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Abstract
We consider the online version of the piercing set problem where geometric objects arrive one
by one. The online algorithm must maintain a piercing set for the arrived objects by making
irrevocable decisions. First, we show that any deterministic online algorithm that solves this problem
has a competitive ratio of at least Ω(n), which even holds when the objects are one-dimensional
intervals. On the other hand, piercing unit objects is equivalent to the unit covering problem which
is well-studied in the online model. Due to this, all the results related to the online unit covering
problem are preserved for the online unit piercing problem when the objects are translated from
each other. Surprisingly, no upper bound was known for the unit covering problem when unit
objects are anything other than balls and hypercubes. In this paper, we introduce the notion of
α-aspect and α-aspect∞ objects. We give an upper bound of competitive ratio for α-aspect and
α-aspect∞ objects in R3 and Rd, respectively, with a scaling factor in the range [1, k]. We also
propose a lower bound of the competitive ratio for bounded scaled objects like α-aspect objects in R2,
axis-aligned hypercubes in Rd, and balls in R2 and R3. For piercing α-aspect∞ objects in Rd, we show
that a simple deterministic algorithm achieves a competitive ratio of at most

(
2
α

)d ((1 + α)d − 1
)(

⌈log(1+α)( 2k
α

)⌉
)

+ 1. This result is very general in nature. One can obtain upper bounds for specific
objects by specifying the value of α. By putting the value of k = 1 to the above result, we get an
upper bound of the competitive ratio for the unit covering problem for various types of objects.
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1 Introduction

Piercing is one of the most important problems in computational geometry. A set P ⊂ Rd of
points is defined as a piercing set for a set S of geometric objects in Rd, if each object in S
contains at least one point from P. Given the set S of objects, the piercing problem is to
find a piercing set P ⊂ Rd of minimum cardinality.
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17:2 Online Piercing of Geometric Objects

In this paper, we study the online version of the problem in which geometric objects
arrive one by one, and the online algorithm needs to maintain a piercing set for the already
arrived objects. Once a new geometric object σ arrives, the online algorithm needs to place
a point p ∈ σ if the existing piercing set does not already pierce it. An online algorithm
may add points to the piercing set, but it cannot remove points from it, i.e., the online
algorithm needs to take irrevocable decisions. The goal is to minimize the cardinality of the
piercing set. We analyze the quality of our online algorithm by competitive analysis [3]. The
competitive ratio of an online algorithm is supβ

ALGβ

OP Tβ
, where β is an input sequence, and

OPTβ and ALGβ are the cost of an optimal offline algorithm and the solution produced by
the online algorithm, respectively, for the input sequence β. Here, the supremum is taken
over all possible input sequences β.

The online version of this problem is inspired by an application in wireless networks [12].
Here the points model base stations, and the centers of objects model clients. The reception
range of each client has some geometric shape (e.g., disks, hexagons, etc.). The algorithm
needs to place a base station that serves a new uncovered client. Since installing the base
station is expensive, so the overall goal is to place the minimum number of base stations.

1.1 Related Works
In the offline setting, the piercing set problem is well-studied problem [6, 11, 18]. For
one-dimensional intervals, the minimum piercing set can be found in polynomial time,
i.e., O(n log c∗), where c∗ is the size of the minimum piercing set [19]. On the other hand,
computing the minimum piercing set is NP-complete even for unit squares in the plane [15, 13].
Chan [6] proposed a polynomial-time approximation scheme for α-fat convex objects. Katz
et al. [18] studied the problem in the dynamic setting for intervals.

A closely related well explored problem is the set-cover problem. Let X be a set of n

elements, and let S be a family of subsets of X such that |S| = m. A set cover is a collection
of subsets S∗ ⊂ S such that their union covers the whole set X. The goal of the set cover
problem is to find a set cover of minimum cardinality. Note that by interchanging the roles of
subsets and points, the set-cover problem and the hitting-set problems are equivalent. Both
problems are classical NP-hard problems [17]. In the offline setting, the minimum hitting
set problem for intervals (points in R) can be solved in polynomial time using a greedy
algorithm. However, these problems remain NP-hard, even for unit disks or unit squares in
R2 [13]. Alon et al. [1] initiated the study of the online set-cover problem. In their setting,
the sets X and S are already known, but the order of arrivals of points is unknown. Upon
the arrival of an uncovered point, the online algorithm must choose a subset that covers
that point. The online algorithm presented by Alon et al. [1] achieves a competitive ratio of
O(log n log m). The results obtained in [1] also hold for the online hitting set problem. Even
and Smorodinsky [12] studied the hitting set problem in an online setting, where both S and
X are known in advance, but the order of arrivals of the input objects in S is unknown. In
this setting, they proposed an algorithm with a competitive ratio of O(log n) for half-planes
or unit disks. They also gave a matching lower bound of the competitive ratio for these
cases. In the same paper, they proposed an online algorithm that achieves a tight bound of
Θ(log n) when objects are intervals and points are integers. Note that in our paper, the set
X = Rd, and the set S is not known in advance.

A related problem is the unit covering (a special variant of the set cover problem), where
the objective is to cover a given set of n points in Rd with the minimum number of translated
copies of an object. Charikar et al. [8] studied the problem in the online setting for unit
balls in Rd, where the points arrive one by one to the online algorithm, and the objective



M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:3

is to assign a newly arrived point to an existing unit ball or a new unit ball to cover it.
They proposed a deterministic online algorithm with a competitive ratio of O(2dd log d) and
show that the lower bound of the competitive ratio for this problem is Ω(log d/ log log log d).
Dumitrescu et al. [9] improved both the upper and lower bound of the problem to O(1.321d)
and Ω(d + 1), respectively. They also proposed a lower bound of the competitive ratio for
any centrally symmetric convex object as the illumination number(defined in Section 2) of
the object. Recently, Dumitrescu and Tóth [10] proved that the competitive ratio of any
deterministic online algorithm for the unit covering problem under L∞ norm is at least 2d.
Surprisingly, we did not find any upper bound of the competitive ratio when objects are
anything other than balls and hypercubes. In this paper, we raise this question and obtain a
very general upper bound for the same.

Another relevant problem is the chasing convex objects, initiated by Friedman and
Linial [14]. Here, convex objects σi ⊆ Rd arrives to the online algorithm, and the algorithm
needs to place a point pi ∈ σi such that the total distances between successive points
Σn−1

i=1 ||pi − pi+1|| is minimized, where n is length of input sequence. They proved that
no online algorithm could achieve a competitive ratio lower than

√
d, and gave an online

algorithm for d = 2. Bubeck et al. [5] presented an online algorithm with a competitive ratio
2O(d) for this problem. Parallel to this, Bubeck et al. [4] presented an online algorithm having
competitive ratio O(min(d,

√
d log n)) using the notion of Steiner point when objects are

nested, i.e., σ1 ⊇ σ2 ⊇ . . . σn. Later, Sellke [21] and Argue et al. [2] independently improved
the result by showing that there exists an online algorithm having a competitive ratio of
O(

√
d log n) and O(min(d,

√
d log n)), respectively, for the chasing convex object problem.

1.2 Our Contributions
First, we prove that the competitive ratio of every deterministic online algorithm for piercing
objects is at least Ω(n), which holds even when the input objects are one-dimensional
intervals (Theorem 1, Section 2.1). As a result, next, we concentrate on when input objects
are translated copies of an object. We show that for the translates of a centrally symmetric
convex object C, the competitive ratio of any deterministic online algorithm is at least
the illumination number of the object C (Theorem 2, Section 2.1). Next, we show that
piercing translated copies of an object is equivalent to the unit covering problem (Theorem 6,
Section 2.2). As an implication, all the results for the online unit covering problem obtained
in [9] and [10] would be applicable to the unit piercing problem. Motivated by these, we ask
what would happen when objects are neither of arbitrary size nor of unit size, but something
in between: bounded scaled, and the shape of the object could vary. For this, we introduce
the concept of α-aspect and α-aspect∞ objects in Rd (Section 2.3). The α-aspect objects are
invariant under translation, rotation and scaling. Whereas, α-aspect∞ objects are invariant
under translation and scaling. For any object in Rd, the value of α is in the interval (0, 1].
We consider objects with scaling factors in the range [1, k] for any fixed k ∈ R.

1. First, we prove that for piercing α-aspect∞ objects in Rd, there exists a deterministic online
algorithm whose competitive ratio is at most

( 2
α

)d ((1 + α)d − 1
) (

⌈log(1+α)( 2k
α )⌉

)
+ 1

(Theorem 7, Section 3).
2. Next, we show that for piercing α-aspect objects in R3, there exists an online algorithm

that achieves a competitive ratio of at most 2
1−cos(θ) ⌈log(1+x)( 2k

α )⌉ + 1, where θ =
1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 (Theorem 12, Section 3). We achieve a
similar result for piercing α-aspect objects in R2 (Theorem 16, Section 3).
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17:4 Online Piercing of Geometric Objects

3. Then, we prove that the competitive ratio of every deterministic online algorithm for
piercing α-aspect objects in R2 is at least ⌊log2/α(k)⌋ + 1 (Theorem 19, Section 4).

4. Later, we consider the case of axis-aligned d-dimensional hypercube. We show the com-
petitive ratio of every deterministic online algorithm for piercing axis-aligned hypercubes
in Rd is at least d(⌊log2(k)⌋) + 2d (Theorem 21, Section 4).

5. At last, we consider balls in R3 (resp., R2), and we propose that the competitive ratio
of every deterministic online algorithm for piercing balls in R3 (respectively, R2) with
radius in the range [1, k] is at least 3⌊log(4+ϵ)(k)⌋ + 4 (respectively 2⌊log( 8

3 +ϵ)(k)⌋ + 3),
where ϵ is a very small constant close to zero (Theorem 22, Section 4).

To obtain the upper bound, we consider a very natural algorithm, Algorithm-Center,
that works as follows. On receiving a new input object σ, if it is not pierced by the existing
piercing set, our online algorithm adds the center of σ to the piercing set. For a hypercube σ,
center is a point in σ from which maximum distance from any point of σ is minimized. For
α-aspect and α-aspect∞ objects, a generalized definition of the center is given in Section 2.3.

1.3 Organization
In Section 2, initially, we propose a lower bound for piercing arbitrarily sized intervals followed
by a lower bound for piercing a set of translated copies of a centrally symmetric convex object.
Then, we discuss the equivalence of online unit piercing and online unit covering problems
for translated copies of the unit object. At last, in this section, we introduce α-aspect objects
and α-aspect∞ objects. In Section 3, we present an upper bound for α-aspect and α-aspect∞
objects having width in the range [1, k]. Later, in Section 4, we propose lower bounds
for various bounded scaled objects like two-dimensional α-aspect objects, d-dimensional
axis-aligned hypercubes in Rd, and two and three-dimensional balls. Finally, in Section 5, we
conclude.

2 Notation and Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. If not explicitly mentioned, we use the term object
to denote a simply connected compact set in Rd with a nonempty interior. The interior of
an object C is represented by int(C). A convex object is said to be a centrally symmetric
if it is invariant under point reflection through its center. The illumination number of an
object C, denoted by I(C), is the minimum number of smaller homothetic copies of C whose
union contains C [20].

2.1 Lower Bounds
First, we observe that the competitive ratio of the piercing problem has a pessimistic lower
bound of Ω(n), which even holds for one-dimensional intervals.

▶ Theorem 1. The competitive ratio of every deterministic online algorithm for piercing
intervals is at least Ω(n), where n is the length of the input sequence.

Proof. Let σ1 be the first interval presented by the adversary to the online algorithm. Let p1
be a point placed by the online algorithm to pierce the interval σ1. The point p1 partitions
the interval σ1 into two parts, of which, let σL

1 be a larger part that does not contain the
point p1. Now, the adversary can place an interval σ2 completely contained in σL

1 (see
Figure 1). For the new interval σ2, any online algorithm needs a new piercing point p2. Now
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σ2

σ3

σ4

σ5

σ1

p3

p4

p5

p1

p2 σL2

σL1

Figure 1 Input instance of intervals.

again, one can define a partition σL
2 of σ2 depending on the position of the point p2 such

that σL
2 does not contain p2 and the adversary will place an interval σ3 completely contained

in σL
2 . In this way, the adversary can adaptively construct n intervals for which any online

algorithm needs n distinct points to pierce, while the offline optimum needs only one point.
Hence, the lower bound of the competitive ratio is Ω(n). ◀

Now, we consider when objects are translated copies of a centrally symmetric convex
object.

▶ Theorem 2. The competitive ratio of every deterministic online algorithm for piercing a
set of translated copies of a centrally symmetric convex object C is at least I(C), where I(C)
denotes the illumination number of C.

The proof can be adapted from [9, Thm 4]. Also, note that Theorem 2 can be obtained
as a result of Theorem 6 and [9, Thm 4]. It is known that I(C) = 2d for any full-dimensional
parallelepiped in Rd [9, 20]. Consequently, the value of I(C) = 2d, for d-dimensional
hypercube. Therefore, we have the following.

▶ Corollary 3. The competitive ratio of every deterministic online algorithm for piercing a
set of axis-parallel unit hypercubes in Rd is at least 2d.

2.2 Unit Covering vs Unit Piercing
Let C be an object, and let −C be the reflection of C through a point c ∈ C (see Figure 2).

cC

−C

Figure 2 Reflection of an object C through a point c.

▶ Definition 4 (Unit Piercing Problem). Given a family S of translated copies of an object C,
in the unit piercing problem, we need to pierce each object by placing the minimum number
of points in Rd.

FSTTCS 2022



17:6 Online Piercing of Geometric Objects

▶ Definition 5 (Unit Covering Problem). Given a set of points P ⊆ Rd, in the unit covering
problem, we need to place the minimum number of translated copies of an object −C to cover
all the points in P.

The following theorem connects the above two problems.

▶ Theorem 6. The unit piercing problem is equivalent to the unit covering problem.

As a consequence of Theorem 6, all the results related to the online unit covering problem
(summarized in Table 1) studied in [9] and [10] are carried for the online piercing problem
when objects are translates of each other.

Table 1 Summary of known results for unit piercing problem.

Geometric Objects Lower Bound Upper Bound

Unit Intervals 2 [8] 2 [7]

Fixed oriented unit squares 4 [9, 10] 4 [7]

Fixed oriented unit hypercubes in Rd 2d [9, 10] 2d [7, 10]

Unit disks in R2 4 [9] 5 [9]

Unit balls in R3 5 [9] 12 [9]

Unit balls in Rd, d > 3 d + 1 [9] O(1.321d) [9]

Translated copies of a centrally symmetric
convex object C

I(C) [9] ⋆ [Corollary 11]

⋆ Result obtained in this paper.

2.3 Objects with Fixed Aspect Ratio
Let σ be an object and x be any point in σ. Let α(x) be the ratio between minimum and
maximum distance from x to the boundary δ(σ) of the object σ under L2 norm. In other
words, α(x) = miny∈δ(σ) d(x,y)

maxy∈δ(σ) d(x,y) , where d(x, y) is the distance (under L2 norm) between x and
y (refer to Figure 3a). The aspect ratio α(σ) of an object σ is defined as the maximum value
of α(x) for any point x ∈ σ, i.e., α(σ) = max{α(x) : x ∈ σ}. An object is said to be α-aspect
object if its aspect ratio is α. A point c ∈ σ with α(c) = α(σ) is defined as the center of the
object σ (see Figure 3a). The minimum (resp., maximum) distance (under L2 norm) from
the center to the boundary of the object is referred to as the width (resp., height) of the
object. Note that for any object σ, we have 0 < α(σ) ≤ 1. The maximum possible value of α

is attained when the object is ball.
Observe following properties of an α-aspect object.

▶ Property 1. Let σ ⊆ Rd be an α-aspect object, then
any arbitrary rotated object σ′ of σ is an α-aspect object;
any translated object σ′ of σ is an α-aspect object;
the scaled object λσ is an α-aspect object, where λ ∈ R+.
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σ

w

c
h = w

α

(a)

σ
2w

c

2w
α

(b)

Figure 3 Geometric interpretation of (a) aspect ratio and (b) aspect∞ ratio.

▶ Property 2. Let σ ⊆ Rd be an α-aspect object centered at a point c with width w, then
a ball of radius w centered at c is completely contained in σ, and
a ball of radius w

α centered at c contains the object σ.

Considering L∞ norm instead of L2 norm, similar to the above, one can define the
aspect∞ ratio, center, width and height of an object. An object with aspect∞ ratio α is
said to be an α-aspect∞ object. Note that for any object σ, the value of α∞(σ) is also
greater than zero and the maximum possible value of α∞(σ) is one which is attained for the
hypercube. Analogous to Property 1 and 2, we have the following.

▶ Property 3. Let σ ⊆ Rd be an α-aspect∞ object, then
any translated object σ′ of σ is an α-aspect∞ object;
the scaled object λσ is an α-aspect∞ object, where λ ∈ R+.

▶ Property 4. Let σ ⊆ Rd be an α-aspect∞ object object centered at a point c with width w,
then

a hypercube of side length 2w centered at c is completely contained in σ, and
a hypercube of side length 2w

α centered at c contains the object σ.

3 Upper Bound for Bounded Scaled Objects

3.1 For Objects with Fixed Aspect∞ Ratio
In this section, we present an upper bound of the competitive ratio for piercing objects with
a fixed α-aspect∞ ratio. In the proof of the following theorem, all the distances, if explicitly
not mentioned, are under L∞ norm, and all the hypercubes are axis-parallel.

▶ Theorem 7. For piercing α-aspect∞ objects in Rd having width in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most

( 2
α

)d ((1 + α)d − 1
)

log(1+α)( 2k
α ) + 1.

Proof. Let I be the set of input α-aspect∞ objects presented to the algorithm. Let A and
O be the piercing set returned by Algorithm-Center and the offline optimal, respectively,
for I. Let p ∈ O be a piercing point and let Ip ⊆ I be the set of input α-aspect∞ objects that

FSTTCS 2022



17:8 Online Piercing of Geometric Objects

p2k
α(1+α)i

k
(1+α)i

Hi+1

Ai

Hi = Hi+1 ∪ Ai

H

k
α(1+α)i

k
α(1+α)i−1

2k
α(1+α)i

q1
q2

Figure 4 Illustration.

are pierced by the point p. Let Ap ⊆ A be the set of piercing points placed by Algorithm-
Center to pierce all the input objects in Ip. It is easy to see that A = ∪p∈OAp. Therefore,
the competitive ratio of our algorithm is upper bounded by maxp∈O |Ap|.

Let us consider any point a ∈ Ap. Since a is the center of an α-aspect∞ object σ ∈ Ip

containing the point p having width at most k, the distance (under L∞ norm) between a

and p is at most k
α . Therefore, a hypercube H1 of side length 2k

α , centered at p, contains all
the points in Ap. Let Hi be a hypercube centered at p having side length 2k

α(1+α)i−1 , where
i ∈ [m] and m is the smallest integer such that 2k

α(1+α)m−1 ≤ 1. Note that H1, H2, . . . , Hm are
concentric hypercubes. Let us define the annular region Ai = Hi \ Hi+1, where i ∈ [m − 1].
Let Ap,m = Ap ∩ Hm, and Ap,i = Ap ∩ Ai be the subset of Ap that is contained in the region
Ai, for i ∈ [m − 1]. Since the distance (under L∞ norm) between any two points in Hm is at
most one, and the width of any object in Ip is at least one; therefore, any object belonging to
Ip having center in Hm contains the entire hypercube Hm. As a result, our online algorithm
places at most one piercing point in Hm. Thus, |Ap,m| ≤ 1.

▶ Lemma 8. |Ap,i| ≤ 2d
(
(1 + 1

α )d − ( 1
α )d
)

, where i ∈ [m − 1].

Proof. Since Ai = Hi\Hi+1, the distance (under L∞ norm) from the center p to the boundary
of Hi and Hi+1 is k

α(1+α)i−1 and k
α(1+α)i , respectively. So the annular region Ai can contain

hypercubes of side length k
(1+α)i . It is easy to observe that, the annular region Ai is the union

of at most 2d
(
(1 + 1

α )d − ( 1
α )d
)

disjoint hypercubes, each having side length k
(1+α)i . To

complete the proof, next, we argue that our online algorithm places at the most one piercing
point in each of these hypercubes to pierce the objects in Ip. Let H be any such hypercube
of side length k

(1+α)i , and let q1 ∈ H be a piercing point placed by our online algorithm. For
a contradiction, let us assume that our online algorithm places another piercing point q2 ∈ H,
where q2 is the center of an object σ ∈ Ip. Since σ contains both the points p and q2, and
the distance (under L∞ norm) between them is at least k

α(1+α)i , therefore, the height of the
object σ is at least k

α(1+α)i and the width is at least k
(1+α)i . Note that the distance (under

L∞ norm) between any two points in H is at most k
(1+α)i , as a result, σ is already pierced

by q1. This contradicts our algorithm. Thus, the region H contains at most one piercing
point of Ap,i. Hence, the lemma follows. ◁

Since ∪Ap,i = Ap, we have |Ap| ≤ 2d
(
(1 + 1

α )d − ( 1
α )d
)

(m − 1) + 1. As the value of
m ≤ log(1+α)

( 2k
α

)
+ 1, the theorem follows. ◀
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When objects are fixed oriented hypercubes and congruent balls in Rd, then the value of α is
1 and 1√

d
, respectively. As a result, we have the following.

▶ Corollary 9. For piercing axis-aligned d-dimensional hypercubes with side length in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most 2d

(
2d − 1

)
log2(2k) + 1.

▶ Corollary 10. For piercing d-dimensional balls with radius in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most
(2

√
d)d
(

(1 + 1√
d
)d − 1

)
log(1+ 1√

d
)(2k

√
d) + 1.

Unit Covering Problem in Rd

In Theorem 7, if we place the value of k = 1, then due to Theorem 6, we have following
result for the unit covering problem.

▶ Corollary 11. For the unit covering problem in Rd, there exists a deterministic online
algorithm whose competitive ratio is at most

( 2
α

)d ((1 + α)d − 1
)

log(1+α)( 2
α ) + 1, where α is

the aspect∞ ratio of the unit object.

3.2 For α-Aspect Objects in R3

▶ Theorem 12. For piercing α-aspect object in R3 having width in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most 2

1−cos(θ) ⌈log(1+x)( 2k
α )⌉ + 1,

where θ = 1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

p

r BS(θ, r)

(a)

p

o

`

n

m

α · ri

ri−1 ri

Ti,θ

(b)

2θ

p

no

`

ri

m

ri

ri−1

(c)

Figure 5 (a) Partitioning the ball B of radius r using spherical sectors S(θ, r); (b) Description of
spherical sector S(θ, ri−1) and spherical block Ti,θ; (c) Projection of spherical sector S(θ, ri−1).

Proof. Let I be the set of input α-aspect objects in R3 presented to the algorithm. Let A
and O be two piercing sets for I returned by Algorithm-Center and the offline optimal,
respectively. Let p be any piercing point of the offline optima O. Let Ip ⊆ I be the set of
input objects pierced by the point p. Let Ap be the set of piercing points placed by our
algorithm to pierce all the objects in Ip. To prove the theorem, we will give an upper bound
of |Ap|.

Let us consider any point a ∈ Ap. Since a is the center of an α-aspect object σ ∈ Ip

containing the point p, with width at most k (height at most k
α ), the distance between a and

p is at most k
α . Therefore, a ball B1 of radius k

α , centered at p, contains all the points in
Ap. Let x =

√
1+4α2−1

2 be a positive constant. Let Bi be a ball centered at p having radius
ri = k

α(1+x)i−1 , where i ∈ [m] and m is the smallest integer such that k
α(1+x)m−1 ≤ 1

2 . Note

that B1, B2, . . . , Bm are concentric balls, centered at p. Let θ = 1
2 cos−1

(
1
2 + 1

1+
√

1+4α2

)
be

FSTTCS 2022



17:10 Online Piercing of Geometric Objects

a constant angle in (0, π
10 ]. Let S(θ, i) be a spherical sector obtained by taking the portion

of the ball Bi by a conical boundary with apex at the center p of the ball and θ as the half
of the cone angle (for an illustration see figure 5a). For any i ∈ [m − 1], let us define the ith
spherical block Ti,θ = S(θ, i) \ S(θ, i + 1).

▷ Claim 13. The distance between any two points in Ti,θ is at most αri.

Proof. Observe Figure 5b, where a detail of a spherical block is depicted. Note that the
maximum distance between any two points in Ti,θ is at most max{ln, on}. First, consider
the triangle △ℓpn (see Figure 5b and 5c). By cosine rule of triangle, we have:

ℓn
2 = pℓ

2 + pn2 − 2pℓ pn cos (2θ)

=
(

k

α(1 + x)i−1

)2
+
(

k

α(1 + x)i−2

)2
− 2

(
k

α(1 + x))i−1

)(
k

α(1 + x))i−2

)
cos(2θ)

=
(

k

α(1 + x)i−2

)2
((

1
(1 + x)

)2
+ 1 − 2

(
1

(1 + x) cos (2θ)
))

=
(

k

α(1 + x)i−1

)2 (
1 + (1 + x)2 − 2(1 + x) cos (2θ)

)
Since θ = 1

2 cos−1
(

1
2 + 1

1+
√

1+4α2

)
, and x =

√
1+4α2−1

2 , therefore, cos(2θ) = (x+2)
2(x+1) and

x2 + x = α2. Now substituting these values in the above equation, we get

ℓn
2 = r2

i

(
1 + (1 + x)2 − (2 + x)

)
= r2

i

(
1 + 1 + x2 + 2x − 2 − 2x

)
= r2

i

(
x2 + x

)
= (αri)2

.

Now, consider the triangle △opn (see Figure 5b and 5c). Here we have:

on2 = 2
(

k

α(1 + x)i−2

)2
− 2

(
k

α(1 + x)i−2

)2
cos (2θ) = 2

(
k

α(1 + x)i−2

)2
(1 − cos (2θ))

= 2
(

k

α(1 + x)i−1

)2
(1 + x)2 (1 − cos (2θ)) = 2r2

i (1 + x)2 (1 − cos (2θ)) .

Now substituting the values of cos(2θ) = (x+2)
2(x+1) and x2 + x = α2 in the above equation, we

get

on2 = 2r2
i (1 + x)2

(
1 − (x + 2)

2(x + 1)

)
= 2r2

i (1 + x)2
(

2(x + 1) − (x + 2)
2(x + 1)

)
= r2

i (1 + x)x = (αri)2
.

Note that ln = on = αri, thus, αri is the maximum distance between any two points in the
region Ti,θ. ◁

▶ Lemma 14. For each i ∈ [m], our algorithm places at most one piercing point in the
spherical block Ti,θ to pierce any object in Ip.

Proof. Let q1 be the first piercing point placed by Algorithm-Center in Ti,θ. For a
contradiction, let us assume that Algorithm-Center places another piercing point q2 ∈ Ti,θ,
where q2 is center of some object σ ∈ Ip. Since σ contains both points p and q2, and the
distance between them is at least ri, therefore, the height and width of σ are at least ri and
αri, respectively. Due to Claim 13, the distance between any two points in the spherical
block Ti,θ is at most αri, as a result, σ is already pierced by q1. This contradicts that our
algorithm places two piercing points in Ti,θ. Hence, Algorithm-Center places at the most
one piercing point in the spherical block Ti,θ to pierce objects in Ip. ◁
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Since the solid angle of the spherical sector S(θ, 1) is 2π(1−cos(θ)) steradians, and the solid
angle of a ball, measured from any point in its interior, is 4π steradians, therefore, we need at
most 2

1−cos θ spherical sectors to cover the ball B1 [16, §4.8.3]. Combining this with Lemma 14,
we have |Ap| ≤ 2m

(1−cos θ) . We can give a slightly better estimation, as follow. Since the
distance between any two points in the innermost ball Bm is at most one, therefore any object
in Ip having center q ∈ Bm contains the entire ball Bm. As a result, our online algorithm
places at most one piercing point in Bm. Thus, |Ap| ≤ 2(m−1)

1−cos(θ) + 1 ≤ 2(log(1+x)( 2k
α ))

(1−cos(θ)) + 1. This
completes the proof of the theorem. ◀

As a consequence of Property 1 and Theorem 12, we have the following.

▶ Corollary 15. For piercing arbitrary oriented scaled copies of an object in R3 with aspect
ratio α and having width in the range [1, k], Algorithm-Center achieves a competitive ratio
of at most 2

1−cos(θ) ⌈log(1+x)( 2k
α )⌉+1, where θ = 1

2 cos−1
(

1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

Analogous to Theorem 12, we have similar result for α-aspect objects in R2. Here, we
consider circular sector C(θ, r) with central angle θ instead of spherical sector S(θ, r) with
central angle 2θ.

▶ Theorem 16. For piercing α-aspect objects in R2 having width in the range [1, k],
Algorithm-Center achieves a competitive ratio of at most 2π

θ (log(1+x)(2k/α)) + 1, where
θ = cos−1

(
1
2 + 1

1+
√

1+4α2

)
and x =

√
1+4α2−1

2 .

Observe that for hypercubes in Rd, the value of α is 1√
d
. As a result, we have the upper

bound as follows.

▶ Corollary 17. For piercing arbitrary oriented hypercubes in R3 (respectively, R2) with
a side-length in the range [1, k], Algorithm-Center achieves a competitive ratio of at
most 223.98⌈log2(2

√
3k)⌉ + 1 (respectively, 26.67⌈log2(2

√
2k)⌉ + 1).

Observe that for balls in R2 and R3, the value of α is one. As a result, for d = 2 and 3, we
have a better estimation of the upper bound than Corollary 10. The result is as follows

▶ Corollary 18. For piercing balls in R3 (respectively, R2) with a radius in the range
[1, k], Algorithm-Center achieves a competitive ratio of at most 58.861⌈log2(2k)⌉ + 1
(respectively, 14.4⌈log2(2k)⌉ + 1).

4 Lower Bound for Bounded Scaled Objects

To obtain a lower bound, we think of a game between two players: Alice and Bob. Here,
Alice plays the role of an adversary, and Bob plays the role of an online algorithm. In each
round of the game, Alice presents an object such that Bob needs to place a new piercing
point, i.e., the object does not contain any of the previously placed piercing points. To obtain
a lower bound of the competitive ratio of Ω(z), it is enough to show that Alice can present a
sequence of z nested objects in a sequence of z consecutive rounds of the game such that
an offline optimum algorithm uses only one point to pierce all of these objects. First, we
consider when objects are α-aspect objects in R2, followed by axis parallel hypercubes in Rd.
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4.1 α-Aspect Objects in R2

▶ Theorem 19. The competitive ratio of every deterministic online algorithm for piercing
α-aspect objects in R2 having width in the range [1, k] is at least log( 2

α ) k for k > 2
α .

Proof. To prove the lower bound, we adaptively construct a sequence of m = log( 2
α ) k objects

each with aspect ratio α and width in the range [1, k] such that any online algorithm needs
at least m piercing points to pierce them; while the offline optimal needs just one point. In
each round of the game, the adversary presents an object of width in the range [1, k], and
the online algorithm needs to place a piercing point to pierce the presented object if it is
already not pierced by any of the previously placed piercing points. Let w(σ) and h(σ) be
width and height of an object σ, respectively. Let σ1, having width w(σ1) = k, be the first
input object presented to the algorithm. For the sake of simplicity, let us assume that the
center c1 of σ1 coincides with the origin. All remaining objects σ2, σ3, . . . , σm are presented
adaptively depending on the position of the piercing points p1, p2, . . . , pm−1 placed by the
algorithm. For i = 1, 2, . . . , m = log( 2

α ) k, we maintain the following two invariants.

(1) The object σi having width k
(

α
2+ϵ

)i−1
is not pierced by any of the previously placed

piercing point pj , where j < i.
(2) The object σi is totally contained in the object σi−1.

Invariant (1) ensures that any online algorithm needs m+1 piercing points; while invariant
(2) ensures that all the objects σ1, σ2, . . . , σm can be pierced by a single point. For i = 1,
both invariants hold trivially. At the beginning of round i = 1, 2, . . . , m − 1, assume that
both invariants hold. Depending on the position of the previously placed piercing point
pi, in the (i + 1)th round of the game, the object σi+1, having width w(σi+1) = k

(
α

2+ϵ

)i(
h(σi+1) = k

2+ϵ

(
α

2+ϵ

)i−1
)

, is presented to the algorithm. Here ϵ > 0 is an arbitrary constant

very close to zero. The center ci+1 of σi+1 is defined as the following.

ci+1 =
{

ci + w(σi)
2 , if pi(x1) ≤ ci(x1),

ci − w(σi)
2 , otherwise (i.e., pi(x1) > ci(x1)),

where pi(x1) and ci(x1) denotes the first coordinate of pi and ci, respectively.
First, we show that σi+1 is totally contained in σi. Observe that, depending on the

position of pi, the center of σi+1 is either ci + w(σi)
2 or ci − w(σi)

2 . In both cases, we have

dist(ci, ci+1) = w(σi)
2 . On the other hand, h(σi+1) = k

2+ϵ

(
α

2+ϵ

)i−1
< k

2

(
α

2+ϵ

)i−1
= w(σi)

2 .
Hence, σi+1 is totally contained in σi. Thus, invariant (2) is maintained.

Note that dist(pi, ci+1) is greater than the height of σi+1 since

dist(pi, ci+1) >
w(σi)

2 = k

2

(
α

2 + ϵ

)i−1
>

k

2 + ϵ

(
α

2 + ϵ

)i−1
= h(σi+1).

The first inequality follows from the definition of ci+1. Thus, σi+1 does not contain the point
pi. Due to induction hypothesis, σi does not contain any of the previously placed piercing
point pj for j < i and from invariant (2) we know that σi+1 is contained in σi. Hence,
σi+1 does not contain any of the previously placed piercing point pj , for j < i + 1. Thus,
invariant (1) is maintained.

Note that when m > log 2+ϵ
α

k + 1, the width of the object σm, i.e., k
(

α
2+ϵ

)m−1
is less

than one. In other words, for any m ≤ log 2+ϵ
α

k + 1, we can construct the input sequence
satisfying both invariants. Since ϵ > 0 is arbitrarily constant very close to 0, we choose the
value of m = log 2

α
k. Hence, the theorem follows. ◀
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4.2 Fixed Oriented Hypercubes in Rd

In this subsection, all the hypercubes are axis parallel. First, we establish the following
essential ingredient to prove our main result.

▶ Lemma 20. Game-Of-Same-Side(r) (GSS(r)):
For any r ∈ R+, in a consecutive d rounds of the game, Alice can adaptively present d

hypercubes σ1, σ2, . . . , σd, each having side length r, such that
(i) Bob needs to place d points to pierce them;
(ii) the common intersection region Q = ∩d

i=1σi is nonempty;
(iii) moreover, Q contains an empty hypercube E, of side length at least r

2 −ϵ, not containing
any of the d piercing points placed by Bob. Here ϵ > 0 is a very small constant close
to 0.

We refer a consecutive d rounds of the game satisfying the above lemma as a GSS(r). The
first hypercube σ1 is denoted as the starter and the hypercube E as the empty hypercube
since it does not contain any of the piercing points placed by Bob in the GSS(r). Note that
any hypercube of side length r could be the starter of this d round game.

Proof. Let σ1 be a hypercube of side length r presented by Alice in the first round of the
game. Throughout the proof of this claim, for the sake of simplicity, we assume that the
center of σ1 is the origin (if not, we can always translate the coordinate system to make it).
Alice presents the remaining hypercubes σ2, . . . , σd adaptively depending on Bob’s moves.
We maintain the following two invariants: For i = 1, . . . , d, when Alice presents hypercubes
σ1, . . . , σi, each of side length r, and Bob presents piercing points p1, . . . , pi,

(I) the hypercube σi is not pierced by any of the previously placed piercing point pj ,
where j < i;

(II) the common intersection region Qi = ∩i
j=1σj is a hyperrectangle whose first (i − 1)

sides are of length r
2 −ϵ each, and each of the remaining sides are of length r. Moreover,

Qi does not contain any of the points pj , where j < i.

An illustration of the planar version of the game appears in Figure 6. For i = 1,
both the invariants trivially hold. At the beginning of round i (for i = 2, . . . , d), as-
sume that both invariants hold. Let us define a translation vector vi ∈ Rd as vi =
(s(1)

(
r
2 + ϵ

)
, s(2)

(
r
2 + ϵ

)
, . . . , s(i − 1)

(
r
2 + ϵ

)
, 0, . . . , 0), where for any j < i, we have

s(j) =
{

+1, if pj(xj) < 0, where pj(xj) is jth coordinate of pj ,

−1, otherwise.

We define σi = σ1 + vi. For any j < i, due to the definition of the jth component of the
translation vector vi, the hypercube σi does not contain the point pj . Hence, invariant (I) is
maintained.

Note that σ1 ∩ σi is a hyperrectangle whose first (i − 1) sides are of length r
2 − ϵ each,

and each of the remaining sides are of length r. On the other hand, from the assumption, we
know that Qi−1 is a hyperrectangle whose first (i − 2) sides are of length r

2 − ϵ each, and
each of the remaining sides are of length r. Therefore, Qi = Qi−1 ∩ σi is a hyperrectangle
whose first (i − 1) sides are of length r

2 − ϵ each, and each of the remaining sides are of length
r. Since σi does not contain any of the points pj where j < i, as a result the hyperrectangle
Qi ⊆ σi also does not contain any of them. Therefore, invariant (II) is also maintained.
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r
2 − ε

σ1
p1

c1

p2 c2

r

σ2

E

Figure 6 Illustration of the Game-Of-Same-Side(r) for d = 2. Initially Alice presented hypercube
σ1 of side length r in the first round of the game. Then, Alice presents the second hypercube σ2

adaptively, depending on Bob’s moves, such that p1 /∈ σ2. Also, the common intersection region
∩2

j=1σj is a rectangle whose sides are of length r
2 − ϵ and r. Moreover, the intersection region

contains an empty hypercube E, of side length at least r
2 − ϵ, not containing p1 and p2. Here ϵ > 0

is a very small constant close to 0.

At the end of the dth round of the game, we have the hyperrectangle Q = Qd (whose dth
side is only of length r, other sides are of length r

2 − ϵ each) that does not contain any of the
points pj where j < d, but it may contain the point pd. Depending on the dth coordinate of
the point pd, we can construct a hypercube E ⊂ Q of length r

2 − ϵ that does not contain the
point pd. Hence, the lemma follows. ◀

Now, we prove the following main theorem.

▶ Theorem 21. The competitive ratio of every deterministic online algorithm for piercing fixed
oriented hypercubes in Rd with side length in the range [1, k] is at least d

(
log2

(
k

1+2ϵ

))
+ 2d.

Proof. To prove the main theorem, we maintain the following two invariants: For i =
1, . . . , z = d

((
k

1+2ϵ

)
− 1
)

+ 2d, when Alice presents hypercubes σ1, . . . , σi and Bob presents
piercing points p1, . . . , pi,
(III) The hypercube σi is not pierced by any of the previously placed piercing point pj ,

where j < i.
(IV) The intersection region ∩i

j=1σj is nonempty.
Invariant (III) implies that Bob is forced to place z piercing points, while Invariant (IV)
ensures that all the hypercubes σ1, σ2, . . . , σz can be pierced by a single piercing point.

We evoke the GSS(r) for t >
(

log2

(
k

1+2ϵ

)
− 1
)

times with different values of r = k, k
2 −

ϵ, . . . , k
2t − 2t−1

2t−1 ϵ. More specifically, the empty hypercube Et′ generated by GSS( k
2t′−1 − 2t′

−1
2t′−1 ϵ)

plays the role of the starter hypercube for the next evokation of GSS( k
2t′ − 2t′

−1
2t′−1 ϵ), where

1 ≤ t′ < t. Since the empty hypercube of t′th game plays the role of the starter of (t′ + 1)th
game, it is straightforward to see that the set of td hypercubes σ1, σ2, . . . , σtd and set of
points p1, p2, . . . , ptd satisfies both invariants (III) and (IV). At the end of the tdth GSS,
the empty hypercube Etd has side length at least 1. Due to Corollary 3, starting with the
hypercube Etd, Alice can adaptively present 2d (including Etd) hypercubes each of side
length 1 such that both invariants (III) and (IV) are maintained. This completes the proof
of the theorem. ◀



M. De, S. Jain, S. V. Kallepalli, and S. Singh 17:15

4.3 Balls in R2 and R3

Similar to the proof of Theorem 21, one can prove the following lower bound result for balls
in R3 (respectively, R2). Also, note that we could not generalize this to higher dimensional
balls.

▶ Theorem 22. The competitive ratio of every deterministic online algorithm for piercing
balls in R3 (respectively, R2) with radius in the range [1, k] is at least 3 log4 k +1 (respectively,
2 log( 8

3 ) k + 1).

5 Conclusion

We show that no online algorithm can obtain a competitive ratio lower than Ω(n) for piercing
n intervals. Due to this pessimistic result, we restricted our attention to special kinds
of objects, i.e., bounded scaled objects. We propose upper bounds for piercing bounded
scaled α-aspect∞ objects in higher dimension. By placing specific values of α, the tight
asymptotic bounds can be obtained for bounded scaled objects (like intervals, squares, disks,
and α-aspect polygons) in R and R2. For bounded scaled α-aspect∞ objects in Rd, it is
possible to generalize our lower bound result obtained for hypercubes. For higher dimensions,
for example, for d-dimensional hypercubes, there is a huge gap between the lower and the
upper bound. We propose bridging these gaps as a future direction of research. We only
consider the deterministic model. This raises the question of whether randomization helps.
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