42nd IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2022, December 18-20, 2022, IT Madras, Chennai,
India

Edited by
Anuj Dawar
Venkatesan Guruswami

\\v LIPICS

LIPlcs — Vol. 250 — FSTTCS 2022 www.dagstuhl.de/lipics

Editors

Anuj Dawar
University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Venkatesan Guruswami
University of California, Berkeley, USA
venkatg@berkeley.edu

ACM Classification 2012
Theory of computation; Computing methodologies; Software and its engineering

ISBN 978-3-95977-261-7

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-261-7.

Publication date
December, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.FSTTCS.2022.0

ISBN 978-3-95977-261-7 ISSN 1868-8969 https: / /www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4014-8248
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0001-7926-3396
mailto:venkatg@berkeley.edu
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-261-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Anuj Dawar and Venkatesan GUruswamioeuiiinininianean.. 0:ix

Program Committee

... 0:xi
List of External Reviewers: Track A
... 0:xiii
List of External Reviewers: Track B
... 0:xv
Invited Talks
Algorithms for Uncertain Environments: Going Beyond the Worst-Case
Anupam GUDEGo 1:1-1:1
Why MCSP Is a More Important Problem Than SAT
Rahul Santhanam 2:1-2:1
The True Colors of Memory: A Tour of Chromatic-Memory Strategies in
Zero-Sum Games on Graphs
Patricia Bouyer, Mickael Randour, and Pierre Vandenhove 3:1-3:18
Expanders in Higher Dimensions
Irit Dinur ..o e 4:1-4:1
Regular Papers
Packing Arc-Disjoint 4-Cycles in Oriented Graphs
Jasine Babu, R. Krithika, and Deepak Rajendraprasad 5:1-5:16
Approximate Representation of Symmetric Submodular Functions via
Hypergraph Cut Functions
Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri,
and Chao XU ... 6:1-6:18
The DAG Visit Approach for Pebbling and I/O Lower Bounds
Gianfranco Bilardi and Lorenzo De Stefani oo, 7:1-7:23
Counting and Sampling from Substructures Using Linear Algebraic Queries
Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar 8:1-8:20
Derandomization via Symmetric Polytopes: Poly-Time Factorization of Certain
Sparse Polynomials
Pranav Bisht and Nitin SaTemao oo 9:1-9:19
On Solving Sparse Polynomial Factorization Related Problems
Pranav Bisht and Ilya Volkovich 10:1-10:22

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

Complexity of Spatial Games
Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaél Jecker,
and Jakub Svoboda 11:1-11:14

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product
Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay 12:1-12:20

Inscribing or Circumscribing a Histogon to a Convex Polygon
Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duk Yoon,
and Hee-Kap AMN ..o 13:1-13:16

More Verifier Efficient Interactive Protocols for Bounded Space
Joshua Cook 14:1-14:18

Improved Quantum Query Upper Bounds Based on Classical Decision Trees
Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro 15:1-15:22

On the VNP-Hardness of Some Monomial Symmetric Polynomials
Radu Curticapean, Nutan Limaye, and Srikanth Srinfvasan 16:1-16:14

Online Piercing of Geometric Objects
Minati De, Saksham Jain, Sarat Varma Kallepalli, and Satyam Singh 17:1-17:16

Half-Guarding Weakly-Visible Polygons and Terrains
Nandhana Duraisamy, Hannah Miller Hillberg, Ramesh K. Jallu, Erik Krohn,
Anil Maheshwari, Subhas C. Nandy, and Alex Pahlow 18:1-18:17

A Structural and Algorithmic Study of Stable Matching Lattices of “Nearby”
Instances, with Applications
Rohith Reddy Gangam, Tung Mai, Nitya Raju, and Vijay V. Vazirani 19:1-19:20

Degree-Restricted Strength Decompositions and Algebraic Branching Programs
Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer,
and Viadimir Lysikov 20:1-20:15

A Simple Polynomial Time Algorithm for Max Cut on Laminar Geometric
Intersection Graphs

Utkarsh Joshi, Saladi Rahul, and Josson Joe Thoppil 21:1-21:12
Stable Matchings with One-Sided Ties and Approximate Popularity

Telikepalli Kavithao o e e 22:1-22:17
Geometry Meets Vectors: Approximation Algorithms for Multidimensional
Packing

Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas 23:1-23:22

Black Box Absolute Reconstruction for Sums of Powers of Linear Forms
Pascal Koiran and Subhayan Saha 24:1-24:17

When You Come at the King You Best Not Miss
Oded Lachish, Felix Reidl, and Chhaya Trehan i 25:1-25:12

Complexity of Fault Tolerant Query Complexity
Ramita Maharjan and Thomas Watson 26:1-26:11

Romeo and Juliet Meeting in Forest like Regions
Neeldhara Misra, Manas Mulpuri, Prafullkumar Tale, and Gaurav Viramgami 27:1-27:22

Contents

New Characterizations of Core Imputations of Matching and b-Matching Games

Vigay V. Vazirani e

Algorithms and Hardness Results for Computing Cores of Markov Chains
Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady,

Tobias Meggendorfer, Roodabeh Safavi, and Dorde Zikelic

Computing Threshold Budgets in Discrete-Bidding Games

Guy Avni and Suman Sadhukhan

Dependency Matrices for Multiplayer Strategic Dependencies

Dylan Bellier, Sophie Pinchinat, and Francois Schwarzentruber

Semilinear Representations for Series-Parallel Atomic Congestion Games

Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur

Playing (Almost-)Optimally in Concurrent Biichi and Co-Biichi Games

Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux

Ambiguity Through the Lens of Measure Theory

OlIvier Cartomn

Phase Semantics for Linear Logic with Least and Greatest Fixed Points

Abhishek De, Farzad Jafarrahmani, and Alexis Saurin

Natural Colors of Infinite Words

Riidiger Ehlers and Sven Schewe i

Synthesizing Dominant Strategies for Liveness

Bernd Finkbeiner and Noemi Passingououeuiiini i,

Low-Latency Sliding Window Algorithms for Formal Languages

Moses Ganardi, Louis Jachiet, Markus Lohrey, and Thomas Schwentick

The Design and Regulation of Exchanges: A Formal Approach

Mohit Garg and Suneel Sarswato,

Parikh Automata over Infinite Words

Shibashis Guha, Ismaél Jecker, Karoliina Lehtinen, and Martin Zimmermann

New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free
Languages

Florent Koechlin e

Synthesis of Privacy-Preserving Systems

Orna Kupferman and Ofer Leshkowitz

A Generic Polynomial Time Approach to Separation by First-Order Logic
Without Quantifier Alternation

Thomas Place and Marc Zeitoun

A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games
K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdzinski

0:vii

28:1-28:13

29:1-29:20

30:1-30:18

31:1-31:21

32:1-32:20

33:1-33:18

34:1-34:14

35:1-35:23

36:1-36:17

37:1-37:19

38:1-38:23

39:1-39:21

40:1-40:20

41:1-41:22

42:1-42:23

43:1-43:22

44:1-44:20

FSTTCS 2022

Preface

This volume contains the proceedings of the 42nd TARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2022). The conference
was held on December 18-21, 2022 on the campus of IIT Madras in Chennai, India. This
was the first time in three years that it was possible for the conference to be held in person.
Some participants were nonetheless able to participate remotely.

The conference has two tracks. Track A focusing on algorithms, complexity and related
issues, and Track B focusing on logic, automata and other formal method aspects of computer
science. Each track had its own Program Committee (PC) and chair (Venkatesan Guruswami
for Track A and Anuj Dawar for Track B). This volume constitutes the joint proceedings of
the two tracks, published in the LIPIcs series under a Creative Common license, with free
online access for all.

The conference comprised of 5 invited talks, 24 contributed talks in Track A, and 16 in
Track B. This volume contains all the contributed papers from the two tracks, short abstracts
of three of the invited talks as well as a longer paper accompanying one of the invited talks.
We thank all the authors who submitted their papers to FSTTCS 2022. We are especially
grateful to the PC members for their tireless work, and all the external reviewers for their
expert opinion in the form of timely reviews.

We thank all the invited speakers for accepting our invitation: Patricia Bouyer-Decitre
(CNRS and ENS Paris-Saclay), Irit Dinur (Weizmann Institute), Anupam Gupta (Carnegie
Mellon University), Akash Lal (Microsoft Research), and Rahul Santhanam (University of
Oxford).

The main conference was accompanied by three workshops or other colocated events: Al-
gorithms under Uncertainty (organized by Anupam Gupta, Ravishankar Krishnaswamy, Amit
Kumar and Debmalya Panigrahi), Fine-grained Cryptography (organized by Divesh Aggarwal,
Huck Bennett, Alexander Golovnev, Rajendra Kumar and Noah Stephens-Davidowitz), and
SAT+SMT Winter School (organized by Supratik Chakraborty, Ashutosh Gupta, Saurabh
Joshi, Kumar Madhukar, Kuldeep S. Meel and Subodh Sharma).

We are indebted to the organizing committee members: Meghana Nasre (IIT Madras),
Chandrashekhar Sahasrabudhe (ACM India, Member), and Jayalal Sarma (IIT Madras) so
ably supported by members of the Theory Group and CCD group at IIT Madras. They made
all the necessary arrangements for the conference. We thank S.P. Suresh (CMI, Chennai) for
maintaining the conference web page. We thank Michael Wagner and the friendly staff at
Dagstuhl LIPICs for helping us put together the proceedings. Finally, we thank the members
of the Steering Committee, especially Amit Kumar, and the PC Chairs from FSTTCS 2021
(Chandra Chekuri and Mikolaj Bojariczyk), for providing pertinent information and advice
about various aspects of the conference.

Anuj Dawar and Venkatesan Guruswami

October 2022

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Track A

Venkatesan Guruswami (University of California, Berkeley) — Co-chair
V. Arvind (The Institute of Mathematical Sciences)

Divesh Aggarwal (National University of Singapore)

Diptarka Chakraborty (National University of Singapore)

Radu Curticapean (IT University of Copenhagen)

Sumegha Garg (Harvard University)

Badih Ghazi (Google Research)

Tom Gur (University of Warwick)

Euiwoong Lee (University of Michigan)

Debmalya Panigrahi (Duke University)

Pravesh Kothari (Carnegie Mellon University)

Nicole Megow (Universitdt Bremen)

Prajakta Nimbhorkar (Chennai Mathematical Institute)

Rishi Saket (Google Research, India)

Ramprasad Saptharishi (Tata Institute of Fundamental Research)
Rakesh Venkat (Indian Institute of Technology, Hyderabad)
David Wajc (Stanford University)

Amir Yehudayoff (Technion, Israel)

Meirav Zahavi (Ben-Gurion University, Israel)

Track B

Anuj Dawar (University of Cambridge) — Co-chair

Ashutosh Trivedi (University of Colorado Boulder)

Deepak D’Souza (Indian Institute of Science)

Igor Walukiewicz (Université de Bordeaux, France)

Jonni Virtema (University of Sheffield, UK)

Laura Bozzelli (University of Naples, Italy)

Laure Daviaud (City University of London)

Maribel Fernandez (King’s College London)

Mohamed Faouzi Atig (Uppsala University, Sweden)

Natasha Alechina (Utrecht University, Netherlands)

Nathan Lhote (Aix-Marseille University, France)

Olaf Beyersdorff (Friedrich Schiller University Jena, Germany)
Radha Jagadeesan (DePaul University)

Shaull Almagor (Technion, Israel)

Shibashis Guha (Tata Institute of Fundamental Research)
Supratik Chakraborty (Indian Institute of Technology, Bombay)

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2022).
Editors: Anuj Dawar and Venkatesan Guruswami

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS

2022).

Editors: Anuj Dawar and Venkatesan Guruswami
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

\\v LIPICS

List of External Reviewers: Track A

Aditya Anand
Akshayaram Srinivasan
Arantxa Zapico
Boaz Patt-Shamir
Chandan Saha
Christoph Grunau
Csaba Toth

Eldon Chung
Fahad Panolan
Geeverghese Philip
Gregory Rosenthal
Igor Zablotchi
Jayalal Sarma
Jocelyn Thiebaut
Klara Nosan
Makrand Sinha
Matthieu Perrin
Mrinal Kumar
Nathaniel Kell
Oded Lachish
Parth Mittal

Petr Golovach
Pranjal Dutta
Prerona Chatterjee
Rajendra Kumar
Rogers Mathew
Sheikh Shakil Akhtar
Srijita Kundu
Srinivasa Rao Satti
Suthee Ruangwises
Ton Kloks
Vishwas Bhargava

Zeyong Li

Akanksha Agrawal
Alex Steiger

Ben Lee Volk
Bodhayan Roy
Chetan Gupta
Christopher Liaw
Daniel Schmand
Erin Taylor

Fedor Fomin
Girija Limaye
Gunjan Kumar
Ilan Cohen

Jiong Guo

Kai Jin

Kushagra Chatterjee
Matthias Mnich
Mingyu Xiao
Nai-Hui Chia
Neeldhara Misra
Omrit Filtser
Partha Mukhopadhyay
Piyush Srivastava
Pratik Ghosal
Pushkar Joglekar
Rob van Stee
Ruoxu Cen
Siddhartha Jain
Srikanth Srinivasan
Suprovat Ghoshal
Tomas Peitl
Venkatesh Raman

Yuri Faenza

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS

2022).

Editors: Anuj Dawar and Venkatesan Guruswami
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

\\v LIPICS

List of External Reviewers: Track B

Adriano Peron

Asaf Yeshurun

B. Srivathsan

Bernd Finkbeiner
Cesar Sanchez

Dario Della Monica
Geraud Senizergues
Hrishikesh Karmarkar
Jean-Francois Raskin
Laurent Doyen

Luc Spachmann
Marc Schroder
Martin Zimmermann
Michael Cadilhac
Patrick Totzke
Pietro Sala

Rémi Morvan

Stanly John Samuel
Tim Hoffmann
Tuomas Hakoniemi
Yuta Takahashi

Antonio Casares
Ashutosh Gupta
Benjamin Béhm

C. Aiswarya

Corto Mascle

Dror Fried

Hoang Nga Nguyen
Jakub Gajarsky

K. S. Thejaswini
Luc Dartois

M. Praveen
Markus L. Schmid
Massimo Benerecetti
Mukesh Tiwari
Pawet Parys
Prakash Saivasan
S. Akshay
Sumanth Prabhu
Tomas Masopust

Vrunda Dave

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Algorithms for Uncertain Environments: Going
Beyond the Worst-Case

Anupam Gupta =
Carnegie Mellon University, Pittsburgh, PA, USA

—— Abstract

Analyzing the performance of algorithms in both the worst case and the average case are cornerstones
of computer science: these are two different ways to understand how well algorithms perform. Over
the past two decades, there has been a concerted effort to understand the performance of algorithms
in models that go beyond these two extremes. In this talk I will discuss some of the proposed models
and approaches, particularly for problems related to online algorithms, where decisions must be
made sequentially without knowing future portions of the input.

2012 ACM Subject Classification Theory of computation — Online algorithms

Keywords and phrases Optimization under Uncertainty, Online Algorithms, Beyond Worst Case
Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.1

Category Invited Talk

© Anupam Gupta;
37 licensed under Creative Commons License CC-BY 4.0

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Why MCSP Is a More Important Problem Than
SAT

Rahul Santhanam =24
Department of Computer Science, University of Oxford, UK

—— Abstract

CNF Satisfiability (SAT) and its variants are generally considered the central problems in complexity
theory, due to their applications in the theory of NP-completeness, logic, verification, probabilistically
checkable proofs and parameterized complexity, among other areas. We challenge this conventional
wisdom and argue that analysing the Minimum Circuit Size Problem (MCSP) and its relatives
is more important from the perspective of fundamental problems in complexity theory, such as
complexity lower bounds, minimal assumptions for cryptography, a robust theory of average-case
complexity, and optimal results in hardness of approximation.

2012 ACM Subject Classification Theory of computation — Computational complexity and crypto-
graphy

Keywords and phrases Minimum Circuit Size Problem, Satisfiability, Cryptography, Learning,
Approximation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.2

Category Invited Talk

Funding Partially funded by EPSRC New Horizons Grant EP/V048201/1.

© Rahul Santhanam;
37 licensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 2; pp. 2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:rahul.santhanam@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/rahul.santhanam
https://orcid.org/0000-0002-8716-6091
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The True Colors of Memory: A Tour of
Chromatic-Memory Strategies in Zero-Sum Games
on Graphs

Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Mickael Randour
F.R.S.-FNRS & UMONS — Université de Mons, Belgium

Pierre Vandenhove

F.R.S.-FNRS & UMONS — Université de Mons, Belgium

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

—— Abstract

Two-player turn-based zero-sum games on (finite or infinite) graphs are a central framework in
theoretical computer science — notably as a tool for controller synthesis, but also due to their
connection with logic and automata theory. A crucial challenge in the field is to understand how
complex strategies need to be to play optimally, given a type of game and a winning objective. In
this invited contribution, we give a tour of recent advances aiming to characterize games where
finite-memory strategies suffice (i.e., using a limited amount of information about the past). We
mostly focus on so-called chromatic memory, which is limited to using colors — the basic building
blocks of objectives — seen along a play to update itself. Chromatic memory has the advantage of
being usable in different game graphs, and the corresponding class of strategies turns out to be of
great interest to both the practical and the theoretical sides.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory

Keywords and phrases two-player games on graphs, finite-memory strategies, chromatic memory,
parity automata, w-regularity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.3
Category Invited Talk

Funding This work has been partially supported by the ANR Project MAVeriQ (ANR-20-CE25-
0012), and the F.R.S.-FNRS Grant n° F.4520.18 (ManySynth). Mickael Randour is an F.R.S.-FNRS
Research Associate and a member of the TRAIL Institute. Pierre Vandenhove is an F.R.S.-FNRS
Research Fellow.

Acknowledgements Most of the results presented here [4, 6, 7, 3] are related to the F.R.S.-FNRS
project FrontieRS, led by the authors. Some of these were obtained in collaboration with Antonio
Casares, Stéphane Le Roux, and Youssouf Oualhadj. We express our utmost gratitude to our
delightful co-authors.

1 Introduction

Two-player turn-based zero-sum games on graphs. We consider games between two
players, P; and Ps, that are played on a (finite or infinite) graph, often called arena, whose
set of vertices is partitioned into vertices controlled by P; and vertices controlled by Ps. The
players interact by moving a pebble from vertex to vertex, ad infinitum, following edges of
the graph. The game starts in a given vertex, and the owner of the current vertex decides
where to send the pebble next. The infinite path thereby created is called a play.

© Patricia Bouyer, Mickael Randour, and Pierre Vandenhove;
37 licensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 3; pp. 3:1-3:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0001-8777-2385
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

The True Colors of Memory

We assume that the edges of the graph are labeled with colors from a finite or infinite set.
These colors are used to define the objective of the game: an objective is simply a language of
infinite color sequences [24]. This general view of objectives encompasses all classical notions
from the literature, qualitative and quantitative objectives alike.

The goal of P; is to create a play whose projection to colors belongs to the objective
whereas P, tries to prevent it; hence our games are zero-sum. They are also turn-based as
the players take turns moving the pebble depending on the owner of the current vertex.
These moves are chosen according to the strategy of the player, which, in general, might use
memory (bounded or not) of the past moves to prescribe the next action.

This type of games has been studied for decades, for a plethora of objectives: see many
examples in [4]. Interestingly, virtually all such games (i.e., for all reasonable objectives)
are known to be determined since Martin’s seminal result on Borel determinacy [36]. This
means that for every vertex v, either P; has a strategy that guarantees victory when the
game starts in v, or Py has one. Two natural questions follow: given a game, can we decide
from which vertex each player can win, and what kind of strategy do they need to use?

Reactive synthesis. This survey focuses on the latter question, which is particularly relevant
in the context of controller synthesis for reactive systems [25, 41, 8, 2]. This formal methods
approach aims to automatically synthesize a provably-correct controller for a reactive system
that operates within an uncontrollable environment. Through the game-theoretic metaphor,
one can model the interaction between the system and its (possibly antagonistic) environment
as a two-player zero-sum game on a graph: vertices of the graph model states of the
system-environment pair whereas the specification of the system is encoded as a winning
objective.

The goal of synthesis is to decide if P; (the system) has a winning strategy, i.e., one that
ensures the objective against all possible strategies of P (the environment), and to build
such a strategy if it exists. Winning strategies are essentially formal blueprints for controllers
to implement in practical applications: these will thus be correct by design.

A wide variety of objectives (and combinations thereof — e.g., [14, 33]) have been studied
in the literature, notably to offer appropriate modeling power for applications in reactive
synthesis. All can be expressed through the formalism of colors used in this paper.

Strategy complexity. Keeping in mind that strategies are used as blueprints for real-world
controllers, one easily understands why their complexity is of utmost importance: the simpler
the strategy, the easier and cheaper it will be to synthesize the corresponding controller and
maintain it. On the theoretical level, comprehending which classes of strategies suffice to
play optimally (i.e., win whenever winning is possible) for various classes of games is also a
worthy venture as it may lead to more efficient solving algorithms and the identification of
common grounds between these different classes of games.

Many classical objectives are known to be memoryless-determined: memoryless strategies,
i.e., only using the current vertex as the basis for their decisions, suffice to play optimally.
It is for example the case of mean-payoff (in finite graphs) [19] or parity (in finite and
infinite graphs) [20, 45]. Yet, over the last decade, the need to model increasingly complex
specifications has geared research toward games with more intricate objectives (e.g., [9, 5]) or
objectives arising from the combination of simple ones (e.g., [33, 10]). When considering such
rich objectives, memoryless strategies usually do not suffice, and one has to use strategies
relying on a memory structure, which can be finite or infinite. A natural follow-up question
is thus to quantify the memory that is needed for a given objective.

P. Bouyer, M. Randour, and P. Vandenhove

Two flavors of memory. Two models of strategies coexist in the recent literature. In both,
a finite-memory strategy can be seen as the association of a memory structure — we will call
this a memory skeleton — taking the form of a finite automaton and of a memoryless strategy
defined, not on the arena, but on the product of the arena and this memory structure — this
memoryless strategy is the next-action function in the classical Mealy machine model. The
only but crucial difference is how the memory structure updates its state when an edge is
taken in the arena.

In chromatic memory (e.g., [4, 7, 11]), the update function only considers the color of the
edge, whereas in chaotic memory (e.g., [18, 31, 13]), the updates consider the actual edge of
the arena. That is, in chaotic memory, two different edges bearing the same color may lead
to different updates whereas this is not possible in chromatic memory. As such, chromatic
memory can be seen as a restricted class of finite-memory strategies. Yet, interestingly,
chromatic memory proves sufficient in most cases, and appears more robust with regard to
general characterizations. An important feature of chromatic memory is that it allows to
define a memory skeleton for an objective independently of an arena, which is impossible
for chaotic memory as it explicitly uses the underlying arena. Indeed, chromatic memory
coincides with the model used for arena-independent strategies in [4]. That being said, given
a particular arena, chaotic memory may lead to smaller memory structures — state-wise, not
necessarily true when counting transitions — as it can use additional knowledge of the graph;
see examples in [11, 13, 32].

General characterizations vs. tight memory bounds. In this invited contribution, we
survey recent advances in the study of chromatic-memory strategies, most stemming from a
series of co-authored papers on the topic. One can identify two orthogonal yet complementary
directions in our work.

Our first line of research aims to establish general characterizations for large classes of
games. A typical example is our characterization of objectives for which arena-independent
(chromatic) finite-memory strategies suffice [4] (in finite arenas), providing a finite-memory
equivalent to Gimbert and Ziclonka’s seminal result [24]. The philosophy of this research
direction is to identify the common grounds between various objectives and to pinpoint the
underlying source of complexity, going beyond the use of ad-hoc proofs and techniques. In
addition to its fundamental interest, this endeavor permits to establish amenable criteria
that one can check to establish that finite-memory optimal strategies exist in a wide range of
contexts. Of course, due to its generality, this approach might not lead to perfectly tight
memory bounds in particular contexts.

Our second topic of interest can be seen as an answer to this limitation, as it aims to
provide tight (lower and upper) memory bounds for specific objective classes. We focus on
w-regular objectives and rely on their representations through different classes of automata
in our approach.

Qutline. The structure of our paper follows these two lines of research. In Section 2,
we introduce the main concepts and notations. Section 3 surveys our results on general
characterizations, mainly [4] for finite arenas and [7] for infinite ones. Section 4 focuses on
tight bounds for specific w-regular objectives — we notably present the results of [3]. Finally,
Section 5 discusses open questions and future work.

We highlight that this paper is meant as an introductory survey to the topic and, as
such, does not give a fully-detailed presentation of all concepts and results. We settled
on a high-level, hopefully intuitive, exposition of the field, trying to highlight the interest
and limits of our current knowledge, along with connections between the different results.
Interested readers may find all details in the corresponding full papers.

3:3

FSTTCS 2022

3:4

The True Colors of Memory

Additional related work. This paper only considers deterministic games and the corre-
sponding results. In general, these do not carry over to stochastic (one-player or two-player)
games, and specific techniques are needed, both to establish results on memory, but also to
study the need for randomness — another aspect of the complexity of strategies arising in
this context. We mention some references on the topic: [28, 27, 17, 6, 34].

2 Games on Graphs, Objectives, Chromatic Memory

In the whole article, letter C refers to a (finite or infinite) non-empty set of colors. Given
a set A, we write respectively A*, AT, and A“ for the set of finite, non-empty finite, and
infinite sequences of elements of A. We denote by ¢ the empty word.

Arenas. We consider two players P; and P2. An arena is a tuple A = (V, V1, V5, E)
such that V is a non-empty set of vertices and is the disjoint union of V; and Vs, and
ECV xCxVisaset of (colored) edges. Intuitively, vertices in V; are controlled by P;
and vertices in V5 are controlled by P2. We assume arenas to be non-blocking: for all v € V|
there exists (v,c,v') € E. For v € V, a play of A from v is an infinite sequence of edges
m = (vg, c1,v1)(v1,C2,v2) ... € E¥ such that vg = v. A history of A from v is a finite prefix
in E* of a play of A from v. For convenience, we assume that there is a distinct empty
history A\, for every v € V. If v = (vg,c1,v1) ... (Un—1, Cn, V) is a non-empty history of A,
we define last(y) = v,. For an empty history \,, we define last(\,) = v. For i € {1,2}, we
denote by Hists;(A) the set of histories v of A such that last(y) € V;. An arena is finite if V'
and F are finite. An arena A = (V, V4, Vs, E) is a one-player arena of Py (resp. Po) if Vo =0
(resp. V1 =0).

Strategies. Let i € {1,2}. A strategy of P; on A is a function o;: Hists;((A) — E such
that for all v € Hists;(A), the first component of o;(v) coincides with last(y). Given a
strategy o; of P;, we say that a play m = ejes ... is consistent with o; if for all finite prefixes
v =ey...e, of msuch that last(v) € V;, 0;(y) = ent1. A strategy o; is memoryless (also
called positional in the literature) if its outputs only depend on the current vertex and not
on the whole history, i.e., if there exists a function f: V; — E such that for all v € Hists;(A),

ai(v) = f(last(y)).

Memory skeletons. A (memory) skeleton is a tuple M = (M, Minit, upd) Such that M is a
finite set of states, minix € M is an initial state, and aypq: M x C' — M is an update function.
Such skeletons are sometimes called chromatic, as their transitions are only based on the
colors seen. We denote by a4 the natural extension of aypg to finite sequences of colors.
We define the trivial skeleton My, as the only skeleton with a single state.

Let My = (M, mijy, alpy) and My = (Ma, miy,, alq) be two skeletons. Their (direct)
product My ® My is the skeleton (M, Minit, upd) Where M = My x Mo, minie = (mi,ma.),
and for all mi € My, mg € M, ¢ € C, aypda((m1,me),c) = (aﬁpd(ml,c),aﬁpd(mg,c)).

For M = (M, Minit, upd) & skeleton, a strategy o; of P; is based on M if there exists
a function auy: V x M — E such that for all vertices v € Vi, 0;(Ay) = anxe (v, Minit),
and for all non-empty histories v = (vg,c1,v1) ... (Vn—1,¢n,vn) € Hists;(A), oi(y) =
anxt (last(7), Qo (Minit, €1 - - - ¢n)). Such a strategy is said to use chromatic memory. Notice
that a strategy is memoryless if and only if it is based on My .

P. Bouyer, M. Randour, and P. Vandenhove

Objectives. An objective is a set W C C* of infinite words. When an objective W is clear
in the context, we say that an infinite word w € C“ is winning if w € W, and losing if
w ¢ W. We write W for the complement C* \ W of an objective W. An objective W is
prefiz-independent if for all w € C* and w’ € C¥, w’ € W if and only if ww’ € W. For a
finite word w € C*, we write w™'W = {w’ € C* | ww’ € C*} for the winning continuations
of w. We have in general that e~'W = W, and if W is prefix-independent, for all w € C*,
we have w™!W = W.

A game is a tuple (A, W), where A is an arena and W is an objective. In such a game,
P1 wants to achieve an infinite word in W through the infinite interaction with Ps in A,
while Py wants to achieve an infinite word in W.

w-regular objectives. A central class of objectives is the one of w-regular objectives. They
admit multiple equivalent definitions: they are the objectives that can be expressed using an w-
reqular expression, a non-deterministic Biichi automaton, a deterministic parity automaton. ..
In this contribution, we mostly use their representation as a deterministic parity automaton
(DPA). A (transition-based) DPA is a tuple D = (Q, Ginit, 0, p) where @ is a finite set of states,
Ginit € @ is an initial state, §: Q x C — @Q is a transition function, and p: Q@ x C — Nis a
priority function. A DPA D recognizes an objective containing the words such that, when
read in D, the maximal priority that they see infinitely often is even. Notice that the first
three components of a DPA are syntactically the same as a memory skeleton; for a memory
skeleton M = (M, Minit, uupd), if there is p: M x C' — N such that D = (M, p), we say that
D is built on top of M.

Optimality. Let A= (V, V1, V5, E) be an arena, (A, W) be a game, and v € V. We say that
a strategy o1 of Py is winning from v if for all plays (vg, ¢1, v1)(v1, ¢2,v2) . .. from v consistent
with o1, c1ca... € W. A strategy of Py is optimal for Py in (A, W) if it is winning from all
the vertices from which P; has a winning strategy. We often write optimal for Py in A if the
objective W is clear from the context. This notion of optimality requires a single strategy to
be winning from all the winning vertices (a property sometimes called uniformity).

Our games are zero-sum, hence the objective of P, is formally W. For the sake of
readability, we still talk about winning and optimal strategies of P, for W, taking into
account the symmetric nature of their antagonistic role (i.e., an optimal strategy of P, for
W is an optimal strategy of P; for W if the two players are swapped).

Let W be an objective and i € {1,2}. A memory skeleton M suffices for P; for W
(resp. in finite, one-player arenas) if P; has an optimal strategy based on M in game (A, W)
for all (resp. finite, one-player) arenas A. We say that W is M-determined (resp. in finite
arenas) if M suffices for both P; and Py for W (resp. in finite arenas), and that W is
finite-memory-determined if it is M-determined for some M. We call My,,-determinacy
memoryless determinacy. For consistency with the literature [30], we call the notion “ My,
suffices to play optimally for P; for W7 half-positionality of W.

» Remark 1. We stress that the notion of finite-memory determinacy used throughout the
paper is strong in several respects: it requires chromatic memory to be sufficient (the memory
can only observe colors, and not actual edges that are taken during a play), and it requires
the same memory skeleton to be sufficient in all arenas (that is, it is arena-independent).

3:5

FSTTCS 2022

3:6

The True Colors of Memory

3 Characterization of finite-memory-determined objectives

Many objectives are known to be memoryless-determined, that is, to require no memory
except the knowledge of the current vertex to be won. For instance, Ehrenfeucht and Mycielski
proved in 1979 that mean-payoff games are memoryless-determined in finite arenas [19], and
Emerson and Jutla proved in 1991 that parity games are memoryless-determined [21].

It has therefore been a natural research direction to try to characterize the winning
objectives that are memoryless-determined. Gimbert and Zielonka gave the first charac-
terization of winning objectives that are memoryless-determined in finite arenas [24]; this
characterization is presented in Section 3.1.1. Trying to extend that result to finite memory
was very natural, but the extension could only be handled fifteen years later, and required to
focus on chromatic arena-independent memory [4]; this is presented in Section 3.1.2.

Some objectives are memoryless-determined in finite arenas, but require infinite memory
in infinite arenas; this is for instance the case of mean-payoff objectives. Hence the above
characterizations do not carry over to infinite arenas. Inspired by a work by Colcombet and
Niwinski [16] who focused on prefix-independent and memoryless-determined objectives, a
full characterization of objectives that are finite-memory-determined in infinite arenas is
given in [7], where it is proved that they actually coincide with w-regular objectives; this is
discussed in Section 3.2.

3.1 Finite graph games
3.1.1 Memoryless-determined objectives

The first complete characterization of objectives (or more generally preference relations — we
do not define this notion here) admitting memoryless optimal strategies is established in [24].
By complete characterization, we mean sufficient and necessary conditions on the objectives.
This result can be stated as follows.

» Theorem 2 ([24, Theorem 2]). An objective W is memoryless-determined if and only if
both W and W are monotone and selective.

Roughly, monotony for an objective says that if an infinite word ww{ is winning and
another one ww$ is losing, then their “winning status” cannot be swapped by replacing prefix
u, i.e., we cannot have vw'w{ losing and v'w§ winning for any u’ € C*. This property is
obviously satisfied by prefix-independent objectives, but is more general.

Selectivity is defined with regard to cycle mixing: starting from two sequences of colors, it
is impossible to create a third one by mixing the first two in such a way that the third one is
winning while the first two are not. Similar-looking notions (fairly mizing, concave [23, 30])
had been defined in other attempts in the literature, but they slightly differ and are actually
incomparable to selectivity.

A by-product of the proof of the above theorem is the following so-called one-to-two-player

lift.
» Corollary 3. Assume that for an objective W, memoryless strategies suffice for both P

and Ps in their respective finite one-player arenas. Then W is memoryless-determined in
finite arenas.

Such a lifting corollary provides a neat and easy way to prove that an objective admits
memoryless optimal strategies without proving monotony and selectivity at all: proving it
in the two one-player subcases, which is generally much easier as it boils down to graph
reasoning, and then lifting the result to the general two-player case through the corollary.

P. Bouyer, M. Randour, and P. Vandenhove

» Example 4. Let C' = Q. For w = ¢ycy ... € C¥, we define its mean payoff

1 n
MP(w) = lim inf — Zci
=1

n—oo M 4

as the limit (inferior) of the average of the colors of its finite prefixes. We define the objective
“achieving a non-negative mean payoft” as MP>q = {w € C* | MP(w) > 0}. This objective is
memoryless-determined in finite arenas, which was first proved in [19]. We argue informally
that it is easy to recover this result using Corollary 3.

We take the point of view of P;. Let A be a finite one-player arena of P;. We consider the
cycles of A, and we say that a cycle is non-negative if the average of its colors is non-negative.
Clearly, P can win for MP> if a non-negative cycle is reachable: P; can simply reach the
cycle and loop around it. To win with a memoryless strategy, we simply observe that a
non-negative cycle always contains a non-negative simple cycle (i.e., not going twice through
the same vertex). A simple cycle can be reached and looped around with a memoryless
strategy. This describes a way to win with a memoryless strategy if there is a non-negative
cycle, and this is actually “complete”: if there is no non-negative cycle, then P; simply cannot
win for MP>o. We have shown that given a fixed initial vertex of A, if P; can win, then P;
can win with a memoryless strategy. Formally, we must still argue that we can build a single
memoryless strategy winning “uniformly” from all the vertices from which P; has a winning
strategy, which we do not do here but is reasonably straightforward. These arguments show
that memoryless strategies suffice for P; in its one-player arenas, and the same reasoning
works for P, (using negative cycles instead). By Corollary 3, MP>(is memoryless-determined
in finite arenas. J

3.1.2 Finite-memory-determined objectives

Gimbert and Zielonka’s result completely characterizes objectives which can be won with
memoryless strategies in all games played on finite arenas. This paves the way to the quest
for a similar characterization for finite-memory strategies. A first reasonable attempt for
a generalization to finite-memory strategies could be: given an objective, if in all finite
one-player arenas, players have finite-memory optimal strategies, does the same hold in
finite two-player arenas? Unfortunately, this generalization does not actually hold: there are
objectives for which both players have finite-memory optimal strategies in their respective
finite one-player arenas, but for which there exists a finite two-player arena that requires
infinite memory for a player to win — see [4, Figure 1].

However, a result similar to Theorem 2 can be proved for M-determinacy. Note the
subtlety here: M-determinacy requires the memory skeleton M to be uniform with regard
to the arena; the structure of the memory must be arena-independent, as opposed to the
more general version sketched above where the memory may depend on the arena.

» Theorem 5 ([4, Theorem 3.6]). Let M be a memory skeleton. An objective W is M-
determined if and only if both W and its complement W are M-monotone and M-selective.

The two concepts of M-monotony and M-selectivity are keys to the approach. Intuitively,
they correspond to Gimbert and Zielonka’s monotony and selectivity, modulo a memory
skeleton. The more general concepts of M-monotony and M-selectivity serve the same
purpose, but they only compare sequences of colors that are deemed equivalent by the
memory skeleton. For the sake of illustration, take selectivity: it implies that one has no
interest in mixing different cycles of the game arena. For its generalization, the memory

3:7

FSTTCS 2022

3:8

The True Colors of Memory

skeleton is taken into account: M-selectivity implies that one has no interest in mixing cycles
of the game arena that are read as cycles on the same memory state in the skeleton M. In
particular, My,-monotony and Myy,-selectivity are respectively equivalent to the original
notions of monotony and selectivity, as My, never distinguishes sequences of colors.

The proof of this theorem mimics the one of [24] via the notion of M-covered arena.
An M-covered arena is an arena which is compatible with M, in the sense that there is a
morphism from the arena to M. Examples of M-covered arenas are products of an arena
with M, but they are more general (notably, removing edges from these products preserves
M-coverability). Strategies based on M on arenas correspond to memoryless strategies on
M-covered arenas. The proof technique for memoryless strategies, relying on an induction
on the size of arenas, can be made on M-covered arenas to obtain the theorem for strategies
based on M.

As for memoryless strategies, a by-product of the proof of the above theorem is a
one-to-two-player lift.

» Corollary 6. Let M be a memory skeleton. Assume that for an objective W, strategies
based on M suffice for both Py and Po in their respective finite one-player arenas. Then W
is M-determined in finite arenas.

As in general P; and Ps may need different memory structures, we may instantiate the
result with two different memory structures M; and My: if M; suffices for P; and M,
suffices for Ps for W in finite one-player arenas, then M; ® M suffices for both P; and P5
in their finite one-player arenas (remembering more information cannot do harm), so W is
(M ® My)-determined in finite arenas. However, it is unknown whether M; (resp. Ms)
alone could be sufficient for P; (resp. P») in finite (two-player) arenas, or if the product is
required.

b, c a,b,c c a,b,c

@ a @ a7b

Figure 1 Memory skeletons M (left) and M’ (right) for two-target reachability games. In
figures, diamonds (resp. circles, squares) represent memory or automaton states (resp. arena vertices
controlled by P1, arena vertices controlled by Ps).

» Example 7. Consider the objective W = (C*aC%) N (C*bC¥) over alphabet C' = {a, b, c}.
The objective W requires that both colors a and b should be seen at least once. Consider
the two skeletons M and M’ in Figure 1.

Let us briefly explain why W is not My,-monotone (i.e., monotone) but is M-monotone.
On the one hand, ab¥ € W is preferred to aa® ¢ W, but ba* € W is preferred to bb* ¢ W;
hence, W is not My;,-monotone. On the other hand, skeleton M distinguishes a and b
(in the sense that they reach two different states of skeleton M), hence we do not need to
compare their winning continuations a W and b~'W. Also, we can prove that two pairs of
continuations u; ' W and uy 'W such that u; and ug reach the same memory state of M are
comparable (for the inclusion), hence W is M-monotone.

Let us now briefly explain why W is not Myy-selective (i.e., selective) but is M’-selective.
Notice that a and b are losing cycles, in the sense that if repeated infinitely often, they
generate a losing word (a*, b € W). But combining @ and b, which are cycles on the state of
My (as are all finite words), may result in a winning word. For instance, they can be used

P. Bouyer, M. Randour, and P. Vandenhove

to make (ab)* € W. Hence, W is not Myyy-selective. On the other hand, W is M’-selective,
as M’ distinguishes cycles in such a way that two losing cycles on the same memory state
cannot be combined into a winning cycle. For m/: all cycles around m/ are losing (since
they contain neither a nor b) and cannot be combined into a winning cycle. For m/: if one
reaches mj, it means that one of a or b was seen, hence only one color remains to be seen.
Any subsequent cycle on m), is either useless (if it sees ¢ or the color among a and b that
was already seen) or immediately winning (if it sees the color among a and b that was not
seen). There is therefore no advantage to combine multiple cycles once m), is reached.
Overall, W is M-monotone and M’-selective, and we can show in a similar fashion that
W is M-monotone and My, -selective. Moreover, monotony and selectivity are “preserved
by product” (intuitively, as having more information to our disposal is never harmful), so
both W and W are (M ® M’)-monotone and (M @ M’)-selective. This allows to conclude
by Theorem 5 that W is (M ® M’)-determined in finite arenas. Skeleton M ® M’ has
formally four states but only three reachable states, so both players can play optimally for
W using three memory states, which is minimal [22]. N

Applicability of these results goes beyond w-regular objectives. For instance, the intersec-
tion of a reachability condition and a mean-payoff objective requires two memory states, and
it suffices for both players to keep track of whether the reachability objective has already
been satisfied, e.g., using skeleton M of Figure 1.

3.2 Infinite graph games

Unfortunately, memoryless determinacy in finite arenas does not carry over straightforwardly
to infinite arenas. Indeed, there are objectives that are memoryless-determined in finite
arenas but that require infinite memory in some infinite (even one-player) arenas: this is the
case for the mean-payoff objective MP>(, which we showed to be memoryless-determined in
finite arenas in Example 4.

» Example 8. We consider objective MP>(and the infinite one-player arena of P; in
Figure 2 [40]. Despite the fact that all colors are negative, P; has a winning strategy: the
idea is to loop on state s; sufficiently many times to bring the payoff close to —%, and then
move to s;4+1 and repeat. At the limit, the mean payoff is 0. However, this winning strategy
requires memory (even nfinite memory) to be implemented, and no memoryless strategy is
winning. Hence, MP> is not memoryless-determined in infinite arenas. J

— U1 V2 U3

Figure 2 One-player arena requiring infinite memory for objective MPxo.

An interesting result dealing with infinite arenas is the work by Colcombet and Ni-
winski [16], who proved that a prefix-independent objective W is memoryless-determined
in infinite arenas if and only if W is a parity condition. A parity condition is an objective
recognized by a deterministic parity automaton with a single state, in which each color is
directly mapped to a priority in a finite set of integers. In [7], we generalized it to a charac-
terization of objectives that are finite-memory-determined in infinite arenas. Formulating
this generalization requires the language-theoretic notion of right congruence. Let W C C%

3:9

FSTTCS 2022

3:10

The True Colors of Memory

be an objective. The right congruence ~y C C* x C* of W is defined as wy ~w wsy if
wi'W = wy "W (meaning that w; and wy have the same winning continuations). When
~w has finitely many equivalence classes, we can associate to W a natural skeleton My,
whose set of states is the set of equivalence classes and with transitions defined in a natural
way [43, 35]. We call skeleton My, the prefiz classifier of W, as two finite words reach the
same state of Myy if and only if they are equivalent for ~y,. We can now state the main
result from [7].

» Theorem 9 ([7]). An objective is finite-memory-determined (in arenas of any cardinality) if
and only if it is w-reqular. Furthermore, if W is M-determined (in arenas of any cardinality),
then W is recognized by a DPA built on top of M @ Myy.

Before [7], w-regular objectives were known to be finite-memory-determined [21, 45]: if
it is possible to represent an objective with a DPA, then the structure of this automaton
suffices to play optimally for both players. Indeed, keeping in memory the extra information
from this DPA effectively reduces any game using this objective into a (larger) game using a
(simpler) parity condition. This shows one implication of Theorem 9. The proof of the other
implication goes through the following steps: if W is M-determined for some skeleton M,
then

W is M-cycle-consistent: after any finite word, if we concatenate infinitely many winning

(resp. losing) cycles on the skeleton state reached by that word, then it only produces

winning (resp. losing) infinite words;

My is finite, which implies that W is My -prefiz-independent: My, classifies prefixes

in such a way that two prefixes reaching the same memory state have the same winning

continuations.
From this, we obtain in particular that W is (M @ My)-cycle-consistent and (M @ My)-
prefix-independent. We can prove that under these properties, one can associate to transitions
of M ® My, priorities such that W is recognized by a DPA built on top of M ® Myy. This
part of the proof is rather technical, but relies on ordering the cycles according to “how good
they are for winning”; order which can be used to assign priorities to transitions.

We recover the result of [16], since the prefix classifier has a single state in the case
of a prefix-independent objective (that is, the prefix classifier is My,y). Hence, under
the assumption that W is prefix-independent and memoryless-determined (that is, M-
determined), we deduce that W is recognized by a DPA built on top of the skeleton
My @ My with a single state, that is, W is a parity condition.

As previously, we can extract a one-to-two-player lift from the proof of the above result.

» Corollary 10. Let W be an objective. If M suffices for both Py and Po in their respective
one-player arenas (of arbitrary cardinality), then W is (M ® My)-determined (in arenas
of arbitrary cardinality). In particular, if W is prefiz-independent, then under the previous
hypotheses, W is M-determined.

We discuss two w-regular objectives and illustrate that to represent them using DPAs,
we may need some information given by their prefix classifier and some information given by
a sufficient memory structure.

» Example 11. Consider the objective W7 = b*ab*aC* over the alphabet C' = {a,b}. This
objective has a prefix classifier My, with three states, corresponding to the three equivalence
classes of finite words that have seen 0, 1, or 2 times the color a. This objective is also
memoryless-determined that is, My ,-determined; we do not prove it here (in finite arenas,

P. Bouyer, M. Randour, and P. Vandenhove

b1 b|1
b|0
all all Lo
OOz GO an
al0

Figure 3 DPA recognizing W1 = b*ab*aC® (left), which is built on top of its prefix classifier
My, . DPA recognizing Wa = C*(ab)® (right), which is built on top of a minimal memory structure
sufficient for P; and P2. A transition from a state ¢ to a state ¢’ labeled with “c | n” means that
5(g,c) = ¢’ and that p(q,c) = n.

it can be shown with Corollary 3). By Theorem 9, this means that W can be recognized by
a DPA built on top Myiy ® My, = Myy,. We represent such a DPA in Figure 3 (left): its
structure is the same as Myy,, and we just added the right priorities to its transitions.

Consider the objective Wy = C*(ab)¥ over the alphabet C = {a,b}. It is prefix-
independent, hence its prefix classifier is Myy. It is furthermore M-determined, where M is
the skeleton with two states that remembers whether a or b was last seen; this skeleton has
the same structure as the DPA in Figure 3 (right). By Theorem 9, W5 can be recognized by
a DPA built on top of M ® My = M. We represent such a DPA in Figure 3 (right). &

On the other hand, our results can also illustrate why an objective is not finite-memory-
determined (or equivalently, w-regular).

» Example 12. We go back to the mean-payoff objective MP>(defined in Example 4. It
is a prefix-independent objective, hence Mwmp., = My,. However, it is not My,,-cycle-
consistent. Indeed, repeating ad infinitum the same color from the set {—% | n € Noo}
results in a losing word; however, the sequence (—1)(—3)(—3) ... combining multiple such
losing colors is winning (its mean payoff is exactly 0). This argument can be extended to
any finite memory skeleton M to show that MPx(is not M-cycle-consistent. This means

that MP>q is not finite-memory-determined over infinite arenas, and is not w-regular. 1

In some classes of objectives, finite-memory determinacy/w-regularity depends on the
values of some parameters.

» Example 13. Let C' C Q be a bounded set of colors and A € (0,1) be a discount factor.
We consider the discounted-sum objective [42]

DS?& ={cica... € C¥| Zci A1 > 03,

i=1

For all values of), it is possible to show that DSg’O)‘ is Myy-cycle-consistent. This means by
Theorem 9 that the prefix classifier of DSg"O)‘, when finite, can be used as a DPA to recognize
objective DSg’O)‘. Proof details and a characterization of the values of C and A such that

DSS’O)‘ is w-regular can be found in [7, Section 4.1]. We give a specific example of values that

make DSS’O/\ w-regular: for A = % and C = {-2,-1,0,1,2}, the prefix-classifier is finite and
is depicted in Figure 4. J

3:11

FSTTCS 2022

3:12

The True Colors of Memory

Figure 4 Prefix classifier of Dsg’oA for A = 1 and C = {-2,-1,0,1,2}. An infinite word if

winning if and only if it does not reach state L.

4 Memory requirements of w-regular objectives

Section 3.2 presented an equivalence between w-regularity and a kind of finite-memory
determinacy of two-player zero-sum games. This suggests that, in addition to their relevance
in logic and in synthesis, understanding the memory requirements of w-regqular objectives is a
natural stepping stone in order to study the strategy complexity of all two-player zero-sum
games. We discuss known results about memory requirements of w-regular objectives in this
section.

As was stated in Theorem 9, one can relate the memory requirements of an w-regular
objective to its representation as a DPA. We may wonder how close this result brings us to
characterizing precisely the memory requirements of w-regular objectives. Albeit being quite
general, there are still multiple questions about memory requirements that Theorem 9 is not
able to answer precisely. We introduce these questions by highlighting two of its limitations.

The first limitation comes from the asymmetry of its two implications. In one direction,
which is the novel contribution from Theorem 9, we start from a sufficient memory skeleton
M for some objective and show that the objective can then be represented as a DPA built
on the automatic structure M ® Myy. In the other direction, we simply use the known
memoryless-determinacy of parity conditions, which we already mentioned. What does this
tell us on the memory requirements of an w-regular objective? We know two things: (i) a
minimal memory skeleton has always at most as many states as any DPA representing the
objective; (i7) a minimal memory skeleton and a minimal DPA differ at most by the factor
My . However, we do not know in general how to get minimal memory requirements from a
representation as a DPA.

The second, perhaps more fundamental limitation is that it makes an assumption on
the memory requirements of both players simultaneously, as it asks for a memory skeleton
sufficient for both players. This assumption therefore conceals a possibly large gap between
the individual memory requirements of the two players. This limitation also applies to
Theorem 5 (which deals with games played on finite arenas), which cannot be used in general
to give tight bounds about memory requirements of each individual player in two-player
games.

We illustrate these two limitations on a small example: in this example, the representation
of an objective as a DPA is an upper (but not a tight) bound on the memory requirements,
and the memory requirements of each player differ.

» Example 14. Let C = {a,b}. We consider the objective W = (b*a)* U (C*aaC*) of words
that see a infinitely often or see a twice in a row at some point. This objective is recognized
by the DPA with three states depicted in Figure 5 (left), and it is not possible to recognize
it using a DPA with fewer states. We therefore know that both players can play optimally

P. Bouyer, M. Randour, and P. Vandenhove

using three states of memory, using the memory skeleton underlying this automaton. The
prefix classifier of this objective has three states corresponding to three classes of finite
words, and its structure also corresponds to the underlying structure of the DPA in Figure 5.
According to Theorem 9, this suggests that P; and Ps may need between one and three
states of memory to play optimally.

It turns out here that P; can play optimally with just one state of memory in all arenas

(i.e., W is half-positional), which can be proved using results from [3] (discussed below).

Meanwhile, Py cannot play optimally with just one state of memory, as is witnessed by the
arena in Figure 5 (right). If the play starts in vy, we observe that Ps loses by not using the
loop in v9 and going immediately to vs, as well as by staying infinitely often in vy. Player
P, can actually win, but needs to loop at least once (and finitely many times) in vy before
going to vz, which cannot be done without memory. For this objective, Py can actually play
optimally with two states of memory: intuitively, P> must keep track of whether the current
history is in g, or g4, but there is no point in keeping track of state g,q, as the play is already

lost in that state for Ps. _.
bab
al?2 |
al?2
G OMED
b|2

Figure 5 A DPA representing the objective W = (b*a)“ U (C*aaC*) from Example 14 (left), and
an arena in which P2 cannot play optimally with a memoryless strategy (right).

The following questions therefore remain: given an w-regular objective, what is a minimal
(i-e., with as few states as possible) memory skeleton sufficient to play optimally for both
players? And for a single player? A less ambitious (but still open) question would be
to understand the memoryless case: how to characterize/decide memoryless determinacy
or half-positionality? And would these precise results give us even more information on
the representation of w-regular objectives, perhaps using other acceptance conditions than
the parity one? Progress toward these questions, which can be seen as strengthenings of
Theorem 9, has been obtained on specific classes of w-regular objectives. We discuss two of
them here.

Memory requirements of Muller conditions. Muller conditions are objectives whose winning
words depend solely on the set of colors seen infinitely often. They are usually specified by a
set F C 2€ of sets of colors. The related Muller condition then contains the set of words
w € C¥ such that the set of colors seen infinitely often by w is a set of 7. They are in
particular prefix-independent, i.e., their prefix classifier has just one state. A systematic
study of the memory requirements of Muller conditions started in the ’80s, with first general
upper bounds through the later appearance record construction [26, 37], culminating in a
complete characterization of their (chaotic) memory requirements [18].

More relevant to our chromatic memory considerations, we mention the recent work by
Casares [11] that characterizes the chromatic memory requirements of Muller conditions for
each individual player. The characterization uses the Rabin acceptance condition, which
subsumes parity acceptance conditions.

» Theorem 15 ([11, Theorem 27]). Let W be a Muller condition and M be a memory
skeleton. Structure M suffices for Py for objective W if and only if W is recognized by a
deterministic Rabin automaton built on top of M.

3:13

FSTTCS 2022

3:14

The True Colors of Memory

Once again, one direction has been known for some time: Rabin conditions have been
known to be half-positional for some time [29] (but unlike parity conditions, their comple-
ment may not be). The other, novel direction was obtained thanks to results about the
representation of w-regular objectives [12].

This provides, in the special case of Muller conditions, a characterization of the memory
requirements of each player without any blow-up in any direction of the equivalence, and
independently of the memory requirements of the other player. It therefore goes beyond
the two limitations of Theorem 9 sketched above. As a bonus, this result allows to link
the problem of finding a minimal memory skeleton to the problem of minimizing a Rabin
automaton, and implies that the related decision problem (given a Muller condition, is there
a sufficient memory skeleton with < k states for a fixed k?) is NP-complete.

Half-positional deterministic Biichi automata. Deterministic Biichi automata (DBAs),
unlike their nondeterministic counterparts, only recognize a proper subclass of the w-regular
objectives [44]. They can be seen as a special case of DPAs using only priorities 1 and 2 (the
automaton in Figure 5 is also a DBA). The objectives that they recognize are incomparable
to Muller conditions. In particular, they recognize some non-prefix-independent objectives,
hence with a non-trivial prefix classifier. Currently, their complete memory requirements
are not understood — only their half-positionality has been fully characterized. Article [3]
gives a characterization of the objectives that are half-positional among those that can be
recognized by a DBA. This characterization is a conjunction of three properties that are
decidable in polynomial time. The first property is equivalent for this class of objectives to
the aforementioned monotony property, so we do not discuss it here.

The second property deals with the notion of progress: a finite word ws is said to be a
progress after a finite word wy if wyws has strictly more winning continuations than w;. We
illustrate this property on the objective from Example 14. We take the point of view of P,
who wants to avoid seeing infinitely many a and avoid seeing a twice in a row at some point.
If w1 = a and we = bab, for P, wsy is a progress after wi: any winning continuation of w; is
still winning after wyws, and wiwoab® is winning, while wyab® is losing. See the link between
our choice of words and the arena in Figure 5. The reason that P, needs memory here is
that although ws is a progress after wi, repeating wyw§ is not winning. Hence, it is useful
to play ws, but an optimal strategy cannot just repeat ws. We define a progress-consistent
objective as an objective such that for all progresses wy after some wi, wiw§ is winning.
This is necessary for half-positionality.

The third property relates once more to the representation of an w-regular objective,
this time using a DBA. Any deterministic automaton representing an w-regular objective W
needs at least one state per equivalence class of the right congruence ~y,. The celebrated
Myhill-Nerode theorem [38] states that to represent regular languages (of finite words), we
do not need more than one state per equivalence class. This does not hold in general for
w-regular objectives, as was shown with objective Wy = C*(ab)* in Example 11. Still, some
w-regular objectives admit representations using exactly one state per equivalence class [1].
One example was given in Example 14, which admits a representation as a DBA with three
states — one per equivalence class. One of the main technical contribution of [3] is that for
an objective recognizable by a DBA to be half-positional, it is necessary that it admits a
representation as a DBA with just one state per equivalence class. In such cases, a DBA can
be minimized in polynomial time.

» Theorem 16 ([3, Theorem 10]). Let W be an objective recognized by a DBA. Objective W
is half-positional if and only if it is monotone, progress-consistent, and recognized by a DBA
built on top of its prefix classifier.

P. Bouyer, M. Randour, and P. Vandenhove

5 Perspectives

We highlight some of the remaining open paths in the topic of strategy complexity of zero-sum
games on graphs. As shown in Section 4, the memory requirements of w-regular objectives,
despite their relevance to logic and synthesis, are not fully mapped out. As discussed in
Section 1, there are two relevant memory formalisms for this question: the first one is the
chromatic one (which we discussed extensively), and the second one is the chaotic memory
formalism. A promising research direction about chaotic memory requirements was recently
given in [13], which proved a bridge between this question and the theory of good-for-games
automata for Muller conditions. Moreover, it is shown that for some Muller conditions,
chaotic memory requirements (expressed as a number of memory states) can be exponentially
smaller than chromatic ones, at the cost of having to specialize the transitions of the memory
structure for each distinct arena.

We also mention a recent tool used to study zero-sum games: universal graphs. Universal
graphs were originally introduced to design algorithms to decide the winner for some classes
of games [15]. Recently, Ohlmann [39] showed an equivalence between the existence of some
“good” universal graph for an objective and half-positionality of the objective. Roughly, a
universal graph (with the right properties) can be a structural witness of the half-positionality
of an objective, and any half-positional objective has a good universal graph. This result has
already been used to prove the sufficient condition of Theorem 16 [3] by mechanizing the
construction of good universal graphs given a DBA with the right properties. This suggests
that using universal graphs may be one path toward understanding half-positionality of
w-regular objectives.

—— References

1 Dana Angluin and Dana Fisman. Regular w-languages with an informative right congruence.
Inf. Comput., 278:104598, 2021. doi:10.1016/j.ic.2020.104598.

2 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and
reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 921-962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

3 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic Biichi automata. In Bartek Klin, Slawomir Lasota, and
Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR
2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 20:1-20:18. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.20.

4 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Van-
denhove. Games where you can play optimally with arena-independent finite memory. Log.
Methods Comput. Sci., 18(1), 2022. doi:10.46298/1mcs-18(1:11)2022.

5 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Inf., 55(2):91-127, 2018. doi:10.1007/s00236-016-0274-1.

6 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele
Varacca, editors, 82nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 26:1-26:18. Schloss
Dagstuhl — Leibniz-Zentrum fir Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.26.

7 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. In Petra Berenbrink and
Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1-16:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
d0i:10.4230/LIPIcs.STACS.2022.16.

3:15

FSTTCS 2022

https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2022.16

3:16

The True Colors of Memory

10

11

12

13

14

15

16

17

18

19

Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour,
Jean-Francois Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games for reactive
synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martin-Vide, and Bianca Truthe,
editors, Language and Automata Theory and Applications — 10th International Conference,
LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture
Notes in Computer Science, pages 3—23. Springer, 2016. doi:10.1007/978-3-319-30000-9_1.
Véronique Bruyere, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, volume 226 of EPTCS, pages 135-148, 2016. doi:10.4204/EPTCS.226.10.

Véronique Bruyeére, Quentin Hautem, Mickael Randour, and Jean-Frangois Raskin. Energy
mean-payoff games. In Wan Fokkink and Rob van Glabbeek, editors, 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands, volume 140 of LIPIcs, pages 21:1-21:17. Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.21.

Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022,
Géttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 12:1-12:17. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.12.
Antonio Casares, Thomas Colcombet, and Nathanaél Fijalkow. Optimal transformations of
games and automata using Muller conditions. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloguium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 123:1-123:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:
10.4230/LIPIcs.ICALP.2021.123.

Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-
games Rabin automata and its link with the memory in Muller games. In 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages
117:1-117:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

Krishnendu Chatterjee, Mickael Randour, and Jean-Francois Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Inf., 51(3-4):129-163, 2014. doi:10.1007/
s00236-013-0182-6.

Thomas Colcombet, Nathanaél Fijalkow, Pawel Gawrychowski, and Pierre Ohlmann. The
theory of universal graphs for infinite duration games. CoRR, abs/2104.05262, 2021. arXiv:
2104.05262.

Thomas Colcombet and Damian Niwiriski. On the positional determinacy of edge-labeled
games. Theor. Comput. Sci., 352(1-3):190-196, 2006. doi:10.1016/j.tcs.2005.10.046.
Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. Simple
strategies in multi-objective MDPs. In Armin Biere and David Parker, editors, Tools and
Algorithms for the Construction and Analysis of Systems — 26th International Conference,
TACAS 2020, Held as Part of the Furopean Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume
12078 of Lecture Notes in Computer Science, pages 346-364. Springer, 2020. doi:10.1007/
978-3-030-45190-5_19.

Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, Warsaw, Poland, June 29 — July 2, 1997, pages 99-110. IEEE Computer Society,
1997. d0i:10.1109/LICS.1997.614939.

Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int.
Journal of Game Theory, 8(2):109-113, 1979. doi:10.1007/BF01768705.

https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.4204/EPTCS.226.10
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s00236-013-0182-6
http://arxiv.org/abs/2104.05262
http://arxiv.org/abs/2104.05262
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/BF01768705

P. Bouyer, M. Randour, and P. Vandenhove

20

21

22

23

24

25

26

27

28

29

30

31

32

E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of

programs. In FOCS, pages 328-337. IEEE Computer Society, 1988. doi:10.1109/SFCS.1988.

21949.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368-377. IEEE Computer Society, 1991.
d0i:10.1109/SFCS.1991.185392.

Nathanaél Fijalkow and Florian Horn. The surprizing complexity of reachability games. CoRR,
abs/1010.2420, 2010. doi:10.48550/arXiv.1010.2420.

Hugo Gimbert and Wieslaw Zielonka. When can you play positionally? In Jiri Fiala, Vaclav
Koubek, and Jan Kratochvil, editors, Mathematical Foundations of Computer Science 2004,
29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004,
Proceedings, volume 3153 of Lecture Notes in Computer Science, pages 686—697. Springer,
2004. doi:10.1007/978-3-540-28629-5_53.

Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In Martin Abadi and Luca de Alfaro, editors, CONCUR 2005 — Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005,
Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428-442. Springer,
2005. doi:10.1007/11539452_33.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.
Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California,
USA, pages 60-65. ACM, 1982. doi:10.1145/800070.802177.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Good-for-MDPs automata for probabilistic analysis and reinforcement learning. In
Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis
of Systems — 26th International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 306-323.
Springer, 2020. doi:10.1007/978-3-030-45190-5_17.

Florian Horn. Random fruits on the Zielonka tree. In Susanne Albers and Jean-Yves
Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs,
pages 541-552. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Germany, 2009. doi:
10.4230/LIPIcs.STACS.2009.1848.

Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for
tree automata. Ann. Pure Appl. Log., 69(2-3):243-268, 1994. doi:10.1016/0168-0072(94)
90086-8.

Eryk Kopczyniski. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Pre-
neel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming,
83rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, volume 4052 of Lecture Notes in Computer Science, pages 336-347. Springer, 2006.
doi:10.1007/11787006_29.

Eryk Kopczynski. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

Alexander Kozachinskiy. Infinite separation between general and chromatic memory. CoRR,
abs/2208.02691, 2022. doi:10.48550/arXiv.2208.02691.

3:17

FSTTCS 2022

https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.48550/arXiv.1010.2420
https://doi.org/10.1007/978-3-540-28629-5_53
https://doi.org/10.1007/11539452_33
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/978-3-030-45190-5_17
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/11787006_29
https://doi.org/10.48550/arXiv.2208.02691

3:18

The True Colors of Memory

33

34

35

36
37

38

39

40

41

42

43

44
45

Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy
by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122
of LIPIcs, pages 38:1-38:20. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.38.

James C. A. Main and Mickael Randour. Different strokes in randomised strategies: Revisiting
Kuhn’s theorem under finite-memory assumptions. In Bartek Klin, Slawomir Lasota, and Anca
Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR 2022,
September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 22:1-22:18. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.22.
Oded Maler and Ludwig Staiger. On syntactic congruences for omega-languages. Theor.
Comput. Sci., 183(1):93-112, 1997. doi:10.1016/S0304-3975(96)00312-X.

Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363-371, 1975.
Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149—
184, 1993. doi:10.1016/0168-0072(93)90036-D.

A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541-544, 1958. doi:10.2307/2033204.

Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, Haifa, Israel, August 2 — 5, 2022, pages 22:1-22:12. ACM,
2022. doi:10.1145/3531130.3532418.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.
Mickael Randour. Automated synthesis of reliable and efficient systems through game theory:
A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages
731-738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095-1100, 1953. doi:10.1073/pnas.39.10.1095.

Ludwig Staiger. Finite-state omega-languages. J. Comput. Syst. Sci., 27(3):434-448, 1983.
doi:10.1016/0022-0000(83)90051-X.

Klaus Wagner. On w-regular sets. Information and control, 43(2):123-177, 1979.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998. doi:10.1016/50304-3975(98)
00009-7.

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.CONCUR.2022.22
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.2307/2033204
https://doi.org/10.1145/3531130.3532418
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-00395-5_90
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1016/0022-0000(83)90051-X
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Expanders in Higher Dimensions

Irit Dinur &
Weizmann Institute of Science, Rehovot, Israel

—— Abstract

Expander graphs have been studied in many areas of mathematics and in computer science with
versatile applications, including coding theory, networking, computational complexity and geometry.

High-dimensional expanders are a generalization that has been studied in recent years and
their promise is beginning to bear fruit. In the talk, I will survey some powerful local to global
properties of high-dimensional expanders, and describe several interesting applications, ranging from
convergence of random walks to construction of locally testable codes that prove the ¢ conjecture
(namely, codes with constant rate, constant distance, and constant locality).

2012 ACM Subject Classification Theory of computation — Expander graphs and randomness
extractors

Keywords and phrases Expanders

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.4

Category Invited Talk

© Irit Dinur;
37 licensed under Creative Commons License CC-BY 4.0

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 4; pp.4:1-4:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:joanrpublic@dummycollege.org
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

Jasine Babu &
Indian Institute of Technology Palakkad, India

R. Krithika &
Indian Institute of Technology Palakkad, India

Deepak Rajendraprasad =
Indian Institute of Technology Palakkad, India

—— Abstract
Given a directed graph GG and a positive integer k, the ARC DISJOINT r-CYCLE PACKING problem
asks whether G has k arc-disjoint r-cycles. We show that, for each integer r > 3, ARC DISJOINT
r-CYCLE PACKING is NP-complete on oriented graphs with girth ». When r is even, the same

result holds even when the input class is further restricted to be bipartite. On the positive side,
focusing on r = 4 in oriented graphs, we study the complexity of the problem with respect to two
parameterizations: solution size and vertex cover size. For the former, we give a cubic kernel with
quadratic number of vertices. This is smaller than the compression size guaranteed by a reduction
to the well-known 4-SET PACKING. For the latter, we show fixed-parameter tractability using an
unapparent integer linear programming formulation of an equivalent problem.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms; Mathematics of computing — Graph algorithms

Keywords and phrases arc-disjoint cycles, bipartite digraphs, oriented graphs, parameterized com-
plexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.5

1 Introduction

DisjoINT CYCLE PACKING is a fundamental problem in graph theory and combinatorial
optimization. Given a (directed or undirected) graph G and a positive integer k, the
objective of the D1SJOINT CYCLE PACKING problem is to determine whether G has k (vertex
or arc/edge) disjoint cycles. All variants of DISJOINT CYCLE PACKING are NP-complete
[3, 13, 23] and therefore have been studied in various algorithmic realms. The fixed-parameter
tractable (FPT) algorithm (with respect to the number k of cycles as the parameter) [7]
given by Bodlaender in 1994 for VERTEX DISJOINT CYCLE PACKING is one of the earliest
results in the parameterized complexity framework. This problem does not admit polynomial
kernels [9] but has a lossy kernel [28]. However, EDGE DI1SJOINT CYCLE PACKING has a
polynomial kernel (and hence is also FPT) [9].

While Di1sJoINT CYCLE PACKING in undirected graphs is amenable to parameterized
algorithms, their directed-analogues are not. On directed graphs, VERTEX DISJOINT CYCLE
PackING and ARC DISJOINT CYCLE PACKING are both W[1]-hard [3, 31]. Therefore,
studying this problem on a subclass of directed graphs and studying DISJOINT r-CYCLE
PACKING (where the length of each cycle in the solution set is required to be r) are natural
directions of research. Both VERTEX DISJOINT CYCLE PACKING and ARC DISJOINT CYCLE
PACKING are NP-complete but FPT on tournaments [5, 6]. However, these problems are
W/[1]-hard on bipartite digraphs [3, 31]. In this paper, we focus on ARC DISJOINT r-CYCLE
PACKING in oriented graphs. Bessy et. al., have shown that ArRc DisJoINT 3-CYCLE
PACKING is NP-Complete on tournaments [5]. From this, it follows easily (by reduction via
subdivision of arcs) that, for each ¢ > 1, ARC DISJOINT 3¢-CYCLE PACKING is NP-complete

© Jasine Babu, R. Krithika, and Deepak Rajendraprasad;
37 licensed under Creative Commons License CC-BY 4.0

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 5; pp. 5:1-5:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:jasine@iitpkd.ac.in
mailto:krithika@iitpkd.ac.in
mailto:deepak@iitpkd.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

on oriented graphs with girth 3¢, and that the input class can be restricted to be bipartite
when ¢ is even. This leaves open the complexity of ARC DISJOINT r-CYCLE PACKING in
digraphs for » Z 0 mod 3. Our first set of results close this gap.

We show that ARC DISJOINT r-CYCLE PACKING is NP-complete on oriented graphs for
each integer r > 3, by a reduction from a variant of SATISFIABILITY [23, LO1].

(Theorem 1) For each integer r > 3, ARC-DISJOINT r-CYCLE PACKING on oriented
graphs of girth r is NP-complete. Further, for each even integer r > 4, this result holds
even when the input graph is restricted to be bipartite.

It is easy to verify that ARC DISJOINT r-CYCLE PACKING reduces to r-SET PACKING.
In r-SET PACKING, given a family F of sets over a universe U, where each set in the
family has cardinality at most 7, and a positive integer k, the objective is to decide whether
there are sets Si,...,S5; € F that are pairwise disjoint. Note that r is fixed. Given an
instance (G, k) of ARC DISJOINT r-CYCLE PACKING, the instance (E(G),C, k) of r-SET
PACKING where C is the set of r-cycles of G is equivalent to it. It is well-known that r-SET
PACKING admits a kernel with O(k") sets [17] and O(k"~!) elements [1, 29] leading to a
straight-forward O*(20(k1°8%))_time algorithm. Further, using the standard color-coding
technique [2, 12, 30], 7-SET PACKING admits an O*(2°())-time algorithm. These results
imply that ARC DISJOINT r-CYCLE PACKING in general digraphs admits an FPT algorithm
with running time O*(2°*)) and a polynomial kernel. However, the kernel with O(k") sets
and O(k"~1) elements for r-SET PACKING does not straightaway give a kernel of same size
for ARC DISJOINT r-CYCLE PACKING. Restricting our attention to ARC DISJOINT 4-CYCLE
PACKING, we obtain a cubic kernel with quadratic number of vertices.

(Theorem 2) ARC DISJOINT 4-CYCLE PACKING in oriented graphs has a kernel with
O(k?) edges and O(k?) vertices.

In parameterized complexity, solution size is one of the most natural and almost always
the first parameter considered for an optimization problem. Though this parameterization
has proven to be fruitful, solution size does not reflect the input structure. Therefore,
structural parameters like treewidth, the size of a vertex cover, the size of a feedback vertex
set and in general the size of a modulator to a family of graphs have been considered in the
literature [11, 12, 16, 18, 24]. In the context of DISJOINT CYCLE PACKING, the parameters
that have been studied are treewidth, the size of a vertex cover, the size of a feedback vertex
set and a modulator to a cluster graph and max leaf number [8, 24]. The importance in
these structural parameters is partly due to their practical relevance and partly due to their
role in identifying parameterizations that yield FPT algorithms. In this spirit, we study
the complexity of ARC DI1SJOINT 4-CYCLE PACKING parameterized by the size of a vertex
cover (of the underlying undirected graph). We first reduce this problem to ARC DISJOINT
4-CYCLE PACKING in oriented bipartite graphs parameterized by the size ¢ of one of the
parts of the bipartition. Then we define a new equivalent problem of building a multidigraph
with certain decomposition properties and give an integer linear programming formulation for
it where the number of variables is a function of £. Finally, by invoking the FPT algorithm for
INTEGER LINEAR PROGRAMMING parameterized by the number of variables [12, 22, 25, 26],
we obtain the following result.

(Theorem 3) ARC D1sJOINT 4-CYCLE PACKING in oriented graphs is FPT with respect
to size of a vertex cover as the parameter.

J. Babu, R. Krithika, and D. Rajendraprasad

Road Map. The paper is organized as follows. In Section 2, we give the necessary definitions
related to directed graphs. In Section 3, we show the NP-completeness of ARC DISJOINT
r-CYCLE PACKING in oriented (bipartite) graphs of girth r. In Section 4, we describe
FPT algorithms and polynomial kernels for ARC DISJOINT 4-CYCLE PACKING. Finally, we
conclude with some remarks and open problems in Section 5.

2 Preliminaries

The set {1,2,...,n} is denoted by [n]. A multidigraph is a pair (V, A) consisting of a set V'
of vertices and a multiset A of ordered pairs of vertices (called arcs) in V. A directed graph
(or digraph) is a multidigraph (V, A) where A is a set of ordered pairs of distinct vertices in
V. Note that a digraph is a multidigraph with no self-loops or multiple/parallel arcs. An arc
is specified as an ordered pair of vertices and this pair of vertices are called as its endpoints.
A matching is a collection of arcs that do not share any endpoint. For a digraph G, V(G)
and A(G) denote the set of its vertices and the set of its arcs, respectively. An oriented graph
is a digraph G having no pair of vertices u,v € V(G) with (u,v), (v,u) € A(G). A bipartite
(di)graph is a (di)graph G whose vertex set can be partitioned into two sets X and Y such
that every arc/edge in G has one endpoint in X and the other endpoint in Y. We denote
such a digraph as G[X,Y] and say that (X,Y") is a bipartition of G.

Two vertices u, v are said to be adjacent in G if (u,v) € A(G) or (v,u) € A(G). For a set
of arcs F', V(F') denotes the union of the sets of endpoints of arcs in F. A vertex u is said to
be an in-neighbour of v if (u,v) € A(G). Similarly, a vertex u is said to be an out-neighbour
of v if (v,u) € A(G). For a vertex v € V(Q), its out-neighborhood, denoted by N7 (v), is
the set {u € V(G) | (v,u) € A(G)} and its in-neighborhood, denoted by N~ (v), is the set
{u e V(G) | (u,v) € A(G)}. The out-degree and in-degree of a vertex v are the sizes of its
out-neighborhood and in-neighborhood, respectively. For a set X C V(G) U A(G), G — X
denotes the digraph obtained from G by deleting X.

A path P in G is a sequence (v1, ..., vg) of distinct vertices such that for each i € [k — 1],
(vi,vi+1) € A(G). We say that P starts at v1 and ends at vy, and also refer to v; and vy, as the
endpoints of P. The set {v1,...,v;} is denoted by V(P) and the set {(v;,vi41) | @ € [k — 1]}
is denoted by A(P). A cycle C in G is a sequence (v1,...,vx) of distinct vertices such that
(v1,...,v;) is a path and (vg,v1) € A(G). The set {vy,...,vx} is denoted by V(C) and the
set {(vs,vig1) | @ € [k — 1]} U {(vg,v1)} is denoted by A(C). The length of a path or cycle X
is the number of vertices in it. A cycle (path) of length ¢ is called a g-cycle (¢g-path) and a
cycle on three vertices is also called a triangle. A collection of g-cycles is called a Cy-packing
or a q-cycle packing.

For details on parameterized algorithms, we refer to standard books in the area [12, 14,
19, 21].

3 NP-Completeness

In this section, we show that for each even integer r > 4, ARC-DISJOINT r-CYCLE PACKING
is NP-complete on oriented bipartite graphs of girth r and for each integer r > 3, ARC-
DisJOINT r-CYCLE PACKING is NP-complete on oriented graphs of girth r. It is easy to
verify that ARC DISJOINT r-CYCLE PACKING is in NP. To prove NP-hardness, we give
a polynomial-time reduction from a variant of the SATISFIABILITY problem. Let SAT(1,
2) denote SATISFIABILITY restricted to formulas with at most 3 variables per clause and
each variable occurring exactly once negatively and once or twice positively in the formula.

5:3

FSTTCS 2022

5:4

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

Figure 1 Gadget corresponding to the variable X; that appears negatively in C; and positively
in C2 and (5. Here, circles and squares denote a bipartition.

It is well-known that SATISFIABILITY is NP-complete when restricted to instances with 2
or 3 variables per clause and at most 3 occurrences per variable [32, Theorem 2.1]. By a
straightforward transformation of instances of this problem into instances of SAT(1, 2), it
follows that SAT(1, 2) is also NP-complete.

Now, we proceed to the NP-hardness of ARC-DISJOINT r-CYCLE PACKING. First, we
show the hardness of ARC-DISJOINT 4-CYCLE PACKING and then move on to the general
case. Consider an instance ¥ of SAT(1,2) with n variables and m clauses. From 1, we
construct an oriented bipartite graph G such that ¢ is satisfiable if and only if G has an
arc-disjoint 4-cycle packing of size m + n. Let {X1, Xo,..., X} and {C1,Cs,...,Cp} be
the sets of variables and clauses, respectively, in 1». We consider the ordering of the variables
(and clauses) given by the increasing order of their indices. The construction of G from 1 is
as follows.

For every i € [n], add a set of six vertices {x;, ys, 2, Di, @i, i } Where (24, Di, Yiy Giy 23, Ti) 1S

a directed path and (r;, z;), (zi,4:), (¥i,7i), (Di, 2i) € A(G).

For every j € [m], add two vertices ¢; and d; along with the arc (c;, d;).

For every i € [n] and j € [m] such that X; appears in C},

if the appearance is as a negative literal, then add arcs (dj, z;) and (p;, ¢;).

if the appearance is as a positive literal and this is the first such appearance, then add
arcs (d;,z;) and (g, ¢).

if the appearance is as a positive literal and this is the second such appearance, then
add arcs (d;,), (r;, ¢j).

Refer to Figure 1 for an illustration. In order to prove the correctness of the reduction,
we first make some observations about the type of 4-cycles in G. Notice that for each clause
C}, the vertices ¢; and d; in G respectively have out-degree one and in-degree one. Hence,
any 4-cycle containing one of these vertices must contain the arc (c;,d;). Further, observe
that if a 4-cycle contains the arc (c;j,d;), then the other two vertices of that cycle must
belong to the the same variable gadget X; for some i € [n]. We will refer to such a cycle as
a clause-variable cycle involving C; and X;. Notice that if there is a clause-variable cycle
involving C; and X;, then it must be one of the following: (c¢;,d;, z;,p;), (¢;,d;,2s,¢;) or
(¢j,dj,2i,7;). The first one will be referred to as the negative clause-variable cycle and the
other two will be referred to as positive clause-variable cycles.

» Observation 3.1. Let j € [m]. If a 4-cycle in G contains a vertex c; or d;, then it must
be a clause-variable cycle. In any arc-disjoint 4-cycle packing of G, there is at most one
clause-variable cycle involving C;.

Now, consider a 4-cycle of G that does not contain ¢; or d; vertices for any j € [m]. In any
such cycle, all its four vertices must belong to the same variable gadget X; for some i € [n].
This is because there are no edges between vertices that belong to two distinct variable

J. Babu, R. Krithika, and D. Rajendraprasad

c1 dy

Ly Di Yi qi
O

Zi qi

C2 d2 C3 dg

Figure 2 The 3 different variable cycles highlighted in red with the clause-variable cycles that
are arc-disjoint to it highlighted in blue and the clause-variable cycles that are not arc-disjoint to it
shown separately in grey.

gadgets. Any such 4-cycle whose vertex set is contained in the variable gadget of X; would
be referred to as a wvariable cycle of X;. Notice that the variable cycles of X; possible are
(zi,0i,Yi,74), (Ti,pi,zi,7i) and (x4, ¢, 25, 73). We will call (x;, ps, yi,7;) as the first positive
variable cycle of X;, (x;,p4,2i,7) as the second positive variable cycle of X; and (z;, ¢;, zi, ;)
as the negative variable cycle of X;. Note that all these three cycles contain the arc (r;, x;).
Hence, we can make the following observation.

» Observation 3.2. Any 4-cycle in G which is not a clause-variable cycle must be a variable
cycle. Let i € [n]. In any arc-disjoint 4-cycle packing of G, there is at most one variable
cycle of X;.

» Observation 3.3. Let i € [n].
The first positive variable cycle of X; is arc-disjoint from positive clause-variable cycles
involving any clause C; and X;.
The negative variable cycle of X; is arc-disjoint from megative clause-variable cycles
involving any clause C; and X;.
If X; appears positively in clauses C; and Cy, then the positive clause-variable cycle
involving C; and X; is arc-disjoint from the positive clause-variable cycle involving Cj,
and X;.

The following is another crucial observation.

» Observation 3.4. Suppose F is a family of arc-disjoint 4-cycles in G. Let i € [n].
If F contains a negative clause-variable cycle involving clause C; and X; for some j € [m],
then F cannot contain a (first or second) positive variable cycle of X;.
If F contains a positive clause-variable cycle involving clause C; and X; for some j € [m],
then F cannot contain a negative variable cycle of X;.

Refer to Figure 2 for an illustration.

5:5

FSTTCS 2022

5:6

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

» Lemma 3.1. ¢ is a YES-instance of SAT(1,2) if and only if (G,m+n) is a YES-instance
of ARC-DISJOINT 4-CYCLES.

Proof. From Observations 3.1 and 3.2, it follows that any arc-disjoint 4-cycle packing of G
can contain at most m + n cycles.

Suppose ¥ is a YEs-instance of SAT(1,2). We will produce a family F consisting of
m + n arc-disjoint 4-cycles in GG. Let 7 be a satisfying truth assignment of ¢. When
is evaluated on 7, in each clause C; of 1, at least one literal gets the truth value TRUE.
From each clause C}, choose any one literal [; which gets the truth value TRUE and do the
following.

if I; is a positive occurrence of a variable X;, then add a positive clause-variable cycle

involving C; and X; to F.

if I; is a negative occurrence of a variable X;, then add the negative clause-variable cycle

involving C; and X; to F.

For each variable X; do the following.

if X; is assigned to be TRUE, add the first positive variable cycle of X; to F.

otherwise, add the negative variable cycle of X; to F.

From Observation 3.3, it follows that the cycles added to F are arc-disjoint. Further, we
have added m + n cycles to F.

To prove the converse, suppose there exist a family F consisting of m + n arc-disjoint
4-cycles in G. We will produce a truth assignment 7 that satisfies). By Observations 3.1
and 3.2, among the cycles in F, exactly m are clause-variable cycles and exactly n are variable
cycles, one corresponding to each variable. If the variable cycle of X; is a positive variable
cycle, assign X; to be TRUE. If the variable cycle of X; is a negative variable cycle, assign X;
to be FALSE. This defines the truth assignment 7. Now, it remains to show that 7 satisfies).
Consider any clause C; of 9. Since F contains exactly m clause-variable cycles, there must
be a clause-variable cycle in F that involves C; and some variable X;. By Observation 3.4,
if the variable cycle of X; in F is a positive variable cycle, then the clause-variable cycle in
F involving C; and X; is a positive clause variable cycle. If this happens, then X; appears
positively in C;. As per our truth assignment 7, we have assigned X; to be TRUE and hence,
the clause C; will be satisfied. Similarly, from Observation 3.4, we can also show that if
variable cycle of X; in F is a negative variable cycle, then we would have assigned X; to
FALSE, in which case as well, the clause C; will be satisfied by 7. Since the same argument
holds for every clause C};, we can see that 7 satisfies all clauses of ¢ simultaneously. <

Lemma 3.1 along with the fact that the reduction described runs in polynomial time
leads to the following result.

» Lemma 3.2. ARC-DISJOINT 4-CYCLE PACKING in oriented bipartite graphs is NP-complete.

Now, we give a generalization of the above reduction by constructing a graph G, from 1,
for each integer r > 4. If r = 4, then G, = G. If r > 4, then we make the following two
modifications in G to obtain G,..
For every i € [n], replace the arc (r;,z;) in G by a path P; = (r;, 61,62 ..., Qi r—a,T;)
of length r — 2 from r; to x; in G...
For every j € [m], replace the arc (¢;,d;) in G by a path Q; = (¢j,b;1,02...,bj,r—4,d;)
of length r — 2 from ¢; to d; in G,.
By extending similar arguments as in the case of G, it can be seen that for any j € [m] if a
cycle in G, contains either vertex c; or vertex d;, then that cycle must contain the entire
path @;. Further, similar to G, for any cycle of G that does not contain c; or d; vertices for

J. Babu, R. Krithika, and D. Rajendraprasad

any j € [m], all vertices of the cycle must belong to the same variable gadget X; for some
i € [n] and the cycle must necessarily contain the entire path P;. From these arguments, it
can be seen that G, has no cycles of length less than 7.

By extending our earlier definitions, r-cycles in G, that contain Q; for some j € [m] will
be called as clause-variable cycles and r-cycles in G, that contain P; for some ¢ € [n] will be
called as variable cycles. The terminology of negative and positive clause variable cycles can
also be generalized in the same manner. It can be seen that a variable cycle that contains P;
has exactly two vertices from outside P; and they both belong to the gadget of variable X;
itself and a clause-variable cycle that contains (); has exactly two vertices from outside Q);
and they both belong to the same variable gadget.

Our remaining arguments for the case when r = 4 also extend easily so that the statements
of Observation 3.1, Observation 3.2, Observation 3.3, Observation 3.4 and Lemma 3.1 can
be generalized by replacing G with G, and 4 with r. It may be noted that the graph G,
obtained has girth » and when r is even, G, is bipartite. Further, it is known from the
literature that ARC-DISJOINT 3-CYCLE PACKING is NP-complete for tournaments [5]. Hence,
we have the following theorem, obtained as a generalization of Lemma 3.2.

» Theorem 1. For each integer r > 3, ARC-DISJOINT r-CYCLE PACKING on oriented graphs
of girth r is NP-complete. Further, for each even integer r > 4, this result holds even when
the input graph is restricted to be bipartite.

ARcC Di1sJOINT r< CYCLE PACKING is a related problem, where the cycles in the packing are
required to be of length at most . For an odd integer r > 4, the answer to ARC DISJOINT
r< CYCLE PACKING on any input oriented bipartite graph is the same as when the cycles in
the packing are restricted to be of length at most » — 1. This yields the following corollary.

» Corollary 1. For each integer r > 4, ARC DISJOINT r< CYCLE PACKING on oriented
bipartite graphs is NP-complete.

4 FPT Algorithms and Kernels for Packing Arc-Disjoint 4-Cycles

Now, we move on to describing FPT algorithms and polynomial kernels for ARC DISJOINT
4-CYCLE PACKING in oriented graphs. First we consider the standard parameter (solution
size) and then proceed to vertex cover size as the parameter.

4.1 Solution Size as Parameter

As mentioned before, ARC DI1SJOINT 4-CYCLE PACKING reduces to 4-SET PACKING. While
the current fastest FPT algorithm for 4-SET PACKING solves ARC DISJOINT 4-CYCLE
PACKING in the same time, the kernel for 4-SET PACKING with O(k?®) elements and O(k*)

sets does not straight away give a kernel of same size for ARC DISJOINT 4-CYCLE PACKING.

Here, we describe an O(k?) sized kernel with O(k?) vertices. Towards this, we give two
kernelization procedures - one that produces a cubic kernel and an other that gives a
quadratic vertex kernel. By combining these two procedures, we get the desired kernel.
Our algorithm crucially uses reduction rules based on the new expansion lemma [20] and
sunflowers [15, 19, 21].

Consider an instance (G, k) of ARC DISJOINT 4-CYCLE PACKING. The first reduction
rule is a standard preprocessing rule.

» Reduction Rule 4.1. If there is a vertex or an edge in G that is not in any 4-cycle, then
delete it.

5:7

FSTTCS 2022

5:8

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

The correctness of this rule is immediate as no Cy-packing can contain a vertex or an
edge that is not a part of any 4-cycle. The next reduction rule uses the notion of sunflowers
[15, 19, 21].

» Definition 4.1. (¢-sunflower) An (-sunflower in G with core C C A(G) is a set S of £
4-cycles such that for any two elements S and S" in S, we have A(S)N A(S") = C.

Now, we describe a rule that identifies edges that may be assumed to be in some solution
(if the instance is a YES-instance) using sunflowers.

» Reduction Rule 4.2. If there is an edge e in G such that there is a (4k — 3)-sunflower
with {e} as the core, then delete e from G and decrease k by 1.

Note that finding a sunflower with core {(u,v)} reduces to finding a maximum matching
in the auxiliary bipartite graph G, with bipartition (A, B) defined as follows: A = N~ (u),
B = N*t(v) and a vertex x € A is adjacent to a vertex y € B if and only if (y,z) € A(G).
Observe that A and B are not necessarily disjoint and we rename B so that AN B = () before
finding the matching. Thus, Reduction Rule 4.2 can be applied in polynomial time. The
correctness of the rule is justified by the following lemma.

» Lemma 4.1. If Reduction Rule 4.2 is applicable on (G, k), then (G, k) is a YES-instance
if and only if (G — e,k — 1) is a YES-instance.

Proof. Let S denote a (4k — 3)-sunflower in G with core {e}. Since e is in at most one cycle
of any 4-cycle packing of G, it is clear that (G — e, k — 1) is a YEs-instance, whenever (G, k)
is. Conversely, consider a (k — 1)-sized 4-cycle packing F of G — e. Then, |A(F)| =4(k — 1)
and there are at most 4(k — 1) cycles in S that have an edge from A(F). Therefore, there
exists a cycle C in the sunflower S such that A(C) N A(F) = 0. Then, F U {C} is a k-sized
4-cycle packing of G. <

Subsequently, we assume that (G, k) is an instance on which Reductions Rules 4.1 and 4.2
are not applicable. Let X be a maximal set of 4-cycles in G such that for any two elements X
and Y in X, we have |[A(X)N A(Y)| < 1. The following lemma shows that if X is sufficiently
large, then (G, k) is a YESs-instance.

» Lemma 4.2. If |X| > 16k, then there is a set C C X of k arc-disjoint 4-cycles that can
be obtained in polynomial time.

Proof. Obtain a sequence Fi, ..., F, of disjoint subsets of X as follows. For i > 1, consider
an arbitrary 4-cycle C; € X'\ U;;ll F; and let F; be the subset of cycles in X'\ U;;ll F; that
share an edge with C;. Observe that for each i € [r], | F;| < 4(4(k — 1)) as Reduction Rule
4.2 is not applicable. Further, r > k as |X| > 16k?. Then, C,...,C}y is the required 4-cycle
packing. <

Lemma 4.2 lets us apply the following reduction rule.

» Reduction Rule 4.3. If | X| > 16k?, then replace the instance (G,k) by a constant-sized
YESs-instance.

Subsequently, we assume that |X'| < 16k2. Define P to be the set of all 3-paths of G that
are in some 4-cycle in X. Note that P is O(k?). The next lemma says that P “hits” all
4-cycles in G.

» Lemma 4.3. For every 4-cycle C in G, there is a 3-path P € P such that A(P) C A(C).

J. Babu, R. Krithika, and D. Rajendraprasad

Proof. Consider a 4-cycle C in G. If C € X, then the claim trivially holds. Otherwise,

C ¢ X and by the maximality of X, there is a 4-cycle X in X such that |A(X) N A(C)| > 2.

Let e and e’ be two common arcs of X and C. If e and ¢’ share an endpoint, then the 3-path
formed by e and €’ that is present in X and C is also in P and the claim holds. Otherwise, e
and €’ form a matching implying that X = C leading to a contradiction. |

The next rule is one that uses the notion of ezpansion and new expansion lemma [20].

» Definition 4.2 ({-expansion). Let £ be a positive integer and H be a bipartite graph with
bipartition (A, B). For AC A and B C B, a set M C E(H) of edges is called an (-expansion
of A onto B if the following properties hold.

every vertex of/Al is incident to exactly ¢ edges in M.

ezactly E|fl\ vertices in B are incident to edges in M.

For an {-expansion M of A onto E, we call the vertices of B that are endpoints of edges in
M as saturated and the remaining vertices of B as unsaturated. Observe that a 1-expansion
is simply a matching of A to B that saturates A.

» Proposition 4.1 (New ¢-Expansion Lemma, [20]). Let £ be a positive integer and H be a
bipartite graph with bipartition (A, B). Then there exists A C A and B C B such that there
is an (-expansion M of A onto B in H, N(B) C A and |B\ B| < (|A\ A|. Moreover, the
sets A and B (and M) can be computed in polynomial time.

Note that B (and A) may be empty. In that case, since |B\ B| < ¢|A\ A|, we have
|B| < (|A|. Therefore, if |B| > (|A|, then B # 0. Now, we are ready to state the next
reduction rule.

We will apply Proposition 4.1 on an auxiliary bipartite graph G with bipartition (A, B)
where A =P and B =V(G) \ V(P), and a vertex (z,y, z) in A is adjacent to v € B if and
only if (z,y,z,v) is a 4-cycle in G.

» Reduction Rule 4.4. Let A C A and B C B be the sets and M be the {-expansion computed
by Proposition 4.1 on G for £ =1. Let U C B be the set of unsaturated vertices of M. Delete
U from G.

Observe that after the application of this rule, if B is empty, then |V (G)| < 3|A| + |B| <

3|A|+|A|. Otherwise, B is non-empty and |V (G)| < 3|A|+|B\U|+|B\B| < 3|A|+|A|+|A\A|.
In both cases, |V (G)| is O(k?). The correctness of the rule is justified by the following lemma.

» Lemma 4.4. (G, k) is a yes-instance if and only if (G — U, k) is a yes-instance.

Proof. The “if” part of the claim follows from the fact that G — U is a subgraph of G. Now,
suppose (G, k) is a yes-instance. Let C be a k-sized 4-cycle packing of G. Note that by
Lemma 4.3, for each C € C, there exists a 3-path Po in P that is contained in C. Let C be
the set of cycles in C such that for each C € a there is a 3-path Pg in A such that Po is
contained in C. Note that each 4-cycle in C \ C is also a 4-cycle in G — U as N(E) C A. Let
C={Cy,...,C} and for cach i € [r], let P; = (1, 9;,2) be a 3-path in A that is contained
in C;. As A is saturated by a matching M in G, there is a vertex v; € B matched to the
vertex P; in A. By replacing each C; by (x;,y:, 2i,v;) in C, we get a k-sized 4-cycle packing
of G-U. <

Now, we have the following property on an instance on which none of the reduction rules
described so far is applicable.

5:9

FSTTCS 2022

5:10

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

» Proposition 4.2. If (G, k) is an instance of ARC DISJOINT 4-CYCLE PACKING on which
none of the Reduction Rules 4.1, 4.2, 4.3, 4.4 is applicable, then G has O(k?) vertices.

Note that since all the reduction rules described can be applied in polynomial time,
Proposition 4.2 gives us a quadratic vertex kernel for ARC DISJOINT 4-CYCLE PACKING.
However, this kernel may have O(k*) edges.

Next, we describe a procedure that reduces the number of edges to O(k3). This procedure
is a stand-alone algorithm that produces a cubic kernel. We begin with the definition of
Cy-partners.

» Definition 4.3. Two arcs (x,y) and (z,v) are called Cy-partners in G if (z,y,z,v) is a
04 n G.

For an arc (z,y) in G, Ey, denotes the set of all Cy-partners of (z,y). We will rightfully
treat E,, as a subdigraph of G. For a collection of subgraphs H of G, A(#H) denotes
Upen A(H). For a set S and a natural number g, [S], denotes S itself if [S| < ¢ and an
arbitrary g¢-sized subset of S otherwise.

We now describe a procedure that marks a certain number of 4-cycles and takes the
subgraph spanned by the arcs of the marked cycles as the kerenel. This marking procedure
is described as Algorithm 1.

Algorithm 1 MarkingProcedure.

Require: A digraph G and a positive integer k
Ensure: A subgraph H of G on O(k?®) edges such that H has an arc-disjoint Cy-packing of
size k if and only if G has an arc-disjoint Cy-packing of size k.
Find a maximal arc-disjoint Cy-packing P in G
if |P| > k then
A(H) « A(P') and V(H) < V(P'), where P’ is any subset of k distinct cycles from
P.
return H
for each arc (z,y) € A(P) do
if E,, has a matching M of size 4k then
Foy=M
else
Let S be the set of endpoints of a maximum matching in E,,
Foy <0
for each vertex s € S do
Let A; be the set of arcs in E, outgoing from s
Let B, be the set of arcs in F,, incoming to s
Add [As]yy, U |Bs]yy to Fay
for each arc (z,v) € F,, do
mark the 4-cycle (z,y, z,v)
Let H be the subgraph of G whose arc set is the union of the arcs of all the marked 4-cycles

and vertex set is the set of endpoints of its arcs.
return H

We show the correctness of MarkingProcedure in the following lemma.

» Lemma 4.5. Given a digraph G and a positive integer k, MarkingProcedure (Algorithm
1) returns a digraph H on O(k?) edges and O(|V (G)|) vertices such that H has an arc-disjoint
Cy-packing of size k if and only if G has an arc-disjoint Cy-packing of size k.

J. Babu, R. Krithika, and D. Rajendraprasad

Proof. Since H is a subgraph of G, the “only if” direction is immediate. To prove the
other direction, suppose (G, k) is an yes-instance and let Q = {Q1,...Qx} be an arc-disjoint
Cy-packing in G which has the maximum number of edges from H. If all the cycles in
Q are present in H, then it has a k-sized packing as required. Hence for the rest of the
proof we assume Q1 is not contained in H and show that we can replace ()1 with another
4-cycle @} which is contained in H and arc-disjoint from Qs,..., Q. Then the Cy-packing
{Q},Q2,...,Qx} contradicts the choice of Q.

Since @ is a 4-cycle in G, and P is a maximal Cy-packing in G, there is an arc (z,y)
of @1 present A(P). Let Q1 = (z,y,2,v). If (z,v) was added to Fy, by the algorithm,
Q1 would have been marked and hence)1 would be present in H. Hence we assume that
(z,v) & Fyy. If E;,, had a matching of size 4k, then there are 4k arc-disjoint 3-length paths
from y to x in in H. At most 4(k — 1) of them can be hit by other cycles Qs, ..., Q of the
packing Q. Let (y, 2’,v’,x) be a 3-length path in H that is arc-disjoint from Qa, ..., Q. We
can replace Q1 = (z,y, z,v) with Q| = (z,y, 2/,v") in Q.

Suppose E,,, did not have a matching of size 4k. Then either z or v (or both) belong to
S. We will argue the case when z € S. The case v € S is similar. Since (z,v) is not in F,,,
the set Iy, contains 4k other edges of I, outgoing from z. Hence there are 4k arc-disjoint
2-length paths from z to in in H. At most 4(k — 1) of them can be hit by other cycles
Q> ... Qg of the packing Q. Let (z,v',z) be a 2-length path in H that is arc-disjoint from
Q2,-..,Qr. We can replace Q1 = (z,y, 2,v) with Q] = (z,y,2,v') in Q.

We now prove a bound on the size of H. Observe that for each arc (z,y) € A(P), |Fyyl
is bounded above by 4k in the first case and 8k|S| in the second case. Since |S| < 2(4k — 1),
we have |F,,| < 64k2. Since |A(P)| < 4k, the total number of 4-cycles that are marked is
less than 256k and hence H has at most 1024k3 arcs. |

Applying Algorithm 1 on the instance guaranteed by Proposition 4.2, leads to the following
result.

» Theorem 2. ARC DISJOINT 4-CYCLE PACKING admits an O(k3) sized kernel with O(k?)
vertices.

We remark that in Theorem 2, our focus was on only getting a cubic kernel with quadratic
number of vertices and we have not attempted to optimize the constants involved.

4.2 Vertex Cover Size as Parameter

In this section, we study the time complexity of ARC-DISJOINT 4-CYCLE PACKING in oriented
graphs parameterized by the size of a vertex-cover. The first step is to reduce this problem
to ARC DISJOINT 4-CYCLE PACKING in oriented bipartite graphs parameterized by the size
of the smaller part. Then we invent a new problem which is in bijective correspondence with
arc-disjoint 4-cycle packing in oriented bipartite graphs. Given an oriented bipartite graph
G, we consider the problem of building an auxiliary multidigraph H with vertex set as the
smaller part of G which can be decomposed into a disjoint union of a collection of transitive
bipartite multidigraphs, each with an upper bound on its chromatic index. We formulate
this problem as an INTEGER LINEAR PROGRAMMING problem with its number of variables
and constraints, though exponential in the size of the smaller part of G, is independent of
the size of the larger part. Hence solving this integer linear program gives an FPT algorithm
for the original problem.

5:11

FSTTCS 2022

5:12

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

» Lemma 4.6. Let G be an oriented graph with a vertez-cover X. G has a collection of k
pairwise arc-disjoint 4-cycles if and only if there exists a collection P of pairwise arc-disjoint
3-paths in G[X] such that the bipartite digraph Gp obtained from G by deleting all the edges
inside X and adding for each P = (a,b,c) in P a new 3-path (a,bp,c) (where bp is a new
two-degree vertex) contains k pairwise arc-disjoint 4-cycles.

Proof. Suppose G has a collection C of k pairwise arc-disjoint 4-cycles. Since X is a vertex-
cover of G, for each C = (a,b,c,d) € C, the intersection of C' with G[X] is either the entire
C, a 3-path in C, or two vertices of C. In the first case, add (a,b,¢) and (¢, d,a) to P. In
the second case, add the 3-path in C' N G[X] to P. In the third case, the two vertices of C
from X are non-adjacent and no path is added to P. By the arc-disjointness of C and the
above construction, P is a collection of pairwise arc-disjoint 3-paths in G[X]. In this case
it is easy to see that the bipartite digraph Gp constructed for P also contains k pairwise
arc-disjoint 4-cycles.

In the other direction, let P be a collection of pairwise arc-disjoint 3-paths in G[X] such
that the bipartite digraph G'p constructed based on it has a family C of k pairwise arc-disjoint
4-cycles. Since Gp is bipartite with X as one part, every cycle C' = (a,b,¢,d) in C has two
non-adjacent vertices, say a and ¢ in X and the other two vertices outside X. This splits
C into two 3-length paths (a, b, c) and (c,d,a). Let Pe denote this collection of 2k pairwise
arc-disjoint paths obtained from the k cycles in C, each starting and ending in X. We will
show that each 3-path in P¢ is either present in G, or it can be substituted by a 3-path in
G with the same endpoints, such that the resulting collection P/, is pairwise arc-disjoint in
G. This would suffice to construct k pairwise arc-disjoint 4-cycles in G. Let (a, b, c) be a
3-path in Pe. If b is a vertex in G, then the same path (a, b, ¢) is available in G as well and is
added to P/ . If b is a new vertex in G but not in G, then b represented a 3-path (a, ', c)
in G[X], Add (a,b’,c) to P} instead of (a,b,c). Note that the arc-disjointness among the
newly added 3-paths is due to the arc-disjointness in P and their arc-disjointness with the
3-paths from P is since the former is made up of arcs from G[X], while the latter is made
up of arcs across X and V(G) \ X. <

If X has £ vertices, then there are at most 3 3-paths in G[X] and any collection P of
pairwise arc-disjoint 3-paths has at most ¢?/2 paths in it. Hence the number of choices for
‘P is upper bounded by (65;2) < (268)42/2 . Hence one can use an algorithm to solve ARC
DisJOINT 4-CYCLE PACKING in bipartite graphs to solve the same problem for G with a
blow-up of (2¢£)*°/2 in running time.

This leads us to the study of parameterized complexity of ARC DISJOINT 4-CYCLE
PACKING in bipartite digraphs G with bipartition L U R with respect to min{|L|, |R|}
as the parameter. Consider an instance Z = (G, k) with |L| = min{|L|,|R|} = ¢. Let
L={vy,...,v} and R = {uy,...,un}.

» Definition 4.4. (Signature) For a vertex u € R, the signature of u is a string m, =
(mu(1), ..., mu(€)) in {1,—1,0}* defined as follows.

1, ifue NTt(v)
(i) =< 1, ifue N~ (v)

0, otherwise

Observe that the signature of vertices in R can be determined in O(n) time and there are
at most 3¢ distinct signatures. Let S denote the set of possible signatures. For each o € S,
let R, denote the set of vertices of R that have signature equal to o. For each o € S, let
o~ 1(+1) denote the set {v; € L | o(i) = 1} and 0~ (—1) denote the set {v; € L | o(i) = —1}.

J. Babu, R. Krithika, and D. Rajendraprasad

Given two multidigraphs G; = (V, 41) and G2 = (V, A3) on the same vertex set, we
denote by G W Gy the multidigraph obtained by taking the union of G; and Gs after
renaming the arcs in As so that A, is disjoint from A;. We call G; W Gy as the disjoint union
of G; and G5 and extend the terminology to any finite collection of graphs on a common
vertex set. A multidigraph in which for each pair of vertices u, v the number of arcs directed
from w to v is the same as the number of arcs directed from v to u is called balanced.

» Lemma 4.7. G has a collection of k pairwise arc-disjoint 4-cycles if and only if there
exists a collection of bipartite multidigraphs H,, 0 € S, on the verter set L such that

(i) each arc of H, is directed from o=1(+1) to o= 1(—1),

(ii) the edges of H, can be properly coloured using |Ry| colours, and

(iii) the disjoint union H =4, g H, is a balanced multidigraph with 2k arcs.

Proof. Suppose G contains an arc-disjoint collection C of 4-cycles, |C| = k. For each o € S,
we set H, = (L, A,) where A, contains an arc from u to w for each v € R, such that
(u,v,w) is a path in one of the cycles in C. The first condition in the lemma follows from the
definition of signature. The second condition follows since for each v € R, the collection of
arcs (u,w) in H, where (u,v,w) is a path in one of the cycles in C forms a matching in H,.
The third condition follows since each 4-cycle (u,v,w,z) in C (with u,w € L) contributes
two opposite arcs, specifically (u,w) and (w,u), to H.

In the opposite direction, suppose we have a collection of bipartite multigraphs H,,
o € 5, on the vertex set L, satisfying the three conditions of the lemma. We first construct a
collection P of pairwise arc-disjoint P3’s in G starting and ending in L as follows. Condition
2 assures that we can decompose the arc-set of each H, into at most |R,| matchings H,,
v € R,. For each arc (u,w) in H,, add the directed path (u,v,w) to P. The first condition
in the lemma ensures that (u,v,w) is indeed a path in G. Two paths resulting from the same
matching H,, for each v € R, are arc-disjoint because of the disjointness of the end-vertices
of the two paths. Two paths resulting from H, and H,, for each v,v' € R,v # v', are
arc-disjoint since their middle vertices are two distinct vertices in R. Hence P is a collection
of arc-disjoint Py’s from G. Condition 3 guarantees that |P| = 2k and that the Py’s in P
can be perfectly paired to form a collection C of pairwise arc-disjoint 4-cycles in G, with
IC| = k. <

The feasibility of finding a collection of bipartite multidigraphs satisfying the conditions
of Lemma 4.7 can be checked by the following integer linear program.

Set of Variables: X = {z,uw |0 € S;u€ot(—-1),we o (+1)}
Feasible Solution: An integral assignment to the variables satisfying the following
properties.

For each signature o € § and u,w € L

Z Lo u,w’ S |Ra| and Z Tou! w S ‘R¢7|
re€X u't Ty ot wE€EX

o,u’ w

’

w'r T

o, u,w

For each pair u,w € L

§ Tou,w = § Tow,u-

0 Tou,w€EX 0 Tow,u€X

Optimum Solution: A feasible solution that maximizes > Zgyw-
To,u,w eX

5:13

FSTTCS 2022

5:14

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

Since the edge-chromatic number of bipartite multigraphs is equal to their maximum
degree [4], the second condition of Lemma 4.7 is equivalent to ensuring that H, has a
maximum degree at most |R,|. This is ensured by the first group of constraints. The second
group of constraints ensure that the disjoint union H is balanced. The edge-count of H is
the cost function to be maximized.

INTEGER LINEAR PROGRAMMING is FPT when parameterized by the number of variables
by the following result.

» Proposition 4.3 ([12, 22, 25, 26]). An integer linear program of size L with p variables
can be solved in O(p**PT°P) (L, + log M) log(M,M.)) time where M, is an upper bound on
the absolute values a variable can take in a solution and M, is the largest absolute value of a
coefficient in the vector ¢ corresponding to the objective function.

In our integer linear program, the number of variables p is equal to | X| which is O(3°/?)
and the number of constraints is O(3°/). So the size L of the integer linear program is
O(3%¢3). Moreover the maximum value M, that a variable can take is bounded by |R,|
which is O(n) and all the coefficients are 1 or 0. Hence, Proposition 4.3 gives the following
result.

» Theorem 3. ARC DISJIOINT 4-CYCLE PACKING parameterized by the size of a vertex
cover is FPT.

5 Concluding Remarks

In this work, we studied ARC DISJOINT r-CYCLE PACKING and showed that it is NP-complete
on oriented graphs with girth r and remains so for even r when the input is further restricted
to be bipartite. For r = 4, we gave a cubic kernel (containing a quadratic number of vertices)
with respect to the number of cycles as the parameter and showed fixed-parameter tractability
with respect to the size of a vertex cover as the parameter. Improving the size of this kernel or
showing tightness and giving an FPT algorithm for the problem parameterized by treewidth
are interesting future directions. Note that treewidth of a graph is at most the size of its
vertex cover. Also, coming up with the best possible polynomial kernels possible for r > 4 is
a natural next question.

Tournaments and bipartite tournaments are well-studied special classes of digraphs with
interesting structural and algorithmic properties. While ARC Di1SJOINT CYCLE PACKING is
known to be NP-complete in tournaments [5], the complexity of this problem in bipartite
tournaments is still open. Further, ARC DiSJOINT 4-CYCLE PACKING is also open in bipartite
tournaments. The NP-completeness of ARC DI1SJOINT CYCLE PACKING in tournaments
was established by a reduction from SAT(1,2) to ARC DISJOINT 3-CYCLE PACKING in
tournaments. The construction of the graph in the reduced instance may be viewed as
consisting of two phases where in the first phase, an oriented graph is constructed and in the
second phase, this graph is completed into a tournament using a decomposition of the edges
of a complete (undirected) graph into triangles [27]. The second phase of this approach does
not seem to extend to bipartite tournaments. Further, ARC DISJOINT 4-CYCLE PACKING
in bipartite tournaments is closely related to a conjecture by Brualdi and Shen [10] that
asserts that every Eulerian bipartite tournament has a decomposition of its arcs into 4-cycles.
We believe that resolving the complexity of this problem would shed some light on this
conjecture.

J. Babu, R. Krithika, and D. Rajendraprasad

—— References

1

10

11

12

13

14

15

16

17

18

19

Faisal N. Abu-Khzam. An improved kernelization algorithm for r-set packing. Inf. Process.
Lett., 110(16):621-624, 2010. doi:10.1016/j.ipl.2010.04.020.

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.
do0i:10.1145/210332.210337.

Jgrgen Bang-Jensen and Gregory Z. Gutin. Digraphs — Theory, Algorithms and Applications,
Second Edition. Springer Monographs in Mathematics. Springer, 2009.

Claude Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn
Thiebaut, and Meirav Zehavi. Packing arc-disjoint cycles in tournaments. Algorithmica,
83(5):1393-1420, 2021. doi:10.1007/s00453-020-00788-2.

Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut. Triangle packing in (sparse) tourna-
ments: Approximation and kernelization. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 14:1-14:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.14.

Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59-68, 1994.
d0i:10.1142/50129054194000049.

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path and
cycle problems. Theor. Comput. Sci., 511:117-136, 2013. doi:10.1016/j.tcs.2012.09.006.
Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles

and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. doi:10.1016/j.tcs.2011.

04.039.

Richard A. Brualdi and Jian Shen. Disjoint cycles in eulerian digraphs and the diameter of
interchange graphs. J. Comb. Theory, Ser. B, 85(2):189-196, 2002. doi:10.1006/jctb.2001.
2094.

Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math., 127(3):415—
429, 2003. doi:10.1016/S0166-218X(02)00242-1.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
d0i:10.1007/978-3-319-21275-3.

Dorit Dor and Michael Tarsi. Graph decomposition is NPC — A complete proof of Holyer’s
conjecture. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,
Victoria, British Columbia, Canada, pages 252-263. ACM, 1992. doi:10.1145/129712.129737.
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

Paul Erdés and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, s1-35(1):85-90, 1960. doi:10.1112/jlms/s1-35.1.85.
Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J.
Comb., 34(3):541-566, 2013. doi:10.1016/j.ejc.2012.04.008.

Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A.
Rosamond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter
tractable algorithms for matching and packing problems. Algorithmica, 52(2):167-176, 2008.
doi:10.1007/s00453-007-9146-y.

Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A.
Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustra-
tion using bounded max leaf number. Theory Comput. Syst., 45(4):822-848, 2009. doi:
10.1007/s00224-009-9167-9.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

5:15

FSTTCS 2022

https://doi.org/10.1016/j.ipl.2010.04.020
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/s00453-020-00788-2
https://doi.org/10.4230/LIPIcs.ESA.2017.14
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1006/jctb.2001.2094
https://doi.org/10.1006/jctb.2001.2094
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/129712.129737
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1016/j.ejc.2012.04.008
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/3-540-29953-X

5:16

Packing Arc-Disjoint 4-Cycles in Oriented Graphs

20

21

22

23

24

25

26

27

28

29

30

31

32

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1-13:44, 2019. doi:10.1145/3293466.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing. Cambridge University Press, 2019.

Andrés Frank and Eva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Comb., 7(1):49-65, 1987. doi:10.1007/BF02579200.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

Bart M. P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, The Netherlands, 2013.

Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538-548, 1983. doi:10.1287/moor.8.4.538.

Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415-440, 1987. doi:10.1287/moor.12.3.415.

Thomas P. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematical
Journal, 2:191-204, 1847.

Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224-237. ACM, 2017. doi:10.1145/3055399.3055456.

Hannes Moser. Finding optimal solutions for covering and matching problems. PhD thesis,
Friedrich Schiller University of Jena, 2010. URL: https://d-nb.info/999819399.

Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 182-191. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492475.

Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discret. Math., 24(1):146-157, 2010. doi:10.1137/070697781.

Craig A. Tovey. A simplified NP-complete satisfiability problem. Discret. Appl. Math.,
8(1):85-89, 1984. doi:10.1016/0166-218X(84)90081-7.

https://doi.org/10.1145/3293466
https://doi.org/10.1007/BF02579200
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1145/3055399.3055456
https://d-nb.info/999819399
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1137/070697781
https://doi.org/10.1016/0166-218X(84)90081-7

Approximate Representation of Symmetric
Submodular Functions via Hypergraph Cut
Functions

Calvin Beideman 94
University of Illinois, Urbana-Champaign, IL, USA

Karthekeyan Chandrasekaran & &
University of Illinois, Urbana-Champaign, USA

Chandra Chekuri 24
University of Illinois, Urbana-Champaign, USA

Chao Xu @4
University of Electronic Science and Technology of China, Chengdu, China

—— Abstract
Submodular functions are fundamental to combinatorial optimization. Many interesting problems can
be formulated as special cases of problems involving submodular functions. In this work, we consider
the problem of approximating symmetric submodular functions everywhere using hypergraph cut
functions. Devanur, Dughmi, Schwartz, Sharma, and Singh [5] showed that symmetric submodular
functions over n-element ground sets cannot be approximated within (n/8)-factor using a graph cut
function and raised the question of approximating them using hypergraph cut functions. Our main
result is that there exist symmetric submodular functions over n-element ground sets that cannot
be approximated within a o(n1/3/ log? n)-factor using a hypergraph cut function. On the positive
side, we show that symmetrized concave linear functions and symmetrized rank functions of uniform
matroids and partition matroids can be constant-approximated using hypergraph cut functions.

2012 ACM Subject Classification Theory of computation
Keywords and phrases Submodular Functions, Hypergraphs, Approximation, Representation
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.6

Funding Calvin Beideman: supported in part by NSF grants CCF-1814613 and CCF-1907937.
Karthekeyan Chandrasekaran: supported in part by NSF grants CCF-1814613 and CCF-1907937.
Chandra Chekuri: supported in part by NSF grant CCF-1907937.

1 Introduction

A set function f : 2V — Rsq defined over a ground set V' is submodular if f(A) + f(B) >
f(AN B) + f(AU B) for all subsets A, B C V and is symmetric if f(A) = f(V — A) for
all subsets A C V. Submodular functions have the diminishing marginal returns property
which arise frequently in economic and game theoretic contexts. Well-known examples of
submodular functions include matroid rank functions and graph/hypergraph cut functions.
Owing to these connections, submodular functions play a fundamental role in combinatorial
optimization.

Throughout this work, we will be interested in non-negative set functions f : 2V — Rsq
with f(0) = 0. We use n to denote the size of the ground set V. For a parameter o > 1, a
set function g : 2V — R>¢ is said to a-approximate a set function f : 2V - R>q if

9(4) < f(A) < ag(A) ¥ AC V.

Given the prevalence of submodular functions in combinatorial optimization, a natural
question that has been studied is whether an arbitrary submodular set function can be
well-approximated by a concisely representable function. We distinguish between structural

© Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri, and Chao Xu;
37 licensed under Creative Commons License CC-BY 4.0

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2022).

Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 6; pp. 6:1-6:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:calvinb2@illinois.edu
http://www.calvinbeideman.com
mailto:karthe@illinois.edu
http://karthik.ise.illinois.edu/
mailto:chekuri@illinois.edu
https://chekuri.cs.illinois.edu/
mailto:cxu@uestc.edu.cn
https://chaoxuprime.com/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Approx Representation of Sym Submodular Functions

and algorithmic variants of this question: the structural question asks whether submodular
functions can be well-approximated via concisely representable functions while the algorithmic
question asks whether such a concise representation can be constructed using polynomial
number of function evaluation queries (note that the algorithmic question is concerned with
the number of function evaluation queries as opposed to run-time). Concise representations
with small-approximation factor are useful in learning, testing, streaming, and sketching
algorithms. Consequently, concise representations with small-approximation factor for
submodular functions (and their generalizations and subfamilies of submodular functions)
have been studied from all these perspectives with most results focusing on monotone
submodular functions [8, 2, 12, 1, 5, 11, 6, 3].

In this work, we focus on approximating symmetric submodular functions. Balcan, Harvey,
and Iwata [2] showed that for every symmetric submodular function f: 2V — R>g, there
exists a function g : 2V — Rsq defined by g(S) := /x(S)T Mx(S), where x(5) € {0,1}" is
the indicator vector of S C V and M is a symmetric positive definite matrix such that g
v/n-approximates f. We note that such a function g has a concise representation — namely, the
matrix M. Is it possible to improve on the approximation factor for symmetric submodular
functions using other concisely representable functions?

The concisely representable family of functions that we study in this work is the family
of hypergraph cut functions. A hypergraph H = (V, E) consists of a vertex set V and
hyperedges E where each hyperedge e € E is a subset of vertices. If every hyperedge has size
2, then the hypergraph is simply a graph. For a subset A of vertices, we use §(A) to denote
the set of hyperedges e such that e has non-empty intersection with both A and V' \ A. The
cut function d : 2V — R, of a hypergraph H = (V, E) with hyperedge weights w : E — R
is given by

d(A):= > w VACV

e€E: ecd(A)

A function g : 2V — R is a hypergraph cut function if there exists a weighted hypergraph
with vertex set V whose cut function is g. We will say that a function f : 2V — R, is
a-hypergraph-approzimable (a-graph approzimable) if there exists a hypergraph (graph) cut
function ¢ such that g a-approximates f. We note that although a hypergraph could have
exponential number of hyperedges, every n-vertex hypergraph admits a (1 + €)-approximate
cut-sparsifier with O("lf#) hyperedges (see Theorem 6 for a formal definition of cut-
sparsifier), and hence, hypergraph cut functions have a concise representation (with a
constant loss in approximation factor).

The structural approximation question of whether every symmetric submodular function
is constant-hypergraph-approximable was raised by Devanur, Dughmi, Shwartz, Sharma, and
Singh [5]. They showed that every symmetric submodular function on a ground set of size n
is O(n)-graph-approximable and that this factor is tight for graph-approximability: in fact,
the cut function of the n-vertex hypergraph containing a single hyperedge that contains all
vertices cannot be (n/4 — €)-approximated by a graph cut function for all constant € > 0.
This example naturally raises the following intriguing conjecture:

» Conjecture 1. Every symmetric submodular function is constant-hypergraph-approximable.

The conjecture is further fueled by the fact that there are no natural examples of symmetric
submodular functions besides hypergraph cut functions (although arbitrary submodular
functions can be symmetrized while preserving submodularity).

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu

We emphasize that the algorithmic variant of Conjecture 1 is false. In particular, there
does not exist an algorithm that makes a polynomial number of function evaluation queries to
a symmetric submodular function f and constructs a hypergraph cut function g such that g
O(y/n/Inn)-approximates f. We outline a proof of this observation now. Suppose that there
exists an algorithm that uses polynomial number of function evaluation queries to a given
symmetric submodular function f to construct a weighted hypergraph whose cut function
a-approximates f; then we can obtain an a-approximation to the symmetric submodular
sparsest cut problem by constructing such a hypergraph and solving the sparsest cut on
that hypergraph exactly (using exponential run-time). However, Svitkina and Fleischer [12]
have shown that the best possible approximation for the symmetric submodular sparsest
cut problem using polynomial number of function evaluation queries is Q(y/n/Inn) (even if
exponential run-time is allowed). Hence, the algorithmic version of hypergraph-aproximability
has a strong lower bound of Q(4/n/Inn). This leaves the structural question open while
perhaps, hinting that it may also have a strong lower bound.

1.1 Our Results

The symmetrization of a set function f:2" — R is the function fsym : 2 — R obtained as

fom(A) = f(A) + fF(VNA) = F(V) = F(D).

We note that if f : 2 — R is submodular, then its symmetrization fsym : 2V — R is
symmetric submodular. A matroid rank function is a non-negative integer valued submodular
set function r : 2V — Z satisfying r(A) < r(AU{e}) < r(A) +1 for every subset A C V and
element e € V. As a step towards understanding Conjecture 1, we observe that it suffices to
focus on symmetrized matroid rank functions (see Section 1.3 for a proof).

» Proposition 2. If the symmetrization of every matroid rank function is a-hypergraph-
approzimable, then every rational-valued symmetric submodular function is a-hypergraph-
approximable.

Next, we refute Conjecture 1 by showing the following result.

» Theorem 3. For every sufficiently large positive integer n, there exists a matroid rank
function r : 2" — Z>qo such that rsym is not a-hypergraph-approzimable for

1

ns
a=o0 :
<log n>

Our proof of Theorem 3 is an existential argument and it does not construct an explicit

[\v)

matroid rank function that achieves the lower bound.

Next, we prove positive approximation results for certain subfamilies of symmetric
submodular functions. The subfamilies that we consider are inspired by Proposition 2 and
by previous work on approximating symmetric submodular functions and matroid rank
functions.

We call a set function f :2Y — Rsq as a concave linear function if there exist weights w :
V' — Rxg and an increasing concave function h : R>o — Rxq such that f(S) = h(D_,cgwo)
for every S C V. We note that concave linear functions are submodular. Goemans, Harvey,
Iwata, and Mirrokni [8] showed that every matroid rank function over a n-element ground
set can be y/n-approximated by the square-root of a linear function, i.e., by a concave
linear function. Balcan, Harvey and Iwata [2] showed that every symmetric submodular

6:3

FSTTCS 2022

6:4

Approx Representation of Sym Submodular Functions

function f : 2V — R is y/n-approximated by a function g : 2¥ — Rsq of the form
9(S) == /x(S)TMx(S) for all S C V, where x(S) € {0,1}V is the indicator vector of S and
M is a symmetric positive definite matrix. In particular, if M is a diagonal matrix, then the
function g is the square root of a linear function, i.e., a concave linear function. Given the
significant role of concave linear functions, we consider the hypergraph-approximability of
such functions.

» Theorem 4. Symmetrized concave linear functions are 128-hypergraph-approximable.

As a special case of Theorem 4, we obtain that the symmetrized rank function of uniform
matroids is constant-hypergraph-approximable. Thus, symmetrized rank functions of uniform
matroids act as a starting point for identifying subfamilies of symmetrized matroid rank
functions that are constant-hypergraph-approximable. We consider a generalization of the
uniform matroid, namely the partition matroid and show that it is also constant-hypergraph-
approximable. We refer the reader to Section 1.2 for formal definitions of uniform and
partition matroids.

» Theorem 5. Symmetrized rank functions of uniform matroids and partition matroids are
64-hypergraph-approximable.

Theorem 5 gives a concrete class of functions for which there is a large gap between the
approximation capabilities of graph cut functions and hypergraph cut functions. Consider
the uniform matroid where the independent sets are those of size at most 1. The symmetrized
rank function of this matroid is the same as the cut function of a hypergraph with a single
hyperedge spanning all vertices. As mentioned above, this function cannot be (n/4 — ¢)-
approximated by a graph cut function for all constant € > 0 [5]. Thus, symmetrized rank
functions of uniform and partition matroids cannot be better than n/4 approximated by
graph cut functions, but can be constant factor approximated by hypergraph cut functions.

While our lower bound result in Theorem 3 rules out a-hypergraph-approximability for
symmetric submodular functions for o = o(nl/ 3/ log? n), our positive results suggest broad
families of symmetric submodular functions which are constant-hypergraph-approximable.
It would be interesting to characterize the family of symmetric submodular functions that
are constant-hypergraph-approximable. We also do not know if our lower bound result in
Theorem 3 is tight. We only know that every symmetric submodular function is (n — 1)-
graph-approximable. It would be interesting to show that every symmetric submodular
function is O(nl/ 3)-hypergraph-approximable — we believe that Proposition 2 and Theorem 4
should help towards achieving this approximation factor.

1.2 Preliminaries

A set function f: 2V — Rsq is submodular if f(A) + f(B) > f(AN B) + f(AU B) for all
subsets A, B C V, symmetric if f(A) = f(V — A) for all subsets A C V, and monotone if
f(B) > f(A) for all subsets AC BC V.

A matroid M = (V,T) is specified by a ground set V and a collection Z C 2V, known as
independent sets, satisfying the three independent set axioms: (1) § € Z, (2) if B € Z, then
A €T for every A C B, and (3) if A, B € Z with |B| > | 4|, then there exists an element
v € B\ A such that AU {v} € Z. The rank function r : 2V — Zx(of a matroid M = (V,I)
is defined as

r(A) :==max{|S|: SCA, S€I}VACV.

The definition of matroid rank functions that we presented in Section 1.1 is equivalent to this
definition [10]. It is well-known that the rank function of a matroid is monotone submodular.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu

We consider two matroids over the ground set V. A uniform matroid is a matroid in
which the independent sets are exactly the sets containing at most k elements of the ground
set V, for some fixed integer k — we call it as the uniform matroid over ground set V with
budget k. Partition matroids generalize uniform matroids: the independent sets of the
partition matroid associated with a partition Py, ..., P; of the ground set V with budgets
bi,...,b € Z>o are those subsets A C V for which |A N P;| < b; for every i € [t].

The proof of our lower bound will use the following theorem showing the existence of
cut-sparsifiers.

» Theorem 6 ([4]). For every positive constant € and for every weighted n-vertex hypergraph
H, there exists another weighted hypergraph H' (called a cut-sparsifier) on the same vertex
set with O(n/e?) hyperedges such that the cut function of H' (1 + €)-approzimates the cut
function of H.

1.3 Proof of Proposition 2

In this section, we prove Proposition 2. We need the notion of contraction of set functions and
hypergraphs. For a set function f : 2V — R and a subset A, the function g : 2V ~4+% — Ry
obtained by contracting f with respect to A is defined as

S ifags,
9(5) = {f(S—a+A) ifaes.

If f: 2V — Rs is a symmetric submodular function and A C V, then the function obtained
by contracting f with respect to A is also symmetric submodular. Let H = (V, E) be
a hypergraph with hyperedge weights w : E — R>¢ and A C V. Then, the hypergraph
obtained by contracting H with respect to A is defined as H' = (V — A+ a, E') where a is a
new vertex not present in V' and

E :={e—A+a:ec E,enNA#0}U{e:ec E,enA=10}.

We note that E’ could have self-loops and that there is a surjection ¢ : E — E’ mapping each
hyperedge to the hyperedge it is contracted into (which could be the same as the original
hyperedge). We use this surjection to define the weight w’ : E/ — R of hyperedges in E’ as
W (€') =3 cp: g(e)=er w(e). We note that if f is the cut function of a weighted hypergraph
H = (V, E) with hyperedge weights w : E — R>o and A C V, then the contraction of f with
respect to A corresponds to the cut function of the weighted hypergraph (H’, w’) obtained
by contracting H with respect to A. This leads to the following observation:

» Observation 7. The contraction of a a-hypergraph-approzimable function f : 2V — Rxg
with respect to a subset A CV is also a-hypergraph-approximable.

» Proposition 2. If the symmetrization of every matroid rank function is a-hypergraph-
approzximable, then every rational-valued symmetric submodular function is a-hypergraph-
approximable.

Proof. It suffices to consider integer-valued symmetric submodular functions (multiply all
function values by the product of the denominators of their rational expressions). Hence, we
will focus on approximating integer-valued symmetric submodular functions.

Let f:2Y — Z>¢ be an integer-valued symmetric submodular function. It is known that
there exists a vector w € RY such that the function g : 2V — R>¢ defined by

9(8) = F(S)+ 3w, ¥ SCV

uesS

6:5

FSTTCS 2022

6:6

Approx Representation of Sym Submodular Functions

is integer-valued, monotone, and submodular [7, Section 3.3] (e.g., for our purposes, we
can simply choose w, := max{f(S): S C V} for every u € V). Since f(V) = 0, we
have that g(V) = >, . wy. Consequently, (1/2)gsym(S) = (1/2)(g(S) + g(V = S) —
g(V)) = (1/2)(f(S) + f(V = 8)) = f(S) for every S C V since f is symmetric. Thus,
f(S) = (1/2)gsym(S) for every S C V.

Next, consider the integer-valued monotone submodular function g : 2 — Zs(obtained
as above. Helgason [9] showed that there exists a matroid on a ground set U with rank
function r : 2Y — Zs and a partition (U, : v € V) of U such that g(S) = r(UyesU,) for
every S C V. Equivalently, the function g is obtained from the rank function r by repeatedly
contracting with respect to U, for each v € V' (the order of processing v € V is irrelevant).
Moreover, f(S) = (1/2)gsym(S) = (1/2)rsym(UnesUy) for every S C V. Hence, the function
f is half times the contraction of a symmetrized matroid rank function. Thus, if every
symmetrized matroid rank function is a-hypergraph-approximable, then by Observation 7,
the function f is also a-hypergraph-approximable. |

2 Lower Bound

In this section, we prove Theorem 3. In our first lemma, we show that it suffices to consider
only hypergraphs with O(n) hyperedges if we are willing to tolerate a constant loss in the
approximation factor.

» Lemma 8 (Few hyperedges suffice). Let f : olnl R>g be a symmetric submodular function
and B > 1 be a positive real number. Suppose that there exists a weighted hypergraph H
whose cut function B-approxzimates f. Then, there exists a weighted hypergraph H' with O(n)
hyperedges whose cut function 23-approximates f.

Proof. Applying Theorem 6 to H with e = 1 gives us that there exists a weighted hypergraph
H' with O(n) hyperedges whose cut function 2-approximates the cut function of H. Since the
cut function of H 3-approximates f, this means that the cut function of H' 23-approximates f.

|

Next we show that it suffices to restrict our attention to hypergraphs with rational
hyperedge weights while again losing only a constant in the approximation factor (since we
will be considering only hypergraphs with O(n) hyperedges).

» Lemma 9 (Bounded rational weights suffice). Let r: 2V — Ry be a matroid rank function
on ground set V = [n]. Suppose that there exists a hypergraph H = (V, E) with hyperedge
weights w: E — Ry with |E| = O(n) whose cut function d : 2" — R>¢ B-approzimates rsym
for some 8 = o(n). Then, there exist hyperedge weights w': E — Q4 which assign to each
hyperedge of H a positive rational weight p/q where p,q < n® such that d’ 23-approvimates
Tsym, where d’ : 2l R is the cut function induced by the weight function w'.

Proof. Since r is the rank function of a matroid on ground set V = [n], we have that
r(S) < nforall S C [n], and therefore rgym,(S) < n for all S C [n]. Consequently, if w(e) > n
for some e € E then we have d(S) > n > rgym(S) for some S C [n], a contradiction. Thus,
we conclude that w(e) <n for every e € E.
We define the new weight function w’ : E — R>¢ by
|nw

w'(e) ::%VeeE.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu

For every e € E, the weight w’(e) is a rational number p/q with ¢ = n? and p < n?w(e) < n?.
Next, we show that the cut function d’ : 2[" — R>¢ induced by this weight function w’
satisfies the required bounds for every subset S C [n].

For every e € E, we have that w’(e) < w(e). Thus, for every S C [n], we have that
d'(S) < d(S) < reym(S). Moreover, for every e € E, we have that w'(e) > w(e) — 1/n?.
Therefore, for every S C [n], we have that

d'(S) > d(S) - |E|/n. (1)

Let S C [n]. If r4ym(S) = 0, then d'(S) < d(S) = 0, and s0 75y (S) < 28d'(S). Suppose
Tsym (S) > 0. Since 74y, (S) is an integer, this means that reym(S) > 1, and therefore
1/B < rem(S)/B < d(S). Since |E| = O(n), we have that |E|/n? = O(), and since
B = o(n), we conclude that |E|/n? < 1/23 < d(S)/2. Hence, Inequality (1) gives us that
d'(S) > d(S)/2, and therefore, 1oy (S) < Bd(S) < 2Bd'(S). <

We will show the existence of our desired matroid rank function using the following
theorem of Balcan and Harvey [3].

» Theorem 10 ([3]). For every positive integer n and k > 8 with k = 2000 "") there exists a
family of sets A C 2" and a family of matroids M = {Mpg : B C A} on the ground set [n]
with the following properties:

1. |A| =k and |A| = |n'/3] for every A € A.

2. For every B C A and every A € A, we have

8|log k| (if A e B)
rankpr, (A) = .

Al = [n'/?] (if A A\ B)
3. For every A1, Ay € A with Ay # As, we have |A; N Ag| < 4logk.
4. For every B C A, we have rankyr,([n]) = [n'/3].

We note that the version of the theorem given in [3] does not include the third and fourth
properties. However, the proof for the variant of Theorem 10 with the first two properties
given in [3] shows that the third and fourth properties also hold. We are now ready to prove
Theorem 3. The following is a restatement of Theorem 3.

» Theorem 11. For every sufficiently large positive integer n, there exists a symmetrized
matroid rank function rgym : 2 Z>q on ground set [n] such that rgym, is not a-hypergraph-
approzimable for a = o(n'/3/log?®n).

Proof. For simplicity, we will assume that n = 8 for some positive integer x, so that logn
and n'/3 are both integers. If the theorem holds for n of this form, it holds for all sufficiently
large n, since for any 8% < n < 82! we can extend a matroid M on ground set [8%] to a
matroid M’ on ground set [n] which has the same independent sets.

For k = n!°8™ let A be a collection of subsets of [n] and M = {Mp : B C A} be the
family of matroids on ground set [n] with the properties guaranteed by Theorem 10. We note
that |[M| = 27" For each B C A, let rZ . be the symmetrized rank function of Mg and let
F = {rgm: Mp € M} be the family of symmetrized rank functions of matroids in the family
M. We note that F is a family of gnioe” bymmetrized matroid rank functions over the ground
set [n]. We will prove that there exists rsym € F which is not a-hypergraph-approximable.
Suppose for contradiction that for every function Hym € F there exists a hypergraph Hp
such that the cut function dg of Hp satisfies dg(S) < rsym(S) < a(n)dg(S) for all S C [n].

6:7

FSTTCS 2022

6:8

Approx Representation of Sym Submodular Functions

Let 2 € F. By Lemma 8, there exists a weighted hypergraph H 5 with O(n) hyperedges

sym

such that its cut function d’ : 2I"l — R satisfies
d'(S) <18, (S) < 2ad'(S)V S C [n).

Applying Lemma 9 to the rank function rankg : 2" — Z>o of the matroid Mp and the
hypergraph Hy; gives a hypergraph Hy with O(n) hyperedges all of whose weights are rational
values p/q with p, ¢ < n® such that the cut function d” : 2" — R>¢ of Hy satisfies

d//(s) < TB

sym (

S) < 4ad"(S)V S C [n].

Let H be the family of weighted hypergraphs {H : rSBym e F}.

We now count the number of weighted hypergraphs in . Each hypergraph in H has O(n)
hyperedges with each hyperedge having rational weight p/q where p, ¢ < n3. The number of
potential hyperedges in a n-vertex hypergraph is 2™ — 1, so for every m € Z the number
of simple n-vertex hypergraphs with m hyperedges is (27;;1) = 0(2™"™). Consequently, the
n*). The number of
is at most n%, so the number of ways to

number of possible simple hypergraphs with O(n) hyperedges is 20(
positive rational numbers p/q with p,q € [n?]
assign a weight of this kind to each hyperedge of a hypergraph with O(n) hyperedges is
n9) Therefore the number of hypergraphs with O(n) hyperedges each of which has a

positive rational weight p/q where p,q € [n?] is 20(n*)pOm) = 920(n*) — 20(n'**™) " Hence,
] = 200,
Let F':= {rf, € F: |B| <|A| —2}. Since |F| = 27" and |A| = n'°e", we have that

|F'| = (27", Since |F/| = Q(2"**") while |H| = 2°("™*") | there must exist two distinct
functions r81 rB2 ¢ F’ such that there is a single weighted hypergraph H € H whose cut

sym> ' sym
function d : 2" — R>q satisfies

d(S) < r5x.(S) < 8ad(S) V S C [n] and (2)
d(S) < rE2,(S) < 8ad(S) ¥V S C [n]. (3)

Since By # Ba, at least one of By \ B2 and By \ B; must be non-empty. We assume
without loss of generality that By \ By # 0. Let S € B; \ Bs. By Theorem 10, we have
that rankys, (S) = 8log?n and rank s, (5) = n'/3. Since 8,82, € F', we have that
|B1|, |B2| < |A| -2, and thus |B; U{S}|,|B2U{S}| < |A| — 1. Therefore A\ (B; U{S}), A\
(B2 U{S}) # 0, so there exist sets Ty € A\ (B U{S}),T> € A\ (B2 U{S}). By Theorem 10,
we have that ranky,, (Th), rank (Ty) = nl/3 and [SNTy|,|SNTe| < 41log® n. Therefore,
rankyg, (T1\S), rankyy,, (To\S) > n!/3—4log® n, and so rankyy, ([n]\S), rankyy, ([n]\S) >
n'/? — 4log® n. Furthermore, since T1, T, C [n] we have that rankyy, ([n]),ranka,, ([n]) >
n'/3, and so by Theorem 10, we have rankys, ([n]), ranky, ([n]) =n'/3. Thus, we have that

rg}m(S) = rankpy, (S) + rankas,, ([n]\ S) — rank g, ([n])
< 810g2n+n1/3 —nl/? = 8log®n and

s,zm(S) = rankyz,, (S) + rank ([n]\ S) — rank ([n])
>n'/3 4 (013 — 4log®n) — n'/? = n'/% — 4log®n.

r

Therefore, by inequalities (2) and (3), we have that d(S) < rB1,(S) < 8log? n, and 8ad(S) >

rB2.(S) > n!/3 — 4log® n. Hence, a = Q(n'/3/log” n). This contradicts the assumption that

a = o(n'/3/log?n). <

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu

3 Upper Bounds

In this section, we show that certain subfamilies of symmetric submodular functions are
constant-hypergraph-approximable. In particular, we show how to approximate concave
linear functions and symmetrized rank functions of uniform and partition matroids using
hypergraph cut functions.

3.1 Concave Functions

In this section, we prove Theorem 4. We recall that a set function f: 2V — Rx is a concave
linear function if there exist weights w : V' — R>(and an increasing concave function
h:Rso = R such that f(S) = h(}_, g wy). If all weights are one , then fiyy, is symmetric
submodular and moreover, the precise value of f(S) depends only on the size |\S| and does not
depend on the precise identify of the elements in .S, so we call such functions f as anonymized
concave linear functions. In Section 3.1.1, we consider the special case of anonymized
concave linear functions and show that these are constant-hypergraph-approximable. We
extend these ideas in Section 3.1.2 to show that symmetrized concave linear functions are
constant-hypergraph-approximable.

3.1.1 Anonymized Concave Linear Functions

The following lemma is useful for proving the main theorem of this section. Its proof is given
in the appendix.

» Lemma 12. For every integer n > 2, r € {2,...,n}, and X C [n] with 1 < |X| < 3, the
set of hyperedges §(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

1min{|X|r,1} < [9(X)] §4min{|X|r,1}.
1 @ "

The following is the main theorem of this section.

» Theorem 13. Let n be a positive real number and h: R>o — R be a function such that h
is concave on [0,n] and h(x) = h(n—x) for every x € [0,n]. Then, the symmetric submodular
function f: 2V — Rsq over the ground set V = [n] defined by f(S) :=h(|S|) V S C V is
64-hypergraph-approzximable.

Proof. To simplify our notation, we define a, := h(z) — h(z — 1) for x € {1,...,[n/2]}. A
hypergraph is uniform if all its hyperedges have the same size and a complete t-uniform
hypergraph consists of all hyperedges of size t. We define H as the union of [n/2] different
hypergraphs, Go, ..., Gy, 21, each of which is a uniform hypergraph over the vertex set V'
and each of whose hyperedges are weighted uniformly. Formally, H is the union of:

1. A complete [2]-uniform hypergraph G, with a total weight of (a, — a;11)(x/8) equally
distributed among its hyperedges for each z € {1,...,[n/2] — 1}, ie., w(e) = (a; —
ax+1)(1;/8)/((2]) for every hyperedge e € E(G,) (we note that a; — a;41 > 0 since h is
concave). ’

2. A complete 2-uniform hypergraph Gr,, /27, with a total weight of ar, /21(n/32) equally
distributed among its hyperedges.

3. A hypergraph Gy consisting of a single n-vertex hyperedge of weight h(0)/64.

6:9

FSTTCS 2022

6:10

Approx Representation of Sym Submodular Functions

Let d be the cut function of the hypergraph H we have just defined. In order to show
that d 64-approximates f, we will consider an arbitrary subset C of size k and bound its
cut value in H. Since we know that d and f are both symmetric, we assume without loss of
generality that 1 < k < n/2.

We now compute the weight of hyperedges crossing C' in H. We recall that |C| = k < n/2.
We begin with the easy cases. §(C) will certainly cut the single hyperedge of G for a weight
of exactly h(0)/64. The hyperedges in Gr, /o7 have rank 2. Therefore, by Lemma 12, the
number of hyperedges crossing C' in Gy, /2] is at least a % fraction and at most a % fraction
of the hyperedges in Gy, /21, for a total weight between ar,/91k/64 and ar, 91k /4.

Next, we compute the weight of hyperedges crossing C in Gy, ...,Gg. Let us consider G,
for a fixed z € {1,...,k}. Let r := [2]. We have that 7 > 2 > % so &2 > 1. Therefore, by
Lemma 12, the number of hyperedges crossing C in G, is at least a quarter of the hyperedges
of G. We also know that even if all hyperedges in G, cross C, the weight of those hyperedges
is only (a; — ay+1)(x/8). Therefore, the weight of hyperedges crossing C' in G, is between
(az — azy1)(x/32) and (a; — az41)(z/8).

Next, we compute the weight of hyperedges crossing C' in Gyy1,-..,Gp/21-1- Let us
consider G, for a fixed z € {k+1,...,[%] — 1}. Let r := [2]. Then, 2 < r < 22 < 22,
Therefore, % < 2, and hence,

From these inequalities and Lemma 12, we conclude that the number of hyperedges crossing

Cin G, is at least a % fraction and at most a % fraction of hyperedges of GG,.. Therefore, the

weight of hyperedges crossing C in G, is at least (a; — ay4+1)k/64 and at most (a; — azq1)k.
Therefore, if d(C) is the weight of hyperedges crossing C' in H, then

k [n/2]—-1
1
64 h(0) + arp/a1k + Z(ar — Qp41)T + Z (ag — ag41)k (4)
=1 rx=k+1
) k [n/2]-1
< o | MO +apnnk+ > 200 —)zt Y (A — azp1)k (5)
x=1 r=k+1
< d(C) (6)
k [n/2]—1
h(0 k x
POt Y@ a)E Y (@ ek ™)
x=1 rz=k+1
k [n/2]-1
< h(0) + apujok+ Y (a2 — agr))r+ Y (az — agi1)k. (8)
=1 rz=k+1

Here, expression (8) is 64 times expression (4), so our proof is complete if we can show that
expression (8) evaluates to h(k) (recall that h(k) = f(C). The next claim completes the
proof by showing this. <

> Claim 14. For every k € {0,1,2,...,[n/2]}, we have that

k [n/2]—1
h(k) = h(0) + arp a1k + Z(az —Qp41)T + Z (az — azi1)k

r=1 r=k+1

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu

Proof. To show this, we simplify the two summations appearing on the RHS. The second

summation telescopes to yield (axi1 — afyn/21)k. To simplify the first summation, we note
that Eizl(az — Qz41)T = 121(211(1') —h(x+1) = h(z —1))z. For every z from 1 to j — 1,
h(z) is added 2z times and subtracted 2z times in this summation, so it does not contribute
at all. Therefore, we conclude that 3 (ay — azy1)z = (j + 1)h(z) — jh(z + 1) — h(0).

Using the simplifications we have derived for each of the summations on the RHS, we
find that the RHS is

h(0) + apnyork + ((k+ 1)h(k) — kh(k + 1) — h(0)) + (ar+1 — apnyo))k
= kag+1 + (K + 1)h(k) — kh(k + 1)
=k(h(k+1) — h(k)) + (k+1)h(k) — kh(k +1)
= h(k). <

3.1.2 Symmetrized Concave Linear Functions

In this section, we prove Theorem 4 — i.e., symmetrized concave linear functions are constant-
hypergraph-approximable. Our approach is to first construct a hypergraph on a much larger
vertex set than the ground set V', using the result of Theorem 13, and then contract subsets
of the vertices of this hypergraph to obtain a hypergraph on the vertex set V' with the desired

property.

» Theorem 15. Let V be a ground set, w: V — R, and h: R>g — R>¢ be an increasing
concave function. Then, the symmetric submodular function f: 2V — R, defined by

f(S):=h <Zw(v)> +h| > w) | —h (Z w(v)) ~h(0)YSCV

veS veV\S veV
1s 128-hypergraph-approximable.

Proof. Let n := |V]. For ease of notation, we will use w(S) := > cgw(v) for all S C V. Let
g: R>g — R>g be defined by g(x) := h(z)+h(w(V)—2z) —h(w(V))—h(0) for all z > 0. Then
f(S) = g(w(S)). Since h is concave, and h(w(V) — z) is h(x) reflected over a vertical line at
x =w(V)/2, the function h(w(V) — x) is also concave. We also note that —h(w(V')) — h(0)
is a constant, and constant functions are concave. Therefore, g is a sum of concave functions,
and hence, g is concave as well. Since g is concave, it is also continuous. Therefore, for
every x € Ry such that g(z) # 0, there exists a positive real number ¢, such that for
every real number y with x — e, < y < & + &,, we have g(z)/v2 < g(y) < V2g(z). Let
Emin = min{e,gy: 0 # S C V. Let ¢ := [2nw(V)/emin |. We note that w(V)/q < e,5)/2n
for every S C V.

> Claim 16. There exist positive integers p, for each v € V such that:

min pow(V) min
1. For every v € V, we have that w(v) — Sz < 22202 <w(v) + Smin,
2. YvevPo =4

Proof. By our choice of g, for every v € V, we have that w(v) — w(V)/q > w(v) — =m=in,

Therefore, for each v € V' we can choose a positive integer p, such that w(v) — =min <
pow(V)/q < w(v), and thus we can choose a collection of integers p, which satisfies the first
condition of the claim as well as Y, p, < ¢.

6:11

FSTTCS 2022

6:12

Approx Representation of Sym Submodular Functions

Consider a collection of positive integers p, for each v € V' which maximizes) py
subject to satisfying the first condition of the claim and the inequality >, .\ p» < g. Suppose
for contradiction that these integers do not satisfy the second condition of the claim. Then,
YovevPo < g, 50 > oy pew(V) /g < w(V), so there must exist some u € V for which
puw(V)/q < w(u). By our choice of ¢, we have that

Emin

+ <w(u) + ——= < w(u) + Emin,

< w(u) +
q q q

(pu+ Dw(V) _ puw(V) w(V) w(V)
q 2n n

Thus, we can increase p,, by 1 while still satisfying the first condition of the claim. Also, since
> wev Pv < ¢, we have that 1+ -\, p, < ¢, so we can increase p, by 1 while maintaining
that the sum of all the integers p, is at most ¢. This contradicts our assumption that the
integers p, maximized) _ p, subject to satisfying the first constraint of the claim and the
inequality) .y pv» < ¢. Thus, a collection of positive integers satisfying the conditions of
the claim exists. <

Choose a positive integer p, for each v € V such that the chosen integers satisfy the
conditions of Claim 16. For each v € V, we create a set U, containing p, new vertices,
and we define U := |J U,. We note that |U| = > .y p, = ¢ We define functions

veV

hi: R>o — R0, f1:[0,¢] = Ry, and fo: [0,¢q] = Ry by hi(z) = h(zw(V)/q), fi(z) =
hi(z) + hi(q —) — h1(q) — h1(0), and fo(z) = f1(x)/v/2. We note that hy is concave since
it is a rescaling of h by a constant factor, and hq(q — x) is concave, since it is hy reflected
over the vertical line at = ¢/2. Thus, f; is the sum of concave functions, and hence, f; is
concave. Finally, fo is a constant multiple of a concave function, so fo is concave as well.
Furthermore, by definition, fo(q—x) = fa(z). Applying Theorem 13 to ¢ and fs, we conclude
that there exists a hypergraph H’ with vertex set U whose cut function d’ satisfies

d(8) < fi(|S])/V2 < 64d () ¥ S C U,

Let H be the hypergraph obtained from H’ by contracting each set U, of vertices into
a vertex v € V. Let d be the cut function of H. To complete the proof, we will show that
d(S) < f(S) < 128d(S) for every S C V. We first consider the special cases of S = () and
S = V. For both these cases, we have that f(S) = 0 = d(S) by definition. Next, let us

consider an arbitrary non-empty set S C V. Let Ug := |J U, be the corresponding set of
veES
vertices in H'. We note that by construction of H, we have that d(S) = d'(Ug). Therefore,

d(S) < f1(|Us|)/V2 < 64d(S). (9)

We note that

|Us| = Z ‘Uv| = szw

veES veS

Therefore, by definition,

fi([Us)) = fu <Zpu>

veS

:ihl (E{:pv> +’h1 (qj{:pv> "hl(Q)Afhl(O)

veS vES

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:13

—h <Z ’”‘;(V)> +h (w(V) -y pwq“) — R(w(V)) — h(0)
vES veS

_y (Z qu(V)> .
vES

For each v € S, we have that w(v) — emin/n < Pyw(V)/q < wW(V) + Emin/n. We also have
that |S| < n . Therefore,

w(S) — cw(s) L w(S) — Emin

So by definition of €,,(s), we have that

15) _gw(s) _ (

> pU;W)) < V2g(w(S)) = V2/(S).

\/i \/i veS
Thus f(S)/v2 < f1(|Us]) < V2£(S), and so by inequality (9) we have that
d(S) < f1(|Us|)/vV2 < £(S) < V2f1(|Us]) < 128d(S). <

3.2 Symmetrized Matroid Rank Functions

In this section, we prove Theorem 5 which states that symmetrized rank function of uniform
and partition matroids are constant-hypergraph-approximable (see Section 1.2 for definitions
of uniform and partition matroids). We begin with uniform matroids.

» Lemma 17. The symmetrized rank function of a uniform matroid is 64-hypergraph-
approximable.

Proof. Let r : 2 — Rs(be the rank function of the uniform matroid on ground set V'
with budget £ and rgyy, : 2V = R>o be the symmetrized rank function. We note that
r(S) = min{|S|, k} for every S C V. If k > |V, then r4yn(S) = 0 for every S C V and
hence, rsym is 1-hypergraph-approximable using the empty hypergraph. So, we may assume
that & < |V|. Then, for every S C V, we have that
rsym(S) = r(S) +r(V\S) —r(V)

= min{|S|, k} + min{|V'\ S|, k} — min{|V|, k}

= min{|S], |V \ S|, &k, |V | — k}.
Let n := |V] and consider the function h : R>o — R>(defined by

h(z) = min{x,n —z,k,n — k}.

Then, h is concave on [0,n] and h(z) = h(n — z) for every z € [0,n] and reym(S) =
h(|S]) for every S C V. Therefore, by Theorem 13, we have that rgy, is 64-hypergraph-
approximable. <

FSTTCS 2022

6:14

Approx Representation of Sym Submodular Functions

Next, we show that symmetrized rank functions of partition matroids are constant-
hypergraph-approximable.

» Theorem 18. The symmetrized rank function of a partition matroid is 64-hypergraph-
approximable.

Proof. Let M = (V,Z) be a partition matroid on ground set V with rank function r :
2V - Z> that is associated with the partition Vi,...,V; of the ground set V and budgets
bi,...,by € Z>q. For i € [t], we define a function f;: 2¥i — Zsq by fi(S) := ri(S) +ri(V; \
S) —r;(V;) where r; is the rank function of the uniform matroid on ground set V; with budget
b;. Then, the symmetrized rank function of the partition matroid M can be written as
Teym(S) = S20_, fi(S N V;i). Moreover, each f; is the symmetrized rank function of a uniform
matroid. By Lemma 17, for each i € [t], there exists a weighted hypergraph G; with cut
function d; such that

di(S) < fi(S) <64d;(S)V S C P;.

Let G be the hypergraph on V formed by taking the union of the hypergraphs G; for each
i € [t]. Since the vertex sets of the hypergraphs G; are pairwise disjoint, the cut function
d: 2V — Rsq of G satisfies d(S) = 22:1 d;(SNV;), and therefore G is a weighted hypergraph
which fulfills the requirements of the theorem. <

4 Conclusion

In this work, we investigated the approximability of symmetric submodular functions using
hypergraph cut functions. We proved that it suffices to understand the approximability of
symmetrized matroid rank functions. On the upper bound side, we showed that symmetrized
concave linear functions and symmetrized rank functions of uniform and partition matroids
are constant-approximable using hypergraph cut functions. Our upper bounds for uniform
and partition matroids raise the question of whether symmetrized rank functions of constant-
depth laminar matroids are constant-approximable using hypergraph cut functions. On
the lower bound side, we showed that there exist symmetrized matroid rank functions on
n-element ground sets that cannot be o(n'/3/log® n)-approximated using hypergraph cut
functions, thus ruling out constant-approximability of symmetric submodular functions using
hypergraph cut functions. Our results raise the natural open question of whether every
symmetric submodular function on n-element ground set is O(y/n)-hypergraph approximable.

Our strong lower bound also raises the question of whether we could trade off
approximability against the number of vertices in the hypergraph. In particular, for every
symmetric submodular function f : 2" — R, defined over a n-element ground set V, does
there exist a hypergraph over a vertex set V/ O V with cut function d : 2V R>¢ such that
d(A) < f(A) < ad(A) for every A CV, where « = O(1) and |V'| = O(2")?

—— References

1 A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Roughgarden. Sketching
valuation functions. In Proceedings of the 23rd annual ACM-SIAM Symposium on Discrete
algorithms, SODA, pages 1025-1035, 2012.

2 M-F. Balcan, N. Harvey, and S. Iwata. Learning symmetric non-monotone submodular
functions. In NIPS Workshop on Discrete Optimization in Machine Learning, NIPS, 2012.

3 M-F. Balcan and Nicholas JA Harvey. Submodular functions: Learnability, structure, and
optimization. SIAM Journal on Computing, 47(3):703-754, 2018.

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:15

4 Y. Chen, S. Khanna, and A. Nagda. Near-linear size hypergraph cut sparsifiers. In Proceedings
of the IEEE 61st Annual Symposium on Foundations of Computer Science, pages 61-72, 2020.

5 N. Devanur, S. Dughmi, R. Schwartz, A. Sharma, and M. Singh. On the Approximation of
Submodular Functions. Preprint in arXiv: 1304.4948v1, 2013.

6 V. Feldman and J. Vondrék. Optimal Bounds on Approximation of Submodular and XOS
Functions by Juntas. SIAM Journal on Computing, 45(3):1129-1170, 2016.

7 S. Fujishige. Submodular functions and optimization. Elsevier, 2005.

8 M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions
everywhere. In Proceedings of the 20th annual ACM-SIAM Symposium on Discrete algorithms,
SODA, pages 535-544, 2009.

9 T. Helgason. Aspects of the theory of hypermatroids. In Hypergraph Seminar, pages 191-213.
Springer, 1974.

10 A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science &
Business Media, 2003.

11 C. Seshadri and J. Vondrék. Is submodularity testable. Algorithmica, 69(1):1-25, 2014.

12 7. Svitkina and L. Fleischer. Submodular Approximation: Sampling-based Algorithms and
Lower Bounds. SIAM Journal on Computing, 40(6):1715-1737, 2011.

A Proof of Lemma 12

We first show a few combinatorial inequalities that will be useful for our proof.

> Claim 19. For every integer n > 2, k € {1,..., 5}, and r € {2,...,n — k}, we have that
() =Gl
2. (1— k)r< ("

Proof.
1. We note that
(") _ (=Rl n—k 1)
™ n!/(rl(n —r)!)
(n—Fk)! (n—r)!
n! (n—Fk—r)!

B Ml —r—i
N E) n—i
We get the upper bound on (";k) / (7;) by upper bounding every element of this product
with *~*, and the lower bound by lower bounding every term of the product with %
2. We note that
(",") _ (n=B)Y/(rln—k—rD)
(:) n n!/(rl(n—r)
(n—=kK)! (n—r)!
mn—k—nr)! nl

We obtain the lower bound by lower bounding every term of the product with ”%T <

FSTTCS 2022

6:16 Approx Representation of Sym Submodular Functions

> Claim 20. For every integer n > 2, k€ {1,..., %}, and r € {2,...,n}, we have that

@< ().

Proof. If k < r, the bound trivially holds, because (:f) = 0. Otherwise, we have

(y) _ Kk —r))
(™ nl/(rl(n—mr))

k! (n—rm)!
-l

Il Il
- 3~
I =
3|

Upper bounding every term in the product with % gives the desired bound. <

We now restate and prove Lemma 12.

» Lemma 12. For every integer n > 2, r € {2,...,n}, and X C [n] with 1 < |X| < 3, the
set of hyperedges 6(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

4m1n{|)fl|r,l} < |5ET))| <4m {|Xn|r1}

Proof. Let k := | X|. We note that the hyperedges which cross X are exactly those which
are neither fully contained in X, nor fully contained in V' \ X. Thus, the number of rank r
hyperedges in 6(X) is exactly (2) — (”7’“) — (k)

T T

Suppose r > n — k. Then, since k < n/2, we have that r > k as well, so |[0(X)| =
(”) - (" k) - (k) = (Z), and so we have Gl — 1. Thus, we immediately have that

v ()

1 min { Xr } 6((X . Furthermore, we have that kr > k(n — k) = kn — k2, so & >
M =k — % >k — % = %, so we have that |5(()3)| < 4m1n{‘X|r 1}. Henceforth we

assume r < n — k.
We case on the value of k.

Case 1: k > n/r. Then min { 1XIr 1} = 1. Since % is the fraction of the hyperedges

T

which are in §(X), it is trivially upper bounded by 1, and thus by 4 min {%, 1}. Therefore,
it remains to show the lower bound. We have that

B) - -0)
()

1 1
>1——-—-
- e 4
1
> —
— 4
:0.25min{kr,1}.
n

C. Beideman, K. Chandrasekaran, C. Chekuri, and C. Xu 6:17

Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, and the fourth follows from our assumptions that
n/r <k <n/2and r > 2.

Case 2: k < n/r. Then min
and an upper bound. We begln with the lower bound:

B O - -0)
()

X .
Xz ‘T , 1= % Once again, we need to show a lower bound

_kr EN"
()
kr
n
kr
n
> kr.
~ 4n

I \V
/N |
—
| o
t\.’)‘;v
m‘;vz =
S| ~—r
N~ N

Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, the fourth from the Taylor expansion of e”, the sixth
from the fact that r > 2, and the last line from the assumption that k < n/r.

Now we show the upper bound. Since the total number of hyperedges in the graph
is (7), we have that [6(X)| < (7). Hence, |6(X)|/(") < 1. It remains to show that

T

16(X)|/ (1) < 4|X|r/n = 4rk/n. We consider 3 subcases based on the values of r and k:
Subcase 1: r > n/4. Since r > n/4 and | X| > 1, we have that % > i. Therefore

<1<4 |X\r

() T
Subcase 2: r < n/4 and k < r. In this case, we have that (:f) = 0. Therefore,

P)= -0)

n—~k
-G

T k
()
<1 _e—2rk/(n k)
<1

)

FSTTCS 2022

6:18 Approx Representation of Sym Submodular Functions

2rk
T n—k

4rk
< "

n

The fourth line follows from the lower bound in the first conclusion of Claim 19. The
fifth line follows from observing that 0 < k/(n —r) < 2/3 (since k < n/2 and r < n/4)
and In(1 — z) > —2z for every x € (0,2/3]. The sixth line follows from the Taylor
expansion of e”, and the last line follows from the fact that k£ < n/2.

Subcase 3: r < n/4 and k > r. In this case we have that

IN

1<1 2rk)
n—r

n—r
2rk
3n/4
4rk
< —.

n

IN

The fourth line follows from the lower bound in the second conclusion of Claim 19.
The fifth line follows from observing that 0 < k/(n — r) < 2/3 (since k < n/2 and
r <n/4) and In(1 — z) > —2z for every x € (0,2/3]. The sixth line follows from the
Taylor expansion of e”. The second to last line follows from the fact that r < n/4. <«

The DAG Visit Approach for Pebbling
and 1/0 Lower Bounds

Gianfranco Bilardi =
Department of Information Engineering, University of Padova, Italy

Lorenzo De Stefani! =

Department of Computer Science, Brown University, Providence, RI, USA

—— Abstract
We introduce the notion of an r-visit of a Directed Acyclic Graph DAG G = (V, E), a sequence of

the vertices of the DAG complying with a given rule r. A rule r specifies for each vertex v € V a
family of r-enabling sets of (immediate) predecessors: before visiting v, at least one of its enabling
sets must have been visited. Special cases are the r*°?)-rule (or, topological rule), for which the

(i) _rule (or, singleton rule), for which the

only enabling set is the set of all predecessors and the r
enabling sets are the singletons containing exactly one predecessor. The r-boundary complexity of a
DAG G, b- (G), is the minimum integer b such that there is an r-visit where, at each stage, for at
most b of the vertices yet to be visited an enabling set has already been visited. By a reformulation
of known results, it is shown that the boundary complexity of a DAG G is a lower bound to the
pebbling number of the reverse DAG, GE. Several known pebbling lower bounds can be cast in
terms of the ™ -boundary complexity. The main contributions of this paper are as follows:

An existentially tight O (\/m) upper bound to the r**™-boundary complexity of any DAG

of n vertices and out-degree doyt.

An existentially tight O (105205:” log, n) upper bound to the r(**P)-boundary complexity of any
DAG. (There are DAGs for which r{°P) provides a tight pebbling lower bound, whereas r(*™™
does not.)

A visit partition technique for 1/O lower bounds, which generalizes the S-partition I/O technique
introduced by Hong and Kung in their classic paper “I/O complexity: The Red-Blue pebble
game”. The visit partition approach yields tight I/O bounds for some DAGs for which the

S-partition technique can only yield a trivial lower bound.
2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases Pebbling, Directed Acyclic Graph, Pebbling number, I/O complexity
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.7
Related Version Full Version: https://arxiv.org/pdf/2210.01897.pdf

Funding Gianfranco Bilardi: This work was supported in part by the Italian National Center for
HPC, Big Data, and Quantum Computing; by MIUR, the Italian Ministry of Education, University
and Research, under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms for HArnessing
Networked Data); and by the University of Padova, under Project CPGA® (Parallel and Hierarchical
Computing: Architectures, Algorithms, and Applications).

1 Introduction

A wisit of a Directed Acyclic Graph (DAG) is a sequence of all its vertices. We consider
different types of visits, where a type is specified by a wvisit rule r, a prescription that a
vertex v can be visited only after all the vertices in one of a given family of enabling sets of
predecessors of v have been visited. One example is the singleton visit rule, r*™™ where

! Corresponding author

© Gianfranco Bilardi and Lorenzo De Stefani;
37 licensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 7; pp. 7:1-7:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:bilardi@dei.unipd.it
mailto:lorenzo_destefani@brown.edu
https://orcid.org/0000-0001-9569-2086
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.7
https://arxiv.org/pdf/2210.01897.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

each vertex is enabled by each singleton containing one of its predecessors. Breadth First
Search (BFS) and Depth First Search (DFS) visits are special cases of r(*™)-visits. Another
example is the topological visit rule, r(*°P) where a vertex v is enabled only by the set of all
its predecessors. The r(*°P)_visits are exactly the topological orderings of the DAG. Many
other rules are possible; for example, the enabling sets of a vertex could be those with a
majority of its predecessors.

In this work, we investigate the r-boundary complezity of DAGs. The boundary complexity
of G, b.(G), is the minimum integer b such that there exists an r-visit where, at each stage,
for at most b of the vertices yet to be visited an enabling set has already been visited.
By a reformulation of the results of Bilardi, Pietracaprina, and D’Alberto [10], in terms
of the familiar concept of visit, we show that the boundary complexity of a DAG G is a
lower bound to the pebbling number p(Gr) of its reverse DAG, i.e., p(Gr) > b.(G). The
pebbling number of a DAG provides a measure of the space required by a computation with
data dependences described by that DAG, in the pebble game framework, introduced by
Friedman [18], Paterson and Hewitt [27], Hopcroft, Paul and Valiant [21]. While a pebbling
game resembles a visit where each vertex can be visited multiple times, the relation between
pebbling number and boundary complexity is rather subtle, as indicated by the fact that it
involves graph reversal. Several pebbling lower bounds arguments in the literature (examples
are mentioned in Section 3) can indeed be recast in terms of the r(**)-boundary complexity,
thus achieving some unification in the derivation of these results. In this context, it is natural
to explore the potential of the visit approach to yield significant pebbling lower bounds for
arbitrary DAGs.

Main contributions. We begin our study with the singleton rule and show that, for any
DAG G with n nodes and out-degree at most dyyt, b,.sin) (G) < 4v/douen. As a universal
bound, this result cannot be improved, as shown by matching existential lower bounds. With
respect to pebbling, there are DAGs such that b.in) (G) = Q(p(GRr)), for which the singleton
rule provides asymptotically tight pebbling lower bounds. But there are also DAGs with
very low r(5"")_-boundary complexity, where the reverse DAG has high pebbling number. For
example, Paul, Tarjan, and Celoni [28] introduced a DAG, which we will denote as PT'C', of
n vertices and in-degree d;;, = O(1), and proved that p(PTC) = ©(;=2-). This DAG can be

logn

easily modified to yield a DAG PTC™T with p(PTC") = O(:-2-) and b,.in) (PTCT)R) = 2,

logn
thus exhibiting a large gap between boundary and pebbling complexity.

It is natural to wonder whether other visit rules can lead to better bounds, whereas
the singleton rule does not. We have then turned our attention to the topological rule
showing that for any DAG G with n nodes and out-degree at most dg,; > 2 the boundary
byon (G) = 1?&52:3,, log, n. This bound is existentially tight. It indicates that the potential of
the topological rule for pebbling lower bounds is limited. However, the topological technique
is not subsumed by the singleton one, as we exhibit DAGs for which topological visits yield
a tight pebbling lower bound, whereas singleton visits yield a trivial lower bound.

For an arbitrary visit rule, r, we show that b,.(G) < (dout — 1)¢ + 1, where £ is the length
of the longest paths of G. This result is also existentially tight and is consistent with the
known pebbling upper bound, p(Gr) < (dout — 1)+ 1. It remains an open question whether

a tight boundary-complexity lower bound to the pebbling number can always be found by
tailoring the choice of r to the DAG, or there are DAGs for which the two metrics exhibit a
gap for any rule.

We also exploit visits to analyze the I/O complexity of a DAG G, IO (M, G), pioneered by
Hong and Kung in [23]. This quantity is the minimum number of accesses to the second level
of a two-level memory, with the first level (i.e.,, the cache) of size M, required to compute G.

G. Bilardi and L. De Stefani

Such computation can be modeled by a game with pebbles of two colors. Let k(G, M) be the
smallest integer k such that the vertices of G can be topologically partitioned into a sequence
of k subsets, each with a dominator set and minimum set no larger than M. (D is a dominator
of U if the vertices of U can be computed from those of D. The minimum set of U contains

those vertices of U with no successor in U.) Then, IO (G,M) > M(k(G,2M) — 1) [23].

Dominators play a role in the red-blue game (where pebbles are initially placed on input
vertices which, if unpebbled, cannot be replebbled), but not in standard pebbling (where a
pebble can be placed on an input vertex at any time, hence a dominator of what is yet to be
computed needs not be currently in memory). Intuitively, each segment of a computation
must read a dominator set D of the vertices being computed and at least |D| — M of these
reads must be to the second level of the memory. It is also shown in [23] that the minimum
set, say Y, of a segment of the computation must be present in memory at the end of such
segment, so that at least |Y| — M of its elements must have been written to the second
level of the memory. In the visit perspective, the minimum set emerges as the boundary of
topological visits, capturing a space requirement at various points of the computation. In
addition to providing some intuition on minimum sets, this insight suggests a generalization
of the partitioning technique to any type of visit. In fact, the universal upper bounds on visit
boundaries mentioned above do indicate that the singleton rule has the potential to yield
better lower bounds than the topological one. Following this insight, we have developed the
visit partition technique. For some DAGs for which S partitions can only lead to a trivial,
Q(1), lower bound, visit partitions yield a much higher and tight lower bound.

Further related work. Since the work of Hong and Kung [23], I/O complexity has attracted
considerable attention, thanks also to the increasing impact of the memory hierarchy on
the performance of all computing systems, from general purpose processors, to accelerators
such as GPUs, FPGAs, and Tensor engines. Their S-partition technique has been the
foundation to lower bounds for a number of important computational problems, such as the
Fast Fourier Transform [23], the definition-based matrix multiplication [3, 22, 33], sparse
matrix multiplication [26], Strassen’s matrix multiplication [7] (this work also introduces
the “G-flow” technique, based on the Grigoriev flow of functions [19], to lower bound the
size of dominator sets), and various integer multiplication algorithms [8, 16]. Ballard et
al. [5, 4] generalized the results on matrix multiplication of [23], by means of the approach
proposed by Irony, Toledo, and Tiskin in [22] based on the Loomis-Whitney geometric
theorem [24], which captures a trade-off between dominator size and minimum set size. The
same papers present tight I/O complexity bounds for various linear algebra algorithms for
LU/Cholesky/LDLT/QR factorization and eigenvalues and singular values computation.

Four decades after its introduction, the S-partition technique [23] is still the state of the
art for I/O lower bounds that do hold when recomputation (the repeated evaluation of the
same DAG vertex) is allowed. Savage [30] has proposed the S-span technique, as ¢ a slightly
weaker but simpler version of the Hong-Kung lower bound on I/O time”[31]. The S-covering
technique [10], which merges and extends aspects from both [23] and [30], is in principle
more general than the S-partition technique and leads to interesting resources-augmentation
considerations; however, we are not aware of its application to specific DAGs.

A number of I/O lower bound techniques have been proposed and applied to specific
DAG algorithms for executions without recomputations. These include the edge expansion
technique of [6], the path routing technique of [32], and the closed dichotomy width technique
of [11]. While the emphasis in this paper is on models with recomputation, Section 5.4 does
show how the visit partition technique specializes when recomputation is not allowed.

7:3

FSTTCS 2022

7:4

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

Automatic techniques to derive I/O lower bounds - with and without recomputation -
have been developed, in part with the goal of automatic performance evaluation and code
restructuring for improving temporal locality in programs, by Elango et al. [17], Carpenter
et al. [13], Olivry et al. [25].

Paper organization. The visit framework is formulated in Section 2. The relationship
between boundary complexity and pebbling number is discussed in Section 3. Section 4
presents universal upper bounds to the boundary complexity. Section 5 develops the visit
partition technique for I/O lower bounds. Conclusions are offered in Section 6. Proofs and
technical material not included in the main body due to space limitations are presented in
the Appendix or in the full version of this work [9].

2 Visits of a DAG

A Directed Acyclic Graph (DAG) G = (V, E) consists of a finite set of vertices V and of a set
of directed edges E C V x V', which form no directed cycle. We say that edge (u,v) € E
is directed from u to v. We let pre (v) = {u | (u,v) € E} denote the set of predecessors of
v and suc (v) = {u | (v,e) € E} denote the set of its successors. The maximum in-degree
(resp. out-degree) of G is defined as d;;, = max,ecy |pre (v)| (vesp., dowr = maxyey |suc (v)).
Further, we denote as des (v) (resp., anc (v)) of v’s descendants (resp., ancestors), that is, the
vertices that can be reached from (resp., can reach) v with a directed path. Given V' C V|
we say that G/ = (V/, EN (V' x V’)) is the sub-DAG of G induced by V'.

Let ¢ = (vi,...,04,...,0j,...,U;) be a sequence of vertices with |¢| = k. Let ¢[i] = v;,
for 1 < i < j <k, we denote as ¢(i..j| = (viy1,...,v;) the infix from the i-th element
excluded to the j-th included. If j < i, ¢(i..j] is the empty sequence. Depending on the
context, we sometimes interpret a sequence as the set of items appearing in the sequence.

A wisit of a DAG G = (V, E) is a sequence of all its vertices, without repetitions, complying
with a wvisit rule:

» Definition 1 (Visit rule). A visit rule for « DAG G = (V, E) is a function v : V — 22~
where r (v) C 2P*() is a non-empty family of sets of predecessors of v called enablers of v.
The set of visit rules of G is denoted as R (G).

Intuitively, a rule r € R (G) permits a vertex v to be visited only after at least one of its
enablers @ € 7 (v) has been entirely visited.

» Definition 2 (r-sequence and r-visit). Given a DAG G = (V, E) and a visit rule r € R (G),
a sequence v of distinct vertices is an r-sequence of G if, for every 1 < i < |¢|, the prefix
P[1..t — 1] includes an enabler Q € r ([i]). The r-sequences with 1| = n are called r-visits
and their set is denoted as VU, (GQ).

“

Clearly, any prefix of an r-sequence is an r-sequence. Of particular interest are the
topological visit rule” defined as r(*°P) (v) = {pre (v)} and the “singleton visit rule” defined
as) (v) = {{u} | u € pre (v)} if |pre (v) | > 0 and &™) (v) = {@} otherwise.

A vertex v not contained in %, but enabled by some non-empty set @) included in v, is
considered to be a “boundary” vertex.

» Definition 3 (Boundary of an r-sequence). Given a DAG G = (V, E), r € R(G), and an
r-sequence v of G, the r-boundary of ¢ is defined as the set:

By () ={fveV\¢ [3Q#0st. Qer(v) NQ S ¥}

G. Bilardi and L. De Stefani

Input vertices are never contained in the boundary of any sequence since their only enabler
is the empty set.

» Definition 4 (Boundary complexity). The r-boundary complexity of an r-sequence v is
defined as:

br (¢) = e | B, (¥[1..4])] -

The r-boundary complexity of G is defined as the minimum r-boundary complexity among
all r-visits of G:
b (G) = in b.(¢).
(@)= Do br(¥)
By definition, for any r € R (G), any ¥ € U, ¢op (G) and, for any ¢ = 1,2,...,n we have
B,op) (¥[1..1]) € B, (¢[1..1]); thus, b,op) (¥) < by (¢). Similarly, if @ € r(v) only when v
has no predecessors, then b, (1)) < b.siny (3), for any ¢ € U, (G).

3 Boundary complexity and pebbling number

In this section, we discuss an interesting relationship between the pebbling number of a
DAG G = (V, E) and the boundary complexity of its reverse DAG Gr = (V, Egr), where
Er = {(u,v)|(v,u) € E}, which can prove useful in deriving pebbling lower bounds.

» Theorem 5 (Pebbling lower bound). Let Gg be the reverse of G = (V, E). Then, for any
r € R(GRr), the pebbling number of G satisfies:

p(G) = by (GRr) = e br (1)

In general, the analysis of the boundary complexity is simpler than the analysis of the
pebbling number, in part because, in a visit, a vertex can occur only once, whereas, in a
pebbling schedule, a vertex can occur any number of times.

The proof of the preceding theorem, given in Appendix, is a reformulation of a result
obtained by Bilardi et al. in[10]. They introduce the Marking Rule technique, which is
applied to DAG G rather than to its reverse. The advantage of visits over markings lies
in a more direct leverage of intuition, given the widespread utilization of various kinds of
visits (e.g., breadth-first search, depth-first search, topological ordering) in the theory and
applications of graphs.

We will explore the potential of the visit approach to yield interesting lower bounds
for specific DAGs in the next section. Here, we investigate whether Theorem 5 could be
strengthened by restricting the set of r-visits 1 among which b, (1) is minimized. The answer
turns out to be negative. To clarify in what sense, we need to consider that the proof of the
theorem is based on mapping each pebbling schedule 7 of G to an r-visit f,.(7) of Gg, such
that the boundary of each prefix of f,.(m) is completely covered with pebbles at some stage
of . In terms of such mapping, we have:

» Lemma 6 (Visit from pebbling schedule). For any r € R (Ggr) and any ¢ € ¥, (GR), there
exists a pebbling schedule m of G such that f,.(7w) = .

Theorem 5 provides a general approach for obtaining pebbling lower bounds, which encom-
passes a number of arguments developed in the literature to analyze DAGs such as directed
trees [27], pyramids [29] and stacks of superconcentrator [21]. A reformulation of these
arguments within the visit framework can be found in [15] stacks of superconcentrators and
in [9, Section 3.1] for ¢-pyramid and g-complete trees DAGs.

7:5

FSTTCS 2022

7:6

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

4 Upper bounds on boundary complexity

It is natural to wonder whether the pebbling lower bound of Theorem 5 is tight. As we will
see in this section, both the singleton and the topological rules, while providing tight bounds
for some DAGs, yield weak lower bounds for others. Whether a tight lower bound could be
obtained for any DAG G, by tailoring the visit rule to G, does remain an open question.

In particular, we will establish universal upper bounds on the boundary complexity of
any DAG, with respect to any rule, in terms of outdegree and depth. We will also establish
(different) universal upper bounds for both the singleton and the topological rule in terms
of outdegree and the number of vertices. Before presenting these results, we introduce the
notion of enabled reach, a particular set of vertices associated with a vertex v, in the context
of a partial visit that includes v. This concept will play a role in the derivation of each of
the three universal upper bounds.

4.1 The enabled reach of a vertex

In the construction of a visit sequence, we will use a divide and conquer approach whereby,
having constructed a prefix ¥ of the sequence, the next segment, ¢, of the sequence is
obtained by visiting a suitably chosen sub-DAG, G’ = (V’, E’), according to an appropriate
rule 7. It is useful for the boundary of G’ to be “self-contained” in the sense that its visit
does not generate any boundary outside V'. If this is the case, the boundary of ¢ will be
a subset of the boundary of 1, so that the visit of G’ contributes to the reduction of both
the set of vertices yet to be visited and the current boundary. The enabled reach, a set of
vertices introduced next, induces a sub-DAG G’ with the desired properties.

» Definition 7 (Enabled reach). Let G = (V, E) and r € R (G). Given an r-sequence ¥ and
a verter v € 1, the r-enabled reach of v given 1 is the set:

reach, (v|) = {u | 3 ¢¥'u C des(v) s.t. Y'u is an r-sequence} .

Intuitively, we can think of the r-enabled reach of a vertex v given an r-sequence v as the
set of all the descendants of v which can be visited by extending v only with descendants
of v. As an example, for 75 we have that the r(5")-enabled reach of a vertex v given a
1) corresponds to the set of the descendants of v not in . The enabled reach exhibits the
following crucial property:

» Lemma 8 (Enabled Reach Property). Given G = (V,E), v € V and r € R(G), let ¢ be
an r-sequence including v. Let G' = (V' E’) be the sub-DAG induced by V' = reach,. (v|¢).
Let ' € R(G") be such that 7' (v) = {Q\¥|Q € r(v) AQ\ ¢y C V'}, for allv e V'. If
Y € W (G) then (a) Yy’ is a r-sequence of G; (b) for anyi=1,...[¢'|, B, (¥¢'[1..7]) C
By () U By (Y'[L..d]); and (c) by (") < by () + by (41).

Proof. By definition, Q" € r (v) if an only is there exists Q € r (v) such that Q' = Q \ ¥. By
construction, for any 1 < j < |¢'|, a vertex v appears in ¢’[1..j] if there exists Q" € ' (v)
such that Q" € ¢'[1..j] which implies there exists @ € 9'[1..j], and, thus, ¥)'[1..5] is an
r-sequence.

Recall that a vertex appears in the boundary of a r sequence if it is enabled but not
visited. By construction, 1)’ = reach (v|t)), thus, by definition, any vertex which is enabled
by a subset of 1" must either be included in B, (¢) or must be included among the vertices
of reach (v|1) not yet visited in 1’'[1..4] and enabled by ¢, that is B, (¢'[1..i]). Hence, we
have that b (1) < by (¥) + by (¥'). <

G. Bilardi and L. De Stefani

Lemma 8 states that visiting the r-enabled reach of a vertex v given a r-sequence ¢ of G
does not enable any vertex outside reach, (v|i) which was not enabled by 1 alone. Therefore,
once the sub-DAG induced by reach,(v|y) is visited, the only vertices left in the r-boundary
are those enabled by % that have not been visited thus far.

The enabled reach will be a key ingredient in the construction of visits in the next three
subsections. The choice of both r-sequence 1 and of vertex v has to be tailored to the
particular r. Also, highly influenced by r are the size of the boundary of ¢ and the reduction
achieved by G’ in the parameters (e.g., depth or number of vertices) governing the boundary
complexity, hence the shape of the resulting bound.

4.2 General rules

The topological depth of a DAG is the length (i.e., number of edges) of its longest directed
paths. The boundary complexity, according to any visit rule, can be bounded in terms of the
depth and the out-degree. The basic property that is exploited is that if b is a successor of «,
then the depth of the sub-DAG induced by the descendants of b is smaller than the depth of
the sub-DAG induced by the descendants of a.

» Theorem 9 (Topological-depth general boundary complexity upper bound). Consider G =
(V, E) with maximum out-degree dyy: and topological depth £. For any visit rule r € R (G),
there exists an r-visit ¢ € U, (Q) such that by (1) < (doyt — 1) €+ 1.

Proof of Theorem 9 is presented in the appendix. This upper bound is existentially tight:
For some visit rules r, there exist some DAGs for which b,(G) = O (doutf). An example
is given by the reverse ¢-pyramid DAG, discussed in the extended version of this work [9,
Section 3.1], for which b,.(sin) (G) = O (dpuil) = O (M), since dyyt = g and £ = \/n/q.

Below, we derive universal upper bounds for the singleton and the topological rule, which
are expressed in terms of n and d,,;. These bounds are tighter than that of Theorem 9 for
DAGs with ¢ suitably large (as a function of n and dgyy).

4.3 Singleton rule 7"

The 7(*™) rule has the interesting property that the enabled reach of v, given 1, contains
all the descendants of v not in ¥. One can easily find a v with suitably few descendants,
say, less than n/2. A 7(*)_sequence 9 that contains v can be obtained as the sequence of
vertices on a path from an input to v. If this path has length k, then its boundary could be
of a size as big as (doyt — 1)k + 1; therefore, a small k is a prerequisite to guaranteeing small
boundary complexity. In general, a good enough upper bound to k& cannot be guaranteed
for the entire DAG. However, it is possible to partition the DAG into a sequence of “blocks”
such that (i) blocks can be visited one at a time in the order they appear in the sequence;
(i) there is a reasonably small upper bound (O(y/dyun)) on the number of nodes that are
enabled by the nodes in a block, but lie outside the block, and they lie all in the next block;
and (iii) in each block, each node is reachable from one of the block inputs by a path of
reasonably small length (O(y/doyu:n)). When the details are filled in, the outlined approach
yields the following results.

» Theorem 10. Given an G = (V, E) with |V| = n and mazimum out-degree at most dyyt
there exists a visit 1) € VU, (siny (G) 8.1 byeiny (V) < 4 (\/§+ 1) Vdoutn.

77

FSTTCS 2022

7:8

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

Proof. For d,,; = 0, all vertices in G are isolated and, having no predecessors, are enabled
only by the empty set. Thus, no vertex belongs to the () -boundary of any r(")-visit),
hence b,.sin) (1) = 0, and the stated bound holds. In the sequel, we assume dy,; > 1, and
proceed by induction on n.

Base: For n = 1, that is, G = ({u},), the statement is trivially verified as v is an input
vertex and the only r(*")-visit,) = u, has r(*")-boundary complexity zero.

Inductive step (n > 2):

Case 1: |I| > 1. Here, no vertex v is an ancestor of all vertices. Let v € I and let ¢’
be a 7(*")_visit of the DAG induced by des (v), with boundary complexity at most at most
eV doutn, which does exist by the inductive hypothesis, since |des (v) | < n. Similarly, let
Y be a 75" -visit of the DAG induced by V \ des (v), with boundary complexity at most
cV/douin. Clearly, 1 = ¢'9)" € U, (sin) (G). By the definition of enabled reach, for 75 we
have that reach,.iny (v|v) = des (v) \ {v}. Hence, by Lemma 8, B,.(sin)(¢') = 0. The stated
bound follows.

Case 2: |I| = 1. We partition V into non-empty “levels” L(1),...,L ({s), such that
v € L(7) if and only if the shortest directed path from u to v has length ¢. This path is also
a r(5")_gequence. Further, the r-boundary of any (5 -sequence of G included in the first
levels is a subset of the first i+1 levels.

We say that level L(i) is a bottleneck if |L(i)| < yv/dpuen and let i1 < ia < ... < iy denote
the indices of the bottlenecks. Here, v > 0 is a constant, whose value will be determined in
the course of the proof. Conventionally, we also let ig11 = €5+1 and L(¢s + 1) = 0. Since
L(1) = {u}, we have that i; = 1. We group consecutive levels into blocks V; = U;, <1<i,,, L (1),
for j =1,2,...,k, so that the j-th block begins with the j-th bottleneck and ends just before
the (j+1)-st one, or with the last level, L(¢;), if j = k. The number of levels of a block is
upper bounded as ;41 —i; < 7\/‘2%.

We construct an r*)-visit of the form ¢ = 111y ... ¢y, where 1; is a r(*™)-visit of
the sub-DAG G, induced by block V;. Since the V}’s partition V, ¢ € ¥ i (G). By
the properties of the levels mentioned above, B, .(sin) (1 ...%;-1) = L (i;). Furthermore, as
Vi,...,V;—1 have already been visited by 1 ...1;_1 and 1, is a 5 _yisit of G, any of its
prefixes w; may only enable vertices in V; (i.e., the boundary of ¢} in G;) and vertices in
L(ij+1) (i.e., the children of vertices in ¢; C V;, which are not in V3 U... U V;). Therefore,

b (1)) < m]ax{\L (i) [+ |L (i541) [+ bpoimy (7))
< 29V doun + mjax{br(sm (i)}

A case analysis shows how each 1; can be chosen so that the above term is at most cy/doutn.
Case 2.1. |V}] < n/2. By the inductive hypothesis, there exists ¢; € ¥, .sin) (G;) such that
bytsimy (V) < ey/doutn/2 = %\/doutn. A sufficient condition for the desired result is that
2y + % < ¢, which we will discuss below.

Case 2.2. |V;| > n/2. Let uy,uq,...,uq be the input vertices of Gj,.

Case 2.2.a. No input of G, has more than n/2 descendants, in G;. Then, we construct an

r(5) _yisit of Gj as ¥ = U1y, UoWy, - - -, UgWy,, Where Uy, is a r(51) _yisit, with minimum
boundary complexity, of the sub-DAG induced by the descendants of u; in G; which have

G. Bilardi and L. De Stefani

not been visited in w1y, U2y, - .., u;. This is the r(sin)_enabled reach of w; in G, given
ULYu, U2V, - - -, Ug. Since the input vertices of G; are not in the boundary of any prefix of
1;, by Lemma 8,

sin n
b () < Joax bytein) (Yu;) < €4f dour 5

where the last step follows by the inductive hypothesis, considering that 1.,,; C des (u;) and,
by the assumption of this case, |des (u;)| < n/2 (here, and throughout the rest of this proof,
des (v) refers to the descendants of v in G;). The sufficient condition for the desired result is
the same as in Case 2.1

Case 2.2.b. There is an input of G, w.l.o.g, say us, such that |des (u1)| > n/2. In order
to break down V; into pieces of size smaller than n/2, to be visited one at a time, we select a
vertex y € des (u1) such that |[des (y) | > n/2 and maxcguc(y) [des (2) | < n/2. Specifically, we

can choose y as the last vertex, in a topological ordering of G, with at least n/2 descendants.

Let y € L(4), where clearly ¢; <4 < ij41, and consider a shortest path 7y among those from
input vertices of G; to y. We have |n| =1 —i; <ij41 —i; < 7\/‘{1%.

Consider now the visit 1; = 7y,)’ such that v, is a 7(5™)-visit of the sub-DAG induced
by Vj N reach, in) (y|Ty) constructed as discussed in Case a, and ¢ is a r(*")-visit, with
minimum boundary complexity, of the sub-DAG induced by V; \ myt,. The boundary
associated with any prefix of 7 includes at most d,,; successors for each of its vertices, which

T Thus, the total contribution of 7 to the boundary is at most

are at most || <

7“1‘;“"”. Arguing along the lines of Case a, it can be shown that b,.csin) (¢,) < %\/doum.

Finally, since |t,«| > n/2, then |V} \ myv,| < n/2. Hence, by the inductive hypothesis,
bT.(sm) (1/)/) < %\/ doutn.

By Lemma 8, we can conclude that ¢; € ¥, .in) (G;) and

1 1 c
bT(sin) (1/13) < 5\/ dout™ + maX{br(sin) (Qby) s Oy (sin) (wl)} < (5 + \/i) vV doutn.

To establish the stated result, we need to satisfy the bound 2v+ % + % < ¢. This requirement
is more stringent than the one for Case 2.1 and Case 2.2.a. Solving for ¢, the sufficient
condition is ¢ > /2 (\/i + 1) (27 + %) The r.h.s. is minimized when we let v = %, which
yields ¢ > 4 (V2 +1). <

The upper bound in Theorem 10 is existentially tight as there exist DAGs, such as ¢-pyramids
discussed in [9, Section 3.1], of matching ™) _boundary complexity.

4.4 Topological rule r(t°p)

The following property is peculiar to the r(°?)-enabled reach:

» Lemma 11 (Disjointness of enabled r(*°P)-reach). Let ¢ be a r(*°P)-sequence of DAG
G = (V,E) and let u,v € b.uom (¢) be distinct vertices. Then, reach,qop (ultpu) N
reach,.op) (V[Ypv) = 0.

The proof is presented in the Appendix. The disjointedness of the enabled-reach sets ensures
that, if there are k vertices in the boundary, at least one of them has an enabled reach with
fewer than n/k vertices. By leveraging this property, we obtain the following result.

7:9

FSTTCS 2022

7:10

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

» Theorem 12 (Upper bound boundary complexity r(*°P)-visits). For any DAG G = (V,E),
there exists a visit) € U, qop) (G) such that (a) if doyr = 0, then b opy (¥0) = 0; (b) if dowr = 1,

then b,.com (V) = 1; and (c) if dowr < D, for some D > 2, then b,.com () < 1027;) logyn + 1.

The proof of Theorem 12 is presented in the Appendix. The upper bound in Theorem 12 is
existentially tight as there exist DAGs such as inverted g-trees (discussed in the extended
version of this work [9, Section3.1]) with matching 7(**P)-boundary complexity.
Interestingly, there exist DAGs for which the r(*°?)-boundary complexity is asymptotically
higher than the r(*"")-boundary complexity. One such DAG G is shown in Figure 1. It is a
simple exercise to prove that b*™ (G@)=1, pitor) (G) =06 (logn), and p(Gr) = © (logn).

5 \Visits and 1/O complexity

In this section, we show how the visit framework is fruitful in the investigation not just of
space complexity but also of I/O complexity, by developing a new I/O lower bound technique,
named “visit partition”. This extends a result by Hong and Kung [23], which has provided
the basis for many I/O lower bounds in the literature thus far.

The I/O model of computation is based on a system with a memory hierarchy of two
levels: a fast memory or cache of M memory words and a slow memory, with an unlimited
number of words. We assume that any value associated with a DAG vertex can be stored
within a single memory word. A computation is a sequence of steps of the following types: (i)
operations, with operands and results in cache; (ii) reads, that copy the content of a memory
location into a cache location; and (iii) writes, that copy the content of a cache location
into a memory location. Reads and writes are also called I/O operations. Input values are
assumed to be available in the slow memory at the beginning of the computation. Output
values are required to be in the slow memory at the end of the computation. The conditions
under which a computation is a valid execution of a given DAG are intuitively clear. They
can be formalized in terms of the “red-blue pebble game”, introduced by Hong and Kung in
[23]. The I/O complexity IO (G, M) of a DAG G is defined as the minimum number of I/0
operations over all possible computations of G. The I/0O write complexity 10w (G, M) and
the I/0 read complexity IO (G, M) are similarly defined.

The visit partition approach to I/O lower bounds develops along the following lines:

A visit rule r is chosen for the analysis.

A procedure is specified to map each computation ¢ of the given DAG G to an r-visit ¢

of the reverse DAG GE.

Given any partition of visit ¢ into consecutive segments, a set of I/O operations is

identified for each segment, the sets of different segments being disjoint, whence their

contributions can be added in the I/O lower bound.

The number of read operations associated with a segment is lower bounded in terms of

the size of a minimum post-dominator of the segment.

The number of write operations associated with a segment is lower bounded in terms of

the number of segment vertices that either inputs of G (hence, outputs of G), or belong

to the boundary of the visit at the beginning of the segment. The resulting global lower
bound, modified by the addition of the term |I| —|O]|, also applies to read operations.

A lower bound, ¢, to the I/O of a given DAG, can be established by showing that, for

each visit, there exists a segment partition that requires at least ¢ I/O operations, between

reads and writes.
The technical details of this outline are presented in the next subsections.

G. Bilardi and L. De Stefani

5.1 Segment partitions of a visit

The concept of post-dominator set mirrors that of dominator set used in [23]:

» Definition 13 (Post-dominator set). Given H = (W, F) and X CW, a set PC W is a
post-dominator set of V' C W if every directed path from a vertex in V' to an output vertex
intersects P. We denote as pdp,in (X) the minimum size of any post-dominator set of X.

It is simple to see that P is a post-dominator set of X in H if and only if P is a dominator
set of X in the reverse DAG Hg.

Let ¢ be an r-visit of Gg = (V, ERr). A segment partition of 1 into k segments is identified
by a sequence of indices i = (i1,12,...,1x), with 1 < i; <2 < ... < i =n. We also let
igp = 0, for convenience. Since v is a permutation of the vertices in V', the segments partition
V. For 1 <j <k, (ij_1..i;] is called the j-th segment of the partition. Two measures play
a role in our I/O lower bound analysis of any segment:

The size, pdomin (¥(1j-1..1;]), of minimum post-dominator sets of ¥ (i;_1..3;] .

The r-entering boundary size

b ((ij-1-445]) = [BL™ (9(ij-1.45]) |
where, denoting as Ir the set of input vertices of G,

Bﬁent) (w(ijflnij}) =(IrUB, (¥ [1..ij71D) N 1/J(Z'j*1..ij].

5.2 Lower bound

Let ¢ = (¢1,¢2,...,d7) be a computation of a DAG G = (V, E) in the I/O model, in T
steps, where ¢, is the ¢-th step. Given an r € R (Gg), we construct an r-visit ¥ of Gg
corresponding to ¢. Our I/O lower bounds will be based solely on properties of the visit.
To construct v, the computation is examined backward, one step at a time. The visit
is constructed incrementally, by extending an initially empty prefix. Let [1..i(¢)] be the

prefix already constructed just before processing computation step ¢, (initially, i(7') = 0).

For t = T,T—1,...1, if ¢; is either a functional operation evaluating vertex v € V '\ I or
a read operation copying a vertex v € I (input of G) into the cache, then, if v has not
already been visited (i.e., v ¢ 1[1..i(t)]) and at least one enabler set) € r (v) has already
been visited (i.e., @ C ¢[1..i(t)]), then v is added to the visit (i.e., i(t—1) = i(t)+1 and
P[1..i(t—1)] = ¢[1..i(t)]v). Otherwise, the visit constructed thus far remains unchanged (i.e.,
i(t—1) =1i(t)).

By construction, a vertex is included in ¥ at most once and only after at least one of
its enablers has been visited. To conclude that v is indeed an r-visit of G it remains to
show that it contains all the vertices. The vertices in Ir (which are the inputs of G, that
is, the outputs of G) are added to the visit when they are first encountered in the backward
processing of ¢, since they are enabled by the empty set. Suppose now, by contradiction,
that there are vertices in V' \ Ir that are not included in ¢. Then, let ¢, be the smallest ¢
such that v is computed (if v € V' \ I) or read from slow memory (if v € I) in step ¢;, and
let u be the vertex with the largest ¢, that is not in ¢. It must be the case that if ¢[1..i(¢,)]
does not include any enabler of u, which in turn implies that there exists a predecessor w
of u (in Gg) that does not belong to 9[1..i(t,)]. Since t,, > t,, this implies that 1[1..i(¢,,)]
does not include any enabler of w, whence w ¢ v, which contradicts the definition of w.

7:11

FSTTCS 2022

7:12

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

The procedure just described to construct an r-visit of Gg from an I/O computation ¢
of G is quite similar to the one in the proof of Theorem 5 for the analysis of the pebbling
number. The differences are due to the circumstance that the standard I/O model assumes
the inputs to be initially available in slow memory, whereas the pebbling model assumes that
the inputs can be (repeatedly) loaded into the working space at any time.

» Lemma 14 (Visit partition). Let ¢ be a computation of DAG G = (V, E) on the I/O model
with a cache of M words. Let r € R (GRr) and let ¢ be the r-visit of Gr constructed from ¢,
as described above, and i = (i1,42,...,1k) any of its segment partitions. Then, the number
10w (¢, M) of write I/O operations and the number I0x (¢, M) of read I/O operations
executed by ¢ satisfy the bounds

k
I0w(6, M) > Wy(i,¢, M) =Y max{0,b\"" (¢h(i;_1..i;]) — M}, (1)
j=1
k
I0R($, M) > Ry(i,00, M) :=Y max{0, pdmin (1(i;-1..i;]) — M}. (3)
j=1

The total number I0(¢p, M) = IOw (¢, M) + IOr (¢, M) of 1/O operations executed by ¢
satisfies the bound

10(¢, M) = Wy (i, M) + max{Ry, (i, M), Wy(i, M) + 1| — [O]}. (4)

Proof. We will analyze the entering boundary and the post-dominator contributions to the
lower bound on the number of, respectively, write and read I/O operations for a generic
segment of the visit ¢ (h..i], with 0 < h < ¢ < n, and then compose the contributions of the
segments in partition i. For [= 1,...,n, we let 7; be such that ¢[l] has been added to visit
¥ in correspondence of computation step ¢,,. Observe that 7 > 75 > ... > 7,, since the
visit is constructed from the computation in reverse. When speaking of cache or of the slow
memory at time ¢, we refer to their state just before the execution of computation step ¢;.

Proof of (1) — Boundary bound. We claim that, at time 73, the value of each vertex of set
Bent) (1(h..i]) is stored in cache or in slow memory. Let

v e BE™ ((h..i]) = (B, (¥ [1..h]) UO) Nah(h..d],

where O = Iy is the set of output vertices of G (also, input vertices of Gg). Let v = 9)[g],
with h < g <.

Case 1. If v € O, then at the time 7, € [r;,7,) when it has been visited v has been
computed for the last time. Thereafter, by the rules of the I/O model, the value of v must
be kept in memory till the end of the computation. At time 75, v can be either in cache or
slow memory, but at some time ¢ > 7, it must be written in slow memory.

Case 2. If v € B, (¢[1..h]), then ¢ [1..h] includes an r-enabler of v and we consider the
smallest index f such that ¢ [1..f]) includes an r-enabler of v. Clearly f < h and u = ¥[f] is
a successor of v in G. We argue that the value of v must be in memory during the interval
(14, 7f]- In fact, when u is computed, v must be in cache. We separately analyze two subcases.

G. Bilardi and L. De Stefani

Case 2.1. If v € V'\ I, then it is not computed at any time t € (7,4, 7¢], otherwise v would
be visited at t. Since 7, < 75, < 7f, we have that (a copy of the value of) v is in memory at
time 73,.

Case 2.2. If v € I, then it is not read from slow memory at any time ¢ € (7, 7¢], otherwise
v would be visited at t. Then, throughout this interval, v must be kept in cache. Since
Ty < T, < 7§, we have that (a copy of the value of) v is in cache at time 7,.

Given that at most M vertices of B{™" (1 (h..1]) can be in cache at 74, we conclude that
at least max{0, \Bﬁem) ((h..i]) | — M} = max{0, b¢"* (1 (h..1]) — M} vertices must be in slow
memory. Such vertices must all fall under Case 2.1 since the vertices in Case 2.2 must be
in the cache. Then, they must have been written into slow memory, thus contributing to
the number of write 1/0, like the vertices in O (Case 1). Moreover, the contributions of the
(disjoint) segments of partition i can be added, since they count write operations involving
vertices that belong to disjoint sets. This concludes the proof for (1).

Proof of (2) — Modified Boundary bound. By examining the argument for Case 2.1, we
see that the vertices involved must also be read, at some time t > 73, so that, those that are
not in cache at time 75, contribute to the number of read I/O. Each vertex in I is read at
least once from slow memory. Finally, considering that no read I/O has been argued when
v € O, we reach (2).

Proof of (3) — Post-dominator bound. We claim that the set Y of vertices that are in
cache at time 7; or are read into the cache during the interval [r;, 1) is a dominator set of
¥ (h..i] in G or, equivalently, a post-dominator set of ¥ (h..i] in Gg.

Let v = v[g], with h < g <4. If v € I, then at the time 7, € [7;,74), when v has been
visited, it has been read into the cache, so that v € Y, whence v is dominated by Y.

If v € V'\ I, then at the time 7, € [, 7,) when v has been visited it has been computed.
If, by way of contradiction, v is not dominated by Y, then there is a directed path in G, say
(v1,v2,...v4 = v), with no vertex in Y. Let vs be the first vertex on this path computed
during interval [7;, 75,), which must exist since v is computed during such interval. When v
is computed, vs_1 must be in cache, since it is one of its operands. However, during [1;, 75),
vs—1 cannot be in cache since is not computed (by the definition of vy), nor is it available
at the initial time 7; or read from slow memory (since vy ¢ Y'). Thus, we have reached a
contradiction, which shows that v is actually dominated by Y.

Given that at most M vertices of Y can be initially in the cache, we conclude that at
least max{0, |Y| — M} > max{0, pdmin(¢(h..i]) — M} must be brought into cache by read
operations that occur during the interval [r;, 7). Moreover, the contributions of the (disjoint)
segments of partition i can be added since they count read operations occurring in different
time intervals. This concludes the proof for (3).

Finally, a straightforward combination of bounds (1), (2), and (3) yields bound (4). <

We observe that, in Lemma 14, we can choose the visit rule and then, for the visit ¥
corresponding to a given computation ¢, we can choose the segment partition i with the goal
of maximizing the resulting lower bound for the cost metric of interest. However, for the
lower bound to apply to (all computations of) DAG G, we have to consider the minimum
lower bound over all visits. The preceding observations are made more formal in the next
theorem. It is generally possible that none of the computations that minimize the number of
read operations also minimizes the number of write operations, so that the I/O complexity
may be larger than the sum of the read and of the write complexity.

7:13

FSTTCS 2022

7:14

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

» Theorem 15 (1/0 lower bound). Given a DAG G = (V, E), with input set I and output
set O, a visit rule v € R (GR), a visit of Ggr according to this rule ¢ € ¥, (Ggr), and a cache
size M, we define the quantities

Wr(,M) = ig%%)wr(i,w,M), (5)
Rr(p, M) = iler%%)Rr(Lw,M) (6)

where Z(1)) denotes the set of all segment partitions of ¥ and the quantities Wy, (i, M) and
Ry (i, M) are those introduced in Equations (1) and (3), respectively. Then, the write I/0
complezxity IOw (G, M), the read I/O complezity IO, (G, M), and the total I/O complexity
10 (G, M) satisfy the following bounds:

10 (G,M) = min max{R,(, M), Wr(y, M)+ |I| - |O[}, ®)
VeV, (GRr)
oG M)z min {Wr(, M)+ max{R(p, M), Wr (¢, M) + [I] = [O[}}. (9)

Proof. Bound (1) of Lemma 14 applies to a computation ¢ of G for which the procedure
constructing the visit outputs 1. The bound holds for any segment partition i and, in
particular, for the partition that maximizes W, (i,v¢, M). Using Definition (5), we obtain
10w (¢, M) > W,.(vb, M). To formulate a lower bound that holds for any computation
¢, hence for any visit ¥, we need to minimize with respect to ¢ € ¥, (Gg), arriving at
Bound (7). Bounds (8) and (9) are established by analogous arguments. <

5.3 Comparison with Hong and Kung’s S-partition technique

Hong and Kung [23] introduced the “S-partition technique”, for I/O lower bounds. In this
section, we show that the central result of their approach can be derived as a corollary of the
visit partition approach, when the latter is specialized to the topological visit rule r(*oP),

The S-partitions of a DAG are defined in terms of dominator and minimum sets. Given
a DAG G = (V,FE) and a set V! CV, we say that D C V is a dominator set of V' if every
directed path from an input vertex of G to a vertex in V' intersects D. The minimum set of
V' is the set of all vertices of V' that have no successors in V’. An S-partition is a sequence
(Vi,Va,..., Vi) of sets such that (a) they are disjoint and their union equals V; (b) each V;
has a dominator set of size at most S; (c) the minimum set of each V; has size at most S;
(d) there is no edge from a vertex in V; to a vertex in Uf;llVi.

» Theorem 16 (Adapted from [23, Theorem 3.1]). Any computation of a DAG G = (V, E)
on the I/0O model with a cache of M words, executing q I/0 operations, is associated with a
2M -partition of G with k sets, such that Mk > q > M (k — 1). Therefore, if k(G,2M) is the
minimum size of a 2M -partition of G, the 1/O complexity of G satisfies:

I0(G,M) > M (k(G,2M) — 1) . (10)
Next, we show that when r = r(*°) Bound (9) of Theorem 15 implies Bound (10) of

Theorem 16. In the visit framework, minimum sets arise as the boundary of r(*°P)_visits.

» Theorem 17 (Comparison with S-partition technique). Given a DAG G, let ¢ be any
r(toP) _yisit of Gr. There exists at least one segment partition i = (i1,... 1) of ¥ such that

Wr(iawaM) + Rr(iywaM) > M(k(G72M) - 1))
whence I0 (G, M) > M (k(G,2M) —1).
The proof of Theorem 17 is presented in the Appendix.

G. Bilardi and L. De Stefani

Diamond DAGs can be obtained by taking a b x b mesh (i.e., a two-dimensional array)
and by directing all the edges towards the upper right corner. The graph obtained as such
has n = b? vertices, a single input vertex (i.e., in the bottom left corner), and a single output
vertex (i.e., in the upper right corner). We show that for these DAGs, the visit partition
technique yields tight I/O lower bounds, whereas the S-partition technique would only yield
an (1) lower bound.

Let G = (V, E) be a b-side Diamond DAG. According to the definition of S-partition,
the family {V} is a 1-partition of V' as V has a dominator (resp., minimum set) of size 1
composed by the single input (resp., output) vertex. Hence, for any M > 1, k(G,2M) =1
so that Hong and Kung’s method in Theorem 16 ([23 , Theorem 3.1]) yields a trivial bound.
In contrast, the visit partitioning technique allows to obtain an asymptotically tight I/0O
lower bound:

» Theorem 18 (I/O complexity Diamond DAG). Let G = (V, E) be a diamond DAG of side
b. The I/O-complezity of G using a cache memory of size M satisfies IO (G, M) > b/4M.

The proof of Theorem 18, an asymptotically matching upper bound, and an extension to a
more general family of diamond DAGs are presented in the extended version [9, Section 5.4].

5.4 Extensions to related 1/0 models

External Memory Model. The result in Theorem 15 can be straightforwardly extended to
the External Memory Model of Aggarwal and Vitter [1], where a single I/O operation can
move L > 1 memory words between cache and consecutive slow-memory locations.

Models with asymmetric cost of read and write 1/O operations. Since our method
distinguishes the contribution of write and reads I/O operations, it would be interesting to
use it to investigate I/O lower bounds where reads and writes have different cost [12, 20],
including the case in which only the cost of write I/O operations is considered [2, 14]. To
this end, the lower bound in (9) can be modified to include multiplicative scaling for each
component.

Dropping the slow memory requirement for output values. By using a modified concept
of r-entering boundary of a segment, defined as B (W(ij—1..95]) = Br (¥ [1..3;-1]) N
¥ (ij-1..4;], our method yields I/O lower bounds in a modified version of the I/O models
where output values are not required to be written into the slow memory.

Free-input model. The visit partition technique can also be adapted to the “free input”
model, more akin to the pebbling model, in which input values can be generated into cache
at any time (e.g., they are read from a dedicated ROM memory), rather than being initially
stored in the slow memory. While our lower bound to the number of write I/O operations (7)
remains unchanged, the lower bound to the number of read I/O operations (8) must be
revised removing the contribution of the post-dominator bound and the read I/O term of
the boundary-bound. For any r € R (Gr) we have:

105 (G, M) > in W, (v, M) — 10|,
= ()*wegﬂncm (¥, M) — 0|

and, thus, 107" (G, M) > mingey, (G) 2Wr (¥, M) — |O|.

7:15

FSTTCS 2022

7:16

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

Execution with no recomputation. Finally, our result in Theorem 15 can be adapted
and simplified to yield I/O lower bounds assuming that the value associated to any vertex
V' \ I is computed exactly once (the no-recomputation assumption). This simplifying
assumption is often of interest as it focuses the analysis on schedules with a minimum
number of computational steps. Moreover, it may provide a stepping stone towards the
analysis of the more general and challenging case where recomputation is allowed. Without
recomputation, computational schedules correspond to the topological orderings of G. Thus,
for any r € R (GRr), the corresponding r-visits of Gg constructed according to the procedure
discussed in Section 5.2, are the topological orderings of Gg. Therefore, we can restrict our
attention to such orderings obtaining the following corollary:

» Corollary 19. Given a DAG G = (V, E), with input set I and output set O, consider its
computations in the I/O model using a cache of size M such that no value is ever computed
more than once. For any r € R (Gr) we have:

103 (G, M) > min W, (v, M),
W () YEY (10p) (GR) (w)
107" (G, M) > min max{R, (¢, M), W,(y, M) + [I| — |O[},
TPG‘I’r(top) (GRr)
10" (G, M) > min W, (¢, M) + max{R, (v, M), W.(v¥, M) + |I| — |O|}}.

YEVY (top) (GR)

The bounds obtained for computations without recomputation are generally higher than the
general ones in Theorem 15, as while for each rule r we still analyze the entering boundary
and the minimum post-dominator size of visit partitions, the set of visits to be considered is
restricted to the subset ¥, .cop (Gr) C ¥, (GRr), thus possibly eliminating some visit 1 with
low W,.(¢', M) and/or R, (¢, M). Tt is easy to see that the best lower bounds are obtained
for the choice r = (),

6 Conclusions

We have proposed the visit framework to investigate both space and I/O complexity lower
bounds. The universal upper bounds we have obtained for both the singleton and the
topological types of visits show that these types cannot yield tight pebbling lower bounds for
all DAGs, although they do for some DAGs. The framework gives ample flexibility to tailor
the type of visit to the given DAG, but we do not yet have good insights either on how to
exploit this flexibility or on how to show that this flexibility is not ultimately helpful.

The spectrum of visit types exhibits the following tradeoff. As we go from the topological
rule to, say, the singleton rule, by relaxing the enablement constraints, the set of vertex
sequences that qualifies as a visit increases (which goes in the direction of reducing the
boundary complexity of the DAG, since the minimization takes place over a larger domain),
but the boundary complexity of a specific visit also increases (which goes in the direction of
increasing the boundary complexity of the DAG, since the function to be minimized increases).
The tension between these opposite forces has proven difficult to analyze quantitatively. The
arguments used to establish universal upper bounds in the singleton and in the topological
cases are significantly different, and it is not clear how to interpolate them for an intermediate
visit type. Further research is clearly needed to make progress on what appears to be a rich
combinatorial problem.

Another contribution of the visit framework is a step toward a unified treatment of
pebbling and I/O complexity. Within the framework, we have already seen how to generalize
the by now classical Hong-Kung partition technique, based on dominator and minimum sets,
thus achieving much better lower bounds for some DAGs.

G. Bilardi and L. De Stefani

We conjecture that, for other significant DAGs whose I/O complexity cannot be well

captured by the S-partition technique, visit partitions will help obtain good lower bounds.
Good candidates are DAGs with a constant degree and a space complexity S(IV) superlinear,
say polynomial, in the number of inputs N = |I|. For such DAGs, the size of the minimum

dominator set cannot exceed N and, as shown in Theorem 17, the size of the topological

boundary, i.e., of the minimum set, is O(log N) at any point in the computation. On the
other hand, the singleton boundary could be significantly higher.

Although we have not explicitly discussed the issue in this work, we do not have general

I/O upper bounds matching our visit partition lower bounds. Therefore, further work is
needed to achieve a full characterization of the I/O complexity of a DAG.

—— References

1

10

11

12

Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM, 31(9):1116-1127, September 1988. doi:10.1145/
48529 .48535.

Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled,
Oded Schwartz, Sivan Toledo, and Ichitaro Yamazaki. Communication-avoiding symmetric-
indefinite factorization. SIAM Journal on Matriz Analysis and Applications, 35(4):1364-1406,
2014.

Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. Brief
announcement: Strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. In Proceedings of the twenty-fourth annual ACM symposium on
Parallelism in algorithms and architectures, pages 77-79. ACM, 2012.

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Communication-optimal
parallel and sequential Cholesky decomposition. SIAM Journal on Scientific Computing,
32(6):3495-3523, 2010.

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in
numerical linear algebra. SIAM Journal on Matriz Analysis and Applications, 32(3):866-901,
2011.

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication. Journal of the ACM (JACM), 59(6):1-23,
2013.

Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Strassen’s matrix multiplic-
ation with recomputation. In Workshop on Algorithms and Data Structures, pages 181-192.
Springer, 2017.

Gianfranco Bilardi and Lorenzo De Stefani. The 1/O Complexity of Toom-Cook Integer
Multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’19, pages 2034—2052, USA, 2019. Society for Industrial and Applied
Mathematics.

Gianfranco Bilardi and Lorenzo De Stefani. The dag visit approach for pebbling and i/o lower
bounds, 2022. doi:10.48550/arXiv.2210.01897.

Gianfranco Bilardi, Andrea Pietracaprina, and Paolo D’Alberto. On the space and access
complexity of computation DAGs. In Graph-Theoretic Concepts in Computer Science, pages
47-58. Springer, 2000.

Gianfranco Bilardi and Franco Preparata. Processor-Time trade offs under bounded speed
message propagation. Part 2: Lower Bounds. Theory of Computing Systems, 32(5):531-559,
1999.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Efficient
Algorithms with Asymmetric Read and Write Costs. In Piotr Sankowski and Christos D.
Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 14:1-14:18. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.14.

7:17

FSTTCS 2022

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.48550/arXiv.2210.01897
https://doi.org/10.4230/LIPIcs.ESA.2016.14

7:18

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Timothy Carpenter, Fabrice Rastello, P. Sadayappan, and Anastasios Sidiropoulos. Brief
Announcement: Approximating the I/O Complexity of One-Shot Red-Blue Pebbling. In
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’16, pages 161-163, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2935764.2935807.

Erin C. Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,
Oded Schwartz, and Harsha Vardhan Simhadri. Write-Avoiding Algorithms. In 2016 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA,
May 23-27, 2016, pages 648-658. IEEE Computer Society, 2016. doi:10.1109/IPDPS.2016.
114.

Lorenzo De Stefani. On space constrained computations. PhD thesis, University of Padova,
2016.

Lorenzo De Stefani. Brief Announcement: On the I/O Complexity of Sequential and Parallel
Hybrid Integer Multiplication Algorithms. In Proceedings of the 34th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’22, pages 449-452, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3490148.3538551.

Venmugil Elango, Fabrice Rastello, Louis-Noél Pouchet, Jagannathan Ramanujam, and Pon-
nuswamy Sadayappan. On characterizing the data access complexity of programs. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 567-580, 2015.

Harvey Friedman. Algorithmic procedures, generalized turing algorithms, and elementary
recursion theory. In Studies in Logic and the Foundations of Mathematics, volume 61, pages
361-389. Elsevier, 1971.

D. Yu Grigor’ev. Application of separability and independence notions for proving lower
bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38-48, 1976.

Yan Gu, Yihan Sun, and Guy E. Blelloch. Algorithmic building blocks for asymmetric
memories. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual Furopean
Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112
of LIPIcs, pages 44:1-44:15. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi:
10.4230/LIPIcs.ESA.2018.44.

John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM
(JACM), 24(2):332-337, 1977.

Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing, 64(9):1017-1026,
2004.

Hong Jia-Wei and Hsiang-Tsung Kung. I/O complexity: The red-blue pebble game. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 326-333,
1981.

Lynn H Loomis and Hassler Whitney. An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 55(10):961-962, 1949.

Auguste Olivry, Guillaume Iooss, Nicolas Tollenaere, Atanas Rountev, P. Sadayappan, and
Fabrice Rastello. Ioopt: automatic derivation of I/O complexity bounds for affine programs. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021, pages 1187-1202. ACM, 2021. doi:10.1145/3453483.3454103.

Rasmus Pagh and Morten Stockel. The input/output complexity of sparse matrix multiplication.
In European Symposium on Algorithms, pages 750-761. Springer, 2014.

Michael S Paterson and Carl E Hewitt. Comparative schematology. In Record of the Project
MAC conference on concurrent systems and parallel computation, pages 119-127. ACM, 1970.
Wolfgang J Paul, Robert Endre Tarjan, and James R Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10(1):239-251, 1976.

https://doi.org/10.1145/2935764.2935807
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1145/3490148.3538551
https://doi.org/10.4230/LIPIcs.ESA.2018.44
https://doi.org/10.4230/LIPIcs.ESA.2018.44
https://doi.org/10.1145/3453483.3454103

G. Bilardi and L. De Stefani

29 Desh Ranjan, John Savage, and Mohammad Zubair. Upper and lower I/O bounds for pebbling
r-pyramids. Journal of Discrete Algorithms, 14:2-12, 2012.

30 J. E. Savage. Extending the Hong-Kung model to memory hierarchies. In Computing and
Combinatorics, pages 270-281. Springer, 1995.

31 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1997.

32 Jacob Scott, Olga Holtz, and Oded Schwartz. Matrix multiplication I/O-complexity by
path routing. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 35—45, 2015.

33 Michele Scquizzato and Francesco Silvestri. Communication lower bounds for distributed-
memory computations. In Ernst W. Mayr and Natacha Portier, editors, 31st International
Symposium on Theoretical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-
8, 2014, Lyon, France, volume 25 of LIPIcs, pages 627—-638. Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.627.

A Proofs of technical results

Proof of Theorem 5. Consider a pebbling schedule ¢ of G which uses s pebbles, and any
visit rule » € R (GR). The proof proceeds by constructing an r-visit) of G whose 7-
boundary complexity is itself bounded from above by s. Let T denote the total number of
steps of the pebbling ¢. The construction of ¢ proceeds iteratively starting from the end of
the pebbling schedule ¢ to its beginning: Let v denote the vertex which is being pebbled at
the i-th step of ¢ for 1 < i < T, then the same vertex v is visited in G if and only if all the
vertices in at least one of the subsets in the enabling family & (v) have already been visited.
By construction, 1 is indeed a valid r-visit of G.

By the construction of the reverse DAG Gg, the set of the successors of any vertex v € V
in G corresponds to the set of predecessors of v in Gi. By the rules of the pebble game,
when considering a complete pebbling schedule for G, each vertex v € V is pebbled in for the
first time before any of its successors. As each enabler in r (v) is a subset of the predecessors
of v in G and, hence, a subset of the successors of v in G, each vertex will surely be visited
in 1 at the step corresponding to its first pebbling in ¢ unless it has already been visited.
This allows us to conclude that all vertices of G are indeed visited by .

Let ¢[t] denote the vertex being pebbled at the ¢-th step of the pebbling schedule, for
1 <t <T. In order to prove that the statement holds, it must be shown that, fixed an index
i, 1 <14 <n with ¥[i] = ¢[t], for some ¢t € {1,2,...,T}, the vertices in B, (¢ [1..7]) must be
pebbled (i.e., held in the memory) at the end of ¢-th step of ¢.

Let v € B, (¢[1..i]). By the construction of ¢ there must exist two indices ¢; and ¢,
with 1 < ¢ <t <ty < T, such that ¢[t1] = v, ¢[t2] € Q € r(v), and ¢[t'] # v for every
t; < t' <ty (if that was not the case, then v would have been visited then). As a consequence,
the value of v computed at step ¢; of ¢ is used to compute vs;2 and therefore it must reside
in memory at the end of step t (i.e., it has to be pebbled). Since i was chosen arbitrarily,
the same reasoning applies for all indices ¢ = 1,2,...,n. We can thus conclude that the
maximum number of pebbles used by ¢ (and thus, the memory space used by) is no less
than maxi<;<p |Br (¢ [1..7])| = b, (¢).

The theorem follows by minimizing over all possible r-visits ¢ € ¥,. (Gg). <

Proof of Lemma 6. To prove the lemma, we construct a pebbling schedule ¢ for G, which
corresponds to the r-visit ¢ of Gg: the construction proceeds iteratively starting from the
end of ¢. For any index ¢ = 1,2,...,n let 9[i] denote the vertex visited at the i-th step of .

Let G, denote the sub-DAG of G induced by the subset of V' composed of ¢[n] and the
set of its ancestors in G. The schedule ¢ starts following the steps of any pebbling schedule

7:19

FSTTCS 2022

https://doi.org/10.4230/LIPIcs.STACS.2014.627

7:20

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

of Gy,. Once ¥[n] has been pebbled, all the pebbles on vertices of G,,, except for ¢[n], are
removed. The schedule ¢ then proceeds according to the same procedure up to t[1]. During
the i-th step, the pebbling schedule for G; never re-pebbles any of the vertices in ¥[i 4+ 1..n].
As they were previously pebbled, we can assume that they maintain a pebble (i.e., they are
kept in memory) until the end of the computation. Hence it is possible to pebble G; without
re-pebbling the vertices in ¢[i + 1..n]. By construction, ¢ is a complete pebbling of G.
Crucially, the order according to which the vertices are pebbled for the last time in ¢
corresponds to the reverse order of appearance of the vertices in the given visit 1. When
applying the conversion between pebbling schedules and visits discussed in the proof of
Theorem 5, we have that the vertices are visited in G according to the order of their last
pebbling in ¢. The lemma follows. <

Proof of Theorem 9. We construct inductively an r-visit ¢ of G such that b,.(¢p) <
¢ (dout - 1)

In the base case £ = 0, that is, all the vertices of G are input vertices without predecessors.
Any permutation of the input vertices is an r-visit. As input vertices are enabled by the
empty set, by Definition 3, they do not appear in the boundary and, thus, the r-boundary
complexity of any such visit is zero.

For the general case ¢ > 1, the visit begins by visiting any input vertex of G. If none of
its direct successors are enabled according to 7, by definition, B, (¢[1]) = 0. If that is the
case, the visit proceeds by selecting another input vertex of G.

Without loss of generality, let v denote the first input vertex of G whose r-enabled reach
given the r-sequence 9p,. constructed so far is not empty. As visiting v can only enable its
at most doy: successors, we have | By (¥pre) | < dout. Let G = (V' E’) denote the sub-DAG
of G induced by the r-enabled reach of v given 9, and let 7'(v) = {Q \ Ypre | Q € 7(v)}
for all v € reach, (v|t)pre). By construction, G’ is a sub-DAG of the DAG induced by the
set of descendants of v, whose topological depth must be at most £ — 1. Thus, G’ has
topological depth at most ¢ — 1 as well. Hence, by the inductive hypothesis, for any visit
rule of G’, and, in particular, for 7’ there exists an r’-visit of G’, denoted as 1)’ such that
b (1) < (€= 1) (dput — 1) + 1.

By Lemma 8, ¢),,,.¢’ is an r-sequence of G and vertices in ¢/’ do not enable any vertex in
V' \ ¢'. Further, as at the first step of ¢’ one successor of v is visited, from that step onward,
at most dyy,s — 1 successors of v which are yet to be visited may be in the boundary. Thus:

|Br (Ypre[l--i]) [=0 fori=1,...,[¢prel
|Br (tpre) | < dou
1By ($pred’[L.d]) | < (dowr — 1) + (€ = 1) (dowe — 1) +1 forj=1,...,[¢'|
1By (¥pret)’) | < (doue — 1)

The visit then proceeds by visiting any input vertex of G which is yet to be visited and
its enabled reach given the r-sequence constructed so far and by repeating the operations
previously described. This ensures that G is entirely visited by . By repeating the
considerations on the boundary size previously discussed, we can conclude that the maximum
boundary size of 1 is at most (dyt — 1) £ + 1. The theorem follows. <

Proof of 12.

(a) If dyyt = 0, then all vertices of G are input vertices and any ordering ¢ of V' is a legal
topological ordering, with b,.¢.p) (1) = 0, since input vertices are never part of the
boundary.

G.

(b)

(c)

To
1.

Bilardi and L. De Stefani

If doyr = 1, then it is easy to see that G consists of a collection of chains (one for each
input), at least one of which has length greater than 1. Clearly, visiting one chain at the
time yields a visit ¢ with b,.¢top (¢) = 1.
If doyt < D, with D > 2, we proceed by induction on n. In the base case, n = 1, clearly
there is a unique schedule ¢ with b,.op (¢) = 0. For the inductive step (n > 1), we
recursively construct a visit ¢ = topv(G) as follows. Arbitrarily choose an input vertex u
of G; let B (top) (u) = {v1,v2, ..., vk} Csuc(u), with 0 < k < dyyt (u) < D; and output
Y = wvj, @1 ... v, ¢r¢ where, informally, ¢y, is a visit of the enabled reach of v;,, given
the prefix of ¢ to the left of v;,. Each v,, is chosen among the successors of w (initially)
enabled by u and not yet visited so as to minimize the size of the enabled reach. Finally,
¢ is a visit of the vertices not yet traversed by the end of ¢;. More formally:

J1,---,Jk 18 a permutation of 1,..., k, specified below.

For h = 1,...,k, vj, ¢n = topv(G}), where G}, is the subgraph induced by {v;, } U

reach,.ion (Vj, [uvs, 1 ... 05, Pr—1v;,). It is easy to see that any visit of G must

begin with vertex vj, , the only input vertex of G}, every other vertex of G}, being a

proper descendant of v;, .

Jn = arg min [reach,.cton (vjluvy, 1 ... vj,_, dr—1v;) |.
Fe{ly I\ sdh—1}

¢ = topu(G), where G is the subgraph induced by V' \ {uvj, ¢1 ... v;, ¢}
establish the claimed bound on b,.ep) (1), we make the following observations.
For h = 1,...,k, the boundary of the prefix of ¢ ending just before v;, equals
{vj.,..., v}, hence it has size k —h +1 < k.
By Lemma 8, while visiting G, the boundary is at most (k — h) + b,.ccop) (v}, n)-
Collectively, the k — h 4+ 1 enabled reaches from which the next one to be visited is
chosen contain at most n — 1 — k vertices (because u and vy, ..., v are not contained
in any of them). Since, by Lemma 11, these reaches are disjoint, the smallest ones
contain at most LZ*};T | vertices. Additionally accounting for v;, , G}, contains at most

Ucl 111+11€J = Lknh_}f_lj Vertices

For convenience, let f(n, D) = log D logy n+1 and observe that f is increasing with both
arguments. By the inductive hypothesis, we have:

h

b,ctopy (V) < max{k, max{(k h) + f(m

)}7f(n_ l_ka)}
Using f(kfigil, D) < f(3=p57, D) and letting ¢ = k — h + 1, the previous yields

breon (1) < max{k, mie{g — 1+ f<§, D)}, f(n—1—k,D)}.

. To complete the inductive step, it remains to show that each of the three terms in the

outer max is no larger than f(n, D). This is obvious for the third term f(n —1—k, D),
given the monotonicity of f. For the second term, we observe that each argument in the
inner max satisfies

n D-1 n
q—1+ f(—,D) = qgq—1+ log,(—) +1
D D—llong)
= 1 1 -1l1-
(logDOg2n+)—l—(q)< logo D g —1
D —
1 1,
log, D 0gyon +

where the term dropped in the last step is negative or null, since lgg;lq < lng ;}3, for

qg=1,...,D, as can be shown by straightforward calculus. Finally, to bound the first
term, k, we observe that, if & < 1, then the target bound trivially holds. Otherwise,

7:21

FSTTCS 2022

7:22

The DAG Visit Approach for Pebbling and 1/0O Lower Bound

consider that n > k + 1 (G contains at least the distinct vertices u and vq,...,v) and

that, for 2 < k < D, we have hlf_lk < ID_lD (as mentioned above). Then, the target
g2 082

inequality follows:

k-1 D-1
kz(k—l)—f—lﬁ@10g2k+1<7log2n+1. <

log, D

Figure 1 This DAG allows us to study the relationship between the ™ -boundary complexity
and the r(t°?)—boundary complexity. The DAG is obtained by connecting the vertices of a directed
binary arborescence with a directed chain. Its r(sm)—boundary complexity is 2: consider a visit
starting in the leftmost vertex of the chain and that visits vertices of the tree as soon as they are
enabled. Instead, its r(“”)-boundary complexity is log, (n + 2) — 1, where n denotes the number
of its vertices. In every possible r(t°P)_yisit, the directed chain must be visited first, and then the
arborescence is left to be visited. The bound on the r(tP)- boundary complexity follows an argument
similar to that in the analysis of complete g-trees in the extended version of this work [9]. Consider
the reverse DAG. Its pebbling number is (n + 2) — 1, where n denotes the number of vertices. (The
proof of this statement is a simple exercise.) By the previous considerations, while using the psin)
yields in Theorem 5 yields a trivial lower bound to the pebbling number. Instead, using r(tor) yields
a tight lower bound to the pebbling number of the DAG.

Proof of Theorem 17. For notational simplicity, throughout this proof, r stands for r(oP),
We preliminarily observe that if ¢ € U o (GR), then, for any segment 1 (h, 1], Blent) (1(h,1])
is the minimum set of ¢(h,i] in G. In fact, by the definition of r*°P) v € B, (1[1,h]) if
and only if all of its predecessors in Gg (i.e., its successors in G) are in 9 [1..h]. Hence,
Bl (¢(h..7]) contains exactly those vertices in ¢ (h,i] which are either inputs of Gg
(outputs of G) or for which ¢ (h,i] contains no predecessor in Gg (thus, no successor in G).

Below we will make use of the following two properties, whose simple proof is omitted here.
Let U C V and x € V. Then minyq(UU{z}) < minyy(U)+1 and sms(UU{z}) < sms(U)+1,
where sms(X) denotes the size of the minimum set of X C V.

Given ¢ € U op) (GR), we consider a segment partition i = (i1,42,...,4) where each
segment, with the possible exception of the last one, has a minimum postdominator or the
minimum set of size 2M. Based on the properties stated in the preceding paragraph, such a
partition can be easily constructed by scanning the visit one vertex at a time and closing a
segment as soon as the desired condition is met, or all vertices have been scanned.

Forj=1,...,k, let V; = {¢[ix—;+1], ..., ¢¥[ik+1—,]}. We show that sequence (V1,..., Vi)
is a 2M-partition of G, by proving the defining properties: (a) As they correspond to the
segments of a visit, the V;’s are disjoint and their union equals V. (b) By construction, the

G. Bilardi and L. De Stefani 7:23

dominator of each V} in G has size at most 2M. (c) By construction, the minimum set of
each V; in G has size at most 2M. (d) Finally, since 1 is an 7(*P)_visit of G, it is a reverse
topological ordering of the vertices in G. Therefore, there are no edges of G' from V; to
Ug;ll V;. Clearly, k > k(G,2M), by the definition of the latter quantity.

To analyze the I/O requirements of v, consider the following sequence of inequalities:

Wr('(/)vM) + Rr(va) ZWT(lawaM)+Rr(lawaM)

k
> Z max{07 b£e7lt) (w(ijfl..ij+1]) - M, minpd (w(ijfl..ij}) - M}
j=1

k—1
> > @2M-M)=(k-1)M

> M (k(G,2M) —1).

These four inequalities respectively take into account (i) the definitions in (5) and (6); (ii)
the definitions in (1) and (3); (iii) the fact that, for j = 1,...,k — 1, at least one of the
arguments of the max operator equals M; and (iv) the relationship k > k(G,2M), seen
above. Finally, since the chain of inequalities applies to any visit ¢ € U, op) (GR), We can
invoke inequality (9) to conclude that IO (G, M) > M (k(G,2M) — 1). <

FSTTCS 2022

Counting and Sampling from Substructures Using
Linear Algebraic Queries

Arijit Bishnu =
Indian Statistical Institute, Kolkata, India

Arijit Ghosh =
Indian Statistical Institute, Kolkata, India

Gopinath Mishra! =
University of Warwick, Coventry, UK

Manaswi Paraashar! =
Aarhus University, Denmark

—— Abstract

For an unknown n X n matrix A having non-negative entries, the inner product (IP) oracle takes
as inputs a specified row (or a column) of A and a vector v € R™ with non-negative entries, and
returns their inner product. Given two input vectors x and y in R"™ with non-negative entries, and
an unknown matrix A with non-negative entries with IP oracle access, we design almost optimal
sublinear time algorithms for the following two fundamental matrix problems:

Find an estimate X for the bilinear form xT Ay such that X =~ xT Ay.

Designing a sampler Z for the entries of the matrix A such that P(Z = (4,7)) = z: Asjy;/ (XTAy),

where z; and y; are i-th and j-th coordinate of x and y respectively.
As special cases of the above results, for any submatrix of an unknown matrix with non-negative
entries and IP oracle access, we can efficiently estimate the sum of the entries of any submatrix, and
also sample a random entry from the submatrix with probability proportional to its weight. We will
show that the above results imply that if we are given IP oracle access to the adjacency matrix of a
graph, with non-negative weights on the edges, then we can design sublinear time algorithms for the
following two fundamental graph problems:

Estimating the sum of the weights of the edges of an induced subgraph, and

Sampling edges proportional to their weights from an induced subgraph.
We show that compared to the classical LOCAL queries (degree, adjacency, and neighbor queries) on
graphs, we can get a quadratic speedup if we use IP oracle access for the above two problems.

Apart from the above, we study several matrix problems through the lens of IP oracle, like testing
if the matrix is diagonal, symmetric, doubly stochastic, etc. Note that IP oracle is in the class of linear
algebraic queries used lately in a series of works by Ben-Eliezer et al. [SODA’08], Nisan [SODA’21],
Rashtchian et al. [RANDOM’20], Sun et al. [[CALP’19], and Shi and Woodruff [AAAT’'19]. Recently,
IP oracle was used by Bishnu et al. [RANDOM’21] to estimate dissimilarities between two matrices.

2012 ACM Subject Classification Mathematics of computing — Probabilistic algorithms
Keywords and phrases Query complexity, Bilinear form, Uniform sampling, Weighted graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.8

Related Version The missing proofs can be found in the full version of the paper.
Full Version: https://arxiv.org/abs/2201.04975 [13]

1 The work was done when the author was at Indian Statistical Institute, Kolkata, India.

© Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar;
37 licensed under Creative Commons License CC-BY 4.0

42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2022).

Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 8; pp. 8:1-8:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:arijit@isical.ac.in
mailto:arijitiitkgpster@gmail.com
mailto:gopianjan117@gmail.com
mailto:manaswi.isi@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.8
https://arxiv.org/abs/2201.04975
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Counting and Sampling from Substructures Using Linear Algebraic Queries

1 Introduction

Let A be an unknown n x n matrix with oracle access and with non-negative entries. Consider
a submatrix B of A given by two subsets S; and Sy of indices of the rows and columns A,
that is, B := (Aij)(id-)eSlXSQ. Note that submatrix B is unknown as the matrix A itself is
unknown. We are only given as inputs the sets .S; and Sy, and oracle access to the unknown
matrix A, and we have to efficiently solve the following two problems:

Estimate the sum of the entries in the submatrix B, and

sample a random entry (4, j) from B proportional to its weight A;;, that is, we output

(i,4) € S1 x Sy with probability

E(i,j)esl X S Ay '

We will show that using IP oracle access to A, which takes as inputs a specified row (or a
column) of A and a vector v € R™ with non-negative entries and returns their inner product
(see Section 1.1 for a formal definition), we can design efficient algorithms for the above
defined fundamental problems. In fact, we will be giving efficient algorithms for even more
general problems, see Section 1.2. Now, we discuss two consequences of our result on the
above-mentioned matrix problem.

Counting and sampling edges from induced subgraphs

Let G = (V(G), E(G)) be an unknown graph! on n vertices, and S be any subset of vertices
of G. Assume that the query access to graph G is INDUCED DEGREE query oracle which
takes a vertex u € V(@) and a subset X C V as input and reports the number of neighbors
of u that are present in X. Given INDUCED DEGREE query access to G, two natural questions
to consider on the subgraph Gg of G induced by the subset S are the following

estimate the number of edges in Gg, and

uniformly sample a random edge from Gg.
Observe that both of these graph problems with INDUCED DEGREE query access can be
reduced to the matrix problems with IP oracle access to the adjacency matrix of the graph,
where we only ask for inner product with the vectors in {0,1}".

Weighted edge counting and sampling from graphs

For a graph with non-negative weights on its edges, we can similarly consider the problems
of estimating the sum of the weights of the edges in the graph, and sampling edges of the
graph proportional to its weight. Again, observe that these two fundamental problems on
weighted graphs can also be reduced to the matrix problem defined at the beginning of this
section by considering their adjacency matrix.

Notation

In this paper, we denote the set {1,...,t} by [t] and {0, ...,t} by [[¢]]. For a (directed) graph
G, V(G) and E(G) denote the vertex set and edge sets of G, we will use V' and E when the
graph is clear from the context. For a vertex u, let dg (1) denote the degree of u in G and N¢g(u)
denote the set of neighbors of v in G. For a subset S of V(G), the subgraph of G induced
by S is denoted by Gg = (S, Es) such that Fg := {{u,v} € E(G) | u € S and v € S}. The
LOCAL queries for a graph G = (V(G), E(G)) are:

1 By unknown we mean that the vertex set V(G) of G is known but the edge set E(G) is not known.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

DEGREE query: given u € V(G), the oracle reports the degree of u in V(G)

NEIGHBOR query: given u € V(G) and an integer 4, the oracle reports the i-th neighbor of
u, if it exists; otherwise, the oracle reports L 2.

ADJACENCY query: given u, v € V(G), the oracle reports whether {u,v} € E(G).

For a non-empty set X and a given parameter ¢ € (0,1), an almost uniform sample
of X means each element of X is sampled with probability values that lie in the interval
[(1—-¢)/|X]|,(1+¢€)/|X]|]. For a matrix A, A;; denotes the element in the i-th row and j-th
column of A. A;, and A,; denote the i-th row vector and j-th column vector of the matrix
A, respectively. A € [[p]]"*" means A;; € [[p]] for each i,j € [n], p € N. Throughout this
paper, the number of rows or columns of a square matrix A is n, which will be clear from
the context. Vectors are matrices of order n x 1 and will be represented using boldface
letters. Without loss of generality, we consider n to be a power of 2. The i-th coordinate of
a vector x is denoted by x;. We denote by 1 the vector with all coordinates 1. Let {0,1}"
be the set of n-dimensional vectors with entries either 0 or 1. For x € R™, 1, is a vector
in {0,1}"™ whose i-th coordinate is 1 if ; # 0 and 0 otherwise; nnz(x) = |i € [n] : z; # 0|
denotes the number of non-zero components of the vector. By (x,y), we denote the standard
inner product of x and y, that is, (x,y) = >, z;y;. For a, b € R, we say a = (1 £ ¢)b if

a € [(1—e)b,(1+¢)b]. Similarly, P is a (1 & &)-approximation to @ means |P — Q| <e-Q.

1

ner

With high probability means that the probability of success is at least 1 — where c is a

positive constant. é() and 6() hides a poly (logn,1/¢) term in the upper bound.

1.1 Definition and motivation of INNER PRODUCT oracle

Let A € [[p]]™*™, p € N, be a matrix whose size is known but the entries are unknown. Now
given a row index i € [n] (or, a column index j € [n]) and a vector v € R™, with non-negative
entries as input, the INNER PRODUCT query to A reports the value of (A;,,v) ((A4,v)). If
the input index is for row (column), we refer to the corresponding query as row (column)
IP query. Observe that INDUCED DEGREE query can be implemented for a graph G by IP
oracle as a dot product with 1g (indicator vector for the set S) and the corresponding row
of the matrix A that is the 0/1 adjacency matrix of G.

The IP query has both graph theoretic and linear algebraic flavors to it and we will
highlight them shortly. It may be mentioned here that IP has been already used to estimate
the Hamming distance between two matrices [12].

From a practical point of view, Rashtchian et al. [32] mention that vector-matrix-vector
queries would most likely be useful in the context of specialized hardware or distributed
environments. Needless to say, the same carries over to IP query. There are many computer
architectures that allow us to compute inner products in one cycle of computation with more
parallel processors. Inner product computation can be parallelized using single instruction
multiple data (SIMD) architecture [26]. Modern day GPU processors use instruction-level
parallelism. Nvidia GPUs precisely do that by providing a single API call to compute inner
products [35, 2]. There are many such architectures where IP query has been given to users
directly. Similarly, there are programming language constructs built on SIMD framework
that can compute inner products [1].

2 The ordering of neighbors of the vertices are unknown to the algorithm.

8:3

FSTTCS 2022

8:4

Counting and Sampling from Substructures Using Linear Algebraic Queries

1.2 The problems, results and paper organization

The main matrix-related problems considered in this work involve estimating the bilinear
form x” Ay and sampling an element of a matrix almost uniformly using IP queries. Bilinear
form estimation is inherently interesting as it is a generalization of the problem defined at the
beginning of Section 1. Also, bilinear form estimation has huge importance in numerical linear
algebra because of its use in calculating node centrality measures like resolvent subgraph
centrality and resolvent subgraph communicability [10, 22], Katz score for adapting it to
PageRank computing [14], etc.

BILINEAR FORM ESTIMATION4(x,y), in short BFE4(X,y)
Input: Vectors x € [[11]]", ¥ € [[12]]™, IP access to matrix A € [[p]]"*™, and € € (0,1).
Output: An (1 + ¢)-approximation to x7 Ay.

SAMPLE ALMOST UNIFORMLY 4 (X,y), in short SAUA(X,y)

Input: Vectors x € [[11]]", ¥ € [[12]]™, IP access to matrix A € [[p]]"*™, and € € (0,1).
oot iAijY; . iAijy;

Output: Report Z satisfying (1 — &) rfy* <P(Z = (i,5)) < (1 +¢)rgy

For the above problems, our results are stated in Theorem 1.1. We give the sketches of
the proofs of the upper bound for a special case in Section 4. The general upper bounds can
be derived from the special case and their proof is in the full version [13] of the paper. The
lower bound parts of Theorem 1.1 are also proved in the full version [13].

» Theorem 1.1. BFE4(x,y) and SAUA(X,y) can be solved by using

& [VP2 (nna(x) +nnz(y))
xT Ay

IP queries, where nnz(x) and nnz(y) denotes the number of non-zero entries in x andy,

respectively.

The above theorem has several important consequences. An immediate consequence of
Theorem 1.1 is the following.

» Corollary 1.2 (Estimating and sampling from submatrices of 0/1 matrix). 3 Let A withnxn

unknown 0/1 matriz with TP oracle access. Let € € (0,1), and Sy and Sz be subsets of indices

of the rows and columns of the matriz A, respectively. For the matrix B = (Aij)ies, jes,

using 5 (SlH_l(SBQ) IP queries, we can find an estimate X of the number of ones in B such

that X = (1 £¢) > Aij, and also design a sampler Z of S1 x Sy satisfying, for all
(i,j)eSl X S

(4,7) € S1 x Sa,

P<Z=<i,j>>=<1ie>n£73).

Furthermore, the IP queries used by both algorithms only ask for inner products with vectors
in {0, 1}".

3 Even though Corollary 1.3 is more general than Corollary 1.2, we state Corollary 1.2 to show its
application in Remark 1.4 (i).

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

We now define a more general class of matrices. Let F (n, p) be a family of n x n matrices
with non-negative entries such that for all A € F (n, p) we have
min A;; > 1 and max A < p.
(4,5):Ai;>0 (4,4):Ai;>0
The following result, which is a direct corollary from Theorem 1.1, shows that we can
efficiently estimate and sample even from this family.

» Corollary 1.3 (Estimating and sampling from a arbitrary matrix). Let A with unknown matriz
in F (n, p) with IP oracle access. Let € € (0,1), and S1 and Sy be subsets of indices of the
rows and columns of the matriz A, respectively. For the matriz B = (Aij)ies,, jes, using

O VP(|S1]+]52])

\/ 277 Aij
is, X = (L+e) >, ; Bij, and we can also design a sampler Z of [n] x [n] satisfying, for all
(Z,]) €51 x8s,

IP queries, we can find an estimate X of the number of ones in B, that

Ay
Z(i,j)GSl X So AZJ .

tj

P(2=(i,5)) = (1£e)

We would like to point out that the above corollaries are also tight because the lower
bound part of the proof of Theorem 1.1 holds even for their special cases.

» Remark 1.4 (Consequences of Theorem 1.1).
(i) Induced subgraphs: Given INDUCED DEGREE query access to a unknown graph G =

(V(G@), E(G)) and a subset S C V(G) and an ¢ € (0,1) as input, one can estimate the
15|
Vms
edge almost uniformly from Gg, where Gs denotes the subgraph of G induced by S. We

can also design a sampler for the edges in G where each edge e € E(Ggs) gets sampled
with probability (1 + s)m using the same number of queries. Note that this result
follows from Corollary 1.2 as each INDUCED DEGREE query to graph G is analogous to an
IP query to the adjacency matrix of G. It is because the algorithms corresponding to

number edges in Gg up to (1+¢) factor by using 1) () queries and sample a random

Corollary 1.2 only ask for inner product with vectors in {0, 1}".
(ii) Weighted graphs: Given IP oracle access to the adjacency matrix A € [[p]]"*" * of
weighted graph G = (V(G), E(G)), then we can estimate w(G) = > A;; up to
\/pn
w(G)
sampler for the edges of the graph G where each edge (i,j) € E(G) gets sampled with
probability (1 £¢) :25) using the same number of queries. Note that this result follows
from Corollary 1.3, and is a generalization of the edge estimation results using local
queries by Feige [23], and Goldreich and Ron [25].
(iii) Stochastic matrices: Let A be an unknown doubly stochastic® n x n matrix with IP
oracle access, and each non-zero entry of A is at least A > 0. We can design a sampler Z
of [n] x [n] such that, for all (i,7) € [n] x [n], we have P(Z = (i,7)) = (1 £ ¢)A;;. Our

sampler will use at most O (n / \f/\) queries.

i,4)€

(1 &+ e)-approximation using at most 9] < IP queries. We can also design a

4 Assume that G is a complete graph such that the weights on {4,j} ¢ FE(G) is 0.
5 A matrix A with non-negative entries is doubly stochastic if the sum of the entries of any row or column
is one.

8:5

FSTTCS 2022

8:6

Counting and Sampling from Substructures Using Linear Algebraic Queries

In Section 5, we discuss several other matrix problems using IP oracle query which were
studied using stronger queries like matriz vector and vector matriz vector queries [39, 32].

In Section 3 we establish that LOCAL query access (to the entire unknown graph) cannot
solve problems in induced subgraphs efficiently. Two crucial takeaways are that IP oracle and
its derivative, the INDUCED DEGREE oracle act like a local query on any induced subgraphs,
and there is a quadratic separation between the powers of LOCAL query and INDUCED
DEGREE queries to solve EDGE ESTIMATION and EDGE SAMPLING in induced subgraphs.

2 Inner product oracle vis-a-vis other query oracles

Graph parameter estimation, where the graph can be accessed through query oracles only,
has been an active area of research in sub-linear algorithms for a while [25, 19, 20, 34]. There
are different granularities at which the graph can be accessed — the query oracle can answer
properties about graphs that are local or global in nature. By now, the LOCAL queries have
been used for edge [25], triangle [19], clique estimation [20] and has got a wide acceptance
among researchers. Apart from the local queries, in the last few years, researchers have
also used the RANDOM EDGE query [4, 6], where the oracle returns an edge in the graph G
uniformly at random. Notice that the randomness will be over the probability space of all
edges, and hence, it is difficult to classify a random edge query as a local query. On the other
hand, global queries come in different forms. Starting with the subset queries [37, 38, 33],
there have been other queries like BIPARTITE INDEPENDENT SET query, INDEPENDENT SET
query [8], GPIs query [11, 17], CUT query [34], etc. Linear measurements or queries [5, 3],
based on dot product, have been used for different graph problems.

To this collection of query oracles, we introduce a new oracle called INNER PRODUCT (IP)
oracle which is a natural oracle to consider for linear algebraic and graph problems. Using
this oracle, we solve hitherto unsolved problems (by an unsolved problem, we mean that no
non-trivial algorithm was known before) with graph theoretic and linear algebraic flavor, like
(a) edge estimation in induced sub-graph; (b) bilinear form estimation; (c¢) sampling entries
of matrices with non-negative entries. We also show weighted edge estimation and edge
estimation in induced subgraph as applications of bilinear form estimation. Our lower bound
result, for EDGE ESTIMATION in induced subgraph with only LOCAL query access, implies
that there is a separation between the powers of LOCAL query and INDUCED DEGREE query.
We will show that our newly introduced INNER PRODUCT query oracle can solve problems
that can not be solved by the three local queries mentioned even coupled with the random
edge query.

Our current survey of the literature (here we do not claim exhaustivity!) shows that a
query related to a subgraph was first used in Ben-Eliezer et al. [9], and named as group query,
where one asks if there is at least one edge between a vertex and a set of vertices. We found
the latest query in this league to be the demand query (in bipartite graphs where the vertex
set are partitioned into two parts left vertices and right vertices) introduced by Nissan [29] —
a demand query accepts a left vertex and an order on the right vertices and returns the first
vertex in that order that is a neighbor of the left vertex. One can observe that the group
and demand queries are polylogarithmically equivalent. Staying on this line of study related
to the relation of a vertex with a subset of vertices, we focus on the INDUCED DEGREE query
which we feel handles many natural questions.

Query oracle based graph algorithms access the graph at different granularities — this
gives rise to a whole gamut of queries with different capacities, ranging from local queries
like degree, neighbor, adjacency queries [23, 25] to global queries like independent set based

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

queries [8, 17], random edge queries [4], and others like group [9] and demand queries [29].
This rich landscape of queries has unravelled many interesting algorithmic and complexity
theoretic results [23, 25, 4, 9, 29, 8, 17, 33]. With this in mind, if we turn our focus to
the landscape of linear algebraic queries, the most natural query is the matriz entry query
where one gives an index of the matrix and asks for the value there. Lately, a series of
works [32, 39, 36, 7] have used linear algebraic queries like vector-matriz-vector query and
matriz-vector queries. The IP oracle is also motivated by these new query oracles. Notice
the huge difference in power between matrixz entry query and vector-matriz-vector query
and matriz-vector queries. Note that IP query is strictly weaker than these matrix queries
but stronger than the matriz entry query. We feel there is a need to study linear algebraic
queries with intermediate power — the IP query fits in that slot.

3 A query model for induced subgraph problems

To the best of our knowledge, our work is a first attempt towards solving estimation problems
in induced subgraphs. We start by showing a separation between LOCAL query and INDUCED
DEGREE query using the problems of EDGE ESTIMATION and EDGE SAMPLING in induced
subgraph. We now define INDUCED EDGE ESTIMATION and INDUCED EDGE SAMPLING.

INDUCED EDGE ESTIMATION
Input: A parameter ¢ € (0,1) and a subset S of the vertex set V of a graph G.
Output: A (1 + ¢)-approximation to the number of edges Eg in the induced subgraph.

INDUCED EDGE SAMPLING
Input: A parameter ¢ € (0,1) and a subset S of the vertex set V of a graph G.

Output: Sample each edge e € Eg with probability between |1E_SE| and ‘15';'.

One of the main contributions of this paper is to show that LOCAL queries together with
RANDOM EDGE query are inefficient for both INDUCED EDGE ESTIMATION and INDUCED
EDGE SAMPLING. The lower bound results follow.

» Theorem 3.1 (Lower bound for INDUCED EDGE ESTIMATION using LOCAL queries). Let
us assume that s,ms € N be such that 1 < mg < (;) and the query algorithms have access
to DEGREE, NEIGHBOR, ADJACENCY and RANDOM EDGE queries to an unknown graph
G = (V(G),E(G)). Any query algorithm that can decide for all S C V(G), with |S| = O(s),

whether |Eg| = my or |Es| = 2mg, with probability at least 2/3, requires % queries.

» Theorem 3.2 (Lower bound for INDUCED EDGE SAMPLING using LOCAL QUERIES). Let
us assume that s,mgs € N be such that 1 < mg < (;) and the query algorithms have access
to DEGREE, NEIGHBOR, ADJACENCY and RANDOM EDGE queries to an unknown graph
G = (V(G),E(G)). Any query algorithm that for any S C V(G), with |S| = ©(s), samples
the edges in Eg e-almost uniformly ®, with probability at least 99/100, will require (;—2)

queries 7. Note that € € (0,1) is given as an input to the algorithm.

5 Each edge in Eg is sampled with probability between (1 — s)ﬁ and (1+ 5)‘E—lb|
7 Let U denote the uniform distribution on Eg. The lower bound even holds even if the goal is to get a
distribution that is € close to U with respect to ¢; distance.

8:7

FSTTCS 2022

8:8

Counting and Sampling from Substructures Using Linear Algebraic Queries

» Remark 3.3. When S =V, INDUCED EDGE ESTIMATION and INDUCED EDGE SAMPLING
are EDGE ESTIMATION and EDGE SAMPLING problems, respectively. Both EDGE ESTIMATION

and EDGE SAMPLING can be solved with high probability by using © (|V|2/|E|) ADJACENCY

queries [24]. Notice that these bounds match the lower bounds. Contrast this with the
fact that EDGE ESTIMATION and EDGE SAMPLING can be solved with high probability by

using © (|V|/\/ |E|) local queries, where each local query is either a DEGREE or a NEIGHBOR

or an ADJACENCY query [25, 21]. Thus, we observe that for INDUCED EDGE ESTIMATION
and INDUCED EDGE SAMPLING, the ADJACENCY query is as good as the entire gamut of
LOCAL queries and RANDOM EDGE query. On a different note, our results on BILINEAR
ForM ESTIMATION and ALMOST UNIFORMLY SAMPLING using IP query generalize the
above mentioned results on EDGE ESTIMATION and EDGE SAMPLING using local queries.
Note that IP oracle is a natural query oracle for graphs where the unknown matrix is the
adjacency matrix of a graph, and we will discuss that in Remark 3.8 that IP query on the
adjacency matrix graphs is stronger than the local queries.

In Section 3.1, we prove Theorems 3.1 and 3.2 by reduction from a problem in commu-
nication complexity. In Section 3.2, we discuss the way in which INDUCED DEGREE query
simulates local queries in any induced subgraph (see Remark 3.8). This will imply that
the lower bound results in Theorems 3.1 and 3.2 can be overcome if we have an access to
INDUCED DEGREE query to the whole graph (see Corollary 3.9). However, the implication is
more general and will be discussed in Section 3.2.

3.1 Limitations of local and random edge queries

The proofs of the lower bounds use communication complexity. We will first provide a
rudimentary introduction to communication complexity. For a detailed introduction to
communication complexity refer to the following books [27, 31].

Brief introduction to communication complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish to
compute a function IT : {0, 1} x {0, 1} — {0,1}. Alice is given x € {0,1}" and Bob is given
y € {0,1}". Let x; (y;) denotes the i-th bit of x (y). While the parties know the function
II, Alice does not know y, and similarly Bob does not know x. Thus they communicate bits
following a pre-decided protocol P in order to compute II(x,y). We say a randomized protocol
P computes 11 if for all (x,y) € {0,1}¥ x {0,1} we have P[P(x,y) = [I(x,y)] > 2/3. The
model provides the parties access to a common random string of arbitrary length. The cost
of the protocol P is the maximum number of bits communicated, where maximum is over all
inputs (x,y) € {0,1}" x {0,1}¥. The communication complexity of the function is the cost
of the most efficient protocol computing II.

Proofs of Theorems 3.1 and 3.2

We will use the following problem in our lower bound proofs.

» Definition 3.4 (k-INTERSECTION). Let k, N € N such that £k < N. Let S = {(x,y) : X,y €
{0,1}7, Ef\il x;y; = k or 0}. The k-INTERSECTION function over N bits is a partial function
denoted by k-INTERSECTION : S — {0, 1}, and is defined as follows: k-INTERSECTION(X,y) =
1if Zfil x;y; = k and 0, otherwise.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

» Lemma 3.5 ([27]). Let k,N € N such that k < N. The randomized communication
complexity of k-INTERSECTION function on N bits is Q (N/k).

Proof of Theorem 3.1. We give a reduction from m,-INTERSECTION problem over N = s2

bits. Let x = (x;;) € {0,1}" be such that 4,5 € [s]. Similarly, let y € {0,1}¥. Tt is promised
that Alice and Bob will be given x and y such that there are either 0 intersections or exactly
my intersections, i.e., either (x,y) =0 or m,. Now we define a graph G xy)(V(G), E(G)) as
follows where LI denotes disjoint union.
[V(G)| =06(s). V(G) = SaUSpUTAUTpUC such that Sa, Sp, Ta, Tp are independent
sets and |Sa| = |Sp| = |Ta| = |Ts| = s and |C| = ©(s). Note that V(G) is independent
of x and y;
The subgraph (of G (x,y)) induced by C'is a fixed graph, independent of x and y, having
exactly m, edges. Also there are no edges in G () between the vertices of C' and
V(G)\ C.
The edges in the subgraph (of G yy) induced by V(G)\ C = Sy UT4 U SpUTp depend
on x and y as follows. Let Sa = {sf :i € [s]}, Ta = {t{ :i € [s]}, Sp = {sP :i € [s]}
and Tp = {t8 : i € [s]}. For i,j € [s], if z;; = yi; = 1, then (s{,tP) € E(G) and

R]
(slB,tf) € E(G). For i,j € [s] if either 2;; = 0 or y;; = 0, then (sﬁtf) € E(G) and

(s7,17) € BE(G);
The graph Gy can be uniquely generated from x and y. Moreover, Alice and Bob need
to communicate to learn useful information about Gy yy. Observation 3.6 follows from the
construction that shows the relation between the number of edges in the subgraph induced by

SaUTpUC with (x,y), where x,y € {0,1}V are such that either (x,y) = 0 or (x,y) = ms.

» Observation 3.6. (i) |[S4 UTp U C| = 0O(s), (ii) irrespective of z and y: |Es,| = |Esy| =
|E7,| = |ETs| = 0, also the degree of each vertex in SqUT4 U SpUTg is same (i.e., s), and
(iii) if (x,y) =0, then |Es, irsuc| = ms, (iv) if (x,y) = mg, then |Eg,ursuc| = 2ms.

The following observation completes the proof of the theorem.

» Observation 3.7. Alice and Bob can deterministically determine answer for each local
query to graph G(xy) by communicating O(1) bits.

We will give the proof of the above observation at the end of this subsection. <

Proof of Theorem 3.2. For clarity, we prove the theorem for ¢ = 1/4. However, the proof
can be extended for any ¢ € (0,1/2). We use the same set up and construction as in
Theorem 3.1 with S = S, USpUC. Let A be an algorithm that almost uniformly samples

edges from the induced graph Gs = (S, Es) making T queries, with probability 99/100.

Using A we give another algorithm A’ that decides whether |Eg| = ms or |Eg| = 2m
by using O(T') queries, with probability at least 2/3. From the reduction presented in
Theorem 3.1, Alice and Bob can use A’ to solve m,-INTERSECTION over N = s? bits, and
hence T = Q(T‘;—z)

A’ runs A 10 times independently to obtain edges eq,...,e19. Note that each edge e;
is sampled almost uniformly. If at least one e; satisfies e; € Eg, 1y, then A’ reports that
|Es| = 2ms. Otherwise, A’ reports that |Es| = ms. The query cost of A" is ©(T).

If |Eg| = ms, then there is no edge in the subgraph induced by S4 U Tg. So, in this
case, all the edges reported by A’ are from the subgraph induced by C. Now consider
when |Eg| = 2mg. In this case, the subgraph induced by S4 LI Tp and C have exactly mg
edges each. So, by the assumption of the algorithm A, the probability that any particular
e; is present in the subgraph induced by S4 U Tp is at least 1/2 — e = 1/4 (since we are

8:9

FSTTCS 2022

8:10

Counting and Sampling from Substructures Using Linear Algebraic Queries

analyzing for e = 1/4). So, under the conditional space that all the ten runs of A succeed,
the probability that none of the ten edges sampled by A is from the subgraph induced by
SaUTg is at most (1 —1/ 4)10 < 1/10. As each run of algorithm A succeeds with probability
at least 99/100, all the ten runs of the algorithm A succeeds with probability at least 9/10.
So, the probability that algorithm A’ succeeds is at least 9/10 - (1 —1/10) > 2/3. <

We will finish this subsection with the proof of Observation 3.7 used in the proof of
Theorem 3.1.

Proof of Observation 3.7.

DECREE query: By Observation 3.6 (ii), the degree of every vertex in V(G) \ C is s. Also,
the subgraph induced by C' is a fixed graph disconnected from the rest. That is Alice
and Bob know the degree of every vertex in C. Therefore, any DEGREE query can be
simulated without any communication.

NEIGHBOR query: Observe that Alice and Bob can get the answer to any neighbor query
involving a vertex in C' without any communication. Now, consider the set S4. The labels
of the j neighbors of any vertex in s € S4 are as follows: for j € [s], the j-th neighbor
of sf‘ is either tf or 534 depending on whether z;; = y;; = 1 or not, respectively. So, any
NEIGHBOR query involving vertex in S4 can be answered by 2 bits of communication.
Similar arguments also hold for the vertices in Sg LUT4 UTg.

ADJACENCY query: Observe that each adjacency query can be answered by at most 2 bits
of communication, and it can be argued like the NEIGHBOR query.

RANDOM EDGE query: By Observation 3.6 (ii), the degree of every vertex in V(G) \ C is
s irrespective of the inputs of Alice and Bob. Also, they know the entire subgraph
induced by the vertex set C. Also, C is disconnected from the rest. Alice and Bob use
shared randomness to sample a vertex in V proportional to its degree. Let r € V be
the sampled vertex. They again use shared randomness to sample an integer j in [d(v)]
uniformly at random. Then they determine the j-th neighbor of r using NEIGHBOR query.
Observe that this procedure simulates a RANDOM EDGE query by using at most 2 bits of
communication. <

3.2 A query model for induced subgraphs

Observe that INDUCED DEGREE query can simulate any LOCAL queries on subgraphs.

» Remark 3.8. Let us have an INDUCED DEGREE query oracle access to an unknown graph

G(V,E). Consider any X C V(G) and Gy, the subgraph of G induced by X. Then

(i) Any query to Gx, which is either a DEGREE or ADJACENCY, can be answered by one
INDUCED DEGREE query to G.

(if) Moreover, any NEIGHBOR query to G x can be answered by O(log|X|) INDUCED DEGREE
query to G by binary search.

The above remark together with the edge estimation result of Goldreich and Ron [25],
and edge sampling result of Eden and Rosenbaum [21], will give us the following result.

» Corollary 3.9 (Estimating and sampling edges in induced subgraphs). Let us assume that
the query algorithms have access to INDUCED DEGREE query to an unknown graph G =
(V(Q), E(Q)). There exists an algorithm that takes a subset S C V(G) and ¢ € (0,1) as
inputs, and outputs a (1+¢e)-approzimation to |Es|, with high probability, using O (|S\/¢?5)
INDUCED DEGREE queries to G. Also, there exists an algorithm that e-almost uniformly
samples edges in Es, with high probability, using 10) (|S\/\/E75) INDUCED DEGREE queries.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

» Remark 3.10. More generally, Remark 3.8 implies that any problem P on a graph G that
can be solved by using f (|[V(G)|,|E(G)|) local queries, can also be solved on any induced
subgraph Gg, where S C V(G), of G by using f (|[V(Gs)|, |E(Gs)|)-O(log |V(Gg)|) INDUCED
DEGREE queries.

4 Bilinear form estimating and sampling entries of a matrix

4.1 Algorithm for Bilinear Form Estimation

To give the main ideas behind the algorithm for BILINEAR FORM ESTIMATION, we will
discuss, in this section, the algorithm for estimating 17 A1 using IP access to A, with A
being symmetric. The algorithm for the special case is inspired by [25]. In the full version
of the paper ([13]) we show how the algorithm for this special case can be extended for the
general problem of estimating xT Ay, where A € [[p]]"*", x € [[11]]" and y € [[y2]]". We will
now give an outline of the proof of the following theorem.

» Theorem 4.1. There exists a query algorithm for BFE that takes € € (0,1/2) as input and

Ja) P
queries to a symmetric matriz A € [[p]]"*™. Moreover, the algorithm only uses IP query of

the form (Ag«,u) for some k € [n] and u € {0,1}".

determines a (1 + €)-approzimation to 17 A1 with high probability by using o (

The algorithms for BILINEAR FORM ESTIMATION and SAMPLE ALMOST UNIFORMLY (Sec-
tion 4.2) will use a subroutine, which takes as input a given row ¢ € [n] of A and a non-empty

set S C [n], and outputs A;;, where j € S, with probability A;;/ (des)

Algorithm 1 REGR(x,1).

Input: A vector x € {0,1}" such that the 1’s in x are consecutive and the number
of 1’s is a power of 2, an integer i € [n] and IP access to a matrix A.

Output: Ordered pair (i, ;) with probability A Aij z7>,

begin
if (the number of 1’s in x is 1) then
| Report the ordered pair (ij*) where z;- = 1.
end
else
Form a vector y (z) in {0,1}™ by setting second (first) half of the nonzero
elements in x to 0 and keeping the remaining elements unchanged.
Determine (A;.,y) and (A, z).
With probability 2 ‘*’yi report REGR(y, 1) and with probability é ‘*7z; report
REGR(z,).
end

end

» Observation 4.2. There exists an algorithm REGR (See Algorithm 1) that takes ¢ € [n] and
x € {0,1}" as inputs, outputs A;; with probability Aijxj/(zg'e[n] Aijxj) by using O(logn)
IP queries to matrix A.

We will now discuss in the following paragraphs the details of the algorithm (Algorithm 2)
for estimating 17 A1. The ingredients, to prove the correctness of Algorithm 2, are formally
stated in Lemma 4.6. The approximation guarantee of Algorithm 2, which matches the
guarantee mentioned in Theorem 4.1, is given in Claim 4.7.

8:11

FSTTCS 2022

8:12

Counting and Sampling from Substructures Using Linear Algebraic Queries

Partition of rows of A induced by e

Given ¢ as input, we argue that the rows of the symmetric matrix A can be partitioned
into “buckets” such that the total number of buckets is small and every row in a particular
bucket has approximately the same total weight. Consider a partition of [n], that corresponds
to the set of the indices of the rows of the symmetric matrix A, into buckets with the
property that all js present in a particular bucket B; have approximately the same value
of (Aj«,1). Let t = [log, 5(pn)] + 1, where 3 < ¢/8. For i € [t], we define the set
Bi:={jen] : (1+p)7<(A;,1) <(1+p)"}. Since A;; < p, the maximum number
of such buckets B; required are at most ¢ = [log;, 5(pn)] + 1. Now consider the following
fact that will be used in our analysis.

» Fact 4.3. For every i € [t], (1+ B8)"!|B;| < Yjen (Aje 1) < (1+ B)¢|Bil.

Based on the number of rows in a bucket, we classify the buckets to be either large or
small. To define the large and small buckets, we require a lower bound ¢ on the value of
= 17 A1. Moreover, let us assume that, m/6 < ¢ < m. However, this restriction can be
removed by using standard techniques from property testing. For details, see [13, Section 4].

» Definition 4.4. We fix a threshold 6§ = = , /g Fori € [t], we define the set B; to be

a large bucket if |B;| > On, otherwise B is deﬁned to be a small bucket. Thus, the set of
large buckets L is defined as L = {i € [t] : |B;| > 6n}, and [t] \ L is the set of small buckets.

Let V,U C [n] be the sets of indices of rows that lie in large and small buckets, respectively.
For I C [n], let x; denote the sub-vector of x induced by the indices present in I. Similarly,
for I,J C [n], let Ar; denote the sub-matrix of A where the rows and columns are induced
by the indices present in I and J, respectively. Observe that,

1741 = lvTAvv].V +].VTAVU].U + lUTAlev + lUTAUUlU.

2-Approximation of 1TA1

Note that at this point we know and, upon querying (A;,, 1), we can determine the bucket
to which j belongs, for j € [n]. The algorithm begins by sampling a subset S of rows of
A, such that |S| = K, independently and uniformly at random with replacement, and for
each sampled row j, the algorithm determines (A,., 1) by using IP oracle. This determines
the bucket in which each sampled row belongs. Depending on the number of sampled rows
present in different buckets, our algorithm classifies each bucket as either large or small. Let
V and U be the indices of the rows present in large and small buckets, respectively. Note that
the algorithm does not find V and U explicitly — these are used only for analysis purposes.
Observe that,

TA1 — 1T A 1. T A 1. T A 1. T A1
VA1 =157 Apply + 15 Apply + 157 Apply + 157 Apsls.
We can show that lﬁTAﬁﬁlﬁ is at most ¢, where £ is a lower bound on 17 A1. Thus,

T T A1~ T A1 T A1~
17A1 ~ 157 ALy + 157 Apply + 157 App 15

Lemma 4.6 shows that for a sufficiently large K, with high probability, the fraction
of rows in any large bucket is approximately preserved in the sampled set of rows. Also
observe that we know tight (upper and lower) bounds on (A;.,1) for every row j, where
j € V. Thus, the random sample of S rows, such that |S| = K, approximately preserves
1§TA‘~/";1; + 1§TA‘~/515. Observe that this is already 2-approximation of 1T A1.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

Using REGR for tight approximation

In order to get a (1 & ¢€)- approximation to 17 A1, we need to estimate 1~TA5‘~/ 15, which is

same as estimating 1 TA since A is a symmetric matrix. We estimate 1~TA

vole volo
that is, the sum of A”s such that i € V and j € U7 as follows. For each bucket B; that

is declared as large by the algorithm, we select enough number of rows randomly with
replacement from S; = S N B;, invoke REGR for each selected row in S; and increase the
count by 1 if the element A;; reported by REGR be such that j € U. A formal description
of our algorithm is given in Algorithm 2. Now, we focus on the correctness proof of our
algorithm for BFE.

Algorithm 2 BFE (¢, €).

Input: An estimate ¢ for 1TA1 and € € (0,1/2).

Output: 7, which is a (1 % ¢)-approximation of 17 A1.

begin

Independently select K = © (% g% . log?(pn) - log(l/e)) rows of A
uniformly at random and let S denote the multiset of the selected indices (of
rows) sampled. For i € [t], let S; = B; N S.

Let L = { : ‘éll > 1 C /% . %}. Note that L is the set of buckets that the

algorithm declares to be large. Similarly, [¢] \ L is the set of buckets declared to
be small by the algorithm.

For every ¢ € Z, select |S;| samples uniformly at random from S;, with
replacement, and let Z; be the set of samples obtained. For each z € Z;, make a
REGR(1, z) query and let A, = REGR(1, z). Let Y, be a random variable that
takes value 1 if k, € U and 0, otherwise.

Zzezi A&

Determine o; = =57
Output m = % >, 7(1+a)- 1S - (1+ B)".
end

To prove that m is a (14 ¢)-approximation of m = 17 A1, we need the following definition
and the technical Lemma 4.6.

ZueBi (Aux,1~)

» Definition 4.5. For i € L, «; is defined as ZueBi T

» Lemma 4.6. For a suitable choice of constant in ©(+) for selecting K samples in Algorithm 2,
the followings hold with high probability:

(i) For each i € L, we have ‘Sl =(1+¢)lBl
(ii) For eachi € [t]\ L, |fg‘<;~;,/g-%.
(iii) We have |U| < %-%, where U = {j € B; i € [t] \ L}.

(iv) For every i € L, (a) if a; > £, then a; = (1+ %) oy, and (b) if a; < /8, then
a; < 5/4.

The above Lemma can be proved by using Chernoff bound (see Appendix A). Now, we have
all the ingredients to show the following claim, which shows that m is a (1 & ¢)-approximation
of m = 17 A1. The following claim is proved in the full version of the paper [13].

8:13

FSTTCS 2022

8:14

Counting and Sampling from Substructures Using Linear Algebraic Queries

> Claim 4.7. 'With high probability, we have,
(i) m>(1-5) (m—50), and
(i) m < (1 + 34—5) m, where m = 17 A1.

Recall that we have assumed m/6 < ¢ < m. Under this assumption, the above claim says
that m is in fact a (1 & €)-approximation to m. From the description of Algorithm 2, the

number of IP queries made by the algorithm is 9] (%) =0 (\1/T§Zu) as m/10 < ¢ < m.

We will discuss how to remove the assumption, that m/6 < ¢ < m, by using a standard
technique in property testing (see the full version of the paper [13]). So, we are done with
the proof of Theorem 4.1.

4.2 Algorithm for Sampling Almost Uniformly

In this section, we will be proving the following theorem on almost uniformly sampling the

]]**™. The algorithm for the special case is inspired

entries of a symmetric matrix A € [[p
by [21]. In the full version of the paper ([13]), we show how this algorithm can be extended

to solve the more general SAU4(x,y) problem.

» Theorem 4.8. Let A € [[p]]"*" be an unknown symmetric matriz with IP query access.
There exists an algorithm that takes € € (0,1) as input and with high probability outputs
a sample from a distribution on [n] X [n], such that each (i,7) € [n] x [n] is sampled with
probability p;; satisfying:

Ay
pij = (1£ €)<Zlgi,j;n Aij>)

Moreover, the algorithm makes O (\/{%) IP queries to the matriz A of the form

(Agx,u) for some k € [n] and u € {0,1}".

Our algorithm for SAMPLE ALMOST UNIFORMLY is a generalization of Eden and Rosen-
baum’s algorithm for sampling edges of an unweighted graph [21]. First, consider the following
strategy by which we sample each ordered pair (i,) € [n] x [n] proportional to A;; when the
matrix A is such that (A4; ., 1) is the same for each i € [n].

Strategy-1: Sample r € [n] uniformly at random and then sample an ordered pair of the form
(r,7) from the r-th row using REGR query. Observe that this strategy fails when (A, 1)’s
are not the same for every i € [n]. So, the modified strategy is as follows.

Strategy-2: Sample r € [n] with probability % and then sample an ordered pair of the
form (r,j) from the r-th row by using REGR query.

Note that Strategy-2 samples each ordered pair (¢, j) proportional to A;;. However, there
are two challenges in executing Strategy-2:

(i) We do not know the value of 17 A1.

(ii) We need Q(n) queries to determine (A, 1) for each r € [n].
The first challenge can be taken care of by finding an estimate m for 17 A1, with high
probability, by using Theorem 4.1 such that m = ©(17A1). To cope up with the second
challenge, we partition the elements as well as rows into two classes as defined in Definition 4.9.
In what follows, we consider a parameter 7 in terms of which we base our discussion as well

as algorithm. 7 is a function of m that will evolve over the calculation and will be 7 = 4/ £,

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

» Definition 4.9. The i-th row of the matrix is light if (A; ., 1) < 7, otherwise i-th row is
heavy. Any order pair (i, j), for a fixed i, is light (heavy) if the i-th row is light (heavy).

We denote the set of all light (heavy) ordered pairs by £ (H). Also, let I(L) (I(H)) denote the
set of light (heavy) rows of the matrix A. Let w(L) =34 ¢, Aij and w(H) =3 4, ey Aij-

Our algorithm consists of repeated invocation of two subroutines, that is, SAMPLE-
LicHT and SAMPLE-HEAVY. Both SAMPLE-LIGHT and SAMPLE-HEAVY succeed with good
probability and sample elements from £ and H almost uniformly, respectively. The threshold
T is set in such a way that there are large ® number of light rows and small number of
heavy rows. In SAMPLE-LIGHT, we select a row uniformly at random, and if the selected
row is light, then we sample an ordered pair from the selected row randomly using REGR.
This gives us an element from £ uniformly. However, the same technique will not work for
SAMPLE-HEAVY as we have few heavy rows. To cope up with this problem, we take a row
uniformly at random and if the selected row is light, we sample an ordered pair from the
selected row randomly using REGR. Let (7, 5) be the output of the REGR query. Then we go
to the j-th row, if it is heavy, and then select an ordered pair from the j-th row randomly
using REGR query.

The formal algorithms for SAMPLE-LIGHT and SAMPLE-HEAVY are given in Algorithm 3
and Algorithm 4, respectively. The formal correctness of SAMPLE-LIGHT and SAMPLE-HEAVY
are given in Lemmas 4.10 and 4.11, respectively. We give the final algorithm along with its
proof of correctness in Theorem 4.8.

Algorithm 3 SAMPLE-LIGHT.

Input: An estimate m for 17 A1 and a threshold 7.

Output: (i,5) € £ with probability %

begin

Select a row r € [n] uniformly at random.

if (r € I(L), that is, (A, 1) is at most 7) then
Return FAIL with probability p = M , and Return REGR(r, 1) with

probability 1 — p as the output.

end
Return FAIL
end
» Lemma 4.10. SAMPLE-LIGHT succeeds with probability % Let Zy be the output in
case it succeeds. Then P(Z; = (i,7)) = '2;] if (i,7) € L, and P(Zy = (i,7)) = 0, otherwise.

Moreover, SAMPLE-LIGHT makes O(logn) queries.

» Lemma 4.11. SAMPLE-HEAVY succeeds with probability at most wﬁqj)

(— m) W) et Zp, be the output in case it succeeds. Then, (- m)

T2 nrt T2
(4,5)) < ’:; for each (i,7) € H, and P(Z, = (i,j)) = 0, otherwise. Moreover, SAMPLE-

HEAVY makes O(logn) queries.

and at least
Ai < P(Z) =

nTt

Now we will us the above lemmas to prove Theorem 4.8.

8 Large is parameterized by .

8:15

FSTTCS 2022

8:16 Counting and Sampling from Substructures Using Linear Algebraic Queries

Algorithm 4 SAMPLE-HEAVY ().

Input: An estimate m for 17 A1 and a threshold 7. R
Output: A;; € H with probability at most % and at least (1 - %‘) %
begin
Select a row r € [n] uniformly at random;
if (r € I(L), that is, (A, 1) is at most 7) then
Return FaiL with probability p = M , and with probability 1 — p do the
following;
A,s =REGR(r,1)
If s € I(H), that is, (4., 1) > 7, then Return REGR(s, 1) as the output.
Otherwise, Return FAIL;
end
Return Farr;
end

Proof of Theorem 4.8. Our algorithm first finds a rough estimate m for 17 A1, with high
probability, by using Theorem 4.1 such that m = (17 A1). For the rest of the proof, we

work on the conditional probability space that m = (17 A1). We set 7 = @ and do
the following for I" times, where I' is a parameter to be set later. With probability 1/2, we
invoke SAMPLE-LIGHT and with probability 1/2, we invoke SAMPLE-HEAVY. If the ordered
pair (4,7) is reported as the output by either SAMPLE-LIGHT or SAMPLE-HEAVY, we report
that. If we get FAIL in all the trials, we report FAIL.

Now, let us consider a particular trial and compute the probability of success P(S),
which is P(S) = § (P(SAMPLE-LIGHT succeeds) + P(SAMPLE-HEAVY succeeds)). Observe
that from Lemmas 4.10 and 4.11, we have,

(501 (1 8) =9) <

This implies (1 — €) 1AL < P(S) < 1 AL as 1= ”m and using w(L) + w(H) = 1T A1.

2nT

IN

()

nrt nrt

Now, let us compute the probability of the event &;;, that is, the algorithm succeeds
and it returns A;;. If A;; € £, by Lemma 4.10, we have P(Z = (i, j)) =1 ﬂ Also, if
A;; € H, by Lemma 4.11, we have, (- ’)T—T) sk <P(Z = (4,5)) <
we get (1 —¢) 3 ”T <P(&;) < 7;; . Let us compute the probability of &;; on the conditional

probability space that the algorithm succeeds, that is, P(Z = (i,j) | S) = P[éf'sig), which lies

So for any (i,7),

— 2n7’

in the interval [(— &) it (L+e) 1T,¢{1} ase € (0,3).

To boost the probability of success, we set I' = O (/- — log n) for a suitable large

(1- E)\/E

constant in O(-) notation. The query complexity of each call to SAMPLE-LIGHT and SAMPLE-
HeAvy is O(logn). Also note that our algorithm for SAMPLE ALMOST UNIFORMLY makes

at most O (v — logn | invocations to SAMPLE-LIGHT and SAMPLE-HEAVY. Hence,

(1— 6)\/6

the total query complexity of our algorithm is 0] (\/‘1/%). |

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

Table 1 Comparing IP with matrix-vector and vector-matrix-vector queries. Recall that MV anf
VMYV stand for matrix-vector and vector-matrix-vector queries.

Problem IP Query | VMV Query [32] | MV Query [40]
SYMMETRIC MATRIX O (n) 0@ 0@1)
DIAGONAL MATRIX O (n) 0@1) 0@1)

TRACE O (n O (n) O (n)
Q(logn) Q(logn)
PERMUTATION MATRIX O (n) 01) 0(1)
DOUBLY STOCHASTIC MATRIX O (n) 01) 0@1)
IDENTICAL COLUMNS® O (n) O (n) O (n)
ALL ONES COLUMNS O (n) O (n) O (n)
Q(logn) Q(logn)

5 Conclusion and discussions

Other matrix problems

Recently, vector-matrix query [40] and vector-matrix-vector query [32] were introduced to
study a bunch of matrix, graph and statistics problems. As noted earlier, IP query oracle is
in the same linear algebraic framework of vector-matrix (VM) query and vector-matrix-vector
(VMYV) query, but these queries are stronger than IP query. Study of the various matrix,
graph and statistics problems, introduced in [40, 32], using IP query will be of independent
interest. As a first step in that direction, in the full version of this paper [13], we study the
query complexity of the following problems using IP queries.

SYMMETRIC MATRIX: Is A € {0,1}"*" a symmetric matrix?

DIAGONAL MATRIX: Is A a diagonal matrix?

TRACE: Compute the trace of the matrix A.

PERMUTATION MATRIX: Is A € {0,1}"*" a permutation matrix?

DOUBLY STOCHASTIC MATRIX: Is A € {0,1}"*™ a doubly stochastic matrix?

IDENTICAL COLUMNS: Does there exist two columns in A € {0,1}™*™ that are identical?

ALL ONES COLUMN: Does there exist a column in A all of whose entries are 17
Table 1 compares the query complexities of IP oracle with matrix-vector (MV) and vector-
matrix-vector (VMV) queries.

Data structure complexity and open problems

Besides property testing, there have been extensive work concerning vector-matrix-vector
product in data structure complexity and other models of computation like the cell probe
model [15, 16, 17, 28, 30]. For the purposes of this paper, it is an interesting question to find
a pre-processing scheme for the matrix such the IP queries on the matrix can be answered

efficiently.

9 Upper and lower bounds results for IDENTICAL COLUMNS problem in [32, 40] uses vectors from {0, 1}"
in their respective queries.

8:17

FSTTCS 2022

8:18

Counting and Sampling from Substructures Using Linear Algebraic Queries

One of the open problems that is left from our work is to design algorithm and/or

prove lower bound for BILINEAR FORM ESTIMATION and SAMPLING when the entries of the
matrices are not necessarily positive. Here we would like to state that our technique does

not work for a matrix with both positive and negative entries. Some other natural open

questions are:

—— References

1

10

11

12

13

Are there some special kind of matrices where we can solve BILINEAR FORM ESTIMATION
and SAMPLING using fewer queries?

Can we solve some other linear algebraic problems using IP queries?
Are there other graph problems, where INDUCED DEGREE outperforms LOCAL queries?

Intel C+4 Compiler Classic Developer Guide and Reference: Floating Point Dot Product In-
trinsics. https://software.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/
intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-
compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html.
NVIDIA Developer: Cg 3.1 Toolkit Documentation. https://developer.download.nvidia.
com/cg/dot .html.

K. J. Ahn, S. Guha, and A. McGregor. Analyzing Graph Structure via Linear Measurements.
In ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 459-467, 2012.

M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yodpinyanee.
Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling. Algorithmica,
80(2):668—697, 2018.

S. Assadi, D. Chakrabarty, and S. Khanna. Graph connectivity and single element recovery
via linear and OR queries. In Furopean Symposium on Algorithms, ESA, volume 204, pages
7:1-7:19, 2021.

S. Assadi, M. Kapralov, and S. Khanna. A Simple Sublinear-Time Algorithm for Counting
Arbitrary Subgraphs via Edge Sampling. In Innovations in Theoretical Computer Science
Conference, ITCS, pages 6:1-6:20, 2019.

M.-F. Balcan, Y. Li, D. P. Woodruff, and H. Zhang. Testing Matrix Rank, Optimally. In
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 727-746, 2019.

P. Beame, S. Har-Peled, S. N. Ramamoorthy, C. Rashtchian, and M. Sinha. Edge Estimation
with Independent Set Oracles. In Innovations in Theoretical Computer Science Conference,
ITCS, pages 38:1-38:21, 2018.

I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of query
types in property testing: the case of testing k-colorability. In ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1213-1222, 2008.

M. Benzi and C. Klymko. Total Communicability as a Centrality Measure. Journal of Complex
Networks, 1:124-149, 2013.

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh. Parameterized Query Complexity
of Hitting Set Using Stability of Sunflowers. In International Symposium on Algorithms and
Computation, ISAAC, pages 25:1-25:12, 2018.

A. Bishnu, A. Ghosh, and G. Mishra. Distance Estimation Between Unknown Matrices
Using Sublinear Projections on Hamming Cube. In Approzimation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 207,
pages 44:1-44:22, 2021.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar. Efficiently sampling and estimating
from substructures using linear algebraic queries. CoRR, abs/1906.07398, 2019. Version 2.
arXiv:1906.07398v2.

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://developer.download.nvidia.com/cg/dot.html
https://developer.download.nvidia.com/cg/dot.html
http://arxiv.org/abs/1906.07398v2

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar

14

15

16

17

18

19

20

21

22

23

24
25

26

27
28

29

30

31

32

33

34

35

36

F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V.S. Lakshmanan. Fast Matrix
Computations for Pairwise and Columnwise Commute Times and Katz Scores. Internet
Mathematics, 1-2(8):73-112, 2012.

D. Chakraborty, L. Kamma, and K. G. Larsen. Tight Cell Probe Bounds for Succinct Boolean
Matrix-Vector Multiplication. In ACM SIGACT Symposium on Theory of Computing, STOC,
pages 1297-1306, 2018.

A. Chattopadhyay, M. Koucky, B. Loff, and S. Mukhopadhyay. Simulation Beats Richness:
New Data-Structure Lower Bounds. In ACM SIGACT Symposium on Theory of Computing,
STOC, pages 1013-1020, 2018.

H. Dell, J. Lapinskas, and K. Meeks. Approximately Counting and Sampling Small Witnesses
using a Colourful Decision Oracle. In ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 2201-2211, 2020.

D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 1st edition, 2009.

T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear
Time. SIAM Journal on Computing, 46(5):1603-1646, 2017.

T. Eden, D. Ron, and C. Seshadhri. On Approximating the Number of k-Cliques in Sublinear
Time. In ACM SIGACT Symposium on Theory of Computing, STOC, pages 722-734, 2018.
T. Eden and W. Rosenbaum. On Sampling Edges Almost Uniformly. In Symposium on
Simplicity in Algorithms, SOSA, pages 7:1-7:9, 2018.

E. Estrada and D. J. Higham. Network Properties Revealed through Matrix Functions. STAM
Review, 52:696-714, 2010.

U. Feige. On Sums of Independent Random Variables with Unbounded Variance and Estimating
the Average Degree in a Graph. SIAM Journal on Computing, 35(4):964-984, 2006.

O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. Random Structures
& Algorithms, 32(4):473-493, 2008.

J. L. Hennessy and D. A. Patterson. Computer Architecture — A Quantitative Approach (5.
ed.). Morgan Kaufmann, 2012.

E. Kushilevitz and N. Nisan. Communication Complezxity. Cambridge University Press, 1997.
K. G. Larsen and R. R. Williams. Faster Online Matrix-Vector Multiplication. In ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 2182-2189, 2017.

N. Nisan. The demand query model for bipartite matching. In ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 592-599, 2021.

S. N. Ramamoorthy and C. Rashtchian. Equivalence of Systematic Linear Data Structures and
Matrix Rigidity. In Innovations in Theoretical Computer Science Conference, ITCS, volume
151, pages 35:1-35:20, 2020.

A. Rao and A. Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

C. Rashtchian, D. P. Woodruff, and H. Zhu. Vector-Matrix-Vector Queries for Solving
Linear Algebra, Statistics, and Graph Problems. In Approzimation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 176,
pages 26:1-26:20, 2020.

D. Ron and G. Tsur. The Power of an Example: Hidden Set Size Approximation Using Group
Queries and Conditional Sampling. ACM Trans. Comput. Theory, 8(4):15:1-15:19, 2016.

A. Rubinstein, T. Schramm, and S. M. Weinberg. Computing Exact Minimum Cuts Without
Knowing the Graph. In Innovations in Theoretical Computer Science Conference, ITCS, pages
39:1-39:16, 2018.

J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley, Upper Saddle River, NJ, 2010.

X. Shi and D. P. Woodruff. Sublinear Time Numerical Linear Algebra for Structured Matrices.

In AAAI Conference on Artificial Intelligence, AAAI pages 727-746, 2019.

8:19

FSTTCS 2022

8:20

Counting and Sampling from Substructures Using Linear Algebraic Queries

37

38

39

40

A

L. J. Stockmeyer. The Complexity of Approximate Counting (Preliminary Version). In ACM
SIGACT Symposium on Theory of Computing, STOC, pages 118-126, 1983.

L. J. Stockmeyer. On Approximation Algorithms for #P. SIAM Journal on Computing,
14(4):849-861, 1985.

X. Sun, D. P. Woodruff, G. Yang, and J. Zhang. Querying a Matrix Through Matrix-Vector
Products. In International Colloguium on Automata, Languages, and Programming, ICALP,
pages 94:1-94:16, 2019.

X. Sun, D. P. Woodruff, G. Yang, and J. Zhang. Querying a Matrix Through Matrix-Vector
Products. In International Colloquium on Automata, Languages, and Programming, ICALP,
volume 132, pages 94:1-94:16, 2019.

Useful probability bounds

» Lemma A.1 (See [18]). Let X = > X; where X;, i € [n], are independent random
=

variables, X; € [0,1] and E[X] is the expected value of X.
(i) Fore >0, we have Pr[|X — E[X]| > ¢E [X]] < exp (—¢’E[X]/3).
(ii) Suppose up, <E[X] < pg. Then, for all 0 < e < 1, we have

(a) Pr[X > (14 e)un] < exp (—e?uu/3).

(b) Pr[X < (1 —e)ur] < exp(—e’ur/2).

Derandomization via Symmetric Polytopes:
Poly-Time Factorization of Certain Sparse
Polynomials

Pranav Bisht =94
Department of Computer Science & Engineering, IIT Kanpur, India

Nitin Saxena S&
Department of Computer Science & Engineering, IIT Kanpur, India

—— Abstract

More than three decades ago, after a series of results, Kaltofen and Trager (J. Symb. Comput.

1990) designed a randomized polynomial time algorithm for factorization of multivariate circuits.
Derandomizing this algorithm, even for restricted circuit classes, is an important open problem. In
particular, the case of s-sparse polynomials, having individual degree d = O(1), is very well-studied
(Shpilka, Volkovich ICALP’10; Volkovich RANDOM’17; Bhargava, Saraf and Volkovich FOCS’18,
JACM’20). We give a complete derandomization for this class assuming that the input is a symmetric
polynomial over rationals. Generally, we prove an sP°¥(9)_sparsity bound for the factors of symmetric
polynomials over any field. This characterizes the known worst-case examples of sparsity blow-up
for sparse polynomial factoring.

To factor f, we use techniques from convex geometry and exploit symmetry (only) in the Newton
polytope of f. We prove a crucial result about convex polytopes, by introducing the concept of “low
min-entropy”, which might also be of independent interest.

2012 ACM Subject Classification Theory of computation — Algebraic complexity theory; The-
ory of computation — Pseudorandomness and derandomization; Mathematics of computing —
Combinatoric problems

Keywords and phrases Multivariate polynomial factorization, derandomization, sparse polynomials,
symmetric polynomials, factor-sparsity, convex polytopes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.9

Related Version Full Version:
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf

Funding Nitin Saxena: DST-SERB (CRG/2020/000045) and N. Rama Rao Chair.

Acknowledgements Pranav thanks Ilya Volkovich and Vishwas Bhargava for useful discussions. The
authors would also like to thank the anonymous reviewers for their useful comments that improved

the presentation of results.

1 Introduction

Polynomial factorization is one of the most fundamental and central problems studied in
computational algebra. In this paper, we concern ourselves with the problem of multivariate
polynomial factorization which, given a polynomial f € F[zy,...,x,] over some field F
as an input, asks to compute all the irreducible factors of f. In a famous line of work,
it was shown that this problem admits a polynomial time randomized algorithm [18, 20].
Finding an efficient deterministic algorithm continues to be a challenging open problem®.

! We only want an efficient deterministic algorithm to reduce multivariate circuit (or even sparse)
factorization to univariate factorization.

© Pranav Bisht and Nitin Saxena;
37 licensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 9; pp. 9:1-9:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:pbisht@cse.iitk.ac.in
https://pranavbisht.bitbucket.io/
https://orcid.org/0000-0002-9138-3339
mailto:nitin@cse.iitk.ac.in
https://www.cse.iitk.ac.in/users/nitin/
https://orcid.org/0000-0001-6931-898X
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.9
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Sparse Polynomial Factorization

See [19, 38, 39, 35] for a detailed exposition. Polynomial factorization also has interesting
connections with other problems such as circuit lower bounds [15], list decoding [34, 13] and
cryptography [6].

The representation of the input polynomial is significant in the complexity of this problem.
The randomized algorithms of [18, 20] are efficient when both the input polynomial and
output factors are represented as general algebraic circuits (see Appendix B for definition).
It is imperative to ask if derandomizing polynomial factorization will be easier for restricted
circuit classes. One may believe the problem to be easier since the input polynomial is weak
as it belongs to a restricted class. However, note that the demand is correspondingly stronger;
we want output factors also to be given in this restricted class. A very natural interesting
class of algebraic circuits, which is considered for this problem, is that of sparse polynomials.
Sparsity of a polynomial f is defined as number of monomials in f with non-zero coefficients.
Sparse polynomials can also be seen as depth-2 (XII) algebraic circuits. If we give sparse
polynomial as input to Kaltofen’s factorization algorithm, the output will be in the form of
general algebraic circuit, but in sparse polynomial factorization, we want output factors also
to be in sparse representation.

There is another motivation for studying sparse polynomials for the factorization problem,
which arises from another fundamental problem called the Polynomial identity testing (PIT).
Given an input polynomial f € F[zy,...,z,] as an algebraic circuit, PIT asks to determine if
f is identically zero. This problem also admits a simple and efficient randomized algorithm
due to PIT Lemma [29, 42, 10, 26] and like factoring, finding a deterministic efficient
algorithm is still open. It is easy to show that PIT reduces to factorization®. In fact, [22]
showed that the problem of derandomizing multivariate polynomial factoring is equivalent
to derandomizing PIT, for general algebraic circuits. Showing this equivalence for other
interesting circuit classes, was left as an open problem by [22]. The classes, which admit
an efficient deterministic PIT algorithm are particularly interesting because if we show the
equivalence for these classes, we also derandomize factoring for them. Sparse polynomials is
one such natural class, for which we do have poly-time deterministic PIT algorithms [21].

Note that the run-time of sparse factorization algorithm will be lower bounded by the
sparsity of factors, just for writing the output alone. In general, the sparse model is not
closed under factors, i.e. sparse polynomials can have dense factors as shown in Examples
4.8 and 4.9. Therefore, the bounded individual degree setting is studied for sparse polynomial
factorization [31, 36, 37, 2]|. Individual degree of a polynomial is defined as the maximum
degree of some variable appearing in it (See Section 2). This raises the following important
question:

» Question 1.1. Let f be an s-sparse polynomial with constant individual degree. Can f be
deterministically factored in poly(s)-time?

We make progress towards a positive answer to this question by giving a poly(s)-time
deterministic factoring algorithm, when the sparse polynomial f is also symmetric. Symmetric
polynomials are ones that remain the same even if any of the variables are interchanged
(See Section 2 for formal definition). To the best of our knowledge, symmetry was not
exploited before our work and the previous best deterministic algorithm for this class

O(

was a super-polynomial time algorithm by [2] with run-time s?(1°8™) for general s-sparse

polynomials.

2 Observe that the polynomial 2% + y - f factorizes if and only if f = 0.

P. Bisht and N. Saxena

The work of [2] partially derandomizes the factoring question for sparse polynomials
having constant individual degree. The crucial derandomization step in their algorithm is
proving an efficient sparsity bound for factors of the input polynomial f, which dominates
the run-time of their algorithm. They were able to prove an s?(°8™) sparsity bound for
factors of f. Our main contribution is to prove factor-sparsity bound of s°(), when f is
symmetric. The key combinatorial object associated with derandomization of sparse factoring
or equivalently factor-sparsity, is the Newton polytope of f. We prove our bound by giving a
completely new line of attack on the symmetric Newton polytope of f.

Symmetric polynomials are studied extensively both in computer science and mathematics.
It is intriguing to explore the effect of symmetry in the polynomial factorization problem.

Many multivariate polynomials f € Flxy,...,z,] are constructed by “boosting” a univariate
polynomial a(X) by product or addition as shown below:

n n d
f= Ha(xi) or f= (Z a(a:ﬂ) for some d > 1.

i=1 i=1

Some of the famous polynomials that are known to have dense factors (Example 4.8 and
Example 4.9) are of this type. Such polynomials are actually symmetric by construction
and are exactly captured by the results of this work. Therefore, the symmetric setting
is important and non-trivial. Moreover, our proof techniques do not require symmetry in
the coefficients of f, but merely in the support of f. Besides symmetric polynomials, our
techniques also give polynomial-time deterministic factoring algorithm for another class of
polynomials, which we call low min-entropy polynomials, that we define later.

1.1 Our results

Given a polynomial f, the complete factorization of f is a representation of f as fi* f52--- fc*,
where f1,..., fr are co-prime, irreducible polynomials and ey, ..., e, are positive integers.

This representation is unique up to a reordering of f;’s. Let Q denote the field of rational
numbers. We get a poly-time deterministic reduction from multivariate to univariate factoring
over any field F. In particular, this gives us a complete poly-time factoring algorithm over Q
below, by using the univariate factoring algorithm of [23].

» Theorem 1.2 (Symmetric factoring algorithm). Let f € Qlx1,...,x,] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f. Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s,n,t)-time.

» Remark.

1. The exact complexity is poly(sd7 logd . pd?

n® - t)-time.

d"logd . pd* . oo p)-time reduction

2. For a finite field F = F ¢, we get a deterministic poly(s
to univariate factoring.

3. Throughout this paper (specifically in Theorems 1.2, 1.3 & 4.6), we get the same results
if we replace symmetric polynomials with a more general class of polynomials, which we
call symmetric-support polynomials. Let supp(f) denote the set of monomials in f with
non-zero coefficients. We call f € F[zy,...,x,] a symmetric-support polynomial if for
each monomial z{* - -- 25 € supp(f), we also have that xi”(l) —xy’™ e supp(f) for every
permutation o € S,,. For eg., f = 2%xow3 + 2012373 — 217223 is a symmetric-support
polynomial that is not symmetric. While f = x2xox3 + z12323 is not symmetric-support.

9:3

FSTTCS 2022

9:4

Sparse Polynomial Factorization

The factoring algorithm in Theorem 1.2 is a direct consequence of our new sparsity bound
below.

» Theorem 1.3 (Symmetric sparsity bound). Let f € Flxy,...,x,] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

» Remark.

O(d*logd) From Example 4.9, we

1. The exact factor-sparsity bound that we prove is s
note that s is a lower bound on factor-sparsity and hence also a lower bound on the
time-complexity of any factoring algorithm for sparse polynomials.

2. Previous best sparsity upper bound was §O(d*logn)

even for constant d.

due to [2], which is super polynomial

3. We can also work with a general (possibly non-symmetric) f and get the same sparsity
bound for any symmetric factor of f (if it exists). We prove this formally in Theorem 4.6.
This yields a surprising incompressibility result: a symmetric bounded-individual-degree
polynomial ¢, that is s-dense, has s?*(1)-dense multiples gh, for an arbitrary nonzero
polynomial k! (See Remark 4.5)

We now give a factoring algorithm for another class of polynomials, which we call “low min-
entropy” polynomials. We say that an n-dimensional vector v is of d-min-entropy if (n —¢) of
its coordinates have the same value, where we consider minimum § across all distinct elements
in v. We call a set of vectors A, a d-min-entropy set, if every vector in A has min-entropy < 6.
We can identify the support of polynomial f, with the subset supp(f) C {0,1,...,d}", as
the set of exponent vectors corresponding to each monomial in f. We call f a §-min-entropy
polynomial, if supp(f) is of d-min-entropy. For eg., f = z1zox3z] + 223252528 + 3229252 is
a 2-min-entropy polynomial (also, 3-min-entropy but not 1-min-entropy). Moreover, it does
not have symmetric-support. See Section 2 for more details on §-min-entropy polynomials.

» Theorem 1.4 (Low min-entropy factoring algorithm). Let f € Q[x1,...,2,] be a d-min-
entropy polynomial with individual degree d, for some constants 6,d. Let t be the maximum
bit-complexity of the coefficients of f. Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n,t)-time.

» Remark. The exact complexity is poly((71ci)d4‘s -t)-time. For a finite field F = F ., we get
a deterministic poly((nd)d4‘5 - £1og p)-time reduction to univariate factoring.

The factoring algorithm in Theorem 1.4 is also a direct consequence of the following
sparsity bound for factors of §-min-entropy polynomials.

» Theorem 1.5 (Factors of low min-entropy polynomials). Let f € Flxy,...,2,] be a §-min-
entropy polynomial with individual degree d over any field F, such that d,d are constants.
Then, every factor of f has its sparsity bounded by poly(n).

» Remark.

1. The exact factor-sparsity bound that we prove is (nd)©() for any field F. Further,
our bound beats the s°(@ 187 hound in [2], as long as f has min-entropy ¢ as low as
o(dlogn).

2. We do not claim that the factors are “low” min-entropy as well. For example, f =
(w1 2p/2) - (Tpj241 - Tn) has both the factors with high min-entropy n/2, while f is
itself of 0-min-entropy.

P. Bisht and N. Saxena

All the factor-sparsity results mentioned above crucially rely on our structure theorem
stated below. It shows that if we have a J-min-entropy set of exponent vectors, then the
integral-points in its convex hull, have min-entropy at most O(d§). Trivially, such a thing
is false for Z-linear-span (resp. Q-linear-span) of vertices. Yet, surprisingly, a conver-span
preserves the low min-entropy of its vertices!

» Theorem 1.6 (Polytope entropy Theorem). Let V C {0,1,...,d}"™ be a §-min-entropy set,
then CS(V)NZ™ is a (2d0)-min-entropy set.

1.2 Related works

The problem of sparse polynomial factorization was first studied in [40], where a randomized
algorithm for the same was provided. The time complexity of this algorithm was polynomial
in the sparsity of factors and exponential in the number of factors. Naturally, [40] raised
the question of proving better sparsity bounds for factors of sparse polynomials. Even
designing factoring algorithms for sparse polynomials of individual degree one or two required
non-trivial insights. An efficient deterministic algorithm for factorization of sparse multilinear
polynomials (d = 1) was provided in [31]. This result was further generalized to sparse
polynomials that factorize into multilinear factors in [36]. The model of sparse multiquadratic
polynomials (d = 2) was solved in [37].

The work of [2] utilized the interesting connection of factor-sparsity with Newton polytopes.

O(logn) for factors of s-sparse polynomials with constant

They proved a sparsity bound of s
individual degree. For symmetric polynomials in Theorem 1.3, we improve this bound
considerably. The work of [2] also gives a deterministic factorization algorithm for sparse
polynomials with constant individual degree which runs in s?(1°¢™) time. With our new
poly(s)-sparsity bound, we use their algorithm to get a deterministic poly(s)-time factorization
algorithm for symmetric, s-sparse polynomials, in the bounded individual degree regime.

A related and somewhat subsumed problem in polynomial factorization is that of factor
closure. Given an input f in a particular representation, what is the size of factors in the
same representation? The foundational work of [16, 17, 18] showed that if f is a size-s,
degree-poly(n) algebraic circuit, then its factors also have poly(s, n)-sized algebraic circuits,
ie. VP is closed under factoring. [11] proved factor closure for the classes of VF, VBP,
VNP with a quasi-polynomial blowup in size, and gave analogous whitebox algorithms (see
Appendix B for definitions of these classes). VNP was shown to be properly closed under
factoring (with only poly blowup in size) in [7]. Recently, [33] showed that size-s ABPs have
factors of size poly(s), thus proving factor closure for VBP class.

For algebraic formulas, [25] showed that if f is computed by a depth-A, size-s algebraic
formula, then its factors can be computed by depth-(A + 5) and size poly(s) formulas,
provided that individual degree of f is constant. Observe that sparse polynomials can also
be seen as depth-2 algebraic formulas, thus [25] showed that factors of bounded individual
degree sparse polynomials can be computed by depth-7 formulas. However, [2] showed that
these factors can be computed in depth-2 itself with a quasi-polynomial blowup in size. We
show that if f is also symmetric, then the factors can even be computed in depth-2 efficiently,
with only a polynomial blowup in size.

Another motivation for studying polynomial factorization of special classes is that im-
proving factoring methods often lead to improvements in blackbox PIT. For eg. [24] used
factoring of special circuits to give the first subexponential PIT for constant-depth circuits.

Besides being studied extensively in classical mathematics, symmetric polynomials have
been investigated in the area of algebraic complexity theory as well, mostly in the context of
lower bounds. A new model of depth-2 symmetric circuits was defined in [30], which studies

9:5

FSTTCS 2022

9:6

Sparse Polynomial Factorization

the complexity of determinant for this model. The complexity of elementary symmetric
polynomials in the algebraic formula model is studied in [14] while [5] study a class of
symmetric polynomials called Schur polynomials, also in the formula model. A strong lower
bound for elementary symmetric polynomials in the model of depth-4 algebraic circuits with
bounded bottom fan-in is proved in [12]. The complexity of symmetric polynomials with
respect to its expression in terms of elementary symmetric polynomials is studied in [3]. A
new class of algebraic circuits called symmetric algebraic circuits is studied in [8], which
shows a separation of determinant from permanent in this model. Recently in [9], under a
more stringent symmetry restriction in this model, lower bounds for even the determinant
polynomial are shown. In this work, symmetric polynomials are studied in the context of
sparse polynomial factorization.

1.3 Proof Techniques
The sparsity connection with Newton polytopes

Let f € Flxy,...,2,] be a polynomial of individual degree d such that f =)" ce, 5., -
o1 as? - xén. We define support of f as the set of exponent vectors: supp(f) = {(e1,...,e,) |
Cey.....en, 7 0}. Let us denote sparsity of f as || f]|, which is the same as |[supp(f)|. We define
the Newton Polytope of f, denoted by Py, as the convex hull (or convex-span) of all the
points in supp(f).

For two polytopes A and B, their Minkowski sum A + B is defined as the set of points
{a+b]|ae Abe B} Minkowski sum is well studied in polytope literature and comes
with some nice properties. The Minkowski sum A + B is itself a convex polytope. Let V(P)
denote the set of wvertices (corner points) of a polytope P, then one can show a certain
“incompressibility” property: |V(A+ B)| > max{|V(4)|, |[V(B)|}.

A classical fact about Newton polytopes, first observed by [27] a century ago, states that
if f=g-h, then Py = P, + P}, where P, 4+ P}, is the Minkowski sum of Newton polytopes
of g and h. Moreover, we know that || f|| > |V (Py)|, since supp(f) is in the convex hull of
V(Py). Therefore, we are able to connect sparsity of f with a factor g as follows:

L= V(P = [V(E)]- (1)

Another way to think about sparsity bound problem for f = g - h is to determine how many
monomials of g survive on multiplication with h. Equation (1) tells us that at least |V (P,)|
many monomials survive. These vertices of P are in a sense extremal monomials in g that
never get canceled on multiplication (with any h).

Polytope entropy Theorem

We introduce the notion of §-min-entropy sets and polynomials in this work. In our structure
theorem (Theorem 1.6), we analyze how min-entropy behaves with respect to polytopes.
Suppose we are given a d-min-entropy set V' of exponent vectors from {0,1,...,d}"™. The
motivating question is that if all vertices (elements of V') have low min-entropy, then how
large can be the min-entropy of internal points in the polytope? In this theorem, we show
that min-entropy blows up only by a factor of O(d) for the internal integral-points, which is
a small factor in the bounded individual degree regime.

In order to prove this, we first design a set of symmetric hyperplane equations in Section 3
such that for each hyperplane, the entire set V' lies on one side of it. Then by convexity,
one can show that every point in its convex-span also lies on the same side. Secondly,

P. Bisht and N. Saxena

the hyperplane equations are so designed that any integral-point “enclosed” within these
hyperplanes must have min-entropy at most O(déd). We present this designing of “certifying”
hyperplanes as a new approach for bounding sparsity of factors. Besides the factor-sparsity
implications, Theorem 1.6 could be of independent interest in its own right.

Symmetric polytopes

We say that a polytope P is symmetric if for each point v = (vq,...,v,) in P, every
permutation of v is also in P. If f is a symmetric polynomial, then its Newton polytope
P; will be a symmetric polytope. Further, we observe that if a monomial (or its exponent
vector) is a vertex of a symmetric polytope, then all its distinct permutations are also
vertices. In other words, the vertex set V(Py) is also symmetric. Moreover, if f is sparse,
then cardinality of V(Py) is also bounded. Since the vertex set is symmetric, every vector in
it must contain a coordinate of “very high” frequency, otherwise V' (Py) will contain a lot of
distinct permutations and its size will blow up (i.e. symmetry = low min-entropy). Thus,
V(Py) will have somewhat low min-entropy. Now, we can use our Theorem 1.6 to deduce
that all the integral points in P; have low min-entropy. In Section 4, we exploit this with
additional counting arguments to prove that total number of integral points in this symmetric
polytope Py is few. In particular, we show that [Py NZ"| < \V(Pf)|0(d2 logd) " where d is the
individual degree of f. If f factorizes as f = gh, then we have P; = P, + P},. This means
that Py contains a translated copy of P,. Moreover, supp(g) C P, contains only integral
points and therefore, ||g|| < |PfNZ"| < |V(Pf)|0(d2 logd) This implies [|g|| < || f]|O@" e),
showing that any factor of a sparse, symmetric polynomial is also sparse (Theorem 1.3).
Sparsity bound for factors of §-min-entropy polynomials follows similar trajectory. Once
we have these nice sparsity bounds, we derive efficient deterministic factoring algorithms in
Section 5 using a result of [2] (Lemma 5.1).

2 Preliminaries

Notations

We use shorthand [n] for the set {1,2,...,n}. We denote a vector v = (vy,...,v,) in short
by v (as a column vector). We will use the terms vector or point interchangeably. We use
the symbol £ for definitions. We will sometimes use F[x] as short for F[zy,...,z,]. The

finite symmetric group on n elements, which contains all the permutations of n elements, is
denoted by S,,. For a vector v and a permutation o € S,,, we denote o-permutation of v by
cov 2 (Vo(1)s -+ > Va(n)). We call a set of points symmetric, if for each point v in it, oo v is
also in the set, for every permutation o € S,,. We denote the n-fold Cartesian product of a
set H by H™. We will use logx for log, x and Inx for log, x.

Let f € F[x] be an n-variate polynomial. Individual degree of a variable x;, denoted by
deg,.(f) is defined as the maximum degree of that variable in f, while individual degree of a
polynomial is the maximum among all the individual degrees, max;cp,) deg, (f). We will
use x° to denote the monomial z{*x5? - - - z5». We define coeff(x®)(f) as the coefficient of
monomial x® in polynomial f. We define support of f as supp(f) = {e | coeff(x®)(f) # 0}.
Let us denote sparsity of f as ||f||, which is the same as |[supp(f)].

Polytopes

For a finite set of points vy,...,vy € R™, their conver combination is defined as an R-
linear combination of the points: a;vy + ... 4+ ag vy, such that «; > 0 for each ¢ € [k] and
Zle a; = 1. We define convez-span (or convex hull) C'S(vy, ..., vy) as the set of all possible

9:7

FSTTCS 2022

9:8

Sparse Polynomial Factorization

convex combinations of v;, i € [k]. A set P C R" is called a (bounded) polytope if there is
a finite set of points vi,..., vy such that P = CS(vy,...,vg). A point a € P is called a
vertex of P if it cannot be written as a = au+ (1 — o)v for any u,v € P\ {a} and « € [0, 1].
It is equivalent to saying that vertices are corner points of a polytope P which cannot be
expressed as convex combination of any other set of points in P. We use V(P) to denote the
set of vertices of P. It is easy to verify that for a polytope P, P = CS(V(P)). Moreover, if
P=CS(vy,...,vg) then V(P) C{vy,...,vi}.

Minkowski sum of two polytopes A, B € R" is defined as the following set of points
A+B={a+b|ac A bec B}. A basic fact is that Minkowski sum of two polytopes is itself
a polytope. The vertices of Minkowski sum have some very useful properties. It is known
that every vertex of A+ B can be expressed uniquely as a sum u+ v, where u is a vertex of A
and v is a vertex of B. Additionally, one can show that |V (A + B)| > max{|V(A)|,|V(B)|}
(See [2, Prop. 3.2]). We refer the readers to [41, 28] for a detailed discussion on polytopes.

For a polynomial f € Flzy,...,x,], the Newton polytope of f is defined as P; =
CS(supp(f)). In this paper, we crucially exploit its integral-points P; := Py NZ". We
denote the vertex set V(Py) by Vy. We also note that V; C supp(f) C {0, ...,d}" (integral-
points). The following two facts form the backbone for the Newton polytope approach of
bounding factor-sparsity.

» Proposition 2.1 ([27]). Let f,g,h € Flay,...,2,] be polynomials such that f = g-h. Then
Pf = Pg + Py,

» Proposition 2.2 ([2]). Let f,g,h € Flz1,...,x,] be polynomials such that f = g-h. Then
£l = Vi = max{|V],[Val}.

Hyperplanes and Halfspaces

A hyperplane is the generalization of a line in higher dimensions. A hyperplane H is defined
as H 2 {y € R" | aTy = b}, for some vector a € R" \ {0} and a number b € R. The
hyperplane divides the space into two parts aTy > b and aTy < b. These are called halfspaces.

Symmetric polynomials and polytopes

We call f € Flzy,...,2,] a symmetric polynomial if f(z1,...,2,) = f(Zs1),-- s Tom)),
for any permutation ¢ € S,. It is equivalent to saying: f is symmetric if and only if
coeff(z$* - - -) (f) = coeff(z "™ - 27 ™) (f), for all o € S,,. We call f € Flzy,...,z,] a
symmetric-support polynomial if for each monomial 7" - - - z&", we have coeff(z{* - - - &) (f) #
0 = coeff(z}"® - 2™ (f) # 0, for every ¢ € S,,. Note that all symmetric polynomials
are also symmetric-support polynomials.

We say that a polytope P is symmetric if for each point (v, ...,v,) in P, (Vy(1), -+ Vo(n))
is also in P, for every permutation ¢ € P. Note that Newton polytopes of symmetric-support
polynomials are in fact symmetric! (See Lemma A.1)

4-min-entropy

We say that a vector v € {0,1,...,d}" is of é-min-entropy if a single value ¢ € {0,...,d}
appears in exactly (n — §) coordinates of v. We consider ¢ with the highest frequency in v
and hence the minimum §. In coding theory language, §-min-entropy vector v has Hamming
distance ¢ from the constant vector (c, ..., c). We also extend this definition of min-entropy
to sets and polynomials. We call A C {0,1,...,d}"™ a d-min-entropy set, if for every vector
v € A, v has min-entropy < §. We call f a J-min-entropy polynomial, if its support set

P. Bisht and N. Saxena

supp(f) is of §-min-entropy. Example 4.9 gives a polynomial f with 1-min-entropy. In
contrast, consider f = 1 --- %y /3 + 2y 341 - - - Tn, Which is a polynomial of (n/3)-min-entropy
but it’s not (< n/3)-min-entropy.

3 Polytope entropy — Theorem 1.6

Let Py be the Newton polytope of f and V be its set of vertices such that Py = CS(Vy).

We prove few claims below which will help us prove Theorem 1.6. We are given Vy to be a
S-min-entropy set. Let m = n — §. We first design a hyperplane uT -y + dé = 0 that will
help us prove very useful properties in Lemma 3.1 and Lemma 3.2 below. Define column
vector u € {—1,+1}" such that,

= (2)

{+1 if i <6+ m/2
U; =

—1 otherwise.

The first 6 +m/2 coordinates of u are +1 and the remaining n— (6 +m/2) = m/2 coordinates
are —1.

» Lemma 3.1 (Hyperplane cover). Let V' C {0,1,...,d}"™ be a 6-min-entropy set and u be as
defined in (2). Then, every point y € V satisfies each of the following symmetric inequalities:

(couw)T-y+d§ > 0, foreacho€es,. (3)

Proof. Let y be any < d-min-entropy point from V; so assume that y has some majority

element ¢ with frequency > m =n — ¢, where i € {0,...,d}. Let o € S,, be any permutation.

Define £ £ (g ou)T - y. It suffices to show that £ > —dj. We claim that to minimize ¢, by
varying (o o u), we can place at most § many d’s in the coordinates corresponding to —1
and rest of the > m coordinates must be filled by i. Since we have a total of (§ + m/2)
coordinates corresponding to +1 and remaining (m/2) coordinates corresponding to —1, the
minimum value of ¢ in this case is (6 + m/2) i — (m/2—=46)-i— (§)-d = (2i —d)d > —do,
since ¢ > 0. Thus, ¢ > —d¢ in this configuration.

We now show why this is an optimal configuration to minimize ¢. Note that the majority
element 7 will always have a non-negative contribution in ¢, since its frequency in the positions
corresponding to +1 will always be greater than or equal to its frequency in the positions
corresponding to —1. This is because there are only m/2 positions corresponding to —1 and
i has frequency > m. Therefore to minimize its contribution, majority element ¢ should be
fixed to 0. To get lowest possible value from the remaining elements in y, we should set all of
them to d and place them in any J positions corresponding to —1. This will give minimum
value of £ to be —dd. Rest of the configurations can only produce higher values for ¢. Thus,
£+ dé > 0 for each y € V and for every o € S,,. >

The symmetry in the above hyperplane-cover inequalities helps us to argue about y, by
first sorting its coordinates. This a powerful trick, as our following central claim demonstrates.

» Lemma 3.2 (Integral-point in the cover). Let u be as defined in (2). Lety € {0,1,...,d}"
be a point with 0 < y; <yo < ... <y, < d such that uT -y +dd > 0 holds. Then, y is a
(2d6)-min-entropy point.

9:9

FSTTCS 2022

9:10

Sparse Polynomial Factorization

Proof. Recall n = 6 +m. Let us call, expectedly, the first (6 4+ m/2) coordinates, the
“positive zone” of y and the remaining (m/2) coordinates, the “negative zone” of y; this
corresponds to positions of +1’s and —1’s in u respectively. By hypothesis, the positive zone
has coordinates at most as large as in the negative zone. Let y =: y; 4+ y_, where we define
y+ and y_ as

y; ifj<d+m/2
(ﬂ)jé{ !

0 otherwise.

(1>

(y-);

0 otherwise.

Suppose the first coordinate in the negative zone of y is i for some i € {0,1,...,d}. We
then claim that y has at least n — 2dd coordinates with this same value i, proving y to be a
2dd-min-entropy point. Let py and p_ denote the frequency of i in positive and negative
zones of y respectively, for some integers p;,p— > 0. Note that uT -y = ||ly+/1 — lly=I,
where ||-||; is the L -norm. We first upper bound ||y, ||;. Since y is sorted, the last p,
coordinates in positive zone must be i and all coordinates preceding it are of value at most
i — 1. This gives us

[yilli < (i=1)-(6+m/2=py) +i-(p4) = 0 +im/2—6—m/2+p, . (4)

Now, we lower bound |ly_||;. Since y is sorted, the first p_ coordinates in negative zone
must be ¢ and all subsequent coordinates are of value at least (i + 1). This gives us

Iyl > i (p) + (i+1)- (m/2—p_) = im/2+m/2—p_. (5)
Let | £ uT -y + dé. By hypothesis, I > 0. Then using (4) and (5) together, we observe that

0< l=uT-y+dd=[lyi|i —ly-|h +do

0< i6+im/2—56—-m/2+py — (im/2+m/2—p_) + do

= (i+d)§—6—m+py +p_

< 2dd—n+py+p- (sincei<dand n=m+9)
n—2d6 < py+p—.

Recall that total frequency of the value i in y is p+ + p— > n — 2dd. This proves that y is a
(2d6)-min-entropy point; finishing the proof. (We note that the calculations in Equation (4)
and Equation (5) are technically for ¢ € [d — 1]. For the corner cases of i = 0 or i = d, the
same logic will work and in fact with a better lower bound on frequency of 7 in y.) |

If for a set of points, each point lies on one side of a hyperplane, then all the points in
their convex-span also lie on that side. We prove this lemma below.

» Lemma 3.3 (Halfspace is convex). Let V = {vi,va,...,vip} C R"™ be a set of k vectors.
Suppose for some (a,b) € R™ x R and for each i € [k], aT -v; +b > 0. Then, for any
veCS(V),aT-v+b2>0.

Proof. This follows because v is a convex combination of vectors in V. Let v =y - vi +
...+ ag - v, where Zle a; =1 and a; € Rxg for each i € [k]. Thus,

P. Bisht and N. Saxena

k
al-v+b = aT- (Z%"W) +b
i=1
k k k
i=1 i=1 i=1

In the second step, we use Zle a; = 1; while in the last step we use the hypothesis and
a; > 0 for each i € [k]. <

We are now ready to prove our structure theorem, which is restated below.

» Theorem 1.6 (Polytope entropy Theorem). Let V C {0,1,...,d}"™ be a 6-min-entropy set,
then CS(V)NZ™ is a (2d0)-min-entropy set.

Proof. In Lemma 3.1, we showed that every point v € V belongs to the halfspace uT-v+dd >
0. In fact, we proved it for every permutation o € S,, of u. Let y be any integral-point in
CS(V). Thus by Lemma 3.3, (c ou)T -y +dd > 0, for every o € S,,.

Let m € Sy, be the permutation which sorts y, i.e. yr(1) < Yr2) < ... < Yr(n)- These
are integers in {0,...,d} due to convexity. Since the hyperplane cover holds for every
permutation, in particular it holds for 7=1 € S, also, i.e. (m71ou)T -y +dd > 0. Thus,

(r7tow)T -y +ds = uT-(roy) +dé > 0.

Now by Lemma 3.2, as 7 oy is sorted, we deduce that 7 oy is a (2dé)-min-entropy vector.

Since min-entropy of a vector does not change on permuting it, we deduce that y is also a
(2dd)-min-entropy point. <

» Remark. Note that Theorem 1.6 is fairly tight, i.e. a blow-up in min-entropy of internal
integral points by a factor of d is inevitable. To observe this, consider V = {o o (d,0,...,0) |
o € S, }, with min-entropy § = 1. It is easy to see that the integral vector v = Z?:l e; is

in CS(V), where e; is the standard unit vector with a single 1 in position i and rest all 0.

Thus, v is a vector with 1 in first d coordinates and remaining all 0, and it has min-entropy
exactly d, for d < n/2. Therefore, CS(V) NZ™ is of min-entropy at least dé. However, in
this work we are concerned with d = O(1), so even 2dé blowup is fine.

4 Factor sparsity bounds: Proof of Theorems 1.3 & 1.5

We refer the reader to Appendix A for some basic observations that will be used for the
results in this section.

4.1 Polytope bounds

Using a simple counting argument below, we bound the total number of points in a given
d-min-entropy set of integral points.

» Lemma 4.1 (min-entropy sparsity upper bound). Let V C {0,1,...,d}"™ be a 6-min-entropy
set. Then, [V < (%) - (d+1)°FL.

Proof. Any v € V has min-entropy < § and thus has atleast n — § coordinates that are
equal. To specify v, one needs to specify the indices of these repeated coordinates (< (?)
possibilities) and specify a total of § + 1 values for all the coordinates of v (d + 1 possibilities
for each). Hence, we deduce that [V| < (%) - (d + 1)°FL. <

9:11

FSTTCS 2022

9:12

Sparse Polynomial Factorization

We now show that a symmetric set of integral points is of somewhat low min-entropy.

» Lemma 4.2 (symmetry = low min-entropy). Let V C {0,1,...,d}"™ be any symmetric set.
Then V is a §-min-entropy set, for some § < 2d -log|V]|.

Proof. Consider the smallest possible d, for which V' can be a d-min-entropy set. By
pigeonhole principle, for any point in V, there exists a coordinate-value with frequency
>n/(d +1). Therefore,

n 1
<n——— = —— .
0 n T n<1 1) (6)

Since ¢ is chosen to be the minimum possible, a non-empty V contains a vector v having
some integral value with maximum-frequency exactly n — 4. Since V' is symmetric, it must
also contain all the distinct S,,-permutations of this vector v, which are at least (g) many.

This implies that V| > (%) and further using Lemma A.3, we get that [V| > (%)6. Then,

log |[V| > 0 -log (%) > 0 -log [Using (6)]

()

1 - g
=4-1 1—|—1 > 4 R [Using L A3
= og 7 2 sing Lemma A.

d
> 9 [As d > 1]
=24 O
This proves that 6 < 2d - log |V]. <

» Remark. We note that if we are promised § < n/2, then in the proof of Lemma 4.2, we get
V| > (%) > 2° which implies § < log |V|. This will lead to an improved bound of |V|©(dlogd)
in Theorem 4.4. In general however, d can be higher than n/2. Consider for example the set
of all S,-permutations of the string 07/3 - 17/3 . 27/3 which has § = n — n/3 = 2n/3.

We now show that convex span of a low min-entropy set has low number of integral
points.

» Theorem 4.3 (Low min-entropy polytope count). Let V C {0,1,...,d}" be a §-min-entropy
set. Then, |[CS(V)NZ"| < (g)Zd - (d + 1)2do+1,

Proof. Theorem 1.6 proves that C'S(V)NZ™ is a (2dd)-min-entropy set. Note that C.S(V)NZ"

is also a subset of {0,...,d}", since V is. Then by Lemma 4.1, |[CS(V) N Z"| < (,5)-

(d 4 1)2#+1. The conclusion then follows from Lemma A.3 by observing (,7s) < (%) " <

Using the counting arguments above, we now show that the gap between number of
vertices and total number of integral points in a symmetric polytope, is low.

» Theorem 4.4 (Symmetric polytope count). Let V' C {0,1,...,d}"™ be the vertices of a
symmetric polytope P. Then, |P NZ"| < |V|0(@ logd)

Proof. Consider the smallest possible d, for which V' can be a §-min-entropy set. Since P is
a symmetric polytope, its vertex set V' is also symmetric by Lemma A.2. By Lemma 4.2,
the min-entropy of V is at most § = O(d - log|V|). Then by Theorem 4.3, |CS(V)NZ"| <
(?)Qd - (d 4 1)245+L, Observe that (d + 1)295+1 < gO(d log|V]) — |}/|0(d” logd) T Lemma 4.2,
we also proved that |V| > (}), since V is symmetric. Thus, (%) ¥ < V2@ and we get the
desired conclusion. <

P. Bisht and N. Saxena

» Remark 4.5. We also prove that a symmetric polytope formed by taking convex hull of
a symmetric subset F of {0,1,...,d}"™ must have many vertices (corner points), at least
|E|Q(1/(d2 logd))_many, to be precise. We get this incompressibility result by substituting
P =CS(F) in Theorem 4.4 and observing that £ C P N Z™.

4.2 Factor-sparsity bounds

We start by proving the sparsity bound for a symmetric factor g of some sparse polynomial
f, which may itself not be symmetric. To get a poly(s) sparsity bound, we only require
individual degree of g to be constant, while f may have arbitrary individual degree.

» Theorem 4.6 (Symmetric factor sparsity bound). Let f € Flxy,...,2,] be an s-sparse
polynomial. Let g be any symmetric factor of f, with individual degree at most d. Then, g

has sparsity at most §O(d?logd)

Proof. Let P, be the Newton polytope of g and Vj be its vertex set. Since g is symmetric,
P, is a symmetric polytope. Now invoke Theorem 4.4 with P = P, to note that |P; N
7" < |Vg\o(d2 logd) Observe that supp(g) € P, N Z" and |V,| < |V§| < s. Therefore,
llgll < gO(d?logd) <

» Remark. In Theorem 4.6 (resp. Theorem 4.4), we do not require the whole of g (resp. P)
to be symmetric, rather we only need its vertex set V; (resp. V') to be symmetric, which is a
much weaker requirement. Similarly, as will be clear below, we don’t need f to be symmetric
in Theorem 1.3 but only V; to be symmetric. In these cases, we will not require use of
Lemma A.2.

We will be needing the following observation for our main proofs below.

» Observation 4.7. Let f,g,h € Flz1,...,z,] be polynomials such that f = g - h. Let Py be
the Newton polytope of f. Then, |g| < |Py NZ"|.

Proof. By Minkowski sum property, we have that Py = P, + P,. For every u € supp(g),
consider a fixed point v € supp(h). Observe that u+ v € Py, since u € Py and v € Pj.
Moreover, since the support vectors are integral, u + v € Py N Z". In other words, Py N Z"
contains a translated copy of supp(g). This means that |g|| < [Py NZ"|. <

We have sufficient tools now to prove our main theorems below.

» Theorem 1.3 (Symmetric sparsity bound). Let f € F[xy,...,x,] be an s-sparse, symmetric
polynomial with constant individual degree d, over any field F. Then, every factor of f has
its sparsity bounded by poly(s).

Proof. Since f is symmetric, its Newton polytope P; will also be symmetric. Let V¢ be
the vertex set of P;. Then, invoke Theorem 4.4 with P = Py to deduce that |Py NZ"| <
\%; |O(d2 logd) The conclusion then follows from Observation 4.7 and |V}| < s. <

We note that Theorem 1.3 does not follow from Theorem 4.6 as a symmetric polynomial
f may not have symmetric factors. For example consider symmetric f = 23 + 22y% + xy + 93
which factorizes as (22 + y)(z + y?). Each factor considered individually, is not symmetric.
We also note that factors of a low min-entropy polynomial might have high min-entropy. But
we still get a nice sparsity bound for them below.

» Theorem 1.5 (Factors of low min-entropy polynomials). Let f € F[zy,...,x,] be a §-min-
entropy polynomial with individual degree d over any field F, such that d,d are constants.
Then, every factor of f has its sparsity bounded by poly(n).

9:13

FSTTCS 2022

9:14

Sparse Polynomial Factorization

Proof. Let P be the Newton polytope of f and V; be its vertex set. Since f is of é-min-
entropy, so is V¢, as V3 C supp(f). Then by Theorem 4.3, we deduce that |P; N Z"| <

(%) . (d+ 1)29+1 < (nd)©(4%), The conclusion then follows from Observation 4.7. <

» Remark. We note that the example in Claim 4.4 of [2] is a non-symmetric polynomial with
its vertices having exactly (n/2)-min-entropy such that its Newton polytope has at least
n0og)_many integral points. Therefore for high-entropy polynomials, a new technique is
required which goes beyond counting number of internal points in the Newton polytope.

4.3 Tightness of sparsity bounds

We give two examples below where factors of a sparse polynomial have significantly high
sparsity, unless the individual degree is bounded.

» Example 4.8 ([40]). Consider the following polynomial f with individual degree d, which
factorizes as f = gh, where

n n

fZH(ﬂC?—) s QZH(l—I—xi—i—...—i—xf*l), h:H(iUi—l).
i=1

i=1 =1

Observe that || f|| = 2", while ||g|| = d". If we let s = |||, then ||g|| = s'°8. Over fields
of characteristic 0, this is an example which exhibits highest known blowup in sparsity.
Moreover, it also shows that s'°¢¢ is a lower bound on factor-sparsity. Note that f is a
symmetric polynomial and Theorem 1.3 shows that ||g|| < §O(d* logd)

» Example 4.9 ([2]). Over finite fields we have the following polynomial which has a higher
exponential blowup in factor-sparsity. Consider the following polynomial f € Fy[z1,. ..,]
with individual degree p, for some prime p and let 0 < d < p. We have f = gh, where

f=al+ab+.. 422 = (z1+ 22+ ... +x,)°,
9= @+z+...+a)', b= (x1taat.. o)l

Observe that ||f|| = n, while ||g|| = (n+371) ~nd. If we let s = | f||, then ||g|| ~ s?. The
factor-sparsity bounds in this work hold for any field IF, finite or otherwise. Moreover, f is also

symmetric and falls under the purview of Theorem 1.3, which shows that [|g|| < sO(@" losd),

Hence, this example shows that in Theorem 1.3, we cannot do better than s%.

Note that this f is also a low min-entropy polynomial, in fact with § = 1 as all the
exponent vectors in supp(f) have n — 1 coordinates having the same value 0. Thus, we can
use Theorem 1.5 for this f to get a factor-sparsity bound of (np)®®) which is really close to

the actual sparsity n.

5 Factoring algorithms: Proof of Theorems 1.2 & 1.4

A nice feature of the results in [2] is that once you prove a nice factor-sparsity bound, they
also show how to get a deterministic factoring algorithm for sparse polynomials which runs
in time polynomial in the sparsity bound proven. We restate this as Lemma 5.1 below.

» Lemma 5.1 (Theorem 5.8 in [2]). Let f € Flz1,...,x,] be an s-sparse polynomial with
individual degrees at most d. Let £(n,d, s) be the upper bound on sparsity for every factor of

. Then given f, there is a deterministic algorithm that computes complete factorization o
Th ; th is a det inistic algorithm that t let torizati
fin (n-&(n,d?,s9))°W@) . poly(cx(d?)) field operations.

P. Bisht and N. Saxena

Here cp(d) is the best known time complexity for factoring a univariate polynomial of degree
d over the field F. For F = Q, cp(d) < poly(d,t) where ¢ is the maximum bit-complexity of
the coefficients of f [23]. For a finite field F = I, cr(d) < poly(£-p,d) [1, 4]. In other words,
the above theorem shows a deterministic reduction from multivariate to univariate factoring
over any field F. In [2], they showed that &(n,d, s) < s©(@°1°8™) and then used Lemma 5.1
to get a factoring algorithm of sP¥(d19gn time complexity, which is quasi-polynomial in
the bounded individual degree setting. In this work, we deal with symmetric and constant-
min-entropy input polynomials, for which we show that &(n,d,s) < (ns)P°¥(@ . Thus, we
can use Lemma 5.1 to get polynomial time factoring algorithms in the bounded individual
degree setting. The finer time complexities are discussed in the proofs of Theorem 1.2 and
Theorem 1.4 below. Also, note that £(n,d, s) is a lower bound on time complexity for sparse
factoring algorithms as we output each factor as an explicit list of monomials.

» Theorem 1.2 (Symmetric factoring algorithm). Let f € Q[z1,...,z,] be an s-sparse,
symmetric polynomial with constant individual degree d. Let t be the maximum bit-complexity
of the coefficients of f. Then, there is a deterministic algorithm that computes the complete
factorization of f in at most poly(s,n,t)-time.

Proof. Let f € Flzy,...,2,] be an s-sparse, symmetric polynomial with individual degree
d. In Theorem 1.3, we show that £(n,d, s) < §O(d* logd) Plugging this value in Lemma 5.1,
we get a deterministic factoring algorithm for f. The time complexity T'(n,s,d) for this
algorithm is:

n - €(n,d2,5%)°@) - poly(ex(d?))

0(d?))
- poly(cr(d”))

sO(d7 log d) _nO(d2) ~p01y(C[F(d2)).

T(n,s,d) = (n-
(n . gdo(d* 1ogd2))

This time complexity is poly(s,n,t) over the field of rationals Q, when d is a constant. <

» Theorem 1.4 (Low min-entropy factoring algorithm). Let f € Q[x1,...,x,] be a 6-min-
entropy polynomial with individual degree d, for some constants 6,d. Let t be the maximum
bit-complezity of the coefficients of f. Then, there is a deterministic algorithm that computes
the complete factorization of f in at most poly(n,t)-time.

Proof. Let f € F[xy,...,z,] be a d-min-entropy polynomial with individual degree d. In
Theorem 1.3, we show that £(n,d,s) < (nd)®(@). Plugging this value in Lemma 5.1, we get
a deterministic factoring algorithm for f. The time complexity T'(n, s, d) for this algorithm
is:

T(n,s,d) = (n-&(n,d% s4))°@) . poly(cp(d?))
- <” : (ndQ)O(d25)>O(d) - poly(cx(d?))
= (nd)?@9 . poly(c(d?)).

This time complexity is poly(n,t) over the field of rationals Q, when d,§ are constants. <

9:15

FSTTCS 2022

9:16

Sparse Polynomial Factorization

6

Future directions

In this work, we show a positive evidence for resolving Question 1.1 by solving it for symmetric
and constant min-entropy polynomials with bounded individual degree. As discussed, the
constant individual degree restriction here is necessary for sparse factorization (Examples
4.8, 4.9). We leave it as an open question to study factors of sparse polynomials with high
min-entropy. For example, can one show an (snd)pOIY(d) factor-sparsity bound for s-sparse,

(log n)-min-entropy polynomial of individual degree d?

—— References

1

10

11

12

13

14

15

Elwyn R Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46(8):1853-1859, 1967.

Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of sparse
polynomials with bounded individual degree. Journal of the ACM (JACM), 67(2):1-28, 2020.
(Preliminary version in FOCS 2018).

Markus Bléser and Gorav Jindal. On the complexity of symmetric polynomials. In 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, pages 587-592, 1981.

Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She,
and Srikanth Srinivasan. Schur polynomials do not have small formulas if the determinant
doesn’t. In Proceedings of the 35th Computational Complezity Conference, pages 1-27, 2020.
Benny Chor and Ronald L Rivest. A knapsack-type public key cryptosystem based on
arithmetic in finite fields. IEEE Transactions on Information Theory, 34(5):901-909, 1988.
Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for polynomial factoriza-
tion. Theory of Computing, 15(1):1-34, 2019.

Anuj Dawar and Gregory Wilsenach. Symmetric arithmetic circuits. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2020.

Anuj Dawar and Gregory Wilsenach. Lower Bounds for Symmetric Circuits for the Determinant.
In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages
52:1-52:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.ITCS.2022.52.

Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program testing.
Technical report, Georgia Inst of Tech Atlanta School of Information and Computer science,
1977.

Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure
results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1152-1165, 2018.

Hervé Fournier, Nutan Limaye, Meena Mahajan, and Srikanth Srinivasan. The shifted partial
derivative complexity of elementary symmetric polynomials. In International Symposium on
Mathematical Foundations of Computer Science, pages 324-335. Springer, 2015.

V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometric
codes. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat.
No.98CB36280), pages 28-37, 1998. doi:10.1109/SFCS.1998.743426.

Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Computational Complezity, 20(3):559-578, 2011.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. computational complexity, 13(1-2):1-46, 2004.

https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.1109/SFCS.1998.743426

P. Bisht and N. Saxena

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

Erich Kaltofen. Uniform closure properties of p-computable functions. In Proceedings of the
etghteenth annual ACM symposium on Theory of computing, pages 330-337, 1986.

Erich Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity
of certain polynomials. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 443-452, 1987.

Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv. Comput.
Res., 5:375-412, 1989.

Erich Kaltofen. Polynomial factorization: a success story. In Proceedings of the 2003 interna-
tional symposium on Symbolic and algebraic computation, pages 3—4, 2003.

Erich Kaltofen and Barry M Trager. Computing with polynomials given byblack boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301-320, 1990.

Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 216-223, 2001.

Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference
on Computational Complexity (CCC), pages 169-180. IEEE, 2014.

Arjen K Lenstra, Hendrik Willem Lenstra, and Léaszlé Lovasz. Factoring polynomials with
rational coefficients. Mathematische annalen, 261(ARTICLE):515-534, 1982.

Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In FOCS’21, 2021.

Rafael Oliveira. Factors of low individual degree polynomials. computational complexity,
25(2):507-561, 2016.

@ystein Ore. Uber héhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.

AM Ostrowski. Uber die bedeutung der theorie der konvexen polyeder fiir die formale algebra.
Jahresberichte Deutsche Math. Verein, 20:98-99, 1921. (English translated version republished
in ACM SIGSAM Bulletin, 33(1):5, 1999).

Andrzej Schinzel. Polynomials with special regard to reducibility, volume 77. Cambridge
University Press, 2000.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701-717, 1980.

Amir Shpilka. Affine projections of symmetric polynomials. Journal of Computer and System
Sciences, 65(4):639-659, 2002.

Amir Shpilka and Ilya Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In International Collogquium on Automata, Languages, and
Programming, pages 408—419. Springer, 2010.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Now Publishers Inc, 2010.

Amit Sinhababu and Thomas Thierauf. Factorization of polynomials given by arithmetic
branching programs. In 35th Computational Complezity Conference (CCC 2020). Schloss
Dagstuhl-Leibniz-Zentrum fir Informatik, 2020.

Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal
of complezity, 13(1):180-193, 1997.

Madhu Sudan. Algebra and computation. lecture notes, 1998.

Ilya Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums
of univariate polynomials. In Approzimation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

Ilya Volkovich. On some computations on sparse polynomials. In Approzimation, Randomiz-
ation, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

9:17

FSTTCS 2022

9:18

Sparse Polynomial Factorization

38 Joachim von zur Gathen. Who was who in polynomial factorization: 1. In Proceedings of the
2006 international symposium on Symbolic and algebraic computation, page 2, 2006.

39 Joachim von zur Gathen and Jiirgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

40 Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polynomials.
Journal of Computer and System Sciences, 31(2):265-287, 1985.

41 Gunter M Ziegler. Lectures on polytopes, volume 152. Springer Science & Business Media,
2012.

42 Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216-226. Springer, 1979.

A Preliminary observations for Section 4

We start by proving that a symmetric polynomial will have a symmetric Newton polytope.

» Lemma A.1 (Symmetric polynomials = symmetric polytopes). Let f € F[xy,...,z,] be a
symmetric-support polynomial. Then the Newton polytope Ps of f is also symmetric.

Proof. Let supp(f) = {v1,...,vi}. Let v € Py be an arbitrary point. We need to show that
oov € Py, for every o € S,,. Since Py = C'S(supp(f)), we can express v as:

k
vV = E Qg - V.
i=1

Then for an arbitrary o € S,,, observe that:

k
oov = E Q- 00V,
i=1

Now, since f is a symmetric-support polynomial, o o v; is also in supp(f), for each i € [k].
The above equation then implies that o ov € C'S(supp(f)), which means that cov € P;. <«

Next, we observe that a point is a vertex in a symmetric polytope P if and only if all its
S, permutations are also vertices in P.

» Lemma A.2 (Vertices of symmetric polytope). Let P be a symmetric Newton polytope with
V(P) being its vertex set. Then, for o € S,: v € V(P) if and only if o ov € V(P).

Proof. (=) Suppose V(P) =: {vy,...,vi}. Let v € V(P). Consider any permutation
o € S,. Since P is a symmetric polytope, we at least know that ¢ o v € P. For the sake of
contradiction, suppose o ov ¢ V(P). Thus, it is an internal point which can be expressed as
a nontrivial convex combination of vertices. There exist, for i € [k], 0 < o; < 1, Zle a; =1
such that:

OOV = (1 V] +...+0a Vg
o to(oov) = o to(ag-vi+...Fag-Vvi)
vV = aloaflovl+...+ak~a’1ovk

Observe that o~! € S,, and since P is symmetric 0~! ov; € P for all i € [k]. This means, v
is a nontrivial convex combination of other points in P, which contradicts the fact that v is
a vertex (Section 2). Therefore, o o v must also be a vertex.

P. Bisht and N. Saxena

(<) Now we wish to prove that all permutations of a non-vertex point must also be
non-vertices. Let v ¢ V(P). Then, for any o € S,,, we get a nontrivial convex combination:

V = a1 -Vi+...+ar Vg
OOV = 1+00V]+...+Qq-00Vg

Again, since P is symmetric o ov; € P for all i € [k]. Thus, o o v is a nontrivial convex
combination of other points, hence it must be a non-vertex. |

The lemma below mentions few standard bounds that we make use of.

» Lemma A.3 (Counting estimates).
1. For positive integers a,b with a > b, (a/b)’ < (%)
2. For positive integers a,b,c with a > be, () < ((C‘)b.

3. For positive real z, log(1 +z) > In(1+2) > = — ””—22

Proof. For (1), see that (}) = W > (%)b

For (2), we make use of (Cﬁb,) < (;,) . (“;b/) < (;,) . (Z) Use this b times to get (bac) < (‘Z b

For (3), observe that derivative of f is positive for > 0, where f =In(1 4+ 2) — (z — %),
and for z =0, f(0) =0.

B Algebraic computational models

Below, we define various algebraic models for computation of a polynomial. For details, we
refer the reader to the excellent survey of [32].

An algebraic circuit is a directed acyclic graph where computation is done bottom-up,
with input leaves at the bottom and a single output node at top. The leaves are labeled
with variables or field constants while rest of the nodes are either addition or multiplication
nodes. The directed edges u — v are labeled with field constants, which get multiplied to
the polynomial computed at node u before feeding it to node v. The in-degree of a node
is called its fan-in and out-degree is called fan-out. Size of the circuit is simply size of the
directed graph. Depth of the circuit is length of the longest path from a leaf to the output
node. Degree of the circuit is maximum degree of a polynomial computed at any node in the
circuit.

A size s depth-2 Y11 circuit computes a sum of s-many monomials. Thus, depth-2 circuits
compute the class of sparse polynomials. The much more general class of poly(n)-sized and
poly(n) degree algebraic circuits is called VP, which is considered the algebraic analog of
complexity class P. The class VNP is considered the algebraic analog of complexity class NP.
It is the class of polynomials which can be expressed as an exponential sum of a projection
of a VP circuit family.

An algebraic circuit where fan-out of every node is one is called an algebraic formula.
The class of polynomial sized formulas is called VF.

An algebraic branching program (ABP) is defined using a layered directed graph with a
unique source and sink vertex. Each edge is directed from one layer to the next and has a
linear polynomial as its weight. The weight of a path is product of edge weights along the
path. The polynomial computed by the ABP is then simply the sum of all weighted paths
from source to sink. The length of an ABP is the length of the longest path from source to
sink and width of an ABP is the maximum possible number of vertices in a layer. The size of
ABP is the product of its length and width. VBP is the class of all polynomial sized ABPs.

9:19

FSTTCS 2022

On Solving Sparse Polynomial Factorization
Related Problems

Pranav Bisht =

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Ilya Volkovich &

Computer Science Department, Boston College, Chestnut Hill, MA, USA

—— Abstract

In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first factor sparsity
bound for constant individual degree polynomials was shown. In particular, it was shown that

any factor of a polynomial with at most s terms and individual degree bounded by d can itself
have at most s°(°1°6™) terms. Tt is conjectured, though, that the “true” sparsity bound should
be polynomial (i.e. sp"ly(d)). In this paper we provide supporting evidence for this conjecture by
presenting polynomial-time algorithms for several problems that would be implied by a polynomial-
size sparsity bound. In particular, we give efficient (deterministic) algorithms for identity testing of
SRITIsIIind-de 4 circuits and testing if a sparse polynomial is an exact power. Hence, our algorithms
rely on different techniques.

2012 ACM Subject Classification Theory of computation — Algebraic complexity theory; Theory
of computation — Pseudorandomness and derandomization

Keywords and phrases Sparse Polynomials, Identity Testing, Derandomization, Factor-Sparsity,
Multivariate Polynomial Factorization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.10
Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/070/ [6]

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

Polynomial Factorization is one of the core problems in algebraic complexity: given a
multivariate polynomial f € F[z1,z2...,z,] over a field F, output all its irreducible factors.
In addition to being a natural problem, its importance is highlighted by various applications
such as: list decoding [28, 16], derandomization [17], cryptography [7] and others. In the
seminal works of [18, 19], efficient randomized factorization algorithms were presented. Yet,
coming up with an efficient deterministic factorization algorithm remains a long-standing
open question.

Indeed, one aspect of the computational problem is the representation of the input
polynomial. One natural way to represent a polynomial is by listing all its terms and
coefficients. This is known as dense representation. Yet, even if the individual degree of every
variable is bounded by a small constant d, the total number of terms can be exponentially
large, reaching (d + 1)™. Nonetheless, in many applications [31, 13, 3, 15] the actual number
of non-zero terms in a polynomial is much smaller - poly(n). Such polynomials are referred
to as sparse polynomials, which will be the focus of our paper.

A key question that precedes the design of efficient factorization algorithms for sparse
polynomial is whether a factor of a sparse polynomial is (itself) sparse. Indeed, this question
was first studied by von zur Gathen and Kaltofen in [13] that gave a randomized factorization
algorithm where the runtime depends on the number of terms in the output factors. In the
? Pranav Bisht and ?lya Volkovich; '

5v icensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 10; pp. 10:1-10:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:bisht@bc.edu
mailto:ilya.volkovich@bc.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.10
https://eccc.weizmann.ac.il/report/2022/070/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Sparse Polynomial Factorization Related Problems

same paper they provided an example inspired by geometric series (see below) of a family of
polynomials that have factors with a super-polynomial (quasi-polynomial) number of terms.
We denote by || f]| the sparsity of f. That is, the number of non-zero terms in f.

» Example 1 ([13]). Let n > 1. Consider the polynomial f(Z) = [(z] — 1) which can be

K3

i€[n]
written as a product of g(Z) = [[(1+x; +... + 2 ') and h(F) = [] (= — 1).
i€[n] i€[n]
Observe that ||f]| = ||| = 2" while ||g| = n", resulting in a quasi-polynomial blow-up®.

Furthermore, for fields with finite characteristics the blow-up can be significantly larger:

» Example 2 ([29]). For a prime p, let f € Fplz1,...2,), and let 0 < d < p. Consider:
F@) = (@1 +ao+...4a,) =2l + 25+ ... +28, ¢(T) = (21 +z2+...+2,)". Notice
that g is a factor of f, but ||f|| =n and ||g|| = ("+§_1) = nd),

Based on the above, we should first try to obtain a “sparsity-bound” on factors of sparse
polynomials with constant (i.e. bounded) individual degree. More formally, for some fixed d,
we require that deg,. < d, for all variables ;. The simplest case (when d = 1) corresponds
to the so-called multilinear polynomials. In [26], it was shown that a factor of an s-sparse?
multilinear polynomial is itself s-sparse. Subsequently, in [30], this result was extended
to the case of multiquadratic polynomials (i.e. when d = 2). In a recent work of [4], a
quasi-polynomial-size sparsity bound was given for any fixed d. Specifically, it was shown
that a factor of an s-sparse polynomial with individual degree bounded by d is §O(d”logn)_
sparse. In addition, [4] designed a factorization algorithm whose runtime is efficient in terms
of the sparsity bound. As a result they obtained a deterministic quasi-polynomial-time
factorization algorithm for sparse polynomials with bounded individual degree. In the same
paper it was also conjectured that the “true” sparsity bound should be polynomial rather

than quasi-polynomial. More formally:

» Conjecture 3. There exists a universal constant k € N such that for any s,d € N, any
factor of an s-sparse polynomial with individual degree bounded by d has at most s* terms.

In this paper we provide supporting evidence for this conjecture by presenting deterministic
polynomial-time algorithms for some problems that reduce to sparse polynomial factorization.
It is to be noted that invoking the aforementioned factorization algorithm of [4] with a
polynomial-size sparsity bound would imply a (deterministic) polynomial-time algorithm for
sparse polynomial factorization and hence polynomial-time algorithms for these problems.
In the absence of a polynomial-size sparsity bound, we design our algorithms using new
techniques.

1.1 Our Results

We will now describe our main results. In what follows, F is an arbitrary field. (finite or
otherwise).

L Although g is not irreducible, this issue can be resolved using standard techniques. For example, by
considering the product f + yh = (g + y)h for a new variable y.
2 A polynomial is s-sparse, it if contains at most s non-zero terms.

P. Bisht and |. Volkovich

1.1.1 Identity Testing for ZPITIXII[nd-deg d] Circuits

The Polynomial Identity Testing (PIT) problem asks to decide whether a given input
polynomial is identically zero. The input is usually given in the form of an algebraic circuit.
The PIT algorithm is called white-box if one can look “inside” the circuit. The algorithm is
called black-box if the circuit is given via an oracle access, where one is only allowed to evaluate
the polynomial on a chosen set of input points. PIT is one of the few natural problems
which have a simple efficient randomized algorithm [9, 25, 31] but lack a deterministic one.
Indeed, it has been a long standing open question to come up with an efficient deterministic
algorithm for this problem. We refer the reader to the full version of the paper [6] for more
details.

Our first result is an efficient (deterministic) identity testing algorithm for the class of
YRy IIlind-dee d circuits, where a SRITIXNIIIN-deg] circuit C of size s computes a polynomial
of the form:

C = Hgi + th
i=1 =1

where each polynomial (g; and h;) is an s-sparse polynomial with individual degree at most
d (for some fixed d). Note, though, that » and m, and hence the total degree of C, can be
arbitrary (i.e. polynomially) large. In particular, the polynomial computed by C' may not
itself be sparse. This class generalizes the model considered in [30], where m = 1 and the
gi-s are irreducible polynomials. For the formal definition of our circuit model and further
discussion, see Section 4.1.

Observe that the identity testing problem for this circuit class reduces to polynomial
factorization of sparse polynomials with bounded individual degree. Therefore, by invoking
the factorization algorithm of [4], we can get an algorithm whose runtime is efficient in terms
of the sparsity bound. Plugging in the best bound of [4] results in a quasi-polynomial-time
algorithm. Our next result gives a polynomial-time algorithm for this model. In addition,
our algorithm operates in the black-box setting, whereas the described factorization-based
algorithm is a white-box algorithm.

» Theorem 1. There exists a deterministic algorithm that given a black-box access to a
yRITIyIIlind-dee d cirenit C of size s determines if C = 0, in time poly((sd)ds,n).

An important ingredient in our algorithm is a result that links the ged of two polynomials,

their subresultant and the resultant of their coprime parts - in the multivariate setting.

See Section 3 for the formal definitions.

» Theorem 2. Let A,B € Flxy,xa,...,2¢] be two polynomials such that A = f-g and
B =h-g and let x; be a variable. Then

Sxi (d’ A’ B) =9 Resxi (fa h’) : lcxi (g)m/+nl71

here m = deg,.(A), n = deg, (B), d = deg,.(g9), m’ = deg,, (f) = m—d andn’' = deg,, (h) =
n —d. In addition:

Resy, (f,h) is the resultant of f and h w.r.t the variable x;.

leg, (g) is the leading coefficient of g when written as a polynomial in x;

And finally, Sy, (d, A, B) is the d-th subresultant of A and B.

To put the result in context, consider two univariate polynomials A, B € F[z]. A classical
result in the Theory of Resultants (see e.g. [14, 12, 8]) states that:

10:3

FSTTCS 2022

10:4

Sparse Polynomial Factorization Related Problems

Res(4, B) = 0 if and only if ged(A, B) is non-trivial.

If u and v are field elements (i.e. u,v € F) then Res(uA,vB) = Res(A, B) - udee B . pdeg 4,
The j-th Subresultant S(j, A, B) = 0 whenever j < deg(ged(A4, B)) .

There exists a non-zero field element « € F such that S(j, A, B) = « - ged(A, B), when
j = deg(ged(A, B)).

In the multivariate setting one can always regard multivariate polynomials as polynomials in

ol o\

a single variable with coefficients being rational functions in the remaining variables. Yet,
in this case « is no longer a mere “field element” as it can now be an arbitrary rational
function in the remaining variables! From that perspective, our result can be seen as explicitly
expressing « as a polynomial (and not even a rational function) in the remaining variables.
We believe that this explicit relation could be of interest in its own right.

To illustrate the aforementioned problem and provide more intuition on our result, let
us write the polynomials A and B in the statement of Theorem 2 as A = (uf) - (9/u) and
B = (uh) - (g/u), where u is a rational function that does not depend on z;. Observe that
the introduction of u does not affect the degrees of x;. We obtain the following invariant:

m' 4+n’—1
S,.(d, A, B) = % - Resy, (uf, uh) - ley, (%)

g Res (f h)) um/+n/) 1Cxi (g)m it _ -Res (f h) e ()m’-}-n/—l

u xT; bl umu’,n/fl - g xT; bl €T g M
1.1.2 Exact Powers
Our next result pertains to exact powers of polynomials. A polynomial f € Flzy,zo, ..., z,)
is an ezact power if there exists (another) polynomial g € F[zy,zo,...,z,] and e € N such

that f = ¢g°. We note that despite the rich structure, the best known sparsity bound for
exact roots (i.e. ||g|| in terms of || f||) is the general sparsity bound of size sO(@logn) 1,y [4].
Hence, one can use the factorization algorithm of [4] to test if a given sparse polynomial is
an exact power, in quasi-polynomial time. Similarly, a polynomial-size sparsity bound, even
for the case of exact roots, would imply a polynomial-time algorithm for exact-power testing
problem. We provide a polynomial-time algorithm for exact-power testing that does not
rely on this sparsity bound.

» Theorem 3. There is a deterministic algorithm that given a sparse polynomial f €
Flxy, o, ..., x,] of individual degree d as an input, decides whether f = g° for some polyno-
mial g € Flxy,za,...,2,] and e €N, in time poly(sdz,n).

We remark that the algorithm only performs exact-power testing and does not output
a “witness” polynomial g. Indeed, a polynomial-time algorithm that actually outputs g
would imply a polynomial-size sparsity bound on exact roots! In addition, the runtime of
our algorithm is polynomial in the bit-complexity of the field elements since it does not rely
on univariate polynomial factorization. For instance, for finite fields we get the runtime of
poly (log [F|) vs poly(|F]).

We defer the details and proof of Theorem 3 in Section 5 of the full version of the paper [6].

1.1.3 Improved Sparsity Bounds for Co-factors of Multilinear
Polynomials

Given two polynomials f,h € Flxy,22,...,2,] such that f = gh, g is called a quotient
polynomial or a co-factor of h. We study the problem of multilinear co-factor sparsity:
suppose [is s-sparse and h is multilinear. How sparse/dense can g be? We remark that

P. Bisht and |. Volkovich

any (even non-constructive) efficient upper bound on the sparsity of g allows us to compute
g efficiently by interpolating the ratio f/h using a reconstruction algorithm for sparse
polynomials (e.g. [20]) and verifying the result.

The motivation to study this problem is two-fold: first of all, by previous results (see
e.g. [4]) a multilinear factor of an s-sparse polynomial (of any degree) is itself s-sparse. This
suggests more structure for multilinear co-factors we could potentially exploit. Second, a
polynomial-size sparsity bound on multilinear co-factors g (even when the individual degree of
g is d = 2) would imply a polynomial-size sparsity bound for (all factors of) polynomials with
individual degree d = 3. We note that the multicubic (d = 3) case is the first instance where
we do not have a polynomial-size factor-sparsity bound yet. Indeed, multilinear co-factors
can be seen as the “bottle-neck” for this case. The formal argument is given in Section 1.4.

To state our next result we need the following technical definition. We say that a
polynomial h € Flxy,za,...,x,] has a unique projection of length k if there exist k vari-

ables x;,, %;,, . .., %, and k corresponding exponents e, es, ..., ex such that h has a unique
ek
ik

€1 .62

monomial that contains the pattern x7'x;” ... @

i
» Theorem 4. Let f € Flzy,x2,...,2,] be a polynomial of sparsity s and individual degree

at most d such that f = gh. Suppose, in addition, that h is a multilinear polynomial with a
unique projection of length k. Then the sparsity of g is bounded by sO(@)

We remark that Example 2 with d = p —1 (resulting in a lower bound of nﬂ(p)) showcases
the tightness of our result as here f is n-sparse and h = x; + ...+ x, has a unique projection
of length 1 (e.g. x1) which results in an upper bound of nO®) for g. We can also extend
Theorem 4 to the case of a co-factor of a power of a multilinear polynomial. Subsequently,
we show that every multilinear s-sparse polynomial has a unique projection of length O(log s)
(see Theorem 6.25 & Lemma 6.9 in the full version of the paper [6]). By plugging this

result into Theorem 4, we obtain a new sparsity bound of size s?(@1°2%) for all multilinear
co-factors.
» Corollary 4. Let f € Flzy,xo,...,2,] be a polynomial of sparsity s and individual degree

at most d such that f = gh. Suppose, in addition, that h is a multilinear polynomial. Then

the sparsity of g is bounded by s©(@108s)

The obtained bound is slightly better than the general sparsity bound of size §O(d*logn)

by [4] when s = poly(n). Although our overall improvement may seem incremental (e.g.
it does not allow us to “get rid” of the logn in the exponent) our main contribution here
is conceptual: identifying a combinatorial property — the length of the shortest unique
projection — that governs the bound on the sparsity of multilinear co-factors.

1.2 Related Work

For the sparse polynomial factorization problem, [4] have shown that factors of an s-sparse
polynomial of individual degree d, have their sparsity bounded by §O(d*logn) Currently, this
is the best known bound for factor-sparsity when d > 3. For restricted classes of symmetric
polynomials, Bisht and Saxena [5] recently improved this bound to §O(d*logd)

In [13], another problem was posed alongside the sparse factorization problem, in the hope
that it might be easier. This problem is referred to as testing sparse factorization. Given
m + 1 sparse polynomials f, g1, ..., gm, it asks to test whether f =g; -...: gmn. The work
of [23] gives a polynomial-time algorithm for this problem, in the special case where every
gi is a sum of univariate polynomials. [30] gives a polynomial-time algorithm when f (and
therefore every g;) has constant individual degree and each g; is an irreducible polynomial.

10:5

FSTTCS 2022

10:6

Sparse Polynomial Factorization Related Problems

Our PIT result is connected to this problem. In Theorem 1, we give a polynomial-time
algorithm to test whether [[;_, f; = H;ﬂ:l gj, where each f;, g; is a sparse polynomial with
constant individual degree. Note that now LHS is also a product of polynomials. Moreover,
there is no restriction placed on g;-s except that they have bounded individual degree.

The depth-4 XIIXII circuit class is extremely important in the context of the PIT problem,
as it is known that a polynomial-time black-box PIT for this class implies a quasi-polynomial-
time black-box PIT for general VP circuits [2, 1]. For a long time, no PIT algorithm better
than the trivial d°(™ time algorithm was known for this class, until the recent breakthrough
result of Limaye et al. [21], which gives a sub-exponential time algorithm. Various restricted
versions of depth-4 circuits are studied to get close to polynomial-time PIT algorithms.
For example, Peleg and Shpilka [22] give a polynomial-time PIT algorithm for XEITISTI
circuits, where the top fan-in is 3 and the bottom fan-in is 2. Recently, Dutta et al. [10] gave
a quasi-polynomial-time PIT for SHMIISII circuits, where the top fan-in k& and bottom
fan-in d are allowed to be any fixed constants. In this model, the restriction on bottom
fan-in implies that the bottom XII computes polynomials of total degree at most d. We give
polynomial-time PIT algorithm for XLRITIXIIlnd-deg d yyodel, where the top fan-in is 2 and
the bottom XII computes polynomials with individual degree at most d. We note that the
individual degree restriction is much weaker than the total degree restriction. Indeed, even
for the case of individual degree bounded by 1 (i.e. multilinear polynomials) the total degree
can still be Q(n)! [24] gave a polynomial-time PIT algorithm for the class of multilinear
LFIIYIT circuits, with constant top fan-in k, where every gate in the circuit computes a
multilinear polynomial. Yet, even a white-box polynomial-time PIT for general L2 TIXII
circuits is still open.

Another related problem is that of divisibility testing, which gives two multivariate
polynomials f and h and asks to decide whether h divides f. [11] gives a quasi-polynomial-
time algorithm when f is sparse and h is a quadratic polynomial (and hence also sparse).
We note that the quadratic restriction on h is much stronger than a constant individual
degree restriction, although there is no constant degree restriction for f here. [30] gives a
polynomial-time algorithm when both f, h are sparse and have constant individual degree.
In the proof of Corollary 4, we solve a “search” version of the divisibility testing problem, i.e.
we actually compute f/h in quasi-polynomial time, when f is sparse with constant individual
degree and h is a multilinear factor of f.

1.3 Our Techniques & Proof Ideas

Let C =[];_, gﬁ-H;n:l h; where g;-s and hj-s are s-sparse polynomials in Fz1, o, ..., 2,] of
individual degree at most d. Clearly, if C' = 0 then it will evaluate to zero on any input. Now
suppose C #Z 0. Our goal is to find a point a € F” such that C'(a) # 0. Our approach relies on
the uniqueness of factorization property of the ring of multivariate polynomials. Specifically,
we have that []_, g; # — H;n:l hj. Consequently, wlog there exists an irreducible polynomial
(factor) u and £ > 0 such that u* divides the LHS but does not divide the RHS. Our goal
is to preserve this “situation” while reducing the number of variables. Clearly, a random
projection will be sufficient. However, we wish to obtain a deterministic algorithm. To this
end, we are looking for a projection that does not introduce new dependencies between
factors. That is, for every i, j: if v | g; and u | h; satisfying ged(u,v) = 1 we need to ensure
that ged(w',v") = 1, when v and v are the projections of u and v, respectively. The main
tool for that is the Resultant. Indeed, one of the fundamental properties of the resultant
is Res(A, B) # 0 if and only if gcd(A, B) = 1. In the multivariate setting, this condition
roughly translates into: [Vzy : Resy, (u,v) # 0] = ged(v/,v’) = 1. In other words, we

P. Bisht and |. Volkovich

need to hit all the resultants of the form Res,, (u,v) when v | g; and w | h;. By definition,

Res,, (u,v) is a determinant of 2d x 2d matrix where each entry is a coefficient of u or v.

Hence, Res,, (u,v) is t°(Y)-sparse polynomial with individual degree at most O(d?), where
t is an upper bound on the sparsities of v and v. Consequently, we can use a hitting set
generator for sparse polynomials (e.g. [20]) to hit the resultant. As u and v are factors of
s-sparse polynomials of individual degree d, the best upper by [4] will be t = §O(d*logs) Thjg
will result in a quasi-polynomial-time algorithm.

Another idea would be to use the multiplicative properties of the resultant and hit
Resy, (hj, 9;) instead. Indeed, Resy, (h;,9;) Z0 = Resg, (u,v) # 0 and since g; and h; are
s-sparse, Resg, (hj, g;) is s9(d_gparse and this would get a polynomial-time algorithm. The
main issue is that we could have Resy, (u,v) # 0 while Res, (h;,¢;) = 0. For example, if
hj =wuf and g; = vf for the same polynomial f. Going back, one may ask whether we could
show a better sparsity bound on Res,, (u,v). While we do not quite do that, we instead
show that Resy, (u,v) is a factor of some s9(d_sparse polynomial of individual degree at
most O(d?).

As the ring of polynomials forms an integral domain, this allows us to use a polynomial-size
hitting set generator for sparse polynomials.

To achieve the above goal, suppose for simplicity that ¢; = u® - v** and h; = u® o2 for
some non-negative integers a1, by, as, bo. If all these numbers are strictly positive, we run into

the same issue we have encountered earlier. That is, Resy, (u,v) # 0 while Res,, (h;, ;) = 0.

To address that, we apply Theorem 2 (our key technical contribution) which allows us
to “extract” the ged. For example, if g; = uv? and h; = u?v, we can write g; = v - uv
and h; = u - uv and obtain that Res,, (u,v) is a factor of Sy, (deg,, (uv),g;, h;), which is
an s9(?_gparse polynomial (see Observation 15). However, a sole ged extraction may be
insufficient. Consider the case when g; = uv? and h; = uwv. Repeating the same argument
will just yield a trivial statement that Res,, (v,1) = 1 is a factor of a sparse polynomial.
To overcome this difficulty, we apply the previous argument on powers of g; and h;. That
is, on g7 = w*® - v and hl = utez - vt2. The idea now would be to isolate the powers

of u from the powers of v. Within the same example, consider g? = u?v? = v - u?v? and

h3 = u*v® = u-u*v®. Now, by Theorem 2, Res,, (u,v) is a factor of Sy, (deg,, (u*v®), g7, hl).
More generally, we show how to find appropriate “small” z and ¢ using linear algebra.
Unfortunately, though, this could be made possible only when h; and g; satisfy certain
“non-degeneracy” condition w.r.t v and v. More formally, when the matrix £ 2 [(Zl 22}
1 b2
has full rank (see Lemma 20).
Our final crucial observation is that we can actually ignore “degenerate” pairs u,v. To

this end, we prove a technical lemma (Lemma 7) which could be of independent interest.

1.3.1 Exact Power Testing

Let f € Flzy,...,z,] be an s-sparse polynomial of constant individual degree d. We show
how to test whether f = ¢°, for some other polynomial g € Flzy,...,z,] and some e € N.
We utilize the notion of reverse-monic polynomials for this result. We call a polynomial h
reverse-monic, if there exists some i € [n], such that hl|,,—¢ = 1. If our input polynomial
f is reverse-monic, we show that g is s9(®-sparse. Moreover, we also get an algorithm to
compute this exact root g. We prove this in Lemmas 5.4 & 5.9 of the full version of the paper
[6], using a formal expansion that can be thought of as a generalization of the Binomial
Expansion: (1 + x)% =37 (%)x’ In general though, our input polynomial f may not be
reverse-monic. We first convert f into a reverse-monic polynomial f with respect to some

10:7

FSTTCS 2022

10:8

Sparse Polynomial Factorization Related Problems

variable x;, using a known standard transformation. This step only incurs a slight sparsity
blow-up of s%. One important property of this transformation is that it preserves the “exact
power” structure. That is, if f = ¢¢, then f = h¢, for some polynomial h. We then compute
this e-th root of the reverse-monic f , as mentioned previously.

However, we are still not quite done. It can happen that a polynomial f which was not
an exact power, may become an exact power after the reverse-monic transformation. We
need an additional condition to get the converse implication. We show that if both f and
f|z¢:0 are exact powers, then we can correctly conclude that f is also an exact power. This
gives us a recursive algorithm, as f\zi:o is a polynomial in (n — 1) variables. This procedure
is described formally in Algorithm 3 of the full version of the paper [6].

1.3.2 Co-Factor Sparsity Bound

For the co-factor bounds, our results build on the division elimination techniques of [27]. Let
us outline our approach. To this end, let f,h € F[xy, za,...,z,] be s-sparse polynomials
such that h(0,...,0) = 1 and suppose that f = gh for some polynomial g € Flx1,z2,...,x,)

oo]

with individual degree at most d. Consider the following formal expansion: ﬁln =30
Then we have: g = % = ﬁ = Z;io f(1 — h)7 when the equality is an equality
of formal sums of monomials. The key observation is that (1 — k) does not contain any
constants, hence total degree of every monomial in (1 — h)? (and hence in every summand
f(1—h)7) is at least j. Consequently, we can “discard” the tail D idnia f(1= h)7 since
every monomial in g has a total degree of at most dn. Indeed, g will be formed by a subset
of monomials of E?Zo f(1—h)7. This allows us to obtain an upper bound on the sparsity of
g:lgll < Z?zo 57+l < 5In+2_ (Clearly, the outlined approach has two major flaws:
1. It requires that h(0,...,0) =1 (or more generally, h(0,...,0) # 0). And even then:
2. The obtained bound is exponential in n.
One way to address the former is by a random shift to the variable. However, this may
significantly increase both the sparsity and the individual degree! We take a different
approach. Our main observation is that the argument still works if we treat the polynomials
as polynomials in “fewer” variables.Formally, let I C [n] of size |I| = k. We can regard the
polynomials as polynomials in the variables z; with coefficient in the remaining variables. In
particular, suppose that h|,,—o, = 1. In this case we say that h is I-reverse monic. Observe
that every monomial in (1 — h)’ contains at least one variable from z;. That is, the total
xr-degree of (1 — h)7 is at least j and hence (as before) we can discard the tail. Yet now, g
depends “only” on k variables and thus its “total” degree is kd (and not nd). This way we
obtain a better upper bound on the sparsity of g, if k is “small”: ||g| < Z?io I < ghdt2,
Of course, our approach still relies on the assumption that h is I-reverse monic for a “small”
subset I. Although we are unable to lift this assumption, we can weaken it. As was noted
earlier, if h(0,...,0) = a # 0 (i.e. when I = [n]) we can just divide by « as it is a field
element. However, this is no longer possible for an arbitrary I (especially, if I is a small set).
Yet, we observe that if hl,,—9, = @ and « is a non-zero single monomial (in the remaining
variables) we can transform h into an I-reverse monic polynomial h with the exact same
sparsity. The idea is to apply the transformation x; = « - z; for all ¢ € I. Note that since « is
a single monomial, this transformation is reversible. Indeed, there is an 1-1 correspondence
between the monomials of i and h. Given this connection, we refer to such h as I-reverse
pseudo-monic.

Our final ingredient is (yet) another observation that for multilinear polynomials we
can weaken the assumption that h is I-reverse pseudo-monic further by considering unique
projections. That is, monomials that have a “unique pattern”. Formally, we want h to have

P. Bisht and |. Volkovich

exactly one monomial that contains the submonomial: z7'z>---2;*. We show that by

K3 3
“flipping” the variables in h we can transform it into another multilinear polynomial h which
is {i1,19,...,1;}-reverse pseudo-monic. As a result, ||g|| < s¥4+2.

This is our main conceptual contribution: the upper bound on the sparsity of a multilinear
co-factor g is governed by a combinatorial property of the set of monomials of h: the length
of the shortest unique projection. As an application, we show that every s-sparse polynomial
has a unique projection of length at most log s + 1, thus we obtain a new, slightly stronger,

sparsity bound on co-factors of multilinear polynomials.

1.4 Multilinear co-Factor Motivation

Theorem 4 and Corollary 4 in this paper apply to the factorization scenario of f = gh where
f is s-sparse and h is multilinear. First of all, note that by previous results (see [4] and
references within) h itself is s-sparse. So we are looking to bound the sparsity of g. As it
turns out, this pattern is the “bottleneck” case for multicubic polynomials. In other words,
showing a polynomial-size sparsity bound on g in this scenario would imply a polynomial-size
sparsity bound on factors of general multicubic polynomials! In fact, it is sufficient to
consider the case when the degree of g in every variable is exactly 2! We remark that getting
polynomial-size sparsity bound is open for d > 3. The following lemma summarizes this
formally.

» Lemma 5. Suppose there exists an absolute constant a > 1 such that for any multicubic
polynomial f: if g | f and f/g is multilinear then ||g|| < ||f||*. Then for any multicubic

polynomial f if g | f then ||g]| < [|f]|*.
We defer the proof to Section A.

2 Preliminaries

Notations

We use the shorthand [n] for the set {1,2,...,n}. We denote a vector v = (vy,...,v,) in
short by v (as a column vector). We denote the n-fold Cartesian product of a set H by
H™. The set of non-negative real numbers is denoted by R>¢ and RZ%, denotes the space of
n-dimensional non-negative real vectors. -

Let f € F[x] = F[z1, 2, ..., 2,] be an n-variate polynomial. The individual degree of a
variable z; in f, denoted by deg, (f), is defined as the maximum degree of that variable
in f, while the individual degree of f is the maximum among all the individual degrees,
max;e[,) deg,. (f). We define the sparsity of f as the number of non-zero terms in f. Let
us denote sparsity of f as ||f|. We say that f depends on a variable x; if there exist
a,b € F" which differ only in the i-th coordinate such that f(a) # f(b). We define the set
var(f) 2 {i| f depends on x;}. For i € [n], we denote by lc,, (f) the leading coefficient of
f when written as a polynomial in x;. Formally, let f = Z;l:o fi- xf such that Vj, f; is a
polynomial in rest of the variables and fg # 0. Then lc,, (f) 2 fa. Observe that if f=g¢g-h
then Vi € [n] : lcg, (f) = lcg, (g) - 1eg, (B).

For a set I C [n], we use z; to denote the set of variables {z; | i € I'} and z[,)\; to
denote the set of remaining variables. We use the symbol f|,,—o, to denote the polynomial

resulting from substituting 0 at all the x; variables in f. Let a = (a1,...,a,) € F". For
. . . A A
i € [n] we define a partial assignment a_; = (ay,...,0i—1,0it1,...,0,) and f(z;,a_;) =
f((ll, ey Ai—13 L5y Ajg 1y Cln).

10:9

FSTTCS 2022

10:10

Sparse Polynomial Factorization Related Problems

Let f ~ g denote equality of f and g up to multiplication by non-zero a field constant,
ie. f=c-g, for some c#0€F.

2.1 Vectors and Interlacing

In this section we will state some useful properties of vectors that may be of independent
interest. We defer the proof of Lemma 7 to Section A.2.

» Definition 6 (Interlacing). Let a,b,c,d € R. We say that two pair of points (a,b) and (c,d)
interlace if (a — ¢)(b — d) < 0. Equivalently, (a — c) and (b — d) have opposite signs.

» Remark. In particular, interlacing implies that at least two of a,b, ¢, d are non-zero.
The following result relates the interlacing property with linear dependence.

» Lemma 7. Let a,b € RY; and c,d € RY, such that (Z ag, . bi) interlaces with
= = =1 =1

[

3 GCD, Resultants and Subresultants

NE
s

Cj,

dj>. Then there exists i € [n],j € [m] s.t. the matriz {ai Cj
1)

b, dj has full rank.

1

In this section we discuss the classical tool of resultants and subresultants. In Theorem 14
we prove an interesting connection which is a somewhat more general version of Theorem 2.
This result will be crucial in the design of our PIT algorithm and could be of interest in its
own right.

The polynomial ring F[z1, . .., 2,] is a unique factorization domain (UFD). Hence, the ged
of two polynomials is well defined up to a multiplication by field element. We can also define
ged with respect to a single variable x;, where we treat rest of the variables as field elements.
That is, ged,, (f,g) is well defined up to multiplication by a rational function depending
on the remaining variables. By convention, we choose the normalized gcd whenever we
consider ged, (f,g) in this work. For example, let f = iz + 2123 and g = xf23, then
ged(f, g) = x1w2 while ged,, (f, g) = x2. Technically, the former is ged in Fz1, 2] and the
latter is normalized ged in F(z1)[z2]. We now consider a somewhat more general scenario.
Let A(y), B(y) € R[y] be two non-zero polynomials of y-degree d and e, respectively in an
arbitrary UFD R. Suppose A(y) = Z?:o a; -y* and B(y) = >5_obj - y’/. Consider the
(d+e) x (d+ e) Sylvester matriz M whose first e rows are the e shifts of the row vector
(ad,---,a0,0,...,0) and next d rows are the d shifts of the row vector (b, ...,bg,0,...,0).

ad Qd—1 ce ay ap
ad ad—1 .- aj ap
a, ad—1 ..o ar o aq
M= d d 0
be be—1 ... b b
be be—1 ... b1 b
i be be1 ... b bo]

» Definition 8 (Resultant). The resultant Res, (A, B) € R is defined to be the determinant
of this Sylvester matriz. That is, Res,(A, B) = det(M).

P. Bisht and |. Volkovich

In our setting, R will be a polynomial ring, say Flzq,...,z,] and Res,(A, B) will be a
polynomial free of y-variable. The following is the most fundamental property of the
Resultant:

» Lemma 9 (See e.g. [14, 12, 8]). Let A,B € Fly,x1,...,x,] be two polynomials. Then
ged, (A, B) # 1 if and only if Res, (A, B) = 0. That is, A and B have a non-trivial factor that
depends on the variable y iff the Resultant of A, B w.r.t. y is the identically zero polynomial.

We state the following important connection between the projection of the resultant and
the GCD of projections.

» Lemma 10. Let f(y,x) and g(y,x) be two polynomials in Fly,x|. Let a € F". Then,
Resy(f, 9)(a) #0 = ged,(f(y,a),9(y,a)) = 1.

The proof can be found in Section A. We also require multiplicative property of the
Resultant that essentially follows from the definition:

» Lemma 11. Let A, B,u,v € Fly,x1,...,2,] be polynomials. Then
Resy (A, B) | Resy(uA,vB).

We now study few useful sub-matrices of the Sylvester matrix below.

» Definition 12 (j-th principal resultant). Let M; be the submatriz of M formed by deleting
last j rows of A terms, last j rows of B terms and the last 2j columns. We call M; to be the
j-th principal resultant of A and B. Note that Resy (A, B) = M = M.

We can now define the subresultant polynomial as follows.

» Definition 13 (Subresultant). Let M;; be the (d+ e — 2j) x (d + e — 2j) submatriz of
Sylvester matriz M formed by deleting:

rows e — j + 1 to e (each having coefficients of A(y)),

rows d+e—j+1 tod+ e (each having coefficients of B(y)),

columns d+ e — 27 to d+ e, except for columnd+e—1i—j.
Note that the j-th principal resultant M; is exactly M.
For 0 < j <, the j-th subresultant of A(y), B(y) € Rly| is the polynomial in R[y] of degree
j defined by Sy(j, A, B) = det(Mo;) + det(Mi;) -y + ...+ det(M;;) - y7.

We now prove our main technical result which links the ged of two polynomials, their
subresultant and the resultant of their coprime parts. Theorem 2 is a special case of this
result which, we believe, could be interesting in its own right.

» Theorem 14. Let A(z), B(x) € Rlx] be two polynomials over an arbitrary UFD R. Suppose
A(z) = f(z) - g(x) and B(x) = h(z) - g(x) with deg,(A) = m, deg,(B) = n, deg,(9) = d,
deg,(f) =m'=m —d and deg,(h) =n' =n —d. Then

Se(d, A, B) = g - Reso(f, h) - lea(g)™ L.

Due to its length and space limitation, we defer the proof of Theorem 14 to Section
A.1 in the Appendix. We conclude this section making an important observation that any
subresultant (and hence the Resultant) of two sparse polynomials of individual degree at
most d is a sum of at most d + 1 determinants of 2d x 2d matrices where each entry is a
coefficient of a sparse polynomial and, hence is itself a (somewhat) sparse polynomial of a
small individual degree.

» Observation 15. Let A, B € Fly, z1,...,x,] be two s-sparse polynomials with individual
degrees at most d. Then for any j, S,(j, A, B) is an (2ds)?**1-sparse polynomial with
individual degrees at most 2d>.

10:11

FSTTCS 2022

10:12

Sparse Polynomial Factorization Related Problems

4 PIT for XRITIXTIlnd-deg dl Circuits

In this section we prove our main result Theorem 1. We refer the reader to the full version
of the paper [6] for the formal definition of an algebraic circuit and PIT algorithm. For the
purpose of black-box PIT algorithm, we require the notion of hitting set generators (HSG)
or simply generators.

» Definition 16 (Generator). Let C be a class of n-variate polynomials. Consider G =
(G1,G2,...,Gn) : FF — F™ an n-tuple of k-variate polynomials where for each i € [n],
G; € Flt1,ta,...,tk]. Let f(xy1,...,2,) be an n-variate polynomial. We define action of G
on polynomial f by f(G) = f(G1,-..,Gn) € Flt1,...,tx]. We call G a k-seeded generator
for class C if for every non-zero f € C, f(G) # 0. Degree of generator G is defined as
deg(G) £ max{deg(G;)}"_,. We define G_; £ (Gr,...,Gi-1,Git1---,Gn) and f(z;,G_;) £
J(Gs o Gim1, %, Gig1s -, Gn)-

For a polynomial-time PIT algorithm, k is kept constant. A generator G acts as a variable
reduction map which converts an input polynomial f € F[zy,...,z,] to f(G) € F[t1, ..., tx]
such that f =0 if and only if f(G) =0. Let D be the degree of G and d be the individual
degree of f. Then G gives us a brute-force hitting-set of size (ndD)* (Lemma A.2 in the
full version of the paper [6]). In other words, we get a polynomial-time black-box PIT
algorithm for f when k is constant, G can be designed in polynomial time and its degree is
also polynomially bounded.

4.1 The XSFIIX[Ilnd-deg d] Model

A size s, depth-4 XIIXII circuit computes a polynomial of the form f = zk: 77]1[fij, where f;;
i=1j=1
are s-sparse polynomials for each i € [k],j € [m;]. ’

For k = 2, even white-box PIT for XRIIIXII circuits is still open. A more restricted
FITIYII circuits, where the top fan-in k and the bottom fan-in d are
constants. For a size-s circuit of this class, f;;’s are s-sparse polynomials of constant total
degree at most d. For k = 3 and d > 2, coming up with a polynomial PIT algorithm remains
an open question here. We now introduce, what we call the X IXIInd-deg d] model. In the
SIS model, the sparse polynomials f;;’s have constant total degree < d. We relax
this restriction to f;;’s being constant individual degree < d polynomials in Y.[MTITTlind-deg]
model. This is a more general model, since f;;’s can now have much higher total degree, like
Q(n). In Section 4.2, we give a deterministic polynomial-time black-box PIT algorithm for
this model when k = 2 and d is any constant. We also note that our PIT algorithm works
for any field I, while the works of [22, 10] do have certain field restrictions.

model is the class of ¥

4.2 The PIT Algorithm

For a polynomial f and an irreducible polynomial u, let e, (f) denote the highest power of u
in f. In other words, f = u() . g, such that u fg. If u / f, then e,(f) = 0. We define a
polynomial ® with respect to two non-zero polynomials P, @ as follows:

» Definition 17. Let P,Q € Flx1,. .., x,] be two non-zero polynomials. Define the polynomial
Opo € Flxy,...,z,] as: Ppg 2 IT Resy, (u,v) - [] lew,(P) - 1 lew, (Q), where u,v
,v |[?Q 1€[n] i€[n]
€n

are irreducible factors of P or @ such that (e,(P),e,(P)) interlaces with (e,(Q),e,(Q)).
Moreover, we only consider non-zero multiplicands.

P. Bisht and |. Volkovich

The next Lemma shows that a non-zero of ® preserves non-similarity of polynomials.

» Lemma 18. Let P,Q € Flxy, 2, ..., xy] be two polynomials such that P ~ Q and leta € F"
such that ®p g(a) # 0. Then, there exists an i € [n] such that P(x;,a_;) » Q(x;,a_;).

Proof. By our premise, we have P ~ (). By uniqueness of factorization, without loss of
generality, there exists an irreducible factor w of P, appearing with higher power in P
than in Q. That is, k& 2 eu(P) > ¢ 2 e,(Q) > 0. Let P =u* -G and Q = u*- H, for
some polynomials G, H such that u does not divide either of them. Define the set T 2
{v | v is an irreducible factor of H and e,(P) > e,(Q)}. Then let P = u* - ([], o, v -
G, Q=u’- (HveT ve“(Q)) - H', where G’, H' are the product of remaining polynomials
from G and H respectively. Pick ¢ € var(u), i.e. u depends on z;. Note that lc,, (P) # 0,
since w is a factor of P which depends on x;. Since lc is multiplicative, we get that
le,, (P(zi,a_;)) = leg, (u(zi,a_4))* - leg, (G(xi,a_;)). From our premise, we also know that
®pp(a) # 0. Then by the definition of ®p g, we get that lc,, (P(x;,a_;)) # 0, which implies
that lc,, (u(x;,a_;)) # 0. Together with the fact that u has z;-degree at least one, we
conclude that u(z;,a_;) also has x;-degree at least one. Suppose for the sake of contradiction
that P(I‘z, a—i) ~ Q(JEi7a_i). Then:

u(xi,a_i)kfe . (H ’Ue”(P)ie”(Q) (:ci,a_i)> . G’(;L“q;,a_i) ~ H’(zi,a_i).

veT

Since k > ¢ and Vv € T : e, (P) > e,(Q), LHS is a proper polynomial in the above equation.
Moreover, u(x;,a_;) divides LHS. Now since LHS ~ H'(z;,a_;) and u(z;,a_;) depends on z;,
we deduce that H'(x;,a_;) also depends on x;. By uniqueness of factorization, we also deduce

that u(z;,a_;) divides H'(z;,a_;). Let H =o' -...-v%" be the irreducible factorization of
H', for some m > 1 and e; > 1 for all j € [m], where each v; is irreducible. Here e; = e, (Q)
for each j € [m]. Then H'(z;,a_;) = vi(x;,a—;) -.. .- vm (24, a—;) ", where vj(z;,a_;)’s may

not be irreducible anymore due to substitution. Recall that u does not divide H and hence it
does not divide H' either. Since u is irreducible, we get that ged, (u,v;) =1, for all j € [m].
At the same time, recall that u(z;,a_;) divides H'(x;,a_;). Since H'(z;,a_;) depends on z;,
this implies that u(x;,a_;) shares a non-trivial factor with some v;(2;,a_;) which depends on
;. Thus, there exists some j € [m] such that ged,,, (u(xi,a_;),vj(x;,a_;)) # 1. By definition
of H', v; ¢ T and hence e,,(P) < e,,(Q) = ¢; for all j € [m]. Recall that e,(P) > e,(Q).
Hence (e, (P),e,,; (P)) interlaces with (e,(Q),e,,;(Q)). By our premise, ®p g (a) # 0. Then
by the definition of ®p g, we get that Resy, (v, v;)(a—;) # 0. By further applying Lemma 10,
we deduce that ged, (u(zi,a_;),v;(zs,a_;)) = 1, which gives us a contradiction. Hence,
P(:vi,a,i) I Q(xi7a,i). <

The following is a technical lemma for future use. The proof is deferred to Section A.

» Lemma 19. Let u,v € Flz1,22,...,2,] be two coprime and irreducible polynomials such

that var(u) N var(v) is non-empty. And suppose we have two polynomials g = u® - v and

h = u% . pb2, for some non-negative integers ay, by, as,bs. Define z 2 as+by and t 2 ai +b;.

For any i € var(u) Nvar(v), let W 2 ged,, (97, h'). Finally, let E be the following matriz:

g2 |:a1 az} Then £ — {udet(E) if det(E) >0 W {vdet(E) if det(E) >0
by by W o~ det(B) o~ det(E)

. w — .
otherwise. otherwise.

We now show that under certain non-degeneracy condition, a resultant of two factors of
sparse polynomials is itself a factor of a (somewhat) sparse polynomial.

10:13

FSTTCS 2022

10:14

Sparse Polynomial Factorization Related Problems

» Lemma 20. Let u = v € Flay,xa,...,2,] be two irreducible polynomials. Suppose there
exist s-sparse, individual degree-d polynomials g,h € F[x1, 2, ..., x,] such that the matriz
I l:eu(g) eu(h)

ev(g) eu(h)
(sd)o(ds)—sparse, O(d*)-individual degree polynomial.

} has full rank. Then for any i € [n] : Resy, (u,v) is a factor of a non-zero

Proof. Consider any i ¢ var(u)Uvar(v). Then Res,, (u,v) is defined to be 1, which is trivially
a factor of any sparse polynomial. Now consider any ¢ € var(u) \ var(v). Then by definition,
Res,, (u,v) = v (¥ Note that both e,(g) and e,(h) cannot be zero, as E has full rank.
Therefore, v is factor of g or h, which are both s-sparse. Similarly, u is also a factor of g
or h which implies deg, (u) < d. We deduce that Res,,(u,v) is a factor of an s?-sparse
polynomial. Similarly, we get the same conclusion for any ¢ € var(v) \ var(u). We are now
left with ¢ € var(u) Nvar(v), for which we shall prove below.

Let us write g = u®(9) .4 . A and h = u®=) . ") . B for some polynomials
A,B € Flxy,29,...,2,] co-prime to both v and v. Let ¢ = w9 .9 and n' =
ucs () . e (M) Further, let z = e, (h) + e, (h) and t = e,(g) + e,(g). Consider polynomials
g° = (¢')* - A* and h' = (B/)* - B'. Since both g, h have individual degree d, we know
that e,(g),ev(9),eu(h),e,(h) < d and hence s,t < 2d. Pick any ¢ € var(u) N var(v) and
consider ged, (g%, h'). Define W = ged, ((¢")%, (R)") and Y/ 2 ged,, (A, BY). Since ¢', b’

are co-prime ‘;o both A and B, we deduce that gcd,. (g7, ht) = W - Y. By our premise, we
have det(E) # 0. Without loss of generality, let us assume det(E) > 0. The other case
follows similarly. Using Lemma 19, we get that (¢')?/W = u°*) and (h')t/W = pdet(E),
Therefore, we can write g* = W .Y - qdet(E). ATZ, ht =W .Y .pdet(E). %t. Note that A%/Y and
B'/Y are proper polynomials by definition of Y. Let ¢ = deg,. (gcd(g?, h")). By Theorem 14,
there exists k > 0 such that:
Sy (6, g% Ky =W .Y - det(m) | A7 det(E).Et . LYk
v, (Lg%,) =W .Y Resxi(u v v Y> le,, (W -Y)".
Since both ¢ and h' are s??-sparse with individual degree at most 2d?, by Obser-
vation 15, S, (¢,g*, h') is (sd)o(dg)—sparse with individual degree at most 8d*. Fur-
thermore, observe that by definition: ged,, (udet(E) . ATZ, pdet(®) . %t) =1 =

Res,, (udet(E) . ATZ, pdet(®) . %t) #0 = S,.(¢,g%, ht) # 0. Finally, since det(E) is a posit-
ive integer, we use Lemma 11 to deduce that Res,, (u,v) | Res,, (udEt(E) . A727 pdet(B) . %) .

Hence, we conclude that Res,, (u,v) is a factor of a non-zero (sd)©(?")-sparse sub-resultant
polynomial. <

Using the above, we conclude that while the multiplicands in the polynomial ®p o may not
themselves be sparse, they are factors of (some) sparse polynomials. Consequently, ®p g can
be hit by a hitting set generator for sparse polynomials.

» Lemma 21. Let both P,Q € Flz1,2a,...,x,] be products of s-sparse, individual degree-d
polynomials and let G be a generator for (sd)o(ds)—sparse, O(d*)-individual degree polynomials.
Then ®po(G) # 0.

Proof. Let P = Hje[r] g; and Q = er[m] hi, where g;, hj are s-sparse polynomials of
individual degree d, for all j € [r], k € [m]. By definition, ®p ¢ has two types of multiplicands.
We will show that G hits both types.

P. Bisht and |. Volkovich

For the first type, let u,v be any irreducible factors of P or @ such that (e,(P),e,(P))
interlaces with (e, (@), ,(Q)). We wish to show that Res,, (u v) #0 = Resy, (u,v)(G) #0.

m

Observe: €,(P) = 3 eu(g)).eu(@) = 3 eulhi).ea(P) = 3 e0(g)),e0(@Q) = Z v(ht). By

definition, each of these e-values is a non-negative integer. Therefore by Lemma 7, there exists

a [eu(gs) eulhr)
€ |r], k € [m] such that £ =
vt o) v
i € [n] : Resy, (u,v) is factor of some (sd)©(@*)_sparse, O(d*)-individual degree polynomial.
Since, G is a generator for such polynomials, we deduce that Res,, (u,v)(G) £ 0.

} has full rank. Then by Lemma 20, for any

For the second type, by multiplicative property of lc, we know that for any i € [n] : lc,, (P) =
[Tjeplea(9j) and lcg, (P)(G) = [1;ep1ca:(95)(G). Note that lcg, (g;) is also s-sparse
with individual degree d. Hence, lcg, (gJ (G) # 0, for all j € [r],7 € [n]. This implies
le,, (P)(G) # 0, for all i € [n] (whenever lc,, (P) # 0). Similarly, we can show lc,, (Q)(G) # 0,
for all 7 € [n]. We conclude that ®p o(G) # 0. <

By combining the result with Lemma 18 we obtain the following corollary.

» Corollary 22. Let P,Q € Flzy1,x9,...,x,] be products of s-sparse, individual degree-d
polynomials such that P »~ Q. Let G be a generator for (sd)o(d3)—sparse, O(d*)-individual
degree polynomials. Then there exists an i € [n] such that P(x;,G_;) =~ Q(x:,G—;).

Finally, we describe the black-box PIT algorithm for ZPITIXIIind-deg 4l circuits. The
correctness and the time complexity follow from Corollary 22. Hence, Theorem 1 follows
from this Lemma. Due to space limitation we give the proof of Corollary 22 and the detailed
analysis of Algorithm 1 in Section A.3.

» Lemma 23. There exists a deterministic algorithm that given n,d,s and a black-box
access to a SPATISIII-dee | cireyit C of size s determines if C = 0, in time poly((sd)®,n).
Algorithm 1 provides the outline.

Algorithm 1 Black-box PIT algorithm for class SPITIsIylind-des dl

Input: A black-box access to a polynomial f(z1,...,x,) € SPITIXIlnd-deg d]

Output: “ZERO?, if f is identically zero and “NON-ZERO”, otherwise.

Invoke [20] to get generator G of seed-length 1 for n-variate polynomials of sparsity
< (sd)o(d3) and individual degree < O(d*).

for i < 1 ton do

fary

2

3 Compute the bivariate polynomial f(z;,G_;).
4 Do brute-force black-box PIT for f(z;,G_;).
5 if f(z;,G_;) # 0 then return “NON-ZERO”.
6 return “ZERO”.

5 Future Directions

A lot of interesting open problems arise in the context of this work:
Design a polynomial-time PIT algorithm for SIS IIlMd-dee] circuits with bounded k
and d, for k > 3. To the best of our knowledge, the smallest open case is k = 3 and d = 1!
Prove a polynomial-size sparsity bound (Conjecture 3) even for the special cases like
exact-roots, multilinear co-factors.
In particular, improve the sparsity bound in Corollary 4. Ideally, get rid of the logs
term in the exponent. One can start by studying the structure of polynomials with
non-constant or log-sized unique projections.

10:15

FSTTCS 2022

10:16

Sparse Polynomial Factorization Related Problems

10

11

12

13

14
15

16

17

18

19

Can we show that Res,, (u,v) is actually sparse (or “somewhat sparse”) under the
premises of Lemma 207 This claim will be implied by a polynomial-size sparsity bound.

References

M. Agrawal, S. Ghosh, and N. Saxena. Bootstrapping variables in algebraic circuits. Proceedings
of the National Academy of Sciences, 116(17):8107-8118, 2019.

M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 67-75,
2008.

M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 301-309, 1988.

V. Bhargava, S. Saraf, and 1. Volkovich. Deterministic factorization of sparse polynomials
with bounded individual degree. J. ACM, 67(2):8:1-8:28, 2020.

P. Bisht and N. Saxena. Derandomization via symmetric polytopes: Poly-timefactorization
of certain sparse polynomials. In Proceedings of the 42nd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2022. URL:
https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf.

P. Bisht and I. Volkovich. On solving sparse polynomial factorization related problems.
Electron. Colloquium Comput. Complez., TR22-070, 2022. URL: https://eccc.weizmann.ac.
il/report/2022/070.

B. Chor and R. L. Rivest. A knapsack-type public key cryptosystem based on arithmetic in
finite fields. IEEE Transactions on Information Theory, 34(5):901-909, 1988.

D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms - an introduction to
computational algebraic geometry and commutative algebra (4. ed.). Undergraduate texts in
mathematics. Springer, 2015.

R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193-195, 1978.

P. Dutta, P. Dwivedi, and N. Saxena. Deterministic identity testing paradigms for bounded
top-fanin depth-4 circuits. In 36th Conference on Computational Complezity (CCC 2021),
volume 5, page 9, 2021.

M. A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In FOCS, 2015.
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,
1999.

J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. Journal of
Computer and System Sciences, 31(2):265-287, 1985. doi:10.1016/0022-0000(85)90044-3.
K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer, 1992.
E. Grigorescu, K. Jung, and R. Rubinfeld. A local decision test for sparse polynomials. Inf.
Process. Lett., 110(20):898-901, 2010. doi:10.1016/j.ip1.2010.07.012.

V. Guruswami and M. Sudan. Improved decoding of reed-solomon codes and algebraic-geometry
codes. IEEE Transactions on Information Theory, 45(6):1757-1767, 1999.

V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1-46, 2004.

E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali, editor,
Randomness in Computation, volume 5 of Advances in Computing Research, pages 375-412.
JAT Press Inc., Greenwhich, Connecticut, 1989.

E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. of Symbolic Computation, 9(3):301-320, 1990.

https://www.cse.iitk.ac.in/users/nitin/papers/symmetricSparse.pdf
https://eccc.weizmann.ac.il/report/2022/070
https://eccc.weizmann.ac.il/report/2022/070
https://doi.org/10.1016/0022-0000(85)90044-3
https://doi.org/10.1016/j.ipl.2010.07.012

P. Bisht and |. Volkovich

20

21

22

23

24

25

26

27
28

29

30

31

A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages
216-223, 2001.

N. Limaye, S. Srinivasan, and S. Tavenas. Superpolynomial lower bounds against low-depth
algebraic circuits. In FOCS 2021, 2022.

S. Peleg and A. Shpilka. Polynomial time deterministic identity testing algorithm for SFIIXTI!
circuits via edelstein—kelly type theorem for quadratic polynomials. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 259-271, 2021.

C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse factorization
and duality. Computational Complezity, 22(1):39-69, 2013. doi:10.1007/s00037-012-0054-4.
S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits. Combin-
atorica, 38(5):1205-1238, 2018.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701-717, 1980.

A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and finding
variable disjoint factors. In Awutomata, Languages and Programming, 37th International
Colloguium (ICALP), pages 408-419, 2010. Full version at https://eccc.weizmann.ac.il/
report/2010/036.

V. Strassen. Vermeidung von divisionen. J. of Reine Angew. Math., 264:182-202, 1973.

M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of
Complezity, 13(1):180-193, 1997.

I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums
of univariate polynomials. In APPROX-RANDOM, pages 943-958, 2015.

I. Volkovich. On some computations on sparse polynomials. In APPROX-RANDOM, pages
48:1-4:21, 2017.

R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, pages 216—226, 1979.

A Missing Proofs

Proof of Lemma 5. We prove the following claim: Let f € F[zq, zo,...,z,] be a multicubic
polynomial such that f = uv and v # 0. Then ||u|| < |/ f||*. Note that the claim also covers

the case when f = u = 0. The proof is by induction on n (the number of variables in f).

The base case is when n = 0 (i.e. u, f,v € F) where the claim follows trivially. Suppose
n > 1. We have the following cases to consider:

There exists a variable x; s.t. deg, (u) > 1 but deg, (v) = 0. Let 1 < d < 3 be the degree
of x; in u. In this case we can write:

(udx;i—i—...—i—uo)v:uu:f:fdxid—i—...—i—fo.

Here, u;, f; and v do not depend on z;. Formally: f; = u;v for j € {0,...,d}. By the
induction hypothesis, we have that ||u;| < | f;]|* for j € {0,...,d} and hence:

d d d “
lull =D sl < DUAHIE< [DL = 1F1
j=0 j=0 j=0
There exists a variable z; s.t. deg, (v) > 1, but deg, (u) = 0. Pick a € F such that
V|z;—a Z 0. We have that:
Ti=a — f
By the induction hypothesis: ||u]| < ||flz;=all® < || £

U Vgm0 = U|g;=a -V Ti=a

10:17

FSTTCS 2022

https://doi.org/10.1007/s00037-012-0054-4
https://eccc.weizmann.ac.il/report/2010/036
https://eccc.weizmann.ac.il/report/2010/036

10:18

Sparse Polynomial Factorization Related Problems

There exists a variable z; s.t. deg, (u) = 1. Wlog deg, (v) > 1. We can write

(urzi + uo)(vaxd + ... 4 vex§) = wv = f = (far2? + ..+ foxf).

Here, d > e and vgq, v, # 0. In particular, we have that uyvy = fg41 and ugve = fe. By
the induction hypothesis: [[ul] = [ua | + ol < [l fa1 | + [foll* < 1 £]

WLOG we are left with the case that for each i € [n] we have that: deg, (u) = 2 and
deg, (v) = 1. Based on our assumption, in this case [|ul| < || f||* and we are done. <

We state the following important connection between projection of resultant and resultant
of projections.

» Lemma 24. Let f,g € Fly,x] be two polynomials and let a € F™. Then,
Res,(f,9)(a) # 0 = Resy(f(a),g(a)) # 0.

Proof. Let d 2 deg,(f), e = deg,(g), r 2 deg,(f(a)) and ¢ 2 deg,(g9(a)). Then with some
easy determinant calculations, one can show that:

Resy(f(a), g(a)) r=d,t=c¢e
(ley(f)(a))“"" - Resy(f(a), g(a)) r=dt<e
Resy(f,g)(a) = _r
W/ 9)(2) (1)@ - (le, (9)(a)*™" - Resy(f(a),g(a)) r<dt=e
0 r<d,t<e

Note that if Res,(f,g)(a) # 0, then Res,(f(a),g(a)) divides it and hence the conclusion
follows. |

Lemma 10 follows from Lemma 9 and Lemma 24.

Proof of Lemma 19. We have that: g* = (u® - ov?)? = yraztabz . gazbitbibz anq pt =
(w2 - b2)t = yaraztazby . garbatbibz - If det(E) > 0, then aijby > agb; and consequently
W = y®02teb . gasbitbiba I that case, g7/W = u®b2—®b — ydet(E) and pt/W =
p@b2—a2by — det(E) - Otherwise, if det(E) < 0, then agb; > a1by and consequently W =
ua1a2+a1b2 . ,Ualngrble. Then gz/W — ,Ullgblfalbz — ,dect(E) and ht/W —_ uagblfalbg —
u= det(E)' <

A.1 Proof of Theorem 14

In this section we give the proof of Theorem 14, from which Theorem 2 follows. We start by
stating below some known results in the theory of subresultants, which will be useful for us.

» Lemma 25 (Lem 7.1 of [14]). Let A(x), B(z) € R[z] be two polynomials over an arbitrary
UFD R. Let K be the field of fractions of R. Suppose A(z) = Q(x) - B(xz) + R(x), for
some polynomials Q, R € K[x] such that deg,(A) = m, deg,(B) = n, deg,(Q) = m —n,
deg,(R) =k and m >n > k. Let b and r denote the leading coefficients of B(x) and R(z)
respectively. Then

b=k . S.(j, B, R) 0<ji<k
prk.pnmk=l o R(z) j=k

0 k<j<n-—1
bt R(z) j=n-1

Sa(j, A, B) = (~1)" D=9

That is, S;(j, A, B) equals to one of the above four expressions multiplied by the corresponding
sign (—1)(m=2)(n=1)

P. Bisht and |. Volkovich

For the sake of completeness, we restate Theorem 14 below.

» Theorem. Let A(z), B(x) € R[z] be two polynomials over an arbitrary UFD R. Suppose
A(z) = f(z) - g(x) and B(x) = h(z) - g(x) with deg,(A) = m, deg,(B) = n, deg,(9) = d,
deg,(f) =m' =m —d and deg,(h) =n' =n —d. Then

S,(d, A, B) = g-Resy(f,h) - leg(g)™ 7 1.

Proof of Theorem 14. Let IC be the field of fractions of UFD R. Consider Euclidean division
of A by B in K[z] so that we get A(x) = Q(z)- B(z)+ R(x), for some polynomials Q, R € K[z]
such that deg,(R) < deg,(B). Note that since g divides both A and B, it must also divide
R. Therefore, R = g - p for some polynomial p(z) € K[z]. Thus, we also get

f(@) = Qx) - h(x) + p(x) (A1)

Let deg, (R) = k for some k < n and let deg,(p) = ¥’ = k — d. Now, we prove the theorem
by induction on deg, (p).

Base case. deg,(p) =k = 0. In other words, deg,(R) = k = d. Thus using second case of
Lemma 25, we get that:

Sx(d7A, B) (1)(m d)(n—d) | pm— k Tn_k_l-R
_ (1)m n' ICI()m—k -lcx(g)m_k . lcz(p)n_k_l A ICx(g)n_k_l - pg
_ (1)m n' - IC (h)m—k . lcz(p)n_k . lcx(g)m-i-n—Qk—l
Sa(d, A, B) = (=1)™" - g -leg (h)™ ™ ey (p)" 7% - lea ()™ T (A.2)

The second last step above follows because p = lc,(p) when deg, (p) = 0. Now, we shall com-
pute Res.(f, h). Note that Res,(f, h) = S.(0, f, h) by definition of subresultant. Considering
(A.1) with deg,(p) = 0, we can use second case of Lemma 25 to get:

S,(0, f,) = (—1)(de=()=0)-(dego()=0))¢ _(p)des,(H)=des,(p) . | (p)dess(h)—deg. (1)1
= (=)™ e (W)™ lea(p)” T ep [as deg, (p) = 0]
= (=)™ ey ()™ lea(p)” [as p = le(p)]

Res(f,h) = (=1)™™ -leg (h)™ " - ley (p)" " (A.3)

(A.2) and (A.3) together yield S,(d, A, B) = g- Res,(f, h) - lcz(g)™ t7' =1 for the base case.

Induction step. Now, we assume deg,(p) = kK’ > 1. In other words, deg,(R) = k > d.
Therefore, by first case of Lemma 25:

S,(d, A, B) = (—1)m=d=d) .ym=k . g (d B, R)
= (=)™ ea ()™ leg ()™ * - Su(d, B, R) (A4)
Now consider Euclidean division of B by R in K[z] to get
B(z) = Q'(z) - R(z) + R'(x) (A.5)

for some polynomial R'(z) € K[x] with deg,(R’) < deg, (R). Since g divides both B and R,
we deduce that g must also divide R'. Let R’ = g - p’ for some polynomial p’ € K[z]. Thus
from (A.5), we also get

h(z) = Q'(z) - p(z) + p' () (A.6)

10:19

FSTTCS 2022

10:20

Sparse Polynomial Factorization Related Problems

In (A.5) since deg, (R’) < deg,(R) or equivalently deg,(p’) < deg,(p), we can use induction
hypothesis to deduce that,

Su(d, B,R) = g Resg(h,p) - leg(g)” t+' 1 (A.7)

Note that deg,(p) = k¥’ > 0 in induction step, thus we can use first case of Lemma 25 on
(A.1) to get

Resw(fa h) = Sa:(oa fa h)
= (—1)(dege(N=0)(deg, (M)=0) . 1¢_(p)dees(=des=(p) . G (0, h, p)
= (=)™ leg(R)™ " . Resy (h, p)
Res, (f,h)
Res,(h,p) = . A8
eSx(ap) (_1)771’.1’7,' K lcw(h)m,_k/ ()
Substituting (A.8) in (A.7), we get:
Res (f h) ’ ’_
S.(d,B,R) =g~ s ey (g)™ R A9
(B, R) = 9 1 gy 1650 (4.9)
Substituting (A.9) back into (A.4), we get
(m’.n' . m—k . m—k . . Resl‘(f? h) . n/+k/—1
S.(d, A, B) = (—1) Ic, (h) lez(9) 9 D New (R lez(g)
=lca(9)™ " g-Res.(f,h)- lcz(g)”urkl*1 [asm —k =m' — k']
=g~ Resa(f,h) -lea(g)"H 74
=g-Res:(f,h)- lcgg(g)mur",*1 asm—k+k =m—d=m
This completes the proof of induction step, as well as that of the theorem. |
A.2 Proof of Lemma 7
Proof of Lemma 7. Without loss of generality, suppose Y a; > > ¢; and > b; < > d;.
i=1 j=1 i=1 j=1

In particular, there exists s € [n],t € [m] such that as,d; > 0. Consider the 2 x (n + m)
matrix,

é ai “en Ay, c1 e Cm

E = .
by - b, di -+ dp

Suppose E is not full-rank. Since a and d are non-zero vectors, E' is not the zero matrix and
hence it must have rank 1. In that case, the first row is linearly dependent on the second
row. Since all E’s entries are non-negative, there exist «, 8 > 0 such that a-a =/ -b and
a-c = f-d. This implies:

m

j=1

Which in turn implies:

P. Bisht and |. Volkovich

This contradicts the interlacing property. Hence, E must be full-rank. Let E’ be a 2 x 2
a; Cj

rank-2 minor of E. If E’ is of the form B’ = {b d
{ J

} for some 4,5 we are done. Otherwise,

suppose if E’ is of the form E' = [ZZ Zj } or F' = [Zz (Cij } then by the exchange property,
7 7 7 9

Qs
bs
to get a rank-2 minor of the required form. <

. . C .
we can exchange one of the columns in E’ with non-zero columns [dt} or [} , respectively,
t

A.3 Proof of Theorem 1

In this section we formally prove our main result - Theorem 1. We begin by restating and
proving Corollary 22.

» Corollary (Corollary 22). Let P,Q € Flz1,za,...,2,] be products of s-sparse, individual
degree-d polynomials such that P = Q. Let G = (G1,...,Gy) : Ft — F™ be a generator for
(sd)o(ds)—sparse, O(d*)-individual degree polynomials. Then there exists an i € [n] such that

P(xivgfi) ad Q(CUi, gﬂ').

Proof of Corollary 22. By Lemma 21, we get that ®po(G) # 0. We deduce that there
exists a set W C F of large enough size such that Q(Wt) C ™ is a hitting set for ®pg.
In particular, there exists b € W' such that for a 2 G(b), we have ®pp(a) # 0. By
Lemma 18, there exists an i € [n] such that P(z;,a_;) » Q(z;,a_;). Now suppose
P(l’i7 Q,Z) ~ Q(ifz, g,l) Then have that P(g1 (b), ey gi,l(b)7 ZTi, gi+1 (b)7 e ,gn(b)) ~
Q(gl(b),...,gi,l(b)7xi7gi+1(b)7...,gn(b)). This implies that P(z;,a_;) ~ Q(x;,a_;),
which is a contradiction. Hence, P(z;,G_;) » Q(z;,G—;). <

For completeness, we restate Theorem 1.

» Theorem. There exists a deterministic algorithm that given n,d,s and a black-box access
to a SRIMIXII-deg 4| cireuit C of size s determines if C =0, in time poly((sd)® ,n). The
algorithm below provides the outline.

Algorithm 2 Black-box PIT algorithm for class SPITISIIlind-des d]

Input: A polynomial f(zy,...,z,) € SPIIXIINddee d where bottom Y]
computes s-sparse polynomials of individual degrees < d.
Output: ZERO, if f is identically zero and NON-ZERO, otherwise.
Invoke [20] to get generator G of seed-length 1 for n-variate polynomials of sparsity
< (sd)o(dg) and individual degree < O(d?).

for i < 1 ton do

Compute the bivariate polynomial f(z;,G_;).

Do brute-force black-box PIT for f(xz;,G_;).

if f(z;,G_;) £ 0 then

| return NON-ZERO.

return ZERO.

-

10:21

FSTTCS 2022

10:22

Sparse Polynomial Factorization Related Problems

Proof. We now analyze the correctness and runtime complexity of the Algorithm.

Correctness. Note that f =0 = f(x;,G_;) = 0 trivially, for all i € [n]. Thus, the
algorithm outputs ZERO in this case, as desired. Now suppose f #Z 0. Let f = P + Q,
where both P, @Q are product of s-sparse, individual degree d polynomials. If P ~ @, then
Corollary 22 implies that there exists an i € [n] such that P(x;,G_;) ~ Q(z;,G—;). In
particular, P(z;,G_;) # —Q(x;,G—_;). Since f(x;,G_;) = P(x;,G—;) + Q(x;,G_;), we deduce
that f(x;,G—;) # 0 in this case. Now suppose f Z 0 but P ~ Q. Let P = ¢Q, for some
¢ € F. Then f = (¢+ 1)Q, where ¢ # —1 and @ # 0. This means that there exists an
i € [n] such that lc,, (Q) # 0. Using Lemma 21, we know that ®p(G) # 0 and thus by
definition of ®p g, we get lc,, (Q)(G) # 0. This implies that Q(z;,G—;) Z 0. We conclude
that f(xz;,G_;) = (c+ 1)Q(x;,G—;) # 0. Thus whenever f # 0, the algorithm outputs
NON-ZERO.

Time complexity. By [20], degree of generator G is poly((sd)ds,n). Note that f has
individual degree at most sd and thus f(x;,G_;) has individual degree < sd.deg(G). Testing
non-zeroness of the bivariate polynomial f(x;,G_;) takes only poly((sd)ds,n) time. The n
iterations only add a factor of n. |

Complexity of Spatial Games
Krishnendu Chatterjee

Institute of Science and Technology Austria, Klosterneuburg, Austria

Rasmus Ibsen-Jensen
University of Liverpool, UK

Ismaél Jecker
University of Warsaw, Poland

Jakub Svoboda

Institute of Science and Technology Austria, Klosterneuburg, Austria

—— Abstract

Spatial games form a widely-studied class of games from biology and physics modeling the evolution
of social behavior. Formally, such a game is defined by a square (d by d) payoff matrix M and an
undirected graph G. Each vertex of GG represents an individual, that initially follows some strategy
i €{1,2,...,d}. In each round of the game, every individual plays the matrix game with each of
its neighbors: An individual following strategy ¢ meeting a neighbor following strategy j receives a
payoff equal to the entry (i,5) of M. Then, each individual updates its strategy to its neighbors’
strategy with the highest sum of payoffs, and the next round starts. The basic computational
problems consist of reachability between configurations and the average frequency of a strategy.
For general spatial games and graphs, these problems are in PSPACE. In this paper, we examine
restricted setting: the game is a prisoner’s dilemma; and G is a subgraph of grid. We prove that
basic computational problems for spatial games with prisoner’s dilemma on a subgraph of a grid are
PSPACE-hard.

2012 ACM Subject Classification Theory of computation

Keywords and phrases spatial games, computational complexity, prisoner’s dilemma, dynamical
systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.11

Funding Krishnendu Chatterjee: The research was partially supported by the ERC CoG 863818
(ForM-SMATrt).

Ismaél Jecker: The research was partially supported by the ERC grant 950398 (INFSYS).

Jakub Svoboda: The research was partially supported by the ERC CoG 863818 (ForM-SMATrt).

1 Introduction

Spatial evolutionary games is a classic and well-studied model of evolutionary dynamics
on graphs, which has been studied across fields, e.g., biology [9, 8], physics [10, 14], and
computer science [3, 2].

While computer science studies games with few players and a large number of actions,
evolutionary game theory studies games with few actions and strategies but with many
players (see the survey [17]). Specifically, each spatial evolutionary game consists of a square,
skew-symmetric, bimatrix game (i.e. the outcome in entry (i,) for player 1 is the same as
the outcome for player 2 in (j,4) for all 7, j) and a finite graph. The game is played over a
number of rounds. Each node of the graph corresponds to a player. Each node/player is
associated with a current row and corresponding column. In each round, each player plays
the matrix game against each of their neighbors, by playing their row against their neighbor’s
column (because of the skew-symmetry, who plays rows and who plays columns does not
matter) and gets a payoff assigned, which is the sum of outcomes of the games they played
? Krishnendu Chatt(?rjee, Rasmus Ib'sen-Jensen, Ismaél Jecker, and Jakub Svoboda;

5v icensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 11; pp. 11:1-11:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Complexity of Spatial Games

in that round. Each player then switches to the row played by their neighbor that had the
highest payoff (or keeps their strategy). Since this is a deterministic dynamic, whenever we
reach a round such that there is a previous round in which each player had the same row as
now, the game “loops”. All spatial evolutionary games will therefore loop after at most d"
rounds when the bi-matrix is d by d and there are n nodes.

Most studied setup: Grids and prisoner’s dilemma. The standard study of spatial evol-
utionary games focuses on small (2 by 2 or 3 by 3) bi-matrices and on grids. A good
understanding of the dynamics is known for a number of such setups (including all 2 by 2
bi-matrices on 2-dimensional grids). Grids are typically chosen since in biology they naturally
model how cells interact with nearby cells. In particular, the focus has been on prisoner’s
dilemma (PD) matrices: A prisoner’s dilemma bi-matrix is a 2 by 2 bi-matrix in which the
two rows are called cooperation and defection, such that it is an advantage to defect if the
other player cooperates, but it is better for both players if they both cooperate as compared to
the mutual defection. We study these games to better understand why cooperation develops
as we see in humans and many animal species. Indeed, this was the focus of the original
paper [8] and later works extended this basic model in myriad ways:

1. What happens if you add in mobile agents [19, 5]?
2. What about age[11, 21]?
3. What if nodes/players do not have the same objectives [18, 13]?

4. What if there were different timescales [14, 22]7
See also the survey [12]. A common generalization considers more general graph types. We
mention a few examples of the papers pursuing this direction:

1. Kabir et al. showed how increasing the network reciprocity changes the likelihood of
cooperation in PD [6].

2. Hassell et al. considered how multiple different species on models with islands influence
the outcome [4].

3. Santos and Pacheco showed how scale-free networks (when generated following specific
paradigms) promote cooperation [15].

4. Yamauchi et al. showed how, if both the neighbors and strategies can change over time,
cooperation can evolve [16].

5. Ohtsuki et al. gave a simple heuristic for when cooperation can evolve on a variety of
different networks, including social networks [9].

Computational problems. The works mentioned previously usually examine how coopera-
tion spreads when the process is applied many times. The question they are trying to decide
is: Given a starting position, what is the average number of cooperators in the long run?

Open questions. The general spatial games problem is in PSPACE. This is because a
configuration consists of a strategy for every vertex, which can be stored in polynomial space,
and the update of the configuration according to the rules can also be achieved in PSPACE.
The most well-studied problem for spatial games is the prisoner’s dilemma, which has only
two strategies, namely, cooperation and defection. Moreover, such games have been studied
for special classes of graphs. The main open question is whether efficient algorithms can be
obtained for prisoner’s dilemma on graphs like grids.

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

Our results. In this paper, we consider spatial evolutionary games with a prisoner’s dilemma
matrix on subsets' of 2-dimensional grids. The subset models the situation when locations of
e.g. cells or connections between them have been destroyed or are otherwise inaccessible.
Our main result is that for subgraphs of a two-dimensional grid and prisoners dilemma
the reachability and average cooperation problems are PSPACE-hard. Additionally, we show
that induced subgraphs can loop in loops of exponential length. Subsets of grids are simpler
than scale-free or evolving networks, so our hardness result holds for more general graphs.

2 Model and definitions

Graphs and grids. A graph G = (V, E) consists of a set of vertices V' and a set of undirected
edges E. Every vertex is occupied by one individual. Edges determine pairs of individuals
that interact. Two-dimensional grids are specific graphs where each vertex is assigned a
unique pair of integers (i,), and has (at most) 8 neighbors: vertices whose pairs differ by at
most 1 in both coordinates. In our construction, we use graphs derived from grids: Given a
grid (V, E), a induced subgraph of (V, E) is a graph (V', (V' x V)N E) with V/ C V. An
subgraph of (V, E) is a graph (V/, E') with V' CV and E' C (V' x V') N E.

Games and individuals. An individual occupying a vertex has one of two types: cooperator
if it plays C' or defector if it plays D. In the figures, we use black for cooperators and white
for defectors. We call configuration of a graph an assignment of each vertex to a strategy
(cooperator or defector).

From all matrix games, we focus on prisoner’s dilemma. The game is denoted by a matrix

T =

D
C 0
D 0
where b > 1. It means that C gets 1 for interacting with C, D gets b for interacting with C,
and everyone gets 0 for interacting with D. We denote this game M?.

Steps and updates. The evolution is simulated in rounds. In one round, every individual
interacts with all neighbors and collects the total payoff. Then every individual compares
the received payoff with the payoffs of neighbors. The individual keeps the strategy if it is
the highest or changes the strategy to the strategy of a neighbor with the highest payoff (in
a tie, defection is preferred).

We denote the proccess starting from position S on graph G with a game matrix M? as

S(G, M, S).

Complexity problems. We consider two complexity problems.

REACH : Given starting configuration, does the process reach a given configuration?

AvG : For a given starting configuration, what is the average number of cooperators
(black vertices) in all succeeding configurations?

Note that for one configuration, there is only one possible succeeding configuration. This
restricts the configuration graph. That means eventually the configuration graph creates a
loop (as was noted before [20]).

! Either subgraphs or induced subgraphs

11:3

FSTTCS 2022

11:4

Complexity of Spatial Games
Figure 2 Extension of the gadget ¢ by two

cells. We extend the gadget to the lower right,

Figure 1 All configurations of the gadget cs the gadget itself can be as long as needed con-
initiated by the top left configuration. These nected to the upper left which increases period
configurations (in rows) show period 6. by 2.

Ranges of b. There is a reasonable range for b in M®. If b < 1, then the game is not a
prisoner’s dilemma. If b is larger than the maximal degree in a graph, the dynamic is trivial,
a defector cannot become a cooperator. For our constructions in this paper, we suppose that
be (%, 2). In Appendix A, we show ideas explaining how our construction can be adapted to
other values of b.

3 Exponential cycle

In this section, we show that even on an induced subgraph of a square grid, we observe a
complex behavior. Namely, there exists a graph and a configuration that returns back to the

starting configuration only after an exponential number of steps, we use () and (O) which
hide logarithmic factors.

» Theorem 1. Forb e (%, 2), there exists a graph G, induced subgraph of a square grid, with
n wvertices and a starting configuration S, such that it takes 220V steps until S(G, M, S)
reaches S again.

Proof. We describe a family of gadgets and starting configurations with different periods,
where period is the number of steps the gadget needs to return to the starting position again.
Then we combine some of them to create a graph with a period equal to the lowest common
multiple of the periods of its components.

For k > 3, we construct inductively cg, a gadget that is an induced subgraph of a square
grid with size 9 4+ 2k and period 2k. The gadget c3 in its starting configuration is depicted
on Figure 1. By rearranging and adding two squares, we create the gadget cy41 from cy, as
depicted on Figure 2.

For every integer g > 1, let us now define G4 as the disjoint union of the gadgets c,,,
Cpss -+ -5 Cp, Where p; is the i-th prime number. By the Chinese remainder theorem, the
number of steps needed so that all gadgets are in the same state is the smallest common
multiple of their periods, which is the product of the first g primes. We know that this
number is O(e91°¢9) from [7] and the Prime Number Theorem. Moreover, the number of
squares (vertices) of G, linear in the sum of the first g primes which is O(g?).

Therefore, by using a induced subgraph of the square grid of size n € N, we can create a
union of gadgets that has a period of size 22V, |

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

2b 2 0 0 3 b

|0|00 b | b | 0O |0|00 2 | 2 | b

Figure 3 Sending signal through the wire with explicit payoffs with cooperators denoted by gray.
Thicker vertices are input vertices.

o | o
$ b b 0 } 2 2 b $ 1 3 2
1 3 2 0 2b 1 0 0 2b
» 2| o] [s [] [w| 2]
0 b b 0 T 2 2 b T 1 3 2

Figure 4 Splitting the signal in two. Blue boxes denote a deleted edge with cooperators denoted
in black. Thicker vertices are input vertices.

4 Construction of a Turing machine

We show that both REACH and AvG are P-SPACE hard. For a polynomially bounded Turing
machine and its input, we create a graph of a polynomial-size that is a subgraph of the
square grid and an initial configuration of cooperators and defectors such that the process
reaches a predefined configuration if and only if the Turing machine accepts the given input.

Since both problems, REACH and AVG , can be easily solved in P-SPACE by a simulation,
that means these problems are P-SPACE complete.

» Theorem 2. For b€ (3,2) holds:

For any Turing machine T polynomially bounded by n and its input, there exists a subgraph
of a square grid G with poly(n) vertices, a starting configuration S, and a target configuration
Q, such that S(G, M?°, S) reaches Q if and only if T accepts the given input.

Moreover, for any Turing machine T and its input I, there exists a subgraph of an infinite
square grid G, a starting configuration S with poly(|I|) cooperators, and a target configuration
Q, such that S(G, M?°, S) reaches Q if and only if T accepts the given input.

We construct G as a white (defector) graph with a few black (cooperator) vertices that
carry signals and store data to simulate the behavior of T. On our figures, we use white
for defectors, black for cooperators, gray for deleted vertices, and blue for deleted edges: To
visualize deleted edges, we subdivide each square denoting some vertex v into 9 parts. The
middle square corresponds to v itself, and the other squares denote the neighbors in relative
position to v (upper-left, upper-middle, ...). To represent that an edge between two vertices
v and w is deleted, we color in blue the subsquare corresponding to w in v’s square and the
subsquare corresponding to v in w’s square.

First, we describe wires and basic logic gates. With that, we use a construction described
in [1]. We use Lemma 7 and 9 from the paper, but explain technicalities emerging from more
restrictive construction (the graph is a subgraph of a square grid). Both lemmas use simple
gadgets to create functions and then a whole Turing machine.

11:5

FSTTCS 2022

11:6

Complexity of Spatial Games

Figure 5 NOT gate: the upper signal is Figure 6 AND gate: both signals are essential
negated, the lower signal is a clock signal. to tunnel through. There are two deleted edges
denoted by blue boxes.

4.1 Basic gadgets

We describe the computational gadgets used in our construction. Every gadget g has one or
two inputs (I1, I3) and one or two outputs (O1, O3). We imagine the inputs being on the
left and bottom and the outputs on the right and top. Every gadget fits into a constantly
sized rectangle of the grid.

If at time ¢ at least one input of g is true (input vertices are cooperators and other vertices
are defectors), then at time ¢ + ¢, it outputs true or false based on a function g computes.

One input (or output) consists of two connected vertices. We say that the input is true if
both vertices are cooperators at time t and ¢ + 1, and in the first step, they can convert all
neighbors to cooperators. The previous gadget (connected by its output to the given input)

is responsible for turning the input vertices back to defectors at time ¢ + 2.

Here, some of the gadgets need to cross signals, we describe how to do it later:

Wire: it transmits a signal (See Figure 3). The wire has one input, one output, and if I is
true at time ¢, then Oy is true at time ¢ + 2.

Splitter: it splits one signal in two (See Figure 4). The splitter has one input and two
outputs. If I; is true at time 7', then O; and O3 are true at time t + 4. An interesting
property of the splitter is that it does not matter if the signal arrives from Iy or O;. From
the graph perspective, these two are symmetric.

NOT gate: it computes the logical negation, but necessitates a clock signal (See Figure 5).
The NOT gate has two inputs and one output. Input I5 is a clock input: if I; and I are
true at time ¢, then O; is false at time ¢ + 8, if only I5 is true at time ¢, then Oy is true
at time t + 8. Note that the NOT gate actually computes the function —=1; ANDI, also
the gates I; and O; are interchangeable.

AND gate: it computes the logical conjunction (See Figure 6). The AND gate has two
inputs and one output. If both I; and I are true at time ¢, then O; is true at time ¢ + 8.
Otherwise, O; is false.

XOR gate: it computes logical exclusive disjunction. We can create it from other gadgets,
but it makes our construction easier.

We compute XOR using connection of splitter and NOT gates (see Figure 7). It has two
inputs I; and I and one output O;. First every input is split to get I; 1,112,121 and
I 2, then I ; is sent to I; of NOT gate and I ; is sent to O; of a splitter S. We already
know that if only one signal equals true, then S splits the signal. If both are positive,
signals annihilate each other. So O3 of S has value Iy XORJI5. The only problem is when

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

n
(L} [5P] o

Figure 7 XOR gate: Combination of previous

gates. Signals I1 2 and I 2 are delayed such that (L] AND o1
they arrive at the NOT gate when signal I 1 or
I5,1 from the central splitter would. Figure 8 Storage unit.

I is true, and I is not (or symmetric). Then the signal travels back from the splitter
through wire I5 1, then we use the NOT gate with clock signal /5, and signal I » that
stops it.

OR gate: it computes logical disjunction. It has two inputs I; and I, and the output O;

satisfies the function (I;ANDI3)XOR([;XORIy), it consists of gadgets described above.

Note that we don’t need the NOT gate directly, so clock signal is not necessary for that
gadget.

Another gadget that the construction needs is a storage unit. It has an inner state
S € {0, 1}, two inputs and one output, see Figure 8. The storage unit consists of a big cyclic
wire where a signal loops if the stored value S is 1. If a signal is sent via I;, then the storage
unit changes state: S’ = =5, this is ensured by a XOR gate. On the cycle, there is a splitter
that splits the signal towards an AND gate. If a signal is sent via I, S does not change, but
the signal reaches AND and is sent to O if and only if S = 1. The storage unit requires

synchronicity, the signal from the input has to reach the splitter or XOR at the right time.

But this is not hard to ensure by longer wires.

4.2 Connecting the graph

To make the graph a subgraph of a square grid, we need to prove two things: we can cross
two signals, and we can ensure that the signals meet at the right place, at the right time.

Crossing. We use the structure described in Figure 13. Crossing accepts only one signal at
a time and supposes that no other signal arrives for 10 steps afterward. Crossing ensures that
in a square subset of a grid, the signal can travel only from upper left to lower right corner
and from lower left to upper right without spreading or dying out. If a signal arrives, it is
spreading to the other input and all the outputs, but the wires close to the active input get

stopped, so only the wire that is not adjacent to the input wire continues to carry the signal.

Making the construction on square grid. On the Figure 9, we see that a signal starting
at position (0,0) going to position (z,y) can take between max(z,y) and % - xy steps. The
signal also does not leave the rectangle dentoted by points (0,0) and (z,y).

Every gadget that was described above can be padded by wires of different densities such
that the gadget fits into a rectangle with predetermined width and height. Moreover, all
inputs are in the same position (relative to the rectangle) and the time of evaluation is the
same for all (constant).

11:7

FSTTCS 2022

11:8

Complexity of Spatial Games

Figure 9 Two wires of different lengths connecting two points.

Then everything in the following construction can be viewed as placing a column of tiles
(gadgets) one after another, where columns are connected by short wires.

4.3 Function construction

Here we construct a function using previously described gadgets. We bound the number of
vertices and steps needed for the construction and the function evaluation.

We imagine a function as signals going from left to right. The input and output signals
have constant horizontal distance.

» Definition 3. We say that a function f : {0,1}* — {0,1} is computed by a graph G
(subgraph of a grid) in time g and space h if G has h vertices, k inputs Iy, I5,..., Iy andl
outputs Oy, Oa, ..., Oy spatially arranged, and such that for all (x1, 2, ..., zx) € {0,1}%, if
at the time t we have I; = z; for all 1 < j <1 (and all the other vertices are defectors), then
at the time t + g we have O; =y; for all 1 < j <1, where f(x1,22,...,2k) = (Y1,Y2,---,Y1)-

Note that all our basic gadgets have a constant size. So, when analyzing the asymptotic
space complexity, we can consider these gadgets and single vertices interchangeably.

» Lemma 4. Computing the function f(x1,x2,...,2.) = (1,2Z2,...,Te, T1, T2, ..., Tc) takes
time O(c) and space O(c?).

Proof. We describe the gadget computing f. First, we split every signal and then cross every
copy of it with others to the right place. One signal needs to cross O(c) others, so that is the
number of steps and we have c¢ signals going through a wire of length ¢, that makes O(c?)
gadgets. <

» Lemma 5. Let ¢ € N. Every function f:{0,1}¢ — {0,1} mapping to 0 every tuple whose
first component is 0 can be computed in space O(3°) and time O(c?).

Proof. We use an induction on the dimension c¢ of the domain. If ¢ = 1, since f satisfies
f(0) = 0 by supposition, either f is the identity, which is realised by a wire, or f is the zero
function, which is realised by simply disconnecting the input and output.

Now, suppose that ¢ > 1, and we can realise any function f : {0,1}¢"! — {0,1} that
satisfies the condition. In particular, there exist two gadgets go and g; computing

Jo: {0,1}¢1 — {0,1},
(1,22, .., Tee1) = flz1,29,...,2c-1,0),

fl : {Oa 1}6_1 - {Oa]-},
($1;x27"~am071) = f(ml»xZa"'vmcfl)]-)'

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

Having these values, the computation is straightforward as the value f(z1,z2,...,z.) is given
by the formula

(fo(xla'rQa s 7l'c_1) A _\JIC) \ (fl(xthy “e amc—l) A xc)~

To construct a gadget g that is a subgraph of a grid g and computes f, we proceed as follows.

Computing the function. We apply the gadget described in Lemma 4 to the input, and
we use a splitter to get one more signal z;. At this point, we have the arranged sig-
nals z1, z1, 2, *3, ..., T¢, T1, T2, T3, ..., T We apply the gadgets computing fo
and fi to get the signals fo(x1,z2,...,2.) and fi(x1,29,...,x.), now the signals are ar-
ranged as x1, fo(x1,22, ..., Te1), e, f1(T1,22, ..., Te—1),T.. We cross the signals 1 and
fo(z1,22,...,2.-1), and then we use x; as clock signal towards a NOT gate with z.. By
this, we either get the signal —x., or x1 is zero, then the result should be zero anyway.

Now we send fo(z1,22,...,2.~1) and —z. towards an AND gate, similarly we send
fi(z1,22,...,2.—1) and z. towards another AND gate, and finally we send both results
towards an OR gate.

Size of the gadget. Now, we show that the computation is fast and requires a reasonable
number of vertices. Let there be a recurrent formula R, that maps any integer c¢ to the
maximal number of gadgets needed to compute the function f. Using induction, we see that
it satisfies:

Ri(c) = O(c*) + 2R,(c — 1) + O(1).
Therefore, R(c) € O(3°). Similarly, we use recurrent formula for the time needed
Ri(c) = O(c) + Re(c— 1) + O(1)
and the solution for this recurrence is O(c?). <

» Lemma 6. Let c,d € N. Every function f: {0,1}¢ — {0,1}¢ mapping to (0,0,...) every
tuple whose first component is 0 can be computed in space O(d3¢) and time O(c? + clog(d)).

Proof. The idea is easy, we split the inputs d times using Lemma 4 and then we use Lemma 5
for every copy.
Multiplying the inputs needs O(d) described in Lemma 4. We can arrange them in layers
where every layer doubles the input, so the whole multiplying takes time O(log(d) - ¢).
Then we use d gadgets described in Lemma 5 in parallel which gives time O(c? + clog(d))
and space O(d3°). <

4.4 Blob and connections

» Lemma 7. Let T be a Turing machine. For every input u evaluated by T using C € N cells
of the tape, there exists a subgraph of a grid G on O(C') vertices and an initial configuration
co of G such that T stops over the input u if and only if S(G, M®,co) forb € (%, 2) eventually
reaches a configuration without cooperators.

Proof. We suppose that the Turing machine 7" has a single final state, which can only be
accessed after clearing the tape. We present the construction of the graph G simulating T
through the following steps. First, we encode the states of T', the tape alphabet, and the
transition function in binary. Then, we introduce the notion of a blob, the building block of
G, and we show that blobs accurately simulate the transition function of T'. Afterward, we
approximate the size of a blob, and finally, we define G as a composition of blobs.

11:9

FSTTCS 2022

11:10

Complexity of Spatial Games

Binary encoding. Let T € N be the number of states of T, and T, € N be the size of its
tape alphabet. We pick two small integers s and n satisfying T, < 257! and T, < 2"~ L.
We encode the states of T as elements of {0,1}*, and the alphabet symbols as elements of
{0,1}", while respecting the following three conditions: the blank symbol maps to 0", the
final state of T' maps to 0°, and all the others map to strings starting with 1. Then, for these
mappings, we modify the transition function of T to:

F:{0,1}* x {0,1}" — {0,1}* x {0,1}* x {0,1}".

Instead of using one bit to denote if the head is going left or right, we use 2s bits to store
the state and signify the movement: if the first s bits are zero, the head is moving right; if
the second s bits are zero, it is moving left; if the first 2s bits are zero, the computation
ended. Moreover, the last n bits of the image of F' do not encode the new symbol, but the
symmetric difference between the previous and the next symbol: if the i-th bit of the tape
symbol goes from y; to z;, then F outputs d; = y; @ z; (XOR of these two).

Constructing blobs. We construct the graph G by simulating each cell of the tape with a
blob. Blob stores a tape symbol, and after receiving a signal corresponding to a state of T it
computes the transition function. The main components of a blob are as follows.

Memory: n storage units (mjy, ma, ..., my) are used to keep in memory a tape symbol
a€{0,1}" of T.

Receptor: 2s inputs (I, Iz, ..., Izs) are used to receive states ¢ € {0,1}® of T either
from the left or from the right.

Transmitter: 2s outputs (O1, Oa, ..., O) are used to send states ¢ € {0,1}* of T either

to the right or to the left.
Transition gadget: We use gadget from Lemma 6, it needs O((n + s)3"*) space and
O((n + s)?) time.

Blobs are connected in a row to act as a tape: for every 1 < i < s, the output O; of
each blob connects to the input I; of the blob to its right, and the output Os; of each blob
connects to the input I54; of the blob to its left. When receiving a signal, the blob transmits
the received state and the tape symbol stored in memory to the transition gadget gr, which
computes the corresponding transition, and then apply its results. We now detail this inner
behavior. Note that when a gadget is supposed to receive simultaneously a set of signals
coming from different sources, it is always possible to add wires of adapted length to ensure
that all of them end up synchronized.

Simulating the transition function. To simulate the transition function of T, a blob acts

according to the three following steps:

1. Transmission of the state. A blob can receive a state either from the left (through inputs
L, Is,...,I;) or from the right (through inputs Is;1, Isyo,. .., I2s), but not from both
sides at the same time, since at every point in time there is at most one active state.
Therefore, if for every 1 < i < s we denote by x; the disjunction of the signals received
by I; and I;1;, then the resulting tuple (z1,x2,...,2s) is equal to the state received as
signal (either from the left or the right), which can be fed to the gadget gr. Formally, the
blob connects, for all 1 < ¢ < s, the pair I;, Is4; to an OR gate whose output is linked to
the input I; of gp.

2. Transmission of the tape symbol. Since the first component of any state apart from the
final state is always 1, whenever a blob receives a state, the component x; defined in the
previous paragraph has value 1. The tape symbol (y1, 4o, - ..,y,) currently stored in the

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

blob can be obtained by sending, for every 1 < i < n, a copy of x; to the input Iy of
the storage unit s;, causing it to broadcast its stored state y;. The tuple continues to
the gadget gr. Formally, the blob uses n splitters to transmit the result of the OR gate
between I; and I;41 to the input I of each storage unit. Then, for every 1 < i < n, the
output O; of the storage unit s; is connected to the input I54; of gp.

3. Application of the transition. Upon receiving a state and a tape symbol, gr computes the
result of the transition function, yielding a tuple (71, 72,...,7s4s). The blob now needs
to do two things: send a state to the successor blob and update the element of the tape.

Connecting the output O; of gr to the output O; of the blob for every 1 < i < 2s ensures
that the state is sent to the correct neighbor: the values (r1,79,...,rs) are nonzero if the head
is supposed to move to the next block on the right (outputs O1,Oas,..., O are connected
that blob). Conversely, (rs4+1,7s+2,--.,T2s) are nonzero if the head is supposed to move to
the left, (outputs Ogs41,Os42,...,Oa are connected to the left blob).

Finally, connecting the output Ossy; of gp to the input I of s; for all 1 < i < n ensures
that the state is correctly updated: this sends the signal d; to the input I; of the storage
unit s;. Since d; is the difference between the current bit and the next, the state of s; will
change if it has to.

The size of blob. The size of the blob is determined by the size of the transition gadget gp:
one blob is composed of O(3"+#) vertices, and evaluating a transition requires O((n + 5)?)
steps by Lemma 6. Since n and s are constants (they depend on T, and not on the input),
the blob has constant size. Crossing wires to get them to the right place also takes space

O((n+5)?).

Constructing G. Now that we have blobs that accurately simulate the transition function of
T, constructing the graph G mimicking the behavior of T" over the input w is straightforward:
we take a row of C blobs (remember that C € N is the number of tape cells used by T'
to process u). Since the size of a blob is constant, the size of G is polynomial in C. We
define the initial configuration of G by setting the states of the |u| blobs on the left of the
row to the letters of u, and setting the inputs I; to I; of the leftmost blob to the signal
corresponding to the initial state of T as if it was already in the process. As explained
earlier, the blobs then evolve by following the run of T'. If the Turing machine stops, then its
tape is empty, the final state is encoded by 0°, and the blank symbol is encoded by 0™. So
G reaches the configuration where all vertices are defectors. Conversely, if T runs forever
starting from the input wu, there will always be some cooperators vertices in G to transmit
the signal corresponding to the state of 7. <

Proof of Theorem 2,part 1. By Lemma 7, we can reduce any problem solvable by a polyno-
mially bounded Turing machine into REACH , asking whether we reach the configuration with
only defectors. Or into AvG , asking whether the long-run average is strictly above 0. <«

Proof of Theorem 2,part 2. Again, by Lemma 7, we can create an infinite chain of blobs
and then we can reduce any problem solvable by any Turing machine into REACH , asking
whether we reach the configuration with only defectors, or into AvG , asking whether the
long-run average is strictly above 0. |

11:11

FSTTCS 2022

11:12

Complexity of Spatial Games

5

Conclusion

Our result shows that going beyond the basic grid model even slightly makes spatial games
PSPACE-hard. It ensures that there is no efficient (polynomial-time) algorithm for REACH
or Avc , even for the simplest game of prisoner’s dilemma.

We studied games with synchronous and deterministic updating. It poses a question:

does lifting any restriction permit an efficient algorithm? Moreover, we can ask whether it is
possible to construct graphs on which the game has certain properties, such as: are there
graphs where the cooperative behavior is favored?

—— References

1

10

11

12

13

14

15

16

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaél Jecker, and Jakub Svoboda. Simplified
game of life: Algorithms and complexity. In Javier Esparza and Daniel Kral’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 22:1-22:13. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.22.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. Journal of the ACM (JACM), 56(3):1-57, 2009.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195-259, 2009.
Michael P. Hassell, Hugh N. Comins, and Robert M. May. Species coexistence and self-
organizing spatial dynamics. Nature, 370:290-292, 1994.

Dirk Helbing and Wenjian Yu. The outbreak of cooperation among success-driven individuals
under noisy conditions. Proceedings of the National Academy of Sciences, 106(10):3680-3685,
2009.

KM Ariful Kabir, Jun Tanimoto, and Zhen Wang. Influence of bolstering network reciprocity
in the evolutionary spatial prisoner’s dilemma game: a perspective. The European Physical
Journal B, 91(12), December 2018.

Sebastian M. Ruiz. 81.27 a result on prime numbers. The Mathematical Gazette, 81:269, July
1997. do0i:10.2307/3619207.

Martin A. Nowak and Robert M. May. Evolutionary games and spatial chaos. Nature,
359(6398):826-829, October 1992. doi:10.1038/359826a0.

Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, and Martin A. Nowak. A simple rule for
the evolution of cooperation on graphs and social networks. Nature, 441(7092):502-505, May
2006. doi:10.1038/nature04605.

Hisashi Ohtsuki, Martin A. Nowak, and Jorge M. Pacheco. Breaking the symmetry between
interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98:108106,
March 2007. doi:10.1103/PhysRevLett.98.108106.

Matjaz Perc and Attila Szolnoki. Social diversity and promotion of cooperation in the spatial
prisoner’s dilemma game. Phys. Rev. E, 77:011904, January 2008.

Matjaz Perc and Attila Szolnoki. Coevolutionary games—a mini review. Biosystems, 99(2):109—
125, 2010.

Matjaz Perc and Zhen Wang. Heterogeneous aspirations promote cooperation in the prisoner’s
dilemma game. PLOS ONE, 5(12):1-8, December 2010.

Carlos P. Roca, José A. Cuesta, and Angel Sanchez. Time scales in evolutionary dynamics.
Phys. Rev. Lett., 97:158701, October 2006.

Francisco C. Santos and Jorge M. Pacheco. Scale-free networks provide a unifying framework
for the emergence of cooperation. Phys. Rev. Lett., 95, August 2005.

Francisco C. Santos, Jorge M. Pacheco, and Tom Lenaerts. Cooperation prevails when
individuals adjust their social ties. PLOS Computational Biology, 2(10):1-8, October 2006.
doi:10.1371/journal.pcbi.0020140.

https://doi.org/10.4230/LIPIcs.MFCS.2020.22
https://doi.org/10.2307/3619207
https://doi.org/10.1038/359826a0
https://doi.org/10.1038/nature04605
https://doi.org/10.1103/PhysRevLett.98.108106
https://doi.org/10.1371/journal.pcbi.0020140

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

17 Gyorgy Szabo and Gabor Fath. Evolutionary games on graphs. Physics Reports, 446(4):97-216,
2007.

18 Attila Szolnoki and Gyorgy Szabd. Cooperation enhanced by inhomogeneous activity of
teaching for evolutionary prisoner's dilemma games. Furophysics Letters (EPL), 77(3):30004,
January 2007. doi:10.1209/0295-5075/77/30004.

19 Mendeli H. Vainstein, Ana T.C. Silva, and Jeferson J. Arenzon. Does mobility decrease
cooperation? Journal of Theoretical Biology, 244(4):722-728, 2007.

20 Virgil. Eclogue IV. Cambridge University Press, 2008.

21 Zhen Wang, Zhen Wang, Xiaodan Zhu, and Jeferson J. Arenzon. Cooperation and age structure
in spatial games. Phys. Rev. E, 85:011149, January 2012.

22 Zhi-Xi Wu, Zhihai Rong, and Petter Holme. Diversity of reproduction time scale promotes
cooperation in spatial prisoner’s dilemma games. Phys. Rev. E, 80:036106, September 2009.

A Construction for a more general b

We can make a similar construction for different b’s than those from the range (3,2). By

selecting different b, the construction is not a subgraph of a square grid.

We can interpret the wire from Figure 3 as a path (lower row of vertices) with auxiliary
vertices (upper row) that empower the tip of the cooperator signal and also help the first
defector behind it. For different b’s, we can add more auxiliary vertices. Details are on
Figure 10.

For setting b € (%, 2), the path and auxiliary vertices interchangeable, it’s not the case for
different bs. Our construction uses this, but only to preserve the topology properties. When
we add k auxiliary vertices, we need to ensure that kb > k — 1 and kK — 1 > b. For small b,
we change the signal that it does not span two consecutive slices, but one (as on Figure 10.

1

kb k-1 b

Figure 10 Schematic wire construction for general b with the slices of size k. The numbers are
payoffs of important vertices.

B More gadgets

In this section, we provide more detailed figures for some gadgets. Moreover, you can
see videos of some gadgets in action at https://pub.ist.ac.at/~jsvoboda/research/
spatial_games/.

On Figure 11 and Figure 12 we see explicit graph shown on Figure 3 and Figure 4.

11:13

FSTTCS 2022

https://doi.org/10.1209/0295-5075/77/30004
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/

ONONONONONONO
KA LS
ONONONONONONO
0‘0‘@‘0‘0‘0‘0

Figure 11 Sending signal throught the wire with explicit payoffs.

Figure 12 Splitting the signal in two. Note that the splitter does not have a direction (a signal
from any input/output is split and sent by the other two inputs/outputs).

Figure 13 Crossing of two wires. Signal coming from left leaves the gadget by the right wire and
signal coming from bottom leaves the gadget by the top wire.

Robustly Separating the Arithmetic Monotone
Hierarchy via Graph Inner-Product
Arkadev Chattopadhyay =4

TIFR, Mumbai, India
Utsab Ghosal =

Chennai Mathematical Institute, India

Partha Mukhopadhyay =&

Chennai Mathematical Institute, India

—— Abstract

We establish an e-sensitive hierarchy separation for monotone arithmetic computations. The notion

of e-sensitive monotone lower bounds was recently introduced by Hrubes [12]. We show the following:
There exists a monotone polynomial over n variables in VNP that cannot be computed by 20(m)
size monotone circuits in an e-sensitive way as long as ¢ > 2= %n),

There exists a polynomial over n variables that can be computed by polynomial size monotone

circuits but cannot be computed by any monotone arithmetic branching program (ABP) of

n°1°8™) gize even in an e-sensitive fashion as long as € > n~?00gn)

There exists a polynomial over n variables that can be computed by polynomial size monotone

ABPs but cannot be computed in n°°8™ size by monotone formulas even in an e-sensitive way,

when € > n~?0ogn),
There exists a polynomial over n variables that can be computed by width-4 polynomial size
monotone arithmetic branching programs (ABPs) but cannot be computed in 200D size by
monotone, unbounded fan-in formulas of product depth d even in an e-sensitive way, when
€> 27Q<"1/d). This yields an e-sensitive separation of constant-depth monotone formulas and
constant-width monotone ABPs.

The novel feature of our separations is that in each case the polynomial exhibited is obtained

from a graph inner-product polynomial by choosing an appropriate graph topology. The closely

related graph inner-product Boolean function for expander graphs was invented by Hayes [8], also

independently by Pitassi [16], in the context of best-partition multiparty communication complexity.
2012 ACM Subject Classification Theory of computation — Algebraic complexity theory
Keywords and phrases Algebraic Complexity, Discrepancy, Lower Bounds, Monotone Computations
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.12

Funding Arkadev Chattopadhyay: Partially supported by a MATRICS grant MTR/2019/001633 of
the Science and Engineering Research Board, DST, India.

Utsab Ghosal: Partially supported by Infosys Foundation.

Partha Mukhopadhyay: Partially supported by Infosys Foundation.

Acknowledgements We thank the anonymous reviewers for their feedback.

1 Introduction

While considerable progress has been made in monotone complexity, several fundamental
problems remain open. In particular, it is known that monotone lower bounds of a certain
kind are enough to imply the major breakthrough of obtaining strong general circuit lower
bounds. In Boolean complexity, it has long been known [20] that monotone circuit lower
bounds for slice functions are sufficient to yield general lower bounds. In the context of
arithmetic complexity, Hrubes [12] recently formulated an analogous result by showing that
e-sensitive monotone lower bounds for arbitrarily small but non-zero € yield lower bounds
? Arkadev Chattopaf:lhyay, Utsab G'hosal, and Partha Mukhopadhyay;
5v icensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 12; pp. 12:1-12:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:arkadev.c@tifr.res.in
https://www.tcs.tifr.res.in/~arkadev
mailto:ghosal@cmi.ac.in
mailto:partham@cmi.ac.in
https://www.cmi.ac.in/~partham
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

even for non-monotone circuits. More generally, consider F,, to be the full polynomial,
(1421 4+ a2 + ---2,)", of degree n that obviously has a simple monotone circuit. For
any monotone polynomial f, Hrubes showed that super-polynomial lower bounds on the
monotone circuit (branching program, formula) size for F,, + € - f for arbitrarily small € > 0,
yields general lower bounds on circuit (branching program, formula') size for computing
f- Interestingly, most of the candidate polynomials used in the lower bound literature are
set-multilinear. However for general set-multilinear circuits the current best known lower
bound is nearly quadratic [1] which is obtained via the lower bound for syntactic multilinear
circuits. Before aiming for a general circuit lower bound result via e-sensitive approach, a
realistic goal could be to prove strong lower bounds for set-multilinear circuits. It can be
observed easily from the result in [12] that setting Fy, ,, == Hle(xm + -+ miy) to be the
full set-multilinear polynomial (over k x n variables) and proving e-sensitive bounds (for
sufficiently small €) yields general set-multilinear circuit lower bounds. More concretely, the
following theorem is implicit in [12].

» Theorem 1.1 ([12, Re-statement of Theorem 1 from the work by Hrubes$]). Let f be a
set-multilinear polynomial of degree k which is defined over a matriz of variables Xyxn. If f
has a set-multilinear circuit of size s then there exists eg > 0 such that for every 0 < e < €

the polynomial Hle (Z;-lzl xi,j) + e- f has a monotone circuit of size poly(s,n, k).

In fact in the above theorem ¢y ~ 2% suffices. Hrubes argues that proving e-sensitive
lower bounds even for moderately small € seems to be non-trivial as it’d require exploiting
information of the values of coefficients of monomials appearing in f. Most techniques
employed for proving monotone lower bounds ignore the specific values of coefficients. They
use the structure of the support set of the monomials alone. With respect to such techniques,
the determinant and permanent polynomials, two polynomials that Valiant’s VP vs. VNP
conjecture asserts have very different complexities, remain equivalent. Some recent works
that are able to exploit the values of coefficients are that of Yehudayoff [21] and the work of
Srinivasan [18] that builds upon the former. However, these techniques have not yielded so
far e-sensitive lower bounds. Such bounds were recently obtained by Chattopadhyay, Datta
and Mukhopadhyay [5] and by Chattopadhyay et.al. [4], adapting techniques from 2-party
communication complexity.

Motivated towards gaining a better understanding of e-sensitive computations, we revisit
the question of separating the powers of some of the key monotone arithmetic models:
circuits, branching programs, formulas and constant-depth (unbounded fan-in) formulas.
Arvind, Joglekar and Srinivasan [2] proved that constant-depth monotone formulas are strictly
less powerful than monotone formulas of unrestricted depth by considering a specialized
polynomial. Hrubes and Yehudayoff [10] showed that elementary symmetric polynomials
cannot be computed in polynomial size by monotone formulas. This provides a separation of
the powers of monotone formulas from that of monotone ABPs. Later, a different work of
Hrubes and Yehudayoff [11] showed a similar separation of the power of monotone ABPs and
monotone circuits. This required the construction of an altogether different polynomial. Very
recently, Komarath, Pandey and Rahul [13] provided a unified treatment of these separations

L The case of formulas comes with the following subtlety: Hrubed argument uses a homogeneization trick.
Unlike circuits or ABPs, we don’t know yet if formulas can be homogeneized without significant blow-up
[17, Subsection 5.1]. This seemingly prevents a direct application of Hrube§’ argument to formulas.
Nevertheless, using the fact that size s ABPs can be simulated by size sloes formulas, one concludes
quite easily that an e-sensitive monotone lower bound for formulas of the form n(een)™ o any ¢ > 0,
is sufficent to imply super-polynomial lower bounds even for general ABPs.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay

(not including the separation between constant-depth formulas and formulas of unrestricted
depth) by making use of graph homomorphism polynomials. Hence, it is natural to ask if
these separations can be strengthened or made robust in the following way: can we exhibit a
polynomial f that has polynomial size monotone circuits (ABPs) but even F,, + € - f has no
polynomial size monotone ABP (formula)?

The main contribution of this work is to provide such robust separations between the
power of monotone circuits, ABPs, formulas and constant-depth circuits in a unified way. The
full polynomial is used for the set-multilinear setting and we are able to handle fairly low range
for the parameter € in our results. Our separations build on the connection developed in [5, 4]
between randomized communication complexity and e-sensitive lower bounds. In particular,
this allows us to exhibit a general framework to define graph inner-product polynomials such
that simply changing the graph appropriately yields the required polynomial for each of
our separations. More precisely, given an undirected graph G on k vertices and a number
m, we first define a Boolean function, called the graph inner-product function and denoted
by IPg : {0,1}F*™ — {1, —1}. Let V(G) := {uy,...,ur}. We identify each vertex with a

variable u that takes m-bit binary vectors as values. Then,

S @
Pe(@, ..., af) = < = 1)“1"“]‘)““")

where ¥(ug,u;) € B(GQ), (u},u}) = 2 tem] ul-ul and ul = (ui,ub, ... ul) € {0,137

We consider a set-multilinear polynomial over an input matrix X of dimension k X n
with entries X[i, j] := x;; of indeterminates, and n = 2™. The monomials will naturally
encode satisfying assignments to the Boolean graph inner product function defined above.
Towards this, define M[X] to be the set of all set-multilinear monomials of degree k over
X ={X;| i € [k]}, where Vi X; = {x; ;| j € [n]}. With every map v : [k] — [n], we identify
a monomial k,, € M[X] as m,, = [[;_; 2;,,(;)- This forms a bijection between set M[X] and
T = {v| v:[k] — [n]}. Now each map v € T can be identified by a k tuple of m-bit vectors
(4, ...,7) where for every i € [k] 7/ is the binary representation of (i) € [n]. So in this
way, given map v : [k] — [n], any set-multilinear degree k monomial k = 1 ,,(1) " - Tr,u(k)
corresponds to a k tuple of m-bit vectors k = {7{, e V_;:} where each 7 is the binary
representation of v(t).
Let

)

fG,m = Z K

IPc(r)=—1

be called the IP¢ ,,, polynomial.
Further, let

k

Fom =[] (@ia+- +2in),
i=1

be the full set-multilinear polynomial over M[X].
We can now state our first theorem that implies the first strongly exponential e-sensitive
monotone lower bounds for an explicit (monotone) polynomial in VNP. Recall that n = 2™.

» Theorem 1.2. Let G be a constant-degree expander graph on k wvertices. Then, there
ezists a constant ¢ > 0 such that any monotone circuit computing either of the polynomial

Fipn T e fam has size 20(km) g long as € > 27°km,

12:3

FSTTCS 2022

12:4

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

» Remark 1.3. Plugging m = 1 in Theorem 1.2, we recover the claimed strongly exponential
lower bound as long as e = 27",

The VNP upper bound for the polynomial fg., follows from Valiant’s criterion [19,
Proposition 4].

Our second theorem obtains an e-sensitive separation between monotone circuits and
monotone ABPs.

» Theorem 1.4. Let T be the full binary tree on k vertices. Then, fr ., can be computed by
monotone circuits of size O(kn3). On the other hand, there exists a constant ¢ > 0 such that
any monotone ABP computing either of the polynomial Fy, ., = €- fr ,, has size k™) g5 long
as e > k—°m,

We next provide an analogous separation between monotone ABPs and monotone formulas
by considering a path.

» Theorem 1.5. Let I' be a simple path on k vertices. Then, the polynomial fr ., can be
computed by a monotone ABP of size O(lm) On the other hand, there exists a constant
¢ > 0 such that any monotone formula computing either of the polynomial Fy, ,, £ €- fr , has
size k(M) g long as € > k=™,

» Remark 1.6. Dvir et al. [7] exhibited a monotone multilinear polynomial that is computable
by a polynomial size monotone ABP but requires n2(°¢™) size to be computed by every
multilinear formula. As their lower bound on multilinear formula size is obtained via rank
based arguments, it also implies e-sensitive monotone lower bounds of n(1°8™) even for
arbitrarily small non-zero e. However, let us recall that the polynomial used by Dvir et al. is
a more involved polynomial that is not based on the inner-product function.

Finally, we provide a separation between constant-depth monotone formulas and monotone
formulas. In fact, we provide a stronger separation, that of monotone constant-depth formulas
and constant-width ABPs.

» Theorem 1.7. Let I' be a simple path on k vertices. Then, the polynomial fr i can be
computed by a monotone width-4 ABP of size O(k) On the other hand, there exists a
constant ¢ > 0 such that any monotone formula of product-depth d computing either of the

(k1%

polynomial Fy 5 + € - fr 1 has size 27 as long as € > 27",

» Remark 1.8. It is known that poly-size bounded-depth monotone formulas can be simulated
by poly-size bounded-width monotone ABPs which in turn can be simulated by monotone
formulas of unrestricted depth and polynomial size. Our result, thus in particular, shows that
the class of polynomials computed by constant-depth monotone formulas of polynomial size
are strictly contained (in a strong sense) in the class of polynomials having bounded-width
monotone ABPs of polynomial size. The work of Nisan and Wigderson [15] already implies
such a separation, even for arbitrarily small e, but uses a different polynomial. More precisely,
they show that any product-depth d set-multilinear circuit for computing the iterated matrix

multiplication polynomial (over 2 x 2 matrices) IMMs ,, must be of size 202(n*/%),

1.1 OQutline of our Technique

We build upon the insight relating e-sensitive lower bounds with the measure of discrepancy
under universal distributions, originating in [5, 4]. Both of these works prove lower bounds
against monotone circuits for polynomials that are not known to have any efficient monotone
computation. The main concern here is to prove separations in the monotone hierarchy.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay

Thus, the new challenge is to come up with far “easier polynomials” to which a discrepancy
like measure can still be applied. The canonical example of a “function” to which the
discrepancy method applies in communication complexity is that of Inner-product. However,
one important difference between the setting of standard 2-party communication complexity
and arithmetic circuits is that while in the former, every rectangle that appears in a rectangular
decomposition conforms to the same partition of inputs among the players, in the latter each
product polynomial appearing in a decomposition is free to have its own partition of the
input variables. Indeed, the standard Inner-product function becomes trivial for the best
(w.r.t the players) partition.

This is why we turn to best-partition communication complexity, a slightly non-standard
model. The relevance of considering graph inner-product based functions was also pointed
out by Hrubes and Yehudayoff [11]. Hayes [8], and independently Pitassi [16], designed
an appropriate version of the Inner-product function that they called Graph inner-product
(see the definition from the Introduction) which they proved is hard against all (balanced)
partitions. To do this, they chose the graph to be a constant-degree expander. A standard
property of such an expander is that the size of any balanced cut is large. This allows one
to say that for every possible partition of inputs among the players, one can induce a large
copy of the standard inner-product as a sub-function for which the given partition is the
worst for the players. This does not immediately give us a monotone arithmetic circuit
lower bound. To get there, we need to argue against many partitions appearing together in
the decomposition. This is where we use the idea from [4] of discrepancy w.r.t universal
distributions that is a measure which is partition independent. This gives us our Theorem 1.2,
an e-sensitive strongly exponential lower bounds against monotone circuits.

How does one tune the complexity of a graph Inner-product polynomial so that it becomes
easy for monotone circuits but remains robustly hard against monotone branching programs?
The starting point is to look at the (not robust) separation of these two classes by Hrubes
and Yehudayoff [11]. They showed that there is a subtle difference between decomposition
theorems for ABPs and that of circuits. ABPs give rise to a slightly more structured
decomposition where, for every r, we can force each product polynomial to have a partition
such that one part has size exactly r. They further showed that for the full binary tree
on k vertices, any cut where one side has r(k) vertices, has size (k). Exploiting this
insight, we establish Theorem 1.4 by proving a universal discrepancy bound for all such
partitions on the binary-tree inner-product function. It is to be noted that [11] also describes
a general connection between the choice of a graph and the properties of the corresponding
inner-product function.

To separate formulas from ABPs, we use the fact that the decomposition theorem for
formulas provides even more structure. Here, every polynomial of degree k appearing in a
decomposition can be written as a product of about log k-many polynomials rather than
two. This corresponds, with the usual caveat of mixed vs. best partition, to the case
of the best-partition log k-party number-in-the-hand model of randomized communication
complexity. While the goal of having an efficient ABP upper bound for the polynomial
forces the corresponding 2-party game to be easy for at least some partition, choosing the
graph to be a simple path ends up having the following simple but remarkable feature: for
every balanced log k-wise partition of the inputs, one can design a 2-party game with a
hard partition. This reduces the task to proving a discrepancy bound for this hard 2-party
partition which drives Theorem 1.5.

To separate monotone ABPs of constant width from monotone constant-depth (but
unbounded fan-in) formulas, we first note that keeping the path inner-product polynomial
becomes easy for ABPs of constant width once we restrict each node in the path to have

12:5

FSTTCS 2022

12:6

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

two (or any constantly many) variables instead of n. Finally, we exploit the super-structured
decomposition theorem for constant-depth (but unbounded fan-in) formulas. Each product
polynomial now is the product of k'/%-many set-multilinear product polynomials, where d is
the product-depth of the formula. Using similar ideas as in the proof of Theorem 1.5 with
this additional structure, we establish appropriate discrepancy bounds to yield Theorem 1.7.

Organization

The paper is organized as follows. We provide some background mainly on communication
complexity and monotone algebraic complexity in Section 2. In Section 3, we prove results
on discrepancy bounds for graph inner product function. The proof of Theorem 1.2 is given
in Section 4 that shows e-sensitive lower bound for monotone circuits. Section 5 contains
the proof of Theorem 1.4 which shows the separation between monotone circuits and ABPs.
Finally in Section A, we provide the proofs of Theorem 1.5 and Theorem 1.7 establishing
the separations between monotone ABPs vs formulas, and constant width ABPs vs constant
depth formulas.

2 Preliminaries

Notation

Let [n] = {1,2,...,n}. Polynomials are always considered over R[X] where R is the set of
reals.

Set-Multilinear Polynomials

Let X = Lﬂle X, be a set of variables where X; = {x;1,%;2,...,%in}. A polynomial
f € R[X] is set-multilinear if each monomial in f respects the partition given by the
set of variables Xy, Xs,..., Xx. In other words, each monomial xk in f is of the form
21,5, 22,5, - Tk,j,- For the purpose of the paper it is also useful to think the variables are
from a matrix Mpx, where the i'" row is {z; 1, Ti2, .. Tin}

Ordered Polynomials

For a monomial of the form m = z;, j, i, j, - - - Tsy, j,, We define the set I(m) = {i1,42,..., 1k}
If a polynomial f has the same set I(m) for every monomial occurring it it with a nonzero
coefficient, then we say that the polynomial is ordered and we write I(f) = I(m) for each m.
Clearly, the set-multilinear polynomials are ordered polynomials with I(f) = {1,2,...,k}.

Set-Multilinear Circuits

We recall the definition of set-multilinear circuits [3]. The definition can be extended to
set-multilinear ABPs and formulas naturally.

» Definition 2.1. A circuit computing a set-multilinear polynomial f over the variable set
X =W, X; is called set-multilinear if at every gate the circuit computes a set-multilinear
polynomial with respect to an induced partition.

More precisely, for every node w in the circuit we can associate a set of indices I,, C [k] such
ier, Xi- So for
any node I,, = I(f,). If u is a 4+ node with children uy,ug then I,,, = I,,, = I,,. If uis x
node with children wuy, us then I, = I, |f I, .

that the set-multilinear polynomial f, computed at node u is defined over |+

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay

2.1 Structure of Monotone Circuits

The main structural result for monotone circuits that we use throughout, is the following
theorem.

» Theorem 2.2 ([21, Lemma 1]). Letn > 2 and f € R[X] be an ordered monotone polynomial
with I1(p) = [k]. Let C' be a monotone circuit of size s that computes f. Then, we can write
[=>,_1a; b where a; and b, are monotone ordered polynomials with g < (ay)| < %
and I(by) = [k] \ I(a:). Moreover, atby < f for each 1 <t <'s, by which we mean that the
coefficient of any monomial in a;b; is bounded by the coefficient of the same monomial in f.
A partition P = (A, B) of [k] is said to be perfectly balanced if |A| = |B| = g and is said to
be nearly balanced if & < |A|,|B| < 2£. An ordered product polynomial a - b on n variables
is said to be nearly balanced if £ < |I(a)l,|I(b)| < 2.

2.2 Structure of Monotone ABPs
We recall the definition of algebraic branching programs (ABPs).

» Definition 2.3 (Algebraic Branching Program). An algebraic branching program (ABP)
is a layered directed acyclic graph. The vertex set is partitioned into layers 0,1, ...k, with
directed edges only between adjacent layers (i to i+ 1). There is a source vertezx of in-degree
0 in layer 0, and one out-degree-0 sink vertex in layer k. Each edge is labeled by an affine
F-linear form where F is the underlying field. The polynomial computed by the ABP is the
sum over all source-to-sink directed paths of the ordered product of affine forms labeling the
path edges.

The following structure theorem is well-known.

» Theorem 2.4 ([11, Lemma 3]). Let f be a degree k monotone set-multilinear polynomial

computed by a size s ABP. Then for every j € [k] there exists s pairs of monotone set-

multilinear polynomials {g;, h; |i € [s]} such that f =3 g; - hy where for every i, |I(g;)| = j
i=1

and |I(h;)| =k —j. (I(g:),I(h;)) gives a partition of [k].

2.3 Structure of (Monotone) Set-Multilinear Formulas

» Definition 2.5 ((Monotone) Set-Multilinear-log-Product Polynomials.). A degree k polynomial

f defined over a kxn matrix M of variables is called a (monotone) set-multilinear-log-product

polynomial if there exists p (monotone) set-multilinear polynomials f1,. .., f, such that the

following holds.

1. f= H?:l fi-

2.Vie[p—1], (3)'k < |I(fi)] < (3)'k where I(f;) is the set of rows of M on which the
polynomial f; is defined.

3.V i, I(f)NI(f;) =0.

4. |1(f,)| = 1.

The following structure theorem is well-known and proved in [10]. However, we include a
self-contained proof in the appendix for completeness.

» Theorem 2.6 ([10, Lemma 4]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s. Then there exists (monotone) set-multilinear-log-product
polynomials g1, g2, ...,qgs such that 8 <s, f=g1+ga+ -+ gs.

12:7

FSTTCS 2022

12:8

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

2.4 Structure of (Monotone) Set-Multilinear Constant Depth Formula

» Definition 2.7 ((p,¢)-Form). A degree k (monotone) set-multilinear polynomial f defined

over a matric My, of variables has a (p,£)-from if there exists p (monotone) set-multilinear

polynomials fi,..., f, such that the following holds.

1. f= Hf:1 fi-

2. Vi € [pl, |I(fi)| > ¢, where I(f;) is the set of rows of Myxn on which the polynomial
fi is defined.

3% it I(f)NI() =0

The following theorem is a re-statement of Lemma 9 in [10]. For completeness, the proof is

included in the appendix.

» Theorem 2.8 ([10, Lemma 9]). Let f be a degree k set-multilinear polynomial computed by
a (monotone) formula of size s and product depth d. Let ¢ > 1 be a natural number such
that k > (2q)%. Then there exists (monotone) set-multilinear-(q, k(2q)~?)-form polynomials
91,92, -+, 9s such that s <s, f=g1+ga+- -+ gs.

2.5 Communication Complexity

We recall some basic results from communication complexity. The details can be found
in [14]. Let us very briefly first recall basic notions in the 2-party communication model
of Yao. The joint input space of Alice and Bob is {0,1}™ x {0,1}™ with each player
receiving an m-bit Boolean string, and they want to evaluate a Boolean function F :
{0,1}™ x {0,1}™ — {—1,1}. One defines a combinatorial rectangle R as a product set
A x B, for some A, B C {0,1}™. Put another way, R is just a sub-matrix of the 2™ x 2™
communication matrix Mg of the function F', that Alice and Bob want to compute. The
rows of this matrix are indexed by possible inputs of Alice and the columns by the ones of
Bob and Mp(x,y) = F(x,y). One of the important notions is discrepancy. For a rectangle R,
the discrepancy Discs(F, R) := [6(RN F~1(1)) — (RN F~'(—1))| where 4 is a distribution
on the input space {0,1}™ x {0,1}™. In other words,

DiSCg(F, R) = (IE) 6[F(:Cay)R(xay)] .
€,y)~

The discrepancy of F' under ¢ is defined as
Discs(F) == max Discs (F, R).

In this work, we will be forced to look at variable partition models. That is, the n input bits
will be partitioned among Alice and Bob in multiple ways. Each such partition P has its
own set of rectangles, denoted by R(P). Hence, we define,

Discs, p(F) == max Discs(F, R).

RER(P)

The 2-party model extends to t-party model naturally. Here, we have t players
Py, Py, ..., P, and the joint input space is {0,1}™ x {0,1}™2 x ... x {0,1}™. Player
P; receives an input from {0,1}™:. Together, they want to compute a function F' :
{0,1}™ x {0,1}™2 x --- x {0,1}"™ — {—1,1}. We can similarly define a combinatorial
rectangle R = Ry X --- X Ry where each R; C {0,1}™:. For any distribution ¢ over the input
space {0,1}™ x {0,1}™2 x --- x {0,1}™ and a rectangle R we define

Disc5(F, R) == [6§(RNF~'(1)) = §(RNF~'(-1))]. (1)

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay 12:9

Now we define the discrepancy of F' in the following way,
Disch(F) = max Disch(F, R)

Exactly like in the two-party case, we will be considering the t-party discrepancy w.r.t
multiple ¢t-way partitions. Hence, given such a partition P, we analogously define Discf;, p(F).
Let us recall the inner product function,

9

S
P, (x,y) = (- 1)

that is widely studied. It is well-known that the two-party discrepancy of the inner product
function is small under the uniform distribution ¢ over {0,1}™ x {0,1}™. This was first
proved by Chor and Goldreich [6]. A self-contained proof can be found in [14].

» Theorem 2.9 ([14, Example 3.29]). Under the uniform distribution U over {0,1}™ x{0,1}™,
Discyy (IP,,) = 27,

3 Discrepancy Bound for Graph Inner Product

3.1 Graph Inner Product Function

Given a graph G on k vertices {uy,ua,...,u}, we identify each vertex w; with variable ul
which takes m-bit binary vectors as values. Now we define the following function

> (ui,uj)
PG (Ui, ..., uf) = (— 1)<“’i=“f)€E‘G>
where V(u;, u;) € E(G) and (uj,w)) = > telm) wioul and @) = (ul,ub,ul, .. ul) e {0,1}™.

3.2 Graph Inner Product Polynomial

Consider the input matrix X of dimension k x n with entries X[i, j] := x; ; of indeterminates,
and n = 2™. Define M[X] to be the set of all set-multilinear monomials of degree k over
X = {X;| i € [k]}, where Vi X; = {x; ;| j € [n]}. With every map v : [k] — [n], we identify
a monomial k,, € M[X] as &, = Hle T ,(;)- This forms a bijection between set M[X] and
T ={v|v:[k] = [n]}.

Now each map v € T can be identified by a k tuple of m-bit vectors (V_1>, ceey V_>k) where
for every i € [k] 77 is the binary representation of v(i) € [n]. So in this way, given map
v : [k] = [n], any set-multilinear degree & monomial £ = 1 (1) - - - T (k) corresponds to a k
tuple of m-bit vectors ® = {u{,..., v}

Let the polynomial,

fG,m = Z K

IPe(®)=—1

be denoted as IPg,,, and be called the G-Inner product polynomial.

3.3 Discrepancy and Lower Bound Correspondence

Recently in [4], a correspondence between e-sensitive monotone lower bound for a 0 — 1
coefficient polynomial f and an appropriate communication problem has been established via
the discrepancy measure. There the authors only considered the two-party communication

FSTTCS 2022

12:10

Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

problem. Here we extend it to ¢-party communication problem for ¢ > 2. Let (Ay, As, ..., A¢)
be any partition of [k] and let there be t players Pi,..., P;. The players are given a map
v : |[k] — [n] in a distributed fashion, i.e, P; gets a map v; : A; — [n]. They jointly
want to decide if the monomial x, is present in polynomial f or not. In other words, the
players want to compute a Boolean function, denoted by C/ : {0, 1}¥*™ — {1, —1}, where
Cf(v(1),...,v(k)) = —1 if monomial x, has coefficient 1 in f and otherwise C/ evaluates
to 1. Inspecting the proof in [4], it is easy to observe that the lower bound technique is
independent of the monotone computation model. In particular, it applies to ABPs, formulas
and constant depth formulas using their respective structure theorems. that is Theorem 2.4,
Theorem 2.6 and Theorem 2.8. More precisely, we can restate their result in the following
form.

» Theorem 3.1 ([4, Adaptation of their Theorem 1.3]). Let f be any 0 — 1 set-multilinear
monotone polynomial defined over a matriz of variables of dimension k x n. Let A be a
distribution over [k]™.

1. The monotone ozrcuzt complezity of Fypn—e-f (resp. Fn+e- f)is at least 5= (resp 67)
as long as € > =1~ (resp €> T=15% 12), where v := maxp Disca p(CY) and P is any nearly
balanced 2-wise pam‘ztzon of [k].

2. Letr E [k]. Then the monotone ABP complexity of Fk n—€-f (resp. Fyn+e€-f)is at
least 3= (resp. g5) as long as € > =5 (resp. € = 5 12), where v := maxp Disca p(C7).
Here the maz runs over all 2-wise partztzons P = (A, B) of [k] such that |A| =r.

3. The monotone formula complexity of Fi, , —€- f (resp. Fn+e€- f) is at least o (resp. &)
as long as € > % (resp. € > %), where v = maxp DisctAJg(Cf), P runs over all
t-wise partitions with t = Q(log k).

4. The monotone product depth d formula complexity of Fk n—¢-f (resp. Fpn+e€-f)isat
least 5 (resp. & —2L—), where v := maxp DisctA,P(Cf),

1— 12’y
P runs over all t wise partztzons wzth t= Q(kd)

3.4 Good Matching in Graphs

Consider a graph G on vertex set V. For a partition P = (V1,V3) of V, let Gp be the induced
bipartite graph, i.e., E(Gp) = {(u,v) : (u,v) € E(G),u € Vi,v € Va}.

» Definition 3.2. Let G be a graph and P = (V1,Va2) be any partition of the vertex set.
A matching M in the induced bipartite graph Gp is called good if for every pair of edges
(s, wy), (uj, wy) in M, none of (u;,u;), (ui,w;), (Wi, w;) and (uj,w;) are in E(G). Further,
we define

7(G,P) = max | M.
M is good w.r.t P

» Lemma 3.3. Let G be any graph with maximum degree d. Then for any partition P of the
vertex set of G, we have (G, P) > %.

Proof. Consider the graph Gp and build a matching M C E(Gp) by the following process,

starting with an empty M.

1. If E(Gp) is empty, return M. Otherwise, add any edge (u,v) in E(Gp) to M.

2. Remove every edge currently in F(Gp) that is incident to a vertex that is a neighbour of
u or v (including themselves) in G.

3. Go back to 1.

A. Chattopadhyay, U. Ghosal, and P. Mukhopadhyay

Observe that after each completion of step 2, the number of edges newly added to M is 1
and the number of edges removed from E(Gp) is at most 2d? since degree of a vertex in G
(and therefore in Gp as well) is at most d. Thus, size of M is at least %. It’s simple to
verify that the pruning done at step 2 ensures M forms a good matching. |

The following lemma gives a lower bound on the size of a good matching in a constant
degree expander graph. The proof follows by a simple application of the Expander Mixing
Lemma [9, Lemma 2.5] and Lemma 3.3 . Similar arguments also appear in [16, Lemma 4.2]
and in [8]. We provide a proof for the sake of completeness in the appendix.

» Lemma 3.4 ([16, 8]). Let d be a constant and G be a d regular expander graph on k
vertices with the second largest eigen value of the normalized adjacency matriz < % and
P = (V1,Va) be a nearly balanced partition of the vertex set V.. Then, 7(G, P) = Qdeg)

The notation €4 hides a constant that depends on d.

The next lemma is about good matching in a full binary tree.
» Lemma 3.5. Given a full binary tree T on k vertices, there exists a number t ~ %k , such
that for any partition P = (V1,Va) of the vertex set with |Vi| =t, 7(T, P) = Q(log k).

Proof. In [11], it is shown that there exists a number ¢ & %k such that for any partition
P = (V1,V,) with |V;1| = ¢, the induced bipartite graph Tp has Q(log k) many edges. Since
the maximum