all colors are negative, P1 has a winning strategy: the
idea is to loop on state si sufficiently many times to bring the payoff close to − 1

i , and then
move to si+1 and repeat. At the limit, the mean payoff is 0. However, this winning strategy
requires memory (even infinite memory) to be implemented, and no memoryless strategy is
winning. Hence, MP≥0 is not memoryless-determined in infinite arenas. ⌟

v1 v2 v3 · · ·−1 −1 −1

−1 − 1
2 − 1

3

Figure 2 One-player arena requiring infinite memory for objective MP≥0.

An interesting result dealing with infinite arenas is the work by Colcombet and Ni-
wiński [16], who proved that a prefix-independent objective W is memoryless-determined
in infinite arenas if and only if W is a parity condition. A parity condition is an objective
recognized by a deterministic parity automaton with a single state, in which each color is
directly mapped to a priority in a finite set of integers. In [7], we generalized it to a charac-
terization of objectives that are finite-memory-determined in infinite arenas. Formulating
this generalization requires the language-theoretic notion of right congruence. Let W ⊆ Cω

FSTTCS 2022

3:10 The True Colors of Memory

be an objective. The right congruence ∼W ⊆ C∗ × C∗ of W is defined as w1 ∼W w2 if
w−1

1 W = w−1
2 W (meaning that w1 and w2 have the same winning continuations). When

∼W has finitely many equivalence classes, we can associate to W a natural skeleton MW

whose set of states is the set of equivalence classes and with transitions defined in a natural
way [43, 35]. We call skeleton MW the prefix classifier of W , as two finite words reach the
same state of MW if and only if they are equivalent for ∼W . We can now state the main
result from [7].

▶ Theorem 9 ([7]). An objective is finite-memory-determined (in arenas of any cardinality) if
and only if it is ω-regular. Furthermore, if W is M-determined (in arenas of any cardinality),
then W is recognized by a DPA built on top of M ⊗ MW .

Before [7], ω-regular objectives were known to be finite-memory-determined [21, 45]: if
it is possible to represent an objective with a DPA, then the structure of this automaton
suffices to play optimally for both players. Indeed, keeping in memory the extra information
from this DPA effectively reduces any game using this objective into a (larger) game using a
(simpler) parity condition. This shows one implication of Theorem 9. The proof of the other
implication goes through the following steps: if W is M-determined for some skeleton M,
then

W is M-cycle-consistent: after any finite word, if we concatenate infinitely many winning
(resp. losing) cycles on the skeleton state reached by that word, then it only produces
winning (resp. losing) infinite words;
MW is finite, which implies that W is MW -prefix-independent: MW classifies prefixes
in such a way that two prefixes reaching the same memory state have the same winning
continuations.

From this, we obtain in particular that W is (M ⊗ MW)-cycle-consistent and (M ⊗ MW)-
prefix-independent. We can prove that under these properties, one can associate to transitions
of M ⊗ MW priorities such that W is recognized by a DPA built on top of M ⊗ MW . This
part of the proof is rather technical, but relies on ordering the cycles according to “how good
they are for winning”; order which can be used to assign priorities to transitions.

We recover the result of [16], since the prefix classifier has a single state in the case
of a prefix-independent objective (that is, the prefix classifier is Mtriv). Hence, under
the assumption that W is prefix-independent and memoryless-determined (that is, Mtriv-
determined), we deduce that W is recognized by a DPA built on top of the skeleton
Mtriv ⊗ Mtriv with a single state, that is, W is a parity condition.

As previously, we can extract a one-to-two-player lift from the proof of the above result.

▶ Corollary 10. Let W be an objective. If M suffices for both P1 and P2 in their respective
one-player arenas (of arbitrary cardinality), then W is (M ⊗ MW)-determined (in arenas
of arbitrary cardinality). In particular, if W is prefix-independent, then under the previous
hypotheses, W is M-determined.

We discuss two ω-regular objectives and illustrate that to represent them using DPAs,
we may need some information given by their prefix classifier and some information given by
a sufficient memory structure.

▶ Example 11. Consider the objective W1 = b∗ab∗aCω over the alphabet C = {a, b}. This
objective has a prefix classifier MW1 with three states, corresponding to the three equivalence
classes of finite words that have seen 0, 1, or 2 times the color a. This objective is also
memoryless-determined that is, Mtriv-determined; we do not prove it here (in finite arenas,

P. Bouyer, M. Randour, and P. Vandenhove 3:11

b | 1 b | 1

a, b | 2
a | 1 a | 1

b | 1 a | 1

b | 0

a | 0

Figure 3 DPA recognizing W1 = b∗ab∗aCω (left), which is built on top of its prefix classifier
MW1 . DPA recognizing W2 = C∗(ab)ω (right), which is built on top of a minimal memory structure
sufficient for P1 and P2. A transition from a state q to a state q′ labeled with “c | n” means that
δ(q, c) = q′ and that p(q, c) = n.

it can be shown with Corollary 3). By Theorem 9, this means that W1 can be recognized by
a DPA built on top Mtriv ⊗ MW1 = MW1 . We represent such a DPA in Figure 3 (left): its
structure is the same as MW1 , and we just added the right priorities to its transitions.

Consider the objective W2 = C∗(ab)ω over the alphabet C = {a, b}. It is prefix-
independent, hence its prefix classifier is Mtriv. It is furthermore M-determined, where M is
the skeleton with two states that remembers whether a or b was last seen; this skeleton has
the same structure as the DPA in Figure 3 (right). By Theorem 9, W2 can be recognized by
a DPA built on top of M ⊗ Mtriv = M. We represent such a DPA in Figure 3 (right). ⌟

On the other hand, our results can also illustrate why an objective is not finite-memory-
determined (or equivalently, ω-regular).

▶ Example 12. We go back to the mean-payoff objective MP≥0 defined in Example 4. It
is a prefix-independent objective, hence MMP≥0 = Mtriv. However, it is not Mtriv-cycle-
consistent. Indeed, repeating ad infinitum the same color from the set {− 1

n | n ∈ N>0}
results in a losing word; however, the sequence (−1)(− 1

2)(− 1
3) . . . combining multiple such

losing colors is winning (its mean payoff is exactly 0). This argument can be extended to
any finite memory skeleton M to show that MP≥0 is not M-cycle-consistent. This means
that MP≥0 is not finite-memory-determined over infinite arenas, and is not ω-regular. ⌟

In some classes of objectives, finite-memory determinacy/ω-regularity depends on the
values of some parameters.

▶ Example 13. Let C ⊆ Q be a bounded set of colors and λ ∈ (0, 1) be a discount factor.
We consider the discounted-sum objective [42]

DSC,λ
≥0 = {c1c2 . . . ∈ Cω |

∞∑
i=1

ci · λi−1 ≥ 0}.

For all values of λ, it is possible to show that DSC,λ
≥0 is Mtriv-cycle-consistent. This means by

Theorem 9 that the prefix classifier of DSC,λ
≥0 , when finite, can be used as a DPA to recognize

objective DSC,λ
≥0 . Proof details and a characterization of the values of C and λ such that

DSC,λ
≥0 is ω-regular can be found in [7, Section 4.1]. We give a specific example of values that

make DSC,λ
≥0 ω-regular: for λ = 1

2 and C = {−2, −1, 0, 1, 2}, the prefix-classifier is finite and
is depicted in Figure 4. ⌟

FSTTCS 2022

3:12 The True Colors of Memory

⊤⊥

0

1−1

2−2

−1

0, 1, 2

−2

1

−2, −1

2

0

2

C \ {2}
CC

Figure 4 Prefix classifier of DSC,λ
≥0 for λ = 1

2 and C = {−2, −1, 0, 1, 2}. An infinite word if
winning if and only if it does not reach state ⊥.

4 Memory requirements of ω-regular objectives

Section 3.2 presented an equivalence between ω-regularity and a kind of finite-memory
determinacy of two-player zero-sum games. This suggests that, in addition to their relevance
in logic and in synthesis, understanding the memory requirements of ω-regular objectives is a
natural stepping stone in order to study the strategy complexity of all two-player zero-sum
games. We discuss known results about memory requirements of ω-regular objectives in this
section.

As was stated in Theorem 9, one can relate the memory requirements of an ω-regular
objective to its representation as a DPA. We may wonder how close this result brings us to
characterizing precisely the memory requirements of ω-regular objectives. Albeit being quite
general, there are still multiple questions about memory requirements that Theorem 9 is not
able to answer precisely. We introduce these questions by highlighting two of its limitations.

The first limitation comes from the asymmetry of its two implications. In one direction,
which is the novel contribution from Theorem 9, we start from a sufficient memory skeleton
M for some objective and show that the objective can then be represented as a DPA built
on the automatic structure M ⊗ MW . In the other direction, we simply use the known
memoryless-determinacy of parity conditions, which we already mentioned. What does this
tell us on the memory requirements of an ω-regular objective? We know two things: (i) a
minimal memory skeleton has always at most as many states as any DPA representing the
objective; (ii) a minimal memory skeleton and a minimal DPA differ at most by the factor
MW . However, we do not know in general how to get minimal memory requirements from a
representation as a DPA.

The second, perhaps more fundamental limitation is that it makes an assumption on
the memory requirements of both players simultaneously, as it asks for a memory skeleton
sufficient for both players. This assumption therefore conceals a possibly large gap between
the individual memory requirements of the two players. This limitation also applies to
Theorem 5 (which deals with games played on finite arenas), which cannot be used in general
to give tight bounds about memory requirements of each individual player in two-player
games.

We illustrate these two limitations on a small example: in this example, the representation
of an objective as a DPA is an upper (but not a tight) bound on the memory requirements,
and the memory requirements of each player differ.

▶ Example 14. Let C = {a, b}. We consider the objective W = (b∗a)ω ∪ (C∗aaCω) of words
that see a infinitely often or see a twice in a row at some point. This objective is recognized
by the DPA with three states depicted in Figure 5 (left), and it is not possible to recognize
it using a DPA with fewer states. We therefore know that both players can play optimally

P. Bouyer, M. Randour, and P. Vandenhove 3:13

using three states of memory, using the memory skeleton underlying this automaton. The
prefix classifier of this objective has three states corresponding to three classes of finite
words, and its structure also corresponds to the underlying structure of the DPA in Figure 5.
According to Theorem 9, this suggests that P1 and P2 may need between one and three
states of memory to play optimally.

It turns out here that P1 can play optimally with just one state of memory in all arenas
(i.e., W is half-positional), which can be proved using results from [3] (discussed below).
Meanwhile, P2 cannot play optimally with just one state of memory, as is witnessed by the
arena in Figure 5 (right). If the play starts in v1, we observe that P2 loses by not using the
loop in v2 and going immediately to v3, as well as by staying infinitely often in v2. Player
P2 can actually win, but needs to loop at least once (and finitely many times) in v2 before
going to v3, which cannot be done without memory. For this objective, P2 can actually play
optimally with two states of memory: intuitively, P2 must keep track of whether the current
history is in qε or qa, but there is no point in keeping track of state qaa, as the play is already
lost in that state for P2. ⌟

qε qa qaa

a | 2

b | 2

a | 2
b | 1 a, b | 2 v1 v2 v3

a

bab

a
b

Figure 5 A DPA representing the objective W = (b∗a)ω ∪ (C∗aaCω) from Example 14 (left), and
an arena in which P2 cannot play optimally with a memoryless strategy (right).

The following questions therefore remain: given an ω-regular objective, what is a minimal
(i.e., with as few states as possible) memory skeleton sufficient to play optimally for both
players? And for a single player? A less ambitious (but still open) question would be
to understand the memoryless case: how to characterize/decide memoryless determinacy
or half-positionality? And would these precise results give us even more information on
the representation of ω-regular objectives, perhaps using other acceptance conditions than
the parity one? Progress toward these questions, which can be seen as strengthenings of
Theorem 9, has been obtained on specific classes of ω-regular objectives. We discuss two of
them here.

Memory requirements of Muller conditions. Muller conditions are objectives whose winning
words depend solely on the set of colors seen infinitely often. They are usually specified by a
set F ⊆ 2C of sets of colors. The related Muller condition then contains the set of words
w ∈ Cω such that the set of colors seen infinitely often by w is a set of F . They are in
particular prefix-independent, i.e., their prefix classifier has just one state. A systematic
study of the memory requirements of Muller conditions started in the ’80s, with first general
upper bounds through the later appearance record construction [26, 37], culminating in a
complete characterization of their (chaotic) memory requirements [18].

More relevant to our chromatic memory considerations, we mention the recent work by
Casares [11] that characterizes the chromatic memory requirements of Muller conditions for
each individual player. The characterization uses the Rabin acceptance condition, which
subsumes parity acceptance conditions.

▶ Theorem 15 ([11, Theorem 27]). Let W be a Muller condition and M be a memory
skeleton. Structure M suffices for P1 for objective W if and only if W is recognized by a
deterministic Rabin automaton built on top of M.

FSTTCS 2022

3:14 The True Colors of Memory

Once again, one direction has been known for some time: Rabin conditions have been
known to be half-positional for some time [29] (but unlike parity conditions, their comple-
ment may not be). The other, novel direction was obtained thanks to results about the
representation of ω-regular objectives [12].

This provides, in the special case of Muller conditions, a characterization of the memory
requirements of each player without any blow-up in any direction of the equivalence, and
independently of the memory requirements of the other player. It therefore goes beyond
the two limitations of Theorem 9 sketched above. As a bonus, this result allows to link
the problem of finding a minimal memory skeleton to the problem of minimizing a Rabin
automaton, and implies that the related decision problem (given a Muller condition, is there
a sufficient memory skeleton with ≤ k states for a fixed k?) is NP-complete.

Half-positional deterministic Büchi automata. Deterministic Büchi automata (DBAs),
unlike their nondeterministic counterparts, only recognize a proper subclass of the ω-regular
objectives [44]. They can be seen as a special case of DPAs using only priorities 1 and 2 (the
automaton in Figure 5 is also a DBA). The objectives that they recognize are incomparable
to Muller conditions. In particular, they recognize some non-prefix-independent objectives,
hence with a non-trivial prefix classifier. Currently, their complete memory requirements
are not understood – only their half-positionality has been fully characterized. Article [3]
gives a characterization of the objectives that are half-positional among those that can be
recognized by a DBA. This characterization is a conjunction of three properties that are
decidable in polynomial time. The first property is equivalent for this class of objectives to
the aforementioned monotony property, so we do not discuss it here.

The second property deals with the notion of progress: a finite word w2 is said to be a
progress after a finite word w1 if w1w2 has strictly more winning continuations than w1. We
illustrate this property on the objective from Example 14. We take the point of view of P2,
who wants to avoid seeing infinitely many a and avoid seeing a twice in a row at some point.
If w1 = a and w2 = bab, for P2, w2 is a progress after w1: any winning continuation of w1 is
still winning after w1w2, and w1w2abω is winning, while w1abω is losing. See the link between
our choice of words and the arena in Figure 5. The reason that P2 needs memory here is
that although w2 is a progress after w1, repeating w1wω

2 is not winning. Hence, it is useful
to play w2, but an optimal strategy cannot just repeat w2. We define a progress-consistent
objective as an objective such that for all progresses w2 after some w1, w1wω

2 is winning.
This is necessary for half-positionality.

The third property relates once more to the representation of an ω-regular objective,
this time using a DBA. Any deterministic automaton representing an ω-regular objective W

needs at least one state per equivalence class of the right congruence ∼W . The celebrated
Myhill-Nerode theorem [38] states that to represent regular languages (of finite words), we
do not need more than one state per equivalence class. This does not hold in general for
ω-regular objectives, as was shown with objective W2 = C∗(ab)ω in Example 11. Still, some
ω-regular objectives admit representations using exactly one state per equivalence class [1].
One example was given in Example 14, which admits a representation as a DBA with three
states – one per equivalence class. One of the main technical contribution of [3] is that for
an objective recognizable by a DBA to be half-positional, it is necessary that it admits a
representation as a DBA with just one state per equivalence class. In such cases, a DBA can
be minimized in polynomial time.

▶ Theorem 16 ([3, Theorem 10]). Let W be an objective recognized by a DBA. Objective W

is half-positional if and only if it is monotone, progress-consistent, and recognized by a DBA
built on top of its prefix classifier.

P. Bouyer, M. Randour, and P. Vandenhove 3:15

5 Perspectives

We highlight some of the remaining open paths in the topic of strategy complexity of zero-sum
games on graphs. As shown in Section 4, the memory requirements of ω-regular objectives,
despite their relevance to logic and synthesis, are not fully mapped out. As discussed in
Section 1, there are two relevant memory formalisms for this question: the first one is the
chromatic one (which we discussed extensively), and the second one is the chaotic memory
formalism. A promising research direction about chaotic memory requirements was recently
given in [13], which proved a bridge between this question and the theory of good-for-games
automata for Muller conditions. Moreover, it is shown that for some Muller conditions,
chaotic memory requirements (expressed as a number of memory states) can be exponentially
smaller than chromatic ones, at the cost of having to specialize the transitions of the memory
structure for each distinct arena.

We also mention a recent tool used to study zero-sum games: universal graphs. Universal
graphs were originally introduced to design algorithms to decide the winner for some classes
of games [15]. Recently, Ohlmann [39] showed an equivalence between the existence of some
“good” universal graph for an objective and half-positionality of the objective. Roughly, a
universal graph (with the right properties) can be a structural witness of the half-positionality
of an objective, and any half-positional objective has a good universal graph. This result has
already been used to prove the sufficient condition of Theorem 16 [3] by mechanizing the
construction of good universal graphs given a DBA with the right properties. This suggests
that using universal graphs may be one path toward understanding half-positionality of
ω-regular objectives.

References
1 Dana Angluin and Dana Fisman. Regular ω-languages with an informative right congruence.

Inf. Comput., 278:104598, 2021. doi:10.1016/j.ic.2020.104598.
2 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and

reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 921–962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

3 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic Büchi automata. In Bartek Klin, Slawomir Lasota, and
Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR
2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 20:1–20:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.20.

4 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Van-
denhove. Games where you can play optimally with arena-independent finite memory. Log.
Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:11)2022.

5 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Inf., 55(2):91–127, 2018. doi:10.1007/s00236-016-0274-1.

6 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele
Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 26:1–26:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.26.

7 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. In Petra Berenbrink and
Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1–16:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.STACS.2022.16.

FSTTCS 2022

https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2022.16

3:16 The True Colors of Memory

8 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games for reactive
synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca Truthe,
editors, Language and Automata Theory and Applications – 10th International Conference,
LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture
Notes in Computer Science, pages 3–23. Springer, 2016. doi:10.1007/978-3-319-30000-9_1.

9 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

10 Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin. Energy
mean-payoff games. In Wan Fokkink and Rob van Glabbeek, editors, 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands, volume 140 of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.21.

11 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022,
Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.12.

12 Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of
games and automata using Muller conditions. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 123:1–123:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ICALP.2021.123.

13 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-
games Rabin automata and its link with the memory in Muller games. In 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages
117:1–117:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

14 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Inf., 51(3-4):129–163, 2014. doi:10.1007/
s00236-013-0182-6.

15 Thomas Colcombet, Nathanaël Fijalkow, Pawel Gawrychowski, and Pierre Ohlmann. The
theory of universal graphs for infinite duration games. CoRR, abs/2104.05262, 2021. arXiv:
2104.05262.

16 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theor. Comput. Sci., 352(1-3):190–196, 2006. doi:10.1016/j.tcs.2005.10.046.

17 Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. Simple
strategies in multi-objective MDPs. In Armin Biere and David Parker, editors, Tools and
Algorithms for the Construction and Analysis of Systems – 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume
12078 of Lecture Notes in Computer Science, pages 346–364. Springer, 2020. doi:10.1007/
978-3-030-45190-5_19.

18 Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, June 29 – July 2, 1997, pages 99–110. IEEE Computer Society,
1997. doi:10.1109/LICS.1997.614939.

19 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int.
Journal of Game Theory, 8(2):109–113, 1979. doi:10.1007/BF01768705.

https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.4204/EPTCS.226.10
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s00236-013-0182-6
http://arxiv.org/abs/2104.05262
http://arxiv.org/abs/2104.05262
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/BF01768705

P. Bouyer, M. Randour, and P. Vandenhove 3:17

20 E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. In FOCS, pages 328–337. IEEE Computer Society, 1988. doi:10.1109/SFCS.1988.
21949.

21 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

22 Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games. CoRR,
abs/1010.2420, 2010. doi:10.48550/arXiv.1010.2420.

23 Hugo Gimbert and Wieslaw Zielonka. When can you play positionally? In Jirí Fiala, Václav
Koubek, and Jan Kratochvíl, editors, Mathematical Foundations of Computer Science 2004,
29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004,
Proceedings, volume 3153 of Lecture Notes in Computer Science, pages 686–697. Springer,
2004. doi:10.1007/978-3-540-28629-5_53.

24 Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 – Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005,
Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428–442. Springer,
2005. doi:10.1007/11539452_33.

25 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

26 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California,
USA, pages 60–65. ACM, 1982. doi:10.1145/800070.802177.

27 Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Good-for-MDPs automata for probabilistic analysis and reinforcement learning. In
Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis
of Systems – 26th International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 306–323.
Springer, 2020. doi:10.1007/978-3-030-45190-5_17.

28 Florian Horn. Random fruits on the Zielonka tree. In Susanne Albers and Jean-Yves
Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs,
pages 541–552. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009. doi:
10.4230/LIPIcs.STACS.2009.1848.

29 Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for
tree automata. Ann. Pure Appl. Log., 69(2-3):243–268, 1994. doi:10.1016/0168-0072(94)
90086-8.

30 Eryk Kopczyński. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Pre-
neel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, volume 4052 of Lecture Notes in Computer Science, pages 336–347. Springer, 2006.
doi:10.1007/11787006_29.

31 Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

32 Alexander Kozachinskiy. Infinite separation between general and chromatic memory. CoRR,
abs/2208.02691, 2022. doi:10.48550/arXiv.2208.02691.

FSTTCS 2022

https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.48550/arXiv.1010.2420
https://doi.org/10.1007/978-3-540-28629-5_53
https://doi.org/10.1007/11539452_33
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/978-3-030-45190-5_17
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/11787006_29
https://doi.org/10.48550/arXiv.2208.02691

3:18 The True Colors of Memory

33 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy
by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122
of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.38.

34 James C. A. Main and Mickael Randour. Different strokes in randomised strategies: Revisiting
Kuhn’s theorem under finite-memory assumptions. In Bartek Klin, Slawomir Lasota, and Anca
Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR 2022,
September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 22:1–22:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.22.

35 Oded Maler and Ludwig Staiger. On syntactic congruences for omega-languages. Theor.
Comput. Sci., 183(1):93–112, 1997. doi:10.1016/S0304-3975(96)00312-X.

36 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
37 Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–

184, 1993. doi:10.1016/0168-0072(93)90036-D.
38 A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical

Society, 9(4):541–544, 1958. doi:10.2307/2033204.
39 Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.

In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, Haifa, Israel, August 2 – 5, 2022, pages 22:1–22:12. ACM,
2022. doi:10.1145/3531130.3532418.

40 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

41 Mickael Randour. Automated synthesis of reliable and efficient systems through game theory:
A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages
731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

42 Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953. doi:10.1073/pnas.39.10.1095.

43 Ludwig Staiger. Finite-state omega-languages. J. Comput. Syst. Sci., 27(3):434–448, 1983.
doi:10.1016/0022-0000(83)90051-X.

44 Klaus Wagner. On ω-regular sets. Information and control, 43(2):123–177, 1979.
45 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.CONCUR.2022.22
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.2307/2033204
https://doi.org/10.1145/3531130.3532418
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-00395-5_90
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1016/0022-0000(83)90051-X
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Expanders in Higher Dimensions
Irit Dinur #

Weizmann Institute of Science, Rehovot, Israel

Abstract
Expander graphs have been studied in many areas of mathematics and in computer science with
versatile applications, including coding theory, networking, computational complexity and geometry.

High-dimensional expanders are a generalization that has been studied in recent years and
their promise is beginning to bear fruit. In the talk, I will survey some powerful local to global
properties of high-dimensional expanders, and describe several interesting applications, ranging from
convergence of random walks to construction of locally testable codes that prove the c3 conjecture
(namely, codes with constant rate, constant distance, and constant locality).

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors

Keywords and phrases Expanders

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.4

Category Invited Talk

© Irit Dinur;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joanrpublic@dummycollege.org
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Packing Arc-Disjoint 4-Cycles in Oriented Graphs
Jasine Babu #

Indian Institute of Technology Palakkad, India

R. Krithika #

Indian Institute of Technology Palakkad, India

Deepak Rajendraprasad #

Indian Institute of Technology Palakkad, India

Abstract
Given a directed graph G and a positive integer k, the Arc Disjoint r-Cycle Packing problem
asks whether G has k arc-disjoint r-cycles. We show that, for each integer r ≥ 3, Arc Disjoint
r-Cycle Packing is NP-complete on oriented graphs with girth r. When r is even, the same
result holds even when the input class is further restricted to be bipartite. On the positive side,
focusing on r = 4 in oriented graphs, we study the complexity of the problem with respect to two
parameterizations: solution size and vertex cover size. For the former, we give a cubic kernel with
quadratic number of vertices. This is smaller than the compression size guaranteed by a reduction
to the well-known 4-Set Packing. For the latter, we show fixed-parameter tractability using an
unapparent integer linear programming formulation of an equivalent problem.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases arc-disjoint cycles, bipartite digraphs, oriented graphs, parameterized com-
plexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.5

1 Introduction

Disjoint Cycle Packing is a fundamental problem in graph theory and combinatorial
optimization. Given a (directed or undirected) graph G and a positive integer k, the
objective of the Disjoint Cycle Packing problem is to determine whether G has k (vertex
or arc/edge) disjoint cycles. All variants of Disjoint Cycle Packing are NP-complete
[3, 13, 23] and therefore have been studied in various algorithmic realms. The fixed-parameter
tractable (FPT) algorithm (with respect to the number k of cycles as the parameter) [7]
given by Bodlaender in 1994 for Vertex Disjoint Cycle Packing is one of the earliest
results in the parameterized complexity framework. This problem does not admit polynomial
kernels [9] but has a lossy kernel [28]. However, Edge Disjoint Cycle Packing has a
polynomial kernel (and hence is also FPT) [9].

While Disjoint Cycle Packing in undirected graphs is amenable to parameterized
algorithms, their directed-analogues are not. On directed graphs, Vertex Disjoint Cycle
Packing and Arc Disjoint Cycle Packing are both W[1]-hard [3, 31]. Therefore,
studying this problem on a subclass of directed graphs and studying Disjoint r-Cycle
Packing (where the length of each cycle in the solution set is required to be r) are natural
directions of research. Both Vertex Disjoint Cycle Packing and Arc Disjoint Cycle
Packing are NP-complete but FPT on tournaments [5, 6]. However, these problems are
W[1]-hard on bipartite digraphs [3, 31]. In this paper, we focus on Arc Disjoint r-Cycle
Packing in oriented graphs. Bessy et. al., have shown that Arc Disjoint 3-Cycle
Packing is NP-Complete on tournaments [5]. From this, it follows easily (by reduction via
subdivision of arcs) that, for each q ≥ 1, Arc Disjoint 3q-Cycle Packing is NP-complete

© Jasine Babu, R. Krithika, and Deepak Rajendraprasad;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasine@iitpkd.ac.in
mailto:krithika@iitpkd.ac.in
mailto:deepak@iitpkd.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

on oriented graphs with girth 3q, and that the input class can be restricted to be bipartite
when q is even. This leaves open the complexity of Arc Disjoint r-Cycle Packing in
digraphs for r ̸≡ 0 mod 3. Our first set of results close this gap.

We show that Arc Disjoint r-Cycle Packing is NP-complete on oriented graphs for
each integer r ≥ 3, by a reduction from a variant of Satisfiability [23, LO1].

(Theorem 1) For each integer r ≥ 3, Arc-Disjoint r-Cycle Packing on oriented
graphs of girth r is NP-complete. Further, for each even integer r ≥ 4, this result holds
even when the input graph is restricted to be bipartite.

It is easy to verify that Arc Disjoint r-Cycle Packing reduces to r-Set Packing.
In r-Set Packing, given a family F of sets over a universe U , where each set in the
family has cardinality at most r, and a positive integer k, the objective is to decide whether
there are sets S1, . . . , Sk ∈ F that are pairwise disjoint. Note that r is fixed. Given an
instance (G, k) of Arc Disjoint r-Cycle Packing, the instance (E(G), C, k) of r-Set
Packing where C is the set of r-cycles of G is equivalent to it. It is well-known that r-Set
Packing admits a kernel with O(kr) sets [17] and O(kr−1) elements [1, 29] leading to a
straight-forward O⋆(2O(k log k))-time algorithm. Further, using the standard color-coding
technique [2, 12, 30], r-Set Packing admits an O⋆(2O(k))-time algorithm. These results
imply that Arc Disjoint r-Cycle Packing in general digraphs admits an FPT algorithm
with running time O⋆(2O(k)) and a polynomial kernel. However, the kernel with O(kr) sets
and O(kr−1) elements for r-Set Packing does not straightaway give a kernel of same size
for Arc Disjoint r-Cycle Packing. Restricting our attention to Arc Disjoint 4-Cycle
Packing, we obtain a cubic kernel with quadratic number of vertices.

(Theorem 2) Arc Disjoint 4-Cycle Packing in oriented graphs has a kernel with
O(k3) edges and O(k2) vertices.

In parameterized complexity, solution size is one of the most natural and almost always
the first parameter considered for an optimization problem. Though this parameterization
has proven to be fruitful, solution size does not reflect the input structure. Therefore,
structural parameters like treewidth, the size of a vertex cover, the size of a feedback vertex
set and in general the size of a modulator to a family of graphs have been considered in the
literature [11, 12, 16, 18, 24]. In the context of Disjoint Cycle Packing, the parameters
that have been studied are treewidth, the size of a vertex cover, the size of a feedback vertex
set and a modulator to a cluster graph and max leaf number [8, 24]. The importance in
these structural parameters is partly due to their practical relevance and partly due to their
role in identifying parameterizations that yield FPT algorithms. In this spirit, we study
the complexity of Arc Disjoint 4-Cycle Packing parameterized by the size of a vertex
cover (of the underlying undirected graph). We first reduce this problem to Arc Disjoint
4-Cycle Packing in oriented bipartite graphs parameterized by the size ℓ of one of the
parts of the bipartition. Then we define a new equivalent problem of building a multidigraph
with certain decomposition properties and give an integer linear programming formulation for
it where the number of variables is a function of ℓ. Finally, by invoking the FPT algorithm for
Integer Linear Programming parameterized by the number of variables [12, 22, 25, 26],
we obtain the following result.

(Theorem 3) Arc Disjoint 4-Cycle Packing in oriented graphs is FPT with respect
to size of a vertex cover as the parameter.

J. Babu, R. Krithika, and D. Rajendraprasad 5:3

Road Map. The paper is organized as follows. In Section 2, we give the necessary definitions
related to directed graphs. In Section 3, we show the NP-completeness of Arc Disjoint
r-Cycle Packing in oriented (bipartite) graphs of girth r. In Section 4, we describe
FPT algorithms and polynomial kernels for Arc Disjoint 4-Cycle Packing. Finally, we
conclude with some remarks and open problems in Section 5.

2 Preliminaries

The set {1, 2, . . . , n} is denoted by [n]. A multidigraph is a pair (V,A) consisting of a set V
of vertices and a multiset A of ordered pairs of vertices (called arcs) in V . A directed graph
(or digraph) is a multidigraph (V,A) where A is a set of ordered pairs of distinct vertices in
V . Note that a digraph is a multidigraph with no self-loops or multiple/parallel arcs. An arc
is specified as an ordered pair of vertices and this pair of vertices are called as its endpoints.
A matching is a collection of arcs that do not share any endpoint. For a digraph G, V (G)
and A(G) denote the set of its vertices and the set of its arcs, respectively. An oriented graph
is a digraph G having no pair of vertices u, v ∈ V (G) with (u, v), (v, u) ∈ A(G). A bipartite
(di)graph is a (di)graph G whose vertex set can be partitioned into two sets X and Y such
that every arc/edge in G has one endpoint in X and the other endpoint in Y . We denote
such a digraph as G[X,Y] and say that (X,Y) is a bipartition of G.

Two vertices u, v are said to be adjacent in G if (u, v) ∈ A(G) or (v, u) ∈ A(G). For a set
of arcs F , V (F) denotes the union of the sets of endpoints of arcs in F . A vertex u is said to
be an in-neighbour of v if (u, v) ∈ A(G). Similarly, a vertex u is said to be an out-neighbour
of v if (v, u) ∈ A(G). For a vertex v ∈ V (G), its out-neighborhood, denoted by N+(v), is
the set {u ∈ V (G) | (v, u) ∈ A(G)} and its in-neighborhood, denoted by N−(v), is the set
{u ∈ V (G) | (u, v) ∈ A(G)}. The out-degree and in-degree of a vertex v are the sizes of its
out-neighborhood and in-neighborhood, respectively. For a set X ⊆ V (G) ∪ A(G), G−X
denotes the digraph obtained from G by deleting X.

A path P in G is a sequence (v1, . . . , vk) of distinct vertices such that for each i ∈ [k − 1],
(vi, vi+1) ∈ A(G). We say that P starts at v1 and ends at vk and also refer to v1 and vk as the
endpoints of P . The set {v1, . . . , vk} is denoted by V (P) and the set {(vi, vi+1) | i ∈ [k− 1]}
is denoted by A(P). A cycle C in G is a sequence (v1, . . . , vk) of distinct vertices such that
(v1, . . . , vk) is a path and (vk, v1) ∈ A(G). The set {v1, . . . , vk} is denoted by V (C) and the
set {(vi, vi+1) | i ∈ [k− 1]} ∪ {(vk, v1)} is denoted by A(C). The length of a path or cycle X
is the number of vertices in it. A cycle (path) of length q is called a q-cycle (q-path) and a
cycle on three vertices is also called a triangle. A collection of q-cycles is called a Cq-packing
or a q-cycle packing.

For details on parameterized algorithms, we refer to standard books in the area [12, 14,
19, 21].

3 NP-Completeness

In this section, we show that for each even integer r ≥ 4, Arc-Disjoint r-Cycle Packing
is NP-complete on oriented bipartite graphs of girth r and for each integer r ≥ 3, Arc-
Disjoint r-Cycle Packing is NP-complete on oriented graphs of girth r. It is easy to
verify that Arc Disjoint r-Cycle Packing is in NP. To prove NP-hardness, we give
a polynomial-time reduction from a variant of the Satisfiability problem. Let SAT(1,
2) denote Satisfiability restricted to formulas with at most 3 variables per clause and
each variable occurring exactly once negatively and once or twice positively in the formula.

FSTTCS 2022

5:4 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

Figure 1 Gadget corresponding to the variable Xi that appears negatively in C1 and positively
in C2 and C3. Here, circles and squares denote a bipartition.

It is well-known that Satisfiability is NP-complete when restricted to instances with 2
or 3 variables per clause and at most 3 occurrences per variable [32, Theorem 2.1]. By a
straightforward transformation of instances of this problem into instances of SAT(1, 2), it
follows that SAT(1, 2) is also NP-complete.

Now, we proceed to the NP-hardness of Arc-Disjoint r-Cycle Packing. First, we
show the hardness of Arc-Disjoint 4-Cycle Packing and then move on to the general
case. Consider an instance ψ of SAT(1,2) with n variables and m clauses. From ψ, we
construct an oriented bipartite graph G such that ψ is satisfiable if and only if G has an
arc-disjoint 4-cycle packing of size m + n. Let {X1, X2, . . . , Xn} and {C1, C2, . . . , Cm} be
the sets of variables and clauses, respectively, in ψ. We consider the ordering of the variables
(and clauses) given by the increasing order of their indices. The construction of G from ψ is
as follows.

For every i ∈ [n], add a set of six vertices {xi, yi, zi, pi, qi, ri} where (xi, pi, yi, qi, zi, ri) is
a directed path and (ri, xi), (xi, qi), (yi, ri), (pi, zi) ∈ A(G).
For every j ∈ [m], add two vertices cj and dj along with the arc (cj , dj).
For every i ∈ [n] and j ∈ [m] such that Xi appears in Cj ,

if the appearance is as a negative literal, then add arcs (dj , xi) and (pi, cj).
if the appearance is as a positive literal and this is the first such appearance, then add
arcs (dj , xi) and (qi, cj).
if the appearance is as a positive literal and this is the second such appearance, then
add arcs (dj , zi), (ri, cj).

Refer to Figure 1 for an illustration. In order to prove the correctness of the reduction,
we first make some observations about the type of 4-cycles in G. Notice that for each clause
Cj , the vertices cj and dj in G respectively have out-degree one and in-degree one. Hence,
any 4-cycle containing one of these vertices must contain the arc (cj , dj). Further, observe
that if a 4-cycle contains the arc (cj , dj), then the other two vertices of that cycle must
belong to the the same variable gadget Xi for some i ∈ [n]. We will refer to such a cycle as
a clause-variable cycle involving Cj and Xi. Notice that if there is a clause-variable cycle
involving Cj and Xi, then it must be one of the following: (cj , dj , xi, pi), (cj , dj , xi, qi) or
(cj , dj , zi, ri). The first one will be referred to as the negative clause-variable cycle and the
other two will be referred to as positive clause-variable cycles.

▶ Observation 3.1. Let j ∈ [m]. If a 4-cycle in G contains a vertex cj or dj, then it must
be a clause-variable cycle. In any arc-disjoint 4-cycle packing of G, there is at most one
clause-variable cycle involving Cj.

Now, consider a 4-cycle of G that does not contain cj or dj vertices for any j ∈ [m]. In any
such cycle, all its four vertices must belong to the same variable gadget Xi for some i ∈ [n].
This is because there are no edges between vertices that belong to two distinct variable

J. Babu, R. Krithika, and D. Rajendraprasad 5:5

Figure 2 The 3 different variable cycles highlighted in red with the clause-variable cycles that
are arc-disjoint to it highlighted in blue and the clause-variable cycles that are not arc-disjoint to it
shown separately in grey.

gadgets. Any such 4-cycle whose vertex set is contained in the variable gadget of Xi would
be referred to as a variable cycle of Xi. Notice that the variable cycles of Xi possible are
(xi, pi, yi, ri), (xi, pi, zi, ri) and (xi, qi, zi, ri). We will call (xi, pi, yi, ri) as the first positive
variable cycle of Xi, (xi, pi, zi, ri) as the second positive variable cycle of Xi and (xi, qi, zi, ri)
as the negative variable cycle of Xi. Note that all these three cycles contain the arc (ri, xi).
Hence, we can make the following observation.

▶ Observation 3.2. Any 4-cycle in G which is not a clause-variable cycle must be a variable
cycle. Let i ∈ [n]. In any arc-disjoint 4-cycle packing of G, there is at most one variable
cycle of Xi.

▶ Observation 3.3. Let i ∈ [n].
The first positive variable cycle of Xi is arc-disjoint from positive clause-variable cycles
involving any clause Cj and Xi.
The negative variable cycle of Xi is arc-disjoint from negative clause-variable cycles
involving any clause Cj and Xi.
If Xi appears positively in clauses Cj and Ck, then the positive clause-variable cycle
involving Cj and Xi is arc-disjoint from the positive clause-variable cycle involving Ck

and Xi.
The following is another crucial observation.

▶ Observation 3.4. Suppose F is a family of arc-disjoint 4-cycles in G. Let i ∈ [n].
If F contains a negative clause-variable cycle involving clause Cj and Xi for some j ∈ [m],
then F cannot contain a (first or second) positive variable cycle of Xi.
If F contains a positive clause-variable cycle involving clause Cj and Xi for some j ∈ [m],
then F cannot contain a negative variable cycle of Xi.

Refer to Figure 2 for an illustration.

FSTTCS 2022

5:6 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

▶ Lemma 3.1. ψ is a Yes-instance of SAT(1,2) if and only if (G,m+n) is a Yes-instance
of Arc-disjoint 4-Cycles.

Proof. From Observations 3.1 and 3.2, it follows that any arc-disjoint 4-cycle packing of G
can contain at most m+ n cycles.

Suppose ψ is a Yes-instance of SAT(1,2). We will produce a family F consisting of
m + n arc-disjoint 4-cycles in G. Let τ be a satisfying truth assignment of ψ. When ψ

is evaluated on τ , in each clause Cj of ψ, at least one literal gets the truth value True.
From each clause Cj , choose any one literal lj which gets the truth value True and do the
following.

if lj is a positive occurrence of a variable Xi, then add a positive clause-variable cycle
involving Cj and Xi to F .
if lj is a negative occurrence of a variable Xi, then add the negative clause-variable cycle
involving Cj and Xi to F .

For each variable Xi do the following.
if Xi is assigned to be True, add the first positive variable cycle of Xi to F .
otherwise, add the negative variable cycle of Xi to F .

From Observation 3.3, it follows that the cycles added to F are arc-disjoint. Further, we
have added m+ n cycles to F .

To prove the converse, suppose there exist a family F consisting of m+ n arc-disjoint
4-cycles in G. We will produce a truth assignment τ that satisfies ψ. By Observations 3.1
and 3.2, among the cycles in F , exactly m are clause-variable cycles and exactly n are variable
cycles, one corresponding to each variable. If the variable cycle of Xi is a positive variable
cycle, assign Xi to be True. If the variable cycle of Xi is a negative variable cycle, assign Xi

to be False. This defines the truth assignment τ . Now, it remains to show that τ satisfies ψ.
Consider any clause Cj of ψ. Since F contains exactly m clause-variable cycles, there must
be a clause-variable cycle in F that involves Cj and some variable Xi. By Observation 3.4,
if the variable cycle of Xi in F is a positive variable cycle, then the clause-variable cycle in
F involving Cj and Xi is a positive clause variable cycle. If this happens, then Xi appears
positively in Cj . As per our truth assignment τ , we have assigned Xi to be True and hence,
the clause Cj will be satisfied. Similarly, from Observation 3.4, we can also show that if
variable cycle of Xi in F is a negative variable cycle, then we would have assigned Xi to
False, in which case as well, the clause Cj will be satisfied by τ . Since the same argument
holds for every clause Cj , we can see that τ satisfies all clauses of ψ simultaneously. ◀

Lemma 3.1 along with the fact that the reduction described runs in polynomial time
leads to the following result.

▶ Lemma 3.2. Arc-Disjoint 4-Cycle Packing in oriented bipartite graphs is NP-complete.

Now, we give a generalization of the above reduction by constructing a graph Gr from ψ,
for each integer r ≥ 4. If r = 4, then Gr = G. If r > 4, then we make the following two
modifications in G to obtain Gr.

For every i ∈ [n], replace the arc (ri, xi) in G by a path Pi = (ri, ai,1, ai,2 . . . , ai,r−4, xi)
of length r − 2 from ri to xi in Gr.
For every j ∈ [m], replace the arc (cj , dj) in G by a path Qj = (cj , bj,1, bj,2 . . . , bj,r−4, dj)
of length r − 2 from cj to dj in Gr.

By extending similar arguments as in the case of G, it can be seen that for any j ∈ [m] if a
cycle in Gr contains either vertex cj or vertex dj , then that cycle must contain the entire
path Qj . Further, similar to G, for any cycle of Gr that does not contain cj or dj vertices for

J. Babu, R. Krithika, and D. Rajendraprasad 5:7

any j ∈ [m], all vertices of the cycle must belong to the same variable gadget Xi for some
i ∈ [n] and the cycle must necessarily contain the entire path Pi. From these arguments, it
can be seen that Gr has no cycles of length less than r.

By extending our earlier definitions, r-cycles in Gr that contain Qj for some j ∈ [m] will
be called as clause-variable cycles and r-cycles in Gr that contain Pi for some i ∈ [n] will be
called as variable cycles. The terminology of negative and positive clause variable cycles can
also be generalized in the same manner. It can be seen that a variable cycle that contains Pi

has exactly two vertices from outside Pi and they both belong to the gadget of variable Xi

itself and a clause-variable cycle that contains Qj has exactly two vertices from outside Qj

and they both belong to the same variable gadget.
Our remaining arguments for the case when r = 4 also extend easily so that the statements

of Observation 3.1, Observation 3.2, Observation 3.3, Observation 3.4 and Lemma 3.1 can
be generalized by replacing G with Gr and 4 with r. It may be noted that the graph Gr

obtained has girth r and when r is even, Gr is bipartite. Further, it is known from the
literature that Arc-Disjoint 3-Cycle Packing is NP-complete for tournaments [5]. Hence,
we have the following theorem, obtained as a generalization of Lemma 3.2.

▶ Theorem 1. For each integer r ≥ 3, Arc-Disjoint r-Cycle Packing on oriented graphs
of girth r is NP-complete. Further, for each even integer r ≥ 4, this result holds even when
the input graph is restricted to be bipartite.

Arc Disjoint r≤ Cycle Packing is a related problem, where the cycles in the packing are
required to be of length at most r. For an odd integer r > 4, the answer to Arc Disjoint
r≤ Cycle Packing on any input oriented bipartite graph is the same as when the cycles in
the packing are restricted to be of length at most r − 1. This yields the following corollary.

▶ Corollary 1. For each integer r ≥ 4, Arc Disjoint r≤ Cycle Packing on oriented
bipartite graphs is NP-complete.

4 FPT Algorithms and Kernels for Packing Arc-Disjoint 4-Cycles

Now, we move on to describing FPT algorithms and polynomial kernels for Arc Disjoint
4-Cycle Packing in oriented graphs. First we consider the standard parameter (solution
size) and then proceed to vertex cover size as the parameter.

4.1 Solution Size as Parameter
As mentioned before, Arc Disjoint 4-Cycle Packing reduces to 4-Set Packing. While
the current fastest FPT algorithm for 4-Set Packing solves Arc Disjoint 4-Cycle
Packing in the same time, the kernel for 4-Set Packing with O(k3) elements and O(k4)
sets does not straight away give a kernel of same size for Arc Disjoint 4-Cycle Packing.
Here, we describe an O(k3) sized kernel with O(k2) vertices. Towards this, we give two
kernelization procedures - one that produces a cubic kernel and an other that gives a
quadratic vertex kernel. By combining these two procedures, we get the desired kernel.
Our algorithm crucially uses reduction rules based on the new expansion lemma [20] and
sunflowers [15, 19, 21].

Consider an instance (G, k) of Arc Disjoint 4-Cycle Packing. The first reduction
rule is a standard preprocessing rule.

▶ Reduction Rule 4.1. If there is a vertex or an edge in G that is not in any 4-cycle, then
delete it.

FSTTCS 2022

5:8 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

The correctness of this rule is immediate as no C4-packing can contain a vertex or an
edge that is not a part of any 4-cycle. The next reduction rule uses the notion of sunflowers
[15, 19, 21].

▶ Definition 4.1. (ℓ-sunflower) An ℓ-sunflower in G with core C ⊆ A(G) is a set S of ℓ
4-cycles such that for any two elements S and S′ in S, we have A(S) ∩A(S′) = C.

Now, we describe a rule that identifies edges that may be assumed to be in some solution
(if the instance is a Yes-instance) using sunflowers.

▶ Reduction Rule 4.2. If there is an edge e in G such that there is a (4k − 3)-sunflower
with {e} as the core, then delete e from G and decrease k by 1.

Note that finding a sunflower with core {(u, v)} reduces to finding a maximum matching
in the auxiliary bipartite graph Guv with bipartition (A,B) defined as follows: A = N−(u),
B = N+(v) and a vertex x ∈ A is adjacent to a vertex y ∈ B if and only if (y, x) ∈ A(G).
Observe that A and B are not necessarily disjoint and we rename B so that A∩B = ∅ before
finding the matching. Thus, Reduction Rule 4.2 can be applied in polynomial time. The
correctness of the rule is justified by the following lemma.

▶ Lemma 4.1. If Reduction Rule 4.2 is applicable on (G, k), then (G, k) is a Yes-instance
if and only if (G− e, k − 1) is a Yes-instance.

Proof. Let S denote a (4k− 3)-sunflower in G with core {e}. Since e is in at most one cycle
of any 4-cycle packing of G, it is clear that (G− e, k − 1) is a Yes-instance, whenever (G, k)
is. Conversely, consider a (k − 1)-sized 4-cycle packing F of G− e. Then, |A(F)| = 4(k − 1)
and there are at most 4(k − 1) cycles in S that have an edge from A(F). Therefore, there
exists a cycle C in the sunflower S such that A(C) ∩A(F) = ∅. Then, F ∪ {C} is a k-sized
4-cycle packing of G. ◀

Subsequently, we assume that (G, k) is an instance on which Reductions Rules 4.1 and 4.2
are not applicable. Let X be a maximal set of 4-cycles in G such that for any two elements X
and Y in X , we have |A(X)∩A(Y)| ≤ 1. The following lemma shows that if X is sufficiently
large, then (G, k) is a Yes-instance.

▶ Lemma 4.2. If |X | > 16k2, then there is a set C ⊆ X of k arc-disjoint 4-cycles that can
be obtained in polynomial time.

Proof. Obtain a sequence F1, . . . ,Fr of disjoint subsets of X as follows. For i ≥ 1, consider
an arbitrary 4-cycle Ci ∈ X \

⋃i−1
j=1 Fj and let Fi be the subset of cycles in X \

⋃i−1
j=1 Fj that

share an edge with Ci. Observe that for each i ∈ [r], |Fi| ≤ 4(4(k − 1)) as Reduction Rule
4.2 is not applicable. Further, r ≥ k as |X | > 16k2. Then, C1, . . . , Ck is the required 4-cycle
packing. ◀

Lemma 4.2 lets us apply the following reduction rule.

▶ Reduction Rule 4.3. If |X | > 16k2, then replace the instance (G, k) by a constant-sized
Yes-instance.

Subsequently, we assume that |X | ≤ 16k2. Define P to be the set of all 3-paths of G that
are in some 4-cycle in X . Note that P is O(k2). The next lemma says that P “hits” all
4-cycles in G.

▶ Lemma 4.3. For every 4-cycle C in G, there is a 3-path P ∈ P such that A(P) ⊆ A(C).

J. Babu, R. Krithika, and D. Rajendraprasad 5:9

Proof. Consider a 4-cycle C in G. If C ∈ X , then the claim trivially holds. Otherwise,
C /∈ X and by the maximality of X , there is a 4-cycle X in X such that |A(X) ∩A(C)| ≥ 2.
Let e and e′ be two common arcs of X and C. If e and e′ share an endpoint, then the 3-path
formed by e and e′ that is present in X and C is also in P and the claim holds. Otherwise, e
and e′ form a matching implying that X = C leading to a contradiction. ◀

The next rule is one that uses the notion of expansion and new expansion lemma [20].

▶ Definition 4.2 (ℓ-expansion). Let ℓ be a positive integer and H be a bipartite graph with
bipartition (A,B). For Â ⊆ A and B̂ ⊆ B, a set M ⊆ E(H) of edges is called an ℓ-expansion
of Â onto B̂ if the following properties hold.

every vertex of Â is incident to exactly ℓ edges in M .
exactly ℓ|Â| vertices in B̂ are incident to edges in M .

For an ℓ-expansion M of Â onto B̂, we call the vertices of B̂ that are endpoints of edges in
M as saturated and the remaining vertices of B̂ as unsaturated. Observe that a 1-expansion
is simply a matching of Â to B̂ that saturates Â.

▶ Proposition 4.1 (New ℓ-Expansion Lemma, [20]). Let ℓ be a positive integer and H be a
bipartite graph with bipartition (A,B). Then there exists Â ⊆ A and B̂ ⊆ B such that there
is an ℓ-expansion M of Â onto B̂ in H, N(B̂) ⊆ Â and |B \ B̂| ≤ ℓ|A \ Â|. Moreover, the
sets Â and B̂ (and M) can be computed in polynomial time.

Note that B̂ (and Â) may be empty. In that case, since |B \ B̂| ≤ ℓ|A \ Â|, we have
|B| ≤ ℓ|A|. Therefore, if |B| > ℓ|A|, then B̂ ̸= ∅. Now, we are ready to state the next
reduction rule.

We will apply Proposition 4.1 on an auxiliary bipartite graph Ĝ with bipartition (A,B)
where A = P and B = V (G) \ V (P), and a vertex (x, y, z) in A is adjacent to v ∈ B if and
only if (x, y, z, v) is a 4-cycle in G.

▶ Reduction Rule 4.4. Let Â ⊆ A and B̂ ⊆ B be the sets and M be the ℓ-expansion computed
by Proposition 4.1 on Ĝ for ℓ = 1. Let U ⊆ B̂ be the set of unsaturated vertices of M . Delete
U from G.

Observe that after the application of this rule, if B̂ is empty, then |V (G)| ≤ 3|A|+ |B| ≤
3|A|+|A|. Otherwise, B̂ is non-empty and |V (G)| ≤ 3|A|+|B̂\U |+|B\B̂| ≤ 3|A|+|Â|+|A\Â|.
In both cases, |V (G)| is O(k2). The correctness of the rule is justified by the following lemma.

▶ Lemma 4.4. (G, k) is a yes-instance if and only if (G− U, k) is a yes-instance.

Proof. The “if” part of the claim follows from the fact that G− U is a subgraph of G. Now,
suppose (G, k) is a yes-instance. Let C be a k-sized 4-cycle packing of G. Note that by
Lemma 4.3, for each C ∈ C, there exists a 3-path PC in P that is contained in C. Let Ĉ be
the set of cycles in C such that for each C ∈ Ĉ, there is a 3-path PC in Â such that PC is
contained in C. Note that each 4-cycle in C \ Ĉ is also a 4-cycle in G− U as N(B̂) ⊆ Â. Let
Ĉ = {C1, . . . , Cr} and for each i ∈ [r], let Pi = (xi, yi, zi) be a 3-path in Â that is contained
in Ci. As Â is saturated by a matching M in Ĝ, there is a vertex vi ∈ B matched to the
vertex Pi in Â. By replacing each Ci by (xi, yi, zi, vi) in C, we get a k-sized 4-cycle packing
of G− U . ◀

Now, we have the following property on an instance on which none of the reduction rules
described so far is applicable.

FSTTCS 2022

5:10 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

▶ Proposition 4.2. If (G, k) is an instance of Arc Disjoint 4-Cycle Packing on which
none of the Reduction Rules 4.1, 4.2, 4.3, 4.4 is applicable, then G has O(k2) vertices.

Note that since all the reduction rules described can be applied in polynomial time,
Proposition 4.2 gives us a quadratic vertex kernel for Arc Disjoint 4-Cycle Packing.
However, this kernel may have O(k4) edges.

Next, we describe a procedure that reduces the number of edges to O(k3). This procedure
is a stand-alone algorithm that produces a cubic kernel. We begin with the definition of
C4-partners.

▶ Definition 4.3. Two arcs (x, y) and (z, v) are called C4-partners in G if (x, y, z, v) is a
C4 in G.

For an arc (x, y) in G, Exy denotes the set of all C4-partners of (x, y). We will rightfully
treat Exy as a subdigraph of G. For a collection of subgraphs H of G, A(H) denotes⋃

H∈H A(H). For a set S and a natural number q, ⌊S⌋q denotes S itself if |S| ≤ q and an
arbitrary q-sized subset of S otherwise.

We now describe a procedure that marks a certain number of 4-cycles and takes the
subgraph spanned by the arcs of the marked cycles as the kerenel. This marking procedure
is described as Algorithm 1.

Algorithm 1 MarkingProcedure.

Require: A digraph G and a positive integer k
Ensure: A subgraph H of G on O(k3) edges such that H has an arc-disjoint C4-packing of

size k if and only if G has an arc-disjoint C4-packing of size k.
Find a maximal arc-disjoint C4-packing P in G

if |P| ≥ k then
A(H)← A(P ′) and V (H)← V (P ′), where P ′ is any subset of k distinct cycles from

P.
return H

for each arc (x, y) ∈ A(P) do
if Exy has a matching M of size 4k then

Fxy = M

else
Let S be the set of endpoints of a maximum matching in Exy

Fxy ← ∅
for each vertex s ∈ S do

Let As be the set of arcs in Exy outgoing from s

Let Bs be the set of arcs in Exy incoming to s
Add ⌊As⌋4k ∪ ⌊Bs⌋4k to Fxy

for each arc (z, v) ∈ Fxy do
mark the 4-cycle (x, y, z, v)

Let H be the subgraph of G whose arc set is the union of the arcs of all the marked 4-cycles
and vertex set is the set of endpoints of its arcs.
return H

We show the correctness of MarkingProcedure in the following lemma.

▶ Lemma 4.5. Given a digraph G and a positive integer k, MarkingProcedure (Algorithm
1) returns a digraph H on O(k3) edges and O(|V (G)|) vertices such that H has an arc-disjoint
C4-packing of size k if and only if G has an arc-disjoint C4-packing of size k.

J. Babu, R. Krithika, and D. Rajendraprasad 5:11

Proof. Since H is a subgraph of G, the “only if” direction is immediate. To prove the
other direction, suppose (G, k) is an yes-instance and let Q = {Q1, . . . Qk} be an arc-disjoint
C4-packing in G which has the maximum number of edges from H. If all the cycles in
Q are present in H, then it has a k-sized packing as required. Hence for the rest of the
proof we assume Q1 is not contained in H and show that we can replace Q1 with another
4-cycle Q′

1 which is contained in H and arc-disjoint from Q2, . . . , Qk. Then the C4-packing
{Q′

1, Q2, . . . , Qk} contradicts the choice of Q.
Since Q1 is a 4-cycle in G, and P is a maximal C4-packing in G, there is an arc (x, y)

of Q1 present A(P). Let Q1 = (x, y, z, v). If (z, v) was added to Fxy by the algorithm,
Q1 would have been marked and hence Q1 would be present in H. Hence we assume that
(z, v) ̸∈ Fxy. If Exy had a matching of size 4k, then there are 4k arc-disjoint 3-length paths
from y to x in in H. At most 4(k − 1) of them can be hit by other cycles Q2, . . . , Qk of the
packing Q. Let (y, z′, v′, x) be a 3-length path in H that is arc-disjoint from Q2, . . . , Qk. We
can replace Q1 = (x, y, z, v) with Q′

1 = (x, y, z′, v′) in Q.
Suppose Exy did not have a matching of size 4k. Then either z or v (or both) belong to

S. We will argue the case when z ∈ S. The case v ∈ S is similar. Since (z, v) is not in Fxy,
the set Fxy contains 4k other edges of Exy outgoing from z. Hence there are 4k arc-disjoint
2-length paths from z to x in in H. At most 4(k − 1) of them can be hit by other cycles
Q2 . . . Qk of the packing Q. Let (z, v′, x) be a 2-length path in H that is arc-disjoint from
Q2, . . . , Qk. We can replace Q1 = (x, y, z, v) with Q′

1 = (x, y, z, v′) in Q.
We now prove a bound on the size of H. Observe that for each arc (x, y) ∈ A(P), |Fxy|

is bounded above by 4k in the first case and 8k|S| in the second case. Since |S| ≤ 2(4k − 1),
we have |Fxy| ≤ 64k2. Since |A(P)| < 4k, the total number of 4-cycles that are marked is
less than 256k3 and hence H has at most 1024k3 arcs. ◀

Applying Algorithm 1 on the instance guaranteed by Proposition 4.2, leads to the following
result.

▶ Theorem 2. Arc Disjoint 4-Cycle Packing admits an O(k3) sized kernel with O(k2)
vertices.

We remark that in Theorem 2, our focus was on only getting a cubic kernel with quadratic
number of vertices and we have not attempted to optimize the constants involved.

4.2 Vertex Cover Size as Parameter
In this section, we study the time complexity of Arc-Disjoint 4-Cycle Packing in oriented
graphs parameterized by the size of a vertex-cover. The first step is to reduce this problem
to Arc Disjoint 4-Cycle Packing in oriented bipartite graphs parameterized by the size
of the smaller part. Then we invent a new problem which is in bijective correspondence with
arc-disjoint 4-cycle packing in oriented bipartite graphs. Given an oriented bipartite graph
G, we consider the problem of building an auxiliary multidigraph H with vertex set as the
smaller part of G which can be decomposed into a disjoint union of a collection of transitive
bipartite multidigraphs, each with an upper bound on its chromatic index. We formulate
this problem as an Integer Linear Programming problem with its number of variables
and constraints, though exponential in the size of the smaller part of G, is independent of
the size of the larger part. Hence solving this integer linear program gives an FPT algorithm
for the original problem.

FSTTCS 2022

5:12 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

▶ Lemma 4.6. Let G be an oriented graph with a vertex-cover X. G has a collection of k
pairwise arc-disjoint 4-cycles if and only if there exists a collection P of pairwise arc-disjoint
3-paths in G[X] such that the bipartite digraph GP obtained from G by deleting all the edges
inside X and adding for each P = (a, b, c) in P a new 3-path (a, bP , c) (where bP is a new
two-degree vertex) contains k pairwise arc-disjoint 4-cycles.

Proof. Suppose G has a collection C of k pairwise arc-disjoint 4-cycles. Since X is a vertex-
cover of G, for each C = (a, b, c, d) ∈ C, the intersection of C with G[X] is either the entire
C, a 3-path in C, or two vertices of C. In the first case, add (a, b, c) and (c, d, a) to P. In
the second case, add the 3-path in C ∩G[X] to P. In the third case, the two vertices of C
from X are non-adjacent and no path is added to P. By the arc-disjointness of C and the
above construction, P is a collection of pairwise arc-disjoint 3-paths in G[X]. In this case
it is easy to see that the bipartite digraph GP constructed for P also contains k pairwise
arc-disjoint 4-cycles.

In the other direction, let P be a collection of pairwise arc-disjoint 3-paths in G[X] such
that the bipartite digraph GP constructed based on it has a family C of k pairwise arc-disjoint
4-cycles. Since GP is bipartite with X as one part, every cycle C = (a, b, c, d) in C has two
non-adjacent vertices, say a and c in X and the other two vertices outside X. This splits
C into two 3-length paths (a, b, c) and (c, d, a). Let PC denote this collection of 2k pairwise
arc-disjoint paths obtained from the k cycles in C, each starting and ending in X. We will
show that each 3-path in PC is either present in G, or it can be substituted by a 3-path in
G with the same endpoints, such that the resulting collection P ′

C is pairwise arc-disjoint in
G. This would suffice to construct k pairwise arc-disjoint 4-cycles in G. Let (a, b, c) be a
3-path in PC . If b is a vertex in G, then the same path (a, b, c) is available in G as well and is
added to P ′

C . If b is a new vertex in GP but not in G, then b represented a 3-path (a, b′, c)
in G[X], Add (a, b′, c) to P ′

C instead of (a, b, c). Note that the arc-disjointness among the
newly added 3-paths is due to the arc-disjointness in P and their arc-disjointness with the
3-paths from PC is since the former is made up of arcs from G[X], while the latter is made
up of arcs across X and V (G) \X. ◀

If X has ℓ vertices, then there are at most ℓ3 3-paths in G[X] and any collection P of
pairwise arc-disjoint 3-paths has at most ℓ2/2 paths in it. Hence the number of choices for
P is upper bounded by

(
ℓ3

ℓ2/2
)
≤ (2eℓ)ℓ2/2 . Hence one can use an algorithm to solve Arc

Disjoint 4-Cycle Packing in bipartite graphs to solve the same problem for G with a
blow-up of (2eℓ)ℓ2/2 in running time.

This leads us to the study of parameterized complexity of Arc Disjoint 4-Cycle
Packing in bipartite digraphs G with bipartition L ∪ R with respect to min{|L|, |R|}
as the parameter. Consider an instance I = (G, k) with |L| = min{|L|, |R|} = ℓ. Let
L = {v1, . . . , vℓ} and R = {u1, . . . , un}.

▶ Definition 4.4. (Signature) For a vertex u ∈ R, the signature of u is a string πu =
(πu(1), . . . , πu(ℓ)) in {1,−1, 0}ℓ defined as follows.

πu(i) =


1, if u ∈ N+(vi)
−1, if u ∈ N−(vi)
0, otherwise

Observe that the signature of vertices in R can be determined in O(n) time and there are
at most 3ℓ distinct signatures. Let S denote the set of possible signatures. For each σ ∈ S,
let Rσ denote the set of vertices of R that have signature equal to σ. For each σ ∈ S, let
σ−1(+1) denote the set {vi ∈ L | σ(i) = 1} and σ−1(−1) denote the set {vi ∈ L | σ(i) = −1}.

J. Babu, R. Krithika, and D. Rajendraprasad 5:13

Given two multidigraphs G1 = (V,A1) and G2 = (V,A2) on the same vertex set, we
denote by G1 ⊎ G2 the multidigraph obtained by taking the union of G1 and G2 after
renaming the arcs in A2 so that A2 is disjoint from A1. We call G1 ⊎G2 as the disjoint union
of G1 and G2 and extend the terminology to any finite collection of graphs on a common
vertex set. A multidigraph in which for each pair of vertices u, v the number of arcs directed
from u to v is the same as the number of arcs directed from v to u is called balanced.

▶ Lemma 4.7. G has a collection of k pairwise arc-disjoint 4-cycles if and only if there
exists a collection of bipartite multidigraphs Hσ, σ ∈ S, on the vertex set L such that

(i) each arc of Hσ is directed from σ−1(+1) to σ−1(−1),
(ii) the edges of Hσ can be properly coloured using |Rσ| colours, and
(iii) the disjoint union H =

⊎
σ∈S Hσ is a balanced multidigraph with 2k arcs.

Proof. Suppose G contains an arc-disjoint collection C of 4-cycles, |C| = k. For each σ ∈ S,
we set Hσ = (L,Aσ) where Aσ contains an arc from u to w for each v ∈ Rσ such that
(u, v, w) is a path in one of the cycles in C. The first condition in the lemma follows from the
definition of signature. The second condition follows since for each v ∈ Rσ the collection of
arcs (u,w) in Hσ where (u, v, w) is a path in one of the cycles in C forms a matching in Hσ.
The third condition follows since each 4-cycle (u, v, w, x) in C (with u,w ∈ L) contributes
two opposite arcs, specifically (u,w) and (w, u), to H.

In the opposite direction, suppose we have a collection of bipartite multigraphs Hσ,
σ ∈ S, on the vertex set L, satisfying the three conditions of the lemma. We first construct a
collection P of pairwise arc-disjoint P3’s in G starting and ending in L as follows. Condition
2 assures that we can decompose the arc-set of each Hσ into at most |Rσ| matchings Hv,
v ∈ Rσ. For each arc (u,w) in Hv, add the directed path (u, v, w) to P . The first condition
in the lemma ensures that (u, v, w) is indeed a path in G. Two paths resulting from the same
matching Hv, for each v ∈ R, are arc-disjoint because of the disjointness of the end-vertices
of the two paths. Two paths resulting from Hv and Hv′ , for each v, v′ ∈ R, v ̸= v′, are
arc-disjoint since their middle vertices are two distinct vertices in R. Hence P is a collection
of arc-disjoint P3’s from G. Condition 3 guarantees that |P| = 2k and that the P3’s in P
can be perfectly paired to form a collection C of pairwise arc-disjoint 4-cycles in G, with
|C| = k. ◀

The feasibility of finding a collection of bipartite multidigraphs satisfying the conditions
of Lemma 4.7 can be checked by the following integer linear program.

Set of Variables: X =
{
xσ,u,w | σ ∈ S, u ∈ σ−1(−1), w ∈ σ−1(+1)

}
Feasible Solution: An integral assignment to the variables satisfying the following
properties.

For each signature σ ∈ S and u,w ∈ L∑
w′: xσ,u,w′ ∈X

xσ,u,w′ ≤ |Rσ| and
∑

u′: xσ,u′,w∈X

xσ,u′,w ≤ |Rσ|

For each pair u,w ∈ L∑
σ: xσ,u,w∈X

xσ,u,w =
∑

σ: xσ,w,u∈X

xσ,w,u.

Optimum Solution: A feasible solution that maximizes
∑

xσ,u,w∈X

xσ,u,w.

FSTTCS 2022

5:14 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

Since the edge-chromatic number of bipartite multigraphs is equal to their maximum
degree [4], the second condition of Lemma 4.7 is equivalent to ensuring that Hσ has a
maximum degree at most |Rσ|. This is ensured by the first group of constraints. The second
group of constraints ensure that the disjoint union H is balanced. The edge-count of H is
the cost function to be maximized.

Integer Linear Programming is FPT when parameterized by the number of variables
by the following result.

▶ Proposition 4.3 ([12, 22, 25, 26]). An integer linear program of size L with p variables
can be solved in O(p2.5p+o(p)(L+ logMx) log(MxMc)) time where Mx is an upper bound on
the absolute values a variable can take in a solution and Mc is the largest absolute value of a
coefficient in the vector c corresponding to the objective function.

In our integer linear program, the number of variables p is equal to |X| which is O(3ℓℓ2)
and the number of constraints is O(3ℓℓ). So the size L of the integer linear program is
O(32ℓℓ3). Moreover the maximum value Mx that a variable can take is bounded by |Rσ|
which is O(n) and all the coefficients are 1 or 0. Hence, Proposition 4.3 gives the following
result.

▶ Theorem 3. Arc Disjoint 4-Cycle Packing parameterized by the size of a vertex
cover is FPT.

5 Concluding Remarks

In this work, we studied Arc Disjoint r-Cycle Packing and showed that it is NP-complete
on oriented graphs with girth r and remains so for even r when the input is further restricted
to be bipartite. For r = 4, we gave a cubic kernel (containing a quadratic number of vertices)
with respect to the number of cycles as the parameter and showed fixed-parameter tractability
with respect to the size of a vertex cover as the parameter. Improving the size of this kernel or
showing tightness and giving an FPT algorithm for the problem parameterized by treewidth
are interesting future directions. Note that treewidth of a graph is at most the size of its
vertex cover. Also, coming up with the best possible polynomial kernels possible for r > 4 is
a natural next question.

Tournaments and bipartite tournaments are well-studied special classes of digraphs with
interesting structural and algorithmic properties. While Arc Disjoint Cycle Packing is
known to be NP-complete in tournaments [5], the complexity of this problem in bipartite
tournaments is still open. Further, Arc Disjoint 4-Cycle Packing is also open in bipartite
tournaments. The NP-completeness of Arc Disjoint Cycle Packing in tournaments
was established by a reduction from SAT(1,2) to Arc Disjoint 3-Cycle Packing in
tournaments. The construction of the graph in the reduced instance may be viewed as
consisting of two phases where in the first phase, an oriented graph is constructed and in the
second phase, this graph is completed into a tournament using a decomposition of the edges
of a complete (undirected) graph into triangles [27]. The second phase of this approach does
not seem to extend to bipartite tournaments. Further, Arc Disjoint 4-Cycle Packing
in bipartite tournaments is closely related to a conjecture by Brualdi and Shen [10] that
asserts that every Eulerian bipartite tournament has a decomposition of its arcs into 4-cycles.
We believe that resolving the complexity of this problem would shed some light on this
conjecture.

J. Babu, R. Krithika, and D. Rajendraprasad 5:15

References
1 Faisal N. Abu-Khzam. An improved kernelization algorithm for r-set packing. Inf. Process.

Lett., 110(16):621–624, 2010. doi:10.1016/j.ipl.2010.04.020.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.
3 Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs – Theory, Algorithms and Applications,

Second Edition. Springer Monographs in Mathematics. Springer, 2009.
4 Claude Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.
5 Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn

Thiebaut, and Meirav Zehavi. Packing arc-disjoint cycles in tournaments. Algorithmica,
83(5):1393–1420, 2021. doi:10.1007/s00453-020-00788-2.

6 Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut. Triangle packing in (sparse) tourna-
ments: Approximation and kernelization. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 14:1–14:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.14.

7 Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59–68, 1994.
doi:10.1142/S0129054194000049.

8 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path and
cycle problems. Theor. Comput. Sci., 511:117–136, 2013. doi:10.1016/j.tcs.2012.09.006.

9 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.2011.
04.039.

10 Richard A. Brualdi and Jian Shen. Disjoint cycles in eulerian digraphs and the diameter of
interchange graphs. J. Comb. Theory, Ser. B, 85(2):189–196, 2002. doi:10.1006/jctb.2001.
2094.

11 Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math., 127(3):415–
429, 2003. doi:10.1016/S0166-218X(02)00242-1.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Dorit Dor and Michael Tarsi. Graph decomposition is NPC – A complete proof of Holyer’s
conjecture. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,
Victoria, British Columbia, Canada, pages 252–263. ACM, 1992. doi:10.1145/129712.129737.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, s1-35(1):85–90, 1960. doi:10.1112/jlms/s1-35.1.85.

16 Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J.
Comb., 34(3):541–566, 2013. doi:10.1016/j.ejc.2012.04.008.

17 Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A.
Rosamond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter
tractable algorithms for matching and packing problems. Algorithmica, 52(2):167–176, 2008.
doi:10.1007/s00453-007-9146-y.

18 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A.
Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustra-
tion using bounded max leaf number. Theory Comput. Syst., 45(4):822–848, 2009. doi:
10.1007/s00224-009-9167-9.

19 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

FSTTCS 2022

https://doi.org/10.1016/j.ipl.2010.04.020
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/s00453-020-00788-2
https://doi.org/10.4230/LIPIcs.ESA.2017.14
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1006/jctb.2001.2094
https://doi.org/10.1006/jctb.2001.2094
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/129712.129737
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1016/j.ejc.2012.04.008
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/3-540-29953-X

5:16 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

20 Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019. doi:10.1145/3293466.

21 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2019.

22 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Comb., 7(1):49–65, 1987. doi:10.1007/BF02579200.

23 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

24 Bart M. P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, The Netherlands, 2013.

25 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

26 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

27 Thomas P. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematical
Journal, 2:191–204, 1847.

28 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

29 Hannes Moser. Finding optimal solutions for covering and matching problems. PhD thesis,
Friedrich Schiller University of Jena, 2010. URL: https://d-nb.info/999819399.

30 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 182–191. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492475.

31 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discret. Math., 24(1):146–157, 2010. doi:10.1137/070697781.

32 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discret. Appl. Math.,
8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

https://doi.org/10.1145/3293466
https://doi.org/10.1007/BF02579200
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1145/3055399.3055456
https://d-nb.info/999819399
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1137/070697781
https://doi.org/10.1016/0166-218X(84)90081-7

Approximate Representation of Symmetric
Submodular Functions via Hypergraph Cut
Functions
Calvin Beideman # Ñ

University of Illinois, Urbana-Champaign, IL, USA

Karthekeyan Chandrasekaran # Ñ

University of Illinois, Urbana-Champaign, USA

Chandra Chekuri # Ñ

University of Illinois, Urbana-Champaign, USA

Chao Xu # Ñ

University of Electronic Science and Technology of China, Chengdu, China

Abstract
Submodular functions are fundamental to combinatorial optimization. Many interesting problems can
be formulated as special cases of problems involving submodular functions. In this work, we consider
the problem of approximating symmetric submodular functions everywhere using hypergraph cut
functions. Devanur, Dughmi, Schwartz, Sharma, and Singh [5] showed that symmetric submodular
functions over n-element ground sets cannot be approximated within (n/8)-factor using a graph cut
function and raised the question of approximating them using hypergraph cut functions. Our main
result is that there exist symmetric submodular functions over n-element ground sets that cannot
be approximated within a o(n1/3/ log2 n)-factor using a hypergraph cut function. On the positive
side, we show that symmetrized concave linear functions and symmetrized rank functions of uniform
matroids and partition matroids can be constant-approximated using hypergraph cut functions.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Submodular Functions, Hypergraphs, Approximation, Representation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.6

Funding Calvin Beideman: supported in part by NSF grants CCF-1814613 and CCF-1907937.
Karthekeyan Chandrasekaran: supported in part by NSF grants CCF-1814613 and CCF-1907937.
Chandra Chekuri: supported in part by NSF grant CCF-1907937.

1 Introduction

A set function f : 2V → R≥0 defined over a ground set V is submodular if f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) for all subsets A, B ⊆ V and is symmetric if f(A) = f(V − A) for
all subsets A ⊆ V . Submodular functions have the diminishing marginal returns property
which arise frequently in economic and game theoretic contexts. Well-known examples of
submodular functions include matroid rank functions and graph/hypergraph cut functions.
Owing to these connections, submodular functions play a fundamental role in combinatorial
optimization.

Throughout this work, we will be interested in non-negative set functions f : 2V → R≥0
with f(∅) = 0. We use n to denote the size of the ground set V . For a parameter α ≥ 1, a
set function g : 2V → R≥0 is said to α-approximate a set function f : 2V → R≥0 if

g(A) ≤ f(A) ≤ αg(A) ∀ A ⊆ V.

Given the prevalence of submodular functions in combinatorial optimization, a natural
question that has been studied is whether an arbitrary submodular set function can be
well-approximated by a concisely representable function. We distinguish between structural

© Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri, and Chao Xu;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:calvinb2@illinois.edu
http://www.calvinbeideman.com
mailto:karthe@illinois.edu
http://karthik.ise.illinois.edu/
mailto:chekuri@illinois.edu
https://chekuri.cs.illinois.edu/
mailto:cxu@uestc.edu.cn
https://chaoxuprime.com/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Approx Representation of Sym Submodular Functions

and algorithmic variants of this question: the structural question asks whether submodular
functions can be well-approximated via concisely representable functions while the algorithmic
question asks whether such a concise representation can be constructed using polynomial
number of function evaluation queries (note that the algorithmic question is concerned with
the number of function evaluation queries as opposed to run-time). Concise representations
with small-approximation factor are useful in learning, testing, streaming, and sketching
algorithms. Consequently, concise representations with small-approximation factor for
submodular functions (and their generalizations and subfamilies of submodular functions)
have been studied from all these perspectives with most results focusing on monotone
submodular functions [8, 2, 12, 1, 5, 11, 6, 3].

In this work, we focus on approximating symmetric submodular functions. Balcan, Harvey,
and Iwata [2] showed that for every symmetric submodular function f : 2V → R≥0, there
exists a function g : 2V → R≥0 defined by g(S) :=

√
χ(S)T Mχ(S), where χ(S) ∈ {0, 1}V is

the indicator vector of S ⊆ V and M is a symmetric positive definite matrix such that g√
n-approximates f . We note that such a function g has a concise representation – namely, the

matrix M . Is it possible to improve on the approximation factor for symmetric submodular
functions using other concisely representable functions?

The concisely representable family of functions that we study in this work is the family
of hypergraph cut functions. A hypergraph H = (V, E) consists of a vertex set V and
hyperedges E where each hyperedge e ∈ E is a subset of vertices. If every hyperedge has size
2, then the hypergraph is simply a graph. For a subset A of vertices, we use δ(A) to denote
the set of hyperedges e such that e has non-empty intersection with both A and V \ A. The
cut function d : 2V → R+ of a hypergraph H = (V, E) with hyperedge weights w : E → R+
is given by

d(A) :=
∑

e∈E: e∈δ(A)

we ∀ A ⊆ V.

A function g : 2V → R+ is a hypergraph cut function if there exists a weighted hypergraph
with vertex set V whose cut function is g. We will say that a function f : 2V → R+ is
α-hypergraph-approximable (α-graph approximable) if there exists a hypergraph (graph) cut
function g such that g α-approximates f . We note that although a hypergraph could have
exponential number of hyperedges, every n-vertex hypergraph admits a (1 + ϵ)-approximate
cut-sparsifier with O(n log n

ϵ2) hyperedges (see Theorem 6 for a formal definition of cut-
sparsifier), and hence, hypergraph cut functions have a concise representation (with a
constant loss in approximation factor).

The structural approximation question of whether every symmetric submodular function
is constant-hypergraph-approximable was raised by Devanur, Dughmi, Shwartz, Sharma, and
Singh [5]. They showed that every symmetric submodular function on a ground set of size n

is O(n)-graph-approximable and that this factor is tight for graph-approximability: in fact,
the cut function of the n-vertex hypergraph containing a single hyperedge that contains all
vertices cannot be (n/4 − ϵ)-approximated by a graph cut function for all constant ϵ > 0.
This example naturally raises the following intriguing conjecture:

▶ Conjecture 1. Every symmetric submodular function is constant-hypergraph-approximable.

The conjecture is further fueled by the fact that there are no natural examples of symmetric
submodular functions besides hypergraph cut functions (although arbitrary submodular
functions can be symmetrized while preserving submodularity).

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:3

We emphasize that the algorithmic variant of Conjecture 1 is false. In particular, there
does not exist an algorithm that makes a polynomial number of function evaluation queries to
a symmetric submodular function f and constructs a hypergraph cut function g such that g

O(
√

n/ ln n)-approximates f . We outline a proof of this observation now. Suppose that there
exists an algorithm that uses polynomial number of function evaluation queries to a given
symmetric submodular function f to construct a weighted hypergraph whose cut function
α-approximates f ; then we can obtain an α-approximation to the symmetric submodular
sparsest cut problem by constructing such a hypergraph and solving the sparsest cut on
that hypergraph exactly (using exponential run-time). However, Svitkina and Fleischer [12]
have shown that the best possible approximation for the symmetric submodular sparsest
cut problem using polynomial number of function evaluation queries is Ω(

√
n/ ln n) (even if

exponential run-time is allowed). Hence, the algorithmic version of hypergraph-aproximability
has a strong lower bound of Ω(

√
n/ ln n). This leaves the structural question open while

perhaps, hinting that it may also have a strong lower bound.

1.1 Our Results
The symmetrization of a set function f : 2V → R is the function fsym : 2V → R obtained as

fsym(A) := f(A) + f(V \ A) − f(V) − f(∅).

We note that if f : 2V → R is submodular, then its symmetrization fsym : 2V → R is
symmetric submodular. A matroid rank function is a non-negative integer valued submodular
set function r : 2V → Z satisfying r(A) ≤ r(A ∪ {e}) ≤ r(A) + 1 for every subset A ⊆ V and
element e ∈ V . As a step towards understanding Conjecture 1, we observe that it suffices to
focus on symmetrized matroid rank functions (see Section 1.3 for a proof).

▶ Proposition 2. If the symmetrization of every matroid rank function is α-hypergraph-
approximable, then every rational-valued symmetric submodular function is α-hypergraph-
approximable.

Next, we refute Conjecture 1 by showing the following result.

▶ Theorem 3. For every sufficiently large positive integer n, there exists a matroid rank
function r : 2[n] → Z≥0 such that rsym is not α-hypergraph-approximable for

α = o

(
n

1
3

log2 n

)
.

Our proof of Theorem 3 is an existential argument and it does not construct an explicit
matroid rank function that achieves the lower bound.

Next, we prove positive approximation results for certain subfamilies of symmetric
submodular functions. The subfamilies that we consider are inspired by Proposition 2 and
by previous work on approximating symmetric submodular functions and matroid rank
functions.

We call a set function f : 2V → R≥0 as a concave linear function if there exist weights w :
V → R≥0 and an increasing concave function h : R≥0 → R≥0 such that f(S) = h(

∑
v∈S wv)

for every S ⊆ V . We note that concave linear functions are submodular. Goemans, Harvey,
Iwata, and Mirrokni [8] showed that every matroid rank function over a n-element ground
set can be

√
n-approximated by the square-root of a linear function, i.e., by a concave

linear function. Balcan, Harvey and Iwata [2] showed that every symmetric submodular

FSTTCS 2022

6:4 Approx Representation of Sym Submodular Functions

function f : 2V → R≥0 is
√

n-approximated by a function g : 2V → R≥0 of the form
g(S) :=

√
χ(S)T Mχ(S) for all S ⊆ V , where χ(S) ∈ {0, 1}V is the indicator vector of S and

M is a symmetric positive definite matrix. In particular, if M is a diagonal matrix, then the
function g is the square root of a linear function, i.e., a concave linear function. Given the
significant role of concave linear functions, we consider the hypergraph-approximability of
such functions.

▶ Theorem 4. Symmetrized concave linear functions are 128-hypergraph-approximable.

As a special case of Theorem 4, we obtain that the symmetrized rank function of uniform
matroids is constant-hypergraph-approximable. Thus, symmetrized rank functions of uniform
matroids act as a starting point for identifying subfamilies of symmetrized matroid rank
functions that are constant-hypergraph-approximable. We consider a generalization of the
uniform matroid, namely the partition matroid and show that it is also constant-hypergraph-
approximable. We refer the reader to Section 1.2 for formal definitions of uniform and
partition matroids.

▶ Theorem 5. Symmetrized rank functions of uniform matroids and partition matroids are
64-hypergraph-approximable.

Theorem 5 gives a concrete class of functions for which there is a large gap between the
approximation capabilities of graph cut functions and hypergraph cut functions. Consider
the uniform matroid where the independent sets are those of size at most 1. The symmetrized
rank function of this matroid is the same as the cut function of a hypergraph with a single
hyperedge spanning all vertices. As mentioned above, this function cannot be (n/4 − ϵ)-
approximated by a graph cut function for all constant ϵ > 0 [5]. Thus, symmetrized rank
functions of uniform and partition matroids cannot be better than n/4 approximated by
graph cut functions, but can be constant factor approximated by hypergraph cut functions.

While our lower bound result in Theorem 3 rules out α-hypergraph-approximability for
symmetric submodular functions for α = o(n1/3/ log2 n), our positive results suggest broad
families of symmetric submodular functions which are constant-hypergraph-approximable.
It would be interesting to characterize the family of symmetric submodular functions that
are constant-hypergraph-approximable. We also do not know if our lower bound result in
Theorem 3 is tight. We only know that every symmetric submodular function is (n − 1)-
graph-approximable. It would be interesting to show that every symmetric submodular
function is Õ(n1/3)-hypergraph-approximable – we believe that Proposition 2 and Theorem 4
should help towards achieving this approximation factor.

1.2 Preliminaries
A set function f : 2V → R≥0 is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all
subsets A, B ⊆ V , symmetric if f(A) = f(V − A) for all subsets A ⊆ V , and monotone if
f(B) ≥ f(A) for all subsets A ⊆ B ⊆ V .

A matroid M = (V, I) is specified by a ground set V and a collection I ⊆ 2V , known as
independent sets, satisfying the three independent set axioms: (1) ∅ ∈ I, (2) if B ∈ I, then
A ∈ I for every A ⊆ B, and (3) if A, B ∈ I with |B| > |A|, then there exists an element
v ∈ B \ A such that A ∪ {v} ∈ I. The rank function r : 2V → Z≥0 of a matroid M = (V, I)
is defined as

r(A) := max{|S| : S ⊆ A, S ∈ I} ∀ A ⊆ V.

The definition of matroid rank functions that we presented in Section 1.1 is equivalent to this
definition [10]. It is well-known that the rank function of a matroid is monotone submodular.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:5

We consider two matroids over the ground set V . A uniform matroid is a matroid in
which the independent sets are exactly the sets containing at most k elements of the ground
set V , for some fixed integer k – we call it as the uniform matroid over ground set V with
budget k. Partition matroids generalize uniform matroids: the independent sets of the
partition matroid associated with a partition P1, . . . , Pt of the ground set V with budgets
b1, . . . , bt ∈ Z≥0 are those subsets A ⊆ V for which |A ∩ Pi| ≤ bi for every i ∈ [t].

The proof of our lower bound will use the following theorem showing the existence of
cut-sparsifiers.

▶ Theorem 6 ([4]). For every positive constant ϵ and for every weighted n-vertex hypergraph
H, there exists another weighted hypergraph H ′ (called a cut-sparsifier) on the same vertex
set with Õ(n/ϵ2) hyperedges such that the cut function of H ′ (1 + ϵ)-approximates the cut
function of H.

1.3 Proof of Proposition 2
In this section, we prove Proposition 2. We need the notion of contraction of set functions and
hypergraphs. For a set function f : 2V → R≥0 and a subset A, the function g : 2V −A+a → R≥0
obtained by contracting f with respect to A is defined as

g(S) :=
{

f(S) if a ̸∈ S,

f(S − a + A) if a ∈ S.

If f : 2V → R≥0 is a symmetric submodular function and A ⊆ V , then the function obtained
by contracting f with respect to A is also symmetric submodular. Let H = (V, E) be
a hypergraph with hyperedge weights w : E → R≥0 and A ⊆ V . Then, the hypergraph
obtained by contracting H with respect to A is defined as H ′ = (V − A + a, E′) where a is a
new vertex not present in V and

E′ := {e − A + a : e ∈ E, e ∩ A ̸= ∅} ∪ {e : e ∈ E, e ∩ A = ∅}.

We note that E′ could have self-loops and that there is a surjection ϕ : E → E′ mapping each
hyperedge to the hyperedge it is contracted into (which could be the same as the original
hyperedge). We use this surjection to define the weight w′ : E′ → R≥0 of hyperedges in E′ as
w′(e′) =

∑
e∈E : ϕ(e)=e′ w(e). We note that if f is the cut function of a weighted hypergraph

H = (V, E) with hyperedge weights w : E → R≥0 and A ⊆ V , then the contraction of f with
respect to A corresponds to the cut function of the weighted hypergraph (H ′, w′) obtained
by contracting H with respect to A. This leads to the following observation:

▶ Observation 7. The contraction of a α-hypergraph-approximable function f : 2V → R≥0
with respect to a subset A ⊆ V is also α-hypergraph-approximable.

▶ Proposition 2. If the symmetrization of every matroid rank function is α-hypergraph-
approximable, then every rational-valued symmetric submodular function is α-hypergraph-
approximable.

Proof. It suffices to consider integer-valued symmetric submodular functions (multiply all
function values by the product of the denominators of their rational expressions). Hence, we
will focus on approximating integer-valued symmetric submodular functions.

Let f : 2V → Z≥0 be an integer-valued symmetric submodular function. It is known that
there exists a vector w ∈ RV such that the function g : 2V → R≥0 defined by

g(S) := f(S) +
∑
u∈S

wu ∀ S ⊆ V

FSTTCS 2022

6:6 Approx Representation of Sym Submodular Functions

is integer-valued, monotone, and submodular [7, Section 3.3] (e.g., for our purposes, we
can simply choose wu := max{f(S) : S ⊆ V } for every u ∈ V). Since f(V) = 0, we
have that g(V) =

∑
u∈V wu. Consequently, (1/2)gsym(S) = (1/2)(g(S) + g(V − S) −

g(V)) = (1/2)(f(S) + f(V − S)) = f(S) for every S ⊆ V since f is symmetric. Thus,
f(S) = (1/2)gsym(S) for every S ⊆ V .

Next, consider the integer-valued monotone submodular function g : 2V → Z≥0 obtained
as above. Helgason [9] showed that there exists a matroid on a ground set U with rank
function r : 2U → Z≥0 and a partition (Uv : v ∈ V) of U such that g(S) = r(∪v∈SUv) for
every S ⊆ V . Equivalently, the function g is obtained from the rank function r by repeatedly
contracting with respect to Uv for each v ∈ V (the order of processing v ∈ V is irrelevant).
Moreover, f(S) = (1/2)gsym(S) = (1/2)rsym(∪v∈SUv) for every S ⊆ V . Hence, the function
f is half times the contraction of a symmetrized matroid rank function. Thus, if every
symmetrized matroid rank function is α-hypergraph-approximable, then by Observation 7,
the function f is also α-hypergraph-approximable. ◀

2 Lower Bound

In this section, we prove Theorem 3. In our first lemma, we show that it suffices to consider
only hypergraphs with Õ(n) hyperedges if we are willing to tolerate a constant loss in the
approximation factor.

▶ Lemma 8 (Few hyperedges suffice). Let f : 2[n] → R≥0 be a symmetric submodular function
and β ≥ 1 be a positive real number. Suppose that there exists a weighted hypergraph H

whose cut function β-approximates f . Then, there exists a weighted hypergraph H ′ with Õ(n)
hyperedges whose cut function 2β-approximates f .

Proof. Applying Theorem 6 to H with ϵ = 1 gives us that there exists a weighted hypergraph
H ′ with Õ(n) hyperedges whose cut function 2-approximates the cut function of H . Since the
cut function of H β-approximates f , this means that the cut function of H ′ 2β-approximates f .

◀

Next we show that it suffices to restrict our attention to hypergraphs with rational
hyperedge weights while again losing only a constant in the approximation factor (since we
will be considering only hypergraphs with O(n) hyperedges).

▶ Lemma 9 (Bounded rational weights suffice). Let r : 2V → R+ be a matroid rank function
on ground set V = [n]. Suppose that there exists a hypergraph H = (V, E) with hyperedge
weights w : E → R+ with |E| = Õ(n) whose cut function d : 2[n] → R≥0 β-approximates rsym
for some β = o(n). Then, there exist hyperedge weights w′ : E → Q+ which assign to each
hyperedge of H a positive rational weight p/q where p, q ≤ n3 such that d′ 2β-approximates
rsym, where d′ : 2[n] → R≥0 is the cut function induced by the weight function w′.

Proof. Since r is the rank function of a matroid on ground set V = [n], we have that
r(S) ≤ n for all S ⊆ [n], and therefore rsym(S) ≤ n for all S ⊆ [n]. Consequently, if w(e) > n

for some e ∈ E then we have d(S) > n ≥ rsym(S) for some S ⊆ [n], a contradiction. Thus,
we conclude that w(e) ≤ n for every e ∈ E.

We define the new weight function w′ : E → R≥0 by

w′(e) := ⌊n2w(e)⌋
n2 ∀ e ∈ E.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:7

For every e ∈ E, the weight w′(e) is a rational number p/q with q = n2 and p ≤ n2w(e) ≤ n3.
Next, we show that the cut function d′ : 2[n] → R≥0 induced by this weight function w′

satisfies the required bounds for every subset S ⊆ [n].
For every e ∈ E, we have that w′(e) ≤ w(e). Thus, for every S ⊆ [n], we have that

d′(S) ≤ d(S) ≤ rsym(S). Moreover, for every e ∈ E, we have that w′(e) ≥ w(e) − 1/n2.
Therefore, for every S ⊆ [n], we have that

d′(S) ≥ d(S) − |E|/n2. (1)

Let S ⊆ [n]. If rsym(S) = 0, then d′(S) ≤ d(S) = 0, and so rsym(S) ≤ 2βd′(S). Suppose
rsym(S) > 0. Since rsym(S) is an integer, this means that rsym(S) ≥ 1, and therefore
1/β ≤ rsym(S)/β ≤ d(S). Since |E| = Õ(n), we have that |E|/n2 = Õ(1

n), and since
β = o(n), we conclude that |E|/n2 < 1/2β ≤ d(S)/2. Hence, Inequality (1) gives us that
d′(S) ≥ d(S)/2, and therefore, rsym(S) ≤ βd(S) ≤ 2βd′(S). ◀

We will show the existence of our desired matroid rank function using the following
theorem of Balcan and Harvey [3].

▶ Theorem 10 ([3]). For every positive integer n and k ≥ 8 with k = 2o(n1/3), there exists a
family of sets A ⊆ 2[n] and a family of matroids M = {MB : B ⊆ A} on the ground set [n]
with the following properties:
1. |A| = k and |A| = ⌊n1/3⌋ for every A ∈ A.
2. For every B ⊆ A and every A ∈ A, we have

rankMB (A) =
{

8⌊log k⌋ (if A ∈ B)
|A| = ⌊n1/3⌋ (if A ∈ A \ B)

.

3. For every A1, A2 ∈ A with A1 ̸= A2, we have |A1 ∩ A2| ≤ 4 log k.
4. For every B ⊊ A, we have rankMB ([n]) = ⌊n1/3⌋.

We note that the version of the theorem given in [3] does not include the third and fourth
properties. However, the proof for the variant of Theorem 10 with the first two properties
given in [3] shows that the third and fourth properties also hold. We are now ready to prove
Theorem 3. The following is a restatement of Theorem 3.

▶ Theorem 11. For every sufficiently large positive integer n, there exists a symmetrized
matroid rank function rsym : 2[n] → Z≥0 on ground set [n] such that rsym is not α-hypergraph-
approximable for α = o(n1/3/ log2 n).

Proof. For simplicity, we will assume that n = 8x for some positive integer x, so that log n

and n1/3 are both integers. If the theorem holds for n of this form, it holds for all sufficiently
large n, since for any 8x ≤ n < 8x+1 we can extend a matroid M on ground set [8x] to a
matroid M ′ on ground set [n] which has the same independent sets.

For k = nlog n, let A be a collection of subsets of [n] and M = {MB : B ⊆ A} be the
family of matroids on ground set [n] with the properties guaranteed by Theorem 10. We note
that |M| = 2nlog n . For each B ⊆ A, let rB

sym be the symmetrized rank function of MB and let
F := {rB

sym : MB ∈ M} be the family of symmetrized rank functions of matroids in the family
M. We note that F is a family of 2nlog n symmetrized matroid rank functions over the ground
set [n]. We will prove that there exists rB

sym ∈ F which is not α-hypergraph-approximable.
Suppose for contradiction that for every function rB

sym ∈ F there exists a hypergraph HB
such that the cut function dB of HB satisfies dB(S) ≤ rB

sym(S) ≤ α(n)dB(S) for all S ⊆ [n].

FSTTCS 2022

6:8 Approx Representation of Sym Submodular Functions

Let rB
sym ∈ F . By Lemma 8, there exists a weighted hypergraph H ′

B with Õ(n) hyperedges
such that its cut function d′ : 2[n] → R≥0 satisfies

d′(S) ≤ rB
sym(S) ≤ 2αd′(S) ∀ S ⊆ [n].

Applying Lemma 9 to the rank function rankB : 2[n] → Z≥0 of the matroid MB and the
hypergraph H ′

B gives a hypergraph H ′′
B with Õ(n) hyperedges all of whose weights are rational

values p/q with p, q ≤ n3 such that the cut function d′′ : 2[n] → R≥0 of H ′′
B satisfies

d′′(S) ≤ rB
sym(S) ≤ 4αd′′(S) ∀ S ⊆ [n].

Let H be the family of weighted hypergraphs {H ′′
B : rB

sym ∈ F}.
We now count the number of weighted hypergraphs in H. Each hypergraph in H has Õ(n)

hyperedges with each hyperedge having rational weight p/q where p, q ≤ n3. The number of
potential hyperedges in a n-vertex hypergraph is 2n − 1, so for every m ∈ Z+ the number
of simple n-vertex hypergraphs with m hyperedges is

(2n−1
m

)
= O(2nm). Consequently, the

number of possible simple hypergraphs with Õ(n) hyperedges is 2Õ(n2). The number of
positive rational numbers p/q with p, q ∈ [n3] is at most n6, so the number of ways to
assign a weight of this kind to each hyperedge of a hypergraph with Õ(n) hyperedges is
nÕ(n). Therefore the number of hypergraphs with Õ(n) hyperedges each of which has a
positive rational weight p/q where p, q ∈ [n3] is 2Õ(n2)nÕ(n) = 2Õ(n2) = 2o(nlog n). Hence,
|H| = 2o(nlog n).

Let F ′ := {rB
sym ∈ F : |B| ≤ |A| − 2}. Since |F| = 2nlog n and |A| = nlog n, we have that

|F ′| = Ω(2nlog n). Since |F ′| = Ω(2nlog n) while |H| = 2o(nlog n), there must exist two distinct
functions rB1

sym, rB2
sym ∈ F ′ such that there is a single weighted hypergraph H ∈ H whose cut

function d : 2[n] → R≥0 satisfies

d(S) ≤ rB1
sym(S) ≤ 8αd(S) ∀ S ⊆ [n] and (2)

d(S) ≤ rB2
sym(S) ≤ 8αd(S) ∀ S ⊆ [n]. (3)

Since B1 ̸= B2, at least one of B1 \ B2 and B2 \ B1 must be non-empty. We assume
without loss of generality that B1 \ B2 ̸= ∅. Let S ∈ B1 \ B2. By Theorem 10, we have
that rankMB1

(S) = 8 log2 n and rankMB2
(S) = n1/3. Since rB1

sym, rB2
sym ∈ F ′, we have that

|B1|, |B2| ≤ |A| − 2, and thus |B1 ∪ {S}|, |B2 ∪ {S}| ≤ |A| − 1. Therefore A \ (B1 ∪ {S}), A \
(B2 ∪ {S}) ̸= ∅, so there exist sets T1 ∈ A \ (B1 ∪ {S}), T2 ∈ A \ (B2 ∪ {S}). By Theorem 10,
we have that rankMB1

(T1), rankMB2
(T2) = n1/3 and |S ∩ T1|, |S ∩ T2| ≤ 4 log2 n. Therefore,

rankMB1
(T1\S), rankMB2

(T2\S) ≥ n1/3−4 log2 n, and so rankMB1
([n]\S), rankMB2

([n]\S) ≥
n1/3 − 4 log2 n. Furthermore, since T1, T2 ⊆ [n] we have that rankMB1

([n]), rankMB2
([n]) ≥

n1/3, and so by Theorem 10, we have rankMB1
([n]), rankMB2

([n]) = n1/3. Thus, we have that

rB1
sym(S) = rankMB1

(S) + rankMB1
([n] \ S) − rankMB1

([n])

≤ 8 log2 n + n1/3 − n1/3 = 8 log2 n and
rB2

sym(S) = rankMB2
(S) + rankMB2

([n] \ S) − rankMB2
([n])

≥ n1/3 + (n1/3 − 4 log2 n) − n1/3 = n1/3 − 4 log2 n.

Therefore, by inequalities (2) and (3), we have that d(S) ≤ rB1
sym(S) ≤ 8 log2 n, and 8αd(S) ≥

rB2
sym(S) ≥ n1/3 − 4 log2 n. Hence, α = Ω(n1/3/ log2 n). This contradicts the assumption that

α = o(n1/3/ log2 n). ◀

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:9

3 Upper Bounds

In this section, we show that certain subfamilies of symmetric submodular functions are
constant-hypergraph-approximable. In particular, we show how to approximate concave
linear functions and symmetrized rank functions of uniform and partition matroids using
hypergraph cut functions.

3.1 Concave Functions
In this section, we prove Theorem 4. We recall that a set function f : 2V → R≥0 is a concave
linear function if there exist weights w : V → R≥0 and an increasing concave function
h : R≥0 → R≥0 such that f(S) = h(

∑
v∈S wv). If all weights are one , then fsym is symmetric

submodular and moreover, the precise value of f(S) depends only on the size |S| and does not
depend on the precise identify of the elements in S, so we call such functions f as anonymized
concave linear functions. In Section 3.1.1, we consider the special case of anonymized
concave linear functions and show that these are constant-hypergraph-approximable. We
extend these ideas in Section 3.1.2 to show that symmetrized concave linear functions are
constant-hypergraph-approximable.

3.1.1 Anonymized Concave Linear Functions
The following lemma is useful for proving the main theorem of this section. Its proof is given
in the appendix.

▶ Lemma 12. For every integer n ≥ 2, r ∈ {2, . . . , n}, and X ⊆ [n] with 1 ≤ |X| ≤ n
2 , the

set of hyperedges δ(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

1
4 min

{
|X|r

n
, 1
}

≤ |δ(X)|(
n
r

) ≤ 4 min
{

|X|r
n

, 1
}

.

The following is the main theorem of this section.

▶ Theorem 13. Let n be a positive real number and h : R≥0 → R≥0 be a function such that h

is concave on [0, n] and h(x) = h(n−x) for every x ∈ [0, n]. Then, the symmetric submodular
function f : 2V → R≥0 over the ground set V = [n] defined by f(S) := h(|S|) ∀ S ⊆ V is
64-hypergraph-approximable.

Proof. To simplify our notation, we define ax := h(x) − h(x − 1) for x ∈ {1, . . . , ⌈n/2⌉}. A
hypergraph is uniform if all its hyperedges have the same size and a complete t-uniform
hypergraph consists of all hyperedges of size t. We define H as the union of ⌈n/2⌉ different
hypergraphs, G0, . . . , G⌈n/2⌉, each of which is a uniform hypergraph over the vertex set V

and each of whose hyperedges are weighted uniformly. Formally, H is the union of:
1. A complete ⌈ n

x ⌉-uniform hypergraph Gx, with a total weight of (ax − ax+1)(x/8) equally
distributed among its hyperedges for each x ∈ {1, . . . , ⌈n/2⌉ − 1}, i.e., w(e) = (ax −
ax+1)(x/8)/

(
n

⌈ n
x ⌉
)

for every hyperedge e ∈ E(Gx) (we note that ax − ax+1 ≥ 0 since h is
concave).

2. A complete 2-uniform hypergraph G⌈n/2⌉, with a total weight of a⌈n/2⌉(n/32) equally
distributed among its hyperedges.

3. A hypergraph G0 consisting of a single n-vertex hyperedge of weight h(0)/64.

FSTTCS 2022

6:10 Approx Representation of Sym Submodular Functions

Let d be the cut function of the hypergraph H we have just defined. In order to show
that d 64-approximates f , we will consider an arbitrary subset C of size k and bound its
cut value in H. Since we know that d and f are both symmetric, we assume without loss of
generality that 1 ≤ k ≤ n/2.

We now compute the weight of hyperedges crossing C in H . We recall that |C| = k ≤ n/2.
We begin with the easy cases. δ(C) will certainly cut the single hyperedge of G0 for a weight
of exactly h(0)/64. The hyperedges in G⌈n/2⌉ have rank 2. Therefore, by Lemma 12, the
number of hyperedges crossing C in G⌈n/2⌉ is at least a k

2n fraction and at most a 8k
n fraction

of the hyperedges in G⌈n/2⌉, for a total weight between a⌈n/2⌉k/64 and a⌈n/2⌉k/4.
Next, we compute the weight of hyperedges crossing C in G1, . . . , Gk. Let us consider Gx

for a fixed x ∈ {1, . . . , k}. Let r := ⌈ n
x ⌉. We have that r ≥ n

x ≥ n
k , so kr

n ≥ 1. Therefore, by
Lemma 12, the number of hyperedges crossing C in Gx is at least a quarter of the hyperedges
of Gx. We also know that even if all hyperedges in Gx cross C, the weight of those hyperedges
is only (ax − ax+1)(x/8). Therefore, the weight of hyperedges crossing C in Gx is between
(ax − ax+1)(x/32) and (ax − ax+1)(x/8).

Next, we compute the weight of hyperedges crossing C in Gk+1, . . . , G⌈n/2⌉−1. Let us
consider Gx for a fixed x ∈ {k + 1, . . . , ⌈ n

2 ⌉ − 1}. Let r := ⌈ n
x ⌉. Then, 2 ≤ r ≤ 2n

x < 2n
k .

Therefore, kr
n ≤ 2, and hence,

k

2x
≤ kr

2n
≤ min

(
kr

n
, 1
)

≤ kr

n
≤ 2k

x
.

From these inequalities and Lemma 12, we conclude that the number of hyperedges crossing
C in Gx is at least a k

8x fraction and at most a 8k
x fraction of hyperedges of Gx. Therefore, the

weight of hyperedges crossing C in Gx is at least (ax − ax+1)k/64 and at most (ax − ax+1)k.
Therefore, if d(C) is the weight of hyperedges crossing C in H, then

1
64

h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (4)

≤ 1
64

h(0) + a⌈n/2⌉k +
k∑

x=1
2(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (5)

≤ d(C) (6)

≤ h(0)
64 + a⌈n/2⌉

k

4 +
k∑

x=1
(ax − ax+1)x

8 +
⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k (7)

≤ h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k. (8)

Here, expression (8) is 64 times expression (4), so our proof is complete if we can show that
expression (8) evaluates to h(k) (recall that h(k) = f(C). The next claim completes the
proof by showing this. ◀

▷ Claim 14. For every k ∈ {0, 1, 2, . . . , ⌈n/2⌉}, we have that

h(k) = h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:11

Proof. To show this, we simplify the two summations appearing on the RHS. The second
summation telescopes to yield (ak+1 − a⌈n/2⌉)k. To simplify the first summation, we note
that

∑j
x=1(ax − ax+1)x =

∑j
x=1(2h(x) − h(x + 1) − h(x − 1))x. For every x from 1 to j − 1,

h(x) is added 2x times and subtracted 2x times in this summation, so it does not contribute
at all. Therefore, we conclude that

∑j
x=1(ax − ax+1)x = (j + 1)h(x) − jh(x + 1) − h(0).

Using the simplifications we have derived for each of the summations on the RHS, we
find that the RHS is

h(0) + a⌈n/2⌉k + ((k + 1)h(k) − kh(k + 1) − h(0)) + (ak+1 − a⌈n/2⌉)k
= kak+1 + (k + 1)h(k) − kh(k + 1)
= k(h(k + 1) − h(k)) + (k + 1)h(k) − kh(k + 1)
= h(k). ◁

3.1.2 Symmetrized Concave Linear Functions
In this section, we prove Theorem 4 – i.e., symmetrized concave linear functions are constant-
hypergraph-approximable. Our approach is to first construct a hypergraph on a much larger
vertex set than the ground set V , using the result of Theorem 13, and then contract subsets
of the vertices of this hypergraph to obtain a hypergraph on the vertex set V with the desired
property.

▶ Theorem 15. Let V be a ground set, w : V → R+, and h : R≥0 → R≥0 be an increasing
concave function. Then, the symmetric submodular function f : 2V → R+ defined by

f(S) := h

(∑
v∈S

w(v)
)

+ h

 ∑
v∈V \S

w(v)

− h

(∑
v∈V

w(v)
)

− h(0) ∀ S ⊆ V

is 128-hypergraph-approximable.

Proof. Let n := |V |. For ease of notation, we will use w(S) :=
∑

v∈S w(v) for all S ⊆ V . Let
g : R≥0 → R≥0 be defined by g(x) := h(x)+h(w(V)−x)−h(w(V))−h(0) for all x ≥ 0. Then
f(S) = g(w(S)). Since h is concave, and h(w(V) − x) is h(x) reflected over a vertical line at
x = w(V)/2, the function h(w(V) − x) is also concave. We also note that −h(w(V)) − h(0)
is a constant, and constant functions are concave. Therefore, g is a sum of concave functions,
and hence, g is concave as well. Since g is concave, it is also continuous. Therefore, for
every x ∈ R+ such that g(x) ̸= 0, there exists a positive real number εx such that for
every real number y with x − εx < y < x + εx, we have g(x)/

√
2 ≤ g(y) ≤

√
2g(x). Let

εmin = min{εw(S) : ∅ ≠ S ⊂ V }. Let q := ⌈2nw(V)/εmin⌉. We note that w(V)/q ≤ εw(S)/2n

for every S ⊂ V .

▷ Claim 16. There exist positive integers pv for each v ∈ V such that:
1. For every v ∈ V , we have that w(v) − εmin

n < pvw(V)
q < w(v) + εmin

n .
2.
∑

v∈V pv = q.

Proof. By our choice of q, for every v ∈ V , we have that w(v) − w(V)/q > w(v) − εmin

n .
Therefore, for each v ∈ V we can choose a positive integer pv such that w(v) − εmin

n <

pvw(V)/q ≤ w(v), and thus we can choose a collection of integers pv which satisfies the first
condition of the claim as well as

∑
v∈V pv ≤ q.

FSTTCS 2022

6:12 Approx Representation of Sym Submodular Functions

Consider a collection of positive integers pv for each v ∈ V which maximizes
∑

v∈V pv

subject to satisfying the first condition of the claim and the inequality
∑

v∈V pv ≤ q. Suppose
for contradiction that these integers do not satisfy the second condition of the claim. Then,∑

v∈V pv < q, so
∑

v∈V pvw(V)/q < w(V), so there must exist some u ∈ V for which
puw(V)/q < w(u). By our choice of q, we have that

(pu + 1)w(V)
q

= puw(V)
q

+ w(V)
q

< w(u) + w(V)
q

≤ w(u) + εmin

2n
< w(u) + εmin

n
.

Thus, we can increase pu by 1 while still satisfying the first condition of the claim. Also, since∑
v∈V pv < q, we have that 1 +

∑
v∈V pv ≤ q, so we can increase pu by 1 while maintaining

that the sum of all the integers pv is at most q. This contradicts our assumption that the
integers pv maximized

∑
v∈V pv subject to satisfying the first constraint of the claim and the

inequality
∑

v∈V pv ≤ q. Thus, a collection of positive integers satisfying the conditions of
the claim exists. ◁

Choose a positive integer pv for each v ∈ V such that the chosen integers satisfy the
conditions of Claim 16. For each v ∈ V , we create a set Uv containing pv new vertices,
and we define U :=

⋃
v∈V

Uv. We note that |U | =
∑

v∈V pv = q. We define functions

h1 : R≥0 → R≥0, f1 : [0, q] → R+, and f2 : [0, q] → R+ by h1(x) = h(xw(V)/q), f1(x) =
h1(x) + h1(q − x) − h1(q) − h1(0), and f2(x) = f1(x)/

√
2. We note that h1 is concave since

it is a rescaling of h by a constant factor, and h1(q − x) is concave, since it is h1 reflected
over the vertical line at x = q/2. Thus, f1 is the sum of concave functions, and hence, f1 is
concave. Finally, f2 is a constant multiple of a concave function, so f2 is concave as well.
Furthermore, by definition, f2(q −x) = f2(x). Applying Theorem 13 to q and f2, we conclude
that there exists a hypergraph H ′ with vertex set U whose cut function d′ satisfies

d′(S) ≤ f1(|S|)/
√

2 ≤ 64d′(S) ∀ S ⊆ U,

Let H be the hypergraph obtained from H ′ by contracting each set Uv of vertices into
a vertex v ∈ V . Let d be the cut function of H. To complete the proof, we will show that
d(S) ≤ f(S) ≤ 128d(S) for every S ⊆ V . We first consider the special cases of S = ∅ and
S = V . For both these cases, we have that f(S) = 0 = d(S) by definition. Next, let us
consider an arbitrary non-empty set S ⊂ V . Let US :=

⋃
v∈S

Uv be the corresponding set of

vertices in H ′. We note that by construction of H, we have that d(S) = d′(US). Therefore,

d(S) ≤ f1(|US |)/
√

2 ≤ 64d(S). (9)

We note that

|US | =
∑
v∈S

|Uv| =
∑
v∈S

pv.

Therefore, by definition,

f1 (|US |) = f1

(∑
v∈S

pv

)

= h1

(∑
v∈S

pv

)
+ h1

(
q −

∑
v∈S

pv

)
− h1(q) − h1(0)

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:13

= h

(∑
v∈S

pvw(V)
q

)
+ h

(
w(V) −

∑
v∈S

pvw(V)
q

)
− h(w(V)) − h(0)

= g

(∑
v∈S

pvw(V)
q

)
.

For each v ∈ S, we have that w(v) − εmin/n < pvw(V)/q < w(v) + εmin/n. We also have
that |S| ≤ n . Therefore,

w(S) − εw(S) ≤ w(S) − εmin

≤ w(S) − |S|εmin

n

<
∑
v∈S

pvw(V)
q

< w(S) + |S|εmin

n

≤ w(S) + εmin

≤ w(S) + εw(S).

So by definition of εw(S), we have that

f(S)√
2

= g(w(S))√
2

≤ g

(∑
v∈S

pvw(V)
q

)
≤

√
2g(w(S)) =

√
2f(S).

Thus f(S)/
√

2 ≤ f1(|US |) ≤
√

2f(S), and so by inequality (9) we have that

d(S) ≤ f1(|US |)/
√

2 ≤ f(S) ≤
√

2f1(|US |) ≤ 128d(S). ◀

3.2 Symmetrized Matroid Rank Functions
In this section, we prove Theorem 5 which states that symmetrized rank function of uniform
and partition matroids are constant-hypergraph-approximable (see Section 1.2 for definitions
of uniform and partition matroids). We begin with uniform matroids.

▶ Lemma 17. The symmetrized rank function of a uniform matroid is 64-hypergraph-
approximable.

Proof. Let r : 2V → R≥0 be the rank function of the uniform matroid on ground set V

with budget k and rsym : 2V → R≥0 be the symmetrized rank function. We note that
r(S) = min{|S|, k} for every S ⊆ V . If k > |V |, then rsym(S) = 0 for every S ⊆ V and
hence, rsym is 1-hypergraph-approximable using the empty hypergraph. So, we may assume
that k ≤ |V |. Then, for every S ⊆ V , we have that

rsym(S) = r(S) + r(V \ S) − r(V)
= min{|S|, k} + min{|V \ S|, k} − min{|V |, k}
= min{|S|, |V \ S|, k, |V | − k}.

Let n := |V | and consider the function h : R≥0 → R≥0 defined by

h(x) = min{x, n − x, k, n − k}.

Then, h is concave on [0, n] and h(x) = h(n − x) for every x ∈ [0, n] and rsym(S) =
h(|S|) for every S ⊆ V . Therefore, by Theorem 13, we have that rsym is 64-hypergraph-
approximable. ◀

FSTTCS 2022

6:14 Approx Representation of Sym Submodular Functions

Next, we show that symmetrized rank functions of partition matroids are constant-
hypergraph-approximable.

▶ Theorem 18. The symmetrized rank function of a partition matroid is 64-hypergraph-
approximable.

Proof. Let M = (V, I) be a partition matroid on ground set V with rank function r :
2V → Z≥0 that is associated with the partition V1, . . . , Vt of the ground set V and budgets
b1, . . . , bt ∈ Z≥0. For i ∈ [t], we define a function fi : 2Vi → Z≥0 by fi(S) := ri(S) + ri(Vi \
S) − ri(Vi) where ri is the rank function of the uniform matroid on ground set Vi with budget
bi. Then, the symmetrized rank function of the partition matroid M can be written as
rsym(S) =

∑t
i=1 fi(S ∩ Vi). Moreover, each fi is the symmetrized rank function of a uniform

matroid. By Lemma 17, for each i ∈ [t], there exists a weighted hypergraph Gi with cut
function di such that

di(S) ≤ fi(S) ≤ 64di(S) ∀ S ⊆ Pi.

Let G be the hypergraph on V formed by taking the union of the hypergraphs Gi for each
i ∈ [t]. Since the vertex sets of the hypergraphs Gi are pairwise disjoint, the cut function
d : 2V → R≥0 of G satisfies d(S) =

∑t
i=1 di(S ∩Vi), and therefore G is a weighted hypergraph

which fulfills the requirements of the theorem. ◀

4 Conclusion

In this work, we investigated the approximability of symmetric submodular functions using
hypergraph cut functions. We proved that it suffices to understand the approximability of
symmetrized matroid rank functions. On the upper bound side, we showed that symmetrized
concave linear functions and symmetrized rank functions of uniform and partition matroids
are constant-approximable using hypergraph cut functions. Our upper bounds for uniform
and partition matroids raise the question of whether symmetrized rank functions of constant-
depth laminar matroids are constant-approximable using hypergraph cut functions. On
the lower bound side, we showed that there exist symmetrized matroid rank functions on
n-element ground sets that cannot be o(n1/3/ log2 n)-approximated using hypergraph cut
functions, thus ruling out constant-approximability of symmetric submodular functions using
hypergraph cut functions. Our results raise the natural open question of whether every
symmetric submodular function on n-element ground set is O(

√
n)-hypergraph approximable.

Our strong lower bound also raises the question of whether we could trade off
approximability against the number of vertices in the hypergraph. In particular, for every
symmetric submodular function f : 2V → R+ defined over a n-element ground set V , does
there exist a hypergraph over a vertex set V ′ ⊇ V with cut function d : 2V ′ → R≥0 such that
d(A) ≤ f(A) ≤ αd(A) for every A ⊆ V , where α = O(1) and |V ′| = O(2n)?

References
1 A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Roughgarden. Sketching

valuation functions. In Proceedings of the 23rd annual ACM-SIAM Symposium on Discrete
algorithms, SODA, pages 1025–1035, 2012.

2 M-F. Balcan, N. Harvey, and S. Iwata. Learning symmetric non-monotone submodular
functions. In NIPS Workshop on Discrete Optimization in Machine Learning, NIPS, 2012.

3 M-F. Balcan and Nicholas JA Harvey. Submodular functions: Learnability, structure, and
optimization. SIAM Journal on Computing, 47(3):703–754, 2018.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:15

4 Y. Chen, S. Khanna, and A. Nagda. Near-linear size hypergraph cut sparsifiers. In Proceedings
of the IEEE 61st Annual Symposium on Foundations of Computer Science, pages 61–72, 2020.

5 N. Devanur, S. Dughmi, R. Schwartz, A. Sharma, and M. Singh. On the Approximation of
Submodular Functions. Preprint in arXiv: 1304.4948v1, 2013.

6 V. Feldman and J. Vondrák. Optimal Bounds on Approximation of Submodular and XOS
Functions by Juntas. SIAM Journal on Computing, 45(3):1129–1170, 2016.

7 S. Fujishige. Submodular functions and optimization. Elsevier, 2005.
8 M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions

everywhere. In Proceedings of the 20th annual ACM-SIAM Symposium on Discrete algorithms,
SODA, pages 535–544, 2009.

9 T. Helgason. Aspects of the theory of hypermatroids. In Hypergraph Seminar, pages 191–213.
Springer, 1974.

10 A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science &
Business Media, 2003.

11 C. Seshadri and J. Vondrák. Is submodularity testable. Algorithmica, 69(1):1–25, 2014.
12 Z. Svitkina and L. Fleischer. Submodular Approximation: Sampling-based Algorithms and

Lower Bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.

A Proof of Lemma 12

We first show a few combinatorial inequalities that will be useful for our proof.

▷ Claim 19. For every integer n ≥ 2, k ∈ {1, . . . , n
2 }, and r ∈ {2, . . . , n − k}, we have that

1.
(

1 − r
n−k

)k

≤ (n−k
r)

(n
r) ≤

(
1 − r

n

)k
.

2.
(

1 − k
n−r

)r

≤ (n−k
r)

(n
r)

Proof.
1. We note that(

n−k
r

)(
n
r

) = (n − k)!/(r!(n − k − r!))
n!/(r!(n − r)!)

= (n − k)!
n! · (n − r)!

(n − k − r)!

=
k−1∏
i=0

n − r − i

n − i
.

We get the upper bound on
(

n−k
r

)
/
(

n
r

)
by upper bounding every element of this product

with n−r
n , and the lower bound by lower bounding every term of the product with n−k−r

n−k .
2. We note that(

n−k
r

)(
n
r

) = (n − k)!/(r!(n − k − r!))
n!/(r!(n − r)!)

= (n − k)!
(n − k − r)! · (n − r)!

n!

=
r−1∏
i=0

n − k − i

n − i
.

We obtain the lower bound by lower bounding every term of the product with n−k−r
n−r . ◁

FSTTCS 2022

6:16 Approx Representation of Sym Submodular Functions

▷ Claim 20. For every integer n ≥ 2, k ∈ {1, . . . , n
2 }, and r ∈ {2, . . . , n}, we have that(

k
r

)(
n
r

) ≤
(

k

n

)r

.

Proof. If k < r, the bound trivially holds, because
(

k
r

)
= 0. Otherwise, we have(

k
r

)(
n
r

) = k!/(r!(k − r)!)
n!/(r!(n − r)!)

= k!
(k − r)! · (n − r)!

n!

=
r−1∏
i=0

k − i

n − i
.

Upper bounding every term in the product with k
n gives the desired bound. ◁

We now restate and prove Lemma 12.

▶ Lemma 12. For every integer n ≥ 2, r ∈ {2, . . . , n}, and X ⊆ [n] with 1 ≤ |X| ≤ n
2 , the

set of hyperedges δ(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

1
4 min

{
|X|r

n
, 1
}

≤ |δ(X)|(
n
r

) ≤ 4 min
{

|X|r
n

, 1
}

.

Proof. Let k := |X|. We note that the hyperedges which cross X are exactly those which
are neither fully contained in X, nor fully contained in V \ X. Thus, the number of rank r

hyperedges in δ(X) is exactly
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)
.

Suppose r > n − k. Then, since k ≤ n/2, we have that r > k as well, so |δ(X)| =(
n
r

)
−
(

n−k
r

)
−
(

k
r

)
=
(

n
r

)
, and so we have |δ(X)|

(n
r) = 1. Thus, we immediately have that

1
4 min

{
|X|r

n , 1
}

≤ |δ(X)|
(n

r) . Furthermore, we have that kr > k(n − k) = kn − k2, so kr
n >

kn−k2

n = k − k2

n ≥ k − k
2 = k

2 , so we have that |δ(X)|
(n

r) ≤ 4 min
{

|X|r
n , 1

}
. Henceforth we

assume r ≤ n − k.
We case on the value of k.

Case 1: k ≥ n/r. Then min
{

|X|r
n , 1

}
= 1. Since |δ(X)|

(n
r) is the fraction of the hyperedges

which are in δ(X), it is trivially upper bounded by 1, and thus by 4 min
{

kr
n , 1

}
. Therefore,

it remains to show the lower bound. We have that
|δ(X)|(

n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≥ 1 −

(
1 − r

n

)k

−
(

k

n

)r

≥ 1 − e−kr/n −
(

k

n

)r

≥ 1 − 1
e

− 1
4

≥ 1
4

= 0.25 min
{

kr

n
, 1
}

.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:17

Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, and the fourth follows from our assumptions that
n/r ≤ k ≤ n/2 and r ≥ 2.
Case 2: k < n/r. Then min

{
|X|r

n , 1
}

= kr
n . Once again, we need to show a lower bound

and an upper bound. We begin with the lower bound:

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≥ 1 −

(
1 − r

n

)k

−
(

k

n

)r

≥ 1 − e−kr/n −
(

k

n

)r

≥ 1 −
(

1 − kr

2n

)
−
(

k

n

)r

= kr

2n
−
(

k

n

)r

≥ kr

2n
−
(

kr

2n

)2

= kr

2n

(
1 − kr

2n

)
≥ kr

4n
.

Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, the fourth from the Taylor expansion of ex, the sixth
from the fact that r ≥ 2, and the last line from the assumption that k < n/r.
Now we show the upper bound. Since the total number of hyperedges in the graph
is
(

n
r

)
, we have that |δ(X)| ≤

(
n
r

)
. Hence, |δ(X)|/

(
n
r

)
≤ 1. It remains to show that

|δ(X)|/
(

n
r

)
≤ 4|X|r/n = 4rk/n. We consider 3 subcases based on the values of r and k:

Subcase 1: r ≥ n/4. Since r ≥ n/4 and |X| ≥ 1, we have that |X|r
n ≥ 1

4 . Therefore

|δ(X)|(
n
r

) ≤ 1 ≤ 4 |X|r
n

Subcase 2: r < n/4 and k < r. In this case, we have that
(

k
r

)
= 0. Therefore,

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
=
(

n
r

)
−
(

n−k
r

)(
n
r

)
= 1 −

(
n−k

r

)(
n
r

)
≤ 1 −

(
1 − r

n − k

)k

≤ 1 − e−2rk/(n−k)

≤ 1 −
(

1 − 2rk

n − k

)

FSTTCS 2022

6:18 Approx Representation of Sym Submodular Functions

= 2rk

n − k

≤ 4rk

n
.

The fourth line follows from the lower bound in the first conclusion of Claim 19. The
fifth line follows from observing that 0 < k/(n − r) ≤ 2/3 (since k ≤ n/2 and r ≤ n/4)
and ln(1 − x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows from the Taylor
expansion of ex, and the last line follows from the fact that k ≤ n/2.
Subcase 3: r < n/4 and k ≥ r. In this case we have that

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≤
(

n
r

)
−
(

n−k
r

)(
n
r

)
= 1 −

(
n−k

r

)(
n
r

)
≤ 1 −

(
1 − k

n − r

)r

≤ 1 − e−2rk/(n−r)

≤ 1 −
(

1 − 2rk

n − r

)
= 2rk

n − r

≤ 2rk

3n/4

≤ 4rk

n
.

The fourth line follows from the lower bound in the second conclusion of Claim 19.
The fifth line follows from observing that 0 < k/(n − r) ≤ 2/3 (since k ≤ n/2 and
r ≤ n/4) and ln(1 − x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows from the
Taylor expansion of ex. The second to last line follows from the fact that r < n/4. ◀

The DAG Visit Approach for Pebbling
and I/O Lower Bounds
Gianfranco Bilardi #

Department of Information Engineering, University of Padova, Italy

Lorenzo De Stefani1 #

Department of Computer Science, Brown University, Providence, RI, USA

Abstract
We introduce the notion of an r-visit of a Directed Acyclic Graph DAG G = (V, E), a sequence of
the vertices of the DAG complying with a given rule r. A rule r specifies for each vertex v ∈ V a
family of r-enabling sets of (immediate) predecessors: before visiting v, at least one of its enabling
sets must have been visited. Special cases are the r(top)-rule (or, topological rule), for which the
only enabling set is the set of all predecessors and the r(sin)-rule (or, singleton rule), for which the
enabling sets are the singletons containing exactly one predecessor. The r-boundary complexity of a
DAG G, br (G), is the minimum integer b such that there is an r-visit where, at each stage, for at
most b of the vertices yet to be visited an enabling set has already been visited. By a reformulation
of known results, it is shown that the boundary complexity of a DAG G is a lower bound to the
pebbling number of the reverse DAG, GR. Several known pebbling lower bounds can be cast in
terms of the r(sin)-boundary complexity. The main contributions of this paper are as follows:

An existentially tight O
(√

doutn
)

upper bound to the r(sin)-boundary complexity of any DAG
of n vertices and out-degree dout.
An existentially tight O

Ä
dout

log2 dout
log2 n

ä
upper bound to the r(top)-boundary complexity of any

DAG. (There are DAGs for which r(top) provides a tight pebbling lower bound, whereas r(sin)

does not.)
A visit partition technique for I/O lower bounds, which generalizes the S-partition I/O technique
introduced by Hong and Kung in their classic paper “I/O complexity: The Red-Blue pebble
game”. The visit partition approach yields tight I/O bounds for some DAGs for which the
S-partition technique can only yield a trivial lower bound.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Pebbling, Directed Acyclic Graph, Pebbling number, I/O complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.7

Related Version Full Version: https://arxiv.org/pdf/2210.01897.pdf

Funding Gianfranco Bilardi: This work was supported in part by the Italian National Center for
HPC, Big Data, and Quantum Computing; by MIUR, the Italian Ministry of Education, University
and Research, under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms for HArnessing
Networked Data); and by the University of Padova, under Project CPGA3 (Parallel and Hierarchical
Computing: Architectures, Algorithms, and Applications).

1 Introduction

A visit of a Directed Acyclic Graph (DAG) is a sequence of all its vertices. We consider
different types of visits, where a type is specified by a visit rule r, a prescription that a
vertex v can be visited only after all the vertices in one of a given family of enabling sets of
predecessors of v have been visited. One example is the singleton visit rule, r(sin), where

1 Corresponding author

© Gianfranco Bilardi and Lorenzo De Stefani;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bilardi@dei.unipd.it
mailto:lorenzo_destefani@brown.edu
https://orcid.org/0000-0001-9569-2086
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.7
https://arxiv.org/pdf/2210.01897.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The DAG Visit Approach for Pebbling and I/O Lower Bound

each vertex is enabled by each singleton containing one of its predecessors. Breadth First
Search (BFS) and Depth First Search (DFS) visits are special cases of r(sin)-visits. Another
example is the topological visit rule, r(top), where a vertex v is enabled only by the set of all
its predecessors. The r(top)-visits are exactly the topological orderings of the DAG. Many
other rules are possible; for example, the enabling sets of a vertex could be those with a
majority of its predecessors.

In this work, we investigate the r-boundary complexity of DAGs. The boundary complexity
of G, br(G), is the minimum integer b such that there exists an r-visit where, at each stage,
for at most b of the vertices yet to be visited an enabling set has already been visited.
By a reformulation of the results of Bilardi, Pietracaprina, and D’Alberto [10], in terms
of the familiar concept of visit, we show that the boundary complexity of a DAG G is a
lower bound to the pebbling number p(GR) of its reverse DAG, i.e., p(GR) ≥ br(G). The
pebbling number of a DAG provides a measure of the space required by a computation with
data dependences described by that DAG, in the pebble game framework, introduced by
Friedman [18], Paterson and Hewitt [27], Hopcroft, Paul and Valiant [21]. While a pebbling
game resembles a visit where each vertex can be visited multiple times, the relation between
pebbling number and boundary complexity is rather subtle, as indicated by the fact that it
involves graph reversal. Several pebbling lower bounds arguments in the literature (examples
are mentioned in Section 3) can indeed be recast in terms of the r(sin)-boundary complexity,
thus achieving some unification in the derivation of these results. In this context, it is natural
to explore the potential of the visit approach to yield significant pebbling lower bounds for
arbitrary DAGs.

Main contributions. We begin our study with the singleton rule and show that, for any
DAG G with n nodes and out-degree at most dout, br(sin)(G) ≤ 4

√
doutn. As a universal

bound, this result cannot be improved, as shown by matching existential lower bounds. With
respect to pebbling, there are DAGs such that br(sin)(G) = Ω(p(GR)), for which the singleton
rule provides asymptotically tight pebbling lower bounds. But there are also DAGs with
very low r(sin)-boundary complexity, where the reverse DAG has high pebbling number. For
example, Paul, Tarjan, and Celoni [28] introduced a DAG, which we will denote as PTC, of
n vertices and in-degree din = O(1), and proved that p(PTC) = Θ(n

logn). This DAG can be
easily modified to yield a DAG PTC+ with p(PTC+) = Θ(n

logn) and br(sin)((PTC+)R) = 2,
thus exhibiting a large gap between boundary and pebbling complexity.

It is natural to wonder whether other visit rules can lead to better bounds, whereas
the singleton rule does not. We have then turned our attention to the topological rule
showing that for any DAG G with n nodes and out-degree at most dout ≥ 2 the boundary
br(top)(G) = dout−1

log2 dout
log2 n. This bound is existentially tight. It indicates that the potential of

the topological rule for pebbling lower bounds is limited. However, the topological technique
is not subsumed by the singleton one, as we exhibit DAGs for which topological visits yield
a tight pebbling lower bound, whereas singleton visits yield a trivial lower bound.

For an arbitrary visit rule, r, we show that br(G) ≤ (dout − 1)ℓ+ 1, where ℓ is the length
of the longest paths of G. This result is also existentially tight and is consistent with the
known pebbling upper bound, p(GR) ≤ (dout − 1)ℓ+ 1. It remains an open question whether
a tight boundary-complexity lower bound to the pebbling number can always be found by
tailoring the choice of r to the DAG, or there are DAGs for which the two metrics exhibit a
gap for any rule.

We also exploit visits to analyze the I/O complexity of a DAG G, IO (M,G), pioneered by
Hong and Kung in [23]. This quantity is the minimum number of accesses to the second level
of a two-level memory, with the first level (i.e.,, the cache) of size M , required to compute G.

G. Bilardi and L. De Stefani 7:3

Such computation can be modeled by a game with pebbles of two colors. Let k(G,M) be the
smallest integer k such that the vertices of G can be topologically partitioned into a sequence
of k subsets, each with a dominator set and minimum set no larger than M . (D is a dominator
of U if the vertices of U can be computed from those of D. The minimum set of U contains
those vertices of U with no successor in U .) Then, IO (G,M) ≥ M(k(G, 2M) − 1) [23].
Dominators play a role in the red-blue game (where pebbles are initially placed on input
vertices which, if unpebbled, cannot be replebbled), but not in standard pebbling (where a
pebble can be placed on an input vertex at any time, hence a dominator of what is yet to be
computed needs not be currently in memory). Intuitively, each segment of a computation
must read a dominator set D of the vertices being computed and at least |D| −M of these
reads must be to the second level of the memory. It is also shown in [23] that the minimum
set, say Y , of a segment of the computation must be present in memory at the end of such
segment, so that at least |Y | − M of its elements must have been written to the second
level of the memory. In the visit perspective, the minimum set emerges as the boundary of
topological visits, capturing a space requirement at various points of the computation. In
addition to providing some intuition on minimum sets, this insight suggests a generalization
of the partitioning technique to any type of visit. In fact, the universal upper bounds on visit
boundaries mentioned above do indicate that the singleton rule has the potential to yield
better lower bounds than the topological one. Following this insight, we have developed the
visit partition technique. For some DAGs for which S partitions can only lead to a trivial,
Ω(1), lower bound, visit partitions yield a much higher and tight lower bound.

Further related work. Since the work of Hong and Kung [23], I/O complexity has attracted
considerable attention, thanks also to the increasing impact of the memory hierarchy on
the performance of all computing systems, from general purpose processors, to accelerators
such as GPUs, FPGAs, and Tensor engines. Their S-partition technique has been the
foundation to lower bounds for a number of important computational problems, such as the
Fast Fourier Transform [23], the definition-based matrix multiplication [3, 22, 33], sparse
matrix multiplication [26], Strassen’s matrix multiplication [7] (this work also introduces
the “G-flow” technique, based on the Grigoriev flow of functions [19], to lower bound the
size of dominator sets), and various integer multiplication algorithms [8, 16]. Ballard et
al. [5, 4] generalized the results on matrix multiplication of [23], by means of the approach
proposed by Irony, Toledo, and Tiskin in [22] based on the Loomis-Whitney geometric
theorem [24], which captures a trade-off between dominator size and minimum set size. The
same papers present tight I/O complexity bounds for various linear algebra algorithms for
LU/Cholesky/LDLT/QR factorization and eigenvalues and singular values computation.

Four decades after its introduction, the S-partition technique [23] is still the state of the
art for I/O lower bounds that do hold when recomputation (the repeated evaluation of the
same DAG vertex) is allowed. Savage [30] has proposed the S-span technique, as “ a slightly
weaker but simpler version of the Hong-Kung lower bound on I/O time”[31]. The S-covering
technique [10], which merges and extends aspects from both [23] and [30], is in principle
more general than the S-partition technique and leads to interesting resources-augmentation
considerations; however, we are not aware of its application to specific DAGs.

A number of I/O lower bound techniques have been proposed and applied to specific
DAG algorithms for executions without recomputations. These include the edge expansion
technique of [6], the path routing technique of [32], and the closed dichotomy width technique
of [11]. While the emphasis in this paper is on models with recomputation, Section 5.4 does
show how the visit partition technique specializes when recomputation is not allowed.

FSTTCS 2022

7:4 The DAG Visit Approach for Pebbling and I/O Lower Bound

Automatic techniques to derive I/O lower bounds - with and without recomputation -
have been developed, in part with the goal of automatic performance evaluation and code
restructuring for improving temporal locality in programs, by Elango et al. [17], Carpenter
et al. [13], Olivry et al. [25].

Paper organization. The visit framework is formulated in Section 2. The relationship
between boundary complexity and pebbling number is discussed in Section 3. Section 4
presents universal upper bounds to the boundary complexity. Section 5 develops the visit
partition technique for I/O lower bounds. Conclusions are offered in Section 6. Proofs and
technical material not included in the main body due to space limitations are presented in
the Appendix or in the full version of this work [9].

2 Visits of a DAG

A Directed Acyclic Graph (DAG) G = (V,E) consists of a finite set of vertices V and of a set
of directed edges E ⊆ V × V , which form no directed cycle. We say that edge (u, v) ∈ E

is directed from u to v. We let pre (v) = {u | (u, v) ∈ E} denote the set of predecessors of
v and suc (v) = {u | (v, e) ∈ E} denote the set of its successors. The maximum in-degree
(resp. out-degree) of G is defined as din = maxv∈V |pre (v) | (resp., dout = maxv∈V |suc (v) |).
Further, we denote as des (v) (resp., anc (v)) of v’s descendants (resp., ancestors), that is, the
vertices that can be reached from (resp., can reach) v with a directed path. Given V ′ ⊆ V ,
we say that G′ = (V ′, E ∩ (V ′ × V ′)) is the sub-DAG of G induced by V ′.

Let ϕ = (v1, . . . , vi, . . . , vj , . . . , vk) be a sequence of vertices with |ϕ| = k. Let ϕ[i] = vi,
for 1 ≤ i ≤ j ≤ k, we denote as ϕ(i..j] = (vi+1, . . . , vj) the infix from the i-th element
excluded to the j-th included. If j < i, ϕ(i..j] is the empty sequence. Depending on the
context, we sometimes interpret a sequence as the set of items appearing in the sequence.

A visit of a DAG G = (V,E) is a sequence of all its vertices, without repetitions, complying
with a visit rule:

▶ Definition 1 (Visit rule). A visit rule for a DAG G = (V,E) is a function r : V → 22V

where r (v) ⊆ 2pre(v) is a non-empty family of sets of predecessors of v called enablers of v.
The set of visit rules of G is denoted as R (G).

Intuitively, a rule r ∈ R (G) permits a vertex v to be visited only after at least one of its
enablers Q ∈ r (v) has been entirely visited.

▶ Definition 2 (r-sequence and r-visit). Given a DAG G = (V,E) and a visit rule r ∈ R (G),
a sequence ψ of distinct vertices is an r-sequence of G if, for every 1 ≤ i ≤ |ψ|, the prefix
ψ[1..i− 1] includes an enabler Q ∈ r (ψ[i]). The r-sequences with |ψ| = n are called r-visits
and their set is denoted as Ψr (G).

Clearly, any prefix of an r-sequence is an r-sequence. Of particular interest are the “
topological visit rule” defined as r(top) (v) = {pre (v)} and the “singleton visit rule” defined
as r(sin) (v) = {{u} | u ∈ pre (v)} if |pre (v) | > 0 and r(sin) (v) = {∅} otherwise.

A vertex v not contained in ψ, but enabled by some non-empty set Q included in ψ, is
considered to be a “boundary” vertex.

▶ Definition 3 (Boundary of an r-sequence). Given a DAG G = (V,E), r ∈ R (G), and an
r-sequence ψ of G, the r-boundary of ψ is defined as the set:

Br (ψ) = {v ∈ V \ ψ | ∃Q ̸= ∅ s.t. Q ∈ r (v) ∧Q ⊆ ψ} .

G. Bilardi and L. De Stefani 7:5

Input vertices are never contained in the boundary of any sequence since their only enabler
is the empty set.

▶ Definition 4 (Boundary complexity). The r-boundary complexity of an r-sequence ψ is
defined as:

br (ψ) = max
i∈{1,...,|ψ|}

|Br (ψ[1..i])| .

The r-boundary complexity of G is defined as the minimum r-boundary complexity among
all r-visits of G:

br (G) = min
ψ∈Ψr(G)

br(ψ).

By definition, for any r ∈ R (G), any ψ ∈ Ψr(top) (G) and, for any i = 1, 2, . . . , n we have
Br(top) (ψ[1..i]) ⊆ Br (ψ[1..i]); thus, br(top) (ψ) ≤ br (ψ). Similarly, if ∅ ∈ r(v) only when v

has no predecessors, then br (ψ) ≤ br(sin) (ψ), for any ψ ∈ Ψr (G).

3 Boundary complexity and pebbling number

In this section, we discuss an interesting relationship between the pebbling number of a
DAG G = (V,E) and the boundary complexity of its reverse DAG GR = (V,ER), where
ER = {(u, v)|(v, u) ∈ E}, which can prove useful in deriving pebbling lower bounds.

▶ Theorem 5 (Pebbling lower bound). Let GR be the reverse of G = (V,E). Then, for any
r ∈ R (GR), the pebbling number of G satisfies:

p (G) ≥ br(GR) = min
ψ∈Ψr(GR)

br (ψ) .

In general, the analysis of the boundary complexity is simpler than the analysis of the
pebbling number, in part because, in a visit, a vertex can occur only once, whereas, in a
pebbling schedule, a vertex can occur any number of times.

The proof of the preceding theorem, given in Appendix, is a reformulation of a result
obtained by Bilardi et al. in[10]. They introduce the Marking Rule technique, which is
applied to DAG G rather than to its reverse. The advantage of visits over markings lies
in a more direct leverage of intuition, given the widespread utilization of various kinds of
visits (e.g., breadth-first search, depth-first search, topological ordering) in the theory and
applications of graphs.

We will explore the potential of the visit approach to yield interesting lower bounds
for specific DAGs in the next section. Here, we investigate whether Theorem 5 could be
strengthened by restricting the set of r-visits ψ among which br (ψ) is minimized. The answer
turns out to be negative. To clarify in what sense, we need to consider that the proof of the
theorem is based on mapping each pebbling schedule π of G to an r-visit fr(π) of GR, such
that the boundary of each prefix of fr(π) is completely covered with pebbles at some stage
of π. In terms of such mapping, we have:

▶ Lemma 6 (Visit from pebbling schedule). For any r ∈ R (GR) and any ψ ∈ Ψr (GR), there
exists a pebbling schedule π of G such that fr(π) = ψ.

Theorem 5 provides a general approach for obtaining pebbling lower bounds, which encom-
passes a number of arguments developed in the literature to analyze DAGs such as directed
trees [27], pyramids [29] and stacks of superconcentrator [21]. A reformulation of these
arguments within the visit framework can be found in [15] stacks of superconcentrators and
in [9, Section 3.1] for q-pyramid and q-complete trees DAGs.

FSTTCS 2022

7:6 The DAG Visit Approach for Pebbling and I/O Lower Bound

4 Upper bounds on boundary complexity

It is natural to wonder whether the pebbling lower bound of Theorem 5 is tight. As we will
see in this section, both the singleton and the topological rules, while providing tight bounds
for some DAGs, yield weak lower bounds for others. Whether a tight lower bound could be
obtained for any DAG G, by tailoring the visit rule to G, does remain an open question.

In particular, we will establish universal upper bounds on the boundary complexity of
any DAG, with respect to any rule, in terms of outdegree and depth. We will also establish
(different) universal upper bounds for both the singleton and the topological rule in terms
of outdegree and the number of vertices. Before presenting these results, we introduce the
notion of enabled reach, a particular set of vertices associated with a vertex v, in the context
of a partial visit that includes v. This concept will play a role in the derivation of each of
the three universal upper bounds.

4.1 The enabled reach of a vertex
In the construction of a visit sequence, we will use a divide and conquer approach whereby,
having constructed a prefix ψ of the sequence, the next segment, ϕ, of the sequence is
obtained by visiting a suitably chosen sub-DAG, G′ = (V ′, E′), according to an appropriate
rule r′. It is useful for the boundary of G′ to be “self-contained” in the sense that its visit
does not generate any boundary outside V ′. If this is the case, the boundary of ψϕ will be
a subset of the boundary of ψ, so that the visit of G′ contributes to the reduction of both
the set of vertices yet to be visited and the current boundary. The enabled reach, a set of
vertices introduced next, induces a sub-DAG G′ with the desired properties.

▶ Definition 7 (Enabled reach). Let G = (V,E) and r ∈ R (G). Given an r-sequence ψ and
a vertex v ∈ ψ, the r-enabled reach of v given ψ is the set:

reachr (v|ψ) = {u | ∃ ψ′u ⊆ des(v) s.t. ψψ′u is an r-sequence} .

Intuitively, we can think of the r-enabled reach of a vertex v given an r-sequence ψ as the
set of all the descendants of v which can be visited by extending ψ only with descendants
of v. As an example, for r(sin), we have that the r(sin)-enabled reach of a vertex v given a
ψ corresponds to the set of the descendants of v not in ψ. The enabled reach exhibits the
following crucial property:

▶ Lemma 8 (Enabled Reach Property). Given G = (V,E), v ∈ V and r ∈ R (G), let ψ be
an r-sequence including v. Let G′ = (V ′, E′) be the sub-DAG induced by V ′ = reachr (v|ψ).
Let r′ ∈ R (G′) be such that r′ (v) = {Q \ ψ|Q ∈ r (v) ∧ Q \ ψ ⊆ V ′}, for all v ∈ V ′. If
ψ′ ∈ Ψr′ (G′) then (a) ψψ′ is a r-sequence of G; (b) for any i = 1, . . . |ψ′|, Br (ψψ′[1..i]) ⊆
Br (ψ) ∪Br′ (ψ′[1..i]); and (c) br (ψψ′) ≤ br (ψ) + br′ (ψ′).

Proof. By definition, Q′ ∈ r (v) if an only is there exists Q ∈ r (v) such that Q′ = Q \ψ. By
construction, for any 1 ≤ j ≤ |ψ′|, a vertex v appears in ψ′[1..j] if there exists Q′ ∈ r′ (v)
such that Q′ ∈ ψ′[1..j] which implies there exists Q ∈ ψψ′[1..j], and, thus, ψψ′[1..j] is an
r-sequence.

Recall that a vertex appears in the boundary of a r sequence if it is enabled but not
visited. By construction, ψ′ = reach (v|ψ), thus, by definition, any vertex which is enabled
by a subset of ψψ′′ must either be included in Br (ψ) or must be included among the vertices
of reach (v|ψ) not yet visited in ψψ′[1..j] and enabled by ψ′, that is Br′ (ψ′[1..i]). Hence, we
have that br (ψψ′) ≤ br (ψ) + br′ (ψ′). ◀

G. Bilardi and L. De Stefani 7:7

Lemma 8 states that visiting the r-enabled reach of a vertex v given a r-sequence ψ of G
does not enable any vertex outside reachr(v|ψ) which was not enabled by ψ alone. Therefore,
once the sub-DAG induced by reachr(v|ψ) is visited, the only vertices left in the r-boundary
are those enabled by ψ that have not been visited thus far.

The enabled reach will be a key ingredient in the construction of visits in the next three
subsections. The choice of both r-sequence ψ and of vertex v has to be tailored to the
particular r. Also, highly influenced by r are the size of the boundary of ψ and the reduction
achieved by G′ in the parameters (e.g., depth or number of vertices) governing the boundary
complexity, hence the shape of the resulting bound.

4.2 General rules
The topological depth of a DAG is the length (i.e., number of edges) of its longest directed
paths. The boundary complexity, according to any visit rule, can be bounded in terms of the
depth and the out-degree. The basic property that is exploited is that if b is a successor of a,
then the depth of the sub-DAG induced by the descendants of b is smaller than the depth of
the sub-DAG induced by the descendants of a.

▶ Theorem 9 (Topological-depth general boundary complexity upper bound). Consider G =
(V,E) with maximum out-degree dout and topological depth ℓ. For any visit rule r ∈ R (G),
there exists an r-visit ψ ∈ Ψr (G) such that br(ψ) ≤ (dout − 1) ℓ+ 1.

Proof of Theorem 9 is presented in the appendix. This upper bound is existentially tight:
For some visit rules r, there exist some DAGs for which br(G) = Θ (doutℓ). An example
is given by the reverse q-pyramid DAG, discussed in the extended version of this work [9,
Section 3.1], for which br(sin)(G) = Θ (doutℓ) = Θ

(√
qn

)
, since dout = q and ℓ =

√
n/q.

Below, we derive universal upper bounds for the singleton and the topological rule, which
are expressed in terms of n and dout. These bounds are tighter than that of Theorem 9 for
DAGs with ℓ suitably large (as a function of n and dout).

4.3 Singleton rule r(sin)

The r(sin) rule has the interesting property that the enabled reach of v, given ψ, contains
all the descendants of v not in ψ. One can easily find a v with suitably few descendants,
say, less than n/2. A r(sin)-sequence ψ that contains v can be obtained as the sequence of
vertices on a path from an input to v. If this path has length k, then its boundary could be
of a size as big as (dout − 1)k + 1; therefore, a small k is a prerequisite to guaranteeing small
boundary complexity. In general, a good enough upper bound to k cannot be guaranteed
for the entire DAG. However, it is possible to partition the DAG into a sequence of “blocks”
such that (i) blocks can be visited one at a time in the order they appear in the sequence;
(ii) there is a reasonably small upper bound (O(

√
doutn)) on the number of nodes that are

enabled by the nodes in a block, but lie outside the block, and they lie all in the next block;
and (iii) in each block, each node is reachable from one of the block inputs by a path of
reasonably small length (O(

√
doutn)). When the details are filled in, the outlined approach

yields the following results.

▶ Theorem 10. Given an G = (V,E) with |V | = n and maximum out-degree at most dout
there exists a visit ψ ∈ Ψr(sin) (G) s.t. br(sin)(ψ) ≤ 4

(√
2 + 1

)√
doutn.

FSTTCS 2022

7:8 The DAG Visit Approach for Pebbling and I/O Lower Bound

Proof. For dout = 0, all vertices in G are isolated and, having no predecessors, are enabled
only by the empty set. Thus, no vertex belongs to the r(sin)-boundary of any r(sin)-visit ψ,
hence br(sin)(ψ) = 0, and the stated bound holds. In the sequel, we assume dout ≥ 1, and
proceed by induction on n.
Base: For n = 1, that is, G = ({u}, ∅), the statement is trivially verified as v is an input
vertex and the only r(sin)-visit, ψ = u, has r(sin)-boundary complexity zero.
Inductive step (n ≥ 2):

Case 1: |I| > 1. Here, no vertex v is an ancestor of all vertices. Let v ∈ I and let ψ′

be a r(sin)-visit of the DAG induced by des (v), with boundary complexity at most at most
c
√
doutn, which does exist by the inductive hypothesis, since |des (v) | < n. Similarly, let

ψ′′ be a r(sin)-visit of the DAG induced by V \ des (v), with boundary complexity at most
c
√
doutn. Clearly, ψ = ψ′ψ′′ ∈ Ψr(sin) (G). By the definition of enabled reach, for r(sin), we

have that reachr(sin) (v|v) = des (v) \ {v}. Hence, by Lemma 8, Br(sin)(ψ′) = ∅. The stated
bound follows.

Case 2: |I| = 1. We partition V into non-empty “levels” L (1) , . . . , L (ℓs), such that
v ∈ L(i) if and only if the shortest directed path from u to v has length i. This path is also
a r(sin)-sequence. Further, the r-boundary of any r(sin)-sequence of G included in the first i
levels is a subset of the first i+1 levels.

We say that level L(i) is a bottleneck if |L(i)| ≤ γ
√
doutn and let i1 < i2 < . . . < ik denote

the indices of the bottlenecks. Here, γ > 0 is a constant, whose value will be determined in
the course of the proof. Conventionally, we also let ik+1 = ℓs+1 and L(ℓs + 1) = ∅. Since
L(1) = {u}, we have that i1 = 1. We group consecutive levels into blocks Vj = ∪ij≤l<ij+1L (l),
for j = 1, 2, . . . , k, so that the j-th block begins with the j-th bottleneck and ends just before
the (j+1)-st one, or with the last level, L(ℓs), if j = k. The number of levels of a block is
upper bounded as ij+1 − ij ≤

√
n

γ
√
dout

.
We construct an r(sin)-visit of the form ψ = ψ1ψ2 . . . ψk, where ψj is a r(sin)-visit of

the sub-DAG Gj induced by block Vj . Since the Vj ’s partition V , ψ ∈ Ψr(sin) (G). By
the properties of the levels mentioned above, Br(sin)(ψ1 . . . ψj−1) = L (ij). Furthermore, as
V1, . . . , Vj−1 have already been visited by ψ1 . . . ψi−1 and ψj is a r(sin)-visit of Gj , any of its
prefixes ψ′

j may only enable vertices in Vj (i.e., the boundary of ψ′
j in Gj) and vertices in

L(ij+1) (i.e., the children of vertices in ψ′
j ⊆ Vj , which are not in V1 ∪ . . . ∪ Vj). Therefore,

b(sin)
r (ψ) ≤ max

j
{|L (ij) | + |L (ij+1) | + br(sin) (ψj)}

≤ 2γ
√
doutn+ max

j
{br(sin) (ψj)}.

A case analysis shows how each ψj can be chosen so that the above term is at most c
√
doutn.

Case 2.1. |Vj | ≤ n/2. By the inductive hypothesis, there exists ψj ∈ Ψr(sin) (Gj) such that
br(sin)(ψj) ≤ c

√
doutn/2 = c√

2

√
doutn. A sufficient condition for the desired result is that

2γ + c√
2 ≤ c, which we will discuss below.

Case 2.2. |Vj | > n/2. Let u1, u2, . . . , ud be the input vertices of Gj .

Case 2.2.a. No input of Gj has more than n/2 descendants, in Gj . Then, we construct an
r(sin)-visit of Gj as ψj = u1ψu1u2ψu2 . . . , udψud

, where ψul
is a r(sin)-visit, with minimum

boundary complexity, of the sub-DAG induced by the descendants of ul in Gj which have

G. Bilardi and L. De Stefani 7:9

not been visited in u1ψu1u2ψu2 . . . , ul. This is the r(sin)-enabled reach of ul in Gj , given
u1ψu1u2ψu2 . . . , ul. Since the input vertices of Gj are not in the boundary of any prefix of
ψj , by Lemma 8,

b(sin)
r (ψj) ≤ max

l=1,...,d
br(sin)(ψuj

) ≤ c

…
dout

n

2 ,

where the last step follows by the inductive hypothesis, considering that ψuj ⊆ des (uj) and,
by the assumption of this case, |des (uj) | ≤ n/2 (here, and throughout the rest of this proof,
des (v) refers to the descendants of v in Gj). The sufficient condition for the desired result is
the same as in Case 2.1

Case 2.2.b. There is an input of Gj , w.l.o.g, say u1, such that |des (u1) | > n/2. In order
to break down Vj into pieces of size smaller than n/2, to be visited one at a time, we select a
vertex y ∈ des (u1) such that |des (y) | ≥ n/2 and maxz∈suc(y) |des (z) | < n/2. Specifically, we
can choose y as the last vertex, in a topological ordering of Gj , with at least n/2 descendants.
Let y ∈ L(i), where clearly ij ≤ i < ij+1, and consider a shortest path πy among those from
input vertices of Gi to y. We have |π| = i− ij < ij+1 − ij ≤

√
n

γ
√
dout

.
Consider now the visit ψj = πyψyψ

′ such that ψy is a r(sin)-visit of the sub-DAG induced
by Vj ∩ reachr(sin) (y|πy) constructed as discussed in Case a, and ψ′ is a r(sin)-visit, with
minimum boundary complexity, of the sub-DAG induced by Vj \ πyψy. The boundary
associated with any prefix of π includes at most dout successors for each of its vertices, which
are at most |π| ≤

√
n

γ
√
dout

. Thus, the total contribution of π to the boundary is at most
√
doutn
γ . Arguing along the lines of Case a, it can be shown that br(sin)(ψy) ≤ c√

2

√
doutn.

Finally, since |ψv∗ | ≥ n/2, then |Vj \ πyψy| < n/2. Hence, by the inductive hypothesis,
br(sin) (ψ′) < c√

2

√
doutn.

By Lemma 8, we can conclude that ψj ∈ Ψr(sin) (Gj) and

br(sin)(ψj) ≤ 1
γ

√
doutn+ max{br(sin) (ψy) , br(sin) (ψ′)} ≤

Å 1
γ

+ c√
2

ã√
doutn.

To establish the stated result, we need to satisfy the bound 2γ+ 1
γ + c√

2 ≤ c. This requirement
is more stringent than the one for Case 2.1 and Case 2.2.a. Solving for c, the sufficient
condition is c ≥

√
2
(√

2 + 1
) Ä

2γ + 1
γ

ä
. The r.h.s. is minimized when we let γ = 1√

2 , which
yields c ≥ 4

(√
2 + 1

)
. ◀

The upper bound in Theorem 10 is existentially tight as there exist DAGs, such as q-pyramids
discussed in [9, Section 3.1], of matching r(sin)-boundary complexity.

4.4 Topological rule r(top)

The following property is peculiar to the r(top)-enabled reach:

▶ Lemma 11 (Disjointness of enabled r(top)-reach). Let ψ be a r(top)-sequence of DAG
G = (V,E) and let u, v ∈ br(top) (ψ) be distinct vertices. Then, reachr(top) (u|ψu) ∩
reachr(top) (v|ψv) = ∅.

The proof is presented in the Appendix. The disjointedness of the enabled-reach sets ensures
that, if there are k vertices in the boundary, at least one of them has an enabled reach with
fewer than n/k vertices. By leveraging this property, we obtain the following result.

FSTTCS 2022

7:10 The DAG Visit Approach for Pebbling and I/O Lower Bound

▶ Theorem 12 (Upper bound boundary complexity r(top)-visits). For any DAG G = (V,E) ,
there exists a visit ψ ∈ Ψr(top) (G) such that (a) if dout = 0, then br(top) (ψ) = 0; (b) if dout = 1,
then br(top) (ψ) = 1; and (c) if dout ≤ D, for some D ≥ 2, then br(top) (ψ) ≤ D−1

log2 D
log2 n+ 1.

The proof of Theorem 12 is presented in the Appendix. The upper bound in Theorem 12 is
existentially tight as there exist DAGs such as inverted q-trees (discussed in the extended
version of this work [9, Section3.1]) with matching r(top)-boundary complexity.

Interestingly, there exist DAGs for which the r(top)-boundary complexity is asymptotically
higher than the r(sin)-boundary complexity. One such DAG G is shown in Figure 1. It is a
simple exercise to prove that b(sin)

r (G) = 1, b(top)
r (G) = Θ (log n), and p (GR) = Θ (log n).

5 Visits and I/O complexity

In this section, we show how the visit framework is fruitful in the investigation not just of
space complexity but also of I/O complexity, by developing a new I/O lower bound technique,
named “visit partition”. This extends a result by Hong and Kung [23], which has provided
the basis for many I/O lower bounds in the literature thus far.

The I/O model of computation is based on a system with a memory hierarchy of two
levels: a fast memory or cache of M memory words and a slow memory, with an unlimited
number of words. We assume that any value associated with a DAG vertex can be stored
within a single memory word. A computation is a sequence of steps of the following types: (i)
operations, with operands and results in cache; (ii) reads, that copy the content of a memory
location into a cache location; and (iii) writes, that copy the content of a cache location
into a memory location. Reads and writes are also called I/O operations. Input values are
assumed to be available in the slow memory at the beginning of the computation. Output
values are required to be in the slow memory at the end of the computation. The conditions
under which a computation is a valid execution of a given DAG are intuitively clear. They
can be formalized in terms of the “red-blue pebble game”, introduced by Hong and Kung in
[23]. The I/O complexity IO (G,M) of a DAG G is defined as the minimum number of I/O
operations over all possible computations of G. The I/O write complexity IOW (G,M) and
the I/O read complexity IOR (G,M) are similarly defined.

The visit partition approach to I/O lower bounds develops along the following lines:
A visit rule r is chosen for the analysis.
A procedure is specified to map each computation ϕ of the given DAG G to an r-visit ψ
of the reverse DAG GR.
Given any partition of visit ψ into consecutive segments, a set of I/O operations is
identified for each segment, the sets of different segments being disjoint, whence their
contributions can be added in the I/O lower bound.
The number of read operations associated with a segment is lower bounded in terms of
the size of a minimum post-dominator of the segment.
The number of write operations associated with a segment is lower bounded in terms of
the number of segment vertices that either inputs of GR (hence, outputs of G), or belong
to the boundary of the visit at the beginning of the segment. The resulting global lower
bound, modified by the addition of the term |I| − |O|, also applies to read operations.
A lower bound, q, to the I/O of a given DAG, can be established by showing that, for
each visit, there exists a segment partition that requires at least q I/O operations, between
reads and writes.

The technical details of this outline are presented in the next subsections.

G. Bilardi and L. De Stefani 7:11

5.1 Segment partitions of a visit
The concept of post-dominator set mirrors that of dominator set used in [23]:

▶ Definition 13 (Post-dominator set). Given H = (W,F) and X ⊆ W , a set P ⊆ W is a
post-dominator set of V ′ ⊆ W if every directed path from a vertex in V ′ to an output vertex
intersects P . We denote as pdmin (X) the minimum size of any post-dominator set of X.

It is simple to see that P is a post-dominator set of X in H if and only if P is a dominator
set of X in the reverse DAG HR.

Let ψ be an r-visit of GR = (V,ER). A segment partition of ψ into k segments is identified
by a sequence of indices i = (i1, i2, . . . , ik), with 1 ≤ i1 < i2 < . . . < ik = n. We also let
i0 = 0, for convenience. Since ψ is a permutation of the vertices in V , the segments partition
V . For 1 ≤ j ≤ k, ψ(ij−1..ij] is called the j-th segment of the partition. Two measures play
a role in our I/O lower bound analysis of any segment:

The size, pdmin (ψ(ij−1..ij]), of minimum post-dominator sets of ψ(ij−1..ij] .
The r-entering boundary size

b(ent)
r (ψ(ij−1..ij]) = |B(ent)

r (ψ(ij−1..ij]) |

where, denoting as IR the set of input vertices of GR,

B(ent)
r (ψ(ij−1..ij]) = (IR ∪Br (ψ [1..ij−1])) ∩ ψ(ij−1..ij].

5.2 Lower bound
Let ϕ = (ϕ1, ϕ2, . . . , ϕT) be a computation of a DAG G = (V,E) in the I/O model, in T

steps, where ϕt is the t-th step. Given an r ∈ R (GR), we construct an r-visit ψ of GR
corresponding to ϕ. Our I/O lower bounds will be based solely on properties of the visit.
To construct ψ, the computation is examined backward, one step at a time. The visit
is constructed incrementally, by extending an initially empty prefix. Let ψ[1..i(t)] be the
prefix already constructed just before processing computation step ϕt (initially, i(T) = 0).
For t = T, T−1, . . . 1, if ϕt is either a functional operation evaluating vertex v ∈ V \ I or
a read operation copying a vertex v ∈ I (input of G) into the cache, then, if v has not
already been visited (i.e., v /∈ ψ[1..i(t)]) and at least one enabler set Q ∈ r (v) has already
been visited (i.e., Q ⊆ ψ[1..i(t)]), then v is added to the visit (i.e., i(t−1) = i(t)+1 and
ψ[1..i(t−1)] = ψ[1..i(t)]v). Otherwise, the visit constructed thus far remains unchanged (i.e.,
i(t− 1) = i(t)).

By construction, a vertex is included in ψ at most once and only after at least one of
its enablers has been visited. To conclude that ψ is indeed an r-visit of GR it remains to
show that it contains all the vertices. The vertices in IR (which are the inputs of GR, that
is, the outputs of G) are added to the visit when they are first encountered in the backward
processing of ϕ, since they are enabled by the empty set. Suppose now, by contradiction,
that there are vertices in V \ IR that are not included in ψ. Then, let tv be the smallest t
such that v is computed (if v ∈ V \ I) or read from slow memory (if v ∈ I) in step ϕt, and
let u be the vertex with the largest tu that is not in ψ. It must be the case that if ψ[1..i(tu)]
does not include any enabler of u, which in turn implies that there exists a predecessor w
of u (in GR) that does not belong to ψ[1..i(tu)]. Since tw > tu, this implies that ψ[1..i(tw)]
does not include any enabler of w, whence w /∈ ψ, which contradicts the definition of u.

FSTTCS 2022

7:12 The DAG Visit Approach for Pebbling and I/O Lower Bound

The procedure just described to construct an r-visit of GR from an I/O computation ϕ

of G is quite similar to the one in the proof of Theorem 5 for the analysis of the pebbling
number. The differences are due to the circumstance that the standard I/O model assumes
the inputs to be initially available in slow memory, whereas the pebbling model assumes that
the inputs can be (repeatedly) loaded into the working space at any time.

▶ Lemma 14 (Visit partition). Let ϕ be a computation of DAG G = (V,E) on the I/O model
with a cache of M words. Let r ∈ R (GR) and let ψ be the r-visit of GR constructed from ϕ,
as described above, and i = (i1, i2, . . . , ik) any of its segment partitions. Then, the number
IOW(ϕ,M) of write I/O operations and the number IOR(ϕ,M) of read I/O operations
executed by ϕ satisfy the bounds

IOW(ϕ,M) ≥ Wr(i, ψ,M) :=
k∑
j=1

max{0, b(ent)
r (ψ(ij−1..ij]) −M}, (1)

IOR(ϕ,M) ≥ Wr(i, ψ,M) + |I| − |O|, (2)

IOR(ϕ,M) ≥ Rr(i, ψ,M) :=
k∑
j=1

max{0, pdmin (ψ(ij−1..ij]) −M}. (3)

The total number IO(ϕ,M) = IOW(ϕ,M) + IOR(ϕ,M) of I/O operations executed by ϕ

satisfies the bound

IO(ϕ,M) ≥ Wψ(i,M) + max{Rψ(i,M),Wψ(i,M) + |I| − |O|}. (4)

Proof. We will analyze the entering boundary and the post-dominator contributions to the
lower bound on the number of, respectively, write and read I/O operations for a generic
segment of the visit ψ(h..i], with 0 ≤ h < i ≤ n, and then compose the contributions of the
segments in partition i. For l = 1, . . . , n, we let τl be such that ψ[l] has been added to visit
ψ in correspondence of computation step ϕτl

. Observe that τ1 > τ2 > . . . > τn, since the
visit is constructed from the computation in reverse. When speaking of cache or of the slow
memory at time t, we refer to their state just before the execution of computation step ϕt.

Proof of (1) – Boundary bound. We claim that, at time τh, the value of each vertex of set
B

(ent)
r (ψ(h..i]) is stored in cache or in slow memory. Let

v ∈ B(ent)
r (ψ(h..i]) = (Br (ψ [1..h]) ∪O) ∩ ψ(h..i],

where O = IR is the set of output vertices of G (also, input vertices of GR). Let v = ψ[g],
with h < g ≤ i.

Case 1. If v ∈ O, then at the time τg ∈ [τi, τh) when it has been visited v has been
computed for the last time. Thereafter, by the rules of the I/O model, the value of v must
be kept in memory till the end of the computation. At time τh, v can be either in cache or
slow memory, but at some time t > τg it must be written in slow memory.

Case 2. If v ∈ Br (ψ [1..h]), then ψ [1..h] includes an r-enabler of v and we consider the
smallest index f such that ψ [1..f]) includes an r-enabler of v. Clearly f ≤ h and u = ψ[f] is
a successor of v in G. We argue that the value of v must be in memory during the interval
(τg, τf]. In fact, when u is computed, v must be in cache. We separately analyze two subcases.

G. Bilardi and L. De Stefani 7:13

Case 2.1. If v ∈ V \ I, then it is not computed at any time t ∈ (τg, τf], otherwise v would
be visited at t. Since τg < τh ≤ τf , we have that (a copy of the value of) v is in memory at
time τh.

Case 2.2. If v ∈ I, then it is not read from slow memory at any time t ∈ (τg, τf], otherwise
v would be visited at t. Then, throughout this interval, v must be kept in cache. Since
τg < τh ≤ τf , we have that (a copy of the value of) v is in cache at time τh.

Given that at most M vertices of B(ent)
r (ψ(h..i]) can be in cache at τh, we conclude that

at least max{0, |B(ent)
r (ψ(h..i]) | −M} = max{0, bentr (ψ(h..i]) −M} vertices must be in slow

memory. Such vertices must all fall under Case 2.1 since the vertices in Case 2.2 must be
in the cache. Then, they must have been written into slow memory, thus contributing to
the number of write I/O, like the vertices in O (Case 1). Moreover, the contributions of the
(disjoint) segments of partition i can be added, since they count write operations involving
vertices that belong to disjoint sets. This concludes the proof for (1).

Proof of (2) – Modified Boundary bound. By examining the argument for Case 2.1, we
see that the vertices involved must also be read, at some time t ≥ τh, so that, those that are
not in cache at time τh contribute to the number of read I/O. Each vertex in I is read at
least once from slow memory. Finally, considering that no read I/O has been argued when
v ∈ O, we reach (2).

Proof of (3) – Post-dominator bound. We claim that the set Y of vertices that are in
cache at time τi or are read into the cache during the interval [τi, τh) is a dominator set of
ψ(h..i] in G or, equivalently, a post-dominator set of ψ(h..i] in GR.

Let v = ψ[g], with h < g ≤ i. If v ∈ I, then at the time τg ∈ [τi, τh), when v has been
visited, it has been read into the cache, so that v ∈ Y , whence v is dominated by Y .

If v ∈ V \ I, then at the time τg ∈ [τi, τh) when v has been visited it has been computed.
If, by way of contradiction, v is not dominated by Y , then there is a directed path in G, say
(v1, v2, . . . vq = v), with no vertex in Y . Let vs be the first vertex on this path computed
during interval [τi, τh), which must exist since v is computed during such interval. When vs
is computed, vs−1 must be in cache, since it is one of its operands. However, during [τi, τh),
vs−1 cannot be in cache since is not computed (by the definition of vs), nor is it available
at the initial time τi or read from slow memory (since vs /∈ Y). Thus, we have reached a
contradiction, which shows that v is actually dominated by Y .

Given that at most M vertices of Y can be initially in the cache, we conclude that at
least max{0, |Y | −M} ≥ max{0, pdmin(ψ(h..i]) −M} must be brought into cache by read
operations that occur during the interval [τi, τh). Moreover, the contributions of the (disjoint)
segments of partition i can be added since they count read operations occurring in different
time intervals. This concludes the proof for (3).

Finally, a straightforward combination of bounds (1), (2), and (3) yields bound (4). ◀

We observe that, in Lemma 14, we can choose the visit rule and then, for the visit ψ
corresponding to a given computation ϕ, we can choose the segment partition i with the goal
of maximizing the resulting lower bound for the cost metric of interest. However, for the
lower bound to apply to (all computations of) DAG G, we have to consider the minimum
lower bound over all visits. The preceding observations are made more formal in the next
theorem. It is generally possible that none of the computations that minimize the number of
read operations also minimizes the number of write operations, so that the I/O complexity
may be larger than the sum of the read and of the write complexity.

FSTTCS 2022

7:14 The DAG Visit Approach for Pebbling and I/O Lower Bound

▶ Theorem 15 (I/O lower bound). Given a DAG G = (V,E), with input set I and output
set O, a visit rule r ∈ R (GR), a visit of GR according to this rule ψ ∈ Ψr (GR), and a cache
size M , we define the quantities

Wr(ψ,M) = max
i∈I(ψ)

Wr(i, ψ,M), (5)

Rr(ψ,M) = max
i∈I(ψ)

Rr(i, ψ,M). (6)

where I(ψ) denotes the set of all segment partitions of ψ and the quantities Wψ(i,M) and
Rψ(i,M) are those introduced in Equations (1) and (3), respectively. Then, the write I/O
complexity IOW (G,M), the read I/O complexity IOW (G,M), and the total I/O complexity
IO (G,M) satisfy the following bounds:

IOW (G,M) ≥ min
ψ∈Ψr(GR)

Wr(ψ,M), (7)

IOR (G,M) ≥ min
ψ∈Ψr(GR)

max{Rr(ψ,M), Wr(ψ,M) + |I| − |O|}, (8)

IO (G,M) ≥ min
ψ∈Ψr(GR)

{Wr(ψ,M) + max{Rr(ψ,M),Wr(ψ,M) + |I| − |O|}}. (9)

Proof. Bound (1) of Lemma 14 applies to a computation ϕ of G for which the procedure
constructing the visit outputs ψ. The bound holds for any segment partition i and, in
particular, for the partition that maximizes Wr(i, ψ,M). Using Definition (5), we obtain
IOW (ϕ,M) ≥ Wr(ψ,M). To formulate a lower bound that holds for any computation
ϕ, hence for any visit ψ, we need to minimize with respect to ψ ∈ Ψr (GR), arriving at
Bound (7). Bounds (8) and (9) are established by analogous arguments. ◀

5.3 Comparison with Hong and Kung’s S-partition technique
Hong and Kung [23] introduced the “S-partition technique”, for I/O lower bounds. In this
section, we show that the central result of their approach can be derived as a corollary of the
visit partition approach, when the latter is specialized to the topological visit rule r(top).

The S-partitions of a DAG are defined in terms of dominator and minimum sets. Given
a DAG G = (V,E) and a set V ′ ⊆ V , we say that D ⊆ V is a dominator set of V ′ if every
directed path from an input vertex of G to a vertex in V ′ intersects D. The minimum set of
V ′ is the set of all vertices of V ′ that have no successors in V ′. An S-partition is a sequence
(V1, V2, . . . , Vk) of sets such that (a) they are disjoint and their union equals V ; (b) each Vj
has a dominator set of size at most S; (c) the minimum set of each Vj has size at most S;
(d) there is no edge from a vertex in Vj to a vertex in ∪j−1

i=1Vi.

▶ Theorem 16 (Adapted from [23, Theorem 3.1]). Any computation of a DAG G = (V,E)
on the I/O model with a cache of M words, executing q I/O operations, is associated with a
2M -partition of G with k sets, such that Mk > q > M(k − 1). Therefore, if k(G, 2M) is the
minimum size of a 2M -partition of G, the I/O complexity of G satisfies:

IO (G,M) ≥ M (k(G, 2M) − 1) . (10)

Next, we show that when r = r(top), Bound (9) of Theorem 15 implies Bound (10) of
Theorem 16. In the visit framework, minimum sets arise as the boundary of r(top)-visits.

▶ Theorem 17 (Comparison with S-partition technique). Given a DAG G, let ψ be any
r(top)-visit of GR. There exists at least one segment partition i = (i1, . . . , ik) of ψ such that

Wr(i, ψ,M) + Rr(i, ψ,M) ≥ M (k(G, 2M) − 1) ,

whence IO (G,M) ≥ M (k(G, 2M) − 1).

The proof of Theorem 17 is presented in the Appendix.

G. Bilardi and L. De Stefani 7:15

Diamond DAGs can be obtained by taking a b× b mesh (i.e., a two-dimensional array)
and by directing all the edges towards the upper right corner. The graph obtained as such
has n = b2 vertices, a single input vertex (i.e., in the bottom left corner), and a single output
vertex (i.e., in the upper right corner). We show that for these DAGs, the visit partition
technique yields tight I/O lower bounds, whereas the S-partition technique would only yield
an Ω (1) lower bound.

Let G = (V,E) be a b-side Diamond DAG. According to the definition of S-partition,
the family {V } is a 1-partition of V as V has a dominator (resp., minimum set) of size 1
composed by the single input (resp., output) vertex. Hence, for any M ≥ 1, k(G, 2M) = 1
so that Hong and Kung’s method in Theorem 16 ([23 , Theorem 3.1]) yields a trivial bound.
In contrast, the visit partitioning technique allows to obtain an asymptotically tight I/O
lower bound:

▶ Theorem 18 (I/O complexity Diamond DAG). Let G = (V,E) be a diamond DAG of side
b. The I/O-complexity of G using a cache memory of size M satisfies IO (G,M) ≥ b/4M .

The proof of Theorem 18, an asymptotically matching upper bound, and an extension to a
more general family of diamond DAGs are presented in the extended version [9, Section 5.4].

5.4 Extensions to related I/O models
External Memory Model. The result in Theorem 15 can be straightforwardly extended to
the External Memory Model of Aggarwal and Vitter [1], where a single I/O operation can
move L ≥ 1 memory words between cache and consecutive slow-memory locations.

Models with asymmetric cost of read and write I/O operations. Since our method
distinguishes the contribution of write and reads I/O operations, it would be interesting to
use it to investigate I/O lower bounds where reads and writes have different cost [12, 20],
including the case in which only the cost of write I/O operations is considered [2, 14]. To
this end, the lower bound in (9) can be modified to include multiplicative scaling for each
component.

Dropping the slow memory requirement for output values. By using a modified concept
of r-entering boundary of a segment, defined as B̂

(ent)
r (ψ(ij−1..ij]) = Br (ψ [1..ij−1]) ∩

ψ(ij−1..ij], our method yields I/O lower bounds in a modified version of the I/O models
where output values are not required to be written into the slow memory.

Free-input model. The visit partition technique can also be adapted to the “free input”
model, more akin to the pebbling model, in which input values can be generated into cache
at any time (e.g., they are read from a dedicated ROM memory), rather than being initially
stored in the slow memory. While our lower bound to the number of write I/O operations (7)
remains unchanged, the lower bound to the number of read I/O operations (8) must be
revised removing the contribution of the post-dominator bound and the read I/O term of
the boundary-bound. For any r ∈ R (GR) we have:

IOfiR (G,M) ≥ min
ψ∈Ψr(GR)

Wr(ψ,M) − |O|,

and, thus, IOfi (G,M) ≥ minψ∈Ψr(GR) 2Wr(ψ,M) − |O|.

FSTTCS 2022

7:16 The DAG Visit Approach for Pebbling and I/O Lower Bound

Execution with no recomputation. Finally, our result in Theorem 15 can be adapted
and simplified to yield I/O lower bounds assuming that the value associated to any vertex
V \ I is computed exactly once (the no-recomputation assumption). This simplifying
assumption is often of interest as it focuses the analysis on schedules with a minimum
number of computational steps. Moreover, it may provide a stepping stone towards the
analysis of the more general and challenging case where recomputation is allowed. Without
recomputation, computational schedules correspond to the topological orderings of G. Thus,
for any r ∈ R (GR), the corresponding r-visits of GR constructed according to the procedure
discussed in Section 5.2, are the topological orderings of GR. Therefore, we can restrict our
attention to such orderings obtaining the following corollary:

▶ Corollary 19. Given a DAG G = (V,E), with input set I and output set O, consider its
computations in the I/O model using a cache of size M such that no value is ever computed
more than once. For any r ∈ R (GR) we have:

IOnrW (G,M) ≥ min
ψ∈Ψ

r(top) (GR)
Wr(ψ,M),

IOnrR (G,M) ≥ min
ψ∈Ψ

r(top) (GR)
max{Rr(ψ,M), Wr(ψ,M) + |I| − |O|},

IOnr (G,M) ≥ min
ψ∈Ψ

r(top) (GR)
{Wr(ψ,M) + max{Rr(ψ,M),Wr(ψ,M) + |I| − |O|}}.

The bounds obtained for computations without recomputation are generally higher than the
general ones in Theorem 15, as while for each rule r we still analyze the entering boundary
and the minimum post-dominator size of visit partitions, the set of visits to be considered is
restricted to the subset Ψr(top) (GR) ⊆ Ψr (GR), thus possibly eliminating some visit ψ with
low Wr(ψ′,M) and/or Rr(ψ′,M). It is easy to see that the best lower bounds are obtained
for the choice r = r(sin).

6 Conclusions

We have proposed the visit framework to investigate both space and I/O complexity lower
bounds. The universal upper bounds we have obtained for both the singleton and the
topological types of visits show that these types cannot yield tight pebbling lower bounds for
all DAGs, although they do for some DAGs. The framework gives ample flexibility to tailor
the type of visit to the given DAG, but we do not yet have good insights either on how to
exploit this flexibility or on how to show that this flexibility is not ultimately helpful.

The spectrum of visit types exhibits the following tradeoff. As we go from the topological
rule to, say, the singleton rule, by relaxing the enablement constraints, the set of vertex
sequences that qualifies as a visit increases (which goes in the direction of reducing the
boundary complexity of the DAG, since the minimization takes place over a larger domain),
but the boundary complexity of a specific visit also increases (which goes in the direction of
increasing the boundary complexity of the DAG, since the function to be minimized increases).
The tension between these opposite forces has proven difficult to analyze quantitatively. The
arguments used to establish universal upper bounds in the singleton and in the topological
cases are significantly different, and it is not clear how to interpolate them for an intermediate
visit type. Further research is clearly needed to make progress on what appears to be a rich
combinatorial problem.

Another contribution of the visit framework is a step toward a unified treatment of
pebbling and I/O complexity. Within the framework, we have already seen how to generalize
the by now classical Hong-Kung partition technique, based on dominator and minimum sets,
thus achieving much better lower bounds for some DAGs.

G. Bilardi and L. De Stefani 7:17

We conjecture that, for other significant DAGs whose I/O complexity cannot be well
captured by the S-partition technique, visit partitions will help obtain good lower bounds.
Good candidates are DAGs with a constant degree and a space complexity S(N) superlinear,
say polynomial, in the number of inputs N = |I|. For such DAGs, the size of the minimum
dominator set cannot exceed N and, as shown in Theorem 17, the size of the topological
boundary, i.e., of the minimum set, is O(logN) at any point in the computation. On the
other hand, the singleton boundary could be significantly higher.

Although we have not explicitly discussed the issue in this work, we do not have general
I/O upper bounds matching our visit partition lower bounds. Therefore, further work is
needed to achieve a full characterization of the I/O complexity of a DAG.

References
1 Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and Related

Problems. Communications of the ACM, 31(9):1116–1127, September 1988. doi:10.1145/
48529.48535.

2 Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled,
Oded Schwartz, Sivan Toledo, and Ichitaro Yamazaki. Communication-avoiding symmetric-
indefinite factorization. SIAM Journal on Matrix Analysis and Applications, 35(4):1364–1406,
2014.

3 Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. Brief
announcement: Strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. In Proceedings of the twenty-fourth annual ACM symposium on
Parallelism in algorithms and architectures, pages 77–79. ACM, 2012.

4 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Communication-optimal
parallel and sequential Cholesky decomposition. SIAM Journal on Scientific Computing,
32(6):3495–3523, 2010.

5 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in
numerical linear algebra. SIAM Journal on Matrix Analysis and Applications, 32(3):866–901,
2011.

6 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication. Journal of the ACM (JACM), 59(6):1–23,
2013.

7 Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Strassen’s matrix multiplic-
ation with recomputation. In Workshop on Algorithms and Data Structures, pages 181–192.
Springer, 2017.

8 Gianfranco Bilardi and Lorenzo De Stefani. The I/O Complexity of Toom-Cook Integer
Multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’19, pages 2034–2052, USA, 2019. Society for Industrial and Applied
Mathematics.

9 Gianfranco Bilardi and Lorenzo De Stefani. The dag visit approach for pebbling and i/o lower
bounds, 2022. doi:10.48550/arXiv.2210.01897.

10 Gianfranco Bilardi, Andrea Pietracaprina, and Paolo D’Alberto. On the space and access
complexity of computation DAGs. In Graph-Theoretic Concepts in Computer Science, pages
47–58. Springer, 2000.

11 Gianfranco Bilardi and Franco Preparata. Processor-Time trade offs under bounded speed
message propagation. Part 2: Lower Bounds. Theory of Computing Systems, 32(5):531–559,
1999.

12 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Efficient
Algorithms with Asymmetric Read and Write Costs. In Piotr Sankowski and Christos D.
Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.14.

FSTTCS 2022

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.48550/arXiv.2210.01897
https://doi.org/10.4230/LIPIcs.ESA.2016.14

7:18 The DAG Visit Approach for Pebbling and I/O Lower Bound

13 Timothy Carpenter, Fabrice Rastello, P. Sadayappan, and Anastasios Sidiropoulos. Brief
Announcement: Approximating the I/O Complexity of One-Shot Red-Blue Pebbling. In
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’16, pages 161–163, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2935764.2935807.

14 Erin C. Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,
Oded Schwartz, and Harsha Vardhan Simhadri. Write-Avoiding Algorithms. In 2016 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA,
May 23-27, 2016, pages 648–658. IEEE Computer Society, 2016. doi:10.1109/IPDPS.2016.
114.

15 Lorenzo De Stefani. On space constrained computations. PhD thesis, University of Padova,
2016.

16 Lorenzo De Stefani. Brief Announcement: On the I/O Complexity of Sequential and Parallel
Hybrid Integer Multiplication Algorithms. In Proceedings of the 34th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’22, pages 449–452, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3490148.3538551.

17 Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, Jagannathan Ramanujam, and Pon-
nuswamy Sadayappan. On characterizing the data access complexity of programs. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 567–580, 2015.

18 Harvey Friedman. Algorithmic procedures, generalized turing algorithms, and elementary
recursion theory. In Studies in Logic and the Foundations of Mathematics, volume 61, pages
361–389. Elsevier, 1971.

19 D. Yu Grigor’ev. Application of separability and independence notions for proving lower
bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38–48, 1976.

20 Yan Gu, Yihan Sun, and Guy E. Blelloch. Algorithmic building blocks for asymmetric
memories. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European
Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112
of LIPIcs, pages 44:1–44:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ESA.2018.44.

21 John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM
(JACM), 24(2):332–337, 1977.

22 Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing, 64(9):1017–1026,
2004.

23 Hong Jia-Wei and Hsiang-Tsung Kung. I/O complexity: The red-blue pebble game. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 326–333,
1981.

24 Lynn H Loomis and Hassler Whitney. An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 55(10):961–962, 1949.

25 Auguste Olivry, Guillaume Iooss, Nicolas Tollenaere, Atanas Rountev, P. Sadayappan, and
Fabrice Rastello. Ioopt: automatic derivation of I/O complexity bounds for affine programs. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021, pages 1187–1202. ACM, 2021. doi:10.1145/3453483.3454103.

26 Rasmus Pagh and Morten Stöckel. The input/output complexity of sparse matrix multiplication.
In European Symposium on Algorithms, pages 750–761. Springer, 2014.

27 Michael S Paterson and Carl E Hewitt. Comparative schematology. In Record of the Project
MAC conference on concurrent systems and parallel computation, pages 119–127. ACM, 1970.

28 Wolfgang J Paul, Robert Endre Tarjan, and James R Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10(1):239–251, 1976.

https://doi.org/10.1145/2935764.2935807
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1145/3490148.3538551
https://doi.org/10.4230/LIPIcs.ESA.2018.44
https://doi.org/10.4230/LIPIcs.ESA.2018.44
https://doi.org/10.1145/3453483.3454103

G. Bilardi and L. De Stefani 7:19

29 Desh Ranjan, John Savage, and Mohammad Zubair. Upper and lower I/O bounds for pebbling
r-pyramids. Journal of Discrete Algorithms, 14:2–12, 2012.

30 J. E. Savage. Extending the Hong-Kung model to memory hierarchies. In Computing and
Combinatorics, pages 270–281. Springer, 1995.

31 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1997.

32 Jacob Scott, Olga Holtz, and Oded Schwartz. Matrix multiplication I/O-complexity by
path routing. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 35–45, 2015.

33 Michele Scquizzato and Francesco Silvestri. Communication lower bounds for distributed-
memory computations. In Ernst W. Mayr and Natacha Portier, editors, 31st International
Symposium on Theoretical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-
8, 2014, Lyon, France, volume 25 of LIPIcs, pages 627–638. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.627.

A Proofs of technical results

Proof of Theorem 5. Consider a pebbling schedule ϕ of G which uses s pebbles, and any
visit rule r ∈ R (GR). The proof proceeds by constructing an r-visit ψ of GR whose r-
boundary complexity is itself bounded from above by s. Let T denote the total number of
steps of the pebbling ϕ. The construction of ψ proceeds iteratively starting from the end of
the pebbling schedule ϕ to its beginning: Let v denote the vertex which is being pebbled at
the i-th step of ϕ for 1 ≤ i ≤ T , then the same vertex v is visited in GR if and only if all the
vertices in at least one of the subsets in the enabling family h (v) have already been visited.
By construction, ψ is indeed a valid r-visit of GR.

By the construction of the reverse DAG GR, the set of the successors of any vertex v ∈ V

in G corresponds to the set of predecessors of v in GR. By the rules of the pebble game,
when considering a complete pebbling schedule for G, each vertex v ∈ V is pebbled in for the
first time before any of its successors. As each enabler in r (v) is a subset of the predecessors
of v in GR and, hence, a subset of the successors of v in G, each vertex will surely be visited
in ψ at the step corresponding to its first pebbling in ϕ unless it has already been visited.
This allows us to conclude that all vertices of GR are indeed visited by ψ.

Let ϕ[t] denote the vertex being pebbled at the t-th step of the pebbling schedule, for
1 ≤ t ≤ T . In order to prove that the statement holds, it must be shown that, fixed an index
i, 1 ≤ i ≤ n with ψ[i] = ϕ[t], for some t ∈ {1, 2, . . . , T}, the vertices in Br (ψ [1..i]) must be
pebbled (i.e., held in the memory) at the end of t-th step of ϕ.

Let v ∈ Br (ψ [1..i]). By the construction of ψ there must exist two indices t1 and t2,
with 1 ≤ t1 ≤ t < t2 ≤ T , such that ϕ[t1] = v, ϕ[t2] ∈ Q ∈ r (v), and ϕ[t′] ̸= v for every
t1 < t′ < t2 (if that was not the case, then v would have been visited then). As a consequence,
the value of v computed at step t1 of ϕ is used to compute vt2 and therefore it must reside
in memory at the end of step t (i.e., it has to be pebbled). Since i was chosen arbitrarily,
the same reasoning applies for all indices i = 1, 2, . . . , n. We can thus conclude that the
maximum number of pebbles used by ϕ (and thus, the memory space used by ψ) is no less
than max1≤i≤n |Br (ψ [1..i])| = br (ψ).

The theorem follows by minimizing over all possible r-visits ψ ∈ Ψr (GR). ◀

Proof of Lemma 6. To prove the lemma, we construct a pebbling schedule ϕ for G, which
corresponds to the r-visit ψ of GR: the construction proceeds iteratively starting from the
end of ψ. For any index i = 1, 2, . . . , n let ψ[i] denote the vertex visited at the i-th step of ψ.

Let Gn denote the sub-DAG of G induced by the subset of V composed of ψ[n] and the
set of its ancestors in G. The schedule ϕ starts following the steps of any pebbling schedule

FSTTCS 2022

https://doi.org/10.4230/LIPIcs.STACS.2014.627

7:20 The DAG Visit Approach for Pebbling and I/O Lower Bound

of Gn. Once ψ[n] has been pebbled, all the pebbles on vertices of Gn, except for ψ[n], are
removed. The schedule ϕ then proceeds according to the same procedure up to ψ[1]. During
the i-th step, the pebbling schedule for Gi never re-pebbles any of the vertices in ψ[i+ 1..n].
As they were previously pebbled, we can assume that they maintain a pebble (i.e., they are
kept in memory) until the end of the computation. Hence it is possible to pebble Gi without
re-pebbling the vertices in ψ[i+ 1..n]. By construction, ϕ is a complete pebbling of G.

Crucially, the order according to which the vertices are pebbled for the last time in ϕ

corresponds to the reverse order of appearance of the vertices in the given visit ψ. When
applying the conversion between pebbling schedules and visits discussed in the proof of
Theorem 5, we have that the vertices are visited in GR according to the order of their last
pebbling in ϕ. The lemma follows. ◀

Proof of Theorem 9. We construct inductively an r-visit ψ of G such that br(ψ) ≤
ℓ (dout − 1).

In the base case ℓ = 0, that is, all the vertices of G are input vertices without predecessors.
Any permutation of the input vertices is an r-visit. As input vertices are enabled by the
empty set, by Definition 3, they do not appear in the boundary and, thus, the r-boundary
complexity of any such visit is zero.

For the general case ℓ ≥ 1, the visit begins by visiting any input vertex of G. If none of
its direct successors are enabled according to r, by definition, Br (ψ[1]) = ∅. If that is the
case, the visit proceeds by selecting another input vertex of G.

Without loss of generality, let v denote the first input vertex of G whose r-enabled reach
given the r-sequence ψpre constructed so far is not empty. As visiting v can only enable its
at most dout successors, we have |Br (ψpre) | ≤ dout. Let G′ = (V ′, E′) denote the sub-DAG
of G induced by the r-enabled reach of v given ψpre and let r′(v) = {Q \ ψpre | Q ∈ r(v)}
for all v ∈ reachr (v|ψpre). By construction, G′ is a sub-DAG of the DAG induced by the
set of descendants of v, whose topological depth must be at most ℓ − 1. Thus, G′ has
topological depth at most ℓ − 1 as well. Hence, by the inductive hypothesis, for any visit
rule of G′, and, in particular, for r′ there exists an r′-visit of G′, denoted as ψ′ such that
br′ (ψ′) ≤ (ℓ− 1) (dout − 1) + 1.

By Lemma 8, ψpreψ′ is an r-sequence of G and vertices in ψ′ do not enable any vertex in
V \ ψ′. Further, as at the first step of ψ′ one successor of v is visited, from that step onward,
at most dout − 1 successors of v which are yet to be visited may be in the boundary. Thus:

|Br (ψpre[1..i]) | = 0 for i = 1, . . . , |ψpre|
|Br (ψpre) | ≤ dout

|Br (ψpreψ′[1..j]) | ≤ (dout − 1) + (ℓ− 1) (dout − 1) + 1 for j = 1, . . . , |ψ′|
|Br (ψpreψ′) | ≤ (dout − 1)

The visit then proceeds by visiting any input vertex of G which is yet to be visited and
its enabled reach given the r-sequence constructed so far and by repeating the operations
previously described. This ensures that G is entirely visited by ψ. By repeating the
considerations on the boundary size previously discussed, we can conclude that the maximum
boundary size of ψ is at most (dout − 1) ℓ+ 1. The theorem follows. ◀

Proof of 12.
(a) If dout = 0, then all vertices of G are input vertices and any ordering ψ of V is a legal

topological ordering, with br(top) (ψ) = 0, since input vertices are never part of the
boundary.

G. Bilardi and L. De Stefani 7:21

(b) If dout = 1, then it is easy to see that G consists of a collection of chains (one for each
input), at least one of which has length greater than 1. Clearly, visiting one chain at the
time yields a visit ψ with br(top) (ψ) = 1.

(c) If dout ≤ D, with D ≥ 2, we proceed by induction on n. In the base case, n = 1, clearly
there is a unique schedule ψ with br(top) (ψ) = 0. For the inductive step (n > 1), we
recursively construct a visit ψ = topv(G) as follows. Arbitrarily choose an input vertex u
of G; let Br(top) (u) = {v1, v2, . . . , vk} ⊆ suc (u), with 0 ≤ k ≤ dout (u) ≤ D; and output
ψ = uvj1ϕ1 . . . vjk

ϕkϕ where, informally, ϕh is a visit of the enabled reach of vjh
, given

the prefix of ψ to the left of vjh
. Each vjh

is chosen among the successors of u (initially)
enabled by u and not yet visited so as to minimize the size of the enabled reach. Finally,
ϕ is a visit of the vertices not yet traversed by the end of ϕk. More formally:
j1, . . . , jk is a permutation of 1, . . . , k, specified below.
For h = 1, . . . , k, vjh

ϕh = topv(Gh), where Gh is the subgraph induced by {vjh
} ∪

reachr(top)
(
vjh

|uvj1ϕ1 . . . vjh−1ϕh−1vjh

)
. It is easy to see that any visit of Gh must

begin with vertex vjh
, the only input vertex of Gh, every other vertex of Gh being a

proper descendant of vjh
.

jh = arg min
j∈{1,...,k}\{j1,...,jh−1}

|reachr(top)
(
vj |uvj1ϕ1 . . . vjh−1ϕh−1vj

)
|.

ϕ = topv(Ḡ), where Ḡ is the subgraph induced by V \ {uvj1ϕ1 . . . vjk
ϕk}.

To establish the claimed bound on br(top) (ψ), we make the following observations.
1. For h = 1, . . . , k, the boundary of the prefix of ψ ending just before vjh

equals
{vjh

, . . . , vjk
}, hence it has size k − h+ 1 ≤ k.

2. By Lemma 8, while visiting Gh, the boundary is at most (k − h) + br(top) (vjh
ϕh).

3. Collectively, the k − h + 1 enabled reaches from which the next one to be visited is
chosen contain at most n − 1 − k vertices (because u and v1, . . . , vk are not contained
in any of them). Since, by Lemma 11, these reaches are disjoint, the smallest ones
contain at most ⌊n−1−k

k−h+1 ⌋ vertices. Additionally accounting for vjh
, Gh contains at most

1 + ⌊n−1−k
k−h+1 ⌋ = ⌊ n−h

k−h+1 ⌋ vertices.
4. For convenience, let f(n,D) = D−1

log2 D
log2 n+ 1 and observe that f is increasing with both

arguments. By the inductive hypothesis, we have:

br(top) (ψ) ≤ max{k, kmax
h=1

{(k − h) + f(n− h

k − h+ 1 , D)}, f(n− 1 − k,D)}.

Using f(n−h
k−h+1 , D) ≤ f(n

k−h+1 , D) and letting q = k − h+ 1, the previous yields

br(top) (ψ) ≤ max{k, kmax
q=1

{q − 1 + f(n
q
,D)}, f(n− 1 − k,D)}.

5. To complete the inductive step, it remains to show that each of the three terms in the
outer max is no larger than f(n,D). This is obvious for the third term f(n− 1 − k,D),
given the monotonicity of f . For the second term, we observe that each argument in the
inner max satisfies

q − 1 + f(n
q
,D) = q − 1 + D − 1

log2 D
log2(n

q
) + 1

=
Å
D − 1
log2 D

log2 n+ 1
ã

+ (q − 1)
Å

1 − D − 1
log2 D

log2 q

q − 1

ã
≤ D − 1

log2 D
log2 n+ 1,

where the term dropped in the last step is negative or null, since q−1
log2 q

≤ D−1
log2 D

, for
q = 1, . . . , D, as can be shown by straightforward calculus. Finally, to bound the first
term, k, we observe that, if k ≤ 1, then the target bound trivially holds. Otherwise,

FSTTCS 2022

7:22 The DAG Visit Approach for Pebbling and I/O Lower Bound

consider that n ≥ k + 1 (G contains at least the distinct vertices u and v1, . . . , vk) and
that, for 2 ≤ k ≤ D, we have k−1

log2 k
≤ D−1

log2 D
(as mentioned above). Then, the target

inequality follows:

k = (k − 1) + 1 ≤ k − 1
log2 k

log2 k + 1 < D − 1
log2 D

log2 n+ 1. ◀

Figure 1 This DAG allows us to study the relationship between the r(sin)-boundary complexity
and the r(top)-boundary complexity. The DAG is obtained by connecting the vertices of a directed
binary arborescence with a directed chain. Its r(sin)-boundary complexity is 2: consider a visit
starting in the leftmost vertex of the chain and that visits vertices of the tree as soon as they are
enabled. Instead, its r(top)-boundary complexity is log2 (n + 2) − 1, where n denotes the number
of its vertices. In every possible r(top)-visit, the directed chain must be visited first, and then the
arborescence is left to be visited. The bound on the r(top)- boundary complexity follows an argument
similar to that in the analysis of complete q-trees in the extended version of this work [9]. Consider
the reverse DAG. Its pebbling number is (n + 2) − 1, where n denotes the number of vertices. (The
proof of this statement is a simple exercise.) By the previous considerations, while using the r(sin)

yields in Theorem 5 yields a trivial lower bound to the pebbling number. Instead, using r(top) yields
a tight lower bound to the pebbling number of the DAG.

Proof of Theorem 17. For notational simplicity, throughout this proof, r stands for r(top).
We preliminarily observe that if ψ ∈ Ψr(top) (GR), then, for any segment ψ(h, i], B(ent)

r (ψ(h, i])
is the minimum set of ψ(h, i] in G. In fact, by the definition of r(top), v ∈ Br (ψ[1, h]) if
and only if all of its predecessors in GR (i.e., its successors in G) are in ψ [1..h]. Hence,
B

(ent)
r (ψ(h..i]) contains exactly those vertices in ψ(h, i] which are either inputs of GR

(outputs of G) or for which ψ(h, i] contains no predecessor in GR (thus, no successor in G).
Below we will make use of the following two properties, whose simple proof is omitted here.

Let U ⊆ V and x ∈ V . Then minpd(U∪{x}) ≤ minpd(U)+1 and sms(U∪{x}) ≤ sms(U)+1,
where sms(X) denotes the size of the minimum set of X ⊆ V .

Given ψ ∈ Ψr(top) (GR), we consider a segment partition i = (i1, i2, . . . , ik) where each
segment, with the possible exception of the last one, has a minimum postdominator or the
minimum set of size 2M . Based on the properties stated in the preceding paragraph, such a
partition can be easily constructed by scanning the visit one vertex at a time and closing a
segment as soon as the desired condition is met, or all vertices have been scanned.

For j = 1, . . . , k, let Vj = {ψ[ik−j+1], . . . , ψ[ik+1−j]}. We show that sequence (V1, . . . , Vk)
is a 2M -partition of G, by proving the defining properties: (a) As they correspond to the
segments of a visit, the Vj ’s are disjoint and their union equals V . (b) By construction, the

G. Bilardi and L. De Stefani 7:23

dominator of each Vj in G has size at most 2M . (c) By construction, the minimum set of
each Vj in G has size at most 2M . (d) Finally, since ψ is an r(top)-visit of GR, it is a reverse
topological ordering of the vertices in G. Therefore, there are no edges of G from Vj to
∪j−1
i=1Vi. Clearly, k ≥ k(G, 2M), by the definition of the latter quantity.

To analyze the I/O requirements of ψ, consider the following sequence of inequalities:

Wr(ψ,M) + Rr(ψ,M) ≥ Wr(i, ψ,M) + Rr(i, ψ,M)

≥
k∑
j=1

max{0, b(ent)
r (ψ(ij−1..ij+1]) −M,minpd (ψ(ij−1..ij]) −M}

≥
k−1∑
j=1

(2M −M) = (k − 1)M

≥ M (k(G, 2M) − 1) .

These four inequalities respectively take into account (i) the definitions in (5) and (6); (ii)
the definitions in (1) and (3); (iii) the fact that, for j = 1, . . . , k − 1, at least one of the
arguments of the max operator equals M ; and (iv) the relationship k ≥ k(G, 2M), seen
above. Finally, since the chain of inequalities applies to any visit ψ ∈ Ψr(top) (GR), we can
invoke inequality (9) to conclude that IO (G,M) ≥ M (k(G, 2M) − 1). ◀

FSTTCS 2022

Counting and Sampling from Substructures Using
Linear Algebraic Queries
Arijit Bishnu !

Indian Statistical Institute, Kolkata, India

Arijit Ghosh !

Indian Statistical Institute, Kolkata, India

Gopinath Mishra1 !

University of Warwick, Coventry, UK

Manaswi Paraashar1 !

Aarhus University, Denmark

Abstract
For an unknown n × n matrix A having non-negative entries, the inner product (IP) oracle takes
as inputs a specified row (or a column) of A and a vector v ∈ Rn with non-negative entries, and
returns their inner product. Given two input vectors x and y in Rn with non-negative entries, and
an unknown matrix A with non-negative entries with IP oracle access, we design almost optimal
sublinear time algorithms for the following two fundamental matrix problems:

Find an estimate X for the bilinear form xT Ay such that X ≈ xT Ay.

Designing a sampler Z for the entries of the matrix A such that P(Z = (i, j)) ≈ xiAijyj/
(
xT Ay

)
,

where xi and yj are i-th and j-th coordinate of x and y respectively.
As special cases of the above results, for any submatrix of an unknown matrix with non-negative
entries and IP oracle access, we can efficiently estimate the sum of the entries of any submatrix, and
also sample a random entry from the submatrix with probability proportional to its weight. We will
show that the above results imply that if we are given IP oracle access to the adjacency matrix of a
graph, with non-negative weights on the edges, then we can design sublinear time algorithms for the
following two fundamental graph problems:

Estimating the sum of the weights of the edges of an induced subgraph, and

Sampling edges proportional to their weights from an induced subgraph.
We show that compared to the classical local queries (degree, adjacency, and neighbor queries) on
graphs, we can get a quadratic speedup if we use IP oracle access for the above two problems.

Apart from the above, we study several matrix problems through the lens of IP oracle, like testing
if the matrix is diagonal, symmetric, doubly stochastic, etc. Note that IP oracle is in the class of linear
algebraic queries used lately in a series of works by Ben-Eliezer et al. [SODA’08], Nisan [SODA’21],
Rashtchian et al. [RANDOM’20], Sun et al. [ICALP’19], and Shi and Woodruff [AAAI’19]. Recently,
IP oracle was used by Bishnu et al. [RANDOM’21] to estimate dissimilarities between two matrices.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms

Keywords and phrases Query complexity, Bilinear form, Uniform sampling, Weighted graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.8

Related Version The missing proofs can be found in the full version of the paper.
Full Version: https://arxiv.org/abs/2201.04975 [13]

1 The work was done when the author was at Indian Statistical Institute, Kolkata, India.

© Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arijit@isical.ac.in
mailto:arijitiitkgpster@gmail.com
mailto:gopianjan117@gmail.com
mailto:manaswi.isi@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.8
https://arxiv.org/abs/2201.04975
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Counting and Sampling from Substructures Using Linear Algebraic Queries

1 Introduction

Let A be an unknown n×n matrix with oracle access and with non-negative entries. Consider
a submatrix B of A given by two subsets S1 and S2 of indices of the rows and columns A,
that is, B := (Aij)(i,j)∈S1×S2

. Note that submatrix B is unknown as the matrix A itself is
unknown. We are only given as inputs the sets S1 and S2, and oracle access to the unknown
matrix A, and we have to efficiently solve the following two problems:

Estimate the sum of the entries in the submatrix B, and
sample a random entry (i, j) from B proportional to its weight Aij , that is, we output
(i, j) ∈ S1 × S2 with probability

Aij∑
(i,j)∈S1×S2

Aij
.

We will show that using IP oracle access to A, which takes as inputs a specified row (or a
column) of A and a vector v ∈ Rn with non-negative entries and returns their inner product
(see Section 1.1 for a formal definition), we can design efficient algorithms for the above
defined fundamental problems. In fact, we will be giving efficient algorithms for even more
general problems, see Section 1.2. Now, we discuss two consequences of our result on the
above-mentioned matrix problem.

Counting and sampling edges from induced subgraphs

Let G = (V (G), E(G)) be an unknown graph1 on n vertices, and S be any subset of vertices
of G. Assume that the query access to graph G is induced degree query oracle which
takes a vertex u ∈ V (G) and a subset X ⊆ V as input and reports the number of neighbors
of u that are present in X. Given induced degree query access to G, two natural questions
to consider on the subgraph GS of G induced by the subset S are the following

estimate the number of edges in GS , and
uniformly sample a random edge from GS .

Observe that both of these graph problems with induced degree query access can be
reduced to the matrix problems with IP oracle access to the adjacency matrix of the graph,
where we only ask for inner product with the vectors in {0, 1}n.

Weighted edge counting and sampling from graphs

For a graph with non-negative weights on its edges, we can similarly consider the problems
of estimating the sum of the weights of the edges in the graph, and sampling edges of the
graph proportional to its weight. Again, observe that these two fundamental problems on
weighted graphs can also be reduced to the matrix problem defined at the beginning of this
section by considering their adjacency matrix.

Notation

In this paper, we denote the set {1, . . . , t} by [t] and {0, . . . , t} by [[t]]. For a (directed) graph
G, V (G) and E(G) denote the vertex set and edge sets of G, we will use V and E when the
graph is clear from the context. For a vertex u, let dG(u) denote the degree of u in G and NG(u)
denote the set of neighbors of u in G. For a subset S of V (G), the subgraph of G induced
by S is denoted by GS = (S, ES) such that ES := {{u, v} ∈ E(G) | u ∈ S and v ∈ S}. The
local queries for a graph G = (V (G), E(G)) are:

1 By unknown we mean that the vertex set V (G) of G is known but the edge set E(G) is not known.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:3

Degree query: given u ∈ V (G), the oracle reports the degree of u in V (G)
Neighbor query: given u ∈ V (G) and an integer i, the oracle reports the i-th neighbor of

u, if it exists; otherwise, the oracle reports ⊥ 2.
Adjacency query: given u, v ∈ V (G), the oracle reports whether {u, v} ∈ E(G).

For a non-empty set X and a given parameter ε ∈ (0, 1), an almost uniform sample
of X means each element of X is sampled with probability values that lie in the interval
[(1 − ε)/|X|, (1 + ε)/|X|]. For a matrix A, Aij denotes the element in the i-th row and j-th
column of A. Ai∗ and A∗j denote the i-th row vector and j-th column vector of the matrix
A, respectively. A ∈ [[ρ]]n×n means Aij ∈ [[ρ]] for each i, j ∈ [n], ρ ∈ N. Throughout this
paper, the number of rows or columns of a square matrix A is n, which will be clear from
the context. Vectors are matrices of order n × 1 and will be represented using boldface
letters. Without loss of generality, we consider n to be a power of 2. The i-th coordinate of
a vector x is denoted by xi. We denote by 1 the vector with all coordinates 1. Let {0, 1}n

be the set of n-dimensional vectors with entries either 0 or 1. For x ∈ Rn, 1x is a vector
in {0, 1}n whose i-th coordinate is 1 if xi ̸= 0 and 0 otherwise; nnz(x) = |i ∈ [n] : xi ̸= 0|
denotes the number of non-zero components of the vector. By ⟨x, y⟩, we denote the standard
inner product of x and y, that is, ⟨x, y⟩ =

∑n
i=1 xiyi. For a, b ∈ R, we say a = (1 ± ε)b if

a ∈ [(1 − ε)b, (1 + ε)b]. Similarly, P is a (1 ± ε)-approximation to Q means |P − Q| ≤ ε · Q.
With high probability means that the probability of success is at least 1 − 1

nc , where c is a
positive constant. Θ̃(·) and Õ(·) hides a poly (log n, 1/ε) term in the upper bound.

1.1 Definition and motivation of INNER PRODUCT oracle

Let A ∈ [[ρ]]n×n, ρ ∈ N, be a matrix whose size is known but the entries are unknown. Now
given a row index i ∈ [n] (or, a column index j ∈ [n]) and a vector v ∈ Rn, with non-negative
entries as input, the inner product query to A reports the value of ⟨Ai∗, v⟩ (⟨A∗j , v⟩). If
the input index is for row (column), we refer to the corresponding query as row (column)
IP query. Observe that induced degree query can be implemented for a graph G by IP
oracle as a dot product with 1S (indicator vector for the set S) and the corresponding row
of the matrix A that is the 0/1 adjacency matrix of G.

The IP query has both graph theoretic and linear algebraic flavors to it and we will
highlight them shortly. It may be mentioned here that IP has been already used to estimate
the Hamming distance between two matrices [12].

From a practical point of view, Rashtchian et al. [32] mention that vector-matrix-vector
queries would most likely be useful in the context of specialized hardware or distributed
environments. Needless to say, the same carries over to IP query. There are many computer
architectures that allow us to compute inner products in one cycle of computation with more
parallel processors. Inner product computation can be parallelized using single instruction
multiple data (SIMD) architecture [26]. Modern day GPU processors use instruction-level
parallelism. Nvidia GPUs precisely do that by providing a single API call to compute inner
products [35, 2]. There are many such architectures where IP query has been given to users
directly. Similarly, there are programming language constructs built on SIMD framework
that can compute inner products [1].

2 The ordering of neighbors of the vertices are unknown to the algorithm.

FSTTCS 2022

8:4 Counting and Sampling from Substructures Using Linear Algebraic Queries

1.2 The problems, results and paper organization
The main matrix-related problems considered in this work involve estimating the bilinear
form xT Ay and sampling an element of a matrix almost uniformly using IP queries. Bilinear
form estimation is inherently interesting as it is a generalization of the problem defined at the
beginning of Section 1. Also, bilinear form estimation has huge importance in numerical linear
algebra because of its use in calculating node centrality measures like resolvent subgraph
centrality and resolvent subgraph communicability [10, 22], Katz score for adapting it to
PageRank computing [14], etc.

Bilinear Form EstimationA(x, y), in short BfeA(x, y)
Input: Vectors x ∈ [[γ1]]n, y ∈ [[γ2]]n, IP access to matrix A ∈ [[ρ]]n×n, and ε ∈ (0, 1).
Output: An (1 ± ε)-approximation to xT Ay.

Sample Almost UniformlyA(x, y), in short SauA(x, y)
Input: Vectors x ∈ [[γ1]]n, y ∈ [[γ2]]n, IP access to matrix A ∈ [[ρ]]n×n, and ε ∈ (0, 1).
Output: Report Z satisfying (1 − ε) xiAijyj

xT Ay ≤ P(Z = (i, j)) ≤ (1 + ε) xiAijyj

xT Ay .

For the above problems, our results are stated in Theorem 1.1. We give the sketches of
the proofs of the upper bound for a special case in Section 4. The general upper bounds can
be derived from the special case and their proof is in the full version [13] of the paper. The
lower bound parts of Theorem 1.1 are also proved in the full version [13].

▶ Theorem 1.1. BfeA(x, y) and SauA(x, y) can be solved by using

Θ̃
(√

ργ1γ2 (nnz(x) + nnz(y))√
xT Ay

)

IP queries, where nnz(x) and nnz(y) denotes the number of non-zero entries in x and y,
respectively.

The above theorem has several important consequences. An immediate consequence of
Theorem 1.1 is the following.

▶ Corollary 1.2 (Estimating and sampling from submatrices of 0/1 matrix). 3 Let A with n×n

unknown 0/1 matrix with IP oracle access. Let ε ∈ (0, 1), and S1 and S2 be subsets of indices
of the rows and columns of the matrix A, respectively. For the matrix B = (Aij)i∈S1,j∈S2

using Θ̃
(

|S1|+|S2|√
nnz(B)

)
IP queries, we can find an estimate X of the number of ones in B such

that X = (1 ± ε)
∑

(i,j)∈S1×S2

Aij, and also design a sampler Z of S1 × S2 satisfying, for all

(i, j) ∈ S1 × S2,

P (Z = (i, j)) = (1 ± ε) Aij

nnz (B) .

Furthermore, the IP queries used by both algorithms only ask for inner products with vectors
in {0, 1}n.

3 Even though Corollary 1.3 is more general than Corollary 1.2, we state Corollary 1.2 to show its
application in Remark 1.4 (i).

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:5

We now define a more general class of matrices. Let F (n, ρ) be a family of n × n matrices
with non-negative entries such that for all A ∈ F (n, ρ) we have

min
(i,j):Aij>0

Aij ≥ 1 and max
(i,j):Aij>0

Aij ≤ ρ.

The following result, which is a direct corollary from Theorem 1.1, shows that we can
efficiently estimate and sample even from this family.

▶ Corollary 1.3 (Estimating and sampling from a arbitrary matrix). Let A with unknown matrix
in F (n, ρ) with IP oracle access. Let ε ∈ (0, 1), and S1 and S2 be subsets of indices of the
rows and columns of the matrix A, respectively. For the matrix B = (Aij)i∈S1,j∈S2 using

Õ

√
ρ(|S1|+|S2|)√∑

i,j
Aij

 IP queries, we can find an estimate X of the number of ones in B, that

is, X = (1 ± ε)
∑

i,j Bij, and we can also design a sampler Z of [n] × [n] satisfying, for all
(i, j) ∈ S1 × S2,

P (Z = (i, j)) = (1 ± ε) Aij∑
(i,j)∈S1×S2

Aij
.

We would like to point out that the above corollaries are also tight because the lower
bound part of the proof of Theorem 1.1 holds even for their special cases.

▶ Remark 1.4 (Consequences of Theorem 1.1).
(i) Induced subgraphs: Given Induced Degree query access to a unknown graph G =

(V (G), E(G)) and a subset S ⊂ V (G) and an ε ∈ (0, 1) as input, one can estimate the
number edges in GS up to (1 ± ε) factor by using Õ

(
|S|√
mS

)
queries and sample a random

edge almost uniformly from GS , where GS denotes the subgraph of G induced by S. We
can also design a sampler for the edges in GS where each edge e ∈ E(GS) gets sampled
with probability (1 ± ε) 1

|E(GS)| using the same number of queries. Note that this result
follows from Corollary 1.2 as each induced degree query to graph G is analogous to an
IP query to the adjacency matrix of G. It is because the algorithms corresponding to
Corollary 1.2 only ask for inner product with vectors in {0, 1}n.

(ii) Weighted graphs: Given IP oracle access to the adjacency matrix A ∈ [[ρ]]n×n 4 of
weighted graph G = (V (G), E(G)), then we can estimate ω(G) :=

∑
(i,j)∈ Aij up to

(1 ± ε)-approximation using at most Õ

(√
ρn√

ω(G)

)
IP queries. We can also design a

sampler for the edges of the graph G where each edge (i, j) ∈ E(G) gets sampled with
probability (1 ± ε) Aij

ω(G) using the same number of queries. Note that this result follows
from Corollary 1.3, and is a generalization of the edge estimation results using local
queries by Feige [23], and Goldreich and Ron [25].

(iii) Stochastic matrices: Let A be an unknown doubly stochastic5 n × n matrix with IP
oracle access, and each non-zero entry of A is at least λ > 0. We can design a sampler Z
of [n] × [n] such that, for all (i, j) ∈ [n] × [n], we have P(Z = (i, j)) = (1 ± ε)Aij . Our
sampler will use at most Õ

(
n/

√
λ
)

queries.

4 Assume that G is a complete graph such that the weights on {i, j} /∈ E(G) is 0.
5 A matrix A with non-negative entries is doubly stochastic if the sum of the entries of any row or column

is one.

FSTTCS 2022

8:6 Counting and Sampling from Substructures Using Linear Algebraic Queries

In Section 5, we discuss several other matrix problems using IP oracle query which were
studied using stronger queries like matrix vector and vector matrix vector queries [39, 32].

In Section 3 we establish that local query access (to the entire unknown graph) cannot
solve problems in induced subgraphs efficiently. Two crucial takeaways are that IP oracle and
its derivative, the induced degree oracle act like a local query on any induced subgraphs,
and there is a quadratic separation between the powers of local query and induced
degree queries to solve Edge Estimation and Edge Sampling in induced subgraphs.

2 Inner product oracle vis-a-vis other query oracles

Graph parameter estimation, where the graph can be accessed through query oracles only,
has been an active area of research in sub-linear algorithms for a while [25, 19, 20, 34]. There
are different granularities at which the graph can be accessed – the query oracle can answer
properties about graphs that are local or global in nature. By now, the local queries have
been used for edge [25], triangle [19], clique estimation [20] and has got a wide acceptance
among researchers. Apart from the local queries, in the last few years, researchers have
also used the random edge query [4, 6], where the oracle returns an edge in the graph G

uniformly at random. Notice that the randomness will be over the probability space of all
edges, and hence, it is difficult to classify a random edge query as a local query. On the other
hand, global queries come in different forms. Starting with the subset queries [37, 38, 33],
there have been other queries like bipartite independent set query, independent set
query [8], gpis query [11, 17], cut query [34], etc. Linear measurements or queries [5, 3],
based on dot product, have been used for different graph problems.

To this collection of query oracles, we introduce a new oracle called inner product (IP)
oracle which is a natural oracle to consider for linear algebraic and graph problems. Using
this oracle, we solve hitherto unsolved problems (by an unsolved problem, we mean that no
non-trivial algorithm was known before) with graph theoretic and linear algebraic flavor, like
(a) edge estimation in induced sub-graph; (b) bilinear form estimation; (c) sampling entries
of matrices with non-negative entries. We also show weighted edge estimation and edge
estimation in induced subgraph as applications of bilinear form estimation. Our lower bound
result, for Edge Estimation in induced subgraph with only local query access, implies
that there is a separation between the powers of local query and induced degree query.
We will show that our newly introduced inner product query oracle can solve problems
that can not be solved by the three local queries mentioned even coupled with the random
edge query.

Our current survey of the literature (here we do not claim exhaustivity!) shows that a
query related to a subgraph was first used in Ben-Eliezer et al. [9], and named as group query,
where one asks if there is at least one edge between a vertex and a set of vertices. We found
the latest query in this league to be the demand query (in bipartite graphs where the vertex
set are partitioned into two parts left vertices and right vertices) introduced by Nissan [29] –
a demand query accepts a left vertex and an order on the right vertices and returns the first
vertex in that order that is a neighbor of the left vertex. One can observe that the group
and demand queries are polylogarithmically equivalent. Staying on this line of study related
to the relation of a vertex with a subset of vertices, we focus on the induced degree query
which we feel handles many natural questions.

Query oracle based graph algorithms access the graph at different granularities – this
gives rise to a whole gamut of queries with different capacities, ranging from local queries
like degree, neighbor, adjacency queries [23, 25] to global queries like independent set based

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:7

queries [8, 17], random edge queries [4], and others like group [9] and demand queries [29].
This rich landscape of queries has unravelled many interesting algorithmic and complexity
theoretic results [23, 25, 4, 9, 29, 8, 17, 33]. With this in mind, if we turn our focus to
the landscape of linear algebraic queries, the most natural query is the matrix entry query
where one gives an index of the matrix and asks for the value there. Lately, a series of
works [32, 39, 36, 7] have used linear algebraic queries like vector-matrix-vector query and
matrix-vector queries. The IP oracle is also motivated by these new query oracles. Notice
the huge difference in power between matrix entry query and vector-matrix-vector query
and matrix-vector queries. Note that IP query is strictly weaker than these matrix queries
but stronger than the matrix entry query. We feel there is a need to study linear algebraic
queries with intermediate power – the IP query fits in that slot.

3 A query model for induced subgraph problems

To the best of our knowledge, our work is a first attempt towards solving estimation problems
in induced subgraphs. We start by showing a separation between local query and induced
degree query using the problems of Edge Estimation and Edge Sampling in induced
subgraph. We now define Induced Edge Estimation and Induced Edge Sampling.

Induced Edge Estimation
Input: A parameter ε ∈ (0, 1) and a subset S of the vertex set V of a graph G.
Output: A (1 ± ε)-approximation to the number of edges ES in the induced subgraph.

Induced Edge Sampling
Input: A parameter ε ∈ (0, 1) and a subset S of the vertex set V of a graph G.
Output: Sample each edge e ∈ ES with probability between 1−ε

|ES | and 1+ε
|ES | .

One of the main contributions of this paper is to show that local queries together with
random edge query are inefficient for both Induced Edge Estimation and Induced
Edge Sampling. The lower bound results follow.

▶ Theorem 3.1 (Lower bound for Induced Edge Estimation using local queries). Let
us assume that s, ms ∈ N be such that 1 ≤ ms ≤

(
s
2
)

and the query algorithms have access
to degree, neighbor, adjacency and random edge queries to an unknown graph
G = (V (G), E(G)). Any query algorithm that can decide for all S ⊆ V (G), with |S| = Θ(s),
whether |ES | = ms or |ES | = 2ms, with probability at least 2/3, requires Ω

(
s2

ms

)
queries.

▶ Theorem 3.2 (Lower bound for Induced Edge Sampling using local queries). Let
us assume that s, ms ∈ N be such that 1 ≤ ms ≤

(
s
2
)

and the query algorithms have access
to degree, neighbor, adjacency and random edge queries to an unknown graph
G = (V (G), E(G)). Any query algorithm that for any S ⊆ V (G), with |S| = Θ(s), samples
the edges in ES ε-almost uniformly 6, with probability at least 99/100, will require Ω

(
s2

ms

)
queries 7. Note that ε ∈ (0, 1) is given as an input to the algorithm.

6 Each edge in ES is sampled with probability between (1 − ε) 1
|ES | and (1 + ε) 1

|ES | .
7 Let U denote the uniform distribution on ES . The lower bound even holds even if the goal is to get a

distribution that is ε close to U with respect to ℓ1 distance.

FSTTCS 2022

8:8 Counting and Sampling from Substructures Using Linear Algebraic Queries

▶ Remark 3.3. When S = V , Induced Edge Estimation and Induced Edge Sampling
are Edge Estimation and Edge Sampling problems, respectively. Both Edge Estimation
and Edge Sampling can be solved with high probability by using Θ̃

(
|V |2/|E|

)
adjacency

queries [24]. Notice that these bounds match the lower bounds. Contrast this with the
fact that Edge Estimation and Edge Sampling can be solved with high probability by
using Θ̃

(
|V |/

√
|E|
)

local queries, where each local query is either a degree or a neighbor
or an adjacency query [25, 21]. Thus, we observe that for Induced Edge Estimation
and Induced Edge Sampling, the adjacency query is as good as the entire gamut of
local queries and random edge query. On a different note, our results on Bilinear
Form Estimation and Almost uniformly Sampling using IP query generalize the
above mentioned results on Edge Estimation and Edge Sampling using local queries.
Note that IP oracle is a natural query oracle for graphs where the unknown matrix is the
adjacency matrix of a graph, and we will discuss that in Remark 3.8 that IP query on the
adjacency matrix graphs is stronger than the local queries.

In Section 3.1, we prove Theorems 3.1 and 3.2 by reduction from a problem in commu-
nication complexity. In Section 3.2, we discuss the way in which induced degree query
simulates local queries in any induced subgraph (see Remark 3.8). This will imply that
the lower bound results in Theorems 3.1 and 3.2 can be overcome if we have an access to
induced degree query to the whole graph (see Corollary 3.9). However, the implication is
more general and will be discussed in Section 3.2.

3.1 Limitations of local and random edge queries
The proofs of the lower bounds use communication complexity. We will first provide a
rudimentary introduction to communication complexity. For a detailed introduction to
communication complexity refer to the following books [27, 31].

Brief introduction to communication complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish to
compute a function Π : {0, 1}N ×{0, 1}N → {0, 1}. Alice is given x ∈ {0, 1}N and Bob is given
y ∈ {0, 1}N . Let xi (yi) denotes the i-th bit of x (y). While the parties know the function
Π, Alice does not know y, and similarly Bob does not know x. Thus they communicate bits
following a pre-decided protocol P in order to compute Π(x, y). We say a randomized protocol
P computes Π if for all (x, y) ∈ {0, 1}N × {0, 1}N we have P[P(x, y) = Π(x, y)] ≥ 2/3. The
model provides the parties access to a common random string of arbitrary length. The cost
of the protocol P is the maximum number of bits communicated, where maximum is over all
inputs (x, y) ∈ {0, 1}N × {0, 1}N . The communication complexity of the function is the cost
of the most efficient protocol computing Π.

Proofs of Theorems 3.1 and 3.2

We will use the following problem in our lower bound proofs.

▶ Definition 3.4 (k-Intersection). Let k, N ∈ N such that k ≤ N . Let S = {(x, y) : x, y ∈
{0, 1}N ,

∑N
i=1 xiyi = k or 0}. The k-Intersection function over N bits is a partial function

denoted by k-Intersection : S → {0, 1}, and is defined as follows: k-Intersection(x, y) =
1 if

∑N
i=1 xiyi = k and 0, otherwise.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:9

▶ Lemma 3.5 ([27]). Let k, N ∈ N such that k ≤ N . The randomized communication
complexity of k-Intersection function on N bits is Ω (N/k).

Proof of Theorem 3.1. We give a reduction from ms-Intersection problem over N = s2

bits. Let x = (xij) ∈ {0, 1}N be such that i, j ∈ [s]. Similarly, let y ∈ {0, 1}N . It is promised
that Alice and Bob will be given x and y such that there are either 0 intersections or exactly
ms intersections, i.e., either ⟨x, y⟩ = 0 or ms. Now we define a graph G(x,y)(V (G), E(G)) as
follows where ⊔ denotes disjoint union.

|V (G)| = Θ(s). V (G) = SA ⊔SB ⊔TA ⊔TB ⊔C such that SA, SB , TA, TB are independent
sets and |SA| = |SB | = |TA| = |TB | = s and |C| = Θ(s). Note that V (G) is independent
of x and y;
The subgraph (of G(x,y)) induced by C is a fixed graph, independent of x and y, having
exactly ms edges. Also there are no edges in G(x,y) between the vertices of C and
V (G) \ C.
The edges in the subgraph (of G(x,y)) induced by V (G) \ C = SA ⊔ TA ⊔ SB ⊔ TB depend
on x and y as follows. Let SA = {sA

i : i ∈ [s]}, TA = {tA
i : i ∈ [s]}, SB = {sB

i : i ∈ [s]}
and TB = {tB

i : i ∈ [s]}. For i, j ∈ [s], if xij = yij = 1, then (sA
i , tB

j) ∈ E(G) and
(sB

i , tA
j) ∈ E(G). For i, j ∈ [s] if either xij = 0 or yij = 0, then (sA

i , tA
j) ∈ E(G) and

(sB
i , tB

j) ∈ E(G);
The graph G(x,y) can be uniquely generated from x and y. Moreover, Alice and Bob need
to communicate to learn useful information about G(x,y). Observation 3.6 follows from the
construction that shows the relation between the number of edges in the subgraph induced by
SA ⊔ TB ⊔ C with ⟨x, y⟩, where x, y ∈ {0, 1}N are such that either ⟨x, y⟩ = 0 or ⟨x, y⟩ = ms.

▶ Observation 3.6. (i) |SA ⊔ TB ⊔ C| = Θ(s), (ii) irrespective of x and y: |ESA
| = |ESB

| =
|ETA

| = |ETB
| = 0, also the degree of each vertex in SA ⊔ TA ⊔ SB ⊔ TB is same (i.e., s), and

(iii) if ⟨x, y⟩ = 0, then |ESA⊔TB⊔C | = ms, (iv) if ⟨x, y⟩ = ms, then |ESA⊔TB⊔C | = 2ms.

The following observation completes the proof of the theorem.

▶ Observation 3.7. Alice and Bob can deterministically determine answer for each local
query to graph G(x,y) by communicating O(1) bits.

We will give the proof of the above observation at the end of this subsection. ◀

Proof of Theorem 3.2. For clarity, we prove the theorem for ε = 1/4. However, the proof
can be extended for any ε ∈ (0, 1/2). We use the same set up and construction as in
Theorem 3.1 with S = SA ⊔ SB ⊔ C. Let A be an algorithm that almost uniformly samples
edges from the induced graph GS = (S, ES) making T queries, with probability 99/100.
Using A we give another algorithm A′ that decides whether |ES | = ms or |ES | = 2ms

by using O(T) queries, with probability at least 2/3. From the reduction presented in
Theorem 3.1, Alice and Bob can use A′ to solve ms-Intersection over N = s2 bits, and
hence T = Ω(s2

ms
).

A′ runs A 10 times independently to obtain edges e1, . . . , e10. Note that each edge ei

is sampled almost uniformly. If at least one ei satisfies ei ∈ ESA⊔TB
, then A′ reports that

|ES | = 2ms. Otherwise, A′ reports that |ES | = ms. The query cost of A′ is Θ(T).
If |ES | = ms, then there is no edge in the subgraph induced by SA ⊔ TB. So, in this

case, all the edges reported by A′ are from the subgraph induced by C. Now consider
when |ES | = 2ms. In this case, the subgraph induced by SA ⊔ TB and C have exactly ms

edges each. So, by the assumption of the algorithm A, the probability that any particular
ei is present in the subgraph induced by SA ⊔ TB is at least 1/2 − ε = 1/4 (since we are

FSTTCS 2022

8:10 Counting and Sampling from Substructures Using Linear Algebraic Queries

analyzing for ε = 1/4). So, under the conditional space that all the ten runs of A succeed,
the probability that none of the ten edges sampled by A is from the subgraph induced by
SA ⊔ TB is at most (1 − 1/4)10

< 1/10. As each run of algorithm A succeeds with probability
at least 99/100, all the ten runs of the algorithm A succeeds with probability at least 9/10.
So, the probability that algorithm A′ succeeds is at least 9/10 · (1 − 1/10) > 2/3. ◀

We will finish this subsection with the proof of Observation 3.7 used in the proof of
Theorem 3.1.

Proof of Observation 3.7.
degree query: By Observation 3.6 (ii), the degree of every vertex in V (G) \ C is s. Also,

the subgraph induced by C is a fixed graph disconnected from the rest. That is Alice
and Bob know the degree of every vertex in C. Therefore, any degree query can be
simulated without any communication.

neighbor query: Observe that Alice and Bob can get the answer to any neighbor query
involving a vertex in C without any communication. Now, consider the set SA. The labels
of the j neighbors of any vertex in sA

i ∈ SA are as follows: for j ∈ [s], the j-th neighbor
of sA

i is either tB
j or sA

j depending on whether xij = yij = 1 or not, respectively. So, any
neighbor query involving vertex in SA can be answered by 2 bits of communication.
Similar arguments also hold for the vertices in SB ⊔ TA ⊔ TB .

adjacency query: Observe that each adjacency query can be answered by at most 2 bits
of communication, and it can be argued like the neighbor query.

random edge query: By Observation 3.6 (ii), the degree of every vertex in V (G) \ C is
s irrespective of the inputs of Alice and Bob. Also, they know the entire subgraph
induced by the vertex set C. Also, C is disconnected from the rest. Alice and Bob use
shared randomness to sample a vertex in V proportional to its degree. Let r ∈ V be
the sampled vertex. They again use shared randomness to sample an integer j in [d(v)]
uniformly at random. Then they determine the j-th neighbor of r using neighbor query.
Observe that this procedure simulates a random edge query by using at most 2 bits of
communication. ◀

3.2 A query model for induced subgraphs
Observe that induced degree query can simulate any local queries on subgraphs.

▶ Remark 3.8. Let us have an induced degree query oracle access to an unknown graph
G(V, E). Consider any X ⊆ V (G) and GX , the subgraph of G induced by X. Then
(i) Any query to GX , which is either a degree or adjacency, can be answered by one

induced degree query to G.
(ii) Moreover, any neighbor query to GX can be answered by O(log |X|) induced degree

query to G by binary search.

The above remark together with the edge estimation result of Goldreich and Ron [25],
and edge sampling result of Eden and Rosenbaum [21], will give us the following result.

▶ Corollary 3.9 (Estimating and sampling edges in induced subgraphs). Let us assume that
the query algorithms have access to induced degree query to an unknown graph G =
(V (G), E(G)). There exists an algorithm that takes a subset S ⊆ V (G) and ε ∈ (0, 1) as
inputs, and outputs a (1±ε)-approximation to |ES |, with high probability, using Õ

(
|S|/

√
ES

)
induced degree queries to G. Also, there exists an algorithm that ε-almost uniformly
samples edges in ES, with high probability, using Õ

(
|S|/

√
ES

)
induced degree queries.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:11

▶ Remark 3.10. More generally, Remark 3.8 implies that any problem P on a graph G that
can be solved by using f (|V (G)|, |E(G)|) local queries, can also be solved on any induced
subgraph GS , where S ⊆ V (G), of G by using f (|V (GS)|, |E(GS)|) ·O(log |V (GS)|) induced
degree queries.

4 Bilinear form estimating and sampling entries of a matrix

4.1 Algorithm for Bilinear Form Estimation
To give the main ideas behind the algorithm for Bilinear Form Estimation, we will
discuss, in this section, the algorithm for estimating 1T A1 using IP access to A, with A

being symmetric. The algorithm for the special case is inspired by [25]. In the full version
of the paper ([13]) we show how the algorithm for this special case can be extended for the
general problem of estimating xT Ay, where A ∈ [[ρ]]n×n, x ∈ [[γ1]]n and y ∈ [[γ2]]n. We will
now give an outline of the proof of the following theorem.

▶ Theorem 4.1. There exists a query algorithm for Bfe that takes ε ∈ (0, 1/2) as input and
determines a (1 ± ε)-approximation to 1T A1 with high probability by using Õ

(√
ρn√

1T A1

)
IP

queries to a symmetric matrix A ∈ [[ρ]]n×n. Moreover, the algorithm only uses IP query of
the form ⟨Ak∗, u⟩ for some k ∈ [n] and u ∈ {0, 1}n.

The algorithms for Bilinear Form Estimation and Sample Almost Uniformly (Sec-
tion 4.2) will use a subroutine, which takes as input a given row i ∈ [n] of A and a non-empty
set S ⊆ [n], and outputs Aij , where j ∈ S, with probability Aij/

(∑
j∈S Aij

)
.

Algorithm 1 Regr(x, i).

Input: A vector x ∈ {0, 1}n such that the 1’s in x are consecutive and the number
of 1’s is a power of 2, an integer i ∈ [n] and IP access to a matrix A.

Output: Ordered pair (i, j) with probability Aij ·xj

⟨Ai∗,x⟩ .
begin

if (the number of 1’s in x is 1) then
Report the ordered pair (ij∗) where xj∗ = 1.

end
else

Form a vector y (z) in {0, 1}n by setting second (first) half of the nonzero
elements in x to 0 and keeping the remaining elements unchanged.

Determine ⟨Ai∗, y⟩ and ⟨Ai∗, z⟩.
With probability ⟨Ai∗,y⟩

⟨Ai∗,x⟩ report Regr(y, i) and with probability ⟨Ai∗,z⟩
⟨Ai∗,x⟩ report

Regr(z, i).
end

end

▶ Observation 4.2. There exists an algorithm Regr (See Algorithm 1) that takes i ∈ [n] and
x ∈ {0, 1}n as inputs, outputs Aij with probability Aijxj/

(∑
j∈[n] Aijxj

)
by using O(log n)

IP queries to matrix A.

We will now discuss in the following paragraphs the details of the algorithm (Algorithm 2)
for estimating 1T A1. The ingredients, to prove the correctness of Algorithm 2, are formally
stated in Lemma 4.6. The approximation guarantee of Algorithm 2, which matches the
guarantee mentioned in Theorem 4.1, is given in Claim 4.7.

FSTTCS 2022

8:12 Counting and Sampling from Substructures Using Linear Algebraic Queries

Partition of rows of A induced by ε

Given ε as input, we argue that the rows of the symmetric matrix A can be partitioned
into “buckets” such that the total number of buckets is small and every row in a particular
bucket has approximately the same total weight. Consider a partition of [n], that corresponds
to the set of the indices of the rows of the symmetric matrix A, into buckets with the
property that all js present in a particular bucket Bi have approximately the same value
of ⟨Aj∗, 1⟩. Let t = ⌈log1+β(ρn)⌉ + 1, where β ≤ ε/8. For i ∈ [t], we define the set
Bi :=

{
j ∈ [n] : (1 + β)i−1 ≤ ⟨Aj∗, 1⟩ < (1 + β)i

}
. Since Aij ≤ ρ, the maximum number

of such buckets Bi required are at most t = ⌈log1+β(ρn)⌉ + 1. Now consider the following
fact that will be used in our analysis.

▶ Fact 4.3. For every i ∈ [t], (1 + β)i−1 |Bi| ≤
∑

j∈Bi
⟨Aj∗, 1⟩ < (1 + β)i |Bi|.

Based on the number of rows in a bucket, we classify the buckets to be either large or
small. To define the large and small buckets, we require a lower bound ℓ on the value of
m = 1T A1. Moreover, let us assume that, m/6 ≤ ℓ ≤ m. However, this restriction can be
removed by using standard techniques from property testing. For details, see [13, Section 4].

▶ Definition 4.4. We fix a threshold θ = 1
t · 1

n

√
ε
8 · ℓ

ρ . For i ∈ [t], we define the set Bi to be
a large bucket if |Bi| ≥ θn, otherwise Bi is defined to be a small bucket. Thus, the set of
large buckets L is defined as L = {i ∈ [t] : |Bi| ≥ θn}, and [t] \ L is the set of small buckets.

Let V, U ⊆ [n] be the sets of indices of rows that lie in large and small buckets, respectively.
For I ⊆ [n], let xI denote the sub-vector of x induced by the indices present in I. Similarly,
for I, J ⊆ [n], let AIJ denote the sub-matrix of A where the rows and columns are induced
by the indices present in I and J , respectively. Observe that,

1T A1 = 1V
T AV V 1V + 1V

T AV U 1U + 1U
T AUV 1V + 1U

T AUU 1U .

2-Approximation of 1TA1

Note that at this point we know β and, upon querying ⟨Aj∗, 1⟩, we can determine the bucket
to which j belongs, for j ∈ [n]. The algorithm begins by sampling a subset S of rows of
A, such that |S| = K, independently and uniformly at random with replacement, and for
each sampled row j, the algorithm determines ⟨Aj∗, 1⟩ by using IP oracle. This determines
the bucket in which each sampled row belongs. Depending on the number of sampled rows
present in different buckets, our algorithm classifies each bucket as either large or small. Let
Ṽ and Ũ be the indices of the rows present in large and small buckets, respectively. Note that
the algorithm does not find Ṽ and Ũ explicitly – these are used only for analysis purposes.

Observe that,

1T A1 = 1
Ṽ

T A
Ṽ Ṽ

1
Ṽ

+ 1
Ṽ

T A
Ṽ Ũ

1
Ũ

+ 1
Ũ

T A
ŨṼ

1
Ṽ

+ 1
Ũ

T A
ŨŨ

1
Ũ

.

We can show that 1
Ũ

T A
ŨŨ

1
Ũ

is at most ε
4 ℓ, where ℓ is a lower bound on 1T A1. Thus,

1T A1 ≈ 1
Ṽ

T A
Ṽ Ṽ

1
Ṽ

+ 1
Ṽ

T A
Ṽ Ũ

1
Ũ

+ 1
Ũ

T A
ŨṼ

1
Ṽ

.

Lemma 4.6 shows that for a sufficiently large K, with high probability, the fraction
of rows in any large bucket is approximately preserved in the sampled set of rows. Also
observe that we know tight (upper and lower) bounds on ⟨Aj∗, 1⟩ for every row j, where
j ∈ Ṽ . Thus, the random sample of S rows, such that |S| = K, approximately preserves
1

Ṽ
T A

Ṽ Ṽ
1

Ṽ
+ 1

Ṽ
T A

Ṽ Ũ
1

Ũ
. Observe that this is already 2-approximation of 1TA1.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:13

Using Regr for tight approximation

In order to get a (1 ± ε)-approximation to 1T A1, we need to estimate 1
Ũ

T A
ŨṼ

1
Ṽ

, which is
same as estimating 1

Ṽ
T A

Ṽ Ũ
1

Ũ
since A is a symmetric matrix. We estimate 1

Ṽ
T A

Ṽ Ũ
1

Ũ
,

that is, the sum of Aijs such that i ∈ Ṽ and j ∈ Ũ , as follows. For each bucket Bi that
is declared as large by the algorithm, we select enough number of rows randomly with
replacement from Si = S ∩ Bi, invoke Regr for each selected row in Si and increase the
count by 1 if the element Aij reported by Regr be such that j ∈ Ũ . A formal description
of our algorithm is given in Algorithm 2. Now, we focus on the correctness proof of our
algorithm for Bfe.

Algorithm 2 Bfe (ℓ, ε).

Input: An estimate ℓ for 1TA1 and ε ∈ (0, 1/2).
Output: m̂, which is a (1 ± ε)-approximation of 1T A1.
begin

Independently select K = Θ
(√

ρn√
ℓ

· ε−4.5 · log2(ρn) · log(1/ε)
)

rows of A

uniformly at random and let S denote the multiset of the selected indices (of
rows) sampled. For i ∈ [t], let Si = Bi ∩ S.

Let L̃ =
{

i : |Si|
|S| ≥ 1

t · 1
n

√
ε
6 · ℓ

ρ

}
. Note that L̃ is the set of buckets that the

algorithm declares to be large. Similarly, [t] \ L̃ is the set of buckets declared to
be small by the algorithm.

For every i ∈ L̃, select |Si| samples uniformly at random from Si, with
replacement, and let Zi be the set of samples obtained. For each z ∈ Zi, make a
Regr(1, z) query and let Azkz

= Regr(1, z). Let Yz be a random variable that
takes value 1 if kz ∈ Ũ and 0, otherwise.

Determine α̃i =
∑

z∈Zi
Yz

|Si| .
Output m̂ = n

K

∑
i∈L̃

(1 + α̃i) · |Si| · (1 + β)i.

end

To prove that m̂ is a (1±ε)-approximation of m = 1T A1, we need the following definition
and the technical Lemma 4.6.

▶ Definition 4.5. For i ∈ L, αi is defined as
∑

u∈Bi
⟨Au∗,1

Ũ
⟩∑

u∈Bi
⟨Au∗,1⟩

.

▶ Lemma 4.6. For a suitable choice of constant in Θ(·) for selecting K samples in Algorithm 2,
the followings hold with high probability:

(i) For each i ∈ L, we have |Si|
K =

(
1 ± ε

4
) |Bi|

n .

(ii) For each i ∈ [t] \ L, |Si|
K < 1

t · 1
n

√
ε
6 · ℓ

ρ .

(iii) We have |Ũ | <
√

ε
4 · ℓ

ρ , where Ũ = {j ∈ Bi : i ∈ [t] \ L̃}.

(iv) For every i ∈ L̃, (a) if αi ≥ ε
8 , then α̃i =

(
1 ± ε

4
)

αi, and (b) if αi < ε/8, then
α̃i < ε/4.

The above Lemma can be proved by using Chernoff bound (see Appendix A). Now, we have
all the ingredients to show the following claim, which shows that m̂ is a (1±ε)-approximation
of m = 1T A1. The following claim is proved in the full version of the paper [13].

FSTTCS 2022

8:14 Counting and Sampling from Substructures Using Linear Algebraic Queries

▷ Claim 4.7. With high probability, we have,
(i) m̂ ≥

(
1 − ε

2
) (

m − ε
4 ℓ
)
, and

(ii) m̂ ≤
(
1 + 3ε

4
)

m, where m = 1T A1.

Recall that we have assumed m/6 ≤ ℓ ≤ m. Under this assumption, the above claim says
that m̂ is in fact a (1 ± ε)-approximation to m. From the description of Algorithm 2, the
number of IP queries made by the algorithm is Õ

(√
ρn√
ℓ

)
= Õ

(√
ρn√

1T A1

)
as m/10 ≤ ℓ ≤ m.

We will discuss how to remove the assumption, that m/6 ≤ ℓ ≤ m, by using a standard
technique in property testing (see the full version of the paper [13]). So, we are done with
the proof of Theorem 4.1.

4.2 Algorithm for Sampling Almost Uniformly
In this section, we will be proving the following theorem on almost uniformly sampling the
entries of a symmetric matrix A ∈ [[ρ]]n×n. The algorithm for the special case is inspired
by [21]. In the full version of the paper ([13]), we show how this algorithm can be extended
to solve the more general SauA(x, y) problem.

▶ Theorem 4.8. Let A ∈ [[ρ]]n×n be an unknown symmetric matrix with IP query access.
There exists an algorithm that takes ε ∈ (0, 1) as input and with high probability outputs
a sample from a distribution on [n] × [n], such that each (i, j) ∈ [n] × [n] is sampled with
probability pij satisfying:

pij = (1 ± ε) Aij(∑
1≤i,j≤n Aij

) .

Moreover, the algorithm makes Õ
(√

ρn√
1T A1

)
IP queries to the matrix A of the form

⟨Ak∗, u⟩ for some k ∈ [n] and u ∈ {0, 1}n.

Our algorithm for Sample Almost Uniformly is a generalization of Eden and Rosen-
baum’s algorithm for sampling edges of an unweighted graph [21]. First, consider the following
strategy by which we sample each ordered pair (i, j) ∈ [n] × [n] proportional to Aij when the
matrix A is such that ⟨Ai,∗, 1⟩ is the same for each i ∈ [n].
Strategy-1: Sample r ∈ [n] uniformly at random and then sample an ordered pair of the form
(r, j) from the r-th row using Regr query. Observe that this strategy fails when ⟨Ai∗, 1⟩’s
are not the same for every i ∈ [n]. So, the modified strategy is as follows.
Strategy-2: Sample r ∈ [n] with probability ⟨Ar∗,1⟩

1T A1 and then sample an ordered pair of the
form (r, j) from the r-th row by using Regr query.

Note that Strategy-2 samples each ordered pair (i, j) proportional to Aij . However, there
are two challenges in executing Strategy-2:

(i) We do not know the value of 1T A1.
(ii) We need Ω(n) queries to determine ⟨Ar∗, 1⟩ for each r ∈ [n].

The first challenge can be taken care of by finding an estimate m̂ for 1T A1, with high
probability, by using Theorem 4.1 such that m̂ = Θ(1T A1). To cope up with the second
challenge, we partition the elements as well as rows into two classes as defined in Definition 4.9.
In what follows, we consider a parameter τ in terms of which we base our discussion as well
as algorithm. τ is a function of m̂ that will evolve over the calculation and will be τ =

√
ρm̂
ε .

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:15

▶ Definition 4.9. The i-th row of the matrix is light if ⟨Ai,∗, 1⟩ ≤ τ , otherwise i-th row is
heavy. Any order pair (i, j), for a fixed i, is light (heavy) if the i-th row is light (heavy).

We denote the set of all light (heavy) ordered pairs by L (H). Also, let I(L) (I(H)) denote the
set of light (heavy) rows of the matrix A. Let w(L) =

∑
Aij∈L Aij and w(H) =

∑
Aij∈H Aij .

Our algorithm consists of repeated invocation of two subroutines, that is, Sample-
Light and Sample-Heavy. Both Sample-Light and Sample-Heavy succeed with good
probability and sample elements from L and H almost uniformly, respectively. The threshold
τ is set in such a way that there are large 8 number of light rows and small number of
heavy rows. In Sample-Light, we select a row uniformly at random, and if the selected
row is light, then we sample an ordered pair from the selected row randomly using Regr.
This gives us an element from L uniformly. However, the same technique will not work for
Sample-Heavy as we have few heavy rows. To cope up with this problem, we take a row
uniformly at random and if the selected row is light, we sample an ordered pair from the
selected row randomly using Regr. Let (i, j) be the output of the Regr query. Then we go
to the j-th row, if it is heavy, and then select an ordered pair from the j-th row randomly
using Regr query.

The formal algorithms for Sample-Light and Sample-Heavy are given in Algorithm 3
and Algorithm 4, respectively. The formal correctness of Sample-Light and Sample-Heavy
are given in Lemmas 4.10 and 4.11, respectively. We give the final algorithm along with its
proof of correctness in Theorem 4.8.

Algorithm 3 Sample-Light.

Input: An estimate m̂ for 1T A1 and a threshold τ .
Output: (i, j) ∈ L with probability Aij

nτ .
begin

Select a row r ∈ [n] uniformly at random.
if (r ∈ I(L), that is, ⟨Ar∗, 1⟩ is at most τ) then

Return Fail with probability p = τ−⟨Ar∗,1⟩
τ , and Return Regr(r, 1) with

probability 1 − p as the output.
end
Return Fail

end

▶ Lemma 4.10. Sample-Light succeeds with probability w(L)
nτ . Let Zℓ be the output in

case it succeeds. Then P(Zℓ = (i, j)) = Aij

nτ if (i, j) ∈ L, and P(Zℓ = (i, j)) = 0, otherwise.
Moreover, Sample-Light makes O(log n) queries.

▶ Lemma 4.11. Sample-Heavy succeeds with probability at most w(H)
nτ and at least(

1 − ρm̂
τ2

)
w(H)

nτ . Let Zh be the output in case it succeeds. Then,
(

1 − ρm̂
τ2

)
Aij

nτ ≤ P(Zh =

(i, j)) ≤ Aij

nτ for each (i, j) ∈ H, and P(Zh = (i, j)) = 0, otherwise. Moreover, Sample-
Heavy makes O(log n) queries.

Now we will us the above lemmas to prove Theorem 4.8.

8 Large is parameterized by τ .

FSTTCS 2022

8:16 Counting and Sampling from Substructures Using Linear Algebraic Queries

Algorithm 4 Sample-Heavy (m̂).

Input: An estimate m̂ for 1T A1 and a threshold τ .
Output: Aij ∈ H with probability at most Aij

nτ and at least
(

1 − ρm̂
τ2

)
Aij

nτ .
begin

Select a row r ∈ [n] uniformly at random;
if (r ∈ I(L), that is, ⟨Ar∗, 1⟩ is at most τ) then

Return Fail with probability p = τ−⟨Ar∗,1⟩
τ , and with probability 1 − p do the

following;
Ars =Regr(r, 1)
If s ∈ I(H), that is, ⟨As∗, 1⟩ > τ , then Return Regr(s, 1) as the output.
Otherwise, Return Fail;

end
Return Fail;

end

Proof of Theorem 4.8. Our algorithm first finds a rough estimate m̂ for 1T A1, with high
probability, by using Theorem 4.1 such that m̂ = Θ(1T A1). For the rest of the proof, we

work on the conditional probability space that m̂ = Θ(1T A1). We set τ =
√

ρm̂
ε and do

the following for Γ times, where Γ is a parameter to be set later. With probability 1/2, we
invoke Sample-Light and with probability 1/2, we invoke Sample-Heavy. If the ordered
pair (i, j) is reported as the output by either Sample-Light or Sample-Heavy, we report
that. If we get Fail in all the trials, we report Fail.

Now, let us consider a particular trial and compute the probability of success P(S),
which is P(S) = 1

2 (P(Sample-Light succeeds) + P(Sample-Heavy succeeds)). Observe
that from Lemmas 4.10 and 4.11, we have,

1
2

(
w(L)
nτ

+
(

1 − ρm̂

τ2

)
w(H)

nτ

)
≤ P(S) ≤ 1

2

(
w(L)
nτ

+ w(H)
nτ

)
.

This implies (1 − ε) 1T A1
2nτ ≤ P(S) ≤ 1T A1

2nτ as τ =
√

ρm̂
ε and using w(L) + w(H) = 1T A1.

Now, let us compute the probability of the event Eij , that is, the algorithm succeeds
and it returns Aij . If Aij ∈ L, by Lemma 4.10, we have P(Z = (i, j)) = 1

2 · Aij

nτ . Also, if
Aij ∈ H, by Lemma 4.11, we have,

(
1 − ρm̂

τ2

)
Aij

2nτ ≤ P(Z = (i, j)) ≤ Aij

2nτ . So, for any (i, j),

we get (1 − ε) Aij

2nτ ≤ P(Eij) ≤ Aij

2nτ . Let us compute the probability of Eij on the conditional
probability space that the algorithm succeeds, that is, P(Z = (i, j) | S) = P(Eij)

P(S) , which lies

in the interval
[
(1 − ε) Aij

1T A1 , (1 + ε) Aij

1T A1

]
as ε ∈

(
0, 1

2
)
.

To boost the probability of success, we set Γ = O
(

n
√

ρ

(1−ε)
√

εm̂
log n

)
for a suitable large

constant in O(·) notation. The query complexity of each call to Sample-Light and Sample-
Heavy is O(log n). Also note that our algorithm for Sample Almost Uniformly makes

at most O
(

n
√

ρ

(1−ε)
√

εm̂
log n

)
invocations to Sample-Light and Sample-Heavy. Hence,

the total query complexity of our algorithm is Õ
(√

ρn√
1T A1

)
. ◀

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:17

Table 1 Comparing IP with matrix-vector and vector-matrix-vector queries. Recall that MV anf
VMV stand for matrix-vector and vector-matrix-vector queries.

Problem IP Query VMV Query [32] MV Query [40]

Symmetric Matrix Θ̃ (n) O (1) O (1)
Diagonal Matrix Θ (n) O (1) O (1)

Trace Θ (n) O (n) O (n)
Ω
(

n
log n

)
Ω
(

n
log n

)
Permutation Matrix Θ (n) O (1) O (1)

Doubly Stochastic matrix Θ (n) O (1) O (1)
Identical columns9 Θ̃ (n) Θ̃ (n) Θ̃ (n)
All Ones Columns Θ (n) O (n) O (n)

Ω
(

n
log n

)
Ω
(

n
log n

)
5 Conclusion and discussions

Other matrix problems

Recently, vector-matrix query [40] and vector-matrix-vector query [32] were introduced to
study a bunch of matrix, graph and statistics problems. As noted earlier, IP query oracle is
in the same linear algebraic framework of vector-matrix (VM) query and vector-matrix-vector
(VMV) query, but these queries are stronger than IP query. Study of the various matrix,
graph and statistics problems, introduced in [40, 32], using IP query will be of independent
interest. As a first step in that direction, in the full version of this paper [13], we study the
query complexity of the following problems using IP queries.

Symmetric Matrix: Is A ∈ {0, 1}n×n a symmetric matrix?
Diagonal Matrix: Is A a diagonal matrix?
Trace: Compute the trace of the matrix A.
Permutation Matrix: Is A ∈ {0, 1}n×n a permutation matrix?
Doubly stochastic matrix: Is A ∈ {0, 1}n×n a doubly stochastic matrix?
Identical columns: Does there exist two columns in A ∈ {0, 1}n×n that are identical?
All ones column: Does there exist a column in A all of whose entries are 1?

Table 1 compares the query complexities of IP oracle with matrix-vector (MV) and vector-
matrix-vector (VMV) queries.

Data structure complexity and open problems

Besides property testing, there have been extensive work concerning vector-matrix-vector
product in data structure complexity and other models of computation like the cell probe
model [15, 16, 17, 28, 30]. For the purposes of this paper, it is an interesting question to find
a pre-processing scheme for the matrix such the IP queries on the matrix can be answered
efficiently.

9 Upper and lower bounds results for Identical columns problem in [32, 40] uses vectors from {0, 1}n

in their respective queries.

FSTTCS 2022

8:18 Counting and Sampling from Substructures Using Linear Algebraic Queries

One of the open problems that is left from our work is to design algorithm and/or
prove lower bound for Bilinear Form Estimation and Sampling when the entries of the
matrices are not necessarily positive. Here we would like to state that our technique does
not work for a matrix with both positive and negative entries. Some other natural open
questions are:

Are there some special kind of matrices where we can solve Bilinear Form Estimation
and Sampling using fewer queries?
Can we solve some other linear algebraic problems using IP queries?
Are there other graph problems, where induced degree outperforms local queries?

References
1 Intel C++ Compiler Classic Developer Guide and Reference: Floating Point Dot Product In-

trinsics. https://software.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/
intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-
compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html.

2 NVIDIA Developer: Cg 3.1 Toolkit Documentation. https://developer.download.nvidia.
com/cg/dot.html.

3 K. J. Ahn, S. Guha, and A. McGregor. Analyzing Graph Structure via Linear Measurements.
In ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 459–467, 2012.

4 M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yodpinyanee.
Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling. Algorithmica,
80(2):668–697, 2018.

5 S. Assadi, D. Chakrabarty, and S. Khanna. Graph connectivity and single element recovery
via linear and OR queries. In European Symposium on Algorithms, ESA, volume 204, pages
7:1–7:19, 2021.

6 S. Assadi, M. Kapralov, and S. Khanna. A Simple Sublinear-Time Algorithm for Counting
Arbitrary Subgraphs via Edge Sampling. In Innovations in Theoretical Computer Science
Conference, ITCS, pages 6:1–6:20, 2019.

7 M.-F. Balcan, Y. Li, D. P. Woodruff, and H. Zhang. Testing Matrix Rank, Optimally. In
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 727–746, 2019.

8 P. Beame, S. Har-Peled, S. N. Ramamoorthy, C. Rashtchian, and M. Sinha. Edge Estimation
with Independent Set Oracles. In Innovations in Theoretical Computer Science Conference,
ITCS, pages 38:1–38:21, 2018.

9 I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of query
types in property testing: the case of testing k-colorability. In ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1213–1222, 2008.

10 M. Benzi and C. Klymko. Total Communicability as a Centrality Measure. Journal of Complex
Networks, 1:124–149, 2013.

11 A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh. Parameterized Query Complexity
of Hitting Set Using Stability of Sunflowers. In International Symposium on Algorithms and
Computation, ISAAC, pages 25:1–25:12, 2018.

12 A. Bishnu, A. Ghosh, and G. Mishra. Distance Estimation Between Unknown Matrices
Using Sublinear Projections on Hamming Cube. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 207,
pages 44:1–44:22, 2021.

13 A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar. Efficiently sampling and estimating
from substructures using linear algebraic queries. CoRR, abs/1906.07398, 2019. Version 2.
arXiv:1906.07398v2.

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://developer.download.nvidia.com/cg/dot.html
https://developer.download.nvidia.com/cg/dot.html
http://arxiv.org/abs/1906.07398v2

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 8:19

14 F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V.S. Lakshmanan. Fast Matrix
Computations for Pairwise and Columnwise Commute Times and Katz Scores. Internet
Mathematics, 1-2(8):73–112, 2012.

15 D. Chakraborty, L. Kamma, and K. G. Larsen. Tight Cell Probe Bounds for Succinct Boolean
Matrix-Vector Multiplication. In ACM SIGACT Symposium on Theory of Computing, STOC,
pages 1297–1306, 2018.

16 A. Chattopadhyay, M. Koucký, B. Loff, and S. Mukhopadhyay. Simulation Beats Richness:
New Data-Structure Lower Bounds. In ACM SIGACT Symposium on Theory of Computing,
STOC, pages 1013–1020, 2018.

17 H. Dell, J. Lapinskas, and K. Meeks. Approximately Counting and Sampling Small Witnesses
using a Colourful Decision Oracle. In ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 2201–2211, 2020.

18 D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 1st edition, 2009.

19 T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear
Time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

20 T. Eden, D. Ron, and C. Seshadhri. On Approximating the Number of k-Cliques in Sublinear
Time. In ACM SIGACT Symposium on Theory of Computing, STOC, pages 722–734, 2018.

21 T. Eden and W. Rosenbaum. On Sampling Edges Almost Uniformly. In Symposium on
Simplicity in Algorithms, SOSA, pages 7:1–7:9, 2018.

22 E. Estrada and D. J. Higham. Network Properties Revealed through Matrix Functions. SIAM
Review, 52:696–714, 2010.

23 U. Feige. On Sums of Independent Random Variables with Unbounded Variance and Estimating
the Average Degree in a Graph. SIAM Journal on Computing, 35(4):964–984, 2006.

24 O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
25 O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. Random Structures

& Algorithms, 32(4):473–493, 2008.
26 J. L. Hennessy and D. A. Patterson. Computer Architecture – A Quantitative Approach (5.

ed.). Morgan Kaufmann, 2012.
27 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
28 K. G. Larsen and R. R. Williams. Faster Online Matrix-Vector Multiplication. In ACM-SIAM

Symposium on Discrete Algorithms, SODA, pages 2182–2189, 2017.
29 N. Nisan. The demand query model for bipartite matching. In ACM-SIAM Symposium on

Discrete Algorithms, SODA, pages 592–599, 2021.
30 S. N. Ramamoorthy and C. Rashtchian. Equivalence of Systematic Linear Data Structures and

Matrix Rigidity. In Innovations in Theoretical Computer Science Conference, ITCS, volume
151, pages 35:1–35:20, 2020.

31 A. Rao and A. Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

32 C. Rashtchian, D. P. Woodruff, and H. Zhu. Vector-Matrix-Vector Queries for Solving
Linear Algebra, Statistics, and Graph Problems. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 176,
pages 26:1–26:20, 2020.

33 D. Ron and G. Tsur. The Power of an Example: Hidden Set Size Approximation Using Group
Queries and Conditional Sampling. ACM Trans. Comput. Theory, 8(4):15:1–15:19, 2016.

34 A. Rubinstein, T. Schramm, and S. M. Weinberg. Computing Exact Minimum Cuts Without
Knowing the Graph. In Innovations in Theoretical Computer Science Conference, ITCS, pages
39:1–39:16, 2018.

35 J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley, Upper Saddle River, NJ, 2010.

36 X. Shi and D. P. Woodruff. Sublinear Time Numerical Linear Algebra for Structured Matrices.
In AAAI Conference on Artificial Intelligence, AAAI, pages 727–746, 2019.

FSTTCS 2022

8:20 Counting and Sampling from Substructures Using Linear Algebraic Queries

37 L. J. Stockmeyer. The Complexity of Approximate Counting (Preliminary Version). In ACM
SIGACT Symposium on Theory of Computing, STOC, pages 118–126, 1983.

38 L. J. Stockmeyer. On Approximation Algorithms for #P. SIAM Journal on Computing,
14(4):849–861, 1985.

39 X. Sun, D. P. Woodruff, G. Yang, and J. Zhang. Querying a Matrix Through Matrix-Vector
Products. In International Colloquium on Automata, Languages, and Programming, ICALP,
pages 94:1–94:16, 2019.

40 X. Sun, D. P. Woodruff, G. Yang, and J. Zhang. Querying a Matrix Through Matrix-Vector
Products. In International Colloquium on Automata, Languages, and Programming, ICALP,
volume 132, pages 94:1–94:16, 2019.

A Useful probability bounds

▶ Lemma A.1 (See [18]). Let X =
n∑

i=1
Xi where Xi, i ∈ [n], are independent random

variables, Xi ∈ [0, 1] and E[X] is the expected value of X.
(i) For ε > 0, we have Pr [|X − E[X]| > εE [X]] ≤ exp

(
−ε2E[X]/3

)
.

(ii) Suppose µL ≤ E[X] ≤ µH . Then, for all 0 < ε < 1, we have
(a) Pr[X > (1 + ε)µH] ≤ exp

(
−ε2µH/3

)
.

(b) Pr[X < (1 − ε)µL] ≤ exp
(
−ε2µL/2

)
.

Derandomization via Symmetric Polytopes:
Poly-Time Factorization of Certain Sparse
Polynomials
Pranav Bisht # Ñ

Department of Computer Science & Engineering, IIT Kanpur, India

Nitin Saxena # Ñ

Department of Computer Science & Engineering, IIT Kanpur, India

Abstract
More than three decades ago, after a series of results, Kaltofen and Trager (J. Symb. Comput.
1990) designed a randomized polynomial time algorithm for factorization of multivariate circuits.
Derandomizing this algorithm, even for restricted circuit classes, is an important open problem. In
particular, the case of s-sparse polynomials, having individual degree d = O(1), is very well-studied
(Shpilka, Volkovich ICALP’10; Volkovich RANDOM’17; Bhargava, Saraf and Volkovich FOCS’18,
JACM’20). We give a complete derandomization for this class assuming that the input is a symmetric
polynomial over rationals. Generally, we prove an spoly(d)-sparsity bound for the factors of symmetric
polynomials over any field. This characterizes the known worst-case examples of sparsity blow-up
for sparse polynomial factoring.

To factor f , we use techniques from convex geometry and exploit symmetry (only) in the Newton
polytope of f . We prove a crucial result about convex polytopes, by introducing the concept of “low
min-entropy”, which might also be of independent interest.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; The-
ory of computation → Pseudorandomness and derandomization; Mathematics of computing →
Combinatoric problems

Keywords and phrases Multivariate polynomial factorization, derandomization, sparse polynomials,
symmetric polynomials, factor-sparsity, convex polytopes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.9

Related Version Full Version:
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf

Funding Nitin Saxena: DST-SERB (CRG/2020/000045) and N. Rama Rao Chair.

Acknowledgements Pranav thanks Ilya Volkovich and Vishwas Bhargava for useful discussions. The
authors would also like to thank the anonymous reviewers for their useful comments that improved
the presentation of results.

1 Introduction

Polynomial factorization is one of the most fundamental and central problems studied in
computational algebra. In this paper, we concern ourselves with the problem of multivariate
polynomial factorization which, given a polynomial f ∈ F[x1, . . . , xn] over some field F
as an input, asks to compute all the irreducible factors of f . In a famous line of work,
it was shown that this problem admits a polynomial time randomized algorithm [18, 20].
Finding an efficient deterministic algorithm continues to be a challenging open problem1.

1 We only want an efficient deterministic algorithm to reduce multivariate circuit (or even sparse)
factorization to univariate factorization.

© Pranav Bisht and Nitin Saxena;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbisht@cse.iitk.ac.in
https://pranavbisht.bitbucket.io/
https://orcid.org/0000-0002-9138-3339
mailto:nitin@cse.iitk.ac.in
https://www.cse.iitk.ac.in/users/nitin/
https://orcid.org/0000-0001-6931-898X
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.9
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Sparse Polynomial Factorization

See [19, 38, 39, 35] for a detailed exposition. Polynomial factorization also has interesting
connections with other problems such as circuit lower bounds [15], list decoding [34, 13] and
cryptography [6].

The representation of the input polynomial is significant in the complexity of this problem.
The randomized algorithms of [18, 20] are efficient when both the input polynomial and
output factors are represented as general algebraic circuits (see Appendix B for definition).
It is imperative to ask if derandomizing polynomial factorization will be easier for restricted
circuit classes. One may believe the problem to be easier since the input polynomial is weak
as it belongs to a restricted class. However, note that the demand is correspondingly stronger;
we want output factors also to be given in this restricted class. A very natural interesting
class of algebraic circuits, which is considered for this problem, is that of sparse polynomials.
Sparsity of a polynomial f is defined as number of monomials in f with non-zero coefficients.
Sparse polynomials can also be seen as depth-2 (ΣΠ) algebraic circuits. If we give sparse
polynomial as input to Kaltofen’s factorization algorithm, the output will be in the form of
general algebraic circuit, but in sparse polynomial factorization, we want output factors also
to be in sparse representation.

There is another motivation for studying sparse polynomials for the factorization problem,
which arises from another fundamental problem called the Polynomial identity testing (PIT).
Given an input polynomial f ∈ F[x1, . . . , xn] as an algebraic circuit, PIT asks to determine if
f is identically zero. This problem also admits a simple and efficient randomized algorithm
due to PIT Lemma [29, 42, 10, 26] and like factoring, finding a deterministic efficient
algorithm is still open. It is easy to show that PIT reduces to factorization2. In fact, [22]
showed that the problem of derandomizing multivariate polynomial factoring is equivalent
to derandomizing PIT, for general algebraic circuits. Showing this equivalence for other
interesting circuit classes, was left as an open problem by [22]. The classes, which admit
an efficient deterministic PIT algorithm are particularly interesting because if we show the
equivalence for these classes, we also derandomize factoring for them. Sparse polynomials is
one such natural class, for which we do have poly-time deterministic PIT algorithms [21].

Note that the run-time of sparse factorization algorithm will be lower bounded by the
sparsity of factors, just for writing the output alone. In general, the sparse model is not
closed under factors, i.e. sparse polynomials can have dense factors as shown in Examples
4.8 and 4.9. Therefore, the bounded individual degree setting is studied for sparse polynomial
factorization [31, 36, 37, 2]. Individual degree of a polynomial is defined as the maximum
degree of some variable appearing in it (See Section 2). This raises the following important
question:

▶ Question 1.1. Let f be an s-sparse polynomial with constant individual degree. Can f be
deterministically factored in poly(s)-time?

We make progress towards a positive answer to this question by giving a poly(s)-time
deterministic factoring algorithm, when the sparse polynomial f is also symmetric. Symmetric
polynomials are ones that remain the same even if any of the variables are interchanged
(See Section 2 for formal definition). To the best of our knowledge, symmetry was not
exploited before our work and the previous best deterministic algorithm for this class
was a super-polynomial time algorithm by [2] with run-time sO(log n), for general s-sparse
polynomials.

2 Observe that the polynomial x2 + y · f factorizes if and only if f = 0.

P. Bisht and N. Saxena 9:3

The work of [2] partially derandomizes the factoring question for sparse polynomials
having constant individual degree. The crucial derandomization step in their algorithm is
proving an efficient sparsity bound for factors of the input polynomial f , which dominates
the run-time of their algorithm. They were able to prove an sO(log n) sparsity bound for
factors of f . Our main contribution is to prove factor-sparsity bound of sO(1), when f is
symmetric. The key combinatorial object associated with derandomization of sparse factoring
or equivalently factor-sparsity, is the Newton polytope of f . We prove our bound by giving a
completely new line of attack on the symmetric Newton polytope of f .

Symmetric polynomials are studied extensively both in computer science and mathematics.
It is intriguing to explore the effect of symmetry in the polynomial factorization problem.
Many multivariate polynomials f ∈ F[x1, . . . , xn] are constructed by “boosting” a univariate
polynomial a(X) by product or addition as shown below:

f =
n∏

i=1
a(xi) or f =

(
n∑

i=1
a(xi)

)d

for some d ≥ 1.

Some of the famous polynomials that are known to have dense factors (Example 4.8 and
Example 4.9) are of this type. Such polynomials are actually symmetric by construction
and are exactly captured by the results of this work. Therefore, the symmetric setting
is important and non-trivial. Moreover, our proof techniques do not require symmetry in
the coefficients of f , but merely in the support of f . Besides symmetric polynomials, our
techniques also give polynomial-time deterministic factoring algorithm for another class of
polynomials, which we call low min-entropy polynomials, that we define later.

1.1 Our results
Given a polynomial f , the complete factorization of f is a representation of f as fe1

1 fe2
2 · · · fek

k ,
where f1, . . . , fk are co-prime, irreducible polynomials and e1, . . . , ek are positive integers.
This representation is unique up to a reordering of fi’s. Let Q denote the field of rational
numbers. We get a poly-time deterministic reduction from multivariate to univariate factoring
over any field F. In particular, this gives us a complete poly-time factoring algorithm over Q
below, by using the univariate factoring algorithm of [23].

▶ Theorem 1.2 (Symmetric factoring algorithm). Let f ∈ Q[x1, . . . , xn] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f . Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s, n, t)-time.

▶ Remark.
1. The exact complexity is poly(sd7 log d · nd2 · t)-time.
2. For a finite field F = Fpℓ , we get a deterministic poly(sd7 log d · nd2 · ℓ log p)-time reduction

to univariate factoring.
3. Throughout this paper (specifically in Theorems 1.2, 1.3 & 4.6), we get the same results

if we replace symmetric polynomials with a more general class of polynomials, which we
call symmetric-support polynomials. Let supp(f) denote the set of monomials in f with
non-zero coefficients. We call f ∈ F[x1, . . . , xn] a symmetric-support polynomial if for
each monomial xe1

1 · · · xen
n ∈ supp(f), we also have that x

eσ(1)
1 · · · x

eσ(n)
n ∈ supp(f) for every

permutation σ ∈ Sn. For eg., f = x2
1x2x3 + 2x1x2

2x3 − x1x2x2
3 is a symmetric-support

polynomial that is not symmetric. While f = x2
1x2x3 + x1x2

2x3 is not symmetric-support.

FSTTCS 2022

9:4 Sparse Polynomial Factorization

The factoring algorithm in Theorem 1.2 is a direct consequence of our new sparsity bound
below.

▶ Theorem 1.3 (Symmetric sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

▶ Remark.
1. The exact factor-sparsity bound that we prove is sO(d2 log d). From Example 4.9, we

note that sd is a lower bound on factor-sparsity and hence also a lower bound on the
time-complexity of any factoring algorithm for sparse polynomials.

2. Previous best sparsity upper bound was sO(d2 log n) due to [2], which is super polynomial
even for constant d.

3. We can also work with a general (possibly non-symmetric) f and get the same sparsity
bound for any symmetric factor of f (if it exists). We prove this formally in Theorem 4.6.
This yields a surprising incompressibility result: a symmetric bounded-individual-degree
polynomial g, that is s-dense, has sΩ(1)-dense multiples gh, for an arbitrary nonzero
polynomial h! (See Remark 4.5)

We now give a factoring algorithm for another class of polynomials, which we call “low min-
entropy” polynomials. We say that an n-dimensional vector v is of δ-min-entropy if (n− δ) of
its coordinates have the same value, where we consider minimum δ across all distinct elements
in v. We call a set of vectors A, a δ-min-entropy set, if every vector in A has min-entropy ≤ δ.
We can identify the support of polynomial f , with the subset supp(f) ⊆ {0, 1, . . . , d}n, as
the set of exponent vectors corresponding to each monomial in f . We call f a δ-min-entropy
polynomial, if supp(f) is of δ-min-entropy. For eg., f = x1x2x3

3x5
4 + 2x2

1x4
2x6

3x6
4 + 3x7

1x9
2x8

3x9
4 is

a 2-min-entropy polynomial (also, 3-min-entropy but not 1-min-entropy). Moreover, it does
not have symmetric-support. See Section 2 for more details on δ-min-entropy polynomials.

▶ Theorem 1.4 (Low min-entropy factoring algorithm). Let f ∈ Q[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d, for some constants δ, d. Let t be the maximum
bit-complexity of the coefficients of f . Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n, t)-time.

▶ Remark. The exact complexity is poly((nd)d4δ · t)-time. For a finite field F = Fpℓ , we get
a deterministic poly((nd)d4δ · ℓ log p)-time reduction to univariate factoring.

The factoring algorithm in Theorem 1.4 is also a direct consequence of the following
sparsity bound for factors of δ-min-entropy polynomials.

▶ Theorem 1.5 (Factors of low min-entropy polynomials). Let f ∈ F[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d over any field F, such that d, δ are constants.
Then, every factor of f has its sparsity bounded by poly(n).

▶ Remark.
1. The exact factor-sparsity bound that we prove is (nd)O(dδ), for any field F. Further,

our bound beats the sO(d2 log n) bound in [2], as long as f has min-entropy δ as low as
o(d log n).

2. We do not claim that the factors are “low” min-entropy as well. For example, f =
(x1 · · · xn/2) · (xn/2+1 · · · xn) has both the factors with high min-entropy n/2, while f is
itself of 0-min-entropy.

P. Bisht and N. Saxena 9:5

All the factor-sparsity results mentioned above crucially rely on our structure theorem
stated below. It shows that if we have a δ-min-entropy set of exponent vectors, then the
integral-points in its convex hull, have min-entropy at most O(dδ). Trivially, such a thing
is false for Z-linear-span (resp. Q-linear-span) of vertices. Yet, surprisingly, a convex-span
preserves the low min-entropy of its vertices!

▶ Theorem 1.6 (Polytope entropy Theorem). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set,
then CS(V) ∩ Zn is a (2dδ)-min-entropy set.

1.2 Related works
The problem of sparse polynomial factorization was first studied in [40], where a randomized
algorithm for the same was provided. The time complexity of this algorithm was polynomial
in the sparsity of factors and exponential in the number of factors. Naturally, [40] raised
the question of proving better sparsity bounds for factors of sparse polynomials. Even
designing factoring algorithms for sparse polynomials of individual degree one or two required
non-trivial insights. An efficient deterministic algorithm for factorization of sparse multilinear
polynomials (d = 1) was provided in [31]. This result was further generalized to sparse
polynomials that factorize into multilinear factors in [36]. The model of sparse multiquadratic
polynomials (d = 2) was solved in [37].

The work of [2] utilized the interesting connection of factor-sparsity with Newton polytopes.
They proved a sparsity bound of sO(log n) for factors of s-sparse polynomials with constant
individual degree. For symmetric polynomials in Theorem 1.3, we improve this bound
considerably. The work of [2] also gives a deterministic factorization algorithm for sparse
polynomials with constant individual degree which runs in sO(log n) time. With our new
poly(s)-sparsity bound, we use their algorithm to get a deterministic poly(s)-time factorization
algorithm for symmetric, s-sparse polynomials, in the bounded individual degree regime.

A related and somewhat subsumed problem in polynomial factorization is that of factor
closure. Given an input f in a particular representation, what is the size of factors in the
same representation? The foundational work of [16, 17, 18] showed that if f is a size-s,
degree-poly(n) algebraic circuit, then its factors also have poly(s, n)-sized algebraic circuits,
i.e. VP is closed under factoring. [11] proved factor closure for the classes of VF, VBP,
VNP with a quasi-polynomial blowup in size, and gave analogous whitebox algorithms (see
Appendix B for definitions of these classes). VNP was shown to be properly closed under
factoring (with only poly blowup in size) in [7]. Recently, [33] showed that size-s ABPs have
factors of size poly(s), thus proving factor closure for VBP class.

For algebraic formulas, [25] showed that if f is computed by a depth-∆, size-s algebraic
formula, then its factors can be computed by depth-(∆ + 5) and size poly(s) formulas,
provided that individual degree of f is constant. Observe that sparse polynomials can also
be seen as depth-2 algebraic formulas, thus [25] showed that factors of bounded individual
degree sparse polynomials can be computed by depth-7 formulas. However, [2] showed that
these factors can be computed in depth-2 itself with a quasi-polynomial blowup in size. We
show that if f is also symmetric, then the factors can even be computed in depth-2 efficiently,
with only a polynomial blowup in size.

Another motivation for studying polynomial factorization of special classes is that im-
proving factoring methods often lead to improvements in blackbox PIT. For eg. [24] used
factoring of special circuits to give the first subexponential PIT for constant-depth circuits.

Besides being studied extensively in classical mathematics, symmetric polynomials have
been investigated in the area of algebraic complexity theory as well, mostly in the context of
lower bounds. A new model of depth-2 symmetric circuits was defined in [30], which studies

FSTTCS 2022

9:6 Sparse Polynomial Factorization

the complexity of determinant for this model. The complexity of elementary symmetric
polynomials in the algebraic formula model is studied in [14] while [5] study a class of
symmetric polynomials called Schur polynomials, also in the formula model. A strong lower
bound for elementary symmetric polynomials in the model of depth-4 algebraic circuits with
bounded bottom fan-in is proved in [12]. The complexity of symmetric polynomials with
respect to its expression in terms of elementary symmetric polynomials is studied in [3]. A
new class of algebraic circuits called symmetric algebraic circuits is studied in [8], which
shows a separation of determinant from permanent in this model. Recently in [9], under a
more stringent symmetry restriction in this model, lower bounds for even the determinant
polynomial are shown. In this work, symmetric polynomials are studied in the context of
sparse polynomial factorization.

1.3 Proof Techniques
The sparsity connection with Newton polytopes

Let f ∈ F[x1, . . . , xn] be a polynomial of individual degree d such that f =
∑

ce1,e2,...,en
·

xe1
1 xe2

2 · · · xen
n . We define support of f as the set of exponent vectors: supp(f) ≜ {(e1, . . . , en) |

ce1,...,en
̸= 0}. Let us denote sparsity of f as ∥f∥, which is the same as |supp(f)|. We define

the Newton Polytope of f , denoted by Pf , as the convex hull (or convex-span) of all the
points in supp(f).

For two polytopes A and B, their Minkowski sum A + B is defined as the set of points
{a + b | a ∈ A, b ∈ B}. Minkowski sum is well studied in polytope literature and comes
with some nice properties. The Minkowski sum A + B is itself a convex polytope. Let V (P)
denote the set of vertices (corner points) of a polytope P , then one can show a certain
“incompressibility” property: |V (A + B)| ≥ max{|V (A)| , |V (B)|}.

A classical fact about Newton polytopes, first observed by [27] a century ago, states that
if f = g · h, then Pf = Pg + Ph, where Pg + Ph is the Minkowski sum of Newton polytopes
of g and h. Moreover, we know that ∥f∥ ≥ |V (Pf)|, since supp(f) is in the convex hull of
V (Pf). Therefore, we are able to connect sparsity of f with a factor g as follows:

∥f∥ ≥ |V (Pf)| ≥ |V (Pg)|. (1)

Another way to think about sparsity bound problem for f = g · h is to determine how many
monomials of g survive on multiplication with h. Equation (1) tells us that at least |V (Pg)|
many monomials survive. These vertices of Pg are in a sense extremal monomials in g that
never get canceled on multiplication (with any h).

Polytope entropy Theorem

We introduce the notion of δ-min-entropy sets and polynomials in this work. In our structure
theorem (Theorem 1.6), we analyze how min-entropy behaves with respect to polytopes.
Suppose we are given a δ-min-entropy set V of exponent vectors from {0, 1, . . . , d}n. The
motivating question is that if all vertices (elements of V) have low min-entropy, then how
large can be the min-entropy of internal points in the polytope? In this theorem, we show
that min-entropy blows up only by a factor of O(d) for the internal integral-points, which is
a small factor in the bounded individual degree regime.

In order to prove this, we first design a set of symmetric hyperplane equations in Section 3
such that for each hyperplane, the entire set V lies on one side of it. Then by convexity,
one can show that every point in its convex-span also lies on the same side. Secondly,

P. Bisht and N. Saxena 9:7

the hyperplane equations are so designed that any integral-point “enclosed” within these
hyperplanes must have min-entropy at most O(dδ). We present this designing of “certifying”
hyperplanes as a new approach for bounding sparsity of factors. Besides the factor-sparsity
implications, Theorem 1.6 could be of independent interest in its own right.

Symmetric polytopes

We say that a polytope P is symmetric if for each point v = (v1, . . . , vn) in P , every
permutation of v is also in P . If f is a symmetric polynomial, then its Newton polytope
Pf will be a symmetric polytope. Further, we observe that if a monomial (or its exponent
vector) is a vertex of a symmetric polytope, then all its distinct permutations are also
vertices. In other words, the vertex set V (Pf) is also symmetric. Moreover, if f is sparse,
then cardinality of V (Pf) is also bounded. Since the vertex set is symmetric, every vector in
it must contain a coordinate of “very high” frequency, otherwise V (Pf) will contain a lot of
distinct permutations and its size will blow up (i.e. symmetry ⇒ low min-entropy). Thus,
V (Pf) will have somewhat low min-entropy. Now, we can use our Theorem 1.6 to deduce
that all the integral points in Pf have low min-entropy. In Section 4, we exploit this with
additional counting arguments to prove that total number of integral points in this symmetric
polytope Pf is few. In particular, we show that |Pf ∩ Zn| ≤ |V (Pf)|O(d2 log d), where d is the
individual degree of f . If f factorizes as f = gh, then we have Pf = Pg + Ph. This means
that Pf contains a translated copy of Pg. Moreover, supp(g) ⊆ Pg contains only integral
points and therefore, ∥g∥ ≤ |Pf ∩ Zn| ≤ |V (Pf)|O(d2 log d). This implies ∥g∥ ≤ ∥f∥O(d2 log d),
showing that any factor of a sparse, symmetric polynomial is also sparse (Theorem 1.3).
Sparsity bound for factors of δ-min-entropy polynomials follows similar trajectory. Once
we have these nice sparsity bounds, we derive efficient deterministic factoring algorithms in
Section 5 using a result of [2] (Lemma 5.1).

2 Preliminaries

Notations

We use shorthand [n] for the set {1, 2, . . . , n}. We denote a vector v = (v1, . . . , vn) in short
by v (as a column vector). We will use the terms vector or point interchangeably. We use
the symbol ≜ for definitions. We will sometimes use F[x] as short for F[x1, . . . , xn]. The
finite symmetric group on n elements, which contains all the permutations of n elements, is
denoted by Sn. For a vector v and a permutation σ ∈ Sn, we denote σ-permutation of v by
σ ◦ v ≜ (vσ(1), . . . , vσ(n)). We call a set of points symmetric, if for each point v in it, σ ◦ v is
also in the set, for every permutation σ ∈ Sn. We denote the n-fold Cartesian product of a
set H by Hn. We will use log x for log2 x and ln x for loge x.

Let f ∈ F[x] be an n-variate polynomial. Individual degree of a variable xi, denoted by
degxi

(f) is defined as the maximum degree of that variable in f , while individual degree of a
polynomial is the maximum among all the individual degrees, maxi∈[n] degxi

(f). We will
use xe to denote the monomial xe1

1 xe2
2 · · · xen

n . We define coeff(xe)(f) as the coefficient of
monomial xe in polynomial f . We define support of f as supp(f) = {e | coeff(xe)(f) ̸= 0}.
Let us denote sparsity of f as ∥f∥, which is the same as |supp(f)|.

Polytopes

For a finite set of points v1, . . . , vk ∈ Rn, their convex combination is defined as an R-
linear combination of the points: α1v1 + . . . + αkvk, such that αi ≥ 0 for each i ∈ [k] and∑k

i=1 αi = 1. We define convex-span (or convex hull) CS(v1, . . . , vk) as the set of all possible

FSTTCS 2022

9:8 Sparse Polynomial Factorization

convex combinations of vi, i ∈ [k]. A set P ⊆ Rn is called a (bounded) polytope if there is
a finite set of points v1, . . . , vk such that P = CS(v1, . . . , vk). A point a ∈ P is called a
vertex of P if it cannot be written as a = αu + (1 − α)v for any u, v ∈ P \ {a} and α ∈ [0, 1].
It is equivalent to saying that vertices are corner points of a polytope P which cannot be
expressed as convex combination of any other set of points in P . We use V (P) to denote the
set of vertices of P . It is easy to verify that for a polytope P , P = CS(V (P)). Moreover, if
P = CS(v1, . . . , vk) then V (P) ⊆ {v1, . . . , vk}.

Minkowski sum of two polytopes A, B ∈ Rn is defined as the following set of points
A+B = {a +b | a ∈ A, b ∈ B} . A basic fact is that Minkowski sum of two polytopes is itself
a polytope. The vertices of Minkowski sum have some very useful properties. It is known
that every vertex of A+ B can be expressed uniquely as a sum u + v, where u is a vertex of A

and v is a vertex of B. Additionally, one can show that |V (A + B)| ≥ max{|V (A)|, |V (B)|}
(See [2, Prop. 3.2]). We refer the readers to [41, 28] for a detailed discussion on polytopes.

For a polynomial f ∈ F[x1, . . . , xn], the Newton polytope of f is defined as Pf ≜
CS(supp(f)). In this paper, we crucially exploit its integral-points P ′

f := Pf ∩ Zn. We
denote the vertex set V (Pf) by Vf . We also note that Vf ⊆ supp(f) ⊆ {0, . . . , d}n (integral-
points). The following two facts form the backbone for the Newton polytope approach of
bounding factor-sparsity.

▶ Proposition 2.1 ([27]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Then
Pf = Pg + Ph.

▶ Proposition 2.2 ([2]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Then
∥f∥ ≥ |Vf | ≥ max{|Vg|, |Vh|}.

Hyperplanes and Halfspaces

A hyperplane is the generalization of a line in higher dimensions. A hyperplane H is defined
as H ≜ {y ∈ Rn | a⊺y = b}, for some vector a ∈ Rn \ {0} and a number b ∈ R. The
hyperplane divides the space into two parts a⊺y ≥ b and a⊺y ≤ b. These are called halfspaces.

Symmetric polynomials and polytopes

We call f ∈ F[x1, . . . , xn] a symmetric polynomial if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),
for any permutation σ ∈ Sn. It is equivalent to saying: f is symmetric if and only if
coeff(xe1

1 · · · xen
n)(f) = coeff(xeσ(1)

1 · · · x
eσ(n)
n)(f), for all σ ∈ Sn. We call f ∈ F[x1, . . . , xn] a

symmetric-support polynomial if for each monomial xe1
1 · · · xen

n , we have coeff(xe1
1 · · · xen

n)(f) ̸=
0 ⇒ coeff(xeσ(1)

1 · · · x
eσ(n)
n)(f) ̸= 0, for every σ ∈ Sn. Note that all symmetric polynomials

are also symmetric-support polynomials.
We say that a polytope P is symmetric if for each point (v1, . . . , vn) in P , (vσ(1), . . . , vσ(n))

is also in P , for every permutation σ ∈ P . Note that Newton polytopes of symmetric-support
polynomials are in fact symmetric! (See Lemma A.1)

δ-min-entropy

We say that a vector v ∈ {0, 1, . . . , d}n is of δ-min-entropy if a single value c ∈ {0, . . . , d}
appears in exactly (n − δ) coordinates of v. We consider c with the highest frequency in v
and hence the minimum δ. In coding theory language, δ-min-entropy vector v has Hamming
distance δ from the constant vector (c, . . . , c). We also extend this definition of min-entropy
to sets and polynomials. We call A ⊆ {0, 1, . . . , d}n a δ-min-entropy set, if for every vector
v ∈ A, v has min-entropy ≤ δ. We call f a δ-min-entropy polynomial, if its support set

P. Bisht and N. Saxena 9:9

supp(f) is of δ-min-entropy. Example 4.9 gives a polynomial f with 1-min-entropy. In
contrast, consider f = x1 · · · xn/3 + xn/3+1 · · · xn, which is a polynomial of (n/3)-min-entropy
but it’s not (< n/3)-min-entropy.

3 Polytope entropy – Theorem 1.6

Let Pf be the Newton polytope of f and Vf be its set of vertices such that Pf = CS(Vf).
We prove few claims below which will help us prove Theorem 1.6. We are given Vf to be a
δ-min-entropy set. Let m ≜ n − δ. We first design a hyperplane u⊺ · y + dδ = 0 that will
help us prove very useful properties in Lemma 3.1 and Lemma 3.2 below. Define column
vector u ∈ {−1, +1}n such that,

ui :=
{

+1 if i ≤ δ + m/2
−1 otherwise.

(2)

The first δ +m/2 coordinates of u are +1 and the remaining n−(δ +m/2) = m/2 coordinates
are −1.

▶ Lemma 3.1 (Hyperplane cover). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set and u be as
defined in (2). Then, every point y ∈ V satisfies each of the following symmetric inequalities:

(σ ◦ u)⊺ · y + dδ ≥ 0, for each σ ∈ Sn . (3)

Proof. Let y be any ≤ δ-min-entropy point from V ; so assume that y has some majority
element i with frequency ≥ m = n − δ, where i ∈ {0, . . . , d}. Let σ ∈ Sn be any permutation.
Define ℓ ≜ (σ ◦ u)⊺ · y. It suffices to show that ℓ ≥ −dδ. We claim that to minimize ℓ, by
varying (σ ◦ u), we can place at most δ many d’s in the coordinates corresponding to −1
and rest of the ≥ m coordinates must be filled by i. Since we have a total of (δ + m/2)
coordinates corresponding to +1 and remaining (m/2) coordinates corresponding to −1, the
minimum value of ℓ in this case is (δ + m/2) · i − (m/2 − δ) · i − (δ) · d = (2i − d)δ ≥ −dδ ,
since i ≥ 0. Thus, ℓ ≥ −dδ in this configuration.

We now show why this is an optimal configuration to minimize ℓ. Note that the majority
element i will always have a non-negative contribution in ℓ, since its frequency in the positions
corresponding to +1 will always be greater than or equal to its frequency in the positions
corresponding to −1. This is because there are only m/2 positions corresponding to −1 and
i has frequency ≥ m. Therefore to minimize its contribution, majority element i should be
fixed to 0. To get lowest possible value from the remaining elements in y, we should set all of
them to d and place them in any δ positions corresponding to −1. This will give minimum
value of ℓ to be −dδ. Rest of the configurations can only produce higher values for ℓ. Thus,
ℓ + dδ ≥ 0 for each y ∈ V and for every σ ∈ Sn. ◀

The symmetry in the above hyperplane-cover inequalities helps us to argue about y, by
first sorting its coordinates. This a powerful trick, as our following central claim demonstrates.

▶ Lemma 3.2 (Integral-point in the cover). Let u be as defined in (2). Let y ∈ {0, 1, . . . , d}n

be a point with 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn ≤ d such that u⊺ · y + dδ ≥ 0 holds. Then, y is a
(2dδ)-min-entropy point.

FSTTCS 2022

9:10 Sparse Polynomial Factorization

Proof. Recall n = δ + m. Let us call, expectedly, the first (δ + m/2) coordinates, the
“positive zone” of y and the remaining (m/2) coordinates, the “negative zone” of y; this
corresponds to positions of +1’s and −1’s in u respectively. By hypothesis, the positive zone
has coordinates at most as large as in the negative zone. Let y =: y+ + y−, where we define
y+ and y− as

(y+)j ≜

{
yj if j ≤ δ + m/2
0 otherwise.

(y−)j ≜

{
yj if j > δ + m/2
0 otherwise.

Suppose the first coordinate in the negative zone of y is i for some i ∈ {0, 1, . . . , d}. We
then claim that y has at least n − 2dδ coordinates with this same value i, proving y to be a
2dδ-min-entropy point. Let p+ and p− denote the frequency of i in positive and negative
zones of y respectively, for some integers p+, p− ≥ 0. Note that u⊺ · y = ∥y+∥1 − ∥y−∥1,
where ∥·∥1 is the L1-norm. We first upper bound ∥y+∥1. Since y is sorted, the last p+
coordinates in positive zone must be i and all coordinates preceding it are of value at most
i − 1. This gives us

∥y+∥1 ≤ (i − 1) · (δ + m/2 − p+) + i · (p+) = iδ + im/2 − δ − m/2 + p+ . (4)

Now, we lower bound ∥y−∥1. Since y is sorted, the first p− coordinates in negative zone
must be i and all subsequent coordinates are of value at least (i + 1). This gives us

∥y−∥1 ≥ i · (p−) + (i + 1) · (m/2 − p−) = im/2 + m/2 − p− . (5)

Let l ≜ u⊺ · y + dδ. By hypothesis, l ≥ 0. Then using (4) and (5) together, we observe that

0 ≤ l = u⊺ · y + dδ = ∥y+∥1 − ∥y−∥1 + dδ

0 ≤ iδ + im/2 − δ − m/2 + p+ − (im/2 + m/2 − p−) + dδ

= (i + d)δ − δ − m + p+ + p−

≤ 2dδ − n + p+ + p− (since i ≤ d and n = m + δ)
n − 2dδ ≤ p+ + p− .

Recall that total frequency of the value i in y is p+ + p− ≥ n − 2dδ. This proves that y is a
(2dδ)-min-entropy point; finishing the proof. (We note that the calculations in Equation (4)
and Equation (5) are technically for i ∈ [d − 1]. For the corner cases of i = 0 or i = d, the
same logic will work and in fact with a better lower bound on frequency of i in y.) ◀

If for a set of points, each point lies on one side of a hyperplane, then all the points in
their convex-span also lie on that side. We prove this lemma below.

▶ Lemma 3.3 (Halfspace is convex). Let V = {v1, v2, . . . , vk} ⊆ Rn be a set of k vectors.
Suppose for some (a, b) ∈ Rn × R and for each i ∈ [k], a⊺ · vi + b ≥ 0. Then, for any
v ∈ CS(V), a⊺ · v + b ≥ 0.

Proof. This follows because v is a convex combination of vectors in V . Let v = α1 · v1 +
. . . + αk · vk, where

∑k
i=1 αi = 1 and αi ∈ R≥0 for each i ∈ [k]. Thus,

P. Bisht and N. Saxena 9:11

a⊺ · v + b = a⊺ ·

(
k∑

i=1
αi · vi

)
+ b

=
(

k∑
i=1

αi · a⊺ · vi

)
+

k∑
i=1

αi · b =
k∑

i=1
αi · (a⊺ · vi + b) ≥ 0.

In the second step, we use
∑k

i=1 αi = 1; while in the last step we use the hypothesis and
αi ≥ 0 for each i ∈ [k]. ◀

We are now ready to prove our structure theorem, which is restated below.

▶ Theorem 1.6 (Polytope entropy Theorem). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set,
then CS(V) ∩ Zn is a (2dδ)-min-entropy set.

Proof. In Lemma 3.1, we showed that every point v ∈ V belongs to the halfspace u⊺ ·v+dδ ≥
0. In fact, we proved it for every permutation σ ∈ Sn of u. Let y be any integral-point in
CS(V). Thus by Lemma 3.3, (σ ◦ u)⊺ · y + dδ ≥ 0, for every σ ∈ Sn.

Let π ∈ Sn be the permutation which sorts y, i.e. yπ(1) ≤ yπ(2) ≤ . . . ≤ yπ(n). These
are integers in {0, . . . , d} due to convexity. Since the hyperplane cover holds for every
permutation, in particular it holds for π−1 ∈ Sn also, i.e. (π−1 ◦ u)⊺ · y + dδ ≥ 0. Thus,

(π−1 ◦ u)⊺ · y + dδ = u⊺ · (π ◦ y) + dδ ≥ 0 .

Now by Lemma 3.2, as π ◦ y is sorted, we deduce that π ◦ y is a (2dδ)-min-entropy vector.
Since min-entropy of a vector does not change on permuting it, we deduce that y is also a
(2dδ)-min-entropy point. ◀

▶ Remark. Note that Theorem 1.6 is fairly tight, i.e. a blow-up in min-entropy of internal
integral points by a factor of d is inevitable. To observe this, consider V = {σ ◦ (d, 0, . . . , 0) |
σ ∈ Sn}, with min-entropy δ = 1. It is easy to see that the integral vector v =

∑d
i=1 ei is

in CS(V), where ei is the standard unit vector with a single 1 in position i and rest all 0.
Thus, v is a vector with 1 in first d coordinates and remaining all 0, and it has min-entropy
exactly d, for d ≤ n/2. Therefore, CS(V) ∩ Zn is of min-entropy at least dδ. However, in
this work we are concerned with d = O(1), so even 2dδ blowup is fine.

4 Factor sparsity bounds: Proof of Theorems 1.3 & 1.5

We refer the reader to Appendix A for some basic observations that will be used for the
results in this section.

4.1 Polytope bounds
Using a simple counting argument below, we bound the total number of points in a given
δ-min-entropy set of integral points.

▶ Lemma 4.1 (min-entropy sparsity upper bound). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy
set. Then, |V | ≤

(
n
δ

)
· (d + 1)δ+1.

Proof. Any v ∈ V has min-entropy ≤ δ and thus has atleast n − δ coordinates that are
equal. To specify v, one needs to specify the indices of these repeated coordinates (≤

(
n
δ

)
possibilities) and specify a total of δ + 1 values for all the coordinates of v (d + 1 possibilities
for each). Hence, we deduce that |V | ≤

(
n
δ

)
· (d + 1)δ+1. ◀

FSTTCS 2022

9:12 Sparse Polynomial Factorization

We now show that a symmetric set of integral points is of somewhat low min-entropy.

▶ Lemma 4.2 (symmetry ⇒ low min-entropy). Let V ⊆ {0, 1, . . . , d}n be any symmetric set.
Then V is a δ-min-entropy set, for some δ < 2d · log |V |.

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. By
pigeonhole principle, for any point in V , there exists a coordinate-value with frequency
≥ n/(d + 1). Therefore,

δ ≤ n − n

d + 1 = n

(
1 − 1

d + 1

)
. (6)

Since δ is chosen to be the minimum possible, a non-empty V contains a vector v having
some integral value with maximum-frequency exactly n − δ. Since V is symmetric, it must
also contain all the distinct Sn-permutations of this vector v, which are at least

(
n
δ

)
many.

This implies that |V | ≥
(

n
δ

)
and further using Lemma A.3, we get that |V | ≥

(
n
δ

)δ. Then,

log |V | ≥ δ · log
(n

δ

)
≥ δ · log

 n

n
(

1 − 1
d+1

)
 [Using (6)]

= δ · log
(

1 + 1
d

)
> δ ·

(
1
d

− 1
2d2

)
[Using Lemma A.3]

≥ δ

2d
[As d ≥ 1] .

This proves that δ < 2d · log |V |. ◀

▶ Remark. We note that if we are promised δ ≤ n/2, then in the proof of Lemma 4.2, we get
|V | ≥

(
n
δ

)
≥ 2δ which implies δ ≤ log |V |. This will lead to an improved bound of |V |O(d log d)

in Theorem 4.4. In general however, δ can be higher than n/2. Consider for example the set
of all Sn-permutations of the string 0n/3 · 1n/3 · 2n/3, which has δ = n − n/3 = 2n/3.

We now show that convex span of a low min-entropy set has low number of integral
points.

▶ Theorem 4.3 (Low min-entropy polytope count). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy
set. Then, |CS(V) ∩ Zn| ≤

(
n
δ

)2d · (d + 1)2dδ+1.

Proof. Theorem 1.6 proves that CS(V)∩Zn is a (2dδ)-min-entropy set. Note that CS(V)∩Zn

is also a subset of {0, . . . , d}n, since V is. Then by Lemma 4.1, |CS(V) ∩ Zn| ≤
(

n
2dδ

)
·

(d + 1)2dδ+1. The conclusion then follows from Lemma A.3 by observing
(

n
2dδ

)
≤
(

n
δ

)2d. ◀

Using the counting arguments above, we now show that the gap between number of
vertices and total number of integral points in a symmetric polytope, is low.

▶ Theorem 4.4 (Symmetric polytope count). Let V ⊆ {0, 1, . . . , d}n be the vertices of a
symmetric polytope P . Then, |P ∩ Zn| ≤ |V |O(d2 log d)).

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. Since P is
a symmetric polytope, its vertex set V is also symmetric by Lemma A.2. By Lemma 4.2,
the min-entropy of V is at most δ ≜ O(d · log |V |). Then by Theorem 4.3, |CS(V) ∩ Zn| ≤(

n
δ

)2d · (d + 1)2dδ+1. Observe that (d + 1)2dδ+1 ≤ dO(d2 log |V |) = |V |O(d2 log d). In Lemma 4.2,
we also proved that |V | ≥

(
n
δ

)
, since V is symmetric. Thus,

(
n
δ

)2d ≤ |V |2d and we get the
desired conclusion. ◀

P. Bisht and N. Saxena 9:13

▶ Remark 4.5. We also prove that a symmetric polytope formed by taking convex hull of
a symmetric subset E of {0, 1, . . . , d}n must have many vertices (corner points), at least
|E|Ω(1/(d2 log d))-many, to be precise. We get this incompressibility result by substituting
P = CS(E) in Theorem 4.4 and observing that E ⊆ P ∩ Zn.

4.2 Factor-sparsity bounds
We start by proving the sparsity bound for a symmetric factor g of some sparse polynomial
f , which may itself not be symmetric. To get a poly(s) sparsity bound, we only require
individual degree of g to be constant, while f may have arbitrary individual degree.

▶ Theorem 4.6 (Symmetric factor sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse
polynomial. Let g be any symmetric factor of f , with individual degree at most d. Then, g

has sparsity at most sO(d2 log d).

Proof. Let Pg be the Newton polytope of g and Vg be its vertex set. Since g is symmetric,
Pg is a symmetric polytope. Now invoke Theorem 4.4 with P = Pg to note that |Pg ∩
Zn| ≤ |Vg|O(d2 log d). Observe that supp(g) ⊆ Pg ∩ Zn and |Vg| ≤ |Vf | ≤ s. Therefore,
∥g∥ ≤ sO(d2 log d). ◀

▶ Remark. In Theorem 4.6 (resp. Theorem 4.4), we do not require the whole of g (resp. P)
to be symmetric, rather we only need its vertex set Vg (resp. V) to be symmetric, which is a
much weaker requirement. Similarly, as will be clear below, we don’t need f to be symmetric
in Theorem 1.3 but only Vf to be symmetric. In these cases, we will not require use of
Lemma A.2.

We will be needing the following observation for our main proofs below.

▶ Observation 4.7. Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Let Pf be
the Newton polytope of f . Then, ∥g∥ ≤ |Pf ∩ Zn|.

Proof. By Minkowski sum property, we have that Pf = Pg + Ph. For every u ∈ supp(g),
consider a fixed point v ∈ supp(h). Observe that u + v ∈ Pf , since u ∈ Pg and v ∈ Ph.
Moreover, since the support vectors are integral, u + v ∈ Pf ∩ Zn. In other words, Pf ∩ Zn

contains a translated copy of supp(g). This means that ∥g∥ ≤ |Pf ∩ Zn|. ◀

We have sufficient tools now to prove our main theorems below.

▶ Theorem 1.3 (Symmetric sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

Proof. Since f is symmetric, its Newton polytope Pf will also be symmetric. Let Vf be
the vertex set of Pf . Then, invoke Theorem 4.4 with P = Pf to deduce that |Pf ∩ Zn| ≤
|Vf |O(d2 log d). The conclusion then follows from Observation 4.7 and |Vf | ≤ s. ◀

We note that Theorem 1.3 does not follow from Theorem 4.6 as a symmetric polynomial
f may not have symmetric factors. For example consider symmetric f = x3 + x2y2 + xy + y3

which factorizes as (x2 + y)(x + y2). Each factor considered individually, is not symmetric.
We also note that factors of a low min-entropy polynomial might have high min-entropy. But
we still get a nice sparsity bound for them below.

▶ Theorem 1.5 (Factors of low min-entropy polynomials). Let f ∈ F[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d over any field F, such that d, δ are constants.
Then, every factor of f has its sparsity bounded by poly(n).

FSTTCS 2022

9:14 Sparse Polynomial Factorization

Proof. Let Pf be the Newton polytope of f and Vf be its vertex set. Since f is of δ-min-
entropy, so is Vf , as Vf ⊆ supp(f). Then by Theorem 4.3, we deduce that |Pf ∩ Zn| ≤(

n
δ

)2d · (d + 1)2dδ+1 ≤ (nd)O(dδ). The conclusion then follows from Observation 4.7. ◀

▶ Remark. We note that the example in Claim 4.4 of [2] is a non-symmetric polynomial with
its vertices having exactly (n/2)-min-entropy such that its Newton polytope has at least
nΩ(log n)-many integral points. Therefore for high-entropy polynomials, a new technique is
required which goes beyond counting number of internal points in the Newton polytope.

4.3 Tightness of sparsity bounds
We give two examples below where factors of a sparse polynomial have significantly high
sparsity, unless the individual degree is bounded.

▶ Example 4.8 ([40]). Consider the following polynomial f with individual degree d, which
factorizes as f = gh, where

f =
n∏

i=1
(xd

i − 1) , g =
n∏

i=1
(1 + xi + . . . + xd−1

i) , h =
n∏

i=1
(xi − 1) .

Observe that ∥f∥ = 2n, while ∥g∥ = dn. If we let s ≜ ∥f∥, then ∥g∥ = slog d. Over fields
of characteristic 0, this is an example which exhibits highest known blowup in sparsity.
Moreover, it also shows that slog d is a lower bound on factor-sparsity. Note that f is a
symmetric polynomial and Theorem 1.3 shows that ∥g∥ ≤ sO(d2 log d).

▶ Example 4.9 ([2]). Over finite fields we have the following polynomial which has a higher
exponential blowup in factor-sparsity. Consider the following polynomial f ∈ Fp[x1, . . . , xn]
with individual degree p, for some prime p and let 0 < d < p. We have f = gh, where

f = xp
1 + xp

2 + . . . + xp
n = (x1 + x2 + . . . + xn)p ,

g = (x1 + x2 + . . . + xn)d , h = (x1 + x2 + . . . + xn)p−d .

Observe that ∥f∥ = n, while ∥g∥ =
(

n+d−1
d

)
≈ nd. If we let s ≜ ∥f∥, then ∥g∥ ≈ sd. The

factor-sparsity bounds in this work hold for any field F, finite or otherwise. Moreover, f is also
symmetric and falls under the purview of Theorem 1.3, which shows that ∥g∥ ≤ sO(d2 log d).
Hence, this example shows that in Theorem 1.3, we cannot do better than sd.

Note that this f is also a low min-entropy polynomial, in fact with δ = 1 as all the
exponent vectors in supp(f) have n − 1 coordinates having the same value 0. Thus, we can
use Theorem 1.5 for this f to get a factor-sparsity bound of (np)O(p) which is really close to
the actual sparsity nd.

5 Factoring algorithms: Proof of Theorems 1.2 & 1.4

A nice feature of the results in [2] is that once you prove a nice factor-sparsity bound, they
also show how to get a deterministic factoring algorithm for sparse polynomials which runs
in time polynomial in the sparsity bound proven. We restate this as Lemma 5.1 below.

▶ Lemma 5.1 (Theorem 5.8 in [2]). Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial with
individual degrees at most d. Let ξ(n, d, s) be the upper bound on sparsity for every factor of
f . Then given f , there is a deterministic algorithm that computes complete factorization of
f in (n · ξ(n, d2, sd))O(d2) · poly(cF(d2)) field operations.

P. Bisht and N. Saxena 9:15

Here cF(d) is the best known time complexity for factoring a univariate polynomial of degree
d over the field F. For F = Q, cF(d) ≤ poly(d, t) where t is the maximum bit-complexity of
the coefficients of f [23]. For a finite field F = Fpℓ , cF(d) ≤ poly(ℓ ·p, d) [1, 4]. In other words,
the above theorem shows a deterministic reduction from multivariate to univariate factoring
over any field F. In [2], they showed that ξ(n, d, s) ≤ sO(d2 log n) and then used Lemma 5.1
to get a factoring algorithm of spoly(d) log n time complexity, which is quasi-polynomial in
the bounded individual degree setting. In this work, we deal with symmetric and constant-
min-entropy input polynomials, for which we show that ξ(n, d, s) ≤ (ns)poly(d). Thus, we
can use Lemma 5.1 to get polynomial time factoring algorithms in the bounded individual
degree setting. The finer time complexities are discussed in the proofs of Theorem 1.2 and
Theorem 1.4 below. Also, note that ξ(n, d, s) is a lower bound on time complexity for sparse
factoring algorithms as we output each factor as an explicit list of monomials.

▶ Theorem 1.2 (Symmetric factoring algorithm). Let f ∈ Q[x1, . . . , xn] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f . Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s, n, t)-time.

Proof. Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric polynomial with individual degree
d. In Theorem 1.3, we show that ξ(n, d, s) ≤ sO(d2 log d). Plugging this value in Lemma 5.1,
we get a deterministic factoring algorithm for f . The time complexity T (n, s, d) for this
algorithm is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(

n · sd·O(d4 log d2)
)O(d2)

· poly(cF(d2))

= sO(d7 log d) · nO(d2) · poly(cF(d2)).

This time complexity is poly(s, n, t) over the field of rationals Q, when d is a constant. ◀

▶ Theorem 1.4 (Low min-entropy factoring algorithm). Let f ∈ Q[x1, . . . , xn] be a δ-min-
entropy polynomial with individual degree d, for some constants δ, d. Let t be the maximum
bit-complexity of the coefficients of f . Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n, t)-time.

Proof. Let f ∈ F[x1, . . . , xn] be a δ-min-entropy polynomial with individual degree d. In
Theorem 1.3, we show that ξ(n, d, s) ≤ (nd)O(dδ). Plugging this value in Lemma 5.1, we get
a deterministic factoring algorithm for f . The time complexity T (n, s, d) for this algorithm
is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(

n · (nd2)O(d2δ)
)O(d2)

· poly(cF(d2))

= (nd)O(d4δ) · poly(cF(d2)).

This time complexity is poly(n, t) over the field of rationals Q, when d, δ are constants. ◀

FSTTCS 2022

9:16 Sparse Polynomial Factorization

6 Future directions

In this work, we show a positive evidence for resolving Question 1.1 by solving it for symmetric
and constant min-entropy polynomials with bounded individual degree. As discussed, the
constant individual degree restriction here is necessary for sparse factorization (Examples
4.8, 4.9). We leave it as an open question to study factors of sparse polynomials with high
min-entropy. For example, can one show an (snd)poly(d) factor-sparsity bound for s-sparse,
(log n)-min-entropy polynomial of individual degree d?

References
1 Elwyn R Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,

46(8):1853–1859, 1967.
2 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of sparse

polynomials with bounded individual degree. Journal of the ACM (JACM), 67(2):1–28, 2020.
(Preliminary version in FOCS 2018).

3 Markus Bläser and Gorav Jindal. On the complexity of symmetric polynomials. In 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

4 David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, pages 587–592, 1981.

5 Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She,
and Srikanth Srinivasan. Schur polynomials do not have small formulas if the determinant
doesn’t. In Proceedings of the 35th Computational Complexity Conference, pages 1–27, 2020.

6 Benny Chor and Ronald L Rivest. A knapsack-type public key cryptosystem based on
arithmetic in finite fields. IEEE Transactions on Information Theory, 34(5):901–909, 1988.

7 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for polynomial factoriza-
tion. Theory of Computing, 15(1):1–34, 2019.

8 Anuj Dawar and Gregory Wilsenach. Symmetric arithmetic circuits. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

9 Anuj Dawar and Gregory Wilsenach. Lower Bounds for Symmetric Circuits for the Determinant.
In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages
52:1–52:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITCS.2022.52.

10 Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program testing.
Technical report, Georgia Inst of Tech Atlanta School of Information and Computer science,
1977.

11 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure
results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1152–1165, 2018.

12 Hervé Fournier, Nutan Limaye, Meena Mahajan, and Srikanth Srinivasan. The shifted partial
derivative complexity of elementary symmetric polynomials. In International Symposium on
Mathematical Foundations of Computer Science, pages 324–335. Springer, 2015.

13 V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometric
codes. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat.
No.98CB36280), pages 28–37, 1998. doi:10.1109/SFCS.1998.743426.

14 Pavel Hrubeš and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Computational Complexity, 20(3):559–578, 2011.

15 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. computational complexity, 13(1-2):1–46, 2004.

https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.1109/SFCS.1998.743426

P. Bisht and N. Saxena 9:17

16 Erich Kaltofen. Uniform closure properties of p-computable functions. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 330–337, 1986.

17 Erich Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity
of certain polynomials. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 443–452, 1987.

18 Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv. Comput.
Res., 5:375–412, 1989.

19 Erich Kaltofen. Polynomial factorization: a success story. In Proceedings of the 2003 interna-
tional symposium on Symbolic and algebraic computation, pages 3–4, 2003.

20 Erich Kaltofen and Barry M Trager. Computing with polynomials given byblack boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

21 Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 216–223, 2001.

22 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference
on Computational Complexity (CCC), pages 169–180. IEEE, 2014.

23 Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische annalen, 261(ARTICLE):515–534, 1982.

24 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In FOCS’21, 2021.

25 Rafael Oliveira. Factors of low individual degree polynomials. computational complexity,
25(2):507–561, 2016.

26 Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
27 AM Ostrowski. Über die bedeutung der theorie der konvexen polyeder für die formale algebra.

Jahresberichte Deutsche Math. Verein, 20:98–99, 1921. (English translated version republished
in ACM SIGSAM Bulletin, 33(1):5, 1999).

28 Andrzej Schinzel. Polynomials with special regard to reducibility, volume 77. Cambridge
University Press, 2000.

29 Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980.

30 Amir Shpilka. Affine projections of symmetric polynomials. Journal of Computer and System
Sciences, 65(4):639–659, 2002.

31 Amir Shpilka and Ilya Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In International Colloquium on Automata, Languages, and
Programming, pages 408–419. Springer, 2010.

32 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Now Publishers Inc, 2010.

33 Amit Sinhababu and Thomas Thierauf. Factorization of polynomials given by arithmetic
branching programs. In 35th Computational Complexity Conference (CCC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

34 Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal
of complexity, 13(1):180–193, 1997.

35 Madhu Sudan. Algebra and computation. lecture notes, 1998.
36 Ilya Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums

of univariate polynomials. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

37 Ilya Volkovich. On some computations on sparse polynomials. In Approximation, Randomiz-
ation, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

FSTTCS 2022

9:18 Sparse Polynomial Factorization

38 Joachim von zur Gathen. Who was who in polynomial factorization: 1. In Proceedings of the
2006 international symposium on Symbolic and algebraic computation, page 2, 2006.

39 Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

40 Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polynomials.
Journal of Computer and System Sciences, 31(2):265–287, 1985.

41 Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science & Business Media,
2012.

42 Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

A Preliminary observations for Section 4

We start by proving that a symmetric polynomial will have a symmetric Newton polytope.

▶ Lemma A.1 (Symmetric polynomials ⇒ symmetric polytopes). Let f ∈ F[x1, . . . , xn] be a
symmetric-support polynomial. Then the Newton polytope Pf of f is also symmetric.

Proof. Let supp(f) = {v1, . . . , vk}. Let v ∈ Pf be an arbitrary point. We need to show that
σ ◦ v ∈ Pf , for every σ ∈ Sn. Since Pf = CS(supp(f)), we can express v as:

v =
k∑

i=1
αi · vi.

Then for an arbitrary σ ∈ Sn, observe that:

σ ◦ v =
k∑

i=1
αi · σ ◦ vi.

Now, since f is a symmetric-support polynomial, σ ◦ vi is also in supp(f), for each i ∈ [k].
The above equation then implies that σ ◦ v ∈ CS(supp(f)), which means that σ ◦ v ∈ Pf . ◀

Next, we observe that a point is a vertex in a symmetric polytope P if and only if all its
Sn permutations are also vertices in P .

▶ Lemma A.2 (Vertices of symmetric polytope). Let P be a symmetric Newton polytope with
V (P) being its vertex set. Then, for σ ∈ Sn: v ∈ V (P) if and only if σ ◦ v ∈ V (P).

Proof. (⇒) Suppose V (P) =: {v1, . . . , vk}. Let v ∈ V (P). Consider any permutation
σ ∈ Sn. Since P is a symmetric polytope, we at least know that σ ◦ v ∈ P . For the sake of
contradiction, suppose σ ◦ v /∈ V (P). Thus, it is an internal point which can be expressed as
a nontrivial convex combination of vertices. There exist, for i ∈ [k], 0 ≤ αi < 1,

∑k
i=1 αi = 1

such that:

σ ◦ v = α1 · v1 + . . . + αk · vk

σ−1 ◦ (σ ◦ v) = σ−1 ◦ (α1 · v1 + . . . + αk · vk)
v = α1 · σ−1 ◦ v1 + . . . + αk · σ−1 ◦ vk

Observe that σ−1 ∈ Sn and since P is symmetric σ−1 ◦ vi ∈ P for all i ∈ [k]. This means, v
is a nontrivial convex combination of other points in P , which contradicts the fact that v is
a vertex (Section 2). Therefore, σ ◦ v must also be a vertex.

P. Bisht and N. Saxena 9:19

(⇐) Now we wish to prove that all permutations of a non-vertex point must also be
non-vertices. Let v /∈ V (P). Then, for any σ ∈ Sn, we get a nontrivial convex combination:

v = α1 · v1 + . . . + αk · vk

σ ◦ v = α1 · σ ◦ v1 + . . . + αk · σ ◦ vk

Again, since P is symmetric σ ◦ vi ∈ P for all i ∈ [k]. Thus, σ ◦ v is a nontrivial convex
combination of other points, hence it must be a non-vertex. ◀

The lemma below mentions few standard bounds that we make use of.
▶ Lemma A.3 (Counting estimates).
1. For positive integers a, b with a ≥ b, (a/b)b ≤

(
a
b

)
.

2. For positive integers a, b, c with a ≥ bc,
(

a
bc

)
≤
(

a
c

)b.
3. For positive real x, log(1 + x) > ln(1 + x) > x − x2

2 .

Proof. For (1), see that
(

a
b

)
= a(a−1)···(a−b+1)

b(b−1)···1 ≥
(

a
b

)b.
For (2), we make use of

(
a

c+b′

)
≤
(

a
b′

)
·
(

a−b′

c

)
≤
(

a
b′

)
·
(

a
c

)
. Use this b times to get

(
a
bc

)
≤
(

a
c

)b.
For (3), observe that derivative of f is positive for x > 0, where f = ln(1 + x) − (x − x2

2),
and for x = 0, f(0) = 0. ◀

B Algebraic computational models

Below, we define various algebraic models for computation of a polynomial. For details, we
refer the reader to the excellent survey of [32].

An algebraic circuit is a directed acyclic graph where computation is done bottom-up,
with input leaves at the bottom and a single output node at top. The leaves are labeled
with variables or field constants while rest of the nodes are either addition or multiplication
nodes. The directed edges u → v are labeled with field constants, which get multiplied to
the polynomial computed at node u before feeding it to node v. The in-degree of a node
is called its fan-in and out-degree is called fan-out. Size of the circuit is simply size of the
directed graph. Depth of the circuit is length of the longest path from a leaf to the output
node. Degree of the circuit is maximum degree of a polynomial computed at any node in the
circuit.

A size s depth-2 ΣΠ circuit computes a sum of s-many monomials. Thus, depth-2 circuits
compute the class of sparse polynomials. The much more general class of poly(n)-sized and
poly(n) degree algebraic circuits is called VP, which is considered the algebraic analog of
complexity class P. The class VNP is considered the algebraic analog of complexity class NP.
It is the class of polynomials which can be expressed as an exponential sum of a projection
of a VP circuit family.

An algebraic circuit where fan-out of every node is one is called an algebraic formula.
The class of polynomial sized formulas is called VF.

An algebraic branching program (ABP) is defined using a layered directed graph with a
unique source and sink vertex. Each edge is directed from one layer to the next and has a
linear polynomial as its weight. The weight of a path is product of edge weights along the
path. The polynomial computed by the ABP is then simply the sum of all weighted paths
from source to sink. The length of an ABP is the length of the longest path from source to
sink and width of an ABP is the maximum possible number of vertices in a layer. The size of
ABP is the product of its length and width. VBP is the class of all polynomial sized ABPs.

FSTTCS 2022

On Solving Sparse Polynomial Factorization
Related Problems
Pranav Bisht !

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Ilya Volkovich !

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Abstract
In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity
bound for constant individual degree polynomials was shown. In particular, it was shown that
any factor of a polynomial with at most s terms and individual degree bounded by d can itself
have at most sO(d2 log n) terms. It is conjectured, though, that the “true” sparsity bound should
be polynomial (i.e. spoly(d)). In this paper we provide supporting evidence for this conjecture by
presenting polynomial-time algorithms for several problems that would be implied by a polynomial-
size sparsity bound. In particular, we give efficient (deterministic) algorithms for identity testing of
Σ[2]ΠΣΠ[ind-deg d] circuits and testing if a sparse polynomial is an exact power. Hence, our algorithms
rely on different techniques.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases Sparse Polynomials, Identity Testing, Derandomization, Factor-Sparsity,
Multivariate Polynomial Factorization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.10

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/070/ [6]

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

Polynomial Factorization is one of the core problems in algebraic complexity: given a
multivariate polynomial f ∈ F[x1, x2 . . . , xn] over a field F, output all its irreducible factors.
In addition to being a natural problem, its importance is highlighted by various applications
such as: list decoding [28, 16], derandomization [17], cryptography [7] and others. In the
seminal works of [18, 19], efficient randomized factorization algorithms were presented. Yet,
coming up with an efficient deterministic factorization algorithm remains a long-standing
open question.

Indeed, one aspect of the computational problem is the representation of the input
polynomial. One natural way to represent a polynomial is by listing all its terms and
coefficients. This is known as dense representation. Yet, even if the individual degree of every
variable is bounded by a small constant d, the total number of terms can be exponentially
large, reaching (d + 1)n. Nonetheless, in many applications [31, 13, 3, 15] the actual number
of non-zero terms in a polynomial is much smaller - poly(n). Such polynomials are referred
to as sparse polynomials, which will be the focus of our paper.

A key question that precedes the design of efficient factorization algorithms for sparse
polynomial is whether a factor of a sparse polynomial is (itself) sparse. Indeed, this question
was first studied by von zur Gathen and Kaltofen in [13] that gave a randomized factorization
algorithm where the runtime depends on the number of terms in the output factors. In the

© Pranav Bisht and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bisht@bc.edu
mailto:ilya.volkovich@bc.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.10
https://eccc.weizmann.ac.il/report/2022/070/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Sparse Polynomial Factorization Related Problems

same paper they provided an example inspired by geometric series (see below) of a family of
polynomials that have factors with a super-polynomial (quasi-polynomial) number of terms.
We denote by ∥f∥ the sparsity of f . That is, the number of non-zero terms in f .

▶ Example 1 ([13]). Let n ≥ 1. Consider the polynomial f(x) =
∏

i∈[n]
(xn

i − 1) which can be

written as a product of g(x) =
∏

i∈[n]
(1 + xi + . . . + xn−1

i) and h(x) =
∏

i∈[n]
(xi − 1).

Observe that ∥f∥ = ∥h∥ = 2n while ∥g∥ = nn, resulting in a quasi-polynomial blow-up1.

Furthermore, for fields with finite characteristics the blow-up can be significantly larger:

▶ Example 2 ([29]). For a prime p, let f ∈ Fp[x1, . . . xn], and let 0 < d < p. Consider:
f(x) = (x1 + x2 + . . . + xn)p = xp

1 + xp
2 + . . . + xp

n, g(x) = (x1 + x2 + . . . + xn)d. Notice
that g is a factor of f , but ∥f∥ = n and ∥g∥ =

(
n+d−1

d

)
= nΩ(d).

Based on the above, we should first try to obtain a “sparsity-bound” on factors of sparse
polynomials with constant (i.e. bounded) individual degree. More formally, for some fixed d,
we require that degxi

≤ d, for all variables xi. The simplest case (when d = 1) corresponds
to the so-called multilinear polynomials. In [26], it was shown that a factor of an s-sparse2

multilinear polynomial is itself s-sparse. Subsequently, in [30], this result was extended
to the case of multiquadratic polynomials (i.e. when d = 2). In a recent work of [4], a
quasi-polynomial-size sparsity bound was given for any fixed d. Specifically, it was shown
that a factor of an s-sparse polynomial with individual degree bounded by d is sO(d2 log n)-
sparse. In addition, [4] designed a factorization algorithm whose runtime is efficient in terms
of the sparsity bound. As a result they obtained a deterministic quasi-polynomial-time
factorization algorithm for sparse polynomials with bounded individual degree. In the same
paper it was also conjectured that the “true” sparsity bound should be polynomial rather
than quasi-polynomial. More formally:

▶ Conjecture 3. There exists a universal constant k ∈ N such that for any s, d ∈ N, any
factor of an s-sparse polynomial with individual degree bounded by d has at most sdk terms.

In this paper we provide supporting evidence for this conjecture by presenting deterministic
polynomial-time algorithms for some problems that reduce to sparse polynomial factorization.
It is to be noted that invoking the aforementioned factorization algorithm of [4] with a
polynomial-size sparsity bound would imply a (deterministic) polynomial-time algorithm for
sparse polynomial factorization and hence polynomial-time algorithms for these problems.
In the absence of a polynomial-size sparsity bound, we design our algorithms using new
techniques.

1.1 Our Results

We will now describe our main results. In what follows, F is an arbitrary field. (finite or
otherwise).

1 Although g is not irreducible, this issue can be resolved using standard techniques. For example, by
considering the product f + yh = (g + y)h for a new variable y.

2 A polynomial is s-sparse, it if contains at most s non-zero terms.

P. Bisht and I. Volkovich 10:3

1.1.1 Identity Testing for Σ[2]ΠΣΠ[ind-deg d] Circuits
The Polynomial Identity Testing (PIT) problem asks to decide whether a given input
polynomial is identically zero. The input is usually given in the form of an algebraic circuit.
The PIT algorithm is called white-box if one can look “inside” the circuit. The algorithm is
called black-box if the circuit is given via an oracle access, where one is only allowed to evaluate
the polynomial on a chosen set of input points. PIT is one of the few natural problems
which have a simple efficient randomized algorithm [9, 25, 31] but lack a deterministic one.
Indeed, it has been a long standing open question to come up with an efficient deterministic
algorithm for this problem. We refer the reader to the full version of the paper [6] for more
details.

Our first result is an efficient (deterministic) identity testing algorithm for the class of
Σ[2]ΠΣΠ[ind-deg d] circuits, where a Σ[2]ΠΣΠ[ind-deg d] circuit C of size s computes a polynomial
of the form:

C =
r∏

i=1
gi +

m∏
j=1

hj

where each polynomial (gi and hj) is an s-sparse polynomial with individual degree at most
d (for some fixed d). Note, though, that r and m, and hence the total degree of C, can be
arbitrary (i.e. polynomially) large. In particular, the polynomial computed by C may not
itself be sparse. This class generalizes the model considered in [30], where m = 1 and the
gi-s are irreducible polynomials. For the formal definition of our circuit model and further
discussion, see Section 4.1.

Observe that the identity testing problem for this circuit class reduces to polynomial
factorization of sparse polynomials with bounded individual degree. Therefore, by invoking
the factorization algorithm of [4], we can get an algorithm whose runtime is efficient in terms
of the sparsity bound. Plugging in the best bound of [4] results in a quasi-polynomial-time
algorithm. Our next result gives a polynomial-time algorithm for this model. In addition,
our algorithm operates in the black-box setting, whereas the described factorization-based
algorithm is a white-box algorithm.

▶ Theorem 1. There exists a deterministic algorithm that given a black-box access to a
Σ[2]ΠΣΠ[ind-deg d] circuit C of size s determines if C ≡ 0, in time poly((sd)d3

, n).

An important ingredient in our algorithm is a result that links the gcd of two polynomials,
their subresultant and the resultant of their coprime parts - in the multivariate setting.
See Section 3 for the formal definitions.

▶ Theorem 2. Let A, B ∈ F[x1, x2, . . . , xℓ] be two polynomials such that A = f · g and
B = h · g and let xi be a variable. Then

Sxi
(d, A, B) = g · Resxi

(f, h) · lcxi
(g)m′+n′−1

here m = degxi
(A), n = degxi

(B), d = degxi
(g), m′ = degxi

(f) = m−d and n′ = degxi
(h) =

n− d. In addition:
Resxi

(f, h) is the resultant of f and h w.r.t the variable xi.
lcxi(g) is the leading coefficient of g when written as a polynomial in xi

And finally, Sxi
(d, A, B) is the d-th subresultant of A and B.

To put the result in context, consider two univariate polynomials A, B ∈ F[x]. A classical
result in the Theory of Resultants (see e.g. [14, 12, 8]) states that:

FSTTCS 2022

10:4 Sparse Polynomial Factorization Related Problems

1. Res(A, B) ≡ 0 if and only if gcd(A, B) is non-trivial.
2. If u and v are field elements (i.e. u, v ∈ F) then Res(uA, vB) = Res(A, B) · udeg B · vdeg A.
3. The j-th Subresultant S(j, A, B) ≡ 0 whenever j < deg(gcd(A, B)) .
4. There exists a non-zero field element α ∈ F such that S(j, A, B) = α · gcd(A, B), when

j = deg(gcd(A, B)).
In the multivariate setting one can always regard multivariate polynomials as polynomials in
a single variable with coefficients being rational functions in the remaining variables. Yet,
in this case α is no longer a mere “field element” as it can now be an arbitrary rational
function in the remaining variables! From that perspective, our result can be seen as explicitly
expressing α as a polynomial (and not even a rational function) in the remaining variables.
We believe that this explicit relation could be of interest in its own right.

To illustrate the aforementioned problem and provide more intuition on our result, let
us write the polynomials A and B in the statement of Theorem 2 as A = (uf) · (g/u) and
B = (uh) · (g/u), where u is a rational function that does not depend on xi. Observe that
the introduction of u does not affect the degrees of xi. We obtain the following invariant:

Sxi(d, A, B) = g

u
· Resxi(uf, uh) · lcxi

(g

u

)m′+n′−1
=

g

u
· Resxi(f, h) · um′+n′

· lcxi
(g)m′+n′−1

um′+n′−1 = g · Resxi(f, h) · lcxi(g)m′+n′−1.

1.1.2 Exact Powers
Our next result pertains to exact powers of polynomials. A polynomial f ∈ F[x1, x2, . . . , xn]
is an exact power if there exists (another) polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N such
that f = ge. We note that despite the rich structure, the best known sparsity bound for
exact roots (i.e. ∥g∥ in terms of ∥f∥) is the general sparsity bound of size sO(d2 log n) by [4].
Hence, one can use the factorization algorithm of [4] to test if a given sparse polynomial is
an exact power, in quasi-polynomial time. Similarly, a polynomial-size sparsity bound, even
for the case of exact roots, would imply a polynomial-time algorithm for exact-power testing
problem. We provide a polynomial-time algorithm for exact-power testing that does not
rely on this sparsity bound.

▶ Theorem 3. There is a deterministic algorithm that given a sparse polynomial f ∈
F[x1, x2, . . . , xn] of individual degree d as an input, decides whether f = ge for some polyno-
mial g ∈ F[x1, x2, . . . , xn] and e ∈ N, in time poly(sd2

, n).

We remark that the algorithm only performs exact-power testing and does not output
a “witness” polynomial g. Indeed, a polynomial-time algorithm that actually outputs g

would imply a polynomial-size sparsity bound on exact roots! In addition, the runtime of
our algorithm is polynomial in the bit-complexity of the field elements since it does not rely
on univariate polynomial factorization. For instance, for finite fields we get the runtime of
poly(log |F|) vs poly(|F|).

We defer the details and proof of Theorem 3 in Section 5 of the full version of the paper [6].

1.1.3 Improved Sparsity Bounds for Co-factors of Multilinear
Polynomials

Given two polynomials f, h ∈ F[x1, x2, . . . , xn] such that f = gh, g is called a quotient
polynomial or a co-factor of h. We study the problem of multilinear co-factor sparsity:
suppose f is s-sparse and h is multilinear. How sparse/dense can g be? We remark that

P. Bisht and I. Volkovich 10:5

any (even non-constructive) efficient upper bound on the sparsity of g allows us to compute
g efficiently by interpolating the ratio f/h using a reconstruction algorithm for sparse
polynomials (e.g. [20]) and verifying the result.

The motivation to study this problem is two-fold: first of all, by previous results (see
e.g. [4]) a multilinear factor of an s-sparse polynomial (of any degree) is itself s-sparse. This
suggests more structure for multilinear co-factors we could potentially exploit. Second, a
polynomial-size sparsity bound on multilinear co-factors g (even when the individual degree of
g is d = 2) would imply a polynomial-size sparsity bound for (all factors of) polynomials with
individual degree d = 3. We note that the multicubic (d = 3) case is the first instance where
we do not have a polynomial-size factor-sparsity bound yet. Indeed, multilinear co-factors
can be seen as the “bottle-neck” for this case. The formal argument is given in Section 1.4.

To state our next result we need the following technical definition. We say that a
polynomial h ∈ F[x1, x2, . . . , xn] has a unique projection of length k if there exist k vari-
ables xi1 , xi2 , . . . , xik

and k corresponding exponents e1, e2, . . . , ek such that h has a unique
monomial that contains the pattern xe1

i1
xe2

i2
· . . . · xek

ik

▶ Theorem 4. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree
at most d such that f = gh. Suppose, in addition, that h is a multilinear polynomial with a
unique projection of length k. Then the sparsity of g is bounded by sO(dk).

We remark that Example 2 with d = p− 1 (resulting in a lower bound of nΩ(p)) showcases
the tightness of our result as here f is n-sparse and h = x1 + . . . + xn has a unique projection
of length 1 (e.g. x1) which results in an upper bound of nO(p) for g. We can also extend
Theorem 4 to the case of a co-factor of a power of a multilinear polynomial. Subsequently,
we show that every multilinear s-sparse polynomial has a unique projection of length O(log s)
(see Theorem 6.25 & Lemma 6.9 in the full version of the paper [6]). By plugging this
result into Theorem 4, we obtain a new sparsity bound of size sO(d log s) for all multilinear
co-factors.

▶ Corollary 4. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual degree
at most d such that f = gh. Suppose, in addition, that h is a multilinear polynomial. Then
the sparsity of g is bounded by sO(d log s).

The obtained bound is slightly better than the general sparsity bound of size sO(d2 log n)

by [4] when s = poly(n). Although our overall improvement may seem incremental (e.g.
it does not allow us to “get rid” of the log n in the exponent) our main contribution here
is conceptual: identifying a combinatorial property – the length of the shortest unique
projection – that governs the bound on the sparsity of multilinear co-factors.

1.2 Related Work
For the sparse polynomial factorization problem, [4] have shown that factors of an s-sparse
polynomial of individual degree d, have their sparsity bounded by sO(d2 log n). Currently, this
is the best known bound for factor-sparsity when d ≥ 3. For restricted classes of symmetric
polynomials, Bisht and Saxena [5] recently improved this bound to sO(d2 log d).

In [13], another problem was posed alongside the sparse factorization problem, in the hope
that it might be easier. This problem is referred to as testing sparse factorization. Given
m + 1 sparse polynomials f, g1, . . . , gm, it asks to test whether f = g1 · . . . · gm. The work
of [23] gives a polynomial-time algorithm for this problem, in the special case where every
gi is a sum of univariate polynomials. [30] gives a polynomial-time algorithm when f (and
therefore every gi) has constant individual degree and each gi is an irreducible polynomial.

FSTTCS 2022

10:6 Sparse Polynomial Factorization Related Problems

Our PIT result is connected to this problem. In Theorem 1, we give a polynomial-time
algorithm to test whether

∏r
i=1 fi =

∏m
j=1 gj , where each fi, gj is a sparse polynomial with

constant individual degree. Note that now LHS is also a product of polynomials. Moreover,
there is no restriction placed on gj-s except that they have bounded individual degree.

The depth-4 ΣΠΣΠ circuit class is extremely important in the context of the PIT problem,
as it is known that a polynomial-time black-box PIT for this class implies a quasi-polynomial-
time black-box PIT for general VP circuits [2, 1]. For a long time, no PIT algorithm better
than the trivial dO(n) time algorithm was known for this class, until the recent breakthrough
result of Limaye et al. [21], which gives a sub-exponential time algorithm. Various restricted
versions of depth-4 circuits are studied to get close to polynomial-time PIT algorithms.
For example, Peleg and Shpilka [22] give a polynomial-time PIT algorithm for Σ[3]ΠΣΠ[2]

circuits, where the top fan-in is 3 and the bottom fan-in is 2. Recently, Dutta et al. [10] gave
a quasi-polynomial-time PIT for Σ[k]ΠΣΠ[d] circuits, where the top fan-in k and bottom
fan-in d are allowed to be any fixed constants. In this model, the restriction on bottom
fan-in implies that the bottom ΣΠ computes polynomials of total degree at most d. We give
polynomial-time PIT algorithm for Σ[2]ΠΣΠ[ind-deg d] model, where the top fan-in is 2 and
the bottom ΣΠ computes polynomials with individual degree at most d. We note that the
individual degree restriction is much weaker than the total degree restriction. Indeed, even
for the case of individual degree bounded by 1 (i.e. multilinear polynomials) the total degree
can still be Ω(n)! [24] gave a polynomial-time PIT algorithm for the class of multilinear
Σ[k]ΠΣΠ circuits, with constant top fan-in k, where every gate in the circuit computes a
multilinear polynomial. Yet, even a white-box polynomial-time PIT for general Σ[2]ΠΣΠ
circuits is still open.

Another related problem is that of divisibility testing, which gives two multivariate
polynomials f and h and asks to decide whether h divides f . [11] gives a quasi-polynomial-
time algorithm when f is sparse and h is a quadratic polynomial (and hence also sparse).
We note that the quadratic restriction on h is much stronger than a constant individual
degree restriction, although there is no constant degree restriction for f here. [30] gives a
polynomial-time algorithm when both f, h are sparse and have constant individual degree.
In the proof of Corollary 4, we solve a “search” version of the divisibility testing problem, i.e.
we actually compute f/h in quasi-polynomial time, when f is sparse with constant individual
degree and h is a multilinear factor of f .

1.3 Our Techniques & Proof Ideas
Let C =

∏r
i=1 gi +

∏m
j=1 hj where gi-s and hj-s are s-sparse polynomials in F[x1, x2, . . . , xn] of

individual degree at most d. Clearly, if C ≡ 0 then it will evaluate to zero on any input. Now
suppose C ̸≡ 0. Our goal is to find a point a ∈ Fn such that C(a) ̸= 0. Our approach relies on
the uniqueness of factorization property of the ring of multivariate polynomials. Specifically,
we have that

∏r
i=1 gi ̸= −

∏m
j=1 hj . Consequently, wlog there exists an irreducible polynomial

(factor) u and ℓ > 0 such that uℓ divides the LHS but does not divide the RHS. Our goal
is to preserve this “situation” while reducing the number of variables. Clearly, a random
projection will be sufficient. However, we wish to obtain a deterministic algorithm. To this
end, we are looking for a projection that does not introduce new dependencies between
factors. That is, for every i, j: if v | gi and u | hj satisfying gcd(u, v) = 1 we need to ensure
that gcd(u′, v′) = 1, when u′ and v′ are the projections of u and v, respectively. The main
tool for that is the Resultant. Indeed, one of the fundamental properties of the resultant
is Res(A, B) ̸≡ 0 if and only if gcd(A, B) = 1. In the multivariate setting, this condition
roughly translates into: [∀xk : Resxk

(u, v) ̸≡ 0] =⇒ gcd(u′, v′) = 1. In other words, we

P. Bisht and I. Volkovich 10:7

need to hit all the resultants of the form Resxk
(u, v) when v | gi and u | hj . By definition,

Resxk
(u, v) is a determinant of 2d × 2d matrix where each entry is a coefficient of u or v.

Hence, Resxk
(u, v) is tO(d)-sparse polynomial with individual degree at most O(d2), where

t is an upper bound on the sparsities of u and v. Consequently, we can use a hitting set
generator for sparse polynomials (e.g. [20]) to hit the resultant. As u and v are factors of
s-sparse polynomials of individual degree d, the best upper by [4] will be t = sO(d2 log s). This
will result in a quasi-polynomial-time algorithm.

Another idea would be to use the multiplicative properties of the resultant and hit
Resxk

(hj , gi) instead. Indeed, Resxk
(hj , gi) ̸≡ 0 =⇒ Resxk

(u, v) ̸≡ 0 and since gi and hj are
s-sparse, Resxk

(hj , gi) is sO(d)-sparse and this would get a polynomial-time algorithm. The
main issue is that we could have Resxk

(u, v) ̸≡ 0 while Resxk
(hj , gi) ≡ 0. For example, if

hj = uf and gi = vf for the same polynomial f . Going back, one may ask whether we could
show a better sparsity bound on Resxk

(u, v). While we do not quite do that, we instead
show that Resxk

(u, v) is a factor of some sO(d)-sparse polynomial of individual degree at
most O(d2).

As the ring of polynomials forms an integral domain, this allows us to use a polynomial-size
hitting set generator for sparse polynomials.

To achieve the above goal, suppose for simplicity that gi = ua1 · vb1 and hj = ua2 · vb2 , for
some non-negative integers a1, b1, a2, b2. If all these numbers are strictly positive, we run into
the same issue we have encountered earlier. That is, Resxk

(u, v) ̸≡ 0 while Resxk
(hj , gi) ≡ 0.

To address that, we apply Theorem 2 (our key technical contribution) which allows us
to “extract” the gcd. For example, if gi = uv2 and hj = u2v, we can write gi = v · uv

and hj = u · uv and obtain that Resxk
(u, v) is a factor of Sxk

(degxk
(uv), gi, hj), which is

an sO(d)-sparse polynomial (see Observation 15). However, a sole gcd extraction may be
insufficient. Consider the case when gi = uv2 and hj = uv. Repeating the same argument
will just yield a trivial statement that Resxk

(v, 1) = 1 is a factor of a sparse polynomial.
To overcome this difficulty, we apply the previous argument on powers of gi and hj . That
is, on gz

i = uza1 · vzb1 and ht
j = uta2 · vtb2 . The idea now would be to isolate the powers

of u from the powers of v. Within the same example, consider g2
i = u2v4 = v · u2v3 and

h3
j = u3v3 = u · u2v3. Now, by Theorem 2, Resxk

(u, v) is a factor of Sxk
(degxk

(u2v3), g2
i , h3

j).
More generally, we show how to find appropriate “small” z and t using linear algebra.

Unfortunately, though, this could be made possible only when hj and gi satisfy certain

“non-degeneracy” condition w.r.t u and v. More formally, when the matrix E
∆=
[
a1 a2
b1 b2

]
has full rank (see Lemma 20).

Our final crucial observation is that we can actually ignore “degenerate” pairs u, v. To
this end, we prove a technical lemma (Lemma 7) which could be of independent interest.

1.3.1 Exact Power Testing
Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of constant individual degree d. We show
how to test whether f = ge, for some other polynomial g ∈ F[x1, . . . , xn] and some e ∈ N.
We utilize the notion of reverse-monic polynomials for this result. We call a polynomial h

reverse-monic, if there exists some i ∈ [n], such that h|xi=0 = 1. If our input polynomial
f is reverse-monic, we show that g is sO(d)-sparse. Moreover, we also get an algorithm to
compute this exact root g. We prove this in Lemmas 5.4 & 5.9 of the full version of the paper
[6], using a formal expansion that can be thought of as a generalization of the Binomial
Expansion: (1 + x) 1

e =
∑∞

i=0
(1

e
i

)
xi. In general though, our input polynomial f may not be

reverse-monic. We first convert f into a reverse-monic polynomial f̂ with respect to some

FSTTCS 2022

10:8 Sparse Polynomial Factorization Related Problems

variable xi, using a known standard transformation. This step only incurs a slight sparsity
blow-up of sd. One important property of this transformation is that it preserves the “exact
power” structure. That is, if f = ge, then f̂ = he, for some polynomial h. We then compute
this e-th root of the reverse-monic f̂ , as mentioned previously.

However, we are still not quite done. It can happen that a polynomial f which was not
an exact power, may become an exact power after the reverse-monic transformation. We
need an additional condition to get the converse implication. We show that if both f̂ and
f|xi=0 are exact powers, then we can correctly conclude that f is also an exact power. This
gives us a recursive algorithm, as f|xi=0 is a polynomial in (n− 1) variables. This procedure
is described formally in Algorithm 3 of the full version of the paper [6].

1.3.2 Co-Factor Sparsity Bound

For the co-factor bounds, our results build on the division elimination techniques of [27]. Let
us outline our approach. To this end, let f, h ∈ F[x1, x2, . . . , xn] be s-sparse polynomials
such that h(0, . . . , 0) = 1 and suppose that f = gh for some polynomial g ∈ F[x1, x2, . . . , xn]
with individual degree at most d. Consider the following formal expansion: 1

(1−x) =
∑∞

j=0 xj .
Then we have: g = f

h = f
(1−(1−h)) =

∑∞
j=0 f(1 − h)j when the equality is an equality

of formal sums of monomials. The key observation is that (1 − h) does not contain any
constants, hence total degree of every monomial in (1− h)j (and hence in every summand
f(1− h)j) is at least j. Consequently, we can “discard” the tail

∑∞
j=dn+1 f(1− h)j since

every monomial in g has a total degree of at most dn. Indeed, g will be formed by a subset
of monomials of

∑dn
j=0 f(1− h)j . This allows us to obtain an upper bound on the sparsity of

g : ∥g∥ ≤
∑dn

j=0 sj+1 ≤ sdn+2. Clearly, the outlined approach has two major flaws:
1. It requires that h(0, . . . , 0) = 1 (or more generally, h(0, . . . , 0) ̸= 0). And even then:
2. The obtained bound is exponential in n.
One way to address the former is by a random shift to the variable. However, this may
significantly increase both the sparsity and the individual degree! We take a different
approach. Our main observation is that the argument still works if we treat the polynomials
as polynomials in “fewer” variables.Formally, let I ⊆ [n] of size |I| = k. We can regard the
polynomials as polynomials in the variables xI with coefficient in the remaining variables. In
particular, suppose that h|xI =0I

= 1. In this case we say that h is I-reverse monic. Observe
that every monomial in (1− h)j contains at least one variable from xI . That is, the total
xI -degree of (1− h)j is at least j and hence (as before) we can discard the tail. Yet now, g

depends “only” on k variables and thus its “total” degree is kd (and not nd). This way we
obtain a better upper bound on the sparsity of g, if k is “small”: ∥g∥ ≤

∑kd
j=0 sj+1 ≤ skd+2.

Of course, our approach still relies on the assumption that h is I-reverse monic for a “small”
subset I. Although we are unable to lift this assumption, we can weaken it. As was noted
earlier, if h(0, . . . , 0) = α ̸= 0 (i.e. when I = [n]) we can just divide by α as it is a field
element. However, this is no longer possible for an arbitrary I (especially, if I is a small set).
Yet, we observe that if h|xI =0I

= α and α is a non-zero single monomial (in the remaining
variables) we can transform h into an I-reverse monic polynomial ĥ with the exact same
sparsity. The idea is to apply the transformation xi = α ·xi for all i ∈ I. Note that since α is
a single monomial, this transformation is reversible. Indeed, there is an 1-1 correspondence
between the monomials of h and ĥ. Given this connection, we refer to such h as I-reverse
pseudo-monic.

Our final ingredient is (yet) another observation that for multilinear polynomials we
can weaken the assumption that h is I-reverse pseudo-monic further by considering unique
projections. That is, monomials that have a “unique pattern”. Formally, we want h to have

P. Bisht and I. Volkovich 10:9

exactly one monomial that contains the submonomial: xe1
i1

xe2
i2
· · ·xek

ik
. We show that by

“flipping” the variables in h we can transform it into another multilinear polynomial h̃ which
is {i1, i2, . . . , ik}-reverse pseudo-monic. As a result, ∥g∥ ≤ skd+2.

This is our main conceptual contribution: the upper bound on the sparsity of a multilinear
co-factor g is governed by a combinatorial property of the set of monomials of h: the length
of the shortest unique projection. As an application, we show that every s-sparse polynomial
has a unique projection of length at most log s + 1, thus we obtain a new, slightly stronger,
sparsity bound on co-factors of multilinear polynomials.

1.4 Multilinear co-Factor Motivation
Theorem 4 and Corollary 4 in this paper apply to the factorization scenario of f = gh where
f is s-sparse and h is multilinear. First of all, note that by previous results (see [4] and
references within) h itself is s-sparse. So we are looking to bound the sparsity of g. As it
turns out, this pattern is the “bottleneck” case for multicubic polynomials. In other words,
showing a polynomial-size sparsity bound on g in this scenario would imply a polynomial-size
sparsity bound on factors of general multicubic polynomials! In fact, it is sufficient to
consider the case when the degree of g in every variable is exactly 2! We remark that getting
polynomial-size sparsity bound is open for d ≥ 3. The following lemma summarizes this
formally.

▶ Lemma 5. Suppose there exists an absolute constant a ≥ 1 such that for any multicubic
polynomial f : if g | f and f/g is multilinear then ∥g∥ ≤ ∥f∥a. Then for any multicubic
polynomial f if g | f then ∥g∥ ≤ ∥f∥a.

We defer the proof to Section A.

2 Preliminaries

Notations

We use the shorthand [n] for the set {1, 2, . . . , n}. We denote a vector v = (v1, . . . , vn) in
short by v (as a column vector). We denote the n-fold Cartesian product of a set H by
Hn. The set of non-negative real numbers is denoted by R≥0 and Rn

≥0 denotes the space of
n-dimensional non-negative real vectors.

Let f ∈ F[x] = F[x1, x2, . . . , xn] be an n-variate polynomial. The individual degree of a
variable xi in f , denoted by degxi

(f), is defined as the maximum degree of that variable
in f , while the individual degree of f is the maximum among all the individual degrees,
maxi∈[n] degxi

(f). We define the sparsity of f as the number of non-zero terms in f . Let
us denote sparsity of f as ∥f∥. We say that f depends on a variable xi if there exist
a, b ∈ Fn which differ only in the i-th coordinate such that f(a) ̸= f(b). We define the set
var(f) ∆= {i | f depends on xi}. For i ∈ [n], we denote by lcxi(f) the leading coefficient of
f when written as a polynomial in xi. Formally, let f =

∑d
j=0 fj · xj

i such that ∀j, fj is a
polynomial in rest of the variables and fd ̸≡ 0. Then lcxi

(f) ∆= fd. Observe that if f = g · h
then ∀i ∈ [n] : lcxi(f) = lcxi(g) · lcxi(h).

For a set I ⊆ [n], we use xI to denote the set of variables {xi | i ∈ I} and x[n]\I to
denote the set of remaining variables. We use the symbol f |xI =0I

to denote the polynomial
resulting from substituting 0 at all the xI variables in f . Let a = (a1, . . . , an) ∈ Fn. For
i ∈ [n] we define a partial assignment a−i

∆= (a1, . . . , ai−1, ai+1, . . . , an) and f(xi, a−i)
∆=

f(a1, . . . , ai−1, xi, ai+1, . . . , an).

FSTTCS 2022

10:10 Sparse Polynomial Factorization Related Problems

Let f ∼ g denote equality of f and g up to multiplication by non-zero a field constant,
i.e. f = c · g, for some c ̸= 0 ∈ F.

2.1 Vectors and Interlacing
In this section we will state some useful properties of vectors that may be of independent
interest. We defer the proof of Lemma 7 to Section A.2.

▶ Definition 6 (Interlacing). Let a, b, c, d ∈ R. We say that two pair of points (a, b) and (c, d)
interlace if (a− c)(b− d) < 0. Equivalently, (a− c) and (b− d) have opposite signs.

▶ Remark. In particular, interlacing implies that at least two of a, b, c, d are non-zero.
The following result relates the interlacing property with linear dependence.

▶ Lemma 7. Let a, b ∈ Rn
≥0 and c, d ∈ Rm

≥0 such that
(

n∑
i=1

ai,
n∑

i=1
bi

)
interlaces with(

m∑
j=1

cj ,
m∑

j=1
dj

)
. Then there exists i ∈ [n], j ∈ [m] s.t. the matrix

[
ai cj

bi dj

]
has full rank.

3 GCD, Resultants and Subresultants

In this section we discuss the classical tool of resultants and subresultants. In Theorem 14
we prove an interesting connection which is a somewhat more general version of Theorem 2.
This result will be crucial in the design of our PIT algorithm and could be of interest in its
own right.

The polynomial ring F[x1, . . . , xn] is a unique factorization domain (UFD). Hence, the gcd
of two polynomials is well defined up to a multiplication by field element. We can also define
gcd with respect to a single variable xi, where we treat rest of the variables as field elements.
That is, gcdxi

(f, g) is well defined up to multiplication by a rational function depending
on the remaining variables. By convention, we choose the normalized gcd whenever we
consider gcdxi

(f, g) in this work. For example, let f = x2
1x2 + x1x2

2 and g = x2
1x2

2, then
gcd(f, g) = x1x2 while gcdx2

(f, g) = x2. Technically, the former is gcd in F[x1, x2] and the
latter is normalized gcd in F(x1)[x2]. We now consider a somewhat more general scenario.
Let A(y), B(y) ∈ R[y] be two non-zero polynomials of y-degree d and e, respectively in an
arbitrary UFD R. Suppose A(y) =

∑d
i=0 ai · yi and B(y) =

∑e
j=0 bj · yj . Consider the

(d + e) × (d + e) Sylvester matrix M whose first e rows are the e shifts of the row vector
(ad, . . . , a0, 0, . . . , 0) and next d rows are the d shifts of the row vector (be, . . . , b0, 0, . . . , 0).

M =



ad ad−1 . . . a1 a0
ad ad−1 . . . a1 a0

.

ad ad−1 . . . a1 a0
be be−1 . . . b1 b0

be be−1 . . . b1 b0
.

be be−1 . . . b1 b0


.

▶ Definition 8 (Resultant). The resultant Resy(A, B) ∈ R is defined to be the determinant
of this Sylvester matrix. That is, Resy(A, B) = det(M).

P. Bisht and I. Volkovich 10:11

In our setting, R will be a polynomial ring, say F[x1, . . . , xn] and Resy(A, B) will be a
polynomial free of y-variable. The following is the most fundamental property of the
Resultant:

▶ Lemma 9 (See e.g. [14, 12, 8]). Let A, B ∈ F[y, x1, . . . , xn] be two polynomials. Then
gcdy(A, B) ̸= 1 if and only if Resy(A, B) ≡ 0. That is, A and B have a non-trivial factor that
depends on the variable y iff the Resultant of A, B w.r.t. y is the identically zero polynomial.

We state the following important connection between the projection of the resultant and
the GCD of projections.

▶ Lemma 10. Let f(y, x) and g(y, x) be two polynomials in F[y, x]. Let a ∈ Fn. Then,
Resy(f, g)(a) ̸= 0 =⇒ gcdy(f(y, a), g(y, a)) = 1.

The proof can be found in Section A. We also require multiplicative property of the
Resultant that essentially follows from the definition:

▶ Lemma 11. Let A, B, u, v ∈ F[y, x1, . . . , xn] be polynomials. Then
Resy(A, B) | Resy(uA, vB).

We now study few useful sub-matrices of the Sylvester matrix below.

▶ Definition 12 (j-th principal resultant). Let Mj be the submatrix of M formed by deleting
last j rows of A terms, last j rows of B terms and the last 2j columns. We call Mj to be the
j-th principal resultant of A and B. Note that Resy(A, B) = M = M0.

We can now define the subresultant polynomial as follows.

▶ Definition 13 (Subresultant). Let Mij be the (d + e − 2j) × (d + e − 2j) submatrix of
Sylvester matrix M formed by deleting:

rows e− j + 1 to e (each having coefficients of A(y)),
rows d + e− j + 1 to d + e (each having coefficients of B(y)),
columns d + e− 2j to d + e, except for column d + e− i− j.

Note that the j-th principal resultant Mj is exactly Mjj.
For 0 ≤ j ≤ e, the j-th subresultant of A(y), B(y) ∈ R[y] is the polynomial in R[y] of degree
j defined by Sy(j, A, B) = det(M0j) + det(M1j) · y + . . . + det(Mjj) · yj .

We now prove our main technical result which links the gcd of two polynomials, their
subresultant and the resultant of their coprime parts. Theorem 2 is a special case of this
result which, we believe, could be interesting in its own right.

▶ Theorem 14. Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary UFD R. Suppose
A(x) = f(x) · g(x) and B(x) = h(x) · g(x) with degx(A) = m, degx(B) = n, degx(g) = d,
degx(f) = m′ = m− d and degx(h) = n′ = n− d. Then

Sx(d, A, B) = g · Resx(f, h) · lcx(g)m′+n′−1.

Due to its length and space limitation, we defer the proof of Theorem 14 to Section
A.1 in the Appendix. We conclude this section making an important observation that any
subresultant (and hence the Resultant) of two sparse polynomials of individual degree at
most d is a sum of at most d + 1 determinants of 2d × 2d matrices where each entry is a
coefficient of a sparse polynomial and, hence is itself a (somewhat) sparse polynomial of a
small individual degree.

▶ Observation 15. Let A, B ∈ F[y, x1, . . . , xn] be two s-sparse polynomials with individual
degrees at most d. Then for any j, Sy(j, A, B) is an (2ds)2d+1-sparse polynomial with
individual degrees at most 2d2.

FSTTCS 2022

10:12 Sparse Polynomial Factorization Related Problems

4 PIT for Σ[2]ΠΣΠ[ind-deg d] Circuits

In this section we prove our main result Theorem 1. We refer the reader to the full version
of the paper [6] for the formal definition of an algebraic circuit and PIT algorithm. For the
purpose of black-box PIT algorithm, we require the notion of hitting set generators (HSG)
or simply generators.

▶ Definition 16 (Generator). Let C be a class of n-variate polynomials. Consider G =
(G1,G2, . . . ,Gn) : Fk → Fn, an n-tuple of k-variate polynomials where for each i ∈ [n],
Gi ∈ F[t1, t2, . . . , tk]. Let f(x1, . . . , xn) be an n-variate polynomial. We define action of G
on polynomial f by f(G) = f(G1, . . . ,Gn) ∈ F[t1, . . . , tk]. We call G a k-seeded generator
for class C if for every non-zero f ∈ C, f(G) ̸≡ 0. Degree of generator G is defined as
deg(G) ∆= max{deg(Gi)}n

i=1. We define G−i
∆= (G1, . . . ,Gi−1,Gi+1, . . . ,Gn) and f(xi,G−i)

∆=
f(G1, . . . ,Gi−1, xi,Gi+1, . . . ,Gn).

For a polynomial-time PIT algorithm, k is kept constant. A generator G acts as a variable
reduction map which converts an input polynomial f ∈ F[x1, . . . , xn] to f(G) ∈ F[t1, . . . , tk]
such that f ≡ 0 if and only if f(G) ≡ 0. Let D be the degree of G and d be the individual
degree of f . Then G gives us a brute-force hitting-set of size (ndD)k (Lemma A.2 in the
full version of the paper [6]). In other words, we get a polynomial-time black-box PIT
algorithm for f when k is constant, G can be designed in polynomial time and its degree is
also polynomially bounded.

4.1 The Σ[k]ΠΣΠ[ind-deg d] Model

A size s, depth-4 ΣΠΣΠ circuit computes a polynomial of the form f =
k∑

i=1

mi∏
j=1

fij , where fij

are s-sparse polynomials for each i ∈ [k], j ∈ [mi].
For k = 2, even white-box PIT for Σ[2]ΠΣΠ circuits is still open. A more restricted

model is the class of Σ[k]ΠΣΠ[d] circuits, where the top fan-in k and the bottom fan-in d are
constants. For a size-s circuit of this class, fij ’s are s-sparse polynomials of constant total
degree at most d. For k = 3 and d > 2, coming up with a polynomial PIT algorithm remains
an open question here. We now introduce, what we call the Σ[k]ΠΣΠ[ind-deg d] model. In the
Σ[k]ΠΣΠ[d] model, the sparse polynomials fij ’s have constant total degree ≤ d. We relax
this restriction to fij ’s being constant individual degree ≤ d polynomials in Σ[k]ΠΣΠ[ind-deg d]

model. This is a more general model, since fij ’s can now have much higher total degree, like
Ω(n). In Section 4.2, we give a deterministic polynomial-time black-box PIT algorithm for
this model when k = 2 and d is any constant. We also note that our PIT algorithm works
for any field F, while the works of [22, 10] do have certain field restrictions.

4.2 The PIT Algorithm
For a polynomial f and an irreducible polynomial u, let eu(f) denote the highest power of u

in f . In other words, f = ueu(f) · g, such that u ̸ | g. If u ̸ | f , then eu(f) = 0. We define a
polynomial Φ with respect to two non-zero polynomials P, Q as follows:

▶ Definition 17. Let P, Q ∈ F[x1, . . . , xn] be two non-zero polynomials. Define the polynomial
ΦP,Q ∈ F[x1, . . . , xn] as: ΦP,Q

∆=
∏

u,v | P Q
i∈[n]

Resxi
(u, v) ·

∏
i∈[n]

lcxi
(P) ·

∏
i∈[n]

lcxi
(Q), where u, v

are irreducible factors of P or Q such that (eu(P), ev(P)) interlaces with (eu(Q), ev(Q)).
Moreover, we only consider non-zero multiplicands.

P. Bisht and I. Volkovich 10:13

The next Lemma shows that a non-zero of Φ preserves non-similarity of polynomials.

▶ Lemma 18. Let P, Q ∈ F[x1, x2, . . . , xn] be two polynomials such that P ≁ Q and let a ∈ Fn

such that ΦP,Q(a) ̸= 0. Then, there exists an i ∈ [n] such that P (xi, a−i) ≁ Q(xi, a−i).

Proof. By our premise, we have P ≁ Q. By uniqueness of factorization, without loss of
generality, there exists an irreducible factor u of P , appearing with higher power in P

than in Q. That is, k
∆= eu(P) > ℓ

∆= eu(Q) ≥ 0. Let P = uk · G and Q = uℓ · H, for
some polynomials G, H such that u does not divide either of them. Define the set T

∆=
{v | v is an irreducible factor of H and ev(P) ≥ ev(Q)}. Then let P = uk ·

(∏
v∈T vev(P)) ·

G′ , Q = uℓ ·
(∏

v∈T vev(Q)) · H ′, where G′, H ′ are the product of remaining polynomials
from G and H respectively. Pick i ∈ var(u), i.e. u depends on xi. Note that lcxi

(P) ̸≡ 0,
since u is a factor of P which depends on xi. Since lc is multiplicative, we get that
lcxi

(P (xi, a−i)) = lcxi
(u(xi, a−i))k · lcxi

(G(xi, a−i)). From our premise, we also know that
ΦP,Q(a) ̸= 0. Then by the definition of ΦP,Q, we get that lcxi

(P (xi, a−i)) ̸= 0, which implies
that lcxi(u(xi, a−i)) ̸= 0. Together with the fact that u has xi-degree at least one, we
conclude that u(xi, a−i) also has xi-degree at least one. Suppose for the sake of contradiction
that P (xi, a−i) ∼ Q(xi, a−i). Then:

u(xi, a−i)k−ℓ ·

(∏
v∈T

vev(P)−ev(Q)(xi, a−i)
)
·G′(xi, a−i) ∼ H ′(xi, a−i).

Since k > ℓ and ∀v ∈ T : ev(P) ≥ ev(Q), LHS is a proper polynomial in the above equation.
Moreover, u(xi, a−i) divides LHS. Now since LHS ∼ H ′(xi, a−i) and u(xi, a−i) depends on xi,
we deduce that H ′(xi, a−i) also depends on xi. By uniqueness of factorization, we also deduce
that u(xi, a−i) divides H ′(xi, a−i). Let H ′ = ve1

1 · . . . · vem
m be the irreducible factorization of

H ′, for some m ≥ 1 and ej ≥ 1 for all j ∈ [m], where each vj is irreducible. Here ej = evj (Q)
for each j ∈ [m]. Then H ′(xi, a−i) = v1(xi, a−i)e1 ·. . .·vm(xi, a−i)em , where vj(xi, a−i)’s may
not be irreducible anymore due to substitution. Recall that u does not divide H and hence it
does not divide H ′ either. Since u is irreducible, we get that gcdxi

(u, vj) = 1, for all j ∈ [m].
At the same time, recall that u(xi, a−i) divides H ′(xi, a−i). Since H ′(xi, a−i) depends on xi,
this implies that u(xi, a−i) shares a non-trivial factor with some vj(xi, a−i) which depends on
xi. Thus, there exists some j ∈ [m] such that gcdxi

(u(xi, a−i), vj(xi, a−i)) ̸= 1. By definition
of H ′, vj /∈ T and hence evj

(P) < evj
(Q) = ej for all j ∈ [m]. Recall that eu(P) > eu(Q).

Hence (eu(P), evj
(P)) interlaces with (eu(Q), evj

(Q)). By our premise, ΦP,Q(a) ̸= 0. Then
by the definition of ΦP,Q, we get that Resxi(u, vj)(a−i) ̸= 0. By further applying Lemma 10,
we deduce that gcdxi

(u(xi, a−i), vj(xi, a−i)) = 1, which gives us a contradiction. Hence,
P (xi, a−i) ≁ Q(xi, a−i). ◀

The following is a technical lemma for future use. The proof is deferred to Section A.

▶ Lemma 19. Let u, v ∈ F[x1, x2, . . . , xn] be two coprime and irreducible polynomials such
that var(u) ∩ var(v) is non-empty. And suppose we have two polynomials g = ua1 · vb1 and
h = ua2 · vb2 , for some non-negative integers a1, b1, a2, b2. Define z

∆= a2 + b2 and t
∆= a1 + b1.

For any i ∈ var(u) ∩ var(v), let W
∆= gcdxi

(gz, ht). Finally, let E be the following matrix:

E
∆=
[
a1 a2
b1 b2

]
. Then gz

W =
{

udet(E) if det(E) ≥ 0
v− det(E) otherwise.

ht

W =
{

vdet(E) if det(E) ≥ 0
u− det(E) otherwise.

We now show that under certain non-degeneracy condition, a resultant of two factors of
sparse polynomials is itself a factor of a (somewhat) sparse polynomial.

FSTTCS 2022

10:14 Sparse Polynomial Factorization Related Problems

▶ Lemma 20. Let u ≁ v ∈ F[x1, x2, . . . , xn] be two irreducible polynomials. Suppose there
exist s-sparse, individual degree-d polynomials g, h ∈ F[x1, x2, . . . , xn] such that the matrix

E
∆=
[
eu(g) eu(h)
ev(g) ev(h)

]
has full rank. Then for any i ∈ [n] : Resxi

(u, v) is a factor of a non-zero

(sd)O(d3)-sparse, O(d4)-individual degree polynomial.

Proof. Consider any i ̸∈ var(u)∪var(v). Then Resxi
(u, v) is defined to be 1, which is trivially

a factor of any sparse polynomial. Now consider any i ∈ var(u) \ var(v). Then by definition,
Resxi(u, v) = vdegxi

(u). Note that both ev(g) and ev(h) cannot be zero, as E has full rank.
Therefore, v is factor of g or h, which are both s-sparse. Similarly, u is also a factor of g

or h which implies degxi
(u) ≤ d. We deduce that Resxi(u, v) is a factor of an sd-sparse

polynomial. Similarly, we get the same conclusion for any i ∈ var(v) \ var(u). We are now
left with i ∈ var(u) ∩ var(v), for which we shall prove below.

Let us write g = ueu(g) · vev(g) · A and h = ueu(h) · vev(h) · B, for some polynomials
A, B ∈ F[x1, x2, . . . , xn] co-prime to both u and v. Let g′ = ueu(g) · vev(g) and h′ =
ueu(h) · vev(h). Further, let z = eu(h) + ev(h) and t = eu(g) + ev(g). Consider polynomials
gz = (g′)z · Az and ht = (h′)t · Bt. Since both g, h have individual degree d, we know
that eu(g), ev(g), eu(h), ev(h) ≤ d and hence s, t ≤ 2d. Pick any i ∈ var(u) ∩ var(v) and
consider gcdxi

(gz, ht). Define W
∆= gcdxi

((g′)z, (h′)t) and Y
∆= gcdxi

(Az, Bt). Since g′, h′

are co-prime to both A and B, we deduce that gcdxi
(gz, ht) = W · Y. By our premise, we

have det(E) ̸= 0. Without loss of generality, let us assume det(E) > 0. The other case
follows similarly. Using Lemma 19, we get that (g′)z/W = udet(E) and (h′)t/W = vdet(E).
Therefore, we can write gz = W ·Y ·udet(E) · Az

Y , ht = W ·Y ·vdet(E) · Bt

Y . Note that Az/Y and
Bt/Y are proper polynomials by definition of Y . Let ℓ = degxi

(gcd(gz, ht)). By Theorem 14,
there exists k ≥ 0 such that:

Sxi
(ℓ, gz, ht) = W · Y · Resxi

(
udet(E) · Az

Y
, vdet(E) · Bt

Y

)
· lcxi

(W · Y)k.

Since both gz and ht are s2d-sparse with individual degree at most 2d2, by Obser-
vation 15, Sxi(ℓ, gz, ht) is (sd)O(d3)-sparse with individual degree at most 8d4. Fur-
thermore, observe that by definition: gcdxi

(
udet(E) · Az

Y , vdet(E) · Bt

Y

)
= 1 =⇒

Resxi

(
udet(E) · Az

Y , vdet(E) · Bt

Y

)
̸≡ 0 =⇒ Sxi

(ℓ, gz, ht) ̸≡ 0. Finally, since det(E) is a posit-

ive integer, we use Lemma 11 to deduce that Resxi
(u, v) | Resxi

(
udet(E) · Az

Y , vdet(E) · Bt

Y

)
.

Hence, we conclude that Resxi
(u, v) is a factor of a non-zero (sd)O(d3)-sparse sub-resultant

polynomial. ◀

Using the above, we conclude that while the multiplicands in the polynomial ΦP,Q may not
themselves be sparse, they are factors of (some) sparse polynomials. Consequently, ΦP,Q can
be hit by a hitting set generator for sparse polynomials.

▶ Lemma 21. Let both P, Q ∈ F[x1, x2, . . . , xn] be products of s-sparse, individual degree-d
polynomials and let G be a generator for (sd)O(d3)-sparse, O(d4)-individual degree polynomials.
Then ΦP,Q(G) ̸≡ 0.

Proof. Let P =
∏

j∈[r] gj and Q =
∏

k∈[m] hk, where gj , hk are s-sparse polynomials of
individual degree d, for all j ∈ [r], k ∈ [m]. By definition, ΦP,Q has two types of multiplicands.
We will show that G hits both types.

P. Bisht and I. Volkovich 10:15

For the first type, let u, v be any irreducible factors of P or Q such that (eu(P), ev(P))
interlaces with (eu(Q), ev(Q)). We wish to show that Resxi

(u, v) ̸≡ 0 =⇒ Resxi
(u, v)(G) ̸≡ 0.

Observe: eu(P) =
r∑

j=1
eu(gj), eu(Q) =

m∑
k=1

eu(hk), ev(P) =
r∑

j=1
ev(gj), ev(Q) =

m∑
k=1

ev(hk). By

definition, each of these e-values is a non-negative integer. Therefore by Lemma 7, there exists

j ∈ [r], k ∈ [m] such that E
∆=
[
eu(gj) eu(hk)
ev(gj) ev(hk)

]
has full rank. Then by Lemma 20, for any

i ∈ [n] : Resxi
(u, v) is factor of some (sd)O(d3)-sparse, O(d4)-individual degree polynomial.

Since, G is a generator for such polynomials, we deduce that Resxi
(u, v)(G) ̸≡ 0.

For the second type, by multiplicative property of lc, we know that for any i ∈ [n] : lcxi(P) =∏
j∈[r] lcxi

(gj) and lcxi
(P)(G) =

∏
j∈[r] lcxi

(gj)(G). Note that lcxi
(gj) is also s-sparse

with individual degree d. Hence, lcxi(gj)(G) ̸≡ 0, for all j ∈ [r], i ∈ [n]. This implies
lcxi

(P)(G) ̸≡ 0, for all i ∈ [n] (whenever lcxi
(P) ̸≡ 0). Similarly, we can show lcxi

(Q)(G) ̸≡ 0,
for all i ∈ [n]. We conclude that ΦP,Q(G) ̸≡ 0. ◀

By combining the result with Lemma 18 we obtain the following corollary.

▶ Corollary 22. Let P, Q ∈ F[x1, x2, . . . , xn] be products of s-sparse, individual degree-d
polynomials such that P ≁ Q. Let G be a generator for (sd)O(d3)-sparse, O(d4)-individual
degree polynomials. Then there exists an i ∈ [n] such that P (xi,G−i) ≁ Q(xi,G−i).

Finally, we describe the black-box PIT algorithm for Σ[2]ΠΣΠ[ind-deg d] circuits. The
correctness and the time complexity follow from Corollary 22. Hence, Theorem 1 follows
from this Lemma. Due to space limitation we give the proof of Corollary 22 and the detailed
analysis of Algorithm 1 in Section A.3.

▶ Lemma 23. There exists a deterministic algorithm that given n, d, s and a black-box
access to a Σ[2]ΠΣΠ[ind-deg d] circuit C of size s determines if C ≡ 0, in time poly((sd)d3

, n).
Algorithm 1 provides the outline.

Algorithm 1 Black-box PIT algorithm for class Σ[2]ΠΣΠ[ind-deg d].

Input: A black-box access to a polynomial f(x1, . . . , xn) ∈ Σ[2]ΠΣΠ[ind-deg d]

Output: “ZERO”, if f is identically zero and “NON-ZERO”, otherwise.
1 Invoke [20] to get generator G of seed-length 1 for n-variate polynomials of sparsity
≤ (sd)O(d3) and individual degree ≤ O(d4).

2 for i← 1 to n do
3 Compute the bivariate polynomial f(xi,G−i).
4 Do brute-force black-box PIT for f(xi,G−i).
5 if f(xi,G−i) ̸≡ 0 then return “NON-ZERO”.
6 return “ZERO”.

5 Future Directions

A lot of interesting open problems arise in the context of this work:
Design a polynomial-time PIT algorithm for Σ[k]ΠΣΠ[ind-deg d] circuits with bounded k

and d, for k ≥ 3. To the best of our knowledge, the smallest open case is k = 3 and d = 1!
Prove a polynomial-size sparsity bound (Conjecture 3) even for the special cases like
exact-roots, multilinear co-factors.

In particular, improve the sparsity bound in Corollary 4. Ideally, get rid of the log s

term in the exponent. One can start by studying the structure of polynomials with
non-constant or log-sized unique projections.

FSTTCS 2022

10:16 Sparse Polynomial Factorization Related Problems

Can we show that Resxi(u, v) is actually sparse (or “somewhat sparse”) under the
premises of Lemma 20? This claim will be implied by a polynomial-size sparsity bound.

References
1 M. Agrawal, S. Ghosh, and N. Saxena. Bootstrapping variables in algebraic circuits. Proceedings

of the National Academy of Sciences, 116(17):8107–8118, 2019.
2 M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the

49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 67–75,
2008.

3 M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 301–309, 1988.

4 V. Bhargava, S. Saraf, and I. Volkovich. Deterministic factorization of sparse polynomials
with bounded individual degree. J. ACM, 67(2):8:1–8:28, 2020.

5 P. Bisht and N. Saxena. Derandomization via symmetric polytopes: Poly-timefactorization
of certain sparse polynomials. In Proceedings of the 42nd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2022. URL:
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf.

6 P. Bisht and I. Volkovich. On solving sparse polynomial factorization related problems.
Electron. Colloquium Comput. Complex., TR22-070, 2022. URL: https://eccc.weizmann.ac.
il/report/2022/070.

7 B. Chor and R. L. Rivest. A knapsack-type public key cryptosystem based on arithmetic in
finite fields. IEEE Transactions on Information Theory, 34(5):901–909, 1988.

8 D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms - an introduction to
computational algebraic geometry and commutative algebra (4. ed.). Undergraduate texts in
mathematics. Springer, 2015.

9 R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

10 P. Dutta, P. Dwivedi, and N. Saxena. Deterministic identity testing paradigms for bounded
top-fanin depth-4 circuits. In 36th Conference on Computational Complexity (CCC 2021),
volume 5, page 9, 2021.

11 M. A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In FOCS, 2015.
12 J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,

1999.
13 J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. Journal of

Computer and System Sciences, 31(2):265–287, 1985. doi:10.1016/0022-0000(85)90044-3.
14 K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer, 1992.
15 E. Grigorescu, K. Jung, and R. Rubinfeld. A local decision test for sparse polynomials. Inf.

Process. Lett., 110(20):898–901, 2010. doi:10.1016/j.ipl.2010.07.012.
16 V. Guruswami and M. Sudan. Improved decoding of reed-solomon codes and algebraic-geometry

codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.
17 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving

circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.
18 E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali, editor,

Randomness in Computation, volume 5 of Advances in Computing Research, pages 375–412.
JAI Press Inc., Greenwhich, Connecticut, 1989.

19 E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. of Symbolic Computation, 9(3):301–320, 1990.

https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://eccc.weizmann.ac.il/report/2022/070
https://eccc.weizmann.ac.il/report/2022/070
https://doi.org/10.1016/0022-0000(85)90044-3
https://doi.org/10.1016/j.ipl.2010.07.012

P. Bisht and I. Volkovich 10:17

20 A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages
216–223, 2001.

21 N. Limaye, S. Srinivasan, and S. Tavenas. Superpolynomial lower bounds against low-depth
algebraic circuits. In FOCS 2021, 2022.

22 S. Peleg and A. Shpilka. Polynomial time deterministic identity testing algorithm for Σ[3]ΠΣΠ[2]

circuits via edelstein–kelly type theorem for quadratic polynomials. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 259–271, 2021.

23 C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse factorization
and duality. Computational Complexity, 22(1):39–69, 2013. doi:10.1007/s00037-012-0054-4.

24 S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits. Combin-
atorica, 38(5):1205–1238, 2018.

25 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

26 A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and finding
variable disjoint factors. In Automata, Languages and Programming, 37th International
Colloquium (ICALP), pages 408–419, 2010. Full version at https://eccc.weizmann.ac.il/
report/2010/036.

27 V. Strassen. Vermeidung von divisionen. J. of Reine Angew. Math., 264:182–202, 1973.
28 M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of

Complexity, 13(1):180–193, 1997.
29 I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums

of univariate polynomials. In APPROX-RANDOM, pages 943–958, 2015.
30 I. Volkovich. On some computations on sparse polynomials. In APPROX-RANDOM, pages

48:1–4:21, 2017.
31 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International

Symposium on Symbolic and Algebraic Computation, pages 216–226, 1979.

A Missing Proofs

Proof of Lemma 5. We prove the following claim: Let f ∈ F[x1, x2, . . . , xn] be a multicubic
polynomial such that f = uv and v ̸≡ 0. Then ∥u∥ ≤ ∥f∥a. Note that the claim also covers
the case when f = u ≡ 0. The proof is by induction on n (the number of variables in f).
The base case is when n = 0 (i.e. u, f, v ∈ F) where the claim follows trivially. Suppose
n ≥ 1. We have the following cases to consider:

There exists a variable xi s.t. degxi
(u) ≥ 1 but degxi

(v) = 0. Let 1 ≤ d ≤ 3 be the degree
of xi in u. In this case we can write:

(udxd
i + . . . + u0)v = uv = f = fdxi

d + . . . + f0.

Here, uj , fj and v do not depend on xi. Formally: fj = ujv for j ∈ {0, . . . , d}. By the
induction hypothesis, we have that ∥uj∥ ≤ ∥fj∥a for j ∈ {0, . . . , d} and hence:

∥u∥ =
d∑

j=0
∥uj∥ ≤

d∑
j=0
∥fj∥a ≤

 d∑
j=0
∥fj∥

a

= ∥f∥a.

There exists a variable xi s.t. degxi
(v) ≥ 1, but degxi

(u) = 0. Pick α ∈ F such that
v|xi=α ̸≡ 0. We have that:

u · v|xi=α = u|xi=α · v|xi=α = f |xi=α.

By the induction hypothesis: ∥u∥ ≤ ∥f |xi=α∥a ≤ ∥f∥a.

FSTTCS 2022

https://doi.org/10.1007/s00037-012-0054-4
https://eccc.weizmann.ac.il/report/2010/036
https://eccc.weizmann.ac.il/report/2010/036

10:18 Sparse Polynomial Factorization Related Problems

There exists a variable xi s.t. degxi
(u) = 1. Wlog degxi

(v) ≥ 1. We can write

(u1xi + u0)(vdxd
i + . . . + vexe

i) = uv = f = (fd+1xd+1
i + . . . + fexe

i).

Here, d > e and vd, ve ̸≡ 0. In particular, we have that u1vd = fd+1 and u0ve = fe. By
the induction hypothesis: ∥u∥ = ∥u1∥+ ∥u0∥ ≤ ∥fd+1∥a + ∥fe∥a ≤ ∥f∥a.

WLOG we are left with the case that for each i ∈ [n] we have that: degxi
(u) = 2 and

degxi
(v) = 1. Based on our assumption, in this case ∥u∥ ≤ ∥f∥a and we are done. ◀

We state the following important connection between projection of resultant and resultant
of projections.

▶ Lemma 24. Let f, g ∈ F[y, x] be two polynomials and let a ∈ Fn. Then,

Resy(f, g)(a) ̸= 0 =⇒ Resy(f(a), g(a)) ̸= 0.

Proof. Let d
∆= degy(f), e

∆= degy(g), r
∆= degy(f(a)) and t

∆= degy(g(a)). Then with some
easy determinant calculations, one can show that:

Resy(f, g)(a) =


Resy(f(a), g(a)) r = d, t = e

(lcy(f)(a))e−t · Resy(f(a), g(a)) r = d, t < e

(−1)e(d−r) · (lcy(g)(a))d−r · Resy(f(a), g(a)) r < d, t = e

0 r < d, t < e

Note that if Resy(f, g)(a) ̸= 0, then Resy(f(a), g(a)) divides it and hence the conclusion
follows. ◀

Lemma 10 follows from Lemma 9 and Lemma 24.

Proof of Lemma 19. We have that: gz = (ua1 · vb1)z = ua1a2+a1b2 · va2b1+b1b2 and ht =
(ua2 · vb2)t = ua1a2+a2b1 · va1b2+b1b2 . If det(E) ≥ 0, then a1b2 ≥ a2b1 and consequently
W = ua1a2+a2b1 · va2b1+b1b2 . In that case, gz/W = ua1b2−a2b1 = udet(E) and ht/W =
va1b2−a2b1 = vdet(E). Otherwise, if det(E) < 0, then a2b1 > a1b2 and consequently W =
ua1a2+a1b2 · va1b2+b1b2 . Then gz/W = va2b1−a1b2 = v− det(E) and ht/W = ua2b1−a1b2 =
u− det(E). ◀

A.1 Proof of Theorem 14
In this section we give the proof of Theorem 14, from which Theorem 2 follows. We start by
stating below some known results in the theory of subresultants, which will be useful for us.

▶ Lemma 25 (Lem 7.1 of [14]). Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary
UFD R. Let K be the field of fractions of R. Suppose A(x) = Q(x) · B(x) + R(x), for
some polynomials Q, R ∈ K[x] such that degx(A) = m, degx(B) = n, degx(Q) = m − n,
degx(R) = k and m ≥ n > k. Let b and r denote the leading coefficients of B(x) and R(x)
respectively. Then

Sx(j, A, B) = (−1)(m−j)(n−j) ×


bm−k · Sx(j, B, R) 0 ≤ j < k

bm−k · rn−k−1 ·R(x) j = k

0 k < j < n− 1
bm−n+1 ·R(x) j = n− 1.

That is, Sx(j, A, B) equals to one of the above four expressions multiplied by the corresponding
sign (−1)(m−j)(n−j).

P. Bisht and I. Volkovich 10:19

For the sake of completeness, we restate Theorem 14 below.

▶ Theorem. Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary UFD R. Suppose
A(x) = f(x) · g(x) and B(x) = h(x) · g(x) with degx(A) = m, degx(B) = n, degx(g) = d,
degx(f) = m′ = m− d and degx(h) = n′ = n− d. Then

Sx(d, A, B) = g · Resx(f, h) · lcx(g)m′+n′−1.

Proof of Theorem 14. Let K be the field of fractions of UFD R. Consider Euclidean division
of A by B in K[x] so that we get A(x) = Q(x) ·B(x)+R(x), for some polynomials Q, R ∈ K[x]
such that degx(R) < degx(B). Note that since g divides both A and B, it must also divide
R. Therefore, R = g · p for some polynomial p(x) ∈ K[x]. Thus, we also get

f(x) = Q(x) · h(x) + p(x) (A.1)

Let degx(R) = k for some k < n and let degx(p) = k′ = k − d. Now, we prove the theorem
by induction on degx(p).

Base case. degx(p) = k′ = 0. In other words, degx(R) = k = d. Thus using second case of
Lemma 25, we get that:

Sx(d, A, B) = (−1)(m−d)(n−d) · bm−k · rn−k−1 ·R

= (−1)m′.n′
· lcx(h)m−k · lcx(g)m−k · lcx(p)n−k−1 · lcx(g)n−k−1 · pg

= (−1)m′.n′
· g · lcx(h)m−k · lcx(p)n−k · lcx(g)m+n−2k−1

Sx(d, A, B) = (−1)m′.n′
· g · lcx(h)m−k · lcx(p)n−k · lcx(g)m′+n′−1 (A.2)

The second last step above follows because p = lcx(p) when degx(p) = 0. Now, we shall com-
pute Resx(f, h). Note that Resx(f, h) = Sx(0, f, h) by definition of subresultant. Considering
(A.1) with degx(p) = 0, we can use second case of Lemma 25 to get:

Sx(0, f, h) = (−1)(degx(f)−0).(degx(h)−0) · lcx(h)degx(f)−degx(p) · lcx(p)degx(h)−degx(p)−1 · p

= (−1)m′.n′
· lcx(h)m′

· lcx(p)n′−1 · p [as degx(p) = 0]

= (−1)m′.n′
· lcx(h)m′

· lcx(p)n′
[as p = lcx(p)]

Resx(f, h) = (−1)m′.n′
· lcx(h)m−k · lcx(p)n−k (A.3)

(A.2) and (A.3) together yield Sx(d, A, B) = g · Resx(f, h) · lcx(g)m′+n′−1 for the base case.

Induction step. Now, we assume degx(p) = k′ > 1. In other words, degx(R) = k > d.
Therefore, by first case of Lemma 25:

Sx(d, A, B) = (−1)(m−d)(n−d) · bm−k · Sx(d, B, R)

= (−1)m′.n′
· lcx(h)m−k · lcx(g)m−k · Sx(d, B, R) (A.4)

Now consider Euclidean division of B by R in K[x] to get

B(x) = Q′(x) ·R(x) + R′(x) (A.5)

for some polynomial R′(x) ∈ K[x] with degx(R′) < degx(R). Since g divides both B and R,
we deduce that g must also divide R′. Let R′ = g · p′ for some polynomial p′ ∈ K[x]. Thus
from (A.5), we also get

h(x) = Q′(x) · p(x) + p′(x) (A.6)

FSTTCS 2022

10:20 Sparse Polynomial Factorization Related Problems

In (A.5) since degx(R′) < degx(R) or equivalently degx(p′) < degx(p), we can use induction
hypothesis to deduce that,

Sx(d, B, R) = g · Resx(h, p) · lcx(g)n′+k′−1 (A.7)

Note that degx(p) = k′ > 0 in induction step, thus we can use first case of Lemma 25 on
(A.1) to get

Resx(f, h) = Sx(0, f, h)

= (−1)(degx(f)−0)(degx(h)−0) · lcx(h)degx(f)−degx(p) · Sx(0, h, p)

= (−1)m′.n′
· lcx(h)m′−k′

· Resx(h, p)

Resx(h, p) = Resx(f, h)
(−1)m′.n′ · lcx(h)m′−k′ . (A.8)

Substituting (A.8) in (A.7), we get:

Sx(d, B, R) = g · Resx(f, h)
(−1)m′.n′ · lcx(h)m′−k′ · lcx(g)n′+k′−1 (A.9)

Substituting (A.9) back into (A.4), we get

Sx(d, A, B) = (−1)m′.n′
· lcx(h)m−k · lcx(g)m−k · g · Resx(f, h)

(−1)m′.n′ · lcx(h)m′−k′ · lcx(g)n′+k′−1

= lcx(g)m−k · g · Resx(f, h) · lcx(g)n′+k′−1 [as m − k = m′ − k′]

= g · Resx(f, h) · lcx(g)m−k+n′+k′−1

= g · Resx(f, h) · lcx(g)m′+n′−1 [as m − k + k′ = m − d = m′]

This completes the proof of induction step, as well as that of the theorem. ◀

A.2 Proof of Lemma 7

Proof of Lemma 7. Without loss of generality, suppose
n∑

i=1
ai >

m∑
j=1

cj and
n∑

i=1
bi <

m∑
j=1

dj .

In particular, there exists s ∈ [n], t ∈ [m] such that as, dt > 0. Consider the 2 × (n + m)
matrix,

E
∆=
[
a1 · · · an c1 · · · cm

b1 · · · bn d1 · · · dm

]
.

Suppose E is not full-rank. Since a and d are non-zero vectors, E is not the zero matrix and
hence it must have rank 1. In that case, the first row is linearly dependent on the second
row. Since all E’s entries are non-negative, there exist α, β > 0 such that α · a = β · b and
α · c = β · d. This implies:

α ·

(
n∑

i=1
ai

)
= β ·

(
n∑

i=1
bi

)
, α ·

 m∑
j=1

cj

 = β ·

 m∑
j=1

dj

 .

Which in turn implies:

β ·

(
n∑

i=1
bi

)
= α ·

(
n∑

i=1
ai

)
> α ·

 m∑
j=1

cj

 = β ·

 m∑
j=1

dj

 =⇒
n∑

i=1
bi >

m∑
j=1

dj

P. Bisht and I. Volkovich 10:21

This contradicts the interlacing property. Hence, E must be full-rank. Let E′ be a 2 × 2

rank-2 minor of E. If E′ is of the form E′ =
[
ai cj

bi dj

]
for some i, j we are done. Otherwise,

suppose if E′ is of the form E′ =
[
ai aj

bi bj

]
or E′ =

[
ci cj

di dj

]
then by the exchange property,

we can exchange one of the columns in E′ with non-zero columns
[

ct

dt

]
or
[
as

bs

]
, respectively,

to get a rank-2 minor of the required form. ◀

A.3 Proof of Theorem 1

In this section we formally prove our main result - Theorem 1. We begin by restating and
proving Corollary 22.

▶ Corollary (Corollary 22). Let P, Q ∈ F[x1, x2, . . . , xn] be products of s-sparse, individual
degree-d polynomials such that P ≁ Q. Let G = (G1, . . . ,Gn) : Ft → Fn be a generator for
(sd)O(d3)-sparse, O(d4)-individual degree polynomials. Then there exists an i ∈ [n] such that
P (xi,G−i) ≁ Q(xi,G−i).

Proof of Corollary 22. By Lemma 21, we get that ΦP,Q(G) ̸≡ 0. We deduce that there
exists a set W ⊆ F of large enough size such that G(W t) ⊆ Fn is a hitting set for ΦP,Q.
In particular, there exists b ∈ W t such that for a ∆= G(b), we have ΦP,Q(a) ̸= 0. By
Lemma 18, there exists an i ∈ [n] such that P (xi, a−i) ≁ Q(xi, a−i). Now suppose
P (xi,G−i) ∼ Q(xi,G−i). Then have that P

(
G1(b), . . . ,Gi−1(b), xi,Gi+1(b), . . . ,Gn(b)

)
∼

Q
(
G1(b), . . . ,Gi−1(b), xi,Gi+1(b), . . . ,Gn(b)

)
. This implies that P (xi, a−i) ∼ Q(xi, a−i),

which is a contradiction. Hence, P (xi,G−i) ≁ Q(xi,G−i). ◀

For completeness, we restate Theorem 1.

▶ Theorem. There exists a deterministic algorithm that given n, d, s and a black-box access
to a Σ[2]ΠΣΠ[ind-deg d] circuit C of size s determines if C ≡ 0, in time poly((sd)d3

, n). The
algorithm below provides the outline.

Algorithm 2 Black-box PIT algorithm for class Σ[2]ΠΣΠ[ind-deg d].

Input: A polynomial f(x1, . . . , xn) ∈ Σ[2]ΠΣΠ[ind-deg d], where bottom
∑∏

computes s-sparse polynomials of individual degrees ≤ d.
Output: ZERO, if f is identically zero and NON-ZERO, otherwise.

1 Invoke [20] to get generator G of seed-length 1 for n-variate polynomials of sparsity
≤ (sd)O(d3) and individual degree ≤ O(d4).

2 for i← 1 to n do
3 Compute the bivariate polynomial f(xi,G−i).
4 Do brute-force black-box PIT for f(xi,G−i).
5 if f(xi,G−i) ̸≡ 0 then
6 return NON-ZERO.
7 return ZERO.

FSTTCS 2022

10:22 Sparse Polynomial Factorization Related Problems

Proof. We now analyze the correctness and runtime complexity of the Algorithm.

Correctness. Note that f ≡ 0 =⇒ f(xi,G−i) ≡ 0 trivially, for all i ∈ [n]. Thus, the
algorithm outputs ZERO in this case, as desired. Now suppose f ̸≡ 0. Let f = P + Q,
where both P, Q are product of s-sparse, individual degree d polynomials. If P ≁ Q, then
Corollary 22 implies that there exists an i ∈ [n] such that P (xi,G−i) ≁ Q(xi,G−i). In
particular, P (xi,G−i) ̸= −Q(xi,G−i). Since f(xi,G−i) = P (xi,G−i) + Q(xi,G−i), we deduce
that f(xi,G−i) ̸≡ 0 in this case. Now suppose f ̸≡ 0 but P ∼ Q. Let P = cQ, for some
c ∈ F. Then f = (c + 1)Q, where c ̸= −1 and Q ̸≡ 0. This means that there exists an
i ∈ [n] such that lcxi(Q) ̸≡ 0. Using Lemma 21, we know that ΦP,Q(G) ̸≡ 0 and thus by
definition of ΦP,Q, we get lcxi

(Q)(G) ̸≡ 0. This implies that Q(xi,G−i) ̸≡ 0. We conclude
that f(xi,G−i) = (c + 1)Q(xi,G−i) ̸≡ 0. Thus whenever f ̸≡ 0, the algorithm outputs
NON-ZERO.

Time complexity. By [20], degree of generator G is poly((sd)d3
, n). Note that f has

individual degree at most sd and thus f(xi,G−i) has individual degree ≤ sd. deg(G). Testing
non-zeroness of the bivariate polynomial f(xi,G−i) takes only poly((sd)d3

, n) time. The n

iterations only add a factor of n. ◀

Complexity of Spatial Games
Krishnendu Chatterjee
Institute of Science and Technology Austria, Klosterneuburg, Austria

Rasmus Ibsen-Jensen
University of Liverpool, UK

Ismaël Jecker
University of Warsaw, Poland

Jakub Svoboda
Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
Spatial games form a widely-studied class of games from biology and physics modeling the evolution
of social behavior. Formally, such a game is defined by a square (d by d) payoff matrix M and an
undirected graph G. Each vertex of G represents an individual, that initially follows some strategy
i ∈ {1, 2, . . . , d}. In each round of the game, every individual plays the matrix game with each of
its neighbors: An individual following strategy i meeting a neighbor following strategy j receives a
payoff equal to the entry (i, j) of M . Then, each individual updates its strategy to its neighbors’
strategy with the highest sum of payoffs, and the next round starts. The basic computational
problems consist of reachability between configurations and the average frequency of a strategy.
For general spatial games and graphs, these problems are in PSPACE. In this paper, we examine
restricted setting: the game is a prisoner’s dilemma; and G is a subgraph of grid. We prove that
basic computational problems for spatial games with prisoner’s dilemma on a subgraph of a grid are
PSPACE-hard.

2012 ACM Subject Classification Theory of computation

Keywords and phrases spatial games, computational complexity, prisoner’s dilemma, dynamical
systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.11

Funding Krishnendu Chatterjee: The research was partially supported by the ERC CoG 863818
(ForM-SMArt).
Ismaël Jecker : The research was partially supported by the ERC grant 950398 (INFSYS).
Jakub Svoboda: The research was partially supported by the ERC CoG 863818 (ForM-SMArt).

1 Introduction

Spatial evolutionary games is a classic and well-studied model of evolutionary dynamics
on graphs, which has been studied across fields, e.g., biology [9, 8], physics [10, 14], and
computer science [3, 2].

While computer science studies games with few players and a large number of actions,
evolutionary game theory studies games with few actions and strategies but with many
players (see the survey [17]). Specifically, each spatial evolutionary game consists of a square,
skew-symmetric, bimatrix game (i.e. the outcome in entry (i, j) for player 1 is the same as
the outcome for player 2 in (j, i) for all i, j) and a finite graph. The game is played over a
number of rounds. Each node of the graph corresponds to a player. Each node/player is
associated with a current row and corresponding column. In each round, each player plays
the matrix game against each of their neighbors, by playing their row against their neighbor’s
column (because of the skew-symmetry, who plays rows and who plays columns does not
matter) and gets a payoff assigned, which is the sum of outcomes of the games they played

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker, and Jakub Svoboda;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Complexity of Spatial Games

in that round. Each player then switches to the row played by their neighbor that had the
highest payoff (or keeps their strategy). Since this is a deterministic dynamic, whenever we
reach a round such that there is a previous round in which each player had the same row as
now, the game “loops”. All spatial evolutionary games will therefore loop after at most dn

rounds when the bi-matrix is d by d and there are n nodes.

Most studied setup: Grids and prisoner’s dilemma. The standard study of spatial evol-
utionary games focuses on small (2 by 2 or 3 by 3) bi-matrices and on grids. A good
understanding of the dynamics is known for a number of such setups (including all 2 by 2
bi-matrices on 2-dimensional grids). Grids are typically chosen since in biology they naturally
model how cells interact with nearby cells. In particular, the focus has been on prisoner’s
dilemma (PD) matrices: A prisoner’s dilemma bi-matrix is a 2 by 2 bi-matrix in which the
two rows are called cooperation and defection, such that it is an advantage to defect if the
other player cooperates, but it is better for both players if they both cooperate as compared to
the mutual defection. We study these games to better understand why cooperation develops
as we see in humans and many animal species. Indeed, this was the focus of the original
paper [8] and later works extended this basic model in myriad ways:
1. What happens if you add in mobile agents [19, 5]?
2. What about age[11, 21]?
3. What if nodes/players do not have the same objectives [18, 13]?
4. What if there were different timescales [14, 22]?
See also the survey [12]. A common generalization considers more general graph types. We
mention a few examples of the papers pursuing this direction:
1. Kabir et al. showed how increasing the network reciprocity changes the likelihood of

cooperation in PD [6].
2. Hassell et al. considered how multiple different species on models with islands influence

the outcome [4].
3. Santos and Pacheco showed how scale-free networks (when generated following specific

paradigms) promote cooperation [15].
4. Yamauchi et al. showed how, if both the neighbors and strategies can change over time,

cooperation can evolve [16].
5. Ohtsuki et al. gave a simple heuristic for when cooperation can evolve on a variety of

different networks, including social networks [9].

Computational problems. The works mentioned previously usually examine how coopera-
tion spreads when the process is applied many times. The question they are trying to decide
is: Given a starting position, what is the average number of cooperators in the long run?

Open questions. The general spatial games problem is in PSPACE. This is because a
configuration consists of a strategy for every vertex, which can be stored in polynomial space,
and the update of the configuration according to the rules can also be achieved in PSPACE.
The most well-studied problem for spatial games is the prisoner’s dilemma, which has only
two strategies, namely, cooperation and defection. Moreover, such games have been studied
for special classes of graphs. The main open question is whether efficient algorithms can be
obtained for prisoner’s dilemma on graphs like grids.

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:3

Our results. In this paper, we consider spatial evolutionary games with a prisoner’s dilemma
matrix on subsets1 of 2-dimensional grids. The subset models the situation when locations of
e.g. cells or connections between them have been destroyed or are otherwise inaccessible.

Our main result is that for subgraphs of a two-dimensional grid and prisoners dilemma
the reachability and average cooperation problems are PSPACE-hard. Additionally, we show
that induced subgraphs can loop in loops of exponential length. Subsets of grids are simpler
than scale-free or evolving networks, so our hardness result holds for more general graphs.

2 Model and definitions

Graphs and grids. A graph G = (V, E) consists of a set of vertices V and a set of undirected
edges E. Every vertex is occupied by one individual. Edges determine pairs of individuals
that interact. Two-dimensional grids are specific graphs where each vertex is assigned a
unique pair of integers (i, j), and has (at most) 8 neighbors: vertices whose pairs differ by at
most 1 in both coordinates. In our construction, we use graphs derived from grids: Given a
grid (V, E), a induced subgraph of (V, E) is a graph (V ′, (V ′ × V ′) ∩ E) with V ′ ⊆ V . An
subgraph of (V, E) is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ (V ′ × V ′) ∩ E.

Games and individuals. An individual occupying a vertex has one of two types: cooperator
if it plays C or defector if it plays D. In the figures, we use black for cooperators and white
for defectors. We call configuration of a graph an assignment of each vertex to a strategy
(cooperator or defector).

From all matrix games, we focus on prisoner’s dilemma. The game is denoted by a matrix

C D
C 1 0
D b 0

where b > 1. It means that C gets 1 for interacting with C, D gets b for interacting with C,
and everyone gets 0 for interacting with D. We denote this game M b.

Steps and updates. The evolution is simulated in rounds. In one round, every individual
interacts with all neighbors and collects the total payoff. Then every individual compares
the received payoff with the payoffs of neighbors. The individual keeps the strategy if it is
the highest or changes the strategy to the strategy of a neighbor with the highest payoff (in
a tie, defection is preferred).

We denote the proccess starting from position S on graph G with a game matrix M b as
S(G, M b, S).

Complexity problems. We consider two complexity problems.
Reach : Given starting configuration, does the process reach a given configuration?
Avg : For a given starting configuration, what is the average number of cooperators

(black vertices) in all succeeding configurations?
Note that for one configuration, there is only one possible succeeding configuration. This

restricts the configuration graph. That means eventually the configuration graph creates a
loop (as was noted before [20]).

1 Either subgraphs or induced subgraphs

FSTTCS 2022

11:4 Complexity of Spatial Games

Figure 1 All configurations of the gadget c3

initiated by the top left configuration. These
configurations (in rows) show period 6.

Figure 2 Extension of the gadget ck by two
cells. We extend the gadget to the lower right,
the gadget itself can be as long as needed con-
nected to the upper left which increases period
by 2.

Ranges of b. There is a reasonable range for b in M b. If b < 1, then the game is not a
prisoner’s dilemma. If b is larger than the maximal degree in a graph, the dynamic is trivial,
a defector cannot become a cooperator. For our constructions in this paper, we suppose that
b ∈ (3

2 , 2). In Appendix A, we show ideas explaining how our construction can be adapted to
other values of b.

3 Exponential cycle

In this section, we show that even on an induced subgraph of a square grid, we observe a
complex behavior. Namely, there exists a graph and a configuration that returns back to the
starting configuration only after an exponential number of steps, we use (̃Ω) and (̃O) which
hide logarithmic factors.

▶ Theorem 1. For b ∈ (3
2 , 2), there exists a graph G, induced subgraph of a square grid, with

n vertices and a starting configuration S, such that it takes 2Ω̃(
√

n) steps until S(G, M b, S)
reaches S again.

Proof. We describe a family of gadgets and starting configurations with different periods,
where period is the number of steps the gadget needs to return to the starting position again.
Then we combine some of them to create a graph with a period equal to the lowest common
multiple of the periods of its components.

For k ≥ 3, we construct inductively ck, a gadget that is an induced subgraph of a square
grid with size 9 + 2k and period 2k. The gadget c3 in its starting configuration is depicted
on Figure 1. By rearranging and adding two squares, we create the gadget ck+1 from ck, as
depicted on Figure 2.

For every integer g > 1, let us now define Gg as the disjoint union of the gadgets cp2 ,
cp3 , . . . , cpg

where pi is the i-th prime number. By the Chinese remainder theorem, the
number of steps needed so that all gadgets are in the same state is the smallest common
multiple of their periods, which is the product of the first g primes. We know that this
number is Θ(eg log g) from [7] and the Prime Number Theorem. Moreover, the number of
squares (vertices) of Gg linear in the sum of the first g primes which is Õ(g2).

Therefore, by using a induced subgraph of the square grid of size n ∈ N, we can create a
union of gadgets that has a period of size 2Ω̃(

√
n). ◀

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:5

0 0 0

0

0 0 0

0

0 0 0

0

0 0

2b

b b

1 23

2

0 0 0

0

0 0 0

0

0 0 0

0

0 0

2b

b

b

1

2

3

2

Figure 3 Sending signal through the wire with explicit payoffs with cooperators denoted by gray.
Thicker vertices are input vertices.

b 0b

0

0

0

0 0 0

0

0 0 0

0

0

2b

b b

1 23

2

2 b2

b

0

0

0 0 0

0

0 0 0

0

0

0

2b

b

b

1

2

3

2

1 23

2

0

0

0 0 0

0

0 0 0

0

0

0 2b

2b

1 23

2

Figure 4 Splitting the signal in two. Blue boxes denote a deleted edge with cooperators denoted
in black. Thicker vertices are input vertices.

4 Construction of a Turing machine

We show that both Reach and Avg are P-SPACE hard. For a polynomially bounded Turing
machine and its input, we create a graph of a polynomial-size that is a subgraph of the
square grid and an initial configuration of cooperators and defectors such that the process
reaches a predefined configuration if and only if the Turing machine accepts the given input.

Since both problems, Reach and Avg , can be easily solved in P-SPACE by a simulation,
that means these problems are P-SPACE complete.

▶ Theorem 2. For b ∈ (3
2 , 2) holds:

For any Turing machine T polynomially bounded by n and its input, there exists a subgraph
of a square grid G with poly(n) vertices, a starting configuration S, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.

Moreover, for any Turing machine T and its input I, there exists a subgraph of an infinite
square grid G, a starting configuration S with poly(|I|) cooperators, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.

We construct G as a white (defector) graph with a few black (cooperator) vertices that
carry signals and store data to simulate the behavior of T . On our figures, we use white
for defectors, black for cooperators, gray for deleted vertices, and blue for deleted edges: To
visualize deleted edges, we subdivide each square denoting some vertex v into 9 parts. The
middle square corresponds to v itself, and the other squares denote the neighbors in relative
position to v (upper-left, upper-middle, . . .). To represent that an edge between two vertices
v and w is deleted, we color in blue the subsquare corresponding to w in v’s square and the
subsquare corresponding to v in w’s square.

First, we describe wires and basic logic gates. With that, we use a construction described
in [1]. We use Lemma 7 and 9 from the paper, but explain technicalities emerging from more
restrictive construction (the graph is a subgraph of a square grid). Both lemmas use simple
gadgets to create functions and then a whole Turing machine.

FSTTCS 2022

11:6 Complexity of Spatial Games

Figure 5 NOT gate: the upper signal is
negated, the lower signal is a clock signal.

Figure 6 AND gate: both signals are essential
to tunnel through. There are two deleted edges
denoted by blue boxes.

4.1 Basic gadgets
We describe the computational gadgets used in our construction. Every gadget g has one or
two inputs (I1, I2) and one or two outputs (O1, O2). We imagine the inputs being on the
left and bottom and the outputs on the right and top. Every gadget fits into a constantly
sized rectangle of the grid.

If at time t at least one input of g is true (input vertices are cooperators and other vertices
are defectors), then at time t + tg it outputs true or false based on a function g computes.

One input (or output) consists of two connected vertices. We say that the input is true if
both vertices are cooperators at time t and t + 1, and in the first step, they can convert all
neighbors to cooperators. The previous gadget (connected by its output to the given input)
is responsible for turning the input vertices back to defectors at time t + 2.

Here, some of the gadgets need to cross signals, we describe how to do it later:
Wire: it transmits a signal (See Figure 3). The wire has one input, one output, and if I1 is

true at time t, then O1 is true at time t + 2.
Splitter: it splits one signal in two (See Figure 4). The splitter has one input and two

outputs. If I1 is true at time T , then O1 and O2 are true at time t + 4. An interesting
property of the splitter is that it does not matter if the signal arrives from I1 or O1. From
the graph perspective, these two are symmetric.

NOT gate: it computes the logical negation, but necessitates a clock signal (See Figure 5).
The NOT gate has two inputs and one output. Input I2 is a clock input: if I1 and I2 are
true at time t, then O1 is false at time t + 8, if only I2 is true at time t, then O1 is true
at time t + 8. Note that the NOT gate actually computes the function ¬I1ANDI2, also
the gates I1 and O1 are interchangeable.

AND gate: it computes the logical conjunction (See Figure 6). The AND gate has two
inputs and one output. If both I1 and I2 are true at time t, then O1 is true at time t + 8.
Otherwise, O1 is false.

XOR gate: it computes logical exclusive disjunction. We can create it from other gadgets,
but it makes our construction easier.
We compute XOR using connection of splitter and NOT gates (see Figure 7). It has two
inputs I1 and I2 and one output O1. First every input is split to get I1,1, I1,2, I2,1 and
I2,2, then I1,1 is sent to I1 of NOT gate and I2,1 is sent to O1 of a splitter S. We already
know that if only one signal equals true, then S splits the signal. If both are positive,
signals annihilate each other. So O2 of S has value I1XORI2. The only problem is when

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:7

I1

I2

SP

SP

NOT

NOT

SP O1

I1,1

I2,1

I1,2

I2,2

Figure 7 XOR gate: Combination of previous
gates. Signals I1,2 and I2,2 are delayed such that
they arrive at the NOT gate when signal I1,1 or
I2,1 from the central splitter would.

AND

XORI1

I2 O1

SP

Figure 8 Storage unit.

I1 is true, and I2 is not (or symmetric). Then the signal travels back from the splitter
through wire I2,1, then we use the NOT gate with clock signal I2,1 and signal I1,2 that
stops it.

OR gate: it computes logical disjunction. It has two inputs I1 and I2, and the output O1
satisfies the function (I1ANDI2)XOR(I1XORI2), it consists of gadgets described above.
Note that we don’t need the NOT gate directly, so clock signal is not necessary for that
gadget.

Another gadget that the construction needs is a storage unit. It has an inner state
S ∈ {0, 1}, two inputs and one output, see Figure 8. The storage unit consists of a big cyclic
wire where a signal loops if the stored value S is 1. If a signal is sent via I1, then the storage
unit changes state: S′ = ¬S, this is ensured by a XOR gate. On the cycle, there is a splitter
that splits the signal towards an AND gate. If a signal is sent via I2, S does not change, but
the signal reaches AND and is sent to O2 if and only if S = 1. The storage unit requires
synchronicity, the signal from the input has to reach the splitter or XOR at the right time.
But this is not hard to ensure by longer wires.

4.2 Connecting the graph
To make the graph a subgraph of a square grid, we need to prove two things: we can cross
two signals, and we can ensure that the signals meet at the right place, at the right time.

Crossing. We use the structure described in Figure 13. Crossing accepts only one signal at
a time and supposes that no other signal arrives for 10 steps afterward. Crossing ensures that
in a square subset of a grid, the signal can travel only from upper left to lower right corner
and from lower left to upper right without spreading or dying out. If a signal arrives, it is
spreading to the other input and all the outputs, but the wires close to the active input get
stopped, so only the wire that is not adjacent to the input wire continues to carry the signal.

Making the construction on square grid. On the Figure 9, we see that a signal starting
at position (0, 0) going to position (x, y) can take between max(x, y) and 1

8 · xy steps. The
signal also does not leave the rectangle dentoted by points (0, 0) and (x, y).

Every gadget that was described above can be padded by wires of different densities such
that the gadget fits into a rectangle with predetermined width and height. Moreover, all
inputs are in the same position (relative to the rectangle) and the time of evaluation is the
same for all (constant).

FSTTCS 2022

11:8 Complexity of Spatial Games

Figure 9 Two wires of different lengths connecting two points.

Then everything in the following construction can be viewed as placing a column of tiles
(gadgets) one after another, where columns are connected by short wires.

4.3 Function construction
Here we construct a function using previously described gadgets. We bound the number of
vertices and steps needed for the construction and the function evaluation.

We imagine a function as signals going from left to right. The input and output signals
have constant horizontal distance.

▶ Definition 3. We say that a function f : {0, 1}k → {0, 1}l is computed by a graph G

(subgraph of a grid) in time g and space h if G has h vertices, k inputs I1, I2,. . . , Ik and l

outputs O1, O2, . . . , Ol spatially arranged, and such that for all (x1, x2, . . . , xk) ∈ {0, 1}k, if
at the time t we have Ij = xj for all 1 ≤ j ≤ l (and all the other vertices are defectors), then
at the time t + g we have Oj = yj for all 1 ≤ j ≤ l, where f(x1, x2, . . . , xk) = (y1, y2, . . . , yl).

Note that all our basic gadgets have a constant size. So, when analyzing the asymptotic
space complexity, we can consider these gadgets and single vertices interchangeably.

▶ Lemma 4. Computing the function f(x1, x2, . . . , xc) = (x1, x2, . . . , xc, x1, x2, . . . , xc) takes
time O(c) and space O(c2).

Proof. We describe the gadget computing f . First, we split every signal and then cross every
copy of it with others to the right place. One signal needs to cross O(c) others, so that is the
number of steps and we have c signals going through a wire of length c, that makes O(c2)
gadgets. ◀

▶ Lemma 5. Let c ∈ N. Every function f : {0, 1}c → {0, 1} mapping to 0 every tuple whose
first component is 0 can be computed in space O(3c) and time O(c2).

Proof. We use an induction on the dimension c of the domain. If c = 1, since f satisfies
f(0) = 0 by supposition, either f is the identity, which is realised by a wire, or f is the zero
function, which is realised by simply disconnecting the input and output.

Now, suppose that c > 1, and we can realise any function f : {0, 1}c−1 → {0, 1} that
satisfies the condition. In particular, there exist two gadgets g0 and g1 computing

f0 : {0, 1}c−1 → {0, 1},

(x1, x2, . . . , xc−1) 7→ f(x1, x2, . . . , xc−1, 0),
f1 : {0, 1}c−1 → {0, 1},

(x1, x2, . . . , xc−1) 7→ f(x1, x2, . . . , xc−1, 1).

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:9

Having these values, the computation is straightforward as the value f(x1, x2, . . . , xc) is given
by the formula

(f0(x1, x2, . . . , xc−1) ∧ ¬xc) ∨ (f1(x1, x2, . . . , xc−1) ∧ xc).

To construct a gadget g that is a subgraph of a grid g and computes f , we proceed as follows.

Computing the function. We apply the gadget described in Lemma 4 to the input, and
we use a splitter to get one more signal x1. At this point, we have the arranged sig-
nals x1, x1, x2, x3, . . . , xc, x1, x2, x3, . . . , xc. We apply the gadgets computing f0
and f1 to get the signals f0(x1, x2, . . . , xc) and f1(x1, x2, . . . , xc), now the signals are ar-
ranged as x1, f0(x1, x2, . . . , xc−1), xc, f1(x1, x2, . . . , xc−1), xc. We cross the signals x1 and
f0(x1, x2, . . . , xc−1), and then we use x1 as clock signal towards a NOT gate with xc. By
this, we either get the signal ¬xc, or x1 is zero, then the result should be zero anyway.

Now we send f0(x1, x2, . . . , xc−1) and ¬xc towards an AND gate, similarly we send
f1(x1, x2, . . . , xc−1) and xc towards another AND gate, and finally we send both results
towards an OR gate.

Size of the gadget. Now, we show that the computation is fast and requires a reasonable
number of vertices. Let there be a recurrent formula Rs that maps any integer c to the
maximal number of gadgets needed to compute the function f . Using induction, we see that
it satisfies:

Rs(c) = O(c2) + 2Rs(c − 1) + O(1).

Therefore, R(c) ∈ O(3c). Similarly, we use recurrent formula for the time needed

Rt(c) = O(c) + Rt(c − 1) + O(1)

and the solution for this recurrence is O(c2). ◀

▶ Lemma 6. Let c, d ∈ N. Every function f : {0, 1}c → {0, 1}d mapping to (0, 0, . . .) every
tuple whose first component is 0 can be computed in space O(d3c) and time O(c2 + c log(d)).

Proof. The idea is easy, we split the inputs d times using Lemma 4 and then we use Lemma 5
for every copy.

Multiplying the inputs needs O(d) described in Lemma 4. We can arrange them in layers
where every layer doubles the input, so the whole multiplying takes time O(log(d) · c).

Then we use d gadgets described in Lemma 5 in parallel which gives time O(c2 + c log(d))
and space O(d3c). ◀

4.4 Blob and connections
▶ Lemma 7. Let T be a Turing machine. For every input u evaluated by T using C ∈ N cells
of the tape, there exists a subgraph of a grid G on O(C) vertices and an initial configuration
c0 of G such that T stops over the input u if and only if S(G, M b, c0) for b ∈ (3

2 , 2) eventually
reaches a configuration without cooperators.

Proof. We suppose that the Turing machine T has a single final state, which can only be
accessed after clearing the tape. We present the construction of the graph G simulating T

through the following steps. First, we encode the states of T , the tape alphabet, and the
transition function in binary. Then, we introduce the notion of a blob, the building block of
G, and we show that blobs accurately simulate the transition function of T . Afterward, we
approximate the size of a blob, and finally, we define G as a composition of blobs.

FSTTCS 2022

11:10 Complexity of Spatial Games

Binary encoding. Let Ts ∈ N be the number of states of T , and Ta ∈ N be the size of its
tape alphabet. We pick two small integers s and n satisfying Ts ≤ 2s−1 and Ta ≤ 2n−1.
We encode the states of T as elements of {0, 1}s, and the alphabet symbols as elements of
{0, 1}n, while respecting the following three conditions: the blank symbol maps to 0n, the
final state of T maps to 0s, and all the others map to strings starting with 1. Then, for these
mappings, we modify the transition function of T to:

F : {0, 1}s × {0, 1}n → {0, 1}s × {0, 1}s × {0, 1}n.

Instead of using one bit to denote if the head is going left or right, we use 2s bits to store
the state and signify the movement: if the first s bits are zero, the head is moving right; if
the second s bits are zero, it is moving left; if the first 2s bits are zero, the computation
ended. Moreover, the last n bits of the image of F do not encode the new symbol, but the
symmetric difference between the previous and the next symbol: if the i-th bit of the tape
symbol goes from yi to zi, then F outputs di = yi ⊕ zi (XOR of these two).

Constructing blobs. We construct the graph G by simulating each cell of the tape with a
blob. Blob stores a tape symbol, and after receiving a signal corresponding to a state of T it
computes the transition function. The main components of a blob are as follows.

Memory: n storage units (m1, m2, . . . , mn) are used to keep in memory a tape symbol
a ∈ {0, 1}n of T .
Receptor: 2s inputs (I1, I2, . . . , I2s) are used to receive states q ∈ {0, 1}s of T either
from the left or from the right.
Transmitter: 2s outputs (O1, O2, . . . , O2s) are used to send states q ∈ {0, 1}s of T either
to the right or to the left.
Transition gadget: We use gadget from Lemma 6, it needs O((n + s)3n+s) space and
O((n + s)2) time.

Blobs are connected in a row to act as a tape: for every 1 ≤ i ≤ s, the output Oi of
each blob connects to the input Ii of the blob to its right, and the output Os+i of each blob
connects to the input Is+i of the blob to its left. When receiving a signal, the blob transmits
the received state and the tape symbol stored in memory to the transition gadget gF , which
computes the corresponding transition, and then apply its results. We now detail this inner
behavior. Note that when a gadget is supposed to receive simultaneously a set of signals
coming from different sources, it is always possible to add wires of adapted length to ensure
that all of them end up synchronized.

Simulating the transition function. To simulate the transition function of T , a blob acts
according to the three following steps:
1. Transmission of the state. A blob can receive a state either from the left (through inputs

I1, I2, . . . , Is) or from the right (through inputs Is+1, Is+2, . . . , I2s), but not from both
sides at the same time, since at every point in time there is at most one active state.
Therefore, if for every 1 ≤ i ≤ s we denote by xi the disjunction of the signals received
by Ii and Is+i, then the resulting tuple (x1, x2, . . . , xs) is equal to the state received as
signal (either from the left or the right), which can be fed to the gadget gF . Formally, the
blob connects, for all 1 ≤ i ≤ s, the pair Ii, Is+i to an OR gate whose output is linked to
the input Ii of gF .

2. Transmission of the tape symbol. Since the first component of any state apart from the
final state is always 1, whenever a blob receives a state, the component x1 defined in the
previous paragraph has value 1. The tape symbol (y1, y2, . . . , yn) currently stored in the

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:11

blob can be obtained by sending, for every 1 ≤ i ≤ n, a copy of x1 to the input I2 of
the storage unit si, causing it to broadcast its stored state yi. The tuple continues to
the gadget gF . Formally, the blob uses n splitters to transmit the result of the OR gate
between I1 and Is+1 to the input I1 of each storage unit. Then, for every 1 ≤ i ≤ n, the
output O1 of the storage unit si is connected to the input Is+i of gF .

3. Application of the transition. Upon receiving a state and a tape symbol, gF computes the
result of the transition function, yielding a tuple (r1, r2, . . . , rs+n). The blob now needs
to do two things: send a state to the successor blob and update the element of the tape.

Connecting the output Oi of gF to the output Oi of the blob for every 1 ≤ i ≤ 2s ensures
that the state is sent to the correct neighbor: the values (r1, r2, . . . , rs) are nonzero if the head
is supposed to move to the next block on the right (outputs O1, O2, . . . , Os are connected
that blob). Conversely, (rs+1, rs+2, . . . , r2s) are nonzero if the head is supposed to move to
the left, (outputs Os+1, Os+2, . . . , O2s are connected to the left blob).

Finally, connecting the output O2s+i of gF to the input I1 of si for all 1 ≤ i ≤ n ensures
that the state is correctly updated: this sends the signal di to the input I1 of the storage
unit si. Since di is the difference between the current bit and the next, the state of si will
change if it has to.

The size of blob. The size of the blob is determined by the size of the transition gadget gF :
one blob is composed of O(3n+s) vertices, and evaluating a transition requires O((n + s)2)
steps by Lemma 6. Since n and s are constants (they depend on T , and not on the input u),
the blob has constant size. Crossing wires to get them to the right place also takes space
O((n + s)2).

Constructing G. Now that we have blobs that accurately simulate the transition function of
T , constructing the graph G mimicking the behavior of T over the input u is straightforward:
we take a row of C blobs (remember that C ∈ N is the number of tape cells used by T

to process u). Since the size of a blob is constant, the size of G is polynomial in C. We
define the initial configuration of G by setting the states of the |u| blobs on the left of the
row to the letters of u, and setting the inputs I1 to Is of the leftmost blob to the signal
corresponding to the initial state of T as if it was already in the process. As explained
earlier, the blobs then evolve by following the run of T . If the Turing machine stops, then its
tape is empty, the final state is encoded by 0s, and the blank symbol is encoded by 0n. So
G reaches the configuration where all vertices are defectors. Conversely, if T runs forever
starting from the input u, there will always be some cooperators vertices in G to transmit
the signal corresponding to the state of T . ◀

Proof of Theorem 2,part 1. By Lemma 7, we can reduce any problem solvable by a polyno-
mially bounded Turing machine into Reach , asking whether we reach the configuration with
only defectors. Or into Avg , asking whether the long-run average is strictly above 0. ◀

Proof of Theorem 2,part 2. Again, by Lemma 7, we can create an infinite chain of blobs
and then we can reduce any problem solvable by any Turing machine into Reach , asking
whether we reach the configuration with only defectors, or into Avg , asking whether the
long-run average is strictly above 0. ◀

FSTTCS 2022

11:12 Complexity of Spatial Games

5 Conclusion

Our result shows that going beyond the basic grid model even slightly makes spatial games
PSPACE-hard. It ensures that there is no efficient (polynomial-time) algorithm for Reach
or Avg , even for the simplest game of prisoner’s dilemma.

We studied games with synchronous and deterministic updating. It poses a question:
does lifting any restriction permit an efficient algorithm? Moreover, we can ask whether it is
possible to construct graphs on which the game has certain properties, such as: are there
graphs where the cooperative behavior is favored?

References
1 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker, and Jakub Svoboda. Simplified

game of life: Algorithms and complexity. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 22:1–22:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.22.

2 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009.

3 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

4 Michael P. Hassell, Hugh N. Comins, and Robert M. May. Species coexistence and self-
organizing spatial dynamics. Nature, 370:290–292, 1994.

5 Dirk Helbing and Wenjian Yu. The outbreak of cooperation among success-driven individuals
under noisy conditions. Proceedings of the National Academy of Sciences, 106(10):3680–3685,
2009.

6 KM Ariful Kabir, Jun Tanimoto, and Zhen Wang. Influence of bolstering network reciprocity
in the evolutionary spatial prisoner’s dilemma game: a perspective. The European Physical
Journal B, 91(12), December 2018.

7 Sebastián M. Ruiz. 81.27 a result on prime numbers. The Mathematical Gazette, 81:269, July
1997. doi:10.2307/3619207.

8 Martin A. Nowak and Robert M. May. Evolutionary games and spatial chaos. Nature,
359(6398):826–829, October 1992. doi:10.1038/359826a0.

9 Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, and Martin A. Nowak. A simple rule for
the evolution of cooperation on graphs and social networks. Nature, 441(7092):502–505, May
2006. doi:10.1038/nature04605.

10 Hisashi Ohtsuki, Martin A. Nowak, and Jorge M. Pacheco. Breaking the symmetry between
interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98:108106,
March 2007. doi:10.1103/PhysRevLett.98.108106.

11 Matjaž Perc and Attila Szolnoki. Social diversity and promotion of cooperation in the spatial
prisoner’s dilemma game. Phys. Rev. E, 77:011904, January 2008.

12 Matjaž Perc and Attila Szolnoki. Coevolutionary games—a mini review. Biosystems, 99(2):109–
125, 2010.

13 Matjaž Perc and Zhen Wang. Heterogeneous aspirations promote cooperation in the prisoner’s
dilemma game. PLOS ONE, 5(12):1–8, December 2010.

14 Carlos P. Roca, José A. Cuesta, and Angel Sánchez. Time scales in evolutionary dynamics.
Phys. Rev. Lett., 97:158701, October 2006.

15 Francisco C. Santos and Jorge M. Pacheco. Scale-free networks provide a unifying framework
for the emergence of cooperation. Phys. Rev. Lett., 95, August 2005.

16 Francisco C. Santos, Jorge M. Pacheco, and Tom Lenaerts. Cooperation prevails when
individuals adjust their social ties. PLOS Computational Biology, 2(10):1–8, October 2006.
doi:10.1371/journal.pcbi.0020140.

https://doi.org/10.4230/LIPIcs.MFCS.2020.22
https://doi.org/10.2307/3619207
https://doi.org/10.1038/359826a0
https://doi.org/10.1038/nature04605
https://doi.org/10.1103/PhysRevLett.98.108106
https://doi.org/10.1371/journal.pcbi.0020140

K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:13

17 Gyorgy Szabo and Gabor Fath. Evolutionary games on graphs. Physics Reports, 446(4):97–216,
2007.

18 Attila Szolnoki and Gyorgy Szabó. Cooperation enhanced by inhomogeneous activity of
teaching for evolutionary prisoner's dilemma games. Europhysics Letters (EPL), 77(3):30004,
January 2007. doi:10.1209/0295-5075/77/30004.

19 Mendeli H. Vainstein, Ana T.C. Silva, and Jeferson J. Arenzon. Does mobility decrease
cooperation? Journal of Theoretical Biology, 244(4):722–728, 2007.

20 Virgil. Eclogue IV. Cambridge University Press, 2008.
21 Zhen Wang, Zhen Wang, Xiaodan Zhu, and Jeferson J. Arenzon. Cooperation and age structure

in spatial games. Phys. Rev. E, 85:011149, January 2012.
22 Zhi-Xi Wu, Zhihai Rong, and Petter Holme. Diversity of reproduction time scale promotes

cooperation in spatial prisoner’s dilemma games. Phys. Rev. E, 80:036106, September 2009.

A Construction for a more general b

We can make a similar construction for different b’s than those from the range (3
2 , 2). By

selecting different b, the construction is not a subgraph of a square grid.
We can interpret the wire from Figure 3 as a path (lower row of vertices) with auxiliary

vertices (upper row) that empower the tip of the cooperator signal and also help the first
defector behind it. For different b’s, we can add more auxiliary vertices. Details are on
Figure 10.

For setting b ∈ (3
2 , 2), the path and auxiliary vertices interchangeable, it’s not the case for

different bs. Our construction uses this, but only to preserve the topology properties. When
we add k auxiliary vertices, we need to ensure that kb > k − 1 and k − 1 > b. For small b,
we change the signal that it does not span two consecutive slices, but one (as on Figure 10.

..
.

..
.

..
.

..
.

..
.

kb bk − 1

1

Figure 10 Schematic wire construction for general b with the slices of size k. The numbers are
payoffs of important vertices.

B More gadgets

In this section, we provide more detailed figures for some gadgets. Moreover, you can
see videos of some gadgets in action at https://pub.ist.ac.at/~jsvoboda/research/
spatial_games/.

On Figure 11 and Figure 12 we see explicit graph shown on Figure 3 and Figure 4.

FSTTCS 2022

https://doi.org/10.1209/0295-5075/77/30004
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/

11:14 Complexity of Spatial Games

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

3 2

1 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

3 2

1 2

Figure 11 Sending signal throught the wire with explicit payoffs.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

b

b

3 2

1 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b2

b2

b2

b2

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b

2b

b23

b23

b23

b23

Figure 12 Splitting the signal in two. Note that the splitter does not have a direction (a signal
from any input/output is split and sent by the other two inputs/outputs).

Figure 13 Crossing of two wires. Signal coming from left leaves the gadget by the right wire and
signal coming from bottom leaves the gadget by the top wire.

Robustly Separating the Arithmetic Monotone
Hierarchy via Graph Inner-Product
Arkadev Chattopadhyay ! Ï

TIFR, Mumbai, India

Utsab Ghosal !

Chennai Mathematical Institute, India

Partha Mukhopadhyay ! Ï

Chennai Mathematical Institute, India

Abstract
We establish an ϵ-sensitive hierarchy separation for monotone arithmetic computations. The notion
of ϵ-sensitive monotone lower bounds was recently introduced by Hrubeš [12]. We show the following:

There exists a monotone polynomial over n variables in VNP that cannot be computed by 2o(n)

size monotone circuits in an ϵ-sensitive way as long as ϵ ≥ 2−Ω(n).
There exists a polynomial over n variables that can be computed by polynomial size monotone
circuits but cannot be computed by any monotone arithmetic branching program (ABP) of
no(log n) size, even in an ϵ-sensitive fashion as long as ϵ ≥ n−Ω(log n).
There exists a polynomial over n variables that can be computed by polynomial size monotone
ABPs but cannot be computed in no(log n) size by monotone formulas even in an ϵ-sensitive way,
when ϵ ≥ n−Ω(log n).
There exists a polynomial over n variables that can be computed by width-4 polynomial size
monotone arithmetic branching programs (ABPs) but cannot be computed in 2o(n1/d) size by
monotone, unbounded fan-in formulas of product depth d even in an ϵ-sensitive way, when
ϵ ≥ 2−Ω(n1/d). This yields an ϵ-sensitive separation of constant-depth monotone formulas and
constant-width monotone ABPs.

The novel feature of our separations is that in each case the polynomial exhibited is obtained
from a graph inner-product polynomial by choosing an appropriate graph topology. The closely
related graph inner-product Boolean function for expander graphs was invented by Hayes [8], also
independently by Pitassi [16], in the context of best-partition multiparty communication complexity.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic Complexity, Discrepancy, Lower Bounds, Monotone Computations

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.12

Funding Arkadev Chattopadhyay: Partially supported by a MATRICS grant MTR/2019/001633 of
the Science and Engineering Research Board, DST, India.
Utsab Ghosal: Partially supported by Infosys Foundation.
Partha Mukhopadhyay: Partially supported by Infosys Foundation.

Acknowledgements We thank the anonymous reviewers for their feedback.

1 Introduction

While considerable progress has been made in monotone complexity, several fundamental
problems remain open. In particular, it is known that monotone lower bounds of a certain
kind are enough to imply the major breakthrough of obtaining strong general circuit lower
bounds. In Boolean complexity, it has long been known [20] that monotone circuit lower
bounds for slice functions are sufficient to yield general lower bounds. In the context of
arithmetic complexity, Hrubeš [12] recently formulated an analogous result by showing that
ϵ-sensitive monotone lower bounds for arbitrarily small but non-zero ϵ yield lower bounds

© Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arkadev.c@tifr.res.in
https://www.tcs.tifr.res.in/~arkadev
mailto:ghosal@cmi.ac.in
mailto:partham@cmi.ac.in
https://www.cmi.ac.in/~partham
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

even for non-monotone circuits. More generally, consider Fn to be the full polynomial,
(1 + x1 + x2 + · · ·xn)n, of degree n that obviously has a simple monotone circuit. For
any monotone polynomial f , Hrubeš showed that super-polynomial lower bounds on the
monotone circuit (branching program, formula) size for Fn + ϵ · f for arbitrarily small ϵ > 0,
yields general lower bounds on circuit (branching program, formula1) size for computing
f . Interestingly, most of the candidate polynomials used in the lower bound literature are
set-multilinear. However for general set-multilinear circuits the current best known lower
bound is nearly quadratic [1] which is obtained via the lower bound for syntactic multilinear
circuits. Before aiming for a general circuit lower bound result via ϵ-sensitive approach, a
realistic goal could be to prove strong lower bounds for set-multilinear circuits. It can be
observed easily from the result in [12] that setting Fk,n :=

∏k
i=1(xi,1 + · · ·+ xi,n) to be the

full set-multilinear polynomial (over k × n variables) and proving ϵ-sensitive bounds (for
sufficiently small ϵ) yields general set-multilinear circuit lower bounds. More concretely, the
following theorem is implicit in [12].

▶ Theorem 1.1 ([12, Re-statement of Theorem 1 from the work by Hrubeš]). Let f be a
set-multilinear polynomial of degree k which is defined over a matrix of variables Xk×n. If f

has a set-multilinear circuit of size s then there exists ϵ0 > 0 such that for every 0 < ϵ < ϵ0

the polynomial
∏k

i=1

(∑n
j=1 xi,j

)
+ ϵ · f has a monotone circuit of size poly(s, n, k).

In fact in the above theorem ϵ0 ≈ 1
22s suffices. Hrubeš argues that proving ϵ-sensitive

lower bounds even for moderately small ϵ seems to be non-trivial as it’d require exploiting
information of the values of coefficients of monomials appearing in f . Most techniques
employed for proving monotone lower bounds ignore the specific values of coefficients. They
use the structure of the support set of the monomials alone. With respect to such techniques,
the determinant and permanent polynomials, two polynomials that Valiant’s VP vs. VNP
conjecture asserts have very different complexities, remain equivalent. Some recent works
that are able to exploit the values of coefficients are that of Yehudayoff [21] and the work of
Srinivasan [18] that builds upon the former. However, these techniques have not yielded so
far ϵ-sensitive lower bounds. Such bounds were recently obtained by Chattopadhyay, Datta
and Mukhopadhyay [5] and by Chattopadhyay et.al. [4], adapting techniques from 2-party
communication complexity.

Motivated towards gaining a better understanding of ϵ-sensitive computations, we revisit
the question of separating the powers of some of the key monotone arithmetic models:
circuits, branching programs, formulas and constant-depth (unbounded fan-in) formulas.
Arvind, Joglekar and Srinivasan [2] proved that constant-depth monotone formulas are strictly
less powerful than monotone formulas of unrestricted depth by considering a specialized
polynomial. Hrubeš and Yehudayoff [10] showed that elementary symmetric polynomials
cannot be computed in polynomial size by monotone formulas. This provides a separation of
the powers of monotone formulas from that of monotone ABPs. Later, a different work of
Hrubeš and Yehudayoff [11] showed a similar separation of the power of monotone ABPs and
monotone circuits. This required the construction of an altogether different polynomial. Very
recently, Komarath, Pandey and Rahul [13] provided a unified treatment of these separations

1 The case of formulas comes with the following subtlety: Hrubeš’ argument uses a homogeneization trick.
Unlike circuits or ABPs, we don’t know yet if formulas can be homogeneized without significant blow-up
[17, Subsection 5.1]. This seemingly prevents a direct application of Hrubeš’ argument to formulas.
Nevertheless, using the fact that size s ABPs can be simulated by size slog s formulas, one concludes
quite easily that an ϵ-sensitive monotone lower bound for formulas of the form n(log n)1+δ

for any δ > 0,
is sufficent to imply super-polynomial lower bounds even for general ABPs.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:3

(not including the separation between constant-depth formulas and formulas of unrestricted
depth) by making use of graph homomorphism polynomials. Hence, it is natural to ask if
these separations can be strengthened or made robust in the following way: can we exhibit a
polynomial f that has polynomial size monotone circuits (ABPs) but even Fn + ϵ · f has no
polynomial size monotone ABP (formula)?

The main contribution of this work is to provide such robust separations between the
power of monotone circuits, ABPs, formulas and constant-depth circuits in a unified way. The
full polynomial is used for the set-multilinear setting and we are able to handle fairly low range
for the parameter ϵ in our results. Our separations build on the connection developed in [5, 4]
between randomized communication complexity and ϵ-sensitive lower bounds. In particular,
this allows us to exhibit a general framework to define graph inner-product polynomials such
that simply changing the graph appropriately yields the required polynomial for each of
our separations. More precisely, given an undirected graph G on k vertices and a number
m, we first define a Boolean function, called the graph inner-product function and denoted
by IPG : {0, 1}k×m → {1,−1}. Let V (G) := {u1, . . . , uk}. We identify each vertex with a
variable −→ui that takes m-bit binary vectors as values. Then,

IPG(−→u1, . . . ,−→uk) :=
(
− 1

) ∑
(ui,uj)∈E(G)

⟨−→ui,−→uj⟩

where ∀(ui, uj) ∈ E(G), ⟨−→ui ,
−→uj⟩ :=

∑
t∈[m] ui

t · u
j
t and −→ui = (ui

1, ui
2, . . . , ui

m) ∈ {0, 1}m.

We consider a set-multilinear polynomial over an input matrix X of dimension k × n

with entries X[i, j] := xi,j of indeterminates, and n = 2m. The monomials will naturally
encode satisfying assignments to the Boolean graph inner product function defined above.
Towards this, define M[X] to be the set of all set-multilinear monomials of degree k over
X = {Xi| i ∈ [k]}, where ∀i Xi = {xi,j | j ∈ [n]}. With every map ν : [k]→ [n], we identify
a monomial κν ∈M[X] as mν :=

∏k
i=1 xi,ν(i). This forms a bijection between set M[X] and

T = {ν| ν : [k]→ [n]}. Now each map ν ∈ T can be identified by a k tuple of m-bit vectors
(−→ν1, . . . ,−→νk) where for every i ∈ [k] −→νi is the binary representation of ν(i) ∈ [n]. So in this
way, given map ν : [k] → [n], any set-multilinear degree k monomial κ = x1,ν(1) · · ·xk,ν(k)
corresponds to a k tuple of m-bit vectors κ̃ = {−→ν1, . . . ,−→νk} where each −→νt is the binary
representation of ν(t).
Let,

fG,m :=
∑

IPG(κ̃)=−1

κ

be called the IPG,m polynomial.
Further, let

Fk,n :=
k∏

i=1

(
xi,1 + · · ·+ xi,n

)
,

be the full set-multilinear polynomial over M[X].
We can now state our first theorem that implies the first strongly exponential ϵ-sensitive

monotone lower bounds for an explicit (monotone) polynomial in VNP. Recall that n = 2m.

▶ Theorem 1.2. Let G be a constant-degree expander graph on k vertices. Then, there
exists a constant c > 0 such that any monotone circuit computing either of the polynomial
Fk,n ± ϵ · fG,m has size 2Ω(km) as long as ϵ ≥ 2−ckm.

FSTTCS 2022

12:4 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

▶ Remark 1.3. Plugging m = 1 in Theorem 1.2, we recover the claimed strongly exponential
lower bound as long as ϵ = 2−Ω(n).

The VNP upper bound for the polynomial fG,m follows from Valiant’s criterion [19,
Proposition 4].

Our second theorem obtains an ϵ-sensitive separation between monotone circuits and
monotone ABPs.

▶ Theorem 1.4. Let T be the full binary tree on k vertices. Then, fT,m can be computed by
monotone circuits of size O

(
kn3)

. On the other hand, there exists a constant c > 0 such that
any monotone ABP computing either of the polynomial Fk,n ± ϵ · fT,m has size kΩ(m) as long
as ϵ ≥ k−cm.

We next provide an analogous separation between monotone ABPs and monotone formulas
by considering a path.

▶ Theorem 1.5. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,m can be
computed by a monotone ABP of size O

(
kn

)
. On the other hand, there exists a constant

c > 0 such that any monotone formula computing either of the polynomial Fk,n ± ϵ · fΓ,m has
size kΩ(m) as long as ϵ ≥ k−cm.

▶ Remark 1.6. Dvir et al. [7] exhibited a monotone multilinear polynomial that is computable
by a polynomial size monotone ABP but requires nΩ(log n) size to be computed by every
multilinear formula. As their lower bound on multilinear formula size is obtained via rank
based arguments, it also implies ϵ-sensitive monotone lower bounds of nΩ(log n), even for
arbitrarily small non-zero ϵ. However, let us recall that the polynomial used by Dvir et al. is
a more involved polynomial that is not based on the inner-product function.
Finally, we provide a separation between constant-depth monotone formulas and monotone
formulas. In fact, we provide a stronger separation, that of monotone constant-depth formulas
and constant-width ABPs.

▶ Theorem 1.7. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,1 can be
computed by a monotone width-4 ABP of size O

(
k
)
. On the other hand, there exists a

constant c > 0 such that any monotone formula of product-depth d computing either of the
polynomial Fk,2 ± ϵ · fΓ,1 has size 2Ω(k1/d) as long as ϵ ≥ 2−ck1/d .

▶ Remark 1.8. It is known that poly-size bounded-depth monotone formulas can be simulated
by poly-size bounded-width monotone ABPs which in turn can be simulated by monotone
formulas of unrestricted depth and polynomial size. Our result, thus in particular, shows that
the class of polynomials computed by constant-depth monotone formulas of polynomial size
are strictly contained (in a strong sense) in the class of polynomials having bounded-width
monotone ABPs of polynomial size. The work of Nisan and Wigderson [15] already implies
such a separation, even for arbitrarily small ϵ, but uses a different polynomial. More precisely,
they show that any product-depth d set-multilinear circuit for computing the iterated matrix
multiplication polynomial (over 2× 2 matrices) IMM2,n must be of size 2Ω(n1/d).

1.1 Outline of our Technique
We build upon the insight relating ϵ-sensitive lower bounds with the measure of discrepancy
under universal distributions, originating in [5, 4]. Both of these works prove lower bounds
against monotone circuits for polynomials that are not known to have any efficient monotone
computation. The main concern here is to prove separations in the monotone hierarchy.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:5

Thus, the new challenge is to come up with far “easier polynomials” to which a discrepancy
like measure can still be applied. The canonical example of a “function” to which the
discrepancy method applies in communication complexity is that of Inner-product. However,
one important difference between the setting of standard 2-party communication complexity
and arithmetic circuits is that while in the former, every rectangle that appears in a rectangular
decomposition conforms to the same partition of inputs among the players, in the latter each
product polynomial appearing in a decomposition is free to have its own partition of the
input variables. Indeed, the standard Inner-product function becomes trivial for the best
(w.r.t the players) partition.

This is why we turn to best-partition communication complexity, a slightly non-standard
model. The relevance of considering graph inner-product based functions was also pointed
out by Hrubeš and Yehudayoff [11]. Hayes [8], and independently Pitassi [16], designed
an appropriate version of the Inner-product function that they called Graph inner-product
(see the definition from the Introduction) which they proved is hard against all (balanced)
partitions. To do this, they chose the graph to be a constant-degree expander. A standard
property of such an expander is that the size of any balanced cut is large. This allows one
to say that for every possible partition of inputs among the players, one can induce a large
copy of the standard inner-product as a sub-function for which the given partition is the
worst for the players. This does not immediately give us a monotone arithmetic circuit
lower bound. To get there, we need to argue against many partitions appearing together in
the decomposition. This is where we use the idea from [4] of discrepancy w.r.t universal
distributions that is a measure which is partition independent. This gives us our Theorem 1.2,
an ϵ-sensitive strongly exponential lower bounds against monotone circuits.

How does one tune the complexity of a graph Inner-product polynomial so that it becomes
easy for monotone circuits but remains robustly hard against monotone branching programs?
The starting point is to look at the (not robust) separation of these two classes by Hrubeš
and Yehudayoff [11]. They showed that there is a subtle difference between decomposition
theorems for ABPs and that of circuits. ABPs give rise to a slightly more structured
decomposition where, for every r, we can force each product polynomial to have a partition
such that one part has size exactly r. They further showed that for the full binary tree
on k vertices, any cut where one side has r(k) vertices, has size Ω(k). Exploiting this
insight, we establish Theorem 1.4 by proving a universal discrepancy bound for all such
partitions on the binary-tree inner-product function. It is to be noted that [11] also describes
a general connection between the choice of a graph and the properties of the corresponding
inner-product function.

To separate formulas from ABPs, we use the fact that the decomposition theorem for
formulas provides even more structure. Here, every polynomial of degree k appearing in a
decomposition can be written as a product of about log k-many polynomials rather than
two. This corresponds, with the usual caveat of mixed vs. best partition, to the case
of the best-partition log k-party number-in-the-hand model of randomized communication
complexity. While the goal of having an efficient ABP upper bound for the polynomial
forces the corresponding 2-party game to be easy for at least some partition, choosing the
graph to be a simple path ends up having the following simple but remarkable feature: for
every balanced log k-wise partition of the inputs, one can design a 2-party game with a
hard partition. This reduces the task to proving a discrepancy bound for this hard 2-party
partition which drives Theorem 1.5.

To separate monotone ABPs of constant width from monotone constant-depth (but
unbounded fan-in) formulas, we first note that keeping the path inner-product polynomial
becomes easy for ABPs of constant width once we restrict each node in the path to have

FSTTCS 2022

12:6 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

two (or any constantly many) variables instead of n. Finally, we exploit the super-structured
decomposition theorem for constant-depth (but unbounded fan-in) formulas. Each product
polynomial now is the product of k1/d-many set-multilinear product polynomials, where d is
the product-depth of the formula. Using similar ideas as in the proof of Theorem 1.5 with
this additional structure, we establish appropriate discrepancy bounds to yield Theorem 1.7.

Organization

The paper is organized as follows. We provide some background mainly on communication
complexity and monotone algebraic complexity in Section 2. In Section 3, we prove results
on discrepancy bounds for graph inner product function. The proof of Theorem 1.2 is given
in Section 4 that shows ϵ-sensitive lower bound for monotone circuits. Section 5 contains
the proof of Theorem 1.4 which shows the separation between monotone circuits and ABPs.
Finally in Section A, we provide the proofs of Theorem 1.5 and Theorem 1.7 establishing
the separations between monotone ABPs vs formulas, and constant width ABPs vs constant
depth formulas.

2 Preliminaries

Notation

Let [n] = {1, 2, . . . , n}. Polynomials are always considered over R[X] where R is the set of
reals.

Set-Multilinear Polynomials

Let X =
⊎k

i=1 Xi be a set of variables where Xi = {xi,1, xi,2, . . . , xi,n}. A polynomial
f ∈ R[X] is set-multilinear if each monomial in f respects the partition given by the
set of variables X1, X2, . . . , Xk. In other words, each monomial κ in f is of the form
x1,j1x2,j2 · · ·xk,jk

. For the purpose of the paper it is also useful to think the variables are
from a matrix Mk×n where the ith row is {xi,1, xi,2, . . . , xi,n}.

Ordered Polynomials

For a monomial of the form m = xi1,j1xi2,j2 · · ·xik,jk
we define the set I(m) = {i1, i2, . . . , ik}.

If a polynomial f has the same set I(m) for every monomial occurring it it with a nonzero
coefficient, then we say that the polynomial is ordered and we write I(f) = I(m) for each m.
Clearly, the set-multilinear polynomials are ordered polynomials with I(f) = {1, 2, . . . , k}.

Set-Multilinear Circuits

We recall the definition of set-multilinear circuits [3]. The definition can be extended to
set-multilinear ABPs and formulas naturally.

▶ Definition 2.1. A circuit computing a set-multilinear polynomial f over the variable set
X =

⊎n
i=1 Xi is called set-multilinear if at every gate the circuit computes a set-multilinear

polynomial with respect to an induced partition.

More precisely, for every node u in the circuit we can associate a set of indices Iu ⊆ [k] such
that the set-multilinear polynomial fu computed at node u is defined over

⊎
i∈Iu

Xi. So for
any node Iu = I(fu). If u is a + node with children u1, u2 then Iu1 = Iu2 = Iu. If u is ×
node with children u1, u2 then Iu = Iu1

⊎
Iu2 .

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:7

2.1 Structure of Monotone Circuits
The main structural result for monotone circuits that we use throughout, is the following
theorem.

▶ Theorem 2.2 ([21, Lemma 1]). Let n > 2 and f ∈ R[X] be an ordered monotone polynomial
with I(p) = [k]. Let C be a monotone circuit of size s that computes f . Then, we can write
f =

∑s
t=1 at · bt where at and bt are monotone ordered polynomials with k

3 ≤ |I(at)| ≤ 2k
3

and I(bt) = [k] \ I(at). Moreover, atbt ≤ f for each 1 ≤ t ≤ s, by which we mean that the
coefficient of any monomial in atbt is bounded by the coefficient of the same monomial in f .

A partition P = (A, B) of [k] is said to be perfectly balanced if |A| = |B| = k
2 and is said to

be nearly balanced if k
3 ≤ |A|, |B| ≤

2k
3 . An ordered product polynomial a · b on n variables

is said to be nearly balanced if k
3 ≤ |I(a)|, |I(b)| ≤ 2k

3 .

2.2 Structure of Monotone ABPs
We recall the definition of algebraic branching programs (ABPs).

▶ Definition 2.3 (Algebraic Branching Program). An algebraic branching program (ABP)
is a layered directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , k, with
directed edges only between adjacent layers (i to i + 1). There is a source vertex of in-degree
0 in layer 0, and one out-degree-0 sink vertex in layer k. Each edge is labeled by an affine
F-linear form where F is the underlying field. The polynomial computed by the ABP is the
sum over all source-to-sink directed paths of the ordered product of affine forms labeling the
path edges.

The following structure theorem is well-known.

▶ Theorem 2.4 ([11, Lemma 3]). Let f be a degree k monotone set-multilinear polynomial
computed by a size s ABP. Then for every j ∈ [k] there exists s pairs of monotone set-
multilinear polynomials {gi, hi |i ∈ [s]} such that f =

s∑
i=1

gi · hi where for every i, |I(gi)| = j

and |I(hi)| = k − j. (I(gi), I(hi)) gives a partition of [k].

2.3 Structure of (Monotone) Set-Multilinear Formulas
▶ Definition 2.5 ((Monotone) Set-Multilinear-log-Product Polynomials.). A degree k polynomial
f defined over a k×n matrix M of variables is called a (monotone) set-multilinear-log-product
polynomial if there exists p (monotone) set-multilinear polynomials f1, . . . , fp such that the
following holds.
1. f =

∏p
i=1 fi.

2. ∀i ∈ [p− 1], (1
3)ik ≤ |I(fi)| ≤ (2

3)ik where I(fi) is the set of rows of M on which the
polynomial fi is defined.

3. ∀ i ̸= j, I(fi) ∩ I(fj) = ∅.
4. |I(fp)| = 1.

The following structure theorem is well-known and proved in [10]. However, we include a
self-contained proof in the appendix for completeness.

▶ Theorem 2.6 ([10, Lemma 4]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s. Then there exists (monotone) set-multilinear-log-product
polynomials g1, g2, . . . , gs′ such that s′ ≤ s, f = g1 + g2 + · · ·+ gs′ .

FSTTCS 2022

12:8 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

2.4 Structure of (Monotone) Set-Multilinear Constant Depth Formula
▶ Definition 2.7 ((p, ℓ)-Form). A degree k (monotone) set-multilinear polynomial f defined
over a matrix Mk×n of variables has a (p, ℓ)-from if there exists p (monotone) set-multilinear
polynomials f1, . . . , fp such that the following holds.
1. f =

∏p
i=1 fi.

2. ∀ i ∈ [p], |I(fi)| ≥ ℓ, where I(fi) is the set of rows of Mk×n on which the polynomial
fi is defined.

3. ∀ i ̸= j, I(fi) ∩ I(fj) = ∅.
The following theorem is a re-statement of Lemma 9 in [10]. For completeness, the proof is
included in the appendix.

▶ Theorem 2.8 ([10, Lemma 9]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s and product depth d. Let q > 1 be a natural number such
that k > (2q)d. Then there exists (monotone) set-multilinear-(q, k(2q)−d)-form polynomials
g1, g2, . . . , gs′ such that s′ ≤ s, f = g1 + g2 + · · ·+ gs′ .

2.5 Communication Complexity
We recall some basic results from communication complexity. The details can be found
in [14]. Let us very briefly first recall basic notions in the 2-party communication model
of Yao. The joint input space of Alice and Bob is {0, 1}m × {0, 1}m with each player
receiving an m-bit Boolean string, and they want to evaluate a Boolean function F :
{0, 1}m × {0, 1}m → {−1, 1}. One defines a combinatorial rectangle R as a product set
A× B, for some A, B ⊆ {0, 1}m. Put another way, R is just a sub-matrix of the 2m × 2m

communication matrix MF of the function F , that Alice and Bob want to compute. The
rows of this matrix are indexed by possible inputs of Alice and the columns by the ones of
Bob and MF (x, y) = F (x, y). One of the important notions is discrepancy. For a rectangle R,
the discrepancy Discδ(F, R) :=

∣∣δ(R ∩ F−1(1))− δ(R ∩ F−1(−1))
∣∣ where δ is a distribution

on the input space {0, 1}m × {0, 1}m. In other words,

Discδ(F, R) =
∣∣∣∣ E

(x,y)∼δ
[F (x, y)R(x, y)]

∣∣∣∣.
The discrepancy of F under δ is defined as

Discδ(F) := max
R

Discδ(F, R).

In this work, we will be forced to look at variable partition models. That is, the n input bits
will be partitioned among Alice and Bob in multiple ways. Each such partition P has its
own set of rectangles, denoted by R(P). Hence, we define,

Discδ,P (F) := max
R∈R(P)

Discδ(F, R).

The 2-party model extends to t-party model naturally. Here, we have t players
P1, P2, . . . , Pt and the joint input space is {0, 1}m1 × {0, 1}m2 × . . . × {0, 1}mt . Player
Pi receives an input from {0, 1}mi . Together, they want to compute a function F :
{0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mt → {−1, 1}. We can similarly define a combinatorial
rectangle R = R1 × · · · ×Rt where each Ri ⊆ {0, 1}mi . For any distribution δ over the input
space {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mt and a rectangle R we define

Disct
δ(F, R) :=

∣∣δ(R ∩ F−1(1))− δ(R ∩ F−1(−1))
∣∣ . (1)

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:9

Now we define the discrepancy of F in the following way,

Disct
δ(F) := max

R
Disct

δ(F, R)

Exactly like in the two-party case, we will be considering the t-party discrepancy w.r.t
multiple t-way partitions. Hence, given such a partition P , we analogously define Disct

δ,P (F).
Let us recall the inner product function,

IPm(x, y) :=
(
− 1

)∑m

i=1
xiyi

,

that is widely studied. It is well-known that the two-party discrepancy of the inner product
function is small under the uniform distribution U over {0, 1}m × {0, 1}m. This was first
proved by Chor and Goldreich [6]. A self-contained proof can be found in [14].

▶ Theorem 2.9 ([14, Example 3.29]). Under the uniform distribution U over {0, 1}m×{0, 1}m,
DiscU (IPm) = 2−Ω(m).

3 Discrepancy Bound for Graph Inner Product

3.1 Graph Inner Product Function
Given a graph G on k vertices {u1, u2, . . . , uk}, we identify each vertex ui with variable −→ui

which takes m-bit binary vectors as values. Now we define the following function

IPG(−→u1, . . . ,−→uk) =
(
− 1

) ∑
(ui,uj)∈E(G)

⟨−→ui,−→uj⟩

where ∀(ui, uj) ∈ E(G) and ⟨−→ui ,
−→uj⟩ =

∑
t∈[m] ui

t ·u
j
t and −→ui = (ui

1, ui
2, ui

3, . . . , ui
m) ∈ {0, 1}m.

3.2 Graph Inner Product Polynomial
Consider the input matrix X of dimension k×n with entries X[i, j] := xi,j of indeterminates,
and n = 2m. Define M[X] to be the set of all set-multilinear monomials of degree k over
X = {Xi| i ∈ [k]}, where ∀i Xi = {xi,j | j ∈ [n]}. With every map ν : [k]→ [n], we identify
a monomial κν ∈M[X] as κν :=

∏k
i=1 xi,ν(i). This forms a bijection between set M[X] and

T = {ν| ν : [k]→ [n]}.
Now each map ν ∈ T can be identified by a k tuple of m-bit vectors (−→ν1, . . . ,−→νk) where

for every i ∈ [k] −→νi is the binary representation of ν(i) ∈ [n]. So in this way, given map
ν : [k]→ [n], any set-multilinear degree k monomial κ = x1,ν(1) · · ·xk,ν(k) corresponds to a k

tuple of m-bit vectors −→κ = {−→ν1, . . . ,−→νk}.
Let the polynomial,

fG,m :=
∑

IPG(−→κ)=−1

κ

be denoted as IPG,m and be called the G-Inner product polynomial.

3.3 Discrepancy and Lower Bound Correspondence
Recently in [4], a correspondence between ϵ-sensitive monotone lower bound for a 0 − 1
coefficient polynomial f and an appropriate communication problem has been established via
the discrepancy measure. There the authors only considered the two-party communication

FSTTCS 2022

12:10 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

problem. Here we extend it to t-party communication problem for t ≥ 2. Let (A1, A2, . . . , At)
be any partition of [k] and let there be t players P1, . . . , Pt. The players are given a map
ν : [k] → [n] in a distributed fashion, i.e, Pi gets a map νi : Ai → [n]. They jointly
want to decide if the monomial κν is present in polynomial f or not. In other words, the
players want to compute a Boolean function, denoted by Cf : {0, 1}k×m → {1,−1}, where
Cf (ν(1), . . . , ν(k)) = −1 if monomial κν has coefficient 1 in f and otherwise Cf evaluates
to 1. Inspecting the proof in [4], it is easy to observe that the lower bound technique is
independent of the monotone computation model. In particular, it applies to ABPs, formulas
and constant depth formulas using their respective structure theorems. that is Theorem 2.4,
Theorem 2.6 and Theorem 2.8. More precisely, we can restate their result in the following
form.

▶ Theorem 3.1 ([4, Adaptation of their Theorem 1.3]). Let f be any 0 − 1 set-multilinear
monotone polynomial defined over a matrix of variables of dimension k × n. Let ∆ be a
distribution over [k]n.
1. The monotone circuit complexity of Fk,n− ϵ · f (resp. Fk,n + ϵ · f) is at least ϵ

3γ (resp. ϵ
6γ)

as long as ϵ ≥ 6γ
1−3γ (resp. ϵ ≥ 6γ

1−12γ), where γ := maxP Disc∆,P (Cf) and P is any nearly
balanced 2-wise partition of [k].

2. Let r ∈ [k]. Then the monotone ABP complexity of Fk,n − ϵ · f (resp. Fk,n + ϵ · f) is at
least ϵ

3γ (resp. ϵ
6γ) as long as ϵ ≥ 6γ

1−3γ (resp. ϵ ≥ 6γ
1−12γ), where γ := maxP Disc∆,P (Cf).

Here the max runs over all 2-wise partitions P = (A, B) of [k] such that |A| = r.
3. The monotone formula complexity of Fk,n− ϵ ·f (resp. Fk,n + ϵ ·f) is at least ϵ

3γ (resp. ϵ
6γ)

as long as ϵ ≥ 6γ
1−3γ (resp. ϵ ≥ 6γ

1−12γ), where γ := maxP Disct
∆,P (Cf), P runs over all

t-wise partitions with t = Ω(log k).
4. The monotone product depth d formula complexity of Fk,n − ϵ · f (resp. Fk,n + ϵ · f) is at

least ϵ
3γ (resp. ϵ

6γ) as long as ϵ ≥ 6γ
1−3γ (resp. ϵ ≥ 6γ

1−12γ), where γ := maxP Disct
∆,P (Cf),

P runs over all t-wise partitions with t = Ω(k 1
d).

3.4 Good Matching in Graphs
Consider a graph G on vertex set V . For a partition P = (V1, V2) of V , let GP be the induced
bipartite graph, i.e., E(GP) := {(u, v) : (u, v) ∈ E(G), u ∈ V1, v ∈ V2}.

▶ Definition 3.2. Let G be a graph and P = (V1, V2) be any partition of the vertex set.
A matching M in the induced bipartite graph GP is called good if for every pair of edges
(ui, wi), (uj , wj) in M, none of (ui, uj), (ui, wj), (wi, wj) and (uj , wi) are in E(G). Further,
we define

τ(G, P) = max
M is good w.r.t P

|M |.

▶ Lemma 3.3. Let G be any graph with maximum degree d. Then for any partition P of the
vertex set of G, we have τ(G, P) ≥ |E(GP)|

2d2 .

Proof. Consider the graph GP and build a matching M ⊆ E(GP) by the following process,
starting with an empty M .
1. If E(GP) is empty, return M . Otherwise, add any edge (u, v) in E(GP) to M .
2. Remove every edge currently in E(GP) that is incident to a vertex that is a neighbour of

u or v (including themselves) in G.
3. Go back to 1.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:11

Observe that after each completion of step 2, the number of edges newly added to M is 1
and the number of edges removed from E(GP) is at most 2d2 since degree of a vertex in G

(and therefore in GP as well) is at most d. Thus, size of M is at least |E(GP)|
2d2 . It’s simple to

verify that the pruning done at step 2 ensures M forms a good matching. ◀

The following lemma gives a lower bound on the size of a good matching in a constant
degree expander graph. The proof follows by a simple application of the Expander Mixing
Lemma [9, Lemma 2.5] and Lemma 3.3 . Similar arguments also appear in [16, Lemma 4.2]
and in [8]. We provide a proof for the sake of completeness in the appendix.

▶ Lemma 3.4 ([16, 8]). Let d be a constant and G be a d regular expander graph on k

vertices with the second largest eigen value of the normalized adjacency matrix ≲ 1√
d

and
P = (V1, V2) be a nearly balanced partition of the vertex set V . Then, τ(G, P) = Ωd(k).

The notation Ωd hides a constant that depends on d.
The next lemma is about good matching in a full binary tree.

▶ Lemma 3.5. Given a full binary tree T on k vertices, there exists a number t ≈ 2
3 k , such

that for any partition P = (V1, V2) of the vertex set with |V1| = t, τ(T, P) = Ω(log k).

Proof. In [11], it is shown that there exists a number t ≈ 2
3 k such that for any partition

P = (V1, V2) with |V1| = t, the induced bipartite graph TP has Ω(log k) many edges. Since
the maximum degree of T is 3, using Lemma 3.3 τ(T, P) = Ω(log k). ◀

3.5 A Communication Problem

Much of what we’re going to prove in this section, derives its intuition from the following
communication problem in Yao’s 2-party model. We state the problem below, although
we point out to the reader that if one is just interested in verifying the monotone lower
bounds we claim for the various arithmetic models, then it is not necessary to know this
communication problem.

▶ Problem 3.6. Given a graph G with a vertex set V , where V is partitioned into V1, V2 and
|V | = k, we consider the following communication problem in Yao’s 2-party model: Alice
(Bob) gets the assignment to variables corresponding to vertices of V1 (V2). Together they
need to evaluate the Boolean function IPG on their joint inputs.

Having stated the problem, we prove below the key discrepancy upper bound that shows the
above problem’s communication complexity, w.r.t. any balanced partition, to be high. This
consequence of our discrepancy bound may be of independent interest.

▶ Lemma 3.7. Consider a graph G on vertex set V such that V = {u1, u2, . . . , uk}. For
a partition P = (V1, V2) of V , let GP be the induced bipartite graph. Under the uniform
distribution U over {0, 1}km, the following holds: DiscU,P (IPG) ≤ 2−Ω(τ(G,P)·m).

Proof. Let MP be the good matching in GP such that τ(G, P) = |MP |. For convenience let
|MP | = t. For any edge (ui, uj) in the matching MP define −→Ci = ⊕ur∈Nbd(ui)\{uj}

−→ur and
−→
Cj = ⊕uℓ∈Nbd(uj)\{ui}

−→uℓ. Here Nbd(ui) = {uℓ : (ui, uℓ) ∈ E(G)}.
Then, IPG(−→u1,−→u2, . . . ,−→uk) = (−1)D where

FSTTCS 2022

12:12 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

D =
(∑

(ui,uj)∈MP

(⟨−→ui ,
−→uj⟩+ ⟨

−→
Ci,
−→ui⟩+ ⟨

−→
Cj ,−→uj⟩

)
+

∑
uq,ur /∈V (MP)
(uq,ur)∈E(G)

⟨−→uq,−→ur⟩

=
(∑

(ui,uj)∈MP

(⟨−→ui +
−→
Cj ,−→uj +

−→
Ci⟩+ ⟨

−→
Ci,
−→
Cj⟩

)
+

∑
uq,ur /∈V (MP)
(uq,ur)∈E(G)

⟨−→uq,−→ur⟩

=
(∑

(ui,uj)∈MP

⟨
−→
u′i ,
−→
u′j⟩+ c

)
(2)

Here
−→
u′i = −→ui +−→Cj and

−→
u′j = −→uj +−→Ci. Note that

c =
∑

uq,ur /∈V (MP)
(uq,ur)∈E(G)

⟨−→uq,−→ur⟩+
∑

(ui,uj)∈MP

⟨
−→
Ci,
−→
Cj⟩.

For the partition P = (V1, V2) consider an arbitrary rectangle R ∈ R(P) in {0, 1}|V1|·m ×
{0, 1}|V2|·m. Here for the sake of simplicity we abuse the notation R and denote it as
a characteristic function for the rectangle R. Let U be the uniform distribution over
{0, 1}|V1|·m × {0, 1}|V2|·m and Um be the uniform distribution over {0, 1}m.

Notice that

DiscU,P (IPG, R) =
∣∣∣∣ E−→ui∼Um

[
IPG(−→u1,−→u2, . . . ,−→uk) ·R(−→u1,−→u2, . . . ,−→uk)

]∣∣∣∣
=

∣∣∣∣ E−→ui∼Um:ui /∈MP

[
E−→ui∼Um:ui∈MP

[
IPG((−→u1, . . . ,−→uk)R(−→u1, . . . ,−→uk)

]]∣∣∣∣ (3)

Let us denote assignments to vertices not in MP collectively by −→w ∈ {0, 1}(k−2t)m, and
assignments to vertices in MP collectively by −→u ∈ {0, 1}2tm. Thus, using (2), we can continue
(3) as follows:

DiscU,P (IPG, R) ≤ E−→w

[∣∣∣∣ E−→u∈{0,1}2tm

[(
− 1

) ∑
(ui,uj)∈MP

⟨
−→
u′

i,
−→
u′

j⟩

R
−→w (−→u)

]∣∣∣∣]
(4)

Here R
−→w is a rectangle in {0, 1}tm×{0, 1}tm which is induced from R by fixing the assignments

to −→w . Observe when we fix the assignment to −→w , the random variables
−→
u′i also have same

uniform distribution over {0, 1}mas −→ui . Hence the inner expectation is DiscU ′(IP) where U ′ is
the uniform distribution over {0, 1}tm × {0, 1}tm. The value of DiscU ′(IP) is at most 2−Ω(tm)

by Theorem 2.9. ◀

We will now consider a multi-party communication problem in the number-in-hand
(NIH) model from the point of view of best partition communication complexity. While
2-party communication problems are relevant for proving lower bounds against circuits and
ABP’s, it’d be helpful to use the multi-party model for both unrestricted depth formulas and
bounded-depth formulas. As the information bottleneck for players grows with the number
of players in the NIH model, this kind of communication problems capture the limitation of
formulas, especially w.r.t. ABPs and circuits.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:13

▶ Problem 3.8 (Communication problem Path-IP). Let there be t players P1, P2, . . . , Pt. The
problem is defined over a k vertex path Γ with a fixed vertex set V = {u1, u2, . . . , uk} and its
partition into sets V1, V2, . . . , Vt. Each Pi gets the vertex set Vi. The input to this problem is
a map πi : Vi → {0, 1}m given to each Pi which specifies a m bit vector assignment to each
vertex in Vi. Together the players want to decide if ⟨−→i1 ,

−→
i2 ⟩+ ⟨−→i2 ,

−→
i3 ⟩+ · · ·+ ⟨−−→ik−1,

−→
ik ⟩ = 1

(mod 2). Here for every j ∈ [k] −→ij = πℓ(uj) when uj ∈ Vℓ (for ℓ ∈ [t]).

Observe for this communication problem, rectangles are defined to be t-product sets, i.,e. R

is called a rectangle if R = R1×R2×· · ·×Rt with each Ri ⊆ {0, 1}kim and ki = |Vi| ∀i ∈ [t].
Our goal is to show under uniform distribution U over {0, 1}km, the discrepancy of any
rectangle R is at most 2−Ω(tm). To show this we first show the following lemma.

▶ Lemma 3.9. Consider a path graph Γ on k vertices. For every partition P = (P1, . . . ,Pt)
of the vertex set of Γ into 2 ≤ t < k parts, there exists a partition P̃ = (PA,PB) into two
parts that is a coarsening of P such that τ(Γ, P̃) is Ω(t).

Proof. Consider a partition P = (P1, . . . ,Pt) of the set of vertices V (Γ). We create a random
coarsening of it, P̃ = (PA,PB), as follows: for every i ∈ [t], toss an independent unbiased
coin. If output is head, put the vertices of Pi in PA and otherwise put them in PB. Since P
partitioned V (Γ) into exactly t parts, there are at least t− 1 edges (ui, ui+1) of Γ such that
ui and ui+1 belong to different Pjs. Denote by E , the set of such edges. Now, for every edge
e = (u, v) in the path Γ define a random variable ye such that

ye =
{

1 if e ∈ cut(P̃),
0 otherwise.

Here, cut(P̃) is the set of edges e = (u, v) such that u ∈ P̃A and v ∈ P̃B or vice-versa. Let
the random variable Y =

∑
e ye be the size of cut(P̃). Note,

E[Y] =
∑

e

E[ye] ≥
∑
e∈E

E[ye] = t− 1
2 = Ω(t).

Thus, there exists a fixed coarser partition P̃ = (PA,PB) of V (Γ) such that the induced
bipartite graph ΓP̃ has Ω(t) many edges. Since Γ has maximum degree 2, by Lemma 3.3
τ(Γ, P̃) = Ω(t). ◀

▶ Lemma 3.10. Let t ≥ 2 and let Γ be a path on k vertices. Under the uniform distribution
U over {0, 1}km for any t-wise partition P, the following holds: Disct

U,P(IPΓ) ≤ 2−Ω(tm).

Proof. Obtain a coarsening of the partition P prescribed by Lemma 3.9 to get P̃ = (PA,PB).
Consider any rectangle R = R1 × · · · ×Rt under partition P . Let A ⊂ [t] such that for every
i ∈ A the vertices of Pi goes to PA. Similarly B = [t] \A and for every j ∈ B vertices of Pj

goes to PB. Define, RA := ×i∈ARi and RB := ×j∈BRj and finally, R̃ := RA ×RB . Observe
that R̃ forms a two-dimensional rectangle w.r.t. P̃. It is simple to verify,

Disct
U (R) = DiscU (R̃).

We know using Lemma 3.7 DiscU,P̃(R̃) ≤ DiscU,P̃(IPΓ) ≤ 2−Ω(tm). ◀

FSTTCS 2022

12:14 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

4 Monotone Circuit Lower Bound via Expander Graph-IP Polynomial

In this section we prove Theorem 1.2. For the sake of convenience we restate it.

▶ Theorem 1.2. Let G be a constant-degree expander graph on k vertices. Then, there
exists a constant c > 0 such that any monotone circuit computing either of the polynomial
Fk,n ± ϵ · fG,m has size 2Ω(km) as long as ϵ ≥ 2−ckm.

Proof. Consider the Boolean function IPG described in Subsection 3.1 where the underlying
graph G is a constant degree expander graph on k vertices. Every vertex gets a m bit binary
vector assignment. Let P be any nearly balanced partition of the vertex set V . We first show
the following claim.

▷ Claim 4.1. Under the uniform distribution U over {0, 1}km, for every nearly balanced
partition P on the vertex set V , DiscU,P (IPG) ≤ 2−Ω(km).

Proof. From Lemma 3.4 we know that for every nearly balanced partition P of V , τ(G, P) =
Ω(k). Using Lemma 3.7, under the uniform distribution U over {0, 1}km we get that,
DiscU,P (IPG) ≤ 2−Ω(km). ◁

Now the proof follows from the first part of Theorem 3.1. Here the polynomial f = fG,m

and Cf is the Boolean function IPG. From Claim 4.1 it is clear that

γ = max
P

DiscU,P (IPG) ≤ 2−Ω(km).

The universal distribution ∆ is the uniform distribution U over km bits. Let the value of
γ = 2−γ0km for some constant γ0 > 0. It is easy to verify that choosing ϵ ≥ 2

−γ0km
10 satisfies

the condition ϵ ≥ 6γ
1−3γ . Hence monotone circuit complexity of Fk,n − ϵ · fG,m is at least ϵ

3γ

which is 2Ω(km). The proof for Fk,n + ϵ · fG,m is analogous. ◀

5 Separation between Monotone Circuits and Monotone ABPs via
Tree-IP Polynomial

In this section we prove Theorem 1.4. For the sake of convenience we restate the theorem
here.

▶ Theorem 1.4. Let T be the full binary tree on k vertices. Then, fT,m can be computed by
monotone circuits of size O

(
kn3)

. On the other hand, there exists a constant c > 0 such that
any monotone ABP computing either of the polynomial Fk,n ± ϵ · fT,m has size kΩ(m) as long
as ϵ ≥ k−cm.

The proof of this theorem is divided in the following two subsections.

5.1 Upper Bound
First we show the upper bound. Let Tu be the sub-tree rooted at node u of T . Below we
consider set-multilinear monomials κ such that I(κ) = V (Tu). Further, we denote by −→κ [u]
the m-bit binary assignment to −→u by −→κ . For every node u in T and −→a ∈ {0, 1}m and
b ∈ {0, 1}, we define the following polynomials,

g
−→a
u,b :=

∑
IPTu (−→κ)=(−1)b

−→κ [u]=−→a

κ

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:15

and

gu,b :=
∑

−→a ∈{0,1}m

g
−→a
u,b.

Thus, gr,1 is the output polynomial fT,m where r is the root of T . By induction on the depth
of T , we show that for each node u of T and −→a ∈ {0, 1}m, the polynomials g

−→a
u,0, g

−→a
u,1 can be

simultaneously computed by a circuit of size at most O

(
2d23m

)
.

For the base case d = 1. Let u be a node with two children v, w. For the purpose of this
section, i, j, k are used for the integer values of −→i ,

−→
j ,
−→
k ∈ {0, 1}m. Now the polynomials

computed at node u are following,

g
−→
i

u,0 =
∑

−→
j ,
−→
k ∈{0,1}m:

⟨−→i ,
−→
j ⟩+⟨−→i ,

−→
k ⟩=0 (mod 2)

xu,ixv,jxw,k

where for every −→i the polynomial g
−→
i

u,0 has 22m monomials. Hence we can compute the
polynomials gu,0, g

−→
i

u,o by a monotone circuit of size at most 23m. Similarly we compute the
polynomial gu,1. So the total size of the circuit is 23m+1 and the base case holds.

Consider a vertex u at depth d with children v, w. By inductive hypothesis, we have
circuits Cv, Cw, each of size at most O(2d−123m) computing simultaneously the polynomials
g
−→
i

v,0, g
−→
j

v,1 and g
−→
i

w,0, g
−→
j

w,1 respectively, for each −→i ,
−→
j ∈ {0, 1}m.

Now we compute the polynomials g
−→
i

u,0, g
−→
j

u,1.
It is easy to observe that g

−→
i

u,0 = Z1 + Z2, where

Z1 =
∑

−→
j ,
−→
k ∈{0,1}m:

⟨−→i ,
−→
j ⟩+⟨−→i ,

−→
k ⟩=0 (mod 2)

(xu,ig
−→
j

v,0g
−→
k

w,0 + xu,ig
−→
j

v,1g
−→
k

w,1)

and

Z2 =
∑

−→
j ,
−→
k ∈{0,1}m:

⟨−→i ,
−→
j ⟩+⟨−→i ,

−→
k ⟩=1 (mod 2)

(xu,ig
−→
j

v,0g
−→
k

w,1 + xu,ig
−→
j

v,1g
−→
k

w,0)

.
Now from the circuits Cv and Cw we appropriately reuse the subcircuits for

{g
−→
j

v,0, g
−→
j

v,1, g
−→
k

w,0, g
−→
k

w,1}. The other case, that of computing g
−→
j

u,1, is completely analogous.
Hence, the final circuit size, denoted by S(d), satisfies the following recurrence:

S(d) ≤ 2S(d− 1) + O(23m).

Solving the recursion we get S(d) is at most O

(
2d23m

)
. The upper bound follows since

k = 2d+1 − 1.

5.2 Lower Bound
Next we show the lower bound result. Consider the Boolean function IPT described in
Subsection 3.1, where T is a full binary tree on k vertices.

FSTTCS 2022

12:16 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

▷ Claim 5.1. There exists a number t ≈ 2
3 k such that for any partition P = (V1, V2) of the

vertex set V (T) with |V1| = t, under the uniform distribution U over {0, 1}km,

DiscU,P (IPT) ≤ k−Ω(m).

Proof. Using Lemma 3.5 we know there exists a number t ≈ 2
3 k such that for any partition

P = (V1, V2) with |V1| = t, τ (T, P) = Ω(log k). By Lemma 3.7, under the uniform distribution
U over {0, 1}km, we know that DiscU,P (IPT) ≤ 2−Ω(τ(T,P)·m) = k−Ω(m). ◁

Now we apply the second part of Theorem 3.1 to prove the lower bound. Here the
polynomial f = fT,m and Cf is the Boolean function IPT . Using Claim 5.1,

γ = max
P

DiscU,P (IPT) ≤ k−Ω(m).

Let γ = k−cm for some constant c > 0 and ∆ be the uniform distribution U over {0, 1}km.
One can easily verify that the condition ϵ ≥ 6γ

1−3γ is satisfied by choosing ϵ ≥ k
−cm

10 . Using
Theorem 3.1, the monotone ABP complexity of g = Fk,n − ϵ · fT,m is at least ϵ

3γ which is
kΩ(m). The proof for Fk,n + ϵ · fT,m is analogous.

References
1 Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing sets and an almost quadratic

lower bound for syntactically multilinear arithmetic circuits. Comb., 40(2):149–178, 2020.
doi:10.1007/s00493-019-4009-0.

2 Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. On lower bounds for constant-
width arithmetic circuits. In 20th International Symposium on Algorithms and Computation
(ISAAC), pages 637–646. Springer-LNCS, 2009.

3 Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic
computations. Chic. J. Theor. Comput. Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.
edu/articles/2016/6/contents.html.

4 Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay. Monotone
complexity of spanning tree polynomial re-visited. In Mark Braverman, editor, 13th Innovations
in Theoretical Computer Science Conference, ITCS 2022, January 31 – February 3, 2022,
Berkeley, CA, USA, volume 215 of LIPIcs, pages 39:1–39:21. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.39.

5 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 786–799. ACM, 2021. doi:10.1145/3406325.
3451069.

6 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988. doi:
10.1137/0217015.

7 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In 44th ACM Symposium on Theory of Computing (STOC),
pages 615–624. ACM, 2012.

8 Thomas P. Hayes. Separating the k-party communication complexity hierarchy: An application
of the zarankiewicz problem. Discrete Mathematics & Theoretical Computer Science, 13(4):15–
22, 2011.

9 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43:439–561, 2006.

10 Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complex., 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

https://doi.org/10.1007/s00493-019-4009-0
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.4230/LIPIcs.ITCS.2022.39
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1007/s00037-011-0007-3

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:17

11 Pavel Hrubes and Amir Yehudayoff. On isoperimetric profiles and computational complexity.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 89:1–89:12. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.89.

12 Pavel Hrubeš. On ϵ-sensitive monotone computations. Computational Complexity, 29(2):6,
2020. doi:10.1007/s00037-020-00196-6.

13 Balagopal Komarath, Anurag Pandey, and C.S. Rahul. Graph homomorphism polynomials:
Algorithms and complexity. In to appear in the 49th International Colloquium on Automata,
Languages and Programming (ICALP), LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022.

14 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
USA, 2006.

15 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997. doi:10.1007/BF01294256.

16 Toniann Pitassi. Best-partition multiparty communication complexity. Manu-
script online at http://www.cs.toronto.edu/~toni/Courses/CommComplexity/Papers/
bestpartition.ps, 2009. Course notes for Foundations of Communication Complexity, Fall
2009.

17 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Manuscript
online at https://github.com/dasarpmar/lowerbounds-survey/releases/download/v9.0.
3/fancymain.pdf, 2021. A selection of lower bounds in arithmatic circuit complexity.

18 Srikanth Srinivasan. Strongly exponential separation between monotone VP and monotone
VNP. ACM Trans. Comput. Theory, 12(4):23:1–23:12, 2020. doi:10.1145/3417758.

19 Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A. DeMillo,
Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 – May 2, 1979, Atlanta, Georgia,
USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

20 Leslie G. Valiant. Negation is powerless for boolean slice functions. SIAM J. Comput.,
15(2):531–535, 1986. doi:10.1137/0215037.

21 Amir Yehudayoff. Separating monotone VP and VNP. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 425–429. ACM, 2019. doi:10.1145/
3313276.3316311.

A Monotone Separations via Path-IP Polynomial

In this section, we prove Theorem 1.5 and Theorem 1.7.

A.1 Separation between Monotone ABPs and Monotone Formulas

For convenience Theorem 1.5 is restated below.

▶ Theorem 1.5. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,m can be
computed by a monotone ABP of size O

(
kn

)
. On the other hand, there exists a constant

c > 0 such that any monotone formula computing either of the polynomial Fk,n ± ϵ · fΓ,m has
size kΩ(m) as long as ϵ ≥ k−cm.

The proof is divided in two parts.

FSTTCS 2022

https://doi.org/10.4230/LIPIcs.ICALP.2016.89
https://doi.org/10.1007/s00037-020-00196-6
https://doi.org/10.1007/BF01294256
http://www.cs.toronto.edu/~toni/Courses/CommComplexity/Papers/bestpartition.ps
http://www.cs.toronto.edu/~toni/Courses/CommComplexity/Papers/bestpartition.ps
https://github.com/dasarpmar/lowerbounds-survey/releases/download/v9.0.3/fancymain.pdf
https://github.com/dasarpmar/lowerbounds-survey/releases/download/v9.0.3/fancymain.pdf
https://doi.org/10.1145/3417758
https://doi.org/10.1145/800135.804419
https://doi.org/10.1137/0215037
https://doi.org/10.1145/3313276.3316311
https://doi.org/10.1145/3313276.3316311

12:18 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

Upper Bound

We first give the monotone ABP construction for the polynomial fΓ,m. The ABP has k + 2
layers 0, 1, . . . , k, k + 1. Layer 0 and k + 1 are the source and sink vertex respectively. Let
the path Γ be u1 → u2 → · · · → uk.

Layer 1 and k contains 2m vertices labelled with {(u1, i)|i ∈ [2m]} and {(uk, j)|j ∈ [2m]}
respectively. For every other layer ℓ ∈ [2, 3, . . . , k − 1], we have 2m+1 vertices labelled with
{(uℓ, j)b | j ∈ [2m], b ∈ {0, 1}}. Next we describe the edge relations between consecutive
layers.

Layer 0 to layer 1: The source node s in layer 0 is connected to every node in layer 1.
The edge label of s→ (u1, i) is labeled by variable xu1,i.
Layer 1 to 2: A node (u1, i) is connected to (u2, j)b in layer 2 if and only if ⟨−→i ,

−→
j ⟩ = b

(mod 2). The edge gets the label xu2,j . Here −→i ,
−→
j are the binary representation of i and

j respectively.
Layer ℓ to ℓ + 1 for ℓ ∈ [2, k − 2]: A node (uℓ, j)b in layer ℓ is connected to the node
(uℓ+1, j′)b′ if and only if b + ⟨−→j ,

−→
j′ ⟩ = b′ (mod 2). This edge label is xuℓ+1,j′ .

Layer k − 1 to k: A node (uk−1, i)b is connected to the node (uk, j) for if and only if
b + ⟨−→i ,

−→
j ⟩ = 1 (mod 2).

Layer k to k + 1: Every node in layer k is connected to sink vertex with edge label 1.
The size of the monotone ABP is O(k2m). Note that in the ABP construction each
layer incrementally maintains the partial parity information. More precisely, a monomial
xu1,ii

xu2,i2 · · ·xuk,ik
is generated exactly once between the source and sink if and only if

IPΓ(−→i1 , . . . ,
−→
ik) = −1. Hence the polynomial computed between the source and the sink is

simply fΓ,m.

Lower Bound

Consider the Boolean function IPΓ described in Subsection 3.1, where Γ is a path on k vertices.
We use the third part of Theorem 3.1 to prove the lower bound. Since there Ω(log k)-wise
partitions are considered, we set t = Ω(log k). By Lemma 3.10, under the uniform distribution
U over {0, 1}km for every t-wise partition P we know that γ = Disct

U,P (IPΓ) = 2−Ω(tm) =
k−Ω(m).

Analogous to the case in Section 5, we now use the third part of Theorem 3.1 to show
our lower bound against the size of monotone formulas computing Fk,n − ϵ · fΓ,m using the
aboved discrepancy upper bound. As in Section 5, the lower bound follows by choosing
ϵ ≥ k−Ω(m) appropriately. The proof for Fk,n + ϵ · fΓ,m is analogous.

A.2 Separation between Monotone Constant Width ABPs and
Monotone Constant Depth Formulas

Now we prove Theorem 1.7 which is restated below.

▶ Theorem 1.7. Let Γ be a simple path on k vertices. Then, the polynomial fΓ,1 can be
computed by a monotone width-4 ABP of size O

(
k
)
. On the other hand, there exists a

constant c > 0 such that any monotone formula of product-depth d computing either of the
polynomial Fk,2 ± ϵ · fΓ,1 has size 2Ω(k1/d) as long as ϵ ≥ 2−ck1/d .

Upper Bound

Using the ABP construction given in Section A.1 we get a width-4 ABP of size O(k) for the
polynomial fΓ,1.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:19

Lower Bound

To show the lower bound, consider the Boolean function IPΓ described in Subsection 3.1
where Γ is a k vertex path and each vertex gets a 1 bit assignment (i.e, m = 1). Using the
fourth part of Theorem 3.1, we set t = Ω(k 1

d). By Lemma 3.10 under the uniform distribution
U over {0, 1}k for every t-wise partition P we know Disct

U,P (IPΓ) = 2−Ω(k
1
d).

Now we use the fourth part of Theorem 3.1 to show monotone constant depth formula
lower bound for polynomial Fk,n − ϵ · fΓ,1 using the discrepancy upper bound. Similar to the
earlier cases, the lower bound follows by choosing ϵ ≥ 2−Ω(k

1
d) appropriately.

B Structure Theorems for Monotone Set-Multilinear Formulas

The following theorems are re-statements of the corresponding theorems in [10]. There, they
were stated for multilinear formulas. Here, we port the statements and their proofs from [10]
to the set-multilinear setting needed for our work.

▶ Theorem 2.6 ([10, Lemma 4]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s. Then there exists (monotone) set-multilinear-log-product
polynomials g1, g2, . . . , gs′ such that s′ ≤ s, f = g1 + g2 + · · ·+ gs′ .

Proof. Let Φ be the (monotone) set-multilinear formula computing polynomial f . W.l.o.g
Φ is a syntactically set-multilinear formula. For any node w in the formula let Φw be the
sub-formula rooted at node w. Further we denote by Φ(w ← β), the formula obtained after
removing the sub-formula rooted at node w and relabelling it by β. For any node w, let the
polynomial computed at node w be fw and I(fw) be the set of rows of matrix M on which
the polynomial fw is defined. First note the following claim.

▷ Claim B.1. There exists a node w in the formula Φ such that k
3 ≤ |I(fw)| ≤ 2k

3 .

Proof. W.l.o.g every node in Φ has in-degree 2. The polynomial computed at the root node r

has |I(fr)| = k. Now we traverse on the path towards the leaves by picking the child w among
the children w, v when |I(fw)| ≥ |I(fv)|. The traversing continues whenever the heavier child
satisfies the condition |I(fw)| > 2k

3 . We stop this process when we first encounter a node
w such that |I(fw)| > 2k

3 but for its’ children u, v |I(fu)|, |I(fv)| ≤ 2k
3 . We will choose the

heavier child here. I.e, we choose u if |I(fu)| ≥ |I(fv)| and the node u satisfies the property
in the claim. ◁

We prove the theorem 2.6 by doing induction on s. For the base case when s = 1, the
polynomial f is only one variable or constant. So, it trivially satisfies the conditions in the
definition 2.5.
Using the claim B.1, let w be a node in the formula satisfying k

3 ≤ |I(fw)| ≤ 2k
3 and size of

Φw < s. We can write the polynomial f in the following way,

f = g · fw + f ′

where the polynomial f ′ is the set-multilinear polynomial computed by Φ(w ← 0). Clearly
the formula size of Φw and Φ(w ← 0) is < s. Let they are sw and s(w ← 0). In particular
sw + s(w ← 0) ≤ s. So we can use induction hypothesis on fw and f ′. That is, we can
write fw = h1 + · · · + hs′

w
and f ′ = h′1 + · · · + h′s′(w←0) where for every i, hi and h′i are

set-multilinear-log-product polynomials and s′w ≤ sw, s′(w ← 0) ≤ s(w ← 0). Clearly g ·h′i is
set-multilinear polynomial and the sets (I(g), I(h′i)) is a partition of [k] where k

3 ≤ |I(g)| ≤ 2k
3 .

Hence the set-multilinear-log-product decomposition of f is

f = gh1 + gh2 + · · ·+ ghs′
w

+ h′1 + · · ·+ hs′(w←0). ◀

FSTTCS 2022

12:20 Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

Next, we recall the structure theorem for monotone set-multilinear constant depth formulas.

▶ Theorem 2.8 ([10, Lemma 9]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s and product depth d. Let q > 1 be a natural number such
that k > (2q)d. Then there exists (monotone) set-multilinear-(q, k(2q)−d)-form polynomials
g1, g2, . . . , gs′ such that s′ ≤ s, f = g1 + g2 + · · ·+ gs′ .

Proof. Let Ψ be the size s product depth d (monotone) set-multilinear formula computing f .
For any node v in the formula we denote the sub-formula rooted at node v by Ψv. Further
we define the polynomial computed at node v by fv and I(fv) be the set of rows in the
matrix Mk×n on which fv is defined. First note the following claim.

▷ Claim B.2. Let t > 1 be any positive real number such that k > td. Then there exists a
product node v in Ψ such that |I(fv)| ≥ k·t−d+1 and for every children u of v, |I(fu)| < |I(fv)|

t .
Moreover if t = 2q for q ∈ N then fv is in (q, k(2q)−d)-form.

Proof. The proof is by induction on product depth d.
For the base case d = 1. Let v be any product gate with children u1, u2, . . . up. Clearly
|I(fv)| = k and for every child, |I(ui)| ≤ 1 < k

t . So v is the required node in the claim.
Inductively assume the claim is true for every node at product depth d′ < d. Let v be

a product node at depth d with children u1, . . . , up and |I(fv)| = k. If for every children
ui, |I(fui)| < |I(fu)|

t = k
t , then v is our required node. Otherwise, let ui be a child such

that |I(fui
)| ≥ k

t . Product depth of ui < d. So by induction hypothesis there is a node w in
Ψui at product depth d′ < d, such that |I(fw)| ≥ |I(fui)| · t−d′+1 ≥ k · t−d+1. Also for every
children wi of w, |I(fwi

)| < |I(fw)|
t . So, w is the required node for the claim.

Let v be the node in the claim with children u1, . . . , up such that |I(fv)| = m ≥ kt−d+1

and |I(fui)| < m
t . Then by appropriately grouping the polynomials fu1 , . . . , fup , it can be

ensured that we get a new set of polynomials {g1, g2, . . . , gp′} such that m
t ≤ |I(gj)| ≤ 2m

t

for every j ∈ [p′]. Hence f has (⌊ t
2⌋,

m
t)-form. Putting t = 2q and m = kt−d+1 we get our

desired form. ◁

We prove the theorem 2.8 by doing induction on the size, s. The base case is easy to verify.
By Claim B.2 there is a node v in the formula with polynomial fv is in (q, k(2q)−d)-form.
Write

f = g · fv + f ′

where f ′ is the polynomial computed by the formula Ψ after removing the sub-formula
rooted at node v and relabelling it by the element 0. Clearly the sets I(g) and I(fv) forms a
partition of the rows of matrix. From Claim B.2 The polynomial fv is in (q, k(2q)−d) form.
That is fv = f1 · f2 · · · fq where each |I(fi)| ≥ k(2q)−d. Clearly the polynomial (gf1) · · · fq is
also in (q, k(2q)−d)-form. Hence the proof follows by doing induction on the sub-formula of
size < s computing f ′. ◀

C Good Matching in Constant Degree Expander Graphs

▶ Lemma 3.4 ([16, 8]). Let d be a constant and G be a d regular expander graph on k

vertices with the second largest eigen value of the normalized adjacency matrix ≲ 1√
d

and
P = (V1, V2) be a nearly balanced partition of the vertex set V . Then, τ(G, P) = Ωd(k).

Proof. Take the partition P = (V1, V2) such that k
3 ≤ |V1|, |V2| ≤ 2k

3 and construct the
induced bipartite graph GP . using Expander Mixing Lemma [9, Lemma 2.5] we know
|E(GP)| ≥ d|V1||V2|

k − λd
√
|V1||V2|. Substituting the values of λ, |V1| and |V2| we get

|E(GP)| = Ωd(k). Since it is a constant degree regular graph, using Lemma 3.2 we get
τ(G, P) = Ωd(k). ◀

Inscribing or Circumscribing a Histogon to a
Convex Polygon
Jaehoon Chung #

Department of Computer Science and Engineering, Pohang University of Science and Technology,
Korea

Sang Won Bae #

Division of Computer Science and Engineering, Kyonggi University, Suwon, Korea

Chan-Su Shin #

Division of Computer Engineering, Hankuk University of Foreign Studies, Seoul, Korea

Sang Duk Yoon #

Department of Service and Design Engineering, SungShin Women’s University, Seoul, Korea

Hee-Kap Ahn #

Graduate School of Artificial Intelligence, Department of Computer Science and Engineering,
Pohang University of Science and Technology, Korea

Abstract
We consider two optimization problems of approximating a convex polygon, one by a largest inscribed
histogon and the other by a smallest circumscribed histogon. An axis-aligned histogon is an axis-
aligned rectilinear polygon such that every horizontal edge has an integer length. A histogon of
orientation θ is a copy of an axis-aligned histogon rotated by θ in counterclockwise direction. The
goal is to find a largest inscribed histogon and a smallest circumscribed histogon over all orientations
in [0, π). Depending on whether the horizontal width of a histogon is predetermined or not, we
consider several different versions of the problem and present exact algorithms. These optimization
problems belong to shape analysis, classification, and simplification, and they have applications in
various cost-optimization problems.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Shape simplification, Shape analysis, Histogon, Convex polygon

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.13

Funding This research was partly supported by the Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dy-
namic Geometric Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).
Sang Won Bae: supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042755).
Chan-Su Shin: supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. 2019R1F1A1058963).
Sang Duk Yoon: supported by “Cooperative Research Program for Agriculture Science & Technology
Development (Project No. PJ015269032022)” Rural Development Administration, Republic of
Korea.

1 Introduction

We consider two optimization problems of approximating a convex polygon, one by a largest
inscribed histogon and the other by a smallest circumscribed histogon. An axis-aligned
histogon is an axis-aligned rectilinear (possibly weakly simple) polygon such that every

© Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duk Yoon, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sk7755@postech.ac.kr
mailto:swbae@kgu.ac.kr
https://orcid.org/0000-0002-8802-4247
mailto:cssin@hufs.ac.kr
https://orcid.org/0000-0003-3073-6863
mailto:sangduk.yoon@sungshin.ac.kr
https://orcid.org/0000-0002-4664-7921
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Inscribing or Circumscribing a Histogon to a Convex Polygon

(a) (b) (c) (d) (e)

Figure 1 (a) The largest axis-aligned inscribed unit histogon. (b) The largest inscribed unit
histogon. (c) The largest inscribed 2-histogon. (d) The largest inscribed histogon. (e) The smallest
circumscribed histogon.

horizontal edge has an integer length. We call an axis-aligned histogon of width 1 an axis-
aligned unit histogon and an axis-aligned histogon of width k an axis-aligned k-histogon. Thus,
an axis-aligned unit histogon is simply an axis-aligned rectangle of horizontal width 1, and its
height is the length of the vertical sides. An axis-aligned k-histogon for a positive integer k

can be described by k axis-aligned and interior-disjoint unit histogons. A histogon of a fixed
orientation θ ∈ [0, π) is a copy of an axis-aligned histogon rotated by θ in counterclockwise
direction.

In the inscribed histogon problem, we compute a histogon with maximum area that can
be inscribed in P . We call such a histogon a largest inscribed histogon of P . Depending on
whether the horizontal width of a histogon is predetermined (1 or a positive integer k) or
not, we consider three versions of the problem. In the circumscribed histogon problem, we
compute a histogon with minimum area that can be circumscribed to P . We call such a
histogon a smallest circumscribed histogon of P . See Figure 1 for an illustration.

The optimization problems we investigate belong to shape analysis, classification, and
simplification [2, 3]. Many optimization problems occurred in those research topics are
concerned with the largest inscribed figure and the smallest circumscribed figure of a
prescribed shape. The largest inscribed histogon problem and the smallest circumscribed
histogon problem have applications in several coverage path planning (CPP) problems [7, 11,
15, 16] such as mowing a lawn using a mower, painting a piece using a spray gun, inspecting
the surface of an object by a scanner, and milling a pocket by moving a cutter. Other
applications include several topics in calculus, including Riemann sums and optimization. For
a function graph (or a curve), the area under the graph can be approximated by a histogon:
an inscribed histogon is an under-approximation of the area and a circumscribed histogon is
an over-approximation of the area.

Related Work. There has been a lot of work in approximating shapes in past decades. The
goal is to find a polygon inscribing or circumscribing another polygon (a convex polygon or a
simple polygon) while maximizing (or minimizing) a certain measure. There are algorithms
for finding triangles with maximum area or maximum perimeter inscribed in a convex polygon
and a simple polygon [20, 24]. A convex k-gon with maximum area or maximum perimeter
inscribed in a convex n-gon can be computed in O(kn + n log n) time [1, 24]. Chang et al. [8]
gave an O(n7)-time algorithm for finding a convex polygon with maximum area and an
O(n6)-time algorithm for finding a convex polygon with maximum perimeter inscribed in a
convex n-gon. There are O(n)-time algorithms for finding triangles with minimum area or
minimum-perimeter circumscribing a convex n-gon [5, 21].

DePano et al. [14] gave algorithms for finding an equilateral triangle with maximum area
and a square with maximum area inscribed in a polygon either convex or simple. Lee et
al. [19] gave algorithms for finding maximum-area triangles with fixed interior angles inscribed

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:3

in a polygon, either convex, simple, or even non-simple possibly with holes. Intensive research
has been done for the problems of finding rectangles with maximum area or maximum
perimeter inscribed in a convex polygon and a simple polygon [6, 10, 18]. Jin et al. [17] gave
an O(n2)-time algorithm for computing all parallelograms with maximum area in a convex
n-gon. Toussaint [23] gave an O(n)-time algorithm for finding rectangles with minimum area
or minimum perimeter circumscribing a convex n-gon. Schwarz et al. [22] gave a simple
O(n)-time algorithm for finding a parallelogram with minimum area in a convex n-gon.

Very recently, the authors [12] presented first algorithms for the axis-aligned case of our
histogon problem for a convex polygon P . These previous algorithms include: an O(log n)-
time algorithm for a largest axis-aligned inscribed unit histogon, an O(min{n, k log2 n

k })-
time algorithm for a largest axis-aligned inscribed k-histogon for a fixed k > 1, an
O(min{n, w log2 n

w })-time algorithm for a largest axis-aligned inscribed histogon, where w de-
notes the width of a largest axis-aligned histogon inscribed in P , and an O(min{n, W log n

W })-
time algorithm for a smallest axis-aligned circumscribed histogon, where W denotes the
horizontal width of P .

Our Results. For the problem of inscribing a largest unit histogon in a convex n-gon,
we present an O(n log n + U)-time algorithm using O(n) space, where U denotes the total
number of intersections between unit circles centered at vertices of P and the edges of P . In
the worst case, the quantity U can be quadratic in n, while it is near-linear in most cases.
In addition, we present another algorithm that runs in O(n log n + n/δ) time under the
assumption that there exists a unit histogon of height at least δ in P where 0 < δ < 1. This
provides a faster way once one asserts the existence of any unit histogon of positive height
contained in P , by any means such as efficient approximation algorithms. We also show that
our algorithm can determine whether there exists a unit histogon of height δ in P in the
same time bound for any input 0 < δ < 1. Based on these results, a largest inscribed unit
histogon can be computed more efficiently: in O(n log n) time if its height h is Ω(1/ log n),
or in O(n log n log log 1

h log n + n/h2) time in an output-sensitive way, otherwise.
We also present an algorithm that, given a positive integer k, finds a largest k-histogon

inscribed in P in O(kn2(log n + kT (min{k, n}))) time using O(min{k, n}n) space, where
T (m) denotes the time complexity of the optimization step for the trigonometric expression
with O(m) terms, each of quadratic form. For finding a largest histogon with no restriction
on the width inscribed in P , we present an O(Dn2(log n + T (min{D, n})))-time algorithm
using O(min{D, n}n) space, where D denotes the diameter of P . Barequet and Rogol [4]
observed that T (m) = O(m) in practice.

Finally, for finding a smallest circumscribed histogon of a convex n-gon, we present an
O(Dn(log(min{D, n}) + T (min{D, n})))-time algorithm using O(n) space.

Due to lack of space, some proofs and details are omitted. They can be found in the full
version of the paper.

2 Preliminaries

Let P be a convex polygon with n vertices, given in a list sorted in counterclockwise order
along the boundary of P . For ease of discussion, we assume that no two edges of P are
parallel to each other.

For a connected set X, we denote by ∂X the boundary of X, by int(X) the interior of X,
and by cl(X) the closure of X. For a point p ∈ R2, let x(p) and y(p) be the x-coordinate
and the y-coordinate of p, respectively. For any two points p and q in R2, we use pq to

FSTTCS 2022

13:4 Inscribing or Circumscribing a Histogon to a Convex Polygon

denote the line segment connecting p and q, and by |pq| the length of pq. If both p and q lie
on ∂P , pq is called a chord of P . A chord of unit length in P is called a unit chord of P .
We use ∂P [x, y] to denote the portion of ∂P from x to y in counterclockwise order, and let
∂P (x, y] = ∂P [x, y] \ {x}, ∂P [x, y) = ∂P [x, y] \ {y}, and ∂P (x, y) = ∂P [x, y] \ {x, y}. We
use P [x, y] to denote the subpolygon of P enclosed by ∂P [x, y] and the chord xy.

A histogon of a fixed orientation θ ∈ [0, π) is a copy of an axis-aligned histogon rotated
by θ in counterclockwise direction. The width of a histogon H of orientation θ is the width
of the axis-aligned copy of H that is obtained by rotating H by θ in clockwise direction. Let
w(H) be the width of H and |H| denote the area of H.

The orientation of a line is the angle swept from the x-axis in a counterclockwise direction
to the line, and it is thus in [0, π). The orientation of a line segment is that of the line
containing it. We mean by a boundary element of P its vertex or edge. For each θ ∈ [0, π),
there are exactly two lines of orientation θ that are tangent to P . Each of these two tangent
lines intersects ∂P in a boundary element of P . We call a pair (m1, m2) of boundary elements
of P antipodal if there exists an orientation θ ∈ [0, π) of which two tangent lines intersect P

in m1 and m2. Toussaint [23] showed the following, introducing the rotating caliper.

▶ Lemma 1 (Toussaint [23]). There are O(n) antipodal pairs of a convex n-gon P , and they
can be computed in O(n) time.

Note that if (m1, m2) is an antipodal pair, then not both of m1 and m2 can be edges of P ,
since P has no two parallel edges.

3 Largest inscribed unit histogon

In this section we compute a largest inscribed unit histogon of P . Cabello et al. [6] gave an
algorithm that computes a largest inscribed rectangle in a convex polygon with n vertices
in O(n3) time. They showed that the set of parallelograms contained in a convex polygon
with n vertices can be parameterized by a convex polytope in R6 defined by 4n linear
constraints. Their algorithm triangulates the boundary of the convex polytope and finds
a largest rectangle for each simplex of the triangulation. Since the optimization problem
for a simplex has a constant size and the complexity of the convex polytope is O(n3), their
algorithm takes O(n3) time.

We can modify their algorithm so that it works for our problem. For each of O(n3)
optimization problems, we add a new non-linear constraint that a side of parallelogram has
length 1. Since the size of altered optimization problem is constant, we can find a largest
inscribed unit histogon of P in O(n3) time.

In the following, we present an algorithm for the problem that runs in O(n log n + U)
time, where U denotes the total number of intersections between unit circles centered at
vertices of P and the edges of P . Since a unit circle intersects an edge of P at most twice and
it may intersect O(n) edges of P , we have U = O(n2). Indeed, we can construct a convex
polygon such that U = Ω(n2). In practical situations, however, most unit circles centered at
vertices intersect only few edges of P , so the total number of intersections is either linear or
near-linear and our algorithm runs faster.

A largest inscribed unit histogon of P touches some boundary elements (edges and
vertices) of P . For a unit histogon H̄ , we say that there is a side-contact if a side of H̄ is fully
contained in an edge of P , or a corner-contact if a corner of H̄ lies on ∂P . The contact set
of H̄ is the set of all of its corner-contacts and side-contacts. We show that the contact set
of any largest inscribed unit histogon falls into one of the following four types. See Figure 2.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:5

A B C D1 D2

Figure 2 Types of contact sets of for largest inscribed unit histogons of P .

▶ Lemma 2. For any largest inscribed unit histogon of P , its contact set satisfies one of the
following conditions:
A. It has a side-contact.
B. It consists of two corner-contacts at two vertices of P that are antipodal.
C. It consists of four corner-contacts.
D. It consists of three corner-contacts, one of which is associated with a vertex of P .

By Lemma 2, our algorithm finds a largest unit histogon contained in P whose contact
set falls into each of the four types.

3.1 One side-contact (type A) or two corner-contacts (type B)
Any unit histogon of type A contained in P has a side-contact with an edge of P , so a side
of such a histogon has the same orientation with an edge of P . This reduces the problem
to its fixed-orientation variant, which can be solved in O(log n) time [12]. Hence, a largest
inscribed unit histogon of type A can be found in O(n log n) time by solving O(n) instances
of the fixed-orientation problem.

For unit histogons of type B, we first specify all antipodal pairs of P by Lemma 1, and
consider each antipodal pair (v1, v2) such that both v1 and v2 are vertices of P . There are
at most two possible unit histogons H such that v1 and v2 are opposite corners of H. We
try each of these two unit histogons and test if it is contained in P . This containment test
can be done in O(log n) time [13]. Since there are O(n) antipodal pairs by Lemma 1, we can
find a largest inscribed unit histogon of type B in O(n log n) time.

▶ Lemma 3. We can compute a largest inscribed unit histogon of P that has a side-contact
(type A) or two corner-contacts (type B) in O(n log n) time.

3.2 Four corner-contacts (type C)
A unit histogon of type C has top and bottom sides lying on two parallel unit chords of P

by Lemma 2. We say two parallel unit chords of P are aligned orthogonally if their convex
hull forms a unit histogon. A largest inscribed unit histogon of type C in P has a positive
height if and only if there are the two distinct parallel unit chords of P that are aligned
orthogonally.

We find all inscribed unit histogons of type C in P and return the largest one among
them. To do this, we trace two unit chords of orientation θ in P while θ increasing from 0
to π, and find the orientations at which the two unit chords are aligned orthogonally. The
following lemma is about the existence of two distinct parallel unit chords in P .

▶ Lemma 4. The following statements are equivalent:
The length of a longest chord of orientation θ in P is larger than 1.
Either there are exactly two distinct unit chords of orientation θ, or P has an edge of
orientation θ with length larger than 1.

FSTTCS 2022

13:6 Inscribing or Circumscribing a Histogon to a Convex Polygon

Let O denote the set of all orientations θ ∈ [0, π) such that the longest chord of orientation
θ in P has length larger than 1, but there is no edge of P of orientation θ whose length is
larger than 1. By Lemma 4, there are exactly two distinct unit chords of orientation θ in
P if and only if θ ∈ O. Note that O is our search space for all possible unit histogons of
type C. In the following, we investigate the motion of the longest chord and unit chords of
orientation θ as θ continuously increases.

▶ Lemma 5. Both endpoints of the longest chord of orientation θ in P move monotonously
in the counterclockwise direction along ∂P as θ increases. Moreover, the pair of two boundary
elements of P on which the endpoints of the longest chord lie is antipodal.

For any orientation θ ∈ [0, π), consider the longest chord ab of orientation θ and the two
boundary elements ea, eb of P such that a ∈ ea and b ∈ eb. It is obvious that the longest chord
continuously moves as θ increases while its endpoints lie on ea and eb, respectively, unless
both ea and eb are vertices. This implies that the length of the longest chord also changes
continuously locally and thus that the set O forms several open intervals of orientations. Let
I(O) be the set of these intervals induced by O.

By Lemma 5, together with Lemma 1, there are only O(n) different pairs of such boundary
elements (ea, eb) that the endpoints of the longest chord may land on. Hence, the set I(O)
consists of O(n) open intervals. These intervals can be computed in O(n) time by processing
each antipodal pair in O(1) time after specifying them explicitly in O(n) time by Lemma 1.

▶ Lemma 6. Both endpoints of a unit chord of orientation θ move continuously along ∂P

as θ continuously increases over any interval in I(O).

We define the combinatorial structure of a unit chord to be the pair of the boundary
elements of P where its endpoints lie. The combinatorial structures of unit chords of
orientation θ may change for θ increasing in an interval of I(O). Since the endpoints of a unit
chord move continuously along ∂P by Lemma 6, such a change occurs only if an endpoint
of the unit chord meets a vertex of P . We call an orientation at which the combinatorial
structure of a unit chord changes a v-event orientation. The set of v-event orientations
partitions the intervals of I(O) into subintervals, called v-intervals. Note that, for any
v-interval I, the combinatorial structure of the unit chords of orientation θ remains the same
over all θ ∈ I. Moreover, the number of v-intervals of I(O) is bounded by O(n + U) since
each v-event corresponds to an intersection between a unit disk centered at a vertex of P

and an edge of P .
Now, we compute v-event orientations, v-intervals, and unit histogons of type C by

processing the intervals of I(O), one by one, in the increasing order of orientation as follows.
Consider an interval I = (θ0, θ1) ∈ I(O), and assume that we have processed all intervals
prior to I and are now about to process I. By definition of O, note that θ0 /∈ O. This
implies that either there is an edge e0 of P of orientation θ0 whose length is larger than 1,
or the longest chord of orientation θ0 has length at most 1. For the former case, there is
the previous interval I ′ ∈ I(O) that share the endpoint θ0 with I, and thus we have the
unit chord of orientation θ0 not lying on e0 when we process I. For the latter case, the
length of the longest chord of orientation θ0 is exactly 1 by Lemma 6. Thus, the longest
chord is the only unit chord of orientation θ0 and it can be specified when we compute I(O).
As θ increases from θ0 to θ1 over I, the endpoints of the unit chords of orientation θ move
continuously along ∂P for θ increasing in I by Lemma 6. So, we can trace the endpoints
of the unit chords of orientation θ and compute v-event orientations in I and v-intervals
induced by the orientations in order.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:7

(a) (b) (c) (d)

Figure 3 Two edge events and two vertex events where the feasibility of a top unit chord C (thick
segment) changes for θ increasing from θ1 in the interior of an interval of I(O). Assume θ1 = 0.
Each acute angle is marked with a circle. (a) An edge event where C becomes infeasible. (b) An
edge event where C becomes feasible. (c) A vertex event where C becomes feasible. (d) a vertex
event where C becomes infeasible.

For a v-interval I ′ determined during this tracing, we check whether there is an orientation
θ ∈ I ′ such that the two unit chords are aligned orthogonally, that is, the convex hull of the
two unit chords of orientation θ forms a unit histogon. Since the combinatorial structures of
the unit chords does not change in the v-interval, this can be done by solving an equation
defined for θ ∈ I ′ such that the equation has a solution if and only if the two unit chords are
aligned orthogonally. From the edges of P corresponding to the combinatorial structure of a
unit chord of orientation θ ∈ I, we can express the x-coordinate of an endpoint of the chord
as A sin(θ + B) + C using the law of sines, where A, B and C are constants. The equation
has O(1) solutions which can be found in O(1) time.

To sum up, we compute all v-event orientations and v-intervals in O(n + U) time. For
each of the O(n + U) v-intervals, we determine whether there is a unit histogon of type C of
an orientation in the v-interval in O(1) time. Thus, we compute all unit histogons of type C
in O(n + U) time.

▶ Lemma 7. We can compute the largest inscribed unit histogon of P that has four corner-
contacts (type C) in O(n + U) time using O(n) space.

3.3 Three corner-contacts (type D)
We denote by H̄∗ the largest inscribed unit histogon of type D in P and let θ∗ be the
orientation of its top and bottom sides. By Lemma 2, one corner of H̄∗ lies at a vertex of P

and the top or bottom side of H̄∗ are unit chords of orientation θ∗ in P .
We say a unit chord C of orientation θ ∈ O is feasible if there exists a unit histogon H̄ in

P of a positive height such that C is a top or bottom side of H̄. If C is the top side (or the
bottom side, respectively) of H̄, we call C a top (or a bottom, respectively) unit chord and
the orientation θ top feasible (or bottom feasible, respectively).

In the following, we consider the case that the top side of H̄∗ is a top feasible unit chord
and the bottom-left corner of H̄∗ lies on ∂P . The other cases in which the bottom-right
corner of H̄∗ lies on ∂P or the bottom side of H̄∗ is a bottom feasible unit chord can be
handled analogously. Our strategy is to trace the top feasible unit chord of orientation θ

while θ increases in each interval of I(O) and to find all unit histogons inscribed in P whose
top side coincides with a top unit chord.

Events and event orientations. As θ continuously increases over an interval I ∈ I(O), a
unit chord of orientation θ becomes feasible and infeasible at certain orientations in I. We
call each such orientation an f-event orientation. There are two types of f-event orientations
of a unit chord C. See Figure 3 for an illustration.

Edge event: C is orthogonal to an edge on which an endpoint of C lies.
Vertex event: An endpoint of C meets a vertex and both interior angles at the vertex of
the two subpolygons of P induced by C are acute.

FSTTCS 2022

13:8 Inscribing or Circumscribing a Histogon to a Convex Polygon

Then there is some ζ > 0 such that either C is infeasible at θ − ϵ but feasible at θ + ϵ for any
0 < ϵ ≤ ζ, or C is feasible at θ − ϵ but infeasible at θ + ϵ for any 0 < ϵ ≤ ζ.

Note that we can determine whether a unit chord is at f-event or v-event (defined in
Section 3.2) while tracing the endpoints of the unit chord. Thus, we can compute all f-event
orientations along with v-event orientations while tracing the two unit chords.

For a top feasible orientation θ, we denote by α(θ) the top unit chord of orientation θ and
let H̄(θ) be the largest unit histogon inscribed in P whose top side is α(θ). Let α1(θ) and
α2(θ) be the two endpoints of α(θ) that correspond to the top-right corner and the top-left
corner of H̄(θ), respectively.

By Lemma 6, α1(θ) and α2(θ) move continuously along ∂P as θ continuously increases
over the interval. Since P is convex, the endpoints of the two chords orthogonal to α(θ)
through α1(θ) and α2(θ) also move continuously along ∂P . Observe that H̄(θ) always has
at least one bottom corner at one endpoint of the orthogonal chords. When H̄(θ) has both
bottom corners at endpoints of the orthogonal chords, it has four corner-contacts (type C),
and H̄(θ − ε) has its bottom-left corner lying on ∂P and H̄(θ + ε) has its bottom-right corner
lying on ∂P (or in the opposite way) for sufficiently small ε.

Intervals containing no event orientations. We partition the intervals of I(O) by the
f-event orientations, v-event orientations, and the orientations where unit histogons of type C
are defined. Then we gather (partitioned) intervals I such that for any orientation θ ∈ I, θ is
a top feasible orientation and H̄(θ) has its bottom-left corner q(θ) on ∂P . The resulting set
of intervals is denoted by IL. The number of intervals in IL is O(n + U), and for an interval
I ∈ IL, the combinatorial structure of α(θ) remains the same for any orientation θ ∈ I.

Let u denote the topmost vertex of P . If there are more than one topmost vertex, let u

be the one with the largest x-coordinate. We claim that for any I ∈ IL and θ ∈ I, u, α2(θ)
and q(θ) appear in counterclockwise order along ∂P . When θ = 0, it clearly holds. Suppose
that u lies on ∂P [α2(θ), q(θ)] for some θ > 0. Since both interior angles, one at α2(θ) and
one at q(θ), in P [α2(θ), q(θ)] are smaller than π/2, the line of orientation θ passing through
u intersects ∂P (q(θ), α2(θ)) at a boundary point with y-coordinate larger than that of u, a
contradiction.

▶ Lemma 8. For any I1, I2 ∈ IL and any two orientations θ1 ∈ I1 and θ2 ∈ I2 with θ1 < θ2,
if q(θ2) ∈ ∂P (u, q(θ1)], then |H̄(θ2)| < |H̄∗|.

For any unit histogon H̄ of type D, we distinguish two further subcases: H̄ is of type
D1 if a corner incident to its top side lies on a vertex of P , or of type D2 if its bottom-left
corner lies on a vertex of P . For an illustration, see Figure 2. If H̄∗ is of type D1, θ∗ is an
endpoint of an interval of IL by definition of v-event in Section 3.2. If H̄∗ is of type D2,
q(θ∗) lies on a vertex of P . By Lemma 8, there is no θ ∈ I with I ∈ IL such that θ < θ∗ and
q(θ∗) ∈ ∂P (u, q(θ)].

Algorithm. Our algorithm processes the intervals of IL one by one in increasing order of
orientation, and computes H̄∗ as follows. It maintains a point w lying on ∂P to indicate
the portion ∂P [u, w] that has been processed so far. In the beginning, w is set to the
topmost vertex u. Let v(w) denote the counterclockwise neighbor vertex of w. The algorithm
processes an interval I ∈ IL as follows. Let θ0 and θ1 be the endpoints of I with θ0 < θ1. A
largest inscribed unit histogon of type D1 is computed in Step 1 and Step 3, and a largest
inscribed unit histogon of type D2 is computed in Step 2.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:9

Step 1. If θ0 is a top feasible orientation and q(θ0) ∈ ∂P [w, u), compute H̄(θ0) and update
w to q(θ0).

Step 2. Repeat the following if there is θ ∈ [θ0, θ1] such that q(θ) ∈ ∂P [v(w), u).
a. Find the smallest θ′ ∈ [θ0, θ1] such that v(w) is met by q(θ′), and compute H̄(θ′)

if such θ′ exists.
b. Update w to v(w).

Step 3. If θ1 is a top feasible orientation and q(θ1) ∈ ∂P [w, u), compute H̄(θ1) and update
w to q(θ1).

▶ Lemma 9. Our algorithm computes H̄∗ while processing the interval I of IL with θ∗ ∈ I.

Analysis. Now we analyze the running time of the algorithm. The algorithm processes
the intervals in IL in the increasing order, one by one. Recall that it computes f-event
orientations, v-event orientations, and orientations of unit histogons of type C while tracing
the unit chords of orientation θ as θ runs over each interval in I(O). They can be found in
the increasing order of orientation in O(n + U) time using O(n) space.

In Step 1, the algorithm checks whether q(θ0) ∈ ∂P [w, u) or not in O(1) time using α(θ0)
and w. If q(θ0) ∈ ∂P [w, u), it finds the edge where q(θ0) lies by checking the edges of P one
by one in counterclockwise order from the edge where w lies, and updates w to q(θ0). Thus,
Step 1 is done in time linear to the number of edges checked for updating w. Similarly, Step
3 can be done in the same time.

Now consider Step 2. The algorithm checks if there is an orientation θ ∈ [θ0, θ1] such
that q(θ) ∈ ∂P [v(w), u). This can be done in O(1) time as the combinatorial structure of
α(θ) has size O(1) for θ ∈ [θ0, θ1]. If there exists such an orientation, the algorithm finds
the smallest θ′ ∈ [θ0, θ1] such that v(w) is met by q(θ′), and updates w to v(w). This also
takes O(1) time as the corresponding combinatorial structure has size O(1). Then Step 2
can be done in time linear to the number of vertices checked for updating w. Note that w

is updated to a point in ∂P [w, u), and then the edges and vertices we check to update w

change monotonically on ∂P in counterclockwise direction. Thus, the algorithm checks the
edges and vertices of P for updating w in O(n) time plus the time linear to the number of
intervals in IL. Since there are O(n + U) intervals in IL, the algorithm finds H̄∗ in O(n + U)
time using O(n) space.

▶ Lemma 10. We can compute the largest inscribed unit histogon of P that has three
corner-contacts (type D) in O(n + U) time using O(n) space.

We have shown how to find the largest inscribed unit histogons in P for types A, B, C
and D. Taken together, we choose the largest one among them as the largest inscribed unit
histogon in P . From Lemmas 3, 7, and 10, we have the following theorem.

▶ Theorem 11. We can determine whether there is an inscribed unit histogon with positive
height in P in O(n) time. If exists, we can find a largest inscribed unit histogon in P in
O(n log n + U) time using O(n) space, where U is the number of intersections between the
unit disks centered at the vertices of P and the edges of P .

▶ Remark. One may wonder whether there are convex polygons with n vertices for which
the number of v-intervals is Ω(n2). We show how to construct such a convex polygon in
Figure 4. The polygon has roughly ⌊ n

2 ⌋ vertices that are very close to each other and roughly
⌊ n

2 ⌋ edges each of which contains a point at distance 1 from those vertices as shown in the
figure. Thus, there are Ω(n2) feasible unit chords with different combinatorial structures.

FSTTCS 2022

13:10 Inscribing or Circumscribing a Histogon to a Convex Polygon

⌊n
2 ⌋ edges ⌊n

2 ⌋ vertices

Figure 4 There can be Ω(n2) v-event orientations.

4 Improved algorithms for a largest inscribed unit histogon

In this section, we assume that there exists a unit histogon of height δ inscribed in P for
some 0 < δ < 1. Under this assumption, we show that a largest inscribed unit histogon in P

can be computed in O(n log n + n/δ) time, independent of the quantity U .
First, we show that there are O(n) f-event orientations in total while θ increases from 0

to π, and that all f-event orientations can be computed in O(n log n) time.

▶ Lemma 12. There are O(n) f-event orientations in total.

Proof. There are at most two unit chords that are orthogonal to each edge of P . Thus there
are O(n) edge events.

Now we count the number of vertex events on a vertex v. Suppose that there are three
vertex events on v, induced by unit chords C1, C2 and C3 in increasing order of orientation.
By definition, the orientations of C1, C2 and C3 are all in O. Observe that both interior
angles at v of the subpolygons of P induced by C1 are acute. The same holds for C2 and C3.

Let Pj be the subpolygon of P induced by C2 that contains Cj for j = 1, 3. Let ℓ be the
line containing the edge where the endpoint of C2, other than its endpoint lying on v, lies.
See Figure 5(a). Then ℓ does not intersect the interior of C3. Since the isosceles triangle with
two sides C2 and C3 has an acute angle at its base corners, the sum of the interior angles
at the endpoints of C2 in P1 (ϕ1 + ϕ2 in Figure 5(a)) is strictly smaller than π. Similarly
the sum of the interior angles at the endpoints of C2 in P3 is strictly smaller than π. Then
C2 is the longest chord contained in P at the orientation of C2. This contradicts that the
orientation of C2 is in O. Recall that an orientation θ is an element of O if the longest chord
of orientation θ in P has length larger than 1. Thus there are at most two vertex events on a
vertex and there are O(n) vertex events in total. ◀

We show how to find all O(n) f-events in O(n log n) time. The authors in the previous

P1 C1

C2

C3

(a)

v

ℓ

ϕ1
ϕ2

ϕ′

ϕ3

e′

e

s

s′

v

(b)

P3

1

1

u

u′

Figure 5 (a) ϕ′ < π/2 and ϕ3 < π/2 (acute). Since ℓ does not intersect the interior of C3,
ϕ′ + ϕ1 ≤ π = ϕ3 − ϕ2 + 2ϕ′. ϕ1 + ϕ2 ≤ ϕ′ + ϕ3 < π. (b) Circular arc queries for finding vertex
event orientations.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:11

paper [12] showed that two unit chords of a fixed orientation can be found in O(log n) time
by binary search using the sorted list of vertices of P . For each edge of P , we can find all
unit chords which are incident and orthogonal to the edge in O(log n) time. Thus we can
find all edge events in O(n log n) time.

There are at most two vertex events on a vertex as shown in the proof of Lemma 12.
To find them, we construct a data structure supporting circular ray shooting queries on P

such that for a directed query arc of a circle with a start point and a direction (clockwise or
counterclockwise), it finds the first intersection between the arc and ∂P . Cheng et al. [9] gave
a hierarchical decomposition of a simple polygon for circular ray shooting queries of a fixed
radius with O(n log n) construction time and O(n) space that supports O(log n) query time.
For a vertex v of P , let e and e′ be the edges incident to v such that e′ is the counterclockwise
neighbor of v. For any line tangent to P at v, let s and s′ be the points lying in the side
of the tangent line containing P such that they are at distance 1 from v and the segments
sv and s′v are orthogonal to e and e′, respectively. See Figure 5(b) for an illustration. We
perform two circular arc queries, one with the counterclockwise arc of the unit circle centered
at v from s and the other with the clockwise arc of the unit circle centered at v from s′, in
O(log n) time, and get the first intersections u and u′ of the arcs with ∂P . Then we check
whether a vertex event occurs at the orientations of two unit chords vu and vu′. Thus we
can find all vertex events in P in O(n log n) time.

Let OT be the set of all top feasible orientations, and OB be the set of all bottom feasible
orientations. Note that OT and OB induce intervals contained in O and their endpoints are
f-events by definition. Let I(OT) and I(OB) be the set of intervals induced by OT and OB ,
respectively. By Lemma 12, there are O(n) intervals in I(OT) and I(OB). For a top feasible
orientation θ ∈ OT , let H̄(θ) be the largest unit histogon inscribed in P with top side lying
on the top unit chord of orientation θ. Let I ∈ I(OT) be an interval with endpoints θ0, θ1
satisfying θ0 < θ1. For any θ ∈ I, the top side α(θ) = α1(θ)α2(θ) of H̄(θ) is a unit chord,
and moves continuously as θ continuously increases in I by Lemma 6. Hence, its limits at
the endpoints θ0 and θ1 are well defined as α(θ0) and α(θ1), so we can discuss the top side
α(θ) over all θ ∈ cl(I) in the closure of each interval I ∈ I(OT), including its endpoints.

It is possible that two consecutive intervals I, I ′ ∈ I(OT) share an endpoint θ′, while
θ′ belongs to none of I and I ′. In this case, the limits of α(θ) at θ′ over I and I ′ may not
agree. In the following, we handle each interval of I(OT) separately in order, so we abuse a
notation to mean α(θ′) by the limit over the interval we are currently handling. This will be
clear from context.

4.1 Orientations dominated by other orientations
Let C(θ) denote ∂P [α1(θ), α2(θ)] for an orientation θ ∈ cl(I) with I ∈ I(OT). Since the
interior angles at the endpoints of α(θ) in P [α2(θ), α1(θ)] are at least π/2, the endpoints of
α(θ) move continuously along ∂P in counterclockwise direction as θ continuously increases
in I. This implies that C(θ) ̸⊆ C(θ′) and C(θ′) ̸⊆ C(θ) for any θ, θ′ ∈ cl(I) with θ ̸= θ′.

▶ Observation 13. For I ∈ I(OT) and θ ̸= θ′ ∈ cl(I), we have C(θ) ̸⊆ C(θ′) and C(θ′) ̸⊆ C(θ).

▶ Lemma 14. For I, I ′ ∈ I(OT) with I ̸= I ′, θ ∈ cl(I), and θ′ ∈ cl(I ′), it holds that
|H̄(θ)| < |θ − θ′| if C(θ) ⊆ C(θ′).

For I, I ′ ∈ I(OT) with I ̸= I ′, θ ∈ cl(I), and θ′ ∈ cl(I ′), we say θ is δ-dominated by θ′ (or
θ′ δ-dominates θ) if C(θ) ⊆ C(θ′) and |θ − θ′| ≤ δ. By Observation 13, θ and θ′ are contained
in two distinct intervals of I(OT) if θ δ-dominates θ′ or θ′ δ-dominates θ. If θ is δ-dominated

FSTTCS 2022

13:12 Inscribing or Circumscribing a Histogon to a Convex Polygon

by θ′, we have |H̄(θ)| < δ by Lemma 14. Observe, however, that there can be orientations
θ′′ ∈ OT with |H̄(θ′′)| < δ that are not dominated by any other orientations contained in an
interval of I(OT). We use the following lemma to determine whether an orientation θ ∈ I is
δ-dominated by another orientation θ′ ∈ I ′ for I, I ′ ∈ I(OT).

▶ Lemma 15. Let θ1, θ2, θ be three orientations, each contained in the closure of an interval
in I(OT), with θ1 < θ < θ2 or θ2 < θ < θ1. Suppose that C(θ1) ̸⊆ C(θ) and C(θ) ̸⊆ C(θ1).
Then, we have C(θ) ⊆ C(θ2) if C(θ1) ⊆ C(θ2), and C(θ2) ⊆ C(θ) if C(θ2) ⊆ C(θ1).

Lemma 15 provides us a tool to infer the δ-dominance relation over orientations in each
interval of OT , namely, if θ1 is δ-dominated by θ2, then θ is also δ-dominated by θ2, and
if θ2 is δ-dominated by θ1, then θ2 is also δ-dominated by θ. We use this, together with
Observation 13 and Lemma 14, to remove as much δ-dominated orientations as possible from
each interval in I(OT), resulting in relevant subintervals.

Removing δ-dominated orientations. Let I, I ′ ∈ I(OT) be two distinct intervals with
cl(I) = [θ0, θ1] and cl(I ′) = [θ′

0, θ′
1] such that an orientation θ ∈ cl(I) is δ-dominated by

an orientation θ′ ∈ cl(I ′). By Lemma 15, every orientation in [θ, θ1] is δ-dominated by θ′
0

if θ < θ′, and every orientation in [θ0, θ] is δ-dominated by θ′
1 if θ > θ′. Thus, we can

determine whether an orientation is δ-dominated by another orientation using the endpoints
of intervals in I(OT). Moreover, the set of orientations in I which are not δ-dominated by
other orientations appears as a subinterval of I unless it is empty.

In the following, we describe how to remove δ-dominated orientations from the intervals
of I(OT). Note that this procedure does not remove all δ-dominated orientations but the
δ-dominated orientations that remain after the procedure have some property as shown in
Lemma 16. We process the intervals of I(OT) one by one in increasing order of orientation.
In the course, we maintain a sequence L of (sub)intervals that have been processed so far
after removing the orientations δ-dominated by some other orientations in the closure of an
interval of I(OT). Initially, L is set to an empty list.

Imagine that we have processed the first i intervals of I(OT) and we are about to process
the (i + 1)-th interval I of I(OT) with cl(I) = [θ0, θ1]. Let L = ⟨[θ1

0, θ1
1], [θ2

0, θ2
1], . . . , [θm

0 , θm
1]⟩

be the sequence of intervals that have been processed so far. If L is empty, we simply append
cl(I) into L. Otherwise, we update L by removing (sub)intervals of L or a (sub)interval of
cl(I) consisting of the orientations δ-dominated by other orientations by the following rules.
If θ0 = θm

1 , we set θm
1 to be θm

1 − ε for infinitesimally small ε > 0 temporarily whenever we
check the δ-dominance between θ0 and θm

1 .

Rule 1. If θ0 and θm
1 do not δ-dominate each other, append cl(I) = [θ0, θ1] to L.

Rule 2. If θm
1 is δ-dominated by θ0,

a. find the smallest integer 0 < j ≤ m such that θj
1 is δ-dominated by θ0,

b. find the smallest orientation r ∈ [θj
0, θj

1] such that r is δ-dominated by θ0,
c. remove [θj

0, θj
1], [θj+1

0 , θj+1
1], . . . , [θm

0 , θm
1] from L, and

d. append [θj
0, r] to L if θj

0 < r, and then append cl(I) = [θ0, θ1] to L.
Rule 3. If θ0 is δ-dominated by θm

1 ,
a. find the largest orientation r ∈ [θ0, θ1] such that r is δ-dominated by θm

1 , and
b. append [r, θ1] to L if r < θ1.

After removing δ-dominated orientations from the intervals of I(OT) by the procedure
above, the list L consists of O(n) intervals and has the following property.

▶ Lemma 16. For any two orientations θ, θ′ contained in some intervals of L, |θ − θ′| = δ

if θ is δ-dominated by θ′.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:13

Analysis. We maintain the list L of intervals in increasing order of orientation. Let
I ∈ I(OT) with cl(I) = [θ0, θ1] be the interval that we are about to process for L =
⟨[θ1

0, θ1
1], [θ2

0, θ2
1], . . . , [θm

0 , θm
1]⟩. The last interval [θm

0 , θm
1] of L can be found in O(1) time. We

can check if Rule 1 applies and append [θ0, θ1] to L in O(1) time. When Rule 2 applies, we
find all intervals [θ′

0, θ′
1] in L such that θ′

1 is δ-dominated by θ0 by checking the intervals
in L one by one in decreasing order of orientation. By Lemma 15, those intervals form a
contiguous subsequence ⟨[θj

0, θj
1], [θj+1

0 , θj+1
1], . . . , [θm

0 , θm
1]⟩ of L. We remove them from L in

time linear to the number of removed intervals. Then we find the smallest orientation r in
[θj

0, θj
1] such that r is δ-dominated by θ0. If θj

0 < r, then either it holds that |θ0 − r| = δ

or C(θ0) and C(r) share the common endpoint α1(θ0) = α1(r). In the former case, we find
r ∈ [θj

0, θj
1] such that |θ0 − r| = δ in O(1) time. In the latter case, we find α2(r) using a

circular arc query in O(log n) time with the directed arc of unit circle centered at α1(θ0),
since there is at most one orientation θ in [θj

0, θj
1] such that α1(θ) = α1(θ0). When Rule 3

applies, we find the largest orientation r ∈ [θ0, θ1] such that r is δ-dominated by θm
1 for the

last interval [θm
0 , θm

1] in L using a circular arc query in O(log n) time. Since there are O(n)
intervals in I(OT), we can process them in O(n log n) time using O(n) space.

4.2 Orientations θ with |H̄(θ)| = δ.
Let I be an interval in L. Observe that the height of H̄(θ) is positive and changes continuously
as θ continuously increases in I since the endpoints of α(θ) and the two chords orthogonal
to α(θ) through α1(θ) and α2(θ) move continuously along ∂P by Lemma 6. We call each
orientation θ ∈ I such that |H̄(θ)| = δ a δ-event orientation. The set of δ-event orientations in
I partitions I into subintervals I ′ such that either |H̄(θ)| < δ for all θ ∈ int(I ′) or |H̄(θ)| > δ

for all θ ∈ int(I ′).

Finding δ-event orientations. We find all δ-event orientations contained in intervals of L

as follows. A rectangle R of an orientation θ ∈ [0, π) is a copy of an axis-aligned rectangle R̄

obtained by rotating R̄ by θ in counterclockwise direction. The width of R is the width of R̄,
and the top and bottom sides of R are the ones corresponding to the top and bottom sides
of R̄, respectively.

First, we compute two lists LT and LB of intervals in addition to L. We compute the set
Oδ

T of orientations θ such that the largest inscribed δ-width rectangle of orientation θ with
top side lying on a chord of length δ has a positive height. Then we remove orientations θ ∈ I

such that |θ − θ′| ≤ 1/δ and ∂P [γ1(θ), γ2(θ)] ⊆ ∂P [γ1(θ′), γ2(θ′)] for some other orientation
θ′ ∈ I ′ for I, I ′ ∈ I(Oδ

T), where γ1(θ)γ2(θ) is the top chord of length δ and orientation θ in
P . This can be done by using the same procedure for computing L. Then we obtain LT

from the intervals of I(Oδ
T). Similarly, we compute LB from the set of orientations θ such

that the largest inscribed δ-width rectangle of orientation θ with bottom side lying on a
chord of length δ has a positive height.

If |H̄(θ)| = δ and H̄(θ) has the bottom-left corner lying on ∂P for some θ ∈ OT , the
largest inscribed δ-width rectangle of orientation θ + π/2 with top side lying on a chord of
length δ has height 1, and thus θ + π/2 is contained in an interval of LT . Similarly, θ − π/2
is contained in an interval of LB if |H̄(θ)| = δ and H̄(θ) has the bottom-right corner lying
on ∂P with height δ. Therefore, to compute δ-event orientations, we process the intervals of
L, LT and LB in increasing order of orientation. For an interval I ∈ L, we can compute all
v-event orientations in I corresponding to top unit chords and the subintervals into which I

is partitioned by the v-event orientations. We can also compute the subintervals of LT and

FSTTCS 2022

13:14 Inscribing or Circumscribing a Histogon to a Convex Polygon

LB using v-event orientations corresponding to top chords of length δ. Those subintervals
are computed in increasing order of orientation and the combinatorial structure of the top
chord (of length 1 or δ) of orientations θ is invariant for any θ contained in an interval.

Whenever a subinterval I = [θ0, θ1] of L is identified by a v-event orientation, we check if
there is an orientation θ ∈ I such that |H̄(θ)| = δ. Let I ′ be the subinterval of LT containing
θ0 + π/2, among those partitioned by the v-event orientations for the top chords of length δ.
Using the combinatorial structures of the top unit chord of orientation θ ∈ I and the top
chord of length δ in I ′, we can build an equation that has a solution θ′ ∈ I if and only if
|H̄(θ′)| = δ. By solving the equation, we compute all orientations θ in I such that |H̄(θ)| = δ

and H̄(θ) has the bottom-left corner lying on ∂P . We also compute all δ-event orientations
θ in I such that H̄(θ) has the bottom-right corner lying on ∂P using I = [θ0, θ1] and the
subinterval of LB containing θ0 − π/2. Similarly, whenever a subinterval of Lπ/2 or L−π/2 is
identified by a v-event orientation, we compute all δ-event orientations in the subinterval.
After processing all subintervals of L, LT and LB , we obtain all δ-event orientations.

δ-feasible subintervals. We partition the intervals of I(OT) into subintervals by δ-event
orientations. Then we can obtain the set of subintervals I ′ such that θ is a top feasible
orientation and |H̄(θ)| ≥ δ for all θ ∈ I ′. Similarly, we obtain the set of subintervals I ′′

from I(OB) such that θ is a bottom feasible orientation and |H̄(θ)| ≥ δ for all θ ∈ I ′′. We
apply the algorithms for computing the largest inscribed unit histogons in P of types C
(Section 3.2) and D (Section 3.3) with the subintervals of I(OT) and I(OB) induced by
δ-event orientations, instead of the intervals of I(O).

Analysis. Consider two orientations θ1 and θ2, each contained in an interval of L, such
that both α1(θ1) of α(θ1) and α1(θ2) of α(θ2) lie on the same vertex of P . By Lemma 16,
|θ1 − θ2| ≥ δ since C(θ1) ⊆ C(θ2) or C(θ2) ⊆ C(θ1). Thus, for each vertex of P , there are
O(1/δ) orientations in the intervals of L at which the top unit chord has its endpoint at
the vertex. So there are O(n/δ) v-event orientations in the intervals of L. Similarly, we can
show that the number of v-event orientations in the intervals of LT and LB is O(δn) = O(n)
since δ < 1. Then, the total number of subintervals of L, LT and LB induced by v-event
orientations is O(n/δ). Given L, LT and LB, we can compute the subintervals in O(n/δ)
time while tracing the top chords (of length 1 or δ) in P .

Recall that the combinatorial structure of chords (of length 1 or δ) of orientations in
the interior of a subinterval remains the same. Then the equation for computing δ-event
orientations is of the form sin(θ + A) + B = δ sin(θ + C) using the law of sines, where A, B

and C are all constants. Thus, the equation can be solved in O(1) time, resulting in O(1)
solutions that correspond to δ-event orientations. Since there are O(n/δ) pairs of subintervals
of L and LT (and L and LB) which overlap each other, there are O(n/δ) δ-event orientations
in the intervals of I(OT) and they can be computed in O(n/δ) time.

We compute L, LT and LB in O(n log n) time and the δ-event orientations in O(n/δ)
time using O(n) space. Moreover, the subintervals of I(OT) induced by δ-event orientations
have O(n/δ) v-event orientations in total. Thus, the running time of the algorithms for
computing the largest histogon of types C and D in P decreases to O(n log n + n/δ) if we
use the subintervals of I(OT) and I(OB) induced by δ-event orientations, instead of the
intervals of I(O).

▶ Theorem 17. Suppose there is a unit histogon of height δ inscribed in P for δ < 1. A
largest inscribed unit histogon in P can be computed in O(n log n + n/δ) time and O(n) space.

J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:15

Our algorithm works under the assumption that there exists a unit histogon contained in
P whose height is at least δ, while it can be used to test the existence for any 0 < δ < 1.
Given δ as input, if there exists such a histogon, then Theorem 17 applies and our algorithm
returns a largest inscribed unit histogon in P . Otherwise, if not, all orientations in OT and
OB are removed by the δ-dominance relation or there is no δ-event orientation. Hence, this
case can be identified when the list L is turned to be empty or when no δ-event orientation is
identified. In the former case, it is obvious that there is no unit histogon of height at least δ.
In the latter case, the height of the unit histogon H̄(θ) is either larger than δ for all θ ∈ OT

or smaller than δ for all θ ∈ OT . Thus, by picking one orientation θ from OT and computing
H̄(θ), one can check which case this is.

▶ Corollary 18. Given 0 < δ < 1, one can determine whether there exists an inscribed unit
histogon with height δ in P in O(n log n + n/δ) time using O(n) space.

Note that we can compute a largest inscribed unit histogon in O(n log n) time if its height
h is Ω(1/ log n) by setting δ = 1/ log n in Corollary 18 and Theorem 17. Otherwise, we can
get an output-sensitive algorithm for finding a largest inscribed unit histogon as follows. We
search a value h0 with 0 < h0 ≤ h for the height h of a largest inscribed unit histogon using
Corollary 18 with a sequence of δ values, δi = 2−2i for i = 0, 1, . . . , ⌈log log(1/h)⌉. Then
we apply Theorem 17 with h0. Observe that 2−2m ≤ h < 2−2m−1 for some nonnegative
integer m. Then m < log log(1/h) + 1 and 2−2m

> h2. This results in running time
O(n log n log log(1/h) + n/h2). We can even improve it by starting with the test value δj

such that δj < 1/ log n ≤ δj−1, concluding the following.

▶ Corollary 19. Let h be the height of a largest inscribed unit histogon in P . A largest
inscribed unit histogon in P can be computed in O(n log n) time if h = Ω(1

log n), or in
O(n log n log log 1

h log n + n
h2) time, otherwise.

5 Largest inscribed histogon and smallest circumscribed histogon

We also considered three optimization problems for a convex polygon P with n vertices. The
term T (m) appearing in the running times in the following denotes the time complexity of
the optimization step for the trigonometric expression with O(m) terms, each of quadratic
form. Barequet and Rogol [4] observed that T (m) = O(m) in practice.

Largest inscribed k-histogon. Given a positive integer k > 1, find a largest k-histogon
of arbitrary orientation inscribed in P . We present an algorithm for this problem that
runs in O(kn2(log n + kT (min{k, n}))) time using O(min{k, n}n) space.
Largest inscribed histogon. Find the largest histogon of arbitrary orientation inscribed
in P . We present an algorithm for this problem that runs in O(Dn2(log n+T (min{D, n})))
time using O(min{D, n}n) space, where D denotes the diameter of P .
Smallest circumscribed histogon. Find the smallest histogon of arbitrary orient-
ation circumscribed to P . We present an algorithm for this problem that runs in
O(Dn(log(min{D, n}) + T (min{D, n}))) time using O(n) space, where D denotes the
diameter of P .

References
1 Alok Aggarwal, Maria M Klawe, Shlomo Moran, Peter Shor, and Robert Wilber. Geometric

applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.
2 Hee-Kap Ahn, Sang Won Bae, Otfried Cheong, and Joachim Gudmundsson. Aperture-

angle and hausdorff-approximation of convex figures. Discrete & Computational Geometry,
40(3):414–429, 2008.

FSTTCS 2022

13:16 Inscribing or Circumscribing a Histogon to a Convex Polygon

3 Hee-Kap Ahn, Peter Brass, Otfried Cheong, Hyeon-Suk Na, Chan-Su Shin, and Antoine
Vigneron. Inscribing an axially symmetric polygon and other approximation algorithms for
planar convex sets. Computational Geometry, 33(3):152–164, 2006.

4 Gill Barequet and Vadim Rogol. Maximizing the area of an axially symmetric polygon inscribed
in a simple polygon. Computers & Graphics, 31(1):127–136, 2007.

5 Binay Bhattacharya and Asish Mukhopadhyay. On the minimum perimeter triangle enclosing
a convex polygon. In Proc. Japanese Conference on Discrete and Computational Geometry
(JCDCG 2002), pages 84–96, 2002.

6 Sergio Cabello, Otfried Cheong, Christian Knauer, and Lena Schlipf. Finding largest rectangles
in convex polygons. Computational Geometry, 51:67–74, 2016.

7 Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr. Survey on coverage path
planning with unmanned aerial vehicles. Drones, 3(1), 2019.

8 Jyun-Sheng Chang and Chee-Keng Yap. A polynomial solution for the potato-peeling problem.
Discrete & Computational Geometry, 1(2):155–182, 1986.

9 Siu-Wing Cheng, Otfried Cheong, Hazel Everett, and Rene Van Oostrum. Hierarchical
decompositions and circular ray shooting in simple polygons. Discrete & Computational
Geometry, 32(3):401–415, 2004.

10 Yujin Choi, Seungjun Lee, and Hee-Kap Ahn. Maximum-area and maximum-perimeter
rectangles in polygons. Computational Geometry, 94:101710, 2021.

11 Howie Choset. Coverage for robotics – A survey of recent results. Annals of Mathematics and
Artificial Intelligence, 31:113–126, October 2001.

12 Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duck Yoon, and Hee-Kap Ahn. Approx-
imating convex polygons by histogons. In Proc. 34th Canadian Conference on Computational
Geometry (CCCG 2022), 2022.

13 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications, chapter Point Location, pages 121–146. Springer-
Verlag TELOS, 3rd edition, 2008.

14 A DePano, Yan Ke, and Joseph O’Rourke. Finding largest inscribed equilateral triangles
and squares. In Proc. 25th Allerton Conference on Communications, Control and Computing,
pages 869–878, 1987.

15 Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics. Robotics
and Autonomous Systems, 61(12):1258–1276, 2013.

16 Martin Held. On the Computational Geometry of Pocket Machining. Lecture Notes in
Computer Science. Springer Verlag, 1991.

17 Kai Jin and Kevin Matulef. Finding the maximum area parallelogram in a convex polygon. In
Proc. 23rd Canadian Conference on Computational Geometry (CCCG 2011), 2011.

18 Christian Knauer, Lena Schlipf, Jens M Schmidt, and Hans Raj Tiwary. Largest inscribed
rectangles in convex polygons. Journal of discrete algorithms, 13:78–85, 2012.

19 Seungjun Lee, Taekang Eom, and Hee-Kap Ahn. Largest triangles in a polygon. Computational
Geometry, 98:101792, 2021.

20 Elefterios A. Melissaratos and Diane L. Souvaine. On solving geometric optimization problems
using shortest paths. In Proc. 6th Annual Symposium on Computational Geometry (SCG ’90),
pages 350–359, 1990.

21 Joseph O’Rourke, Alok Aggarwal, Sanjeev Maddila, and Michael Baldwin. An optimal
algorithm for finding minimal enclosing triangles. Journal of Algorithms, 7(2):258–269, 1986.

22 Christian Schwarz, Jürgen Teich, Alek Vainshtein, Emo Welzl, and Brian L. Evans. Minimal
enclosing parallelogram with application. In Proc. 11th Annual Symposium on Computational
Geometry (SCG ’95), pages 434–435, 1995.

23 Godfried Toussaint. Solving geometric problems with the rotating calipers. In Proc. Mediter-
ranean Electrotechnical Conference (MELECON’83), 1983.

24 Ivor van der Hoog, Vahideh Keikha, Maarten Löffler, Ali Mohades, and Jérôme Urhausen.
Maximum-area triangle in a convex polygon, revisited. Information Processing Letters,
161:105943, 2020.

More Verifier Efficient Interactive Protocols for
Bounded Space
Joshua Cook ! Ï

University of Texas at Austin, TX, USA

Abstract
Let TISP[T, S], BPTISP[T, S], NTISP[T, S] and CoNTISP[T, S] be the set of languages recog-
nized by deterministic, randomized, nondeterministic, and co-nondeterministic algorithms, respect-
ively, running in time T and space S. Let ITIME[TV , TP] be the set of languages recognized by an
interactive protocol where the verifier runs in time TV and the prover runs in time TP .

For S = Ω(log(n)) and T constructible in time log(T)S + n, we prove:

TISP[T, S] ⊆ITIME[Õ(log(T)S + n), 2O(S)] (1)

BPTISP[T, S] ⊆ITIME[Õ(log(T)S + n), 2O(S)] (2)

NTISP[T, S] ⊆ITIME[Õ(log(T)2S + n), 2O(S)] (3)

CoNTISP[T, S] ⊆ITIME[Õ(log(T)2S + n), 2O(S)]. (4)

The best prior verifier time is from Shamir [21, 11]:

TISP[T, S] ⊆ITIME[Õ(log(T)(S + n)), 2O(log(T)(S+n))].

Our prover is faster, and our verifier is faster when S = o(n).
The best prior prover time uses ideas from Goldwasser, Kalai, and Rothblum [9]:

NTISP[T, S] ⊆ ITIME[Õ(log(T)S2 + n), 2O(S)].

Our verifier is faster when log(T) = o(S), and for deterministic algorithms.
To our knowledge, no previous interactive protocol for TISP simultaneously has the same verifier

time and prover time as ours. In our opinion, our protocol is also simpler than previous protocols.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Interactive Proofs, Verifier Time, Randomized Space, Nondeterministic
Space, Fine Grain Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.14

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/093/

Funding Funded by NSF grant number 1705028 and 2200956.

Acknowledgements Thanks to Dana Moshkovitz for suggestions on writing and presentation, and
Tayvin Otti for spellchecking.

1 Introduction

One of the most celebrated results of computer science is the proof that IP = PSPACE
[21, 11]. Any language computable in polynomial space can be verified in polynomial time by
a verifier with access to randomness and an untrusted, computationally unbounded prover.

Interactive proofs have many applications, for example proving circuit lower bounds for
MA/1 [19], and for NQP [14]. More verifier time efficient PCPs [13] improve the results
of [19]. Even pseudo random generators [5] use interactive proofs [9].

© Joshua Cook;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jac22855@utexas.edu
https://www.cs.utexas.edu/~jacook7/
https://orcid.org/0000-0002-4851-7573
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.14
https://eccc.weizmann.ac.il/report/2022/093/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 More Verifier Efficient Interactive Protocols for Bounded Space

The previous best verifier time in an interactive protocol for an algorithm running in time
T and space S was by Shamir [21], whose verifier runs in time Õ(log(T)S) for S = Ω(n). We
improve this result to apply to any log(T)S = Ω(n). Our prover is also more efficient. For
instance, if S =

√
n and T = 2

√
n, then we show that

TISP[2
√

n,
√
n] ⊆ ITIME[Õ(n), 2O(

√
n)],

while Shamir only gives

TISP[2
√

n,
√
n] ⊆ ITIME[Õ(n1.5), 2O(n1.5)].

That is, our verifier only requires time Õ(n), but Shamir’s requires time Õ(n1.5). Our prover
only requires time 2O(

√
n), but Shamir’s requires time 2O(n1.5).

The previous best prover time in an interactive protocol for an algorithm running in time
T and space S was by Goldwasser, Kalai and Rothblum [9], whose prover runs in a similar
time to ours, but whose verifier requires time log(T)S2. We improve the verifier time by
making the quadratic dependence on S linear. If T = poly(S), our protocol improves the
verifier time from Õ(S2) to Õ(S). If T = 2O(S), our protocol improves the verifier time from
Õ(S3) to Õ(S2).

Our results prove a more direct, more efficient, and (in our opinion) simpler protocol
than that given in [21] using sum check [11]. We use a reduction to matrix exponentiation
instead of quantified Boolean formulas, and a direct arithmetization of the algorithm instead
of a Boolean formula. We then apply this protocol to the special cases of deterministic,
randomized, and nondeterministic algorithms.

1.1 Results
Let ITIME[TV , TP] be the class of languages computed by an interactive protocol where the
verifier runs in time TV and the prover runs in time TP . Similarly, let ITIME1[TV , TP] be
the same with perfect completeness. Let TISP[T, S] be the class of languages computable
in simultaneous time T and space S. Our first result is:

▶ Theorem 1 (Efficient Interactive Protocol For TISP). Let S and T be computable in time
Õ(log(T)S + n) with S = Ω(log(n)). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T)S + n), 2O(S)].

Our protocol has several other desirable properties. The verifier only needs space Õ(S).
This protocol is also public coin, non adaptive, and unambiguous (as described in [16]). This
protocol can also verify an O(log(T)S + n) bit output, not just membership in a language.

We note that L ∈ ITIME1[TV , TP] implies that L ∈ SPACE[O(TV)], since a prover
can find an optimal prover strategy in a space efficient way. Thus our dependence on S is
essentially optimal. It is open whether one can remove the log(T) factor.

Using Nisan’s PRG for bounded space [15], we extend Theorem 1 to get a similar result
for randomized bounded space algorithms. Let BPTISP[T, S] be the class of languages
computable in simultaneous randomized time T and space S.

▶ Theorem 2 (Efficient Interactive Protocol For BPTISP). Let S and T be computable in
time Õ(log(T)S + n) with S = Ω(log(n)). Then

BPTISP[T, S] ⊆ ITIME[Õ(log(T)S + n), 2O(S)].

J. Cook 14:3

If one tries to use Nisan’s PRG with Shamir’s protocol, you increase the input size to
log(T)S, which gives a time Õ(log(T)2S + log(T)n) verifier. One can also use Saks and
Zhou [18] to reduce BPSPACE[S] to SPACE[S1.5], then apply an IP, but this also only
gives a time S3 verifier.

The protocol used for Theorem 1 internally counts the number of accepting paths in a
nondeterministic algorithm, modulo a prime. By appropriately sampling a prime, we can get
an efficient interactive protocol for NTISP.

▶ Theorem 3 (Efficient Interactive Protocol For NTISP). Let S and T be computable in
time Õ(log(T)2S + n) with S = Ω(log(n)). Then

NTISP[T, S] ∪ CoNTISP[T, S] ⊆ ITIME1[Õ(log(T)2S + n), 2O(S)].

While NSPACE[O(S)] = Co − NSPACE[O(S)] [10, 23], the same result is not known
for time bounded computation. So the case for NTISP and CoNTISP are both interesting
and potentially different.

This version of the paper only proves the protocol for deterministic space. To see the rest
of the proofs, see the full paper [6].

1.2 Related Work
This work builds on techniques used by Lund, Fortnow, Karloff and Nisan [11] to prove that
#P ∈ IP and extended by Shamir [21] to show that PSPACE = IP. Shamir used Savitch’s
theorem [20] to reduce space bounded computation to a quantified Boolean formula, and
then gave a sum check similar to [11] to verify it.

Although it was not shown, the bounded space variation of Shamir’s protocol (given at
the end of [21]) can be implemented time efficiently for the verifier. 1

▶ Theorem 4 (Shamir’s Protocol). Let S and T be time Õ(log(T)(S + n)) computable with
S = Ω(log(n)). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T)(S + n)), 2O(log(T)(S+n))].

One can extend Shamir’s protocol to nondeterministic algorithms using other ideas in
the same paper to get

▶ Theorem 5 (Shamir’s Protocol for Nondeterministic Algorithms). Let S and T be time
Õ(log(T)2(S + n)) computable with S = Ω(log(n)). Then

NTISP[T, S] ⊆ ITIME1[Õ(log(T)2(S + n)), 2O(log(T)(S+n))].

It is not clear from Shamir’s work how to get an efficient prover, or how to handle the case
where S = o(n).

Shen [22] gave a highly influential variation of Shamir’s proof that is frequently taught
(for instance [1]). Shen’s result gives a less efficient verifier. Meir gave a proof that IP =
PSPACE [12] which uses a different kind of sum check with a different kind of code. Or
Meir’s approach also does not improve the verifier time, but introduces useful techniques [17].

1 Shamir’s reduction from general quantified Boolean formulas is not this efficient. The low space or time
for the verifier uses the specific form given by the reduction from bounded space to a quantified Boolean
formula.

FSTTCS 2022

14:4 More Verifier Efficient Interactive Protocols for Bounded Space

Sum check was also used by Babai, Fortnow and Lund [4] to prove that MIP = NEXP.
This line of work is foundational to many PCPs [3, 2].

In a very influential paper, Goldwasser, Kalai and Rothblum gave doubly efficient
interactive proofs for depth bounded computation [9]. Doubly efficient proofs are proofs
where the prover runs in time polynomial in the algorithm it wishes to prove. GKR is very
efficient for uniform, low depth algorithms, like those in NC, both for the verifier and the
prover.

▶ Theorem 6 (GKR For Depth). Let L be a language computed by a family of O(log(w))-space
uniform Boolean circuits of width w and depth d where w and d are computable in time
(n+ d)polylog(w). Then

L ∈ ITIME1[(n+ d)polylog(w),poly(wd)].

A space S and a time T nondeterministic algorithm, A, can be converted to a width
2O(S) and depth O(log(T)S) circuit, C, using repeated squaring on the adjacency matrix of
A’s computation graph. Using Theorem 6 with this circuit we get a protocol for bounded
space. The circuit is very simple, so we believe2 the polylog(w) = poly(S) term can be
made Õ(S). This gives:

▶ Theorem 7 (GKR for NSPACE). Let S and T be time Õ(log(T)S2 +n) computable with
S = Ω(log(n)). Then

NTISP[T, S] ∪ CoNTISP[T, S] ⊆ ITIME1[Õ(log(T)S2 + n), 2O(S)].

The GKR protocol, as well as ours, only have polynomial time provers when T = 2Ω(S).
Reingold, Rothblum and Rothblum [16] gave a doubly efficient protocol for any time T with
constantly many rounds of communication, but is only efficient for the verifier when T is
polynomial.

▶ Theorem 8 (RRR Protocol). For any constant δ > 0, and integers S and T computable in
time TO(δ)S2, and T = Ω(n) we have

TISP[T, S] ⊆ ITIME1[O(npolylog(T) + TO(δ)S2), T 1+O(δ)poly(S)].

Further the prover only sends
(1

δ

)O(1/δ) messages to the verifier.

The specific, S2 power in the verifier time comes from a note by Goldreich [7], confirmed by
the authors of [16]. Our result gives a more efficient verifier (log(T)S vs T δS2), but a less
efficient prover (2O(S) vs poly(T)). We note the result in the [16] paper allows sub constant
δ, but is complex and can not give a verifier with time poly(log(T)S).

There has been work on other notions of verifier efficiency in interactive protocols.
Goldwasser, Gutfreund, Healy, Kaufman and Rothblum [8] studied the computation depth
required by verifiers. They showed that for any k round interactive proof, there is a k+O(1)
round interactive proof where the computation of the verifier during each round is in NC0.
But the total time to evaluate the new verifier (or the total verifier circuit size) is greater
than the verifier time of the original protocol.

2 Achieving this claimed performance with GKR is not trivial, but we believe it can be done.

J. Cook 14:5

Table 1 Comparison of different protocol times, with polylogarithmic factors ommited. The first
three columns are verifier times for three special cases and the last column is prover time, which is
the same for all three cases. RRR does not work for nondeterministic algorithms.

TISP BPTISP NTISP Prover
Shamir log(T)(S + n) log(T)2S + log(T)n log(T)2(S + n) 2O(log(T)(S+n))

GKR log(T)S2 + n log(T)S2 + n log(T)S2 + n 2O(S)

RRR T O(δ)S2 + n T O(δ)S2 + n - T 1+O(δ)SO(1)

Ours log(T)S + n log(T)S + n log(T)2S + n 2O(S)

2 Proof Idea

Our protocol uses sum check [11], but unlike Shamir, Shen, and Meir [21, 22, 12], we do not
reduce to a quantified Boolean formula first. Instead, we reduce to matrix exponentiation.
This gives us IP = PSPACE from sum check with fewer steps.

Our protocol improves over Shamir’s in two important ways. One, it gives better results
when S = o(n). This is due to a better arithmetization of RAM algorithms directly, allowing
us to leave the input out of the algorithm’s state. This more efficient arithmetization is the
primary reason we use the RAM model.

The other is a more efficient prover. This comes from a different reduction to matrix
exponentiation instead of quantified formulas. Our reductions gives a more efficient prover
algorithm. We will now describe our protocol.

For an algorithm A running on input x in time T and space S, we want to know whether
A(x) = 1, or if A(x) = 0. In an interactive proof, there is a computationally bounded verifier,
V , who wants to know A(x), and an unbounded, untrusted prover, P , who wants to convince
V of a value for A(x), but may lie. Verifier V can ask many questions to prover P and
P answers instantly. If V was deterministic, this would just be NP , so V has access to
randomness that P cannot predict.

Our proof is based on low degree polynomials over some field F of size poly(S). For
space, we only prove the case for deterministic algorithms. See [6] for the full version of this
paper. We separate our main proof into several ideas:
1. Computation Graph and Matrix Exponentiation.

Let M be the adjacency matrix of the computation graph of algorithm A on input x.
That is, Ma,b = 1 if and only if when A on input x is in state a, it transitions to state b
in one step. See that (MT)a,b = 1 (where MT is M to the T th power, not the transpose
of M) if and only if A(x) is in state b after T steps when starting in state a.

2. Arithmetization.
For any field F, a verifier can efficiently compute the multilinear extension of M , which
we denote M̂ : FS × FS → F. That is, M̂ is multilinear and for a, b ∈ {0, 1}S , we have
M̂(a, b) = Ma,b. See Definition 17.
The goal is to give a protocol for reducing a claim that α = M̂2(a, b), to a claim that
α′ = M̂(a′, b′). If we can construct such a protocol, applying it log(T) times reduces
our claim that MT ends in an accept state to a claim about M̂ , which the verifier can
compute itself.

3. Sum check.
We can write M̂2, the multilinear extension of M2, in terms of M̂ as M̂2(a, b) =∑

c∈{0,1}S M̂(a, c)M̂(c, b). Using the sum check protocol from [11], we can reduce a claim
that α = M̂2(a, b) for some α ∈ F and a, b ∈ FS to the claim that β = M̂(a, c)M̂(c, b) for
some β ∈ F and a random c ∈ FS .

FSTTCS 2022

14:6 More Verifier Efficient Interactive Protocols for Bounded Space

4. Product reduction.
There is a trick used in [9] that reduces the claim that β = M̂(a, c)M̂(c, b) to the claim
that α′ = M̂(a′, b′) for some α′ ∈ F and a′, b′ ∈ FS .

5. Repeated square rooting.
Applying the above protocols log(T) times, we reduce a claim that MT has a one in the
transition from the start state to the end state, to a claim that α′ = M̂(a′, b′) which the
verifier can calculate and check itself.

Now we explain each of these ideas in a little more detail.

2.1 Computation Graphs
For an algorithm A running in space S on input x, its computation graph G has as vertices
S bit states and as edges the state transitions for A on input x. That is, there is an edge
from state a to b if and only if when A on input x is in state a, after one step, A is in state b.
Let M be the adjacency matrix of G. If A runs in T steps starting in state a, and b is the
accept state, then A accepts if and only if (MT)a,b is one.

2.2 Arithmetization and Low Degree Extensions
For this strategy to work, the verifier needs to be able to compute some error correcting code
of the computation, to compare against the claim of the prover. This will be a multilinear
extension of M .

A key difference between our arithmetization and Shamir’s is that our model of com-
putation is the RAM model, and Shamir’s is a single tape Turing machine. So inherent to
Shamir’s protocol, the state must include the input, but ours does not. This is why we get
better results for S = o(n). Further, by arithemtizing the transition function directly instead
of reducing to a formula first, we are able to get the stronger multilinear extension instead of
just a low degree extension.

We say that ϕ̂ : FS ×FS → F is the multilinear extension of ϕ : {0, 1}×{0, 1} → F if ϕ̂ has
degree at most 1 in each variable and for all a, b ∈ {0, 1}S , ϕ(a, b) = ϕ̂(a, b). Note multilinear
extensions are unique (see Lemma 16). If M is a 2S × 2S matrix with Ma,b = ϕ(a, b), then
we define the multilinear extension of M , denoted M̂ : FS × FS → F, by M̂(a, b) = ϕ̂(a, b).
See Definition 17.

In general, it may be hard to compute low degree extensions. For general functions, it
requires reading the whole size 22S truth table! But many classes of functions have low
degree extensions that are easy to compute. Specifically, it is easy to compute the low degree
extension of the state transition function of RAM algorithms.

▶ Lemma 9 (Algorithm Arithmetization). Let A be a nondeterministic RAM algorithm running
in space S and time T on length n inputs, and x be an input with |x| = n. Define M to be
the 2S × 2S matrix such that for any two states a, b ∈ {0, 1}S, we have Ma,b = 1 if when A

is running on input x is in state a, then b as a valid transition, and Ma,b = 0 otherwise.
Then we can compute the multilinear extension of M (M̂ in Definition 17) in time

Õ(log(|F|)(n+ S)).

The idea is to sum over all instructions the multilinear polynomial identifying that
instruction being the current instruction, times the multilinear polynomial of that instruction
being performed. Since algorithm A is constant, there are only constantly many instructions
we could be on. It is easy to compute multilinear extensions of register operations, and easy
to compute multilinear extensions of loading or storing from main memory. See Section 4.3
for details on how to perform the arithmetization.

J. Cook 14:7

2.3 Sum Check

The key part of our protocol is the sum check from LFKN [11]. Suppose we have a degree
d polynomial over S variables: q : FS → F. Then sum check allows an efficient verifier
with access to randomness to verify the sum of q on all Boolean inputs with the help of an
untrusted prover.

▶ Lemma 10 (Sum Check Protocol). Let S be an integer, d be an integer, p be a prime, and
F be a field with characteristic p where |F| ≥ d+ 1. Suppose q : FS → F be a polynomial with
degree at most d in each variable individually. For a multi-linear polynomial, d = 1.

Then there is a interactive protocol with verifier V and prover P such that on input α ∈ F
behaves in the following way:
Completeness: If α =

∑
a∈{0,1}S q(a), then when V interacts with P , verifier V outputs

some a′ ∈ FS and α′ ∈ F such that α′ = q(a′).
Soundness: If α ̸=

∑
a∈{0,1}S q(a), then for any prover P ′, when V interacts with P ′, with

probability at most dS
|F| will V output some a′ ∈ FS and α′ ∈ F such that α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(Sd).
Prover Time: P runs in time Õ(log(|F|))poly(d)2S using O(d2S) oracle queries to q.

The idea of sum check is to choose the elements of a′ one at a time, and ask about
univariate polynomials that are partial sums: filled in with the chosen parts of a′, leaving
one variable unfixed, and summed over the rest of the variables. These are error correcting
codes, and one is calculated from the next, which can be checked. Due to Schwartz–Zippel,
with high probability, if the claimed equality is wrong, each of these low degree polynomials
from the proof must be wrong to not be caught by the verifier. See Appendix A for a proof.

Now our protocol wants to reduce a claim that α = M̂2(a, b) to a claim that α′ =
M̂2(a′, b′). When we inspect M̂2(a, b), we see that M̂2(a, b) =

∑
c∈{0,1}S M̂(a, c)M̂(c, a).

Then considering the degree 2 in each variable polynomial q(c) = M̂(a, c)M̂(c, a), sum check
reduces the claim that α = M̂2(a, b) to the claim that β = M̂(a, c)M̂(c, a) for some c. This
is very nearly what we want.

2.4 Product Reduction

Now that we have a claim that β = M̂(a, c)M̂(c, a), our verifier needs to check this. One
obvious idea is to ask the prover for both α1 = M̂(a, c), and α2 = M̂(c, a). Then the prover
could prove both of these statements separately. But this would double the number of claims
the verifier must check everytime we reduce M̂2 to M̂ . Since we have to do this log(T) times,
the verifier would need to check T claims! So this cannot be done.

Instead, the verifier needs to reduce to a claim about M̂ at a single point to avoid this.
The idea is to take a line, ψ : F → (FS × FS), that passes through both (a, c) and (c, b), and
ask the prover for M̂ ◦ ψ. The function M̂ ◦ ψ will have degree 2S, since M̂ is multilinear.
[9] uses a similar trick.

Now M̂ ◦ ψ(0) = M̂(a, c) and M̂ ◦ ψ(1) = M̂(c, a). If the β ̸= M̂(a, c)M̂(c, a), then the
prover cannot be honest about M̂ ◦ ψ, or the verifier will reject. Now the verifier chooses a
d ∈ F, and wants to know α′ = M̂(ψ(d)). If the prover was honest, then this will give us that
at (a′, b′) = ψ(d), we have α′ = M̂(a′, b′). But if the prover lied, then by Schwartz–Zippel,
with high probability, α′ ̸= M̂(a′, b′). See Lemma 18 for more details.

FSTTCS 2022

14:8 More Verifier Efficient Interactive Protocols for Bounded Space

2.5 Protocol For Deterministic Algorithms
Using sum check and product reduction, there is a protocol that takes a claim that α =
M̂2(a, b) to the claim that α′ = M̂(a′, b′). Note that this protocol works with ANY matrix
M , not just the M from the adjacency matrix of the computation graph.

In particular, our prover can start by claiming that for start state a, and end state b,
that M̂T (a, b) = 1. The verifier itself can confirm that a is the start state, and b is an accept,
or reject state. If A is deterministic, then A accepts x if and only M̂T (a, b) = 1.

Using the matrix squared to matrix protocol, there is a protocol to reduce the claim that
M̂T (a, b) = 1 to the claim that M̂T/2(a1, b1) = α1. Then to the claim that M̂T/4(a2, b2) = α2.
After repeating this t = log(T) times, we reduce to the claim that M̂(at, bt) = αt. But this
can be directly checked by the verifier.

3 Preliminaries

We use RAM algorithms with registers and a program as our model of computation. This is
used for our efficient arithmetization. But the verifier is very simple and can be implemented
efficiently in other common models of computation, like multi-tape Turing machines. We
may assume that on accepting or rejecting, our machines instantly clear their states to some
canonical accept or reject state. We also assume that S = Ω(log(n)), otherwise our algorithm
can’t read its entire input.

We think of our algorithms as defining invalid and valid state transitions. For deterministic
algorithms, every state has exactly one valid transition. Then a deterministic algorithm
accepts if and only if there is some sequence of memory states such that every transition is
valid, the first is the start state, and the final is the accept state.

3.1 Complexity Classes
We use Õ to suppress poly logarithmic factors.

▶ Definition 11 (Õ). For f, g : N → N, we say f(n) = Õ(g(n)) if and only if for some
constant k, f(n) = O(g(n) log(g(n))k).

We focus on languages with simultaneous time and space constraints.

▶ Definition 12 (TISP). For functions T, S : N → N, we say language L is in TISP[T, S]
if there is an algorithm, A, running in time T and space S that recognizes L.

For space, we focus on deterministic algorithms, see the full paper [6] for the randomized
and nondeterministic cases.

In an interactive protocol for some function f , we want our verifier to output f(x) with
high probability if the prover is honest, and outputs the wrong answer with low probability
regardless of the prover. Our verifier can either reject or output some value. We use double
sided completeness, since that is what we prove.

Let us formally define the interaction of a protocol.

▶ Definition 13 (Interaction Between Verifier and Prover (Int)). Let Σ be a alphabet and ⊥
be a symbol not in Σ. Let V be a RAM machine with access to randomness, that can make
oracle queries, and V outputs one of Σ ∪ {⊥}. Let P ′ be any function, and x be an input.

Now we define the interaction of V and P ′ on input x. For all i, define yi to be V ’s
ith oracle query given its first i − 1 queries were answered with z1, . . . , zi−1 and define
zi = P (x, y1, . . . , yi).

Define the output of V when interacting with P ′, Int(V, P, x), as the output of V on input
x when its oracle queries are answered by z1, z2,

J. Cook 14:9

Now we define interactive time.

▶ Definition 14 (Interactive Time (ITIME)). Let Σ be an alphabet. If for function f :
{0, 1}∗ → Σ, soundness s ∈ [0, 1], completeness c ∈ [0, 1], verifier V and prover P we have
Completeness: Pr[Int(V, P, x) = f(x)] ≥ c, and
Soundness: for any function P ′ we have Pr[Int(V, P ′, x) /∈ {f(x),⊥}] ≤ s,

then we say V and P are an interactive protocol for f with soundness s and completeness c.
If in addition L is a language with f(x) = 1x∈L, verifier V runs in time TV , soundness

s < 1
3 , and completeness c > 2

3 , then L ∈ ITIME[TV]. If P is also computable by an
algorithm running in time TP , we say L ∈ ITIME[TV , TP]. Finally, if completeness c = 1,
then we say the protocol has perfect completeness and L ∈ ITIME1[TV , TP].

3.2 Multilinear Extensions
Sum check is generally used on Boolean functions. So first the Boolean function must be
converted to a low degree polynomial, a technique broadly called arithmetization. Arithmet-
ization is an important part of sum check [11]. Shamir [21] arithmetized Boolean formulas
formulas. Boolean formulas of size C have a low degree extension of total degree C. The
idea is to rewrite every α ∧ β into α · β, every α ∨ β as α+ β − α · β and every ¬α as 1 − α.

This indeed gives a low degree polynomial for formulas, but we use a very strong type of
low degree polynomial: multilinear extensions.

▶ Definition 15 (Multilinear Extension). For a field F, integer S and a function ϕ : {0, 1}S → F,
we define the multilinear extension of ϕ as the polynomial ϕ̂ : FS → F that is degree 1 in any
individual variable such that for all a ∈ {0, 1}S we have ϕ(a) = ϕ̂(a).

One useful property of multilinear extensions is that unlike low degree extensions, multi-
linear extensions are unique. See the full version for a proof [6].

▶ Lemma 16 (Multilinear Extension Exist and are Unique). For a field F, integer S and a
function ϕ : {0, 1}S → F, there exists ϕ̂ that is a multilinear extension of ϕ. Further, ϕ̂ is
unique.

For notation, we will also define the multilinear extension of matrices as the multilinear
extension of the function which indexes into that matrix.

▶ Definition 17 (Matrix Multilinear Extension). Let S be an integer, F a field, and M be a
2S × 2S matrix containing elemtents in F. Identify an element x ∈ {0, 1}S with an element
of [2S] by interpreting x as a binary number.

Then define the multilinear extension of M to be the function M̂ : FS → FS → F such
that M̂ is multilinear and for a, b ∈ {0, 1}S we have M̂(a, b) = Ma,b. See that M̂ exists and
is unique by Lemma 16.

4 Efficient IP for TISP

The main building block is a protocol to reduce a statement about a matrix squared to a
statement about the matrix itself. Then I show how to combine this with arithemtization to
give a protocol for bounded space.

The first step in the matrix squared to matrix reduction is the sum check protocol
Lemma 10. See Appendix A for details about the sum check protocol. This reduces a
statement about M̂2 to a statement about a product of M̂ .

FSTTCS 2022

14:10 More Verifier Efficient Interactive Protocols for Bounded Space

4.1 Product Reduction
After the sum check, we need to reduce a statement about a product of M̂ evaluated at two
points to a statement about M̂ evaluated at one point.

▶ Lemma 18 (Product Reduction). Let S be an integer, d be an integer, p be a prime, and F
be a field with characteristic p where |F| ≥ d+ 1. Suppose q : FS → F is a polynomial with
total degree at most d. For a multi-linear polynomial, d = S.

Then there is a interactive protocol with verifier V and prover P such that on input α ∈ F,
a, b ∈ FS behaves in the following way:
Completeness: If α = q(a)q(b), then when V interacts with P , verifier V outputs some

a′ ∈ FS and α′ ∈ F such that α′ = q(a′).
Soundness: If α ̸= q(a)q(b), then for any prover P ′, when V interacts with P ′, with probability

at most d
|F| will V output some a′ ∈ FS and α′ ∈ F such that α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(S + d).
Prover Time: P runs in time Õ(log(|F|))Spoly(d) using d+ 1 oracle calls to q.

Proof. The idea is to choose a line, ψ : F → FS , such that ψ(0) = a and ψ(1) = b. That is,
ψ(c) = (1 − c)a+ cb. Then the verifier asks the prover for the degree d polynomial g : F → F
defined by g(c) = q(ψ(c)). For such a g, see that q(a)q(b) = g(0)g(1).

Let g′ be the degree d polynomial returned by the prover. If α ̸= g′(0)g′(1), the verifier
rejects. Otherwise, the verifier chooses a random c ∈ F, sets a′ = ψ(c) and sets α′ = g′(c).

Now I show this protocol has the desired properties.
Completeness: If α = q(a)q(b), an honest prover responds with g′ = g, so

α = q(a)q(b) = q(ψ(0))q(ψ(1)) = g(0)g(1) = g′(0)g′(1).

Then the verifier chooses c and α′ = g′(c) = g(c) = q(ψ(c)) = q(a′).
Soundness: If α ̸= q(a)q(b), then if g′ = g, we have g′(0)g′(1) = q(a)q(b) ̸= α, so the

verifier rejects. Otherwise, g ≠ g′, so with probability at most d
|F| does g(c) = g′(c). If

g(c) ̸= g′(c), then α′ = g′(c) ̸= g(c) = q(ψ(c)) = q(a′). Thus with probability at most d
|F|

does q(a′) = α′.
Verifier Time: V computes g′ three times, and each time this only takes O(d) field operations.

V computes ψ(c) once, which takes O(S) field operations. Every field operation takes
Õ(log(|F|)) time.

Prover Time: P queries q at d+ 1 points to calculate q. These d+ 1 query locations can be
calculated in O(dS) field operations by evaluating ψ. Then the coefficients for g can be
calculated in time polynomial time in d using guassian elimination. ◀

4.2 Matrix Squared To Matrix Reduction
Now for the main lemma used in our proof. First, we need a lemma that shows M̂2 can be
written as a simple function of M̂ .

▶ Lemma 19 (M̂2 is a sum of products of M̂). Let S be an integer and F be a field. Suppose
M is a 2S × 2S matrix containing values in Fp. Then for any a, b ∈ FS,

M̂2(a, b) =
∑

c∈{0,1}S

M̂(a, c)M̂(c, b),

where M̂ and M̂2 is as defined in Definition 17.

J. Cook 14:11

Proof. For notation, define ψ by ψ(a, b) =
∑

c∈{0,1}S M̂(a, c)M̂(c, b) so that we are trying
to prove that M̂2 = ψ. By Lemma 16, M̂2 = ψ if and only if ψ is multilinear and they agree
on all binary inputs.

To see that ψ is multilinear, we show that for any c ∈ {0, 1}S we have M̂(a, c)M̂(c, b) is
multilinear as a function of a and b. But they are since M̂ is multilinear and the two calls
to M̂ don’t share any variables. Thus ψ is the sum of multilinear polynomials, and is thus
multilinear itself.

To see that ψ agrees with M̂2 on binary elements, take any a, b ∈ {0, 1}S . Then we have

M̂2(a, b) =(M2)a,b =
∑

c∈{0,1}S

Ma,cMc,b =
∑

c∈{0,1}S

M̂(a, c)M̂(c, b) = ψ(a, b).

So ψ must be the unique multilinear polynomial agreeing with M̂2 on all binary inputs,
which is M̂2 itself. ◀

▶ Lemma 20 (Matrix Squared to Matrix Protocol). 3 Let S be an integer, p be a prime, and
F be a field with characteristic p and |F| > 2S+ 1. Suppose M is a 2S × 2S matrix containing
values in Fp. Define M̂ as in Definition 17.

Then there is a interactive protocol with verifier V and prover P such that on input
a, b ∈ FS and α ∈ F behaves in the following way:
Completeness: If α = M̂2(a, b), then when V interacts with P , verifier V outputs some

a′, b′ ∈ FS and α′ ∈ F such that α′ = M̂(a′, b′).
Soundness: If α ̸= M̂2(a, b), then for any prover P ′, when V interacts with P ′, with

probability at most 4S
|F| will V output a′, b′ ∈ FS and α′ ∈ F such that α′ = M̂(a′, b′).

Verifier Time: V runs in time Õ(log(|F|))O(S).
Prover Time: P runs in time Õ(log(|F|))2S when given oracle access to M̂ .

Proof. The protocol is a sum check Lemma 10 followed by a product reduction Lemma 18.
From Lemma 19, see that α = M̂2(a, b) =

∑
c∈{0,1}S M̂(a, c)M̂(c, b).

The first sum check either fails, or gives the claim that for some c ∈ FS , and β ∈ F
that β = M̂(a, c)M̂(c, b). Then the product reduction fails, or gives the claim that for some
a′, b′ ∈ FS and α′ ∈ F that α′ = M̂(a′, b′).

Now we can check that this protocol gives the desired results.
Completeness: Suppose α = M̂2(a, b). Then by completeness of the sum check, β =

M̂(a, c)M̂(c, b). Then by completeness of the product reduction, α′ = M̂(a′, b′).
Soundness: Suppose α ̸= M̂2(a, b).

Let q : FS → FS be defined by q(c) = M̂(a, c)M̂(c, a). That is, q is the function sum
check is performed on. For any variable y, we know q is degree at most 2 in y as the
product of two degree one polynomials in y.
Then by soundness of sum check, with probability at most 2S

|F| will the verifier output β
and c such that β = M̂(a, c)M̂(c, b).
See that since M̂ is multilinear, M̂ has total degree at most 2S. If β ̸= M̂(a, c)M̂(c, b),
then by the soundness of the product reduction, with probability at most 2S

|F| does
α′ = M̂(a′, b′). Thus by a union bound, with probability at most 4S

|F| does α′ = M̂(a′, b′).
Verifier Time: V takes the time of the sum check, plus the time of product reduction, which

is Õ(log(|F|))O(S).
Prover Time: P runs in the max of the time for the sum check and the time for the product

reduction, which is Õ(log(|F|))2S when given oracle access to M̂ . ◀

3 Lemma 20 was first proven by Thaler [24].

FSTTCS 2022

14:12 More Verifier Efficient Interactive Protocols for Bounded Space

4.3 Arithmetization
To use this matrix square reduction, we need to actually compute the multilinear extension of
the adjacency matrix of the computation graph. The multilinear extensions of many simple
functions are efficient to calculate, for instance, the equality function. See Appendix B for
examples.

Now we show how to calculate the multilinear extension of a RAM computer’s state
transition function.

▶ Lemma 9 (Algorithm Arithmetization). Let A be a nondeterministic RAM algorithm running
in space S and time T on length n inputs, and x be an input with |x| = n. Define M to be
the 2S × 2S matrix such that for any two states a, b ∈ {0, 1}S, we have Ma,b = 1 if when A

is running on input x is in state a, then b as a valid transition, and Ma,b = 0 otherwise.
Then we can compute the multilinear extension of M (M̂ in Definition 17) in time

Õ(log(|F|)(n+ S)).

Proof. The state of any RAM algorithm has 3 parts:
The instruction pointer into some fixed program.
Constant number of registers of O(log(n + S)) length for performing register register
operations. We assume these operations are simple operations like move, bit shift, bitwise
or, bitwise and, addition, and conditional jumps in the program counter.
S bits of memory that can be changed by the load and store commands.

Then we decompose any state, a ∈ {0, 1}S into three parts a = (p, r,m) where p are
constantly many bits for the instruction pointer, r is O(log(n+S)) many bits for the registers,
and m is O(S) many bits for main memory.

Suppose there are I instructions. For i ∈ [I], let Pi be the multilinear function that
identifies if the program is at instruction i. Let Qi be the multilinear function of whether
the current state on instruction i yields the next state. Then a formula for M̂ is given by

M̂((p0, r0,m0), (p1, r1,m1)) =
∑
i∈[I]

Pi(p0)Qi(r0,m0, p1, r1,m1).

Thus if we can calculate each Qi, we can calculate M̂ . The exact possible instructions
depend on our choice of instruction set, but we cover the main ones here.

Register to Register Arithmetic.
Register register operations (like bit shifts, additions, etc) can be computed very efficiently.
So Qi just is the product of: the appropriate registers being updated correctly, the
instruction pointer being incremented by one, all other registers being equal in r0 and r1,
and m0 and m1 being equal.
Conditionals.
For conditional jumps, first compute equality of the state before and after, besides
the program counter and the condition bit. Then multiply that by the sum over the
multilinear extension of the condition bit leading to the correct location of the program
counter.
Load Input into a Register.
A load from input instruction operates on two registers, one to store the input, and a
pointer to the location in the input. The rest of the state is just an equality.
Suppose the location you want to retrieve is indicated by a1, . . . , alog(n), and you want to
store it in variable b1. Then the extension of this part is∑

i∈{0,1}log(n)

∏
j∈[log(n)]

(ajij + (1 − aj)(1 − ij))(xib1 + (1 − xi)(1 − b1)).

This can be computed efficiently, see the full version of the paper [6].

J. Cook 14:13

Load Memory into a Register.
Basically uses the same formula as above, but uses a log(S) bit address and uses memory
instead of the input. That is, replace x with m0. One slight technicality is that we
must also assert that m0 = m1. That is, main memory doesn’t change. Specifically, we
calculate

∑
i∈{0,1}log(S)

 ∏
j∈[log(S)]

(ajij + (1 − aj)(1 − ij))


((m0)i(m1)ib1 + (1 − (m0)i)(1 − (m1)i)(1 − b1))∏
k∈{0,1}log(S)\{i}

((m0)k(m1)k + (1 − (m0)k)(1 − (m1)k)).

Store Register into Memory.
This is essentially the same as loading, except instead of saying the future register should
be equal to the current memory, we instead say the future memory is equal to the current
register.

Thus each Qi can be efficiently calculated in O(S + n) field operations, so M̂ can be
calculated in time Õ(log(|F|))O(S). ◀

4.4 Protocol for TISP
Now we give our protocol for deterministic algorithms.

▶ Theorem 1 (Efficient Interactive Protocol For TISP). Let S and T be computable in time
Õ(log(T)S + n) with S = Ω(log(n)). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T)S + n), 2O(S)].

Proof. We start by outlining how to convert acceptance to a matrix problem, then we show
how to apply Lemma 20 to solve that. Let a be the canonical starting state of algorithm A,
and b the canonical accept state.

Take T to be a power of two so that T = 2t. If T is not a power of 2, we can take T to be
the smallest power of two greater than the original T . Let k be the smallest integer so that
2k > 12 log(T)S. Let q = 2k and F be the field with q elements. Note that |F| ≤ 24 log(T)S.

Let M be the adjacency matrix for the computation graph of A on input x so that for
any two states, a′ and b′, we have Ma′,b′ = 1 if A on input x starting in state a′ can be
b′ after one step, and Ma′,b′ = 0 otherwise. For any matrix M ′, let M̂ ′ be the multilinear
extension of M ′ so that for all binary inputs a′ and b′ we have M̂ ′(a′, b′) = M ′

a′,b′ .
Observe that M2i

a′,b′ = 1 if when A on input x is in state a′ after 2i steps is in state b′,
and M2i

a′,b′ = 0 otherwise. Thus our verifier wants to output MT (a, b), or M̂2t(a, b).
In the full protocol, the prover first provides the verifier with a candidate α ∈ {0, 1} with

the claim that α = M̂2t(a, b). Now we use Lemma 20 t times to get the claim that for some
α′ ∈ F and some a′, b′ ∈ FS we have α′ = M̂(a′, b′). Finally, the verifier uses Lemma 9 to
calculate M̂(a′, b′) and compare it with α′.

Completeness: For an honest prover, indeed α = M̂2t(a, b). Let α0 = α, a0 = a and
b0 = b. By induction and completeness of Lemma 20, for every i ∈ [0, t − 1] we
have αi = M2t−i(ai, bi), and our protocol gives an αi+1, ai+1, and bi+1 such that
αi+1 = M2t−(i+1)(ai+1, bi+1). Thus αt = M̂(at, bt). Thus the verifier check whether
αt = M̂(at, bt) succeeds, and the verifier outputs α.

FSTTCS 2022

14:14 More Verifier Efficient Interactive Protocols for Bounded Space

Soundness: If α = M̂2t(a, b), the verifier either outputs α or rejects, either satisfies our
assumption. So suppose α ̸= M̂2t(a, b). Let α0 = α, a0 = a and b0 = b. By induction
and soundness of Lemma 20, for every i ∈ [0, t− 1] if the verifier hasn’t rejected and αi ̸=
M̂2t−i(ai, bi), the probability the verifier does not reject and αi+1 = ̂M2t−(i+1)(ai+1, bi+1)
is at most 4S

|F| . By a union bound, the probability that the verifier does not reject and for

any i we have αi = M̂2t−i(ai, bi) is at most 4S log(T)
|F| ≤ 1

3 .
In particular, the probability the verifier does not reject and αt = M̂(at, bt) is at most 1

3 .
See that if αt ̸= M̂(at, bt), then the verifier rejects. So the probability the verifier does
not reject is at most 1

3 .
Verifier Time: This verifier takes time Õ(log(|F|))S log(T) to run Lemma 20 t times plus

Õ(log(|F|))O(S + n) to calculate M̂(at, bt) (using Lemma 9), so in total takes time
Õ(log(|F|))(S log(T) + n) = Õ(log(S))O(log(T)S + n).

Prover Time: First, the prover calculates M2i in time Õ(log(|F|))S23S for every i ∈ [t].
Then we can query the multilinear extension of these matrices, which is M̂2i , at any
location in time Õ(log(|F|))22S with the formula given in Lemma 16.
Finally, given oracle access to each M̂2i , the prover in Lemma 20 only takes time
Õ(log(|F|))2S . Thus of any call to Lemma 20 only takes time poly(log(|F|))23S . Thus
the prover runs in time 2O(S). ◀

We can extend this result into multi bit outputs by storing the output in the final end
state and asking the prover for the end state first. Or to be more efficient when outputs are
larger than S, we can first ask for the output. Then include the output in the input and
change the algorithm to instead verify the output is correct. Then run the protocol on this
new verification algorithm instead. This allows us to verify program outputs larger than S

more efficiently.
For the randomized and nondeterministic cases, see the full paper [6].

5 Open Problems

Here are some open problems.

1. Could one remove the dependence on log(T)? Is it true that, for S = ω(n), we have
SPACE[S] ⊆ ITIME[Õ(S)]?
This would prove an equivalence, up to polylogarithmic factors, between SPACE[S] and
ITIME[S]. Our recent work, [13], showed a similar equivalence between NTIME[T]
and languages verified by PCPs with log(T) time verifiers, for log(T) = Ω(n).

2. Is there a strong hierarchy theorem for interactive time? Can we show that for any T

we have ITIME[Õ(T)] ̸⊂ ITIME[T]? Here ITIME[T] is the class of languages with an
interactive protocol who’s verifiers run in time T .
Using Theorem 1 gives ITIME1[T] ⊆ SPACE[O(T)] ⊆ ITIME1[Õ(T 2)]. This gives
a hierarchy theorem, ITIME1[Õ(T 2)] ̸⊂ ITIME1[O(T)], by using the space hierarchy
theorem. Improving the interactive protocols for bounded space is one way to give a
stronger hierarchy.

3. Can interactive protocols for NTISP be as efficient as those for TISP?
For S = Ω(n), we get SPACE[S] ⊆ ITIME[Õ(S2)], but only show NSPACE[S] ⊆
ITIME[Õ(S3)]. Does nondeterministic space require more verifier time than deterministic
space?

J. Cook 14:15

4. Can we get double efficiency with a similar verifier time? Is it true that TISP[T, S] ⊆
ITIME[polylog(T)S,poly(T)]?
This would make the verification of polynomial time algorithms only take as long (up
to polylogairthmic factors) as the space of those algorithms, with a proof that still only
takes polynomial time. This would make directly using interactive proofs for delegating
computation more practical.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, USA, 1st edition, 2009.
2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
np. J. ACM, 45(1):70–122, January 1998. doi:10.1145/273865.273901.

4 L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. In Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science, pages 16–25 vol.1, 1990. doi:10.1109/FSCS.1990.89520.

5 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 125–136, 2022. doi:10.1109/FOCS52979.2021.00021.

6 Joshua Cook. More verifier efficient interactive protocols for bounded space, 2022. URL:
https://eccc.weizmann.ac.il/report/2022/093/.

7 Oded Goldreich. On doubly-efficient interactive proof systems, 2018. URL: https://www.
wisdom.weizmann.ac.il/~oded/de-ip.html.

8 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proceedings of the Thirty-Ninth Annual ACM
Symposium on Theory of Computing, STOC ’07, pages 440–449. Association for Computing
Machinery, 2007. doi:10.1145/1250790.1250855.

9 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4), September 2015. doi:10.1145/2699436.

10 Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5):935–938, 1988. doi:10.1137/0217058.

11 C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. In Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science,
pages 2–10 vol.1, 1990. doi:10.1109/FSCS.1990.89518.

12 Or Meir. IP = PSPACE using error-correcting codes. SIAM Journal on Computing, 42(1):380–
403, 2013. doi:10.1137/110829660.

13 Dana Moshkovitz and Joshua Cook. Tighter ma/1 circuit lower bounds from verifier efficient
pcps for pspace, 2022. URL: https://eccc.weizmann.ac.il/report/2022/014/.

14 Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
An easy witness lemma for np and nqp. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 890–901. Association for Computing
Machinery, 2018. doi:10.1145/3188745.3188910.

15 Noam Nisan. Pseudorandom generators for space-bounded computations. In Proceedings of the
Twenty-Second Annual ACM Symposium on Theory of Computing, STOC ’90, pages 204–212.
Association for Computing Machinery, 1990. doi:10.1145/100216.100242.

16 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the Forty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 49–62. Association for Computing Machinery, 2016.
doi:10.1145/2897518.2897652.

FSTTCS 2022

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1109/FOCS52979.2021.00021
https://eccc.weizmann.ac.il/report/2022/093/
https://www.wisdom.weizmann.ac.il/~oded/de-ip.html
https://www.wisdom.weizmann.ac.il/~oded/de-ip.html
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/2699436
https://doi.org/10.1137/0217058
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1137/110829660
https://eccc.weizmann.ac.il/report/2022/014/
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/2897518.2897652

14:16 More Verifier Efficient Interactive Protocols for Bounded Space

17 Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as computing: Succinct arguments
with constant prover overhead. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2022, pages 1353–1363. Association for Computing Machinery,
2022. doi:10.1145/3519935.3519956.

18 Michael Saks and Shiyu Zhou. BPHSPACE(S)⊆DSPACE(S3/2). J. Comput. Syst. Sci.,
58(2):376–403, April 1999. doi:10.1006/jcss.1998.1616.

19 Rahul Santhanam. Circuit lower bounds for merlin-arthur classes. In Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages 275–283.
Association for Computing Machinery, 2007. doi:10.1145/1250790.1250832.

20 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, April 1970. doi:10.1016/S0022-0000(70)80006-X.

21 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, October 1992. doi:10.1145/146585.
146609.

22 A. Shen. IP = SPACE: Simplified Proof. J. ACM, 39(4):878–880, 1992. doi:10.1145/146585.
146613.

23 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26:279–284, 1988. doi:10.1007/BF00299636.

24 Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 71–89, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

A Sum Check

Sum check [11] takes a claim that for some α ∈ F, we have α =
∑

s∈{0,1}S q(s), and reduces
it to the claim that for some β ∈ F and for some random r ∈ FS we have β = q(r).

▶ Lemma 10 (Sum Check Protocol). Let S be an integer, d be an integer, p be a prime, and
F be a field with characteristic p where |F| ≥ d+ 1. Suppose q : FS → F be a polynomial with
degree at most d in each variable individually. For a multi-linear polynomial, d = 1.

Then there is a interactive protocol with verifier V and prover P such that on input α ∈ F
behaves in the following way:
Completeness: If α =

∑
a∈{0,1}S q(a), then when V interacts with P , verifier V outputs

some a′ ∈ FS and α′ ∈ F such that α′ = q(a′).
Soundness: If α ̸=

∑
a∈{0,1}S q(a), then for any prover P ′, when V interacts with P ′, with

probability at most dS
|F| will V output some a′ ∈ FS and α′ ∈ F such that α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(Sd).
Prover Time: P runs in time Õ(log(|F|))poly(d)2S using O(d2S) oracle queries to q.

Sketch. The idea is to choose the random field elements for a′ one at a time and consider
the partial sums. Let α0 = α. For every i, we want to reduce a claim that

αi =
∑

a∈{0,1}S−i

p(a′
1, . . . , a

′
i, a),

to a claim that

αi+1 =
∑

a∈{0,1}S−(i+1)

p(a′
1, . . . , a

′
i, a

′
i+1, a).

The observation is that if we define gi : F → F by

gi(x) =
∑

a∈{0,1}S−(i+1)

p(a′
1, . . . , a

′
i, x, a)

https://doi.org/10.1145/3519935.3519956
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146613
https://doi.org/10.1145/146585.146613
https://doi.org/10.1007/BF00299636

J. Cook 14:17

then gi is a low degree polynomial. The verifier asks for gi, and checks if gi(0) + gi(1) = αi.
If it doesn’t, the verifier knows the prover lied and rejects. Otherwise, it chooses ri+1 and
sets αi+1 = gi(ri+1).

If gi is correct, then αi+1 =
∑

s′∈{0,1}S−(i+1) p(r1, . . . , ri, ri+1, s
′). Thus for an honest

prover, this equality will hold for every i, and the completeness holds.
Now if at any step αi ̸=

∑
s∈{0,1}S−i p(r1, . . . , ri, s), the prover cannot provide the correct

gi, or the verifier will see that gi(0) + gi(1) ̸= αi and reject. But if gi is incorrect, by
Schwartz-Zippel, the probability the provided gi agrees with the true gi is d

|F| . If they
disagree at ri+1, then αi+1 ̸=

∑
s′∈{0,1}S−(i+1) p(r1, . . . , ri, ri+1, s

′). So by a union bound,
the probability the verifier ever has a correct αi is at most Sd

|F| . ◀

This is a commonly taught protocol, and can be found in “Computational Complexity: A
Modern Approach” [1].

B Arithmetization Examples

Here are some examples of efficient multilinear extensions.

▶ Lemma 21 (Equality has Efficient Multilinear Extension). Let ϕ : {0, 1}S × {0, 1}S → {0, 1}
be the Boolean function such that ϕ(a, b) = 1 if and only if a = b.

Then for any field F, the multilinear extension of ϕ, denoted ϕ̂, can be calculated in time
Õ(log(|F|))O(S).

Proof. One can write the formula for ϕ̂ as

ϕ̂(a, b) =
∏

i∈[S]

(aibi + (1 − ai)(1 − bi)) .

To see the above equality, see that when a and b are restricted to binary variables, the right
hand side is one if and only if for every i we have ai = bi. Further, the right hand side is
degree one any individual ai or bi.

Further, it can be calculated in time Õ(log(|F|))O(S) since each field operation only takes
time Õ(log(|F|)), and as written, the function only needs O(S) field operations. ◀

▶ Remark 22. One can easily extend this to check equality of 3, 4, or any arbitrary number
of variables. Extra equality checks are often easy to add. To assert d = e in most formulas,
just replace every occurrence of d with de and (1 − d) with (1 − d)(1 − e). This works as
long as the formula can be rewritten as a sum of products where every product has either d
or 1 − d exactly once.

This is true for equality, cyclic bit shifting, and even addition.
Similarly, inequality, or any constant bit shift can also be computed efficiently. For a more

complex example, we can efficiently compute the multilinear extension of binary addition.

▶ Lemma 23 (Binary Addition has Efficient Multilinear Extension). Let ϕS : {0, 1}S × {0, 1}S ×
{0, 1}S → {0, 1} be the Boolean function such that ϕ(a, b, c) = 1 if and only if a+ b = c where
addition is binary and we ignore the final carry.

Then for any field F, the multilinear extension of ϕS, ϕ̂S can be calculated in time
Õ(log(|F|))O(S).

Proof. We prove this recursively. Define ψS : {0, 1}S × {0, 1}S × {0, 1}S → {0, 1} as the
Boolean function such that ψ(a, b, c) = 1 if and only if a+ b+ 1 = c where addition is binary
and we ignore the final carry. Let ψ̂S be the multilinear extension of ψS . The idea is to
implement a ripple carry adder.

FSTTCS 2022

14:18 More Verifier Efficient Interactive Protocols for Bounded Space

Now we will compute ψ̂S and ϕ̂S by induction. See that

ϕ̂1(a, b, c) =(a(1 − b) + b(1 − a))c+ (ab+ (1 − a)(1 − b))(1 − c)

ψ̂1(a, b, c) =(a(1 − b) + b(1 − a))(1 − c) + (ab+ (1 − a)(1 − b))c.

These are multilinear as written, and correctly compute ψ1 and ϕ1 when given binary inputs.
Each of these only require a constant number of field operations.

Assume for a′, b′, c′ ∈ FS−1, we have computed ϕ̂S−1(a′, b′, c′) and ψ̂S−1(a′, b′, c′). We
show how to calculate ψ̂S and ϕ̂S . For a, b, c ∈ F, I claim that

ϕ̂S((a, a′), (b, b′), (c, c′)) =ϕ̂S−1(a′, b′, c′)(1 − a)(1 − b)(1 − c)

+ ϕ̂S−1(a′, b′, c′)(a(1 − b) + (1 − a)b)c

+ ψ̂S−1(a′, b′, c′)ab(1 − c)

ψ̂S((a, a′), (b, b′), (c, c′)) =ϕ̂S−1(a′, b′, c′)(1 − a)(1 − b)c

+ ψ̂S−1(a′, b′, c′)(a(1 − b) + (1 − a)b)(1 − c)

+ ψ̂S−1(a′, b′, c′)abc.

These are multilinear by induction. For binary inputs, this implements a ripple carry adder.
For instance, if a = b = 0, then ϕ̂((a, a′), (b, b′), (c, c′)) is one if and only if c = 0 and, by
induction, a′ + b′ = c′. If a and b are zero, than c should be 0 and there is no carry. The rest
of the cases can be checked similarly

Given that ψ̂S−1 and ϕ̂S−1 were already calculated, it only requires constantly many
more field operations to calculate ψ̂S and ϕ̂S . Thus, ψ̂S and ϕ̂S only require O(S) field
operations. Thus ψ̂S only takes time Õ(log(|F|))S to calculate. ◀

Note, we could modify this to give a multilinear extension of the function ϕ′ : {0, 1}5S → {0, 1}
that not only checks if a+b = c, but also whether a = d and b = e, as described in Remark 22.

One can compute the multilinear extensions of other register, register operations in a
simple register RAM model computer.

Improved Quantum Query Upper Bounds Based on
Classical Decision Trees
Arjan Cornelissen ! Ï

Institute for Logic, Language, and Computation, University of Amsterdam, The Netherlands
QuSoft, Amsterdam, The Netherlands

Nikhil S. Mande ! Ï

QuSoft, Amsterdam, The Netherlands
CWI, Amsterdam, The Netherlands

Subhasree Patro ! Ï

QuSoft, Amsterdam, The Netherlands
CWI Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract
We consider the following question in query complexity: Given a classical query algorithm in the
form of a decision tree, when does there exist a quantum query algorithm with a speed-up (i.e.,
that makes fewer queries) over the classical one? We provide a general construction based on the
structure of the underlying decision tree, and prove that this can give us an up-to-quadratic quantum
speed-up in the number of queries. In particular, our results give a bounded-error quantum query
algorithm of cost O(

√
s) to compute a Boolean function (more generally, a relation) that can be

computed by a classical (even randomized) decision tree of size s. This recovers an O(
√

n) algorithm
for the Search problem, for example.

Lin and Lin [Theory of Computing’16] and Beigi and Taghavi [Quantum’20] showed results of a
similar flavor. Their upper bounds are in terms of a quantity which we call the “guessing complexity”
of a decision tree. We identify that the guessing complexity of a decision tree equals its rank, a
notion introduced by Ehrenfeucht and Haussler [Information and Computation’89] in the context of
learning theory. This answers a question posed by Lin and Lin, who asked whether the guessing
complexity of a decision tree is related to any measure studied in classical complexity theory. We
also show a polynomial separation between rank and its natural randomized analog for the complete
binary AND-OR tree.

Beigi and Taghavi constructed span programs and dual adversary solutions for Boolean functions
given classical decision trees computing them and an assignment of non-negative weights to edges of
the tree. We explore the effect of changing these weights on the resulting span program complexity
and objective value of the dual adversary bound, and capture the best possible weighting scheme
by an optimization program. We exhibit a solution to this program and argue its optimality from
first principles. We also exhibit decision trees for which our bounds are strictly stronger than those
of Lin and Lin, and Beigi and Taghavi. This answers a question of Beigi and Taghavi, who asked
whether different weighting schemes in their construction could yield better upper bounds.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Quantum complexity theory

Keywords and phrases Quantum Query Complexity, Decision Trees, Decision Tree Rank

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.15

Related Version Full Version: https://arxiv.org/abs/2203.02968 [12]

Funding Nikhil S. Mande: Supported by the Dutch Research Council (NWO/OCW), as part of the
Quantum Software Consortium programme (project number 024.003.037), and through QuantERA
ERA-NET Cofund project QuantAlgo (project number 680-91-034, ended in December 2021).
Subhasree Patro: Mainly supported by the Robert Bosch Stiftung, also additionally supported
by NWO Gravitation grants NETWORKS and QSC, and through QuantERA ERA-NET Cofund
project QuantAlgo (project number 680-91-034, ended in December 2021).

© Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arjan@cwi.nl
https://arriopolis.github.io/
mailto:Nikhil.Mande@cwi.nl
https://mande-nikhil.github.io/
mailto:Subhasree.Patro@cwi.nl
https://subhasree-patro.github.io/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.15
https://arxiv.org/abs/2203.02968
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Acknowledgements We thank Ronald de Wolf for useful comments.

1 Introduction

In this paper, we address the following question: given a classical algorithm performing
a task, along with a description of the algorithm, when can one turn it into a quantum
algorithm and obtain a speed-up in the process? Of specific interest to us in this paper is
the case when the classical algorithm can be efficiently represented by a decision tree. For
instance, consider the problem of identifying the first marked item in a list, say x of n items,
each of which may or may not be marked. The input is initially unknown, and one has
access to it via an oracle. On being queried i ∈ [n], the oracle returns whether or not xi

is marked. Moreover, queries can be made in superposition. The goal is to minimize the
number of queries in the worst case and output the correct answer with high probability for
every possible input list. This problem is closely related to the Search problem, and is known
to admit a quadratic quantum speed-up (its classical query complexity is Θ(n) and quantum
query complexity is Θ(

√
n)) [16, 21, 23]. It is easy to construct a classical decision tree (in

fact, a decision list) of depth n and size (which is the number of nodes) 2n+ 1 that solves the
above-mentioned problem. In view of the quadratic speed-up that quantum query algorithms
can achieve for this problem, this raises the following natural question: Given a classical
decision tree of size s that computes a function, is there a bounded-error quantum query
algorithm of cost O(

√
s) that solves the same function? Among other results, we answer

this in the affirmative (see Corollary 9). We obtain our quantum query upper bounds by
constructing explicit span programs and dual adversary solutions by exploiting structure of
the initial classical decision tree. In the discussions below, let Qε(f) be the ε-error quantum
query complexity of f . When ε = 1/3, we drop the subscript and call Q(f) the bounded-error
quantum query complexity of f .

1.1 Span Programs
Span programs are a computational model introduced by Karchmer and Wigderson [20].
Roughly speaking, a span program defines a function depending on whether or not the
“target vector” of an input is in the span of its associated “input vectors”. Span programs
were first used in the context of quantum query complexity by Reichardt and Špalek [30],
and it is known that span programs characterize bounded-error quantum query complexity
of Boolean functions up to a constant factor [29, 22]. Span programs have been used to
design quantum algorithms for various graph problems such as st-connectivity [9], cycle
detection and bipartiteness testing [3, 11], graph connectivity [18], and has been also used
for problems such as formula evaluation [30, 28, 19]. Recently, Beigi and Taghavi [4] defined
a variant of span programs (non-binary span programs with orthogonal inputs, abbreviated
NBSPwOI) for showing upper bounds on the quantum query complexity of non-Boolean
input/output functions f : [ℓ]n → [m]. Moreover in a follow-up work [5], they also use
non-binary span programs for showing upper bounds for a variety of graph problems, for
example, the maximum bipartite matching problem.

1.2 Dual Adversary Bound
The general adversary bound for Boolean functions f was developed by Høyer, Lee and
Špalek [17], and they showed that this quantity gives a lower bound on the bounded-
error quantum query complexity of f . It was eventually shown that this bound actually

A. Cornelissen, N. S. Mande, and S. Patro 15:3

characterizes the bounded-error quantum query complexity of f up to a constant factor [29, 22].
The general adversary bound can be expressed as a semidefinite program that admits a dual
formulation. Thus, feasible solutions to the dual adversary program yield quantum query
upper bounds. Quantum query algorithms have been developed by explicitly constructing
dual adversary solutions, for example for the well-studied k-distinctness problem [7], S-
isomorphism and hidden subgroup problems [8], gapped group testing [2], etc.

1.3 Related Works
Lin and Lin [23] showed how a classical algorithm computing a function f : Df → R with
Df ⊆ {0, 1}n and R as an arbitrarily large finite set, equipped with an efficient “guessing
scheme”, could be used to construct a faster quantum query algorithm computing f . Moreover,
their results apply to the setting where f ⊆ {0, 1}×R is a relation. A deterministic algorithm
computing a relation f takes an input x ∈ {0, 1}n and outputs a value b such that (x, b) ∈ f .
More precisely, they showed the following:1

▶ Theorem 1 (Lin and Lin [23, Theorem 5.4]). Let f ⊆ {0, 1}n × R be a relation. Let A be a
deterministic algorithm computing f that makes at most T queries. Let xp1 , . . . , xpT̃ (x)

be
the query results of A on an apriori unknown input string x. For x ∈ {0, 1}n, let T̃ (x) ≤ T

denote the number of queries that A makes on input x. Suppose there is another deterministic
algorithm G which takes as input b1, . . . , bt−1 ∈ {0, 1}t−1 for any t ∈ [T], and outputs a guess
for the next query result of A. Assume that G makes at most G mistakes for all x. That is,

∀x ∈ {0, 1}n,

T̃ (x)∑
t=1

∣∣G(x1, . . . , xpt−1) − xpt

∣∣ ≤ G.

Then Q(f) = O(
√
TG).

Lin and Lin provided two proofs of the above theorem, one of which involved constructing
an explicit quantum query algorithm. This algorithm is iterative, and works as follows: In
the i’th iteration, use a modified version of Grover’s search algorithm to find the next mistake
that G makes. Since the algorithm uses at most T queries and makes at most G mistakes on
any input, the quantum query complexity of the final algorithm can be shown to be O(

√
TG)

using the Cauchy-Schwarz inequality.2
Recently, Beigi and Taghavi [5] gave an alternate proof of Theorem 1 using the framework

of non-binary span programs introduced by them in [4]. Using this they showed that a similar
statement also holds for functions f : [ℓ]n → R with non-binary inputs and outputs. A sketch
of their proof is as follows: Given an assignment of real weights to the edges of the given
decision tree computing f , they construct a dual adversary solution and span program. The
complexity of the resultant query algorithm is a function of the weights assigned to the edges.
They propose a particular weighting scheme based on an edge-coloring (guessing algorithm)
of the given decision tree. For Boolean functions, the quantum query complexity upper
bound they obtain matches the bound of Lin and Lin (Theorem 1), which is O(

√
TG), where

T denotes the depth and G the guessing complexity (see Definition 11) of the underlying
decision tree, respectively.

1 For ease of readability, we state the theorem for deterministic decision trees. Lin and Lin actually
showed a stronger statement that holds even if one considers randomized decision trees and randomized
guessing algorithms.

2 We skip some crucial details here, such as the cost of the modified Grover’s search algorithm, and an
essential step that uses span programs to avoid a logarithmic overhead that error reduction would have
incurred. Techniques that address both of the above-mentioned steps are due to Kothari [21].

FSTTCS 2022

15:4 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

In a follow-up work [6], conditional on some constraints, Beigi, Taghavi and Tajdini
implement the span-program-based algorithm of [5] in a time-efficient manner. In another
work [32], Taghavi uses non-binary span programs to give a tight quantum query algorithm
for the oracle identification problem, simplifying an earlier algorithm due to Kothari [21].

1.4 Our Contributions
The rank of a decision tree is a combinatorial measure introduced by Ehrenfeucht and
Haussler [14] in the context of learning theory, formally defined as follows.

▶ Definition 2 (Decision tree rank and randomized rank). Let T be a binary decision tree.
Define the rank of T recursively as follows: For a leaf node a, define rank(a) = 0. For an
internal node u with children v, w, define

rank(u) =
{

max {rank(v), rank(w)} if rank(v) ̸= rank(w)
rank(v) + 1 if rank(v) = rank(w).

Define rank(T) to be the rank of the root of T . Define the randomized rank of a randomized
decision tree to be the maximum rank of a deterministic decision tree in its support.

▶ Definition 3 (Rank of a Boolean function). Let f : {0, 1}n → {0, 1} be a Boolean function.
Define the rank of f , which we denote by rank(f), by

rank(f) = min
T :T computes f

rank(T).

Analogously define the randomized rank of f , which we denote by rrank(f), to be the minimum
randomized rank of a randomized decision tree that computes f to error 1/3.

We observe here that the guessing complexity of a deterministic decision tree equals
its rank (see Claim 12). This answers a question of Lin and Lin [23, page 4], where the
authors asked if G is related to any combinatorial measure studied in classical decision-tree
complexity. The rank of a function (which is the minimum rank of a decision tree computing
it) can be exponentially smaller than the function’s certificate complexity, sensitivity, block
sensitivity, and even (exact or approximate) polynomial degree, as can be easily witnessed
by the OR function. See, for example, [13] for more relationships between rank and other
combinatorial measures of Boolean functions. In view of the above-mentioned equivalence of
G and decision tree rank, Theorem 1 has a clean equivalent formulation as follows.

▶ Theorem 4. Let T be a decision tree computing a relation f ⊆ {0, 1}n × R with depth T .
Then Q(f) = O(

√
rank(T)T).

Randomized rank, which we denote by rrank, is a natural probabilistic analog of rank. This
exactly captures the notion of the randomized analog of the value of G in Theorem 1. It
is easy to show with this definition that our proof of Theorem 4 also holds with respect to
randomized decision trees and randomized rank: sample a decision tree from the support of
T according to its underlying distribution, and run a (1/10)-error3 quantum query algorithm
of cost O(

√
rank(T)T) from Theorem 4 on the resultant tree. The success probability is at

least (9/10) · (2/3) = 3/5. Thus we obtain the following easy-to-state reformulation of [23,
Theorem 5.4].

3 The success probability of the algorithm in Theorem 4 can be boosted by repeating the algorithm a
large constant number of times and then outputting the majority of the outcomes.

A. Cornelissen, N. S. Mande, and S. Patro 15:5

▶ Theorem 5. Let T be a randomized decision tree computing a relation f ⊆ {0, 1}n × R
with depth T . Then Q2/5(f) = O(

√
rrank(T)T).

Thus, up to a small loss in the success probability, upper bounds obtained from Theorem 5
are strictly stronger than those obtained from Theorem 4 for relations whose randomized
rank is much smaller than their rank. Hence a natural question is if this can be the case.

It is easy to exhibit maximal separations between rank and randomized rank for partial
functions. One such separation is witnessed by the Approximate-Majority function, which is
the function that outputs 0 if the Hamming weight of an n-bit input is less than n/3 and
outputs 1 if the Hamming weight of the input is more than 2n/3. It is easy to show an Ω(n)
lower bound on its rank and an O(1) upper bound on its randomized rank. Whether or not
such a separation holds for total Boolean functions is not so clear. We show a polynomial
separation for the complete binary AND-OR tree. This is the first of our main theorems.

▶ Theorem 6. For the complete binary AND-OR tree f : {0, 1}n → {0, 1},

rrank(f) = O
(

rank(f)log 1+
√

33
4

)
≈ O

(
rank(f).753...

)
.

To prove this theorem, we show a rank lower bound of Ω(n) using known connections between
rank and Prover-Delayer games [27], and the randomized-rank upper bound immediately
follows from an upper bound of O

(
nlog 1+

√
33

4

)
on its randomized decision-tree complexity [31].

We conjecture that rank and randomized rank are polynomially related for all total
Boolean functions. Note that techniques used to prove the analogous polynomial equivalence
for deterministic and randomized query complexities [26] (also see [10]) cannot work since
they use intermediate measures such as certificate complexity, sensitivity and block sensitivity,
all of which are maximal for the OR function even though its rank is 1.

Beigi and Taghavi [5, Section 6] asked if one could improve their results by using different
choices of weights in their constructions of span programs and dual adversary vectors. We
answer this question in the affirmative by providing a weighting scheme that improves upon
their bounds. By a careful analysis, we argue that the optimizing the dual adversary bound
and the witness complexity of Beigi and Taghavi’s span program with variable weights is a
minimization program with constraints linear in the variables and inverses of the variables.

▶ Definition 7 (Weight optimization program). For a decision tree T , define its weight
optimization program by the minimization problem with constraints outlined in Program 1
(see Appendix A.1 for relevant definitions). Let OPTT denote the optimum of this program.

Program 1 The weight optimization program capturing the weight assignment to edges of T that
optimizes the witness complexity of the NBSPwOI and dual adversary vector constructions of Beigi
and Taghavi (see Section 3).

Variables {We : e is an edge in T } , α, β

Minimize
√

αβ

s.t.
∑

e∈P
We ≤ α, for all paths P ∈ P (T)∑

e∈P
1

We
≤ β, for all paths P ∈ P (T)

We > 0, for all edges e in T
α, β > 0.

For a relation f ⊆ {0, 1}n × R and a deterministic decision tree T computing it, let f̃
be the function that takes an n-bit string x as input, and outputs the leaf of T reached on
input x. The following is our second main theorem.

FSTTCS 2022

15:6 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

▶ Theorem 8. Let f ⊆ {0, 1}n × R be a relation and let T be a decision tree computing f .
Then Q(f̃) = O(OPTT).

We give a recursively-defined weighting scheme that achieves equality for all the constraints
in Program 1 and argue from first principles that our solution is optimal (see Theorem 26),
thus subsuming Theorem 1. Combined with the earlier results from Beigi and Taghavi and
using our recursive expression for OPTT , this gives us the following corollary, giving a new
way to bound OPTT and thus Q(f̃) from above.

▶ Corollary 9. Let f ⊆ {0, 1}n × R be a relation and let T be a deterministic decision tree
computing it, weighted with the canonical weight assignment as defined in Definition 23.
Then, the quantum query complexity of f̃ (in fact OPTT) satisfies the following two bounds:
1. The rank-depth bound: Q(f̃) = O

(√
rank(T)depth(T)

)
.

2. The size bound: Q(f̃) = O
(√

DTSize(T)
)

where DTSize(T) denotes the number of nodes
in T .

Using standard arguments to deal with the case when T is a randomized decision tree,
this gives an upper bound on the bounded-error quantum query complexity of a function in
terms of its randomized decision-tree size complexity, as well as in terms of its randomized
rank and depth (see Corollary 27).

It was shown by Reichardt [29] that the quantum query complexity of evaluating Boolean
formulas of size s is O(

√
s). In particular, this implies the size bound in Corollary 9 for

Boolean functions f since the formula size of a Boolean function is bounded above by a
constant times its decision-tree size (see the full version of this paper [12, Claim A.2]). Not
only does our bound also hold for relations, but the query algorithm we obtain is actually an
algorithm for f̃ when the underlying tree is deterministic. While this yields trivial bounds
for most relations (since almost all Boolean functions have super-polynomial decision-tree
size complexity, for example, while Q(f) is at most n), it recovers the O(

√
n) bound for the

Search problem [16], for example. We also exhibit a family of decision trees for which the
size bound is strictly stronger than the rank-depth bound of Lin and Lin, and Beigi and
Taghavi (see Figure 3).

1.5 Organization
In Section 2, we discuss the rank of decision trees, and prove that it is equal to guessing
complexity. Furthermore, we prove a separation between rank and randomized rank for the
complete binary AND-OR tree. In Appendix B we discuss how to construct a span program
and a dual adversary solution for a relation f by assigning weights to edges of a classical
decision tree computing f , and we capture the weighting scheme in an optimization program.
In Section 3 we prove Theorem 8. Finally, in Section 4, we exhibit a solution to Program 1
and argue its optimality from first principles. We refer the reader to the appendices for
preliminaries and missing proofs.

2 Decision Tree Rank

In this section, we first rephrase Theorem 1 in terms of a measure of decision trees which we
term “guessing complexity”. This reformulation was essentially done by Beigi and Taghavi [5,
Section 3]. We then show that the guessing complexity of a decision tree equals its rank,
proving Theorem 4. Finally, we show a polynomial separation between rank and randomized
rank for the complete binary AND-OR tree.

A. Cornelissen, N. S. Mande, and S. Patro 15:7

2.1 Guessing Complexity and Rank
▶ Definition 10 (G-coloring [5, Definition 1]). A G-coloring of a decision tree T is a coloring
of its edges by two colors black and red, in such a way that any vertex of T has at most one
outgoing edge with black color.

▶ Definition 11 (Guessing Complexity). Let T be a decision tree and let P (T) denote the set
of root to leaf paths in T . Define the guessing complexity of T , which we denote by G(T),
by G(T) = minG-colorings of T maxP ∈P (T) number of red edges on P .

▷ Claim 12. Let T be a decision tree. Then G(T) = rank(T).

Proof. Let v, vL and vR be the root of T , and the left and right children of v, respectively.
Let TL and TR denote the subtrees of T rooted at vL and vR, respectively.

Consider a G-coloring of T . This naturally induces a G-coloring of TL and TR. We
consider two cases:

G(TL) = G(TR) = k, say. One of the edges (v, vL) or (v, vR) must be colored red. Assume
without loss of generality that (v, vL) is the red edge. Since we assumed G(TL) = k,
TL contains a path with at least k red edges under the G-coloring induced from the
given G-coloring of T . But this induces a path in T with k + 1 red edges, and hence
G(T) ≥ G(TL) + 1.
If G(TL) ̸= G(TR), we have G(T) ≥ max {G(TL), G(TR)}, witnessed by the G-colorings
induced on TL and TR by the G-coloring of T .

In the other direction, we construct an optimal G-coloring of T given optimal G-colorings
of TL and TR. The edges of TL and TR in T are colored exactly as they are in the given
optimal G-colorings of them. It remains to assign colors to the two remaining edges (v, vL)
and (v, vR). We again have two cases:

G(TL) = G(TR) = k, say. Arbitrarily color one of the edges (v, vL) and (v, vR) (say,
(v, vL)) red, and color the other edge black. The maximum number of red edges on a
path has increased by 1. Thus, G(T) ≤ G(TL) + 1.
G(TL) > G(TR), say (the other case follows a similar argument). Color the edge (v, vL)
black and (v, vR) red. Thus, the maximum number of red edges on a path in T equals
max {G(TL), G(TR) + 1} = G(TL).

Thus, we have

G(T) =
{

max{G(TL), G(TR)} if G(TL) ̸= G(TR)
G(TL) + 1 if G(TL) = G(TR),

The measure rank(T) is defined exactly as the above (Definition 2), proving the claim. ◁

The guessing algorithm G in Theorem 1 corresponds to a natural G-coloring of T of cost
G: for each internal vertex, color the guessed edge black and the other edge red. Thus,
Theorem 4 immediately follows from Claim 12 and Theorem 1.

Proof of Theorem 5. An algorithm for f is as follows: sample a decision tree from the
support of T according to its underlying distribution, and run a 9/10-error quantum query
algorithm from Theorem 4 on the resultant tree.4 The cost of this algorithm is O(

√
rrank(T)T)

and the success probability is at least (9/10) · (2/3) = 3/5 for all inputs x ∈ Df . ◀

4 This is possible since the deterministic decision trees in the support of T compute functions, which
admit efficient error reduction with a constant overhead in query complexity by standard techniques
(run the algorithm from Theorem 4 a large constant many times and return the majority output).

FSTTCS 2022

15:8 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

The rank of a decision tree essentially captures the largest depth of a binary subtree of
the original tree. Thus, the rank of a tree is bounded from above by the logarithm of the
size of the tree.

▶ Observation 13 ([14, Lemma 1]). Let T be a deterministic decision tree of size s. Then
rank(T) ≤ log(s+ 1) − 1.

Along with this observation and the simple observation that the depth of a decision tree is
at most its size, Theorem 5 yields the following statement.

▶ Theorem 14. Let T be a randomized decision tree of size s that computes a relation
f ⊆ {0, 1}n × R. Then Q2/5(f) = O(

√
s log s).

Note here that it suffices to prove that Q(f̃) = O(
√
s log s) where s is the size of a

deterministic decision tree computing f , since standard techniques and error reduction yield
the required bound for randomized trees. In the full version of this paper [12, Appendix B],
we show an explicit NBSPwOI and dual adversary solution witnessing the same bound. In
Sections 3 and 4 we show an explicit NBSPwOI and dual adversary solution witnessing a
stronger bound without the logarithmic factor. We choose to still give the weaker bound in
[12, Appendix B] as the weighting scheme seems considerably different from that in Section 4,
and the weights are also efficiently computable.

We note here the equivalence of the rank of a Boolean function and the value of an
associated Prover-Delayer game introduced by Pudlák and Impagliazzo [27]. We use this
equivalence in the next part of this section to show that the rank of the complete binary
AND-OR tree is polynomially larger than its randomized rank.

The game is played between two players: the Prover and the Delayer, who construct a
partial assignment, say ρ ∈ {0, 1,⊥}n, in rounds. To begin with the assignment is empty,
i.e., ρ = ⊥n. In a round, the Prover queries an index i ∈ [n] for which the value xi is not
set in ρ (i.e., ρi = ⊥). The Delayer either answers xi = 0 or xi = 1, or defers the choice to
the Prover. In the latter case, the Delayer scores a point. The game ends when the Prover
knows the value of the function, i.e., when f |ρ is a constant function. The value of the game,
val(f), is the maximum number of points the Delayer can score regardless of the Prover’s
strategy. The following result is implicit in [27] (also see [13, Theorem 3.1] for an explicit
statement and proof).

▷ Claim 15. Let f : {0, 1}n → {0, 1} be a (possibly partial) Boolean function. Then
rank(f) = val(f).

2.2 A Separation Between Rank and Randomized Rank
We first note that there can be maximal separations between rank and randomized rank if
we consider partial functions, i.e., functions defined only on a subset of all possible inputs.
This is witnessed by the well-studied Approximate-Majority function, for example.

▷ Claim 16. Let f : {0, 1}n → {0, 1} be a partial function defined as follows:

f(x) =
{

0 |x| ≤ n/3
1 |x| ≥ 2n/3.

Then, rank(f) = Θ(n) and rrank(f) = Θ(1).

A. Cornelissen, N. S. Mande, and S. Patro 15:9

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Figure 1 Complete AND-OR tree of depth 4.

Proof. Clearly rank(f) = O(n). For the lower bound, we use the equivalence from Claim 15.
A valid Delayer strategy is as follows: allow the Prover to choose input values for their first
n/3 queries. It is easy to see that no matter what values the Prover chooses, the function
can never be restricted to become a constant after these n/3 queries. Thus, val(f) ≥ n/3
(and this can be easily seen to be tight). The randomized rank upper bound follows from the
easy fact that R(f) = O(1) and rrank(f) ≤ R(f) for all f . ◁

When we restrict f to be a total function, it is no longer clear whether or not randomized
rank can be significantly smaller than rank. In view of the example above, one might
be tempted to consider functions that witness maximal separations between deterministic
and randomized query complexity. The current state-of-the-art separation of D(f) = Ω(n)
vs. R(f) = Õ(

√
n) is witnessed by variants of “pointer jumping” functions [15, 1, 24]. One

might hope to use a similar argument as in the proof of Claim 16 to show that rank(f) = Ω(n)
(and a randomized rank upper bound of Õ(

√
n) immediately follows from the randomized

query upper bound). However, it is easy to show that the rank of these functions is actually
Õ(

√
n), rendering this approach useless for these variants of pointer jumping functions.

Nevertheless, we are able to use such an approach to show a separation between rank and
randomized rank for another function whose deterministic and randomized query complexities
are polynomially separated.

In the remainder of this section, let F : {0, 1}n → {0, 1} be defined as the function
evaluated by a complete (log n)-depth binary tree as described below. Assume log n to be an
even integer, and the top node of this tree to be an OR gate. Nodes in subsequent layers
alternate between AND’s and OR’s, and nodes at the bottom layer contain variables. We call
this the complete AND-OR tree of depth log n. See Figure 1 for a depiction of the complete
depth-4 AND-OR tree.

It is easy to see via an adversarial argument that D(F) = n. Saks and Wigderson [31]
showed that R(F) = Θ(nlog 1+

√
33

4) ≈ Θ(n0.753...).

▶ Theorem 17 ([31, Theorem 1.5]). Let F : {0, 1}n → {0, 1} be the complete AND-OR tree
of depth log n. Then

D(F) = n, R(F) = Θ
(
nlog 1+

√
33

4

)
≈ Θ(n0.753...).

We show that the rank of F equals (n+ 2)/3.

FSTTCS 2022

15:10 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

▶ Theorem 18. Let F : {0, 1}n → {0, 1} be the complete AND-OR tree of depth log n. Then

rank(F) = n+ 2
3 .

For a proof we refer the reader to the full version [12, Proof of Theorem 3.9]. Since randomized
rank is at most randomized decision tree complexity, F witnesses a separation between rank
and randomized rank. This proves Theorem 6.

3 Proof of Theorem 8

In order to give a proof of Theorem 8, we require some useful properties of the non-binary
span program with orthogonal inputs (NBSPwOI) and dual adversary solution constructed by
Beigi and Taghavi [5]. For details of these constructions, we refer the reader to Appendix B.

The main result of Beigi and Taghavi [4] that we need is stated in the theorem below.

▶ Theorem 19 ([4]). Let f : Df → [m] be a function with Df ⊆ [ℓ]n, and let (P,w,w) be a
NBSPwOI computing f . Then,

Q(f) = O(wsize(P,w,w)).

The main results of this section provide a characterization of the optimal witness com-
plexity and objective value of the dual adversary bound, based on the weighting scheme in
Beigi and Taghavi’s construction, in terms of the objective value of Program 1.

▶ Theorem 20. Let f ⊆ {0, 1}n × R be a relation, let T be a decision tree computing f and
let OPTT denote the optimal value of Program 1. Then, for the construction of (P,w, w̄)
with variable weights as in Appendix B,

wsize(P,w, w̄) ≤ OPTT .

Similarly, it is known that solutions to the dual adversary program (Program 2) yield
quantum query upper bounds.

▶ Theorem 21 ([22]). Let f : Df → [m] be a function with Df ⊆ [ℓ]n, let C denote the
optimal value of Program 2 for f . Then

Q(f) = O(C). (1)

▶ Theorem 22. Let f ⊆ {0, 1}n × R be a relation, and let T be a decision tree computing it.
Let C denote the optimal value of Program 2 with variable weights as in Appendix B, and let
OPTT denote the optimal value of Program 1. Then C = OPTT .

We now prove Theorem 8, using these results.

Proof of Theorem 8. We give two proofs, one via span program witness complexity, and
another via the dual adversary bound.
1. Consider the NBSPwOI (P,w, w̄) for f̃ as constructed in Sections B.1 and B.2. Theorem 20

implies wsize(P,w, w̄) ≤ OPTT . Theorem 19 implies Q(f̃) = O(OPTT).
2. Consider the dual adversary solution for f̃ as constructed in Appendix B.3. Theorems 21

and 22 imply Q(f̃) = O(C) = O(OPTT). ◀

A. Cornelissen, N. S. Mande, and S. Patro 15:11

4 An Optimal Weight Assignment

It now remains to investigate how we can assign weights to edges in a decision tree so
as to optimize the objective value of Program 1. Beigi and Taghavi gave an explicit
weighting scheme by coloring the edges decision tree with two colors, and then assigning
weights depending on the color that the edge is colored by [5, Section 3]. They raise
the question whether their scheme can be significantly improved upon. We answer this
question affirmatively, by giving an optimal solution to the weight optimization program
from Definition 7, and providing a constructive algorithm to compute the optimal weights in
this section. We also give an alternative, albeit sub-optimal, assignment of weights in the
full version of this paper [12, Appendix B].

The construction we present is recursive, in the sense that we first assign weights to the
edges connected to the leaves, and subsequently work our way up the tree until we reach
the root node. More precisely, in the i’th iteration, we assign weights to all edges that have
maximum distance i from a leaf.

First, we define the weight assignment, which we will refer to as the canonical weight
assignment, in Definition 23. Then, we prove its optimality, resulting in Theorem 26. Finally,
we prove Corollary 9, which gives some upper bounds on the optimal objective value, in
terms of natural measures of the decision tree.

▶ Definition 23 (Canonical weight assignment). Let T be a non-trivial decision tree with root
node r. Let L and R be the two children nodes of r, connected to r by the edges eL and eR,
respectively. Let TL and TR be the subtrees of T rooted at L and R, respectively. Then, we
assign weights to eL and eR, by setting

WeL
=

OPTTL
− OPTTR

+
√

(OPTTL
− OPTTR

)2 + 4
2 ,

WeR
=

OPTTR
− OPTTL

+
√

(OPTTR
− OPTTL

)2 + 4
2 .

In order to define the weights WeL
and WeR

, we need to know the optimal values of
Program 1 for the subtrees TL and TR. We now proceed to show how one can compute these
optimal values via a recurrence relation.

▶ Lemma 24. Let T be a non-trivial decision tree, and let L and R be the two children nodes
of the root node. Let TL and TR be the subtrees of T rooted at L and R, respectively. Then,

OPTT ≤
OPTTL

+ OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

2 .

Proof. Suppose we have weight assignments WL and WR on the subtrees TL and TR,
and positive parameters αL, αR and βL, βR such that they form feasible solutions to the
optimization programs for the left and right subtrees TL and TR, and such that they attain
the optimal values

√
αLβL = OPTTL

and
√
αRβR = OPTTR

. Now, let the weighting
scheme W on T be defined such that We =

√
βL/αL(WL)e for all edges e in TL and

We′ =
√
βR/αR(WR)e′ for all edges e′ in TR, and choose WeL

and WeR
as in Definition 23.

Furthermore, let

α := max {OPTTL + WeR , OPTTR + WeL } , β := max
{

OPTTL + 1
WeL

, OPTTR + 1
WeR

}
.

(2)

FSTTCS 2022

15:12 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

For every path P ∈ P (T) containing eL (essentially the same calculation also shows the
same upper bound for paths containing eR), we have∑

e∈P

1
We

= 1
WeL

+
√
αL

βL

∑
e∈P \{eL}

1
(WL)e

≤
√
αLβL + 1

WeL

= OPTTL
+ 1
WeL

≤ β,

For every path P ∈ P (T) containing eL (essentially the same calculation also shows the
same upper bound for paths containing eR), we have

∑
e∈P

We =
√
βL

αL

∑
e∈P \{eR}

(WL)e +WeR
≤

√
αLβL +WeR

= OPTTL
+WeR

≤ α,

Thus all constraints of Program 1 for T are satisfied with these values of α, β and the
weighting scheme W . Hence,

OPTT ≤
√

αβ =
√

max
{

OPTTL
+ 1

WeL

, OPTTR
+ 1

WeR

}
· max {OPTTL

+ WeR , OPTTR
+ WeL }. (3)

Finally, observe from our choices of WeL
and WeR

from Definition 23 that

1
WeL

= 2
OPTTL

− OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

=
2(OPTTL

− OPTTR
−

√
(OPTTL

− OPTTR
)2 + 4)

(OPTTL
− OPTTR

)2 − (OPTTL
− OPTTR

)2 − 4

=
OPTTR

− OPTTL
+

√
(OPTTL

− OPTTR
)2 + 4

2 = WeR
.

Hence Equation (3) implies

OPTT ≤ max {OPTTL
+ WeR , OPTTR

+ WeL } =
OPTTL

+ OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

2 ,

where the last equality follows from our choices of WeL
and WeR

from Definition 23. This
completes the proof. ◀

We next show that this weight assignment is optimal.

▶ Lemma 25. Let T be a non-trivial decision tree, and let L and R be the two children nodes
of the root node. Let TL and TR be the subtrees of T rooted at L and R, respectively. Then,

OPTT ≥
OPTTL

+ OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

2 .

Proof. Suppose we have a weight assignment W and variables α, β > 0, such that W , α and
β form a feasible solution to the optimization program on T , and attain optimality. We
define

αL = max
P ∈P (TL)

∑
e∈P

We, βL = max
P ∈P (TL)

∑
e∈P

1
We

,

αR = max
P ∈P (TR)

∑
e∈P

We, βR = max
P ∈P (TR)

∑
e∈P

1
We

.

Observe that W |TL
, αL and βL give a feasible solution to Program 1 for TL. Similarly, W |TR

,
αR and βR give a feasible solution to Program 1 for TR. This implies that√

αLβL ≥ OPTTL
,

√
αRβR ≥ OPTTR

. (4)

A. Cornelissen, N. S. Mande, and S. Patro 15:13

Furthermore, we have

α = max
P ∈P (T)

∑
e∈P

We = max

 max
P ∈P (TL)

∑
e∈P

We +WeR
, max

P ∈P (TR)

∑
e∈P

We +WeL


= max {αL +WeR

, αR +WeL
} , (5)

and similarly

β = max
P ∈P (T)

∑
e∈P

1
We

= max
{

max
P ∈P (TL)

∑
e∈P

1
We

+ 1
WeL

, max
P ∈P (TR)

∑
e∈P

1
We

+ 1
WeR

}

= max
{
βL + 1

WeL

, βR + 1
WeR

}
. (6)

Finally, let γ =
√
β/α, and observe that

OPTT =
√
αβ = β

γ
= γα = 1

2

[
β

γ
+ γα

]
. (7)

Now, let

δ = 1
2 + OPTTL

− OPTTR

2
√

(OPTTL
− OPTTR

)2 + 4
, (8)

and observe that δ ∈ [0, 1]. Thus,
OPTT

= 1
2

[
β

γ
+ γα

]
by Equation (7)

= 1
2

[
max

{
βL

γ
+ 1

γWeL

,
βR

γ
+ 1

γWeR

}
+ max {γαL + γWeR , γαR + γWeL }

]
by Equations (5) and (6)

≥ 1
2

[
δ

(
βL

γ
+ 1

γWeL

)
+ (1 − δ)

(
βR

γ
+ 1

γWeR

)
+ δ (γαL + γWeR) + (1 − δ) (γαR + γWeL)

]
since max{a, b} ≥ δa + (1 − δ)b as δ ∈ [0, 1]

= 1
2

[
δ

(
βL

γ
+ γαL

)
+ (1 − δ)

(
βR

γ
+ γαR

)
+

(
δ

γWeL

+ (1 − δ)γWeL

)
+

(
δγWeR + 1 − δ

γWeR

)]
rearranging terms

≥ δ
√

αLβL + (1 − δ)
√

αRβR +
√

δ(1 − δ) +
√

δ(1 − δ) since (a + b)/2 ≥
√

ab for all a, b ≥ 0

≥ δOPTTL
+ (1 − δ)OPTTR

+ 2
√

δ(1 − δ) by Equation (4)

= OPTTL
+ OPTTR

2 + (OPTTL
− OPTTR

)2

2
√

(OPTTL
− OPTTR

)2 + 4
+ 2

√
1
4 − (OPTTL

− OPTTR
)2

4((OPTTL
− OPTTR

)2 + 4)
plugging the value of δ from Equation (8)

= OPTTL
+ OPTTR

2 + (OPTTL
− OPTTR

)2

2
√

(OPTTL
− OPTTR

)2 + 4
+

√
4

(OPTTL
− OPTTR

)2 + 4

= OPTTL
+ OPTTR

2 + (OPTTL
− OPTTR

)2 + 4
2
√

(OPTTL
− OPTTR

)2 + 4

=
OPTTL

+ OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

2 ,

completing the proof. ◀

We can now combine both lemmas above into the following theorem, providing a recursive
characterization of the optimal value of Program 1 for all decision trees.

FSTTCS 2022

15:14 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

▶ Theorem 26. Let T be a non-trivial decision tree, and let L and R be the two children
nodes of the root node. Let TL and TR be the subtrees of T rooted at L and R, connected to
the root node by edges eL and eR, respectively. Then,

OPTT =
OPTTL

+ OPTTR
+

√
(OPTTL

− OPTTR
)2 + 4

2 .

Proof. The upper bound on OPTT follows from Lemma 24 and the lower bound follows
from Lemma 25. ◀

Observe that Lemma 24 can be used to recursively assign optimal weights to the edges
of any given decision tree. We display this technique in two examples in Figure 2. Note
that the objective value of Program 1 for a trivial decision tree (a single node) is 0, which
provides the basis for our recursion.

AND on 3 bits PARITY on 3 bits

x1

x2

x3

0

0

0 1

ξ

ϕ

1/ξ

1/ϕ

1 1

x1

x2x2

x3 x3 x3 x3

0 1 1 0 1 0 0 1

11

1111

1 1 1 1 1 1 1 1

OPTT = ξ OPTT = 3

Figure 2 Examples of optimal weight assignments for two different decision trees. The red and
black edges indicate the edges taken when the output of the query is 0 and 1, respectively, and
the edge labels represent the weights. Left: Canonical weight assignment of the decision tree for
the AND function on 3 bits, where ϕ = 1+

√
5

2 , and ξ = ϕ+
√

ϕ+5
2 . The objective value is ξ. Right:

Canonical weight assignment of the decision tree for the PARITY on 3 bits, with optimal value 3.

Next, there are several ways in which we can conveniently upper bound the optimum value
of Program 1 in terms of well-studied measures of the underlying decision tree. Corollary 9
exhibits two such bounds.

Proof of Corollary 9. Theorem 8 implies that it suffices to prove both of the required upper
bounds on OPTT rather than Q(f). The rank-depth bound follows directly from the bound
OPTT ≤ 2

√
G(T) · depth(T) derived in [5, Theorem 2], and the equality G(T) = rank(T)

from Claim 12.
For proving the size bound, we use induction to show that OPTT ≤

√
2DTSize(T). First

observe that it is true for the trivial decision tree. Next, suppose that it is true for the left
and right subtrees TL and TR of T . That is,

OPTTL
≤

√
2DTSize(TL), and OPTTR

≤
√

2DTSize(TR).

Then, by Theorem 26, the square of the optimal value of Program 1 for T equals

OPT2
T = (OPTTL

+ OPTTR
)2 + (OPTTL

− OPTTR
)2 + 4

4

+
2(OPTTL

+ OPTTR
)
√

(OPTTL
− OPTTR

)2 + 4
4

A. Cornelissen, N. S. Mande, and S. Patro 15:15

=
2(OPT2

TL
+ OPT2

TR
) + 4

4 +
2(OPTTL

+ OPTTR
)
√

(OPTTL
− OPTTR

)2 + 4
4

≤
2(OPT2

TL
+ OPT2

TR
) + 4 + (OPTTL

+ OPTTR
)2 + (OPTTL

− OPTTR
)2 + 4

4
since 2ab ≤ a2 + b2 for all a, b ≥ 0

= OPT2
TL

+ OPT2
TR

+ 2
≤ 2DTSize(TL) + 2DTSize(TR) + 2 = 2DTSize(T).

This completes the proof. ◀

Next, we note that the rank-depth and size bounds from Corollary 9 are incomparable,
as witnessed by the examples displayed in Figure 3. In particular, our bounds are strictly
stronger than those given by earlier works (Theorem 1) for the second tree in the figure.

Complete binary tree Balanced binary-AND tree

n leaves

depth
log n n leaves

depth
log n

n leaves

OPTT = O(log n) OPTT = O(
√

n)√
rank(T)depth(T) = O(log n)

√
rank(T)depth(T) = O(

√
n log n)√

DTSize(T) = O(
√

n)
√

DTSize(T) = O(
√

n)

Figure 3 Examples showing separations between the two bounds derived in Corollary 9. The
shaded regions represent complete binary trees. In the left example the rank-depth bound beats the
size bound, whereas in the right example the opposite is true.

Finally, we note that we can obtain analogous quantum query upper bounds to those in
Corollary 9 when the initial tree is a randomized one.

▶ Corollary 27. Let f ⊆ {0, 1}n × R be a relation. Then Q2/5(f) = O(
√

RDTSize(f)).
Moreover, let T be a randomized decision tree computing f with depth T . Then Q2/5(f) =
O

(√
rrank(T)T

)
.

The proof of Corollary 27 follows along similar lines as the proof of Theorem 5 and we
omit it.

References
1 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris

Smotrovs. Separations in query complexity based on pointer functions. Journal of the ACM,
64(5):32:1–32:24, 2017. Earlier version in STOC’16. doi:10.1145/3106234.

2 Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient quantum
algorithms for (gapped) group testing and junta testing. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 903–922. SIAM, 2016. doi:10.1137/1.9781611974331.ch65.

FSTTCS 2022

https://doi.org/10.1145/3106234
https://doi.org/10.1137/1.9781611974331.ch65

15:16 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

3 Agnis Arins. Span-program-based quantum algorithms for graph bipartiteness and connectivity.
In Mathematical and Engineering Methods in Computer Science – 10th International Doctoral
Workshop, MEMICS, Selected Papers, volume 9548 of Lecture Notes in Computer Science,
pages 35–41. Springer, 2015. doi:10.1007/978-3-319-29817-7_4.

4 Salman Beigi and Leila Taghavi. Span program for non-binary functions. Quantum Information
and Computation, 19(9&10):760–792, 2019. doi:10.26421/QIC19.9-10-2.

5 Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees. Quantum,
4:241, 2020. doi:10.22331/q-2020-03-02-241.

6 Salman Beigi, Leila Taghavi, and Artin Tajdini. Time and query optimal quantum algorithms
based on decision trees. CoRR, abs/2105.08309, 2021. arXiv:2105.08309.

7 Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
207–216. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.18.

8 Aleksandrs Belovs. Quantum dual adversary for hidden subgroups and beyond. In Proceedings
of the 18th International Conference on Unconventional Computation and Natural Computation
(UCNC), volume 11493 of Lecture Notes in Computer Science, pages 30–36. Springer, 2019.
doi:10.1007/978-3-030-19311-9_4.

9 Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum algorithms for st-
connectivity and claw detection. In Proceedings of the 20th Annual European Symposium
on Algorithms (ESA), volume 7501 of Lecture Notes in Computer Science, pages 193–204.
Springer, 2012. doi:10.1007/978-3-642-33090-2_18.

10 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

11 Chris Cade, Ashley Montanaro, and Aleksandrs Belovs. Time and space efficient quantum al-
gorithms for detecting cycles and testing bipartiteness. Quantum Information and Computation,
18(1&2):18–50, 2018. doi:10.26421/QIC18.1-2-2.

12 Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Improved quantum query upper
bounds based on classical decision trees, 2022. doi:10.48550/ARXIV.2203.02968.

13 Yogesh Dahiya and Meena Mahajan. On (simple) decision tree rank. In Proceedings of
the 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 213 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.15.

14 Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231–246, 1989. doi:10.1016/0890-5401(89)90001-1.

15 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM Journal on Computing, 47(6):2435–2450, 2018. Earlier version in FOCS’15.
doi:10.1137/16M1059369.

16 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC), pages
212–219. ACM, 1996. doi:10.1145/237814.237866.

17 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
526–535. ACM, 2007. doi:10.1145/1250790.1250867.

18 Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms for
connectivity and related problems. In Proceedings of the 26th Annual European Symposium on
Algorithms (ESA), volume 112 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.49.

19 Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula
evaluation. Quantum, 1:26, 2017.

https://doi.org/10.1007/978-3-319-29817-7_4
https://doi.org/10.26421/QIC19.9-10-2
https://doi.org/10.22331/q-2020-03-02-241
http://arxiv.org/abs/2105.08309
https://doi.org/10.1109/FOCS.2012.18
https://doi.org/10.1007/978-3-030-19311-9_4
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.26421/QIC18.1-2-2
https://doi.org/10.48550/ARXIV.2203.02968
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1137/16M1059369
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.4230/LIPIcs.ESA.2018.49

A. Cornelissen, N. S. Mande, and S. Patro 15:17

20 Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, pages 102–111. IEEE Computer Society, 1993.
doi:10.1109/SCT.1993.336536.

21 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In
Proceedings of the 31st International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 25 of LIPIcs, pages 482–493. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.482.

22 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS, pages 344–353. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.75.

23 Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity inspired
by the Elitzur–Vaidman bomb tester. Theory of Computing, 12(1):1–35, 2016. doi:10.4086/
toc.2016.v012a018.

24 Sagnik Mukhopadhyay, Jaikumar Radhakrishnan, and Swagato Sanyal. Separation between
deterministic and randomized query complexity. SIAM Journal on Computing, 47(4):1644–1666,
2018. Earlier versions in FSTTCS’15 and FSTTCS’16. doi:10.1137/17M1124115.

25 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation (10th Anniversary edition). Cambridge University Press, 2016. URL:
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-
information-and-quantum-computation/quantum-computation-and-quantum-information
-10th-anniversary-edition?format=HB.

26 Noam Nisan. CREW prams and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. Earlier version in STOC’89. doi:10.1137/0220062.

27 Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-sat (preliminary
version). In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 128–136. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=
338219.338244.

28 Ben Reichardt. Span programs and quantum query complexity: The general adversary bound
is nearly tight for every boolean function. Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 544–551, 2009.

29 Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560–569. SIAM, 2011.
doi:10.1137/1.9781611973082.44.

30 Ben Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(1):291–319, 2012. Earlier version in STOC’08. doi:
10.4086/toc.2012.v008a013.

31 Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In Proceedings of the 27th Annual Symposium on Foundations of
Computer Science (FOCS), pages 29–38. IEEE Computer Society, 1986. doi:10.1109/SFCS.
1986.44.

32 Leila Taghavi. Simplified quantum algorithm for the oracle identification problem. CoRR,
abs/2109.03902, 2021. arXiv:2109.03902.

33 Ronald de Wolf. Quantum computing: Lecture notes. CoRR, abs/1907.09415, 2019. arXiv:
1907.09415.

A Preliminaries

All logarithms in this paper are taken base 2. For a bit b ∈ {0, 1}, let ¬b denote the bit 1 − b.
Throughout this paper, R denotes an arbitrarily large but finite set. For a relation f ⊆
{0, 1}n × R, define the domain of f to be Df := {x ∈ {0, 1}n : ∃b ∈ R such that (x, b) ∈ f}.
For a vector v, let ∥v∥ denote its ℓ2-norm. For a matrix M , let ∥M∥ denote its spectral

FSTTCS 2022

https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.4230/LIPIcs.STACS.2014.482
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.1137/17M1124115
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://doi.org/10.1137/0220062
http://dl.acm.org/citation.cfm?id=338219.338244
http://dl.acm.org/citation.cfm?id=338219.338244
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1109/SFCS.1986.44
http://arxiv.org/abs/2109.03902
http://arxiv.org/abs/1907.09415
http://arxiv.org/abs/1907.09415

15:18 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

norm. For matrices M and N of the same dimensions, let M ◦ N denote their entry-wise
(Hadamard) product. Let δa,b be the function that outputs 1 when a = b and 0 otherwise.
We use [T] to denote the set {1, . . . , T} where T ∈ Z+.

A.1 Decision Trees
A decision tree computing a relation f ⊆ {0, 1}n × R is a binary tree with leaf nodes labeled
in R, each internal node is labeled by a variable xi and has two outgoing edges, labeled 0
and 1. On input x ∈ {0, 1}n, the tree’s computation proceeds by computing xi as indicated
by the node’s label and following the edge indicated by the value of the computed variable.
The output value at the leaf, say b ∈ R, must be such that (x, b) ∈ f . Given a relation
f ⊆ {0, 1}n × R and a deterministic decision tree T computing it, define the function f̃ that
takes an input x ∈ {0, 1}n and outputs the leaf of T reached on input x. Let V (T) denote
the set of vertices in T , and, we use VI(T) to denote the set of internal nodes of T . We
use the notation J(v) to denote the variable queried at vertex v. For a vertex v ∈ VI(T)
and q ∈ {0, 1}, let N(v, q) denote the vertex that is the child of v along the edge that
has label q. For neighbors v, w, let e(v, w) denote the edge between them. For an input
x ∈ Df , let Px denote the unique path in T from its root to f̃(x). For a path P in T , we
say an edge e deviates from P if exactly one vertex of e is in P . For a path P in T , define
P := {e : e deviates from P}. We let P (T) denote the set of all paths from the root to a leaf
in T . We assume that decision trees computing relations f contain no extraneous leaves, i.e.,
for all leaves there is an input x ∈ Df that reaches that leaf. We also assume that for every
path P in T and index i ∈ [n], the variable xi is queried at most once on P .

The decision tree complexity (also called deterministic query complexity) of f , denoted
D(f), is defined as

D(f) := min
T :T is a DT computing f

depth(T).

Note that a deterministic decision tree in fact computes a function, since each input reaches
exactly one leaf on the computation path of the tree. A randomized decision tree is a
distribution over deterministic decision trees. We say a randomized decision tree computes a
relation f ⊆ {0, 1}n × R with error 1/3 if for all x ∈ {0, 1}n, the probability of outputting
a b ∈ R such that (x, b) ∈ f is at least 2/3. The depth of a randomized decision tree is
the maximum depth of a deterministic decision tree in its support. Define the randomized
decision tree complexity (also called randomized query complexity) of f as

R(f) := min
T :T is a randomized DT

that computes f to error 1/3

depth(T).

Another measure of interest to us in this work is the decision-tree size complexity of f .

▶ Definition 28 (Decision-tree size complexity). Let f : {0, 1}n → {0, 1} be a Boolean function.
Define the decision-tree size complexity of f , which we denote by DTSize(f), as

DTSize(f) := min
T :T computes f

DTSize(T),

where DTSize(T) denotes the number of nodes of T . Analogously, the randomized decision-
tree size complexity of f is defined to be

RDTSize(f) := min
T :T is a randomized DT

that computes f to error 1/3

RDTSize(T),

where RDTSize(T) denotes the maximum number of nodes of a decision tree in the support
of T .

A. Cornelissen, N. S. Mande, and S. Patro 15:19

It is easy to observe that the number of nodes in a deterministic decision tree equals one less
than twice the number of leaves in the tree.

A.2 Quantum Query Complexity
We refer the reader to [25, 33] for the basics of quantum computing. A quantum query
algorithm A for a relation f ⊆ {0, 1}n × R begins in a fixed an initial state |ψ0⟩, applies a
sequence of unitaries U0, Ox, U1, Ox, · · · , UT , and performs a measurement. Here, the initial
state |ψ0⟩ and the unitaries U0, U1, . . . , UT are independent of the input. The unitary Ox

represents the “query” operation, and maps |i⟩|b⟩ to |i⟩|b + xi mod 2⟩ for all i ∈ [n] and
|0⟩ to |0⟩. We say that A is an ε-error algorithm computing f if for all x in the domain of
f , the probability of outputting b ∈ R such that (x, b) ∈ f is at least 1 − ε. The ε-error
quantum query complexity of f , denoted by Qε(f), is the least number of queries required for
a quantum query algorithm to compute f with error ε. When the subscript ε is dropped we
assume ε = 1/3; the bounded-error query complexity of f is Q(f).

B Construction of Span Programs and Dual Adversary Solution of [5]

In this section, we describe Beigi and Taghavi’s construction of an NBSPwOI and a dual
adversary solution for f̃ given a relation f ⊆ {0, 1}n × R and a decision tree T computing
it [5, Section 3] (recall from Appendix A that f̃ takes an input x ∈ {0, 1}n and outputs the
leaf of T reached on input x). We describe their construction in a modular fashion: we
leave the choice of “weights” of the vectors in the span program and dual adversary solution
unfixed. We show that the witness complexity and dual adversary bounds thus obtained are
captured by the objective value of Program 1. In the next section we demonstrate a choice
of weights and prove its optimality. We exhibit another interesting choice of weights in the
full version of this paper [12, Appendix B].

B.1 Span Program Construction
The model of span programs of interest to us is that of “non-binary span programs with ortho-
gonal inputs”, abbreviated NBSPwOI. This model was introduced by Beigi and Taghavi [4].
We refer the reader to the full version of this paper [12, Section 2.3] for basics.

In order to define the NBSPwOI, we first assign strictly positive real weights We to all
edges e in the decision tree. These weights play a crucial role in the witness complexity
analysis, presented in Appendix B.2.

The following is the NBSPwOI for f̃ .

The vector space is determined by the orthonormal basis indexed by vertices of T :
{|v⟩ : v ∈ V (T)}.
The input vectors are

Ij,q =
⋃

v∈VI (T):J(v)=j

{√
We(v,N(v,q)) (|v⟩ − |N(v, q)⟩)

}
. (9)

That is, for all j ∈ [n] and q ∈ {0, 1}, the input vectors correspond to edges corresponding
to answers of queries of the form xj = q. In other words, for every vertex v ∈ VI(T),
e(v,N(v, xJ(v))) is always the unique available outgoing edge of v. Moreover, these vectors
are weighted, and we leave these weights variable for now.

FSTTCS 2022

15:20 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Let r denote the root vertex of T . For each leaf u of T , the associated target vector is
given by |tu⟩ = |r⟩ − |u⟩.

We now give positive and negative witnesses for every x ∈ Df , argue that the above span
program evaluates f̃ , and analyze the positive and negative witness complexities.

B.2 Witness Complexity Analysis
Note that, we use v ∈ Px to denote a vertex in the path Px, and, we use e ∈ Px to denote an
edge in the path Px. For every x ∈ Df , we can express the corresponding target vector by a
telescoping sum of vectors that are all available to x, as

|tf̃(x)⟩ = |r⟩ − |f̃(x)⟩ =
∑

v∈Px\{f̃(x)}

|v⟩ − |N(v, xJ(v))⟩

=
∑

v∈Px\{f̃(x)}

1√
We(v,N(v,xJ(v)))

(√
We(v,N(v,xJ(v)))

(
|v⟩ − |N(v, xJ(v))⟩

))
.

On the other hand, we let |w̄x⟩ =
∑

v∈Px
|v⟩. For any vector in |v′⟩ ∈ I(x), we have

⟨w̄x|v′⟩ =
∑

v∈Px

√
We(v,N(v,xJ(v)))

(
⟨v|v′⟩ − ⟨N(v, e(v, xJ(v)))|v′⟩

)
= 0.

For a leaf u ̸= f̃(x) of T ,

⟨tu|w̄x⟩ =
∑

v∈Px

⟨r|v⟩ −
∑

v∈Px

⟨u|v⟩ = 1 − 0 = 1.

This implies that the NBSPwOI indeed computes f̃ . For the positive and negative witness
sizes, we have

wsize+(P,w, w̄) = max
x∈Df

∑
v∈Px\{f̃(x)}

1
We(v,N(v,xJ(v)))

= max
P ∈P (T)

∑
e∈P

1
We

,

and

wsize−(P, w, w̄) = max
x∈Df

∥∥A†|w̄x⟩
∥∥2 = max

x∈Df

∥∥∥√
We(v,N(v,xJ(v)))

(
⟨v| − ⟨N(v, xJ(v))|

)
|w̄x⟩

∥∥∥2

=
∑

v∈Px\{f̃(x)}

We(v,N(v,¬xJ(v))) = max
P ∈P (T)

∑
e∈P

We.

Now, it remains to find the weight assignment W that minimizes the total complexity of the
NBSPwOI, which is given by

wsize(P,w, w̄) =
√

wsize−(P,w, w̄) · wsize+(P,w, w̄) ≤

√√√√ max
P ∈P (T)

∑
e∈P

1
We

· max
P ∈P (T)

∑
e∈P

We.

Thus, if we assign of weights W to the edges of T as in Sections B.1 and B.2, and set
α = maxP ∈P (T)

∑
e∈P We and β = maxP ∈P (T)

∑
e∈P

1
We

, the construction from earlier in
this section gives rise to an explicit NBSPwOI computing f̃ with witness complexity of

√
αβ.

This is exactly captured by Program 1, giving us Theorem 20.
In the next subsection we show that a solution to Program 1 also gives a dual adversary

solution with the same objective value.

A. Cornelissen, N. S. Mande, and S. Patro 15:21

B.3 Dual Adversary Solution
We refer the reader to the full version of this paper [12, Section 2.4] for basics. Here in this
section we give a simplified analysis of Beigi and Taghavi’s construction of a dual adversary
solution for a relation f ⊆ {0, 1}n × R given a deterministic decision tree T that computes f .
Recall that for a deterministic tree T computing f , f̃ is the function that takes input x ∈ Df

and outputs the leaf of T reached on input x. We show that a dual adversary solution for
f̃ can also be obtained by different settings of weights as in the previous subsection, and
obtain a corresponding dual adversary bound as the optimum value of Program 1.

We construct vectors {|uxj⟩ : x ∈ Df , j ∈ [n]} and {|wxj⟩ : x ∈ Df , j ∈ [n]} that are feas-
ible solutions to Program 2, which we recall below.

Program 2 Dual SDP for f̃ . By replacing the δf̃(x),f̃(y) term with δf(x),f(y) in the constraints we
instead get the dual SDP for f .

Variables {|uxj⟩ : x ∈ Df , j ∈ [n]} and {|wxj⟩ : x ∈ Df , j ∈ [n]} , d

Minimize maxx∈Df max
{∑n

j=1 ∥|uxj⟩∥2 ,
∑n

j=1 ∥|wxj⟩∥2
}

s.t.
∑

j∈[n]:xj ̸=yj
⟨uxj |wyj⟩ = 1 − δf̃(x),f̃(y) ∀x, y ∈ Df

|uxj⟩, |wxj⟩ ∈ Cd for all x ∈ Df

Let VI(T) denote the set of internal nodes of T . Consider the basis set {|v⟩ : v ∈ VI(T)}.
We construct the vectors |uxj⟩ and |wxj⟩ in the space CVI (T). Additionally, we use Vj(T) to
denote the set of vertices associated with query index j, i.e., Vj(T) = {v ∈ VI(T) : J(v) = j}.

Define |uxj⟩ and |wxj⟩ as follows.

|uxj⟩ =


1√

We(v,N(v,xj))
|v⟩ if ∃v ∈ Px ∩ Vj(T),

0 otherwise,
(10)

and,

|wxj⟩ =
{√

We(v,N(v,¬xj))|v⟩ if ∃v ∈ Px ∩ Vj(T),
0 otherwise.

(11)

We claim that these vectors form a feasible solution to Program 2. Fix x, y ∈ Df with
f̃(x) ̸= f̃(y). We now verify that the corresponding equality constraint in Program 2 is
satisfied.

There is a unique vertex in T where Px and Py deviate. Let v ∈ VI(T) denote this vertex,
and let its associated query index be J(v) = i. We have v ∈ Px ∩ Py and xi ̸= yi. In that
case ⟨uxi|wyi⟩ = 1 by the definitions of |uxi⟩ and |wyi⟩ from Equations (10) and (11).
Consider an index j ∈ [n] \ {i} such that xj ̸= yj . Let v′ and v′′ be the vertices on
Px and Py, respectively (if they exist), with J(v′) = J(v′′) = j. By the previous point,
v′ /∈ Py and v′′ /∈ Px. Thus, ⟨v′|v′′⟩ = 0 from Equations (10) and (11), which implies
⟨uxj |wyj⟩ = 0.

Thus, we have for all x, y ∈ Df with f̃(x) ̸= f̃(y),∑
j∈[n]:xj ̸=yj

⟨uxj |wyj⟩ = 1 − δf̃(x),f̃(y).

In the case when f̃(x) = f̃(y), the right hand side in the constraint evaluates to 0 and so
does the left side, because the indices where x and y differ cannot be queried on their path
since x and y reach the same leaf in T . Therefore, the set of vectors {|uxj⟩ : x ∈ Df , j ∈ [n]}
and {|wxj⟩ : x ∈ Df , j ∈ [n]}, and d = |VI(T)| form a feasible solution to Program 2 for f̃ .

FSTTCS 2022

15:22 Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Proof of Theorem 22. Let C denote the objective value of Program 2 with the settings of
{|uxj⟩ : x ∈ Df , j ∈ [n]} and {|wxj⟩ : x ∈ Df , j ∈ [n]} as defined in Equations (10) and (11),
and d = |VI(T)|.

We now argue that C = OPTT , where OPTT denotes the optimal solution of Program 1.
First note that for all x ∈ Df ,

n∑
j=1

∥|uxj⟩∥2 =
∑

e∈Px

1
We

and
n∑

j=1
∥|wxj⟩∥2 =

∑
e∈P x

We.

Thus,

C = min max
x∈Df

max

{
n∑

j=1

∥|uxj⟩∥2 ,

n∑
j=1

∥|wxj⟩∥2

}
= min max

x∈Df

max

 ∑
e∈Px

1
We

,
∑

e∈P x

We

 .

Thus we can alternatively view C to be an optimal solution to the following optimization
program.

Program 3 Optimization program with C being its optimal solution.

Variables {We : e is an edge in T } , α, β

Minimize max{α, β}
s.t.

∑
e∈P

We ≤ α, for all paths P ∈ P (T)∑
e∈P

1
We

≤ β, for all paths P ∈ P (T)
We > 0, for all edges e in T
α, β > 0.

We now show C = OPTT . Let {We : e edge in T } , α, β be settings of variables in
a feasible solution to Program 3, with objective value C. Clearly the same settings of
variables also form a feasible solution to Program 1, since the constraints are the same. The
corresponding objective value of Program 1 is

√
αβ ≤ max {α, β} = C. Thus, OPTT ≤ C.

In the other direction, let {We : e edge in T } , α, β be settings of variables in a feasible
solution to Program 1 with objective value OPTT . Set

W ′
e =

√
β/α ·We for all edges e in T ,

α′ =
√
αβ,

β′ =
√
αβ.

It is easy to verify that this setting of variables is feasible for Program 3, and attains objective
value max {α′, β′} =

√
αβ = OPTT . Thus, C ≤ OPTT , proving the claim. ◀

On the VNP-Hardness of Some Monomial
Symmetric Polynomials
Radu Curticapean #

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Nutan Limaye #

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Srikanth Srinivasan #

Department of Computer Science, Aarhus University, Denmark
On leave from Department of Mathematics, IIT Bombay, India

Abstract
A polynomial P ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation of its
input variables. The study of symmetric polynomials is a classical topic in mathematics, specifically
in algebraic combinatorics and representation theory. More recently, they have been studied in
several works in computer science, especially in algebraic complexity theory.

In this paper, we prove the computational hardness of one of the most basic kinds of symmetric
polynomials: the monomial symmetric polynomials, which are obtained by summing all distinct
permutations of a single monomial. This family of symmetric functions is a natural basis for the
space of symmetric polynomials (over any field), and generalizes many well-studied families such as
the elementary symmetric polynomials and the power-sum symmetric polynomials.

We show that certain families of monomial symmetric polynomials are VNP-complete with
respect to oracle reductions. This stands in stark contrast to the case of elementary and power
symmetric polynomials, both of which have constant-depth circuits of polynomial size.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing
methodologies → Representation of polynomials

Keywords and phrases algebraic complexity, symmetric polynomial, permanent, Sidon set

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.16

Funding Basic Algorithms Research Copenhagen is supported by Villum Foundation grant 16582.
Srikanth Srinivasan: Supported by start-up grant from Aarhus University.

1 Introduction

This paper considers the algebraic complexity of symmetric polynomials: a multivariate
polynomial f ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation
of its variables x1, . . . , xn. Standard examples of such polynomials include the elementary
symmetric polynomials and the power-sum symmetric polynomials. The study of symmetric
polynomials is a classical topic in mathematics, especially in algebraic combinatorics and
representation theory (see, e.g. [18, 14]). In particular, standard bases of homogeneous
symmetric polynomials of fixed degree d and the matrices of linear transformations that
translate between these bases are studied. For many natural bases, the entries of these
matrices encode interesting combinatorial and representation-theoretic quantities.

An important example of such a basis of n-variate symmetric polynomials is the family of
monomial symmetric polynomials, which are considered in this paper. In the following, we say
that a partition λ of an integer d ∈ N is a non-increasingly ordered tuple of positive numbers
λ = (λ1, λ2, . . . , λr) summing to d, i.e. λ1 ≥ λ2 ≥ . . . ≥ λr and

∑r
i λi = d. We write λ ⊢ d

© Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:racu@itu.dk
https://orcid.org/0000-0001-7201-9905
mailto:nuli@itu.dk
https://orcid.org/0000-0002-0238-1674
mailto:srikanth@cs.au.dk
https://orcid.org/0000-0001-6491-124X
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On the VNP-Hardness of Some Monomial Symmetric Polynomials

to indicate this fact. The monomial symmetric polynomial mλ is the polynomial obtained by
summing all distinct monomials yλ1

1 · · · yλr
r that can be obtained by picking y1, . . . , yr out of

x1, . . . , xn without repetitions. These generalize both the elementary symmetric polynomials
(obtained by taking r = d and all λi = 1) and the power symmetric polynomials (obtained by
taking r = 1 and λ1 = d). It is also easily seen that any symmetric polynomial is a unique
linear combination of monomial symmetric polynomials.

In this paper, we study monomial symmetric polynomials from the perspective of algebraic
complexity. The complexity of general symmetric polynomials has already been investigated
in various works, as summarized below.

Many results in algebraic complexity concern the computational complexity of the
elementary symmetric polynomials. Non-trivial upper bounds for computing these
polynomials have been shown in various models [13, 16, 8], starting with the work of
Nisan and Wigderson [13]. In particular, the upper bound by Shpilka and Wigderson [16]
played a crucial role in recent work that proved the first superpolynomial lower bounds for
constant-depth algebraic circuits [10]. Lower bounds for computing elementary symmetric
polynomials have also been shown [13, 16, 15, 8, 6].
The algebraic complexity of various symmetric polynomials in the monotone setting has
been investigated [5, 7]. Here, the underlying field is the reals and we do not allow any
negative constants in the underlying computation. In particular, the result of Grigoriev
and Koshevoy [7] implies an exponential lower bound on monotone algebraic circuits
computing certain monotone symmetric polynomials. However, this does not imply lower
bounds for general (non-monotone) algebraic circuits, which are the focus of this paper.
The fundamental theorem of symmetric polynomials states that any symmetric polynomial
p(x1, . . . , xn) can be written uniquely as a polynomial felem in the elementary symmetric
polynomials. A recent result of Bläser and Jindal [2] shows that, over fields of characteristic
0, the polynomials p and felem have roughly the same algebraic circuit complexity. This
implies the hardness of p when felem is a known hard polynomial such as the permanent,
but it might be non-trivial to understand the complexity of felem in general. A variant
of [2] was proved in [4], which holds for more general models of algebraic computation,
but it requires technical conditions on felem.
Monomial symmetric polynomials appear naturally in the context of learning theory, e.g.,
when estimating properties of distributions. Here, the learning algorithm has access to
samples from a discrete distribution and is required to estimate a symmetric property of
the distribution, e.g., the entropy or support size. Acharya, Das, Orlitsky and Suresh [1]
analyzed algorithms based on a particular estimator and showed their optimality in
a variety of settings. This estimator seeks to optimize a given monomial symmetric
polynomial over the space of probability distributions. The problem we study in this
paper, that is, evaluating a monomial symmetric polynomial at a given input, intuitively
appears to be an easier computational problem.

Many of the above works try to understand the algebraic complexity of various families of
monomial symmetric polynomials. However, to the best of our knowledge, it was not known
if there are families of monomial symmetric polynomials that are hard for general algebraic
circuits. We prove that, indeed, polynomial-sized circuits for certain monomial symmetric
polynomials mλ would imply that VNP collapses to VP. More formally, we show that these
monomial symmetric polynomials are VNP-hard under c-reductions; these reductions will be
introduced in Section 2. (Containment in VNP is easily seen, so VNP-completeness follows.)

R. Curticapean, N. Limaye, and S. Srinivasan 16:3

▶ Theorem 1 (Main theorem). Fix an algebraically closed field of characteristic 0 or q ≥ 3.
There are two polynomial functions r, s : N → N and an explicit1 sequence of partitions
λ1, λ2, . . . such that λn ⊢ r(n) for n ∈ N and the following holds: If the polynomials
mλn(x1, . . . , xs(n)) admit algebraic circuits of polynomial size, then so does the permanent.

The permanent of order n is a polynomial in xi,j for 1 ≤ i, j ≤ n and can be seen as a
sum over all perfect matchings in a complete bipartite graph with n + n vertices and an
edge of weight xi,j between the i-th left and the j-th right vertex. Each perfect matching is
weighted by the product of the weights of all involved edges. The hypergraph permanent is
defined analogously for k-uniform hypergraphs.

Over characteristic 0, the reduction by Bläser and Jindal [2], augmented by an observation
due to Chaugule et al. [4], implies that to prove the theorem, it suffices to establish the
hardness of the polynomial combination fpow that expresses mλ in terms of the power-sum
symmetric polynomials. Towards this, we show that a particular sum-product fmatch over
perfect matchings can be extracted from fpow. However, the weights of perfect matchings M

in fmatch do not necessarily correspond to those in the permanent: A priori, it may not be
possible to recover the edges present in M from the weight of M in fmatch. This property
can however be ensured by choosing the parts in λ from a Sidon set, a notion from additive
combinatorics. In a Sidon set, any pair of distinct numbers is uniquely identified by its sum.
We can apply this to uniquely recover the edges present in a matching from their weight in
fmatch.

Over characteristic q ≥ 3, the proof is similar, but more involved: First, we need to cast
fpow as a polynomial combination felem in the elementary symmetric polynomials in order to
invoke a known reduction by Chaugule et al. [4] that applies to fields of characteristic q. In
this form, it will however be less obvious how to extract a sum-product over perfect matchings.
Focussing on the homogeneous component of minimum degree in felem and carefully choosing
λ will eventually allow us to extract a (q − 1)-uniform hypergraph permanent from felem.
Here, we also crucially exploit the characteristic of the field, along with basic properties of the
transformation that expresses power-sum symmetric polynomials in terms of the elementary
symmetric polynomials.

2 Preliminaries

We use boldface notation x, y for vectors. Throughout, λ will denote a partition, i.e. a
sequence of weakly decreasing positive integers λ1 ≥ λ2 ≥ · · ·λr ≥ 1. Here, r is called the
number of parts of λ.

Symmetric polynomials

In the following, let F be any field and let x = (x1, . . . , xn). We say that P (x) ∈ F[x] is
symmetric if it is invariant under all permutations of the underlying variables. Examples of
symmetric polynomials include the following:

The elementary symmetric polynomials en,d =
∑

S

∏
i∈S xi for d ≤ n, where S ranges

over all d-element subsets of [n]. If n is implicit from context, we set ed := en,d.
The power-sum symmetric polynomials pn,d =

∑n
i=1 xd

i . If n is implicit from context, we
denote this polynomial by pd.

1 The sequence of partitions is explicit in the sense that there is a polynomial-time algorithm that
computes λn on input 1n.

FSTTCS 2022

16:4 On the VNP-Hardness of Some Monomial Symmetric Polynomials

More generally, given a partition λ with r ≤ n parts, the monomial symmetric polynomial
mλ is the sum of all monomials where the distinct exponents are exactly λ1, . . . , λr. In
particular, when λ1, . . . , λr are all distinct, we can define this polynomial by

mλ =
∑

i1,...,ir∈[n]
distinct

xλ1
i1
· · ·xλr

ir
.

As noted in the introduction, the elementary and power-sum symmetric polynomials are
special cases of monomial symmetric polynomials.
The following basic theorem regarding symmetric polynomials will be important.

▶ Theorem 2 (Fundamental theorem of symmetric polynomials (see, e.g., [11])). For any
symmetric polynomial f ∈ F[x1, . . . , xn], there is a unique polynomial felem(y1, . . . , yn) with
felem(e1, . . . , en) = f(x). If F has characteristic zero, then there is also a unique polyno-
mial fpow(y1, . . . , yn) that represents f analogously in terms of the power-sum symmetric
polynomials.

Further, both felem and fpow (the latter over characteristic 0) have degree at most deg(f)
and do not depend on yi for i > deg(f).

Algebraic circuits and Oracle reductions

We work throughout with the standard algebraic circuit model. We refer the reader to
standard resources [3, 17] for definitions and basic results regarding the model. We recall
also the notion of c-reductions between two polynomials f and g: We define Lg(f) to be the
smallest s such that the polynomial f is computed by an algebraic circuit C of size at most
s that is additionally allowed to use gates for the polynomial g. If Lg(f) is bounded by a
polynomial in the number of variables and degree of f and g, we also say that f admits a
c-reduction to g and write f ⪯c g.

A result of Bläser and Jindal [2] relates the algebraic complexity of a symmetric polynomial
f with its associated polynomial felem, when the underlying field is the field of complex
numbers. Chaugule et al. [4, Theorem 4.16] extended the result to fpow.
▶ Theorem 3 ([2, 4]). Any symmetric polynomial f ∈ C[x] admits the reductions felem ⪯c f

and fpow ⪯c f.

We also need the following variant of Theorem 3 due to [4]. While the results of [4] are
stated for characteristic zero, we show in Section 5 how to modify them to work for positive
characteristic in the setting we are interested in.

In the following, given a polynomial f ∈ F[x] and an integer d, we use Hd(f) to denote
the homogeneous degree-d component of f . We say that a polynomial f has min-degree t if
Ht(f) ̸= 0 and Hi(f) = 0 for all i < t, and we define the min-degree of the zero polynomial
to be +∞.
▶ Theorem 4 (Adaptation of [4], see Section 5). Let F be an algebraically-closed field of
characteristic q > 0. Let f ∈ F[x1, . . . , xn] be a non-zero symmetric polynomial such that the
min-degree of felem is t. Furthermore, assume that felem(y1, . . . , yn) does not depend on the
variables yn−1 and yn. Then Ht(felem) ⪯c f .
In the above statement we say that felem must not depend on the variables yn−1 and yn.
This is a mere technical condition required in our proof of this theorem. Finally, we also
need the following standard fact:
▶ Lemma 5 (Homogeneous component extraction. Folklore, see [17, 2]). Let F be any field.
For any f ∈ F[x] and integer d ≥ 0, we have Hd(f) ⪯c f .

R. Curticapean, N. Limaye, and S. Srinivasan 16:5

Permanents

The canonical VNP-complete polynomial family is given by the polynomials Pern for n ∈ N,
each defined on n2 variables xi,j for i, j ∈ [n], such that

Pern =
∑

σ∈Sn

x1,σ(1) . . . xn,σ(n),

where Sn is the set of all permutations of the set {1, 2, . . . , n}. When the variables xi,j

take Boolean values, the underlying input to Pern defines a bipartite graph and the above
polynomial computes the number of perfect matchings in this graph.

An analogous polynomial can be defined for not necessarily bipartite graphs. Assume
that n is an even integer and fix the set of

(
n
2
)

variables x{i,j} for all distinct i, j ∈ [n]. Then,
we define the perfect matching polynomial PerfMatchn over these variables by

PerfMatchn =
∑

perfect matchings
M of Kn

∏
{i,j}∈M

x{i,j}.

We can also define analogues of the above for hypergraphs. Let k ≥ 2 be an integer and let
K

(k)
n denote the complete k-uniform hypergraph on n vertices. For n divisible by k, we define

the hypergraph perfect matching polynomial hPerfMatch(k)
n over the

(
n
k

)
many variables xS

for S ∈
([n]

k

)
by

hPerfMatch(k)
n =

∑
perfect matchings

M of Kk
n

∏
S∈M

xS .

Note that PerfMatchn = hPerfMatch(2)
n .

We have the following simple reductions from permanents to their variants.

▶ Lemma 6. For even n ∈ N, we have Pern/2 ⪯c PerfMatchn. More generally, for any fixed
k ∈ N and any n divisible by k, we have Pern/k ⪯c hPerfMatch(k)

n .

Proof sketch. For even n, reduce Pern/2 to PerfMatchn as follows: For i, j ∈ [n/2], substitute
x{i,n/2+j} ← xi,j and xS ← 0 for all remaining variables xS . This results in Pern/2.

More generally, for n divisible by k, reduce Pern/k to hPerfMatch(k)
n as follows: For

i, j ∈ [n/k], let Si,j = {i} ∪ {tn/k + j | t = 1, . . . , k − 1} and substitute xSi,j
← xi,j . Then

substitute xS ← 0 for all remaining variables xS . This results in Pern/k. ◀

Finally, we recall a generalization of the permanent to rectangular matrices. Fix an r× n

matrix X where r ≤ n and the (i, j)-th entry of X is a variable xi,j . For a subset J ⊆ [n] of
size r, we define XJ to be the submatrix obtained by keeping only the columns indexed by
the indices in J . Now, we define the rectangular permanent rPerr,n by

rPerr,n =
∑

J∈([n]
r)

Perr(XJ).

The following polynomial identity will be crucial to our main results.

▶ Theorem 7 (Binet-Minc Identity [12]). Let F be any field. Fix an r× n matrix X as above.
For any non-empty I ⊆ [n], define the polynomial SI by SI =

∑n
j=1

∏
i∈I xi,j . Then, we have

rPerr,n =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · SI ,

where Pr denotes the set of all partitions of [r] into non-empty subsets.

FSTTCS 2022

16:6 On the VNP-Hardness of Some Monomial Symmetric Polynomials

Sidon sets and variants

Our hardness proofs for the monomial symmetric functions mλ require certain conditions
on λ: In Section 3, any unordered pair of numbers in λ must be uniquely identified from
its sum, i.e., the parts in λ form a so-called Sidon set. Additionally, sums composed of the
parts in λ are stratified by the number of terms involved in the sum. Section 4 requires more
generally that sets of fixed size q ∈ N are identifiable, and that all parts must have remainder
1 modulo q. We capture these requirements in the following definition:

▶ Definition 8. Given a set of integers L = {λ1, . . . , λr} and a subset S ⊆ [r], define
λS :=

∑
i∈S λi. We say that L (or a partition λ whose multiset of parts equals L) is q-good

for an integer q ≥ 2 if the following conditions hold:
q-wise Sidon set: For any two distinct sets S, S′ ⊆ [r] of size q, we have λS ̸= λS′ .
Stratification: For sets S, T ⊆ [r] with |S| < q and |T | = q, we have λS < λT .
Units modulo q + 1: For each i ∈ [r], we have λi ≡ 1 (mod q + 1) .

Existing constructions of q-wise Sidon sets can be adapted to construct such sets:

▶ Lemma 9. For all r, q ∈ N, there exists a q-good set of r integers that are bounded by
rO(q). Such a set can be constructed deterministically in time rO(q).

Proof. Let s ∈ N be the smallest perfect square that is larger or equal to r. By Lemma 2.5
in [9], there is a q-wise Sidon set {λ1, . . . , λs} with elements bounded by sO(q) = rO(q) that
can be constructed in sO(q) = rO(q) time. Then the r-element subset {λ1, . . . , λr} trivially is
a q-wise Sidon set as well.

Now take µi = (q + 1)λi + 1 for all i ∈ [r]; this trivially ensures that µi ≡ 1 (mod q + 1)
for all i, as required in the third property from Definition 8. As the map x 7→ (q + 1)x + 1 is
injective, the set {µ1, . . . , µr} is a q-wise Sidon set.

Finally, to ensure the stratification property, let Σ be the smallest multiple of q + 1 that
is strictly larger than µ1 + . . . + µr, define µ′

i = Σ + µi for i ∈ [r], and set L := {µ′
1, . . . , µ′

r}.
As the map x 7→ Σ + x is injective, L is a q-wise Sidon set. As Σ is a multiple of q + 1, we
have µ′

i ≡ µi ≡ 1 (mod q + 1) for all i. We show that µ′
I < µ′

I′ for I, I ′ ⊆ [r] with |I| < |I ′|:
Note that µ′

i can be interpreted as a 2-digit number (1, µi) in base Σ. For I ⊆ [r], the
representation of µ′

I =
∑

i∈I µ′
i in base Σ is (|I|, µI); this is because Σ is large enough to

avoid an overflow of the least significant digit. The stratification property follows.
From the above construction, it follows that L is a q-good set, all numbers in L are

bounded by rO(q), and that L can be constructed deterministically in rO(q) time. ◀

3 Main result in characteristic zero

We present our main reduction from permanents to monomial symmetric functions mλ. The
reduction shown in this section applies to the field C. In the next section, we show how to
handle fields of characteristic strictly greater than 2; this introduces additional technical
difficulties that are not present in this section.

Fix a 2-good partition λ = (λ1, . . . , λr) with r parts, non-increasingly ordered, and
λ ⊢ d for d ∈ N. Recall our notation λI :=

∑
i∈I λi for I ⊆ [r]. We first express

mλ(x1, . . . , xn) for n ∈ N as a polynomial combination of the power-sum symmetric polyno-
mials pj := pn,j(x1, . . . , xn) for 1 ≤ j ≤ d. That is, we obtain a polynomial fpow(y1, . . . , yd)
in indeterminates y1, . . . , yd such that

mλ(x1, . . . , xn) = fpow(p1, . . . , pd).

R. Curticapean, N. Limaye, and S. Srinivasan 16:7

Known reductions will allow us to reduce directly (in characteristic 0) or with extra steps
(for characteristic > 2) from fpow to mλ. It therefore remains to establish hardness of fpow.
Towards this, we give a combinatorial interpretation of fpow as a sum over partitions of [r];
this sum will later be restricted to partitions that are actually perfect matchings of Kr.

▶ Fact 10. If λ = (λ1, . . . , λr) is a partition of some integer d ∈ N, and the parts of λ are
pairwise distinct, then we have mλ(x1, . . . , xn) = fpow(p1, . . . , pd) with

fpow(y1, . . . , yd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (1)

Proof. If all parts of λ are pairwise distinct, then mλ can be expressed as the rectangular
permanent of a generalized Vandermonde matrix Vλ defined from λ:

mλ = rPerr,n

 xλ1
1 xλ1

2 . . . xλ1
n

...
...

. . .
...

xλr
1 xλr

2 . . . xλr
n


︸ ︷︷ ︸

=:Vλ

(2)

The Binet-Minc formula (Theorem 7) then readily yields (1): When invoked on Vλ, the
polynomial SI in the statement of Theorem 7 equals

SI =
n∑

j=1

∏
i∈I

Vλ(i, j) =
n∑

j=1

∏
i∈I

xλi
j =

n∑
j=1

xλI
j = pλI

.

This concludes the proof. ◀

Note that all parts of λ are indeed distinct, since λ is 2-good and thus cannot feature a part
of multiplicity strictly larger than 1; this follows from the Sidon set property.

Theorem 2 shows that fpow is uniquely determined over characteristic 0, and Theorem 3
yields a reduction from fpow to mλ, so we establish hardness of fpow: We define a new
polynomial fmatch by restricting the sum over partitions I ∈ Pr in (1) to perfect matchings,
i.e., to partitions of [r] in which all parts have cardinality 2. We write Mr for the set of
perfect matchings of [r] and define

fmatch(y1, . . . , yd) :=
∑

I∈Mr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI

= (−1)r/2
∑

I∈Mr

∏
I∈I

yλI
.

(3)

The last identity holds because every I ∈ Mr has exactly r/2 parts, each of cardinality 2.
We will show later that fmatch can be reduced to fpow. First, we establish the hardness of

fmatch by reducing the perfect matching polynomial to it. Here, we crucially use that λ is a
Sidon set in order to switch between the variables yλ{u,v} present in fmatch and the variables
x{u,v} present in PerfMatchr.

▷ Claim 11. There is a c-reduction from PerfMatchr to fmatch.

Proof. Since λ is a 2-good set, its parts form a 2-wise Sidon set, so the map {u, v} 7→ λ{u,v}
from 2-subsets of [r] into N is injective. This in turn implies that substituting yλ{u,v} ← x{u,v}
for all {u, v} ⊆ [r] into fmatch yields the polynomial

(−1)r/2
∑

I∈Mr

∏
I∈I

x{u,v} = (−1)r/2PerfMatchr.

Multiplication with (−1)r/2 then yields the desired c-reduction. ◁

FSTTCS 2022

16:8 On the VNP-Hardness of Some Monomial Symmetric Polynomials

Finally, we reduce fmatch to fpow. This reduction proceeds in two steps: We first show
that the homogeneous component of degree r/2 in fpow enumerates the perfect matchings
and some additional structures; these additional structures are then removed through the
stratification property of λ.

▷ Claim 12. There is a c-reduction from fmatch to fpow.

Proof. Consider the homogeneous component Hr/2(fpow) in fpow. Lemma 5 gives a c-
reduction from Hr/2(fpow) to fpow. By inspecting (1), we see that the monomials of
Hr/2(fpow) correspond to the partitions I ∈ Pr with exactly r/2 parts. Such a partition is a
perfect matching iff it contains no parts of size 1, as every part must then be of cardinality
at least 2, and thus, of cardinality exactly 2.

We thus aim to restrict the sum further to partitions with r/2 parts and no parts of
cardinality 1. To this end, substitute pλ{u} ← 0 for all u ∈ [d]: By the stratification property
of λ, this eliminates precisely those partitions from Hr/2(fpow) that contain a singleton part
{u}. Overall, this yields a c-reduction from fmatch over Hr/2(fpow) to fpow. ◁

We have now collected all parts of the reduction and summarize it below.

▶ Lemma 13. Let F = C. Let λ ⊢ d for d ∈ N be a 2-good partition with r parts. Then

Perr/2 ⪯c mλ(x1, . . . , xn)

provided that n ≥ d.

Proof. Let fpow(y1, . . . , yd) and fmatch(y1, . . . , yd) denote the polynomials defined from λ in
(1) and (3) above. We have the following chain of reductions:

Perr/2 ⪯c PerfMatchr by Lemma 6
⪯c fmatch(y1, . . . , yd) by Claim 12
⪯c fpow(y1, . . . , yd) by Claim 11
⪯c mλ(x1, . . . , xn) by Theorem 4.

The lemma follows. ◀

Combining Lemma 13 and Lemma 9, we obtain a proof of Theorem 1 in the case when
the underlying field is C.

Proof of Theorem 1 (characteristic 0). By Lemma 9, there is a sequence of 2-good parti-
tions λ1, λ2, λ3, . . . such that λn ⊢ dn has n parts and dn ≤ s(n) for a polynomial s : N→ N.
By Lemma 13, we have Pern/2 ⪯c mλn(x1, . . . , xs(n)). The theorem follows. ◀

4 Main result in positive characteristic

In this section, we adapt the proof from Section 3 to prove the main theorem for fields of
positive characteristic. Throughout this section, F denotes an infinite and algebraically closed
field of characteristic q > 2. Rather than reducing from the perfect matching polynomial for
graphs, we reduce from the perfect matching polynomial in (q − 1)-uniform hypergraphs. In
the following, let λ be a (q − 1)-good partition with r parts and λ ⊢ d for d ∈ N.

R. Curticapean, N. Limaye, and S. Srinivasan 16:9

The proof begins again by expressing mλ(x1, . . . , xn) = fpow(p1, . . . , pd) as a polynomial
combination of power-sum polynomials pi for 1 ≤ j ≤ d. Since λ is (q − 1)-good, it contains
only pairwise distinct parts, so we can use Fact 10 again and obtain

fpow(y1, . . . , yd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (4)

At this point, we exploit the field characteristic: We have (|I| − 1)! ≡ 0 (mod q) if |I| > q,
implying that only partitions with parts of cardinality ≤ q appear in the above sum. Write
P≤q

r for the set of these partitions, and furthermore write Pq−1
r for the set of partitions

whose parts all have cardinality q − 1. Our goal is to restrict the sum in (4) to partitions
from Pq−1

r , that is, to perfect matchings in the complete (q− 1)-uniform r-vertex hypergraph.
This resembles the restriction to graph perfect matchings in Section 3.

To achieve this restriction and to invoke Theorem 4 later, we express the power-sum
polynomials pk for 1 ≤ k ≤ d as polynomials in the elementary symmetric polynomials. In
contrast to the converse direction (of expressing the elementary symmetric polynomials in
terms of the power-sum polynomials), such expressions exist even in positive characteristic:
For all k ∈ N, there is a unique polynomial fk(z1, . . . , zk) with pk = fk(e1, . . . , ek), even over
fields of characteristic q > 0. Combined with (4), we obtain mλ = felem(e1, . . . , ed) with

felem(z1, . . . , zd) =
∑

I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
(z1, . . . , zd). (5)

The polynomial felem is unique, since the elementary symmetric polynomials form a
basis for the symmetric polynomials over every field. Let t denote the min-degree of felem.
Theorem 4 shows that the homogeneous component of degree t in felem admits a c-reduction
to the polynomial mλ, so we will focus on this homogeneous component. First, we show that
the polynomial fk, which expresses the power-sum symmetric polynomial pk in terms of the
elementary symmetric polynomials, has min-degree at least 2 whenever k is divisible by q.
Note that fk has no constant term.

▷ Claim 14. The only linear monomial in fk is (−1)k+1k · yk. In particular, if q | k, then
the min-degree of fk over characteristic q is at least 2.

Proof. Given a partition µ ⊢ k and i ∈ N, write si(µ) for the multiplicity of i in µ. We
have [18, Chapter 7] that

fk(y1, . . . , yk) = (−1)kk
∑
µ⊢k

(s1(µ) + s2(µ) + · · ·+ sk(µ)− 1)!
s1(µ)! s2(µ)! · · · sk(µ)!

k∏
i=1

(−yi)si(µ). (6)

Note that every partition µ ⊢ k with at least two parts contributes a term of total degree at
least two. Only the partition µ = (k) can therefore contribute a linear monomial, and the
contributed monomial is (−1)kk · 0!/1! · (−yk) = (−1)k+1k · yk. ◁

Using this claim, we can analyze the min-degree of the contribution to felem from a
partition I ∈ P≤q

r . That is, we write felem =
∑

I bI with I ranging over P≤q
r and

bI := (−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
.

It turns out that the min-degree of bI is minimized for partitions I ∈ Pq−1
r . This will allow

us to isolate these partitions via Theorem 4.

FSTTCS 2022

16:10 On the VNP-Hardness of Some Monomial Symmetric Polynomials

▷ Claim 15. Let I ∈ P≤q
r .

If I ∈ Pq−1
r , then the min-degree of bI is equal to r/(q − 1).

Otherwise, the min-degree of bI is strictly larger than r/(q − 1).

Proof. Parts of size q in I contribute 2 to the min-degree of bI , while parts of size ≤ q − 1
contribute 1. Consider a Knapsack instance K with items S1, . . . , Sq, and item repetitions
allowed, where item Sj for 1 ≤ j ≤ q − 1 has weight 1 and profit j, while item Sq has weight
2 and profit q. The min-degree of bI for I ∈ P≤q

r can be viewed as the minimum weight of a
solution with profit r for K. Greedily choosing copies of the item Sq−1 with strictly (since
q > 2) largest profit-weight ratio yields an optimal fractional solution for K that consists of
r/(q− 1) copies of item Sq−1. This is an optimal integral solution to K, and by optimality of
the greedy algorithm, any solution including other items has strictly higher weight.

It follows that the min-degree of bI over all I ∈ P≤q
r is at least r/(q− 1), and this bound

is attained with (and only with) the partitions I ∈ Pq−1
r . ◁

It follows that the min-degree of felem is t := r/(q − 1). Since only partitions I ∈ Pq−1
r

have this min-degree t, the homogeneous component of degree t in felem depends only on
these partitions. We obtain

Ht(felem) = Ht

 ∑
I∈Pq−1

r

bI

 = Ht

 ∑
I∈Pq−1

r

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI

 . (7)

Since all partitions I ∈ Pq−1
r have t parts, each of size q − 1, we obtain furthermore that

Ht(felem) = (−1)r−t(q − 2)! ·Ht

 ∑
I∈Pq−1

r

∏
I∈I

fλI

 . (8)

The min-degree of fλI
for I ∈ I ∈ Pq−1

r is 1, and the unique linear monomial is (−1)λI +1λI ·
yλI

. Since λ is (q − 1)-good and |I| = q − 1, we have λI ≡ q − 1 (mod q). It follows that

H1(fλI
) ≡ (−1)q(q − 1) · yλI

. (mod q) (9)

For I ∈ Pq−1
r , the degree-t homogeneous component of

∏
I∈I fλI

is the product of these
linear monomials H1(fλI

). That is,

Ht

(∏
I∈I

fλI

)
≡
∏
I∈I

H1(fλI
) ≡ (−1)(q+1)t

∏
I∈I

yλI
. (mod q) (10)

It follows that

Ht(felem) ≡ (−1)r−t+(q+1)t(q − 2)!
∑

I∈Pq−1
r

∏
I∈I

yλI
. (mod q) (11)

Using the (q − 1)-wise Sidon set property of λ, we can substitute yλI
← xI for all sets

I ⊆ [r] of cardinality q − 1 into (11) as in Claim 11, so as to obtain:

▷ Claim 16. The polynomial hPerfMatchq−1
r admits a c-reduction to Ht(felem).

It remains to invoke Theorem 4. We collect the proof steps in the following lemma that
parallels Lemma 13 for characteristic 0.

R. Curticapean, N. Limaye, and S. Srinivasan 16:11

▶ Lemma 17. Let F be an algebraically closed field of characteristic q > 2. Let λ ⊢ d for
d ∈ N be a (q − 1)-good partition with r parts. Then

Perr/(q−1) ⪯c mλ(x1, . . . , xn),

provided that n ≥ d + 2.

Proof. Let felem(y1, . . . , yd) denote the polynomial defined from λ in (5). We have the
following chain of reductions:

Perr/(q−1) ⪯c hPerfMatch(q−1)
r by Lemma 6

⪯c Ht(felem(y1, . . . , yd)) by Claim 16
⪯c mλ(x1, . . . , xn) by Theorem 4.

To invoke Theorem 4, we use that n ≥ d + 2. This means that indeed felem(y1, . . . , yd)
depends on two variables less than mλ(x1, . . . , xn), as required. ◀

The proof of Theorem 1 for characteristic q now follows as in Section 3: Use Lemma 9 to
find (q − 1)-good partitions, then reduce from the family of permanents via Lemma 17.

5 Proof of Theorem 4

In this section, we outline how to modify the result of [4] to show Theorem 4 over an
algebraically closed field F of any characteristic (we will only require that the size of the field
F is large enough and contains primitive roots of unity of large enough order).

High-level Idea

The modification is based on a very simple idea. [4] prove a result for any algebraically
independent polynomials satisfying a (simple) technical condition. To apply this result, the
underlying field is required to have characteristic zero in order to apply the Jacobian criterion,
which states that the Jacobian of a collection of algebraically independent polynomials is full
rank over fields of characteristic zero. While this fact fails for fields of positive characteristic,
the proof still works if we are independently able to show that the polynomials under
consideration induce a Jacobian of full rank. We use this fact to prove their result in
the setting that the underlying polynomials are the elementary symmetric polynomials
e1, . . . , en−2.

The following is implicit in [4, Lemma 27]. The proof is only stated for homogeneous
polynomials g but easily works in the following more general setting as well.

▶ Lemma 18. Let k, n be positive integers with k ≤ n. Assume that Q1, . . . , Qk ∈
F[x1, . . . , xn] are polynomials of degree at most D such that for some a ∈ Fn, we have

Q1(a) = · · · = Qk(a) = 0, and
the k × n Jacobian matrix J (Q1, . . . , Qk) has rank k, when evaluated at the point a.

Further, assume that g ∈ F[y1, . . . , yk] is a degree-d polynomial of min-degree t and let
G = g(Q1, . . . , Qk). Then, LG(Ht(g)) ≤ poly(n, d, D).

We only sketch the proof, as it is quite similar to [4, Lemma 27].

Proof sketch. By shifting the input x by a, we assume without loss of generality that a is
the origin (note that this does not affect the Jacobian at all). Now, by a Taylor expansion
around the origin, we have for each i ∈ [k]

Qi(x) = ℓi(x) + Ri(x)

FSTTCS 2022

16:12 On the VNP-Hardness of Some Monomial Symmetric Polynomials

where ℓi(x) is a homogeneous linear polynomial and Ri(x) is a polynomial of min-degree
at least 2. Further, the polynomials ℓ1, . . . , ℓk are linearly independent as the Jacobian is
full-rank at a (i.e. the origin). Thus, we have

G(x) = g(Q1(x), . . . , Qk(x))

=
d∑

j=t

Hj(g)(ℓ1(x) + R1(x), . . . , ℓk(x) + Rk(x))

= Ht(g)(ℓ1(x), . . . , ℓk(x)) + R(x)

where R(x) has min-degree strictly greater than t and degree at most deg(G). Note that
the second equality uses the fact that the min-degree of g is t. Since ℓ1, . . . , ℓk are linearly
independent, there exists a homogeneous linear transformation T of the variables x1, . . . , xn

such that ℓi(T (x)) = xi for each i ∈ [k]. Applying this linear transformation to the input
variables, we have

G′(x) := G(T (x)) = Ht(g)(ℓ1(T (x)), . . . , ℓk(T (x)))+R(T (x)) = Ht(g)(x1, . . . , xk)+R′(x)

where R′ has min-degree strictly greater than t and degree at most deg(G).
The above clearly implies that LG(G′) ≤ poly(n). Furthermore, by Lemma 5, we have

that LG′(Ht(g)) ≤ poly(n, deg(G)) ≤ poly(n, d, D) as the degree of G is at most d ·D.
Composing the two reductions, we have LG(Ht(g)) ≤ poly(n, d, D). ◀

We will apply Lemma 18 to the setting when Q1, . . . , Qk are e1, . . . , ek for some k < n−1.
To do this, we need to show that these polynomials satisfy the hypotheses required of
Q1, . . . , Qk in the statement of Lemma 18. We do this now, using ideas from Lemma 30 and
31 of [4].

▶ Lemma 19. Let k, n be positive integers with k < n− 1. Then the polynomials e1, . . . , ek

satisfy the conditions required of Q1, . . . , Qk in the hypothesis of Lemma 18.

Proof sketch. Define ℓ = k + 1 if q does not divide k + 1 and ℓ = k + 2 otherwise. Note that
k < ℓ ≤ n. As q does not divide ℓ, the algebraically-closed field F contains ℓ distinct ℓ-th
roots of unity 1, ω, . . . , ωℓ−1. Let a = (1, ω, . . . , ωℓ−1, 0, . . . , 0). It is a standard observation
(see e.g. [4, Lemma 31]) that e1(a) = · · · = eℓ−1(a) = 0. As ℓ > k, this implies the first
hypothesis from the statement of Lemma 18 above.

For the second hypothesis, we consider the Jacobian matrix J (e1, . . . , ek). To show that
this matrix is full-rank when evaluated at a, it suffices to argue that some k × k minor of
this matrix is non-zero when evaluated at a. We consider the minor Jk defined by the first k

columns of J (e1, . . . , ek) (containing the partial derivatives w.r.t. variables x1, . . . , xk).
The proof of Lemma 30 in [4] shows that Jk is divisible by the polynomial

∏
i<j≤k(xi −

xj). By comparing the degrees of these polynomials, we see immediately that J must be
c ·
∏

i<j≤k(xi − xj) for some scalar c ∈ F. As the first k co-ordinates of a are distinct, we
see that Jk(a) = c · α for some non-zero α ∈ F. So it suffices to show that c is non-zero.

To argue this, we only need to show that Jk is a non-zero polynomial. To see this,
consider the coefficient of xk−1

1 xk−2
2 · · ·xk−1 in the minor Jk. We claim that this coefficient

is non-zero. In particular, this implies that Jk is a non-zero polynomial.
It remains to prove the claim regarding the monomial mk := xk−1

1 xk−2
2 · · ·xk−1. We have

Jk =
∑

σ∈Sn

sgn(σ)
k∏

i=1
J (e1, . . . , ek)i,σ(i).

R. Curticapean, N. Limaye, and S. Srinivasan 16:13

To argue that mk has a non-zero coefficient in Jk, we can argue by induction on k. Note
that the (i, j)th entry of J (e1, . . . , ek) is the partial derivative of the polynomial ei w.r.t.
variable xj . It is thus the sum of all multilinear monomials of degree i− 1 not divisible by xj .
In particular, the only entry in the kth row that has a monomial involving only the variables
x1, . . . , xk−1 (the set of variables of mk) is the entry J (e1, . . . , ek)k,k, and furthermore, the
unique such monomial is x1 · · ·xk−1.

Expanding the determinant Jk by the Laplace expansion along the kth row, we see that
the coefficient of mk in Jk is also the coefficient of mk in

x1 · · ·xk−1 · J ′
k

where the latter term J ′
k represents the co-factor of J (e1, . . . , ek)k,k in Jk, which is exactly

the minor corresponding to the first k − 1 columns of J (e1, . . . , ek−1), which is Jk−1. By
induction, the coefficient of mk−1 = xk−2

1 · · ·xk−2 in J ′
k is non-zero, hence implying that the

coefficient of mk in Jk is non-zero as well. ◀

To prove Theorem 4, we apply Lemma 18 to the case when G = f(x1, . . . , xn) and
g = felem(y1, . . . , yn−2). Note that, by the hypothesis of Theorem 4, felem does not depend
on yn−1 and yn. By Lemma 19, the polynomials e1, . . . , en−2 satisfy the hypotheses of
Lemma 18. Applying the latter lemma and using the fact that e1, . . . , en−2 have degree at
most n, we immediately get Ht(felem) ⪯c f, implying Theorem 4.

References
1 Jayadev Acharya, Hirakendu Das, Alon Orlitsky, and Ananda Theertha Suresh. A unified

maximum likelihood approach for estimating symmetric properties of discrete distributions.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pages 11–21. PMLR, 2017. URL: http://
proceedings.mlr.press/v70/acharya17a.html.

2 Markus Bläser and Gorav Jindal. On the complexity of symmetric polynomials. In Avrim Blum,
editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 47:1–47:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.47.

3 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.

4 Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, and
Srikanth Srinivasan. Schur polynomials do not have small formulas if the determinant doesn’t.
In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 14:1–14:27.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.14.

5 Sergey Fomin, Dima Grigoriev, and Gleb A. Koshevoy. Subtraction-free complexity, cluster
transformations, and spanning trees. Found. Comput. Math., 16(1):1–31, 2016. doi:10.1007/
s10208-014-9231-y.

6 Hervé Fournier, Nutan Limaye, Meena Mahajan, and Srikanth Srinivasan. The shifted partial
derivative complexity of elementary symmetric polynomials. Theory Comput., 13(1):1–34,
2017. doi:10.4086/toc.2017.v013a009.

7 Dima Grigoriev and Gleb A. Koshevoy. Complexity of tropical schur polynomials. J. Symb.
Comput., 74:46–54, 2016. doi:10.1016/j.jsc.2015.05.005.

8 Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complex., 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

FSTTCS 2022

http://proceedings.mlr.press/v70/acharya17a.html
http://proceedings.mlr.press/v70/acharya17a.html
https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://doi.org/10.4230/LIPIcs.CCC.2020.14
https://doi.org/10.1007/s10208-014-9231-y
https://doi.org/10.1007/s10208-014-9231-y
https://doi.org/10.4086/toc.2017.v013a009
https://doi.org/10.1016/j.jsc.2015.05.005
https://doi.org/10.1007/s00037-011-0007-3

16:14 On the VNP-Hardness of Some Monomial Symmetric Polynomials

9 Mrinal Kumar and Ben Lee Volk. Lower bounds for matrix factorization. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 5:1–5:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.5.

10 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE,
2021. doi:10.1109/FOCS52979.2021.00083.

11 I. G. (Ian Grant) Macdonald. Symmetric functions and Hall polynomials. Oxford mathematical
monographs. Clarendon Press ; Oxford University Press, Oxford : New York, 1979.

12 Henryk Minc and Marvin Marcus. Permanents. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1984. doi:10.1017/CBO9781107340688.

13 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complexity, 6(3):217–234, 1996/97. doi:10.1007/BF01294256.

14 Amritanshu Prasad. Representation theory, volume 147 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Delhi, 2015. A combinatorial viewpoint. doi:
10.1017/CBO9781139976824.

15 Amir Shpilka. Affine projections of symmetric polynomials. J. Comput. Syst. Sci., 65(4):639–
659, 2002. doi:10.1016/S0022-0000(02)00021-1.

16 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Comput. Complex., 10(1):1–27, 2001. doi:10.1007/PL00001609.

17 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/
0400000039.

18 Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by
Gian-Carlo Rota and appendix 1 by Sergey Fomin. doi:10.1017/CBO9780511609589.

https://doi.org/10.4230/LIPIcs.CCC.2020.5
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1017/CBO9781107340688
https://doi.org/10.1007/BF01294256
https://doi.org/10.1017/CBO9781139976824
https://doi.org/10.1017/CBO9781139976824
https://doi.org/10.1016/S0022-0000(02)00021-1
https://doi.org/10.1007/PL00001609
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1017/CBO9780511609589

Online Piercing of Geometric Objects
Minati De # Ñ

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Saksham Jain #

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Sarat Varma Kallepalli #

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Satyam Singh #

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

Abstract
We consider the online version of the piercing set problem where geometric objects arrive one
by one. The online algorithm must maintain a piercing set for the arrived objects by making
irrevocable decisions. First, we show that any deterministic online algorithm that solves this problem
has a competitive ratio of at least Ω(n), which even holds when the objects are one-dimensional
intervals. On the other hand, piercing unit objects is equivalent to the unit covering problem which
is well-studied in the online model. Due to this, all the results related to the online unit covering
problem are preserved for the online unit piercing problem when the objects are translated from
each other. Surprisingly, no upper bound was known for the unit covering problem when unit
objects are anything other than balls and hypercubes. In this paper, we introduce the notion of
α-aspect and α-aspect∞ objects. We give an upper bound of competitive ratio for α-aspect and
α-aspect∞ objects in R3 and Rd, respectively, with a scaling factor in the range [1, k]. We also
propose a lower bound of the competitive ratio for bounded scaled objects like α-aspect objects in R2,
axis-aligned hypercubes in Rd, and balls in R2 and R3. For piercing α-aspect∞ objects in Rd, we show
that a simple deterministic algorithm achieves a competitive ratio of at most

(
2
α

)d ((1 + α)d − 1
)(

⌈log(1+α)(2k
α

)⌉
)

+ 1. This result is very general in nature. One can obtain upper bounds for specific
objects by specifying the value of α. By putting the value of k = 1 to the above result, we get an
upper bound of the competitive ratio for the unit covering problem for various types of objects.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases piercing set problem, online algorithm, competitive ratio, unit covering
problem, geometric objects

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.17

Related Version Full Version: https://web.iitd.ac.in/∼minati/archive/OnlinePiercing.pdf

Funding Work on this paper by M. De has been partially supported by SERB MATRICS
Grant MTR/2021/000584, and work by S. Singh has been supported by CSIR (File Number-
09/086(1429)/2019-EMR_I).

Acknowledgements Authors would like to acknowledge anonymous reviewers for giving constructive
feedback that helped to improve the presentation of the paper.

1 Introduction

Piercing is one of the most important problems in computational geometry. A set P ⊂ Rd of
points is defined as a piercing set for a set S of geometric objects in Rd, if each object in S
contains at least one point from P. Given the set S of objects, the piercing problem is to
find a piercing set P ⊂ Rd of minimum cardinality.

© Minati De, Saksham Jain, Sarat Varma Kallepalli, and Satyam Singh;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:minati@maths.iitd.ac.in
http://web.iitd.ac.in/~minati
https://orcid.org/0000-0002-1859-8800
mailto:sakshampv@gmail.com
mailto:saratvarmakallepalli@gmail.com
mailto:satyam.singh@maths.iitd.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.17
https://web.iitd.ac.in/~minati/archive/OnlinePiercing.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Online Piercing of Geometric Objects

In this paper, we study the online version of the problem in which geometric objects
arrive one by one, and the online algorithm needs to maintain a piercing set for the already
arrived objects. Once a new geometric object σ arrives, the online algorithm needs to place
a point p ∈ σ if the existing piercing set does not already pierce it. An online algorithm
may add points to the piercing set, but it cannot remove points from it, i.e., the online
algorithm needs to take irrevocable decisions. The goal is to minimize the cardinality of the
piercing set. We analyze the quality of our online algorithm by competitive analysis [3]. The
competitive ratio of an online algorithm is supβ

ALGβ

OP Tβ
, where β is an input sequence, and

OPTβ and ALGβ are the cost of an optimal offline algorithm and the solution produced by
the online algorithm, respectively, for the input sequence β. Here, the supremum is taken
over all possible input sequences β.

The online version of this problem is inspired by an application in wireless networks [12].
Here the points model base stations, and the centers of objects model clients. The reception
range of each client has some geometric shape (e.g., disks, hexagons, etc.). The algorithm
needs to place a base station that serves a new uncovered client. Since installing the base
station is expensive, so the overall goal is to place the minimum number of base stations.

1.1 Related Works
In the offline setting, the piercing set problem is well-studied problem [6, 11, 18]. For
one-dimensional intervals, the minimum piercing set can be found in polynomial time,
i.e., O(n log c∗), where c∗ is the size of the minimum piercing set [19]. On the other hand,
computing the minimum piercing set is NP-complete even for unit squares in the plane [15, 13].
Chan [6] proposed a polynomial-time approximation scheme for α-fat convex objects. Katz
et al. [18] studied the problem in the dynamic setting for intervals.

A closely related well explored problem is the set-cover problem. Let X be a set of n

elements, and let S be a family of subsets of X such that |S| = m. A set cover is a collection
of subsets S∗ ⊂ S such that their union covers the whole set X. The goal of the set cover
problem is to find a set cover of minimum cardinality. Note that by interchanging the roles of
subsets and points, the set-cover problem and the hitting-set problems are equivalent. Both
problems are classical NP-hard problems [17]. In the offline setting, the minimum hitting
set problem for intervals (points in R) can be solved in polynomial time using a greedy
algorithm. However, these problems remain NP-hard, even for unit disks or unit squares in
R2 [13]. Alon et al. [1] initiated the study of the online set-cover problem. In their setting,
the sets X and S are already known, but the order of arrivals of points is unknown. Upon
the arrival of an uncovered point, the online algorithm must choose a subset that covers
that point. The online algorithm presented by Alon et al. [1] achieves a competitive ratio of
O(log n log m). The results obtained in [1] also hold for the online hitting set problem. Even
and Smorodinsky [12] studied the hitting set problem in an online setting, where both S and
X are known in advance, but the order of arrivals of the input objects in S is unknown. In
this setting, they proposed an algorithm with a competitive ratio of O(log n) for half-planes
or unit disks. They also gave a matching lower bound of the competitive ratio for these
cases. In the same paper, they proposed an online algorithm that achieves a tight bound of
Θ(log n) when objects are intervals and points are integers. Note that in our paper, the set
X = Rd, and the set S is not known in advance.

A related problem is the unit covering (a special variant of the set cover problem), where
the objective is to cover a given set of n points in Rd with the minimum number of translated
copies of an object. Charikar et al. [8] studied the problem in the online setting for unit
balls in Rd, where the points arrive one by one to the online algorithm, and the objective

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:3

is to assign a newly arrived point to an existing unit ball or a new unit ball to cover it.
They proposed a deterministic online algorithm with a competitive ratio of O(2dd log d) and
show that the lower bound of the competitive ratio for this problem is Ω(log d/ log log log d).
Dumitrescu et al. [9] improved both the upper and lower bound of the problem to O(1.321d)
and Ω(d + 1), respectively. They also proposed a lower bound of the competitive ratio for
any centrally symmetric convex object as the illumination number(defined in Section 2) of
the object. Recently, Dumitrescu and Tóth [10] proved that the competitive ratio of any
deterministic online algorithm for the unit covering problem under L∞ norm is at least 2d.
Surprisingly, we did not find any upper bound of the competitive ratio when objects are
anything other than balls and hypercubes. In this paper, we raise this question and obtain a
very general upper bound for the same.

Another relevant problem is the chasing convex objects, initiated by Friedman and
Linial [14]. Here, convex objects σi ⊆ Rd arrives to the online algorithm, and the algorithm
needs to place a point pi ∈ σi such that the total distances between successive points
Σn−1

i=1 ||pi − pi+1|| is minimized, where n is length of input sequence. They proved that
no online algorithm could achieve a competitive ratio lower than

√
d, and gave an online

algorithm for d = 2. Bubeck et al. [5] presented an online algorithm with a competitive ratio
2O(d) for this problem. Parallel to this, Bubeck et al. [4] presented an online algorithm having
competitive ratio O(min(d,

√
d log n)) using the notion of Steiner point when objects are

nested, i.e., σ1 ⊇ σ2 ⊇ . . . σn. Later, Sellke [21] and Argue et al. [2] independently improved
the result by showing that there exists an online algorithm having a competitive ratio of
O(

√
d log n) and O(min(d,

√
d log n)), respectively, for the chasing convex object problem.

1.2 Our Contributions
First, we prove that the competitive ratio of every deterministic online algorithm for piercing
objects is at least Ω(n), which holds even when the input objects are one-dimensional
intervals (Theorem 1, Section 2.1). As a result, next, we concentrate on when input objects
are translated copies of an object. We show that for the translates of a centrally symmetric
convex object C, the competitive ratio of any deterministic online algorithm is at least
the illumination number of the object C (Theorem 2, Section 2.1). Next, we show that
piercing translated copies of an object is equivalent to the unit covering problem (Theorem 6,
Section 2.2). As an implication, all the results for the online unit covering problem obtained
in [9] and [10] would be applicable to the unit piercing problem. Motivated by these, we ask
what would happen when objects are neither of arbitrary size nor of unit size, but something
in between: bounded scaled, and the shape of the object could vary. For this, we introduce
the concept of α-aspect and α-aspect∞ objects in Rd (Section 2.3). The α-aspect objects are
invariant under translation, rotation and scaling. Whereas, α-aspect∞ objects are invariant
under translation and scaling. For any object in Rd, the value of α is in the interval (0, 1].
We consider objects with scaling factors in the range [1, k] for any fixed k ∈ R.

1. First, we prove that for piercing α-aspect∞ objects in Rd, there exists a deterministic online
algorithm whose competitive ratio is at most

(2
α

)d ((1 + α)d − 1
) (

⌈log(1+α)(2k
α)⌉

)
+ 1

(Theorem 7, Section 3).
2. Next, we show that for piercing α-aspect objects in R3, there exists an online algorithm

that achieves a competitive ratio of at most 2
1−cos(θ) ⌈log(1+x)(2k

α)⌉ + 1, where θ =
1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 (Theorem 12, Section 3). We achieve a
similar result for piercing α-aspect objects in R2 (Theorem 16, Section 3).

FSTTCS 2022

17:4 Online Piercing of Geometric Objects

3. Then, we prove that the competitive ratio of every deterministic online algorithm for
piercing α-aspect objects in R2 is at least ⌊log2/α(k)⌋ + 1 (Theorem 19, Section 4).

4. Later, we consider the case of axis-aligned d-dimensional hypercube. We show the com-
petitive ratio of every deterministic online algorithm for piercing axis-aligned hypercubes
in Rd is at least d(⌊log2(k)⌋) + 2d (Theorem 21, Section 4).

5. At last, we consider balls in R3 (resp., R2), and we propose that the competitive ratio
of every deterministic online algorithm for piercing balls in R3 (respectively, R2) with
radius in the range [1, k] is at least 3⌊log(4+ϵ)(k)⌋ + 4 (respectively 2⌊log(8

3 +ϵ)(k)⌋ + 3),
where ϵ is a very small constant close to zero (Theorem 22, Section 4).

To obtain the upper bound, we consider a very natural algorithm, Algorithm-Center,
that works as follows. On receiving a new input object σ, if it is not pierced by the existing
piercing set, our online algorithm adds the center of σ to the piercing set. For a hypercube σ,
center is a point in σ from which maximum distance from any point of σ is minimized. For
α-aspect and α-aspect∞ objects, a generalized definition of the center is given in Section 2.3.

1.3 Organization
In Section 2, initially, we propose a lower bound for piercing arbitrarily sized intervals followed
by a lower bound for piercing a set of translated copies of a centrally symmetric convex object.
Then, we discuss the equivalence of online unit piercing and online unit covering problems
for translated copies of the unit object. At last, in this section, we introduce α-aspect objects
and α-aspect∞ objects. In Section 3, we present an upper bound for α-aspect and α-aspect∞
objects having width in the range [1, k]. Later, in Section 4, we propose lower bounds
for various bounded scaled objects like two-dimensional α-aspect objects, d-dimensional
axis-aligned hypercubes in Rd, and two and three-dimensional balls. Finally, in Section 5, we
conclude.

2 Notation and Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. If not explicitly mentioned, we use the term object
to denote a simply connected compact set in Rd with a nonempty interior. The interior of
an object C is represented by int(C). A convex object is said to be a centrally symmetric
if it is invariant under point reflection through its center. The illumination number of an
object C, denoted by I(C), is the minimum number of smaller homothetic copies of C whose
union contains C [20].

2.1 Lower Bounds
First, we observe that the competitive ratio of the piercing problem has a pessimistic lower
bound of Ω(n), which even holds for one-dimensional intervals.

▶ Theorem 1. The competitive ratio of every deterministic online algorithm for piercing
intervals is at least Ω(n), where n is the length of the input sequence.

Proof. Let σ1 be the first interval presented by the adversary to the online algorithm. Let p1
be a point placed by the online algorithm to pierce the interval σ1. The point p1 partitions
the interval σ1 into two parts, of which, let σL

1 be a larger part that does not contain the
point p1. Now, the adversary can place an interval σ2 completely contained in σL

1 (see
Figure 1). For the new interval σ2, any online algorithm needs a new piercing point p2. Now

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:5

σ2

σ3

σ4

σ5

σ1

p3

p4

p5

p1

p2 σL2

σL1

Figure 1 Input instance of intervals.

again, one can define a partition σL
2 of σ2 depending on the position of the point p2 such

that σL
2 does not contain p2 and the adversary will place an interval σ3 completely contained

in σL
2 . In this way, the adversary can adaptively construct n intervals for which any online

algorithm needs n distinct points to pierce, while the offline optimum needs only one point.
Hence, the lower bound of the competitive ratio is Ω(n). ◀

Now, we consider when objects are translated copies of a centrally symmetric convex
object.

▶ Theorem 2. The competitive ratio of every deterministic online algorithm for piercing a
set of translated copies of a centrally symmetric convex object C is at least I(C), where I(C)
denotes the illumination number of C.

The proof can be adapted from [9, Thm 4]. Also, note that Theorem 2 can be obtained
as a result of Theorem 6 and [9, Thm 4]. It is known that I(C) = 2d for any full-dimensional
parallelepiped in Rd [9, 20]. Consequently, the value of I(C) = 2d, for d-dimensional
hypercube. Therefore, we have the following.

▶ Corollary 3. The competitive ratio of every deterministic online algorithm for piercing a
set of axis-parallel unit hypercubes in Rd is at least 2d.

2.2 Unit Covering vs Unit Piercing
Let C be an object, and let −C be the reflection of C through a point c ∈ C (see Figure 2).

cC

−C

Figure 2 Reflection of an object C through a point c.

▶ Definition 4 (Unit Piercing Problem). Given a family S of translated copies of an object C,
in the unit piercing problem, we need to pierce each object by placing the minimum number
of points in Rd.

FSTTCS 2022

17:6 Online Piercing of Geometric Objects

▶ Definition 5 (Unit Covering Problem). Given a set of points P ⊆ Rd, in the unit covering
problem, we need to place the minimum number of translated copies of an object −C to cover
all the points in P.

The following theorem connects the above two problems.

▶ Theorem 6. The unit piercing problem is equivalent to the unit covering problem.

As a consequence of Theorem 6, all the results related to the online unit covering problem
(summarized in Table 1) studied in [9] and [10] are carried for the online piercing problem
when objects are translates of each other.

Table 1 Summary of known results for unit piercing problem.

Geometric Objects Lower Bound Upper Bound

Unit Intervals 2 [8] 2 [7]

Fixed oriented unit squares 4 [9, 10] 4 [7]

Fixed oriented unit hypercubes in Rd 2d [9, 10] 2d [7, 10]

Unit disks in R2 4 [9] 5 [9]

Unit balls in R3 5 [9] 12 [9]

Unit balls in Rd, d > 3 d + 1 [9] O(1.321d) [9]

Translated copies of a centrally symmetric
convex object C

I(C) [9] ⋆ [Corollary 11]

⋆ Result obtained in this paper.

2.3 Objects with Fixed Aspect Ratio
Let σ be an object and x be any point in σ. Let α(x) be the ratio between minimum and
maximum distance from x to the boundary δ(σ) of the object σ under L2 norm. In other
words, α(x) = miny∈δ(σ) d(x,y)

maxy∈δ(σ) d(x,y) , where d(x, y) is the distance (under L2 norm) between x and
y (refer to Figure 3a). The aspect ratio α(σ) of an object σ is defined as the maximum value
of α(x) for any point x ∈ σ, i.e., α(σ) = max{α(x) : x ∈ σ}. An object is said to be α-aspect
object if its aspect ratio is α. A point c ∈ σ with α(c) = α(σ) is defined as the center of the
object σ (see Figure 3a). The minimum (resp., maximum) distance (under L2 norm) from
the center to the boundary of the object is referred to as the width (resp., height) of the
object. Note that for any object σ, we have 0 < α(σ) ≤ 1. The maximum possible value of α

is attained when the object is ball.
Observe following properties of an α-aspect object.

▶ Property 1. Let σ ⊆ Rd be an α-aspect object, then
any arbitrary rotated object σ′ of σ is an α-aspect object;
any translated object σ′ of σ is an α-aspect object;
the scaled object λσ is an α-aspect object, where λ ∈ R+.

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:7

σ

w

c
h = w

α

(a)

σ
2w

c

2w
α

(b)

Figure 3 Geometric interpretation of (a) aspect ratio and (b) aspect∞ ratio.

▶ Property 2. Let σ ⊆ Rd be an α-aspect object centered at a point c with width w, then
a ball of radius w centered at c is completely contained in σ, and
a ball of radius w

α centered at c contains the object σ.

Considering L∞ norm instead of L2 norm, similar to the above, one can define the
aspect∞ ratio, center, width and height of an object. An object with aspect∞ ratio α is
said to be an α-aspect∞ object. Note that for any object σ, the value of α∞(σ) is also
greater than zero and the maximum possible value of α∞(σ) is one which is attained for the
hypercube. Analogous to Property 1 and 2, we have the following.

▶ Property 3. Let σ ⊆ Rd be an α-aspect∞ object, then
any translated object σ′ of σ is an α-aspect∞ object;
the scaled object λσ is an α-aspect∞ object, where λ ∈ R+.

▶ Property 4. Let σ ⊆ Rd be an α-aspect∞ object object centered at a point c with width w,
then

a hypercube of side length 2w centered at c is completely contained in σ, and
a hypercube of side length 2w

α centered at c contains the object σ.

3 Upper Bound for Bounded Scaled Objects

3.1 For Objects with Fixed Aspect∞ Ratio
In this section, we present an upper bound of the competitive ratio for piercing objects with
a fixed α-aspect∞ ratio. In the proof of the following theorem, all the distances, if explicitly
not mentioned, are under L∞ norm, and all the hypercubes are axis-parallel.

▶ Theorem 7. For piercing α-aspect∞ objects in Rd having width in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most

(2
α

)d ((1 + α)d − 1
)

log(1+α)(2k
α) + 1.

Proof. Let I be the set of input α-aspect∞ objects presented to the algorithm. Let A and
O be the piercing set returned by Algorithm-Center and the offline optimal, respectively,
for I. Let p ∈ O be a piercing point and let Ip ⊆ I be the set of input α-aspect∞ objects that

FSTTCS 2022

17:8 Online Piercing of Geometric Objects

p2k
α(1+α)i

k
(1+α)i

Hi+1

Ai

Hi = Hi+1 ∪ Ai

H

k
α(1+α)i

k
α(1+α)i−1

2k
α(1+α)i

q1
q2

Figure 4 Illustration.

are pierced by the point p. Let Ap ⊆ A be the set of piercing points placed by Algorithm-
Center to pierce all the input objects in Ip. It is easy to see that A = ∪p∈OAp. Therefore,
the competitive ratio of our algorithm is upper bounded by maxp∈O |Ap|.

Let us consider any point a ∈ Ap. Since a is the center of an α-aspect∞ object σ ∈ Ip

containing the point p having width at most k, the distance (under L∞ norm) between a

and p is at most k
α . Therefore, a hypercube H1 of side length 2k

α , centered at p, contains all
the points in Ap. Let Hi be a hypercube centered at p having side length 2k

α(1+α)i−1 , where
i ∈ [m] and m is the smallest integer such that 2k

α(1+α)m−1 ≤ 1. Note that H1, H2, . . . , Hm are
concentric hypercubes. Let us define the annular region Ai = Hi \ Hi+1, where i ∈ [m − 1].
Let Ap,m = Ap ∩ Hm, and Ap,i = Ap ∩ Ai be the subset of Ap that is contained in the region
Ai, for i ∈ [m − 1]. Since the distance (under L∞ norm) between any two points in Hm is at
most one, and the width of any object in Ip is at least one; therefore, any object belonging to
Ip having center in Hm contains the entire hypercube Hm. As a result, our online algorithm
places at most one piercing point in Hm. Thus, |Ap,m| ≤ 1.

▶ Lemma 8. |Ap,i| ≤ 2d
(
(1 + 1

α)d − (1
α)d
)

, where i ∈ [m − 1].

Proof. Since Ai = Hi\Hi+1, the distance (under L∞ norm) from the center p to the boundary
of Hi and Hi+1 is k

α(1+α)i−1 and k
α(1+α)i , respectively. So the annular region Ai can contain

hypercubes of side length k
(1+α)i . It is easy to observe that, the annular region Ai is the union

of at most 2d
(
(1 + 1

α)d − (1
α)d
)

disjoint hypercubes, each having side length k
(1+α)i . To

complete the proof, next, we argue that our online algorithm places at the most one piercing
point in each of these hypercubes to pierce the objects in Ip. Let H be any such hypercube
of side length k

(1+α)i , and let q1 ∈ H be a piercing point placed by our online algorithm. For
a contradiction, let us assume that our online algorithm places another piercing point q2 ∈ H ,
where q2 is the center of an object σ ∈ Ip. Since σ contains both the points p and q2, and
the distance (under L∞ norm) between them is at least k

α(1+α)i , therefore, the height of the
object σ is at least k

α(1+α)i and the width is at least k
(1+α)i . Note that the distance (under

L∞ norm) between any two points in H is at most k
(1+α)i , as a result, σ is already pierced

by q1. This contradicts our algorithm. Thus, the region H contains at most one piercing
point of Ap,i. Hence, the lemma follows. ◁

Since ∪Ap,i = Ap, we have |Ap| ≤ 2d
(
(1 + 1

α)d − (1
α)d
)

(m − 1) + 1. As the value of
m ≤ log(1+α)

(2k
α

)
+ 1, the theorem follows. ◀

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:9

When objects are fixed oriented hypercubes and congruent balls in Rd, then the value of α is
1 and 1√

d
, respectively. As a result, we have the following.

▶ Corollary 9. For piercing axis-aligned d-dimensional hypercubes with side length in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most 2d

(
2d − 1

)
log2(2k) + 1.

▶ Corollary 10. For piercing d-dimensional balls with radius in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most
(2

√
d)d
(

(1 + 1√
d
)d − 1

)
log(1+ 1√

d
)(2k

√
d) + 1.

Unit Covering Problem in Rd

In Theorem 7, if we place the value of k = 1, then due to Theorem 6, we have following
result for the unit covering problem.

▶ Corollary 11. For the unit covering problem in Rd, there exists a deterministic online
algorithm whose competitive ratio is at most

(2
α

)d ((1 + α)d − 1
)

log(1+α)(2
α) + 1, where α is

the aspect∞ ratio of the unit object.

3.2 For α-Aspect Objects in R3

▶ Theorem 12. For piercing α-aspect object in R3 having width in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most 2

1−cos(θ) ⌈log(1+x)(2k
α)⌉ + 1,

where θ = 1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

p

r BS(θ, r)

(a)

p

o

`

n

m

α · ri

ri−1 ri

Ti,θ

(b)

2θ

p

no

`

ri

m

ri

ri−1

(c)

Figure 5 (a) Partitioning the ball B of radius r using spherical sectors S(θ, r); (b) Description of
spherical sector S(θ, ri−1) and spherical block Ti,θ; (c) Projection of spherical sector S(θ, ri−1).

Proof. Let I be the set of input α-aspect objects in R3 presented to the algorithm. Let A
and O be two piercing sets for I returned by Algorithm-Center and the offline optimal,
respectively. Let p be any piercing point of the offline optima O. Let Ip ⊆ I be the set of
input objects pierced by the point p. Let Ap be the set of piercing points placed by our
algorithm to pierce all the objects in Ip. To prove the theorem, we will give an upper bound
of |Ap|.

Let us consider any point a ∈ Ap. Since a is the center of an α-aspect object σ ∈ Ip

containing the point p, with width at most k (height at most k
α), the distance between a and

p is at most k
α . Therefore, a ball B1 of radius k

α , centered at p, contains all the points in
Ap. Let x =

√
1+4α2−1

2 be a positive constant. Let Bi be a ball centered at p having radius
ri = k

α(1+x)i−1 , where i ∈ [m] and m is the smallest integer such that k
α(1+x)m−1 ≤ 1

2 . Note

that B1, B2, . . . , Bm are concentric balls, centered at p. Let θ = 1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
be

FSTTCS 2022

17:10 Online Piercing of Geometric Objects

a constant angle in (0, π
10]. Let S(θ, i) be a spherical sector obtained by taking the portion

of the ball Bi by a conical boundary with apex at the center p of the ball and θ as the half
of the cone angle (for an illustration see figure 5a). For any i ∈ [m − 1], let us define the ith
spherical block Ti,θ = S(θ, i) \ S(θ, i + 1).

▷ Claim 13. The distance between any two points in Ti,θ is at most αri.

Proof. Observe Figure 5b, where a detail of a spherical block is depicted. Note that the
maximum distance between any two points in Ti,θ is at most max{ln, on}. First, consider
the triangle △ℓpn (see Figure 5b and 5c). By cosine rule of triangle, we have:

ℓn
2 = pℓ

2 + pn2 − 2pℓ pn cos (2θ)

=
(

k

α(1 + x)i−1

)2
+
(

k

α(1 + x)i−2

)2
− 2

(
k

α(1 + x))i−1

)(
k

α(1 + x))i−2

)
cos(2θ)

=
(

k

α(1 + x)i−2

)2
((

1
(1 + x)

)2
+ 1 − 2

(
1

(1 + x) cos (2θ)
))

=
(

k

α(1 + x)i−1

)2 (
1 + (1 + x)2 − 2(1 + x) cos (2θ)

)
Since θ = 1

2 cos−1
(

1
2 + 1

1+
√

1+4α2

)
, and x =

√
1+4α2−1

2 , therefore, cos(2θ) = (x+2)
2(x+1) and

x2 + x = α2. Now substituting these values in the above equation, we get

ℓn
2 = r2

i

(
1 + (1 + x)2 − (2 + x)

)
= r2

i

(
1 + 1 + x2 + 2x − 2 − 2x

)
= r2

i

(
x2 + x

)
= (αri)2

.

Now, consider the triangle △opn (see Figure 5b and 5c). Here we have:

on2 = 2
(

k

α(1 + x)i−2

)2
− 2

(
k

α(1 + x)i−2

)2
cos (2θ) = 2

(
k

α(1 + x)i−2

)2
(1 − cos (2θ))

= 2
(

k

α(1 + x)i−1

)2
(1 + x)2 (1 − cos (2θ)) = 2r2

i (1 + x)2 (1 − cos (2θ)) .

Now substituting the values of cos(2θ) = (x+2)
2(x+1) and x2 + x = α2 in the above equation, we

get

on2 = 2r2
i (1 + x)2

(
1 − (x + 2)

2(x + 1)

)
= 2r2

i (1 + x)2
(

2(x + 1) − (x + 2)
2(x + 1)

)
= r2

i (1 + x)x = (αri)2
.

Note that ln = on = αri, thus, αri is the maximum distance between any two points in the
region Ti,θ. ◁

▶ Lemma 14. For each i ∈ [m], our algorithm places at most one piercing point in the
spherical block Ti,θ to pierce any object in Ip.

Proof. Let q1 be the first piercing point placed by Algorithm-Center in Ti,θ. For a
contradiction, let us assume that Algorithm-Center places another piercing point q2 ∈ Ti,θ,
where q2 is center of some object σ ∈ Ip. Since σ contains both points p and q2, and the
distance between them is at least ri, therefore, the height and width of σ are at least ri and
αri, respectively. Due to Claim 13, the distance between any two points in the spherical
block Ti,θ is at most αri, as a result, σ is already pierced by q1. This contradicts that our
algorithm places two piercing points in Ti,θ. Hence, Algorithm-Center places at the most
one piercing point in the spherical block Ti,θ to pierce objects in Ip. ◁

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:11

Since the solid angle of the spherical sector S(θ, 1) is 2π(1−cos(θ)) steradians, and the solid
angle of a ball, measured from any point in its interior, is 4π steradians, therefore, we need at
most 2

1−cos θ spherical sectors to cover the ball B1 [16, §4.8.3]. Combining this with Lemma 14,
we have |Ap| ≤ 2m

(1−cos θ) . We can give a slightly better estimation, as follow. Since the
distance between any two points in the innermost ball Bm is at most one, therefore any object
in Ip having center q ∈ Bm contains the entire ball Bm. As a result, our online algorithm
places at most one piercing point in Bm. Thus, |Ap| ≤ 2(m−1)

1−cos(θ) + 1 ≤ 2(log(1+x)(2k
α))

(1−cos(θ)) + 1. This
completes the proof of the theorem. ◀

As a consequence of Property 1 and Theorem 12, we have the following.

▶ Corollary 15. For piercing arbitrary oriented scaled copies of an object in R3 with aspect
ratio α and having width in the range [1, k], Algorithm-Center achieves a competitive ratio
of at most 2

1−cos(θ) ⌈log(1+x)(2k
α)⌉+1, where θ = 1

2 cos−1
(

1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

Analogous to Theorem 12, we have similar result for α-aspect objects in R2. Here, we
consider circular sector C(θ, r) with central angle θ instead of spherical sector S(θ, r) with
central angle 2θ.

▶ Theorem 16. For piercing α-aspect objects in R2 having width in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most 2π

θ (log(1+x)(2k/α)) + 1, where
θ = cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

Observe that for hypercubes in Rd, the value of α is 1√
d
. As a result, we have the upper

bound as follows.

▶ Corollary 17. For piercing arbitrary oriented hypercubes in R3 (respectively, R2) with
a side-length in the range [1, k], Algorithm-Center achieves a competitive ratio of at
most 223.98⌈log2(2

√
3k)⌉ + 1 (respectively, 26.67⌈log2(2

√
2k)⌉ + 1).

Observe that for balls in R2 and R3, the value of α is one. As a result, for d = 2 and 3, we
have a better estimation of the upper bound than Corollary 10. The result is as follows

▶ Corollary 18. For piercing balls in R3 (respectively, R2) with a radius in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most 58.861⌈log2(2k)⌉ + 1
(respectively, 14.4⌈log2(2k)⌉ + 1).

4 Lower Bound for Bounded Scaled Objects

To obtain a lower bound, we think of a game between two players: Alice and Bob. Here,
Alice plays the role of an adversary, and Bob plays the role of an online algorithm. In each
round of the game, Alice presents an object such that Bob needs to place a new piercing
point, i.e., the object does not contain any of the previously placed piercing points. To obtain
a lower bound of the competitive ratio of Ω(z), it is enough to show that Alice can present a
sequence of z nested objects in a sequence of z consecutive rounds of the game such that
an offline optimum algorithm uses only one point to pierce all of these objects. First, we
consider when objects are α-aspect objects in R2, followed by axis parallel hypercubes in Rd.

FSTTCS 2022

17:12 Online Piercing of Geometric Objects

4.1 α-Aspect Objects in R2

▶ Theorem 19. The competitive ratio of every deterministic online algorithm for piercing
α-aspect objects in R2 having width in the range [1, k] is at least log(2

α) k for k > 2
α .

Proof. To prove the lower bound, we adaptively construct a sequence of m = log(2
α) k objects

each with aspect ratio α and width in the range [1, k] such that any online algorithm needs
at least m piercing points to pierce them; while the offline optimal needs just one point. In
each round of the game, the adversary presents an object of width in the range [1, k], and
the online algorithm needs to place a piercing point to pierce the presented object if it is
already not pierced by any of the previously placed piercing points. Let w(σ) and h(σ) be
width and height of an object σ, respectively. Let σ1, having width w(σ1) = k, be the first
input object presented to the algorithm. For the sake of simplicity, let us assume that the
center c1 of σ1 coincides with the origin. All remaining objects σ2, σ3, . . . , σm are presented
adaptively depending on the position of the piercing points p1, p2, . . . , pm−1 placed by the
algorithm. For i = 1, 2, . . . , m = log(2

α) k, we maintain the following two invariants.

(1) The object σi having width k
(

α
2+ϵ

)i−1
is not pierced by any of the previously placed

piercing point pj , where j < i.
(2) The object σi is totally contained in the object σi−1.

Invariant (1) ensures that any online algorithm needs m+1 piercing points; while invariant
(2) ensures that all the objects σ1, σ2, . . . , σm can be pierced by a single point. For i = 1,
both invariants hold trivially. At the beginning of round i = 1, 2, . . . , m − 1, assume that
both invariants hold. Depending on the position of the previously placed piercing point
pi, in the (i + 1)th round of the game, the object σi+1, having width w(σi+1) = k

(
α

2+ϵ

)i(
h(σi+1) = k

2+ϵ

(
α

2+ϵ

)i−1
)

, is presented to the algorithm. Here ϵ > 0 is an arbitrary constant

very close to zero. The center ci+1 of σi+1 is defined as the following.

ci+1 =
{

ci + w(σi)
2 , if pi(x1) ≤ ci(x1),

ci − w(σi)
2 , otherwise (i.e., pi(x1) > ci(x1)),

where pi(x1) and ci(x1) denotes the first coordinate of pi and ci, respectively.
First, we show that σi+1 is totally contained in σi. Observe that, depending on the

position of pi, the center of σi+1 is either ci + w(σi)
2 or ci − w(σi)

2 . In both cases, we have

dist(ci, ci+1) = w(σi)
2 . On the other hand, h(σi+1) = k

2+ϵ

(
α

2+ϵ

)i−1
< k

2

(
α

2+ϵ

)i−1
= w(σi)

2 .
Hence, σi+1 is totally contained in σi. Thus, invariant (2) is maintained.

Note that dist(pi, ci+1) is greater than the height of σi+1 since

dist(pi, ci+1) >
w(σi)

2 = k

2

(
α

2 + ϵ

)i−1
>

k

2 + ϵ

(
α

2 + ϵ

)i−1
= h(σi+1).

The first inequality follows from the definition of ci+1. Thus, σi+1 does not contain the point
pi. Due to induction hypothesis, σi does not contain any of the previously placed piercing
point pj for j < i and from invariant (2) we know that σi+1 is contained in σi. Hence,
σi+1 does not contain any of the previously placed piercing point pj , for j < i + 1. Thus,
invariant (1) is maintained.

Note that when m > log 2+ϵ
α

k + 1, the width of the object σm, i.e., k
(

α
2+ϵ

)m−1
is less

than one. In other words, for any m ≤ log 2+ϵ
α

k + 1, we can construct the input sequence
satisfying both invariants. Since ϵ > 0 is arbitrarily constant very close to 0, we choose the
value of m = log 2

α
k. Hence, the theorem follows. ◀

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:13

4.2 Fixed Oriented Hypercubes in Rd

In this subsection, all the hypercubes are axis parallel. First, we establish the following
essential ingredient to prove our main result.

▶ Lemma 20. Game-Of-Same-Side(r) (GSS(r)):
For any r ∈ R+, in a consecutive d rounds of the game, Alice can adaptively present d

hypercubes σ1, σ2, . . . , σd, each having side length r, such that
(i) Bob needs to place d points to pierce them;
(ii) the common intersection region Q = ∩d

i=1σi is nonempty;
(iii) moreover, Q contains an empty hypercube E, of side length at least r

2 −ϵ, not containing
any of the d piercing points placed by Bob. Here ϵ > 0 is a very small constant close
to 0.

We refer a consecutive d rounds of the game satisfying the above lemma as a GSS(r). The
first hypercube σ1 is denoted as the starter and the hypercube E as the empty hypercube
since it does not contain any of the piercing points placed by Bob in the GSS(r). Note that
any hypercube of side length r could be the starter of this d round game.

Proof. Let σ1 be a hypercube of side length r presented by Alice in the first round of the
game. Throughout the proof of this claim, for the sake of simplicity, we assume that the
center of σ1 is the origin (if not, we can always translate the coordinate system to make it).
Alice presents the remaining hypercubes σ2, . . . , σd adaptively depending on Bob’s moves.
We maintain the following two invariants: For i = 1, . . . , d, when Alice presents hypercubes
σ1, . . . , σi, each of side length r, and Bob presents piercing points p1, . . . , pi,

(I) the hypercube σi is not pierced by any of the previously placed piercing point pj ,
where j < i;

(II) the common intersection region Qi = ∩i
j=1σj is a hyperrectangle whose first (i − 1)

sides are of length r
2 −ϵ each, and each of the remaining sides are of length r. Moreover,

Qi does not contain any of the points pj , where j < i.

An illustration of the planar version of the game appears in Figure 6. For i = 1,
both the invariants trivially hold. At the beginning of round i (for i = 2, . . . , d), as-
sume that both invariants hold. Let us define a translation vector vi ∈ Rd as vi =
(s(1)

(
r
2 + ϵ

)
, s(2)

(
r
2 + ϵ

)
, . . . , s(i − 1)

(
r
2 + ϵ

)
, 0, . . . , 0), where for any j < i, we have

s(j) =
{

+1, if pj(xj) < 0, where pj(xj) is jth coordinate of pj ,

−1, otherwise.

We define σi = σ1 + vi. For any j < i, due to the definition of the jth component of the
translation vector vi, the hypercube σi does not contain the point pj . Hence, invariant (I) is
maintained.

Note that σ1 ∩ σi is a hyperrectangle whose first (i − 1) sides are of length r
2 − ϵ each,

and each of the remaining sides are of length r. On the other hand, from the assumption, we
know that Qi−1 is a hyperrectangle whose first (i − 2) sides are of length r

2 − ϵ each, and
each of the remaining sides are of length r. Therefore, Qi = Qi−1 ∩ σi is a hyperrectangle
whose first (i − 1) sides are of length r

2 − ϵ each, and each of the remaining sides are of length
r. Since σi does not contain any of the points pj where j < i, as a result the hyperrectangle
Qi ⊆ σi also does not contain any of them. Therefore, invariant (II) is also maintained.

FSTTCS 2022

17:14 Online Piercing of Geometric Objects

r
2 − ε

σ1
p1

c1

p2 c2

r

σ2

E

Figure 6 Illustration of the Game-Of-Same-Side(r) for d = 2. Initially Alice presented hypercube
σ1 of side length r in the first round of the game. Then, Alice presents the second hypercube σ2

adaptively, depending on Bob’s moves, such that p1 /∈ σ2. Also, the common intersection region
∩2

j=1σj is a rectangle whose sides are of length r
2 − ϵ and r. Moreover, the intersection region

contains an empty hypercube E, of side length at least r
2 − ϵ, not containing p1 and p2. Here ϵ > 0

is a very small constant close to 0.

At the end of the dth round of the game, we have the hyperrectangle Q = Qd (whose dth
side is only of length r, other sides are of length r

2 − ϵ each) that does not contain any of the
points pj where j < d, but it may contain the point pd. Depending on the dth coordinate of
the point pd, we can construct a hypercube E ⊂ Q of length r

2 − ϵ that does not contain the
point pd. Hence, the lemma follows. ◀

Now, we prove the following main theorem.

▶ Theorem 21. The competitive ratio of every deterministic online algorithm for piercing fixed
oriented hypercubes in Rd with side length in the range [1, k] is at least d

(
log2

(
k

1+2ϵ

))
+ 2d.

Proof. To prove the main theorem, we maintain the following two invariants: For i =
1, . . . , z = d

((
k

1+2ϵ

)
− 1
)

+ 2d, when Alice presents hypercubes σ1, . . . , σi and Bob presents
piercing points p1, . . . , pi,
(III) The hypercube σi is not pierced by any of the previously placed piercing point pj ,

where j < i.
(IV) The intersection region ∩i

j=1σj is nonempty.
Invariant (III) implies that Bob is forced to place z piercing points, while Invariant (IV)
ensures that all the hypercubes σ1, σ2, . . . , σz can be pierced by a single piercing point.

We evoke the GSS(r) for t >
(

log2

(
k

1+2ϵ

)
− 1
)

times with different values of r = k, k
2 −

ϵ, . . . , k
2t − 2t−1

2t−1 ϵ. More specifically, the empty hypercube Et′ generated by GSS(k
2t′−1 − 2t′

−1
2t′−1 ϵ)

plays the role of the starter hypercube for the next evokation of GSS(k
2t′ − 2t′

−1
2t′−1 ϵ), where

1 ≤ t′ < t. Since the empty hypercube of t′th game plays the role of the starter of (t′ + 1)th
game, it is straightforward to see that the set of td hypercubes σ1, σ2, . . . , σtd and set of
points p1, p2, . . . , ptd satisfies both invariants (III) and (IV). At the end of the tdth GSS,
the empty hypercube Etd has side length at least 1. Due to Corollary 3, starting with the
hypercube Etd, Alice can adaptively present 2d (including Etd) hypercubes each of side
length 1 such that both invariants (III) and (IV) are maintained. This completes the proof
of the theorem. ◀

M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:15

4.3 Balls in R2 and R3

Similar to the proof of Theorem 21, one can prove the following lower bound result for balls
in R3 (respectively, R2). Also, note that we could not generalize this to higher dimensional
balls.

▶ Theorem 22. The competitive ratio of every deterministic online algorithm for piercing
balls in R3 (respectively, R2) with radius in the range [1, k] is at least 3 log4 k +1 (respectively,
2 log(8

3) k + 1).

5 Conclusion

We show that no online algorithm can obtain a competitive ratio lower than Ω(n) for piercing
n intervals. Due to this pessimistic result, we restricted our attention to special kinds
of objects, i.e., bounded scaled objects. We propose upper bounds for piercing bounded
scaled α-aspect∞ objects in higher dimension. By placing specific values of α, the tight
asymptotic bounds can be obtained for bounded scaled objects (like intervals, squares, disks,
and α-aspect polygons) in R and R2. For bounded scaled α-aspect∞ objects in Rd, it is
possible to generalize our lower bound result obtained for hypercubes. For higher dimensions,
for example, for d-dimensional hypercubes, there is a huge gap between the lower and the
upper bound. We propose bridging these gaps as a future direction of research. We only
consider the deterministic model. This raises the question of whether randomization helps.

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set

cover problem. SIAM J. Comput., 39(2):361–370, 2009. doi:10.1137/060661946.
2 C. J. Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. Chasing convex bodies with

linear competitive ratio. J. ACM, 68(5):32:1–32:10, 2021. doi:10.1145/3450349.
3 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge

University Press, 1998.
4 Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing nested

convex bodies nearly optimally. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1496–1508. SIAM, 2020. doi:10.1137/1.9781611975994.91.

5 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing convex
bodies. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 861–868. ACM, 2019. doi:10.1145/3313276.3316314.

6 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

7 Timothy M. Chan and Hamid Zarrabi-Zadeh. A randomized algorithm for online unit clustering.
Theory Comput. Syst., 45(3):486–496, 2009. doi:10.1007/s00224-007-9085-7.

8 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004. doi:10.1137/
S0097539702418498.

9 Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. Online unit covering in Euclidean
space. Theor. Comput. Sci., 809:218–230, 2020. doi:10.1016/j.tcs.2019.12.010.

10 Adrian Dumitrescu and Csaba D. Tóth. Online unit clustering and unit covering in higher
dimensions. Algorithmica, 84(5):1213–1231, 2022. doi:10.1007/s00453-021-00916-6.

FSTTCS 2022

https://doi.org/10.1137/060661946
https://doi.org/10.1145/3450349
https://doi.org/10.1137/1.9781611975994.91
https://doi.org/10.1145/3313276.3316314
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1007/s00224-007-9085-7
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1016/j.tcs.2019.12.010
https://doi.org/10.1007/s00453-021-00916-6

17:16 Online Piercing of Geometric Objects

11 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures
for fat objects and their applications. Comput. Geom., 15(4):215–227, 2000. doi:10.1016/
S0925-7721(99)00059-0.

12 Guy Even and Shakhar Smorodinsky. Hitting sets online and unique-max coloring. Discret.
Appl. Math., 178:71–82, 2014. doi:10.1016/j.dam.2014.06.019.

13 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are np-complete. Inf. Process. Lett., 12(3):133–137, 1981. doi:10.1016/
0020-0190(81)90111-3.

14 Joel Friedman and Nathan Linial. On convex body chasing. Discret. Comput. Geom., 9:293–321,
1993. doi:10.1007/BF02189324.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

16 J. W. Harris and H. Stocker. Handbook of Mathematics and Computational Science. New
York: Springer-Verlag, 1998.

17 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

18 Matthew J. Katz, Frank Nielsen, and Michael Segal. Maintenance of a piercing set for intervals
with applications. Algorithmica, 36(1):59–73, 2003. doi:10.1007/s00453-002-1006-1.

19 Frank Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comput. Sci., 246(1-2):53–72,
2000. doi:10.1016/S0304-3975(98)00336-3.

20 János Pach, Peter Brass, and William Moser. Research problems in discrete geometry. Research
Problems in Discrete Geometry, January 2005. doi:10.1007/0-387-29929-7.

21 Mark Sellke. Chasing convex bodies optimally. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1509–1518. SIAM, 2020. doi:10.1137/1.9781611975994.92.

https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/j.dam.2014.06.019
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1007/BF02189324
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00453-002-1006-1
https://doi.org/10.1016/S0304-3975(98)00336-3
https://doi.org/10.1007/0-387-29929-7
https://doi.org/10.1137/1.9781611975994.92

Half-Guarding Weakly-Visible Polygons and
Terrains
Nandhana Duraisamy !

PSG College of Technology, Coimbatore, India

Hannah Miller Hillberg ! Ï

University of Wisconsin, Oshkosh, WI, USA

Ramesh K. Jallu1 !

Indian Institute of Information Technology Raichur, India

Erik Krohn ! Ï

University of Wisconsin, Oshkosh, WI, USA

Anil Maheshwari !

Carleton University, Ottawa, Canada

Subhas C. Nandy !

Indian Statistical Institute, Kolkata, India

Alex Pahlow !

University of Wisconsin, Oshkosh, WI, USA

Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing 180°. Guards
that can only see in one direction are called half-guards. We give a polynomial time approximation
scheme for vertex guarding the vertices of a weakly-visible polygon with half-guards. We extend
this to vertex guarding the boundary of a weakly-visible polygon with half-guards. We also show
NP-hardness for vertex guarding a weakly-visible polygon with half-guards. Lastly, we show that
the orientation of half-guards is critical in terrain guarding. Depending on the orientation of the
half-guards, the problem is either very easy (polynomial time solvable) or very hard (NP-hard).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Art Gallery Problem, Approximation Algorithm, NP-Hardness, Monotone
Polygons, Half-Guards

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.18

Related Version This paper combines the results of [7] and [12], which were obtained independently.
The first gave a PTAS for vertex guarding the boundary of a weakly-visible polygon. The second gave
a PTAS for vertex guarding the vertices of a weakly-visible polygon and provided hardness results
for half-guarding terrains and weakly-visible polygons. A preliminary version of [12] is presented in
the Iranian Conference on Computational Geometry 2022 (an informal meeting).
Previous Version: https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-
Visible-Polygons-with-Half-Guards.pdf

1 Introduction

An instance of the original art gallery problem takes as input a simple polygon P having a
sequence of vertices V = {v1, v2, . . . , vn}, and reports a guarding set of points G ⊆ P such
that every point p ∈ P is seen by a point in G. Here, by the term a point q sees a point p

1 The work was partially done while the author was affiliated with Indian Statistical Institute, Kolkata,
India.

© Nandhana Duraisamy, Hannah Miller Hillberg, Ramesh K. Jallu, Erik Krohn, Anil Maheshwari,
Subhas C. Nandy, and Alex Pahlow;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nandhanadurai1998@gmail.com
mailto:hillbergh@uwosh.edu
https://uwosh.edu/cs/faculty-and-staff/hillberg/
mailto:jallu@iiitr.ac.in
https://orcid.org/0000-0001-8811-5694
mailto:krohne@uwosh.edu
https://faculty.cs.uwosh.edu/faculty/krohn/
https://orcid.org/0000-0002-5832-8135
mailto:anil@scs.carleton.ca
mailto:nandysc@isical.ac.in
mailto:pahloa45@uwosh.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.18
https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.pdf
https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Half-Guarding Weakly-Visible Polygons and Terrains

Figure 1 A WV-polygon where p sees q

and every point in the polygon is seen by a
point on e = (u, v) or sees a point on e.

Figure 2 A WV-polygon that requires
Ω(n) half-guards that see to the right. Half-
guards need to be placed at every step like
structure.

where p, q ∈ P , we mean that the line segment [p, q] completely lies inside the polygon P . In
this paper, we study the vertex guarding problem which says that guards are only allowed to
be placed at the vertices of V , and the objective is to find the smallest such G.

1.1 Definitions

We use p.x to denote the x-coordinate for point p. A weakly-visible polygon (WV-polygon)
P contains a visibility edge e = (u, v) such that every point in P sees at least one point on
the edge e. When referencing a half-guard p sees to the right (i.e., guards see 180°towards
the right), then a point q is visible to p if p.x ≤ q.x (see Fig. 1). Without loss of generality,
we assume that the visibility edge e is aligned with the x-axis.

A (strictly) x-monotone terrain T with x-axis as the base is defined by a set of points
V = {v1, v2, . . . , vn} satisfying vi.x < vi+1.x for i = 1, 2, . . . , n− 1, and [v1.x, vn.x] is aligned
with the x-axis.

1.2 Previous Works

Extensive studies are done on algorithmic aspects of art galleries. Several results related to
hardness and approximations are available in [1, 8, 11, 17]. Due to the inherent difficulty
in fully understanding the art gallery problem for simple polygons, work has been done for
guarding polygons with some special structures (see [2, 4, 15]). In this paper we consider
terrains and weakly-visible polygons.

Motivation of considering these two special structure comes from the fact that many
cameras/sensors cannot generally sense in 360°, referred to as full-guards in this paper. In
[2], the authors proposed a constant-factor approximation algorithm to guard interior of a
WV-polygon. We consider the half-guards that can sense in 180°. For weakly-visible polygons,
we restrict the problem even further by only allowing these half-guards to see to the right.
Even with these restrictions, the vertex guarding problem is difficult to solve in weakly-visible
polygons. Using half-guarding the authors in [9, 14] propose a 4-approximation algorithm
for terrain guarding with full-guards. In Fig. 2, we demonstrate that there are WV-polygons
P that can be completely guarded with one full-guard, but requires Ω(n) half-guards.

The difficulty with guarding terrains with half-guards is less straightforward. As shown
in [5], it is possible to optimally guard a terrain in polynomial time using half-guards that
only see to the right. If the visibility of half-guards is modified such that they see down in
the terrain setting, as we will show, the problem becomes NP-hard.

N. Duraisamy et al. 18:3

Figure 3 On the left, a full-guard placed at u and v cuts off the polygon below the WV-edge.
On the right, the shaded regions below uv are still unseen after half-guards are placed at u and v.

1.3 Our Contribution
Ashur et al. [3] gives a local search based polynomial time approximation scheme (PTAS)
for minimum dominating set in terrain-like graphs. They then show that several families
of polygons have a visibility graph that is terrain-like. One such family is WV-polygons.
However, their analysis uses the fact that vertices can see 360° and that the visibility graph
of the vertices contains undirected edges. Since edges in a visibility graph for a WV-polygon
that use half-guards are directed, it does not imply that the visibility graph is terrain-like.
We provide additional observations in this paper which show a PTAS for vertex guarding
the vertices of a WV-polygon with half-guards. We extend this to show that guarding the
boundary of a WV-polygon with half-guards placed at vertices also admits a PTAS.

NP-hardness has been shown for many variants of the art gallery problem [4, 8, 17].
In many of those reductions, guards are allowed to see in all directions. If the problem is
restricted enough, it can become polynomially time solvable, for example, see [6, 16]. If the
polygon is restricted to be a WV-polygon, guards are restricted to be at the vertices and
guards are only allowed to see to the right, even with these many restrictions, the problem is
still NP-hard. To obtain this result, we first show that a variant of half-guarding a terrain is
NP-hard.

In Section 2, we provide a PTAS for vertex guarding the vertices and boundary of a
WV-polygon using half-guards that see right. In Section 3, we show that the half-guarding of
terrains is NP-hard when the half-guards see down. In Section 4, the NP-hardness is shown
for vertex guarding a WV-polygon using half-guards that see right.

2 PTAS for Vertex Guarding a WV-Polygon with Half-Guards

We use local search to obtain a PTAS for half-guarding a WV-polygon. We adapt the idea
of the proof provided in [3] to this problem with some notable exceptions. The divergent
details of the algorithm and proof along with a few identical details, included for readability,
are provided below.

Much of the proof from [3] assumes that the WV-polygon lies above the WV-edge by
placing guards at u and v and cutting off the portion of the polygon beneath the WV-edge,
see Fig. 3(left). When every vertex under consideration lies above this WV-edge, the so-called
order claim holds and the visibility graph is terrain-like. However, consider doing the same
thing for a WV-polygon using half-guards that see to the right. In this case, the remaining
unseen portion of the polygon cannot be assumed to be above the WV-edge. The shaded
region in Fig. 3(right) demonstrates the invisible portions to the left-of-and-below the guards
at u and v. A guard g dominates another guard g′ if for every vertex v that g′ sees, g also
sees v. Unlike with full-guards, a half-guard placed at u will not dominate a half-guard
placed in the shaded region to the left-of-and-below u. Thus, the proof of the order claim for
WV-polygons with full-guards does not imply that the order claim is true for WV-polygons
with half-guards.

FSTTCS 2022

18:4 Half-Guarding Weakly-Visible Polygons and Terrains

Algorithm 1 Local Search Algorithm.

We set k = α
ϵ2 , for appropriate constants α, ϵ > 0. Let Q be the set of guards.

1. Initialize Q to the vertex set V .
2. Determine if there exists a subset S ⊆ Q of size at most k and a subset S′ ⊆ V \Q of
size at most |S| − 1 such that (Q \ S) ∪ S′ guards V .
3. If such S and S′ exists then, set Q← (Q \ S)∪ S′ and go to step 2. Else, return the set
Q.

2.1 Algorithm Overview
In this section, we will assume that e = (u, v) is a convex edge, that is, the interior angles
at u and v are convex. Without loss of generality, we assume that P \ e is contained in the
open half-plane above the x-axis. We later show how to solve for the general case, where
the convexity assumption of the angles at u and v is removed. The local search algorithm,
described below, is identical to the one described in [3].

2.2 Local Search Analysis
For any two points a and b on the boundary of the polygon P , we use a ≺ b (or b ≻ a) to say
that a precedes b (or b succeeds a), i.e., when one reaches a before b, while traversing the
boundary of P , clockwise from u. Claim 1 was proved to be true for weakly-visible polygons
with full guards. The order claim proof from [3] shows that a and d see each other. However,
they do not claim that d must be to the right of a. With full-guards, it does not matter since
if a sees d, then d sees a. The following proof of the order claim for half-guards shows why a

sees d. An important note to remember is that this claim is only true if the angles at u and
v are convex.

▷ Claim 1. Let a, b, c, d be four points on the boundary of a WV-polygon such that
a ≺ b ≺ c ≺ d. If a sees c and b sees d, then a must see d (see Fig. 4).

Proof. Since a sees c and b sees d, a.x ≤ c.x and b.x ≤ d.x. If a.x ≤ b.x, then a.x ≤ b.x ≤ d.x.
Using the proof from [3], a must see d. If b.x < a.x, then consider the line segment connecting
b to d. Since a ≺ b ≺ c ≺ d, it must be the case that the bd line segment crosses the ac line
segment, see Fig. 4. Let o be the intersection point of ac and bd. By definition, a.x ≤ o.x

and o.x ≤ d.x. Therefore, a.x ≤ d.x and a sees d. ◁

It should be noted that the orientation of the WV-edge does not matter with Claim 1. In
other words, if the polygon is rotated in any direction, the original order claim from [3] still
holds, i.e. a and d must see each other, see Fig. 4(right).

Figure 4 Order claim example. The orientation of the uv edge does not matter. If a < b < c < d,
a sees c and b sees d, then a sees d.

N. Duraisamy et al. 18:5

Let the red set R be an optimal solution (minimum cardinality guard set), and the blue
set B be the solution returned by Algorithm 1. For each vertex x ∈ (R ∪ B), we define
color(x) to be the color of the vertex x, which is red if x ∈ R, and blue if x ∈ B. We can
assume that R ∩B = ∅. Any vertices that are in both R and B are removed, i.e. the local
search algorithm found an optimal guard and one can ignore vertices which are seen by such
a guard. We prove that |B| ≤ (1 + ϵ) · |R|. We construct a bipartite graph G = (R ∪B, E).
As in [3], we can prove that (i) G is planar and (ii) G satisfies the locality condition as
defined below.

▶ Definition 2. A graph G = (R ∪ B, E) satisfies locality condition if for each vertex
w ∈ P , there exist vertices r ∈ R and b ∈ B, such that (i) r sees w, (ii) b sees w, & (iii)
(r, b) ∈ E.

Next, by using the proof scheme of Mustafa and Ray [19], if G satisfies these two conditions,
then we have |B| ≤ (1 + ϵ) · |R|. As in [3], we now define λ(·) and ρ(·) for each vertex of P .
While traversing the boundary clockwise from u, for a vertex w ∈ V , if there exists a vertex
in R ∪B that sees w and it precedes w on the path of traversal from u to w, then λ(w) is
set to the first such vertex. Similarly, ρ(w) is set to the first vertex in R ∪ B that sees w

while traversing the boundary counterclockwise from v. Since R ∩B = ∅, for every vertex
w ∈ V , λ(w) and/or ρ(w) must be defined in R ∪B.

2.3 Constructing G

▷ Claim 3. Let A1 = {(λ(w), w) | w ∈ V for which λ(w) is defined}. Then the segments of
A1 are non-crossing.

Proof. Consider two segments (λ(x), x), (λ(y), y) ∈ A1, such that λ(x) ̸= λ(y). Without loss
of generality assume that λ(x) ≺ λ(y). By contradiction, suppose the segments (λ(x), x) and
(λ(y), y) intersect, then it must be the case where λ(x) ≺ λ(y) ≺ x ≺ y. But, by Claim 1,
this would imply that λ(x) sees y, which is impossible by the definition of λ(y). Thus, the
segments are non-crossing. ◁

The edges of G are similar to the edges of G described in [3]. If it can be shown that the
order claim holds and that the segments of A1 are non-crossing, the details of how to create
the graph are essentially the same. However, the description of those edges are provided here
for completeness. For each vertex x ∈ R ∪B, if λ(x) is defined and color(λ(x)) ̸= color(x),
add the edge (λ(x), x) to E1. Otherwise, if there exists a segment (λ(w), w) ∈ A1, such
that (i) λ(w) ≺ x ≺ w, (ii) (λ(w), w) can be reached from x without going outside of P and
without intersecting any other segment in A1 (except possibly at x), and (iii) color(λ(w)) ̸=
color(x), add the edge (λ(w), x) to E1.

Analogously, we define the sets A2 and E2 by replacing λ with ρ. This implies, A2 =
(w, ρ(w)) | w ∈ V for which ρ(w) is defined}, and E2 is defined with respect to A2. For each
vertex w ∈ R ∪B, if both λ(x) and ρ(x) are defined and color(λ(x)) ̸= color(ρ(x)), then add
the edge (λ(x), ρ(x)) to E3. Let G = (R ∪ B, E), where E = E1 ∪ E2 ∪ E3. Now, we have
the following lemmas.

▶ Lemma 4. The graph G = (R ∪B, E) is (a) planar, and (b) satisfies locality condition.

Proof. We prove that G is planar by finding a suitable embedding of it in the plane. Let
C be a circle of radius r > 0 in the plane. We map the vertices of P to equally-spaced
points on C, and the edges in E are drawn between pairs of points inside and outside of

FSTTCS 2022

18:6 Half-Guarding Weakly-Visible Polygons and Terrains

C. If A1 ∩ E1 ̸= ∅, then the edges in A1 ∩ E1 are drawn inside C as straight line segments,
and are non-crossing due to Claim 3. Note that for each edge (λ(w), x) ∈ E1 \ A1, there
exists a segment (λ(w), w) ∈ A1 such that λ(w) ≺ x ≺ w and x can reach (λ(w), w) without
exiting from P and without intersecting any segment in A1. We can argue that the edge
(λ(w), x) can be drawn as a straight line segment inside C without intersecting any edge
that was already drawn. Suppose (λ(w), x) intersects an edge (segment) (λ(a), a) ∈ A1 ∩E1.
Now, if λ(a) ≺ λ(w) ≺ a ≺ x, then the segments (λ(a), a) and (λ(w), w) are crossing, a
contradiction to Claim 3. If λ(w) ≺ λ(a) ≺ x ≺ a, there arise two cases: (i) a ≺ w or a = w,
in this case x crosses the segment (λ(a), a) to reach (λ(w), w), a contradiction; (ii) w ≺ a,
in which case the segments (λ(w), w) and (λ(a), a) are crossing, a contradiction to Claim 3.
If, suppose, (λ(w), x) intersects an edge (λ(w′), y) ∈ E1 \ A1, then λ(w) ≺ λ(w′) ≺ x ≺ y.
Implies (λ(w), x) crosses the segment (λ(w′), w′) ∈ A1. If (λ(w′), w′) ∈ E1, then it is similar
to the previous case. On the other hand, if (λ(w′), w′) ∈ E1, there arise two cases: either
w′ ≺ w or w′ = w, in which the contradiction is that x crosses (λ(w′), w′) to reach (λ(w), w);
or w ≺ w′, in which λ(w) sees w′ (order claim applied to λ(w), λ(w′), w, w′), contradiction to
the definition of λ(w′). Thus the edges E1 are properly embedded inside C. We embed the
edges of E2 outside C as curved line segments. The edges in A2 ∩ E2, if any, can be drawn
without intersecting due to the fact that the segments in A2 are non-crossing. We can argue
that the edges of E2 \A2 can be embedded without crossing as in the previous case. Observe
that the edges in E3 correspond to a vertex x/ ∈ R ∪B, having λ(x) and ρ(x) defined, such
that color(λ(x)) ̸= color(ρ(x)). Also, observe that neither (λ(x), x) nor (x, ρ(x)) belong to
E1 ∪E2 by the way E1 and E2 are defined. Hence, each edge (λ(x), ρ(x)) ∈ E3 can be drawn
as the union of the segments (λ(x), x) ∈ A1 and (x, ρ(x)) ∈ A2. Therefore, G is planar as all
the edges in E are drawn without any intersection.

(b) Let x be any vertex of P . We will show that there exists r ∈ R and b ∈ B, such that
r sees x, b sees x, and (r, b) ∈ E. We argue by distinguishing between the following two
cases. Case (i) x /∈ R ∪B: If both λ(x) and ρ(x) are defined and color(λ(x)) ̸= color(ρ(x)),
then (λ(x), ρ(x)) ∈ E3, and hence the claim is true. If both λ(x) and ρ(x) are defined and
color(λ(x)) = color(ρ(x)), then there must exists w ∈ R∪B such that w sees x, and color(w)
is different from color(λ(x)) and color(ρ(x)). Without loss of generality we assume that w

be the first such vertex while traversing P ’s boundary clockwise from u, and λ(x) ≺ w ≺ x

(a similar argument works if x ≺ w ≺ ρ(x) assuming w be the last such vertex while
traversing P ’s boundary clockwise from u). Let (λ(y), y) ∈ A1 associate with w, implies
λ(x) ≺ λ(y) ≺ w ≺ y ≺ x. If y ̸= x, then λ(y) sees x due to order claim on the vertices
λ(y), w, y, and x. If y = x, then λ(x) = λ(y), so λ(y) sees x. Since w is the first vertex that
sees x and satisfies λ(x) ≺ w ≺ ρ(x), it must be that color(λ(y)) ̸= color(w). So the edge
(λ(y), w) ∈ E1. Hence, the claim is true. The above argument works even if only λ(x) (or
ρ(x)) is defined.

Case (ii) x ∈ R ∪B: If λ(x) is defined and if color(λ(x)) ̸= color(x), then (λ(x), x) ∈ E1,
and hence the claim is true. Similarly, if ρ(x) is defined and if color(ρ(x)) ̸= color(x), then
(x, ρ(x)) ∈ E2, and hence the claim is true. Suppose λ(x) is defined, but color(λ(x)) =
color(x) (the argument is similar if ρ(x) is defined and color(x) = color(ρ(x))). There must
exist w ∈ R∪B such that w sees x, λ(x) ≺ w ≺ x, and color(λ(x)) ̸= color(w). Without loss
of generality, let w itself be the first such vertex (while traversing P ’s boundary clockwise
from u). Now, we can prove the claim by proceeding as in Case (i). ◀

▶ Lemma 5. There exists a PTAS for vertex guarding a weakly-visible polygon, with visibility
edge e = (u, v) where the angles of u and v are convex, with half-guards where half-guards
can only see to the right.

N. Duraisamy et al. 18:7

Figure 5 Removing the convexity
assumption.

Figure 6 Any point p ∈ P3 that is seen by
a point g ∈ P2 is also seen by u.

2.4 Removing the Convexity Assumption

In [3], the convexity assumption is handled by placing guards at u and v. It is proved
that every vertex “below” the edge e = (u, v) is seen by either u or v. For half-guards, if
guards are similarly placed at u and v the analysis of [3] does not extend to half-guarding.
A portion of the polygon below the e = (u, v) edge is unseen, see, for example, P5 and P2
from Figure 5. We now show how to remove the convexity assumption of u and v. Let lu
be the vertical line going through u; ux and uy be the points of intersection of lu with the
boundary of P . Let hv be the horizontal line through v that hits the boundary of P at vy to
the right of v. Let lv be the vertical line through v that hits the boundary of P at vx below
v. The segments uxuy, vvx, and vvy split the polygon into at most five sub-polygons, say
P1, P2, P3, P4, P5; each weakly-visible from some edge (see Fig. 5). Thus, vertex guarding
the vertices of each sub-polygon ensures vertex guarding the vertices of P . As shown in [3],
if the WV-polygon can be guarded using only a constant number (say c) of vertices, then
we try all such possibilities and obtain an optimal solution in O(nc) time. Assuming the
polygon cannot be guarded with a constant number of guards, we place guards at u and v

and show that the final guarding set, including these two guards, is a (1 + ϵ)−approximation.
The entire P1 region must be seen by the point u on the edge e = (u, v). All the vertices

in P4 are seen by v. Thus, vertex guarding the vertices of P1 and P4 can be achieved by
placing 1 half-guard at u and v, respectively. Let U be the set of vertices in P3 that are
neither guarded by u nor v. We apply Algorithm 1 on P3 with the WV-edge uv to vertex
guard U . Let S3 be the solution obtained.

Observe that the polygons P2 and P5 are weakly-visible from uxuy, and vvx, respectively.
Hence, Algorithm 1 can be applied individually since ux, uy, v, and vx are convex vertices
in their respective sub-polygons. Since Claim 1 (half-guard order claim) holds for these
polygons, the A1 segments in those polygons are non-crossing. Thus, one can construct a
graph G for each sub-polygon where G is planar and G satisfies the locality condition. Let
S2 and S5 be the solutions obtained for P2 and P5, respectively.

It remains to show that the solutions S2, S3 and S5 are disjoint. In other words, the local
search algorithm can be run independently on each sub-polygon. No guard in S2 will see
any of the U vertices in P3 nor P5. Similarly, no guard in S3 will see vertices in P2 nor P5.
Lastly, no guard in S5 will see vertices in P2 nor the U vertices in P3.

It is immediately obvious that no guard in S3 nor S5 can see any vertex in P2. Any such
vertex would need to see left to cross the uxuy line segment and no guard can see left. In a
similar fashion, no guard of S2 nor S3 can see any vertex in P5. In order to see into P5, a

FSTTCS 2022

18:8 Half-Guarding Weakly-Visible Polygons and Terrains

guard must see to the left of the vvx line segment and no guard can see left. When guarding
P3, we assumed that guards were already placed at u and v and therefore, we only need to
run the local search algorithm on the remaining vertex set U ∈ P3 such that no vertex in U

is seen by either u or v.

▷ Claim 6. Any vertex p ∈ P3 that is seen by any boundary point g ∈ P2 is seen by u.

Proof. By definition, u sees ux since ux is directly above u. It must be the case that
u ≺ g ⪯ ux. Since u sees ux and g sees p, the polygon cannot pierce the uux nor gp line
segments. The only way to block u from seeing p is to come from the “other side,” see Fig. 6.
However, if blocking occurs in this manner, then p no longer has a line segment connecting it
to the uv edge, contradicting the fact that the polygon is weakly-visible. Therefore, u must
see p. ◁

▷ Claim 7. Any vertex p ∈ P3 that is seen by a boundary point g ∈ P5 is seen by v.

The set S2, S3 or S5 may not be a feasible solution of P as S2, S3 and S5 may contain
guards at ux, uy, vx, or vy, which are not vertices of P . Assuming vy is not a vertex, it is
not considered by the algorithm for P3. The vertex that precedes vy is considered by the
local search algorithm for P3. No guard will be placed at vx when running the local search
algorithm on P5. A guard at vx only sees itself and v. A guard was already placed at v

making any guard placed at vx redundant.
If the local search algorithm places a guard at uy or ux when creating a solution for P2,

then that guard was only placed to guard uy and/or ux. Since the rest of the P2 polygon
is to the left of ux and uy, guards placed here will not see any other vertex of P2. If this
happens, then we sweep a vertical line leftward starting at uxuy until it hits a vertex of P2.
The guard is moved to this vertex. That vertex will see both ux and uy. As shown in Claim
6, neither ux nor uy will be responsible for guarding a vertex in P3 and it is obvious they will
not contribute to the other sub-polygons. Therefore, no guards will be placed at ux, uy, vx

nor vy.

▶ Theorem 8. For any weakly-visible polygon, there exists a PTAS for vertex guarding the
vertices of the polygon with half-guards.

Proof. Let P be a polygon that is weakly-visible from an edge e = (u, v). We divide the
polygon P into at most five sub-polygons as discussed above. Let S2, S5 be the set of
half-guards obtained by our algorithm for P2 and P5. The obtained set S3 guards the set
of vertices U of P3 that are not seen by the half-guards placed at u and v. Let OPT be an
optimal half-guard set of vertices of P . Let S = S2 ∪ S3 ∪ S5 ∪ {u, v}.

It can be observed that, the vertices in P2 (resp. P5) can only be guarded by half-guards
placed at the vertices of P2 (resp. P5). Let Oi be an optimal solution for vertex guarding
the sub-polygon Pi, and OPTi ⊂ OPT be the set of half-guards (in the optimum solution of
P) lying in Pi. We get, |Si| ≤ (1 + ϵ) · |Oi| ≤ (1 + ϵ) · |OPTi| as |Oi| ≤ |OPTi|.

Consider the sub-polygon P3. Let O3 be an optimal solution for vertex guarding the set U

in P3. Mote that, the subset of vertices U is not guarded by OPT1 ∪OPT2 ∪OPT4 ∪OPT5.
Let OPT3 ⊂ OPT be the set of guards lying in P3 to guard U . We have, |O3| ≤ |OPT3|,
implying |S3| ≤ (1 + ϵ) · |O3| ≤ (1 + ϵ) · |OPT3|. Combining the above inequalities, we have
|S| ≤ (1 + ϵ) · |O2|+ (1 + ϵ) · |O3|+ (1 + ϵ) · |O5|+ 2/ Thus, |S| ≤ (1 + ϵ) ·OPT + 2. We can
get rid of 2 in the inequality by adjusting k in the algorithm. ◀

N. Duraisamy et al. 18:9

Figure 7 The vertices are half-guarded by v2 and v5 but an edge remains unseen.

2.5 Guarding the boundary of a weakly-visible polygon
In the previous section, we vertex guarded the vertices of a WV-polygon. However, even
though all vertices are seen, it is possible that part of the boundary is unseen (see Fig. 7).
Let AGP (G, W) denote the problem of guarding the point set W with minimum number of
entries in G. Let ∂P denote the boundary of P . We consider the following problem. Given a
weakly-visible polygon P , construct a set W ⊂ ∂P (witness points) such that an optimal
solution for AGP (V, W) is also an optimal solution for AGP (V, ∂P). This discretization is
based on Friedrichs et al. [10].

Computation of a witness set
We have a finite guard set V , which are the vertices of P . In order to guard ∂P , we find a
discrete set of witness points W ⊂ ∂P . Let g ∈ V be one of the half-guard candidates and
V(g) be the visibility region of g on P ’s boundary (V(g) ⊆ ∂P). V(g) creates O(n) closed
intervals (may be degenerate to a point) along the boundary ∂P . Considering the intervals
generated by all the members in the guard set G, we split the entire boundary ∂P into
maximal intervals, called features such that every point in a feature f is seen by the same set
of guards G(f) = {g ∈ V | f ⊆ V(g)}. Note that, (i) the union of the features is ∂P , and (ii)
if any point in a feature is guarded by some guard in G, then the entire feature is guarded
by that half-guard.

We pick any arbitrary point of each feature to the witness set W . So if we guard these
O(n|V |) witnesses in W , then the entire feature set, and as a result, ∂P is guarded. We
can further reduce the number of witnesses by only using those features f with inclusion-
minimal2 G(f). Let F be the feature set and G be the guard set (here G = V). Let wf be
an arbitrary point in a feature f ∈ F , then the witness of G is defined as W = {wf | f ∈
F, G(f) is inclusion minimal}.

▶ Lemma 9. For a weakly-visible polygon P , with vertex set V and guard set G (here G = V),
any feasible solution of AGP (G, W) is also a feasible solution of AGP (G, ∂P).

Proof. Let C ⊂ G be a feasible guard set of the witness set W . Suppose C does not guard
some point p ∈ ∂P . Since every point on ∂P is visible to at least one vertex, some half-guard
g ∈ G should guard p. Therefore, p must be part of some feature f ∈ F . The set W either
contains some witness wf ∈ f or a witness wf ′ such that G(f ′) ⊆ G(f) (inclusion-minimality).
In the first case, p must be guarded by C, otherwise wf will not be guarded, and hence C is
not a feasible solution for AGP (G, W), leading to a contradiction. In the second case, some
half-guard g ∈ C guards wf ′ . That half-guard should also guard f , thus it guards p; thus
arriving at a contradiction of the statement that p is not guarded. ◀

2 There does not exist another feature f ′ such that G(f ′) ⊆ G(f)

FSTTCS 2022

18:10 Half-Guarding Weakly-Visible Polygons and Terrains

u v

(a)
u v

(b)

Figure 8 Guards that see the boundary of P but do not see the entire interior of P . (a) Example
with half-guards. (b) Example with full-guards.

We apply the algorithm discussed above to guard the witness set W with the guard set
V . Thus, we have the following result:

▶ Theorem 10. For any weakly-visible polygon P , there exists a PTAS for finding the
minimum number of half-guards at the vertices of P , that are required to guard the entire
boundary of P .

▶ Remark. Vertex guarding the entire boundary may not necessarily imply vertex guarding
the entire polygon. In other words, even if the boundary is fully guarded there may be
some pockets (invisible regions) inside the polygon. In Fig. 8(a), any solution (even an
optimal one) guarding the boundary must have guards at the tip of the spike for guarding
the spikes in the polygon as the guards can see only to the right. If the local search algorithm
encounters the guards shown in the figure it will report that guard set. A similar observation
can be observed with full-guards too. Note that for the weakly-visible polygon shown in
Fig. 8(b), at least three full-guards are necessary to cover the boundary. If the local search
algorithm encounters the guards shown in the figure, it will return them and exit as it cannot
improve the solution further. In this case, there is a pocket. Indeed, there is another set of
three points that cover the entire boundary as well as the interior of the polygon. However,
the local search algorithm might not pick them.

3 NP-hardness for Vertex Guarding a Terrain with Half-Guards

Abusing notation, only in this section, we will assume that half-guards can only see “down.”
Let p.y be the y-coordinate of a point p. We define seeing down as: a point p sees a point q

if p.y ≥ q.y. We begin this section by briefly sketching how the NP-hardness reduction works
for terrain guarding with full-guards. The interested reader is encouraged to read [13] to see
the full details of the original reduction. The reduction modifications begin in Section 3.1.

The terrain guarding reduction is from PLANAR 3SAT [18] where an instance has n

variables and m clauses. The reduction works by assigning vertices on the terrain to truth
values of variables from the PLANAR 3SAT instance. For each variable in the PLANAR 3SAT
instance, variable gadgets are created such that the gadget contains a vertex representing
the literal xi and a vertex representing the literal xi, see Figure 9(middle). These variable
gadgets are grouped together in chunks on the terrain. Figure 9(left) shows an example of
one such chunk that contains one variable gadget for each variable in {x1, x2, . . . , xn}. These
chunks are replicated on the terrain such that a guard placed at the vertex representing

N. Duraisamy et al. 18:11

the literal xi in chunk Cj would require a guard to be placed at the vertex representing the
literal xi in a different chunk Ck. There are points on the terrain that correspond to clauses
in the PLANAR 3SAT instance. For example, if clause ci = (xi+1 ∨ xi+3 ∨ xi+4) were in the
original PLANAR 3SAT instance, then a point on the terrain would exist that is seen by
three vertices corresponding to the literals xi, xi+3 and xi+4. If one of those vertices has a
guard placed on it, then the clause would be satisfied. If none of those vertices has a guard
placed on it, then an extra guard would be required to guard the terrain. If some minimum
number of guards were placed and the entire terrain was seen, then the original instance was
satisfied. If not, then the original instance was unsatisfiable.

The terrain guarding reduction only works if guards are full-guards. If the guards are
half-guards that only see down, part of the terrain would go unseen. For example, in Figure 9,
the portion of the terrain near the top could potentially be unseen. In the original reduction,
a guard placed in the highest variable gadget of chunk will see this portion. Other parts of
the terrain may also go unseen with the original reduction. Several tweaks and modifications
to the reduction need to happen to ensure all of the terrain is guarded.

3.1 Terrain Hardness Modifications

If we restrict guards to be half-guards that see down in the terrain, then the terrain guarding
problem with these half-guards is NP-hard. In regular terrain guarding, a point p sees
another point q if the line segment connecting p and q does not go below the terrain. In this
half-guard variant, the point p sees q only if the y-coordinate of p is greater than or equal to
the y-coordinate of q and the line segment connecting p and q does not go below the terrain.

We describe the changes to the gadgets of [13] that must be made in order for the
reduction to hold. Each part will explain why the original gadget doesn’t work for this
half-guard variant and what changes must be made in order to have the reduction hold.

Figure 9 The left shows an overview of the NP-hardness reduction for terrain guarding. The
middle is a variable gadget. The right is a starting gadget.

Between Chunks: Let us order the chunks from top to bottom (C1, C2, . . . , Cm). We will
assume that all variables gadgets in chunk Ci are below all variable gadgets in chunk Ci−1.
In the original reduction, the terrain between Ci the Ci+2 is seen by any guard placed in the
Ci+1 chunk. Since guards can only see down in this variant, a portion of the terrain, which
we will call u, below the lowest variable gadget in Ci and above the highest variable gadget
in Ci+1 will be unseen, see Figure 10(left). To fix this, we place a new gadget on the other
side of the terrain from Ci. This gadget is at the same y-coordinate of the lowest variable
gadget in chunk Ci. This ensures that the new guard will not affect the mirroring. The
vertices f and g can be seen from vertex e and by no other point outside of this small region.
Placing a guard at e will see f and g and also see the unseen region u below chunk Ci.

FSTTCS 2022

18:12 Half-Guarding Weakly-Visible Polygons and Terrains

Figure 10 (Left) To ensure the entire terrain is seen, a guard is placed at e to see vertices f and
g along with the u region. (Right) The overview of the terrain reduction where guards see down.

Variable Gadget: The following minor modifications need to be done in the variable gadgets
to work for proving the hardness for half-guards.

Assume the xi vertex in the variable gadget in chunk Cj has a guard placed on it and it
sees b. In this case, a guard is placed at xi in the variable gadget in chunk Cj+1 to see a and
c. The entire xi variable gadget in chunk Cj+1 is seen. Likewise, if a guard placed at xi in
chunk Cj sees a, then a guard is placed at xi in chunk Cj+1 sees b and c. A small portion of
the terrain below xi in chunk Cj+1 may have been missed, see Figure 11. However, if the xi

vertex in chunk Cj is lowered just slightly, then the guard placed at xi in Cj will see this
region and an additional guard is not required. One must ensure the previously placed xi

does not see b but it can see anything in this gadget above b. Therefore, we ensure that xi in
the previous variable gadget is placed in such a way that it blocks xi from seeing just above
b in the subsequent variable gadget.

Figure 11 The variable gadget remains mostly unchanged from [13].

Removing a Variable: We will assume we are removing a variable from chunk Ci. When a
variable gadget is removed going upwards, the gadget is modified slightly to remove the a

and b vertices. Such a gadget is also called a starting gadget. When a guard is placed at
the “lower” vertex in this gadget, a small portion of the terrain below the “higher” vertex
remains unseen. In Figure 9(right), a starting gadget is shown. A guard placed at xi would
not see the small portion of the terrain below the xi guard. To ensure this region is seen, we
look at the variable patterns placed in the chunk above it, chunk Ci−1. The guard placed in
the lowest variable pattern will see all of these potentially unseen portions. For example, in
Figure 10(right), the guard placed in the variable gadget, xk, directly above the rl point will
see all of these unseen regions in the variable patterns between lr and the variable gadget for
xk in chunk C2. Therefore, no modification is needed and no additional guard is needed.

N. Duraisamy et al. 18:13

Figure 12 The inversion gadget for variable xi in chunk Cj+1. This gadget is not tweaked but
the variable gadget xi in chunk Cj is modified slightly.

When removing a variable going down, the variable gadget is simply removed. The guard
placed in the previous chunk’s lowest variable gadget will see this region. If the lowest
variable was being removed, then the e guard in the gadget that sees between chunks will
see this region (see Figure 10(left)).

Above chunk C1 and C2: Since guards cannot see “up,” a guard must be placed that
guards the terrain above the first set of variable gadgets in chunk C1 and above the variable
gadgets in C2. Assume without loss of generality that C1 is on the left side of the terrain.
Two guards are placed at points l and r as shown in Figure 10(right). These guards are
required to see their own set of distinguished points, namely ll, lr, rr and rl. They see the
“top” of the terrain above chunks C1 and C2. Since all gadgets in chunk C1 are starting
gadgets, rl is placed below chunk C1 to ensure the relevant part of the terrain in the starting
gadgets and the terrain above the chunk are seen.

Inversion Gadgets: The updating required for the inversion gadgets are stated below:
See Figure 12 for a sample inversion gadget placed in chunk Cj+1. If a guard from the

variable gadget xi in chunk Cj sees point p, then when guards are placed at xi1 and xi2, the
entire gadget is seen. If the guard from chunk Cj guard sees point q, then guards are placed
at xi1 and xi2. This leaves a small portion of the terrain unseen, the line segment e in Figure
12. To fix this, similar to the tweak of the variable gadget, the previously placed guard in
chunk Cj is tweaked such that it sees just over the xi1 guard to see e. In this example, the
previously placed guard must see q and not see p. As long as it is blocked from p, this is all
that matters.

Clause Gadgets: No change is needed for the clause gadgets.

Putting it all together: As seen above, certain tweaks and updates are made to ensure that
the entire terrain is seen. Making these changes will cause the minimum number of guards
that must be placed, k, to increase by m + 1. An additional m− 1 guards are needed to see
the unseen regions between chunks. Two additional guards are added at l and r to see the
“top” of the terrain. This gives us a total of m− 1 + 2 = m + 1 additional required guards.
None of these additional required guards see any of the original distinguished points of the
terrain. They see their own set of distinguished points and also see the portion of the terrain
that would have been unseen. As shown in [13], if k guards can guard the entire terrain, the
instance is satisfiable. If more than k are needed, then the instance is not satisfiable.

FSTTCS 2022

18:14 Half-Guarding Weakly-Visible Polygons and Terrains

▶ Theorem 11. Finding the smallest vertex guard cover for guarding a terrain using half-
guards that see down is NP-hard.

4 NP-hardness for Vertex Guarding a WV-Polygon with Half-Guards

In this section, we give an overview of how to tweak the reduction from the previous section
to show that vertex guarding a WV-polygon with half-guards is NP-hard. We will show how
to use the terrain guarding hardness result for guards that only see down to show that vertex
guarding a WV-polygon with half-guards that see to the right is NP-hard. One can take
the modified terrain reduction, rotate it counterclockwise 90° and connect vertex l to vertex
r to create a WV-polygon that is visible from the edge e = (l, r), see Figure 13(left). The
reduction holds the same way that it does for vertex guarding a terrain with half-guards that
only see down.

One will notice that if the WV-edge is rotated slightly counterclockwise, the reduction
still holds, see Figure 13(right). The key visibilities from the guards remain and the polygon
is still weakly-visible. To help with seeing this, consider the variable patterns of Figure 14.
The WV-polygon can be rotated, for example, 10° counterclockwise and the xi and xi guards
still sees “right” to the distinguished points that they needs to see. The reduction begins to
fail whenever a guard visibility from the original reduction starts to have a negative slope.
In other words, if some point that guard xi is supposed to see is to the left of xi. If this
happens, the guard no longer sees the distinguished point(s) to its right. To account for this,
the original polygon is “stretched” further up-and-to-the-right such that none of the guards
visibility have a negative slope. We now give a sketch of how to stretch the terrain/polygon
while still maintaining the hardness reduction.

4.1 Stretching Hardness
For the terrain guarding hardness reduction, if half-guards see down and the terrain is rotated
1° in a counterclockwise direction, the terrain does not need to be modified much in order to
maintain visibilities. The e guards placed to see between chunks Ci and Ci+2 need to be
shifted “up” to see the correct portion of the terrain between the chunks, see Figure 10. All
gadgets are stretched but their visibilities do not change. A similar stretching idea is done
for WV-polygons.

An example of stretching a WV-polygon is seen in Figure 15. In the bottom part of
this Figure, the WV-edge is parallel to the x-axis and visibility to distinguished points are
still to the right. As seen in the example, the original right-most vertex of the original
WV-polygon is pulled “up-and-to-the-right” to ensure the polygon remains weakly-visible
and all important lines of sight look to the right. The l and r vertices are tweaked slightly
to ensure they also see their respective distinguished vertices to the right. Each gadget is
also stretched “up-and-to-the-right” to maintain visibilities. An example of such a stretching

Figure 13 An overview of NP-hardness for WV-polygons.

N. Duraisamy et al. 18:15

Figure 14 The top shows an original variable gadget. The bottom shows a rotated variable
gadget.

is shown in Figure 15(bottom). In the original reduction, Figure 15(top), the xi and xi

variables see right but they also see “up-and-to-the-right” to mirror its value to the next
variable gadget. In the stretched WV-polygon, the variable gadget is stretched but the
visibility of xi and xi that see “up-and-to-the-right” still exist. Those lines of sight are simply
steeper than in the original reduction.

Figure 15 A stretched WV-polygon with a rotated variable gadget.

This stretching of the polygon works even if the WV-edge has a positive slope. The
polygon can continue to be stretched as far “up-and-right” as necessary. However, the tweak
fails when the WV-edge is a vertical edge and the inside of the polygon is to the left of the
edge. We leave this as an open problem.

FSTTCS 2022

18:16 Half-Guarding Weakly-Visible Polygons and Terrains

5 Conclusion and Future Work

In this paper, we present a PTAS for vertex guarding the vertices and boundary of a
WV-polygon with half-guards that see to the right. This algorithm works regardless of the
orientation of the WV-edge. We present an NP-hardness proof for vertex guarding a terrain
with half-guards that see down. In contrast, if the half-guards see to the right for vertex
guarding a terrain, the problem is polynomial time solvable. We also present an NP-hardness
proof for vertex guarding a WV-polygon with half-guards that see to the right. Such a proof
works for all instances except when the WV-edge is parallel to the y-axis and the “inside” of
the polygon is to the left of the WV-edge. Whether or not this problem is NP-hard is left as
an open problem. Future work might include finding a better approximation for the point
guarding version of this problem. Insights provided in this paper may help with guarding
polygons where the guard can choose to see either left or right, or in other natural directions.
One may also be able to use these ideas when allowing guards to see 180° but guards can
choose their own direction, i.e. 180°-floodlights.

References
1 Alok Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects.

PhD thesis, The Johns Hopkins University, 1984.
2 Stav Ashur, Omrit Filtser, and Matthew Katz. A constant-factor approximation algorithm for

vertex guarding a WV-polygon. Journal of Computational Geometry, 12(1), December 2021.
doi:10.20382/jocg.v12i1a6.

3 Stav Ashur, Omrit Filtser, Matthew J. Katz, and Rachel Saban. Terrain-like graphs: PTASs
for guarding weakly-visible polygons and terrains. Computational Geometry, 101:101832, 2022.
doi:10.1016/j.comgeo.2021.101832.

4 Pritam Bhattacharya, Subir Ghosh, and Bodhayan Roy. Approximability of guarding weak
visibility polygons. Discrete Applied Mathematics, 228, February 2017. doi:10.1016/j.dam.
2016.12.015.

5 Danny Z. Chen, Vladimir Estivill-Castro, and Jorge Urrutia. Optimal guarding of polygons
and monotone chains. In Proceedings of the 7th Canadian Conference on Computational
Geometry, Quebec City, Quebec, Canada, August 1995, pages 133–138. Carleton University,
Ottawa, Canada, 1995. URL: http://www.cccg.ca/proceedings/1995/cccg1995_0022.pdf.

6 Marcelo C. Couto, Pedro J. de Rezende, and Cid C. de Souza. An exact algorithm for
minimizing vertex guards on art galleries. Int. Trans. Oper. Res., 18(4):425–448, 2011.
doi:10.1111/j.1475-3995.2011.00804.x.

7 Nandhana Duraisamy, Ramesh K. Jallu, Anil Maheshwari, and Subhas C. Nandy. A PTAS
for vertex guarding weakly-visible polygons using half-guards. Unpublished Manuscript, 2019.

8 Stephan Eidenbenz. Inapproximability results for guarding polygons without holes. In ISAAC,
pages 427–436, 1998. doi:10.1007/3-540-49381-6_45.

9 Khaled M. Elbassioni, Erik Krohn, Domagoj Matijevic, Julián Mestre, and Domagoj Severdija.
Improved approximations for guarding 1.5-dimensional terrains. Algorithmica, 60(2):451–463,
2011. doi:10.1007/s00453-009-9358-4.

10 Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous
1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS. J. Comput.
Geom., 7(1):256–284, 2016. doi:10.20382/jocg.v7i1a13.

11 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997. doi:10.1007/BF02770871.

12 Hannah Miller Hillberg, Erik Krohn, and Alex Pahlow. Guarding weakly-visible polygons with
half-guards. Iranian Conference on Computational Geometry, 2022. URL: https://iccg2022.
ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.
pdf.

https://doi.org/10.20382/jocg.v12i1a6
https://doi.org/10.1016/j.comgeo.2021.101832
https://doi.org/10.1016/j.dam.2016.12.015
https://doi.org/10.1016/j.dam.2016.12.015
http://www.cccg.ca/proceedings/1995/cccg1995_0022.pdf
https://doi.org/10.1111/j.1475-3995.2011.00804.x
https://doi.org/10.1007/3-540-49381-6_45
https://doi.org/10.1007/s00453-009-9358-4
https://doi.org/10.20382/jocg.v7i1a13
https://doi.org/10.1007/BF02770871
https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.pdf
https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.pdf
https://iccg2022.ce.sharif.edu/files/Papers/4-Guarding-Weakly-Visible-Polygons-with-Half-Guards.pdf

N. Duraisamy et al. 18:17

13 James King and Erik Krohn. Terrain guarding is NP-hard. SIAM J. Comput., 40(5):1316–1339,
2011. doi:10.1137/100791506.

14 Erik Krohn. Survey of terrain guarding and art gallery problems. Comprehensive Exam,
University of Iowa, November 2007. URL: http://faculty.cs.uwosh.edu/faculty/krohn/
papers/comprehensive.pdf.

15 Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear polygons.
Algorithmica, 66(3):564–594, 2013. doi:10.1007/s00453-012-9653-3.

16 Alexander Kröller, Tobias Baumgartner, Sándor P. Fekete, and Christiane Schmidt. Exact
solutions and bounds for general art gallery problems. ACM J. Exp. Algorithmics, 17, May
2012. doi:10.1145/2133803.2184449.

17 D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE Trans.
Inform. Theory, 32(2):276–282, March 1986.

18 David Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11:329–343, 1982.
19 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. QPTAS for geometric set-cover problems

via optimal separators. CoRR, abs/1403.0835, 2014. arXiv:1403.0835.

FSTTCS 2022

https://doi.org/10.1137/100791506
http://faculty.cs.uwosh.edu/faculty/krohn/papers/comprehensive.pdf
http://faculty.cs.uwosh.edu/faculty/krohn/papers/comprehensive.pdf
https://doi.org/10.1007/s00453-012-9653-3
https://doi.org/10.1145/2133803.2184449
http://arxiv.org/abs/1403.0835

A Structural and Algorithmic Study of
Stable Matching Lattices of “Nearby” Instances,
with Applications
Rohith Reddy Gangam !

University of California, Irvine, CA, USA

Tung Mai !

Adobe Research, San Jose, CA, USA

Nitya Raju !

University of California, Irvine, CA, USA

Vijay V. Vazirani !

University of California, Irvine, CA, USA

Abstract
Recently [18] identified and initiated work on a new problem, namely understanding structural
relationships between the lattices of solutions of two “nearby” instances of stable matching. They
also gave an application of their work to finding a robust stable matching. However, the types of
changes they allowed in going from instance A to B were very restricted, namely any one agent
executes an upward shift.

In this paper, we allow any one agent to permute its preference list arbitrarily. Let MA and MB

be the sets of stable matchings of the resulting pair of instances A and B, and let LA and LB be
the corresponding lattices of stable matchings. We prove that the matchings in MA ∩ MB form a
sublattice of both LA and LB and those in MA \ MB form a join semi-sublattice. These properties
enable us to obtain a polynomial time algorithm for not only finding a stable matching in MA ∩ MB ,
but also for obtaining the partial order, as promised by Birkhoff’s Representation Theorem [7]. As a
result, we can generate all matchings in this sublattice.

Our algorithm also helps solve a version of the robust stable matching problem. We discuss another
potential application, namely obtaining new insights into the incentive compatibility properties of
the Gale-Shapley Deferred Acceptance Algorithm.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design

Keywords and phrases stable matching, robust solutions, finite distributive lattice, Birkhoff’s
Representation Theorem

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.19

Related Version Full Version: https://arxiv.org/pdf/1804.05537.pdf

Funding Vijay V. Vazirani: This work was supported in part by NSF grant CCF-1815901.

1 Introduction

The seminal 1962 paper of Gale and Shapley [14] introduced the stable matching problem
and gave the Deferred Acceptance (DA) Algorithm for it. In the process, they initiated the
field of matching-based market design. Over the years, numerous researchers unearthed the
remarkably deep and pristine structural properties of this problem – this led to polynomial
time algorithms for numerous problems, in particular those addressing various operations
related to the lattice of stable matchings, see details below as well as in the books [17, 15,
20, 22, 12].

© Rohith Reddy Gangam, Tung Mai, Nitya Raju, and Vijay V. Vazirani;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rgangam@uci.edu
mailto:tumai@adobe.com
mailto:nraju1@uci.edu
mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.19
https://arxiv.org/pdf/1804.05537.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Study of Stable Matching Lattices of “Nearby” Instance

Recently [18] identified and initiated work on a new problem which appears to be funda-
mental and deserving of an in-depth study, namely understanding structural relationships
between the lattices of solutions of two “nearby” instances. [18] had given an application
of their work to finding a robust stable matching as described below. Let us say that two
instance A and B of stable matching are nearby instances if B is obtained from A when
one agent changes their preference list. Such pairs of instances arise naturally in an even
more important context: the study of incentive compatibility of the DA Algorithm: one
of the agents manipulates its preference list in order to get a better match. The types of
manipulations allowed in [18] were very restricted, namely any one agent executes an upward
shift, see definition below. They left the open problem of tackling more general changes.

[21] showed that finding a stable matching across k (≥ 2) arbitrary instances is NP-Hard.
In this paper, we allow any one agent to permute its preference list arbitrarily. Let A and B

be the resulting pair of instances, let MA and MB be the sets of their stable matchings and
LA and LB be the corresponding lattices of stable matchings. We prove that the matchings
in MA ∩MB form a sublattice of both LA and LB and those in MA \MB form a join
semi-sublattice, see definitions in Section 1.1. This enables us to obtain a polynomial time
algorithm for not only finding a stable matching in MA ∩MB , but also to obtain the partial
order, promised by Birkhoff’s Representation Theorem [7], which helps generate all matchings
in this sublattice. We also apply our algorithm to a more general setting for robust stable
matching than the one given in [18].

The setting defined in [18] was the following: Let A be an instance of stable matching on
n workers and n firms. A domain of errors, D, is defined via an operation called upward shift:
For a firm f , assume its preference list in instance A is {. . . , w1, w2, . . . , wk, w, . . .}. Move
up the position of worker w so f ’s list becomes {. . . , w, w1, w2, . . . , wk, . . .}. An analogous
operation is defined on a worker w’s list; again some firm f on its list is moved up. For each
firm and each worker, consider all possible shifts to get the domain D; clearly, |D| =

(2n
1

)(
n
2
)

=
O(n3). Assume that one error is chosen from D via a given discrete probability distribution
over D to obtain instance B. A robust stable matching is a matching that is stable for A and
maximizes the probability of being stable for B. A polynomial time algorithm was given for
finding such a matching.

Since we allow an arbitrary permutation to be applied to any one worker or any one
firm’s preference list, our domain of errors, say T , has size 2n(n!). Let S ⊆ T and define a
fully robust stable matching w.r.t. S to be a matching that is stable for A and for each of the
|S| instances obtained by introducing one error from S. We give an O(|S|p(n)) algorithm to
determine if such a matching exists and if so to find one, where p is a polynomial function.
In particular, if S is polynomial sized, then our algorithm runs in polynomial time. Clearly,
this notion is weaker than the previous one, since we cannot extend it to the probabilistic
setting; we leave that as an open problem, see Section 8.

In case all errors in S are on one side only, say the firms, it turns out that Algorithm D,
which is a simple modification of the Deferred Acceptance Algorithm, works; this algorithm
is given in Appendix D. However, extending this algorithm to the case that errors occur on
both sides, workers and firms, results in an algorithm (Algorithm D) that has exponential
runtime. Our polynomial time algorithm follows from a study of the sublattices of the lattice
of stable matchings.

Conway, see [17], proved that the set of stable matchings of an instance forms a finite
distributive lattice; see definitions in Section 2.2. Knuth [17] asked if every finite distributive
lattice is isomorphic to the lattice arising from an instance of stable matching. A positive
answer was provided by Blair [8]; for a much better proof, see [15]. A key fact about such

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:3

lattices is Birkhoff’s Representation Theorem [7], which has also been called the fundamental
theorem for finite distributive lattices, e.g., see [23]. It states that corresponding to such a
lattice, L, there is a partial order, say Π, such that L is isomorphic to L(Π), the lattice of
closed sets of Π (see Section 2.2 for details). We will say that Π generates L.

The following important question arose in the design of our algorithm: For a specified
sublattice L′ of L, obtain partial order Π′ from Π such that Π′ generates L′. Our answer to
this question requires a study of Birkhoff’s Theorem from this angle; we are not aware of any
previous application of Birkhoff’s Theorem in this manner. We define a set of operations
called compressions; when a compression is applied to a partial order Π, it yields a partial
order Π′ on (weakly) fewer elements. The following implication of Birkhoff’s Theorem is
useful for our purposes:

▶ Theorem 1. There is a one-to-one correspondence between the compressions of Π and the
sublattices of L(Π) such that if sublattice L′ of L(Π) corresponds to compression Π′, then L′

is generated by Π′.

A proof of Theorem 1, using stable matching lattices, is given in Section B for completeness.
In the case of stable matchings, Π can be defined using the notion of rotations; see Section
2.2 for a formal definition. Since the total number of rotations of a stable matching instance
is at most O(n2), Π has a succinct description even though L may be exponentially large.
Our main algorithmic result is:

▶ Theorem 2. There is an algorithm for checking if there is a fully robust stable matching
w.r.t. any set S ⊆ T in time O(|S|p(n)), where p is a polynomial function. Moreover, if the
answer is yes, the set of all such matchings forms a sublattice of L and our algorithm finds a
partial order that generates it.

The importance of the stable matching problem lies not only in its efficient computability
but also its good incentive compatibility properties. In particular, Dubins and Freedman [11]
proved that the DA Algorithm is dominant-strategy incentive compatible (DSIC) for the
proposing side. This opened up the use of this algorithm in a host of highly consequential
applications, e.g., matching students to public schools in big cities, such as NYC and Boston,
see [3, 1, 2]. In this application, the proposing side is taken to be the students; clearly, their
best strategy is to report preference lists truthfully and not waste time and effort on “gaming”
the system. In Section 8 we give a hypothetical situation regarding incentive compatibility
in which Theorem 2 plays a role.

1.1 Overview of structural and algorithmic ideas
We start by giving a short overview of the structural facts proven in [18]. Let A and B be
two instances of stable matching over n workers and n firms, with sets of stable matchings
MA and MB , and lattices LA and LB , respectively. Let Π be the poset on rotations such
that L(Π) = LA; in particular, for a closed set S, let M(S) denote the stable matching
corresponding to S. It is easy to see that if B is obtained from A by changing (upshifts
only) the lists of only one side, either workers or firms, but not both, then the matchings in
MA ∩MB form a sublattice of each of the two lattices (Proposition 6). Furthermore, if B

is obtained by applying a shift operation, then MA\B =MA \MB is also a sublattice of LA.
Additionally, there is at most one rotation, ρin, that leads from MA ∩MB to MA\B and at
most one rotation, ρout, that leads from MA\B to MA ∩MB ; moreover, these rotations can
be found in polynomial time. Finally, for a closed set S of Π, M(S) is stable for instance B

iff ρin ∈ S ⇒ ρout ∈ S.

FSTTCS 2022

19:4 A Study of Stable Matching Lattices of “Nearby” Instance

With a view to extending the results of [18], we consider the following abstract question.
Suppose instance B is such that MA ∩MB and MA\B are both sublattices of LA, i.e., MA

is partitioned into two sublattices. Then, is there a polynomial time algorithm for finding a
matching inMA ∩MB? Our answer to this question is built on the following structural fact:
There exists a sequence of rotations r0, r1, . . . , r2k, r2k+1 such that a closed set of Π generates
a matching in MA ∩MB iff it contains r2i but not r2i+1 for some 0 ≤ i ≤ k (Proposition
19). Furthermore, this sequence of rotations can be found in polynomial time (see Section
4). Our generalization of Birkhoff’s Theorem described in the Introduction is an important
ingredient in this algorithm. At this point, we do not know of any concrete error pattern,
beyond shift, for which this abstract setting applies.

Next, we address the case that MA\B is not a sublattice of LA. We start by proving that
if B is obtained by permuting the preference list of any one worker, then MA\B must be a
join semi-sublattice of LA (Lemma 31); an analogous statement holds if the preference list of
any one firm is permuted. Hence we study a second abstract question, namely lattice LA is
partitioned into a sublattice and a join semi-sublattice (see Section 5). These two abstract
questions are called Setting I and Setting II, respectively, in this paper.

For Setting II, we characterize a compression that yields a partial order Π′, such that
Π′ generates the sublattice consisting of matchings in MA ∩MB (Theorem 20). We also
characterize closed sets of Π such that the corresponding matchings lie in this sublattice;
however, the characterization is too elaborate to summarize succinctly (see Proposition 25).
Edges forming the required compression can be found in polynomial time (Theorem 29),
hence leading to an efficient algorithm for finding a matching in MA ∩MB .

Finally, consider the setting given in the Introduction, with T being the super-exponential
set of all possible errors that can be introduced in instance A and S ⊂ T . We show that
the set of all matchings that are stable for A and for each of the instances obtained by
introducing one error from S forms a sublattice of L and we obtain a compression of Π that
generates this sublattice (Section 7.2). Each matching in this sublattice is a fully robust
stable matching. Furthermore, given a weight function on all worker-firm pairs, we can
obtain, using the algorithm of [19], a maximum (or minimum) weight fully robust stable
matching.

2 Preliminaries

2.1 The stable matching problem and the lattice of stable matchings

The stable matching problem takes as input a set of workers W = {w1, w2, . . . , wn} and a
set of firms F = {f1, f2, . . . , fn}; each agent has a complete preference ranking over the set
of opposite side. A matching M is a one-to-one correspondence between W and F . For
each pair wf ∈M , w is called the partner of f in M (or M -partner) and vice versa. For a
matching M , a pair wf ̸∈M is said to be blocking if they prefer each other to their partners.
A matching M is stable if there is no blocking pair for M .

Let M and M ′ be two stable matchings. We say that M dominates M ′, denoted by
M ⪯ M ′, if every worker weakly prefers his partner in M to M ′. Define the relation
predecessor as the transitive closure of dominates. The set of stable matchings forms a finite
distributive lattice under the above definition of predecessor. The lattice contains a matching,
M0, that dominates all others and a matching Mz that is dominated by all others. M0 is
called the worker-optimal matching, since in it, each worker is matched to his most favorite
firm among all stable matchings. Similarly, Mz is firm-optimal matching.

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:5

2.2 Birkhoff’s Theorem and rotations

It is easy to see that the family of closed sets (also called lower sets, Definition 5) of a partial
order, say Π, is closed under union and intersection and forms a distributive lattice, with
join and meet being these two operations, respectively; let us denote it by L(Π). Birkhoff’s
theorem [7], states that corresponding to any finite distributed lattice, L, there is a partial
order, say Π, whose lattice of closed sets L(Π) is isomorphic to L, i.e., L ∼= L(Π). We will
say that Π generates L.

One way to define the partial orders generating stable matching lattices is using the
concept of rotation. For a worker w let sM (w) denote the first firm f on w’s list such that f

strictly prefers w to her M -partner. Let nextM (w) denote the partner in M of firm sM (w).
A rotation ρ exposed in M is an ordered list of pairs {w0f0, w1f1, . . . , wr−1fr−1} such that
for each i, 0 ≤ i ≤ r − 1, wi+1 is nextM (wi), where i + 1 is taken modulo r. M/ρ is defined
to be a matching in which each worker not in a pair of ρ stays matched to the same firm
and each worker wi in ρ is matched to fi+1 = sM (wi). It can be proven that M/ρ is also a
stable matching. The transformation from M to M/ρ is called the elimination of ρ from M .

Let ρ = {w0f0, w1f1, . . . , wr−1fr−1} be a rotation. For 0 ≤ i ≤ r−1, we say that ρ moves
wi from fi to fi+1, and moves fi from wi to wi−1. If f is either fi or is strictly between fi

and fi+1 in wi’s list, then we say that ρ moves wi below f . Similarly, ρ moves fi above w if
w is wi or between wi and wi−1 in fi’s list.

2.3 The rotation poset

A rotation ρ′ is said to precede another rotation ρ, denoted by ρ′ ≺ ρ, if ρ′ is eliminated in
every sequence of eliminations from M0 to a stable matching in which ρ is exposed. Thus,
the set of rotations forms a partial order via this precedence relationship. The partial order
on rotations is called rotation poset and denoted by Π.

▶ Lemma 3 ([15], Lemma 3.2.1). For any worker w and firm f , there is at most one rotation
that moves w to f , w below f , or f above w. Moreover, if ρ1 moves w to f and ρ2 moves w

from f then ρ1 ≺ ρ2.

▶ Lemma 4 ([15], Lemma 3.3.2). Π contains at most O(n2) rotations and can be computed
in polynomial time.

▶ Definition 5. A closed set of a poset is a set S of elements of the poset such that if an
element is in S then all of its predecessors are also in S.

There is a one-to-one relationship between the stable matchings and the closed subsets of Π.
Given a closed set S, the corresponding matching M is found by eliminating the rotations
starting from M0 according to the topological ordering of the elements in the set S. We say
that S generates M .

Let S be a subset of the elements of a poset, and let v be an element in S. We say that v

is a minimal element in S if there are no predecessors of v in S. Similarly, v is a maximal
element in S if it has no successors in S. The Hasse diagram of a poset is a directed graph
with a vertex for each element in the poset, and an edge from x to y if x ≺ y and there is no
z such that x ≺ z ≺ y. In other words, all precedences implied by transitivity are suppressed.

FSTTCS 2022

19:6 A Study of Stable Matching Lattices of “Nearby” Instance

2.4 Sublattice and semi-sublattice
A sublattice L′ of a distributive lattice L is subset of L such that for any two elements
x, y ∈ L, x ∨ y ∈ L′ and x ∧ y ∈ L′ whenever x, y ∈ L′, where ∨ and ∧ are the join and
meet operations of lattice L. A join semi-sublattice L′ of a distributive lattice L is subset of
L such that for any two elements x, y ∈ L, x ∨ y ∈ L′ whenever x, y ∈ L′. Similarly, meet
semi-sublattice L′ of a distributive lattice L is subset of L such that for any two elements
x, y ∈ L, x ∧ y ∈ L′ whenever x, y ∈ L′. Note that L′ is a sublattice of L iff L′ is both join
and meet semi-sublattice of L.

▶ Proposition 6. Let A be an instance of stable matching and let B be another instance
obtained from A by changing the lists of only one side, either workers or firms, but not both.
Then the matchings in MA ∩MB form a sublattice in each of the two lattices.

▶ Corollary 7. Let A be an instance of stable matching and let B1, . . . , Bk be other instances
obtained from A each by changing the lists of only one side, either workers or firms, but not
both. Then the matchings in MA ∩MB1 ∩ . . . ∩MBk

form a sublattice in MA.

This corollary gives another justification for Algorithm D, motivated by [21]. This
modified Deferred Algorithm works when errors are only on one side. Algorithm D extends
this to errors on both sides however it has exponential runtime.

This motivates us to characterize sublattices in the lattice of stable matchings. In
Section 7.1, we show that for any instance B obtained by permuting the preference list of
one worker or one firm, MA\B forms a semi-sublattice of LA (Lemma 31). In particular, if
the list of a worker is permuted, MA\B forms a join semi-sublattice of LA, and if the list of
a firm is permuted, MA\B forms a meet semi-sublattice of LA. In both cases, MA ∩MB is
a sublattice of LA and of LB as shown in Proposition 6.

3 Birkhoff’s Theorem on Sublattices

Let Π be a finite poset. For simplicity of notation, in this paper we will assume that Π must
have two dummy elements s and t; the remaining elements will be called proper elements and
the term element will refer to proper as well as dummy elements. The element s precedes all
other elements and t succeeds all other elements in Π. A proper closed set of Π is any closed
set that contains s and does not contain t. It is easy to see that the set of all proper closed
sets of Π form a distributive lattice under the operations of set intersection and union. We
will denote this lattice by L(Π). The following has also been called the fundamental theorem
for finite distributive lattices.

▶ Theorem 8 (Birkhoff [7]). Every finite distributive lattice L is isomorphic to L(Π), for
some finite poset Π.

Our application of Birkhoff’s Theorem deals with the sublattices of a finite distributive
lattice. First, in Definition 9 we state the critical operation of compression of a poset.

▶ Definition 9. Given a finite poset Π, first partition its elements; each subset will be called
a meta-element. Define the following precedence relations among the meta-elements: if x, y

are elements of Π such that x is in meta-element X, y is in meta-element Y and x precedes
y, then X precedes Y . Assume that these precedence relations yield a partial order, say Q,
on the meta-elements (if not, this particular partition is not useful for our purpose). Let

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:7

{s}

{s, 1} {s, 3}

{s, 1, 2} {s, 1, 3}{s, 3, 4}

{s, 1, 2, 3} {s, 1, 3, 4}

{s, 1, 2, 3, 4}
L

s

1 3

2 4

t

P

{s, 1}

{2} {3}

{4, t}

{s, 1}

P1
{2}

{t}

{1}

{3}

{4}

{s}

P2

Figure 1 Two examples of compressions. Lattice L = L(P). P1 and P2 are compressions of P ,
and they generate the sublattices in L, of red and blue elements, respectively. The black edges are
directed from top to bottom so higher elements are predecessors of lower elements.

Π′ be any partial order on the meta-elements such that the precedence relations of Q are a
subset of the precedence relations of Π′. Then Π′ will be called a compression of Π. Let As

and At denote the meta-elements of Π′ containing s and t, respectively.

For examples of compressions see Figure 1. Clearly, As precedes all other meta-elements
in Π′ and At succeeds all other meta-elements in Π′. Once again, by a proper closed set of
Π′ we mean a closed set of Π′ that contains As and does not contain At. Then the lattice
formed by the set of all proper closed sets of Π′ will be denoted by L(Π′).

3.1 An alternative view of compression
In this section we give an alternative definition of compression of a poset; this will be used
in the rest of the paper. The advantage of this definition is that it is much easier to work
with for the applications presented later. Its drawback is that several different sets of edges
may yield the same compression. Therefore, this definition is not suitable for stating a
one-to-one correspondence between sublattices of L and compressions of Π. Finally we show
that any compression Π′ obtained using the first definition can also be obtained via the
second definition and vice versa (Proposition 10), hence showing that the two definitions are
equivalent for our purposes. See Appendix C for more details.

We are given a poset Π for a stable matching instance; let L be the lattice it generates.
Let H(Π) denote the Hasse diagram of Π. Consider the following operations to derive a new
poset Π′: Choose a set E of directed edges to add to H(Π) and let HE be the resulting graph.
Let H ′ be the graph obtained by shrinking the strongly connected components of HE ; each
strongly connected component will be called a meta-rotation of Π′ as defined in Definition 9.
The edges which are not shrunk will define a DAG, H ′, on the strongly connected components.
These edges give precedence relations among meta-rotation for poset Π′.

Let L′ be the sublattice of L generated by Π′. We will say that the set of edges E defines
L′. It can be seen that each set E uniquely defines a sublattice L(Π′); however, there may
be multiple sets that define the same sublattice. See Figure 2 for examples of sets of edges
which define sublattices.

▶ Proposition 10. The two definitions of compression of a poset are equivalent.

For a (directed) edge e = uv ∈ E, u is called the tail and v is called the head of e. Let I

be a closed set of Π. Then we say that: I separates an edge uv ∈ E if v ∈ I and u ̸∈ I; I

crosses an edge uv ∈ E if u ∈ I and v ̸∈ I. If I does not separate or cross any edge uv ∈ E,
I is called a splitting set w.r.t. E.

FSTTCS 2022

19:8 A Study of Stable Matching Lattices of “Nearby” Instance

s

1 3

2 4

t

E1

s

1 3

2 4

t

E2

s

1 3

2 4

t

E3

Figure 2 E1 (red edges) and E2 (blue edges) define the sublattices in Figure 1, of red and blue
elements, respectively. E2 and E3 define the same compression and represent the same sublattice.
All black edges in E1, E2 and E3 are directed from top to bottom (not shown in the figure).

▶ Lemma 11. Let L′ be a sublattice of L and E be a set of edges defining L′. A matching
M is in L′ iff the closed subset I generating M does not separate any edge uv ∈ E.

▶ Remark 12. We may assume w.l.o.g. that the set E defining L′ is minimal in the following
sense: There is no edge uv ∈ E such that uv is not separated by any closed set of Π. Observe
that if there is such an edge, then E \ {uv} defines the same sublattice L′. Similarly, there is
no edge uv ∈ E such that each closed set separating uv also separates another edge in E.

▶ Definition 13. W.r.t. an element v in a poset Π, we define four useful subsets of Π:
Iv = {r ∈ Π : r ≺ v}, Jv = {r ∈ Π : r ⪯ v} = Iv ∪ {v}, I ′

v = {r ∈ Π : r ≻ v}, J ′
v = {r ∈ Π :

r ⪰ v} = I ′
v ∪ {v}. Notice that Iv, Jv, Π \ I ′

v, Π \ J ′
v are all closed sets.

▶ Lemma 14. Both Jv and Π \ J ′
u separate uv for each uv ∈ E.

Proof. Since uv is in E, u cannot be in Jv; otherwise, there is no closed subset separating
uv, contradicting Remark 12. Hence, Jv separates uv for all uv in E. Similarly, since uv is
in E, v cannot be in J ′

u. Therefore, Π \ J ′
u contains v but not u, and thus separates uv. ◀

4 Setting I

Under Setting I, the given lattice L has sublattices L1 and L2 that partition L. The main
structural fact for this setting is:

▶ Theorem 15. Let L1 and L2 be sublattices of L such that L1 and L2 partition L. Then
there exist sets of edges E1 and E2 defining L1 and L2 such that they form an alternating
path from t to s.

We will prove this theorem in the context of stable matchings. Let E1 and E2 be any two
sets of edges defining L1 and L2, respectively. We will show that E1 and E2 can be adjusted
so that they form an alternating path from t to s, without changing the corresponding
compressions.

▶ Lemma 16. There must exist a path from t to s composed of edges in E1 and E2.

Let Q be a path from t to s according to Lemma 16. Partition Q into subpaths Q1, . . . , Qk

such that each Qi consists of edges in either E1 or E2 and E(Qi) ∩ E(Qi+1) = ∅ for all
1 ≤ i ≤ k − 1. Let ri be the rotation at the end of Qi except for i = 0 where r0 = t.

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:9

s

t

(a)

s

t

(b)

Figure 3 Examples of: (a) canonical path, and (b) bouquet.

Specifically, t = r0 → r1 → . . .→ rk = s in Q. Lemma 11 can be used to show that each Qi

can be replaced by a direct edge from ri−1 to ri, and furthermore, all edges not in Q can be
removed.

▶ Lemma 17. Let Qi consist of edges in Eα (α = 1 or 2). Qi can be replaced by an edge
from ri−1 to ri where ri−1ri ∈ Eα.

▶ Lemma 18. Edges in E1 ∪ E2 but not in Q can be removed.

By Lemma 17 and Lemma 18, r0r1, . . . , rk−2rk−1, rk−1rk are all edges in E1 and E2 and
they alternate between E1 and E2. Therefore, we have Theorem 15. An illustration of such
a path is given in Figure 3(a).

▶ Proposition 19. There exists a sequence of rotations r0, r1, . . . , r2k, r2k+1 such that a
closed subset generates a matching in L1 iff it contains r2i but not r2i+1 for some 0 ≤ i ≤ k.

5 Setting II

Under Setting II, the given lattice L can be partitioned into a sublattice L1 and a semi-
sublattice L2. We assume that L2 is a join semi-sublattice. Clearly by reversing the order
of L, the case of meet semi-sublattice is also covered. The next theorem, which generalizes
Theorem 15, gives a sufficient characterization of a set of edges E defining L1.

▶ Theorem 20. There exists a set of edges E defining sublattice L1 such that:
1. The set of tails TE of edges in E forms a chain in Π.
2. There is no path of length two consisting of edges in E.
3. For each r ∈ TE, let Fr = {v ∈ Π : rv ∈ E}. Then any two rotations in Fr are

incomparable.
4. For any ri, rj ∈ TE where ri ≺ rj, there exists a splitting set containing all rotations in

Fri
∪ {ri} and no rotations in Frj

∪ {rj}.

A set E satisfying Theorem 20 will be called a bouquet. For each r ∈ TE , let Lr =
{rv | v ∈ Fr}. Then Lr will be called a flower. Observe that the bouquet E is partitioned
into flowers. These notions are illustrated in Figure 3(b). The black path, directed from s

to t, is the chain mentioned in Theorem 20 and the red edges constitute E. Observe that
the tails of edges E lie on the chain. For each such tail, the edges of E outgoing from it
constitute a flower.

FSTTCS 2022

19:10 A Study of Stable Matching Lattices of “Nearby” Instance

Let E be an arbitrary set of edges defining L1. We will show that E can be modified
so that the conditions in Theorem 20 are satisfied. Let S be a splitting set of Π. In other
words, S is a closed subset such that for all uv ∈ E, either u, v are both in S or u, v are both
in Π \ S. We can now replace paths with single edges as explained below.

▶ Lemma 21. There is a unique maximal rotation in TE ∩ S.

Denote by r the unique maximal rotation in TE ∩ S. Let Rr = {v ∈ Π : there is a path
from r to v using edges in E}, Er = {uv ∈ E : u, v ∈ Rr}, Gr = {Rr, Er}. Note that r ∈ Rr.
For each v ∈ Rr there exists a path from r to v and r ∈ S. Since S does not cross any edge
in the path, v must also be in S. Therefore, Rr ⊆ S.

▶ Lemma 22. Let u ∈ (TE ∩ S) \Rr such that u ≻ x for x ∈ Rr. Then we can replace each
uv ∈ E with rv.

Keep replacing edges according to Lemma 22 until there is no u ∈ (TE ∩ S) \ Rr such
that u ≻ x for some x ∈ Rr.

▶ Lemma 23. Let X = {v ∈ S : v ⪰ x for some x ∈ Rr}. Then: S \X is a closed subset;
S \X contains u for each u ∈ (TE ∩ S) \Rr; (S \X) ∩Rr = ∅; S \X is a splitting set.

▶ Lemma 24. Er can be replaced by the following set of edges: E′
r = {rv : v ∈ Rr}.

Proof of Theorem 20. To begin, let S1 = Π and let r1 be the unique maximal rotation
according to Lemma 21. Then we can replace edges according to Lemma 22 and Lemma 24.
After replacing, r1 is the only tail vertex in Gr1 . By Lemma 23, there exists a set X such
that S1 \X does not contain any vertex in Rr1 and contains all other tail vertices in TE

except r1. Moreover, S1 \X is a splitting set. Hence, we can set S2 = S1 \X and repeat.
Let r1, . . . , rk be the rotations found in the above process. Since ri is the unique maximal

rotation in TE ∩Si for all 1 ≤ i ≤ k and S1 ⊃ S2 ⊃ . . . ⊃ Sk, we have r1 ≻ r2 ≻ . . . ≻ rk. By
Lemma 24, for each 1 ≤ i ≤ k, Eri consists of edges riv for v ∈ Rri . Therefore, there is no
path of length two composed of edges in E and condition 2 is satisfied. Moreover, r1, . . . , rk

are exactly the tail vertices in TE , which gives condition 1.
Let r be a rotation in TE and consider u, v ∈ Fr. Moreover, assume that u ≺ v. A closed

subset I separating rv contains v but not r. Since I is a closed subset and u ≺ v, I contains
u. Therefore, I also separates ru, contradicting the assumption in Remark 12. The same
argument applies when v ≺ u. Therefore, u and v are incomparable as stated in condition 3.

Finally, let ri, rj ∈ TE where ri ≺ rj . By the construction given above, Sj ⊃ Sj−1 ⊃
. . . ⊃ Si, Rrj

⊆ Sj \ Sj−1 and Rri
⊆ Si. Therefore, Si contains all rotations in Rri

but none
of the rotations in Rrj , giving condition 4 which can be restated as Proposition 25. ◀

▶ Proposition 25. There exists a sequence of rotations r1 ≺ . . . ≺ rk and a set Fri for each
1 ≤ i ≤ k such that a closed subset generates a matching in L1 if and only if whenever it
contains a rotation in Fri

, it must also contain ri.

6 Algorithm for Finding a Bouquet

In this section, we give an algorithm for finding a bouquet. Let L be a distributive lattice
that can be partitioned into a sublattice L1 and a semi-sublattice L2. Then given a poset
Π of L and a membership oracle, which determines if a matching of L is in L1 or not, the
algorithm returns a bouquet defining L1.

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:11

FindBouquet(Π):
Input: A poset Π.
Output: A set E of edges defining L1.
1. Initialize: Let S = Π, E = ∅.
2. If Mz is in L1: go to Step 3. Else: r = t, go to Step 5.
3. r = FindNextTail(Π, S).
4. If r is not Null: Go to Step 5. Else: Go to Step 7.
5. Fr = FindFlower(Π, S, r).
6. Update:

a. For each u ∈ Fr: E ← E ∪ {ru}.
b. S ← S \

⋃
u∈Fr∪{r} J ′

u.
c. Go to Step 3.

7. Return E.

Figure 4 Algorithm for finding a bouquet.

FindNextTail(Π, S):
Input: A poset Π, a splitting set S.
Output: The maximal tail vertex in S, or Null if there is no tail vertex in S.
1. Compute the set V of rotations v in S such that:

Π \ I ′
v generates a matching in L1.

Π \ J ′
v generates a matching in L2.

2. If V ̸= ∅ and there is a unique maximal element v in V : Return v.
Else: Return Null.

Figure 5 Subroutine for finding the next tail.

By Theorem 20, the set of tails TE forms a chain C in Π. The idea of our algorihm, given
in Figure 4, is to find the flowers according to their order in C. Specifically, a splitting set S

is maintained such that at any point, all flowers outside of S are found. At the beginning, S

is set to Π and becomes smaller as the algorithm proceeds. Step 2 checks if Mz is a matching
in L1 or not. If Mz ̸∈ L1, the closed subset Π \ {t} separates an edge in E according to
Lemma 11. Hence, the first tail on C must be t. Otherwise, the algorithm jumps to Step
3 to find the first tail. Each time a tail r is found, Step 5 immediately finds the flower Lr

corresponding to r. The splitting set S is then updated so that S no longer contains Lr but
still contains the flowers that have not been found yet. Next, our algorithm continues to
look for the next tail inside the updated S. If no tail is found, it terminates.

▶ Lemma 26. Let v be a rotation in Π. Let S ⊆ Π such that both S and S ∪ {v} are closed
subsets. If S generates a matching in L1 and S ∪ {v} generates a matching in L2, v is the
head of an edge in E. If S generates a matching in L2 and S ∪ {v} generates a matching in
L1, v is the tail of an edge in E.

▶ Lemma 27. Given a splitting set S, FindNextTail(Π, S) (Figure 5) returns the maximal
tail vertex in S, or Null if there is no tail vertex in S.

FSTTCS 2022

19:12 A Study of Stable Matching Lattices of “Nearby” Instance

FindFlower(Π, S, r):
Input: A poset Π, a tail vertex r and a splitting set S containing r.
Output: The set Fr = {v ∈ Π : rv ∈ E}.
1. Compute X = {v ∈ Ir : Jv generates a matching in L1}.
2. Let Y =

⋃
v∈X Jv.

3. If Y = ∅ and M0 ∈ L2: Return {s}.
4. Compute the set V of rotations v in S such that:

Y ∪ Iv generates a matching in L1.
Y ∪ Jv generates a matching in L2.

5. Return V .

Figure 6 Subroutine for finding a flower.

▶ Lemma 28. Given a tail vertex r and a splitting set S containing r, FindFlower(Π, S, r)
(Figure 6) correctly returns Fr.

▶ Theorem 29 (h). FindBouquet(Π), given in Figure 4, returns a set of edges defining L1.

Proof. From Lemmas 27 and 28, it suffices to show that S is udpated correctly in Step 6(b).
To be precise, we need that

S \
⋃

u∈Fr∪{r}

J ′
u

must still be a splitting set, and contains all flowers that have not been found. This follows
from Lemma 23 by noticing that⋃

u∈Fr∪{r}

J ′
u = {v ∈ Π : v ⪰ u for some u ∈ Rr}. ◀

Clearly, a sublattice of L must also be a semi-sublattice. Therefore, FindBouquet can
be used to find a canonical path described in Section 4. The same algorithm can be used to
check if MA ∩MB = ∅. Let E be the edge set given by the FindBouquet algorithm and
HE be the corresponding graph obtained by adding E to the Hasse diagram of the original
rotation poset Π of LA. If HE has a single strongly connected component, the compression
Π′ has a single meta-element and represents the empty lattice.

7 Finding a Fully Robust Stable Matching

Consider the setting given in the Introduction, with S being the domain of errors, one of
which is introduced in instance A. We show how to use the algorithm in Section 6 to find
the poset generating all fully robust matchings w.r.t. S. We then show how this poset can
yield a fully robust matching that maximizes, or minimizes, a given weight function.

7.1 Studying semi-sublattices is necessary and sufficient
Let A be a stable matching instance, and B be an instance obtained by permuting the
preference list of one worker or one firm. Lemma 30 gives an example of a permutation
so that MA\B is not a sublattice of LA, hence showing that the case studied in Section 4

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:13

1 b a c d
2 a b c d
3 d c a b
4 c d a b

firms’ preferences in A

1 c a b d
2 a b c d
3 d c a b
4 c d a b

firms’ preferences in B

a 1 2 3 4
b 2 1 3 4
c 3 1 4 2
d 4 3 1 2

workers’ preferences in both
instances

Figure 7 An example in which MA\B is not a sublattice of LA.

does not suffice to solve the problem at hand. On the other hand, for all such instances B,
Lemma 31 shows that MA\B forms a semi-sublattice of LA and hence the case studied in
Section 5 does suffice.

The next lemma pertains to the example given in Figure 7, in which the set of workers is
B = {a, b, c, d} and the set of firms is G = {1, 2, 3, 4}. Instance B is obtained from instance
A by permuting firm 1’s list.

▶ Lemma 30. There exist stable matching instances A and B differing by one agent’s
preference list such that MA\B is not a sublattice of LA.

▶ Lemma 31. For any instance B obtained by permuting the preference list of one worker
or one firm, MA\B forms a semi-sublattice of LA.

▶ Proposition 32. A set of edges defining the sublattice L′, consisting of matchings in
MA ∩MB, can be computed in polynomial time.

7.2 Proof of Theorem 2

In this section, we will prove Theorem 2 as well as a slight extension; the latter uses ideas
from [18]. Let B1, . . . , Bk be polynomially many instances in the domain D ⊂ T , as defined
in the Introduction. Let Ei be the set of edges defining MA ∩MBi

for all 1 ≤ i ≤ k. By
Corollary 7, L′ =MA ∩MB1 ∩ . . . ∩MBk

is a sublattice of LA.

▶ Lemma 33. E =
⋃

i Ei defines L′.

Proof. By Lemma 11, it suffices to show that for any closed subset I, I does not separate
an edge in E iff I generates a matching in L′.

I does not separate an edge in E iff I does not separate any edge in Ei for all 1 ≤ i ≤ k

iff the matching generated by I is in MA ∩MBi
for all 1 ≤ i ≤ k by Lemma 11. ◀

By Lemma 33, a compression Π′ generating L′ can be constructed from E as described in
Section 3.1. By Proposition 32, we can compute each Ei, and hence, Π′ in polynomial time.
Clearly, Π′ can be used to check if a fully robust stable matching exists. To be precise, a
fully robust stable matching exists iff there exists a proper closed subset of Π′. This happens
iff s and t belong to different meta-rotations in Π′, an easy to check condition. Hence, we
have Theorem 2.

FSTTCS 2022

19:14 A Study of Stable Matching Lattices of “Nearby” Instance

7.3 Finding maximum weight fully robust stable matchings
We can use Π′ to obtain a fully robust stable matching M maximizing

∑
wf∈M Wwf by

applying the algorithm of [19]. Specifically, let H(Π′) be the Hasse diagram of Π′. Then each
pair wf for w ∈ W and f ∈ F can be associated with two vertices uwf and vwf in H(Π′) as
follows:

If there is a rotation r moving w to f , uwf is the meta-rotation containing r. Otherwise,
uwf is the meta-rotation containing s.
If there is a rotation r moving w from f , vwf is the meta-rotation containing r. Otherwise,
vwf is the meta-rotation containing t.

By Lemma 3 and the definition of compression, uwf ≺ vwf . Hence, there is a path
from uwf to vwf in H(Π′). We can then add weights to edges in H(Π′), as stated in [19].
Specifically, we start with weight 0 on all edges and increase weights of edges in a path from
uwf to vwf by wwf for all pairs wf . A fully robust stable matching maximizing

∑
wf∈M Wbwf

can be obtained by finding a maximum weight ideal cut in the constructed graph. An efficient
algorithm for the latter problem is given in [19].

8 Discussion

The primary focus of this paper is the study of “nearby” stable matching instances where
a single agent permutes their preference list. A number of new questions arise: give a
polynomial time algorithm for the problem mentioned in the Introduction, of finding a robust
stable matching as defined in [19] – given a probability distribution on the domain of errors –
even when the error is an arbitrary permutation; and extend to the stable roommate problem
and incomplete preference lists [15, 20], as well as popular matchings [10, 16].

Next, we give a hypothetical setting to show potential application of our work to the
issue of incentive compatibility. Let A be an instance of stable matching over n workers
and n firms. Assume that all 2n agents have a means of making their preference lists public
simultaneously and a dominant firm, say f , is given the task of computing and announcing
a stable matching. Once the matching is announced, all agents can verify that it is indeed
stable. It turns out that firm f can cheat and improve its match as follows: f changes
its preference list to obtain instance B which is identical to A for all other agents, and
computes a matching that is stable for A as well as B using Theorem 2. The other agents
will be satisfied that this matching is indeed stable for instance A and f ’s cheating may go
undetected.

Finally, considering the number of new and interesting matching markets being defined
on the Internet, e.g., see [13], it will not be surprising if new, deeper structural facts about
stable matching lattices find suitable applications. For this reason, the problem initiated
in [18], which appears to be a fundamental one, deserves further work. In particular, we
leave the question of extending our work to the case when the two instances A and B are not
nearby but arbitrary, i.e., when multiple agents simultaneously change their preference lists.

References
1 Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. Strategy-proofness versus efficiency

in matching with indifferences: Redesigning the NYC high school match. American Economic
Review, 99(5):1954–78, 2009.

2 Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. The boston public
school match. American Economic Review, 95(2):368–371, 2005.

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:15

3 Atila Abdulkadiroğlu and Tayfun Sonmez. School choice: A mechanism design approach.
American economic review, 93(3):729–747, 2003.

4 H. Aziz, P. Biro, T. Fleiner, S. Gaspers, R. de Haan, N. Mattei, and B. Rastegari. Stable match-
ing with uncertain pairwise preferences. In International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 344–352, 2017.

5 H. Aziz, P. Biro, S. Gaspers, R. de Haan, N. Mattei, and B. Rastegari. Stable matching with
uncertain linear preferences. In International Symposium on Algorithmic Game Theory, pages
195–206, 2016.

6 A. Ben-Tal, L. El Ghaoui, and A.S. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, October 2009.

7 Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.
8 Charles Blair. Every finite distributive lattice is a set of stable matchings. Journal of

Combinatorial Theory, Series A, 37(3):353–356, 1984.
9 G. C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained linear

programs. Jour. of Optimization Theory and Applications, 130(1), December 2006.
10 Agnes Cseh, Yuri Faenza, Telikepalli Kavitha, and Vladlena Powers. Understanding popular

matchings via stable matchings. SIAM Journal on Discrete Mathematics, 36(1):188–213, 2022.
11 L. E. Dubins and D. A. Freedman. Machiavelli and the gale-shapley algorithm. The American

Mathematical Monthly, 88(7):485–494, 1981.
12 Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors. Online and Matching-

Based Market Design. Cambridge University Press, to appear. URL: https://www.ics.uci.
edu/~vazirani/Chapter1.pdf.

13 Simons Institute for the Theory of Computing. Online and matching-based market design,
2019. URL: https://simons.berkeley.edu/programs/market2019.

14 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

15 Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms.
MIT press, 1989.

16 Telikepalli Kavitha. Matchings, critical nodes, and popular solutions. In 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

17 Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms. American Mathematical Soc., 1997.

18 Tung Mai and Vijay V. Vazirani. Finding stable matchings that are robust to errors in the
input. In European Symposium on Algorithms, 2018.

19 Tung Mai and Vijay V. Vazirani. A natural generalization of stable matching solved via new
insights into ideal cuts. In arXiv, 2018.

20 David Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
21 Shuichi Miyazaki and Kazuya Okamoto. Jointly stable matchings. Journal of Combinatorial

Optimization, 38(2):646–665, 2019.
22 Alvin E Roth and Marilda Sotomayor. Two-sided matching. Handbook of game theory with

economic applications, 1:485–541, 1992.
23 Richard Stanley. Enumerative combinatorics, vol. 1, Wadsworth and Brooks/Cole, Pacific

Grove, CA, 1986; second printing, 1996.

A Related Work

The two topics, of stable matching and the design of algorithms that produce solutions that
are robust to errors, have been studied extensively for decades and there are today several
books on each of them, e.g., see [17, 15, 20] and [9, 6]. Yet, there is a paucity of results at
the intersection of these two topics. Indeed, before the publication of [18], we are aware of
only two previous works [5, 4]. We remark that the notion of robustness studied in [18] was
quite different from that of the previous two works as detailed below.

FSTTCS 2022

https://www.ics.uci.edu/~vazirani/Chapter1.pdf
https://www.ics.uci.edu/~vazirani/Chapter1.pdf
https://simons.berkeley.edu/programs/market2019

19:16 A Study of Stable Matching Lattices of “Nearby” Instance

Aziz et al. [5] considered the problem of finding stable matching under uncertain linear
preferences. They proposed three different uncertainty models:
1. Lottery Model: Each agent has a probability distribution over strict preference lists,

independent of other agents.
2. Compact Indifference Model: Each agent has a single weak preference list in which ties

may exist. All linear order extensions of this weak order have equal probability.
3. Joint Probability Model: A probability distribution over preference profiles is specified.
They showed that finding the matching with highest probability of being stable is NP-hard
for the Compact Indifference Model and the Joint Probability Model. For the very special
case that preference lists of one side are certain and the number of uncertain agents of the
other side are bounded by a constant, they gave a polynomial time algorithm that works for
all three models.

The joint probability model is the most powerful and closest to our setting. The main
difference is that in their model, there is no base instance, which is called A in our model.
The opportunity of finding new structural results arises from our model precisely because we
need to consider two “nearby” instances, namely A and B as described above.

Aziz et al. [4] introduced a pairwise probability model in which each agent gives the
probability of preferring one agent over another for all possible pairs. They showed that the
problem of finding a matching with highest probability of being stable is NP-hard even when
no agent has a cycle in its certain preferences (i.e., the ones that hold with probability 1).

B Proof of Birkhoff’s Theorem using Stable Matching Lattices

Omitted proofs can be found in the Arxiv version.

C Other Omitted Proofs

Proof of Lemma 6. It suffices to show that MA ∩ MB is a sublattice of LA. Assume
|MA ∩MB | > 1 and let M1 and M2 be two different matchings in MA ∩MB . Let ∨A and
∨B be the join operations under A and B respectively. Likewise, let ∧A and ∧B be the meet
operations under A and B.

By definition of join operation in Section 2.1, M1 ∨A M2 is the matching obtained by
assigning each worker to its less preferred partner (or equivalently, each firm to its more
preferred partner) from M1 and M2 according to instance A. Without loss of generality,
assume that B is an instance obtained from A by changing the lists of only firms. Since
the list of each worker is identical in A and B, its less preferred partner from M1 and M2 is
also the same in A and B. Therefore, M1 ∨A M2 = M1 ∨B M2. A similar argument can be
applied to show that M1 ∧A M2 = M1 ∧B M2.

Hence, M1 ∨A M2 and M1 ∧A M2 are both in MA ∩MB as desired. ◀

Proof of Corollary 7. Assume |MA ∩MB1 ∩ . . . ∩MBk
| > 1 and let M1 and M2 be two

different matchings in MA ∩MB1 ∩ . . . ∩MBk
. Therefore, M1 and M2 are in MA ∩MBi

for each 1 ≤ i ≤ k. By Proposition 6, MA ∩MBi is a sublattice of LA. Hence, M1 ∨A M2
and M1 ∧A M2 are in MA ∩MBi

for each 1 ≤ i ≤ k. The claim then follows. ◀

Proof of Proposition 10. Let Π′ be a compression of Π obtained using the first definition.
Clearly, for each meta-rotation in Π′, we can add edges to Π so the strongly connected
component created is precisely this meta-rotation. Any additional precedence relations
introduced among incomparable meta-rotations can also be introduced by adding appropriate
edges.

https://arxiv.org/pdf/1804.05537.pdf

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:17

The other direction is even simpler, since each strongly connected component can be
defined to be a meta-rotation and extra edges added can also be simulated by introducing
new precedence constraints. ◀

Proof of Lemma 11. Let Π′ be a compression corresponding to L′. By Theorem 1, the
matchings in L′ are generated by eliminating rotations in closed subsets of Π′.

First, assume I separates uv ∈ E. Moreover, assume M ∈ L′ for the sake of contradiction,
and let I ′ be the closed subset of Π′ corresponding to M . Let U and V be the meta-rotations
containing u and v respectively. Notice that the sets of rotations in I and I ′ are identical.
Therefore, V ∈ I ′ and U ̸∈ I ′. Since uv ∈ E, there is an edge from U to V in H ′. Hence, I ′

is not a closed subset of Π′.
Next, assume that I does not separate any uv ∈ E. We show that the rotations in I can

be partitioned into meta-rotations in a closed subset I ′ of Π′. If I cannot be partitioned
into meta-rotations, there must exist a meta-rotation A such that A ∩ I is a non-empty
proper subset of A. Since A consists of rotations in a strongly connected component of HE ,
there must be an edge uv from A \ I to A ∩ I in HE . Hence, I separates uv. Since I is a
closed subset, uv can not be an edge in H. Therefore, uv ∈ E, which is a contradiction. It
remains to show that the set of meta-rotations partitioning I is a closed subset of Π′. Assume
otherwise, there exist meta-rotation U ∈ I ′ and V ̸∈ I ′ such that there exists an edge from U

to V in H ′. Therefore, there exists u ∈ U , v ∈ V and uv ∈ E, which is a contradiction. ◀

Proof of Lemma 16. Let R denote the set of vertices reachable from t by a path of edges
in E1 and E2. Assume by contradiction that R does not contain s. Consider the matching
M generated by rotations in Π \ R. Without loss of generality, assume that M ∈ L1. By
Lemma 11, Π\R separates an edge uv ∈ E2. Therefore, u ∈ R and v ∈ Π\R. Since uv ∈ E2,
v is also reachable from t by a path of edges in E1 and E2. ◀

Proof of Lemma 17. A closed subset separating ri−1ri must separate an edge in Qi.
Moreover, any closed subset must separate exactly one of r0r1, . . . , rk−2rk−1, rk−1rk. There-
fore, the set of closed subsets separating an edge in E1 (or E2) remains unchanged. ◀

Proof of Lemma 18. Let e be an edge in E1 ∪ E2 but not in Q. Suppose that e ∈ E1. Let
I be a closed subset separating e. By Lemma 11, the matching generated by I belongs to
L2. Since e is not in Q and Q is a path from t to s, I must separate another edge e′ in Q.
By Lemma 11, I can not separate edges in both E1 and E2. Therefore, e′ must also be in
E1. Hence, the matching generated by I will still be in L2 after removing e from E1. The
argument applies to all closed subsets separating e. ◀

Proof of Lemma 21. Suppose there are at least two maximal rotations u1, u2, . . . uk (k ≥ 2)
in TE ∩ S. Let v1, . . . vk be the heads of edges containing u1, u2, . . . uk. For each 1 ≤ i ≤ k,
let Si = Jui

∪ Jvj
where j is any index such that j ̸= i. Since ui and uj are incomparable,

uj ̸∈ Jui
. Moreover, uj ̸∈ Jvj

by Lemma 14. Therefore, uj ̸∈ Si. It follows that Si contains
ui and separates ujvj . Since Si separates ujvj ∈ E, the matching generated by Si is in L2
according to Lemma 11.

Since
⋃k

i=1 Si contains all maximal rotations in TE ∩ S and S does not separate any edge
in E,

⋃k
i=1 Si does not separate any edge in E either. Therefore, the matching generated

by
⋃k

i=1 Si is in L1, and hence not in L2. This contradicts the fact that L2 is a join
semi-sublattice. ◀

Proof of Lemma 22. We will show that the set of closed subsets separating an edge in E

remains unchanged.

FSTTCS 2022

19:18 A Study of Stable Matching Lattices of “Nearby” Instance

Let I be a closed subset separating uv. Then I must also separate rv since r ≻ v.
Now suppose I is a closed subset separating rv. We consider two cases:
If u ∈ I, I must contain x since u ≻ x. Hence, I separates an edge in the path from r to
x.
If u ̸∈ I, I separates uv. ◀

Proof of Lemma 23. The lemma follows from the claims given below:

▷ Claim 34. S \X is a closed subset.

Proof. Let v be a rotation in S \X and u be a predecessor of v. Since S is a closed subset,
u ∈ S. Notice that if a rotation is in X, all of its successor must be included. Hence, since
v /∈ X, u /∈ X. Therefore, u ∈ S \X. ◁

▷ Claim 35. S \X contains u for each u ∈ (TE ∩ S) \Rr.

Proof. After replacing edges according to Lemma 22, for each u ∈ (TE ∩ S) \ Rr we must
have that u does not succeed any x ∈ Rr. Therefore, u /∈ X by the definition of X. ◁

▷ Claim 36. (S \X) ∩Rr = ∅.

Proof. Since Rr ⊆ X, (S \X) ∩Rr = ∅. ◁

▷ Claim 37. S \X does not separate any edge in E.

Proof. Suppose S \X separates uv ∈ E. Then u ∈ X and v ∈ S \X. By Claim 2, u can not
be a tail vertex, which is a contradiction. ◁

▷ Claim 38. S \X does not cross any edge in E.

Proof. Suppose S \X crosses uv ∈ E. Then u ∈ S \X and v ∈ X. Let J be a closed subset
separating uv. Then v ∈ J and u /∈ J .

Since uv ∈ E and u ∈ S, u ∈ TE ∩ S. Therefore, r ≻ u by Lemma 21. Since J is a closed
subset, r /∈ J .

Since v ∈ X, v ⪰ x for x ∈ Rr. Again, as J is a closed subset, x ∈ J .
Therefore, J separates an edge in the path from r to x in Gr. Hence, all closed subsets

separating uv must also separate another edge in Er. This contradicts the assumption made
in Remark 12. ◁

◀

Proof of Lemma 24. We will show that the set of closed subsets separating an edge in Er

and the set of closed subset separating an edge in E′
r are identical.

Consider a closed subset I separating an edge in rv ∈ E′
r. Since v ∈ Rr, I must separate

an edge in E in a path from r to v. By definition, that edge is in Er.
Now let I be a closed subset separating an edge in uv ∈ Er. Since uv ∈ E, u ∈ TE ∩ S.

By Lemma 21, r ≻ u. Thus, I must also separate rv ∈ E′
r. ◀

Proof of Lemma 26. Suppose that S generates a matching in L1 and S ∪ {v} generates a
matching in L2. By Lemma 11, S does not separate any edge in E, and S ∪ {v} separates
an edge e ∈ E. This can only happen if u is the head of e.

A similar argument can be given for the second case. ◀

R. R. Gangam, T. Mai, N. Raju, and V. V. Vazirani 19:19

Proof of Lemma 27. Let r be the maximal tail vertex in S.
First we show that r ∈ V . By Theorem 20, the set of tails of edges in E forms a chain in

Π. Therefore Π \ I ′
r contains all tails in S. Hence, Π \ I ′

r does not separate any edge whose
tails are in S. Since S is a splitting set, Π \ I ′

r does not separate any edge whose tails are in
Π \ S. Therefore, by Lemma 11, Π \ I ′

r generates a matching in L1. By Lemma 14, Π \ J ′
r

must separate an edge in E, and hence generates a matching in L2 according to Lemma 11.
By Lemma 26, any rotation in V must be the tail of an edge in E. Hence, they are all

predecessors of r according to Theorem 20. ◀

Proof of Lemma 28. First we give two crucial properties of the set Y . By Theorem 20, the
set of tails of edges in E forms a chain C in Π.

▷ Claim 39. Y contains all predecessors of r in C.

Proof. Assume that there is at least one predecessor of r in C, and denote by r′ the direct
predecessor. It suffices to show that r′ ∈ Y . By Theorem 20, there exists a splitting set I

such that Rr′ ⊆ I and Rr ∩ I = ∅. Let v be the maximal element in C ∩ I. Then v is a
successor of all tail vertices in I. It follows that Jv does not separate any edges in E inside I.
Therefore, v ∈ X. Since Jv ⊆ Y , Y contains all predecessors of r in C. ◁

▷ Claim 40. Y does not contain any rotation in Fr.

Proof. Since Y is the union of closed subset generating matching in L1, Y also generates a
matching in L1. By Lemma 11, Y does not separate any edge in E. Since r ̸∈ Y , Y must
not contain any rotation in Fr. ◁

By Claim 1, if Y = ∅, r is the last tail found in C. Hence, if M0 ∈ L2, s must be in Fr.
By Theorem 20, the heads in Fr are incomparable. Therefore, s is the only rotation in C.
FindFlower correctly returns {s} in Step 3. Suppose such a situation does not happen, we
will show that the returned set is Fr.

▷ Claim 41. V = Fr.

Proof. Let v be a rotation in V . By Lemma 26, v is a head of some edge e in E. Since Y

contains all predecessors of r in C, the tail of e must be r. Hence, v ∈ Fr.
Let v be a rotation in Fr. Since Y contains all predecessors of r in C, Y ∪ Iv can not

separate any edge whose tails are predecessors of r. Moreover, by Theorem 20, the heads in
Fr are incomparable. Therefore, Iv does not contain any rotation in Fr. Since Y does not
contain any rotation in Fr by the above claim, Y ∪ Iv does not separate any edge in E. It
follows that Y ∪ Iv generates a matching in L1. Finally, Y ∪ Jv separates rv clearly, and
hence generates a matching in L2. Therefore, v ∈ V as desired. ◁

◀

Proof of Lemma 30. M1 = {1a, 2b, 3d, 4c} and M2 = {1b, 2a, 3c, 4d} are stable matching
with respect to instance A. Clearly, M1 ∧A M2 = {1a, 2b, 3c, 4d} is also a stable matching
under A.

In going from A to B, the positions of workers b and c are swapped in firm 1’s list. Under
B, 1c is a blocking pair for M1 and 1a is a blocking pair for M2. Hence, M1 and M2 are
both in MA\B . However, M1 ∧A M2 is a stable matching under B, and therefore is it not in
MA\B . Hence, MA\B is not closed under the ∧A operation. ◀

FSTTCS 2022

19:20 A Study of Stable Matching Lattices of “Nearby” Instance

Proof of Lemma 31. Assume that the preference list of a firm f is permuted. We will show
that MA\B is a join semi-sublattice of LA. By switching the role of workers and firms,
permuting the list of a worker will result in MA\B being a meet semi-sublattice of LA.

Let M1 and M2 be two matchings inMA\B . Hence, neither of them are inMB . In other
words, each has a blocking pair under instance B.

Let w be the partner of f in M1 ∨A M2. Then w must also be matched to f in either M1
or M2 (or both). We may assume that w is matched to f in M1.

Let xy be a blocking pair of M1 under B. We will show that xy must also be a blocking
pair of M1∨A M2 under B. To begin, the firm y must be f since other preference lists remain
unchanged. Since xf is a blocking pair of M1 under B, x >B

f w. Similarly, f >x f ′ where f ′

is the M1-partner of x. Let f ′′ be the partner of x in M1 ∨A M2. Then f ′ ≥x f ′′. It follows
that f >x f ′′. Since x >B

f w and f >x f ′′, xf must be a blocking pair of M1 ∨A M2 under
B. ◀

Proof of Proposition 32. We have that L′ and MA\B partition LA, with MA\B being a
semi-sublattice of LA, by Lemma 31. Therefore, FindBouquet(Π) finds a set of edges
defining L′ by Theorem 29.

By Lemma 4, the input Π to FindBouquet can be computed in polynomial time. Clearly,
a membership oracle checking if a matching is in L′ or not can also be implemented efficiently.
Since Π has O(n2) vertices (Lemma 4), any step of FindBouquet takes polynomial time. ◀

D Modified Deferred Acceptance Algorithms

Omitted algorithms and proofs can be found in the Arxiv version.

https://arxiv.org/pdf/1804.05537.pdf

Degree-Restricted Strength Decompositions and
Algebraic Branching Programs
Fulvio Gesmundo !

Saarland University, Saarbrücken, Germany

Purnata Ghosal !

University of Warwick, UK

Christian Ikenmeyer !

University of Warwick, UK

Vladimir Lysikov !

QMATH, Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract
We analyze Kumar’s recent quadratic algebraic branching program size lower bound proof method
(CCC 2017) for the power sum polynomial. We present a refinement of this method that gives better
bounds in some cases.

The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by
the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved
resorting to classical intersection theory.

Furthermore, we use similar methods to improve the known lower bound methods for slice rank
of polynomials. We consider a sequence of polynomials that have been studied before by Shioda and
show that for these polynomials the improved lower bound matches the known upper bound.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Lower bounds, Slice rank, Strength of polynomials, Algebraic branching
programs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.20

Funding Purnata Ghosal: DFG IK 116/2-1 and EPSRC EP/W014882/1. The work was done while
this author was at the University of Liverpool.
Christian Ikenmeyer : DFG IK 116/2-1 and EPSRC EP/W014882/1. The work was done while this
author was at the University of Liverpool.
Vladimir Lysikov: ERC 818761 and VILLUM FONDEN via the QMATH Centre of Excellence
(Grant No. 10059).

Acknowledgements We would like to thank Daniele Agostini for many helpful discussions during
the development of this work. We also thank Edoardo Ballico, Luca Chiantini, Giorgio Ottaviani
and Kristian Ranestad for pointing out useful references on the Noether-Lefschetz property and
related results. We thank the anonymous referees for their helpful comments.

1 Introduction

Homogeneous algebraic branching programs are a fundamental machine model for the
computation of homogeneous polynomials. Their noncommutative version is completely
understood (even in terms of border complexity) since Nisan’s 1991 paper [21]; they are
the model of choice in [7] for succinct presentation of a system of homogeneous polynomial
equations; and they can be used to phrase Valiant’s famous determinant versus permanent
question [26] in a homogeneous way: Does the minimal size of the required homogeneous
algebraic branching program for the permanent polynomial grow superpolynomially? Phrasing
Valiant’s question in this way removes the “padding” problem in geometric complexity theory,
so this is a way of circumventing the GCT no-go results in [18, 8].

© Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer, and Vladimir Lysikov;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gesmundo@cs.uni-saarland.de
https://orcid.org/0000-0001-6402-021X
mailto:purnata.ghosal@warwick.ac.uk
mailto:christian.ikenmeyer@warwick.ac.uk
mailto:vl@math.ku.dk
https://orcid.org/0000-0002-7816-6524
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

Even though Valiant’s problem is the flagship problem in algebraic complexity theory, only
very weak size bounds on homogeneous algebraic branching programs are known. The best
lower bound so far was recently proved by Kumar [19] for the power sum polynomial. His proof
and recent lower bounds proofs in other algebraic computation models (Chatterjee et al. [10]
for general algebraic branching programs, and Kumar and Volk [20] for determinantal
complexity) employ decompositions of the form

F =
r∑

k=1
GkHk + R, (1)

where F is the polynomial for which the lower bound is proven, and Gk, Hk, R are polynomials
such that deg R < deg F and Gk(0) = Hk(0) = 0. Kumar’s recent (d − 1)⌈ n

2 ⌉ bound on the
size of homogeneous algebraic branching programs can be proven by considering simpler
decompositions

F =
r∑

k=1
GkHk, (2)

where F is a homogeneous polynomial and Gk, Hk are homogeneous polynomials of degree
strictly smaller than F . Decompositions of this form have been investigated in algebraic
geometry as well: for instance, in [11, 23], they were used to study rational points on certain
algebraic varieties; they appear in [9] to characterize complete intersections contained in a
given hypersurface; recently, they were used in [1] to give a proof of Stillman’s conjecture.
Following [1], we say that (2) is a strength decomposition of the polynomial F ; the minimum
r for which a strength decomposition exists is called the strength of F . In the literature, the
strength of F is also called Schmidt rank or h-invariant.

In this paper we analyze Kumar’s lower bound proof method. The proof in [19] is tailored
to the power sum polynomial, but the method is applicable to every polynomial. We present
the general version of Kumar’s technique in Section 3.1. We refine this technique introducing
the notion of k-restricted strength of a polynomial and we provide a lower bound for this
notion based on geometric properties of the hypersurface defined by the polynomial. These
properties are based on the non-existence of subvarieties of low codimension and low degree
in the associated hypersurface and can be interpreted as higher codimension versions of a
Noether-Lefschetz type condition [16].

We apply the refined method to give a lower bound on the size of a homogeneous algebraic
branching program for an explicit family of polynomials

Pn,d(x0, . . . , x2n) = xd
0 +

n∑
k=1

x2k−1xd−1
2k ;

Pn,d is a homogeneous polynomial of degree d in N = 2n + 1 variables. Kumar’s technique
directly applied to this polynomial gives a lower bound ⌈ N

4 ⌉(d − 1). For d < 2N/4 we improve
the lower bound by an additive term of approximately N/2. If the degree is exponential
in N , we get a further additive improvement of order N

2 dO(1/N), see Corollary 17(c).
In Section 3.4, we further study the notion of slice rank of homogeneous polynomials,

which is a special case of k-restricted strength when k = 1. Theorem 18 gives a method to
prove lower bounds on the slice rank. Using this result, in Theorem 20 we compute the slice
rank of polynomials

Sn,d(x0, . . . , xn+1) =
n−1∑
i=0

xix
d−1
i+1 + xnxd−1

0 + xd
n+1.

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:3

that have been studied by Shioda [24, 25]. For n = 4 and 6 we find that the slice rank is
equal to N

2 + 1, where N = n + 2 is the number of variables. To the authors’ knowledge,
this is the first lower bound for the slice rank better than ⌈N/2⌉. This translates to a lower
bound N

2 (d − 1) + 2 on the homoneous ABP complexity. Again, this is the first lower bound
better than Kumar’s ⌈ N

2 ⌉(d − 1). We conjecture that these bounds continue to hold for Sn,d

with arbitrary even n, see Conjecture 22.

2 Preliminaries

We work over the field of complex numbers C. A homogeneous linear polynomial is called a
linear form. The ideal generated by polynomials F1, . . . , Fm is denoted by ⟨F1, . . . , Fm⟩. And
ideal is homogeneous if it admits a set of homogeneous generators. Every (homogeneous)
ideal in a polynomial ring admits a finite set of (homogeneous) generators [13, Theorem 1.2].

2.1 Projective geometry
Since we work with homogeneous polynomials, it is convenient to work in projective space
Pn, which is defined as (Cn+1 \ {0})/C×, that is, points in Pn correspond to lines through
the origin in Cn+1. Given a nonzero vector v = (v0, . . . , vn) ∈ Cn+1, write [v] = (v0 : · · · : vn)
for the corresponding point in Pn. We refer to [17] for basics of projective geometry and
we only record some basic facts. Given a homogeneous ideal I = ⟨F1, . . . , Fm⟩, write
Z(I) = Z(F1, . . . , Fm) = {[v] ∈ Pn : Fj(v) = 0 for every j}; a subset X ⊂ Pn is a variety
if X = Z(I) for some homogeneous ideal I. A variety is irreducible if it is not the proper
union of two varieties; every variety X can be written uniquely as a union of finitely many
irreducible subvarieties X =

⋃r
1 Xj ; X1, . . . , Xr are called irreducible components of X. We

refer to [17, Ch. 11 and Ch. 18] for the definitions and the basic properties of dimension
and degree of a variety X, denoted respectively dim X and deg X. The dimension of Pn is n.
The codimension of X ⊆ Pn is codim X = n − dim X; if X = ∅, codim X = n + 1. A variety
X is called hypersurface if all its irreducible components have codimension 1; in this case
X = Z(F) is defined by a principal ideal ⟨F ⟩.

A (projective) linear subspace in Pn is a variety defined by linear forms. The codimension
of Z(L1, . . . , Lr), for some linear forms L1, . . . , Lr, equals the number of linearly independent
elements among L1, . . . , Lr; in particular codim Z(L1, . . . , Lr) ≤ r. A line is a linear subspace
of dimension 1. The line spanned by two distinct points [x], [y] ∈ Pn is the unique line
containing them. This line consists of all points of the form [αx + βy] where (α, β) ̸= (0, 0).

Let X ⊂ Pn be a variety. The projective cone over X with vertex p /∈ X is the union of
all lines connecting p with a point in X.

Given a hypersurface Z(F) ⊆ Pn, write Sing(F) = Z(∂F
∂xi

: i = 0, . . . , n), which is a
subvariety of Z(F). For example, if F = xd

0 + xd
1 + xd

2, then Sing(F) = Z(xd−1
0 , xd−1

1 , xd−1
2) =

∅ ⊆ P2; if F = xd
0 + x1xd−1

2 then Sing(F) = Z(xd−1
0 , xd−1

2 , x1xd−2
2) = Z(x0, x2) = {[0 : 1 :

0]} ⊆ P2. If the factorization of F into irreducible polynomials does not have repeated
factors, then Sing(F) coincides with the singular locus of the hypersurface Z(F), see, e.g.,
in [17, Ch. 14].

We mention the following two fundamental results in algebraic geometry.

▶ Theorem 1 (Krull height theorem for polynomial rings [2, Cor. 11.17]). Let X ⊂ Pn be a
variety, with X = Z(F1, . . . , Fc). Then all irreducible components of X have codimension at
most c.

FSTTCS 2022

20:4 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

•

•

•

•

•

•

x+y

y

1
2 y

x

1
2 x

−x

x−y

Figure 1 A homogeneous algebraic branching program of size 4, computing (x + y) · 1
2 y · (−x) +

(x + y) · x · (x − y) + y · 1
2 x · (−x) = x3 − x2y − 3

2 xy2.

▶ Theorem 2 (Bezout inequality, see [6, Thm. 8.28]). If a projective variety X ⊂ Pn is cut
out by c polynomials of degrees d1, . . . , dc, the sum of degrees of its irreducible components is
at most

∏c
i=1 di.

Further, in the proof of Lemma 16, we require some basics of intersection theory. We
introduce the required notions and references in Section 3.3.

2.2 Algebraic branching programs
The computational model of algebraic branching programs was first formally defined by
Nisan [21] in the context of noncommutative computation, but essentially the same model
was used by Valiant in his famous proof of universality of determinant [26]. The computa-
tional power of algebraic branching programs is intermediate between the one of general
arithmetic circuits and the one of arithmetic formulas. It is a convenient model for algebraic
methods, because its power can be captured by restrictions of determinants or iterated matrix
multiplication polynomials, which allows for the use of well developed tools from algebra
and algebraic geometry. In this paper we only consider homogeneous algebraic branching
programs.

▶ Definition 3. A layered directed graph is a directed graph in which the set of vertices is
partitioned into layers indexed by integers so that each edge connects vertices in consecutive
layers.

▶ Definition 4. A homogeneous algebraic branching program (ABP) in variables x1, . . . , xn

is a layered directed graph with one source and one sink, and with edges labeled by linear
forms in x1, . . . , xn. The weight of a path in an ABP is the product of labels on the edges
of the path. The polynomial computed between vertices u and v is the sum of the weights
of all paths from u to v. The polynomial computed by an ABP is the polynomial computed
between the source and the sink.

The size of an ABP is the number of its inner vertices, namely all vertices except the
source and the sink. For a homogeneous polynomial F , its homogeneous ABP complexity
Bhom(F) is the minimal size of a homogeneous ABP computing F .

See Figure 1 for an example of an ABP.

2.3 Strength and slice rank of polynomial
▶ Definition 5. Let F be a homogeneous polynomial of degree d. A strength decomposition
of F is a decomposition of the form

F =
r∑

k=1
GkHk

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:5

where Gk and Hk are homogeneous polynomials of degree less than d. The strength of F is

str(F) = min{r : F has a strength decomposition with r summands}.

The following is a basic lower bound for the strength of a polynomial. It appears in the
introduction of [1] and [3, Remark 4.3]; in [19] it is mentioned with a reference to a personal
communication with Saptharishi.

▶ Proposition 6. str(F) ≥ ⌈ 1
2 codim Sing(F)⌉.

Proof. If F =
∑r

k=1 GkHk, then ∂
∂xi

F =
∑r

k=1 Gk
∂

∂xi
Hk +

∑r
k=1 Hk

∂
∂xi

Gk. Thus all the
partial derivatives of F lie in the ideal ⟨G1, . . . , Gr, H1, . . . , Hr⟩ and therefore the zero set
Z(G1, . . . , Gr, H1, . . . , Hr) is contained in Sing(F).

Therefore, applying Theorem 1, we deduce

codim Sing(F) ≤ codim Z(G1, . . . , Gr, H1, . . . , Hr) ≤ 2r

and the required lower bound follows. ◀

▶ Remark 7. The bound of Proposition 6 gives essentially the only known lower bound
method for strength which can be applied to explicit polynomials. Different methods are
applied to polynomials of a specific form satisfying an unspecified genericity condition: for
instance, in [3], it is shown that a polynomial of the form F = x2

1f1 + x2
2f2 + x2

3f3 + x2
4f4 with

generic f1, . . . , f4 has strength 4; this is however achieved using indirect methods [12, 5].

▶ Definition 8. Let F be a homogeneous polynomial of degree d. A slice rank decomposition
of F is a decomposition of the form

F =
r∑

k=1
LkHk

where Lk are linear forms. The minimal number of summands in a strength decomposition
of F is called the slice rank of F and is denoted by sr(F).

We point out that the notion of slice rank of tensors [22] is related but geometrically very
different from the slice rank of homogeneous polynomials defined above.

Clearly, slice rank decompositions are a special class of strength decompositions and thus
sr(F) ≥ str(F). It is known that for generic polynomials the optimal strength decomposition
is a slice rank decomposition [4]; in particular str(F) = sr(F) for generic F .

Slice rank decompositions of a polynomial F have a clear geometric interpretation in
terms of linear subspaces contained in the hypersurface Z(F).

▶ Proposition 9. Let F be a homogeneous polynomial. We have sr(F) ≤ r if and only if
Z(F) contains a linear subspace of codimension r.

Proof. The polynomial F admits a decomposition F =
∑r

k=1 LkHk for linear forms
L1, . . . , Lk if and only if F ∈ ⟨L1, . . . , Lk⟩. The ideal ⟨L1, . . . , Lk⟩ is radical, in the sense
of [13, Sec. 1.6]. Therefore, by the classic Nullstellensatz [13, Thm. 1.6], the condition
F ∈ ⟨L1, . . . , Lk⟩ is equivalent to the condition Z(F) ⊃ Z(L1, . . . , Lr). ◀

FSTTCS 2022

20:6 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

3 Degree-restricted strength decompositions and lower bounds on
ABP size

3.1 Basic properties and connection to ABPs
In this section we introduce the degree-restricted strength decompositions and present a
streamlined proof of Kumar’s lower bound generalized to arbitrary polynomials based on
Proposition 6.

▶ Definition 10. Let F be a homogeneous polynomial of degree d. A strength decomposition
F =

∑r
k=1 GkHk is called j-restricted if deg Gk = j for all k. The j-restricted strength

strj(F) is the minimal number of summands in a j-restricted strength decomposition of F .

The following basic properties are clear from the definition.

▶ Proposition 11. Let F be a homogeneous polynomial of degree d and let j be an integer
such that 1 ≤ j < d. The following statements hold.
(a) strj(F) ≥ str(F);
(b) strj(F) = strd−j(f);
(c) str1(F) = sr(F);

▶ Theorem 12. For every homogeneous polynomial F of degree d

Bhom(F) ≥
d−1∑
j=1

strj(F).

Proof. Let A be a homogeneous ABP computing F with source s and sink t. Denote by
A[v, w] the polynomial computed between vertices v and w. Let Vj be the set of vertices in
the j-th layer. Since each path from the source to the sink contains exactly one vertex from
each layer, we have

F = A[s, t] =
∑
v∈Vj

A[s, v]A[v, t].

If v lies in the j-th layer then deg A[s, v] = j, because each path from s to v contains j

edges. Thus F has a j-restricted strength decomposition with |Vj | summands, showing
|Vj | ≥ strj(F). Summing over all layers, we obtain the desired lower bound. ◀

Theorem 12 is similar to Nisan’s result for noncommutative ABPs [21, Thm. 1], but in
the noncommutative setting the analogue of strength can be easily described as the rank of
the partial derivative matrix. In the commutative setting there is no similar characterization
of strength.

From Theorem 12, Proposition 11(a) and Proposition 6, we immediately obtain the
following Bhom lower bounds technique.

▶ Corollary 13 (Kumar’s singular locus lower bounds technique). For every homogeneous
polynomial F ∈ C[x0, . . . , xn] of degree d

Bhom(F) ≥ (d − 1)⌈ 1
2 codim Sing(F)⌉.

In particular, if Sing(F) = ∅, then

Bhom(F) ≥ (d − 1)⌈ n+1
2 ⌉.

The power sum F = xd
0 + · · · + xd

n of degree d in n + 1 variables satisfies Sing(F) = ∅
and hence a direct application of Corollary 13 gives Bhom(xd

0 + · · · + xd
n) ≥ (d − 1)⌈ n+1

2 ⌉,
which recovers Kumar’s result [19].

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:7

3.2 Lower bound on degree-restricted strength
In this section we prove a lower bound on the degree-restricted strength of polynomials. It
is based on the connection between strength decompositions and low degree subvarieties in
Z(F), which generalizes Proposition 9. We provide an explicit sequence of polynomials for
which we obtain a lower bound that is slightly stronger than the one from Proposition 6.

▶ Theorem 14. Let F ∈ C[x0, . . . , xn]d be a homogeneous polynomial. Suppose that the zero
set Z(F) does not contain irreducible subvarieties X with codim X ≤ c and deg X < s for
some s ≥ 2. Then

sr(F) ≥ c + 1

and

strk(F) ≥ min{c + 1, ⌈logk s⌉}

Proof. The statement for the slice rank follows from Proposition 9 as Z(F) does not contain
linear subspaces, that is, irreducible subvarieties of degree 1, of codimension c.

Assume F has a k-restricted decomposition

F =
r∑

j=1
GjHj .

Consider the variety Y = Z(G1, . . . , Gr). Since F lies in the ideal ⟨G1, . . . , Gr⟩, Y is a
subvariety of Z(F). Since Y is defined by r polynomials of degree k, by Theorem 1, the
codimension of every irreducible component of Y is at most r; moreover, by Theorem 2 the
sum of degrees of its irreducible components is at most kr, hence the same holds for each
component.

Suppose r ≤ c. Since Z(F) does not contain subvarieties X with codim X ≤ c and
deg X < s, for each irreducible component X of Y we have kr ≥ deg X ≥ s, so r ≥ logk s.
Since r is an integer, we obtain the lower bound r ≥ ⌈logk s⌉. Hence, either r ≥ c + 1 or
r ≥ ⌈logk s⌉, and we conclude r ≥ min{c + 1, ⌈logk s⌉} as desired. ◀

▶ Remark 15. In Theorem 14 it suffices to require that Z(F) does not contain subvarieties of
codimension exactly c and degree smaller than s. This is a consequence of Bertini’s Theorem,
see [17, Sec. 18]. Indeed, if X is an irreducible subvariety of Z(F) with codim X < c, let
X ′ be the intersection of X with c − codim X generic hyperplanes; then codim X ′ = c and
deg X = deg X ′.

Consider the family of polynomials

Pn,d(x0, x1, . . . , x2n) = xd
0 +

n∑
k=1

x2k−1xd−1
2k

with d ≥ 3. Note that it is clear from the definition of Pn,d that strk(Pn,d) ≤ n + 1. Also
note that Sing(Pn,d) is the linear subspace given by x0 = x2 = x4 = · · · = x2n = 0. Its
codimension is n + 1, so the singular locus lower bound on Bhom(Pn,d) from Corollary 13 is

Bhom(Pn,d) ≥ (d − 1)
⌈

n+1
2

⌉
.

Corollary 17(c) below will provide an improvement of this lower bound, based on The-
orem 14. In order to apply Theorem 14, we need a lower bound on the degree of subvarieties of
Z(Pn,d) of low codimension. This is obtained resorting to an intersection theoretic argument,
which is explained in the next section.

FSTTCS 2022

20:8 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

3.3 Intersection theory of Z(Pn,d)
This section requires some background in intersection theory, for which we refer to [14]
and [15]. We use some facts about Chow groups of a variety, which is one of the fundamental
objects studied in intersection theory.

Let X be a variety. Given an integer a ≥ 0, the Chow group CHa(X) is an abelian group
associated to the variety X. Every irreducible subvariety Y ⊂ X of dimension a corresponds
to an element [Y] ∈ CHa(X) and these elements generate CHa(X). Thus, CHa(X) consists
of integer linear combinations of irreducible a-dimensional subvarieties of X modulo a certain
equivalence relation called rational equivalence, the definition of which we do not reproduce
here. The elements of CHa(X) are called algebraic cycle classes of dimension a on X.

If Y ⊂ X is a subvariety, then every subvariety Z ⊂ Y is also a subvariety of X. This
gives rise to a homomorphism ι∗ : CHa(Y) → CHa(X) sending a cycle class of a subvariety
Z of Y to the cycle class of the same variety as a subvariety of X. This homomorphism is
called the pushforward induced by the inclusion ι : Y ↪→ X. It is a special case of the proper
pushforward [15, §1.4].

In addition, we can consider the open set U = X \ Y as a variety and its subvarieties.
The map j∗ sending a cycle class [Z] on X to a cycle class [Z ∩ U] on U is well defined.
Again, this is a special case of a more general construction of flat pullback [15, §1.7].

Thus for Y ⊂ X we have ι∗ : CHa(Y) → CHa(X) and j∗ : CHa(X) → CHa(X \ Y). It is
an important fact that these homomorphisms compose to give an exact sequence

CHa(Y) → CHa(X) → CHa(X \ Y) → 0;

in other words, ker j∗ = im ι∗. This exact sequence is called the excision exact sequence,
see [15, Prop. 1.8].

For simple varieties the Chow groups can be constructed explicitly. For the projective
space Pn the class in CHa(Pn) of a variety is determined by its degree. More precisely, we
have CHa(Pn) ∼= Z where the isomorphism is given by the map deg : CHa(Pn) → Z sending
the class of a subvariety Z to deg Z (see [14, Thm. 2.1] or [15, Ex. 1.9.3]). A consequence
of this is that the degree is well defined for cycle classes on projective varieties. That is, if
X ⊆ Pn is a projective variety and Z is a subvariety of X, then the degree of Z can be read
from the cycle class [Z] ∈ CHa(X) by applying the pushforward ι∗ : CHa(X) → CHa(Pn).

On the other hand, for the affine space the Chow groups CHa(An) = 0 are trivial for
every a < n (see [14, Thm. 1.13] or [15, §1.9]).

Finally, we need a statement which relates the Chow groups of a projective cone X over
Y to the Chow groups of Y . Recall that X is a cone over Y (with vertex p /∈ Y) if X is
the union of lines ⟨y, p⟩ for y ∈ Y . In this case CHa(Y) ∼= CHa+1(X) [15, Ex. 2.6.2]. The
isomorphism is given by a map α : CHa(Y) → CHa+1(X) which sends a cycle class of a
subvariety Z ⊂ Y to the cycle class of the cone over Z.

▶ Lemma 16. Let F ∈ C[x0, . . . , xn]d be a homogeneous polynomial of degree d ≥ 2. Set
G = F + xn+1xd−1

n+2. Suppose that the degree of every subvariety Y ⊆ Z(F) ⊆ Pn with
dim Y = a is divisible by s. Then the degree of every subvariety Y ′ ⊆ Z(G) ⊆ Pn+2 with
dim Y ′ = a + 1 is divisible by s.

Proof. Let X = Z(G) ⊂ Pn+2 and Z = Z(F) ⊂ Pn. Let Y ⊂ Pn+1 be the variety given by
the equation F (x0, . . . , xn) = 0 in Pn+1. It consists of all points of the form [αx + βen+1]
with F (x) = 0, so it is the projective cone over Z with the vertex [en+1].

The intersection theory statements about projective cones discussed above says that
the Chow group CHa+1(Y) is isomorphic to the Chow group CHa(Z). The isomorphism
α : CHa(Z) → CHa+1(Y) takes the class of a subvariety in Z to the class of the cone over
this subvariety.

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:9

Let H be the hyperplane given by xn+2 = 0 in Pn+2. Note that X ∩ H ⊂ H is isomorphic
to Y ⊂ Pn+1, so we can identify X ∩ H with Y . Let U be the open subset X \ Y . This
subset is an affine variety in An+2 = Pn+2 \ H given by the equation F + xn+1 = 0. Thus
U ∼= graph F ∼= An+1. It follows that the Chow group CHa+1(U) is trivial.

The exactness of the excision exact sequence

CHa+1(Y) → CHa+1(X) → CHa+1(U) → 0

implies that the inclusion pushforward ι∗ : CHa+1(Y) → CHa+1(X) is surjective.
Both the cone map α : CHa(Z) → CHa+1(Y) and ι∗ : CHa+1(Y) → CHa+1(X) preserve

the degree. Composing them, we obtain a degree-preserving surjective homomorphism from
CHa(Z) to CHa+1(X). Since the degree of every dimension a subvariety of Z is divisible by
s, the same is true for cycle classes in CHa(Z) and therefore, for cycle classes in CHa+1(X),
including dimension a + 1 subvarieties of X. ◀

▶ Corollary 17. If n ≥ 1 and d ≥ 2, then
(a) sr(Pn,d) = n + 1;
(b) strk(Pn,d) ≥ min{n + 1, ⌈logk d⌉};
(c) Bhom(Pn,d) ≥ (d − 1)⌈ n+1

2 ⌉ + 2⌊ n+1
2 ⌋ for d ≤ 2 n+1

2 ;

Bhom(Pn,d) ≥ (d − 1)⌈ n+1
2 ⌉ + 2⌊ n+1

2 ⌋⌊d
1

n+1 ⌋ +
∑⌊d

2
n+1 ⌋

j=⌊d
1

n+1 ⌋+1
(⌈logj d⌉ − ⌈ n+1

2 ⌉) for all d.

Proof. The polynomial P1,d = xd
0 + x1xd−1

2 is irreducible, e.g., by the Eisenstein criterion [13,
Ex. 18.11] applied to it as an element of C[x1, x2][x0] with the prime ideal ⟨x1⟩.

It follows that Z(P1,d) is an irreducible variety of degree d in P2, so it does not contain
subvarieties of codimension 1 other than itself; in particular, every subvariety of codimension
1 has degree divisible by d. Using Lemma 16 inductively, we obtain that every subvariety X

of Z(Pn,d) with codim X = n has degree divisible by d. The lower bounds for the slice rank
and the restricted strength follow by Theorem 14.

The lower bound for the homogeneous ABP complexity follows by Proposition 11(b) and
Theorem 12. If d ≤ 2 n+1

2 , we use str1(Pn,d) = strd−1(Pn,d) = n + 1 and strj(Pn,d) ≥ ⌈ n+1
2 ⌉

from Proposition 6 for other j to get

Bhom(Pn,d) ≥
d−1∑
j=1

strj(Pn,d) ≥ 2(n + 1) + (d − 3)⌈n + 1
2 ⌉ = (d − 1)⌈n + 1

2 ⌉ + 2⌊n + 1
2 ⌋

For the second bound in (c), we separate the sum
∑d−1

j=1 strj(Pn,d) into three parts.
For j ≤ d

1
n+1 we have strj(Pn,d) = strd−j(Pn,d) ≥ n + 1, for d

1
n+1 < j ≤ d

2
n+2 we use the

lower bound strj(Pn,d) = strd−j(Pn,d) ≥ ⌈logj d⌉, and for d
2

n+2 < j < d − d
2

n+2 Proposition 6
gives strj(Pn,d) ≥ ⌈ n+1

2 ⌉. ◀

We point out that determining explicit hypersurfaces which do not contain low codimension
subvarieties of low degree is an extremely hard problem. It is related to the Noether-Lefschetz
Theorem, a classical result which, in particular, implies that if F is a general homogeneous
polynomial of degree d, then Z(F) does not contain subvarieties X with codim X = 2 and
deg X ≤ d. A consequence of [27] is that if F is a general homogeneous polynomial of degree
d ≥ 6 in five variables, then Z(F) ⊆ P4 does not contain subvarieties X with codim X ≤ 3
and deg(X) ≤ d. Stronger cohomological results hold for very general hypersurfaces; a series
of conjectures and open problems is proposed in [16].

FSTTCS 2022

20:10 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

3.4 Slice rank lower bound
In this section, we give examples of polynomials for which we prove a slice rank lower bound
stronger than the one induced by the strength lower bound of Proposition 6. In one instance,
we show an improved lower bound for a polynomial with Sing(F) = ∅.

We define the Shioda polynomials of degree d ≥ 3 in n + 2 variables:

Sn,d(x0, . . . , xn+1) =
n−1∑
i=0

xix
d−1
i+1 + xnxd−1

0 + xd
n+1.

The polynomials Sn,d were investigated by Shioda [24, 25] as explicit examples for a cohomo-
logical version of the Noether-Lefschetz Theorem in middle dimension.

For even n the decomposition

Sn,d =
n/2−1∑

k=0
x2k+1(xd−1

2k+2 + x2kxd−2
2k+1) + xn · xd−1

0 + xn+1 · xd−1
n+1 (3)

shows that sr(Sn,d) ≤ n
2 + 2. We prove matching lower bounds for n = 2 and n = 4; we

conjecture that the bound holds for all even values of n.
First consider a modified polynomial

Ŝn,d(x1, . . . , xn+1) =
n−1∑
i=1

xix
d−1
i+1 + xd

n+1,

which is obtained from Sn,d by setting x0 = 0. It is easy to verify that Sing(Ŝn,d) coincides
with the point [en−1] = (0 : · · · : 1 : 0 : 0); here we use homogeneous coordinates (x1 : · · · :
xn+1) on Pn.

If n is even, then codim Sing(Ŝn,d) = n and Proposition 6 gives a lower bound sr(Ŝn,d) ≥ n
2 .

An analog of (3) gives the upper bound n
2 + 1. We provide a matching lower bound, relying

on the following result which improves the lower bound of Proposition 6.

▶ Theorem 18. Let F ∈ C[x0, . . . , xn] be a homogeneous polynomial with codim Sing(F) = s

even. Then sr(F) = s
2 if and only if There is a linear space Q ⊂ Z(F) of codimension s

2
containing one of the irreducible components of Sing(F).

Proof. If Q ⊂ Z(F) is a linear space with codim Q = s/2, then sr(F) = s/2 by Proposition 9.
Conversely, suppose sr(F) = s/2 and let F =

∑s/2
k=1 LkHk be a minimal slice rank

decomposition of F . Let Q = Z(L1, . . . , Ls/2), and let X = Z(L1, . . . , Ls/2, H1, . . . , Hs/2).
By the minimality of the decomposition, Q is a linear space of codimension s/2. Moreover,
X ⊆ Q ⊆ Z(F).

Since X is defined by s polynomials, by Theorem 1 all irreducible components of X have
codimension at most s. As in Proposition 6, X is contained in Sing(F). Therefore, for every
irreducible component X ′ of X, we have s = codim Sing(F) ≤ codim X ≤ codim X ′ ≤ s.
This shows that X ′ and Sing(F) have the same dimension, therefore X ′ is an irreducible
component of Sing(F). Since X ′ ⊆ X ⊆ Q, we conclude. ◀

▶ Lemma 19. If d ≥ 3 and n is even, then sr(Ŝn,d) = n
2 + 1

Proof. If n is even, Proposition 6 gives the lower bound sr(Ŝn,d) ≥ n
2 . We use induction on

n to prove that sr(Ŝn,d) ̸= n
2 . If n = 0 the statement is clear.

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:11

Suppose by contradiction sr(Ŝn,d) = n
2 . By Theorem 18 there exists a projective linear

subspace Q ⊂ Z(Ŝn,d) of dimension n
2 containing the singular point [en−1]. Let H = Z(xn−1)

and let Q′ = Q ∩ H. Since Q contains the point [en−1], which is not in H, we have
dim Q′ = n

2 − 1.
Observe that for every point (v1 : · · · : vn) ∈ Q′, we have vn = 0. To see this, fix [v] ∈ Q′

and consider the line spanned by [v] ∈ Q′ and [en−1]; this line is contained in Q, hence in
Z(Ŝn,d). In particular, for every α, β ∈ C, we have

0 = Ŝn,d(αv + βen−1) = αd(
n−3∑
k=1

vkvd−1
k+1 + vd

n+1) + αd−1βvd−1
n .

Therefore, this expression must be 0 as a polynomial in α, β and in particular vn = 0 because
vd−1

n is the coefficient of αd−1β.
This shows that the existence of a subspace Q ⊂ Z(Ŝn,d) of dimension n

2 containing [en−1]
implies the existence of a subspace Q′ ⊂ Z(Ŝn,d) ∩ Z(xn−1, xn) of dimension n

2 − 1. Note
that substituting xn−1 = xn = 0 into Ŝn,d, one obtains, up to renaming the variables, the
polynomial Ŝn−2,d. Therefore, the existence of Q′ implies sr(Ŝn−2,d) = n

2 − 1 = n−2
2 , in

contradiction with the induction hypothesis. This concludes the proof. ◀

▶ Theorem 20. If d ≥ 5, then sr(S4,d) = 4.

Proof. Let ρ : P5 → P5 be the map defined by ρ(x0 : x1 : · · · : x5) = (x4 : x0 : x1 : x2 : x3 : x5)
which cyclically permutes the first 5 coordinates of a point (x0 : x1 : · · · : x5). Note that the
hypersurface Z(S4,d) is mapped to itself by ρ.

The lower bound given by Proposition 6 is sr(S4,d) ≥ 3 and assume by contradiction that
equality holds. Then there exists a linear space Q ⊂ Z(S4,d) ⊂ P5 of codimension 3.

First, we prove a series of claims about the plane Q culminating with the claim that
Q contains one of the five points [ek] = ρk[e0], where e0 = (1, 0, . . . , 0). Then we derive a
contradiction with the lower bound for Ŝn,d.

Let A0 be the line Z(x1, x3, x4, x5) ⊆ P5 and Ak = ρkA0. In other words, A0 is the set of
points of the form (x0 : 0 : x2 : 0 : 0 : 0) and Ak is obtained by cyclically shifting the first
five coordinates.

▶ Claim 20.1. Q intersects A0 ∪ A1 ∪ A2.

Proof. Since dim Q = 2, by [17, Prop. 11.4] it intersects any codimension 2 linear subspace.
Let p = (p0 : 0 : p2 : 0 : p4 : p5) ∈ Q∩Z(x1, x3) and q = (q0 : q1 : 0 : q3 : 0 : q5) ∈ Q∩Z(x2, x4)
be two points which lie in the respective intersections.

If p = q, then p = q = [e0] ∈ A0 and the Claim is verified.
Suppose p ̸= q. The line joining p and q lies in Q and, therefore, in Z(S4,d). Let p̂, q̂ ∈ C6

be representatives of p and q respectively. We have S4,d(αp̂ + βq̂) = 0 for all values of α

and β. Expand this expression as a polynomial in α, β, and consider the coefficients of αd,
αd−2β2, αd−3β3; these must be 0, hence

p4pd−1
0 + pd

5 = 0,(
d − 1

2

)
p4pd−3

0 q2
0 +

(
d

2

)
pd−2

5 q2
5 = 0,(

d − 1
3

)
p4pd−4

0 q3
0 +

(
d

3

)
pd−3

5 q3
5 = 0.

FSTTCS 2022

20:12 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

Rewrite these equations as

p4pd−1
0 = −pd

5,

(d − 2)p4pd−3
0 q2

0 = −dpd−2
5 q2

5 ,

(d − 3)p4pd−4
0 q3

0 = −dpd−3
5 q3

5 .

If p5 ̸= 0, then dividing the equations by p4pd−1
0 = −pd

5, we obtain

(d − 2)
(

q0

p0

)2
= d

(
q5

p5

)2

(d − 3)
(

q0

p0

)3
= d

(
q5

p5

)3

from which we have q0 = q5 = 0, which implies q ∈ A1. If, on the other hand, p5 = 0, then
either p0 = 0 and p ∈ A2, or p4 = 0 and p ∈ A0. ◁

▶ Claim 20.2. If Q ∩ A0 ̸= ∅ and Q ∩ A2 ̸= ∅, then Q contains [e0], [e2], or [e4].

Proof. Let p be a point in Q ∩ A0 and q ∈ Q ∩ A2, so p = (p0 : 0 : p2 : 0 : 0 : 0) and
q = (0 : 0 : q2 : 0 : q4 : 0). If p = q, then they are equal to [e2]. If p ̸= q, then there is a point
on the line that they span which has zero second coordinate. Let this linear combination
be r = (r0 : 0 : 0 : 0 : r4 : 0). Since r ∈ Q ⊂ Z(S4,n), we have S4,n(r) = r4rd−1

0 = 0, so r is
either [e0] or [e4]. ◁

▶ Claim 20.3. Q contains one of the five points [ek].

Proof. Let S = {k | Q ∩ ρkA0 ̸= 0}. Since ρ5 = id, we can see S as a subset of Z/5Z.
Claim 20.1 implies that S contains at least one element of {0, 1, 2}. Because of the cyclic
symmetry, an analogous statement is true for every three consecutive values in Z/5Z. Similarly,
cyclically shifted versions of Claim 20.2 imply that if S contains k and k + 2, then Q contains
one of the five basis points.

Without loss of generality, 0 ∈ S. If 2 ∈ S or 3 ∈ S, then Claim 20.2 guarantees Q

contains one of the five basis points. If both 2, 3 /∈ S, then Claim 20.1 applied to the
consecutive triples {1, 2, 3} and {2, 3, 4} implies that 1, 4 ∈ S. Since they differ by two,
Claim 20.2 applies and we conclude. ◁

By shifting Q cyclically we can assume that [e1] ∈ Q.
▶ Claim 20.4. If [e1] ∈ Q, then Q lies in the hyperplane Z(x0).

Proof. Note that if the line spanned by two points [v], [w] lies in a hypersurface Z(F), then∑
∂F
∂xi

(v)wj = 0. Indeed, the function f(t) = F (α+tw) is identically 0 and so is its derivative
in t at t = 0. By the chain rule, we obtain the desired equality. In particular, for every two
points p, q ∈ Q, we obtain

∑ ∂S4,n

∂xi
(p)qi = 0. Fixing p = [e1], this guarantees q0 = 0 for every

q ∈ Q, showing Q ⊆ Z(x0). ◁

We deduce that Q is contained in Z(S4,n) ∩ Z(x0) = Z(S4,n, x0) = Z(Ŝ4,n, x0). Therefore
Q ⊂ Z(Ŝ4,n) when regarded as a hypersurface in Z(x0) = Pn. By Proposition 9, this implies
sr(Ŝ4,n) ≤ 2, in contradiction with Lemma 19. This contradiction completes the proof. ◀

As a corollary we obtain a lower bound for homogeneous ABP size for Shioda’s polynomials
in six variables, which improves on Kumar’s lower bound for a polynomial with the same
number of variables.

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:13

▶ Corollary 21. Bhom(S4,d) ≥ 3(d − 1) + 2.

Proof. We have strk(S4,n) ≥ 3 from Proposition 6 and strd−1 = str1(S4,n) = sr(S4,n) = 4
from Theorem 20. Using Theorem 12 we get the required lower bound. ◀

A similar (but easier) argument can be used to prove sr(S2,d) = 3. It follows that
Bhom(S2,d) ≥ 2(d − 1) + 2. We conjecture that this can be generalized to all Shioda
polynomials.

▶ Conjecture 22. For n even we have sr(Sn,d) = n
2 + 2 and, consequently,

Bhom(Sn,d) ≥ n + 2
2 (d − 1) + 2.

4 Geometry of algebraic branching programs

We have seen that ABPs are related to degree-restricted strength decompositions, and degree-
restricted strength decompositions are closely related to subvarieties of the hypersurface
defined by the computed polynomial. One can also connect existence of ABPs to subvarieties
directly.

▶ Theorem 23. Let F be a homogeneous polynomial of degree d. F is computed by a
homogeneous ABP with wk vertices in layer k if and only if there exists a chain of ideals

I1 ⊃ I2 ⊃ · · · ⊃ Id−1 ⊃ Id = ⟨F ⟩

such that Ik is generated by wk homogeneous polynomials of degree k.

Proof. Suppose a homogeneous ABP A computes the polynomial F . Recall that we denote
the polynomial computed between vertices v and w by A[v, w]. Let s and t be the source
and the sink of A, and let Vk be the set of vertices in the k-th layer.

Define Ik to be the ideal generated by polynomials A[s, v] for all v ∈ Vk. These polynomials
are homogeneous degree k polynomials, because every path from s to v ∈ Vk has length k. If
w ∈ Vk+1, then

A[s, w] =
∑

v∈Vk

A[s, v]A[v, w], (4)

so all generators of Ik+1 lie in Ik and thus Ik ⊃ Ik+1. The last layer of A contains only the
sink, and the corresponding ideal is ⟨F ⟩.

On the other hand, given a sequence of ideals I1 ⊃ I2 ⊃ · · · ⊃ Id−1 ⊃ Id = ⟨F ⟩ such
that Ik is generated by homogeneous polynomials of degree k. Let Gk1, . . . , Gkwk

be the
generators of Ik. Since Ij ⊃ Ij+1, we have

Gk+1,j =
wk∑
i=1

GkiLkij (5)

for some linear forms Lkij . Let A be an ABP with wk vertices in layer k such that the edge
from the i-th vertex in the k-th layer to the j-th vertex in the (k + 1)-th layer is labeled by
Lkij . Then the equations (4) coincide with (5) and thus the ABP computes the generator F

of the last ideal. ◀

Geometrically, this implies that Z(F) contains a chain of subvarieties X1 ⊂ X2 ⊂ · · · ⊂
Xd−1 ⊂ Z(F) where each Xk is cut out by wk polynomials of degree k.

FSTTCS 2022

20:14 Degree-Restricted Strength Decompositions and Algebraic Branching Programs

References
1 T. Ananyan and M. Hochster. Small subalgebras of polynomial rings and Stillman’s conjecture.

J. Amer. Math. Soc., 33(1):291–309, 2020.
2 M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison Wesley,

1969.
3 E. Ballico, A. Bik, A. Oneto, and E. Ventura. The set of forms with bounded strength is not

closed. arXiv, 2020. arXiv:2012.01237.
4 E. Ballico, A. Bik, A. Oneto, and E. Ventura. Strength and slice rank of forms are generically

equal, 2021. arXiv:2102.11549.
5 A. Bik. Strength and noetherianity for infinite tensors. PhD thesis, Universität Bern, 2020.
6 P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of

Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997.
7 P. Bürgisser, F. Cucker, and P. Lairez. Rigid continuation paths II. Structured polynomial

systems. arXiv, 2020. arXiv:2010.10997.
8 P. Bürgisser, C. Ikenmeyer, and G. Panova. No occurrence obstructions in geometric complexity

theory. J. Amer. Math. Soc., 32(1):163–193, 2019.
9 E. Carlini, L. Chiantini, and A. V. Geramita. Complete intersections on general hypersurfaces.

Michigan Math. J., 57:121–136, 2008.
10 P. Chatterjee, M. Kumar, A. She, and B. L. Volk. A Quadratic Lower Bound for Algebraic

Branching Programs. In 35th Computational Complexity Conference (CCC 2020), volume 169
of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

11 H. Davenport and D. J. Lewis. Non-homogeneous cubic equations. J. London Math. Soc.,
39:657–671, 1964.

12 Jan Draisma. Topological Noetherianity of polynomial functors. Journal of the American
Mathematical Society, 32(3):691–707, 2019.

13 D. Eisenbud. Commutative Algebra: with a view toward algebraic geometry, volume 150 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

14 D. Eisenbud and J. Harris. 3264 and All That - A Second Course in Algebraic Geometry.
Cambridge University Press, Cambridge, 2016.

15 W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin,
second edition, 1998.

16 P. Griffiths and J. Harris. On the Noether-Lefschetz theorem and some remarks on codimension-
two cycles. Math. Ann., 271(1):31–51, 1985.

17 J. Harris. Algebraic geometry. A first course, volume 133 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1992.

18 C. Ikenmeyer and G. Panova. Rectangular Kronecker coefficients and plethysms in geometric
complexity theory. Adv. Math., 319:40–66, 2017.

19 M. Kumar. A quadratic lower bound for homogeneous algebraic branching programs. Comput.
Complex., 28(3):409–435, 2019.

20 M. Kumar and B. L. Volk. A Lower Bound on Determinantal Complexity. In 36th Com-
putational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

21 N. Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd ACM
Symp. on Th. of Comp., STOC’91, pages 410–418, New York, NY, USA, 1991. ACM.

22 W. F. Sawin and T. Tao. Notes on the “slice rank” of tensors, 2016. available at
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/.

23 W. M. Schmidt. The density of integer points on homogeneous varieties. Acta Math., 154(3-
4):243–296, 1985.

http://arxiv.org/abs/2012.01237
http://arxiv.org/abs/2102.11549
http://arxiv.org/abs/2010.10997
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/

F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:15

24 T. Shioda. On the Picard number of a complex projective variety. Ann. Sci. École Norm. Sup.
(4), 14(3):303–321, 1981.

25 T. Shioda. Algebraic cycles on a certain hypersurface. In Algebraic geometry (Tokyo/Kyoto,
1982), volume 1016 of Lecture Notes in Math., pages 271–294. Springer, Berlin, 1983.

26 Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages
249–261. ACM, 1979.

27 X. Wu. On a conjecture of Griffiths-Harris generalizing the Noether-Lefschetz theorem. Duke
Math. J., 60(2):465–472, 1990.

FSTTCS 2022

A Simple Polynomial Time Algorithm for Max Cut
on Laminar Geometric Intersection Graphs
Utkarsh Joshi
Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Saladi Rahul
Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Josson Joe Thoppil
Department of Information Technology, National Institute of Technology, Karnataka, India

Abstract
In a geometric intersection graph, given a collection of n geometric objects as input, each object
corresponds to a vertex and there is an edge between two vertices if and only if the corresponding
objects intersect. In this work, we present a somewhat surprising result: a polynomial time algorithm
for max cut on laminar geometric intersection graphs. In a laminar geometric intersection graph,
if two objects intersect, then one of them will completely lie inside the other. To the best of our
knowledge, for max cut this is the first class of (non-trivial) geometric intersection graphs with an
exact solution in polynomial time. Our algorithm uses a simple greedy strategy. However, proving
its correctness requires non-trivial ideas.

Next, we design almost-linear time algorithms (in terms of n) for laminar axis-aligned boxes by
combining the properties of laminar objects with vertical ray shooting data structures. Note that
the edge-set of the graph is not explicitly given as input; only the n geometric objects are given as
input.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Graph algorithms analysis

Keywords and phrases Geometric intersection graphs, Max cut, Vertical ray shooting

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.21

1 Introduction

In the maximum cut (a.k.a., max cut) problem, the input is an undirected graph, and the
goal is to partition the vertex set into two disjoint sets such that the number of edges having
their endpoints in different sets is maximized. Max cut is a classical optimization problem.
Weighted version of it is in fact one of Karp’s original 21 NP-hard problems [24]. Max cut
has been studied extensively on several classes of the graphs. It remains NP-hard even
for the special classes of the graphs like cubic graphs [5], total graphs [18], chordal graphs,
split graphs, co-bipartite graphs, tripartite graphs [7], and permutation graphs (recently
shown [14]). As a result, designing approximation algorithms for max cut has naturally
received a lot of attention [13, 17, 26, 23]. On the other hand, the classes of graphs which
are of relevance in the context of our work are those for which max cut has been shown
to be polynomial time solvable such as planar graphs [19], line graphs [18], graphs with
bounded treewidth [7], co-bipartite chain graphs [10], graphs not contractible to K5 [3] and
split-indifference graphs [6]. In this work we add another class of graphs to this list.

Geometric intersection graphs

Consider a set O = {O1, . . . , On} which is a collection of n geometric objects (such as intervals
and rectangles). In a geometric intersection graph, each object corresponds to a vertex and
there is an edge between two vertices if and only if the corresponding objects intersect. We

© Utkarsh Joshi, Saladi Rahul, and Josson Joe Thoppil;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Max Cut on Laminar Geometric Intersection Graphs

restate the max cut problem in the context of geometric intersection graphs: Color each
object in O either red or green so that the maximum number of pairs in O contribute to the
cut. A pair (Oi, Oj) contributes to the cut iff (a) Oi and Oj intersect, and (b) Oi and Oj

have different colors.

Max cut on geometric intersection graphs

The complexity of the max cut on interval graphs was unknown for a long time and was
mentioned as an open problem way back in 1985 in celebrated paper of Johnson [22]. At
SoCG’21, Adhikary et al. [1] showed that max cut is NP-complete even for interval graphs.
Unit interval graphs are a special case of interval graphs where each interval has unit length.
Surprisingly, the complexity status of the max cut on the class of unit interval graphs is
still unknown. Two previous results [8, 9] claimed a polynomial time algorithm for unit
interval graphs, but they were reported as incorrect later [6, 25]. Recently, in a series of
improvements, it was first shown that max cut is NP-complete on interval graphs of interval
count four [15] and then for interval count two [4], which is a special case of interval graphs
but more general than unit-interval graphs. On the approximation side, a PTAS can be
obtained for max cut on unit-interval graphs ([21] shows a PTAS for the max bisection
problem, but their technique can be adapted for the max cut problem as well). In 2D, max
cut on unit-disk graphs [16] has been shown to be NP-hard.

Exact max cut on laminar geometric intersection graphs

The starting point of our work is the following set of observations. Any two general intervals
can have two types of intersections: either (a) partially overlap, or (b) one interval lies inside
the other. Unit-interval graphs capture the first type of intersection. From the discussion
above, it is clear that max cut on unit-interval graphs has received a lot of interest in terms
of designing an exact algorithm, or proving its hardness, or the PTAS result. On the other
hand, laminar interval graphs can capture the second type of intersection, i.e., if two intervals
intersect then one of them lies completely inside the other. However, to the best of our
knowledge, there has not been any prior work on max cut for laminar interval graphs.

Motivated by this, we study max cut on laminar geometric intersection graphs. In a
laminar geometric intersection graph, if two objects intersect, then one of the object will lie
completely inside the other object (see Figure 1(a) for an example). Somewhat surprisingly,
we prove that a polynomial time exact algorithm exists for laminar geometric intersection
graphs. To the best of our knowledge, for max cut this is the first class of (non-trivial)
geometric intersection graphs with an exact polynomial time solution. We propose a simple
greedy algorithm to compute the max cut on laminar geometric intersection graphs. However,
as is the case with many greedy algorithms, our proof of optimality involves several non-trivial
arguments.

Designing a fast algorithm

The following discussion assumes a basic familiarity with computational geometry. Note that
the edge-set of the graph is not explicitly given as input; only the n geometric objects are
given as input. As a result, a fruitful line of research is to exploit the small input size and the
geometry of the intersection graph to design almost-linear time (in terms of n) algorithms to
compute max cut. As concrete applications, in this work we consider laminar axis-aligned
boxes intersection graphs in 3D and 2D. The first step of our algorithm is to compute a tree
representation of the laminar objects (see Figure 1 for an example). Using range searching

U. Joshi, S. Rahul, and J. J. Thoppil 21:3

data structures [2] in a standard manner one can construct such a tree representation in
O(n logc n) time for axis-aligned boxes in 3D for a sufficiently large constant c. Instead,
we perform a sweep-plane and use the properties of laminar objects to reduce the original
problem to dynamic 2D vertical ray shooting problem. As a result, we are able to compute the
tree representation in O

(
n log n

log log n

)
expected time for axis-aligned boxes in 3D. Adapting

our algorithm for axis-aligned rectangles in 2D leads to an O(n log log U) expected time
algorithm, where the endpoints of the boxes lie on the integer grid [U]2. The model of
computation is the word-RAM model.

2 Laminar geometric intersection graphs

In this section, we will present an exact solution for max cut on laminar geometric intersection
graphs. In a laminar geometric intersection graph, if two objects intersect, then one of the
objects will lie completely inside the other object (see Figure 1(a) for an example).

2.1 Tree representation and our algorithm
A laminar geometric intersection graph can naturally be represented as a tree. Let O =
{O1, . . . , On} be a collection of n laminar geometric objects. An object Oi is said to dominate
object Oj if and only if Oj lies completely inside Oi. Define level-1 objects of O to be those
objects which are not dominated by anyone in O. Call them O1. In Figure 1, O1 = {O1, O2}.
For an integer i ≥ 2, level-i objects are obtained by computing the set of objects in O\

⋃i−1
j=1Oj

which are not dominated by any other object in O \
⋃i−1

j=1Oj . Call them Oi. In Figure 1,
O2 = {O3, O4, O5, O6, O7}. We stop the recursion when O \

⋃ℓ−1
j=1Oj becomes empty, for

some integer ℓ.
Now we are ready to describe the tree representation. We will initialise |O1| trees, and

each object in O1 will be made the root of one of the tree (see Figure 1(b)). For i ∈ [2, ℓ−1],
each object O ∈ Oi will be made the child of that node in level-(i−1) whose corresponding
object contains O. See Figure 1. Note that max cut can be computed independently for
each tree and then trivially combined to obtain the final solution. As such, without loss of
generality we can compute the max cut for a single tree. The following property is easy to
observe.

▶ Lemma 1. Denote the tree representation of O by T . Two objects O and O′ intersect if
and only if O is an ancestor of O′ or O′ is an ancestor of O in T .

Figure 1 (a) An input instance of nine laminar intervals on the real-line. For the sake of clarity,
the intervals have been drawn vertically apart, (b) The corresponding tree representation.

FSTTCS 2022

21:4 Max Cut on Laminar Geometric Intersection Graphs

From now on we will work with the tree representation T of O. Each node in T will be
colored either red or green. In this new terminology, given two nodes vi ∈ T and vj ∈ T ,
the pair (vi, vj) contributes to the cut iff (a) vi is an ancestor of vj , and (b) vi and vj have
different colors. The goal is to maximize the number of pairs in T which contribute to
the cut.

For any node u ∈ T , let A(u) be the ancestors of u (excluding u) in T and let D(u) be
the nodes in the subtree of u (excluding u).

The algorithm can now be described in a single line:

Algorithm 1 Laminar geometric intersection graphs.
– For each node u ∈ T , if |D(u)| ≥ |A(u)|, then color u green; otherwise, color u red.

See Figure 2 for an example. Proving that Algorithm 1 actually reports the maximum
cut turns out to be a non-trivial exercise. Our proof will have two steps. First, in Lemma 2
we prove that among all colorings which do not create inversions in T , none of them lead
to a larger cut value than the cut value returned by Algorithm 1. A coloring of the nodes
in T is said to create an inversion if there is at least one node which is colored green and
its parent node is colored red. Next, in Lemma 3 we prove that among all possible ways of
coloring T , it suffices to consider colorings which do not create inversions in T . This proves
that Algorithm 1 indeed computes the max cut.

g

rg

r

g

g

r

r

r r r

Figure 2 Coloring produced by Algorithm 1 on a tree with eleven nodes. Green colored nodes
are labelled g and the red colored nodes are labelled r.

2.2 Optimality of our algorithm
▶ Lemma 2. For any coloring C, let Cut(C) be the number of pairs in T contributing to the
cut. Let Cni be any coloring of T which creates no inversions, and let Calg be the coloring of
T by our algorithm. Then Cut(Cni) ≤ Cut(Calg).

Proof. We will start with coloring Cni of the tree and perform n iterations. For 1 ≤ i ≤ n, in
the i-th iteration, we might potentially flip the color of one of the nodes in the tree. Let Ci

be the coloring of the tree at the end of the i-th iteration, for all 1 ≤ i ≤ n, and let C0 = Cni.
We will maintain the following three invariants:
1. Cut(Ci−1) ≤ Cut(Ci), for all 1 ≤ i ≤ n, i.e., the cut value does not decrease after each

iteration.
2. Cn = Calg, i.e., at the end of the n iterations, the (potentially) new coloring in the tree

will correspond to Calg.
3. Ci induces no inversion in T , for all 1 ≤ i ≤ n.

U. Joshi, S. Rahul, and J. J. Thoppil 21:5

From the first two invariants, it follows that Cut(Cni) = Cut(C0) ≤ Cut(C1) ≤ Cut(C2) ≤
. . . ≤ Cut(Cn) = Cut(Calg). Now we present the details of the reduction from coloring Cni to
Calg.

With respect to the coloring Calg of the tree T , let G be the set of nodes in T colored
green. Since Calg induces no inversion in T , nodes in G form a tree (and not a forest). Lets
call this tree TG . The remaining portion of T , i.e., T \ TG will be a collection of trees (a.k.a.
a forest) whose nodes are colored red. Unlike the traditional way of either a top-down or a
bottom-up traversal of a tree, we will perform a more careful traversal of T : First, traverse
the nodes in TG in a top-down manner. Next, traverse the trees in T \ TG in a bottom-up
manner. See Figure 3. Each iteration corresponds to visiting one of the n nodes in T .

Top-down traversal of TG. We will start from the coloring induced by Cni on tree TG . We
will perform a top-down traversal of TG and at the end of the |G| iterations (i.e., visiting |G|
nodes), all the nodes in TG will be colored green.

Let u ∈ TG be the node visited in the i-th iteration. If u is colored green, then no flip
operation will be performed, and we will set Ci = Ci−1. The interesting case is when u is
colored red, where we will flip the color of u to green. Since Ci−1 is a non inversion coloring,
all the |D(u)| nodes of T in the subtree of u will be colored red. Also, due to the top-down
traversal of TG , all the |A(u)| ancestors of u will be colored green. Since Algorithm 1 colored
u green, it must be the case that |D(u)| ≥ |A(u)|. Therefore, flipping the color of u from
red to green will ensure that Cut(Ci) = Cut(Ci−1)− |A(u)|+ |D(u)| ≥ Cut(Ci−1) (satisfying
Invariant 1). Also, after the flip operation, the coloring induced by Ci will have no inversion
(satisfying Invariant 3).

g

gg

g

r

r

r

r

r r r

1

2 11 3

9 10 4

5 6 7 8

Figure 3 Arbitrary Cni for a tree with eleven nodes. Green colored nodes are labelled g and the
red colored nodes are labelled r. The nodes indexed 1 to 4 belong to TG and the nodes indexed 5 to
11 belong to T \ TG . Indexing denotes the order in which the nodes will be traversed.

Bottom-up traversal of T \ TG. At the end of performing |G| iterations on TG , we will have
the coloring induced by C|G|. Now consider any tree in T \ TG . We will perform a bottom-up
traversal of that tree. Let u be a node visited in the i-th iteration. If u is colored red, then
no flip operation will be performed and we will set Ci = Ci−1. The interesting case is when u

is colored green, where we will flip the color of u to red. Since Ci−1 is a no inversion coloring,
all the |A(u)| ancestors of u in T will be colored green. Also, due to bottom-up traversal of
the tree, all the |D(u)| nodes in the subtree of u in T will be colored red. Since Algorithm 1
colored u red, it must be the case that |D(u)| < |A(u)|. Therefore, flipping the color of
u from green to red will ensure that Cut(Ci) = Cut(Ci−1) − |D(u)| + |A(u)| ≥ Cut(Ci−1)
(satisfying Invariant 1). Also, after the flip operation, the coloring induced by Ci will create
no inversions (satisfying Invariant 3). Perform the above operations for all the trees in T \TG .

FSTTCS 2022

21:6 Max Cut on Laminar Geometric Intersection Graphs

At the end of the n iterations, it is easy to see that the coloring in T corresponds to Calg:
the top-down traversal ensures that all the nodes in G are colored green and all the nodes in
T \ TG are colored red, and hence, satisfying Invariant 2. ◀

2.3 A non-inversion coloring of the tree
In this subsection, we will prove the following result.

▶ Lemma 3. Let C be an arbitrary coloring of the tree T and let Cut(C) be the number
of pairs in T contributing to the cut. Then there exists a coloring Cni which creates no
inversions in T and Cut(Cni) ≥ Cut(C).

Fix an ordering from left-to-right of the m leaves in T . The ordering of the leaves
naturally fixes an order of all the nodes at each level of T . For all 1 ≤ i ≤ m, let πi be
the root-to-leaf path for the i-th leaf of T . We start with coloring C of the tree T , and let
C0 = C. We will perform m iterations and in each iteration potentially flip the color of some
of the nodes in T . For all 1 ≤ i ≤ m, let Ci be the coloring of the tree at the end of the i-th
iteration. At the end of the i-th iteration, for all 1 ≤ i ≤ m, we will ensure that the following
invariants are maintained:
1. For all 1 ≤ j ≤ i, there are no inversions among nodes on path πj .
2. Cut(Ci) ≥ Cut(Ci−1).
By the first invariant it is guaranteed that the coloring induced by Cm creates no inversions in
T . Therefore, we set Cni = Cm. Via the second invariant, it follows that Cut(Cni) ≥ Cut(C).
This will prove Lemma 3. For any 1 ≤ i ≤ m, we now present the details of the transformation
from Ci−1 to Ci. First, we will perform a modification step.

Modification steps. At the beginning of the i-th iteration, let g(πi) and r(πi) be the number
of green and red colored nodes on path πi, respectively. We will modify the color of the nodes
in πi as follows:

If g(πi) ≥ r(πi), then the first g(πi) nodes on path πi are colored green, and the remaining
r(πi) nodes are colored red.
Otherwise, the first r(πi) nodes on path πi are colored green, and the remaining g(πi)
nodes are colored red.

Let E = {(u, v)|u, v ∈ T and u is an ancestor of v}. For any node u ∈ T , let
u1, u2, . . . , ut be its children in the left-to-right ordering. Then we define left(u, uj) =
{u1, u2, . . . , uj−1} and right(u, uj) = {uj+1, . . . , ut}. Also, let πi(1), πi(2), . . . be the se-
quence of nodes on πi from root-to-leaf. Now we define two sets Ri and Li as follows:

Ri = {v|v ∈ right(πi(j), πi(j + 1)) and πi(j) ∈ πi} and
Li = {v|v ∈ left(πi(j), πi(j + 1)) and πi(j) ∈ πi}

See Figure 4 for an example. Now we will partition E into four subsets E1, E2, E3, and E4.
We will argue that the contribution of E1, E2, E3, and E4 to the cut after the modifications
performed above will not decrease (E3 will potentially require “flip” operations to ensure its
contribution does not go down). This will ensure that Cut(Ci) ≥ Cut(Ci−1) (Invariant 2).
The four disjoint subsets are defined as follows:

E1 = {(u, v)|u, v ∈ πi}

E2 = {(u, v)|w ∈ Li and u ∈ A(w) and v ∈ (D(w) ∪ {w})}

U. Joshi, S. Rahul, and J. J. Thoppil 21:7

u

v

LEFT(u,v) RIGHT(u,v)
πi

v1

v2

v3 v4

v5

(a) (b)

Figure 4 (a) illustrates left(u, v) and right(u, v), and (b) illustrates Li and Ri. In this example,
Li = {v1, v2} and Ri = {v3, v4, v5}.

E3 = {(u, v)|w ∈ Ri and u ∈ A(w) and v ∈ (D(w) ∪ {w})}

E4 = E \ E1 \ E2 \ E3 = {(u, v)|w ∈ Li ∪Ri and u, v ∈ (D(w) ∪ {w}) and v ∈ A(u)}

See Figure 5 for an example. Now we will argue about each subset one after the other.

πi

v1

v2

v3

v4

v5

v6

Figure 5 We illustrate via an example some of the pairs in E1, E2, E3, and E4. For example,
(v1, v2) ∈ E1, (v1, v3) ∈ E2, (v1, v4) ∈ E2, (v1, v5) ∈ E3, (v1, v6) ∈ E3, (v4, v3) ∈ E4, (v6, v5) ∈ E4.

▶ Lemma 4. The number of pairs in E1 which contribute to the cut does not change after
the modification.

Proof. Before and after the modification, the number of pairs of E1 which contribute to the
cut will be equal to g(πi) · r(πi). ◀

▶ Lemma 5. For any v ∈ Ri ∪ Li, after performing the modification described above, the
number of green ancestors will not decrease.

FSTTCS 2022

21:8 Max Cut on Laminar Geometric Intersection Graphs

Proof. For any v ∈ Ri ∪ Li, it is obvious from the above definition that all its ancestors lie
on πi. Let g(v) and r(v) be the number of green and red ancestors of v, respectively, before
performing the modification. Let g′(v) be the number of green ancestors (excluding v) of v

after performing the modification.
First, consider the case when g(πi) ≥ r(πi). If r(v) + g(v) ≤ g(πi), then all the ancestors

of v after modification will be colored green and hence, g′(v) = r(v) + g(v) ≥ g(v); otherwise,
the number of ancestors of v after modification colored green will be equal to g(πi) and
hence, g′(v) = g(πi) ≥ g(v). Therefore, g′(v) ≥ g(v).

Next, consider the case when r(πi) > g(πi). If r(v) + g(v) ≤ r(πi), then all the ancestors
of v after modification will be colored green and hence, g′(v) = r(v) + g(v) ≥ g(v); otherwise,
the number of ancestors of v after modification colored green will be equal to r(πi) and
hence, g′(v) = r(πi) > g(πi) ≥ g(v). Therefore, g′(v) ≥ g(v). ◀

▶ Lemma 6. Recall that E2 = {(u, v)|w ∈ Li and u ∈ A(w) and v ∈ (D(w) ∪ {w})}. The
contribution of E2 to the cut does not decrease after the modification.

Proof. Consider any w ∈ Li and let E2(w) = {(u, v)|u ∈ A(w) and v ∈ (D(w)∪{w})}. First,
consider the case where w is colored green before the modification. Then, by invariant 1,
since there are no inversions on the path from root to w, all the ancestors of w will be colored
green. After the modification, by Lemma 5, it follows that all the ancestors of w will continue
to be colored green and hence, the contribution of E2(w) to the cut does not change.

Next, consider the case where w is colored red before the modification. Then, by
invariant 1, all the nodes in D(w) will be colored red. After the modification, by Lemma 5,
the number of green ancestors of w will not decrease. Therefore, for any w ∈ Li, the
contribution of E2(w) to the cut will not decrease after the modification. ◀

After the modification steps, now we will potentially perform some flip operations. The
flip operations are needed to handle E3.

Flip Operations. For any w ∈ Ri: if D(w) ∪ {w} has more green colored nodes than red
colored nodes, then flip all the colors in D(w)∪{w}. Formally, each red (resp., green) colored
node is now colored green (resp., red).

▶ Lemma 7. Recall that E3 = {(u, v)|w ∈ Ri and u ∈ A(w) and v ∈ (D(w) ∪ {w})}. The
contribution of E3 to the cut does not decrease after the modification steps and flip operations.

Proof. Consider any w ∈ Ri and let E3(w) = {(u, v)|u ∈ A(w) and v ∈ (D(w) ∪ {w})}.
Because of flip operations, D(w)∪{w} has either equal or more red colored nodes than green
colored nodes. Combining this with Lemma 5 (the number of green ancestors will not come
down after modification), we conclude that the contribution of E3(w) to the cut does not go
down after modification and flip operations. ◀

▶ Lemma 8. Recall that E4 = E \ E1 \ E2 \ E3 = {(u, v)|w ∈ Li ∪ Ri and u, v ∈ (D(w) ∪
{w}) and v ∈ A(u)}. The contribution of E4 to the cut does not change after the modification
steps and the flip operations.

Proof. Consider any edge (u, v) ∈ E4. We claim that (u, v) will contribute to the cut after
the modification if and only if (u, v) contributed to the cut before the modification: if w ∈ Ri

and nodes in D(w) ∪ {w} flipped their colors, then the colors of both u and v will change.
Otherwise, if w ∈ Ri and nodes in D(w) ∪ {w} did not flip their colors, or if w ∈ Li, then
the colors of u and v do not change. ◀

U. Joshi, S. Rahul, and J. J. Thoppil 21:9

▶ Lemma 9 (Invariant 1). For all 1 ≤ j ≤ i, there are no inversions among nodes on path πj .

Proof. It is easy to see that there are no inversions among nodes on path πi. For any j < i,
consider the nodes in πi ∩ πj . Before the modification, there were no inversions on πj . This
implies that either πi ∩ πj (a) had all nodes colored green, or (b) had a sequence of green
followed by red colored nodes. In case (a), after the modification, all the nodes in πi ∩πj will
continue to be colored green. In case (b), after the modification, either all nodes in πi ∩ πj

will become green, or it will continue to be a sequence of green followed by red colored nodes.
In all these cases, there will be no inversions created among nodes on path πj . ◀

3 A fast implementation

Naively, one can construct the tree representation in O(n2) time by comparing every pair of
objects. In this section, we will construct the tree representation in almost-linear time (in
terms of n) for axis-aligned boxes in 3D and 2D. Note that given the tree representation,
Algorithm 1 takes only O(n) time: Computing |D(u)|, for all u ∈ T , can be done in O(n)
time via bottom-up traversal of T . Analogously, computing |A(u)|, for all u ∈ T , can be
done in O(n) time via a top-down traversal of T .

Let B be a collection of n laminar axis-aligned boxes in 3D. Now we describe our
algorithm to compute the tree representation T for B. To make the presentation simple,
consider a dummy box B0 which contains all the boxes in B. Add B0 to B (this ensures that
B0 is the root of T). Any axis-aligned box in 3D has six faces on its boundary. Define the
left face and the right face to be the boundaries parallel to the yz-plane.

We will perform a sweep-plane. Consider a plane ℓ parallel to the yz-plane. Starting
from x = −∞ we will move the plane ℓ towards x = +∞. The event points will be the left
and the right faces on the boundary of each box in B. Assume that the sweep-plane has
reached the x-coordinate xt, and let ℓt be the plane ℓ at xt. Let Bt ⊆ B be the set of boxes
intersecting the plane ℓt. For every B ∈ Bt, let R← B ∩ ℓt, i.e., the projection of B onto the
plane ℓt which is an axis-aligned rectangle in 2D.

Along with the sweep-plane, we will maintain a dynamic vertical ray shooting data
structure. In the orthogonal version of dynamic vertical ray shooting problem, the input is
a collection of horizontal segments in 2D, and given a query point q′ in 2D, the goal is to
report the first segment which is hit by the upward ray starting from q′. Updates include
insertion and deletion of segments. Let Dt be the instance of the vertical ray shooting data
structure when the sweep-plane is at xt. For each B ∈ Bt, the top and the bottom segment
of R are maintained in Dt. With the top and the bottom segments of R we will maintain a
label B and Bpar, respectively, where Bpar is the parent of B in T .

▶ Lemma 10. Suppose that the next event point in the sweep-plane is the left face of B ∈ B.
Consider any point q(qx, qy, qz) on the left face of B. Let xt be the x-coordinate of the
sweep-plane just before it reaches the left face of B. If Bq is the label associated with the
segment reported by the vertical ray shooting query on Dt with query point q′(qy, qz), then Bq

is the parent of B in T .

Proof. We will consider the following three cases.
Since Bpar contains B, it implies that the rectangle Rpar ← Bpar ∩ ℓt will contain q′.
Also, all the ancestors of Bpar in the tree representation will contain q′. However, by the
laminar property, notice that a vertical upward ray from q′ will hit the top segment of
Rpar before hitting the top segments of its ancestors. See Figure 6(a).

FSTTCS 2022

21:10 Max Cut on Laminar Geometric Intersection Graphs

Consider any box B′ which is a child of Bpar in the tree representation. Since R′ does
not contain q′, then a vertical upward ray from q′ will either miss the top and the bottom
segments of R′, or it will hit the bottom segment of R′ before the top segment of R′. See
Figure 6(b).
Consider any box B′ which is a descendent of Bpar, but not a child of Bpar. Then a
vertical upward ray from q′ will never hit the bottom or the top segment of B′ first. See
Figure 6(c).

Based on the above three observations, we conclude that the vertical ray shooting query
on Dt with q′ will either report the top segment of Rpar or a bottom segment corresponding
to Bpar’s children. Note that Bpar is the label associated with all these segments, and hence,
Bq ← Bpar. ◀

q′

Rpar

R′

Rpar

R′

q′1
q′2

Rpar

R′

q′1 q′2

(a) (b) (c)

R′′

Figure 6 (a) R′ is an ancestor of Rpar, (b) q′
1 hits the bottom segment of R′ first and q′

2 hits the
top segment of Rpar first, and (c) Both q′

1 and q′
2 will not hit the bottom segment of R′ first. B′′ is

the ancestor of B′ in the tree representation.

Algorithm. Now we are ready to describe the overall algorithm. When the sweep-plane
is at x-coordinate x = xt, then the ray shooting data structure Dt is maintained based on
the boxes in Bt. When the sweep-plane’s next event point is the left face of a box B ∈ Bt,
then perform the following steps: Using Lemma 10, query Dt with q′ to find the parent Bpar

of B in the tree representation. Update Dt by inserting the top and the bottom segments
of R← B ∩ ℓt. When the sweep-plane’s next event point is the right face of a box B ∈ Bt,
then delete the top and the bottom segments of R← B ∩ ℓt from Dt.

Analysis. Sorting the left and the right faces of the boxes in B can be done in O(n log log n)
time [20]. At each event point, we will perform at most one vertical ray shooting query.
Chan and Tsakalidis [12] present a dynamic data structure for vertical ray shooting with an
expected query time of O(log n/ log log n) and an amortized update time of O(log1/2+ε n).
Our algorithm performs Θ(n) queries and Θ(n) updates to the ray shooting structure.
Therefore, the overall expected time taken is O(n log n/ log log n).

▶ Theorem 11. The tree representation for n laminar axis-aligned boxes in 3D can be
computed in O(n log n/ log log n) expected time.

▶ Theorem 12. The tree representation for n laminar axis-aligned boxes in 2D can be
computed in O(n log log U) expected time, where the endpoints of the boxes lie on the integer
grid [U]2.

U. Joshi, S. Rahul, and J. J. Thoppil 21:11

Proof. We will adapt the algorithm for 3D to the 2D case. In that case, we will need a
dynamic 1D point location data structure. By using the data structure of Chan [11], our
algorithm can be implemented in O(n log log U) expected time. ◀

4 Future work

As discussed in the Introduction, recently max cut on interval graphs has been shown to
be NP-hard [1]. For the special case of laminar interval graphs, our works shows that max
cut can be computed exactly in almost-linear time (in terms of n). However, for the other
special case of max cut on unit interval graphs, the complexity status is still an open problem.
Another interesting line of work is to design a polynomial time algorithm for max cut on
interval graphs (and other geometric intersection graphs) with an approximation factor better
than 0.878.

References
1 Ranendu Adhikary, Kaustav Bose, Satwik Mukherjee, and Bodhayan Roy. Complexity of

maximum cut on interval graphs. In 37th International Symposium on Computational Geometry
(SoCG), volume 189, pages 7:1–7:11, 2021.

2 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Advances
in Discrete and Computational Geometry, pages 1–56, 1998.

3 Francisco Barahona. The max-cut problem on graphs not contractible to k5. Operations
Research Letters, 2(3):107–111, 1983.

4 Alexey Barsukov, Kaustav Bose, and Bodhayan Roy. Maximum cut on interval graphs of
interval count two is np-complete. Computing Research Repository (CoRR), abs/2203.06630,
2022.

5 Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended ab-
stract). In Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pages 200–209, 1999.

6 Hans L. Bodlaender, Celina M. H. de Figueiredo, Marisa Gutierrez, Ton Kloks, and Rolf
Niedermeier. Simple max-cut for split-indifference graphs and graphs with few p4’s. In
Experimental and Efficient Algorithms, pages 87–99, 2004.

7 Hans L. Bodlaender and Klaus Jansen. On the complexity of the maximum cut problem.
Nordic Journal of Computing, 7(1):14–31, 2000.

8 Hans L. Bodlaender, Ton Kloks, and Rolf Niedermeier. Simple max-cut for unit interval graphs
and graphs with few p4s. Electronic Notes in Discrete Mathematics, 3:19–26, 1999.

9 Arman Boyacı, Tinaz Ekim, and Mordechai Shalom. A polynomial-time algorithm for the
maximum cardinality cut problem in proper interval graphs. Information Processing Letters,
121:29–33, 2017.

10 Arman Boyacı, Tınaz Ekim, and Mordechai Shalom. The maximum cardinality cut problem
in co-bipartite chain graphs. Journal of Combinatorial Optimization, 35(1):250–265, 2018.

11 Timothy M. Chan. Persistent Predecessor Search and Orthogonal Point Location on the Word
RAM. ACM Trans. Algorithms, 9(3), 2013.

12 Timothy M. Chan and Konstantinos Tsakalidis. Dynamic Planar Orthogonal Point Location
in Sublogarithmic Time. In 34th International Symposium on Computational Geometry (SoCG
2018), volume 99, pages 25:1–25:15, 2018.

13 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending grothen-
dieck’s inequality. In Proceedings of Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 54–60, 2004.

14 Celina M. H. de Figueiredo, Alexsander Andrade de Melo, Fabiano de S. Oliveira, and Ana
Silva. Maxcut on permutation graphs is np-complete. Computing Research Repository (CoRR),
abs/2202.13955, 2022.

FSTTCS 2022

21:12 Max Cut on Laminar Geometric Intersection Graphs

15 Celina MH de Figueiredo, Alexsander A de Melo, Fabiano S Oliveira, and Ana Silva. Maximum
cut on interval graphs of interval count four is np-complete. arXiv preprint, 2020. arXiv:
2012.09804.

16 Josep Díaz and Marcin Kamiński. Max-cut and max-bisection are NP-hard on unit disk graphs.
Theoretical Computer Science, 377(1):271–276, 2007.

17 M. X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145,
1995.

18 Venkatesan Guruswami. Maximum cut on line and total graphs. Discrete Applied Mathematics,
92(2):217–221, 1999.

19 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal of
Computing, 4(3):221–225, 1975.

20 Yijie Han. Deterministic sorting in o(nloglogn) time and linear space. Journal of Algorithms,
50(1):96–105, 2004.

21 Klaus Jansen, Marek Karpinski, Andrzej Lingas, and Eike Seidel. Polynomial time approx-
imation schemes for MAX-BISECTION on planar and geometric graphs. SIAM Journal of
Computing, 35(1):110–119, 2005.

22 David S Johnson. The NP-completeness column: an ongoing guide. Journal of Algorithms,
6(3):434–451, 1985.

23 Satyen Kale and C. Seshadhri. Combinatorial approximation algorithms for maxcut using
random walks. In Proceedings of 2nd Symposium on Innovations in Computer Science (ICS),
pages 367–388, 2011.

24 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Plenum Press, New York, 1972.

25 Jan Kratochvíl, Tomáš Masařík, and Jana Novotná. U-Bubble Model for Mixed Unit Interval
Graphs and Its Applications: The MaxCut Problem Revisited. In 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170, pages 57:1–57:14,
2020.

26 Luca Trevisan. Max cut and the smallest eigenvalue. SIAM Journal of Computing, 41(6):1769–
1786, 2012.

http://arxiv.org/abs/2012.09804
http://arxiv.org/abs/2012.09804

Stable Matchings with One-Sided Ties and
Approximate Popularity
Telikepalli Kavitha ! Ï

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices in A rank their
neighbors in a strict order of preference while vertices in B are allowed to have weak rankings, i.e.,
ties are allowed in their preferences. Stable matchings always exist in G and are easy to find, however
popular matchings need not exist and it is NP-complete to decide if one exists. This motivates the
“approximately popular” matching problem.

A well-known measure of approximate popularity is low unpopularity factor. We show that when
each tie in G has length at most k, there always exists a stable matching whose unpopularity factor
is at most k. Our proof is algorithmic and we compute such a stable matching in polynomial time.
Our result can be considered to be a generalization of Gärdenfors’ result (1975) which showed that
when rankings are strict, every stable matching is popular.

There are several applications where the size of the matching is its most important attribute.
What one seeks here is a maximum matching M such that there is no maximum matching more
popular than M . When rankings are weak, it is NP-hard to decide if G admits such a matching.
When ties are one-sided and of length at most k, we show a polynomial time algorithm to find a
maximum matching whose unpopularity factor within the set of maximum matchings is at most 2k.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Bipartite graphs, Maximum matchings, Unpopularity factor

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.22

Funding Telikepalli Kavitha: Supported by the Department of Atomic Energy, Government of India,
under project no. RTI4001.

Acknowledgements Thanks to the reviewers for their helpful comments and suggestions.

1 Introduction

Our input is a bipartite graph G = (A ∪ B, E) where vertices in A are called agents and
those in B are called jobs. Every vertex ranks its neighbors in an order of preference – while
every agent ranks its neighbors in a strict order of preference, jobs have weak rankings, i.e.,
ties are allowed in their preferences. The above model is well-studied and such a model is
seen when matching applicants to jobs or students to projects, e.g., the Scottish Foundation
Allocation Scheme (SFAS) [21].

So in our model, every agent has a strict ordering of jobs that she finds interesting,
however every job need not come up with a total order on all interested agents – here agents
get grouped together in terms of their suitability to do this job, thus equally competent
agents are tied together at the same rank. Our goal is to find an optimal matching in G.
The classical notion of optimality is stability.

A matching M is stable if there is no edge that blocks M ; an edge (a, b) is said to block
M if both a and b prefer each other to their respective assignments1 in M . The Gale-Shapley
algorithm [10] (where ties are broken arbitrarily) finds a stable matching in G in linear time.

1 Note that being left unmatched is the least preferred option for any vertex.

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha.telikepalli@gmail.com
http://www.tcs.tifr.res.in/~kavitha/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Stable Matchings with One-Sided Ties and Approximate Popularity

Popularity. Another natural notion of optimality is popularity. Given any pair of matchings
M and N , we say a vertex v prefers M to N if v prefers its assignment in M to its assignment
in N . Let ϕ(M, N) be the number of vertices that prefer M to N and similarly, let ϕ(N, M)
be the number of vertices that prefer N to M . Matching N is more popular than matching M

if ϕ(N, M) > ϕ(M, N).

▶ Definition 1. A matching M is popular if there is no matching more popular than M , i.e.,
ϕ(M, N) ≥ ϕ(N, M) for all matchings N .

Both stability and popularity are very desirable properties for a matching in G. While
stability captures the important property that there is no pair (a, b) where both a and b are
better-off by deviating from their respective assignments and pairing up with each other,
popularity lays emphasis on aggregate or majority. So popularity ensures that a majority
vote cannot force a migration to another matching.

When preferences are strict, stability is a stronger property and every stable matching is
popular2 [11]. So popular matchings always exist in G and the Gale-Shapley algorithm finds
one. This is our ideal situation as we have a matching that is stable and hence, popular.

However when ties are allowed in preferences, the situation is no longer ideal – stability
does not imply popularity. Even worse, popular matchings need not exist and it is NP-hard
to decide if one exists [3]. Moreover, this hardness holds even in the setting of one-sided
ties and every tie has length at most three [6]. Thus the popular matching problem with
one-sided ties is NP-hard even under such a strict restriction on tie lengths.

Relaxing popularity. When ties are present in preferences, the lack of existence of popular
matchings (and the hardness of solving the popular matching problem) motivates relaxing
popularity to near-popularity or “low unpopularity”. A well-studied measure of unpopularity
of a matching is unpopularity factor, introduced in [22] and studied, e.g., in [2, 8, 13, 17, 24].
Given a matching M , its unpopularity factor u(M) is defined below. For any matching N ,

let λ(M, N) =


ϕ(N, M)/ϕ(M, N) if ϕ(M, N) > 0;

1 if ϕ(M, N) = ϕ(N, M) = 0;
∞ otherwise.

Define u(M) = maxN λ(M, N). Thus in an election involving M and any matching N ,
the number of vertices that prefer N is at most u(M) times the number that prefer M .

A matching M is popular if and only if u(M) = 1. A matching M with a low value of
u(M) is considered to be near-popular. Such a matching may lose elections but there are
no heavy losses. Do near-popular matchings always exist in G? Consider an instance Kn,n

where every agent has the same preference order b1 ≻ b2 ≻ · · · ≻ bn (here b1, . . . , bn are the
n jobs) while every job bi has a tie of length n, i.e., it is indifferent between any two agents.
It is easy to check that any matching in this instance has unpopularity factor at least n − 1.
Thus there is no near-popular matching here.

However jobs in this instance have ties of length n in their preferences. Suppose no tie is
very long, say every tie has length at most k (for some appropriate k). Such a restriction is
quite natural in real-world applications; in fact, in many instances, we would have k = O(1).
Do near-popular matchings always exist then? Furthermore, are there such stable matchings?

2 In an election between a stable matching S and any matching M , if vertex v prefers M to S then M(v)
has to prefer S to M , otherwise (v, M(v)) blocks S, which is forbidden. Hence ϕ(M, S) ≤ ϕ(S, M).

T. Kavitha 22:3

When preferences involve ties (even for one-sided ties of length two), a stable matching
may have an unbounded unpopularity factor. Consider the following instance where A =
{a1, . . . , an}, B = {b1, . . . , bn}, and the preferences of vertices are as follows:

a1 : b1 ≻ bn ai : bi−1 ≻ bi for 2 ≤ i ≤ n

bn : a1 ∼ an bi : ai ∼ ai+1 for 1 ≤ i ≤ n − 1.

So a1’s top choice is b1 and second choice is bn and for i ≥ 2, ai’s top choice is bi−1 and
second choice is bi. Every bi ∈ B has exactly two neighbors and it is indifferent between them.
The matching M = {(ai, bi) : 1 ≤ i ≤ n} is stable. Let N = {(a1, bn)} ∪n

i=2 {(ai, bi−1)}.
Observe that ϕ(N, M) = n − 1 and ϕ(M, N) = 1, so u(M) ≥ n − 1. It is easy to check that
N is a popular matching and it is also stable.

Is there always a matching (even better, a stable matching) with low unpopularity factor
in an instance with one-sided ties of bounded length? We show the following result here.

▶ Theorem 2. Let G = (A ∪ B, E) be an instance with one-sided ties of length at most k.
There is always a stable matching M in G such that u(M) ≤ k. Furthermore, M can be
computed in O(k2 · mn) time, where |A| = n and |E| = m.

Observe that our earlier example of the instance Kn,n (where each job has a tie of length n

in its preference list) shows that Theorem 2 is almost tight. Recall that every matching
in this instance Kn,n has unpopularity factor at least n − 1. Thus when jobs have ties of
length k, there are instances where every matching has unpopularity factor at least k − 1.
Interestingly, we are able to show that any such instance always admits a stable matching
with unpopularity factor at most k.

The above result generalizes the result of Gärdenfors [11] that a popular matching always
exists in a bipartite graph G when rankings are strict (so k = 1 here). Indeed, when rankings
are strict, every stable matching is popular. When ties are one-sided and each tie has length
at most k, though every stable matching need not have a bounded unpopularity factor,
our algorithm shows that there is always at least one stable matching M with u(M) ≤ k.
For small values of k, the near-popularity of M can be justified as follows: in any election
involving M , if the votes in favor of M are scaled by a factor of k and we sum up these
weighted votes then M never loses any election.

Maximum matchings and near-popularity. There are several applications, e.g., matching
medical students to residencies [4] or allocation problems in humanitarian organizations [25,
26], where the size of the matching is more important than stability or popularity. What one
seeks here is a best maximum matching. Let us define a “best maximum matching” as one
that does not lose to another maximum matching. When rankings are strict, it is known
that such a maximum matching always exists and there is an O(mn) time algorithm to find
one such matching [17], where |A| = n and |E| = m.

When vertices on one side are allowed to have weak rankings, it is NP-hard to decide
if such a matching exists [6]. The hardness proof in [6] showed that it is NP-hard to find
a popular matching when vertices of B are allowed to have weak rankings. It is easy to
check that the same proof also shows it is NP-hard to find in such an instance a maximum
matching that does not lose to any maximum matching. We show the following result here.

▶ Theorem 3. Let G = (A ∪ B, E) be an instance with one-sided ties of length at most k.
There always exists a maximum matching M in G such that ϕ(N, M) ≤ 2k · ϕ(M, N) for any
maximum matching N ; furthermore, M can be computed in O(k2 · mn2) time.

FSTTCS 2022

22:4 Stable Matchings with One-Sided Ties and Approximate Popularity

Thus we can find in polynomial time a maximum matching whose unpopularity factor
within the set of maximum matchings is at most 2k.

1.1 Background and related results

In the setting of strict preferences or strict rankings, popularity is a well-studied relaxation
of stability – see [5] for a survey. In the setting of ties in preferences, as mentioned earlier,
stability does not imply popularity; moreover, it is NP-hard to decide if a popular matching
exists [3, 6], thus it is NP-hard to find a least unpopularity factor matching. Another
problem that is easy for strict preferences but NP-hard for ties (even for one-sided ties) is
the maximum stable matching problem which asks for a stable matching of largest size. This
problem is very well-studied and several approximation algorithms in the setting of one-sided
ties are known [1, 14, 15, 16, 18, 19].

Near-popularity. To the best of our knowledge, no positive results on near-popular matchings
in the setting of one-sided ties are currently known. Unpopularity factor u(·) is a well-studied
measure of unpopularity of a matching. A size-unpopularity factor trade-off in an instance
G = (A ∪ B, E) with strict rankings is known: for any integer k ≥ 2, there exists a matching
Mk such that u(Mk) ≤ k − 1 and |Mk| ≥ k

k+1 · |M∗|, where M∗ is a maximum matching,
and such a matching Mk can be efficiently computed [17]. As shown in [17], this trade-off
leads to the result that there always exists a maximum matching that is popular within the
set of maximum matchings and it can be efficiently computed. In contrast to this, finding
a maximum matching with the minimum number of blocking edges is NP-hard and this is
NP-hard to approximate within n1−ε, for any ε > 0 [4].

Matchings with low unpopularity factor in dynamic matching markets were studied in [2].
In the setting of bipartite graphs with strict rankings, when there are edge costs, it is NP-hard
to find a min-cost popular matching [9]. Polynomial-time algorithms were given in [8] to find
a quasi-popular matching M , i.e., u(M) ≤ 2, whose cost is at most that of a min-cost popular
matching. Popular matchings have also been studied in non-bipartite graphs with strict
rankings. Popular matchings need not exist in such an instance G and it is NP-complete
to decide if there exists one [9, 12]. It was shown in [13] that G always admits a matching
with unpopularity factor O(log n) and there are non-bipartite instances with strict rankings
where every matching has unpopularity factor Ω(log n).

1.2 Our techniques

Our algorithm, roughly speaking, constructs a subgraph G′ of G and returns a maximum
matching in G′. The construction of G′ is via a subroutine called Propose(·), where the
argument is an agent a left unmatched in at least one maximum matching in the current G′.
Such a vertex a is called even (formally defined in Section 2). Similar to the Gale-Shapley
algorithm, in the subroutine Propose(a), the agent a proposes to its neighbors in G one-by-one
in decreasing order of preference.

Any vertex in B always prefers proposals from better-ranked neighbors to worse-ranked
neighbors. Recall that ties are allowed in the preferences of vertices in B. So how does a
job b choose between proposals of two neighbors a and a′ that are tied in its ranking? The
following simple rule will be key to bounding the unpopularity factor of our matching:

Among neighbors tied in its ranking, b prefers proposals from neighbors that place b high
in their preference order of neighbors in G′.

T. Kavitha 22:5

To answer our above question on a versus a′ when they are tied in b’s ranking, if a

(resp., a′) regards b as its i-th-ranked (resp., j-th ranked) neighbor in G′, then b prefers a’s
proposal if i < j, it prefers a′’s proposal if j < i, else (so i = j) the proposals are tied.

While a ∈ A is even in G′ and its degree is less than k, it is allowed to propose in
Propose(a) to its neighbors in G. When no vertex in A is even in G′, we compute a maximum
matching M in the final subgraph G′ and show that M is a stable matching in G with
u(M) ≤ k. This algorithm and its analysis are given in Section 3.

In order to find a desired maximum matching (as given in Theorem 3), we run the above
algorithm from Section 3 in a new graph H. The graph H is a multigraph where every
edge in G is replicated n times. The construction of H is inspired by the popular maximum
matching algorithm from [17] where every a ∈ A gets n chances to propose to its neighbors.
Bounding the unpopularity factor of the matching computed by this algorithm within the
set of maximum matchings is trickier than the analysis given in Section 3. This algorithm
and its analysis are given in Section 4.

2 Preliminaries

Our algorithm will use the classical Dulmage-Mendelsohn decomposition [7]. Let G =
(A ∪ B, E) be a bipartite graph and let M be a matching in G. An alternating path with
respect to M is a path whose alternate edges are in M . We have A ∪ B = EM ∪ OM ∪ UM ,
where a vertex v is in EM (resp., OM) if there is an even (resp., odd) length alternating path
with respect to M from a vertex left unmatched in M to v and a vertex v is in UM if there
is no alternating path from an unmatched vertex to v.

The sets EM , OM , and UM will be called the sets of even, odd, and unreachable vertices,
respectively, with respect to M . The following theorem is well-known [20, 23].

▶ Theorem 4. The sets EM , OM , and UM are pairwise disjoint if and only if M is a
maximum matching in G. Any maximum matching in G partitions the vertex set into the
same sets of even, odd, and unreachable vertices. Furthermore,
1. There is no edge between the sets EM and EM ∪ UM , i.e., all the neighbors of vertices in

EM are in OM .
2. For any maximum matching N , we have N ⊆ (OM × EM) ∪ (UM × UM). Also |N | =

|OM | + |UM |/2, hence all vertices in OM ∪ UM are matched in N .

3 Our algorithm for a near-popular matching

We present an iterative algorithm to compute a desired stable matching in an instance
G = (A ∪ B, E) with one-sided ties, where each tie has length at most k. A relevant graph
for us is G0 = (A ∪ B0, E0) where B0 = B ∪ {d(a) : a ∈ A}, i.e., for each a ∈ A, we add a
corresponding dummy vertex d(a) called a’s last resort job, and E0 = E ∪ {(a, d(a)) : a ∈ A}.
So d(a) has only a as its neighbor and d(a) will be the worst ranked neighbor of a.

Algorithm 1 is the overall algorithm. This algorithm constructs a subgraph G′ of G0.
The while-loop here calls the subroutine Propose until no agent is even (see Section 2) in
the current G′. Recall that vertices in A or agents have strict rankings. In our algorithm,
any agent a such that – (i) a is even in the current G′ and (ii) a’s degree is less than k in
the current G′ – will be allowed to propose, i.e., a will be allowed to add some edges to the
current G′ in the subroutine Propose(a).

We will show in Lemma 6 that if the set of even agents in G′ is non-empty then there
has to be an even agent with degree less than k in G′. Such an agent a will propose in the
subroutine Propose(a). When no agent is even in the subgraph G′, the construction of G′ is
complete. Any maximum matching in the final G′ will be returned by Algorithm 1.

FSTTCS 2022

22:6 Stable Matchings with One-Sided Ties and Approximate Popularity

Algorithm 1 Finding a stable matching M with u(M) ≤ k in G = (A ∪ B, E).

1: Initialize G0 = (A ∪ B0, E0) and G′ = (A ∪ B0, ∅).
2: while there exists an even agent in G′ do
3: Let a be any even agent in G′ such that degG′(a) < k.
4: Call Propose(a).
5: Return a maximum matching M in G′.

In the subroutine Propose(a) (see Algorithm 2), a proposes to its neighbors in G0 one-
by-one in decreasing order of preference. Each time the subroutine Propose(a) is called, all
the proposals of a made in previous invocations of Propose(a) are forgotten (see line 1 of
Algorithm 2) and a proposes afresh starting from its most favorite neighbor in G0.

Algorithm 2 The subroutine Propose(a).

1: Delete from G′ all edges incident to a. ▷ (so all the previous proposals of a are forgotten)
2: Set i = 1.
3: repeat
4: Let b = a’s most favorite neighbor in G0 that a has not (freshly) proposed to.
5: Set rankG′(a, b) = i.
6: Delete from G0 and G′ all edges between b and b’s neighbors ranked worse than a.

▷ (so b will keep in G′ only the best proposals that it receives in the entire algorithm)
7: if b is isolated in G′ then
8: Add the edge (a, b) to G′.
9: else ▷ (a is tied with b’s neighbors in G′)

10: Let a′ be any neighbor of b in G′.
11: if i < rankG′(a′, b) then ▷ (so rankG′(a, b) < rankG′(a′, b))
12: Delete all edges incident to b in G′.
13: Add the edge (a, b) to G′.
14: if i = rankG′(a′, b) then ▷ (so rankG′(a, b) = rankG′(a′, b))
15: Add the edge (a, b) to G′ and set i = i + 1.
16: until i = k + 1 or a is no longer even in G′.

When b ∈ B receives a proposal from a in Propose(a), the edge (a, b) will get added to
the graph G′ if one of the following two conditions is satisfied:
1. b prefers a to its current neighbors in G′ – then (a, b) is unconditionally added to G′.
2. a is tied with b’s neighbors in G′ and a certain value called rankG′(a, b) is good enough.

When a proposes to b, rankG′(a, b) will be b’s rank among a’s neighbors in the current
G′. Let rankG′(a, b) = i. Suppose a and a′ are tied in b’s ranking, where a′ is a neighbor of
b in G′. When a proposes to b, i.e., when we consider the edge (a, b) in Propose(a):

if i < rankG′(a′, b) then b deletes all edges incident to it in G′ and the edge (a, b) is added
to G′ (see line 13).
if i = rankG′(a′, b) then b retains all its current edges in G′ and the edge (a, b) is also
added to G′ (see line 15). When a proposes to its next most favorite neighbor (say, b′)
in G0, it will be the case that rankG′(a, b′) = i + 1.
if i > rankG′(a′, b) then the edge (a, b) is not added to G′. When a proposes to its next
most favorite neighbor (say, b′) in G0, it will be the case that rankG′(a, b′) = i.

T. Kavitha 22:7

Thus among the best proposals (wrt b’s ranking) that b receives in the entire algorithm,
b keeps edges in G′ to only those neighbors a such that rankG′(a, b) is the minimum. In
Propose(a) when the edge (a, b) gets added to G′ in line 8 or line 13, a will be the only
neighbor of b in G′. This makes a unreachable3 in G′ – so a is no longer even in G′ and this
will be the last iteration of the repeat-loop in this invocation of Propose(a).

If a is even in G′, then there is one more iteration if i ≤ k. Observe that i is increased
when degG′(a) gets increased in line 15. Thus we will always ensure that degG′(a) ≤ k. Let
us recall the other useful invariant that is maintained in our algorithm:

all neighbors of a job b in G′ are tied in b’s ranking.

▶ Remark 5. After the edge (a, b) is added to G′, the graph G′ may change in later invocations
of Propose(·). But rankG′(a, b) remains the same till the next invocation of Propose(a).

▶ Lemma 6. Let X be the set of even agents in G′. If X ≠ ∅ then there exists a ∈ X such
that degG′(a) < k.

Proof. Suppose not, i.e., suppose every a ∈ X satisfies degG′(a) = k (since degG′(a) ≤ k).
Hence there are k · |X| edges incident to the set X in G′. Our invariant is that all neighbors
in G′ of a job b are tied in b’s ranking. Since each tie has length at most k, it means that for
any job b, degG′(b) ≤ k. Hence the set of neighbors of X in G′ has size at least (k · |X|)/k,
i.e., |NbrG′(X)| ≥ |X|, where NbrG′(X) is the set of neighbors of X in G′.

However it follows from the definition of “even agents” that |X| > |NbrG′(X)|. This is
because every vertex in NbrG′(X) is odd (see Theorem 4) and so for every v ∈ NbrG′(X),
there is a corresponding M∗(v) ∈ X, where M∗ is any maximum matching in G′. There is
also at least one vertex in X that is unmatched in M∗. Thus we get a contradiction that
|NbrG′(X)| ≥ |X| > |NbrG′(X)|. So there has to exist a ∈ X with degG′(a) < k. ◀

3.1 Correctness of our algorithm
Let M be the matching returned by Algorithm 1. Delete from M all edges incident to dummy
jobs, so M ⊆ E. Let us first show that M is a stable matching in G, i.e., no edge blocks M .

▶ Lemma 7. The matching M is stable in G.

Proof. The termination condition of Algorithm 1 is that no agent is even in G′. Hence the
original matching M (before deleting edges incident to dummy jobs) is A-perfect, i.e., it
matches all agents. So there is no (a, b) ∈ E such that b prefers a to its assignment in M

and a is unmatched in M , however a never got to propose to b because degG′(a) = k. Recall
that agents add edges to G′ in decreasing order of preference.

If (a, b) is in G′ and a new edge (a, b′) gets added to G′ in the subroutine Propose(a), then
a prefers b to b′. Since a is even prior to adding the edge (a, b′), it is easy to see that after
adding the edge (a, b′) to G′, the agent a is either even or unreachable in G′ (see footnote 3).
Hence after the addition of (a, b′), the job b is odd/unreachable in G′ (by Theorem 4).

Furthermore, the rank of b’s neighborhood in G′ never worsens as the algorithm progresses
(this is justified below). Thus in M , which is a maximum matching in G′, the job b is matched
(by Theorem 4); moreover, it is matched to an agent at least as good as a.

We will next show that if an edge (a, b) gets deleted from G′ then immediately after this
deletion, b will be odd/unreachable in G′ and b’s neighbors in G′ are ranked at least as good
as a. There are three cases for the deletion of an edge (a, b) from G′ in our algorithm.

3 Prior to adding the new edge, a was even in G′. So all neighbors of a in the current G′ will always be
matched in any maximum matching, thus a has no even neighbor and hence a is not odd.

FSTTCS 2022

22:8 Stable Matchings with One-Sided Ties and Approximate Popularity

Case 1. Suppose the edge (a, b) got deleted in line 1 in Algorithm 2. Then a, which is
an even vertex in G′, is going to make the next round of proposals. Just prior to the
deletion of (a, b), the vertex b was odd in G′ (since b has a neighbor a that is even). After
the deletion of the edge (a, b), the vertex b either remains odd or it becomes unreachable.
Also, by our invariant, all of b’s neighbors in G′ at this point are agents who are tied with
a in b’s preference list.
Case 2. Suppose the edge (a, b) got deleted in line 6 in Algorithm 2. This is because b

received a proposal from an agent a′ that b prefers to a. In this case, a′ will be b’s current
(and only) neighbor in G′. This makes b (and a′) unreachable.
Case 3. Suppose the edge (a, b) got deleted in line 12 in Algorithm 2. Just before the
deletion of this edge, a was b’s neighbor in G′ and all of b’s neighbors in G′ were tied
with a in b’s preference list and have the same rankG′ -value as rankG′(a, b). As soon as b

receives a proposal (say, from a′) of the same rank as a and a better rankG′-value than
rankG′(a, b), b deletes edges to all its current neighbors and introduces the edge (a′, b)
in G′. So a′ will be the only neighbor of b and this makes b (and a′) unreachable in G′.

So for any (a, b) ∈ E, if a prefers b to its assignment in M then b likes its partner in M

at least as much as a; hence (a, b) does not block M . Thus M is a stable matching in G. ◀

Bounding the unpopularity factor of M . For any pair of adjacent vertices v and w in G,
let us define the function votev(w, M) as follows:

votev(w, M) =


+1 if v prefers w to its assignment in M ;
−1 if v prefers its assignment in M to w;

0 otherwise.

Thus votev(w, M) is v’s vote for w versus its assignment in M and this value is 0 if v is
indifferent between w and M(v).

Edge labels. Let us label each edge (a, b) of E \ M by (votea(b, M), voteb(a, M)). Note
that an edge labeled (+1, +1) blocks M . We showed in Lemma 7 that no edge blocks M . So
every edge in E \ M gets a label in {(+1, −1), (−1, +1), (−1, −1), (±1, 0)}. We would like to
show that not too many edges are labeled (+1, 0).

Let ρ = ⟨. . . , e1, f1, e2, f2, . . . , ek, fk, . . .⟩ be any alternating path/cycle with respect to M ,
where each ei = (ai, bi) is in M . We will show an upper bound on the longest contiguous
stretch of edges in ρ \ M = ⟨. . . , f1, f2, . . . , fk, . . .⟩ that can be labeled (+1, 0).

▶ Lemma 8. If all of f1, f2, . . . , fk−1 are labeled (+1, 0) then fk cannot be labeled (+1, 0).

Proof. Suppose all of f1, f2, . . . , fk−1 are labeled (+1, 0). Since f1 = (a1, b2) is labeled
(+1, 0), b2 is indifferent between a1 and its partner a2 in M while a1 prefers b2 to its partner
b1 in M (let b1 = d(a1) if a1 is unmatched in M).

If the edge (a1, b2) is present in G′ then rankG′(a1, b2) < rankG′(a1, b1) because a1 prefers
b2 to b1. Suppose the edge (a1, b2) is not present in G′. Let rankG′(a1, b2) be the rankG′-
value with which a1 proposed to b2 in the very last invocation of Propose(a1). We claim
rankG′(a2, b2) < rankG′(a1, b2). This is because the edge (a1, b2) is missing in G′ and the
edge (a2, b2) is present in G′ though b2 is indifferent between a1 and a2. Thus in both cases,
we can draw the conclusion that rankG′(a2, b2) < rankG′(a1, b1):

in the former case, it is rankG′(a2, b2) = rankG′(a1, b2) < rankG′(a1, b1);
in the latter case, it is rankG′(a2, b2) < rankG′(a1, b2) ≤ rankG′(a1, b1).

T. Kavitha 22:9

Consider any such 3-edge sequence ⟨ei, fi, ei+1⟩ = bi − ai − bi+1 − ai+1 in ρ (see Fig. 1)
where 1 ≤ i ≤ k − 1. Since fi = (ai, bi+1) is labeled (+1, 0), the same argument as the one
above for b1 − a1 − b2 − a2 shows that rankG′(ai+1, bi+1) < rankG′(ai, bi). Thus we have the
following chain of strict inequalities: rankG′(ak, bk) < · · · < rankG′(a1, b1).

0

+1

ai+1 bi+1

ai bi

Figure 1 The dashed edge (ai, bi+1) is labeled (+1, 0) and rankG′ (ai+1, bi+1) < rankG′ (ai, bi).

We have rankG′(a1, b1) ≤ k since rankG′(a1, b1) ≤ degG′(a1) ≤ k. So the chain of strict
inequalities rankG′(ak, bk) < · · · < rankG′(a1, b1) implies that rankG′(ak, bk) ≤ 1. Hence
rankG′(ak, bk) = 1, i.e., bk is ak’s most favorite neighbor in the graph G′.

We need to show that the edge fk = (ak, bk+1) is not labeled (+1, 0). If ak prefers bk to
bk+1 then fk is labeled (−1, ∗) and we are done. The non-trivial case is when ak prefers bk+1
to bk. The following claim is proved below.

▷ Claim 9. If ak prefers bk+1 to bk then bk+1 is matched in M to an agent better than ak.

So if ak prefers bk+1 to bk then votebk+1(ak, M) = −1 (by Claim 9). Hence fk = (ak, bk+1)
is labeled (+1, −1). Thus the edge fk is never labeled (+1, 0). ◀

Proof. (of Claim 9) The agent ak prefers bk+1 to bk. Suppose the edge (ak, bk+1) is present in
G0. Then before proposing to bk with rankG′(ak, bk) = 1, the agent ak would have proposed
to bk+1 with rankG′(ak, bk+1) = 1. Since (ak, bk+1) is present in G0, note that ak is as good
as bk+1’s neighbors in G′ (wrt bk+1’s ranking). Moreover, bk+1 would never have rejected ak’s
proposal due to poor rankG′-value as the edge (ak, bk+1) has the best possible rankG′-value
of 1. Thus if (ak, bk+1) is in G0 then the edge (ak, bk+1) has to be in G′ and so rankG′(ak, bk)
would be at least 2 since ak prefers bk+1 to bk. However rankG′(ak, bk) = 1.

So the edge (ak, bk+1) is not present in G0. This means that bk+1 received one or more
proposals from neighbors that it prefers to ak. Hence bk+1 is matched in M to a neighbor
that it prefers to ak. ◁

▶ Remark 10. If ρ is an alternating cycle with respect to M then the proof of Lemma 8
shows that all the edges in ρ \ M cannot be labeled (+1, 0).

▶ Lemma 11. The unpopularity factor of M is at most k.

Proof. Let N be any matching in G. Consider M ⊕ N which is a set of alternating paths
and alternating cycles. Let p be any alternating path in M ⊕ N . Suppose p has even length,
so p = ⟨e1, f1, . . . , et, ft⟩ where for each i ∈ [t], the edge ei = (ai, bi) ∈ M and the edge
fi = (ai, bi+1) ∈ N . We have p\M = p∩N = ⟨f1, . . . , ft⟩. Since bt+1, i.e., the “job endpoint”
of the last edge ft in p = ⟨e1, f1, . . . , et, ft⟩, prefers to be matched rather than be unmatched
(observe that M leaves bt+1 unmatched) and because no edge is labeled (+1, +1), the edge
ft has to be labeled (−1, +1).

Suppose p has odd length, so p = ⟨e1, f1, . . . , et⟩. The final vertex of p (an endpoint of et)
is an agent at matched in M but not in N , so at prefers M to N . The edge ft−1 = (at−1, bt)
could be labeled (+1, 0), however since at prefers M to N , the votes for N from the three

FSTTCS 2022

22:10 Stable Matchings with One-Sided Ties and Approximate Popularity

vertices at−1, bt, at are +1, 0, and −1, respectively. Hence this case is equivalent to the case
where p has even length, i.e., the final vertex of p is in B and the last edge is labeled (−1, +1).
Thus in the rest of the proof, we assume without loss of generality that p has even length.

Let us extract disjoint maximal contiguous segments s1, . . . , sr from p ∩ N = ⟨f1, . . . , ft⟩
such that for each i, every edge in si = ⟨fi1 , fi2 . . .⟩ is labeled (+1, 0) and every edge in p ∩ N

that is labeled (+1, 0) belongs to one of s1, . . . , sr. We know from Lemma 8 that |si| ≤ k − 1
for all i ∈ [r]. The maximality of each of the segments s1, . . . , sr along with our observation
above that ft is labeled (−1, +1) implies the following:

for each i ∈ [r], the edge (call it fi′) in p ∩ N = ⟨f1, . . . , ft⟩ that immediately follows the
last edge in si has at least one “−1” in its label.

For each i ∈ [r], let us map all the edges in si to this edge fi′ .
For every alternating path (similarly, alternating cycle) ρ in M ⊕ N , as done above for

the alternating path p, let us perform an analogous operation of extracting such maximal
contiguous segments of (+1, 0)-labeled edges from ρ ∩ N and mapping all the edges in each
such segment to the edge in ρ ∩ N that immediately follows this segment – this is an edge
with a “−1” in its label. So every edge labeled (+1, 0) in N gets mapped to an edge in N

that has at least one −1 in its label. Moreover, at most k − 1 edges are mapped to any edge.
Our goal is to bound ϕ(N, M) = the number of vertices that prefer N to M . Every vertex

that prefers N to M contributes +1 to the edge of N incident to it. We know from Lemma 7
that no edge is labeled (+1, +1). Thus ϕ(N, M) = the number of edges in N \ M labeled by
one of (+1, 0), (+1, −1), (−1, +1). We have shown that the number of edges labeled (+1, 0) is
at most (k − 1) · (the number of edges labeled by one of (+1, −1), (−1, +1), (−1, 0), (−1, −1)).
Moreover, the edge labels (+1, −1) and (−1, +1) have both “+1” and “−1” in them.

Hence we can conclude the following inequality on the labels of edges in N \ M : (the
total number of +1’s in these labels) ≤ k ·(the total number of −1’s in these labels). Since
ϕ(N, M) is the total number of +1’s in the labels of edges in N \ M and ϕ(M, N) is at least
the total number of −1’s in these edge labels, we have ϕ(N, M) ≤ k · ϕ(M, N). Since this
holds for any matching N , we have u(M) ≤ k. ◀

3.2 Running time of our algorithm
We now bound the total number of times the subroutine Propose gets called in Algorithm 1.
Let a ∈ A. After any invocation of Propose(a), either degG′(a) = k or a is unreachable in G′.
Let deg(a) be a’s degree in G.

▷ Claim 12. The total number of invocations of the subroutine Propose(a) where degG′(a) = k

at the end of this invocation is at most k · deg(a).

Proof. Suppose degG′(a) = k at the end of an invocation of Propose(a). For Propose(a) to be
called again, degG′(a) should be less than k. So between these two invocations of Propose(a),
some edge (a, b) must have been deleted from G′. An edge e = (a, b), once deleted from G′

because b does not regard rankG′(e) good enough, can get re-introduced in G′ in line 13 or
line 15 in a later invocation of Propose(a). However it has to be the case that the edge e

now has a smaller value of rankG′(e). Thus in the earlier invocation of Propose(a), the pair
(e, rankG′(e)) with the older value of rankG′(e) occurred in G′ for the last time.

So let us charge the pair (e, rankG′(e)) for the invocation of Propose(a) where (e, rankG′(e))
occurs for the last time. Because a has at most k neighbors in G′, we have rankG′(e) ∈ [k]
for any edge e in G′. Thus there are at most k · deg(a) pairs (e′, rankG′(e′)) where e′ is any
edge incident to a. Hence the total number of invocations of Propose(a) where degG′(a) = k

at the end of this invocation is at most k · deg(a). ◁

T. Kavitha 22:11

▷ Claim 13. The total number of invocations of the subroutine Propose(a) where a is
unreachable in G′ at the end of this invocation is at most k · deg(a).

Proof. Suppose the vertex a is unreachable in G′ at the end of an invocation of Propose(a).
Let (a, b) be the last edge incident to a that got added to G′ in this invocation of Propose(a).
Observe that prior to adding the edge (a, b) to G′, the vertex a is even in G′. So it is this
edge (a, b) that made a unreachable in G′. We claim that the edge (a, b) is:
1. either a new edge that has been added to G′ for the very first time4

2. or it is an old edge but with a smaller rankG′ -value than the previous time it was added.

We argue that either (1) or (2) stated above must have occurred because none of the
old edges incident to a along with their previous rankG′ -values was good enough for a to be
unreachable in G′. This is because for the subroutine Propose(a) to get invoked, the agent
a has to be even in G′. Thus none of the old edges incident to a along with their previous
rankG′ -values was able to ensure a’s unreachability in G′. So if at the end of this invocation
of Propose(a), a is unreachable in G′, then either an old edge with a new rankG′-value or a
new edge must have been introduced in G′ in this invocation of Propose(a).

So for every invocation of Propose(a) where a is unreachable in G′ at the end of this
invocation, there is a pair (e, rankG′(e)), where e is incident to a, that occurs in G′ for the
first time. We know that the number of pairs (e, rankG′(e)) is at most k · deg(a). Thus
the number of invocations of Propose(a) where a is unreachable in G′ at the end of this
invocation is at most k · deg(a). Hence the claim follows. ◁

Since at the end of an invocation of Propose(a), either degG′(a) = k or a is unreachable
in G′, it follows that the total number of times Propose(a) gets called is O(k · deg(a)). Thus
added up over all a in A, the total number of times the subroutine Propose gets called in
Algorithm 1 is O(

∑
a∈A k · deg(a)) = O(k · m).

Running time of the subroutine Propose. As done in the implementation of the Gale-
Shapley algorithm, the step where a job b deletes edges to worse-ranked neighbors in G0 is
implemented in a delayed manner. That is, before an agent a proposes to any neighbor b, it
first checks if the edge (a, b) is actually present in G0. This can be easily implemented such
that the total time taken in Algorithm 1 by all the steps to delete edges from G0 is O(m).

Regarding the other steps in the subroutine Propose, we will always maintain a maximum
matching M in the current G′. We will mark vertices as even/odd/unreachable – given a
maximum matching in G′, this takes time linear in the size of G′. The number of edges in
G′ is at most k · |A| = k · n since every a ∈ A has degree at most k in G′.

For the subroutine Propose(a) to be invoked, the agent a has to be even in G′. Hence
there is an alternating path ρ between a and some agent left unmatched in M . We will
update M to M ⊕ ρ so that a is unmatched in the resulting M . Recall that the first step of
the subroutine Propose(a) deletes all edges incident to a in G′; subsequently, a proposes to
its neighbors in G0 one-by-one and adds some edges to G′.

Adding an edge between a and a neighbor that is odd/unreachable in G′ maintains the
property that M is a maximum matching in G′. In order to get a larger matching in G′, we
need to add an edge between a and a neighbor b that is even in G′. The only way b can be

4 Note that once the edge (a, d(a)) gets added to G′, a remains unreachable in G′ henceforth – so if a is
even in G′ then there is always at least one edge incident to a in G0 that is not in G′.

FSTTCS 2022

22:12 Stable Matchings with One-Sided Ties and Approximate Popularity

even in G′ is for b to be isolated just before the addition of the edge (a, b) to G′.5 So either
b never received any proposal till now in Algorithm 1 or b may have had neighbors in G′,
however upon receiving a’s proposal in Propose(a), the vertex b had to delete all its incident
edges in G′ and then the edge (a, b) got added to G′.

Since b was isolated just before adding (a, b), adding this edge makes a unreachable in G′

(see footnote 3) and the subroutine Propose(a) ends. We will update M : the edge (a, b) is
added to M and if b was matched earlier, then this old edge (which is no longer in G′) is
deleted from M . Thus we maintain a maximum matching M in G′.

At the end of the subroutine Propose, we will search for an agent that is even in G′

and with degree less than k. If such an agent is found, then the while-loop of Algorithm 1
continues; else Algorithm 1 terminates. Searching for such an agent takes time linear in the
size of G′. Thus the running time of any invocation of Propose is O(k · n). Since there are
O(k · m) invocations of Propose, Lemma 14 follows.

▶ Lemma 14. The running time of Algorithm 1 is O(k2 · mn).

Theorem 2 stated in Section 1 follows from Lemma 11 and Lemma 14.

4 Maximum matchings and approximate popularity

Our goal in this section is to find a maximum matching M in G = (A ∪ B, E) such that
ϕ(N, M) ≤ 2k · ϕ(M, N) for any maximum matching N in G. Recall that G is a bipartite
graph with one-sided ties of length at most k.

We will construct a new graph H = (A ∪ B, E∗) where every edge in G is replicated n

times, recall |A| = n. Thus E∗ = ∪e∈E{e1, . . . , en}, i.e., for every e ∈ E, there are n copies
e1, . . . , en in E∗. So H is a multigraph. Due to the presence of parallel edges in H, every
vertex v in H has preferences over its incident edges (rather than its neighbors).

Let the preference order of a vertex v over its incident edges in G be e ⪰ e′ ⪰ e′′ ⪰ · · · .
In the graph H, the edges e1, . . . , en (i.e., n copies of e) along with e′

1, . . . , e′
n (i.e., n copies

of e′) and e′′
1 , . . . , e′′

n (i.e., n copies of e′′) and so on are incident to v.

If v ∈ A then the preference order of v over its incident edges in H is as given below
(recall that vertices in A have strict rankings in G):

e1 ≻ e′
1 ≻ e′′

1 ≻ · · ·︸ ︷︷ ︸
subscript 1 edges

≻ e2 ≻ e′
2 ≻ e′′

2 ≻ · · ·︸ ︷︷ ︸
subscript 2 edges

≻ · · · ≻ en ≻ e′
n ≻ e′′

n ≻ · · ·︸ ︷︷ ︸
subscript n edges

.

Vertices of A have strict rankings in H as well. For i < j, where i, j ∈ [n], v ∈ A prefers
any subscript i edge incident to it to any subscript j edge incident to it. For any i,
within the set of subscript i edges, v’s preference order among ei, e′

i, e′′
i , . . . is as per v’s

preference order over its incident edges e, e′, e′′, . . . in G.
If v ∈ B then the preference order of v over its incident edges in H is as given below:

en ⪰ e′
n ⪰ e′′

n ⪰ · · ·︸ ︷︷ ︸
subscript n edges

≻ en−1 ⪰ e′
n−1 ⪰ e′′

n−1 ⪰ · · ·︸ ︷︷ ︸
subscript n − 1 edges

≻ · · · ≻ e1 ⪰ e′
1 ⪰ e′′

1 ⪰ · · ·︸ ︷︷ ︸
subscript 1 edges

.

Thus for i < j, where i, j ∈ [n], v ∈ B prefers any subscript j edge incident to it to any
subscript i edge incident to it. For any i, within the set of subscript i edges, v’s preference
order over ei, e′

i, e′′
i , . . . is as per v’s original preference order. So if v is indifferent between

e and e′ in G then v is indifferent between ei and e′
i for every i ∈ [n].

5 For an unisolated b to be even in G′, its neighbors have to be odd and no agent is ever odd in G′. Recall
that as soon as the agent a becomes unreachable in Propose(a), the subroutine Propose(a) ends.

T. Kavitha 22:13

Thus in the graph H , while vertices in B prefer higher subscript edges, vertices in A prefer
lower subscript edges. Analogous to Section 3, we have the graph H0 where H0 = (A∪B0, E∗

0),
B0 = B ∪ {d(a) : a ∈ A}, and E∗

0 = E∗ ∪ {(a, d(a)) : a ∈ A}. For any a ∈ A, the edge
(a, d(a)) is the worst ranked edge incident to a in H0.

The algorithm. Let us call Algorithm 1 in the graph H to construct the subgraph H ′ of
H0. As before, in the subroutine Propose, any job b, upon receiving a proposal along an edge
(say, ei) deletes from H0 all the edges that b ranks worse than ei. In particular, all edges e′

j

incident to b where j < i get deleted from H0.
Algorithm 1 returns a maximum matching M∗ in H ′. Let M be the corresponding

matching in G, i.e., M is essentially the same as M∗, however edges incident to dummy jobs
are pruned from M∗ and the subscripts of edges in M∗ are ignored in M .

The number of edges in H is m · n and every tie in H is also a tie in G, so it has length
at most k. Hence the running time of Algorithm 1 in H is O(k2 · (mn)n) = O(k2 · mn2).
Lemma 15 and Lemma 16 prove the correctness of our algorithm. Thus Theorem 3 stated in
Section 1 follows.

▶ Lemma 15. M is a maximum matching in G.

Proof. We will show there is no augmenting path with respect to M in G. Let a0 ∈ A be
a vertex left unmatched in M . Then in the graph H ′, the edge (a0, d(a0)) is in M∗. Since
(a0, d(a0)) is the worst ranked edge incident to a0, this means that for every edge ei, in
particular, for every subscript n edge en incident to a0, either a0 proposed along this edge
en to the other endpoint (call it b1) or b1 had already deleted en from H0 since it received
a proposal along an edge better than en. Note that any edge better than en has to be a
subscript n edge. The fact that a0 added the edge (a0, d(a0)) to the subgraph H ′ implies
that a0 was even in H ′ before adding (a0, d(a0)). So at the end, every neighbor of a0 is
odd/unreachable in H ′. Hence any neighbor b1 of a0 has to be matched along a subscript n

edge in M∗.
Suppose (a1, b1) ∈ M . By the argument in the above paragraph, we know that it is the

subscript n copy of this edge (a1, b1) that is present in M∗. Recall that any agent proposes
or adds edges to H ′ in decreasing order of preference and every agent prefers lower subscript
edges to higher subscript edges. So a1 must have proposed along every subscript (n − 1)
edge incident to it that was not yet deleted from H0. Furthermore, any neighbor b2 of a1
that deleted the subscript (n − 1) copy of the edge (a1, b2) from H0 has to be matched along
a subscript ≥ (n − 1) edge in M∗. Thus any neighbor of a1 has to be matched along a
subscript ≥ (n − 1) edge in M∗.

Continuing this argument, any augmenting path ρ wrt M that starts with a0 looks as
follows (the minimum possible subscripts of these edges in M∗ are written below them):

a0 − b1 − a1︸ ︷︷ ︸
subscript n

− b2 − a2︸ ︷︷ ︸
sub. n − 1

− b3 − a3︸ ︷︷ ︸
sub. n − 2

− · · · bi − ai︸ ︷︷ ︸
sub. n − i + 1

− · · · − bn − an︸ ︷︷ ︸
subscript 1

− b.

Finally, the path ρ has to reach a job b that never received a proposal in H ′, in other
words, b is isolated in H ′. So every neighbor (say, a′) of b has to be matched along a
subscript 1 edge since a′ never proposed along the subscript 1 edge e′

1 where e′ = (a′, b).
In our augmenting path ρ, any agent matched along a subscript 1 edge has to be labeled
at where t ≥ n. This means ρ includes at least n + 1 agents a0, a1, . . . , an. However this is
impossible as |A| = n. Thus there is no augmenting path with respect to M . Equivalently,
M is a maximum matching in G. ◀

FSTTCS 2022

22:14 Stable Matchings with One-Sided Ties and Approximate Popularity

▶ Lemma 16. For any maximum matching N in G, ϕ(N, M) ≤ 2k · ϕ(M, N).

Before we prove Lemma 16, let us recall the following preliminaries from [17]. Let us
partition A = A1 ∪ · · · ∪ An and B = B1 ∪ · · · ∪ Bn as follows:

For every subscript i edge ei = (a, b) in M∗, add a to Ai and b to Bi.
Add the vertices in A that are unmatched in M to An.
Add the vertices in B that are unmatched in M to B1.

It follows from the definition of the sets Ai, Bi that M ⊆ ∪n
i=1(Ai × Bi). It will be useful

to visualize these subscripts as levels. So A = A1 ∪ · · · ∪ An is a partition of A into n levels
where vertices in Ai are at level i and similarly, B = B1 ∪ · · · ∪ Bn is a partition of B into
n levels where vertices in Bi are at level i. Edges in Ai × Bj where i < j are said to move
upwards and edges in Ai × Bj where i > j are said to move downwards. Claim 17 (from [17])
shows there is no steep downwards edge.

▷ Claim 17. There is no edge between Ai and Bj where i ≥ j + 2.

Proof. Let a ∈ Ai. We need to show a has no neighbor in Bj where j ≤ i − 2. This argument
was seen in the proof of Lemma 15. Let us consider two cases.
1. a is matched in M : Since a ∈ Ai, a proposed along all the subscript i − 1 edges incident

to it in H0 (that were not yet deleted) but these proposals were rejected by its neighbors.
Since vertices in B prefer higher subscript edges to lower subscript edges, this means that
all neighbors of a are matched along ≥ i − 1 subscript edges. Thus a has no neighbor in
Bj where j ≤ i − 2.

2. a is not matched in M : Here a ∈ An and as argued in the proof of Lemma 15, (a, d(a)) is
in M∗ and all neighbors of a are in Bn. So a has no neighbor in Bj where j ≤ n − 1. ◁

As done in Section 3, let us label edges in E \ M by (votea(b, M), voteb(a, M)). Claim 18
stated below tells us that no downwards edge can have “+1” in its label.

▷ Claim 18. For 2 ≤ j ≤ n, any edge in Aj × Bj−1 is labeled either (−1, −1) or (−1, 0).

Proof. Let e = (a, b) ∈ Aj × Bj−1. We need to show that e is labeled either (−1, −1) or
(−1, 0). The job b is matched in M∗ along a subscript (j − 1) edge e′

j−1. Recall that any job
prefers higher subscript edges to lower subscript edges, so if a had proposed to b along ej

then b would have accepted the proposal. Thus we can conclude that a is matched along an
edge e′′

j that it prefers to ej , i.e., a prefers its partner in M to b. Thus votea(b, M) = −1.
Since agents prefer lower subscript edges to higher subscript edges, a proposed along ej−1

before proposing along the edge e′′
j . Since b did not accept the proposal along ej−1, we can

conclude that b does not prefer ej−1 to the edge e′
j−1 along which it is matched in M∗. Thus

voteb(a, M) ∈ {0, −1}. ◁

▷ Claim 19. Let e ∈ (Aj × Bj) \ M where j ∈ [n]. Then e cannot be labeled (+1, +1).

The proof of Claim 19 is the same as the proof of Lemma 7. Note that Claims 17-19
imply that any edge labeled (+1, +1) has to be an upwards edge.

Proof. (of Lemma 16) Let ρ = ⟨. . . , e1, f1, e2, f2, . . . , ⟩ be any alternating path/cycle with
respect to M where the e-edges are in M . We will not be able to claim as done in Lemma 8
that the longest contiguous stretch of edges ⟨f1, f2, . . .⟩ labeled (+1, 0) in ρ \ M is at most
k − 1. Now ρ \ M can admit longer contiguous stretches of positively labeled edges, i.e., those
labeled (+1, 0) or (+1, +1), by using upwards edges, i.e., edges in ∪i<j(Ai ×Bj), interspersed
with edges in ∪i(Ai × Bi).

T. Kavitha 22:15

Let ρ \ {upwards/downwards edges} = ρ1 ∪ · · · ∪ ρt. For any i ∈ [t], ρi consists of edges
in Aj × Bj for some j ∈ [n]. Let ρi \ M = ⟨. . . , fi1 , fi2 , . . . , fik−1 , fik

, . . .⟩. We have the
following claim whose proof is the same as the proof of Lemma 8.

▷ Claim 20. If all of fi1 , fi2 , . . . , fik−1 are labeled (+1, 0) then fik
cannot be labeled (+1, 0).

Recall that we need to compare M only against maximum matchings. Let ρ be any
relevant alternating path/cycle ρ wrt M , i.e., ρ occurs in M ⊕ N where N is a maximum
matching. There are two cases here.

(1) ρ is an alternating cycle. The crucial observation is that the number of downwards
edges in ρ is at least the number of upwards edges in ρ. This is because ρ is a cycle and
there are no steep downwards edges (by Claim 17).

Recall that ρ \ {upwards/downwards edges} = ρ1 ∪ · · · ∪ ρt. Each of the edges in ρi \ M

is in Aj × Bj for some j ∈ [n]. We know from Claim 19 that no edge in ρi \ M is labeled
(+1, +1). Furthermore, there can be at most k − 1 contiguous stretch of edges labeled (+1, 0)
in ρi \ M (by Claim 20).

For any maximal contiguous segment of edges labeled (+1, 0) in ρi \M = ⟨. . . , fi1 , fi2 , . . .⟩,
except possibly for the last such segment (call it ℓi), the maximality of each segment implies
that the edge that immediately follows this segment in ρi \ M has at least one “−1” in its
label. Analogous to Lemma 11, this “−1” will pay for the +1’s in this segment.

For the last segment ℓi in ρi \ M , we have to find a “−1” to pay for the +1’s in this
segment. Note that there might be no edge in ρi \ M that follows the last segment ℓi. This is
because the edge in ρ \ M that immediately follows ℓi moves to another level – so it is either
a downwards edge or an upwards edge. Any downwards edge is labeled (−1, 0) or (−1, −1)
(by Claim 18) while an upwards edge might be labeled (+1, +1). Thus a downwards edge is
a good edge with at least one “−1” in its label while an upwards edge is possibly a bad edge
with up to two +1’s in its label. Summarizing,

we have to pay for the +1’s in the labels of upwards edges and
we have to pay for the last-segments ℓ1, . . . , ℓt in ρ1, . . . , ρt, respectively.

We have t last-segments and some s ≤ t upwards edges. Our goal is to show that there
are enough downwards edges in ρ so that 2k times their number is an upper bound on the
total number of +1’s in the upwards edges and in the last-segments.

Consider the following list: ℓ1, f ′
1, ℓ2, f ′

2, . . . , ℓt, f ′
t , where ℓ1, . . . , ℓt are all the last-segments

and for i ∈ [t], f ′
i is the upwards/downwards edge in ρ \ M that immediately follows ρi \ M .

Each edge in ℓi is labeled (+1, 0) while the edge f ′
i (if it is an upwards edge) could be labeled

(+1, +1).
Let F = {f ′

1, . . . , f ′
t} and let X ⊆ F be the set of downwards edges and let Y ⊆ F be the

set of upwards edges. We know that the number of downwards edges is at least the number
of upwards edges, i.e., |X| ≥ |Y | = s and |X| + |Y | = t. So t − s ≥ s, i.e., s ≤ t/2. For
convenience, let us assume that X = {f ′

1, . . . , f ′
t−s} and Y = {f ′

t−s+1, . . . , f ′
t}.

Our charging mechanism is as follows:
For each 1 ≤ i ≤ t − s, the “−1” in edge f ′

i will pay for all the +1’s in the segment ℓi.
For each 1 ≤ i ≤ s, the “−1” in f ′

i will also pay for all the +1’s in the segment ℓt−s+i

and moreover, for the +1’s in the edge f ′
t−s+i.

Since there are at most (k − 1) +1’s in any ℓj and at most two +1’s in any upwards edge, it
follows that the total number of +1’s that any “−1” pays for is at most 2(k − 1) + 2 = 2k.

FSTTCS 2022

22:16 Stable Matchings with One-Sided Ties and Approximate Popularity

(2) ρ is an even length alternating path. So ρ has one endpoint that is unmatched in M .
There are two subcases here based on whether the unmatched endpoint is in A or in B.

Suppose the unmatched endpoint of ρ is in A. Recall that any vertex a ∈ A that is
unmatched in M is in the set An. Since ρ has even length, the final vertex in ρ is a
matched agent a′ ∈ Ai for some i ≤ n. Because there are no steep downwards edges, the
number of downwards edges in ρ is at least the number of upwards edges.
Thus the following crucial property – the number of downwards edges in ρ is at least the
number of upwards edges – used in case (1) holds in this subcase as well. Now the rest of
the argument that the total number of +1’s in ρ is at most 2k · (the number of −1’s in ρ)
is the same as given in case (1).
Suppose the unmatched endpoint of ρ is in B. Recall that any vertex b ∈ B that is
unmatched in M is in the set B1. Observe that any neighbor a of an unmatched b ∈ B

is in A1. This is because a never proposed along the subscript 1 edge corresponding to
(a, b) and this means that a is matched along a subscript 1 edge.
The other endpoint of ρ is a vertex b′ ∈ B that is matched in M . Thus the final vertex b′

is in Bi for some i ≥ 1 and its partner in M (call it a′) is in Ai. Hence the alternating
path ρ traverses from a′ ∈ Ai where i ≥ 1 to a ∈ A1. Since there are no steep downwards
edges, the crucial property that the number of downwards edges in ρ is at least the
number of upwards edges holds here as well. The rest of the argument that the total
number of +1’s in ρ is at most 2k · (the number of −1’s in ρ) is the same as in case (1).

For any maximum matching N , the symmetric difference M ⊕ N is a collection of
alternating cycles and alternating paths of even length. For any such alternating path or
alternating cycle ρ, we know that (the number of +1’s in ρ) ≤ 2k · (the number of −1’s in ρ).
Equivalently, ϕ(M ⊕ ρ, M) ≤ 2k · ϕ(M, M ⊕ ρ). Hence ϕ(N, M) ≤ 2k · ϕ(M, N). ◀

5 Conclusions and open problems

We showed that any bipartite graph G = (A ∪ B, E) where vertices in A have strict rankings
over their neighbors and vertices in B have weak rankings with ties of length at most k

admits a stable matching M with unpopularity factor at most k. So no matching N can win
more than k/(k + 1)-fraction of votes in a head-to-head election against M , where vertices
are voters. We showed a polynomial time algorithm to find such a matching M . It is easy to
show instances with one-sided ties of length at most k where every matching has unpopularity
factor at least k − 1. Thus our bound on unpopularity factor is almost tight.

An open problem is to extend the results shown here to two-sided ties of bounded length,
i.e., given an instance G = (A ∪ B, E) where all vertices are allowed to have weak rankings
with ties of length at most k, is there always a matching in G with unpopularity factor at
most k? Furthermore, is there always such a stable matching? Is it easy to find one?

References
1 F. Bauckholt, K. Pashkovich, and L. Sanitá. On the approximability of the stable marriage

problem with one-sided ties. arXiv:1805.05391.
2 S. Bhattacharya, M. Hoefer, C.-C. Huang, T. Kavitha, and L. Wagner. Maintaining near-

popular matchings. In Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming (ICALP)(II), pages 504–515, 2015.

3 P. Biro, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates
problems. In Proceedings of the 7th International Conference on Algorithms and Complexity
(CIAC), pages 97–108, 2010.

http://arxiv.org/abs/1805.05391

T. Kavitha 22:17

4 P. Biro, D. F. Manlove, and S. Mittal. Size versus stability in the marriage problem. Theoretical
Computer Science, 411:1828–1841, 2010.

5 Á. Cseh. Popular matchings. Trends in Computational Social Choice, Ulle Endriss (ed.), 2017.
6 Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and

one-sided ties. SIAM Journal on Discrete Mathematics, 31(4):2348–2377, 2017.
7 A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of

Mathematics, 10:517–534, 1958.
8 Y. Faenza and T. Kavitha. Quasi-popular matchings, optimality, and extended formulations.

Mathematics of Operations Research, 47(1):427–457, 2022.
9 Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular matchings and limits to tractability.

In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2790–2809, 2019.

10 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

11 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,
20:166–173, 1975.

12 S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular matching in roommates setting is
NP-hard. ACM Transactions on Computation Theory, 13(2):1–20, 2021.

13 C.-C. Huang and T. Kavitha. Near-popular matchings in the roommates problem. SIAM
Journal on Discrete Mathematics, 27(1):43–62, 2013.

14 C.-C. Huang and T. Kavitha. Improved approximation algorithms for two variants of the
stable marriage problem with ties. Mathematical Programming, 154(1):353–380, 2015.

15 K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875-approximation algorithm for the stable
marriage problem. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 288–297, 2007.

16 K. Iwama, S. Miyazaki, and N. Yamauchi. A 25/17-approximation algorithm for the stable
marriage problem with one-sided ties. Algorithmica, 68(3):758–775, 2014.

17 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

18 Z. Király. Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3–20, 2011.

19 C.-K. Lam and C. G. Plaxton. A (1 + 1/e)-approximation algorithm for maximum stable
matching with one-sided ties and incomplete lists. In Proceedings of the 30th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2823–2840, 2019.

20 L. Losász and M. D. Plummer. Matching theory. North-Holland, Mathematics Studies 121,
1986.

21 D. F. Manlove and R. W. Irving. Approximation algorithms for hard variants of the stable
marriage and hospitals/residents problems. Journal of Combinatorial Optimization, 16:279–292,
2008.

22 M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for
matching problems with one-sided preferences. In Proceedings of the 8th Latin American
Symposium on Theoretical Informatics (LATIN), pages 593–604, 2008.

23 W. R. Pulleyblank. Chapter 3, matchings and extensions. The Handbook of Combinatorics,
R.L. Graham, M. Grötschel, and L. Lovasz (ed.), 1995.

24 S. Ruangwises and T. Itoh. Unpopularity factor in the marriage and roommates problems.
Theory of Computing Systems, 65(3):579–592, 2021.

25 M. Soldner. Optimization and measurement in humanitarian operations: Addressing practical
needs. PhD thesis, Georgia Institute of Technology, 2014.

26 A.C. Trapp, A. Teytelboym, A. Martinello, T. Andersson, and N. Ahani. Placement optimiza-
tion in refugee resettlement. Working paper, 2018.

FSTTCS 2022

Geometry Meets Vectors: Approximation
Algorithms for Multidimensional Packing
Arindam Khan #

Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

Eklavya Sharma #

Department of Industrial & Enterprise Systems Engineering,
University of Illinois at Urbana-Champaign, IL, USA

K. V. N. Sreenivas #

Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

Abstract
We study the generalized multidimensional bin packing problem (GVBP) that generalizes both
geometric packing and vector packing. Here, we are given n rectangular items where the ith item
has width w(i), height h(i), and d nonnegative weights v1(i), v2(i), . . . , vd(i). Our goal is to get an
axis-parallel non-overlapping packing of the items into square bins so that for all j ∈ [d], the sum
of the jth weight of items in each bin is at most 1. This is a natural problem arising in logistics,
resource allocation, and scheduling. Despite being well-studied in practice, approximation algorithms
for this problem have rarely been explored.

We first obtain two simple algorithms for GVBP having asymptotic approximation ratios 6(d + 1)
and 3(1 + ln(d + 1) + ε). We then extend the Round-and-Approx (R&A) framework [3, 6] to
wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated
techniques, we obtain better approximation algorithms for GVBP, and we get further improvement
by combining them with the R&A framework. This gives us an asymptotic approximation ratio of
2(1 + ln((d + 4)/2)) + ε for GVBP, which improves to 2.919 + ε for the special case of d = 1. We
obtain further improvement when the items are allowed to be rotated. We also present algorithms
for a generalization of GVBP where the items are high dimensional cuboids.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Bin packing, rectangle packing, multidimensional packing, approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.23

Related Version arXiv Version: https://arxiv.org/abs/2106.13951

Funding Arindam Khan: Research partly supported by Pratiksha Trust Young Investigator Award,
Google India Research Award, and Google ExploreCS Award.

Acknowledgements We thank Nikhil Bansal, Thomas Rothvoss, and anonymous reviewers for their
helpful comments.

1 Introduction

Bin packing and knapsack problems are classical NP-hard optimization problems. Two
classical generalizations of these problems: geometric packing and vector packing have been
well-studied from the 1980s [14, 17]. Geometric packing considers the packing of rectangular
items, whereas, in vector packing items are multidimensional vectors. However, often in
practice, we encounter a mixture of geometric and vector constraints. Consider the following
airlines cargo problem [42]: We have boxes to load in an airline cargo container. In addition
to the geometric constraint that all the boxes must fit within the container, we also have a
constraint that the total weight of the loaded boxes is within a specified capacity. Thus, in
this problem, three dimensions are geometric and the weight is a vector constraint.

© Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0001-7505-1687
mailto:eklavya2@illinois.edu
https://orcid.org/0000-0003-1147-1476
mailto:venkatanaga@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23
https://arxiv.org/abs/2106.13951
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Algorithms for Multidimensional Packing

Weight has been an important constraint to consider for packing in logistics and supply
chain management, e.g., cranes and other equipment can be damaged by the bins being too
heavy [1]. When different cargoes are packed into a fleet of aircraft for transport, one needs
the individual cargoes to be not too heavy to ensure stability and less fuel consumption
[2]. Similar problems find applications in vehicle routing with loading constraints [8]. Many
practical heuristics [48, 50] have been proposed for such problems. Many companies (such as
Driw, Boxify, Freightcom) and practical packages [53] have considered the problem. Often,
we also want to limit other attributes, like the amount of magnetism, radioactivity, or toxicity.
Each such property can be considered an additional vector dimension.

Such multidimensional packing problems also get attention due to their connections with
fair resource allocation [43]. In recent years, a considerable amount of research has focused
on group fairness [31, 51] such that the algorithms are not biased towards (or against) some
groups or categories. One such notion of fairness is restricted dominance [7], which upper
bounds the number (or size) of items from a category. These different categories can be
considered as dimensions. E.g., in a container packing problem for flood relief, one needs to
ensure that the money spent on a container is fairly distributed among different types of
items (such as medicine, food, garments). Hence, for each category, there is an upper bound
on the value that can go into a container.

Formally, we are given n items I := {1, 2, . . . , n} that are (dg, dv)-dimensional, i.e., item
i is a dg-dimensional cuboid of lengths ℓ1(i), ℓ2(i), . . . , ℓdg

(i) and has dv non-negative weights
v1(i), v2(i), . . . , vdv (i). A (dg, dv)-dimensional bin is a dg-dimensional cuboid of length 1 in
each geometric dimension and weight capacity 1 in each of the dv vector dimensions. A
feasible packing of items into a bin is a packing where items are packed parallel to the axes
without overlapping, and for all j ∈ [dv], the sum of the jth vector dimension of the items in
the bin is at most 1 (see Definition 14 in Appendix A for a more formal definition of (dg,
dv) packing). In the (dg, dv) bin packing problem (BP), we have to feasibly pack all items
into the minimum number of bins. In the (dg, dv) knapsack problem (KS), each item i also
has an associated nonnegative profit p(i), and we have to feasibly pack a maximum-profit
subset of the items into a single bin (also called “knapsack”). (dg, dv) packing problems
generalize both dg-dimensional geometric packing (when dv = 0) and dv-dimensional vector
packing (when dg = 0). Already for vector bin packing, if dv is part of the input, there is
an approximation hardness of d1−ε

v , unless NP=ZPP [5]. Thus, throughout the paper we
assume both dg and dv to be constants.

1.1 Our Results
We study the first approximation algorithms for general (dg, dv) BP, with a focus on dg = 2.
We give two simple algorithms for (2, d) BP, called simplePack and betterSimplePack,
having asymptotic approximation ratios (AARs) of 6(d + 1) and 3(1 + ln(d + 1)) + ε,
respectively, for any ε > 0. Getting an AAR better than O(log d) for d-D VBP is NP-
hard [46], so betterSimplePack’s AAR as a function of d is tight up to a constant factor.
For d = 1, betterSimplePack’s AAR improves to ≈ 4.216 + ε.

Next, we modify the Round-and-Approx (R&A) framework [6] so that it works for (dg, dv)
BP. We combine R&A with the simplePack algorithm to get an AAR of 2(1+ln(3(d+1)))+ε

for (2, d) BP. This improves upon the AAR of betterSimplePack for d ≥ 3.
In Section 5, we obtain a more sophisticated algorithm for (2, d) BP, called cbPack, that

fits into the R&A framework and has an even better AAR. Table 1 lists the AARs of all our
algorithms for (2, d).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:3

Table 1 Asymptotic approximation ratios of our algorithms for (2, d) BP.

Algorithm AAR for (2, d) BP AAR for (2, 1) BP

simplePack 6(d + 1) 12

betterSimplePack 3(1 + ln(d + 1)) + ε 3(1 + ln(3
2)) + ε ≈ 4.216 + ε

simplePack with R&A 2(1 + ln(3(d + 1))) + ε 2(1 + ln 6) + ε ≈ 5.5835 + ε

cbPack with R&A (without rotation) 2(1 + ln(d+4
2)) + ε 2(1 + ln(19

12)) + ε ≈ 2.919 + ε

cbPack with R&A (with rotation) 2(1 + ln(d+3
2)) + ε 2(1 + ln(3

2)) + ε ≈ 2.811 + ε

We also show how to extend simplePack and betterSimplePack to (dg, dv) BP to obtain
AARs 2b(dv + 1) and b(1 + ln(dv + 1) + ε), respectively, where b := 9 when dg = 3, and
b := 4dg + 2dg when dg > 3. We also give a similar algorithm for (dg, dv) KS, having an
approximation ratio b(1 + ε).

1.2 Related Work
The bin packing problem (BP) has been the cornerstone of approximation algorithms [29].
The standard performance measure for BP algorithms is the asymptotic approximation ratio
(AAR). An asymptotic polynomial time approximation scheme (APTAS) for BP was given
by Fernandez de la Vega and Lueker [17], using linear grouping. Note that 1-D BP can be
considered as (1, 0) BP as well as (0, 1) BP. The present best approximation algorithm for
1-D BP returns a packing in at most opt +O(log opt) bins, where opt is the optimal number
of bins [25]. Knapsack problem (KS) is one of Karp’s 21 NP-complete problems. Lawler gave
an FPTAS [40] for KS. For surveys on BP and KS, see [13, 33].

In [17], a (d + ε)-asymptotic approximation algorithm was given for the d-dimensional
vector bin packing (d-D VBP). Chekuri and Khanna gave a ln d+O(1) approximation for d-D
VBP [11]. The study of 2-D geometric bin packing (2-D GBP) was initiated by [14]. Caprara
gave a T d−1

∞ -asymptotic approximation Harmonic-Decreasing-Height (HDH) algorithm for
d-D GBP [9], where T∞ ≈ 1.6901. This is still the best known approximation for d-D GBP
for d ≥ 3. Both 2-D GBP and 2-D VBP do not admit an APTAS [4, 52, 45]. For large d,
getting better than O(log d) asymptotic approximation for d-D VBP is NP-hard [46].

Bansal, Caprara, and Sviridenko [3] introduced the Round-and-Approx (R&A) framework
to obtain improved approximations for both 2-D GBP and d-D VBP. The R&A framework
is a two stage process. First, a (possibly exponential-sized) set covering LP relaxation
(called configuration LP) is solved approximately. Then, a randomized rounding procedure is
applied for a few steps to pack a subset of items, after which only a “small” fraction of items
(called the residual instance) remain unpacked. In the second step, the residual instance is
packed using a subset-oblivious algorithm. Intuitively, given a random subset S of I where
each element occurs with probability about 1/k, a ρ-approximate subset-oblivious algorithm
produces a packing of S in approximately ρ opt(I)/k bins. In the R&A framework, one can
obtain a (1+ln ρ)-approximation algorithm using a ρ-approximate subset oblivious algorithm.
Two algorithms, 1-D BP APTAS [17] and HDH [9] were shown to be subset-oblivious based
on various properties of dual-weighting functions. This led to an AAR of (1 + ln(1.69)) and
(1 + ln d) for 2-D GBP and d-D VBP, respectively. However, it was cumbersome to extend
subset-obliviousness to wider classes of algorithms.

Bansal and Khan [6] later extended the R&A framework for 2-D GBP to rounding-based
algorithms, where the large dimensions are rounded up to O(1) values and the packing of
items is container-based, i.e., each bin contains a constant number of rectangular regions

FSTTCS 2022

23:4 Algorithms for Multidimensional Packing

called containers and items are packed into containers. For 2-D GBP, they used an algorithm
with an AAR of 1.5 [27, 44] to obtain the present best AAR of (1 + ln 1.5) ≈ 1.405. For d-D
VBP, Bansal et al. [5] used the R&A framework combined with a multi-objective budgeted
matching problem, to obtain the present best AAR of (0.81 + od(1) + ln d).

Multidimensional knapsack is also well-studied. For d-D vector knapsack (d-D VKS),
Frieze and Clarke gave a PTAS [18]. For 2-D geometric knapsack (GKS), Jansen and
Zhang [28] gave a (2 + ε)-approximation algorithm, while the present best approximation
ratio is 17

9 + ε [20]. It is not even known whether 2-D GKS is APX-hard or not. There are
many other related important geometric packing problems, such as strip packing [21, 19]
and maximum independent set of rectangles [36, 22, 23]. For surveys on multidimensional
packing, see [12, 35].

1.3 Technical Contribution
One of our main contributions is the enhancement of R&A framework [6] to wider applications.

First, R&A framework now also works with (dg, dv)-dimensional items, unifying the
approach for geometric and vector packing. To use R&A, we need to solve the configuration
LP of the corresponding bin packing problem. All previous applications (d-D VBP and 2-D
GBP) of R&A solved the configuration LP within (1+ε) factor using a (1+O(ε))-approximate
solution to (a variant of) KS. Due to the unavailability of a PTAS for (a variant of) (2, d) KS,
we had to use a different linear programming algorithm [47] that uses an η-approximation
algorithm for KS to (1 + ε)η-approximately solve the configuration LP of the corresponding
BP problem, for any constants 1 < η, 0 < ε < 1.

Second, we introduce more freedom in choosing the packing structure. Unlike the R&A
framework in [6] that worked only for container-based packing, we allow either relaxing
the packing structure to non-container-based (like in simplePack) or imposing packing
constraints in addition to being container-based (like in cbPack). This generalization can
help in obtaining improved algorithms for other problems related to bin packing.

Finally, we allow rounding items in ways other than rounding up, if we can find a suitable
way of unrounding a packing of rounded items. In cbPack, we round down the width and
height of some items to 0, and in simplePack, we round each (2, d)-dimensional item i to
an item of width 1, height x and each vector dimension x, where x is a value depending on
the original dimensions of i. As shown in [35], if the large coordinates of items are rounded
up to O(1) types, we cannot get an AAR better than d and 4/3 for d-D VBP and 2-D GBP,
respectively. However, as we now allow rounding down, the R&A framework may now work
with algorithms having better AARs.

We also fix a minor error in the R&A framework of [35]. See Appendix C.1 for details.
In [3], it was mentioned: “One obstacle against the use of R&A for other problems is

the difficulty in deriving subset-oblivious algorithms (or proving that existing algorithms are
subset oblivious).” We expect that our progress will help in understanding the power of R&A
to extend it to other set-cover type problems, e.g. round-SAP [32] and round-UFP [16, 32].

Our another major contribution is handling of the (2, d) BP problem. This problem
presents additional challenges over pure geometric BP, and our algorithm cbPack demonstrates
how to circumvent them. For example, in geometric packing, items of low total area can
be packed into a small number of bins using the NFDH algorithm [14]. This need not be
true when items have weights, since the geometric dimensions can be small but the vector
dimensions may be large. To handle this, we divide the items into different classes based on
density (i.e., weight/area). We use the facts that items of low density and low total area can
be packed into a small number of bins, and items of high density that fit into a bin have low

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:5

total area. Also, in geometric packing, we can sometimes move items with similar geometric
dimensions across different bins (like in linear grouping [17, 44]). Vector dimensions again
create problems here. To handle this, we only move items of similar geometric dimensions and
density. This leads to a more structured packing and we show how to find such a near-optimal
structured packing efficiently. Due to space limitations, we defer the description and analysis
of cbPack to Section 5 and the full version’s Appendix F [38].

2 Preliminaries and Notation

Let I be the set of all valid inputs to a minimization problem P. For any input I ∈ I, let
opt(I) be the cost of the optimal solution and |A(I)| be the cost of algorithm A’s output on
I. Define the approximation ratio ρA and the asymptotic approximation ratio (AAR) ρ∞

A as
ρA := supI∈I {|A(I)|/opt(I)}, and ρ∞

A := lim supz→∞ supI∈I

{
|A(I)|/opt(I)

∣∣∣ opt(I) = z
}

,
respectively. Intuitively, AAR is A’s performance for inputs with large opt.

Let [n] := {1, 2, . . . , n}. Let poly(n) be the set of polynomial and sub-polynomial functions
of n. Define vmax, vol, and span as follows: vmax(i) := maxdv

j=1 vj(i), vol(i) :=
∏dg

j=1 ℓj(i),
span(i) := max(vol(i), vmax(i)). span(i) is, intuitively, the measure of largeness of item
i ∈ [n]. For convenience, let v0(i) := vol(i). Assume w.l.o.g. that vol(i) = 0 implies
(∀j ∈ [dg], ℓj(i) = 0). For a set I of items, given a function f : I 7→ R, for S ⊆ I, define
f(S) :=

∑
i∈S f(i). This means, e.g., vol(S) :=

∑
i∈S vol(i). For any bin packing algorithm

A, let A(I) be the resulting bin packing of items I, and let |A(I)| be the number of bins in
A(I). Define opt(I) as the minimum number of bins needed to pack I. The following lemma
relates span with opt.

▶ Lemma 1. For (dg, dv) items I, ⌈span(I)⌉ ≤ (dv + 1) opt(I).

Proof. Let m = opt(I). In an optimal packing, let Jj be the items in the jth bin. Then

⌈span(I)⌉ =
⌈

m∑
k=1

∑
i∈Jk

dvmax
j=0

vj(i)
⌉

≤

⌈
m∑

k=1

dv∑
j=0

vj(Jk)
⌉

≤ (dv + 1)m. ◀

For dg = 2, let w(i) := ℓ1(i), h(i) := ℓ2(i) be the width and height of item i, respectively.
The area of item i is a(i) := w(i)h(i) = vol(i). The items in (2, 0) BP are called “rectangles”.

2.1 Configuration LP

For a (dg, dv) bin packing instance I containing n items, a configuration of I is a packing of
a subset of items of I into a bin. Let C be the set of all configurations of I. The configuration
matrix of I is a matrix A ∈ {0, 1}n×|C| where A[i, C] is 1 if configuration C contains item i

and 0 otherwise. To solve the bin packing problem, it is sufficient to decide the number of
bins of each configuration. This gives us the following linear programming relaxation, called
a configuration LP:

min
x∈R|C|

∑
C∈C

xC where Ax ≥ 1 and x ≥ 0.

Even though |C| can be exponential in n, any feasible solution x to the configuration LP may
have a polynomial-sized representation if the size of support(x) is polynomially bounded
in n.

FSTTCS 2022

23:6 Algorithms for Multidimensional Packing

3 Simple Algorithms

In this section, we look at simple algorithms for (2, d) BP. They are based on the following
simple corollary of Steinberg’s algorithm [49].

▶ Lemma 2 (Section 3 in [28]). Let I be a set of rectangles where a(I) ≤ 1. Then I can be
packed into 3 bins in O(n log2 n/ log log n) time.

Let I be a (2, d) BP instance. Let Î := {span(i) : i ∈ I}, i.e., Î is a 1-D BP instance. The
algorithm simplePack(I) first runs the Next-Fit algorithm [30] on Î. Let [Ĵ1, Ĵ2, . . . , Ĵm] be
the resulting bin packing of Î into m bins. For each Ĵj ⊆ Î, let Jj be the corresponding items
from I. Then ∀k ∈ [dv], vk(Jj) ≤ 1 and vol(Jj) ≤ 1. simplePack then uses the algorithm of
Lemma 2 to pack each Jj into at most 3 bins, giving a packing of I into at most 3m bins.
By the property of Next-Fit [30], we get that m ≤ ⌈2 size(Î)⌉ = ⌈2 span(I)⌉. By Lemma 1,
we get 3 ⌈2 span(I)⌉ ≤ 6(d + 1) opt(I). This gives us the following theorem.

▶ Theorem 3. For (2, d) BP, simplePack uses at most 3 ⌈2 span(I)⌉ bins, so it is a
6(d + 1)-approximation algorithm. It runs in O(nd + n log2 n/ log log n) time.

The algorithm betterSimplePack first computes Ĩ, which is a (d + 1)-D VBP instance
obtained by replacing the geometric dimensions of each item i ∈ I by a single vector dimension
a(i). It computes a bin packing of Ĩ using any algorithm A. It then uses the algorithm of
Lemma 2 to pack I into at most 3|A(Ĩ)| bins.

Note that opt(Ĩ) ≤ opt(I). If A has AAR α, then |A(Ĩ)| ≤ α opt(Ĩ) + O(1). Therefore,
betterSimplePack has AAR 3α. The (d + 1)-D VBP algorithm by [3] (parametrized
by a constant ε > 0) gives α = 1 + ln(d + 1) + ε and the algorithm by [5] gives α =
1.5 + ln((d + 2)/2) + ε (improves to α = 1 + ln(1.5) + ε for d = 1).

Similarly, we can get a 3(1 + ε)-approximation algorithm for (2, d) KS (see Appendix D
of the full version [38]).

Although simplePack’s AAR is worse than betterSimplePack, simplePack’s output
is upper-bounded in terms of span, which is a useful property. Hence, we will use it as a
subroutine in other algorithms (like cbPack).

The algorithms for (2, d) packing can be extended to (dg, dv) packing. We just need
an algorithm for the following problem: given a set J of dg-dimensional cuboids where
vol(J) ≤ 1, pack J into a small number of bins. We used Lemma 2 when dg = 2. When
dg = 3, we can use the algorithm of Diedrich et al. (Section 2 of [15]) to pack J into at
most 9 bins. For dg > 3, we can pack J into at most 4dg + 2dg bins using a variant of the
HDH4 algorithm [10] (see Appendix C of the full version [38]). Hence, simplePack will use
b ⌈2 span(I)⌉ bins, where b := 3 when dg = 2, b := 9 when dg = 3, and b := 4dg + 2dg when
dg > 3. Therefore, simplePack is 2b(dv + 1)-approximate. Similarly, betterSimplePack has
AAR b(1 + ln(dv + 1) + ε), and we can get a b(1 + ε)-approximation algorithm for (dg, dv)
KS.

4 Round-and-Approx Framework

We enhance the R&A framework as a general outline for designing approximation algorithms
for bin packing and its variants. We denote the algorithm for the R&A framework as
rnaPack(I, β, ε), which takes as input a set I of (dg, dv)-dimensional items and parameters
β ≥ 1 and ε ∈ (0, 1). The steps of the algorithm are as follows. (See Algorithm 1 in
Appendix C for a more formal description).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:7

1. Solve the Configuration LP of I: Let x̂ be a µ-asymptotic-approximate solution to
the configuration LP. Note that each index of x̂ corresponds to a configuration. In all
previous applications of R&A, µ = 1 + ε, but in our work, µ can be a large constant.

2. Randomized rounding of configuration LP: For T := ⌈(ln β)∥x̂∥1⌉ steps do the
following: select a configuration C with probability x̂C/∥x̂∥1. Pack T bins according
to each of these selected T configurations. Let S be the remaining items which are not
packed, called the residual instance.

3. Rounding of items: We define a subroutine round that takes items I and parameter
ε as input1. It discards a set D ⊆ I of items such that span(D) ≤ ε span(I) and then
modifies each item in I − D to get a set Ĩ of items. We say that the output of round(I, ε)
is (Ĩ , D), where items in Ĩ are called rounded items. Intuitively, after rounding, the items
in Ĩ are of O(1) types, which makes packing easier. Also, since span(D) is small, D ∩ S

can be packed into a small number of bins using simplePack.
We impose some restrictions on round, which we denote as conditions C1 and C2, which
we describe in Section 4.2. Previous versions of R&A only allowed modifications where
items’ dimensions were rounded up. We don’t have this restriction; we also allow rounding
down some dimensions. We also allow round to output a poly(n)-sized list of guesses for
(Ĩ , D).

4. Pack rounded items: Let S̃ be the rounded items corresponding to S \ D. Pack S̃ into
bins using any bin packing algorithm that satisfies “condition C3”, which we describe in
Section 4.3. Let us name this algorithm complexPack.

5. Unrounding: Given a bin packing of S̃, let unround be a subroutine that computes
a bin packing of S \ D. unround is trivial in previous versions of R&A, because they
only increase dimensions of items during rounding. In our applications, we may round
down items, so unround can be non-trivial. unround can be any algorithm that satisfies
“condition C4”, which we describe in Section 4.3.

We can think of the R&A framework as a meta-algorithm, i.e., we give it the algorithms
round, complexPack and unround as inputs and it outputs the algorithm rnaPack. The
R&A framework requires that round, complexPack and unround satisfy four conditions
C1, C2, C3, C4, which we describe in Sections 4.2 and 4.3. Prospective users of the R&A
framework need to design these three subroutines and prove that they satisfy these four
conditions.

Intuitively, rnaPack first packs some items into T bins by randomized rounding of x̂.
We can prove that Pr(i ∈ S) ≤ 1/β (using standard techniques from randomized rounding,
see Lemma 16 in Appendix C), so S contains a small fraction of the items in I. We will
then try to prove that if the rest of the algorithm (round + complexPack + unround) packs
I into m bins, then it will pack S into roughly m/β bins. This notion was referred to in [3]
as subset-obliviousness. We will use subset-obliviousness to bound the AAR of rnaPack.
Section 4.5 shows how to break simplePack into round, complexPack, and unround and use
it with R&A.

1 The input to round is I instead of S because S is random and we want to round items deterministically,
i.e., the rounding of each item i ∈ S should not depend on which other items from I lie in S. In fact,
this is where the old R&A framework [35] introduced an error. See Appendix C.1 for details.

FSTTCS 2022

23:8 Algorithms for Multidimensional Packing

4.1 Fractional Structured Packing
Let (Ĩ , D) be an output of round(I) and let X̃ be an arbitrary subset of Ĩ. Our analysis of
rnaPack is based around a concept called fractional structured packing of X̃. Note that the
notion of fractional structured packing only appears in the analysis of rnaPack. It is not
needed to describe any algorithm.

First, we discuss the notion of structured packing. Several types of packings are used in
bin packing algorithms, such as container-based [27], shelf-based [14, 10], guillotine-based [24],
corridor-based [20], N -box & V-box based [26], etc. A type of packing is called a structured
packing if it satisfies downward closure, i.e., a structured packing remains structured even
after removing some items from the packed bins. For example, Jansen and Prädel [27] showed
that given any packing of a 2-D GBP instance into m bins, we can slice some of the items and
repack them into (1.5 + ε)m + O(1) bins such that the resulting packing is container-based.
Container-based roughly means that in each bin, items are packed into rectangular regions
called containers, and containers’ heights and widths belong to a fixed set of O(1) values.
Hence, container-based is an example of a structured packing as a container-based packing
remains container-based even after removing some items from the packed bins. Also note
that the set of all possible packings is trivially a structured packing. Our R&A framework
gives algorithm designers the freedom to use or define structured packing in any way they
want, as long as they satisfy downward closure. Typically, the choice of the definition
of structured packing will depend on the ease of proving Conditions C2 and C3 for that
definition. This helped us go beyond Bansal and Khan’s R&A framework [6], which only
considered container-based packings.

Intuitively, a fractional structured packing is one where we slice each item of X̃ into
pieces and then find a structured packing of the pieces. Let fsopt(X̃) be the number of bins
in the optimal fractional structured packing of X̃. To analyze the AAR of rnaPack, we will
bound complexPack(S) in terms of fsopt(S̃), and then bound fsopt(S̃) in terms of opt(I).

To define fractional structured packing, we first define what it means to slice an item.
From a geometric perspective, slicing an item perpendicular to the kth dimension means
cutting the item into 2 parts using a hyperplane perpendicular to the kth axis. The vector
dimensions get split proportionately across the slices. E.g., for dg = 2, if k = 1 for item i,
then we slice i using a vertical cut, and if k = 2, we slice i using a horizontal cut.

▶ Definition 4 (Slicing an item). Let i be a (dg, dv)-dimensional item. Slicing i perpendicular
to geometric dimension k with proportionality α (where 0 < α < 1) is the operation of replacing
i by two items i1 and i2 such that: (i) ∀j ̸= k, ℓj(i) = ℓj(i1) = ℓj(i2), (ii) ℓk(i1) = αℓk(i)
and ℓk(i2) = (1 − α)ℓk(i), (iii) ∀j ∈ [dv], vj(i1) = αvj(i) and vj(i2) = (1 − α)vj(i).

▶ Definition 5 (Fractional packing). Let Ĩ be (dg, dv)-dimensional items, where for each
item i ∈ Ĩ, we are given a set X(i) of axes perpendicular to which we can repeatedly slice i

(X(i) can be empty, which would mean that the item cannot be sliced). If we slice items as
per their given axes and then pack the slices into bins, then the resulting packing is called a
fractional bin packing. (See Figure 1 for an example.)

4.2 Properties of round

▶ Definition 6. The density vector of a (dg, dv) item i is the vector
vspan := [v0(i)/span(i), v1(i)/span(i), . . . , vdv (i)/span(i)]. Recall that v0(i) := vol(i).

The subroutine round(I) returns a set of pairs of the form (Ĩ , D). Condition C1 is
defined as the following constraints over each pair (Ĩ , D):

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:9

0.4 0.5

0.4

0.4

0.4

1 + 0.4

✂

0.5 0.5

Figure 1 Example of a fractional packing of two items into a bin.

C1.1. Small discard: D ⊆ I and span(D) ≤ ε span(I).
C1.2. Bijection from I − D to Ĩ: Each item in Ĩ is obtained by modifying an item in
I − D. Let π be the corresponding bijection from I − D to Ĩ.
C1.3. Homogeneity properties: round partitions items in Ĩ into a constant number of
classes: K̃1, K̃2, . . . , K̃q. These classes should satisfy the following properties, which we
call homogeneity properties:

All items in a class have the same density vector.
For each class K̃j , we decide the set X of axes perpendicular to which we can slice
items in K̃j . If items in a class K̃j are not allowed to be sliced perpendicular to
dimension k, then all items in that class have the same length along dimension k. (For
example, if dg = 2 and only vertical cuts are forbidden, then all items have the same
width. However, they can have different heights.)

C1.4. Bounded expansion: Let C be any configuration of I and K̃ be any one of the
constant number of classes of Ĩ. Let C̃ := {π(i) : i ∈ C − D}. Then we need to prove
that span(K̃ ∩ C̃) ≤ cmax for some constant cmax.

Intuitively, the homogeneity properties allow us to replace (a slice of) an item in a
fractional packing by slices of other items of the same class. Thus, while trying to get a
fractional packing, we can focus on the item classes, which are constant in number, instead
of focusing on the n items. Intuitively, bounded expansion (C1.4) ensures that we do not
round up items too much.

Condition C2 (also called structural theorem): For some constant ρ > 0 and for some
(Ĩ , D) ∈ round(I), fsopt(Ĩ) ≤ ρ opt(I) + O(1).

Intuitively, the structural theorem says that allowing slicing as per round and imposing a
structure on the packing does not increase the minimum number of bins by too much. We
will see that rnaPack’s AAR increases with ρ, so we want ρ to be small.

4.3 complexPack and unround

Condition C3: For some constant α > 0 and for any (Ĩ , D) ∈ round(I) and any X̃ ⊆ Ĩ,
complexPack(X̃) packs X̃ into at most α fsopt(X̃) + O(1) bins.
Condition C4: For some constant γ > 0, if complexPack(S̃) outputs a packing of S̃

into m bins, then unround converts that to a packing of S − D into γm + O(1) bins.

Intuitively, Condition C3 says that we can find a packing of the rounded items that is
close to the optimal fractional structured packing. Condition C4 says that unrounding does
not increase the number of bins by too much. We will see that rnaPack’s AAR increases
with α and γ, so we want α and γ to be small. If round only increases the dimensions of
items, then unrounding is trivial and γ = 1.

FSTTCS 2022

23:10 Algorithms for Multidimensional Packing

4.4 AAR of R&A
Recall that simplePack is a 2b(dv+1)-approximation algorithm for (dg, dv) BP (see Section 3).
Our key ingredient in the analysis of R&A is the following lemma. We give a very brief
outline of the proof here and defer the full proof to Appendix C.

▶ Lemma 7. Let S̃ be as computed by rnaPack(I, β, ε). Then with high probability, we get
fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1/ε2).

Proof sketch. Our proof of Lemma 7 is inspired by the analysis in [35]. We prove it by
analyzing the fractional structured configuration LP of Ĩ.

▶ Definition 8. Let (Ĩ , D) ∈ round(I). Suppose round partitioned Ĩ into classes K̃1, . . . K̃q.
Let Cf be the set of all structured configurations of items in Ĩ that allow items to be sliced
as per round. For any S̃ ⊆ Ĩ, the fractional structured configuration LP of S̃, denoted as
fsLP(S̃), is

min
x∈R

|Cf |
≥0

∑
C∈Cf

xC where
∑

C∈Cf

span(C ∩ K̃j)xC ≥ span(S̃ ∩ K̃j) ∀j ∈ [q]

The integer version of this program is called fsIP(S̃). The optimal objective values of fsLP(S̃)
and fsIP(S̃) are denoted as fsLP∗(S̃) and fsIP∗(S̃), respectively.

Intuitively, fsIP is the same as the structured fractional bin packing problem because of
the downward closure property and homogeneity, so fsIP∗(S̃) ≈ fsopt(S̃) (see Lemma 17 in
Appendix C for the proof). By homogeneity (C1.3), the number of constraints in this LP
is a constant q. So, by Rank Lemma2, we can show that | fsopt(S̃) − fsLP∗(S̃)| ∈ O(1) (see
Lemma 18 in Appendix C for the proof). Now to prove Lemma 7, roughly, we need to show
that fsLP∗(S̃) ⪅ fsLP∗(Ĩ)/β.

The RHS in the jth constraint of fsLP(S̃) is a random variable span(S̃ ∩ K̃j). The RHS
in the jth constraint of fsLP(Ĩ) is span(K̃j). Now using properties of randomized rounding,
one can show ∀i ∈ I, Pr(i ∈ S) ≤ 1/β. (see Lemma 16 in Appendix C for the proof). Using
this, we obtain E(span(S̃ ∩ K̃j)) ≤ span(K̃j)/β. In fact, we can harness the randomness of
S̃, the bounded expansion property (C1.4), and McDiarmid’s inequality [41] to show that
span(S̃ ∩ K̃j) ⪅ span(K̃j)/β. Therefore, if x∗ is an optimal solution to fsLP(Ĩ), then x∗/β

is roughly a solution to fsLP(S̃), which implies fsLP∗(S̃) ⪅ fsLP∗(Ĩ)/β (see Lemma 21 in
Appendix C for details). ◀

▶ Theorem 9. With high probability, the number of bins used by rnaPack(I, β, ε) is at most
((ln β)µ + (γαρ)/β + 2b(dv + 1 + γαµ)ε) opt(I) + O(1/ε2).

Proof sketch. (See Appendix C for full proof)
We use at most T ≤ (ln β)µ opt(I) + O(1) bins to pack I − S.
We use at most b ⌈2 span(D)⌉ ≤ 2b(dv +1)ε opt(I)+b bins to pack S∩D using simplePack.
S − D occupies at most γα fsopt(S̃) + O(1) ≤ γα (ρ/β + 2bµε) opt(I) + O(1/ε2) bins by
Lemma 7 and Conditions C2, C3, and C4. ◀

Thus, the AAR of rnaPack(I) is roughly µ ln β+γαρ/β. This is minimized for β = γαρ/µ

and the minimum value is µ (1 + ln (αγρ/µ)). As we require β ≥ 1, we get this AAR only
when γαρ ≥ µ. If µ ≥ γαρ, the optimal β is 1 and the AAR is roughly γαρ.

2 Rank Lemma: the number of non-zero variables in an extreme point of the set {x : Ax ≥ b, x ≥ 0} is at
most rank(A). See Lemma 2.1.4 in [39].

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:11

4.5 Example: simplePack

We will show how to use simplePack with the R&A framework. Recall that simplePack
is a 2b(dv + 1)-approximation algorithm for (dg, dv) BP (see Section 3). Using the R&A
framework on simplePack will improve its AAR from 2b(dv +1) to b(1+ln(2(dv +1)))+O(ε).
To do this, we need to show how to implement round, complexPack, and unround.

1. solveConfigLP(I): Using the (dg, dv) KS algorithm of Section 3 and the LP algorithm
of [47], we get a b(1 + ε)-approximate solution to configLP(I). Therefore, µ = b(1 + ε).

2. round(I): returns just one pair: (Ĩ , {}), where Ĩ := {π(i) : i ∈ I} and π(i) is an
item having height (i.e., dth

g geometric dimension) equal to span(i), all other geometric
dimensions equal to 1, and all vector dimensions equal to span(i). There is just one class
in Ĩ, and we allow all items to be sliced perpendicular to the height, so the homogeneity
properties are satisfied. Also, cmax = dv + 1 by Lemma 1 (since for any configuration C,
we have span(π(C)) = span(C) ≤ (dv + 1) opt(C) = dv + 1).

3. Structural theorem: We take structured packing to be the set of all possible packings.
We can treat Ĩ as the 1-D instance {span(i) : i ∈ I}, so fsopt(Ĩ) = ⌈span(I)⌉ ≤
(dv + 1) opt(I), where the inequality follows from Lemma 1. So, ρ = dv + 1.

4. complexPack(S̃): We can treat S̃ as the 1-D instance {span(i) : i ∈ S} and pack it using
Next-Fit [30]. Hence, | complexPack(S̃)| ≤ ⌈2 span(S)⌉ ≤ 2 ⌈span(S)⌉ = 2 fsopt(S̃). So,
α = 2.

5. unround(J̃): We are given a packing J̃ of items S̃. For each bin in J̃ , we can pack the
corresponding unrounded items into b bins. Therefore, γ = b.

Hence, we get an AAR of µ(1 + ln(γαρ/µ)) + O(ε) ≈ b(1 + ln(2(dv + 1))) + O(ε).
For dg = 2, we can slightly improve the AAR by using the (2+ε)-approximation algorithm

of [37] for (2, dv) KS. This gives us an AAR of 2(1 + ln(3(dv + 1))) + O(ε). This is better
than the AAR of betterSimplePack for dv ≥ 3.

The above example is presented only to illustrate an easy use of the R&A framework.
It doesn’t exploit the full power of the R&A framework. The algorithm cbPack, which we
describe in Section 5, uses more sophisticated subroutines round, complexPack and unround,
and uses a more intricate definition of fractional structured packing to get an even better
AAR of 2(1 + ln(d+4

2)) + ε (improves to 2(1 + ln(19/12)) + ε ≈ 2.919 + ε for d = 1).

5 Improved Approximation Algorithms

In this section, we give an overview of the cbPack algorithm for (2, d) BP, which is inspired
from the 1.5 asymptotic approximation algorithm for 2-D GBP [44]. cbPack is based on the
following two-step procedure, as is common in many packing algorithms.

In the first step (structural step, Appendices F.1–F.5 and F.7 in [38]), we show the
existence of a good structured solution. Formally, we show that if items I can be packed into
m bins, then we can round I to get a new instance Ĩ such that fsopt(Ĩ) ≤ ρm + O(1) for
some constant ρ, where fsopt(Ĩ) is the number of bins in the optimal structured fractional
packing of I. Roughly, the notion of structured packing that we use here, which we call
compartmental packing, imposes the following additional constraints over the container-based
packing of [44]: (i) An item i is called dense iff vmax(i)/a(i) is above a certain threshold. If
a bin contains dense items, then we reserve a sufficiently-large rectangular region exclusively
for them. (ii) For a constant ε, for every j ∈ [d], the sum of vj of items in each bin is at
most 1 − ε. The proof of our structural result differs significantly from that of [44] because
the presence of vector dimensions inhibit a straightforward application of their techniques.

FSTTCS 2022

23:12 Algorithms for Multidimensional Packing

In the second step (algorithmic step), we show how to find a near-optimal structured
solution. cbPack first rounds I to Ĩ and then uses brute-force and LP to pack the items
into containers, similar to [44] or [34]. Then we convert that packing to a non-fractional
packing of I with only a tiny increase in the number of bins (see Appendix F.8 of [38] for
the algorithmic step).

Then we show that cbPack fits into the R&A framework (i.e., components from cbPack
can be used as round, complexPack and unround) and gives an AAR of roughly 2(1+ln(ρ/2)).
To (approximately) solve the configuration LP, we use the LP algorithm from [47] and the
(2 + ε)-approximation algorithm for (2, d) KS from [37] (see Appendix F.9 of [38] for the
details of fitting cbPack into the R&A framework).

5.1 Overview of Structural Result
We now give a brief overview of some key ideas used in our structural result. Due to space
limitations, the details of the structural result and the algorithm can be found in Appendix F
of [38]. Like [44], we start with a packing of input I into m bins, and transform it into a
structured fractional packing of Ĩ into ρm + O(1) bins. To do this, just like many other
papers on packing, we first classify the items into different classes based on their geometric
and vector dimensions, and densities as follows. First, we identify two constants (which
depend on ε) ε1, ε2 ∈ (0, 1) such that ε1 > ε2 and the set of medium items defined as

Imed :=

i ∈ I : w(i) ∈ (ε2, ε1] ∨ h(i) ∈ (ε2, ε1] ∨

 d∨
j=1

vj(i) ∈ (ε2, ε1]


has a very small span, i.e., span(Imed) ≤ ε span(I). Hence, we can treat the items in Imed
separately as they can be packed in a very small number of bins. Also, ε1, ε2 satisfy that
ε2 ≤ ε2

1ε/2. Informally, ε2 is very small when compared to ε1. Hence, every item in I\Imed
has the property that both width and height are big (> ε1) or both width and height are
small (≤ ε2) or it is skewed. Based on ε1, ε2, we classify every item i ∈ I\Imed as follows.
First, we classify by geometric dimensions as follows.

Big item: w(i) > ε1 and h(i) > ε1.
Wide item: w(i) > ε1 and h(i) ≤ ε2.
Tall item: w(i) ≤ ε2 and h(i) > ε1.
Small item: w(i) ≤ ε2 and h(i) ≤ ε2.

Then, we perform another classification depending on vector dimensions.

▶ Definition 10 (Dense items). Item i is dense iff either a(i) = 0 or vmax(i)/a(i) > 1/ε2
1.

▶ Definition 11 (Heavy and light items). A dense item i is said to be heavy in vector
dimension j iff vj(i) ≥ ε1. Otherwise i is said to be light in dimension j. If i is heavy in
some dimension, then i is said to be heavy, otherwise i is light.

More formal details of this classification are provided in Appendix F.1 of [38].
Then, the structural result is obtained in three steps:

(i) In the first step, we round up one geometric dimension of each item and pack the items
into roughly ρm + O(1) bins. We call these bins quarter-structured (see Appendices F.2
and F.3 of [38]).

(ii) In the second step, we round the remaining dimensions of items and partition them
into classes such that they satisfy the homogeneity properties (see Section 4.2). We
allow slicing and repack the items into almost the same number of bins. We call the
resulting bin packing semi-structured (see Appendices F.4 and F.5 of [38]).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:13

(iii) In the third and final step, we transform the packing into a compartmental packing (see
Appendices F.6 and F.7 of [38]). Compartmental packings have nice properties which
help us find them efficiently. Roughly, a compartmental packing is a semi-structured
packing that is also container-based. This step is very similar to [44].

In steps (i), (ii) and (iii), [44] uses the Next-Fit-Decreasing-Height (NFDH) algorithm [14]
to pack items of O(εm) area into O(εm) bins. This does not work when vector dimensions are
present as an item of low area can have large weights. In step (ii), [44] uses linear grouping,
i.e., each item is moved in place of a geometrically larger item so that it can be rounded
up. Vector dimensions make such cross-bin movement difficult, since that can violate bins’
weight capacities. [44] uses cross-bin movement in step (i) too.

We first observe that most difficulties associated with vector dimensions disappear if
items’ density is upper-bounded by a constant. Density of item i is defined as vmax(i)/a(i).
Specifically, if items of bounded density (we call them non-dense items) have small area,
then simplePack can pack them into a small number of bins. Linear grouping can also be
made to work for such items with some more effort. Hence, we segregate items as dense
and non-dense. We reserve a thin rectangular region in bins for dense items, and the rest is
reserved for non-dense items.

Furthermore, dense items in a bin must have low total area, due to their high density.
If we reserve enough space for them in the bin, we can always pack them in their reserved
region using NFDH (see Lemma 15 in Appendix B). Such a guarantee means that we can
essentially ignore their geometric dimensions and simply treat them as vectors.

In step (ii), we want to round up vector dimensions with only a marginal increase in
the number of bins. To do this, we require each quarter-structured bin to be ε-slacked.
ε-slackness roughly means that for a set J of items in a bin, ∀j ∈ [d], vj(J) ≤ 1 − ε (see
Appendix F.3 of [38] for a formal description). ε-slackness also helps us use existing algorithms
for resource-augmented vector bin packing as subroutines. Also, during the rounding step,
we round down the weight of some dense items, and ε-slackness allows us to unround with
no increase in the number of bins.

The observations above guide our definition of quarter-structured. Roughly, a packing is
quarter-structured if items having large width have their width and x-coordinate rounded to
a multiple of ε2

1/4 and each bin is ε-slacked. We reserve a thin rectangular region of width
ε1/2 for packing dense items (only if the bin contains dense items).

In step (i), [44] uses a standard cutting-strip argument: They create a strip of width ε1
next to an edge of the bin (see Figure 2). Items completely inside the strip (called dark
items), have small area and are packed separately using NFDH. Items intersecting the strip’s
boundary (called shaded items) are removed. This creates an empty space of width ε1 in
the bin. Using this empty space, items outside the strip (called dotted items) can then have
their width and x-coordinate rounded to a multiple of ε2

1/2. Their key idea is how to pair up
most bins so that shaded items from two bins can be rounded and packed together into a
new bin. This is roughly why they get an AAR of 1.5 + ε.

We use the cutting-strip argument too, but with some differences. We cannot freely mix
shaded items from different bins if they have large weight, and we cannot simply pack dark
items into a small number of bins. We also need bins to be slacked. So, we get a larger AAR
of d + 4 + ε. For d = 1, however, we allow mixing items using more sophisticated techniques,
which improves the AAR to 19/6 + ε. Also, we round dotted items to a multiple of ε2

1/4
instead of ε2

1/2, which leaves an empty strip of width ε1/2 in the bin even after rounding,
and we reserve this space for dense items. This gives us a quarter-structured packing.

FSTTCS 2022

23:14 Algorithms for Multidimensional Packing

ε

Figure 2 Example of classifying items as dark, shaded and dotted based on an ε-strip.

Based on the broad ideas above, we make more changes to the quarter-structured packing
to get a compartmental packing. Finally, in the algorithmic step, we use a combination of
brute-force and LP to pack items into compartments and efficiently find a good compartmental
packing. An overview is given in the section below.

5.2 Overview of the Algorithmic Step
Note that in any bin, the number of big items and heavy items can be at most a constant in
number. The nice structure obtained in the structural step has the property that in each
bin there are constant number of compartments in which all the light items (which are not
big) are packed. With these arguments, in any bin of this nice structure, the number of big
items, heavy items, and compartments is constant in number. Moreover, the sizes of the
compartments also belong to a polynomial sized set. There are other things to be considered
(e.g., the slack type of the bin), but one of the main implications of the structural result is
that the number of possible configurations of each bin is at most a constant. Also, note that
the number of bins itself is bounded by the number of items n. Thus, in polynomial time (by
brute force), we can guess the number of bins in the nice structure, and the configuration of
each bin (for full details, see Appendix F.8.1 of [38]).

Once the configurations have been guessed, we are left with the task of packing the wide,
tall, small, and light items in the compartments. First, as an intermediate step, we obtain a
fractional packing of these items into the compartments by solving a linear program (if the
linear program is infeasible, we realize that our guess of the bin configurations is incorrect).
See Appendix F.8.2 of [38] for the details of the linear program. The main purpose of solving
the linear program (if it turns out to be feasible) is to further divide compartments into
what are called containers (see Appendix F.8.3 of [38]). Finally, the wide, tall, small, and
light items are non-fractionally packed into the containers greedily. There can be some items
which can’t be packed by our greedy strategy, but we can prove that their span is so small
that we can pack them using very few extra bins. See Appendices F.8.5, F.8.6, and F.8.6 of
[38] for the details of packing the wide, tall, small, and light items.

In Theorem 66 of Appendix F.8.7 of [38], we compute the approximation factor of this
algorithm:

▶ Theorem 12. For general d, when rotations are forbidden, the above algorithm packs the
input set I into at most

(1 + 23ε)(d + 4) opt(I) + Oε(1)

number of bins. Here Oε(1) hides a constant that depends on ε.

In the special case of d = 1, we obtain a better approximation ratio.

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:15

▶ Theorem 13. If d = 1 and rotations are forbidden, we can pack the input set I into at
most

(1 + 23ε)
(

3 + 1
6 + ε

1 − ε

)
opt(I) + Oε(1)

number of bins. Here Oε(1) hides a constant that depends on ε.

Using similar techniques, we can design an algorithm for the case with rotations too.
Using the Round&Approx framework on top of this algorithm, and scaling ε appropriately,
we get the following approximation ratios.

For general d, with no rotations, we get an approximation ratio of 2
(
1 + ln

(
d+4

2
))

+ ε.
When d = 1 and rotations are forbidden, we get an approximation ratio of ≈ 2.919 + ε.
For general d, with rotations allowed, we get an approximation ratio of 2

(
1 + ln

(
d+3

2
))

+ε.
When d = 1 and rotations are allowed, we get an approximation ratio of ≈ 2.811 + ε.

References
1 M. T. Alonso, R. Alvarez-Valdes, Manuel Iori, F. Parreño, and J. M. Tamarit. Mathematical

models for multicontainer loading problems. Omega, 66:106–117, 2017. doi:10.1016/j.omega.
2016.02.002.

2 Samir V. Amiouny, John J. Bartholdi III, John H. Vande Vate, and Jixian Zhang. Balanced
loading. Operations Research, 40(2):238–246, 1992. doi:10.1287/opre.40.2.238.

3 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2009. doi:10.1137/080736831.

4 Nikhil Bansal, Jose R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Mathematics of Operations
Research, 31:31–49, 2006. doi:10.1287/moor.1050.0168.

5 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561–1579. SIAM,
2016. doi:10.1137/1.9781611974331.ch106.

6 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In SODA, pages 13–25, 2014. doi:10.1137/1.9781611973402.2.

7 Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair
algorithms for clustering. In Conference on Neural Information Processing Systems (NeurIPS),
pages 4955–4966, 2019.

8 Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading–a state-of-the-art
review. European Journal of Operational Research, 229(1):1–20, 2013. doi:10.1016/j.ejor.
2012.12.006.

9 Alberto Caprara. Packing 2-dimensional bins in harmony. In FOCS, pages 490–499, 2002.
doi:10.1109/SFCS.2002.1181973.

10 Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, 2008. doi:10.1287/moor.1070.0289.

11 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004. doi:10.1137/S0097539799356265.

12 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017. doi:10.1016/j.cosrev.2016.12.001.

13 Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo. Bin
packing approximation algorithms: Survey and classification. In Handbook of combinatorial
optimization, pages 455–531. Springer New York, 2013. doi:10.1007/978-1-4419-7997-1_35.

14 Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808–826, 1980. doi:10.1137/0209062.

FSTTCS 2022

https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1287/opre.40.2.238
https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1109/SFCS.2002.1181973
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1137/S0097539799356265
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1137/0209062

23:16 Algorithms for Multidimensional Packing

15 Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas. Approximation
algorithms for 3D orthogonal knapsack. Journal of Computer Science and Technology, 23(5):749,
2008. doi:10.1007/s11390-008-9170-7.

16 Khaled M. Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam
Pal. Approximation algorithms for the unsplittable flow problem on paths and trees. In
FSTTCS, volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages
267–275, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.267.

17 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1 + ε

in linear time. Combinatorica, 1:349–355, 1981. doi:10.1007/BF02579456.
18 A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1

knapsack problem: worst-case and probabilistic analyses. EJOR, 15:100–109, 1984.
19 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan,

and Malin Rau. A tight (3/2+ε) approximation for skewed strip packing. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.APPROX/RANDOM.2020.44.

20 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 260–271. IEEE,
2017. Full version available at http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf.
doi:10.1109/FOCS.2017.32.

21 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In FSTTCS, pages 9:1–9:14, 2016. doi:
10.4230/LIPIcs.FSTTCS.2016.9.

22 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 894–905. SIAM, 2022.
doi:10.1137/1.9781611977073.38.

23 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy, and
Andreas Wiese. A (2+ ε)-approximation algorithm for maximum independent set of rectangles,
2021. arXiv:2106.00623.

24 Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more
dimensions. Operations research, 13(1):94–120, 1965. doi:10.1287/opre.13.1.94.

25 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing.
In SODA, pages 2616–2625, 2017. doi:10.1137/1.9781611974782.172.

26 Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for packing
hypercubes into a knapsack. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP, volume 229 of LIPIcs, pages 78:1–78:20, 2022.

27 Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing.
Algorithmica, 74(1):208–269, 2016. doi:10.1007/s00453-014-9943-z.

28 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In SODA,
pages 204–213, 2004.

29 D. S. Johnson. Approximation algorithms for combinatorial problems. In STOC, pages 38–49,
1973.

30 David S Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts Institute
of Technology, USA, 1973.

31 Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth. Fairness in
learning: Classic and contextual bandits. In NeurIPS, pages 325–333, 2016.

32 Debajyoti Kar, Arindam Khan, and Andreas Wiese. Approximation algorithms for round-ufp
and round-sap, 2022. doi:10.48550/ARXIV.2202.03492.

33 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

https://doi.org/10.1007/s11390-008-9170-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.267
https://doi.org/10.1007/BF02579456
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.1137/1.9781611977073.38
http://arxiv.org/abs/2106.00623
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.48550/ARXIV.2202.03492

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:17

34 Claire Kenyon and Eric Rémila. Approximate strip packing. In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 31–36, 1996. doi:10.1109/SFCS.1996.548461.

35 Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis,
Georgia Institute of Technology, Atlanta, GA, USA, 2016.

36 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47.

37 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for
generalized multidimensional knapsack, 2021. arXiv:2102.05854.

38 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenvas. Geometry meets vectors:
Approximation algorithms for multidimensional packing, 2021. arXiv:2106.13951v1.

39 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

40 Eugene L Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

41 Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–
188, 1989.

42 Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming
formulation for the three-dimensional bin packing problem deriving from an air cargo
application. International Transactions in Operational Research, 23(1-2):187–213, 2016.
doi:10.1111/itor.12111.

43 Deval Patel, Arindam Khan, and Anand Louis. Group fairness for knapsack problems. In
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages
1001–1009, 2021.

44 Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD thesis,
Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/
dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N.

45 Arka Ray. There is no APTAS for 2-dimensional vector bin packing: Revisited, 2021.
arXiv:2104.13362.

46 Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. In
Symposium on Foundations of Computer Science (FOCS), pages 245–256, 2022. doi:10.1109/
FOCS52979.2021.00033.

47 Eklavya Sharma. An approximation algorithm for covering linear programs and its application
to bin-packing, 2020. arXiv:2011.11268.

48 Knut Olav Brathaug Sørset. A heuristic approach to the three-dimensional bin packing
problem with weight constraints. Master’s thesis, Høgskolen i Molde-Vitenskapelig høgskole i
logistikk, 2019.

49 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

50 Gregory S. Taylor, Yupo Chan, and Ghulam Rasool. A three-dimensional bin-packing model:
exact multicriteria solution and computational complexity. Annals of Operations Research,
251(1-2):397–427, 2017. doi:10.1007/s10479-015-2048-5.

51 Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence
maximization. In IJCAI, pages 5997–6005, 2019.

52 Gerhard J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Inf.
Process. Lett., 64(6):293–297, 1997. doi:10.1016/S0020-0190(97)00179-8.

53 Guang Yang. gbp: a bin packing problem solver, 2017. R package version 0.1.0.4. URL:
https://CRAN.R-project.org/package=gbp.

FSTTCS 2022

https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2102.05854
http://arxiv.org/abs/2106.13951v1
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1111/itor.12111
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
http://arxiv.org/abs/2104.13362
https://doi.org/10.1109/FOCS52979.2021.00033
https://doi.org/10.1109/FOCS52979.2021.00033
http://arxiv.org/abs/2011.11268
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1007/s10479-015-2048-5
https://doi.org/10.1016/S0020-0190(97)00179-8
https://CRAN.R-project.org/package=gbp

23:18 Algorithms for Multidimensional Packing

A Formal Definition of (dg, dv) Packing

▶ Definition 14. A valid packing of (dg, dv)-dimensional items into a (dg, dv)-dimensional
bin is an arrangement of the items in the bin such that all of the following hold:
1. All items are packed in an axis parallel manner, i.e., each item has its faces parallel to

the faces of the bin. Formally, to pack item i into a bin, we need to decide its position
(x1(i), x2(i), . . . , xdg (i)) in the bin, and the item will be packed in the cuboidal region∏dg

j=1[xj(i), xj(i) + ℓj(i)].
2. The items are non-overlapping, i.e., the interiors of any two items do not intersect.

Formally, for any two items i1 and i2 in the same bin, the sets
∏dg

j=1(xj(i1), xj(i1)+ℓj(i1))
and

∏dg

j=1(xj(i2), xj(i2) + ℓj(i2)) do not intersect.
3. All items are packed completely inside the bin, i.e., for each item i and each j ∈ [dg],

xj(i) ≥ 0 and xj(i) + ℓj(i) ≤ 1.
4. In each bin, the total weight in each of the dv dimensions is at most one, i.e., for each

set S of items in a bin and each j ∈ [dv], we have
∑

i∈S vj(i) ≤ 1.

B Next-Fit Decreasing Height (NFDH)

▶ Lemma 15 (NFDH for strip packing [14]). A set I of rectangles can be packed into a strip of
height at most 2a(I) + maxi∈I h(i) using the Next-Fit Decreasing Height (NFDH) algorithm.

C Details of the R&A Framework

Algorithm 1 rnaPack(I, β, ε): Computes a bin packing of (dg, dv) items I, and β ≥ 1.

1: x̂ = solveConfigLP(I)
2: repeat T := ⌈(ln β)∥x̂∥1⌉ times
3: Select a configuration C with probability x̂C/∥x̂∥1.
4: Pack a bin according to C.
5: end repeat
6: Let S be the unpacked items from I. // S is called the set of residual items.
7: Initialize Jbest to null.
8: for (Ĩ , D) ∈ round(I) do // round(I) outputs a set of pairs.
9: JD = simplePack(S ∩ D)

10: Let π be a bijection from I − D to Ĩ. Let S̃ := {π(i) : i ∈ S − D}.
11: J̃ = complexPack(S̃)
12: J = unround(J̃)
13: if Jbest is null or |JD ∪ J | < |Jbest| then
14: Jbest = JD ∪ J

15: end if
16: end for
17: Pack S according to Jbest.

▶ Lemma 16. ∀i ∈ I, Pr(i ∈ S) ≤ exp
(

− T

∥x̂∥1

)
≤ 1

β .

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:19

Proof. Let C1, C2, . . . , CT be the configurations chosen during randomized rounding (line 3
in Algorithm 1). Let Ci be the configurations that contain the element i.

Pr(i ∈ S) = Pr
(

T∧
t=1

(Ct ̸∈ Ci)
)

=
T∏

t=1
Pr(Ct ̸∈ Ci) (all Ct are independent)

=
T∏

t=1

(
1 −

∑
C∈Ci

Pr(Ct = C)
)

=
(

1 −
∑

C∈Ci

x̂C

∥x̂∥1

)T

≤
(

1 − 1
∥x̂∥1

)T

(constraint in configuration LP for item i)

≤ exp
(

− T

∥x̂1∥

)
≤ 1

β
◀

▶ Lemma 17. fsopt(S̃) ≤ fsIP∗(S̃) ≤ fsopt(S̃) + q.

Proof. Due to the downward closure property, changing inequality constraints to equality
constraints doesn’t affect the optimum values of the above LP and IP. Therefore, fsIP(S̃) is
equivalent to the fractional structured bin packing problem.

The above definition of fsLP(Ĩ) is problematic: the number of variables may be infinite if
some classes allow slicing. We circumvent this problem by discretizing the configurations:
Let δ be the smallest dimension of any item, i.e. δ := min

(
mindg

j=1 ℓj(i), mindv
j=1 vj(i)

)
.

In any optimal integral solution to fsLP(Ĩ) that uses m bins, we can slice out some items
from each class in each bin so that the span of each class in each bin is a multiple of δdg /n.
In each class, the total size of sliced out items across all bins is at most δdg . Therefore, for
each class, slices of that class can fit into a single item of that class. If each such single item
is packed in a separate bin, the total number of bins used is at most m + q.

Therefore, we only need to consider configurations where either the span of each class
is a multiple of δdg /n or there is a single item in the configuration. This gives us a finite
number of configurations and completes the proof. ◀

▶ Lemma 18. fsLP∗(S̃) ≤ fsIP∗(S̃) ≤ fsLP∗(S̃) + q.

Proof. By Rank Lemma (Lemma 2.1.4 in [39]), the number of positive-valued variables in
an extreme-point solution to a linear program is at most the number of constraints (other
than the variable non-negativity constraints).

Thus, an optimal extreme-point solution to fsLP(S̃) has at most q positive-valued variables.
Rounding up those variables to the nearest integer will give us an integral solution and
increase the objective value by at most q. Hence, fsIP∗(S̃) ≤ fsLP∗(S̃) + q. ◀

Let configLP(I) denote the configuration LP of items I and let configLP∗(I) denote the
optimal objective value of configLP(I). Recall that simplePack is a 2b(dv +1)-approximation
algorithm for (dg, dv) BP (see Section 3), where b := 3 when dg = 2, b := 9 when dg = 3,
b := 4dg + 2dg when dg > 3, and b := 1 when dg = 1.

▶ Lemma 19. For a set I of (dg, dv)-dimensional items, configLP∗(I) ∈ Θ(span(I)) + O(1).

Proof. Let A be the configuration matrix of I. Let x∗ be the optimal solution to configLP(I).
In configLP(I), the constraint for item i gives us

∑
C∈C A[i, C]x∗

C ≥ 1. Multiplying each
constraint by span(i) and adding these constraints together, we get

FSTTCS 2022

23:20 Algorithms for Multidimensional Packing

span(I) ≤
∑
C∈C

∑
i∈I

span(i)A[i, C]x∗
C =

∑
C∈C

span(C)x∗
C

≤ (dv + 1)
∑
C∈C

x∗
C = (dv + 1) configLP∗(I).

Therefore, configLP∗(I) ≥ span(I)/(dv + 1). We also have

configLP∗(I) ≤ opt(I) ≤ | simplePack(I)| ≤ 2b span(I) + b.

Therefore, configLP∗(I) ∈ Θ(span(I)) + O(1). ◀

▶ Lemma 20 (Independent Bounded Difference Inequality [41]). Let X := [X1, X2, . . . , Xn] be
random variables with Xj ∈ Aj . Let ϕ :

∏n
i=1 Aj 7→ R be a function such that |ϕ(x) − ϕ(y)| ≤

cj whenever vectors x and y differ only in the jth coordinate. Then for any t ≥ 0,

Pr[ϕ(X) − E(ϕ(X)) ≥ t] ≤ exp
(

− 2t2∑n
j=1 c2

j

)
.

▶ Lemma 21. Let S̃ be as computed by rnaPack(I, β, ε). Let ε ∈ (0, 1) be a constant. When
span(I) is large compared to 1/ε2, we get that with high probability

fsLP∗(S̃) ≤ fsLP∗(Ĩ)
β

+ 2bµε opt(I) + O(1).

Proof. Let y ∈ CT be the configurations chosen during randomized rounding (on line 3 in
rnaPack). When viewed as a vector of length T , all coordinates of y are independent. Define
uncovered(y) := I −

⋃T
t=1 yt. Let S be the unpacked items from I (see line 6 in rnaPack).

Then S = uncovered(y).
Let K̃1, . . . , K̃q be the classes of Ĩ. Let π be the bijection from I − D to Ĩ. For a set

X ⊆ I, let Ĩ[X] := {π(i) : i ∈ X − D}. For j ∈ [q], define ϕj ∈ CT 7→ R≥0 as

ϕj(y) := span
(

K̃j ∩ Ĩ[uncovered(y)]
)

.

For any X ⊆ I, define gj(X) := span(K̃j ∩ Ĩ[X]). Then ϕj(y) = gj(uncovered(y)) and gj is
a non-negative additive function.

Let y(1), y(2) ∈ CT such that y(1) and y(2) differ only in coordinate t. Let C1 := y
(1)
t ,

C2 := y
(2)
t , S1 := uncovered(y(1)), S2 := uncovered(y(2)), and R :=

⋃
t′ ̸=t y

(1)
t′ =

⋃
t′ ̸=t y

(2)
t′ .

Then I − S1 = R ∪ C1 and I − S2 = R ∪ C2. So, S1 − S2 = (C2 − C1) − R ⊆ C2 and
S2 − S1 = (C1 − C2) − R ⊆ C1. Hence,∣∣∣ϕj(y(1)) − ϕj(y(2))

∣∣∣ = |gj(S1) − gj(S2)| = |gj(S1 − S2) − gj(S2 − S1)| (additivity of gj)

≤ max(gj(S1 − S2), gj(S2 − S1)) ≤ max(gj(C2), gj(C1))

≤ max
C∈C

span(K̃j ∩ Ĩ[C]) ≤ cmax. (by bounded expansion (C1.4))

By Lemma 16, Pr(i ∈ S) ≤ 1/β. By linearity of E and additivity of gj , we get

E(ϕj(y)) = E(gj(S)) =
∑
i∈Ĩ

gj({i}) Pr(i ∈ S) ≤
∑
i∈Ĩ

gj({i})(1/β) = gj(Ĩ)
β

= span(K̃j)
β

.

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:21

∀j ∈ [q], define Qj as the smallest prefix of S̃ ∩ K̃j such that either Qj = S̃ ∩ K̃j or
span(Qj) ≥ ε ∥x̂∥1 /q. Define Q :=

⋃q
j=1 Qj . Hence, span(Q) ≤ ε ∥x̂∥1+q ≤ εµ opt(I)+O(1).

fsLP∗(S̃) ≤ fsLP∗(S̃ − Q) + fsLP∗(Q)

≤ fsLP∗(S̃ − Q) + b(2 span(Q) + 1) (by Section 3)

≤ fsLP∗(S̃ − Q) + 2bµε opt(I) + O(1).

Now we will try to prove that with high probability, fsLP∗(S̃ − Q) ≤ fsLP∗(Ĩ)/β.
If Qj = S̃ ∩ K̃j , then span(K̃j ∩ (S̃ − Q)) = 0. Otherwise,

Pr
[

span(K̃j ∩ (S̃ − Q)) ≥ span(K̃j)
β

]
= Pr

[
span(K̃j ∩ S̃) − span(K̃j)

β
≥ span(Qj)

]

≤ Pr
[
ϕj(y) − E(ϕj(y)) ≥ ε

q
∥x̂∥1

]
≤ exp

(
− 2

Tc2
max

(
ε

q
∥x̂∥1

)2
)

(Lemma 20)

≤ exp
(

− 2ε2

ln(β)c2
maxq2 ∥x̂∥1

)
.

Therefore, by union bound, we get

Pr

 q∨
j=1

(
span(K̃j ∩ (S̃ − Q)) ≥ span(K̃j)

β

) ≤ q exp
(

− 2ε2

ln(β)c2
maxq2 ∥x̂∥1

)
.

Since configLP∗(I) ≤ ∥x̂∥1 ≤ µ configLP∗(I) + O(1), and configLP∗(I) ∈ Θ(span(I)) + O(1)
(by Lemma 19), we get ∥x̂∥1 ∈ Θ(span(I)) + O(1). When span(I) is very large compared to
1/ε2, we get that with high probability, ∀j ∈ [q],

span(K̃j ∩ (S̃ − Q)) ≤ span(K̃j)
β

.

Let x∗ be the optimal solution to fsLP(Ĩ). Then with high probability, x∗/β is a feasible
solution to fsLP(S̃ − Q). Therefore,

fsLP∗(S̃) ≤ fsLP∗(S̃ − Q) + 2bµε opt(I) + O(1) ≤ fsLP∗(Ĩ)/β + 2bµε opt(I) + O(1). ◀

▶ Lemma 7. Let S̃ be as computed by rnaPack(I, β, ε). Then with high probability, we get
fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1/ε2).

Proof. When span(I) is very large compared to 1/ε2, we get

fsopt(S̃) ≤ fsIP∗(S̃) + O(1) (by Lemma 17)

≤ fsLP∗(S̃) + O(1) (by Lemma 18)

≤ fsLP∗(Ĩ)/β + 2bµε opt(I) + O(1) (by Lemma 21)

≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1). (by Lemma 17)

Otherwise, if span(I) ∈ O(1/ε2), we get

fsopt(S̃) ≤ ρ opt(I) + O(1) (by structural theorem)
≤ ρ| simplePack(I)| + O(1)
≤ Θ(span(I)) + O(1) ≤ O(1/ε2). (by Section 3)

◀

FSTTCS 2022

23:22 Algorithms for Multidimensional Packing

▶ Theorem 9. With high probability, the number of bins used by rnaPack(I, β, ε) is at most
((ln β)µ + (γαρ)/β + 2b(dv + 1 + γαµ)ε) opt(I) + O(1/ε2).

Proof. Let JLP be the set of bins packed in the randomized rounding of configuration LP
step (see line 4 in Algorithm 1 in Appendix C), JD be the set of bins used to pack the
discarded items D ∩ S, J be the set of bins used to pack the rest of the items S \ D, and J̃

be the set of bins used by complexPack to pack items in S̃.
Then |JLP| ≤ T = ⌈(ln β)∥x̂∥1⌉ ≤ (ln β)µ opt(I) + O(1).
Now, we have |JD| ≤ b ⌈2 span(D)⌉ ≤ 2bε span(I) + b ≤ 2b(dv + 1)ε opt(I) + b. The first

inequality follows from the property of simplePack, the second follows from C1.1 (Small
Discard) and the last follows from Lemma 1. Finally,

|J | ≤ γ|J̃ | + O(1) (property of unround (C4))

≤ γα fsopt(S̃) + O(1) (property of complexPack (C3))

≤ γα
(

fsopt(Ĩ)/β + 2bµε opt(I)
)

+ O(1/ε2) (by Lemma 7)

≤ γα (ρ/β + 2bµε) opt(I) + O(1/ε2)

Here, the last inequality follows from the structural theorem (C2), which says that ∃(Ĩ , D) ∈
round(I) such that fsopt(Ĩ) ≤ ρ opt(I) + O(1). Hence, the total number of bins is at most

|JLP| + |JD| + |J | ≤
(

(ln β)µ + γαρ

β
+ 2b(dv + 1 + γαµ)ε

)
opt(I) + O(1/ε2). ◀

C.1 Error in Previous R&A Framework
Here we describe a minor error in the R&A framework of [35], and how it can be fixed.

We define (Ĩ , D) as an output of round(I) and for the residual instance S, we define S̃ as
the corresponding rounded items of S − D. Our proof of Lemma 7 relies on the fact that
for any subset of rounded items, the span reduces by a factor of at least β if we restrict our
attention to the residual instance. Formally, this means that for any X̃ ⊆ Ĩ, we have

E(span(X̃ ∩ S̃)) =
∑
i∈X̃

span(i) Pr(i ∈ S̃) ≤ span(X̃)/β.

The equality follows from linearity of expectation and the fact that span(i) is deterministic,
i.e., it doesn’t depend on the randomness used in the randomized rounding of the configuration
LP. This is because round is not given any information about what S is. The inequality
follows from Lemma 16, which says that Pr(i ∈ S) ≤ 1/β.

The R&A framework of [35] used similar techniques in their analysis. In their algorithm,
however, they round items differently. Specifically, they define a subroutine round and define
Ĩ := round(I) and S̃ := round(S). They, too, claim that for any subset of rounded items,
the span reduces by a factor of at least β if we restrict our attention to the residual instance.
While their claim is correct for input-agnostic rounding (where items are rounded up to
some constant size collection values chosen independent of the problem instance), the claim
is incorrect for input-sensitive rounding (where the values are chosen based on the specific
problem instance). So the claim is incorrect if round is not deterministic, as then an item
can be rounded differently depending on different residual instances.

In fact, they use their R&A framework with the algorithm of Jansen and Prädel [27],
which uses linear grouping (along with some other techniques) for rounding. Linear grouping
rounds items in an input-sensitive way, i.e., the rounding of each item depends on the sizes
of items in S which is a random subset.

Black Box Absolute Reconstruction for Sums of
Powers of Linear Forms
Pascal Koiran #

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Subhayan Saha #

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract
We study the decomposition of multivariate polynomials as sums of powers of linear forms. We give
a randomized algorithm for the following problem: If a homogeneous polynomial f ∈ K[x1, ..., xn]
(where K ⊆ C) of degree d is given as a blackbox, decide whether it can be written as a linear
combination of d-th powers of linearly independent complex linear forms. The main novel features
of the algorithm are:

For d = 3, we improve by a factor of n on the running time from the algorithm in [21]. The price
to be paid for this improvement is that the algorithm now has two-sided error.
For d > 3, we provide the first randomized blackbox algorithm for this problem that runs in
time poly(n, d) (in an algebraic model where only arithmetic operations and equality tests are
allowed). Previous algorithms for this problem [17] as well as most of the existing reconstruction
algorithms for other classes appeal to a polynomial factorization subroutine. This requires
extraction of complex polynomial roots at unit cost and in standard models such as the unit-cost
RAM or the Turing machine this approach does not yield polynomial time algorithms.
For d > 3, when f has rational coefficients (i.e. K = Q), the running time of the blackbox
algorithm is polynomial in n, d and the maximal bit size of any coefficient of f . This yields
the first algorithm for this problem over C with polynomial running time in the bit model of
computation.

These results are true even when we replace C by R. We view the problem as a tensor decomposition
problem and use linear algebraic methods such as checking the simultaneous diagonalisability of
the slices of a tensor. The number of such slices is exponential in d. But surprisingly, we show that
after a random change of variables, computing just 3 special slices is enough. We also show that our
approach can be extended to the computation of the actual decomposition. In forthcoming work we
plan to extend these results to overcomplete decompositions, i.e., decompositions in more than n

powers of linear forms.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing
methodologies → Algebraic algorithms; Computing methodologies → Linear algebra algorithms

Keywords and phrases reconstruction algorithms, tensor decomposition, sums of powers of linear
forms, simultaneous diagonalisation, algebraic algorithm, black box

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.24

Related Version Full Version: https://arxiv.org/abs/2110.05305

1 Introduction

Lower bounds and polynomial identity testing are two fundamental problems about arith-
metic circuits. In this paper we consider another fundamental problem: arithmetic circuit
reconstruction. For an input polynomial f , typically given by a black box, the goal is to find
the smallest circuit computing f within some class C of arithmetic circuits. This problem
can be divided in two subproblems: a decision problem (can f be computed by a circuit of
size s from the class C?) and the reconstruction problem proper (the actual construction
of the smallest circuit for f). In this paper we are interested in absolute reconstruction,

© Pascal Koiran and Subhayan Saha;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pascal.koiran@ens-lyon.fr
mailto:subhayan.saha@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.24
https://arxiv.org/abs/2110.05305
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

namely, in the case where C is a class of circuits over the field of complex numbers. The name
is borrowed from absolute factorization, a well-studied problem in computer algebra (see
e.g. [9, 10, 11, 24]). Most of the existing reconstruction algorithms appeal to a polynomial
factorization subroutine, see e.g. [12, 13, 16, 17, 18, 19, 26]. This typically yields polynomial
time algorithms over finite fields or the field of rational numbers. However, in standard
models of computation such as the unit-cost RAM or the Turing machine this approach does
not yield polynomial time algorithms for absolute reconstruction. This is true even for the
decision version of this problem. In the Turing machine model, the difficulty is as follows.
We are given an input polynomial f , say with rational coefficients, and want to decide if
there is a small circuit C ∈ C for f , where C may have complex coefficients. After applying a
polynomial factorization subroutine, a reconstruction algorithm will manipulate polynomials
with coefficients in a field extension of Q. If this extension is of exponential degree, the
remainder of the algorithm will not run in polynomial time. This point is explained in more
detail in [21] on the example of a reconstruction algorithm due to Neeraj Kayal [17]. One
way out of this difficulty is to work in a model where polynomial roots can be extracted
at unit cost, as suggested in a footnote of [14]. We will work instead in more standard
models, namely, the Turing machine model or the unit-cost RAM over C with arithmetic
operations only (an appropriate formalization is provided by the Blum-Shub-Smale model
of computation [5, 6]). Before presenting our results, we present the class of circuits studied
in this paper.

1.1 Sums of powers of linear forms
Let f(x1, . . . , xn) be a homogeneous polynomial of degree d. In this paper we study decom-
positions of the type:

f(x1, . . . , xn) =
r∑

i=1
li(x1, . . . , xn)d (1)

where the li are linear forms. Such a decomposition is sometimes called a Waring decomposi-
tion, or a symmetric tensor decomposition. The smallest possible value of r is the symmetric
tensor rank of f , and it is NP-hard to compute already for d = 3 [25]. One can nevertheless
obtain polynomial time algorithms by restricting to a constant value of r [3]. In this paper
we assume instead that the linear forms li are linearly independent (hence r ≤ n). This
setting was already studied by Kayal [17]. It turns out that such a decomposition is unique
when it exists, up to a permutation of the li and multiplications by d-th roots of unity. This
follows for instance from Kruskal’s uniqueness theorem. For a more elementary proof, see [17,
Corollary 5.1] and [21, Section 3.1].

Under this assumption of linear independence, the case r = n is of particular interest. In
this case, f is equivalent to the sum of d-th powers polynomial

Pd(x) = xd
1 + xd

2 + · · · + xd
n (2)

in the sense that f(x) = Pd(Ax) where A is invertible. A test of equivalence to Pd was
provided in [17]. The resulting algorithm provably runs in polynomial time over the field of
rational numbers, but this is not the case over C due to the appeal to polynomial factorization.
The first equivalence test to Pd running in polynomial time over the field of complex numbers
was given in [21] for d = 3. We will extend this result to arbitrary degree in this paper. In the
general case r ≤ n we can first compute the number of essential variables of f [8, 17]. Then we
can do a change of variables to obtain a polynomial depending only on its first r variables [17,
Theorem 4.1], and conclude with a test of equivalence to Pr (see [21, Proposition 44] for
details).

P. Koiran and S. Saha 24:3

Equivalence and reconstruction algorithms over Q are number-theoretic in nature in the
sense that their behavior is highly sensitive to number-theoretic properties of the coefficients
of the input polynomial. This point is clearly illustrated by an example from [21]:

▶ Example 1. Consider the rational polynomial

f(x1, x2) = (x1 +
√

2x2)3 + (x1 −
√

2x2)3 = 2x3
1 + 12x1x2

2.

This polynomial is equivalent to P3(x1, x2) = x3
1 + x3

2 over R and C but not over Q.

By contrast, equivalence and reconstruction algorithms over R and C are of a more geometric
nature.

1.2 Connection to Tensor Decomposition
Using the relation between tensors and polynomials, we can see that a homogeneous degree-d
polynomial f ∈ K[x1, ..., xn] can be written as a sum of d-th powers of linear forms over K
if and only if there exist vi ∈ K such that the corresponding symmetric tensor Tf can be
decomposed as Tf =

∑
i v⊗d

i . This is often referred to as the tensor decomposition problem
for the given tensor T .

Most tensor decompositions algorithms are numerical such as the ALS method [22]
(which lacks a good complexity analysis), tensor power iteration [1] (for orthogonal tensor
decomposition) or Jennrich’s algorithm [15, 23] for ordinary tensors. A self-contained bit-
complexity analysis of Jennrich’s algorithm can be found in [4]. Unlike the above algorithm
from [21], these numerical algorithms do not provide any decision procedure. The algebraic
algorithm from [21] seems closest in spirit to Jennrich’s: they both rely on simultaneous
diagonalization and on linear independence assumptions on the vectors involved in the tensor
decomposition. Algorithms for symmetric tensor decomposition can be found in the algebraic
literature, see e.g. [2, 7]. These two papers do not provide any complexity analysis.

1.3 Results and methods
Our main contributions are as follows. Recall that Pd is the sum of d-th powers polynomi-
als (2), and let us assume that the input f ∈ C[x1, . . . , xn] is a homogeneous polynomial of
degree d.

(i) For d = 3, we improve by a factor of n on the running time of the test of equivalence
to P3 from [21]. The price to be paid for this improvement is that the algorithm now
has two-sided error. The algorithm for the d = 3 case and a simpler analysis can be
found in the full paper [20].

(ii) For d > 3, we provide the first blackbox algorithm for equivalence to Pd with running
time polynomial in n and d (more specifically, O(n2d) calls to the blackbox and
O(n2d log2(d) log log(d) + nω+1) arithmetic operations) where ω is the exponent of
matrix multiplication, in an algebraic model where only arithmetic operations and
equality tests are allowed (i.e., computation of polynomial roots is not allowed).

(iii) For d > 3, when f has rational coefficients this blackbox algorithm runs in polynomial
time in the bit model of computation. More precisely, the running time is polynomial
in n, d and the maximal bit size of any coefficient of f . This yields the first test of
equivalence to Pd over C with polynomial running time in the bit model of computation.

As outlined in Section 1.1, these results have application to decomposition into sums of
powers of linearly independent linear forms over C. Namely, we can decide whether the input
polynomial admits such a decomposition, and if it does we can compute the number of terms

FSTTCS 2022

24:4 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

r in such a decomposition. The resulting algorithm runs in polynomial time in the algebraic
model of computation, as in item (ii) above; when the input has rational coefficients it runs
in polynomial time in the bit model of computation, as in (iii) (refer to Appendix B in the
full paper [20] for a detailed complexity analysis). This is the first algorithm with these
properties. It can be viewed as an algebraic, high order, black box version of Jennrich’s
algorithm.

Using the relation to tensor decomposition problem mentioned in Section 1.2, if an order
d-tensor T ∈ Kn×...×n is given as a blackbox, we give an algorithm that runs in time poly(n, d)
to check if there exist linearly independent vectors vi ∈ Kn such that T =

∑t
i=1 αiv

⊗d
i for

some t ≤ n. Note here that K ⊆ C and K = C or R. This can be found in more detail in
Section 4 of the full paper [20].

Finally, in Section 5 of the full paper [20], we show that our linear algebraic approach
can be extended to the computation of the actual decomposition in a model where we allow
the computation of polynomial roots. We therefore obtain an alternative to the algorithm
from [17] for this problem. That algorithm relies on multivariate polynomial factorization,
whereas our algorithm relies on matrix diagonalization.

Real versus complex field. For K = R and even degree there is obviously a difference
between sums of d-th powers of linear forms and linear combinations of d-th powers. In this
paper we wish to allow arbitrary linear combinations. For this reason, in the treatment of the
high order case (d > 3) we are not interested in equivalence to Pd only. Instead, we would
like to know whether the input is equivalent to some polynomial of the form

∑n
i=1 αix

d
i with

αi ≠ 0 for all i. We denote by Pd this class of polynomials (one could even assume that
αi = ±1 for all i). At first reading, there is no harm in assuming that K = C. In this case,
one can assume without loss of generality that αi = 1 for all i. For K = R, having to deal
with the whole of Pd slightly complicates notations, but the proofs are not significantly more
complicated than for K = C. For this reason, in all of our results we give a unified treatment
of the two cases K = C and K = R.

Methods. We associate to a homogeneous polynomial of degree d the (unique) symmetric
tensor T of order d such that

f(x1, . . . , xn) =
n∑

i1,...,id=1
Ti1...id

xi1xi2 . . . xid
.

We recall that T is said to be symmetric if it is invariant under all d! permutations of its
indices. A slice of T (or by abuse of language, a slice of f) is a matrix of size n obtained by
fixing the values of d − 2 indices. In Section 2.1 we give a characterization of equivalence
to Pd:

▶ Theorem 2. A degree d homogeneous polynomial f ∈ C[x1, . . . , xn] is equivalent to
Pd =

∑n
i=1 xd

i if and only if its slices span a nonsingular matrix space and the slices are
simultaneously diagonalizable by congruence, i.e., there exists an invertible matrix Q ∈ Mn(C)
such that for every slice S of f , the matrix QT SQ is diagonal.

This characterization is satisfactory from a purely structural point of view, but not from
an algorithmic point of view because a tensor of order d has d(d−1)

2 nd−2 slices. The tensors
encountered in this paper are all symmetric since they originate from homogeneous polyno-
mials. Taking the symmetry constraints into consideration reduces the number of distinct
slices to

(
n+d−3

d−2
)

at most: this is the number of multisets of size d − 2 in a set of n elements,

P. Koiran and S. Saha 24:5

or equivalently the number of monomials of degree d − 2 in the variables x1, . . . , xn. This
number remains much too large to reach our goal of a complexity polynomial in n and d.
This problem has a surprisingly simple solution: our equivalence algorithm (Algorithm 1
below) needs to work with 3 slices only! This is true already for d = 3, and is the reason
why we can save a factor of n compared to the algorithm of [21]. More detail on the degree 3
case can be found in Section 2 of the full paper [20].

Algorithm 1 Randomized algorithm to check polynomial equivalence to an element of Pd.

Input: A degree-d homogeneous polynomial f

Let R ∈ Mn(K) be a matrix such that its entries rij are picked uniformly and
independently at random from a finite set S, and set h(x) = f(Rx).

Let {Ti1...id−2}i1...id−2∈[n] be the slices of h.
We compute the slices T1̄,T2̄,T3̄, where Tī refers to the slice Ti...i.
if T1̄ is singular then

reject
else

compute T ′
1̄ = (T1̄)−1

if T ′
1̄T2̄ and T ′

1̄T3̄ commute and T ′
1̄T2̄ is diagonalisable over K then

accept
else

reject
end

end

More precisely, the following test forms the heart of the algorithm: check that T −1
1̄ T2̄ is

diagonalizable, and commutes with T −1
1̄ T3̄ where Tī refers to the slice Ti...i. It may be

surprising at first sight that we can work with 3 slices only of a tensor with
(

n+d−3
d−2

)
slices.

To give some plausibility to this claim, note that T1̄, T2̄, T3̄ are not slices of the input f , but
slices of the polynomial h(x) = f(Rx) obtained by a random change of variables. As a result,
each slice of h contains some information on all of the slices of f .

Our algorithms are therefore quite simple but their analysis is quite non-trivial. In fact,
analysing the case of “negative” inputs, i.e. input polynomials that are not equivalent to any
polynomial in Pd, forms the bulk of this paper. For d > 3, the notion of “weak-singularity” of
matrices (Definition 14) has been introduced which along with the notions of “commutativity
property” and “diagonalisability property” helps us to give us another equivalent criterion
for testing equivalence to a polynomial in Pd in Theorem 15. Finally, the crucial part of
the proof (for d > 3, and already for d = 3) is to show that testing commutativity of two
matrices and diagonalisability of one matrix is enough for testing these properties for any
“symmetric family of symmetric matrices” (refer to Definition 19) with high probability.

Note here that an arbitrary slice of the polynomial is hard to compute, when the
polynomial is given as blackbox (because that requires computing arbitrary degree-d partial
derivatives using the blackbox). Hence, this particular choice of slices is crucial because they
can be computed in polynomial time.

1.4 Notations
We work in a field K which may be the field of real numbers or the field of complex numbers.
Some of our intermediate results apply to other fields as well. We denote by K[x1, . . . , xn]d
the space of homogeneous polynomials of degree d in n variables with coefficients in K. A

FSTTCS 2022

24:6 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

homogeneous polynomial of degree d is also called a degree-d form. We denote by Pd the
polynomial

∑n
i=1 xd

i , and we say that a degree d form f(x1, . . . , xn) is equivalent to a sum
of d-th powers if it is equivalent to Pd, i.e., if f(x) = Pd(Ax) for some invertible matrix A.
More generally, we denote by Pd the set of polynomials of the form

∑n
i=1 αix

d
i with αi ̸= 0

for all i. As explained in Section 1.3, for K = R we are not only interested in equivalence to
Pd: we would like to know whether the input is equivalent to one of the elements of Pd.

We denote by Mn(K) the space of square matrices of size n with entries from K. We
denote by ω a feasible exponent for matrix multiplication, i.e., we assume that two matrices
of Mn(K) can be multiplied with O(nω) arithmetic operations in K.

Throughout the paper, we will choose the entries rij of a matrix R independently and
uniformly at random from a finite set S ⊂ K. When we calculate the probability of some
event E over the random choice of the rij , by abuse of notation instead of Prr11,...,rnn∈S [E]
we simply write PrR∈S [E].

2 Equivalence to a linear combination of d-th powers

We can associate to a symmetric tensor T of order d the homogeneous polynomial

f(x1, ..., xn) =
∑

i1,...,id∈[n]

Ti1...id
xi1 ...xid

.

This correspondence is bijective, and the symmetric tensor associated to a homogeneous
polynomial f can be obtained from the relation

Ti1...id
= 1

d!
∂df

∂xi1 ...∂xid

.

The (i1, ..., id−2)-th slice of T is the symmetric matrix Ti1...id−2 with entries (Ti1...id−2)id−1,id
=

Ti1...id
. Recall from Section 1.4 that we denote by Pd the set of polynomials of the form∑n

i=1 αix
d
i with αi ̸= 0 for all i ∈ [n]. In this section we analyze Algorithm 1. Recall from

the introduction that this is a polynomial time algorithm for checking whether an input
degree d form in n variables f is equivalent to some polynomial in Pd. This means that
f(x) = Pd(Ax) for some Pd ∈ Pd and some invertible matrix A.

We prove the surprising fact that even when the input polynomial has degree d, checking
commutativity of 2 matrices and the diagonalisability of one matrix is enough to check
equivalence to a polynomial of Pd. Let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) = f(Rx).
Recall that Tī denotes the slice Ti...i. Algorithm 1 checks if T ′

1̄T2̄ commutes with T ′
1̄T3̄ and if

T ′
1̄T3̄ is diagonalisable.

Interestingly though, arbitrary slices of a degree-d polynomial are hard to compute.
These particular slices are special because they can be computed using a small number
of calls to the blackbox and in small number of arithmetic operations (due to the fact
that they are essentially repeated partial derivatives with respect to a single variable).
Hence, they help us give a polynomial time algorithm. More precisely, we show that if the
polynomial is given as a blackbox, the algorithm requires only O(n2d) calls to the blackbox
and O(n2M(d) log d + nω+1) many arithmetic operations. We do a detailed complexity
analysis of this algorithm in Appendix B in the full paper [20].

The remainder of this section is devoted to a correctness proof for Algorithm 1, including
an analysis of the probability of error. Our main result about this algorithm is as follows:

▶ Theorem 3. If an input f ∈ F[x1, ..., xn]d is not equivalent to some polynomial Pd ∈ Pd,
then f is rejected by the algorithm with high probability over the choice of the random matrix
R. More precisely, if the entries ri,j of R are chosen uniformly and independently at random

P. Koiran and S. Saha 24:7

from a finite set S ⊆ K, then the input will be rejected with probability ≥ 1 − 2(d−2)
|S| .

Conversely, if f is equivalent to some polynomial Pd ∈ Pd, then f will be accepted with high
probability over the choice of the random matrix R. More precisely, if the entries ri,j are
chosen uniformly and independently at random from a finite set S ⊆ K, then the input will
be accepted with probability ≥ 1 − n(d−1)

|S| .

In Section 2.2, we give a proof of the second part of theorem, i.e., we analyze the behavior
of Algorithm 1 on the polynomials that can be decomposed as a sum of dth powers of
linearly independent linear forms (which we refer to as the positive inputs). We give a
characterization of positive inputs in terms of the subspace of matrices spanned by their
slices. Namely, we show that these subspaces must not be “weakly singular”, and must
satisfy the commutativity and diagonalizability properties. If a polynomial is not equivalent
to some polynomial in Pd, this can happen in several ways depending on which property
fails. We analyze the failure of commutativity in Section 2.3.1 and failure of diagonalisability
in Section 2.3.2. Then we collect everything together and prove the first part of the theorem
in Section 2.3.3.

2.1 Characterisation of equivalence to Pd

First, we show how the slices of a degree-d form evolve under a linear change of variables.
Towards the proof of Theorem 2 we need some results from [21], which we recall in this
section. We also give a converse of this in Theorem 8. First, let us recall how the slices of a
polynomial evolve under a linear change of variables.

▶ Theorem 4. Let g be a degree-d form with slices {Si1...id−2}i1,...,id−2∈[n] and let f(x) =
g(Ax). Then the slices Ti1...id−2 of f , are given by Ti1...id−2 = AT Di1...id−2A where Di1...id−2 =∑

j1...jd−2∈[n] aj1i1 ...ajd−2id−2Sj1...jd−2 and ai,j are the entries of A.
If g =

∑n
i=1 αix

d
i , we have Di1...id−2 = diag(α1(

∏d−2
m=1 a1,im

), ..., αn(
∏d−2

m=1 an,im
)).

Proof. By definition of the slices of a polynomial,

Si1...id−2 = 1
d!H ∂d−2g

∂xi1∂xid−2

(x) and Ti1...id−2 = 1
d!H ∂d−2f

∂xi1∂xid−2

(x)

where Hf (x) is the Hessian matrix of f at point x. Since f(x) = g(Ax), by differentiating
d times, we get that ∂df

∂xi1 ...∂xid
(x) =

∑
j1...jd∈[n] aj1i1 ...ajdid

∂dg
∂xj1 ...∂xjd

(Ax). Putting these

equations in matrix form, and using the fact that ∂dg
∂xj1 ...∂xjd

(Ax) = ∂dg
∂xj1 ...∂xjd

(x) we get the
desired result. ◀

Instead of diagonalisation by congruence, it is convenient to work with the more familiar
notion of diagonalisation by similarity, where an invertible matrix A acts by S 7→ A−1SA

instead of AT SA. We collect the necessary material in the remainder of this section (and we
refer to diagonalisation by similarity simply as diagonalisation).

The two following properties play a fundamental role throughout the paper.

▶ Definition 5. Let V be a non-singular space of matrices.
We say that V satisfies the Commutativity Property if there exists an invertible matrix
A ∈ V such that A−1V is a commuting subspace, i.e., PQ = QP for any two matrices
P, Q ∈ A−1V.
We say that V satisfies the Diagonalisability Property if there exists an invertible
matrix B ∈ V such that all the matrices in the space B−1V are diagonalisable.

FSTTCS 2022

24:8 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

The next result can be found in [21, Section 2.2].

▶ Theorem 6. Let V be a non-singular subspace of matrices of Mn(K). The following
properties are equivalent.

V satisfies the commutativity property.
For all non-singular matrices A ∈ V, A−1V is a commuting subspace.

▶ Remark 7. Let V be a non-singular subspace of matrices which satisfies the commutativity
and diagonalisability properties. There exists an invertible matrix B ∈ V and an invertible
matrix R which diagonalizes simultaneously all of B−1V (i.e., R−1MR is diagonal for all
M ∈ B−1V).

Proof. Pick an invertible matrix B ∈ V such that W = B−1V is a space of diagonalizable
matrices. By Theorem 6, W is a commuting subspace. It is well known that a finite collection
of matrices is simultaneously diagonalisable if and only if they commute, and each matrix in
the collection is diagonalisable. We conclude by applying this result to a basis of W (any
matrix R which diagonalises a basis will diagonalise all of W). ◀

We now give an analogue of Theorem 6 for the diagonalisability property.

▶ Theorem 8. Let V be a non-singular subspace of matrices which satisfies the commutativity
property. The following properties are equivalent:

V satisfies the diagonalisability property.
For all non-singular matrices A ∈ V, the matrices in A−1V are simultaneously diagonal-
isable.

Proof. Suppose that V satisfies the diagonalisability property. By the previous remark,
we already know that there exists some invertible matrix B ∈ V such that the matrices in
B−1V are simultaneously diagonalisable by an invertible matrix R. We need to establish
the same property for an arbitrary invertible matrix A ∈ V. For any M ∈ V, A−1M =
(B−1A)−1(B−1M). Hence A−1M is diagonalised by R since this matrix diagonalises both
matrices B−1A and B−1M . Since R is independent of the choice of M ∈ V , we have shown
that the matrices in A−1V are simultaneously diagonalisable. ◀

The importance of the commutativity and diagonalisability properties stems from the fact
that they provide a characterization of simultaneous diagonalisation by congruence, which in
turn provides a characterization of equivalence to some polynomial in Pd:

▶ Theorem 9. Let A1, ..., Ak ∈ Mn(K) and assume that the subspace V spanned by these
matrices is non-singular. There are diagonal matrices Λi and a non-singular matrix R ∈
Mn(K) such that Ai = RΛiR

T for all i ∈ [k] if and only if V satisfies the Commutativity
property and the Diagonalisability property.

For a proof, see [21, Section 2.2] for K = C and [21, Section 2.3] for K = R.
The next lemma uses Theorem 4 to reveal some crucial properties about the subspace

spanned by the slices of any degree-d form which is equivalent to some g ∈ Pd.

▶ Lemma 10. Let f(x1, ..., xn) and g(x1, ..., xn) be two forms of degree d such that f(x) =
g(Ax) for some non-singular matrix A.
1. If U and V denote the subspaces of Mn(K) spanned respectively by the slices of f and g,

we have U = AT VA.
2. V is non-singular iff U is non-singular.
3. In particular, for g ∈ Pd the subspace V is the space of diagonal matrices and U is a

non-singular subspace, i.e., it is not made of singular matrices only.

P. Koiran and S. Saha 24:9

Proof. Theorem 4 shows that U ⊆ AT VA. Now since, g(x) = f(A−1x), same argument
shows that V ⊆ A−T UA−1. This gives us that U = AT VA.

For the second part of the lemma, let us assume that V is non-singular and MU be
an arbitrary matrix in U . Using the previous part of the lemma, we know that there
exists MV ∈ V such that MU = AT MVA. Since V is non-singular, det(MV) ̸= 0. Taking
determinant on both sides, we get that det(MU) = det(A)2det(MV) ̸= 0 (since A is invertible,
det(A) ̸= 0). For the converse, assume that U is non-singular. Following a similar proof, it
can be shown that det(MU) ̸= 0.

For the third part of the lemma, let {Si1...id−2}i1...id−2∈[n] be the slices of g. If g =∑
i∈[n] αix

d
i , such that αi ̸= 0 for all i, Sī has αi in the (i, i)-th position and 0 everywhere.

Also, Si1,...,id−2 = 0, when the ik’s are not equal. Hence, V is the space of all diagonal
matrices. Hence V is a non-singular space. Using the previous part of the lemma, we get
that U is a non-singular space as well. ◀

The next lemma is effectively a converse of the second part of Lemma 10. It shows that
if the slices of f are diagonal matrices, then the fact that they effectively originate from a
symmetric tensor forces them to be extremely special.

▶ Lemma 11. Let f ∈ K[x1, ..., xn]d be a degree-d form. If the slices of f are diagonal
matrices, then f =

∑
i∈[n] αix

d
i for some α1, ..., αn ∈ K.

Proof. Let Ti1,...,id−2 be the slices of f . Let I = {(iσ(1), ..., iσ(d))|σ ∈ Sd}. Now since they
are slices of a polynomial, we know that

(Ti1...id−2)id−1,id
= (Tiσ(1),...,iσ(d−2))iσ(d−1),iσ(d) . (3)

We want to show that Ti1,...,id
̸= 0 only if i1 = i2 = ... = id. Using (3), it is sufficient to

show that (Ti1,...,id−2)id−1,id
̸= 0 only if id−1 = id. This is true since Ti1,...,id−2 are diagonal

matrices. This gives us that f =
∑

i∈[n] αix
d
i . ◀

Now we are finally ready to prove a theorem that characterizes exactly the set of degree-d
homogeneous polynomials which are equivalent to some g ∈ Pd. This already appears as
Theorem 2 in the introduction. We restate it now for the reader’s convenience.

▶ Theorem 12. A degree d form f ∈ K[x1, ..., xn] is equivalent to some polynomial Pd ∈ Pd

if and only if its slices {Ti1,...,id−2}i1,...,id−2∈[n] span a non-singular matrix space and the
slices are simultaneously diagonalisable by congruence, i.e., there exists an invertible matrix
Q ∈ Mn(K) such that the matrices QT Ti1...id−2Q are diagonal for all i1, ..., id−2 ∈ [n].

Proof. Let U be the space spanned by {Ti1,...,id−2}i1,...,id−2∈[n] . If f is equivalent to Pd,
Theorem 4 shows that the slices of f are simultaneously diagonalisable by congruence and
Lemma 10 shows that U is non-singular.

Let us show the converse. Since the slices {Ti1,...,id−2}i1,...,id−2∈[n] are simultan-
eously diagonalisable, there are diagonal matrices Λi1...id−2 and a non-singular matrix
R ∈ Mn(K) such that Ti1...id−2 = RΛi1...id−2RT for all i1, ..., id−2 ∈ [n]. So now we
consider g(x) = f(R−T x). Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of g. Using The-
orem 4, we get that Si1...id−2 = (R−1)(

∑
j1...jd−2∈[n] rj1i1 ...rjd−2id−2RΛj1...jd−2RT)R−T =∑

j1...jd−2∈[n] rj1i1 ...rjd−2id−2Λj1...jd−2 . This implies that Sj1...jd−2 are also diagonal matrices.
By Lemma 11, g =

∑
i∈[n] αix

d
i . It therefore remains to be shown that αi ̸= 0, for all i ∈ [n].

Let V be the subspace spanned by the slices of g and the slices of f span a non-singular
matrix space U . Since, U is a non-singular subspace of matrices, using part (2) of Lemma 10,
we get that V is a non-singular subspace of matrices.

FSTTCS 2022

24:10 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

But if some αi vanishes, for all A ∈ V , Aī = 0. Hence V is a singular subspace, which is
a contradiction. This gives us that g =

∑n
i=1 αix

d
i where αi ≠ 0 for all i. Hence, g ∈ Pd and

f is equivalent to g. ◀

▶ Theorem 13. Let f ∈ K[x1, ..., xn] be a degree-d form. f is equivalent to some polynomial
Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is a non-singular
subspace and V satisfies the Commutativity Property and the Diagonalisability Property.

Proof. This follows from Theorem 12 and Theorem 9 for k = nd−2 to get the result. ◀

Notice here that the notion of weak-singularity is entirely dependent on the generating set of
matrices. So it is more of a property of the generating set. But by abuse of language, we
will call the span of the matrices weakly singular. To put it in contrast, usually the notion
of singularity is a property of the subspace spanned by the matrices (irrespective of the
generating set). It can be further observed that for all n ≥ 2 and d ≥ 4, non-singular families
of matrices can be easily constructed which are weakly singular!

▶ Definition 14 (Weak singularity). Let V be the space spanned by matrices
{Si1,...,id−2}i1,...,id−2∈[n] . V is weakly singular if for all α = (α1, ..., αn),
det(

∑
i1,...,id−2∈[n](

∏
k∈[d−2] αik

)Si1...id−2) = 0.

Notice here that the notion of weak-singularity is entirely dependent on the generating set of
matrices. So it is more of a property of the generating set. But by abuse of language, we
will call the span of the matrices weakly singular. To put it in contrast, usually the notion
of singularity is a property of the subspace spanned by the matrices (irrespective of the
generating set).

▶ Theorem 15. Let f ∈ K[x1, ..., xn] be a degree-d form. f is equivalent to some polynomial
Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is not a weakly
singular subspace, satisfies the Commutativity Property and the Diagonalisability Property.

Proof. First we show that if f = Pd(Ax) such that Pd ∈ Pd i.e. Pd(x) =
∑n

i=1 αix
d
i where

αi ̸= 0 for all i ∈ [n] and A is invertible, then V is not a weakly singular subspace, satisfies
the commutativity property and the diagonalisability property.
Let {Si1...id−2}i1,...,id−2∈[n] be the slices of Pd. Then Sī = αidiag(ei) where ei is the i-th
standard basis vector, and all other slices are 0. From Theorem 4,

Ti1...id−2 = AT Di1...id−2A = AT (
∑

k∈[n]

aki1 ...akid−2Sk̄)A.

Now we define

T (β̄) =
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
)Ti1...id−2

=
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
)AT (diag(α1(

∏
m∈[d−2]

a1im
), ..., αn(

∏
m∈[d−2]

anim)))A

= AT diag(α1(
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
a1ik

)), ..., αn(
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
anik

)))A.

Taking determinant on both sides, det(T)(β̄) = det(A)2 ∏n
m=1 Tm(β̄) where Tm(β̄) =

αm(
∑

i1,...,id−2∈[n](
∏

k∈[d−2] βik
amik

)). Since, A is invertible, none of its rows are all 0. Hence
for all m0 ∈ [n], there exists j0 ∈ [n], such that am0j0 ̸= 0. Then coeffβd−2

j0
(Tm0) = ad−2

m0j0
̸= 0.

Hence Tm0 ̸≡ 0 for all m0 ∈ [n] which implies that det(T) ̸≡ 0. Therefore, there exists β̄0

such that det(T)(β̄0) ̸= 0. This proves that det(
∑

i1,...,id−2∈[n](
∏

k∈[d−2] βik
)Ti1...id−2) ̸≡ 0.

P. Koiran and S. Saha 24:11

Hence, V = span{Ti1...id−2}i1,...,id−2∈[n] is not weakly singular. Theorem 13 gives us
that the subspace spanned by the slices V satisfies the commutativity property and the
diagonalisability property.

For the converse, if V is not a weakly singular subspace, then it is a non-singular subspace
as well. And it satisfies the commutativity property and the diagonalisability property. By
Theorem 13, we get that f is equivalent to some polynomial in Pd. ◀

2.2 Analysis for positive inputs
In this section we analyze the behavior of Algorithm 1 on inputs that are equivalent to some
polynomial in Pd (which we refer to as the positive inputs). We recall here again that by T1̄,
we denote the slice T11...1.

▶ Lemma 16. Let f ∈ K[x1, ..., xn]d with slices {Si1,...,id−2}i1,...,id−2∈[n], such that the
subspace V spanned by the slices is not weakly singular. Let h(x) = f(Rx) where the
entries ri,j are chosen uniformly and independently at random from a finite set S ⊆ K. Let
{Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h. Then PrR∈S [T1̄ is invertible] ≥ 1 − n(d−1)

|S| .

Proof. We can obtain the slices Ti1...id−2 of h from the slices Si1...id−2 of f us-
ing Theorem 4. Namely, we have Ti1...id−2 = RT Di1...id−2R where Di1...id−2 =∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,im
)Sj1...jd−2 . Therefore T1̄ is invertible iff R and D1̄ are in-

vertible. Applying Schwartz-Zippel lemma to det(R) shows that R is singular with
probability at most n

|S| . We will show that D1̄ is singular with probability at most
n(d−2)

|S| . The lemma then follows from the union bound. Matrix D1̄ is not invertible iff
det(D1̄) = 0. Since, D1̄ =

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,1)Sj1...jd−2 , det(D1̄) ∈ K[r1,1, ..., rn,1]

and deg(det(D1̄)) ≤ n(d − 2). Since, V is not weakly singular, there exists some choice of
α = (α1, ..., αn), such that S =

∑
i1,...,id−2∈[n](

∏
m∈[d−2] αim

)Si1...id−2 is invertible. Hence,
det(S) ̸= 0. This gives us that det(D1̄)(α) ̸= 0. which gives us that det(D1̄) ̸≡ 0. From the
Schwartz-Zippel lemma, it follows that PrR∈S [det(D1̄) = 0] ≤ n(d−2)

|S| . ◀

Recall here from Section 1.4, we define by Pd, the set of all polynomials of the form
∑n

i=1 αix
d
i

such that 0 ̸= αi ∈ K for all i ∈ [n].

▶ Lemma 17. Given A ∈ Mn(K), let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) = Pd(Ax)
where Pd ∈ Pd. If T1̄ is invertible, define T ′

1̄ = (T1̄)−1. Then T ′
1̄T2̄ commutes with T ′

1̄T3̄ and
T ′

1̄T2̄ is diagonalisable.

Proof. Let Pd =
∑n

i=1 αix
d
i where αi ̸= 0. By Theorem 4,

Ti1...id−2 = AT (diag(α1(
d−2∏
m=1

a1,im
), ..., αn(

d−2∏
m=1

an,im
)))A = AT Di1...id−2A.

If T1̄ is invertible, the same is true of A and D1̄. The inverse (D1̄)−1 is diagonal like D1̄,
hence (D1̄)−1D2̄ and (D1̄)−1D3̄ are both diagonal as well and must therefore commute. Now,
T ′

1̄T2̄T ′
1̄T3̄ = A−1((D1̄)−1D2̄(D1̄)−1D3̄)A = A−1((D1̄)−1D3̄(D1̄)−1D2̄)A = T ′

1̄T3̄T ′
1̄T2̄.

Finally, T ′
1̄T2̄ = A−1((D1̄)−1D2̄)A so this matrix is diagonalisable. ◀

We are now in a position to prove the easier half of Theorem 3.

▶ Theorem 18. If an input f ∈ K[x1, ..., xn]d is equivalent to some polynomial Pd ∈ Pd then
f will be accepted by Algorithm 1 with high probability over the choice of the random matrix
R. More precisely, if the entries ri,j are chosen uniformly and independently at random from
a finite set S ⊆ K, then the input will be accepted with probability ≥ (1 − n(d−1)

|S|).

FSTTCS 2022

24:12 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

Proof. We start by assuming that f = Pd(Bx) for some Pd ∈ Pd where B is an invertible
matrix. By Theorem 15, we know that the subspace spanned by the slices of f is not weakly
singular. We can therefore apply Lemma 16, the first slice T1̄ of h(x) = f(Rx) is invertible
with probability at least 1 − n(d−1)

|S| . Moreover if T1̄ is invertible, Lemma 17 shows that, f

will always be accepted. (We can apply this lemma to h since h = Pd(RBx)). ◀

2.3 Analysis of negative inputs
In this section, we analyse the behaviour of Algorithm 1 on the inputs that are not equivalent
to any polynomial in Pd (which we refer to as the negative inputs). The main goal is to show
that the algorithm rejects negative inputs with high probability.

2.3.1 Failure of commutativity
▶ Definition 19. Let {Si1,...,id

}i1,...,id∈[n] be a family of matrices. We say that the matrices
form a symmetric family of symmetric matrices if each matrix in the family is symmetric
and for all permutations σ ∈ Sd, Si1,...,id

= Siσ(1)...iσ(d) .

In the next lemma, we show that if a symmetric family of symmetric matrices (this family has
size nd) is not a commuting family, then two linear combinations of these matrices formed
by picking just 2n elements at random also do not commute with high probability.

▶ Lemma 20 (General commutativity lemma). Let {Si1,...,id
}i1,...,id∈[n] be a symmetric family

of symmetric matrices in Mn(K) that do not form a commuting family. Pick α = {α1, ..., αn}
and α′ = {α′

1, ..., α′
n} uniformly and independently at random from a finite set S ⊂ K. We

define

Mα =
∑

i1,...,id∈[n]

(
∏

m∈[d]

αim
)Si1,...,id

and Mα′ =
∑

j1,...,jd∈[n]

(
∏

m∈[d]

α′
jm

)Sj1,...,jd
.

Then, Prα,α′∈S

[
Mα, Mα′ don’t commute

]
≥

(
1 − 2d

|S|

)
.

Proof. We want to bound the probability of error, i.e Prα,α′∈S

[
MαMα′ − Mα′Mα ̸= 0

]
. The

expression MαMα′ −Mα′Mα can be written as
∑

i1,...,id∈[n]
j1,...,jd∈[n]

(
∏

m∈[d] αim
α′

jm
)(Si1...id

Sj1...jd
−

Sj1...jd
Si1...id

). For a fixed r, s ∈ [n], we define the polynomial

P r,s
comm(α, α′) =

∑
i1,...,id,j1,...,jd∈[n]

(
∏

m∈[d]

αimα′
jm

)mr,s
i1...idj1...jd

where mr,s
i1...idj1...jd

= (Si1...id
Sj1...jd

− Sj1...jd
Si1...id

)r,s.

First note that by construction Mα commutes with Mα′ if and only if for all r, s ∈ [n]
such that P r,s

comm(α, α′) = 0. Since, {Si1,...,id
} is not a commuting family, there exists

i0
1, ..., i0

d, j0
1 , ..., j0

d ∈ [n], such that Si0
1...i0

d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d

̸= 0. Hence, there exists some
entry (r0, s0) such that (Si0

1...i0
d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d
)r0,s0 ̸= 0.

Now we claim that P r0,s0
comm(α, α′) ̸≡ 0. It is enough to show that the coefficient of

αi0
1
...αi0

d
α′

j0
1
...α′

j0
d

in P r0,s0
comm(α, α′) is non-zero. Let I0 = {(i0

σ(1), ..., i0
σ(d))|σ ∈ Sd} and

let J0 = {(j0
σ(1), ..., j0

σ(d))|σ ∈ Sd}. Then coeffαi0
1

...αi0
d

α′
j0

1
...α′

j0
d

(P r0,s0
comm) =

∑
ī∈I0,j̄∈J0

mr0s0
īj̄

.

The matrices Si1...id
form a symmetric family in the sense of Definition 19. Therefore,

for all ī ∈ I0, j̄ ∈ J0, mr0s0
īj̄

are equal. This gives us that coeffαi0
1

...αi0
d

α′
j0

1
...α′

j0
d

(P r0,s0
comm) =

P. Koiran and S. Saha 24:13

|I0||J0|(mr0,s0
i0

1...i0
d

j0
1 ...j0

d

) ̸= 0. Hence P r0,s0
comm ̸≡ 0 and deg(P r0,s0

comm) ≤ 2d and using Schwartz-Zippel
lemma, we get that, Prα,α′∈S [P r0,s0

comm(α, α′) ̸= 0] ≥ 1 − 2d
|S| . Putting r = r0, s = s0, this gives

us that Prα,α′∈S

[
Mα, Mα′ don’t commute

]
≥

(
1 − 2d

|S|

)
. ◀

The next result relies on the above lemma. Theorem 21 gives us a way to analyze the case
when the slices of the input polynomial fail to satisfy the commutativity property (recall
that this property is relevant due to Theorem 15).

▶ Theorem 21. Let f ∈ K[x1, ..., xn]d be a degree d form such that the subspace of matrices
V spanned by its slices is not weakly singular and does not satisfy the commutativity property.
Let h(x) = f(Rx) where the entries (ri,j) of R are chosen uniformly and independently
at random from a finite set S ⊂ K. Let {Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is
invertible, define T ′

1̄ = (T1̄)−1. Then Pr[T1̄ is invertible and T ′
1̄T2̄, T ′

1̄T3̄ commute] ≤ 2(d−2)
|S| .

Proof. Let {Si1...id−2}i1,...,id−2∈[n] be the slices of f . By Theorem 4, we know that

Ti1...id−2 = RT
(∑

j1...jd−2∈[n]

(
∏

m∈[d−2]

rjm,im
Sj1...jd−2)

)
R.

Let us define Di1...id−2 =
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,im
)Sj1...jd−2 . Then we have for all

i ∈ {2, ..., n}:

T ′
1̄Tī = R−1(D1̄)−1(R)−T RT DīR = R−1(

∑
j1...jd−2∈[n]

(
∏

m∈[d−2]

rjm,i)(D1̄)−1Sj1...jd−2)R. (4)

So, if T1̄ is invertible, T ′
1̄T2̄ commutes with T ′

1̄T3̄ iff (D1̄)−1D2̄ commutes with (D1̄)−1D3̄.
Let E1 be the event that T1̄ is invertible and T ′

1̄T2̄ commutes with T ′
1̄T3̄. Let E′

1 be the
event that D1̄ is invertible and (D1̄)−1D2̄ commutes with (D1̄)−1D3̄. Let E4 be the event
that R is invertible. Then we have that E1 = E′

1 ∩ E4.
Let E2 be the event that D1̄ is invertible and {(D1̄)−1Si1,...,id−2}i1,...,id−2∈[n] is not a

commuting family. Since V does not satisfy the commutativity property, (D1̄)−1V is not a
commuting subspace if D1̄ is invertible. Hence, the event that D1̄ is invertible is the same
as the event E2. This also implies that E′

1 ⊆ E2. Setting Ai1...id−2 = (D1̄)−1Si1...id−2 , αi =
ri,2, α′

i = ri,3 and then using Lemma 20, we can conclude that PrR∈S

[
E′

1|E2

]
≤ 2(d−2)

|S| .

Note here that D1̄ depends only on the random variables ri,1 for all i ∈ [n] and therefore
is independent of rk,2 and rl,3 for all k, l ∈ [n], because we assume that the entries of R are
all picked uniformly and independently at random.
Let E3 be the event that T1̄ is invertible. Now we know that T1̄ is invertible iff R and D1̄
are invertible. Then, we have E3 = E2 ∩ E4 Hence, the probability of error can be bounded
as follows: PrR∈S [E1] = PrR∈S [E′

1 ∩ E2 ∩ E4] ≤ PrR∈S [E′
1|E2] ≤ 2(d−2)

|S| . ◀

2.3.2 Failure of diagonalisability
Theorem 21 gives us a way to analyze the case when the slices of the input polynomial fail to
satisfy the commutativity property. With the results in the present section we will be able
to analyze the case where the commutativity property is satisfied, but the diagonalisability
property fails (recall that these properties are relevant due to Theorem 15).

▶ Proposition 22. Let U ⊆ Mn(K) be a commuting subspace of matrices. We define
M :=

{
M

∣∣∣M is diagonalisable and M ∈ U
}

. Then M is a linear subspace of U . In
particular, if there exists A ∈ U such that A is not diagonalisable then M is a proper linear
subspace of U .

FSTTCS 2022

24:14 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

Proof. M is trivially closed under multiplication by scalars. Let M, N ∈ M. These two
matrices are diagonalisable by definition of M, and they commute since M ⊆ U . Hence they
are simultaneously diagonalisable. Thus M is closed under addition as well, which implies
that it is a linear subspace of U . ◀

▶ Lemma 23. Let {Ai1...id
}i1,..,id∈[n] ∈ Mn(K) be a commuting family of symmetric matrices.

Let us assume that this family is symmetric in the sense of Definition 19 and there exists
i0
1, ..., i0

d ∈ [n] such that Ai0
1...i0

d
is not diagonalisable. Let S ⊂ K be a finite set. Then

D =
∑n

i1,...,id=1(
∏

m∈[d] αim
)Ai1...id

is diagonalisable with probability at most d
|S| when

α1, ..., αn are chosen uniformly and independently at random from S.

Proof. We define U = span{Ai1...id
}i1,..,id∈[n]. We also define the class of matrices M :={

M
∣∣∣M is diagonalisable and M ∈ U

}
. So, we want to show that Prα∈S

[
D ∈ M

]
≤ d

|S| .

Now using Proposition 22, and the hypothesis that there exists Ai0
1...i0

d
∈ U \ M, we

get that M is a proper linear subspace of U . So M is an intersection of hyperplanes.
Since Ai0

1...i0
d

̸∈ M, there exists a linear form lM(X) =
∑

i,j∈[n] aijXij corresponding to
a hyperplane such that lM(M) = 0 for all M ∈ M and lM(Ai0

1...i0
d
) ̸= 0. We know

that if D is diagonalisable, then lM(D) ̸= 0. We compute the polynomial lM(D)(α) =∑
i1,...,id∈[n](

∏
m∈[d] αim

)mi1...id
where mi1...id

= (
∑

k,l∈[n] akl(Ai1...id
)k,l). Now we claim

that lM(D) ̸≡ 0. We show this by proving that the coefficient of αi0
1
...αi0

d
in lM(D)(α) is

not equal to 0. Let I0 = {(i0
σ(1), ..., i0

σ(d))|σ ∈ Sd}. Then coeffαi0
1

...αi0
d

(D) =
∑

ī∈I0
mī. Since

the matrices Ai1...id
form a symmetric family, the mī are equal for all ī ∈ I0. Also, since,

lM(Ai0
1...i0

d
) ̸= 0, we get that

∑
k,l∈[n] ak,l(Ai0

1...i0
d
)k,l ̸= 0. This gives us that mi0

1...i0
d

̸= 0.
Hence, we get that coeffαi0

1
...αi0

d

(D) = |I0|mi0
1...i0

d
̸= 0. Thus, lM(D) ̸≡ 0 and deg(lM(D)) ≤ d.

From Schwartz-Zippel lemma, we have Prα∈S

[
D ∈ M

]
≤ Prα∈S [lM(D)(α) = 0] ≤ d

|S| . ◀

The last result for this section is an analogue of the Theorem 21 for the diagonalisability
property.

▶ Theorem 24. Let f ∈ K[x1, ..., xn]d be a degree-d form such that the subspace V spanned
by its slices is a not weakly-singular subspace, satisfies the commutativity property, but
does not satisfy the diagonalisability property. Let h(x) = f(Rx) where the entries ri,j

of R are chosen uniformly and independently at random from a finite set S ⊂ K, Let
{Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is invertible, define T ′

1̄ = (T1̄)−1. Then
Pr[T1̄ is invertible and T ′

1̄T2̄ is diagonalisable] ≤ d−2
|S| .

Proof. As in the proof of Theorem 21, we use the expression for T ′
1̄T2̄ which we obtain from

the definition of the slices i.e. R−1(
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,2)(D1̄)−1Sj1...jd−2)R where
D1̄ =

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,1)Sj1...jd−2 . So if T1̄ is invertible, T ′

1̄T2̄ is diagonalisable iff
M = (

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,2)(D1̄)−1Sj1...jd−2) is diagonalisable.

We denote by E1 the event that T1̄ is invertible and T ′
1̄T2̄ is diagonalisable and by E′

1 the
event that D1̄ is invertible and M is diagonalisable. Let E4 be the event that R is invertible.
Hence, E1 = E′

1 ∩ E4.
Let E2 be the event that D1̄ is invertible and {(D1̄)−1Si1...id−2}i1,...,id−2∈[n] is a commuting

family and there exists j1...jd−2 ∈ [n] such that (D1̄)−1Sj1...jd−2 is not diagonalisable. Since
V satisfies the commutativity property and does not satisfy the diagonalisability property, by
Theorem 8, the event that D1̄ is invertible is the event same as E2. It can also be observed
that E′

1 ⊆ E2.

P. Koiran and S. Saha 24:15

Setting Ai1...id−2 = (D1̄)−1Si1...id−2 and setting αi = ri,2 for all i ∈ [n] and using
Lemma 23, we get that PrR∈S

[
E′

1
∣∣E2

]
≤ d−2

|S| . Now we know that T1̄ is invertible iff R and
D1̄ is invertible. Let E3 be the event that T1̄ is invertible. Then, we have E3 = E2 ∩E4 . The
probability of error can finally be bounded as follows: PrR∈S [E1∩E3] = PrR∈S [E′

1∩E2∩E4] ≤
PrR∈S [E′

1|E2] ≤ d−2
|S| . ◀

2.3.3 Finishing the analysis for negative inputs
In this section we complete the proof of Theorem 3. The case of positive inputs was treated
in Section 2.2. It therefore remains to prove the following result.

▶ Theorem 25. If an input f ∈ K[x1, ..., xn]d is not equivalent to some polynomial Pd ∈ Pd,
then f is rejected by the algorithm with high probability over the choice of the random matrix R.
More precisely, if the entries ri,j are chosen uniformly and independently at random from a
finite set S ⊆ K, then the input will be rejected with probability ≥ (1 − 2(d−2)

|S|).

Proof. Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of f and V = span{Si1,...,id−2}. From
Theorem 13 and Theorem 9, we know that if f ̸∼ Pd, then there are three disjoint cases:
1. Case 1: V is a weakly singular subspace of matrices.
2. Case 2: V is not a weakly singular subspace and V does not satisfy the commutativity

property.
3. Case 3: V is not a weakly singular subspace, V satisfies the commutativity property but

does not satisfy the diagonalisability property.
Now we try to upper bound the probability of error in each case.
In case 1, T1̄ = RT (

∑
j1...jd−2∈[n] rj1,1...rjd−2,1Sj1...jd−2)R ∈ RT VR is always singular for any

choice of rj,1. So f is rejected with probability 1 in this case.
In case 2, we can upper bound the probability of error as follows:

PrR∈S [f is accepted by the algorithm]
= PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute , T ′

1̄T2̄ is diagonalisable]
≤ PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute].

Using Theorem 21, we get that this occurs with probability at most 2(d−2)
|S| . In Case 3, we

have the following upper bound on the probability of error,

PrR∈S [f is accepted by the algorithm]
= PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute , T ′

1̄T2̄ is diagonalisable]
≤ PrR∈S [T1̄ is invertible, T ′

1̄T2̄ is diagonalisable].

By Theorem 24, this occurs with probability ≤ d−2
|S| . Therefore in all these three cases, the

algorithm rejects f with probability at least 1 − 2(d−2)
|S| . ◀

References
1 Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky.

Tensor decompositions for learning latent variable models. Journal of Machine Learning
Research, 15(80):2773–2832, 2014. URL: http://jmlr.org/papers/v15/anandkumar14b.html.

2 Alessandra Bernardi, Alessandro Gimigliano, and Monica Ida. Computing symmetric rank for
symmetric tensors. Journal of Symbolic Computation, 46(1):34–53, 2011.

FSTTCS 2022

http://jmlr.org/papers/v15/anandkumar14b.html

24:16 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

3 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction Algorithms for Low-
Rank Tensors and Depth-3 Multilinear Circuits, pages 809–822. Association for Computing
Machinery, New York, NY, USA, 2021. doi:10.1145/3406325.3451096.

4 Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan. Smoothed
analysis of tensor decompositions. In Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 594–603, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2591796.2591881.

5 L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag,
1998.

6 L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the
American Mathematical Society, 21(1):1–46, July 1989.

7 Jérôme Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas. Symmetric tensor
decomposition. Linear Algebra and its Applications, 433(11-12):1851–1872, 2010.

8 Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modeling, Math. Vis., pages 237–247. Springer, Berlin, 2006. doi:10.1007/
978-3-540-33275-6_15.

9 Guillaume Cheze and André Galligo. Four lectures on polynomial absolute factorization. In
Solving polynomial equations, pages 339–392. Springer, 2005.

10 Guillaume Chèze and Grégoire Lecerf. Lifting and recombination techniques for absolute
factorization. Journal of Complexity, 23(3):380–420, 2007.

11 Shuhong Gao. Factoring multivariate polynomials via partial differential equations. Mathem-
atics of computation, 72(242):801–822, 2003.

12 Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Reconstruction algorithms
for sums of affine powers. In Proc. International Symposium on Symbolic and Algebraic
Computation (ISSAC), pages 317–324, 2017. doi:10.1145/3087604.3087605.

13 Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Polynomial equivalence problems
for sums of affine powers. In Proc. International Symposium on Symbolic and Algebraic
Computation (ISSAC), 2018.

14 Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test
over finite fields and over Q. In Electronic Colloquium on Computational Complexity (ECCC),
volume 26, page 42, 2019.

15 Richard Harshman. Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multimodal factor analysis. UCLA working papers in phonetics, 1970.

16 Zohar Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In 24th Annual IEEE Conference on Computational Complexity
(CCC), pages 274–285, 2009.

17 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Math-
ematics, January 2011. URL: https://www.microsoft.com/en-us/research/publication/
efficient-algorithms-for-some-special-cases-of-the- polynomial-equivalence-
problem/.

18 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full rank
algebraic branching programs. ACM Transactions on Computation Theory (TOCT), 11(1):2,
2018.

19 Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Proc. 51st Annual ACM Symposium on Theory of Computing (STOC), pages
413–424, 2019.

20 Pascal Koiran and Subhayan Saha. Black box absolute reconstruction for sums of powers of
linear forms, 2021. doi:10.48550/arXiv.2110.05305.

https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/2591796.2591881
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1145/3087604.3087605
https://www.microsoft.com/en-us/research/publication/ efficient-algorithms-for-some-special-cases-of-the- polynomial-equivalence-problem/
https://www.microsoft.com/en-us/research/publication/ efficient-algorithms-for-some-special-cases-of-the- polynomial-equivalence-problem/
https://www.microsoft.com/en-us/research/publication/ efficient-algorithms-for-some-special-cases-of-the- polynomial-equivalence-problem/
https://doi.org/10.48550/arXiv.2110.05305

P. Koiran and S. Saha 24:17

21 Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction for sums
of powers of linear forms. Theoretical Computer Science, 887:63–84, 2021. doi:10.1016/j.
tcs.2021.07.005.

22 T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Rev., 51:455–500,
2009.

23 A. Moitra. Algorithmic Aspects of Machine Learning. Cambridge University Press, 2018.
24 Hani Shaker. Topology and factorization of polynomials. Mathematica Scandinavica, pages

51–59, 2009.
25 Yaroslav Shitov. How hard is the tensor rank? arXiv preprint, 2016. arXiv:1611.01559.
26 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM

Journal on Computing, 38(6):2130–2161, 2009.

FSTTCS 2022

https://doi.org/10.1016/j.tcs.2021.07.005
https://doi.org/10.1016/j.tcs.2021.07.005
http://arxiv.org/abs/1611.01559

When You Come at the King You Best Not Miss
Oded Lachish !

Birkbeck College, University of London, UK

Felix Reidl !

Birkbeck College, University of London, UK

Chhaya Trehan !

London School of Economics and Political Science, UK

Abstract
A tournament is an orientation of a complete graph. We say that a vertex x in a tournament T⃗

controls another vertex y if there exists a directed path of length at most two from x to y. A vertex
is called a king if it controls every vertex of the tournament. It is well known that every tournament
has a king. We follow Shen, Sheng, and Wu [8] in investigating the query complexity of finding a
king, that is, the number of arcs in T⃗ one has to know in order to surely identify at least one vertex
as a king.

The aforementioned authors showed that one always has to query at least Ω(n4/3) arcs and
provided a strategy that queries at most O(n3/2). While this upper bound has not yet been improved
for the original problem, Biswas et al. [3] proved that with O(n4/3) queries one can identify a
semi-king, meaning a vertex which controls at least half of all vertices.

Our contribution is a novel strategy which improves upon the number of controlled vertices:
using O(n4/3 polylog n) queries, we can identify a (1

2 + 2
17)-king. To achieve this goal we use a novel

structural result for tournaments.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Math-
ematics of computing → Graph algorithms

Keywords and phrases Digraphs, tournaments, kings, query complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.25

Funding Chhaya Trehan: Partially supported by EPSRC New Investigator Award EP/V010611/1.

1 Introduction and Related Work

A tournament is a directed graph in which there is exactly one directed edge between every
pair of vertices. Due to their usefulness in modelling many real world scenarios such as game
tournaments, voting strategies and many more, tournaments are a very well studies concept
in structural as well as algorithmic graph theory. The early monograph of Moon [7] has been
followed by extensive research on the topic. For example, Dey [4] studied the identification
of the “best subset of vertices” in a tournament motivated by the high cost of comparing a
pair of drugs for a specific disease. Goyal et al. [5] studied the identification of vertices with
specific in- or out-degrees.

In this work we investigate the query complexity of finding a king in a tournament graph,
that is, a vertex from which we can reach every other vertex of the tournament via a directed
path of length at most two. It is well known that every tournament has such a vertex.

The study of query complexity problems in tournaments has the following general shape:
Initially, we are only given the vertex set of the tournament while the directions of its arcs
are hidden from us. For each pair of vertices u, v we can, at unit cost, learn whether the
arc uv or vu is in the tournament. Our goal is to use the fewest possible queries in order
to reveal some combinatorial object in the tournament. The motivation for our paper is
found in Shen, Sheng, and Wu’s work [8] on the query complexity of identifying a king. They

© Oded Lachish, Felix Reidl, and Chhaya Trehan;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:o.lachish@bbk.ac.uk
https://orcid.org/0000-0001-5406-8121
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
mailto:c.trehan@lse.ac.uk
https://orcid.org/0000-0002-3249-3212
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 When You Come at the King You Best Not Miss

showed that Ω(n4/3) queries are always necessary and provided an algorithm which reveals a
king using O(n3/2) queries. Ajtai et al. [1] independently proved the same upper bound in
the context of imprecise comparison.

One of the enticing aspects of this setting is its game-theoretic nature: we can altern-
atively think of it as an adversarial game where one player, the seeker, wants to identify a
combinatorial structure by querying arcs of the tournament while an adversary, the obscurer,
tries to delay the seeker for as long as possible by choosing the orientation of queried arcs.

When reading Shen, Sheng, and Wu [8], one may be tempted to conjecture that a better
analysis of their obscurer-strategy for finding a king can lead to a better lower bound.
However, Biswas et al. [3] showed that against this strategy, the seeker can find a king with
O(n4/3) queries. They also showed that there exists a seeker strategy with O(n4/3) queries
for identifying a semi-king, that is, a vertex which controls at least half of all vertices. This
result is optimal by Lemma 6, Biswas et al. [3]. In fact, one needs to make Ω(t4/3) queries
for identifying a vertex which controls at least t ≤ n vertices against the obscurer-strategy of
Shen, Sheng and Wu. (See Lemma 6 of Biswas et al. [3] and Ajtai et al. [1] for more details.)
Therefore, if there exists an obscurer-strategy that proves a stronger than Ω(n4/3) lower
bound for the king problem, then this strategy must rely on some factors which distinguish
the king problem from the semi-king problem. In our eyes, this means that such a lower
bound is much more difficult to find than one might think at first.

Proceeding from the above, it is tempting to try to improve the upper bound by using a
variation of the seeker-strategy from Shen, Sheng, and Wu [8] and we can interpret the Biswas
et al. [3]’s seeker-strategy for finding a semi-king as such an attempt. These strategies both
rely on repeatedly selecting a set of vertices and then querying all the edges between them
to find a maximum out-degree (MOD) vertex in this sub-tournament1. Balasubramanian,
Raman and Srinivasaragavan [2] showed that identifying an MOD vertex in a tournament of
size k requires Ω(k2) queries in the worst case, which may explain the limits of the existing
seeker strategies.

Our Result

In this paper, we proceed along the line of research just described. On the one hand, we
show that with Õ(n4/3) queries2, it is possible to identify a (1

2 + 2
17)-king, which indicates

that improving upon the Ω(n4/3) lower bound is probably even harder than indicated by the
semi-king results. On the other hand, our technique does not rely on finding MOD vertices
of sub-tournaments which circumvents the inherent high cost of this operation.

Technical Overview

Our result is based on the combinatorial structure of tournaments, which may be of independ-
ent interest. We believe that this paper provides a novel toolkit which could lead towards
resolving the query complexity of finding a king. Specifically, we design a seeker-strategy
which consists of two main stages:

(i) The seeker queries the orientation of a set of edges defined by a so-called template-graph.
These queries are non-adaptive in the sense that the queries do not change as a result
of the answers provided by the obscurer.

1 The relationship between MOD vertices and kings is well-established: Landau [6], while studying the
structure of animal societies, showed that every MOD vertex is a king, but non-MOD kings can exist as
well.

2 The big-Õ notation hides constants and polylogarithmic factors

O. Lachish, F. Reidl, and C. Trehan 25:3

(ii) The seeker analyses the answer to the queries of (i) in order to select queries that lead
to the revelation of a (1

2 + 2
17)-king.

The template-graph is an undirected graph over the tournament’s vertices that has Õ(n4/3)
edges, with the property that every set of vertices of size around n2/3 or more has edges
to almost all the graph. In Section 3, we use the probabilistic method to prove that such
a graph exists. Given the template-graph, the seeker’s queries in the first stage are simply
given by its edges, i. e. if there exists an edge uv in the template-graph, then the seeker asks
the obscurer about the orientation of the edge uv in the tournament. The sparsity of the
template-graph ensures that the seeker does not make too many queries and the connectivity
of every sufficiently large set ensures that we do not miss any relevant information.

The second stage of the seeker-strategy is built on showing that when the obscurer chooses
how the edges of the template graph are oriented they have a trade-off. The trade-off is
either to reveal an ultra-set or not. We show that if the obscurer reveals an ultra-set, then
the seeker can reveals a (1

2 + 2
17)-king with Õ(n4/3) extra queries. If the obscurer does not do

this, then the seeker can use this to find a partition of the vertex set of the tournament into
sets of size O(n2/3) each (which we refer to as tiles), so that the edges of the template-graph
that are incident to the tiles satisfy a certain property. We obtain this combinatorial object
by showing that if such a partition does not exist, then a simple set of queries already reveals
a (1

2 + 2
17)-king.

The tiles are analysed by the construction of what we refer to as the free matrix which
contains a row for every tile and a column for every vertex of the tournament. An entry of
the matrix indexed by a given tile-vertex pair is 1 if every edge between the vertex and a
vertex in the tile is directed towards the tile, otherwise the entry is 0. We then use this free
matrix to guide the seeker-strategy.

Given that the first part of the seeker-strategy is non-adaptive and against any adversary,
this approach also reveals a combinatorial property of tournaments: for any fixed tournament
and template graph with the same set of vertices, knowing only the direction of the arcs of
the tournament that correspond to the arcs of the template graph is sufficient for finding a
set of vertices S of size O(n2/3) such that querying all edges inside of S necessarily reveals a
(1

2 + 2
17)-king. We note that fraction 2

17 is the result of balancing the various trade-offs in
the seeker strategy.

The rest of the paper is organised as follows. In Section 2, we provide necessary definitions
and prove some basic lemmas about tournaments that are used in the rest of the paper.
Section 3 is dedicated to the formal definition and the proof of existence of template graphs.
In Section 4, we describe our seeker-strategy and prove that it leads to the discovery of a
(1

2 + 2
17)-king. In Section 5, we give concluding remarks and open problems.

2 Preliminaries

For simplicity, we assume that the vertices of any n-vertex graph are the numbers [n] :=
{1, . . . , n}.

An orientation of a graph G is a directed graph obtained from G by replacing every one
of its edges by a directed arc.

d(v, X),N(v) Given an undirected graph G, a vertex v ∈ V (G), and a vertex set X ⊆ V (G)
we define the relative degree d(v, X) := |N(v) ∩ X|, where N(v) is the neighbourhood of v

in G.
d+(X),N+(v) For a vertex v in a directed graph G⃗, a vertex u in G⃗ is an out-neighbour

of v, if the edge between u and v is oriented from v to u. For a directed graph G⃗, we denote
the out-neighbourhood of a vertex v ∈ G⃗ by N+(v) and its out-degree by d+(v). For a vertex

FSTTCS 2022

25:4 When You Come at the King You Best Not Miss

set X ⊆ V (G⃗), we let d+(X) be the number of arcs from a vertex in X to a vertex not in
X. d+(v, X) Given additionally a vertex subset X ⊆ V (G), we define the relative out-degree
d+(v, X) := |N+(v) ∩ X|.

N++[v] The (closed) second-out-neighbourhood N++[v] of v is the set of vertices u ∈ V (G⃗)
for which there exists a directed path from v to u of length at most two.

control, direct – For simplicity we will adopt the following vocabulary for digraphs. We
say that a vertex x controls a vertex y if y ∈ N++[x]. We say that x directly controls a
vertex y if y ∈ N+(x) ∪ {x}. We extend both of these terms to vertex sets U , for example,
we will often write statements like “x controls at least half of the vertices in U”.

T⃗ , T⃗ [S] A tournament is a digraph T⃗ obtained from a complete graph by replacing each
edge with a directed arc. As done usually, we denote the subgraph induced by a vertex
set S ⊆ V (T⃗), with T⃗ [S]. Note that an induced subgraph of a tournament is necessarily also
a tournament. We will need the following basics facts about tournaments in the following.

▶ Lemma 1. Let T⃗ be a tournament with m vertices and α ∈ [0, 1] such that αm is even.
Then T⃗ has at least (1 − α)m vertices of out-degree at least αm/2.

Proof. Let S initially be the vertices of T⃗ and proceed according to the following process:
find a vertex of out-degree at least αm/2 and remove it from S; and repeat until no such
vertex exists in S. From here on we focus on set S after the vertex removal process ended.

Let r = |S| be the size of the final set and consider the sub-tournament T⃗ [S]. We know
that by averaging considerations, every tournament of size r has at least one vertex of
out-degree at least r/2 − 1/2. We also know that S does not contain any vertex of out-degree
at least αm/2. Hence, we conclude that r ≤ αm.

Consequently, our process discovered m − r ≥ (1 − α)m vertices of out-degree at least
αm/2 in T⃗ . ◀

▶ Lemma 2. Let G⃗ be an orientation of a complete bipartite graph (V0, V1, E), where
|V0| = |V1| = m, and m is divisible by 4 . Then, there exists i ∈ {0, 1}, such that Vi has at
least m/2 + 1 vertices v, where d+(v, V1−i) ≥ m/4.

Proof. Let S initially contain all the vertices in V0 ∪V1 and proceed according to the following
process: We find a vertex of out-degree at least m/4 and remove it from S. Repeat until no
such vertex exists and we are left with S′ ⊆ S.

Every orientation of the complete bipartite graph Kt,t must contain, by a simple averaging
argument, a vertex of out-degree at least t/2. Therefore the induced subgraph G⃗[S′] must
have at least one partite set of size strictly less than m/2 or we could continue the process.
Consequently, our process discovered at least m/2 + 1 vertices of out-degree at least m/4 in
that partite set. ◀

▶ Lemma 3. Let T⃗ be a tournament on 2m vertices, where m is divisible by 4. Let further
sets S0, S1 be a partition of the vertices of T⃗ into sets of equal size. Then there exists a
vertex v such that both d+(v, S0) ≥ m/4 and d+(v, S1) ≥ m/4.

Proof. By Lemma 1, for both i ∈ {0, 1}, there exist m/2 vertices v in Si such that |N+(v) ∩
Si| ≥ m/4. By Lemma 2 for one of i ∈ {0, 1}, there exist m/2 + 1 vertices v such that
|N+(v) ∩ S1−i| ≥ m/4. Then by the pigeonhole principle, there exists i ∈ {0, 1} and a vertex
v ∈ Si, such that |N+(v) ∩ Si| ≥ m/4, for every i ∈ {0, 1}, as claimed. ◀

O. Lachish, F. Reidl, and C. Trehan 25:5

3 Constructing the template-graph

▶ Definition 4 (κ-template-graph). Let κ ∈ (0, 1) and G be an undirected graph over the vertex
set [n]. The graph G is a κ-template-graph, if for every pair of disjoint sets H1, H2 ⊆ [n] both
of size at least κn2/3, there exists at least one edge between them, that is, |E(H1, H2)| ≥ 1.

For the remainder of this section, we fix κ ∈ (0, 1) and set p = 2 log n+2
κn2/3 . We next show that

with strictly positive probability the Erdős–Renyi random graph G(n, p) is a κ-template-graph,
with O(n4/3 log n) edges, where the O notation hides a dependence on κ. By the probabilistic
method, this implies that there actually exists such a graph.

All probabilities in the following are with respect to the probability space of this random
graph.

▶ Lemma 5. Let κ ∈ (0, 1). With probability at least 3/4, the graph G(n, p), where p is
defined as above, is a κ-template-graph.

Proof. Note that if we prove the statement of the lemma for sets of size exactly (up to
rounding errors) κn2/3, then the claim follows for all larger sets as well. To prove this, we
next show, with the help of the union bound, that the probability that G(n, p) has two
disjoint subsets of vertices, each of size κn2/3, with no edge between them is strictly less
than 1/4.

Let H1 and H2 be any pair of disjoint subsets of [n] of size κn2/3, then the total number
of vertex pairs between them is (κn2/3)2. The probability that none of these pairs is an edge
in the template-graph G is accordingly (1 − p)(κn2/3)2 .

We apply the exponential bound (1 − p)k ≤ e−pk for a k-round Bernoulli trial and obtain

(1 − p)(κn
2
3)2

≤ e−p(κn2/3)2
= e−(2 log n+2)κn2/3

= n−2κn2/3
e−2κn2/3

≤ 1
4n−2κn2/3

,

where the last inequality holds when n is large enough so that κn
2
3 ≥ 1 and hence e−2κn2/3

< 1
4 .

Since the total number of pairs of sets H1, H2 of size κn2/3 is bounded above by n2κn2/3 , the
claim now follows from the union bound. ◀

▶ Theorem 6. Let κ ∈ (0, 1), there exists a κ-template-graph G with at most O(n4/3 log n/κ)
edges.

Proof. The expected number of edges of G(n, p) for our choice of p = (2 log n + 2)/(κn2/3)
is less than m := (2 log n + 2)n4/3/κ. Since every edge of the graph is selected independently,
by the Chernoff bound the probability that the number of edges in G(n, p) exceeds 2m is at
most

e−p(n
2)/3 ≤ e

− (2 log n+2)
κn2/3

n(n−1)
6

≤ e−(2 log n+2)n/6 ≤ 1
4

where the last inequality holds for n ≥ 4.
Together with Lemma 5 this implies that with probability at least 1/2, G(n, p) is a κ-

template-graph G with at most O(n4/3 log n/κ) edges. The claim follows by the probabilistic
method. ◀

FSTTCS 2022

25:6 When You Come at the King You Best Not Miss

4 The seeker strategy

Having proved the existence of a κ-template-graph, we next examine the properties of an
arbitrary orientation of such a graph. Given a κ-template-graph Gκ on a vertex set [n], we
use G⃗κ (henceforth) to refer to a directed graph obtained by replacing every edge of Gκ

by a directed arc. Note that we assume nothing about G⃗κ and analyze as if its arcs were
arbitrarily oriented by an adversary.

▶ Definition 7 (η-weak, η-strong, η-ultra). η-weak, η-strong, η-ultra For an oriented template-
graph G⃗κ and any η > 0, a set H ⊆ [n] is η-weak if d+(H) < (1/2 + η)n, is η-strong if
d+(H) ≥ (1/2 + η)n. We call a set η-ultra if every subset H ′ ⊂ H, of size at least |H|/2 is
η-strong.

To understand why η-ultra sets are important, it is useful to think of the seeker as trying to
force the obscurer to reveal enough information (in the form of query answers) so that the
seeker can achieve their goal. This is done by first querying the orientation of all the edges
of a template graph and nothing else. The observation below implies that if the orientation
of the edges of the template graphs reveals an eta-ultra set, of size Õ(n2/3), then the seeker
can achieve its goal with an additional Õ(n4/3) queries. Thus, the obscurer cannot reveal
such an ultra-set. However, as we show further on, by doing this the obscurer reveals enough
information for the seeker to achieve their goal.

▶ Observation 8. Let H ⊆ V (G⃗κ) be an η-ultra set. Then we can find a (1/2 + η)-king using
≤ |H|2 additional queries.

Proof. Query all ≤ |H|2 edges inside H . Let v ∈ H be a vertex such that d+(v, H) ≥ |H|/2.
Since H is η-ultra, the set H ′ := N+(v) ∩ H is η-strong, meaning d+(H ′) ≥ (1/2 + η)n.
Therefore |N++[v]| ≥ (1/2 + η)n and v is a (1/2 + η)-king. ◀

▶ Definition 9 (Free set). Free set, F (W) Let W ⊆ V (G⃗κ) be an η-weak set. Then the free
set of W is the vertex set F (W) := V (G⃗κ) \ (N+(W) ∪ W), that is, all vertices that lie
neither in W nor in N+(W).

▶ Observation 10. Let W be an η-weak set. Then |F (W)| > (1
2 − η)n − |W |.

By the properties of template-graphs, namely that each pair of large enough sets must have
an edge between them, and by the definition of free sets it follows that all the arcs of G⃗κ

between a sufficiently large set W and its free set F (W) must point towards W . Let us
formalize this intuition:

▶ Definition 11 (α-covers). For α ∈ [0, 1] we say that a set S α-covers a set W if |N+(S) ∩
W | ≥ α|W |.

▶ Lemma 12. In the template graph, for every set W ⊂ [n] of size n2/3 and every subset
S ⊆ F (W) of size at least κn2/3, it holds that S (1 − κ)-covers W .

Proof. Consider a set S ⊆ F (W) of size κn2/3. Then, by Lemma 5, there is at least one
edge s1w1 between some s1 ∈ S and w1 ∈ W . Remove w1 from W and apply the argument
to the remainder. In this way, we construct a sequence w1, . . . , wt such that each wi has at
least one neighbour in S.

The application of Lemma 5 is possible until the remainder of W has size less than κn2/3,
hence the process works for at least t = n2/3 − κn2/3 = (1 − κ)n2/3 steps. Now simply note
that each edge swi for s ∈ S must be oriented from s to wi since S is a subset of F (W). It
follows that |N+(S) ∩ W | ≥ (1 − κ)|W |, as claimed. ◀

O. Lachish, F. Reidl, and C. Trehan 25:7

In the previous lemma lies the inherent usefulness of free sets. If, for some set W of size n2/3,
we find a vertex v that has at least κn2/3 out-neighbours in the free set F (W), then v controls
almost all of W . As observed above, η-weak sets have necessarily large free sets which makes
them “easy targets” for our strategy.

We now show that in case no η-ultra set exists (in which case we already win as per
Observation 8), we can instead partition most of the vertices of V (G⃗κ) into weak sets.

▶ Definition 13. An η-weak tiling of G⃗κ is a vertex partition W1, . . . , Wm, R where |Wi| =
n2/3, |R| < 2n2/3 and every set Wi is η-weak. We call the sets Wi the tiles and R the
remainder.

By definition, the number of tiles m in an η-weak tiling is at least n1/3 − 2.

▶ Lemma 14. Fix η > 0. For large enough n, G⃗κ either contains an η-ultra set of size 2n2/3

or an η-weak tiling.

Proof. We construct the tiling iteratively. Assume we have constructed W1, . . . , Wj so far.
Let R := V (G⃗κ) \

⋃
i≤j Wi be all the vertices of G⃗κ which are not yet part of the tiling. If

|R| < 2n2/3 we are done, so assume otherwise. Let H ⊆ R be an arbitrary vertex set of size
2n2/3. If H is η-ultra, then by Observation 8, we are done. Otherwise there exists an η-weak
set Wj+1 ⊆ H, |Wj+1| = |H|/2. Add this set to the tiling and repeat the construction. At
the end of this procedure, we will either find an η-ultra set or an η-weak tiling. ◀

Our goal is now to find a vertex whose out-neighbourhood has large intersections with many
free sets. To organise this search, we define the following auxiliary structure:

▶ Definition 15 (Free matrix). Let W1, . . . , Wm, R be an η-weak tiling of G⃗κ and let W =
{W1, . . . , Wm}. The free matrix M of the tiling W, R is a binary matrix with m rows indexed
by W and n columns indexed by [n]. The entry at position (Wi, v) ∈ W × V is 1 if v ∈ F (Wi)
and 0 otherwise.

weight,
∑

M We will use the following notation in the rest of this section. Given a free
matrix M of an η-weak tiling W, R let M [W ′, U] denote a sub-matrix of M induced by
a subset W ′ ⊆ W of the tile set and a subset U ⊆ [n] of the vertex set. For example, a
column of M corresponding to a vertex v ∈ [n] can be written as M [W, {v}] in this notation.
Analogously a row of M corresponding to a tile Wi ∈ W can be written as M [{Wi}, [n]].
Given a sub-matrix M ′ of the free matrix M , we call the number of 1’s in M ′ the weight of
M ′ and denote it by

∑
M ′.

The following is a direct consequence of the construction of the free matrix and Observa-
tion 10.

▶ Observation 16. Every row of the free matrix M has a weight of at least (1
2 − η − n−1/3)n.

▶ Definition 17 (Good Sub-Matrix). A sub-matrix M [W, U], for some U ⊂ [n], is η-good if,
each one of its rows has weight at least (1

2 − η − 2n−1/3 log1/2 n)|U |.

We next show that a good sub-matrix with 2n2/3 columns exists, by using the probabilistic
method. Specifically, we show that if we randomly pick 2n2/3 columns from the matrix
M [W, [n]] then with strictly positive probability the matrix that includes exactly these
columns is good.

▶ Lemma 18. Let η ∈ (0, 1
2). For large enough n the free matrix M has an η-good sub-matrix

with 2n2/3 columns.

FSTTCS 2022

25:8 When You Come at the King You Best Not Miss

Proof. Select K ⊂ [n] of size 2n2/3 uniformly at random. Let M ′ = M [W, K].
We set p = 1/2 − η − n−1/3 and t = n−1/3 log1/2 n. By Observation 16, every row of M

has weight at least pn. By the Hypergeometric tail bound the probability that a specific row
of M ′ has weight less than (p − t)n is at most e−2t22n2/3 ≤ 1/n, where the inequality follows
from our choice of t. Then by the union bound the probability that every row of M ′ has
weight at least (p − t)n is strictly positive.

Note that by our choice of p and t, we get that (p − t)n , for large enough n, is at least
as large as (1/2 − η − 2n−1/3 log1/2 n)n, therefore a good sub-matrix M ′ exists with strictly
positive probability. By the probabilistic methods the claim therefore holds. ◀

Next we show that the only way that the adversary does not provide us with a (1/2 + δ)-king
once we have identified a δ-good sub-matrix is if the distribution of 1’s in that matrix is very
restricted. We will use this additional structure to find a (1/2 + δ)-king in the sequel. For
simplicity, we first query all the edges between the vertices associated with the columns of
the δ-good sub-matrix, but note that this is not strictly necessary: we can instead inspect all
potential partitions (with properties as stated in the lemma) and only if no such partition
exists query said edges which then surely identifies a (1/2 + δ)-king. With this change the
lemma is consistent with the structural claim from the introduction.

▶ Lemma 19. Let M ′ = M [W, V] be a δ-good sub-matrix of M with 2n2/3 columns. Let
further κ + δ ≤ 1/2. If we query each one of the O(n4/3) edges in V , then either we find
a (1

2 + δ)-king, or we find partitions V1 ⊎ V2 = V and W1 ⊎ W2 = W with the following
properties:

|V1| = |V2| = n2/3

|W1| ≥ (1
2 − δ − κ)n1/3 − 2 and |W2| < (1

2 + δ + κ)n1/3

Every row in M ′[W1, V1] has weight at most κn2/3

Every row in M ′[W2, V1] has weight at least κn2/3

Proof. We query all the edges in V × V and select a vertex y ∈ V such that d+(y, V) ≥ n2/3.
Let V1 be an arbitrary subset of N+(y) ∩ V of size n2/3 and let V2 = V \ V1. Partition the
rows of M ′ into W1 ∪ W2 so that W1 contains all rows with weight less than κn2/3 in the
sub-matrix M ′[W, V1].

We claim that if |W1| < (1
2 − δ − κ)n1/3 − 2 then y is a (1

2 + δ)-king. By construction,
every row in W2 has weight at least κn2/3 in M ′[W, V1] and if the condition of the claim
holds then |W2| ≥ (1

2 + δ + κ)n1/3. By Lemma 12, the set V1 must (1 − κ)-cover every tile in
W2. It follows that

|N++[y]| ≥ (1 − κ)
∣∣ ⋃

W2
∣∣ ≥ (1 − κ)

((1
2 + δ + κ

)
n1/3

)
n2/3

= (1 − κ)
(1

2 + δ + κ
)

n =
(1

2 + δ + κ

2 − κδ − κ2
)

n

=
(

1
2 + δ + κ

(1
2 − δ − κ

))
n

≥
(1

2 + δ
)

n

where the last inequality holds since δ + κ ≤ 1/2. ◀

Lemma 19 implies the following about good sub-matrices.

▶ Lemma 20. Let M ′ = M [W, V] be a δ-good sub-matrix with |V | = 2n2/3 and W1 ⊎ W2,
V1 ⊎ V2 be partitions as in Lemma 19. Then every row in M ′[W1, V2] has weight at least
(1 − 2δ − 2κ)n2/3.

O. Lachish, F. Reidl, and C. Trehan 25:9

Proof. Since M ′ is a δ-good sub-matrix, by Definition 17, every row in M ′[W1, V] has weight
at least (1/2 − δ − 2n−1/3 log1/2 n)2n2/3. By Lemma 19, every row in M ′[W1, V1] has weight
at most κn2/3. Therefore, the weight of every row in M ′[W1, V2] is

≥ (1/2 − δ − 2n−1/3 log1/2 n)2n2/3 − κn2/3

= (1 − 2δ − 4 log1/2 n

n1/3 − κ)n2/3

≥ (1 − 2δ − 2κ)n2/3

where we assume that n is large enough so that 4 log1/2 n
n1/3 ≤ κ. ◀

Our final technical lemma lets us, for a given set of rows of M , identify a set of columns with
high enough weight when restricted to those rows.

▶ Lemma 21. Let U ⊂ [n] be of size 2n2/3 and W ′ ⊂ W. Then there exists a set V ′ ⊂ [n]\U ,
of size n2/3 such that every column in M [W ′, V ′] has weight at least (1/2 − δ − 3n−1/3)|W ′|.

Proof. Let Ū := [n] \ U and let V ′ be an arbitrary subset of n2/3 columns in M [W ′, Ū] with
the largest column-weight. Let t be the smallest weight among these columns when restricted
to M [W ′, V ′]. We bound the weight of M [W ′, Ū] first from below and then from above, then
we use these bounds to show that t > (1

2 − δ − 3n−1/3) · |W ′|, which implies that V ′ is the
claimed set.

For the lower bound on the weight of M [W ′, Ū], we use the simple fact that∑
M [W ′, Ū] =

∑
M [W ′, [n]] −

∑
M [W ′, U]. (1)

By Observation 16, every row of the matrix M has weight least (1
2 − δ − n−1/3) · n. It follows

that
∑

M [W ′, [n]] is at least (1
2 − δ − n−1/3) · n · |W ′|. For the second term, we have the

trivial bound
∑

M [W ′, U] ≤ |U | · |W ′| = 2n2/3 · |W ′|. Plugging these values into (1) we
obtain∑

M [W ′, Ū] ≥ (1
2 − δ − n−1/3) · n · |W ′| − 2n2/3 · |W ′|

= (1
2 − δ − 3n−1/3) · n · |W ′|.

(2)

For the upper bound on the total weight of M [W ′, Ū] we use that∑
M [W ′, Ū] =

∑
M [W ′, V ′] +

∑
M [W ′, Ū \ V ′]. (3)

We use the trivial bound
∑

M [W ′, V ′] ≤ |V ′| · |W ′| = n2/3 · |W ′| for the first term. By
definition of the value t, we have that every column in M [W ′, Ū \ V ′] has weight at most t.
Accordingly,

∑
M [W ′, Ū \ V ′] ≤ t · |Ū \ V ′| = t · (n − 3n2/3). Plugging in these values into

(3) we obtain∑
M [W ′, Ū] ≤ n2/3 · |W ′| + t · (n − 3n2/3). (4)

Finally, (2) and (4) taken together give us that

t · (n − 3n2/3) + n2/3 · |W ′| ≥ (1
2 − δ − 2n−1/3) · n · |W ′|.

Consequently, t > (1
2 −δ−3n−1/3)·|W ′| and we conclude that V ′ has the claimed property. ◀

FSTTCS 2022

25:10 When You Come at the King You Best Not Miss

We are finally ready to prove our seeker-strategy for finding a 1/2 + δ-king using Õ(n4/3)
queries. For readability, we will state our main result in terms of concrete and simple values
for κ and δ, however, note that smaller values of κ allow δ to be slightly larger than the
stated bound of 2

17 .

▶ Theorem 22. Fix δ = 2
17 , let κ = 1

4000 . For large enough n, there exists a seeker strategy
for finding a (1/2 + δ)-king using Õ(n4/3) edge queries.

Proof. We construct the template-graph Gκ and query all Õ(n4/3) of its edges to obtain G⃗κ.
By Lemma 14, we either obtain a δ-ultra set of size 2 · n2/3 or a δ-weak tiling of G⃗κ. If

we find the former, by Observation 8 we can find a (1
2 + δ)-king using O(n4/3) additional

queries. Therefore assume that we obtained a δ-weak tiling W, R of G⃗κ.
Let M be the free matrix of W, R. By Lemma 18, M has a δ-good sub-matrix M [W, V]

with |V | = 2n2/3. We query all O(n4/3) edges in V × V and by Lemma 19 either identify
a (1

2 + δ)-king, or obtain partitions V1 ⊎ V2 = V , W1 ⊎ W2 with properties as listed in
Lemma 19. Importantly, by Lemma 20, every row in the sub-matrix M [W1, V2] has weight
at least (1 − 2δ − 2κ)n2/3.

We now apply Lemma 21 with W ′ = W2 and find a set of columns V3 ⊆ [n] \ V of size
n2/3 such that every column in M [W2, V3] has weight at least (1

2 − δ − 3n−1/3)|W2|. We
now query all edges in V3 × V3 and V2 × V3, since |V2| = |V3| = n2/3 this amounts to O(n4/3)
additional queries.

Since G⃗[V2 ∪ V3] is completely revealed, it is a tournament of size 2n2/3 and we apply
Lemma 3 using the bipartition (V2, V3) to find a vertex v ∈ V2 ∪ V3 such that d+(v, V2) and
d+(v, V3) are both at least n2/3/4. We claim that v is a (1

2 + δ)-king. Let in the following
V ′

2 = N+(v) ∩ V2 and V ′
3 = N+(v) ∩ V3. We first prove the following two claims about these

two sets:

▷ Claim 23. Every row in M [W1, V ′
2] has weight at least κn2/3.

Proof of the claim. According to Lemma 20, every row in M [W1, V2] has weight at least
(1 − 2δ − 2κ)n2/3. Since |V ′

2 | = |V2|/4 = n2/3/4, we have that each row in M [W1, V ′
2] has

weight at least

(1 − 2δ − 2κ)n2/3 − 3
4n2/3

which is larger than κn2/3 for δ ≤ 1
8 − 3κ

2 which holds true for our choices of δ and κ. ◁

▷ Claim 24. At least (1
2 − δ − 4κ − 3n−1/3) |W2|

1−4κ rows in M [W2, V ′
3] have weight at least

κn2/3.

Proof of the claim. Recall that by choice of V3, every column in M [W2, V3] and therefore also
M [W2, V ′

3] has weight at least (1
2 − δ − 3n−1/3)|W2|. Accordingly,∑

M [W2, V ′
3] ≥ (1

2 − δ − 3n−1/3)|W2| · |V ′
3 |

≥ (1
2 − δ − 3n−1/3)|W2| · 1

4n2/3.

(5)

Let t denote the number of rows in M [W2, V ′
3] with weight at least κn2/3. Our goal is to

find a lower bound for t. Since t is minimized if every row that has weigth at least κn2/3 has
in fact the maximum possible weight |V ′

3 | = n2/3/4, we can lower-bound t using
t

4n2/3 + (|W2| − t)κn2/3 ≥
∑

M [W2, V ′
3].

O. Lachish, F. Reidl, and C. Trehan 25:11

Combining this inequality with (5), we obtain

t
n2/3

4 + (|W2| − t)κn2/3 ≥ (1
2 − δ − 3n−1/3)|W2| · 1

4n2/3

⇐⇒ t(1 − 4κ) ≥ (1
2 − δ − 4κ − 3n−1/3)|W2|

⇐⇒ t ≥ (1
2 − δ − 4κ − 3n−1/3) |W2|

1 − 4κ
. ◀

Now note that for every tile W ∈ W for which the row M [{W}, V ′
2 ∪ V ′

3] has weight at
least κn2/3 we have that d+(v, F (W)) ≥ κn2/3, therefore by Lemma 12 the set N+(v)∩F (W)
(1 − κ)-covers W . In other words, v controls at least (1 − κ)n2/3 vertices in W .

Our goal is now to lower-bound the total number of such tiles, hence let s denote the
total number of rows in M [W, V ′

2 ∪ V ′
3] with weight at least κn2/3. By the previous two

observations and by plugging in the concrete values of δ = 2
17 and κ = 1

4000 , we have that

s ≥ |W1| + (1
2 − δ − 4κ − 3n−1/3) |W2|

1 − 4κ

= |W1| + (6483
17000 − 3n−1/3)|W2|1000

999 .

Again we are aiming to prove a lower-bound, thus we assume that W1 is as small as possible.
By Lemma 19, this means that

|W1| = (1
2 − δ − κ)n1/3 − 2 = 25983

68000n1/3 − 2 and

|W2| = (1
2 + δ + κ)n1/3 = 42017

68000n1/3.

Plugging in the sizes of W1, W2 we obtain

s ≥ |W1| + (6483
17000 − 3n−1/3)|W2|1000

999
≥ 25983

68000n1/3 + (6483
17000 − 3n−1/3)42017

67932n1/3 − 2

≥ 475777
769896n1/3 − 4.

Since v controls a (1 − κ) = 3999
4000 fraction of each tile counted by s and each tile has a size

of n2/3, we finally have the following lower bound on the second out-neighbourhood of v:

|N++[v]| ≥ 3999
4000sn2/3 ≥ 3999

4000 · 475777
769896n − 4n2/3

= 0.61782 . . . n − 4n2/3.

This value lies, for large enough n, above our target value of (1
2 + δ)n = 0.61764 . . . n. ◀

5 Conclusion

We have shown how the usage of a template-graph helped us devise a seeker strategy that
reveals a (1

2 + 2
17)-king in a tournament using Õ(n4/3) queries, shedding light on a long-

standing open problem. Our approach begins with a non-adaptive querying strategy based
on what we called a template graph, which then helps to guide the seeker to identify a small
set of queries which necessarily lead to the discovery of a (1

2 + 2
17)-king.

Naturally, we ask whether it is possible to find an improved strategy which reveals a
(1

2 + δ)-king with δ substantially larger than 2
17 using a similar amount of queries.

FSTTCS 2022

25:12 When You Come at the King You Best Not Miss

References
1 Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and selection

with imprecise comparisons. In International Colloquium on Automata, Languages, and
Programming, pages 37–48. Springer, 2009.

2 Ramachandran Balasubramanian, Venkatesh Raman, and G Srinivasaragavan. Finding scores
in tournaments. Journal of Algorithms, 24(2):380–394, 1997.

3 Arindam Biswas, Varunkumar Jayapaul, Venkatesh Raman, and Srinivasa Rao Satti. The
complexity of finding (approximate sized) distance-d dominating set in tournaments. In
Mingyu Xiao and Frances Rosamond, editors, Frontiers in Algorithmics, pages 22–33, Cham,
2017. Springer International Publishing.

4 Palash Dey. Query complexity of tournament solutions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

5 Dishant Goyal, Varunkumar Jayapaul, and Venkatesh Raman. Elusiveness of finding degrees.
Discrete Applied Mathematics, 286:128–139, 2020.

6 HG Landau. On dominance relations and the structure of animal societies: III the condition
for a score structure. The bulletin of mathematical biophysics, 15(2):143–148, 1953.

7 John W Moon. Topics on tournaments in graph theory. Courier Dover Publications, 2015.
8 Jian Shen, Li Sheng, and Jie Wu. Searching for sorted sequences of kings in tournaments.

SIAM J. Comput., 32(5):1201–1209, 2003. doi:10.1137/S0097539702410053.

https://doi.org/10.1137/S0097539702410053

Complexity of Fault Tolerant Query Complexity
Ramita Maharjan !

University of Memphis, TN, USA

Thomas Watson !

University of Memphis, TN, USA

Abstract
In the model of fault tolerant decision trees introduced by Kenyon and Yao, there is a known upper
bound E on the total number of queries that may be faulty (i.e., get the wrong bit). We consider
this computational problem: Given as input the truth table of a function f : {0, 1}n → {0, 1} and a
value of E, find the minimum possible height (worst-case number of queries) of any decision tree
that computes f while tolerating up to E many faults. We design an algorithm for this problem
that runs in time Õ

((
n+E

E

)
· (2E + 3)n

)
, which is polynomial in the size of the truth table when E

is a constant. This generalizes a standard algorithm for the non-fault tolerant setting.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Fault, Tolerant, Query, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.26

Funding This work was supported by NSF grant CCF-1657377.

1 Introduction

In practice, the fields of program synthesis (for software) and logic synthesis (for hardware) are
about automating the design of computational processes: Given an input-output specification,
generate an efficient implementation that meets the specification.

Complexity theory’s version of synthesis is known as “meta-complexity” or “complexity
of complexity”: Given the truth table of a boolean function f , compute f ’s complexity – the
cost of an optimal algorithm for f in some model of computation. Upper and lower bounds
are known on the complexity of computing the complexity of a function (given its truth table)
for various models, including circuits [16, 3, 4, 2, 15, 13], formulas [6, 5, 13, 14], branching
programs [10, 6, 19], communication protocols [18, 15, 12], and decision trees [11, 1, 19].

We focus on decision trees. A decision tree computes a function f : {0, 1}n → {0, 1} by
adaptively querying (reading) individual bits of the input. A decision tree’s height (cost)
is the maximum over all inputs of the number of queries made on that input. The query
complexity of f is the minimum height of any decision tree computing f . A standard
algorithm due to [11, 1] inputs f ’s truth table and outputs f ’s query complexity in time
Õ(3n), where Õ hides a poly(n) factor. In terms of the input size N = 2n, this is polynomial
time Õ(N log2(3)). A simple extension of the algorithm outputs an optimal decision tree,
not just its height. There is also a considerable amount of literature on properly learning
decision trees given access to input-output pairs of f (e.g., see the recent papers [8, 7] and
the references within). The “given a truth table” problem corresponds to the extreme case
where all input-output pairs of f are available.

We consider fault tolerant decision trees, in which a query to an input bit may or may not
get the bit’s actual value. This is motivated by scenarios where the input bits are the results
of unreliable computations. Several models of this type have been introduced [17, 9, 20, 21].
We focus on the original model from [17], in which a decision tree is only required to output
the correct bit when the total number of faults, over all queries to all variables, is at most
some parameter E. Letting Õ hide a poly(n, E) factor, we prove:

© Ramita Maharjan and Thomas Watson;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 26; pp. 26:1–26:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmhrjan1@memphis.edu
mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Complexity of Fault Tolerant Query Complexity

▶ Theorem 1. Given as input the truth table of a function f : {0, 1}n → {0, 1} and an integer
E ≥ 0, the E-fault tolerant query complexity of f can be computed in time Õ

((
n+E

E

)
·(2E+3)n

)
.

When E is a constant, this running time is Õ
(
N log2(2E+3)), which is polynomial in the

size N = 2n of f ’s truth table.
Our algorithm generalizes the algorithm from [11, 1] for the non-fault tolerant setting.

The analysis of our algorithm is much more involved, largely because our set of dynamic
programming subproblems has a complicated combinatorial structure. It is not straightfor-
ward to characterize or count the subproblems. This stems from the fact that – unlike in the
non-fault tolerant setting – we cannot treat the input variables as independent of each other.

2 Decision trees

A decision tree on boolean variables x1, x2, . . . , xn is a full binary tree where each internal
node is labeled with a variable index i ∈ [n] = {1, 2, . . . , n} and each leaf is labeled with
an output bit. On an input x ∈ {0, 1}n, a decision tree follows a root-to-leaf path: Upon
reaching an internal node labeled i, the decision tree queries xi and goes to the left child
if xi = 0 or to the right child if xi = 1. The output is the label of the leaf reached. A
decision tree computes f : {0, 1}n → {0, 1} iff it outputs f(x) for every input x. A decision
tree’s height is the number of edges on a longest root-to-leaf path, i.e., the maximum over all
x ∈ {0, 1}n of the number of queries made on input x. The (deterministic) query complexity
of f , denoted D(f), is the minimum height of any decision tree that computes f . We have
D(f) ≤ n for all f : {0, 1}n → {0, 1} since a decision tree can make n queries to determine
the entire input x and then output f(x). There is no reason for a decision tree computing f

to query the same variable more than once along a root-to-leaf path.
In the fault tolerant setting, a query to xi may get either xi’s actual value or the opposite

bit – a fault or mistake. We allow a decision tree to query the same variable more than once
along a root-to-leaf path, in which case some queries may get the actual value while others
are faults. We consider the model introduced by [17] where E ≥ 0 is a specified upper bound
on the total number of faults over all variables (not per variable). A decision tree computes
f : {0, 1}n → {0, 1} while tolerating E faults iff it outputs f(x) for every input x and every
choice of at most E queries to be faults. More formally, for a node v, input x, and variable
index i, define faults(v, x, i) as the number of nodes along the root-to-v path – excluding v

itself – that are labeled i but the path goes to the wrong child, i.e., left child but xi = 1, or
right child but xi = 0. Define faults(v, x) =

∑n
i=1 faults(v, x, i). A decision tree is E-fault

tolerant for f iff for every input x and every leaf v with faults(v, x) ≤ E, the label of v is
f(x). In other words, if we define consistentE(v) = {x : faults(v, x) ≤ E} then for every leaf
v, f(x) must be the same for all x ∈ consistentE(v). The E-fault tolerant query complexity
of f , denoted DE(f), is the minimum height of any E-fault tolerant decision tree for f . We
have D(f) = D0(f) ≤ D1(f) ≤ D2(f) ≤ · · · . The following lemma does not seem to appear
in the literature.

▶ Lemma 2. DE(f) ≤ D(f) · (E + 1) + E for all f and E.

Proof. Let T be a decision tree of height D(f) computing f . We design T ′, which is an
E-fault tolerant decision tree of height at most D(f) · (E + 1) + E for f . The idea is that on
any input, T ′ tracks T ’s root-to-leaf path but for each variable T queries along the way, T ′

queries the variable repeatedly until ascertaining its actual value:
Suppose (for convenience) T first queries x1. We have T ′ query x1 until some bit has
appeared E + 1 times. This bit is x1’s actual value since otherwise x1 would have E + 1
faults. Let e1 be the number of faults on x1. The number of queries to x1 is E + 1 + e1.

R. Maharjan and T. Watson 26:3

Suppose (for convenience) T next queries x2. We have T ′ query x2 until some bit has
appeared E + 1 − e1 times. This bit is x2’s actual value since otherwise x1, x2 would
have E + 1 faults. Let e2 be the number of faults on x2. The number of queries to x2 is
E + 1− e1 + e2.

...
Suppose (for convenience) T queries xi in the ith step. We have T ′ query xi until some
bit has appeared E + 1− e1 − e2 − · · · − ei−1 times. This bit is xi’s actual value since
otherwise x1, . . . , xi would have E + 1 faults. Let ei be the number of faults on xi. The
number of queries to xi is E + 1− e1 − e2 − · · · − ei−1 + ei.

...
Upon reaching a leaf of T , we have T ′ output the same bit. If at most E faults occur, then
T ′ finds the leaf T would reach. Since T computes f , T ′ is E-fault tolerant for f . If T makes
q queries on input x, then T ′ makes at most∑q

i=1
(
E + 1− (

∑i−1
j=1 ej) + ei

)
= q · (E + 1)−

∑q
i=1(q − 1− i) · ei

≤ q · (E + 1) + eq

≤ D(f) · (E + 1) + E

queries on input x, regardless of when the faults occur. ◀

Lemma 2 is tight for the And function on n bits:

▶ Observation 3. DE(Andn) = n · (E + 1) + E for all n and E.

Proof. An adversary can respond 1 to all queries, until some variable xi has been queried E

times and each other variable has been queried at least E + 1 times, and then the adversary
can start responding 0 to subsequent queries to xi (and keep responding 1 to queries to
other variables). After at most n · (E + 1) + E − 1 queries, the current node v would have
faults(v, y) ≤ E where y is the all 1s input (so Andn(y) = 1) and faults(v, z) ≤ E where z

is all 1s except zi = 0 (so Andn(z) = 0), where i is the index of a variable that has been
queried as 1 at most E times and as 0 at most E times. Thus v cannot be a leaf since
y, z ∈ consistentE(v) but f(y) ̸= f(z). That is, an E-fault tolerant decision tree for Andn

must make at least n · (E + 1) + E queries in the worst case, otherwise it may output the
wrong bit for either y or z. ◀

Lemma 2 is not tight for all functions: Let Tribesn be the function that interprets x as a√
n×
√

n array of bits and Tribesn(x) = 1 iff there exists an all-1 row in x. Then D(Tribesn) =
n but [17] proved that DE(Tribesn) = O(n+

√
n·E). More generally, [17] proved that DE(f) =

O(n + C(f) · E) for all f and E, where C(f) = max(CNF width of f , DNF width of f) is
the certificate complexity of f .

3 Patterns and redundant queries

A pattern is a tuple p = (p1, p2, . . . , pn) =
(
(p1,0, p1,1), (p2,0, p2,1), . . . , (pn,0, pn,1)

)
where for

all i ∈ [n] and b ∈ {0, 1}, pi,b is a nonnegative integer representing the number of queries to
variable xi that got value b. Each node v in a decision tree has an associated pattern pv that
records the results of the queries along the root-to-v path but does not indicate the order
of those queries. If v is the root, then pv =

(
(0, 0), (0, 0), . . . , (0, 0)

)
since no queries have

happened.

FSTTCS 2022

26:4 Complexity of Fault Tolerant Query Complexity

For a non-fault tolerant decision tree, in which no variable is ever re-queried, a pattern is
traditionally viewed as a restriction r ∈ {0, 1, ∗}n where ri = 0 means xi = 0 was queried,
and ri = 1 means xi = 1 was queried, and ri = ∗ means xi remains unqueried. Compared to
our more general notion of patterns, ri = 0 corresponds to pi = (1, 0), and ri = 1 corresponds
to pi = (0, 1), and ri = ∗ corresponds to pi = (0, 0).

The combinatorial structure is more subtle for fault tolerant decision trees. For example,
suppose n = 2, E = 1, the current pattern is

(
(1, 0), (0, 1)

)
, and we query x1. If the query

gets x1 = 0, then the pattern becomes
(
(2, 0), (0, 1)

)
and we know x1 is actually 0 (otherwise

x1 would have two faults) but we do not know x2’s actual value. If the query gets x1 = 1,
then the pattern becomes

(
(1, 1), (0, 1)

)
and we know x2 is actually 1 (otherwise x1, x2 would

each have one fault) but we do not know x1’s actual value. The point is that querying a
variable might reveal more information about other variables.

For a pattern p, we define faults(p, x, i) = pi,xi
and faults(p, x) =

∑n
i=1 faults(p, x, i)

and consistentE(p) = {x : faults(p, x) ≤ E}. Thus for any node v in a decision tree, we
have faults(v, x, i) = faults(pv, x, i) and faults(v, x) = faults(pv, x) and consistentE(v) =
consistentE(pv).

For a pattern p, querying xi would be redundant (with respect to E) iff all x ∈
consistentE(p) have the same value of xi. An internal node v in a decision tree is re-
dundant (with respect to E) iff xi is a redundant query given pv, where i is the label of v. A
decision tree with no redundant nodes is sensible (with respect to E).

▶ Lemma 4. For every f and E, there exists a minimum-height E-fault tolerant decision
tree for f that is sensible.

Proof. Consider any minimum-height E-fault tolerant decision tree for f . We claim that if
v is a redundant node labeled i, and b is the common value of xi for x ∈ consistentE(pv),
then the decision tree will still be E-fault tolerant for f after we replace v with v’s child
corresponding to query xi = b and discard the other child’s subtree. Repeating this process
to eliminate all redundant nodes yields a sensible decision tree that is no taller than the
original.

To prove the claim, consider any leaf u in v’s b-subtree in the original decision tree, and let
w be the modified decision tree’s leaf corresponding to u. We show that consistentE(pw) =
consistentE(pu), which implies that the modified decision tree is still E-fault tolerant
for f since f(x) is the same for all x ∈ consistentE(pw). Trivially, consistentE(pw) ⊇
consistentE(pu) since pw is the same as pu except pw

i,b = pu
i,b − 1 and so faults(pw, x) ≤

faults(pu, x) for all x. To see that consistentE(pw) ⊆ consistentE(pu), first note that
pw

j,c ≥ pv
j,c for all (j, c) ∈ [n]×{0, 1}, because pw

i,b = pu
i,b−1 ≥ pv

i,b and pw
j,c = pu

j,c ≥ pv
j,c for all

(j, c) ̸= (i, b). Thus consistentE(pw) ⊆ consistentE(pv), so xi = b for all x ∈ consistentE(pw).
This implies that faults(pu, x) = faults(pw, x) ≤ E for all x ∈ consistentE(pw). ◀

▶ Lemma 5. xi is a redundant query given pattern p iff maxb(pi,b) +
∑

j ̸=i minb(pj,b) > E.

Proof. ⇐: Assume maxb(pi,b) +
∑

j ̸=i minb(pj,b) > E. For all x ∈ consistentE(p), we must
have xi = arg maxb(pi,b) since otherwise faults(p, x, i) = maxb(pi,b) and faults(p, x, j) ≥
minb(pj,b) for all j ≠ i and thus faults(p, x) ≥ maxb(pi,b) +

∑
j ̸=i minb(pj,b) > E, which

would mean x ̸∈ consistentE(p).

⇒: Assume maxb(pi,b) +
∑

j ̸=i minb(pj,b) ≤ E. Define y, z ∈ {0, 1}n as follows: yi = 0
and zi = 1 and yj = zj = arg maxb(pj,b) for all j ̸= i. Then faults(p, y, i), faults(p, z, i) ≤
maxb(pi,b) and faults(p, y, j) = faults(p, z, j) = minb(pj,b) for all j ̸= i, and thus faults(p, y),
faults(p, z) ≤ maxb(pi,b) +

∑
j ̸=i minb(pj,b) ≤ E, which means y, z ∈ consistentE(p). Thus

xi is not a redundant query given p. ◀

R. Maharjan and T. Watson 26:5

For a pattern p, i ∈ [n], and b ∈ {0, 1}, define the pattern pi,b to be the same as p except
pi,b

i,b = pi,b + 1. If an internal node v has pattern p and label i, then v’s children have patterns
pi,0 and pi,1.

▶ Observation 6. For all p and i, consistentE(p) = consistentE(pi,0) ∪ consistentE(pi,1).

Proof. ⊇: For all b ∈ {0, 1}, if x ∈ consistentE(pi,b) then faults(p, x) ≤ faults(pi,b, x) ≤ E

and so x ∈ consistentE(p).

⊆: If x ∈ consistentE(p) then faults(pi,xi , x) = faults(p, x) ≤ E and so x ∈ consistentE(pi,xi).
◀

By the way, consistentE(pi,0) and consistentE(pi,1) might not be disjoint.

4 Valid patterns

A pattern p is valid (with respect to E) iff p = pv for some node v in some sensible decision
tree. A centerpiece of the analysis of our algorithm is a characterization of valid patterns.
To state this, we define:

block(p, d) = {i ∈ [n] : |pi,0 − pi,1| = d} for each integer d ≥ 0.
min-faults(p, D) =

∑
d≥D

∑
i∈block(p,d) minb(pi,b) for each integer D ≥ 0.

min-faults(p) = min-faults(p, 0) =
∑n

i=1 minb(pi,b).

▶ Lemma 7. p is valid iff min-faults(p) ≤ E and min-faults(p, D) ≤ E − D + 1 for each
D ≥ 2 such that block(p, D) ̸= ∅.

Proof. We define some notation with respect to p: For each variable xi, define bi =
arg maxb(pi,b) (breaking the tie arbitrarily if pi,0 = pi,1) and di = |pi,0 − pi,1| = pi,bi

− pi,bi
,

so i ∈ block(p, di).

⇐: Assume min-faults(p) ≤ E and min-faults(p, D) ≤ E − D + 1 for each D ≥ 2 such
that block(p, D) ̸= ∅. The latter actually holds for D ≥ 1, not just for D ≥ 2, because
min-faults(p) ≤ E implies that min-faults(p, 1) ≤ min-faults(p) ≤ E = E − 1 + 1.

To show that p is valid, we exhibit a sensible decision tree consisting of a root-to-v path
where pv = p and all nodes hanging off of this path are leaves (whose outputs are irrelevant).
For each variable xi in decreasing order of di (breaking ties arbitrarily), the path has pi,bi

many xi = bi queries followed by pi,bi many xi = bi queries. By definition, this path ends at
a node v with pv = p.

We argue that no internal node is redundant. Consider an internal node u labeled i. First
suppose di = 0. Then maxb(pu

i,b) ≤ minb(pi,b) and minb(pu
j,b) ≤ minb(pj,b) for each j ̸= i.

Thus

maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b) ≤
∑n

j=1 minb(pj,b)

= min-faults(p)
≤ E

so u is not redundant, by Lemma 5. Now suppose di ≥ 1. Then block(p, di) ̸= ∅ since
i ∈ block(p, di), so min-faults(p, di) ≤ E − di + 1 by assumption. We have maxb(pu

i,b) ≤
maxb(pi,b)− 1 = minb(pi,b) + di− 1 because di ≥ 1 and the last xi = bi query happens either
at u or farther down the path (since the xi = bi queries happen after the xi = bi queries). We
have minb(pu

j,b) ≤ minb(pj,b) for each j ̸= i, and minb(pu
j,b) = 0 if dj < di because variables

are queried in decreasing order of dj . Thus

FSTTCS 2022

26:6 Complexity of Fault Tolerant Query Complexity

maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b) ≤ di − 1 +
∑

d≥di

∑
j∈block(p,d) minb(pj,b)

= di − 1 + min-faults(p, di)
≤ E

so u is not redundant, by Lemma 5.

⇒: Assume p is valid, and let v be a node with pv = p in some sensible decision tree.
To see that min-faults(p) ≤ E, consider v’s parent u. (Or if v is the root, then this

holds trivially.) We have minb(pi,b) ≤ maxb(pu
i,b) where i is the label of u, and minb(pj,b) =

minb(pu
j,b) for each j ̸= i. Thus

min-faults(p) =
∑n

j=1 minb(pj,b)

≤ maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b)

≤ E

by Lemma 5, since u is not redundant.
To see that min-faults(p, D) ≤ E − D + 1 for each D ≥ 2 such that block(p, D) ̸= ∅,

consider the lowest node u on the root-to-v path (excluding v itself) such that u’s label
i satisfies di ≥ D. Such u exists since D ≥ 1 and block(p, D) ̸= ∅. Let w be u’s child
on the root-to-v path (possibly w = v). Since u is the lowest such node, for each j

with dj ≥ D we have pw
j,b = pj,b for both b and thus minb(pw

j,b) = minb(pj,b). We have
minb(pw

i,b) = maxb(pw
i,b)− di ≤ maxb(pu

i,b)− di + 1 and minb(pw
j,b) = minb(pu

j,b) for each j ̸= i.
Thus

min-faults(p, D) =
∑

d≥D

∑
j∈block(p,d) minb(pj,b)

=
∑

d≥D

∑
j∈block(p,d) minb(pw

j,b)

≤
∑n

j=1 minb(pw
j,b)

≤ maxb(pu
i,b)− di + 1 +

∑
j ̸=i minb(pu

j,b)

≤ E − di + 1
≤ E −D + 1

by Lemma 5, since u is not redundant. ◀

▶ Corollary 8. If p is valid then consistentE(p) ̸= ∅.

Proof. x ∈ consistentE(p) where each xi = arg maxb(pi,b) since faults(p, x) =
min-faults(p) ≤ E. ◀

▶ Lemma 9. There are at most
(

n+E
E

)
· (2E + 3)n valid patterns.

Proof. Choosing pi,0 and pi,1 is equivalent to choosing minb(pi,b) and pi,0− pi,1 (no absolute
value).

For valid p, there are
(

n+E
E

)
possibilities for

(
minb(p1,b), . . . , minb(pn,b)

)
since

min-faults(p) ≤ E by Lemma 7.
For valid p, we have block(p, D) = ∅ for all D ≥ E + 2 since otherwise we would have

the contradiction 0 ≤ min-faults(p, D) ≤ E − D + 1 < 0 by Lemma 7. (Intuitively, a
sensible decision tree would never re-query xi after maxb(pi,b) = E + 1 since that would

R. Maharjan and T. Watson 26:7

be redundant by Lemma 5.) Thus for each i, there are 2E + 3 possibilities for pi,0 − pi,1,
namely E + 1, E, . . . , 0, . . . ,−E,−E − 1. Hence there are (2E + 3)n possibilities for

(
p1,0 −

p1,1, . . . , pn,0 − pn,1
)
.

There are at most
(

n+E
E

)
· (2E + 3)n ways to form a valid p by choosing

(
minb(p1,b), . . . ,

minb(pn,b)
)

and
(
p1,0 − p1,1, . . . , pn,0 − pn,1

)
. ◀

As a sanity check, when E = 0, Lemma 7 implies that p is valid iff min-faults(p) = 0
and block(p, D) = ∅ for all D ≥ 2, which happens iff pi ∈ {(1, 0), (0, 1), (0, 0)} for each i.
There are 3n such patterns (corresponding to the restrictions in {0, 1, ∗}n), which agrees
with Lemma 9 when E = 0.

Lemma 9 generally overcounts the number of valid patterns because it ignores the
constraints for D ∈ {2, . . . , E + 1} in Lemma 7. The “minimum” and “difference” tuples are
not independent. But Lemma 9 does not overcount by a lot: There are

(
n+E

E

)
valid patterns

with pi,0 − pi,1 = 0 for all i, and there are (2E + 3)n valid patterns with minb(pi,b) = 0 for
all i. Thus there are at least

max
((

n+E
E

)
, (2E + 3)n

)
≥

√(
n+E

E

)
· (2E + 3)n

valid patterns, so Lemma 9 is at least quadratically tight.
When E is a constant, the number of valid patterns is Θ

((
n+E

E

)
· (2E + 3)n

)
= Θ

(
nE ·

(2E + 3)n
)
. This is because each of the

(
n+E

E

)
possibilities for

(
minb(p1,b), . . . , minb(pn,b)

)
has 0s in at least n−E coordinates and thus gives rise to at least (2E +3)n−E = Ω((2E +3)n)
valid patterns with the nonzero values of pi,0 − pi,1 distributed only among the coordinates i

with minb(pi,b) = 0.
We can say something a little stronger than the previous paragraph. Suppose 1 ≤ E ≤

n. There are
(

n
E

)
possibilities of

(
minb(p1,b), . . . , minb(pn,b)

)
where minb(pi,b) = 1 for E

coordinates i and minb(pi,b) = 0 for n − E coordinates i. For each of those possibilities:
There are (2E + 3)n−E possibilities for the tuple of pi,0−pi,1 for all i with minb(pi,b) = 0. By
Stirling’s formula (where e is the base of the natural log) there are E! ≥ (E/e)E permutations
of [E], which we view as possibilities for the tuple of |pi,0 − pi,1| for all i with minb(pi,b) = 1.
There are 2E possibilities for the tuple of sign(pi,0 − pi,1) for all i with minb(pi,b) = 1. In
total, we just described at least(

n
E

)
· (2E + 3)n−E · (E/e)E · 2E (†)

patterns p that are each valid, since min-faults(p) = E, and min-faults(p, D) = E −D + 1
for each 2 ≤ D ≤ E, and block(p, D) = ∅ for each D > E. Let us compare this to the upper
bound of Lemma 9. Assuming 1 ≤ E ≤ n/2, we have(

n+E
E

)
/
(

n
E

)
= (n + E) · (n + E − 1) · · · (n + 1)

n · (n− 1) · · · (n− E + 1)
=

(
1 + E/n

)
·
(
1 + E/(n− 1)

)
· · ·

(
1 + E/(n− E + 1)

)
≤ 2E

and
(2E + 3)n

(2E + 3)n−E · (E/e)E · 2E
=

((2E + 3) · e
2E

)E

=
(
(1 + 3/(2E)) · e

)E ≤ 7E .

So, the upper bound
(

n+E
E

)
· (2E + 3)n, divided by the lower bound (†), is at most 14E .

Thus when E = O(log n), Lemma 9 only overcounts the number of valid patterns by a fairly
insignificant poly(n) factor. Computational experiments suggest that Lemma 9 is fairly tight
for all E, but it remains open to prove this.

FSTTCS 2022

26:8 Complexity of Fault Tolerant Query Complexity

5 The algorithm: Proof of Theorem 1

We design a dynamic programming algorithm for the following computational problem: Given
as input the truth table of a function f : {0, 1}n → {0, 1} and an integer E ≥ 0, output
DE(f).

For each valid pattern p, we have a subproblem whose solution is a pair (h, ℓ) where h is
the minimum height of any sensible decision tree that is E-fault tolerant for f assuming the
root is defined to have pattern p, and ℓ is the root’s label in one such decision tree. If h = 0
then the root is a leaf that outputs ℓ ∈ {0, 1}. If h > 0 then the root is an internal node
that queries xℓ where ℓ ∈ [n]. We store the solution (h, ℓ) to subproblem p in a dictionary
data structure opt where p is the key and (h, ℓ) is the value. We use memoized recursion,
rather than traditional dynamic programming, because enumerating the valid patterns is not
straightforward.

Figure 1 shows the algorithm. If p is valid then solve(p) returns the solution (h, ℓ), after
computing it and storing it in opt[p] if it was not already there. We assume f , n, E, and opt
are globally accessible in calls to the solve subroutine. The loop iterates through variables
that are not redundant queries given p, by Lemma 5. By induction, we may assume solve(pi,0)
and solve(pi,1) return correct solutions, since pi,0 and pi,1 are valid if xi is not a redundant
query given p.

Base cases are when the optimal height is 0, i.e., the root should be a leaf because f(x)
is the same for all x ∈ consistentE(p). One way to detect this would be to loop through all
x ∈ {0, 1}n, compute faults(p, x), and compare f(x) for all x with faults(p, x) ≤ E, but that
would incur Õ(2n) time overhead. Our algorithm detects base cases more efficiently. There
are two kinds of base cases:
|consistentE(p)| = 1: By definition, every xi is a redundant query given p, so we still
have h = ∞ after the loop. Thus solve(p) correctly computes the solution as (0, f(x))
where x is the unique element of consistentE(p). (There is no tie for arg maxb(pi,b), since
min-faults(p) ≤ E and min-faults(p) + |pi,0 − pi,1| > E implies pi,0 ̸= pi,1.)
|consistentE(p)| > 1 but f(x) is the same for all x ∈ consistentE(p): By definition, at
least one xi is not a redundant query given p. When the loop reaches the first such
index i, we have h = ∞ and h0 = h1 = 0 and ℓ0 = ℓ1 since f(x) is the same for all
x ∈ consistentE(pi,0) ∪ consistentE(pi,1) by Observation 6 (⊇). Thus solve(p) breaks out
of the loop and correctly computes the solution as (0, ℓ0) (skipping over “if h =∞” after
the loop since h = 0 now).

Non-base cases are when the optimal height is positive, i.e., the root should be an internal
node because f(x) is not the same for all x ∈ consistentE(p). Since we only consider sensible
decision trees, the loop just tries every possible non-redundant query xi the root could make,
computes the height 1+max(h0, h1) of an optimal decision tree having i as the root label, lets
h be the minimum of these heights, and lets ℓ be the index of the variable that achieves the
minimum.1 The condition “if h =∞ and h0 = h1 = 0 and ℓ0 = ℓ1” is false since otherwise
f(x) would be the same for all x ∈ consistentE(pi,0) ∪ consistentE(pi,1) and so p would be a
base case by Observation 6 (⊆). Also, “if h =∞” is false after the loop since at least one xi

is non-redundant given p, and h becomes finite during such an iteration. Thus for a non-base
case, (h, ℓ) is correct at the end of solve(p).

1 If we wanted to minimize the number of leaves rather than the height, we could just change 1+max(h0, h1)
to h0 + h1 and let h = 1 for base cases.

R. Maharjan and T. Watson 26:9

complexity(f, E):
initialize empty dictionary opt
(h, ℓ)← solve

((
(0, 0), . . . , (0, 0)

))
return h

solve(p):
if opt contains key p: return opt[p]
h←∞
for i ∈ [n]:

if min-faults(p) + |pi,0 − pi,1| ≤ E:
(h0, ℓ0)← solve(pi,0)
(h1, ℓ1)← solve(pi,1)
if h =∞ and h0 = h1 = 0 and ℓ0 = ℓ1:

(h, ℓ)← (0, ℓ0) and break out of loop
if h > 1 + max(h0, h1): (h, ℓ)←

(
1 + max(h0, h1), i

)
if h =∞: (h, ℓ)← (0, f(x)) where xi = arg maxb(pi,b) for each i ∈ [n]
opt[p]← (h, ℓ)
return (h, ℓ)

Figure 1 Algorithm to compute DE(f).

Finally, complexity(f, E) returns the minimum height of any sensible E-fault tolerant
decision tree for f , which equals DE(f) by Lemma 4.

Now we analyze the running time. A call to solve(p) is fresh iff opt does not yet contain
the key p. We charge the cost of a nonfresh call to the parent call. There are at most(

n+E
E

)
· (2E + 3)n fresh calls by Lemma 9, and each fresh call takes time poly(n, E) = Õ(1)

(excluding any fresh recursive calls it makes), assuming the dictionary is implemented with a
self-balancing search tree. Thus the running time of complexity(f, E) is Õ

((
n+E

E

)
· (2E +3)n

)
.

After running solve
((

(0, 0), . . . , (0, 0)
))

, we can construct a minimum-height sensible
E-fault tolerant decision tree for f by straightforwardly retracing the optimal choices for
the relevant subproblems (Figure 2). In the non-fault tolerant setting (E = 0), constructing
the decision tree is faster than solving all the subproblems: Õ(2n) compared to Õ(3n). In
contrast, in the fault tolerant setting, constructing the decision tree can be much slower than
solving all the subproblems – potentially as slow as Õ(2n·(E+1)+E) by Lemma 2 – since a
fault tolerant decision tree can be a sprawling behemoth with many duplicated subtrees.

Another minor extension handles partial functions f : {0, 1}n → {0, 1, ?} where f(x) = ?
means that f(x) is undefined and we do not care what a decision tree outputs on input x. A
decision tree is E-fault tolerant for a partial function f iff for every leaf v, its label equals f(x)
for all x ∈ consistentE(v) such that f(x) ̸= ?. To compute DE(f) for a partial function f ,
we can modify solve(p) so that opt[p] = (0, ?) means that f(x) = ? for all x ∈ consistentE(p),
and opt[p] = (0, ℓ) for ℓ ∈ {0, 1} means that there exists an x ∈ consistentE(p) such that
f(x) ̸= ? and that f(x) = ℓ for all such x. If h = ∞ and h0 = h1 = 0 then: If ℓ0 = ℓ1 or
ℓ1 = ?, we assign (h, ℓ)← (0, ℓ0). Else if ℓ0 = ?, we assign (h, ℓ)← (0, ℓ1). Else we do not
assign (h, ℓ) and do not break out of the loop here.

FSTTCS 2022

26:10 Complexity of Fault Tolerant Query Complexity

construct-tree(p):
(h, ℓ)← opt[p]
create a node v labeled ℓ

if h > 0:
v’s left child ← construct-tree(pℓ,0)
v’s right child ← construct-tree(pℓ,1)

return v

Figure 2 Constructing an optimal decision tree.

6 Future directions

It is open to prove asymptotically tight bounds on the number of valid patterns for all n

and E.
When E is super-constant, our algorithm’s running time is super-polynomial in the input

size. Can we prove a complexity lower bound on the problem for large E? Even in the
non-fault tolerant setting, can fine-grained complexity techniques show that the Õ(N log2(3))
running time is optimal under standard assumptions?

It remains open to study the complexity of computing fault tolerant randomized query
complexity. The algorithm from [1] for computing non-fault tolerant randomized query
complexity does not seem to generalize to the fault tolerant setting.

It is also open to study the analogous question for other models of fault tolerant decision
trees, such as those introduced in [9]. To the best of our knowledge, “complexity of complexity”
has not been studied for models of fault tolerant circuits, formulas, branching programs, or
communication protocols.

References

1 Scott Aaronson. Algorithms for boolean function query properties. SIAM Journal on Com-
puting, 32(5):1140–1157, 2003. doi:10.1137/S0097539700379644.

2 Eric Allender. The new complexity landscape around circuit minimization. In Proceedings of
the 14th Conference on Language and Automata Theory and Applications (LATA), pages 3–16.
Springer, 2020. doi:10.1007/978-3-030-40608-0_1.

3 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information and
Computation, 256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.

4 Eric Allender, Joshua Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew Morgan.
Minimum circuit size, graph isomorphism, and related problems. SIAM Journal on Computing,
47(4):1339–1372, 2018. doi:10.1137/17M1157970.

5 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks. Minimizing
DNF formulas and AC0

d circuits given a truth table. In Proceedings of the 21st Conference on
Computational Complexity (CCC), pages 237–251. IEEE, 2006. doi:10.1109/CCC.2006.27.

6 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. Derandomization
and distinguishing complexity. In Proceedings of the 18th Conference on Computational
Complexity (CCC), pages 209–220. IEEE, 2003. doi:10.1109/CCC.2003.1214421.

7 Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision trees in
almost polynomial time. In Proceedings of the 62nd Symposium on Foundations of Computer
Science (FOCS), pages 920–929. IEEE, 2021. doi:10.1109/FOCS52979.2021.00093.

https://doi.org/10.1137/S0097539700379644
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1137/17M1157970
https://doi.org/10.1109/CCC.2006.27
https://doi.org/10.1109/CCC.2003.1214421
https://doi.org/10.1109/FOCS52979.2021.00093

R. Maharjan and T. Watson 26:11

8 Nader Bshouty and Catherine Haddad-Zaknoon. Adaptive exact learning of decision trees
from membership queries. In Proceedings of the 30th International Conference on Algorithmic
Learning Theory (ALT), pages 207–234. PMLR, 2019.

9 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

10 Steven Friedman and Kenneth Supowit. Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers, 39(5):710–713, 1990. doi:10.1109/12.
53586.

11 David Guijarro, Víctor Lavín, and Vijay Raghavan. Exact learning when irrelevant variables
abound. Information Processing Letters, 70(5):233–239, 1999. doi:10.1016/S0020-0190(99)
00063-0.

12 Shuichi Hirahara, Rahul Ilango, and Bruno Loff. Hardness of constant-round communication
complexity. In Proceedings of the 36th Computational Complexity Conference (CCC), pages
31:1–31:30. Schloss Dagstuhl, 2021. doi:10.4230/LIPIcs.CCC.2021.31.

13 Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard.
In Proceedings of the 61st Symposium on Foundations of Computer Science (FOCS), pages
424–433. IEEE, 2020. doi:10.1109/FOCS46700.2020.00047.

14 Rahul Ilango. The minimum formula size problem is (ETH) hard. In Proceedings of the
62nd Symposium on Foundations of Computer Science (FOCS), pages 427–432. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00050.

15 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization
for multi-output functions. In Proceedings of the 35th Computational Complexity Conference
(CCC), pages 22:1–22:36. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.CCC.2020.22.

16 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
32nd Symposium on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.
335314.

17 Claire Kenyon and Andrew Yao. On evaluating boolean functions with unreliable tests.
International Journal of Foundations of Computer Science, 1(1):1–10, 1990. doi:10.1142/
S0129054190000023.

18 Eyal Kushilevitz and Enav Weinreb. On the complexity of communication complexity. In
Proceedings of the 41st Symposium on Theory of Computing (STOC), pages 465–474. ACM,
2009. doi:10.1145/1536414.1536479.

19 Netanel Raviv. Truth table minimization of computational models. Technical report, arXiv,
2013. arXiv:1306.3766.

20 Rüdiger Reischuk and Bernd Schmeltz. Reliable computation with noisy circuits and decision
trees – A general n log n lower bound. In Proceedings of the 32nd Symposium on Foundations
of Computer Science (FOCS), pages 602–611. IEEE, 1991. doi:10.1109/SFCS.1991.185425.

21 Mario Szegedy and Xiaomin Chen. Computing boolean functions from multiple faulty copies
of input bits. Theoretical Computer Science, 321(1):149–170, 2004. doi:10.1016/j.tcs.2003.
07.001.

FSTTCS 2022

https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1109/12.53586
https://doi.org/10.1109/12.53586
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.4230/LIPIcs.CCC.2021.31
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1142/S0129054190000023
https://doi.org/10.1142/S0129054190000023
https://doi.org/10.1145/1536414.1536479
http://arxiv.org/abs/1306.3766
https://doi.org/10.1109/SFCS.1991.185425
https://doi.org/10.1016/j.tcs.2003.07.001
https://doi.org/10.1016/j.tcs.2003.07.001

Romeo and Juliet Meeting in Forest like Regions
Neeldhara Misra # Ñ

Indian Institute of Technology, Gandhinagar, India

Manas Mulpuri #

Indian Institute of Technology, Gandhinagar, India

Prafullkumar Tale # Ñ

Indian Institute of Science Education and Research, Pune, India

Gaurav Viramgami #

Indian Institute of Technology, Gandhinagar, India

Abstract

The game of rendezvous with adversaries is a game on a graph played by two players: Facilitator
and Divider. Facilitator has two agents and Divider has a team of k ≥ 1 agents. While the initial
positions of Facilitator’s agents are fixed, Divider gets to select the initial positions of his agents.
Then, they take turns to move their agents to adjacent vertices (or stay put) with Facilitator’s goal
to bring both her agents at same vertex and Divider’s goal to prevent it. The computational question
of interest is to determine if Facilitator has a winning strategy against Divider with k agents. Fomin,
Golovach, and Thilikos [WG, 2021] introduced this game and proved that it is PSPACE-hard and
co-W[2]-hard parameterized by the number of agents.

This hardness naturally motivates the structural parameterization of the problem. The authors
proved that it admits an FPT algorithm when parameterized by the modular width and the number
of allowed rounds. However, they left open the complexity of the problem from the perspective of
other structural parameters. In particular, they explicitly asked whether the problem admits an
FPT or XP-algorithm with respect to the treewidth of the input graph. We answer this question
in the negative and show that Rendezvous is co-NP-hard even for graphs of constant treewidth.
Further, we show that the problem is co-W[1]-hard when parameterized by the feedback vertex set
number and the number of agents, and is unlikely to admit a polynomial kernel when parameterized
by the vertex cover number and the number of agents. Complementing these hardness results, we
show that the Rendezvous is FPT when parameterized by both the vertex cover number and the
solution size. Finally, for graphs of treewidth at most two and girds, we show that the problem can
be solved in polynomial time.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Games on Graphs, Dynamic Separators, W[1]-hardness, Structural Paramet-
ersization, Treewidth

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.27

Related Version Full Version: https://arxiv.org/abs/2210.02582 [6]

Funding Neeldhara Misra: The author is grateful for support from DST-SERB and IIT Gandhinagar.
This work was partially supported by the ECR grant ECR/2018/002967.
Prafullkumar Tale: Part of the work was carried out when the author was a Post-Doctoral Researcher
at CISPA Helmholtz Center for Information Security, Germany, supported by the European Research
Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH.

Acknowledgements We are grateful for feedback from anonymous reviewers.

© Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, and Gaurav Viramgami;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeldhara.m@iitgn.ac.in
https://www.neeldhara.com
https://orcid.org/0000-0003-1727-5388
mailto:mulpuri.m@iitgn.ac.in
mailto:prafullkumar@iiserpune.ac.in
https://pptale.github.io/
mailto:viramgami.g@iitgn.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.27
https://arxiv.org/abs/2210.02582
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Romeo and Juliet Meeting in Forest like Regions

1 Introduction

The game of rendezvous with adversaries on a graph – Rendezvous – is a natural dynamic
version of the problem of finding a vertex cut between two vertices s and t introduced by
Fomin, Golovach, and Thilikos [4]. The game is played on a finite undirected connected
graph G by two players: Facilitator and Divider. Facilitator has two agents Romeo and
Juliet that are initially placed in designated vertices s and t of G. Divider, on the other
hand, has a team of k ≥ 1 agents D1, . . . , Dk that are initially placed in some vertices of
V (G)\{s, t} chosen by him. We note that a single vertex can accommodate multiple agents
of Divider.

Then the players make their moves by turn, starting with Facilitator. At every move, each
player moves some of his/her agents to adjacent vertices or keeps them in their old positions.
No agent can be moved to a vertex that is currently occupied by adversary’s agents. Both
players have complete information about G and the positions of all the agents. Facilitator
aims to ensure that Romeo and Juliet meet; that is, they are in the same vertex. The task
of Divider is to prevent the rendezvous of Romeo and Juliet by maintaining D1, . . . , Dk in
positions that block the possibility to meet. Facilitator wins if Romeo and Juliet meet, and
Divider wins if they succeed in preventing the meeting of Romeo and Juliet forever. This
setup naturally leads to the following computational question.

Rendezvous

Input: A graph G with two given vertices s and t, and a positive integer k.
Question: Can Facilitator win on G starting from s and t against Divider with k

agents?

We will often refer to k, the number of agents employed by Divider to keep Romeo and
Juliet separated, as the “solution size” for this problem.

Known Results

Fomin, Golovach, and Thilikos [4] initiated an extensive study of the computational complexity
of Rendezvous. They concluded that the problem is PSPACE-hard and co-W[2]-hard1 when
parameterized by the number of Divider’s agents, while also demonstrating an |V (G)|O(k)

algorithm based on backtracking stages over the game arena. They also show that the
problem admits polynomial time algorithms on chordal graphs and P5-free graphs. A related
problem considered is Rendezvous in Time, which asks if Facilitator can force a win in at
most τ steps. It turns out that Rendezvous in Time is co-NP-complete even for τ = 2
and is FPT when parameterized by τ and the neighborhood diversity of the graph. The
latter is an ILP-based approach and uses the fact that Integer Linear Programming
Feasibility is FPT in the number of variables. We refer readers to [4], and references within,
for more related problems.

The smallest number of agents that Divider needs to use to win on a graph G is called
the “dynamic” separation number of G. We denote this by dG(s, t). Note that if s and t

are adjacent or s = t, then dG(s, t) := +∞. The “static” separation number between s and

1 We refer the reader to Appendix A.1 for the definitions of these complexity classes.

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:3

t, the original positions of Facilitator’s agents, is simply the smallest size of a (s, t)-vertex
cut, i.e, a subset of vertices whose removal disconnects s and t. We use λG(s, t) to denote
the minimum size of a vertex (s, t)-separator in G. It is clear that dG(s, t) ≤ λG(s, t), since
positioning λG(s, t) many guards on the vertices of a (s, t)-vertex allows Divider to win the
game right away. It turns out that dG(s, t) = 1 if and only if λG(s, t) = 1. However, there
are examples of graphs where dG(s, t) is arbitrarily smaller than λG(s, t) [4]. The results
in [4] for chordal graphs and P5-free graphs are based on the fact that in these graphs, it
turns out that dG(s, t) = λG(s, t).

Our Contributions

Given that the problem is hard in the solution size, often regarded the “standard” parameter,
a natural approach is to turn to structural parameters of the input graph. One of the most
popular structural parameters in the context of graphs is treewidth, which is a measure of
how “tree-like” a graph is. XP and FPT algorithms parameterized by treewidth are natural
generalizations of tractability on trees. Indeed, Rendezvous is easy to solve on trees because
λG(s, t) = 1 for any distinct s and t when G is a tree and st /∈ E(G). The complexity of
Rendezvous parameterized by treewidth, however, is wide open – in particular it is not
even known if the problem is in XP parameterized by treewidth.

Interestingly, it was pointed out in [4] that if the initial positions s and t are not is
the same bag of a tree decomposition of width w, then the upper bound for the dynamic
separation number by λG(s, t) together with the XP algorithm for the standard parameter
can be employed to solve the problem in nO(w) time. Thus, the question that was left open
by Fomin, Golovach, and Thilikos was if the problem can be solved in the same time if s and
t are in the same bag. Our first contribution is to answer this question in the negative by
showing that Rendezvous is in fact co-NP-hard even for graphs of constant treewidth. In
fact, we show more:

▶ Theorem 1. Rendezvous is co-NP-hard even when restricted to:
graphs whose feedback vertex set number is at most 14, or
graphs whose pathwidth is at most 16.

In particular, Rendezvous is co-para-NP-hard parameterized by treewidth.

We obtain this hardness by a non-trivial reduction from the 3-Dimensional Matching
problem. In the backdrop of this somewhat surprising result, we are motivated to pursue the
question of the complexity of Rendezvous for larger parameters. It turns out that even
augmenting the feedback vertex set number or the pathwidth with the solution size is not
enough. Specifically, we show that the problem is unlikely to admit an FPT-algorithm even
when parameterized by these combined parameters.

▶ Theorem 2. Rendezvous is co-W[1]-hard when parameterized by:
the feedback vertex set number and the solution size, or
the pathwidth and the solution size.
This result is shown by a parameter preserving reduction from the (Monotone) NAE-

Integer-3-Sat problem, which was shown to be W[1]-hard when parameterized by the
number of variables by Bringmann et al. [1]. Note that with this, we have a reasonably
complete understanding of Rendezvous in the combined parameter. Indeed, recall that the
problem is co-W[1]-hard and XP parameterized by the solution size alone, and co-para-NP-hard
parameterized by the feedback vertex set number alone as shown above.

Given the above hardness, we consider Rendevous parameterized by the vertex cover
number, a larger parameter compared to both the feedback vertex set number and pathwidth.
The status of Rendevous with respect to the vertex cover parameterization was also left

FSTTCS 2022

27:4 Romeo and Juliet Meeting in Forest like Regions

open in [4]. We see that the problem admits a natural exponential kernel in this parameter
when combined with the solution size, and is hence FPT in the combined parameter; however
this kernel cannot be improved to a polynomial kernel under standard complexity-theoretic
assumptions.

▶ Theorem 3. Rendezvous is FPT when parameterized by the vertex cover number of the
input graph and the solution size. Moreover, the problem does not admit a polynomial kernel
when parameterized by the vertex cover number and the solution size unless NP⊆ co-NP/poly.

We briefly describe the intuition for the exponential kernel with respect to the vertex
cover number. Suppose the graph G has a vertex cover X, where |X| ≤ ℓ, and, one may
assume, without loss of generality, that s, t ∈ X. Further, for any Y ⊆ X, let IY denote the
set of all vertices in G \X whose neighborhood in X is exactly Y . It is not hard to see that
if |IY | > k, then one might as well “curtail” the set to k + 1 vertices without changing the
instance. This leads to an exponential kernel in the combined parameter. It is also true that
k is bounded, without loss of generality, by ℓ and the size of the common neighbhorhood of s
and t to begin with; however, it is unclear if k can always be bounded by some function of
the vertex cover alone. The kernelization lower bound follows from observing the structure
of the reduced instance in the reduction used in [4] to prove that problem is co-W[2]-hard
when parameterized by the solution size.

Finally, we present polynomial time algorithms on two restricted cases.

▶ Theorem 4. Rendezvous can be solved in polynomial time on the classes of treewidth at
most two graphs and grids.

Recall that the polynomial time algorithm on the classes of trees, chordal graphs, and
P5-free graphs is obtained by proving that the size of dynamic separator is same as that of
separator. In case of grids, we present a winning strategy for Divider for any non-trivial
instances. This makes grids unique graph class in which the problem admits polynomial time
algorithm even when dynamic separator can be smaller than separator.

Organization of the paper. Due to lack of space, we defer several technical proofs, the
polynomial time algorithms, and the preliminaries to the full version [6]. We describe the
main intuitions for the proofs of Theorem 1 Section Section 2 We present a formal proof
of Theorem 2 in Section 3. The proof of Theorem 3 partially discussed in Section 4. The
hardness result can be found in [6].

2 co-para-NP-hardness Parameterized by FVS and Pathwidth

In this section, we prove that Rendezvous is paraNP-hard when parameterized by the
feedback vertex set number and the pathwidth of the input graph. To do that, we present
a parameter preserving reduction from the 3-Dimensional Matching problem, which is
known to be NP-hard [5, SP 1]. For notational convenience, we work with the following
definition of the problem. An input consists of a universe U = {α, β, γ} × [n], a family F =
{A1, A2, . . . , Am} of subsets of U such that for every j ∈ [m], set Aj = {(α, a1), (β, b1), (γ, c1)}
for some a1, b1, c1 ∈ [n]. The goal is to find a subset F ′ ⊆ F that covers U (and contains
exactly n sets).

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:5

Reduction

The reduction takes as input an instance (U ,F) of 3-Dimensional Matching and returns
an instance (G, s, t, k) of Rendezvous. It defines M = n2 + m2 where n = |U|/3 and
m = |F|. We construct the graph G as follows: (c.f. Figures 1–4).

The Base Gadget. It starts by adding special vertices s and t and two more vertices g1
and g2, and makes them common neighbours of s and t. We use P [u, v, d] to denote a simple
path from u to v that contains d many internal vertices.

For every i ∈ [n]2, it adds the following simple paths:
P [u0

i , u
m+1
i ,m],

P [s, u0
i ,m], P [s, um+1

i ,m], P [t, u0
i ,m], and P [t, um+1

i ,m].
See Figure 1 for an illustration.

Figure 1 (Left) The base gadget except the guard vertices g1 and g2 (which are not shown for
clarity). Each red and blue path has m internal vertices. (Right) Schematic representation.

Encoding Elements. The reduction constructs a symmetric graph to encode elements in U
and has “left-side” and “right-side.” It starts by adding vertices {αℓ, βℓ, γℓ} and {αr, βr, γr}.

For every i ∈ [n], it adds six vertices in {αℓi , βℓi , γℓi } ∪ {αri , βri , γri }, and the following
simple paths:
P [αℓ, αℓi ,M2 −M · i], P [βℓ, βℓi ,M2 −M · i], P [γℓ, γℓi ,M2 −M · i],
P [αr, αri ,M2 +M · i], P [βr, βri ,M2 +M · i], and P [γr, γri ,M2 +M · i].

Note that the number of internal vertices in paths from αℓ to αℓi and from αr to αri , and
similar such pairs, are different and depend on i.

2 We use i as well as a1, b1, c1 as running variables in set [n]. We reserve later types of variables for the
integer part of elements in sets F .

FSTTCS 2022

27:6 Romeo and Juliet Meeting in Forest like Regions

For every i ∈ [n], it adds six vertices {xℓi , yℓi , zℓi} ∪ {xri , yri , zri }, and the following simple
paths:
P [xℓi , αℓi , 2M2 − 1], P [yℓi , βℓi , 2M2 − 1], P [zℓi , γℓi , 2M2 − 1],
P [xri , αri , 2M2 − 1], P [yri , βri , 2M2 − 1], and P [zri , γri , 2M2 − 1].

See Figure 2 for an illustration.

Figure 2 (Left) The left side of the gadget is added to encode elements in U . The number of
internal vertices in each red, blue, and green path depends on i. The number of internal vertices in
each yellow shaded path is 2M2 − 1. (Right) Schematic representation of the gadget.

Encoding sets. The reduction adds simple paths to encode sets. Consider set Aj for some
j ∈ [m]. Suppose the internal vertices of P [u0

i , u
m+1
i ,m] are denoted by uji for every j ∈ [m],

and u0
i is adjacent with u1

i and um+1
i is adjacent with umi . All the vertices in jth ’column’

corresponds to set Aj . This, however, is not an encoding of set Aj as it does not provide any
information about its elements. By the definition of the problem, set Aj has an element of
the form (α, a1). To encode this element, it adds 2n many paths connecting jth column to
αℓ and to αr. The number of internal vertices in these paths depends on a1. We encode the
remaining two elements in Aj similarly. We formalise this construction as follows:

For every j ∈ [m], suppose Aj = {(α, a1), (β, b1), (γ, c1)}. Then, for every i ∈ [n], the
reduction adds the following six simple paths:
P [αℓ, uji ,M2 +M · a1], P [βℓ, uji ,M2 +M · b1], P [γℓ, uji ,M2 +M · c1],
P [αr, uji ,M2 −M · a1], P [βr, uji ,M2 −M · b1], and P [γr, uji ,M2 −M · c1].

See Figure 3 for an illustration.

Critical vertices and connecting paths. In the last phase of the reduction, it adds critical
vertices and connect them to {s, t}, and also to x-type, y-type, and z-type ends of paths
added while encoding elements in U .

For the special vertex s, it adds critical vertices, say sℓα, sℓβ and sℓγ , on the left side.
It adds P [s, sℓα, 2M2 + 1], P [s, sℓβ , 2M2 + 1], and P [s, sℓγ , 2M2 + 1].
For every i ∈ [n], it adds P [sℓα, xℓi , 2M2], P [sℓβ , yℓi , 2M2], and P [sℓγ , zℓi , 2M2].

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:7

Figure 3 (Top) Vertices added to encode sets in F . The number of internal vertices in the paths
depend on elements in Aj and are denoted next to it. (Bottom) Schematic representation of the
gadget used in subsequent figures.

It adds the other critical vertices and paths symmetrically. We present them for the sake
of completeness.
For the special vertex s, it adds critical vertices, say srα, srβ , and srγ , on the right side.

It adds P [s, srα, 2M2 + 1], P [s, srβ , 2M2 + 1], and P [s, srγ , 2M2 + 1].
For every i ∈ [n], it adds P [srα, xri , 2M2], P [srβ , yri , 2M2], and P [srγ , zri , 2M2].

For the special vertex t, it adds critical vertices, say tℓα, tℓβ , tℓγ , on the left side.
It adds P [t, tℓα, 2M2 + 1], P [t, tℓβ , 2M2 + 1], and P [t+ tℓγ , 2M2 + 1].
For every i ∈ [n], it adds P [tℓα, xℓi , 2M2], P [tℓβ , yℓi , 2M2], P [tℓγ , zℓi , 2M2],

For the special vertex t, it adds critical vertices, say trα, trβ , and trγ , on the right side.
It adds P [t, trα, 2M2 + 1], P [t, trβ , 2M2 + 1], and P [t, trγ , 2M2 + 1].
For every i ∈ [n], it adds P [trα, xri , 2M2], P [trβ , yri , 2M2], and P [trγ , zri , 2M2].

This completes the construction of the graph G. The reduction sets k = n+ 2 and returns
(G, s, t, k) as the reduced instance of Rendezvous.

Intuition for the correctness

We present an intuition for the correctness of the reduction in the reverse direction. In other
words, we state how the initial positions of the Divider’s agent correspond to sets and the
elements they can cover. We start with determining the possible initial positions.

As g1, g2 are common neighbors of s and t, Divider needs to put two agents on g1 and g2.
For the remaining n agents, consider the paths P [s, u0

i ,m] and P [u0
i , t,m] or P [s, um+1

i ,m]
and P [um+1

i , t,m] for every i ∈ [n]. Facilitator can move both Romeo and Juliet to u0
i or

um+1
i in m steps. Hence, Divider needs to place remaining n agents at the positions that are

at distance at most m simultaneously from u0
i and um+1

i . We ensure that he needs to place

FSTTCS 2022

27:8 Romeo and Juliet Meeting in Forest like Regions

Figure 4 (Left) Critical vertices added by the reduction. The number of internal vertices in the
paths are fixed (2M2 + 1 or 2M2). (Right) Schematic representation of the gadget.

an agent on an internal vertex of P [u0
i , u

m+1
i ,m] for every i ∈ [n]. This will correspond to

selecting a set in F in a solution. Formally, an agent at uji for some j ∈ [m] corresponds
to selecting Aj in the cover of U . As there are n ’rows’, this will correspond to selecting n
(different) sets from F . Hence, the initial position of the Divider’s agent will correspond to a
collection of sets in F .

Suppose for every i ∈ [n], vertices in {xℓi , xri } correspond to element (α, i) ∈ U . Similarly,
vertices in {yℓi , yri } correspond to (β, i), and vertices in {zℓi , zri } correspond to (γ, i). We say
(α, i) is covered if Divider can prevent Facilitator from moving both Romeo and Juliet at xℓi
as well as at xri .

From the Facilitator’s preservative, she has 6n possible meeting points of the above
form. She can make these choices in two phases. In the first phase, she can decide to move
Romeo towards one of the six vertices in {sℓα, sℓβ , sℓγ} ∪ {srα, srβ , srγ}. To win, she will have
to move Juliet towards the corresponding vertices with respect to t. Suppose she moves
Romeo towards sℓα and Juliet towards tℓα, i.e., Romeo along P [s, sℓα, 2M2 + 1] and Juliet
along P [t, tℓα, 2M2 + 1]. She can move Romeo at sℓα and Juliet at tℓα in 2M2 + 2 steps. At
this point, she can make one of the n choices and decide to move both Romeo and Juliet
towards xℓi for some i ∈ [n], i.e., Romeo along P [sℓα, xℓi , 2M2] and Juliet along P [tℓα, xℓi , 2M2]
for some i ∈ [n]. See Figure 5 for relevant vertices.

From the Divider’s perspective, he can see the first choice made by Facilitator. However,
he has no information about her second choice until next 2M + 2 steps, i.e., until she moves
Romeo at sℓα and Juliet at tℓα. Note that Facilitator can move Romeo from sℓα to xℓi and
Juliet from tℓα to xℓi in 2M2 + 1 steps. Divider can move an agent from αℓi to xℓi in 2M2

steps. Considering the initial positions of agents, he needs to ensure that one of its agents
is present on αℓi for every i ∈ [n] in 2M2 + 2 steps. For every i ∈ [n], he needs to place an
agent at uji′ for some j ∈ [m] and i′ ∈ [n] that he can move it to αℓi in 2M2 + 2 steps. We
remark that i may not be equal to i′.

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:9

Figure 5 Vertices mentioned while presenting the intuition. The vertices near the paths indicate
the number of internal vertices. Set Aj contains (α, a1).

The only feasible way to do so is by moving the agent from uji′ to αℓ and then move it from
αℓ to αℓi . Suppose (α, a1) ∈ Aj for some a1 ∈ [n]. Recall that the number of internal vertices of
path from uji′ to αℓ isM2+M ·a1 where as that of the path from αℓ to αℓi isM2−M ·i. Formally,
the number of internal vertices in the path P [uji′ , αℓ,M2 + M · a1] ◦ P [αℓ, αℓi ,M2 − M · i]
is (M2 +M · a1) + 1 + (M2 −M · i) = 2M2 + 1 +M2 · (a1 − i). This implies that Divider
can move an agent from uji′ to αℓi in 2M2 + 2 +M2 · (a1 − i) steps. Hence, for every i ∈ [n],
Divider should place an agent at uji′ for some j ∈ [m] and i′ ∈ [n] such that for (α, a1) ∈ Aj ,
we have a1 ≤ i. Using identical arguments and considering the number of internal vertices
on the right side, we prove that for every i ∈ [n], he needs to place an agent at uj

′

i′′ for
some j′ ∈ [m] and i′′ ∈ [n] such that for (α, a2) ∈ Aj , we have a2 ≥ i. Combining these two
arguments, Divider needs to place an agent at uji′ such that for (α, a1) ∈ Aj , we have a1 = i.
Moving the agent from this position will prevent Facilitator from moving both Romeo and
Juliet at xℓi and xri . This corresponds to selecting a set from F to covers element (α, i) ∈ U .
This concludes the intuition for the correctness of the reduction.

Consider set S := {s, t} ∪ {sℓα, sℓβ , sℓγ} ∪ {αℓ, βℓ, γℓ} ∪ {αr, βr, γr} in G. It is easy to verify
that G − S is a forest, i.e., the feedback vertex set number of G is at most 14. Moreover,
every connected component of G− S is either a path or a subdivided caterpillar. The paths
correspond to the paths added while encoding elements in U or while adding the critical
paths. The subdivided caterpillars correspond to the base gadgets, and the path added while
encoding sets in F ′. Note that the spine of the caterpillar is the path P [u0

i , u
m+1
i ,m] for

some i ∈ [n] added as a part of base gadget. This implies that the pathwidth of the resulting
graph is at most 16.

3 co-W[1]-hardness Parameterized by FVS, Pathwidth, and the
Solution Size

In this section, we prove Theorem 2 that states Rendezvous is co-W[1]-hard when paramet-
erized by the feedback vertex set number or pathwidth and the solution size. To do that,
we present a parameter preserving reduction from the (Monotone) NAE-Integer-3-Sat

FSTTCS 2022

27:10 Romeo and Juliet Meeting in Forest like Regions

Figure 6 The reduction adds a yellow shaded path for each variable. Each yellow, purple, or blue
shaded path has d⋆ many internal vertices. The green and red shaded paths have 2d⋆+1 many internal
vertices. The number of internal vertices in the remaining path in the figure depends on constants
in the clause they are encoding. Note that vertices g1, g2 and paths P [s, ud⋆+1

n , d⋆], P [t, u0
1, d⋆] are

not shown in the figure for clarity. The red vertices denote the positions of the agents.

problem. For notational convenience, we work with the following definition of the prob-
lem. An input consists of variables X = {x1, . . . , xn} that each take a value in the domain
D = {1, . . . , d⋆} and clauses C = {C1, . . . , Cm} of the form

NAE (xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3) ,

where d1, d2, d3 ∈ [d⋆]. Such a clause is satisfied if not all three inequalities are True and
not all are False (i.e., they are “not all equal”). The goal is to find an assignment of the
variables that satisfies all given clauses. Bringmann et. al. [1] proved that (Monotone)
NAE-Integer-3-Sat is W[1]-hard when parameterized by the number of variables.

Reduction

The reduction takes as input an instance (X ,D, C) of (Monotone) NAE-Integer-3-Sat
and returns an instance (G, s, t, k) of Rendezvous. We construct the graph G as follows:
(See Figure 6 for the overview of the constructed graph.)

The Variable Gadget. Recall that we use P [u, v, d] to denote a simple path from u to v that
contains d many internal vertices. For every i ∈ [n], it adds a simple path P [u0

i , u
d⋆+1
i , d⋆].

Suppose the internal vertices of P [u0
i , u

d⋆+1
i , d⋆] are denoted by udi for every d ∈ [d⋆], and u0

i

is adjacent with u1
i and ud

⋆+1
i is adjacent with ud

⋆

i .

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:11

The Clause Gadget. For every j ∈ [m], the reduction adds two vertices cℓj and crj . Suppose
Cj = NAE (xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3) for some j ∈ [m]. To encode the inequality xi1 ≤ d1,
the reduction adds simple paths P [cℓj , u0

i1
, 2d⋆ − d1] and P [crj , ud

⋆+1
i1

, d⋆ + d1]. It encodes the
other two inequalities similarly. We highlight that the number of internal vertices in these
simple paths depends on the constant in the inequalities they encode.

Critical vertices and connecting paths. The reduction adds special vertices s and t and
two more vertices g1 and g2, and makes them common neighbours of s and t.

For every i ∈ [n], it adds the following simple paths:
P [s, u0

i , d
⋆], P [s, ud

⋆+1
i , d⋆],

P [t, u0
i , d

⋆], P [t, ud
⋆+1
i , d⋆].

For every j ∈ [m], it adds the following simple paths:
P [s, cℓj , 2d⋆ + 1], P [s, crj , 2d⋆ + 1],
P [t, cℓj , 2d⋆ + 1], P [t, crj , 2d⋆ + 1].

This completes the construction of the graph G. The reduction sets k = n+ 2 and returns
(G, s, t, k) as the reduced instance of Rendezvous.

Intuition for the correctness

We present an intuition for the correctness of the reduction. Recall that we use P [u, v, d1] ◦
P [v, w, d2] to denote the unique path from u to w that contains v. Consider the paths
P [s, u0

i , d
⋆] ◦ P [u0

i , t, d
⋆] and P [s, ud

⋆+1
i , d⋆] ◦ P [ud

⋆+1
i , t, d⋆] for every i ∈ [n] and paths

P [s, cℓj , 2d⋆ + 1] ◦ P [cℓj , t, 2d⋆ + 1] and P [s, crj , 2d⋆ + 1] ◦ P [crj , t, 2d⋆ + 1] for every j ∈ [m]. As
we will see, the only way Facilitator can win in Rendezvous Games with Adversaries is by
moving Romeo and Juliet along with one of these 2n + 2m paths. As g1, g2 are common
neighbors of s and t, Divider needs to put two of the k = n+ 2 agents on g1 and g2. Suppose
he puts the remaining n agents at some internal vertices of the paths added while encoding
variables. He places the agents such that each path contains one of them. For example, the
red vertices in Figure 6 corresponds to the positions of the agents on the paths added while
encoding variables x1, x2, and x3.

Suppose Divider places an agent at an internal vertex, say ud1, of P [u0
1, u

d⋆+1
1 , d⋆]. Facilit-

ator can move Romeo and Juliet to either u0
1 or ud

⋆+1
1 in d⋆ + 1 steps. The length of the

path from u0
1 to ud1 is d and the length of the path from ud

⋆+1
1 to ud1 is d⋆ − d+ 1.

Divider can move the agent from ud1 to u0
1 in at most d⋆ steps as d ≤ d⋆, and

Divider can move the agent from ud1 to ud
⋆+1

1 in at most d⋆ steps as d⋆ − d+ 1 ≤ d⋆.

Recall that the simple path P [cℓj , u0
1, 2d⋆ − d1], as the notation suggests, has 2d⋆ − d1

internal vertices. Hence, the path P [cℓj , u0
1, 2d⋆−d1]◦P [u0

1, u
d
1, d−1] has (2d⋆−d1)+1+(d−1)

many internal vertices. Hence, the length of path from cℓj to ud1 is 2d⋆ + 1 + d− d1.
Divider can move the agent from ud1 to cℓj in at most 2d⋆ + 1 steps only if d ≤ d1.

Consider symmetric arguments for crj . The simple path P [crj , ud
⋆+1

1 , d⋆ + d1] has d⋆ + d1

many internal vertices. Hence, the path P [crj , ud
⋆+1

1 , d⋆ + d1] ◦ P [ud
⋆+1

1 , ud1, d
⋆ − d] has

(d⋆ + d1) + 1 + (d⋆ − d) many internal vertices. Hence, the length of the path from ud1 to crj
is 2d⋆ + 2 + d1 − d.

Divider can move the agent from ud1 to cℓj in at most 2d⋆ + 1 steps only if d > d1.

Suppose there is a clause Cj ∈ C such that Cj = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3).
Consider the two vertices cℓj and crj added while encoding Cj . Note that Facilitator can move
Romeo and Juliet to either cℓj or crj in 2d⋆ + 2 steps. Moreover, apart from s and t, the only

FSTTCS 2022

27:12 Romeo and Juliet Meeting in Forest like Regions

branching points in paths P [s, cℓJ , 2d⋆+1]◦P [cℓj , t, 2d⋆+1] and P [s, crj , 2d⋆+1]◦P [crj , t, 2d⋆+1]
are cℓj and crj , respectively. Hence, Divider needs to place an agent that he can move to cℓj in
at most 2d⋆ + 1 steps. Similarly, he needs to place an agent that he can move to crj in at
most 2d⋆ + 1 steps. As we will see, Divider can only move the agents stationed at the paths
corresponding to variables x1, x2, or x3 to cℓj or crj in at most 2d⋆ + 1 steps. Hence, he needs
to place agents at the interior vertices, say uc1

1 , uc2
2 , uc3

3 , of P [u0
1, u

d⋆+1
1 , d⋆], P [u0

2, u
d⋆+1
2 , d⋆]

and P [u0
3, u

d⋆+1
3 , d⋆], respectively, such that

at least one of the inequalities in {c1 ≤ d1; c2 ≤ d2; c3 ≤ d3} is True, and
simultaneously at least one of the inequalities in {c1 > d1; c2 > d2; c3 > d3} is True.

This position of agents corresponds to the value of variables x1, x2, x3 in [d⋆] that satisfy
the clause Cj = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3). In the following two lemmas, we formalize
these intuitions.

▶ Lemma 5. If (X ,D, C) is a Yes-instance of (Monotone) NAE-Integer-3-Sat, then
(G, s, t, n+ 2) is a No-instance of Rendezvous.

Proof. We show that if (X ,D, C) is a Yes-instance of (Monotone) NAE-Integer-3-Sat,
then Divider with n+ 2 agents can win in Rendezvous Game with Adversaries. Recall that
n = |X |, and m = |C|. Suppose ψ : X → [d⋆] be a satisfying assignment, and ψ(xi) = di for
every i ∈ [n].

We describe a winning strategy for Dividers with the agents D1, D2, . . . , Dn+2. Initially,
he puts Di in the vertex udi

i , for every i ∈ [n], and Dn+1 and Dn+2 in g1 and g2 respectively.
He does not move agents D1, . . . , Dn+2, until Facilitator moves Romeo or Juliet from s or
t, respectively. Suppose without loss of generality Facilitator first moves Romeo from s

(she may or may not move Juliet from t). By the construction, she can move Romeo either
on the paths P [s, u0

i , d
⋆], P [s, ud

⋆+1
i , d⋆] for some i ∈ [n] or on the paths P [s, cℓj , 2d⋆ + 1],

P [s, crj , 2d⋆ + 1] for some j ∈ [m].
Suppose Facilitator moves Romeo from s to a vertex on the path P [s, u0

i , d
⋆] for some

i ∈ [n]. Divider moves Dn+1 from g1 to s and then towards u0
i as she moves Romeo towards

u0
i . He also moves Di to u0

i in at most ψ(xi) steps along the path P [u0
i , u

d⋆+1
i , d⋆]. Facilitator

needs at least d⋆ + 1 steps to move both Romeo and Juliet in u0
i starting from s and t

respectively. As ψ(xi) ≤ d⋆, Divider can move Di to u0
i before Facilitator can move both

Romeo and Juliet to u0
i . Hence, he can block Romeo by Di and Dn+1 on the path P [s, u0

i , d
⋆].

Divider keeps moving Di and Dn+1 towards Romeo’s position and in at most ψ(xi) + d⋆ − 1
steps Facilitator can not move Romeo. This implies Divider wins by keeping Romeo in its
current position with its neighbors occupied by Di and Dn+1. The argument also follows
when Facilitator moves Romeo from s to a vertex on the path P [s, ud

⋆+1
i , d⋆] for some i ∈ [n]

since Divider can move Di to ud
⋆+1
i in at most d⋆ − ψ(xi) + 1 (≤ d⋆) steps.

Suppose Facilitator moves Romeo from s to a vertex on the path P [s, cℓj , 2d⋆+ 1] for some
j ∈ [m]. Let Cj = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3). Since ψ is a satisfying assignment, it
sets the values of variables such that at least one of the inequalities will be True and at least
one of the inequalities will be False. We assume without loss of generality that ψ(xi1) ≤ d1
and ψ(xi2) > d2. Divider moves Di1 to cℓj in at most 2d⋆ − d1 + 1 + ψ(xi1) steps through
the path P [cℓj , u0

i1
, 2d⋆ − d1] ◦ P [u0

i1
, ud

⋆+1
i1

, d⋆]. As in the previous case, he can move Dn+1
from g1 to s and then keep moving towards cℓj as Facilitator moves Romeo towards cℓj . He
can move Dn+2 in a similar manner with respect to Juliet.

Facilitator can move both Romeo and Juliet to cℓj in at least 2d⋆ + 2 steps starting from
s and t respectively. Divider can move Di1 to cℓj before Romeo and Juliet as 2d⋆ − d1 + 1 +
ψ(xi1) ≤ 2d⋆ + 1. Hence, Romeo is blocked by Di1 and Dn+1 on the path P [s, cℓj , 2d⋆ + 1]

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:13

and Juliet cannot reach Romeo. Divider keeps moving Di1 and Dn+1 towards Romeo
and in at most 4d⋆ − d1 + 1 + ψ(xi1) steps Romeo cannot move. This implies Divider
wins. The argument also follows when Facilitator moves Romeo from s to a vertex on
the path P [s, crj , 2d⋆ + 1] for some j ∈ [m] since Divider can move Di2 to crj in at most
2d⋆ + 2 + d2 − ψ(xi2) (< 2d⋆ + 2) steps. This implies that if (X ,D, C) is a Yes-instance of
(Monotone) NAE-Integer-3-Sat, then Divider with n+ 2 agents can win in Rendezvous
Game with Adversaries, i.e., (G, s, t, n+ 2) is a No-instance of Rendezvous. ◀

▶ Lemma 6. If (X ,D, C) is a No-instance of (Monotone) NAE-Integer-3-Sat, then
(G, s, t, n+ 2) is a Yes-instance of Rendezvous.

Proof. We show that if (X ,D, C) is a No-instance of (Monotone) NAE-Integer-3-Sat,
then Facilitator wins in at most 2d⋆ + 2 steps against Divider with n+ 2 agents.

We first consider two simple cases where Facilitator has an easy winning strategy. First,
consider the case when Divider does not place his agents at g1 or g2. Then, she can move
Romeo and Juliet there and win in one step. Second, consider the case when there is i ∈ [n]
such that none of Divider’s agents is within distance d⋆ from u0

i or from ud
⋆+1
i . In the first

sub-case, she can move Romeo and Juliet to u0
i in d⋆ + 1 steps through the paths P [s, u0

i , d
⋆]

and P [t, u0
i , d

⋆], respectively, and win. Similarly, in the second sub-case she can move Romeo
and Juliet to ud

⋆+1
i in d⋆ + 1 steps through the paths P [s, ud

⋆+1
i , d⋆] and P [t, ud

⋆+1
i , d⋆],

respectively, and win.
In the remaining proof, we suppose that Divider places Dn+1 at g1 and Dn+2 at g2.

Moreover, for every i ∈ [n], there is a Divider’s agent within distance d⋆ from u0
i and within

distance d⋆ from ud
⋆+1
i . Suppose from now that for every i ∈ [n], there exists a Divider’s

agent within distance d⋆ from u0
i and within distance d⋆ from ud

⋆+1
i . By the construction

and the fact that Divider can not place an agent at s or t, a single Divider’s agent cannot be
within distance d⋆ from both u0

i and u0
j , or ud

⋆+1
i and ud

⋆+1
j , or u0

i and ud
⋆+1
j , for i ̸= j ∈ [n].

As Divider has n remaining agents, for every i ∈ [n], there must be an agent, say Di, within
distance d⋆ from both u0

i and ud
⋆+1
i . This is possible only when for every i ∈ [n], Di is

on one of the internal vertices of the path P [u0
i , u

d⋆+1
i , d⋆]. Suppose ϕ : [n] → [d⋆] is the

mapping corresponding to the initial position of the Divider’s agents. Formally, for every
i ∈ [n], Divider places agent Di on u

ϕ(i)
i . For every i ∈ [n], the initial position of Di also

represents a possible assignment of variable xi in (X ,D, C).
We now define the Facilitator’s strategy. Considering X = {x1, . . . , xn} as the variables

that each take a value in the domain D = {1, . . . , d⋆}, she constructs a collection C of
clauses such that for every j ∈ [m], clause Cj = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3), where
xi1 , xi2 , xi3 ∈ X for some d1, d2, d3 ∈ [d⋆]. Alternately, she reverse-engineers the process used
by the reductions to encode clauses. She also constructs an assignment ψ : X → D = [d⋆] by
considering the initial positions of agents D1, D2, . . . , Dn. Formally, ψ(xi) = ϕ(i) for every
i ∈ [n]. It then determines whether the following statements are True.
1. For some clause Cj = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3), all of the inequalities in

{ψ(xi1) ≤ d1;ψ(xi2) ≤ d2;ψ(xi3) ≤ d3} are True, where j ∈ [m].
2. For some clause Cj = NAE(xi1 ≤ d1, xi2 ≤ d2, xi3 ≤ d3), all of the inequalities in

{ψ(xi1) ≤ d1;ψ(xi2) ≤ d2;ψ(xi3) ≤ d3} are False, where j ∈ [m].
Facilitator has to make a critical choice in the first step where she has to decide about
moving Romeo towards cℓ1, . . . , cℓm, cr1, . . . , or crm. This choice depends on which of the above
statement is True and for which clause it is True. If the first statement is True for the clause
Cj ∈ C, then she moves Romeo and Juliet towards crj . Similarly, if the second statement is
True for the clause Cj ∈ C, then she moves Romeo and Juliet towards cℓj .

FSTTCS 2022

27:14 Romeo and Juliet Meeting in Forest like Regions

To argue that this is indeed a winning strategy for Facilitator, we first argue that for any
initial positions of Divider’s agents, at least one of the two statements above is True. Assume
the above two statements are False for all j ∈ [m], which implies in all the clauses Cj ∈ C,
not all three inequalities are True and not all are False . Hence, all the clauses are satisfied
by the assignment ψ. This, however, contradicts the fact that (X ,D, C) is a No-instance.
Hence, for any initial positions of Divider’s agents, at least one of the two sentences is True.

This allows Facilitator to make her choice. It remains to argue that Romeo and Juliet can
meet at the vertex cℓj or crj which Facilitator has chosen. Suppose, one of the statements is True
for the clause Cj . For notational convenience, suppose Cj = NAE(x1 ≤ d1, x2 ≤ d2, x3 ≤ d3).

Suppose ψ(x1) ≤ d1, ψ(x2) ≤ d2, ψ(x3) ≤ d3 (i.e. First statement is True). Then, as
mentioned in the Facilitator’s strategy, her choice will be to move Romeo and Juliet towards
crj . For i ∈ {1, 2, 3}, Divider needs at least d⋆−ψ(xi)+1+d⋆+di+1 ≥ 2d⋆+2 steps to move
Di from u

ψ(xi)
i to crj via the shortest path P [uψ(xi)

i , ud
⋆+1
i , d⋆ − ψ(xi)] ◦ P [ud

⋆+1
i , crj , d

⋆ + di].
Note that, by the construction, the Divider’s agents that are at distance less than or equal
to 2d⋆ + 2 from crj are D1, D2 and D3, only. Facilitator can move Romeo and Juliet to crj
in 2d⋆ + 2 steps through the paths P [s, crj , 2d⋆ + 1] and P [t, crj , 2d⋆ + 1], respectively. Since
Facilitator takes the first turn, she can move Romeo and Juliet to crj before Divider’s agents.
Hence, Facilitator wins in 2d⋆ + 2 steps.

Suppose ψ(x1) > d1, ψ(x2) > d2, ψ(x3) > d3 (i.e. Second statement is True). Then, as
mentioned in the Facilitator’s strategy, her choice will be to move Romeo and Juliet towards
cℓj . For i ∈ {1, 2, 3}, Divider needs at least ψ(xi) − 1 + 1 + 2d⋆ − di + 1 > 2d⋆ + 1 steps to
move Di from u

ψ(xi)
i to cℓj via the shortest path P [uψ(xi)

i , u0
i , ψ(xi) − 1] ◦ P [u0

i , c
ℓ
j , 2d⋆ − di].

Once again, by the construction, the Divider’s agents that are at distance less than or equal
to 2d⋆ + 2 from cℓj are D1, D2 and D3. Facilitator moves Romeo and Juliet to cℓj in 2d⋆ + 2
steps through the paths P [s, cℓj , 2d⋆ + 1] and P [t, cℓj , 2d⋆ + 1] respectively. Since Facilitator
takes the first turn, Romeo and Juliet is moved to cℓj before Divider agents and Facilitator
wins in 2d⋆ + 2 steps.

This implies that if (X ,D, C) is a No-instance of (Monotone) NAE-Integer-3-Sat,
then Facilitator wins in at most 2d⋆ + 2 steps against Divider with n + 2 agents, i.e.,
(G, s, t, n+ 2) is a Yes-instance of Rendezvous. ◀

By the construction, the number of agents is upper bounded by the number of variables
in (Monotone) NAE-Integer-3-Sat plus two. Consider the set S :=

⋃
i∈[n]{u0

i , u
d⋆+1
i } ∪

{s, t} of 2n + 2 vertices in G. It is easy to verify that G − S is a collection of paths
(corresponding to variable gadgets) and subdivided stars (centered at the vertices added
while encoding the clauses). It is easy to verify that the pathwidth of a subdivided star is at
most two. Hence, the feedback vertex set number and the pathwidth of the resulting graph
are bounded by the linear function in the number of variables. Lemma 5, Lemma 6 and the
fact that the reduction can be completed in the polynomial time in the size of input imply
Theorem 2 which we restate here.

▶ Theorem 2. Rendezvous is co-W[1]-hard when parameterized by:
the feedback vertex set number and the solution size, or
the pathwidth and the solution size.

4 FPT Parameterized by the Vertex Cover Number and Solution Size

In this section we focus on Theorem 3. Throughout this section, we assume that a vertex
cover X of size vc(G) is given as a part of the input. We describe the FPT result here and
defer the non-existence of the polynomial kernel, which follows from observing the properties
of a known reduction in [4], to the full version [6].

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:15

▶ Theorem 3. Rendezvous is FPT when parameterized by the vertex cover number of the
input graph and the solution size. Moreover, the problem does not admit a polynomial kernel
when parameterized by the vertex cover number and the solution size unless NP⊆ co-NP/poly.

▶ Reduction Rule 4.1. Consider an instance (G,X, s, t, k) of Rendezvous. If s = t,
st ∈ E(G), |N(s) ∩N(t)| > k, then return a trivial Yes-instance.

For the rest of this discussion, we will assume that any instance (G, s, t, k) of Rendezous
under consideration does not satisfy the premise of Reduction Rule 4.1, i.e, we assume that
we are not dealing with trivial Yes instances. Also, since the vertices s and t can always
be added to the vertex cover and this only increases the parameter by two, we assume for
simplicity – and without loss of generality – that s, t ∈ X.

We now introduce some notation. For a subset Y ⊆ X, let IY ⊆ G \X denote the set of
vertices in G \ X whose neighborhood is exactly Y . Note that {IY }Y⊆X is a partition of
G \ X into at most 2vc(G) many parts. For a vertex v ∈ G \ X, we use EG,X(v) to denote
the part that v belongs to, in other words, EG,X(v) = IN(v). We now apply the following
reduction rule.

▶ Reduction Rule 4.2. Consider an instance (G,X, s, t, k) of Rendezvous. Repeat the
following for each v ∈ G \X. If |EG,X(v)| > k + 1, then choose any subset of exactly k + 1
vertices from EG,X(v) and delete rest of the vertices from EG,X(v).

▶ Lemma 7. Reduction Rule 4.2 is safe.

Proof. Let (G,X, s, t, k) denote the input instance, and let v ∈ G \X be arbitrary but fixed.
Further, let (H,X, s, t, k) denote the instance obtained by applying Reduction Rule 4.2 with
respect to v. If |E(v)| ≤ k + 1 in G then G = H and there is nothing to prove. Otherwise,
let Qv ⊆ EG,X(v) denote the set of vertices deleted by the application of the reduction rule
with respect to v. Note that H = G \Qv. Also observe that |EH,X(v)| = k + 1.

To begin with, suppose the Facilitator has a winning strategy in G. Observe that the
Facilitator can employ the same strategy in H as well, except when the strategy involves
moving to a vertex u ∈ Qv. However, since |EH,X(v)| = k + 1, we have that there is at least
one vertex w in H \X that has the same neighborhood as u and is not occupied by an agent
of the Divider, since the Divider has only k agents at their disposal. The strategy, at this
point, would remain valid if we were to replace u with w. If the strategy involved using two
distinct vertices from Qv in the same step, then note that we can modify the strategy and
have the Faciliator’s agents meet immediately at the vertex w.

On the other hand, if the Facilitator had a winning strategy in H , then it is easy to check
that the Facilitator can win in G by mimicing the strategy directly. Another way to see
this is the following. Suppose that the Divider had a winning strategy in G. Then observe
that in any step, without loss of generality, if the Divider’s agents occupy some vertices
of EG,X(v), we can replace this configuration with all of these agents on a single vertex of
EG,X(v) outside Qv. Thus any winning strategy for the divider in G can be adapted to a
valid winning strategy in H. This concludes the argument for the equivlance of the two
instances. ◀

▶ Lemma 8. Rendezvous is FPT when parameterized by the vertex cover number and the
solution size.

Proof. Observe that repeated applications of Reduction Rule 4.2 ensures that |V (G)| =
|X| + |G \X| ≤ vc(G) + 2vc(G) · (k + 1). Thus we have an exponential kernel in vc(G), and
the claim follows. ◀

FSTTCS 2022

27:16 Romeo and Juliet Meeting in Forest like Regions

5 Conclusion

In this work, we studied the game of rendezvous with adversaries on a graph introduced by
Fomin, Golovach, and Thilikos [4]. The game is a natural dynamic version of the problem
of finding a vertex cut between two vertices s and t. Given that the problem is W[2]-hard
when parameterized by the natural parameter, i.e. the solution size, we continued studying
structural parameters of the input graph initiated by Fomin et al. [4]. We proved, to our
surprise, that the problem is co-NP-hard even when restricted to graphs whose feedback
vertex set number is at most 14, or pathwidth is at most 16. In particular, we proved
Rendezvous is co-para-NP-hard parameterized by treewidth, thereby answering an open
question by Fomin et al. [4]. It turns out that even augmenting the feedback vertex set
number or the pathwidth with the solution size is not enough. Specifically, we proved that
Rendezvous is co-W[1]-hard when parameterized by the feedback vertex set number and
the solution size, or the pathwidth and the solution size. Towards the positive side, we
proved that the problem admits a natural exponential kernel when parameterized by the
vertex cover number and the solution size, however this kernel cannot be improved to a
polynomial kernel under standard complexity-theoretic assumptions. Finally, we presented
polynomial time algorithms on two restricted cases and proved that Rendezvous can be
solved in polynomial time on the classes of treewidth at most two graphs and grids.

While we addressed the structural parameterized by arguably the most well studied
parameters, it remains interesting to study the parameterized complexity by other structural
parameters. Amongst these, we highlight the following question: Is Rendezvous W[1]-hard
when parameterized by the vertex cover number (only)? We tend to believe it is indeed the
case. To the best of our knowledge, the problems that are W[1]-hard when parameterized
by the vertex cover number, like List Coloring, Weighted (k, r)-Center, etc., have
additional input arguments like lists or weights. We believe that the dynamic natural of the
Rendezvous problem might make it an exception to the above known trend.

References

1 Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized
complexity dichotomy for steiner multicut. J. Comput. Syst. Sci., 82(6):1020–1043, 2016.
doi:10.1016/j.jcss.2016.03.003.

2 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

3 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

4 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Can romeo and juliet meet?
or rendezvous games with adversaries on graphs. In Lukasz Kowalik, Michal Pilipczuk, and
Pawel Rzazewski, editors, Graph-Theoretic Concepts in Computer Science - 47th International
Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, volume
12911 of Lecture Notes in Computer Science, pages 308–320. Springer, 2021. doi:10.1007/
978-3-030-86838-3_24.

5 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

6 Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, and Gaurav Viramgami. Romeo and
juliet meeting in forest like regions, 2022. doi:10.48550/arXiv.2210.02582.

https://doi.org/10.1016/j.jcss.2016.03.003
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-86838-3_24
https://doi.org/10.1007/978-3-030-86838-3_24
https://doi.org/10.48550/arXiv.2210.02582

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:17

A Appendix

A.1 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers.

Graph theory

We use standard graph-theoretic notation, and we refer the reader to [3] for any undefined
notation. For an undirected graph G, sets V (G) and E(G) denote its set of vertices and
edges, respectively. We denote an edge with two endpoints u, v as uv. Unless otherwise
specified, we use n to denote the number of vertices in the input graph G of the problem
under consideration. Two vertices u, v in V (G) are adjacent if there is an edge uv in G. The
open neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to v. The
closed neighborhood of a vertex v, denoted by NG[v], is the set NG(v) ∪ {v}. We say that a
vertex u is a pendant vertex if |NG(v)| = 1. The degree of a vertex v, denoted by degG(v), is
equal to the number of vertices in the open neighbourhood of v, i.e., degG(v) = |NG(v)|. We
omit the subscript in the notation for neighborhood if the graph under consideration is clear.

For a subset S of V (G), we define N [S] =
⋃
v∈S N [v] and N(S) = N [S] \ S. For a subset

F of edges, we denote by V (F) the collection of endpoints of edges in F . For a subset S of
V (G) (resp. a subset F of E(G)), we denote the graph obtained by deleting S (resp. deleting
F) from G by G− S (resp. by G− F). We denote the subgraph of G induced on the set S
by G[S].

A graph is connected if there is a path between every pair of distinct vertices. A subset
S ⊆ V (G) is said to be a connected set if G[S] is connected.

A simple path, denoted by P [u, v, d], is a non-empty graph G of the form V (G) =
{u, x1, . . . , xd, v}, and E(G) = {ux1, x1x2, . . . , xd−1xd, xdv}, where u, v, and all xi’s are
distinct. The vertices {x1, x2, . . . , xd} are the internal vertices of P [u, v, d], and the vertices
{xi : deg(xi) > 2, i ∈ [d]}, i.e., internal vertices whose degree is strictly greater than 2 are
the branching points of P [u, v, d]. We use P [u, v, d1] ◦P [v, w, d2] to denote the unique simple
path from u to w that contains v and has d1 + d2 + 1 many internal vertices.

A set of vertices Y is said to be an independent set if no two vertices in Y are adjacent.
For a graph G, a set X ⊆ V (G) is said to be a vertex cover if V (G) \X is an independent
set. A set of vertices Y is said to be a clique if any two vertices in Y are adjacent. A vertex
cover X is a minimum vertex cover if for any other vertex cover Y of G, we have |X| ≤ |Y |.
We denote by vc(G) the size of a minimum vertex cover of a graph G. For a graph G, a set
X ⊆ V (G) is said to be a feedback vertex set if V (G) \ X is does not contain a cycle. We
denote by fvs(G) the size of a minimum feedback vertex set of a graph G.

A path decomposition of a graph G is a sequence P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V (G) for each i ∈ [r], such that the following conditions hold:⋃r

i=1 Xi = V (G). In other words, every vertex of G is in at least one bag.
For every uv ∈ E(G), there exists ℓ ∈ [r] such that the bag Xℓ contains both u and v.
For every u ∈ V (G), if u ∈ Xi ∩Xk for some i ≤ k, then u ∈ Xj also for each j such that
i ≤ j ≤ k. In other words, the indices of the bags containing u form an interval in [r].

The width of a path decomposition (X1, X2, . . . , Xr) is max1≤i≤r|Xi| − 1. The pathwidth of
a graph G, denoted by pw(G), is the minimum possible width of a path decomposition of G.

FSTTCS 2022

27:18 Romeo and Juliet Meeting in Forest like Regions

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
conditions hold:⋃

t∈V (T) Xt = V (G). In other words, every vertex of G is in at least one bag.

For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u and v.

For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt}, i.e., the set of nodes whose
corresponding bags contains u, induces a connected subtree of T .

The width of a tree decomposition T = (T, {Xt}t∈V (T)) is maxt∈V (T)|Xt| − 1. The treewidth
of a graph G, denoted by tw(G), is the minimum possible width of a tree decomposition
of G.

A M × N grid is the graph G of the form V (G) = {(i, j) : i ∈ [M], j ∈ [N]}, and
E(G) = {(i, j)(i′, j′) : |i− i′| + |j − j′| = 1, i, i′ ∈ [M], j, j′ ∈ [N]}.

Let X and Y be multisets of vertices of a graph G (i.e., X and Y can contain several
copies of the same vertex). We say that X and Y of the same size are adjacent if there is
a bijective mapping α : X → Y such that for x ∈ X, either x = α(x) or x and α(x) are
adjacent in G.

Parameterized complexity

An instance of a parameterized problem Π consists of an input I, which is an input of the
non-parameterized version of the problem, and an integer k, which is called the parameter. A
problem Π is said to be fixed-parameter tractable, or FPT, if given an instance (I, k) of Π, we
can decide whether (I, k) is a Yes-instance of Π in time f(k)·|I|O(1). Here, f : N 7→ N is some
computable function depending only on k. Parameterized complexity theory provides tools
to rule out the existence of FPT algorithms under plausible complexity-theoretic assumptions.
For this, a hierarchy of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] · · · ⊆ XP was
introduced, and it was conjectured that the inclusions are proper. The most common way to
show that it is unlikely that a parameterized problem admits an FPT algorithm is to show
that it is W[1] or W[2]-hard. It is possible to use reductions analogous to the polynomial-time
reductions employed in classical complexity. Here, the concept of W[1]-hardness replaces the
one of NP-hardness, and we need not only to construct an equivalent instance FPT time, but
also to ensure that the size of the parameter in the new instance depends only on the size
of the parameter in the original instance. These types of reductions are called parameter
preserving reductions. For a detailed introduction to parameterized complexity and related
terminologies, we refer the reader to the recent book by Cygan et al. [2].

A reduction rule is a polynomial-time algorithm that takes as input an instance of a
problem and outputs another, usually reduced, instance. A reduction rule said to be applicable
on an instance if the output instance and input instance are different. A reduction rule is safe
if the input instance is a Yes-instance if and only if the output instance is a Yes-instance.

A kernelization of a parameterized problem Π1 is a polynomial algorithm that maps each
instance (I1, k1) of Π1 to an instance I of Π2 such that (1) (I, k) is a Yes-instance of Π1
if and only if I2 is a Yes-instance of Π2, and (2) the size of I2 is bounded by g(k) for a
computable function g(·). We say a compression is a polynomial compression If g(·) is a
polynomial function, then we call it a polynomial kernel. It is known that a problem is FPT
if and only if it admits a kernel (See, for example, [2, Lemma 2.2]).

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:19

B Some Polynomial Cases

In this section, we focus on Theorem 4.

▶ Theorem 4. Rendezvous can be solved in polynomial time on the classes of treewidth at
most two graphs and grids.

We focus on graphs of treewidth at most two. In this case, we show that dG(s, t) = λG(s, t),
which leads to Rendezvous being polynomially solvable on this class of graphs based on
standard algorithms for computing λG(s, t).

▶ Proposition 9. If G is a connected graph of tree-width at most 2, then for every s, t ∈ V (G),
dG(s, t) = λG(s, t).

Proof. Consider an instance (G, s, t, k) of Rendezvous where G is a graph of treewidth
at most 2. We recall that these are the series-parallel graphs, which are graphs with
two distinguished vertices called terminals, formed recursively by two simple composition
operations. Specifically, we have the following definitions. A two-terminal graph (TTG) is
a graph with two distinguished vertices, s and t called source and sink, respectively. The
parallel composition Pc = Pc(X,Y) of two TTGs X and Y is a TTG created from the disjoint
union of graphs X and Y by merging the sources of X and Y to create the source of Pc and
merging the sinks of X and Y to create the sink of Pc. The series composition Sc = Sc(X,Y)
of two TTGs X and Y is a TTG created from the disjoint union of graphs X and Y by
merging the sink of X with the source of Y . The source of X becomes the source of Sc and
the sink of Y becomes the sink of Sc. A two-terminal series–parallel graph (TTSPG) is a
graph that may be constructed by a sequence of series and parallel compositions starting
from a set of copies of a single-edge graph K2 with assigned terminals. Finally, a graph is
called series–parallel (SP-graph), if it is a TTSPG when some two of its vertices are regarded
as source and sink.

The proof will proceed by induction on the number of vertices. We will do a case analysis
for sequence of compositions used to arrive at the final graph G. In the base case, there is
nothing to prove since G is simply an edge. We use x and y to denote the source and sink
terminals, respectively. For the induction hypothesis, we assume that the claim is true for all
series-parallel graphs with less than k vertices, where k ≥ 2. Now, let G be a series-parallel
graph having k vertices.

Suppose G is obtained by a series or parallel composition of graphs G1 and G2 and let x
and y denote the source and sink terminals of G, while xb and yb denote the source and sink
terminals of Gb for b ∈ {1, 2}. Note that G1 and G2 are series-parallel graphs having less
than k vertices.
Case 1: s ∈ G1 and t ∈ G2; s ̸= x1, s ̸= y1; t ̸= x2, t ̸= y2

Case 1A: The composition is series. In this case static and dynamic separation number
is one: {x} or {y} (the joined terminal).

Case 1B: The composition is parallel. Consider the path s → x → t → y → s. Since
s ̸= t, s ̸= x, s ̸= y, t ̸= x, t ̸= y, the considered path is a closed walk containing s and t
which forms a cycle. So, s and t lies on a cycle. So, the lower bound on the dynamic
separator is 2. And the upper bound on the dynamic separator is also 2 as the static
separator in this case is 2. So in this case static and dynamic separation number is
two and is given by both terminals together: {x, y}.

Case 2: s ∈ G1 and t ∈ G1 s ̸= x1, s ̸= y1; t ̸= x1, t ̸= y1
Case 2A: The composition is series. In this case, suppose y1 and x2 are identified as
g1,2; and x = x1 and y = y2.

FSTTCS 2022

27:20 Romeo and Juliet Meeting in Forest like Regions

▷ Claim 10. Static s, t separators in G1 will also work in G and vice versa.

Proof. Forward Direction. Suppose G1 has a static (s, t) separator S1 of size k1. So,
there does not exist any path from s to t in G1 which does not contain any vertex
of S1. Now, for the supergraph G, all the paths between s and t that does not pass
through G2 are already blocked by the static separator S1. Further, the paths that
pass through G2 will pass through the terminal vertex twice. So these paths will be
s → g1,2 → some vertices of G2 → g1,2 → t. Suppose these paths are not blocked by
S1, then there also exist a path s → g1,2 → t in G1 that are not blocked by S1, which
contradicts the assumption that S1 is a static (s, t) separator in G1. So, these paths
are also blocked by S1, which implies that S1 is also the static separator of G.
Backward Direction. Suppose G has a static (s, t) separator S1 of size k1. Taking the
vertices from G2 in the static seperator can only block paths of the type s → g1,2 →
some vertices of G2 → g1,2 → t. So, S1 can not contains more than one vertex from
the graph G2, else those vertices can be replaced by g1,2 which will result in a smaller
sized static (s, t) separator of G. Hence, S1 can contain at max one vertex from G2.
Observe that if S1 does not contain any vertex of G2, then the same S1 is also a static
(s, t) seperator in G1. If S1 contains exactly one vertex from G2, then that vertex can
be replaced by g1,2 to form a same sized static (s, t) seperator in G1. ◁

▷ Claim 11. dG(s, t) = λG(s, t) = k1.

Proof. Suppose the claim is not true. Then we need fewer than k1 guards in G, say
k1 − 1 guards are enough to separate s from t in G. But then this will also be a
valid strategy in G1, contradicting the induction hypothesis from which we know that
dG1(s, t) = λG1(s, t) = k1. ◁

Case 2B: The composition is parallel. In this case, we have that y1 and y2 join into y
and x1 and x2 join into x.

▷ Claim 12. λG1(s, t) ≤ λG(s, t) ≤ λG1(s, t) + 1.

Proof. The first inequality follows from the fact that G is a supergraph of G1. For the
second inequality, note that a separation of s and t in G can be achieved by adding
one of the terminal vertices to the static separator in G1. ◁

▷ Claim 13. k1 ≤ dG(s, t) = λG(s, t) ≤ k1 + 1.

Proof. Suppose the claim is not true. Suppose λG(s, t) = k1, and we need fewer than
k1 guards in G, say k1 − 1 guards are enough to separate s from t in G. But then
this will also be a valid strategy in G1, contradicting the induction hypothesis from
which we know that dG1(s, t) = λG1(s, t) = k1. Suppose λG(s, t) = k1 + 1, and we
need fewer than k1 + 1 guards in G, say k1 guards are enough to separate s from t in
G. If λG(s, t) has more than one vertex of G2, then it will contradict the induction
hypothesis from which we know that λG(s, t) = k1. If it does not have any vertex of
G2 then we can replace this separater with the union of static (s, t) seperator of G1

N. Misra, M. Mulpuri, P. Tale, and G. Viramgami 27:21

and the vertex x. And if it contains exactly ine vertex of G2, then that vertex can be
replaced by one of the terminals x or y and it will still be a valid static (s, t) seperator
in G. Observe that, to seperate s and t in G, at least one guard must be on one of the
paths of type s → x → some vertices of G2 → y → t. If not then there is no guard
which can block x, y, and the vertices of G2 and so it will not be a valid seperator.
Additionally, this vertex in not needed in the dynamic (s, t) seperator of G1. Hence
we can obtain a k1 − 1 size dynamic (s, t) separator in G1 by eliminating this vertex,
contradicting the induction hypothesis. ◁

Case 3: s is one of the terminals and t∈G1 or t∈G2; s=x or s = y; t ̸= x1, t ̸= y1

Case 3A: The composition is series.
1. If s = x and t ∈ G2 or if s = y and t ∈ G1, then the vertex at the junction of the

composition is a separator of size one.
2. If s = x and t ∈ G1 or s = y and t ∈ G2, then the static separator of s and t in G

is the static separator of s and t in G1 or the static separator of s and t in G2, of
size k1 or k2 respectively.

▷ Claim 14. If s = x and t ∈ G1, then dG(s, t) = λG(s, t) = k1, while if s = y and
t ∈ G2, then dG(s, t) = λG(s, t) = k2.

Proof. Consider the first statement and suppose the claim is not true. Then we need
fewer than k1 guards in G, say k1 − 1 guards are enough to separate s from t in G. But
then this will also be a valid strategy in G1, contradicting the induction hypothesis.
The same argument works for the second statement as well. ◁

Case 3B: The composition is parallel.

▷ Claim 15. λG(s, t) ≤ λG1(s, t) + 1, if t ∈ G1 and λG(s, t) ≤ λG2(s, t) + 1, if t ∈ G2
This argument in this case is analogous to Case 2B.

Case 4. s and t are both terminals.
Case 4A: The composition is series.

1. If s = x; t = y, then the vertex at the junction of the composition is a static
separator of size one.

2. If s = x; t = z, where z denotes the the vertex at the junction of the composition,
then a static separator of s and t in G1 is also a static separator of s and t in G.

3. If s = z; t = y, where z is the same as before, then a static separator of s and t in
G2 is also a static separator of s and t in G.

▷ Claim 16. If s = x and t = z, then dG(s, t) = λG(s, t) = k1, while if s = z and
t ∈ y, then dG(s, t) = λG(s, t) = k2.

Proof. Consider the first statement and suppose the claim is not true. Then we need
fewer than k1 guards in G, say k1 − 1 guards are enough to separate s from t in G. But
then this will also be a valid strategy in G1, contradicting the induction hypothesis.
The same argument works for the second statement as well. ◁

FSTTCS 2022

27:22 Romeo and Juliet Meeting in Forest like Regions

Case 4B: The composition is parallel, i.e, s = x; t = y. In this case, note that the size
of the static separator of s and t in G = λG1(s, t)+λG2(s, t). Indeed, any smaller subset
would have either fewer than λG1(s, t) vertices in G[V (G1)] or fewer than λG2(s, t)
vertices in G[V (G2)], implying the existence of an unblocked path from s to t via G1
or G2

▷ Claim 17. dG(s, t) = λG(s, t) = k1 + k2.

Proof. Suppose the claim is not true. Then we need fewer than k1 + k2 guards in G,
say k1 + k2 − 1 guards are enough to separate s from t in G. But then this will also be
a valid strategy in G1 (or G2) with < k1 (or < k2) guards, contradicting the induction
hypothesis. ◁

So, for all the cases λG(s, t) = dG(s, t), and this concludes our argument. ◀

New Characterizations of Core Imputations of
Matching and b-Matching Games
Vijay V. Vazirani #

University of California, Irvine, CA, USA

Abstract
We give new characterizations of core imputations for the following games:
1. The assignment game.
2. Concurrent games, i.e., general graph matching games having non-empty core.
3. The unconstrained bipartite b-matching game (edges can be matched multiple times).
4. The constrained bipartite b-matching game (edges can be matched at most once).

The classic paper of Shapley and Shubik [11] showed that core imputations of the assignment
game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on
this, Deng et al. [5] gave a general framework which yields analogous characterizations for several
fundamental combinatorial games. Interestingly enough, their framework does not apply to the
last two games stated above. In turn, we show that some of the core imputations of these games
correspond to optimal dual solutions and others do not. This leads to the tantalizing question of
understanding the origins of the latter.

We also present new characterizations of the profits accrued by agents and teams in core
imputations of the first two games. Our characterization for the first game is stronger than that for
the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is
stronger than that of the Balinski polytope.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases LP-duality theory, cooperative game theory, core of a game, assignment
game, general graph matching game, bipartite b-matching game

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.28

Related Version Full Version: https://arxiv.org/pdf/2202.00619.pdf

Funding Vijay V. Vazirani: Supported in part by NSF grants CCF-1815901 and CCF-2230414.

Acknowledgements I wish to thank Hervé Moulin for asking the interesting question of extending
results obtained for the assignment game to general graph matching games having a non-empty core.
I also wish to thank Federico Echenique, Hervé Moulin and Thorben Trobst for several valuable
discussions.

1 Introduction

The matching game forms one of the cornerstones of cooperative game theory and the core
is a quintessential solution concept in this theory; the latter captures all possible ways of
distributing the total worth of a game among individual agents in such a way that the grand
coalition remains intact, i.e., a sub-coalition will not be able to generate more profits by itself
and therefore has no incentive to secede from the grand coalition. The matching game can
also be viewed as a matching market in which utilities of the agents are stated in monetary
terms and side payments are allowed, i.e., it is a transferable utility (TU) market. For an
extensive coverage of these notions, see the book by Moulin [9]. Due to space restrictions,
we have not presented proofs in this version of the paper; for that, see the full version [12].

© Vijay V. Vazirani;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.28
https://arxiv.org/pdf/2202.00619.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 New Characterizations of Core Imputations

The classic paper of Shapley and Shubik [11] showed that the set of core imputations of
the assignment game as the set of optimal solutions to the dual of the LP-relaxation of the
maximum weight matching problem in the underlying graph. Among their other insights
was a characterization of the two “antipodal” points – imputations which maximally favor
one side of the bipartition1 – in the core of this game. This in-depth understanding makes
the assignment game a paradigmatic setting for studying the core; in turn, insights gained
provide valuable guidance on profit-sharing in real-life situations.

Deng et al. [5] distilled the ideas underlying the Shapley-Shubik Theorem to obtain a
general framework (see Section 4.1.1) which helps characterize the core of several games that
are based on fundamental combinatorial optimization problems, including maximum flow
in unit capacity networks both directed and undirected, maximum number of edge-disjoint
s-t paths, maximum number of vertex-disjoint s-t paths, maximum number of disjoint
arborescences rooted at a vertex r, and concurrent games (defined below).

In this paper, we study the core of the assignment game and some of its generalizations,
including two versions of the bipartite b-matching game (Section 4); in the first version
(Section 4.2) edges can be matched multiple number of times and in the second, edges can be
matched at most once (Section 5). The intriguing aspect of the latter two games is that they
don’t fall in framework of Deng et al.; see Section 4.1.1 for the reason. In turn, we show that
some of the core imputations of these games correspond to optimal dual solutions and some
not. This leads to a tantalizing question: is there a “mathematical structure” that produces
the latter?

For the assignment game (Section 3), we start with the realization is that despite the
in-depth work of Shapely and Shubik, and the passage of half a century, there are still basic
questions about the core which have remained unexplored:
1. Do core imputations spread the profit more-or-less evenly or do they restrict them to

certain well-chosen agents? If the latter, what characterizes these “chosen” agents?
2. By definition, under any core imputation, the sum of profits of two agents i and j is at

least the profit they make by being matched, say wij . What characterizes pairs (i, j) for
which this sum strictly exceed wij?

3. How do core imputations behave in the presence of degeneracy?

An assignment game is said to be degenerate if the optimal assignment is not unique.
Although Shapley and Shubik had mentioned this phenomenon, they brushed it away,
claiming that “in the most common case” the optimal assignment will be unique, and if
not, their suggestion was to perturb the edge weights to make the optimal assignment
unique. However, this is far from satisfactory, since perturbing the weights destroys crucial
information contained in the original instance and the outcome becomes a function of the
vagaries of the randomness imposed on the instance.

The following broad idea helps answer all three questions. A well-known theorem in
matching theory says that the LP-relaxation of the optimal assignment problem always has
an integral optimal solution [8]. Therefore, the worth of the assignment game is given by the
optimal objective function value of this LP. Next, the Shapley-Shubik Theorem says that the
set of core imputations of this game are precisely the optimal solutions to the dual of this
LP. These two facts naturally raise the question of viewing core imputations through the
lens of complementarity; in turn, it leads to a resolution of all three questions.

1 Much like the top and bottom elements in a lattice of stable matchings.

V. V. Vazirani 28:3

The following setting, taken from [6] and [2], vividly captures the issues underlying
profit-sharing in an assignment game. Suppose a coed tennis club has sets U and V of
women and men players, respectively, who can participate in an upcoming mixed doubles
tournament. Assume |U | = m and |V | = n, where m, n are arbitrary. Let G = (U, V, E) be a
bipartite graph whose vertices are the women and men players and an edge (i, j) represents
the fact that agents i ∈ U and j ∈ V are eligible to participate as a mixed doubles team
in the tournament. Let w be an edge-weight function for G, where wij > 0 represents the
expected earnings if i and j do participate as a team in the tournament. The total worth of
the game is the weight of a maximum weight matching in G.

Assume that the club picks such a matching for the tournament. The question is how to
distribute the total profit among the agents – strong players, weak players and unmatched
players – so that no subset of players feel they will be better off seceding and forming their
own tennis club. We will use this setting to discuss the issues involved in the questions raised
above.

Under core imputations, the profit allocated to an agent is a function of the value he/she
brings to the various sub-coalitions he/she belongs to, i.e., it is consistent with his/her
negotiating power. Indeed, it is well known that core imputations provide profound insights
into the negotiating power of individuals and sub-coalitions, see [9]. The first question
provides further insights into this issue. Our answer to this question is that the core rewards
only essential agents, namely those who are matched by every maximum weight matching,
see Theorem 10.

Our answer to the second question is quite counter-intuitive: we show that a pair of
players (i, j) get overpaid by core allocations if and only if they are so incompetent, as a
team, that they don’t participate in any maximum weight matching! Since i and j are
incompetent as a team, wij is small. On the other hand, a least one of i and j does team up
with other agents in maximum weight matchings – if not, (i, j) would have been matched in
a maximum weight matching. Therefore, the sum of the profits of i and j exceeds wij in at
least one core imputation; this is shown in Theorem 15.

Our insight into degeneracy is that it treats teams and agents in totally different ways,
see Section 3.4. Section 2 discusses past approaches to degeneracy.

Whereas the core of the assignment game is always non-empty, that of the general graph
matching game can be empty. Deng et al. [5] showed that the core of this game is non-empty
if and only if the weights of maximum weight integral and fractional matchings concur. For
this reason, we have named such games as concurrent games. As stated above, their core
imputations are precisely the set of optimal solutions to the dual LP.

In the full paper [12], we study the three questions, raised above, for concurrent games as
well.

2 Related Works

An imputation in the core has to ensure that each of the exponentially many sub-coalitions
is “happy” – clearly, that is a lot of constraints. As a result, the core is non-empty only for
a handful of games, some of which are mentioned in the Introduction. A different kind of
game, in which preferences are cardinal, is based on the stable matching problem defined by
Gale and Shapley [7]. The only coalitions that matter in this game are ones formed by one
agent from each side of the bipartition. A stable matching ensures that no such coalition has
the incentive to secede and the set of such matchings constitute the core of this game.

FSTTCS 2022

28:4 New Characterizations of Core Imputations

Over the years, researchers have approached the phenomenon of degeneracy in the
assignment game from directions that are different from ours. Nunez and Rafels [10], studied
relationships between degeneracy and the dimension of the core. They defined an agent
to be active if her profit is not constant across the various imputations in the core, and
non-active otherwise. Clearly, this notion has much to do with the dimension of the core,
e.g., it is easy to see that if all agents are non-active, the core must be zero-dimensional.
They prove that if all agents are active, then the core is full dimensional if and only if the
game is non-degenerate. Furthermore, if there are exactly two optimal matchings, then the
core can have any dimension between 1 and m − 1, where m is the smaller of |U | and |V |;
clearly, m is an upper bound on the dimension.

In another work, Chambers and Echenique [3] study the following question: Given the
entire set of optimal matchings of a game on m = |U |, n = |V | agents, is there an m × n

surplus matrix which has this set of optimal matchings. They give necessary and sufficient
conditions for the existence of such a matrix.

3 The Core of the Assignment Game

In this section, we provide answers to the three questions, for assignment games, which were
raised in the Introduction.

3.1 Definitions and Preliminary Facts
The assignment game, G = (U, V, E), w : E → R+, has been defined in the Introduction.
We start by giving definitions needed to state the Shapley-Shubik Theorem.

▶ Definition 1. The set of all players, U ∪ V , is called the grand coalition. A subset of the
players, (Su ∪ Sv), with Su ⊆ U and Sv ⊆ V , is called a coalition or a sub-coalition.

▶ Definition 2. The worth of a coalition (Su ∪ Sv) is defined to be the maximum profit
that can be generated by teams within (Su ∪ Sv) and is denoted by p(Su ∪ Sv). Formally,
p(Su ∪ Sv) is the weight of a maximum weight matching in the graph G restricted to vertices
in (Su ∪ Sv) only. p(U ∪ V) is called the worth of the game. The characteristic function of
the game is defined to be p : 2U∪V → R+.

▶ Definition 3. An imputation2 gives a way of dividing the worth of the game, p(U ∪ V),
among the agents. It consists of two functions u : U → R+ and v : V → R+ such that∑

i∈U u(i) +
∑

j∈V v(j) = p(U ∪ V).

▶ Definition 4. An imputation (u, v) is said to be in the core of the assignment game if for
any coalition (Su ∪ Sv), the total worth allocated to agents in the coalition is at least as large
as the worth that they can generate by themselves, i.e.,

∑
i∈Su

u(i) +
∑

j∈Sv
v(j) ≥ p(S).

We next describe the characterization of the core of the assignment game given by Shapley
and Shubik [11]3.

2 Some authors prefer to call this a pre-imputation, while using the term imputation when individual
rationality is also satisfied.

3 Shapley and Shubik had described this game in the context of the housing market in which agents are
of two types, buyers and sellers. They had shown that each imputation in the core of this game gives
rise to unique prices for all the houses. In this paper we will present the assignment game in a variant of

V. V. Vazirani 28:5

As stated in Definition 2, the worth of the game, G = (U, V, E), w : E → R+, is the
weight of a maximum weight matching in G. Linear program (1) gives the LP-relaxation of
the problem of finding such a matching. In this program, variable xij indicates the extent to
which edge (i, j) is picked in the solution. Matching theory tells us that this LP always has
an integral optimal solution [8]; the latter is a maximum weight matching in G.

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ 1 ∀i ∈ U,

∑
(i,j)∈E

xij ≤ 1 ∀j ∈ V,

xij ≥ 0 ∀(i, j) ∈ E

(1)

Taking ui and vj to be the dual variables for the first and second constraints of (1), we
obtain the dual LP:

min
∑
i∈U

ui +
∑
j∈V

vj

s.t. ui + vj ≥ wij ∀(i, j) ∈ E,

ui ≥ 0 ∀i ∈ U,

vj ≥ 0 ∀j ∈ V

(2)

▶ Theorem 5 (Shapley and Shubik [11]). The imputation (u, v) is in the core of the assignment
game if and only if it is an optimal solution to the dual LP, (2).

By Theorem 5, the core of the assignment game is a convex polyhedron. Shapley and
Shubik shed further light on the structure of the core by showing that it has two special
imputations which are furtherest apart and so can be thought of as antipodal imputations.
In the tennis club setup, one of these imputations maximizes the earnings of women players
and the other maximizes the earnings of men players.

Finally, we state a fundamental fact about LP (1); its corollary will be used in a crucial
way in Theorems 10 and 15.

▶ Theorem 6 (Birkhoff [1]). The vertices of the polytope defined by the constraints of LP (1)
are 0/1 vectors, i.e., they are matchings in G.

▶ Corollary 7. Any fractional matching in a bipartite graph is a convex combination of
integral matchings.

3.2 The first question: Allocations made to agents by core imputations
▶ Definition 8. A generic player in U ∪ V will be denoted by q. We will say that q is:
1. essential if q is matched in every maximum weight matching in G.
2. viable if there is a maximum weight matching M such that q is matched in M and another,

M ′ such that q is not matched in M ′.
3. subpar if for every maximum weight matching M in G, q is not matched in M .

the tennis setting given in the Introduction; this will obviate the need to define “prices”, hence leading
to simplicity.

FSTTCS 2022

28:6 New Characterizations of Core Imputations

▶ Definition 9. Let y be an imputation in the core. We will say that q gets paid in y if
yq > 0 and does not get paid otherwise. Furthermore, q is paid sometimes if there is at least
one imputation in the core under which q gets paid, and it is never paid if it is not paid
under every imputation.

▶ Theorem 10. For every player q ∈ (U ∪ V):

q is paid sometimes ⇐⇒ q is essential

Theorem 10 is equivalent to the following. For every player q ∈ (U ∪ V):

q is never paid ⇐⇒ q is not essential

Thus core imputations pay only essential players and each of them is paid in some core
imputation. Since we have assumed that the weight of each edge is positive, so is the worth
of the game, and all of it goes to essential players. Hence we get:

▶ Corollary 11. In the assignment game, the set of essential players is non-empty and in
every core imputation, the entire worth of the game is distributed among essential players;
moreover, each of them is paid in some core imputation.

▶ Remark 12. Theorem 5 and Corollary 11 are of much consequence.
1. Corollary 11 reveals the following surprising fact: the set of players who are allocated

profits in a core imputation is independent of the set of teams that play.
2. The identification of these players, and the exact manner in which the total profit is

divided among them, follows the negotiating process. In turn, this process identifies
agents who play in all possible maximum weight matchings.

3. Perhaps the most remarkable aspect of Theorem 5 is that each possible outcome of this
very real process is captured by an inanimate object, namely an optimal solution to the
dual, LP (2).

By Corollary 11, core imputations reward only essential players. This raises the following
question: Can’t a non-essential player, say q, team up with another player, say p, and secede,
by promising p almost all of the resulting profit? The answer is “No”, because the dual (2)
has the constraint yq + yp ≥ wqp. Therefore, if yq = 0, yp ≥ wqp, i.e., p will not gain by
seceding together with q.

3.3 The second question: Allocations made to teams by core
imputations

▶ Definition 13. By a mixed doubles team we mean an edge in G; a generic one will be
denoted as e = (u, v). We will say that e is:
1. essential if e is matched in every maximum weight matching in G.
2. viable if there is a maximum weight matching M such that e ∈ M , and another, M ′ such

that e /∈ M ′.
3. subpar if for every maximum weight matching M in G, e /∈ M .

▶ Definition 14. Let y be an imputation in the core of the game. We will say that e is fairly
paid in y if yu + yv = we and it is overpaid if yu + yv > we

4. Finally, we will say that e is
always paid fairly if it is fairly paid in every imputation in the core.

4 Observe that by the first constraint of the dual LP (2), these are the only possibilities.

V. V. Vazirani 28:7

▶ Theorem 15. For every team e ∈ E:

e is always paid fairly ⇐⇒ e is viable or essential

Negating both sides of the implication proved in Theorem 15, we get the following
implication. For every team e ∈ E:

e is subpar ⇐⇒ e is sometimes overpaid

Clearly, this statement is equivalent to the statement proved Theorem 15 and hence
contains no new information. However, it provides a new viewpoint. These two equivalent
statements yield the following assertion, which at first sight seems incongruous with what we
desire from the notion of the core and the just manner in which it allocates profits:

Whereas viable and essential teams are always paid fairly, subpar teams are sometimes
overpaid.

How can the core favor subpar teams over viable and essential teams? An explanation
is provided in the Introduction, namely a subpar team (i, j) gets overpaid because i and j

create worth by playing in competent teams with other players.
Finally, we observe that contrary to Corollary 11, which says that the set of essential

players is non-empty, the set of essential teams may be empty.

3.4 The third question: Degeneracy
Next we use Theorems 10 and 15 to get insights into degeneracy. Clearly, if an assignment
game is non-degenerate, then every team and every player is either always matched or always
unmatched in the set of maximum weight matchings in G, i.e., there are no viable teams
or players. Since viable teams and players arise due to degeneracy, in order to understand
the phenomenon of degeneracy, we need to understand how viable teams and players behave
with respect to core imputations; this is done in the next corollary.

▶ Corollary 16. In the presence of degeneracy, imputations in the core of an assignment
game treat:

viable players in the same way as subpar players, namely they are never paid.
viable teams in the same way as essential teams, namely they are always fairly paid.

4 The Core of Bipartite b-Matching Games

In this section, we will define two versions of the bipartite b-matching game and we will study
their core imputations; both versions generalize the assignment game.

4.1 Definitions and Preliminary Facts
As in the assignment game, let G = (U, V, E), w : E → R+ be the underlying bipartite graph
and edge-weight function. Let function b : U ∪ V → Z+ give a bound on the number of times
a vertex can be matched. Under the unconstrained bipartite b-matching game, each edge
can be matched multiple number of times and under the constrained bipartite b-matching
game, each edge can be matched at most once. Observe that even in the first version, limits
imposed by b on vertices will impose limits on edges – thus edge (i, j) can be matched at
most min{bi, bj} times.

FSTTCS 2022

28:8 New Characterizations of Core Imputations

The worth of a coalition (Su ∪ Sv), with Su ⊆ U, Sv ⊆ V , is the weight of a maximum
weight b-matching in the graph G restricted to vertices in (Su ∪ Sv) only; we will denote this
by p(Su ∪ Sv). Whether an edge can be matched at most once or more than once depends
on the version of the problem we are dealing with. p(U ∪ V) is called the worth of the game.
The characteristic function of the game is defined to be p : 2U∪V → R+. Definitions 3 and 4,
defining an imputation and the core, carry over unchanged from the assignment game.

The tennis setting, given in the Introduction, provides a vivid description of these two
variants of the b-matching game as well. Let K denote the maximum b-value of a vertex and
assume that the tennis club needs to enter mixed doubles teams into K tennis tournaments.
In the first variant, a team can play in multiple tournaments and in the second version, a
team can play in at most one tournament. In both cases, a player i can play in at most bi

tournaments. The goal of the tennis club is to maximize its profit over all the tournaments
and hence picks a maximum weight b-matching in G. An imputation in the core gives a way
of distributing the profit in such a way that no sub-coalition has an incentive to secede.

Linear program (3) gives the LP-relaxation of the problem of finding a maximum weight
b-matching for the unconstrained version. In this program, variable xij indicates the extent
to which edge (i, j) is picked in the solution; observe that there is no upper bound on the
variables xij since an edge can be matched any number of times.

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ bi ∀i ∈ U,

∑
(i,j)∈E

xij ≤ bj ∀j ∈ V,

xij ≥ 0 ∀(i, j) ∈ E

(3)

Taking ui and vj to be the dual variables for the first and second constraints of (3), we
obtain the dual LP:

min
∑
i∈U

biui +
∑
j∈V

bjvj

s.t. ui + vj ≥ wij ∀(i, j) ∈ E,

ui ≥ 0 ∀i ∈ U,

vj ≥ 0 ∀j ∈ V

(4)

Linear program (5) gives the LP-relaxation of the problem of finding a maximum weight
b-matching for the constrained version. Observe that in this program, variables xij are upper
bounded by 1, since an edge can be matched at most once.

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ bi ∀i ∈ U,

∑
(i,j)∈E

xij ≤ bj ∀j ∈ V,

xij ≤ 1 ∀(i, j) ∈ E,

xij ≥ 0 ∀(i, j) ∈ E

(5)

V. V. Vazirani 28:9

▶ Remark 17. In both in LPs (3) and (5), the matrices of coefficients of the constraints are
totally unimodular [8], and therefore both LPs always have integral optimal solutions.

Taking ui, vj and zij to be the dual variables for the first, second and third constraints
of (5), we obtain the dual LP:

min
∑
i∈U

biui +
∑
j∈V

bjvj +
∑

(i,j)∈E

zij

s.t. ui + vj + zij ≥ wij ∀(i, j) ∈ E,

ui ≥ 0 ∀i ∈ U,

vj ≥ 0 ∀j ∈ V,

zij ≥ 0 ∀(i, j) ∈ E

(6)

4.1.1 The Framework of Deng et al. [5]
In this section, we present the framework of Deng et al. [5], which was mentioned in the
Introduction, and point out why it does not apply to the two versions of the b-matching game.
Let T = {1, · · · , n} be the set of n agents of the game. Let w ∈ Rm

+ be an m-dimensional
non-negative real vector specifying the weights of certain objects; in the assignment game,
the objects are edges of the underlying graph. Let A be an n × m matrix with 0/1 entries
whose ith row corresponds to agent i ∈ T . Let x be an m-dimensional vector of variables
and ⊮ be the n-dimensional vector of all 1s. Assume that the worth of the game is given by
the objective function value of following integer program.

max w · x

s.t. Ax ≤ ⊮,

x ∈ {0, 1}

(7)

Moreover, for a sub-coalition, T ′ ⊆ T assume that its worth is given by the integer
program obtained by replacing A by A′ in (7), where A′ picks the set of rows corresponding
to agents in T ′. The LP-relaxation of (7) is:

max w · x

s.t. Ax ≤ ⊮,

x ≥ 0

(8)

Deng et al. proved that if LP (8) always has an integral optimal solution, then the set of
core imputations of this game is exactly the set of optimal solutions to the dual of LP (8).

As stated in Remark 17, the matrices of coefficients of both LPs (3) and (5) are totally
unimodular and therefore these LPs always have integral optimal solutions. However, they
still don’t fall in the above-stated framework because their right-hand-sides are b values of
the vertices and not ⊮.

4.2 The Core of the Unconstrained Bipartite b-Matching Game
Let I denote an instance of this game and let C(I) denote its set of core imputations. We
will show in Theorem 18 that corresponding to every optimal solution to the dual LP (4),
there is an imputation in C(I). Let D(I) denote the set of all such core imputations. Since
D(I) ̸= ∅, we get Corollary 19 stating that the core of this game is non-empty. Next, we
will give an instance I such that D(I) ⊂ C(I), i.e., unlike the assignment game, I has core
imputations that don’t correspond to optimal solutions to the dual LP.

FSTTCS 2022

28:10 New Characterizations of Core Imputations

The correspondence between optimal solutions to the dual LP (4) and core imputations
in D(I) is as follows. Given an optimal solution (u, v), define the profit allocation to i ∈ U

to be αi = bi · ui and that to j ∈ V to be βj = bj · vj .

▶ Theorem 18. The profit-sharing method (α, β), which corresponds to an optimal solution
(u, v) to the dual LP (4), is an imputation in the core of the unconstrained bipartite b-matching
game.

▶ Corollary 19. The core of the unconstrained bipartite b-matching game is always non-empty.

▶ Remark 20. Observe that the mapping given from optimal solutions to the dual LP (4) to
core imputations in D(I) is a bijection.

Figure 1 The graph for Example 21.

▶ Example 21. For the bipartite b-matching game defined by the graph of Figure 1,
let the b values be 2, 1, 2, 1 for u1, u2, v1, v2, and let the edge weights be 1, 3, 1 for
(u1, v1), (u1, v2), (u2, v2).

In this section, we will view the game defined in Example 21 as an unconstrained bipartite
b-matching game and will show that it has a set of core imputations which do not correspond
to optimal dual solutions, i.e., they lie in C(I) − D(I). The optimal matching picks edges
(u1, v1), (u1, v2) once each, for a total profit of 4. The unique optimal dual solution is 1, 0, 0, 2
for u1, u2, v1, v2, and the corresponding core imputation is 2, 0, 0, 2.

Let α1, α2, β1, β2 be the profits allocated to u1, u2, v1, v2. The solutions of the system
of linear inequalities (9), for non-negative values of the variables, capture all possible core
imputations, i.e., the set C(I).

α1 + β1 ≥ 2
α1 + β2 ≥ 3

α1 + β1 + β2 ≥ 4
α2 + β2 ≥ 1

α1 + α2 + β2 ≥ 3
α1 + α2 + β1 + β2 = 4

(9)

V. V. Vazirani 28:11

On solving this system, we find that α1, α2, β1, β2 should be 1 + a, 0 b, 1 + c, where a, b, c

are non-negative and satisfy the system (10).

a + b ≥ 1
a + c ≥ 1

a + b + c = 2
(10)

A fourth constraint, b ≤ 1 follows from the last two in this system. The solution
a = 1, b = 0, c = 1 gives the core imputation corresponding to the unique optimal dual
solution; the rest give the remaining core imputations, e.g., the imputation 3, 0, 0, 1.

For an arbitrary instance I, one can clearly capture all possible core imputations via an
exponential sized system of inequalities of the type ≥, one corresponding to each coalition
(Su ∪ Sv); its r.h.s. will be p(Su ∪ Sv) and its l.h.s. will be the sum of all variables denoting
profits accrued to vertices in this coalition. Note that all the variables of this system will be
constrained to be non-negative and it will have one equality corresponding to the worth of
the grand coalition; the latter is the last equality in system (9).

The following question arises: is there a smaller system which accomplishes this task?
We observe that it suffices to include in the system only those coalitions whose induced
subgraph is connected. This is so because if the induced subgraph for coalition (Su ∪ Sv)
has two or more connected components, then the sum of the inequalities for the connected
components yields the inequality for coalition (Su ∪ Sv). In particular, if the underlying
graph of instance I is sparse, this may lead to a much smaller system. Observe that the
system (9), for Example 21, follows from this idea.
▶ Remark 22. Since for the unconstrained bipartite b-matching game, the optimal dual
solutions don’t capture all core imputations, the characterizations established in Theorems
10 and 15 for the assignment game, don’t carry over. However, if one restricts to core
imputations in the set D(I) only, one can see that suitable modifications of these statements
do hold.

5 The Core of the Constrained Bipartite b-Matching Game

Our results for this game are related to, though not identical with, those for the unconstrained
version. In Theorem 23, we will show that corresponding to every optimal solution to the
dual LP (6), there is a set of core imputations. This theorem yields Corollary 24 stating that
the core of this game is also non-empty. Finally, we will give an instance which has core
imputations that don’t correspond to optimal solutions to the dual LP.

The corresponding to an optimal solution to the dual LP (4), (u, v, z), we define a set
of imputations as follows. For each edge (i, j) define two new variables cij and dij ; both
are constrained to be non-negative. Furthermore, consider all possible ways of splitting zij

into cij and dij , i.e., zij = cij + dij . Observe that is xij = 0 then zij = 0 and therefore
cij = dij = 0. Define the profit allocation to i ∈ U to be

αi = bi · ui +
∑

(i,j)∈E

cij

and that to j ∈ V to be

βj = bj · vj + dij +
∑

(i,j)∈E

dij .

Taken over all possible ways of splitting all zijs, this gives a set of imputations.

FSTTCS 2022

28:12 New Characterizations of Core Imputations

▶ Theorem 23. All profit-sharing methods (α, β), which correspond to the optimal solution
(u, v, z) to the dual LP (6), are imputations in the core of the constrained bipartite b-matching
game.

▶ Corollary 24. The core of the constrained bipartite b-matching game is always non-empty.

In this section, we will view the game defined in Example 21 as a constrained bipartite
b-matching game and will again show that it has a set of core imputations which do not
correspond to optimal dual solutions. The optimal matching picks edges (u1, v1), (u1, v2)
once each, for a total profit of 4. Unlike the unconstrained case, this time, the optimal dual
is not unique. The optimal dual solutions are given by 1, 0, 0, 2 − a, for vertices u1, u2, v1, v2,
and 0, a, 0 for edges (u1, v1), (u1, v2), (u2, v2), where a ∈ [0, 1]. The corresponding core
imputations are 3 − b, 0, 0, 1 + b, for the four vertices u1, u2, v1, v2, where b ∈ [0, 1].

As in the unconstrained case, let α1, α2, β1, β2 be the profits allocated to u1, u2, v1, v2. This
time, the system of linear inequalities whose solutions capture all possible core imputations
is given by system (9) after replacing the first inequality by

α1 + β1 ≥ 1.

This is so because edge (u1, v1) can be matched twice under the the unconstrained bipartite
b-matching game, but only once under the constrained version. As before, non-negativity is
imposed on all these variables. On solving this system, we find that α1, α2, β1, β2 should be
1, 0 b, 1 + c, where a, b, c are non-negative and satisfy the system (11).

a + b ≥ 1
a + c ≥ 2

a + b + c = 3
(11)

Solutions of this system which do not correspond to dual solutions include 1, 0, 0, 3 and
0, 0, 1, 3. Observe that neither of these is a core imputation for the unconstrained bipartite
b-matching game. The method given in Section 4.2, for finding a smaller system, holds for
this case as well and so does Remark 22.

▶ Remark 25. In the assignment game, core imputations were precisely optimal dual solutions.
On the other hand, in both versions of the bipartite b-matching game, core imputations
are obtained from optimal dual solutions via specific operations. As stated in Remark
20, for the unconstrained version, there is a bijection between optimal dual solutions and
core imputations in D(I). In contrast, for the constrained version, the set of imputations
corresponding to optimal dual solutions may not be disjoint.

Let us illustrate the last point of Remark 25 via Example 21. Consider the two optimal
dual solutions obtained by setting a = 0 and a = 1, namely 1, 0, 0, 2, for vertices u1, u2, v1, v2,
and 0, 0, 0 for edges (u1, v1), (u1, v2), (u2, v2); and 1, 0, 0, 1, for vertices u1, u2, v1, v2, and
0, 1, 0 for edges (u1, v1), (u1, v2), (u2, v2). Both these optimal duals yield the core imputation
assigning profits of 2, 0, 0, 2 for u1, u2, v1, v2.

6 Discussion

Our most important open question is to shed light on the origins of core imputations, for
the two bipartite b-matching games, which do not correspond to optimal dual solutions. Is
there a “mathematical structure” that produces them? A related question is to determine

V. V. Vazirani 28:13

the complexity of the following question for these two games: Given an imputation for a
game, decide if it belongs to the core. We believe this question should be co-NP-complete.
On the other hand, the following question is clearly in P: Given an imputation for a game I,
decide if it lies in D(I).

As stated in Section 3.1, for the assignment game, Shapley and Shubik were able to
characterize “antipodal” points in the core. An analogous understanding of the core of the
general graph matching games having non-empty core will be desirable.

For the assignment game, Demange, Gale and Sotomayor [4] give an auction-based
procedure to obtain a core imputation; it turns out to be optimal for the side that proposes,
as was the case for the deferred acceptance algorithm of Gale and Shapley [7] for stable
matching. Is there an analogous procedure for obtaining an imputation in the core of the
general graph matching games having non-empty core?

References
1 Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A,

5:147–151, 1946.
2 Péter Biró, Walter Kern, and Daniël Paulusma. Computing solutions for matching games.

International journal of game theory, 41(1):75–90, 2012.
3 Christopher P Chambers and Federico Echenique. The core matchings of markets with

transfers. American Economic Journal: Microeconomics, 7(1):144–64, 2015.
4 Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal of

political economy, 94(4):863–872, 1986.
5 Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Algorithmic aspects of the core of

combinatorial optimization games. Mathematics of Operations Research, 24(3):751–766, 1999.
6 Kimmo Eriksson and Johan Karlander. Stable outcomes of the roommate game with transfer-

able utility. International Journal of Game Theory, 29(4):555–569, 2001.
7 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15, 1962.
8 L. Lovász and M.D. Plummer. Matching Theory. North-Holland, Amsterdam–New York, 1986.
9 Hervé Moulin. Cooperative microeconomics: a game-theoretic introduction, volume 313.

Princeton University Press, 2014.
10 Marina Núñez and Carles Rafels. On the dimension of the core of the assignment game. Games

and Economic Behavior, 64(1):290–302, 2008.
11 Lloyd S Shapley and Martin Shubik. The assignment game I: The core. International Journal

of Game Theory, 1(1):111–130, 1971.
12 Vijay V Vazirani. New characterizations of core imputations of matching and b-matching

games. arXiv preprint, 2022. arXiv:2202.00619.

FSTTCS 2022

http://arxiv.org/abs/2202.00619

Algorithms and Hardness Results for Computing
Cores of Markov Chains
Ali Ahmadi !

Hong Kong University of Science and Technology (HKUST), China

Krishnendu Chatterjee !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Amir Kafshdar Goharshady !

Hong Kong University of Science and Technology (HKUST), China

Tobias Meggendorfer !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Roodabeh Safavi !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Hong Kong University of Science and Technology (HKUST), China

Ðorđe Žikelić !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
Given a Markov chain M = (V, v0, δ), with state space V and a starting state v0, and a probability
threshold ϵ, an ϵ-core is a subset C of states that is left with probability at most ϵ. More formally,
C ⊆ V is an ϵ-core, iff P

[
reach (V \C)

]
≤ ϵ. Cores have been applied in a wide variety of verification

problems over Markov chains, Markov decision processes, and probabilistic programs, as a means of
discarding uninteresting and low-probability parts of a probabilistic system and instead being able
to focus on the states that are likely to be encountered in a real-world run. In this work, we focus
on the problem of computing a minimal ϵ-core in a Markov chain. Our contributions include both
negative and positive results: (i) We show that the decision problem on the existence of an ϵ-core
of a given size is NP-complete. This solves an open problem posed in [26]. We additionally show
that the problem remains NP-complete even when limited to acyclic Markov chains with bounded
maximal vertex degree; (ii) We provide a polynomial time algorithm for computing a minimal ϵ-core
on Markov chains over control-flow graphs of structured programs. A straightforward combination
of our algorithm with standard branch prediction techniques allows one to apply the idea of cores to
find a subset of program lines that are left with low probability and then focus any desired static
analysis on this core subset.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Graph algorithms analysis

Keywords and phrases Markov Chains, Cores, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.29

Funding The research was partially supported by the Hong Kong Research Grants Council ECS
Project No. 26208122, ERC CoG 863818 (FoRM-SMArt), the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385, HKUST–
Kaisa Joint Research Institute Project Grant HKJRI3A-055 and HKUST Startup Grant R9272. Ali
Ahmadi and Roodabeh Safavi were interns at HKUST. Author names appear in alphabetical order.

© Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer,
Roodabeh Safavi, and Ðorđe Žikelić;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.ahmadi.star27@gmail.com
https://orcid.org/0000-0002-5074-5014
mailto:krishnendu.chatterjee@ist.ac.at
https://orcid.org/0000-0002-4561-241X
mailto:goharshady@cse.ust.hk
https://orcid.org/0000-0003-1702-6584
mailto:tobias.meggendorfer@ist.ac.at
https://orcid.org/0000-0002-1712-2165
mailto:roodabehsafavi@gmail.com
https://orcid.org/0000-0003-4516-4212
mailto:djordje.zikelic@ist.ac.at
https://orcid.org/0000-0002-4681-1699
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Algorithms and Hardness Results for Computing Cores of Markov Chains

1 Introduction

Markov Chains. Discrete-time Markov chains (MCs) are arguably the most classical and
standard mathematical formalism for modelling randomness in discrete-time probabilistic
systems [19]. In a nutshell, Markov chains comprise a set of states and a transition function,
assigning to each state a distribution over successors. The system evolves by repeatedly
drawing a successor state from the transition distribution of the current state. This can,
for example, model communication over a lossy channel, a queuing network, or populations
of predator and prey which grow and interact randomly. Indeed, Markov chains are an
important tool in many areas, such as computer science [4], biology [30], epidemiology [21],
and chemistry [20], to name a few. As such, analyzing MCs is an important question, and a
central component of many modern model checkers, such as Prism [27] and Storm [17].

Markov Chains over Control-flow Graphs. An interesting family of MCs in verification
are those that are defined over the control-flow graph (CFG) of a program [1], i.e. MCs in
which the underlying graph, ignoring the probabilities, is a CFG. Such MCs can serve as
formal semantics for simple probabilistic programs. They also appear naturally as a result of
applying (statistical) branch prediction to a non-probabilistic program [33].

Markov Decision Processes. Extending MCs with non-determinism leads to the standard
notion of Markov decision processes (MDPs) [31], which is the most common formalism for
systems that exhibit both probabilistic and non-deterministic behavior. The non-determinism
can model a wide variety of real-world phenomena such as the behavior of a controller, an
unknown set of inputs, or simply abstractions made to ease the verification of the underlying
system. Analysis of MDPs is a central topic in formal verification and model checking, see
e.g. [2, 3, 4, 6, 10, 26].

Probabilistic Programs. Extending classical programs with the ability of generating random
numbers by sampling from pre-defined distributions leads to the framework of probabil-
istic programs. Such programs have a wide variety of use-cases including in randomized
algorithms [18, 29], stochastic network protocols [34], blockchain protocols and smart con-
tracts [11, 13, 14], and robotics [23, 25]. Hence, they have been widely studied by the
programming languages and verification communities [5, 24, 28, 7, 8, 22, 35, 15]. Probab-
ilistic programs often have variables that can take integer or real values and their formal
semantics are usually defined by an infinite-state MC, in absence of non-determinism, or an
infinite-state MDP, in its presence [7, 36, 9].

Cores. Fixing a probability threshold ϵ ∈ (0, 1), an ϵ-core of a probabilistic system is a set
of states that is left by a random run of the system with probability at most ϵ. Intuitively,
when analyzing a large probabilistic system, one is interested in finding a core that is left
with very low probability and then ignore the set of states that are outside this core, since it
is unlikely that a real-world run of the system visits them. If the core happens to be much
smaller than the original system, this simple idea can lead to huge improvements in the
runtime of formal analyses. For example, suppose that we have applied branch prediction to
a huge program and hence have probabilities associated to every transition in its CFG. By

A. Ahmadi et al. 29:3

finding a small core, we can focus any static analysis on a set of lines of the program that
actually matter, i.e. a set of lines that is left with low probability, and ignore the lines that
are rarely or never encountered.

The concept of cores was introduced in [26] for the quantitative analysis of MCs and
MDPs. Considering classical objectives such as mean-payoff, discounted sums of rewards, and
hitting probabilities, [26] provided a partial-exploration framework that efficiently finds cores
in large MDPs and then uses them to obtain not only a faster analysis, but also rigorous
error bounds. An equivalent notion, called stochastic invariants, was introduced in [16] in
the context of probabilistic programs and used in [12] to obtain quantitative bounds on their
probability of termination.

Hardness of Computing a Core. Based on the discussion above, it is natural to aim for
algorithms that find the smallest possible core in a probabilistic system, be it an MC, an MDP
or a probabilistic program. In the case of probabilistic programs, any non-trivial formalization
of this problem is undecidable as a direct result of the well-known Rice’s theorem [32]. In the
case of finite-state MDPs, given a threshold ϵ ∈ (0, 1) and an integer k, deciding whether the
MDP has an ϵ-core of size k is an NP-complete problem [26]. However, the same problem was
open when it comes to MCs [26], with neither efficient PTIME algorithms nor NP-hardness
results provided so far.

Our Contribution. In this work, we consider the problem of finding an optimal ϵ-core in
a finite-state discrete-time Markov chain and its decision variant, i.e. deciding whether an
ϵ-core of size k exists. We obtain both hardness results and efficient algorithms:

In Section 3, we prove that the decision problem is NP-complete. This settles the
complexity for MCs and answers the open problem posed in [26]. We also show that the
problem remains NP-hard even when limited to acyclic MCs with bounded degree.
We then focus on positive results and provide a PTIME algorithm in Section 4 that is
applicable to MCs over control-flow graphs.

In summary, our results show that computing cores in MCs is NP-hard in general and even
over the very limited family of acyclic MCs with bounded degrees. Hence, in practice, cores
should be computed using partial-exploration algorithms, as in [26], or other heuristics with
no theoretical guarantees. However, in certain important use-cases, such as MCs over CFGs,
we can compute an optimal core in PTIME. Notably, this is applicable to the problem of
finding the core lines of a program given branch prediction data.

2 Preliminaries

We start by recalling the definitions of Markov chains and cores and fixing the notation that
is used throughout this work.

Discrete Probability Distributions. Given a finite set X, a probability distribution over X

is a function δ : X → [0, 1] which satisfies the condition
∑

x∈X δ(x) = 1. We use D(X) to
denote the set of all probability distributions over X.

FSTTCS 2022

29:4 Algorithms and Hardness Results for Computing Cores of Markov Chains

Markov Chains (MCs). A finite state Markov chain M = (V, v0, δ) is an ordered triple
consisting of a finite set of states/vertices V , a designated initial state v0 ∈ V and a
probabilistic transition function δ : V → D(V), which, to each state in V assigns a probability
distribution over its successor states. We define the set of edges of M as

E = {(v, v′) ∈ V × V | δ(v)(v′) > 0}.

Paths in Markov Chains. An infinite path in a Markov chain M = (V, v0, δ) is an infinite
sequence of states ρ = (v0, v1, v2, . . .) such that δ(vi)(vi+1) > 0 holds for each i ∈ N. Note
that we require each infinite path to start in the initial state v0 of the chain.

A Markov chain M admits a probability measure PM over the set of all infinite paths
in the Markov chain [31]. For each measurable set O ⊆ V ω of infinite paths in M , we use
PM [O] to denote the probability of a random infinite path in the Markov chain being an
element of the set O. In particular, if T ⊆ V is a set of states, we use reach T to denote
the set of all infinite paths in the Markov chain that visit at least one state in T , and use
PM [reach T] to denote the probability of a random infinite path in the Markov chain reaching
a vertex in T . When the Markov chain is clear from the context, we abbreviate the notation
to P, P[O] and P[reach T].

Cores in Markov Chains. We now define the concept of cores in Markov chains which are
the central object of study in this work. The notion of a core was originally defined in [26].
Given a probability threshold ϵ ∈ [0, 1], an ϵ-core in a Markov chain M = (V, v0, δ) is a set of
states C ⊆ V such that a random infinite path in the Markov chain exits C with probability
at most ϵ. More formally,

P
[
reach (V \C)

]
≤ ϵ.

For a natural number k ∈ N, we say that C ⊆ V is an (ϵ, k)-core if it is an ϵ-core of size at
most k, i.e. |C| ≤ k.

While the main negative result of this work is a proof of NP-completeness of the decision
problem on whether a Markov chain contains an ϵ-core of at most a given size for ϵ ∈ (0, 1),
we also strengthen this result by showing that the problem remains NP-complete even on a
restricted class of Markov chains. We now formally define these restrictions.

Acyclic Markov Chains with Bounded Degree. A Markov chain M = (V, v0, δ) naturally
induces a directed graph GM = (V, E), where the vertex and the edge sets of the graph are
defined by the set of states and the set of edges of the Markov chain. A Markov chain M

is said to be acyclic if its induced graph GM is acyclic, with the exception of a self-loop
at one vertex. Note that the graph GV cannot be completely acyclic, since it is a finite,
directed graph and every state in a Markov chain must have at least one successor state for
the probabilities of its outgoing edges to sum up to 1. Thus, a Markov chain must contain a
proper cycle or a probability 1 self-loop. Therefore, acyclic Markov chains can be viewed as
Markov chains whose induced graphs are “closest” to being acyclic, with the exception of a
single probability 1 self-loop.

For a vertex/state v ∈ V , we define its outdegree to be the number of edges whose source
vertex is v, i.e. out(v) = |{u ∈ V | (v, u) ∈ E}|. Similarly, the indegree of v is defined as the
number of edges whose target vertex is v, i.e. in(v) = |{u ∈ V | (u, v) ∈ E}|. Together, we

A. Ahmadi et al. 29:5

define the degree of a vertex v to be the total number of edges that are incident to v, i.e.
deg(v) = out(v) + in(v). Finally, the maximal vertex degree of a Markov chain M is defined
to be maximal degree of all its vertices, i.e. maxv∈V deg(v).

In this work, we consider Markov chains which are both acyclic and have their maximal
degree bounded by a constant.

3 Hardness Results

In this section, we show that the problem of computing the size of a minimal ϵ-core in a
Markov chain is NP-hard for any non-trivial value of the probability threshold ϵ, i.e. any
ϵ that is not equal to 0 or 1. Formally, given ϵ ∈ (0, 1), we prove in Theorem 1 that the
problem of deciding whether a Markov chain M contains an (ϵ, k)-core for a given Markov
chain M and a core size k is NP-complete. This implies that the problem of deciding whether
a Markov chain contains an ϵ-core of size exactly k is also NP-complete, since one may
always enlarge an (ϵ, k)-core in order to obtain an ϵ-core that contains exactly k states and
so the two problems are immediately reducible to each other.

In [26], the authors proved NP-completeness of the problem for MDPs. However, it was
hitherto not known whether computing cores of given size could be made more efficient in the
case of Markov chains. This was left as an open problem in [26, Remark 3.7]. Our Theorem 1
solves the open problem of [26] and answers the posed question negatively. We conclude this
section with Theorem 8, which shows that the problem of deciding the existence of a core
of at most given size remains NP-complete even if we restrict it to acyclic Markov chains
whose maximal vertex degree is at most 3.

▶ Theorem 1 (Hardness of Finding a Core in an MC). For an ϵ ∈ (0, 1), let Coreϵ be the
language defined as{

(M, k) | M is a Markov chain that contains an (ϵ, k)-core
}

.

Then, Coreϵ is NP-complete for any ϵ ∈ (0, 1).

Proof. To prove that Coreϵ is contained in NP, note that the probability of reaching a
given set of states in a Markov chain can be computed in polynomial time by reduction to a
system of linear equations [4]. Hence, an (ϵ, k)-core can serve as its own witness of linear
size. Thus, Coreϵ is in NP.

To prove that Coreϵ is NP-hard, we show a reduction from the Vertex-Coverproblem
which is a classical example of an NP-complete problem. Recall that, given an undirected
graph G = (V, E) and k ∈ N, the Vertex-Coverproblem is concerned with deciding if
there exists a set of vertices K ⊆ V of size k such that each edge in E is incident to at least
one vertex in K.

Fix ϵ ∈ (0, 1) and consider an instance (G = (V, E), k) of the Vertex-Coverproblem
where n = |V | > 1

ϵ and n ≥ 4. In order to obtain our reduction, we construct an instance
(MG,k, kG,k) of the Coreϵ problem where the Markov chain MG,k and natural number kG,k

are both polynomial in the size of G and k and such that (G, k) ∈ Vertex-Coverif and
only if (MG,k, kG,k) ∈ Coreϵ.

In the sequel, we say that a sequence of vertices u1, . . . , us in a Markov chain (M, v, δ)
form a chain of length s, if δ(ui)(ui+1) = 1 for each 1 ≤ i ≤ s − 1.

FSTTCS 2022

29:6 Algorithms and Hardness Results for Computing Cores of Markov Chains

Figure 1 The figure depicts an example of a Markov chain VG,k constructed in the proof of
Theorem 1 for a graph G = (V, E) with V = {v1, v2, v3} and E = {(v1, v2), (v2, v3)}, and for an
arbitrary value of k. Let n = |V | = 3. The states of the Markov chain VG,k are visually ordered
in four layers. The first layer consists of the initial state vG,k and a chain of length n3 = 27. The
second layer consists of n = 3 chains, each of length 3 · n = 9. The third layer also consists of n = 3
chains, each of length 3 · n + 1 = 10. Finally, the fourth layer consists of a single state t. Edges
induced by the probabilistic transition function are indicated by directed lines between states. Chain
edges and all other edges of probability 1 are colored in black. Edges of probability p1 = 1

n3 are
colored in red, edges of probability p2 = 1

n10 in green and edges of probability p3 = 1
n50 in blue.

The edge of probability ϵ − ϵM from the initial state vG,k to the first state v1
1 of the chain in the

first layer is colored in purple. Finally, dotted edges depict the remaining edges to the state t in the
fourth layer, which are introduced in order to ensure the probabilities of outgoing edges from each
state sum up to 1.

Construction of kG,k. We set kG,k := 2 + 3 · n2 + k.

Construction of MG,k. Fix an enumeration V = {v1, . . . , vn} of vertices in G. We construct
the Markov chain MG,k = (VG,k, vG,k, δG,k) as follows: The state set VG,k consists of 4
disjoint subsets which we refer to as layers (see Figure 1 for a visualization of layers):

The first layer consists of the initial state vG,k of the Markov chain MG,k, as well as of
n3 states v1

1 , . . . , v1
n3 that form a chain of length n3.

The second layer consists of n chains where each chain has length 3 ·n. For each 1 ≤ i ≤ n

and 1 ≤ j ≤ 3 · n, we use v2
i,j to denote the j-th state along the i-th chain.

The third layer also consists of n chains where each chain has length 3 · n + 1. For each
1 ≤ i ≤ n and 1 ≤ j ≤ 3 · n + 1, we use v3

i,j to denote the j-th state along the i-th chain.
The fourth layer consists of a single state t.

A. Ahmadi et al. 29:7

In addition to transition probabilities defined by the chains specified above, the probabilistic
transition relation δG,k is defined as follows:

The last vertex in the chain in the first layer is connected to the vertex t in the fourth
layer by an edge of probability 1, i.e. δG,k(v1

n3)(t) = 1.
The initial state vG,k is connected to the first state of each chain in the second layer and
each chain in the third layer by an edge of probability p1 = 1

n3 , i.e. δG,k(vG,k)(v2
i,1) =

δG,k(vG,k)(v3
i,1) = 1

n3 for each 1 ≤ i ≤ n.
For each 1 ≤ i ≤ n, the last state in the i-th chain in the second layer is connected to the
first states of all but the i-th chain in the third layer by an edge of probability p2 = 1

n10 ,
i.e. δG,k(v2

i,3·n)(v3
j,1) = 1

n10 for each j ̸= i.
For each edge (vi, vj) in graph G with i < j, the last state of the i-th chain in the second
layer and the first state of the j-th chain in the third layer are connected by an edge of
probability p3 = 1

n50 , i.e. δG,k(v2
i,3·n)(v3

j,1) = 1
n50 .

The initial state vG,k is connected to the first state v1
1 of the chain of length n3 in the first

layer by an edge of probability ϵ − ϵM where ϵM = n · p1 + (n − k) · (n − k − 1) · p1 · p2, i.e.
δG,k(vG,k)(v1

1) = ϵ − ϵM . By our choices of p1 and p2, one can see that ϵM ≤ 2
n2 ≤ 1

n < ϵ

since we assume that n > 1
ϵ > 1.

Vertex t in the fourth layer has a probability 1 self-loop, i.e. δG,k(t)(t) = 1.
Finally, for each vertex for which the probabilities of outgoing edges do not sum up to 1,
we introduce an additional edge to t of the probability needed to make this sum equal to
1. This ensures that our construction of MG,k indeed yields a Markov chain.

MG,k contains n3 + 6 · n2 + n + 2 vertices and transition probabilities are of size polynomial
in n, hence the size of MG,k is polynomial in the size of G and k.

Correctness of reduction. To prove correctness of the reduction, it remains to show that
(G, k) ∈ Vertex-Coverif and only if (MG,k, kG,k) ∈ Coreϵ.

First, suppose that (G, k) ∈ Vertex-Coverand let K ⊆ V be a vertex cover of size k in
G. Then, letting

C = {vG,k, t} ∪ {v3
i,1, . . . , v2

i,3n+1 | vi ∈ K} ∪ {v2
i,1, . . . , v3

i,3n | vi ̸∈ K}

defines an (ϵ, kG,k)-core in MG,k. Indeed, we have that |C| = 2+k · (3 ·n+1)+(n−k) ·3 ·n =
2 + 3 · n2 + k = kG,k and due to our choice of ϵM one can verify by inspection that the
probability of leaving C in MG,k is exactly equal to ϵ.

Second, we prove that (MG,k, kG,k) ∈ Coreϵ implies (G, k) ∈ Vertex-Coverby making
a series of observations which will together imply the claim. Define a Markov chain M̄G,k from
MG,k by removing the chain v1

1 , . . . , v1
n3 from the first layer and increasing the probability of

the transition from the initial state vG,k to the state t in the fourth layer by ϵ − ϵM .

▶ Observation 2. MG,k contains an (ϵ, kG,k)-core if and only if M̄G,k contains an (ϵM , kG,k)-
core. Thus, it suffices to show that (M̄G,k, kG,k) ∈ CoreϵM

implies (G, k) ∈ Vertex-Cover.

To see this, note that n3 > kG,k = 2 + 3 · n2 + k as we assume that n ≥ 4 and k ≤ n.
Hence, no (ϵ, kG,k)-core in MG,k can contain the whole chain v1

1 , . . . , v1
n3 and the probability

of visiting a state in v1
1 , . . . , v1

n3 that is not contained in a (ϵ, kG,k)-core is always equal to
ϵ − ϵM . Hence, any (ϵ, kG,k)-core in MG,k can be modified into an (ϵ, kG,k)-core that contains

FSTTCS 2022

29:8 Algorithms and Hardness Results for Computing Cores of Markov Chains

no state in the chain v1
1 , . . . , v1

n3 by removing all states from the chain. The set of states
contained in this new core would give rise to an (ϵM , kG,k)-core in M̄G,k. Conversely, a set of
states that form an (ϵM , kG,k)-core in M̄G,k also form an (ϵ, kG,k)-core in MG,k. This proves
Observation 2.

▶ Observation 3. If C is an (ϵM , kG,k)-core in M̄G,k, then removing states of all chains in
the second and all chains in the third layer that are not entirely contained in C also gives
rise to an (ϵM , kG,k)-core.

To see this, observe that each edge between two successive states in a chain has probability
1, therefore if the whole chain is not contained in C then one may remove all states of that
chain from C without increasing the probability of a random infinite path in M̄G,k leaving
C. Hence, removal of such states from C gives rise to an (ϵM , kG,k)-core.

▶ Observation 4. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core that consists of the initial state vG,k, the state t and all states of exactly n chains.
Furthermore, at most k of these chains are contained in the third layer.

Consider an (ϵM , kG,k)-core in M̄G,k. The initial state vG,k is contained in the core as
otherwise the probability of leaving the core would be 1 > ϵM . Moreover, a random infinite
path in M̄G,k reaches t with probability 1 so as ϵM < 1 the state t must also be in the
core. Hence, there are at most kG,k − 2 = 3 · n2 + k remaining states in the core. Now,
by Observation 3, we may remove states of chains that are not fully contained in the
core to obtain an (ϵM , kG,k)-core whose remainder consists only of whole chains. Since
chains have length 3 · n or 3 · n + 1 and 3 · n · (n + 1) > 3 · n2 + k, the core must contain
states of at most n chains. On the other hand, a random infinite path in M̄G,k leaves the
core with probability at least p1 for every chain not fully contained in the core. So as
(n + 1) · p1 > n · p1 + (n − k) · (n − k − 1) · p1 · p2 = ϵM due to p2 = 1

n10 , we may conclude
that the core must contain all states from at least n chains as otherwise the probability of
leaving the core via an edge of probability p1 would be at least (n + 1) · p1. Thus, the core
must consist of vG,k, t and all states in exactly n chains. Finally, since the core is of size at
most kG,k = 3 · n2 + k + 2 and it must contain vG,k and t, we conclude that at most k of
these chains are from the third layer. This proves Observation 4.

▶ Observation 5. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core such that, for each 1 ≤ i ≤ n, the core contains either all states from the i-th chain in
the second layer or all states from the i-th chain in the third layer.

Let C be a set of states in M̄G,k that contains vG,k, t and all states of exactly n chains where
at most k chains are in the third layer. Observation 4implies that at least one core of such
form exists whenever M̄G,k contains an (ϵM , kG,k)-core. We show that, if C did not satisfy
the property in Observation 5, then the probability of leaving C would strictly exceed ϵM

and thus it would not be an (ϵM , kG,k)-core in M̄G,k. First, by our constructions of MG,k

and M̄G,k, for each chain in M̄G,k the probability of an edge from the initial state vG,k to
the first state in the chain is equal to p1. Hence, since we assume that C contains exactly n

chains and does not contain any states in the remaining n chains, the probability of leaving
the core in exactly one step is n · p1. On the other hand, for each 1 ≤ i ≤ n, the probability
of first entering the i-th chain in the second layer and then moving to a chain in the third
layer that is not contained in C is at least:

A. Ahmadi et al. 29:9

(n − k) · p1 · p2, if the i-th chain in the third layer is also contained in C;
(n − k − 1) · p1 · p2, otherwise.

This is because C contains at most k chains in the third layer, and the last state in the i-th
chain in the second layer is connected to the first states of all but the i-th chains in the third
layer by an edge of probability p2. Therefore, as C contains at least n−k chains in the second
layer, we conclude that the probability of leaving C is at least n·p1+(n−k)·(n−k−1)·p1 ·p2 =
ϵM , with the equality attained if and only if there is no 1 ≤ i ≤ n for which both the i-th
chain in the second layer and the i-th chain in the third layer are contained in C. Due to the
assumption that C contains all states of exactly n chains, it follows that for each 1 ≤ i ≤ n

the set C should contain either the i-th chain in the second layer or the i-th chain in the
third layer for the probability of leaving C not to exceed ϵM . This concludes the proof of
Observation 5.

▶ Observation 6. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core C for which there does not exist an edge in M̄G,k of probability p3 whose source state is
in C but target state is not in C.

Suppose that M̄G,k contains an (ϵM , kG,k)-core. Let C be an (ϵM , kG,k)-core in M̄G,k which
satisfies the properties in Observation 5. It follows from the proof of Observation 5that the
probability of a random infinite path in M̄G,k leaving C must be exactly ϵM and that this
probability is attained solely by taking edges of probabilities p1 and p2. Hence, there may
not exist an edge in M̄G,k of probability p3 whose source state is in C but target state is not
in C, which proves Observation 6.

▶ Observation 7. If M̄G,k contains an (ϵM , kG,k)-core then G has a vertex cover of size k.
Hence, from Observation 1 we may conclude that (MG,k, kG,k) ∈ Coreϵ implies (G, k) ∈
Vertex-Cover.

Let C be an (ϵM , kG,k)-core in M̄G,k that satisfies the properties in the previous observations.
We use it to construct a vertex cover of size at most k in G and therefore prove Observation 7.
Observations 4and 5imply that C must contain vG,k, t and all states of exactly n chains
of which at most k are in the third layer, such that for each 1 ≤ i ≤ n, C contains either
the i-th chain in the second layer or the i-th chain in the third layer. Furthermore, by
Observation 6there does not exist an edge in M̄G,k of probability p3 whose source state is in
C but target state is not in C. But, by our construction of MG,k and M̄G,k, recall that we
have an edge of probability p3 from the last state in the i-th chain in the second layer to the
first state of the j-th chain in the third layer if and only if i < j and (vi, vj) is an edge in
G. For this not to be an edge whose source state is contained in C but target state is not
contained in C, we must either have that the i-th chain in the second layer is not contained
in C and therefore the i-th chain in the third layer is contained in C, or that the i-th chain
in the second layer and the j-th chain in the third layer are both contained in C. Thus, for
each edge (vi, vj) in G with i < j, the core C should contain at least one of the i-th chain in
the third layer or the j-th chain in the third layer. Therefore, as a core must contain at most
k chains in the third layer, defining

K = {i ∈ {1, . . . , n} | C contains the i-th chain in the third layer}.

gives rise to a vertex cover of size at most k in G. This concludes the proof. ◀

FSTTCS 2022

29:10 Algorithms and Hardness Results for Computing Cores of Markov Chains

Theorem 1 shows that the problem of deciding whether a Markov chain contains an ϵ-core
of at most the given size k is NP-complete. Furthermore, Markov chains MG,k constructed
in the proof of Theorem 1 are acyclic. This is because edges in MG,k only connect states
from lower indexed layers to states in upper indexed layers, and the only cycle contained
within a layer is a probability 1 self-loop at the state t in the fourth layer.

In the following theorem, we show that the Coreϵ problem remains NP-complete even
if we restrict it to acyclic Markov chains that furthermore have maximal vertex degree of
at most 3. Hence, even parametrizing Markov chains by the maximal vertex degree would
not make the problem solvable in polynomial time, which indicates that the problem of
computing cores of at most a given size is computationally a very challenging problem. While
Theorem 8 generalizes the result of Theorem 1, the reason why we present them separately is
that the construction in the proof of Theorem 8 is more complicated than that in Theorem 1.
To that end, we only note that the proof of Theorem 8 modifies the construction of Theorem 1
in a way which bounds the maximal vertex degree of MG,k, and we defer the details of this
modification to Appendix A.

▶ Theorem 8 (Proof in Appendix A). For an ϵ ∈ (0, 1), let Core∗
ϵ be the language defined as{

(M, k) | M is an acyclic Markov chain of maximal

vertex degree ≤ 3 that contains an (ϵ, k)-core
}

.

Then, Core∗
ϵ is NP-complete for any ϵ ∈ (0, 1).

4 A PTIME Algorithm for Optimal Cores in MCs over CFGs

In this section, we provide a PTIME algorithm that, given a threshold ϵ ∈ (0, 1) and a
Markov chain M over the control-flow graph of a program P , outputs an optimal ϵ-core of
M, i.e. an ϵ-core of minimum possible size. As mentioned in Section 1, MCs over CFGs are
naturally obtained whenever (statistical) branch prediction is applied to a program. As such,
finding a core in such MCs can directly help find a set of lines in the program that covers the
vast majority of the runs and is left with very low probability. Any desired static analysis
can then be limited to the lines in the core, leading to rigorous probabilistic bounds for the
desired property. MCs over CFGs have also been studied in [1].

Before presenting our algorithm, in Section 4.1 we first formally present a grammar for
an imperative probabilistic programming language that can define both P and M at the
same time. We then present our PTIME algorithm in Section 4.2.

4.1 Markov Chains Induced by Probabilistic Programs
Syntax Grammar. We consider a fragment of finite state first-order imperative probabilistic
programs defined by the following grammar:

⟨prog⟩ = atomic
| if prob(p) ⟨prog⟩ else ⟨prog⟩
| while prob(p) do ⟨prog⟩
| ⟨prog⟩ ; ⟨prog⟩

(1)

A. Ahmadi et al. 29:11

In both the second and the third case, p ∈ (0, 1) is a probability parameter. The first
case considers trivial programs that execute a single statement and immediately terminate.
The second case considers probabilistic if-branching, where the control-flow follows the
if-branch and executes the first program with probability p, and it follows the else-branch and
executes the second program with probability 1 − p. The third case considers a construct for
probabilistic loops, where, in each iteration, the control-flow enters the loop and executes the
inner-nested program with probability p upon which it returns to the loop entry, and it leaves
the loop and terminates with probability 1 − p. Finally, the fourth case considers sequential
composition of two programs, where the second program is executed upon termination of the
first program.

In Markov chains induced by probabilistic programs, in addition to the initial state we
also assume the existence of a designated terminal state. Thus, for the rest of this section,
we slightly modify our definition of Markov chains in Section 2 and define them as tuples
M = (V, s, δ, t), where the last element t ∈ V denotes the terminal state.

MCs induced by Probabilistic Programs. We now formally define how a probabilistic pro-
gram generated by the above syntax grammar induces a Markov chain. Given a probabilistic
program P , consider its parse tree according to the grammar. In order to define the Markov
chain MP that is induced by P , we start by constructing a Markov chain associated to each
leaf node in the parse tree and traverse the parse tree bottom-up in order to construct Markov
chains associated to parent programs. The Markov chain MP associated to the probabilistic
program P is then defined to be the Markov chain associated to the root program in the
parse tree.

MCs for Leaves. The leaves of the parse tree are trivial atomic statements. A Markov
chain associated to an atomic statement is defined via Matomic = (Vatomic, s, δatomic, t), where

The state space consists of two states Vatomic = {s, t}, and
the probabilistic transition function is defined via δatomic(s)(t) = δatomic(t)(t) = 1.

Non-leaf nodes in the parse tree correspond to subprograms that are obtained either
by probabilistic if-branching, probabilistic loops or sequential composition constructs. We
consider each of the three cases and describe how a Markov chain associated to a parent
node program is constructed from Markov chains associated to the children node programs.

Branching Nodes. Suppose that a parent node program is given by

if prob(p) prog1 else prog2,

and let M1 = (V1, s1, δ1, t1) and M2 = (V2, s2, δ2, t2) be the Markov chains associated to
prog1 and prog2, respectively. To construct the Markov chain associated to the parent
node program, we introduce two new states s and t and consider M = (V, s, δ, t), where
V = {s, t} ∪ V1 ∪ V2 and δ : V → D(V) is defined via

δ(s)(s1) = p, δ(s)(s2) = 1 − p,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(v) = δ2(v) for each v ∈ V2\{t2},
δ(t1)(t) = δ(t2)(t) = 1, and
δ(t)(t) = 1.

FSTTCS 2022

29:12 Algorithms and Hardness Results for Computing Cores of Markov Chains

Intuitively, the Markov chain M has initial state s from which a random infinite path either
moves to the initial state s1 of M1 with probability p, or to the initial state s2 of M2 with
probability 1−p. Then, upon reaching terminal states t1 of M1 or t2 of M2, a random infinite
path moves to the terminal state t of M and stays there indefinitely due to the probability 1
self-loop.

Loop Nodes. Suppose that a parent node program is given by

while prob(p) do prog1 ,

and let M1 = (V1, s1, δ1, t1) be the Markov chains associated to prog1. To construct the
Markov chain associated to the parent node program, we introduce two new states s and t

and consider M = (V, s, δ, t), where V = {s, t} ∪ V1 and δ : V → D(V) is defined via
δ(s)(s1) = p, δ(s)(t) = 1 − p,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(t1)(s) = 1, and
δ(t)(t) = 1.

Intuitively, the Markov chain M has initial state s from which a random infinite path either
moves to the initial state s1 of M1 with probability p, or to the terminal state t of M with
probability 1 − p where it stays indefinitely due to the probability 1 self-loop. Then, upon
reaching terminal states t1 of M1, a random infinite path moves to the initial state s of M

with probability 1.

Sequential Composition Nodes. Finally, suppose that a parent node program is

prog1 ; prog2,

and let M1 = (V1, s1, δ1, t1) and M2 = (V2, s2, δ2, t2) be the Markov chains associated to
prog1 and prog2, respectively. To construct the Markov chain associated to the parent
node program, we introduce two new states s and t and consider M = (V, s, δ, t), where
V = {s, t} ∪ V1 ∪ V2 and δ : V → D(V) is defined via

δ(s)(s1) = 1, δ(t1)(s2) = 1, δ(t2)(t) = 1,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(v) = δ2(v) for each v ∈ V2\{t2}, and
δ(t)(t) = 1.

Intuitively, the Markov chain M has initial state s from which a random infinite path with
probability 1 moves to the initial state s1 of M1. Then, upon reaching the terminal state t1

of M1, it with probability 1 moves to the initial state s2 of M2. Finally, upon reaching the
terminal state t2 of M2, it with probability 1 moves to the terminal state t of M where it
stays indefinitely due to the probability 1 self-loop.

It is easy to see that the Markov chains obtained above are over the CFG of their
corresponding program and that, conversely, any MC over a CFG can be obtained by a
probabilistic program generated by our grammar.

A. Ahmadi et al. 29:13

4.2 PTIME Algorithm for Optimal Core Computation
We now present our polynomial time algorithm for computing the size of a smallest ϵ-core in
a Markov chain induced by a probabilistic program generated by the syntax grammar in
Equation (1). Given ϵ ∈ [0, 1] and a probabilistic program P that can be generated by the
grammar in Equation (1), our algorithm first constructs its parse tree TP . It then performs
dynamic programming on the parse tree. In particular, it traverses the parse tree bottom-up
and for each subprogram P ′ with associated Markov chain MP ′ it computes a sequence of
non-negative real numbers (aP ′ [0], aP ′ [1], . . . , aP ′ [|VP ′ |]), where |VP ′ | is the number of states
in MP ′ and

aP ′ [k] = min
{

ϵ′ ≥ 0 | MP ′ contains an (ϵ′, k)-core
}

for each 0 ≤ k ≤ |VP ′ |. In other words, the k-th entry in the sequence is the minimal
probability threshold ϵ′ ≥ 0 with which a set of k states in the Markov chain MP ′ may be left.
Then, once it has computed the sequence (aP [0], . . . , aP [|VP |]) for the root node program P ,
the algorithm can immediately conclude that the minimal size of an ϵ-core in P is

kmin = min
{

1 ≤ k ≤ |VP | | aP [k] ≤ ϵ
}

.

In what follows, we describe how our algorithm computes such a sequence for each program
in the parse tree TP of P . We then prove the correctness of our algorithm and that it runs
in polynomial time.

Dynamic Programming on the Parse Tree. The algorithm starts by computing the sequence
(aP ′ [0], aP ′ [1], . . . , aP ′ [|VP ′ |]) from each leaf node program P ′ in the parse tree, upon which
it traverses the parse tree bottom-up in order to compute the sequence for each node in the
tree. We now describe the dynamic programming steps for each construct type in the syntax
grammar:

Atomic statement at a leaf node. Recall that the Markov chain associated to an
atomic statement is defined via Matomic = (Vatomic, s, δatomic, t) with Vatomic = {s, t} and
δatomic(s)(t) = δatomic(t)(t) = 1. Hence, its state space consists of 2 states and its sequence
(aatomic[0], aatomic[1], aatomic[2]) is defined via

aatomic[k] =

1, k = 0, 1
0, k = 2

One can easily verify by inspection that each aatomic[k] is indeed the minimal probability
with which a set of k states in Matomic may be left.
Probabilistic if-branching node. Consider now the parse tree node that corresponds to the
probabilistic if-branching

prog = if prob(p) prog1 else prog2,

and let (aprog1 [0], . . . , aprog1 [|V1|]) and (aprog2 [0], . . . , aprog2 [|V2|]) be the sequences that
the algorithm has computed for the child node programs prog1 and prog2 in the parse
tree TP . The algorithm then sets

aprog[k] =

1, k = 0, 1
minj1,j2≥0,j1+j2=k−2

(
p · aprog1 [j1] + (1 − p) · aprog2 [j2]

)
, k ≥ 2

FSTTCS 2022

29:14 Algorithms and Hardness Results for Computing Cores of Markov Chains

To see that this formula indeed defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state and
the total of k − 2 states in the Markov chains Mprog1 of prog1 and Mprog2 of prog2. Thus,
if we denote by j1 and j2 the number of these k − 2 states that are contained in Mprog1

and Mprog2 , by the correctness of the algorithm for child node programs we conclude that
the above formula minimizes the probability with which a set of k states in the Markov
chain Mprog of prog may be left.
Probabilistic loop node. Next, consider the parse tree node that corresponds to the
probabilistic loop

prog = while prob(p) do prog1 ,

and let (aprog1 [0], . . . , aprog1 [|V1|]) be the sequence that the algorithm has computed for
the child node program prog1 in the parse tree TP . The algorithm sets

aprog[k] =

1, k = 0, 1
p·aprog1 [k−2]

1−p·(1−aprog1 [k−2]) , k ≥ 2

To see that this formula defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state
and the total of k − 2 states in the Markov chain Mprog1 of prog1. The algorithm starts
each new loop iteration with probability p, and by the correctness of the algorithm for
the root node program we know that in each loop iteration it leaves the set of k − 2 states
in Mprog1 with probability at most aprog1 [k − 2]. Hence, by summing up the geometric
series, we conclude that a set of k states in the Markov chain Mprog of prog may be left
with probability at most

p · aprog1 [k − 2] ·
∞∑

i=0

(
p · (1 − aprog1 [k − 2])

)i

=
p · aprog1 [k − 2]

1 − p · (1 − aprog1 [k − 2]) .

Sequential decomposition node. Finally, consider the parse tree node that corresponds to
the sequential composition

prog = prog1 ; prog2,

and let (aprog1 [0], . . . , aprog1 [|V1|]) and (aprog2 [0], . . . , aprog2 [|V2|]) be the sequences that
the algorithm has computed for the child node programs prog1 and prog1 in the parse
tree TP . The algorithm sets

aprog[k] =

1, k = 0, 1
minj1,j2≥0,j1+j2=k−2

(
aprog1 [j1] + (1 − aprog1 [j1]) · aprog2 [j2]

)
, k ≥ 2

To see that this formula indeed defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state and
the total of k − 2 states in the Markov chains Mprog1 of prog1 and Mprog2 of prog2. Thus,

A. Ahmadi et al. 29:15

if we denote by j1 and j2 the number of these k − 2 states that are contained in Mprog1

and Mprog2 , by the correctness of the algorithm for child node programs we conclude that
the above formula minimizes the probability with which a set of k states in the Markov
chain Mprog of prog may be left.

Analysis of each case above and induction on the depth of the parse tree TP allows us to
conclude the following theorem.

▶ Theorem 9. Let P be a probabilistic program generated by the syntax grammar in
Equation (1) and let MP be the Markov chain induced by P with state space VP . Let
(aP [0], . . . , aP [|VP |]) be the sequence that the algorithm computes for the program P . Then,
for each 0 ≤ k ≤ |VP |, it holds that

aP [k] = min
{

ϵ′ ≥ 0 | MP contains an (ϵ′, k)-core
}

.

Note that this immediately shows the correctness of our algorithm.

Runtime Analysis. Let n = |MP | be the size of the Markov chain induced by a probabilistic
program P . Note that our dynamic programming algorithm processes each node in the parse
tree TP in O(n2) time. Hence, as the size of the parse tree is linear in n, we conclude that
the algorithm runs in O(n3) time and therefore has polynomial runtime in the size of the
underlying Markov chain. Moreover, note that the n in turn is linear in the size of the parse
tree which is linear in the size of the program code.

5 Conclusion

An ϵ-core in a Markov chain is a set of states that is left by a random run with probability
at most ϵ. In this work, we considered the problem of finding an optimal (smallest) ϵ-core
in a given Markov chain M . For every ϵ ̸∈ {0, 1}, we proved that the problem is NP-hard.
Moreover, this NP-hardness is preserved even when we limit our instances to acyclic MCs
with bounded degree 3. Our NP-hardness result answered an open problem posed by [26].
We then showed that for Markov chains over control-flow graphs of structured programs,
the problem can be solved in PTIME. In summary, our results demonstrate that there is no
efficient algorithm for the general case of the problem unless P=NP, and hence practitioners
should use sampling and partial-exploration algorithms with no theoretical guarantees of
optimality, such as the one provided by [26]. However, in the important special case of MCs
over CFGs, a PTIME algorithm exists.

References
1 Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and

Andreas Pavlogiannis. Faster algorithms for quantitative analysis of MCs and MDPs with
small treewidth. In ATVA, pages 253–270, 2020.

2 Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Kretínský. Continuous-time
Markov decisions based on partial exploration. In ATVA, pages 317–334, 2018.

3 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský, and Tobias Meggen-
dorfer. Value iteration for long-run average reward in Markov decision processes. In CAV,
pages 201–221, 2017.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

FSTTCS 2022

29:16 Algorithms and Hardness Results for Computing Cores of Markov Chains

5 Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. Relat-
ively complete verification of probabilistic programs: an expressive language for expectation-
based reasoning. In POPL, 2021.

6 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, pages 98–114, 2014.

7 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Termination analysis of
probabilistic programs through positivstellensatz’s. In CAV, pages 3–22, 2016.

8 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Non-polynomial worst-
case analysis of recursive programs. In CAV, pages 41–63, 2017.

9 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Non-polynomial worst-
case analysis of recursive programs. ACM Trans. Program. Lang. Syst., 41(4):20:1–20:52,
2019.

10 Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Nastaran Okati. Compu-
tational approaches for stochastic shortest path on succinct MDPs. In IJCAI, pages 4700–4707,
2018.

11 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Yaron Velner.
Ergodic mean-payoff games for the analysis of attacks in crypto-currencies. In CONCUR,
pages 11:1–11:17, 2018.

12 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić.
Sound and complete certificates for quantitative termination analysis of probabilistic programs.
In CAV, 2022.

13 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani. Probabilistic
smart contracts: Secure randomness on the blockchain. In ICBC, pages 403–412, 2019.

14 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. Quantitative analysis
of smart contracts. In ESOP, volume 10801, pages 739–767, 2018.

15 Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri Zárevúcky, and Ðorđe
Žikelić. On lexicographic proof rules for probabilistic termination. In FM, volume 13047 of
Lecture Notes in Computer Science, pages 619–639. Springer, 2021.

16 Krishnendu Chatterjee, Petr Novotný, and Ðorđe Žikelić. Stochastic invariants for probabilistic
termination. In POPL, pages 145–160, 2017.

17 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker. In CAV, pages 592–600, 2017.

18 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

19 Paul A Gagniuc. Markov chains: from theory to implementation and experimentation. Wiley,
2017.

20 Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of computational physics, 22(4):403–434, 1976.

21 S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno. Discrete-time Markov
chain approach to contact-based disease spreading in complex networks. EPL, 89(3), 2010.

22 Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Modular verification for almost-sure termination of probabilistic programs. In OOPSLA, pages
129:1–129:29, 2019.

23 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

24 Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. On the hardness of
analyzing probabilistic programs. Acta Informatica, 56(3):255–285, 2019.

A. Ahmadi et al. 29:17

25 Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE Trans. Robotics, 25(6):1370–1381, 2009.

26 Jan Kretínský and Tobias Meggendorfer. Of cores: A partial-exploration framework for Markov
decision processes. Log. Methods Comput. Sci., 16(4), 2020.

27 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, pages 585–591, 2011.

28 Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, 2005.

29 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. CRC Press, 1999.
30 Johan Paulsson. Summing up the noise in gene networks. Nature, 427(6973):415–418, 2004.
31 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
32 Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical society, 74(2):358–366, 1953.
33 James E. Smith. A study of branch prediction strategies. In ISCA, pages 202–215, 1998.
34 Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra

Silva. Concurrent NetKAT – modeling and analyzing stateful, concurrent networks. In ESOP,
pages 575–602, 2022.

35 Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Quantitative analysis of assertion violations in probabilistic programs. In PLDI, pages 1171–
1186. ACM, 2021.

36 Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin,
and Wenjun Shi. Cost analysis of nondeterministic probabilistic programs. In PLDI, pages
204–220. ACM, 2019.

A Proof of Theorem 8

In Theorem 1, we showed that Coreϵ is contained in NP. Hence, as acyclic and the maximal
vertex degree conditions may be checked in linear time, we conclude that Core∗

ϵ is also
in NP.

To prove that Core∗
ϵ is NP-hard, we again show a reduction from the Vertex-

Coverproblem. Fix ϵ ∈ (0, 1) and consider an instance (G = (V, E), k) of the Vertex-
Coverproblem where n = |V | > 1

ϵ , n > 20 and n > 1√
1−ϵ

(these assumptions are required
as some inequalities below will only hold for sufficiently large values of n). The reduction is
obtained by modifying our construction of (MG,k, kG,k) in the proof of Theorem 1 in a way
that makes MG,k have the maximal vertex degree of 3 while keeping it acyclic. We denote by
(M∗

G,k, k∗
G,k) the newly constructed Markov chain. In what follows, we outline the differences

in the construction:
Core size. We set k∗

G,k = 4n2 + 4n + k, which is polynomial in the sizes of G and k.
Splitting of the initial state. The initial state vG,k in MG,k is replaced by 2n states
v1,∗

1 , . . . , v1,∗
2n , where the first state v1,∗

1 in the ordering is designated as the initial state of
M∗

G,k. This is done in order to ensure that the maximal vertex degree of each state in
the first layer of the Markov chain M∗

G,k is at most 3. Note, v1,∗
1 , . . . , v1,∗

2n do not form a
chain as the probabilities of transitions between successive states will not be 1.
Then, for each 1 ≤ i ≤ n, we set δG,k(v1,∗

i)(v2
i,1) = p1,i and δG,k(v1,∗

n+i)(v3
i,1) = p1,n+i,

where p1,i and p1,n+i are probabilities that are defined inductively as follows. For i = 1,
we set p1,1 = p1 = 1

n3 . For 2 ≤ i ≤ 2n, we set

FSTTCS 2022

29:18 Algorithms and Hardness Results for Computing Cores of Markov Chains

p1,i = p1∏i−1
j=1(1 − p1,j)

.

Then, connect the last state v1,∗
2n to the first state v1

1 of the chain v1
1 , . . . , v1

n3 of length n3

by an edge with probability

δG,k(v1,∗
2n , v1

1) = ϵ − ϵM∏2n−1
j=1 (1 − p1,j)

so that the probability of reaching the chain of length n3 from the initial state v1,∗
1 is

equal to ϵ − ϵM as in the proof of Theorem 1.
Finally, for each 1 ≤ i < 2n, we set δG,k(v1,∗

i)(v1,∗
i+1) = 1 − p1,i and we set δG,k(v1,∗

2n)(t∗
1) =

1 − p1,2n − ϵ−ϵM∏2n−1
j=1

(1−p1,j)
, where t∗

1 is the first state in the fourth layer that will be defined

in what follows.
To prove that each p1,i ∈ [0, 1], we show by induction on i that p1,i < 1

n2 . Indeed,
p1,1 = 1

n3 < 1
n2 and for i > 1 by induction hypothesis we have

p1,i = p1∏i−1
j=1(1 − p1,j)

≤ p1

(1 − 1/n2)2n
≤ p1

(1 − 1/n)2n

= 1/n3

(1 − 1/n)2n−2(1 − 1/n)2 <
e2

n(n − 1)2 <
1
n2 ,

for n ≥ 20, where we use that (1 − 1/x)−x+1 < e for x > 0.
The choices of probabilities ensure that a random infinite path in M∗

G,k is equally likely to
traverse an edge from a state in the first layer to the first state of each chain in the second
or the third layer and that this happens with probability p1 for each chain. Furthermore,
this construction ensures that each state in the first layer has a vertex degree of at most 3.
Finally, due to the assumption that n > 1√

1−ϵ
which is equivalent to ϵ < 1 − 1

n2 , we have
that the probability of reaching v1,∗

2n from the initial state v1,∗
1 is at least

2n−1∏
i=1

(1 − p1,i) > (1 − 1
n2)2n−1 ≥ 1 − 1

n2 > ϵ,

therefore an ϵ-core in MG,k must contain all states in the sequence v1,∗
1 , . . . , v1,∗

2n .
Extension of sequence lengths. Sequences in the second layer of M∗

G,k have length 4n,
instead of length 3n as was the case in our construction of MG,k. As in the proof of
Theorem 1, for each 1 ≤ i ≤ n and 1 ≤ j ≤ 4n, we use v2

i,j to denote the j-th state
along the i-th sequence. We note that in M∗

G,k these sequences do not form chains as the
probabilities of transitions between successive states will not be 1, as we specify below.
Similarly, sequences in the third layer of M∗

G,k have length 4n + 1 instead of length 3n + 1
as was the case in MG,k and again they do not form chains. For each 1 ≤ i ≤ n and
1 ≤ j ≤ 4n + 1, we use v3

i,j to denote the j-th state along the i-th sequence.
Redistributing transition probabilities p2 in order to bound degrees. Recall, for each 1 ≤
i ≤ n and each j ̸= i, in MG,k we had an edge from v2

i,3n to v3
j,1 with δG,k(v2

i,3n)(v3
j,1) = p2.

We now remove each such edge, and replace it with a new edge from v2
i,j to v3

j,i which
has probability p2,i,j . The new probabilities are defined as follows. For i = j, we set
p2,i,i = 0. Otherwise, we set p2,i,1 = p2 = 1

n10 for each i > 1 and then for j ̸= i and j > 1
we inductively define

A. Ahmadi et al. 29:19

p2,i,j = p2∏j−1
l=1 (1 − p2,i,l)

.

For each 1 ≤ i ≤ n, we prove that each p2,i,j ∈ [0, 1] by showing that each p2,i,j < 1
n9 by

induction on j. Indeed, p2,i,1 = 0 if i = 1 and p2,i,1 = 1
n10 < 1

n9 if i > 1, as n ≥ 20. Then,
for j > 1, by induction hypothesis we have

p2,i,j = p2∏j−1
l=1 (1 − p2,i,l)

≤ p2

(1 − 1/n)n
= 1/n10

(1 − 1/n)n

<
1/n10

(1 − 1/n)n−1(1 − 1/n) <
e

n9(n − 1) <
1
n9 .

Finally, for each v3
i,j with j ≤ n, we set δG,k(v3

i,j)(v3
i,j+1) = 1 − p2,i,j .

This construction ensures that, once a random infinite path in MG,k reaches the first
state v2

i,1 of the i-th chain in the second layer, it is then equally likely to traverse the
sequence v2

i,1, . . . , v2
i,4n up to the j-th state v2

i,j and then to move to the state v3
j,i of the

j-th chain in the third layer and that this happens with probability p2 for each 1 ≤ j ≤ n

with j ̸= i. Furthermore, it ensures that the vertex degrees due to edges of probability p2

from the second to the third layer do not exceed 3.
Redistributing transition probabilities p3 in order to bound degrees. Recall, for each
edge (vi, vj) in G with i < j, in MG,k we had an edge from v2

i,3n to v3
j,1 of probability

δG,k(v2
i,3n)(v3

j,1) = p3 where p3 = 1
n50 .

We now remove this edge and replace them with a new edge from v2
i,n+j to v3

j,n+i of
probability δG,k(v2

i,n+i)(v3
j,n+i) = p3,i,j . These probabilities are defined inductively via

p3,i,j = p3∏n
l=1(1 − p2,i,l)

∏j−1
l=1 (1 − p3,i,l)

for each i < j for which (vi, vj) is an edge in G, with p3,i,j = 0 whenever i ≥ j or when
(vi, vj) is not an edge in G.
For each 1 ≤ i ≤ n, we prove that each p3,i,j ∈ [0, 1] by showing that p3,i,j < 1

n49 by
induction on j. Indeed, p3,i,1 = 0 if (vi, vj) is not an edge in G and p3,i,1 = p3 = 1

n50 < 1
n49

if (vi, vj) is an edge in G as n ≥ 20. Then, for j > 1, by induction hypothesis we have

p3,i,j = p3∏n
l=1(1 − p2,i,l)

∏j−1
l=1 (1 − p3,i,l)

≤ 1/n50

(1 − 1/n)2n

= 1/n50

(1 − 1/n)2n−2(1 − 1/n)2 <
e2

n48(n − 1)2 <
1

n49 .

Together with the splitting of edges of probability p2 that we constructed above, this
construction ensures that, once a random infinite path in MG,k reaches the first state v2

i,1
of the i-th chain in the second layer, it either

traverses the sequence v2
i,1, . . . , v2

i,4n up to the j-th state v2
i,j and then to move to the

state v3
j,i of the j-th chain in the third layer with probability p2 for each j ̸= i, or

it traverses the sequence v2
i,1, . . . , v2

i,4n up to the (n + j)-th state v2
i,n+j and then to

move to the state v3
j,n+i of the j-th chain in the third layer with probability p3 for

each i < j such that (vi, vj) is an edge in G, or

FSTTCS 2022

29:20 Algorithms and Hardness Results for Computing Cores of Markov Chains

it traverses the sequence v2
i,1, . . . , v2

i,4n up to the last state v2
i,4n and then moves to the

first state t∗
n+i in the fourth layer with remaining probability, as specified below.

Furthermore, the construction ensures that the vertex degrees due to edges of probability
p2 and p3 from the second to the third layer do not exceed 3.
The single state t in the fourth layer of MG,k is replaced by a chain of 2n states t∗

1, . . . , t∗
2n,

with a probability 1 self-loop at t∗
2n. For each 1 ≤ i ≤ n, the last state v3

i,4n+1 of the i-th
chain in the third layer is connected to t∗

i by an edge of probability 1. For each 1 ≤ i ≤ n,
the last state v2

i,4n of the i-th chain in the second layer is connected to t∗
n+i by an edge of

probability 1.
Note that M∗

G,k contains n3+8n2+5n states and transition probabilities are of size polynomial
in n, therefore M∗

G,k is polynomial in the size of G and k.

Correctness of reduction. While our modified construction ensures that the maximal vertex
degree in the constructed Markov chain M∗

G,k is equal to 3 and that M∗
G,k remains acyclic,

it preserves the key properties of MG,k about probabilities of moving between different
chains. Therefore, one can follow the sequence of observations in the proof of Theorem 1 and
analogously prove correctness of this modified reduction. Due to the proofs being analogous,
we omit the details.

Computing Threshold Budgets in Discrete-Bidding
Games
Guy Avni #

University of Haifa, Israel

Suman Sadhukhan #

University of Haifa, Israel

Abstract
In a two-player zero-sum graph game, the players move a token throughout the graph to produce
an infinite play, which determines the winner of the game. Bidding games are graph games in
which in each turn, an auction (bidding) determines which player moves the token: the players
have budgets, and in each turn, both players simultaneously submit bids that do not exceed their
available budgets, the higher bidder moves the token, and pays the bid to the lower bidder. We
distinguish between continuous- and discrete-bidding games. In the latter, the granularity of the
players’ bids is restricted, e.g., bids must be given in cents. Continuous-bidding games are well
understood, however, from a practical standpoint, discrete-bidding games are more appealing.

In this paper we focus on discrete-bidding games. We study the problem of finding threshold
budgets; namely, a necessary and sufficient initial budget for winning the game. Previously, the
properties of threshold budgets were only studied for reachability games. For parity discrete-bidding
games, thresholds were known to exist, but their structure was not understood. We describe two
algorithms for finding threshold budgets in parity discrete-bidding games. The first algorithm is a
fixed-point algorithm, and it reveals the structure of the threshold budgets in these games. Second,
we show that the problem of finding threshold budgets is in NP and coNP for parity discrete-bidding
games. Previously, only exponential-time algorithms where known for reachability and parity
objectives. A corollary of this proof is a construction of strategies that use polynomial-size memory.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Solution concepts in game theory

Keywords and phrases Discrete bidding games, Richman games, parity games, reachability games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.30

Related Version Full Verrsion: https://arxiv.org/abs/2210.02773

Acknowledgements This research was supported in part by ISF grant no. 1679/21.

1 Introduction

Two-player zero-sum graph games are a central class of games. A graph game proceeds as
follows. A token is placed on a vertex and the players move it throughout the graph to
produce an infinite play, which determines the winner of the game. The central algorithmic
problem in graph games is to identify the winner and to construct winning strategies. One
key application of graph games is reactive synthesis [21], in which the goal is to synthesize a
reactive system that satisfies a given specification no matter how the environment behaves.

Two orthogonal classifications of graphs games are according to the mode of moving the
token and according to the players’ objectives. For the latter, we focus on two canonical
qualitative objectives. In reachability games, there is a set of target vertices and Player 1
wins if a target vertex is reached. In parity games, each vertex is labeled with a parity
index and an infinite path is winning for Player 1 iff the highest parity index that is visited
infinitely often is odd. The simplest and most studied mode of moving is turn-based: the
players alternate turns in moving the token.

© Guy Avni and Suman Sadhukhan;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gavni@cs.haifa.ac.il
mailto:suman.sadhukhan00@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.30
https://arxiv.org/abs/2210.02773
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Computing Threshold Budgets in Discrete-Bidding Games

We study bidding graph games [17, 16], which use the following mode of moving: both
players have budgets, and in each turn, an auction (bidding) determines which player moves
the token. Concretely, we focus on Richman bidding (named after David Richman): in each
turn, both players simultaneously submit bids that do not exceed their available budget, the
higher bidder moves the token, and pays his bid to the lower bidder. Note that the sum
of budgets stays constant throughout the game. We distinguish between continuous- and
discrete-bidding, where in the latter, the granularity of the players’ bids is restricted. The
central questions in bidding games revolve around the threshold budgets, which is a necessary
and sufficient initial budget for winning the game.

Continuous-bidding games. Bidding games were largely studied under continuous bidding.
We briefly survey the relevant literature. Bidding games were introduced in [17, 16]. The
objective that was considered is a variant of reachability, which we call double reachability:
each player has a target and a player wins if his target is reached (unlike reachability games
in which Player 2’s goal is to prevent Player 1 from reaching his target). It was shown that
in continuous-bidding games, a target is necessarily reached, thus double-reachability games
essentially coincide with reachability games under continuous-bidding.

Threshold budgets were shown to exist; namely, each vertex v has a value Th(v) such
that if Player 1’s budget is strictly greater than Th(v), he wins the game from v, and if his
budget is strictly less than Th(v), Player 2 wins the game. Moreover, it was shown that the
threshold function Th is a unique function that satisfies the following property, which we call
the average property. Suppose that the sum of budgets is 1, and ti is Player i’s target, for
i ∈ {1, 2}. Then, Th assigns a value in [0, 1] to each vertex such that at the “end points”,
we have Th(t1) = 0 and Th(t2) = 1, and the threshold at every other vertex is the average
of two of its neighbors. Uniqueness implies that the problem of finding threshold budgets1

is in NP and coNP. Moreover, an intriguing equivalence was observed between reachability
continuous-bidding games and a class of stochastic game [13] called random-turn games [20].
Intricate equivalences between mean-payoff continuous-bidding games and random-turn
games have been shown in [6, 7, 8, 9] (see also [5]).

Parity continuous-bidding games were studied in [6]. The following key property was
identified. Consider a strongly-connected parity continuous-bidding game G. If the maximal
parity index in G is odd, then Player 1 wins with any positive initial budget, i.e., the
thresholds in G are all 0. Dually, if the maximal parity index in G is even, then the thresholds
are all 1. This property gives rise to a simple reduction from parity bidding games to double-
reachability bidding games: roughly, a player’s goal is to reach a bottom strongly-connected
component in which he can win with any positive initial budget.

Discrete-bidding games. Discrete-bidding games are similar to continuous-bidding games
only that we fix the sum of the budgets to be k ∈ N and bids are restricted to be integers.
Ties in biddings need to be handled explicitly. We focus on the tie-breaking mechanism that
was defined in [14]: one of the players has the advantage and when a tie occurs, the player
with the advantage chooses between (1) use the advantage to win the bidding and pass it to
the other player, or (2) keep the advantage and let the other player win. Other tie-breaking
mechanisms and the properties that they lead to were considered in [1].

1 Stated as a decision problem: given a game and a vertex v, decide whether Th(v) ≥ 0.5.

G. Avni and S. Sadhukhan 30:3

The motivation to study discrete-bidding games is practical: in most applications, the
assumption that bids can have arbitrary granularity is unrealistic. We point out that the
results in continuous-bidding games, particularly those on infinite-duration games, do in fact
develop strategies that bid arbitrarily small bids. It is highly questionable whether such
strategies would be useful in practice.

Bidding games model ongoing and stateful auctions. Such auctions arise in various
domains. An immediate example is auctions for online advertisements [19]. As another
example, in blockchain technology, miners accept transaction fees, which can be thought of as
bids, and prioritize transactions based on them. Verification against attacks is a well-studied
problem [12, 4]. Bidding games have been applied as a mechanism for fair allocation of
resources [18]. In addition, researchers have studied training of agents that accept “advice”
from a “teacher”, where the advice is equipped with a “bid” that represents its importance [3].
Finally, recreation bidding games have been studied, e.g., bidding chess [11]. In all of these
applications, the granularity of the bids is restricted.

Previous results. Threshold budgets and their properties were previously only studied for
reachability discrete-bidding games [14]. In these games, discrete versions of the properties
of continuous-bidding games were observed; namely, discrete versions of threshold budgets
exist, they satisfy a discrete version of the average property, and, similar to continuous
bidding, winning strategies are constructed in which a player’s bid is derived from the
threshold budgets. A value-iteration algorithm was developed to compute the thresholds
with a worst-case exponential running time, when k is given in binary.

Parity discrete-bidding games were shown to be determined in [1], but the structure of the
threshold budgets was not understood. In particular, threshold budgets were not known to
have the average property. The previously known algorithm to solve parity discrete-bidding
games is naive. Construct an arena based on the exponentially-sized “configuration graph”
that corresponds to a bidding game. Determinacy implies that it suffices to solve a turn-
based game rather than a concurrent game on this arena. The essence of bidding games is
completely lost in this construction; namely, the structure given by the threshold budgets is
not used and the bids made by winning strategies have no connection with the thresholds. To
make things worse, unlike reachability games, the properties of threshold budgets in parity
discrete- and continuous-bidding games are known to differ significantly; namely, there are
strongly-connected games in which the maximal parity index is odd and Player 1 loses with
any initial budget, and no reduction is known to reachability discrete-bidding games.

Our results. We develop two complementary algorithms for computing threshold budgets
in parity discrete-bidding games. Our first algorithm is a fixed-point algorithm. It is based
on repeated calls to an algorithm to solve reachability discrete-bidding games in combination
with a recursion over the parity indices, similar in spirit to Zielonka [22] and Kupferman
and Vardi’s [15] algorithms to solve turn-based parity games. An important corollary from
the algorithm is that threshold budgets in parity discrete-bidding games satisfy the average
property. The worst-case running time of the algorithm is exponential.

Second, we show that the problem of finding threshold budgets in parity discrete-bidding
gamesis in NP and coNP. The bound follows to reachability discrete-bidding games for which
only an exponential-time algorithm was known. We briefly describe the idea of our proof.
We first show that, interestingly, unlike continuous-bidding games, functions that satisfy the
discrete average property are not unique, but by definition the threshold budgets are. Thus,
one cannot simply guess a function and verify that it satisfies the average property. We

FSTTCS 2022

30:4 Computing Threshold Budgets in Discrete-Bidding Games

overcome this challenge as follows. Given a guess of function T , we first verify that it satisfies
the average property. Then, we construct a partial bidding strategy fT for Player 1 based on
T , and construct a turn-based parity game in which a Player 1 strategy corresponds to a
bidding strategy f ′ that agrees with fT and a Player 2 strategy corresponds to a response
to f ′. We show that Player 1 wins the turn-based game iff T coincides with the threshold
budgets. As a corollary, we show the existence of winning strategies that use memory that is
polynomial in the size of the arena. Previously, only strategies that use exponential-sized
memory were known.

2 Preliminaries

2.1 Concurrent games

We define the formal semantics of bidding games via two-player concurrent games [2].
Intuitively, a concurrent game proceeds as follows. A token is placed on a vertex of a graph.
In each turn, both players concurrently select actions, and their joint actions determine
the next position of the token. The outcome of a game is an infinite path. A game is
accompanied by an objective, which specifies which plays are winning for Player 1. We focus
on reachability and parity objectives, which we define later in this section.

Formally, a concurrent game is played on an arena ⟨A, V, λ, δ⟩, where A is a finite non-
empty set of actions, V is a finite non-empty set of vertices, the function λ : V × {1, 2} →
2A \ {∅} specifies the allowed actions for Player i in vertex v, and the transition function
is δ : V × A × A → V . Suppose that the token is placed on a vertex v and, for i ∈ {1, 2},
Player i chooses action ai ∈ λ(v). Then, the token moves to δ(v, a1, a2). For u, v ∈ V , we call
u a neighbor of v if there is a pair of actions ⟨a1, a2⟩ ∈ λ(v, 1)× λ(v, 2) with u = δ(v, a1, a2).
We denote the neighbors of v by N(v) ⊆ V .

A (finite) history is a sequence ⟨v0, a1
0, a2

0⟩, . . . , ⟨vn−1, a1
n−1, a2

n−1⟩, vn ∈ (V ×A×A)∗ · V
such that, for each 0 ≤ i < n, we have vi+1 = δ(vi, a1

i , a2
i). A strategy is a function from

histories to actions, thus it is of the form σ : (V ×A×A)∗ · V → A. We restrict attention to
legal strategies; namely, strategies that for each history π ∈ (V ×A×A)∗ · V that ends in
v ∈ V , choose an action in λ(v, i), for i ∈ {1, 2}. A memoryless strategy is a strategy that,
for every vertex v, assigns the same action to every history that ends in v.

Two strategies σ1 and σ2 for the two players and an initial vertex v0, give rise to a unique
play, denoted play(v0, σ1, σ2), which is a sequence in (V ×A×A)ω and is defined inductively
as follows. The first element of play(v0, σ1, σ2) is v0. Suppose that the prefix of length j ≥ 1
of play(v0, σ1, σ2) is defined to be πj · vj , where πj ∈ (V × A × A)∗. Then, at turn j, for
i ∈ {1, 2}, Player i takes action aj

i = σi(πj · vj), the next vertex is vj+1 = δ(vj , aj
1, aj

2),
and we define πj+1 = πj · ⟨vj , aj

1, aj
2⟩ · vj+1. The path that corresponds to play(v0, σ1, σ2) is

v0, v1,
Turn-based games are a special case of concurrent games in which the vertices are

partitioned between the two players. When the token is placed on a vertex v, the player who
controls v decides how to move the token. Formally, a vertex v is controlled by Player 1 if for
every action a1 ∈ A, there is a vertex v′ such that no matter Player 2 takes which action
a2 ∈ A, we have v′ = δ(v, a1, a2). The definition is dual for Player 2. Note that a concurrent
game that is not turn based might still contain some vertices that are controlled by one of
the players.

G. Avni and S. Sadhukhan 30:5

2.2 Bidding games
A discrete-bidding game is played on an arena G = ⟨V, E, k⟩, where V is a set of vertices,
E ⊆ V × V is a set of directed edges, and k ∈ N is the sum of the players’ budgets. For a
vertex v ∈ V , we use N(v) to denote its neighbors, namely N(v) = {u : E(v, u)}. The size of
the arena is O(|V |+ |E|+ log(k)).

Intuitively, in each turn, both players simultaneously choose a bid that does not exceed
their available budgets. The higher bidder moves the token and pays the other player. Note
that the sum of budgets stays constant throughout the game. Tie-breaking needs to be
handled explicitly in discrete-bidding games as it can affect the properties of the game [1].
In this paper, we focus on the tie-breaking mechanism that was defined in [14]: exactly one
of the players holds the advantage at every turn, and when a tie occurs, the player with the
advantage chooses between (1) win the bidding and pass the advantage to the other player,
or (2) let the other player win the bidding and keep the advantage.

Following [14], we denote the advantage with ∗. Let N denote the non-negative integers
and N∗ denote the set {0, 0∗, 1, 1∗, 2, 2∗, . . .}. Throughout the paper, we use k to denote the
sum of budgets, and use [k] to denote the set {0, 0∗, . . . , k, k∗}. Intuitively, when saying that
Player 1 has a budget of m∗ ∈ [k], we mean that Player 1 can choose a bid in {0, . . . , m}
and that he has the advantage. Implicitly, we mean that Player 2’s budget is k −m and she
does not have the advantage.

We define an order < on N∗ by 0 < 0∗ < 1 < 1∗ < Let m ∈ N∗. We denote by |m|
the integer part of m, i.e., |m∗| = m. We define operators ⊕ and ⊖ over N∗: x∗⊕y = (x+y)∗,
x ⊕ y = x + y for x, y ∈ N. Intuitively, we use ⊕ to keep track of the budget of a player
when they loses a biding to the other player, and as a result their budget gets increased by
the other player’s bid: therefore, in general x∗ ⊕ y∗ is not well-defined. The definition of
⊖ is almost dual, we use the notation to keep track of the budget of a player when they
wins a bidding: x ⊖ y = x − y, x∗ ⊖ y = (x − y)∗, and in particular x∗ ⊖ y∗ = x − y. For
B ∈ N∗, of exceptional use is B ⊕ 0∗ and B ⊖ 0∗, which respectively denote the successor
and predecessor of B in N∗ according to <.

Consider an arena G = ⟨V, E, k⟩ of a bidding game. We describe a concurrent game C
that corresponds to it. The vertices in C consist of configuration vertices C = V × [k] and
intermediate vertices {ic,b : c ∈ C, b ≤ k∗}. A vertex c = ⟨v, B⟩ ∈ (V × [k]) represents the
configuration of the bidding game in which the token is placed on vertex v ∈ V , Player 1’s
budget is B, and Player 2’s budget is k∗ ⊖ B. Consider a configuration vertex c = ⟨v, B⟩.
The available actions for a player in c represent the legal bids and the vertex to move to
upon winning. Thus, the available actions for Player 1 are {0, . . . , |B|} × N(v) and the
available actions for Player 2 are {0, . . . , k− |B|} ×N(v). Each intermediate vertex is owned
by a single player, so we only specify their outgoing transitions below. We describe the
transition function. Suppose that the token is placed on a configuration vertex c = ⟨v, B⟩
and Player i chooses action ⟨bi, ui⟩, for i ∈ {1, 2}. If b1 > b2, Player 1 wins the bidding and
the game proceeds to ⟨u1, B1 ⊖ b1⟩. The definition for b2 > b1 is dual. We address the case
of a bidding tie, namely the case that b1 = b2 = b. Assume that Player 1 has the advantage,
i.e., c = ⟨v, B∗

1⟩, and the other case is dual. The game proceeds to an intermediate vertex
ic,b that is controlled by Player 1 and has two outgoing edges. The first edge models Player 1
using the advantage to win the bidding, and directs to the configuration ⟨u1, B1 − b1⟩. The
second edge models Player 1 allowing Player 2 to win the bidding and keeping the advantage,
and it directs to ⟨u2, (B1 + b2)∗⟩. We often say that the player who holds the advantage bids
b∗, and we mean that he bids b and uses the advantage if a tie occurs. Note that the size of
the arena is O(|V | × k), which is exponential in the size of the bidding game.

FSTTCS 2022

30:6 Computing Threshold Budgets in Discrete-Bidding Games

Consider two strategies f and g in C and an initial configuration c = ⟨v, B⟩ We often
abuse notation and refer to τ = play(v, f, g) as the infinite path in G that is obtained by
removing intermediate vertices from π. We use inf(τ) to denote the set of vertices that τ

visits infinitely often.

2.3 Objectives
An objectives in a bidding game specifies the infinite paths that are winning for Player 1.
We consider the following two canonical objectives:

Reachability A game is equipped with a target set T ⊆ V . Player 1, the reachability
player, wins an infinite play iff it visits T .
Parity Each vertex is labeled by a parity index, given by a function p : V → {1, . . . , d},
for d ∈ N. A play τ is winning for Player 1 iff maxv∈inf(τ) p(v) is odd.

In addition, we introduce the following extension of the two objectives above.

▶ Definition 1 (Frugal objectives). Consider an arena ⟨V, E, k⟩. A frugal objective is a set
S ⊆ V of sink states and a function fr : S → [k] which assigns a frugal-target budget to each
sink. Player 1’s frugal objective is satisfied if the game reaches some s ∈ S with Player 1’s
budget at least fr(s). We consider both frugal-reachability and frugal-parity games. Player 1
wins a frugal-reachability game if the frugal objective is satisfied. Note that a reachability
game is a special case of a frugal-reachability game in which fr = 0. A frugal-parity game is
⟨V, E, k, p, S, fr⟩, where p : (V \ S)→ {0, . . . , d}. Player 1 wins a play π if (1) π does not
reach S and satisfies the parity objective, or (2) π reaches S and satisfies the frugal objective.

A winning strategy from a configuration c = ⟨v, B⟩ for Player 1 is a strategy f such that
no matter which strategy g Player 2 chooses, play(c, f, g) is winning for Player 1. We say
that Player 1 wins from c if he has a winning strategy. The definition is dual for Player 2.

3 Threshold Budgets and the Average Property

A key quantity in bidding games is the threshold budget at a vertex, which intuitively
represents the necessary and sufficient initial budget at that vertex for Player 1 to guarantee
winning the game. It is formally defined as follows.

▶ Definition 2 (Threshold budgets). Consider a bidding game G in which the sum of budgets
is k ∈ N. The threshold budget at a vertex v in G, denoted ThG(v), is such that if Player 1’s
budget at v is at least ThG(v) ∈ [k], then Player 1 wins the game from v, and if his budget
is at most ThG(v)⊖ 0∗, then Player 2 wins the game. We refer to the function ThG as the
threshold budgets.

3.1 Reachability continuous-bidding games
The properties of threshold budgets in discrete-bidding games have only been studied for
reachability games [14]. The properties of the threshold budgets and the techniques to prove
them are similar to those used in reachability continuous-bidding games [17, 16]. We thus
first survey the latter.

▶ Definition 3 (Continuous threshold budgets). Normalize the sum of budgets to 1. The
continuous threshold budget at a vertex v is a budget Th(v) ∈ [0, 1] such that if Player 1’s
budget exceeds Th(v), he wins the game from v, and if Player 2’s budget exceeds 1− Th(v),
she wins the game from v.

G. Avni and S. Sadhukhan 30:7

We call the objective that was considered in [17, 16] double-reachability. Such a game is
⟨V, E, t1, t2⟩, where for i ∈ {1, 2}, the vertex ti is the target of Player i. The game ends once
one of the targets is reached, and the player whose target is reached is the winner. Every
other vertex has a path to both targets. Even though a priori, it is not implicit that one of
the player always wins in a double reachability games (because the game might not reach
either of the target vertices), here it is explicitly shown that this is not the case [17, 16].

▶ Definition 4 (Continuous average property). Consider a double-reachability continuous-
bidding game G = ⟨V, E, t1, t2⟩ and a function T : V → [0, 1]. We say that T has the
continuous average property if T (t1) = 0 and T (t2) = 1, and for every other v ∈ V \
{t1, t2}, we have T (v) = 0.5 ·

(
T (v−) + T (v+)

)
, where v+ := arg maxu∈N(v) Th(u) and

v− := arg minu∈N(v) Th(v).

We show the main properties of double-reachability continuous-bidding games. The ideas
used in the proof are adapted to the discrete setting in later sections.

▶ Theorem 5 ([17, 16]). Consider a double-reachability continuous-bidding game ⟨V, E, t1, t2⟩.
Continuous threshold budgets exist, and the threshold budgets Th : V → [0, 1] is the unique
function that has the continuous average property.

Proof Sketch. Let Th be a function that satisfies the continuous average property. We prove
that Th(v), for every vertex v, is the continuous threshold budget at v. Uniqueness follows
immediately. We omit the proof of existence of Th.

Suppose that Player 1’s budget at v is Th(v) + ε, for ε > 0. We describe a Player 1
winning strategy. Player 1 maintains the following invariant:

Invariant. When the token is on u ∈ V , Player 1’s budget is strictly greater than Th(u).
The invariant implies that Player 1 does not lose; indeed, it implies that if t2 is reached,

Player 1’s budget is strictly greater than 1, which violates the assumption that the sum of
budgets is 1.

The invariant holds initially, and we show how to maintain it. Suppose that the token
is placed on v ∈ V and Player 1’s budget is B = Th(v) + ε. Recall that v+, v− ∈ N(v)
are respectively the neighbors of v with the maximal and minimal threshold budgets. Let
b = 0.5 ·

(
Th(v+)− Th(v−)

)
. The key observation is that B + b = Th(v+) + ε and B − b =

Th(v−) + ε. We claim that by bidding b, Player 1 guarantees that the invariant is maintained.
Indeed, if he wins the bidding, he moves the token to v−, and if he loses the bidding, the
worst that Player 2 can do is move the token to v+.

We omit the details of how Player 1 guarantees winning, i.e., forcing the token to t1.
Finally, we show that Player 2 wins when Player 1’s budget is Th(v)− ε. We intuitively

“flip” the game and associate Player 1 with Player 2. Let G′ be the same as G only that
Player 1’s goal is to reach t2 and Player 2’s goal is to reach t1. For every u ∈ V , define Th′ as
Th′(u) = 1− Th(u). A key observation is that Th′ satisfies the average property in G′. Now,
in order to win from v in G when Player 1’s budget is Th(v)− ε, Player 2 follows a winning
Player 1 strategy in G′ with an initial budget of 1− Th(v) + ε. ◀

3.2 Constructing strategies based on the discrete average property

We first adapt the definition of the average property (Def. 4) to the discrete setting.

FSTTCS 2022

30:8 Computing Threshold Budgets in Discrete-Bidding Games

▶ Definition 6 (Average property). Consider a discrete-bidding game G = ⟨V, E, k, S, fr⟩
with frugal objective. We say that a function T : V → [k] ∪ {k + 1} has the average property
if for every s ∈ S, we have T (s) = fr(s), and for every v ∈ V \ S,

T (v) = ⌊ |T (v+)|+ |T (v−)|
2 ⌋+ ε,

where ε =


0 if |T (v+)|+ |T (v−)| is even and T (v−) ∈ N

1 if |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N∗ \N
∗ otherwise

where v+ := arg maxu∈N(v) Th(u) and v− := arg minu∈N(v) Th(v)

Note that, the range of T includes k + 1, which captures the threshold budget of a player
at a vertex from where the other player wins the game with budget 0. Consider a function
T : V → [k] ∪ {k + 1} that satisfies the average property. We develop a partial strategy fT ,
which is a function from histories to [k] × 2V . An output ⟨b, A⟩ of fT means that the bid
is b and upon winning, Player 1 must choose an allowed vertex in A to move the token to.
A strategy f ′ that agrees with fT bids in the same manner and upon winning a bidding, it
chooses a vertex in A.

We define fT so that when Player 1 plays according to a strategy that agrees with fT ,
an invariant is maintained on Player 1’s budget, similar to the invariant in the continuous
setting (see the proof of Thm. 5). Suppose that a history ends in a vertex v with Player 1’s
budget B ≥ T (v). Intuitively, as in Thm. 5, when Player 1 wins the bidding in v, he
proceeds to some neighbor v− that attains the minimal value according to T , and when
Player 2 wins the bidding, the worst she can do is move to a vertex v+ that attains the
maximal value according to T . Formally, fT restricts the choice of neighbor of v to a set
of allowed vertices, denoted A(v), and depend only v. Let v+ = arg maxu∈N(v) T (u) and
v− = arg minu∈N(v) T (u). We define A(v) = {u ∈ N(v) : T (u) = T (v−)} when T (v−) ∈ N,
and A(v) = {u ∈ N(v) : T (u) ≤ T (v−)⊕ 0∗} when T (v−) ∈ N∗ \N.

Next, for each v ∈ V , we define a bid that fT proposes. Suppose that Player 1’s budget
is B ∈ [k], for B ≥ T (v). We define fT so that it proposes one of two possible bids bT

v or
bT

v ⊕ 0∗, depending on whether Player 1 holds the advantage. Intuitively, Player 1 “attempts”
to bid bT

v at v. This is not possible if bT
v ∈ N∗ \N and B ∈ N, i.e., Player 1 wants to use the

advantage but does not have it. In such a case, Player 1 bids bT
v ⊕ 0∗ ∈ N. Formally, we

define

bT
v =


|T (v+)|−|T (v−)|

2 When |T (v+)|+ |T (v−)| is even and T (v−) ∈ N

⌊ |T (v+)|−|T (v−)|
2 ⌋ When |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N∗ \N

|T (v+)|−|T (v−)|
2 ⊖ 0∗ When |T (v+)|+ |T (v−)| is even and T (v−) ∈ N∗ \N

⌊ |T (v+)|−|T (v−)|
2 ⌋ ⊕ 0∗ When |T (v+)|+ |T (v−)| is odd and T (v−) ∈ N

(1)

Assuming that the game reaches v with a budget of B ≥ T (v), we define fT to bid bT (v, B)
where bT (v, B) = bT

v when both bT
v and B belong to either N of N∗ \N, and bT

v ⊕0∗ otherwise.
We formalize the guarantees of fT in the lemma below, whose proof can be found in the full
version[10].

▶ Lemma 7. For every v ∈ V and B ≥ T (v), we have B ⊖ bT (v, B) ≥ T (v−) and B ⊕
bT (v, B)⊕ 0∗ ≥ T (v+).

G. Avni and S. Sadhukhan 30:9

v0 v1 v2 t

4 3* 3
2

5 4* 3*

Figure 1 A discrete-bidding reachability game with two functions that satisfy the average property.

A corollary of Lem. 7 is that any strategy that agrees with fT maintains an invariant on
Player 1’s budget and is thus a legal strategy, i.e., it never prescribes bids that exceed the
available budget.

▶ Corollary 8. Suppose that Player 1 plays according to a strategy that agrees with fT starting
from configuration ⟨u, B⟩ having B ≥ T (u), we have:

When the game reaches v ∈ V , Player 1’s budget is at least T (v).
The bid b prescribed by fT does not exceed the available budget, i.e., b ≤ B.

3.3 Properties of functions with the average property
We show that, somewhat surprisingly, unlike in continuous-bidding, functions that satisfy
the discrete average property are not unique. That is, there are functions that satisfy the
average property but do not coincide with the threshold budgets.

▶ Theorem 9. The reachability discrete-bidding game G1 that is depicted in Fig. 1 with
target t for Player 1 has more than one function that satisfies the average property.

Proof. Assume a total budget of k = 5. We represent a function T : V → [k] as a vector
⟨T (v0), T (v1), T (v2), T (t)⟩. It is not hard to verify that both ⟨4, 3∗, 3, 2⟩ and ⟨5, 4∗, 3∗, 2⟩
satisfy the average property. (The latter represents the threshold budgets). ◀

The following lemma, whose proof can be found in the full version [10], is key in developing
a winning Player 2 strategy. We intuitively show that the “complement” of T satisfies the
average property. The idea is similar to the continuous case (see the last point in the proof
of Thm. 5).

▶ Lemma 10. Let G = ⟨V, E, k, S, fr⟩ be a discrete-bidding game with a frugal objective.
Let T : V → [k] ∪ {k + 1} be a function that satisfies the average property. We define
T ′ : V → [k] ∪ {k + 1} as follows. For v ∈ V , let T ′(v) = k∗ ⊖

(
T (v)⊖ 0∗)

when T (v) > 0,
and T ′(v) = k + 1 otherwise.

Then, T ′ satisfies the average property.

3.4 Frugal-reachability discrete-bidding games
We close this section by extending the results of [14] from reachability to frugal-reachability
discrete-bidding games.

▶ Lemma 11. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩. If
T : V → [k] ∪ {k + 1} is a function that satisfies the average property, then T (v) ≤ ThG(v)
for every v ∈ V .

Proof. We show that if for some vertex v, Player 1 has a budget less than T (v), then Player 2
has a winning strategy, which proves that the threshold budgets for Player 1 cannot be less
than T (v), when T is a average property satisfying function.

FSTTCS 2022

30:10 Computing Threshold Budgets in Discrete-Bidding Games

Given such T that satisfies the average property, we construct T ′ as in Lem. 10. Let
⟨v, B1⟩ be a configuration, where v ∈ V , Player 1’s budget is B1, and implicitly, Player 2’s
budget is B2 = k∗ ⊖ B1. Note that B1 < T (v) iff B2 ≥ T ′(v). Moreover, for every s ∈ S,
we have T ′(s) = k∗ ⊖ (fr(s)⊖ 0∗). We “flip” the game; namely, we associate Player 2 with
Player 1, and construct a partial strategy fT ′ for Player 2 as in Sec. 3.2. We construct a
Player 2 strategy f ′ that agrees with fT ′ : for each v ∈ V , we arbitrarily choose a neighbor
u from the allowed vertices. By Corollary 8, no matter how Player 1 responds, whenever
the game reaches ⟨u, B1⟩, we have B2 ≥ T ′(u). The invariant implies that f ′ is a winning
strategy. Indeed, if the game does not reach a sink, Player 2 wins, and if it does, Player 1’s
frugal objective is not satisfied. ◀

▶ Lemma 12. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩.
There is a function T that satisfies the average property with T (v) ≥ ThG(v), for every v ∈ V .

Proof. The proof is similar to the one in [14]. We illustrate the main ideas. For n ∈ N, we
consider the truncated game G[n], which is the same as G only that Player 1 wins iff he wins
in at most n steps. We find a sufficient budget for Player 1 to win in the vertices in G[n]
in a backwards-inductive manner. For the base case, for every vertex u ∈ V , since Player 1
cannot win from u in 0 steps, we have T0(u) = k + 1. For s ∈ S, we have T0(s) = fr(s).
Clearly, T0 = ThG[0]. For the inductive step, suppose that Tn−1 is computed. For each vertex
v, we define Tn(v) = ⌊ |Tn−1(v+)|+|Tn−1(v−,k)|

2 ⌋+ ε as in Def. 6. Following a similar argument
to Thm. 5, it can be shown that if Player 1’s budget is Tn(v), he can bid b so that if he wins
the bidding, his budget is at least Tn−1(v−) and if he loses the bidding, his budget is at least
Tn−1(v+). By induction we get ThG[n](v) = Tn(v), for every v ∈ V . For every vertex v, let
T (v) = limn→∞ Tn(v). It is not hard to show that T satisfies the average property and that
T (v) ≥ ThG(v), for every v ∈ V . ◀

Let T be a function that results from the fixed-point computation from the proof of
Lem. 12. Since it satisfied the average property, we apply Lem. 11 to show that Player 2
wins from v when Player 1’s budget is T (v)⊖ 0∗. We thus conclude the following.

▶ Theorem 13. Consider a frugal-reachability discrete-bidding game G = ⟨V, E, k, S, fr⟩.
Threshold budgets exist and satisfy the average property. Namely, there exists a function
T : V → [k] ∪ {k + 1} such that for every vertex v ∈ V

if Player 1’s budget is B ≥ T (v), then Player 1 wins the game, and
if Player 1’s budget is B < T (v), then Player 2 wins the game

Moreover, there is an exponential-time algorithm for finding such a T .

4 A Fixed-Point Algorithm for Finding Threshold Budgets

In this section, we develop a fixed-point algorithm for finding threshold budgets in frugal-
parity discrete-bidding games. As a corollary, we show, for the first time, that threshold
budgets in parity discrete-bidding games satisfy the average property.

For the remainder of this section, fix a frugal-parity game G = ⟨V, E, k, p, S, fr⟩. Denote
the maximal parity index by d ∈ N and let Fd = {v : p(v) = d}. For a bidding game G,
instead of ThG , we sometimes use FrRe-ThG and FrPa-ThG to highlight that G is respectively
a frugal-reachability and frugal-parity game.

G. Avni and S. Sadhukhan 30:11

A description of the algorithm

The algorithm recurses over the parity indices. The base case is when only one parity index
is used. Then, G is a frugal-reachability game and we use the algorithm in Thm. 13.

For the induction step, suppose that d > 1. We describe the key idea. For ease of
presentation, we assume that the maximal parity index d is even and we describe the
algorithm from Player 1’s perspective. The definition for an odd d is dual from Player 2’s
perspective. Since d is even, in order for Player 1 to win, it is necessary (but not sufficient)
to visit Fd only finitely often.

We iteratively define and solve a sequence of frugal-parity games G0,G1, For i ≥ 0,
the arena of Gi is obtained from G by setting Fd to be sinks. The games differ in the frugal
target in the “new” sinks Fd. We set the frugal target budgets in Gi so that, for every vertex
v that is not a sink, ThGi

(v) is a necessary and sufficient initial budget for winning in G by
visiting Fd at most i times. Since Gi has only d− 1 parity indices, we solve it recursively.

The definition of the frugal target budgets in G0 is immediate: since no visits to Fd are
allowed, simply set the frugal target budget to be k + 1 in these vertices. Since the sum of
budgets is k, a play that ends in Fd in G0 is necessarily losing for Player 1, thus in order to
win, he must satisfy the parity or frugal objective without visiting Fd.

In order to define the frugal target budgets in G1, we first construct a frugal-reachability
game from G, which we denote R0. The sinks in R0 are V \ Fd. The frugal target budget at
u ∈ (V \ Fd) is defined to be fr(u) = ThG0(u). Thus, when the game starts at v ∈ Fd with a
Player 1 budget of ThR0(v), Player 1 can guarantee that the game eventually reaches V \ Fd

with a budget that suffices for winning in G without visiting Fd again.
We define the frugal target budgets in G1. For each v ∈ Fd we define fr(v) = ThR0(v).

Then, when G starts from u ∈ (V \ Fd) with a Player 1 budget of ThG1(u), Player 1 plays as
follows. He first follows a winning strategy in G1 to ensure either (1) the parity condition
is satisfied, (2) an “old” sink s ∈ S is reached with budget at least fr(s), or (3) the game
reaches v ∈ Fd with a budget of at least ThR0(v). Cases (1)-(2) are winning in G. In Case (3),
Player 1 plays as described above to guarantee winning in G without visiting Fd again. The
construction of R1,R2, . . . and G2,G3, . . . follows the same idea.

Formally, for i ≥ 0, we define Gi = ⟨V \ Fd, E′, p′, S ∪ Fd, fri⟩, where E′ is obtained from
E by removing outgoing edges from vertices in Fd, i.e., E′(v, u) iff E(v, u) and v /∈ Fd, the
parity function p′ coincides with p but is not defined over Fd, and fri is defined below. Note
that p′ assigns at most d− 1 parity indices. The function fri coincides with fr on the “old”
sinks; namely, fri(s) = fr(s), for every s ∈ S.

For the “new” sinks Fd, for i ≥ 0, the definition fri is inductive. Let v ∈ Fd. We
define fr0(v) = k + 1, meaning that Player 1 is not allowed to visit Fd at all in G0. For
i ≥ 1, assume that fri has been defined and we define fri+1 as follows. Since Gi has less
parity indices than G, we can recursively run the algorithm to obtain FrPa-ThGi

(u), for each
u ∈ V \ Fd. As we prove formally below, a budget of FrPa-ThGi(v) suffices for Player 1 to
win G while visiting Fd only i times. For i ≥ 0, we construct a frugal-reachability game
Ri = ⟨V, E′′, V \ Fd, FrPa-ThGi⟩, where E′′ is obtained from E by removing outgoing edges
from every vertex in (V \ Fd). That is, in Ri, the only vertices that are not sinks are the
vertices in Fd, and in order to win in a sink u ∈ (V \ Fd), Player 1’s budget should be at
least FrPa-ThGi

(u). We can now define the the frugal target fri+1 of Gi+1: for each v ∈ Fd,
define fri+1(v) = FrRe-ThRi

(v).
The algorithm is described Alg. 1 for an even d and from Player 1’s perspective.

FSTTCS 2022

30:12 Computing Threshold Budgets in Discrete-Bidding Games

Algorithm 1 Frugal-Parity-Threshold(G).

if G uses one parity index then
Return Frugal-Reachability-Threshold(G)

fr0(v) = k + 1, for v ∈ Fd

for i = 0, 1, . . . do
FrPa-ThGi ← Frugal-Parity-Threshold(Gi)
FrRe-ThRi

← Frugal-Reachability-Threshold(Ri)
For each v ∈ Fd, define fri+1(v) = FrRe-ThRi(v)
if fri(v) = fri+1(v), for all v ∈ Fd then

Define FrPa-ThG(v) = fri(v) for v ∈ Fd

Define FrPa-ThG(u) = FrRe-ThGi
(u) for u ∈ V \ Fd.

Return FrPa-ThG

Correctness

The intuition for the proof of the following lemma is described above, and we formally prove
this below. The formal proof can be found in the full version [10].

▶ Lemma 14. Let d be the maximal parity index in G. Define j = 1 when d is even and
j = 2 when d is odd. For i ≥ 0, let FrPa-ThGi be the threshold budget of Player j in the
game Gi. Then, for v ∈ V \Fd, a budget of FrPa-ThGi

(v) suffices for Player j to win G while
visiting Fd at most i times.

It follows from the following lemma, whose proof can be found in the full version [10],
that Alg. 1 reaches a fixed point and terminates.

▶ Lemma 15. For every v ∈ Fd and i ≥ 0, we have fri(v) ≥ fri+1(v).

Next, we show that the budgets returned by Alg. 1 are necessary for Player 1 to win.

▶ Lemma 16. Consider an output T of Algorithm 1 and let u ∈ V \ Fd. If Player 1’s budget
is T (u)⊖ 0∗, then Player 2 wins G from v.

Proof. The proof is by induction on the number of parity indices in G. When there is
one parity index, G is a frugal-reachability game and the proof follows from Thm. 13. For
the induction step, let i ≥ 0 be the index at which the algorithm reaches a fixed point.
That is, for every u ∈ V \ Fd, we have T (u) = FrPa-ThGi

(u). Since Gi is a game with less
parity indices than G, by the induction hypothesis, a budget of FrPa-ThGi(u) is necessary
for Player 1 to win from u in Gi. That is, if Player 1’s budget is less than FrPa-ThGi

(u),
then Player 2 has a strategy that guarantees that an infinite play satisfies Player 2’s parity
objective, and a finite play that ends in v ∈ S ∪ Fd violates Player 1’s frugal objective fri(v).

We construct a winning Player 2 strategy in G. Player 2 initially follows a winning
strategy in Gi. Assume that Player 1 plays according to some strategy and let π be the
resulting play. If π is infinite or ends in S, then π is a play in G and is thus winning for
Player 2 in both games. Suppose that π ends in v ∈ Fd. Player 2’s strategy guarantees that
Player 1’s budget at v is at most fri(v)⊖ 0∗ = FrRe-ThRi

(v)⊖ 0∗. Suppose that Player 2
follows a winning strategy from v in Ri, Player 1 follows some strategy, and let π′ be the
resulting play. Since Player 2’s strategy is winning, there are two cases. First, π′ remains in
Fd, thus π′ is a play in G that is winning for Player 2 since d is even. Second, π′ ends in a
vertex u′ ∈ V \Fd is reached with Player 1’s budget at most FrPa-ThGi−1(u′)⊖ 0∗. Note that
since the algorithm terminates at a fixed point, we have FrPa-ThGi−1(u′) = FrPa-ThGi

(u′).

G. Avni and S. Sadhukhan 30:13

Player 2 switches to a winning strategy in Gi and repeats. Note that an infinite play in which
Player 2 alternates infinitely often between a winning strategy in Gi and a winning strategy
in Ri necessarily visits Fd infinitely often and is thus winning for Player 2 in G. ◀

We conclude with the following theorem. Proving that threshold budgets satisfy the
average property is done by induction on the parity indices.

▶ Theorem 17. Given a frugal-parity discrete-bidding game G, Alg. 1 terminates and returns
ThG. Moreover, ThG satisfies the average property.

5 Finding threshold budgets is in NP and coNP

We consider the following decision problem.

▶ Definition 18 (Finding threshold budgets). Given a bidding game G = ⟨V, E, k⟩, a vertex
v ∈ V , and ℓ ∈ [k], decide whether ThG(v) ≥ ℓ.

Consider a frugal-parity discrete-bidding game G with vertices V and consider a function
T : V → [k] ∪ {k + 1}. We describe a polynomial-time algorithm to check whether T = ThG .
Given such an algorithm, it is not hard to show that the problem of finding threshold budgets
is in NP and coNP. Indeed, given G, a vertex v, and ℓ ∈ [k], guess T and verify, using the
algorithm, that T = ThG . Then, check whether T (v) ≥ ℓ, and answer accordingly.

Our algorithm is based on a reduction to turn-based games. We first verify that T satisfies
the average property, and if it does not, we reject, following Thm. 17. Next, we construct the
partial strategy fT based on T as in Sec. 3.2. Recall that given a history that ends in v, the
function fT prescribes a bid and a set A(v) ⊆ V of allowed vertices for Player 1 to choose
from upon winning the bidding. A strategy f ′ agrees with fT if it bids in the same manner
and always chooses only allowed vertices. In order to verify whether T is a correct guess,
i.e., T = ThG , we construct a parity turn-based game GT,G in which a Player 1 strategy
corresponds to a strategy f ′ that agrees with f in G and a Player 2 strategy corresponds
to a response to f ′ in G. We show that the procedure is sound and complete; namely, if
Player 1 wins in GT,G , he wins in G (hence T ≥ ThG), and if T ≥ ThG , then Player 1 wins in
GT,G . Finally, in order to verify that T ≤ ThG , we apply the same procedure from Player 2’s
perspective.

5.1 From bidding games to turn-based games
Consider a function T that satisfies the average property, and let fT be the partial strategy
as constructed in Sec. 3.2. We construct a parity turn-based game GT,G such that if Player 1
wins in every vertex in GT,G , then T ≥ ThG .

Intuitively, GT,G simulates G. In each turn, Player 1’s bid is determined according to fT .
Suppose that Player 1 bids b. Player 2’s actions in GT,G represent responses to b. Namely,
Player 2 can choose between winning the bidding by bidding b⊕ 0∗ and in addition choosing
the successor vertex in G, or losing the bidding by bidding 0 and letting Player 1 decide how
the game proceeds.

A key challenge is keeping the size of GT,G polynomial in the size of G. Consider a
history that ends in a configuration ⟨v, B⟩, for B ≥ T (v). Recall that fT can prescribe one
of two possible bids: the bid that fT prescribes at ⟨v, B⟩ coincides either with the bid that it
prescribes in ⟨v, T (v)⟩ or ⟨v, T (v) ⊕ 0∗⟩, depending on which of the two agrees with B on
which player has the advantage. We obtain a polynomial-sized arena by representing every
configuration ⟨v, B⟩, for B > T (v)⊕ 0∗, with a vertex ⟨v,⊤⟩.

FSTTCS 2022

30:14 Computing Threshold Budgets in Discrete-Bidding Games

See an example of the construction in the App. A.
Formally, we define GT,G = ⟨V1, V2, E, γ⟩, where for i ∈ {1, 2}, the vertices Vi are

controlled by Player i, E ⊆ (V1 ∪ V2) × (V1 ∪ V2) is a collection of edges, and γ : V1 ∪
V2 → {1, 2, , . . . d} assigns parity indices to the vertices. The vertices of GT,G are V2 =
{⟨v, T (v)⟩, ⟨v, T (v)⊕ 0∗⟩, ⟨v,⊤⟩ : v ∈ (V ∪ S)} and V1 = {w1 : w = ⟨v, B⟩ ∈ V2, B ̸= ⊤}. We
define the edges in GT,G . The sinks in GT,G are of the form ⟨s, B⟩, for s ∈ S, or ⟨v,⊤⟩, for
v ∈ V . Sinks have self loops. We describe the other edges. Let w = ⟨v, B⟩ ∈ V2, where B ̸= ⊤
and v /∈ S. Intuitively, reaching w in GT,G means that G is in configuration ⟨v, B1⟩, where
B1 ≥ B and they agree on which player has the advantage. Thus, fT bids bT (v, B). Outgoing
edges from w model Player 2’s two options. First, Player 2 can choose to win the bidding
by bidding bT (v, B)⊕ 0∗ (any higher bid is wasteful on her part) and moving the token to
u ∈ N(v). The next configuration is intuitively ⟨u, B′⟩, where B′ = B ⊕ bT (v, B) ⊕ 0∗. If
T (u) ≤ B′ ≤ T (u) ⊕ 0∗, then ⟨u, B′⟩ ∈ V2 and we define E(⟨v, B⟩, ⟨u, B′⟩). Otherwise, we
truncate Player 1 budget by defining E(⟨v, B⟩, ⟨u,⊤⟩). We disallow transitions in which
Player 2’s bid exceeds her available budget, i.e., when bT (v, B) ⊕ 0∗ > k∗ ⊖ B. Second,
Player 2 can choose to move to w1 modeling Player 2 allowing Player 1 to win the bidding,
e.g., by bidding 0. In this case, Player 1’s budget is updated to B′ = B ⊖ bT (v, B) and
he moves the token to some vertex in A(u). Thus, the neighbors of w1 are ⟨u, B′⟩, for
u ∈ A(v). By the proof of Corollary 8, B′ ∈ {T (u), T (u)⊕ 0∗}, thus ⟨u, B′⟩ ∈ V2. Note that
all paths in GT,G are infinite. Finally, we define the parity indices. A non-sink vertex in
GT,G “inherits” its parity index from the vertex in G; namely, for w = ⟨v, B⟩ ∈ V2, we define
γ(w) = γ(w1) = p(v). We define γ so that Player 1 wins in sinks, thus we set the parity
index of a sink to be odd.

5.2 Correctness
In this section, we prove soundness and completeness of the approach. We start with
soundness.

▶ Lemma 19. If Player 1 wins from every vertex in GT,G, then T ≥ ThG.

Proof. We describe the main ideas of the proof and the details can be found in the full
version [10]. Assume that Player 1 wins from every vertex in GT,G and fix some memoryless
winning strategy f ′. We describe a winning strategy f∗ of Player 1 in G, which he can play
when he has a budget of at least T (v) at vertex v for all vertices v of G. This proves that
T ≥ ThG .

Suppose that G starts from c0 = ⟨v, T (v)⟩. We initiate GT,G from v0 = ⟨v, T (v)⟩. Suppose
that Player 2 plays according to a strategy g∗ in G. Player 1 simulates a Player 2 strategy g

in GT,G so that when G reaches a configuration c = ⟨u, B1⟩, the vertex in GT,G is w = ⟨u, B⟩,
where B ∈ {T (u), T (u)⊕ 0∗} agrees with B1 on the advantage. We describe how we simulate
g∗ with g, and how f∗ simulates f ′. Suppose that G is in configuration c = ⟨u, B1⟩ and GT,G
is in w = ⟨u, B⟩. We define f∗ to agree with fT and bid bT (u, B). If g∗ loses the bidding,
then we define g to proceed to w1 and we define f∗ to match the move of f ′ from w1. If g∗

wins the bidding in G, we define g to win the bidding and move the token as g∗ does. In the
full version [10], we show that the correspondence between the games is maintained.

Let π be the play in GT,G that results from f ′ and g and π∗ the play in G that results
from f∗ and g∗. Since f ′ is winning, π satisfies Player 1’s objective. We distinguish between
three cases. In the first case, π does not reach a sink in GT,G . Then, the play π∗ matches
π up to repetitions. Indeed, by removing occurrences of Player 1 vertices in GT,G from π

and projecting both plays on V , we obtain the same path. Recall that a Player 1 vertex

G. Avni and S. Sadhukhan 30:15

w1 has the same parity index of its predecessor w ∈ V2. It follows that since π satisfies
Player 1’s parity objective, so does π∗. In the second case, π reaches a sink ⟨s, T (s)⟩, where
s ∈ S. Then π∗ reaches a configuration ⟨s, B⟩. Since T satisfies the average property, we
have B ≥ fr(s), and Player 1 wins G. In the final case, π reaches a sink ⟨v,⊤⟩. Let ⟨u, B1⟩
be the corresponding configuration in G. Note that B1 is strictly greater than T (u) ⊕ 0∗.
Let B′ < B1 that agrees with B1 on the advantage and ⟨u, B′⟩ ∈ V2. Player 1 intuitively
adds B1 − B′ to his “spare change” account and plays as if his budget is B′ by restarting
GT,G from ⟨u, B′⟩. Since the sum of budgets is fixed and restarting f∗ in this manner strictly
increases his spare change, it follows that this last case can only occur finitely often. Thus,
eventually either of the first two cases must occur implying that f∗ is winning in G. ◀

▶ Corollary 20. In the proof of Lem. 19, we construct a winning Player 1 strategy f∗.
Note that f∗ only keeps track of a vertex in GT,G. Thus, its memory size equals the size of
GT,G, which is linear in the size of G. This is significantly smaller than previously known
constructions in parity and reachability bidding games, where the strategy size is polynomial
in k, and is thus exponential when k is given in binary.

The following lemma shows completeness; namely, that a correct guess of T implies that
Player 1 wins from every vertex in GT,G .

▶ Lemma 21. If T = ThG, then Player 1 wins from every vertex in GT,G.

Proof. We describe the idea of the proof and the details can be found in the full version
[10]. Assume towards contradiction that T ≡ FrPa-Th and there is ⟨v, B⟩ ∈ V2 that is losing
for Player 1. Since T (v) ≤ B, Player 1 has a winning strategy f∗ in G starting from ⟨v, B⟩.
Let g be a memoryless winning strategy for Player 2 in GT,G starting from ⟨v, B⟩. Based on
g, we construct a Player 2 strategy g∗ in G and show that it is winning against f∗, which
contradicts our assumption that f∗ is a Player 1’s winning strategy. Note that since f∗ is
fixed, when g∗ selects a bid, it is in response to the bid chosen by f∗. Let us consider an
arbitrary Player 1 strategy f in GT,G , which by our earlier assumption is losing for Player 1
from vertex ⟨v, B⟩ of V2 (because all Player 1 strategies are losing from there). Intuitively, we
construct g∗ such that it follows g as long as f∗ follows f . By doing so, Player 2 maintains
a similar correspondence between the play in G and GT,G as in the above: when G is in
configuration ⟨v, B1⟩, then GT,G is in vertex ⟨v, B1⟩. Since the two plays traverse the same
vertices in V and g is winning, if f∗ always agrees with f , the resulting play will be winning
for Player 2. Thus, f∗ must not agree with f at some point. Either he bids differently from
bT (v, B), or, upon winning he chooses a vertex u which is not in the allowed set of vertices.
First assume that he bids b at ⟨u, B⟩. If b > b(u, B), then g∗ bids 0, intuitively causing
Player 1 to pay too much for a bidding win. If b < bT (u, B), g∗ bids bT (u, B) intuitively
buying a win cheaply. In both cases, we show that G reaches a configuration c′ = ⟨u′, B′⟩
for B′ < T (u). Since we assume T ≡ ThG , Player 2 has a winning strategy from c′, which
she uses to win G. Second, we show that when he chooses some vertex u′ /∈ A(v) following
a winning bid of bT (v, B), the game reaches a configuration ⟨u′, B′⟩, such that B′ < T (u′),
and again Player 2 uses a winning strategy to win G. ◀

Finally, we verify that T ≤ ThG . We define a function T ′ : V → [k]∪{k+1} as follows. For
v ∈ V , when T (v) > 0 we define T (v) = k∗⊖(T (v)⊖0∗), and T ′(v) = k+1 otherwise. Lem. 10
shows that T ′ satisfies the average property. We proceed as in the previous construction
only from Player 2’s perspective. We construct a partial strategy fT ′ for Player 2 from T ′

just as fT is constructed from T , and construct a turn-based parity game GT ′,G . Let Th2
G

FSTTCS 2022

30:16 Computing Threshold Budgets in Discrete-Bidding Games

denote Player 2’s threshold function in G. That is, at a vertex v ∈ V , Player 2 wins when her
budget is at least Th2

G(v) and she loses when her budget is at most Th2
G(v)⊖ 0∗. Existence of

Th2
G follows from Thm. 17. Applying Lemmas 19 and 21 to Player 2, we obtain the following.

▶ Lemma 22. If Player 2 wins from every vertex in GT ′,G, then T ′ ≥ Th2
G. If T ′ ≡ Th2

G,
then Player 2 wins from every vertex of GT ′,G.

Given a frugal-parity discrete-bidding game G = ⟨V, E, k, p, S, fr⟩, a vertex v ∈ V , and
ℓ ∈ [k], we guess T : V → [k] ∪ {k + 1} and verify that it satisfies the average property. Note
that the size of T is polynomial in G since it consists of |V | numbers each of size O(log k).
We construct GT,G and GT ′,G , guess memoryless winning strategies for Player 1 and Player 2,
respectively. We check whether T (v) ≥ ℓ, and answer accordingly. Correctness follows from
Lemmas 19, 21, and 22. We thus obtain our main result.

▶ Theorem 23. The problem of finding threshold budgets in frugal-parity discrete-bidding
games is in NP and coNP.

6 Discussion

We study, for the first time, the problem of computing threshold budgets in discrete-bidding
games in which the budgets are given in binary. Previous algorithms for reachability and
parity discrete-bidding games have exponential running time in this setting. We developed
two algorithms for finding threshold budgets. The algorithms are complementary, and mirror
the situation in the continuous setting; there too, there are two proof techniques to show
results for threshold budgets, a fixed-point technique and an NP algorithm that relies on
knowledge of the structure of threshold budgets. Prior to this work, a fixed-point algorithm
was only known for reachability discrete-bidding games [14]. While our fixed-point algorithm
for parity discrete-bidding games has exponential worst case running time, it sheds light on
the structure of threshold budgets in these games. A structure that was crucial for our NP
and coNP membership proof. This latter proof adds to the previously observed good news on
discrete-bidding games: parity discrete-bidding games are not only a sub-class of concurrent
games that is determined [1], we show that it is a sub-class of concurrent games that are
represented in an exponentially-succinct manner and can still be solved in NP and coNP.

We leave open the exact complexity of finding threshold budgets. For the lower bound,
it was shown in [1] that turn-based parity games reduce to parity discrete-bidding games
with constant sum of budgets. Since solving turn-based parity games is a long-standing
open problem, we expect that it will be challenging to find a polynomial-time algorithm for
solving parity discrete-bidding games. Still, improved upper bounds might be possible to
obtain. For example, a quasi-polynomial time algorithm for parity discrete-bidding games or
a polynomial-time algorithm for reachability or Büchi discrete-bidding games.

References
1 M. Aghajohari, G. Avni, and T. A. Henzinger. Determinacy in discrete-bidding infinite-duration

games. In Proc. 30th CONCUR, volume 140 of LIPIcs, pages 20:1–20:17, 2019.
2 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
3 O. Amir, E. Kamar, A. Kolobov, and B. J. Grosz. Interactive teaching strategies for agent

training. In Proc. 25th IJCAI, pages 804–811. IJCAI/AAAI Press, 2016.
4 N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart contracts.

IACR Cryptology ePrint Archive, 2016:1007, 2016.

G. Avni and S. Sadhukhan 30:17

5 G. Avni and T. A. Henzinger. A survey of bidding games on graphs. In Proc. 31st CONCUR,
volume 171 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

6 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. J. ACM, 66(4):31:1–
31:29, 2019.

7 G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-duration poorman-bidding games. In
Proc. 14th WINE, volume 11316 of LNCS, pages 21–36. Springer, 2018.

8 G. Avni, T. A. Henzinger, and Ð. Žikelić. Bidding mechanisms in graph games. In In Proc.
44th MFCS, volume 138 of LIPIcs, pages 11:1–11:13, 2019.

9 G. Avni, I. Jecker, and Ð. Žikelić. Infinite-duration all-pay bidding games. In Proc. 32nd
SODA, pages 617–636, 2021.

10 G. Avni and S. Sadhukhan. Computing threshold budgets in discrete-bidding games. CoRR,
abs/2210.02773, 2022. arXiv:2210.02773.

11 J. Bhatt and S. Payne. Bidding chess. Math. Intelligencer, 31:37–39, 2009.
12 K. Chatterjee, A. K. Goharshady, and Y. Velner. Quantitative analysis of smart contracts. In

Proc. 27th ESOP, pages 739–767, 2018.
13 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
14 M. Develin and S. Payne. Discrete bidding games. The Electronic Journal of Combinatorics,

17(1):R85, 2010.
15 O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata emptiness. In

Proc. 30th STOC, pages 224–233. ACM, 1998.
16 A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial

games under auction play. Games and Economic Behavior, 27(2):229–264, 1999.
17 A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman games. Games of No

Chance, 29:439–449, 1996.
18 R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and

Economic Behavior, 112:166–193, 2018. doi:10.1016/j.geb.2018.08.005.
19 S. Muthukrishnan. Ad exchanges: Research issues. In Proc. 5th WINE, pages 1–12, 2009.
20 Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity laplacian.

J. Amer. Math. Soc., 22:167–210, 2009.
21 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages

179–190, 1989.
22 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

A Example of the construction of GT,G

▶ Example 1. We apply the construction to the frugal-reachability discrete-bidding game
G1 depicted in Fig. 1. We use the two functions T1, T2 : V → V → [k] ∪ {k + 1} that are
specified in the figure, both of which satisfy the average property and correspond to the
vectors T1 = ⟨4, 3∗, 3, 2⟩ and T2 = ⟨5, 4∗, 3∗, 2⟩.

The turn-based game GT1,G1 is depicted in Fig. 2a and GT2,G1 in Fig. 2b. In these two
games, the allowed actions given by fT1 and fT2 from each vertex are singletons. Thus,
Player 1 has no choice of successor vertex when winning a bidding, and so we omit Player 1
vertices from the figure. That is, all vertices are controlled by Player 2. Since the games
are reachability games, we omit the parity indices from the vertices. Player 1’s goal in
both games is to reach a sink. We label each edge with the bids of the two players that it
represents. Each vertex c has two outgoing edges labeled by ⟨b1, 0⟩ and ⟨b1, b1 ⊕ 0∗⟩, where
b1 is the bid that fT1 or fT2 prescribes at c. There are exceptions like ⟨v1, 5⟩ in GT2,G1 where
b1 = 1 and Player 2 cannot bid b1⊕ 0∗ = 1∗ since it exceeds her available budget when k = 5.

FSTTCS 2022

http://arxiv.org/abs/2210.02773
https://doi.org/10.1016/j.geb.2018.08.005
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

30:18 Computing Threshold Budgets in Discrete-Bidding Games

⟨v0, 4⟩

⟨v1, 4⟩ ⟨v0, 4∗⟩

⟨v2, 3⟩

⟨v0,⊤⟩

⟨t, 2⟩

(0,
0)

(1
, 0

)

(1, 1 ∗)

(0, 0 ∗)

(1,
1∗)

(0∗, 0)

(0
∗ , 1)

(1, 0)

(a) Corresponding to T1.

⟨v0, 5⟩

⟨v1, 5⟩ ⟨v0, 5∗⟩

⟨v2, 4⟩
⟨v1, 4∗⟩

⟨v2, 3∗⟩
⟨t, 2⟩

(0,
0)

(0, 0 ∗)

(1
, 0

)

(0∗, 0)

(2, 0)

(0∗ , 0)

(0
∗ , 1) (1 ∗

, 2)

(1∗ , 0)

(b) Corresponding to T2.

Figure 2 Turn-based games corresponding to G1 and two different guesses.

Note that in GT1,G1 has a cycle. Thus, Player 1 does not win from every vertex and T1
does not coincide with the threshold budgets. On the other hand, GT2,G1 is a DAG. Thus, no
matter how Player 2 plays, Player 1 wins from all vertices, which means that T2 = ThG1 . ◀

Dependency Matrices for Multiplayer Strategic
Dependencies
Dylan Bellier !

Univ Rennes, IRISA, CNRS, France

Sophie Pinchinat !

Univ Rennes, IRISA, CNRS, France

François Schwarzentruber !

Univ Rennes, IRISA, CNRS, France

Abstract
In multi-player games, players take their decisions on the basis of their knowledge about what
other players have done, or currently do, or even, in some cases, will do. An ability to reason in
games with temporal dependencies between players’ decisions is a challenging topic, in particular
because it involves imperfect information. In this work, we propose a theoretical framework based on
dependency matrices that includes many instances of strategic dependencies in multi-player imperfect
information games. For our framework to be well-defined, we get inspiration from quantified linear-
time logic where each player has to label the timeline with truth values of the propositional variable
she owns. We study the problem of the existence of a winning strategy for a coalition of players,
show it is undecidable in general, and exhibit an interesting subclass of dependency matrices that
makes the problem decidable: the class of perfect-information dependency matrices.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Logic and verification; Theory of computation → Automata over infinite objects

Keywords and phrases Temporal dependency, Delay games, Strategic reasoning, Temporal logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.31

Supplementary Material
InteractiveResource: https://francoisschwarzentruber.github.io/fsttcs2022/
Software (Source Code): https://github.com/francoisschwarzentruber/fsttcs2022

archived at swh:1:dir:eed0f57a83b2979abe84fd80bd804a6d730539b3

1 Introduction

In perfect-information multi-player games, decisions of players depend on their knowledge
about what other players have done so far. This setting is adopted in various logics for
strategic reasoning such as Alternating-time Temporal Logics [2] and Strategy Logic [4]. A
strategy for a player assigns to each history the next action to play. In imperfect-information
games, a player may have partial knowledge about what other players did, enforcing her
strategy to depend only on her knowledge about the current history.

However, there are situations where dependencies involve the knowledge about the future
of a play. For instance, Grove and Clarkson in [7] developed an online algorithm for the
bin packing problem with a look-ahead that takes advantage of information on some future
items. Look-ahead also exists in parsing: for LL(1) (for Left to right, Leftmost derivation)
grammars, the production rule to be chosen depends on the next symbol in the read word [1].
The extreme case occurs when the decisions depend on the entire future of the play. This is
the case for offline algorithms, where the future is finite (for bin packing it is given by the
sequence of all incoming items). It also appears for an infinite future, such as in Quantified
Propositional Linear-time Temporal Logic (QPTL) [14]: for a formula ∀a∃bφ, the choice of
the truth values of proposition b depends on all those of proposition a.

© Dylan Bellier, Sophie Pinchinat, and François Schwarzentruber;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dylan.bellier@irisa.fr
https://orcid.org/0000-0003-4763-5655
mailto:sophie.pinchinat@irisa.fr
mailto:francois.schwarzentruber@ens-rennes.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.31
https://francoisschwarzentruber.github.io/fsttcs2022/
https://github.com/francoisschwarzentruber/fsttcs2022
https://archive.softwareheritage.org/swh:1:dir:eed0f57a83b2979abe84fd80bd804a6d730539b3;origin=https://github.com/francoisschwarzentruber/fsttcs2022;visit=swh:1:snp:3e00a31cd21f0c178301f30a704bcd665c98e052;anchor=swh:1:rev:0a380664b92a8c41edb67fa7b6da0fda3aa39a41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Dependency Matrices for Multiplayer Strategic Dependencies

In addition, players may experience delays to receive information. For instance, a
proponent may have to play without having received yet information about the last three
moves of her opponent. Klein et al. in [8] formalized delay games as an extension of
Gale-Stewart games [6], i.e. two player infinite games with perfect information.

Our paper proposes a unifying theoretical framework to specify dependencies. To this
aim, we define the notion of a dependency matrix D. The entry D[a, b] is a generalized
integer (i.e. in Z ∪ {−∞,+∞}) so that

“Player a’s decision at time-step tcurrent depends on Player b’s
decisions up to time-step tcurrent +D[a, b]”.

The semantics of a dependency matrix relies on an involved machinery based on an imperfect-
information multi-player game, called the meta game. The positions of the game, called
configurations, are all the possible partial labelings of the timeline by the players – and are
thus in infinite number. The dynamics of the meta game is involved because the dependencies
may desynchronize players in their choices for labeling a time point.

Moreover, some matrices encode circular dependencies between players, leading to dead-
locked situations where none of the players can progress anymore in the meta game, preventing
them from completing their labeling of the timeline. Upon the study of this phenomenon,
we introduce the class of progressing matrices, that guarantee that any play in the meta
arena provides a full labeling of the timeline for each propositional variable. We establish an
effective property that characterizes these matrices. Thus, plays can be qualified as winning
or losing according to some linear-time formula, here an LTL formula.

We then study the problem called EWS (Existence of Winning Strategies) of deciding,
given a dependency matrix, a coalition (subset of players) and an LTL formula, the existence
of a joint strategy for the coalition such that any play brought about by this strategy satisfies
the LTL formula. Importantly, the imperfect-information feature of the meta game addresses
two issues: first, this game is not determined in general, and second, winning strategies for
the coalition need being uniform, a non-trivial notion in our rich setting since players may
be desynchronized.

Although we prove that EWS is unsurprisingly undecidable, we exhibit the subclass
of so-called perfect information dependency matrices for which EWS turns to a decidable
problem. We first consider the perfect information property for matrices whose values range
over Z and show how EWS can be reduced to solving a two-player perfect-information parity
game, yielding a 2-Exptime-complete complexity. We then generalize the perfect-information
property to arbitrary matrices and provide a decision procedure for EWS that generalizes
the one for QPTL [14], thus a non-elementary complexity.

To our knowledge, our proposal offers the first framework amenable for merging many,
and yet remote, game settings such as concurrent or turn-based games [2], (two-player) delay
games [8, 9, 16], logic QPTL [14], and Church Synthesis Problem (see the survey [5]) – it
can be shown that our framework also subsumes DQBF (Dependency Quantified Boolean
Formulae) [10].

Outline. In Section 2, we define dependency matrices, and show that they embed several
settings of games. Section 3 contains the necessary background. In Section 4, we present
the formal machinery to define an arena specified by a dependency matrix. In Section 5, we
address the problem EWS of the existence of winning strategies and show its undecidability
in the general case. Next, in Section 6, we design the decision procedure for EWS when
restricted to a perfect-information matrix input. We conclude our contribution in Section 7.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:3

2 Dependency Matrices and Examples

In this section, we propose the generic notion of dependency matrix and show that it subsumes
several classic settings in games. We denote players by lowercase letters such as a, b, c, etc.
A dependency matrix specifies the mutual dependencies between players’ decisions in a game
where each player owns an atomic proposition and aims at filling the whole timeline with a
valuation for it at each time point. Formally,

▶ Definition 1. A dependency matrix (or simply a matrix) over a finite set P of at least
two players is a matrix D = (D[a, b])a ̸=b∈P , and whose values range over Z ∪ {−∞,+∞}.

In a dependency matrix (D[a, b])a ̸=b∈P over P , the value D[a, b] describes how Player a’s
decisions depends on Player b’s: Player a’s decision for choosing the valuation at time point
t depends on the ones chosen by Player b at all time points in the interval [0, t+D[a, b]]. As
such, whenever D[a, b] < 0, Player a’s decision at time point t is independent of the decisions
made by Player b up to some time point before t. In particular, if D[a, b] = −∞, Player a’s
decisions is independent of any of Player b’s.

On the contrary, when D[a, b] ≥ 0, Player a’s decision at t depends on some Player b’s
decisions up to some time point after t, so that Player a is not able to make her decision
without this required information. In particular, if D[a, b] = +∞, Player a’s decisions do
depend on the decisions of Player b’s over all the timeline.

Because it is natural to consider that a player is aware of her own decisions so far, values
on the diagonal D[a, a] are irrelevant and are left undefined. As such, the matrix line D[a, .]
specifies the dependencies of Player a with respect to all other players, and her ability to
make a decision is constrained by all these dependencies. Unsurprisingly, some matrices may
yield blocking situations for some players, an issue that we address in the sequel.

Beforehand, we illustrate how several settings in games can be captured with matrices.

▶ Example 2 (Concurrent Game). In a standard concurrent game (as in logics ATL, ATL*),
players have to concurrently choose a move. Thus the move of one player can only depend
on the strict past of the history of moves. The corresponding matrix for 3 players is D1,
where strict past is reflected by the value −1.

D1 =


a b c

a · −1 −1
b −1 · −1
c −1 −1 ·



▶ Example 3 (Round Robin Game). In a Round Robin game, players play in turn: first
Player a, then b, then c. The matrix is D2: decisions of Player a depend on the strict past,
hence the values −1 in the a-row; decisions of b depend on the non-strict past of a (hence the
value 0), and the strict past of c (hence the value −1); decisions of c depend on the non-strict
past of the other players.

D2 =


a b c

a · −1 −1
b 0 · −1
c 0 0 ·



FSTTCS 2022

31:4 Dependency Matrices for Multiplayer Strategic Dependencies

▶ Example 4 (QPTL). In QPTL, dependencies stem from the order of the quantifiers: in the
formula ∃a∀b∃cφ where φ is an LTL-formula, Player a plays first on the full timeline and
independently of the others. Then b only depends on what Player a did. Finally, c depends
on what both Players a and b did. All this is reflected by matrix D3.

D3 =


a b c

a · −∞ −∞
b +∞ · −∞
c +∞ +∞ ·


▶ Example 5 (Church Synthesis). The Church Synthesis problem (see the survey [5]) consists
in responding to a stream of inputs by a stream of outputs, so that a given property holds. If
Player a and Player b are in charge of the output, Player c and Player d are in charge of
the input, the players dependencies are captured by matrix D4: output Players a and b only
depend on the past values of the input players, and that input Players c and d see all values
and have to respond on the spot.

D4 =


a b c d

a · −1 −1 −1
b −1 · −1 −1
c 0 0 · −1
d 0 0 −1 ·


▶ Example 6 (Fixed Delay games). A delay game is a two-player game, say between Player a
and Player b. Player a must make a given finite number k of moves beforehand and then,
Players a and b play in a turn based manner, hence maintaining the delay between them (see
Klein et al. [8]). 1 This setting is represented by the matrix D5.

D5 =
(a b

a · −k
b k − 1 ·

)
In the next section, we fix some notations and recall some useful definitions to develop

our theory around matrices.

3 Background

Given a finite alphabet Σ, we use the standard notations Σ⋆, Σω and Σ∞ for the set of
finite words, infinite words and their union respectively, and ε to denote the empty word.
Given two words u,w ∈ Σ⋆, we write u · w for their concatenation. Given a non-empty word
u = u0u1 · · ·un, we let |u| := n+ 1 be its length and set |ε| = 0. For k ≤ n, we write u[k] for
the letter uk, u[: k] for the k-th prefix u0 · · ·uk and u[k :] for the k-th suffix uk · · ·un.

We now recall the basics of Linear-time Temporal Logic (LTL) [13]. An LTL formula φ
(over a set AP of propositions) is evaluated on a labeling of the (discrete) timeline N, called
an LTL assignment2 λ ∈ ({⊤,⊥}ω)AP. We classically write λ |= φ whenever λ satisfies

1 In their setting, the delay is defined with a delay function that gives at each round the number of moves
the input Player has to make. However, Klein et al. mainly studied the fixed delay setting where the
function is set to 1 after the first round.

2 also named trace in the model-checking setting.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:5

φ (we omit the semantics here and refer to [13]). Alternatively, an LTL assignment can
be seen as an infinite word over the alphabet {⊤,⊥}AP, which makes a tight connection
between logic and automata: given an LTL formula φ, one can build – via the Vardi-Wolper
construction [17] together with the Safra-like translation from Büchi to parity acceptance
condition [11] – a deterministic infinite-word parity automaton Aφ whose language L(Aφ) is
composed of all LTL assignments that satisfy φ.

Noticeably, LTL can be extended with propositional quantifications to Quantified Pro-
positional Temporal Logic (QPTL), which enjoys the prenex normal form [15]. Therefore,
we can assume that QPTL formulas are all of the form Q⃗ φ, where Q⃗ is a finite sequence of
propositional quantifications (∃a or ∀a, where a ∈ AP) and φ is an LTL formula.

In this paper, we consider vectors of words over the alphabet {⊤,⊥}, indexed by a finite
subset P of AP. Given a vector U = (U a)a∈P of words over {⊤,⊥} and a player b ∈ P , we
denote by U (b) the b’s component of U . We extend all notations for words to word vectors
with their meaning component-wise. In addition, we introduce the notation U+au for the
word vector obtain by concatenating the word u to U (a).

As we will see, in our framework, the set AP of propositions for logics LTL and QPTL
will be the breeding ground to pick the finite set P of players for our matrices.

4 The Formal Setting of Dependency Matrices

From a matrix D over P , a coalition Γ ⊆ P and an LTL formula φ, we derive the meta game
⟨D,Γ, φ⟩ that specifies how players can progress to label the timeline with truth values for
thier proposition, what the coalition is, and what the winning condition is. Precisely, the
goal of the coalition is to make φ true.

The arena for the meta game, fully determined by the matrix D, is a modified multiplayer
Gale-Stewart arena [6] taking into account the information flow between players according
to D. We distinguish progressing matrices that yield arenas with only infinite plays where
no player is blocked, thus resulting in an LTL assignment. We also provide a graph-based
polynomial-time algorithm to characterize progressing matrices.

Sticking to progressing matrices, we develop the proper notions of (player and coalition)
strategies, along with the property of uniformity of a strategy that takes into account the
imperfect information feature of our games. Intuitively, a strategy in the meta game is
uniform if it depends only on the informations prescribed by the matrix. For pedagogical
purposes, we start with bounded-value matrices, then consider arbitrary ones.

4.1 The Meta Arena of a Matrix

We fix a matrix D with values in Z and we describe the meta arena of D. A position in
the meta arena is called a configuration, that is a word vector C that reflects the labeling
over {⊤,⊥} chosen so far by each player of P. The set of configurations is denoted by
C := ({⊤,⊥}⋆)P and the initial configuration C0 is the empty vector, namely εP .

▶ Example 7. Figure 1 shows the configuration C in which Player a played the word
C (a) = ⊤⊤⊥⊤⊥, Player b played C (b) = ⊥⊥⊤, and Player c played C (c) = ⊥⊥⊤⊤.

We define the dynamics of the game, namely which player can play/progress, in a given
configuration and which moves are available to her. Here is an intuitive example of those
dynamics with a Round Robin matrix.

FSTTCS 2022

31:6 Dependency Matrices for Multiplayer Strategic Dependencies

0 1 2 3 4 5

a
b
c

⊤ ⊤ ⊥ ⊤ ⊥
⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊤

Figure 1 A configuration C where Player a has chosen her labeling up to time point 4, Player b

up to time point 2 and Player c up to 3.

▶ Example 8. For the matrix D2 of Example 3 and for the first round, only Player a can
make a move of length 1. Then, assuming Player a chooses ⊤, the dependencies for each
player are depicted separately below: in each picture, the squares identify expected information
for the considered player to make her decision about the question mark (?).

Dependencies of Player a Dependencies of Player b Dependencies of Player c
0 1 2

a
b
c

⊤ ?

0 1 2

a
b
c

⊤
?

0 1 2

a
b
c

⊤

?

Observe that, here, neither Player a, nor Player c can make a move as the labeling of
Player b at time point 0 is not set. On the contrary, Player b is able to progress.

A move of a Player a is a word ua ∈ {⊤,⊥}⋆ that is to extend her labeling along the
timeline. For Player a to progress in configuration C , all her dependencies must be fulfilled.
This is formalized as follows: in order to make a move (necessarily starting at the time point
t = |C (a)|), Player a needs to access the labeling of Player b up to time point t + D[a, b],
included. Therefore, the value αC

a,b := |C (b)| − (D[a, b] + |C (a)|) characterizes the length
of a move available to Player a with regard to her dependency on Player b only. Thus, the
overall progress value of Player a, written αC

a , takes into account all quantities αC
a,b for b ̸= a

in a conjunctive manner, leading to consider the most restrictive one. Formally:

αC
a

def= max(0,min
b̸=a

(αC
a,b)) (1)

As such, αC
a is the maximum number of steps that Player a can perform in configuration C .

Note that, if some αC
a,b is negative (including 0), then Player a is stuck in C because Player b

has not yet provided the expected information.
Based on the progress value, a legitimate move for Player a in a configuration C is a

word in {⊤,⊥}αC
a . Then, a legitimate joint move in C is a vector of words u ∈ ({⊤,⊥}⋆)P

such that, for every Player a, u(a) is a legitimate move for a. We can now define the move
function between configurations:

∆ : C × ({⊤,⊥}⋆)P ⇀ C

(C, u) 7→
{
C · u when u is a legitimate joint move in C

undefined otherwise

with u a legitimate joint move. Remark that all players that can move have to play
concurrently and greedily (i.e. their maximum number αC

a of actions). A configuration C is
said reachable if there is a finite sequence of legitimate joint moves that leads to C from the
initial configuration C0.

▶ Proposition 9. Every reachable configuration, has a unique predecessor by ∆.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:7

Proof. Suppose that there are two reachable configurations C1 and C2 and two legitimate
joint moves u1 and u2 such that C1 · u1 = C2 · u2. Then, consider a reachable configuration
C ′ that is a prefix of both C1 and C2. Suppose toward contradiction that there are legitimate
joint moves u1′ ̸= u2′ with C1′ = C ′ · u1′ prefix of C1 and C2′ = C ′ · u2′ prefix of C2. Since
u1′ ≠ u2′, there is t ∈ N and a ∈ P such that C1′(a)[t] ̸= C2′(a)[t]. By definition, Ci′

is a prefix of Ci for i ∈ {1, 2}. Hence C1(a)[t] ̸= C2(a)[t] which is in contradiction with
C1 · u1 = C2 · u2. In conclusion, if C1 · u1 = C2 · u2, then C1 = C2 and u1 = u2. ◀

By Proposition 9, the meta arena of reachable configurations is a tree and every reachable
configuration contains all moves since the start of the game.

Observe that some meta arenas have reachable configurations C where for every Player
a, we have αC

a = 0. This happens because of cyclic dependencies. Here is an example.

▶ Example 10. Consider the matrix D6 on the right. Observe that Player b cannot make
any move because she needs Player a’s labeling at time point 1, but for Player a to label time
point 1, she needs the label of Player b at time point 0. This deadlocked situation is depicted
in Figure 2. However, observe that Player c can progress independently up to time point 3.

D6 =


a b c

a · −1 −1
b +1 · −1
c −4 −4 ·


0 1 2 3 4 5

a
b
c

⊤ ?
?
⊥ ⊥ ⊤ ⊤

Figure 2 Player a wants to know the moves of Player b and reciprocally.

Situations where some players eventually get stuck can be characterized by analyzing some
graph: for the case of Example 10, the graph is depicted below, and interestingly, it contains
the cycle (a, b, a) whose weight is 0, a positive value. We will see in the next section, where the
graph is formally defined, that such a cycle provides evidence that Players a and b eventually
get stuck.

a b

c

GD6 :
1−

−1

1

−1−5
−5

4.2 Progressing Matrix
We aim at characterizing matrices where no player gets stuck because of cyclic dependencies,
so that each play yields an assignment of the timeline in order to interpret the LTL winning
condition. Such matrices are called progressing and can be identified by means of their
adjacency weighted graph, here called the dependency graph.

▶ Definition 11. Given a matrix D = (D[a, b])a ̸=b∈P , the dependency graph of D is the
weighted directed graph GD = (V,E, r) where:

FSTTCS 2022

31:8 Dependency Matrices for Multiplayer Strategic Dependencies

V = P is the set of vertices,
E = {(a, b)|a ̸= b} is the set of edges,
r(a, b) = D[a, b] is the weight of the edge (a, b).
The following proposition gives a characterization of progressing matrices.

▶ Proposition 12. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

The graph GD6 of Example 10 has a non-negative 0-weight cycle (a, b, a), so, matrix D6
is not progressing. As a corollary, we have the following:

▶ Theorem 13. Deciding if a matrix is progressing is in PTIME.

Proof. The size of the dependency graph is linear in the size of the matrix and finding a
non-negative cycle is polynomial in the size of the graph. ◀

From now on, unless stated otherwise, we only consider progressing matrices, that we
keep calling “matrices” for simplicity. On the basis of such matrices, only infinite-horizon
plays take place that consist in consecutive applications of the move function ∆ in the meta
arena (see page 6):

▶ Definition 14. A play in the meta arena associated to a matrix is an infinite sequence of
configurations (Cn)n∈N where C 0 is the empty configuration, and for every n ∈ N, Cn+1 is
the successor of Cn.

The interested reader can explore the dynamics of plays at:

https://francoisschwarzentruber.github.io/fsttcs2022

Notice that along a play (Cn)n∈N, Cn+1 extends Cn, so that to the limit, the play naturally
yields a temporal assignment λ of the timeline: for every t ∈ N, and every Player a, we let
λ(t)(a) def= Cn(a)(t), for a sufficiently large integer n so that Cn(a)(t) is defined.

The next section focuses on strategies and winning strategies in the meta arena, where
we discuss how a strategy complies with a matrix.

4.3 Strategies in the Meta Arena
In this section, we fix a matrix D over P , a coalition Γ ⊆ P and an LTL formula φ. Classically,
a strategy maps histories to moves. However, since in our setting, a configuration fully
characterizes a history (Proposition 9), we can equivalently define strategies as mappings
from configurations to moves. A strategy for Player a ∈ Γ is a function f : C → {⊤,⊥}⋆

where f(C) prescribes a legitimate move for Player a.
Furthermore, we define a joint strategy for the Γ as a function F : C → ({⊤,⊥}⋆)Γ such

that F (C)(a) is a legitimate move for Player a ∈ Γ. A joint strategy F provides a strategy
Fa for each Player a ∈ Γ defined by: Fa(C) def= F (C)(a).

Given a joint strategy F for a coalition Γ, a play (Cn)n∈N is an outcome of F if for any
n ∈ N and any Player a ∈ Γ, we have Cn+1(a) = Cn(a) · Fa(Cn). We denote by out(F) the
set of outcomes of F . A joint strategy F is winning φ whenever all assignments associated
to the plays in out(F) satisfy φ.

However, in our dependency-based setting, a strategy is relevant only if it is uniform, in
the sense that they only rely on the information available to the player. We illustrate this
important feature in Example 15.

▶ Example 15. Consider matrix D7 and configurations C1 and C2 below.

https://francoisschwarzentruber.github.io/fsttcs2022

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:9

0 1

D7 =
(a b

a · −2
b −2 ·

)
C1 =

a
b

⊤ ⊤
⊥ ⊥

0 1

C2 =
a
b

⊤ ⊤
⊥ ⊤

When Player a in C1 comes to label time point 2, and since at time point 2, she can only
access Player b’s labeling up to time point 0, she cannot distinguish it from C2. However,
once she labels time point 2, she is able to access Player b’s label at time point 1, and is
allowed to take this information into account before choosing her label at time point 3. Now,
according to the matrix D7, we have αC1

a = αC2

a = 2. Although Player a cannot distinguish
between C1 and C2, she is allowed to choose different 2-length moves that only differ in their
second letters. Indeed, her choice at time point 2 has to be uniform (and therefore the same
in both configurations C1 and C2). On the contrary, she may play differently for her choice
at time point 3. For instance, the overall move in C1 can be ⊤⊥ while it is ⊤⊤ in C2.

We formalize the phenomenon described in Example 15 with equivalence relations between
configurations. In the example, Player a has to choose a move u0u1 but C1 and C2 are
indistinguishable for her when it comes to choosing the first letter u0 . However, they can be
distinguished for the choice of the second letter u1. Then, we need multiple relations, one for
each letter of a move.

Formally, we introduce an equivalence relation between configurations parameterized by a
scope k: two configurations C1 and C2 are k-indistinguishable for Player a, denoted C1 a∼

k

D

C2, whenever |C1(a)| = |C2(a)|, and for every Player b ̸= a and every t ≤ |C1(a)|+D[a, b]+k,
we have:

either both C1(b)(t) and C2(b)(t) are undefined (meaning k is greater than the progress
of b in both configurations), or
C1(b)(t) = C2(b)(t).

We resort to relations a∼
k

D to formalize the notion of uniform strategies in our framework,
where the parameter k is meant to range over [0,min(αC1

a , αC2

a)[.

▶ Definition 16. A strategy f for Player a is D-uniform whenever for any two configurations
C1 and C2, and any natural number k ≤ min(αC1

a , αC2

a),

C1 a∼
k

D C2 implies f(C1)[: k] = f(C2)[: k].

Observe that C1 a∼
k+1
D C2 implies C1 a∼

k

D C2. We generalize Definition 16 to joint
strategies in a natural way by requiring the uniform property for every individual strategy of
the joint strategy. For the rest of the paper, all strategies are implicitly D-uniform.

Before addressing the central decision problem of the existence of a winning joint strategy,
we extend our setting to allow matrices with infinite values.

4.4 Arbitrary Matrices
Recall, by Definition 1, that a value D[a, b] = −∞ indicates that Player a’s decision are
independent from Player b’s. In particular, if the matrix line D[a, .] is all filled with value
−∞, Player a fills the whole timeline in the first round. On the contrary, D[a, b] = +∞
forces Player a to wait until Player b has entirely filled the timeline.

A typical example of a matrix with infinite values is provided by the matrix D3 of
Example 4, and is reminiscent of what is expressed in the setting of the logic QPTL: in
this example, a play takes place as follows. First, Player a chooses an a-assignment of the

FSTTCS 2022

31:10 Dependency Matrices for Multiplayer Strategic Dependencies

timeline. Second, since Player a is done and Player b is independent from Player c, Player b
has all the required information for choosing the b-assignment over the timeline. Third and
finally, Player c can proceed for the c-assignment, and the play ends.

For the cases that mix finite and infinite value, we consider first Example 17
▶ Example 17. Consider matrix D8 below. In a play, Player b and Player c’s mutual
dependencies enforce them to proceed in turn for choosing their respective labeling, while
Player a cannot play until the other two have labeled the whole timeline.

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·


As observed in Example 17, (Z ∪ {−∞,+∞})-valued matrices may yield to “transfinite”

configurations (i.e. with possibly components in {⊤,⊥}ω instead of {⊤,⊥}⋆). As a result, a
play may now be a finite sequence of (possibly infinite) sequences of configurations. We can
adapt the notion of reachable configuration accordingly – since this is routine, we omit the
precise definition here.

From now on, unless stated otherwise, we consider arbitrary matrices. In the next section,
we address the decision problem EWS of the existence of a winning strategy.

5 Undecidability of EWS

We consider the following central decision problem EWS of deciding the Existence of a
Winning (uniform) Strategy for a coalition of players (EWS for short):
▶ Theorem 18. Let EWS be the following problem:
Input: A matrix D, a coalition Γ and an LTL-formula φ.
Output: “Yes” if and only if there is a D-uniform joint strategy for Γ that is winning for φ.
EWS is undecidable.

This reslut is unsurprising, given the imperfect-information nature of our multi-player
game.

Theorem 18 is proved by reducing the Tiling problem [3] to EWS. Recall that the Tiling
problem takes in input a finite set of square tiles and two binary connectivity relations
over the tiles, that specify which pairs of tiles may be adjacent (resp. horizontally and
vertically). The output is the answer to the question whether there exists a tiling of the
plane, that is a mapping from N2 to the set of tiles such that any two of adjacent tiles
respect the connectivity constraints. In a nutshell, our reduction involves four players τ1, τ2
(tilers) and c1, c2 (challengers): in a round, Challenger c1 chooses a place (x, y) in N2 and
privately communicates it to his tiler companion τ1 by playing ⊤x⊥⊤y⊥ω. Tiler τ1 then
responds by choosing a tile t independently of the choice of Challenger c2 and plays ⊤t⊥ω,
and symmetrically for Players τ2 and c2. This way, the two tilers play independently. The
two different Challengers are used to test the binary relations by choosing adjacent places.
The following matrix encodes this situation.

DTiling :=


c1 c2 τ1 τ2

c1 · −∞ −∞ −∞
c2 −∞ · −∞ −∞
τ1 +∞ −∞ · −∞
τ2 −∞ +∞ −∞ ·

.
In the next section, we present a decidable sub-case.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:11

6 Decidability of EWS for perfect-information Matrices

A close inspection of the proof of Theorem 18 reveals that not being able to circumvent
the amount of information hidden to players is a matter. We introduce the subclass of
perfect-information matrices where every player always has full information about the current
configuration before proceeding, yielding a meta game that is turn-based with perfect
information.

6.1 Definition and Properties
A meta game is perfect-information as long as two reachable configurations are not k-
indistinguishable, for every k. Actually, not being 0-indistinguishable is sufficient, since
k-indistinguishability are nested (see Section 4.3). Furthermore, for the meta arena to be
turn-based, we must guarantee that in each round, only one player can progress. This yields
the following definition.

▶ Definition 19. A matrix D is perfect-information if for every reachable configuration C :
for every player a and reachable configuration C ′ ̸= C , we have C ̸ a∼

0
D C ′ and

there is exactely one player a such that αC
a ≥ 1.

Remark that, by Definition 19, every move of a single player, from a reachable configuration
that is not the initial one, is necessarily of length 1. Indeed, if a player could make a move of
length strictly greater than 1, we could create another reachable configuration that would be
0-indistinguishable from the first one, a contradiction.

▶ Lemma 20. Let D be a perfect-information matrix, then αC
a ≤ 1 for any non-initial

reachable configuration C and every Player a.

Proof. By contradiction, suppose that there is a non-initial reachable configuration C1 with
αC1

a ≥ 2 for some Player a. Because D is progressing and perfect-information, there is a
unique Player b that can progress in ∆−1(C1). If b = a, we would not have αC1

a ≥ 2 because
players play greedily. Then, we have a ̸= b.

We now exhibit a reachable configuration C2 ̸= C1 such that C1 a∼
0
D C2. Let u1 be

the joint move leading to C1, that is ∆(∆−1(C1), u1) = C1. As exactly one player moves,
u1(c) = ε for every Player c ≠ b. We define the joint move u2 as follows: for every
Player c ̸= b, let u2(c) = ε and u2(b) = fliplast(u1(b)) where fliplast flips the last letter of
the word (mapping ⊤ to ⊥, and ⊥ to ⊤). For C2 = ∆(∆−1(C1), u2), we have |C1(a)| =
|C2(a)|, and C1(c) = C2(c) for Player c ̸= b. We have αCi

a,b ≥ 2 for i ∈ {1, 2}. Then, by
definition, |Ci(b)| − (D[a, b] + |Ci(a)|) ≥ 2, whence (D[a, b] + |Ci(a)|) ≤ |Ci(b)| − 2. Now,
let t ≤ |C1| + D[a, b]. By transitivity, t ≤ |Ci(b)| − 2. However, C1(b)[t] = C2(b)[t] for
t ≤ |C1(b)| − 2 since only the last letter of C1(b) differs from C1(b). Therefore, C1 a∼

0
D C2

which is a contradiction. ◀

▶ Corollary 21. Let D be a perfect-information matrix, and C a non-initial reachable
configuration, there is Player a with αC

a = 1 and for every other Player b, we have αC
b = 0.

We can use this result to establish a characterization of perfect-information matrices. Let
C be a reachable non-initial configuration and let Player a be the player that can progress
in C . By Corollary 21, we have αC

a = 1 and αC
b = 0 for every Player b ̸= a. We first make a

claim:

▷ Claim 22. αC
a,b = 1 and αC

a,b ≤ 0

FSTTCS 2022

31:12 Dependency Matrices for Multiplayer Strategic Dependencies

Using this claim, we obtain |C (b)|−(D[a, b]+|C (a)|) = 1 and |C (a)|−(D[b, a]+|C (b)|) ≤ 0.
Then, D[a, b] +D[b, a] ≥ −1. Since the matrix is progressing, we have D[a, b] +D[b, a] ≤ −1
and then D[a, b] +D[b, a] = −1. In fact, we show that this necessary condition is a precise
characterization of the perfect-information matrices.

▶ Theorem 23. A matrix D is perfect-information if and only if for all players a and b,
with a ̸= b we have D[a, b] +D[b, a] = −1.

We now show the reciprocal, namely, if D satisfies D[a, b] + D[b, a] = −1, then D is
perfect-information. The first step is to prove that, the associated meta arena is turn based.

▶ Lemma 24. For D with D[a, b] + D[b, a] = −1 whenever a ̸= b, there is at most one
Player a with αC

a ≥ 1 in every configuration C .

Proof. By contradiction, suppose αC
a,b ≥ 1 and αC

b,a ≥ 1. Then, αC
a,b +αC

b,a ≥ 2. Since αC
a,b =

|C (b)|−(D[a, b]+|C (a)|) and αC
b,a = |C (a)|−(D[b, a]+|C (b)|), we obtain D[a, b]+D[b, a] ≤ −2

which contradicts the assumption on D. ◀

It is left to prove that any two different reachable configurations are not a∼
0
D-equivalent

for any a. We here just give an intuition of the proof by contradiction. Suppose that
there are two different reachable configurations C1 and C2 such that C1 a∼

0
D C2. We can

assume without loss of generality that they are immediate successors of the same reachable
configuration C . We compare the progress values of Player a with the one of the only player
that can progress in C , and prove that the configurations C1 and C2 are equal.

6.2 A Parity Game to solve the Existence of a Winning Strategy
For perfect-information matrices, we establish a reduction from EWS to solving a parity
game, thus attaining decidability (Theorem 30). Consider a perfect-information matrix D, a
coalition Γ and a formula φ. We define the parity game G(D,Γ, φ) where the coalition Γ has
a winning D-uniform strategy if, and only if, Player 0 has a winning strategy in G(D,Γ, φ)
against Player 1.

The parity game G(D,Γ, φ) is built up from the deterministic parity automaton Aφ for
φ (see Section 3). Its plays simulate runs of automaton Aφ on the sequence of growing
configurations along a play in the meta arena. Positions in the parity games are pairs
composed of states of Aφ and buffers: a buffer β is a word vector (βa)a∈P with at least one
empty component. Formally, the set of buffers is:

{(βa)a∈P ∈ ({⊤,⊥}⋆)P | βb = ε for some b ∈ P}.

The buffer of a configuration is the “pending part” of the configuration, namely its greatest
suffix that is a buffer.

▶ Example 25. Consider the perfect-information matrix D9 below where a reachable config-
uration C and its buffer are depicted.

0 1 2 3 4

D9 =


a b c

a · 2 3
b −3 · −1
c −4 0 ·


C =

a
b
c

⊤ ⊤
⊤ ⊥ ⊥ ⊤
⊥ ⊥ ⊤ ⊤

buffer

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:13

We say that a buffer is reachable if it is the buffer of some reachable configuration. We
can show that in a reachable configuration, the single player that can progress only depends
on the buffer β of this configuration, and we write pβ this player.

We denote by B the set of reachable buffers, by B∃ the set of buffers β in B where
pβ ∈ Γ, and we let B def= B\B∃. Although our matrix is perfect-information, we remark that,
by Lemma 20, for the particular case of the empty buffer β0 (of the initial configuration),
Player pβ0 might be playing a long move. Moreover, it can be shown that the reachable
buffers are finitely many1 and that their number is exponential in the values of the matrix
(this is because the longest component of a reachable buffer is given by the biggest absolute
value in the matrix).

We now informally describe the parity game with its two players Player 0 and Player 1.
As said, a position in the parity arena is pair (q, β) composed of a state q of the automaton
and a buffer β . Position (q, β) belongs to Player 0 whenever β ∈ B∃, otherwise β ∈ B∀ and
it belongs to Player 1.

In a given position (q, β), only pβ progresses by choosing a move u ∈ {⊤,⊥}. We consider
the word vector obtained by catenating u to pβ ’s component in buffer β , that we write
β+pβ

u in the following.
If β+pβ

u is still a buffer we update the position to (q, β+pβ
u). Note that this is always

the case for the initial buffer β0. Otherwise, the first letter of word vector β+pβ
u is all filled

with labels on every component, and thus can be read by automaton Aφ. We then update
the position to the new current state of Aφ and to the buffer obtained by removing the first
letter of β+pβ

u (which is a buffer as β is not initial).
Formally, the parity game is the following.

▶ Definition 26. Given a perfect-information matrix D, a coalition of players Γ and a
deterministic parity automaton Aφ = (Q, q0,Σ, δ, par) with Σ = {⊤,⊥}P , we define the
parity game G(D,Γ, φ) = ⟨P0, P1, s0,→, parG⟩ where:

P0 = Q×B∃ is the set of positions for Player 0,
P1 = Q×B∀ is the set of positions for Player 1,
s0 = (q0, β

0) is the initial position,
(q, β) → (q′, β ′) when there is a legitimate move u for pβ in the meta arena such that:

1. either β+pβ
u is a buffer and q = q′ and β ′ = β+pβ

u.
2. or q′ = δ(q, (β+pβ

u)[0]) and β ′ = (β+pβ
u)[1:] and pβ is the only player s.t. βpβ

= ε;
parG(q, β) = par(q), that is the priority of a position (q, β) is the priority of the state q
in the automaton Aφ.

Note that the number of positions in the parity game is the product of the number of states
in the automaton and the number of buffers, and that the game has the same priorities as
the automaton.

▶ Proposition 27 (For a perfect-information matrix D). ⟨D,Γ, φ⟩ is a positive instance of
EWS if, and only if, Player 0 has a winning strategy in G(D,Γ, φ).

Proposition 27 gives us an upper bound complexity of EWS by the following algorithm.
1. Compute the deterministic parity automaton Aφ (accepting the models of φ);
2. Compute the parity game G(D,Γ, φ);
3. Solve G(D,Γ, φ).

1 Actually the set of reachable configurations is a regular language that can be recognized by a word
automaton with buffers as states.

FSTTCS 2022

31:14 Dependency Matrices for Multiplayer Strategic Dependencies

In the following, the size of the matrix D is the quantity |D| =
∑

a ̸=b |D[a, b]|. Observe
that we can build Aφ by using the Vardi-Wolper construction [17] with the Safra-like
translation from Büchi to parity acceptance condition [11], so that parity game of Step 2 has
O(22|φ| × 22|D|) positions and O(2|φ|) priorities, hence a 2-Exptime decision procedure for
EWS.

The next subsection, we show that this algorithm is essentially optimal by a reduction of
the Church Synthesis problem.

6.3 Reduction from the Church Synthesis problem
For the lower bound, we reduce the Church Synthesis for LTL properties [5, 12]. Our
Example 5 (page 4) illustrates the reduction.

▶ Definition 28. Given a coalition Γ, a Church matrix is a matrix D where for any two
players a ̸= b, we have:

D[a, b] =
{

0 if a /∈ Γ and b ∈ Γ
−1 otherwise

In essence, for Church matrices, players have the same knowledge about the current
configuration, allowing them to foresee their allies moves.

Observe that Church matrices may not be perfect-information, since the moves of every
player in a team (coalition or opponents) are concurrent. Nonetheless, we can “transform”
any Church matrix D into a linear sized perfect-information Round Robin matrix D′ (see
Example 3 and Definition 29) such that ⟨D,Γ, φ⟩ is a positive instance of EWS if, and only
if, ⟨D′,Γ, φ⟩ is a positive instance of EWS.

▶ Definition 29. A Round Robin matrix is a matrix D such that there exists a total order
≺ over P, where

D[a, b] =
{

−1 if a ≺ b

0 otherwise

The total order ≺ describes the order in which players will play (the player that is minimal
for ≺ plays first). Remark that D[a, b] +D[b, a] = −1 for any two players a ̸= b then every
Round Robin matrix is perfect-information (by Theorem 23). Given a Church matrix, we
can choose order ≺ so that all players in the coalition play before their opponents.

By summing up, we polynomially reduce2 a Church synthesis problem to a EWS problem
for a Church matrix and that is in turn linearly reduced to a EWS problem for a Round
Robin matrix. From this latter reductions, we can state the following.

▶ Theorem 30. EWS for perfect-information matrices is 2-Exptime-complete in the size of
the LTL formula.

In the next section, we extend the class of perfect-information matrices to allow some
matrices with infinite values, while keeping the decidability of EWS for the resulting superclass.
In particular, QPTL matrices (see Example 4 on page 4) falls into this class.

2 The size of the Church matrix is quadratic in the number of propositions of the Church synthesis
problem

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:15

6.4 Perfect-Information Matrices with Possibly Infinite Values
The proof of Proposition 27 can be extended to QPTL formulas instead of LTL formulas.
The following example illustrates a procedure for matrices with infinite values that yields a
generalization of the perfect-information property (see Definition 32).

▶ Example 31. Consider the following matrices where the latter is perfect-information:

D8 =


a b c

a · +∞ +∞
b −∞ · −1
c −∞ 0 ·

 and D′
8 =

(b c

b · −1
c 0 ·

)

According to D8, Player a depends on the whole labeling of Player b and Player c. Given
an LTL formula φ and say coalition {a, b}, we can answer the EWS on instance ⟨D8, {b}, φ⟩
as follows: we can first answer EWS for ⟨D′

8, {b}, ∃a φ⟩ (since D′
8 is perfect-information).

If no, then return no for ⟨D8, {b}, φ⟩. Otherwise, each outcome of the winning strategy for
Player 0 in ⟨D′

8, {b}, ∃a φ⟩ reflects a play ρ in ⟨D′
8, {b}, ∃a φ⟩. From play ρ, exhibit a unique

accepting run in A∃aφ. By tracing back this run inside Aφ, reconstruct Player a’s response
to the play ρ.

The procedure employed in Example 31 applies to arbitrary matrices as long as they
fulfill the Definition 32.

▶ Definition 32. An arbitrary matrix D is perfect-information if for any a ̸= b:
1. D[a, b] ∈ Z implies D[a, b] +D[b, a] = −1;
2. D[a, b] ∈ {−∞,+∞} implies D[a, b] = −D[b, a];
3. D[a, b] = +∞ implies D[a, c] ∈ {−∞,+∞}, for all c ̸= a.

Observe that the procedure is in fact non-elementary in the number of players with
+∞ dependencies. Moreover, since the validity problem for QPTL [14] reduces to EWS for
arbitrary perfect-information matrices, we have the following.

▶ Theorem 33. EWS is non-elementary for arbitrary perfect-information matrices.

7 Conclusion

We presented the expressive framework of dependency matrices that can capture several
game settings such as concurrent and turn-based games [2], (two-player) delay games [8,9,16],
logic QPTL [14], and Church Synthesis Problem [5].

We proved that the existence of a winning strategy for a coalition to achieve an LTL
formula (EWS) is undecidable for arbitrary matrices.

We then exhibited the subclass of perfect-information bounded-value matrices for which
the problem EWS is 2-Exptime-complete in the size of the formula.

Finally, we extended the class of perfect-information matrices with a narrow use of infinite
dependencies allowing to re-use known techniques of automata projection for QPTL. For
these matrices, EWS becomes non-elementary. Still our complexity analysis of EWS needs
beeing refine regarding the matrix parameter: we do not know yet the lower bound complexity
when the LTL formula is fixed.

A first track to continue this work concerns EWS for the whole class of bounded-
value matrices. We conjecture it is decidable, since, for a bounded-value matrix, each
k-indistinguishable equivalence class of a reachable configurations has a bounded size.

FSTTCS 2022

31:16 Dependency Matrices for Multiplayer Strategic Dependencies

A second track regards our transformation of Church matrices into perfect-information
Round Robin ones. We believe that our approach can generalize to a class of bounded-values
matrices enlarging the one of Church matrices.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986. URL: https://www.worldcat.org/oclc/12285707.

2 Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time temporal logic.
Journal of the ACM (JACM), 49(5):672–713, 2002.

3 Robert Berger. The undecidability of the domino problem. American Mathematical Soc., 1966.
4 Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Strategy logic. Information

and Computation, 208(6):677–693, 2010.
5 Bernd Finkbeiner. Synthesis of reactive systems. Dependable Software Systems Engineering,

45:72–98, 2016.
6 David Gale and Frank M Stewart. Infinite games with perfect information. Contributions to

the Theory of Games, 2(245-266):2–16, 1953.
7 Edward F. Grove. Online bin packing with lookahead. In Kenneth L. Clarkson, editor,

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, USA, pages 430–436. ACM/SIAM, 1995. URL: http://dl.
acm.org/citation.cfm?id=313651.313781.

8 Felix Klein and Martin Zimmermann. What are strategies in delay games? borel determinacy
for games with lookahead. arXiv preprint, 2015. arXiv:1504.02627.

9 Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
Logical Methods in Computer Science, 12, 2017.

10 Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications, 41(7-8):957–
992, 2001.

11 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3, 2007.

12 A Pnueli and R Rosner. On the synthesis of reactive systems. POPL, Austin, Texas, pages
179–190, 1989.

13 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

14 A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2-3):217–237,
1987.

15 Aravinda Prasad Sistla. Theoretical issues in the design and verification of distributed systems.
Harvard University, 1983.

16 Wolfgang Thomas, Lukasz Kaiser, and Michael Holtmann. Degrees of lookahead in regular
infinite games. Logical Methods in Computer Science, 8, 2012.

17 Moshe Y Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183–221, 1986.

A Proofs of Section 4

Given a matrix D, we say that a player a is eventually blocked if there is a natural k ∈ N
such that for all reachable configurations C , we have |C (a)| ≤ k. First we prove a lemma on
non-negative cycles. Intuitively, this lemma helps to find a player that can never progress in
a non-negative cycle.

https://www.worldcat.org/oclc/12285707
http://dl.acm.org/citation.cfm?id=313651.313781
http://dl.acm.org/citation.cfm?id=313651.313781
http://arxiv.org/abs/1504.02627

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:17

Given two vertices ci and cj of a non-negative cycle c = (c0, . . . , c|c|) (with c0 = c|c|), we
denote by wi the label r(ci, ci+1) and Wi,j the circular sum of the labels between ci and cj :

If i < j, then Wi,j = wi + · · · + wj−1;
else, Wi,j = Wi,|c| +W0,j .

Remark that for every index i, Wi,i is the sum of all labels of the cycle. So, for a non-negative
cycle, Wi,i ≥ 0. Furthermore, we denote by W ⋆

i the minimal sum W ⋆
i = minj(Wi,j).

▶ Lemma 34. Given a matrix D with a non-negative cycle c = (c0, . . . , c|c|), for all player
ci in the cycle, for all reachable configuration C , we have the following.

|C (ci)| ≤ max(0,−W ⋆
i)

Proof. We do the proof by induction on reachable configuration.
(base case) In the initial configuration C0, the property is obvious.
(inductive case) Consider a configuration C ′ = ∆(C, (ua)a∈P) for some joint move (ua)a∈P

and a reachable configuration C such that |C (ci)| ≤ max(0,W ⋆
i) for every ci ∈ c. Consider

i ∈ J0, . . . , |c|K.

|C ′(ci)| = |C (ci)| + αC
ci

= |C (ci)| + max(0,mina ̸=ci
(αC

ci,a))
≤ |C (ci)| + max(0, αC

ci,ci+1
)

≤ |C (ci)| + max(0, |C (ci+1)| −D[ci, ci+1] − |C (ci)|)
≤ max(|C (ci)|, |C (ci+1)| − wi)
≤ max(max(0,−W ⋆

i),max(−wi,−W ⋆
i+1 − wi))

The last inequality is obtained thanks to the inductive hypothesis. We now prove
that −W ⋆

i ≥ max(−wi,−W ⋆
i+1 − wi). Since wi = Wi,i+1, we have −W ⋆

i ≥ −wi. Let
j0 ∈ J0, . . . , |c|K such that W ⋆

i+1 = Wi+1,j0 . We now do a case study on j0.
if j0 = i+ 1, then, because c is non-negative, −W ⋆

i+1 − wi ≤ −wi.
if j0 ̸= i+ 1, then, −W ⋆

i+1 − wi = −Wi,j0 ≤ −W ⋆
i

Then we have |C ′(ci)| ≤ max(0,−W ⋆
i).

We have proven the property by induction. ◀

We now state a lemma to prove the other way around: that non-negative cycles are
necessary for a matrix not to be progressing.

▶ Lemma 35. Given a bounded matrix D, if there is a player that is eventually blocked, then
every player is eventually blocked.

Proof. Consider a bounded matrix D where there is a player a and a natural number k ∈ Z
such that for every reachable configuration C , we have |C (a)| ≤ k. We prove by induction
on reachable configurations that for each Player b, we have |C (a)| ≤ max(0, k −D[b, a]).
(base case) In the initial configuration C0, the property is obvious.
(inductive case) Consider a configuration C ′ = ∆(C, (ua)a∈P) for some joint move (ua)a∈P

and a configuration C such that |C (a)| ≤ k−D[b, a] for every b. Then, for every Player b
we have the following.

FSTTCS 2022

31:18 Dependency Matrices for Multiplayer Strategic Dependencies

|C ′(b)| = |C (b)| + αC
b

= |C (b)| + max(0,minc ̸=b(αC
b,c))

≤ |C (b)| + max(0, αC
b,a)

≤ |C (b)| + max(0, |C (a)| −D[b, a] − |C (b)|)
≤ max(|C (b)|, |C (a)| −D[b, a])
≤ max(max(0, k −D[b, a]), k −D[b, a])
≤ max(0, k −D[b, a])

We have proven the property by induction. ◀

Now, when all players are blocked, we use the next well known result of graph theory to
find our non-negative cycle.

▶ Lemma 36. Given a directed graph G with no self loop, if every vertex is the source of an
edge, then, there is a cycle in the graph.

Now, we can give a proof for Proposition 12.

▶ Proposition 12. A matrix D is progressing if, and only if, its dependency graph GD has
no non-negative-weighted cycle.

Proof. Given a matrix D with a non-negative cycle, then, by Lemma 34, we immediately
have that every player in the cycle is eventually blocked.

In a second time, consider a matrix D that is not progressing. Then, by Lemma 35,
for every player a, there is an integer ka such that for every reachable configuration C , we
have |C (a)| ≤ ka. Consider a configuration C such that every player is blocked. Then, by
immediate contradiction, for every player a, there is a player qa ̸= a such that αC

a,qa
≤ 0

(otherwise, there would be a player that can progress). The graph G = ⟨V,E⟩ with the vertices
V = P are the players of the matrix and the edges are defined as E = {(a, qa) | a ∈ P}.
Since, G is a directed graph with no self loop, by Lemma 36, there is a cycle c = (c0, . . . , c|c|)
in the graph thus, for every i ∈ J0, . . . , |c| − 1K, we have ci+1 = qci and c|c| = c0. We have
the following.∑|c|−1

i=0 αC
ci,ci+1

=
∑|c|−1

i=0 |C (ci+1)| −D[ci; ci+1] − |C (ci)|
= −

∑|c|−1
i=0 D[ci; ci+1]

Since αC
ci,ci+1

≤ 0 for every i ∈ J0, . . . , |c|K, we have proven that c is a non-negative cycle. ◀

B Proofs of Section 6

We now address the proof of Theorem 23. The first direction states that a perfect-information
matrix D satisfies that for every different Players a and b, we have D[a, b] +D[b, a] = −1 and
is presented in Section 6.1. We just need to prove Claim 22. Recall that C is a reachable
non-initial configuration and Player a is the player that can progress in C . By Corollary 21,
we have αC

a = 1 and αC
b = 0 for every player b ̸= a. We consider a player b ̸= a.

▷ Claim 22. αC
a,b = 1 and αC

a,b ≤ 0

Proof. First we prove that αC
a,b ≤ 0. Remark that, in C , Player a has two legitimate moves:

⊤ and ⊥. Let C1 = ∆(C, (⊤)a) and C1 = ∆(C, (⊥)a). Note that C1 and C2 are reachable.
Toward contradiction, assume that αC

a,b > 0. We prove the contradiction C1 b∼
0
D C2. We

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:19

have αC
a,b = |C (a)| − (D[b, a] + |C (b)|) > 0. Then |C (a)| > D[b, a] + |C (b)|. Therefore, for

all t ≤ D[b, a] + |C (b)|, we have t < |C (a)|. And because C1(a)(t) = C (a)(t) = C2(a)(t), we
conclude that C1 b∼

0
D C2.

Then we prove that αC
a,b = 1. By definition, αC

a,b ≥ 1. Toward contradiction, suppose
αC

a,b > 1. Let C ′ be the configuration defined by C ′(c) = C (c) for all c ̸= b and C ′(b) =
fliplast(C (b)). We have that C ′ is reachable and, by the same kind of reasoning than previous
point, we have C a∼

0
D C ′, which is in contradiction with the assumption on D. ◁

Let us prove the other direction, namely that a matrix D is perfect-information if
D[a, b] + D[b, a] = −1 for every pair of different Players a and b. Lemma 24 states that
the meta game of such a matrix is turn based. Now, we need to prove that two different
reachable configurations are not 0-indistinguishable. To do so, we first show two results on
0-indistinguishable relations. These results allow us to consider the “first time” at which two
configurations diverge while being 0-indistinguishable.

▶ Lemma 37. Given a matrix D and two reachable configurations C and C ′, with (Ck)k≤n

and (C ′k)k≤m such that Cn = C and C ′m = C ′. If n ≥ m then, for every Player a we have
|C (a)| ≥ |C ′(a)|.

Proof. The proof is done by induction on n−m.
(base case) If n = m, we do an induction on n.

(base case) If n = m = 0, then C = C ′ = C0, the property is immediate.
(induction) Suppose the property holds for some n,m ∈ N with n = m. Consider
C and C ′ reachable. There are (Ck)k≤n+1 and (C ′k)k≤m+1 with Cn+1 = C and
C ′m+1 = C ′. By inductive hypothesis, we have |Cn(a)| = |C ′m(a)| for every Player a.
Then, αCn

a = αC ′n

a and so, |C (a)| = |C ′(a)|.
(induction) Suppose the property holds for some n,m ∈ N with n ≥ m. Consider C and

C ′ reachable: there are (Ck)k≤n+1 and (C ′k)k≤m with Cn+1 = C and C ′m = C ′. By
inductive hypothesis, for every Player a |Cn(a)| ≥ |C ′m(a)| and because |Cn+1(a)| ≥
|Cn(a)|, we have |Cn+1(a)| ≥ |C ′m(a)|.

We have proved the property by induction. ◀

▶ Lemma 38. Given a dependency matrix D, and two reachable configurations C and C ′

that are non-initial, if C a∼
0
D C ′, then, one of the following holds.

1. ∆−1(C) a∼
0
D C ′

2. C a∼
0
D ∆−1(C ′)

3. ∆−1(C) a∼
0
D ∆−1(C ′)

Proof. Consider two reachable configurations C and C ′ such that C a∼
0
D C ′. By definition,

|C (a)| = |C ′(a)|, and for every Player b ̸= a, every t ≤ |C (a)| +D[a, b], we have C (b)(t) =
C ′(b)(t). Since C and C ′ are reachable, there are two sequences of successive configurations
(Ck)k≤n and (C ′k)k≤m such that Cn = C and C ′m = C ′. By symmetry we can assume
n ≥ m. We do a case study.
If n = m, then ∆−1(C) and ∆−1(C ′) are also reachable and their sequences have the same

length. By Lemma 37 for every player b, we have that |∆−1(C)(b)| = |∆−1(C ′)(b)|. Imme-
diately, |∆−1(C)(a)| = |∆−1(C ′)(a)| and because C a∼

0
D C ′, for every t ≤ |∆−1(C)(a)| +

D[a, b] ≤ |C (a)| +D[a, b], we have ∆−1(C)(b)(t) = C (b)(t) = C ′(b)(t) = ∆−1(C ′)(b)(t).
Hence, ∆−1(C) a∼

0
D ∆−1(C ′)

FSTTCS 2022

31:20 Dependency Matrices for Multiplayer Strategic Dependencies

If n > m then ∆−1(C) is reachable with a sequence of length n−1 ≥ m as ∆−1(C) = Cn−1

then, by Lemma 37, for every player b, we have |∆−1(C)(b)| ≥ |C ′m(b)|. And, because
C

a∼
0
D C ′, we have |C (a)| = |C ′(a)|, then |∆−1(C)(a)| = |C ′(a)|. Furthermore, for

every t ≤ |∆−1(C)(a)| +D[a, b], if both ∆−1(C)(b)(t) and C ′(b)(t) are defined, we have
∆−1(C)(b)(t) = C (b)(t) = C ′(b)(t). Finally, we prove that C (b)(t) is defined if and only
if C ′(b)(t) is defined. By Lemma 37, we already have that |∆−1(C)(b)| ≥ |C ′m(b)|, and
if ∆−1(C)(b)(t) is defined, so is C (b)(t), and by hypothesis, so is C ′m(b)(t).

We have proved the property. ◀

We now prove the theorem.

▶ Theorem 23. A matrix D is perfect-information if and only if for all players a and b,
with a ̸= b we have D[a, b] +D[b, a] = −1.

Proof. The first direction is presented in Section 6.1. For the other direction, consider D
such that D[a, b] +D[b, a] = −1. By Lemma 24, there is only one player that can progress in
any reachable configuration. Is left to prove that for any two reachable configurations C and
C ′ with C ̸= C ′, for every player a, we have C ̸ a∼

0
D. The proof is done by contradiction.

Suppose that there are two different reachable configurations C1 and C2 with C1 a∼
0
D C2.

Then, by Lemma 38, we can assume that ∆−1(C1) = ∆−1(C2) = C . Let b the player that
can progress in C . Then, for all c ̸= b, we have C (c) = C1(c) = C2(c) and, for all t < |C (b)|,
we have C (b)(t) = C1(b)(t) = C2(b)(t). Because C1 ̸= C2, then we necessarily have the
following.

C1(b)(t0) ̸= C2(b)(t0) for some t0 ∈ {|C (b)| − αC
b , |C (b)| − 1} (2)

Since αC
b,a ≥ αC

b , we have |C (a)| − (D[b, a] + |C (b)|) ≥ αC
b . As Player a does not progress

in C , we obtain |C1(a)| − (D[b, a] + |C (b)|) ≥ αC
b . By hypothesis D[b, a] = −1 −D[a, b], we

have |C1(a)| + 1 +D[a, b] − |C (b)| ≥ αC
b and because |∆−1(C1)(b)| +αC

b = |C1(b)|, we have:

|C1(a)| +D[a, b] ≥ |C1(b)| − 1 (3)

Finally, since C1 a∼
0
D C2, we have that C1(b)(t) = C2(b)(t) for every t ≤ |C1(a)| +D[a, b].

In particular, thanks to Equation (3), we can take t = t0, and we have C1(b)(t0) = C2(b)(t0),
in contradiction with Equation (2). ◀

C Reduction from Church matrices to Round Robin matrices

We now prove the claim made in Section 6.3 that Church matrices can be reduced to Round
Robin matrices.

From a Church matrix D for a coalition Γ, we define a Round Robin matrix Rob(D) as
follows. We take an arbitrary order ≺ on the players such that for every Player a ∈ Γ and
every Player b /∈ Γ, it holds a ≺ b. Rob(D) is the Round Robin matrix for this order.

▶ Lemma 39. Given an LTL formula φ and a Church matrix D, there is a winning joint
D-uniform strategy iff there is a winning joint strategy Rob(D).

Proof. Suppose that there is a winning joint strategy F for Γ that is Rob(D)-uniform. Only
the moves of players of the coalition can make F non-D-uniform. But, given the joint strategy
for the whole coalition, we cannot reach two configurations that are equal on everything
except a labeling of a player of the coalition because our strategies are deterministic. Thus,
in practice, F is D-uniform.

D. Bellier, S. Pinchinat, and F. Schwarzentruber 31:21

Conversely, consider two configurations C1 and C2 such that C1 a∼Rob(D) C
2 for some

a ∈ Γ. We denote by k the length of C1(a). Then for every b ∈ P, if a ≺ b, we have
C1(b)[: k − 1] = C2(b)[: k − 1] and otherwise, C1(b)[: k] = C2(b)[: k]. Because we chose the
order so that a ≺ b for every a ∈ Γ and b /∈ Γ, we have that C1 a∼D C2. Thus every strategy
D-uniform is Rob(D)-uniform. ◀

D Proof of Theorem 33

▶ Theorem 33. EWS is non-elementary for arbitrary perfect-information matrices.

Proof. In this proof, we use the notation F↾P\{a} to denote the function F restrained to the
domain P\{a}. Given a dependency matrix D, we decompose the set of Players P as follows.

P∞ := {a ∈ P | There is b ∈ P such that D[a, b] = +∞}
PZ := {a ∈ P | For all b ∈ P it holds D[a, b] < +∞}

We reason by induction on the size of P∞. The base case is |P∞| = 0. In this case, we
can apply Theorem 30.

Suppose that we can decide the EWS problem for matrices with |P∞| = n for some n ∈ N.
We now prove that we can decide the problem for matrices with |P∞| = n+ 1. Consider a
matrix D such that |P∞| = n+ 1, a coalition Γ and a QPTL formula ψ. We define an order
≺ on P∞ that is given as follows. a ≺ b iff for all c ∈ P , if D[b, c] = +∞, then D[a, c] = +∞.
Intuitively, a ≺ b means that Player a is to play after Player b. Consider Player a, the
smallest player for this order. For all players b different than a we have D[a, b] = +∞. We
now construct a new instance of the problem by projecting out Player a.
If (a ∈ Γ) we state Γ′ = Γ\{a} and ψ′ = ∃a. ψ. By inductive hypothesis, we can decide

whether there is a joint strategy winning for the entry ⟨D′,Γ′, ψ′⟩. Let us prove that
⟨D′,Γ′, ψ′⟩ is a positive instance iff ⟨D,Γ, ψ⟩ is a positive instance. If there is a joint
strategy F ′ for the coalition winning for the entry ⟨D′,Γ′, ψ′⟩, then, for every play
(Cn

1)n, . . . , (Cn
k)n in the meta game of D′, the assignment λ which is the limit of that

play satisfy ⟨D′,Γ′, ψ′⟩. Therefore, there is an infinite word uλ such that λ[a 7→ uλ]
satisfies ψ′. Then we define the joint strategy F as follows. For every Player b ̸= a, we
set Fb = F ′

b. For Player a, consider a configuration C such that αC
a > 0. Because of the

dependencies of Player a, it holds that |C (b)| = +∞ for every Player b ̸= a. Let λ be the
temporal assignment on P\{a} defined by C . We set Fa(C) = uλ. This joint strategy is
winning. The converse follows the same idea: if there is F winning for the entry (D,Γ, ψ)
then, the joint strategy F ′ = F↾P\{a} is winning for the entry (D′,Γ′, ψ′).

If (a /∈ Γ) we state ψ′ = ∀a. ψ. We then decide the instance ⟨D′,Γ, ψ′⟩. Joint strategies for
the coalition translate naturally between the two instances. If F ′ is winning for ⟨D′,Γ, ψ′⟩,
then every play in the outcome of F ′ satisfies ∀aψ. Then, by defining F (C) = F ′(C ↾P\a)
we define a wining strategy for ⟨D,Γ, ψ⟩. The converse is similar. ◀

FSTTCS 2022

Semilinear Representations for Series-Parallel
Atomic Congestion Games
Nathalie Bertrand #

Univ Rennes, Inria, CNRS, IRISA, France

Nicolas Markey #

Univ Rennes, Inria, CNRS, IRISA, France

Suman Sadhukhan #

Univ Rennes, Inria, CNRS, IRISA, France
University of Haifa, Israel

Ocan Sankur #

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
We consider atomic congestion games on series-parallel networks, and study the structure of the sets
of Nash equilibria and social local optima on a given network when the number of players varies.
We establish that these sets are definable in Presburger arithmetic and that they admit semilinear
representations whose all period vectors have a common direction. As an application, we prove that
the prices of anarchy and stability converge to 1 as the number of players goes to infinity, and show
how to exploit these semilinear representations to compute these ratios precisely for a given network
and number of players.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Solution concepts in game theory

Keywords and phrases congestion games, Nash equilibria, Presburger arithmetic, semilinear sets,
price of anarchy

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.32

Funding This research was partially supported by ISF grant no. 1679/21.

1 Introduction

Network congestion games are used to model situations in which agents share resources such
as routes or bandwidth [31], and have applications in communication networks (e.g. [1]). We
consider the atomic variant of these games, where each player controls one unit of flow and
must assign it to a path in the network. All players using an edge then incur a cost (a.k.a.
latency) that is a nondecreasing function of the number of players using the same edge. Since
all players try to minimize their own cost, this yields a noncooperative multiplayer game. It
is well known that Nash equilibria exist in these games [31] but that they can be inefficient,
that is, a global measure such as the total cost, or the makespan may not be minimized by
Nash equilibria [30].

To quantify this inefficiency, [27] introduced the notion of price of anarchy (PoA), which
is the ratio of the cost of the worst Nash equilibrium and the social optimum. Here, social
optimum refers to the sum of the individual costs. A tight bound of 5

2 on this ratio was
given in [3, 9]. Various works have studied bounds on the PoA for restricted classes of
graphs or types of cost functions; see [28]. While the price of anarchy is interesting to
understand behaviors that emerge in a system from a worst-case perspective, the best-case is
also interesting if, for instance, the network designer is able to select a Nash equilibrium.

© Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathalie.bertrand@inria.fr
https://orcid.org/0000-0002-9957-5394
mailto:nicolas.markey@irisa.fr
https://orcid.org/0000-0003-1977-7525
mailto:suman.sadhukhan@inria.fr
mailto:ocan.sankur@irisa.fr
https://orcid.org/0000-0001-8146-4429
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Semilinear Representations for Series-Parallel Atomic Congestion Games

The price of stability (PoS) is thus the ratio between the cost of the best Nash equilibrium
and the social cost, and was studied in [2]; a bound of 1 +

√
3/3 was given in the atomic

case; see [7, 8, 2].
These bounds have been studied for restrictions of this problem such as particular classes

of graphs. One such class is series-parallel networks which are built using single edges, or
parallel and serial composition of smaller series-parallel networks (see e.g. [34]). On these
networks with affine cost functions, [24] reports that PoA is between 27

19 and 2, where a
previous known lower bound due to [19] was 15

11 . [19] also proves an upper bound on PoA for
extension-parallel networks which are a strict subclass of series-parallel networks.

While tight bounds are known for atomic network congestion games and even for particular
subclasses, this does not help one to evaluate the price of anarchy of a given specific game
with a given number of players. In fact, the upper bounds mentioned above are obtained
by building particular networks, and these are shown to be tight by exhibiting families of
instances in which both the networks and the number of players vary. One of our objectives
is to provide tools to analyze a given network congestion game, by computing both ratios
precisely for varying numbers of players. We are interested both in the case of a given
number of players, and in the case of the limit behavior. Note that we are considering a hard
problem since computing extreme Nash equilibria, that is, best and worst ones, is NP-hard
in networks with only three and two players respectively [33].

In this paper, we consider series-parallel networks with linear cost functions and establish
interesting properties of their Nash equilibria and social optima. We start with the observation
that Nash equilibria and locally social optima can be expressed in Presbuger arithmetic;
it follows that these sets admit semilinear representations [22]. Our main result is that
that these semilinear sets have a particular structure. In fact, the flows (i.e. edge loads)
induced by Nash equilibria and local social optima admit semilinear representations with a
common direction for all period vectors, which is moreover efficiently computable. We call
this direction the characteristic vector of the network. Intuitively, this vector determines how
the flow evolves in Nash equilibria and social local optima as the number of players increases.

We believe that the form of these representations and the characteristic vector have
an interest on their own. We give one application of these representations here, namely,
that the PoA and the PoS both tend to 1 as the number of players goes to infinity in
series-parallel networks with linear cost functions with positive coefficients. This result
was proven recently [37]; we provide here new techniques and thus an alternative proof.
Observe that a similar result holds in nonatomic congestion games [11, 10] (see Section 6 for
a discussion).

We also illustrate how these semilinear representations allow one to study the evolution of
PoA and PoS for a given network. The computation of these representations is an expensive
step, but once this is done, thanks to the particular form of the representations, for any n,
one can easily query the exact value for PoA and PoS in the network instantiated with n

players. One can thus analyze both ratios precisely and specifically for a given network as a
function of n, while the limits will always be 1.

Illustrating Example

Let us illustrate our results on a simple example. Consider the network with two parallel links
in Figure 1a. There are n players who would like to go from src to tgt, by taking either the
bottom edge (b) with the cost function x 7→ x, or the top edge (t) with cost function x 7→ 4x.
The cost function determines the cost each player pays when taking a given edge, and it is a
function of the total number of players using the same edge. For instance, for n = 4, assume

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:3

that 3 players use b, and 1 uses t. Then, each player using b pays a cost of 3, while the only
player using t pays 4. Here, a strategy profile can be seen as a pair (k, n− k) determining
how many players take t and how many take b.

src tgt

b, 1

t, 4

(a) A network with two parallel links where each
player can choose either the top edge (t) with cost
x 7→ 4x, or the bottom edge (b) with cost x 7→ x.

0
1
2
3
4
5
6
7
8

0 4 8 12 16 20 24 28

Pl
ay

er
s

ta
ki

ng
t

Players taking b

(b) Nash equilibria in the network on the left for
varying total numbers of players. There is a point
at coordinates (x, y) if a strategy profile assigning x
players to b, and y players to t is a Nash equilibrium.

Figure 1 Analysis of a simple network congestion game.

Intuitively, in Nash equilibria, the number of players taking b should be roughly four
times the number of them taking t; so 4

5 of them should take b, and 1
5 of them should take t.

This would make sure that both edges have identical cost, and make profitable deviations
impossible. Although this intuition holds in the nonatomic case, players cannot always be
split with this proportion in the atomic case, as in the case of n = 4 above; and there are
indeed equilibria that do not match this proportion exactly. Figure 1b shows the Nash
equilibria in this game, while the line with direction (4, 1) shows the ideal distribution (as
in the nonatomic case). Not all Nash equilibria are on this line, but one can notice that
they do form a tube around this line that go in the same direction. Formally, our results
determine that the Nash equilibria form the semilinear set BNE + δ⃗ · N, where δ⃗ = (4, 1),
and BNE = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (3, 1)}. In other terms, it is the union of the
integer points of six lines with the same direction vector δ⃗.

Similarly, we describe the set of locally social optimal profiles and show that it admits a
semilinear representation. Locally optimal profiles are those in which the social cost cannot
be decreased by changing the strategy of a single player; the formal definition is given in
Section 3.1. It turns out that these have a structure very similar to that of Nash equilibria.
In our example, local optima are given by BSO + δ⃗ · N, thus with the same vector δ⃗ as above,
and with BSO = {(0, 0), (1, 0), (2, 0), (2, 1)}.

The particular structures of these semilinear sets we obtain allow us to compute the prices
of anarchy and stability for any given number of players. In fact, given n, one can easily find,
in a set B + δ⃗ ·N, all strategy profiles with n players. So one can compute the worst and the

1

1.05

1.1

1.15

1.2

1.25

0 4 8 12 16 20 24 28
Players

PoA
PoS

Figure 2 Prices of anarchy and stability as a function of n.

FSTTCS 2022

32:4 Semilinear Representations for Series-Parallel Atomic Congestion Games

best Nash equilibria, as well as the social optimum for any given n. The plot in Fig. 2 shows
how PoA and PoS evolve as n increases, and was calculated from the previous representations.
This plot illustrates our objective of analyzing the inefficiency of these games precisely for
varying n. Even in this simple example, PoA and PoS can significantly vary depending on n,
and they are far from the known tight bounds for the whole class of networks. One can
notice in Fig. 2 that both PoA and PoS seem to converge to 1 as n increases. This is indeed
the case and is a consequence of our results (Theorem 14). We believe that this approach
can allow one to better understand the specific network under analysis. Section 5 contains
more examples.

Paper Overview. We provide formal definitions in Section 2. Section 3 characterizes the
form of semilinear representations of local social optima; and Section 4 proves that of Nash
equilibria. Section 5 shows how to use these representations to compute PoA and PoS. We
provide more discussion on related work in Section 6, and present conclusions in Section 7.

2 Preliminaries

2.1 Network Congestion Games and Series-Parallel Arenas
A network is a weighted graph A = ⟨V,E, orig, dest,wgt, src, tgt⟩, where V is a finite set of
vertices, E is a finite set of edges, orig : E → V and dest : E → V indicate the origin and
destination of each edge, wgt : E → N>0 is a weight function assigning positive weights to
edges, and src and tgt are, respectively, a source and a target states. Let In(v) and Out(v)
denote, respectively, the set of incoming and outgoing edges of v. We restrict to acylic
networks in which all vertices are reachable from src and tgt is reachable from all vertices.

A path π of A is a sequence e1e2 . . . en of edges with dest(ei) = orig(ei+1) for all 1 ≤ i ≤
n− 1. For an edge e and a path π = e1e2 . . . en, we write e ∈ π if e = ei for some 1 ≤ i ≤ |π|.
We will sometimes see paths as sets of edges and apply set operations such as intersection
and set difference. Let PathsA(s, t) denote the set of simple paths from s to t in A, and let
PathsA = PathsA(src, tgt).

In this work, we consider series-parallel networks [34]. These are built inductively from
single edges using serial and parallel composition. Two networks A1 = ⟨V1, E1, orig1, dest1,

wgt1, src1, tgt1⟩ and A2 = ⟨V2, E2, orig2, dest2,wgt2, src2, tgt2⟩ are composed in series to a new
network denoted by A1; A2 = ⟨V,E, orig, dest,wgt, src, tgt⟩ obtained by taking the disjoint
union of A1 and A2, and merging the vertices tgt1 and src2, and setting src = src1, tgt = tgt2.
Two networks A1 = ⟨V1, E1, orig1, dest1,wgt1, src1, tgt1⟩ and A2 = ⟨V2, E2, orig2, dest2,wgt2,

src2, tgt2⟩ are composed in parallel to a new network denoted by A1 ∥ A2 = ⟨V,E, orig,
dest,wgt, src, tgt⟩ obtained by taking the disjoint union of A1 and A2, and merging src1
and src2, then merging tgt1 and tgt2, and setting src = src1, tgt = tgt1. A network is said
to be series-parallel if it is either a single edge, or it is a serial or parallel composition of
series-parallel graphs.

A network congestion game (NCG) is a pair G = ⟨A, n⟩ where A = ⟨V,E, orig, dest,wgt,
src, tgt⟩ is a network, and n ∈ N is the number of players in the game. We consider the
symmetric case where all players start at src and want to reach tgt. A strategy of a player is
a path in PathsA. The setting can be seen as a one-shot game in which each player selects a
strategy simultaneously. In our study, we do not need to identify players, we thus represent
strategy profiles by counting how many players choose each strategy. That is, a strategy
profile is a tuple p⃗ = (pπ)π∈PathsA where pπ is the number of players taking path π. In this
case, the number of players is given by ∥p⃗∥ =

∑
π∈Paths pπ; thus p⃗ is a strategy profile in

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:5

the game ⟨A, ∥p⃗∥⟩. Let S(A) denote the set of all strategy profiles, and Sn(A) the set of
strategy profiles with n players, that is, {p⃗ ∈ S(A) | n = ∥p⃗∥}. For π ∈ PathsA, let p⃗ + π

(resp. p⃗− π) denote the strategy profile obtained by incrementing (resp. decrementing) pπ

by one.
Another useful notion we use is the flow of a strategy profile, which consists in the

projection of a strategy profile to edges. Formally, given a strategy profile p⃗, flow(p⃗) = (qe)e∈E

where qe =
∑

π∈PathsA:e∈π pπ, that is, qe is the number of players that use the edge e in the
profile p⃗. This vector satisfies the following flow equations:

∀v ∈ V \ {src, tgt},
∑

e∈In(v)

qe =
∑

e∈Out(v)

qe. (1)

We refer to a vector q⃗ = (qe)e∈E with nonnegative coefficients satisfying (1) as a flow; and
denote by F(A) the set of all flows. Observe that F(A) is the image of S(A) by flow. For
a flow q⃗, let ∥q⃗∥ =

∑
e∈E:orig(e)=src qe, which is the number of players. Let Fn(A) define

the set of flows with n players as follows: Fn(A) = {q⃗ ∈ F | n = ∥q⃗∥}. Observe that this
corresponds to a flow of size n, and that several strategy profiles can project to the same
flow.

For a strategy profile p⃗ and π ∈ PathsA, each player using the path π incurs a cost equal
to costπ(p⃗) = Σe∈πwgt(e) · flowe(p⃗), where flowe(p⃗) is the number of players using edge e in
the strategy profile p⃗. The social cost of a strategy profile p⃗ is the sum of the costs for all
players, i.e., soccost(p⃗) =

∑
π∈PathsA

pπ ·costπ(p⃗). The social optimum of the game G = ⟨A, n⟩
is opt(G) = minp⃗∈Sn(A) soccost(p⃗). A strategy profile p⃗ ∈ Sn in a game G = ⟨A, n⟩ is socially
optimal if soccost(p⃗) = opt(⟨A, n⟩).

Observe that the cost of a path in a strategy profile, and the social cost of a strategy
profile, are determined by the flow of that profile. Thus, we define the social cost of a
flow q⃗ as soccost(q⃗) =

∑
e∈E q

2
e · wgt(e) (in fact, qe players use strategies that include e, and

each of them pays qewgt(e) for crossing this edge). A flow q⃗ ∈ Fn is socially optimal if
soccost(q⃗) = opt(G).

A strategy profile p⃗ is a Nash equilibrium if no player can reduce their cost by unilaterally
changing strategy, i.e., if

∀π ∈ PathsA, pπ > 0 → ∀π′ ∈ Paths \ {π}, costπ(p⃗) ≤ costπ′(p⃗′), (2)

where p⃗′ is defined by p′
π = pπ − 1, p′

π′ = pπ′ + 1, and p′
τ = pτ for all other paths τ . In fact,

costπ(p⃗) is the cost of a player playing π in the profile p⃗, while costπ′(p⃗′) is their cost in the
new profile p⃗′ obtained by switching from π to π′.

Let NE(A) denote the set of strategy profiles satisfying (2), that is, the set of Nash
equilibria, and let NEn(A) denote the set of Nash equilibria for n players. The price
of anarchy is the ratio of the social cost of the worst Nash equilibrium, and the social
optimum: PoA(⟨A, n⟩) = maxp⃗∈NEn

soccost(p⃗)/opt(⟨A, n⟩). The price of stability is the ratio
of the social cost of the best Nash equilibrium, and the social optimum: PoS(⟨A, n⟩) =
minp⃗∈NEn

soccost(p⃗)/opt(⟨A, n⟩).

2.2 Presburger Arithmetic and Semilinear Sets
We recall the definition and some basic properties of semilinear sets; see e.g. [23] for more
details. A set S ⊆ Nm is called linear if there is a base vector b⃗ ∈ Nm and a finite set of
period vectors P = {δ⃗1, δ⃗2, . . . δ⃗p} such that S = b⃗ + δ⃗1 · N + δ⃗2 · N + . . . + δ⃗p · N, that is
S = {⃗b+ λ1δ⃗1 + . . .+ λpδ⃗p | λ1, . . . , λp ∈ N}. Such a linear set S will be denoted as L(⃗b, P).

FSTTCS 2022

32:6 Semilinear Representations for Series-Parallel Atomic Congestion Games

A set S ⊆ Nm is said to be semi-linear if it is a finite union of linear sets. Therefore, a
semi-linear set S can be written in the form S = ∪i∈IL(⃗bi, Pi) where I is a finite set, Pi’s
are finite sets of period vectors, and the b⃗i are the base vectors of the same dimension.

Note that in a linear set L(⃗b, P), P can be empty, which corresponds to a singleton
set. Thus, finite sets are semilinear; and the union of any semilinear set with a finite set
is semilinear. Furthermore, each semilinear set admits a non-ambiguous representation in
the sense that S = ∪i∈IL(⃗bi, Pi) such that each Pi is linearly independent and L(⃗bi, Pi) ∩
L(⃗bj , Pj) = ∅ for all i ̸= j ∈ I [16, 25].

Presburger arithmetic is the first-order theory of integers without multiplication. It is
well-known that any set expressible in Presburger arithmetic is semilinear [22]. So, in order
to show that a set is semilinear, one can either exhibit its semilinear representation, or show
that it is expressible in Presburger arithmetic.

3 Local Social Optima

In this section, our goal is to obtain a representation of social optima in a given network
congestion game as a function of the number n of players. Characterizing the social optimum
directly by a formula brings two difficulties. First, expressing that a flow q⃗ is optimal would
require to quantify over all flows q⃗′ and writing that soccost(q⃗) ≤ soccost(q⃗′), so such a
formula contains universal quantifiers. Second, the formula is quadratic since soccost(q⃗) =∑

e∈E q
2
e · wgt(e), so this cannot be represented by a semilinear set.

Here, we introduce the notion of local optimality which allows us to circumvent both
difficulties, providing semilinear representations which, moreover, allow us to compute the
global optimum.

3.1 Locally-Optimal Profiles
Let us fix a series-parallel network A. Intuitively, a strategy profile is locally-optimal if the
social cost cannot be reduced by exchanging one path for another. Formally, p⃗ ∈ Sn(A) is
locally-optimal if for all π, π′ ∈ PathsA with pπ > 0, soccost(p⃗) ≤ soccost(p⃗ − π + π′). By
extension, a flow q⃗ ∈ Fn(A) is locally-optimal if it is the image of a locally-optimal strategy
profile. Observe that the (global) social optimum is locally-optimal.

In the following lemma, we see paths π, π′ as sets of edges.

▶ Lemma 1. In a network congestion game ⟨A, n⟩, a flow q⃗ is locally-optimal if, and only if,
for all π, π′ ∈ PathsA such that ∀e ∈ π, qe > 0,∑

e∈π\π′

wgt(e) · (2qe − 1) ≤
∑

e∈π′\π

wgt(e) · (2qe + 1). (3)

We define LocOpt(A) to be the set of locally-optimal flows, and LocOptn(A) those with
n players. It follows from Lemma 1 that LocOpt(A) and LocOptn(A) are expressible in
Presburger arithmetic, and are thus semilinear. We will now characterize the form of the
semilinear set describing LocOpt(A) by proving that it admits a single and computable period
vector δ⃗, that is, LocOpt(A) can be written as B ∪

⋃
i∈I L(⃗bi, δ⃗), where B is a finite set of

flows, I is a finite set of indices, and (⃗bi)i∈I are the base vectors.

3.2 Large Numbers of Players
To simplify the proof of the characterization of the period vector δ⃗, we would like to consider
instances in which (3) holds for all paths π, π′ ∈ PathsA, that is, we would like to get rid of
the assumption on π in Lemma 1. It turns out that the assumption that qe > 0 for all edges e

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:7

of π holds whenever the number of players is large enough. Moreover, we do not lose generality
by focusing on these instances; in fact, as we will see, a semilinear representation with the
same period vector δ⃗ for all locally-optimal profiles can be derived once this representation
is established for instances with large numbers of players.

The next lemma shows that all edges are used in locally-optimal profiles whenever the
number of players is sufficiently large. This property is specific to series-parallel graphs and
may not hold in a more general network, as the following example shows.

src

v

v′

tgt
3

1
1

1

3

Figure 3 A network with an edge v → v′ that is never used in any locally-optimal profile.

▶ Example 2. Consider the network of Fig. 3. We claim that the edge from v to v′ cannot
be used in any locally-optimal profile. Write a, b and c for the number of players taking
paths πa : src → v → tgt, πb : src → v → v′ → tgt and πc : src → v′ → tgt, respectively.
Observe (by contradiction) that if there are at least two players, then paths πa and πc will be
taken by at least one player. Writing Eq. (3) for πa and πc yields −1 ≤ a− c ≤ 1. Assuming
b > 0, we can also apply Eq. (3) to πb and πa, and get −2a + 8b + 6c − 5 ≤ 0. It follows
8b + 4c − 7 ≤ 0. This cannot be preserved when the number of players grows. Hence πb

cannot be used in any locally-optimal profile. ◀

▶ Lemma 3. In all series-parallel networks A, there exists n0 ∈ N such that for all n ≥ n0,
all flows q⃗ ∈ LocOptn(A) are such that qe > 0 for all e ∈ E.

Proof. We inductively define a value n0(A) for each series-parallel network A, such that
n0(A) ≥ 4 (for technical reasons) and satisfying the following property:

∀k ≥ 1, ∀n ≥ k · n0(A), ∀q⃗ ∈ LocOptn(A), ∀e ∈ E, qe ≥ k.

The lemma follows by taking k = 1.
If A is a single edge, we define n0(A) = 4, and the property trivially holds.
If A = A1; A2, then we define n0(A) = max(n0(A1), n0(A2)). Observe that if q⃗ is

locally-optimal in A, then each q⃗|Ai
is locally-optimal in Ai, and they have the same number

of players. So the property holds by induction.
The non-trivial case is when A = A1 ∥ A2. Let m = max(n0(A1), n0(A2)), and n0(A) =

2|E|Wm2, where E is set of edges of A and W is the largest weight of A (notice that W ≥ 1).
Then m ≥ 4 and n0(A) ≥ 4. Take n ≥ kn0(A), and q⃗ ∈ LocOptn.

We show that for all i ∈ {1, 2}, we have ∥q⃗|Ai
∥ ≥ kn0(Ai). Towards a contradiction,

assume for example that ∥q⃗|A1∥ < kn0(A1). Then ∥q⃗|A2∥ > n−kn0(A1) ≥ 2k|E|W (m2 −m)
(because kn0(A1) ≤ km ≤ 2k|E|Wm).

For all pair (π1, π2) ∈ PathsA1 × PathsA2 , by (3) we have that
∑

e∈π2
wgt(e)(2qe − 1) ≤∑

e∈π1
wgt(e)(2qe + 1). Take an arbitrary edge e0 of π2; then e0 does not appear in π1, and

we get

2qe0 ≤ 2W
∑
e∈π1

qe +
∑
e∈π2

wgt(e)+
∑
e∈π1

wgt(e) < 2W |E|·kn0(A1)+2W |E| ≤ 2W |E|(km+1).

FSTTCS 2022

32:8 Semilinear Representations for Series-Parallel Atomic Congestion Games

Now, take k′ = 2k|E|W (m−1). Then k′ ≥ 1, and ∥q⃗|A2∥ > k′m ≥ kn0(A2). By induction
hypothesis applied to A2, we have qe0 ≥ k′, which implies

2k|E|W (m− 1) ≤ W |E|(km+ 1)

hence m ≤ 2 + 1
k ≤ 3, which is a contradiction since m ≥ 4. ◀

Let LocOpt≥n0
(A) =

⋃
n≥n0

LocOptn(A). By the previous lemma, all q⃗ ∈ LocOpt≥n0
(A)

satisfy (3) for all pairs of paths π, π′. Observe that LocOpt(A) and LocOpt≥n0(A) have
the same period vectors. In fact, LocOpt≥n0

(A) differs from LocOpt(A) only by a finite
set; so, given a semilinear representation

⋃
i∈I L(⃗bi, Pi) for the former, one can obtain a

representation for the latter as B ∪
⋃

i∈I L(⃗bi, Pi) where B is the finite difference between
the two. Therefore, establishing that LocOpt≥n0(A) has a single period vector suffices to
prove the same result for LocOpt(A). Note also that I is non-empty here since the set
LocOpt≥n0(A) is infinite.

The following lemma shows that the period vectors of LocOpt≥n0(A) assign the same
cost to all paths. Intuitively, this is because if the cost along two paths were different in the
period vector, then by adding a large number of copies of the period vector to its base vector,
one could amplify this difference and obtain a vector that is not locally-optimal.

▶ Lemma 4. In a series-parallel network A, for all period vectors d⃗ ∈ NE of a semilinear
representation of LocOpt≥n0

(A), there exists κ ≥ 0 such that for all π ∈ PathsA, we have∑
e∈π wgt(e) · de = κ.

3.3 A Unique Period Vector: The Characteristic Vector
We now establish that LocOpt(A) admits a unique period vector. For any κ ∈ R, we study
the following system E(κ) of equations with unknowns {qe}e∈E :

∀π ∈ PathsA,
∑
e∈π

wgt(e) · qe = κ, (4)

∀v ∈ V \ {src, tgt},
∑

e∈In(v)

qe −
∑

e∈Out(v)

qe = 0. (5)

Note that all period vectors of LocOpt≥n0(A) satisfy the above. In fact, (4) comes from
Lemma 4, and (5) is the set of flow equations (1).

The following lemma states that E(κ) has a unique solution whenever we fix κ.

▶ Lemma 5. For a series-parallel network A, for each κ ∈ R, the system E(κ) admits a
unique solution.

The system E(κ) is actually the characterization of the flows of Nash equilibria in the
non-atomic congestion games, and the unicity of the solution of this equation system is
known (see [12]). We represent the system E(κ) in the matrix form as MA ·X = κ⃗b, where
X = (qe)e∈E is the vector of unknowns, and b⃗ a {0, 1}-column vector. Lemma 5 means
that MA admits a left-inverse M−1

A . It follows that all period vectors can be written as
κM−1

A b⃗ for some κ. Since MA and b⃗ have integer coefficients, M−1
A b⃗ is a vector with rational

coefficients.

▶ Definition 6 (Characteristic Vector). Let κ0 denote the least rational number such that
κ0M

−1
A b⃗ is integer. We define δ⃗ = κ0M

−1
A b⃗, called the characteristic vector of A.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:9

Since period vectors of LocOpt≥n0(A) have natural number coefficients, any κ corresponding
to a period vector is also a natural. We have that all period vectors are integer multiples of δ⃗.
In fact, if d⃗ = κM−1

A b⃗ is a period vector, then d⃗ = κ
κ0
δ⃗, and κ

κ0
is an integer since otherwise

its denominator would divide δ⃗, which would contradict the minimality of κ0.

▶ Corollary 7. Consider a series-parallel network A, and its characteristic vector δ⃗. There
exist finite sets of vectors B and {⃗bi | i ∈ I} such that LocOpt(A) = B ∪

⋃
i∈I L(⃗bi, δ⃗).

Proof. Since each linear set can be assumed to have linearly-independent period vectors
(Section 2.2) all linear sets included in LocOpt≥n0

(A) can be written in the form of b⃗+mδ⃗N,
We show that m = 1. By Lemma 3, b⃗ has only positive coefficients, so it satisfies (3) for

all pairs of paths. We show that b⃗ + kδ⃗ also satisfies (3) for all k ≥ 0, which proves that
L(⃗b, δ⃗) is included in LocOpt≥n0(A). For all paths π, π′, consider (3) by adding an identical
term to both sides:∑

e∈π\π′

wgt(e)(2qe − 1) + 2k
∑
e∈π

wgt(e)δe ≤
∑

e∈π′\π

wgt(e) · (2qe + 1) + 2k
∑
e∈π′

wgt(e)δe∑
e∈π\π′

wgt(e)(2qe − 1) + 2k
∑

e∈π\π′

wgt(e)δe ≤
∑

e∈π′\π

wgt(e) · (2qe + 1) + 2k
∑

e∈π′\π

wgt(e)δe∑
e∈π\π′

wgt(e)(2(qe + kδe) − 1) ≤
∑

e∈π′\π

wgt(e) · (2(qe + kδe) + 1).

Therefore, LocOpt≥n0(A) can be written in the form
⋃

i∈I L(⃗bi, δ⃗); and since LocOpt(A) differs
from LocOpt≥n0(A) by a finite set, it can be represented by B ∪

⋃
i∈I L(⃗bi, δ⃗) where B =

LocOpt(A) \ LocOpt≥n0
(A). ◀

src v tgt
a, 1

b, 1

c, 1

d, 1

Figure 4 Network whose set of local optima admit several period vectors.

▶ Remark 8. Note that we chose here to study the semilinear representations of locally-
optimal flows, rather than locally-optimal strategy profiles. The latter are also expressible
in Presburger arithmetic, thus also admit a semilinear representation. However, the set of
locally-optimal strategy profiles admit, in general, several linearly independent period vectors,
so their representation is more complex, and more difficult to use, for instance, to compute
the global optimum for given number n of players.

To see this, consider the example of Fig. 4. Consider the strategy profile p⃗ with pac =
pbd = 1 and pad = pbc = 0; and p⃗′ such that p′

ac = p′
bd = 0 and p′

ad = p′
bc = 1. For all k ≥ 0,

both kp⃗ and kp⃗′ are socially optimal, but they are linearly independent. In larger networks,
there can be a larger number of period vectors due to similar phenomena. Notice however
that flow(p⃗) = flow(p⃗′), that is, the projections of these period vectors to their flows are
identical, and are, in fact, equal to the characteristic vector.

4 Nash Equilibria

In this section, we show how to compute a semilinear representation of the flows of Nash
equilibria, which will allow us to compute the costs of the best and the worst equilibria.

FSTTCS 2022

32:10 Semilinear Representations for Series-Parallel Atomic Congestion Games

The following lemma is a characterization of Nash equilibria that follows from (2).

▶ Lemma 9. Given a network A, a strategy profile p⃗ is a Nash equilibrium if, and only if,

∀π, π′ ∈ Paths, pπ > 0 =⇒
∑

e∈π\π′

wgt(e) · qe ≤
∑

e∈π′\π

wgt(e) · (qe + 1), (6)

where q⃗ = flow(p⃗).

It follows from the previous lemma that Nash equilibria, but also their flows, are definable
in Presburger arithmetic.

▶ Lemma 10. The sets NE(A) and flow(NE(A)) are semilinear.

The study of the semilinear representation is similar to what was done for locally-optimal
profiles. We prove that the period vectors of flow(NE(A)) are colinear to δ⃗, thus establishing
the form of their semilinear representation. In particular, we use Lemma 5 and show that
the period vectors are multiples of the characteristic vector. Here, we consider flow(NE(A))
rather than NE(A) due to Remark 8 which also holds for Nash equilibria.

The following lemma shows that a semilinear representation of flow(NE(A)) can be
deduced from that of NE(A) and follows by the definition of flow. In particular, all period
vectors of the former are projections of the period vectors of the latter by flow.

▶ Lemma 11. For any semilinear representation B ∪
⋃

i∈I L(⃗bi, Pi) of NE(A), we have
flow(NE(A)) = flow(B) ∪

⋃
i∈I L(flow(⃗bi), flow(Pi)), where flow(X) = {flow(p⃗) | p⃗ ∈ X}.

As in the case of locally-optimal strategy profiles, we establish that the period vectors of
flow(NE(A)) for series-parallel networks have constant cost along all paths.

▶ Lemma 12. For a series-parallel network A, and any period vector q⃗ of flow(NE(A)),
there exists κ, such that for all π ∈ PathsA,

∑
e∈π

wgt(e) · qe = κ.

Proof. We use structural induction on the series-parallel network. The base case is when
the network is a single edge, which trivially satisfies the property.

Consider a network A = ⟨V,E, orig, dest,wgt, s, t⟩ with A = A1; A2 with A1 = ⟨V1, E1,

orig1, dest1,wgt1, s1, t1⟩ and A2 = ⟨V2, E2, orig2, dest2,wgt2, s2, t2⟩.
Let q⃗ be a period vector of flow(NE(A)). By Lemma 11, there exists a period vector p⃗

of NE(A), with q⃗ = flow(p⃗). Let us show that each q⃗|Ai
is a period vector of flow(NE(Ai)).

It suffices to show that prjAi
(p⃗) is a period vector of NE(Ai): since q⃗|Ai = flow(prjAi

(p⃗)), we
can then conclude by Lemma 11.

For some base vector b⃗, we have that b⃗ + kp⃗ ∈ NE(A) for all k ≥ 0. By Lemma 16,
prjAi

(⃗b+ kp⃗) = prjAi
(⃗b) + k · prjAi

(p⃗) ∈ NE(Ai), thus prjAi
(p⃗) is indeed a period vector.

Let us call q⃗i = q⃗|Ai
. By the induction hypothesis, there exist constants κ1, κ2 such that

∀π ∈ PathsAi
,
∑
e∈π

wgt(e) · qi
e = κi.

It follows that

∀π ∈ PathsA,
∑
e∈π

wgt(e) · qe =
∑
e∈π1

wgt(e) · q1
e +

∑
e∈π2

wgt(e) · q2
e = κ1 + κ2,

where π1π2 denotes the decomposition of π such that πi ∈ PathsAi
.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:11

Consider now the case A = A1 ∥ A2. Let q⃗ be a period vector of flow(NE(A)). By
Lemma 11, there exists a period vector p⃗ of NE(A), with q⃗ = flow(p⃗). Let us show that
each q⃗|Ai

is a period vector of flow(NE(Ai)). The argument is identical to the first case, using
Lemma 17 in place of Lemma 16. It suffices to show that p⃗|Ai is a period vector of NE(Ai)
since we can then conclude by Lemma 11. For some base vector b⃗, we have that b⃗+kp⃗ ∈ NE(A)
for all k ≥ 0. By Lemma 17, (⃗b+ kp⃗)|Ai ∈ NE(Ai), and since (⃗b+ kp⃗) = b⃗|Ai + kp⃗|Ai , p⃗|Ai is
indeed a period vector.

By the induction hypothesis, there exist κ1, κ2 such that

∀π ∈ PathsAi
,
∑
e∈π

wgt(e) · qe = κi.

We need to prove that κ1 = κ2. Assume otherwise; for instance, κ1 < κ2. Then, for
paths π1, π2 ∈ PathsA, we have costπ1(q⃗) < costπ2(q⃗). Consider a period vector p⃗ of NE(A)
with flow(p⃗) = q⃗. Observe that p⃗ and its multiples are also a Nash equilibria (by Lemma 9).
Then, there must exist π2 ∈ PathsA2 such that pπ2 > 0; if not, paths in PathsA2 would
become profitable deviations for kp⃗ for large k. Take such a π2 ∈ PathsA2 . By (6), for all
π1 ∈ PathsA1 , and all k ≥ 0, we have∑

e∈π2\π1

wgt(e)kqe ≤
∑

e∈π1\π2

wgt(e)(kqe + 1).

Since π1 and π2 are disjoint, we get∑
e∈π2

wgt(e)kqe ≤
∑
e∈π1

wgt(e)(kqe + 1),

hence k(κ2 − κ1) ≤
∑

e∈π1

wgt(e), which is a contradiction for large k. This concludes the

proof. ◀

It follows from Lemma 5 that all period vectors of flow(NE(A)) are multiples of δ⃗, the
characteristic vector of A.

▶ Corollary 13. For a series-parallel network A, the set flow(NE(A)) admits a semilinear
representation in the form B ∪

⋃
i∈I L(⃗bi,miδ⃗), for a finite set B, and finitely-many base

vectors b⃗i and natural numbers mi.

We do not know whether the mi in the above corollary can be different from 1. We did
not encounter such a case in our experiments, and we conjecture that δ⃗ is the only period
vector of flow(NE(A)).

An immediate consequence of Corollaries 7 and 13 is that the prices of anarchy and
stability converge to 1 for a fixed series-parallel network, when the number of players goes
to infinity. This is intuitively due to the fact that both LocOpt(A) and flow(NE(A)) have
the same direction δ⃗. This result already appeared recently in [37]; our setting provides an
alternative proof.

▶ Theorem 14. For series-parallel networks A, lim
n→∞

PoA(⟨A, n⟩) = lim
n→∞

PoS(⟨A, n⟩) = 1.

Proof. Consider worstn = maxp⃗∈NEn(A) soccost(p⃗), bestn = minp⃗∈NEn(A) soccost(p⃗), and
optn = minp⃗∈Fn(A) soccost(p⃗). We show that lim

n→∞
worstn/optn = lim

n→∞
bestn/optn = 1.

As we already argued, the social cost only depends on the flow, so worstn and bestn can
be computed by maximizing or minimizing the social cost among flow(NE(A)) restricted to n
players. The optimum can be computed by minimizing over LocOptn(A) since the global
optimum is also locally optimal.

FSTTCS 2022

32:12 Semilinear Representations for Series-Parallel Atomic Congestion Games

Let flow(NE(A)) = B ∪
⋃

i∈I L(b⃗i,miδ⃗), and LocOpt(A) = B′ ∪
⋃

i∈I′ L(b⃗′i, δ⃗). Con-
sider n > maxb⃗∈B∪B′ ∥⃗b∥, so that all Nash equilibria with n players belong to some L(⃗bi,miδ⃗),
and similarly, all local optima with n players are in some L(b⃗′i, δ⃗). Note that if a strategy
profile p⃗ belong to L(b⃗i,miδ⃗), there exists k ∈ N with p⃗ = b⃗i + kmiδ⃗, which implies that
∥p⃗∥ − ∥b⃗i∥ ≡ 0 mod mi∥δ⃗∥, and k = ∥p⃗∥−∥b⃗i∥

mi∥δ⃗∥
. We have that

worstn = max
{

soccost
(
b⃗i + δ⃗ · n− ∥b⃗i∥

∥δ⃗∥

) ∣∣∣ i ∈ I, n− ∥b⃗i∥ ≡ 0 mod mi∥δ⃗∥
}
.

Similarly,

optn = min
{

soccost
(
b⃗′i + δ⃗ · n− ∥b⃗i∥

∥δ⃗∥

) ∣∣∣ i ∈ I, n− ∥b⃗′i∥ ≡ 0 mod ∥δ⃗∥
}
.

Consider (i0, i′0) ∈ I × I ′ such that worstn is maximized for i0 ∈ I, and optn is minimized
for i′0 ∈ I ′ for infinitely many n. Let (αk)k≥0 denote the increasing sequence of indices n such
that this is the case. We are going to show that the limit of the sequence (worstαk

/optαk
)k∈N

is 1 (independently of i0 and i′0), which yields the result.
We have

worstαk
= soccost

(
b⃗i0 + αk − ∥b⃗i∥

∥δ⃗∥
δ⃗
)

=
∑
e∈E

wgt(e)
(
δe

∥δ⃗∥

)2

α2
k + 2

∑
e∈E

wgt(e)δe(bi
e − δe∥b⃗i∥/∥δ⃗∥)

∥δ⃗∥
αk

+
∑
e∈E

wgt(e)
(
bi

e − δe · ∥b⃗i∥
∥δ⃗∥

)2

.

We have worstαk
= Aα2

k + o(αk) where A =
∑

e∈E wgt(e)
(

δe

∥δ⃗∥

)2
.

A similar expression can be obtained for optαk
since it has the same form as worstαk

.
In particular, the first term is again A. We can obtain that optαk

≥ Aα2
k − 2E∥b⃗′i∥

∥δ⃗∥
. Hence,

1 ≤ worstαk

optαk

≤ Aαk
2 + o(αk)

Aα2
k + o(1) = 1 + o(1

αk
).

It follows that limn→∞ PoA(⟨A, n⟩) = 1.
This also implies that limn→∞ PoS(⟨A, n⟩) = 1. ◀

5 Computation of PoA and PoS

Semilinear Representations

Let us show how the semilinear representation for LocOpt(A) can be computed. First, the
characteristic vector δ⃗ can be computed by solving the homogeneous equation system E(0)
using a symbolic solver (so as to obtain a rational solution), and multiplying the unique
solution by the gcd of its coefficients. Next, one can incrementally construct the semilinear
representation using an integer-arithmetic solver to find the linear sets and the finite set B.
This can be done with quantifier-free formulas only. Although integer linear programming is
already NP-hard [6, 35], available solvers are efficient for small instances.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:13

At a given iteration, assume that the current subset of LocOpt(A) is B ∪
⋃

i∈I L(⃗bi, δ⃗).
We write a linear quantifier-free formula ϕ(q⃗) with free variables a flow q⃗ which requires
that q⃗ is locally optimal (by Lemma 1), and that q⃗ is not included in the current set. We
already saw that the former is a Presburger formula. The latter constraints can be written
as
∧

b⃗∈B q⃗ ̸= b⃗∧
∧

i∈I q⃗ ̸∈ L(b⃗i, δ⃗). Here, q⃗ ̸∈ L(b⃗i, δ⃗) ≡ ¬(∃k.q⃗ = b⃗i + kδ⃗) but the existentially
quantified k can be determined from the number of players of q⃗, b⃗i, δ⃗, so this can be simplified
as follows:

(∃k.q⃗ = b⃗i + kδ⃗) ≡ (∥q⃗∥ − ∥⃗bi∥) ≡ 0 mod ∥δ⃗∥ ∧
∧

e∈E

qe = bi
e + (∥q⃗∥ − ∥⃗bi∥)δe/∥δ⃗∥,

where ∥δ⃗∥ and ∥⃗bi∥ are fixed numbers.
If ϕ(q⃗) is not satisfiable, then the current representation is complete. Otherwise, a model

satisfying the above formula gives a new vector q⃗ that is locally optimal. To determine
whether q⃗ should belong to B, or whether L(q⃗, δ⃗) is to be added to our set, we simply check
if q⃗ + δ⃗ satisfies the condition of Lemma 1: if this is the case, then we keep the linear set,
otherwise we add q⃗ to B. In fact, for all k ≥ 1, q⃗ + kδ⃗ has the same set of paths π satisfying
∀e ∈ π, (qe + kδe) > 0, so this check is sufficient. Since the set admits a finite semilinear
representation, this procedure terminates.

Let us explain the computation of flow(NE(A)). Let NE(p⃗) denote the linear constraints
of (6). Assume that we currently have a subset of flow(NEA) in the form B ∪

⋃
i∈I L(⃗bi,miδ⃗).

The following formula ψ(p⃗, q⃗) with free variables p⃗, q⃗ is satisfiable iff some Nash equilibrium p⃗

(with flow(p⃗) = q⃗) is not in the set:

ψ(p⃗, q⃗) = NE(p⃗) ∧ flow(p⃗) = q⃗ ∧
∧
i∈I

q⃗ ̸∈ L(b⃗i,miδ⃗) ∧
∧

b⃗∈B

q⃗ ̸= b⃗.

Assume that this is satisfiable, and let p⃗, q⃗ be a model. We need to check whether q⃗ is
to be added to B, or whether L(q⃗,miδ⃗), for some mi, is to be included. We use the
following properties of the period vectors of NE(A). Let us first define Sδ⃗ = {π ∈ PathsA |∑

e∈π wgt(e)δe ≤ minπ′∈PathsA

∑
e∈π′ wgt(e)δe}. Intuitively, Sδ⃗ is the set of paths in PathsA

with minimum cost in the profile δ⃗.

▶ Lemma 15. Let p⃗, p⃗′ ∈ NE(A) such that flow(p⃗′) = mδ⃗. We have L(p⃗, p⃗′) ⊆ NE(A) iff for
all π ∈ PathsA, π ̸∈ Sp⃗ ⇒ p′

π = 0.

Proof. Assume L(p⃗, p⃗′) ⊆ NE(A). Then, for all π such that pπ > 0 or p′
π > 0, we have

∀π′ ∈ Paths(A),
∑

e∈π\π′

(qe + q′
e)wgt(e) ≤

∑
e∈π′\π

(qe + q′
e + 1)wgt(e).

⇔

∀π′ ∈ Paths(A),
∑

e∈π\π′

qewgt(e) ≤
∑

e∈π′\π

(qe + 1)wgt(e),

where the equivalence holds by Lemma 4. This already holds for π ∈ Paths(A) such
that pπ > 0. Thus any path π such that p′

π > 0 must satisfy π ∈ Sp⃗, which is equivalent to
the above. So any period vector p⃗′ for the base p⃗ satisfies

∧
π ̸∈Sp⃗

p′
π = 0. Conversely, for any

such vector p⃗′, p⃗+ kp⃗′ is a Nash equilibrium for all k ≥ 0. ◀

Given the pair p⃗, q⃗, we write another query to guess m, p⃗′ such that NE(p⃗′) ∧ flow(p⃗′) =
mδ⃗ ∧

∧
π ̸∈Sp⃗

p′
π = 0. If this is satisfiable, then we query again the solver to find the smallest

such m, and keep the set L(q⃗,mδ⃗). Otherwise q⃗ is added to B.

FSTTCS 2022

32:14 Semilinear Representations for Series-Parallel Atomic Congestion Games

Price of Anarchy and Stability

Given a semilinear representation B∪
⋃

i∈I L(⃗bi, δ⃗) of LocOpt(A), observe that there is only a
finite number of vectors with a given n number of players. So in order to compute the global
social optimum with n players, we iterate over all vectors with n players in this representation,
and keep the minimal social cost. We first iterate over {⃗b ∈ B | ∥⃗b∥ = n} and consider the
vector with the least social cost among those (this set can be empty). Second, for each linear
set L(⃗bi, δ⃗) such that n−∥⃗bi∥

∥δ⃗∥
is an integer, we compute the vector b⃗i + ∥q⃗∥−∥⃗bi∥

∥δ⃗∥
δ⃗, compute its

social cost, and keep it if it is less than the previous value.
We compute the social costs of the best and the worst Nash equilibria similarly on the

semilinear representation of flow(NEA).
Figure 5 shows the plots of the PoA and PoS computed for four examples. We used

the Python sympy package for solving linear equations, and the Z3 SMT solver for integer
arithmetic queries. The characteristic vector was always easy to compute since it is computable
in polynomial time in the size of the linear equation system. However, the number of base
vectors can be large and depends on the weights used in the network. Our prototype is
currently limited in scalability but it allows us to explore small yet non-trivial networks.

1

2 1

1

3

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35

0 4 8 12 16 20 24 28
Players

PoA
PoS

1

2 1
1

3

1

1.02

1.04

1.06

1.08

1.1

0 4 8 12 16 20 24 28
Players

PoA
PoS

1

7 2

2

0.99
1

1.01
1.02
1.03
1.04
1.05
1.06

0 4 8 12 16 20 24 28
Players

PoA
PoS

6

1

1

1
1

6

0.99
1

1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08

0 4 8 12 16 20 24 28
Players

PoA
PoS

Figure 5 Plots for PoA and PoS on four series-parallel networks. Unlabeled edges have weight 1.

6 More on Related Works

Inefficiency in congestion networks were mentioned in [30], and equilibria were first math-
ematically studied in [36]. Network congestion games are mainly studied in two settings
which have different mathematical properties: the nonatomic case, where one considers a
large number of players, each of which contributes an infinitesimal amount to congestion;
and the atomic case, as we do, where there is a discrete number of players involved.

Existence and properties of Nash equilibria in the nonatomic case were established in [4].
The price of anarchy of the nonatomic case was studied in [32] which gives a tight bound of
4
3 for networks with affine cost functions. [28, Chapter 18] presents a survey of these results.
It is shown in [17] that Nash equilibria in atomic network congestion games can be found
in polynomial time, by reduction to maximum flow in the symmetric case, that is, when
all players share the same source and target vertices. The problem in the non-symmetric
case is however complete for the class PLS, Polynomially Local Search, and is believed to be
intractable [26, 29]. In extension-parallel networks, best-response procedures are shown to
converge in linear time in [19]; but this does not extend to general series-parallel graphs.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:15

The complexity of finding extremal Nash equilibria, that is, the best and the worst ones
is however higher. Finding such equilibria is NP-hard for the makespan objective with
varying sizes [20]. For the makespan objective and unit sizes, finding a Nash equilibrium
minimizing the makespan in series-parallel networks with linear cost functions is strongly
NP-hard when the number of players is part of the input, while a polynomial-time greedy
algorithm allows one to find a worst Nash equilibrium [21]. For the total cost objective (as in
this paper), NP-hardness holds for both best and worst equilibria for three and two players
respectively [33]. Note that in our work, we are interested in computing such equilibria (or
their costs) for arbitrarily large numbers of players. In the more general case of network
congestion games with dynamic strategies which allow players to choose each move according
to the current state of the game, doubly exponential-time algorithms were given for computing
such equilibria in [5] when the number of players is encoded in binary.

It is possible to efficiently compute the social optimum in atomic congestion games
by transforming the cost function, and reducing the problem to the computation of Nash
equilibria [15]. In our case, this transformation would yield affine cost functions. This
direction could be exploited to compute the costs of socially optimal profiles using semilinear
representations for Nash equilibria, if these could be extended to affine costs. The behaviors
of PoA for large numbers of players have been studied before. [18] considers congestion
games with large numbers of players, and shows that the PoA of atomic congestion games
converges to the PoA of the nonatomic game; the result holds for games with affine cost
functions and positive coefficients (as in our case). A consequence is that, although the PoA
for the atomic case is often larger than that in the nonatomic case, this difference vanishes in
the limit, and thus the upper bound of 4

3 holds for the atomic case in the limit. In [13], the
limit of atomic congestion games is considered in a setting where either players participate
in the game with given probabilities that tend to 0, or they have weights that tend to 0;
in both cases, the limit of the PoA for mixed equilibria is equal to that in a corresponding
nonatomic game. Asymptotic PoA bounds (of ≈ 1.35188) are provided in [14] for symmetric
atomic congestion games with affine cost functions, by restricting to specific strategies called
k-uniform. In the nonatomic case, the works [11, 10] establish that the limit of the PoA is 1.
Paper [12] considers nonatomic congestion games as a function of the demand and studies
continuous derivability properties of the PoA function.

7 Conclusion

Our results provide theoretical tools that allow us to have a better understanding of the
structure of Nash equilibria and social optima in atomic congestion games over series-parallel
networks. An immediate question is how the semilinear representations would change if we
allow affine cost functions rather than linear ones. However, extending further our approach
to nonlinear cost functions would not be immediate since these sets would no longer be
definable in Presburger arithmetic.

Although the characteristic vector is easy to compute, the exact computation of the whole
semilinear representations is costly and currently does not scale to large networks. One might
investigate how this computation can be rendered more efficient in practice. Another possible
direction is to explore more efficient approximation algorithms using just the characteristic
vector, and perhaps a subset of the base vectors.

FSTTCS 2022

32:16 Semilinear Representations for Series-Parallel Atomic Congestion Games

References
1 Eitan Altman, Anurag Kumar, and Yezekael Hayel. A potential game approach for uplink

resource allocation in a multichannel wireless access network. In Proceedings of the Fourth
International ICST Conference on Performance Evaluation Methodologies and Tools, pages
1–9, 2009.

2 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The
price of stability for network design with fair cost allocation. In 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 295–304, 2004. doi:10.1109/FOCS.2004.68.

3 Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable flow.
In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing,
STOC’05, pages 57–66, New York, NY, USA, 2005. Association for Computing Machinery.
doi:10.1145/1060590.1060599.

4 Martin J. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of
Transportation. RAND Corporation, Santa Monica, CA, 1955.

5 Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur. Dynamic network
congestion games. In 40th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2020), Goa, India, December 2020. URL:
https://hal.archives-ouvertes.fr/hal-02980833.

6 I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299–304, 1976. URL:
http://www.jstor.org/stable/2041711.

7 Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis, Panagiotis Kanellopoulos,
and Luca Moscardelli. Tight bounds for selfish and greedy load balancing. Algorithmica,
61(3):606–637, November 2011. doi:10.1007/s00453-010-9427-8.

8 George Christodoulou and Elias Koutsoupias. On the price of anarchy and stability of
correlated equilibria of linear congestion games„. In Proceedings of the 13th Annual European
Conference on Algorithms, ESA’05, pages 59–70, Berlin, Heidelberg, 2005. Springer-Verlag.
doi:10.1007/11561071_8.

9 George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing,
STOC’05, pages 67–73, New York, NY, USA, 2005. Association for Computing Machinery.
doi:10.1145/1060590.1060600.

10 Riccardo Colini-Baldeschi, Roberto Cominetti, Panayotis Mertikopoulos, and Marco Scarsini.
When is selfish routing bad? the price of anarchy in light and heavy traffic. Oper. Res.,
68(2):411–434, 2020. doi:10.1287/opre.2019.1894.

11 Riccardo Colini-Baldeschi, Roberto Cominetti, and Marco Scarsini. Price of anarchy for highly
congested routing games in parallel networks. Theory Comput. Syst., 63(1):90–113, 2019.
doi:10.1007/s00224-017-9834-1.

12 Roberto Cominetti, Valerio Dose, and Marco Scarsini. The price of anarchy in routing
games as a function of the demand. Mathematical Programming, 2021. To appear. doi:
10.1007/s10107-021-01701-7.

13 Roberto Cominetti, Marco Scarsini, Marc Schröder, and NE Stier-Moses. Convergence of large
atomic congestion games. arXiv preprint, 2020. arXiv:2001.02797.

14 Jasper de Jong, Walter Kern, Berend Steenhuisen, and Marc Uetz. The asymptotic price of
anarchy for k-uniform congestion games. In International Workshop on Approximation and
Online Algorithms, pages 317–328. Springer, 2017.

15 Alberto Del Pia, Michael Ferris, and Carla Michini. Totally unimodular congestion games.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 577–588. SIAM, 2017.

16 Samuel Eilenberg and Marcel Paul Schützenberger. Rational sets in commutative monoids.
Journal of Algebra, 13:173–191, 1969.

https://doi.org/10.1109/FOCS.2004.68
https://doi.org/10.1145/1060590.1060599
https://hal.archives-ouvertes.fr/hal-02980833
http://www.jstor.org/stable/2041711
https://doi.org/10.1007/s00453-010-9427-8
https://doi.org/10.1007/11561071_8
https://doi.org/10.1145/1060590.1060600
https://doi.org/10.1287/opre.2019.1894
https://doi.org/10.1007/s00224-017-9834-1
https://doi.org/10.1007/s10107-021-01701-7
https://doi.org/10.1007/s10107-021-01701-7
http://arxiv.org/abs/2001.02797

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:17

17 Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure nash
equilibria. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing,
STOC ’04, pages 604–612, New York, NY, USA, 2004. Association for Computing Machinery.
doi:10.1145/1007352.1007445.

18 Michal Feldman, Nicole Immorlica, Brendan Lucier, Tim Roughgarden, and Vasilis Syrgka-
nis. The price of anarchy in large games. In 48th ACM Symposium on Theory of Com-
puting (STOC) 2016, June 2016. URL: https://www.microsoft.com/en-us/research/
publication/price-anarchy-large-games/.

19 Dimitris Fotakis. Congestion games with linearly independent paths: Convergence time
and price of anarchy. In Proceedings of the 1st International Symposium on Algorithmic
Game Theory, SAGT ’08, pages 33–45, Berlin, Heidelberg, 2008. Springer-Verlag. doi:
10.1007/978-3-540-79309-0_5.

20 Dimitris Fotakis, Spyros Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, and Paul
Spirakis. The structure and complexity of nash equilibria for a selfish routing game. Theoretical
Computer Science, 410(36):3305–3326, 2009. Graphs, Games and Computation: Dedicated to
Professor Burkhard Monien on the Occasion of his 65th Birthday. doi:10.1016/j.tcs.2008.
01.004.

21 Elisabeth Gassner, Johannes Hatzl, Sven O. Krumke, Heike Sperber, and Gerhard J. Woeginger.
How hard is it to find extreme nash equilibria in network congestion games? Theoretical
Computer Science, 410(47):4989–4999, 2009. doi:10.1016/j.tcs.2009.07.046.

22 Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like languages. Transactions of the
American Mathematical Society, 113(2):333–368, 1964. URL: http://www.jstor.org/stable/
1994067.

23 Christoph Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82,
July 2018. doi:10.1145/3242953.3242964.

24 Bainian Halo and Carla Michini. The price of anarchy in series-parallel network congestion
games. Technical report, University of Wisconsin-Madison, 2021.

25 Ryuichi Ito. Every semilinear set is a finite union of disjoint linear sets. J. Comput. Syst. Sci.,
3(2):221–231, May 1969. doi:10.1016/S0022-0000(69)80014-0.

26 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

27 Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009. doi:10.1016/j.cosrev.2009.04.003.

28 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

29 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991. doi:
10.1016/0022-0000(91)90023-X.

30 A. C. Pigou. Economics of welfare. McMillan, 1920.
31 Robert W. Rosenthal. The network equilibrium problem in integers. Networks, 3:53–59, 1973.
32 Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM (JACM),

49(2):236–259, 2002.
33 Heike Sperber. How to find nash equilibria with extreme total latency in network congestion

games? In 2009 International Conference on Game Theory for Networks, pages 158–163, 2009.
doi:10.1109/GAMENETS.2009.5137397.

34 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing,
STOC ’79, pages 1–12, New York, NY, USA, 1979. Association for Computing Machinery.
doi:10.1145/800135.804393.

35 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer equalities
and inequalities. Proceedings of the American Mathematical Society, 72(1):155–158, 1978.

FSTTCS 2022

https://doi.org/10.1145/1007352.1007445
https://www.microsoft.com/en-us/research/publication/price-anarchy-large-games/
https://www.microsoft.com/en-us/research/publication/price-anarchy-large-games/
https://doi.org/10.1007/978-3-540-79309-0_5
https://doi.org/10.1007/978-3-540-79309-0_5
https://doi.org/10.1016/j.tcs.2008.01.004
https://doi.org/10.1016/j.tcs.2008.01.004
https://doi.org/10.1016/j.tcs.2009.07.046
http://www.jstor.org/stable/1994067
http://www.jstor.org/stable/1994067
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1016/S0022-0000(69)80014-0
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/j.cosrev.2009.04.003
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1109/GAMENETS.2009.5137397
https://doi.org/10.1145/800135.804393

32:18 Semilinear Representations for Series-Parallel Atomic Congestion Games

36 John Glen Wardrop. Some theoretical aspects of road traffic research. Proceedings of the
institution of civil engineers, 1(3):325–362, 1952.

37 Zijun Wu, Rolf H Moehring, Chunying Ren, and Dachuan Xu. A convergence analysis of the
price of anarchy in atomic congestion games. Mathematical Programming, 2022. To appear.
doi:10.1007/s10107-022-01853-0.

A Proofs of Section 3

A.1 Proofs of Section 3.1 and 3.2
▶ Lemma 1. In a network congestion game ⟨A, n⟩, a flow q⃗ is locally-optimal if, and only if,
for all π, π′ ∈ PathsA such that ∀e ∈ π, qe > 0,∑

e∈π\π′

wgt(e) · (2qe − 1) ≤
∑

e∈π′\π

wgt(e) · (2qe + 1). (3)

Proof. Observe that flow q⃗ is locally optimal iff for all paths π, π′ such that ∀e ∈ π, qe > 0,
the vector q⃗′ defined by

q′
e =


qe − 1 if e ∈ π \ π′,

qe + 1 if e ∈ π′ \ π,
qe otherwise,

satisfies soccost(q⃗) ≤ soccost(q⃗′). Given such paths π, π′, let us thus write this inequality as∑
e∈E

wgt(e) · q2
e ≤

∑
e∈E

wgt(e) · q′
e

2

=
∑

e∈π\π′

wgt(e) · (qe − 1)2 +
∑

e∈π′\π

wgt(e) · (qe + 1)2 +
∑

e∈π∩π′

wgt(e) · q2
e .

This is equivalent to∑
e∈π\π′∪π′\π

wgt(e) · q2
e ≤

∑
e∈π\π′

wgt(e) · (q2
e − 2qe + 1) +

∑
e∈π′\π

wgt(e) · (q2
e + 2qe + 1),

hence to∑
e∈π\π′

wgt(e) · (2qe − 1) ≤
∑

e∈π′\π

wgt(e) · (2qe + 1). ◀

▶ Lemma 4. In a series-parallel network A, for all period vectors d⃗ ∈ NE of a semilinear
representation of LocOpt≥n0

(A), there exists κ ≥ 0 such that for all π ∈ PathsA, we have∑
e∈π wgt(e) · de = κ.

Proof. Consider a linear set L(⃗b, d⃗) in LocOpt≥n0(A) and two paths π1 and π2.
Applying Lemma 3 to b⃗ ∈ LocOpt≥n0(A), we have that be > 0 for all e ∈ E. For any k ≥ 0,

the flow q⃗ = b⃗+ kd⃗ is locally optimal and has qe > 0 for all e ∈ π2. By Lemma 1,∑
e∈π2\π1

wgt(e) · (2(be + kde) − 1) ≤
∑

e∈π1\π2

wgt(e) · (2(be + kde) + 1)

which rewrites as∑
e∈π2\π1

wgt(e)·(2be −1)−
∑

e∈π1\π2

wgt(e)·2(be +1)+2k
(∑

e∈π2

wgt(e)de −
∑
e∈π1

wgt(e)de

)
≤ 0.

https://doi.org/10.1007/s10107-022-01853-0

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 32:19

Since this holds for any k ≥ 0, we must have
∑

e∈π2
wgt(e)de −

∑
e∈π1

wgt(e)de ≤ 0. The
converse inequality can be obtained using similar arguments, hence

∑
e∈π2

wgt(e)de =∑
e∈π1

wgt(e)de. ◀

B Proofs of Section 4

▶ Lemma 9. Given a network A, a strategy profile p⃗ is a Nash equilibrium if, and only if,

∀π, π′ ∈ Paths, pπ > 0 =⇒
∑

e∈π\π′

wgt(e) · qe ≤
∑

e∈π′\π

wgt(e) · (qe + 1), (6)

where q⃗ = flow(p⃗).

Proof. The lemma is a reformulation of (2): for π, π′ ∈ Paths with pπ > 0, costπ(p⃗) ≤
costπ′(p⃗′) can be written as∑

e∈π

wgt(e) · qe ≤
∑
e∈π′

wgt(e) · q′
e,

where q⃗ and q⃗′ are the respective flows of p⃗ and p⃗′. This is equivalent to∑
e∈π\π′

wgt(e) · qe ≤
∑

e∈π′\π

wgt(e) · q′
e =

∑
e∈π′\π

wgt(e) · (qe + 1). ◀

▶ Lemma 10. The sets NE(A) and flow(NE(A)) are semilinear.

Proof. We show that both sets can be expressed in Presburger arithmetic. This follows from
Lemma 9 since the following formula with free variables {qe | e ∈ E} ∪ {pπ | π ∈ Paths(A)}
expresses (6) in Presburger arithmetic:

ϕ =
∧

π,π′∈Paths

pπ > 0 =⇒
∑

e∈π\π′

wgt(e) · qe ≤
∑

e∈π′\π

wgt(e) · (qe + 1)


∧
∧

e∈E

(
qe =

∑
π∈Paths:e∈π

pπ

)
.

Here we use the fact that Paths is finite so that the above is a well-defined formula. Now,
existentially quantifying {qe}e∈E in ϕ yields a formula describing NE(A). Existentially
quantifying {pπ}π∈Paths(A) in ϕ yields flow(NE(A)). ◀

Our next results prove that the “projections” of the Nash equilibria of series-parallel
networks onto their constituent subnets still are Nash equilibria. We first formally define
those projections.

For a network A = A1; A2 and p⃗ ∈ S(A), for i ∈ {1, 2}, let us define prjAi
(p⃗) ∈ S(Ai)

where for each πi ∈ PathsAi
, prjAi

(p⃗)πi
=
∑

π3−i∈PathsA3−i
pπ1π2 . Thus, prjAi

(p⃗)πi
is the

number of players that cross the path πi in the profile p⃗.
For a network A = A1 ∥ A2, and a vector p⃗ ∈ S(A), for i ∈ {1, 2}, let us denote p⃗|Ai

∈
S(Ai) obtained by restricting p⃗ to PathsAi . Similarly, for a vector q⃗ ∈ F(A), let q⃗|Ai the
restriction of q⃗ to the edges of Ai.

▶ Lemma 16. Consider a network A = A1; A2. Then, for all p⃗ ∈ S(A), we have

p⃗ ∈ NE(A) ⇔ ∀i ∈ {1, 2}, prjAi
(p⃗) ∈ NE(Ai).

FSTTCS 2022

32:20 Semilinear Representations for Series-Parallel Atomic Congestion Games

Proof. Consider p⃗ ∈ S(A). Observe that all π ∈ PathsA can be written as π = π1π2
where πi ∈ PathsAi

, and that costπ(p⃗) = costπ1(prjA1
(p⃗)) + costπ2(prjA2

(p⃗)).
Assume that p⃗ ∈ NE(A). Consider π1 ∈ PathsA1 such that prjA1

(p⃗)π1 > 0. Then, there
must exist a path π2 ∈ PathsA2 such that pπ1π2 > 0. By (2), we have that for all π′ ∈ PathsA,
we have costπ1π2(p⃗) ≤ costπ′(p⃗′) where p⃗′ = p⃗−π1π2 +π′. In particular, for all π′

1 ∈ PathsA1 ,
we have costπ1π2(p⃗) ≤ costπ′

1π2(p⃗′), i.e.,

costπ1(prjA1
(p⃗)) + costπ2(prjA2

(p⃗)) ≤ costπ′
1
(prjA1

(p⃗′)) + costπ2(prjA2
(p⃗′)).

The second terms of both sides are equal since prjA2
(p⃗) = prjA2

(p⃗′). It follows that

costπ1(prjA1(p⃗)) ≤ costπ′
1
(prjA1(p⃗′)) = costπ′

1
(prjA1(p⃗) − π1 + π′

1),

which means that prjA1(p⃗) ∈ NE(A1). The argument is symmetric for A2.

Conversely, assume that for all i ∈ {1, 2}, prjAi
(p⃗) ∈ NE(Ai). Consider any path π ∈

PathsA such that pπ > 0, and write it as π = π1π2. Then, for both i ∈ {1, 2}, prjAi
(p⃗)πi

> 0.
Take any other path π′ = π′

1π
′
2 ∈ PathsA. Because each prjAi

(p⃗) is a Nash equilibrium, we
have

costπi
(prjAi

(p⃗)) ≤ costπ′
i
(prjAi

(p⃗) − πi + π′
i).

Summing up these inequations, we get

costπ1π2(p⃗) ≤ costπ′
1
(prjA1

(p⃗) − π1 + π′
1) + costπ′

2
(prjA2

(p⃗) − π2 + π′
2)

= costπ′
1
(prjA1(p⃗− π1π2 + π′

1π
′
2)) + costπ′

2
(prjA2(p⃗− π1π2 + π′

1π
′
2)

= costπ′(p⃗− π + π′).

Hence π′ is not a profitable deviation, whichever π′ ∈ PathsA. ◀

▶ Lemma 17. Consider a network A = A1 ∥ A2. Then, for all p⃗ ∈ NE(A), we have that for
all i ∈ {1, 2}, we have p⃗|Ai

∈ NE(Ai).

Proof. Consider p⃗ ∈ NE(A), and i ∈ {1, 2}. Then, for all π, π′ ∈ PathsAi
such that pπ > 0,

costπ(p⃗) ≤ costπ′(p⃗−π+π′). Since the only paths sharing edges with π and π′ are in PathsAi
,

we have that costπ(p⃗|Ai
) ≤ costπ′(p⃗|Ai

− π + π′). Hence p⃗|Ai
∈ NE(Ai). ◀

▶ Remark 18. Notice that contrary to Lemma 16, Lemma 17 is not an equivalence: a 2-player
strategy profile involving the “shortest” path of A1 with the “shortest” path of A2 need not
yield a Nash equilibrium.

Playing (Almost-)Optimally in Concurrent Büchi
and Co-Büchi Games
Benjamin Bordais
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Stéphane Le Roux
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Abstract
We study two-player concurrent stochastic games on finite graphs, with Büchi and co-Büchi objectives.
The goal of the first player is to maximize the probability of satisfying the given objective. Following
Martin’s determinacy theorem for Blackwell games, we know that such games have a value. Natural
questions are then: does there exist an optimal strategy, that is, a strategy achieving the value of
the game? what is the memory required for playing (almost-)optimally?

The situation is rather simple to describe for turn-based games, where positional pure strategies
suffice to play optimally in games with parity objectives. Concurrency makes the situation intricate
and heterogeneous. For most ω-regular objectives, there do indeed not exist optimal strategies in
general. For some objectives (that we will mention), infinite memory might also be required for
playing optimally or almost-optimally.

We also provide characterizations of local interactions of the players to ensure positionality
of (almost-)optimal strategies for Büchi and co-Büchi objectives. This characterization relies on
properties of game forms underpinning the formalism for defining local interactions of the two players.
These well-behaved game forms are like elementary bricks which, when they behave well in isolation,
can be assembled in graph games and ensure the good property for the whole game.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Concurrent Games, Optimal Strategies, Büchi Objective, co-Büchi Objective

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.33

Related Version Extended Version: https://arxiv.org/pdf/2203.06966.pdf [3]

1 Introduction

Stochastic concurrent games. Games on graphs are an intensively studied mathematical
tool, with wide applicability in verification and in particular for the controller synthesis
problem, see for instance [16, 1]. We consider two-player stochastic concurrent games played
on finite graphs. For simplicity (but this is with no restriction), such a game is played over
a finite bipartite graph called an arena: some states belong to Nature while others belong
to the players. Nature is stochastic, and therefore assigns a probabilistic distribution over
the players’ states. In each players’ state, a local interaction between the two players (called
Player A and Player B) happens, specified by a two-dimensional table. Such an interaction is
resolved as follows: Player A selects a probability distribution over the rows while Player B
selects a probability distribution over the columns of the table; this results into a distribution
over the cells of the table, each one pointing to a Nature state of the graph. An example
of game arena (with no Nature states – we could add dummy deterministic Nature states)
is given in Figure 1 (this example comes from [10]). At state q0, the interaction between
the two players is given by the table, and each player has two actions: if Player A plays the
second row and Player B the first column, then the game proceeds to state ⊤: in that case,
the game always goes back to q0.

© Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 33; pp. 33:1–33:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.33
https://arxiv.org/pdf/2203.06966.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

Globally, the game proceeds as follows: starting at an initial state q0, the two players play
in the local interaction of the current state, and the joint choice determines (stochastically)
the next Nature state of the game, itself moving randomly to players’ states; the game
then proceeds subsequently from the new players’ state. The way players make choices is
given by strategies, which, given the sequence of states visited so far (the so-called history),
assign local strategies for the local interaction of the state the game is in. For application in
controller synthesis, strategies will correspond to controllers, hence it is desirable to have
strategies simple to implement. We will be in particular interested in strategies which are
positional, i.e. strategies which only depend on the current state of the game, not on the
whole history. When each player has fixed a strategy (say sA for Player A and sB for Player
B), this defines a probability distribution Pq0

sA,sB
over infinite sequences of states of the game.

The objectives of the two players are opposite (we assume a zero-sum setting): together with
the game, a measurable set W of infinite sequences of states is fixed; the objective of Player
A is to maximize the probability of W while the objective of Player B is to minimize it.

Back to the example of Figure 1. If Player A (resp. B) plays the first row (resp. column)
with probability pA (resp. pB), then the probability to move to ⊥ in one step is (1−pA)·(1−pB).
If Player A repeatedly plays the same strategy at q0 with pA < 1, by playing pB = 0, Player
B will enforce ⊥ almost-surely; however, if Player A plays pA = 1, then by playing pB = 1,
Player B enforces staying in q0, hence visiting ⊤ with probability 0. On the contrary Player
A can ensure visiting ⊤ infinitely often with probability 1 − ε for every ε > 0, by playing
iteratively at q0 the first row of the table with probability 1 − εk (k the number of visits to
q0) and the second row with probability εk, where the sequence (εk)k decreases fast to zero
(see Appendix A).

Values and (almost-)optimal strategies. As mentioned above, Player A wants to maximize
the probability of W , while Player B wants to minimize this probability. Formally, given
a strategy sA for Player A, its value is measured by infsB Pq0

sA,sB
(W), and Player A wants to

maximize that value. Dually, given a strategy sB for Player B, its value is measured by
supsA

Pq0
sA,sB

(W), and Player B wants to minimize that value. Following Martin’s determinacy
theorem for Blackwell games [14], it actually holds that the game has a value given by

χq0
= sup

sA

inf
sB

Pq0
sA,sB

(W) = inf
sB

sup
sA

Pq0
sA,sB

(W)

While this ensures the existence of almost-optimal strategies (that is, ε-optimal strategies for
every ε > 0) for both players, it says nothing about the existence of optimal strategies, which
are strategies achieving χq0

. In general, except for safety objectives, optimal strategies may
not exist, as witnessed by the example of Figure 1, which uses a Büchi condition. Also, it says
nothing about the complexity of optimal strategies (when they exist) and ε-optimal strategies.
Complexity of a strategy is measured in terms of memory that is used by the strategy: while
general strategies may depend on the whole history of the game, a positional strategy only
depends on the current state of the game; a finite-memory strategy records a finite amount of
information using a finite automaton; the most complex ones, the infinite-memory strategies
require more than a finite automaton to record information necessary to take decisions.

Back to the game of Figure 1, assuming the Büchi condition “visit ⊤ infinitely often”,
the game is such that χq0

= 1. However Player A has no optimal strategy, and can only
achieve 1 − ε for every ε > 0 with an infinite-memory strategy, and any positional strategy
has value 0.

B. Bordais, P. Bouyer, and S. Le Roux 33:3

q0,

[
q0 >
> ⊥

] ⊥

>

Figure 1 A concurrent game
with objective Büchi({⊤}).

Fq0 =

[
x y
y z

]
Figure 2 The local inter-

action at state q0.

〈Fq0 , µv〉 =
[
1 1
1 0

]
Figure 3 The local interac-

tion at state q0 valued by the
vector µv giving the value of
states.

The contributions of this work. We are interested in memory requirements for optimal
and ε-optimal strategies in concurrent games with parity objectives. The situation is rather
heterogeneous: while safety objectives enjoy very robust properties (existence of positional
optimal strategies in all cases, see for instance [11, Thm. 1]), the situation appears as much
more complex for parity objectives (already with three colors): there may not exist optimal
strategies, and when they exist, optimal strategies as well as ε-optimal strategies require in
general infinite memory (the case of optimal strategies was proven in [10] while the case of
ε-optimal strategies is a consequence of the Büchi case, studied in [11, Thm. 2]). The case of
reachability objectives was studied with details in [2]: optimal strategies may not exist, but
there exists a positional strategy that is 1) optimal from each state from where there exists
an optimal strategy, and 2) ε-optimal from the other states.

In this paper, we focus on Büchi and co-Büchi objectives. Few things were known for
those games: specifically, it was shown in [11, Thm. 2] that Büchi and co-Büchi concurrent
games may have no optimal strategies, and that ε-optimal strategies may require infinite
memory for Büchi objectives. We show in addition that, when optimal strategies exist
everywhere, optimal strategies can be chosen positional for Büchi objectives but may require
infinite memory for co-Büchi objectives. We more importantly characterize “well-behaved”
local interactions (i.e. interactions of the two players at each state, which are given by tables)
for ensuring positionality of (ε-)optimal strategies in the various settings where they do not
exist in the general case. We follow the approach used in [2] for reachability objectives and
abstract those local interactions into game forms, where cells of the table are now seen as
variables (some of them being equal). For instance, the game form associated with state q0
in the running example has three outcomes: x, y and z, and it is given in Figure 2. Game
forms can be seen as elementary bricks that can be used to build games on graphs. Given
a property we want to hold on concurrent games (e.g. the existence of positional optimal
strategies in Büchi games), we characterize those bricks that are safe w.r.t. that property,
that is the game forms that behave well when used individually, the ones ensuring that,
when they are the only non-trivial local interaction in a concurrent game, the property holds.
Then, we realize that they also behave well when used collectively: if all local interactions
are safe in a concurrent game, then the whole game ensures the property of interest. We
obtain a clear-cut separation: if all local interactions are safe in a concurrent game, then the
property is necessarily ensured; on the other hand, if a game form is not safe, one can build
a game where it is the only non-trivial local interaction that does ensure the property. Our
contributions can be summarized as follows:
1. In the general setting of prefix-independent objectives, we characterize positional uniformly

optimal strategies using locally optimal strategies (i.e. strategies which are optimal at
local interactions) and constraints on values of end-components generated by the strategies
(Lemma 16).

FSTTCS 2022

33:4 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

2. We study Büchi concurrent games. We first show that there is a positional uniformly
optimal strategy in a Büchi game as soon as it is known that optimal strategies exist
from every state (Proposition 17). To benefit from this result, we give a (sufficient
and necessary) condition on (game forms describing) local interactions to ensure the
existence of optimal strategies. In particular, if all local interactions are well-behaved
(w.r.t. the condition), then it will be the case that positional uniformly optimal strategies
exist (Theorem 19). We also give a weaker necessary and sufficient condition on local
interactions to ensure the existence of positional ε-optimal strategies in Büchi games,
since in general, infinite memory might be required (Theorem 22).

3. We study co-Büchi concurrent games. We first show that optimal strategies might require
infinite memory in co-Büchi games,in contrast with Büchi games (Subsection 6.1). We also
characterize local interactions that ensure the existence of positional optimal strategies
in co-Büchi games (Theorem 25). It is not useful to do the same for positional ε-optimal
strategies since it is always the case that such strategies exist [5].

Additional details and proofs can be found in the arXiv version of this paper [3].
All these results show the contrast between concurrent games and turn-based games:

indeed, in the latter (which have attracted more attention these last years), pure (that
is, deterministic) positional optimal strategies always exist for parity objectives (hence in
particular, for Büchi and co-Büchi objectives) [15, 7, 18]. The results presented in this
paper hence show the complexity inherent to concurrent interactions in games. Those have
nevertheless retained some attention over the last twenty years [10, 5, 9, 6, 12], and are
relevant in applications [13].

2 Game Forms

A discrete probabilisty distribution over a non-empty finite set Q is a function µ : Q → [0, 1]
such that

∑
x∈Q µ(x) = 1. The support Supp(µ) of a probabilistic distribution µ : Q → [0, 1]

corresponds to the set of non-zeros of the distribution: Supp(µ) = {q ∈ Q | µ(q) ∈]0, 1]}.
The set of all distributions over the set Q is denoted D(Q).

Informally, game forms are two-dimensional tables with variables while games in normal
forms are game forms whose outcomes are real values in [0, 1]. Formally:

▶ Definition 1 (Game form and game in normal form). A game form (GF for short) is a tuple
F = ⟨StA, StB, O, ϱ⟩ where StA (resp. StB) is a non-empty finite set of actions available to
Player A (resp. B), O is a non-empty set of outcomes, and ϱ : StA × StB → O is a function
that associates an outcome to each pair of actions. When the set of outcomes O is equal to
[0, 1], we say that F is a game in normal form. For a valuation v ∈ [0, 1]O of the outcomes,
the notation ⟨F , v⟩ refers to the game in normal form ⟨StA, StB, [0, 1], v ◦ ϱ⟩.

An example of game form (resp. game in normal form) is given in Figure 2 (resp. 3), where
StA (resp. StB) are rows (resp. columns) of the table and x, y, z (resp. 0, 1) are the possible
outcomes of the game form (resp. game in normal form). We use game forms to represent
interactions between two players. The strategies available to Player A (resp. B) are convex
combinations of actions given as the rows (resp. columns) of the table. In a game in normal
form, Player A tries to maximize the outcome, whereas Player B tries to minimize it.

▶ Definition 2 (Outcome of a game in normal form). Let F = ⟨StA, StB, [0, 1], ϱ⟩ be a game in
normal form. The set D(StA) (resp. D(StB)) is the set of (mixed) strategies available to Player
A (resp. B). For a pair of strategies (σA, σB) ∈ D(StA) × D(StB), the outcome outF (σA, σB)
in F of the strategies (σA, σB) is outF (σA, σB) :=

∑
a∈StA

∑
b∈StB

σA(a) · σB(b) · ϱ(a, b) ∈ [0, 1].

B. Bordais, P. Bouyer, and S. Le Roux 33:5

▶ Definition 3 (Value of a game in normal form and optimal strategies). Let F =
⟨StA, StB, [0, 1], ϱ⟩ be a game in normal form, and σA ∈ D(StA) be a strategy for Player
A. The value of strategy σA is valF (σA) := infσB∈D(StB) outF (σA, σB), and analogously for
Player B, with a sup instead of an inf. When supσA∈D(StA) valF (σA) = infσB∈D(StB) valF (σB),
it defines the value of the game F , denoted valF .

A strategy σA ∈ D(StA) ensuring valF = valF (σA) is said to be optimal. The set of all
optimal strategies for Player A is denoted OptA(F) ⊆ D(StA), and analogously for Player B.
Von Neumann’s minimax theorem [17] ensures the existence of optimal strategies (for both
players).

In the following, strategies in games in normal forms will be called GF-strategies, in order
not to confuse them with strategies in concurrent (graph) games.

3 Concurrent Stochastic Games

We introduce the definition of a concurrent arena played on a finite graph, and of a concurrent
game by adding a winning condition.

▶ Definition 4 (Finite stochastic concurrent arena and game). A concurrent arena C is a tuple
⟨Q, A, B, D, δ, dist⟩ where Q is a non-empty set of states, A (resp. B) is the non-empty finite
set of actions available to Player A (resp. B), D is the set of Nature states, δ : Q×A×B → D
is the transition function and dist : D → D(Q) is the distribution function.

A concurrent game is a pair ⟨C, W ⟩ where C is a concurrent arena and W ⊆ Qω is Borel.
The set W is called the (winning) objective and it corresponds to the set of paths winning for
Player A and losing for Player B.

For the rest of the section, we fix a concurrent game G = ⟨C, W ⟩. An important class of
objectives are the prefix-independent objectives, that is objectives W such that an infinite path
is in W if and only if one of its suffixes is in W : for all ρ ∈ Qω and π ∈ Q+, ρ ∈ W ⇔ π·ρ ∈ W .
In this paper, we more specifically focus on Büchi and co-Büchi objectives, which informally
correspond to the infinite paths seeing infinitely often, or finitely often, a given set of states.
We also recall the definitions of the reachability and safety objectives.

▶ Definition 5 (Büchi and co-Büchi, Reachability and Safety objectives). Consider a target set
of states T ⊆ Q. We define the following objectives:

Büchi(T) := {ρ ∈ Qω | ∀i ∈ N, ∃j ≥ i, ρj ∈ T}; Reach(T) := {ρ ∈ Qω | ∃i ∈ N, ρi ∈ T};
coBüchi(T) := {ρ ∈ Qω | ∃i ∈ N, ∀j ≥ i, ρj /∈ T}; Safe(T) := {ρ ∈ Qω | ∀i ∈ N, ρi /∈ T}.

In concurrent games, game forms appear at each state and specify how the interaction
of the Players determines the next (Nature) state. In fact, this corresponds to the local
interactions of the game.

▶ Definition 6 (Local interactions). The local interaction at state q ∈ Q is the game form
Fq = ⟨A, B, D, δ(q, ·, ·)⟩. That is, the GF-strategies available for Player A (resp. B) are the
actions in A (resp. B) and the outcomes are the Nature states.

As an example, the local interaction at state q0 in Figure 1 is represented in Figure 2, up
to a renaming of the outcomes.

A strategy of a given Player then associates to every history (i.e. every finite sequence of
states) a GF-strategy in the local interaction at the current state, in other words it associates
a distribution on the actions available at the local interaction to the given Player.

FSTTCS 2022

33:6 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

▶ Definition 7 (Strategies). A strategy for Player A is a function sA : Q+ → D(A) such
that, for all ρ = q0 · · · qn ∈ Q+, sA(ρ) ∈ D(A) is a GF-strategy for Player A in the game form
Fqn

. A strategy sA : Q+ → D(A) for Player A is positional if, for all π = ρ · q ∈ Q+ and
π′ = ρ′ · q′ ∈ Q+, if q = q′, then sA(π) = sA(π′) (that is, the strategy only depends on the
current state of the game). We denote by SA

C and PSA
C the set of all strategies and positional

strategies in arena C for Player A. The definitions are analogous for Player B.

Before defining the outcome of the game given a strategy for a Player, we define the
probability to go from state q to state q′, given two GF-strategies in the game form Fq.

▶ Definition 8 (Probability Transition). Let q ∈ Q be a state and (σA, σB) ∈ D(A) × D(B) be
two GF-strategies in the game form Fq. For a state q′ ∈ Q, the probability to go from q to q′

if the players play σA and σB in q is equal to PσA,σB
(q, q′) := out⟨Fq,dist(·)(q′)⟩(σA, σB).

From this, given two strategies, we deduce the probability of any cylinder supported by
a finite path, and consequently of any Borel set in Qω. From a state q0 ∈ Q, given two
strategies sA and sB, this probability distribution is denoted PC,q0

sA,sB
: Borel(Q) → [0, 1]. Let us

now define the value of a strategy and of the game.

▶ Definition 9 (Value of strategies and of the game). Let sA ∈ SA
C be a Player A strategy.

The value of sA is the function χG [sA] : Q → [0, 1] such that for every q ∈ Q, χG [sA](q) :=
infsB∈SB

C
PC,q

sA,sB
[W].

The value for Player A is the function χG [A] : Q → [0, 1] such that for all q ∈ Q, we have
χG [A](q) := supsA∈SA

C
χG [sA](q). The value for Player B is defined similarly by reversing the

supremum and infimum.
By Martin’s result on the determinacy of Blackwell games [14], for all concurrent games

G = ⟨C, W ⟩, the values for both Players are equal, which defines the value of the game:
χG := χG [A] = χG [B]. Furthermore, a strategy sA ∈ SA

C which ensures χG [sA](q) = χG(q) from
some state q ∈ Q, is said to be optimal from q. If, in addition it ensures χG [sA] = χG, it is
said to be uniformly optimal.

We mention a very useful result of [4]. Informally, it shows that if there is a state with a
positive value, then there is a state with value 1.

▶ Theorem 10 (Theorem 1 in [4]). Let G be a concurrent game with a prefix-independent
objective. If there is a state q ∈ Q such that χG(q) > 0 (resp. χG(q) < 1), then there is a
state q′ ∈ Q such that χG(q′) = 1 (resp. χG(q′) = 0).

Finally, we define the Markov decision process which is induced by a positional strategy,
and its end-components.

▶ Definition 11 (Induced Markov decision process). Let sA ∈ PSA
C be a positional strategy.

The Markov decision process Γ (MDP for short) induced by the strategy sA is the triplet
Γ := ⟨Q, B, ι⟩ where Q is the set of states, B is the set of actions and ι : Q × B → D(Q) is a
map associating to a state and an action a distribution over the states. For all q ∈ Q, b ∈ B

and q′ ∈ Q, we set ι(q, b)(q′) := PsA(q),b
q,q′ .

The induced MDP Γ is a special case of a concurrent game where Player A does not play
(A could be a singleton) and the set of Player B strategies is the same as in C. The useful
objects in MDPs are the end components [8], i.e. sub-MDPs that are strongly connected.

▶ Definition 12 (End component and sub-game). Let sA ∈ PSA
C be a positional strategy, and

Γ its induced MDP. An end component (EC for short) H in Γ is a pair (QH , β) such that
QH ⊆ Q is a subset of states and β : QH → P(B) \ ∅ associates to each state a non-empty
set of actions compatible with the EC H such that:

B. Bordais, P. Bouyer, and S. Le Roux 33:7

for all q ∈ QH and b ∈ β(q), Supp(ι(q, b)) ⊆ QH ;
the underlying graph (QH , E) is strongly connected, where (q, q′) ∈ E if and only if there
is b ∈ β(q) such that q′ ∈ Supp(ι(q, b)).

We denote by DH ⊆ D the set of Nature states compatible with the EC H: DH = {d ∈ D |
Supp(d) ⊆ QH}. Note that, for all q ∈ QH and b ∈ β(q), we have δ(q, Supp(sA(q)), b) ⊆ DH .

The end component H can be seen as a concurrent arena. In that case, it is denoted CsA
H .

4 Uniform Optimality with Positional Strategies

In this section, we present a necessary and sufficient condition for a positional strategy to be
uniformly optimal. Note that this result holds for any prefix-independent objective for which,
in any finite MDP with the complement objective Qω \ W , there is a positional optimal
strategy. This is in particular the case for the Büchi and co-Büchi objectives (in fact, it holds
for all parity objectives).

We assume a concurrent game G = ⟨C, W ⟩ is given for this section, that W is Borel and
prefix-independent, and that v := χG ∈ [0, 1]Q is the value (function) of the game. We first
define the crucial notion of local optimality: informally, a Player A positional strategy is
locally optimal if, at each local interaction, it is optimal in the game in normal form induced
by the values of the game. As the outcomes of a local interaction are the Nature states, we
have to be able to lift the valuation v of the states into a valuation of the Nature states.
This is done via a convex combination in the definition below.

▶ Definition 13 (Lifting a valuation of the states). Let w : Q → [0, 1] be an arbitrary valuation
of the states. We define µw : D → [0, 1], the lift of the valuation w to Nature states in the
following way: µw(d) :=

∑
q∈Q dist(d)(q) · w(q) for all d ∈ D.

We can now define the local optimality of a positional strategy.

▶ Definition 14 (Local optimality). A Player A positional strategy sA ∈ PSA
C is locally optimal

if for all q ∈ Q: val⟨Fq,µv⟩(sA(q)) = v(q) (i.e. the GF-strategy sA(q) is optimal in ⟨Fq, µv⟩).

Interestingly, in the MDP induced by a locally optimal strategy, all the states in a given
EC have the same value (w.r.t. the valuation v). This is stated in the proposition below.

▶ Proposition 15 (Proposition 18 in [2]). For every locally optimal Player A positional
strategy sA ∈ PSA

C , for all EC H = (QH , β) in the MDP induced by the strategy sA, there
exists a value vH ∈ [0, 1] such that, for all q ∈ QH , we have v(q) = vH .

We now discuss how local optimality relates to uniform optimality. We first observe that
local optimality is necessary for uniform optimality, and we illustrate this on the example of
Figure 4: in this (partly depicted) game, Nature states are omitted, and values w.r.t. the
valuation v are written in red close to the states. For instance, if Player A plays the top row
and Player B the left column, the state q0 is reached. The local interaction Fq0 at state q0,
valued with the lift µv is then depicted in Figure 5. Assume sA is a Player A positional strategy
that is not locally optimal at q0: the convex combination of the values in the second column
(i.e. the values of the states q1, q2) is less than 1/2, i.e. p · 1/4 + (1 − p) · 3/4 = 1/2 − ε < 1/2,
where p ∈ [0, 1] is the probability chosen by sA(q0) to play the top row. A Player B strategy
sB whose values at states q1, q2 are

(
ε/2

)
-close to v(q1), v(q2) and that plays the second

row with probability 1 at q0, ensures that the value of the game w.r.t. sA, sB is at most
p · (1/4 + ε/2) + (1 − p) · (3/4 + ε/2) ≤ 1/2 − ε/2 < 1/2 = v(q0). Thus, the strategy sA is not
optimal from q0.

FSTTCS 2022

33:8 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

q0,

[
q0 q1
q0 q2

]1/2
q1

1/4

. . .

q2

3/4

. . .

Figure 4 A concurrent game where the values
of the states are depicted near them in red.

〈Fq0 , µv〉 =
[
1/2 1/4
1/2 3/4

]
Figure 5 The local interaction at state q0 val-

ued by the function v giving the value of states.

However, local optimality is not a sufficient condition for uniform optimality, as it can be
seen in Figure 1. A game with a Büchi objective Büchi({⊤}) is depicted (Player A wins if the
state ⊤ is seen infinitely often). In this game, the valued local interaction at state q0 is also
depicted in Figure 3. A Player A locally optimal strategy plays the top row with probability
1 at state q0. If such a strategy is played, Player B can ensure the game never to leave the
state q0 (by playing the left column), thus ensuring value 0 from q0 (with v(q0) = 1). In fact,
in this game, there is no Player A optimal strategy.

Overall, from a state q ∈ Q, the local optimality of a Player A positional strategy sA
ensures that, for every Player B strategy, the convex combination of the values vH of the
ECs H, weighted by the probability to reach them from q, is at least the value of the state
q. However, this does not guarantee anything concerning the χG [sA]-value of the game if it
never leaves a specific EC H , it may be 0 whereas vH > 0 (that is what happens in the game
of Figure 1). For the strategy sA to be uniformly optimal, it must ensure that the value
under sA of all states q in the EC H is at least vH (i.e. for all Player B strategies sB which
ensure staying in H , the value under sA and sB is at least vH). Furthermore, by Theorem 10
applied to H , as soon as at least one state has a value smaller than 1, there is one state with
value 0. It follows that, for the strategy sA to be uniformly optimal, it must be the case that
in every EC H such that vH > 0, in the game restricted to H, the value of the game is 1.
Note that this exactly corresponds to the condition the authors of [2] have stated in the case
of a reachability objective. Uniform optimality can finally be characterized as follows.

▶ Lemma 16. Assume that W is Borel and prefix-independent, and that in all finite MDPs
with objective Qω \ W , there is a positional optimal strategy. Let sA ∈ PSA

C be a positional
Player A strategy. It is uniformly optimal if and only if:

it is locally optimal;
for all ECs H in the MDP induced by the strategy sA, if vH > 0, then for all q ∈ QH , we
have χCsA

H
(q) = 1 (i.e. in the sub-game formed by the EC H, the value of state q is 1).

Note that what is proved in the [3] is slightly more general than Lemma 16 as it deals
with an arbitrary valuation of the states, not only the one giving the value of the game. This
generalization will be used in particular to prove that a positional strategy is ε-optimal from
all states in Subsection 5.3.

5 Playing Optimally with Positional Strategies in Büchi Games

In this section, we focus on Büchi objectives. We will distinguish several frameworks. First
we consider the case when optimal strategies exist from every state and show that in that
case, there is a positional strategy that is uniformly optimal. Furthermore, we show that this
always occurs as soon as all local interactions at states not in the target are reach-maximizable,

B. Bordais, P. Bouyer, and S. Le Roux 33:9

the condition ensuring the existence of optimal strategies in reachability games [2]. Finally,
we study the game forms necessary and sufficient to ensure the existence of positional
almost-optimal strategies (i.e. ε-optimal strategies, for all ε > 0).

5.1 Playing optimally when optimal strategies exist from every state
First we observe that the value of a Büchi game is closely related to the value of a well-chosen
reachability game. We let G = ⟨C, Büchi(T)⟩ be a concurrent Büchi game. We modify G
by replacing every state q in the target T , whose value in the Büchi game is u := χG(q)
by a state that has probability u to go to ⊤ (the new target in the reachability game) and
probability 1 − u to go to a sink non-target state ⊥. In that case, the value of the original
Büchi game is the same as the value of the obtained reachability game, which we denote
Greach := ⟨Creach, Reach({⊤})⟩. It is straightforward to show that the values of both games are
the same from all states, and that optimal strategies in the Büchi game will be also optimal
in the reachability game. Vice-versa, optimal strategies in the reachability game can be lifted
to the Büchi game by augmenting it with a locally optimal strategy at target states.

▶ Proposition 17. For all Büchi games in which an optimal strategy exists from every state,
there exists a Player A positional strategy that is uniformly optimal.

5.2 Game forms ensuring the existence of optimal strategies
Proposition 17 assumes the existence of optimal strategies from every state. However, there
exist Büchi games with no optimal strategies, and even for which almost-optimal strategies
require infinite memory. An example of such a game is depicted in Figure 1 (some details
will be given in Subsection 5.3). This justifies the interest of having Büchi games in which
optimal strategies exist from every state “by design”.

In [2], the authors have proven a necessary and sufficient condition on game forms to
ensure the existence of optimal strategies in all finite reachability games using these game
forms as local interactions. This condition, called reach-maximizable game forms (RM for
short) is not detailed here but is available in the [3]. This formalizes as follows:

▶ Theorem 18 (Lem 33 and Thm 36 in [2]). In all reachability games G = ⟨C, Reach(T)⟩ where
all interactions at states in Q \ T are RM, there exist positional uniformly optimal strategies
(for Player A). Furthermore, if a game form F is not RM, one can build a reachability game
where F is the only non-trivial interaction, in which there is no optimal strategy for Player A.

In the previous subsection, we have described how to translate a Büchi game G = ⟨C, Büchi(T)⟩
into a reachability game Greach := ⟨Creach, Reach({⊤})⟩ while keeping the same value and the
same local interactions in states outside the target T ; furthermore, the local interactions
in all states in T in Greach become trivial (i.e. the outcome is independent of the actions of
the players), which are RM. Hence, if all local interactions at states in Q \ T in the original
game G are RM, then all game forms in Greach are RM, thus there is a uniformly optimal
positional strategy for Player A in that game by Theorem 18. Such a strategy can then be
translated back into the Büchi game to get a positional Player A uniformly optimal strategy.
We obtain the following result.

▶ Theorem 19. In all Büchi games G = ⟨C, Büchi(T)⟩ where all interactions at states in
Q\T are RM, there exist positional uniformly optimal strategies (for Player A). Furthermore,
if a game form F is not RM, one can build a Büchi game where F is the only non-trivial
interaction, in which there is no optimal strategy for Player A.

FSTTCS 2022

33:10 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

Fq0 =

[
x y
y z

]
Figure 6 The game form

used as local interaction at q0.

q0,

[
qT̄ 1
1 0

]
qT̄

Figure 7 The Büchi game G1.

q0,

[
qT̄ qT
qT 0

] qT

qT̄

Figure 8 The Büchi game G2.

5.3 GFs ensuring the existence of positional almost-optimal strategies
While positional strategies are sufficient to play optimally in Büchi games where optimal
strategies do actually exist, the case is really bad for those Büchi games where optimal
strategies do not exist. Indeed, it can be the case that infinite memory is necessary to play
almost-optimally, as we illustrate in the next paragraph. Then we characterize game forms
that ensure the existence of positional almost-optimal strategies.

An example of a Büchi game where playing almost-optimally requires infinite memory.
Consider the Büchi game G = ⟨C, Büchi(⊤)⟩ in Figure 1. As argued earlier (in Section 4),
there are no optimal strategies in that game. First, notice that the value of the game at
state q0 is 1. However, any finite-memory strategy (i.e. a strategy that can be described
with a finite automaton) has value 0. Indeed, consider such a Player A strategy sA. There
is some probability p > 0 such that if sA plays an action with a positive probability, this
probability is at least p. If the strategy sA plays, at state q0 the bottom row with positive
probability and if Player B plays the right column with probability 1, then state ⊥ is reached
with probability at least p. If this happens infinitely often, then the state ⊥ is eventually
reached almost-surely: the value of the strategy is then 0. Hence, Player A has to play, from
some time on, the top row with probability 1. From that time on, Player B can play the left
column with probability 1, leading to avoid state ⊤ almost-surely. Hence the value of strategy
sA is 0 as well. In fact, all ε-optimal strategies (for every ε > 0) cannot be finite-memory
strategies. A Player A strategy with value at least 1 − ε (with 0 < ε < 1) will have to play
the bottom row with positive probability infinitely often, but that probability will have to
decrease arbitrarily close to 0. More details are given in [3].

Game forms ensuring the existence of positional ε-optimal strategies. forms which ensure
the existence of positional almost-optimal strategies in Büchi games. The approach is inspired
by the one developed in [2] for reachability games.

We start by discussing an example, and then generalize the approach. Let us consider
the game form F depicted in Figure 6, where O = {x, y, z}. We embed this game form into
two different environments, depicted in Figures 7 and 8. These define two Büchi games using
the following interpretation: (a) values 0 and 1 in green represent output values giving the
probability to satisfy the Büchi condition when these outputs are selected; (b) other outputs
lead to either orange state qT (a target for the Büchi condition) or red state qT̄ (not a target).
In particular, the game of Figure 8 is another representation of the game of Figure 1.

Let us compare these two games. First notice that there are no optimal strategies in both
cases, as already argued for the game in Figure 8; the arguments are similar for the game
of Figure 7. Interestingly, in the game G1 in Figure 7, there are positional almost-optimal
strategies (it is in fact a reachability game) whereas there are none in the game G2 in Figure 8
(as already discussed above); despite the fact that the local interaction at q0 valued with µv,
for v the value vector of the game, is that of Figure 3 in both cases.

B. Bordais, P. Bouyer, and S. Le Roux 33:11

We analyze the two settings to better understand the differences. A positional ε-optimal
strategy sA at q0 in both games has to be an ε-optimal GF-strategy sA(q0) ∈ D(A) in the
game in normal form ⟨Fq0 , µv⟩ (similarly to how a uniformly optimal positional strategy
needs to be locally optimal (Lemma 16)). Consider for instance the Player A positional
strategy sA that plays (at q0) the top row with probability 1 − ε (which is ε-optimal in
⟨Fq0 , µv⟩). This strategy has value 1 − ε in G1, but has value 0 in G2. In both cases, if Player
B plays the left column, the target is seen infinitely often almost-surely (since the bottom
row is played with positive probability). The difference arises if Player B plays the right
column with probability 1: in G1, the target is reached and never left with probability 1 − ε;
however, in G2, with probability 1 − ε, the game visits the target but loops back to q0, hence
playing for ever this strategy leads with probability 1 to the green value 0. Actually, sA is
ε-optimal if for each column, either there is no green value but at least one orange qT , or
there are green values and their average is at least 1 − ε.

This intuitive explanation can be generalized to any game form F as follows, which we will
embed in several environments. To define an environment, we fix (i) a partition O = OLp ⊎OEx
of the outcomes (Lp stands for loop – i.e. orange and red outcomes – and Ex stands for exit
– i.e. the green outcomes), (ii) a partial valuation of the outcomes α : OEx → [0, 1] and a
probability pT : OLp → [0, 1] to visit the target T in the next step and loop back (above, the
probability was either 1 (represented by orange state qT) or 0 (represented by red state qT̄)).
We then consider the Büchi game GBüchi

F,α,pT
which embeds game form F in the environment

given by α and pT as follows: an outcome o ∈ OLp leads to qT with probability pT (o) and qT̄

otherwise; from qT or qT̄ , surely we go back to q0; an outcome o ∈ OEx leads to the target T

with probability α(o) and outside T otherwise (in both cases, it stays there forever); this
is formally defined in [3]. We want to specify that there are positional ε-optimal strategies
in the game GBüchi

F,α,pT
if and only if there are ε-optimal GF-strategies in the game form F

ensuring the properties described above. However, to express what is an ε-optimal strategy,
we need to know the value of the game GBüchi

F,α,pT
at state q0: to do so, we use [11], in which

the value of concurrent games with parity objectives (generalizations of Büchi and co-Büchi
objectives) is computed using µ-calculus. In our case, this can be expressed with nested
fixed point operations, as described in the Appendix of [3]. We denote this value uBüchi

F,α,pT
or

simply u. We can now define almost-Büchi maximizable (aBM for short) game form.

▶ Definition 20 (Almost-Büchi maximizable game forms). Consider a game form F , a partition
of the outcomes O = OLp ⊎ OEx, a partial valuation of the outcomes α : OEx → [0, 1] and
a probability pT : OLp → [0, 1] to visit the target T . The game form F is almost-Büchi
maximizable (aBM for short) w.r.t. α and pT if for all 0 < ε < u, there exists a GF-strategy
σA ∈ D(StA) such that, for all b ∈ StB, letting Ab := {a ∈ Supp(σA) | ϱ(a, b) ∈ OEx}, either:

Ab = ∅, and there exists a ∈ Supp(σA) such that pT (ϱ(a, b)) > 0 (i.e. if all outcomes loop
back to q0, there is a positive probability to visit T : left column in the game G2);
Ab ̸= ∅, and

∑
a∈Ab

σA(a) · α(ϱ(a, b)) ≥ (u − ε) · σA(Ab) (i.e. for the action b, the value
of σA restricted to the outcomes in OEx is at least u − ε: right column in the game G1).

The game form F is almost-Büchi maximizable (aBM for short) if for all partitions O =
OLp ⊎ OEx, for all partial valuations α : OEx → [0, 1] and probability function pT : OLp → [0, 1],
it is aBM w.r.t. α and pT .

This definition relates to the existence of positional almost-optimal strategies in GBüchi
F,α,pT

:

▶ Lemma 21. The game form F is aBM w.r.t. α and pT if and only if there are positional
almost-optimal strategies from state q0 in the game GBüchi

F,α,pT
.

FSTTCS 2022

33:12 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

More interestingly, if a concurrent Büchi game has all its game forms aBM (possibly
except at target states), then there exist positional almost-optimal strategies.

▶ Theorem 22. Consider a Büchi game G = ⟨C, Büchi(T)⟩ and assume that all local
interactions at states in Q \ T are aBM. Then, for every ε > 0, there is a positional strategy
that is ε-optimal from every state q ∈ Q.

Proof sketch. Let ε > 0. We build a positional Player A strategy sA and then apply (a
slight generalization of) Lemma 16 to show that it is ε-optimal. Let v := χG be the value
vector of the game and u ∈ v[Q] \ {0} be some positive value of the game. Consider the
set Qu := v−1[{u}] ⊆ Q of states whose values w.r.t. v is u. We define the strategy sA on
each Qu for u ∈ v[Q] and then glue the portions of sA together. This is possible because the
Player A strategy we build enforces end-components in which the value given by v of all
states is the same (similarly to Proposition 15 for locally optimal strategies).

In Figure 9, the set Qu corresponds to the white area. Target states (T) are in orange,
while non-target states are in red (q1, q2, q3 in the figure). From every state of Qu, there may
be several split arrows, which correspond to choices by Player B (actions b ∈ StB); black split
edges stay within Qu while blue edges partly lead outside Qu; once a split edge is chosen by
Player B, Player A may ensure any leaving edge with some positive probability.

In a state q ∈ Qu ∩ T , the strategy sA only needs to be locally optimal, i.e. such that
val⟨Fq,µv⟩(sA(q)) = v(q). Then, the states in Qu \ T will be considered one by one. Let
q ∈ Qu \ T , we consider the Büchi game GBüchi

Fq,α,pT
built from the aBM game form Fq and the

immediate environment of q as follows: the partial valuation α of the outcomes (i.e. the
Nature states) is defined on those with a positive probability to reach Q \ Qu (i.e. the green
area – green outcomes in Figures 7, 8), and pT maps a Nature state d staying in Qu to the
probability dist(d)[Qu ∩ T] to reach the target T (i.e. the probability to reach the orange
states in Figure 9 – they correspond to the orange and red outcomes in Figures 7, 8).

In Figure 9, states in red are non-winning yet (non-target in the first stage) and therefore
if Player B can choose a black split-edge leading only to red states, then the value of game
GBüchi

Fq,α,pT
is 0 (this is the case of q2). On the other hand, if all split-edges are either blue or

black with at least one orange end, then the value of game GBüchi
Fq,α,pT

is positive (this is the
case of states q1 and q3). Then, we realize that there must be at least one state q ∈ Qu \ T

such that uBüchi
Fq,α,pT

≥ u (this is a key argument, and it is due to the definition of uBüchi
Fq,α,pT

,
which relates to how the value in Büchi games is computed via fixed-point operations). In
Figure 9, there are actually two such states, q1 and q3: the value at q1 is 1 while the value
at q3 is an average of the values at the two (green) ends of the (blue) split-edge. We can
then use the facts that Fq1 and Fq3 are aBM and apply the definition with a well-chosen
0 < εu ≤ ε to obtain the GF-strategies played by the strategy sA at states q1 and q3.

We then iterate the process by going to the second stage by considering that the previously
dealt states (q1 and q3 in our example) are now orange, as in Figure 10: they are now
considered as targets. The property that uBüchi

Fq,α,pT
≥ u (with a new pT taking into account

the larger set of targets) then propagates throughout the game to all states in the white
area. The strategy sA is now fully defined on Qu, and we can check that, under any Player B
strategy, if the game eventually stays within an EC within Qu, it will reach the target T

infinitely often almost-surely. Indeed, from each state, there is either a positive probability
to leave the EC (i.e. see a green outcome) or a positive probability to get closer to the target
(i.e. see an orange outcome). ◀

With Lemma 21 and Theorem 22, we obtain a corollary analogous to Theorem 19 for
aBM game forms and the existence of almost-optimal strategies.

B. Bordais, P. Bouyer, and S. Le Roux 33:13

Qu T
q1

q2

q3

Figure 9 First stage of the construction of
strategy sA within Qu.

Qu T
q1

q2

q3

Figure 10 Second stage of the construction of
strategy sA within Qu.

▶ Corollary 23. In all Büchi games G = ⟨C, Büchi(T)⟩ where all interactions at states in
Q \ T are aBM, there exist positional uniformly almost-optimal strategies (for Player A).
Furthermore, if a game form F is not aBM, one can build a Büchi game where F is the only
non-trivial interaction, in which there is no positional almost-optimal strategy for Player A.

Note that game forms that are not aBM may behave well in some environments, even though
they do not behave well in some other environments. Hence, it might be the case that in
a specific Büchi game with local interactions that are not aBM, there are some positional
almost-optimal strategies. This observation stands for all the type of game forms we have
characterized: RM, aBM and also coBM in the next section.

Finally, note that it is decidable whether a game form is aBM.

▶ Proposition 24. It is decidable if a game form is aBM. Moreover, all RM game forms are
aBM game forms and there is a game form that is aBM but not RM.

6 Playing Optimally in co-Büchi Games

Although they may seem quite close, Büchi and co-Büchi objectives do not enjoy the same
properties in the setting of concurrent games. For instance, we have seen that there are
Büchi games in which a state has value 1 but any finite-memory strategy has value 0. This
cannot happen in co-Büchi games, since strategies with values arbitrarily close to 1 can be
found among positional strategies [5]. We have also seen in Section 5 that in all concurrent
Büchi games, if there is an optimal strategy from all states, then there is a uniformly optimal
positional strategy. As we will see in the next subsection, this does not hold for co-Büchi
games. This shows that concurrency in games complicates a lot the model: the results of this
paper has to be put in regards with the model of turn-based games where pure positional
strategies are sufficient to play optimally, for parity objectives [15].

6.1 Optimal strategies may require infinite memory in co-Büchi games
Consider the game depicted in Figure 11, which uses the same convention as in the previous
section. The objective is W = coBüchi({qT , q′

T , ⊤}) where the state ⊤ is not represented,
but implicitly present via the green values (for instance, green value 1/2 leads to ⊤ with
probability 1/2 and to ⊥ with probability 1/2). Let A := {a1, a2, a3} with a1 the top row and
a3 the bottom row and B := {b1, b2, b3} with b1 the leftmost column and b3 the rightmost
column. If a green value is not reached, Player A wins if and only if eventually, the red state
is not seen anymore. The values of the states q0, qT , qT ′ and qT̄ are the same and are at most
1/2. Indeed, if Player B almost-surely plays b3 at q0, she ensures that the value of the game
from q0 is at most 1/2. Let us argue that any Player A positional strategy has value less
than 1/2 and exhibit an infinite-memory Player A strategy whose value is 1/2.

FSTTCS 2022

33:14 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

q0,

 qT̄ q′T 1/2
qT 1 1/2
1/2 1/2 0

qT̄

qT

q′T

Figure 11 The co-Büchi game
G1.

F =

x z t
y r t
t t s


Figure 12 The local in-

teraction at state q0.

q0,

 qT̄ q′T 1/2
qT̄ 1 1/2
1/2 1/2 0

qT̄ q′T

Figure 13 Another co-Büchi
game (G2) built on F .

Consider a Player A positional strategy sA. We define a Player B strategy sB as follows:
if sA(q0)(a3) = ε > 0, then we set sB(q0)(b3) := 1 and the value of the game w.r.t. sA, sB is at
most 1/2 − ε < 1/2. If sA(q0)(a1) = 1, we set sB(q0)(b2) := 1 and the state q′

T ∈ T is visited
infinitely often almost-surely. Otherwise, sA(q0)(a2) > 0 and sA(q0)(a3) = 0, hence choosing
sB(q0)(b1) := 1 ensures that the state qT ∈ T is visited infinitely often almost-surely. In the
last two cases, sA has value 0. Overall, any positional strategy sA has value less than 1/2.

We briefly describe a Player A optimal strategy sA (whose value is 1/2). The idea is the
following: along histories that have not visited q′

T yet (this happens when Player B has not
played b2), sA plays a1 with very high probability 1 − εk < 1 and a2 with probability εk > 0,
where k denotes the number of steps. The values (εk)k∈N are chosen so that, if Player B only
plays b1 with probability 1, then the state qT ∈ T is seen finitely often almost-surely. Some
details are given in Appendix B. After the first visit to q′

T , Player sA switches to a positional
strategy of value 1

2 − ε′
k, for ε′

k > 0 and k is the number of steps after the first visit to q′
T . A

first visit to q′
T occurs when b2 is played by Player B. The value of sA after that point is

then (1 − εk) · (1
2 − ε′

k) + εk · 1. It suffices to choose ε′
k small enough so that the above value

is at least 1/2. Such a Player A strategy is optimal from q0. It follows that, contrary to the
Büchi case, requiring that positional optimal strategies exists from all states in a co-Büchi
game is stronger than requiring that optimal strategies exists from all states.

6.2 GFs in co-Büchi games which ensure positional optimal strategies
Contrary to the Büchi objectives, RM game forms do not suffice to ensure the existence
of positional uniformly optimal strategies in co-Büchi games, see Proposition 26. In this
subsection, we characterize the game forms ensuring this property.

We proceed as in Subsection 5.3, and we explain the approach on an example. Consider
the game form F depicted in Figure 12, that is the local interaction at state q0 of the game
in Figure 11. Let O = OEx ⊎ OLp for OEx := {t, r, s}, OLp := {x, y, z} and consider the partial
valuation α : OEx → [0, 1] such that α(t) := 1/2, α(r) := 1 and α(s) := 0. We then consider
two probability functions p1

T , p2
T : OLp → [0, 1] such that p1

T (x), p2
T (x) := 0, p1

T (z), p2
T (z) := 1,

p1
T (y) := 1 whereas p2

T (y) := 0. The games G1 := GcoBüchi
F,α,p1

T
(Figure 11) and G2 := GcoBüchi

F,α,p2
T

(Figure 13) are defined just like their Büchi counterparts, except for the objective which
is W = coBüchi(T) with qT , q′

T ∈ T and qT̄ /∈ T . We have already argued that there is no
positional optimal strategy in the game G1 (Figure 11). The issue is the following: when
considering a locally optimal strategy (recall Lemma 16), there is a column where, in the
support of the strategy, there is a red outcome (i.e. positive probability to reach T) and
no green outcome. Then, if Player B plays, with probability 1, the corresponding action,
she ensures that the set T is visited infinitely often almost-surely. Now, in the game G2 of
Figure 12, any Player A positional strategy playing a3 with probability 0 and a2 with positive
probability is uniformly optimal. Indeed, in that case, (i) if b1 is played, then the set T is
not seen; (ii) if b2 or b3 are played, then the game will end in a green outcome almost-surely.

B. Bordais, P. Bouyer, and S. Le Roux 33:15

Table 1 Game forms necessary and sufficient for the existence of positional strategies for (almost-
)optimality.

Positional Optimal Strategy Positional ε-Optimal Strategy
T Q \ T T Q \ T

Safe(T) All All All All
Reach(T) All RM All All
Büchi(T) All RM All aBM

coBüchi(T) RM coBM All All

In the general case, as for Büchi games, the value of co-Büchi games can be computed
with nested fixed points (see [3]). Using this value, we can define the notion of co-Büchi
maximizable game forms (coBM for short), which, while requiring a slightly more complex
setting, formalizes the intuition given in the previous example, see [3]. It ensures a lemma
analogous to Lemma 21 in the context of co-Büchi games.

Furthermore, coBM game forms also ensure that, when they are used in a co-Büchi game,
there always exists a positional uniformly optimal strategy.

▶ Theorem 25. In all co-Büchi games G = ⟨C, coBüchi(T)⟩ where all local interactions
at states in T are RM and all local interactions at states in Q \ T are coBM, there exist
positional uniformly optimal strategies (for Player A). Furthermore, if a game form F is not
coBM, one can build a co-Büchi game where F is the only non-trivial interaction where there
is no positional optimal strategy for Player A.

▶ Proposition 26. It is decidable if a game form is coBM. All coBM game forms are RM
game forms. There exists a game form that is RM but not coBM.

7 Conclusion
We have studied game forms and defined various conditions such that these game forms in
isolation behave properly w.r.t. some fixed property (like existence of optimal strategies for
Büchi objectives), and we have proven that they can be used collectively in graph games
while preserving this property. These conditions, summarized in Table 1, give the unique way
to construct games which will satisfy good memory properties by construction for playing
(almost-)optimally.

Let us explicit how to read a specific row of this table, say the third one for the Büchi
objective. A Büchi objective is defined along with a target T ⊆ Q. The game forms necessary
and sufficient to ensure the existence of positional optimal strategies are given in the leftmost
part of the table, and to ensure the existence of positional almost-optimal strategies, in
the rightmost part of the table. For instance, for the leftmost part, if a game form is not
RM, there is a Büchi game built from it – where it is the only non-trivial local interaction –
in which there is no positional optimal strategy. Conversely, if in a Büchi game, all local
interactions at states outside the target T are RM game forms (no further assumption is
made on the game forms appearing at states in T), then there is a positional optimal strategy.
The rightmost part of the table can be read similarly.

Finally, we would like to mention that all two-variable game forms F = ⟨StA, StB, O, ϱ⟩
(i.e. such that |O| ≤ 2) are coBM (this is a direct consequence of the definition), hence
RM. From this, we obtain as a corollary of our results that in all finite Büchi and co-Büchi
games where all local interactions are two-variable game forms, both players have positional
uniformly optimal strategies.

▶ Corollary 27. In a Büchi or co-Büchi game G such that for all q ∈ Q, |δ(q, A, B)| ≤ 2,
both players have a positional uniformly optimal strategy.

FSTTCS 2022

33:16 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Handbook of Model Checking,

chapter Graph games and reactive synthesis, pages 921–962. Springer, 2018.
2 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in concurrent

reachability games. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Con-
ference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany
(Virtual Conference), volume 216 of LIPIcs, pages 7:1–7:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.7.

3 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Playing (almost-)optimally in
concurrent büchi and co-büchi games. CoRR, abs/2203.06966, 2022. doi:10.48550/arXiv.
2203.06966.

4 Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci., 388(1-
3):181–198, 2007. doi:10.1016/j.tcs.2007.07.047.

5 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity of
quantitative concurrent parity games. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 678–687. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109631.

6 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Qualitative concurrent
parity games. ACM Trans. Comput. Log., 12(4):28:1–28:51, 2011. doi:10.1145/1970398.
1970404.

7 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Quantitative stochastic
parity games. In Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 121–130. SIAM, 2004.

8 Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
1997.

9 Luca de Alfaro, Thomas Henzinger, and Orna Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007.

10 Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In 15th Annual
IEEE Symposium on Logic in Computer Science, Santa Barbara, California, USA, June 26-29,
2000, pages 141–154. IEEE Computer Society, 2000. doi:10.1109/LICS.2000.855763.

11 Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games. Journal
of Computer and System Sciences, 68:374–397, 2004.

12 Marta Kwiatkowska, Gethin Norman, Dave Parker, and Gabriel Santos. Automatic verification
of concurrent stochastic systems. Formal Methods in System Design, 58:188–250, 2021.
doi:10.1007/s10703-020-00356-y.

13 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos, and Rui Yan. Probabilistic
model checking for strategic equilibria-based decision making. In 47th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 4:1–4:22. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.4.

14 Donald A. Martin. The determinacy of blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

15 Annabelle McIver and Carroll Morgan. Games, probability and the quantitative µ-calculus
qmµ. In Proc. 9th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’02), volume 2514 of Lecture Notes in Computer Science, pages 292–310.
Springer, 2002.

16 Wolfgang Thomas. Infinite games and verification. In Proc. 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer Science,
pages 58–64. Springer, 2002. Invited Tutorial.

17 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton Univ. Press, Princeton, 1944.

https://doi.org/10.4230/LIPIcs.CSL.2022.7
https://doi.org/10.48550/arXiv.2203.06966
https://doi.org/10.48550/arXiv.2203.06966
https://doi.org/10.1016/j.tcs.2007.07.047
http://dl.acm.org/citation.cfm?id=1109557.1109631
http://dl.acm.org/citation.cfm?id=1109557.1109631
https://doi.org/10.1145/1970398.1970404
https://doi.org/10.1145/1970398.1970404
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1007/s10703-020-00356-y
https://doi.org/10.4230/LIPIcs.MFCS.2022.4

B. Bordais, P. Bouyer, and S. Le Roux 33:17

18 Wiesław Zielonka. Perfect-information stochastic parity games. In Proc. 7th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’04),
volume 2987 of Lecture Notes in Computer Science, pages 499–513. Springer, 2004.

A Infinite memory to play ε-optimal strategies in Büchi games

Consider the game of Figure 1. This game is explained in [10]. Assume that the sets of
actions are A = {a1, a2} and B = {b1, b2} with a1 corresponding to the top row and b1 to
the left column.

Consider some positive probability p > 0 and consider a Player A strategy sA such that
the probability to play a2 is either 0 or at least p. Let us show that the value of such a
strategy is 0. Specifically, consider a Player B strategy sB such that, for all ρ · q0 ∈ Q+, we
have:

sB(ρ · q0) :=
{

b1 if sA(ρ · q0)(a2) = 0
b2 if otherwise

Each time sA(ρ · q0)(a2) ≥ p, then the probability to reach the state ⊥ is reached with
probability at least p. Hence, if this happens infinitely often, then the state ⊥ is seen with
probability 1. Otherwise, the state q0 is never left after some moment on. In both cases, the
set T is seen only finitely often. It follows that the value of the game with strategies sA, sB
is 0.

Now, consider some ε > 0 let us exhibit a Player A strategy of value at least 1−ε. The idea
is the following. Consider a sequence (εk)k∈N of positive values such that limn→∞ Πn

i=0(1 −
εi) ≥ 1 − ε. Then, consider a Player A strategy such that sA(ρ)(a1) := 1 − εk where k ∈ N
denotes the number of times the state ⊤ is visited in ρ. Then, the state q0 is seen indefinitely
with probability 0. If the state ⊤ has been seen already k times, then the probability to stay
at state q0 for n steps is at most (1 − εk)n →n→∞ 0. Furthermore, the probability to ever
reach the state ⊥ is at most limn→∞ Πn

i=0(1 − εi) ≥ 1 − ε. Overall, regardless of Player B’s
strategy, the probability to visit the set T infinitely often is at least 1 − ε. Note that such a
sequence (εk)k∈N could be equal, for instance, to εk := 1 − (1 − ε)

1
2k+1 . Then, for n ∈ N:

Πn
i=0(1 − εi) = (1 − ε)

∑n

i=0
1

2i+1 = (1 − ε)(1− 1
2n+1) →n→∞ 1 − ε

B Playing optimally in the game of Figure 11

We are given a probabilistic process such that, at each step either event T or ¬T occur.
Furthermore, at step n ∈ N, the probability that the event T occurs is equal to εn. We will
denote by P the probability measure of the corresponding measurable sets. In the following,
we will use the following notations:

for all n ∈ N, XnT refers to the event: the event T occurs at step n.
for all n ∈ N: ♢nT := ∪k≥n(XkT) refers to the event: the event T occurs at some point
after step n.
□♢T := ∩n∈N(♢nT) refers to the event: the event T occurs infinitely often.

An infinite path (which can be seen as an infinite sequence of elementary events) is winning
for the Büchi objective if it corresponds to the event □♢T . We want to define a sequence
(εk)k∈N such that, for all k ∈ N we have εk > 0 and P(□♢T) = 0. In fact, it suffices to
consider a sequence (εk)k∈N whose sum converges (i.e. such that

∑∞
n=0 εn < ∞), for instance

εn := 1
2n+1 for all n ∈ N. Indeed, for all n ∈ N, we have:

FSTTCS 2022

33:18 Playing (Almost-)Optimally in Concurrent Büchi and Co-Büchi Games

P(XnT) = εn

Furthermore:

P(♢nT) = P(∪k≥nXkT) ≤
∞∑

k=n

P(XkT) =
∞∑

k=n

εk

It follows that:

P(□♢T) = P(∩n∈N♢nT) = lim
n→∞

P(♢nT) ≤ lim
n→∞

∞∑
k=n

εk = 0

Ambiguity Through the Lens of Measure Theory
Olivier Carton Ñ

IRIF, Université Paris Cité & CNRS, France

Abstract
In this paper, we establish a strong link between the ambiguity for finite words of a Büchi automaton
and the ambiguity for infinite words of the same automaton. This link is based on measure theory.
More precisely, we show that such an automaton is unambiguous, in the sense that no finite word
labels two runs with the same starting state and the same ending state if and only if for each
state, the set of infinite sequences labelling two runs starting from that state has measure zero.
The measure used to define these negligible sets, that is sets of measure zero, can be any measure
computed by a weighted automaton which is compatible with the Büchi automaton. This latter
condition is very natural: the measure must only put weight on sets wAN where w is the label of
some run in the Büchi automaton.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases ambiguity, Büchi automata, measure theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.34

Related Version Full Version: https://arxiv.org/abs/2011.10534

Funding Work supported by ANR CODYS (ANR-18-CE40-0007).

1 Introduction

The relationship between deterministic and non-deterministic machines has been extensively
studied since the very beginning of computer science. Despite these efforts, many questions
remain wide open. This is of course true in complexity theory for questions like P versus NP
but also in automata theory [15, 12]. It is for instance not known whether the simulation of
non-deterministic either one-way or two-way automata by deterministic two-way automata
requires an exponential blow-up of the number of states [20].

Unambiguous machines are usually defined as non-deterministic machines in which each
input has at most one accepting run. They are intermediate machines in between the two
extreme cases of deterministic and non-deterministic machines. The notion of ambiguity
considered in the paper is slightly stronger and more structural as it does not depend on
initial and final states. In the case of automata accepting finite words, non-deterministic
automata can be exponentially more succinct than unambiguous automata which can be, in
turn, exponentially more succinct than deterministic automata [22]. However, the inclusion
problem for unambiguous automata is tractable is polynomial time [23] like for deterministic
automata while the same problem for non-deterministic automata is PSPACE-complete [1,
Section 10.6].

The polynomial time algorithm for the inclusion of unambiguous automata accepting
finite words in [23] is based on a clever counting argument which cannot easily be adapted
to infinite words. It is still unknown whether the inclusion problem for unambiguous Büchi
automata can be solved in polynomial time. The problem was solved in [17] for sub-classes
of Büchi automata with weak acceptance conditions and in [6] for prophetic Büchi automata
introduced in [10] (see also [19, Sec. II.10]) which are strongly unambiguous. These latter
results are obtained through reductions of the problem for infinite words to the problem for
finite words. The main result of this paper can be seen as a first step towards a solution for
all Büchi automata as it connects ambiguity for infinite words to ambiguity for finite words
and thus provides a better understanding of ambiguity for infinite words.

© Olivier Carton;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.irif.fr/~carton
https://orcid.org/0000-0002-2728-6534
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.34
https://arxiv.org/abs/2011.10534
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Ambiguity Through the Lens of Measure Theory

The aim of this paper is to exhibit a strong link between the ambiguity of some automaton
for finite words and the ambiguity of the same automaton for infinite words. The paper is
focused on strongly connected Büchi automata. Two examples given in the conclusion show
that the problem is more involved for non strongly connected automata. It turns out that
unambiguity for infinite words implies the unambiguity for finite words but the converse
does not hold in general. This converse can however be recovered if unambiguity for infinite
words is considered up to a negligible set of inputs. Negligible should here be understood
as a set of zero measure. The measure used to characterize ambiguity must fulfill some
compatibility conditions with the automaton. Some examples show these conditions cannot
be avoided. Note that measures were already used to characterize maximal variable-length
codes [3, Thm. 5.10] which are, in essence, a combinatorial definition of non-ambiguity.

The first step of the proof is to show that the measure of the set of accepted sequences
does not increase if all states of the automaton are made final. This result is interesting by
itself but it also reduces the proof of our result to automata with all states final. Since initial
states are also not relevant, the problem is again reduced to automata with all states initial
and final, which accept the so called shift spaces from symbolic dynamics [18]. This special
case is handled using techniques from this domain like synchronizing words and Fisher covers.

This work was motivated by questions about automata with outputs also known as
transducers. These transducers realize functions mapping infinite sequences to infinite
sequences and the questions are focused on the long term behaviour. A natural question is
the preservation of normality where normality is the property that all blocks of the same
length occur with the same limiting frequency [9]. Normality was introduced by Borel to
formalize the most basic form of randomness for real numbers [5]. It turns out that normality
can be characterized by non-compressibility by transducers realizing one-to-one functions [2].
Since each infinite run ends in a strongly connected component, it is sufficient to study
ambiguity of strongly connected automata. It is a classical result that each function realized
by a transducer can be realized by a transducer whose input automaton is unambiguous [11].
The result proved in this paper shows that if all states of a strongly connected unambiguous
transducer are made final the transducer remains unambiguous up to a set of measure zero.
It allows us to use, for instance, the ergodic theorem for Markov chains where the function
must be defined up to a set of measure zero.

The paper is organized as follows. Section 2 is devoted to basic definitions needed for the
main result which is stated in Section 3. The first step of the proof is to reduce the problem
to the special case of Büchi automata with all states final. This is done in Section 4. The
proof of this special case is carried out in Section 5.

2 Definitions

2.1 Words, sequences and measures
Let A be a finite set of symbols that we refer to as the alphabet. We write AN for the set
of all sequences on the alphabet A and A∗ for the set of all (finite) words. The length of a
finite word w is denoted by |w|. The positions of sequences and words are numbered starting
from 1. The empty word is denoted by ε. The cardinality of a finite set E is denoted by #E.
A factor of a sequence a1a2a3 · · · is a finite word of the form akak+1 · · · aℓ−1 for integers
1 ⩽ k ⩽ ℓ where k = ℓ yields the empty word ε. We let fact(X) denote the set of factors of a
set X of sequences.

We recall here a few notions of topology. The set AN of sequences can be endowed with a
topology by the distance d which is defined as follows. The distance d(x, y) of two sequences
x = a1a2a3 · · · and y = b1b2b3 · · · is zero if x = y and is 2− min{i:ai ̸=bi} otherwise. The set X

O. Carton 34:3

is open if it is equal to a possibly infinite union of cylinders, that is, sets of the form wAN for
w ∈ A∗. It is closed if its complement in AN is open. Each set X is contained in a smallest
closed set X called its closure. The complement of X is the union of all sets wAN which are
disjoint from X.

By measure, we mean, in this paper, a probability measure on AN, that is, a σ-additive
set function µ which assigns to each Borelian set X ⊆ AN a real number µ(X) (called its
measure) in the interval [0, 1] and which satisfies µ(AN) = 1. The σ-additivity property
means that if X0, X1, X2, . . . is a collection of pairwise disjoint sets, then

µ(
⋃

n⩾0
Xn) =

∑
n⩾0

µ(Xn).

Most sets considered in this paper are rational, and therefore, they are Borelian, (in the
level ∆0

3 of the Borel hierarchy) and their measure does always exist. By the Carathéodory
Extension Theorem, each measure µ is fully determined by the measures of the cylinders sets,
that is, sets of the form wAN for some finite word w. In the rest of the paper, we identify a
measure µ on AN and the function which maps each finite word w to the measure µ(wAN) of
the cylinder set wAN.

A probability measure on A∗ is a function µ : A∗ → [0, 1] such that µ(ε) = 1 and that the
equality∑

a∈A

µ(wa) = µ(w)

holds for each word w ∈ A∗. The simplest example of a probability measure is a Bernoulli
measure. It is a monoid morphism from A∗ to [0, 1] (endowed with multiplication) such that∑

a∈A µ(a) = 1. Among the Bernoulli measures is the uniform measure which maps each
word w ∈ A∗ to (#A)−|w|. In particular, each symbol a is mapped to µ(a) = 1/#A.

By the Carathéodory Extension Theorem, a measure µ on A∗ can be uniquely extended
to a probability measure µ̂ on AN such that µ̂(wAN) = µ(w) holds for each word w ∈ A∗. As
already said, we use the same symbol for µ and µ̂. A probability measure µ is said to be
(shift) invariant if the equality∑

a∈A

µ(aw) = µ(w)

holds for each word w ∈ A∗. The support supp(µ) of a measure µ is the set supp(µ) = {w ∈
A∗ : µ(w) > 0} of finite words.

The column vector such that each of its entries is 1 is denoted by 1. A P -vector λ is
called stochastic (respectively, substochastic) if its entries are non-negative and sum up to 1
(respectively, to at most 1). that is, 0 ⩽ λp ⩽ 1 for each p ∈ P and λ1 = 1 (respectively,
λ1 ⩽ 1). A matrix M is called stochastic (respectively, substochastic) if each of its rows is
stochastic (respectively, substochastic), that is M1 = 1 (respectively, M1 ⩽ 1). It is called
strictly substochastic if it is substochastic but not stochastic. This means that the entries of
at least one of its rows sum up to a value which is strictly smaller than 1.

In the paper, we mainly consider rational measures also known as hidden Markov measures
and under other names in the literature [7]. These measures are those for which the values µ(w)
for w ∈ A∗ are given by a weighted automaton [21, Chap .4] or equivalently by a (matrix)
representation. A measure µ is rational if there is an integer m, a row (1 × m)-vector π, a
morphism ν from A∗ into m × m-matrices over real numbers and a column (m × 1)-vector ρ

such that the following equality holds for each word a1 · · · ak [4].

µ(a1 · · · ak) = πν(a1 · · · ak)ρ = πν(a1) · · · ν(ak)ρ

FSTTCS 2022

34:4 Ambiguity Through the Lens of Measure Theory

The triple ⟨π, ν, ρ⟩ is called a representation of the rational measure µ and the integer m the
dimension. By the main result in [14], it can always be assumed that both the vector π and
the matrix

∑
a∈A ν(a) are stochastic and that the vector ρ is the vector 1. The triple ⟨π, ν,1⟩

is then called a stochastic representation of µ. Note that if the representation ⟨π, ν, ρ⟩ is
stochastic, the function µ defined by µ(w) = πν(w)ρ is a measure because it satisfies the
required properties. The measure µ is invariant if π

∑
a∈A ν(a) = π. Note that rational

measures with dimension 1 are the Bernoulli measures.
We give below an example of a rational measure. Consider the stochastic representation

⟨π, ν, ρ⟩ of dimension 2 where π is the row vector (1, 0), ρ is the column vector 1 and the
morphism ν from {0, 1}∗ into 2 × 2-matrices is defined by

ν(0) = 1
3

(
1 1
0 3

)
and ν(1) = 1

3

(
1 0
0 0

)
.

An equivalent weighted automaton is pictured in Figure 4. The measure defined by this
representation is given for each word w of length n ending with a block of 0 ⩽ k ⩽ n zeros
by µ(w) = (1 + (1 + 3 + · · · + 3k−1))/3n = (3k + 1)/23n. We will see that this measure does
not meet our expectations because it is not irreducible: the weighted automaton pictured in
Figure 4 is not strongly connected.

2.2 Automata and ambiguity
We refer the reader to [19] for a complete introduction to automata accepting (infinite)
sequences of symbols. A (Büchi) automaton A is a tuple ⟨Q, A, ∆, I, F ⟩ where Q is the finite
state set, A the alphabet, ∆ ⊆ Q × A × Q the transition relation, I ⊆ Q the set of initial
states and F is the set of final states. A transition is a tuple ⟨p, a, q⟩ in Q × A × Q and it is
written p a−→ q. A finite run in A is a finite sequence of consecutive transitions,

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−−→ qn

Its label is the word a1a2 · · · an. An infinite run in A is a sequence of consecutive transitions,

q0
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

A run is initial if its first state q0 is initial, that is, belongs to I. A run is called final if it
visits infinitely often a final state. An infinite run is accepting if it is both initial and final.
A sequence is accepted if it is the label of an accepting run. The set of accepted sequences
is said to be accepted by the automaton. As usual, an automaton is deterministic if it has
only one initial state, that is #I = 1 and if p a−→ q and p a−→ q′ are two of its transitions
with the same starting state and the same label, then q = q′. The automaton pictured in
Figure 1 accepts the set 0∗1N of sequences having some 0s and then only 1s. The leftmost
automaton pictured in Figure 2 is deterministic while the middle one is not. Both accept the
set of sequences having infinitely many 1s. An automaton is trim if each state occurs in an
accepting run.

For each state q, its future (respectively bi-future) is the set F(q) (respectively, F2(q)) of
sequences labelling a final run (respectively, at least two final runs) starting from q. Let F(q)
(respectively, F2(q)) be the set of sequences labelling at least one (respectively, two) infinite
run starting from q which might be final or not. Note that if the automaton is trim, F(q) is
indeed the topological closure of F(q) but that F2(q) might not be the topological closure
of F2(q) as shown by the automaton pictured in Figure 1. The past P(q) of a state q is the
set of finite words labelling a run ending in q. For an automaton A, we let fact(A) denote
the set of finite words labelling some run in A. Therefore fact(A) =

⋃
q∈Q P(q) where Q is

the state set of A.

O. Carton 34:5

0
1

2

0
1

1

1

1

Figure 1 F2(0) = 0∗1N and F2(0) = 0∗1N ∪ {0N}.

An automaton is unambiguous (for finite words) if for each states p, q ∈ Q and each
word w, there is at most one run p w−→ q from p to q labelled by w. Each automaton which is
either deterministic or reverse-deterministic is unambiguous.

1 20
1
0

1 1 20
0
1

1

1

2

3

4

0

10

0

10,1
1

Figure 2 Three unambiguous automata.

The three automata pictured in Figure 2 are unambiguous. The leftmost one is deter-
ministic and F(1) = F(2) = (0∗1)N, F(1) = F(2) = {0, 1}N and F2(1) = F2(2) = ∅. The
middle one is reverse deterministic (that is, becomes deterministic if transitions are reversed),
F(1) = 0(0∗1)N, F(2) = 1(0∗1)N, F(1) = 0{0, 1}N, F(2) = 1{0, 1}N and F2(1) = F2(2) = ∅.
The rightmost one is neither deterministic nor reverse deterministic but it is unambiguous.
Note however that F2(1) is not empty: F2(1) ⊃ 0∗(01)N. An ambiguous automaton is pictured
in Figure 3 below.

With each stochastic representation ⟨π, ν,1⟩ of a rational measure is associated an
automaton whose state set is P = {1, . . . , m} where m is the common dimension of all
matrices ν(a). For each states p, q ∈ P , there is a transition p a−→ q whenever ν(a)p,q > 0.
The initial states are those states q in P such that πq > 0. Due to this automaton, F(p) is
well-defined for a state p ∈ P . The representation is called irreducible if this automaton is
strongly connected. A rational measure is called irreducible if it has at least one irreducible
representation.

A strongly connected component C of graph (respectively automaton) is called terminal
if it cannot be left, that is, if p −→ q is a edge with p ∈ C, then q ∈ C.

3 Main result

Ambiguity of automata has been defined using finite words: an automaton is ambiguous
if some finite word w is the label of two different runs from a state p to a state q. If the
automaton is trim, this implies that some sequence of the form wy is the label of two different
runs from p. The converse of this implication does not hold in general. The third automaton
pictured in Figure 2 is unambiguous although the sequence (01)N = 0101 · · · is the label of
the following two accepting runs starting from state 1.

1 0−→ 1 1−→ 2 0−→ 1 1−→ 2 0−→ 1 1−→ · · ·

1 0−→ 3 1−→ 4 0−→ 3 1−→ 4 0−→ 3 1−→ · · ·

FSTTCS 2022

34:6 Ambiguity Through the Lens of Measure Theory

However, the set F2(1) is contained in (0 + 1)∗(01)N and it is thus countable and of measure 0
for the uniform measure. Note that if each transition p 1−→ q is replaced by the two transitions
p 1−→ q and p 2−→ q, the set F2(1) is not anymore countable but it is still of measure 0 as a
subset of {0, 1, 2}N.

The following theorem provides a characterization of ambiguity using measure theory.
More precisely, it states that a strongly connected automaton is unambiguous whenever the
measure of sequences labelling two runs is negligible, that is, of measure zero.

▶ Theorem 1. Let A be a strongly connected Büchi automaton and let µ be an irreducible
rational measure such that supp(µ) = fact(A). The following conditions are equivalent.

i) The automaton A is unambiguous.
ii) For each state q of A, µ(F2(q)) = 0.
iii) There is a state q of A such that µ(F2(q)) = 0.

The equality supp(µ) = fact(A) is called the full-support condition in [7] because the
inclusion supp(µ) ⊆ fact(A) is implicit in [7]. The irreducibility of the measure ensures that
it does not put too much weight on too small sets (See example after Proposition 2). The
measure used to quantify this ambiguity must also be compatible with the automaton. More
precisely, its support must be equal to the set of finite words labelling at least one run in the
automaton. If this condition is not fulfilled, the result may not hold as it is shown by the
following two examples below.

We first explain, given a strongly connected automaton A, how to construct an irreducible
measure µ such that equality supp(µ) = fact(A) holds. Informally, the constructions consists
in assigning positive weights to states and transitions of A such that the following two
conditions are satisfied. The weights of the states must sum up to 1 (this is a distribution)
and for each state q, the weights of the transitions outgoing from q must sum up to 1.
Assigning weights to states is the same as defining a stochastic Q-vector π with positive
entries. Assigning weights to transitions is the same as defining a Q × Q-matrix ν(a) for each
symbol a ∈ A such that the matrix

∑
a∈A ν(a) is stochastic and such that for each states

p, q and each symbol a, the (p, q) entry of ν(a) is positive if and only if p a−→ q is a transition
of A. The measure given by the representation ⟨π, ν,1⟩ is then a rational and irreducible
measure such that supp(µ) = fact(A). It is irreducible because the automaton A is strongly
connected and each transition gets a positive weight. It satisfies supp(µ) = fact(A) because
weights of states and transition are all positive. Note that not all compatible measures can
be obtained that way.

Consider again the third automaton pictured in Figure 2. Let µ be the probability measure
putting weight 1/2 on each of the sequences (01)N and (10)N and zero everywhere else. More
formally, it is defined µ((01)N) = µ((10)N) = 1/2 and µ({0, 1}N \ {(01)N, (10)N}) = 0. The
measure µ(F2(1)) = 1/2 is non-zero although the automaton is unambiguous because the
support (01)∗ + (10)∗ of this measure µ is strictly contained in the set of words labelling a
run in this automaton. This latter set is actually the set {0, 1}∗ of all finite words over {0, 1}.

1 20
1
0

0

Figure 3 An ambiguous automaton accepting (0 + 10)N.

O. Carton 34:7

Consider the automaton pictured in Figure 3. It accepts the set X of sequences with no
consecutive 1s. It is ambiguous because the word 00 is the label of the two runs 2 0−→ 1 0−→ 1
and 2 0−→ 2 0−→ 1. The uniform measure µ(X) is zero. Therefore, both numbers µ(F2(1))
and µ(F2(2)) are zero although the automaton is ambiguous. This comes from the fact that
the support {0, 1}∗ of the uniform measure strictly contains the set fact(X). This latter set
is the set (0 + 10)∗(1 + ε) of finite words with no consecutive 1s.

4 Reduction to closed sets

The purpose of this section is to show that the measure µ(X) of a rational set of sequences
is closely related to the measure µ(X) of its closure as long as the measure µ is compatible
with X. The main result of this section is the following proposition which is used in the
proof of Theorem 1. The rest of the section is devoted to the proof of the proposition.

▶ Proposition 2. Let A be a strongly connected Büchi automaton, q be a state of A and w

be a word in P(q). Let µ be an irreducible rational measure such that supp(µ) = fact(A).
Then µ(wF(q)) = µ(wF(q)).

The following example shows that the irreducibility assumption of the measure is indeed
necessary. Consider the measure given by the weighted automaton pictured in Figure 4.

1 2
0: 1

3

1: 1
3

0: 1
3 0:1

Figure 4 A weighted automaton defining a non-irreducible measure.

It realizes the measure already considered at the end of Section 2.1. This measure µ is
equivalently defined by µ(w) = (1, 0)ν(w)1 for each finite word w where the morphism ν

from {0, 1}∗ into 2 × 2-matrices is given by

ν(0) = 1
3

(
1 1
0 3

)
and ν(1) = 1

3

(
1 0
0 0

)
.

The weight of a word w1 ending with a 1 is 3−|w|−1. Therefore, the sum of these weights
when w ranges over all words of length k over the alphabet {0, 1} is given by

∑
|w|=k

µ(w1) = 2k

3k+1 and
∑

|w|⩾n

µ(w1) =
∑
k⩾n

2k

3k+1 = 2n

3n

Let X = (0∗1)N be the set of sequences having infinitely many occurrences of the symbol 1.
This set is equal to F(1) in the leftmost automaton pictured in Figure 2. Since X is
contained in the union

⋃
|w|⩾n w1{0, 1}N for each integer n ⩾ 0, the measure of X satisfies

µ(X) ⩽ 2n/3n for each integer n ⩾ 0. This proves that the measure of X is 0 although the
measure of its closure X = {0, 1}N is 1.

If A is an automaton and P ⊆ Q is a subset of its state set Q, we let P · w denote the
subset P ′ ⊆ Q defined by P ′ = {q : ∃p ∈ P p w−→ q}. If P is a singleton set {q}, we write
q · w for {q} · w. By a slight abuse of notation, we also write q · w = p for {q} · w = {p}. If A
is deterministic, q · w is either the empty set or a singleton set.

The following easy lemma states that, in each strongly connected automaton, there exists
a run using all transitions.

FSTTCS 2022

34:8 Ambiguity Through the Lens of Measure Theory

▶ Lemma 3. Let A be a strongly connected deterministic automaton. There exists a finite
word w such that:

i) there exists a state q such that q · w is non-empty,
ii) for each state q of A, if q · w is non-empty, each transition of A occurs in the run

q w−→ q · w.

Let ⟨π, ν,1⟩ be the representation of a rational measure µ. Its support supp(ν) is defined
by supp(ν) = {w : ν(w) ̸= 0}. It obviously satisfies supp(µ) ⊆ supp(ν). This inclusion can
be strict as shown by the following example but it becomes an equality as soon as supp(µ) is
factorial, that is closed under taking factor.

Let µ be the measure defined by µ(0w) = 0 and µ(1w) = 2−|w| for each word w in
{0, 1}∗. It is rational because it is defined by µ(w) = (0, 1)ν(w) (1

1) where the morphism ν

from {0, 1}∗ into 2 × 2-matrices is given by ν(0) = 1
2 (1 1

0 0) and ν(1) = 1
2 (0 0

1 1). The
support of this measure µ is supp(µ) = 1{0, 1}∗ but the support of the morphism ν is
supp(ν) = {w ∈ {0, 1}∗ : ν(w) ̸= 0} is {0, 1}∗. The support of a rational measure and the
support of one of its representations might not coincide in general but they do coincide as
soon as supp(µ) is factorial as stated by the following lemma.

▶ Lemma 4. Let µ be an irreducible rational measure and let ⟨π, ν,1⟩ be an irreducible
representation of µ. Then supp(µ) is factorial if and only if the equality supp(µ) = supp(ν)
holds.

In the rest of the paper, the support of each measure is a factorial set and both supports
coincide.

The following lemma states the of sequences having finitely many occurrence of some finite
word has zero measure. The result is well-known when the measure is a Markov measure
and the word is just a symbol [8, Thm 3.3]. The irreducibility and rationality of the measure
are both crucial.

▶ Lemma 5. Let µ be an irreducible rational measure such that supp(µ) is factorial and let
w be a word in supp(µ). Then

µ({x : |x|w < ∞}) = 0.

where |x|w is the number of occurrences of w in x.

We let ∗−→ denote the accessibility relation in an automaton. We write p ∗−→ q if there is a
run from p to q. If P and P ′ are two subsets of states of an automaton, we write P ∗−→ P ′

whenever there is a run from a state in P to a state in P ′. This relation is not transitive in
general but it is when each considered subset is contained in a strongly connected component.
The following lemma gives a property of Muller automata accepting the same set as a strongly
connected Büchi automaton.

▶ Lemma 6. Let X ⊆ AN be a non-empty set of sequences accepted by a strongly connected
Büchi automaton and let w ∈ A∗ be a finite word. Let A be a Muller automaton accepting the
set wX and let T be its table of accepting subsets of states. Let F be an element of T such
that F ′ ∈ T and F ∗−→ F ′ imply F ′ ∗−→ F . Then the strongly connected component containing
F also belongs to the table T .

A subset P of states of a Muller automaton A is called essential if there is an infinite
run in A such that P is the set of states that occur infinitely often along this run.

O. Carton 34:9

Proof of Proposition 2. The proof of the proposition is reduced to proving that µ(wF(q) \
wF(q)) = 0. We consider a Muller automaton accepting wF(q) with a table T . Note that
a Muller automaton accepting wF(q) is obtained by replacing the table T by the table T
which contains each essential set of states which can access an essential set of states in T .
The difference set wF(q) \ wF(q) is thus accepted by the same Muller automaton with the
table T \ T . By Lemma 6, each maximal essential state is in the table T . By combining
Lemmas 3 and 5, it is clear that µ(wF(q) \ wF(q)) = 0. ◀

5 Proof for closed sets

Thanks to Proposition 2, it is sufficient to study closed sets. As the initial states of the
automaton are not relevant for the statement of Theorem 1, we consider automata where all
states are initial and final, that is, I = F = Q. It turns out that these automata accept shift
spaces that we now introduce.

The shift map is the function σ which maps each sequence (xi)i⩾1 to the sequence
(xi+1)i⩾1 obtained by removing its first element. A shift space is a subset X of AN which is
closed for the usual product topology and such that σ(X) = X. A classical example of a
shift space is the golden mean shift: it is the set {0, 10}N of sequences with no consecutive
1s. We refer the reader to [18] for a complete introduction to shift spaces.

If a shift space is accepted by some trim Büchi automaton, it is also accepted by the same
automaton in which each state is made initial and final. A shift space is called sofic if it is
accepted by some automaton. A sofic shift is called irreducible if it is accepted by a strongly
connected Büchi automaton. It is well-known [18] that each shift space is characterized by
the set of factors of its sequences. Let us recall that fact(X) denotes the set of factors of a
shift space X.

There is a unique, up to isomorphism, deterministic automaton accepting an irreducible
sofic shift with the minimal number of states [18, Thm 3.3.18]. This minimal automaton is
also referred to as either its Shannon cover or its Fischer cover. It can be obtained from
any automaton accepting the shift space via determinizing and state-minimizing algorithms,
e.g., [18, pp. 92], [16, pp. 68]. The minimal automaton of the golden mean shift is the
leftmost automaton pictured in Figure 5. A synchronizing word of a strongly connected
automaton is a word w such that there is a unique state q such that w ∈ P(q). The word 1
is a synchronizing word of both automata pictured in Figure 5. The minimal automaton of a
sofic shift has always at least one synchronizing word [18, Prop. 3.3.16].

1 20
1
0

1 20
0
1

Figure 5 Two automata accepting the golden mean shift.

The next lemma states in particular (for w = ε) that the future of each state of the
minimal automaton of a sofic shift has a positive measure. The

▶ Lemma 7. Let r be a state of the minimal automaton of an irreducible sofic shift space X

and let w be a synchronizing word such that w ∈ P(r). Let µ be a rational measure such that
supp(µ) = fact(X). Then µ(wF(r)) = µ(wAN) > 0.

The following lemma establishes a link between any automaton accepting a sofic system
and its minimal automaton. It allows us to transfer the result of the previous lemma to
non-minimal automata.

FSTTCS 2022

34:10 Ambiguity Through the Lens of Measure Theory

▶ Lemma 8. Let A be a strongly connected automaton accepting an irreducible sofic shift
space X. Let w be a word and q be a state of A such that w ∈ P(q). There exists a state r

of the minimal automaton of X and a synchronizing word v of this minimal automaton such
that wv ∈ P(r) and F(q) ∩ vAN = vF(r).

Combining Lemmas 7 and 8 yields the following result.

▶ Lemma 9. Let A be an strongly connected automaton accepting an irreducible sofic shift X.
Let q be a state of A and let w be a word such that w ∈ P(q). Let µ be an irreducible rational
measure such that supp(µ) = fact(X). Then µ(wF(q)) > 0.

Proof. By Lemma 8, there exists a state r of the minimal automaton of X and a synchronizing
word v such that wv ∈ P(r) and F(q)∩vAN = vF(r). This implies that wF(q)∩wvAN = wvF(r).
By Lemma 7, the measure µ(wvF(r)) is positive and thus µ(wF(q)) > 0. ◀

It is a very classical result that not all regular sets of sequences are accepted by deter-
ministic Büchi automata. This is the reason why Muller automata with a more involved
acceptance condition were introduced. Landweber’s theorem states that a regular set of
sequences is accepted by a deterministic Büchi automaton if and only it is a Gδ-set (that is
Π2

0) [19, Thm I.9.9]. This implies in particular that regular and closed sets1 are accepted by
deterministic Büchi automata. Regular and closed sets are actually accepted by deterministic
Büchi automata in which each state is final [19, Prop III.3.7].

Lemma 9 states that the future of a state in automaton with all states final has a positive
measure. The following provides a converse. It states that a closed set F with positive
measure contains the future of a state of the minimal automaton, prefixed by some word w.
The prefix w is really needed because the closed set F can be arbitrarily small.

▶ Lemma 10. Let X be a sofic shift space and let µ be an irreducible rational measure such
that supp(µ) = fact(X). Let F be a regular and closed set contained in X. If µ(F) > 0,
there exists a word w and a state r of the minimal automaton of X such that w ∈ P(r) and
wF(r) ⊆ F .

Before proceeding to the proof of the lemma, we show that even in the case of the full
shift, that is X = AN, both hypothesis of being regular and closed are necessary. Since the
minimal automaton of the full shift has a single state r satisfying F(r) = AN, the lemma can
be, in that case, rephrased as follows. If µ(F) > 0 where µ is the uniform measure, then
there exists a word w such that wAN ⊆ F .

Being regular is of course not sufficient because the set (0∗1)N of sequences having
infinitely many occurrences of 1 is regular and has measure 1 but does not contain any set of
the form wAN. Being closed is also not sufficient as it is shown by the following example.
Let X be the set of sequences such that none of their non-empty prefixes of even length is a
palindrome. The complement of X is equal to the following union⋃

n⩾1
Zn where Zn =

⋃
|w|=n

ww̃AN

and where w̃ stands for the reverse of w. Suppose for instance that the alphabet is A =
{0, 1}. The measure of Zn is equal 2−n because there are 2n words of length n and
the measure of each cylinder ww̃AN is 2−2n. Furthermore, the set Z1 ∪ Z2 is equal to

1 Not to be confused with regular closed sets which are equal to the closure of their interior [13, Chap. 4].

O. Carton 34:11

00AN ∪ 11AN ∪ 0110AN ∪ 1001AN whose measure is 5/8. This shows that the measure of the
complement of X is bounded by 5/8 +

∑
n⩾3 2−n = 7/8 (Note that this is really an upper

bound as the sets Zn are not pairwise disjoint). Therefore X has a positive measure but it
does not contain any cylinder. Indeed, in each cylinder wAN, the cylinder ww̃AN is out of X.

The following result is trivially true when the measure µ is shift invariant because
µ(F) =

∑
|w|=m µ(wF) but it does not hold in general.

▶ Lemma 11. Let X be a sofic shift space and let µ be an irreducible rational measure such
that supp(µ) = fact(X). Let F be a regular and closed set contained in X. If µ(F) = 0, then
µ(wF) = 0 for each finite word w.

Proof. We prove that µ(wF) > 0 implies µ(F) > 0. Suppose that µ(wF) > 0. Since wF is
also regular and closed, there exists, by Lemma 10, a word u and a state r of the minimal
automaton of X such that u ∈ P(r) and uF(r) ⊆ wF . This latter inclusion implies that
either u is a prefix of w or w is a prefix of u. In the first case, that is w = uv for some
word v, the inclusion is equivalent to F(r) ⊆ vF . Let s be state such that r v−→ s. Then vF(s)
is contained in F(r) and thus F(s) ⊆ F . By Lemma 9, µ(F(s)) > 0 and thus µ(F) > 0. In
the second case, that is u = wv, for some v, the inclusion is equivalent to vF(r) ⊆ F . Again
by Lemma 9, µ(vF(r)) > 0 and thus µ(F) > 0. ◀

The following lemma is an extension to pairs of futures of states of the result of Lemma 7
for one state.

▶ Lemma 12. Let A be strongly connected automaton accepting a shift space X. Let µ be an
irreducible rational measure such that supp(µ) = fact(X). Let q and q′ two states of A such
that µ(F(q) ∩ F(q′)) > 0. Then there exists a word w such that F(q) ∩ wAN = F(q′) ∩ wAN.

Proof. We claim that there exists a word w and a state r of the minimal automaton of X

such that w ∈ P(r) and

F(q) ∩ wAN = F(q′) ∩ wAN = wF(r).

Let F be the closed set F(q) ∩ F(q′). By Lemma 10 applied to F , there exists a word u

and a state s of the minimal automaton of X such that u ∈ P(s) and

uF(s) ⊆ F(q)
uF(s) ⊆ F(q′)

Let v be a synchronizing word of the minimal automaton of X such that s · v is not empty.
Let w be the word uv and let r be the state s · v. Since u ∈ P(s) and r = s · v, w ∈ P(r).
We claim that F(q) ∩ wAN = wF(r). Suppose first that x belongs to F(q) ∩ wAN. The
sequence x is then equal to wx′ for some sequence x′ and it is the label of a run in the
minimal automaton of X. Since w = uv and v is synchronizing, the sequence x′ must belong
to F(r). Suppose conversely that x belongs to wF(r). It is then equal to uvx′ for some x′ in
F(r). Since r = s · v, vx′ ∈ F(s). It follows from the inclusion uF(s) ⊆ F(q) that x belongs
to F(q). This completes the proof of the equality F(q) ∩ wAN = wF(r). By symmetry, the
equality F(q′) ∩ wAN = wF(r) also holds and the proof is completed. ◀

This last lemma establishes a link between unambiguity of an automaton and measures
of futures of its states. More precisely, it states that the future of two states that can be
reached from the same state and reading the same word have an intersection of zero measure.
Its proof is more combinatorial than previous ones.

FSTTCS 2022

34:12 Ambiguity Through the Lens of Measure Theory

▶ Lemma 13. Let A be an unambiguous strongly connected automaton accepting a shift
space X. Let µ be an irreducible rational measure such that supp(µ) = fact(X). If there are
two runs p u−→ q and p u−→ q′, with q ̸= q′, then µ(F(q) ∩ F(q′)) = 0.

Proof. Suppose by contradiction that µ(F(q) ∩ F(q′)) > 0. There exists, by Lemma 12, a
word v such that F(q)∩vAN = F(q′)∩vAN. Let q ·v (respectively q′ ·v) be the set {q1, . . . , qr}
(respectively {q′

1, . . . , q′
r′}). Since F(q) ∩ vAN = F(q′) ∩ vAN, the equality F(q1) ∪ · · · ∪ F(qr) =

F(q′
1) ∪ · · · ∪ F(q′

r′) holds. Since the automaton is strongly connected, there is a run q1
w−→ p

from q1 to p. Combining this run with the run p u−→ q v−→ q1 yields the cyclic run q1
wuv−−−→ q1.

Since F(q1) ∪ · · · ∪ F(qr) = F(q′
1) ∪ · · · ∪ F(q′

r′), the sequence (wuv)N = wuvwuv · · · belongs
to a set F(q′

i) for some 1 ⩽ i ⩽ r′. By symmetry, it can be assumed that (wuv)N ∈ F(q′
1).

There exists then a run starting from q′
1 with label (wuv)N. This run can be decomposed

q′
1

wuv−−−→ p1
wuv−−−→ p2

wuv−−−→ p3 · · · .

Since there are finitely many states, there are two integers k, ℓ ⩾ 1 such that pk = pk+ℓ.
There are then the following two runs from p to pk = pk+ℓ with the same label (uvw)k+ℓuv.

p
u−→ q

v−→ q1
(wuv)k−1

−−−−−−→ q1
w−→ p

uv−→ q′
1

(wuv)ℓ

−−−−→ pk

p
u−→ q′ v−→ q′

1
(wuv)k+ℓ

−−−−−−→ pk+ℓ

This is a contradiction with the fact that A is unambiguous. ◀

Proof of Theorem 1. We first prove that (i) implies (ii). suppose that the automaton A is
unambiguous. We show that µ(F2(p)) = 0 for each state p. We start by a decomposition of
the set F2(p). Let x = a1a2a3 · · · be a sequence in F2(p) and let ρ and ρ′ be the two different
runs labelled by x. Suppose that

ρ = q0
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

ρ′ = q′
0

a1−→ q′
1

a2−→ q′
2

a3−→ q′
3 · · ·

where q0 = q′
0 = p. Let n be the least integer such that qn ̸= q′

n. Let a be the symbol an,
w be the prefix a1 · · · an−1 and x′ be the tail an+1an+2an+3 · · · . The sequence x is equal to
wax′ and there is a finite run q0

w−→ qn−1, two transitions qn−1
a−→ qn and qn−1

a−→ q′
n, and

the tail x′ belongs to the intersection F(qn) ∩ F(q′
n). We have actually proved the following

equality expressing F2(p) in term of a union of intersections of sets F(q).

F2(p) =
⋃

p
w−→p′

p′ a−→q

p′ a−→q′

wa(F(q) ∩ F(q′))

Since the union is countable, it suffices to prove that if there are two transitions p a−→ q and
p a−→ q′ with q ̸= q′, then µ(F(q) ∩ F(q′)) = 0. Lemma 13 and Lemma 11 allow us to conclude.

The fact that (ii) implies (iii) is clear because the set F2(q) is contained in F2(q) for each
state q of A.

We now prove that (iii) implies (i). Let q be state of A and suppose that there are two
different runs from state p to state r with the same label w. Let v the label of a run from q

to p. This shows that vwF(r) ⊆ F2(q). Since vw ∈ P(r), the measure µ(vwF(r)) satisfies
µ(vwF(r)) = µ(vwF(r)) by Proposition 2. The measure µ(vwF(r)) satisfies µ(vwF(r)) > 0
by Lemma 10 and thus µ(F2(q)) > 0. This completes the proof of this implication. ◀

O. Carton 34:13

Conclusion

As a conclusion, we would like the emphasize the difficulty of extending the result to non
strongly connected automata. Consider the two automata pictured in Figure 6. The leftmost
one in unambiguous where as the rightmost one is obviously ambiguous for finite words.
However, F2(0) = F2(0) = 0∗1N and F2(q) = ∅ hold for q ̸= 0 in both automata. The only
way to distinguish one automaton from the other one is to have two different measures. In
order to have µ1(F2(0)) = 0 for the leftmost automaton, the measure µ1 should put all the
weight on 0N: µ1(0N) = 1. In order to have µ2(F2(0)) > 0 for the rightmost automaton, the
measure µ2 should put some weight on a sequence 0n1N for some integer n ⩾ 0. It is not
clear why the measures should be different because the set 0∗1∗ of finite words labelling some
run is the same in both automata.

0
1

2

0
1

1

1

1
0

1

2
3

0
1

1

1

1
1

Figure 6 Two non strongly connected automata.

References
1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.
2 V. Becher and O. Carton. Normal numbers and computer science. In V. Berthé and M. Rigo,

editors, Sequences, Groups, and Number Theory, Trends in Mathematics Series, pages 233–269.
Birkhäuser, 2018.

3 J. Berstel and D. Perrin. Theory of Codes. Academic Press, 1984.
4 J. Berstel and Ch. Reutenauer. Noncommutative Rational Series with Applications. Cambridge

University Press, 2010.
5 É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti Circ.

Mat. Palermo, 27:247–271, 1909.
6 N. Bousquet and Ch. Löding. Equivalence and inclusion problem for strongly unambiguous

Büchi automata. In LATA 2010, volume 6031 of Lecture Notes in Computer Science, pages
118–129. Springer, 2010. doi:10.1007/978-3-642-13089-2_10.

7 M. Boyle and K. Petersen. Entropy of Hidden Markov Processes and Connections to Dynamical
Systems, volume 385 of London Mathematical Society Lecture Notes, chapter Hidden Markov
processes in the context of symbolic dynamics, pages 5–71. Cambridge University Press, 2011.

8 P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer,
2008.

9 O. Carton. Preservation of normality by unambiguous transducers. CoRR, abs/2006.00891,
2022. arXiv:2006.00891.

10 O. Carton and M. Michel. Unambiguous Büchi automata. Theoret. Comput. Sci., 297:37–81,
2003.

11 Ch. Choffrut and S. Grigorieff. Uniformization of rational relations. In Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages 59–71.
Springer, 1999.

12 Th. Colcombet. Unambiguity in automata theory. In Descriptional Complexity of Formal
Systems, volume 9118 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015.

13 P. R. Halmos. Lectures on Boolean algebras. Von Nostrand, 1963.

FSTTCS 2022

https://doi.org/10.1007/978-3-642-13089-2_10
http://arxiv.org/abs/2006.00891

34:14 Ambiguity Through the Lens of Measure Theory

14 G. Hansel and D. Perrin. Mesures de probabilité rationnelles. In M. Lothaire, editor, Mots,
pages 335–357. Hermes, 1990.

15 M. Holzer and M. Kutrib. Descriptional complexity of (un)ambiguous finite state machines
and pushdown automata. In Reachability Problems, pages 1–23. Springer, 2010. doi:10.1007/
978-3-642-15349-5_1.

16 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

17 D. Isaak and Ch. Löding. Efficient inclusion testing for simple classes of unambiguous
ω-automata. Inf. Process. Lett., 112(14-15):578–582, 2012.

18 D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, 1995.

19 D. Perrin and J.-É. Pin. Infinite Words. Elsevier, 2004.
20 G. Pighizzini. Two-way finite automata: Old and recent results. Electronic Proceedings in

Theoretical Computer Science, 90:3–20, 2012. doi:10.4204/eptcs.90.1.
21 J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
22 E. Schmidt. Succinctness of descriptions of context-free, regular, and finite languages. DAIMI

Report Series, 7(84), 1978. doi:10.7146/dpb.v7i84.6500.
23 R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems for un-

ambiguous regular expressions, regular grammars and finite automata. SIAM J. Comput.,
14(3):598–611, 1985. doi:10.1137/0214044.

https://doi.org/10.1007/978-3-642-15349-5_1
https://doi.org/10.1007/978-3-642-15349-5_1
https://doi.org/10.4204/eptcs.90.1
https://doi.org/10.7146/dpb.v7i84.6500
https://doi.org/10.1137/0214044

Phase Semantics for Linear Logic with Least and
Greatest Fixed Points
Abhishek De !

IRIF, Université Paris Cité, CNRS & INRIA π.r2, France

Farzad Jafarrahmani !

IRIF, Université Paris Cité, CNRS & INRIA π.r2, France

Alexis Saurin !

IRIF, CNRS, Université Paris Cité & INRIA π.r2, France

Abstract
The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide
range of applications and deep connections with several denotational semantics. In phase semantics,
one is concerned about the provability of formulas rather than the contents of their proofs (or
refutations). Linear logic equipped with the least and greatest fixpoint operators (µMALL) has been
an active field of research for the past one and a half decades. Various proof systems are known viz.
finitary and non-wellfounded, based on explicit and implicit (co)induction respectively.

In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL)
to µMALL with explicit (co)induction (i.e. µMALLind). We introduce a Tait-style system for µMALL
called µMALLω where proofs are wellfounded but potentially infinitely branching. We study its
phase semantics and prove that it does not have the finite model property.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Proof theory

Keywords and phrases Linear logic, fixed points, phase semantics, closure ordinals, cut elimination

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.35

Funding This research has been partially supported by ANR project RECIPROG, project reference
ANR-21-CE48-019-01.
Abhishek De: This author has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

Acknowledgements We would like to thank anonymous reviewers for their valuable comments that
enhanced the clarity and presentation of this paper. We would like to thank Amina Doumane,
Graham Leigh and Rémi Nollet for helpful discussions in the early phase of this work.

1 Introduction

Fixpoint logics: from truth to proofs. Fixpoint logics were first introduced in the study of
inductive definability [1] in recursion theory which predates its first application in computer
science as an expressive database query language [3]. In order to define the language
of a fixpoint logic, one introduces explicit fixpoint construct(s) and closes it under these
construct(s) thus obtaining a richer language. First order logic extended with various fixpoint
operators have been extensively explored in model theory [38]. In the propositional case,
the (multi)modal µ-calculus (the extension of basic modal logic K with least and greatest
fixpoint operators) is probably the most well-studied. Introduced by Scott and Bakker in an
unpublished manuscript, the logic has been historically studied in the formal methods and
verification community [16]. More recently, there has been a growing interest in its structural
proof-theory. The most important result in this direction is the completeness of Hilbert-style
axiomatisations for the logic, which has turned out be notoriously difficult [34, 51, 50].

© Abhishek De, Farzad Jafarrahmani, and Alexis Saurin;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 35; pp. 35:1–35:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abhishek.de@irif.fr
mailto:Farzad.Jafar-Rhamani@irif.fr
mailto:alexis.saurin@irif.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Phase Semantics for µMALL

Various proof systems for fixpoint logics. The setting of our paper is µMALL, the extension
of multiplicative additive linear logic by fixpoints viz. the propositional fragment of the logic
introduced by Baelde and Miller in [7] who proposed the sequent calculus system µMALLind

for the logic. All these formalisations viz. the Hilbert-style axiomatisations of µ-calculus
and µMALLind employ inference rules that express an explicit (co)induction scheme i.e. the
induction hypothesis must be provided explicitly. However, sequent calculi with explicit
(co)induction do not have the subformula property in spite of having analyticity. In fact, it
is generally accepted that we do not have true cut elimination for any logic equipped with a
theory of inductive definitions [40]. However, one can consider an alternative formalisation
of inductive reasoning viz. implicit induction, which avoids the need for explicitly specifying
(co)induction invariants. This formalism generally recovers true cut elimination but at the
price of infinitary axiomatisation of the fixpoints. There are two approaches to this.

The first approach is to consider a Tait-style system i.e. infinitary wellfounded derivations
which use a so-called ω-rule with infinitely many premises of finite approximations of a
fixpoint. Such rules arise in various areas of logic, notably as Carnap’s rule [15] in arithmetic.
A complete Tait-style system has been proposed for fixpoint logics viz. for the µ-calculus [35]
and star-continuous action lattices [43] (where the ω-rule construes the Kleene star as an
ω-iteration of finite concatenations).

The second approach is to define a non-wellfounded and/or a circular proof system with
finitely branching inferences. Such systems have been extensively studied in the setting
of µMALL [44, 28, 6, 23]. Circular proofs have deep roots in the history of logic and
mathematical reasoning: starting with Euclid’s [27] heuristic of infinite descent through the
more rigorous studies of Fermat [22]. A systematic investigation of the connection between
circular proofs and reasoning by infinite descent has been carried out by Brotherston and
Simpson [11, 12, 13].

Proof systems difficult to compare. Brotherston and Simpson conjectured that (in the
setting of Martin-Löf’s inductive definitions) circular proofs derive the same statements
as finitary proofs with explicit induction. The so-called Brotherston-Simpson conjecture
remained open for about a decade until Berardi and Tatsuta [8, 10] answered it negatively
for the general case. On the other hand, if the logic contains arithmetic, the conjecture is
known to be true; proved independently by Simpson [47], and Berardi and Tatsuta [9].

Note that the Brotherston-Simpson conjecture is heavily dependent on the base logic since
the availability of structural rules or modal constructs induce subtle differences. For instance,
the modal µ-calculus coincides on all systems. On the other hand, in Kleene Algebras, which
is a substructural logic, the wellfounded, circular, and Tait-style systems are indeed different.
In the setting of linear logic, in a recent work [20], the circular and the non-wellfouded
system has been shown to be separate. However, the exact relation between finitary and
circular system is still open. There is good reason for the difficulty. The very restricted
use of structural rules in the linear setting induces a much more refined provability relation.
Therefore, in this paper, we study the provability semantics a.k.a. the phase semantics
of these logics as a first step of tackling the Brotherston-Simpson conjecture. Categorical
semantics of circular proofs of the additive fragment have been studied in [44]. More recently,
coherence space semantics have been studied for µMALLind [24] as well as preliminary results
on µMALLω denotational semantics [26]. These semantics interpret formulas as well as
their proofs thereby preserving their computational content. On the other hand, phase
semantics is a coarser interpretation that allows for expressing strong invariant of linear
logic provability and has been notably used to prove decidability results [36, 19] and cut
admissibility results [42].

A. De, F. Jafarrahmani, and A. Saurin 35:3

Contributions. In this paper, we shall develop a phase semantics for various proof systems
for µMALL. Our first contribution is the notion of µ-phase models which are bespoke
mathematical objects that are shown to be sound and complete interpretation for µMALLind.
The completeness proof is intricate via Tait-Girard reducibility candidates and is inspired
from [42]. Subsequently, we obtain the cut-admissibility of µMALLind by semantic means.
Furthermore, we design a new Tait-style proof system for µMALL viz. µMALLω and obtain
its phase semantics and cut-admissibility. In this case, the crux of the completeness proof
is the obtention of a wellfounded notion of the rank of a formula. Cut-admissibility lets us
show that µMALLω and µMALLind are different systems in terms of provability. Finally, we
show that µMALLω does not have a finite model property using an idea by Lafont [36].

Organisation of the paper. The paper is organised as follows. In Section 2, we give
a brief exposition of linear logic and its phase semantics, relevant fixpoint theorems and
describe the syntax and relevant properties of µMALL. In Section 3, we develop the phase
semantics of µMALL wrt. the wellfounded proof system µMALLind. In Section 4, we introduce
the Tait-style proof system µMALLω and study its semantics, cut-admissibility and finite
model property. Finally, we conclude in Section 5 discussing directions of future work. Two
appendices complement the paper: a table summarizing the proof systems used in this paper
is provided in Appendix A, proof details are provided in Appendix B.

Notation. Let F and G be formulas. F (G/x) denotes that every occurrence of x in F is
replaced by G. If x is clear from the context, we simply write it as F (G). A special case is

F n(x) which denotes
n︷ ︸︸ ︷

F (F (· · · (F (x)) · · ·). We write an as a macro for
n︷ ︸︸ ︷

aO . . .Oa. Let Γ be
any sequent. Then, L ⊢ Γ (L ⊢cf Γ respectively) denotes that there is a proof (cut-free proof
respectively) of Γ in the system L. Finally, for any finite set S, its cardinality is |S|.

2 Background

2.1 Linear logic and phase semantics
Substructural logics are logics lacking at least one of the usual structural rules. In linear
logic [30], one of the most well-studied substructural logics, sequents are effectively multisets
and the use of contraction and weakening is carefully controlled. Conjunction and disjunction
each have two versions in linear logic: multiplicative and additive. Consequently the units
have multiplicative and additive versions as well.

conjunction disjunction true false
multiplicative ⊗ O 1 ⊥

additive N ⊕ ⊤ 0

The logical system thus obtained is called multiplicative-additive linear logic (MALL) and
its inference rules are depicted in Figure 1 (sequents being construed as finite multisets).
Full linear logic extends MALL by incorporating certain “exponential” modalities, written
?F and, dually, !F . Because of the absence of contraction and weakening, linear logic is
resource-conscious i.e. one is concerned over the number of times that a given sentence is
used in the proof of another sentence. To get a flavour of phase semantics, the provability
semantics of linear logic [30], it is informative to characterise the set of lists Γ of formulas
that make a formula F provable.

FSTTCS 2022

35:4 Phase Semantics for µMALL

Identity rules
(id)

⊢ F, F ⊥
⊢ Γ1, F ⊢ Γ2, F ⊥

(cut)
⊢ Γ1, Γ2

Logical rules

multiplicative
connectives

⊢ Γ, F1, F2 (O)
⊢ Γ, F1OF2

⊢ Γ1, F1 ⊢ Γ2, F2 (⊗)
⊢ Γ1, Γ2, F1 ⊗ F2

(1)
⊢ 1

⊢ Γ
(⊥)

⊢ Γ, ⊥

additive con-
nectives

⊢ Γ, Fi (⊕i)⊢ Γ, F1 ⊕ F2

⊢ Γ, F1 ⊢ Γ, F2 (N)
⊢ Γ, F1NF2

(⊤)
⊢ Γ, ⊤ No rule for 0

Figure 1 Inference rules for MALL, where i ∈ {1, 2}.

▶ Definition 1. For a formula F , define Pr(F) = {Γ | MALL ⊢ Γ, F} and Prcf (F) = {Γ |
MALL ⊢cf Γ, F}.

Let us examine some properties of Pr(F). First, notice that the axiom rule ensures
that for any F , F ⊥ ∈ Pr(F). Invertibility of the (⊥) rule gives us Pr(⊥) is the set of all
provable sequents. Similar observations on the invertibility of the (N) rule inform that
Pr(GNG) = Pr(F) ∩ Pr(G). For the (non-invertible) connectives ⊗ and ⊕, we only have
Pr(F ⊗ G) ⊇ Pr(F) · Pr(G) = {Γ, ∆ | Γ ∈ Pr(F), ∆ ∈ Pr(G)} and Pr(F ⊕ G) ⊇ Pr(F) ∪ Pr(G).
This suggests that the algebraic model for linear logic should simultenously be a monoid and
lattice i.e. a residuated lattice.

Pr(⊥) plays an major role in this approach, especially when considering it together with
the cut inference. Indeed, for any F , one has that Pr(F ⊥) = {Γ | ∀∆ ∈ Pr(F), Γ, ∆ ∈ Pr(⊥)}.
This naturally suggests to consider the operation S⊥ = {Γ | ∀∆ ∈ S, Γ · ∆ ∈ Pr(⊥)} which
induces a closure operator (•)⊥⊥ on the set of multisets of linear formulas. As we will soon
see, Pr(F) is closed under the double negation operation for any F .

These are the basic design principles of phase semantics: interpreting linear formulas as
closed subsets of a monoid for the closure operation induced by the orthogonality relation
w.r.t. a specific subset ⊥⊥ of the monoid which is an abstraction of the provable sequents.

▶ Definition 2. A phase space is a 4-tuple M = (M, 1, ·, ⊥⊥) where (M, 1, ·) is a commutative
monoid and ⊥⊥⊆ M . For X, Y ⊆ M , define the following operations: XY := {x · y | x ∈
X, y ∈ Y } and X⊥ := {y | ∀x ∈ X, x · y ∈⊥⊥}.

Facts are those X ⊆ M such that X = X⊥⊥. (Equivalently, X = Y ⊥ for some Y ⊆ M .)

▶ Example 3. Consider the additive monoid (Z, 0, +) and let ⊥⊥= {0}. For any set S ⊆ Z,
S⊥ = {y | ∀x ∈ S.x + y = 0}. Therefore, if S is not singleton then S⊥ = ∅; so, S⊥⊥ = Z.
On the other hand, {x}⊥ = {−x}. The facts of this phase space are ∅, singleton sets, and Z.

▶ Proposition 4. Let X, Y ⊆ M . Then the following properties hold.
1. X ⊆ Y ⊥ ⇐⇒ XY ⊆⊥⊥
2. XX⊥ ⊆ ⊥⊥
3. X ⊆ Y =⇒ Y ⊥ ⊆ X⊥

4. X ⊆ X⊥⊥

5. X⊥⊥⊥ = X⊥

6. (X ∪ Y)⊥ = X⊥ ∩ Y ⊥

Let X and Y be facts. We define the following operations on facts.

X ⊗ Y := (XY)⊥⊥
XOY := (X⊥Y ⊥)⊥

XNY := X ∩ Y X ⊕ Y := (X ∪ Y)⊥⊥

▶ Proposition 5. Let X, Y be facts. Then, 1 ∈ XOY ⇐⇒ X⊥ ⊆ Y .

A. De, F. Jafarrahmani, and A. Saurin 35:5

Fix a phase space M and let X be its set of facts. Fix V : A → X where A is the set of
atoms. A phase space along with such a valuation V is called a phase model. The semantics
JF K of a MALL formula F is parameterised by a valuation (suppose, V) which we will denote
by JF KV . We are now ready to define the semantics which is defined inductively as follows:

JaKV = V (a) Ja⊥KV = JaKV ⊥
a ∈ A

J1KV = {1}⊥⊥ J⊥KV = ⊥⊥

J0KV = {∅}⊥⊥ J⊤KV = M

JF1 ⊙ F2KV = JF1KV ⊙ JF2KV ⊙ ∈ {⊗, O, N, ⊕}

When V is clear from the context, we shall drop it, simply writing JF K. Finally, we generalise
the interpretation to sequents of the form Γ = F1, . . . , Fn as JΓK = JF1OF2O . . .OFnK.
▶ Theorem 6 (MALL Soundness [30]). If MALL ⊢ Γ then for all phase models (M, V),
1 ∈ JΓKV .
▶ Example 7. To illustrate the utility of the phase semantics, we show that in any provable
multiplicative formula F (i.e. a MALL formula with only multiplicative connectives), an
atom occurs exactly as many times as its negation. Fix an arbitrary atom a occurring in F .
Let JF KV be the interpretation of F in the phase space in Example 3 w.r.t. the valuation V

that maps the atom a to {1} and every other atom to {0}. In this phase space, it is easy to
see that X ⊗ Y = XOY = {x + y | x ∈ X, y ∈ Y }. By Theorem 6, if F is provable, 0 ∈ JF KV

hence number of occurrences of a in F is equal to the number of occurrences of a⊥.
Note that a syntactic proof would require the heavy tool of MALL cut-admissibility.

▶ Definition 8. The syntactic model (MALL•, ∅, ·, ⊥⊥, V) is a phase model such that:
(MALL•, ∅, ·), called syntactic monoid, is the free commutative monoid generated by all
formulas. In other words, MALL• is the set of all sequents construed as finite multisets,
the empty multiset ∅ is the monoid identity, and multiset union is the monoid operation.
⊥⊥= Pr(⊥) i.e. ⊥⊥ is set of all provable sequents.
V (a) = Pr(a) for all atoms a ∈ A.

▶ Remark 9. Note that for the syntactic model to be well-defined one needs to show that
Pr(a) is a fact in the phase space (MALL•, ∅, ·, ⊥⊥).
▶ Lemma 10 (Adequation Lemma for MALL). For all formulas F , JF KV ⊆ Pr(F).
▶ Theorem 11 (MALL Completeness [30]). If for all phase models (M, V), 1 ∈ JΓKV then
MALL ⊢ Γ.
Proof sketch. Suppose for any phase model (M, V), 1 ∈ JΓKV . In particular, this holds
for the syntactic model. By Lemma 10, JΓKV ⊆ Pr(Γ) (construing Γ as a parr formula).
Therefore, ∅ ∈ Pr(Γ) (recall ∅ is the unit of syntactic monoid). Hence, ⊢ Γ. ◀

Okada [42] observed that one can obtain the cut-admissibility of MALL for free by slightly
modifying the definition of the syntactic monoid. Now define ⊥⊥= Prcf (⊥) and V (a) = Prcf (a).
The refined adequation lemma JF K ⊆ Prcf (F) follows exactly as in Lemma 10.
▶ Theorem 12 (MALL cut-free completeness [42]). If for any phase model (M, V), 1 ∈ JΓKV

then MALL ⊢cf Γ.
▶ Corollary 13. MALL admits cuts.
Proof. Suppose MALL ⊢ Γ. By Theorem 6, ∅ ∈ JΓKV for the syntactic model of MALL.
By Theorem 12, MALL ⊢cf Γ. ◀

FSTTCS 2022

35:6 Phase Semantics for µMALL

2.2 Fixpoint theory and fixpoint logic
In this section we will recall some background on the fundamental fixpoint theorems of
lattice theory. Not only will we use them several times in our technical proofs, but also, they
will provide the intuition about the design of proof systems with fixpoint rules and their
corresponding semantics. For the rest of this subsection, let (S,⩽S) be a complete lattice
with least element ⊥ and greatest element ⊤.

▶ Theorem 14 ([33, 49]). Let f : S → S be a monotonic function. The set of fixpoints of f

is non-empty and equipped with ⩽S forms a complete lattice.

▶ Definition 15. Let f : S → S be a monotonic function. f is said to be Scott-continuous
if for each directed subset S we have f(

∨
Si∈S Si) =

∨
Si∈S f(Si).

▶ Theorem 16 (Kleene Fixed Point Theorem). Every Scott-continuous function f has the
least fixpoint

∨
n∈ω fn(⊥).

Observe that this is a constructive formulation of a fixpoint. Cousot and Cousot proved
a constructive version of Theorem 14 without using the Scott-continuity hypothesis [17]. Let
f : S → S be a monotonic function. The lower iteration sequence for f starting with
x ∈ S is the sequence ⟨Uα | α ∈ Ord⟩ of elements of S defined by transfinite induction as
follows: (i) U0 = x; (ii) Uα+1 = f(Uα); and, (iii) Uλ =

∧
α<λ Uα for λ a limit ordinal.

▶ Theorem 17 ([17]). Let f : S → S be a monotonic function. The lower iteration sequence
for f starting from ⊥ is increasing and there exists an ordinal θ (called the closure ordinal
of f) such that Uθ = Uθ+1. Moreover, Uθ is the least fixpoint of f .

Note that one defines upper iteration sequence by taking supremums at limit ordinals.
Dually, the greatest fixpoint is the stationary point of the decreasing upper iteration sequence
starting from ⊤.
▶ Remark 18. The closure ordinal of a Scott-continuous function is at most ω.

2.3 Multiplicative additive linear logic with fixpoints
In this subsection we recall the propositional version of logic µMALL and its wellfounded
proof system µMALLind introduced in [7]. (See Appendix A for details)

▶ Definition 19. Fix a countable set of atoms A = {a, b, . . . } and variables V = {x, y, . . . }
such that A ∩ V = ∅. µMALL pre-formulas are given by the following grammar:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | x | FOG | F ⊗ G | F ⊕ G | FNG | µx.F | νx.F

where a ∈ A, x ∈ V, and µ, ν bind the variable x in F . When a pre-formula is closed (i.e.
no free variables), we simply call it a formula.

Negation, (•)⊥, defined as a meta-operation on pre-formulas, will be used only on formulas.
As it is not part of the syntax, we do not need any positivity condition on the fixed-point
expressions. As expected, least and greatest fixed points are the dual of each other.

▶ Definition 20. Negation of a pre-formula is defined inductively as follows.

0⊥ = ⊤; ⊤⊥ = 0; ⊥⊥ = 1; 1⊥ = ⊥; (a)⊥ = a⊥; a⊥⊥ = a;

x⊥ = x; (FOG)⊥ = F ⊥ ⊗ G⊥; (F ⊗ G)⊥ = F ⊥OG⊥; (F ⊕ G)⊥ = F ⊥NG⊥;

(FNG)⊥ = F ⊥ ⊕ G⊥; (µx.F)⊥ = νx.F ⊥; (νx.F)⊥ = µx.F ⊥.

A. De, F. Jafarrahmani, and A. Saurin 35:7

Fixpoint logics have a notion of subformula that is a different from usual:

▶ Definition 21. The Fischer-Ladner closure FL(F) of a µMALLω formula F is the
smallest set such that:

F ∈ FL(F).
G ⊙ H ∈ FL(F) =⇒ G, H ∈ FL(F) where ⊙ ∈ {O, ⊗, ⊕, N}.
ηx.G ∈ FL(F) =⇒ G(ηx.G/x) ∈ FL(F) where η ∈ {µ, ν}.

As is well-known, for any formula F , FL(F) is a finite set.

▶ Definition 22. A proof of µMALLind is a finite tree generated from the inference rules of
MALL given in Figure 1 and the following rules for fixpoint operators.

⊢ Γ, F (µx.F/x)
(µ)

⊢ Γ, µx.F ;
⊢ Γ, S ⊢ S⊥, F (S/x)

(ν)
⊢ Γ, νx.F

▶ Example 23. Let G = a⊥Ox, F = a ⊗ (a ⊗ y). Throughout the rest of the paper let
Γ0 = µx.G, a ⊗ νy.F .

(id)
⊢ a⊥, a

(id)
⊢ µx.G, (µx.G)⊥

(id)
⊢ a⊥, a

(id)
⊢ a⊥, a

(id)
⊢ µx.G, (µx.G)⊥

(⊗)
⊢ a⊥, µx.G, a ⊗ (µx.G)⊥

(µ, O)
⊢ µx.G, a ⊗ (µx.G)⊥

(⊗)
⊢ a⊥, µx.G, a ⊗ (a ⊗ (µx.G)⊥)

(µ, O)
⊢ µx.G, a ⊗ (a ⊗ (µx.G)⊥)

(ν)
⊢ µx.G, νy.F

(⊗)
⊢ a⊥, µx.G, a ⊗ νy.F

(O)
⊢ a⊥Oµx.G, a ⊗ νy.F

(µ)
⊢ Γ0

▶ Theorem 24 ([7]). The following rule is admissible in µMALLind.

⊢ A, B
(func)

⊢ F ⊥(A/x), F (B/x)

▶ Theorem 25 ([7, 5]). µMALLind admits cuts.

3 Phase semantics of µMALLind

Fixpoints can be encoded in second order linear logic (LL2) vis-à-vis the translation [µx.F] =
∀S.?([F](S) ⊗ S⊥)OS and [νx.F] = ∃S.!(S⊥O[F](S)) ⊗ S. Since this translation respects
provability [7] in µMALLind, one can use LL2 phase semantics [42] to define the phase semantics
of a µMALL formula F as J[F]K i.e. the semantics of its translation into LL2. Although the
resulting semantics is sound and complete, it is barely insightful since it relies on the phase
semantics of LL2 as a black box. In this section, we essentially peek into this black box.

Observe that the set of all facts of a phase space ordered by inclusion (X , ⊆) is a complete
lattice. Therefore, by Theorem 14, any monotonic function ξ : X → X has a fixpoint. The
least fixpoint µξ (respectively, the greatest fixpoint νξ by duality) is given by

µξ =
⋂

X∈X
{X | ξ(X) ⊆ X} ; νξ =

(⋃
X∈X

{X | X ⊆ ξ(X)}
)⊥⊥

.

FSTTCS 2022

35:8 Phase Semantics for µMALL

In order to extend the phase semantics of MALL to µMALLind we extend valuations to
variables i.e. for any valuation V , dom(V) = A ∪ V and define JF KV by induction on F

with the usual interpretation of section 2.1 for atoms, units, and multiplicative-additive
connectives and as follows for fixpoints formulas:

Jµx.F KV =
⋂

X∈X

{
X | JF KV [x 7→X] ⊆ X

}
; Jνx.F KV =

(⋃
X∈X

{
X | X ⊆ JF KV [x 7→X]

})⊥⊥

where V [x 7→ X](y) :=
{

V (y) if y ̸= x;
X if y = x.

.

However completeness fails for such an interpretation. Indeed, not all facts necessarily
have a pre-image, therefore JF KV [x 7→X] does not exactly correspond to syntactic substitution
and the tentative syntactic model is not a phase model. We need to allow strict subsets of
X for building fixpoints. Obviously, one cannot consider any subsets of X for this purpose
and we shall require that they satisfy some closure properties. Therefore we restrict the
codomain of J•KV to subspaces of X closed under µMALL operations. For any set of facts
D ⊆ X , the set of contexts is given by the following grammar where ⊙ ∈ {⊗, O, N, ⊕}. Let
FD denote the set of contexts with exactly one hole.

f, g ::= [] | X ∈ D | f ⊙ g

For f ∈ FD, define µf =
⋂

X∈D{X | f(X) ⊆ X} and νf =
(⋃

X∈D{X | X ⊆ f(X)}
)⊥⊥.

▶ Definition 26. D ⊆ X is said to be µ-closed if
{⊥⊥, ⊥⊥, M, M⊥} ⊆ D;
D is closed under the operations ⊗, O, N, and ⊕; and
for all f ∈ FD, µf ∈ D and νf ∈ D.

A phase space M equipped with a µ-closed set of facts D is called a µ-phase space.
A D-valuation is a map of the form V : A ∪ V → D. A µ-phase space along with a

D-valuation is called a µ-phase model. The µ-phase semantics J•K is a function that
takes a µMALL pre-formula F and returns a fact in D.

Note that Jµx.F KV and Jνx.F KV are defined as before except X ranges over D. A priori,
the semantics of pre-formula is only an element of X . The closure properties of D ensures
JF KV ∈ D for every formula F and D-valuation V .

▶ Lemma 27 (Monotonicity). Let F be a µMALL pre-formula. If X ⊆ Y then JF KV [x 7→X] ⊆
JF KV [x 7→Y].

Proof. A proof can be found in Appendix B.1.1. ◀

An application of monotonicity is showing that the interpretation of the fixpoint operators
are indeed fixpoints in the mathematical sense:

▶ Theorem 28. Let D be µ-closed and f ∈ FD. Then µf and νf are the least and greatest
fixpoints of f in D.

Proof. A proof can be found in Appendix B.1.2. ◀

A. De, F. Jafarrahmani, and A. Saurin 35:9

Note that Theorem 28 cannot be proved directly by Theorem 14 since D is not necessarily
a complete lattice. Moreover, it does not also imply that D is a complete lattice by the
converse of Theorem 14 since we show that it has fixpoints of a particular kind of monotonic
function, not any arbitrary monotonic function. Given a valuation V , define

V ⊥(p) =
{

V (p) if p ∈ A;
V (p)⊥ if p ∈ V .

We have V ⊥⊥ = V and V [x 7→ X]⊥ = V ⊥[x 7→ X⊥].

▶ Lemma 29 (Duality preservation). For any µMALL preformula F , JF ⊥KV ⊥ = (JF KV)⊥.

Proof. A proof can be found in Appendix B.1.3. ◀

3.1 Soundness
▶ Theorem 30 (µMALLind Soundness). If µMALLind ⊢ Γ then for all µ-phase models
(M, D, V), 1 ∈ JΓKV .

Proof. Fix an arbitrary µ-phase model (M, D, V). Given a proof π of ⊢ Γ we will induct
on π. The proof is similar to that of Theorem 6 except for the fixpoint cases. Suppose
the last rule of π is a (µ) rule. We have that Γ = Γ′, µx.F . Assume that we have proved
JF (µx.F)KV ⊆ Jµx.F KV . We have the following:(

Jµx.F KV
)⊥ ⊆

(
JF (µx.F)KV

)⊥ [Proposition 4.3]

⇒
(
JΓ′KV

)⊥
.
(
Jµx.F KV

)⊥ ⊆
(
JΓ′KV

)⊥
.
(
JF (µx.F)KV

)⊥

⇒
(
JΓ′KV ⊥

.JF (µx.F)KV ⊥)⊥
⊆
(
JΓ′KV ⊥

.Jµx.F KV ⊥)⊥
[Proposition 4.3]

⇔ JΓ′OF (µx.F)KV ⊆ JΓ′Oµx.F KV

⇒ 1 ∈ JΓ′Oµx.F KV [IH]

Therefore, it suffices to prove JF (µx.F)KV ⊆ Jµx.F KV . Observe that JF (µx.F)KV =
JF KV [x 7→Jµx.F KV]. Let X ∈ D such that JF KV [x 7→X] ⊆ X (we thus have Jµx.F K ⊆ X). We need
to show that JF KV [x 7→Jµx.F KV] ⊆ X. It suffices to show that JF KV [x 7→Jµx.F KV] ⊆ JF KV [x 7→X]

which is true by Lemma 27.
Now suppose the last rule is a (ν) rule i.e. Γ = Γ′, νx.F such that the coinductive

invariant is S. We need to show that 1 ∈ JΓ′Oνx.F KV which by Proposition 5 is equivalent
to showing JΓ′KV ⊥ ⊆ Jνx.F KV . By hypothesis, we have that 1 ∈ JΓ′OSKV which is similarly
equivalent to JΓ′KV ⊥ ⊆ JSKV . Therefore it suffices to show that JSKV ⊆ Jνx.F KV :

1 ∈ JS⊥OF (S)KV [IH]

⇔
(
JS⊥KV

)⊥ ⊆ JF (S)KV [Proposition 5]

⇔ JSKV ⊆ JF (S)KV = JF KV [x 7→JSKV] [Lemma 29]
⇒ JSKV ⊆ Jνx.F KV ◀

3.2 Completeness
Completeness for fixpoint logics are generally quite difficult since analyticity does not
guarantee a subformula property. One is faced with a similar cul de sac in proving the cut-
elimination of µMALLind since it is not straightforward to define the notion of the complexity

FSTTCS 2022

35:10 Phase Semantics for µMALL

of the cut formula which reduces with each step of cut-elimination. This problem is solved
in [5] by invoking a technique similar to the Tait-Girard reducibility candidates (originally
formulated to establish certain properties of various typed lambda calculi [48, 29]). Recall
that the completeness of phase semantics gives cut admissibility for free. Therefore, it is not
surprising that in order to prove completeness one needs to invoke reducibility candidates.

▶ Definition 31. Let (M, D, V) be a µ-phase model. Given a µMALL formula F , the
reducibility candidates of F , denoted ⟨F ⟩, is given by {X ∈ X | F ⊥ ∈ X ⊆ Prcf (F)}.

▶ Proposition 32. X ∈ ⟨F ⟩ ⇐⇒ X⊥ ∈ ⟨F ⊥⟩

Proof. We first note that Prcf (•) can be straightforwardly generalised to sets of formulas
as follows: Prcf ({F1, . . . , Fn}) =

⋃
i∈[n] Prcf (Fi). Let X ∈ ⟨F ⟩. Then {F ⊥} ⊆ X =⇒

X⊥ ⊆ {F ⊥}⊥ = Prcf (F ⊥). Also, X ⊆ Prcf (F) =⇒ Prcf (F)⊥ = Prcf (Prcf (F)) ⊆ X. But
F ∈ Prcf (Prcf (F)). Hence done. ◀

We are now ready to define the µ-syntactic model. Recall that Prcf (F) is the set of all
sequents Γ such that ⊢ Γ, F is cut-free provable.

▶ Definition 33. The µ-syntactic model, denoted (µMALL•, ∅, ·, ⊥⊥, V), is defined as:
(µMALL•, ∅, ·) is the free commutative monoid generated by all formulas.
⊥⊥= Prcf (⊥).
V (p) = Prcf (p) for all p ∈ A ∪ V.
D =

⋃
F ∈F orm⟨F ⟩ where Form is the set of all µMALL formulas.

Observe that ⊥⊥= Prcf (⊥) ∈ D and that D indeed contains ⊥⊥⊥, µMALL• and µMALL•⊥.

▶ Lemma 34 (Adequation Lemma for µMALLind). Let F (x) be a pre-formula, G ≡ G1, . . . , Gm

with x ≡ x1, . . . , xm be an m-tuple of pre-formulas and let X ≡ X1 . . . Xm be an m-tuple of
facts such that Xi ∈ ⟨Gi⟩. We have JF KV [x 7→X] ⊆ Prcf (F (G/x)).

Proof. By induction on F . Multiplicative additive cases are treated as in the proof of
Lemma 10; we detail fixed-point cases only.

Case 1. Suppose F = µy.F ′. Let ξ = µy.F ′(G/x). In the proof of Theorem 30, we showed
that for any formula F0, Prcf (F0(µx.F0/x)) ⊆ Prcf (µx.F0). Therefore, Prcf (F ′(G/x, ξ/y)) ⊆
Prcf (ξ). Let Y ∗ = JF ′KV [x 7→X,y 7→Prcf (ξ)]. By induction hypothesis and that fact that
Prcf (F0) ∈ ⟨F0⟩ for all formulas F0, we have the following.

Y ∗ ⊆ Prcf (F ′(G/x, ξ/y)) (1)

Therefore, it is enough to show that Jµy.F ′KV [x 7→X] ⊆ Y ∗. Take Γ ∈ Jµy.F ′KV [x 7→X]. For any
fact Y ∈ D, to show Γ ∈ Y it is enough to show JF ′KV [x 7→X,y 7→Y] ⊆ Y . Therefore we need
to check that JF ′KV [x 7→X,y 7→Y ∗] ⊆ Y ∗ = JF ′KV [x 7→X,y 7→Prcf (ξ)]. This follows by Lemma 27
from 1.

Case 2. Suppose F = νy.F ′. For any fact Y , define ZY = JF ′KV [x 7→X,y 7→Y]. Let Γ ∈⋃
{Y ∈ D | Y ⊆ ZY }. Therefore, there exists, Y ∗ ∈ D such that Γ ∈ Y ∗ ⊆ ZY ∗ . Since

Y ∗ ∈ D, Y ∗ ∈ ⟨ξ⟩ for some formula ξ. By induction hypothesis, JF ′KV [x 7→X,y 7→Y ∗] ⊆
Prcf (F ′(G/x, ξ/y)).

We will now show that Prcf (F ′(G/x, ξ/y)) ⊆ Prcf (F (G/x)). Let ∆ ∈ Prcf (F ′(G/x, ξ/y)).
If we show that ξ⊥ ∈ Prcf (F ′(G/x, ξ/y)), we have the following.

A. De, F. Jafarrahmani, and A. Saurin 35:11

⊢ ∆, F ′(G/x, ξ/y)

⊢ ξ⊥, F ′(G/x, ξ/y)
(func)

⊢ (F ′(G/x, ξ/y))⊥
, F ′(G/x, F ′(G/x, ξ/y)/y)

(ν)
⊢ ∆, νx.F ′(G/x)

In order to show ξ⊥ ∈ Prcf (F ′(G/x, ξ/y)), we use the induction hypothesis to reduce the
problem to showing ξ⊥ ∈ JF ′KV [x 7→X,y 7→Y ∗] which is true since Y ∗ ∈ ⟨ξ⟩. Therefore we have,

Γ ∈ Prcf (νy.F ′(G/x)) ⇒
⋃

{Y ∈ D | Y ⊆ ZY } ⊆ Prcf (νy.F ′(G/x))

⇒
(⋃

{Y ∈ D | Y ⊆ ZY }
)⊥⊥

⊆ Prcf (νy.F ′(G/x))

This concludes our proof. ◀

▶ Lemma 35. Using notations of the previous lemma, we have that F ⊥(G/x) ∈ JF KV [x 7→X].

Proof. Observe that Lemma 34 and Proposition 32 imply JF ⊥KV [x 7→X⊥] ⊆ Prcf (F ⊥(G⊥/x)).
Therefore, {F ⊥(G⊥/x)}JF ⊥KV [x 7→X⊥] ⊆ {F ⊥(G⊥/x)}.Prcf (F ⊥(G⊥/x)) ⊆ Prcf (⊥) =⊥⊥. By

Proposition 4.1, F ⊥(G⊥/x) ⊆
(
JF ⊥KV [x 7→X⊥]

)⊥
which is JF KV [x 7→X] by Lemma 29. ◀

Observe that by Lemma 34 and Lemma 35 we have JF KV [x 7→X] ∈ ⟨F (G/x)⟩. This ensures
that D is µ-closed. Consequently, (µMALL•, ∅, ·, ⊥⊥, V) is a µ-phase space model.

▶ Theorem 36 (µMALLind cut-free completeness). If for any µ-phase model (M, D, V),
1 ∈ JΓKV then µMALLind ⊢cf Γ.

▶ Corollary 37. µMALLind admits cuts.

▶ Remark 38. Note that this is an alternate proof of Theorem 25.

3.3 Closure ordinals
Closure ordinals are a standard measure of the complexity of any (class of) monotone
functions. The closure ordinal of a fixed-point formula is essentially the closure ordinal of
the corresponding monotone function in the truth semantics. In [21], the closure ordinal
is construed as a function of the size of the finite model. The study of closure ordinals of
modal logic formulas is a young and exciting area of research [18, 2, 31]. It departs from the
previous notion of closure ordinals in its model-independence. In this case, closure ordinal
really serves as a measure of complexity of a formula.

▶ Definition 39. Let F be a pre-formula such that x ∈ fv(F) and let M = (M, D, V) be a
µ-phase model. We define the closure ordinal of F with respect to x and M, denoted OM(F),
as the closure ordinal of λX.JF KV [x 7→X]. The closure ordinal of F with respect to x (across
all models) is defined as O(F) := supM{OM(F)}. Finally, F is said to be constructive if
its closure ordinal is at most ω.

For any pre-formula F and phase model M, OM(F) exists since λX.JF KV [x 7→X] is mono-
tonic. Consequently, the supremum O(F) exists since the class of all µ-phase models is
indeed a set.

FSTTCS 2022

35:12 Phase Semantics for µMALL

▶ Example 40. Consider the pre-formula aNx. Let ⟨UaNx
α | α ∈ Ord⟩ be the iteration

sequence of its approximations. UaNx
0 = ∅⊥⊥ and UaNx

1 = JaNxKV [x 7→UaNx
0] = V (a) ∩ ∅⊥⊥.

Therefore, O(aNx) = 0.

In the tradition of µ-calculus, the name “constructive” is used loosely here, motivated
by the observation that if O(F) is a finite ordinal strictly below ω for any pre-formula F ,
then µx.F is provably equivalent to F O(F)(0). Therefore, the class of µMALL formulas
with closure ordinal strictly less than ω can be embedded in MALL and enjoys several good
properties like finite model property and decidability. Observe that if the interpretation of a
formula in any phase model is Scott-continuous, then it is constructive by Theorem 16. The
converse does not hold in general. In the following section we consider a proof system of
µMALL where fixed points are approximated by their ωth approximation.

4 µMALLω: an infinitary proof system

For a constructive formula F ,

Jµx.F KV =

⋃
n≥0

JF n(0)KV

⊥⊥

; Jνx.F KV =
⋂

n≥0
JF n(⊤)KV (2)

Therefore, syntactically, µx.F (respectively νx.F) is equivalent to an infinitary ⊕-formula⊕
n∈ω F n(0) (respectively, an infinitary N-formula Nn∈ωF n(⊤)). We enrich the language

of µMALL with the operators µn and νn for all n ∈ ω. We call this language as well as the
corresponding proof system, µMALLω. (See Appendix A for details.)

▶ Definition 41. A µMALLω proof is a wellfounded (possibly infinitely branching) tree
generated from the inference rules of MALL given in Figure 1 and the following rules for
fixpoint operators where η ∈ {µ, ν}.

⊢ Γ, 0
(µ0)

⊢ Γ, µ0x.F ;
⊢ Γ, F (ηnx.F/x)

(ηn+1)
⊢ Γ, ηn+1x.F ;

⊢ Γ, µnx.F
(µω

n)
⊢ Γ, µx.F

⊢ Γ, ⊤
(ν0)

⊢ Γ, ν0x.F ;
⊢ Γ, ν0x.F ⊢ Γ, ν1x.F ⊢ Γ, ν2x.F . . .

(νω)
⊢ Γ, νx.F

▶ Example 42. Let H = (µx.aOx)⊥O(a⊥pO0) for some p ∈ ω.

(id)
⊢ a⊥, a

⊢ µpx.a⊥Ox, (a⊥p
O0)

⊥

{⊢ νny.F, µ2nx.aOx}n∈ω (µω
2n)

{⊢ νny.F, µx.aOx}n∈ω (νω)
⊢ νy.F, µx.aOx

(⊗)
⊢ µpx.a⊥Ox, νy.F, H⊥

(⊗)
⊢ a⊥, µpx.a⊥Ox, a ⊗ (νy.F), H⊥

(O)
⊢ a⊥O(µpx.a⊥Ox), a ⊗ (νy.F), H⊥

(µp+1)
⊢ µp+1x.a⊥Ox, a ⊗ (νy.F), H⊥

(µω
p+1)

⊢ Γ0, H⊥

It is easy to show that for all p, n ∈ ω, ⊢ µpx.a⊥Ox, (a⊥pO0)⊥ and ⊢ νny.F, µ2nx.aOx

are provable by induction on p and n respectively.

A. De, F. Jafarrahmani, and A. Saurin 35:13

Note that the set of inference rules (as schema) is infinite since {µω
n}n∈ω is a collection

of ω-many rules. Such infinitary systems (called Tait-style systems) where proof trees
are wellfounded with possible infinite branching are studied in various areas of logic viz.
arithmetic [15, 41] and fixpoint logics [35, 32]. It is quite tricky to define a proper notion of
the complexity of a fixpoint formula in such settings. Closely based on [32], our notion of
the rank of a µMALLω formula is a finite sequences of ordinals.

First we will set up some notion. If α1, . . . , αn are ordinals, we write ⟨α1, . . . , αn⟩ for the
sequence σ whose length |σ| is n and whose ith component σi is the ordinal αi. Let <lex

be the strict lexicographical ordering of finite sequences of ordinals and ≤lex its reflexive
closure. Note that <lex is a well-ordering on any set of sequences of bounded lengths but
not a well-ordering in general. In particular, ⟨1⟩, ⟨0, 1⟩, ⟨0, 0, 1⟩, . . . is an infinite descending
chain in <lex. Given two finite sequences of ordinals σ, τ , we define the component-wise
ordering ⊴ as σ, τ iff |σ| ≤ |τ | and (σ)i ≤ (τ)i for all 1 ≤ i ≤ |σ|. Clearly, the relation ⊴ is
transitive. We denote the standard concatenation of sequences by ∗. Finally we define a
component-wise maximum operation ⊔ by setting: (i) σ ⊔ ⟨⟩ := ⟨⟩; (ii) if σ = ⟨b1, . . . , bm⟩
and τ = ⟨b′

1, . . . , b′
n⟩, then

σ ⊔ τ =
{

⟨max(b1, b′
1), . . . , max(bm, b′

m), b′
m+1, . . . , b′

n⟩ if m ≤ n;
⟨max(b1, b′

1), . . . , max(bn, b′
n), bn+1, . . . , bm⟩ otherwise.

Now we are ready to define the rank of a µMALLω formula. The rank of every µMALLω

formula will be a finite sequence of ordinals less than or equal to ω.

▶ Definition 43. The rank of a µMALLω formula F , denoted rk(F), is defined by induction
on F as follows.

if F is an atom, a variable, or a unit, then rk(F) = ⟨0⟩;
if F = G ⊙ G′, then rk(F) = (rk(G) ⊔ rk(G′)) ∗ ⟨0⟩ where ⊙ ∈ {O, ⊗, ⊕, N};
if F = ηnx.G, then rk(F) = rk(G) ∗ ⟨n⟩ where η ∈ {µ, ν};
if F = ηx.G, then rk(F) = rk(G) ∗ ⟨ω⟩ where η ∈ {µ, ν}.

▶ Example 44. Consider H = (νx.a⊥ ⊗ x)O(apO0) from Example 42.

rk(H) = rk(νx.a⊥ ⊗ x) ⊔ rk(apO0) ∗ ⟨0⟩ =

(rk(a⊥ ⊗ x) ∗ ⟨ω⟩
)

⊔ ⟨
p+1︷ ︸︸ ︷

0, . . . , 0⟩

 ∗ ⟨0⟩

=

⟨0, 0, ω⟩ ⊔ ⟨
p+1︷ ︸︸ ︷

0, . . . , 0⟩

 ∗ ⟨0⟩ = ⟨0, 0, ω,

max(1,p−1)︷ ︸︸ ︷
0, . . . , 0 ⟩

▶ Lemma 45. Let F be a µMALLω pre-formula such that x ∈ fv(F). Let ξ be a preformula
such that rk(F) ⊴ rk(ξ). Then, there exists a finite (possibly empty) sequence of ordinals σ

such that rk(F (ξ/x)) = rk(ξ) ∗ σ.

Proof. A proof can be found in Appendix B.2.1. ◀

▶ Theorem 46. The following hold for any µMALLω formula F :
1. rk(F) <lex rk(F ⊙ G) and rk(G) <lex rk(F ⊙ G);
2. rk(0) <lex rk(µ0x.F), rk(⊤) <lex rk(ν0x.F);
3. rk(F (ηnx.F/x)) <lex rk(ηn+1x.F) for all n < ω;
4. rk(ηnx.F) <lex rk(ηx.F) for all n < ω.

FSTTCS 2022

35:14 Phase Semantics for µMALL

Proof. The first, second, and fourth assertions are immediate from Definition 43. For the
third one, we have two cases:

Suppose x ̸∈ fv(F). Then, F (ηnx.F/x) = F and the result follows from Definition 43.
Otherwise, note that we have rk(F) ⊴ rk(ηnx.F). By Lemma 45, rk(F (ηnx.F/x)) =
rk(ηnx.F) ∗ σ = rk(F) ∗ ⟨n⟩ ∗ σ for some σ. But rk(ηn+1x.F) = rk(F) ∗ ⟨n + 1⟩.

Hence we are done. ◀

▶ Definition 47. The strong closure SC(F) of a µMALLω formula F is the least set s.t.:
F ∈ SC(F);
G ⊙ H ∈ SC(F) =⇒ {G, H} ⊂ SC(F) where ⊙ ∈ {O, ⊗, ⊕, N};
µ0x.G ∈ SC(F) =⇒ 0 ∈ SC(F);
ν0x.G ∈ SC(F) =⇒ ⊤ ∈ SC(F);
ηn+1x.G ∈ SC(F) =⇒ G(ηnx.G/x) ∈ SC(F) for all n ∈ ω and η ∈ {µ, ν};
ηx.G ∈ SC(F) =⇒ ηnx.G ∈ SC(F) for all n ∈ ω and η ∈ {µ, ν}.

Define F − to be image of F under the forgetful functor that erases the explicit approxim-
ations occurring in F . For example, (a ⊗ µ6x.νy.x ⊕ y)− = a ⊗ µx.νy.x ⊕ y.

▶ Theorem 48. For any formula F , the set {rk(G) | G ∈ SC(F)} is a well-order with respect
to the <lex ordering.

Proof. By contradiction. Note that |rk(G)| = |rk(G−)|. Furthermore, if G ∈ SC(F) then
G− ∈ FL(F). But FL(F) is a finite set, therefore the set {|rk(G)| | G ∈ SC(F)} is finite.

Assume there exists {σi}i∈I an infinite descending chain in {rk(G) | G ∈ SC(F)}. By the
Infinite Ramsey Theorem, there is an infinite subsequence {σi}i∈ω such that for all j, ij ∈ I

and for all j, j′, |σij | = |σij′ | = n. Then, there exist k ≤ n and N ∈ N such that {(σij)k}j>N

is a descending chain. This contradicts the wellfoundedness of natural numbers. ◀

4.1 Soundness and completeness of µMALLω

The phase semantics for µMALLω is much simpler to define. Like MALL the semantics can
be defined given a phase space and a valuation (without the extra structure over the set
of facts and extension of valuations to variables as in µMALLind). Given a phase space M
and a valuation function V : A → X , we define the interpretation of multiplicative-additive
connectives and units as usual, of µx.F and νx.F as in Equation (2), and of ηnx.F (for
η ∈ {µ, ν}) as follows: Jµ0x.F K = J0K, Jν0x.F K = J⊤K, and Jηn+1x.F K = JF (ηnx.F/x)K.

▶ Theorem 49 (µMALLω soundness). If ⊢ Γ then for all phase models (M, V), 1 ∈ JΓKV .

The proof of Theorem 49 is by a straightforward induction on the structure of the proof.

▶ Lemma 50 (Adequation Lemma for µMALLω). For all formula F , JF KV ⊆ Prcf (F).

Proof. By induction on rk(F). The base case is when F is an atom or a unit in which case
by definition JF K = Prcf (F). Suppose F = G ⊙ H for ⊙ ∈ {⊗, O, N, ⊕}. By Theorem 46.1,
rk(G) <lex rk(F) and rk(H) <lex rk(F). By IH, JGKV ⊆ Prcf (G) and JHKV ⊆ Prcf (H). Using
standard techniques in the proof of Lemma 10 (cf. [30]), we can conclude that JF K = Prcf (F).

The case F = η0x.G is trivial. Suppose F = ηn+1x.G where η ∈ {µ, ν}. By Theorem 46.3,
rk(G(ηnx.G)) <lex rk(ηn+1x.G). By IH, JF K = JG(ηnx.G)KV ⊆ Prcf (G(ηnx.G)) ⊆ Prcf (F).

Suppose F = µx.G. Noting that Prcf (F) is a fact for all F , it is enough to show that⋃
n≥0Jµ

nx.GK ⊆ Prcf (µx.G). By Theorem 46.4, rk(µnx.G) <lex rk(F). By IH, for all n,
Jµnx.GK ⊆ Prcf (µnx.G). Observe that Prcf (µnx.G) ⊆ Prcf (µx.G) for all n. Therefore,⋃

n≥0 Prcf (µnx.G) ⊆ Prcf (µx.G). The case for F = νx.G works similarly. ◀

A. De, F. Jafarrahmani, and A. Saurin 35:15

▶ Theorem 51 (µMALLω cut-free completeness). If for any phase model (M, V), 1 ∈ JΓKV

then µMALLω ⊢cf Γ.

▶ Corollary 52. µMALLω admits cuts.

Standard cut-elimination techniques for Tait-like systems employ techniques from
Schütte [45] where proofs are assigned a cut rank. One shows that if there is a proof
π of a sequent ⊢ Γ with cut-rank rk(π) > 0 then there is a proof π′ of ⊢ Γ such that
rk(π′) = 0 (possibly incurring a blowup in the size of the proof). Cut-admissibility has been
proved previously for Tait-style systems of fixpoints logics in [43, 14] using this technique.
Semantic proofs of cut-admissibility have been explored in various logics [46, 39, 4] but, to
our knowledge, this is the first semantic proof of cut-admissibility in a Tait-style system.

4.2 Finite model property
In this subsection, we show that µMALLω does not have the finite model property. Since
MALL has finite model property, this implies that µMALLω cannot be embedded in MALL.

▶ Lemma 53. ⊢ Γ0 is not provable in µMALLω.

Proof. A proof can be found in Appendix B.2.2. ◀

▶ Corollary 54. µMALLω does not prove the same theorems as µMALLind.

Proof. From Example 23 obtain µMALLind ⊢ Γ0. The result now follows from Lemma 53. ◀

▶ Theorem 55. µMALLω does not have finite model property.

Proof. The proof goes by contradiction. A finite phase model (M, V) has finitely
many facts. Therefore, by pigeonhole principle, there exists p, q such that p < q and
JapO0KV = JaqO0KV . Therefore, Jµx.aOxKV = JapO0KV . Consequently, 1 ∈ JHKV where
H = (µx.aOx)⊥O(a⊥pO0). By Theorem 51, µMALLω ⊢ H. In Example 42, we show that
µMALLω ⊢ Γ0, H⊥. By an application of the cut-rule, we have µMALLω ⊢ Γ0 is provable.
This is a contradiction by Lemma 53. ◀

5 Conclusion

In this work, we provided a sound and complete provability semantics for linear logic with
fixpoints (µMALL) for the proof system with explicit induction due to Baelde and Miller [5, 7].
The completeness proof goes via an adaptation of Tait-Girard reducibility candidates. We
then introduced a Tait-style proof system where fixpoints are approximated by their ω-th
approximants (µMALLω) and we get a direct proof of completeness. Finally, we show that
µMALLω does not have finite model property and hence is a logic with non-trivial expressivity.

We conclude by mentioning pertinent directions for future work.

Exploring the phase semantics of µMALL⟳ and µMALL∞, circular and non-wellfounded
systems for µMALL respectively [6, 23], are relevant questions especially because that
would help settle the Brotherston-Simpson conjecture by semantic techniques. If the
conjecture is true, then it suffices to show that µMALL⟳ is sound with respect to µ-phase
models. If the conjecture is false, there are two possibilities for using phase semantics.
Firstly, if we have a µMALL⟳ theorem F which we wish to prove is not a µMALLind

theorem, then we can use the µ-phase model. Secondly, if one can devise the phase
semantics of µMALL⟳, then the proof is reduced to checking that the space of µ-phase
models and its counterpart for µMALL⟳ are the same.

FSTTCS 2022

35:16 Phase Semantics for µMALL

The computation of closure ordinals in phase semantics seems quite difficult and deserves a
closer study. An important problem is to compute an upper bound possibly by embedding
µMALLind in some arithmetic theory.
Techniques involving cut ranks used to obtain cut-admissibility also provide upper bounds
on the size of the cut-free proof. It would be interesting to see if Theorem 51 can be
refined to obtain such bounds.
µMALLind has the focusing property [7] but assigning polarities to fixed point operators
is not a priori clear. In fact, it holds for both possible assignments (the proofs being
quite different). In the implicit case, one can syntactically argue that µ has to be positive
(consequently ν should be negative). Categorical semantics of polarised µMALLind informs
us that µ should indeed be positive [25]. Can phase semantics also shed light on the
polarisation of fixed points?
We showed that µMALLind ̸⊆ µMALLω. Noting that the Park’s rule can be simulated
with the (νω) rule, we conjecture that µMALLω ̸⊆ µMALLind. Moreover, µMALLind can
encode the provability of linear logic exponentials but this is not clear for µMALLω.
We conjecture that µMALLω cannot simulate digging, but it can, indeed, encode soft
promotion and multiplexing, thereby being at least as powerful as soft linear logic [37].

References
1 Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of

Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739–782. Elsevier, 1977.

2 Bahareh Afshari and Graham E. Leigh. On closure ordinals for the modal mu-calculus. In
Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), volume 23 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 30–44, Dagstuhl, Germany,
2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2013.30.

3 Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In Proceedings
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’79, pages 110–119, New York, NY, USA, 1979. Association for Computing Machinery.
doi:10.1145/567752.567763.

4 Jeremy Avigad. Algebraic proofs of cut elimination. The Journal of Logic and Algebraic
Programming, 49(1):15–30, 2001. doi:10.1016/S1567-8326(01)00009-1.

5 David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput. Logic,
13(1), January 2012. doi:10.1145/2071368.2071370.

6 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
August 29 – September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

7 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum
Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, pages 92–106, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

8 Stefano Berardi and Makoto Tatsuta. Classical system of martin-löf’s inductive definitions is
not equivalent to cyclic proof system. In FoSSaCS, volume 10203 of Lecture Notes in Computer
Science, pages 301–317, 2017.

9 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In LICS, pages 1–12. IEEE Computer Society, 2017.

10 Stefano Berardi and Makoto Tatsuta. Classical system of martin-lof’s inductive definitions is
not equivalent to cyclic proofs. Log. Methods Comput. Sci., 15(3), 2019.

11 James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD thesis,
University of Edinburgh, November 2006.

https://doi.org/10.4230/LIPIcs.CSL.2013.30
https://doi.org/10.1145/567752.567763
https://doi.org/10.1016/S1567-8326(01)00009-1
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.4230/LIPIcs.CSL.2016.42

A. De, F. Jafarrahmani, and A. Saurin 35:17

12 James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite
descent. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages
51–62. IEEE, 2007.

13 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011.

14 Kai Brünnler and Thomas Studer. Syntactic cut-elimination for a fragment of the modal
mu-calculus. Annals of Pure and Applied Logic, 163(12):1838–1853, 2012. doi:10.1016/j.
apal.2012.04.006.

15 Rudolf Carnap. Logical Syntax of Language. Kegan Paul, Trench and Truber, 1937.
16 Edmund M Clarke, Orna Grumberg, and Doron A. Peled. Model checking for the µ-calculus.

In Model checking, chapter 7, pages 97–108. MIT Press, London, Cambridge, 1999.
17 Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed point theorems.

Pacific Journal of Mathematics, 82(1):43–57, 1979.
18 Marek Czarnecki. How fast can the fixpoints in modal mu-calculus be reached? In Luigi

Santocanale, editor, 7th Workshop on Fixed Points in Computer Science, FICS 2010, Brno,
Czech Republic, August 21-22, 2010, pages 35–39. Laboratoire d’Informatique Fondamentale de
Marseille, 2010. URL: https://hal.archives-ouvertes.fr/hal-00512377/document#page=
36.

19 Ugo Dal Lago and Simone Martini. Phase semantics and decidability of elementary affine logic.
Theoretical Computer Science, 318(3):409–433, 2004. doi:10.1016/j.tcs.2004.02.037.

20 Anupam Das, Abhishek De, and Alexis Saurin. Decision problems for linear logic with least
and greatest fixed points. In FSCD, volume 228 of LIPIcs, pages 20:1–20:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022.

21 Anuj Dawar and Yuri Gurevich. Fixed Point Logics. Bulletin of Symbolic Logic, 8(1):65–88,
2002. doi:10.2178/bsl/1182353853.

22 Pierre Simon de Fermat. Oeuvres de Fermats, T.2. Gauthier-Villars et Fils, Paris, 1894.
23 Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la

démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris Diderot University,
France, 2017. URL: https://tel.archives-ouvertes.fr/tel-01676953.

24 Thomas Ehrhard and Farzad Jafarrahmani. Categorical models of linear logic with fixed points
of formulas. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470664.

25 Thomas Ehrhard, Farzad Jafarrahmani, and Alexis Saurin. Polarized linear lo-
gic with fixpoints (technical report). URL: https://drive.google.com/file/d/
1eQd5evwcUXYBT5f-TZbs8o4eIE4PhN9m/view?usp=sharing.

26 Thomas Ehrhard, Farzad Jafarrahmani, and Alexis Saurin. On relation between totality
semantic and syntactic validity. In 5th International Workshop on Trends in Linear Logic and
Applications (TLLA 2021), Rome (virtual), Italy, June 2021. URL: https://hal-lirmm.ccsd.
cnrs.fr/lirmm-03271408.

27 Euclid. The Elements of Euclid. Dover Publications Inc., New York, 2nd edition, 1956. URL:
https://archive.org/details/euclid_heath_2nd_ed.

28 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013,
September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 248–262. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

29 J. Y. Girard. Une extension de l’interpretation de Godel a l’analyse, et son application a
l’elimination des coupures dans l’analyse et la theorie des types. Proceedings of the second
Scandinavian logic symposium, 63:63–92, 1971.

30 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

31 Maria João Gouveia and Luigi Santocanale. Aleph1 and the Modal mu-Calculus. In Valentin
Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer Science Logic

FSTTCS 2022

https://doi.org/10.1016/j.apal.2012.04.006
https://doi.org/10.1016/j.apal.2012.04.006
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://doi.org/10.1016/j.tcs.2004.02.037
https://doi.org/10.2178/bsl/1182353853
https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1109/LICS52264.2021.9470664
https://drive.google.com/file/d/1eQd5evwcUXYBT5f-TZbs8o4eIE4PhN9m/view?usp=sharing
https://drive.google.com/file/d/1eQd5evwcUXYBT5f-TZbs8o4eIE4PhN9m/view?usp=sharing
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://archive.org/details/euclid_heath_2nd_ed
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

35:18 Phase Semantics for µMALL

(CSL 2017), volume 82 of Leibniz International Proceedings in Informatics (LIPIcs), pages
38:1–38:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CSL.2017.38.

32 Gerhard Jäger, Mathis Kretz, and Thomas Studer. Canonical completeness of infinitary µ.
The Journal of Logic and Algebraic Programming, 76(2):270–292, 2008. Logic and Information:
From Logic to Constructive Reasoning. doi:10.1016/j.jlap.2008.02.005.

33 Bronisław Knaster and Alfred Tarski. Un théorème sur les fonctions d’ensembles. Annales de
la Société Polonaise de Mathématique, 6:133–134, 1927.

34 Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983. Special Issue Ninth International Colloquium on Automata, Languages
and Programming (ICALP) Aarhus, Summer 1982. doi:10.1016/0304-3975(82)90125-6.

35 Dexter Kozen. A finite model theorem for the propositional µ-calculus. Studia Logica,
47(3):233–241, September 1988. doi:10.1007/BF00370554.

36 Yves Lafont. The finite model property for various fragments of linear logic. The Journal of
Symbolic Logic, 62(4):1202–1208, 1997. URL: http://www.jstor.org/stable/2275637.

37 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1):163–
180, 2004. Implicit Computational Complexity. doi:10.1016/j.tcs.2003.10.018.

38 Leonid Libkin. Elements of Finite Model Theory. Springer, August 2004.
39 Shoji Maehara. Lattice-valued representation of the cut-elimination theorem. Tsukuba journal

of mathematics, 15:509–521, 1991.
40 Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In

J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, volume 63
of Studies in Logic and the Foundations of Mathematics, pages 179–216. Elsevier, 1971.
doi:10.1016/S0049-237X(08)70847-4.

41 Grigori Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathematics,
10:548–596, 1978.

42 Mitsuhiro Okada. Phase semantic cut-elimination and normalization proofs of first- and
higher-order linear logic. Theoretical Computer Science, 227(1):333–396, 1999. doi:10.1016/
S0304-3975(99)00058-4.

43 Ewa Palka. An infinitary sequent system for the equational theory of *-continuous action
lattices. Fundam. Inf., 78(2):295–309, April 2007.

44 Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures,
volume 2303 of Lecture Notes in Computer Science, pages 357–371. Springer, 2002. doi:
10.1007/3-540-45931-6_25.

45 Kurt Schütte. Vollständige Systeme modaler und intuitionistischer Logik. Springer Berlin
Heidelberg, 1968. doi:10.1007/978-3-642-88664-5.

46 Kurt Schütte. Syntactical and semantical properties of simple type theory. The Journal of
Symbolic Logic, 25(4):305–326, 1960. URL: http://www.jstor.org/stable/2963525.

47 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In FoSSaCS, volume 10203
of Lecture Notes in Computer Science, pages 283–300, 2017.

48 William W. Tait. A realizability interpretation of the theory of species. In Rohit Parikh,
editor, Logic Colloquium, pages 240–251, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

49 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

50 Igor Walukiewicz. A complete deductive system for the µ-calculus. PhD thesis, Warsaw
University, 1994.

51 Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus. In
LICS 95, San Diego, California, USA, June 26-29, 1995, pages 14–24, 1995.

https://doi.org/10.4230/LIPIcs.CSL.2017.38
https://doi.org/10.1016/j.jlap.2008.02.005
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/BF00370554
http://www.jstor.org/stable/2275637
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-642-88664-5
http://www.jstor.org/stable/2963525

A. De, F. Jafarrahmani, and A. Saurin 35:19

A Summary of µMALL systems used in the paper

µMALL preformulas:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | FOG | F ⊗ G | F ⊕ G | FNG

| x | µx.F | νx.F

µMALLapprox, preformulas with fixed-point approximants:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | FOG | F ⊗ G | F ⊕ G | FNG

| x | µx.F | νx.F | µnx.F | νnx.F n ∈ N

Formula language Inference rules Proof trees
µMALLind µMALL Definition 22 finite
µMALLω µMALLapprox Definition 41 wellfounded infinitely branching
µMALL∞ µMALL Figure 1 of [6] non-wellfounded finitely branching
µMALL⟳ µMALL Figure 1 of [6] non-wellfounded regular

▶ Remark. Note that, contrary to the convention used in the present paper, in [6] notation
µMALLω is used to refer to the circular proof system (that is regular non-wellfounded trees).

B Detailed proofs and clarifications

B.1 Proofs of Section 3

B.1.1 Proof of Lemma 27
Before we prove the lemma, we will prove the following claim.

▷ Claim 56. If S, T, U, V are subsets of M such that S ⊆ T and U ⊆ V then SU ⊆ TV .

Proof. Suppose x = su ∈ SU such that s ∈ S and u ∈ U . Then, s ∈ T and u ∈ V . Hence
x = st ∈ TV . ◁

Proof. By induction on F . The base case is when F is an atom, a variable, or a unit which
are trivial.

Suppose F = p ∈ A ∪ {⊥, 1, 0, ⊤}. Then, JF KV [x 7→X] = JF KV [x 7→Y] = V (p).
Suppose F = y ∈ V . There are two cases. If y ̸= x, then JF KV [x 7→X] = JF KV [x 7→Y] = V (y).
Otherwise, we have JF KV [x 7→X] = X ⊆ Y = JF KV [x 7→Y].

There are several subcases for the induction case.

Suppose F = G ⊗ G′.

JGKV [x 7→X] ⊆ JGKV [x 7→Y]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y] [By IH]

⇒ JGKV [x 7→X]JG′KV [x 7→X] ⊆ JGKV [x 7→Y]JG′KV [x 7→Y] [By Claim 56]

⇒ (JGKV [x 7→X]JG′KV [x 7→X])
⊥⊥

⊆ (JGKV [x 7→Y]JG′KV [x 7→Y])
⊥⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y]

FSTTCS 2022

35:20 Phase Semantics for µMALL

Suppose F = GOG′.
JGKV [x 7→X] ⊆ JGKV [x 7→Y]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y] [By IH]

⇒ (JGKV [x 7→Y])
⊥

⊆ (JGKV [x 7→X])
⊥

; (JG′KV [x 7→Y])
⊥

⊆ (JG′KV [x 7→X])
⊥

[By Proposition 4]

⇒ (JGKV [x 7→Y])
⊥

(JG′KV [x 7→Y])
⊥

⊆ (JGKV [x 7→X])
⊥

(JG′KV [x 7→X])
⊥

[By Claim 56]

⇒
(

(JGKV [x 7→X])
⊥

(JG′KV [x 7→X])
⊥
)⊥

⊆
(

(JGKV [x 7→Y])
⊥

(JG′KV [x 7→Y])
⊥
)⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y]

Suppose F = GNG′.

JGKV [x 7→X] ⊆ JGKV [x 7→Y]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y] [By IH]

⇒ JGKV [x 7→X] ∩ JG′KV [x 7→X] ⊆ JGKV [x 7→Y] ∩ JG′KV [x 7→Y]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y]

Suppose F = G ⊕ G′.

JGKV [x 7→X] ⊆ JGKV [x 7→Y]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y] [By IH]

⇒ JGKV [x 7→X] ∪ JG′KV [x 7→X] ⊆ JGKV [x 7→Y] ∪ JG′KV [x 7→Y]

⇒ (JGKV [x 7→X] ∪ JG′KV [x 7→X])
⊥⊥

⊆ (JGKV [x 7→Y] ∪ JG′KV [x 7→Y])
⊥⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y]

Suppose F = µy.G. Observe that y ≠ x since we assumed that x is not a bound variable
in F . Now by hypothesis, for any fact Z, JGKV [x 7→X,y 7→Z] ⊆ JGKV [x 7→Y,y 7→Z]. Therefore
for every Z such that JGKV [x 7→Y,y 7→Z] ⊆ Z we have JGKV [x 7→X,y 7→Z] ⊆ Z. Therefore, {Z |
JGKV [x 7→Y,y 7→Z] ⊆ Z} ⊆ {Z | JGKV [x 7→X,y 7→Z] ⊆ Z}. Hence,

⋂
JGKV [x 7→X,y 7→Z]⊆Z{Z} ⊆⋂

JGKV [x 7→Y,y 7→Z]⊆Z{Z}. We conclude JF KV [x 7→X] ⊆ JF KV [x 7→Y].
Suppose F = νy.G. As before we comment that y ̸= x and therefore by hypothesis,
for any fact Z, JGKV [x 7→X,y 7→Z] ⊆ JGKV [x 7→Y,y 7→Z]. Therefore for every Z such that Z ⊆
JGKV [x 7→X,y 7→Z] we have Z ⊆ JGKV [x 7→Y,y 7→Z]. Therefore, {Z | Z ⊆ JGKV [x 7→X,y 7→Z]} ⊆
{Z | Z ⊆ JGKV [x 7→Y,y 7→Z]}. Hence,

⋃
Z⊆JGKV [x 7→X,y 7→Z]{Z} ⊆

⋃
Z⊆JGKV [x 7→Y,y 7→Z]{Z}. Ap-

plying Proposition 4 twice, we conclude JF KV [x 7→X] ⊆ JF KV [x 7→Y]. ◀

B.1.2 Proof of Theorem 28
Proof. We show it for µf . First of all, {X | f(X) ⊆ X} is non-empty since M⊥ ∈ D.
First, we show that it is indeed a fixpoint. Observe that µf ⊆ X for any X ∈ D which is a
pre-fixpoint of f . By Lemma 27, one can apply f on both sides. So f(µf) ⊆ f(X) for all
X ∈ D satisfying f(X) ⊆ X and therefore f(µf) ⊆ ∩X∈D{X | f(X) ⊆ X} = µf . So µf is a
prefixpoint.

But then, since µf ∈ D, and thanks to the closure properties of D, so is f(µf). By
monotonicity of f , one gets that f(f(µf)) ⊆ f(µf), ensuring that f(µf) is a prefixpoint of f .
But µf is the least prefixpoint; so, we conclude that µf ⊆ f(µf). Therefore, µf = f(µf).
Finally recall µf ⊆ X for any pre-fixpoint X in D, so it is the least fixpoint in D. ◀

B.1.3 Proof of Lemma 29
Proof. By induction on F . The base case is when F is an atom, a variable or a unit.

Suppose F = a ∈ A. Then, JF ⊥KV ⊥ = V ⊥(a⊥) = V (a⊥) = V (a)⊥ = (JF KV)⊥.
Suppose F = x ∈ V . Then, JF ⊥KV ⊥ = V ⊥(x⊥) = V ⊥(x) = V (x)⊥ = (JF KV)⊥.
The case for the units is easy.

A. De, F. Jafarrahmani, and A. Saurin 35:21

There are several subcases for the induction case.

Suppose F = G ⊗ G′.

J(G ⊗ G′)⊥KV ⊥
= JG⊥OG′⊥KV ⊥

= ((JG⊥KV ⊥
)
⊥

(JG′⊥KV ⊥
)
⊥

)
⊥

= (JG⊥⊥KV JG′⊥⊥KV)
⊥

[By IH]

= (JGKV JG′KV)⊥

= (JGKV JG′KV)⊥⊥⊥ [By Proposition 4]
= (J(G ⊗ G′)KV)⊥

Negating both sides we have, (J(G ⊗ G′)⊥KV ⊥)
⊥

= (J(G ⊗ G′)KV)⊥⊥. Hence,
(JG⊥OG′⊥KV ⊥)

⊥
= J(G⊥OG′⊥)

⊥
KV . This takes care of the case when the outermost

connective of F is a O.
Suppose F = G′ ⊕ G′.

J(G′ ⊕ G′)⊥KV ⊥
= JG⊥NG′⊥KV ⊥

= JG⊥KV ⊥
∩ JG′⊥KV ⊥

= (JGKV)⊥ ∩ (JG′KV)⊥ [By IH]

= (JGKV ∪ JG′KV)⊥

= (JGKV ∪ JG′KV)⊥⊥⊥ [By Proposition 4]

= (JG ⊕ G′KV)⊥

As in the previous case, negating both sides, we derive the case when the outermost
connective of F is a N.
Suppose F = µx.G.

J(µx.G)⊥KV ⊥
= Jνx.G⊥KV ⊥

=

(⋃
X∈D

{
X | X ⊆ JG⊥KV ⊥[x 7→X]

})⊥⊥

=

(⋃
X∈D

{
X | X ⊆ JG⊥K(V [x 7→X⊥])⊥})⊥⊥

=

(⋃
X∈D

{
X | X ⊆ (JGKV [x 7→X⊥])

⊥})⊥⊥

[By IH]

=

(⋂
X∈D

{
X⊥ | X ⊆ (JGKV [x 7→X⊥])

⊥})⊥

[By Proposition 4]

=

(⋂
X∈D

{
X⊥ | JGKV [x 7→X⊥] ⊆ X⊥

})⊥

[By Proposition 4]

=

(⋂
X∈D

{
X | JGKV [x 7→X] ⊆ X

})⊥

[Closure property of D]

= (Jµx.GKV)⊥

As in the previous case, negating both sides, we derive the case when the outermost operator
of F is a ν. ◀

FSTTCS 2022

35:22 Phase Semantics for µMALL

B.2 Proofs of Section 4

B.2.1 Proof of Lemma 45

Proof. We induct on |rk(F)|. The base case is when |rk(F)| = 1. Since x ∈ fv(F), F cannot
be an atom or a unit. Therefore, F = x. Plugging σ = ⟨ ⟩, we are done. The induction case
has several subcases.

Suppose F = G⊙G′ where ⊙ ∈ {⊗, O, N, ⊕}. We have two cases. Either x ∈ fv(G)∩fv(G′)
or x is free in only one of them. Note that rk(G), rk(G′) ⊴ rk(F). Therefore if x is free
in them, the induction hypothesis can be fired. In the first case, we have rk(G(ξ/x)) =
rk(ξ) ∗ σ1 and rk(G′(ξ/x)) = rk(ξ) ∗ σ2. Therefore,

rk(F (ξ/x)) = rk(G(ξ/x) ⊙ rk(G′(ξ/x)))
= (rk(G(ξ/x)) ⊔ rk(G′(ξ/x))) ∗ ⟨0⟩
= ((rk(ξ) ∗ σ1) ⊔ (rk(ξ) ∗ σ2)) ∗ ⟨0⟩
= rk(ξ) ∗ (σ1 ⊔ σ2) ∗ ⟨0⟩

Therefore by plugging σ = (σ1 ⊔ σ2) ∗ ⟨0⟩, we are done. In the other case, wlog assume
x ̸∈ fv(G′). Therefore, we have G′(ξ/x) = G′. Firing the induction hypothesis for G, we
have rk(G(ξ/x)) = rk(ξ) ∗ σ1 as before. Therefore,

rk(F (ξ/x)) = rk(G(ξ/x) ⊙ rk(G′(ξ/x)))
= (rk(G(ξ/x)) ⊔ rk(G′)) ∗ ⟨0⟩
= ((rk(ξ) ∗ σ1) ⊔ rk(G′)) ∗ ⟨0⟩
= rk(ξ) ∗ σ1 ∗ ⟨0⟩ [Since rk(G′) ⊴ rk(ξ)]

Therefore by plugging σ = σ1 ∗ ⟨0⟩, we are done.
Suppose F = ηβy.G where η ∈ {µ, ν}, β < ω, and y ̸= x. Clearly, x ∈ fv(G) and
rk(G) ⊴ rk(F). Therefore, by hypothesis, rk(G(ξ/x)) = rk(ξ) ∗ σ′.

rk(F (ξ/x)) = rk(ηβy.G(ξ/x))
= rk(G(ξ/x)) ∗ ⟨β⟩
= (rk(ξ) ∗ σ′ ∗ ⟨β⟩

By plugging σ = σ′ ∗ ⟨β⟩, we are done. The case F = ηy.G goes exactly similarly. ◀

B.2.2 Proof of Lemma 53

Proof. We recall that Γ0 = µx.G, a⊗νy.F and we will show that this sequent is not provable
in µMALLω. Suppose there is a proof. By Corollary 52, we can assume that this proof is
cut-free. Therefore, the only possibilities for the first rule are (⊗) or one of {(µω

n)}n∈ω. If
it is the former, then the left premisse has to contain µx.G since ⊢ a cannot be proved.
Consequently, the right premisse is ⊢ νy.F . If it were provable, so would be ⊢ νnx.F for all
n ∈ ω. It is easy to observe that ⊢ νnx.F is not provable for all n > 0.

A. De, F. Jafarrahmani, and A. Saurin 35:23

Now suppose the first rule is a (µω
n) for some n ∈ ω. We note that the (µn) rule is

invertible. Morever, the (O) rule is also invertible. Therefore, it suffices to show that
⊢ (a⊥)n, 0, a ⊗ νy.F is not provable. The only possible rule here is the (⊗). The only
splitting of the context which renders the left premisse provable is one where the right

premisse is ⊢

n−1︷ ︸︸ ︷
a⊥, . . . , a⊥, 0, νy.F . The only possible rule that can be applied here is the (νω)

rule. Consider any premisse other than the
⌊

n−1
2
⌋
th premisse. Since the number of a and

a⊥ are different in it, it is not provable by Example 7. ◀

FSTTCS 2022

Natural Colors of Infinite Words
Rüdiger Ehlers ! Ï

Technische Universität Clausthal, Germany

Sven Schewe ! Ï

University of Liverpool, UK

Abstract
While finite automata have minimal DFAs as a simple and natural normal form, deterministic
omega-automata do not currently have anything similar. One reason for this is that a normal form
for omega-regular languages has to speak about more than acceptance – for example, to have a
normal form for a parity language, it should relate every infinite word to some natural color for this
language. This raises the question of whether or not a concept such as a natural color of an infinite
word (for a given language) exists, and, if it does, how it relates back to automata.

We define the natural color of a word purely based on an omega-regular language, and show how
this natural color can be traced back from any deterministic parity automaton after two cheap and
simple automaton transformations. The resulting streamlined automaton does not necessarily accept
every word with its natural color, but it has a “co-run”, which is like a run, but can once move to a
language equivalent state, whose color is the natural color, and no co-run with a higher color exists.

The streamlined automaton defines, for every color c, a good-for-games co-Büchi automaton
that recognizes the words whose natural colors with respect to the represented language are at least
c. This provides a canonical representation for every ω-regular language, because good-for-games
co-Büchi automata have a canonical minimal – and cheap to obtain – representation for every
co-Büchi language.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Linear logic; Theory of computation → Logic and verification

Keywords and phrases parity automata, automata over infinite words, ω-regular languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.36

Funding Rüdiger Ehlers: This work was supported by the German Science Foundation (DFG) under
Grant No. 322591867 (GUISynth).
Sven Schewe: This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement 956123 (FOCETA). It was also supported by the
EPSRC through project EP/X017796/1.

Acknowledgements We thank Arved Friedemann for interesting discussions that had a positive
influence on the undertaking of this work.

1 Introduction

A classical question in the theory of automata is how to define canonical representations
of regular languages. Such a representation, typically in the form of an automaton, for a
language has several advantages. For once, different canonical automata must define different
languages. But reasonably defined canonical automata are also concise and normally a
minimal (and thereby natural) representative of all language equivalent automata of the
same type, which makes them a natural representative of the language they recognize.

Such definitions of canonicity build on – or deliver – insights into the possible structure
of an automaton for a given language. For instance, canonical deterministic automata over
finite words have exactly one state per (reachable) suffix language, and the Myhill-Nerode
automaton minimization procedure is able to translate every deterministic automaton over
finite words into its canonical form in polynomial time [6]. The concepts that underpin

© Rüdiger Ehlers and Sven Schewe;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruediger.ehlers@tu-clausthal.de
https://www.ruediger-ehlers.de/
https://orcid.org/0000-0002-8315-1431
mailto:sven.schewe@liverpool.ac.uk
https://cgi.csc.liv.ac.uk/~sven/
https://orcid.org/0000-0002-9093-9518
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Natural Colors of Infinite Words

insightful canonicity definitions often give rise to efficient minimization procedures, which
makes it attractive to apply them in practical applications. In turn, such concepts are useful
in concisely defining a language, including for practical applications like learning, model
checking, or synthesis.

For regular languages over infinite words, obtaining insightful canonical forms has remained
a challenge. Such languages are useful for reasoning about reactive systems, i.e., computational
systems that continuously read from an input stream while producing an output stream.
While Löding [8] gave a construction for computing canonical and minimal deterministic
weak automata, which can encode some such languages, this automata class is very restricted
in that in every strongly connected component, either all states are accepting or all states
are rejecting. This means that simple languages such as “there are (in)finitely many as in
the word” cannot be represented by them.

After the result by Löding [8], there was, for quite a while, little progress on canonical
forms for more expressive subclasses of ω-regular languages. This is partially rooted in the
fact that deterministic Büchi (and co-Büchi) automata – which are among the simplest
ω-automaton types and cannot even capture all ω-regular languages – have an NP-complete
minimization problem [11]. This implies that, unlike in the case of languages over finite
words, deterministic automata with the common state based acceptance cannot be used for
defining a canonical form that is easy to compute.

Only very recently, Abu Radi and Kupferman [1] observed that, via a slight generalization
from deterministic co-Büchi automata to (transition-based) good-for-games [5] co-Büchi
automata, we obtain an automaton model for co-Büchi languages that permits a polynomial-
time minimization procedure; this gives rise to an insightful canonical form. Transition-based
good-for-games co-Büchi automata (and similarly, good-for-games parity automata with
a fixed set of colors) are not more expressive than deterministic automata with the same
acceptance condition [5], but they can be more concise. Interestingly, this added conciseness
is what enables polynomial-time minimization and thereby efficiently computing canonical
automata. In the canonical minimal automata computed using the construction by Abu Radi
and Kupferman [1], non-determinism only appears along rejecting transitions, which connect
different strongly connected components that consist only of accepting transitions. Hence, the
different deterministic strongly connected components represent the different ways in which a
word can be accepted and hence provide insight into the structure of the represented language.

The result by Abu Radi and Kupferman raises the question of whether this result can be
extended to obtain a canonical and insightful representation for general ω-regular languages
or not. Such an extension would intuitively need to use a richer type of acceptance condition
than co-Büchi acceptance, as co-Büchi acceptance is too limited in expressivity. The weakest
acceptance condition that offers full ω-regularity in this context is parity acceptance. In
parity automata, a word is accepted if, and only if, the lowest color that occurs infinitely
often along a run of the automaton is even.

We could salvage the polynomial-time canonicalization procedure for co-Büchi acceptance
while using a parity-type acceptance condition by representing an ω-regular language L by a
falling chain of languages L0 ⊃ L1 ⊃ L2 . . . ⊃ Lc such that L0 is the universal language and
each language Li is a co-Büchi language. A word is then accepted by the chain of languages
if, and only if, the highest i such that the word is in Li is even. As all of these languages are
co-Büchi languages, we can represent each of them by their canonical minimal good-for-games
automaton such that, together, these automata are a canonical representation of L.

The crucial piece that is currently missing in the literature to obtain such a canonical
representation of an arbitrary ω-regular language, however, is which word should be in which
language Li. Omega-regular languages can be decomposed into such chains in different ways,

R. Ehlers and S. Schewe 36:3

and for the overall chain to be a canonical representation of the language, we need to fix
a way for decomposing the language L into co-Büchi languages Li. In other words, we are
missing a definition of the natural color of a word that defines the highest index i such that
the word is in Li. This natural color depends on the overall language to be represented, as
this color reflects where in the decomposition of a given language the word resides.

For a useful canonicity definition, we need the allocation of words to the individual Li for
a given ω-regular language L to have several properties:
1. the definition should be based on the language L alone, and be independent of the

syntactic structure of any representation of it (such as some parity automaton that
recognizes L),

2. the definition should be easy to compute for a given word and a given representation of
L (such as a deterministic parity automaton), and

3. starting from an automaton representation of L, the sizes of co-Büchi automata for the
languages Li should be small, ideally not bigger than the size of an automaton for L.

In this paper, we provide a definition of a natural color of an infinite word for a given
ω-regular language that has these properties. Our definition distills the idea that, in a parity
automaton, only the lowest color visited infinitely often along a run matters, into a concept
that can be defined on languages alone, without referring to a specific automaton. We then
use this for introducing a canonical representation of arbitrary ω-regular languages as a
chain of co-Büchi languages. While the definition of the natural color of a word (for a given
language) is the main technical contribution of this paper, its study is motivated by what it
can be used for, namely for establishing a canconical representation for ω-regular languages,
which is the conceptual contribution of this paper.

We show that our particular definition of the natural color of a word (for a given language)
has the property that every deterministic parity automaton can be translated into a form
from which the natural color of a word can easily be read off. This works in two steps: We
first simplify an automaton by ordering its strongly connected components (using an order
that respects reachability) and bending all transitions to language equivalent states in the
maximal component they reside in (besides removing unreachable and unproductive states).
In a second step, we construct a so-called streamlined form of a parity automaton that retains
the transition structure. Both transformations are tractable.

From a streamlined automaton, we can furthermore obtain, again in polynomial time,
good-for-games co-Büchi automata for all languages Li. They are no larger than the
original streamlined parity automaton, and therefore no larger than the deterministic parity
automaton we started with. Moreover, they can subsequently be minimized [1] to obtain a
canonical representation of a given ω-regular language. This minimization can also yield an
exponential advantage over a representation as deterministic co-Büchi automata [7].

As a consequence, with our definition, one can obtain, in polynomial time, a canonical
representation of the language of a deterministic parity automaton. While this representation
is not a single automaton, deviating from deterministic branching was necessary in order to
avoid the NP-hardness of minimizing deterministic parity automata. Furthermore, it was
shown that good-for-games parity (incl. Büchi and co-Büchi) automata are also NP-hard to
minimize [12] when using state-based acceptance, while the complexity of minimizing Büchi
(and, more generally, parity) good-for-games automata with transition-based acceptance is
still open, so a further generalization had to be made. By choosing a sequence of good-for-
games transition-based co-Büchi automata as this generalization, we avoid introducing a
more complex automaton type at the cost of having multiple automata.

FSTTCS 2022

36:4 Natural Colors of Infinite Words

While it is possible to define other variants of what the natural color of a word (for a
given language) could be, our definition has the advantage that it coincides with the color
of a word of some parity automaton for a given language while permitting a translation
from a deterministic parity word automaton to a canonical representation of its language in
polynomial time.

2 Preliminaries

Given a set S, we denote the set of finite sequences (words) of elements in S as S∗ and the
set of infinite sequences of elements in S as Sω. Sets of words are also called languages (over
some alphabet). We only consider finite alphabets. We denote the set of natural numbers
including 0 by N. Given a language L ⊆ Σω and a finite word w ∈ Σ∗, we define the suffix
language of L over w as Lsuffix(L, w) = {w′ ∈ Σω | ww′ ∈ L}.

We define parity automata (with transition-based acceptance) as tuples A = (Q, Σ, δ, Q0),
where Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q × N is a transition
relation, and Q0 is the set of initial states. We say that a word w = w0w1 . . . ∈ Σω induces a
run π = q0q1 . . . of the automaton with the corresponding color sequence ρ = ρ0ρ1 . . . ∈ N∗ if
q0 ∈ Q0 and, for every j ∈ N, we have (qj , wj , qj+1, ρj) ∈ δ. We say that w is accepted by A
if there exists a run ρ for the word on which the lowest color that occurs infinitely often along
ρ is even. For the remainder of this paper, all automata considered employ transition-based
acceptance whenever not stated otherwise.

We say that A is deterministic if, for every state q ∈ Q and x ∈ Σ, we have exactly one
element of the form (q, x, q′, c) ∈ δ, and Q0 is a singleton set. We henceforth use q0 as tuple
element for the initial state for deterministic automata. In deterministic automata, every
word induces a unique run/color sequence combination. This also allows us to define, by
slight abuse of notation, for each state q and word w ∈ Σ∗, δ(q, w) to be the unique state
reached from q after reading w. We refer to the smallest color that occurs infinitely often in
the color sequence corresponding to a run for w as the color of w in A. We also call it the
dominating color among the ones occurring infinitely often in the color sequence for w.

The set of words accepted by A is called its language, also denoted by L(A). We say that
A is a co-Büchi automaton if only the colors 1 and 2 occur along transitions. Transitions with
color 1 and 2 are also called rejecting and accepting transitions, respectively. The automaton
Aq with q ∈ Q denotes a variant of A for which the initial state has been replaced by q. We
say that two states q, q′ ∈ Q of a deterministic parity automaton (DPA) A are equivalent,
denoted by q ∼A q′, if, and only if, they have the same language L(Aq) = L(Aq′).

We say that an automaton A is good-for-games if there exists a strategy function [1]
f : Σ∗ → Q×N such that for each word w = w0w1 . . . ∈ Σω in the language of A, there exists
an accepting run π = q0q1 . . . ∈ Qω with corresponding color sequence ρ = ρ0ρ1 . . . ∈ Nω for
it such that for all j ∈ N, we have (qj+1, ρj) = f(w0 . . . wj). Note that such a run is unique
for each w.

Given an automaton A = (Q, Σ, δ, Q0), we say that a tuple (Q̃, δ̃) with Q̃ ⊆ Q and
δ̃ ⊆ δ ∩ Q̃ × Σ × Q̃ ×N is a strongly connected component (SCC) if, for each q, q′ ∈ Q̃, we have
that there exists a sequence of states q1, . . . , qn all in Q̃ for some n ∈ N such that q1 = q,
qn = q′, and for every 1 ≤ j < n, there exist x ∈ Σ and c ∈ N such that (qj , x, qj+1, c) ∈ δ̃.
We say that (Q̃, δ̃) is a maximal SCC if no states and transitions can be added without losing
the property that the (resulting) tuple is an SCC. Transitions that can only be taken once in
a run (starting from any state) are called transient; they connect different SCCs. We also
say that a state is transient if it can only be visited once along a run. For some co-Büchi

R. Ehlers and S. Schewe 36:5

automaton A, we say that some SCC (Q̃, δ̃) of A is an accepting SCC if δ̃ ⊆ Q̃ × Σ × Q̃ × {2}.
We furthermore call (Q̃, δ̃) a maximal accepting SCC if (Q̃, δ̃) cannot be strictly extended
with further states or accepting transitions without losing the property that it is an accepting
SCC.

3 Towards A Canonical Language Representation

The core definition we provide in this paper, namely the natural color of a word, lifts the
idea of parity acceptance from deterministic automata to languages. Such a natural color
will always be defined with respect to a given language, but for the brevity of presentation,
we will not always mention this language henceforth.

Since, at the level of languages, there are no colors of transitions that can be referred to,
the definition of the natural color of a word needs to capture the idea of colors in a way that
does not employ the colors of transitions.

In this section, we make some observations on why some languages need a certain number
of colors in a deterministic parity automaton, and identify ways in which we can abstract
from the automaton representation along the way. We then distil the observations to define
the natural color of a word in the next section.

Niwińkski and Walukiewicz [10] have given a polynomial-time algorithm to minimize the
number of different colors in a deterministic parity automaton. While their algorithm targets
parity automata in which states – rather than transitions – are labeled with colors, it is not
difficult to extend it to transition-based acceptance.

The core idea used in their algorithm is that, in order for a deterministic parity automaton
that recognizes a language to need at least n colors, there needs to exist a so-called flower
with at least n colors. Such a flower is defined to satisfy two properties. It firstly has a
sequence of colors c1 < c2 < . . . < cn such that every two successive colors in the sequence
alternate by whether they are even or odd. Secondly, there exists a center state such that, for
each color ci, there exist paths from the center state back to itself such that the dominating
color occurring along the transitions along the path is ci. Following the terminology of
Niwińkski and Walukiewicz, we refer to such paths as flower loops. Figure 1 shows an
example parity automaton that contains such a flower over the colors 1, 2, 3, 4, and 5.

Niwińkski and Walukiewicz have shown that no deterministic parity automaton with
fewer than n colors can encode a language that admits a flower with n colors [10]. This is
because a flower defines a hierarchy over words that are, alternatingly, accepted or rejected by
an automaton, and the n different colors are needed to detect on which level in the hierarchy
a word is located.

Figure 2 shows such a hierarchy of words for the parity automaton from Figure 1. They
all have in common that the state qc in the center of the flower is visited infinitely often in a
run of the automaton for the respective word.

The first word, (ca)ω, leads to only transitions with color 5 being taken, so the color of
the word is 5, and the word is rejected.

The second word is built by injecting bb strings at positions of the word at which the
respective run is in the center state qc. Note that bb causes transitions qc

b−→ q2
b−→ qc in the

run for the second word, so that the added string causes an excursion in the run that leads
back to the same state. In this way, the run of the second word can be obtained from the run
for the first word by adding elements at the positions in which a finite substring is inserted
into the word. Because in the run for the second word, color 4 is visited infinitely often, this
becomes the color of the modified word.

FSTTCS 2022

36:6 Natural Colors of Infinite Words

qc q3

q2q1

a/3

b/4

c/5

b,c/2

a,b,c/5

a/1 a,c/3
b/5

Figure 1 A flower in a parity automaton. The flower loops are qc
a−→ q1

a−→ qc for color 1,
qc

a−→ q1
c−→ q2

b−→ qc for color 2, qc
b−→ q2

a−→ q3
c−→ qc for color 3, qc

b−→ q2
b−→ qc for color 4, and

qc
c−→ q3

c−→ qc for color 5.

Color 5:

Color 4:

Color 3:

Color 2:

Color 1:

ca ca ca ca ca . . .

ca bb ca bb ca . . .

ca baa bb baa ca . . .

ca abb baa abb bb . . .

ca aa abb aa baa . . .

Figure 2 An example hierarchy of words for the parity automaton from Figure 1, used in an
example in Section 3. The words from the lower colors are obtained from those of higher colors by
inserting language invariant words, which are flower loops in the given example. The lines show
where the flower loops from the words with higher color are in the words with lower color.

The other words are built according to the same idea: By injecting finite words leading
from qc back to qc (while taking a transition with a lower color) into the word at positions in
the word on which a run for the word is at state qc anyway, we obtain a new word that is
accepted by the automaton if, and only if, the old word is rejected.

The most significant color (here: 1) now has the special property that inserting more
loops does not change whether or not the word is accepted, as the most significant color
of the automaton is already visited along the run. We can formalize this as follows: Let
w = w0w1 . . . be a word and π = q0q1 . . . be a run of the automaton over w. We say that a
finite word w′ is a state-invariant injection at a position i ∈ N in the word if δ(qi, w′) = qi.
We can characterize the words w that are recognized with the most significant color in a
strongly connected component (SCC) of the parity automaton as those for which every
word w̃ that results from an infinite sequence of injections of state-invariant words into w is
accepted by the automaton if, and only if, w is accepted by the automaton. Note that the
restriction to strongly connected components is necessary, as other parts of a deterministic
parity automaton may employ more colors, and hence this property holding for a word whose
run ends in some SCC does not exclude that some other automaton part uses more colors,
including a lower one.

3.1 The Case of the Most Significant Color
Let us now distill the definition of acceptance with the most significant color to the language
case. In the resulting definition, the restriction to a single SCC will also be lifted.

The hierarchy of words from Figure 2 refers to the states of a given deterministic parity
automaton: Finite words can only be inserted at places in which the added finite words
loop from the state in which the run of the automaton is at the insertion place, back to

R. Ehlers and S. Schewe 36:7

the same state. This idea can be lifted by replacing the notion of state by suffix language
invariance. We say that inserting a finite word u ∈ Σ∗ at position i ∈ N in a word
w = w0w1 . . . ∈ Σω is a suffix language invariant injection into w for a language L ⊆ Σω if
Lsuffix(L, w . . . wi) = Lsuffix(L, w . . . wiu).

In this definition, the suffix languages take the role of the flower center states, and they
have the nice property that they are independent of an automaton representation of the
language.

Injecting any finite number of loops from a state back to itself into a run of a parity
automaton does not change the color with which the respective word is accepted. It makes
sense to expect for the definition of the natural color of a word that similarly, any finite
number of suffix language invariant injections should not change the color of a word.

With this in mind, we can try to liberate the definition regarding which words should
be recognized with the most significant color from any reference to a particular automaton:
they are those words for which an infinite number of suffix language invariant word injections
does not change whether or not a word is accepted. It is, however, necessary to carefully
define where exactly in a word these injections can be made.

To see this, consider the case of the language “there are infinitely often two as in a row”. It
can be recognized by a deterministic Büchi automaton, i.e., a deterministic parity automaton
with colors 0 and 1. Since 0 is the most significant color, all words in the language need to
have this natural color. This language has only a single suffix language, namely itself. If we
would require for a word to be of natural color 0 that all infinite sequences of suffix language
invariant word injections result in an accepted word, then no word would be accepted with
this natural color: This is because this would include injecting a b as every second letter in
a word. Consequently, not all injection sequences need to be tolerated for a word to be of
natural color 0. But it also does not suffice if only some injection is tolerated: In an extreme
case, that includes injecting the empty word everywhere, which never affects acceptance.

A compromise between these two extremes is to use different quantifiers for the points
of injection and the words being injected. We declare those words to have a lowest natural
color, for which there exists an infinite sequence of points, at which suffix invariant words
can be injected, such that, for all insertions of sequences of suffix invariant words at these
points, the resulting word is accepted if, and only if, the original word was. While this solves
the problem from the short example in the paragraph above, it is not trivially clear whether
or not other problems remain when using this definition. The correctness of the construction
from the next section, however, shows that this is precisely the definition we need.

3.2 Generalizing to All Colors
To generalize the idea of the natural color of a word from the most significant color to the
general case, we can follow an inductive argument and – in a sense – peel the language off,
layer by layer. We look at the colors c ∈ N in ascending order and define, for each color c + 1,
which words are natural for this color, under the assumption that we have such a definition
for colors up to c. To do so, we can marry an inductive definition of what constitutes the
color of a word in a deterministic parity automaton with the automaton-agnostic definition
of the natural color of a word for the most significant color from above.

We start with revisiting an inductive definition of the color of a word in a deterministic
parity automaton. We can characterize the words accepted with color 0 to be those along
whose runs transitions with color 0 are taken infinitely often. For colors c > 0, we can define
that a word is accepted with color c if transitions with color c are taken infinitely often for
its run, and the word is not accepted with a color smaller than c. The nice property of this
rather indirect definition is that it only refers to colors already defined and a single additional
color.

FSTTCS 2022

36:8 Natural Colors of Infinite Words

In an orthogonal composition of this idea for an inductive definition with the central idea
from the previous subsection, we can allocate the color c as the natural color of a word w if
there exists an infinite set of indices such that, for every sequence of suffix invariant strings
inserted at these indices, we have that the resulting word w̃

either has a natural color smaller than c,
or it does not, and w̃ is in the language if, and only if, w is in the language.

Thus, we only require that inserting the words makes no difference regarding acceptance
where the resulting words are not of a smaller natural color.

This definition has the nice property that, by induction, for every color, the natural colors
of words are uniquely defined purely by the language of the word, without reference to an
automaton representation. The concrete definition given in the next section, however, makes
the words for colors c + i (for i ≥ 0) contained in the words for a color c, so we define the
natural color to be the minimal color to which this definition is applicable.

While it is, again, not trivially clear that this idea captures all necessary aspects of the
natural color of a word, our results in the following section show that this is the case.

4 The Natural Color of a Word

In this section, we define our notion of the natural color of a word (with respect to a given
language) based on the observations from the previous section. Based on this definition, we
show how a sequence of co-Büchi automata can be obtained from the deterministic parity
automaton such that, after the minimization of the co-Büchi automata, the sequence is
a canonical representation of the language. This construction has two steps, namely first
streamlining the deterministic parity automaton, and then extracting the co-Büchi automata
from it. Using this sequence of automata as representation for the natural colors of words
(with respect to the represented language), we finally show that the natural colors of words
can be read off from the streamlined deterministic parity automaton directly, which shows
that the natural colors of words can be read off from any deterministic parity automaton
after preprocessing it.

We start with defining the colors in which a word is “at home” for a given language. The
natural color of a word is then the minimal color in which a word is at home. First, we
repeat some concepts from the previous section to make Definition 1 below self-contained.
We say that some finite word u ∈ Σ∗ is suffix language invariant for a language L after a
finite word w ∈ Σ∗ if we have Lsuffix(L, w) = Lsuffix(L, wu).

Let a word w = w0w1 . . . ∈ Σω over an alphabet Σ be given. We say that some
word w′ ∈ Σω is the result of a suffix language invariant injection of a sequence of words
u0, u1, . . . at positions J = {i0, i1, . . .} with i0 < i1 < . . . in w if, and only if, w′ =
w0w1 . . . wi0 u0 wi0+1 . . . wi1 u1 wi1+1 . . . wi2 u2 . . . and for each j ∈ N, we have that uj is
suffix language invariant for w0 . . . wij .

▶ Definition 1. For every even/odd i, we say that a word w = w0w1 . . . ∈ Σω is at home in
color i ∈ N for some language L if there exists an infinite subset J ⊆ N such that, for every
possible sequence of finite words u0, u1, . . ., if a word w′ is the result of a suffix language
invariant injection of u0, u1, . . . at positions J , then we have that

w′ is already at home in a color strictly smaller than i, or
both w and w′ are in L and i is even, or both w and w′ are not in L and i is odd.

Note that the first case in the preceding definition cannot apply for color i = 0 (as there
is no smaller color), so only the second case is of relevance for i = 0.

R. Ehlers and S. Schewe 36:9

We call the minimal natural number that a word w is at home in the natural color of w

(for a given language L).
As a small remark, this definition could also be given in a variant where the lowest color

a word can be at home in is 1, which swaps the order in which we check for “i is even” and
“i is odd”. This affects the number of different natural colors that the words can have (for
a given language) by at most 1. All results given henceforth also work with odd and even
colors swapped.

The color of a run of a DPA is not necessarily the natural color of the word defined above
(for the language of the DPA). We will, however, show how a deterministic parity automaton
can be used to define a family of good-for-games co-Büchi automata that can determine the
natural color of a word.

4.1 Streamlining DPAs
The first concept to use is the concept of a structured parity automaton: We call a DPA
structured if (1) all states of A are reachable and (2) if two states q and q′ are equivalent,
then they are in the same maximal SCC.

Turning a given DPA into an equivalent structured DPA is cheap.1 First, non-reachable
states are removed. Then, an arbitrary minimal preorder that preserves reachability among
the maximal SCCs of the DPA is defined. Two states are equivalent according to this preorder
if, and only if, they are reachable from each other (i.e., they are in the same maximal SCC).
Apart from this, the preorder follows the reachability relation in that, if a state q is reachable
from a state q′, then q ≥ q′.

A transition to a state q with a language equivalent state q′ such that q′ > q is then
re-directed to some language equivalent state q′′ that is maximal according to this preorder.

As the position in this preorder can only grow along every run, there are only finitely
many re-directions taken on every run. The language of the automaton is not changed by
this operation.

Finally, the states that become unreachable by rerouting the transitions are removed
again to make the resulting automaton structured.

▶ Definition 2. Let A = (Q, Σ, δ, q0) be a structured DPA. We define its streamlined version
to be the outcome of the following streamlining process, in which the structure of A is not
changed, but a new color is assigned to each transition.

We first produce a copy of the structure of A, creating a fresh coloring graph G = (Q, Σ, δ)
(which is called “coloring graph” because it is used for determining the new colors in A; G
itself does not have colors). We will then successively remove states and transitions from G
(not from A), while assigning the transitions new colors in A.

Starting with i = 0, we do the following until G is empty.
1. We first partition G into maximal SCCs.
2. We then identify all transient transitions in G. We change their colors in A to i, and

then remove the transient states and transitions from G.
3. We check if in any maximal SCC of G, the least color of the transitions (in A) between

states in the SCC has the same parity as i.
If such transitions are found, we first change their colors in A to i, remove them from
G, and then return to (1) without incrementing i.
If there are no such transitions, we increment i and go back to (1).

These steps are repeated until G is empty.

1 The procedure can, for instance, be found in [11]; while it is only described for Büchi and co-Büchi
automata there, it can also be applied to parity automata, as done in [9].

FSTTCS 2022

36:10 Natural Colors of Infinite Words

The purpose of the construction is to iteratively lower the colors of transitions in A towards
the most significant one whenever that is possible without changing the language of the
automaton. The structure of the automaton is not altered. The algorithm identifies transitions
that can be recolored to a lower color i because they can only be taken finitely often along
runs that do not have a dominating color lower than or equal to i anyway. Also, the algorithm
identifies transitions that can be safely recolored to i because, while changing the color to i

changes the dominating color of some runs, it never changes the parity of the dominating
color.

The streamlining construction above is a variant of an algorithm by Carton and
Maceiras [4] to relabel the colors of states in a deterministic parity automaton with state-based
acceptance. The construction has been adapted to the case of transition-based acceptance
and gives rise to a more concise correctness argument stated next. It retains the structured
automaton’s property that, for each set of language equivalent states, all states in the set
can be found in the same maximal SCC.

▶ Lemma 3. The streamlining process terminates and does not change the language of A.

Proof. We first observe that, by a simple inductive argument, before i is incremented, all
transitions with color ≤ i have been removed from G.

As induction basis, for i = 0, every transition with color 0 that remains after step (2) is
the minimal color in their maximal SCC, and therefore removed in step (3).

For the induction step, after incrementing the counter to i + 1, all transitions with color
≤ i have been removed by the induction hypothesis, such that all remaining transitions
with color i + 1 must either be transient (and removed in step (2)), or of minimal color in a
maximal SCC (and are then removed in step 3).

The algorithm always terminates because the color of a transition is only ever changed
once (as the transition is removed from G whenever their color in A is changed). When no
color is (re)assigned in A and removed from G in an iteration, i is increased. Finally, once i

exceeds the number of colors of A, the graph G must be empty, leading to termination.
The induction argument above also establishes that the color of each transition can only

be reduced by this construction, but to no color lower than any (new) color of the edges that
have previously been removed from G.

This observation is the basis for establishing language equivalence. We establish this
language equivalence step-wise, considering only the effect that the changes of colors initiated
by step (2) or step (3) in one iteration have on the dominating color of some (arbitrary) run
of A.

For colors changed in step (2) of the algorithm, we observe that, if the respective transition
t occurs infinitely often, some other transition that has previously been removed from G must
occur infinitely often, too. The color of any of these removed transitions is ≤ i, such that
changing the color of t to i does not change the dominating color of the run. If t however
occurs only finitely often along the run in A, it cannot change the dominating color of the
run either.

For a transition t whose color is changed in step (3), we distinguish three cases. First,
if t occurs only finitely often along the run under consideration, the color change does not
influence the dominating color of the run. Second, if the run eventually remains in the same
maximal SCC (in G) as t was and t occurs infinitely often, then the previous color of t was
the dominating color of the run, because t’s color was minimal among the colors of the SCC.
But then the new dominating color is i, which has the same parity as (and is no greater than)
the previous color of t. Finally, if the run does not eventually get stuck in the maximal SCC

R. Ehlers and S. Schewe 36:11

of t in G, but t occurs infinitely often, then there are infinitely many transitions passed that
have been re-colored before t, and that therefore have a color ≤ i, such that the re-coloring
of t does not change the dominating color of the run. ◀

4.2 From Streamlined DPAs to Color-Recognising GCAs
We will not relate the colors of the runs in streamlined automata directly to the natural
color of a word, but use them to define good-for-games co-Büchi automata (GCAs) that do
so. These GCAs are easy to obtain from A.

▶ Definition 4. Let A = (Q, Σ, δ, q0) be a streamlined automaton and i be a color that occurs
in A, then Ai = (Q, Σ, δi, q0) is the automaton such that, for all (q, x, q′, c) ∈ δ,

(q, x, q′, 2) ∈ δi if c ≥ i,
(q, x, q′, 1) ∈ δi if c < i, and
(q, x, q′′, 1) ∈ δi for all q′′ ∈ Q with q′ ∼A q′′ such that, for all colors c′, (q, x, q′′, c′) /∈ δ.

The co-Büchi automata are defined such that, for all colors i, Ai accepts those words for
which the run in A has a dominating color of at least i (using transitions of the first two types
in the list above only). However, Ai accepts some additional words: The transitions added by
the third item in the list above allow a run to “jump” to any state that is language-equivalent
in A (if the transition is not already part of Ai by the first two items). In accepting runs,
this can only happen finitely often, though.

We will show in the remainder of this subsection that, for all i, Ai is a good-for-games
co-Büchi automaton that accepts exactly the words that have a natural color of at least i

(with respect to the language of A).
The first observation that we will use to achieve this goal is that the languages of these

co-Büchi automata are obviously shrinking with growing index, simply because the transitions
are the same, but some of the accepting transitions become rejecting transitions (i.e., their
color changes from 2 to 1).

▶ Observation 5. For i ≤ j, L(Ai) ⊇ L(Aj) holds. Also, A0 accepts all words as it only has
accepting transitions (since no color is smaller than 0) while including outgoing transitions
for each state/letter pair (as A is deterministic).

▶ Theorem 6. For all i, Ai is good-for-games.

The proof is a pretty standard proof for co-Büchi automata: it essentially says “follow
the run that has longest been through accepting transitions”.

Proof. If the automaton Ai has no accepting run for a word w = w0w1w2 . . ., there is nothing
to show.

We now assume that w has an accepting run π = q0q1q2 . . ., where j is the first position
in π such that, for all k ≥ j, (qk, wk, qk+1, 2) are accepting transitions.

We argue that Ai can accept w with the strategy to
1. follow accepting transitions where possible; note that there is at most one outgoing

accepting transition for every state/letter pair, so this selection is deterministic, and
2. if no such transition is available when reading wk, move to a state q′

k+1 such that there
exists a run prefix π′ = q0q′

1q′
2 . . . q′

k+1 for w0 . . . wk with some l < k + 1 such that the
transitions taken from q′

l onwards are all accepting. In particular, state q′
k+1 is chosen for

some lowest possible value of l among such run prefixes (the way to choose ex aequo does
not matter).

FSTTCS 2022

36:12 Natural Colors of Infinite Words

To see why this strategy yields an accepting run, consider a total order over all possible
finite run prefixes. The prefixes are ordered by their size (starting from the smallest one),
but otherwise the total order is arbitrary.

Whenever the strategy can continue along an accepting transition, it does so. When it
has to take a rejecting transition after having read a finite prefix w′ of w, it chooses a smallest
run prefix ρ′ such that w′ has a unique finite run ρ′ρ′′, where ρ′′ contains only accepting
transitions. The run ρ′ρ′′ ends in some state q, and our strategy is to move to this state q.

The prefix q0 . . . qj is somewhere in this order, say at position p. Now, if there are at
least p rejecting transitions taken when following the strategy, then q0 . . . qj will eventually
be tried. From this point onward, no rejecting transitions are taken anymore in the run for
w. If fewer than p rejecting transitions are taken when following the strategy, the resulting
run is accepting as well.

Thus, we always have a strategy that only relies on the past, and Ai is good-for-games. ◀

▶ Theorem 7. Ai accepts a word w if, and only if, the natural color of w for the language
L(A) is at least i.

Proof.
Induction basis: For i = 0, every word is accepted by A0.
Induction step: Let us assume that the property holds for all i′ < i for some i > 0.

For the induction step, we split the “if and only if” in the claim into its two directions.
We first show that (substep 1) a word w = w0w1 . . . with natural color at most i − 1 is
rejected by Ai, and then argue that (substep 2) a word rejected by Ai has a natural color of
at most i − 1. Taking both directions together and considering the remaining words (those
accepted by Ai rather than those rejected my Ai), we obtain that a word is accepted by Ai

if, and only if, its natural color is at least i, which is to be proven.

Substep 1: Here, we show that a word w = w0w1 . . . with natural color of at most i − 1
is rejected by Ai. If the natural color of w is strictly smaller than i − 1, then this follows
directly from the inductive hypothesis and Observation 5. For the case of the natural color
of w being exactly i − 1, we assume for contradiction that w has a natural color of i − 1 and
w is accepted by Ai. Using the definitions for acceptance by a co-Büchi automaton and the
natural color of a word, we have that

π = q0q1q2 . . . is an accepting run of Ai on w,
p ∈ N is a position such that, for all j ≥ p, (qj , wj , qj+1, 2) ∈ δi is an accepting transition
in Ai, and
J ⊆ N is an infinite index set such that injecting suffix language invariant words at the
positions in J always results in a word w′ that
(c1) has natural color that is strictly smaller than i − 1 or
(c2) is accepted by A if, and only if, i − 1 is even,
where we assume w.l.o.g. j ≥ p for all j ∈ J .

The accepting run π has, from position p onward, only transitions that have color of at least
i in A. Let p′ ≥ p be the position from which these transitions are all in the same maximal
accepting SCC S in Ai. By the assumption that A is streamlined (which is a precondition
to applying Definition 4), the maximal accepting SCC (of Ai) has a transition that has a
corresponding transition of color i in A. To see this, note that we can only have an accepting
SCC in Ai if it is also an SCC in the graph G built by the streamlining construction when
starting to consider color i (as all transitions from and to states not in G at that point of the
construction have been assigned colors strictly smaller than i in the streamlined automaton).

R. Ehlers and S. Schewe 36:13

But then, either the minimal transition color in the SCC has the same parity as i, and then
it is lowered to i in the streamlining construction, or it does not. In the latter case, the
streamlining construction lowers the color of such a minimal transition color in the SCC to
i − 1 by the third step of the construction before actually considering color i, contradicting
the assumption that the SCC has only accepting transitions in Ai (as transitions with color
smaller than i are not accepting in Ai by Def. 4).

Since we now know that the minimal color in the maximal accepting SCC in Ai is i

in the streamlined automaton A, we can insert into w, in every position in j ∈ J , a suffix
language invariant string, whose partial run is a cycle in both Ai and A, in the latter case
with minimal color i. Therefore, the resulting word w′ is accepted by A if, and only if, i is
even. As i and i − 1 have a different parity, condition (c2) cannot hold for w′.

However, condition (c1) also cannot hold: The accepting run of Ai on w′ is also an
accepting run of Ai−1, so its natural color is at least i−1 by our inductive hypothesis. Taking
the falsification of both (c1) and (c2) together, we obtain that w cannot have a natural color
of at most i − 1. (contradiction)

Substep 2: Finally, we show that a word w = w0w1 . . . that is rejected by Ai has natural
color of at most i − 1. If the word is rejected by Ai−1, then the natural color is at most
i − 2 by our inductive hypothesis, and there is nothing more to be shown. So we henceforth
only need to consider the case that w is accepted by Ai−1 but not Ai. We define a suitable
infinite set of indices J ⊆ N.

We first assume for contradiction that there is a position p > 0 in the word such that,
for all positions p′ > p, there is a run π = q0q1 . . . of Ai where (qj , wj , qj+1, 2) ∈ δi is, for all
p ≤ j < p′, an accepting transition in Ai. If no such position exists, the finitely branching
tree of runs of Ai on w that is pruned at all non-accepting positions after level p is infinite,
and therefore has an infinite path. (contradiction to w /∈ L(Ai))

Using this observation, we fix an infinite ascending chain 0 < p0 < p1 < p2 . . ., such that,
for all j ≥ 0, no run has only accepting transitions in any segment qpj

qpj+1 . . . qpj+1 .
We note that inserting suffix language invariant strings in positions of J = {pj | j ∈ N}

does not change that these segments have this property; consequently, any word w′ that
results from such insertions is still rejected by Ai. We fix such a word w′.

Let c be the maximal color such that w′ = w′
0w′

1w′
2 . . . is in the language of Ac. As

w′ /∈ L(Ai), c < i. If c < i − 1, then its natural color is c < i − 1 by induction hypothesis. If
it is c = i−1, then the natural color must be at least i−1 by induction hypothesis. Moreover,
Ai−1 has an accepting run π′ = q0q′

1q′
2 . . . on w′. Let p be a position in this run such that,

for all j > p, the transitions (q′
j , w′

j , q′
j+1, 2) ∈ δi−1 are accepting transitions of Ai−1. Noting

that π′ is a rejecting run of Ai, this entails that the lowest color that occurs infinitely often in
the run q′

pq′
p+1q′

p+2 . . . of Aq′
p

on w′
pw′

p+1w′
p+2 . . . is i − 1. Thus w′

pw′
p+1w′

p+2 . . . is accepted
by Aq′

p
, and therefore w′ is accepted by A if, and only if, i is odd.

This concludes the proof that the natural color of w is i − 1. ◀

Taking the results above together, we have obtained a construction for a language
recognised by a given deterministic parity automaton that provides a sequence of co-Büchi
automata that encode which word is at home in which color. We first compute a structured
form of this deterministic parity automaton, then streamline it (Def. 2), and finally split
the resulting parity automaton into the co-Büchi automata according to Def. 4. All three
steps can be implemented to run in time polynomial in the size of the input automaton.
Furthermore, since the state spaces of the co-Büchi automata are the same as the one in the
parity automaton, they cannot be larger than the original parity automaton.

FSTTCS 2022

36:14 Natural Colors of Infinite Words

Since the split into co-Büchi automata is canonical, and the co-Büchi automata themselves
can be made canonical (and minimal) using the existing polynomial-time construction from
Abu Radi and Kupferman [1], we overall obtain a canonical representation of the language
that the deterministic parity automaton we started with represents. Moreover, in can be
computed in polynomial time.

4.3 Reading off Natural Colors from Streamlined Automata
The construction so far has the property that it does not immediately provide a direct way
of computing the natural color of a word (yet). Given a word, we can check which of the
co-Büchi automata built according to Def. 4 accepts the word to compute the natural color of
a word (for the given language), but since they are good-for-games rather than deterministic,
this is somewhat cumbersome.

The results above, however, allow us to also define a more direct way to determining the
natural color of a word (with respect to a given language), as we show below as a side-result.

We define a co-run of a deterministic automaton A = (Q, Σ, δ, q0) on a word w =
w0w1w2 . . . with a run π = q0q1q2 . . . as a sequence π′ = q0q1 . . . qp−1qpq′

p+1q′
p+2q′

p+3 . . .

for some p > 0, such that π′′ = q′
pq′

p+1q′
p+2q′

p+2 . . . is the run of Aq′
p

on the word w′ =
wpwp+1wp+2wp+2 . . . for some state q′

p that is language equivalent to qp (q′
p ∼A qp).

The color of the set of co-runs for a word w is defined to be the maximal dominating
color c that occurs infinitely often on some co-run of w.

▶ Lemma 8. Let A be a streamlined automaton. Then the color of the set of co-runs of a
word w is c if w is in the language of Ac, but not in the language of Ac+1.

Proof. A co-run of A on w with dominating color c is an accepting run of Ac.
An accepting run π′ = q′

0q′
1 . . . q′

p−1q′
pq′

p+1q′
p+2q′

p+2 . . . of Ac+1 has some position p from
which point onward only accepting transitions (which all have color > c in A) are taken. A
therefore has a co-run π′ = q0q1 . . . qp−1qpq′

p+1q′
p+2q′

p+2 . . ., whose dominating color is > c.
(contradiction) ◀

By combining this lemma with the previous theorem, we get the following corollary.

▶ Corollary 9. Let A be a streamlined automaton. Then the color of the set of co-runs of a
word w is its natural color for L(A).

Co-runs are closely related to the GCAs we have defined earlier. The difference is that
the “new” transitions to language equivalent states can be used only once along a run.
This allows for having a definition on the deterministic automaton (without falling back
on good-for-games automata), and is therefore simpler. It also binds the proofs together:
the minimal prefix from the proof of Theorem 6 corresponds to the shortest prefix at which
this single transition to a language equivalent state can be taken. While this provides a
more direct connection to the color, the restriction to taking these transitions at most once
loses the good-for-games property: as a wrong decision cannot be corrected, access to the
remainder of the run may be required. This makes GCAs more attractive, as co-Büchi
languages have canonical representatives.

Note that, for an ultimately periodic word (i.e., a word of the form w = uvω for u, v ∈ Σ∗),
the highest color among the co-runs can be computed in the time polynomial in the number
of states, which allows reading off the natural color of a word from a (streamlined) DPA
without building the canonical representation of the language of the DPA.

R. Ehlers and S. Schewe 36:15

5 Related Work

There already exists an indirect normal form of ω-languages. Every ω-regular language can
be represented as a deterministic finite automaton (DFA): This DFA accepts words of the
form u$v for which the ultimately periodic word uvω is in the ω-language to be represented.
Calbrix et al. [3] showed how to compute such a DFA from a given nondeterministic Büchi
automaton (to which a deterministic parity automaton is easy to translate). The minimized
DFA for this lasso language over finite words can then serve as a canonical representation of
the ω-language, as two automata representing ω-regular languages encode the same language
if, and only if, they accept the same ultimately periodic words.

DFAs that capture ultimately periodic words have furthermore been refined to families of
DFAs [2] that can be more succinct and share the property to consist of multiple sub-automata
with the sequences of co-Büchi automata that we define in this paper.

Such DFAs (or families of DFAs), however, do not implement a core idea of automata,
namely to read a word letter-by-letter and to encode the relevant information about the
letters of the word already read in a state. It is also unknown how the sizes of such automata
relate to the size of a minimal deterministic parity automaton representing the language.
Finally, neither DFAs for lasso languages nor families of DFAs have a direct connection to
the complexity of a language, as it is, for example, captured by the minimal number of colors
used in deterministic parity automata.

6 Conclusion

A classical question in the theory of automata is how to define canonical automata.
In this paper, we have taken a step back, and looked at the question of how to define

canonical automata for ω-regular languages from a new angle. For a language to be defined
canonically by, say, a canonical deterministic parity automaton, a word first and foremost
needs a natural color. What should this color be?

Picking the flowers of Niwiński and Walukiewicz [10] as a starting point, we have lifted
the same principle to languages in a way that is oblivious to the automaton used.

For an ω-regular language L, we look at a sequence of languages L0 ⊃ L1 ⊃ L2 . . . ⊃ Lc

such that
L0 is the universal language;
L1 is the smallest co-Büchi language contained in L0 and containing L ∩ L0 such that L1
is closed under insertion;
L2 is the smallest co-Büchi language contained in L1 and containing L ∩ L1 such that L2
is closed under insertion;
L3 is the smallest co-Büchi language contained in L2 and containing L ∩ L2 such that L3
is closed under insertion; etc.

The closure under insertion of a set Li refers to the existence of an infinite set of positions
(for each word) at which arbitrary suffix language invariant finite letter sequences can be
added to the word without the resulting word leaving Li.

This assigns a color to each infinite word w, both in the language and outside of it, purely
defined by the maximal i such that w ∈ Li – we say that w has a natural color of i (for L).
As one would expect for a parity condition, w ∈ L if, and only if, the natural color i of w is
even.

FSTTCS 2022

36:16 Natural Colors of Infinite Words

The natural color of w for L is thus defined without reference to an automaton (or
any other representation of the language). Yet, L is recognized by a deterministic parity
automaton with maximal color c if, and only if, Lc+1 is empty. This sets the minimal
maximal color in the automaton to the maximal i such that Li is non-empty, which further
connects this construction to deterministic automata.

We infer these languages by turning a single streamlined deterministic parity automaton,
which is cheap and easy to obtain from any deterministic parity automaton that recognizes
L: Li contains the set of words whose co-runs have colors of at least i.

Beyond providing evidence that a word is in the language, it also provides insight into
why it is part of this language by peeling off co-Büchi languages of accepted and rejected
words layer by layer.

Returning to our chain of languages, this answers the “why co-Büchi?” question that
begs to be asked. Each Lc is a co-Büchi language, which is an ideal basis for a natural
representation, because co-Büchi languages have recently obtained a canonical representation,
albeit not for deterministic automata, but for good-for-games co-Büchi automata with
transition-based acceptance (GCAs). We can use this to obtain a natural representation for
the languages that allow us to identify the natural color of a word.

References

1 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 100:1–100:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.100.

2 Dana Angluin and Dana Fisman. Learning regular omega languages. In Peter Auer, Alexander
Clark, Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic Learning Theory - 25th
International Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014. Proceedings, volume
8776 of Lecture Notes in Computer Science, pages 125–139. Springer, 2014. doi:10.1007/
978-3-319-11662-4_10.

3 Hugues Calbrix, Maurice Nivat, and Andreas Podelski. Ultimately periodic words of rational
w-languages. In 9th International Conference on Mathematical Foundations of Programming
Semantics (MFPS), volume 802 of Lecture Notes in Computer Science, pages 554–566. Springer,
1993. doi:10.1007/3-540-58027-1_27.

4 Olivier Carton and Ramón Maceiras. Computing the Rabin index of a parity automaton.
RAIRO Theor. Informatics Appl., 33(6):495–506, 1999. doi:10.1051/ita:1999129.

5 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of
Lecture Notes in Computer Science, pages 395–410. Springer, 2006. doi:10.1007/11874683_26.

6 John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Zvi Kohavi
and Azaria Paz, editors, Theory of Machines and Computations, pages 189–196. Academic
Press, 1971. doi:10.1016/B978-0-12-417750-5.50022-1.

7 Denis Kuperberg and Michal Skrzypczak. On determinisation of good-for-games automata. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 299–310. Springer, 2015. doi:10.1007/978-3-662-47666-6_24.

8 Christof Löding. Efficient minimization of deterministic weak omega-automata. Inf. Process.
Lett., 79(3):105–109, 2001. doi:10.1016/S0020-0190(00)00183-6.

https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.1007/978-3-319-11662-4_10
https://doi.org/10.1007/978-3-319-11662-4_10
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1051/ita:1999129
https://doi.org/10.1007/11874683_26
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1016/S0020-0190(00)00183-6

R. Ehlers and S. Schewe 36:17

9 Christof Löding and Andreas Tollkötter. State space reduction for parity automata. In
Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer
Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages
27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
CSL.2020.27.

10 Damian Niwiński and Igor Walukiewicz. Relating hierarchies of word and tree automata.
In STACS 98, 15th Annual Symposium on Theoretical Aspects of Computer Science, Paris,
France, February 25-27, 1998, Proceedings, volume 1373 of Lecture Notes in Computer Science,
pages 320–331. Springer, 1998. doi:10.1007/BFb0028571.

11 Sven Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In
Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 400–411. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.400.

12 Sven Schewe. Minimising good-for-games automata is NP-complete. In Nitin Saxena and Sunil
Simon, editors, 40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla
Goa Campus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 56:1–56:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSTTCS.2020.56.

FSTTCS 2022

https://doi.org/10.4230/LIPIcs.CSL.2020.27
https://doi.org/10.4230/LIPIcs.CSL.2020.27
https://doi.org/10.1007/BFb0028571
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56

Synthesizing Dominant Strategies for Liveness
Bernd Finkbeiner !

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Noemi Passing !

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
Reactive synthesis automatically derives a strategy that satisfies a given specification. However,
requiring a strategy to meet the specification in every situation is, in many cases, too hard of a
requirement. Particularly in compositional synthesis of distributed systems, individual winning
strategies for the processes often do not exist. Remorsefree dominance, a weaker notion than winning,
accounts for such situations: dominant strategies are only required to be as good as any alternative
strategy, i.e., they are allowed to violate the specification if no other strategy would have satisfied it
in the same situation. The composition of dominant strategies is only guaranteed to be dominant
for safety properties, though; preventing the use of dominance in compositional synthesis for liveness
specifications. Yet, safety properties are often not expressive enough. In this paper, we thus introduce
a new winning condition for strategies, called delay-dominance, that overcomes this weakness of
remorsefree dominance: we show that it is compositional for many safety and liveness specifications,
enabling a compositional synthesis algorithm based on delay-dominance for general specifications.
Furthermore, we introduce an automaton construction for recognizing delay-dominant strategies and
prove its soundness and completeness. The resulting automaton is of single-exponential size in the
squared length of the specification and can immediately be used for safraless synthesis procedures.
Thus, synthesis of delay-dominant strategies is, as synthesis of winning strategies, in 2EXPTIME.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Dominant Strategies, Compositional Synthesis, Reactive Synthesis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.37

Related Version Full Version: https://arxiv.org/abs/2210.01660 [19]

Funding Supported by DFG grant 389792660 as part of TRR 248 (CPEC) and by ERC grant 683300
(OSARES). N. Passing carried out this work as PhD candidate at Saarland University, Germany.

1 Introduction

Reactive synthesis is the task of automatically deriving a strategy that satisfies a formal
specification, e.g., given in LTL [31], in every situation. Such strategies are called winning.
In many cases, however, requiring the strategy to satisfy the specification in every situation is
too hard of a requirement. A prominent example is the compositional synthesis of distributed
systems consisting of several processes. Compositional approaches for distributed synthesis [27,
13, 14, 15, 18] break down the synthesis task for the whole system into several smaller ones for
the individual processes. This is necessary due to the general undecidability [33] of distributed
synthesis and the non-elementary complexity [20] for decidable cases: non-compositional
distributed synthesis approaches [22, 21] suffer from a severe state space explosion problem
and are thus not feasible for larger systems. However, winning strategies rarely exist when
considering the processes individually in the smaller subtasks of compositional synthesis since
usually the processes need to collaborate in order to achieve the overall system’s correctness.
For instance, a particular input sequence may prevent the satisfaction of the specification
no matter how a single process reacts, yet, the other processes of the system ensure in the
interplay of the whole system that this input sequence will never be produced.

© Bernd Finkbeiner and Noemi Passing;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 37; pp. 37:1–37:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:finkbeiner@cispa.de
https://orcid.org/0000-0002-4280-8441
mailto:noemi.passing@cispa.de
https://orcid.org/0000-0001-7781-043X
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.37
https://arxiv.org/abs/2210.01660
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Synthesizing Dominant Strategies for Liveness

Remorsefree dominance [9], a weaker notion than winning, accounts for such situations.
A dominant strategy is allowed to violate the specification as long as no other strategy would
have satisfied it in the same situation. Hence, a dominant strategy is a best-effort strategy
as we do not blame it for violating the specification if the violation is not its fault. Searching
for dominant strategies rather than winning ones allows us to find strategies that do not
necessarily satisfy the specification in all situations but in all that are realistic in the sense
that they occur in the interplay of the processes if all of them play best-effort strategies.

The parallel composition of dominant strategies, however, is only guaranteed to be domi-
nant for safety properties [10]. For liveness specifications, in contrast, dominance is not a
compositional notion and thus not suitable for compositional synthesis. Consider, for example,
a system with two processes p1 and p2 sending messages to each other, denoted by atomic
propositions m1 and m2, respectively. Both processes are required to send their message
eventually, i.e., φ = m1 ∧ m2. For pi, it is dominant to wait for the other process to send
the message m3−i before sending its own message mi: if p3−i sends its message eventually, pi
does so as well, satisfying φ. If p3−i never sends its message, φ is violated, no matter how pi
reacts, and thus the violation of φ is not pi’s fault. Combining these strategies for p1 and p2,
however, yields a system that never sends any message since both processes wait indefinitely
for each other, while there clearly exist strategies for the whole system that satisfy φ.

Bounded dominance [10] is a variant of remorsefree dominance that ensures composition-
ality of general properties. Intuitively, it reduces every specification φ to a safety property
by introducing a measure of the strategy’s progress with respect to φ, and by bounding
the number of non-progress steps, i.e., steps in which no progress is made. Yet, bounded
dominance has two major disadvantages: (i) it requires a concrete bound on the number of
non-progress steps, and (ii) not every bounded dominant strategy is dominant: if the bound n
is chosen too small, every strategy, also a non-dominant one, is trivially n-dominant.

In this paper, we introduce a new winning condition for strategies, called delay-dominance,
that builds upon the ideas of bounded dominance but circumvents the aforementioned
weaknesses. Similar to bounded dominance, it introduces a progress measure on strategies.
However, it does not require a concrete bound on the number of non-progress steps but
relates such steps in the potentially delay-dominant strategy s to non-progress steps in an
alternative strategy t: intuitively, s delay-dominates t if, whenever s makes a non-progress
step, t makes a non-progress step eventually as well. A strategy s is then delay-dominant if it
delay-dominates every other strategy t. In this way, we ensure that a delay-dominant strategy
satisfies the specification “faster” than all other strategies in all situations in which the
specification can be satisfied. Delay-dominance considers specifications given as alternating
co-Büchi automata. Non-progress steps with respect to the automaton are those that enforce
a visit of a rejecting state in all run trees. We introduce a two-player game, the so-called
delay-dominance game, which is vaguely leaned on the delayed simulation game for alternating
Büchi automata [24], to formally define delay-dominance: the winner of the game determines
whether or not a strategy s delay-dominates a strategy t on a given input sequence.

We (i) show that every delay-dominant strategy is also remorsefree dominant, and (ii) in-
troduce a criterion for automata such that, if the criterion is satisfied, compositionality of
delay-dominance is guaranteed. The criterion is satisfied for many automata; both ones
describing safety properties and ones describing liveness properties. Thus, delay-dominance
overcomes the weaknesses of both remorsefree and bounded dominance. Note that since
delay-dominance relies, as bounded dominance, on the automaton structure, there are realiz-
able specifications for which no delay-dominant strategy exists. Yet, we experienced that
this rarely occurs in practice when constructing the automaton from an LTL formula with
standard algorithms. Moreover, if a delay-dominant strategy exists, it is guaranteed to be

B. Finkbeiner and N. Passing 37:3

winning if the specification is realizable. Hence, the parallel composition of delay-dominant
strategies for all processes in a distributed system is winning for the whole system as long
as the specification is realizable and as long as the compositionality criterion is satisfied.
Therefore, delay-dominance is a suitable notion for compositional synthesis.

We thus introduce a synthesis approach for delay-dominant strategies that immediately
enables a compositional synthesis algorithm for distributed systems, namely synthesizing
delay-dominant strategies for the processes separately. We present the construction of a
universal co-Büchi automaton Add

Aφ
from an LTL formula φ that recognizes delay-dominant

strategies. Add
Aφ

can immediately be used for safraless synthesis [28] approaches such as
bounded synthesis [22] to synthesize delay-dominant strategies. We show that the size of Add

Aφ

is single-exponential in the squared length of φ. Thus, synthesis of delay-dominant strategies
is, similar to synthesis of winning or remorsefree dominant strategies, in 2EXPTIME.

Related Work. Remorsefree dominance has first been introduced for reactive synthesis in [9].
Dominant strategies have been utilized for compositional synthesis of safety properties [10].
Building up on this work, a compositional synthesis algorithm, that finds solutions in more
cases by incrementally synthesizing individual dominant strategies, has been developed [16].
Both algorithms suffer from the non-compositionality of dominant strategies for liveness
properties. Bounded dominance [10], a variant of dominance that introduces a bound on the
number of steps in which a strategy does not make progress with respect to the specification,
solves this problem. However, it requires a concrete bound on the number of non-progress
steps. Moreover, a bounded dominant strategy is not necessarily dominant.

Good-enough synthesis [1, 29] follows a similar idea as dominance. It is thus not composi-
tional for liveness properties either. In good-enough synthesis, conjuncts of the specification
can be marked as strong. If the specification is unrealizable, a good-enough strategy needs
to satisfy the strong conjuncts while it may violate the other ones. Thus, dominance can
be seen as the special case of good-enough synthesis in which no conjuncts are marked as
strong. Good-enough synthesis can be extended to a multi-valued correctness notion [1].

Synthesis under environment assumptions is a well-studied problem that also aims at
relaxing the requirements on a strategy. There, explicit assumptions on the environment are
added to the specification. These assumptions can be LTL formulas restricting the possible
input sequences (see, e.g., [7, 5]) or environment strategies (see, e.g., [2, 3, 17, 18]). The
assumptions can also be conceptual such as assuming that the environment is rational (see,
e.g., [23, 26, 6, 8]). Synthesis under environment assumptions is orthogonal to the synthesis
of dominant strategies and good-enough synthesis since it requires an explicit assumption on
the environment, while the latter two approaches rely on implicit assumptions.

2 Preliminaries

Notation. Given an infinite word σ = σ0σ1 . . . ∈ (2Σ)ω, we denote the prefix of length t+ 1
of σ with σ|t := σ0 . . . σt. For σ and a set X ⊆ Σ, let σ ∩X := (σ0 ∩X)(σ1 ∩X) . . . ∈ (2X)ω.
For σ ∈ (2Σ)ω, σ′ ∈ (2Σ′)ω with Σ∩Σ′ = ∅, we define σ∪σ′ := (σ0∪σ′

0)(σ1∪σ′
1) . . . ∈ (2Σ∪Σ′)ω.

For a k-tuple a, we denote the j-th component of a with j(a). We represent a Boolean formula∨
i

∧
j ci,j in disjunctive normal form (DNF) also in its set notation

⋃
i{

⋃
j{ci,j}}.

LTL. Linear-time temporal logic (LTL) [31] is a standard specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The syntax
of LTL is given by φ,ψ ::= a | ¬φ | φ ∨ ψ | φ ∧ ψ | φ | φU ψ. We define true = a ∨ ¬a,
false = ¬true, φ = true U φ, and φ = ¬ ¬φ as usual. We use the standard semantics.
The language L(φ) of an LTL formula φ is the set of infinite words that satisfy φ.

FSTTCS 2022

37:4 Synthesizing Dominant Strategies for Liveness

Non-Alternating ω-Automata. Given a finite alphabet Σ, a Büchi (resp. co-Büchi) au-
tomaton A = (Q,Q0, δ, F) over Σ consists of a finite set of states Q, an initial state q0 ∈ Q,
a transition relation δ : Q× 2Σ ×Q, and a set of accepting (resp. rejecting) states F ⊆ Q.
For an infinite word σ = σ0σ1 . . . ∈ (2Σ)ω, a run of A induced by σ is an infinite sequence
q0q1 . . . ∈ Qω of states with (qi, σi, qi+1) ∈ δ for all i ≥ 0. A run is accepting if it contains
infinitely many accepting states (resp. only finitely many rejecting states). A nondeterministic
(resp. universal) automaton A accepts a word σ if some run is accepting (resp. all runs
are accepting). The language L(A) of A is the set of all accepted words. We consider
nondeterministic Büchi automata (NBAs) and universal co-Büchi automata (UCAs).

Alternating ω-Automata. An alternating Büchi (resp. co-Büchi) automaton (ABA resp.
ACA) A = (Q, q0, δ, F) over a finite alphabet Σ consists of a finite set of states Q, an initial
state q0 ⊆ Q, a transition function δ : Q× 2Σ → B+(Q), where B+(Q) is the set of positive
Boolean formulas over Q, and a set of accepting (resp. rejecting) states F ⊆ Q. We assume
that the elements of B+(Q) are given in DNF. Runs of A are Q-labeled trees: a tree T is a
prefix-closed subset of N∗. The children of a node x ∈ T are c(x) = {x · d ∈ T | d ∈ N}. An
X-labeled tree (T , ℓ) consists of a tree T and a labeling function ℓ : T → X. A branch of
(T , ℓ) is a maximal sequence ℓ(x0)ℓ(x1) . . . with x0 = ε and xi+1 ∈ c(xi) for i ≥ 0. A run
tree of A induced by σ ∈ (2Σ)ω is a Q-labeled tree (T , ℓ) with ℓ(ε) = q0 and, for all x ∈ T ,
{ℓ(x′) | x′ ∈ c(x)} ∈ δ(ℓ(x), σ|x|). A run tree is accepting if every infinite branch contains
infinitely many accepting states (resp. only finitely many rejecting states). A accepts σ if
there is some accepting run tree. The language L(A) of A is the set of all accepted words.

Two-Player Games. An arena is a tuple A = (V, V0, V1, v0, E), where V , V0, V1 are finite
sets of positions with V = V0 ∪ V1 and V0 ∩ V1 = ∅, v0 ∈ V is the initial position, E ⊆ V × V

is a set of edges such that ∀v ∈ V. ∃v′ ∈ V. (v, v′) ∈ E. Player i controls positions in Vi. A
game G = (A,W) consists of an arena A and a winning condition W ⊆ V ω. A play is an
infinite sequence ρ ∈ V ω such that (ρi, ρi+1) ∈ E for all i ∈ N. The player owning a position
chooses the edge on which the play is continued. A play ρ is initial if ρ0 = v0 holds. It is
winning for Player 0 if ρ ∈ W and winning for Player 1 otherwise. A strategy for Player i is a
function τ : V ∗Vi → V such that (v, v′) ∈ E whenever τ(w, v) = v′ for some w ∈ V ∗, v ∈ Vi.
A play ρ is consistent with a strategy τ if, for all j ∈ N, ρj ∈ Vi implies ρj+1 = τ(ρ|j). A
strategy for Player i is winning if all initial and consistent plays are winning for Player i.

System Architectures. An architecture is a tuple A = (P,Σ, inp, out), where P is a set of
processes consisting of the environment env and a set P− = P \{env} of n system processes, Σ
is a set of Boolean variables, inp = ⟨I1, . . . , In⟩ assigns a set Ij ⊆ Σ of input variables to
each pj ∈ P−, and out = ⟨Oenv, O1, . . . On⟩ assigns a set Oj ⊆ Σ of output variables to each
pj ∈ P . For all pj , pk ∈ P− with j ̸= k, Ij ∩Oj = ∅ and Oj ∩Ok = ∅ hold. The variables Σj
of pj ∈ P− are given by Σj = Ij ∪Oj . The inputs I, outputs O, and variables Σ of the whole
system are defined by X =

⋃
pj∈P−Xj for X ∈ {I,O,Σ}. A is called distributed if |P−| ≥ 2.

In the remainder of this paper, we assume that a distributed architecture is given.

Process Strategies. A strategy for process pi is a function si : (2Ii)∗ → 2Oi mapping a
history of inputs to outputs. We model si as a Moore machine Mi = (T, t0, τ, o) consisting
of a finite set of states T , an initial state t0 ∈ T , a transition function τ : T × 2Ii → T ,
and a labeling function o : T → 2Oi . For a sequence γ = γ0γ1 . . . ∈ (2Ii)ω, Mi produces a
path (t0, γ0 ∪ o(t0))(t1, γ1 ∪ o(t1)) . . . ∈ (T × 2Ii∪Oi)ω, where τ(tj , γj) = tj+1. The projection

B. Finkbeiner and N. Passing 37:5

of a path to the variables is called a trace. The trace produced by Mi on γ ∈ (2Ii)ω is
called the computation of si on γ, denoted comp(si, γ). We say that si is winning for an
LTL formula φ, denoted si |= φ, if comp(si, γ) |= φ holds for all input sequences γ ∈ (2Ii)ω.
Overloading notation with two-player games, we call a process strategy simply a strategy
whenever the context is clear. The parallel composition Mi || Mj of two Moore machines
Mi = (Ti, ti0, τi, oi), Mj = (Tj , tj0, τj , oj) for pi, pj ∈ P− is the Moore machine (T, t0, τ, o)
with inputs (Ii ∪ Ij) \ (Oi ∪ Oj) and outputs Oi ∪ Oj as well as T = Ti × Tj , t0 = (ti0, t

j
0),

τ((t, t′), ι) = (τi(t, (ι ∪ oj(t′)) ∩ Ii), τj(t′, (ι ∪ oi(t)) ∩ Ij)), and o((t, t′)) = oi(t) ∪ oj(t′).

Synthesis. Given a specification φ, synthesis derives strategies s1, . . . , sn for the system
processes such that s1 || · · · || sn |= φ, i.e., such that the parallel composition of the strategies
satisfies φ for all input sequences generated by the environment. If such strategies exist, φ is
called realizable. Bounded synthesis [22] additionally bounds the size of the strategies. The
search for strategies is encoded into a constraint system that is satisfiable if, and only if, φ is
realizable for the size bound. There are SMT, SAT, QBF, and DQBF encodings [22, 11, 4].
We consider a compositional synthesis approach that synthesizes strategies for the processes
separately. Thus, outputs produced by the other system processes are treated similar to
the environment outputs, namely as part of the input sequence of the considered process.
Nevertheless, compositional synthesis derives strategies such that s1 || · · · || sn |= φ holds.

3 Dominant Strategies and Liveness Properties

Given a specification φ, the naïve compositional synthesis approach is to synthesize strategies
s1, . . . , sn for the system processes such that si |= φ holds for all pi ∈ P−. Then, it follows
immediately that s1 || · · · || sn |= φ holds as well. However, since winning strategies are
required to satisfy φ for every input sequence, usually no such individual winning strategies
exist due to complex interconnections in the system. Therefore, the naïve approach fails in
many cases. The notion of remorsefree dominance [9], in contrast, has been successfully used
in compositional synthesis [10, 16]. The main idea is to synthesize dominant strategies for
the system processes separately instead of winning ones. Dominant strategies are, in contrast
to winning strategies, allowed to violate the specification for some input sequence if no other
strategy would have satisfied it in the same situation. Thus, remorsefree dominance is a
weaker requirement than winning and therefore individual dominant strategies exist for more
systems. Formally, remorsefree dominant strategies are defined as follows:

▶ Definition 1 (Dominant Strategy [10]). Let φ be an LTL formula. Let s and t be strategies
for process pi. Then, t is dominated by s, denoted t ⪯ s, if for all input sequences γ ∈ (2Ii)ω
either comp(s, γ) |= φ or comp(t, γ) ̸|= φ holds. Strategy s is called dominant for φ if t ⪯ s

holds for all strategies t for process pi.

Intuitively, a strategy s dominates a strategy t if it is at least as good as t. It is dominant
for φ if it is at least as good as every other possible strategy and thus if it is as good as
possible. As an example, reconsider the message sending system. Let si be a strategy for
process pi that outputs mi in the very first step. It satisfies φ = m1 ∧ m2 on all input
sequences containing at least one m3−i. On all other input sequences, it violates φ. Let ti
be some alternative strategy. Since no strategy for pi can influence m3−i, ti satisfies φ only
on input sequences containing at least one m3−i. Yet, si satisfies φ for such sequences as
well. Hence, si dominates ti and since we chose ti arbitrarily, si is dominant for φ.

FSTTCS 2022

37:6 Synthesizing Dominant Strategies for Liveness

Synthesizing dominant strategies rather than winning ones allows us to synthesize strate-
gies for the processes of a distributed system compositionally, although no winning strategies
for the individual processes exist. Dominant strategies for the individual processes can then
be recomposed to obtain a strategy for the whole system. For safety specifications, the
composed strategy is guaranteed to be dominant for the specification as well:

▶ Theorem 2 (Compositionality of Dominance for Safety Properties [10]). Let φ be an LTL
formula. Let s1 and s2 be dominant strategies for processes p1 and p2, respectively, as well
as for φ. If φ is a safety property, then s1 || s2 is dominant for p1 || p2 and φ.

Compositionality is a crucial property for compositional synthesis: it allows for concluding
that the parallel composition of the separately synthesized process strategies is indeed a
useful strategy for the whole system. Thus, Theorem 2 enables compositional synthesis with
dominant strategies for safety properties. For liveness properties, however, the parallel com-
position of two dominant strategies is not necessarily dominant: consider strategy ti for pi
in the message sending system that waits for m3−i before sending its own message. This
strategy is dominant for φ: for input sequences in which m3−i occurs eventually, ti sends mi

in the next step, satisfying φ. For all other input sequences, no strategy for pi can satisfy φ.
Yet, the parallel composition of t1 and t2 does not send any message; violating φ, while there
exist strategies that satisfy φ, e.g., a strategy sending both m1 and m2 in the first step.

Bounded dominance [10] is a variant of dominance that is compositional for both safety
and liveness properties. Intuitively, it reduces the specification φ to a safety property by
introducing a bound on the number of steps in which the strategy does not make progress
with respect to φ. The progress measure is defined on an equivalent UCA A for φ. The
measure mA of a process strategy s on an input sequence γ ∈ (2Ii)ω is then the supremum
of the number of rejecting states of the runs of A induced by comp(s, γ). Thus, a strategy s
n-dominates a strategy t for A and n ∈ N if for every γ ∈ (2Ii)ω, either mA(comp(s, γ)) ≤ n

or mA(comp(t, γ)) > n holds. If A is a safety automaton, then remorsefree dominance and
bounded dominance coincide. For liveness specifications, however, they differ.

Yet, bounded dominance does not imply dominance: there are specifications φ with a
minimal measure m, i.e., all strategies have a measure of at least m [10]. When choosing a
bound n < m, every strategy is trivially n-dominant for φ, even non-dominant ones. Hence,
the choice of the bound is crucial for bounded dominance. It is not obvious how to determine
a good bound, though: it needs to be large enough to avoid non-dominant strategies. As the
bound has a huge impact on the synthesis time, however, it cannot be chosen too large as
otherwise synthesis becomes infeasible. Especially for specifications with several complex
dependencies between processes, it is hard to determine a proper bound. Therefore, bounded
dominance is not a suitable notion for compositional synthesis for liveness properties. In
the remainder of this paper, we introduce a different variant of dominance that implies
remorsefree dominance and that ensures compositionality also for many liveness properties.

4 Delay-Dominance

In this section, we introduce a new winning condition for strategies, delay-dominance,
which resembles remorsefree dominance but ensures compositionality also for many liveness
properties. It builds on the idea of bounded dominance to not only consider the satisfaction
of the LTL formula φ but to measure progress based on an automaton representation of φ.
Similar to bounded dominance, we utilize visits of rejecting states in a co-Büchi automaton.
Yet, we use an alternating automaton instead of a universal one. Note that delay-dominance

B. Finkbeiner and N. Passing 37:7

can be equivalently formulated on UCAs, yet, using ACAs allows for more efficient synthesis
of delay-dominant strategies (see Section 5). Moreover, we do not require a fixed bound on
the number of visits to rejecting states; rather, we relate visits of rejecting states induced by
the delay-dominant strategy to visits of rejecting states induced by the alternative strategy.

Intuitively, delay-dominance requires that every visit to a rejecting state in the ACA A
caused by the delay-dominant strategy is matched by a visit to a rejecting state caused by
the alternative strategy eventually. The rejecting states of the ACA A are closely related
to the satisfaction of the LTL specification φ: if infinitely many rejecting states are visited,
then φ is not satisfied. Thus, delay-dominance allows a strategy to violate the specification if
all alternative strategies violate it as well. Defining delay-dominance on the rejecting states
of A instead of the satisfaction of φ allows for measuring the progress on satisfying the
specification. Thus, we can distinguish strategies that wait indefinitely for another process
from those that do not: intuitively, a strategy s that waits will visit a rejecting state later
than a strategy t that does not. This visit to a rejecting state is then not matched eventually
by a visit to a rejecting state in t, preventing delay-dominance of s.

Formally, we present a game-based definition for delay-dominance: we introduce a two-
player game, the so-called delay-dominance game, which is inspired by the delayed simulation
game for alternating Büchi automata [24]. Given an ACA A = (Q, q0, δ, F), two strategies s
and t for some process pi, and an input sequence γ ∈ (2Ii)ω, the delay-dominance game
determines whether s delay-dominates t for A on input γ. Intuitively, the game proceeds
in rounds. At the beginning of each round, a pair (p, q) of states p, q ∈ Q and the number
of the iteration j ∈ N is given, where p represents a state that is visited by a run of A
induced by comp(t, γ), while q represents a state that is visited by a run of A induced by
comp(s, γ). We call p the alternative state and q the dominant state. Let σs := comp(s, γ)
and σt := comp(t, γ). The players Duplicator and Spoiler, where Duplicator takes on the
role of Player 0, play as follows: 1. Spoiler chooses a set c ∈ δ(p, σtj). 2. Duplicator chooses
a set c′ ∈ δ(q, σsj). 3. Spoiler chooses a state q′ ∈ c′. 4. Duplicator chooses a state p′ ∈ c.
The starting pair of the next round is then ((p′, q′), j + 1). Starting from ((q0, q0), 0), the
players construct an infinite play which determines the winner. Duplicator wins for a play if
every rejecting dominant state is matched by a rejecting alternative state eventually.

Both the delay-dominant strategy s and the alternative strategy t may control the nonde-
terministic transitions of A, while the universal ones are uncontrollable. Since, intuitively,
strategy t is controlled by an opponent when proving that s delay-dominates t, we thus
have a change in control for t: for s, Duplicator controls the existential transitions of A and
Spoiler controls the universal ones. For t, Duplicator controls the universal transitions and
Spoiler controls the existential ones. Note that the order in which Spoiler and Duplicator
make their moves is crucial to ensure that Duplicator wins the game when considering the
very same process strategies. By letting Spoiler move first, Duplicator is able to mimic – or
duplicate – Spoiler’s moves. Formally, the delay-dominance game is defined as follows:
▶ Definition 3 (Delay-Dominance game). Let A=(Q, q0, δ, F) be an ACA. Based on A, we
define the sets S∃ = (Q×Q) × N, D∃ = (Q×Q× 2Q) × N, S∀ = (Q×Q× 2Q × 2Q) × N,
and D∀ = (Q×Q×Q× 2Q) × N. Let σ, σ′ ∈ (2Σi)ω be infinite sequences. Then, the delay-
dominance game (A, σ, σ′) is the game G = (A,W) defined by A = (V, V0, V1, v0, E) with
V = S∃ ∪D∃ ∪ S∀ ∪D∀, V0 = D∃ ∪D∀, and V1 = S∃ ∪ S∀ as well as

E = {(((p, q), j), ((p, q, c), j) | c ∈ δ(p, σj)} ∪ {(((p, q, c), j), ((p, q, c, c′), j) | c′ ∈ δ(q, σ′
j)}

∪ {(((p, q, c, c′), j), ((p, q, c, q′), j) | q′ ∈ c′} ∪ {(((p, q, c, q′), j), ((p′, q′), j + 1) | p′ ∈ c},

and the winning condition W = {ρ ∈ V ω | ∀j ∈ N. fdom(ρj) ∈ F → ∃j′ ≥ j. falt(ρj′) ∈ F},
where falt(v) := 1(1(v)) and fdom(v) := 2(1(v)), i.e., falt(v) and fdom(v) map a position v

to the alternative state and the dominant state of v, respectively.

FSTTCS 2022

37:8 Synthesizing Dominant Strategies for Liveness

q0

q1

q2

q3

¬m1 ∧ ¬m2

m1 ∧ ¬m2

¬m1 ∧m2

m1 ∧m2

m
2

¬m2

m1

¬m1

⊤

(a) ACA Aφ for φ = m1 ∧ m2.

q0 q1 q2 q3

q4 q5

o

⊤

o ¬o

o

⊤

i

¬i
⊤

¬o

¬o

(b) ACA Aψ for ψ = o ∨ i.

Figure 1 Alternating co-Büchi automata Aφ and Aψ. Universal choices are depicted by connecting
the transitions with a gray arc. Rejecting states are marked with double circles.

We now define the notion of delay-dominance based on the delay-dominance game.
Intuitively, the winner of the game for the computations of two strategies s and t determines
whether or not s delay-dominates t on a given input sequence. Similar to remorsefree
dominance, we then lift this definition to delay-dominant strategies. Formally:

▶ Definition 4 (Delay-Dominant Strategy). Let A be an ACA. Let s and t be strategies for
process pi. Then, s delay-dominates t on input sequence γ ∈ (2Ii)ω for A, denoted t ⊴A

γ s,
if Duplicator wins the delay-dominance game (A, comp(t, γ), comp(s, γ)). Strategy s delay-
dominates t for A, denoted t ⊴A s, if t ⊴A

γ s holds for all input sequences γ ∈ (2Ii)ω.
Strategy s is delay-dominant for A if, for every alternative strategy t for pi, t ⊴A s holds.

As an example for delay-dominance, consider the message sending system again. Let si
be a strategy for process pi that outputs mi in the very first step and let ti be a strategy
that waits for m3−i before sendings its own message. An ACA Aφ with L(Aφ) = L(φ) is
depicted in Figure 1a. Note that Aφ is deterministic and thus every sequence induces a
single run tree with a single branch. Hence, for every input sequence γ ∈ (2Ii)ω, the moves
of both Spoiler and Duplicator are uniquely defined by the computations of t1 and s1 on γ,
respectively. Therefore, we only provide the state pairs (p, q) of the delay-dominance game,
not the intermediate tuples. First, consider an input sequence γ ∈ (2I1)ω that contains the
very first m2 at point in time ℓ. Then, the run of Aφ on comp(s1, γ) starts in q0, moves to q1
immediately if ℓ > 0, stays there up to the occurrence of m2 and then moves to q3, where it
stays forever. If ℓ = 0, then the run moves immediately from q0 to q3. The run of comp(t1, γ),
in contrast, stays in q0 until m2 occurs, then moves to q2 and then immediately to q3, where
it stays forever. Thus, we obtain the unique sequence (q0, q0)(q0, q1)ℓ−1(q2, q3)(q3, q3)ω of
state pairs in the delay-dominance game (Aφ, comp(t1, γ), comp(s1, γ)). The last rejecting
alternative state, i.e., a rejecting state induced by comp(t1, γ) occurs at point in time ℓ+ 1,
namely q2, while the last rejecting dominant state i.e., a rejecting state induced by comp(s1, γ),
occurs at point in time ℓ, namely q1. Thus, t1 ⊴Aφ

γ s1 holds. In fact, t′1 ⊴Aφ
γ s1 holds for all

alternative strategies t′1 for such an input sequence γ since every strategy t′1 for p1 induces at
least ℓ visits to rejecting states due to the structure of γ. Second, consider an input sequence
γ′ ∈ (2Ii)ω that does not contain any m2. Then, the run of Aφ on a computation of any
strategy t′1 on γ′ never reaches q3 and thus only visits rejecting states. Hence, in particular,
every visit to a rejecting state induced by comp(s1, γ

′) is matched by a visit to a rejecting
state induced by comp(t′1, γ′) for all strategies t′1. Thus, t′1 ⊴Aφ

γ′ s1 holds for all alternative
strategies t′1 as well. We can thus conclude that s1 is delay-dominant for Aφ, meeting our
intuition that s1 should be allowed to violate φ on input sequences that do not contain any
m2. Strategy t1, in contrast, is remorsefree dominant for φ but not delay-dominant for Aφ:
consider again an input sequence γ ∈ (2I1)ω that contains the very first m2 at point in

B. Finkbeiner and N. Passing 37:9

time ℓ. For the delay-dominance game (Aφ, comp(s1, γ), comp(t1, γ)), we obtain the following
sequence of state pairs: (q0, q0)(q1, q0)ℓ−1(q3, q2)(q3, q3)ω. It contains a rejecting dominant
state, i.e., a rejecting state induced by comp(t1, γ), at point in time ℓ + 1, while the last
rejecting alternative state occurs at point in time ℓ. Hence, t1 does not delay-dominate s1,
preventing that it is delay-dominant to wait for the other process indefinitely.

Next, consider the LTL formula ψ = o ∨ i, where i is an input variable and o

is an output variable. An ACA Aψ with L(Aψ) = L(ψ) is depicted in Figure 1b. Note
that it has both existential and universal transitions. Consider a process strategy s that
outputs o in every step. Let t be some alternative strategy and let γ be some input sequence.
Then, Duplicator encounters an existential choice in state q0 for s in the very first round
of the delay-dominance game (Aψ, comp(t, γ), comp(s, γ)): it can choose to move to q1 or
to q4. If Duplicator chooses to move to q1, then the only possible successor state in every
run of Aψ induced by comp(s, γ) is q1. Thus, irrespective of Spoiler’s moves, the sequence
of dominant states in all consistent initial plays is given by q0q

ω
1 . Since neither q0 nor q1

is rejecting, Duplicator wins the game. Therefore, there exists a winning strategy for
Duplicator for the game (Aψ, comp(t, γ), comp(s, γ)) for all t and γ, namely choosing to
move to q1 from q0, and thus s is delay-dominant. Second, consider a strategy t that does
not output o in the first step but outputs o in every step afterwards. Let γ be an input
sequence that does not contain i at the second point in time. Then, Duplicator encounters
an existential choice in state q0 for t in the very first round of the delay-dominance game
(Aψ, comp(s, γ), comp(t, γ)). Yet, if Duplicator chooses the transition from q0 to q4, then
every consistent play will contain infinitely many rejecting dominant states since the structure
of γ enforces that every consistent play enters q5 in its dominant state in the next round of
the game. Otherwise, i.e., if Duplicator chooses the universal transition to both q1 and q2,
then Spoiler decides which of the states is entered. If Spoiler chooses q2, then every consistent
play visits a rejecting dominant state, namely q2, in the second round of the game. If Spoiler
further chooses to move from q0 to q1 for the alternative strategy s, then, as shown above, no
rejecting dominant states are visited in a consistent play at all. Thus, there exists a winning
strategy for Spoiler and therefore t is not delay-dominant for Aψ.

Recall that one of the main weaknesses of bounded dominance is that every strategy,
even a non-dominant one, is trivially n-dominant if the bound n is chosen too small. Every
delay-dominant strategy, in contrast, is also remorsefree dominant. The main idea is that
a winning strategy τ of Duplicator in the delay-dominance game defines a run tree of the
automaton induced by the delay-dominant strategy s such that all branches either visit only
finitely many rejecting states or such that all rejecting states are matched eventually with
a rejecting state in some branch, which is also defined by τ , of all run trees induced by an
alternative strategy. Thus, s either satisfies the specification, or an alternative strategy does
not satisfy it either. For the formal proof, we refer the reader to [19].

▶ Theorem 5. Let φ be an LTL formula. Let Aφ be an ACA with L(Aφ) = L(φ). Let s be a
strategy for process pi. If s is delay-dominant for Aφ, then s is remorsefree dominant for φ.

Clearly, the converse does not hold. For instance, a strategy in the message sending
system that waits for the other process to send its message first is remorsefree dominant
for φ but not delay-dominant for the ACA depicted in Figure 1a as pointed out above.

Given an LTL formula φ, for remorsefree dominance it holds that if φ is realizable, then
every strategy that is dominant for φ is also winning for φ [10]. This is due to the fact that
the winning strategy needs to be taken into account as an alternative strategy for every
dominant one, and that remorsefree dominance is solely defined on the satisfaction of the
specification. With Theorem 5 the same property follows for delay-dominance.

FSTTCS 2022

37:10 Synthesizing Dominant Strategies for Liveness

▶ Lemma 6. Let φ be an LTL formula. Let Aφ be an ACA with L(Aφ) = L(φ). If φ is
realizable, then every delay-dominant strategy for Aφ is winning for φ as well.

A critical shortcoming of remorsefree dominance is its non-compositionality for liveness
properties. This restricts the usage of dominance-based compositional synthesis algorithms
to safety specifications, which are in many cases not expressive enough. Delay-dominance,
in contrast, is specifically designed to be compositional for more properties: we identified
that a crucial requirement for the compositionality of a process property such as remorsefree
dominance or delay-dominance is the existence of bad prefixes for strategies that do not
satisfy the process requirement. Since remorsefree dominance solely considers the satisfaction
of the specification φ, a bad prefix for a strategy that is not remorsefree dominant boils down
to a bad prefix of L(φ) and therefore compositionality cannot be guaranteed for liveness
properties. As delay-dominance takes the ACA representing φ and, in particular, its rejecting
states into account, the absence of a bad prefix for L(φ) does not necessarily result in the
absence of a bad prefix for delay-dominance. First, we define such bad prefixes formally:

▶ Definition 7 (Bad Prefixes for Delay-Dominance). Let P be the set of all system processes
and all parallel compositions of subsets of system processes. Let Ip and Op be the sets of inputs
and outputs of p ∈ P. Let A be an ACA. Then, A ensures bad prefixes for delay-dominance if,
for all p ∈ P and all strategies s for p for which there exists some γ ∈ (2Ip)ω such that s ̸⊴A

γ t

holds for some alternative strategy t, there is a finite prefix η ∈ (2Ip∪Op)∗ of comp(s, γ) such
that for all infinite extensions σ ∈ (2Ip∪Op)ω of η, there is an infinite sequence σ′ ∈ (2Ip∪Op)ω
with σ ∩ Ip = σ′ ∩ Ip such that Duplicator loses the delay-dominance game (A, σ′, σ).

Intuitively, an ACA that ensures bad prefixes for delay-dominance guarantees that for
every strategy that is not delay-dominant, there exists a point in time at which its behavior
ultimately prevents delay-dominance, irrespective of any future behavior. For more details
on bad prefixes for delay-dominance and their existence in co-Büchi automata, we refer to
the full version [19]. If an ACA ensures bad prefixes for delay-dominance, compositionality
is guaranteed: if the parallel composition of two delay-dominant strategies s1 and s2 is not
delay-dominant, then the behavior of both processes at the last position of the smallest bad
prefix reveals which one of them is responsible for Duplicator losing the game. Note that also
both processes can be responsible simultaneously. Since there is an alternative strategy t

for the composed system for which Duplicator wins the game, as otherwise s1 || s2 would be
delay-dominant, the strategy of the process pi which is responsible for Duplicator losing the
game cannot be delay-dominant as there is an alternative strategy, namely t restricted to the
outputs of pi, that allows Duplicator to win the game. The formal proof is provided in [19].

▶ Theorem 8 (Compositionality of Delay-Dominance). Let A be an ACA that ensures bad pre-
fixes for delay-dominance. Let s1 and s2 be delay-dominant strategies for A and processes p1
and p2, respectively. Then, s1 || s2 is delay-dominant for A and p1 || p2.

From Theorems 5 and 8 it then follows immediately that the parallel composition of two
delay-dominant strategies is also remorsefree dominant if the ACA ensures bad prefixes:

▶ Corollary 9. Let φ be an LTL formula. Let Aφ be an ACA with L(Aφ) = L(φ) that
ensures bad prefixes for delay-dominance. Let s1 and s2 be delay-dominant strategies for Aφ

and processes p1 and p2, respectively. Then, s1 ||s2 is remorsefree dominant for φ and p1 ||p2.

With Lemma 6 and Theorem 8 we obtain that, given a specification φ and an ACA Aφ

with L(Aφ) = L(φ) that ensures bad prefixes for delay-dominance, the parallel composition
of delay-dominant strategies for Aφ and all processes of a distributed system is winning if φ is
realizable. Hence, delay-dominance can be soundly used for dominance-based compositional
synthesis approaches when ensuring the bad prefix criterion. In the next section, we thus
introduce an automaton construction for synthesizing delay-dominant strategies.

B. Finkbeiner and N. Passing 37:11

φ

¬φ

Def. 10ACA 2Σi

Aφ

ACA 2Σi

A¬φ ACA 2Σi∪O′
i

BA
Aφ

UCA 2Σi∪O′
i

BU
Aφ

UCA 2Σi

Add
AφMiyano-

Hayashi

universal

projection

Figure 2 Overview of the construction of a universal co-Büchi automaton Add
Aφ

recognizing
delay-dominant strategies for the alternating co-Büchi automaton Aφ with L(Aφ) = L(φ). The
lower parts of the boxes list the automaton type (alternating or universal) and the alphabet.

5 Synthesizing Delay-Dominant Strategies

In this section, we introduce how delay-dominant strategies can be synthesized using existing
tools for synthesizing winning strategies. We focus on utilizing bounded synthesis tools such
as BoSy [12]. Mostly, we use bounded synthesis as a black box procedure throughout this
section. Therefore, we do not go into detail here and refer the interested reader to [22, 11]. A
crucial observation regarding bounded synthesis that we utilize, however, is that it translates
the given specification φ into an equivalent universal co-Büchi automaton Aφ and then derives
a strategy such that, for every input sequence, the runs of Aφ induced by the computation
of the strategy on the input sequence visit only finitely many rejecting states.

To synthesize delay-dominant strategies instead of winning ones, we can thus use existing
bounded synthesis algorithms by replacing the universal co-Büchi automaton Aφ with one
encoding delay-dominance, i.e., with an automaton Add

Aφ
such that its runs induced by the

computations of a delay-dominant strategy on all input sequences visit only finitely many
rejecting states. This idea is similar to the approach for synthesizing remorsefree dominant
strategies [10, 16]. The automaton for recognizing delay-dominant strategies, however, differs
inherently from the one for recognizing remorsefree dominant strategies.

The automaton construction consists of several steps. An overview is given in Figure 2.
Since delay-dominance is not defined on the LTL specification φ itself but on an equivalent
alternating co-Büchi automaton, we first translate φ into an alternating co-Büchi automa-
ton Aφ with L(Aφ) = L(φ). For this, we utilize well-known algorithms for translating LTL
formulas into equivalent alternating Büchi automata as well as the duality of the Büchi and
co-Büchi acceptance condition and of nondeterministic and universal branching. More details
on the translation of LTL formulas into alternating co-Büchi automata are provided in [19].
Similarly, we construct an alternating co-Büchi automaton A¬φ with L(A¬φ) = L(¬φ)
from ¬φ. The centerpiece of the construction is an alternating co-Büchi automaton BA

Aφ

constructed from Aφ and A¬φ that recognizes whether t ⊴Aφ
γ s holds for Aφ, input se-

quence γ ∈ (2Ii)ω and strategies s and t for process pi. The alternating automaton BA
Aφ

is then translated into an equivalent universal co-Büchi automaton BU
Aφ

, for example with
the Miyano-Hayashi algorithm [30]. Lastly, we translate BU

Aφ
into a universal co-Büchi

automaton that accounts for requiring a strategy s to delay-dominate all other strategies t
and not only a particular one utilizing universal projection. In the remainder of this section,
we describe all steps of the construction in detail and prove their correctness.

5.1 Construction of the ACA BA
Aφ

From the two ACAs Aφ and A¬φ, we construct an alternating co-Büchi automaton BA
Aφ

that
recognizes whether t ⊴Aφ

γ s holds for Aφ, input sequence γ ∈ (2Ii)ω and process strategies s
and t for process pi. The construction relies on the observation that t ⊴Aφ

γ s holds if, and

FSTTCS 2022

37:12 Synthesizing Dominant Strategies for Liveness

only if, either (i) comp(t, γ) ̸|= φ holds or (ii) we have t ⊴Aφ
γ s and every initial play of

the delay-dominance game that is consistent with the winning strategy of Duplicator visits
only finitely many rejecting dominant states. The proof of this observation is provided
in [19]. Therefore, the automaton BA

Aφ
consists of two parts, one accounting for (i) and

one accounting for (ii), and guesses nondeterministically in the initial state which part is
entered. The ACA A¬φ with L(A¬φ) = L(¬φ) accounts for (i). For (ii), we intuitively
build the product of two copies of the ACA Aφ with L(Aφ) = L(φ), one for each of the
considered process strategies s and t. Note that similar to the change of control for t in
the delay-dominance game, we consider the dual transition function of Aφ, i.e., the one
where conjunctions and disjunctions are swapped, for the copy of Aφ for t. We keep track of
whether we encountered a situation in which a rejecting state was visited for s while it was
not for t. This allows for defining the set of rejecting states.

Note that we need to allow for differentiating valuations of output variables computed
by s and t on the same input sequence. Therefore, we extend the alphabet of BA

Aφ
: in

addition to the set Σi of variables of process pi, which contains input variables Ii and output
variables Oi, we consider the set O′

i := {o′ | o ∈ Oi} of primed output variables of pi, where
every output variable is marked with a prime to obtain a fresh symbol. The set Σ′

i of primed
variables of pi is then given by Σ′

i := Ii ∪ O′
i. Intuitively, the output variables Oi depict

the behavior of the delay-dominant strategy s, while the primed output variables O′
i depict

the behavior of the alternative strategy t. The alphabet of BA
Aφ

is then given by 2Σi∪O′
i .

This is equivalent to 2Σi∪Σ′
i since the input variables are never primed to ensure that we

consider the same input sequence for both strategies. In the following, we use the functions
pr : Σi → Σ′

i and unpr : Σ′
i → Σi to switch between primed variables and normal ones: given

a valuation a ∈ Σi of variables, pr(a) replaces every output variable o ∈ Oi occurring in a

with its primed version o′. For a valuation a ∈ Σ′
i, unpr(a) replaces every primed output

variable o′ ∈ O′
i occurring in a with its normal unprimed version o. We extend pr and unpr

to finite and infinite sequences as usual. The ACA BA
Aφ

is then constructed as follows:

▶ Definition 10. Let φ be an LTL formula over alphabet 2Σi . Let Aφ = (Q, q0, δ, F) be an
ACA with L(φ) = L(Aφ). Let A¬φ = (Qc, qc0, δc, F c) be an ACA with L(¬φ) = L(A¬φ). We
construct the ACA BA

Aφ
= (QA, QA

0 , δ
A, FA) with alphabet 2Σi∪O′

i as follows.
QA := (Q×Q× {⊤,⊥}) ∪Qc

QA
0 := (q0, q0,⊤)

FA := (Q×Q× {⊥}) ∪ F c

δA : ((Q×Q× {⊤,⊥}) ∪Qc) × 2Σi∪O′
i → (Q×Q× {⊤,⊥}) ∪Qc with

δA(qc, ι̃) := δc(qc, ι′) for qc ∈ Qc

δA((q0, q0,⊤), ι̃) := δc(q0, ι
′) ∨

∧
c∈δ(q0,ι′)

∨
c′∈δ(q0,ι)

∧
q′∈c′

∨
p′∈c

ϑ(p′, q′,⊤)

δA((p, q,m), ι̃) :=
∧

c∈δ(p,ι′)

∨
c′∈δ(q,ι)

∧
q′∈c′

∨
p′∈c

ϑ(p′, q′,m)

where ι := ι̃ ∩ Σi, ι′ := unpr(ι̃ ∩ Σ′
i), and ϑ : (Q×Q× {⊤,⊥}) → Q×Q× {⊤,⊥} with

ϑ(p, q,m) :=


(p, q,⊥) if p ̸∈ F , q ∈ F , and m = ⊤
(p, q,⊥) if p ̸∈ F and m = ⊥
(p, q,⊤) otherwise

B. Finkbeiner and N. Passing 37:13

Note that BA
Aφ

indeed consists of two parts: the one defined by states of the form (p, q,m),
and the one defined by the states of A¬φ. By definition of δA, these parts are only connected
in the initial state of BA

Aφ
, where a nondeterministic transition to the respective successors

in both parts ensures that choosing nondeterministically whether (i) or (ii) will be satisfied
is possible. For states of the form (p, q,m), the mark m ∈ {⊤,⊥} determines whether there
are pending visits to rejecting states in the copy of Aφ for the dominant strategy, i.e., the
second component q of (p, q,m). A pending visit to a rejecting state is one that is not yet
matched by a visit to a rejecting state in the copy of Aφ for the alternative strategy. Thus, ϑ
defines that if a visit to a rejecting dominant state, that is not immediately matched with
a rejecting alternative state, is encountered, the mark is set to ⊥. As long as no rejecting
alternative state is visited, the mark stays set to ⊥. If a matching rejecting alternative state
occurs, however, the mark is reset to ⊤. States of BA

Aφ
marked with ⊥ are then defined to be

rejecting states, ensuring that a visit to a rejecting dominant state is not pending forever.
The ACA BA

Aφ
constructed from ACAs Aφ and A¬φ according to Definition 10 is sound

and complete in the sense that it recognizes whether or not a strategy s delay-dominates
another strategy t on an input sequence γ ∈ (2Ii)ω. That is, BA

Aφ
accepts the infinite word

comp(s, γ)∪pr(comp(t, γ)∩Oi) if, and only if, t ⊴Aφ
γ s holds for Aφ. The main idea is that a

run tree of BA
Aφ

can be translated into a strategy for Duplicator in the delay-dominance game
and vice versa since, by construction, both define the existential choices in Aφ for s and the
universal choices in Aφ for t. Thus, for a run tree of BA

Aφ
whose branches all visit only finitely

many rejecting states, there exists a strategy for Duplicator in the delay-dominance game
that ensures that for all consistent plays either comp(t, γ) ̸|= φ holds or, by construction of ϑ
and δA, every rejecting dominant state is matched by a rejecting alternative state eventually.
Similarly, a winning strategy for Duplicator can be translated into a run tree r of BA

Aφ
. If

comp(t, γ) |= φ holds, then r visits only finitely many rejecting states since only finitely many
rejecting dominant states are visited. If comp(t, γ) ̸|= φ holds, then there exists a run tree,
namely one entering the part of BA

Aφ
that coincides with A¬φ, whose branches all visit only

finitely many rejecting states. The proof is given in [19].

▶ Lemma 11. Let φ be an LTL formula. Let Aφ and A¬φ be ACAs with L(φ) = L(Aφ)
and L(¬φ) = L(A¬φ). Let BA

Aφ
be the ACA constructed from Aφ and A¬φ according to

Definition 10. Let s and t be strategies for process pi. Let γ ∈ (2Ii)ω. Let σ ∈ (2Σi∪O′
i)ω with

σ := comp(s, γ) ∪ pr(comp(t, γ) ∩Oi). Then, BA
Aφ

accepts σ if, and only if, t ⊴Aφ
γ s holds.

Thus, BA
Aφ

determines whether or not a strategy s delay-dominates a strategy t. How-
ever, BA

Aφ
cannot directly be used for synthesizing delay-dominant strategies since (i) BA

Aφ
is

an alternating automaton, while we require a universal automaton for bounded synthesis,
and (ii) BA

Aφ
considers one particular alternative strategy t. For recognizing delay-dominance,

we need to consider all alternative strategies, though. Thus, we describe in the remainder of
this section how BA

Aφ
can be translated into a UCA for bounded synthesis.

5.2 Construction of the UCA Add
Aφ

Next, we translate the ACA BA
Aφ

constructed in the previous subsection to a UCA Add
Aφ

that can be used for synthesizing delay-dominant strategies. As outlined before, we need
to (i) translate BA

Aφ
into a UCA, and (ii) ensure that the automaton considers all alternative

strategies instead of a particular one. Thus, we proceed in two steps. First, we translate BA
Aφ

into an equivalent UCA BU
Aφ

. We utilize the Miyano-Hayashi algorithm [30] for translating
ABAs into NBAs. Since we are considering co-Büchi automata instead of Büchi automata,

FSTTCS 2022

37:14 Synthesizing Dominant Strategies for Liveness

we further make use of the duality of nondeterministic and universal branching and the Büchi
and co-Büchi acceptance conditions. The translation introduces an exponential blow-up in
the number of states. For the full construction, we refer to [19].

▶ Lemma 12. Let A be an alternating co-Büchi automaton with m states. There exists a
universal co-Büchi automaton B with O(2m) states such that L(A) = L(B) holds.

Next, we construct the desired universal co-Büchi automaton Add
Aφ

that recognizes delay-
dominant strategies for Aφ. For this sake, we need to adapt BU

Aφ
to consider all alternative

strategies instead of a particular one. Similar to the automaton construction for synthesizing
remorsefree dominant strategies [10, 16], we utilize universal projection:

▶ Definition 13 (Universal Projection). Let A = (Q,Q0, δ, F) be a UCA over alphabet Σ and
let X ⊂ Σ. The universal projection of A to X is the UCA πX(A) = (Q,Q0, πX(δ), F) over
alphabet X, where πX(δ) = {(q, a, q′) ∈ Q× 2X ×Q | ∃b ∈ 2Σ\X. (q, a ∪ b, q′) ∈ δ}.

The projected automaton πX(A) for a UCA A over Σ and a set X ⊂ Σ contains the
transitions of A for all possible valuations of the variables in Σ \X. Hence, for a sequence
σ ∈ (2X)ω, all runs of A on sequences extending σ with some valuation of the variables
in Σ \X are also runs of πX(A). Since both A and πX(A) are universal automata, πX(A)
thus accepts a sequence σ ∈ (2X)ω if, and only if, A accepts all sequences extending σ with
some valuation of the variables in Σ \X. The proof is given in [19].

▶ Lemma 14. Let A be a UCA over alphabet Σ and let X ⊂ Σ. Let σ ∈ (2X)ω. Then, πX(A)
accepts σ if, and only if A accepts all σ′ ∈ (2Σ)ω with σ′ ∩X = σ.

We utilize this property to obtain a universal co-Büchi automaton Add
Aφ

from BU
Aφ

that
considers all possible alternative strategies instead of only a particular one: we project to
the unprimed variables of pi, i.e., to Σi, thereby quantifying universally over the alternative
strategies. We thus obtain a UCA that recognizes delay-dominant strategies as follows:

▶ Definition 15 (Delay-Dominance Automaton). Let φ be an LTL formula. Let Aφ, A¬φ
be ACAs with L(Aφ) = L(φ), L(A¬φ) = L(¬φ). Let BA

Aφ
be the ACA constructed from Aφ

and A¬φ according to Definition 10. Let BU
Aφ

be a UCA with L(BA
Aφ

) = L(BU
Aφ

). The
delay-dominance UCA Add

Aφ
for Aφ and process pi is then given by Add

Aφ
:= πΣi(BU

Aφ
).

Utilizing the previous results, we can now show soundness and completeness of the
delay-dominance universal co-Büchi automaton Add

Aφ
: from Lemma 11, we know that BA

Aφ

recognizes whether or not a strategy s for a process pi delay-dominates another strategy t
for pi for Aφ on an input sequence γ ∈ (2Ii)ω. By Lemma 12, we have L(BU

Aφ
) = L(BA

Aφ
).

With the definition of the delay-dominance UCA, namely Add
Aφ

:= πΣi(BU
Aφ

), as well as with
Lemma 14, it then follows that Add

Aφ
accepts comp(s, γ) for all input sequences γ ∈ (2Ii)ω if,

and only if, s is delay-dominant for Aφ. For the formal proof, we refer to [19].

▶ Theorem 16 (Soundness and Completeness). Let φ be an LTL formula and let Aφ be an
ACA with L(φ) = L(Aφ). Let Add

Aφ
be the delay-dominance UCA for Aφ as constructed in

Definition 15. Let s be a process strategy for process pi. Then Add
Aφ

accepts comp(s, γ) for
all input sequences γ ∈ (2Ii)ω, if, and only if s is delay-dominant for Aφ and pi.

Furthermore, Add
Aφ

is of convenient size: for an LTL formula φ, there is an ACA Aφ with
L(Aφ) = L(φ) such that Add

Aφ
constructed from Aφ is of exponential size in the squared

length of the formula φ. This follows from Lemma 12 and from the facts that (i) Aφ and A¬φ
both are of linear size in the length of the LTL formula φ, and (ii) universal projection
preserves the automaton size. The proof is given in [19].

B. Finkbeiner and N. Passing 37:15

▶ Lemma 17. Let φ be an LTL formula and let s be a strategy for process pi. There is an
ACA Aφ of size O(|φ|) with L(Aφ) = L(φ) and a UCA Add

Aφ
of size O(2|φ|2) such that Add

Aφ

accepts comp(s, γ) for all γ ∈ (2Ii)ω, if, and only if, s is delay-dominant for Aφ and pi.

Since the automaton construction described in this section is sound and complete, the
UCA Add

Aφ
can be used for synthesizing delay-dominant strategies. In fact, it immediately

enables utilizing existing bounded synthesis tools for the synthesis of delay-dominant strategies
by replacing the UCA recognizing winning strategies with Add

Aφ
.

Note that, similar as for the UCA recognizing remorsefree dominance [10], Add
Aφ

can
be translated into a nondeterministic parity tree automaton with an exponential number
of colors and a doubly-exponential number of states in the squared length of the formula.
Synthesizing delay-dominant strategies thus reduces to checking tree automata emptiness
and, if the automaton is non-empty, to extracting a Moore machine representing a process
strategy from an accepted tree. This can be done in exponential time in the number of colors
and in polynomial time in the number of states [25]. With Lemma 17, a doubly-exponential
complexity for synthesizing delay-dominant strategies thus follows:

▶ Theorem 18. Let φ be an LTL formula and let Aφ be an ACA with L(Aφ) = L(φ). If
there exists a delay-dominant strategy for Aφ, then it can be computed in 2EXPTIME.

It is well-known that synthesizing winning strategies is 2EXPTIME-complete [32]. Since
there exists a UCA of exponential size in the length of the formula which recognizes remorsefree
dominant strategies, dominant strategies can also be synthesized in 2EXPTIME [10]. Synthe-
sizing delay-dominant strategies rather than winning or remorsefree dominant ones thus does
not introduce any overhead, while it allows for a simple compositional synthesis approach for
distributed systems for many safety and liveness specifications.

6 Compositional Synthesis with Delay-Dominant Strategies

In this section, we describe a compositional synthesis approach that utilizes delay-dominant
strategies. We extend the algorithm described in [10] from safety specifications to general
properties by synthesizing delay-dominant strategies instead of remorsefree dominant ones.
Hence, given a distributed architecture and an LTL specification φ, the compositional
synthesis algorithm proceeds in four steps. First, φ is translated into an equivalent ACA Aφ

using standard algorithms. Second, for each system process pi, we construct the UCA Add
Aφ

that recognizes delay-dominant strategies for φ and pi as described in Section 5. Note that
although the initial automaton Aφ is the same for every process pi, the UCAs recognizing
delay-dominant strategies differ: since the processes have different sets of output variables,
already the alphabets of the intermediate ACA BA

Aφ
differ for different processes. Third, a

delay-dominant strategy si is synthesized for each process pi from the respective UCA Add
Aφ

with bounded synthesis. Lastly, the strategies s1, . . . , sn are composed according to the
definition of the parallel composition of Moore machines (see Section 2) into a single strategy s
for the whole distributed system. By Theorem 8, the composed strategy s is delay-dominant
for Aφ and the whole system if Aφ ensures bad prefixes for delay-dominance. If φ is realizable,
then, by Lemma 6, strategy s is guaranteed to be winning for φ.

Note that even for realizable LTL formulas φ, there does not necessarily exist a delay-
dominant strategy since delay-dominance is not solely defined on the satisfaction of φ but on
the structure of an equivalent ACA Aφ. In certain cases, Aφ can thus “punish” the delay-
dominant strategy by introducing rejecting states at clever positions that do not influence
acceptance but delay-dominance, preventing the existence of a delay-dominant strategy.

FSTTCS 2022

37:16 Synthesizing Dominant Strategies for Liveness

However, we experienced that an ACA Aφ constructed with standard algorithms from an
LTL formula φ does not punish delay-dominant strategies since Aφ thoroughly follows the
structure of φ and thus oftentimes does not contain unnecessary rejecting states. Furthermore,
such an ACA oftentimes ensure bad prefixes for delay-dominance: in [19], we discuss under
which circumstances the bad prefix property is not satisfied and identify critical structures in
co-Büchi automata. When constructing ACAs with standard algorithms from LTL formulas,
such structures rarely – if ever – exist. Simple optimizations like removing rejecting states
that do not lie in a cycle from the set of rejecting states have a positive impact on both
the existence of delay-dominant strategies and on ensuring bad prefixes: such states cannot
be visited infinitely often and thus removing them from the set of rejecting states does not
alter the language. Nevertheless, rejecting states can enforce non-delay-dominance and thus
removing unnecessary rejecting states can result in more strategies being delay-dominant.
Note that with this optimization it, for instance, immediately follows that for safety properties
the parallel composition of delay-dominant strategies is delay-dominant. Thus, we experienced
that for an ACA Aφ constructed from an LTL formula φ with standard algorithms it holds
in many cases that (i) if φ allows for a remorsefree dominant strategy, then Aφ allows for
an delay-dominant strategy, and (ii) the parallel composition of delay-dominance strategies
for Aφ is delay-dominant as well. Therefore, the compositional synthesis algorithm presented
in this section is indeed applicable for many LTL formulas.

7 Conclusion

We have presented a new winning condition for process strategies, delay-dominance, that
allows a strategy to violate a given specification in certain situations. In contrast to the
classical notion of winning, delay-dominance can thus be used for individually synthesizing
strategies for the processes in a distributed system in many cases, therefore enabling a simple
compositional synthesis approach. Delay-dominance builds upon remorsefree dominance,
where a strategy is allowed to violate the specification as long as no other strategy would have
satisfied it in the same situation. However, remorsefree dominance is only compositional for
safety properties. For liveness properties, the parallel composition of dominant strategies is
not necessarily dominant. This restricts the use of dominance-based compositional synthesis
algorithms to safety specifications, which are often not expressive enough. Delay-dominance,
in contrast, is specifically designed to be compositional for more properties. We have
introduced a game-based definition of delay-dominance as well as a criterion such that, if the
criterion is satisfied, compositionality of delay-dominance is guaranteed; both for safety and
liveness properties. Furthermore, every delay-dominant strategy is remorsefree dominant,
and, for realizable system specifications, the parallel composition of delay-dominant strategies
for all system processes is guaranteed to be winning for the whole system if the criterion is
satisfied. Hence, delay-dominance is a suitable notion for compositional synthesis algorithms.
We have introduced an automaton construction for recognizing delay-dominant strategies.
The resulting universal co-Büchi automaton can immediately be used to synthesize delay-
dominant strategies utilizing existing bounded synthesis approaches. The automaton is
of single-exponential size in the squared length of the specification. Thus, synthesizing
delay-dominant strategies is, as for winning and remorsefree ones, in 2EXPTIME.

References
1 Shaull Almagor and Orna Kupferman. Good-Enough Synthesis. In Shuvendu K. Lahiri and

Chao Wang, editors, Computer Aided Verification – 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes
in Computer Science, pages 541–563. Springer, 2020. doi:10.1007/978-3-030-53291-8_28.

https://doi.org/10.1007/978-3-030-53291-8_28

B. Finkbeiner and N. Passing 37:17

2 Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Synthesis under
Assumptions. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Confer-
ence, KR 2018, Tempe, Arizona, 30 October – 2 November 2018, pages 615–616. AAAI Press,
2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18053.

3 Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. Best-Effort Synthesis: Doing Your
Best is Not Harder Than Giving Up. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 1766–1772. ijcai.org, 2021. doi:10.24963/ijcai.2021/243.

4 Jan E. Baumeister. Encodings of Bounded Synthesis for Distributed Systems. Bachelor’s
Thesis, Saarland University, 2017.

5 Roderick Bloem, Rüdiger Ehlers, Swen Jacobs, and Robert Könighofer. How to Handle
Assumptions in Synthesis. In Krishnendu Chatterjee, Rüdiger Ehlers, and Susmit Jha, editors,
Proceedings 3rd Workshop on Synthesis, SYNT 2014, Vienna, Austria, July 23-24, 2014,
volume 157 of EPTCS, pages 34–50, 2014. doi:10.4204/EPTCS.157.7.

6 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-Admissible Synthesis. In
Luca Aceto and David de Frutos-Escrig, editors, 26th International Conference on Concurrency
Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages
100–113. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
CONCUR.2015.100.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environment As-
sumptions for Synthesis. In Franck van Breugel and Marsha Chechik, editors, CONCUR
2008 – Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto, Canada,
August 19-22, 2008. Proceedings, volume 5201 of Lecture Notes in Computer Science, pages
147–161. Springer, 2008. doi:10.1007/978-3-540-85361-9_14.

8 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
Complexity of Rational Synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.121.

9 Werner Damm and Bernd Finkbeiner. Does It Pay to Extend the Perimeter of a World
Model? In Michael J. Butler and Wolfram Schulte, editors, FM 2011: Formal Methods
– 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings, volume 6664 of Lecture Notes in Computer Science, pages 12–26. Springer, 2011.
doi:10.1007/978-3-642-21437-0_4.

10 Werner Damm and Bernd Finkbeiner. Automatic Compositional Synthesis of Distributed
Systems. In FM 2014: Formal Methods – 19th International Symposium, Singapore, May
12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2014. doi:10.1007/978-3-319-06410-9_13.

11 Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encodings
of Bounded Synthesis. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems – 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205 of Lecture Notes
in Computer Science, pages 354–370, 2017. doi:10.1007/978-3-662-54577-5_20.

12 Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. BoSy: An Experimentation
Framework for Bounded Synthesis. In Rupak Majumdar and Viktor Kuncak, editors, Computer
Aided Verification – 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages
325–332. Springer, 2017. doi:10.1007/978-3-319-63390-9_17.

FSTTCS 2022

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18053
https://doi.org/10.24963/ijcai.2021/243
https://doi.org/10.4204/EPTCS.157.7
https://doi.org/10.4230/LIPIcs.CONCUR.2015.100
https://doi.org/10.4230/LIPIcs.CONCUR.2015.100
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.1007/978-3-642-21437-0_4
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17

37:18 Synthesizing Dominant Strategies for Liveness

13 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Compositional Algorithms for
LTL Synthesis. In Ahmed Bouajjani and Wei-Ngan Chin, editors, Automated Technology for
Verification and Analysis – 8th International Symposium, ATVA 2010, Singapore, September
21-24, 2010. Proceedings, volume 6252 of Lecture Notes in Computer Science, pages 112–127.
Springer, 2010. doi:10.1007/978-3-642-15643-4_10.

14 Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification Decomposition for Reactive
Synthesis. In Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz, and Ivan
Perez, editors, NASA Formal Methods – 13th International Symposium, NFM 2021, Virtual
Event, May 24-28, 2021, Proceedings, volume 12673 of Lecture Notes in Computer Science,
pages 113–130. Springer, 2021. doi:10.1007/978-3-030-76384-8_8.

15 Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition for for
reactive synthesis. Innovations Syst. Softw. Eng., 2022. doi:10.1007/s11334-022-00462-6.

16 Bernd Finkbeiner and Noemi Passing. Dependency-Based Compositional Synthesis. In
Dang Van Hung and Oleg Sokolsky, editors, Automated Technology for Verification and
Analysis – 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020,
Proceedings, volume 12302 of Lecture Notes in Computer Science, pages 447–463. Springer,
2020. doi:10.1007/978-3-030-59152-6_25.

17 Bernd Finkbeiner and Noemi Passing. Compositional Synthesis of Modular Systems. In Zhe
Hou and Vijay Ganesh, editors, Automated Technology for Verification and Analysis – 19th
International Symposium, ATVA 2021, Gold Coast, QLD, Australia, October 18-22, 2021,
Proceedings, volume 12971 of Lecture Notes in Computer Science, pages 303–319. Springer,
2021. doi:10.1007/978-3-030-88885-5_20.

18 Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems. Innov.
Syst. Softw. Eng., 18(3):455–469, 2022. doi:10.1007/s11334-022-00450-w.

19 Bernd Finkbeiner and Noemi Passing. Synthesizing Dominant Strategies for Liveness (Full
Version). CoRR, abs/2210.01660, 2022. doi:10.48550/arXiv.2210.01660.

20 Bernd Finkbeiner and Sven Schewe. Uniform Distributed Synthesis. In 20th IEEE Symposium
on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings,
pages 321–330. IEEE Computer Society, 2005. doi:10.1109/LICS.2005.53.

21 Bernd Finkbeiner and Sven Schewe. SMT-Based Synthesis of Distributed Systems. In Proc.
AFM, 2007.

22 Bernd Finkbeiner and Sven Schewe. Bounded synthesis. Int. J. Softw. Tools Technol. Transf.,
15(5-6):519–539, 2013. doi:10.1007/s10009-012-0228-z.

23 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational Synthesis. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190–204. Springer,
2010. doi:10.1007/978-3-642-12002-2_16.

24 Carsten Fritz and Thomas Wilke. Simulation Relations for A;ternating Büchi Automata.
Theor. Comput. Sci., 338(1-3):275–314, 2005. doi:10.1016/j.tcs.2005.01.016.

25 Marcin Jurdzinski. Small Progress Measures for Solving Parity Games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3_24.

26 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with Rational Environments.
In Nils Bulling, editor, Multi-Agent Systems – 12th European Conference, EUMAS 2014,
Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers, volume 8953 of Lecture
Notes in Computer Science, pages 219–235. Springer, 2014. doi:10.1007/978-3-319-17130-2_
15.

27 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless Compositional Synthesis. In
Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, 18th International

https://doi.org/10.1007/978-3-642-15643-4_10
https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/s11334-022-00462-6
https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/978-3-030-88885-5_20
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.48550/arXiv.2210.01660
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1016/j.tcs.2005.01.016
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1007/978-3-319-17130-2_15
https://doi.org/10.1007/978-3-319-17130-2_15

B. Finkbeiner and N. Passing 37:19

Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of
Lecture Notes in Computer Science, pages 31–44. Springer, 2006. doi:10.1007/11817963_6.

28 Orna Kupferman and Moshe Y. Vardi. Safraless Decision Procedures. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, pages 531–542. IEEE Computer Society, 2005. doi:
10.1109/SFCS.2005.66.

29 Yong Li, Andrea Turrini, Moshe Y. Vardi, and Lijun Zhang. Synthesizing Good-Enough
Strategies for LTLf Specifications. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 4144–4151. ijcai.org, 2021. doi:10.24963/ijcai.2021/570.

30 Satoru Miyano and Takeshi Hayashi. Alternating Finite Automata on ω-Words. Theor.
Comput. Sci., 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.

31 Amir Pnueli. The Temporal Logic of Programs. In Annual Symposium on Foundations of
Computer Science, 1977, pages 46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.
1977.32.

32 Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

33 Amir Pnueli and Roni Rosner. Distributed Reactive Systems Are Hard to Synthesize. In 31st
Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume II, pages 746–757. IEEE Computer Society, 1990. doi:10.1109/FSCS.
1990.89597.

FSTTCS 2022

https://doi.org/10.1007/11817963_6
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.24963/ijcai.2021/570
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597

Low-Latency Sliding Window Algorithms for
Formal Languages
Moses Ganardi !

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Louis Jachiet !

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Markus Lohrey !

Universität Siegen, Germany

Thomas Schwentick !

TU Dortmund University, Germany

Abstract
Low-latency sliding window algorithms for regular and context-free languages are studied, where
latency refers to the worst-case time spent for a single window update or query. For every regular
language L it is shown that there exists a constant-latency solution that supports adding and
removing symbols independently on both ends of the window (the so-called two-way variable-size
model). We prove that this result extends to all visibly pushdown languages. For deterministic
1-counter languages we present a O(log n) latency sliding window algorithm for the two-way variable-
size model where n refers to the window size. We complement these results with a conditional lower
bound: there exists a fixed real-time deterministic context-free language L such that, assuming the
OMV (online matrix vector multiplication) conjecture, there is no sliding window algorithm for
L with latency n1/2−ϵ for any ϵ > 0, even in the most restricted sliding window model (one-way
fixed-size model). The above mentioned results all refer to the unit-cost RAM model with logarithmic
word size. For regular languages we also present a refined picture using word sizes O(1), O(log log n),
and O(log n).

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Grammars and context-free languages; Theory of computation → Streaming models

Keywords and phrases Streaming algorithms, regular languages, context-free languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.38

Related Version Full Version: https://arxiv.org/abs/2209.14835

Funding Markus Lohrey: Partly supported by the DFG project LO748/13-1.

1 Introduction

In this paper, we investigate sliding window algorithms for formal languages. In the basic
sliding window model, an infinite stream s = a1a2a3 . . . of symbols from a finite alphabet
Σ is read symbol by symbol from left to right. It works one-way and with a fixed window
size n. The window content is the suffix of length n of the prefix of the stream s seen so
far. Thus, in each step, a new right-most symbol is read into the window and the left-most
symbol is moved out. A sliding window algorithm for a language L ⊆ Σ∗ has to indicate at
every time instant whether the current window content belongs to L (initially the window is
filled with some dummy symbol). The two resources that one typically tries to minimize are
memory and the worst-case time spent per incoming symbol. It is important to note that
the model only has access to the letter currently read. In particular, if the algorithm wants
to know the precise content of the current window or, in particular, which letter moves out
of the window, it has to dedicate memory for it. For general background on sliding window
algorithms see [1, 9].

© Moses Ganardi, Louis Jachiet, Markus Lohrey, and Thomas Schwentick;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 38; pp. 38:1–38:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:louis.jachiet@telecom-paris.fr
https://orcid.org/0000-0002-8277-6552
mailto:lohrey@eti.uni-siegen.de
https://orcid.org/0000-0002-4680-7198
mailto:thomas.schwentick@tu-dortmund.de
https://orcid.org/0000-0002-1062-922X
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.38
https://arxiv.org/abs/2209.14835
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Low-Latency Sliding Window Algorithms for Formal Languages

We refer to the above sliding window model as the one-way, fixed-size model. A more
general variant is the one-way, variable-size sliding window model. In this model the arrival
of new symbols and the expiration of old symbols are handled independently, i.e., there are
update operations that add a new right-most symbol and an operation that removes the
left-most symbol. Therefore the size of the window can grow and shrink. This allows to
model for instance a time-based window that contains all data values that have arrived in the
last t seconds for some fixed t. If the arrival times are arbitrary then the window size may
vary. The two-way model is a further generalization whose update operations allow to add
and remove symbols on both sides of the window. It can be combined with both the fixed-size
and the variable-size model. The variable-size two-way model is the most general model; it is
also known as a deque (double-ended queue); see [25, Section 2.2.1]. An algorithm also needs
to handle query operations, asking whether the current window content is in the language L.

There are two important complexity measures for a sliding window algorithm: its space
complexity and its latency (or time complexity), i.e. the time required for a single update or
query operation. Both are usually expressed depending on the window size n (for a fixed-size
sliding window algorithm) or the maximal window size n that occurs during a run of the
sliding window algorithm (for a variable-size sliding window algorithm). In this paper we are
mainly interested in the latency of sliding window algorithms. Since it turns out that space
complexity is an important tool for proving lower bounds on the latency of sliding window
algorithms, we first discuss known results on space complexity.

Space complexity of sliding window algorithms. The space complexity of sliding window
algorithms for formal languages in the one-way (fixed-size and variable-size) model has been
studied in [15, 16, 17, 19, 21] and in [18, Section 9] for the two-way variable-size model. For
regular languages, the main result of [17] is a space trichotomy for the one-way case: the
space complexity of a regular language is either constant, logarithmic or linear. This result
holds for the fixed-size model as well as the variable-size model, although the respective
language classes differ slightly. For the two-way variable-size model a space trichotomy has
been shown in [18]. Table 1 summarizes some of the main results of [16, 17, 18] in more
detail (ignore the word size bound for the moment). The results on the two-way fixed-size
model in Table 1 are shown in this paper. In that table,

Reg denotes the class of all regular languages;
Len denotes the class of regular length languages, i.e., regular languages L ⊆ Σ∗, for which
either Σn ⊆ L or Σn ∩ L = ∅, for every n;
LI denotes the class of all regular left ideals, i.e., regular languages of the form Σ∗L for a
regular language L;
SL denotes the class of suffix languages1, i.e., languages of the form Σ∗w;
Triv denotes class of trivial languages, i.e., the class consisting of ∅ and Σ∗ only;
Fin denotes the class of finite languages;
⟨A1, . . . , An⟩ denotes the Boolean closure of

⋃
1≤i≤n Ai.

Note that these classes are defined with respect to an alphabet, e.g. a∗ is trivial if the
alphabet is {a} but non-trivial if the alphabet is {a, b}. In Table 1, we write f ∈ Θ̄(g) for
f, g : N → R iff f ∈ O(g) and there is a constant c > 0 with f(n) ≥ c · g(n) for infinitely
many n.

1 In [16, 17], we used instead of SL the boolean closure of SL (the so-called suffix testable language); but
this makes no difference, since we are only interested in the boolean closures of language classes.

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:3

Table 1 Summary of results for regular languages and constant latency. The columns correspond
to the 4 different sliding window models (1F = one-way fixed-size, 1V = one-way variable-size, 2F =
two-way fixed-size, 2V = two-way variable-size). The rows correspond to different combinations of
word size and space in bits. For all three combinations the latency is O(1). Note that the language
classes in each column yield a partition of Reg.

1F 1V 2F 2V

word size: O(1)
⟨Len, SL⟩ Triv ⟨Len, Fin⟩ Triv

space in bits: O(1)

word size: Θ̄(log log n)
⟨Len, LI⟩ \ ⟨Len, SL⟩ ⟨Len, LI⟩ \ Triv ∅ Len \ Triv

space in bits: Θ̄(log n)

word size: Θ̄(log n)
Reg \ ⟨Len, LI⟩ Reg \ ⟨Len, LI⟩ Reg \ ⟨Len, Fin⟩ Reg \ Len

space in bits: Θ̄(n)

Some of the results from [16, 17] were extended to (subclasses of) context-free languages
in [15, 21]. A space trichotomy was shown for visibly pushdown languages in [15], whereas
for the class of all deterministic context-free languages the space trichotomy fails [21].

Content of the paper. In this paper we consider the latency of sliding window algorithms
for regular and deterministic context-free languages in all four of the above models: one-way
and two-way, fixed-size and variable-size. These models are formally defined in Section 2. As
the algorithmic model, we use the standard RAM model. The word size (register length)
is a parameter in this model and we allow it to depend on the fixed window size n (in
the fixed-size model) or the maximal window size n that has occurred in the past (for the
variable-size model). More precisely, depending on the language class, the word size can be
O(1) (resulting in the bit-cost model), O(log log n), or O(log n). We assume the unit-cost
measure, charging a cost of 1 for each basic register operation.

The bit-cost model serves as a link to transfer lower bounds: it is a simple observation,
formalized in Lemma 1, that the sliding window time complexity for a language L in the
bit-cost model is at least the logarithm of the minimum possible space complexity. In fact,
this lower bound holds even with respect to the non-uniform bit-probe model, where we
have a separate algorithm for each window size n. And, again by Lemma 1, lower bounds on
the latency in the bit-cost model translate to lower bounds on the word size for unit-cost
algorithms with constant latency.

In Section 3, we study the latency of sliding window algorithms for regular languages
and offer a complete picture. Our contribution here is mainly of algorithmic nature, since
most of the lower bounds are simple consequences of space lower bounds, that were shown in
[16, 17, 18]. The main result of the first part is that these lower bounds can be achieved by
concrete algorithms. More precisely, there are algorithms that (1) achieve the optimal latency
with respect to the bit-cost model and (2) constant latency with respect to unit-cost model,
and (3) also have optimal space complexity. The precise results are summarized in Table 1
for the unit-cost model. In all cases, the sliding window algorithms have constant latency.
For example, languages from ⟨Len, LI⟩ have one-way sliding window algorithms with constant
latency on unit-cost RAMs with word size O(log log n) and thus O(log log n) latency in the
bit-cost model. These algorithms have space complexity O(log n). Moreover, unless the
language belongs to ⟨Len, LI⟩ (for the fixed-size model) or Triv (for the variable-size model)

FSTTCS 2022

38:4 Low-Latency Sliding Window Algorithms for Formal Languages

these resource bounds cannot be improved. Note that, while for three of the four models
there is a trichotomy, the two-way fixed-size model is an outlier: it has a dichotomy, since
there are no languages of intermediate complexity.

In Section 4 we consider the latency for deterministic context-free languages (DCFL)
and here the study is more of an explorative nature. Since every DCFL has a linear time
parsing algorithm [24], one might hope to get also a low-latency sliding window algorithm.
Our first result tempers this hope: assuming the OMV (online matrix vector multiplication)
conjecture [23], we show that there exists a fixed real-time DCFL L such that no algorithm
can solve the sliding window problem for L on a RAM with logarithmic word size with latency
n1/2−ϵ for any ϵ > 0, even in the one-way fixed-size model (the most restricted model). This
motivates to look for subclasses that allow more efficient sliding window algorithms. We
present two results in this direction. We show that for every visibly pushdown language [2]
there is a two-way variable-size sliding window algorithm on a unit-cost RAM with word
size O(log n) and constant latency. Visibly pushdown languages are widely used, e.g. for
describing tree-structured documents and traces of recursive programs. They share many
of the nice algorithmic and closure properties of regular languages. Finally, we show that
for every deterministic one-counter language there is a two-way variable-size sliding window
algorithm on a unit-cost RAM with word size O(log n) and latency O(log n).

Related work. The latency of regular languages in the sliding window model has been
first studied in [28], where it was shown that in the one-way, fixed-size model, every regular
language has a constant latency algorithm on a RAM with word size log n (the result is
not explicitly stated in [28] but directly follows by using the main result of [28] for the
transformation monoid of an automaton). Our upper bound results for general regular
languages rely on this work and we extend its techniques to visibly pushdown languages.

A sliding window algorithm can be viewed as a dynamic data structure that maintains a
dynamic string w (the window content) under very restricted update operations. Dynamic
membership problems for more general updates that allow to change the symbol at an
arbitrary position have been studied in [3, 13, 14].

Standard streaming algorithms (where the whole history and not only the last n symbols
is relevant) for visibly pushdown languages (and subclasses) were studied in [4, 5, 6, 10,
12, 26, 27]. These papers investigate the space complexity of streaming. Update times of
streaming algorithms for timed automata have been studied in [22].

2 Sliding window model

Throughout this paper we use log n as an abbreviation for ⌈log2 n⌉.
Consider a function f : Σ∗ → C for some finite alphabet Σ and some countable set C. We

will view the sliding window problem for the function f as a dynamic data structure problem,
where we want to maintain a word w ∈ Σ∗, called the window, which undergoes changes and
admits membership queries to L. Altogether, we consider the following operations on Σ∗,
where for a word w = a1 · · · an ∈ Σ∗ we write |w| = n for its length and w[i : j] = ai · · · aj

for the factor from position i to position j (which is ε if i > j).
rightpush(a): Replace w by wa.
leftpush(a): Replace w by aw.
leftpop(): Replace w by w[2 : |w|] (which is ε if w = ε).
rightpop(): Replace w by w[1 : |w| − 1] (which again is ε if w = ε).
query(): Return the value f(w).

In most cases, the function f will be the characteristic function of a language L ⊆ Σ∗; in
this case we speak of the sliding window problem for the language L.

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:5

In the two-way model all five operations are allowed, whereas in the one-way model, we
only allow to add symbols on the right and to remove symbols on the left, that is, it allows
only the operations rightpush(a), leftpop(), and query(). In the variable-size window model
the operations can be applied in arbitrary order, but in the fixed-size window model, push
operations always need to be followed directly by a pop operation on the other side. More
formally, each rightpush(a) needs to be immediately followed by a leftpop() and (in the two-
way model), each leftpush(a) needs to be immediately followed by a rightpop(). In particular,
no query can occur between a leftpush(a) and the subsequent rightpop(). Therefore, as the
name suggests, in the fixed-size model the string always has the same length n, for some n,
if we consider a push and its successive pop operation as one operation.

In the variable-size model the window w is initially ε, whereas in the fixed-size model it
is initialized as w = □n for some default symbol □ ∈ Σ. We allow algorithms a preprocessing
phase and disregard the time they spend during this initialization. In the fixed-size model
the algorithm receives the window size n for its initialization.

We denote the four combinations of models by 1F, 1V, 2F, and 2V, where 1 and 2 refer to
one-way and two-way, respectively, and F and V to fixed-size and variable-size respectively.

We use two different computational models to present our results, the uniform word RAM
model for upper bounds and the non-uniform cell probe model for lower bounds.

Word RAM model. We present algorithmic results (i.e., upper bounds) in the word RAM
model with maximal word size (or register length) of b(n) bits, for some word size function
b(n). Algorithms may also use registers of length smaller than b(n), for a more fine-grained
analysis. In the fixed-size model n is the fixed window size, whereas in the variable-size model
n is the maximum window size that has appeared in the past. In particular, if the window
size increases then also the allowed word size b(n) increases, whereas a subsequent reduction
of the window size does not decrease the allowed word size. As usual, all RAM-operations on
registers of word size at most b(n) take constant time (unit-cost assumption). For a model
M ∈ {1F, 1V, 2F, 2V}, an M -algorithm (for a function f) is a sliding window algorithm that
supports the operations of model M .

An M -algorithm A has latency (or time complexity) T (n) if for all n the following hold:
If M ∈ {1F, 2F}, then in every computation of window size n, all operations of model M

are handled within T (n) steps by A.
If M ∈ {1V, 2V}, then in every computation of maximal window size n, all operations of
model M are handled within T (n) steps by A.

Space complexity is defined accordingly and refers to the number of bits used by the algorithm.

Cell probe model. For lower bounds we use the cell probe model. We formalize the model
only for sliding window algorithms. For a model M ∈ {1F, 1V, 2F, 2V}, an M -algorithm in
the cell probe model is a collection A = (An)n≥0, where An is an M -algorithm for window
size n (if M = 1F or M = 2F), respectively, maximal window size n (if M = 1V or M = 2V).
Furthermore, we only count the number of read/write accesses to memory cells and disregard
computation completely. We also say that A = (An)n≥0 is a non-uniform M -algorithm.

More formally, fix a word size function b = b(n). In the cell probe model an M -algorithm
An for (maximal) window length n is a collection of decision trees tn,op for every operation op
of model M . Each node of tn,op is labelled with a register operation read(Ri) or write(Ri, u)
where i is a register address and u ∈ {0, 1}bi . Here, bi ≤ b(n) denotes the size (in bits) of
register i. A node labelled with read(Ri) has 2bi children, one for each possible value of
register i. A node labelled with write(Ri, w) has exactly one child. Moreover, the leaves of

FSTTCS 2022

38:6 Low-Latency Sliding Window Algorithms for Formal Languages

the decision tree for query() are labelled with output values (0 or 1). The latency T A(n) of
A is the maximal height of a decision tree tn,op. The space complexity SA(n) of A is the
sum over the bit lengths of the different registers referenced in all trees tn,op.

By minimizing for every n the number of bits used in the trees tn,op, it follows that
for every language L ⊆ Σ∗ there is a (non-uniform) M -algorithm B with optimal space
complexity SB(n) for every n. We denote this optimal space complexity by SM

L (n); see also
[16]. Since for every language L ⊆ Σ∗ there is a non-uniform M -algorithm that stores the
window explicitly with n · log |Σ| bits, it holds SM

L (n) ≤ n · log |Σ|.
Space complexity in the sliding window model was analyzed in [15, 16, 17, 19, 21] for the

one-sided models (1F and 1V) and [18, Section 9] for the model 2V (the model 2F has not
been studied so far). In these papers, the space complexity was defined slightly different but
equivalent to our definition. Note that lower bounds (for space and time) that are proved for
the cell probe model also hold for the (uniform) RAM model.

As mentioned before, we will use the non-uniform cell probe model only for lower bounds.
Lower bounds on the space complexity of sliding window algorithms yield lower bounds on
the latency, as well. In fact, all our (unconditional) lower bounds stem from space lower
bounds with the help of the following lemma; shown in the long version [20]. We mainly
apply space lower bounds from [16, 17, 18].

▶ Lemma 1. For each model M ∈ {1F, 1V, 2F, 2V} and each non-uniform M-algorithm A
with word size b(n) for some language L, it holds b(n) · T A(n) ≥ log SM

L (n) − O(1).

3 Regular languages

As mentioned in the introduction, the class of regular languages satisfies a space trichotomy
in the models 1F and 1V [16, 17]: a regular language either has space complexity Θ̄(n)
or Θ̄(log n) or O(1). In the light of Lemma 1, the best we can therefore hope for are
constant latency sliding-window algorithms with word size O(log n), O(log log n) and O(1),
respectively. It turns out that such algorithms actually exist. In the following, we consider
each of these three levels separately. We present algorithms and confirm their optimality by
corresponding lower bounds.

Before we start, let us fix our (standard) notation for finite automata. A deterministic
finite automaton (DFA) is a tuple A = (Q, Σ, q0, δ, F) where Q is a finite set of states, Σ is
an alphabet, q0 ∈ Q is the initial state, δ : Q × Σ → Q is the transition function and F ⊆ Q

is the set of final states. The transition function δ is extended to a function δ : Q × Σ∗ → Q

in the usual way. The language accepted by A is denoted by L(A).

3.1 Logarithmic word size
For the upper bound, we show that regular languages have constant latency sliding-window
algorithms with logarithmic word size and optimal space complexity in the two-way variable-
size model and thus in all four models.

To this end, we start from a known 1V-algorithm for evaluating products over finite
monoids and adapt it so that it also works for the two-way model and meets our optimality
requirements. Recall that a monoid is a set M equipped with an associative binary operation
on M. Let prodM : M∗ → M be the function which maps a word over M to its product.
There is a folklore simulation of a queue (aka. 1V-sliding window) by two stacks, which
takes constant time per operation on average, see [28]. This idea can be turned into a

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:7

1
4 n 3

4 np 1
4 n 3

4 np

Figure 1 Left: A guardian at position p, storing all suffixes of m1 . . . mp−1 and all prefixes of
mp . . . mn. Right: As soon as p escapes the range [1

4 n, 3
4 n] a new guardian (in green) is started at n

2 .

1V-algorithm for prodM, if M is a finite monoid, taking constant time on average and
O(n) space. Tangwongsan, Hirzel, and Schneider presented a worst-case constant latency
algorithm [28].

▶ Theorem 2 (c.f. [28]). Let M be a fixed finite monoid (it is not part of the input). Then
there is a 1V-algorithm for prodM with word size O(log n) and latency O(1).

An immediate corollary of Theorem 2 is that every regular language L has a 1V-algorithm
with word size O(log n) and latency O(1). For this, one takes for the monoid M in Theorem 2
the transformation monoid of a DFA for L. The transformation monoid of a DFA with
state set Q and transition function δ : Q × Σ → Q is the submonoid of QQ (the set of all
mappings on Q) generated by the functions q 7→ δ(q, a), where a ∈ Σ. The monoid operation
is the composition of functions: for f, g ∈ QQ we define fg ∈ QQ by (fg)(q) = g(f(q)) for
all q ∈ Q.

In order to obtain for every regular language a 2V-algorithm with word size O(log n),
latency O(1), and space complexity O(n), we strengthen Theorem 2:

▶ Theorem 3. Let M be a fixed finite monoid. Then there is a 2V-algorithm for prodM
with word size O(log n), latency O(1), and space complexity O(n).

Proof sketch. We only consider the case, that the maximal window size n is known at
advance (i.e., during initialization). The general case, where the maximal window size n is
not known, can be dealt with Lemma 18 from Appendix A. We outline an algorithm with
word size O(log n), latency O(1), and space complexity O(n).

The limit n allows us to pre-allocate a circular bit array of size O(n), in which the window
content w = m1m2 · · · mℓ ∈ M∗ (ℓ ≤ n) is stored in a circular fashion and updated in time
O(1). The current window length ℓ is stored in a register of bit length log n. A constant
number of pointers into w, including pointers to the first and to the last entry are also stored.
Furthermore, to keep track of the product m1m2 · · · mℓ under the allowed operations, some
sub-products mimi+1 · · · mj for i < j have to be stored as well. Storing all such products
would require quadratic space. Instead, the algorithm stores (again in a circular fashion)
for some index p ∈ [1, ℓ], called the guardian, all products mimi+1 · · · mp (i ∈ [1, p − 1]) and
mpmp+1 · · · mj (j ∈ [p + 1, ℓ]); see Figure 1 for an illustration. If these products are only
stored for all i ∈ [k, p − 1], j ∈ [p + 1, ℓ] for some k, ℓ, then we speak of a partial guardian.
As long as the guardian p satisfies 1 < p < n, a push operations just adds one product and a
pop operation removes one. A leftpop() decreases p and a leftpush(a) increases it. However,
the algorithm only works correctly as long as the guardian is strictly between 1 and n.

Therefore, we enforce the invariant p ∈ [1
8 ℓ, 7

8 ℓ]. To guarantee this invariant, we start a
new guardian p′, initially set to ℓ

2 , whenever the old guardian p escapes the interval [1
4 ℓ, 3

4 ℓ].
We need to make sure that the computation of the products for the new guardian is fast
enough such that (i) p stays in [1

8 ℓ′, 7
8 ℓ′] while the guardian p′ is partial, where ℓ′ is the

window size at that point, and (ii) p′ stays in [1
4 ℓ′, 3

4 ℓ′]. A simple calculation shows that
it suffices if the guardian p′ is complete after 1

7 ℓ steps where ℓ is the window size when p′

FSTTCS 2022

38:8 Low-Latency Sliding Window Algorithms for Formal Languages

was initialized. Indeed, in worst case, the length of the string after 1
7 ℓ steps is 6

7 ℓ. If the
guardian is initially at position 1

4 ℓ, it might afterwards be, again in worst case, at position
(1

4 − 1
7)ℓ = 6

56 ℓ = 1
8 × 6

7 ℓ. The dual case is analogous.
In each step (application of an operation), 8 new products are computed in a balanced2

fashion, so that, after at most ℓ
7 steps all products are available for the new guardian p′. In

fact, if ℓ denotes the window size when the computation of the new guardian starts, after ℓ
7

steps 8
7 ℓ products are computed, covering the potential window size after these steps.

The two guardians can be stored in registers of log n size and for the two collections of
partial products O(n) bits suffice. Moreover, all update operations can be carried out within
a constant number of steps. ◀

Using again the transformation monoid of a regular language we obtain from Theorem 3:

▶ Corollary 4. Every regular language L has a 2V-algorithm with word size O(log n), latency
O(1) and space complexity O(n).

The lower bounds for the O(log n)-time level can be summarized as follows; see [20] for the
proof. Recall that non-uniform M -algorithms refer to the cell probe model from Section 2.

▶ Theorem 5. For a regular language L and sliding-window model M , every non-uniform
M -algorithm with word size 1 for L has latency at least log n − O(1) for infinitely many n in
each of the following three cases:
(a) M ∈ {1F, 1V} and L ̸∈ ⟨Len, LI⟩,
(b) M = 2V and L ̸∈ Len = ⟨Len⟩,
(c) M = 2F and L ̸∈ ⟨Len, Fin⟩.
In (b) and (c) the lower bound log n − O(1) holds for all n.

▶ Corollary 6. In each of the cases of Theorem 5, any M -algorithm with latency O(1) requires
word size Ω(log n).

3.2 Sublogarithmic word size
There are two combinations of subclasses of regular languages and sliding window models,
for which we obtain constant latency algorithms with word size O(log log n):

▶ Theorem 7. Let L be a regular language and M a sliding-window model. If (i) L ∈ ⟨Len, LI⟩
and M = 1V or (ii) L ∈ Len and M = 2V, then there exists an M -algorithm for L with the
following properties, where n is the maximum window size:

The algorithm uses a RAM with a bit array of length O(log n) and a constant number of
pointers into the bit array. Each pointer can be stored in a register of length O(log log n).
The latency of the algorithm is O(1).

A detailed proof of Theorem 7 can be found in Appendix B. For both cases it is known
that a sliding window algorithm (1V in case (i), 2V in case (ii)) with logarithmic space
complexity exists [16]. These algorithms mainly use counters of maximal size n (the window
size) and every window update makes a constant number of the following counter operations:
increments, decrements, comparison of two counter values (where one of the two counters is
always the same), and reset to zero. One could store the counters in the standard binary
representation, but then the operations on counters would take time O(log n). To overcome

2 In principle, four products are computed for each side, but if the word grows towards one side, this can
be reflected in the choice of the next products.

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:9

this problem, we use the counting techniques from [14], that allows to do the following counter
operations in time O(log log n) for a fixed maximal counter size n: increment, decrement and
comparison with a fixed number. We have to adapt this technique, since we also have to
reset counters and compare counters. Moreover, since we work in the variable-size model, we
have no limit on the size of the counters.

The lower bounds for the log log n-time level follow again from known space lower bounds
in the one-way model [16], see [20].

▶ Theorem 8. For a regular language L and sliding-window model M , every non-uniform
M -algorithm with word size 1 for L has latency at least log log n − O(1) for infinitely many
n in each of the following two cases:
(a) M = 1V and L is not trivial,
(b) M = 1F and L ̸∈ ⟨Len, SL⟩,
In (a) the lower bound log n − O(1) holds for all n.

▶ Corollary 9. In each of the cases of Theorem 8, any M -algorithm with latency O(1) requires
word size Ω(log log n).

We finally turn to regular languages that have constant latency sliding window algorithms
on a RAM with word size O(1). The proof of the following theorem can be found in [20].

▶ Theorem 10. Let L be a regular language and M a model. In the following cases, L has a
constant latency M -algorithm with word size O(1):
(a) M = 2V and L is trivial.
(b) M = 2F and L ∈ ⟨Len, Fin⟩
(c) M = 1F and L ∈ ⟨Len, SL⟩

4 Context-free languages

One natural question is which extensions of the regular languages admit constant latency
sliding window algorithms. There is certainly no hope to go up to the whole class of context-
free languages as this would yield a linear time algorithm for parsing context-free languages.
We will show that, even for real-time deterministic context-free languages, there is also little
hope to find a constant latency uniform fixed-size sliding window algorithm even though all
deterministic context-free languages can be parsed in linear time. More precisely, we will
construct a real-time deterministic context-free language for which we prove a lower bound
of Ω(n1/2−o(1)) per update, under the OMV conjecture [23].

On the positive side, in this section we will present constant latency sliding window
algorithms for the class of visibly pushdown languages and algorithms with logarithmic
latency for deterministic 1-counter languages.

4.1 Lower bound for real-time deterministic context-free languages
First let us recall the online matrix-vector multiplication problem that we will use in our
reduction. The Online Matrix-Vector multiplication (OMV) problem is the following: the
input consists of a Boolean matrix M ∈ {0, 1}n×n and n Boolean vectors V1, . . . , Vn ∈
{0, 1}n×1 and the vector M · Vi must be computed before the vector Vi+1 is read. The OMV
conjecture [23] states that a RAM with register length log n cannot solve the OMV problem
in time O(n3−ϵ) for any ϵ > 0. The OMV conjecture implies tight lower bounds for a number
of important problems, like subgraph connectivity, Pagh’s problem, d-failure connectivity,
decremental single-source shortest paths, and decremental transitive closure; see [23].

FSTTCS 2022

38:10 Low-Latency Sliding Window Algorithms for Formal Languages

m11 m12 m13
m21 m22 m23
m31 m32 m33

 v1
v2
v3

 −→ $ m13 m12 m11 $ m23 m22 m21 $ m33 m32 m31 # v1 v2 v3

Figure 2 Encoding of a matrix-vector product.

Recall that a real-time deterministic context-free language L is a language that is accepted
by a deterministic pushdown automaton without ε-transitions. Hence, the automaton reads
an input symbol in each computation step.

▶ Lemma 11. There exists a real-time deterministic context-free language L such that any
(uniform) 1F-algorithm for L with logarithmic word size and latency t(n) yields an algorithm
for the OMV problem with latency O(n2) · t(O(n2)).

Proof. Let n be the dimension of the OMV problem that we want to solve. We define
the window size m = 3n + n2 + 1 = Θ(n2). The reduction will be based on a language
L ⊆ {a, 0, 1, $, #}∗ that contains the word ajenc(M)#enc(V)an−j (for M ∈ {0, 1}n×n,
V ∈ {0, 1}n×1, and 1 ≤ j ≤ n) if and only if M · V contains a 1 on its j-th coordinate, for
an encoding function enc that we now present. Since we do not care about strings that are
not of this form, it does not matter which of them are in L. In fact, a string of the wrong
form shall be in L, if and only if the automaton below accepts it.

The encoding of matrices and vectors is illustrated in Figure 2. A Boolean vector
V = [v1, . . . , vn]T ∈ {0, 1}n×1 is encoded as the binary string v1 · · · vn ∈ {0, 1}n. A matrix
M ∈ {0, 1}n×n is encoded row by row, with the first row first, and the last row last. Each
row starts with the dedicated symbol $, followed by the encoding of the row (a word over
the alphabet {0, 1}) in reverse order. Thus, the encoding of the j-th row starts with Mj,n

and ends with Mj,1).
We can construct a real-time deterministic pushdown automaton P which accepts the

word ajenc(M)#enc(V)an−j for M, V, j as above, if and only if the j-th entry of the product
M · V is 1: The pushdown automaton reads the aj-prefix on the stack and skips to the j-th
row encoding of the matrix by popping a from the stack on every read row delimiter $. Then
it reads the j-th row of M in reverse on the stack, skips to the encoding of V , and can verify
whether the j-th row of M and V both have 1-bits at a common position.

Now let us suppose that we have a uniform fixed-size sliding window algorithm A for L

with logarithmic word size and latency t(n). Given the matrix M , we initialize an instance of
A with window size m = 3n + n2 + 1 = Θ(n2) and fill the sliding window with a2nenc(M)#.
This word has length O(n2), so this initial preprocessing takes time O(n2) · t(O(n2)).

From the data structure prepared with the window content a2nenc(M)# we can get the
last bit of the vector M · V1 by loading V1 into the window with n updates each taking time
t(m) = t(O(n2)). This yields the window content anenc(M)#enc(V1), which is in L if and
only if (M · V1)n = 1. Then loading an a into the window we obtain the window content
an−1enc(M)#enc(V1)a. It belongs to L if and only if (M ·V1)n−1 = 1. We repeat the process
to obtain all bits of M · V1. Computing M · V1 thus requires 2n − 1 updates and thus time
O(n) · t(O(n2)). After computing M · V1 we need to compute M · V2, and the other products
M · Vi next, and for that we would like to reset the algorithm A so that the data structure
is prepared with the word a2nenc(M)#, again. Here the final “trick” is applied: instead of
doing a new initialization for each vector, requiring O(n2) · t(O(n2)) steps each time, we
rather do a rollback: to this end, the sliding window algorithm A is modified so that each
time it changes the value of some register ℓ in memory, it writes ℓ and the old value of register

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:11

ℓ into a log. By rolling back this log it is able to undo all changes during the processing of V1.
The extra running time for keeping the log and rolling back the computation is proportional
to the number of changes in memory and thus needs time only O(n) · t(O(n2)).

Overall the time to deal with one vector is O(n) · t(O(n2)) which yields a total running
time of O(n2) · t(O(n2)) for OMV. ◀

Lemma 11 states that a sliding window for L with logarithmic word size and latency
t(n) = O(n1/2−ϵ) would yield an algorithm for OMV with a running time of O(n3−2ϵ), which
would contradict the OMV conjecture.

▶ Corollary 12. There exists a fixed deterministic context-free language L such that, condi-
tionally to the OMV conjecture, there is no (uniform) 1F-algorithm for L with logarithmic
word size and latency n1/2−ϵ for any ϵ > 0.

4.2 Visibly pushdown languages
In this section, we provide a constant latency 2V-algorithm for visibly pushdown languages.
We first define visibly pushdown automata and their languages (for more details see [2]) and
then show the upper bound result.

Visibly pushdown automata are like general pushdown automata, but the input alphabet
is partitioned into call letters (that necessarily trigger a push operation on the stack), return
letters (that necessarily trigger a pop operation on the stack), and internal letters (that do
not change the stack). Formally, a pushdown alphabet is a triple Σ = (Σc, Σr, Σint) consisting
of three pairwise disjoint alphabets: a set of call letters Σc, a set of return letters Σr and
a set of internal letters Σint . We identify Σ with the union Σ = Σc ∪ Σr ∪ Σint . The set
W of well-nested words over Σ is defined as the smallest set such that (i) {ε} ∪ Σint ⊆ W ,
(ii) W is closed under concatenation and (iii) if w ∈ W , a ∈ Σc, b ∈ Σr then also awb ∈ W .
Every well-nested word over Σ can be uniquely written as a product of Dyck primes D =
Σint ∪ {awb : w ∈ W, a ∈ Σc, b ∈ Σr} (W is a free submonoid of Σ∗ that is freely generated
by D). Note that every word w ∈ Σ∗ has a unique factorization w = stu with s ∈ (WΣr)∗,
t ∈ W and u ∈ (ΣcW)∗. To see this, note that the maximal well-matched factors in a word
w ∈ Σ∗ do not overlap. If these maximal well-matched factors are removed from w then a
word from Σ∗

rΣ∗
c must remain (other one of the removed well-matched factors would be not

maximal); see also [15, Section 5].
A visibly pushdown automaton (VPA) is a tuple A = (Q, Σ, Γ, ⊥, q0, δ, F) where Q is a

finite state set, Σ is a pushdown alphabet, Γ is the finite stack alphabet containing a special
symbol ⊥ (representing the bottom of the stack), q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states and δ = δc ∪δr ∪δint is the transition function where δc : Q×Σc → (Γ\{⊥})×Q,
δr : Q × Σr × Γ → Q and δint : Q × Σint → Q. The set of configurations Conf is the set of
all words αq where q ∈ Q is a state and α ∈ ⊥(Γ \ {⊥})∗ is the stack content. We define
δ̂ : Conf × Σ → Conf as follows, where p ∈ Q and α ∈ ⊥(Γ \ {⊥})∗:

If a ∈ Σc and δ(p, a) = (γ, q) then δ̂(αp, a) = αγq.
If a ∈ Σint and δ(p, a) = q then δ̂(αp, a) = αq.
If a ∈ Σr, γ ∈ Γ \ {⊥}, and δ(p, a, γ) = q then δ̂(αγp, a) = αq.
If a ∈ Σr and δ(p, a, ⊥) = q then δ̂(⊥p, a) = ⊥q (so ⊥ is not popped from the stack).

As usual we inductively extend δ̂ to a function δ̂∗ : Conf × Σ∗ → Conf where δ̂∗(c, ε) = c

and δ̂∗(c, wa) = δ̂(δ̂∗(c, w), a) for all c ∈ Conf, w ∈ Σ∗ and a ∈ Σ. In the following, we write
δ̂ for δ̂∗. The initial configuration is ⊥q0 and a configuration c is final if c ∈ Γ∗F . A word
w ∈ Σ∗ is accepted from a configuration c if δ̂(c, w) is final. The VPA A accepts w if w is

FSTTCS 2022

38:12 Low-Latency Sliding Window Algorithms for Formal Languages

accepted from the initial configuration. The set of all words accepted by A is denoted by
L(A); the set of all words accepted from c is denoted by L(c). A language L is a visibly
pushdown language (VPL) if L = L(A) for some VPA A.

Now we are ready to state the main result of this section.

▶ Theorem 13. Every visibly pushdown language L has a 2V-algorithm with latency O(1),
space complexity O(n log n) and word size O(log n).

For the proof of Theorem 13 we will use the 2V-algorithm for prodM from the proof of
Theorem 3 (M is again a finite monoid). In the following, we call the data structure behind
this algorithm a DABA(M) data structure, where DABA stands for deamortized banker’s
algorithm (the name for the data structure in [28] used for the proof of Theorem 2). In the
proof of Theorem 3, DABA(M) stores a sequence of monoid elements m1, m2, . . . , mk ∈ M
and a prodM-query returns the monoid product m1m2 · · · mk. For our application of the
DABA(M) data structure to visibly pushdown languages in the next section, we have to
store sequences of pointers p1, p2, . . . , pk. Following pointer pk we can determine a monoid
element mi (and some additional data values that will be specified below). When applying
a prodM-query to such a sequence of pointers, the monoid product m1m2 · · · mk ∈ M is
returned. In addition, we have the update-operations from 2V-model that allow to remove
the first or last pointer or to add a new pointer at the beginning or end. All operations work
in constant time.

Proof sketch of Theorem 13. Let us fix a (deterministic) VPA A = (Q, Σ, Γ, ⊥, q0, δ, F)
with Σ = (Σc, Σr, Σint). As usual, we denote with QQ the monoid of all mappings from Q to
Q with composition of functions as the monoid operation (see also Section 3.1). Notice that A
can only see the top of the stack when reading return symbols. Therefore, the behavior of A
on a well-nested word is determined only by the current state and independent of the current
stack content. We can therefore define a mapping ϕ : W → QQ by δ̂(⊥p, w) = ⊥ ϕ(w)(p)
for all w ∈ W and p ∈ Q. Note that this implies δ̂(αp, w) = α ϕ(w)(p) for all w ∈ W and
αp ∈ Conf. The mapping ϕ is a monoid morphism (recall that W is a monoid with respect
to concatenation).

For the further consideration, it is useful to extend ϕ to a mapping ϕ : Σ∗ → QQ, which
will be no longer a monoid morphism. To do this we first define ϕ(a) : Q → Q for letters
a ∈ Σr ∪ Σc by δ(p, a, ⊥) = ϕ(a)(p) for a ∈ Σr and δ(p, a) = (γ, ϕ(a)(p)) for a ∈ Σc (and
some γ ∈ Γ \ {⊥}). Note that for a return letter a, ϕ(a) is the state transformation induced
by the letter a on the stack only containing ⊥. Consider now an arbitrary word w ∈ Σ∗. As
mentioned above, there is a unique factorization

w = w0a1w1a2w2 · · · akwk ∈ (WΣr)∗W (ΣcW)∗ (1)

such that k ≥ 0, wi ∈ W for all 0 ≤ i ≤ k and for some s ∈ [0, k] (the separation position)
we have a1, . . . , as ∈ Σr and as+1, . . . , ak ∈ Σc. We then define the mapping ϕ(w) : Q → Q

as ϕ(w) = ϕ(w0)ϕ(a1)ϕ(w1) · · · ϕ(ak)ϕ(wk). Again, notice that the mapping ϕ : Σ∗ → QQ is
not a monoid homomorphism. However, ϕ captures the behaviour of A on a word w:

▷ Claim 14. For every word w ∈ Σ∗ and all states q ∈ Q we have δ̂(⊥q, w) = αϕ(w)(q) for
some stack content α ∈ ⊥(Γ \ {⊥})∗.

By this claim, shown in the long version [20], a variable-size sliding window algorithm for
L(A) only needs to maintain the state transformation ϕ(w) for the current window content w.

With a well-nested word w ∈ W we associate a node-labelled ordered tree T (w) as follows,
where idQ ∈ QQ is the identity mapping on Q:

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:13

ϕ(w)
T (w)

(a1, ϕ(u1), b1) (a2, ϕ(u2), b2)

T (w1) T (w2)

(a, ϕ(a)) ϕ(u2)
T (u1) T (u2)

Figure 3 The data structure of the 2V-algorithm for VPLs. A well-nested word w decomposes
into Dyck primes w = w1w2 · · · wk where each wi is either an internal letter or consists of a call
letter ai, a well-nested word ui and a return letter bi. The node of w stores the state transformation
ϕ(w) together with a DABA(QQ) instance, which maintains a list of the children wi and their state
transformations ϕ(wi).

1. If w = ε then T (w) consists of a single node labelled with the pair (ε, idQ).
2. If w = a ∈ Σint then T (w) consists of a single node labelled with (a, ϕ(a)).
3. If w is a Dyck prime aub with a ∈ Σc, u ∈ W and b ∈ Σr, then T (w) consists of a root

node, labelled with (a, ϕ(w), b), with a single child which is the root of the tree T (u).
4. If w = w1 · · · wk for Dyck primes w1, . . . , wk and k ≥ 2, the root of T (w) is labelled with

ϕ(w) and it has the roots of the trees T (w1), . . . , T (wk) k as children (from left to right).
See Figure 3 for an illustration of the tree T (w). We also speak of a tree T (w) of type (i)
(for 1 ≤ i ≤ 4). Moreover, we say that a node v is of type (i) if the subtree rooted in v is of
type (i). Note that the type of node can be obtained from its label.

We have to implement several operations on such trees. In order to spend only constant
time for each of the operations, we maintain the children v1, . . . , vk of a node v of type (4) as
a DABA(QQ) data structure which we denote by DABA(v) (note that vi is the root of the tree
T (wi)). This data structure is needed in order to maintain the value ϕ(w) = ϕ(w1) · · · ϕ(wk)
(the label of v). For the implementation of DABA(v) we have to slightly extend the data
structure from the proof of Theorem 3: there, every entry of the data structure stores an
element of the monoid M (here, QQ). Here, the entries of DABA(v) are pointers to the
children v1, . . . , vk. Note that from vi we can obtain in constant time the monoid value
mi := ϕ(wi) ∈ QQ as its label. The partial products mi · · · mj for the guardians as well as
the additional O(1) many pointers to entries of the DABA data structure are treated as in
the proof of Theorem 3. For the purpose of maintaining ϕ(w) only the monoid elements of
m1, . . . , mk are relevant, but we use DABA(v) also in order to store the list of children of v

and hence the tree structure of T (w). Intuitively, a tree T (w) can be seen as a nested DABA
data structure for the well-nested word w.

Assume now that the current window content is w ∈ Σ∗ and consider the unique
factorization for w in (1) with the separation position s ∈ [0, k]. For a symbol a ∈ Σc ∪ Σr

we write ⟨a⟩ for the pair (ϕ(a), a) below. Our 2V-algorithm stores on the top level two lists
and a tree (here, again, every tree T (wi) is represented by a pointer to its root):

the descending list L↓ = [T (w0), ⟨a1⟩, T (w1), ⟨a2⟩, . . . , T (ws−1), ⟨as⟩]
the separating tree Ts = T (ws)
the ascending list L↑ = [⟨as+1⟩, T (ws+1), . . . , ⟨ak⟩, T (wk)].

FSTTCS 2022

38:14 Low-Latency Sliding Window Algorithms for Formal Languages

These two lists are maintained by the DABA data structures DABA↓ and DABA↑, re-
spectively. These DABA data structures maintain the aggregated state transformations
ϕ(w0a1w1a2 · · · ws−1as) and ϕ(as+1ws+1 · · · akwk) from which, together with ϕ(ws) (which
can be obtained from the root of Ts) we can obtain the value ϕ(w), which, in turn, allows
to check whether w ∈ L(A) by Claim 14. Note that L↓ = [] (the empty list) in case s = 0
and L↑ = [] in case k = s. Since each of lists L↓ and L↑ can be empty, we will need all
four types of operations (leftpop, rightpop, leftpush, and rightpush) for L↓ and L↑. Therefore,
the symmetric DABA data structure from Theorem 3 is really needed here (even if we only
would aim for a 1V-algorithm).

Using this data structure, it is not difficult (but a bit tedious) to implement all window
update operations in constant time, see [20]. Note that the above data structure uses
O(n log n) bits: we have to store O(n) many pointers of bit length O(log n). This concludes
our proof sketch of Theorem 13. ◀

4.3 Deterministic 1-counter automata
In this section we show that every deterministic 1-counter language has a 2V-algorithm with
latency O(log n) on a RAM with word size O(log n). A deterministic 1-counter automaton
(DOCA) A is a deterministic finite automaton equipped with a single N-counter. Its transition
function δ specifies for every combination of current state q and emptiness condition of the
counter (= 0 or > 0) either an ε-move (where no input symbol is read) or a unique a-move
for every input symbol a. A move is specified by the next state q′ and a counter update
d ∈ {−1, 0, 1} (where d ≥ 0 if the counter is zero). To simplify the presentation in the
following, we only work with DOCAs without ε-moves; see Appendix C for the general and
formal definition. A deterministic 1-counter language is the language accepted by a DOCA.

The set of configurations of a DOCA A with state set Q is Q × N. Every word w ∈ Σ∗

induces an effect δ̂w : Q × N → Q × N where δ̂w(q, m) = (q′, m′) if and only if reading w

starting from configuration (q, m) reaches configuration (q′, m′). It is easy to see that δ̂w

can be completely reconstructed from the restriction of δ̂w to the set Q × [0, |w|], since along
every run of length |w| starting with a counter of at least |w|, the counter can only become
zero in the last step. Therefore, if δ̂w(q, |w|) = (q′, m) then δ̂w(q, |w| + d) = (q′, m + d). In
the following the effect δ̂w of a word w is stored by its values on all configurations from
Q × [0, |w|]. For this, O(|w|) many registers of bit length O(log |w|) suffice.

Observe that (i) given a configuration c ∈ Q × [0, n] and the effect δ̂w of a word of length
at most n, one can compute δ̂w(c) in constant time, and (ii) given the effects δ̂u, δ̂v of two
words u, v of length at most n, one can compute the effect δ̂uv in time O(n). For DOCAs
with ε-transitions we can also represent effects (slightly more involved) so that properties
analogous to (i) and (ii) hold; see Appendix C for details.

▶ Theorem 15. Every deterministic 1-counter language L has a 2V-algorithm with latency
O(log n), space complexity O(n log2 n) and word size O(log n).

Proof sketch. Let w be the current window and n its length and let A be a deterministic
1-counter automaton for L. Effects of words are always taken with respect to A. Our
2V-algorithm will preserve the following invariants:
1. The current window w is factorized into blocks B0, . . . , Bm where Bi has length 2ai and

for some k ∈ [−1, m] we have a0 < a1 < · · · < ak and ak+1 > ak+2 > · · · > am. A block
of length 2a is also called a level-a block in the following.

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:15

2. Every level-a block B is recursively factorized into two level-(a − 1) blocks that we call
B’s left and right half. So the blocks B0, . . . , Bm are the maximal blocks, i.e., every other
block is contained in some Bi. The collection of all blocks is stored as a forest of full
binary trees T0, . . . , Tm, where Ti is the tree for block Bi.

3. For a certain time instant, let the age of a block B be the number of window updates
that have occurred between the first point of time, where B is completely contained in
the window and the current point of time. Note that B can either enter the window on
the left or on the right end. If B is a level-a block and has age at least 2a − 1, then the
effect of B must be completely computed and stored in the tree node corresponding to
block B. We call such a block completed. In particular, the effect of a block of length 1
has to be available after one further update.

The following claim is an immediate consequence of the 3rd invariant.

▷ Claim 16. If a level-a block B has at least 2a − 1 many symbols to its left as well as at
least 2a − 1 many symbols to its right in the window, then its age is at least 2a − 1, so it
must be completed.

Thus, at every time instant, on every level i, there can be at most 2 non-completed blocks,
namely the left most and right most block.

In Appendix D we show the following claim, from which it is easy to conclude that the
query time is bounded by O(log n).

▷ Claim 17. At each time instant the window w factors into O(log n) completed blocks.

It remains to describe how to deal with window updates and how to preserve the invariants.
We first consider the operation leftpush(a). Let t be the current point of time. We measure
time in terms of window updates; every window update increments time by 1. Let us assume
that ak ≥ ak+1 (if ak < ak+1 then one has to replace k by k + 1 below).

Basically we make an increment on the binary representation of the number 2a0 + · · ·+2ak .
In other words, we consider the largest number j ≤ k such that ai = i for all 0 ≤ i ≤ j and
replace the blocks B0, . . . , Bj together with the new a in the window by a single level-(j + 1)
block B′

j+1. Thereby also one new level-i subblock B′
i of B′

j for every 0 ≤ i ≤ j arises: we
have B′

0 = a and B′
i = B′

i−1Bi−1 for 1 ≤ i ≤ j + 1. By invariant 3, all blocks B0, . . . , Bj−1
are completed. If j < k then Bj is also completed, but if j = k (and ak > ak+1) then
we can only guarantee that the left half of Bj is completed; its right half might be still
non-completed. Let us assume that j = k, which is the more difficult case.

The effects of the new blocks B′
0, B′

1, . . . , B′
k can be computed bottom up as follows: The

effect of B′
0 = a is immediately computed when a arrives in the window. If the effect of B′

i−1
is already computed, then using the equality B′

i = B′
i−1Bi−1 and using the fact that Bi−1 is

completed, we can compute the effect of B′
i in time c · 2i for some constant c. In total, the

computation of the effects of all blocks B′
0, B′

1, . . . , B′
k needs time

∑
0≤i≤k c · 2i ≤ c · 2k+1.

We amortize this work over the next 2k − 1 window updates by doing a constant amount
of work in each step. Thereby we ensure that at time instant t + 2i − 1, the new blocks
B′

0, . . . , B′
i are completed for every 0 ≤ i ≤ k. In particular, at time instant t + 2k − 1, the

block B′
k is completed. But at that time instant, also Bk must be completed (if it is still

in the window – due to pops Bk might haven been disappeared in the meantime) and we
can reach the goal of completing B′

k+1 at time t + 2k+1 − 1 by still doing only a constant
amount of work in each step. This ensures that invariant 3 is preserved for every new block
B′

i. Moreover, before another level-i block arises at the left end of the window (which can
only happen every 2i steps), the new block B′

i is completed. Since the same arguments apply

FSTTCS 2022

38:16 Low-Latency Sliding Window Algorithms for Formal Languages

to rightpush(a), it follows that at every time instant, on each level i only two blocks are in
the process of completion (one that was created on the left end and one that was created on
the right end). Since there are at most log(n) levels and for the completion of each block a
constant amount of work is done in each step, we get the time bound O(log n).

For leftpop(), one has to remove all blocks along the leftmost path in the tree T0 for
block B0, which results in a sequence of smaller blocks of length 20, . . . , 2a−1 if B0 is a level
a-block. These blocks are already present in the tree T0. Some of the blocks on the leftmost
path of T0 might be not completed so far. Of course we stop the computation of their effects.
Invariant 1 is preserved, also in case k = −1 (where a0 > a1 > . . . > am).

Since the data structure is symmetric, the operations rightpop() and rightpush(a) can be
implemented in the same way. The algorithm uses space O(n log2 n): the dominating part
are the values of the effect functions. On each level these are at most n numbers of bit length
O(log n). Moreover there at at most log n levels. This concludes the proof. ◀

5 Open problems

We conclude with some open problems: In Theorem 3 we assume that the size of the finite
automaton for L is a constant. One should also investigate how the optimal word size
and latency depend on the number of states of the automaton. For space complexity, this
dependency is investigated in [16].

We showed that there is a real-time deterministic context-free language L such that,
conditionally to the OMV conjecture, there is no 1F-algorithm for L with logarithmic word
size and latency n1/2−ϵ for any ϵ > 0. The best known upper bound in this setting for
deterministic context-free languages we are aware of is O(n/ log n). It is open, whether every
deterministic context-free language has a one-way fixed-size sliding window algorithm with
logarithmic word size and latency n1−ϵ for some ϵ > 0.

For every deterministic one-counter language L, we showed that there is a 2V-algorithm
with latency O(log n) and word size O(log n). Here, it remains open, whether the latency
can be further reduced, maybe even to a constant. Also, our space bound O(n log2 n) is not
optimal. It would be nice to reduce it to O(n) without increasing the latency. The same
problem appears for visibly pushdown languages, where our current space bound is O(n log n)
(with constant latency). Finally, it would be interesting to see, whether the 2V-algorithm
with latency O(1) for visibly pushdown languages can be extended to the larger class of
operator precedence languages [11, 8].

References
1 Charu C. Aggarwal. Data Streams – Models and Algorithms. Springer, 2007.
2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, STOC 2004, pages 202–211. ACM, 2004.
doi:10.1145/1007352.1007390.

3 Antoine Amarilli, Louis Jachiet, and Charles Paperman. Dynamic membership for regular
languages. In Proceedings of the 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, volume 198 of LIPIcs, pages 116:1–116:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.116.

4 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theoretical Computer Science, 494:13–23, 2013. doi:
10.1016/j.tcs.2012.12.028.

5 Ajesh Babu, Nutan Limaye, and Girish Varma. Streaming algorithms for some problems
in log-space. In Proceedings of the 7th Annual Conference on Theory and Applications of
Models of Computation, TAMC 2010, volume 6108 of Lecture Notes in Computer Science,
pages 94–104. Springer, 2010. doi:10.1007/978-3-642-13562-0_10.

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1007/978-3-642-13562-0_10

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:17

6 Gabriel Bathie and Tatiana Starikovskaya. Property testing of regular languages with applica-
tions to streaming property testing of visibly pushdown languages. In Proceedings of the 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume
198 of LIPIcs, pages 119:1–119:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.119.

7 Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-counter
automata is NL-complete. In Proceedings of the 45th ACM Symposium on Theory of Computing,
STOC 2013, pages 131–140. ACM, 2013. doi:10.1145/2488608.2488626.

8 Stefano Crespi-Reghizzi and Dino Mandrioli. Operator precedence and the visibly pushdown
property. Journal of Computer and System Sciences, 78(6):1837–1867, 2012. doi:10.1016/j.
jcss.2011.12.006.

9 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002. doi:
10.1137/S0097539701398363.

10 Eldar Fischer, Frédéric Magniez, and Tatiana Starikovskaya. Improved bounds for testing Dyck
languages. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 1529–1544. SIAM, 2018. doi:10.1137/1.9781611975031.100.

11 Robert W. Floyd. Syntactic analysis and operator precedence. Journal of the ACM, 10(3):316–
333, 1963. doi:10.1145/321172.321179.

12 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
property testing of visibly pushdown languages. In Proceedings of the 24th Annual European
Symposium on Algorithms, ESA 2016, volume 57 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.43.

13 Gudmund Skovbjerg Frandsen, Thore Husfeldt, Peter Bro Miltersen, Theis Rauhe, and Søren
Skyum. Dynamic algorithms for the Dyck languages. In Proceedings of the 4th International
Workshop on Algorithms and Data Structures, WADS 1995, volume 955 of Lecture Notes in
Computer Science, pages 98–108. Springer, 1995. doi:10.1007/3-540-60220-8_54.

14 Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word problems.
Journal of the ACM, 44(2):257–271, 1997. doi:10.1145/256303.256309.

15 Moses Ganardi. Visibly pushdown languages over sliding windows. In Rolf Niedermeier and
Christophe Paul, editors, Proceedings of the 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, volume 126 of LIPIcs, pages 29:1–29:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.29.

16 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of the 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.31.

17 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In Proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, volume 65 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
FSTTCS.2016.18.

18 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying languages over sliding windows.
CoRR, abs/1702.04376v1, 2017. arXiv:1702.04376.

19 Moses Ganardi, Danny Hucke, and Markus Lohrey. Randomized sliding window algorithms
for regular languages. In Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 127:1–127:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.127.

20 Moses Ganardi, Louis Jachiet, Markus Lohrey, and Thomas Schwentick. Low-latency sliding
window algorithms for formal languages. CoRR, abs/2209.14835, 2022. arXiv:2209.14835.

21 Moses Ganardi, Artur Jez, and Markus Lohrey. Sliding windows over context-free languages.
In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, volume 117 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018.

FSTTCS 2022

https://doi.org/10.4230/LIPIcs.ICALP.2021.119
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/1.9781611975031.100
https://doi.org/10.1145/321172.321179
https://doi.org/10.4230/LIPIcs.ESA.2016.43
https://doi.org/10.1007/3-540-60220-8_54
https://doi.org/10.1145/256303.256309
https://doi.org/10.4230/LIPIcs.STACS.2019.29
https://doi.org/10.4230/LIPIcs.STACS.2018.31
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.18
http://arxiv.org/abs/1702.04376
https://doi.org/10.4230/LIPIcs.ICALP.2018.127
http://arxiv.org/abs/2209.14835

38:18 Low-Latency Sliding Window Algorithms for Formal Languages

22 Alejandro Grez, Filip Mazowiecki, Michał Pilipczuk, Gabriele Puppis, and Cristian Riveros.
Dynamic Data Structures for Timed Automata Acceptance. In Proceedings of the 16th
International Symposium on Parameterized and Exact Computation, IPEC 2021, volume 214
of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:18, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
IPEC.2021.20.

23 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the 47th Annual ACM on Symposium on Theory
of Computing, STOC 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

24 Donald E. Knuth. On the translation of languages from left to right. Information and Control,
8(6):607–639, 1965. doi:10.1016/S0019-9958(65)90426-2.

25 Donald E. Knuth. The art of computer programming, Volume I: Fundamental Algorithms, 3rd
Edition. Addison-Wesley, 1997. URL: https://www.worldcat.org/oclc/312910844.

26 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for recognizing
nearly well-parenthesized expressions. In Proceedings of the 36th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2011, volume 6907 of Lecture Notes
in Computer Science, pages 412–423. Springer, 2011. doi:10.1007/978-3-642-22993-0_38.

27 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized ex-
pressions in the streaming model. SIAM Journal on Computing, 43(6):1880–1905, 2014.
doi:10.1137/130926122.

28 Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Low-latency sliding-window ag-
gregation in worst-case constant time. In Proceedings of the 11th ACM International Con-
ference on Distributed and Event-based Systems, DEBS 2017, pages 66–77. ACM, 2017.
doi:10.1145/3093742.3095107.

A Additional material for the proof of Theorem 3

▶ Lemma 18. Let T be a non-decreasing function and let A be a 2V-algorithm for a function
f such that, when initialized with the empty window and a maximal window size of n,

A works on a unit-cost RAM with word size O(log n),
the initialization takes time T (n),
all later window operations run in time T (n) and
A stores in total at most O(n) bits.

With such an A, we can build a 2V-algorithm A∗ for f without the maximal window size
limitation and with latency O(T (4n)), space complexity O(n) and word size O(log n).

Proof. To get the statement of the lemma but with an amortized complexity bound, we
could design the algorithm A∗ to work just like any “dynamic array”: let us denote with An

the version of the algorithm that works for window size up to n. Assume that we currently
work with An. If the window size grows to n we switch to A2n and if the window size shrinks
to n/4 we switch to An/2. To do the switching, we transfer the current window content using
rightpush-operations (we could also use leftpush) of A2n or An/2 from the current version An

to the new version. We call this a reset. If we reset to An we know that the window size was
n/2. Therefore, the reset takes time (n/2 + 1) · T (n) (the +1 comes from the initialization
which takes time T (n)). On the other hand, the next reset only happens if the window
size grows to 2n or shrinks to n/4. Therefore, we make at least n/4 non-reset operations
before the next reset happens. This leads to an amortized latency of O(T (4ℓ)), where ℓ is
the current window size. The term T (4ℓ) comes from the fact that at each time instant we
work with a version An, where n is at most a factor 4 larger than the actual window size.

https://doi.org/10.4230/LIPIcs.IPEC.2021.20
https://doi.org/10.4230/LIPIcs.IPEC.2021.20
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1016/S0019-9958(65)90426-2
https://www.worldcat.org/oclc/312910844
https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1137/130926122
https://doi.org/10.1145/3093742.3095107

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:19

To get non-amortized time bounds we need to maintain two instances of A at all time.
One instance Acur solving the problem (just like in the amortized case) and one instance
Anxt that we prepare in the background so that whenever we need to double or halve the
maximal window size, the instance Acur can just be replaced with Anxt. Our algorithm thus
stores two instances of A (Acur and Anxt), a copy of the current word w in the window (as
an amortized circular buffer), some bookkeeping to know what is the size p of the prefix of w

that has been loaded into Anxt, the current size of w and the parameter n of the maximal
window size of Acur. Overall the algorithm stores O(ℓ) bits where ℓ is the current window
size ℓ. To prepare Anxt, we decide that whenever the current window size is above n/2,
we prepare Anxt to work with 2n and whenever the window size is below n/2, we prepare
Anxt to work with n/2. Note that each time the window size crosses the n/2 threshold, our
algorithm will reset Anxt but each reset only takes time T (2n) or T (n/2), hence time T (2n)
at most (if T is monotone).

Propagating the effect of each window operation on A∗ to Acur and w is easy, we just
apply the effect for w and call the right operation for Acur. For Anxt, if the window operation
is a leftpop() or leftpush(a), we carry out the same operation in Anxt. This ensures that at
any point during the algorithm, Anxt stores a prefix of the current window whose length p − 1
(case leftpop()) or p + 1 (case leftpush(a)). If the operation is a rightpop() or rightpush(a),
we simply ignore it in Anxt. Now, in both cases, i.e., for every update operation, we call
rightpush(a) in Anxt for up to 5 elements a (w[p+1], w[p+2], w[p+3], w[p+4], and w[p+5])
so that overall p (the length of the prefix of the window copied to Anxt) increases by at
least 4. Note that there might be less than 5 elements to push if Anxt is almost ready.

Finally, note that because we switch between Acur and Anxt when the window size
reaches n/4 or n and we restart the above copying process from Acur to Anxt whenever the
window size becomes larger or smaller than n/2, we know that at least n/4 window updates
must occur between the last restart and the actual switch from Acur to Anxt. Therefore by
increasing the size of the prefix covered by Anxt by 4 for each window update, we know that
Anxt covers the full window whenever we have to switch. Overall we do have a scheme with
the right latency as we only do a constant number of calls to algorithm A for each window
operation. ◀

B Proof of Theorem 7

We first consider the case that L ∈ Len and M = 2V. In principle, it suffices to keep track of
the current window size n and to check whether it is in some fixed semilinear set S. In fact,
from L one compute a number N and two finite sets A and B such that a string is in L if
and only if its length n satisfies (1) n ≥ N and n mod N ∈ A or (2) n < N and n ∈ B.

Obviously, the number n can be stored with O(log n) bits. However, n needs to be
incremented and decremented and compared, and the naive way of doing that may require
the manipulation of log n bits for one operation, in worst case. Therefore we need to make
use of a more sophisticated data structure that allows updates with a constant number of
operations that manipulate only O(log log n) bits each.

Whenever n ≥ N , the data structure uses a counter m that stores n − N , and a variable
r of constant size that keeps track of n mod N to check whether n mod N ∈ A. Whenever
n < N , it stores n in a variable of constant size and maintains whether n ∈ B holds.

During initialization, m is set to zero, and whenever n < N it stays at zero. The
challenging part is to maintain m if n > N and to recognize whenever a phase with n > N

ends by reaching m = 0. This can be done using the counting techniques from [14]. In a

FSTTCS 2022

38:20 Low-Latency Sliding Window Algorithms for Formal Languages

nutshell, the method basically works just as incrementing a binary number by, say, a Turing
machine. However, to avoid long delays, it encodes the position of the head of the Turing
machine in the string (by an underscore of the digit at that position) and each “move” of the
Turing machine corresponds to an incremented number. E.g., the numbers 0,1,2,3,4 could
be represented by 000, 001, 010, 011, 010. It is not obvious how to determine the number
represented by such a string. However, for our purposes it suffices to increment numbers, to
compare them with a fixed constant number, and to initialize them with a fixed number.

The algorithm maintains the number m by a bit string s of length ℓ for some ℓ with
2ℓ+1 −ℓ−2 ≥ m. The number ℓ is stored with O(log ℓ) bits. One position x in s is considered
as marked and stored with O(log ℓ) bits as well. The representation of the number m by s

and x is defined as follows (where the marked bit in s is underlined and u, v are bit strings):
The number 0 is represented as 0ℓ−10.
If number t is represented by u0 then t + 1 is represented by u1.
If number t is represented by u01v then t + 1 is represented by u10v.
If number t is represented by u00v then t + 1 is represented by u00v.
If number t is represented by u11v then t + 1 is represented by u10v.
If number t is represented by 10ℓ−1 then t+1 is represented by 100ℓ−1, and ℓ subsequently
has to be incremented by 1.

The last of these cases does not appear in [14]; it is needed since in [14] m and ℓ are fixed,
which is not the case in our application. It is a crucial observation that all bits to the
right of the marked position are always zero. In particular this allows to identify when a
situation of the form 10ℓ−1 is obtained. We note that additional leading zeros do not spoil
the representation of a number. Therefore ℓ needs never be decreased when the window size
n and hence m is decreased.

One can show that in this way every number is represented in a unique way, ignoring
unmarked leading zeros; see [14]. The above rules also specify how to increment and decrement
m (for decrement one has to reverse the rules). Note that the rules modify s only in a local
way; therefore they can be implemented in time O(1) on a RAM of word size O(log log n).

It remains to explain how to check whether m = 0 holds. To this end, an additional
number is stored, which is the minimal position y in the bit string such that all positions to
the left of it are 0 (the positions are numbered from right to left, i.e., the right-most position
has number 0). For y, O(log ℓ) bits suffice, as well. Its manipulation is straightforward with
the above rules.

If n is the maximal window size seen in the past, the algorithm stores a bit array of length
O(log n) for the bit string s and three registers of bit length O(log log n) for the numbers
ℓ, x, y. This completes the description of the case that L ∈ Len and M = 2V.

We now consider the case that L ∈ ⟨Len, LI⟩ and M = 1V. It suffices to consider the
cases that L ∈ Len and L ∈ LI: if we have a boolean combination of such languages, we can
run the sliding window algorithms for these languages in parallel and combine their results
according to the boolean formula. The case L ∈ Len is covered by the first part of the proof
(for M = 2V), so it suffices to consider the case L ∈ LI and M = 1V. Hence, L is a left ideal.
Let A = (Q, Σ, q0, δ, F) be a DFA for the reversal language LR = {wR : w ∈ L} of the left
ideal L where the reversal of a word w = a1a2 · · · an ∈ Σ∗ is wR = an · · · a2a1. Since L is a
left ideal we can assume that F contains a unique final state qF , which is also a sink, i.e.
δ(qF , a) = qF for all a ∈ Σ.

We use a simplified version of the O(log n)-space path summary algorithm from [16].
A path summary is an unordered list (Q1, n1)(Q2, n2) . . . (Qk, nk) where the Qi ⊆ Q are
pairwise disjoint and nonempty and the ni ∈ [0, n] are pairwise different. Note that k ≤ |Q|

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:21

which is a constant in our setting. The meaning of a pair (Qi, ni) is the following, where
w is the current window content: Qi is the set of all states q for which ni is the length of
the shortest suffix s of w such that δ(q, sR) = qF . Furthermore, if there exists no such suffix
for a state q then the state q does not appear in any set Qi. Clearly w ∈ L if and only if
q0 ∈

⋃k
i=1 Qi. Hence, it suffices to maintain a path summary for the current window content

w. We first describe, how the operations can be handled, in principle.
For leftpop(), the algorithm removes the unique pair (Qi, ni) with n = ni if it exists.

For rightpush(a), it replaces each pair (Qi, ni) by ({p ∈ Q \ {qF } : δ(p, a) ∈ Qi}, ni + 1) if
{p ∈ Q \ {qF } : δ(p, a) ∈ Qi} is non-empty, otherwise the pair is removed from the path
summary. Finally, the pair ({qF }, 0) is added to the path summary.

It is easy to verify that the path summary is correctly maintained, in this way. However,
some care is needed to guarantee the bounds claimed in the statement of the theorem.

We first observe that the length k of the path summary is bounded by the constant |Q|.
Thus the algorithm stores at most |Q| many pairs (Qi, ni). They can be stored in a bit
array of length O(log n) that is divided into |Q| many chunks. Every chunk stores one pair
(Qi, ni). The state set Qi ⊆ Q is stored with |Q| many bits. The number ni can be stored
with log n many bits. Every chunk has an additional activity bit that signals whether the
chunk is active or not. This is needed since in the path summary the algorithm has to be
able to remove and add pairs (Qi, ni). If the activity bit is set to 0 then the chunk is released
and can used for a new pair, later on. In addition the algorithm stores the window size n.

We have seen in the case L ∈ Len, how the kind of counters that are needed for a path
summary and the window size can, in principle, be implemented such that a single update
works with a constant number of operations that manipulate only O(log log n) bits. However,
there are still two challenges that need to be mastered: (1) the counters ni need to be
compared with the number n (the window size), which itself can change, and (2) when a
chunk is deactivated, its counter ni may represent any number, but when its re-activated
it should be 0, again. Towards (1), the algorithm maintains a second counter, mi for each
chunk, which is supposed to represent n−ni. Thus, to test n = ni it suffices to check whether
mi = 0 and we know from the Len-case how this can be done. Note that for an leftpop(), mi

must be decremented and for a rightpush(a), mi does not change.
For (2), the algorithm uses a “lazy copying” technique (from 0 and from n, respectively).

The algorithm stores two additional numbers bi and di of size O(log log n) for each counter
mi and one additional number ai of size O(log log n) for each counter ni.

We first describe, how to deal with ni. If chunk i becomes activated, ni is supposed to
be initialized to 0, but the actual memory that it occupies might consist of arbitrary bits
(inherited from the previous counter for which the chunk was used). Overwriting these bits
would require Θ(log n) bit operations, but the algorithm only can manipulate Θ(log log n)
bits per operation. Therefore, ni is represented by some bits of chunk i and all other bits are
considered as being zero (independently of what they actually are). The additional number
ai tells how many of the last bits of the chunk for ni are valid for the representation of ni.
When chunk i is activated, ni should be 0 and therefore ai can be set to 0, signifying that
all bits of ni are zero. In each subsequent step, ai is incremented by 2 and two additional
positions in the chunk are set to zero until ai equals the length of the bit string.

For mi, we use a similar technique but the situation is slightly more complicated since
mi should be initially set to n. If the marked position of n is position k then both numbers
bi and di are set to k. This indicates that all positions of mi up to bi are as in n and all
positions from di on are as in n. Which clearly means that mi is n, as required. Subsequently,
bi is decremented by 2 in each step, di is incremented by 2 in each step and the respective
bits are copied from n to the chunk. Note that these copied bits of n have not changed there
values since chunk i has been activated (this holds since we copy 2 bits in each step).

FSTTCS 2022

38:22 Low-Latency Sliding Window Algorithms for Formal Languages

C Additional details on deterministic 1-counter automata

To extend the algorithm from Section 4.3 to DOCAs with ε-transitions we work with a
slightly different, yet equivalent, definition of DOCAs from [7]: A deterministic 1-counter
automaton is a tuple A = (Qs, Qr, Σ, δ, π, ρ, q0, F), where Qs is a finite set of stable states, Qr

is a finite set of reset states (Qs ∩ Qr = ∅), Σ is a finite input alphabet, δ : Qs × Σ × {0, 1} →
(Qs ∪ Qr) × {−1, 0, 1} is the transition function, π : Qr → N maps every reset state q to a
period π(q) > 0, ρ : {(q, k) | q ∈ Qr, 0 ≤ k < π(q)} → Qs is the reset mapping, q0 is the initial
state, and F ⊆ Q is the set of final states. It is required that if δ(q, a, i) = (q′, j) then i+j ≥ 0
to prevent the counter from becoming negative. Let Q = Qs ∪Qr. The set of configurations of
A is Q×N. For a configuration (q, m) and k ∈ N we define (q, m)+k = (q, m+k). Intuitively,
A reads an input letter whenever it is in a stable state and changes its configuration according
to δ. If A is in a reset state q it resets the counter to zero and goes into a stable state that is
determined (via the reset mapping ρ) by m mod π(q) when m is the current counter value.
Formally, we define the mappings δ̂ : Q ×N× Σ → Q ×N and ρ̂ : Q ×N → Qs ×N as follows,
where sign : N → {0, 1} is the signum function restricted to the natural numbers:

If q ∈ Qr and m ∈ N then ρ̂(q, m) = (ρ(q, m mod π(q)), 0).
If q ∈ Qs and m ∈ N then ρ̂(q, m) = (q, m).
If q ∈ Qs and m ∈ N then δ̂(q, m) = ρ̂(δ(q, a, sign(m)) + m).
If q ∈ Qr and m ∈ N then δ̂(q, m) = δ̂(ρ̂(q, m)) (note that ρ̂(q, m) ∈ Qs × {0}, for which
δ̂ has been defined in the previous point).

We extend δ̂ to a function δ̂ : Q × N × Σ∗ → Q × N in the usual way: δ̂(q, x, ε) = (q, x) and
δ̂(q, x, aw) = δ̂(δ̂(q, x, a), w). Then, L(A) = {w ∈ Σ∗ | δ̂(q0, 0, w) ∈ F × N} is the language
accepted by A. A language L is a deterministic 1-counter language if L = L(A) for some
deterministic 1-counter automaton A.

Using the function δ̂ we can define also runs of A (we speak of A-runs) on a word w in
the usual way: For a configuration (q, m) and a word w = a1a2 · · · ak the unique A-run on
the word w starting in (q, m) is the sequence of configurations (q0, m0), (q1, m1), . . . , (qk, mk)
where (qi, mi) = δ̂(q0, 0, a1 · · · ai). We denote this run with run(q, m, w).

For a word w ∈ Σ∗ we define the effect δ̂w : Q × N → Q × N by δ̂w(q, m) = δ̂(q, m, w).
It specifies how w transforms configurations. It turns out that δ̂w can be completely
reconstructed from restriction δ̂w↾Q×[0,|w|+p] of δ̂w to the set Q × [0, |w| + p], where p is
the least common multiple of all π(q) for q ∈ Qr. To see this, assume that (q, m) is a
configuration with m > |w| + p. If in run(q, |w| + p, w) no state from Qr is visited and
δ̂w(q, |w| + p) = (q′, m′), then we have δ̂w(q, m) = (q′, m′ + m − |w| − p): basically, we obtain
run(q, m, w) by shifting run(q, |w| + p, w) upwards by m − |w| − p. On the other hand, if a
reset state that appears in run(q, |w| + p, w) then δ̂w(q, m) = δ̂w(q, |w| + i), where i is any
number in [0, p] such that |w| + i ≡ m mod p.

In the following, we always assume that the effect δ̂w of a word w is stored by δ̂w↾Q×[0,|w|+p],
for which O(|w|) many registers of bit length O(log |w|) suffice. Given the effects δ̂u and δ̂v of
two words u, v of length at most n (stored in O(n) many registers of bit length O(log n)), we
can compute the effect δ̂uv in time O(n) on a RAM with word size O(log n). The computation
of δ̂uv on an argument from Q × [0, |uv| + p] only involves simple arithmetic operations and
can be done in constant time.

D Proof of Claim 17

We show the claim for the case ak > ak+1 (the cases ak < ak+1 and ak = ak+1 can be treated
analogously). The middle block Bk can be factorized into 2ak completed blocks, since if we
consider the binary tree Tk for Bk, then only the blocks on the left most and right most root-

M. Ganardi, L. Jachiet, M. Lohrey, and T. Schwentick 38:23

leaf path of Tk can be non-completed. This follows from Claim 16 since each level-b subblock
of Bk that does not belong the left-most or right-most path in Tk has another level-b subblock
to its left as well as to its right. For the blocks Bk+1, . . . , Bm we show that Bk+1 . . . Bm can
be factorized into at most ak+1 +m−k −1 ∈ O(log n) completed blocks, whereas B0 · · · Bk−1
can be factorized into at most ak−1 + k − 1 ∈ O(log n) completed blocks. Consider the
level-ai block Bi for some 1 ≤ i ≤ k − 1. Every level-b subblock of Bi that does not belong
to the left most path in Ti has at least 2b − 1 many symbols to its right (namely the block
Bk) as well as to its left (namely another level-b subblock of Bi), and is therefore completed.
But for blocks on the left most path in Ti the same is true when they belong to some level
b ≤ ai−1, because then the block Bi−1 is to its left. Hence, there are at most ai − ai−1
non-completed blocks in Ti and they form an initial part of the left most path. Removing
those blocks from Ti leads to a factorization of Bi into at most ai −ai−1 +1 completed blocks.
Finally, for the first block B0 we obtain with the same argument a factorization into at most
a0 completed blocks. By summing over all block Bi (0 ≤ i ≤ k − 1) we obtain a factorization
of B0 · · · Bk−1 into at most a0 +

∑
1≤i≤k−1(ai − ai−1 + 1) = ak−1 + k − 1 completed blocks.

For Bk+1 · · · Bm we can argue analogously. The above arguments also show how to compute
a factorization of the window into completed blocks. This factorization can be represented
by a sequence of pointers to the tree nodes that correspond to the completed blocks in the
factorization.

FSTTCS 2022

The Design and Regulation of Exchanges:
A Formal Approach
Mohit Garg !

University of Bremen, Bremen, Germany
University of Hamburg, Hamburg, Germany

Suneel Sarswat !

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We use formal methods to specify, design, and monitor continuous double auctions, which are widely
used to match buyers and sellers at exchanges of foreign currencies, stocks, and commodities. We
identify three natural properties of such auctions and formally prove that these properties completely
determine the input-output relationship. We then formally verify that a natural algorithm satisfies
these properties. All definitions, theorems, and proofs are formalized in an interactive theorem
prover. We extract a verified program of our algorithm to build an automated checker that is
guaranteed to detect errors in the trade logs of exchanges if they generate transactions that violate
any of the natural properties.

2012 ACM Subject Classification Applied computing → Online auctions; Software and its engineering
→ Software verification and validation; Software and its engineering → Correctness

Keywords and phrases Double Auctions, Formal Specification and Verification, Financial Markets

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.39

Supplementary Material Other (Coq-Formalization): https://github.com/suneel-sarswat/cda

1 Introduction

Continuous double auctions are widely used to match buyers and sellers at market institu-
tions such as foreign exchange markets, cryptocurrency exchanges, stock exchanges, and
commodities exchanges. Increasingly, the exchanges deploy automated computer systems
for conducting trades, which often receive a huge number of trade requests, especially in
presence of high-frequency algorithmic traders. A minor bug in the computer system of
a major exchange can have a catastrophic effect on the overall economy. To ensure that
the exchanges work in a fair and orderly manner, they are subject to various regulatory
guidelines. There have been a number of instances where the exchanges have been found
violating regulatory guidelines [18, 17, 14, 16]. For example, it was observed that NYSE
Arca failed to execute certain trades in violation of the stated rules [18], which led to the
U.S. Securities and Exchange Commission imposing a heavy penalty on the New York Stock
Exchange.

The above example is an instance of a program not meeting its specification, where the
exchange’s order matching algorithm is the program and the exchange rules and regulatory
guidelines form the broad specifications for the program. The reasons for such violations are
generally twofold. Firstly, the exchange rules and the regulatory guidelines are not presented
in a formal language; thus, they tend to be rather vague and ambiguous. Even if they
are stated unambiguously, it is not clear whether they are consistent; they lack a formal
proof of consistency. Secondly, the fidelity of the program implementing the specifications is
traditionally based on repeatedly testing the software on large data sets and removing all
bugs that get detected. Although this approach irons out many bugs, it is not foolproof; in
particular, many bugs that surface only in rare scenarios may easily remain hidden in the

© Mohit Garg and Suneel Sarswat;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 39; pp. 39:1–39:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:garg@uni-bremen.de
mailto:suneel.sarswat@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.39
https://github.com/suneel-sarswat/cda
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 The Design and Regulation of Exchanges: A Formal Approach

program. A related concern that is often missed is that a faulty program might continue
to make mistakes without anyone noticing or even realizing that they are mistakes. This is
especially relevant in the context of exchanges, where individual traders have a limited view
of the system and may not realize that the exchange is making mistakes, and the regulators
might overlook them, probably because they are not the kinds of mistakes that they look for
or are brought to their notice.

In this work, we introduce a new framework for exchange design and regulation that
addresses the above concerns. We elucidate our approach for an exchange that implements
the widely used continuous double auction mechanism to match buy and sell requests. To
this end, we develop the necessary theoretical results for continuous double auctions which
then allows us to apply the formal methods technology, which has classically been applied to
safety-critical systems like nuclear power plants [21], railway signaling systems, flight control
software, and in hardware design (see [19] for a survey).

More specifically, we consider a general model for continuous double auctions and identify
three natural properties, namely price-time priority, positive bid-ask spread, and
conservation, that are necessary for any online algorithm implementing continuous double
auction to possess. We then show that any algorithm satisfying these three properties for each
input must have a “unique” output at every time step, implying that these three properties
are sufficient for specifying continuous double auctions, and there is no need to impose any
further requirements on an algorithm implementing such an auction. We then develop an
algorithm and formally prove that it satisfies these three properties. This establishes the
consistency of the three properties.

All our proofs are machine-checked; all the notions, definitions, theorems, and proofs are
formalized in the popular Coq proof assistant [15]. Finally, using Coq’s program extraction
feature, we obtain an OCaml program of our verified algorithm for implementing continuous
double auctions. Such a verified program is guaranteed to be bug-free and can be directly
used at an exchange. Additionally, enabled by the uniqueness theorem we prove, a verified
program can be used to check for errors automatically in an existing exchange program
by comparing the outputs of the verified program against that of the exchange program.
Such a verified checker goes over the trade logs of the exchange and is guaranteed to detect
a violation if the exchange output violates any of the three properties, and this alleviates
the final concern we mentioned above. This can be a crucial tool for regulators. As an
application, using our verified program we check for errors in real data collected from an
exchange.

Thus, our approach can be summed up as follows: The specification for an exchange
should consist of a set of provably consistent properties, which are preferably few and simple.
Furthermore, these properties should be rich enough so that one can build an automated
checker that can always detect a violation of the specification by going over the logs of the
exchange if one exists.

We begin by briefly describing the trading process using continuous double auctions.

1.1 Overview of continuous double auctions
A double auction is a process to match multiple buy and sell orders for a given product at
a marketplace. Potential buyers and sellers of a product place their orders at the market
institution for trade. Buy and sell orders are referred to as bids and asks, respectively. The
market institution on receiving orders is supposed to produce transactions. Each transaction
is between a bid and an ask and consists of a transaction price and a transaction quantity.

M. Garg and S. Sarswat 39:3

More specifically, each order consists of an order id, timestamp, limit price, and maximum
quantity. Order ids are used to distinguish orders (and hence are unique for each order).
Timestamps represent the arrival times of the orders. For a fixed product, the timestamps
of the orders are distinct.1 The limit price of an order ω is the maximum (if ω is a bid) or
minimum (if ω is an ask) possible transaction price for each transaction involving ω. The
maximum quantity q of an order ω is the number of units of the product offered for trade,
i.e., the sum of the transaction quantities, where ω participates in, is at most q.

Double auctions are used to generate transactions systematically. There are two common
types of double auctions that are used at various exchanges: call auctions [20, 9, 22] and
continuous double auctions. We discuss call auctions in Section 1.3. In a system implementing
continuous double auctions, buyers and sellers may place their orders at any point in time. On
receiving an order ω, the system instantly tries to match ω with fully or partially unmatched
orders that arrived earlier (“resident orders”) and output transactions, before it proceeds to
process any other incoming orders. If there are multiple orders with which ω can be matched,
then the system prioritizes those matchable orders based on price-time priority (first
the orders are ranked by the competitiveness of their price; orders with the same price are
then ranked by their arrival time, i.e., as per their timestamps). If the total transaction
quantities of the transactions generated by ω exhaust the maximum quantity of ω, then it
leaves the system completely. Else ω with its remaining unmatched quantity is retained
by the system for potential future matches; we refer to such unmatched orders as resident
orders. A resident order leaves the system when its quantity gets fully exhausted.

The general model we work with has three primitive instruction types: buy, sell, and
delete.2 That is, apart from buy and sell instructions, it is possible to delete a resident
order by giving a “delete id” instruction to the system. The system maintains two main
logbooks: an order book and a trade book. The order book is a list of all buy, sell, and
delete instructions that the system received, ordered by their timestamps. The trade book
consists of the list of all transactions generated by the system in the order in which they
were generated.

We now describe three natural properties of a system implementing continuous double
auctions that are relevant to our formalization.

Positive bid-ask spread. This property represents the “inertness” of resident orders;
at any point in time, the resident orders are not matchable to each other, i.e., the limit
price of each resident bid is strictly less than the limit price of each resident ask. This
follows immediately from the fact that an order becomes resident only when it cannot be
matched any further with the existing resident orders (or when there are no matchable
resident orders at all).
Price-time priority. When a new order arrives, the system tries to match it with the
resident orders and generate transactions. If a less-competitive resident order participates
in one of these transactions, then all current resident orders which are more competitive
must get fully traded in these transactions, where competitiveness is decided based on
price-time priority. This is a direct consequence of the matching process described
above.
Conservation. This property expresses the “honesty” of the system. Roughly speaking,
it states that the system should not lose, create, or modify orders arbitrarily. For
example, when a new incoming order gets partially traded with existing resident orders,

1 In real systems, even if multiple orders arrive at the same time, they are entered into the system one by
one. How this is exactly achieved is beyond the scope of this work.

2 In Section 8 we describe how certain other instruction types can be converted to these primitives.

FSTTCS 2022

39:4 The Design and Regulation of Exchanges: A Formal Approach

it becomes resident with its maximum quantity precisely being the difference between its
original maximum quantity and the total quantity of the transactions that are generated.
Furthermore, the timestamp, id, and limit price of the resident order must remain
unchanged.

One might feel that many properties would be necessary for specifying “conservation”
formally. On the contrary, later we will see that the above three properties can be stated
rather succinctly once we set up our definitions appropriately. Also, we will show that any
algorithm that implements these three properties, on any input (order book), will produce a
“unique” output at every point in time, implying that these properties completely characterize
continuous double auctions. One can learn more about double auctions from [5, 12, 3, 4].

1.2 Results
After setting up the definitions appropriately, we formally represent the three natural
properties of continuous double auctions that we discussed above, namely price-time
priority, positive bid-ask spread, and conservation. We are then able to prove the
following results.

Maximum matching. We first show in Lemma 4 that any algorithm that satisfies
positive bid-ask spread and conservation, for each incoming order will generate a
set of transactions (“matching”) whose total quantity will be maximum, i.e., it will be at
least the total quantity of any other feasible set of transactions.
Local Uniqueness. In Theorem 5 we show that any two processes that satisfy the
aforementioned three properties, for any set of resident orders and an incoming instruction
that satisfy certain technical conditions, will essentially generate the same matching, and
the resident orders that remain at the end of processing this instruction will also be the
same. To prove this theorem we make use of Lemma 4.
Global Uniqueness. We then show in Theorem 6 that any two processes that satisfy the
three properties, given any order book as input, at any point in time will essentially
generate the same matching, and the resident orders that remain will also be the same.
We prove this theorem by lifting Theorem 5 via an induction argument.
Correctness of Process_instruction. We then design an algorithm for continuous double
auctions which we refer to as Process_instruction and then in Theorem 7 show that it
satisfies the three properties.

To use the above results in a practical setting, we extract an OCaml program of our
verified algorithm Process_instruction, using Coq’s code extraction feature, and then use it
to check for errors in real data from an exchange by running it on order books and then
comparing the outputs with the corresponding trade books. Our global uniqueness theorem
implies that if the exchange program has the three natural properties, then the output of
our program should “match” with the output of the exchange. If they do not match, then at
least one of the three properties must be violated by the exchange program.

Our Coq formalization uses about 6000 lines of new code, which includes about 250
lemmas and 80 definitions and functions, and is available in the accompanying supplementary
materials [1].

1.3 Related work
Mavroudis and Melton [7] study fairness, transparency, and manipulation in exchange systems.
They argue that idealized market models do not capture infrastructural inefficiencies and their
simple mechanisms are not robust enough to withstand sophisticated technical manipulation

M. Garg and S. Sarswat 39:5

attacks; as a result, the theoretical fairness guarantees provided by such exchanges are not
retained in reality. To address this problem, they propose the LIBRA system that achieves
a relaxed notion of fairness by making clever use of randomness in routing orders to the
matching engine. Our work focuses on a complementary and an arguably more basic aspect
of exchanges; once the system assigns unique timestamps, even if they are “inaccurate” or
“unfair” due to infrastructural inaccuracies or other reasons, with respect to those timestamps
the matching engine should respect the desired properties; our work focuses on specifying
and checking the correctness of the matching engine.

There have been some important works on formalizing financial systems, double auctions,
and theorems in economics. We briefly mention a few of them. In an influential work [11],
Passmore and Ignatovich highlight the need for formal verification of financial algorithms
and suggest various open problems in the field. In response to these challenges, they designed
Imandra [10], a specialized formal verification system and programming language designed
to reason about properties of algorithms that may be proved, refuted, or described.

Cervesato, Khan, Reis, and Žunić [2] present a declarative and modular specification for
an automated trading system for continuous double auctions in a concurrent linear framework
(CLF) and implemented it in a CLF type checker that also supports executing of CLF
specifications. Among other things, they were able to establish that their system is never
in a locked or crossed state, which is equivalent to the positive bid-ask spread property
mentioned above.

Wurman, Walsh, and Wellman [20] deal with the theory and implementation of flexible
double auctions for electronic exchanges. In particular, the authors analyze the incentive
compatibility of such auctions. Kaliszyk and Parsert [6] introduce a formal micro-economic
framework and formally prove the first welfare theorem leading to a more refined understand-
ing of the theorem than was available in the economics literature.

Comparison with call auctions. Our work is closely related to the work of Raja, Singh, and
Sarswat [8], which formalizes call auctions. As mentioned earlier, call auctions form a class
of double auctions, which are “non-continuous” or “one-shot” in nature. In call auctions,
orders are collected from buyers and sellers for a fixed duration of time, at the end of which
the orders are matched simultaneously to generate transactions. In [8] call auctions are
formalized and certain uniqueness theorems are obtained. Unlike call auctions, prior to
our work, for continuous double auctions the specifications were not concisely stated in the
literature, hindering formal development as also noted in [8].

It is interesting to compare call auctions with one time instant of continuous double
auctions when a new order arrives in presence of resident orders. In call auctions two
different objectives are usually considered: 1. Maximum matching: produce transactions that
maximize the trade volume (the sum of transaction quantities); 2. Maximum uniform-price
matching: produce transactions that maximize the trade volume subject to the constraint
that all the transaction prices are the same. It turns out, there are instances where meeting
these objectives leads to different matchings and trade volumes. In either case, after the
transactions are produced, the orders or parts of the order that remain unmatched are not-
matchable, i.e., they have positive bid-ask spread. Compare this with one time instant
of continuous double auction. As we show in this work, positive bid-ask spread already
makes the process unique and can be seen as a special case of a call auction where the output
matching meets both the objectives (1 and 2) simultaneously.3 In the context of continuous

3 For this, we need a slightly relaxed definition of uniformity: we say a matching has a uniform price if
there exists a common price that can be set for all transactions in the matching such that no limit price
of the participating orders is breached.

FSTTCS 2022

39:6 The Design and Regulation of Exchanges: A Formal Approach

double auctions, this leads to an arguably much simpler requirement of positive bid-ask
spread as opposed to the requirements of maximum matching or maximum uniform-price
matching. Additionally, we derive a stronger uniqueness theorem for continuous double
auctions: for each bid-ask pair, the total transaction quantity between them is unique; in
contrast, for call auctions, for each order, the total transaction quantity involving that order
is unique. Where continuous double auctions completely differ from call auctions is in their
online setting, which adds a new layer of complexity to the formalization.

1.4 Organization of the rest of the paper
For understanding the rest of the paper, we do not assume that the reader has any prior
knowledge or expertise in formalization or using interactive theorem provers like Coq. For an
interested reader, we have provided in [1] details that show how the notions presented here are
represented in our Coq formalization, and one can convince oneself of the correctness of the
results by simply compiling the accompanying Coq formalization [1] without having to read
the proofs presented here. Additionally, a demonstration is included in the supplementary
materials; one needs an OCaml compiler to be able to run the demonstration.

In Section 2 we present the various notions and definitions that are needed for our work.
Section 3 has the three natural properties stated formally. In Sections 4-7, we prove the
above mentioned results: Maximum matching, Local Uniqueness, Global Uniqueness, and
Correctness of Process_instruction (partly moved to Appendix A. In Section 8 we describe
how to build automated checkers. We also include a demonstration to show how our checker
works on real data. Finally, the last section concludes the paper and describes future
directions.

2 Preliminaries

We begin by introducing the various definitions that are needed for establishing our results.
For ease of readability, we extensively use sets4 in our presentation. In the Coq formalization,
however, we use lists instead. The choice of lists in the formalization allows us to use existing
libraries that were developed in [13] and [8] for the purposes of modeling auctions, and, more
importantly, it helps us in optimizing our algorithm leading to a reasonably fast OCaml
program.5 In [1], we include detailed definitions and the main results alongside their formal
versions, showing a faithful correspondence between the results and the formalization.

2.1 Orders
To avoid proving common properties of bids and asks twice, we model both as orders. An
order is a 4-tuple (id, timestamp, quantity, price). For an order ω, its components are id(ω),
timestamp(ω), qty(ω), and price(ω), each of which is a natural number, and qty(ω) > 0.

For a set of orders Ω, ids(Ω) represents the set of ids of the orders in Ω. For a set of orders
Ω with distinct ids and an order ω ∈ Ω such that id(ω) = id, with slight abuse of notation,
we define timestamp(Ω, id) = timestamp(ω), qty(Ω, id) = qty(ω), and price(Ω, id) = price(ω).

We will often have a universe from which the bids and asks arise, which we call an
order-domain. (B, A) is an order-domain, if B and A are sets of orders. Here, B represents
a set of bids and A represents a set of asks. An order-domain where each id is distinct and
each timestamp is distinct is called admissible.

4 Sets introduced in this work are all finite.
5 Using other data structures might yield further improvements.

M. Garg and S. Sarswat 39:7

We now define the terms “tradable” and “matchable”. Given two orders b (bid) and a

(ask), we say b and a are tradable if price(b) ≥ price(a). An order-domain is matchable if
it contains a bid and an ask that are tradable.

Next, we define competitiveness. A bid b1 is more competitive compared to another bid
b2, denoted by b1 ≻ b2, if price(b1) > price(b2) OR (price(b1) = price(b2) AND timestamp(b1) <

timestamp(b2)). Similarly, an ask a1 is considered more competitive compared to another ask
a2, denoted by a1 ≻ a2, if price(a1) < price(a2) OR (price(a1) = price(a2) AND timestamp(a1)
< timestamp(a2)).

We treat a set of orders also as a multiset where we suppress the quantity field of each
order and set its multiplicity equal to its quantity. This view will help us succinctly state the
conservation property and ease the formalization substantially. For a set of orders S1 and
S2, S1 \ S2, represents the usual set difference, whereas S1 − S2 represents the usual multiset
difference between the two sets.

2.2 Transactions and matchings
For our purposes, keeping the price and timestamp in a transaction is redundant, as they
can be derived from the participating bid and ask. Based on the application, a transaction
between tradable orders b and a can be assigned an appropriate transaction price in the
interval [price(a), price(b)]. For example, for the sake of concreteness, one may assume that
such a transaction has price price(a) and timestamp max{timestamp(b), timestamp(a)}.

A transaction is a 3-tuple (idb, ida, quantity) of natural numbers where idb and ida

represent the ids of the participating bid and ask, respectively, and quantity > 0. For a
transaction t its components are represented by idbid(t), idask(t), and qty(t).

Let T be a set of transactions. We define idsbid(T) and idsask(T) to be the sets of ids of
the participating bids and asks, respectively. Next, we define Qtybid(T, idb) to be sum of the
transaction quantities of all transactions in T whose bid id is idb, and Qtyask(T, ida) to be
the sum of the transaction quantities of all transactions in T whose ask id is ida. For ease of
readability, we often just use Qty instead of Qtyask and Qtybid. We define Vol(T) to be the
sum of the transaction quantities of all transactions in T .

We say a transaction t is over the order-domain (B, A) iff idbid(t) = id(b) for some b ∈ B

and idask(t) = id(a) for some a ∈ A. We say that a transaction t is valid w.r.t order-domain
(B, A) iff there exists b ∈ B and a ∈ A such that (i) idbid(t) = id(b) and idask(t) = id(a), (ii) b

and a are tradable, and (iii) qty(t) ≤ min(qty(b), qty(a)). We say that a set of transactions
T is valid over an order-domain (B, A) if each transaction in T is valid over (B, A).

Given a set of transactions, we would like to extract out the set of “traded” bids/asks.
To this end, we define the functions Bids and Asks as follows. Let T be a set of transactions
over an admissible order-domain (B, A). We define Bids(T, B) to be the set of all the bids in
B that participate in T where the quantity of each bid b is set to the sum of the transaction
quantities of the transactions in T involving b. Similarly, Asks(T, A) is the set of asks in A

that participate in T where the quantity of each ask is set to its total traded quantity in T .
We often simply write Bids(T) and Asks(T) instead of Bids(T, B) and Asks(T, A) whenever
B and A are clear from the context.

Finally, we define a matching, which is a set of transactions that can simultaneously
arise from an order-domain. We also define the canonical form of a set of transactions,
which will be often applied to matchings. We say a set of valid transactions M over an
admissible order-domain (B, A) is a matching over (B, A) if for each order ω ∈ B ∪ A,
Qty(M, id(ω)) ≤ qty(ω). We define the canonical form of a set of transactions M , denoted
by C(M) to be a set of transactions satisfying the following two properties. For each bid-ask

FSTTCS 2022

39:8 The Design and Regulation of Exchanges: A Formal Approach

pair (b, a), C(M) consists of at most one transaction involving b and a. Furthermore, for
each bid-ask pair (b, a), the total transaction quantity between them in M is equal to the
total transaction quantity between them in C(M). It is easy to see that C(M) always exists.

2.3 Order book and process
We now formally define instructions and order books. Buy, Sell, and Del are called commands.
An instruction is a pair (∆, ω) where ∆ is a command and ω is an order. For convenience
we represent an instruction (∆, ω) by ∆ ω. Also sometimes we represent (Del, ω) instruction
simply by Del id(ω); this is done because for a Del command, only the id of the order matters.
An order book is a list where each entry is an instruction.

We now define a “structured” order book, which satisfies two conditions. Firstly, the
timestamps of the orders must be increasing. Secondly, the ids of the orders in the non-Del
instructions in the order book must be all distinct. We will relax the second condition slightly
which will help us in certain applications. We allow an order to have an id identical only
to the id appearing in an immediately preceding Del order instruction. This will later help
us in our application to implement an “update” instruction, by replacing it with a delete
instruction followed by a Buy or Sell instruction carrying the same id. Formally, an order
book I = [(∆0, ω0), · · · , (∆n, ωn)] is called structured if the following conditions hold.

For all i ∈ {0, · · · , n − 1}, timestamp(ωi) < timestamp(ωi+1).
For all i ∈ {0, 1, · · · , n}, at least one of the following three conditions hold. (i) ∆i = Del.
(ii) id(ωi) /∈ ids{ω0, · · · , ωi−1}. (iii) id(ωi) = id(ωi−1) and ∆i−1 = Del.

We now define a process, which represents an abstract online algorithm that will be
fed resident bids and asks and an instruction and it will output a set of transactions and
resulting resident bids and asks. A process is a function (B, A, τ) 7→ (B′, A′, M) that takes
as input sets of orders B, A, and an instruction τ and outputs sets of orders B′, A′, and a
set of transactions M .

The input to a process is an order-domain, which represents the resident orders in the
system, and an instruction. If this instruction is a delete id instruction, then the process
is supposed to delete all resident orders with that id, and the “effective” order-domain
potentially gets reduced. Otherwise, if the instruction is a buy/sell order, then the “effective”
order-domain needs to include that order. We define Absorb that takes an order-domain
and an instruction as input and outputs the “effective” order-domain. For an order-domain
(B, A) and an instruction τ we define

Absorb(B, A, τ) :=


({β ∈ B | id(β) ̸= id}, {α ∈ A | id(α) ̸= id}) if τ = Del id

(B ∪ {β}, A) if τ = Buy β

(B, A ∪ {α}) if τ = Sell α.

Observe that the following propositions follow immediately from the definition of Absorb.

▶ Proposition 1. If τ is an instruction and (B, A) is an order-domain such that the
timestamps of the orders in B ∪ A are all distinct and different from the timestamp appearing
in τ and if (B′, A′) = Absorb(B, A, τ), then the timestamps of the orders in B′ ∪ A′ are all
distinct.

▶ Proposition 2. If (B, A) is an order-domain such that the ids of the orders in B ∪ A are
all distinct, then for all Del instructions τ , if (B′, A′) = Absorb(B, A, τ), then the ids of the
orders in B′ ∪ A′ are all distinct.

M. Garg and S. Sarswat 39:9

Order book

(∆1, ω1) (∆2, ω2) (∆3, ω3) (∆k, ωk)

Process P(B,A)

(B′, A′)

M
Resident
orders

Figure 1 Illustration of a Process: at time k the process P takes as input resident orders (B, A)
and an instruction (∆k, ωk) and outputs a matching M and a pair of sets of orders (B′, A′) that
will act as resident orders for the next time step. Iterated takes as input a process P , an order book
I, and a time k and outputs what P would output on I at time k. Thus, for the example in the
figure, we have Iterated(P, I, k) = (B′, A′, M).

▶ Proposition 3. If τ is an instruction and (B, A) is an order-domain such that the ids
of the orders in B ∪ A are all distinct and different from the id appearing in τ and if
(B′, A′) = Absorb(B, A, τ), then the ids of the orders in B′ ∪ A′ are all distinct.

To a process, we will usually feed inputs that satisfy certain properties, and such inputs
we refer to as legal-inputs and are defined as follows. We say an order-domain (B, A) and
an instruction τ forms a legal-input if B and A are not matchable and τ is such that
(B′, A′) = Absorb(B, A, τ) is an admissible order-domain.

Finally, we define Iterated. Given a process P , an order book I and a natural number
k, we define Iterated(P, I, k) to be the output of P at time k when it is iteratively run
on the order book I. When k > length(I), Iterated(P, I, k) returns (∅, ∅, ∅). Otherwise,
Iterated(P, I, k) can be computed recursively as per the following algorithm.

Algorithm 1 Iteratively running a process on an order book.
function Iterated(Process P , Order-book I, natural number k)

if k = 0 or k > length(I) then return (∅, ∅, ∅)
(B,A,M)← Iterated(P, I, k − 1)

. B & A are resident orders & M is the matching outputted at time k − 1.
τ ← kth instruction in I
return P (B,A, τ)

3 Three natural properties of a process

Having set up the definitions, we will now state the three natural properties formally.
We say a process P satisfies positive bid-ask spread, price- time priority, and

conservation if for all order-domains (B, A) and an instruction τ such that (B, A) and
τ forms a legal-input, P (B, A, τ) = (B̂, Â, M) and (B′, A′) = Absorb(B, A, τ) implies the
following three conditions.
1. Positive Bid-Ask Spread: B̂ and Â are not matchable.
2. Price-Time Priority: If a less competitive order ω gets traded in M , then all orders

that are more competitive than ω must be fully traded in M . Formally,

a. ∀a, a′ ∈ A′, a ≻ a′ and id(a′) ∈ idsask(M) =⇒ Qty(M, id(a)) = qty(a)
b. ∀b, b′ ∈ B′, b ≻ b′ and id(b′) ∈ idsbid(M) =⇒ Qty(M, id(b)) = qty(b).

FSTTCS 2022

39:10 The Design and Regulation of Exchanges: A Formal Approach

3. Conservation: P does not lose or add orders arbitrarily. For this, we have the following
technical conditions.

a. M is a matching over the order-domain (B′, A′)

b. B̂ = B′ − Bids(M, B′) c. Â = A′ − Asks(M, A′).

The above definition appears in our Coq formalization as follows.

not (matchable hat_B hat_A).

forall b b', (In b B)/\(In b' B)/\(bcompetitive b b'/\~eqcompetitive b b')/\(In (id b') (ids_bid_aux M))
-> (Qty_bid M (id b)) = (oquantity b).

forall a a', (In a A)/\(In a' A)/\(acompetitive a a'/\~eqcompetitive a a')/\ (In (id a') (ids_ask_aux M))
-> (Qty_ask M (id a)) = (oquantity a).

Matching M B' A'.
hat_B === (odiff B' (bids M B')).
hat_A === (odiff A' (asks M A')).

4 Maximum matching

In this section, we prove the maximum matching lemma.

▶ Lemma 4 (Maximum matching). Let P be a process that satisfies positive bid-ask
spread and conservation. For all order-domain and instruction pairs ((B, A), τ) that form
legal-inputs, if P (B, A, τ) = (B̂, Â, M), then for all matchings M ′ over Absorb(B, A, τ),
Vol(M) ≥ Vol(M ′).

Proof of Lemma 4. Let us fix a process P , an order-domain (B, A), and an instruction τ

as in the lemma statement. Let (B̂, Â, M) = P (B, A, τ) and (B′, A′) = Absorb(B, A, τ). Let
M ′ be an arbitrary matching over (B′, A′). We need to show Vol(M) ≥ Vol(M ′).

Now we have the following three cases depending on τ .

Case: τ is Del id. In this case B′ = {b ∈ B|id(b) ̸= id} ⊆ B and A′ = {a ∈ A|id(a) ̸=
id} ⊆ A as (B′, A′) = Absorb(B, A, τ).

Since (B, A) and τ forms a legal input, (B, A) is not matchable. Consequently, (B′, A′) =
Absorb(B, A, τ) is also not matchable as B′ ⊆ B and A′ ⊆ A. Thus, no valid transaction over
(B′, A′) exists. Since the matching M ′ is a set of valid transactions over (B′, A′), M ′ = ∅.
Thus, Vol(M ′) = 0, and we are trivially done.

Case: τ is Buy β. In this case B′ = B ∪ {β} and A′ = A as (B′, A′) = Absorb(B, A, τ).
If (B′, A′) is not matchable, then as in the previous case, Vol(M ′) = 0, and we are trivially

done. Thus, we may assume (B′, A′) is matchable. Now since (B, A) is not matchable, only
β ∈ B′ is tradable with some ask in A′. Thus, for all valid transactions t over (B′, A′),
idbid(t) = id(β).

We assume for contradiction: Vol(M) < Vol(M ′). We will show that there exists a bid
b̂ ∈ B̂ and an ask â ∈ Â that remain resident and are tradable, contradicting positive
bid-ask spread.

Since M and M ′ are matchings over (B′, A′) consisting of only valid transactions t such
that idbid(t) = id(β) and Vol(M) < Vol(M ′), there must exist an ask a ∈ A′ which is tradable
with β, such that its trade quantity in M is strictly less than its trade quantity in M ′, i.e.,

Qtyask(M, id(a)) < Qtyask(M ′, id(a)) ≤ qty(a),

M. Garg and S. Sarswat 39:11

and β and a are tradable. Thus, from conservation part c, a part of a will remain resident
in Â. In particular, there exists â ∈ Â such that price(â) = price(a). Now, since β and a are
tradable, so are β and â.

Again since M ′ is a matching over (B′, A′) consisting of only valid transactions t such that
idbid(t) = id(β), Vol(M ′) ≤ qty(β). Thus, from our assumption, Vol(M) < Vol(M ′) ≤ qty(β)
which implies, from conservation part b, some part of β remains untraded in M . In
particular, there exists β̂ ∈ B̂ such that price(β̂) = price(β). Now since β and â are tradable,
β̂ and â are tradable, which contradicts positive bid-ask spread, completing the proof.

Case: τ is Sell α. The proof in this case is symmetric to the above case. ◀

5 Local Uniqueness

In this section, we prove the local uniqueness theorem.

▶ Theorem 5. Let P1 and P2 be processes that satisfy price-time priority, positive
bid-ask spread, and conservation. For all order-domain instruction pairs ((B, A), (∆, ω))
that form legal-inputs, if for each i ∈ {1, 2}, Pi(B, A, (∆, ω)) = (B̂i, Âi, Mi), then
(B̂1, Â1, C(M1)) = (B̂2, Â2, C(M2)). Furthermore, the following statements hold for each i.
(1) B̂i and Âi are not matchable.
(2) The timestamps of orders in B̂i and Âi are distinct and form a subset of the set of

timestamps of the orders in B ∪ A ∪ {timestamp(ω)}.

(3) The ids of orders in B̂i and Âi are distinct and form a subset of ids(B ∪ A) ∪ {id(ω)}.

(4) ∆ = Del =⇒ id(ω) /∈ ids(B̂i ∪ Âi).

Proof. Fix processes P1 and P2 that satisfy the three properties. Fix an order-domain (B, A)
and an instruction (∆, ω) which forms a legal-input. Let for each i ∈ {1, 2} (B̂i, Âi, Mi) =
Pi(B, A, (∆, ω)). Let (B′, A′) = Absorb(B, A, (∆, ω)).

We will show (B̂1, Â1, C(M1)) = (B̂2, Â2, C(M2)).
Proofs of (1)-(4) above are relatively straightforward, and we omit detailed proofs: (1) is

precisely positive bid-ask spread. (2) and (3) follow from the fact that timestamps and
ids of the resident orders arise from the timestamps of the orders in the order-domain (B′, A′),
which is admissible. (4) follows from the fact that if ∆ = Del, then id(w) /∈ ids(A′ ∪ B′).

To show (B1, A1, C(M1)) = (B2, A2, C(M2)), we will do a case analysis based on ∆.
First note that both M1 and M2 are maximum volume matching between B′ and A′ from

Lemma 4.

Case 1: ∆ is Del. In this case B′ ⊆ B and A′ ⊆ A as (B′, A′) = Absorb(B, A, (∆, ω)). Now,
since (B, A) is not matchable, (B′, A′) is also not matchable, implying M1 = M2 = ∅ as no
valid transactions exist over the order-domain (B′, A′). From conservation parts b and c,
we have B̂i = B′ and Âi = A′ for each i ∈ {1, 2}, and we are done.

Case 2: ∆ is Buy. In this case B′ = B ∪{ω} and A′ = A as (B′, A′) = Absorb(B, A, (∆, ω)).
Also since (B, A) is not matchable, then every valid transaction t over the order-domain
(B′, A′) is such that idbid(t) = id(ω).

If ω is not tradable with any ask in A′, then we are done like in the previous case as
there are no possible valid transactions over (B′, A′), implying M1 = M2 = ∅. And as before
Bi = B′ and Ai = A′ for each i ∈ {1, 2} follows from conservation, and we are done.

FSTTCS 2022

39:12 The Design and Regulation of Exchanges: A Formal Approach

Thus, we may assume ω is tradable with some ask in A′. We will first show that for each
ask a ∈ A, the total traded volume of a in M1 is equal to the total traded volume of a in M2.
Assume for the sake of contradiction, there exists an ask a that has more traded quantity
in M1 than in M2. This implies a is partially traded in M2. Since trade volumes of both
M1 and M2 are equal (as they are both maximum), there must be an ask a′ such that total
traded volume of a′ in M2 is more than that in M1. In particular, this implies that a′ has at
least one transaction in M2.

Now either a ≻ a′ or a′ ≻ a. First assume a ≻ a′. The fact that a more competitive
order a is partially traded in M2 while a less competitive order a′ is being traded contradicts
price-time priority. Next assume a′ ≻ a, the fact that in M1, a′ is partially traded and
a is also traded, leads to a similar contradiction. Thus, for all a ∈ A′, Qtyask(M1, id(a)) =
Qtyask(M2, id(a)).

Now recall in each valid transaction t over the order-domain (B′, A′) idbid(t) = id(ω).
As Mi consists of only such transactions t, C(Mi) consists of transactions of the form
(id(ω), id(a), q) where q = Qtyask(Mi, id(a)) and a ∈ A′. Now since for all a ∈ A′, Qtyask(M1,

id(a)) = Qtyask(M2, id(a)), a transaction is in C(M1) iff it is in C(M2), proving C(M1) =
C(M2).

Now we prove Â1 = Â2. Fix an i ∈ {1, 2}. It follows from conservation part
c that each a ∈ A′ which is not fully traded in Mi by Pi will have a corresponding
âi ∈ Âi such that qty(âi) = qty(a) − Qtyask(Mi, id(a)) and (id(â), timestamp(â), price(â)) =
(id(a), timestamp(a), price(a)). Furthermore, no element exists in Âi whose id, timestamp, and
price do not match with the respective attributes of some element in A′. Now, we proved
earlier that for all a ∈ A′, Qtyask(M1, id(a)) = Qtyask(M2, id(a)). Combining these facts, we
get Â1 = Â2.

B̂1 = B̂2 follows from conservation part b: Observe that if ω gets fully traded in M1
and M2, B̂1 = B̂2 = B, as all elements of B remain resident from conservation. If ω gets
partially traded in M1 and M2, then B̂1 = B̂2 = B∪{ω̂}, where (id(ω̂), timestamp(ω̂), price(ω̂))
= (id(ω), timestamp(ω), price(ω)) and q(ω̂) = qty(ω) − Vol(Mi) (for each i ∈ {1, 2}).

Case 3: ∆ is Sell. Here, the proof is symmetric to the proof in Case 2. ◀

6 Global uniqueness

In this section, we prove the global uniqueness theorem.

▶ Theorem 6. Let P1 and P2 be processes that satisfy positive bid-ask spread,
price-time priority, and conservation. Then, for all structured order books I and
natural numbers k if Iterated(P1, I, k) = (B1, A1, M1) and Iterated(P2, I, k) = (B2, A2, M2),
then (B1, A1, C(M1)) = (B2, A2, C(M2)).

In our Coq formalization, this theorem appears as follows.

(Properties P1) /\ (Properties P2) /\ structured I ->
(cform (Mlist (iterated P1 I k))) === (cform (Mlist (iterated P2 I k)))/\
(Blist (iterated P1 I k)) === (Blist (iterated P2 I k)) /\
(Alist (iterated P1 I k)) === (Alist (iterated P2 I k)).

To prove the above theorem we lift the local uniqueness theorem, Theorem 5, using
induction. We achieve this by strengthening the theorem statement that provides us with
a strong enough induction hypothesis for establishing the pre-conditions needed to apply
Theorem 5.

M. Garg and S. Sarswat 39:13

Proof of Theorem 6. Fix processes P1 and P2 and a structured order book I =
[(∆0, ω0), · · · , ∆n, ωn)], and let Iterated-Pi(k) denote Iterated(Pi, I, k) for i ∈ {1, 2}.

Notice for k > length(I) = n + 1, Iterated-P1(k) = Iterated-P2(k) = (∅, ∅, ∅) and we are
trivially done. Now we will show the theorem statement holds for k ≤ n + 1. More generally,
we prove the following statement by induction on k.

For all k ≤ n + 1, if Iterated-P1(k) = (Bk
1 , Ak

1 , Mk
1) and Iterated-P2(k) = (Bk

2 , Ak
2 , Mk

2),
then the following properties hold.
(1) (Bk

1 , Ak
1 , C(Mk

i)) = (Bk
2 , Ak

2 , C(Mk
i)).

(2) Bk
1 and Ak

1 are not matchable.
(3) The timestamps of orders in Bk

1 ∪ Ak
1 are distinct and form a subset of the set of

timestamps of {ω0, · · · , ωk−1}.
(4) Orders in Bk

1 ∪ Ak
1 have distinct ids and they belong to ids({ω0, · · · , ωk−1}).

(5) k ≥ 1 and ∆k−1 = Del =⇒ id(ωk−1) /∈ ids(Bk
1 ∪ Ak

1).

Observe that proving (1) above would complete the proof of Theorem 6.
Base case: When k = 0, Iterated-P1(0) = Iterated-P2(0) = (∅, ∅, ∅), and properties (1)–(5)

trivially hold.
We now assume that the above statement (properties (1)-(5)) holds for k = t and

we will show that the above statement holds for k = t + 1. Notice for each i ∈ {1, 2},
Iterated-Pi(t + 1) first computes Iterated-Pi(t) recursively to obtain (Bt

i , At
i) and then returns

Pi(Bt
i , At

i, (∆t, ωt)) = (Bt+1
i , At+1

i , M t+1
i). Our proof proceeds in two parts. First, using

the induction hypothesis we prove that (Bt
i , At

i, (∆t, ωt)) forms a legal input, which is the
pre-condition to apply Theorem 5. Next, we invoke Theorem 5 and establish that properties
(1)–(5) hold for k = t + 1.

First part. (Bt
i , At

i, (∆t, ωt)) forms a legal input. To show this, observe from the definition
of legal input, we need to show (i) Bt

i and At
i are not matchable and (ii) Absorb(Bt

i ,

At
i, (∆t, ωt)) forms an admissible order-domain. (i) is immediate from the induction hypothesis

(property (2)). To show (ii) we need to show that if Absorb(Bt
i , At

i, (∆t, ωt)) = (B′, A′), then
the timestamps of the orders in B′ ∪A′ are all distinct and the ids of the orders in B′ ∪A′ are
all distinct. The timestamps of the orders in B′ ∪ A′ are distinct follows from Proposition 1,
since from the induction hypothesis (property (3)) it follows that the orders in Bt

1 and At
1

have distinct timestamps from the set {timestamp(ω0), · · · , timestamp(ωt−1)}, and they are
strictly smaller than timestamp(ωt) as I is structured. Below we show that the ids of B′ ∪ A′

are distinct by considering two cases: ∆t = Del and ∆t ̸= Del.
Case: ∆t = Del. We are immediately done from Proposition 2, since orders in Bt

1 ∪ At
1

have distinct ids from the induction hypothesis (property (4)).
Case: ∆t ̸= Del. Since ∆t ̸= Del and I is structured, either (a) id(ωt) /∈ ids{ω0, · · · , ωt−1}
or (b) id(ωt) = id(ωt−1) and ∆t−1 = Del. In either case we claim that id(ωt) /∈ ids(At

1∪Bt
1).

From the induction hypothesis (property (4)), we know orders in Bt
1 ∪ At

1 have distinct
ids from the set ids({ω0, · · · , ωt−1}). So in case (a), it immediately follows that id(ωt) /∈
ids(At

1 ∪ Bt
1). In case (b), since ∆t = Del, from induction hypothesis (property (5)), we

have that id(ωt−1) /∈ ids(Bt
1 ∪ At

1). In case (b) we also have id(ωt) = id(ωt−1). Thus,
combining these two facts, we have id(ωt) /∈ ids(Bt

1 ∪ At
1). Now using the claim and the

fact that ids of orders in Bt
1 ∪ At

1 are all distinct, we invoke Proposition 3 to get that ids
of orders in B′ ∪ A′ are all distinct.

FSTTCS 2022

39:14 The Design and Regulation of Exchanges: A Formal Approach

Second part. properties (1)-(5) hold for k = t+1. (1) holds: From the induction hypothesis
(property (1)), we have (Bk

1 , Ak
1) = (Bk

2 , Ak
2). Now since (Bk

1 , Ak
1 , (∆t, ωt)) forms a legal

input, we are immediately done by invoking Theorem 5. (2) and (5) also immediately follow
by invoking Theorem 5. (4) holds: Theorem 5 implies that the ids of orders in Bt+1

1 ∪ At+1
1

are all distinct and form a subset of (ids(Bt
1 ∪At

1)∪{id(ωt)}). Now from induction hypothesis
(property (4)), we have ids(Bt

1 ∪ At
1) ⊆ ids({ω0, · · · , ωt−1}). Thus, ids of the orders in

Bt+1
1 ∪ At+1

1 forms a subset of ids({ω0, · · · ωt}), and we are done. Using an almost identical
argument, we can show that (3) holds. ◀

7 Verified Algorithm

Here we introduce a natural algorithm for continuous double auctions.

Algorithm 2 Process for continuous market.
function Process instruction(Bids B, Asks A, Instruction τ)

if τ = Del id then Del order(B,A, id)

if τ = Buy β then Match bid(B,A, β)

if τ = Sell α then Match ask(B,A, α)

In the Coq formalization of Process_instruction, we sort the list of asks and bids by their
competitiveness before calling a subroutine; as a result, the most competitive bid and ask
are on top of their respective lists.

Algorithm 3 Matching an ask.
function Match ask(Bids B, Asks A, order α) . α is an ask.

if B = ∅ then return (B,A ∪ {α}, ∅)
β ← Extract most competitive(B) . Note: B ← B \ {β}.
if price(β) < price(α) then return (B ∪ {β}, A ∪ {α}, ∅)

. From now on β and α are tradable.
if qty(β) = qty(α) then m← (id(β), id(α), qty(α))

return (B,A, {m})
if qty(β) > qty(α) then m← (id(β), id(α), qty(α))

B′ ← B ∪ {(id(β), timestamp(β), qty(β)− qty(α), price(β))}
return (B′, A, {m})

if qty(β) < qty(α) then m← (id(β), id(α), qty(β))
α′ ← (id(α), timestamp(α), qty(α)− qty(β), price(α))
(B′, A′,M ′)← Match ask(B,A, α′)
M ←M ′ ∪ {m}
return (B′, A′,M)

The Match_Bid subroutine is symmetric to the Match_Ask subroutine and we do not
present it explicitly here.

Algorithm 4 Deleting an order.
function Del order(B, A, id)

if id ∈ ids(B) then B ← remove(B, id)

if id ∈ ids(A) then A← remove(A, id)

return (B,A, ∅)

Next, we show that the above algorithm satisfies the three natural properties.

▶ Theorem 7. Process_instruction satisfies positive bid-ask spread, price-time
priority, and conservation.

M. Garg and S. Sarswat 39:15

In our Coq formalization, the above theorem statement appears as follows.

Properties Process_instruction.

The proof of this result is outlined in Appendix A.

8 Application: checker

In this section, we discuss how we use our verified algorithm and the global uniqueness
theorem to design an automated checker that detects errors in exchange algorithms that
run continuous double auctions from their trade logs. We implement such a checker and
run it on trade logs from an exchange. We include, as part of the supplementary materials
accompanying this paper, the OCaml source code of our checker, trade logs for two example
stocks (created from real stocks from a stock exchange after appropriate preprocessing and
masking), and a shell script that compiles our code and runs it on the trade logs of the two
stocks.

As discussed in the paper, exchanges for each traded product maintain an order book
that contains all the incoming orders and a corresponding trade book that contains all
the transactions that are generated as trade logs. These trade logs are accessible to the
regulators. We show a market regulator can use these trade logs to automatically determine
whether an exchange is complying with the three natural requirements of price-time
priority, positive bid-ask spread, and conservation while generating transactions.
Recall, as implied by our global uniqueness theorem, these three properties completely specify
continuous double auctions.

8.1 Algorithm for checker
Given an order book and the corresponding trade book, the checker first runs the verified
matching algorithm on the order book to generate “verified” matchings. Then, the canonical
forms of the matchings in the trade book with the verified matchings are compared, one
time-step at a time. If for any time-step, the canonical forms of the matchings do not match,
the checker outputs a mismatch detected message along with the corresponding matchings.
Otherwise, if all matchings match, the checker terminates without a mismatch message.

For a given order book and trade book, if the above checker finds a mismatch, then we
can conclude, from the global uniqueness theorem, that the exchange algorithm violates at
least one of the three properties. Otherwise, at least for the instance at hand, the exchange
algorithm output is as good as that of a verified algorithm.

In our implementation of the checker, the verified matching algorithm and the canonical
form functions are directly extracted from our formalization using Coq’s code extraction
feature and used as subroutines.

8.2 Preprocessing an order book
Real exchanges implement more complex instruction types than our three primitives:
buy/sell/delete. Here we briefly discuss some of these instruction types and how to convert
them into primitive types in a preprocessing step.

Updates. A buyer or seller might want to update the quantity or price of his order using
an update order instruction. For our test exchange, the rule is if the quantity of the
order decreases, then the timestamp of the original order is retained. Otherwise, if the

FSTTCS 2022

39:16 The Design and Regulation of Exchanges: A Formal Approach

quantity is increased or the price changes the new order carries the timestamp of the
update instruction. Our test exchange as part of the update instruction also maintains
the information of the quantity of the order that remains untraded. Updates can be
easily implemented by replacing it with a delete instruction followed by a new buy/sell
instruction with the updated attributes.
Market orders. Market orders are orders that do not specify a limit price and are ready to
be traded at any price. We can implement such an order quite easily by keeping the price
0 for a sell order and ∞ (in our implementation we use the maximum number supported
by the system) for a buy order.
Immediate or cancel orders (IOCs). An IOC is an order that needs to be immediately
removed from the system after it is processed, i.e., it should never become a resident
order. Such orders can be implemented by replacing them with a buy/sell instruction
followed by a delete instruction.
Stop-loss orders. Stop-loss orders are orders that are triggered when certain events happen,
like when the price of a transaction goes below a threshold. For our test exchange, the
timestamp of the triggering event is provided. Consequently, these orders can be treated
as normal orders when inserted in the order book at a position corresponding to the
timestamp of the triggering event.

Note that the preprocessing step can at the most double the number of instructions in
the order book. Apart from these standard orders discussed above, certain exchanges allow
for more complicated orders which include “iceberg orders”. Iceberg orders are rare and are
more complicated to preprocess where the priority of the orders depends on factors that
cannot be fully determined by just price and time. Although we can implement such orders
through some preprocessing hacks, ideally the matching algorithm should be enriched to
handle such orders.

8.3 Demonstration
We include, as part of the supplementary materials [1] accompanying this paper, the OCaml
source code of our checker, trade logs for two example stocks (created from real data after
appropriate preprocessing and masking), and a shell script that compiles our code and
runs it on the trade logs of the two stocks. The checker takes under a second to process
both the order books. For the first stock, the order book has about 16000 instructions; the
checker detects that there is no mismatch. For the second stock, the order book has about
15000 instructions; the checker detects a mismatch. On inspection, we found that a delete
instruction appears in the order book before the corresponding order was placed causing the
mismatch.

We believe that it would be difficult to detect such rare anomalies without the systematic
application of formal methods; in absence of formal specifications, uniqueness theorems, and
verified algorithms, such anomalies can be easily brushed aside as complex and probably
unavoidable program behavior.

9 Conclusions

In this work, we formally introduced continuous double auctions and specified them in
terms of three natural and necessary properties. Then, we showed that a natural algorithm
possesses these properties. Based on our work, we were able to produce a checker that
automatically detects errors in existing exchange algorithms by going over their trade logs.

M. Garg and S. Sarswat 39:17

There are many opportunities in the field of certified auctions. For continuous double
auctions alone, one could look at various sophisticated priority rules. For example, what
would be the specifications for parity/priority matchings (as used by NYSE)? What would be
the specifications for price-time priority matchings in the presence of iceberg orders? What
would be the specifications for decentralized exchanges (for cryptocurrencies)?

With this work and previous works in the field, a new paradigm for formalizing various
auction mechanisms is emerging, which we believe has useful policy implications for regulators.
With the formal methods technology, it is now possible to formally verify systems and require
auctioneers to implement them, and also check if the implementation is correct by checking
the logs of the auctions that were conducted.

References
1 Supplementary materials: Coq formalization and demonstration, 2022. URL: https://github.

com/suneel-sarswat/cda.
2 Iliano Cervesato, Sharjeel Khan, Giselle Reis, and Dragisa Žunić. Formalization of automated

trading systems in a concurrent linear framework. In Linearity-TLLA@FLoC, volume 292 of
EPTCS, pages 1–14, 2018. arXiv:1904.06159.

3 Frankfurt Stock Exchange. Market Model for the Trading Venue Xetra. https:
//www.xetra.com/resource/blob/1963528/ceda0de49d5b8db5e33cdb17375e4cc9/data/T7_
R.8.1_Market_Model-en.pdf, Sep 22, 2021.

4 Daniel Friedman. The double auction market institution: A survey. The double auction
market: Institutions, theories, and evidence, 14:3–25, 1993.

5 Larry Harris. Trading and exchanges: Market microstructure for practitioners. OUP USA,
2003.

6 Cezary Kaliszyk and Julian Parsert. Formal microeconomic foundations and the first welfare
theorem. In June Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA,
USA, January 8-9, 2018, pages 91–101. ACM, 2018. doi:10.1145/3167100.

7 Vasilios Mavroudis and Hayden Melton. Libra: Fair order-matching for electronic financial
exchanges. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
pages 156–168, 2019.

8 Raja Natarajan, Suneel Sarswat, and Abhishek Kr Singh. Verified double sided auctions for
financial markets. In Liron Cohen and Cezary Kaliszyk, editors, 12th International Conference
on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual
Conference), volume 193 of LIPIcs, pages 28:1–28:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.28.

9 Jinzhong Niu and Simon Parsons. Maximizing matching in double-sided auctions. In Interna-
tional conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul,
MN, USA, May 6-10, 2013, pages 1283–1284, 2013.

10 Grant Passmore, Simon Cruanes, Denis Ignatovich, Dave Aitken, Matt Bray, Elijah Kagan,
Kostya Kanishev, Ewen Maclean, and Nicola Mometto. The imandra automated reasoning
system (system description). In International Joint Conference on Automated Reasoning,
pages 464–471. Springer, 2020.

11 Grant Olney Passmore and Denis Ignatovich. Formal verification of financial algorithms. In
26th International Conference on Automated Deduction, Proceedings, volume 10395 of Lecture
Notes in Computer Science, pages 26–41. Springer, 2017.

12 Tobias Preis. Price-time priority and pro rata matching in an order book model of financial
markets. In Econophysics of Order-driven Markets, pages 65–72. Springer, 2011.

13 Suneel Sarswat and Abhishek Kr Singh. Formally verified trades in financial markets. In
Formal Methods and Software Engineering – 22nd International Conference on Formal
Engineering Methods, ICFEM 2020, Singapore, Singapore, March 1-3, 2021, Proceed-
ings, volume 12531 of Lecture Notes in Computer Science, pages 217–232. Springer, 2020.
doi:10.1007/978-3-030-63406-3_13.

FSTTCS 2022

https://github.com/suneel-sarswat/cda
https://github.com/suneel-sarswat/cda
http://arxiv.org/abs/1904.06159
https://www.xetra.com/resource/blob/1963528/ceda0de49d5b8db5e33cdb17375e4cc9/data/T7_R.8.1_Market_Model-en.pdf
https://www.xetra.com/resource/blob/1963528/ceda0de49d5b8db5e33cdb17375e4cc9/data/T7_R.8.1_Market_Model-en.pdf
https://www.xetra.com/resource/blob/1963528/ceda0de49d5b8db5e33cdb17375e4cc9/data/T7_R.8.1_Market_Model-en.pdf
https://doi.org/10.1145/3167100
https://doi.org/10.4230/LIPIcs.ITP.2021.28
https://doi.org/10.1007/978-3-030-63406-3_13

39:18 The Design and Regulation of Exchanges: A Formal Approach

14 Securities Exchange Board of India (SEBI). Order in the matter of NSE Colocation, Apr 30,
2019. Order in the matter of NSE Colocation.

15 The Coq Development Team. The coq reference manual, release 8.12.2, Decem-
ber 11 2020. URL: https://github.com/coq/coq/releases/download/V8.12.2/coq-8.12.
2-reference-manual.pdf.

16 U.S. Securities and Exchange Commision (SEC). SEC Charges UBS Subsidiary With Disclosure
Violations and Other Regulatory Failures in Operating Dark Pool. https://www.sec.gov/
news/pressrelease/2015-7.html, July, 2015.

17 U.S. Securities and Exchange Commision (SEC). NYSE to Pay US Dollar 14 Million Penalty for
Multiple Violations. https://www.sec.gov/news/press-release/2018-31, March 6, 2018.

18 U.S. Securities and Exchange Commision (SEC). SEC Charges NYSE for Repeated Failures to
Operate in Accordance With Exchange Rules. https://www.sec.gov/news/press-release/
2014-87, May 1, 2014.

19 Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods:
Practice and experience. ACM computing surveys (CSUR), 41(4):1–36, 2009.

20 Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double auctions for
electronic commerce: theory and implementation. Decision Support Systems, 24(1):17–27,
1998.

21 Junbeom Yoo, Taihyo Kim, Sungdeok Cha, Jang-Soo Lee, and Han Seong Son. A formal
software requirements specification method for digital nuclear plant protection systems. Journal
of Systems and Software, 74(1):73–83, 2005.

22 Dengji Zhao, Dongmo Zhang, Md Khan, and Laurent Perrussel. Maximal matching for double
auction. In Australasian Joint Conference on Artificial Intelligence, pages 516–525. Springer,
2010.

A Correctness of Process_instruction

As Process_instruction on each input invokes one of Match_Ask, Match_Bid, and Del_Order,
it is enough to show that these subroutines have the desired properties. It is relatively
straightforward to show that Del_Order has the properties and the proof for Match_Bid
and Match_Ask are completely symmetric. Thus, in our presentation, we just show that
Match_Ask has the desired properties.

A.1 Match_Ask satisfies positive bid-ask spread
The Match_Ask subroutine satisfies positive bid-ask spread follows immediately from
the following lemma.

▶ Lemma 1. Let (B, A ∪ {α}) be an admissible order-domain. If Match_Ask(B, A, α) =
(B̂, Â, M) and (B, A) is not matchable, then (B̂, Â) is not matchable.

Proof. Fix an A and an α. We prove the lemma by induction on |B|.
Base case: trivial.
Induction hypothesis: For all |B| < k, If (B, A ∪ {α}) is an admissible domain, (B, A) is
not matchable, and Match_Ask(B, A, α) = (B̂, Â, M), then (B̂, Â) is not matchable.
Induction step: We prove the statement when |B| = k.

Let β be the most competitive bid in B. If β is not tradable with α, then as per
Match_Ask, B̂ = B and Â = A∪{α}. Now since α is not tradable with the most competitive
bid in B, it is not tradable with any bid in B. Coupled with the fact that (B, A) is not
matchable, we get (B̂, Â) is not matchable.

https://www.sebi.gov.in/enforcement/orders/apr-2019/order-in-the-matter-of-nse-colocation_42880.html
https://github.com/coq/coq/releases/download/V8.12.2/coq-8.12.2-reference-manual.pdf
https://github.com/coq/coq/releases/download/V8.12.2/coq-8.12.2-reference-manual.pdf
https://www.sec.gov/news/pressrelease/2015-7.html
https://www.sec.gov/news/pressrelease/2015-7.html
https://www.sec.gov/news/press-release/2018-31
https://www.sec.gov/news/press-release/2014-87
https://www.sec.gov/news/press-release/2014-87

M. Garg and S. Sarswat 39:19

From now on, we may assume that β and α are tradable. We have three cases based on
the relationship between qty(β) and qty(α).

If qty(β) = qty(α), then as per Match_Ask, (B̂, Â) = (B \ {β}, A), and we are trivially
done as (B, A) is not matchable.
If qty(β) > qty(α), then as per Match_Ask, (B̂, Â) = ((B \{β})∪{β′}, A) where β and β′

only differ in their quantities. Now since (B, A) is not matchable, (B̂, Â) is not matchable,
and we are done.
If qty(β) < qty(α), then Match_Ask on (B, A, α) first recursively calls Match_Ask on
(B \ {β}, A, α′) where α′ is obtained from α by reducing its quantity to qty(α) − qty(β).
Let (B′, A′, M ′) = Match_Ask(B \ {β}, A, α). Then, Match_Ask returns (B̂, Â, M) =
(B′, A′, M) where M is obtained from M ′ in some way. Now since, the set of bids in
the recursive call has cardinality |B \ {β}| = k − 1, (B \ {β}, A ∪ {α′}) is admissible (as
(B, A ∪ {α}) admissible), and (B \ {β}, A) is not matchable (as (B, A) not matchable),
we can apply the induction hypothesis to conclude (B′, A′) is not matchable. Now as
(B̂, Â) = (B′, A′), we are done. ◀

A.2 Match_Ask satisfies price-time priority
The subroutine Match_Ask satisfies price-time priority follows immediately from the
following lemma.

▶ Lemma 2. Let (B, A ∪ {α}) be an admissible order-domain such that (B, A) is not
matchable. If Match_Ask(B, A, α) = (B̂, Â, M), then

(i) ∀a, a′ ∈ A ∪ {α}, a ≻ a′ and id(a′) ∈ idsask(M) =⇒ Qty(M, id(a)) = qty(a)
and (ii) ∀b, b′ ∈ B, b ≻ b′ and id(b′) ∈ idsbid(M) =⇒ Qty(M, id(b)) = qty(b).

Proof. We first show (i). If M = ∅, then price-time priority trivially holds. Otherwise,
since (B, A) is not matchable, only α in A∪{α} is tradable with some bid in B. Therefore, α is
the most-competitive ask in A ∪ {α} and all transactions t ∈ M are such that idask(t) = id(α).
Thus no a′ exists such that a ≻ a′ and id(a′) ∈ idsask(M). Thus, price-time priority
trivially holds.

Next, we prove (ii) by induction on |B|.
Base case is trivial as B = ∅ =⇒ M = ∅.
Induction hypothesis: We assume that (ii) holds for all B such that |B| < k.
Induction step: We now show that (ii) holds for all B such that |B| = k.

Fix b, b′ ∈ B such that b ≻ b′ and b′ gets traded in M . We need to show that b is fully
traded in M .

Let β be the most competitive bid in B. If β is not tradable with α, as per Match_Ask,
M = ∅ and we are trivially done. Henceforth we assume β is tradable with α.

Observe, Match_Ask is such that it completely trades β in its output M (along with
possibly other bids from B) or only trades a part of β but no other bid from B. Thus, β

cannot be b′. We thus consider two cases: b = β or b ̸= β.
Case: b = β. Here again, we are done from the above observation that either β gets
completely traded or β gets partially traded but no other bid gets traded at all.
Case: b ̸= β. When qty(β) = qty(α) or qty(β) > qty(α), as per Match_Ask, β is the only
bid that gets partially or fully traded in M , contradicting the existence of b and b′.

In the final case, when qty(β) < qty(α), Match_Ask on (B, A, α) recursively calls
Match_Ask on (B \ {β}, A, α′) where α′ is obtained from α by reducing its quantity

FSTTCS 2022

39:20 The Design and Regulation of Exchanges: A Formal Approach

by qty(β). Let the recursive call return (B′, A′, M ′) = Match_Ask(B \ {β}, A, α′), then
Match_Ask returns (B̂, Â, M) = (B′, A′, M ∪ {m}), where m is a transaction between α

and β. Thus, all transactions t in M where idbid(t) ̸= id(β) come from M ′. Now since
β ≻ b ≻ b′ are distinct, if b′ gets traded in M , it must get traded in M ′ and applying the
induction hypothesis (as it is easy to verify that |B \ {β}| = k − 1, (B \ {β}, A ∪ {α′})
admissible and (B \ {β}, A) not matchable), we have b gets fully traded in M ′ and hence
in M (as M = M ′ ∪ {m}) and we are done. ◀

A.3 Match_Ask satisfies conservation
Match_Ask satisfies conservation follows immediately from the following lemma.

▶ Lemma 3. Let (B, A ∪ {α}) be an admissible order-domain. If Match_Ask(B, A, α) =
(B̂, Â, M), then

a. M is matching over the order-domain (B, A ∪ {α})

b. B̂ = B − Bids(M, B)

c. Â = (A ∪ {α}) − Asks(M, A ∪ {α}).

Proof. We briefly outline the proof stressing only the important aspects.

Part a. To show M is a matching over (B, A∪{α}), we need to show that (i) each transaction
in M is between a tradable bid-ask pair where the bid is in B and the ask is in A ∪ {α}, and
(ii) for each order ω in B ∪ A ∪ {α}, its total transaction quantity in M Qty(M, id(ω)) is at
most its quantity qty(ω).

We will show this by induction on |B|. The base case is trivial: |B| = 0 =⇒ M = ∅,
which is trivially a matching. We assume that (i) and (ii) hold for all B such that |B| < k.
We now show that (i) and (ii) hold assuming |B| = k.

Let β be the most competitive bid in B. When β is not tradable with α, as per Match_Ask,
M = ∅ and we are trivially done. Henceforth we assume β is tradable with α. Now, when
qty(β) ≥ qty(α), Match_Ask outputs only a single transaction m between β and α with
transaction quantity qty(m) = qty(α) ≤ qty(β) and clearly M = {m} satisfies (i) and (ii)
above.

When β is tradable with α and qty(β) < qty(α), Match_Ask creates a transaction m

between β and α with transaction quantity qty(β) and obtains α′ from α by reducing its
quantity by qty(β). It then recursively calls Match_Ask(B\{β}, A, α′) to obtain the matching
M ′ and then outputs the matching M = M ′ ∪ {m}.

Note that (B, A ∪ {α}) admissible implies (B \ {β}, A ∪ {α′}) is admissible. Furthermore,
since |B \ {β}| = k − 1, we can apply the induction hypothesis to obtain that M ′ is a
matching between B \{β} and A∪{α′}. In particular, this means that β does not participate
in M ′ and the total transaction quantity of α in M ′ is at most qty(α′) = qty(α) − qty(β).
So the total transaction quantity of β in M = M ′ ∪ {m} is the transaction quantity of
m, which is qty(β), and the total transaction quantity of α in M = M ′ ∪ {m} is at most
qty(α′) + qty(m) = (qty(α) − qty(β)) + qty(β) = qty(α). With these facts, one can easily
verify that (i) and (ii) hold.

Part b. Here we need to show that B̂ = B − Bids(M, B). Once again we argue by induction
on |B|. Let β be the most competitive bid in B.

M. Garg and S. Sarswat 39:21

In all but the last if statement of Match_Ask (where β and α are tradable and qty(β) <

qty(α)), we have B, B̂, and M explicitly and we can directly verify that the property holds.
In the last if condition, Match_Ask first creates a transaction m between β and α with

transaction quantity qty(β) and obtains α′ from α by reducing its quantity to qty(α)−qty(β).
It then computes (B′, A′, M ′) = Match_Ask(B \ {β}, A, α′) recursively. Finally it returns
(B̂, Â, M) = (B′, A′, M ′ ∪ {m}).

For the recursive call, we can apply the induction hypothesis. Thus,

B′ = (B \ {β}) − Bids(M ′, B \ {β}) (from I.H.)

=⇒ B̂ = (B \ {β}) − Bids(M ′, B \ {β}) (since B̂ = B′)
= B − Bids(M, B),

where the last equality follows from the observation that β is missing from both B \ {β} and
Bids(M ′, B \ {β}), and Bids(M, B) contains β (as M = M ′ ∪ {m} where m is a transaction
involving β with transaction quantity qty(β)).

Part c. Observe that all transactions produced by Match_Ask have α as its participating
ask. Thus, one can check that we will be done if we can show that

qty(Â, id(α)) = qty(α) − Qty(M, id(α)).

To show the above, we again induct on |B|. In all but the last if statement of Match_Ask,
we have α, Â, and M explicitly, and we can directly verify that the above equation holds.

In the last if statement, we have that qty(β) < qty(α) and β and α are tradable, where β

is the most competitive bid in B. In this case, Match_Ask creates a transaction m between
β and α with transaction quantity qty(β) and obtains α′ from α by reducing its quantity
by qty(β). Then, it recursively calls Match_Ask(B \ {β}, A, α′) to obtain (B′, A′, M ′) and
finally outputs (B̂, Â, M) = (B′, A′, M ′ ∪ {m}). We can apply the induction hypothesis for
the recursive call. Thus,

qty(A′, id(α′)) = qty(α′) − Qty(M ′, id(α′)) (from I.H.)

=⇒ qty(Â, id(α)) = qty(α′) − Qty(M ′, id(α))

(since Â = A′ and id(α′) = id(α))
= qty(α) − [qty(β) + Qty(M ′, id(α))]

(as qty(α′) = qty(α) − qty(β))
= qty(α) − Qty(M, id(α)),

where the last equality follows from observing that M = M ′ ∪ {m} and m is a transaction
involving α with transaction quantity qty(β). ◀

FSTTCS 2022

Parikh Automata over Infinite Words
Shibashis Guha !

Tata Institute of Fundamental Research, Mumbai, India

Ismaël Jecker !

University of Warsaw, Poland

Karoliina Lehtinen !

CNRS, Aix-Marseille University, LIS, Marseille, France

Martin Zimmermann !

Aalborg University, Denmark

Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a
semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic
properties of finite automata. Here, we study the extension of the classical framework onto infinite
inputs: We introduce reachability, safety, Büchi, and co-Büchi Parikh automata on infinite words
and study expressiveness, closure properties, and the complexity of verification problems.

We show that almost all classes of automata have pairwise incomparable expressiveness, both in
the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known
hierarchy in the ω-regular setting. Furthermore, emptiness is shown decidable for Parikh automata
with reachability or Büchi acceptance, but undecidable for safety and co-Büchi acceptance. Most
importantly, we show decidability of model checking with specifications given by deterministic Parikh
automata with safety or co-Büchi acceptance, but also undecidability for all other types of automata.
Finally, solving games is undecidable for all types.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Parikh automata, ω-automata, Infinite Games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.40

Related Version Full Version: https://arxiv.org/abs/2207.07694 [17]

Funding Shibashis Guha: Supported by the DST-SERB project SRG/2021/000466.
Ismaël Jecker : Supported by the ERC grant 950398 (INFSYS).
Martin Zimmermann: Supported by DIREC – Digital Research Centre Denmark.

Acknowledgements We want to thank an anonymous reviewer for proposing Lemma 14.

1 Introduction

While finite-state automata are the keystone of automata-theoretic verification, they are
not expressive enough to deal with the many nonregular aspects of realistic verification
problems. Various extensions of finite automata have emerged over the years, to allow for
the specification of context-free properties and beyond, as well as the modelling of timed and
quantitative aspects of systems. Among these extensions, Parikh automata, introduced by
Klaedtke and Rueß [19], consist of finite automata augmented with counters that can only
be incremented. A Parikh automaton only accepts a word if the final counter-configuration
is within a semilinear set specified by the automaton. As the counters do not interfere with
the control flow of the automaton, that is, counter values do not affect whether transitions
are enabled, they allow for mild quantitative computations without the full power of vector
addition systems or other more powerful models.

© Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 40; pp. 40:1–40:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shibashis.guha@tifr.res.in
https://orcid.org/0000-0002-9814-6651
mailto:ismael.jecker@gmail.com
https://orcid.org/0000-0002-6527-4470
mailto:lehtinen@lis-lab.fr
https://orcid.org/0000-0003-1171-8790
mailto:mzi@cs.aau.dk
https://orcid.org/0000-0002-8038-2453
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://arxiv.org/abs/2207.07694
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Parikh Automata over Infinite Words

For example, the nonregular language of words that have more a’s than b’s is accepted by
a Parikh automaton obtained from the one-state DFA accepting {a, b}∗ by equipping it with
two counters, one counting the a’s in the input, the other counting the b’s, and a semilinear
set ensuring that the first counter is larger than the second one. With a similar approach,
one can construct a Parikh automaton accepting the non-context-free language of words that
have more a’s than b’s and more a’s than c’s.

Klaedtke and Rueß [19] showed Parikh automata to be expressively equivalent to a
quantitative version of existential WMSO that allows for reasoning about set cardinalities.
Their expressiveness also coincides with that of reversal-bounded counter machines [19], in
which counters can go from decrementing to incrementing only a bounded number of times,
but in which counters affect control flow [18]. The (weakly) unambiguous restriction of
Parikh automata, that is, those that have at most one accepting run, on the other hand,
coincide with unambiguous reversal-bounded counter machines [2]. Parikh automata are
also expressively equivalent to weighted finite automata over the groups (Zk, +, 0) [9, 21] for
k ⩾ 1. This shows that Parikh automata accept a natural class of quantitative specifications.

Despite their expressiveness, Parikh automata retain some decidability: nonemptiness, in
particular, is NP-complete [12]. For weakly unambiguous Parikh automata, inclusion [5] and
regular separability [6] are decidable as well. Figueira and Libkin [12] also argued that this
model is well-suited for querying graph databases, while mitigating some of the complexity
issues related with more expressive query languages. Further, they have been used in the
model checking of transducer properties [14].

As Parikh automata have been established as a robust and useful model, many variants
thereof exist: pushdown (visibly [8] and otherwise [23]), two-way with [8] and without
stack [13], unambiguous [4], and weakly unambiguous [2] Parikh automata, to name a few.
Despite this attention, so far, some more elementary questions have remained unanswered.
For instance, despite Klaedtke and Rueß’s suggestion in [19] that the model could be extended
to infinite words, we are not aware of previous work on ω-Parikh automata.

Yet, specifications over infinite words are a crucial part of the modern verification
landscape. Indeed, programs, especially safety-critical ones, are often expected to run
continuously, possibly in interaction with an environment. Then, executions are better
described by infinite words, and accordingly, automata over infinite, rather than finite, words
are appropriate for capturing specifications.

This is the starting point of our contribution: we extend Parikh automata to infinite
inputs, and consider reachability, safety, Büchi, and co-Büchi acceptance conditions. We
observe that when it comes to reachability and Büchi, there are two possible definitions: an
asynchronous one that just requires both an accepting state and the semilinear set to be
reached (once or infinitely often) by the run, but not necessarily at the same time, and a
synchronous one that requires both to be reached (once or infinitely often) simultaneously.
Parikh automata on infinite words accept, for example, the languages of infinite words

with some prefix having more a’s than b’s (reachability acceptance),
with all nonempty prefixes having more a’s than b’s (safety acceptance),
with infinitely many prefixes having more a’s than b’s (Büchi acceptance), and
with almost all prefixes having more a’s than b’s (co-Büchi acceptance).

We establish that, both for reachability and Büchi acceptance, both the synchronous
and the asynchronous variant are linearly equivalent in the presence of nondeterminism,
but not for deterministic automata. Hence, by considering all acceptance conditions and
(non)determinism, we end up with twelve different classes of automata. We show that almost
all of these classes have pairwise incomparable expressiveness, which is in sharp contrast

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:3

to the well-known hierarchies in the ω-regular case. Furthermore, we establish an almost
complete picture of the Boolean closure properties of these twelve classes of automata. Most
notably, they lack closure under negation, even for nondeterministic Büchi Parikh automata.
Again, this result should be contrasted with the ω-regular case, where nondeterministic Büchi
automata are closed under negation [22].

We then study the complexity of the most important verification problems, e.g., non-
emptiness, universality, model checking, and solving games. We show that nonemptiness
is undecidable for deterministic safety and co-Büchi Parikh automata. However, perhaps
surprisingly, we also show that nonemptiness is decidable, in fact NP-complete, for reachabil-
ity and Büchi Parikh automata, both for the synchronous and the asynchronous versions.
Strikingly, for Parikh automata, the Büchi acceptance condition is algorithmically simpler
than the safety one (recall that their expressiveness is pairwise incomparable).

Next, we consider model checking, arguably the most successful application of automata
theory in the field of automated verification. Model checking asks whether a given finite-state
system satisfies a given specification. Here, we consider quantitative specifications given
by Parikh automata. Model checking is decidable for specifications given by deterministic
Parikh automata with safety or co-Büchi acceptance. On the other hand, the problem is
undecidable for all other classes of automata.

The positive results imply that one can model-check an arbiter serving requests from
two clients against specifications like “the accumulated waiting time between requests and
responses of client 1 is always at most twice the accumulated waiting time for client 2 and vice
versa” and “the difference between the number of responses for client 1 and the number of
responses for client 2 is from some point onward bounded by 100”. Note that both properties
are not ω-regular.

Finally, we consider solving games with winning conditions expressed by Parikh automata.
Zero-sum two-player games are a key formalism used to model the interaction of programs
with an uncontrollable environment. In particular, they are at the heart of solving synthesis
problems in which, rather than verifying the correctness of an existing program, we are
interested in generating a program that is correct by construction, from its specifications. In
these games, the specification corresponds to the winning condition: one player tries to build
a word (i.e., behaviour) that is in the specification, while the other tries to prevent this. As
with model checking, using Parikh automata to capture the specification would enable these
well-understood game-based techniques to be extended to mildly quantitative specifications.
However, we show that games with winning conditions specified by Parikh automata are
undecidable for all acceptance conditions we consider.

All proofs omitted due to space restrictions can be found in the full version [17].

2 Definitions

An alphabet is a finite nonempty set Σ of letters. As usual, ε denotes the empty word, Σ∗

(Σ+, Σω) denotes the set of finite (finite nonempty, infinite) words over Σ. The length of
a finite word w is denoted by |w| and, for notational convenience, we define |w| = ∞ for
infinite words w.

The number of occurrences of the letter a in a finite word w is denoted by |w|a. Let
a, b ∈ Σ. A word w ∈ Σ∗ is (a, b)-balanced if |w|a = |w|b, otherwise it is (a, b)-unbalanced.
Note that the empty word is (a, b)-balanced.

FSTTCS 2022

40:4 Parikh Automata over Infinite Words

Semilinear Sets. Let N denote the set of nonnegative integers. Let v⃗ = (v0, . . . , vd−1) ∈ Nd

and v⃗ ′ = (v′
0, . . . , v′

d′−1) ∈ Nd′ be a pair of vectors. We define their concatenation as
v⃗ · v⃗ ′ = (v0, . . . , vd−1, v′

0, . . . , v′
d′−1) ∈ Nd+d′ . We lift the concatenation of vectors to sets

D ⊆ Nd and D′ ⊆ Nd′via D · D′ = {v⃗ · v⃗ ′ | v⃗ ∈ D and v⃗ ′ ∈ D′}.
Let d ⩾ 1. A set C ⊆ Nd is linear if there are vectors v⃗0, . . . , v⃗k ∈ Nd such that

C =
{

v⃗0 +
∑k

i=1
civ⃗i

∣∣∣∣ ci ∈ N for i = 1, . . . , k

}
.

Furthermore, a subset of Nd is semilinear if it is a finite union of linear sets.

▶ Proposition 1 ([16]). If C, C ′ ⊆ Nd are semilinear, then so are C ∪ C ′, C ∩ C ′, Nd \ C,
as well as Nd′ · C and C · Nd′ for every d′ ⩾ 1.

Finite Automata. A (nondeterministic) finite automaton (NFA) A = (Q, Σ, qI , ∆, F) over
Σ consists of a finite set Q of states containing the initial state qI , an alphabet Σ, a
transition relation ∆ ⊆ Q × Σ × Q, and a set F ⊆ Q of accepting states. The NFA is
deterministic (i.e., a DFA) if for every state q ∈ Q and every letter a ∈ Σ, there is at
most one q′ ∈ Q such that (q, a, q′) is a transition of A. A run of A is a (possibly empty)
sequence (q0, w0, q1)(q1, w1, q2) · · · (qn−1, wn−1, qn) of transitions with q0 = qI . It processes
the word w0w1 · · · wn−1 ∈ Σ∗. The run is accepting if it is either empty and the initial state
is accepting or if it is nonempty and qn is accepting. The language L(A) of A contains all
finite words w ∈ Σ∗ such that A has an accepting run processing w.

Parikh Automata. Let Σ be an alphabet, d ⩾ 1, and D a finite subset of Nd. Further-
more, let w = (a0, v⃗0) · · · (an−1, v⃗n−1) be a word over Σ × D. The Σ-projection of w is
pΣ(w) = a0 · · · an−1 ∈ Σ∗ and its extended Parikh image is Φe(w) =

∑n−1
j=0 v⃗j ∈ Nd with the

convention Φe(ε) = 0⃗, where 0⃗ is the d-dimensional zero vector.
A Parikh automaton (PA) is a pair (A, C) such that A is an NFA over Σ × D for some

input alphabet Σ and some finite D ⊆ Nd for some d ⩾ 1, and C ⊆ Nd is semilinear. The
language of (A, C) consists of the Σ-projections of words w ∈ L(A) whose extended Parikh
image is in C, i.e.,

L(A, C) = {pΣ(w) | w ∈ L(A) with Φe(w) ∈ C}.

The automaton (A, C) is deterministic, if for every state q of A and every a ∈ Σ, there is
at most one pair (q′, v⃗) ∈ Q × D such that (q, (a, v⃗), q′) is a transition of A. Note that this
definition does not coincide with A being deterministic: As mentioned above, A accepts
words over Σ × D while (A, C) accepts words over Σ. Therefore, determinism is defined with
respect to Σ only.

Note that the above definition of L(A, C) coincides with the following alternative definition
via accepting runs: A run ρ of (A, C) is a run

ρ = (q0, (a0, v⃗0), q1)(q1, (a1, v⃗1), q2) · · · (qn−1, (an−1, v⃗n−1), qn)

of A. We say that ρ processes the word a0a1 · · · an−1 ∈ Σ∗, i.e., the v⃗j are ignored, and that
ρ’s extended Parikh image is

∑n−1
j=0 v⃗j . The run is accepting, if it is either empty and both

the initial state of A is accepting and the zero vector (the extended Parikh image of the
empty run) is in C, or if it is nonempty, qn is accepting, and ρ’s extended Parikh image is in
C. Finally, (A, C) accepts w ∈ Σ∗ if it has an accepting run processing w.

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:5

a, (1, 0)
b, (0, 1)

b, (0, 1)

Figure 1 The automaton for Example 2.

▶ Example 2. Consider the deterministic PA (A, C) with A in Figure 1 and C = {(n, n) |
n ∈ N} ∪ {(n, 2n) | n ∈ N}. It accepts the language {anbn | n ∈ N} ∪ {anb2n | n ∈ N}.

A cycle is a nonempty finite run infix

(q0, w0, q1)(q1, w1, q2) · · · (qn−1, wn−1, qn)(qn, wn, q0)

starting and ending in the same state and such that the qj are pairwise different. Note that
every run infix containing at least n transitions contains a cycle, where n is the number of
states of the automaton. Many of our proofs rely on the following shifting argument, which
has been used before to establish inexpressibility results for Parikh automata [3].
▶ Remark 3. Let ρ0ρ1ρ2ρ3 be a run of a PA such that ρ1 and ρ3 are cycles starting in the
same state. Then, Φe(ρ0ρ1ρ2ρ3) = Φe(ρ0ρ2ρ1ρ3) = Φe(ρ0ρ1ρ3ρ2). Furthermore, all three
runs end in the same state and visit the same set of states (but maybe in different orders).

3 Parikh Automata over Infinite Words

In this section, we introduce Parikh automata over infinite words by lifting safety, reachability,
Büchi, and co-Büchi acceptance from finite automata to Parikh automata. Recall that a
Parikh automaton on finite words accepts if the last state of the run is accepting and the
extended Parikh image of the run is in the semilinear set, i.e., both events are synchronized.
For reachability and Büchi acceptance it is natural to consider both a synchronous and an
asynchronous variant while for safety and co-Büchi there is only a synchronous variant.

All these automata have the same format as Parikh automata on finite words, but are
now processing infinite words. Formally, consider (A, C) with A = (Q, Σ × D, qI , ∆, F). Fix
an infinite run (q0, w0, q1)(q1, w1, q2)(q2, w2, q3) · · · of A with q0 = qI (recall that each wj is
in Σ × D), which we say processes pΣ(w0w1w2 · · ·).

The run is safety accepting if Φe(w0 · · · wn−1) ∈ C and qn ∈ F for all n ⩾ 0.
The run is synchronous reachability accepting if Φe(w0 · · · wn−1) ∈ C and qn ∈ F for some
n ⩾ 0.
The run is asynchronous reachability accepting if Φe(w0 · · · wn−1) ∈ C for some n ⩾ 0
and qn′ ∈ F for some n′ ⩾ 0.
The run is synchronous Büchi accepting if Φe(w0 · · · wn−1) ∈ C and qn ∈ F for infinitely
many n ⩾ 0.
The run is asynchronous Büchi accepting if Φe(w0 · · · wn−1) ∈ C for infinitely many n ⩾ 0
and qn′ ∈ F for infinitely many n′ ⩾ 0.
The run is co-Büchi accepting if there is an n0 such that Φe(w0 · · · wn−1) ∈ C and qn ∈ F

for every n ⩾ n0.
As mentioned before, we do not distinguish between synchronous and asynchronous co-
Büchi acceptance, as these definitions are equivalent. Also, note that all our definitions are
conjunctive in the sense that acceptance requires visits to accepting states and extended
Parikh images in C. Thus, e.g., reachability and safety are not dual on a syntactic level.
Nevertheless, we later prove dualities on a semantic level.

FSTTCS 2022

40:6 Parikh Automata over Infinite Words

a, (1, 0)
b, (0, 1)

Figure 2 The automaton for Example 4.

Similarly, one can easily show that a disjunctive definition is equivalent to our conjunctive
one: One can reflect in the extended Parikh image of a run prefix whether it ends in an
accepting stateand then encode acceptance in the semilinear set. So, any given Parikh
automaton (A, C) (with disjunctive or conjunctive acceptance) can be turned into another
one (A′, C ′) capturing acceptance in (A, C) by Parikh images only. So, with empty (full)
set of accepting states and C ′ mimicking disjunction (conjunction), it is equivalent to the
original automaton with disjunctive (conjunctive) acceptance.

Now, the language LS(A, C) of a safety Parikh automaton (SPA) (A, C) contains those
words w ∈ Σω such that (A, C) has a safety accepting run processing w. Similarly, we define
the languages

Ls
R(A, C) of synchronous reachability Parikh automata (sRPA),

La
R(A, C) of asynchronous reachability Parikh automata (aRPA),

Ls
B(A, C) of synchronous Büchi Parikh automata (aBPA),

La
B(A, C) of asynchronous Büchi Parikh automata (sBPA), and

LC(A, C) of co-Büchi Parikh automata (CPA).
Determinism for all types of automata is defined as for Parikh automata on finite words.
Unless explicitly stated otherwise, every automaton is assumed to be nondeterministic.

▶ Example 4. Let A be the DFA shown in Figure 2 and let C = {(n, n) | n ∈ N} and
C = {(n, n′) | n ̸= n′} = N2 \ C.

Recall that a finite word w is (a, b)-balanced if |w|a = |w|b, i.e., the number of a’s and b’s
in w is equal. The empty word is (a, b)-balanced and every odd-length word over {a, b} is
(a, b)-unbalanced.

1. When interpreting (A, C) as a PA, it accepts the language of finite (a, b)-balanced words;
when interpreting (A, C) as a PA, it accepts the language of finite (a, b)-unbalanced
words.

2. When interpreting (A, C) as an aRPA or sRPA, it accepts the language of infinite words
that have an (a, b)-balanced prefix; when interpreting (A, C) as an aRPA or sRPA, it
accepts the language of infinite words that have an (a, b)-unbalanced prefix. Note that
both languages are universal, as the empty prefix is always (a, b)-balanced and every
odd-length prefix is (a, b)-unbalanced.

3. When interpreting (A, C) as an SPA, it accepts the language of infinite words that have
only (a, b)-balanced prefixes; when interpreting (A, C) as an SPA, it accepts the language
of infinite words that have only (a, b)-unbalanced prefixes. Here, both languages are
empty, which follows from the same arguments as for universality in the previous case.

4. When interpreting (A, C) as an aBPA or sBPA, it accepts the language of infinite words
with infinitely many (a, b)-balanced prefixes; when interpreting (A, C) as an aBPA or
sBPA, it accepts the language of infinite words with infinitely many (a, b)-unbalanced
prefixes. The latter language is universal, as every odd-length prefix is unbalanced.

5. When interpreting (A, C) as a CPA, it accepts the language of infinite words such that
almost all prefixes are (a, b)-balanced; when interpreting (A, C) as a CPA, it accepts the
language of infinite words such that almost all prefixes are (a, b)-unbalanced. Again, the
former language is empty.

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:7

Let (A, C) be a Parikh automaton. We say that a run prefix is an F -prefix if it ends in
an accepting state of A, a C-prefix if its extended Parikh image is in C, and an FC-prefix if
it is both an F -prefix and a C-prefix. Note that both asynchronous acceptance conditions
are defined in terms of the existence of F -prefixes and C-prefixes and all other acceptance
conditions in terms of the existence of FC-prefixes.

▶ Remark 5. sRPA and aRPA (SPA, sBPA and aBPA, CPA) are strictly more expressive than
ω-regular reachability (safety, Büchi, co-Büchi) automata. Inclusion follows by definition
while strictness is witnessed by the languages presented in Example 4.

4 Expressiveness

In this section, we study the expressiveness of the various types of Parikh automata on infinite
words introduced above, by comparing synchronous and asynchronous variants, deterministic
and nondeterministic variants, and the different acceptance conditions.

▶ Remark 6. In this, and only this, section, we consider only reachability Parikh automata
that are complete in the following sense: For every state q and every letter a there is a
vector v⃗ and a state q′ such that (q, (a, v⃗), q′) is a transition of A, i.e., every letter can be
processed from every state. Without this requirement, one can express safety conditions by
incompleteness, while we want to study the expressiveness of “pure” reachability automata.

Safety, Büchi, and co-Büchi automata can be assumed, without loss of generality, to be
complete, as one can always add a nonaccepting sink to complete such an automaton without
modifying the accepted language.

We begin our study by comparing the synchronous and asynchronous variants of reacha-
bility and Büchi automata. All transformations proving the following inclusions are effective
and lead to a linear increase in the number of states and a constant increase in the dimension
of the semilinear sets.

▶ Theorem 7.
1. aRPA and sRPA are equally expressive.
2. Deterministic aRPA are strictly more expressive than deterministic sRPA.
3. aBPA and sBPA are equally expressive.
4. Deterministic aBPA are strictly more expressive than deterministic sBPA.

Due to the equivalence of synchronous and asynchronous (nondeterministic) reachabil-
ity Parikh automata, we drop the qualifiers whenever possible and just speak of reach-
ability Parikh automata (RPA). We do the same for (nondeterministic) Büchi Parikh
automata (BPA).

Next, we compare the deterministic and nondeterministic variants for each acceptance
condition. Note that all separations are as strong as possible, i.e., for reachability and Büchi
we consider deterministic asynchronous automata, which are more expressive than their
synchronous counterparts (see Theorem 7).

▶ Theorem 8.
1. Nondeterministic RPA are strictly more expressive than deterministic aRPA.
2. Nondeterministic SPA are strictly more expressive than deterministic SPA.
3. Nondeterministic BPA are strictly more expressive than deterministic aBPA.
4. Nondeterministic CPA are strictly more expressive than deterministic CPA.

FSTTCS 2022

40:8 Parikh Automata over Infinite Words

After having separated deterministic and nondeterministic automata for all acceptance
conditions, we now consider inclusions and separations between the different acceptance
conditions. Here, the picture is notably different than in the classical ω-regular setting, as
almost all classes can be separated.

▶ Theorem 9. Every RPA can be turned into an equivalent BPA and into an equivalent
CPA. All other automata types are pairwise incomparable.

Our separations between the different acceptance conditions are as strong as possible,
e.g., when we show that not every RPA has an equivalent SPA, we exhibit a deterministic
sRPA (the weakest class of RPA) whose language is not accepted by any nondeterministic
SPA (the strongest class of SPA). The same is true for all other separations.

5 Closure Properties

In this section, we study the closure properties of Parikh automata on infinite words. We
begin by showing that, for deterministic synchronous automata, reachability and safety
acceptance as well as Büchi and co-Büchi acceptance are dual, although they are not
syntactically dual due to all acceptance conditions being defined by a conjunction. On the
other hand, deterministic asynchronous automata can still be complemented, however only
into nondeterministic automata.

▶ Theorem 10.
1. Let (A, C) be a deterministic sRPA. The complement of Ls

R(A, C) is accepted by a
deterministic SPA.

2. Let (A, C) be a deterministic aRPA. The complement of La
R(A, C) is accepted by an SPA,

but not necessarily by a deterministic SPA.
3. Let (A, C) be a deterministic SPA. The complement of LS(A, C) is accepted by a deter-

ministic sRPA.
4. Let (A, C) be a deterministic sBPA. The complement of Ls

B(A, C) is accepted by a
deterministic CPA.

5. Let (A, C) be a deterministic aBPA. The complement of La
B(A, C) is accepted by a CPA,

but not necessarily by a deterministic CPA.
6. Let (A, C) be a deterministic CPA. The complement of LC(A, C) is accepted by a deter-

ministic sBPA.

The positive results above are for deterministic automata. For nondeterministic automata,
the analogous statements fail.

▶ Theorem 11.
1. There exists an sRPA (A, C) such that no SPA accepts the complement of Ls

R(A, C).
2. There exists an SPA (A, C) such that no RPA accepts the complement of LS(A, C).
3. There exists an sBPA (A, C) such that no CPA accepts the complement of Ls

B(A, C).
4. There exists a CPA (A, C) such that no BPA accepts the complement of LC(A, C).

Next, we consider closure under union, intersection, and complementation of the various
classes of Parikh automata on infinite words. Notably, all nondeterministic (and some
deterministic) classes are closed under union, the picture for intersection is more scattered,
and we prove failure of complement closure for all classes. Again, this is in sharp contrast to
the setting of classical Büchi automata, which are closed under all three Boolean operations.

▶ Theorem 12. The closure properties depicted in Table 1 hold.

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:9

Table 1 Closure properties and decidability of decision problems for Parikh automata on infinite
words.

Closure Decision Problems
∪ ∩ Emptiness Universality Model Check. Games

RPA ✓ ✓ ✗ NP-compl. undec. undec. undec.
det. aRPA ✗ ✗ ✗ NP-compl. undec. undec. undec.
det. sRPA ✓ ✗ ✗ NP-compl. undec. undec. undec.

SPA ✓ ✓ ✗ undec. undec. undec. undec.
det. SPA ✗ ✓ ✗ undec. coNP-compl. coNP-compl. undec.

BPA ✓ ✗ ✗ NP-compl. undec. undec. undec.
det. aBPA ? ✗ ✗ NP-compl. undec. undec. undec.
det. sBPA ✓ ✗ ✗ NP-compl. undec. undec. undec.

CPA ✓ ✓ ✗ undec. undec. undec. undec.
det. CPA ✗ ✓ ✗ undec. coNP-compl. coNP-compl. undec.

Note that there is one question mark in the closure properties columns in Table 1, which
we leave for further research.

6 Decision Problems

In this section, we study the complexity of the nonemptiness and the universality problem,
model checking, and solving games for Parikh automata on infinite words. Before we can do
so, we need to specify how a Parikh automaton (A, C) is represented as input for algorithms:
The vectors labeling the transitions of A are represented in binary and a linear set{

v⃗0 +
∑k

i=1
civ⃗i

∣∣∣∣ ci ∈ N for i = 1, . . . , k

}
is represented by the list (v⃗0, . . . , v⃗k) of vectors, again encoded in binary. A semilinear set is
then represented by a set of such lists.

6.1 Nonemptiness

We begin by settling the complexity of the nonemptiness problem. The positive results
are obtained by reductions to the emptiness of Parikh automata on finite words while the
undecidability results are reductions from the termination problem for two-counter machines.

▶ Theorem 13. The following problems are NP-complete:
1. Given an RPA, is its language nonempty?
2. Given a BPA, is its language nonempty?

The following problems are undecidable:
3. Given a deterministic SPA, is its language nonempty?
4. Given a deterministic CPA, is its language nonempty?

FSTTCS 2022

40:10 Parikh Automata over Infinite Words

Proof.

1. Due to Theorem 7.1, we only consider the case of sRPA for the NP upper bound. Given
such an automaton (A, C) with A = (Q, Σ × D, qI , ∆, F) let F ′ ⊆ F be the set of accepting
states from which a cycle is reachable. Now, define A′ = (Q, Σ × D, qI , ∆, F ′). Then, we
have Ls

R(A, C) ̸= ∅ if and only if L(A′, C) ̸= ∅ (i.e., we treat (A′, C) as a PA), with the latter
problem being in NP [12].

The matching NP lower bound is, again due to Theorem 7.1, only shown for sRPA.
We proceed by a reduction from the NP-complete [12] nonemptiness problem for Parikh
automata. Given a Parikh automaton (A, C), let A′ be obtained from A by adding a fresh
state q with a self-loop labeled by (#, 0⃗) as well as transitions labeled by (#, 0⃗) leading from
the accepting states of A to q. Here, # is a fresh letter and 0⃗ is the zero vector of the correct
dimension. By declaring q to be the only accepting state in A′, we have that Ls

R(A′, C) is
nonempty if and only if L(A, C) is nonempty.

Note that hardness holds already for deterministic automata, as one can always rename
letters to make a nondeterministic PA deterministic without changing the answer to the
emptiness problem.

2. Due to Theorem 7.3, it is enough to consider synchronous Büchi acceptance for the
upper bound. So, fix some sBPA (A, C) with A = (Q, Σ × D, qI , ∆, F). Let C =⋃

i Li where the Li are linear sets. The language Ls
B(A, C) is nonempty if and only

if Ls
B(A, Li) is nonempty for some i. Hence, we show how to solve emptiness for au-

tomata with linear C, say C =
{

v⃗0 +
∑k

i=1 civ⃗i

∣∣∣ ci ∈ N for i = 1, . . . , k
}

. We define P ={∑k
i=1 civ⃗i

∣∣∣ ci ∈ N for i = 1, . . . , k
}

and, for a given state q ∈ Q, the NFA
Aq obtained from A by replacing the set of accepting states by {q}, and
Aq,q obtained from A by replacing the initial state by q, by replacing the set of accepting
states by {q}, and by modifying the resulting NFA such that it does not accept the empty
word (but leaving its language unchanged otherwise).

We claim that Ls
B(A, C) is nonempty if and only if there is a q ∈ F such that both L(Aq, C)

and L(Aq,q, P) are nonempty. As emptiness of Parikh automata is in NP, this yields the
desired upper bound.

So, assume there is such a q. Then, there is a finite run ρ1 of A that starts in qI , ends
in q, and processes some w1 ∈ Σ∗ with extended Parikh image in C. Also, there is a finite
run ρ2 of A that starts and ends in q and processes some nonempty w2 ∈ Σ∗ with extended
Parikh image in P . For every n ⩾ 1, ρ1(ρ2)n is a finite run of (A, C) ending in the accepting
state q that processes w1(w2)n and whose extended Parikh image is in C. So, ρ1(ρ2)ω is a
synchronous Büchi accepting run of (A, C).

For the converse direction, assume that there is some synchronous Büchi accepting
run (q0, w0, q1)(q1, w1, q2)(q2, w2, q3) · · · of (A, C). Then, there is also an accepting state q ∈
F and an infinite set of positions S ⊆ N such that qs = q and Φe(w0 · · · ws−1) ∈ C for all
s ∈ S. Hence, for every s ∈ S there is a vector (cs

1, . . . , cs
k) ∈ Nk such that Φe(w0 · · · ws−1) =

v⃗0 +
∑k

i=1 cs
i v⃗i. By Dickson’s Lemma [10], there are s1 < s2 such that cs1

j ≤ cs2
j for every

1 ≤ j ≤ k. Then, Φe(ws1 · · · ws2−1) =
∑k

i=1(cs2
i −cs1

i)v⃗i, which implies Φe(ws1 · · · ws2−1) ∈ P .
Thus, the prefix of ρ of length s1 is an accepting run of the PA (Aq, C) and the next (s2 − s1)
transitions of ρ form a nonempty accepting run of the PA (Aq,q, P).

The NP lower bound follows from the proof of Theorem 13.1 by noticing that we also
have that Ls

B(A′, C) is nonempty if and only if L(A, C) is nonempty.

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:11

3. and 4. The two undecidability proofs, based on reductions from undecidable problems
for two-counter machines, are relegated to the appendix, which introduces all the required
technical details on such machines. ◀

We conclude Subsection 6.1 by displaying an interesting consequence of the decomposition
used in the proof of Theorem 13.2: we show that the language of every BPA (on infinite
words) can be expressed by combining the languages of well-chosen PA (on finite words).
This is similar to what happens in other settings: For instance, ω-regular languages are
exactly the languages of the form

⋃n
j=1 Lj · (L′

j)ω, where each Lj , L′
j is regular. Analogously,

ω-context-free languages can be characterized by context-free languages [7]. For Büchi Parikh
automata, one direction of the above characterization holds:

▶ Lemma 14. If a language L is accepted by a BPA then L =
⋃n

j=1 Lj · (L′
j)ω, where each

Lj , L′
j is accepted by some PA.

Proof. Let L be accepted by an sBPA (A, C) with C =
⋃

j∈J Cj for some finite set J , where
each Cj is a linear set. In the proof of Theorem 13.2, we have defined the NFA Aq and Aq,q

for every state q of A.
Now, consider some w ∈ L and an accepting run ρ = (q0, w0, q1)(q1, w1, q2)(q2, w2, q3) · · ·

of (A, C) processing w. Then, there is an accepting state q of A, some Cj , and an infinite
set S ⊆ N of positions such that qs = q and Φe(w0 · · · ws−1) ∈ Cj for all s ∈ S. Let Cj ={

v⃗0 +
∑k

i=1 civ⃗i

∣∣∣ ci ∈ N for i = 1, . . . , k
}

and let Pj =
{∑k

i=1 civ⃗i

∣∣∣ ci ∈ N for i = 1, . . . , k
}

.
As before, for every s ∈ S, there is a vector (cs

1, . . . , cs
k) ∈ Nk such that Φe(w0 · · · ws−1) =

v⃗0 +
∑k

i=1 cs
i v⃗i.

Now, we apply an equivalent formulation of Dickson’s Lemma [10], which yields an infinite
subset S′ ⊆ S with cs

j ≤ cs′

j for all 1 ≤ j ≤ k and all s, s′ ∈ S′ with s < s′, i.e., we have an
increasing chain in S. Let s0 < s1 < s2 < · · · be an enumeration of S′.

As above, Φe(wsn
· · · wsn+1−1) ∈ Pj for all n. So, (q0, w0, q1) · · · (qs0−1, ws0−1, qs0) is an

accepting run of the PA (Aq, C) and each (qsn , wsn , qsn+1) · · · (qsn+1−1, wsn+1−1, qsn+1) is an
accepting run of the PA (Aq,q, P). So, w ∈

⋃
j∈J

⋃
q∈Q L(Aq, Cj) · (L(Aq,q, Pj))ω. ◀

Recall that a word is ultimately periodic if it is of the form xyω. Every nonempty
ω-regular and every nonempty ω-context-free language contains an ultimately periodic word,
which is a simple consequence of them being of the form

⋃n
j=1 Lj · (L′

j)ω.

▶ Corollary 15. Every nonempty language accepted by a BPA contains an ultimately periodic
word.

Let us briefly comment on the other direction of the implication stated in Lemma 14, i.e.,
is every language of the form

⋃n
j=1 Lj · (L′

j)ω, where each Lj , L′
j is accepted by some PA, also

accepted by some BPA? The answer is no: Consider L = {anbn | n > 1}, which is accepted by
a deterministic PA. However, using the shifting technique (see Remark 3), one can show that
Lω is not accepted by any BPA: Every accepting run of an n-state BPA processing (anbn)ω can
be turned into an accepting run on a word of the form (anbn)∗an+kbn(anbn)∗an−kbn(anbn)ω

for some k > 0 by shifting some cycle to the front while preserving Büchi acceptance.
For reachability acceptance, a similar characterization holds, as every RPA can be turned

into an equivalent BPA. But for safety and co-Büchi acceptance the characterization question
is nontrivial, as for these acceptance conditions all (almost all) run prefixes have to be
FC-prefixes. We leave this problem for future work.

FSTTCS 2022

40:12 Parikh Automata over Infinite Words

6.2 Universality
Now, we consider the universality problem. Here, the positive results follow from the duality
of deterministic SPA and RPA (CPA and BPA) and the decidability of nonemptiness for the
dual automata classes. Similarly, the undecidability proofs for deterministic sRPA and sBPA
follow from duality and undecidability of nonemptiness for the dual automata classes. Finally,
the remaining undecidability results follow from reductions from undecidable problems for
two-counter machines and Parikh automata over finite words.

▶ Theorem 16. The following problems are coNP-complete:
1. Given a deterministic SPA, is its language universal?
2. Given a deterministic CPA, is its language universal?

The following problems are undecidable:
3. Given a deterministic sRPA, is its language universal?
4. Given an SPA, is its language universal?
5. Given a deterministic sBPA, is its language universal?
6. Given a CPA, is its language universal?

Proof. The proofs of the results for deterministic automata follow immediately from the
fact that a language is universal if and only if its complement is empty, Theorem 10, and
Theorem 13. The proof of undecidability for SPA, based on a reduction from the termination
problem for two-counter machines, is relegated to the appendix where all the necessary
technical details are presented. To conclude, let us consider universality of CPA.

6.) Universality of Parikh automata over finite words is undecidable [19]. Now, given
a PA (A, C) over Σ, one can construct a CPA (A′, C ′) for the language L(A, C) · # · (Σ ∪
{#})ω ∪ Σω, where # /∈ Σ is a fresh letter. This construction relies on freezing the counters
(i.e., moving to a copy of the automaton with the same transition structure, but where the
counters are no longer updated) and closure of CPA under union. Now, L(A, C) is universal
if and only if LC(A′, C ′) is universal. ◀

6.3 Model Checking
Model checking is arguably the most successful application of automata theory to automated
verification. The problem asks whether a given system satisfies a specification, often given
by an automaton.

More formally, and for the sake of notational convenience, we say that a transition
system T is a (possibly incomplete) SPA (A, C) so that every state of A is accepting and
C = Nd, i.e., every run is accepting. Now, the model-checking problem for a class L of
languages of infinite words asks, given a transition system T and a language L ∈ L, whether
LS(T) ⊆ L, i.e., whether every word in the transition system satisfies the specification L.
Note that our definition here is equivalent to the standard definition of model checking of
finite-state transition systems.

Here, we study the model-checking problem for different types of Parikh automata.

▶ Theorem 17. The following problems are coNP-complete:
1. Given a transition system T and a deterministic SPA (A, C), is LS(T) ⊆ LS(A, C)?
2. Given a transition system T and a deterministic CPA (A, C), is LS(T) ⊆ LC(A, C)?

The following problems are undecidable:
3. Given a transition system T and a deterministic sRPA (A, C), is LS(T) ⊆ Ls

R(A, C)?
4. Given a transition system T and an SPA (A, C), is LS(T) ⊆ LS(A, C)?
5. Given a transition system T and a deterministic sBPA (A, C), is LS(T) ⊆ Ls

B(A, C)?
6. Given a transition system T and a CPA (A, C), is LS(T) ⊆ LC(A, C)?

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:13

Proof. Let T be a transition system with LS(T) = Σω, e.g., a one-state transition system
with a self-loop labeled with all letters in Σ. Then, L ⊆ Σω is universal if and only if L

LS(T) ⊆ L. Thus, all six lower bounds (coNP-hardness and undecidability) immediately
follow from the analogous lower bounds for universality (see Theorem 16). So, it remains to
consider the two coNP upper bounds.

So, fix a deterministic SPA (A, C) and a transition system T . We apply the usual
approach to automata-theoretic model checking: We have LS(T) ⊆ LS(A, C) if and only if
LS(T)∩LS(A, C) = ∅. Due to Theorem 10.3 there is a deterministic sRPA (A′, C ′) accepting
LS(A, C). Furthermore, using a product construction, one can construct an RPA (A′′, C ′′)
accepting LS(T) ∩ LS(A, C), which can then be tested for emptiness, which is in coNP (see
Theorem 13). Note that the product construction depends on the fact that every run of T is
accepting, i.e., the acceptance condition of the product automaton only has to check one
acceptance condition.

The proof for deterministic co-Büchi Parikh automata is analogous, but using Büchi
automata (A′, C ′) and (A′′, C ′′). ◀

6.4 Infinite Games

In this section, we study infinite games with winning conditions specified by Parikh automata.
Such games are the technical core of the synthesis problem, the problem of determining
whether there is a reactive system satisfying a given specification on its input-output behavior.
Our main result is that solving infinite games is undecidable for all acceptance conditions we
consider here.

Here, we consider Gale-Stewart games [15], abstract games induced by a language L of
infinite words, in which two players alternately pick letters, thereby constructing an infinite
word w. One player aims to ensure that w is in L while the other aims to ensure that it is
not in L. Formally, given a language L ⊆ (Σ1 × Σ2)ω, the game G(L) is played between
Player 1 and Player 2 in rounds i = 0, 1, 2, . . . as follows: At each round i, first Player 1
plays a letter ai ∈ Σ1 and then Player 2 answers with a letter bi ∈ Σ2. A play of G(L) is an
infinite outcome w =

(
a0
b0

)(
a1
b1

)
· · · and Player 2 wins it if and only if w ∈ L.

A strategy for Player 2 in G(L) is a mapping from Σ+
1 to Σ2 that gives for each prefix

played by Player 1 the next letter to play. An outcome
(

a0
b0

)(
a1
b1

)
· · · agrees with a strategy σ

if for each i, we have that bi = σ(a0a1 . . . ai). Player 2 wins G(L) if she has a strategy that
only agrees with outcomes that are winning for Player 2.

The next result follows immediately from the fact that for all classes of deterministic
Parikh automata, either nonemptiness or universality is undecidable, and that these two
problems can be reduced to solving Gale-Stewart games.

▶ Theorem 18. The problem “Given an automaton (A, C), does Player 2 win G(L(A, C))?”
is undecidable for the following classes of automata: (deterministic) sRPA, (deterministic)
SPA, (deterministic) sBPA, and (deterministic) CPA.

Proof. The results follow immediately from the following two facts and the undecidability of
emptiness or universality for the corresponding automata types. Fix a language L.

Player 2 wins G(
(#

L

)
) with

(#
L

)
= {

(#
w0

)(#
w1

)(#
w2

)
· · · | w0w1w2 · · · ∈ L} if and only if L is

nonempty.
Player 2 wins G(

(
L
#

)
) with

(
L
#

)
= {

(
w0
#

)(
w1
#

)(
w2
#

)
· · · | w0w1w2 · · · ∈ L} if and only if L is

universal.

FSTTCS 2022

40:14 Parikh Automata over Infinite Words

To conclude, note that a Parikh automaton for L can be turned into an equivalent one for(#
L

)
and

(
L
#

)
while preserving determinism and the acceptance type, by just replacing each

transition label a by
(#

a

)
and

(
a
#

)
, respectively. ◀

7 Conclusion

In this work, we have extended Parikh automata to infinite words and studied expressiveness,
closure properties, and decision problems. Unlike their ω-regular counterparts, Parikh
automata on infinite words do not form a nice hierarchy induced by their acceptance
conditions. This is ultimately due to the fact that transitions cannot be disabled by the
counters running passively along a run. Therefore, a safety condition on the counters cannot
be turned into a, say, Büchi condition on the counters, something that is trivial for state
conditions. Furthermore, we have shown that emptiness, universality, and model checking
are decidable for some of the models we introduced, but undecidable for others. Most
importantly, we prove coNP-completeness of model checking with specifications given by
deterministic Parikh automata with safety and co-Büchi acceptance. This allows for the
automated verification of quantitative safety and persistence properties. Finally, solving
infinite games is undecidable for all models.

Note that we have “only” introduced reachability, safety, Büchi, and co-Büchi Parikh
automata. There are many more acceptance conditions in the ω-regular setting, e.g., parity,
Rabin, Streett, and Muller. We have refrained from generalizing these, as any natural
definition of these acceptance conditions will subsume co-Büchi acceptance, and therefore
have an undecidable nonemptiness problem.

In future work, we aim to close the open closure property in Table 1. Also, we leave open
the complexity of the decision problems in case the semilinear sets are not given by their
generators, but by a Presburger formula.

One of the appeals of Parikh automata over finite words is their robustness: they can
equivalently be defined via a quantitative variant of WMSO, via weighted automata, and
other models (see the introduction for a more complete picture). In future work, we aim to
provide similar alternative definitions for Parikh automata on infinite words, in particular,
comparing our automata to blind multi-counter automata [11] and reversal-bounded counter
machines [18]. However, let us mention that the lack of closure properties severely limits the
chances for a natural fragment of MSO being equivalent to Parikh automata on infinite words.

Let us conclude with the following problem for further research: If a Parikh automaton
with, say safety acceptance, accepts an ω-regular language, is there then an equivalent ω-
regular safety automaton? Stated differently, does Parikhness allow to accept more ω-regular
languages? The same question can obviously be asked for other acceptance conditions as well.

References
1 Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Papadimitriou, and John N.

Tsitsiklis. Deciding stability and mortality of piecewise affine dynamical systems. Theor.
Comput. Sci., 255(1-2):687–696, 2001. doi:10.1016/S0304-3975(00)00399-6.

2 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-unambiguous
Parikh automata and their link to holonomic series. In Artur Czumaj, Anuj Dawar, and
Emanuela Merelli, editors, ICALP 2020, volume 168 of LIPIcs, pages 114:1–114:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.114.

3 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of Parikh
automata and related models. In Rudolf Freund, Markus Holzer, Carlo Mereghetti, Friedrich
Otto, and Beatrice Palano, editors, NCMA 2011, volume 282 of books@ocg.at, pages 103–119.
Austrian Computer Society, 2011.

https://doi.org/10.1016/S0304-3975(00)00399-6
https://doi.org/10.4230/LIPIcs.ICALP.2020.114

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:15

4 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013. doi:10.1142/S0129054113400339.

5 Giusi Castiglione and Paolo Massazza. On a class of languages with holonomic generating
functions. Theor. Comput. Sci., 658:74–84, 2017. doi:10.1016/j.tcs.2016.07.022.

6 Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman. Regular
Separability of Parikh Automata. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, ICALP 2017, volume 80 of LIPIcs, pages 117:1–117:13. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.117.

7 Rina S. Cohen and Arie Y. Gold. Theory of omega-languages. I. Characterizations of
omega-context-free languages. J. Comput. Syst. Sci., 15(2):169–184, 1977. doi:10.1016/
S0022-0000(77)80004-4.

8 Luc Dartois, Emmanuel Filiot, and Jean-Marc Talbot. Two-way Parikh automata with a
visibly pushdown stack. In Mikolaj Bojanczyk and Alex Simpson, editors, FOSSACS 2019,
volume 11425 of LNCS, pages 189–206. Springer, 2019. doi:10.1007/978-3-030-17127-8_11.

9 Jürgen Dassow and Victor Mitrana. Finite automata over free groups. Int. J. Algebra Comput.,
10(6):725–738, 2000. doi:10.1142/S0218196700000315.

10 Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors. Amer. Journal Math., 35(4):413–422, 1913.

11 Henning Fernau and Ralf Stiebe. Blind counter automata on omega-words. Fun-
dam. Informaticae, 83(1-2):51–64, 2008. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi83-1-2-06.

12 Diego Figueira and Leonid Libkin. Path logics for querying graphs: Combining expressiveness
and efficiency. In LICS 2015, pages 329–340. IEEE Computer Society, 2015. doi:10.1109/
LICS.2015.39.

13 Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi. Two-way Parikh automata. In
Arkadev Chattopadhyay and Paul Gastin, editors, FSTTCS 2019, volume 150 of LIPIcs, pages
40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
FSTTCS.2019.40.

14 Emmanuel Filiot, Nicolas Mazzocchi, and Jean-François Raskin. A pattern logic for au-
tomata with outputs. Int. J. Found. Comput. Sci., 31(6):711–748, 2020. doi:10.1142/
S0129054120410038.

15 David Gale and F. M. Stewart. Infinite games with perfect information. In Harold William
Kuhn and Albert William Tucker, editors, Contributions to the Theory of Games (AM-28),
Volume II, chapter 13, pages 245–266. Princeton University Press, 1953.

16 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:pjm/1102994974.

17 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata
over infinite words. arXiv, 2207.07694, 2022. doi:10.48550/arXiv.2207.07694.

18 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978. doi:10.1145/322047.322058.

19 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M.
Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, ICALP 2003,
volume 2719 of LNCS, pages 681–696. Springer, 2003. doi:10.1007/3-540-45061-0_54.

20 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
21 Victor Mitrana and Ralf Stiebe. Extended finite automata over groups. Discret. Appl. Math.,

108(3):287–300, 2001. doi:10.1016/S0166-218X(00)00200-6.
22 J. Richard Büchi. Symposium on decision problems: On a decision method in restricted

second order arithmetic. In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, Logic,
Methodology and Philosophy of Science, volume 44 of Studies in Logic and the Foundations of
Mathematics, pages 1–11. Elsevier, 1966. doi:10.1016/S0049-237X(09)70564-6.

23 Karianto Wong. Parikh automata with pushdown stack, 2004. Diploma thesis, RWTH Aachen
University. URL: https://old.automata.rwth-aachen.de/download/papers/karianto/
ka04.pdf.

FSTTCS 2022

https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1016/j.tcs.2016.07.022
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1007/978-3-030-17127-8_11
https://doi.org/10.1142/S0218196700000315
http://content.iospress.com/articles/fundamenta-informaticae/fi83-1-2-06
http://content.iospress.com/articles/fundamenta-informaticae/fi83-1-2-06
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.1142/S0129054120410038
https://doi.org/10.1142/S0129054120410038
https://doi.org/pjm/1102994974
https://doi.org/10.48550/arXiv.2207.07694
https://doi.org/10.1145/322047.322058
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1016/S0166-218X(00)00200-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://old.automata.rwth-aachen.de/download/papers/karianto/ka04.pdf
https://old.automata.rwth-aachen.de/download/papers/karianto/ka04.pdf

40:16 Parikh Automata over Infinite Words

A Appendix: Parikh Automata and Two-counter Machines

Many of our undecidability proofs are reductions from nontermination problems for two-
counter machines. To simulate these machines by Parikh automata, we require them to be
in a certain normal form. We first introduce two-counter machines, then the normal form,
and conclude this section by presenting the simulation via Parikh automata.

A two-counter machine M is a sequence

(0 : I0)(1 : I1) · · · (k − 2 : Ik−2)(k − 1 : STOP),

where the first element of a pair (ℓ : Iℓ) is the line number and Iℓ for 0 ≤ ℓ < k − 1 is an
instruction of the form

INC(Xi) with i ∈ {0, 1},
DEC(Xi) with i ∈ {0, 1}, or
IF Xi=0 GOTO ℓ′ ELSE GOTO ℓ′′ with i ∈ {0, 1} and ℓ′, ℓ′′ ∈ {0, . . . , k − 1}.

A configuration of M is of the form (ℓ, c0, c1) with ℓ ∈ {0, . . . , k−1} (the current line number)
and c0, c1 ∈ N (the current contents of the counters). The initial configuration is (0, 0, 0) and
the unique successor configuration of a configuration (ℓ, c0, c1) is defined as follows:

If Iℓ = INC(Xi), then the successor configuration is (ℓ + 1, c′
0, c′

1) with c′
i = ci + 1 and

c′
1−i = c1−i.

If Iℓ = DEC(Xi), then the successor configuration is (ℓ + 1, c′
0, c′

1) with c′
i = max{ci − 1, 0}

and c′
1−i = c1−i.

If Iℓ = IF Xi=0 GOTO ℓ′ ELSE GOTO ℓ′′ and ci = 0, then the successor configuration is
(ℓ′, c0, c1).
If Iℓ = IF Xi=0 GOTO ℓ′ ELSE GOTO ℓ′′ and ci > 0, then the successor configuration is
(ℓ′′, c0, c1).
If Iℓ = STOP, then (ℓ, c0, c1) has no successor configuration.

The unique run of M (starting in the initial configuration) is defined as expected. It is either
finite (line k − 1 is reached) or infinite (line k − 1 is never reached). In the former case, we
say that M terminates.

▶ Proposition 19 ([20]). The following problem is undecidable: Given a two-counter ma-
chine M, does M terminate?

In the following, we assume without loss of generality that each two-counter machine
satisfies the guarded-decrement property: Every decrement instruction (ℓ : DEC(Xi)) is
preceded by (ℓ − 1 : IF Xi=0 GOTO ℓ + 1 ELSE GOTO ℓ) and decrements are never the target
of a goto instruction. As the decrement of a zero counter has no effect, one can modify each
two-counter machine M into an M′ satisfying the guarded-decrement property such that
M terminates if and only if M′ terminates: One just adds the the required guard before
every decrement instruction and changes each target of a goto instruction that is a decrement
instruction to the preceding guard.

The guarded-decrement property implies that decrements are only executed if the corre-
sponding counter is nonzero. Thus, the value of counter i after a finite sequence of executed
instructions (starting with value zero in the counters) is equal to the number of executed
increments of counter i minus the number of executed decrements of counter i. Note that
the number of executed increments and decrements can be tracked by a Parikh automaton.

Consider a finite or infinite word w = w0w1w2 · · · over the set {0, 1, . . . , k − 1} of line
numbers. We now describe how to characterize whether w is (a prefix of) the projection
to the line numbers of the unique run of M starting in the initial configuration. This

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:17

characterization is designed to be checkable by a Parikh automaton. Note that w only
contains line numbers, but does not encode values of the counters. These will be kept track
of by the Parikh automaton by counting the number of increment and decrement instructions
in the input, as explained above (this explains the need for the guarded-decrement property).
Formally, we say that w contains an error at position n < |w| − 1 if either wn = k − 1 (the
instruction in line wn is STOP), or if one of the following two conditions is satisfied:
1. The instruction Iwn

in line wn of M is an increment or a decrement and wn+1 ̸= wn + 1,
i.e., the letter wn+1 after wn is not equal to the line number wn + 1, which it should be
after an increment or decrement.

2. Iwn
has the form IF Xi=0 GOTO ℓ ELSE GOTO ℓ′, and one of the following cases holds:

Either, we have∑
j : Ij=INC(Xi)

|w0 · · · wn|j =
∑

j : Ij=DEC(Xi)
|w0 · · · wn|j

and wn+1 ̸= ℓ, i.e., the number of increments of counter i is equal to the number of
decrements of counter i in w0 · · · wn (i.e., the counter is zero) but the next line number
in w is not the target of the if-branch. Or, we have∑

j : Ij=INC(Xi)
|w0 · · · wn|j ̸=

∑
j : Ij=DEC(Xi)

|w0 · · · wn|j ,

and wn+1 ̸= ℓ′, i.e., the number of increments of counter i is not equal to the number
of decrements of counter i in w0 · · · wn (i.e., the counter is nonzero) but the next line
number in w is not the target of the else-branch.

Note that the definition of error (at position n) refers to the number of increments and
decrements in the prefix w0 · · · wn, which does not need to be error-free itself. However, if
a sequence of line numbers does not have an error, then the guarded-decrement property
yields the following result.

▶ Lemma 20. Let w ∈ {0, 1, . . . , k − 1}+ with w0 = 0. Then, w has no errors at posi-
tions {0, 1, . . . , |w| − 2} if and only if w is a prefix of the projection to the line numbers of
the run of M.

Proof. If w has no errors at positions {0, 1, . . . , |w| − 2}, then an induction shows that
(wn, cn

0 , cn
1) with

cn
i =

∑
j : Ij=INC(Xi)

|w0 · · · wn−1|j −
∑

j : Ij=DEC(Xi)
|w0 · · · wn−1|j

is the n-th configuration of the run of M.
On the other hand, projecting a prefix of the run of M to the line numbers yields a

word w without errors at positions {0, 1, . . . , |w| − 2}. ◀

The existence of an error can be captured by a Parikh automaton, leading to the
undecidability of the safe word problem for Parikh automata, which we now prove. Let
(A, C) be a PA accepting finite words over Σ. A safe word of (A, C) is an infinite word in
Σω such that each of its prefixes is in L(A, C).

▶ Lemma 21. The following problem is undecidable: Given a deterministic PA, does it have
a safe word?

Proof. Our proof proceeds by a reduction from the nontermination problem for decrement-
guarded two-counter machines. Given such a machine M = (0 : I0) · · · (k − 2 : Ik−2)(k − 1 :
STOP) let Σ = {0, . . . , k − 1} be the set of its line numbers. We construct a deterministic
PA (AM, CM) that accepts a word w ∈ Σ∗ if and only if w = ε, w = 0, or if |w| ⩾ 2 and w

FSTTCS 2022

40:18 Parikh Automata over Infinite Words

does not contain an error at position |w| − 2 (but might contain errors at earlier positions).
Intuitively, the automaton checks whether the second-to-last instruction is executed properly.
The following is then a direct consequence of Lemma 20: (AM, CM) has a safe word if and
only if M does not terminate.

The deterministic PA (AM, CM) keeps track of the occurrence of line numbers with
increment and decrement instructions of each counter (using four dimensions) and two
auxiliary dimensions to ensure that the two cases in Condition 2 of the error definition on
Page 17 are only checked when the second-to-last letter corresponds to a goto instruction.
More formally, we construct AM such the unique run processing some input w = w0 . . . wn−1
has the extended Parikh image (v0

inc, v0
dec, v0

goto, v1
inc, v1

dec, v1
goto) where

vi
inc is equal to

∑
j : Ij=INC(Xi) |w0 · · · wn−2|j , i.e., the number of increment instructions

read so far (ignoring the last letter),
vi

dec is equal to
∑

j : Ij=DEC(Xi) |w0 · · · wn−2|j , i.e., the number of decrement instructions
read so far (ignoring the last letter), and
vi

goto mod 4 = 0, if the second-to-last instruction Iwn−2 is not a goto testing counter i,
vi

goto mod 4 = 1, if the second-to-last instruction Iwn−2 is a goto testing counter i and
the last letter wn−1 is equal to the target of the if-branch of this instruction, and
vi

goto mod 4 = 2, if the second-to-last instruction Iwn−2 is a goto testing counter i and
the last letter wn−1 is equal to the target of the else-branch of this instruction.
vi

goto mod 4 = 3, if the second-to-last instruction Iwn−2 is a goto testing counter i and
the last letter wn−1 is neither equal to the target of the if-branch nor equal to the target
of the else-branch of this instruction. Note that this constitutes an error at position n − 2.

Note that vi
goto mod 4 ̸= 0 can be true for at most one of the i at any time (as a goto

instruction Iwn−2 only refers to one counter) and that the vi
inc and vi

dec are updated with a
delay of one transition (as the last letter of w is ignored). This requires to store the previously
processed letter in the state space of AM.

Further, CM is defined such that (v0
inc, v0

dec, v0
goto, v1

inc, v1
dec, v1

goto) is in CM if and only if
vi

goto mod 4 = 0 for both i, or if
vi

goto mod 4 = 1 for some i (recall that i is unique then) and vi
inc = vi

dec, or if
vi

goto mod 4 = 2 for some i (again, i is unique) and vi
inc ̸= vi

dec.

All other requirements, e.g., Condition 1 of the error definition on Page 17, the second-
to-last letter not being k − 1, and the input being in {ε, 0}, can be checked using the state
space of AM. ◀

A.1 Proofs omitted in Section 6
First, we prove that nonemptiness for deterministic SPA is undecidable.

Proof of Theorem 13.3. The result follows immediately from Lemma 21: A PA (A, C) has
a safe word if and only if LS(A, C) ̸= ∅. ◀

Next, we prove undecidability of nonemptiness for deterministic CPA.

Proof of Theorem 13.4. We present a reduction from the universal termination problem [1]1
for decrement-guarded two-counter machines, which is undecidable. The problem asks whether
a given two-counter machine M terminates from every configuration. If this is the case, we
say that M is universally terminating.

1 The authors use a slightly different definition of two-counter machine than we do here. Nevertheless, the
universal termination problem for their machines can be reduced to the universal termination problem
for decrement-guarded two-counter machines as defined here.

S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 40:19

Now, consider a decrement-guarded two-counter machine M that contains, without loss
of generality, an increment instruction for each counter, say in lines ℓ+

0 and ℓ+
1 . In the proof

of Lemma 21, we construct a deterministic PA (AM, CM) that accepts a finite word w over
the line numbers of M if and only if w = ε, w = 0, or if |w| ⩾ 2 and w does not contain an
error at position |w| − 2. We claim that LC(AM, CM) is nonempty if and only if M is not
universally terminating.

So, first assume there is some w ∈ LC(AM, CM). Hence, there is a run of (AM, CM)
processing w satisfying the co-Büchi acceptance condition: From some point n0 onward, the
run only visits states in F and the extended Parikh image is in CM. This means that there is
no error in w after position n0. So, M does not terminate from the configuration (wn0 , c0, c1)
with

ci =
∑

j : Ij=INC(Xi)
|w0 · · · wn0−1|j −

∑
j : Ij=DEC(Xi)

|w0 · · · wn0−1|j ,

i.e., M is not universally terminating.
Now, assume M does not universally terminate, say it does not terminate from configura-

tion (ℓ, c0, c1). Recall that the instruction in line ℓ+
i is an increment of counter i. We define

w = (ℓ+
0)c0(ℓ+

1)c1w′ where w′ is the projection to the line numbers of the (nonterminating)
run of M starting in (ℓ, c0, c1). This word does not have an error after position ℓ (but may
have some before that position). Hence there is a co-Büchi accepting run of (AM, CM)
processing w, i.e., LC(AM, CM) is nonempty. ◀

Finally, we prove undecidability of universality for SPA.

Proof of Theorem 16.4. We present a reduction from the termination problem for
(decrement-guarded) two-counter machines. So, fix such a machine M with line num-
bers 0, 1, . . . , k − 1 where k − 1 is the line number of the stopping instruction, fix
Σ = {0, 1, . . . , k − 1}, and consider LM = L0

M ∪ L1
M with

L0
M ={w ∈ Σω | w0 ̸= 0} and

L1
M ={w ∈ Σω | if |w|k−1 > 0 then w contains an error

strictly before the first occurrence of k − 1}.

We first prove that LM is not universal if and only if M terminates, then that LM is accepted
by some SPA.

So, assume that M terminates and let w ∈ Σ∗ be the projection of the unique finite run
of M to the line numbers. Then, w starts with 0, contains a k − 1, and no error before the
k − 1. Thus, w0ω is not in LM, i.e., LM is not universal.

Conversely, assume that LM is not universal. Then, there is an infinite word w that is
neither in L0

M nor in L1
M. So, w must start with 0, contain a k − 1, but no error before the

first k − 1. Thus, Lemma 20 implies that the prefix of w up to and including the first k − 1
is the projection to the line numbers of the run of M. This run is terminating, as the prefix
ends in k − 1. Thus, M terminates.

It remains to argue that LM = L0
M ∪ L1

M is accepted by an SPA. Due to closure of SPA
under union and the fact that every ω-regular safety property is also accepted by an SPA,
we only need to consider L1

M. Recall that we have constructed a deterministic PA (A, C)
(on finite words) accepting a word if it is empty, 0, or contains an error at the second-to-last
position. We modify this PA into an SPA (A′, C ′) that accepts L1

M.
To this end, we add a fresh accepting state qa and a fresh rejecting state qr to A while

making all states of A accepting in A′. Both fresh states are sinks equipped with self-loops
that are labeled with (ℓ, 0⃗) for every line number ℓ. Here, 0⃗ is the appropriate zero vector,
i.e., the counters are frozen when reaching the fresh states.

FSTTCS 2022

40:20 Parikh Automata over Infinite Words

Intuitively, moving to qa signifies that an error at the current position is guessed. Conse-
quently, if a k − 1 is processed from a state of A, the rejecting sink qs is reached. We reflect
in a fresh component of the extended Parikh image whether qa has been reached. Due to
this, we can define C ′ so that the extended Parikh image of every run prefix ending in a
state of A is in C ′ and that the extended Parikh image of a run prefix ending in qa is in C ′

if removing the last entry (the reflecting one) yields a vector in C, i.e., an error has indeed
occurred. Then, we have LS(A′, C ′) = L1

M as required. ◀

New Analytic Techniques for Proving the Inherent
Ambiguity of Context-Free Languages
Florent Koechlin !

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
This article extends the work of Flajolet [10] on the relation between generating series and inherent
ambiguity. We first propose an analytic criterion to prove the infinite inherent ambiguity of
some context-free languages, and apply it to give a purely combinatorial proof of the infinite
ambiguity of Shamir’s language. Then we show how Ginsburg and Ullian’s criterion on unambiguous
bounded languages translates into a useful criterion on generating series, which generalises and
simplifies the proof of the recent criterion of Makarov [21]. We then propose a new criterion based
on generating series to prove the inherent ambiguity of languages with interlacing patterns, like
{anbmapbq | n ̸= p or m ̸= q, with n, m, p, q ∈ N∗}. We illustrate the applicability of these two
criteria on many examples.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages

Keywords and phrases Inherent ambiguity, Infinite ambiguity, Ambiguity, Generating series, Context-
free languages, Bounded languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.41

1 Introduction

A context-free grammar G is said to be unambiguous if for any word w recognized by G,
there exists exactly one derivation tree for w. A context-free language is called inherently
ambiguous if it can not be recognized by any unambiguous grammar. Proving that a language
is inherently ambiguous is a difficult question, as it is an impossibility notion, and it is
undecidable in general [14, 15]. In practice, three different methods have emerged to prove
the inherent ambiguity of some context-free languages: an approach based on iterations on
derivation trees [25, 26], an other based on iterations on semilinear sets [14, 16, 29], and
finally an approach based on generating series [10, 17, 21, 28]. The first two approaches are
best suited for (and for the second, limited to) bounded languages.

In this article, we provide new sufficient criteria to prove inherent (infinite) ambiguity,
answering two questions of Flajolet [10]. Our main result is an interpretation, in the world of
generating series of Ginsburg and Ullian’s criteria [14] on semilinear sets. It rediscovers and
generalises the criterion recently developped by Makarov [21], while opening the way to new
techniques to prove the inherent ambiguity of unbounded languages or bounded languages
with an interlacing pattern. In a different direction, we also provide a criterion for inherent
infinite ambiguity.

1.1 Motivation and background
Deciding if a grammar is ambiguous is undecidable [6], as well as deciding if a context-free
language is inherently ambiguous [14, 15]. However, detecting ambiguity in context-free
grammars has strong implications for compilers and parsers. Therefore, identifying inherently
ambiguous languages is an important step towards our understanding of the limits of the
model of context-free languages to describe natural or programming languages. Let us start
with some context on the methods developed so far to establish the inherent ambiguity of a
language.

© Florent Koechlin;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 41; pp. 41:1–41:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.koechlin@inria.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Bounded languages. The first techniques developed to prove inherent ambiguity dealt with
bounded languages. A language L is called bounded if there exist words w1, . . . , wd with d ≥ 1
such that L ⊆ w∗

1 . . . w∗
d. Despite its apparent simplicity, the class of bounded languages is

rich enough to provide a large variety of inherently ambiguous languages; furthermore it is
often possible to deduce the inherent ambiguity of a context-free language from the inherent
ambiguity of a bounded language, using the stability of unambiguous context-free languages
under intersection with a regular language [14].

Iteration on derivation trees. In 1961, Parikh was the first to exhibit an inherently
ambiguous context-free language, the bounded language L = {anbmapbq |n = p or m =
q, with n, m, p, q ∈ N>0} (see [26] and [27, Theorem 3]). Parikh’s proof relies on an iteration
argument over the derivation trees of any unambiguous grammar recognising L. A few years
later, Ogden generalised this method and published his famous lemma [25], which drastically
simplified the identification of iterating pairs in derivation trees. Since then, these iterations
techniques have been very popular to study several inherently ambiguous languages (see for
instance [7, 24, 30, 32]). However, they remain subtle and difficult to set up in general; hence
they are sometimes unsuitable to study complex context-free languages.

Iteration on semilinear sets. In 1966, after Parikh’s article but before Ogden’s lemma,
Ginsburg and Ullian succeeded in using strong iterations arguments on derivation trees to
characterise exactly the inherent ambiguity of bounded context-free languages in terms of
their associated semilinear sets [14]. Their result made it possible to prove the inherent
ambiguity of bounded languages using iterations on semilinear sets instead of derivation trees
[14, 16, 29]. Unfortunately, iterations on semilinear sets turned out to be almost as laborious
as on derivation trees. The simplicity of the proof and the strong applications of Ogden’s
lemma severely contrasted with Ginsburg and Ullian’s criterion1 that was complex to use
and required a lot of case analysis. It may explain why iterations on semilinear sets were
supplanted by iterations on derivation trees.

Generating series method. In 1987, Flajolet [10] proposed a conceptually new approach,
based on generating series and the contraposition of the Chomsky-Schützenberger theorem
[6]. The generating series of a language L is the formal series

∑
n ℓnxn where ℓn denotes

the number of words of length n in L. Flajolet’s idea consists in showing that a language is
inherently ambiguous by computing its generating series – which is a purely combinatorial
question, for which there are many techniques [11] – and showing that this series is not
algebraic – for which there are also several mathematical characterisations [10]. This method
turned out to be very successful, as Flajolet was able to easily prove the inherent ambiguity
of a dozen languages in his article. It complemented very well the previous techniques used
for proving ambiguity: whereas iterations arguments are rather efficient and fast for proving
the inherent ambiguity of languages with a simple structure, which tend to have an algebraic
generating series2, on the opposite side, the generating series approach allows to deal with
complex languages that have a transcendental (i.e. non-algebraic) generating series and seem
out of reach of iterations techniques.

1 In his book [12, p.211], Ginsburg wondered whether there was a simpler technique to prove the inherent
ambiguity of L := {anbmcp : n = m or m = p}, and in a sense Ogden answered in the positive.

2 For example, all bounded context-free languages have a rational generating series

F. Koechlin 41:3

Limits. Nevertheless, the three presented approaches sometimes fail on very simple context-
free languages expected to be inherently ambiguous, like the language L′ := {anbmcp :
n ̸= m or m ̸= p}. It has a rational – hence algebraic – generating series, and iterations
arguments (whether on trees or semilinear sets) struggle to handle the inequality condition
that does not constrain anymore the form of iterating pairs. It is not very surprising that
those methods do no cover every language, as hinted by the fact that deciding inherent
ambiguity is undecidable.

1.2 Problem statement and contributions
At the end of his article [10], Flajolet raised several open questions about the relation
between inherent ambiguity and generating series: is it possible to capture the inherent
infinite ambiguity of some context-free languages using analytic tools on generating series?
Can rational generating series still be useful to prove the inherent ambiguity of languages like
L′ = {anbmcp : n ̸= m or m ̸= p}? Recently, Makarov [21] answered the second question by
using new ideas coming from the generating series of GF (2) grammars. He provided a simple
criterion on rational series to prove the inherent ambiguity of some bounded languages on
a∗

1 . . . a∗
d, where the ai’s are distinct letters, and proved the inherent ambiguity of L′.

In this article, we give new answers to the two open questions of Flajolet about inherent
ambiguity and infinite inherent ambiguity. We first propose an analytic technique to
prove the infinite inherent ambiguity of context-free languages (Theorem 4), and apply
it to give a purely combinatorial proof of the infinite ambiguity of Shamir’s language
(Corollary 7). Then we use Ginsburg and Ullian’s characterisation to derive a simple
criterion (Theorem 12) on generating series to prove the inherent ambiguity of some bounded
languages, which both generalises and simplifies the proof of an analogous criterion recently
found by [21]. We then propose a new criterion based on generating series to prove the
inherent ambiguity of languages with an interlacing pattern, that are not covered by [21],
like L′′ = {anbmapbq |n ̸= p or m ̸= q, with n, m, p, q ∈ N∗} (Theorem 21). To make them
amenable to the wider audience possible, these criteria only require a basic knowledge in
combinatorics and in polynomials in several variables.

1.3 Related work
To the author’s knowledge, since Flajolet’s article, and until Makarov’s new criterion [21],
no real new successful approach based on generating series has been proposed to prove
the inherent ambiguity of languages. Several years after Flajolet’s article, a subclass of
unambiguous context-free language (called slender languages) has been shown to be associated
to rational series [17], but their criterion can be in fact interpreted as a shortcut of Flajolet’s
technique3. More recently [1], the class of generating series associated to unambiguous
context-free grammars, called N-algebraic series, has been precisely described as well as
their asymptotic behaviour. This class of generating series does, however, enjoy less closure
properties than algebraic series, which makes them less applicable for proving inherent
ambiguity.

If the techniques developed in this article are based on generating series and hence lie
in the continuity of Flajolet’s method [10], they can also be seen as a nice alliance of the
three historical techniques presented in this introduction: we use Flajolet’s idea to study
ambiguity through generating series [10], in order to revisit from this point of view Ginsburg
and Ullian’s criteria [14], whose proof relies on iterations in derivation trees.

3 By [2], if the generating series of a slender language is not rational then it is also not algebraic

FSTTCS 2022

41:4 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

2 Preliminaries

Context-free languages. A context-free grammar (CFG for short) is a tuple G =
(N, Σ, S, D), where Σ is a finite set of terminal symbols, N is a finite set of non-terminal
symbols, S ∈ N is the axiom, and D ⊆ N × (N ∪ Σ)∗ is the finite set of derivation rules. A
rule (A, w) ∈ D is usually written A→ w, with A ∈ N and w ∈ (N ∪ Σ)∗. The derivation
rules of D can be seen as rewriting rules affecting only non terminal symbols. Let w, w′ be
two words in (N ∪Σ)∗. The application of a rewriting rule of D to a non-terminal symbol of
w is called a derivation step of G from w. If w′ is derived from w after one derivation step,
we write w →G w′. A derivation from w to w′ is a (possibly empty if w = w′) sequence of
consecutive derivation steps w →G w1 →G . . .→G w′, denoted by w →∗

G w′. As the order of
the application of the derivation rules is not canonical, a derivation is rather described as a
tree, called a derivation tree. For instance, if D = {S → AB, A→ a, B → b}, the derivations

S → AB → aB → ab and S → AB → Ab→ ab have the same derivation tree
S

A B

a b

and can

be identified. A word is called terminal if it contains only terminal symbols. The language of
G, denoted by L(G) ⊆ Σ∗, is the set of terminal words that can be derived from the axiom
S. The grammar G is said to be unambiguous if for any word w ∈ L(G), there exists exactly
one derivation tree for w. A context-free language (CFL) is a language recognized by a CFG.
A CFL is called inherently ambiguous if it is not recognisable by any unambiguous CFG.

Univariate series. Let N = {0, 1, 2, . . .} be the set of non-negative integer, Q the set of
rational numbers, F2 the field with two elements, and K an arbitrary field (in practice, K = Q
or K = F2 in this article). The set of polynomials with coefficients in K and indeterminate
x is denoted by K[x]. We denote by K[[x]] the set of formal series with coefficients in K,
which is the set of infinite polynomials of the form

∑
n∈N anxn, with an ∈ K. We recall that

(K[[x]], +, ·) has a ring structure, with respect to the addition and the Cauchy product. The
series S(x) =

∑
n∈N xn satisfies the equation (1 − x)S(x) = 1, and is hence written 1

1−x .
The set K(x) denotes the set of rational fractions, which is formally the set of fractions of
the form p(x)/q(x) where p, q are both polynomials in K[x], with q(x) ̸= 0. A univariate
series f(x) ∈ K[[x]] is rational if it satisfies an equation of the form q(x)f(x) = p(x), where
p, q ∈ K[x], q ̸= 0. In this case f(x) is written p(x)/q(x). It is called algebraic over K if
there exists a non null polynomial P (x, Y), with coefficients in K, such that P (x, f(x)) = 0.

Let n ∈ N. If L is a language, we define ℓn the number of words in L of length n. The
generating series L(x) of L is the formal series L(x) :=

∑
n∈N ℓnxn ∈ Q[[x]]. If G is a CFG

recognising L, we denote by gn the number of derivation trees of terminal words of length
n. If gn is finite for all n ∈ N, the generating series of the derivation trees of G, defined by
the formal series G(x) :=

∑
n∈N gnxn, is well-defined. In this case, the description of the

grammar G translates directly into a polynomial system satisfied by G(x), which implies
that G(x) is algebraic over Q. If G is unambiguous, then G(x) is well-defined and coincides
with L(x), so the generating series of an unambiguous CFL is algebraic over Q: this is the
Chomsky-Schützenberger theorem [6]. The subset of series that are the generating series
of the derivation trees of a CFG is called the set of N−algebraic series, and it is strictly
included in the set of algebraic series over Q [1].

Multivariate polynomials. For every d ∈ N>0, Nd denotes the set of vectors with d

coordinates in N. A vector (v1, . . . , vd) ∈ Nd will be freely written in a condensed notation
v. Similarly, the tuple of d variables (x1, . . . , xd) is written x. The notation K[x] denotes

F. Koechlin 41:5

the ring of multivariate polynomials with indeterminates x = (x1, . . . , xd) and coefficients in
K. For v = (v1, . . . , vd) ∈ Nd, the monomial xv1

1 . . . xvd

d is written xv. The total degree of
xv1

1 . . . xvd

d is the number v1 + . . . + vd. A polynomial is called homogenous if its monomials
have the same total degree (for instance x2 + xy is homogenous but 1 + xy is not). A
polynomial is called irreducible if it is non constant and cannot be decomposed as the product
of two non constant polynomials. The set K(x) denotes the field of rational fractions of
K[x], that is the set of quotients p(x)/q(x) where p, q ∈ K[x] and q ̸= 0.

▶ Remark 1 (Arithmetic of K[x]). We chose to use as little mathematical notion of K[x]
as possible, to keep our criteria useful for people that are not familiar with multivariate
polynomials. To understand the proofs, it is useful to remember that K[x] is factorial (see for
instance [20, Corrolary 2.4 p 183]): any polynomial in K[x] admits a unique factorization as
a product of irreducible polynomials. However, K[x] is not principal in general (even when
K = Q), nor euclidian; in particular, the Bezout identity does not hold anymore. Hence
there is no canonical multivariate equivalent to the euclidian division, and similarly there is
no canonical partial fraction decomposition.

Multivariate series. We write K[[x]] for the ring of formal multivariate series with (com-
mutative) indeterminates x and coefficients in K, which is the set of infinite polynomials of
the form∑

v∈Nd

avxv :=
∑

v1,...,vd∈Nd

av1,...,vd
xv1

1 . . . xvd

d , with av ∈ K for all v ∈ Nd.

The series
∑

n,m xnym satisfies the equation (1− x)(1− y)S(x, y) = 1 and hence is written
1

(1−x)(1−y) . Similarly, for every monomial xv, the series
∑

n∈N xnv is written 1
1−xv ; for

instance, the series
∑

n,m xnyn is written 1
1−xy . A series f(x) is called algebraic over K if

there exists a non null multivariate polynomial P (x, Y) ∈ K[x, Y] such that P (x, f(x)) = 0.

Semilinear sets. Let d ∈ N. A set L ⊆ Nd is called linear if there exists a vector c ∈ Nd,
and a finite set of vectors P = {p1, . . . , ps}, called periods, such that

L = {c + λ1p1 + . . . + λsps : λ1, . . . , λs ∈ N} .

We will denote such a set under the condensed form c + P ∗. A semilinear set S ⊆ Nd is a
finite union of linear sets in Nd. The generating series of a semilinear set is defined by the
multivariate series S(x) =

∑
v∈S xv. In the particular case where S = c + P ∗ is a linear set,

with P = {p1, . . . , ps} a set of linearly independent periods over Q, then the decomposition
of a vector v ∈ S under the form v = c + λ1p1 + . . . + λsps is unique, hence:

S(x) =
∑

λ1,...,λr∈Nr

xc+λ1p1+...+λsps = xc
∑

λ1∈N
(xp1)λ1 . . .

∑
λs∈N

(xpr)λr = xc∏
p∈P (1− xp) .

Note that by [8, 18], it is always possible to find a representation of a semilinear S under the
form S =

⊎r
i=1(ci + P ∗

i), where the union is disjoint, and the vectors are linearly independent
over Q in each Pi. Hence the generating series of a semilinear set is rational and can be

deduced from such a presentation by S(x) =
r∑

i=1

xci∏
p∈Pi

(1− xp) .

FSTTCS 2022

41:6 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Computing generating series of semilinear sets. In practice, for the examples of this
article, we will not need a representation of S of the previous form, and can compute
the generating series of such sets by hand. For instance, the generating series of N2 is∑

n,m xnym = 1
(1−x)(1−y) , the generating series of S1 = {(n, m) : n = m} is

∑
n xnyn =

1
1−xy , the generating series of S2 = {(n, m) : n ̸= m} = N2 \ S1 is 1

(1−x)(1−y) −
1

1−xy . For a
union, we can add the generating series, but we need to be careful to subtract the intersection,
otherwise the vectors of the intersection would be counted twice. For instance, the generating
series of S3 = {(n, m, p) : n = m or n = p} is 1

(1−xy)(1−z) + 1
(1−yz)(1−x) −

1
1−xyz .

3 Infinite ambiguity

Let L be a context-free language. For n ∈ N, we recall that ℓn denotes the number of words
in L of length n. In this section, we show how the asymptotic behaviour of ℓn can sometimes
be sufficient to prove the inherent infinite ambiguity of L.

▶ Definition 2 (finite degree of ambiguity). Let k ∈ N. A context-free grammar G is said to
be k-ambiguous if every word w ∈ L(G) admits at most k different derivation trees. Similarly
a context-free language L is k-ambiguous if it can be recognized by a k-ambiguous CFG.

If such a finite k exists, then L is said to be of bounded ambiguity, or finitely ambiguous;
otherwise, L is said to be of unbounded ambiguity, or infinitely ambiguous.

Infinitely ambiguous languages can arise from the concatenation of simple unambiguous
languages; for instance, the language Pal of palindromes is unambiguous, but the language
Pal2 = {w1w2 : w1, w2 ∈ Pal} is infinitely ambiguous [7]. For infinitely ambiguous
grammars, the functions f(n) upper-bounding the number of different derivations of words
of length n have been well studied [31, 32, 33]. Note that deciding infinite ambiguity is also
undecidable [15]. The usual studies on finite or infinite ambiguity rely generally on iterations
with Ogden’s lemma or Ullian and Ginsburg’s criteria (see for instance [29] which gives
examples, for each k ∈ N, of arbitrary inherently k-ambiguous on a∗b∗c∗). In this section we
propose a novel approach based on generating series and their asymptotic behaviour.

3.1 An analytic criterion for infinite ambiguity
Let G be a context-free grammar such that every word w ∈ L(G) has a finite number of
derivation. We call G(x) =

∑
n∈N gnxn the generating series of the derivation trees of G,

where gn denotes the number of derivation trees for words of L(G) of length n. Then, by the
Chomsky-Schützenberger theorem [6], G(x) is algebraic. More precisely, G(x) belongs to a
more restrictive class of algebraic series, called N-algebraic series, for which the asymptotic
behaviour of the coefficient has been well studied:

▶ Proposition 3 (Critical exponents of N-algebraic series [1]). Let G(z) =
∑

n gnzn be an
N-algebraic series. If G has a unique singularity on its circle of convergence |z| = 1/β, then

gn ∼n→∞
C

Γ(1 + α)nαβn , (1)

where C, β are non negative algebraic constants, and α belongs to the following set:

D2 := {−1− 2−(k+1) : k ≥ 0} ∪
{
−1 + r

2k
: k ≥ 0, r ≥ 1

}
.

If G(z) has several dominant singularities, then there exists a non negative integer p such
that for every s ∈ [0, p − 1], either gs+np = 0 for all n sufficiently large, or gs+np has an
asymptotic behaviour of the form of (1), where each constant depends on s.

F. Koechlin 41:7

We now derive the following criterion for infinite ambiguity, where we recall that D2 is
defined in Proposition 3, and n ≡ s[p] means that n is congruent to s modulo p:

▶ Theorem 4. Suppose that it is not possible to find an integer p ∈ N>0 such that for all
integer s ∈ {0, . . . , p − 1}, for all n ≡ s[p], ℓn = 0 or ℓn satisfies a relation of the form
ℓn = Θ(βn

s nαs) with βs > 0 algebraic, and α ∈ D2. Then L is infinitely ambiguous.

Proof. We prove the contraposition: assume that L is k-ambiguous for some k ∈ N>0, and
let us show that it is possible to find an integer p > 0 such that for all s ∈ [0, p− 1], for all
n ≡ s[p], ℓn = 0 or ℓn satisfies a relation of the form ℓn = Θ(βn

s nαs) with βs > 0 algebraic,
and α ∈ D2.

Let L(x) =
∑

n ℓnxn the generating series of L, and G(x) =
∑

n gnxn the generating series
of the derivations of G. Then by definition of k-ambiguity, for every n ∈ N, ℓn ≤ gn ≤ kℓn.
In other words, gn

k ≤ ℓn ≤ gn, which implies that ℓn = Θ(gn), where gn is the coefficient
of an N-algebraic series. By Proposition 3, there exists a non negative integer p such that
for every s ∈ {0, . . . , p − 1}, either gs+np = 0 for all n sufficiently large, or gs+np has an
asymptotic behaviour of the form of (1).

If gs+np = 0 for all n sufficiently large, then so is ℓs+np. If gs+np ≠ 0 for n sufficiently
large, then there exist C a constant, βs a non negative algebraic number, and αs ∈ D2 such
that gn ∼ C

Γ(1+αs) nαsβn
s when n→∞ with n ≡ s[p]. Hence ℓn = Θ(βn

s nαs). ◀

▶ Corollary 5. Let L be a context-free language such that, as n→ +∞, ℓn = Θ(βnnα log(n)s).
If β is not algebraic, or if s ̸= 0, or if α /∈ D2, then L is inherently infinitely ambiguous.

Proof. By hypothesis, there exist two constants b1, b2 > 0 such that for n large enough,

b1βnnα log(n)s ≤ ℓn ≤ b2βnnα log(n)s .

In particular, for n sufficiently large, ℓn > 0. Without loss of generality, we can modify
its first terms, and suppose that ℓn > 0 for every n ∈ N. Let us prove that the hypotheses of
Theorem 4 are satisfied in the case where β is not algebraic, or s ̸= 0, or α /∈ D2.

As ℓn > 0 for every n ∈ N, suppose by contradiction that there exists an integer p > 0 such
that for all n ≡ 0[p], ℓn can be expressed as ℓn = Θ(βn

0 nα0), with β0 a non negative algebraic
constant, and α0 ∈ D2. Hence there exists two constants c1, c2 > 0 such that, for every
n ≡ 0[p] sufficiently large, c1βn

0 nα0 ≤ ℓn ≤ c2βn
0 nα0 , and combining the two inequalities:

0 <
c1

b2
≤
(

β

β0

)n

nα−α0 log(n)s ≤ c2

b1
.

By predominance of the growth of the exponential, if β0 ̸= β, the term in the middle
either tends to 0 or +∞ and cannot be bounded by two strictly positive constants. Hence if
β is not algebraic, β0 ̸= β and we obtain a contradiction, so that L is infinitely ambiguous by
Theorem 4. Otherwise if β is algebraic, β = β0 and for all n sufficiently large with n ≡ 0[p]:

0 <
c1

b2
≤ nα−α0 log(n)s ≤ c2

b1
.

Similarly, the only way for nα−α0 log(n)s to be bounded by two strictly positive constants is
to have both α = α0 and s = 0, hence if s ̸= 0 or α /∈ D2, we obtain a contradiction, so that
L is infinitely ambiguous by Theorem 4. ◀

FSTTCS 2022

41:8 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

3.2 Application to Shamir’s language
Let us illustrate the method given in the previous section on Shamir’s language. Let
Σ = {#, a1, . . . , ak} be an alphabet of k + 1 letters, with k ≥ 2. We consider the extended
Shamir language Lk defined by :

Lk = {w ∈ Σ |w = s#usRv with s, u, v ∈ {a1, . . . , ak}∗ and s ̸= ε},

where the letter # serves only as a separator, and sR denotes the mirror4 of s. This language
is easily recognised by the ambiguous context-free grammar defined by the rules S → AB

and {A→ aAa|a#Ba, B → aB|ε : a ∈ Σ \ {#}}.
For k = 2, the language L2 is one of the languages showed to be infinitely ambiguous by

Shamir [30], using iterations on derivations similar to Ogden’s lemma (the author actually
shows the finer result that most words in the language of the form s#w have as many
derivation trees as there are instances of sR in w).

We propose here an analytic proof of the infinite ambiguity of the language Lk. In the
following, ℓn denotes the number of words of Lk of length n. The whole proof relies on the
following bounds:

▶ Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,

b1 logk n ≤ ℓn

kn−1 ≤ b2 logk n .

In other words, ℓn = Θ(kn−1 logk(n)).

Applying Corollary 5 provides an analytic proof of the infinite ambiguity of Shamir’s
language:

▶ Corollary 7. The Shamir language Lk is infinitely ambiguous.

▶ Remark 8. In [10], the series of a weaker version of Shamir’s language is shown to have
infinitely many singularities. We could wonder if the number of singularities of the generating
series of a language was correlated to its degree of ambiguity. This is not the case: Flajolet [10]
gave examples of 2-ambiguous languages with an infinite number of singularities; on the
other hand, the language L∗ with L = {anbmcp : n = m or n = p} has a rational generating
series, hence a finite number of singularities, but is infinitely ambiguous [24, Satz 4.2.1].

4 Two simple criteria on generating series for proving the inherent
ambiguity of bounded languages

In this section, we revisit Ginsburg and Ullian’s criteria with generating series. We develop
simple methods to prove the inherent ambiguity of bounded languages without any iteration
argument. Let us fix a dimension d ≥ 1, and Σ an alphabet5 of cardinality more than 2.

4.1 Bounded languages and Ullian and Ginsburg’s criteria
Let us fix a tuple of d words w1, . . . , wd ∈ Σ∗, denoted by ⟨w⟩ := ⟨w1, . . . , wd⟩. We use the
same notation and definition of [14]. A language L is called bounded with respect to ⟨w⟩ if
L ⊆ w∗

1 . . . w∗
d. The fonction f⟨w⟩ : Nd → w∗

1 . . . w∗
d is defined by f⟨w⟩(p1, . . . , pd) = wp1

1 . . . wpd

d

4 If s = s1s2 . . . sn−1sn, then sR = snsn−1 . . . s2s1.
5 Context-free languages on an alphabet of size 1 are regular languages by Parikh theorem [27].

F. Koechlin 41:9

for every p ∈ Nd. Notice that if every wi is a distinct letter of Σ, then the function f⟨w⟩
is bijective, and its inverse is the Parikh image on w∗

1 . . . w∗
d. A bounded language L with

respect to ⟨w⟩ is called semilinear if f−1
⟨w⟩(L) is a semilinear set. By [14], every bounded

context-free language is semilinear. In practice, most bounded languages are defined by
giving explicitly their semilinear set f−1

⟨w⟩(L). For instance, if L = {aibjck : i = j or j = k},
then f−1

⟨a,b,c⟩(L) = {(i, j, k) ∈ N3 : i = j or j = k}.
The following definition introduces a crucial class of sets associated to bounded languages:

▶ Definition 9 (Stratified set, [13, 14]). A subset X ⊆ Nd is stratified if :
1. every element of X has at most two non-zero coordinates ;
2. it is not possible to find four integers 1 ≤ i < j < k < m ≤ d and two vectors x, x′ ∈ X

such that xix
′
jxkx′

m ≠ 0 . In other words, two distinct elements of X cannot have
“interlacing” nonzero coordinates.

We sometimes say abusively that a linear set is stratified if its set of periods is stratified.
Stratified sets of periods play a fundamental role in the form of the semilinear sets described
by context-free grammars. In [13], Ginsburg and Ullian show that a bounded language L

with respect to a∗
1 . . . a∗

d, where ⟨a⟩ = ⟨a1, . . . , ad⟩ are distinct letters, is context-free if and
only if f−1

⟨a⟩(L) is a finite union of linear sets, each with a stratified set of periods. They
specialized this result for unambiguous bounded languages:

▶ Theorem 10 (Ginsburg and Ullian criteria, [14]). Let L be a context-free language bounded
with respect to ⟨w⟩ = ⟨w1, . . . , wd⟩. Then L is inherently ambiguous if and only if f−1

⟨w⟩(L) is
not a finite union of disjoint linear sets, each with a stratified set of periods whose vectors
are linearly independent.

▶ Remark 11. Note that it is not necessary, in order to use this criterion, to impose the
decomposition of a word of L into w∗

1 . . . w∗
d to be unambiguous.

One direction of the equivalence can be easily understood in the case where every wi are
distinct symbols and the semilinear set associated to L is a disjoint union of linear sets with
linearly independent stratified set of periods. One can easily build an unambiguous grammar
recognising the language of each linear set (the non-interlacing condition makes it possible
to order the vectors of the periods according to their non-zero pairs of coordinates, in a way
that they are well nested). The other direction is the heart of Ginsburg and Ullian’s theorem,
and is based on deep arguments6 about derivation trees.

As we mentioned it in the introduction, these criteria are powerful as they succeeded in
leaving the world of grammars and derivation trees, to focus on the semilinear set behind
the language. However, this characterisation of inherent ambiguity does not provide any tool
to prove that a given semilinear set cannot be written as a finite union of disjoint stratified
linear sets with independent periods. Hence, most proofs based on this result (see for instance
[14, 16, 29]) mimicked on semilinear sets the iteration arguments that worked on derivation
trees, without taking fully advantage of the fact that Nd and its semilinear sets are much
more amenable to techniques of analysis or algebra than derivation trees.

The next sections are devoted to show how Ginsburg and Ullian’s theorem actually
translates nicely in the world of generating series, and thus allows to derive very simple
criteria to prove the inherent ambiguity of many bounded languages.

6 As one of the authors admits it in his book [12, p. 188], “The proof of the necessity is extremely
complicated”.

FSTTCS 2022

41:10 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

4.2 The three variables criterion
The theorem of this section is a simple criterion to prove the inherent ambiguity of bounded
languages using generating series. The proof relies on the criteria of Ginsburg and Ullian,
and some arithmetic in K[x], including the unicity of the decomposition into irreducible
factors. Even if we only need K = Q to apply the theorem to the examples of this article,
we state it in the general case where K is an arbitrary field. In particular, with K = F2, it
generalises the criterion of [21], which only deals with bounded languages on distinct letters.

▶ Theorem 12 (Three variables criterion). Let L ⊆ w∗
1 . . . w∗

d be a context-free language
bounded with respect to ⟨w⟩. Let S = f−1

⟨w⟩(L) its associated semilinear set, and let

S(x1, . . . , xd) = P (x1, . . . , xd)
Q(x1, . . . , xd) ∈ K(x1, . . . , xd)

be the generating series of S, such that P and Q are polynomials of K[x1, . . . , xd] (that need
not to be coprime). Suppose that there exists an irreducible polynomial D ∈ K[x1, . . . , xd]
that divides Q, does not divide P , and depends on more than three variables (in other words
D ̸∈ K[xi, xj] for all 1 ≤ i, j ≤ d). Then L is inherently ambiguous.

Proof. Suppose that L in unambiguous. By Ginsburg et Ullian’s criteria (Theorem 10), the
semilinear set S can be written under the form S =

⊎r
i=1(ci +P ∗

i), where the union is disjoint,
each Pi is stratified, and the vectors in each set of periods Pi are linearly independent.

The disjoint union as well as the independent periods mean that this is an unambiguous
description of S, such that its generating series is given by:

P (x)
Q(x) = S(x) =

r∑
i=1

xci∏
p∈Pi

(1− xp) = P2(x)
Q2(x) , with Q2(x) =

r∏
i=1

∏
p∈Pi

(1− xp) ,

where P2, Q2 are obtained by writing the sum of fractions on the same denominator. Hence
PQ2 = P2Q. The irreducible polynomial D divides Q, so it divides P2Q, hence it divides
PQ2; as D is irreducible and does not divide P , it divides Q2.

However, as S is stratified, no period vector p in any Pi has more than two non zero
coordinates. This means that Q2 is a product of polynomials of the form (1 − t) where
t is a monomial with at most two variables. Each of these polynomials admits a unique
factorization in irreducible polynomials, each of them having at most two variables. By
the unicity of the irreducible factorization in K[x1, . . . , xd], D cannot divide Q2 since it is
irreducible with more than three variables. Contradiction. ◀

▶ Remark 13. As seen in the preliminaries, every semilinear set can be described unambigu-
ously [8, 18], so that it is always possible to compute its generating series.

▶ Proposition 14. The following context-free languages are inherently ambiguous:
1. L1 = {aibjck with i = j or j = k} and L′

1 = {aibajbakb with i = j or j = k}
2. L2 = {aibjck with i ̸= j or j ̸= k} and L′

2 = {aibajbakb with i ̸= j or j ̸= k}
3. L3 = {aibjck with i = j or j ̸= k} and L′

3 = {aibajbakb with i = j or j ̸= k}
4. C := {w1w2 : w1, w2 ∈ {a, b}∗ are palindromes}

Proof. We apply Theorem 12 (with K = Q) by exhibiting three-variables irreducible factors
in the denominator of the generating series of the semilinear sets under irreducible form.

F. Koechlin 41:11

1. The generating series S(a, b, c) of the semilinear set associated to L1 is:
1

(1−ab)(1−c) + 1
(1−bc)(1−a) − 1

1−abc
= 1−3 a2b2c2+2 a2b2c+2 ab2c2+2 a2bc−ab2c+2 abc2−a2b+2 abc−bc2−ac

(1−a)(1−bc)(1−c)(1−ab)(1−abc)

The polynomial 1 − abc in the denominator is irreducible in Q[a, b, c], and has three
variables. Furthermore, 1− abc does not divide the numerator (it can be checked with
a computer algebra software, or by hand: in Q[a, b][c], the numerator is of degree 2 in
c, so if 1 − abc divided it, the numerator would be of the form (1 − abc)(λc + µ) with
λ, µ ∈ Q[a, b], so that each monomial in c2 in the numerator should have ab in factor,
which is not the case of the monomial −bc2). Hence L1 is inherently ambiguous by
Theorem 12. Notice that the generating series of the semilinear set associated to L′

1
is simply b1b2b3S(a1, a2, a3) where b1, b2, b3 are associated to the three letters b, and
a1, a2, a3 are associated to the groups of a′s. Hence L′

1 is also inherently ambiguous.
2. The associated generating series is 1

(1−a)(1−b)(1−c) −
1

1−abc = a+b+c−ab−ac−bc
(1−a)(1−b)(1−c)(1−abc) . The

irreducible polynomial 1− abc has three variables, and does not divide the numerator,
since its total degree is 3, whereas the numerator is of total degree 2. Hence L2, and
similarly L′

2 are inherently ambiguous.
▶ Remark 15. The languages L1 and L2 were already proved to be inherently ambiguous
in [21] with the same argument. Our criterion makes it possible to extend the criterion
on word-bounded languages, to prove that L′

1 and L′
2 are also inherently ambiguous.

3. The generating series of the semilinear set associated to L3 is
1

(1−a)(1−b)(1−c) −
(

1
(1−a)(1−bc) − 1

1−abc

)
= 3 ab2c2−2 ab2c−2 abc2−b2c2+b2c+bc2+ab+ac−2 bc−a+1

(1−a)(1−b)(1−c)(1−bc)(1−abc)

and the proof is similar as before for both L3 and L′
3.

4. This example illustrates why criteria on bounded languages on words are more useful
than on distinct letters. The language C is known to be infinitely ambiguous [7]. Let
us propose a new elementary proof of just its inherent ambiguity. Suppose that C is
unambiguous. Then C̃ := C ∩ ba+ba+abbaa+ba+b would be unambiguous, by stability of
unambiguous context-free languages under intersection with a regular language [14]. As

C̃ = {banbambbapbaqb : (n = q ∧m = p) or (n = m ∧ p = q), n, m, p, q ∈ N>0}

is bounded with respect to ⟨b, a, b, a, b, a, b, a, b⟩, we associate the variables x, y, z, t to
the a′s, and ui for i = 1 . . . 5 for the five b’s. The generating series associated to
S′ = {(n, m, p, q) ∈ N4

>0 : (n = q ∧ m = p) or (n = m ∧ p = q)} is S′(x, y, z, t) =
xyzt(1

(1−xt)(1−yz) + 1
(1−xy)(1−zt) −

1
1−xyzt). Then the generating series associated to C̃ is:

S(u1, x, u2, y, u3, z, u4, t, u5) = u1u2u2
3u4u5xyzt −3 x2z2t2y2+2 x2zt2y+2 xz2t2y+2 y2tx2z+2 y2txz2...

(1−xt)(1−yz)(1−xy)(1−zt)(1−xyzt)

where we truncated the numerator due to lack of space. We can verify that the irreducible
4-variables polynomial 1− xyzt does not divide the numerator, which proves that C̃ is
inherently ambiguous. Contradiction. So C in inherently ambiguous. ◀

▶ Remark 16. To check if a polynomial of the form π = 1− xv with v ∈ (N>0)d does not
divide the numerator P , we could also have introduced d− 1 new variables yi, and perform
the substitution x1 ← y−v2

1 , xd ← y
vd−1
d−1 and for 1 < i < d, xi ← y

vi−1
i−1 y

−vi+1
i . After this

substitution, π vanishes, so if after the substitution P is not the null fraction, then it is
not divisible by π. This chained substitution aims specifically at cancelling π, and it is not
difficult to show that if π′ = 1−xv′ vanishes after the substitution, then v′ and v are linearly
dependent over Q. This trick will be used with d = 2 for the second criterion of this article.

FSTTCS 2022

41:12 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

The last language of the previous proposition shows that our criteria can also be useful to
prove the inherent ambiguity of non bounded languages. Here we give an other example. The
language of primitive words P , defined formally by P = {w ∈ Σ∗ | ∀u ∈ Σ∗, w ∈ u∗ ⇒ u = w},
is the set of words that are not the power of a smaller word. This language is challenging,
as it is still an open question to know if it is context-free. In 1994, [28] showed that the
generating series of P is not algebraic, and hence that if it was context-free, then it would be
inherently ambiguous. We propose a new proof of this fact.

▶ Proposition 17 ([28]). The language of primitive words in not an unambiguous context-free
language.

Proof. The language P ∩ a∗ba∗ba∗b = {anbambapb : n ̸= m or m ̸= p} = L′
2 is inherently

ambiguous by Proposition 14. ◀

Related work A special case of Theorem 12 has already been proved by [21], in the case
where each wi is a distinct letter and K = F2, using completely different techniques: the
author focused on GF (2) grammars, a class of context-free grammars for which union is
replaced by symmetric difference, and the concatenation of two languages K and L is replaced
by a special concatenation K ⊙ L which keeps only the words w of K · L which admit an
odd number of decompositions of the form w = wkwℓ with wk ∈ K and wℓ ∈ L. In [21], the
author studies the generating series associated to bounded languages in a∗

1 . . . a∗
d recognized

by a GF (2) grammar, and shows that the irreducible polynomials at their denominator can
only have at most two variables. The author proves with this criterion the inherent ambiguity
of the language {aibjck with i ̸= j or j ̸= k}. At the end of the article, the author mentions
Ginsburg and Ullian’s criteria, saying that it would be possible to use them to prove the
inherent ambiguity of the language L, but explains that the proof would not be simpler.
We showed in this section that the equivalence of Ginsburg and Ullian actually translates
directly into the criterion found by [21], while generalising it to bounded languages on words.

4.3 The interlacing criterion
The three variables criterion of Theorem 12 does not exploit the non interlacing condition of a
stratified set. In particular, it fails on the language L = {anbmapbq | n = p or m = q}, as the
denominator of the series of its semilinear set is (1− ac) (1− bd) (1− a) (1− b) (1− c) (1− d),
which only contains irreducible polynomials of at most two variables. But (1− ac) (1− bd)
presents two irreducible polynomials with interlaced variables, hence it is natural to wonder
if this could be a sign of inherent ambiguity. If so, we need however additional conditions, as
such a pattern can also occur in unambiguous languages, such as in the language {ancn :
n ≥ 0} ∪ {bndn : n ≥ 0} whose associated series is 1

1−ac + 1
1−bd = 2−ac−bd

(1−ac)(1−bd) .
In this section, we establish a second criterion dealing with the interlacing condition

(Theorem 21). We will use several technical lemmas: Lemmas 18 and 19 are classical
algebra lemmas on polynomials, while Lemma 20 studies precisely the shape of irreducible
polynomials dividing the denominators of series associated to stratified linear sets.

▶ Lemma 18 (Irreducibility of 1 − xnym). Let n, m ∈ N. The polynomial 1 − xnym is
irreducible in Q[x, y] if and only if n ∧m = 1.

▶ Lemma 19. Let n, m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and
P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)
and β = m/(n ∧m).

F. Koechlin 41:13

▶ Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let
k ≥ 1, n, m ≥ 1 be three integers such that n ∧m = 1, and i ̸= j be two indices of variables,
and y a fresh new variable. Then:

if (1− xn
i xm

j)k |
∏

p∈P (1− xp), then k = 1;
if (1− xn

i xm
j) ∤

∏
p∈P (1− xp), then

∏
p∈P (1− xp)|xi=ym,xj=y−n ̸= 0, seen as en element

of Q(y)[x], the ring of polynomials over the field Q(y).

The following theorem is our second criterion for proving the inherent ambiguity of
bounded languages using the non-interlacing condition.

▶ Theorem 21 (Interlacing criterion). Let L ⊆ w∗
1 . . . w∗

d a context-free language bounded
with respect to ⟨w⟩. Let us denote by S = f−1

⟨w⟩(L) its semilinear set, and S(x1, . . . , xd) =
P (x1,...,xd)
Q(x1,...,xd) ∈ Q[x1, . . . , xd] its generating series, with P and Q two polynomials, non neces-
sarily coprime. Suppose that:
1. Q is divided by two non-univariate irreducible polynomials D(xj , xℓ) and π(xi, xk) with

interlaced indices j < ℓ and i < k (i.e. i < j < k < ℓ or j < i < ℓ < k);
2. π(xi, xk) is of the form π(xi, xk) = (1− xn

i xm
k), with n, m ≥ 1 and n ∧m = 1 ;

3. finally, D ∤ P |xi=ym,xk=y−n in Q(y)[x], where y is a fresh new variable.
Then L is inherently ambiguous.

Proof. Toward a contradiction, suppose that L is unambiguous. By Theorem 10, S can be
written under the form S =

⊎r
s=1(cs + P ∗

s), where the union is disjoint, the periods Pi are
stratified, and the vectors in each Pi are linearly independent. Its generating series is then:

P (x)
Q(x) = S(x) =

r∑
s=1

xcs∏
p∈Ps

(1− xp)

By hypothesis, P |xi=ym,xk=y−n ≠ 0 (as D always divides 0), so π(xi, xk) does not divide
P , and D does not divide P (otherwise D would divide P |xi=ym,xk=y−n as it is not affected
by the substitution). Hence both π and D are irreducible polynomials of Q, that stay in the
denominator after writing the fraction S(x) under irreducible form. Hence they divide the
least common multiple of every

∏
p∈Ps

(1− xp). Let us write Q = (1− xn
i xm

k)D(xj , xℓ)Q̃(x).
Note that by Lemma 20, no irreducible factor of Q̃(x) that stays after writing P/Q under
irreducible form cancels at xi = ym, xk = y−n. Hence if Q̃(x)|xi=ym,xk=y−n = 0, this means
that an irreducible factor common between Q̃ and P cancels with the substitution, but this
is not possible since P |xi=ym,xk=y−n ̸= 0. So Q̃(x)|xi=ym,xk=y−n ̸= 0.

Let us write I1 the set of indices s such that (1 − xn
i xm

k) |
∏

p∈Ps
(1 − xp), and I2 its

complement. For every s ∈ I1, let us write
∏

p∈Ps
(1−xp) = (1−xn

i xm
k)Rs(x). By Lemma 20,

Rs|xi=ym,xk=y−n ̸= 0, and by the non interlacing condition, no irreducible factor of Rs is a
polynomial in exactly both variables xj , xℓ. Hence, no irreducible factor7 of Rs|xi=ym,xk=y−n

in Q(y)[x] is a polynomial in exactly both variables xj and xℓ.
By multiplying everything by π, we obtain the following equality in Q(x):∑
s∈I1

xcs

Rs(x) + (1− xn
i xm

k)
∑
s∈I2

xcs∏
p∈Ps

(1− xp) = P (x)
D(xj , xℓ)Q̃(x)

.

For every s ∈ I2,
∏

p∈Ps
(1−xp)|xi=ym,xk=y−n ≠ 0 since π ∤

∏
p∈Ps

(1−xp), by Lemma 20.

Consequently, for every s ∈ I2, xcs∏
p∈Ps

(1−xp)

∣∣∣∣
xi=ym,xk=y−n

is a well defined rational fraction

7 As Q(y) is a field, Q(y)[x] is also factorial.

FSTTCS 2022

41:14 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

on x with coefficients in Q(y). Hence, by evaluating at xi = ym, xk = y−n, we obtain the
following equality on Q(y)(x):

∑
s∈I1

xcs |xi=ym,xk=y−n

Rs(x)|xi=ym,xk=y−n

=
P (x)|xi=ym,xk=y−n

D(xj , xℓ)Q̃(x)|xi=ym,xk=y−n

.

As D(xj , xℓ) has exactly two variables xj and xℓ, it is unchanged by the substitution.
Furthermore, it is easy to see that an irreducible polynomial of Q[x] remains irreducible in
Q(y)[x]. As D ∤ P |xi=ym,xk=y−n , D stays an irreducible factor in Q(y)[x] of the denominator
of the fraction

∑
s∈I1

xcs |xi=ym,xk=y−n

Rs|xi=ym,xk=y−n
once put under irreducible form.

However, none of the polynomials Rs|xi=ym,xk=y−n have irreducible factors that depend
on both variables xj , xℓ. We obtain a contradiction when reducing the sum on the same
denominator. So L is inherently ambiguous. ◀

▶ Remark 22. The last condition can be in practice replaced by the weaker condition that
there exists a rational number α ∈ Q>0 \ {1} such that D ∤ P |xi=αm,xk=α−n .
▶ Remark 23. If D is of the form 1−xp

j xq
ℓ , by Remark 16 the last condition can be in practice

replaced by the weaker condition that P |xi=ym,xj=zq,xk=y−n,xℓ=z−p is a non-null fraction,
with y, z two fresh variables.

We now use the interlacing criterion to prove the following proposition:

▶ Proposition 24. The following context-free languages are inherently ambiguous:
1. L1 = {aibjckdℓ : i = k or j = ℓ}
2. L2 = {aibjckdℓ : i ̸= k or j ̸= ℓ}
3. L3 = {aibjckdℓ : i = k or j ̸= ℓ} (and similarly L4 = {aibjckdℓ : i ̸= k or j = ℓ})
4. L′

2 = {aibjckdℓ : 3i ̸= 5k or 2j ̸= 3ℓ}
5. L4 = {aibjckdℓ : i < k or i + j < k + l}

Proof. We illustrate in the proofs several ways of verifying the hypotheses of our criterion.
1. The generating series of the semilinear set is:

1
(1−ac)(1−b)(1−d) + 1

(1−bd)(1−a)(1−c) −
1

(1−ac)(1−bd) = 1−ab−ac−ad−bc−bd−cd+2 abc+2 abd+2 acd+2 bcd−3 abcd
(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)

Then define D(b, d) := 1− bd and π(a, c) := 1− ac, which are both irreducible and their
variables are interlaced. Let P be the numerator 1− ab− ac− ad− bc− bd− cd + 2 abc +
2 abd + 2 acd + 2 bcd− 3 abcd.
As P |a=y,c=1/y = 2 y2bd−4 ybd−y2b−y2d+2 bd+2 yb+2 yd−b−d

y , is of degree 1 in b, it is not
divisible by 1− bd in Q(y)[b, d]. By Theorem 21, L1 is inherently ambiguous.

2. The generating series of the semilinear set is:
1

(1−a)(1−b)(1−c)(1−d) −
1

(1−ac)(1−bd) = abc+abd+acd+bcd−ab−2 ac−ad−bc−2 bd−cd+a+b+c+d
(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)

Still define π := 1− ac, D := 1− bd and P be the numerator. As (1− bd) ∤ P |a=2,c=1/2 =
1
2 (bd− b− d− 1), L2 is inherently ambiguous by Theorem 21 and Remark 22.

3. The generating series of the semilinear set is8:
1

(1−a)(1−b)(1−c)(1−d) −
1

1−bd (1
(1−a)(1−c) −

1
(1−ac)) = 3 abcd−2 abc−abd−2 acd−bcd+ab+ac+ad+bc−bd+cd−a−c+1

(1−a)(1−b)(1−c)(1−d)(1−bd)(1−ac)

Still define π = (1 − ac), D = (1 − bd), and P be the numerator. For y, z two new
variables, let us compute P |a=y,b=z,c=y−1,d=z−1 = y2z2−2 y2z−2 yz2+y2+4 yz+z2−2 y−2 z+1

yz

which is a non null fraction. By Remark 23 and Theorem 21, L3 is inherently ambiguous.

8 Because i = k ∨ j ̸= ℓ is equivalent to ¬(¬(i = k) ∧ j = ℓ)

F. Koechlin 41:15

4. The associated generating series is 1
(1−a)(1−b)(1−c)(1−d) −

1
(1−b3d2)(1−a5c3) , that is:

S(a, b, c, d) = a5b3c3d2−a5c3−b3d2−abcd+abc+abd+acd+bcd−ab−ac−ad−bc−bd−cd+a+b+c+d
(1−a)(1−b)(1−c)(1−d)(1−b3d2)(1−a5c3) .

Define π = (1 − a5c3) and D = (1 − b3d2), which are both irreducible with interlaced
variables. Let P be the numerator. Let us choose α = 2. As (1− b3d2) ∤ P |a=8,c=1/32 =
217
32 (bd− b− d + 1), L′

2 is inherently ambiguous9.
5. With a little more effort, we can check that the generating series associated to L4 is

abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) . Still define D = 1 − bd, π = 1 − ac and P be the
numerator. Let us choose α = 2. As P |a=2,c=1/2 = bd2 − bd− d/2 + 1/2 is not divisible
by D, by Theorem 21 and Remark 22, L4 is inherently ambiguous. ◀

▶ Remark 25. The previous proofs are based on the form of the semilinear set, and also work
for their word-variant, like {aibajbakbaℓb : i ̸= k or j ̸= ℓ}.

4.4 An application to the complement of walks in the quarter plane
We consider the quarter plane N2 immersed in Z2. We represent symbolically every vector of
infinite norm 1 by an arrow symbol: ← represents (−1, 0), ↘ represents (1,−1), etc. The
set of all these symbols S = {←,↙, ↓, ↘,→,↗, ↑,↖} is called the set of small steps of Z2.
A word in S∗ can be represented by a walk in the plane, starting from (0, 0), and following
the vector represented by each letter. It is confined in the quadrant if every point of the
path stays in the quarter plane N2. For Σ ⊆ S, we call WΣ the language of words that
are confined in the quarter plane. The study of such walks is an active domain of research
in combinatorics (see for instance [3, 4, 5, 19, 22, 23]), as they provide a large diversity of
generating series. Most of these walks are however not context-free languages, as there are
two degrees of liberty. However, for every Σ, the language Σ∗ \WΣ of walks on Σ that leave
the quadrant is context-free: a pushdown automaton non deterministically chooses one axis
and accepts the word if the walk leaves this axis. A walk is called singular if Σ is a subset of
one of the following sets10 [22]:

It is easy to see that singular walks are in fact unidimensional: their steps constrain the
walk so that it cannot cross one of the two axes (except at (0, 0)), so that both WΣ and
Σ∗ \WΣ are easily unambiguous context-free [22]. On the contrary, with the two criteria of
this section, we can prove the following proposition:

▶ Proposition 26. The complement of every non-singular walk on the quarter plane is an
inherently ambiguous context-free language.

5 Conclusion

In conclusion, generating series are a beautiful and useful tool to study the question of
inherent ambiguity on context-free languages. It would be interesting to find other criteria
to study the inherent infinite ambiguity of languages that have simple asymptotic behaviour.
Can we detect the infinite ambiguity of L∗, with L = {anbmcp : n = m or n = p} [24,
Satz 4.2.1] using generating series? One lead would be to start by proving the inherent
k-ambiguity of bounded languages, for a given k. For instance, if we can show that Lk is

9 We could also have checked that P |a=y3,b=z2,c=y−5,d=z−3 is not the null fraction.
10 The last set is not called singular nor considered in [22], since walks with such steps leave the quadrant

at the first step.

FSTTCS 2022

41:16 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

inherently f(k)-ambiguous with f(k)→k→∞ ∞ using generating series, then we could prove
that L∗ is inherently infinitely ambiguous. Ginsburg and Ullian’s criteria (see [14, 29]) give
a characterisation of the degree of ambiguity of bounded languages: a bounded context-free
language is recognized by a k-ambiguous grammar if and only if its semilinear set can be
decomposed as a finite union of stratified linear set, each with independent sets of periods,
such that every intersection of l > k of these linear sets is empty. This implies that the
generating series of the semilinear set can be expressed by inclusion-exclusion as a sum of
generating series of linear stratified sets and their Hadamard’s product. It looks challenging to
find a pattern that can only occur in the intersection of k stratified linear sets, or equivalently
in the Hadamard’s product of k of their generating series.

As for inherent ambiguity of bounded languages, finding inherently ambiguous languages
that are not covered by Theorems 12 and 21 would be a nice challenge to improve them. We
hope that having a stronger understanding on their series would help to determinate whether
inherent ambiguity is decidable or not on bounded context-free languages.

References
1 Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients of al-

gebraic functions. Combinatorics, Probability and Computing, 24(1):1–53, 2015. doi:
10.1017/S0963548314000728.

2 Jason P. Bell and Shaoshi Chen. Power series with coefficients from a finite set. J. Comb.
Theory, Ser. A, 151:241–253, 2017. doi:10.1016/j.jcta.2017.05.002.

3 Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech. Hypergeo-
metric expressions for generating functions of walks with small steps in the quarter plane. Eur.
J. Comb., 61:242–275, 2017. doi:10.1016/j.ejc.2016.10.010.

4 Alin Bostan and Manuel Kauers. The complete generating function for Gessel walks is algebraic.
Proc. Amer. Math. Soc., 138(9):3063–3078, 2010. With an Appendix by Mark van Hoeij.
doi:10.1090/S0002-9939-2010-10398-2.

5 Mireille Bousquet-Mélou and Marko Petkovsek. Walks confined in a quadrant are not always
D-finite. Theor. Comput. Sci., 307(2):257–276, 2003. doi:10.1016/S0304-3975(03)00219-6.

6 Noam Chomsky and Marcel-Paul Schützenberger. The Algebraic Theory of Context-Free
Languages, volume 35 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1963.
doi:10.1016/S0049-237X(08)72023-8.

7 JP Crestin. Un langage non ambigu dont le carré est d’ambiguité non bornée. In ICALP,
pages 377–390, 1972.

8 Samuel Eilenberg and Marcel-Paul Schützenberger. Rational sets in commutative monoids. J.
Algebra, 13(2):173–191, 1969. doi:10.1016/0021-8693(69)90070-2.

9 Georges Elencwajg. Necessary and sufficient condition for xn − ym to be irreducible in
[x, y]. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/489703 (version:
2013-09-10). URL: https://math.stackexchange.com/q/489703.

10 Philippe Flajolet. Analytic models and ambiguity of context-free languages. Theor. Comput.
Sci., 49(2):283–309, 1987. doi:10.1016/0304-3975(87)90011-9.

11 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

12 Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc.,
USA, 1966.

13 Seymour Ginsburg and Edwin Spanier. Semigroups, Presburger formulas, and languages. Pac.
J. Math., 16(2):285–296, 1966.

14 Seymour Ginsburg and Joseph Ullian. Ambiguity in context free languages. J. ACM, 13(1):62–
89, 1966. doi:10.1145/321312.321318.

https://doi.org/10.1017/S0963548314000728
https://doi.org/10.1017/S0963548314000728
https://doi.org/10.1016/j.jcta.2017.05.002
https://doi.org/10.1016/j.ejc.2016.10.010
https://doi.org/10.1090/S0002-9939-2010-10398-2
https://doi.org/10.1016/S0304-3975(03)00219-6
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/0021-8693(69)90070-2
https://math.stackexchange.com/q/489703
https://doi.org/10.1016/0304-3975(87)90011-9
https://doi.org/10.1145/321312.321318

F. Koechlin 41:17

15 Sheila Greibach. A note on undecidable properties of formal languages. Mathematical Systems
Theory, 2(1):1–6, 1968. doi:10.1007/BF01691341.

16 Thomas N. Hibbard and Joseph Ullian. The independence of inherent ambiguity from
complementedness among context-free languages. J. ACM, 13(4):588–593, October 1966.
doi:10.1145/321356.321366.

17 Juha Honkala. On parikh slender languages and power series. Journal of Computer and
System Sciences, 52(1):185–190, 1996. doi:10.1006/jcss.1996.0014.

18 Ryuichi Ito. Every semilinear set is a finite union of disjoint linear sets. J. Comput. Syst. Sci.,
3(2):221–231, 1969. doi:10.1016/S0022-0000(69)80014-0.

19 Manuel Kauers and Alin Bostan. Automatic classification of restricted lattice walks. Discrete
Mathematics & Theoretical Computer Science, 2009.

20 Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012.
21 Vladislav Makarov. Bounded languages described by gf(2)-grammars. In Nelma Moreira and

Rogério Reis, editors, Developments in Language Theory – 25th International Conference,
DLT 2021, Porto, Portugal, August 16-20, 2021, Proceedings, volume 12811 of Lecture Notes
in Computer Science, pages 279–290. Springer, 2021. doi:10.1007/978-3-030-81508-0_23.

22 Marni Mishna. Classifying lattice walks restricted to the quarter plane. Journal of Combinat-
orial Theory, Series A, 116(2):460–477, 2009.

23 Marni Mishna and Andrew Rechnitzer. Two non-holonomic lattice walks in the quarter plane.
Theoretical Computer Science, 410(38-40):3616–3630, 2009.

24 Mohamed Naji. Grad der mehrdeutigkeit kontextfreier grammatiken und sprachen. Diplo-
marbeit, Johann Wolfgang Goethe-Universität, 1998.

25 William Ogden. A helpful result for proving inherent ambiguity. Mathematical systems theory,
2(3):191–194, 1968. doi:10.1007/BF01694004.

26 Rohit J Parikh. Language generating devices. Quarterly Progress Report, 60:199–212, 1961.
27 Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. doi:10.1145/

321356.321364.
28 Holger Petersen. The ambiguity of primitive words. In Annual Symposium on Theoretical

Aspects of Computer Science, pages 679–690. Springer, 1994.
29 Arnold L Rosenberg. A note on ambiguity of context-free languages and presentations of

semilinear sets. Journal of the ACM (JACM), 17(1):44–50, 1970.
30 Eliahu Shamir. Some inherently ambiguous context-free languages. Inf. Cont., 18(4):355–363,

1971. doi:10.1016/S0019-9958(71)90455-4.
31 Klaus Wich. Exponential ambiguity of context-free grammars. In Developments In Language

Theory: Foundations, Applications, and Perspectives, pages 125–138. World Scientific, 2000.
32 Klaus Wich. Sublinear ambiguity. In Mogens Nielsen and Branislav Rovan, editors, Mathemat-

ical Foundations of Computer Science 2000, pages 690–698, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

33 Klaus Wich. Ambiguity functions of context-free grammars and languages. PhD thesis,
Universität Stuttgart, 2005.

A Proofs of Section 3

A.1 Proof of Proposition 6
▶ Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,

b1 logk n ≤ ℓn

kn−1 ≤ b2 logk n .

In other words, ℓn = Θ(kn−1 logk(n)).

FSTTCS 2022

https://doi.org/10.1007/BF01691341
https://doi.org/10.1145/321356.321366
https://doi.org/10.1006/jcss.1996.0014
https://doi.org/10.1016/S0022-0000(69)80014-0
https://doi.org/10.1007/978-3-030-81508-0_23
https://doi.org/10.1007/BF01694004
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1016/S0019-9958(71)90455-4

41:18 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Proof. For a given prefix s ∈ Σ∗, we denote ℓs
n the number of words of size n in Lk of the

form s#w, and for r ≥ 1, ℓr
n =

∑
|s|=r−1 ℓs

n denotes the number of words in Lk of the form
s#w, of length n, and such that |s| = r − 1 ≥ 1.

Upper bound. Let us fix a word s, of length r− 1. We recall that ℓs
n counts the number

of words of length n of the form s#w , such that w contains the factor sR. By removing this
last constraint on w, we easily obtain that ℓs

n ≤ kn−r.
Moreover, by partitioning according to the position j in the word w where the factor sR

appears, we also deduce ℓs
n ≤

∑n−2r+1
j=0 kjkn−2r+1−j = (n− 2r + 2)kn−2r+1 ≤ nkn−2r+1.

Hence ℓs
n ≤ min(kn−r, nkn−2r+1) .

Note that min(kn−r, nkn−2r+1) = kn−r if r ≤ logk n + 1. Finally, for all r ≥ 2, ℓr
n =∑

|s|=r−1 ℓs
n ≤ kr−1 min(kn−r, nkn−2r+1), and so we have:

ℓr
n ≤

{
kn−1 if r < logk n + 1

nkn−r if r ≥ logk n + 1
Majoring ℓn by the sum of all ℓr

n, and partitioning according to the position of r with
respect to logk n + 1, we obtain:

ℓn ≤
∑

2≤r<logk n+1
ℓr

n +
∑

r≥logk n

ℓr
n ≤ kn−1(logk n− 1) + nkn

∑
r≥logk n+1

k−r

≤ kn−1(logk n− 1) + nknk− logk n−1 k

k − 1

= kn−1(logk n− 1) + kn−1 k

k − 1 ∼n→∞ kn−1 logk n

So there exists a constant b2 > 0 such that for n large enough, ℓn ≤ b2kn−1 logk n.
Lower bound. We still look at a word of size n of Lk of the form s#w, with s of size

|s| = r − 1. We split w into t consecutive blocks of size r − 1, with t = ⌊n−r
r−1 ⌋. Note that the

last remaining block is of size r1 = (n− r)− (r − 1)t.
We want to lower-bound the number of words of Lk associated with a prefix s of size

r − 1 by looking only at the words w having sR as one of their t blocks. Thus:

ℓs
n ≥ card{w : sR appears in one of the t blocks of w, with |w| = n− r}

= kn−r − card{w : sR does not appear in any of the t blocks of w, with |w| = n− r}

= kn−r − kr1(kr−1 − 1)t = kn−r

(
1−

(
1− 1

kr−1

)t
)

since r1 − (n− r) = −t(r − 1). As this bound depends only on |s| = r, we deduce that

ℓr
n ≥ kn−1

(
1−

(
1− 1

kr−1

)t
)

.

Notice that
(
1− 1

kr−1

)t = exp
(
⌊n−r

r−1 ⌋ ln
(
1− 1

kr−1

))
≤ exp

(
−⌊n−r

r−1 ⌋
1

kr−1

)
.

Fix r such that r ≤ 1 + logk n
2 . Then − 1

kr−1 ≤ − 1√
n

. Besides, for n ≥ 4, n − r ≥ n
2

and n − logk n ≥ n
2 . Hence

⌊
n−r
r−1

⌋
≥ n−r

r−1 − 1 ≥ n
logk n − 1 ≥ n

2 logk n . Consequently for

r ≤ logk n
2 + 1:

1− (1− 1
kr−1)t ≥ (1− exp(−

√
n

2 logk n)) ,

where the right side does not depend on r, and tends to 1 when n→∞. So for n sufficiently
large, we can lower-bound it by 1/2. Thus there exists a rank n0 > 0 independent of r such
that for every n ≥ n0 and r ≤ logk n

2 + 1, we have ℓr
n ≥ 1

2 kn−1.
Hence, for n ≥ n0, ℓn ≥

∑
r−1≤ 1

2 logk n ℓr
n ≥ 1

4 kn−1 logk n. ◀

F. Koechlin 41:19

B Proofs of Section 4

B.1 Proof of Lemma 18
We need the following classical folklore lemma:

▶ Lemma 27. If f ∈ Q[x, y] is homogenous, so is any of its divisors.

Proof. Let us factorize f = gh, with g, h ∈ Q[x, y]. We can decompose g =
∑r

i=s gi and
h =

∑r′

i=s′ hi as a sum of homogenous polynomials where for every i, hi and gi are either zero
or of total degree i. Furthermore, let us suppose that gs, gr, hs′ and hr′ are non zero. Hence
f = (

∑r
i=s gi)(

∑r′

i=s′ hi), and the highest total degree term of f is grhr′ , of total degree
r + r′, and the lowest total degree term is gshs′ , of total degree s + s′. As f is homogenous,
r + r′ = s + s′, and as s ≤ r and s′ ≤ r′, we get that s = r and s′ = r′; this means that g

and h are homogenous. ◀

The following lemma is also folklore, the proof is given for completeness.

▶ Lemma 18 (Irreducibility of 1 − xnym). Let n, m ∈ N. The polynomial 1 − xnym is
irreducible in Q[x, y] if and only if n ∧m = 1.

Proof. If n and m are not coprime, let δ > 1 be a common divisor. Then 1 − xnym =
1− (xn/δym/δ)δ = (1− xn/δym/δ)

∑δ−1
k=1 xkn/δykm/δ is not irreducible.

If n and m are coprime, we adapt the nice proof of [9], by making it a little more
elementary and thus a little less elegant. Let us write f = 1− xnym, and decompose f = gh.

Without loss of generality, g = (a0 + . . . + ar′xryr′) with a0 ̸= 0, ar′ ̸= 0, r′ is the degree
of g in the variable y, and r is the degree in x of the polynomial that is the coefficient of
yr′ . Similarly, h = (a−1

0 + . . . +−a−1
r′ xsys′) with a0 ̸= 0, ar′ ̸= 0, s′ the degree of h in the

variable y, and s the degree in x of the coefficient of ys′ . Then r′ + s′ = m, and we can
suppose without loss of generality that r′ ̸= 0.

The polynomial Y nm −Xnm = Y nmf(Xm, Y −n) = Y nr′
g(Xm, Y −n)Y ns′

h(Xm, Y −n) is
homogenous. As Y nr′

g(Xm, Y −n) and Y ns′
h(Xm, Y −n) are both polynomials in K[X, Y],

they are homogenous by Lemma 27.
Hence a0Y nr′ + . . . + ar′Xmr is homogenous, and mr = nr′. As m and n are coprime,

m divides r′, and as r′ ̸= 0, m ≤ r′, and consequently m = r′ and s′ = 0. So h(x, y) is a
polynomial h̃(x) in x only, but Y ns′

h(Xm, Y −n) = Y ns′
h̃(Xm) is homogenous, so h̃(Xm) is

homogenous too. As a0 ̸= 0, h is a constant. So f is irreducible. ◀

B.2 Proof of Lemma 19
▶ Lemma 19. Let n, m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and
P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)
and β = m/(n ∧m).

Proof. Let us write δ = n ∧m. Then 1− xnym = (1− xn/δym/δ)P (x, y), where P (x, y) =∑δ−1
k=1 xkn/δykm/δ is non zero polynomial whose coefficients are in {0, 1}. By definition of

gcd, (n/δ) ∧ (m/δ) = 1. ◀

B.3 Proof of Lemma 20
▶ Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let
k ≥ 1, n, m ≥ 1 be three integers such that n ∧m = 1, and i ̸= j be two indices of variables,
and y a fresh new variable. Then:

FSTTCS 2022

41:20 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

if (1− xn
i xm

j)k |
∏

p∈P (1− xp), then k = 1;
if (1− xn

i xm
j) ∤

∏
p∈P (1− xp), then

∏
p∈P (1− xp)|xi=ym,xj=y−n ̸= 0, seen as en element

of Q(y)[x], the ring of polynomials over the field Q(y).

Proof. As the period vectors are linearly independent, there exist at most two vectors
p1, p2 ∈ P such that (1− xp1) and (1− xp2) are in Q[xi, xj].

Let us write (1− xp1) = (1− xn1
i xm1

j) = (1− x
n1/d1
i x

m1/d1)
j)P1(xi, xj), with n1, m1 ≥ 1,

P1(xi, xj) which is a non zero polynomial with coefficients in {0, 1}, and d1 = n1 ∧ m1.
In particular, P1(1, 1) ̸= 0. Similarly, let us write (1 − xp2) = (1 − xn2

i xm2
j) = (1 −

x
n2/d2
i x

m2/d2
j)P2(xi, xj) with the same conditions and notations.

As P1(1, 1) can not be zero, P1 is not divisible by any polynomial of the form (1−xp) (and
the same holds for P2). Furthermore, the other factors in the denominator

∏
p∈P (1− xp)

are not divisible by the irreducible polynomials (1− x
n1/d1
i x

m1/d1
j) et (1− x

n2/d2
i x

m2/d2
j), as

they do not depend on simultaneously xi and xj .
Finally, (n1/d1, m1/d1) ̸= (n2/d2, m2/d2), as otherwise we would have d2p1 = d1p2,

implying that p1 and p2 would be linearly dependent.
Hence, every irreducible polynomial of the form (1−xn

i xm
j) with n∧m = 1 has multiplicity

at most 1 in the unique irreducible factorization of
∏

p∈P (1− xp). The first point is
proved. Note that every other irreducible factor depending on both xi and xj are divisors of
polynomials with coefficients in {0, 1}.

The second point comes from the following additional observations:
a non null polynomial with coefficients in {0, 1}, and consequently its divisors, does not
become the null fraction by replacing some of its variables by ym or y−n. Indeed, when
we write the rational fraction after the substitution on irreducible form, the denominator
is a power of y, and the numerator is a sum of polynomials with positive coefficients.
for s /∈ {i, j}, 1−xps

s stays the same after the substitution, while (1−xpi

i)|xi=ym = 1−ympi

is a non null polynomial in y, and (1 − x
pj

j)|xj=y−n = ynpj −1
ynpj is a non null element of

Q(y).
similarly a polynomial of the form (1 − xpt

t xps
s) with pt, ps ≥ 1 and {xt, xs} ̸= {xi, xj}

does not vanish by replacing xi by ym and xj by y−n. For instance, for s /∈ {i, j},
(1− x

pj

j xps
s)|xj=y−n = ynpj −xps

s

ynpj is a non null fraction.
By the previous observations, the only irreducible factors of

∏
p∈P (1−xp) that risk canceling

after the substitution xi = ym, xj = y−n are of the form (1 − xn1
i xm1

j) with n1, n2 ≥ 1,
n1∧n2 = 1 and (n, m) ̸= (n1, n2). Then, the substitution replaces such a polynomial with the
fraction (1−ymn1−nm1) in Q(y), which becomes null if and only if mn1−nm1 = 0, if and only
if n = n1 et m = m1 (as n ∧m = 1 and n1 ∧ n2 = 1). Consequently, no irreducible factor of∏

p∈P (1−xp) becomes zero in Q(y)[x] after the substitution, so
∏

p∈P (1−xp)|xi=ym,xj=y−n

is a product of non-null polynomials in Q(y)[x], hence is non null. ◀

B.4 Computation of the last series of Proposition 24
Let us explain how we computed the series of the semilinear set associated to L4 = {aibjckdℓ :
i < k or i + j < k + l}. Let us notice that i < k or i + j < k + l⇔ ¬(i ≥ k and i + j ≥ k + l).

Hence S(a, b, c, d) = 1
(1−a)(1−b)(1−c)(1−d) −

∑
n≥p and n+m≥p+q anbmcpdq. Let us write

S2(a, b, c, d) =
∑

n≥p and n+m≥p+q

anbmcpdq =
+∞∑
n=0

an
n∑

p=0
cp

+∞∑
m=0

bm

(n−p)+m∑
q=0

dq .

F. Koechlin 41:21

Then

S2(a, b, c, d) = 1
1− d

+∞∑
n=0

an
n∑

p=0
cp

+∞∑
m=0

bm(1− dn−p+m+1)

= 1
(1−b)(1−c)(1−d)

+∞∑
n=0

an(1− cn+1)− d
(1−d)(1−bd)

+∞∑
n=0

(ad)n
n∑

p=0
(c/d)p

= 1
(1−b)(1−c)(1−d) (1

1−a −
c

1−ac)− d
(1−d)(1−c/d) (1

1−ad −
c/d

1−ac)

Hence, we obtain after simplification that S(a, b, c, d) = abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) .

B.5 Extra properties
▶ Lemma 28 (Announced in Remark 16). Let π be polynomial of the form π = 1− xv1

1 . . . xvk

k

with v1, . . . , vd > 0 and vk+1 = . . . = vd = 0 (we can without loss of generality rename
the variables). We introduce k − 1 new variables yi, and perform the substitution x1 ←
y−v2

1 , xd ← y
vk−1
k−1 and for 1 < i < k, xi ← y

vi−1
i−1 y

−vi+1
i . Notice that after this substitution, π

vanishes. Suppose that a polynomial of the form π′ = 1− xv′ vanishes after the substitution.
Then v′ and v are linearly dependent over Q.

Proof. It is easy to see that in the case where π′ has a non null degree in xi for i > k,
then it does not vanish after the substitution. Hence π′ only depends on x1, . . . , xk, and
v′

k+1 = . . . = v′
d = 0. After performing the substitution on xv′ , we hence obtain:

F (y) =
(

1
yv2

1

)v′
1
(

yv1
1

yv3
2

)v′
2

. . .

(
y

vk−2
k−2

yvk

k−1

)v′
k−1 (

y
vk−1
k−1

)v′
k

For π′ to be zero, the valuation of every variable yi must be zero in F . For 1 ≤ i ≤ k − 1,
we notice that the valuation of yi is equal to viv

′
i+1 − vi+1v′

i, hence using a determinant

notation,
∣∣∣∣vi vi+1
v′

i v′
i+1

∣∣∣∣ = 0. This means that for all 1 ≤ i ≤ k − 1, there exists λi such that(
vi

v′
i

)
= λi

(
vi+1
v′

i+1

)
, with λi ̸= 0 since all the vi’s are non null. Hence every vector

(
vi

v′
i

)
is colinear to

(
v1
v′

1

)
, hence the matrix

(
v1 . . . vd

v′
1 . . . v′

d

)
has rank 1: v and v′ are linearly

dependent on Q. ◀

▶ Lemma 29. If D is an irreducible polynomial of Q[x], and y is a fresh new variable, then
D is also an irreducible polynomial of Q(y)[x].

Proof. By contradiction suppose that D = fg, with f, g two non constant polynomials of
Q(y)[x]. Each coefficient of f is a rational fraction of y, of the form p(y)/q(y), for which
both p and q has a finite set of roots in Q – and the same holds for g. Hence we can find a
rational number α ∈ Q that is not among these roots; when evaluating the equality D = fg

at y = α, then D stays the same, and f and g becomes non constant polynomials in Q[x],
contradicting the irreducibility of D. ◀

C Proof sketch of Proposition 26

▶ Proposition 26. The complement of every non-singular walk on the quarter plane is an
inherently ambiguous context-free language.

FSTTCS 2022

41:22 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Proof sketch. For Σ ⊆ P = {←,→, ↑, ↓,↗,↘,↖,↙}, let us denote by LΣ = Σ∗ \ WΣ
the language describing walks with steps in Σ that leave the quarter plane. Notice that if
Σ1 ⊆ Σ2 ⊆ P , as LΣ2 ∩ Σ∗

1 = LΣ1 , if LΣ1 is inherently ambiguous, so is LΣ2 .
Let us denote by σ the letter-morphism representing the axial symmetry of axis y = x

(for instance, σ(→) = ↑, σ(↗) =↗, and σ(↖) =↘). It is easy to see that for Σ ⊆ P and
w ∈ Σ∗, w ∈ LΣ if and only if σ(w) ∈ Lσ(Σ), so that LΣ is inherently ambiguous if and only
if Lσ(Σ) is.

We then enumerate all non-singular sets Σ ⊆ P , keep the minimal ones for inclusion, and
choose arbitrarily one set per symmetry class with respect to σ. Then only nine sets remain
to study:

We can divide those sets in three cases. In this sketched proof, we only detail the first case.

Case Σ = {←, ↓,↗}, Σ = {↖, ↓,↗} and Σ = {→, ↑,←, ↓}

If Σ = , notice that LΣ ∩ ↗∗↓∗←∗= {↗n↓m←p : n < m ∨ n < p}.

If Σ = , notice that LΣ ∩ ↗∗↓∗↖∗= {↗n↓m↖p : n < m ∨ n < p}.

If Σ = , notice that LΣ ∩ (↑→)∗ ↓∗←∗= {(↑→)n ↓m←p : n < m ∨ n < p}.

Let us call S = {(n, m, p) : n < m ∨ n < p}. As n < m ∨ n < p⇔ ¬(n ≥ m ∧ n ≥ p)⇔
¬(n ≥ m ≥ p ∨ n ≥ p > m), we have:

S(a, b, c) = 1
(1−a)(1−b)(1−c) −

1
(1−abc)(1−ab)(1−a) −

ac
(1−abc)(1−ac)(1−a)

= a2b2c2−2 abc−cb+b+c
(1−ac)(1−ab)(1−abc)(1−c)(1−b)

We can check that 1 − abc does not divide the numerator. Hence by Theorem 12, LΣ is
inherently ambiguous for every set Σ of this section.

The remaining two cases are similar: we can associate to Σ = {→, ↑,↙}, Σ = {→,↗,

←,↙} and Σ = {→,↖,↙} the semilinear set S = {(n, m, p) : n < p ∨ m < p}, of
generating series (1−ab)c

(1−c)(1−a)(1−b)(1−abc) ; and to Σ = {↓,→,↖}, Σ = {↘,→,↖} and Σ =
{↘,↗,↖} the semilinear set S = {(n, m, p) : n < m ∨ m < p}, of generating series

a2b2c−abc−ab−bc+b+c
(1−abc)(1−a)(1−ab)(1−b)(1−c) . ◀

Synthesis of Privacy-Preserving Systems
Orna Kupferman #

The Hebrew University of Jerusalem, Israel

Ofer Leshkowitz #

The Hebrew University of Jerusalem, Israel

Abstract
Synthesis is the automated construction of a system from its specification. In many cases, we
want to maintain the privacy of the system and the environment, thus limit the information that
they share with each other or with an observer of the interaction. We introduce a framework for
synthesis that addresses privacy in a simple yet powerful way. Our method is based on specification
formalisms that include an unknown truth value. When the system and the environment interact,
they may keep the truth values of some input and output signals private, which may cause the
satisfaction value of specifications to become unknown. The input to the synthesis problem contains,
in addition to the specification φ, also secrets ψ1, . . . , ψk. During the interaction, the system directs
the environment which input signals should stay private. The system then realizes the specification if
in all interactions, the satisfaction value of the specification φ is true, whereas the satisfaction value
of the secrets ψ1, . . . , ψk is unknown. Thus, the specification is satisfied without the secrets being
revealed. We describe our framework for specifications and secrets in LTL, and extend the framework
also to the multi-valued specification formalism LTL[F], which enables the specification of the quality
of computations. When both the specification and secrets are in LTL[F], one can trade-off the
satisfaction value of the specification with the extent to which the satisfaction values of the secrets
are revealed. We show that the complexity of the problem in all settings is 2EXPTIME-complete,
thus it is not harder than synthesis with no privacy requirements.

2012 ACM Subject Classification Theory of computation; Theory of computation → Automata
over infinite objects

Keywords and phrases Synthesis, Privacy, LTL, Games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.42

1 Introduction

Synthesis is the automated construction of a system from its specification: Given a linear
temporal logic (LTL) formula φ over sets I and O of input and output signals, the goal is
to return an I/O-transducer that realizes φ. At each moment in time, the transducer reads
a truth assignment, generated by the environment, to the signals in I, and it generates a
truth assignment to the signals in O. Thus, with every sequence of inputs, the transducer
associates a sequence of outputs, and it realizes φ if all the computations that are generated
by the interaction satisfy φ. Synthesis enables designers to focus on what the system should
do rather than on how it should do it, and has attracted a lot of research and interest [41, 9].

While synthesized systems are correct, there is no guarantee about their quality. This
is a real obstacle, as designers will give up manual design only after being convinced that
the automatic process replacing it generates systems of comparable quality. An important
quality measure is privacy: we seek systems that allow the underlying components not to
reveal information they prefer to keep private. Unlike quality measures that are based on
prioritizing different on-going behaviors, privacy is a global conceptual requirement, and it is
not clear how to address the challenge of privacy in existing formulations and algorithms of
synthesis. The Computer Science community has adopted the notion of differential privacy
for formalizing when an algorithm maintains privacy. Essentially, an algorithm is differentially

© Orna Kupferman and Ofer Leshkowitz;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 42; pp. 42:1–42:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orna@cs.huji.ac.il
https://orcid.org/0000-0003-4699-6117
mailto:oleshkowitz@gmail.com
https://orcid.org/0000-0001-9225-2325
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

private if by observing its output, we cannot tell if a particular individual’s information is used
in the computation [20, 22]. An orthogonal related challenge is that of obfuscation in system
development, where we aim to develop systems whose internal operation is hidden [5, 27].

We introduce a framework for synthesis that addresses privacy in a simple yet powerful
way. Our method is based on extending the semantics of the specification formalism to
include an unknown truth value, denoted “?”. Let us first explain the framework when applied
to LTL. In our framework, the input and output signals take values from {F, ?, T}, and so
the semantics is defined with respect to an infinite noisy computation κ ∈ ({F, ?, T}I∪O)ω.
The satisfaction value of a formula ψ in κ is T if all the computations obtained by “filling”
the missing information in κ satisfy ψ, is F if all these computations do not satisfy ψ, and is
? otherwise. Allowing the system and the environment to hide the values of some signals
by assigning them ? is a natural way to increase privacy. Indeed, the truth value of these
signals remains private. Adjusting the definition of realizability to require the system to
satisfy the specification in all possible “fillings” of the missing values is also natural. Indeed,
as is the case in other settings with incomplete information, we want the specification to
hold no matter what the hidden values are [30].

An important question in the three-valued approach is how to measure the privacy level
of the system. Clearly, the more signals are hidden, the more privacy is maintained. Still,
an approach that is based on the number or the density of unknown assignments is not
satisfactory, as many values are often not interesting, and we need an approach that captures
the fact that the system and the environment do not reveal information they care not to
reveal. A three-valued semantics for LTL and other temporal logics has already been studied
in formal methods, in settings in which information is lost due to abstraction and other
methods for coping with the state-explosion problem [10, 39, 18]. In all these methods,
an evaluation of a specification to ? is a problem, which one should address by adding
information, for example by refinement or revealing of data. The novelty of our approach is
that we let the system and environment specify in LTL the behaviors they want to keep secret,
and we view an evaluation to ? as a desirable outcome – when it applies to secret behaviors.

More formally, the input to our synthesis problem includes a specification φ and a list of
secrets ψ1, . . . , ψk, both over the set I ∪O of input and output signals. The output of the
synthesis problem is an I/O-transducer with masking. Such a transducer outputs, in each
state, both a three-valued assignment to the signals in O (that is, some output signals may
be assigned ?), and a subset of input signals – these whose truth value should not be revealed
in the current state. If in state s, the transducer asks the environment not to reveal the
truth value of the signals in M ⊆ I, then the transitions from s are independent of the values
of the signals in M . Accordingly, the interaction of a transducer T with an environment
produces an infinite noisy computation in ({F, ?, T}I∪O)ω. The transducer is correct if for all
input sequences wI ∈ ({F, T}I)ω, the interaction of T with an environment that generates
wI result in a noisy computation κ ∈ ({F, ?, T}I∪O)ω such that the satisfaction value of the
specification φ in κ is T, and the satisfaction value of all secrets ψ1, . . . , ψk in κ is ?. In
other words, all the computations of T satisfy φ without revealing the secrets. Note that
while in traditional synthesis, the system only decides what the assignment to the signals in
O is, here the system decides which signals in I ∪ O it masks, and then decides what the
assignment to the unmasked signals in O is. Clearly, the more signals the system masks, the
easier it is for ψ1, . . . , ψk to stay secret, and the harder it is for φ to be satisfied.

Recall that our goal of synthesizing systems that preserve privacy is a component in
our overarching objective to synthesize systems of high quality. In recent years, researchers
have started to address the challenge of synthesis of high-quality systems by extending the

Boolean setting to a multi-valued one, capturing different levels of satisfaction [8, 13, 1, 2].
We consider here the linear temporal logic LTL[F], which extends LTL with an arbitrary set
F of functions over [0, 1]. The satisfaction value of an LTL[F] formula φ is a value in [0, 1],
where the higher the satisfaction value is, the higher is the quality in which φ is satisfied [1].
Using the functions in F , a specifier can prioritize different ways of satisfaction. Classical
decision problems in the Boolean setting become optimization problems in the quantitative
setting. In particular, in the synthesis problem, we seek systems with the highest possible
satisfaction value [1, 2].

Adding privacy to the setting, this highest possible satisfaction value for the specification
φ should be achieved without revealing the satisfaction value of the secrets. We follow the
worst-case approach, where the quality of the synthesized system is the minimal satisfaction
value of φ in some interaction, and the satisfaction value of all the secrets should be kept
unknown in all interactions. We focus on secrets in LTL, but study also secrets in LTL[F],
where we can also trade-off the satisfaction value of φ and the extent to which the satisfaction
value of the secrets is revealed. We show that the complexity of the problem in all settings
is 2EXPTIME-complete for specifications in LTL and LTL[F], thus it is not harder than
synthesis with no privacy requirements.

As an example, consider a system that directs a robot patrolling a warehouse storage.
Typical specifications for the system requires it to direct the robot so that it eventually
reaches the shelves of requested items, it never runs out of energy, etc. Our algorithm
automatically synthesizes a system that not only satisfies the specification, but also decides
which parts of the interaction to hide so that the specification is satisfied without revealing
secrets that would have been revealed by an observer of the full interaction. Such secrets
may be dependencies between customers and shelves visited, locations of battery docking
stations, and other properties of the structure of the warehouse. As a more specific example,
assume there is a set of shelves S = {s1, s2, . . . , sk} such that we want to keep private the
vicinity of shelves in S to docking stations. The input signals, namely these assigned by the
robot, include the signals at_si, for 1 ≤ i ≤ k, indicating the robot is at shelf si, and the
signal charging, indicating the robot is at a docking station. Let at_S =

∨
i∈[k] at_si. Then,

adding a secret F(charging ∧ at_S) requires the system to direct the robot to hide the values
of signals in a way that hides from an observer the truth value of “eventually, the robot is near
both some shelf in S and a docking station”. Similarly, the secret F(charging ∧ at_si) hides
whether shelf si is near a docking station (recall that our framework supports a set of secrets,
in particular a secret for each shelf in S). If we need to keep the whole radius of the charging
docks secret, we can strengthen the secrets to F(Xcharging ∧ (at_S ∨ Xat_S ∨ XXat_S)),
and similarly for the individual shelves. In order to prevent this secret from being evaluated
to T, the system needs to direct the robot to assign ? to at_si not only when it assigns T to
charging, but also in three time units around it, namely one time unit before and after making
charging visible. Alternatively, the system can direct the robot to assign ? to charging. In
addition, since the secret is evaluated to F in computations in which at_si ∧ charging is
always evaluated to F, the system needs to direct the robot to assign ? to at_si and charging
in a way that prevents such an evaluation, for example by assigning them both ? in the
initial state. In general, the choice of the system which signals to hide depends on other
specifications it has to satisfy. If, for example, it is essential for the system to know about
visits to all the shelves in S, then it may direct the robot not to charge near them or to
hide the fact it does so. Otherwise, the system may leave the information about the visits
unknown, and it may also combine the two solutions – this is exactly what our procedure
does automatically.

One technical challenge of our algorithms is the need to combine automata for the
specification with automata for the secrets. For the specification φ, the quantification
of the hidden information is universal – we want all computations obtained by filling
the hidden information to satisfy φ. For a secret ψi, the quantification of the hidden
information is existential – we want witnesses that different fillings lead to different satisfaction
values of ψi. The fact we need automata that handle both types of quantification makes
it impossible to proceed with a Safraless synthesis algorithm, which requires universal
automata [31]. We introduce and study a syntax-based three-valued semantics for LTL in
noisy computations, which enables us to construct universal automata for secrets, leading to
a Safraless synthesialgorithm that circumvents determinization and solution of parity games.

Related work. A very basic model of privacy has been studied in the context of synthesis
with incomplete information [35, 30, 14], where the value of a subset of the signals stays
secret throughout the interaction. Synthesis with incomplete information can be viewed as
a special case of our approach here. Indeed, hiding of a signal p can be achieved with the
secrets Fp and F¬p. Moreover, our framework supports hiding of designated signals in parts
(rather than all) of the interaction.

Lifting differential privacy to formal methods, researchers have introduced the temporal
logic HyperLTL, which extends LTL with explicit trace quantification [17]. In particular,
such a quantification can relate computations that differ only in non-observable elements, and
can be used for specifying that computations with the same observable input have the same
observable output. The synthesis problem of HyperLTL is undecidable, yet is decidable for
the fragment with a single existential quantifier, which can specify interesting properties [24].
Our approach here is different, as it enables the specification of arbitrary secrets, and can be
implemented on top of LTL synthesis tools.

As for obfuscation, while it is mainly studied in the context of software, where it has
exciting connections with cryptography [5, 27], researchers have also studied the synthesis
of obfuscation policies for temporal specifications [21, 43], which is closer to our approach
here. In [43], an obfuscation mechanism is based on edit functions that alter the output of
the system, aiming to make it impossible for an observer to distinguish between secret and
non-secret behaviors. In [21], the goal is to synthesize a control function that directs the
user which actions to disable, so that the observed sequence of actions would not disclose a
secret behavior. Our work, on the other hand, addresses the general synthesis problem and
thus handles specifications and secrets that are on-going infinite behaviors given by LTL and
LTL[F] specifications. In particular, while our transducers can mask information, they do
not have an option to edit the interaction or disable actions of the environment.

2 Preliminaries

2.1 Automata
For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of infinite words.

An automaton over infinite words is A = ⟨Σ, Q, q0, δ, α⟩, where Σ is an alphabet, Q is a
finite set of states, q0 ∈ Q is an initial state, δ : Q× Σ→ 2Q is a transition function, and α

is an acceptance condition, to be defined below. For states q, s ∈ Q and a letter σ ∈ Σ, we
say that s is a σ-successor of q if s ∈ δ(q, σ). We consider automata with a total transition
function. That is, for every state q ∈ Q and letter σ ∈ Σ, we have that |δ(q, σ)| ≥ 1. If
|δ(q, σ)| = 1 for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

A run of A on w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence of states r = r0, r1, r2, . . . ∈ Qω,
such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). The acceptance condition
α determines which runs are “good”. We consider here the Büchi, co-Büchi, generalized
Büchi, generalized co-Büchi, and parity acceptance conditions. All conditions refer to the
set inf (r) ⊆ Q of states that r traverses infinitely often. Formally, inf (r) = {q ∈ Q : q =
ri for infinitely many i’s}. In generalized Büchi and co-Büchi automata, the acceptance
condition is of the form α = {α1, α2, . . . , αk}, for sets αi ⊆ Q. In a generalized Büchi
automaton, a run r is accepting if for all 1 ≤ i ≤ k, we have that inf (r) ∩ αi ̸= ∅. Thus, r
visits each of the sets in α infinitely often. Dually, in a generalized co-Büchi automaton, a
run r is accepting if there exists 1 ≤ i ≤ k such that inf (r) ∩ αi = ∅. Thus, r visits at least
one of the sets in α only finitely often. Büchi and co-Büchi automata are special cases, with
k = 1, of their generalized forms. Finally, in a parity automaton α : Q → {1, ..., k} maps
states to ranks, and a run r is accepting if the maximal rank of a state in inf (r) is even.
Formally, maxq∈inf (r){α(q)} is even. A run that is not accepting is rejecting. We refer to the
number k in α (that is, the number of sets in the generalized conditions and the number of
ranks in parity conditions) as the index of the automaton.

Note that as A may not be deterministic, it may have several runs on a word. We
distinguish between two branching modes. If A is a nondeterministic automaton, then a word
w is accepted by A if there is an accepting run of A on w. If A is a universal automaton,
then a word w is accepted by A if all the runs of A on w are accepting. The language of
A, denoted L(A), is the set of words that A accepts. Two automata are equivalent if their
languages are equivalent.

We denote the different classes of automata by three-letter acronyms in {D,N,U} ×
{B,C,GB,GC,P} × {W,T}. The first letter stands for the branching mode of the automaton
(deterministic, nondeterministic, or universal); the second for the acceptance condition type
(Büchi, co-Büchi, generalized Büchi, generalized co-Büchi, or parity); and the third indicates
we consider automata on words or trees (in Appendix A, we define tree automata). For
example, NBWs are nondeterministic Büchi word automata.

2.2 Parity games

A parity game is G = ⟨V,E, v0, α⟩ is played between two players Sys and Env. The set V
of positions is partitioned into two disjoint sets V = VEnv ∪ VSys, controlled by Sys and
Env. Then, E ⊆ (VSys × VEnv) ∪ (VEnv × VSys) is a transition relation, which we assume to
alternate between VsSys and Vsenv, v0 ∈ V is an initial position, and α : V → {1, . . . , k} is
a parity winning condition.

A strategy fSys : V ∗ ·VSys → VEnv for Sys maps a finite path in G that ends in a position
u ∈ VSys to a next position v ∈ VEnv such that (u, v) ∈ E, and similarly for a strategy
fEnv : V ∗ · VEnv → VSys for Env. When the two players play according to their strategies
fSys and fEnv, the outcome of the game, denoted outcome(fSys, fEnv), is the unique infinite
path ρ = v0, u0, v1, u1, . . . ∈ (VSys · VEnv)ω, where v0 ∈ VSys is the initial position, and for all
j ≥ 0, we have that uj = fSys(v0, u0, . . . , vj) and vj = fEnv(v0, u0, . . . , vj−1, uj−1).

A strategy fSys of Sys is winning if for every strategy fEnv for Env from v0, we have
that outcome(fSys, fEnv) satisfies the winning condition α. We say that Sys wins G, if it has
a winning strategy.

2.3 The temporal logic LTL[F]
The logic LTL[F] is a multi-valued logic that extends the linear temporal logic LTL with
an arbitrary set of functions F ⊆ {f : [0, 1]k → [0, 1] : k ∈ N} called quality operators. For
example, F may contain the maximum or minimum between the satisfaction values of
subformulas, their product, and their average. This enables the specifier to refine the Boolean
correctness notion and associate different possible ways of satisfaction with different truth
values [1].

Let AP be a finite set of Boolean atomic propositions. The syntax of LTL[F] is given
by the following grammar, where the symbol T stands for True, p ranges over a set AP of
atomic propositions, φ1, φ2, . . . , φk are LTL[F] formulas and f : [0, 1]k → [0, 1] ∈ F .

φ := T | p | f(φ1, φ2, . . . , φk) | Xφ1 | φ1Uφ2.

The length of φ, denoted |φ|, is the number of nodes in the generating tree of φ. Note
that |φ| bounds the number of sub-formulas of φ. The semantics of LTL[F] is defined with
respect to computations over AP . Let the calligraphic digit 2 denote the set {F, T}, where F
stands for False and T stands for True. Given a computation π = π0, π1, . . . ∈ (2AP)ω and
a position j ≥ 0, we use πj to denote the suffix πj , πj+1, . . . ∈ (2AP)ω of π. The semantics
maps a computation π ∈ (2AP)ω and an LTL[F] formula φ to the satisfaction value of φ in
π, denoted [[π, φ]]. The satisfaction value is in [0, 1], and is defined inductively as follows.

[[π, T]] = 1.
[[π, p]] = 1 if p ∈ π0 and [[π, p]] = 0 if p ̸∈ π0.
[[π, f(φ1, φ2, . . . , φk)]] = f([[π, φ1]], [[π, φ2]], . . . , [[π, φk]]).
[[π,Xφ1]] = [[π1, φ1]].
[[π, φ1Uφ2]] = maxi≥0 {min([[πi, φ2]],min0≤j<i[[πj , φ1]])}.

The logic LTL coincides with the logic LTL[F] for F = {¬,∨,∧}, which corresponds to the
usual Boolean operators. Formally, for x, y ∈ [0, 1], we have ¬x = 1− x, x ∨ y = max {x, y},
and x ∧ y = min {x, y}. To see that LTL indeed coincides with LTL[F], note that for this F ,
all formulas are mapped to {0, 1} in a way that agrees with the semantics of LTL. When φ

is an LTL formula, we say that a computation π satisfies φ, denoted π |= φ, iff [[π, φ]] = 1.
The novelty of LTL[F] is the ability to manipulate values by arbitrary functions. For

example, F may contain the quantitative operator ▽λ, for λ ∈ [0, 1], which tunes down the
quality of a sub-specification. Formally, [[π,▽λφ1]] = λ · [[π, φ1]]. Another useful operator
is the weighted-average function ⊕λ that is defined, for λ ∈ [0, 1], by [[π, φ1 ⊕λ φ2]] =
λ · [[π, φ1]] + (1−λ) · [[π, φ2]]. Consider, for example, the robot at the warehouse example from
Section 1. Suppose shelf s1 is at the east of the warehouse and we prefer the robot to be as
close to the center as possible. Accordingly, we want a specification that incentivize the system
to direct the robot in s1 to the west, possibly also to the north or south, but less to the east.
This can be done with the LTL[F] specification ψ1 = G(at_s1 → X(W ∨▽ 4

5
(N ∨ S)∨▽ 3

5
E).

Then, the satisfaction value of ψ1 in computations in which the system directs the robot to
go east from s1 (for example, in order to satisfy other specifications), get satisfaction value 3

5 .
Suppose further that the robot sends a signal low whenever its battery falls below some

threshold, in which case the system should direct the robot not to pick up new packages
and to charge its battery in the first docking station it comes across. Ideally, the robot stays
in this docking station for two consecutive time units. This can be stated with the LTL[F]
specification ψ2 = G(low → (¬pickup ∧ ¬station)U(station ∧ (charging ⊕ 2

3
Xcharging))).

When the robot indeed stops at the first docking station and charges for two time units, the

satisfaction value is 2
3 + 1

3 = 1. If it stays there for only one time unit, the satisfaction value
is 2

3 , and if it starts the charging only at the second time unit in the station, the satisfaction
value drops to 2

3 . Note that the satisfaction value of ψ1 and ψ2 may not be 1 not only as a
result of a non-optimal behavior but also as a result of hiding of an optimal behavior. For
example, aiming to hide the secrets discussed in Section 1, the system may direct the robot
to assign ? to charging, reducing the satisfaction value of ψ2.

▶ Theorem 1 ([1]). Let φ be an LTL[F] formula over AP and P ⊆ [0, 1] be a predicate. There
exists an NGBW APφ over the alphabet 2AP such that for every computation π ∈ (2AP)ω, we
have that APφ accepts π iff [[π, φ]] ∈ P . Furthermore, APφ has at most 2O(|φ|) states and index
at most |φ|.

2.4 LTL[F] synthesis
Consider finite disjoint sets I and O of input and output signals, which takes values in
2. For i ∈ 2I and o ∈ 2O, let i ∪ o ∈ 2I∪O be the assignment that agrees with i and o.
An I/O-transducer models an interaction between an environment that generates in each
moment in time an input in 2I and a system that responds with an output in 2O. Formally,
an I/O-transducer is a tuple T = ⟨I,O, S, s0, η, τ⟩ where S is a finite set of states, s0 ∈ S
is an initial state, η : S × 2I → S is a deterministic transition function, and τ : S → 2O is
an output-labeling function. Given a sequence wI = i0, i1, i2, . . . ∈ (2I)ω of input letters,
the run of T on wI is defined to be the sequence of states r(wI) = s0, s1, s2, . . . ∈ Sω that
begins with the initial state s0 and is such that for all j ≥ 0, we have sj+1 = η(sj , ij). We
define the computation of T on wI to be T (wI) = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . ∈ (2I∪O)ω,
where for all j ≥ 0, we have oj = τ(sj). Note that the interaction is initiated by the system:
the j-th output letter is determined by the j-th state, prior of reading the j-th input letter.

Defining the satisfaction value of φ in T , denoted [[T , φ]], the environment is assumed to
be hostile and we care for the minimal satisfaction value of some computation of T . Formally,
[[T , φ]] = min{[[T (wI), φ]] : wI ∈ (2I)ω}. Note that no matter what the input sequence is,
the specification φ is satisfied with value at least [[T , φ]].

The realizability problem for LTL[F] is to determine, given φ and a predicate P ⊆ [0, 1],
whether there exists a transducer T such that [[T , φ]] ∈ P . We then say that T realizes
⟨φ, P ⟩. The synthesis problem is then to generate such a transducer. Of special interest are
predicates P that are upward closed. Thus, P = [v, 1] for some v ∈ [0, 1].

2.5 Satisfaction value in noisy computations
Let the calligraphic digit 3 denote the set {F, T, ?}. We think of 3AP as the set of noisy
assignments to AP , where the truth value of a proposition mapped to ? is “unknown”. For
two noisy assignments σ, σ′ ∈ 3AP , we say that σ′ is more informative than σ, denoted
σ ≤info σ′, if for all p ∈ AP , we have that σ(p) ∈ {σ′(p), ?}. Thus, some assignments
of F and T in σ′ may become ? in σ. A noisy computation over AP is an infinite word
κ = κ0, κ1, . . . ∈ (3AP)ω. We extend the ≤info relation to noisy computations in the expected
way, thus for κ, κ′ ∈ (3AP)ω, we have that κ ≤info κ

′ iff for all i ≥ 0, we have that κi ≤info κ
′
i.

A noisy assignment σ ∈ 3AP induces a set fill(σ) ⊆ 2AP of assignments, obtained by
replacing assignments to ? by assignments to F or T. Formally, an assignment σ′ ∈ 2AP is
in fill(σ) if σ ≤info σ

′. Each noisy computation κ induces a set fill(κ) of computations in
(2AP)ω, where π = π0, π1, . . . is in fill(κ) if for all i ≥ 0, it holds that πi ∈ fill(κi). Note that
κ ≤info π iff π ∈ fill(κ).

For a noisy computation κ ∈ (3AP)ω and an LTL[F] formula φ over AP , we denote by
[[κ, φ]] the set of satisfaction values of φ in computations in fill(κ). Formally,

[[κ, φ]] = {[[π, φ]] : π ∈ (2AP)ω is such that π ∈ fill(κ)}.

For an LTL formula ψ, we say that κ satisfies ψ, denoted κ |= ψ, if π |= ψ for all
computations π in fill(κ). Thus, ψ is satisfied in all the computations obtained by filling κ.
Note that for an LTL formula ψ, we have that [[κ, ψ]] is {0}, {1}, or {0, 1}. For simplicity,
we use T, F, and ? to refer to these cases. In particular, [[κ, ψ]] =? if κ can be filled both to a
computation that satisfies ψ and to a computation that does not satisfy ψ, and in such case
we say that κ hides ψ.

3 Problem Formulation

In this section we define the problem of synthesis with privacy. We first define noisy
I/O-transducers, which are the output of the synthesis algorithm.

3.1 Noisy transducers
A noisy I/O-transducer is T = ⟨I,O, S, s0, η, τ,m⟩, which augments an I/O-transducer by
an input-masking function m : S → 2I . In addition, the transition function assumes a noisy
assignment to the input signals, thus η : S × 3I → S, and the labeling function generates a
noisy assignment to the output signals, thus τ : S → 3O. Intuitively, when the transducer
is in state s, it generates the noisy assignment τ(s) to the output signals and declares that
the values of input signals in m(s) should stay private. Then, the environment generates an
assignment σ ∈ 2I and reveals only the values of signals not in m(s). Thus, the transducer
moves to the successor state s′ = η(s, σ′), where σ′ ∈ 3I is obtained from σ by assigning ? to
the signals in m(s).

Formally, for an input assignment i ∈ 2I and a subset M ∈ 2I of I, let hide(M , i) ∈ 3I

be the noisy input assignment such that for every p ∈ I, if p ∈ M , then hide(M , i)(p) =?,
and if p ̸∈ M , then hide(M , i)(p) = i(p). Given an infinite sequence of assignments
to the input signals wI = i0, i1, i2, . . . ∈ (2I)ω, we define the run of T on wI and the
observable input sequence induced by wI , as the sequences r(wI) = s0, s1, s2, . . . ∈ Sω and
w′
I = i′0, i

′
1, i

′
2, . . . ∈ (3I)ω, respectively, where for all j ≥ 0, we have that i′j = hide(m(sj), ij)

and sj+1 = η(sj , i′i).
For a noisy input assignment i′ ∈ 3I and a noisy output assignment o′ ∈ 3O, we define

i′ ∪ o′ ∈ 3I∪O as the noisy assignment that agrees with i′ and o′. The noisy computation of
T on wI is then Tm(wI) = (i′0 ∪ τ(s0)), (i′1 ∪ τ(s1)), (i′2 ∪ τ(s2)), . . . ∈ (3I∪O)ω.

Note that while each input sequence wI ∈ (2I)ω induces a single noisy computation
in (3I∪O)ω, it induces several computations in (2I∪O)ω. Namely, the set fill(Tm(wI)) of
all computations that are obtained by filling the noisy assignments to the signals that are
unknown in Tm(wI).

3.2 Synthesis with privacy
In synthesis with privacy, we are given a specification φ in LTL[F] and a set of secrets
{ψ1, . . . , ψk} in LTL, and we seek a noisy I/O-transducer that satisfies φ in the highest
specification value while keeping the satisfaction value of ψ1, . . . , ψk unknown. Formally, a
noisy I/O-transducer T realizes ⟨φ, P ⟩ with privacy ψ1, . . . , ψk, for a predicate P ⊆ [0, 1], if
for every input sequence wI ∈ (2I)ω, it holds that [[Tm(wI), φ]] ⊆ P and [[Tm(wI), ψi]] =?,
for all 1 ≤ i ≤ k.

Note that we chose to focus on a setting where the secret ψ is an LTL (rather than LTL[F])
formula. This is because the behaviors we want to keep private are typically qualitative. In
Section 4.1 we describe how our framework can be extended to secrets in LTL[F].

Note also that while the input to our problem contains a single specification, it contains
several secrets. Indeed, while for a set {φ1, . . . , φk} of specifications, a system realizes their
conjunction φ1 ∧ · · · ∧ φk iff it realizes all conjuncts φi, for a set of secrets {ψ1, . . . , ψk}, we
cannot guarantee that the system hides all the secrets in the set by defining a single secret
that is some Boolean combination of ψ1, . . . , ψk. In particular, an unknown truth value for
the conjunction ψ1 ∧ · · · ∧ ψk does not guarantee an unknown truth value for all conjuncts.

▶ Remark 2. Note that our framework hides the truth values of the secrets from an external
observer: rather than observing computations in (2I∪O)ω, it observes noisy computations
in (3I∪O)ω. If we want to assure the environment that the secrets are hidden also from the
system, then we can change the framework so that the labeling function of the transducer
generates non-noisy assignments to the output signals, thus τ : S → 2O. Then, the result of
the interaction is a computation in which only the input signals are noisy, and it should still
keep the satisfaction values of the secrets unknown. Dually, if we only care about the privacy
of the system, we can give up the noisy assignment to the input signals, which considerably
simplifies the setting, as it makes the input-masking function unneccesary. ◀

4 Specifying Secrets

A key component of our algorithms is a construction of automata over an alphabet 3AP

that accept noisy computations that hide the satisfaction value of a secret. In this section
we define such automata. We start with secrets in LTL. Recall that a noisy computation
κ ∈ (3AP)ω hides an LTL formula ψ if there are two computations π1, π2 ∈ fill(κ) such that
π1 |= ψ and π2 ̸|= ψ. Note that this implies that an observer of κ indeed does not know
whether the computation that induces κ satisfies ψ. We first define an automaton that
follows the above definition. Essentially, the automaton is obtained by taking the intersection
of two automata, one that accepts a noisy computation κ ∈ (3AP)ω iff 1 ∈ [[κ, ψ]], and one
that accepts κ iff 0 ∈ [[κ, ψ]].

▶ Theorem 3. Let ψ be an LTL formula over AP . There exists an NGBW N ?
ψ over the

alphabet 3AP such that for every noisy computation κ ∈ (3AP)ω, we have that N ?
ψ accepts κ

iff [[κ, ψ]] =?. Also, N ?
ψ has at most 2O(|ψ|) states and index at most |ψ|.

Proof. Let A1
ψ = ⟨2AP , Q,Q0, δ, α⟩ be an NGBW such that for every computation π ∈

(2AP)ω, it holds that A1
ψ accepts π iff π |= ψ. Let N T

ψ = ⟨3AP , Q,Q0, δ
′, α⟩ be the NGBW

obtained from A1
ψ by letting it guess an assignment to atomic propositions whose value is

unknown. Formally, for every state q ∈ Q and letter σ′ ∈ 3AP , we have that δ′(q, σ′) =⋃
{δ(q, σ) : σ ∈ 2AP is such that σ′ ≤info σ}. It is easy to see to see that N T

ψ accepts a noisy
computation κ ∈ (3AP)ω iff 1 ∈ [[κ, ψ]]. In a similar way, one can construct an NGBW N F

ψ

that accepts a noisy computation κ ∈ (3AP)ω iff 0 ∈ [[κ, ψ]]. We can now define the required
NGBW N ?

ψ as the intersection of N T
ψ and N F

ψ. By [42], both N T
ψ and N F

ψ have at most 2O(|ψ|)

states and index at most |ψ|, implying the same bound for N ?
ψ. ◀

A drawback of the construction in Theorem 3 is that the constructed automaton is
nondeterministic, which seems unavoidable. Indeed, it guesses values for the unknown signals
that lead to satisfaction and violation of ψ. The use of a nondeterministic automaton
makes it impossible to proceed with a Safraless synthesis algorithm, which requires universal

automata [31]. In order to address this weakness, we define a syntax-based three-valued
semantics for LTL formulas when interpreted with respect to noisy computations. As we
elaborate in the sequel, the syntax-based semantics coincides with the semantics-based one
only for well-specified secrets, and it enables us to define universal automata for such secrets.

We start by defining the syntax-based three-valued semantics. We consider LTL formulas
with the following syntax.

ψ := T | p | ¬ψ1 | ψ1 ∨ ψ2 | Xψ1 | ψ1Uψ2.

Given a noisy computation κ = κ0, κ1, . . . ∈ (3AP)ω and a position j ≥ 0, we use κj to denote
the suffix κj , κj+1, . . . ∈ (3AP)ω of κ. The three-valued semantics maps a noisy computation
κ ∈ (3AP)ω and an LTL formula ψ to the three-valued satisfaction value of ψ in κ, denoted
⟨⟨κ, ψ⟩⟩, and defined inductively as follows.

⟨⟨κ, T⟩⟩ = T.
⟨⟨κ, p⟩⟩ = κ0(p).
⟨⟨κ,¬ψ1⟩⟩ = ¬⟨⟨κ, ψ1⟩⟩, where ¬T = F, ¬F = T, and ¬? =?.

⟨⟨κ, ψ1 ∨ ψ2⟩⟩ =

 T if ⟨⟨κ, ψ1⟩⟩ = T or ⟨⟨κ, ψ2⟩⟩ = T,
F if ⟨⟨κ, ψ1⟩⟩ = F and ⟨⟨κ, ψ2⟩⟩ = F,
? otherwise.

⟨⟨κ,Xψ1⟩⟩ = ⟨⟨κ1, ψ1⟩⟩.

⟨⟨κ, ψ1Uψ2⟩⟩ =

 T if ∃i ≥ 0.⟨⟨κi, ψ2⟩⟩ = T and ∀0 ≤ j < i, ⟨⟨κj , ψ1⟩⟩ = T,
F if ∀i ≥ 0.⟨⟨κi, ψ2⟩⟩ ̸= F implies ∃0 ≤ j < i, ⟨⟨κj , ψ1⟩⟩ = F.
? otherwise.

As we now show, the classical translation of LTL formulas to NGBWs [42] can be extended
to noisy computations. For an LTL formula ψ, let cl(ψ) denote the set of ψ’s subformulas
and their negation. The state space of our NGBW consists of functions f ∈ 3cl(ψ) that do
not contain propositional inconsistencies. For example, f(ψ1 ∨ ψ2) =? iff f(ψ1) =? and
f(ψ2) ∈ {?, F}, or f(ψ2) =? and f(ψ1) ∈ {?, F}. Then, the transition function corresponds to
temporal requirements, and the acceptance condition makes sure that eventualities are not
propagated forever. As is the case with the construction in [42], each noisy computation κ

has a single accepting run in the NGBW: the run starts from the state f0 that describes the
satisfaction value of all the formulas in cl(ψ) in κ (according to the syntax-based semantics),
continues to the state f1 that describes the satisfaction in the suffix κ1, and so on. Accordingly,
the choice of initial states determines the language of the NGBW. For obtaining an NGBW
for computations κ with ⟨⟨κ, ψ⟩⟩ =?, we define the set of initial states to consists of functions
f for which f(ψ) =?. For obtaining an equivalent UGCW, we dualize the NGBW whose set
of initial state consists of functions f for which f(ψ) ̸=? (see proof in Appendix B.1).

▶ Theorem 4. Let ψ be an LTL formula over AP . There exist an NGBW S?
ψ and a UGCW

U?
ψ over the alphabet 3AP , such that for every noisy computation κ ∈ (3AP)ω, we have that
S?
ψ accepts κ iff U?

ψ accepts κ iff ⟨⟨κ, ψ⟩⟩ =?. Also, S?
ψ and U?

ψ have at most 2O(|ψ|) states
and index at most |ψ|.

The syntax-based semantics may not change the polarity of evaluations, yet it may lead to
a loss of information. Formally, we have the following, which can be proved by an induction
on the structure of the LTL formula.

▶ Lemma 5. For every noisy computation κ and LTL formula ψ, if ⟨⟨κ, ψ⟩⟩ ∈ {F, T}, then
⟨⟨κ, ψ⟩⟩ = [[κ, ψ]]. Possibly, however, ⟨⟨κ, ψ⟩⟩ =? and [[κ, ψ]] ∈ {F, T}.

We say that a secret ψ is well-specified if for all noisy computations κ, we have that
[[κ, ψ]] = ⟨⟨κ, ψ⟩⟩. Thus, the two semantics coincide for ψ. Equivalently, ψ is well-specified
if L(N ?

ψ) = L(S?
ψ). The rationale behind the term “well-specified” is that, intuitively, the

three-valued semantics loses information due to local dependencies that can be simplified.
To see this, let us consider a few examples.

Recall that [[κ, ψ]] = T if π |= ψ for all computations π ∈ fill(κ). Accordingly, for
every noisy computation κ and tautology ψ and, we have that [[κ, ψ]] = T. In particular,
[[κ, p∨¬p]] = T, even for a noisy computation κ with κ0(p) =?. On the other hand, for such a
noisy computation κ, we have that ⟨⟨κ, p ∨ ¬p⟩⟩ =?. This loss of information occurs not only
with tautologies. For example, consider a noisy computation κ with κ0(q) = F and κ0(p) =?.
It is easy to see that [[κ, p ∨ ¬(q ∨ p)]] = T whereas ⟨⟨κ, p ∨ ¬(q ∨ p)⟩⟩ =?. Moreover, the loss
happens not only in the propositional level. Assume that κ above continues with κ1 = κ0
and consider the LTL formula ψ = (p ∧ X¬p)Uq. Note that [[κ, ψ]] = F whereas ⟨⟨κ, ψ⟩⟩ =?.

Now, for the three examples above, we have that p ∨ ¬p = T, p ∨ ¬(q ∨ p) = p ∨ ¬q, and
(p∧ X¬p)Uq = q ∨ (p∧ X(q ∧¬p)), thus, all three formulas can be simplified to formulas that
describe the intention of the designer in a clearer way. As is the case with other forms of
inherent vacuity [26, 33], the fact that a secret is not well-specified is valuable information
for the designer, as it points to redundant complications in the formulation of the secret.
Theorems 3 and 4 are useful also for this task. To see this, consider an LTL formula ψ, and
recall that, by definition, ψ is well-specified iff L(N ?

ψ) = L(S?
ψ). By Lemma 5, it is always

the case that L(N ?
ψ) ⊆ L(S?

ψ). Thus, ψ is well-specified iff L(S?
ψ) ⊆ L(N ?

ψ). Note, however,
that the above only gives us an EXPSPACE upper bound for the problem, and we leave the
exact complexity open (see Section 7).

4.1 Extension to multiple and LTL[F] secrets
The constructions above handle a single secret in LTL. In this section we show how to
extend them to multiple and LTL[F] secrets. We start with multiple secrets. Recall that
a set S = {ψ1, . . . , ψk} of secrets cannot be composed to a single secret. Still, it is easy to
extend the constructions above to such a set. First, in the semantics-based approach, we can
extend Theorem 3 to S by taking an NGBW for the intersection language of the NGBWs
N ?
ψ1
, . . . ,N ?

ψk
described there, hence the following theorem.

▶ Theorem 6. Let S = {ψ1, . . . , ψk} be a set of LTL formulas over AP . There exists an
NGBW N ?

S over the alphabet 3AP such that for every noisy computation κ ∈ (3AP)ω, we
have that N ?

S accepts κ iff [[κ, ψi]] =? for all 1 ≤ i ≤ k. Also, N ?
S has at most 2O(m) states

and index at most m, where m =
∑k
i=1 |ψi|.

Then, in the syntax-based approach, the situation is even simpler, as there we can actually
compose S to a single secret. Indeed, under the syntax-based three valued semantics, for
every noisy computation κ, we have that ⟨⟨κ, ψi ∨ ¬ψi⟩⟩ =? iff ⟨⟨κ, ψi⟩⟩ =?, and otherwise
⟨⟨κ, ψi ∨ ¬ψi⟩⟩ = T. Accordingly, ⟨⟨κ, (ψ1 ∨ ¬ψ1) ∨ · · · ∨ (ψk ∨ ¬ψk)⟩⟩ =? iff ⟨⟨κ, ψi⟩⟩ =? for
all 1 ≤ i ≤ k. Thus, here, the fact ψi ∨ ¬ψi is a tautology and is thus not well-specified is
surprisingly helpful.

We continue to LTL[F] secrets. For two disjoint predicates P1, P2 ⊆ [0, 1], we say that
κ ⟨P1, P2⟩-hides ψ if there are two computations π1, π2 ∈ fill(κ) such that [[π1, ψ]] ∈ P1 and
[[π2, ψ]] ∈ P2. Thus, by observing κ, one cannot tell whether the satisfaction value of a
computation that induces κ is in P1 or P2. Note that the semantics-based definition for LTL
is a special case of the above definition, with P1 = {0} and P2 = {1}. It is not hard to see
that the same construction described in the proof of Theorem 3 can be applied to LTL[F]
formulas, with the automata AP1

ψ and AP2
ψ (see Theorem 1) replacing the automata for ψ

and ¬ψ there. Formally, we have the following.

▶ Theorem 7. Let φ be an LTL[F] formula over AP , and let P1, P2 ⊆ [0, 1] be two predicates.
There exists an NGBW N ?

φ over the alphabet 3AP such that for every noisy computation
κ ∈ (3AP)ω, we have that N ?

φ accepts κ iff κ ⟨P1, P2⟩-hides ψ. Also, N ?
φ has at most 2O(|φ|)

states and index at most |φ|.

Finally, handling a set S of LTL[F] secrets combines Theorems 6 and 7: each secret ψi is
given with predicates P i1, P i2 ⊆ [0, 1], and the NGBW N ?

S is obtained by intersecting these
defined in Theorem 7.

5 Solving Synthesis with Privacy

In this section we describe a solution for the problem of synthesis with privacy. Let φ be an
LTL[F] formula (the specification), P ⊆ [0, 1] a predicate, and ψ an LTL formula (the secret).
Note that, for simplicity, we assume a single LTL secret. As described in Section 4.1, the
extension to multiple and LTL[F] secrets is easy. Consider a noisy computation κ ∈ (3I∪O)ω.
We say that κ is ⟨ψ,φ, P ⟩-good if [[κ, φ]] ⊆ P and [[κ, ψ]] =?. Recall that we seek a noisy
transducer T = ⟨I,O, S, s0, η, τ,m⟩ such that for every input sequence wI ∈ (2I)ω, the noisy
computations Tm(wI) is ⟨ψ,φ, P ⟩-good.

The next Theorem states that is possible to construct a DPW (and, in the case of
well-specified secrets, also a UGCW) that recognizes ⟨ψ,φ, P ⟩-good noisy computations (see
Appendix B.2). Once such a DPW or UGCW is defined, the problem is similar to usual
synthesis, except that the transducer we construct is noisy and has to generate both noisy
assignments to the output signals and input-masking instructions for the input signals.

▶ Theorem 8. Let φ be an LTL[F] formula over AP , P ⊆ [0, 1] a predicate, and ψ an LTL

formula.
1. There exists a DPW DPφ,ψ over the alphabet 3AP that recognizes ⟨ψ,φ, P ⟩-good noisy

computations. The DPW DPφ,ψ has 22O(|φ|+|ψ|) states and index 2O(|φ|+|ψ|).
2. If ψ is well-specified, then there exists a UGCW UPφ,ψ over the alphabet 3AP that recognizes
⟨ψ,φ, P ⟩-good noisy computations. The UGCW UPφ,ψ has 2O(|φ|+|ψ|) states and index at
most |φ|+ |ψ|.

We proceed to define the notion of noisy synthesis, which refers to languages of noisy
computations.

▶ Definition 9. Consider a language L ⊆ (3I∪O)ω. We say that a noisy I/O-transducer
T realizes L if for all wI ∈ (2I)ω, the noisy computation Tm(wI) is in L. The noisy
synthesis problem gets as input an automaton A over the alphabet 3I∪O and returns a noisy
I/O-transducer T that realizes L(A), or decides that no such transducer exists.

The next theorem follows immediately from the definition. Together with the constructions
in Theorem 8, it enables us to reduce synthesis with privacy to noisy synthesis.

▶ Theorem 10. Consider an LTL[F] specification φ, a predicate P ⊆ [0, 1], and an LTL
secret ψ. A noisy I/O-transducer T realizes ⟨φ, P ⟩ with privacy ψ iff T realizes L(DPφ,ψ).
When ψ is well-specified, then T realizes ⟨φ, P ⟩ with privacy ψ iff T realizes L(UPφ,ψ).

Following Theorem 10, it is left to solve noisy synthesis for specifications given by a DPW
or a UGCW. The algorithms are variants of these for traditional synthesis: For DPWs, we
describe a reduction to deciding a parity game. For UGCWs, we describe a Safraless solution
that is based on tree automata. In both solutions, we have to extend the solutions with

mechanisms that let the system choose the masked signals and direct the game or the tree
automaton accordingly. Due to the lack of space, the definitions of tree automata can be
found in Appendix A.

5.1 Solution for a DPW
In this section we describe a solution for the noisy-synthesis problem of a DPW D =
⟨3I∪O, Q, q0, δ, α⟩.

We reduce noisy synthesis of D to the problem of finding a winning strategy in a parity
game GD that models the interaction between the system (player Sys) and the environment
(player Env). At each round, Sys gives Env masking instructions and a noisy output
letter, and then Env responds with a noisy input assignment according to the masking
instructions of Sys. Formally, GD = ⟨V,E, v0, α

′⟩, where V is the set of positions and is
partitioned into two disjoint sets V = VEnv ∪ VSys. The positions in VSys = Q are controlled
by Sys, and the positions in VEnv = Q × 2I × 3O are controlled by Env. The game
starts in position v0 = q0 ∈ VSys, and it alternates between positions of Sys and Env, i.e.,
E ⊆ (VSys × VEnv) ∪ (VEnv × VSys). The exact definition of E is given by the following
description of the possible moves in the game. For every k ≥ 0 the k-th round of the game
begins in a position qk ∈ VSys and proceeds as follows:
1. Sys chooses a noisy output assignment ok ∈ 3O, and a set of input signals Mk ∈ 2I , and

the game moves to the position ⟨qk,Mk, ok⟩ ∈ VEnv.
2. Env chooses an input assignment ik ∈ 2I , which is masked into i′k = hide(Mk , ik), and

the game moves to the position qk+1 = δ(qk, i′k ∪ ok) ∈ VSys.
An outcome of the game then consists of the following components:

a noisy input word w′
I = i′0, i

′
1, i

′
2, . . . ,∈ (3I)ω,

a noisy output word wO = o0, o1, o2, . . . ∈ (3O)ω,
a run r = q0, q1, q2, . . . ∈ Qω of D on w′

I ∪ wO.
Finally, the winning condition α′ is induced by the acceptance condition α of D; thus a
vertex v with Q-component q has α′(v) = α(q).

We can now state the correctness of the reduction (see proof in Appendix B.3).

▶ Proposition 11. The DPW D is realizable by a noisy I/O-transducer iff Sys wins GD.

By Proposition 11, noisy synthesis of a DPW D can be solved in the same complexity
as the problem of deciding a parity game played on D. Hence, by Theorem 8, we have the
following (see proof in Appendix B.4). The lower bound follows from the fact we can reduce
synthesis with privacy requirements to synthesis with no such requirements by adding a
dummy atomic proposition p ∈ I ∪O and a secret that refers to p.

▶ Theorem 12. The problem of LTL[F] synthesis with privacy is 2EXPTIME-complete.

5.2 Solution for a UGCW
In this section we describe a Safraless solution for the noisy-synthesis problem of a UGCW
U = ⟨3I∪O, Q, q0, δ, α⟩.

We translate U into a UGCT U ′ on 2I × 3O-labeled 3I -trees that accept trees induced by
noisy I/O-transducers that realize U . We define U ′ = ⟨3I ,Σ, Q,Q0, δ

′, α⟩, where Σ = 2I×3O,
and δ′ : Q× Σ→ B+(3I ×Q) is such that for every state q ∈ Q and letter ⟨M,o⟩ ∈ Σ, we
have

δ′(q, ⟨M,o⟩) =
∧
i∈2I

∧
q′∈δ(q,hide(M,i)∪o)

⟨hide(M , i), q′⟩

Note that if U ′ is at node v labeled ⟨M,o⟩, and i′ ∈ 3I is a noisy assignment such that
i′−1({T, F}) ̸= M , then U ′ sends no requirements to the subtree that is the i′-successor of
v. On the other hand, for a noisy assignment i′ ∈ (3I) with i′−1({T, F}) = M , there is at
least one copy that is sent to the i′-successor of v. This corresponds to the behavior of a
noisy transducer: from a state s with m(s) = M , the transducer is expected to handle every
possible assignment to M , and when constructing a run, the assignments to signals not in
m(s) are ignored.

Formally, we have the following (see proof in Appendix B.5).

▶ Proposition 13. The UGCW U is realizable by a noisy I/O-transducer iff L(U ′) = ∅.

By Proposition 13, noisy synthesis of a UGCW U can be reduced to the nonemptiness of
a UGCT with the same state space and index. Hence, by [31] and Theorem 8, we have the
following.

▶ Theorem 14. The problem of LTL[F] synthesis can be solved Safralessly in 2EXPTIME
for well-specified secrets.

6 On the Trade-off Between Utility and Privacy

Privacy involves loss of information, which makes it more difficult to realize specifications.
Technically, missing information is quantified universally, and the realizing transducer has
to satisfy the specification for all possible ways to fill it. In this section we discuss ways to
examine and play with the trade off between utility, namely the satisfaction value of the
specification φ, and privacy, namely the extent to which the satisfaction value of the secret
ψ is revealed.

For secrets in LTL, which are Boolean, possible compensations on privacy include
weakening of the secrets. One way to do it is to replace a secret ψ by a pair ⟨θ, ψ⟩, indicating
we care to keep the satisfaction value of ψ unknown only in noisy computations that satisfy θ.
Note that, unlike the case of assumptions on the environment in synthesis [15], this cannot
be achieved by changing the secret to θ → ψ. Indeed, the latter only means that we require
the satisfaction value of θ → ψ to be unknown. Our algorithms can be changed to address a
⟨θ, ψ⟩ secret by replacing the automata constructed in Section 4 by ones that take θ into
account, thus accept a noisy computation κ iff [[κ, θ]] ̸= T or [[κ, ψ]] =?.

For secrets in LTL[F], taking the predicates described in Section 4 to be closed upward,
we can say, given h ∈ (0, 1], that a noisy computation κ h-hides a secret ψ in LTL[F] if
max[[κ, ψ]]−min[[κ, ψ]] ≥ h. Thus, knowing κ, our uncertainty about the satisfaction value of
ψ is at least h. Note that LTL secrets are a special case of the above definition, with h = 1.
Now, in synthesis with LTL[F] secrets, the input includes, in addition to the specification
ψ, a threshold v for it, and a secret ψ, also a threshold h for the secret, and we require the
generated computation to both satisfy φ with value at least v and to h-hide ψ. Our algorithm
can be changed to address the variants of the problem in which either v or h are given,
and the goal is to maximize the other parameter, having the first one as a hard constraint.
In particular, when h is given, we must h-hide φ, and seek a transducer that, under this
constraint, maximizes the satisfaction value of φ. Technically, this amounts to replacing the
DPW D?

ψ by an automaton that accepts noisy computations that h-hides ψ. For the other
case, where we fix v, the solution involves a search for h, which involves polynomially many
executions of our algorithm.

7 Discussion

We introduced a simple yet powerful framework for synthesis of systems that preserve privacy.
In our framework, the system and the environment may hide the values of signals they control,
and they are guaranteed that “secrets” they care about are not going to be revealed. When
one thinks about privacy, the first thing that comes to mind is privacy of data (age, salary,
illnesses, gender, etc.). An underlying assumption of our work is that, in the context of
reactive systems, privacy should concern behaviours. Thus, “secrets” are ω-regular languages,
possibly weighted ones. A nice analogy is the way games are studied in the formal-methods
community: classical game theory studies games with quantitative objectives, based on costs
and rewards, whereas classical games in formal methods have ω-regular objectives, possibly
weighted ones [9].

We introduced the key ideas behind the approach of “behavioral secrets”, namely a use
of a three-valued semantics for the specification formalism. We also described how existing
algorithms for synthesis, in fact even high-quality synthesis, can be extended to handle
privacy. The latter is simple for traditional synthesis algorithms and involved a study of a
syntax-based three-valued semantics for Safraless algorithms.

Beyond the challenge of extending the framework to richer settings of the synthesis
problem (e.g., rational, distributed, infinite-state, or probabilistic systems [4, 25, 32, 38]), we
find the following research directions, which address the basic idea of behavioral secrets, very
interesting.

A stochastic approach. Recall that in the multi-valued setting, we followed the worst-case
approach, thus the quality of the synthesized system is the minimal satisfaction value of
the specification φ in some interaction. In the stochastic approach, we assume a given
distribution on the input sequences, and the quality of the system is the expected satisfaction
value of φ [2]. Extending synthesis with privacy to a stochastic approach, we seek noisy
I/O-transducer that maximizes the expected satisfaction value of φ while hiding ψ with
probability 1. Technically, as the valuation of φ refers to its expected satisfaction value,
whereas hiding of the value of ψ is a hard constraint, the synthesis algorithm has to combine
both types of objectives [3, 11, 6, 7]. The stochastic approach is of special interest when
studying the trade-off between the expected uncertainty of ψ against the expected satisfaction
of φ.

Specifying secrets. In our framework, a behavior ψ in LTL is kept secret if its satisfaction
is unknown. More sophisticated definitions can refer to the probability that ψ is satisfied,
given the revealed information, or, even more sophisticated, to the extent in which the
revealed information changes the probability of ψ to be satisfied. For example, if the secret
is ψ = p ∧ q and we revealed that q holds, we still do not know the satisfaction value of ψ,
yet we did learn that the probability of its satisfaction has increased. A good treatment
of definitions that take probability in mind should address the fact that computations are
sampled from the set of computations that satisfy the specification, which poses interesting
technical challenges.

Multiple view-points. In our framework, revealed information is known to all parties:
the system, the environment, and an observer to the interaction. In some settings, the
environment is composed of several components who are willing to share information with
the system, but not with each other. Also, not all components care about the satisfaction
of all specifications. Such settings can be addressed by extending the framework to handle

multiple-viewpoint assignments to input and output signals. Thus, if the setting involves a
set C of components, values are in {T, F} × 2C , specifying both the value and the subset of
components that see it. Technically, the extension can be handled by using lattice automata
and synthesis algorithms for them [28, 29].

Perturbation of signals. Our framework handles Boolean signals and allows the system
and environment to hide the values of signals they control. In some settings, the Boolean
signals encode richer values, or the setting includes non-Boolean inputs in the first place (e.g.,
augmenting LTL with Presburger arithmetic [19] or register automata with linear arithmetic
over the rationals [16]). In such settings, it makes sense to allow the components not to
entirely hide the value of their variables, but rather to perturb it to an approximated value.
A synthesizing transducer should then perturb the value of the (non-Boolean) secret while
satisfying the specification, possibly up to some perturbation.

Syntax-based three-valued semantic. As discussed in Section 4, our syntax-based three-
valued semantic for LTL does not coincide with the semantics-based one. We described
an EXPSPACE algorithm for deciding whether a given LTL formula is well-specified (that
is, the two semantics coincide for it), and left the tight complexity of the problem open.
Interestingly, the problem has similarities with both the satisfiability problem of ∀LTL, namely
LTL augmented with universally-quantified propositions, which is EXPTIME-complete [40],
and with inherent vacuity, namely deciding whether a given LTL formula ψ has a subformula
θ such that ψ and ∀x.ψ[θ ← x] are equivalent, which is PSPACE-complete [26].

References
1 S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality. Journal

of the ACM, 63(3):24:1–24:56, 2016.
2 S. Almagor and O. Kupferman. High-quality synthesis against stochastic environments. In

Proc. 25th Annual Conf. of the European Association for Computer Science Logic, volume 62
of LIPIcs, pages 28:1–28:17, 2016.

3 S. Almagor, O. Kupferman, and Y. Velner. Minimizing expected cost under hard boolean
constraints, with applications to quantitative synthesis. In Proc. 27th Int. Conf. on Concurrency
Theory, volume 59 of LIPIcs, pages 9:1–9:15, 2016.

4 C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for
probabilistic systems. In Exploring New Frontiers of Theoretical Informatics, IFIP 18th World
Computer Congress, 3rd International Conference on Theoretical Computer Science, volume
155 of IFIP, pages 493–506. Kluwer/Springer, 2004.

5 B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.

6 R. Berthon, S. Guha, and J-F Raskin. Mixing probabilistic and non-probabilistic objectives in
markov decision processes. In Proc. 35th IEEE Symp. on Logic in Computer Science, pages
195–208. ACM, 2020.

7 R. Berthon, M. Randour, and J-F. Raskin. Threshold constraints with guarantees for parity
objectives in markov decision processes. In Proc. 44th Int. Colloq. on Automata, Languages, and
Programming, volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

8 R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. In Proc. 21st Int. Conf. on Computer Aided Verification, volume 5643
of Lecture Notes in Computer Science, pages 140–156. Springer, 2009.

9 R. Bloem, K. Chatterjee, and B. Jobstmann. Graph games and reactive synthesis. In Handbook
of Model Checking., pages 921–962. Springer, 2018.

10 G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal logics.
In Proc. 11th Int. Conf. on Computer Aided Verification, pages 274–287, 1999.

11 V. Bruyère, E. Filiot, M. Randour, and J-F. Raskin. Meet your expectations with guarantees:
Beyond worst-case synthesis in quantitative games. In Proc. 31th Symp. on Theoretical Aspects
of Computer Science, volume 25 of LIPIcs, pages 199–213, 2014.

12 C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in
quasipolynomial time. In Proc. 49th ACM Symp. on Theory of Computing, pages 252–263,
2017.

13 P. Cerný, K. Chatterjee, T.A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In Proc. 23rd Int. Conf. on Computer Aided Verification,
pages 243–259, 2011.

14 K. Chatterjee, L. Doyen, T. A. Henzinger, and J-F. Raskin. Algorithms for ω-regular games
with imperfect information. In Proc. 15th Annual Conf. of the European Association for
Computer Science Logic, volume 4207 of Lecture Notes in Computer Science, pages 287–302,
2006.

15 K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for synthesis. In
Proc. 19th Int. Conf. on Concurrency Theory, volume 5201 of Lecture Notes in Computer
Science, pages 147–161. Springer, 2008.

16 Y-F. Chen, O. Lengál, T. Tan, and Z. Wu. Register automata with linear arithmetic. In Proc.
32nd IEEE Symp. on Logic in Computer Science, pages 1–12, 2017.

17 M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M.N. Rabe, and C. Sánchez.
Temporal logics for hyperproperties. In 3rd International Conference on Principles of Security
and Trust, volume 8414 of Lecture Notes in Computer Science, pages 265–284. Springer, 2014.

18 L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. Inf. Comput.,
208(6):666–676, 2010.

19 S. Demri. Linear-time temporal logics with presburger constraints: an overview. Journal of
Applied Non-Classical Logics, 16(3-4):311–348, 2006.

20 I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of the
22nd ACM Symposium on Principles of Database Systems, pages 202–210. ACM, 2003.

21 J. Dubreil, Ph. Darondeau, and H. Marchand. Supervisory control for opacity. IEEE
Transactions on Automatic Control, 55(5):1089–1100, 2010.

22 C. Dwork, F. McSherry, K. Nissim, and A.D. Smith. Calibrating noise to sensitivity in private
data analysis. J. Priv. Confidentiality, 7(3):17–51, 2016.

23 E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
µ-calculus. In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 267–278, 1986.

24 B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup. Synthesis from hyperproperties.
Acta Informatica, 57(1-2):137–163, 2020.

25 D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture
Notes in Computer Science, pages 190–204. Springer, 2010.

26 D. Fisman, O. Kupferman, S. Seinvald, and M.Y. Vardi. A framework for inherent vacuity. In
4th International Haifa Verification Conference, volume 5394 of Lecture Notes in Computer
Science, pages 7–22. Springer, 2008.

27 S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishab-
ility obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–929,
2016.

28 A. Gurfinkel and M. Chechik. Multi-valued model-checking via classical model-checking. In
Proc. 14th Int. Conf. on Concurrency Theory, pages 263–277. Springer-Verlag, 2003.

29 O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science,
pages 199–213. Springer, 2007.

30 O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in
Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

31 O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

32 M. Z. Kwiatkowska. Model checking and strategy synthesis for stochastic games: From theory
to practice. In Proc. 43th Int. Colloq. on Automata, Languages, and Programming, volume 55
of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

33 S. Maoz and R. Shalom. Inherent vacuity for GR(1) specifications. In Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
99–110. ACM, 2020.

34 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In Proc. 21st IEEE Symp. on Logic in Computer Science, pages 255–264. IEEE
press, 2006.

35 J.H. Reif. The complexity of two-player games of incomplete information. Journal of Computer
and Systems Science, 29:274–301, 1984.

36 S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, 1988.

37 S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of
Science, 1989.

38 S. Schewe. Synthesis of distributed systems. PhD thesis, Saarland University, Saarbrücken,
Germany, 2008.

39 S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-valued
abstraction-refinement. In Proc. 15th Int. Conf. on Computer Aided Verification, volume 2725,
pages 275–287, 2003.

40 A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata
with applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

41 M.Y. Vardi. From verification to synthesis. In VSTTE, page 2, 2008.
42 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-

tation, 115(1):1–37, 1994.
43 Y. Wu, V. Raman, B.C. Rawlings, S. Lafortune, and S.A. Seshia. Synthesis of obfuscation

policies to ensure privacy and utility. Journal of Automated Reasoning, 60(1):107–131, 2018.

A Tree Automata

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗

and c ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty word ε is
the root of T . For every x ∈ T , the nodes x · c, for c ∈ D, are the successors of x. A path π
of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf or there
exists a unique c ∈ D such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair
⟨T, τ⟩ where T is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas T and
F. For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning T
to elements in Y and assigning F to elements in X \ Y makes θ true. An alternating tree
automaton is A = ⟨Σ, D,Q, qin, δ, α⟩, where Σ is the input alphabet, D is a set of directions,
Q is a finite set of states, δ : Q×Σ→ B+(D×Q) is a transition function, qin ∈ Q is an initial
state, and α is an acceptance condition. We consider here the Büchi, co-Büchi, and parity
acceptance conditions. For a state q ∈ Q, we use Aq to denote the automaton obtained from
A by setting the initial state to be q. The size of A, denoted |A|, is the sum of lengths of
formulas that appear in δ.

The alternating automaton A runs on Σ-labeled D-trees. A run of A over a Σ-labeled
D-tree ⟨T, τ⟩ is a (T ×Q)-labeled N-tree ⟨Tr, r⟩. Each node of Tr corresponds to a node of T .
A node in Tr, labeled by (x, q), describes a copy of the automaton that reads the node x of
T and visits the state q. Note that many nodes of Tr can correspond to the same node x of
T . The labels of a node and its successors have to satisfy the transition function. Formally,
⟨Tr, r⟩ satisfies the following:
1. ε ∈ Tr and r(ε) = ⟨ε, qin⟩.
2. Let y ∈ Tr with r(y) = ⟨x, q⟩ and δ(q, τ(x)) = θ. Then there is a (possibly empty)

set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D ×Q, such that S satisfies θ, and for all
0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = ⟨x · ci, qi⟩.

For example, if ⟨T, τ⟩ is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1) ∨ (0, q2)) ∧
((0, q3) ∨ (1, q2)), then, at level 1, the run ⟨Tr, r⟩ includes a node labeled (0, q1) or a node
labeled (0, q2), and includes a node labeled (0, q3) or a node labeled (1, q2). Note that if, for
some y, the transition function δ has the value T, then y need not have successors. Also, δ
can never have the value F in a run.

A run ⟨Tr, r⟩ is accepting if all its infinite paths satisfy the acceptance condition. Given a
run ⟨Tr, r⟩ and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π) if and only
if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. That is, inf(π) contains exactly
all the states that appear infinitely often in π. The acceptance condition for alternating tree
automata are similar to these defined for word automata, except that here, inf(π) has to
satisfy the condition α for all paths π. We denote by L(A) the set of all Σ-labeled trees that
A accepts.

The alternating automaton A is nondeterministic if for all the formulas that appear in
δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 ̸= c2. (i.e., if the transition is
rewritten in disjunctive normal form, there is at most one element of {c}×Q, for each c ∈ D,
in each disjunct). The automaton A is universal if all the formulas that appear in δ are
conjunctions of atoms in D ×Q, and A is deterministic if it is both nondeterministic and
universal. Note that word automata are a special case of tree automata, with |D| = 1.

B Missing Proofs

B.1 Proof of Theorem 4
For an LTL formula ψ, the closure of ψ, denoted cl(ψ), is the set of ψ’s subformulas and
their negation (¬¬ψ is identified with ψ). Formally, cl(ψ) is the smallest set of formulas that
satisfy the following.

ψ ∈ cl(ψ).
If ψ1 ∈ cl(ψ) then ¬ψ1 ∈ cl(ψ).
If ¬ψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
If ψ1 ∨ ψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).
If Xψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
If ψ1Uψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).

Consider the set cl(ψ). We say that a function f ∈ 3cl(ψ) is consistent if f does not have
propositional inconsistency. Thus, f satisfies the following conditions.
1. For every formula ψ1 ∈ cl(ψ), one of the following holds:

f(ψ1) = T and f(¬ψ1) = F,
f(ψ1) = F and f(¬ψ1) = T, or
f(ψ1) =? and f(¬ψ1) =?.

2. For every formula of the form ψ1 ∨ ψ2 ∈ cl(ψ), the following holds.
f(ψ1 ∨ ψ2) = T iff f(ψ1) = T or f(ψ2) = T.
f(ψ1 ∨ ψ2) = F iff f(ψ1) = F and f(ψ2) = F.

Note that it follows that f(ψ1 ∨ ψ2) =? iff f(ψ1) =? and f(ψ2) ∈ {?, F}, or f(ψ2) =? and
f(ψ1) ∈ {?, F}.

Now, we define S?
ψ = ⟨3AP , Q, δ,Q0, α⟩, where

The state space Q ⊆ 3cl(ψ) is the set of all consistent functions.
Let f and f ′ be two states in Q, and let σ ∈ 3AP be a letter. Then, f ′ ∈ δ(f, σ) if the
following hold.

1. For every p ∈ AP , we have that σ(p) = f(p). Thus, σ agrees with f on the atomic
propositions.

2. For all Xψ1 ∈ cl(ψ), we have that f(Xψ1) = f ′(ψ1), and
3. For all ψ1Uψ2 ∈ cl(ψ), we have

f(ψ1Uψ2) = T iff f(ψ2) = T or (f(ψ1) = T and f ′(ψ1Uψ2) = T).
f(ψ1Uψ2) = F iff f(ψ2) = F and (f(ψ1) = F or f ′(ψ1Uψ2) = F).

Note that f(ψ1Uψ2) =? iff one of the following hold:
f(ψ2) =? and (f(ψ1) ̸= T or f ′(ψ1Uψ2) ̸= T).
f(ψ2) = F, and f(ψ1) = T and f ′(ψ1Uψ2) =?.
f(ψ2) = F, and f(ψ1) =? and f ′(ψ1Uψ2) ̸= F.

Q0 ⊆ Q is the set of all states f ∈ Q for which f(ψ) =?.
Every formula ψ1Uψ2 contributes to α the two sets αT

ψ1Uψ2
= {f ∈ Q : f(ψ2) =

T or f(ψ1Uψ2) ̸= T}. and α?
ψ1Uψ2

= {f ∈ Q : f(ψ2) =? or f(ψ1Uψ2) ̸=?}.
Thus, if a run eventually visits only states in which the satisfaction value of ψ1Uψ2 is T,
then it should visit infinitely many states in which the satisfaction value of ψ2 is T, and if
a run eventually visits only states in which the satisfaction value of ψ1Uψ2 is ?, then it
should visit infinitely many states in which the satisfaction value of ψ2 is ?.

Finally, U?
ψ is obtained by dualizing the NGBW S¬?

ψ , which is similar to S?
ψ, except that

Q0 ⊆ Q is the set of all states f ∈ Q for which f(ψ) ̸=?.

B.2 Proof of Theorem 8
Given φ and P , let P̄ be the predicate that complements P , thus P̄ = [0, 1]\P . By Theorem 1,
we can construct an NGBW AP̄φ = ⟨2AP , Q,Q0, δ, α⟩ such that for every computation
π ∈ (2AP)ω, it holds that AP̄φ accepts π iff [[π, φ]] ̸∈ P . Also, AP̄φ has at most 2O(|φ|)

states and index at most |φ|. Let N P̄
φ = ⟨3AP , Q,Q0, δ

′, α⟩ be the NGBW obtained from
AP̄φ by letting it guess an assignment to atomic propositions whose value is unknown.
Formally, for every state q ∈ Q and letter σ′ ∈ 3AP , we have that δ′(q, σ′) =

⋃
{δ(q, σ) :

σ ∈ 2AP is such that σ′ ≤info σ}. It is easy to see that N P̄
φ accepts a noisy computation

κ ∈ (3AP)ω iff [[κ, φ]] ∩ P̄ ≠ ∅. By dualizing N P̄
φ , we get a UGCW UPφ that accepts a noisy

computation κ ∈ (3AP)ω iff [[κ, φ]] ⊆ P .
By Theorem 3, given ψ, we can construct an NGBW N ?

ψ over the alphabet 3AP such
that for every noisy computation κ ∈ (3AP)ω, we have that N ?

ψ accepts κ iff [[κ, ψ]] =?. The
NGBW N ?

ψ has at most 2O(|ψ|) states and index at most |φ|. Also, by Theorem 4, when ψ is
well-specified, we can replace N ?

ψ by a UGCW U?
ψ.

Now, the desired UGCW UPφ,ψ can be obtained by taking the intersection of the UGCWs
UPφ and U?

ψ. Such an intersection does not involve a blow up (intersection of universal
automata is dual to union of nondeterministic automata), and we end up with a UGCW
with 2O(|φ|+|ψ|) states and index at most |φ|+ |ψ|.

In order to obtain the desired DPW DPφ,ψ, we first co-determinize N P̄
φ , and get a DPW

DPφ that accepts a noisy computation κ ∈ (3AP)ω iff [[κ, φ]] ⊆ P . By [36, 34], the DPW DPφ
has 22O(|φ|) states and index 2O(|φ|). Then, we determinize N ?

ψ and get a DPW D?
ψ with at

most 22O(|ψ|) states and index 2O(|ψ|) such that D?
ψ accepts a noisy computation κ ∈ (3AP)ω

iff [[κ, ψ]] = {0, 1}. The DPW DPφ,ψ is then obtained by taking the intersection of DPφ and
D?
ψ. Since intersection of DPWs involve an exponential blow up only in their indices, the

required bounds on the state space and index follows.
In more detail, Parity automata can be translated into Street automata on top of the

same structure and with index of the same order. Thus, we may treat both automata as
Streett automata of size and index of the same order. Then, we take the intersection DSW
which is of size 2kφ+kψ and index kφ + kψ. By [37], a deterministic Streett automaton
with m states and index k can be translated into a deterministic Rabin automaton with
Θ(m2k log k) states and index t = Θ(k). The pairs in the acceptance condition in the Rabin
automaton (⟨Bi, Gi⟩)ti=1 are such that Bi ⊆ Bj for all i ≤ j and all of the Gi are disjoint.
Thus, it is not hard to see that the parity condition that gives Gi priority 2i, and Bi \Bi−1
priority 2i− 1, and all other states priority 2t+ 1, defines an equivalent deterministic parity
automaton, with states and index of the same order as the Rabin automaton. Hence, the
DPW A for the intersection language has 2kφ+kψ2(kφ+kψ) log(kφ+kψ) ≤ 22O(|φ|+|ψ|) states and
index O(kφ + kψ) ≤ 2O(|φ|+|ψ|).

B.3 Proof of Proposition 11
We partition the proposition into two propositions.

▶ Proposition 15. If GD is winning for Sys, then a noisy I/O-transducer T that realizes D
can be constructed on top of D in time O(nk), where n is the number of positions in GD and
k is the index of D.

Proof. Since parity games enjoy memoryless-determinacy, it follows that Sys wins iff it
has a memoryless strategy. Thus assume that Sys wins GD and let fSys : VSys → VEnv be
a winning memoryless strategy for Sys. Note that such a winning memoryless strategy
fSys can be computed in time O(nk) [23] (in fact less, using improved algorithms for parity
games [12]). We define a noisy I/O-transducer T as follows. The set of states of the
transducer T is S = VSys = Q. For a state q ∈ S, let fSys(q) = ⟨q,M, o⟩, we set τ(q) = o

and m(q) = M . Then, for i′ ∈ 3I for which there exists i ∈ 2I with i′ = hide(M , i), we define
the transition function by η(q, i′) = δ(q, i′ ∪ o), and otherwise, if there is no such i ∈ 2I ,
then we define η(q, i′) to be an arbitrary state (Recall that runs of T does not use such
transitions of η). In other words, we let Env play with i ∈ 2I from ⟨q,M, o⟩, and move to
the appropriate i-successor in the game. Notice that for all wI ∈ (2I)ω the computation
Tm(wI) = (i′0∪o0), (i′1∪o1), . . . ∈ (3I∪O)ω is obtained from the input and output components
of the outcome of the game GD when Env plays with wI = i0, i1, i2, . . . ∈ (2I)ω and Sys plays
according to the strategy fSys. Hence, since fSys is winning for the System, it follows that for
all wI ∈ (2I)ω, the run of D over Tm(wI) is accepting. That is, T is a noisy I/O-transducer
that realizes D. ◀

▶ Proposition 16. If D is realizable with a noisy I/O-transducer, then Sys wins GD.

Proof. Assume that T = ⟨I,O,L, S, η, τ,m⟩ is a noisy I/O-transducer that realizes D, we will
construct a winning strategy fSys that uses T as a memory structure. Let W be the set of all
finite paths in GD that start in v0 = q0 ∈ VSys and end in some position vk ∈ VSys that belongs

to Sys. We define the strategy fSys : W ↛ VEnv as a partial function, where fSys is defined
on ⟨q0⟩ ∈ W , and for all ρ = ⟨q0, ⟨q0,M0, o0⟩, q1, . . . , ⟨qk−1,Mk−1, ok−1⟩, qk⟩ ∈ W , if fSys is
defined on ρ, and fSys(ρ) = ⟨qk,Mk, ok⟩, then for all i ∈ 2I , if qk+1 = δ(qk, hide(Mk , i) ∪ ok),
then fSys is also defined on ρ′ = ⟨q0, ⟨q0,M0, o0⟩, . . . , ⟨qk,Mk, ok⟩, qk+1⟩ ∈W . Namely, fSys
is defined on ρ′, which is the extension of ρ when Sys plays with fSys, hence moves to
fSys(ρ) = ⟨qk,Mk, ok⟩, and then Env proceeds to qk+1 = δ(qk, hide(Mk , i) ∪ ok) for some
i ∈ 2I . In order to define fSys we also define two more partial functions fS : W ↛ S

and fI : W ↛ 2I . Intuitively, fI guesses the last input letter played by Env, and fS
simulates the run of T on the word guessed by fI . The functions fS and fI have the
same domain as fSys, with the only exception that fI is not defined on the path ρ =
⟨q0⟩, as Env haven’t yet played, and hence there’s nothing for fI to guess. We define
fS , fI and fSys by induction. First, for ρ = ⟨q0⟩, let fS(ρ) = s0, where s0 ∈ S is the
initial state of T , and let fSys(ρ) = ⟨q0,m(fS(q0)), τ(fS(q0))⟩. Then, assume that fS and
fSys have been defined on ρ = ⟨q0, ⟨q0,M0, o0⟩, q1, . . . , ⟨qk−1,Mk−1, ok−1⟩, qk⟩ ∈ W , and let
fSys(ρ) = ⟨qk,Mk, ok⟩ ∈ VEnv. Consider qk+1 ∈ VSys such that (fSys(ρ), qk+1) ∈ E. I.e.,
qk+1 is a possible move of Env from fSys(ρ) = ⟨qk,Mk, ok⟩. Let ik ∈ 2I be some input
letter such that qk+1 = δ(qk, hide(Mk , ik) ∪ ok). Note that such an input letter ik ∈ 2I

exists since qk+1 is a successor of the Env-position fSys(ρ) = ⟨qk,Mk, ok⟩. Thus for the
extension ρ′ = ⟨q0, ⟨q0,M0, o0⟩, . . . , ⟨qk,Mk, ok⟩, qk+1⟩ ∈ W of ρ, we set fI(ρ′) = ik, and
fS(ρ′) = η(fS(ρ), hide(Mk , ik)) and fSys(ρ′) = ⟨qk+1,m(fS(ρ′)), τ(fS(ρ′))⟩. It is now not hard
to see that any outcome of the game when Sys plays with fSys, is such that the run component
rD is a run of D over the noisy computation Tm(wI), where wI = i0, i1, i2, . . . ∈ (2I) is
obtained by fI . Hence, since T realizes D, it follows that rD is accepting. That is, any
outcome of the game when Sys plays with fSys is winning for Sys, and fSys is a winning
strategy for Sys. ◀

B.4 Proof of Theorem 12
We start with the upper bound. Given an LTL[F] specification φ, a predicate P ⊆ [0, 1],
and an LTL secret ψ, we construct the DPW D = DPφ,ψ as in Theorem 8, and then solve
the game GD. By Theorem 10 and Proposition 11, it follows that ⟨φ, P ⟩ is realizable with
privacy ψ iff Sys wins GD, and that solving GD is done in time O(nk) where n is the number
of positions in GD and k is the index of D. By Theorem 8, the number of states in D is
|Q| = 22O(|φ|+|ψ|) , and the index is of size k = 2O(|φ|+|ψ|), and in particular, the construction
of D is done in 2EXPTIME in the size of the formulas φ and ψ. The number of positions
in GD is |V | ≤ |Q| · 3|I|+|O| = 22O(|φ|+|ψ|) · 3|I|+|O|, and the number of priorities is the same
as in D. We may assume that I ∪ O ⊆ cl(φ) ∪ cl(ψ), hence 3|I|+|O| = 2O(|φ|+|ψ|), and
|V | = 22O(|φ|+|ψ|) . Thus, GD is solved in time,

nk ≤ (22O(|φ|+|ψ|)
)2O(|φ|+|ψ|)

= 22O(|φ|+|ψ|)

That is, GD is solved in 2EXPTIME in the size of φ and ψ.
For the lower bound, it is easy to reduce LTL[F] synthesis with no privacy requirements

to LTL[F] synthesis with such requirements, for example by adding a secret that refers to a
dummy output signal p ̸∈ I ∪O.

B.5 Proof of Proposition 13
We prove that if L(U ′) = ∅ then U is not realizable by a noisy I/O-transducer, and that if
L(U ′) ̸= ∅, then there is a finite witness for the nonemptiness of U ′ that encodes a noisy
transducer that realizes U .

Given a (2I × 3O)-labeled 3I -tree ⟨(3I)∗, f⟩ and an input word wI = i0, i1, i2, . . . ∈ (2I)ω,
we define the sequence of masking instructions M0,M1,M2, . . . ∈ (2I)ω, the sequence of noisy
output assignments o0, o1, o2, . . . ∈ (3O)ω, and the masked input word w′

I = i′0, i
′
1, i

′
2, . . . ∈

(3I)ω that correspond to f and wI as follows. First, ⟨M0, o0⟩ = f(ε). Then, for all
k ≥ 0, we have that i′k = hide(Mk , ik) and ⟨Mk+1, ok+1⟩ = f(i′0, i′1, . . . , i′k). Then, let
κ = (i′0 ∪ o0), (i′1 ∪ o1), . . . ∈ (3)I∪O be the noisy computation that correspond to f and
wI . Observe that f is accepted by U ′ iff for all wI ∈ (2I)ω, the noisy computation κ that
corresponds to f and wI is accepted by U . Thus, f can be thought as a strategy for the
noisy synthesis of U , and f is accepted by U ′ iff it is a winning strategy.

Note that the language of U ′ is not empty iff there is a finite memory strategy f : (3I)∗ →
2I × 3O that is accepted by A′, and the memory structure of f is at most exponential in the
size of A′ [31]. Hence, the specification given by A is realizable by a noisy I/O-transducer
iff the language of A′ is not empty, and a finite memory witness for the non-emptiness of
A′ is a noisy I/O-transducer that realizes A. Deciding whether the language of a UGCT
is empty, and finding a finite memory witness in the case it is not empty is in EXPTIME.
Hence, the synthesis of a noisy transducer that realizes A is reduced to the nonemptiness of
UGCT problem, and we have an EXPTIME upper bound.

A Generic Polynomial Time Approach to
Separation by First-Order Logic Without Quantifier
Alternation
Thomas Place ! Ï

LaBRI, Bordeaux University, France

Marc Zeitoun ! Ï

LaBRI, Bordeaux University, France

Abstract
We look at classes of languages associated to fragments of first-order logic BΣ1, in which quantifier
alternations are disallowed. Each such fragment is fully determined by choosing the set of predicates
on positions that may be used. Equipping first-order logic with the linear ordering and possibly
the successor relation as predicates yields two natural fragments, which were investigated by Simon
and Knast, who proved that these two variants have decidable membership: “does an input regular
language belong to the class ?”. We extend their results in two orthogonal directions.

First, instead of membership, we explore the more general separation problem: decide if two
regular languages can be separated by a language from the class under study.
Second, we use more general inputs: classes G of group languages (i.e., recognized by a DFA in
which each letter induces a permutation of the states) and extensions thereof, written G+.

We rely on a characterization of BΣ1 by the operator BPol: given an input class C, it outputs a
class BPol(C) that corresponds to a variant of BΣ1 equipped with special predicates associated to C.
The classes BPol(G) and BPol(G+) capture many natural variants of BΣ1 which use predicates such
as the linear ordering, the successor, the modular predicates or the alphabetic modular predicates.

We show that separation is decidable for BPol(G) and BPol(G+) when this is the case for G.
This was already known for BPol(G) and for two particular classes of the form BPol(G+). Yet,
the algorithms were indirect and relied on involved frameworks, yielding poor upper complexity
bounds. In contrast, our approach is direct. We work only with elementary concepts (mainly, finite
automata). Our main contribution consists in polynomial time Turing reductions from both BPol(G)-
and BPol(G+)-separation to G-separation. This yields polynomial time algorithms for several key
variants of BΣ1, including those equipped with the linear ordering and possibly the successor and/or
the modular predicates.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Regular languages

Keywords and phrases Automata, Separation, Covering, Concatenation hierarchies, Group languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.43

Related Version Full Version: https://arxiv.org/abs/2210.00946 [25]

Funding Supported by the DeLTA project (ANR-16-CE40-0007).

1 Introduction

An important question in automata theory is to precisely understand the prominent classes
of regular languages of finite words. We are interested in the classes associated to a piece
of syntax (such as regular expressions or logic), whose purpose is to specify the languages
of such classes. In the paper, we formalize the goal of “understanding a given class C” by
looking at a decision problem: C-separation. It takes two regular languages L1, L2 as input
and asks whether there exists K ∈ C such that L1 ⊆ K and K ∩ L2 = ∅. The key idea is
that obtaining an algorithm for C-separation requires a solid understanding of C.

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 43; pp. 43:1–43:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tplace@labri.fr
http://www.labri.fr/perso/tplace
mailto:mz@labri.fr
http://www.labri.fr/perso/zeitoun
https://orcid.org/0000-0003-1791-0628
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.43
https://arxiv.org/abs/2210.00946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We investigate a family of classes associated to a fragment of first-order logic written BΣ1.
The sentences of BΣ1 are Boolean combinations of existential formulas, i.e., whose prenex
normal form has the shape ∃x1∃x2 · · · ∃xkφ, with φ quantifier-free. Several classes are
associated to BΣ1, each determined by the predicates on positions that we allow. In the
literature, standard examples of predicates include the linear order “<” [27], the successor
relation “+1” [9] or modular predicates “MOD” [5]. Thus, a generic approach is desirable.

We tackle languages associated to BΣ1 through the operator C 7→ BPol(C) defined on
classes of languages. It is the composition of the polynomial closure C 7→ Pol(C) and the
Boolean closure C 7→ Bool(C) operators: BPol(C) = Bool(Pol(C)). Recall that the polynomial
closure of a class C consists of all finite unions of languages of the form L0a1L1 · · · anLn,
where n ≥ 0, each ai is a letter and each Li belongs to C. Indeed, many classes associated
to BΣ1 are of the form BPol(C) [34, 20]. In this paper, we look at specific input classes C.

The group languages are those recognized by a finite group, or equivalently by a permuta-
tion automaton [33] (i.e., which is complete, deterministic and co-deterministic). We consider
input classes that are either a class G consisting of group languages, or a well-suited extension
thereof, G+ (roughly, G+ is the least Boolean algebra containing G and the singleton {ε}).
It is known [20] that if G is a class of group languages, then BPol(G) = BΣ1(<,PG) and
BPol(G+) = BΣ1(<, +1,PG). Here, PG is a set of predicates associated to G: each language L

in G gives rise to a predicate PL(x), which selects all positions x in a word w such that the
prefix of w up to position x (excluded) belongs to L. This captures most of the natural
examples. In particular, we get signatures including the aforementioned predicates, such as
{<}, {<, +1}, {<, MOD} and {<, +1, MOD} (we provide some more examples in the paper).

State of the art. Historically, BPol(G) and BPol(G+) were first investigated for particular
input classes. A prominent example is the class of piecewise testable languages [27], i.e., the
class BPol(ST) = BΣ1(<) where ST = {∅, A∗}. It was shown that BPol(ST)-separation is
decidable in [1] using technical algebraic arguments. Simpler polynomial time algorithms were
discovered later [17, 6]. There also exists an involved specialized separation algorithm [36] for
BPol(MOD) = BΣ1(<, MOD), where MOD is the class of modulo languages. Decidability
can be lifted to BPol(ST+) = BΣ1(<, +1) (the languages of dot-depth one [9]) and to
BPol(MOD+) = BΣ1(<, +1, MOD) via transfer results [22, 16]. Unfortunately, this approach
yields an exponential complexity blow-up. Recently, a generic approach was developed for
BPol(G). It is proved in [21] that if G is a class of group languages with mild hypotheses,
BPol(G)-separation is decidable when G-separation is decidable. Yet, this generic approach
is indirect and considers a more general problem: covering. Because of this, the algorithms
and their proofs are complex and rely on an intricate framework [19], yielding poor upper
complexity bounds. This contrasts with the simple polynomial time procedures presented
in [17, 6] for BPol(ST). No generic result of this kind is known for the classes BPol(G+).

Contributions. We give generic polynomial time Turing reductions from BPol(G)- and
BPol(G+)-separation to G-separation, where G is a class of group languages with mild prop-
erties. We present them as greatest fixpoint procedures which use an oracle for G-separation
at each step and run in polynomial time (for input languages represented by nondeterministic
finite automata). While the proofs are involved, they are self-contained and based exclusively
on elementary concepts from automata theory. No particular knowledge on group theory is
required to follow them: we only use the very definition of a group.

For BPol(G), this new approach is a significant improvement on the results of [21]. While
we do reuse some ideas of [21], we complement them with new ones and the presentation is
independent. We get a simpler algorithm, which requires only basic notions from automata

T. Place and M. Zeitoun 43:3

theory. In particular, one direction of the proof describes a generic construction for building
separators in BPol(G) (when they exist). This serves our main objective: understanding
classes of languages. In addition, we obtain much better complexity upper bounds on
BPol(G)-separation. Finally, our techniques can handle BPol(G+) as well. This was not the
case in [21]: the generic reduction from BPol(G+)-separation to G-separation is a new result.

These results apply to several key classes. Separation is decidable in polynomial time
for ST = {∅, A∗}, for the class MOD of modulo languages and for the class GR of all group
languages [26]. Hence, the problem is also decidable in polynomial time for BPol(ST) (i.e.,
BΣ1(<)), BPol(ST+) (i.e., BΣ1(<, +1)), BPol(MOD) (i.e., BΣ1(<, MOD)), BPol(MOD+)
(i.e., BΣ1(<, +1, MOD)), BPol(GR) and BPol(GR+) (the logical characterization of the last
two classes is not standard, yet they are quite prominent as well [11, 8]). This reproves a known
result for BPol(ST) (in fact, we essentially reprove the algorithm of [6]). The polynomial time
upper bounds are new for all other classes. Another application is the class AMT of alphabet
modulo testable languages (which are recognized by commutative groups): BPol(AMT) and
BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD” is
the set of alphabetic modular predicates. We obtain the decidability of separation for these
classes (this is a new result for BPol(AMT+)). However, we do not get a polynomial time
upper bound: this is because AMT-separation is co-NP-complete (see [26]).

Important remark. Eilenberg’s theorem [7] connects some classes of regular languages (the
“varieties of languages”) with varieties of finite monoids. It raised the hope to solve decision
problems on languages (such as membership) by translating them in terms of monoids and
solving the resulting purely algebraic questions – without referring to languages anymore. In
particular, Margolis and Pin [11, 13] characterized the algebraic counterpart of BPol(G) in
Eilenberg’s correspondence (when G is a variety) as the “semidirect product” J ∗ G, where J
is the variety of monoids corresponding to BΣ1(<) and G is the one corresponding to G. The
new purely algebraic question is then: “decide membership of a monoid in J ∗ G”. Tilson [35]
developed an involved framework to reformulate membership in semidirect products in terms
of categories, which was successfully exploited to handle (J ∗ G)-membership [8, 28].

Our results are completely independent from this algebraic approach. To clarify, we do
use combinatorics on monoids. Yet, our motivations and techniques are disconnected from the
theory of varieties of monoids, which is a distinct field. We avoid it by choice: while the above
approach highlights an interesting connection between two fields, it is not necessarily desirable
when looking back at our primary goal, understanding classes of languages. Indeed, a detour
via varieties of monoids would obfuscate the intuition at the language level. Fortunately,
this paper shows that this detour can be bypassed, while getting stronger results. First,
our results are more general: they apply to separation, and not only membership. It is not
clear at all that this can be obtained in the context of monoid varieties, as we rely strongly
on the definition of BPol: we work with languages of the form L0a1L1 · · · anLn, for Li ∈ G.
Second, we can handle BPol(G+), thus capturing the successor relation on the logical side.
As far as we know, the only class of this kind captured by the above framework is BPol(ST+)
(these are the well-known dot-depth one languages [30]). Third, using the algebraic approach
via Eilenberg’s theorem requires varieties of languages as input classes. This, for example,
excludes the class BPol(MOD). This does not mean that this class cannot be handled by
algebraic techniques: this was actually done by Straubing [31, 15], who rebuilt the whole
theory to be able to handle such classes. In contrast, our result applies uniformly to classes
of group languages, including MOD.

FSTTCS 2022

43:4 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

Organization of the paper. We present the objects that we investigate and terminology in
Section 2. We introduce separation and the techniques that we use to handle it in Section 3.
Finally, we present our results for BPol(G)- and BPol(G+)-separation in Section 4. Due to
space limitations, some proofs are only available in the full version of the paper [25].

2 Preliminaries

2.1 Words, regular languages and classes
We fix a finite alphabet A for the paper. As usual, A∗ denotes the set of all finite words
over A, including the empty word ε. We let A+ = A∗ \ {ε}. For u, v ∈ A∗, we let uv be
the word obtained by concatenating u and v. A language is a subset of A∗. We denote
the singleton language {u} by u. We lift concatenation to languages: for K, L ⊆ A∗, we
let KL = {uv | u ∈ K and v ∈ L}. We shall consider marked products: given languages
L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is a product of the form L0a1L1 · · · anLn

where a1, . . . , an ∈ A (note that “L0” is a marked product: this is the case n = 0).

Regular languages. In the paper, we consider regular languages. A nondeterministic finite
automaton (NFA) is a pair A = (Q, δ) where Q is a finite set of states, and δ ⊆ Q×A×Q is a
set of transitions. We now define the languages recognized by A. Given q, r ∈ Q and w ∈ A∗,
we say that there exists a run labeled by w from q to r (in A) if there exist q0, . . . , qn ∈ Q

and a1, . . . , an ∈ A such that w = a1 · · · an, q0 = q, qn = r and (qi−1, ai, qi) ∈ δ for every
1 ≤ i ≤ n. Given two sets I, F ⊆ Q, we write LA(I, F) ⊆ A∗ for the language of all words
w ∈ A∗ such that there exist q ∈ I, r ∈ F , and a run labeled by w from q to r in A. We
say that a language L ⊆ A∗ is recognized by A if and only if there exist I, F ⊆ Q such that
L = LA(I, F). The regular languages are those which can be recognized by an NFA.

We also use NFAs with ε-transitions. In such an NFA A = (Q, δ), a transition may also
be labeled by the empty word “ε” (that is, δ ⊆ Q × (A ∪ {ε}) × Q). We use the standard
semantics: an ε-transition can be taken without consuming an input letter. Note that unless
otherwise specified, the NFAs that we consider are assumed to be without ε-transitions.

Classes. A class of languages is a set of languages. A lattice of languages is a class containing
∅ and A∗ and closed under both union and intersection. Moreover, a Boolean algebra is a
lattice closed under complement. Finally, a class C is quotient-closed when for all L ∈ C and
all v ∈ A∗, the languages v−1L = {w ∈ A∗ | vw ∈ L} and Lv−1 = {w ∈ A∗ | wv ∈ L} both
belong to C as well. A positive prevariety (resp. a prevariety) is a quotient-closed lattice
(resp. a quotient-closed Boolean algebra) containing regular languages only.

Group languages. A monoid is a set M equipped with a multiplication s, t 7→ st, which
is associative and has a neutral element denoted by “1M ”. Observe that A∗ endowed with
concatenation is a monoid (ε is the neutral element). It is well-known that a language L is
regular if and only if it is recognized by a morphism α : A∗ → M into a finite monoid M , i.e.,
there exists F ⊆ M such that L = α−1(F). We now restrict this definition: a monoid G is a
group if every element g ∈ G has an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. A
group language is a language recognized by a morphism into a finite group.

We consider classes G that are group prevarieties (i.e., containing group languages only).
We let GR be the class of all group languages. Another important example is the class
AMT of alphabet modulo testable languages. For every w ∈ A∗ and every a ∈ A, we write
#a(w) ∈ N for the number of occurrences of “a” in w. The class AMT consists in all finite

T. Place and M. Zeitoun 43:5

Boolean combinations of languages {w ∈ A∗ | #a(w) ≡ k mod m} where a ∈ A and k, m ∈ N
are such that k < m. One may verify that these are exactly the languages recognized by
commutative groups. Finally, we consider the class MOD, which consists in all finite Boolean
combinations of languages {w ∈ A∗ | |w| ≡ k mod m} with k, m ∈ N such that k < m.
Finally, we write ST for the trivial class ST = {∅, A∗}. One may verify that GR, AMT,
MOD and ST are all group prevarieties.

One may verify that {ε} and A+ are not group languages. This motivates the next
definition: the well-suited extension of a class C, denoted by C+, consists of all languages of
the form L ∩ A+ or L ∪ {ε} where L ∈ C. The next lemma follows from the definition.

▶ Lemma 1. Let C be a prevariety. Then, C+ is a prevariety containing {ε} and A+.

2.2 Polynomial and Boolean closure
We investigate two operators that one may apply to a class C. The Boolean closure of C,
written Bool(C), is the least Boolean algebra containing C. The polynomial closure of C,
denoted by Pol(C), consists of all finite unions of marked products L0a1L1 · · · anLn where
L0, . . . , Ln ∈ C and a1, . . . , an ∈ A. Finally, we write BPol(C) for Bool(Pol(C)). If C is a
prevariety, then Pol(C) is a positive prevariety and BPol(C) is a prevariety. Proving that
Pol(C) is closed under intersection is not immediate. It was shown by Arfi [2] (see also [14, 20]).

▶ Theorem 2. If C is a prevariety, Pol(C) is a positive prevariety and BPol(C) is a prevariety.

The two operators Pol and Bool induce standard classifications called concatenation
hierarchies: for a prevariety C, the concatenation hierarchy of basis C is built from C by
alternatively applying the operators Pol and Bool. We are interested in BPol(C), which is
level one in the concatenation hierarchy of basis C. We look at bases that are either a group
prevariety G or its well-suited extension G+. Most of the prominent concatenation hierarchies
in the literature use such bases. This is in part motivated by the logical characterization of
concatenation hierarchies, due to Thomas [34]. We briefly recall it for the level one.

Consider a word w = a1 · · · a|w| ∈ A∗. We view w as a linearly ordered set of |w| + 2
positions {0, 1, . . . , |w|, |w|+1} such that each position 1 ≤ i ≤ |w| carries the label ai ∈ A (on
the other hand, 0 and |w|+1 are artificial unlabeled leftmost and rightmost positions). We use
first-order logic to describe properties of words: a sentence can quantify over the positions of
a word and use a predetermined set of predicates to test properties of these positions. We also
allow two constants “min” and “max” interpreted as the artificial unlabeled positions 0 and
|w|+1 in a given word w. A first-order sentence φ defines the language of all words satisfying
the property stated by φ. We use several kinds of predicates. For each a ∈ A, we associate a
unary predicate (also denoted by a), which selects the positions labeled by “a”. We also use
two binary predicates: the (strict) linear order “<” and the successor relation “+1”. Finally,
we associate a set of predicates PG to each group prevariety G. Every L ∈ G yields a unary
predicate PL in PG , which is interpreted as follows. Let w = a1 · · · a|w| ∈ A∗. The unary
predicate PL selects all positions i ∈ {0, . . . , |w| + 1} such that i ̸= 0 and a1 · · · ai−1 ∈ L.

▶ Example 3. The sentence “∃x∃y (x < y)∧a(x)∧b(y)” defines the language A∗aA∗bA∗. The
sentence “∃x∃y a(x) ∧ c(y) ∧ (y + 1 = max)” defines A∗aA∗c. Finally, if L = (AA)∗ ∈ MOD
(the words of even length), the sentence “∃x a(x) ∧ PL(x)” defines the language (AA)∗aA∗.

The fragment of first-order logic containing exactly the Boolean combinations of existential
first-order sentences is denoted by “BΣ1”. Let G be a group prevariety. We write BΣ1(<,PG)
for the class of all languages defined by a sentence of BΣ1 using only the label predicates,

FSTTCS 2022

43:6 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

the linear order “<” and those in PG . Moreover, we write BΣ1(<, +1,PG) for the class of all
languages defined by a sentence of BΣ1, which additionally allows the successor predicate
“+1”. The following proposition follows from the results of [20, 24].

▶ Proposition 4. Let G be a group prevariety. We have BPol(G) = BΣ1(<,PG) and
BPol(G+) = BΣ1(<, +1,PG).

Key examples. The basis ST = {∅, A∗} yields the Straubing-Thérien hierarchy [29, 32]
(hence the notation of this basis). Its level one is the class of piecewise testable languages [27].
Its well-suited extension ST+ induces the dot-depth hierarchy [3]. In particular, BPol(ST) and
BPol(ST+) correspond to BΣ1(<) and BΣ1(<, +1), as all predicates in PST are trivial. The
hierarchies of bases MOD and MOD+ are also prominent (see for example [5, 10, 36]). The
classes BPol(MOD) and BPol(MOD+) correspond to BΣ1(<, MOD) and BΣ1(<, +1, MOD)
where “MOD” is the set of modular predicates (for all r, q ∈ N such that r < q, it contains a
unary predicate Mr,q selecting the positions i such that i ≡ r mod q). Similarly, BPol(AMT)
and BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD”
is the set of alphabetic modular predicates (for all a ∈ A and r, q ∈ N such that r < q, it
contains a unary predicate Ma

r,q selecting the positions i such the that number of positions
j < i with label a is congruent to r modulo q). Finally, the group hierarchy, whose basis is
GR is also prominent [11, 8], though its logical characterization is not standard.

Properties. We present a key ingredient [23, Lemma 3.6]. It describes a concatenation
principle for the classes BPol(C) based on the notion of “cover”. Given a language L, a cover
of L is a finite set K of languages satisfying L ⊆

⋃
K∈K K. If D is a class, a D-cover of L is

a cover K of L such that K ⊆ D.

▶ Proposition 5. Let C be a prevariety, n ∈ N, L0, . . . , Ln ∈ Pol(C) and a1, . . . , an ∈ A. If
Hi is a BPol(C)-cover of Li for all i ≤ n, then there is a BPol(C)-cover K of L0a1L1 · · · anLn

such that for all K ∈ K, there exists Hi ∈ Hi for each i ≤ n satisfying K ⊆ H0a1H1 · · · anHn.

For applying Proposition 5, we need a language L0a1L1 · · · anLn with L0, . . . , Ln ∈ Pol(C).
The next tailored statements build such languages when C = G or G+ for a group prevariety G.
While simple, these results are central: this is the unique place where we use the fact that G
contains only group languages. Let L ⊆ A∗. With every word w = a1 · · · an ∈ A∗, we
associate the language ↑Lw = La1L · · · anL ⊆ A∗ (we let ↑Lε = L). We first present the
statement for the case C = G, which can also be found in [4, Prop. 3.11].

▶ Proposition 6. Let H ⊆ A∗ be a language and L ⊆ A∗ be a group language containing ε.
There exists a cover K of H such that every K ∈ K is of the form K = ↑Lw for some w ∈ H.

The next statement, useful for the case C = G+, is a corollary of Proposition 6. Let
A = (Q, δ) be an NFA. Moreover, let w, z ∈ A∗. We say that z is a left A-loop for w if for
every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that z ∈ LA(q, s) ∩ LA(s, s)
and zw ∈ LA(s, r) (in particular, zz∗zw ⊆ LA(q, r)). Symmetrically, we say that z is a
right A-loop for w if for every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that
wz ∈ LA(q, s) and z ∈ LA(s, s) ∩ LA(s, r) (in particular, wzz∗z ⊆ LA(q, r)).

Now, given an arbitrary word w ∈ A∗, an A-guarded decomposition of w is a tuple
(w1, . . . , wn+1) for some n ∈ N where w1 ∈ A∗ and wi ∈ A+ for 2 ≤ i ≤ n + 1, and such that
w = w1 · · · wn+1 and, if n ≥ 1, then for every i satisfying 1 ≤ i ≤ n, there exists a nonempty
word zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1.

T. Place and M. Zeitoun 43:7

▶ Proposition 7. Let H ⊆ A∗ be a language, A be an NFA and L ⊆ A∗ be a group language
containing ε. There exists a cover K of H such that for each K ∈ K, there exist a word
w ∈ H and an A-guarded decomposition (w1, . . . , wn+1) of w for some n ∈ N such that
K = w1L · · · wnLwn+1 (if n = 0, then K = {w1}).

3 Separation framework

In order to investigate a given class C, we rely on a generic decision problem that one may
associate to it: C-separation. We first define it and then present a variant, “tuple separation”,
that we shall require as a proof ingredient.

3.1 The separation problem
Consider two languages L0, L1 ⊆ A∗. We say that a third language K ⊆ A∗ separates L0
from L1 when L0 ⊆ K and K ∩ L1 = ∅. Then, given an arbitrary class C, we say that L0 is
C-separable from L1 when there exists K ∈ C that separates L0 from L1. For every class C,
the C-separation problem takes two regular languages L0 and L1 as input (in the paper, they
are represented by NFAs) and asks whether L0 is C-separable from L1. We complete the
definition with a useful result, which holds when C is a positive prevariety.

▶ Lemma 8. Let C be a positive prevariety and L0, L1, H0, H1 ⊆ A∗. If L0 is not C-separable
from L1 and H0 is not C-separable from H1 then L0H0 is not C-separable from L1H1.

In the paper, we look at C-separation when C = BPol(G) or BPol(G+) for a group
prevariety G. We prove that in these two cases, there are polynomial time (Turing) reductions
to G-separation. We now introduce terminology that we shall use to present the algorithms.

Framework. Consider a class C and an NFA A = (Q, δ). We associate a set IC [A] ⊆ Q4:
the inseparable C-quadruples associated to A. We define,

IC [A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t)
}

.

The next easy result connects C-separation to this set, for input languages given by NFAs.

▶ Proposition 9. Let C be a lattice. Consider an NFA A = (Q, δ) and four sets of states
I1, F1, I2, F2 ⊆ Q. The two following conditions are equivalent:
1. LA(I1, F1) is C-separable from LA(I2, F2).
2. (I1 × F1 × I2 × F2) ∩ IC [A] = ∅.

Clearly, given as input two regular languages recognized by NFAs, one may compute in
polynomial time a single NFA recognizing both languages. Hence, Proposition 9 yields a
polynomial time reduction from C-separation to the problem of computing IC [A] from an
input NFA. Naturally, this does not necessarily mean that there exists a polynomial time
algorithm for C-separation: depending on C, computing IC [A] may or may not be costly.

We introduce a key definition for manipulating IC [A], for an NFA A = (Q, δ). Let S ⊆ Q4

and K be a finite set of languages. We say that K is separating for S when for every (q, r, s, t) ∈
Q4 and every K ∈ K, if K intersects both LA(q, r) and LA(s, t), then (q, r, s, t) ∈ S. Then,
IC [A] is the smallest set of 4-tuples admitting a C-cover of A∗ which is separating for it.

▶ Lemma 10. Let C be a Boolean algebra and A = (Q, δ) be an NFA. Then the following holds:
There exists a C-cover K of A∗ which is separating for IC [A].
Let S ⊆ Q4. If there exists a C-cover K of A∗ which is separating for S, then IC [A] ⊆ S.

FSTTCS 2022

43:8 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

Controlled separation. We present additional terminology tailored to the classes built from
a group prevariety. Consider two classes C and D (in practice, D will be a group prevariety G
and C will be either BPol(G) or BPol(G+)). Let L0, L1 ⊆ A∗. We say that L0 is C-separable
from L1 under D-control if there exists H ∈ D such that ε ∈ H and L0 ∩ H is C-separable
from L1 ∩ H. Given an NFA A = (Q, δ), we associate a set IC [D, A] ⊆ Q4:

IC [D, A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t) under D-control
}

.

Clearly, we have IC [D, A] ⊆ IC [A]. Let us connect this new definition to the notion of
separating cover presented above. In this case as well, this will be useful in proof arguments.

▶ Lemma 11. Let C and D be Boolean algebras such that D ⊆ C and let A = (Q, δ) be an
NFA. The following properties hold:

There exists L ∈ D with ε ∈ L, and a C-cover K of L which is separating for IC [D, A].
Let S ⊆ Q4. If there exist L ∈ D with ε ∈ L, and a C-cover K of L which is separating
for S, then IC [D, A] ⊆ S.
This notion is only useful if {ε} ̸∈ D. If {ε} ∈ D, then L0 is C-separable from L1 under

D-control if and only if either ε ̸∈ L0 or ε ̸∈ L1. This is why the notion is designed for group
prevarieties: if G is such a class, then {ε} ̸∈ G. In this case, if C ∈ {G, G+}, then the set
IBPol(C)[G, A] carries more information than IBPol(C)[A]. This is useful for the computation:
rather than computing IBPol(C)[A] directly, our procedures first compute IBPol(C)[G, A]. The
proof is based on Propositions 5 and 6 (the latter requires G to consist of group languages).

▶ Proposition 12. Let G be a group prevariety, let C be a prevariety such that G ⊆ C and let
A = (Q, δ) be an NFA. Then, IBPol(C)[A] is the least set S ⊆ Q4 that contains IBPol(C)[G, A]
and satisfies the two following conditions:
1. For all q, r, s, t ∈ Q and a ∈ A, if (q, a, r), (s, a, t) ∈ δ, then (q, r, s, t) ∈ S.
2. For all (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ S, if r1 = q2 and t1 = s2, then (q1, r2, s1, t2) ∈ S.

Proof. Let S ⊆ Q4 be the least set containing IBPol(C)[G, A] and satisfying both conditions.
We prove that S = IBPol(C)[A]. For S ⊆ IBPol(C)[A], since IBPol(C)[G, A] ⊆ IBPol(C)[A] by
definition, it suffices to prove that IBPol(C)[A] satisfies both conditions in the proposition.
First, consider a ∈ A and q, r, s, t ∈ Q such that (q, a, r), (s, a, t) ∈ δ. We have a ∈ LA(q, r)
and a ∈ LA(s, t). Hence, they are not BPol(C)-separable and (q, r, s, t) ∈ IBPol(C)[A].
Now, let (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ IBPol(C)[A] such that r1 = q2 and t1 = s2. For
i ∈ {1, 2}, we know that LA(qi, ri) is not BPol(C)-separable from LA(si, ti). Since BPol(C)
is a prevariety by Theorem 2, it follows from Lemma 8 that LA(q1, r1)LA(q2, r2) is not
BPol(C) separable from LA(s1, t1)LA(s2, t2). Since r1 = q2 and t1 = s2, it is immediate that
LA(q1, r1)LA(q2, r2) ⊆ LA(q1, r2) and LA(s1, t1)LA(s2, t2) ⊆ LA(s1, t2). Hence, LA(q1, r2)
is not BPol(C)-separable from LA(s1, t2) and we get (q1, r2, s1, t2) ∈ IBPol(C)[A] as desired.

We turn to the inclusion IBPol(C)[A] ⊆ S. By Lemma 11, there exists L ∈ G such that
ε ∈ L and a BPol(C)-cover V of L which is separating for IBPol(C)[G, A]. By hypothesis, L

is a group language and ε ∈ L. Hence, Proposition 6 yields a cover P of A∗ such that every
P ∈ P is of the form P = ↑LwP for some word wP ∈ A∗. Let P ∈ P and a1, . . . , an ∈ A be
the letters such that wP = a1 · · · an. We have P = La1L · · · anL by definition (if wP = ε,
then P = L). By definition, L ∈ G ⊆ Pol(C). Hence, since V is a BPol(C)-cover of L,
Proposition 5 yields a BPol(C)-cover KP of P such that for every K ∈ KP , there are
V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn. We let K =

⋃
P ∈P KP . Since P is a cover of

A∗ and KP is a BPol(C)-cover of P for each P ∈ P, K is a BPol(C)-cover of A∗. We show
that K is separating for S which implies that IBPol(C)[A] ⊆ S by Lemma 10.

T. Place and M. Zeitoun 43:9

Let (q, r, s, t) ∈ Q4 and K ∈ K such that we have x ∈ K ∩ LA(q, r) and y ∈ K ∩ LA(s, t).
We show that (q, r, s, t) ∈ S. We have K ∈ KP for some P ∈ P. Let a1, . . . , an ∈ A such
that wP = a1 · · · an. By definition, there are V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn.
Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn and
y = y0a1y1 · · · anyn. Since x ∈ LA(q, r), we get qi, ri ∈ Q for 0 ≤ i ≤ n such that q0 = q,
rn = r, xi ∈ LA(qi, ri) for 0 ≤ i ≤ n and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. Finally, since
y ∈ LA(s, t), we get si, ti ∈ Q for 0 ≤ i ≤ n such that s0 = s, tn = t, yi ∈ LA(si, ti)
for 0 ≤ i ≤ n and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Since S satisfies Condition 1 in the
proposition, we get (ri−1, qi, ti−1, si) ∈ S for 1 ≤ i ≤ n. Since Vi ∈ V which is separating for
IBPol(C)[G, A] and xi, yi ∈ Vi, we also get (qi, ri, qi, ti) ∈ IBPol(C)[G, A] for 0 ≤ i ≤ n. Thus,
Condition 2 in the proposition yields (q0, r0, sn, tn) ∈ S, i.e. (q, r, s, t) ∈ S as desired. ◀

Proposition 12 provides a least fixpoint algorithm for computing the set IBPol(C)[A] from
IBPol(C)[G, A]. Combined with Proposition 9, this yields a polynomial time reduction from
BPol(C)-separation to computing IBPol(C)[G, A] from an NFA. We shall prove that when
C ∈ {G, G+}, there are polynomial time reductions of the latter problem to G-separation.

3.2 Tuple separation
This generalized variant of separation is taken from [18]. We shall use it as a proof ingredient:
for every lattice C, it is connected to the classical separation problem for Bool(C). For every
n ≥ 1, we call “n-tuple” a tuple of n languages (L1, . . . , Ln). In the sequel, given another
language K, we shall write (L1, . . . , Ln) ∩ K for the n-tuple (L1 ∩ K, . . . , Ln ∩ K). Let C be
a lattice, we use induction on n to define the C-separable n-tuples:

If n = 1, a 1-tuple (L1) is C-separable when L1 = ∅.
If n ≥ 2, an n-tuple (L1, . . . , Ln) is C-separable when there exists K ∈ C such that
L1 ⊆ K and (L2, . . . , Ln) ∩ K is C-separable. We call K a separator of (L1, . . . , Ln).

One may verify that classical separation is the special case n = 2. We generalize D-controlled
separation to this setting. For a class D, we say that an n-tuple (L1, . . . , Ln) is C-separable
under D-control if there exists H ∈ D such that ε ∈ H and (L1, . . . , Ln) ∩ H is C-separable.

We complete the definition with two simple properties of tuple separation. The second
one is based on closure under quotients and generalizes Lemma 8.

▶ Lemma 13. Let C be a lattice and let (L1, . . . , Ln), (H1, . . . , Hn) be two n-tuples. If
L1 ∩ · · · ∩ Ln ̸= ∅, then (L1, . . . , Ln) is not C-separable. Moreover, if Li ⊆ Hi for every i ≤ n

and (L1, . . . , Ln) is not C-separable, then (H1, . . . , Hn) is not C-separable either.

▶ Lemma 14. Let C be a positive prevariety, n ≥ 1 and let (L1, . . . , Ln), (H1, . . . , Hn) be
two n-tuples, which are not C-separable. Then, (L1H1, . . . , LnHn) is not C-separable either.

A theorem of [18] connects tuple C-separation for a lattice C to Bool(C)-separation: L0
is Bool(C)-separable from L1 if and only if (L0, L1)p is C-separable for some p ≥ 1. Here,
(L0, L1)p denotes the 2p-tuple obtained by concatenating p copies of (L0, L1). For example,
(L0, L1)3 = (L0, L1, L0, L1, L0, L1). We use a corollary applying to D-controlled separation.

▶ Corollary 15. Let C and D be two lattices such that D ⊆ C and let L0, L1 ⊆ A∗. The
following properties are equivalent:
1. L0 is Bool(C)-separable from L1 under D-control.
2. There exists p ≥ 1 such that (L0, L1)p is C-separable under D-control.

FSTTCS 2022

43:10 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We only use the contrapositive of 1) ⇒ 2) in Corollary 15. We complete the presentation
with two important lemmas about tuple separation for Pol(D) and Pol(D+). We use them
to prove that tuples are not separable. Note that in practice, D will be a group prevariety G.
Yet, the results are true regardless of this hypothesis.

▶ Lemma 16. Let D be a prevariety and (L1, . . . , Ln) an n-tuple which is not Pol(D)-
separable under D-control. Then, ({ε}, L1, . . . , Ln) is not Pol(D)-separable.

Proof. We prove the contrapositive. Assume that ({ε}, L1, . . . , Ln) is Pol(D)-separable: we
get K ∈ Pol(D) such that ε ∈ K and (L1, . . . , Ln) ∩ K is Pol(D)-separable. By definition,
K is a finite union of marked product of languages in D. Hence, since ε ∈ K, there exists a
marked product involving a single language H ∈ D such that ε ∈ H in the union defining K.
In particular, H ⊆ K and Lemma 13 implies that (L1, . . . , Ln)∩H is Pol(D)-separable. Since
H ∈ D and ε ∈ H, it follows that (L1, . . . , Ln) is Pol(D)-separable under D-control. ◀

▶ Lemma 17. Let D be a prevariety and w ∈ A+. If (L1, . . . , Ln) is not Pol(D+)-separable
under D-control, then (w+, w+L1w+, . . . , w+Lnw+) is not Pol(D+)-separable.

Proof. We prove the contrapositive. Assuming that (w+, w+L1w+, . . . , w+Lnw+) is Pol(D+)-
separable, we show that (L1, . . . , Ln) is Pol(D+)-separable under D-control. There exists
K ∈ Pol(D+) such that w+ ⊆ K, and (w+L1w+, . . . , w+Lnw+)∩K is Pol(D+)-separable. By
definition, K is a finite union of marked products K0a1K1 · · · amKm with a1, . . . , am ∈ A and
K0, . . . , Km ∈ D+. Let k ∈ N such that m ≤ k for every product K0a1K1 · · · amKm in this
union. Since w+ ⊆ K, we have w2(k+1) ∈ K. This yields a marked product K0a1K1 · · · amKm

such that w2(k+1) ∈ K0a1K1 · · · amKm ⊆ K, m ≤ k and K0, . . . , Km ∈ D+. Therefore, we
get ui ∈ Ki for each i ≤ m such that w2(k+1) = u0a1u1 · · · amum. Moreover, since m ≤ k,
there exists i ≤ m such that ww is an infix of ui. Thus, we get x, y ∈ A∗ and ℓ1, ℓ2 ∈ N such
that ui = xwwy, u0a1u1 · · · aix = wℓ1 , yai+1ui+1 · · · amum = wℓ2 and ℓ1 + 2 + ℓ2 = 2(k + 1)

By definition Ki ∈ D+ which yields H ∈ D such that either Ki = H ∪{ε} or Ki = H ∩A+.
Hence, since ui ∈ Ki and ui ∈ A+ (recall that w ∈ A+), we have xwwy = ui ∈ H. Let
H ′ = (xw)−1H(wy)−1. By closure under quotients, we have H ′ ∈ D and it is clear that ε ∈ H ′

since xwwy ∈ H. Hence, it remains to prove that (L1, . . . , Ln) ∩ H ′ is Pol(D+)-separable.
This will imply as desired that (L1, . . . , Ln) is Pol(D+)-separable under D-control.

We know that (w+L1w+, . . . , w+Lnw+) ∩ K is Pol(D+)-separable. One may verify from
the definitions that wℓ1+1(Lj ∩ H ′)wℓ2+1 ⊆ w+Ljw+ ∩ K for all j ≤ n. Thus, Lemma 13
implies that wℓ1+1(L1 ∩ H ′)wℓ2+1, . . . , wℓ1+1(Ln ∩ H ′)wℓ2+1) is Pol(D+)-separable. Finally,
since (wℓ1+1, . . . , wℓ1+1) and (wℓ2+1, . . . , wℓ2+1) are not Pol(D+)-separable, it follows from
Lemma 14 that ((L1 ∩ H ′), . . . , (Ln ∩ H ′)) is Pol(D+)-separable as desired. ◀

4 Separation Algorithms for BPol(G) and BPol(G+)

For a group prevariety G, we now consider BPol(G)- and BPol(G+)-separation. We rely on the
notions of Section 3: given an arbitrary NFA A = (Q, δ), we present a generic characterization
of the inseparable BPol(G)- and BPol(G+)-quadruples under G control associated to A, i.e.,
of the subsets IBPol(G)[G, A] and IBPol(G+)[G, A] of Q4. Thanks to Proposition 12, this
also yields characterizations of IBPol(G)[A] and of IBPol(G+)[A], which in turn, in view of
Proposition 9, yield reductions from both BPol(G)- and BPol(G+)-separation to G-separation.
These polynomial time reductions are therefore effective when G-separation is decidable.

T. Place and M. Zeitoun 43:11

4.1 Statements
Let G be a group prevariety and let A = (Q, δ) be an NFA. We present characterizations of
IBPol(G)[G, A] and IBPol(G+)[G, A]. They follow the same pattern, but each of them depends
on a specific function from 2Q4 to 2Q4 , which we first describe.

Characterization of IBPol(G)[G, A]. We use a function τA,G : 2Q4 → 2Q4 . For S ⊆ Q4, we
define the set τA,G(S) ⊆ Q4. The definition is based on an auxiliary NFA BS = (Q3, γS)
with ε-transitions, which depends on S. Its states are triples in Q3. The set γS ⊆ Q3 × (A ∪
{ε})×Q3 includes two kinds of transitions. First, given a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q, we
let

(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γS if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and (s3, a, t3) ∈ δ.

Second, for every state q1 ∈ Q and every (q2, r2, q3, r3) ∈ S, we add the following ε-transition:
((q1, q2, q3), ε, (q1, r2, r3)) ∈ γS . We represent this construction process graphically in Figure 1.

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in BS

q1 ∈ Q and (q2, r2, q3, r3) ∈ Ss1 t1 s2 t2 s3 t3
a a a

Single state and quadruple in S

q1 ∈ Q and (q2, r2, q3, r3) ∈ S (q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in BS

Figure 1 Construction of the transitions in the auxiliary automaton BS .

▶ Remark 18. The NFA BS and its counterpart B+
S (which we define below as a means to

handle BPol(G+)) are the only NFAs with ε-transitions considered in the paper. In particular,
the original input NFA A is assumed to be without ε-transitions.

We are ready to define τA,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τA,G(S)
if and only if the two following conditions hold:

{ε} is not G-separable from LBS
((s, q, s), (t, r, t)), and

{ε} is not G-separable from LBS
((q, s, q), (r, t, r)). (1)

A set S ⊆ Q4 is (BPol, ∗)-sound for G and A if it is a fixpoint for τA,G , i.e. τA,G(S) = S.
We have the following simple lemma which can be verified from the definition. It states
that τA,G : 2Q4 → 2Q4 is increasing (for inclusion). In particular, this implies that it has a
greatest fixpoint, i.e., there is a greatest (BPol, ∗)-sound set.

▶ Lemma 19. Let G be a group prevariety and let A = (Q, δ) be an NFA. For every
S, S′ ⊆ Q4, we have S ⊆ S′ ⇒ τA,G(S) ⊆ τA,G(S′).

We may now state the first key theorem of the paper. It applies to BPol(G)-separation.

▶ Theorem 20. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G)[G, A]
is the greatest (BPol, ∗)-sound subset of Q4 for G and A.

Characterization of IBPol(G+)[G, A]. The characterization of IBPol(G+)[G, A] is analog-
ous. Roughly, the only difference is that we modify the definition of the auxiliary auto-
maton BS . Let G be a group prevariety and A = (Q, δ) be an NFA. We define a new
function τ+

A,G : 2Q4 → 2Q4 . For S ⊆ Q4, we define τ+
A,G(S) ⊆ Q4 using another auxiliary

FSTTCS 2022

43:12 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

NFA B+
S = (Q3, γ+

S) with ε-transitions. Its states are triples in Q3 and γ+
S ⊆ Q3 × (A ∪

{ε}) × Q3 contains two kinds of transitions. First, for a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q,
we let

(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γ+

S if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and
(s3, a, t3) ∈ δ. Second, for all q1 ∈ Q and all (q2, r2, q3, r3) ∈ S, if A+ ∩ LA(q1, q1) ∩
LA(q2, q2) ∩ LA(q3, q3) ∩ LA(r2, r2) ∩ LA(r3, r3) ̸= ∅, then we add the following ε-transition:
((q1, q2, q3), ε, (q1, r2, r3)) ∈ γ+

S . We represent this construction in Figure 2.

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in B+
S

s1 t1 s2 t2 s3 t3
a a a

q1 ∈ Q, (q2, r2, q3, r3) ∈ S and z ∈ A+

such that q1

z

q2

z

r2

z

q3

z

r3

z

Single state and quadruple in S

(q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in B+
S

Figure 2 Construction of the transitions in the auxiliary automaton B+
S .

We are ready to define τ+
A,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τ+

A,G(S)
if and only if the two following conditions hold:

{ε} is not G-separable from LB+
S

((s, q, s), (t, r, t)), and
{ε} is not G-separable from LB+

S
((q, s, q), (r, t, r)). (2)

A set S ⊆ Q4 is (BPol, +)-sound for G and A if it is a fixpoint for τ+
A,G , i.e. τ+

A,G(S) = S.
The following monotonicity lemma implies that there is a greatest (BPol, +)-sound set.

▶ Lemma 21. Let G be a group prevariety and A = (Q, δ) an NFA. For every S, S′ ⊆ Q4,
we have S ⊆ S′ ⇒ τ+

A,G(S) ⊆ τ+
A,G(S′).

We may now state our second key theorem. It applies to BPol(G+)-separation.

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]
is the greatest (BPol, +)-sound subset of Q4 for G and A.

Let us discuss the consequences of Theorems 20 and 22. Since BS and B+
S can be computed

from A and S, one can compute τA,G(S) and τ+
A,G(S) from S provided that G-separation

is decidable. Hence, if G-separation is decidable, Theorem 20 (resp. Theorem 22) yields
a greatest fixpoint procedure for computing IBPol(G)[G, A] (resp. IBPol(G+)[G, A]). Indeed,
consider the sequence of subsets defined by S0 = Q4, and Sn = τA,G(Sn−1) for n ≥ 1. By
definition, computing Sn from Sn−1 boils down to deciding G-separation. Since τA,G is
increasing by Lemma 19, we get a decreasing sequence Q4 = S0 ⊇ S1 ⊇ S2 · · · . Moreover,
since Q4 is finite, this sequence stabilizes at some point: there exists n ∈ N such that
Sn = Sj for all j ≥ n. One may verify that Sn is the greatest (BPol, ∗)-sound subset of Q4.
By Theorem 20, it follows that Sn = IBPol(G)[G, A]. Likewise, the sequence Tn defined by
T0 = Q4 and Tn = τ+

A,G(Tn−1) is computable when G-separation is decidable, and, since it is
decreasing, it stabilizes. By Theorem 22, its stabilization value is IBPol(G+)[G, A].

T. Place and M. Zeitoun 43:13

By Proposition 12, IBPol(G)[A] (resp. IBPol(G+)[A]) can be computed from IBPol(G)[G, A]
(resp. IBPol(G+)[G, A]) via a least fixpoint procedure. Altogether, by Proposition 9, we get
reductions from BPol(G)- and BPol(G+)-separation to G-separation. One may verify that
these are polynomial time reductions (we mean “reduction” in the Turing sense: BPol(G)- and
BPol(G+)-separation can be decided in polynomial time using an oracle for G-separation).

Now, it is known that separation can be decided in polynomial time for the classes ST,
MOD and GR (this is trivial for ST, see [26] for MOD and GR). Hence, we obtain from
Theorem 20 that separation is decidable in polynomial time for BPol(ST) (i.e., BΣ1(<)),
BPol(MOD) (i.e., BΣ1(<, MOD)) and BPol(GR). This was well-know for BPol(ST) (the
class of piecewise testable languages, see [6, 17]). For the other two, decidability was
known [36, 21] but not the polynomial time upper bound. Using Theorem 22, we also obtain
that separation is decidable in polynomial time for BPol(ST+) (i.e., the languages of dot-depth
one or equivalently BΣ1(<, +1)), BPol(MOD+) (i.e., BΣ1(<, +1, MOD)) and BPol(GR+).
Decidability was already known for BPol(ST+) and BPol(MOD+): the results can be
obtained indirectly by reduction to BPol(ST)-separation using transfer theorems [22, 16].
Yet, the polynomial time upper bounds are new as the transfer theorems have a built-in
exponential blow-up. Moreover, decidability of separation is a new result for BPol(GR+).

Finally, the statement applies to BPol(AMT) and BPol(AMT+) (i.e., BΣ1(<, AMOD)
and BΣ1(<, +1, AMOD)). This is a new result for BPol(AMT+). Yet, since AMT-separation
is co-NP-complete when the alphabet is part of the input [26] (the problem being in P for
a fixed alphabet), the complexity analysis is not entirely immediate. However, one may
verify that the procedures yield co-NP algorithms for both BPol(AMT)- and BPol(AMT+)-
separation. We summarize the upper bounds in Figure 3.

Input class G ST MOD AMT GR

BPol(G)- and BPol(G+)-separation P P co-NP P

Figure 3 Complexity of separation (for input languages represented by NFAs).

4.2 Proof of Theorem 20
We now concentrate on the proof of Theorem 20. The key ingredients in this argument are
Proposition 6 and Lemma 16. The proof of Theorem 22 is available in the appendix. It is
based on similar ideas. Roughly, we replace Proposition 6 and Lemma 16 (which are tailored
to classes BPol(G)) by their counterparts for BPol(G+): Proposition 7 and Lemma 17.
However, note that proving Theorem 22 is technically more involved as manipulating the
automaton B+

S in the definition of τ+
A,G requires more work.

We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the greatest
(BPol, ∗)-sound subset for G and A. We prove that S = IBPol(G)[G, A].

First part: S ⊆ IBPol(G)[G, A]. We use tuple separation and Lemma 16. Let us start
with some terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple
of languages, written Tn(q1, r1, q2, r2). We use induction on n and tuple concatenation to
present the definition. If n = 1 then, T1(q1, r1, q2, r2) =

(
LA(q2, r2)

)
. If n > 1, then,

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.

FSTTCS 2022

43:14 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

For example, we have T3(q1, r1, q2, r2) = (LA(q2, r2), LA(q1, r1), LA(q2, r2)).

▶ Proposition 23. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is
not Pol(G)-separable under G-control.

By definition, Proposition 23 implies that for all p ≥ 1 and (q1, r1, q2, r2) ∈ S, the
2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G)-separable under G-control. By Corollary 15,
it follows that LA(q1, r1) is not BPol(G)-separable from LA(q2, r2) under G-control, i.e., that
(q1, r1, q2, r2) ∈ IBPol(G)[G, A]. We get S ⊆ IBPol(G)[G, A] as desired.

We prove Proposition 23 by induction on n. We fix n ≥ 1 for the proof. In order to exploit
the hypothesis that S is (BPol, ∗)-sound, we need a property of the NFA BS = (Q3, γS) used
to define τA,G . When n ≥ 2, this is where we use induction on n and Lemma 16.

▶ Lemma 24. Let (s1, s2, s3), (t1, t2, t3) ∈ Q3 and w ∈ LBS
((s1, s2, s3), (t1, t2, t3)). Then,

w ∈ LA(s1, t1) and, if n ≥ 2, the n-tuple ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.

Proof. Since w ∈ LBS
((s1, s2, s3), (t1, t2, t3)), there exists a run labeled by w from (s1, s2, s3)

to (t1, t2, t3) in BS . We use a sub-induction on the number of transitions involved in that run.
First, assume that no transitions are used: we have w = ε and (s1, s2, s3) = (t1, t2, t3). Clearly,
ε ∈ LA(s1, s1) and, if n ≥ 2, the n-tuple ({ε}) · Tn−1(s2, s2, s3, s3) is not Pol(G)-separable by
Lemma 13 since ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is
used and consider the last one: we have (q1, q2, q3) ∈ Q3, w′ ∈ A∗ and x ∈ A ∪ {ε} such that
w = w′x, w′ ∈ LBS

((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γS . By induction,
we have w′ ∈ LA(s1, q1) and, if n ≥ 2, the n-tuple ({w′}) · Tn−1(s2, q2, s3, q3) is not Pol(G)-
separable. We prove that x ∈ LA(q1, t1) and, if n ≥ 2, the n-tuple ({x}) · Tn−1(q2, t2, q3, t3)
is not Pol(G)-separable. It will then be immediate that w = w′x ∈ LA(s1, t1) and, if n ≥ 2,
Lemma 14 implies that ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.

We consider two cases depending on whether x ∈ A or x = ε. First, if x = a ∈ A, then
(qi, a, ti) ∈ δ for i = {1, 2, 3}. Clearly, this implies that a ∈ LA(q1, t1) and, if n ≥ 2, then
({a})·Tn−1(q2, t2, q3, t3) is not Pol(G)-separable by Lemma 13 since a ∈ LA(q2, t2)∩LA(q3, t3).
Assume now that x = ε: we are dealing with an ε-transition. By definition of γS , we have
q1 = t1 and (q2, t2, q3, t3) ∈ S. The former yields ε ∈ LA(q1, t1). Moreover, if n ≥ 2, since
(q2, t2, q3, t3) ∈ S, it follows from induction on n in Proposition 23 that the (n − 1)-tuple
Tn−1(q2, t2, q3, t3) is not Pol(G)-separable under G-control. Combined with Lemma 16, this
yields that ({ε}) · Tn−1(q2, t2, q3, t3) is not Pol(G)-separable, as desired. ◀

We may now complete the proof of Proposition 23. By symmetry, we only treat the
case when n is odd and leave the case when it is even to the reader. Let (q1, r1, q2, r2) ∈ S,
we have to prove that Tn(q1, r1, q2, r2) is not Pol(G)-separable under G-control. Hence, we
fix H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G)-separable. Since
S is (BPol, ∗)-sound, we have τA,G(S) = S, which implies that (q1, r1, q2, r2) ∈ τA,G(S).
Hence, it follows from (1) that {ε} is not G-separable from LBS

((q2, q1, q2), (r2, r1, r2)). Since
H ∈ G and ε ∈ H, we get a word w ∈ H ∩ LBS

((q2, q1, q2), (r2, r1, r2)). By Lemma 24,
we have w ∈ H ∩ LA(q2, r2). This completes the proof when n = 1. Indeed, in that
case we have T1(q1, r1, q2, r2) = (LA(q2, r2)) and since H ∩ LA(q2, r2) ̸= ∅, it follows that
H ∩ T1(q1, r1, q2, r2) is not Pol(G)-separable, as desired. If n ≥ 2, then Lemma 24 also
implies that ({w}) · Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Since w ∈ H ∩ LA(q2, r2),
Lemma 13 yields that (H∩LA(q2, r2))·Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Thus, since
H ∈ G ⊆ Pol(G), one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2))
is not Pol(G)-separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not
Pol(G)-separable, completing the proof.

T. Place and M. Zeitoun 43:15

Second part: IBPol(G)[G, A] ⊆ S. In the sequel, we say that an arbitrary set R ⊆ Q4 is
good if there exists L ∈ G such ε ∈ L and a BPol(G)-cover K of L which is separating for R.

▶ Proposition 25. Let R ⊆ Q4. If R is good, then τA,G(R) is good as well.

We use Proposition 25 to complete the proof. Let S0 = Q4 and Si = τA,G(Si−1) for i ≥ 1.
By Lemma 19, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and there is n ∈ N such that Sn is the greatest
(BPol, ∗)-sound subset for G and A, i.e., such that Sn = S. Since S0 is good ({A∗} is a
BPol(G)-cover of A∗ ∈ G which is separating for S0 = Q4), Proposition 25 implies that Si is
good for all i ∈ N. Thus, S = Sn is good. We get L ∈ G such that ε ∈ L and a BPol(G)-cover
K of L which is separating for S. Lemma 11 then yields IBPol(G)[G, A] ⊆ S as desired.
▶ Remark 26. The proof of Proposition 25 actually provides a construction for building L ∈ G
such that ε ∈ L and a BPol(G)-cover K of L which is separating for S (yet, this involves
building separators in G, see Lemma 27). As we have now established that S = IBPol(G)[G, A],
one may then follow the proof of Proposition 12 to build a BPol(G)-cover H of A∗ which is
separating for IBPol(G)[A]. Finally, H encodes separators for all pairs of languages recognized
by A which are BPol(G)-separable (roughly, this is the proof of Lemma 10). Altogether, we
get a way to build separators in BPol(G), when they exist.

We now prove Proposition 25. Let R ⊆ Q4 be good. We have to build L ∈ G with ε ∈ L

and a BPol(G)-cover K of L which is separating for τA,G(R) (which will prove that τA,G(R)
is good as well). We first build L (this part is independent from our hypothesis on R).

▶ Lemma 27. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if
LBR

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR
((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τA,G(R).

Proof. Let H be the finite set of all languages recognized by BR such that {ε} is G-separable
from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We
define L =

⋂
H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if

LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition
of L that {ε} is not G-separable from both LBR

((q, s, q), (r, t, r)) and LBR
((s, q, s), (t, r, t)).

It follows from (1) in the definition of τA,G that (q, r, s, t) ∈ τA,G(R). ◀

We fix L ∈ G as described in Lemma 27 for the remainder of the proof. We now build
the BPol(G)-cover K of L using the hypothesis that R is good and Proposition 6.

▶ Lemma 28. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G) such that LA(q, r) ∩ L ⊆ Hq,r

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅.

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G)-cover V of
U which is separating for R. We use them to build Hq,r. Since U is a group language
and ε ∈ U , Proposition 6 yields a cover P of LA(q, r) ∩ L such that every P ∈ P is of
the form P = ↑U wP where wP ∈ LA(q, r) ∩ L. For every P ∈ P, we build a BPol(G)-
cover KP of P . Let a1, . . . , an ∈ A be the letters such that wP = a1 · · · an. We have
P = Ua1U · · · anU . Since U ∈ G ⊆ Pol(G) and V is a BPol(G)-cover of U , Proposition 5
yields a BPol(G)-cover KP of P such that for every K ∈ KP , there exist V0, . . . , Vn ∈ V
satisfying K ⊆ V0a1V1 · · · anVn. We define Hq,r as the union of all languages K such that
K ∈ KP for some P ∈ P and LA(q, r) ∩ K ̸= ∅. Clearly, Hq,r ∈ BPol(G). Moreover,
since P is a cover of LA(q, r) ∩ L, and KP is a cover of P for each P ∈ P, it is clear that
LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such that LA(s, t) ∩ Hq,r ̸= ∅ and show that
LBR

((q, s, q), (r, t, r)) ∩ L ̸= ∅. By definition of Hq,r, we get P ∈ P and K ∈ KP such that
LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By definition, P = ↑U wP with wP ∈ LA(q, r) ∩ L.
Hence, it suffices to prove that wP ∈ LBR

((q, s, q), (r, t, r)).

FSTTCS 2022

43:16 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

We fix x ∈ LA(s, t) ∩ K and y ∈ LA(q, r) ∩ K. Recall that wP = a1 · · · an (if n = 0,
then wP = ε). Since wP ∈ LA(q, r), we may consider the corresponding run in A: we get
p0, . . . , pn ∈ Q such that p0 = q, pn = r and (pi−1, ai, pi) ∈ δ for 1 ≤ i ≤ n. Moreover, since
K ∈ KP and wP = a1 · · · an, we have K ⊆ V0a1V1 · · · anVn for V0, . . . , Vn ∈ V (if n = 0,
then K ⊆ V0). Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn

and y = y0a1y1 · · · anyn. Since x ∈ LA(s, t), we get s0, t0, . . . , sn, tn ∈ Q such that s0 = s,
tn = t, xi ∈ LA(si, ti) for 0 ≤ i ≤ n, and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Symmetrically,
since y ∈ LA(q, r), we get q0, r0, . . . , qn, rn ∈ Q such that q0 = q, rn = r, yi ∈ LA(qi, ri)
for 0 ≤ i ≤ n, and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. By definition of γR, it is immediate
that ((pi−1, ti−1, ri−1), ai, (pi, si, qi)) ∈ γR for 1 ≤ i ≤ n. Since Vi ∈ V and V is separating
for R, the fact that xi, yi ∈ Vi implies that (si, ti, qi, ri) ∈ R for 0 ≤ i ≤ n. Hence,
((pi, si, qi), ε, (pi, ti, ri)) ∈ γR by definition. Thus, we get a run labeled by wP from (p0, s0, q0)
to (pn, tn, rn) in BR, i.e., wP ∈ LBR

((q, s, q), (r, t, r)) as desired. ◀

We may now build K. Let H =
{

Hq,r | (q, r) ∈ Q2}
. Consider the following equivalence

∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for
every (q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a
Boolean combination involving the languages in H (which belong to BPol(G)) and L ∈ G.
Hence, K is a BPol(G)-cover of L. We now prove that it is separating for τA,G(R). Let
q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. We show
that (q, r, s, t) ∈ τA,G(R). By definition of K, we have u, v ∈ L and u ∼ v. In particular,
u ∈ LA(q, r) ∩ L which yields u ∈ Hq,r by definition in Lemma 28. Together with u ∼ v, this
yields v ∈ Hq,r. Hence, LA(s, t)∩Hq,r ̸= ∅ and Lemma 28 yields LBR

((q, s, q), (r, t, r))∩L ̸= ∅.
One may now use a symmetrical argument to obtain LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅. By
definition of L in Lemma 27, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.

5 Conclusion

In this paper, we proved that for every group prevariety G, there exist generic polynomial
time Turing reductions from BPol(G)- and BPol(G+)-separation to G-separation, for input
languages represented by NFAs. While a generic reduction from BPol(G)-separation to
G-separation was already developed in [21], it relied on an involved machinery, which required
to dig into a more general problem than BPol(G)-separation, namely “BPol(G)-covering”. In
particular, the techniques from [21] do not provide any way to build separators in BPol(G)
(when they exist). They also yield poor upper complexity bounds. At last, the results of [21]
do not apply to BPol(G+). In this case, even the existence of a generic reduction is new. It
would be interesting to unify ideas of the present paper with the techniques of [21], to lift
them to the setting of BPol(G)- and BPol(G+)-covering. We leave this for further work.

Our results imply that separation is decidable in polynomial time for a number of
standard classes: the piecewise testable languages (i.e., BPol(ST) or equivalently BΣ1(<)),
the languages of dot-depth one (i.e., BPol(ST+) or equivalently BΣ1(<, +1)), the classes
BPol(MOD) and BPol(MOD+) (i.e., BΣ1(<, MOD) and BΣ1(<, +1, MOD)) and the classes
BPol(GR) and BPol(GR+). While this was well-known for the piecewise testable lan-
guages [17, 6], all other results are new – not only regarding the complexity, but even
regarding the decidability. Actually, it is shown in [12] that BPol(ST)-separation is P-
complete. It turns out that the reduction of [12], from the circuit value problem, adapts to
prove the P-completeness of separation for all of the above classes (we leave the details for
further work). Finally, our results also apply to the classes BPol(AMT) and BPol(AMT+)
(i.e., BΣ1(<, AMOD) and BΣ1(<, +1, AMOD)): we obtain that separation is in co-NP.
While this is currently unknown, we conjecture that this is a tight upper bound. Indeed, it is
known that AMT-separation is co-NP-complete [26].

T. Place and M. Zeitoun 43:17

References
1 Jorge Almeida and Marc Zeitoun. The pseudovariety J is hyperdecidable. RAIRO Theoretical

Informatics and Applications, 31(5):457–482, 1997.
2 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th Annual

Symposium on Theoretical Aspects of Computer Science, STACS’87, pages 198–206, Berlin,
Heidelberg, 1987. Springer-Verlag.

3 Janusz A. Brzozowski and Rina S. Cohen. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

4 Antonio Cano, Giovanna Guaiana, and Jean-Eric Pin. Regular languages and partial commut-
ations. Journal of Information and Computation, 230:76–96, 2013.

5 Laura Chaubard, Jean Éric Pin, and Howard Straubing. First order formulas with modular
predicates. In Proceedings of the 21th IEEE Symposium on Logic in Computer Science
(LICS’06), pages 211–220, 2006.

6 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming, ICALP’13, pages 150–161, Berlin, Heidelberg,
2013. Springer-Verlag.

7 Samuel Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, Inc.,
Orlando, FL, USA, 1976.

8 Karsten Henckell, Stuart Margolis, Jean-Eric Pin, and John Rhodes. Ash’s type II theorem,
profinite topology and Malcev products. International Journal of Algebra and Computation,
1:411–436, 1991.

9 Robert Knast. A semigroup characterization of dot-depth one languages. RAIRO - Theoretical
Informatics and Applications, 17(4):321–330, 1983.

10 Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth
one. Theoretical Computer Science, 245(1):135–148, 2000.

11 Stuart Margolis and Jean-Eric Pin. Product of Group Languages. In FCT’85, volume 199 of
Lect. Notes Comp. Sci., pages 285–299. Springer-Verlag, 1985.

12 Tomás Masopust. Separability by piecewise testable languages is ptime-complete. Theor.
Comput. Sci., 711:109–114, 2018.

13 Jean-Eric Pin. Algebraic tools for the concatenation product. Theoretical Computer Science,
292:317–342, 2003.

14 Jean-Eric Pin. An explicit formula for the intersection of two polynomials of regular languages.
In DLT 2013, volume 7907 of Lect. Notes Comp. Sci., pages 31–45. Springer, 2013.

15 Jean-Eric Pin and Howard Straubing. Some results on C-varieties. RAIRO - Theoretical
Informatics and Applications, 39(1):239–262, 2005.

16 Thomas Place, Varun Ramanathan, and Pascal Weil. Covering and separation for logical
fragments with modular predicates. Logical Methods in Computer Science, 15(2), 2019.

17 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science, MFCS’13, pages 729–740,
Berlin, Heidelberg, 2013. Springer-Verlag.

18 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th
Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS’17), pages 202–213.
IEEE Computer Society, 2017.

19 Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Computer Science,
14(3), 2018.

20 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR’17.

21 Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation
hierarchies. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS’19, pages 1–13, 2019.

FSTTCS 2022

43:18 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

22 Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for separation and
covering. ACM Transactions on Computational Logic, 21(2):9:1–9:45, 2020.

23 Thomas Place and Marc Zeitoun. Separation for dot-depth two. Logical Methods in Computer
Science, Volume 17, Issue 3, 2021.

24 Thomas Place and Marc Zeitoun. Characterizing level one in group-based concatenation hier-
archies. In Computer Science – Theory and Applications, Cham, 2022. Springer International
Publishing.

25 Thomas Place and Marc Zeitoun. A generic polynomial time approach to separation by
first-order logic without quantifier alternation, 2022. doi:10.48550/arXiv.2210.00946.

26 Thomas Place and Marc Zeitoun. Group separation strikes back. To appear, a preliminary
version is vailable at https://www.labri.fr/perso/tplace/Files/groups.pdf, 2022.

27 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata
Theory and Formal Languages, pages 214–222, Berlin, Heidelberg, 1975. Springer-Verlag.

28 Benjamin Steinberg. Inevitable graphs and profinite topologies: Some solutions to algorithmic
problems in monoid and automata theory, stemming from group theory. International Journal
of Algebra and Computation, 11(1):25–72, 2001.

29 Howard Straubing. A generalization of the schützenberger product of finite monoids. Theoretical
Computer Science, 13(2):137–150, 1981.

30 Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied
Algebra, 36:53–94, 1985.

31 Howard Straubing. On logical descriptions of regular languages. In Proceedings of the 5th
Latin American Symposium on Theoretical Informatics, LATIN’02, pages 528–538, Berlin,
Heidelberg, 2002. Springer-Verlag.

32 Denis Thérien. Classification of finite monoids: The language approach. Theoretical Computer
Science, 14(2):195–208, 1981.

33 Gabriel Thierrin. Permutation automata. Theory of Computing Systems, 2(1):83–90, 1968.
34 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and

System Sciences, 25(3):360–376, 1982.
35 Bret Tilson. Categories as algebra: essential ingredient in the theory of monoids. Journal of

Pure and Applied Algebra, 48(1):83–198, 1987.
36 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond

subwords. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS’18, pages 929–938, 2018.

A Appendix

In this appendix, we present the proof of Theorem 22. Let us first recall the statement.

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]
is the greatest (BPol, +)-sound subset of Q4 for G and A.

The proof argument is based on the same outline as the one presented for Theorem 20 in
the main paper. We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the
greatest (BPol, +)-sound subset for G and A. We prove that S = IBPol(G+)[G, A].

First part: S ⊆ IBPol(G+)[G, A]. We use tuple separation and Lemma 17. Let us start with
terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple Tn(q1, r1, q2, r2).
We use induction on n and tuple concatenation to present the definition. If n = 1 then,
T1(q1, r1, q2, r2) = (LA(q2, r2)). If n > 1, then,

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.

We use induction on n to prove the following proposition.

https://doi.org/10.48550/arXiv.2210.00946
https://www.labri.fr/perso/tplace/Files/groups.pdf

T. Place and M. Zeitoun 43:19

▶ Proposition 29. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is
not Pol(G+)-separable under G-control.

By definition, Proposition 29 implies that for every p ≥ 1 and every (q1, r1, q2, r2) ∈ S, the
2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G+)-separable under G-control. By Corollary 15,
it follows that LA(q1, r1) is not BPol(G+)-separable from LA(q2, r2) under G-control, i.e.
that (q1, r1, q2, r2) ∈ IBPol(G+)[G, A]. We get S ⊆ IBPol(G+)[G, A] as desired.

We prove Proposition 29 using induction on n. We fix n ≥ 1 for the proof. In order to
exploit the fact that S is (BPol, +)-sound, we need a property of the NFA B+

S = (Q3, γS)
used to define τ+

A,G . When n ≥ 2, this is where we use induction on n and Lemma 17.

▶ Lemma 30. Consider (s1, s2, s3), (t1, t2, t3) ∈ Q3 and a group language H ⊆ A∗. Assume
that H ∩ LB+

S
((s1, s2, s3), (t1, t2, t3)) ̸= ∅. Then, H ∩ LA(s1, t1) ̸= ∅ and, if n ≥ 2, then the

n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.

Proof. By hypothesis, there exists w ∈ H ∩ LB+
S

((s1, s2, s3), (t1, t2, t3)). Hence, the NFA B+
S

contains some run labeled by w from (s1, s2, s3) to (t1, t2, t3). We use a sub-induction on the
number of transitions involved in that run. When no transitions are used: we have w = ε

and (s1, s2, s3) = (t1, t2, t3). It follows that w = ε ∈ H ∩ LA(s1, t1). Moreover, if n ≥ 2, the
n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, s2, s3, s3) is not Pol(G+)-separable by Lemma 13 since
ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is used. We get a
triple (q1, q2, q3) ∈ Q3, a word w′ ∈ A∗ and x ∈ A ∪ {ε} such that we have w = w′x, w′ ∈
LB+

S
((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γ+

S . Since H is a group language,
it is recognized by a morphism α : A∗ → G into a finite group G. Let H ′ = α−1(α(w′)).
Clearly, H ′ is a group language and w′ ∈ H ′ ∩ LB+

S
((s1, s2, s3), (q1, q2, q3)). Thus, induction

yields that H ′ ∩LA(s1, q1) ̸= ∅ and, if n ≥ 2, the n-tuple (H ′ ∩LA(s1, q1)) ·Tn−1(s2, q2, s3, q3)
is not Pol(G+)-separable. We now consider two cases depending on x ∈ A ∪ {ε}.

Assume first that x = a ∈ A: we have ((q1, q2, q3), a, (t1, t2, t3)) ∈ γ+
S . By definition, it

follows that (qi, a, ti) ∈ δ for i = {1, 2, 3}. Observe that (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1).
Indeed, if u ∈ (H ′ ∩ LA(s1, q1))a, then u = u′a where u′ ∈ H ′ and u′ ∈ LA(s1, q1). Since
H ′ = α−1(α(w′)), the hypothesis that u′ ∈ H ′ yields α(u) = α(u′a) = α(w′a) = α(w) which
implies that u ∈ H since w ∈ H and H is recognized by α. Moreover, since u′ ∈ LA(s1, q1)
and (q1, a, t1) ∈ δ, we get u = u′a ∈ LA(s1, t1). Altogether, this yields u ∈ H ∩ LA(s1, t1) as
desired. Since we already know that H ′ ∩LA(s1, q1) ̸= ∅, we get H ∩LA(s1, t1) ̸= ∅. Moreover,
if n ≥ 2, since (q2, a, t2), (q3, a, t3) ∈ δ, Lemma 13 yields that ({a}) · Tn−1(q2, t2, q3, t3) is not
Pol(G+)-separable. Hence, since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3)
is not Pol(G+)-separable and (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1), it follows from Lemma 14
that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.

Finally, assume that x = ε: we have ((q1, q2, q3), ε, (t1, t2, t3)) ∈ γ+
S . By definition, it

follows that q1 = t1, (q2, t2, q3, t3) ∈ S and there exists a nonempty word y ∈ A+ which
belongs to LA(q1, q1), LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3). Since x = ε, we have
w = w′. Hence, since w ∈ H and H is recognized by α, we obtain that H ′ = α(α−1(w′)) ⊆ H .
Since H ′ ∩ LA(s1, q1) ̸= ∅ and q1 = t1, we get H ∩ LA(s1, t1) ̸= ∅. We now assume that
n ≥ 2. Since G is a finite group, there exists k ≥ 1 such that α(yk) = 1G. We write z = yk.
By hypothesis on y, we also have z ∈ LA(q1, q1). It follows that z+ ⊆ α−1(1G) ∩ LA(q1, q1).
Additionally, since z belongs to LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3), we know
that z+LA(q2, t2)z+ ⊆ LA(q2, t2) and z+LA(q3, t3)z+ ⊆ LA(q3, t3). Since (q2, t2, q3, t3) ∈ S,
it follows from induction on n in Proposition 29 that the (n−1)-tuple Tn−1(q2, t2, q3, t3) is not
Pol(G+)-separable under G-control. Altogether, we obtain from Lemma 17 that the n-tuple
(α−1(1G) ∩ LA(q1, q1)) · Tn−1(q2, t2, q3, t3) is not Pol(G+)-separable. Finally, since q1 = t1

FSTTCS 2022

43:20 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

and H ′ ⊆ H , one may verify that (H ′ ∩LA(s1, q1))(α−1(1G)∩LA(q1, q1)) ⊆ (H ∩LA(s1, t1)).
Since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3) is not Pol(G+)-separable,
Lemma 14 yields that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. ◀

We may now complete the proof of Proposition 29. By symmetry, we only treat the
case when n is odd and leave the even case to the reader. Let (q1, r1, q2, r2) ∈ S, we have
to prove that Tn(q1, r1, q2, r2) is not Pol(G+)-separable under G-control. Hence, we fix
H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable. Since
S is (BPol, +)-sound, we have τ+

A,G(S) = S which implies that (q1, r1, q2, r2) ∈ τ+
A,G(S).

Hence, it follows from (2) that {ε} is not G-separable from LB+
S

((q2, q1, q2), (r2, r1, r2)).
Since H ∈ G and ε ∈ H, it follows that H ∩ LB+

S
((q2, q1, q2), (r2, r1, r2)) ̸= ∅. If n = 1,

Lemma 30 yields H ∩ LA(q2, r2) ̸= ∅. Since T1(q1, r1, q2, r2) = (LA(q2, r2)), we get that
H∩T1(q1, r1, q2, r2) is not Pol(G+)-separable as desired. If n ≥ 2, then Lemma 30 implies that
(H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. Thus, since H ∈ G ⊆ Pol(G+),
one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2)) is not Pol(G+)-
separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable,
completing the proof.

Second part: IBPol(G+)[G, A] ⊆ S. Consider an arbitrary set R ⊆ Q4. We say that R is
multiplication-closed to indicate that for every (q, r, s, t) ∈ R and (q′, r′, s′, t′) ∈ R, if r = q′

and t = s′, then (q, r′, s, t′) ∈ R. Moreover, we say that an arbitrary set R ⊆ Q4 is good if it
is multiplication-closed and there are L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which
is separating for R.

▶ Proposition 31. Let R ⊆ Q4. If R is good, then τ+
A,G(R) is good as well.

We use Proposition 31 to complete the proof. Let S0 = Q4 and Si = τ+
A,G(Si−1) for

i ≥ 1. By Lemma 21, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and the is n ∈ N such that Sn is the
greatest (BPol, +)-sound subset for G and A, i.e. such that Sn = S. Since S0 is good (it is
clearly multiplication-closed and {A∗} is a BPol(G+)-cover of A∗ ∈ G which is separating for
S0 = Q4), Proposition 31 implies that Si is good for all i ∈ N. Hence, S = Sn is good. We
get L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is separating for S. By Lemma 11,
this yields IBPol(G+)[G, A] ⊆ S as desired.

We turn to Proposition 25. Let R ⊆ Q4 be a good set. We have to prove that τ+
A,G(R)

is multiplication-closed and build L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is
separating for τ+

A,G(R). This proves that τ+
A,G(R) is good as desired. Let us first prove that

τ+
A,G(R) is multiplication-closed (we use the hypothesis that R is good).

▶ Lemma 32. The set τ+
A,G(R) ⊆ Q4 is multiplication-closed.

Proof. Let (q, r, s, t) ∈ τ+
A,G(R) and (q′, r′, s′, t′) ∈ τ+

A,G(R) such that r = q′ and t = s′. We
need to prove that (q, r′, s, t′) ∈ τ+

A,G(R). By (2) in the definition, this boils down to proving
that {ε} is not G-separable from LB+

R
((s, q, s), (t′, r′, t′)) and LB+

R
((q, s, q), (r′, t′, r′)). By sym-

metry, we only prove the former. By hypothesis on (q, r, s, t) and (q′, r′, s′, t′), we get from (2)
that {ε} is not G-separable from both LB+

R
((s, q, s), (t, r, t)) and LB+

R
((s′, q′, s′), (t′, r′, t′)).

Since G is a prevariety it then follows from Lemma 14 that {ε} is not G-separable from the con-
catenation LB+

R
((s, q, s), (t, r, t))LB+

R
((s′, q′, s′), (t′, r′, t′)). Finally, since (t, r, t) = (s′, q′, s′),

we know that LB+
R

((s, q, s), (t, r, t))LB+
R

((s′, q′, s′), (t′, r′, t′)) ⊆ LB+
R

((s, q, s), (t′, r′, t′)). We
conclude that {ε} is not G-separable from both LB+

R
((s, q, s), (t′, r′, t′)) as desired. ◀

T. Place and M. Zeitoun 43:21

We now build L ∈ G such that ε ∈ L (this part is independent from our hypothesis on R).

▶ Lemma 33. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if
LB+

R
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+

R
((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τ+

A,G(R).

Proof. Let H be the finite set of all languages recognized by B+
R such that {ε} is G-separable

from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We
define L =

⋂
H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if

LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition
of L that {ε} is not G-separable from both LB+

R
((q, s, q), (r, t, r)) and LB+

R
((s, q, s), (t, r, t)).

It then follows from (2) in the definition of τ+
A,G that (q, r, s, t) ∈ τ+

A,G(R). ◀

We fix L ∈ G as described in Lemma 33 for the remainder of the proof. We now build
the BPol(G+)-cover K of L using the hypothesis that R is good and Proposition 7.

▶ Lemma 34. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G+) such that LA(q, r) ∩ L ⊆ Hq,r

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅.

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G+)-cover V of
U which is separating for R. We use them to build Hq,r. Since U ∈ G and ε ∈ U

Proposition 7 yields a cover P of LA(q, r) ∩ L such that for each P ∈ P, there exists a word
wP ∈ LA(q, r) ∩ L and an A-guarded decomposition (w1, . . . , wn+1) of wP for some n ∈ N
such that P = w1U · · · wnUwn+1 (if n = 0, then P = {w1}). Now, for every P ∈ P, we build
a BPol(G+)-cover KP of P from the cover V of U . Let (w1, . . . , wn+1) be the A-guarded
decomposition of wP such that P = w1U · · · wnUwn+1 (in particular, this means that P

is of the form U0a1U1 · · · amUm where a1 · · · am = w1 · · · wn and Ui = U or Ui = {ε} for
each i ≤ m). By definition, V is a BPol(G+)-cover of U ∈ G ⊆ Pol(G+). Moreover, we
have {ε} ∈ G+ ⊆ Pol(G+) by definition of G+ and {{ε}} is a BPol(G+)-cover of {ε}. Hence,
Proposition 5 yields a BPol(G+)-cover KP of P = w1U · · · wnUwn+1 such that for every
K ∈ KP , there exist V1, . . . , Vn ∈ V such that K ⊆ w1V1 · · · wnVnwn+1. We define Hq,r

as the union of all languages K such that K ∈ KP for some P ∈ P and LA(q, r) ∩ K ≠ ∅.
Clearly, Hq,r ∈ BPol(G+). Moreover, since P is a cover of LA(q, r) ∩ L, and KP is a cover
of P for each P ∈ P, it is clear that LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such
that LA(s, t) ∩ Hq,r ̸= ∅ and show that LB+

R
((q, s, q), (r, t, r)) ∩ L ≠ ∅. By definition of

Hq,r, we get P ∈ P and K ∈ KP such that LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By
definition, P = w1U · · · wnUwn+1 where (w1, . . . , wn+1) is an A-guarded decomposition of
wP ∈ LA(q, r) ∩ L. We use wP to build a new word w′ ∈ LB+

R
((q, s, q), (r, t, r)) ∩ L.

We fix x ∈ LA(s, t)∩K and y ∈ LA(q, r)∩K. Since wP = w1 · · · wn+1 and wP ∈ LA(q, r),
we may decompose the corresponding run in A: we get p0, . . . , pn+1 ∈ Q such that p0 = q,
pn+1 = r and wi ∈ LA(pi−1, pi) for 1 ≤ i ≤ n + 1. Moreover, since K ∈ KP , we have
K ⊆ w1V1 · · · wnVnwn+1 for V1, . . . , Vn ∈ V (if n = 0, then K ⊆ {w1}). Since x, y ∈ K, we
get xi, yi ∈ Vi for 1 ≤ i ≤ n such that x = w1x1 · · · wnxnwn+1 and y = w1y1 · · · wnynwn+1.
Since x ∈ LA(s, t), we get s1, t1, . . . , sn+1, tn+1 ∈ Q where s1 = s, tn+1 = t, wi ∈ LA(si, ti)
for 1 ≤ i ≤ n + 1 and xi ∈ LA(ti, si+1) for 1 ≤ i ≤ n. Symmetrically, since y ∈ LA(q, r),
we get q1, r1, . . . , qn+1, rn+1 ∈ Q with q1 = q, rn+1 = r, wi ∈ LA(qi, ri) for 1 ≤ i ≤ n + 1,
and yi ∈ LA(ri, qi+1) for 1 ≤ i ≤ n. First, note that when n = 0, we have wP = w1 and the
above implies that wP ∈ LA(q, r) and wP ∈ LA(s, t). Thus, wP ∈ LB+

R
((q, s, q), (r, t, r)) by

definition of the labeled transition in B+
R . This concludes the proof since we also know that

wP ∈ L. We now assume that n ≥ 1.

FSTTCS 2022

43:22 A Generic Polynomial Time Approach to Separation by Alternation-Free FO

By hypothesis, (w1, . . . , wn+1) is an A-guarded decomposition. Hence, for 1 ≤ i ≤ n, we
get zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1. Let α : A∗ → G be a
morphism into a finite group G recognizing both L and U (recall that L and U are group
languages). Since g is a finite group, there exists k ≥ 1 such that for each 1 ≤ i ≤ n, we have
α(zk

i) = 1G. We let ui = zk
i for 1 ≤ i ≤ n. One may verify that ui remains a right A-loop for

wi and a left A-loop for wi+1. Moreover, since α(ui) = 1G, we know that ui ∈ U (recall that
ε ∈ U and U is recognized by α). We let w′

1 = w1u1, w′
n+1 = unwn+1 and w′

i = ui−1wiui for
2 ≤ i ≤ n. Finally, we let w′ = w′

1 · · · w′
nw′

n+1 and show that w′ ∈ L ∩ LB+
R

((q, s, q), (r, t, r))
which completes the proof. First, since α(ui) = 1G for 1 ≤ i ≤ n, it is immediate that
α(w′) = α(w1 · · · wnwn+1) = α(wP). Since wP ∈ L which is recognized by α, we get w′ ∈ L.

We now concentrate on proving that w′ ∈ LB+
R

((q, s, q), (r, t, r)). For 1 ≤ i ≤ n + 1, we
know that wi belongs to LA(pi−1, pi), LA(si, ti) and LA(qi, ri). Hence, one may verify from
the definition of left/right A-loops that there are p′

0, . . . , p′
n+1 ∈ Q, s′

1, t′
1, . . . , s′

n+1, t′
n+1 ∈ Q

and q′
1, r′

1, . . . , q′
n+1, r′

n+1 ∈ Q such that,
p′

0 = p0 = q, p′
n+1 = pn+1 = r, w′

i ∈ LA(p′
i−1, p′

i) for 1 ≤ i ≤ n + 1 and ui ∈ LA(p′
i, p′

i)
for 1 ≤ i ≤ n.
s′

0 = s0 = s, t′
n+1 = tn+1 = t, w′

i ∈ LA(s′
i, t′

i) for 1 ≤ i ≤ n + 1 and we have
ui ∈ LA(t′

i, t′
i) ∩ LA(t′

i, ti) ∩ LA(si+1, s′
i+1) ∩ LA(s′

i+1, s′
i+1) for 1 ≤ i ≤ n.

q′
0 = q0 = q, r′

n+1 = rn+1 = r, w′
i ∈ LA(q′

i, r′
i) for 1 ≤ i ≤ n + 1 and we have

ui ∈ LA(r′
i, r′

i) ∩ LA(r′
i, ri) ∩ LA(qi+1, q′

i+1) ∩ LA(q′
i+1, q′

i+1) for 1 ≤ i ≤ n.
By definition of the labeled transitions in the NFA B+

R , it is straightforward to verify that we
have w′

i ∈ LB+
R

((p′
i−1, s′

i, q′
i), (p′

i, t′
i, r′

i)) for 1 ≤ i ≤ n + 1. We now prove the following fact.

▶ Fact 35. For 1 ≤ i ≤ n, we have ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R .

Proof. We fix i for the proof. Since we know that ui ∈ A+ belongs to LA(p′
i, p′

i), LA(t′
i, t′

i),
LA(r′

i, r′
i), LA(s′

i+1, s′
i+1) and LA(q′

i+1, q′
i+1), it suffices to prove that (t′

i, s′
i+1, r′

i, q′
i+1) ∈ R.

This will imply that ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R by definition of γ+

R . Recall that
xi ∈ LA(ti, si+1), yi ∈ LA(ri, qi+1) and xi, yi ∈ Vi. Since Vi ∈ V which is separating for R,
it follows that (ti, si+1, ri, qi+1) ∈ R. Moreover, ui ∈ U which yields V ∈ V such that ui ∈ V

since V is a cover of U . Hence, since ui ∈ LA(t′
i, ti) and ui ∈ LA(r′

i, ri). The hypothesis that
V is separating for R also yields (t′

i, ti, r′
i, ri) ∈ R. Symmetrically, one may use the hypotheses

that ui ∈ LA(si+1, s′
i+1) and ui ∈ LA(qi+1, q′

i+1) to verify that (si+1, s′
i+1, qi+1, q′

i+1) ∈ R.
Altogether, since R is multiplication-closed, we get (t′

i, s′
i+1, r′

i, q′
i+1) ∈ R as desired. ◀

In view of Fact 35, we obtain w′ = w′
1 · · · w′

nw′
n+1 ∈ LB+

R
((p′

0, s′
1, q′

1), (p′
n+1, t′

n+1, r′
n+1)).

This exactly says that w′ ∈ LB+
R

((q, s, q), (r, t, r)) which completes the proof. ◀

We may now build K. Let H = {Hq,r | (q, r) ∈ Q2}. Consider the following equivalence
∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for every
(q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a Boolean
combination involving the languages in H (which belong to BPol(G+)) and L ∈ G. Hence,
K is a BPol(G+)-cover of L. It remains to prove that it is separating for τ+

A,G(R). Let
q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. By
definition of K, we have u, v ∈ L and u ∼ v. In particular, we have u ∈ LA(q, r) ∩ L which
yields u ∈ Hq,r by definition in Lemma 34. Together with u ∼ v, this yields v ∈ Hq,r. Hence,
LA(s, t) ∩ Hq,r ≠ ∅ and Lemma 34 yields LB+

R
((q, s, q), (r, t, r)) ∩ L ̸= ∅. One may now

use a symmetrical argument to obtain LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅. By definition of L in
Lemma 33, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.

A Technique to Speed up Symmetric
Attractor-Based Algorithms for Parity Games
K. S. Thejaswini #

Department of Computer Science, University of Warwick, Coventry, UK

Pierre Ohlmann #

University of Warsaw, Poland

Marcin Jurdziński #

Department of Computer Science, University of Warwick, Coventry, UK

Abstract
The classic McNaughton-Zielonka algorithm for solving parity games has excellent performance
in practice, but its worst-case asymptotic complexity is worse than that of the state-of-the-art
algorithms. This work pinpoints the mechanism that is responsible for this relative underperformance
and proposes a new technique that eliminates it. The culprit is the wasteful manner in which
the results obtained from recursive calls are indiscriminately discarded by the algorithm whenever
subgames on which the algorithm is run change. Our new technique is based on firstly enhancing
the algorithm to compute attractor decompositions of subgames instead of just winning strategies
on them, and then on making it carefully use attractor decompositions computed in prior recursive
calls to reduce the size of subgames on which further recursive calls are made. We illustrate the
new technique on the classic example of the recursive McNaughton-Zielonka algorithm, but it can
be applied to other symmetric attractor-based algorithms that were inspired by it, such as the
quasi-polynomial versions of the McNaughton-Zielonka algorithm based on universal trees.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms; Theory of computation → Logic and
verification

Keywords and phrases Parity games, Attractor decomposition, Quasipolynomial Algorithms, Uni-
versal trees

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.44

Related Version Full Version: https://arxiv.org/abs/2010.08288 [30]

Funding EPSRC grant EP/P020992/1 (Solving Parity Games in Theory and Practice).
Pierre Ohlmann: Project BOBR that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 948057).

Acknowledgements We thank Rémi Morvan for contributing to several simulating discussions. We
are grateful to Aditya Prakash for proof reading the current version of the paper, and to Nathanaël
Fijalkow and Olivier Serre for doing the same with an earlier version of the paper. We also thank
anonymous referees for pointing out some missing references from our previous draft as well as for
their valuable comments to improve our current presentation. The authors are listed in reverse
alphabetical order.

1 Context and contributions

Parity games are two-player games on graphs, which have been studied since early 1990’s
[10, 11] and have many applications in automata theory on infinite trees [15], fixpoint
logics [9, 4], verification and synthesis [28, 29]. They are intimately linked to the problems
of emptiness and complementation of nondeterministic automata on trees [10, 33], model
checking [11, 4, 16] and satisfiability checking of fixpoint logics, or fair simulation relations [12].

© K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 44; pp. 44:1–44:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thejaswini.raghavan.1@warwick.ac.uk
mailto:pohlmann@mimuw.edu.pl
mailto:marcin.jurdzinski@warwick.ac.uk
https://orcid.org/0000-0003-3640-8481
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.44
https://arxiv.org/abs/2010.08288
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Determining the winner of a parity games are one of the few problems known to lie in
the complexity class NP ∩ coNP as well as UP ∩ coUP but not known to have a polynomial
algorithm. Existence of a polynomial algorithm for solving parity games, which has been an
important open problem for nearly three decades, has recently gained a lot of attention after
the major breakthrough of Calude, Jain, Khoussainov, Li and Stephan [5], who provided a
quasi-polynomial solution to the problem. Several algorithms [18, 23, 27, 24] followed this
work, each providing a different perspective to solving parity games. Czerwiński, Daviaud,
Fijalkow, Jurdziński, Lazić, and Parys [6] originally exhibited an underlying combinatorial
structure of universal trees, provably underlying the techniques of Calude et al. of Jurdziński
and Lazić, and of Lehtinen. Czerwiński et al. have also established a quasi-polynomial lower
bound for the size of smallest universal trees, providing evidence that the techniques developed
in these papers may be insufficient for leading to further improvements in the complexity of
solving parity games. Following their work, Jurdziński, Morvan and Thejaswini [20] extended
this result to formulate attractor based algorithms, as that of Parys [27] and also Lehtinen,
Schewe, and Wojtczak [24] using universal trees too.

We propose a new technique for speeding up symmetric attractor-based algorithms for
solving parity games. We focus on illustrating the technique on the example of the classic
McNaughton-Zielonka algorithm [33], but we argue that it is applicable to other symmetric
attractor-based algorithms that were inspired by McNaughton-Zielonka [1, 27, 25, 20, 22].
Many such algorithms have exhibited excellent performance in practice, significantly beating
other classes of algorithms on standard benchmarks [21, 31]. On the other hand, their worst-
case asymptotic running time is typically worse than that of asymmetric algorithms [17, 5,
18, 8]. More specifically, using the perspective of how various algorithms for parity games are
related to universal trees [6], while the running time of state-of-the-art asymmetric algorithms
is dominated by the size of a universal tree [18, 8], it is the square of the size of a universal
tree for symmetric algorithms [20, 25]. Our technique allows to reduce the worst-case running
time of symmetric attractor-based algorithms to match the linear dependence on the size of
a universal tree enjoyed by asymmetric algorithms.

Our technique is based on making a better use of structural information obtained from
earlier recursive calls to significantly reduce the worst-case overall size of the tree of recursive
calls of the algorithm. While existing symmetric attractor-based algorithms are typically
computing just the winning sets of positions or positional winning strategies, following [20],
we propose to enhance them to explicitly record more finely structured witnesses of winning
strategies called attractor decompositions. Moreover, we show how witnesses for both players
from recursive calls on subgames can be meaningfully used to reduce the sizes of subgames
on which further recursive calls are made, even if their key properties are damaged by the
removal of some vertices from subgames on which they were computed. In contrast, other
symmetric attractor-based algorithms are wasteful by routinely discarding witnesses for
one of the players that are computed in recursive calls; in the worst case, this results in
repeatedly solving large subgames from scratch. Our technique is robust and it applies to
both the classic exponential-time McNaughton-Zielonka algorithm [33] and its more recent
quasi-polynomial variants [27, 20, 25]. We are also confident that it is applicable to other
symmetric attractor-based algorithms such as priority promotion [1]. Such algorithms can
be interpreted as variants of the McNaughton-Zielonka algorithm that are enhanced by
ad-hoc heuristics to construct attractor decompositions which are more robust to the wasteful
behaviour described above. Our technique offers a more principled approach, in which
decompositions of subgames computed in previous recursive calls are never discarded and are
instead used in a systematic manner to speed up and reduce the number of further recursive
calls.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:3

2 Games, Strategies, Attractor decomposition

Parity Games. A parity game G consists of a finite directed graph (V, E), where the vertices
are partitioned into VEven and VOdd where these belong to the Even player and the Odd
player respectively along with a mapping π, from V to the set {1, . . . h} that labels every
vertex with a positive integer, called its priority. A token is moved from a designated start
vertex into a neighbour by Even or Odd depending on who owns the vertex, forming a
sequence of vertices, which we will a play. An infinite play is said to be winning for Even if
the highest priority that occurs infinitely often is Even and Odd wins otherwise.

A (positional) strategy σ ⊆ E for Even is a subset of edges originating from Even owned
vertices. A game restricted to an Even strategy refers to the sub graph induced by considering
only edges in σ along with edges in which originate in Odd’s vertex. We call a cycle in a
game G an even cycle if the highest priority of the cycle is Even. A strategy is said to be
winning for Even from a vertex v, if the game restricted to the Even strategy σ is such that
the only cycles reachable from v are such that the highest priority in the cycle is even.

Attractors, traps, and dominions. In a parity game G, for a target set of vertices B and a
set of vertices A such that B ⊆ A, we say that an Even strategy σ is an Even reachability
strategy to B from A if every infinite path in the subgraph restricted to σ along with all
edges from all Odd vertices, that starts from a vertex in A contains at least one vertex in B.
We call the largest such set A for which there is a reachability strategy, the Even attractor
of B and we denote it by AttrG

Even(B).
A trap for Odd is a subgame T of G, where Even has a strategy σ, on restricted to which

all paths from T remain in T . A subgame D in a game G is said to be an Even dominion if
it is an Odd trap and moreover, every cycle that can be reached from any vertex in D using
the strategy used to trap Odd is an even cycle.

We also say that a set of vertices C is a quasi-dominion for Even if the subgame G ∩ C

is winning for Even. Note that all dominions of Even are also quasi-dominions but not all
quasi-dominions of Even are dominions, since Odd might be able to escape a quasi-dominion.

If we do not mention if an object defined is for Even or for Odd, we assume Even by
default. All of the above can be defined analogously for the other player.

Trees. Throughout this paper, trees only refer to rooted ordered trees. For a totally ordered
set Σ, an ordered tree T is a finite prefix closed set consisting of sequences of elements from
Σ. We say that the root of the tree is the empty sequence ⟨⟩. We call an element of this
prefix closed set, a node and use η, γ, ϵ . . . to refer to it. The leaves of a tree are the maximal
elements of T . For a node η ∈ T , the subtree rooted at η is the tree η−1 · T . We say η′

is an element of the subtree rooted at η if η′ in T can be obtained by extending η with a
sequence from Σ. For a node η that is not a leaf, the children of η are elements ηi such that
ηi = η · ⟨a⟩ for a ∈ Σ. The height of a tree is defined as the maximum length sequence in
it. A leaf has height 1, and every node has a height one more than any of its children. We
separately define levels of nodes in a tree for Even and Odd inductively as follows. An Even
level of a node is 2 if it is a leaf, and it is two more than its children’s Even level if it is not a
leaf. The Odd level is defined similarly, starting at level 1 for leaves. Note that the height of
a tree is at most half of either the Even or Odd level.

We only consider trees such that the children of each node all have the same level. For
any node, we usually use the same variable with subscripts to list their children in order i.e.,
for η, we use η1, . . . , ηk to denotes its first k children

FSTTCS 2022

44:4 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

A complete n-ary tree of height 2h, is the tree where each node has n children and the
height of the root is 2h. For this an n-ary tree, we use η · ⟨i⟩ to denote the ith child of η. A
tree is (n, h)-universal if there is an order preserving injective homomorphism from any tree
of height h and with n leaves into it.

Attractor decomposition. A structurally simplest quasi-dominion is an atomic quasi-
dominion: it is a set T ∪H such that T is an Even attractor to H in T ∪H, and all vertex
priorities in H are even and larger than all vertex priorities in T . It is a quasi-dominion
because if Even uses an attractor strategy in T and an arbitrary strategy in H, then a play
that stays in T ∪H forever visits set H infinitely many times and hence it is winning for
Even. Consider the following three ways of composing quasi-dominions into structurally
more complex ones.

If Q1 and Q2 are quasi-dominions and Q1 is a trap for Odd in Q1 ∪Q2, then Q1 ∪Q2 is
a quasi-dominion. We say that Q1 ∪Q2 is a sequential composition of Q1 and Q2.
If Q is a quasi-dominion, S is an attractor to Q in Q∪S, and Q is a trap for Odd in Q∪S,
then Q ∪ S is a quasi-dominion. We say that Q ∪ S is a side-attractor composition of Q

and S.
If Q is a quasi-dominion, T is an attractor to H in Q∪ (T ∪H), and if all vertex priorities
in H are even and larger than all vertex priorities in Q ∪ T , then Q ∪ (T ∪ H) is a
quasi-dominion. We say that Q ∪ (T ∪H) is a top-attractor composition of Q and T ∪H ,
and that T is a top attractor to H.

Henceforth, when we say that a quasi-dominion can be obtained by sequential, side-attractor,
or top-attractor composition, we implicitly assume that the suitable applicability conditions
listed above hold.

Note that an atomic Even quasi-dominion is a special case of the top-attractor composition,
in which Q = ∅. A sequential composition is a quasi-dominion because if Even uses quasi-
dominion strategies in Q1 and Q2, then every play that stays in Q1 ∪ Q2 forever, either
stays in Q2 forever, or it eventually stays in Q1 forever, and hence it is winning for Even. A
side-attractor composition is a quasi-dominion because if Even uses quasi-dominion strategy
in Q and an attractor strategy in S, then every play that stays in Q ∪ S forever, eventually
stays in Q forever, and hence it is winning for Even. A top-attractor composition is a
quasi-dominion because if Even uses a quasi-dominion strategy in Q, an attractor strategy
in T , and an arbitrary strategy in H, then every play that stays in Q ∪ (T ∪ H) forever,
either eventually stays in Q forever, or it visits set H infinitely many times, and hence it is
winning for Even.

It is folklore that the three composition operations are complete in the sense that every
quasi-dominion can be obtained by a sequence of such composition operations [26, 33].
More specifically, the following concept of an attractor decomposition [7, 20] is a technically
convenient normal form, in which the hierarchical structure of quasi-dominions resulting
from the composition operations is captured by an ordered tree.

▶ Definition 1 (Attractor decomposition). An attractor decomposition of a game G consists
of an ordered tree, and for each node ϵ of the tree, three mutually disjoint sets of vertices Hϵ

(high even priority set), T ϵ (top attractor), and Sϵ (side attractor) that satisfy the following
conditions. Note that these vertices can be potentially empty for some nodes ϵ.
1. The root node has some even level, and the children of every node at level k have level k−2.

For every node ϵ, if its level is k, then all vertex priorities in Hϵ are k, all vertex priorities
in T ϵ are at most k − 1, and all vertex priorities in Sϵ are at most k + 1.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:5

Figure 1 On the left, a game where Even wins from every vertex and on the right, its attractor
decomposition.

2. If node ϵ is a leaf, then T ϵ ∪Hϵ is an atomic quasi-dominion, and quasi-dominion Qϵ

can be obtained by side-attractor composition of T ϵ ∪Hϵ and Sϵ.
3. If ϵ is node that is not a leaf, then quasi-dominion Qϵ can be obtained in the following way.

Firstly, quasi-dominion P can be obtained by the sequential composition of quasi-dominions
Qη, where η ranges over the children of ϵ in the tree order. Then, quasi-dominion R can
be obtained by the top-attractor composition of P and T ϵ ∪Hϵ. Finally, quasi-dominion
Qϵ can be obtained by the side-attractor composition of R and Sϵ.

Consider an example of a game and an attractor decomposition described in Figure 1.
The priorities are written in the vertices. Player Even owns all square vertices and Odd
owns all the pentagons. Some vertices are shaded to be able to identify each vertex in the
game uniquely. In this game, Even has a strategy to win from everywhere. An attractor
decomposition of this game is depicted to its right. The nodes of the tree are depicted by
ϵ, ϵ1, ϵ2, ϵ11, ϵ21 and ϵ22. The corresponding sets are depicted in the figure with some of them
being empty. This attractor decomposition satisfies properties 1, 2 and 3 in Definition 1.

McNaughton-Zielonka algorithm. We recall the classical recursive algorithm of
McNaughton and Zielonka [26, 33]. However, this is not similar to a description of
McNaughton and Zielonka one would find in the wild. It is enhanced to produce at-
tractor decompositions for both the players and also return the winning sets for players
Even and Odd. This is accomplished in Algorithm 1 where the attractor decomposition
produced is similar to the one defined before. Note that the work of Jurdziński, Morvan
and Thejaswini [20] also produce attractor decompositions explicitly for McNaughton and
Zielonka.

The algorithm uses two mutually recursive calls, McNZEven and McNZOdd which takes as
input a game G, the highest priority h. We also further include as input to these calls, two
nodes ϵ and ω where ϵ belongs to an Even n-ary tree and ω to an Odd n-ary tree. The
respective levels of these nodes in the tree are h and h + 1. These trees are used to store the
structure of the quasi-dominions obtained in the algorithm thus far. Moreover, we assume
that the algorithm has access to the recursive structure of the quasi-dominions computed by
it in previous recursive subcalls and can access the sets corresponding to this quasi-dominion
with the help of the nodes of the tree. The quasi-dominions computed up until a point in the
algorithm are stored as a disjoint partition of sets, based on the underlying complete tree.
These disjoint sets are represent with Hϵ

Even, T ϵ
Even and Sϵ

Even for each node ϵ belonging to
the n-ary tree used for Even tree and Hω

Odd, T ω
Odd and Sω

Odd for ω belonging to the Odd tree.
We exclusively use ϵ and its variants for Even trees and ω and its variants for Odd trees to
avoid confusion. The statement S

ω·⟨i⟩
Odd ← A′

i \ U ′
i performs the side attractor composition for

Odd and the statements Hϵ
Even ← Hi, and T ϵ

Even ← Ai \Hi together perform a top attractor
composition for the Even attractor decomposition.

FSTTCS 2022

44:6 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Figure 2 The game H4.

Algorithm 1 The McNaughton-
Zielonka Algorithm.

procedure McNZEven(G, h, ϵ, ω):
if h = 0 then

return ∅
G1 ← G, i = 0
repeat

i← i + 1
Hi ← π−1(h) ∩ Gi

Ai ← AttrGi
Even (Hi)

G′
i ← Gi \Ai

U ′
i ←
McNZOdd (G′

i, h− 1, ω · ⟨i⟩, ϵ)
A′

i ← AttrGi
Odd (U ′

i)
S

ω·⟨i⟩
Odd ← A′

i \ U ′
i

Gi+1 ← Gi \A′
i

until Gi = Gi+1

Hϵ
Even ← Hi

T ϵ
Even ← Ai \Hi

returnV (Gi)

We only describe the Even recursive call since the Odd recursive subcall can be described
similarly. The correctness of the above algorithm are well known and we refer an interested
reader to several pre-existing works [26, 33, 19, 20] proving the correctness of the algorithm.

Hard examples for McNaughton and Zielonka. The McNaughton-Zielonka algorithm
outperforms several other algorithms in practice, but there are several families of games on
which it takes exponential time. Some examples are those found in the paper of Friedmann [13],
Gzada and Willemse [14] and van Dijk [31], Benerecetti et al [2]. We add to this list, a family
of games on which McNaughton-Zielonka makes exponentially many recursive subcalls. We
focus our attention in this section to this family and use it as a running example to highlights
the exponential complexity of McNaughton-Zielonka and to motivate the idea behind our
technique in the following sections.

Consider the following family of games Hk for each k which we define below. The game
Hk consists of 5k vertices, with the highest priority being k + 2. For each i at most k, the
vertex set consists of 5 vertices, and they are {ui, vi, wi, xi, yi}. We call this set Li and refer
to it as the ith layer of the game. The priority of wi is i + 2 and all the other nodes in Li

have priority i + 1. For even values of i, Odd owns vi, yi and Even owns ui, xi. For odd
values of i, this is swapped. The ownership of wi is irrelevant. The edges within a layers Li

are: {(ui, vi), (vi, ui), (vi, xi), (xi, wi), (wi, vi), (xi, yi), (yi, xi)}. Between layers,
for each i ⩽ k − 2, there is an edge (ui, yi+2);
for each 1 < i ⩽ k, there are edges (vi, vi−1) and (yi, yi−1).

An example of the game H4 is shown in Figure 2, where square vertices are owned by Even
and pentagon by Odd. The odd layers in the game are winning for Even, whereas the Even
layers are winning for Odd. A strategy witnessing the above of each player is for a player to
move to the vertex to their left. More formally, for each player and an appropriate j, the
edges (vj , uj) and (yj , xj) turns out to be a winning strategy in their respective dominions.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:7

▶ Lemma 2. For the family of games Hn for n ⩾ 1 Algorithm 1 makes O(2n) recursive
subcalls to McNZEven and McNZOdd

We provide the proof for the above in the full version of the paper but restrict ourselves
to a discussion to highlight the idea behind the exponential complexity of McNaughton-
Zielonka. For an odd value k, the procedure McNZEven on Hk makes two McNZOdd subcalls
and these are on the subgames Hk−1 ∪{uk, vk, yk} and Hk−1 ∪{xk, yk} in succession. Notice
that these games have a large intersection, which includes Hk−1 and the vertex yk, leading
to an exponential complexity of this easy-to-describe algorithm. The first recursive call
Hk−1∪{uk, vk, yk} indeed identifies winning sets for this subgame for both players. Moreover,
for the Even player, the strategies that are winning in this subgame is in fact winning in Hk

too. Unfortunately, the next recursive subcall promptly discards this information.
It is natural to ask if there is some way we can utilise the progress we make in the

first recursive subcall to provide a head start for the following recursive subcalls. Several
enhancements of McNaughton-Zielonka exist, all of which attempt to utilise some information
from recursive subcalls. A notable few include the Priority promotion algorithms and its
variants [1, 3] along with the Tangle learning algorithms by van Dijk [31], which all perform
well in practice. The key idea behind these algorithms is to identify quasi-dominions in
their recursive subcalls and increase the quasi-dominions obtained so far carefully. Another
idea was to remember the strategy obtained in the recursive subcall. In a recent work by
Lapauw, Bruynooghe, and Denecker [22], they show that by remembering and modifying
strategies obtained recursively in a calculated manner, they too obtained faster practical
performances. But all of these have worst case exponential running time comparable to
McNaughton-Zielonka, as these heuristics do not lead to a provable increase in the running
time of either of these algorithms.

We propose a technique in the next section, which remembers some information obtained
from the structure of the attractor decompositions computed from previous recursive subcalls.
This turns out to provide a quadratic gain in the worst case runtime complexity.

3 Making McNaughton-Zielonka faster with some memory

The crucial object that we will be dealing with for the rest of this paper are decompositions,
which forms the central theme of this section. We define this object as a generalisation
of an attractor decomposition. With the help of our definition, we carefully modify the
classical algorithm to make at most O

((
n
h

)h/2
)

many recursive calls. This is comparable
to the runtime of the first progress measure algorithm by Jurdziński [17]. For the proof of
correctness and runtime of the algorithm, we need the machinery that we develop in Section 4.
This mathematical tool-kit helps accurately pin point the guarantees of the algorithm and
also analyse the running time. We however state these guarantees in this Section and with
these guarantees use them to demonstrate how our algorithm works faster on families of
games which are hard for several attractor based algorithms. We show that this modification
to McNaughton-Zielonka makes it run in polynomial time for two specific families.

A relaxation of attractor decomposition
Recall the procedure McNZEven on example Hk from Section 2. This procedure makes two
recursive subcalls of McNZOdd to subgames each containing Hk−1. Notice that although
McNZOdd returned an attractor decomposition on the first iteration, we discarded the Even
attractor decomposition obtained from this recursive subcall until an empty Odd dominion
was returned by the recursive subcall. In fact, this algorithm on any game repeatedly discards
this information until U ′

i returned is empty.

FSTTCS 2022

44:8 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Indeed, this wasteful discarding of attractor decompositions seems necessary to prove
correctness at first sight. On removing vertices from an Even attractor decomposition it
might no longer satisfy all the properties of an attractor decomposition. Since after each
recursive subcall, we remove a non-empty Odd attractor A′

i from it, it seems natural that
this information must now be discarded. To circumvent this wastage, we propose to store an
object that loosely resembles an attractor decomposition but with the requirements about
quasi-dominions and attractors relaxed. Below, we define an Even decomposition to closely
resemble our definition of attractor decomposition from the previous section.

▶ Definition 3 (Decomposition). A decomposition consists of an ordered tree, and for each
node ϵ of the tree, three mutually disjoint sets of vertices Hϵ (high even priority set), T ϵ (top
set), and Sϵ (side set) that satisfy only the following condition.

The root node has some even level, and the children of every node at level k have level k−2.
For every node t, if its level is k, then all vertex priorities in Hϵ are k, all vertex priorities
in T ϵ are at most k − 1, and all vertex priorities in Sϵ are at most k + 1.

Notice that this definition is more general than an attractor decomposition. A decomposition
which satisfies the attractor composition properties (items 2 and 3) in Definition 1 is an
attractor decomposition. More importantly, since a decomposition no longer needs to satisfy
properties about traps and attractors, on restricting it to a subset of vertices, it still remains
a decomposition. This helps us maintain this structure even after the algorithm removes
some vertices from it.

A faster algorithm

The modification we propose for McNaughton-Zielonka is described in Algorithm 2. This
algorithm, at a high level resembles Algorithm 1. The significant difference is that it starts
with a decomposition and modifies it by calling recursive subcalls until this decomposition is
an attractor decomposition.

For a parity game G, the algorithm maintains two decompositions with n-ary trees for both
the players. This is done globally and refers to the sets associated to these decompositions
using the nodes of the tree. We refer to decompositions Dϵ

Even or Dω
Odd for ϵ and ω which

are nodes in the Even and Odd tree respectively. Note that although we use Dϵ
Even or Dω

Odd,
these are two distinct decompositions. Moreover, we use ϵ along with Even in the subscript,
along with its variations like ϵ′, ϵi, . . . for nodes in the Even tree and similarly for Odd with
ω, this enables us to refer to both the Even and Odd decompositions without confusion.

We call the partitions in these decomposition Hϵ
Even, T ϵ

Even and Sϵ
Even for ϵ, a node in

the Even tree, and Hω
Odd, T ω

Odd and Sω
Odd for ω in the Odd tree. We use [Dϵ

Even] to denote
the set of of vertices associated with some node in the subtree of the tree rooted at ϵ but
without the vertices in Sϵ

Even. More formally, for a decomposition Dϵ
Even, we define [Dϵ

Even]
inductively, where

[Dϵ
Even] consists of Hϵ ∪ T ϵ if ϵ is a leaf;

[Dϵ
Even] consists of Hϵ

Even ∪ T ϵ
Even along with all vertices in [Dϵi

Even] ∪ Sϵi

Even for ϵi ranging
over the children of ϵ.

The procedure McNZFastEven in Algorithm 2 works using decompositions Dϵ
Even and Dω

Odd
on a subgame G. We modify these decompositions with operations like “Set” and “Move”.
We only give an intuition of the operations here, but we make these precise in the appendix
of the paper. The highest priority in the game G is at most the level of Even tree’s root: ϵ.
Moreover, the level of Odd tree’s root ω is one more than the level of ϵ.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:9

Algorithm 2 McNaughton and
Zielonka Algorithm with memory.

procedure McNZFastEven(G, h, ϵ, ω):
if Dϵ

Even restricted to G is an
attractor decomposition then

Set Sω
Odd to V (G)

return V (G)
else if Dω

Odd restricted to G is an
attractor decomposition then

Set Sϵ
Even to V (G)

return ∅
else
G1 ← G; i = 0
repeat

i← i + 1
Hi ← π−1(h) ∩ Gi

Ti ← AttrGi
Even (Hi)

Set T ϵ
Even to Ti \Hi

Si ←
AttrGi

Even

(
Gi \

[
Dω·⟨i⟩

Odd

])
Move Si to at least S

ω·⟨i⟩
Odd

G′
i ← (Gi \ Si)

U ′
i ←
McNZFastOdd (G′

i, h− 1, ϵ, ω · ⟨i⟩)

S′
i ← AttrGi

Odd (U ′
i)

Set S
ω·⟨i⟩
Odd to S′

i \ U ′
i

Move S′
i to at least Sϵ

Even
Gi+1 ← Gi \ S′

i

until Dϵ
Even restricted to Gi+1 is

an attractor decomposition
return V (Gi)

Algorithm 3 Universal Attractor De-
composition algorithm with memory.

procedure UnivFastEven(G, h, ϵ, ω):
if Dϵ

Even is an attractor
decomposition for G then

Set Sω
Odd to V (G)

return V (G)
else if Dω

Odd is an attractor
decomposition for G then

Set Sϵ
Even to V (G)

return ∅
else
G1 ← G
Let ω1, . . . , ωk be children of ω in
the Odd tree

for i← 1 to k do
Hi ← π−1(h) ∩ Gi

Ti ← AttrGi
Even (Hi)

Set T ϵ
Even to Ti \Hi

Si ← AttrGi
Even (Gi \ [Dωi

Odd])
Move Si to at least Sωi

Odd
G′

i ← (Gi \ Si)
U ′

i ←
UnivFastOdd (G′

i, h− 1, ϵ, ωi)

S′
i ← AttrGi

Odd (U ′
i)

Set Sωi
Odd to S′

i \ U ′
i

Move S′
i to at least Sϵ

Even
Gi+1 ← Gi \ S′

i

return V (Gi+1)

If the decompositions computed so far already forms an attractor decomposition for either
player, the algorithm stops and returns the corresponding set, since having an attractor
decomposition implies that we have a witness of winning for either player in the current
subgame. We claim that one can check if a decomposition is an attractor decomposition
efficiently, in polynomial time in the number of vertices of the game rather than the size of
the tree, but postpone the details on how until the next section.

On the other hand, if both players only have decompositions that are not attractor
decompositions on the current subset of vertices, we first compute the Even attractor to the
top priority in the current subgame, closely mirroring Algorithm 1. However, we deviate
from McNaughton-Zielonka, by updating this information by modifying the partition T ϵ

Even
of the Even decomposition.

The line Set T ϵ
Even to Ti \Hi results in the current decomposition of even being modified

so that the “top set” T ϵ
Even now contains exactly the vertices Ti \Hi, which could be attracted

to the set of vertices of top priority Hi in the current subgame. Doing this updates requires
modification of the decomposition to relocate the other vertices that were previously at T ϵ

Even
to sets associated to the children of ϵ.

FSTTCS 2022

44:10 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

In Algorithm 1, the next recursive subcall would work on the complement of the attractor
set Ti. However, for this algorithm, the next recursive subcall at one level lower, we considers
a subset of the set

[
Dω·⟨i⟩

Odd

]
. Since this need not be a subgame, the procedure computes the

Even attractor to all vertices not in this set. The complement of this Even attractor results
in Si, a trap for Even. Intuitively, the next line: Move Si to at least S

ω·⟨i⟩
Odd modifies the

decomposition such that in the new decomposition obtained, the vertices in Si are no longer
in the sets at

[
Dω·⟨i⟩

Odd

]
. Instead, these vertices are such that assigned the vertices in Si to the

sets corresponding to either move these vertices to S
ω·⟨i⟩
Odd in the Odd decomposition. The

other partitions in the decomposition are left unchanged.
We then perform an Odd recursive subcall, by calling the procedure McNZFastOdd on G′

i,
the trap for Even obtained above. After the Odd recursive subcall, which returns the Odd
winning set U ′

i in the subgame G′
i, we compute the Odd attractor to this set which is S′

i.
Since S′

i is the set of vertices from which Odd has a strategy to reach U ′
i , we adjust the Odd

decomposition such that the side set S
ω·⟨i⟩
Odd is exactly S′

i \ U ′
i and all vertices in S′

i are then
relocated to Sϵ

Even for the Even decomposition. This is captured by the line Move S′
i to at

least Sϵ
Even. This is done similarly to the above move operator, where all vertices in S′

i in
the newly obtained decomposition

Now, all we need to explain is how we initialise these decompositions for the algorithm.
The following definition seem technical, although intuitively, we start with an “optimistic”
decomposition, which starts with the simplest structure of a decomposition for both Odd
and Even. We call the initial Even decomposition for the game G with highest priority h,
where the Even node at level h is ϵ, and the Odd node at level h + 1 is ω, as the following:

all vertices of priority h are at Hϵ
Even for Even.

all vertices with priority strictly smaller than h− 1 are at T ϵ
Even for Even.

Similarly, the initial Even decomposition is defined as
all vertices of priority h are at Sω

Odd for Odd.
all vertices of priority exactly h−1 are at Hω1

Odd and all vertices of priority strictly smaller
than h− 1 are at T ω1

Odd for Odd
With this, we can state the guarantees our modification provides.

▶ Theorem 4. Let G be a parity game with priorities no larger than an even number h,
for two n-ary trees of height h/2 and h/2 + 1 with roots ϵ and ω respectively. Procedure
McNZFastEven(G, h, ϵ, ω), with the underlying decomposition being the initial Even and Odd
decomposition of G into these trees output the winning set of Even, and the decomposition
computed is the same as the one computed by procedure McNZEven in Algorithm 1.

The following statement proves runtime of this algorithm, and shows the quadratic improve-
ment we gain compared to McNaughton-Zielonka, and comparable to the the small progress
measure algorithm by Jurdziński [17].

▶ Lemma 5. On a game G with n vertices with priority at most h, the number of recursive
subcalls by either McNZFastEven or McNZFastOdd is at most the product of a polynomial in n

and O
(

n
h

)⌈h/2⌉.

Examples of faster termination
We will demonstrate the algorithm on two examples in this subsection to understand this.
These two examples are going to be the family of games Hk introduced in Section 2 and the
family of games, we will call Fk, which was introduced by Friedmann [13].

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:11

We recall that in his work, Friedmann had provided a family of games on which
McNaughton-Zielonka takes exponential time [13]. We will call this family of examples
Fk for k ∈ N but will not describe this family in detail, and instead refer the reader to the
work Friedman [13]. Friedmann, showed in Theorem 4.3, of [13] that on the game Fk, the
algorithms makes Fk recursive subcalls where Fk denotes the nth Fibonacci number, bounded
by approximately (1.618)k. This is smaller than the 2n time for the previous example we
have shown, however, one can remark that because of the structure of the game, it makes it
difficult for several algorithms to solve this game. Indeed, the priority promotion algorithms
without any enhancements such as memoisation or delayed promotion also takes exponential
time on these games. This exponential behaviour is due to their “rests” performed. We show
that our algorithm solves this family of games provided by Friedmann in polynomial time as
well as our running example of Hk in the next two lemmas.

▶ Lemma 6. Algorithm 2 when initialised with the trivial decomposition for both players
solves the family of games Hn in time that is polynomial in n.

▶ Lemma 7. Algorithm 2 when initialised with the trivial decomposition for both players
solves the family of games Fn, introduced by Friedmann [13] in time that is polynomial in n.

The key idea behind both these proofs is that we do enough work by maintaining a decompos-
ition in an initial recursive subcall. In the future recursive subcalls, when this decomposition
is our starting point, the algorithm needs to do at most polynomial amount of processing in
the above family of games by showing that they fit one of the following criterion:

already have a witness for winning in the form of an attractor decomposition from a
previous recursive subcall (To prove polynomial termination of Hk in Lemma 6);
although the current decomposition of an Even dominion, is the initial decomposition,
the decomposition maintained for Odd is robust enough to conclude quickly that it is
losing for Odd, and therefore winning for Even; (used in the proof of Lemma 7).
each of the next several recursive subcalls made are on a significantly smaller subgames
due to the structure of the available decompositions. Some of these subcalls might even
turn out to be empty (Lemma 6 used to prove fast termination of Fk). This happens
dually with the above mentioned phenomenon;
starting from a specific decomposition for the game, we only require polynomial time using
our algorithm to arrive at an attractor decomposition (used in the proof of Lemma 6).

The exact details of these proof requires us to identify specific subgames in the recursive calls
and are available in the full version of the paper. Although the proof of both Lemmas rely
on induction which in turn depends on the regularity of the subgames in recursive calls, this
is not essential for our algorithm to terminate faster and is just an easier proof mechanism.
This distinguishes our algorithm from targeted tricks aimed at solving specific families of
games faster.

4 Using smaller trees

Attractor decompositions function as a proof of winning for parity games, and can be
defined on the recursive structure of trees. Universal trees have been key to all known
quasi-polynomial algorithms [6]. The use of small universal trees in the attractor based
quasi-polynomial algorithms of Lehtinen, Parys, Schewe and Wojtczak [25] was highlighted
in works of Jurdziński, Morvan and Thejaswini [20]. Their work also captured the recursive
structure of these witnesses with the help of trees. Moreover, they generalise their algorithm
to work on arbitrary trees, and show stronger guarantees. As a corollary, they obtain that

FSTTCS 2022

44:12 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

using two universal trees in their algorithm gives a correct algorithm for solving parity games.
However, the theoretical complexity of these algorithms do not match the run-time of the
state of the art. For two trees T Even and T Odd, these algorithms take time proportional
to the interleaving of the two trees. This object has size equal to the product of the trees,
|T Even| · |T Odd|, as opposed to the algorithms with state of the art [18] worst case complexity
of time which is linear in the size of each tree. In fact, in the journal version of the paper of
Lehtinen, Parys, Schewe and Wojtczak [25], they emphasise in their introduction that their
algorithm has a gap when compared to other quasi-polynomial algorithms. We describe how
our technique can be applied to the algorithms of Lehtinen, Parys, Schewe and Wojtczak [25]
as well as Jurdziński, Morvan and Thejaswini [20] in this section which would closes this gap.
We also achieve this by extending our results to arbitrary trees, of which their algorithms
form specific instances. For a detailed report on which universal trees correspond to which
algorithm, we refer the reader to the work of Jurdzińksi, Morvan and Thejaswini [20].

Algorithm using arbitrary trees
To apply the technique of remembering decompositions for quasi-polynomial versions of
attractor based algorithm, we need to restrict the exponential branching in the previous
algorithm. In our algorithm, we bound the branching in the algorithm to inter-leavings of any
two arbitrary trees with minimal modification from our previous algorithms. Instantiating
these trees to the universal trees underlying the algorithm of Parys [27], or Lehtinen, Schewe,
and Wojtczak [24] results in a speed up compared to these respective algorithms.

The version of our algorithm which uses any two arbitrary trees contains two mutually
recursive procedures UnivFastEven and UnivFastOdd which take as input a game G, the
highest priority h in the game, and two nodes ϵ and ω from T Odd and T Even. The nodes
ϵ and ω have level h and h + 1 respectively in their trees for the Even procedure and vice
versa for the Odd procedure. The underlying trees are not passed in a recursive subcall as
we assume they are a part of the algorithm and can be accessed globally. Other than the
arbitrary trees, this algorithm deviates slightly from our previous algorithms in one way.
The main loop in this algorithm, whose branching was earlier (virtually) unbounded, is now
determined by the trees T Odd and T Even. The pseudo-code for the Even recursive subcall
is specified in Algorithm 3 and is given next to the pseudo-code of Algorithm 2 for ease of
comparison.

Decompositions and labels
To prove correctness of the algorithms as well as analyse their runtime more carefully, we offer
an alternate way of viewing decompositions. Instead of a partition in the shape of a tree, we
can equivalently view it as a map to a specific tree. We define such trees, which we call leafy
trees. We then show that decompositions are nothing but maps into such specific ordered
trees. This ordering on the tree induces a natural ordering on the set of all decompositions.

This alternate view also helps us argue correctness and termination using monovariance
of the decomposition maintained throughout the algorithm.

Leafy tree. Let T be an ordered tree with a root at level h, an even value. We call the
leafy tree of a tree T , denoted by L(T) to be an ordered set which contains three copies of
each element in the tree T and another element ⊤. We define this more formally below.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:13

16

17

18 19

Figure 3 From left to right: A decomposition set into the tree T Even, tree T Even and its
corresponding leafy tree with its order.

▶ Definition 8. Given a tree T , we introduce two additional nodes for each node η ∈ T , which
we will call ηT and ηS to denote the nodes corresponding to top and side nodes respectively.
Other than this, we add an element ⊤. We say, that

L(T) = T ∪ {ηT | η ∈ T } ∪ {ηS | η ∈ T } ∪ {⊤}.

We sometimes refer to the nodes from T as a node in the skeleton of the leafy tree. The
order of elements in L(T) is as follows: η ∈ T and for η′ ∈ L(T ′), where T ′ is a strict subtree
of the tree rooted at η, we have η < ηT < η′ < ηS . Moreover, the order on T is inherited
by L(T). We also have η < ⊤, for any η ∈ L(T), which is not ⊤. Note that the above
conditions ensure that L(T) is a total order and the smallest element strictly larger than η

is well defined. We define level of ηS to be one more than the level of η and the level of ηT

to be one less.
For a pictorial representation of a leafy tree, look at Figure 3. Here, the Leafy tree of

the tree T Even with root ϵ, and its children ϵ1, ϵ2 and leaves ϵ11, ϵ21, and ϵ22. In L(T Even),
we denote elements according to their order, where the elements from T Even are the black
nodes, ηT with blue and ηS with red. Their level can be inferred by the dotted lines. Also
observe a decomposition into the same tree T Even placed next to the leafy tree in the picture.
We show that a map into a leafy tree can be obtained from the following decomposition.

Labelling. We define a labelling for Even into T as a map from the vertices of a parity
game G to L(T), which obeys the following conditions:

if a vertex is mapped to the skeleton of the leafy tree: T ⊂ L(T), then its priority is the
same as the level of the node;
if a vertex is mapped to “leafy vertex”, i.e, ηS or ηT then its priority is at most the level
of the leafy vertex.

There are no restrictions on elements mapped to ⊤. One could also equivalently define a
labelling for Odd by replacing Even with Odd. When we refer to labellings in the rest of the
section, we refer to Even labellings.

Given two labellings for Even, λ1 and λ2 into tree T which are maps from V to L(T), we
say that the order on the elements of L (T) extend to give a partial order on the labelling.
More formally, λ1 ⊑ λ2 if and only if for all v ∈ V , λ1(v) ⩽ λ2(v).

Indeed, the above definition corresponds to a decomposition naturally by the following
proposition.

FSTTCS 2022

44:14 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

▶ Proposition 9. For a parity game G, with priorities that do not exceed h + 1 and a tree T
of height h/2,

for a labelling λ from G to L(T), there is a canonical decomposition Dλ to the tree T ;
for a decomposition D into T , there is a canonical labelling λD which maps V (G) to
L(T).

This allows us to use labellings and decompositions interchangeably, as they have a one to
one correspondence with each other. It also induces a partial order ⊑ on decompositions, which
is obtained by a the partial order on labellings. We now pinpoint when the decomposition
corresponding to a labelling forms an attractor decomposition. We say that a vertex u is
valid in a labelling λ if λ(u) = ⊤ or:

λ(u) ∈ T and in one step, Even can ensure that she reaches a vertex v such that
λ(v) < λ(u)S .
λ(u) = tT or λ(u) = tS and there is a reachability strategy from u to vertices in
{v | λ(v) < t} without visiting any vertex v in the path where λ(v) > t.

In the lemma below, we show that validity of all vertices also corresponds to a witness of
winning.

▶ Lemma 10. Given an Even labelling λ, there is a winning strategy for Even from all
vertices u such that λ(u) ̸= ⊤ iff all vertices are valid.

Not only do such labellings correspond to dominions, the following proposition shows a
stronger statement that the decomposition Dλ corresponding to such a labelling λ is an
attractor decomposition exactly if and only if every vertex is valid in λ.

▶ Proposition 11. In a parity game G,
an Even decomposition D to a tree T is also an attractor decomposition if the corresponding
labelling λD which maps V (G) to L(T) is valid for all vertices;
if a labelling λ is valid at all vertices, then the corresponding Dλ is an attractor decom-
position.

As defined in these previous works [7, 20, 8], given a dominion, there could be several attractor
decompositions for it. Each of these attractor decompositions could correspond to different
trees. In our definition, instead of obtaining the trees from a given attractor decomposition,
we view it as a map into a fixed tree. The proposition below helps us show that attractor
decompositions defined as labellings is robust.

▶ Proposition 12. Consider a parity game G with two labellings λ1 and λ2 from the vertices
to L(T) for some tree T . Let λ1 ⊑ λ2 and u ∈ V (G) such that λ1(u) = λ2(u). If u is valid
in λ2, then it is also valid in λ1.

It can be shown as a corollary of the above proposition, that taking the point-wise minimum of
two attractor decompositions is also an attractor decomposition. An interesting consequence
of this stated corollary of Proposition 12 is the following lemma, which notes that the set of
all attractor decompositions forms a lattice.

▶ Lemma 13. Given a game G and a tree T , the set of all labellings from V (G) to L(T)
which are also attractor decompositions form a lattice, with the ⊑ order. More specifically, it
has a unique maximal and minimal element.

The meet operator is well defined, which makes the set of attractor decompositions a finite
semi-lattice. Since there is a unique maximal element, the trivial labelling which maps all
elements to ⊤, this structure forms a lattice. We will focus on this unique minimal attractor
decomposition, which plays a key role in our proofs.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:15

Correctness and runtime

With this dual view of an attractor decomposition, we are equipped to prove the correctness
and runtime of our algorithms.

Correctness

We prove correctness by proving Theorem 4, which states that on two input trees T Even

and T Odd, if there is a dominion of Even that has an attractor decomposition for the tree
TEven, then the decomposition returned contains all vertices in that dominion. Additionally,
it contains no vertices from any Odd dominions that has an attractor decomposition for the
tree TOdd. Indeed, if the trees are large enough, and winning set for both Even and Odd
have an attractor decomposition into T Even and T Odd respectively, then the sets DOdd and
DEven correspond to winning sets exactly and the algorithm exactly returns the winning sets.
On smaller trees that cannot include the entire dominion, the set returned in itself is not a
winning set, but it partitions the winning dominions captured by these trees. Therefore, this
theorem can be seen as a generalisation of the dominion separation theorem (Theorem 17)
in [20].

▶ Theorem 14. Let G be a parity game with priorities no larger than an even number h,
and let T Even and T Odd be two trees of with roots ϵ and ω respectively. Let DEven be the
largest Even dominion in G that has an attractor decomposition into T Even and similarly
DOdd, the largest Odd dominion that has an attractor decomposition into T Odd. Procedure
UnivFastEven(G, h, ϵ, ω), with the decomposition being the initial Even and Odd decomposition
of G outputs a set of vertices W such that DEven ⊆W ⊆ V (G \DOdd).

We prove the above theorem by showing the following stronger statements. We show that
for the smallest attractor decompositions Aϵ and Aω with respect to the corresponding trees,
the algorithm maintains the following invariants for the decompositions:
1 Dϵ

Even ⊑ Aϵ
Even and Dω

Odd ⊑ Aω
Odd;

2 At the end of a recursive subcall of UnivFastEven(G, h, ϵ, ω), the decompositions at the
end of the recursive call are such that [Dϵ

Even] ∩ [Dω
Odd] is empty.

The essence of the proof boils down to showing that each operation performed on
the decompositions, increases the decomposition without overtaking the smallest attractor
decomposition. We achieve this by using the ordering on labellings developed earlier in
this section. Additionally, we prove Theorem 4 with an extra invariant that if the trees
T Even and T Odd are complete n-ary trees, then Dϵ

Even = Aϵ
Even and Dω

Odd = Aω
Odd. This

automatically gives us the proof of correctness for Algorithm 2 and that it provides an
attractor decomposition.

A notable observation on the proof of Theorem 4 is that these two invariants mentioned
hold true for all three of the Algorithms stated in the paper until now, including McNaughton-
Zielonka. However, it is only with complete trees that we can prove that both Algorithm 1
and Algorithm 2 produce the minimal attractor decompositions. This shows that McNaugton
and Zielonka and its variants provide a winning strategy on termination, whereas the quasi-
polynomial algorithms only produce a partition between the winning and loosing vertices,
with no strategy for each player. We make precise what guarantees one can achieve using our
techniques. We also show a quadratically faster termination for Algorithm 2 and Algorithm 3
than their counterparts which do not maintain a decomposition.

FSTTCS 2022

44:16 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Runtime

We show how our algorithm runs in time that is at most linear in the size of each of the tree,
a significant reduction from other attractor based algorithms with a quadratic dependence.

▶ Theorem 15. Consider a game G with n vertices and priority at most
h. Procedure UnivFastEven (resp. UnivFastOdd) with trees TOdd and TEven makes
O (nc ·max (|TOdd|, |TEven|)) many recursive subcalls to UnivFastEven or UnivFastOdd for a
constant c. The time taken to perform each operations outside of the recursive subcalls is
a polynomial in n, thus making the run-time of this algorithm O

(
nd ·max (|TOdd|, |TEven|)

)
for a constant d.

Our most significant change that contributes to an improvement in the theoretical bound
of the running time is that we maintain the decompositions from previous recursive calls.
This is crucial in the proof and helps us argue that our modified algorithm does not take too
long before there is an increase at least one of our decompositions. We would however like to
emphasise that not all implementations of the algorithm would have the claimed run-time,
but with carefully designed data structures, the time taken outside a recursive call is at
most polynomial. One such implementation would require a data structure which stores
each decomposition as a labelling. This labelling is however represented by only maintaining
elements in the support of this labelling instead of the whole tree. Since there are at most n

vertices, this support is significantly smaller than the size of a potentially quasi-polynomial
or exponentially-sized tree. The attractor computations and the respective Set and Move
operations performed in the algorithms take time proportional to a polynomial in n, assuming
that we have either oracle access or polynomial-time access to queries such as: next sibling
of node, parent of a node or child of a node.

5 Outlook

We believe that our technique can be applied to other attractor-based algorithms that were
inspired by the McNaughton-Zielonka algorithm [1, 22], but elaborating this in detail is
beyond the scope of this paper. The methodology to follow would be analogous to ours:
first make explicit how these algorithms are incrementally building attractor decompositions,
and then use the decompositions for both players obtained from recursive calls to reduce
the sizes of subgames in further recursive calls. Even implementing just the first step of
this methodology seems worthwhile: doing so on arbitrary ordered trees, like we did in
Section 4, would allow to obtain a generic priority promotion algorithm, which could be
made straightforwardly quasi-polynomial by plugging in small universal trees [18, 8], hence
generalizing and streamlining the first quasi-polynomial priority promotion algorithm [3].

A weakness of all quasi-polynomial symmetric attractor-based algorithms – including ours
– is that they may output correct winning sets, but without constructing winning strategies.
This is a major shortcoming in the context of synthesis, where winning strategies correspond
to the desired controllers. We argue that our technique, which is based on computing
decompositions that are under-approximations of the least attractor decompositions, allows to
tackle this weakness with a modest additional computational cost. If the algorithm terminates
with a decomposition that is not an attractor decomposition, then the decomposition obtained
can serve as a starting point to make further progress. We can run an algorithm for each
player that repeatedly increases the decomposition in the underlying order appropriately
until an attractor decomposition is obtained. This addition does not increase the worst-case
asymptotic running time by more than a polynomial factor.

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:17

We have illustrated that our technique, when applied to the standard McNaughton-
Zielonka algorithm, yields an algorithm that can solve some hard examples [13] in polynomial
time. Other families of hard examples [32, 2] should also be analyzed. We believe that
studying the shapes of attractor decompositions of hard examples and how they impact the
intricate behaviour of symmetric attractor-based algorithms could shed new light on some
central questions in the algorithmic study of parity games, such as how to overcome the
quasi-polynomial barrier [6].

References
1 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Solving parity games

via priority promotion. Formal Methods Syst. Des., 52(2):193–226, 2018. doi:10.1007/
s10703-018-0315-1.

2 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Robust worst cases for parity
games algorithms. Inf. Comput., 272:104501, 2020. doi:10.1016/j.ic.2019.104501.

3 Massimo Benerecetti, Daniele Dell’Erba, Fabio Mogavero, Sven Schewe, and Dominik Wojtczak.
Priority promotion with parysian flair. CoRR, abs/2105.01738, 2021. arXiv:2105.01738.

4 J. C. Bradfield and I. Walukiewicz. The mu-calculus and Model Checking, pages 871–919.
Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17–152–
STOC17–188, 2022. doi:10.1137/17M1145288.

6 W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, and P. Parys. Universal
trees grow inside separating automata: Quasi-polynomial lower bounds for parity games.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2333–2349. SIAM, 2019.
doi:10.1137/1.9781611975482.142.

7 L. Daviaud, M. Jurdziński, and K. Lehtinen. Alternating weak automata from universal trees.
In 30th International Conference on Concurrency Theory, CONCUR 2019, volume 140 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:14, Amsterdam, the
Netherlands, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

8 Laure Daviaud, Marcin Jurdzinski, and K. S. Thejaswini. The strahler number of a parity
game, 2020. doi:10.4230/LIPIcs.ICALP.2020.123.

9 Anuj Dawar and Erich Grädel. The descriptive complexity of parity games. In Michael
Kaminski and Simone Martini, editors, Computer Science Logic, 22nd International Workshop,
CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008.
Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 354–368. Springer,
2008. doi:10.1007/978-3-540-87531-4_26.

10 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for fragments of
µ-calculus. In Costas Courcoubetis, editor, Computer Aided Verification, 5th International Con-
ference, CAV ’93, Elounda, Greece, June 28 – July 1, 1993, Proceedings, volume 697 of Lecture
Notes in Computer Science, pages 385–396. Springer, 1993. doi:10.1007/3-540-56922-7_32.

12 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation relations, par-
ity games, and state space reduction for büchi automata. In Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 694–707. Springer,
2001. doi:10.1007/3-540-48224-5_57.

FSTTCS 2022

https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1016/j.ic.2019.104501
http://arxiv.org/abs/2105.01738
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1137/17M1145288
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.4230/LIPIcs.ICALP.2020.123
https://doi.org/10.1007/978-3-540-87531-4_26
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1007/3-540-48224-5_57

44:18 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

13 Oliver Friedmann. Recursive algorithm for parity games requires exponential time. RAIRO
Theor. Informatics Appl., 45(4):449–457, 2011. doi:10.1051/ita/2011124.

14 Maciej Gazda and Tim A. C. Willemse. Zielonka’s recursive algorithm: dull, weak and solitaire
games and tighter bounds. In Gabriele Puppis and Tiziano Villa, editors, Proceedings Fourth
International Symposium on Games, Automata, Logics and Formal Verification, GandALF
2013, Borca di Cadore, Dolomites, Italy, 29-31th August 2013, volume 119 of EPTCS, pages
7–20, 2013. doi:10.4204/EPTCS.119.4.

15 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

16 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress measures and
coalgebraic model checking. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 – 22, 2016, pages 718–732.
ACM, 2016. doi:10.1145/2837614.2837673.

17 M. Jurdziński. Small progress measures for solving parity games. In 17th Annual Symposium
on Theoretical Aspects of Computer Science, volume 1770 of LNCS, pages 290–301, Lille,
France, 2000. Springer. doi:10.1007/3-540-46541-3_24.

18 M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–9, Reykjavik,
Iceland, 2017. IEEE Computer Society.

19 M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

20 Marcin Jurdziński, Rémi Morvan, and K. S. Thejaswini. Universal Algorithms for Parity
Games and Nested Fixpoints. CoRR, abs/2001.04333, 2020. arXiv:2001.04333.

21 J. J. A. Keiren. Benchmarks for parity games. In FSEN, volume 9392 of LNCS, pages 127–142,
Tehran, Iran, 2015. Springer. doi:10.1007/978-3-319-24644-4_9.

22 Ruben Lapauw, Maurice Bruynooghe, and Marc Denecker. Improving parity game solvers with
justifications. In Verification, Model Checking, and Abstract Interpretation, pages 449–470,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-39322-9_21.

23 K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pages 639–648,
Oxford, UK, 2018. IEEE. doi:10.1145/3209108.3209115.

24 K. Lehtinen, S. Schewe, and D. Wojtczak. Improving the complexity of Parys’ recursive
algorithm, 2019. arXiv:1904.11810.

25 Karoliina Lehtinen, Paweł Parys, Sven Schewe, and Dominik Wojtczak. A Recursive Approach
to Solving Parity Games in Quasipolynomial Time. Logical Methods in Computer Science,
Volume 18, Issue 1, January 2022. doi:10.46298/lmcs-18(1:8)2022.

26 R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,
65(2):149–184, 1993. doi:10.1016/0168-0072(93)90036-D.

27 P. Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In MFCS 2019, volume
138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:13, Aachen,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
MFCS.2019.10.

28 N. Piterman. From nondeterministic buchi and streett automata to deterministic parity
automata. In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
255–264, 2006. doi:10.1109/LICS.2006.28.

29 Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In Proceed-
ings of the 16th International Conference on Logic-Based Program Synthesis and Trans-
formation, LOPSTR’06, pages 127–142, Berlin, Heidelberg, 2006. Springer-Verlag. doi:
10.1007/978-3-540-71410-1_10.

https://doi.org/10.1051/ita/2011124
https://doi.org/10.4204/EPTCS.119.4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/2837614.2837673
https://doi.org/10.1007/3-540-46541-3_24
http://arxiv.org/abs/2001.04333
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1145/3209108.3209115
http://arxiv.org/abs/1904.11810
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1007/978-3-540-71410-1_10
https://doi.org/10.1007/978-3-540-71410-1_10

K. S. Thejaswini, P. Ohlmann, and M. Jurdziński 44:19

30 K. S. Thejaswini, Marcin Jurdziński, and Pierre Ohlmann. A technique to speed up symmetric
attractor-based algorithms for parity games. CoRR, abs/2010.08288, 2020. arXiv:2010.08288.

31 T. van Dijk. Oink: An implementation and evaluation of modern parity game solvers. In Tools
and Algorithms for the Construction and Analysis of Systems, 24th International Conference,
TACAS 2018, volume 10805 of LNCS, pages 291–308, Thessaloniki, Greece, 2018. Springer.
doi:10.1007/978-3-319-89960-2_16.

32 Tom van Dijk. A parity game tale of two counters. In Jérôme Leroux and Jean-François
Raskin, editors, Proceedings Tenth International Symposium on Games, Automata, Logics,
and Formal Verification, GandALF 2019, Bordeaux, France, 2-3rd September 2019, volume
305 of EPTCS, pages 107–122, 2019. doi:10.4204/EPTCS.305.8.

33 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1–2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

A Set and Move operator

We define operations like “Set T ϵ to S”, “Add S to Sω
Odd” etc., as operations performed on

sets rigorously. These short hands helped us capture the essence of these manipulations
performed on the decompositions to give a new one. With appropriate data structures, these
operations can be performed in nearly linear time, i.e, for a set of size k, it takes time at
most mk log(n) log(d).

Adding and removing vertices from Dϵ
Even and Dω

Odd

To make the definition of Set and Move easier, we define operations that would facilitate
this: First, we define ⊕ and ⊖. We also define an extention of our notation [Dϵ

Even] here. We
use JDϵ

EvenK to denote the set of of vertices in [Dϵ
Even] along with Sϵ

Even. We also introduce
one extra partition of vertices to the already existing ones in the decompositions: ⊤Even for
the Even decomposition and ⊤Odd for the Odd decomposition to accommodate vertices that
no longer fit into a decomposition.

Consider an Even decomposition DEven and an element of the Even tree ϵ at level h,
and subset of vertices U , whose priorites are at most h + 1. Intuitively, we modify the
decomposition Dϵ

Even by adding elements of a set U to it whilst maintaining all the properties
of a decomposition. More rigorously, we let JDϵ

EvenK ← JDϵ
EvenK ⊕ U denote the following

operations in that order:
Sϵ

Even ← Sϵ
Even ∪

(
U ∩ π−1(h + 1)

)
;

Hϵ
Even ← Hϵ

Even ∪
(
U ∩ π−1(h)

)
;

T ϵ
Even ← T ϵ

Even ∪
(
U ∩ π−1(< h)

)
.

One could analogously define the operators ⊕ for Dω
Odd for an Odd decomposition.

To remove vertices U from the decomposition Dϵ
Even, we define JDϵ

EvenK← JDϵ
EvenK⊖ U

as follows: for each ϵ′ in the subtree of ϵ,
Sϵ′

Even ← Sϵ′

Even \ U ;
Hϵ′

Even ← Hϵ′

Even \ U ;
T ϵ′

Even ← T ϵ′

Even \ U .

Setting T ϵ
Even

To give an intuitive definition of “Set T ϵ
Even to S”, we essentially replace the set of vertices at

T ϵ
Even with S, and we remove vertices which are originally there which are not S and assign

them to the next available positions in the decomposition that would be processed. For a
subset of vertices S, we define “Set T ϵ

Even to S” where the set T ϵ
Even contains S.

FSTTCS 2022

http://arxiv.org/abs/2010.08288
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.4204/EPTCS.305.8
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

44:20 A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

R← T ϵ
Even \ S

T ϵ
Even ← S

JDϵ1
EvenK← JDϵ1

EvenK⊕R, where
ϵ1 is the first child of ϵ in the tree if ϵ is not a leaf,
if ϵ is a leaf, then ϵ1 is the smallest node larger than epsilon, and
if the smallest node larger than epsilon does not exist in the tree, we let an element
⊤Even ← R.

Setting Sωi

Odd

This is very similar to the above, the only difference is in the last line. We could unify these
setting operations, but we give them separately for more clarity. For a subset S of vertices,
we define “Set Sωi

Odd to S” to be:
R← Sωi

Odd \ S

Sωi

Odd ← S

if i is the last child of ω, then Sω
Odd ← Sω

Odd ∪R

if not, then JDωi+1
Odd K← JDωi+1

Odd K⊕R

Moving vertices to Sωi

Odd

For a subset of vertices S, we define “ Move S to at least Sωi

Odd” as follows: we first remove
S from all the other positions in the decomposition rooted at ωi and then add it to Sωi

Odd if
it was in JDωi

OddK.
R← JDωi

OddK ∩ S

JDωi

OddK← JDωi

OddK⊖ S

Sωi

Odd ← Sωi

Odd ∪R

The even counterpart is defined similarly.

	p000-Frontmatter
	Preface
	Program Committee
	List of External Reviewers: Track A
	List of External Reviewers: Track B

	p001-Gupta
	p002-Santhanam
	p003-Bouyer
	1 Introduction
	2 Games on Graphs, Objectives, Chromatic Memory
	3 Characterization of finite-memory-determined objectives
	3.1 Finite graph games
	3.1.1 Memoryless-determined objectives
	3.1.2 Finite-memory-determined objectives

	3.2 Infinite graph games

	4 Memory requirements of omega-regular objectives
	5 Perspectives

	p004-Dinur
	p005-Babu
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	4 FPT Algorithms and Kernels for Packing Arc-Disjoint 4-Cycles
	4.1 Solution Size as Parameter
	4.2 Vertex Cover Size as Parameter

	5 Concluding Remarks

	p006-Beideman
	1 Introduction
	1.1 Our Results
	1.2 Preliminaries
	1.3 Proof of Proposition 2

	2 Lower Bound
	3 Upper Bounds
	3.1 Concave Functions
	3.1.1 Anonymized Concave Linear Functions
	3.1.2 Symmetrized Concave Linear Functions

	3.2 Symmetrized Matroid Rank Functions

	4 Conclusion
	A Proof of Lemma 12

	p007-Bilardi
	1 Introduction
	2 Visits of a DAG
	3 Boundary complexity and pebbling number
	4 Upper bounds on boundary complexity
	4.1 The enabled reach of a vertex
	4.2 General rules
	4.3 Singleton rule r^{(sin)} {}
	4.4 Topological rule r^{(top)} {}

	5 Visits and I/O complexity
	5.1 Segment partitions of a visit
	5.2 Lower bound
	5.3 Comparison with Hong and Kung's S-partition technique
	5.4 Extensions to related I/O models

	6 Conclusions
	A Proofs of technical results

	p008-Bishnu
	1 Introduction
	1.1 Definition and motivation of INNER PRODUCT oracle
	1.2 The problems, results and paper organization

	2 Inner product oracle vis-a-vis other query oracles
	3 A query model for induced subgraph problems
	3.1 Limitations of local and random edge queries
	3.2 A query model for induced subgraphs

	4 Bilinear form estimating and sampling entries of a matrix
	4.1 Algorithm for Bilinear Form Estimation
	4.2 Algorithm for Sampling Almost Uniformly

	5 Conclusion and discussions
	A Useful probability bounds

	p009-Bisht
	1 Introduction
	1.1 Our results
	1.2 Related works
	1.3 Proof Techniques

	2 Preliminaries
	3 Polytope entropy – Theorem 1.6
	4 Factor sparsity bounds: Proof of Theorems 1.3 & 1.5
	4.1 Polytope bounds
	4.2 Factor-sparsity bounds
	4.3 Tightness of sparsity bounds

	5 Factoring algorithms: Proof of Theorems 1.2 & 1.4
	6 Future directions
	A Preliminary observations for Section 4
	B Algebraic computational models

	p010-Bisht
	1 Introduction
	1.1 Our Results
	1.1.1 Identity Testing for Sigma^{[2]}PiSigmaPi^{[ind-deg d]} Circuits
	1.1.2 Exact Powers
	1.1.3 Improved Sparsity Bounds for Co-factors of Multilinear Polynomials

	1.2 Related Work
	1.3 Our Techniques & Proof Ideas
	1.3.1 Exact Power Testing
	1.3.2 Co-Factor Sparsity Bound

	1.4 Multilinear co-Factor Motivation

	2 Preliminaries
	2.1 Vectors and Interlacing

	3 GCD, Resultants and Subresultants
	4 PIT for Sigma^{[2]}PiSigmaPi^{[ind-deg d]} Circuits
	4.1 The Sigma^{[k]}PiSigmaPi^{[ind-deg d]} Model
	4.2 The PIT Algorithm

	5 Future Directions
	A Missing Proofs
	A.1 Proof of Theorem 14
	A.2 Proof of Lemma 7
	A.3 Proof of Theorem 1

	p011-Chatterjee
	1 Introduction
	2 Model and definitions
	3 Exponential cycle
	4 Construction of a Turing machine
	4.1 Basic gadgets
	4.2 Connecting the graph
	4.3 Function construction
	4.4 Blob and connections

	5 Conclusion
	A Construction for a more general b
	B More gadgets

	p012-Chattopadhyay
	1 Introduction
	1.1 Outline of our Technique

	2 Preliminaries
	2.1 Structure of Monotone Circuits
	2.2 Structure of Monotone ABPs
	2.3 Structure of (Monotone) Set-Multilinear Formulas
	2.4 Structure of (Monotone) Set-Multilinear Constant Depth Formula
	2.5 Communication Complexity

	3 Discrepancy Bound for Graph Inner Product
	3.1 Graph Inner Product Function
	3.2 Graph Inner Product Polynomial
	3.3 Discrepancy and Lower Bound Correspondence
	3.4 Good Matching in Graphs
	3.5 A Communication Problem

	4 Monotone Circuit Lower Bound via Expander Graph-IP Polynomial
	5 Separation between Monotone Circuits and Monotone ABPs via Tree-IP Polynomial
	5.1 Upper Bound
	5.2 Lower Bound

	A Monotone Separations via Path-IP Polynomial
	A.1 Separation between Monotone ABPs and Monotone Formulas
	A.2 Separation between Monotone Constant Width ABPs and Monotone Constant Depth Formulas

	B Structure Theorems for Monotone Set-Multilinear Formulas
	C Good Matching in Constant Degree Expander Graphs

	p013-Chung
	1 Introduction
	2 Preliminaries
	3 Largest inscribed unit histogon
	3.1 One side-contact (type A) or two corner-contacts (type B)
	3.2 Four corner-contacts (type C)
	3.3 Three corner-contacts (type D)

	4 Improved algorithms for a largest inscribed unit histogon
	4.1 Orientations dominated by other orientations
	4.2 Orientations theta with height delta

	5 Largest inscribed histogon and smallest circumscribed histogon

	p014-Cook
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Proof Idea
	2.1 Computation Graphs
	2.2 Arithmetization and Low Degree Extensions
	2.3 Sum Check
	2.4 Product Reduction
	2.5 Protocol For Deterministic Algorithms

	3 Preliminaries
	3.1 Complexity Classes
	3.2 Multilinear Extensions

	4 Efficient IP for TISP
	4.1 Product Reduction
	4.2 Matrix Squared To Matrix Reduction
	4.3 Arithmetization
	4.4 Protocol for TISP

	5 Open Problems
	A Sum Check
	B Arithmetization Examples

	p015-Cornelissen
	1 Introduction
	1.1 Span Programs
	1.2 Dual Adversary Bound
	1.3 Related Works
	1.4 Our Contributions
	1.5 Organization

	2 Decision Tree Rank
	2.1 Guessing Complexity and Rank
	2.2 A Separation Between Rank and Randomized Rank

	3 Proof of Theorem 8
	4 An Optimal Weight Assignment
	A Preliminaries
	A.1 Decision Trees
	A.2 Quantum Query Complexity

	B Construction of Span Programs and Dual Adversary Solution of [5]
	B.1 Span Program Construction
	B.2 Witness Complexity Analysis
	B.3 Dual Adversary Solution

	p016-Curticapean
	1 Introduction
	2 Preliminaries
	3 Main result in characteristic zero
	4 Main result in positive characteristic
	5 Proof of Theorem 4

	p017-De
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions
	1.3 Organization

	2 Notation and Preliminaries
	2.1 Lower Bounds
	2.2 Unit Covering vs Unit Piercing
	2.3 Objects with Fixed Aspect Ratio

	3 Upper Bound for Bounded Scaled Objects
	3.1 For Objects with Fixed Aspect{_{infinity}} Ratio
	3.2 For alpha-Aspect Objects in R^3

	4 Lower Bound for Bounded Scaled Objects
	4.1 alpha-Aspect Objects in R^2
	4.2 Fixed Oriented Hypercubes in R^d
	4.3 Balls in R^2 and R^3

	5 Conclusion

	p018-Duraisamy
	1 Introduction
	1.1 Definitions
	1.2 Previous Works
	1.3 Our Contribution

	2 PTAS for Vertex Guarding a WV-Polygon with Half-Guards
	2.1 Algorithm Overview
	2.2 Local Search Analysis
	2.3 Constructing G
	2.4 Removing the Convexity Assumption
	2.5 Guarding the boundary of a weakly-visible polygon

	3 NP-hardness for Vertex Guarding a Terrain with Half-Guards
	3.1 Terrain Hardness Modifications

	4 NP-hardness for Vertex Guarding a WV-Polygon with Half-Guards
	4.1 Stretching Hardness

	5 Conclusion and Future Work

	p019-Gangam
	p020-Gesmundo
	1 Introduction
	2 Preliminaries
	2.1 Projective geometry
	2.2 Algebraic branching programs
	2.3 Strength and slice rank of polynomial

	3 Degree-restricted strength decompositions and lower bounds on ABP size
	3.1 Basic properties and connection to ABPs
	3.2 Lower bound on degree-restricted strength
	3.3 Intersection theory of Z(P_{n,d})
	3.4 Slice rank lower bound

	4 Geometry of algebraic branching programs

	p021-Joshi
	1 Introduction
	2 Laminar geometric intersection graphs
	2.1 Tree representation and our algorithm
	2.2 Optimality of our algorithm
	2.3 A non-inversion coloring of the tree

	3 A fast implementation
	4 Future work

	p022-Kavitha
	1 Introduction
	1.1 Background and related results
	1.2 Our techniques

	2 Preliminaries
	3 Our algorithm for a near-popular matching
	3.1 Correctness of our algorithm
	3.2 Running time of our algorithm

	4 Maximum matchings and approximate popularity
	5 Conclusions and open problems

	p023-Khan
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Technical Contribution

	2 Preliminaries and Notation
	2.1 Configuration LP

	3 Simple Algorithms
	4 Round-and-Approx Framework
	4.1 Fractional Structured Packing
	4.2 Properties of round
	4.3 complexPack and unround
	4.4 AAR of R&A
	4.5 Example: simplePack

	5 Improved Approximation Algorithms
	5.1 Overview of Structural Result
	5.2 Overview of the Algorithmic Step

	A Formal Definition of (d_g, d_v) Packing
	B Next-Fit Decreasing Height (NFDH)
	C Details of the R&A Framework
	C.1 Error in Previous R&A Framework

	p024-Koiran
	1 Introduction
	1.1 Sums of powers of linear forms
	1.2 Connection to Tensor Decomposition
	1.3 Results and methods
	1.4 Notations

	2 Equivalence to a linear combination of d-th powers
	2.1 Characterisation of equivalence to P_d
	2.2 Analysis for positive inputs
	2.3 Analysis of negative inputs
	2.3.1 Failure of commutativity
	2.3.2 Failure of diagonalisability
	2.3.3 Finishing the analysis for negative inputs

	p025-Lachish
	1 Introduction and Related Work
	2 Preliminaries
	3 Constructing the template-graph
	4 The seeker strategy
	5 Conclusion

	p026-Maharjan
	1 Introduction
	2 Decision trees
	3 Patterns and redundant queries
	4 Valid patterns
	5 The algorithm: Proof of Theorem 1
	6 Future directions

	p027-Misra
	1 Introduction
	2 co-para-NP-hardness Parameterized by FVS and Pathwidth
	3 co-W[1]-hardness Parameterized by FVS, Pathwidth, and the Solution Size
	4 FPT Parameterized by the Vertex Cover Number and Solution Size
	5 Conclusion
	A Appendix
	A.1 Preliminaries

	B Some Polynomial Cases

	p028-Vazirani
	1 Introduction
	2 Related Works
	3 The Core of the Assignment Game
	3.1 Definitions and Preliminary Facts
	3.2 The first question: Allocations made to agents by core imputations
	3.3 The second question: Allocations made to teams by core imputations
	3.4 The third question: Degeneracy

	4 The Core of Bipartite b-Matching Games
	4.1 Definitions and Preliminary Facts
	4.1.1 The Framework of Deng et al. [5]

	4.2 The Core of the Unconstrained Bipartite b-Matching Game

	5 The Core of the Constrained Bipartite b-Matching Game
	6 Discussion

	p029-Ahmadi
	p030-Avni
	1 Introduction
	2 Preliminaries
	2.1 Concurrent games
	2.2 Bidding games
	2.3 Objectives

	3 Threshold Budgets and the Average Property
	3.1 Reachability continuous-bidding games
	3.2 Constructing strategies based on the discrete average property
	3.3 Properties of functions with the average property
	3.4 Frugal-reachability discrete-bidding games

	4 A Fixed-Point Algorithm for Finding Threshold Budgets
	5 Finding threshold budgets is in NP and coNP
	5.1 From bidding games to turn-based games
	5.2 Correctness

	6 Discussion
	A Example of the construction of G_{T, {G}}

	p031-Bellier
	1 Introduction
	2 Dependency Matrices and Examples
	3 Background
	4 The Formal Setting of Dependency Matrices
	4.1 The Meta Arena of a Matrix
	4.2 Progressing Matrix
	4.3 Strategies in the Meta Arena
	4.4 Arbitrary Matrices

	5 Undecidability of EWS
	6 Decidability of EWS for perfect-information Matrices
	6.1 Definition and Properties
	6.2 A Parity Game to solve the Existence of a Winning Strategy
	6.3 Reduction from the Church Synthesis problem
	6.4 Perfect-Information Matrices with Possibly Infinite Values

	7 Conclusion
	A Proofs of Section 4
	B Proofs of Section 6
	C Reduction from Church matrices to Round Robin matrices
	D Proof of Theorem 33

	p032-Bertrand
	1 Introduction
	2 Preliminaries
	2.1 Network Congestion Games and Series-Parallel Arenas
	2.2 Presburger Arithmetic and Semilinear Sets

	3 Local Social Optima
	3.1 Locally-Optimal Profiles
	3.2 Large Numbers of Players
	3.3 A Unique Period Vector: The Characteristic Vector

	4 Nash Equilibria
	5 Computation of PoA and PoS
	6 More on Related Works
	7 Conclusion
	A Proofs of Section 3
	A.1 Proofs of Section 3.1 and 3.2

	B Proofs of Section 4

	p033-Bordais
	1 Introduction
	2 Game Forms
	3 Concurrent Stochastic Games
	4 Uniform Optimality with Positional Strategies
	5 Playing Optimally with Positional Strategies in Büchi Games
	5.1 Playing optimally when optimal strategies exist from every state
	5.2 Game forms ensuring the existence of optimal strategies
	5.3 GFs ensuring the existence of positional almost-optimal strategies

	6 Playing Optimally in co-Büchi Games
	6.1 Optimal strategies may require infinite memory in co-Büchi games
	6.2 GFs in co-Büchi games which ensure positional optimal strategies

	7 Conclusion
	A Infinite memory to play epsilon-optimal strategies in Büchi games
	B Playing optimally in the game of Figure 11

	p034-Carton
	1 Introduction
	2 Definitions
	2.1 Words, sequences and measures
	2.2 Automata and ambiguity

	3 Main result
	4 Reduction to closed sets
	5 Proof for closed sets

	p035-De
	1 Introduction
	2 Background
	2.1 Linear logic and phase semantics
	2.2 Fixpoint theory and fixpoint logic
	2.3 Multiplicative additive linear logic with fixpoints

	3 Phase semantics of
	3.1 Soundness
	3.2 Completeness
	3.3 Closure ordinals

	4 : an infinitary proof system
	4.1 Soundness and completeness of
	4.2 Finite model property

	5 Conclusion
	A Summary of systems used in the paper
	B Detailed proofs and clarifications
	B.1 Proofs of
	B.1.1 Proof of
	B.1.2 Proof of
	B.1.3 Proof of

	B.2 Proofs of
	B.2.1 Proof of
	B.2.2 Proof of

	p036-Ehlers
	1 Introduction
	2 Preliminaries
	3 Towards A Canonical Language Representation
	3.1 The Case of the Most Significant Color
	3.2 Generalizing to All Colors

	4 The Natural Color of a Word
	4.1 Streamlining DPAs
	4.2 From Streamlined DPAs to Color-Recognising GCAs
	4.3 Reading off Natural Colors from Streamlined Automata

	5 Related Work
	6 Conclusion

	p037-Finkbeiner
	1 Introduction
	2 Preliminaries
	3 Dominant Strategies and Liveness Properties
	4 Delay-Dominance
	5 Synthesizing Delay-Dominant Strategies
	5.1 Construction of the ACA BA
	5.2 Construction of the UCA Add

	6 Compositional Synthesis with Delay-Dominant Strategies
	7 Conclusion

	p038-Ganardi
	p039-Garg
	1 Introduction
	1.1 Overview of continuous double auctions
	1.2 Results
	1.3 Related work
	1.4 Organization of the rest of the paper

	2 Preliminaries
	2.1 Orders
	2.2 Transactions and matchings
	2.3 Order book and process

	3 Three natural properties of a process
	4 Maximum matching
	5 Local Uniqueness
	6 Global uniqueness
	7 Verified Algorithm
	8 Application: checker
	8.1 Algorithm for checker
	8.2 Preprocessing an order book
	8.3 Demonstration

	9 Conclusions
	A Correctness of Process_instruction
	A.1 Match_Ask satisfies positive bid-ask spread
	A.2 Match_Ask satisfies price-time priority
	A.3 Match_Ask satisfies conservation

	p040-Guha
	1 Introduction
	2 Definitions
	3 Parikh Automata over Infinite Words
	4 Expressiveness
	5 Closure Properties
	6 Decision Problems
	6.1 Nonemptiness
	6.2 Universality
	6.3 Model Checking
	6.4 Infinite Games

	7 Conclusion
	A Appendix: Parikh Automata and Two-counter Machines
	A.1 Proofs omitted in Section 6

	p041-Koechlin
	p042-Kupferman
	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Parity games
	2.3 The temporal logic LTL[F]
	2.4 LTL[F] synthesis
	2.5 Satisfaction value in noisy computations

	3 Problem Formulation
	3.1 Noisy transducers
	3.2 Synthesis with privacy

	4 Specifying Secrets
	4.1 Extension to multiple and LTL[F] secrets

	5 Solving Synthesis with Privacy
	5.1 Solution for a DPW
	5.2 Solution for a UGCW

	6 On the Trade-off Between Utility and Privacy
	7 Discussion
	A Tree Automata
	B Missing Proofs
	B.1 Proof of Theorem 4
	B.2 Proof of Theorem 8
	B.3 Proof of Proposition 11
	B.4 Proof of Theorem 12
	B.5 Proof of Proposition 13

	p043-Place
	1 Introduction
	2 Preliminaries
	2.1 Words, regular languages and classes
	2.2 Polynomial and Boolean closure

	3 Separation framework
	3.1 The separation problem
	3.2 Tuple separation

	4 Separation Algorithms for BPol(G) and BPol(G+)
	4.1 Statements
	4.2 Proof of Theorem 20

	5 Conclusion
	A Appendix

	p044-Thejaswini
	1 Context and contributions
	2 Games, Strategies, Attractor decomposition
	3 Making McNaughton-Zielonka faster with some memory
	4 Using smaller trees
	5 Outlook
	A Set and Move operator

