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Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing 180°. Guards
that can only see in one direction are called half-guards. We give a polynomial time approximation
scheme for vertex guarding the vertices of a weakly-visible polygon with half-guards. We extend
this to vertex guarding the boundary of a weakly-visible polygon with half-guards. We also show
NP-hardness for vertex guarding a weakly-visible polygon with half-guards. Lastly, we show that
the orientation of half-guards is critical in terrain guarding. Depending on the orientation of the
half-guards, the problem is either very easy (polynomial time solvable) or very hard (NP-hard).
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1 Introduction

An instance of the original art gallery problem takes as input a simple polygon P having a
sequence of vertices V = {v1, v2, . . . , vn}, and reports a guarding set of points G ⊆ P such
that every point p ∈ P is seen by a point in G. Here, by the term a point q sees a point p
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18:2 Half-Guarding Weakly-Visible Polygons and Terrains

Figure 1 A WV-polygon where p sees q

and every point in the polygon is seen by a
point on e = (u, v) or sees a point on e.

Figure 2 A WV-polygon that requires
Ω(n) half-guards that see to the right. Half-
guards need to be placed at every step like
structure.

where p, q ∈ P , we mean that the line segment [p, q] completely lies inside the polygon P . In
this paper, we study the vertex guarding problem which says that guards are only allowed to
be placed at the vertices of V , and the objective is to find the smallest such G.

1.1 Definitions

We use p.x to denote the x-coordinate for point p. A weakly-visible polygon (WV-polygon)
P contains a visibility edge e = (u, v) such that every point in P sees at least one point on
the edge e. When referencing a half-guard p sees to the right (i.e., guards see 180°towards
the right), then a point q is visible to p if p.x ≤ q.x (see Fig. 1). Without loss of generality,
we assume that the visibility edge e is aligned with the x-axis.

A (strictly) x-monotone terrain T with x-axis as the base is defined by a set of points
V = {v1, v2, . . . , vn} satisfying vi.x < vi+1.x for i = 1, 2, . . . , n− 1, and [v1.x, vn.x] is aligned
with the x-axis.

1.2 Previous Works

Extensive studies are done on algorithmic aspects of art galleries. Several results related to
hardness and approximations are available in [1, 8, 11, 17]. Due to the inherent difficulty
in fully understanding the art gallery problem for simple polygons, work has been done for
guarding polygons with some special structures (see [2, 4, 15]). In this paper we consider
terrains and weakly-visible polygons.

Motivation of considering these two special structure comes from the fact that many
cameras/sensors cannot generally sense in 360°, referred to as full-guards in this paper. In
[2], the authors proposed a constant-factor approximation algorithm to guard interior of a
WV-polygon. We consider the half-guards that can sense in 180°. For weakly-visible polygons,
we restrict the problem even further by only allowing these half-guards to see to the right.
Even with these restrictions, the vertex guarding problem is difficult to solve in weakly-visible
polygons. Using half-guarding the authors in [9, 14] propose a 4-approximation algorithm
for terrain guarding with full-guards. In Fig. 2, we demonstrate that there are WV-polygons
P that can be completely guarded with one full-guard, but requires Ω(n) half-guards.

The difficulty with guarding terrains with half-guards is less straightforward. As shown
in [5], it is possible to optimally guard a terrain in polynomial time using half-guards that
only see to the right. If the visibility of half-guards is modified such that they see down in
the terrain setting, as we will show, the problem becomes NP-hard.
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Figure 3 On the left, a full-guard placed at u and v cuts off the polygon below the WV-edge.
On the right, the shaded regions below uv are still unseen after half-guards are placed at u and v.

1.3 Our Contribution
Ashur et al. [3] gives a local search based polynomial time approximation scheme (PTAS)
for minimum dominating set in terrain-like graphs. They then show that several families
of polygons have a visibility graph that is terrain-like. One such family is WV-polygons.
However, their analysis uses the fact that vertices can see 360° and that the visibility graph
of the vertices contains undirected edges. Since edges in a visibility graph for a WV-polygon
that use half-guards are directed, it does not imply that the visibility graph is terrain-like.
We provide additional observations in this paper which show a PTAS for vertex guarding
the vertices of a WV-polygon with half-guards. We extend this to show that guarding the
boundary of a WV-polygon with half-guards placed at vertices also admits a PTAS.

NP-hardness has been shown for many variants of the art gallery problem [4, 8, 17].
In many of those reductions, guards are allowed to see in all directions. If the problem is
restricted enough, it can become polynomially time solvable, for example, see [6, 16]. If the
polygon is restricted to be a WV-polygon, guards are restricted to be at the vertices and
guards are only allowed to see to the right, even with these many restrictions, the problem is
still NP-hard. To obtain this result, we first show that a variant of half-guarding a terrain is
NP-hard.

In Section 2, we provide a PTAS for vertex guarding the vertices and boundary of a
WV-polygon using half-guards that see right. In Section 3, we show that the half-guarding of
terrains is NP-hard when the half-guards see down. In Section 4, the NP-hardness is shown
for vertex guarding a WV-polygon using half-guards that see right.

2 PTAS for Vertex Guarding a WV-Polygon with Half-Guards

We use local search to obtain a PTAS for half-guarding a WV-polygon. We adapt the idea
of the proof provided in [3] to this problem with some notable exceptions. The divergent
details of the algorithm and proof along with a few identical details, included for readability,
are provided below.

Much of the proof from [3] assumes that the WV-polygon lies above the WV-edge by
placing guards at u and v and cutting off the portion of the polygon beneath the WV-edge,
see Fig. 3(left). When every vertex under consideration lies above this WV-edge, the so-called
order claim holds and the visibility graph is terrain-like. However, consider doing the same
thing for a WV-polygon using half-guards that see to the right. In this case, the remaining
unseen portion of the polygon cannot be assumed to be above the WV-edge. The shaded
region in Fig. 3(right) demonstrates the invisible portions to the left-of-and-below the guards
at u and v. A guard g dominates another guard g′ if for every vertex v that g′ sees, g also
sees v. Unlike with full-guards, a half-guard placed at u will not dominate a half-guard
placed in the shaded region to the left-of-and-below u. Thus, the proof of the order claim for
WV-polygons with full-guards does not imply that the order claim is true for WV-polygons
with half-guards.

FSTTCS 2022
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Algorithm 1 Local Search Algorithm.

We set k = α
ϵ2 , for appropriate constants α, ϵ > 0. Let Q be the set of guards.

1. Initialize Q to the vertex set V .
2. Determine if there exists a subset S ⊆ Q of size at most k and a subset S′ ⊆ V \Q of
size at most |S| − 1 such that (Q \ S) ∪ S′ guards V .
3. If such S and S′ exists then, set Q← (Q \ S)∪ S′ and go to step 2. Else, return the set
Q.

2.1 Algorithm Overview
In this section, we will assume that e = (u, v) is a convex edge, that is, the interior angles
at u and v are convex. Without loss of generality, we assume that P \ e is contained in the
open half-plane above the x-axis. We later show how to solve for the general case, where
the convexity assumption of the angles at u and v is removed. The local search algorithm,
described below, is identical to the one described in [3].

2.2 Local Search Analysis
For any two points a and b on the boundary of the polygon P , we use a ≺ b (or b ≻ a) to say
that a precedes b (or b succeeds a), i.e., when one reaches a before b, while traversing the
boundary of P , clockwise from u. Claim 1 was proved to be true for weakly-visible polygons
with full guards. The order claim proof from [3] shows that a and d see each other. However,
they do not claim that d must be to the right of a. With full-guards, it does not matter since
if a sees d, then d sees a. The following proof of the order claim for half-guards shows why a

sees d. An important note to remember is that this claim is only true if the angles at u and
v are convex.

▷ Claim 1. Let a, b, c, d be four points on the boundary of a WV-polygon such that
a ≺ b ≺ c ≺ d. If a sees c and b sees d, then a must see d (see Fig. 4).

Proof. Since a sees c and b sees d, a.x ≤ c.x and b.x ≤ d.x. If a.x ≤ b.x, then a.x ≤ b.x ≤ d.x.
Using the proof from [3], a must see d. If b.x < a.x, then consider the line segment connecting
b to d. Since a ≺ b ≺ c ≺ d, it must be the case that the bd line segment crosses the ac line
segment, see Fig. 4. Let o be the intersection point of ac and bd. By definition, a.x ≤ o.x

and o.x ≤ d.x. Therefore, a.x ≤ d.x and a sees d. ◁

It should be noted that the orientation of the WV-edge does not matter with Claim 1. In
other words, if the polygon is rotated in any direction, the original order claim from [3] still
holds, i.e. a and d must see each other, see Fig. 4(right).

Figure 4 Order claim example. The orientation of the uv edge does not matter. If a < b < c < d,
a sees c and b sees d, then a sees d.
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Let the red set R be an optimal solution (minimum cardinality guard set), and the blue
set B be the solution returned by Algorithm 1. For each vertex x ∈ (R ∪ B), we define
color(x) to be the color of the vertex x, which is red if x ∈ R, and blue if x ∈ B. We can
assume that R ∩B = ∅. Any vertices that are in both R and B are removed, i.e. the local
search algorithm found an optimal guard and one can ignore vertices which are seen by such
a guard. We prove that |B| ≤ (1 + ϵ) · |R|. We construct a bipartite graph G = (R ∪B, E).
As in [3], we can prove that (i) G is planar and (ii) G satisfies the locality condition as
defined below.

▶ Definition 2. A graph G = (R ∪ B, E) satisfies locality condition if for each vertex
w ∈ P , there exist vertices r ∈ R and b ∈ B, such that (i) r sees w, (ii) b sees w, & (iii)
(r, b) ∈ E.

Next, by using the proof scheme of Mustafa and Ray [19], if G satisfies these two conditions,
then we have |B| ≤ (1 + ϵ) · |R|. As in [3], we now define λ(·) and ρ(·) for each vertex of P .
While traversing the boundary clockwise from u, for a vertex w ∈ V , if there exists a vertex
in R ∪B that sees w and it precedes w on the path of traversal from u to w, then λ(w) is
set to the first such vertex. Similarly, ρ(w) is set to the first vertex in R ∪ B that sees w

while traversing the boundary counterclockwise from v. Since R ∩B = ∅, for every vertex
w ∈ V , λ(w) and/or ρ(w) must be defined in R ∪B.

2.3 Constructing G

▷ Claim 3. Let A1 = {(λ(w), w) | w ∈ V for which λ(w) is defined}. Then the segments of
A1 are non-crossing.

Proof. Consider two segments (λ(x), x), (λ(y), y) ∈ A1, such that λ(x) ̸= λ(y). Without loss
of generality assume that λ(x) ≺ λ(y). By contradiction, suppose the segments (λ(x), x) and
(λ(y), y) intersect, then it must be the case where λ(x) ≺ λ(y) ≺ x ≺ y. But, by Claim 1,
this would imply that λ(x) sees y, which is impossible by the definition of λ(y). Thus, the
segments are non-crossing. ◁

The edges of G are similar to the edges of G described in [3]. If it can be shown that the
order claim holds and that the segments of A1 are non-crossing, the details of how to create
the graph are essentially the same. However, the description of those edges are provided here
for completeness. For each vertex x ∈ R ∪B, if λ(x) is defined and color(λ(x)) ̸= color(x),
add the edge (λ(x), x) to E1. Otherwise, if there exists a segment (λ(w), w) ∈ A1, such
that (i) λ(w) ≺ x ≺ w, (ii) (λ(w), w) can be reached from x without going outside of P and
without intersecting any other segment in A1 (except possibly at x), and (iii) color(λ(w)) ̸=
color(x), add the edge (λ(w), x) to E1.

Analogously, we define the sets A2 and E2 by replacing λ with ρ. This implies, A2 =
(w, ρ(w)) | w ∈ V for which ρ(w) is defined}, and E2 is defined with respect to A2. For each
vertex w ∈ R ∪B, if both λ(x) and ρ(x) are defined and color(λ(x)) ̸= color(ρ(x)), then add
the edge (λ(x), ρ(x)) to E3. Let G = (R ∪B, E), where E = E1 ∪ E2 ∪ E3. Now, we have
the following lemmas.

▶ Lemma 4. The graph G = (R ∪B, E) is (a) planar, and (b) satisfies locality condition.

Proof. We prove that G is planar by finding a suitable embedding of it in the plane. Let
C be a circle of radius r > 0 in the plane. We map the vertices of P to equally-spaced
points on C, and the edges in E are drawn between pairs of points inside and outside of

FSTTCS 2022
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C. If A1 ∩ E1 ̸= ∅, then the edges in A1 ∩ E1 are drawn inside C as straight line segments,
and are non-crossing due to Claim 3. Note that for each edge (λ(w), x) ∈ E1 \ A1, there
exists a segment (λ(w), w) ∈ A1 such that λ(w) ≺ x ≺ w and x can reach (λ(w), w) without
exiting from P and without intersecting any segment in A1. We can argue that the edge
(λ(w), x) can be drawn as a straight line segment inside C without intersecting any edge
that was already drawn. Suppose (λ(w), x) intersects an edge (segment) (λ(a), a) ∈ A1 ∩E1.
Now, if λ(a) ≺ λ(w) ≺ a ≺ x, then the segments (λ(a), a) and (λ(w), w) are crossing, a
contradiction to Claim 3. If λ(w) ≺ λ(a) ≺ x ≺ a, there arise two cases: (i) a ≺ w or a = w,
in this case x crosses the segment (λ(a), a) to reach (λ(w), w), a contradiction; (ii) w ≺ a,
in which case the segments (λ(w), w) and (λ(a), a) are crossing, a contradiction to Claim 3.
If, suppose, (λ(w), x) intersects an edge (λ(w′), y) ∈ E1 \ A1, then λ(w) ≺ λ(w′) ≺ x ≺ y.
Implies (λ(w), x) crosses the segment (λ(w′), w′) ∈ A1. If (λ(w′), w′) ∈ E1, then it is similar
to the previous case. On the other hand, if (λ(w′), w′) ∈ E1, there arise two cases: either
w′ ≺ w or w′ = w, in which the contradiction is that x crosses (λ(w′), w′) to reach (λ(w), w);
or w ≺ w′, in which λ(w) sees w′ (order claim applied to λ(w), λ(w′), w, w′), contradiction to
the definition of λ(w′). Thus the edges E1 are properly embedded inside C. We embed the
edges of E2 outside C as curved line segments. The edges in A2 ∩E2, if any, can be drawn
without intersecting due to the fact that the segments in A2 are non-crossing. We can argue
that the edges of E2 \A2 can be embedded without crossing as in the previous case. Observe
that the edges in E3 correspond to a vertex x/ ∈ R ∪B, having λ(x) and ρ(x) defined, such
that color(λ(x)) ̸= color(ρ(x)). Also, observe that neither (λ(x), x) nor (x, ρ(x)) belong to
E1 ∪E2 by the way E1 and E2 are defined. Hence, each edge (λ(x), ρ(x)) ∈ E3 can be drawn
as the union of the segments (λ(x), x) ∈ A1 and (x, ρ(x)) ∈ A2. Therefore, G is planar as all
the edges in E are drawn without any intersection.

(b) Let x be any vertex of P . We will show that there exists r ∈ R and b ∈ B, such that
r sees x, b sees x, and (r, b) ∈ E. We argue by distinguishing between the following two
cases. Case (i) x /∈ R ∪B: If both λ(x) and ρ(x) are defined and color(λ(x)) ̸= color(ρ(x)),
then (λ(x), ρ(x)) ∈ E3, and hence the claim is true. If both λ(x) and ρ(x) are defined and
color(λ(x)) = color(ρ(x)), then there must exists w ∈ R∪B such that w sees x, and color(w)
is different from color(λ(x)) and color(ρ(x)). Without loss of generality we assume that w

be the first such vertex while traversing P ’s boundary clockwise from u, and λ(x) ≺ w ≺ x

(a similar argument works if x ≺ w ≺ ρ(x) assuming w be the last such vertex while
traversing P ’s boundary clockwise from u). Let (λ(y), y) ∈ A1 associate with w, implies
λ(x) ≺ λ(y) ≺ w ≺ y ≺ x. If y ̸= x, then λ(y) sees x due to order claim on the vertices
λ(y), w, y, and x. If y = x, then λ(x) = λ(y), so λ(y) sees x. Since w is the first vertex that
sees x and satisfies λ(x) ≺ w ≺ ρ(x), it must be that color(λ(y)) ̸= color(w). So the edge
(λ(y), w) ∈ E1. Hence, the claim is true. The above argument works even if only λ(x) (or
ρ(x)) is defined.

Case (ii) x ∈ R ∪B: If λ(x) is defined and if color(λ(x)) ̸= color(x), then (λ(x), x) ∈ E1,
and hence the claim is true. Similarly, if ρ(x) is defined and if color(ρ(x)) ̸= color(x), then
(x, ρ(x)) ∈ E2, and hence the claim is true. Suppose λ(x) is defined, but color(λ(x)) =
color(x) (the argument is similar if ρ(x) is defined and color(x) = color(ρ(x))). There must
exist w ∈ R∪B such that w sees x, λ(x) ≺ w ≺ x, and color(λ(x)) ̸= color(w). Without loss
of generality, let w itself be the first such vertex (while traversing P ’s boundary clockwise
from u). Now, we can prove the claim by proceeding as in Case (i). ◀

▶ Lemma 5. There exists a PTAS for vertex guarding a weakly-visible polygon, with visibility
edge e = (u, v) where the angles of u and v are convex, with half-guards where half-guards
can only see to the right.
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Figure 5 Removing the convexity
assumption.

Figure 6 Any point p ∈ P3 that is seen by
a point g ∈ P2 is also seen by u.

2.4 Removing the Convexity Assumption

In [3], the convexity assumption is handled by placing guards at u and v. It is proved
that every vertex “below” the edge e = (u, v) is seen by either u or v. For half-guards, if
guards are similarly placed at u and v the analysis of [3] does not extend to half-guarding.
A portion of the polygon below the e = (u, v) edge is unseen, see, for example, P5 and P2
from Figure 5. We now show how to remove the convexity assumption of u and v. Let lu
be the vertical line going through u; ux and uy be the points of intersection of lu with the
boundary of P . Let hv be the horizontal line through v that hits the boundary of P at vy to
the right of v. Let lv be the vertical line through v that hits the boundary of P at vx below
v. The segments uxuy, vvx, and vvy split the polygon into at most five sub-polygons, say
P1, P2, P3, P4, P5; each weakly-visible from some edge (see Fig. 5). Thus, vertex guarding
the vertices of each sub-polygon ensures vertex guarding the vertices of P . As shown in [3],
if the WV-polygon can be guarded using only a constant number (say c) of vertices, then
we try all such possibilities and obtain an optimal solution in O(nc) time. Assuming the
polygon cannot be guarded with a constant number of guards, we place guards at u and v

and show that the final guarding set, including these two guards, is a (1 + ϵ)−approximation.
The entire P1 region must be seen by the point u on the edge e = (u, v). All the vertices

in P4 are seen by v. Thus, vertex guarding the vertices of P1 and P4 can be achieved by
placing 1 half-guard at u and v, respectively. Let U be the set of vertices in P3 that are
neither guarded by u nor v. We apply Algorithm 1 on P3 with the WV-edge uv to vertex
guard U . Let S3 be the solution obtained.

Observe that the polygons P2 and P5 are weakly-visible from uxuy, and vvx, respectively.
Hence, Algorithm 1 can be applied individually since ux, uy, v, and vx are convex vertices
in their respective sub-polygons. Since Claim 1 (half-guard order claim) holds for these
polygons, the A1 segments in those polygons are non-crossing. Thus, one can construct a
graph G for each sub-polygon where G is planar and G satisfies the locality condition. Let
S2 and S5 be the solutions obtained for P2 and P5, respectively.

It remains to show that the solutions S2, S3 and S5 are disjoint. In other words, the local
search algorithm can be run independently on each sub-polygon. No guard in S2 will see
any of the U vertices in P3 nor P5. Similarly, no guard in S3 will see vertices in P2 nor P5.
Lastly, no guard in S5 will see vertices in P2 nor the U vertices in P3.

It is immediately obvious that no guard in S3 nor S5 can see any vertex in P2. Any such
vertex would need to see left to cross the uxuy line segment and no guard can see left. In a
similar fashion, no guard of S2 nor S3 can see any vertex in P5. In order to see into P5, a

FSTTCS 2022



18:8 Half-Guarding Weakly-Visible Polygons and Terrains

guard must see to the left of the vvx line segment and no guard can see left. When guarding
P3, we assumed that guards were already placed at u and v and therefore, we only need to
run the local search algorithm on the remaining vertex set U ∈ P3 such that no vertex in U

is seen by either u or v.

▷ Claim 6. Any vertex p ∈ P3 that is seen by any boundary point g ∈ P2 is seen by u.

Proof. By definition, u sees ux since ux is directly above u. It must be the case that
u ≺ g ⪯ ux. Since u sees ux and g sees p, the polygon cannot pierce the uux nor gp line
segments. The only way to block u from seeing p is to come from the “other side,” see Fig. 6.
However, if blocking occurs in this manner, then p no longer has a line segment connecting it
to the uv edge, contradicting the fact that the polygon is weakly-visible. Therefore, u must
see p. ◁

▷ Claim 7. Any vertex p ∈ P3 that is seen by a boundary point g ∈ P5 is seen by v.

The set S2, S3 or S5 may not be a feasible solution of P as S2, S3 and S5 may contain
guards at ux, uy, vx, or vy, which are not vertices of P . Assuming vy is not a vertex, it is
not considered by the algorithm for P3. The vertex that precedes vy is considered by the
local search algorithm for P3. No guard will be placed at vx when running the local search
algorithm on P5. A guard at vx only sees itself and v. A guard was already placed at v

making any guard placed at vx redundant.
If the local search algorithm places a guard at uy or ux when creating a solution for P2,

then that guard was only placed to guard uy and/or ux. Since the rest of the P2 polygon
is to the left of ux and uy, guards placed here will not see any other vertex of P2. If this
happens, then we sweep a vertical line leftward starting at uxuy until it hits a vertex of P2.
The guard is moved to this vertex. That vertex will see both ux and uy. As shown in Claim
6, neither ux nor uy will be responsible for guarding a vertex in P3 and it is obvious they will
not contribute to the other sub-polygons. Therefore, no guards will be placed at ux, uy, vx

nor vy.

▶ Theorem 8. For any weakly-visible polygon, there exists a PTAS for vertex guarding the
vertices of the polygon with half-guards.

Proof. Let P be a polygon that is weakly-visible from an edge e = (u, v). We divide the
polygon P into at most five sub-polygons as discussed above. Let S2, S5 be the set of
half-guards obtained by our algorithm for P2 and P5. The obtained set S3 guards the set
of vertices U of P3 that are not seen by the half-guards placed at u and v. Let OPT be an
optimal half-guard set of vertices of P . Let S = S2 ∪ S3 ∪ S5 ∪ {u, v}.

It can be observed that, the vertices in P2 (resp. P5) can only be guarded by half-guards
placed at the vertices of P2 (resp. P5). Let Oi be an optimal solution for vertex guarding
the sub-polygon Pi, and OPTi ⊂ OPT be the set of half-guards (in the optimum solution of
P) lying in Pi. We get, |Si| ≤ (1 + ϵ) · |Oi| ≤ (1 + ϵ) · |OPTi| as |Oi| ≤ |OPTi|.

Consider the sub-polygon P3. Let O3 be an optimal solution for vertex guarding the set U

in P3. Mote that, the subset of vertices U is not guarded by OPT1 ∪OPT2 ∪OPT4 ∪OPT5.
Let OPT3 ⊂ OPT be the set of guards lying in P3 to guard U . We have, |O3| ≤ |OPT3|,
implying |S3| ≤ (1 + ϵ) · |O3| ≤ (1 + ϵ) · |OPT3|. Combining the above inequalities, we have
|S| ≤ (1 + ϵ) · |O2|+ (1 + ϵ) · |O3|+ (1 + ϵ) · |O5|+ 2/ Thus, |S| ≤ (1 + ϵ) ·OPT + 2. We can
get rid of 2 in the inequality by adjusting k in the algorithm. ◀
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Figure 7 The vertices are half-guarded by v2 and v5 but an edge remains unseen.

2.5 Guarding the boundary of a weakly-visible polygon
In the previous section, we vertex guarded the vertices of a WV-polygon. However, even
though all vertices are seen, it is possible that part of the boundary is unseen (see Fig. 7).
Let AGP (G, W ) denote the problem of guarding the point set W with minimum number of
entries in G. Let ∂P denote the boundary of P . We consider the following problem. Given a
weakly-visible polygon P , construct a set W ⊂ ∂P (witness points) such that an optimal
solution for AGP (V, W ) is also an optimal solution for AGP (V, ∂P ). This discretization is
based on Friedrichs et al. [10].

Computation of a witness set
We have a finite guard set V , which are the vertices of P . In order to guard ∂P , we find a
discrete set of witness points W ⊂ ∂P . Let g ∈ V be one of the half-guard candidates and
V(g) be the visibility region of g on P ’s boundary (V(g) ⊆ ∂P ). V(g) creates O(n) closed
intervals (may be degenerate to a point) along the boundary ∂P . Considering the intervals
generated by all the members in the guard set G, we split the entire boundary ∂P into
maximal intervals, called features such that every point in a feature f is seen by the same set
of guards G(f) = {g ∈ V | f ⊆ V(g)}. Note that, (i) the union of the features is ∂P , and (ii)
if any point in a feature is guarded by some guard in G, then the entire feature is guarded
by that half-guard.

We pick any arbitrary point of each feature to the witness set W . So if we guard these
O(n|V |) witnesses in W , then the entire feature set, and as a result, ∂P is guarded. We
can further reduce the number of witnesses by only using those features f with inclusion-
minimal2 G(f). Let F be the feature set and G be the guard set (here G = V ). Let wf be
an arbitrary point in a feature f ∈ F , then the witness of G is defined as W = {wf | f ∈
F, G(f) is inclusion minimal}.

▶ Lemma 9. For a weakly-visible polygon P , with vertex set V and guard set G (here G = V ),
any feasible solution of AGP (G, W ) is also a feasible solution of AGP (G, ∂P ).

Proof. Let C ⊂ G be a feasible guard set of the witness set W . Suppose C does not guard
some point p ∈ ∂P . Since every point on ∂P is visible to at least one vertex, some half-guard
g ∈ G should guard p. Therefore, p must be part of some feature f ∈ F . The set W either
contains some witness wf ∈ f or a witness wf ′ such that G(f ′) ⊆ G(f) (inclusion-minimality).
In the first case, p must be guarded by C, otherwise wf will not be guarded, and hence C is
not a feasible solution for AGP (G, W ), leading to a contradiction. In the second case, some
half-guard g ∈ C guards wf ′ . That half-guard should also guard f , thus it guards p; thus
arriving at a contradiction of the statement that p is not guarded. ◀

2 There does not exist another feature f ′ such that G(f ′) ⊆ G(f)
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u v

(a)
u v

(b)

Figure 8 Guards that see the boundary of P but do not see the entire interior of P . (a) Example
with half-guards. (b) Example with full-guards.

We apply the algorithm discussed above to guard the witness set W with the guard set
V . Thus, we have the following result:

▶ Theorem 10. For any weakly-visible polygon P , there exists a PTAS for finding the
minimum number of half-guards at the vertices of P , that are required to guard the entire
boundary of P .

▶ Remark. Vertex guarding the entire boundary may not necessarily imply vertex guarding
the entire polygon. In other words, even if the boundary is fully guarded there may be
some pockets (invisible regions) inside the polygon. In Fig. 8(a), any solution (even an
optimal one) guarding the boundary must have guards at the tip of the spike for guarding
the spikes in the polygon as the guards can see only to the right. If the local search algorithm
encounters the guards shown in the figure it will report that guard set. A similar observation
can be observed with full-guards too. Note that for the weakly-visible polygon shown in
Fig. 8(b), at least three full-guards are necessary to cover the boundary. If the local search
algorithm encounters the guards shown in the figure, it will return them and exit as it cannot
improve the solution further. In this case, there is a pocket. Indeed, there is another set of
three points that cover the entire boundary as well as the interior of the polygon. However,
the local search algorithm might not pick them.

3 NP-hardness for Vertex Guarding a Terrain with Half-Guards

Abusing notation, only in this section, we will assume that half-guards can only see “down.”
Let p.y be the y-coordinate of a point p. We define seeing down as: a point p sees a point q

if p.y ≥ q.y. We begin this section by briefly sketching how the NP-hardness reduction works
for terrain guarding with full-guards. The interested reader is encouraged to read [13] to see
the full details of the original reduction. The reduction modifications begin in Section 3.1.

The terrain guarding reduction is from PLANAR 3SAT [18] where an instance has n

variables and m clauses. The reduction works by assigning vertices on the terrain to truth
values of variables from the PLANAR 3SAT instance. For each variable in the PLANAR 3SAT
instance, variable gadgets are created such that the gadget contains a vertex representing
the literal xi and a vertex representing the literal xi, see Figure 9(middle). These variable
gadgets are grouped together in chunks on the terrain. Figure 9(left) shows an example of
one such chunk that contains one variable gadget for each variable in {x1, x2, . . . , xn}. These
chunks are replicated on the terrain such that a guard placed at the vertex representing
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the literal xi in chunk Cj would require a guard to be placed at the vertex representing the
literal xi in a different chunk Ck. There are points on the terrain that correspond to clauses
in the PLANAR 3SAT instance. For example, if clause ci = (xi+1 ∨ xi+3 ∨ xi+4) were in the
original PLANAR 3SAT instance, then a point on the terrain would exist that is seen by
three vertices corresponding to the literals xi, xi+3 and xi+4. If one of those vertices has a
guard placed on it, then the clause would be satisfied. If none of those vertices has a guard
placed on it, then an extra guard would be required to guard the terrain. If some minimum
number of guards were placed and the entire terrain was seen, then the original instance was
satisfied. If not, then the original instance was unsatisfiable.

The terrain guarding reduction only works if guards are full-guards. If the guards are
half-guards that only see down, part of the terrain would go unseen. For example, in Figure 9,
the portion of the terrain near the top could potentially be unseen. In the original reduction,
a guard placed in the highest variable gadget of chunk will see this portion. Other parts of
the terrain may also go unseen with the original reduction. Several tweaks and modifications
to the reduction need to happen to ensure all of the terrain is guarded.

3.1 Terrain Hardness Modifications

If we restrict guards to be half-guards that see down in the terrain, then the terrain guarding
problem with these half-guards is NP-hard. In regular terrain guarding, a point p sees
another point q if the line segment connecting p and q does not go below the terrain. In this
half-guard variant, the point p sees q only if the y-coordinate of p is greater than or equal to
the y-coordinate of q and the line segment connecting p and q does not go below the terrain.

We describe the changes to the gadgets of [13] that must be made in order for the
reduction to hold. Each part will explain why the original gadget doesn’t work for this
half-guard variant and what changes must be made in order to have the reduction hold.

Figure 9 The left shows an overview of the NP-hardness reduction for terrain guarding. The
middle is a variable gadget. The right is a starting gadget.

Between Chunks: Let us order the chunks from top to bottom (C1, C2, . . . , Cm). We will
assume that all variables gadgets in chunk Ci are below all variable gadgets in chunk Ci−1.
In the original reduction, the terrain between Ci the Ci+2 is seen by any guard placed in the
Ci+1 chunk. Since guards can only see down in this variant, a portion of the terrain, which
we will call u, below the lowest variable gadget in Ci and above the highest variable gadget
in Ci+1 will be unseen, see Figure 10(left). To fix this, we place a new gadget on the other
side of the terrain from Ci. This gadget is at the same y-coordinate of the lowest variable
gadget in chunk Ci. This ensures that the new guard will not affect the mirroring. The
vertices f and g can be seen from vertex e and by no other point outside of this small region.
Placing a guard at e will see f and g and also see the unseen region u below chunk Ci.
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Figure 10 (Left) To ensure the entire terrain is seen, a guard is placed at e to see vertices f and
g along with the u region. (Right) The overview of the terrain reduction where guards see down.

Variable Gadget: The following minor modifications need to be done in the variable gadgets
to work for proving the hardness for half-guards.

Assume the xi vertex in the variable gadget in chunk Cj has a guard placed on it and it
sees b. In this case, a guard is placed at xi in the variable gadget in chunk Cj+1 to see a and
c. The entire xi variable gadget in chunk Cj+1 is seen. Likewise, if a guard placed at xi in
chunk Cj sees a, then a guard is placed at xi in chunk Cj+1 sees b and c. A small portion of
the terrain below xi in chunk Cj+1 may have been missed, see Figure 11. However, if the xi

vertex in chunk Cj is lowered just slightly, then the guard placed at xi in Cj will see this
region and an additional guard is not required. One must ensure the previously placed xi

does not see b but it can see anything in this gadget above b. Therefore, we ensure that xi in
the previous variable gadget is placed in such a way that it blocks xi from seeing just above
b in the subsequent variable gadget.

Figure 11 The variable gadget remains mostly unchanged from [13].

Removing a Variable: We will assume we are removing a variable from chunk Ci. When a
variable gadget is removed going upwards, the gadget is modified slightly to remove the a

and b vertices. Such a gadget is also called a starting gadget. When a guard is placed at
the “lower” vertex in this gadget, a small portion of the terrain below the “higher” vertex
remains unseen. In Figure 9(right), a starting gadget is shown. A guard placed at xi would
not see the small portion of the terrain below the xi guard. To ensure this region is seen, we
look at the variable patterns placed in the chunk above it, chunk Ci−1. The guard placed in
the lowest variable pattern will see all of these potentially unseen portions. For example, in
Figure 10(right), the guard placed in the variable gadget, xk, directly above the rl point will
see all of these unseen regions in the variable patterns between lr and the variable gadget for
xk in chunk C2. Therefore, no modification is needed and no additional guard is needed.
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Figure 12 The inversion gadget for variable xi in chunk Cj+1. This gadget is not tweaked but
the variable gadget xi in chunk Cj is modified slightly.

When removing a variable going down, the variable gadget is simply removed. The guard
placed in the previous chunk’s lowest variable gadget will see this region. If the lowest
variable was being removed, then the e guard in the gadget that sees between chunks will
see this region (see Figure 10(left)).

Above chunk C1 and C2: Since guards cannot see “up,” a guard must be placed that
guards the terrain above the first set of variable gadgets in chunk C1 and above the variable
gadgets in C2. Assume without loss of generality that C1 is on the left side of the terrain.
Two guards are placed at points l and r as shown in Figure 10(right). These guards are
required to see their own set of distinguished points, namely ll, lr, rr and rl. They see the
“top” of the terrain above chunks C1 and C2. Since all gadgets in chunk C1 are starting
gadgets, rl is placed below chunk C1 to ensure the relevant part of the terrain in the starting
gadgets and the terrain above the chunk are seen.

Inversion Gadgets: The updating required for the inversion gadgets are stated below:
See Figure 12 for a sample inversion gadget placed in chunk Cj+1. If a guard from the

variable gadget xi in chunk Cj sees point p, then when guards are placed at xi1 and xi2, the
entire gadget is seen. If the guard from chunk Cj guard sees point q, then guards are placed
at xi1 and xi2. This leaves a small portion of the terrain unseen, the line segment e in Figure
12. To fix this, similar to the tweak of the variable gadget, the previously placed guard in
chunk Cj is tweaked such that it sees just over the xi1 guard to see e. In this example, the
previously placed guard must see q and not see p. As long as it is blocked from p, this is all
that matters.

Clause Gadgets: No change is needed for the clause gadgets.

Putting it all together: As seen above, certain tweaks and updates are made to ensure that
the entire terrain is seen. Making these changes will cause the minimum number of guards
that must be placed, k, to increase by m + 1. An additional m− 1 guards are needed to see
the unseen regions between chunks. Two additional guards are added at l and r to see the
“top” of the terrain. This gives us a total of m− 1 + 2 = m + 1 additional required guards.
None of these additional required guards see any of the original distinguished points of the
terrain. They see their own set of distinguished points and also see the portion of the terrain
that would have been unseen. As shown in [13], if k guards can guard the entire terrain, the
instance is satisfiable. If more than k are needed, then the instance is not satisfiable.
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▶ Theorem 11. Finding the smallest vertex guard cover for guarding a terrain using half-
guards that see down is NP-hard.

4 NP-hardness for Vertex Guarding a WV-Polygon with Half-Guards

In this section, we give an overview of how to tweak the reduction from the previous section
to show that vertex guarding a WV-polygon with half-guards is NP-hard. We will show how
to use the terrain guarding hardness result for guards that only see down to show that vertex
guarding a WV-polygon with half-guards that see to the right is NP-hard. One can take
the modified terrain reduction, rotate it counterclockwise 90° and connect vertex l to vertex
r to create a WV-polygon that is visible from the edge e = (l, r), see Figure 13(left). The
reduction holds the same way that it does for vertex guarding a terrain with half-guards that
only see down.

One will notice that if the WV-edge is rotated slightly counterclockwise, the reduction
still holds, see Figure 13(right). The key visibilities from the guards remain and the polygon
is still weakly-visible. To help with seeing this, consider the variable patterns of Figure 14.
The WV-polygon can be rotated, for example, 10° counterclockwise and the xi and xi guards
still sees “right” to the distinguished points that they needs to see. The reduction begins to
fail whenever a guard visibility from the original reduction starts to have a negative slope.
In other words, if some point that guard xi is supposed to see is to the left of xi. If this
happens, the guard no longer sees the distinguished point(s) to its right. To account for this,
the original polygon is “stretched” further up-and-to-the-right such that none of the guards
visibility have a negative slope. We now give a sketch of how to stretch the terrain/polygon
while still maintaining the hardness reduction.

4.1 Stretching Hardness
For the terrain guarding hardness reduction, if half-guards see down and the terrain is rotated
1° in a counterclockwise direction, the terrain does not need to be modified much in order to
maintain visibilities. The e guards placed to see between chunks Ci and Ci+2 need to be
shifted “up” to see the correct portion of the terrain between the chunks, see Figure 10. All
gadgets are stretched but their visibilities do not change. A similar stretching idea is done
for WV-polygons.

An example of stretching a WV-polygon is seen in Figure 15. In the bottom part of
this Figure, the WV-edge is parallel to the x-axis and visibility to distinguished points are
still to the right. As seen in the example, the original right-most vertex of the original
WV-polygon is pulled “up-and-to-the-right” to ensure the polygon remains weakly-visible
and all important lines of sight look to the right. The l and r vertices are tweaked slightly
to ensure they also see their respective distinguished vertices to the right. Each gadget is
also stretched “up-and-to-the-right” to maintain visibilities. An example of such a stretching

Figure 13 An overview of NP-hardness for WV-polygons.
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Figure 14 The top shows an original variable gadget. The bottom shows a rotated variable
gadget.

is shown in Figure 15(bottom). In the original reduction, Figure 15(top), the xi and xi

variables see right but they also see “up-and-to-the-right” to mirror its value to the next
variable gadget. In the stretched WV-polygon, the variable gadget is stretched but the
visibility of xi and xi that see “up-and-to-the-right” still exist. Those lines of sight are simply
steeper than in the original reduction.

Figure 15 A stretched WV-polygon with a rotated variable gadget.

This stretching of the polygon works even if the WV-edge has a positive slope. The
polygon can continue to be stretched as far “up-and-right” as necessary. However, the tweak
fails when the WV-edge is a vertical edge and the inside of the polygon is to the left of the
edge. We leave this as an open problem.
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5 Conclusion and Future Work

In this paper, we present a PTAS for vertex guarding the vertices and boundary of a
WV-polygon with half-guards that see to the right. This algorithm works regardless of the
orientation of the WV-edge. We present an NP-hardness proof for vertex guarding a terrain
with half-guards that see down. In contrast, if the half-guards see to the right for vertex
guarding a terrain, the problem is polynomial time solvable. We also present an NP-hardness
proof for vertex guarding a WV-polygon with half-guards that see to the right. Such a proof
works for all instances except when the WV-edge is parallel to the y-axis and the “inside” of
the polygon is to the left of the WV-edge. Whether or not this problem is NP-hard is left as
an open problem. Future work might include finding a better approximation for the point
guarding version of this problem. Insights provided in this paper may help with guarding
polygons where the guard can choose to see either left or right, or in other natural directions.
One may also be able to use these ideas when allowing guards to see 180° but guards can
choose their own direction, i.e. 180°-floodlights.
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