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Abstract
It is known that the quantale of sup-preserving maps from a complete lattice to itself is a Frobenius
quantale if and only if the lattice is completely distributive. Since completely distributive lattices
are the nuclear objects in the autonomous category of complete lattices and sup-preserving maps, we
study the above statement in a categorical setting. We introduce the notion of Frobenius structure
in an arbitrary autonomous category, generalizing that of Frobenius quantale. We prove that the
monoid of endomorphisms of a nuclear object has a Frobenius structure. If the environment category
is star-autonomous and has epi-mono factorizations, a variant of this theorem allows to develop
an abstract phase semantics and to generalise the previous statement. Conversely, we argue that,
in a star-autonomous category where the monoidal unit is a dualizing object, if the monoid of
endomorphisms of an object has a Frobenius structure and the monoidal unit embeds into this object
as a retract, then the object is nuclear.
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1 Introduction

Context. A major motivation for giving birth to linear logic was to restore a classical negation
in a constructive setting. This was achieved on the proof-theoretic side, by controlling the
structural rules of weakening and contraction. As a byproduct, the logical connectives of
conjunction and disjunction have been split into their multiplicative and additive versions,
and the additive connectives no longer have a classical behaviour, that is, they no longer
distribute over each other.

We might tackle the same problem – restoring a classical negation in a constructive setting
– using algebraic and model theoretic approaches and considering variants of linear logic. A
standard complete provability semantics of (possibly non-commutative) linear logic is on the
class of structures known as quantales, see e.g. [40]. A quantale (Q, ∗) is a complete lattice
with a multiplication which distributes over sups in both variables (i.e., it is a semigroup
in the category SLatt of complete lattices and join-preserving maps). Restoring classical
negation means, in this context, considering Frobenius or Girard quantales. A quantale
is Frobenius if it also comes with two suitable antitone maps ⊥(−) and (−)⊥ representing
negations, and it is Girard if these two maps coincide. Among quantales, probably the most
interesting are those on the set [L,L] of sup-preserving endomaps of a complete lattice L, with
multiplication given by composition and the ordering computed pointwise. These quantales
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18:2 Frobenius Structures in Star-Autonomous Categories

naturally arise in logic, computer science, and quantum mechanics. For example, for a set
X and its powerset lattice P (X), the quantale [P (X), P (X)] is isomorphic to the quantale
P (X ×X) of relations on X and it is the main object of study in relation algebra [28]. Use
of these quantales to model concurrency and quantum mechanics/computation abound in
the literature, see e.g. [3, 4, 30]. Our interest for quantales of the form [L,L] stems from
generalized linear orders [19, 33, 20, 36], which are sort of fuzzy relations whose set of truth
values is a quantale. These relations need to satisfy constraints which are expressed using
the negation, hence the quantale must be a Frobenius quantale. While developing a theory
of these structures we came across (and contributed to) the following result:

▶ Theorem 1 (See [26, 14, 16, 35, 34]). The quantale [L,L] of sup-preserving endomaps of
a complete lattice L is a Frobenius quantale if and only if L is completely distributive.

Complete distributivity is an infinitary generalization of the usual distributive law. Basic
examples of completely distributive lattices are the complete linear orders, the powerset
lattices and, of course, the finite distributive lattices. As logicians, the above theorem
struck us, since it shows that a model theoretic approach to restoring a classical negation
fundamentally diverges from the proof-theoretic one. Indeed, the theorem has the following
reading: if a classical negation is enforced on the most standard class of models of non-
commutative intuitionistic linear logic (the sup-preserving endomaps of a complete lattice),
then also the additive connectives of the logic (the suprema and infima of the lattice) have a
classical behaviour (that is, they distribute over each other).

Contribution. Due to its strength, the above statement deserves to be studied from the
largest number of perspectives. We take here a categorical approach and give a proof of
the statement that relies on the ∗-autonomous structure of SLatt, the category of complete
lattices and sup-preserving maps. In doing so, we generalise the statement to ∗-autonomous
categories. This is possible due to a fundamental characterization of complete distributivity
in the categorical language, stating that the completely distributive lattices are exactly
the nuclear objects in SLatt, see [29, 22]. We recall that an object A of a symmetric
monoidal closed category V = (V, I,⊗, α, λ, ρ, [−,−], ev) is nuclear if the canonical map
mix : A∗ ⊗A −−−→ [A,A] is an isomorphism, where A∗, the dual of A, is the internal hom
[A, I] (see e.g. [32]).

To achieve our goal, we define Frobenius structures in a symmetric monoidal closed
category by strictly mimicking the definition of (possibly unitless) Frobenius quantales given
in [13]. Definitions of similar structures appear in the literature [25, 23, 39, 15] and differ
from ours mainly w.r.t. the environment category and the presence of units. We consider
the choice of an axiomatization only as a tool for our goal of generalizing Theorem 1 to a
categorical setting. We insist, however, that the theorem is about characterizing when a
canonical quantale on the tensor product L∗ ⊗ L of an object L in SLatt has a unit. To
define Frobenius structures, we use the notion of dual pairing in a monoidal category V.
This is a map ϵ : A⊗B −−−→ I with two given universal properties. It turns out that in a
∗-autonomous category such a dual pairing exists if and only if B is isomorphic to A∗, if and
only if A is isomorphic to B∗. This notion provides the framework by which to study objects
that are dual to each other only up to isomorphism: for example (A∗ ⊗A, [A,A]) is part of
a dual pairing in any ∗-autonomous category and, for any complete lattice L, (L,Lop) is
part of a dual pairing in SLatt. If ϵ : A⊗B −−−→ I is a dual pairing and A is a semigroup,
then A acts on B on the left and on the right. The left and right actions, noted αℓA and
αρA, correspond, in the category SLatt, to the two implications of a quantale. We define
generalized Frobenius quantales in arbitrary symmetric monoidal category as follows:
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▶ Definition. A Frobenius structure is a tuple (A,B, ϵ, µA, l, r) where (A,B, ϵ) is a dual
pairing, (A,µA) is a semigroup, l and r are invertible maps from A to B such that

ϵ ◦ (A⊗ l) = ϵ ◦ (A⊗ r) ◦ σA,A and αℓA ◦ (A⊗ r) = αρA ◦ (l ⊗A) . (1)

Almost by definition, in SLatt, a Frobenius structure of the form (Q,Qop, ϵ, ∗,⊥(−), (−)⊥)
amounts to a Frobenius quantale, as defined in [13], that is a quantale (Q, ∗) coming with
antitone negations satisfying

x ≤ ⊥y iff y ≤ x⊥ and y⊥/x = y\⊥x .

We prove then the following result, generalizing the direct implication of Theorem 1.

▶ Theorem A. If A is nuclear, then there is a map l such that ([A,A], [A,A]∗, ev[A,A],I , ◦, l, l)
is a Frobenius structure.

The proof of this theorem is almost straightforward from the definition of Frobenius structure.
Let us mention that Theorem A is strictly related to (and may be considered an instance
of) Corollary 3.3 in [39]. The connection, however, depends on the fact that adjoints in a
symmetric monoidal closed category, or dualisable objects, are exactly the nuclear objects,
as argued in Section 6. The statement can be further generalised: if mix is not invertible
but the underlying ∗-autonomous category has some nice factorization system, then the
image of mix is the support of a Frobenius structure. In SLatt, this construction yields the
Girard quantale of tight endomaps of a complete lattice studied in [13]. The generalization
is a consequence of a double negation construction that we described in [13] for Frobenius
quantales, and that we generalise here to a categorical setting. The statement sounds as
follows:

▶ Theorem B. Let V be a ∗-autonomous category with an epi-mono factorization system. Let
(A,µA) be a semigroup in V and let ϵ : A⊗B −−−−→ I be a dual pairing. If f : A −−−−→ B

is a map such that ϵ ◦ (A⊗ f) = ϵ ◦ (A⊗ f) ◦ σA,A, then the image of f is the carrier of a
Frobenius structure.

We also demonstrate that the converse of Theorem A actually holds if we add another
condition, which we identify now as a key ingredient of the proof in [34] of Theorem 1. We
say that an objet A of a monoidal category is pseudo-affine if the tensor unit I embeds into
A as a retract. For example, every complete lattice which is not a singleton is pseudo-affine
in SLatt. We prove:

▶ Theorem C. If A is a pseudo-affine object of a ∗-autonomous category and the canonical
monoid ([A,A], ◦) is part of a Frobenius structure, then A is nuclear.

Related Work. Besides the works that we already mentioned, either those on the theory
of quantales [26, 14, 16] or those generalizing the notion of Frobenius quantale to some
kind of monoidal setting [25, 23, 39, 15], we also wish to mention that the notion of
nuclearity, originally conceived for Banach spaces [21, 32], has been by now generalised in
several directions [1, 7]. For example, this notion is generalised in [1] to the category of
Hilbert spaces, with motivations from quantum mechanics. While our initial motivations
for developing this research were of a purely logical and order-theoretic nature, we could
recognize, via the formalization in a categorical language and the notion of nuclearity, the
similarity of our questionings with those arising in this line of research. In particular, we
could construct in [13] a unitless Frobenius quantale from trace class operators (i.e., nuclear
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18:4 Frobenius Structures in Star-Autonomous Categories

endomaps) of an infinite dimensional Hilbert space. We noticed that the questioning about
unitless structures is pervasive in this line of research [2, 18, 12]. We describe in the last
section our first non-conclusive remarks on the scope of our results within this family of
monoidal categories. We are convinced that connecting with existing research on nuclearity
and categorical quantum mechanics is a research direction worth to be fully explored.

Structure of the paper. After introducing elementary notions in Section 2, we study
the notion of dual pairing in Section 3 and give an overview of actions in dual pairs in
Section 4. This makes it possible to introduce Frobenius structures in Section 5. We then
state in Section 6 the equivalence between the notion of adjoint and that of nuclear object in
autonomous categories. We finally prove Theorems A and B in Section 7, and Theorem C in
Section 8. We add a discussion of the results obtained and sketch future research in Section 9.
For lack of space, proofs of the statements that might be easy to derive or be considered
part of the folklore only appear in the preprint [37].

2 Background

Let us recall that a quantale is a semigroup in the ∗-autonomous category SLatt, see [16].
Otherwise said, it is a pair (Q, ∗) with Q a complete lattice and ∗ a semigroup operation
which distributes in each place with suprema. An essential feature of a quantale (Q, ∗) are
the two implication maps (−\−) : Q ⊗ Qop −−−→ Qop and (−/−) : Qop ⊗ Q −−−→ Qop

satisfying the adjointness relations

x ∗ y ≤ z iff x ≤ z/y iff y ≤ x\z .

We rely on the standard monograph [27] for elementary facts and notation concerning
categories. We shall say that a category is autonomous if it is symmetric monoidal closed.
Thus, an autonomous category is of the form V = (V, I,⊗, α, λ, ρ, σ, [−,−], ev), where V is a
category, ⊗ : V × V −−−→ V is a bifunctor, [X,−] : V −−−→ V is the right adjoint to (X⊗ −),
ev is the counit of this adjunction and αX,Y,Z : (X⊗Y ) ⊗Z ∼= X⊗ (Y ⊗Z), ρX : X⊗ I ∼= X,
λX : I ⊗X ∼= X, σX,Y : X ⊗ Y ∼= Y ⊗X are all natural isomorphisms satisfying well-known
constraints. We shall work with monoidal categories that are partially strict, by which we
mean that the associator α is the identity. If V is autonomous and 0 is a fixed object, then
we get a contravariant functor (−)∗ := [−, 0]. We define the map jX : X −−−→ X∗∗ as the
transpose of evX,0 ◦ σX∗,X . We say an object is reflexive if jX is an isomorphism. If every
object is reflexive, then 0 is said to be dualizing and V is said to be a ∗-autonomous category.
If 0 = I then, we can define the morphism mixX,Y : Y ∗ ⊗X −−−→ [Y,X] as the transpose
of λX ◦ (evY,I ⊗ idX). An object X is nuclear if mixX,X is invertible. A nuclear object is
necessarily reflexive.

▶ Definition 2. A magma in a monoidal category V is a pair (A,µA) with µA : A⊗A −−−−→ A

a morphism in V. A bracketed magma in V is a triple (A,µA, πA) with (A,µA) a magma
and πA : A⊗A −−−−→ I. A bracketed magma is associative if (A,µA) is a semigroup in V
(that is, if µA is associative) and πA is associative, meaning that the following two horizontal
arrows are equal:

A⊗A⊗A A⊗A I .
µA⊗A

A⊗µA

πA

If V is symmetric monoidal and (A,µA) is a magma, a pairing πA is said to be co-associative
if (A,µA ◦ σA,A, πA) is an associative bracketed magma.
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▶ Fact 3. A pairing πA is associative if and only if the pairing πA ◦ σA,A is co-associative.

Notice that if (A,µA) is a semigroup and tr : A −−−→ I is any arrow, then tr ◦µA :
A⊗A −−−→ I is associative.

▶ Example 4. In every autonomous category, ([A,A], ◦) is a well-known semigroup where
◦ is the internal composition defined as the transpose of evA,A ◦ (evA,A ⊗ [A,A]). Also, if
0 = I, then (A∗ ⊗ A,µA∗⊗A, πA∗⊗A) is an associative bracketed magma with µA∗⊗A :=
(A∗ ⊗ λA) ◦ (A∗ ⊗ evA,I ⊗A) and πA∗⊗A := evA,I ◦ σA∗,A ◦ µA∗⊗A, see e.g. [26].

▶ Definition 5. Let (A,µA) be magma. A map αℓ : A⊗X −−−−→ X is a left action if the
two parallel arrows

A⊗A⊗X A⊗X X
µA⊗X

A⊗αℓ

αℓ

are equal. A map αρ : X ⊗A −−−−→ X is defined to be a right action in a similar way.

▶ Definition 6. Let (A,µA), (B,µB) be two magmas. A magma homomorphism from (A,µA)
to (B,µB) is a map f : A −−−−→ B making the diagram below on the left commutative. If
(A,µA, πA) and (B,µB , πB) are bracketed magmas, a bracketed magma homomorphism from
(A,µA, πA) to (B,µB , πB) is a magma homomorphism f : (A,µA) −−−−→ (B,µB) making
the diagram below in the middle commutative.

A⊗A B ⊗B

A B

µA

f⊗f

µB

f

A⊗A B ⊗B

I

πA

f⊗f

πB

A A∗

B B∗

f

πA
♯

πB
♯

f∗

Magma homomorphisms between semigroups are called semigroup homomorphisms.

Let us notice that, when the environment category is autonomous, the diagram above in the
middle commutes if and only if the diagram on the right does.

▶ Fact 7. The arrow mix : A∗ ⊗A −−−→ [A,A] is a semigroup homomorphism.

▶ Lemma 8. Let V be autonomous and let e : (A,µA, πA) −−−−→ (B,µB , πB) be an epimor-
phism of bracketed magmas. If (A,µA, πA) is associative, then so is (B,µB , πB).

3 Dual pairings

The goal of this section is to introduce the technical notion of dual pairing, needed later to
define Frobenius structures. We also present a few properties of dual pairings. Throughout
the section we let 0 be a fixed object of an environment monoidal category V.

▶ Definition 9. A map ϵ : A⊗B −−−−→ 0 in V is said to be a dual pairing (w.r.t. the object
0) if the induced natural transformations

hom(X,B) −−−−→ hom(A⊗X, 0) , hom(X,A) −−−−→ hom(X ⊗B, 0) ,

are isomorphims.

CSL 2023



18:6 Frobenius Structures in Star-Autonomous Categories

Clearly, the above definition is equivalent to requiring that ϵ has two universal properties:
1. for each f : A ⊗ X −−−−→ 0 there exists a unique map f ♯ : X −−−−→ B such that
ϵ◦ (A⊗f ♯) = f , and 2. for each g : X⊗B −−−−→ 0 there exists a unique map g♯ : X −−−−→ A

such that ϵ◦(g♯⊗B) = g. We call f ♯ (and g♯) the transpose of f (resp. g). For f : X −−−→ B

(resp. g : X −−−→ A), we let f ♭ = ϵ ◦ (A⊗ f) (resp. g♭ = ϵ ◦ (g ⊗B)). If ϵ : A⊗B −−−→ 0
is a dual pairing, then we shall also say that the triple (A,B, ϵ) is a dual pairing, thus
emphasizing the typing. We shall also informally say that (A,B) is a dual pair, leaving aside
the arrow ϵ. A dual pairing ϵ : A⊗B −−−→ 0 is unique up to unique isomorphism, as stated
next.

▶ Proposition 10. If (A,B1, ϵA,B1) is a dual pairing and ψ : B0 −−−−→ B1 is iso, then
(A,B0, ϵA,B1 ◦ (A ⊗ ψ)) is a dual pairing. Conversely, if (A,B0, ϵA,B0) and (A,B1, ϵA,B1)
are two dual pairings, then there exists a unique iso ψ : B0 −−−−→ B1 such that ϵA,B0 =
ϵA,B1 ◦ (A⊗ ψ).

Obviously, similar statements also hold with respect to the object on the left, for example:
if (A0, B, ϵA0,B) and (A1, B, ϵA1,B) are two dual pairings, then there exists a unique iso
χ : A0 −−−→ A1 such that ϵA0,B = ϵA1,B ◦ (χ ⊗ B). While our presentation of the notion
of dual pairing is symmetry-free, we shall work later within symmetric and autonomous
categories. This imposes a few remarks.

▶ Lemma 11. If V is symmetric and (A,B, ϵ) is a dual pairing, then so is (B,A, ϵ ◦ σB,A).

For V an autonomous category and an arrow f : X −−−→ Y ∗ in V , we let f⊥ : Y −−−→ X∗

be the transpose of the map X ⊗ Y Y ⊗X Y ⊗ Y ∗ 0σX,Y Y⊗f evY,0 .
Notice that (−)⊥ : hom(X,Y ∗) −−−→ hom(Y,X∗) is natural in X and Y . If g = f⊥, then

we say that f and g are mates. Let us remark that the canonical arrow jX : X −−−→ X∗∗ is
the mate of idX∗ , from which the following statement easily follows:

▶ Lemma 12. For f : X −−−−→ Y ∗, f⊥ = f∗ ◦ jY .

Mates allow to precisely characterize dual pairs in autonomous categories, as follows.

▶ Proposition 13. If V is autonomous, then
1. (A,B) is a dual pair if and only if there are invertible mates ϕ : A → B∗ and ψ : B → A∗.
2. If (A,B) is a dual pair, then (A∗, B∗) is also a dual pair.
3. If (A,B) is a dual pair, then both A and B are reflexive objects of V.
4. If A is reflexive, then (A,A∗, evA,0) is a dual pairing.
5. (A,B) is a dual pair if and only if A is reflexive and there is some iso ψ : B −−−−→ A∗.

We next give some examples where the notion of dual pair naturally arises.

▶ Example 14. Proposition 13.5 shows that in a ∗-autonomous category V, where all the
objects are reflexive, any isomorphism B −−−→ A∗ is enough to build a dual pair (A,B).
This is a key observation for the coherence theorem in [9]. For example, in SLatt, taking
as object 0 the two-element Boolean algebra 2 := {⊥,⊤} (which is also the unit of the
tensor), the canonical isomorphism Lop ≃ L∗ – which associates to every y ∈ L the map
ay : L −−−→ 2 defined by ay(x) = ⊥ if and only if x ≤ y – yields the dual pair (L,Lop). The
pairing ϵ : L⊗ Lop −−−→ 2 is given by ϵ(x, y) = ⊥, if x ≤ y, and ϵ(x, y) = ⊤, otherwise.

▶ Example 15. For any object L of a ∗-autonomous category V, the pair (L∗ ⊗ L, [L,L])
is dual with pairing given by ϵ := evL,0 ◦ σL∗,L ◦ (L∗ ⊗ evL,L). Indeed, every object of V is
reflexive, so (L∗ ⊗ L, (L∗ ⊗ L)∗

, evL∗⊗L,0) is a dual pairing by Proposition 13.4. It is well



C. de Lacroix and L. Santocanale 18:7

known that in a ∗-autonomous category the transpose of evL,0 ◦ σL∗,L ◦ (L∗ ⊗ evL,L) is an
isomorphism ψ : [L,L] −−−→ (L∗ ⊗ L)∗. Then, by Proposition 10, evL∗⊗L,0 ◦ (L∗ ⊗L⊗ψ) =
evL,0 ◦ σL∗,L ◦ (L∗ ⊗ evL,L) is a dual pairing.

▶ Example 16. It is also possible to understand dual pairs as a generalization of the well-
known notion of adjunction. Recall that a tuple (A,B, ϵ, η) with ϵ : A ⊗ B −−−→ I and
η : I −−−→ B ⊗A is said to be an adjunction if the two diagrams below commute.

A⊗B ⊗A A⊗ I

I ⊗A A

ε⊗A

A⊗η

ρA

λA

I ⊗B B ⊗A⊗B

B B ⊗ I

η⊗B

λB B⊗ε

ρB

A is said to be left adjoint to B, B right adjoint to A, η is the unit of the adjunction and ϵ

is the counit of the adjunction. In an autonomous category, if (A,B, η, ϵ) is an adjunction,
then so is (B,A, σA,B ◦ η, ϵ ◦ σB,A), and therefore we won’t distinguish between left and right
adjoints, we just say that A (or B) is part of an adjunction.1 It is a standard exercise in
monoidal categories to verify the following statement.

▶ Fact 17. If (A,B, η, ϵ) is an adjunction, then (A,B, ϵ) is a dual pairing.

Not all the dual pairs arise from adjunctions. This can be simply observed by looking at
the ∗-autonomous category SLatt, where an object is part of an adjunction if and only if it is
a nuclear object, by the content of Section 6, if and only it is completely distributive, by
[29, 22]. Yet, (L,Lop, ϵ), described in Example 14, is always a dual pairing, even when L is
not completely distributive.
In [10], the authors introduce the notion of linear adjunction. Recall that a linearly distributive
category, see e.g. [11], is a category with distinct monoidal structures (I,⊗) and (0,⊕) coming
with natural maps κλ : X ⊗ (Y ⊕ Z) −−−→ (X ⊗ Y ) ⊕ X and κρ : (X ⊕ Y ) ⊗ Z −−−→
X ⊕ (Y ⊗Z) satisfying some constraints. A linear adjunction is then a tuple (A,B, ϵ, η) with
ϵ : A⊗B −−−→ 0 and η : I −−−→ B ⊕A making the diagrams below commute.

A⊗ (B ⊕A) A⊗ I

(A⊗B)⊕A

0⊕A A

κλA,B,A

A⊗η

ρ⊗A

ε⊕A
λ⊕
A

I ⊗B (B ⊕A)⊗B

B ⊕ (A⊗B)

B B ⊕ 0

η⊗B

λ⊗
B

κρB,A,B

B⊕ε
ρ⊕B

A ∗-autonomous category is, canonically, a linearly distributive category when we let X⊕Y :=
(Y ∗ ⊗X∗)∗. In view of Example 14 and Theorem 1.2 in [15], if the environment category is
∗-autonomous, then (A,B, ϵ) is a dual pairing if and only if we can find η : I −−−→ A⊕B

such that (A,B, η, ϵ) is a linear adjunction.

More on mates, adjoints. In SLatt, for every sup-preserving map f : L −−−→ M between
complete lattices, there exists a unique sup-preserving map ρ(f) : Mop −−−→ Lop such that,
for each x ∈ L and y ∈ M , f(x) ≤ y iff x ≤ ρ(f)(y). The map ρ(f) is called the (right)

1 This also to avoid the naming conflict with the notion of adjoint, presented below in this section. An
object A which is part of an adjunction is often called dualizable.
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18:8 Frobenius Structures in Star-Autonomous Categories

adjoint of f . The equivalences defining the adjoint can be expressed diagrammatically, by
means of the equation ϵM,Mop ◦ (f ⊗Mop) = ϵL,Lop ◦ (L⊗ ρ(f)). This suggests that a similar
notion can be defined for dual pairings in an arbitrary monoidal category.

Let (A0, B0, ϵ0) and (A1, B1, ϵ1) be two dual pairings. For a morphism f : A0 −−−→ A1,
we denote by f̃ : B1 −−−→ B0 the arrow given by the two transposes below:

A0 −−−→ A1

A0 ⊗B1 −−−→ 0
B1 −−−→ B0

We say that f : A0 −−−→ A1 is adjoint to g : B1 −−−→ B0 if f̃ = g.
A dual pairing (A,B, ϵ) is a special object of the category ChuV,0, see [6]. Recall that

a morphism between two objects (X0, X1, pX) and (Y0, Y1, pY ) of ChuV,0 is a pair of V
morphisms (f : X0 −−−→ Y0, g : Y1 −−−→ X1) such that the square below commutes.

X0 ⊗ Y1 Y0 ⊗ Y1

X0 ⊗X1 0 .

X0⊗g

f⊗Y1

pY

pX

If (A0, B0, ϵ0) and (A1, B1, ϵ1) are dual pairings, then a ChuV,0 morphism between them
is necessarily of the form (f, f̃) and, also, a pair (f, f̃) is obviously a morphism in ChuV,0.
Denoting by PairV,0 the full subcategory of ChuV,0 whose objects are dual pairings, these
remarks amount to the following statement, whose most relevant consequences is presented
immediately after.

▶ Lemma 18. The obvious projection functors, P0 : PairV,0 −−−−→ V and P1 : PairV,0 −−−−→
Vop, are full and faithful.

▶ Corollary 19. Let (Ai, Bi, ϵi), i = 0, 1, 2, be dual pairings. If f : A0 −−−−→ A1 and
g : A1 −−−−→ A2, then ĩdAi

= idBi
and g̃ ◦ f̃ = (̃f ◦ g). In particular, if f : A0 −−−−→ A1 is

inverted by g : A1 −−−−→ A0, then f̃ is inverted by g̃.

Let X,Y be reflexive, so (X,X∗, evX,0), (Y, Y ∗
Y,0), and (Y ∗, Y, evY,0 ◦ σY ∗,Y ) are dual

pairings. Notice the following relations: for f : X −−−→ Y , f̃ = f∗, that is, the adjoint of
f is the result of the functorial action on the map f ; for g : X −−−→ Y ∗, g̃ = g⊥, that is,
the adjoint of g is just its mate. This yields a number of relations. For example, if also Z is
reflexive, g : Z −−−→ Y and f : X −−−→ Y ∗, then using Corollary 19 we have

(g∗ ◦ f)⊥ = f⊥ ◦ g : Z −−−→ X∗ . (2)

Notice that equation (2) amounts to the naturality of (−)⊥ : hom(X,Y ∗) −−−→ hom(Y,X∗).
Finally, let us mention that we shall focus on maps f : A −−−→ B, where (A,B, ϵ) is

a dual pairing and, consequently, (B,A, ϵ ◦ σB,A) as well. The following statement is then
easily verified.

▶ Lemma 20. For (A,B, ϵ) a dual pairing and f : A −−−−→ B, the transposes of f and f̃

differ by a symmetry: ϵ ◦ (A⊗ f̃) = ϵ ◦ (A⊗ f) ◦ σA,A.
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4 Actions in dual pairs

The implications of a quantale validate the two equations

z/(y ∗ x) = (z/y)/x and (x ∗ y)\z = x\(y\z) .

These two equations can be understood by saying that the implications are, respectively, left
and right actions of Q over Qop, see Example 22. In this section we show that actions arise
from dual pairs when one of the objects of a dual pair is a semigroup. From now on, V will
be a symmetric monoidal category. Let (A,B, ϵ) be a dual pairing in V such that (A,µA) is
a magma. We define two morphisms

αℓA : A⊗B −−−→ B and αρA : B ⊗A −−−→ B ,

as the only morphisms making these two diagrams commute:

A⊗A⊗B A⊗B

A⊗B 0

µA⊗B

A⊗α`A

ε

ε

B ⊗A⊗A B ⊗A A⊗B

B ⊗A A⊗B 0

αρA⊗A

B⊗µA σB,A

ε

σB,A ε

(3)

▶ Fact 21. Letting Aop be the magma (A,µA ◦ σA,A), the relation αℓAop = αρA ◦ σA,B holds.

▶ Example 22. As mentioned in Example 14, (Q,Qop) is a dual pair in SLatt. If (Q, ∗) is a
quantale, commutativity of the left (resp. right) diagram in (3) amounts to the relation

x ∗ y ≤ z iff x ≤ αℓQ(y, z) ( resp., x ∗ y ≤ z iff y ≤ αρQ(z, x) ) .

Therefore, by the uniqueness of the adjoint, we have αℓQ(y, z) = z/y and αρQ(z, x) = x\z.

▶ Example 23. Let A be a finite dimensional k-algebra, x, y ∈ A, l ∈ A∗ = [A, k]. It is
direct to verify that αℓA(y, l) : x 7→ l(xy) and αρA(l, x) : y 7→ l(xy).

Let us give some elementary properties of αℓA and αρA.

▶ Lemma 24. Let (A,B, ϵ) be a dual pairing and (A,µA) be a magma.
1. The following equation, relating αℓA and αρA, holds:

ϵ ◦ (A⊗ αρA) = ϵ ◦ σB,A ◦ (αℓA ⊗A) . (4)

2. If (A,µA) is a semigroup, then the map αℓA is a left action (see Definition 5) and the
map αρA is a right action.

3. If (A,µA) is a semigroup, then the two actions are equivariant to each other, that is

αℓA ◦ (A⊗ αρA) = αρA ◦ (αℓA ⊗A) .

As the dual pair ([A,A], A∗ ⊗A) is the main object studied in this paper, we characterize
next the actions of ([A,A], ◦) over A∗ ⊗A, and of (A∗ ⊗A,µA∗⊗A) over [A,A], see Examples 4
and 15.

▶ Proposition 25. In a ∗-autonomous category V, we have

αρ[A,A] = A∗ ⊗ evA,A , αℓ[A,A] = µA,A,0 ⊗A .
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5 Frobenius structures

We finally define in this section the notion of Frobenius structure in a symmetric monoidal
category V and give some elementary properties of this structure. While other approaches
are possible, notably [39, 15], they are not strictly equivalent, starting from the assumptions
on the environment category.

▶ Definition 26. A Frobenius structure is a tuple (A,B, ϵ, µA, l, r) where (A,B, ϵ) is a dual
pairing, (A,µA) is a semigroup, and l and r are adjoint invertible maps from A to B such
that diagram (5) commutes.

A⊗A A⊗B

B ⊗A B.

l⊗A

A⊗r

αℓ
A

αρ
A

(5)

Notice that, by Lemma 20, the above definition coincides with the one given in the
Introduction.

▶ Example 27. Definition 26 strictly mimics the definition of Frobenius quantales in [13]. A
Frobenius quantale is defined there as a tuple (Q, ∗,⊥(−), (−)⊥) such that (Q, ∗) is a quantale,
and where (⊥(−), (−)⊥) form an invertible Galois connection satisfying the equation

y\⊥x = y⊥/x . (6)

The commutative diagram (5) is just a direct translation of equation (6), called the contra-
position law in [17].

Let us recall a few considerations developed in [13]. If a quantale has a dualizing element
0, then the two maps ⊥(−) := 0/(−) and (−)⊥ := (−)\0 are inverse to each other, form a
Galois connection, and satisfy equation (6). And if a Frobenius quantale has a unit 1 then
0 := ⊥1 = 1⊥ is a dualizing element. That is, contrarily to the usual definition (see for
instance [40, 31, 26, 16]), a Frobenius quantale does not need a unit.2 Now it is immediate
to see that Frobenius quantales as defined in [13] are exactly the Frobenius structures
(A,B, ϵ, µ, l, r) in SLatt for which B = Aop.

Before giving other examples of Frobenius structures, let us give some characterization of
these structures. In a quantale, equation (6) is equivalent to the shift/associative relations:

x ∗ y ≤ ⊥z iff x⊥ ≥ y ∗ z iff x ≤ ⊥(y ∗ z) .

This also holds in the general setting, simply by transposing diagram (5) we have:

▶ Lemma 28. A pair of morphisms (l, r) makes diagram (5) commute if and only if the shift
diagram (7) commutes.

A⊗A⊗A A⊗B

B ⊗A A⊗B 0

r⊗µA

µA⊗l

ε

σB,A ε

(7)

2 As a matter of fact, the theorems that we shall present in the next two sections can be understood as
characterizing the existence of units in specific cases.
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Our next goal is to show that, for a Frobenius structure (A,B, ϵ, µA, l, r), the dual pair
(B,A) also carries a Frobenius structure, in particular B carries a canonical semigroup
structure.

▶ Lemma 29. Let (A,B, ϵ) be a dual pair, (A,µA) a semigroup, and (l, r) invertible adjoint
maps from A to B. The tuple (A,B, ϵ, µA, l, r) is a Frobenius structure if and only if
diagram (8) commutes.

B ⊗B B ⊗A

A⊗B B

µB

B⊗r−1

l−1⊗B αρ
A

αℓ
A

(8)

For a Frobenius structure (A,B, ϵ, µA, l, r), let us denote by µB the diagonal of diagram (8).
We next consider the magma (B,µB). Note that from the definition of µB and of the actions
of a magma over its dual, we obtain two pairs of parallel equal arrows

B ⊗B ⊗A B ⊗A⊗A B ⊗A A⊗B 0 ,
B⊗r−1⊗A

µB⊗A

B⊗α`B

αρA⊗A

B⊗µA σB,A ε

A⊗B ⊗B A⊗A⊗B A⊗B 0 ,
A⊗l−1⊗B

A⊗µB

αρB⊗B

A⊗α`A

µA⊗B
ε

showing that the actions of the magma (B,µB) on the dual A depends on µA by:

αℓB = µA ◦ (r−1 ⊗A) , αρB = µA ◦ (A⊗ l−1) , (9)

and that µA is obtained from the action of (B,µB) over A by:

A⊗A A⊗B

B ⊗A A .

A⊗l

µAr⊗A αρ
B

αℓ
B

(10)

We collect the properties of Frobenius structures that we want to emphasize next.

▶ Proposition 30. For a Frobenius structure (A,B, ϵ, µA, l, r), the following statements hold:
1. (A,B, ϵ, µA ◦ σA,A, r, l) is a Frobenius structure.
2. The magma (B,µB) is a semigroup.
3. The following diagrams commute:

A⊗A A

A⊗B B

µA

A⊗l l

αℓ
A

A⊗A A

A⊗B B

µA

r⊗A r

αρ
A

(11)

4. The maps l and r are both semigroup homomorphisms from (A,µA) to (B,µB).
5. The tuple (B,A, ϵ ◦ σA, µB , r−1, l−1) is a Frobenius structure.

CSL 2023



18:12 Frobenius Structures in Star-Autonomous Categories

The last item of the Proposition exhibits the expected duality. Indeed, using diagram (10),
it is easily seen that the dual of (B,A, ϵ ◦σB,A, µB , r−1, l−1) is (A,B, ϵ, µA, l, r) itself. Notice
that having such duality is not an obvious result, since our definition of Frobenius structure
is not self dual. E.g., the dual B of A is not required to be a semigroup itself and the
requirement that diagram (5) commutes is a condition on the semigroup (A,µA).

Finally, let us establish the connection with associative bracketed magmas.

▶ Proposition 31. Let (A,B, ϵ, µA, l, r) be a Frobenius structure and define πlA := ϵ ◦ (A⊗ l)
and πrA := ϵ ◦ (A⊗ r). Then (A,µA, πlA) is an associative bracketed magma, (A,µA, πrA) is
a co-associative bracketed magma and πlA and πrA are dual pairings. Conversely, given an
associative bracketed magma (A,µA, πA) for which πA is a dual pairing, and given another
dual paring (A,B, ϵ), define l so that ϵ ◦ (A ⊗ l) = πA, r = l̃, then (A,B, ϵ, µA, l, r) is a
Frobenius structure.

From this correspondence between Frobenius structures and associative bracketed magmas,
it is easy to find some examples from the literature.

▶ Example 32. A Frobenius algebra is a finite-dimensional k-algebra (A,µA) coming with a
non degenerate form ⟨−,−⟩ such that ⟨xy, z⟩ = ⟨x, yz⟩. That is, it is a bracketed semigroup
(A,µA, ⟨−,−⟩) and ⟨−,−⟩ is a dual pairing as its transpose is an isomorphism between A and
A∗. Hence, (A,A∗, ev, µA, r, l) is a Frobenius structure in the category of finite-dimensional
k-vector spaces, where l and r are defined as stated in Proposition 31.

▶ Example 33. A Frobenius algebra (A, t, δ, e, µ) in a symmetric monoidal category, as
defined in [23], yields an associative bracketed magma (A,µ, t ◦ µ). Moreover, in [23], it
is noticed that (A,A, t ◦ µ, δ ◦ e) is an adjunction which implies that (A,A, t ◦ µ) is a dual
pairing (see Example 16). Whence, a Frobenius structure on the semigroup (A,µ) is obtained
as stated in Proposition 31.

▶ Example 34. A similar argument shows that a Frobenius monoid (A, t, δ, e, µ) in a linear
distributive category as defined in [15] yields a Frobenius structure, when the category is
actually ∗-autonomous. Indeed, one obtains an associative bracketed magma with the same
construction as in the last example. Moreover, Theorem 3.1 of [15] ensures that the pairing
is the co-unit of a linear adjunction. That is (A,A, t ◦ µ) is a dual pairing (see Example 16)
and we obtain a Frobenius structure just like before.

▶ Example 35. A Frobenius structure in the category of sets and relation is easily seen to
amount to a tuple (X,R, l, r) with R a ternary relation on X which is associative – i.e. such
that, for all x, y, z, w ∈ X, xyRu and uzRw (for some u ∈ X) if and only if xvRw and yzRv
(for some v ∈ X) – and with l, r inverse bijections on X satisfying xyRl(z) if and only if
yzRr(x), for all x, y, z ∈ X.

6 Nuclear objects and adjunctions

For completeness, we state here that, in an autonomous category, an object is nuclear if
and only it is part of an adjunction. This statement is actually a folklore result in the
literature. For example, it is explicitly mentioned in [32] that compact closed categories are
those autonomous categories for which every object is nuclear, while the same categories are
defined in [24] by the property that every object is part of an adjunction. We assume from
now on that the object 0 = I is the unit of the autonomous category V.
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The next statement shows that, in an adjunction of the form (A,A∗, η, ϵ), we can assume
that the counit ϵ is the evaluation map and, moreover, require commutativity of only one of
the two diagrams defining an adjunction.

▶ Lemma 36. In an autonomous category the following conditions are equivalent:
1. A is part of an adjunction,
2. there exists a map η : I −−−−→ A∗ ⊗A such that diagram (12) commutes,

A⊗ I A⊗A∗ ⊗A

A I ⊗A

ρA

A⊗η

evA,I⊗A
λ−1
A

(12)

3. there exists a map η : I −−−−→ A∗ ⊗A such that (A,A∗, η, evA,I) is an adjunction.

Proof. If (A,B, υ, ϵ) is an adjunction, then (A,B, ϵ) is a dual pairing. By Lemma 10, there
exists an isomorphism ψ : B −−−→ A∗ such that ϵ = evA,I ◦ (A⊗ψ). Define η := (ψ⊗A) ◦ υ,
we derive

(evA,I ⊗A) ◦ (A⊗ η) = (evA,I ⊗A) ◦ (A⊗ ψ ⊗A) ◦ (A⊗ υ)
= (ϵ⊗A) ◦ (A⊗ υ) = λ−1

A ◦ ρA .

Suppose now that diagram (12) commutes. We claim that the diagram

I ⊗A∗ A∗ ⊗A⊗A∗

A∗ A∗ ⊗ I

λA∗

η⊗A∗

A∗⊗evA,I

ρA∗

(13)

commutes as well, thus making (A,A∗, η, evA,I) into an adjunction. Indeed, the transpose
of λA∗ is the canonical map A ⊗ I ⊗ A∗ −−−→ I arising, up to unital isomorphisms, from
evaluation. The commutative diagram

A⊗ I ⊗A∗ A⊗A∗ ⊗A⊗A∗ A⊗A∗ ⊗ I

A⊗A∗ I ⊗A⊗A∗ I ⊗ I

A⊗A∗ I

A⊗η⊗A∗

ρA⊗A∗ evA,I⊗A⊗A∗

A⊗A∗⊗evA,I

evA,I⊗I
λ−1
A ⊗A∗

λA⊗A∗

I⊗evA,I

λI

evA,I

shows that the transpose of the rightmost path in (13) is the same canonical map.
Finally, if (A,A∗, η, evA,I) is an adjunction, then obviously A is part of an an adjunction.

◀

Recall now that an object A of an autonomous category is nuclear if the canonical map
mix : A∗ ⊗A −−−→ [A,A] is an isomorphism.

▶ Theorem 37. In an autonomous category, the following are equivalent:
1. A is nuclear,
2. there exists a map η : I −−−−→ A∗ ⊗A such that mix ◦ η = ρA

♯ : I −−−−→ [A,A],
3. A is part of an adjunction.
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Proof. If mix is invertible then define η := mix−1 ◦ ρA♯. That is, 1 implies 2.
To see that 2 implies 3, observe that the relation mix ◦ η = ρA

♯ is equivalent (under
transposition) to commutativity of (12). Therefore, by Lemma 36, A is an adjoint.

Let us argue that 3 implies 1. Suppose that A is an adjoint. By Lemma 36, there exists η
such that (A,A∗, η, evA,I) is an adjunction. Then, we define the map ψ : [A,A] −−−→ A∗ ⊗A

by

ψ := [A,A]
λ−1

[A,A]−−−−→ I ⊗ [A,A] η⊗[A,A]−−−−−→ A∗ ⊗A⊗ [A,A] A∗⊗evA,A−−−−−−−→ A∗ ⊗A .

To see that mix ◦ ψ is the identity of [A,A] observe that its transpose is the evaluation map,
as witnessed by the commutativity of the diagram

A⊗ I ⊗ [A,A] A⊗A∗ ⊗A⊗ [A,A] A⊗A∗ ⊗A

A⊗ [A,A] I ⊗A⊗ [A,A] I ⊗A

A⊗ [A,A] A.

A⊗η⊗[A,A] A⊗A∗⊗evA,A

evA,I⊗A⊗[A,A] evA,I⊗A

evA,A◦(A⊗mix)

ρ−1
A ⊗[A,A]=A⊗λ−1

[A,A]

λ−1
A ⊗[A,A] I⊗evA,A

λA⊗[A,A] λA

evA,A

Also, commutativity of the diagram

A∗ ⊗A [A,A]

I ⊗A∗ ⊗A I ⊗ [A,A]

A∗ ⊗A⊗A∗ ⊗A A∗ ⊗A⊗ [A,A]

A∗ ⊗A A∗ ⊗ I ⊗A A∗ ⊗A

λ−1
A∗⊗A

=λ−1
A∗⊗A

mix

λ−1
[A,A]

λA∗⊗A

I⊗mix

η⊗A∗⊗A
η⊗[A,A]

A∗⊗A⊗mix

A⊗evA,I⊗A∗
A∗⊗evA,A

ρ−1
A∗⊗A ρA∗⊗A=A∗⊗λA

shows that ψ ◦ mix = idA∗⊗A. ◀

7 From nuclearity to Frobenius structures

The next two sections present our main results. First we show how nuclearity yields Frobenius
structures on the objects on the internal hom [A,A].

▶ Theorem 38. If A is a nuclear object in a ∗-autonomous category V, then there is a map
l such that ([A,A], [A,A]∗, ev[A,A],I , ◦, l, l) is a Frobenius structure.

Proof. As mentioned in Example 4, the object A∗ ⊗A has the semigroup structure µA∗⊗A =
ρA∗ ◦ (A∗ ⊗ λA) ◦ (A∗ ⊗ evA,I ⊗A), see e.g. [26]. It is easily seen that ϵ ◦ (A∗ ⊗A⊗ mix) =
evA,I ◦ σA∗,A ◦ µA∗⊗A, which immediately ensures that the map ϵ ◦ (A∗ ⊗A⊗ mix), that is,
the transpose of mix, is associative. It is also verified that ϵ ◦ (A∗ ⊗A⊗ mix) ◦σA∗⊗A,A∗⊗A =
ϵ ◦ (A∗ ⊗A⊗ mix), whence mix is self-adjoint.
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It follows that, if mix is invertible, then the tuples (A∗ ⊗A, [A,A], ϵ, µA∗⊗A, mix, mix) and
([A,A], A∗ ⊗A, ϵ ◦ σ[A,A],A∗⊗A, µ[A,A], mix−1, mix−1) are Frobenius structures. Since mix is
a semigroup homomorphism from (A∗ ⊗A,µA∗⊗A) to ([A,A], ◦), then µ[A,A] is the standard
monoid structure ◦ induced from composition in [A,A]. There is a canonical isomorphism
ψ : A∗ ⊗A ∼= [A,A]∗ such that ϵ ◦ ([A,A] ◦ ψ) = ev[A,A],I , see Example 15. Then, it is easily
seen that ([A,A], [A,A]∗, ev[A,A],I , ◦, ψ ◦ mix−1, ψ ◦ mix−1) is a Frobenius structure. ◀

Let us notice that, in view of Theorem 37 identifying nuclear objects and adjoints, the
previous statement can be seen as an instance of [39, Corollary 3.3]. This statement admits a
sort of generalization. Since the category SLatt has an epi-mono factorization system which
lifts to the category of quantales, we argued in [13] that, by taking the appropriate quantic
nucleus, one can always obtain a Girard quantale from the image of mix. This specific
situation of SLatt is abstracted as follows:

▶ Theorem 39. Let V be a ∗-autonomous category with an epi-mono factorization system,
(A,B, ϵ) be a dual pairing, and (A,µA) be a semigroup in V. Let f : A −−−−→ B be a map, put
ψA := ϵ◦(A⊗f) and suppose that ψA = ψA ◦σA,A. Factor f as f = m◦e with e : A −−−−→ C

epi and m : C −−−−→ B mono. If C is a magma with multiplication µC and e is a magma
homomorphism, then there exists a map g : C −−−−→ C∗ making (C,C∗, evC,I , µC , g, g) into
a Frobenius structure.

To prove the theorem, we need a Lemma relating factorization systems to dual pairs. If
f = m ◦ e with e epi and m mono, then we denote by Im(f) the codomain of e.

▶ Lemma 40. Let V be ∗-autonomous with an epi-mono factorization system. If (A,B) is a
dual pair and f : A −−−−→ B then (Im(f), Im(f̃)) is a dual pair.

Proof. As from Proposition 13.1, let ϕ : A −−−→ B∗ and ψ : B −−−→ A∗ be isomorphisms
such that ϕ = ψ⊥. We pretend that, up to these isomorphisms, f̃ equals f∗, as stated below.

▷ Claim 41. We have ψ ◦ f̃ = f∗ ◦ ϕ.

Let now (e,m) and (ẽ, m̃) be epi-mono factorizations of f and f̃ , respectively. By applying
the duality functor (−)∗, (m∗, e∗) (resp. (m̃∗, ẽ∗)) is an epi-mono factorization of f∗ (resp.
f̃∗). Therefore, we obtain two different epi-mono factorizations of ψ ◦ f̃ = f∗ ◦ ϕ (resp.
ψ ◦ f = f̃∗ ◦ ϕ), as follows:

A B

Im(f̃)

Im(f)∗

B∗ A∗

ẽ

f̃

ϕ ψ

m̃

χ

e∗m∗

f∗

A B

Im(f)

Im(f̃)
∗

B∗ A∗

e

f

ϕ ψ

m

ξ

ẽ∗m̃∗

f̃∗

and therefore isomorphisms χ : Im(f̃) −−−→ Im(f)∗ and ξ : Im(f) −−−→ Im(f̃)
∗
. In order

to conclude that we have a dual pair, we need to argue that ξ = χ⊥. To this goal, compute
as follows:

(χ ◦ ẽ)⊥ ◦ e = (e∗ ◦ χ ◦ ẽ)⊥ = (f∗ ◦ ϕ)⊥ = ϕ⊥ ◦ f = ψ ◦ f = ẽ∗ ◦ ξ ◦ e .
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From this, considering that e is epi, it follows that (χ ◦ ẽ)⊥ = ẽ∗ ◦ξ. By applying the operator
(−)⊥ to both sides of this equality, we obtain χ ◦ ẽ = (ẽ∗ ◦ ξ)⊥ = ξ⊥ ◦ ẽ, from which the
desired equality χ = ξ⊥ follows. ◀

Proof of Theorem 39. Let A,B be dual and let f : A −−−→ B be such that f̃ = f . Let
e : A −−−→ C and m : C −−−→ B be a factorization of f . Lemma 40 exhibits (C,C) as
a dual pair with isomorphism χ, ξ : C −−−→ C∗ such that χ⊥ = ξ = χ. Define therefore
the pairing πC := evC,I ◦ (C ⊗ χ) : C ⊗ C −−−→ I and observe that it is symmetric. The
diagram in the proof of Lemma 40 also exhibits the equality ψ ◦ f = e∗ ◦ χ ◦ e : A −−−→ A∗.
Transposing this relation, we obtain the pairing

πA = (ψ ◦ f)♭ = (e∗ ◦ χ ◦ e)♭ = χ♭ ◦ (e⊗ e) = πC ◦ (e⊗ e) .

Thus, assuming that f : A −−−→ B is a semigroup homomorphism factoring as f = m ◦ e
with e : (A,µA) −−−→ (C, µC) a magma homomorphisms, we have that e : (A,µA, πA) −−−→
(C, µC , πC) is a bracketed magma homomorphism. As argued in Proposition 8, (C, µC , πC)
is an associative bracketed magma, and, as mentioned in Proposition 31, this is enough to
have a Frobenius structure on the dual pair (C,C∗). ◀

8 From Frobenius structures to nuclear objects

We finally give the converse of Theorem 38. However, to do so, we impose additional
conditions on the carrier object A of a Frobenius quantale [A,A].

▶ Definition 42. We say that an object A of a monoidal category V is pseudo-affine if the
tensor unit I embeds into A as a retract. If every object of V which is not terminal nor initial
is pseudo-affine, then V is said to be pseudo-affine.

For instance, the category SLatt is pseudo-affine. This property was actually used in [34] to
prove that if [L,L] is endowed with a Frobenius quantale structure, then L is completely
distributive. Before going there, let us introduce some useful observations.

▶ Lemma 43. Tensoring with a pseudo-affine object yields a faithful functor.

▶ Proposition 44. Identity morphisms of pseudo-affine objects are orthogonal to each other,
in the following sense: if A,C are pseudo-affine, f : A⊗B0 −−−−→ A⊗B1, g : B0 ⊗C −−−−→
B1 ⊗C, and f⊗C = A⊗g : A⊗B0 ⊗C −−−−→ A⊗B1 ⊗C, then there exists h : B0 −−−−→ B1
such that f = A⊗ h and g = h⊗ C.

The following is the main result in this section.

▶ Theorem 45. If A is pseudo-affine and the semigroup ([A,A], ◦) can be completed to a
Frobenius structure, then A is part of an adjunction.

Proof. We can suppose that the dual of [A,A] is A∗ ⊗A. The dual multiplication µA∗⊗A :
A∗ ⊗A⊗A∗ ⊗A −−−→ A∗ ⊗A arises from a map f : A∗ ⊗A −−−→ [A,A] as the diagonal
of the diagram below.

A∗ ⊗A⊗A∗ ⊗A A∗ ⊗A⊗ [A,A]

[A,A]⊗A∗ ⊗A A∗ ⊗A

A∗⊗A⊗f̃

f⊗A∗⊗A µA∗⊗A
A∗⊗evA,A

µA,A,I⊗A
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Since A is pseudo-affine, then, by Proposition 44, we necessarily have

µA∗⊗A = (A∗ ⊗ λA) ◦ (A∗ ⊗ ϵ⊗A)

for a map ϵ : A⊗A∗ −−−→ I. Moreover, since ([A,A], ◦) is unital and f is an isomorphism,
µA∗⊗A has a unit η : I −−−→ A∗ ⊗A, which means that the following diagrams commute:

A∗ ⊗A

A∗ ⊗A⊗ I

A∗ ⊗A⊗A∗ ⊗A A∗ ⊗ I ⊗A A∗ ⊗A

A∗⊗ρ−1
A

A∗⊗A

A∗⊗A⊗η
A∗⊗ε⊗A A∗⊗λA

A∗ ⊗A I ⊗A∗ ⊗A A∗ ⊗A⊗A∗ ⊗A

A∗ ⊗ I ⊗A

A∗ ⊗A

A∗⊗A

λ−1
A∗⊗A η⊗A∗⊗A

A∗⊗ε⊗A

ρA∗⊗A=A∗⊗λA

Since tensoring with A and A∗ is faithful, commutativity of the above diagrams is equivalent
to the equalities

λA ◦ (ϵ⊗A) ◦ (A⊗ η) ◦ ρ−1
A = idA , idA∗ = ρA ◦ (A∗ ⊗ ϵ) ◦ (η ⊗A∗) ◦ λ−1

A ,

showing that (A,A∗, η, ϵ) is an adjunction. ◀

In view of Theorem 37, we can restate Theorem 45 as follows:

▶ Theorem 46. If A is pseudo-affine and ([A,A], ◦) carries a Frobenius structure, then A is
nuclear.

9 Discussion and future work

The work [38] provides a wide playground where to test the strength of the results presented
in this paper. For example, for a commutative Girard quantale Q, the category QSet, whose
objects are the pairs (α,X) with α : X −−−→ Q and whose morphisms (α,X) −−−→ (β, Y )
are the relations R ⊆ X × Y such that xRy implies α(x) ≤ β(y), is ∗-autonomous. If the
relation 1 = 1⊥ holds in Q, then the unit of the monoidal structure is a dualizing object. It
is not difficult to characterize pseudo-affine and nuclear objects in this category. It turns
out that, when Q does not contain an infinite chain, if a monoid on [(α,X), (α,X)] can
be endowed with a Frobenius structure, then (α,X) is nuclear, even when (α,X) is not
pseudo-affine. Thus, the assumption made in Theorem 45 that an object is pseudo-affine is
not necessary. On the other hand, we could also construct an infinite quantale Q and an
object (α,X) for which the monoid [(α,X), (α,X)] has a Frobenius structure and which is
not nuclear.

The notion of nuclearity was originally conceived for Banach spaces [21]. In [13] we
have shown how to construct unitless Girard quantales from nuclear endomaps (trace class
operators) of an infinite dimensional Hilbert space. It is natural to ask how the results
presented in this paper may be extended to categories of Banach spaces and other similar
categories (e.g. the category of Hilbert spaces). Most of these categories are symmetric
monoidal; however, they are not ∗-autonomous and, in the case of Hilbert spaces and
continuous linear maps, not even autonomous. Even though the definitions of dual pair and
of Frobenius structure only require the environment category to be symmetric monoidal, a
closer look at our results exhibits their dependency on ∗-autonomy. For example, we have
used in Theorem 39 the fact that, for m mono, m∗ is epi. In categories of Banach spaces,
due to the Hanh-Banach theorem, the theorem might still hold if m is a regular mono, that
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is, an isometry. However, when considering the algebra of trace class operators – which,
given the analogy with the tight endomaps of [13], is the natural candidate where to apply
Theorem 39 – the relevant map m is not an isometry. We also have used in Theorem 46
and elsewhere that (A∗ ⊗A, [A,A]) is a dual pair. This fails in autonomous categories, for
example, if A is the reflexive Banach space ℓp with 1 < p < ∞, then the tensor A∗ ⊗A is no
longer reflexive, see [5]. One might restrict to categories of finite dimensional Banach space,
which are ∗-autonomous. However, these categories turn out to be uninteresting: if bounded
linear maps are taken as morphisms, then all object are nuclear, and if we restrict maps to
linear contractions (those linear maps for which ∥f∥ ≤ 1), then the only nuclear objects are
isomorphic to the monoidal unit [32, §4].

Future research will continue investigating applications of these theorems in concrete
∗-autonomous categories. A main difficulty here will be finding adequate characterizations of
nuclear and pseudo-affine objects. We shall also investigate how to relax ∗-autonomy, which
might yield results on categories appealing for a wider community of computer scientists and
mathematicians – and a step, on our side, towards categorical models of quantum computing.

The considerations just developed suggest, on the other hand, the existence of a close
interdependence between provability models of classical linear logic (Frobenius quantales and,
in a wider sense, Frobenius structures) and models of proofs of this logic (the ∗-autonomous
categories). It is our desire to investigate further whether there is any relation between these
structures, similarly to what happens for intuitionistic logic with the Heyting algebra of
truth values of a topos. Steps in this direction have already been taken, see e.g. [38, 8].
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