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Abstract
We use formal methods to specify, design, and monitor continuous double auctions, which are widely
used to match buyers and sellers at exchanges of foreign currencies, stocks, and commodities. We
identify three natural properties of such auctions and formally prove that these properties completely
determine the input-output relationship. We then formally verify that a natural algorithm satisfies
these properties. All definitions, theorems, and proofs are formalized in an interactive theorem
prover. We extract a verified program of our algorithm to build an automated checker that is
guaranteed to detect errors in the trade logs of exchanges if they generate transactions that violate
any of the natural properties.
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1 Introduction

Continuous double auctions are widely used to match buyers and sellers at market institu-
tions such as foreign exchange markets, cryptocurrency exchanges, stock exchanges, and
commodities exchanges. Increasingly, the exchanges deploy automated computer systems
for conducting trades, which often receive a huge number of trade requests, especially in
presence of high-frequency algorithmic traders. A minor bug in the computer system of
a major exchange can have a catastrophic effect on the overall economy. To ensure that
the exchanges work in a fair and orderly manner, they are subject to various regulatory
guidelines. There have been a number of instances where the exchanges have been found
violating regulatory guidelines [18, 17, 14, 16]. For example, it was observed that NYSE
Arca failed to execute certain trades in violation of the stated rules [18], which led to the
U.S. Securities and Exchange Commission imposing a heavy penalty on the New York Stock
Exchange.

The above example is an instance of a program not meeting its specification, where the
exchange’s order matching algorithm is the program and the exchange rules and regulatory
guidelines form the broad specifications for the program. The reasons for such violations are
generally twofold. Firstly, the exchange rules and the regulatory guidelines are not presented
in a formal language; thus, they tend to be rather vague and ambiguous. Even if they
are stated unambiguously, it is not clear whether they are consistent; they lack a formal
proof of consistency. Secondly, the fidelity of the program implementing the specifications is
traditionally based on repeatedly testing the software on large data sets and removing all
bugs that get detected. Although this approach irons out many bugs, it is not foolproof; in
particular, many bugs that surface only in rare scenarios may easily remain hidden in the
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program. A related concern that is often missed is that a faulty program might continue
to make mistakes without anyone noticing or even realizing that they are mistakes. This is
especially relevant in the context of exchanges, where individual traders have a limited view
of the system and may not realize that the exchange is making mistakes, and the regulators
might overlook them, probably because they are not the kinds of mistakes that they look for
or are brought to their notice.

In this work, we introduce a new framework for exchange design and regulation that
addresses the above concerns. We elucidate our approach for an exchange that implements
the widely used continuous double auction mechanism to match buy and sell requests. To
this end, we develop the necessary theoretical results for continuous double auctions which
then allows us to apply the formal methods technology, which has classically been applied to
safety-critical systems like nuclear power plants [21], railway signaling systems, flight control
software, and in hardware design (see [19] for a survey).

More specifically, we consider a general model for continuous double auctions and identify
three natural properties, namely price-time priority, positive bid-ask spread, and
conservation, that are necessary for any online algorithm implementing continuous double
auction to possess. We then show that any algorithm satisfying these three properties for each
input must have a “unique” output at every time step, implying that these three properties
are sufficient for specifying continuous double auctions, and there is no need to impose any
further requirements on an algorithm implementing such an auction. We then develop an
algorithm and formally prove that it satisfies these three properties. This establishes the
consistency of the three properties.

All our proofs are machine-checked; all the notions, definitions, theorems, and proofs are
formalized in the popular Coq proof assistant [15]. Finally, using Coq’s program extraction
feature, we obtain an OCaml program of our verified algorithm for implementing continuous
double auctions. Such a verified program is guaranteed to be bug-free and can be directly
used at an exchange. Additionally, enabled by the uniqueness theorem we prove, a verified
program can be used to check for errors automatically in an existing exchange program
by comparing the outputs of the verified program against that of the exchange program.
Such a verified checker goes over the trade logs of the exchange and is guaranteed to detect
a violation if the exchange output violates any of the three properties, and this alleviates
the final concern we mentioned above. This can be a crucial tool for regulators. As an
application, using our verified program we check for errors in real data collected from an
exchange.

Thus, our approach can be summed up as follows: The specification for an exchange
should consist of a set of provably consistent properties, which are preferably few and simple.
Furthermore, these properties should be rich enough so that one can build an automated
checker that can always detect a violation of the specification by going over the logs of the
exchange if one exists.

We begin by briefly describing the trading process using continuous double auctions.

1.1 Overview of continuous double auctions
A double auction is a process to match multiple buy and sell orders for a given product at
a marketplace. Potential buyers and sellers of a product place their orders at the market
institution for trade. Buy and sell orders are referred to as bids and asks, respectively. The
market institution on receiving orders is supposed to produce transactions. Each transaction
is between a bid and an ask and consists of a transaction price and a transaction quantity.
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More specifically, each order consists of an order id, timestamp, limit price, and maximum
quantity. Order ids are used to distinguish orders (and hence are unique for each order).
Timestamps represent the arrival times of the orders. For a fixed product, the timestamps
of the orders are distinct.1 The limit price of an order ω is the maximum (if ω is a bid) or
minimum (if ω is an ask) possible transaction price for each transaction involving ω. The
maximum quantity q of an order ω is the number of units of the product offered for trade,
i.e., the sum of the transaction quantities, where ω participates in, is at most q.

Double auctions are used to generate transactions systematically. There are two common
types of double auctions that are used at various exchanges: call auctions [20, 9, 22] and
continuous double auctions. We discuss call auctions in Section 1.3. In a system implementing
continuous double auctions, buyers and sellers may place their orders at any point in time. On
receiving an order ω, the system instantly tries to match ω with fully or partially unmatched
orders that arrived earlier (“resident orders”) and output transactions, before it proceeds to
process any other incoming orders. If there are multiple orders with which ω can be matched,
then the system prioritizes those matchable orders based on price-time priority (first
the orders are ranked by the competitiveness of their price; orders with the same price are
then ranked by their arrival time, i.e., as per their timestamps). If the total transaction
quantities of the transactions generated by ω exhaust the maximum quantity of ω, then it
leaves the system completely. Else ω with its remaining unmatched quantity is retained
by the system for potential future matches; we refer to such unmatched orders as resident
orders. A resident order leaves the system when its quantity gets fully exhausted.

The general model we work with has three primitive instruction types: buy, sell, and
delete.2 That is, apart from buy and sell instructions, it is possible to delete a resident
order by giving a “delete id” instruction to the system. The system maintains two main
logbooks: an order book and a trade book. The order book is a list of all buy, sell, and
delete instructions that the system received, ordered by their timestamps. The trade book
consists of the list of all transactions generated by the system in the order in which they
were generated.

We now describe three natural properties of a system implementing continuous double
auctions that are relevant to our formalization.

Positive bid-ask spread. This property represents the “inertness” of resident orders;
at any point in time, the resident orders are not matchable to each other, i.e., the limit
price of each resident bid is strictly less than the limit price of each resident ask. This
follows immediately from the fact that an order becomes resident only when it cannot be
matched any further with the existing resident orders (or when there are no matchable
resident orders at all).
Price-time priority. When a new order arrives, the system tries to match it with the
resident orders and generate transactions. If a less-competitive resident order participates
in one of these transactions, then all current resident orders which are more competitive
must get fully traded in these transactions, where competitiveness is decided based on
price-time priority. This is a direct consequence of the matching process described
above.
Conservation. This property expresses the “honesty” of the system. Roughly speaking,
it states that the system should not lose, create, or modify orders arbitrarily. For
example, when a new incoming order gets partially traded with existing resident orders,

1 In real systems, even if multiple orders arrive at the same time, they are entered into the system one by
one. How this is exactly achieved is beyond the scope of this work.

2 In Section 8 we describe how certain other instruction types can be converted to these primitives.
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it becomes resident with its maximum quantity precisely being the difference between its
original maximum quantity and the total quantity of the transactions that are generated.
Furthermore, the timestamp, id, and limit price of the resident order must remain
unchanged.

One might feel that many properties would be necessary for specifying “conservation”
formally. On the contrary, later we will see that the above three properties can be stated
rather succinctly once we set up our definitions appropriately. Also, we will show that any
algorithm that implements these three properties, on any input (order book), will produce a
“unique” output at every point in time, implying that these properties completely characterize
continuous double auctions. One can learn more about double auctions from [5, 12, 3, 4].

1.2 Results
After setting up the definitions appropriately, we formally represent the three natural
properties of continuous double auctions that we discussed above, namely price-time
priority, positive bid-ask spread, and conservation. We are then able to prove the
following results.

Maximum matching. We first show in Lemma 4 that any algorithm that satisfies
positive bid-ask spread and conservation, for each incoming order will generate a
set of transactions (“matching”) whose total quantity will be maximum, i.e., it will be at
least the total quantity of any other feasible set of transactions.
Local Uniqueness. In Theorem 5 we show that any two processes that satisfy the
aforementioned three properties, for any set of resident orders and an incoming instruction
that satisfy certain technical conditions, will essentially generate the same matching, and
the resident orders that remain at the end of processing this instruction will also be the
same. To prove this theorem we make use of Lemma 4.
Global Uniqueness. We then show in Theorem 6 that any two processes that satisfy the
three properties, given any order book as input, at any point in time will essentially
generate the same matching, and the resident orders that remain will also be the same.
We prove this theorem by lifting Theorem 5 via an induction argument.
Correctness of Process_instruction. We then design an algorithm for continuous double
auctions which we refer to as Process_instruction and then in Theorem 7 show that it
satisfies the three properties.

To use the above results in a practical setting, we extract an OCaml program of our
verified algorithm Process_instruction, using Coq’s code extraction feature, and then use it
to check for errors in real data from an exchange by running it on order books and then
comparing the outputs with the corresponding trade books. Our global uniqueness theorem
implies that if the exchange program has the three natural properties, then the output of
our program should “match” with the output of the exchange. If they do not match, then at
least one of the three properties must be violated by the exchange program.

Our Coq formalization uses about 6000 lines of new code, which includes about 250
lemmas and 80 definitions and functions, and is available in the accompanying supplementary
materials [1].

1.3 Related work
Mavroudis and Melton [7] study fairness, transparency, and manipulation in exchange systems.
They argue that idealized market models do not capture infrastructural inefficiencies and their
simple mechanisms are not robust enough to withstand sophisticated technical manipulation
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attacks; as a result, the theoretical fairness guarantees provided by such exchanges are not
retained in reality. To address this problem, they propose the LIBRA system that achieves
a relaxed notion of fairness by making clever use of randomness in routing orders to the
matching engine. Our work focuses on a complementary and an arguably more basic aspect
of exchanges; once the system assigns unique timestamps, even if they are “inaccurate” or
“unfair” due to infrastructural inaccuracies or other reasons, with respect to those timestamps
the matching engine should respect the desired properties; our work focuses on specifying
and checking the correctness of the matching engine.

There have been some important works on formalizing financial systems, double auctions,
and theorems in economics. We briefly mention a few of them. In an influential work [11],
Passmore and Ignatovich highlight the need for formal verification of financial algorithms
and suggest various open problems in the field. In response to these challenges, they designed
Imandra [10], a specialized formal verification system and programming language designed
to reason about properties of algorithms that may be proved, refuted, or described.

Cervesato, Khan, Reis, and Žunić [2] present a declarative and modular specification for
an automated trading system for continuous double auctions in a concurrent linear framework
(CLF) and implemented it in a CLF type checker that also supports executing of CLF
specifications. Among other things, they were able to establish that their system is never
in a locked or crossed state, which is equivalent to the positive bid-ask spread property
mentioned above.

Wurman, Walsh, and Wellman [20] deal with the theory and implementation of flexible
double auctions for electronic exchanges. In particular, the authors analyze the incentive
compatibility of such auctions. Kaliszyk and Parsert [6] introduce a formal micro-economic
framework and formally prove the first welfare theorem leading to a more refined understand-
ing of the theorem than was available in the economics literature.

Comparison with call auctions. Our work is closely related to the work of Raja, Singh, and
Sarswat [8], which formalizes call auctions. As mentioned earlier, call auctions form a class
of double auctions, which are “non-continuous” or “one-shot” in nature. In call auctions,
orders are collected from buyers and sellers for a fixed duration of time, at the end of which
the orders are matched simultaneously to generate transactions. In [8] call auctions are
formalized and certain uniqueness theorems are obtained. Unlike call auctions, prior to
our work, for continuous double auctions the specifications were not concisely stated in the
literature, hindering formal development as also noted in [8].

It is interesting to compare call auctions with one time instant of continuous double
auctions when a new order arrives in presence of resident orders. In call auctions two
different objectives are usually considered: 1. Maximum matching: produce transactions that
maximize the trade volume (the sum of transaction quantities); 2. Maximum uniform-price
matching: produce transactions that maximize the trade volume subject to the constraint
that all the transaction prices are the same. It turns out, there are instances where meeting
these objectives leads to different matchings and trade volumes. In either case, after the
transactions are produced, the orders or parts of the order that remain unmatched are not-
matchable, i.e., they have positive bid-ask spread. Compare this with one time instant
of continuous double auction. As we show in this work, positive bid-ask spread already
makes the process unique and can be seen as a special case of a call auction where the output
matching meets both the objectives (1 and 2) simultaneously.3 In the context of continuous

3 For this, we need a slightly relaxed definition of uniformity: we say a matching has a uniform price if
there exists a common price that can be set for all transactions in the matching such that no limit price
of the participating orders is breached.
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double auctions, this leads to an arguably much simpler requirement of positive bid-ask
spread as opposed to the requirements of maximum matching or maximum uniform-price
matching. Additionally, we derive a stronger uniqueness theorem for continuous double
auctions: for each bid-ask pair, the total transaction quantity between them is unique; in
contrast, for call auctions, for each order, the total transaction quantity involving that order
is unique. Where continuous double auctions completely differ from call auctions is in their
online setting, which adds a new layer of complexity to the formalization.

1.4 Organization of the rest of the paper
For understanding the rest of the paper, we do not assume that the reader has any prior
knowledge or expertise in formalization or using interactive theorem provers like Coq. For an
interested reader, we have provided in [1] details that show how the notions presented here are
represented in our Coq formalization, and one can convince oneself of the correctness of the
results by simply compiling the accompanying Coq formalization [1] without having to read
the proofs presented here. Additionally, a demonstration is included in the supplementary
materials; one needs an OCaml compiler to be able to run the demonstration.

In Section 2 we present the various notions and definitions that are needed for our work.
Section 3 has the three natural properties stated formally. In Sections 4-7, we prove the
above mentioned results: Maximum matching, Local Uniqueness, Global Uniqueness, and
Correctness of Process_instruction (partly moved to Appendix A. In Section 8 we describe
how to build automated checkers. We also include a demonstration to show how our checker
works on real data. Finally, the last section concludes the paper and describes future
directions.

2 Preliminaries

We begin by introducing the various definitions that are needed for establishing our results.
For ease of readability, we extensively use sets4 in our presentation. In the Coq formalization,
however, we use lists instead. The choice of lists in the formalization allows us to use existing
libraries that were developed in [13] and [8] for the purposes of modeling auctions, and, more
importantly, it helps us in optimizing our algorithm leading to a reasonably fast OCaml
program.5 In [1], we include detailed definitions and the main results alongside their formal
versions, showing a faithful correspondence between the results and the formalization.

2.1 Orders
To avoid proving common properties of bids and asks twice, we model both as orders. An
order is a 4-tuple (id, timestamp, quantity, price). For an order ω, its components are id(ω),
timestamp(ω), qty(ω), and price(ω), each of which is a natural number, and qty(ω) > 0.

For a set of orders Ω, ids(Ω) represents the set of ids of the orders in Ω. For a set of orders
Ω with distinct ids and an order ω ∈ Ω such that id(ω) = id, with slight abuse of notation,
we define timestamp(Ω, id) = timestamp(ω), qty(Ω, id) = qty(ω), and price(Ω, id) = price(ω).

We will often have a universe from which the bids and asks arise, which we call an
order-domain. (B, A) is an order-domain, if B and A are sets of orders. Here, B represents
a set of bids and A represents a set of asks. An order-domain where each id is distinct and
each timestamp is distinct is called admissible.

4 Sets introduced in this work are all finite.
5 Using other data structures might yield further improvements.
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We now define the terms “tradable” and “matchable”. Given two orders b (bid) and a

(ask), we say b and a are tradable if price(b) ≥ price(a). An order-domain is matchable if
it contains a bid and an ask that are tradable.

Next, we define competitiveness. A bid b1 is more competitive compared to another bid
b2, denoted by b1 ≻ b2, if price(b1) > price(b2) OR (price(b1) = price(b2) AND timestamp(b1) <

timestamp(b2)). Similarly, an ask a1 is considered more competitive compared to another ask
a2, denoted by a1 ≻ a2, if price(a1) < price(a2) OR (price(a1) = price(a2) AND timestamp(a1)
< timestamp(a2)).

We treat a set of orders also as a multiset where we suppress the quantity field of each
order and set its multiplicity equal to its quantity. This view will help us succinctly state the
conservation property and ease the formalization substantially. For a set of orders S1 and
S2, S1 \ S2, represents the usual set difference, whereas S1 − S2 represents the usual multiset
difference between the two sets.

2.2 Transactions and matchings
For our purposes, keeping the price and timestamp in a transaction is redundant, as they
can be derived from the participating bid and ask. Based on the application, a transaction
between tradable orders b and a can be assigned an appropriate transaction price in the
interval [price(a), price(b)]. For example, for the sake of concreteness, one may assume that
such a transaction has price price(a) and timestamp max{timestamp(b), timestamp(a)}.

A transaction is a 3-tuple (idb, ida, quantity) of natural numbers where idb and ida

represent the ids of the participating bid and ask, respectively, and quantity > 0. For a
transaction t its components are represented by idbid(t), idask(t), and qty(t).

Let T be a set of transactions. We define idsbid(T ) and idsask(T ) to be the sets of ids of
the participating bids and asks, respectively. Next, we define Qtybid(T, idb) to be sum of the
transaction quantities of all transactions in T whose bid id is idb, and Qtyask(T, ida) to be
the sum of the transaction quantities of all transactions in T whose ask id is ida. For ease of
readability, we often just use Qty instead of Qtyask and Qtybid. We define Vol(T ) to be the
sum of the transaction quantities of all transactions in T .

We say a transaction t is over the order-domain (B, A) iff idbid(t) = id(b) for some b ∈ B

and idask(t) = id(a) for some a ∈ A. We say that a transaction t is valid w.r.t order-domain
(B, A) iff there exists b ∈ B and a ∈ A such that (i) idbid(t) = id(b) and idask(t) = id(a), (ii) b

and a are tradable, and (iii) qty(t) ≤ min(qty(b), qty(a)). We say that a set of transactions
T is valid over an order-domain (B, A) if each transaction in T is valid over (B, A).

Given a set of transactions, we would like to extract out the set of “traded” bids/asks.
To this end, we define the functions Bids and Asks as follows. Let T be a set of transactions
over an admissible order-domain (B, A). We define Bids(T, B) to be the set of all the bids in
B that participate in T where the quantity of each bid b is set to the sum of the transaction
quantities of the transactions in T involving b. Similarly, Asks(T, A) is the set of asks in A

that participate in T where the quantity of each ask is set to its total traded quantity in T .
We often simply write Bids(T ) and Asks(T ) instead of Bids(T, B) and Asks(T, A) whenever
B and A are clear from the context.

Finally, we define a matching, which is a set of transactions that can simultaneously
arise from an order-domain. We also define the canonical form of a set of transactions,
which will be often applied to matchings. We say a set of valid transactions M over an
admissible order-domain (B, A) is a matching over (B, A) if for each order ω ∈ B ∪ A,
Qty(M, id(ω)) ≤ qty(ω). We define the canonical form of a set of transactions M , denoted
by C(M) to be a set of transactions satisfying the following two properties. For each bid-ask

FSTTCS 2022
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pair (b, a), C(M) consists of at most one transaction involving b and a. Furthermore, for
each bid-ask pair (b, a), the total transaction quantity between them in M is equal to the
total transaction quantity between them in C(M). It is easy to see that C(M) always exists.

2.3 Order book and process
We now formally define instructions and order books. Buy, Sell, and Del are called commands.
An instruction is a pair (∆, ω) where ∆ is a command and ω is an order. For convenience
we represent an instruction (∆, ω) by ∆ ω. Also sometimes we represent (Del, ω) instruction
simply by Del id(ω); this is done because for a Del command, only the id of the order matters.
An order book is a list where each entry is an instruction.

We now define a “structured” order book, which satisfies two conditions. Firstly, the
timestamps of the orders must be increasing. Secondly, the ids of the orders in the non-Del
instructions in the order book must be all distinct. We will relax the second condition slightly
which will help us in certain applications. We allow an order to have an id identical only
to the id appearing in an immediately preceding Del order instruction. This will later help
us in our application to implement an “update” instruction, by replacing it with a delete
instruction followed by a Buy or Sell instruction carrying the same id. Formally, an order
book I = [(∆0, ω0), · · · , (∆n, ωn)] is called structured if the following conditions hold.

For all i ∈ {0, · · · , n − 1}, timestamp(ωi) < timestamp(ωi+1).
For all i ∈ {0, 1, · · · , n}, at least one of the following three conditions hold. (i) ∆i = Del.
(ii) id(ωi) /∈ ids{ω0, · · · , ωi−1}. (iii) id(ωi) = id(ωi−1) and ∆i−1 = Del.

We now define a process, which represents an abstract online algorithm that will be
fed resident bids and asks and an instruction and it will output a set of transactions and
resulting resident bids and asks. A process is a function (B, A, τ) 7→ (B′, A′, M) that takes
as input sets of orders B, A, and an instruction τ and outputs sets of orders B′, A′, and a
set of transactions M .

The input to a process is an order-domain, which represents the resident orders in the
system, and an instruction. If this instruction is a delete id instruction, then the process
is supposed to delete all resident orders with that id, and the “effective” order-domain
potentially gets reduced. Otherwise, if the instruction is a buy/sell order, then the “effective”
order-domain needs to include that order. We define Absorb that takes an order-domain
and an instruction as input and outputs the “effective” order-domain. For an order-domain
(B, A) and an instruction τ we define

Absorb(B, A, τ) :=


({β ∈ B | id(β) ̸= id}, {α ∈ A | id(α) ̸= id}) if τ = Del id

(B ∪ {β}, A) if τ = Buy β

(B, A ∪ {α}) if τ = Sell α.

Observe that the following propositions follow immediately from the definition of Absorb.

▶ Proposition 1. If τ is an instruction and (B, A) is an order-domain such that the
timestamps of the orders in B ∪ A are all distinct and different from the timestamp appearing
in τ and if (B′, A′) = Absorb(B, A, τ), then the timestamps of the orders in B′ ∪ A′ are all
distinct.

▶ Proposition 2. If (B, A) is an order-domain such that the ids of the orders in B ∪ A are
all distinct, then for all Del instructions τ , if (B′, A′) = Absorb(B, A, τ), then the ids of the
orders in B′ ∪ A′ are all distinct.
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Order book

(∆1, ω1) (∆2, ω2) (∆3, ω3) (∆k, ωk)

Process P(B,A)

(B′, A′)

M
Resident
orders

Figure 1 Illustration of a Process: at time k the process P takes as input resident orders (B, A)
and an instruction (∆k, ωk) and outputs a matching M and a pair of sets of orders (B′, A′) that
will act as resident orders for the next time step. Iterated takes as input a process P , an order book
I, and a time k and outputs what P would output on I at time k. Thus, for the example in the
figure, we have Iterated(P, I, k) = (B′, A′, M).

▶ Proposition 3. If τ is an instruction and (B, A) is an order-domain such that the ids
of the orders in B ∪ A are all distinct and different from the id appearing in τ and if
(B′, A′) = Absorb(B, A, τ), then the ids of the orders in B′ ∪ A′ are all distinct.

To a process, we will usually feed inputs that satisfy certain properties, and such inputs
we refer to as legal-inputs and are defined as follows. We say an order-domain (B, A) and
an instruction τ forms a legal-input if B and A are not matchable and τ is such that
(B′, A′) = Absorb(B, A, τ) is an admissible order-domain.

Finally, we define Iterated. Given a process P , an order book I and a natural number
k, we define Iterated(P, I, k) to be the output of P at time k when it is iteratively run
on the order book I. When k > length(I), Iterated(P, I, k) returns (∅, ∅, ∅). Otherwise,
Iterated(P, I, k) can be computed recursively as per the following algorithm.

Algorithm 1 Iteratively running a process on an order book.
function Iterated(Process P , Order-book I, natural number k)

if k = 0 or k > length(I) then return (∅, ∅, ∅)
(B,A,M)← Iterated(P, I, k − 1)

. B & A are resident orders & M is the matching outputted at time k − 1.
τ ← kth instruction in I
return P (B,A, τ)

3 Three natural properties of a process

Having set up the definitions, we will now state the three natural properties formally.
We say a process P satisfies positive bid-ask spread, price- time priority, and

conservation if for all order-domains (B, A) and an instruction τ such that (B, A) and
τ forms a legal-input, P (B, A, τ) = (B̂, Â, M) and (B′, A′) = Absorb(B, A, τ) implies the
following three conditions.
1. Positive Bid-Ask Spread: B̂ and Â are not matchable.
2. Price-Time Priority: If a less competitive order ω gets traded in M , then all orders

that are more competitive than ω must be fully traded in M . Formally,

a. ∀a, a′ ∈ A′, a ≻ a′ and id(a′) ∈ idsask(M) =⇒ Qty(M, id(a)) = qty(a)
b. ∀b, b′ ∈ B′, b ≻ b′ and id(b′) ∈ idsbid(M) =⇒ Qty(M, id(b)) = qty(b).
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3. Conservation: P does not lose or add orders arbitrarily. For this, we have the following
technical conditions.

a. M is a matching over the order-domain (B′, A′)

b. B̂ = B′ − Bids(M, B′) c. Â = A′ − Asks(M, A′).

The above definition appears in our Coq formalization as follows.

not (matchable hat_B hat_A).

forall b b', (In b B)/\(In b' B)/\(bcompetitive b b'/\~eqcompetitive b b')/\(In (id b') (ids_bid_aux M))
-> (Qty_bid M (id b)) = (oquantity b).

forall a a', (In a A)/\(In a' A)/\(acompetitive a a'/\~eqcompetitive a a')/\ (In (id a') (ids_ask_aux M))
-> (Qty_ask M (id a)) = (oquantity a).

Matching M B' A'.
hat_B === (odiff B' (bids M B')).
hat_A === (odiff A' (asks M A')).

4 Maximum matching

In this section, we prove the maximum matching lemma.

▶ Lemma 4 (Maximum matching). Let P be a process that satisfies positive bid-ask
spread and conservation. For all order-domain and instruction pairs ((B, A), τ) that form
legal-inputs, if P (B, A, τ) = (B̂, Â, M), then for all matchings M ′ over Absorb(B, A, τ),
Vol(M) ≥ Vol(M ′).

Proof of Lemma 4. Let us fix a process P , an order-domain (B, A), and an instruction τ

as in the lemma statement. Let (B̂, Â, M) = P (B, A, τ) and (B′, A′) = Absorb(B, A, τ). Let
M ′ be an arbitrary matching over (B′, A′). We need to show Vol(M) ≥ Vol(M ′).

Now we have the following three cases depending on τ .

Case: τ is Del id. In this case B′ = {b ∈ B|id(b) ̸= id} ⊆ B and A′ = {a ∈ A|id(a) ̸=
id} ⊆ A as (B′, A′) = Absorb(B, A, τ).

Since (B, A) and τ forms a legal input, (B, A) is not matchable. Consequently, (B′, A′) =
Absorb(B, A, τ) is also not matchable as B′ ⊆ B and A′ ⊆ A. Thus, no valid transaction over
(B′, A′) exists. Since the matching M ′ is a set of valid transactions over (B′, A′), M ′ = ∅.
Thus, Vol(M ′) = 0, and we are trivially done.

Case: τ is Buy β. In this case B′ = B ∪ {β} and A′ = A as (B′, A′) = Absorb(B, A, τ).
If (B′, A′) is not matchable, then as in the previous case, Vol(M ′) = 0, and we are trivially

done. Thus, we may assume (B′, A′) is matchable. Now since (B, A) is not matchable, only
β ∈ B′ is tradable with some ask in A′. Thus, for all valid transactions t over (B′, A′),
idbid(t) = id(β).

We assume for contradiction: Vol(M) < Vol(M ′). We will show that there exists a bid
b̂ ∈ B̂ and an ask â ∈ Â that remain resident and are tradable, contradicting positive
bid-ask spread.

Since M and M ′ are matchings over (B′, A′) consisting of only valid transactions t such
that idbid(t) = id(β) and Vol(M) < Vol(M ′), there must exist an ask a ∈ A′ which is tradable
with β, such that its trade quantity in M is strictly less than its trade quantity in M ′, i.e.,

Qtyask(M, id(a)) < Qtyask(M ′, id(a)) ≤ qty(a),
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and β and a are tradable. Thus, from conservation part c, a part of a will remain resident
in Â. In particular, there exists â ∈ Â such that price(â) = price(a). Now, since β and a are
tradable, so are β and â.

Again since M ′ is a matching over (B′, A′) consisting of only valid transactions t such that
idbid(t) = id(β), Vol(M ′) ≤ qty(β). Thus, from our assumption, Vol(M) < Vol(M ′) ≤ qty(β)
which implies, from conservation part b, some part of β remains untraded in M . In
particular, there exists β̂ ∈ B̂ such that price(β̂) = price(β). Now since β and â are tradable,
β̂ and â are tradable, which contradicts positive bid-ask spread, completing the proof.

Case: τ is Sell α. The proof in this case is symmetric to the above case. ◀

5 Local Uniqueness

In this section, we prove the local uniqueness theorem.

▶ Theorem 5. Let P1 and P2 be processes that satisfy price-time priority, positive
bid-ask spread, and conservation. For all order-domain instruction pairs ((B, A), (∆, ω))
that form legal-inputs, if for each i ∈ {1, 2}, Pi(B, A, (∆, ω)) = (B̂i, Âi, Mi), then
(B̂1, Â1, C(M1)) = (B̂2, Â2, C(M2)). Furthermore, the following statements hold for each i.
(1) B̂i and Âi are not matchable.
(2) The timestamps of orders in B̂i and Âi are distinct and form a subset of the set of

timestamps of the orders in B ∪ A ∪ {timestamp(ω)}.

(3) The ids of orders in B̂i and Âi are distinct and form a subset of ids(B ∪ A) ∪ {id(ω)}.

(4) ∆ = Del =⇒ id(ω) /∈ ids(B̂i ∪ Âi).

Proof. Fix processes P1 and P2 that satisfy the three properties. Fix an order-domain (B, A)
and an instruction (∆, ω) which forms a legal-input. Let for each i ∈ {1, 2} (B̂i, Âi, Mi) =
Pi(B, A, (∆, ω)). Let (B′, A′) = Absorb(B, A, (∆, ω)).

We will show (B̂1, Â1, C(M1)) = (B̂2, Â2, C(M2)).
Proofs of (1)-(4) above are relatively straightforward, and we omit detailed proofs: (1) is

precisely positive bid-ask spread. (2) and (3) follow from the fact that timestamps and
ids of the resident orders arise from the timestamps of the orders in the order-domain (B′, A′),
which is admissible. (4) follows from the fact that if ∆ = Del, then id(w) /∈ ids(A′ ∪ B′).

To show (B1, A1, C(M1)) = (B2, A2, C(M2)), we will do a case analysis based on ∆.
First note that both M1 and M2 are maximum volume matching between B′ and A′ from

Lemma 4.

Case 1: ∆ is Del. In this case B′ ⊆ B and A′ ⊆ A as (B′, A′) = Absorb(B, A, (∆, ω)). Now,
since (B, A) is not matchable, (B′, A′) is also not matchable, implying M1 = M2 = ∅ as no
valid transactions exist over the order-domain (B′, A′). From conservation parts b and c,
we have B̂i = B′ and Âi = A′ for each i ∈ {1, 2}, and we are done.

Case 2: ∆ is Buy. In this case B′ = B ∪{ω} and A′ = A as (B′, A′) = Absorb(B, A, (∆, ω)).
Also since (B, A) is not matchable, then every valid transaction t over the order-domain
(B′, A′) is such that idbid(t) = id(ω).

If ω is not tradable with any ask in A′, then we are done like in the previous case as
there are no possible valid transactions over (B′, A′), implying M1 = M2 = ∅. And as before
Bi = B′ and Ai = A′ for each i ∈ {1, 2} follows from conservation, and we are done.
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Thus, we may assume ω is tradable with some ask in A′. We will first show that for each
ask a ∈ A, the total traded volume of a in M1 is equal to the total traded volume of a in M2.
Assume for the sake of contradiction, there exists an ask a that has more traded quantity
in M1 than in M2. This implies a is partially traded in M2. Since trade volumes of both
M1 and M2 are equal (as they are both maximum), there must be an ask a′ such that total
traded volume of a′ in M2 is more than that in M1. In particular, this implies that a′ has at
least one transaction in M2.

Now either a ≻ a′ or a′ ≻ a. First assume a ≻ a′. The fact that a more competitive
order a is partially traded in M2 while a less competitive order a′ is being traded contradicts
price-time priority. Next assume a′ ≻ a, the fact that in M1, a′ is partially traded and
a is also traded, leads to a similar contradiction. Thus, for all a ∈ A′, Qtyask(M1, id(a)) =
Qtyask(M2, id(a)).

Now recall in each valid transaction t over the order-domain (B′, A′) idbid(t) = id(ω).
As Mi consists of only such transactions t, C(Mi) consists of transactions of the form
(id(ω), id(a), q) where q = Qtyask(Mi, id(a)) and a ∈ A′. Now since for all a ∈ A′, Qtyask(M1,

id(a)) = Qtyask(M2, id(a)), a transaction is in C(M1) iff it is in C(M2), proving C(M1) =
C(M2).

Now we prove Â1 = Â2. Fix an i ∈ {1, 2}. It follows from conservation part
c that each a ∈ A′ which is not fully traded in Mi by Pi will have a corresponding
âi ∈ Âi such that qty(âi) = qty(a) − Qtyask(Mi, id(a)) and (id(â), timestamp(â), price(â)) =
(id(a), timestamp(a), price(a)). Furthermore, no element exists in Âi whose id, timestamp, and
price do not match with the respective attributes of some element in A′. Now, we proved
earlier that for all a ∈ A′, Qtyask(M1, id(a)) = Qtyask(M2, id(a)). Combining these facts, we
get Â1 = Â2.

B̂1 = B̂2 follows from conservation part b: Observe that if ω gets fully traded in M1
and M2, B̂1 = B̂2 = B, as all elements of B remain resident from conservation. If ω gets
partially traded in M1 and M2, then B̂1 = B̂2 = B∪{ω̂}, where (id(ω̂), timestamp(ω̂), price(ω̂))
= (id(ω), timestamp(ω), price(ω)) and q(ω̂) = qty(ω) − Vol(Mi) (for each i ∈ {1, 2}).

Case 3: ∆ is Sell. Here, the proof is symmetric to the proof in Case 2. ◀

6 Global uniqueness

In this section, we prove the global uniqueness theorem.

▶ Theorem 6. Let P1 and P2 be processes that satisfy positive bid-ask spread,
price-time priority, and conservation. Then, for all structured order books I and
natural numbers k if Iterated(P1, I, k) = (B1, A1, M1) and Iterated(P2, I, k) = (B2, A2, M2),
then (B1, A1, C(M1)) = (B2, A2, C(M2)).

In our Coq formalization, this theorem appears as follows.

(Properties P1) /\ (Properties P2) /\ structured I ->
(cform (Mlist (iterated P1 I k))) === (cform (Mlist (iterated P2 I k)))/\
(Blist (iterated P1 I k)) === (Blist (iterated P2 I k)) /\
(Alist (iterated P1 I k)) === (Alist (iterated P2 I k)).

To prove the above theorem we lift the local uniqueness theorem, Theorem 5, using
induction. We achieve this by strengthening the theorem statement that provides us with
a strong enough induction hypothesis for establishing the pre-conditions needed to apply
Theorem 5.
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Proof of Theorem 6. Fix processes P1 and P2 and a structured order book I =
[(∆0, ω0), · · · , ∆n, ωn)], and let Iterated-Pi(k) denote Iterated(Pi, I, k) for i ∈ {1, 2}.

Notice for k > length(I) = n + 1, Iterated-P1(k) = Iterated-P2(k) = (∅, ∅, ∅) and we are
trivially done. Now we will show the theorem statement holds for k ≤ n + 1. More generally,
we prove the following statement by induction on k.

For all k ≤ n + 1, if Iterated-P1(k) = (Bk
1 , Ak

1 , Mk
1 ) and Iterated-P2(k) = (Bk

2 , Ak
2 , Mk

2 ),
then the following properties hold.
(1) (Bk

1 , Ak
1 , C(Mk

i )) = (Bk
2 , Ak

2 , C(Mk
i )).

(2) Bk
1 and Ak

1 are not matchable.
(3) The timestamps of orders in Bk

1 ∪ Ak
1 are distinct and form a subset of the set of

timestamps of {ω0, · · · , ωk−1}.
(4) Orders in Bk

1 ∪ Ak
1 have distinct ids and they belong to ids({ω0, · · · , ωk−1}).

(5) k ≥ 1 and ∆k−1 = Del =⇒ id(ωk−1) /∈ ids(Bk
1 ∪ Ak

1).

Observe that proving (1) above would complete the proof of Theorem 6.
Base case: When k = 0, Iterated-P1(0) = Iterated-P2(0) = (∅, ∅, ∅), and properties (1)–(5)

trivially hold.
We now assume that the above statement (properties (1)-(5)) holds for k = t and

we will show that the above statement holds for k = t + 1. Notice for each i ∈ {1, 2},
Iterated-Pi(t + 1) first computes Iterated-Pi(t) recursively to obtain (Bt

i , At
i) and then returns

Pi(Bt
i , At

i, (∆t, ωt)) = (Bt+1
i , At+1

i , M t+1
i ). Our proof proceeds in two parts. First, using

the induction hypothesis we prove that (Bt
i , At

i, (∆t, ωt)) forms a legal input, which is the
pre-condition to apply Theorem 5. Next, we invoke Theorem 5 and establish that properties
(1)–(5) hold for k = t + 1.

First part. (Bt
i , At

i, (∆t, ωt)) forms a legal input. To show this, observe from the definition
of legal input, we need to show (i) Bt

i and At
i are not matchable and (ii) Absorb(Bt

i ,

At
i, (∆t, ωt)) forms an admissible order-domain. (i) is immediate from the induction hypothesis

(property (2)). To show (ii) we need to show that if Absorb(Bt
i , At

i, (∆t, ωt)) = (B′, A′), then
the timestamps of the orders in B′ ∪A′ are all distinct and the ids of the orders in B′ ∪A′ are
all distinct. The timestamps of the orders in B′ ∪ A′ are distinct follows from Proposition 1,
since from the induction hypothesis (property (3)) it follows that the orders in Bt

1 and At
1

have distinct timestamps from the set {timestamp(ω0), · · · , timestamp(ωt−1)}, and they are
strictly smaller than timestamp(ωt) as I is structured. Below we show that the ids of B′ ∪ A′

are distinct by considering two cases: ∆t = Del and ∆t ̸= Del.
Case: ∆t = Del. We are immediately done from Proposition 2, since orders in Bt

1 ∪ At
1

have distinct ids from the induction hypothesis (property (4)).
Case: ∆t ̸= Del. Since ∆t ̸= Del and I is structured, either (a) id(ωt) /∈ ids{ω0, · · · , ωt−1}
or (b) id(ωt) = id(ωt−1) and ∆t−1 = Del. In either case we claim that id(ωt) /∈ ids(At

1∪Bt
1).

From the induction hypothesis (property (4)), we know orders in Bt
1 ∪ At

1 have distinct
ids from the set ids({ω0, · · · , ωt−1}). So in case (a), it immediately follows that id(ωt) /∈
ids(At

1 ∪ Bt
1). In case (b), since ∆t = Del, from induction hypothesis (property (5)), we

have that id(ωt−1) /∈ ids(Bt
1 ∪ At

1). In case (b) we also have id(ωt) = id(ωt−1). Thus,
combining these two facts, we have id(ωt) /∈ ids(Bt

1 ∪ At
1). Now using the claim and the

fact that ids of orders in Bt
1 ∪ At

1 are all distinct, we invoke Proposition 3 to get that ids
of orders in B′ ∪ A′ are all distinct.
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Second part. properties (1)-(5) hold for k = t+1. (1) holds: From the induction hypothesis
(property (1)), we have (Bk

1 , Ak
1) = (Bk

2 , Ak
2). Now since (Bk

1 , Ak
1 , (∆t, ωt)) forms a legal

input, we are immediately done by invoking Theorem 5. (2) and (5) also immediately follow
by invoking Theorem 5. (4) holds: Theorem 5 implies that the ids of orders in Bt+1

1 ∪ At+1
1

are all distinct and form a subset of (ids(Bt
1 ∪At

1)∪{id(ωt)}). Now from induction hypothesis
(property (4)), we have ids(Bt

1 ∪ At
1) ⊆ ids({ω0, · · · , ωt−1}). Thus, ids of the orders in

Bt+1
1 ∪ At+1

1 forms a subset of ids({ω0, · · · ωt}), and we are done. Using an almost identical
argument, we can show that (3) holds. ◀

7 Verified Algorithm

Here we introduce a natural algorithm for continuous double auctions.

Algorithm 2 Process for continuous market.
function Process instruction(Bids B, Asks A, Instruction τ)

if τ = Del id then Del order(B,A, id)

if τ = Buy β then Match bid(B,A, β)

if τ = Sell α then Match ask(B,A, α)

In the Coq formalization of Process_instruction, we sort the list of asks and bids by their
competitiveness before calling a subroutine; as a result, the most competitive bid and ask
are on top of their respective lists.

Algorithm 3 Matching an ask.
function Match ask(Bids B, Asks A, order α) . α is an ask.

if B = ∅ then return (B,A ∪ {α}, ∅)
β ← Extract most competitive(B) . Note: B ← B \ {β}.
if price(β) < price(α) then return (B ∪ {β}, A ∪ {α}, ∅)

. From now on β and α are tradable.
if qty(β) = qty(α) then m← (id(β), id(α), qty(α))

return (B,A, {m})
if qty(β) > qty(α) then m← (id(β), id(α), qty(α))

B′ ← B ∪ {(id(β), timestamp(β), qty(β)− qty(α), price(β))}
return (B′, A, {m})

if qty(β) < qty(α) then m← (id(β), id(α), qty(β))
α′ ← (id(α), timestamp(α), qty(α)− qty(β), price(α))
(B′, A′,M ′)← Match ask(B,A, α′)
M ←M ′ ∪ {m}
return (B′, A′,M)

The Match_Bid subroutine is symmetric to the Match_Ask subroutine and we do not
present it explicitly here.

Algorithm 4 Deleting an order.
function Del order(B, A, id)

if id ∈ ids(B) then B ← remove(B, id)

if id ∈ ids(A) then A← remove(A, id)

return (B,A, ∅)

Next, we show that the above algorithm satisfies the three natural properties.

▶ Theorem 7. Process_instruction satisfies positive bid-ask spread, price-time
priority, and conservation.
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In our Coq formalization, the above theorem statement appears as follows.

Properties Process_instruction.

The proof of this result is outlined in Appendix A.

8 Application: checker

In this section, we discuss how we use our verified algorithm and the global uniqueness
theorem to design an automated checker that detects errors in exchange algorithms that
run continuous double auctions from their trade logs. We implement such a checker and
run it on trade logs from an exchange. We include, as part of the supplementary materials
accompanying this paper, the OCaml source code of our checker, trade logs for two example
stocks (created from real stocks from a stock exchange after appropriate preprocessing and
masking), and a shell script that compiles our code and runs it on the trade logs of the two
stocks.

As discussed in the paper, exchanges for each traded product maintain an order book
that contains all the incoming orders and a corresponding trade book that contains all
the transactions that are generated as trade logs. These trade logs are accessible to the
regulators. We show a market regulator can use these trade logs to automatically determine
whether an exchange is complying with the three natural requirements of price-time
priority, positive bid-ask spread, and conservation while generating transactions.
Recall, as implied by our global uniqueness theorem, these three properties completely specify
continuous double auctions.

8.1 Algorithm for checker
Given an order book and the corresponding trade book, the checker first runs the verified
matching algorithm on the order book to generate “verified” matchings. Then, the canonical
forms of the matchings in the trade book with the verified matchings are compared, one
time-step at a time. If for any time-step, the canonical forms of the matchings do not match,
the checker outputs a mismatch detected message along with the corresponding matchings.
Otherwise, if all matchings match, the checker terminates without a mismatch message.

For a given order book and trade book, if the above checker finds a mismatch, then we
can conclude, from the global uniqueness theorem, that the exchange algorithm violates at
least one of the three properties. Otherwise, at least for the instance at hand, the exchange
algorithm output is as good as that of a verified algorithm.

In our implementation of the checker, the verified matching algorithm and the canonical
form functions are directly extracted from our formalization using Coq’s code extraction
feature and used as subroutines.

8.2 Preprocessing an order book
Real exchanges implement more complex instruction types than our three primitives:
buy/sell/delete. Here we briefly discuss some of these instruction types and how to convert
them into primitive types in a preprocessing step.

Updates. A buyer or seller might want to update the quantity or price of his order using
an update order instruction. For our test exchange, the rule is if the quantity of the
order decreases, then the timestamp of the original order is retained. Otherwise, if the
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quantity is increased or the price changes the new order carries the timestamp of the
update instruction. Our test exchange as part of the update instruction also maintains
the information of the quantity of the order that remains untraded. Updates can be
easily implemented by replacing it with a delete instruction followed by a new buy/sell
instruction with the updated attributes.
Market orders. Market orders are orders that do not specify a limit price and are ready to
be traded at any price. We can implement such an order quite easily by keeping the price
0 for a sell order and ∞ (in our implementation we use the maximum number supported
by the system) for a buy order.
Immediate or cancel orders (IOCs). An IOC is an order that needs to be immediately
removed from the system after it is processed, i.e., it should never become a resident
order. Such orders can be implemented by replacing them with a buy/sell instruction
followed by a delete instruction.
Stop-loss orders. Stop-loss orders are orders that are triggered when certain events happen,
like when the price of a transaction goes below a threshold. For our test exchange, the
timestamp of the triggering event is provided. Consequently, these orders can be treated
as normal orders when inserted in the order book at a position corresponding to the
timestamp of the triggering event.

Note that the preprocessing step can at the most double the number of instructions in
the order book. Apart from these standard orders discussed above, certain exchanges allow
for more complicated orders which include “iceberg orders”. Iceberg orders are rare and are
more complicated to preprocess where the priority of the orders depends on factors that
cannot be fully determined by just price and time. Although we can implement such orders
through some preprocessing hacks, ideally the matching algorithm should be enriched to
handle such orders.

8.3 Demonstration
We include, as part of the supplementary materials [1] accompanying this paper, the OCaml
source code of our checker, trade logs for two example stocks (created from real data after
appropriate preprocessing and masking), and a shell script that compiles our code and
runs it on the trade logs of the two stocks. The checker takes under a second to process
both the order books. For the first stock, the order book has about 16000 instructions; the
checker detects that there is no mismatch. For the second stock, the order book has about
15000 instructions; the checker detects a mismatch. On inspection, we found that a delete
instruction appears in the order book before the corresponding order was placed causing the
mismatch.

We believe that it would be difficult to detect such rare anomalies without the systematic
application of formal methods; in absence of formal specifications, uniqueness theorems, and
verified algorithms, such anomalies can be easily brushed aside as complex and probably
unavoidable program behavior.

9 Conclusions

In this work, we formally introduced continuous double auctions and specified them in
terms of three natural and necessary properties. Then, we showed that a natural algorithm
possesses these properties. Based on our work, we were able to produce a checker that
automatically detects errors in existing exchange algorithms by going over their trade logs.
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There are many opportunities in the field of certified auctions. For continuous double
auctions alone, one could look at various sophisticated priority rules. For example, what
would be the specifications for parity/priority matchings (as used by NYSE)? What would be
the specifications for price-time priority matchings in the presence of iceberg orders? What
would be the specifications for decentralized exchanges (for cryptocurrencies)?

With this work and previous works in the field, a new paradigm for formalizing various
auction mechanisms is emerging, which we believe has useful policy implications for regulators.
With the formal methods technology, it is now possible to formally verify systems and require
auctioneers to implement them, and also check if the implementation is correct by checking
the logs of the auctions that were conducted.
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A Correctness of Process_instruction

As Process_instruction on each input invokes one of Match_Ask, Match_Bid, and Del_Order,
it is enough to show that these subroutines have the desired properties. It is relatively
straightforward to show that Del_Order has the properties and the proof for Match_Bid
and Match_Ask are completely symmetric. Thus, in our presentation, we just show that
Match_Ask has the desired properties.

A.1 Match_Ask satisfies positive bid-ask spread
The Match_Ask subroutine satisfies positive bid-ask spread follows immediately from
the following lemma.

▶ Lemma 1. Let (B, A ∪ {α}) be an admissible order-domain. If Match_Ask(B, A, α) =
(B̂, Â, M) and (B, A) is not matchable, then (B̂, Â) is not matchable.

Proof. Fix an A and an α. We prove the lemma by induction on |B|.
Base case: trivial.
Induction hypothesis: For all |B| < k, If (B, A ∪ {α}) is an admissible domain, (B, A) is
not matchable, and Match_Ask(B, A, α) = (B̂, Â, M), then (B̂, Â) is not matchable.
Induction step: We prove the statement when |B| = k.

Let β be the most competitive bid in B. If β is not tradable with α, then as per
Match_Ask, B̂ = B and Â = A∪{α}. Now since α is not tradable with the most competitive
bid in B, it is not tradable with any bid in B. Coupled with the fact that (B, A) is not
matchable, we get (B̂, Â) is not matchable.
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From now on, we may assume that β and α are tradable. We have three cases based on
the relationship between qty(β) and qty(α).

If qty(β) = qty(α), then as per Match_Ask, (B̂, Â) = (B \ {β}, A), and we are trivially
done as (B, A) is not matchable.
If qty(β) > qty(α), then as per Match_Ask, (B̂, Â) = ((B \{β})∪{β′}, A) where β and β′

only differ in their quantities. Now since (B, A) is not matchable, (B̂, Â) is not matchable,
and we are done.
If qty(β) < qty(α), then Match_Ask on (B, A, α) first recursively calls Match_Ask on
(B \ {β}, A, α′) where α′ is obtained from α by reducing its quantity to qty(α) − qty(β).
Let (B′, A′, M ′) = Match_Ask(B \ {β}, A, α). Then, Match_Ask returns (B̂, Â, M) =
(B′, A′, M) where M is obtained from M ′ in some way. Now since, the set of bids in
the recursive call has cardinality |B \ {β}| = k − 1, (B \ {β}, A ∪ {α′}) is admissible (as
(B, A ∪ {α}) admissible), and (B \ {β}, A) is not matchable (as (B, A) not matchable),
we can apply the induction hypothesis to conclude (B′, A′) is not matchable. Now as
(B̂, Â) = (B′, A′), we are done. ◀

A.2 Match_Ask satisfies price-time priority
The subroutine Match_Ask satisfies price-time priority follows immediately from the
following lemma.

▶ Lemma 2. Let (B, A ∪ {α}) be an admissible order-domain such that (B, A) is not
matchable. If Match_Ask(B, A, α) = (B̂, Â, M), then

(i) ∀a, a′ ∈ A ∪ {α}, a ≻ a′ and id(a′) ∈ idsask(M) =⇒ Qty(M, id(a)) = qty(a)
and (ii) ∀b, b′ ∈ B, b ≻ b′ and id(b′) ∈ idsbid(M) =⇒ Qty(M, id(b)) = qty(b).

Proof. We first show (i). If M = ∅, then price-time priority trivially holds. Otherwise,
since (B, A) is not matchable, only α in A∪{α} is tradable with some bid in B. Therefore, α is
the most-competitive ask in A ∪ {α} and all transactions t ∈ M are such that idask(t) = id(α).
Thus no a′ exists such that a ≻ a′ and id(a′) ∈ idsask(M). Thus, price-time priority
trivially holds.

Next, we prove (ii) by induction on |B|.
Base case is trivial as B = ∅ =⇒ M = ∅.
Induction hypothesis: We assume that (ii) holds for all B such that |B| < k.
Induction step: We now show that (ii) holds for all B such that |B| = k.

Fix b, b′ ∈ B such that b ≻ b′ and b′ gets traded in M . We need to show that b is fully
traded in M .

Let β be the most competitive bid in B. If β is not tradable with α, as per Match_Ask,
M = ∅ and we are trivially done. Henceforth we assume β is tradable with α.

Observe, Match_Ask is such that it completely trades β in its output M (along with
possibly other bids from B) or only trades a part of β but no other bid from B. Thus, β

cannot be b′. We thus consider two cases: b = β or b ̸= β.
Case: b = β. Here again, we are done from the above observation that either β gets
completely traded or β gets partially traded but no other bid gets traded at all.
Case: b ̸= β. When qty(β) = qty(α) or qty(β) > qty(α), as per Match_Ask, β is the only
bid that gets partially or fully traded in M , contradicting the existence of b and b′.

In the final case, when qty(β) < qty(α), Match_Ask on (B, A, α) recursively calls
Match_Ask on (B \ {β}, A, α′) where α′ is obtained from α by reducing its quantity
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by qty(β). Let the recursive call return (B′, A′, M ′) = Match_Ask(B \ {β}, A, α′), then
Match_Ask returns (B̂, Â, M) = (B′, A′, M ∪ {m}), where m is a transaction between α

and β. Thus, all transactions t in M where idbid(t) ̸= id(β) come from M ′. Now since
β ≻ b ≻ b′ are distinct, if b′ gets traded in M , it must get traded in M ′ and applying the
induction hypothesis (as it is easy to verify that |B \ {β}| = k − 1, (B \ {β}, A ∪ {α′})
admissible and (B \ {β}, A) not matchable), we have b gets fully traded in M ′ and hence
in M (as M = M ′ ∪ {m}) and we are done. ◀

A.3 Match_Ask satisfies conservation
Match_Ask satisfies conservation follows immediately from the following lemma.

▶ Lemma 3. Let (B, A ∪ {α}) be an admissible order-domain. If Match_Ask(B, A, α) =
(B̂, Â, M), then

a. M is matching over the order-domain (B, A ∪ {α})

b. B̂ = B − Bids(M, B)

c. Â = (A ∪ {α}) − Asks(M, A ∪ {α}).

Proof. We briefly outline the proof stressing only the important aspects.

Part a. To show M is a matching over (B, A∪{α}), we need to show that (i) each transaction
in M is between a tradable bid-ask pair where the bid is in B and the ask is in A ∪ {α}, and
(ii) for each order ω in B ∪ A ∪ {α}, its total transaction quantity in M Qty(M, id(ω)) is at
most its quantity qty(ω).

We will show this by induction on |B|. The base case is trivial: |B| = 0 =⇒ M = ∅,
which is trivially a matching. We assume that (i) and (ii) hold for all B such that |B| < k.
We now show that (i) and (ii) hold assuming |B| = k.

Let β be the most competitive bid in B. When β is not tradable with α, as per Match_Ask,
M = ∅ and we are trivially done. Henceforth we assume β is tradable with α. Now, when
qty(β) ≥ qty(α), Match_Ask outputs only a single transaction m between β and α with
transaction quantity qty(m) = qty(α) ≤ qty(β) and clearly M = {m} satisfies (i) and (ii)
above.

When β is tradable with α and qty(β) < qty(α), Match_Ask creates a transaction m

between β and α with transaction quantity qty(β) and obtains α′ from α by reducing its
quantity by qty(β). It then recursively calls Match_Ask(B\{β}, A, α′) to obtain the matching
M ′ and then outputs the matching M = M ′ ∪ {m}.

Note that (B, A ∪ {α}) admissible implies (B \ {β}, A ∪ {α′}) is admissible. Furthermore,
since |B \ {β}| = k − 1, we can apply the induction hypothesis to obtain that M ′ is a
matching between B \{β} and A∪{α′}. In particular, this means that β does not participate
in M ′ and the total transaction quantity of α in M ′ is at most qty(α′) = qty(α) − qty(β).
So the total transaction quantity of β in M = M ′ ∪ {m} is the transaction quantity of
m, which is qty(β), and the total transaction quantity of α in M = M ′ ∪ {m} is at most
qty(α′) + qty(m) = (qty(α) − qty(β)) + qty(β) = qty(α). With these facts, one can easily
verify that (i) and (ii) hold.

Part b. Here we need to show that B̂ = B − Bids(M, B). Once again we argue by induction
on |B|. Let β be the most competitive bid in B.
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In all but the last if statement of Match_Ask (where β and α are tradable and qty(β) <

qty(α)), we have B, B̂, and M explicitly and we can directly verify that the property holds.
In the last if condition, Match_Ask first creates a transaction m between β and α with

transaction quantity qty(β) and obtains α′ from α by reducing its quantity to qty(α)−qty(β).
It then computes (B′, A′, M ′) = Match_Ask(B \ {β}, A, α′) recursively. Finally it returns
(B̂, Â, M) = (B′, A′, M ′ ∪ {m}).

For the recursive call, we can apply the induction hypothesis. Thus,

B′ = (B \ {β}) − Bids(M ′, B \ {β}) (from I.H.)

=⇒ B̂ = (B \ {β}) − Bids(M ′, B \ {β}) (since B̂ = B′)
= B − Bids(M, B),

where the last equality follows from the observation that β is missing from both B \ {β} and
Bids(M ′, B \ {β}), and Bids(M, B) contains β (as M = M ′ ∪ {m} where m is a transaction
involving β with transaction quantity qty(β)).

Part c. Observe that all transactions produced by Match_Ask have α as its participating
ask. Thus, one can check that we will be done if we can show that

qty(Â, id(α)) = qty(α) − Qty(M, id(α)).

To show the above, we again induct on |B|. In all but the last if statement of Match_Ask,
we have α, Â, and M explicitly, and we can directly verify that the above equation holds.

In the last if statement, we have that qty(β) < qty(α) and β and α are tradable, where β

is the most competitive bid in B. In this case, Match_Ask creates a transaction m between
β and α with transaction quantity qty(β) and obtains α′ from α by reducing its quantity
by qty(β). Then, it recursively calls Match_Ask(B \ {β}, A, α′) to obtain (B′, A′, M ′) and
finally outputs (B̂, Â, M) = (B′, A′, M ′ ∪ {m}). We can apply the induction hypothesis for
the recursive call. Thus,

qty(A′, id(α′)) = qty(α′) − Qty(M ′, id(α′)) (from I.H.)

=⇒ qty(Â, id(α)) = qty(α′) − Qty(M ′, id(α))

(since Â = A′ and id(α′) = id(α))
= qty(α) − [qty(β) + Qty(M ′, id(α))]

(as qty(α′) = qty(α) − qty(β))
= qty(α) − Qty(M, id(α)),

where the last equality follows from observing that M = M ′ ∪ {m} and m is a transaction
involving α with transaction quantity qty(β). ◀
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