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Abstract
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1 Executive Summary
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The seminar “Estimation-of-Distribution Algorithms: Theory and Practice” on May 2–6, 2022
brought together 19 international experts in estimation-of-distribution algorithms (EDAs).
Their research ranged from a theoretical perspective, e.g., runtime analysis on synthetic
problems, to an applied perspective, e.g., solutions of industrial optimization problems with
EDAs.

The main aim of the seminar was to narrow the gap between theory and practice in EDAs
by bringing together researchers from both sides and stimulating interaction. We facilitated
this interaction through longer introductory talks, e. g., on theoretical analyses of EDAs,
regular conference-style talks, short flash talks presenting open problems and stimulating
discussions and, last but not least, through various breakout sessions and group work. After
each talk, we scheduled ample time for discussion, and even adapted the schedule when
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discussions had gained momentum and took longer than expected. On the last day of the
seminar, all participants joined a 1-hour plenum discussion summarizing the findings of the
seminar, discussing open problems and identifying further research topics.

We believe that the seminar has achieved its main aims by making a step towards
narrowing the gap between theory and practice in EDAs. This is witnessed by the high
number of spontaneous talks given by the participants, allowing almost everyone to present
his/her perspective on EDAs, high and stable attendance of participants at talks and group
sessions, and lively discussions after basically every talk as well as in the dedicated discussion
fora. Several participants shared the feedback with us that they learned new aspects of
EDAs during the seminar and had increased their understanding of what the other side
(theory/practice) was interested in.

The seminar also identified several open problems related to the design, analysis, and
application of EDAs. Details can be found in the summary of the concluding plenum
discussion (see further below in the report).

Finally, several participants reported to the organizers that the seminar had helped them
to understand current challenges in the theory and practice of EDAs, that they had extended
their professional network, and drawn inspiration from the seminar for new research ideas.
They also expressed interest in attending a similar seminar in the future.

The only downside of this seminar was that several colleagues, most notably from China,
could not attend because of the still ongoing sanitary crisis.
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3 Overview of Talks

3.1 An application of EDAs on a random difference equation of tumour
growth

Carlos Andreu Vilarroig (Technical University of Valencia, ES) and Josu Ceberio Uribe
(University of the Basque Country – Donostia, ES)
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© Carlos Andreu Vilarroig and Josu Ceberio Uribe

In this contribution, a discussion of two possible implementations of an EDA on a tumour
growth model has been presented. This model describes the size of a tumour Xt in each time
instant t through a simple difference equation – Xt+1 = (1 + k)Xt – with two parameters:
the growth rate k and the initial condition (size) X0 [1]. Since the parameters have been
considered as Gaussian random variables, the aim of the problem is to find the best probability
distributions of the parameters that capture the uncertainty of the real tumour size data
[2] using an EDA. A first, more classical, approach is to estimate by EDA the means
and variances parameters of the probability distributions. In contrast, in a second, more
alternative approach, the final distributions of the EDA are the parameter distributions
themselves. On this second case, a possible implementation has been developed, in which
the cost function is the RMSE between the expected value of the difference equation and the
data and, as a stopping criterion to avoid convergence of the variance of the distributions
to 0, the algorithm stops at the iteration in which the data starts to fall outside the 95%
confidence interval of the model solution.

References
1 Kathleen MC Tjørve and Even Tjørve. The use of gompertz models in growth analyses,

and new gompertz model approach: An addition to the unified-richards family. PloS one,
12(6):e0178691, 2017.

2 Andrea Worschech, Nanhai Chen, Yong A Yu, Qian Zhang, Zoltan Pos, Stephanie Weibel,
Viktoria Raab, Marianna Sabatino, Alessandro Monaco, Hui Liu, Vladia Monsurró, R
Mark Buller, David F Stroncek, Ena Wang, Aladar A Szalay, and Francesco M Marincola.
Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic
facet of oncolytic therapy. BMC Genomics, 10(1):301, 2009.

3.2 Comparing EDAs with quantum or quantum-inspired solvers
Mayowa Ayodele (Fujitsu Research of Europe – Slough, GB)
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According to the observation made by Gordon Moore that the number of transistors in
a dense integrated circuit doubles about every two years [1], it has been projected that
general purpose computers may struggle to cope with computational demand in the future.
There has therefore been research interests in the use of other specialised hardware such
as quantum computers. Within the context of solving optimisation problems, quantum
computers and quantum-inspired hardware have been developed. Quadratic Unconstrained
Binary Optimisation (QUBO) is a common formulation used by quantum and quantum-
inspired solvers. Examples of quantum or quantum-inspired QUBO solvers are D-wave’s
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Advantage released in 2020, which uses quantum hardware and has the capability of 5,000+
quantum bits (qubits) [2], IBM’s Eagle which is being extended from a 27-qubit solver to
127-qubit [3] and Fujitsu’s Digital Annealer (DA) which uses application specific CMOS to
find optimum or sub-optimum solution to problems formulated with up to 100,000 bits [4].
The DA has advantages over other quantum-based algorithms such as scale (up to 100,000
bits), precision (64bit gradations), stability (stable operation at room temperature with
digital circuits) and connectivity (easy to use with total bit coupling) [4].

Estimation of Distribution Algorithms (EDAs) have been applied to many problem classes
including QUBOs. Quantum-inspired EDA (QiEDA) [5] have also been designed for and
applied to problems formulated as QUBO e.g., TSP [6] and feature selection [7]. It is however
unclear how these algorithms compare to other QUBO solvers such as the DA. The need to
design EDAs that are not problem specific and that take advantage of specialised hardware
is therefore motivated.

References
1 Schaller, R.R., 1997. Moore’s law: past, present and future. IEEE spectrum, 34(6), pp.52-59.
2 McGeoch, C. and Farré, P., 2020. The D-wave advantage system: An overview. D-Wave

Systems Inc., Burnaby, BC, Canada, Tech. Rep.
3 Chow, J., Dial, O. and Gambetta, J., 2021. IBM Quantum breaks the 100-qubit

processor barrier. IBM Research Blog, available in https://research.ibm.com/blog/
127-qubit-quantum-process-or-eagle.

4 Nakayama, H., Koyama, J., Yoneoka, N. and Miyazawa, T., 2021 Third Generation Di-
gital Annealer Technology. Fujitsu, available in https://www.fujitsu.com/jp/documents/
digitalannealer/researcharticles\/DA_WP_EN_20210922.pdf

5 Chen, M. and Quan, H., 2007, September. Quantum-inspired evolutionary algorithm based
on estimation of distribution. In 2007 Second International Conference on Bio-Inspired
Computing: Theories and Applications (pp. 17-19). IEEE.

6 Soloviev, V.P., Bielza, C. and Larranaga, P., 2021, June. Quantum-Inspired Estimation Of
Distribution Algorithm To Solve The Travelling Salesman Problem. In 2021 IEEE Congress
on Evolutionary Computation (CEC) (pp. 416-425). IEEE.

7 Soliman, O.S. and Rassem, A., 2012, December. Correlation based feature selection using
quantum bio inspired estimation of distribution algorithm. In International Workshop on
Multi-disciplinary Trends in Artificial Intelligence (pp. 318-329). Springer, Berlin, Heidelberg.

3.3 The question of structure in Markov Network EDAs
Alexander Brownlee (University of Stirling, GB)
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Joint work of Alexander E. I. Brownlee, John A. W. McCall, Qingfu Zhang, Lee A. Christie, Martin Pelikan, D.
Brown

Main reference Alexander E. I. Brownlee, John A. W. McCall, Qingfu Zhang: “Fitness Modeling With Markov
Networks”, IEEE Trans. Evol. Comput., Vol. 17(6), pp. 862–879, 2013.

URL https://doi.org/10.1109/TEVC.2013.2281538

This talk is on the long-running theme of “structure” in EDAs. I will introduce Markov
network EDAs, which use an undirected probabilistic graphical model relating binary decision
variables to the fitness distribution. This model’s accuracy and, in turn, algorithm efficiency,
depend on the neighbourhood structures that are captured within it. That is, does the model
treat variables independently, or are bivariate or higher order interactions considered. I will

https://research. ibm. com/blog/127-qubit-quantum-process-or-eagle.
https://research. ibm. com/blog/127-qubit-quantum-process-or-eagle.
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https://www.fujitsu.com/jp/documents/digitalannealer/researcharticles\/DA_WP_EN_20210922.pdf
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briefly recap some early results looking at the impact of problem and algorithm structure
in this context, covering well-known benchmarks including Onemax, Trap, and MAX3SAT,
before looking at a systematic study covering 2 and 3 bit problems which shows that not all
structure is essential to problem solution.

3.4 General univariate EDAs
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Joint work of Benjamin Doerr, Marc Dufay

We propose a general model for univariate EDAs that encompasses the four classic EDAs.
We prove a genetic drift result for the general model that implies the corresponding known
results for the particular algorithms. Finally, we show that the general class of algorithm
contains EDAs which are more powerful than the existing ones (with optimal parameters).

3.5 Genetic drift and a smart restart scheme
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Joint work of Benjamin Doerr, Weijie Zheng
Main reference Benjamin Doerr, Weijie Zheng: “Sharp Bounds for Genetic Drift in Estimation of Distribution

Algorithms”, IEEE Trans. Evol. Comput., Vol. 24(6), pp. 1140–1149, 2020.
URL https://doi.org/10.1109/TEVC.2020.2987361

Genetic drift, that is, the random movement of sampling frequencies not justified by a fitness
signal, usually leads to an inferior performance of EDAs. In this talk, we quantify how the
parameters of the four common univariate EDAs lead to genetic drift. This allows to set
the parameters in a way that during the desired runtime, the genetic drift is low enough
to avoid the undesired effects. We also describe how to use this quantification to define a
smart-restart mechanism that, provably, leads to a performance asymptotically equal to the
one obtainable from optimal parameter values.

3.6 A Gentle Introduction to Information-Geometric Optimization (IGO)
Nikolaus Hansen (INRIA Saclay – Palaiseau, FR)

License Creative Commons BY 4.0 International license
© Nikolaus Hansen

Main reference Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen: “Information-Geometric Optimization
Algorithms: A Unifying Picture via Invariance Principles”, J. Mach. Learn. Res., Vol. 18,
pp. 18:1–18:65, 2017.

URL https://dl.acm.org/doi/10.5555/3122009.3122027

With invariance as major design principle, we present a canonical way to turn any smooth
parametric family of probability distributions (on an arbitrary search space) into a continuous-
time black-box optimization method and into an “IGO algorithm” through time discretization.
The construction is based upon (i) the natural gradient over the family of distributions to

22182
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express (intrinsic) update directions and (ii) the cumulative distribution function of the
f-values under the current sample distribution to express (invariant) preference weights. The
construction recovers well-known algorithms like cGA, PBIL or Natural Evolution Strategies
and major aspects of CMA-ES.

3.7 Generating permutations
Ekhine Irurozki (Telecom Paris, FR)

License Creative Commons BY 4.0 International license
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In this tutorial we show some known and new results in statistical properties and methods
for permutations

Uniform sampling : in this section we show how to generate permutations uniformly
(where all the possible permutations have the same probability of being generated) among
all those at a given distance for the identity.
Distributions on permutations: We show the different and most common distribution for
permutation data, motivation, main statistics and inference algorithms.
Depth function: we show a typical function for real-valued data (its novel adaptation for
permutation spaces)
Experiments: in order to contribute we present an easy to use code with the above
mentioned methods and operations.

3.8 Universal permutation aggregation
Ekhine Irurozki (Telecom Paris, FR)

License Creative Commons BY 4.0 International license
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The problem of permutation-aggregation (PA) is the main optimization problem in statistical
community. It is equivalent to the median computation in the real-valued vector spaces. It
can be posed under different distances and the complexity varies for these cases: it is known
to be NP-hard for some distances, polynomial for others and unknown (although conjetured
to be NP-hard for other)

This talk introduces a current work on the problem of aggregating permutations. We
introduce an aggregation algorithm that is valid for several distance. This is an approximated
algorithm for PA for which we can characterize the conditions for convergence. Moreover, we
bound the expected error and the expected run-time. We also introduce simulations that
confirm the theoretical results.

https://creativecommons.org/licenses/by/4.0/
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3.9 Theoretical Analyses of EDAs – Introduction and Overview
Martin S. Krejca (Sorbonne University – Paris, FR)

License Creative Commons BY 4.0 International license
© Martin S. Krejca

The theoretical analysis of estimation-of-distribution algorithms (EDAs) has gained a lot
of momentum during the last decade. In this talk, I introduce the basic concepts and
terminology used in the analysis of EDAs, and I summarize most of the latest results. The
aim is to provide the audience with a solid foundation for understanding theoretical analyses
of EDAs and to give it a good overview about the state of the art.

3.10 Do univariate EDAs cope well with deception/epistasis?
Per Kristian Lehre (University of Birmingham, GB)

License Creative Commons BY 4.0 International license
© Per Kristian Lehre

Recently, there have been mixed theoretical and empirical evidence as to whether univariate
estimation of distribution algorithms (EDAs) such as the UMDA perform worse than classical
EAs on multimodal/deceptive problems. We discuss empirical investigations of a range of
EAs and EDAs on NK-landscapes, as well as theoretical analyses of UMDA end EAs on the
Deceptive Leading Ones problem. These results point to the limitation of univariate EDAs
under certain parameter regimes.

3.11 EDAs and more noise
Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Johannes Lengler

This talk pickes up the topic of Andrew Sutton’s previous discussion of EDAs on noise. I
discussed several instances in which Evolutionary Algorithms (EAs) struggle in noisy or
dynamic environments. All examples have the fact at their heart that the mutation generator
of EAs is intrinsincally biased. In contrast, EDAs are unbiased (except for the boundaries,
which are exceptional for EDAs). This is the reason why EDAs are often much more robust
to noise than EAs.

3.12 Where and How Does the Brain Use EDAs?
Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Johannes Lengler

In this flash talk, I will present some recent interpretations of low-level conscious processing
that resemble the way EDAs operate. Unconscious perceptions have local inconsistencies
that can be interpreted as a probability distribution. A conscious perception is then simply
a sample from this distribution. Episodic memory seems to be based (or to consist) purely
on these samples, while the probabilistic model is also updated by unconscious perceptions.

22182
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3.13 Expensive black-box optimization problem in permutation spaces
Manuel López-Ibáñez (University of Málaga, ES)

License Creative Commons BY 4.0 International license
© Manuel López-Ibáñez

Although there is a large amount of research in black-box optimization problems in the
continuous domain, there is far fewer algorithms designed for permutation spaces, where the
input points in the decision space represent a ranking or an ordering, in particular, when
the number of evaluations is extremely limited, e.g., to a number of function evaluations
between 100 and 1000. We describe two alternative approaches: CEGO, which is a Bayesian
(i.e., surrogate-based) optimiser using Kriging (i.e., Gaussian Processes) regression and a
distance metric between permutations, and UMM, an Estimation-of-Distribution algorithm
based on the Mallows model. We discuss results on classical combinatorial problems and a
real-world-like benchmark inspired by an application to Space exploration and on the effect
of starting from a very good initial solution versus completely random ones. We conclude by
discussing that there is still room for improvement in existing Bayesian and EDA optimisers
in this particular context.

References
1 Manuel López-Ibáñez, Francisco Chicano, and Rodrigo Gil-Merino. The Asteroid Routing

Problem: A Benchmark for Expensive Black-Box Permutation Optimization. In J. L. Jiménez
Laredo et al., editors, Applications of Evolutionary Computation, volume 13224 of Lecture
Notes in Computer Science. Springer Nature, Switzerland, 2022.

2 Ekhine Irurozki and Manuel López-Ibáñez. Unbalanced Mallows Models for Optimizing
Expensive Black-Box Permutation Problems. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2021. ACM Press, New York, NY, 2021.

3.14 EDAs, epistatis, and structure
John McCall (The Robert Gordon University – Aberdeen, GB)

License Creative Commons BY 4.0 International license
© John McCall

An EDA constructs a probabilistic model that estimates the distribution of good solutions /
fitness. Typically the model is a probabalistic graphical model (PGM) composed of structure
components with weights. Bayesian and Markov networks are two widely used PGMs [1, 2].
EDAs select good quality solutions from the current population, use them to estimate
the topology and parameters of a PGM and them sample the PGM to create a successor
population.

That part of the modelling process that relates to learning the topology of the PGM is
known as structure learning. Structure components relate directly to subsets of variables
(graph components of the PGM) and can be thought of as indicating patterns that make a
contribution to fitness depending on the values of the variables. This is strongly related to
the concept of epistasis which means strong interactions in determining individual fitness
between separated genes. Repeated runs of an EDA may learn different structure and
different structure elements may be present in models generated at different stages of a
single run. A mainstream outcome of EDA research was to develop a series of EDAs for
a wide range of problems that used PGMs with increasingly complex structure to tackle

https://creativecommons.org/licenses/by/4.0/
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challenging problems with high degrees of epistasis and with a range of representations e.g.
MAXSAT, Ising problems, NK landscapes, continuous benchmark sets, QAP, PFSP, TSP,
etc. EDAs that use PGMs are classified as univariate, bivariate or multivariate according to
the structural complexity of their models.

A key observation is that fitness may be thought of as a mass distribution and so by
normalising, or other means, we can create “true” probabilistic graphical models of the fitness
distribution, examine their structure and explore the relationship between this structure and
the structure estimated by EDAs. While it is not always possible to determine all of the true
structure of a fitness function, structure discovery algorithms exist – e.g. Heckendorn and
Wright [3]. It is possible at reasonable cost in evaluations to “probe” for structure of a certain
complexity by evaluating carefully selected solutions. One can ask for a given problem, what
structure does an EDA need to discover to optimise efficiently?

A folklore intuition exists that, on optimisation problems with a complex true structure,
algorithms that can detect and model complex structure will exhibit superior performance
to algorithms that cannot do so. Many papers exist showing multivariate algorithms
outperforming univariate or bivariate algorithms on benchmarks. In the talk, we present
a real world cancer chemotherapy optimisation problem with a high degree of bivariate
structure on which univariate EDAs, despite being incapable of detecting this structure,
outperform hBOA, one of the most powerful and widely applied multivariate EDAs [4].

The result is important because a drawback of multivariate EDAs is that the computational
cost of model building can quickly become significant compared to overall function evaluation
costs as structural complexity increases. An understanding of when structure learning is
unnecessary to, or even impedes, optimisation may lead to important insights for the design
of EDAs that use PGMs. A key observation is that most PGM EDAs operate invariantly to
order-preserving function transformations, that is to say they are invariant across welldefined
function classes. In this talk we share some results from [5] where we algebraically characterise
inessential structure for such EDAs on pseudo-boolean problems.
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3.15 EDA applications in real industrial problems
Vicente P. Soloviev (Polytechnic University of Madrid, ES)
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In this talk four different applications of the Estimation of Distribution Algorithms (EDAs)
have been shown. The first application [1] is a complex multivariate optimization problem
where a Gaussian Bayesian network is used a probabilistic model where some prior knowledge
is involved and fixed as evidence in the model to restrict the search space. The second
one is a Feature Subset Selection problem with time series, where not only the optimum
subset of variables are chosen, but also de ideal time series transformation that improves
the model. An EDA as a wrapper approach is implemented. The third one is a Real Estate
portfolio optimization problem where it is aimed to minimize the risk of the investment and
to maximize the profit of the portfolio. It is presented how EDA deal with large scale data in
this problem. The last optimization problem [2] consists of optimizing some hyperparameters
of a concrete quantum circuit. This talk leads to discussion about the probabilistic model
complexity needed to approach the real-world optimization problems.
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3.16 Semi-parametric Bayesian networks in EDAs
Vicente P. Soloviev (Polytechnic University of Madrid, ES)
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Some real applications involve leading with variables that do not fit a normal distribution in
the continuous space. Thus, some more complex algorithms should be used rather than the
well-known Gaussian Bayesian network. A novel method is presented where EDA decides
whether the variables will fit or not a Gaussian distribution during runtime. Some results
are shown comparing the approach with some other state-of-the-art methods such as EGNA,
JADE or CMA-ES for some specific benchmarks, and also explaining the performance of the
approach during runtime.
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3.17 A bit about algorithm configuration
Thomas Stützle (Free University of Brussels, BE)
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This is a bit about automated algorithm configuration. It is divided in two aspects. The
first highlights the main advantages of addressing algorithm design and configuration by
algorithmic techniques and describes the main existing techniques. We show as one of the
various available ones the irace algorithm for automated configuration. The second highlights
the advantages of automated configuration. In particular, we show how flexible algorithm
frameworks can support the automatic design of high-performing hybrid stochastic local
search algorithms. We show this by the example of nine permutation flow shop problems for
which we obtained in each one of these a new state-of-the-art algorithm even though they
have on average around 500 parameters.

3.18 Different parameter regimes in the cGA and their effect on
performance

Dirk Sudholt (Universität Passau, DE)
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Understanding the dynamics of the underlying probabilistic model is a fundamental problem
in estimation-of-distribution algorithms. We consider the compact Genetic Algorithm (cGA)
on the function OneMax and show how the choice of the update strength 1/K affects
performance. For small K updates have a large impact and genetic drift leads to chaotic
behaviour and exponential times. For large K, genetic drift is negligible since updates are
small and the algorithm slowly learns good bit values. For medium K, frequencies may hit
their lower borders, but these wrong decisions can be reverted efficiently. The parameter
landscape has a bimodal shape with two asymptotically optimal parameter values. A similar,
but more extreme effect is observed for the multimodal Cliff function where the cGA is
inefficient for all values of K and the best (exponential) runtime is obtained for exponential
values of K that prevent genetic drift.
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3.19 EDAs, noise and graceful scaling
Andrew M. Sutton (University of Minnesota – Duluth, US)
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A search algorithm scales gracefully with noise when a polynomial increase in noise intensity
can be overcome by at most a polynomial increase in resource usage. In this talk, I outline a
few results related to graceful scaling on additive posterior noise and estimation of distribution
algorithms.

4 Working groups

4.1 Breakout session: Dealing with constraint search spaces
Josu Ceberio Uribe (University of the Basque Country – Donostia, ES) and Ekhine Irurozki
(Telecom Paris, FR)
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There are many problems whose search space is the space that results on applying constraints
to {0, 1}n. For example, the graph partitioning problem on a graph of n edges. The set of
solutions to this problem is the set of binary vectors of length n in which the number of 1s
equals the number of 0s, S = {v : v ∈ {0, 1}n ∧

∑n
i v(i) = n/2}. Another example is the

MaxCut problem.
We consider this set S as a running example but extensions to different setting with other

constraints are straight forward.
In order to use EDAs on S the naive approach is to consider the whole set {0, 1}n and

then discard the infeasible solutions (aka those that do not belong to S). However, this
approach is not efficient as the number of infeasible solutions can be a large proportion of
the total space and the proportion of discarded solutions increases with n. This motivates
the need for distributions with support on S.

Based on techniques described in the talks in this seminar we have described a probability
model for S. We describe here the basic methods for EDAs, which are sampling and learning.

Given a sample of vectors V ∈ S of cardinality m the learning process consists on
a the estimation of a matrix M ∈ Rn×n for which Mij is the ratio of the vectors for
which v(i) = 0 and v(j) = 1 among those in which they have different values, i.e., set
wij = |{v ∈ V ∧ v(i) = 0 ∧ v(j) = 1}|, Mij = {wij/wji}

The sampling process of a vector v is as follows: (1) let i, j be random pair in {1, n} and
(2) v[i] = 0 and v[j] = 1.

For the development of an EDA the learning could be skipped (substitute by a lazy-
learning) in which the learning is done on-line.
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4.2 Breakout session: Univariate EDAs, deception and epistatis
Per Kristian Lehre (University of Birmingham, GB) and Johannes Lengler (ETH Zürich,
CH)
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We discussed the surprising similarity of the cGA and UMDA on OneMax, where the step
size K of UMDA is equated with the population size µ of the UMDA, and the sample size λ

is in Θ(µ). The right scaling is to compare K steps of the cGA with one step of the UMDA.
In this scaling, both algorithms use Θ(K) function evaluations per round. It turns out that
for any distribution, the drift (expected change) in each frequency is essentially the same for
UMDA and cGA. The most extremal possible change is also the same: it is just so possible
to go from one boundary to the other in one round. However, we found out that the tail
distribution for such extremal events is not the same.

The discussion took place with the whole seminar, after a talk on deception and epistasis
by Per Kristian Lehre. Martin Krejca speculated that one might see a difference on such
functions, because the tail distribution of large steps is important in this case. In the end,
we identified several research questions in that direction:
1. For which other fitness functions than OneMax is the drift identical? Can we identify a

class of such fitness functions?
2. While cGA and UMDA have the same expected change on OneMax, do they also have

the same variance? If not, this should result in a stronger/weaker genetic drift that might
be important in some settings

3. Can we formally or experimentally prove that the behaviour of the two algorithms is
qualitatively different in the deceptive environments invented by Lehre?

4.3 Breakout session: Explainability
John McCall (The Robert Gordon University – Aberdeen, GB) and Josu Ceberio Uribe
(University of the Basque Country – Donostia, ES)
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In this breakout session, the explainability of evolutionary computation has been discussed.
The chair explained that when it comes to approach real world problems, many times, the
solutions that are obtained from the EC algorithm are difficult to accept by the decision
makers of the projects (usually people who do not have a scientific background). Some
participants of the session have discussed that it is not the responsibility of the scientist
or engineer to make the algorithm understandable for the decision maker. On the other
side, some participants have explained that when it comes to apply the proposed solution in
critical scenarios (medical therapies, healthcare systems, or any other critical infrastructure
configuration), then decision makers usually does not trust in solutions that they do not
trust, as they are risky in the opinion. The goal of the explainability is to try to understand
why the algorithm output a particular solution with rules that are understandable for the
human.
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In the board, a scheme of types of explainability was sketched. The first branching
distinguishes between (a) risk assessment and (b) problem understanding, and from the
second two other branches were obtained: (1) sensitivity analysis and (2) problem information
from algorithm traces.

Thinking on an analogous problem on machine learning and explainability, it was men-
tioned that good explainability in general requires looking power in the model/algorithm.
No direct link was done with EC.

The audience agreed that there could be scenarios like this, but there was no clue about
how to do it. It will take place a workshop in GECCO 2022 on the topic under the acronym
ECXAI, that could be a nice discussion point.

4.4 Breakout session: Do we need to model interactions in EDAs
Jonathan L. Shapiro (University of Manchester, GB)
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This session motivated to some extent by a comment in a talk by John McCall, which said
(paraphrasing) sometimes it is not worth the effort to model the interactions, but rather to
just search fast using a univariate EDA.

Jon Shapiro started by pointing out that many combinatorial optimization problems
exist on undirected connected graphs. These are computationally expensive to sample from,
requiring hundreds or thousands of Markov chain Monte Carlo steps. These are also very
difficult to model from data, because in complex situations, variables can be “frozen” into
correlated or anti-correlated states even without there being direct interactions between
them. So would dedicating computational resources to model building be fruitful, or would
this computational effort be better used in search?

4.5 Breakout session: Genetic drift
Dirk Sudholt (Universität Passau, DE) and Johannes Lengler (ETH Zürich, CH)
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We first tried to clarify our understanding of the term of genetic drift, and found a satisfactory
definition: it is the difference between the mean from perfect distribution and empirical
distribution, in other words it is the effect of finite samples. We also discussed what this
implies about genetic drift in case of several optima, or when the fitness signal is zero, for
example in the checkerboard benchmark. Finally, in Mallows models, it is less clear what
the genetic drift is. Empirically, when the solution stop improving, then the variance steeply
goes down. It is unclear which is the cause and which the effect.

We discussed several methods on how to observe it empirically. A conservative way would
be to measure or compute for a fitness-neutral frequency whether there is a risk of hitting
boundaries. Another option is to either compare a run with normal sample size with a
run with a very high sample size, or several runs with normal sample sizes. If the runs are
diverging, this is a sign of genetic drift.
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We then turned to the effects of genetic drift. One question is whether it leads to a loss
of variance, and that depends on the situation. We have also discussed several cases in which
genetic drift might help, including tie-breaking and escaping from local optima.

Finally, we discussed how to control and prevent it, though it was debated whether we
even need or want to do that, so we also discussed ways to increase it. One way would be to
control parameters like learning rate or steps size, which may be interpreted as controlling
the amount of genetic drift. It was suggested to design a cGA where we adapt K in order to
control the amount of genetic drift. The sig-cGA achieves a related goal in a similar way, by
using statistical test. The sig-cGA is rather artificial and extreme, but it might be promising
to look at less extreme version of this algorithm. We discussed that this might be hard in
continuous domains with a large or moderate number of dimensions.

In the end, we digressed into discussion what other methods one can use to deal with
local optima or premature convergence.

5 Panel discussions

5.1 Concluding group discussion of the seminar
Josu Ceberio Uribe (University of the Basque Country – Donostia, ES), Benjamin Doerr
(Ecole Polytechnique – Palaiseau, FR), Per Kristian Lehre (University of Birmingham, GB),
and Carsten Witt (Technical University of Denmark – Lyngby, DK)
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Chair: Per Kristian Lehre
The group discussion on the last day of the seminar involved all participants of the seminar

and aimed at summarizing the findings of the seminar and discussing central questions related
to the main aim of the seminar, bridging the gap between theory and practice in EDAs.
Concretely, the following two main questions along with their subtopics were proposed as
items for discussion:
1. What are practice-relevant EDAs?

When is a univariate model enough?
When do we have to model dependencies between variables?
When is it too expensive to employ an EDA?

2. What are the barriers for theory of EDAs
What is the right theory?
What problems should theory study?
What are the major challenges?

Regarding the first subject, practice-relevant EDAs, the seminar discussed the use of
restart strategies. Also, the suggestion came up to start with very simple EDAs (e. g. UMDA)
in the first place (an idea supported by talks of practitioners during the seminar). One would
then proceed to more complex interaction models only if the results of simple EDAs, along
with restart strategies, are unsatisfactory.

A challenge in using complex EDAs is the complex parameter space. On the one hand,
empirical evidence indicates that parameter tuning for EDAs is more benign than expected
[9]; on the other hand, theoretical research has identified examples where the parameter
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landscape is surprisingly complex [7]. As an interesting note, state-of-the-art automated
parameter configuration tools (e. g. irace, [8]) conduct their search in a manner resembling
an EDA. As a note of caution, participants pointed out that optimal parameter settings in
EDAs and other search heuristics may also vary during the run.

As another domain where EDAs may be the preferred algorithm, the participants discussed
the evolution of surrogate models of fitness functions. They pointed out that building these
models can be computationally expensive so standard complexity measures like the number
of fitness calls are no longer representative.

The seminar discussed briefly that common EDAs focus on building a model of the search
space and do not rely on directed search operators like mutation vectors in continuous search
spaces. However, no conclusion was reached on how to best model the notion of direction in
discrete search spaces.

During the second half of the group discussion, the seminar turned to a complementary
subject, the barriers for theory mentioned above. As theoretical benchmark problems for
multivariate EDAs, the so-called concatenated trap functions [3], checkerboard functions
[1], deceiving LeadingOnesBlocks [6], Ising models [4] and generalized models of multimodal
problems (e. g., the SparseLocalOpt problem class, [2]) were suggested. Several of these may
serve as examples where multivariate models may be required for efficient optimization times.

The participants discussed the purpose of simple benchmark functions like OneMax,
which were defended as building blocks of more complex functions and a basic sanity check
for new algorithms. If an algorithm does not optimize OneMax efficiently, it should be
discarded.

Criticism with respect to the commonly analyzed search space of bit strings {0, 1}n led
the discussion to permutation spaces, which were the subject of several talks during the
seminar. Runtime analyses of EDAs in permutation spaces, using simple benchmark problems
like sorting were suggested.

More generally, participants also demanded runtime analyses of EDAs on classical com-
binatorial optimization problems (e. g., minimum spanning trees) and the study of other
performance measures than the first hitting time of an optimum. In particular, fixed-budget
analyses as common with evolutionary algorithms [5] seem to be missing so far even though
existing tools for the analyses should make results in this direction feasible.

Regarding the “right” theory, the suggestion came up to study general properties/charac-
terizations of problems and algorithms that guarantee efficient runtimes. No final conclusion
was reached how such a theory could look like.

Towards the end of the session, the use of surrogate models in EDAs was picked up again.
Runtime analyses seem very complex; however, a starting point may be to discriminate the
structure of surrogate models at two points in time t1, t2 using experimental studies of EDAs
at these times or even using theoretical means. Such studies of the quality of surrogate
models could possibly lead to estimations of the development of the model over time and
even the final optimization time.

As a last point in the discussion, the participants talked about runtime analyses of EDAs
in noisy optimization where the noise is not Gaussian; for example, dynamic noise that
decreases over time or when getting closer to the optimum. This was linked to the observation
that the variance of the sampling distribution in EDAs tends to decrease over time.
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