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Abstract
We study the decomposition of multivariate polynomials as sums of powers of linear forms. We give
a randomized algorithm for the following problem: If a homogeneous polynomial f ∈ K[x1, ..., xn]
(where K ⊆ C) of degree d is given as a blackbox, decide whether it can be written as a linear
combination of d-th powers of linearly independent complex linear forms. The main novel features
of the algorithm are:

For d = 3, we improve by a factor of n on the running time from the algorithm in [21]. The price
to be paid for this improvement is that the algorithm now has two-sided error.
For d > 3, we provide the first randomized blackbox algorithm for this problem that runs in
time poly(n, d) (in an algebraic model where only arithmetic operations and equality tests are
allowed). Previous algorithms for this problem [17] as well as most of the existing reconstruction
algorithms for other classes appeal to a polynomial factorization subroutine. This requires
extraction of complex polynomial roots at unit cost and in standard models such as the unit-cost
RAM or the Turing machine this approach does not yield polynomial time algorithms.
For d > 3, when f has rational coefficients (i.e. K = Q), the running time of the blackbox
algorithm is polynomial in n, d and the maximal bit size of any coefficient of f . This yields
the first algorithm for this problem over C with polynomial running time in the bit model of
computation.

These results are true even when we replace C by R. We view the problem as a tensor decomposition
problem and use linear algebraic methods such as checking the simultaneous diagonalisability of
the slices of a tensor. The number of such slices is exponential in d. But surprisingly, we show that
after a random change of variables, computing just 3 special slices is enough. We also show that our
approach can be extended to the computation of the actual decomposition. In forthcoming work we
plan to extend these results to overcomplete decompositions, i.e., decompositions in more than n

powers of linear forms.
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1 Introduction

Lower bounds and polynomial identity testing are two fundamental problems about arith-
metic circuits. In this paper we consider another fundamental problem: arithmetic circuit
reconstruction. For an input polynomial f , typically given by a black box, the goal is to find
the smallest circuit computing f within some class C of arithmetic circuits. This problem
can be divided in two subproblems: a decision problem (can f be computed by a circuit of
size s from the class C?) and the reconstruction problem proper (the actual construction
of the smallest circuit for f). In this paper we are interested in absolute reconstruction,
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24:2 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

namely, in the case where C is a class of circuits over the field of complex numbers. The name
is borrowed from absolute factorization, a well-studied problem in computer algebra (see
e.g. [9, 10, 11, 24]). Most of the existing reconstruction algorithms appeal to a polynomial
factorization subroutine, see e.g. [12, 13, 16, 17, 18, 19, 26]. This typically yields polynomial
time algorithms over finite fields or the field of rational numbers. However, in standard
models of computation such as the unit-cost RAM or the Turing machine this approach does
not yield polynomial time algorithms for absolute reconstruction. This is true even for the
decision version of this problem. In the Turing machine model, the difficulty is as follows.
We are given an input polynomial f , say with rational coefficients, and want to decide if
there is a small circuit C ∈ C for f , where C may have complex coefficients. After applying a
polynomial factorization subroutine, a reconstruction algorithm will manipulate polynomials
with coefficients in a field extension of Q. If this extension is of exponential degree, the
remainder of the algorithm will not run in polynomial time. This point is explained in more
detail in [21] on the example of a reconstruction algorithm due to Neeraj Kayal [17]. One
way out of this difficulty is to work in a model where polynomial roots can be extracted
at unit cost, as suggested in a footnote of [14]. We will work instead in more standard
models, namely, the Turing machine model or the unit-cost RAM over C with arithmetic
operations only (an appropriate formalization is provided by the Blum-Shub-Smale model
of computation [5, 6]). Before presenting our results, we present the class of circuits studied
in this paper.

1.1 Sums of powers of linear forms
Let f(x1, . . . , xn) be a homogeneous polynomial of degree d. In this paper we study decom-
positions of the type:

f(x1, . . . , xn) =
r∑

i=1
li(x1, . . . , xn)d (1)

where the li are linear forms. Such a decomposition is sometimes called a Waring decomposi-
tion, or a symmetric tensor decomposition. The smallest possible value of r is the symmetric
tensor rank of f , and it is NP-hard to compute already for d = 3 [25]. One can nevertheless
obtain polynomial time algorithms by restricting to a constant value of r [3]. In this paper
we assume instead that the linear forms li are linearly independent (hence r ≤ n). This
setting was already studied by Kayal [17]. It turns out that such a decomposition is unique
when it exists, up to a permutation of the li and multiplications by d-th roots of unity. This
follows for instance from Kruskal’s uniqueness theorem. For a more elementary proof, see [17,
Corollary 5.1] and [21, Section 3.1].

Under this assumption of linear independence, the case r = n is of particular interest. In
this case, f is equivalent to the sum of d-th powers polynomial

Pd(x) = xd
1 + xd

2 + · · · + xd
n (2)

in the sense that f(x) = Pd(Ax) where A is invertible. A test of equivalence to Pd was
provided in [17]. The resulting algorithm provably runs in polynomial time over the field of
rational numbers, but this is not the case over C due to the appeal to polynomial factorization.
The first equivalence test to Pd running in polynomial time over the field of complex numbers
was given in [21] for d = 3. We will extend this result to arbitrary degree in this paper. In the
general case r ≤ n we can first compute the number of essential variables of f [8, 17]. Then we
can do a change of variables to obtain a polynomial depending only on its first r variables [17,
Theorem 4.1], and conclude with a test of equivalence to Pr (see [21, Proposition 44] for
details).
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Equivalence and reconstruction algorithms over Q are number-theoretic in nature in the
sense that their behavior is highly sensitive to number-theoretic properties of the coefficients
of the input polynomial. This point is clearly illustrated by an example from [21]:

▶ Example 1. Consider the rational polynomial

f(x1, x2) = (x1 +
√

2x2)3 + (x1 −
√

2x2)3 = 2x3
1 + 12x1x2

2.

This polynomial is equivalent to P3(x1, x2) = x3
1 + x3

2 over R and C but not over Q.

By contrast, equivalence and reconstruction algorithms over R and C are of a more geometric
nature.

1.2 Connection to Tensor Decomposition
Using the relation between tensors and polynomials, we can see that a homogeneous degree-d
polynomial f ∈ K[x1, ..., xn] can be written as a sum of d-th powers of linear forms over K
if and only if there exist vi ∈ K such that the corresponding symmetric tensor Tf can be
decomposed as Tf =

∑
i v⊗d

i . This is often referred to as the tensor decomposition problem
for the given tensor T .

Most tensor decompositions algorithms are numerical such as the ALS method [22]
(which lacks a good complexity analysis), tensor power iteration [1] (for orthogonal tensor
decomposition) or Jennrich’s algorithm [15, 23] for ordinary tensors. A self-contained bit-
complexity analysis of Jennrich’s algorithm can be found in [4]. Unlike the above algorithm
from [21], these numerical algorithms do not provide any decision procedure. The algebraic
algorithm from [21] seems closest in spirit to Jennrich’s: they both rely on simultaneous
diagonalization and on linear independence assumptions on the vectors involved in the tensor
decomposition. Algorithms for symmetric tensor decomposition can be found in the algebraic
literature, see e.g. [2, 7]. These two papers do not provide any complexity analysis.

1.3 Results and methods
Our main contributions are as follows. Recall that Pd is the sum of d-th powers polynomi-
als (2), and let us assume that the input f ∈ C[x1, . . . , xn] is a homogeneous polynomial of
degree d.

(i) For d = 3, we improve by a factor of n on the running time of the test of equivalence
to P3 from [21]. The price to be paid for this improvement is that the algorithm now
has two-sided error. The algorithm for the d = 3 case and a simpler analysis can be
found in the full paper [20].

(ii) For d > 3, we provide the first blackbox algorithm for equivalence to Pd with running
time polynomial in n and d (more specifically, O(n2d) calls to the blackbox and
O(n2d log2(d) log log(d) + nω+1) arithmetic operations) where ω is the exponent of
matrix multiplication, in an algebraic model where only arithmetic operations and
equality tests are allowed (i.e., computation of polynomial roots is not allowed).

(iii) For d > 3, when f has rational coefficients this blackbox algorithm runs in polynomial
time in the bit model of computation. More precisely, the running time is polynomial
in n, d and the maximal bit size of any coefficient of f . This yields the first test of
equivalence to Pd over C with polynomial running time in the bit model of computation.

As outlined in Section 1.1, these results have application to decomposition into sums of
powers of linearly independent linear forms over C. Namely, we can decide whether the input
polynomial admits such a decomposition, and if it does we can compute the number of terms
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24:4 Black Box Absolute Reconstruction for Sums of Powers of Linear Forms

r in such a decomposition. The resulting algorithm runs in polynomial time in the algebraic
model of computation, as in item (ii) above; when the input has rational coefficients it runs
in polynomial time in the bit model of computation, as in (iii) (refer to Appendix B in the
full paper [20] for a detailed complexity analysis). This is the first algorithm with these
properties. It can be viewed as an algebraic, high order, black box version of Jennrich’s
algorithm.

Using the relation to tensor decomposition problem mentioned in Section 1.2, if an order
d-tensor T ∈ Kn×...×n is given as a blackbox, we give an algorithm that runs in time poly(n, d)
to check if there exist linearly independent vectors vi ∈ Kn such that T =

∑t
i=1 αiv

⊗d
i for

some t ≤ n. Note here that K ⊆ C and K = C or R. This can be found in more detail in
Section 4 of the full paper [20].

Finally, in Section 5 of the full paper [20], we show that our linear algebraic approach
can be extended to the computation of the actual decomposition in a model where we allow
the computation of polynomial roots. We therefore obtain an alternative to the algorithm
from [17] for this problem. That algorithm relies on multivariate polynomial factorization,
whereas our algorithm relies on matrix diagonalization.

Real versus complex field. For K = R and even degree there is obviously a difference
between sums of d-th powers of linear forms and linear combinations of d-th powers. In this
paper we wish to allow arbitrary linear combinations. For this reason, in the treatment of the
high order case (d > 3) we are not interested in equivalence to Pd only. Instead, we would
like to know whether the input is equivalent to some polynomial of the form

∑n
i=1 αix

d
i with

αi ≠ 0 for all i. We denote by Pd this class of polynomials (one could even assume that
αi = ±1 for all i). At first reading, there is no harm in assuming that K = C. In this case,
one can assume without loss of generality that αi = 1 for all i. For K = R, having to deal
with the whole of Pd slightly complicates notations, but the proofs are not significantly more
complicated than for K = C. For this reason, in all of our results we give a unified treatment
of the two cases K = C and K = R.

Methods. We associate to a homogeneous polynomial of degree d the (unique) symmetric
tensor T of order d such that

f(x1, . . . , xn) =
n∑

i1,...,id=1
Ti1...id

xi1xi2 . . . xid
.

We recall that T is said to be symmetric if it is invariant under all d! permutations of its
indices. A slice of T (or by abuse of language, a slice of f) is a matrix of size n obtained by
fixing the values of d − 2 indices. In Section 2.1 we give a characterization of equivalence
to Pd:

▶ Theorem 2. A degree d homogeneous polynomial f ∈ C[x1, . . . , xn] is equivalent to
Pd =

∑n
i=1 xd

i if and only if its slices span a nonsingular matrix space and the slices are
simultaneously diagonalizable by congruence, i.e., there exists an invertible matrix Q ∈ Mn(C)
such that for every slice S of f , the matrix QT SQ is diagonal.

This characterization is satisfactory from a purely structural point of view, but not from
an algorithmic point of view because a tensor of order d has d(d−1)

2 nd−2 slices. The tensors
encountered in this paper are all symmetric since they originate from homogeneous polyno-
mials. Taking the symmetry constraints into consideration reduces the number of distinct
slices to

(
n+d−3

d−2
)

at most: this is the number of multisets of size d − 2 in a set of n elements,
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or equivalently the number of monomials of degree d − 2 in the variables x1, . . . , xn. This
number remains much too large to reach our goal of a complexity polynomial in n and d.
This problem has a surprisingly simple solution: our equivalence algorithm (Algorithm 1
below) needs to work with 3 slices only! This is true already for d = 3, and is the reason
why we can save a factor of n compared to the algorithm of [21]. More detail on the degree 3
case can be found in Section 2 of the full paper [20].

Algorithm 1 Randomized algorithm to check polynomial equivalence to an element of Pd.

Input: A degree-d homogeneous polynomial f

Let R ∈ Mn(K) be a matrix such that its entries rij are picked uniformly and
independently at random from a finite set S, and set h(x) = f(Rx).

Let {Ti1...id−2}i1...id−2∈[n] be the slices of h.
We compute the slices T1̄,T2̄,T3̄, where Tī refers to the slice Ti...i.
if T1̄ is singular then

reject
else

compute T ′
1̄ = (T1̄)−1

if T ′
1̄T2̄ and T ′

1̄T3̄ commute and T ′
1̄T2̄ is diagonalisable over K then

accept
else

reject
end

end

More precisely, the following test forms the heart of the algorithm: check that T −1
1̄ T2̄ is

diagonalizable, and commutes with T −1
1̄ T3̄ where Tī refers to the slice Ti...i. It may be

surprising at first sight that we can work with 3 slices only of a tensor with
(

n+d−3
d−2

)
slices.

To give some plausibility to this claim, note that T1̄, T2̄, T3̄ are not slices of the input f , but
slices of the polynomial h(x) = f(Rx) obtained by a random change of variables. As a result,
each slice of h contains some information on all of the slices of f .

Our algorithms are therefore quite simple but their analysis is quite non-trivial. In fact,
analysing the case of “negative” inputs, i.e. input polynomials that are not equivalent to any
polynomial in Pd, forms the bulk of this paper. For d > 3, the notion of “weak-singularity” of
matrices (Definition 14) has been introduced which along with the notions of “commutativity
property” and “diagonalisability property” helps us to give us another equivalent criterion
for testing equivalence to a polynomial in Pd in Theorem 15. Finally, the crucial part of
the proof (for d > 3, and already for d = 3) is to show that testing commutativity of two
matrices and diagonalisability of one matrix is enough for testing these properties for any
“symmetric family of symmetric matrices” (refer to Definition 19) with high probability.

Note here that an arbitrary slice of the polynomial is hard to compute, when the
polynomial is given as blackbox (because that requires computing arbitrary degree-d partial
derivatives using the blackbox). Hence, this particular choice of slices is crucial because they
can be computed in polynomial time.

1.4 Notations
We work in a field K which may be the field of real numbers or the field of complex numbers.
Some of our intermediate results apply to other fields as well. We denote by K[x1, . . . , xn]d
the space of homogeneous polynomials of degree d in n variables with coefficients in K. A

FSTTCS 2022
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homogeneous polynomial of degree d is also called a degree-d form. We denote by Pd the
polynomial

∑n
i=1 xd

i , and we say that a degree d form f(x1, . . . , xn) is equivalent to a sum
of d-th powers if it is equivalent to Pd, i.e., if f(x) = Pd(Ax) for some invertible matrix A.
More generally, we denote by Pd the set of polynomials of the form

∑n
i=1 αix

d
i with αi ̸= 0

for all i. As explained in Section 1.3, for K = R we are not only interested in equivalence to
Pd: we would like to know whether the input is equivalent to one of the elements of Pd.

We denote by Mn(K) the space of square matrices of size n with entries from K. We
denote by ω a feasible exponent for matrix multiplication, i.e., we assume that two matrices
of Mn(K) can be multiplied with O(nω) arithmetic operations in K.

Throughout the paper, we will choose the entries rij of a matrix R independently and
uniformly at random from a finite set S ⊂ K. When we calculate the probability of some
event E over the random choice of the rij , by abuse of notation instead of Prr11,...,rnn∈S [E]
we simply write PrR∈S [E].

2 Equivalence to a linear combination of d-th powers

We can associate to a symmetric tensor T of order d the homogeneous polynomial

f(x1, ..., xn) =
∑

i1,...,id∈[n]

Ti1...id
xi1 ...xid

.

This correspondence is bijective, and the symmetric tensor associated to a homogeneous
polynomial f can be obtained from the relation

Ti1...id
= 1

d!
∂df

∂xi1 ...∂xid

.

The (i1, ..., id−2)-th slice of T is the symmetric matrix Ti1...id−2 with entries (Ti1...id−2)id−1,id
=

Ti1...id
. Recall from Section 1.4 that we denote by Pd the set of polynomials of the form∑n

i=1 αix
d
i with αi ̸= 0 for all i ∈ [n]. In this section we analyze Algorithm 1. Recall from

the introduction that this is a polynomial time algorithm for checking whether an input
degree d form in n variables f is equivalent to some polynomial in Pd. This means that
f(x) = Pd(Ax) for some Pd ∈ Pd and some invertible matrix A.

We prove the surprising fact that even when the input polynomial has degree d, checking
commutativity of 2 matrices and the diagonalisability of one matrix is enough to check
equivalence to a polynomial of Pd. Let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) = f(Rx).
Recall that Tī denotes the slice Ti...i. Algorithm 1 checks if T ′

1̄T2̄ commutes with T ′
1̄T3̄ and if

T ′
1̄T3̄ is diagonalisable.

Interestingly though, arbitrary slices of a degree-d polynomial are hard to compute.
These particular slices are special because they can be computed using a small number
of calls to the blackbox and in small number of arithmetic operations (due to the fact
that they are essentially repeated partial derivatives with respect to a single variable).
Hence, they help us give a polynomial time algorithm. More precisely, we show that if the
polynomial is given as a blackbox, the algorithm requires only O(n2d) calls to the blackbox
and O(n2M(d) log d + nω+1) many arithmetic operations. We do a detailed complexity
analysis of this algorithm in Appendix B in the full paper [20].

The remainder of this section is devoted to a correctness proof for Algorithm 1, including
an analysis of the probability of error. Our main result about this algorithm is as follows:

▶ Theorem 3. If an input f ∈ F[x1, ..., xn]d is not equivalent to some polynomial Pd ∈ Pd,
then f is rejected by the algorithm with high probability over the choice of the random matrix
R. More precisely, if the entries ri,j of R are chosen uniformly and independently at random
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from a finite set S ⊆ K, then the input will be rejected with probability ≥ 1 − 2(d−2)
|S| .

Conversely, if f is equivalent to some polynomial Pd ∈ Pd, then f will be accepted with high
probability over the choice of the random matrix R. More precisely, if the entries ri,j are
chosen uniformly and independently at random from a finite set S ⊆ K, then the input will
be accepted with probability ≥ 1 − n(d−1)

|S| .

In Section 2.2, we give a proof of the second part of theorem, i.e., we analyze the behavior
of Algorithm 1 on the polynomials that can be decomposed as a sum of dth powers of
linearly independent linear forms (which we refer to as the positive inputs). We give a
characterization of positive inputs in terms of the subspace of matrices spanned by their
slices. Namely, we show that these subspaces must not be “weakly singular”, and must
satisfy the commutativity and diagonalizability properties. If a polynomial is not equivalent
to some polynomial in Pd, this can happen in several ways depending on which property
fails. We analyze the failure of commutativity in Section 2.3.1 and failure of diagonalisability
in Section 2.3.2. Then we collect everything together and prove the first part of the theorem
in Section 2.3.3.

2.1 Characterisation of equivalence to Pd

First, we show how the slices of a degree-d form evolve under a linear change of variables.
Towards the proof of Theorem 2 we need some results from [21], which we recall in this
section. We also give a converse of this in Theorem 8. First, let us recall how the slices of a
polynomial evolve under a linear change of variables.

▶ Theorem 4. Let g be a degree-d form with slices {Si1...id−2}i1,...,id−2∈[n] and let f(x) =
g(Ax). Then the slices Ti1...id−2 of f , are given by Ti1...id−2 = AT Di1...id−2A where Di1...id−2 =∑

j1...jd−2∈[n] aj1i1 ...ajd−2id−2Sj1...jd−2 and ai,j are the entries of A.
If g =

∑n
i=1 αix

d
i , we have Di1...id−2 = diag(α1(

∏d−2
m=1 a1,im

), ..., αn(
∏d−2

m=1 an,im
)).

Proof. By definition of the slices of a polynomial,

Si1...id−2 = 1
d!H ∂d−2g

∂xi1 ....∂xid−2

(x) and Ti1...id−2 = 1
d!H ∂d−2f

∂xi1 ....∂xid−2

(x)

where Hf (x) is the Hessian matrix of f at point x. Since f(x) = g(Ax), by differentiating
d times, we get that ∂df

∂xi1 ...∂xid
(x) =

∑
j1...jd∈[n] aj1i1 ...ajdid

∂dg
∂xj1 ...∂xjd

(Ax). Putting these

equations in matrix form, and using the fact that ∂dg
∂xj1 ...∂xjd

(Ax) = ∂dg
∂xj1 ...∂xjd

(x) we get the
desired result. ◀

Instead of diagonalisation by congruence, it is convenient to work with the more familiar
notion of diagonalisation by similarity, where an invertible matrix A acts by S 7→ A−1SA

instead of AT SA. We collect the necessary material in the remainder of this section (and we
refer to diagonalisation by similarity simply as diagonalisation).

The two following properties play a fundamental role throughout the paper.

▶ Definition 5. Let V be a non-singular space of matrices.
We say that V satisfies the Commutativity Property if there exists an invertible matrix
A ∈ V such that A−1V is a commuting subspace, i.e., PQ = QP for any two matrices
P, Q ∈ A−1V.
We say that V satisfies the Diagonalisability Property if there exists an invertible
matrix B ∈ V such that all the matrices in the space B−1V are diagonalisable.

FSTTCS 2022
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The next result can be found in [21, Section 2.2].

▶ Theorem 6. Let V be a non-singular subspace of matrices of Mn(K). The following
properties are equivalent.

V satisfies the commutativity property.
For all non-singular matrices A ∈ V, A−1V is a commuting subspace.

▶ Remark 7. Let V be a non-singular subspace of matrices which satisfies the commutativity
and diagonalisability properties. There exists an invertible matrix B ∈ V and an invertible
matrix R which diagonalizes simultaneously all of B−1V (i.e., R−1MR is diagonal for all
M ∈ B−1V).

Proof. Pick an invertible matrix B ∈ V such that W = B−1V is a space of diagonalizable
matrices. By Theorem 6, W is a commuting subspace. It is well known that a finite collection
of matrices is simultaneously diagonalisable if and only if they commute, and each matrix in
the collection is diagonalisable. We conclude by applying this result to a basis of W (any
matrix R which diagonalises a basis will diagonalise all of W). ◀

We now give an analogue of Theorem 6 for the diagonalisability property.

▶ Theorem 8. Let V be a non-singular subspace of matrices which satisfies the commutativity
property. The following properties are equivalent:

V satisfies the diagonalisability property.
For all non-singular matrices A ∈ V, the matrices in A−1V are simultaneously diagonal-
isable.

Proof. Suppose that V satisfies the diagonalisability property. By the previous remark,
we already know that there exists some invertible matrix B ∈ V such that the matrices in
B−1V are simultaneously diagonalisable by an invertible matrix R. We need to establish
the same property for an arbitrary invertible matrix A ∈ V. For any M ∈ V, A−1M =
(B−1A)−1(B−1M). Hence A−1M is diagonalised by R since this matrix diagonalises both
matrices B−1A and B−1M . Since R is independent of the choice of M ∈ V, we have shown
that the matrices in A−1V are simultaneously diagonalisable. ◀

The importance of the commutativity and diagonalisability properties stems from the fact
that they provide a characterization of simultaneous diagonalisation by congruence, which in
turn provides a characterization of equivalence to some polynomial in Pd:

▶ Theorem 9. Let A1, ..., Ak ∈ Mn(K) and assume that the subspace V spanned by these
matrices is non-singular. There are diagonal matrices Λi and a non-singular matrix R ∈
Mn(K) such that Ai = RΛiR

T for all i ∈ [k] if and only if V satisfies the Commutativity
property and the Diagonalisability property.

For a proof, see [21, Section 2.2] for K = C and [21, Section 2.3] for K = R.
The next lemma uses Theorem 4 to reveal some crucial properties about the subspace

spanned by the slices of any degree-d form which is equivalent to some g ∈ Pd.

▶ Lemma 10. Let f(x1, ..., xn) and g(x1, ..., xn) be two forms of degree d such that f(x) =
g(Ax) for some non-singular matrix A.
1. If U and V denote the subspaces of Mn(K) spanned respectively by the slices of f and g,

we have U = AT VA.
2. V is non-singular iff U is non-singular.
3. In particular, for g ∈ Pd the subspace V is the space of diagonal matrices and U is a

non-singular subspace, i.e., it is not made of singular matrices only.
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Proof. Theorem 4 shows that U ⊆ AT VA. Now since, g(x) = f(A−1x), same argument
shows that V ⊆ A−T UA−1. This gives us that U = AT VA.

For the second part of the lemma, let us assume that V is non-singular and MU be
an arbitrary matrix in U . Using the previous part of the lemma, we know that there
exists MV ∈ V such that MU = AT MVA. Since V is non-singular, det(MV) ̸= 0. Taking
determinant on both sides, we get that det(MU ) = det(A)2det(MV) ̸= 0 (since A is invertible,
det(A) ̸= 0). For the converse, assume that U is non-singular. Following a similar proof, it
can be shown that det(MU ) ̸= 0.

For the third part of the lemma, let {Si1...id−2}i1...id−2∈[n] be the slices of g. If g =∑
i∈[n] αix

d
i , such that αi ̸= 0 for all i, Sī has αi in the (i, i)-th position and 0 everywhere.

Also, Si1,...,id−2 = 0, when the ik’s are not equal. Hence, V is the space of all diagonal
matrices. Hence V is a non-singular space. Using the previous part of the lemma, we get
that U is a non-singular space as well. ◀

The next lemma is effectively a converse of the second part of Lemma 10. It shows that
if the slices of f are diagonal matrices, then the fact that they effectively originate from a
symmetric tensor forces them to be extremely special.

▶ Lemma 11. Let f ∈ K[x1, ..., xn]d be a degree-d form. If the slices of f are diagonal
matrices, then f =

∑
i∈[n] αix

d
i for some α1, ..., αn ∈ K.

Proof. Let Ti1,...,id−2 be the slices of f . Let I = {(iσ(1), ..., iσ(d))|σ ∈ Sd}. Now since they
are slices of a polynomial, we know that

(Ti1...id−2)id−1,id
= (Tiσ(1),...,iσ(d−2))iσ(d−1),iσ(d) . (3)

We want to show that Ti1,...,id
̸= 0 only if i1 = i2 = ... = id. Using (3), it is sufficient to

show that (Ti1,...,id−2)id−1,id
̸= 0 only if id−1 = id. This is true since Ti1,...,id−2 are diagonal

matrices. This gives us that f =
∑

i∈[n] αix
d
i . ◀

Now we are finally ready to prove a theorem that characterizes exactly the set of degree-d
homogeneous polynomials which are equivalent to some g ∈ Pd. This already appears as
Theorem 2 in the introduction. We restate it now for the reader’s convenience.

▶ Theorem 12. A degree d form f ∈ K[x1, ..., xn] is equivalent to some polynomial Pd ∈ Pd

if and only if its slices {Ti1,...,id−2}i1,...,id−2∈[n] span a non-singular matrix space and the
slices are simultaneously diagonalisable by congruence, i.e., there exists an invertible matrix
Q ∈ Mn(K) such that the matrices QT Ti1...id−2Q are diagonal for all i1, ..., id−2 ∈ [n].

Proof. Let U be the space spanned by {Ti1,...,id−2}i1,...,id−2∈[n] . If f is equivalent to Pd,
Theorem 4 shows that the slices of f are simultaneously diagonalisable by congruence and
Lemma 10 shows that U is non-singular.

Let us show the converse. Since the slices {Ti1,...,id−2}i1,...,id−2∈[n] are simultan-
eously diagonalisable, there are diagonal matrices Λi1...id−2 and a non-singular matrix
R ∈ Mn(K) such that Ti1...id−2 = RΛi1...id−2RT for all i1, ..., id−2 ∈ [n]. So now we
consider g(x) = f(R−T x). Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of g. Using The-
orem 4, we get that Si1...id−2 = (R−1)(

∑
j1...jd−2∈[n] rj1i1 ...rjd−2id−2RΛj1...jd−2RT )R−T =∑

j1...jd−2∈[n] rj1i1 ...rjd−2id−2Λj1...jd−2 . This implies that Sj1...jd−2 are also diagonal matrices.
By Lemma 11, g =

∑
i∈[n] αix

d
i . It therefore remains to be shown that αi ̸= 0, for all i ∈ [n].

Let V be the subspace spanned by the slices of g and the slices of f span a non-singular
matrix space U . Since, U is a non-singular subspace of matrices, using part (2) of Lemma 10,
we get that V is a non-singular subspace of matrices.
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But if some αi vanishes, for all A ∈ V, Aī = 0. Hence V is a singular subspace, which is
a contradiction. This gives us that g =

∑n
i=1 αix

d
i where αi ≠ 0 for all i. Hence, g ∈ Pd and

f is equivalent to g. ◀

▶ Theorem 13. Let f ∈ K[x1, ..., xn] be a degree-d form. f is equivalent to some polynomial
Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is a non-singular
subspace and V satisfies the Commutativity Property and the Diagonalisability Property.

Proof. This follows from Theorem 12 and Theorem 9 for k = nd−2 to get the result. ◀

Notice here that the notion of weak-singularity is entirely dependent on the generating set of
matrices. So it is more of a property of the generating set. But by abuse of language, we
will call the span of the matrices weakly singular. To put it in contrast, usually the notion
of singularity is a property of the subspace spanned by the matrices (irrespective of the
generating set). It can be further observed that for all n ≥ 2 and d ≥ 4, non-singular families
of matrices can be easily constructed which are weakly singular!

▶ Definition 14 (Weak singularity). Let V be the space spanned by matrices
{Si1,...,id−2}i1,...,id−2∈[n] . V is weakly singular if for all α = (α1, ..., αn),
det(

∑
i1,...,id−2∈[n](

∏
k∈[d−2] αik

)Si1...id−2) = 0.

Notice here that the notion of weak-singularity is entirely dependent on the generating set of
matrices. So it is more of a property of the generating set. But by abuse of language, we
will call the span of the matrices weakly singular. To put it in contrast, usually the notion
of singularity is a property of the subspace spanned by the matrices (irrespective of the
generating set).

▶ Theorem 15. Let f ∈ K[x1, ..., xn] be a degree-d form. f is equivalent to some polynomial
Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is not a weakly
singular subspace, satisfies the Commutativity Property and the Diagonalisability Property.

Proof. First we show that if f = Pd(Ax) such that Pd ∈ Pd i.e. Pd(x) =
∑n

i=1 αix
d
i where

αi ̸= 0 for all i ∈ [n] and A is invertible, then V is not a weakly singular subspace, satisfies
the commutativity property and the diagonalisability property.
Let {Si1...id−2}i1,...,id−2∈[n] be the slices of Pd. Then Sī = αidiag(ei) where ei is the i-th
standard basis vector, and all other slices are 0. From Theorem 4,

Ti1...id−2 = AT Di1...id−2A = AT (
∑

k∈[n]

aki1 ...akid−2Sk̄)A.

Now we define

T (β̄) =
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
)Ti1...id−2

=
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
)AT (diag(α1(

∏
m∈[d−2]

a1im
), ..., αn(

∏
m∈[d−2]

anim)))A

= AT diag(α1(
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
a1ik

)), ..., αn(
∑

i1,...,id−2∈[n]

(
∏

k∈[d−2]

βik
anik

)))A.

Taking determinant on both sides, det(T )(β̄) = det(A)2 ∏n
m=1 Tm(β̄) where Tm(β̄) =

αm(
∑

i1,...,id−2∈[n](
∏

k∈[d−2] βik
amik

)). Since, A is invertible, none of its rows are all 0. Hence
for all m0 ∈ [n], there exists j0 ∈ [n], such that am0j0 ̸= 0. Then coeffβd−2

j0
(Tm0) = ad−2

m0j0
̸= 0.

Hence Tm0 ̸≡ 0 for all m0 ∈ [n] which implies that det(T ) ̸≡ 0. Therefore, there exists β̄0

such that det(T )(β̄0) ̸= 0. This proves that det(
∑

i1,...,id−2∈[n](
∏

k∈[d−2] βik
)Ti1...id−2) ̸≡ 0.
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Hence, V = span{Ti1...id−2}i1,...,id−2∈[n] is not weakly singular. Theorem 13 gives us
that the subspace spanned by the slices V satisfies the commutativity property and the
diagonalisability property.

For the converse, if V is not a weakly singular subspace, then it is a non-singular subspace
as well. And it satisfies the commutativity property and the diagonalisability property. By
Theorem 13, we get that f is equivalent to some polynomial in Pd. ◀

2.2 Analysis for positive inputs
In this section we analyze the behavior of Algorithm 1 on inputs that are equivalent to some
polynomial in Pd (which we refer to as the positive inputs). We recall here again that by T1̄,
we denote the slice T11...1.

▶ Lemma 16. Let f ∈ K[x1, ..., xn]d with slices {Si1,...,id−2}i1,...,id−2∈[n], such that the
subspace V spanned by the slices is not weakly singular. Let h(x) = f(Rx) where the
entries ri,j are chosen uniformly and independently at random from a finite set S ⊆ K. Let
{Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h. Then PrR∈S [T1̄ is invertible] ≥ 1 − n(d−1)

|S| .

Proof. We can obtain the slices Ti1...id−2 of h from the slices Si1...id−2 of f us-
ing Theorem 4. Namely, we have Ti1...id−2 = RT Di1...id−2R where Di1...id−2 =∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,im
)Sj1...jd−2 . Therefore T1̄ is invertible iff R and D1̄ are in-

vertible. Applying Schwartz-Zippel lemma to det(R) shows that R is singular with
probability at most n

|S| . We will show that D1̄ is singular with probability at most
n(d−2)

|S| . The lemma then follows from the union bound. Matrix D1̄ is not invertible iff
det(D1̄) = 0. Since, D1̄ =

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,1)Sj1...jd−2 , det(D1̄) ∈ K[r1,1, ..., rn,1]

and deg(det(D1̄)) ≤ n(d − 2). Since, V is not weakly singular, there exists some choice of
α = (α1, ..., αn), such that S =

∑
i1,...,id−2∈[n](

∏
m∈[d−2] αim

)Si1...id−2 is invertible. Hence,
det(S) ̸= 0. This gives us that det(D1̄)(α) ̸= 0. which gives us that det(D1̄) ̸≡ 0. From the
Schwartz-Zippel lemma, it follows that PrR∈S [det(D1̄) = 0] ≤ n(d−2)

|S| . ◀

Recall here from Section 1.4, we define by Pd, the set of all polynomials of the form
∑n

i=1 αix
d
i

such that 0 ̸= αi ∈ K for all i ∈ [n].

▶ Lemma 17. Given A ∈ Mn(K), let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) = Pd(Ax)
where Pd ∈ Pd. If T1̄ is invertible, define T ′

1̄ = (T1̄)−1. Then T ′
1̄T2̄ commutes with T ′

1̄T3̄ and
T ′

1̄T2̄ is diagonalisable.

Proof. Let Pd =
∑n

i=1 αix
d
i where αi ̸= 0. By Theorem 4,

Ti1...id−2 = AT (diag(α1(
d−2∏
m=1

a1,im
), ..., αn(

d−2∏
m=1

an,im
)))A = AT Di1...id−2A.

If T1̄ is invertible, the same is true of A and D1̄. The inverse (D1̄)−1 is diagonal like D1̄,
hence (D1̄)−1D2̄ and (D1̄)−1D3̄ are both diagonal as well and must therefore commute. Now,
T ′

1̄T2̄T ′
1̄T3̄ = A−1((D1̄)−1D2̄(D1̄)−1D3̄)A = A−1((D1̄)−1D3̄(D1̄)−1D2̄)A = T ′

1̄T3̄T ′
1̄T2̄.

Finally, T ′
1̄T2̄ = A−1((D1̄)−1D2̄)A so this matrix is diagonalisable. ◀

We are now in a position to prove the easier half of Theorem 3.

▶ Theorem 18. If an input f ∈ K[x1, ..., xn]d is equivalent to some polynomial Pd ∈ Pd then
f will be accepted by Algorithm 1 with high probability over the choice of the random matrix
R. More precisely, if the entries ri,j are chosen uniformly and independently at random from
a finite set S ⊆ K, then the input will be accepted with probability ≥ (1 − n(d−1)

|S| ).
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Proof. We start by assuming that f = Pd(Bx) for some Pd ∈ Pd where B is an invertible
matrix. By Theorem 15, we know that the subspace spanned by the slices of f is not weakly
singular. We can therefore apply Lemma 16, the first slice T1̄ of h(x) = f(Rx) is invertible
with probability at least 1 − n(d−1)

|S| . Moreover if T1̄ is invertible, Lemma 17 shows that, f

will always be accepted. (We can apply this lemma to h since h = Pd(RBx)). ◀

2.3 Analysis of negative inputs
In this section, we analyse the behaviour of Algorithm 1 on the inputs that are not equivalent
to any polynomial in Pd (which we refer to as the negative inputs). The main goal is to show
that the algorithm rejects negative inputs with high probability.

2.3.1 Failure of commutativity
▶ Definition 19. Let {Si1,...,id

}i1,...,id∈[n] be a family of matrices. We say that the matrices
form a symmetric family of symmetric matrices if each matrix in the family is symmetric
and for all permutations σ ∈ Sd, Si1,...,id

= Siσ(1)...iσ(d) .

In the next lemma, we show that if a symmetric family of symmetric matrices (this family has
size nd) is not a commuting family, then two linear combinations of these matrices formed
by picking just 2n elements at random also do not commute with high probability.

▶ Lemma 20 (General commutativity lemma). Let {Si1,...,id
}i1,...,id∈[n] be a symmetric family

of symmetric matrices in Mn(K) that do not form a commuting family. Pick α = {α1, ..., αn}
and α′ = {α′

1, ..., α′
n} uniformly and independently at random from a finite set S ⊂ K. We

define

Mα =
∑

i1,...,id∈[n]

(
∏

m∈[d]

αim
)Si1,...,id

and Mα′ =
∑

j1,...,jd∈[n]

(
∏

m∈[d]

α′
jm

)Sj1,...,jd
.

Then, Prα,α′∈S

[
Mα, Mα′ don’t commute

]
≥

(
1 − 2d

|S|

)
.

Proof. We want to bound the probability of error, i.e Prα,α′∈S

[
MαMα′ − Mα′Mα ̸= 0

]
. The

expression MαMα′ −Mα′Mα can be written as
∑

i1,...,id∈[n]
j1,...,jd∈[n]

(
∏

m∈[d] αim
α′

jm
)(Si1...id

Sj1...jd
−

Sj1...jd
Si1...id

). For a fixed r, s ∈ [n], we define the polynomial

P r,s
comm(α, α′) =

∑
i1,...,id,j1,...,jd∈[n]

(
∏

m∈[d]

αimα′
jm

)mr,s
i1...idj1...jd

where mr,s
i1...idj1...jd

= (Si1...id
Sj1...jd

− Sj1...jd
Si1...id

)r,s.

First note that by construction Mα commutes with Mα′ if and only if for all r, s ∈ [n]
such that P r,s

comm(α, α′) = 0. Since, {Si1,...,id
} is not a commuting family, there exists

i0
1, ..., i0

d, j0
1 , ..., j0

d ∈ [n], such that Si0
1...i0

d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d

̸= 0. Hence, there exists some
entry (r0, s0) such that (Si0

1...i0
d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d
)r0,s0 ̸= 0.

Now we claim that P r0,s0
comm(α, α′) ̸≡ 0. It is enough to show that the coefficient of

αi0
1
...αi0

d
α′

j0
1
...α′

j0
d

in P r0,s0
comm(α, α′) is non-zero. Let I0 = {(i0

σ(1), ..., i0
σ(d))|σ ∈ Sd} and

let J0 = {(j0
σ(1), ..., j0

σ(d))|σ ∈ Sd}. Then coeffαi0
1

...αi0
d

α′
j0

1
...α′

j0
d

(P r0,s0
comm) =

∑
ī∈I0,j̄∈J0

mr0s0
īj̄

.

The matrices Si1...id
form a symmetric family in the sense of Definition 19. Therefore,

for all ī ∈ I0, j̄ ∈ J0, mr0s0
īj̄

are equal. This gives us that coeffαi0
1

...αi0
d

α′
j0

1
...α′

j0
d

(P r0,s0
comm) =
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|I0||J0|(mr0,s0
i0

1...i0
d

j0
1 ...j0

d

) ̸= 0. Hence P r0,s0
comm ̸≡ 0 and deg(P r0,s0

comm) ≤ 2d and using Schwartz-Zippel
lemma, we get that, Prα,α′∈S [P r0,s0

comm(α, α′) ̸= 0] ≥ 1 − 2d
|S| . Putting r = r0, s = s0, this gives

us that Prα,α′∈S

[
Mα, Mα′ don’t commute

]
≥

(
1 − 2d

|S|

)
. ◀

The next result relies on the above lemma. Theorem 21 gives us a way to analyze the case
when the slices of the input polynomial fail to satisfy the commutativity property (recall
that this property is relevant due to Theorem 15).

▶ Theorem 21. Let f ∈ K[x1, ..., xn]d be a degree d form such that the subspace of matrices
V spanned by its slices is not weakly singular and does not satisfy the commutativity property.
Let h(x) = f(Rx) where the entries (ri,j) of R are chosen uniformly and independently
at random from a finite set S ⊂ K. Let {Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is
invertible, define T ′

1̄ = (T1̄)−1. Then Pr[T1̄ is invertible and T ′
1̄T2̄, T ′

1̄T3̄ commute ] ≤ 2(d−2)
|S| .

Proof. Let {Si1...id−2}i1,...,id−2∈[n] be the slices of f . By Theorem 4, we know that

Ti1...id−2 = RT
( ∑

j1...jd−2∈[n]

(
∏

m∈[d−2]

rjm,im
Sj1...jd−2)

)
R.

Let us define Di1...id−2 =
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,im
)Sj1...jd−2 . Then we have for all

i ∈ {2, ..., n}:

T ′
1̄Tī = R−1(D1̄)−1(R)−T RT DīR = R−1(

∑
j1...jd−2∈[n]

(
∏

m∈[d−2]

rjm,i)(D1̄)−1Sj1...jd−2)R. (4)

So, if T1̄ is invertible, T ′
1̄T2̄ commutes with T ′

1̄T3̄ iff (D1̄)−1D2̄ commutes with (D1̄)−1D3̄.
Let E1 be the event that T1̄ is invertible and T ′

1̄T2̄ commutes with T ′
1̄T3̄. Let E′

1 be the
event that D1̄ is invertible and (D1̄)−1D2̄ commutes with (D1̄)−1D3̄. Let E4 be the event
that R is invertible. Then we have that E1 = E′

1 ∩ E4.
Let E2 be the event that D1̄ is invertible and {(D1̄)−1Si1,...,id−2}i1,...,id−2∈[n] is not a

commuting family. Since V does not satisfy the commutativity property, (D1̄)−1V is not a
commuting subspace if D1̄ is invertible. Hence, the event that D1̄ is invertible is the same
as the event E2. This also implies that E′

1 ⊆ E2. Setting Ai1...id−2 = (D1̄)−1Si1...id−2 , αi =
ri,2, α′

i = ri,3 and then using Lemma 20, we can conclude that PrR∈S

[
E′

1|E2

]
≤ 2(d−2)

|S| .

Note here that D1̄ depends only on the random variables ri,1 for all i ∈ [n] and therefore
is independent of rk,2 and rl,3 for all k, l ∈ [n], because we assume that the entries of R are
all picked uniformly and independently at random.
Let E3 be the event that T1̄ is invertible. Now we know that T1̄ is invertible iff R and D1̄
are invertible. Then, we have E3 = E2 ∩ E4 Hence, the probability of error can be bounded
as follows: PrR∈S [E1] = PrR∈S [E′

1 ∩ E2 ∩ E4] ≤ PrR∈S [E′
1|E2] ≤ 2(d−2)

|S| . ◀

2.3.2 Failure of diagonalisability
Theorem 21 gives us a way to analyze the case when the slices of the input polynomial fail to
satisfy the commutativity property. With the results in the present section we will be able
to analyze the case where the commutativity property is satisfied, but the diagonalisability
property fails (recall that these properties are relevant due to Theorem 15).

▶ Proposition 22. Let U ⊆ Mn(K) be a commuting subspace of matrices. We define
M :=

{
M

∣∣∣M is diagonalisable and M ∈ U
}

. Then M is a linear subspace of U . In
particular, if there exists A ∈ U such that A is not diagonalisable then M is a proper linear
subspace of U .
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Proof. M is trivially closed under multiplication by scalars. Let M, N ∈ M. These two
matrices are diagonalisable by definition of M, and they commute since M ⊆ U . Hence they
are simultaneously diagonalisable. Thus M is closed under addition as well, which implies
that it is a linear subspace of U . ◀

▶ Lemma 23. Let {Ai1...id
}i1,..,id∈[n] ∈ Mn(K) be a commuting family of symmetric matrices.

Let us assume that this family is symmetric in the sense of Definition 19 and there exists
i0
1, ..., i0

d ∈ [n] such that Ai0
1...i0

d
is not diagonalisable. Let S ⊂ K be a finite set. Then

D =
∑n

i1,...,id=1(
∏

m∈[d] αim
)Ai1...id

is diagonalisable with probability at most d
|S| when

α1, ..., αn are chosen uniformly and independently at random from S.

Proof. We define U = span{Ai1...id
}i1,..,id∈[n]. We also define the class of matrices M :={

M
∣∣∣M is diagonalisable and M ∈ U

}
. So, we want to show that Prα∈S

[
D ∈ M

]
≤ d

|S| .

Now using Proposition 22, and the hypothesis that there exists Ai0
1...i0

d
∈ U \ M, we

get that M is a proper linear subspace of U . So M is an intersection of hyperplanes.
Since Ai0

1...i0
d

̸∈ M, there exists a linear form lM(X) =
∑

i,j∈[n] aijXij corresponding to
a hyperplane such that lM(M) = 0 for all M ∈ M and lM(Ai0

1...i0
d
) ̸= 0. We know

that if D is diagonalisable, then lM(D) ̸= 0. We compute the polynomial lM(D)(α) =∑
i1,...,id∈[n](

∏
m∈[d] αim

)mi1...id
where mi1...id

= (
∑

k,l∈[n] akl(Ai1...id
)k,l). Now we claim

that lM(D) ̸≡ 0. We show this by proving that the coefficient of αi0
1
...αi0

d
in lM(D)(α) is

not equal to 0. Let I0 = {(i0
σ(1), ..., i0

σ(d))|σ ∈ Sd}. Then coeffαi0
1

...αi0
d

(D) =
∑

ī∈I0
mī. Since

the matrices Ai1...id
form a symmetric family, the mī are equal for all ī ∈ I0. Also, since,

lM(Ai0
1...i0

d
) ̸= 0, we get that

∑
k,l∈[n] ak,l(Ai0

1...i0
d
)k,l ̸= 0. This gives us that mi0

1...i0
d

̸= 0.
Hence, we get that coeffαi0

1
...αi0

d

(D) = |I0|mi0
1...i0

d
̸= 0. Thus, lM(D) ̸≡ 0 and deg(lM(D)) ≤ d.

From Schwartz-Zippel lemma, we have Prα∈S

[
D ∈ M

]
≤ Prα∈S [lM(D)(α) = 0] ≤ d

|S| . ◀

The last result for this section is an analogue of the Theorem 21 for the diagonalisability
property.

▶ Theorem 24. Let f ∈ K[x1, ..., xn]d be a degree-d form such that the subspace V spanned
by its slices is a not weakly-singular subspace, satisfies the commutativity property, but
does not satisfy the diagonalisability property. Let h(x) = f(Rx) where the entries ri,j

of R are chosen uniformly and independently at random from a finite set S ⊂ K, Let
{Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is invertible, define T ′

1̄ = (T1̄)−1. Then
Pr[T1̄ is invertible and T ′

1̄T2̄ is diagonalisable ] ≤ d−2
|S| .

Proof. As in the proof of Theorem 21, we use the expression for T ′
1̄T2̄ which we obtain from

the definition of the slices i.e. R−1(
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,2)(D1̄)−1Sj1...jd−2)R where
D1̄ =

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,1)Sj1...jd−2 . So if T1̄ is invertible, T ′

1̄T2̄ is diagonalisable iff
M = (

∑
j1...jd−2∈[n](

∏
m∈[d−2] rjm,2)(D1̄)−1Sj1...jd−2) is diagonalisable.

We denote by E1 the event that T1̄ is invertible and T ′
1̄T2̄ is diagonalisable and by E′

1 the
event that D1̄ is invertible and M is diagonalisable. Let E4 be the event that R is invertible.
Hence, E1 = E′

1 ∩ E4.
Let E2 be the event that D1̄ is invertible and {(D1̄)−1Si1...id−2}i1,...,id−2∈[n] is a commuting

family and there exists j1...jd−2 ∈ [n] such that (D1̄)−1Sj1...jd−2 is not diagonalisable. Since
V satisfies the commutativity property and does not satisfy the diagonalisability property, by
Theorem 8, the event that D1̄ is invertible is the event same as E2. It can also be observed
that E′

1 ⊆ E2.
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Setting Ai1...id−2 = (D1̄)−1Si1...id−2 and setting αi = ri,2 for all i ∈ [n] and using
Lemma 23, we get that PrR∈S

[
E′

1
∣∣E2

]
≤ d−2

|S| . Now we know that T1̄ is invertible iff R and
D1̄ is invertible. Let E3 be the event that T1̄ is invertible. Then, we have E3 = E2 ∩E4 . The
probability of error can finally be bounded as follows: PrR∈S [E1∩E3] = PrR∈S [E′

1∩E2∩E4] ≤
PrR∈S [E′

1|E2] ≤ d−2
|S| . ◀

2.3.3 Finishing the analysis for negative inputs
In this section we complete the proof of Theorem 3. The case of positive inputs was treated
in Section 2.2. It therefore remains to prove the following result.

▶ Theorem 25. If an input f ∈ K[x1, ..., xn]d is not equivalent to some polynomial Pd ∈ Pd,
then f is rejected by the algorithm with high probability over the choice of the random matrix R.
More precisely, if the entries ri,j are chosen uniformly and independently at random from a
finite set S ⊆ K, then the input will be rejected with probability ≥ (1 − 2(d−2)

|S| ).

Proof. Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of f and V = span{Si1,...,id−2}. From
Theorem 13 and Theorem 9, we know that if f ̸∼ Pd, then there are three disjoint cases:
1. Case 1: V is a weakly singular subspace of matrices.
2. Case 2: V is not a weakly singular subspace and V does not satisfy the commutativity

property.
3. Case 3: V is not a weakly singular subspace, V satisfies the commutativity property but

does not satisfy the diagonalisability property.
Now we try to upper bound the probability of error in each case.
In case 1, T1̄ = RT (

∑
j1...jd−2∈[n] rj1,1...rjd−2,1Sj1...jd−2)R ∈ RT VR is always singular for any

choice of rj,1. So f is rejected with probability 1 in this case.
In case 2, we can upper bound the probability of error as follows:

PrR∈S [f is accepted by the algorithm]
= PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute , T ′

1̄T2̄ is diagonalisable]
≤ PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute ].

Using Theorem 21, we get that this occurs with probability at most 2(d−2)
|S| . In Case 3, we

have the following upper bound on the probability of error,

PrR∈S [f is accepted by the algorithm]
= PrR∈S [T1̄ is invertible, T ′

1̄T2̄, T ′
1̄T3̄ commute , T ′

1̄T2̄ is diagonalisable]
≤ PrR∈S [T1̄ is invertible, T ′

1̄T2̄ is diagonalisable].

By Theorem 24, this occurs with probability ≤ d−2
|S| . Therefore in all these three cases, the

algorithm rejects f with probability at least 1 − 2(d−2)
|S| . ◀
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